xref: /openbmc/linux/kernel/sched/core.c (revision 90099433)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89 
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91 {
92 	unsigned long delta;
93 	ktime_t soft, hard, now;
94 
95 	for (;;) {
96 		if (hrtimer_active(period_timer))
97 			break;
98 
99 		now = hrtimer_cb_get_time(period_timer);
100 		hrtimer_forward(period_timer, now, period);
101 
102 		soft = hrtimer_get_softexpires(period_timer);
103 		hard = hrtimer_get_expires(period_timer);
104 		delta = ktime_to_ns(ktime_sub(hard, soft));
105 		__hrtimer_start_range_ns(period_timer, soft, delta,
106 					 HRTIMER_MODE_ABS_PINNED, 0);
107 	}
108 }
109 
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112 
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
114 
115 void update_rq_clock(struct rq *rq)
116 {
117 	s64 delta;
118 
119 	if (rq->skip_clock_update > 0)
120 		return;
121 
122 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 	rq->clock += delta;
124 	update_rq_clock_task(rq, delta);
125 }
126 
127 /*
128  * Debugging: various feature bits
129  */
130 
131 #define SCHED_FEAT(name, enabled)	\
132 	(1UL << __SCHED_FEAT_##name) * enabled |
133 
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
136 	0;
137 
138 #undef SCHED_FEAT
139 
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled)	\
142 	#name ,
143 
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 	NULL
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 void update_cpu_load(struct rq *this_rq);
696 
697 static void set_load_weight(struct task_struct *p)
698 {
699 	int prio = p->static_prio - MAX_RT_PRIO;
700 	struct load_weight *load = &p->se.load;
701 
702 	/*
703 	 * SCHED_IDLE tasks get minimal weight:
704 	 */
705 	if (p->policy == SCHED_IDLE) {
706 		load->weight = scale_load(WEIGHT_IDLEPRIO);
707 		load->inv_weight = WMULT_IDLEPRIO;
708 		return;
709 	}
710 
711 	load->weight = scale_load(prio_to_weight[prio]);
712 	load->inv_weight = prio_to_wmult[prio];
713 }
714 
715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 	update_rq_clock(rq);
718 	sched_info_queued(p);
719 	p->sched_class->enqueue_task(rq, p, flags);
720 }
721 
722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_dequeued(p);
726 	p->sched_class->dequeue_task(rq, p, flags);
727 }
728 
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	if (task_contributes_to_load(p))
732 		rq->nr_uninterruptible--;
733 
734 	enqueue_task(rq, p, flags);
735 }
736 
737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 {
739 	if (task_contributes_to_load(p))
740 		rq->nr_uninterruptible++;
741 
742 	dequeue_task(rq, p, flags);
743 }
744 
745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 
747 /*
748  * There are no locks covering percpu hardirq/softirq time.
749  * They are only modified in account_system_vtime, on corresponding CPU
750  * with interrupts disabled. So, writes are safe.
751  * They are read and saved off onto struct rq in update_rq_clock().
752  * This may result in other CPU reading this CPU's irq time and can
753  * race with irq/account_system_vtime on this CPU. We would either get old
754  * or new value with a side effect of accounting a slice of irq time to wrong
755  * task when irq is in progress while we read rq->clock. That is a worthy
756  * compromise in place of having locks on each irq in account_system_time.
757  */
758 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759 static DEFINE_PER_CPU(u64, cpu_softirq_time);
760 
761 static DEFINE_PER_CPU(u64, irq_start_time);
762 static int sched_clock_irqtime;
763 
764 void enable_sched_clock_irqtime(void)
765 {
766 	sched_clock_irqtime = 1;
767 }
768 
769 void disable_sched_clock_irqtime(void)
770 {
771 	sched_clock_irqtime = 0;
772 }
773 
774 #ifndef CONFIG_64BIT
775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776 
777 static inline void irq_time_write_begin(void)
778 {
779 	__this_cpu_inc(irq_time_seq.sequence);
780 	smp_wmb();
781 }
782 
783 static inline void irq_time_write_end(void)
784 {
785 	smp_wmb();
786 	__this_cpu_inc(irq_time_seq.sequence);
787 }
788 
789 static inline u64 irq_time_read(int cpu)
790 {
791 	u64 irq_time;
792 	unsigned seq;
793 
794 	do {
795 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 		irq_time = per_cpu(cpu_softirq_time, cpu) +
797 			   per_cpu(cpu_hardirq_time, cpu);
798 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799 
800 	return irq_time;
801 }
802 #else /* CONFIG_64BIT */
803 static inline void irq_time_write_begin(void)
804 {
805 }
806 
807 static inline void irq_time_write_end(void)
808 {
809 }
810 
811 static inline u64 irq_time_read(int cpu)
812 {
813 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814 }
815 #endif /* CONFIG_64BIT */
816 
817 /*
818  * Called before incrementing preempt_count on {soft,}irq_enter
819  * and before decrementing preempt_count on {soft,}irq_exit.
820  */
821 void account_system_vtime(struct task_struct *curr)
822 {
823 	unsigned long flags;
824 	s64 delta;
825 	int cpu;
826 
827 	if (!sched_clock_irqtime)
828 		return;
829 
830 	local_irq_save(flags);
831 
832 	cpu = smp_processor_id();
833 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 	__this_cpu_add(irq_start_time, delta);
835 
836 	irq_time_write_begin();
837 	/*
838 	 * We do not account for softirq time from ksoftirqd here.
839 	 * We want to continue accounting softirq time to ksoftirqd thread
840 	 * in that case, so as not to confuse scheduler with a special task
841 	 * that do not consume any time, but still wants to run.
842 	 */
843 	if (hardirq_count())
844 		__this_cpu_add(cpu_hardirq_time, delta);
845 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846 		__this_cpu_add(cpu_softirq_time, delta);
847 
848 	irq_time_write_end();
849 	local_irq_restore(flags);
850 }
851 EXPORT_SYMBOL_GPL(account_system_vtime);
852 
853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854 
855 #ifdef CONFIG_PARAVIRT
856 static inline u64 steal_ticks(u64 steal)
857 {
858 	if (unlikely(steal > NSEC_PER_SEC))
859 		return div_u64(steal, TICK_NSEC);
860 
861 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862 }
863 #endif
864 
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 {
867 /*
868  * In theory, the compile should just see 0 here, and optimize out the call
869  * to sched_rt_avg_update. But I don't trust it...
870  */
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 	s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 
877 	/*
878 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 	 * this case when a previous update_rq_clock() happened inside a
880 	 * {soft,}irq region.
881 	 *
882 	 * When this happens, we stop ->clock_task and only update the
883 	 * prev_irq_time stamp to account for the part that fit, so that a next
884 	 * update will consume the rest. This ensures ->clock_task is
885 	 * monotonic.
886 	 *
887 	 * It does however cause some slight miss-attribution of {soft,}irq
888 	 * time, a more accurate solution would be to update the irq_time using
889 	 * the current rq->clock timestamp, except that would require using
890 	 * atomic ops.
891 	 */
892 	if (irq_delta > delta)
893 		irq_delta = delta;
894 
895 	rq->prev_irq_time += irq_delta;
896 	delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 	if (static_key_false((&paravirt_steal_rq_enabled))) {
900 		u64 st;
901 
902 		steal = paravirt_steal_clock(cpu_of(rq));
903 		steal -= rq->prev_steal_time_rq;
904 
905 		if (unlikely(steal > delta))
906 			steal = delta;
907 
908 		st = steal_ticks(steal);
909 		steal = st * TICK_NSEC;
910 
911 		rq->prev_steal_time_rq += steal;
912 
913 		delta -= steal;
914 	}
915 #endif
916 
917 	rq->clock_task += delta;
918 
919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 		sched_rt_avg_update(rq, irq_delta + steal);
922 #endif
923 }
924 
925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 static int irqtime_account_hi_update(void)
927 {
928 	u64 *cpustat = kcpustat_this_cpu->cpustat;
929 	unsigned long flags;
930 	u64 latest_ns;
931 	int ret = 0;
932 
933 	local_irq_save(flags);
934 	latest_ns = this_cpu_read(cpu_hardirq_time);
935 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 		ret = 1;
937 	local_irq_restore(flags);
938 	return ret;
939 }
940 
941 static int irqtime_account_si_update(void)
942 {
943 	u64 *cpustat = kcpustat_this_cpu->cpustat;
944 	unsigned long flags;
945 	u64 latest_ns;
946 	int ret = 0;
947 
948 	local_irq_save(flags);
949 	latest_ns = this_cpu_read(cpu_softirq_time);
950 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 		ret = 1;
952 	local_irq_restore(flags);
953 	return ret;
954 }
955 
956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
957 
958 #define sched_clock_irqtime	(0)
959 
960 #endif
961 
962 void sched_set_stop_task(int cpu, struct task_struct *stop)
963 {
964 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966 
967 	if (stop) {
968 		/*
969 		 * Make it appear like a SCHED_FIFO task, its something
970 		 * userspace knows about and won't get confused about.
971 		 *
972 		 * Also, it will make PI more or less work without too
973 		 * much confusion -- but then, stop work should not
974 		 * rely on PI working anyway.
975 		 */
976 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977 
978 		stop->sched_class = &stop_sched_class;
979 	}
980 
981 	cpu_rq(cpu)->stop = stop;
982 
983 	if (old_stop) {
984 		/*
985 		 * Reset it back to a normal scheduling class so that
986 		 * it can die in pieces.
987 		 */
988 		old_stop->sched_class = &rt_sched_class;
989 	}
990 }
991 
992 /*
993  * __normal_prio - return the priority that is based on the static prio
994  */
995 static inline int __normal_prio(struct task_struct *p)
996 {
997 	return p->static_prio;
998 }
999 
1000 /*
1001  * Calculate the expected normal priority: i.e. priority
1002  * without taking RT-inheritance into account. Might be
1003  * boosted by interactivity modifiers. Changes upon fork,
1004  * setprio syscalls, and whenever the interactivity
1005  * estimator recalculates.
1006  */
1007 static inline int normal_prio(struct task_struct *p)
1008 {
1009 	int prio;
1010 
1011 	if (task_has_rt_policy(p))
1012 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 	else
1014 		prio = __normal_prio(p);
1015 	return prio;
1016 }
1017 
1018 /*
1019  * Calculate the current priority, i.e. the priority
1020  * taken into account by the scheduler. This value might
1021  * be boosted by RT tasks, or might be boosted by
1022  * interactivity modifiers. Will be RT if the task got
1023  * RT-boosted. If not then it returns p->normal_prio.
1024  */
1025 static int effective_prio(struct task_struct *p)
1026 {
1027 	p->normal_prio = normal_prio(p);
1028 	/*
1029 	 * If we are RT tasks or we were boosted to RT priority,
1030 	 * keep the priority unchanged. Otherwise, update priority
1031 	 * to the normal priority:
1032 	 */
1033 	if (!rt_prio(p->prio))
1034 		return p->normal_prio;
1035 	return p->prio;
1036 }
1037 
1038 /**
1039  * task_curr - is this task currently executing on a CPU?
1040  * @p: the task in question.
1041  */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 	return cpu_curr(task_cpu(p)) == p;
1045 }
1046 
1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 				       const struct sched_class *prev_class,
1049 				       int oldprio)
1050 {
1051 	if (prev_class != p->sched_class) {
1052 		if (prev_class->switched_from)
1053 			prev_class->switched_from(rq, p);
1054 		p->sched_class->switched_to(rq, p);
1055 	} else if (oldprio != p->prio)
1056 		p->sched_class->prio_changed(rq, p, oldprio);
1057 }
1058 
1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 {
1061 	const struct sched_class *class;
1062 
1063 	if (p->sched_class == rq->curr->sched_class) {
1064 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 	} else {
1066 		for_each_class(class) {
1067 			if (class == rq->curr->sched_class)
1068 				break;
1069 			if (class == p->sched_class) {
1070 				resched_task(rq->curr);
1071 				break;
1072 			}
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * A queue event has occurred, and we're going to schedule.  In
1078 	 * this case, we can save a useless back to back clock update.
1079 	 */
1080 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 		rq->skip_clock_update = 1;
1082 }
1083 
1084 #ifdef CONFIG_SMP
1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086 {
1087 #ifdef CONFIG_SCHED_DEBUG
1088 	/*
1089 	 * We should never call set_task_cpu() on a blocked task,
1090 	 * ttwu() will sort out the placement.
1091 	 */
1092 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094 
1095 #ifdef CONFIG_LOCKDEP
1096 	/*
1097 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 	 *
1100 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 	 * see set_task_rq().
1102 	 *
1103 	 * Furthermore, all task_rq users should acquire both locks, see
1104 	 * task_rq_lock().
1105 	 */
1106 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 				      lockdep_is_held(&task_rq(p)->lock)));
1108 #endif
1109 #endif
1110 
1111 	trace_sched_migrate_task(p, new_cpu);
1112 
1113 	if (task_cpu(p) != new_cpu) {
1114 		p->se.nr_migrations++;
1115 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 	}
1117 
1118 	__set_task_cpu(p, new_cpu);
1119 }
1120 
1121 struct migration_arg {
1122 	struct task_struct *task;
1123 	int dest_cpu;
1124 };
1125 
1126 static int migration_cpu_stop(void *data);
1127 
1128 /*
1129  * wait_task_inactive - wait for a thread to unschedule.
1130  *
1131  * If @match_state is nonzero, it's the @p->state value just checked and
1132  * not expected to change.  If it changes, i.e. @p might have woken up,
1133  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134  * we return a positive number (its total switch count).  If a second call
1135  * a short while later returns the same number, the caller can be sure that
1136  * @p has remained unscheduled the whole time.
1137  *
1138  * The caller must ensure that the task *will* unschedule sometime soon,
1139  * else this function might spin for a *long* time. This function can't
1140  * be called with interrupts off, or it may introduce deadlock with
1141  * smp_call_function() if an IPI is sent by the same process we are
1142  * waiting to become inactive.
1143  */
1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145 {
1146 	unsigned long flags;
1147 	int running, on_rq;
1148 	unsigned long ncsw;
1149 	struct rq *rq;
1150 
1151 	for (;;) {
1152 		/*
1153 		 * We do the initial early heuristics without holding
1154 		 * any task-queue locks at all. We'll only try to get
1155 		 * the runqueue lock when things look like they will
1156 		 * work out!
1157 		 */
1158 		rq = task_rq(p);
1159 
1160 		/*
1161 		 * If the task is actively running on another CPU
1162 		 * still, just relax and busy-wait without holding
1163 		 * any locks.
1164 		 *
1165 		 * NOTE! Since we don't hold any locks, it's not
1166 		 * even sure that "rq" stays as the right runqueue!
1167 		 * But we don't care, since "task_running()" will
1168 		 * return false if the runqueue has changed and p
1169 		 * is actually now running somewhere else!
1170 		 */
1171 		while (task_running(rq, p)) {
1172 			if (match_state && unlikely(p->state != match_state))
1173 				return 0;
1174 			cpu_relax();
1175 		}
1176 
1177 		/*
1178 		 * Ok, time to look more closely! We need the rq
1179 		 * lock now, to be *sure*. If we're wrong, we'll
1180 		 * just go back and repeat.
1181 		 */
1182 		rq = task_rq_lock(p, &flags);
1183 		trace_sched_wait_task(p);
1184 		running = task_running(rq, p);
1185 		on_rq = p->on_rq;
1186 		ncsw = 0;
1187 		if (!match_state || p->state == match_state)
1188 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189 		task_rq_unlock(rq, p, &flags);
1190 
1191 		/*
1192 		 * If it changed from the expected state, bail out now.
1193 		 */
1194 		if (unlikely(!ncsw))
1195 			break;
1196 
1197 		/*
1198 		 * Was it really running after all now that we
1199 		 * checked with the proper locks actually held?
1200 		 *
1201 		 * Oops. Go back and try again..
1202 		 */
1203 		if (unlikely(running)) {
1204 			cpu_relax();
1205 			continue;
1206 		}
1207 
1208 		/*
1209 		 * It's not enough that it's not actively running,
1210 		 * it must be off the runqueue _entirely_, and not
1211 		 * preempted!
1212 		 *
1213 		 * So if it was still runnable (but just not actively
1214 		 * running right now), it's preempted, and we should
1215 		 * yield - it could be a while.
1216 		 */
1217 		if (unlikely(on_rq)) {
1218 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219 
1220 			set_current_state(TASK_UNINTERRUPTIBLE);
1221 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 			continue;
1223 		}
1224 
1225 		/*
1226 		 * Ahh, all good. It wasn't running, and it wasn't
1227 		 * runnable, which means that it will never become
1228 		 * running in the future either. We're all done!
1229 		 */
1230 		break;
1231 	}
1232 
1233 	return ncsw;
1234 }
1235 
1236 /***
1237  * kick_process - kick a running thread to enter/exit the kernel
1238  * @p: the to-be-kicked thread
1239  *
1240  * Cause a process which is running on another CPU to enter
1241  * kernel-mode, without any delay. (to get signals handled.)
1242  *
1243  * NOTE: this function doesn't have to take the runqueue lock,
1244  * because all it wants to ensure is that the remote task enters
1245  * the kernel. If the IPI races and the task has been migrated
1246  * to another CPU then no harm is done and the purpose has been
1247  * achieved as well.
1248  */
1249 void kick_process(struct task_struct *p)
1250 {
1251 	int cpu;
1252 
1253 	preempt_disable();
1254 	cpu = task_cpu(p);
1255 	if ((cpu != smp_processor_id()) && task_curr(p))
1256 		smp_send_reschedule(cpu);
1257 	preempt_enable();
1258 }
1259 EXPORT_SYMBOL_GPL(kick_process);
1260 #endif /* CONFIG_SMP */
1261 
1262 #ifdef CONFIG_SMP
1263 /*
1264  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265  */
1266 static int select_fallback_rq(int cpu, struct task_struct *p)
1267 {
1268 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 	enum { cpuset, possible, fail } state = cpuset;
1270 	int dest_cpu;
1271 
1272 	/* Look for allowed, online CPU in same node. */
1273 	for_each_cpu(dest_cpu, nodemask) {
1274 		if (!cpu_online(dest_cpu))
1275 			continue;
1276 		if (!cpu_active(dest_cpu))
1277 			continue;
1278 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 			return dest_cpu;
1280 	}
1281 
1282 	for (;;) {
1283 		/* Any allowed, online CPU? */
1284 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1285 			if (!cpu_online(dest_cpu))
1286 				continue;
1287 			if (!cpu_active(dest_cpu))
1288 				continue;
1289 			goto out;
1290 		}
1291 
1292 		switch (state) {
1293 		case cpuset:
1294 			/* No more Mr. Nice Guy. */
1295 			cpuset_cpus_allowed_fallback(p);
1296 			state = possible;
1297 			break;
1298 
1299 		case possible:
1300 			do_set_cpus_allowed(p, cpu_possible_mask);
1301 			state = fail;
1302 			break;
1303 
1304 		case fail:
1305 			BUG();
1306 			break;
1307 		}
1308 	}
1309 
1310 out:
1311 	if (state != cpuset) {
1312 		/*
1313 		 * Don't tell them about moving exiting tasks or
1314 		 * kernel threads (both mm NULL), since they never
1315 		 * leave kernel.
1316 		 */
1317 		if (p->mm && printk_ratelimit()) {
1318 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319 					task_pid_nr(p), p->comm, cpu);
1320 		}
1321 	}
1322 
1323 	return dest_cpu;
1324 }
1325 
1326 /*
1327  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328  */
1329 static inline
1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331 {
1332 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333 
1334 	/*
1335 	 * In order not to call set_task_cpu() on a blocking task we need
1336 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 	 * cpu.
1338 	 *
1339 	 * Since this is common to all placement strategies, this lives here.
1340 	 *
1341 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1342 	 *   not worry about this generic constraint ]
1343 	 */
1344 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345 		     !cpu_online(cpu)))
1346 		cpu = select_fallback_rq(task_cpu(p), p);
1347 
1348 	return cpu;
1349 }
1350 
1351 static void update_avg(u64 *avg, u64 sample)
1352 {
1353 	s64 diff = sample - *avg;
1354 	*avg += diff >> 3;
1355 }
1356 #endif
1357 
1358 static void
1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360 {
1361 #ifdef CONFIG_SCHEDSTATS
1362 	struct rq *rq = this_rq();
1363 
1364 #ifdef CONFIG_SMP
1365 	int this_cpu = smp_processor_id();
1366 
1367 	if (cpu == this_cpu) {
1368 		schedstat_inc(rq, ttwu_local);
1369 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1370 	} else {
1371 		struct sched_domain *sd;
1372 
1373 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374 		rcu_read_lock();
1375 		for_each_domain(this_cpu, sd) {
1376 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377 				schedstat_inc(sd, ttwu_wake_remote);
1378 				break;
1379 			}
1380 		}
1381 		rcu_read_unlock();
1382 	}
1383 
1384 	if (wake_flags & WF_MIGRATED)
1385 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386 
1387 #endif /* CONFIG_SMP */
1388 
1389 	schedstat_inc(rq, ttwu_count);
1390 	schedstat_inc(p, se.statistics.nr_wakeups);
1391 
1392 	if (wake_flags & WF_SYNC)
1393 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394 
1395 #endif /* CONFIG_SCHEDSTATS */
1396 }
1397 
1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399 {
1400 	activate_task(rq, p, en_flags);
1401 	p->on_rq = 1;
1402 
1403 	/* if a worker is waking up, notify workqueue */
1404 	if (p->flags & PF_WQ_WORKER)
1405 		wq_worker_waking_up(p, cpu_of(rq));
1406 }
1407 
1408 /*
1409  * Mark the task runnable and perform wakeup-preemption.
1410  */
1411 static void
1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413 {
1414 	trace_sched_wakeup(p, true);
1415 	check_preempt_curr(rq, p, wake_flags);
1416 
1417 	p->state = TASK_RUNNING;
1418 #ifdef CONFIG_SMP
1419 	if (p->sched_class->task_woken)
1420 		p->sched_class->task_woken(rq, p);
1421 
1422 	if (rq->idle_stamp) {
1423 		u64 delta = rq->clock - rq->idle_stamp;
1424 		u64 max = 2*sysctl_sched_migration_cost;
1425 
1426 		if (delta > max)
1427 			rq->avg_idle = max;
1428 		else
1429 			update_avg(&rq->avg_idle, delta);
1430 		rq->idle_stamp = 0;
1431 	}
1432 #endif
1433 }
1434 
1435 static void
1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437 {
1438 #ifdef CONFIG_SMP
1439 	if (p->sched_contributes_to_load)
1440 		rq->nr_uninterruptible--;
1441 #endif
1442 
1443 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444 	ttwu_do_wakeup(rq, p, wake_flags);
1445 }
1446 
1447 /*
1448  * Called in case the task @p isn't fully descheduled from its runqueue,
1449  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450  * since all we need to do is flip p->state to TASK_RUNNING, since
1451  * the task is still ->on_rq.
1452  */
1453 static int ttwu_remote(struct task_struct *p, int wake_flags)
1454 {
1455 	struct rq *rq;
1456 	int ret = 0;
1457 
1458 	rq = __task_rq_lock(p);
1459 	if (p->on_rq) {
1460 		ttwu_do_wakeup(rq, p, wake_flags);
1461 		ret = 1;
1462 	}
1463 	__task_rq_unlock(rq);
1464 
1465 	return ret;
1466 }
1467 
1468 #ifdef CONFIG_SMP
1469 static void sched_ttwu_pending(void)
1470 {
1471 	struct rq *rq = this_rq();
1472 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1473 	struct task_struct *p;
1474 
1475 	raw_spin_lock(&rq->lock);
1476 
1477 	while (llist) {
1478 		p = llist_entry(llist, struct task_struct, wake_entry);
1479 		llist = llist_next(llist);
1480 		ttwu_do_activate(rq, p, 0);
1481 	}
1482 
1483 	raw_spin_unlock(&rq->lock);
1484 }
1485 
1486 void scheduler_ipi(void)
1487 {
1488 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489 		return;
1490 
1491 	/*
1492 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493 	 * traditionally all their work was done from the interrupt return
1494 	 * path. Now that we actually do some work, we need to make sure
1495 	 * we do call them.
1496 	 *
1497 	 * Some archs already do call them, luckily irq_enter/exit nest
1498 	 * properly.
1499 	 *
1500 	 * Arguably we should visit all archs and update all handlers,
1501 	 * however a fair share of IPIs are still resched only so this would
1502 	 * somewhat pessimize the simple resched case.
1503 	 */
1504 	irq_enter();
1505 	sched_ttwu_pending();
1506 
1507 	/*
1508 	 * Check if someone kicked us for doing the nohz idle load balance.
1509 	 */
1510 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511 		this_rq()->idle_balance = 1;
1512 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1513 	}
1514 	irq_exit();
1515 }
1516 
1517 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518 {
1519 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520 		smp_send_reschedule(cpu);
1521 }
1522 
1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525 {
1526 	struct rq *rq;
1527 	int ret = 0;
1528 
1529 	rq = __task_rq_lock(p);
1530 	if (p->on_cpu) {
1531 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532 		ttwu_do_wakeup(rq, p, wake_flags);
1533 		ret = 1;
1534 	}
1535 	__task_rq_unlock(rq);
1536 
1537 	return ret;
1538 
1539 }
1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541 
1542 bool cpus_share_cache(int this_cpu, int that_cpu)
1543 {
1544 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545 }
1546 #endif /* CONFIG_SMP */
1547 
1548 static void ttwu_queue(struct task_struct *p, int cpu)
1549 {
1550 	struct rq *rq = cpu_rq(cpu);
1551 
1552 #if defined(CONFIG_SMP)
1553 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555 		ttwu_queue_remote(p, cpu);
1556 		return;
1557 	}
1558 #endif
1559 
1560 	raw_spin_lock(&rq->lock);
1561 	ttwu_do_activate(rq, p, 0);
1562 	raw_spin_unlock(&rq->lock);
1563 }
1564 
1565 /**
1566  * try_to_wake_up - wake up a thread
1567  * @p: the thread to be awakened
1568  * @state: the mask of task states that can be woken
1569  * @wake_flags: wake modifier flags (WF_*)
1570  *
1571  * Put it on the run-queue if it's not already there. The "current"
1572  * thread is always on the run-queue (except when the actual
1573  * re-schedule is in progress), and as such you're allowed to do
1574  * the simpler "current->state = TASK_RUNNING" to mark yourself
1575  * runnable without the overhead of this.
1576  *
1577  * Returns %true if @p was woken up, %false if it was already running
1578  * or @state didn't match @p's state.
1579  */
1580 static int
1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582 {
1583 	unsigned long flags;
1584 	int cpu, success = 0;
1585 
1586 	smp_wmb();
1587 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1588 	if (!(p->state & state))
1589 		goto out;
1590 
1591 	success = 1; /* we're going to change ->state */
1592 	cpu = task_cpu(p);
1593 
1594 	if (p->on_rq && ttwu_remote(p, wake_flags))
1595 		goto stat;
1596 
1597 #ifdef CONFIG_SMP
1598 	/*
1599 	 * If the owning (remote) cpu is still in the middle of schedule() with
1600 	 * this task as prev, wait until its done referencing the task.
1601 	 */
1602 	while (p->on_cpu) {
1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604 		/*
1605 		 * In case the architecture enables interrupts in
1606 		 * context_switch(), we cannot busy wait, since that
1607 		 * would lead to deadlocks when an interrupt hits and
1608 		 * tries to wake up @prev. So bail and do a complete
1609 		 * remote wakeup.
1610 		 */
1611 		if (ttwu_activate_remote(p, wake_flags))
1612 			goto stat;
1613 #else
1614 		cpu_relax();
1615 #endif
1616 	}
1617 	/*
1618 	 * Pairs with the smp_wmb() in finish_lock_switch().
1619 	 */
1620 	smp_rmb();
1621 
1622 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623 	p->state = TASK_WAKING;
1624 
1625 	if (p->sched_class->task_waking)
1626 		p->sched_class->task_waking(p);
1627 
1628 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629 	if (task_cpu(p) != cpu) {
1630 		wake_flags |= WF_MIGRATED;
1631 		set_task_cpu(p, cpu);
1632 	}
1633 #endif /* CONFIG_SMP */
1634 
1635 	ttwu_queue(p, cpu);
1636 stat:
1637 	ttwu_stat(p, cpu, wake_flags);
1638 out:
1639 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640 
1641 	return success;
1642 }
1643 
1644 /**
1645  * try_to_wake_up_local - try to wake up a local task with rq lock held
1646  * @p: the thread to be awakened
1647  *
1648  * Put @p on the run-queue if it's not already there. The caller must
1649  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650  * the current task.
1651  */
1652 static void try_to_wake_up_local(struct task_struct *p)
1653 {
1654 	struct rq *rq = task_rq(p);
1655 
1656 	BUG_ON(rq != this_rq());
1657 	BUG_ON(p == current);
1658 	lockdep_assert_held(&rq->lock);
1659 
1660 	if (!raw_spin_trylock(&p->pi_lock)) {
1661 		raw_spin_unlock(&rq->lock);
1662 		raw_spin_lock(&p->pi_lock);
1663 		raw_spin_lock(&rq->lock);
1664 	}
1665 
1666 	if (!(p->state & TASK_NORMAL))
1667 		goto out;
1668 
1669 	if (!p->on_rq)
1670 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671 
1672 	ttwu_do_wakeup(rq, p, 0);
1673 	ttwu_stat(p, smp_processor_id(), 0);
1674 out:
1675 	raw_spin_unlock(&p->pi_lock);
1676 }
1677 
1678 /**
1679  * wake_up_process - Wake up a specific process
1680  * @p: The process to be woken up.
1681  *
1682  * Attempt to wake up the nominated process and move it to the set of runnable
1683  * processes.  Returns 1 if the process was woken up, 0 if it was already
1684  * running.
1685  *
1686  * It may be assumed that this function implies a write memory barrier before
1687  * changing the task state if and only if any tasks are woken up.
1688  */
1689 int wake_up_process(struct task_struct *p)
1690 {
1691 	return try_to_wake_up(p, TASK_ALL, 0);
1692 }
1693 EXPORT_SYMBOL(wake_up_process);
1694 
1695 int wake_up_state(struct task_struct *p, unsigned int state)
1696 {
1697 	return try_to_wake_up(p, state, 0);
1698 }
1699 
1700 /*
1701  * Perform scheduler related setup for a newly forked process p.
1702  * p is forked by current.
1703  *
1704  * __sched_fork() is basic setup used by init_idle() too:
1705  */
1706 static void __sched_fork(struct task_struct *p)
1707 {
1708 	p->on_rq			= 0;
1709 
1710 	p->se.on_rq			= 0;
1711 	p->se.exec_start		= 0;
1712 	p->se.sum_exec_runtime		= 0;
1713 	p->se.prev_sum_exec_runtime	= 0;
1714 	p->se.nr_migrations		= 0;
1715 	p->se.vruntime			= 0;
1716 	INIT_LIST_HEAD(&p->se.group_node);
1717 
1718 #ifdef CONFIG_SCHEDSTATS
1719 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720 #endif
1721 
1722 	INIT_LIST_HEAD(&p->rt.run_list);
1723 
1724 #ifdef CONFIG_PREEMPT_NOTIFIERS
1725 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1726 #endif
1727 }
1728 
1729 /*
1730  * fork()/clone()-time setup:
1731  */
1732 void sched_fork(struct task_struct *p)
1733 {
1734 	unsigned long flags;
1735 	int cpu = get_cpu();
1736 
1737 	__sched_fork(p);
1738 	/*
1739 	 * We mark the process as running here. This guarantees that
1740 	 * nobody will actually run it, and a signal or other external
1741 	 * event cannot wake it up and insert it on the runqueue either.
1742 	 */
1743 	p->state = TASK_RUNNING;
1744 
1745 	/*
1746 	 * Make sure we do not leak PI boosting priority to the child.
1747 	 */
1748 	p->prio = current->normal_prio;
1749 
1750 	/*
1751 	 * Revert to default priority/policy on fork if requested.
1752 	 */
1753 	if (unlikely(p->sched_reset_on_fork)) {
1754 		if (task_has_rt_policy(p)) {
1755 			p->policy = SCHED_NORMAL;
1756 			p->static_prio = NICE_TO_PRIO(0);
1757 			p->rt_priority = 0;
1758 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1759 			p->static_prio = NICE_TO_PRIO(0);
1760 
1761 		p->prio = p->normal_prio = __normal_prio(p);
1762 		set_load_weight(p);
1763 
1764 		/*
1765 		 * We don't need the reset flag anymore after the fork. It has
1766 		 * fulfilled its duty:
1767 		 */
1768 		p->sched_reset_on_fork = 0;
1769 	}
1770 
1771 	if (!rt_prio(p->prio))
1772 		p->sched_class = &fair_sched_class;
1773 
1774 	if (p->sched_class->task_fork)
1775 		p->sched_class->task_fork(p);
1776 
1777 	/*
1778 	 * The child is not yet in the pid-hash so no cgroup attach races,
1779 	 * and the cgroup is pinned to this child due to cgroup_fork()
1780 	 * is ran before sched_fork().
1781 	 *
1782 	 * Silence PROVE_RCU.
1783 	 */
1784 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1785 	set_task_cpu(p, cpu);
1786 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787 
1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789 	if (likely(sched_info_on()))
1790 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1791 #endif
1792 #if defined(CONFIG_SMP)
1793 	p->on_cpu = 0;
1794 #endif
1795 #ifdef CONFIG_PREEMPT_COUNT
1796 	/* Want to start with kernel preemption disabled. */
1797 	task_thread_info(p)->preempt_count = 1;
1798 #endif
1799 #ifdef CONFIG_SMP
1800 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801 #endif
1802 
1803 	put_cpu();
1804 }
1805 
1806 /*
1807  * wake_up_new_task - wake up a newly created task for the first time.
1808  *
1809  * This function will do some initial scheduler statistics housekeeping
1810  * that must be done for every newly created context, then puts the task
1811  * on the runqueue and wakes it.
1812  */
1813 void wake_up_new_task(struct task_struct *p)
1814 {
1815 	unsigned long flags;
1816 	struct rq *rq;
1817 
1818 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819 #ifdef CONFIG_SMP
1820 	/*
1821 	 * Fork balancing, do it here and not earlier because:
1822 	 *  - cpus_allowed can change in the fork path
1823 	 *  - any previously selected cpu might disappear through hotplug
1824 	 */
1825 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826 #endif
1827 
1828 	rq = __task_rq_lock(p);
1829 	activate_task(rq, p, 0);
1830 	p->on_rq = 1;
1831 	trace_sched_wakeup_new(p, true);
1832 	check_preempt_curr(rq, p, WF_FORK);
1833 #ifdef CONFIG_SMP
1834 	if (p->sched_class->task_woken)
1835 		p->sched_class->task_woken(rq, p);
1836 #endif
1837 	task_rq_unlock(rq, p, &flags);
1838 }
1839 
1840 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 
1842 /**
1843  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844  * @notifier: notifier struct to register
1845  */
1846 void preempt_notifier_register(struct preempt_notifier *notifier)
1847 {
1848 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849 }
1850 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851 
1852 /**
1853  * preempt_notifier_unregister - no longer interested in preemption notifications
1854  * @notifier: notifier struct to unregister
1855  *
1856  * This is safe to call from within a preemption notifier.
1857  */
1858 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859 {
1860 	hlist_del(&notifier->link);
1861 }
1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863 
1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865 {
1866 	struct preempt_notifier *notifier;
1867 	struct hlist_node *node;
1868 
1869 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 }
1872 
1873 static void
1874 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 				 struct task_struct *next)
1876 {
1877 	struct preempt_notifier *notifier;
1878 	struct hlist_node *node;
1879 
1880 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 		notifier->ops->sched_out(notifier, next);
1882 }
1883 
1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1885 
1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887 {
1888 }
1889 
1890 static void
1891 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 				 struct task_struct *next)
1893 {
1894 }
1895 
1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897 
1898 /**
1899  * prepare_task_switch - prepare to switch tasks
1900  * @rq: the runqueue preparing to switch
1901  * @prev: the current task that is being switched out
1902  * @next: the task we are going to switch to.
1903  *
1904  * This is called with the rq lock held and interrupts off. It must
1905  * be paired with a subsequent finish_task_switch after the context
1906  * switch.
1907  *
1908  * prepare_task_switch sets up locking and calls architecture specific
1909  * hooks.
1910  */
1911 static inline void
1912 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 		    struct task_struct *next)
1914 {
1915 	sched_info_switch(prev, next);
1916 	perf_event_task_sched_out(prev, next);
1917 	fire_sched_out_preempt_notifiers(prev, next);
1918 	prepare_lock_switch(rq, next);
1919 	prepare_arch_switch(next);
1920 	trace_sched_switch(prev, next);
1921 }
1922 
1923 /**
1924  * finish_task_switch - clean up after a task-switch
1925  * @rq: runqueue associated with task-switch
1926  * @prev: the thread we just switched away from.
1927  *
1928  * finish_task_switch must be called after the context switch, paired
1929  * with a prepare_task_switch call before the context switch.
1930  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931  * and do any other architecture-specific cleanup actions.
1932  *
1933  * Note that we may have delayed dropping an mm in context_switch(). If
1934  * so, we finish that here outside of the runqueue lock. (Doing it
1935  * with the lock held can cause deadlocks; see schedule() for
1936  * details.)
1937  */
1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939 	__releases(rq->lock)
1940 {
1941 	struct mm_struct *mm = rq->prev_mm;
1942 	long prev_state;
1943 
1944 	rq->prev_mm = NULL;
1945 
1946 	/*
1947 	 * A task struct has one reference for the use as "current".
1948 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949 	 * schedule one last time. The schedule call will never return, and
1950 	 * the scheduled task must drop that reference.
1951 	 * The test for TASK_DEAD must occur while the runqueue locks are
1952 	 * still held, otherwise prev could be scheduled on another cpu, die
1953 	 * there before we look at prev->state, and then the reference would
1954 	 * be dropped twice.
1955 	 *		Manfred Spraul <manfred@colorfullife.com>
1956 	 */
1957 	prev_state = prev->state;
1958 	finish_arch_switch(prev);
1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960 	local_irq_disable();
1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962 	perf_event_task_sched_in(prev, current);
1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964 	local_irq_enable();
1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966 	finish_lock_switch(rq, prev);
1967 	finish_arch_post_lock_switch();
1968 
1969 	fire_sched_in_preempt_notifiers(current);
1970 	if (mm)
1971 		mmdrop(mm);
1972 	if (unlikely(prev_state == TASK_DEAD)) {
1973 		/*
1974 		 * Remove function-return probe instances associated with this
1975 		 * task and put them back on the free list.
1976 		 */
1977 		kprobe_flush_task(prev);
1978 		put_task_struct(prev);
1979 	}
1980 }
1981 
1982 #ifdef CONFIG_SMP
1983 
1984 /* assumes rq->lock is held */
1985 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1986 {
1987 	if (prev->sched_class->pre_schedule)
1988 		prev->sched_class->pre_schedule(rq, prev);
1989 }
1990 
1991 /* rq->lock is NOT held, but preemption is disabled */
1992 static inline void post_schedule(struct rq *rq)
1993 {
1994 	if (rq->post_schedule) {
1995 		unsigned long flags;
1996 
1997 		raw_spin_lock_irqsave(&rq->lock, flags);
1998 		if (rq->curr->sched_class->post_schedule)
1999 			rq->curr->sched_class->post_schedule(rq);
2000 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2001 
2002 		rq->post_schedule = 0;
2003 	}
2004 }
2005 
2006 #else
2007 
2008 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2009 {
2010 }
2011 
2012 static inline void post_schedule(struct rq *rq)
2013 {
2014 }
2015 
2016 #endif
2017 
2018 /**
2019  * schedule_tail - first thing a freshly forked thread must call.
2020  * @prev: the thread we just switched away from.
2021  */
2022 asmlinkage void schedule_tail(struct task_struct *prev)
2023 	__releases(rq->lock)
2024 {
2025 	struct rq *rq = this_rq();
2026 
2027 	finish_task_switch(rq, prev);
2028 
2029 	/*
2030 	 * FIXME: do we need to worry about rq being invalidated by the
2031 	 * task_switch?
2032 	 */
2033 	post_schedule(rq);
2034 
2035 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2036 	/* In this case, finish_task_switch does not reenable preemption */
2037 	preempt_enable();
2038 #endif
2039 	if (current->set_child_tid)
2040 		put_user(task_pid_vnr(current), current->set_child_tid);
2041 }
2042 
2043 /*
2044  * context_switch - switch to the new MM and the new
2045  * thread's register state.
2046  */
2047 static inline void
2048 context_switch(struct rq *rq, struct task_struct *prev,
2049 	       struct task_struct *next)
2050 {
2051 	struct mm_struct *mm, *oldmm;
2052 
2053 	prepare_task_switch(rq, prev, next);
2054 
2055 	mm = next->mm;
2056 	oldmm = prev->active_mm;
2057 	/*
2058 	 * For paravirt, this is coupled with an exit in switch_to to
2059 	 * combine the page table reload and the switch backend into
2060 	 * one hypercall.
2061 	 */
2062 	arch_start_context_switch(prev);
2063 
2064 	if (!mm) {
2065 		next->active_mm = oldmm;
2066 		atomic_inc(&oldmm->mm_count);
2067 		enter_lazy_tlb(oldmm, next);
2068 	} else
2069 		switch_mm(oldmm, mm, next);
2070 
2071 	if (!prev->mm) {
2072 		prev->active_mm = NULL;
2073 		rq->prev_mm = oldmm;
2074 	}
2075 	/*
2076 	 * Since the runqueue lock will be released by the next
2077 	 * task (which is an invalid locking op but in the case
2078 	 * of the scheduler it's an obvious special-case), so we
2079 	 * do an early lockdep release here:
2080 	 */
2081 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2082 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2083 #endif
2084 
2085 	/* Here we just switch the register state and the stack. */
2086 	switch_to(prev, next, prev);
2087 
2088 	barrier();
2089 	/*
2090 	 * this_rq must be evaluated again because prev may have moved
2091 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 	 * frame will be invalid.
2093 	 */
2094 	finish_task_switch(this_rq(), prev);
2095 }
2096 
2097 /*
2098  * nr_running, nr_uninterruptible and nr_context_switches:
2099  *
2100  * externally visible scheduler statistics: current number of runnable
2101  * threads, current number of uninterruptible-sleeping threads, total
2102  * number of context switches performed since bootup.
2103  */
2104 unsigned long nr_running(void)
2105 {
2106 	unsigned long i, sum = 0;
2107 
2108 	for_each_online_cpu(i)
2109 		sum += cpu_rq(i)->nr_running;
2110 
2111 	return sum;
2112 }
2113 
2114 unsigned long nr_uninterruptible(void)
2115 {
2116 	unsigned long i, sum = 0;
2117 
2118 	for_each_possible_cpu(i)
2119 		sum += cpu_rq(i)->nr_uninterruptible;
2120 
2121 	/*
2122 	 * Since we read the counters lockless, it might be slightly
2123 	 * inaccurate. Do not allow it to go below zero though:
2124 	 */
2125 	if (unlikely((long)sum < 0))
2126 		sum = 0;
2127 
2128 	return sum;
2129 }
2130 
2131 unsigned long long nr_context_switches(void)
2132 {
2133 	int i;
2134 	unsigned long long sum = 0;
2135 
2136 	for_each_possible_cpu(i)
2137 		sum += cpu_rq(i)->nr_switches;
2138 
2139 	return sum;
2140 }
2141 
2142 unsigned long nr_iowait(void)
2143 {
2144 	unsigned long i, sum = 0;
2145 
2146 	for_each_possible_cpu(i)
2147 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148 
2149 	return sum;
2150 }
2151 
2152 unsigned long nr_iowait_cpu(int cpu)
2153 {
2154 	struct rq *this = cpu_rq(cpu);
2155 	return atomic_read(&this->nr_iowait);
2156 }
2157 
2158 unsigned long this_cpu_load(void)
2159 {
2160 	struct rq *this = this_rq();
2161 	return this->cpu_load[0];
2162 }
2163 
2164 
2165 /* Variables and functions for calc_load */
2166 static atomic_long_t calc_load_tasks;
2167 static unsigned long calc_load_update;
2168 unsigned long avenrun[3];
2169 EXPORT_SYMBOL(avenrun);
2170 
2171 static long calc_load_fold_active(struct rq *this_rq)
2172 {
2173 	long nr_active, delta = 0;
2174 
2175 	nr_active = this_rq->nr_running;
2176 	nr_active += (long) this_rq->nr_uninterruptible;
2177 
2178 	if (nr_active != this_rq->calc_load_active) {
2179 		delta = nr_active - this_rq->calc_load_active;
2180 		this_rq->calc_load_active = nr_active;
2181 	}
2182 
2183 	return delta;
2184 }
2185 
2186 static unsigned long
2187 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188 {
2189 	load *= exp;
2190 	load += active * (FIXED_1 - exp);
2191 	load += 1UL << (FSHIFT - 1);
2192 	return load >> FSHIFT;
2193 }
2194 
2195 #ifdef CONFIG_NO_HZ
2196 /*
2197  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198  *
2199  * When making the ILB scale, we should try to pull this in as well.
2200  */
2201 static atomic_long_t calc_load_tasks_idle;
2202 
2203 void calc_load_account_idle(struct rq *this_rq)
2204 {
2205 	long delta;
2206 
2207 	delta = calc_load_fold_active(this_rq);
2208 	if (delta)
2209 		atomic_long_add(delta, &calc_load_tasks_idle);
2210 }
2211 
2212 static long calc_load_fold_idle(void)
2213 {
2214 	long delta = 0;
2215 
2216 	/*
2217 	 * Its got a race, we don't care...
2218 	 */
2219 	if (atomic_long_read(&calc_load_tasks_idle))
2220 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221 
2222 	return delta;
2223 }
2224 
2225 /**
2226  * fixed_power_int - compute: x^n, in O(log n) time
2227  *
2228  * @x:         base of the power
2229  * @frac_bits: fractional bits of @x
2230  * @n:         power to raise @x to.
2231  *
2232  * By exploiting the relation between the definition of the natural power
2233  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235  * (where: n_i \elem {0, 1}, the binary vector representing n),
2236  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237  * of course trivially computable in O(log_2 n), the length of our binary
2238  * vector.
2239  */
2240 static unsigned long
2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242 {
2243 	unsigned long result = 1UL << frac_bits;
2244 
2245 	if (n) for (;;) {
2246 		if (n & 1) {
2247 			result *= x;
2248 			result += 1UL << (frac_bits - 1);
2249 			result >>= frac_bits;
2250 		}
2251 		n >>= 1;
2252 		if (!n)
2253 			break;
2254 		x *= x;
2255 		x += 1UL << (frac_bits - 1);
2256 		x >>= frac_bits;
2257 	}
2258 
2259 	return result;
2260 }
2261 
2262 /*
2263  * a1 = a0 * e + a * (1 - e)
2264  *
2265  * a2 = a1 * e + a * (1 - e)
2266  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2268  *
2269  * a3 = a2 * e + a * (1 - e)
2270  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272  *
2273  *  ...
2274  *
2275  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277  *    = a0 * e^n + a * (1 - e^n)
2278  *
2279  * [1] application of the geometric series:
2280  *
2281  *              n         1 - x^(n+1)
2282  *     S_n := \Sum x^i = -------------
2283  *             i=0          1 - x
2284  */
2285 static unsigned long
2286 calc_load_n(unsigned long load, unsigned long exp,
2287 	    unsigned long active, unsigned int n)
2288 {
2289 
2290 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291 }
2292 
2293 /*
2294  * NO_HZ can leave us missing all per-cpu ticks calling
2295  * calc_load_account_active(), but since an idle CPU folds its delta into
2296  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297  * in the pending idle delta if our idle period crossed a load cycle boundary.
2298  *
2299  * Once we've updated the global active value, we need to apply the exponential
2300  * weights adjusted to the number of cycles missed.
2301  */
2302 static void calc_global_nohz(void)
2303 {
2304 	long delta, active, n;
2305 
2306 	/*
2307 	 * If we crossed a calc_load_update boundary, make sure to fold
2308 	 * any pending idle changes, the respective CPUs might have
2309 	 * missed the tick driven calc_load_account_active() update
2310 	 * due to NO_HZ.
2311 	 */
2312 	delta = calc_load_fold_idle();
2313 	if (delta)
2314 		atomic_long_add(delta, &calc_load_tasks);
2315 
2316 	/*
2317 	 * It could be the one fold was all it took, we done!
2318 	 */
2319 	if (time_before(jiffies, calc_load_update + 10))
2320 		return;
2321 
2322 	/*
2323 	 * Catch-up, fold however many we are behind still
2324 	 */
2325 	delta = jiffies - calc_load_update - 10;
2326 	n = 1 + (delta / LOAD_FREQ);
2327 
2328 	active = atomic_long_read(&calc_load_tasks);
2329 	active = active > 0 ? active * FIXED_1 : 0;
2330 
2331 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334 
2335 	calc_load_update += n * LOAD_FREQ;
2336 }
2337 #else
2338 void calc_load_account_idle(struct rq *this_rq)
2339 {
2340 }
2341 
2342 static inline long calc_load_fold_idle(void)
2343 {
2344 	return 0;
2345 }
2346 
2347 static void calc_global_nohz(void)
2348 {
2349 }
2350 #endif
2351 
2352 /**
2353  * get_avenrun - get the load average array
2354  * @loads:	pointer to dest load array
2355  * @offset:	offset to add
2356  * @shift:	shift count to shift the result left
2357  *
2358  * These values are estimates at best, so no need for locking.
2359  */
2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361 {
2362 	loads[0] = (avenrun[0] + offset) << shift;
2363 	loads[1] = (avenrun[1] + offset) << shift;
2364 	loads[2] = (avenrun[2] + offset) << shift;
2365 }
2366 
2367 /*
2368  * calc_load - update the avenrun load estimates 10 ticks after the
2369  * CPUs have updated calc_load_tasks.
2370  */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 	long active;
2374 
2375 	if (time_before(jiffies, calc_load_update + 10))
2376 		return;
2377 
2378 	active = atomic_long_read(&calc_load_tasks);
2379 	active = active > 0 ? active * FIXED_1 : 0;
2380 
2381 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384 
2385 	calc_load_update += LOAD_FREQ;
2386 
2387 	/*
2388 	 * Account one period with whatever state we found before
2389 	 * folding in the nohz state and ageing the entire idle period.
2390 	 *
2391 	 * This avoids loosing a sample when we go idle between
2392 	 * calc_load_account_active() (10 ticks ago) and now and thus
2393 	 * under-accounting.
2394 	 */
2395 	calc_global_nohz();
2396 }
2397 
2398 /*
2399  * Called from update_cpu_load() to periodically update this CPU's
2400  * active count.
2401  */
2402 static void calc_load_account_active(struct rq *this_rq)
2403 {
2404 	long delta;
2405 
2406 	if (time_before(jiffies, this_rq->calc_load_update))
2407 		return;
2408 
2409 	delta  = calc_load_fold_active(this_rq);
2410 	delta += calc_load_fold_idle();
2411 	if (delta)
2412 		atomic_long_add(delta, &calc_load_tasks);
2413 
2414 	this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416 
2417 /*
2418  * The exact cpuload at various idx values, calculated at every tick would be
2419  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420  *
2421  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422  * on nth tick when cpu may be busy, then we have:
2423  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425  *
2426  * decay_load_missed() below does efficient calculation of
2427  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429  *
2430  * The calculation is approximated on a 128 point scale.
2431  * degrade_zero_ticks is the number of ticks after which load at any
2432  * particular idx is approximated to be zero.
2433  * degrade_factor is a precomputed table, a row for each load idx.
2434  * Each column corresponds to degradation factor for a power of two ticks,
2435  * based on 128 point scale.
2436  * Example:
2437  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439  *
2440  * With this power of 2 load factors, we can degrade the load n times
2441  * by looking at 1 bits in n and doing as many mult/shift instead of
2442  * n mult/shifts needed by the exact degradation.
2443  */
2444 #define DEGRADE_SHIFT		7
2445 static const unsigned char
2446 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447 static const unsigned char
2448 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 					{0, 0, 0, 0, 0, 0, 0, 0},
2450 					{64, 32, 8, 0, 0, 0, 0, 0},
2451 					{96, 72, 40, 12, 1, 0, 0},
2452 					{112, 98, 75, 43, 15, 1, 0},
2453 					{120, 112, 98, 76, 45, 16, 2} };
2454 
2455 /*
2456  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457  * would be when CPU is idle and so we just decay the old load without
2458  * adding any new load.
2459  */
2460 static unsigned long
2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462 {
2463 	int j = 0;
2464 
2465 	if (!missed_updates)
2466 		return load;
2467 
2468 	if (missed_updates >= degrade_zero_ticks[idx])
2469 		return 0;
2470 
2471 	if (idx == 1)
2472 		return load >> missed_updates;
2473 
2474 	while (missed_updates) {
2475 		if (missed_updates % 2)
2476 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477 
2478 		missed_updates >>= 1;
2479 		j++;
2480 	}
2481 	return load;
2482 }
2483 
2484 /*
2485  * Update rq->cpu_load[] statistics. This function is usually called every
2486  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487  * every tick. We fix it up based on jiffies.
2488  */
2489 void update_cpu_load(struct rq *this_rq)
2490 {
2491 	unsigned long this_load = this_rq->load.weight;
2492 	unsigned long curr_jiffies = jiffies;
2493 	unsigned long pending_updates;
2494 	int i, scale;
2495 
2496 	this_rq->nr_load_updates++;
2497 
2498 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2499 	if (curr_jiffies == this_rq->last_load_update_tick)
2500 		return;
2501 
2502 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2503 	this_rq->last_load_update_tick = curr_jiffies;
2504 
2505 	/* Update our load: */
2506 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2507 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2508 		unsigned long old_load, new_load;
2509 
2510 		/* scale is effectively 1 << i now, and >> i divides by scale */
2511 
2512 		old_load = this_rq->cpu_load[i];
2513 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2514 		new_load = this_load;
2515 		/*
2516 		 * Round up the averaging division if load is increasing. This
2517 		 * prevents us from getting stuck on 9 if the load is 10, for
2518 		 * example.
2519 		 */
2520 		if (new_load > old_load)
2521 			new_load += scale - 1;
2522 
2523 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2524 	}
2525 
2526 	sched_avg_update(this_rq);
2527 }
2528 
2529 static void update_cpu_load_active(struct rq *this_rq)
2530 {
2531 	update_cpu_load(this_rq);
2532 
2533 	calc_load_account_active(this_rq);
2534 }
2535 
2536 #ifdef CONFIG_SMP
2537 
2538 /*
2539  * sched_exec - execve() is a valuable balancing opportunity, because at
2540  * this point the task has the smallest effective memory and cache footprint.
2541  */
2542 void sched_exec(void)
2543 {
2544 	struct task_struct *p = current;
2545 	unsigned long flags;
2546 	int dest_cpu;
2547 
2548 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2549 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550 	if (dest_cpu == smp_processor_id())
2551 		goto unlock;
2552 
2553 	if (likely(cpu_active(dest_cpu))) {
2554 		struct migration_arg arg = { p, dest_cpu };
2555 
2556 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2558 		return;
2559 	}
2560 unlock:
2561 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2562 }
2563 
2564 #endif
2565 
2566 DEFINE_PER_CPU(struct kernel_stat, kstat);
2567 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2568 
2569 EXPORT_PER_CPU_SYMBOL(kstat);
2570 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2571 
2572 /*
2573  * Return any ns on the sched_clock that have not yet been accounted in
2574  * @p in case that task is currently running.
2575  *
2576  * Called with task_rq_lock() held on @rq.
2577  */
2578 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2579 {
2580 	u64 ns = 0;
2581 
2582 	if (task_current(rq, p)) {
2583 		update_rq_clock(rq);
2584 		ns = rq->clock_task - p->se.exec_start;
2585 		if ((s64)ns < 0)
2586 			ns = 0;
2587 	}
2588 
2589 	return ns;
2590 }
2591 
2592 unsigned long long task_delta_exec(struct task_struct *p)
2593 {
2594 	unsigned long flags;
2595 	struct rq *rq;
2596 	u64 ns = 0;
2597 
2598 	rq = task_rq_lock(p, &flags);
2599 	ns = do_task_delta_exec(p, rq);
2600 	task_rq_unlock(rq, p, &flags);
2601 
2602 	return ns;
2603 }
2604 
2605 /*
2606  * Return accounted runtime for the task.
2607  * In case the task is currently running, return the runtime plus current's
2608  * pending runtime that have not been accounted yet.
2609  */
2610 unsigned long long task_sched_runtime(struct task_struct *p)
2611 {
2612 	unsigned long flags;
2613 	struct rq *rq;
2614 	u64 ns = 0;
2615 
2616 	rq = task_rq_lock(p, &flags);
2617 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618 	task_rq_unlock(rq, p, &flags);
2619 
2620 	return ns;
2621 }
2622 
2623 #ifdef CONFIG_CGROUP_CPUACCT
2624 struct cgroup_subsys cpuacct_subsys;
2625 struct cpuacct root_cpuacct;
2626 #endif
2627 
2628 static inline void task_group_account_field(struct task_struct *p, int index,
2629 					    u64 tmp)
2630 {
2631 #ifdef CONFIG_CGROUP_CPUACCT
2632 	struct kernel_cpustat *kcpustat;
2633 	struct cpuacct *ca;
2634 #endif
2635 	/*
2636 	 * Since all updates are sure to touch the root cgroup, we
2637 	 * get ourselves ahead and touch it first. If the root cgroup
2638 	 * is the only cgroup, then nothing else should be necessary.
2639 	 *
2640 	 */
2641 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2642 
2643 #ifdef CONFIG_CGROUP_CPUACCT
2644 	if (unlikely(!cpuacct_subsys.active))
2645 		return;
2646 
2647 	rcu_read_lock();
2648 	ca = task_ca(p);
2649 	while (ca && (ca != &root_cpuacct)) {
2650 		kcpustat = this_cpu_ptr(ca->cpustat);
2651 		kcpustat->cpustat[index] += tmp;
2652 		ca = parent_ca(ca);
2653 	}
2654 	rcu_read_unlock();
2655 #endif
2656 }
2657 
2658 
2659 /*
2660  * Account user cpu time to a process.
2661  * @p: the process that the cpu time gets accounted to
2662  * @cputime: the cpu time spent in user space since the last update
2663  * @cputime_scaled: cputime scaled by cpu frequency
2664  */
2665 void account_user_time(struct task_struct *p, cputime_t cputime,
2666 		       cputime_t cputime_scaled)
2667 {
2668 	int index;
2669 
2670 	/* Add user time to process. */
2671 	p->utime += cputime;
2672 	p->utimescaled += cputime_scaled;
2673 	account_group_user_time(p, cputime);
2674 
2675 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2676 
2677 	/* Add user time to cpustat. */
2678 	task_group_account_field(p, index, (__force u64) cputime);
2679 
2680 	/* Account for user time used */
2681 	acct_update_integrals(p);
2682 }
2683 
2684 /*
2685  * Account guest cpu time to a process.
2686  * @p: the process that the cpu time gets accounted to
2687  * @cputime: the cpu time spent in virtual machine since the last update
2688  * @cputime_scaled: cputime scaled by cpu frequency
2689  */
2690 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2691 			       cputime_t cputime_scaled)
2692 {
2693 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2694 
2695 	/* Add guest time to process. */
2696 	p->utime += cputime;
2697 	p->utimescaled += cputime_scaled;
2698 	account_group_user_time(p, cputime);
2699 	p->gtime += cputime;
2700 
2701 	/* Add guest time to cpustat. */
2702 	if (TASK_NICE(p) > 0) {
2703 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2704 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2705 	} else {
2706 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2707 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2708 	}
2709 }
2710 
2711 /*
2712  * Account system cpu time to a process and desired cpustat field
2713  * @p: the process that the cpu time gets accounted to
2714  * @cputime: the cpu time spent in kernel space since the last update
2715  * @cputime_scaled: cputime scaled by cpu frequency
2716  * @target_cputime64: pointer to cpustat field that has to be updated
2717  */
2718 static inline
2719 void __account_system_time(struct task_struct *p, cputime_t cputime,
2720 			cputime_t cputime_scaled, int index)
2721 {
2722 	/* Add system time to process. */
2723 	p->stime += cputime;
2724 	p->stimescaled += cputime_scaled;
2725 	account_group_system_time(p, cputime);
2726 
2727 	/* Add system time to cpustat. */
2728 	task_group_account_field(p, index, (__force u64) cputime);
2729 
2730 	/* Account for system time used */
2731 	acct_update_integrals(p);
2732 }
2733 
2734 /*
2735  * Account system cpu time to a process.
2736  * @p: the process that the cpu time gets accounted to
2737  * @hardirq_offset: the offset to subtract from hardirq_count()
2738  * @cputime: the cpu time spent in kernel space since the last update
2739  * @cputime_scaled: cputime scaled by cpu frequency
2740  */
2741 void account_system_time(struct task_struct *p, int hardirq_offset,
2742 			 cputime_t cputime, cputime_t cputime_scaled)
2743 {
2744 	int index;
2745 
2746 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2747 		account_guest_time(p, cputime, cputime_scaled);
2748 		return;
2749 	}
2750 
2751 	if (hardirq_count() - hardirq_offset)
2752 		index = CPUTIME_IRQ;
2753 	else if (in_serving_softirq())
2754 		index = CPUTIME_SOFTIRQ;
2755 	else
2756 		index = CPUTIME_SYSTEM;
2757 
2758 	__account_system_time(p, cputime, cputime_scaled, index);
2759 }
2760 
2761 /*
2762  * Account for involuntary wait time.
2763  * @cputime: the cpu time spent in involuntary wait
2764  */
2765 void account_steal_time(cputime_t cputime)
2766 {
2767 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2768 
2769 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2770 }
2771 
2772 /*
2773  * Account for idle time.
2774  * @cputime: the cpu time spent in idle wait
2775  */
2776 void account_idle_time(cputime_t cputime)
2777 {
2778 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2779 	struct rq *rq = this_rq();
2780 
2781 	if (atomic_read(&rq->nr_iowait) > 0)
2782 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2783 	else
2784 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2785 }
2786 
2787 static __always_inline bool steal_account_process_tick(void)
2788 {
2789 #ifdef CONFIG_PARAVIRT
2790 	if (static_key_false(&paravirt_steal_enabled)) {
2791 		u64 steal, st = 0;
2792 
2793 		steal = paravirt_steal_clock(smp_processor_id());
2794 		steal -= this_rq()->prev_steal_time;
2795 
2796 		st = steal_ticks(steal);
2797 		this_rq()->prev_steal_time += st * TICK_NSEC;
2798 
2799 		account_steal_time(st);
2800 		return st;
2801 	}
2802 #endif
2803 	return false;
2804 }
2805 
2806 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2807 
2808 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2809 /*
2810  * Account a tick to a process and cpustat
2811  * @p: the process that the cpu time gets accounted to
2812  * @user_tick: is the tick from userspace
2813  * @rq: the pointer to rq
2814  *
2815  * Tick demultiplexing follows the order
2816  * - pending hardirq update
2817  * - pending softirq update
2818  * - user_time
2819  * - idle_time
2820  * - system time
2821  *   - check for guest_time
2822  *   - else account as system_time
2823  *
2824  * Check for hardirq is done both for system and user time as there is
2825  * no timer going off while we are on hardirq and hence we may never get an
2826  * opportunity to update it solely in system time.
2827  * p->stime and friends are only updated on system time and not on irq
2828  * softirq as those do not count in task exec_runtime any more.
2829  */
2830 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2831 						struct rq *rq)
2832 {
2833 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2834 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2835 
2836 	if (steal_account_process_tick())
2837 		return;
2838 
2839 	if (irqtime_account_hi_update()) {
2840 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2841 	} else if (irqtime_account_si_update()) {
2842 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2843 	} else if (this_cpu_ksoftirqd() == p) {
2844 		/*
2845 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2846 		 * So, we have to handle it separately here.
2847 		 * Also, p->stime needs to be updated for ksoftirqd.
2848 		 */
2849 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2850 					CPUTIME_SOFTIRQ);
2851 	} else if (user_tick) {
2852 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2853 	} else if (p == rq->idle) {
2854 		account_idle_time(cputime_one_jiffy);
2855 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2856 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2857 	} else {
2858 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2859 					CPUTIME_SYSTEM);
2860 	}
2861 }
2862 
2863 static void irqtime_account_idle_ticks(int ticks)
2864 {
2865 	int i;
2866 	struct rq *rq = this_rq();
2867 
2868 	for (i = 0; i < ticks; i++)
2869 		irqtime_account_process_tick(current, 0, rq);
2870 }
2871 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2872 static void irqtime_account_idle_ticks(int ticks) {}
2873 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2874 						struct rq *rq) {}
2875 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2876 
2877 /*
2878  * Account a single tick of cpu time.
2879  * @p: the process that the cpu time gets accounted to
2880  * @user_tick: indicates if the tick is a user or a system tick
2881  */
2882 void account_process_tick(struct task_struct *p, int user_tick)
2883 {
2884 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2885 	struct rq *rq = this_rq();
2886 
2887 	if (sched_clock_irqtime) {
2888 		irqtime_account_process_tick(p, user_tick, rq);
2889 		return;
2890 	}
2891 
2892 	if (steal_account_process_tick())
2893 		return;
2894 
2895 	if (user_tick)
2896 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2897 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2898 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2899 				    one_jiffy_scaled);
2900 	else
2901 		account_idle_time(cputime_one_jiffy);
2902 }
2903 
2904 /*
2905  * Account multiple ticks of steal time.
2906  * @p: the process from which the cpu time has been stolen
2907  * @ticks: number of stolen ticks
2908  */
2909 void account_steal_ticks(unsigned long ticks)
2910 {
2911 	account_steal_time(jiffies_to_cputime(ticks));
2912 }
2913 
2914 /*
2915  * Account multiple ticks of idle time.
2916  * @ticks: number of stolen ticks
2917  */
2918 void account_idle_ticks(unsigned long ticks)
2919 {
2920 
2921 	if (sched_clock_irqtime) {
2922 		irqtime_account_idle_ticks(ticks);
2923 		return;
2924 	}
2925 
2926 	account_idle_time(jiffies_to_cputime(ticks));
2927 }
2928 
2929 #endif
2930 
2931 /*
2932  * Use precise platform statistics if available:
2933  */
2934 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2935 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2936 {
2937 	*ut = p->utime;
2938 	*st = p->stime;
2939 }
2940 
2941 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2942 {
2943 	struct task_cputime cputime;
2944 
2945 	thread_group_cputime(p, &cputime);
2946 
2947 	*ut = cputime.utime;
2948 	*st = cputime.stime;
2949 }
2950 #else
2951 
2952 #ifndef nsecs_to_cputime
2953 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2954 #endif
2955 
2956 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957 {
2958 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2959 
2960 	/*
2961 	 * Use CFS's precise accounting:
2962 	 */
2963 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2964 
2965 	if (total) {
2966 		u64 temp = (__force u64) rtime;
2967 
2968 		temp *= (__force u64) utime;
2969 		do_div(temp, (__force u32) total);
2970 		utime = (__force cputime_t) temp;
2971 	} else
2972 		utime = rtime;
2973 
2974 	/*
2975 	 * Compare with previous values, to keep monotonicity:
2976 	 */
2977 	p->prev_utime = max(p->prev_utime, utime);
2978 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2979 
2980 	*ut = p->prev_utime;
2981 	*st = p->prev_stime;
2982 }
2983 
2984 /*
2985  * Must be called with siglock held.
2986  */
2987 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2988 {
2989 	struct signal_struct *sig = p->signal;
2990 	struct task_cputime cputime;
2991 	cputime_t rtime, utime, total;
2992 
2993 	thread_group_cputime(p, &cputime);
2994 
2995 	total = cputime.utime + cputime.stime;
2996 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2997 
2998 	if (total) {
2999 		u64 temp = (__force u64) rtime;
3000 
3001 		temp *= (__force u64) cputime.utime;
3002 		do_div(temp, (__force u32) total);
3003 		utime = (__force cputime_t) temp;
3004 	} else
3005 		utime = rtime;
3006 
3007 	sig->prev_utime = max(sig->prev_utime, utime);
3008 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3009 
3010 	*ut = sig->prev_utime;
3011 	*st = sig->prev_stime;
3012 }
3013 #endif
3014 
3015 /*
3016  * This function gets called by the timer code, with HZ frequency.
3017  * We call it with interrupts disabled.
3018  */
3019 void scheduler_tick(void)
3020 {
3021 	int cpu = smp_processor_id();
3022 	struct rq *rq = cpu_rq(cpu);
3023 	struct task_struct *curr = rq->curr;
3024 
3025 	sched_clock_tick();
3026 
3027 	raw_spin_lock(&rq->lock);
3028 	update_rq_clock(rq);
3029 	update_cpu_load_active(rq);
3030 	curr->sched_class->task_tick(rq, curr, 0);
3031 	raw_spin_unlock(&rq->lock);
3032 
3033 	perf_event_task_tick();
3034 
3035 #ifdef CONFIG_SMP
3036 	rq->idle_balance = idle_cpu(cpu);
3037 	trigger_load_balance(rq, cpu);
3038 #endif
3039 }
3040 
3041 notrace unsigned long get_parent_ip(unsigned long addr)
3042 {
3043 	if (in_lock_functions(addr)) {
3044 		addr = CALLER_ADDR2;
3045 		if (in_lock_functions(addr))
3046 			addr = CALLER_ADDR3;
3047 	}
3048 	return addr;
3049 }
3050 
3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052 				defined(CONFIG_PREEMPT_TRACER))
3053 
3054 void __kprobes add_preempt_count(int val)
3055 {
3056 #ifdef CONFIG_DEBUG_PREEMPT
3057 	/*
3058 	 * Underflow?
3059 	 */
3060 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3061 		return;
3062 #endif
3063 	preempt_count() += val;
3064 #ifdef CONFIG_DEBUG_PREEMPT
3065 	/*
3066 	 * Spinlock count overflowing soon?
3067 	 */
3068 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3069 				PREEMPT_MASK - 10);
3070 #endif
3071 	if (preempt_count() == val)
3072 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073 }
3074 EXPORT_SYMBOL(add_preempt_count);
3075 
3076 void __kprobes sub_preempt_count(int val)
3077 {
3078 #ifdef CONFIG_DEBUG_PREEMPT
3079 	/*
3080 	 * Underflow?
3081 	 */
3082 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3083 		return;
3084 	/*
3085 	 * Is the spinlock portion underflowing?
3086 	 */
3087 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3088 			!(preempt_count() & PREEMPT_MASK)))
3089 		return;
3090 #endif
3091 
3092 	if (preempt_count() == val)
3093 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3094 	preempt_count() -= val;
3095 }
3096 EXPORT_SYMBOL(sub_preempt_count);
3097 
3098 #endif
3099 
3100 /*
3101  * Print scheduling while atomic bug:
3102  */
3103 static noinline void __schedule_bug(struct task_struct *prev)
3104 {
3105 	if (oops_in_progress)
3106 		return;
3107 
3108 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3109 		prev->comm, prev->pid, preempt_count());
3110 
3111 	debug_show_held_locks(prev);
3112 	print_modules();
3113 	if (irqs_disabled())
3114 		print_irqtrace_events(prev);
3115 	dump_stack();
3116 }
3117 
3118 /*
3119  * Various schedule()-time debugging checks and statistics:
3120  */
3121 static inline void schedule_debug(struct task_struct *prev)
3122 {
3123 	/*
3124 	 * Test if we are atomic. Since do_exit() needs to call into
3125 	 * schedule() atomically, we ignore that path for now.
3126 	 * Otherwise, whine if we are scheduling when we should not be.
3127 	 */
3128 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3129 		__schedule_bug(prev);
3130 	rcu_sleep_check();
3131 
3132 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3133 
3134 	schedstat_inc(this_rq(), sched_count);
3135 }
3136 
3137 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3138 {
3139 	if (prev->on_rq || rq->skip_clock_update < 0)
3140 		update_rq_clock(rq);
3141 	prev->sched_class->put_prev_task(rq, prev);
3142 }
3143 
3144 /*
3145  * Pick up the highest-prio task:
3146  */
3147 static inline struct task_struct *
3148 pick_next_task(struct rq *rq)
3149 {
3150 	const struct sched_class *class;
3151 	struct task_struct *p;
3152 
3153 	/*
3154 	 * Optimization: we know that if all tasks are in
3155 	 * the fair class we can call that function directly:
3156 	 */
3157 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3158 		p = fair_sched_class.pick_next_task(rq);
3159 		if (likely(p))
3160 			return p;
3161 	}
3162 
3163 	for_each_class(class) {
3164 		p = class->pick_next_task(rq);
3165 		if (p)
3166 			return p;
3167 	}
3168 
3169 	BUG(); /* the idle class will always have a runnable task */
3170 }
3171 
3172 /*
3173  * __schedule() is the main scheduler function.
3174  */
3175 static void __sched __schedule(void)
3176 {
3177 	struct task_struct *prev, *next;
3178 	unsigned long *switch_count;
3179 	struct rq *rq;
3180 	int cpu;
3181 
3182 need_resched:
3183 	preempt_disable();
3184 	cpu = smp_processor_id();
3185 	rq = cpu_rq(cpu);
3186 	rcu_note_context_switch(cpu);
3187 	prev = rq->curr;
3188 
3189 	schedule_debug(prev);
3190 
3191 	if (sched_feat(HRTICK))
3192 		hrtick_clear(rq);
3193 
3194 	raw_spin_lock_irq(&rq->lock);
3195 
3196 	switch_count = &prev->nivcsw;
3197 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3198 		if (unlikely(signal_pending_state(prev->state, prev))) {
3199 			prev->state = TASK_RUNNING;
3200 		} else {
3201 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3202 			prev->on_rq = 0;
3203 
3204 			/*
3205 			 * If a worker went to sleep, notify and ask workqueue
3206 			 * whether it wants to wake up a task to maintain
3207 			 * concurrency.
3208 			 */
3209 			if (prev->flags & PF_WQ_WORKER) {
3210 				struct task_struct *to_wakeup;
3211 
3212 				to_wakeup = wq_worker_sleeping(prev, cpu);
3213 				if (to_wakeup)
3214 					try_to_wake_up_local(to_wakeup);
3215 			}
3216 		}
3217 		switch_count = &prev->nvcsw;
3218 	}
3219 
3220 	pre_schedule(rq, prev);
3221 
3222 	if (unlikely(!rq->nr_running))
3223 		idle_balance(cpu, rq);
3224 
3225 	put_prev_task(rq, prev);
3226 	next = pick_next_task(rq);
3227 	clear_tsk_need_resched(prev);
3228 	rq->skip_clock_update = 0;
3229 
3230 	if (likely(prev != next)) {
3231 		rq->nr_switches++;
3232 		rq->curr = next;
3233 		++*switch_count;
3234 
3235 		context_switch(rq, prev, next); /* unlocks the rq */
3236 		/*
3237 		 * The context switch have flipped the stack from under us
3238 		 * and restored the local variables which were saved when
3239 		 * this task called schedule() in the past. prev == current
3240 		 * is still correct, but it can be moved to another cpu/rq.
3241 		 */
3242 		cpu = smp_processor_id();
3243 		rq = cpu_rq(cpu);
3244 	} else
3245 		raw_spin_unlock_irq(&rq->lock);
3246 
3247 	post_schedule(rq);
3248 
3249 	sched_preempt_enable_no_resched();
3250 	if (need_resched())
3251 		goto need_resched;
3252 }
3253 
3254 static inline void sched_submit_work(struct task_struct *tsk)
3255 {
3256 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3257 		return;
3258 	/*
3259 	 * If we are going to sleep and we have plugged IO queued,
3260 	 * make sure to submit it to avoid deadlocks.
3261 	 */
3262 	if (blk_needs_flush_plug(tsk))
3263 		blk_schedule_flush_plug(tsk);
3264 }
3265 
3266 asmlinkage void __sched schedule(void)
3267 {
3268 	struct task_struct *tsk = current;
3269 
3270 	sched_submit_work(tsk);
3271 	__schedule();
3272 }
3273 EXPORT_SYMBOL(schedule);
3274 
3275 /**
3276  * schedule_preempt_disabled - called with preemption disabled
3277  *
3278  * Returns with preemption disabled. Note: preempt_count must be 1
3279  */
3280 void __sched schedule_preempt_disabled(void)
3281 {
3282 	sched_preempt_enable_no_resched();
3283 	schedule();
3284 	preempt_disable();
3285 }
3286 
3287 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3288 
3289 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3290 {
3291 	if (lock->owner != owner)
3292 		return false;
3293 
3294 	/*
3295 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3296 	 * lock->owner still matches owner, if that fails, owner might
3297 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3298 	 * ensures the memory stays valid.
3299 	 */
3300 	barrier();
3301 
3302 	return owner->on_cpu;
3303 }
3304 
3305 /*
3306  * Look out! "owner" is an entirely speculative pointer
3307  * access and not reliable.
3308  */
3309 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3310 {
3311 	if (!sched_feat(OWNER_SPIN))
3312 		return 0;
3313 
3314 	rcu_read_lock();
3315 	while (owner_running(lock, owner)) {
3316 		if (need_resched())
3317 			break;
3318 
3319 		arch_mutex_cpu_relax();
3320 	}
3321 	rcu_read_unlock();
3322 
3323 	/*
3324 	 * We break out the loop above on need_resched() and when the
3325 	 * owner changed, which is a sign for heavy contention. Return
3326 	 * success only when lock->owner is NULL.
3327 	 */
3328 	return lock->owner == NULL;
3329 }
3330 #endif
3331 
3332 #ifdef CONFIG_PREEMPT
3333 /*
3334  * this is the entry point to schedule() from in-kernel preemption
3335  * off of preempt_enable. Kernel preemptions off return from interrupt
3336  * occur there and call schedule directly.
3337  */
3338 asmlinkage void __sched notrace preempt_schedule(void)
3339 {
3340 	struct thread_info *ti = current_thread_info();
3341 
3342 	/*
3343 	 * If there is a non-zero preempt_count or interrupts are disabled,
3344 	 * we do not want to preempt the current task. Just return..
3345 	 */
3346 	if (likely(ti->preempt_count || irqs_disabled()))
3347 		return;
3348 
3349 	do {
3350 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3351 		__schedule();
3352 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3353 
3354 		/*
3355 		 * Check again in case we missed a preemption opportunity
3356 		 * between schedule and now.
3357 		 */
3358 		barrier();
3359 	} while (need_resched());
3360 }
3361 EXPORT_SYMBOL(preempt_schedule);
3362 
3363 /*
3364  * this is the entry point to schedule() from kernel preemption
3365  * off of irq context.
3366  * Note, that this is called and return with irqs disabled. This will
3367  * protect us against recursive calling from irq.
3368  */
3369 asmlinkage void __sched preempt_schedule_irq(void)
3370 {
3371 	struct thread_info *ti = current_thread_info();
3372 
3373 	/* Catch callers which need to be fixed */
3374 	BUG_ON(ti->preempt_count || !irqs_disabled());
3375 
3376 	do {
3377 		add_preempt_count(PREEMPT_ACTIVE);
3378 		local_irq_enable();
3379 		__schedule();
3380 		local_irq_disable();
3381 		sub_preempt_count(PREEMPT_ACTIVE);
3382 
3383 		/*
3384 		 * Check again in case we missed a preemption opportunity
3385 		 * between schedule and now.
3386 		 */
3387 		barrier();
3388 	} while (need_resched());
3389 }
3390 
3391 #endif /* CONFIG_PREEMPT */
3392 
3393 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3394 			  void *key)
3395 {
3396 	return try_to_wake_up(curr->private, mode, wake_flags);
3397 }
3398 EXPORT_SYMBOL(default_wake_function);
3399 
3400 /*
3401  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3402  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3403  * number) then we wake all the non-exclusive tasks and one exclusive task.
3404  *
3405  * There are circumstances in which we can try to wake a task which has already
3406  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3407  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3408  */
3409 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3410 			int nr_exclusive, int wake_flags, void *key)
3411 {
3412 	wait_queue_t *curr, *next;
3413 
3414 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3415 		unsigned flags = curr->flags;
3416 
3417 		if (curr->func(curr, mode, wake_flags, key) &&
3418 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3419 			break;
3420 	}
3421 }
3422 
3423 /**
3424  * __wake_up - wake up threads blocked on a waitqueue.
3425  * @q: the waitqueue
3426  * @mode: which threads
3427  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3428  * @key: is directly passed to the wakeup function
3429  *
3430  * It may be assumed that this function implies a write memory barrier before
3431  * changing the task state if and only if any tasks are woken up.
3432  */
3433 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3434 			int nr_exclusive, void *key)
3435 {
3436 	unsigned long flags;
3437 
3438 	spin_lock_irqsave(&q->lock, flags);
3439 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3440 	spin_unlock_irqrestore(&q->lock, flags);
3441 }
3442 EXPORT_SYMBOL(__wake_up);
3443 
3444 /*
3445  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3446  */
3447 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3448 {
3449 	__wake_up_common(q, mode, nr, 0, NULL);
3450 }
3451 EXPORT_SYMBOL_GPL(__wake_up_locked);
3452 
3453 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3454 {
3455 	__wake_up_common(q, mode, 1, 0, key);
3456 }
3457 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3458 
3459 /**
3460  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3461  * @q: the waitqueue
3462  * @mode: which threads
3463  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3464  * @key: opaque value to be passed to wakeup targets
3465  *
3466  * The sync wakeup differs that the waker knows that it will schedule
3467  * away soon, so while the target thread will be woken up, it will not
3468  * be migrated to another CPU - ie. the two threads are 'synchronized'
3469  * with each other. This can prevent needless bouncing between CPUs.
3470  *
3471  * On UP it can prevent extra preemption.
3472  *
3473  * It may be assumed that this function implies a write memory barrier before
3474  * changing the task state if and only if any tasks are woken up.
3475  */
3476 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3477 			int nr_exclusive, void *key)
3478 {
3479 	unsigned long flags;
3480 	int wake_flags = WF_SYNC;
3481 
3482 	if (unlikely(!q))
3483 		return;
3484 
3485 	if (unlikely(!nr_exclusive))
3486 		wake_flags = 0;
3487 
3488 	spin_lock_irqsave(&q->lock, flags);
3489 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3490 	spin_unlock_irqrestore(&q->lock, flags);
3491 }
3492 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3493 
3494 /*
3495  * __wake_up_sync - see __wake_up_sync_key()
3496  */
3497 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3498 {
3499 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3500 }
3501 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3502 
3503 /**
3504  * complete: - signals a single thread waiting on this completion
3505  * @x:  holds the state of this particular completion
3506  *
3507  * This will wake up a single thread waiting on this completion. Threads will be
3508  * awakened in the same order in which they were queued.
3509  *
3510  * See also complete_all(), wait_for_completion() and related routines.
3511  *
3512  * It may be assumed that this function implies a write memory barrier before
3513  * changing the task state if and only if any tasks are woken up.
3514  */
3515 void complete(struct completion *x)
3516 {
3517 	unsigned long flags;
3518 
3519 	spin_lock_irqsave(&x->wait.lock, flags);
3520 	x->done++;
3521 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3522 	spin_unlock_irqrestore(&x->wait.lock, flags);
3523 }
3524 EXPORT_SYMBOL(complete);
3525 
3526 /**
3527  * complete_all: - signals all threads waiting on this completion
3528  * @x:  holds the state of this particular completion
3529  *
3530  * This will wake up all threads waiting on this particular completion event.
3531  *
3532  * It may be assumed that this function implies a write memory barrier before
3533  * changing the task state if and only if any tasks are woken up.
3534  */
3535 void complete_all(struct completion *x)
3536 {
3537 	unsigned long flags;
3538 
3539 	spin_lock_irqsave(&x->wait.lock, flags);
3540 	x->done += UINT_MAX/2;
3541 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3542 	spin_unlock_irqrestore(&x->wait.lock, flags);
3543 }
3544 EXPORT_SYMBOL(complete_all);
3545 
3546 static inline long __sched
3547 do_wait_for_common(struct completion *x, long timeout, int state)
3548 {
3549 	if (!x->done) {
3550 		DECLARE_WAITQUEUE(wait, current);
3551 
3552 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3553 		do {
3554 			if (signal_pending_state(state, current)) {
3555 				timeout = -ERESTARTSYS;
3556 				break;
3557 			}
3558 			__set_current_state(state);
3559 			spin_unlock_irq(&x->wait.lock);
3560 			timeout = schedule_timeout(timeout);
3561 			spin_lock_irq(&x->wait.lock);
3562 		} while (!x->done && timeout);
3563 		__remove_wait_queue(&x->wait, &wait);
3564 		if (!x->done)
3565 			return timeout;
3566 	}
3567 	x->done--;
3568 	return timeout ?: 1;
3569 }
3570 
3571 static long __sched
3572 wait_for_common(struct completion *x, long timeout, int state)
3573 {
3574 	might_sleep();
3575 
3576 	spin_lock_irq(&x->wait.lock);
3577 	timeout = do_wait_for_common(x, timeout, state);
3578 	spin_unlock_irq(&x->wait.lock);
3579 	return timeout;
3580 }
3581 
3582 /**
3583  * wait_for_completion: - waits for completion of a task
3584  * @x:  holds the state of this particular completion
3585  *
3586  * This waits to be signaled for completion of a specific task. It is NOT
3587  * interruptible and there is no timeout.
3588  *
3589  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3590  * and interrupt capability. Also see complete().
3591  */
3592 void __sched wait_for_completion(struct completion *x)
3593 {
3594 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3595 }
3596 EXPORT_SYMBOL(wait_for_completion);
3597 
3598 /**
3599  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3600  * @x:  holds the state of this particular completion
3601  * @timeout:  timeout value in jiffies
3602  *
3603  * This waits for either a completion of a specific task to be signaled or for a
3604  * specified timeout to expire. The timeout is in jiffies. It is not
3605  * interruptible.
3606  *
3607  * The return value is 0 if timed out, and positive (at least 1, or number of
3608  * jiffies left till timeout) if completed.
3609  */
3610 unsigned long __sched
3611 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3612 {
3613 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3614 }
3615 EXPORT_SYMBOL(wait_for_completion_timeout);
3616 
3617 /**
3618  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3619  * @x:  holds the state of this particular completion
3620  *
3621  * This waits for completion of a specific task to be signaled. It is
3622  * interruptible.
3623  *
3624  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3625  */
3626 int __sched wait_for_completion_interruptible(struct completion *x)
3627 {
3628 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3629 	if (t == -ERESTARTSYS)
3630 		return t;
3631 	return 0;
3632 }
3633 EXPORT_SYMBOL(wait_for_completion_interruptible);
3634 
3635 /**
3636  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3637  * @x:  holds the state of this particular completion
3638  * @timeout:  timeout value in jiffies
3639  *
3640  * This waits for either a completion of a specific task to be signaled or for a
3641  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3642  *
3643  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644  * positive (at least 1, or number of jiffies left till timeout) if completed.
3645  */
3646 long __sched
3647 wait_for_completion_interruptible_timeout(struct completion *x,
3648 					  unsigned long timeout)
3649 {
3650 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3651 }
3652 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3653 
3654 /**
3655  * wait_for_completion_killable: - waits for completion of a task (killable)
3656  * @x:  holds the state of this particular completion
3657  *
3658  * This waits to be signaled for completion of a specific task. It can be
3659  * interrupted by a kill signal.
3660  *
3661  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3662  */
3663 int __sched wait_for_completion_killable(struct completion *x)
3664 {
3665 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3666 	if (t == -ERESTARTSYS)
3667 		return t;
3668 	return 0;
3669 }
3670 EXPORT_SYMBOL(wait_for_completion_killable);
3671 
3672 /**
3673  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3674  * @x:  holds the state of this particular completion
3675  * @timeout:  timeout value in jiffies
3676  *
3677  * This waits for either a completion of a specific task to be
3678  * signaled or for a specified timeout to expire. It can be
3679  * interrupted by a kill signal. The timeout is in jiffies.
3680  *
3681  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3682  * positive (at least 1, or number of jiffies left till timeout) if completed.
3683  */
3684 long __sched
3685 wait_for_completion_killable_timeout(struct completion *x,
3686 				     unsigned long timeout)
3687 {
3688 	return wait_for_common(x, timeout, TASK_KILLABLE);
3689 }
3690 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3691 
3692 /**
3693  *	try_wait_for_completion - try to decrement a completion without blocking
3694  *	@x:	completion structure
3695  *
3696  *	Returns: 0 if a decrement cannot be done without blocking
3697  *		 1 if a decrement succeeded.
3698  *
3699  *	If a completion is being used as a counting completion,
3700  *	attempt to decrement the counter without blocking. This
3701  *	enables us to avoid waiting if the resource the completion
3702  *	is protecting is not available.
3703  */
3704 bool try_wait_for_completion(struct completion *x)
3705 {
3706 	unsigned long flags;
3707 	int ret = 1;
3708 
3709 	spin_lock_irqsave(&x->wait.lock, flags);
3710 	if (!x->done)
3711 		ret = 0;
3712 	else
3713 		x->done--;
3714 	spin_unlock_irqrestore(&x->wait.lock, flags);
3715 	return ret;
3716 }
3717 EXPORT_SYMBOL(try_wait_for_completion);
3718 
3719 /**
3720  *	completion_done - Test to see if a completion has any waiters
3721  *	@x:	completion structure
3722  *
3723  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3724  *		 1 if there are no waiters.
3725  *
3726  */
3727 bool completion_done(struct completion *x)
3728 {
3729 	unsigned long flags;
3730 	int ret = 1;
3731 
3732 	spin_lock_irqsave(&x->wait.lock, flags);
3733 	if (!x->done)
3734 		ret = 0;
3735 	spin_unlock_irqrestore(&x->wait.lock, flags);
3736 	return ret;
3737 }
3738 EXPORT_SYMBOL(completion_done);
3739 
3740 static long __sched
3741 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3742 {
3743 	unsigned long flags;
3744 	wait_queue_t wait;
3745 
3746 	init_waitqueue_entry(&wait, current);
3747 
3748 	__set_current_state(state);
3749 
3750 	spin_lock_irqsave(&q->lock, flags);
3751 	__add_wait_queue(q, &wait);
3752 	spin_unlock(&q->lock);
3753 	timeout = schedule_timeout(timeout);
3754 	spin_lock_irq(&q->lock);
3755 	__remove_wait_queue(q, &wait);
3756 	spin_unlock_irqrestore(&q->lock, flags);
3757 
3758 	return timeout;
3759 }
3760 
3761 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3762 {
3763 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3764 }
3765 EXPORT_SYMBOL(interruptible_sleep_on);
3766 
3767 long __sched
3768 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3769 {
3770 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3771 }
3772 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3773 
3774 void __sched sleep_on(wait_queue_head_t *q)
3775 {
3776 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3777 }
3778 EXPORT_SYMBOL(sleep_on);
3779 
3780 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3781 {
3782 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3783 }
3784 EXPORT_SYMBOL(sleep_on_timeout);
3785 
3786 #ifdef CONFIG_RT_MUTEXES
3787 
3788 /*
3789  * rt_mutex_setprio - set the current priority of a task
3790  * @p: task
3791  * @prio: prio value (kernel-internal form)
3792  *
3793  * This function changes the 'effective' priority of a task. It does
3794  * not touch ->normal_prio like __setscheduler().
3795  *
3796  * Used by the rt_mutex code to implement priority inheritance logic.
3797  */
3798 void rt_mutex_setprio(struct task_struct *p, int prio)
3799 {
3800 	int oldprio, on_rq, running;
3801 	struct rq *rq;
3802 	const struct sched_class *prev_class;
3803 
3804 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3805 
3806 	rq = __task_rq_lock(p);
3807 
3808 	/*
3809 	 * Idle task boosting is a nono in general. There is one
3810 	 * exception, when PREEMPT_RT and NOHZ is active:
3811 	 *
3812 	 * The idle task calls get_next_timer_interrupt() and holds
3813 	 * the timer wheel base->lock on the CPU and another CPU wants
3814 	 * to access the timer (probably to cancel it). We can safely
3815 	 * ignore the boosting request, as the idle CPU runs this code
3816 	 * with interrupts disabled and will complete the lock
3817 	 * protected section without being interrupted. So there is no
3818 	 * real need to boost.
3819 	 */
3820 	if (unlikely(p == rq->idle)) {
3821 		WARN_ON(p != rq->curr);
3822 		WARN_ON(p->pi_blocked_on);
3823 		goto out_unlock;
3824 	}
3825 
3826 	trace_sched_pi_setprio(p, prio);
3827 	oldprio = p->prio;
3828 	prev_class = p->sched_class;
3829 	on_rq = p->on_rq;
3830 	running = task_current(rq, p);
3831 	if (on_rq)
3832 		dequeue_task(rq, p, 0);
3833 	if (running)
3834 		p->sched_class->put_prev_task(rq, p);
3835 
3836 	if (rt_prio(prio))
3837 		p->sched_class = &rt_sched_class;
3838 	else
3839 		p->sched_class = &fair_sched_class;
3840 
3841 	p->prio = prio;
3842 
3843 	if (running)
3844 		p->sched_class->set_curr_task(rq);
3845 	if (on_rq)
3846 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3847 
3848 	check_class_changed(rq, p, prev_class, oldprio);
3849 out_unlock:
3850 	__task_rq_unlock(rq);
3851 }
3852 #endif
3853 void set_user_nice(struct task_struct *p, long nice)
3854 {
3855 	int old_prio, delta, on_rq;
3856 	unsigned long flags;
3857 	struct rq *rq;
3858 
3859 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3860 		return;
3861 	/*
3862 	 * We have to be careful, if called from sys_setpriority(),
3863 	 * the task might be in the middle of scheduling on another CPU.
3864 	 */
3865 	rq = task_rq_lock(p, &flags);
3866 	/*
3867 	 * The RT priorities are set via sched_setscheduler(), but we still
3868 	 * allow the 'normal' nice value to be set - but as expected
3869 	 * it wont have any effect on scheduling until the task is
3870 	 * SCHED_FIFO/SCHED_RR:
3871 	 */
3872 	if (task_has_rt_policy(p)) {
3873 		p->static_prio = NICE_TO_PRIO(nice);
3874 		goto out_unlock;
3875 	}
3876 	on_rq = p->on_rq;
3877 	if (on_rq)
3878 		dequeue_task(rq, p, 0);
3879 
3880 	p->static_prio = NICE_TO_PRIO(nice);
3881 	set_load_weight(p);
3882 	old_prio = p->prio;
3883 	p->prio = effective_prio(p);
3884 	delta = p->prio - old_prio;
3885 
3886 	if (on_rq) {
3887 		enqueue_task(rq, p, 0);
3888 		/*
3889 		 * If the task increased its priority or is running and
3890 		 * lowered its priority, then reschedule its CPU:
3891 		 */
3892 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3893 			resched_task(rq->curr);
3894 	}
3895 out_unlock:
3896 	task_rq_unlock(rq, p, &flags);
3897 }
3898 EXPORT_SYMBOL(set_user_nice);
3899 
3900 /*
3901  * can_nice - check if a task can reduce its nice value
3902  * @p: task
3903  * @nice: nice value
3904  */
3905 int can_nice(const struct task_struct *p, const int nice)
3906 {
3907 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3908 	int nice_rlim = 20 - nice;
3909 
3910 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3911 		capable(CAP_SYS_NICE));
3912 }
3913 
3914 #ifdef __ARCH_WANT_SYS_NICE
3915 
3916 /*
3917  * sys_nice - change the priority of the current process.
3918  * @increment: priority increment
3919  *
3920  * sys_setpriority is a more generic, but much slower function that
3921  * does similar things.
3922  */
3923 SYSCALL_DEFINE1(nice, int, increment)
3924 {
3925 	long nice, retval;
3926 
3927 	/*
3928 	 * Setpriority might change our priority at the same moment.
3929 	 * We don't have to worry. Conceptually one call occurs first
3930 	 * and we have a single winner.
3931 	 */
3932 	if (increment < -40)
3933 		increment = -40;
3934 	if (increment > 40)
3935 		increment = 40;
3936 
3937 	nice = TASK_NICE(current) + increment;
3938 	if (nice < -20)
3939 		nice = -20;
3940 	if (nice > 19)
3941 		nice = 19;
3942 
3943 	if (increment < 0 && !can_nice(current, nice))
3944 		return -EPERM;
3945 
3946 	retval = security_task_setnice(current, nice);
3947 	if (retval)
3948 		return retval;
3949 
3950 	set_user_nice(current, nice);
3951 	return 0;
3952 }
3953 
3954 #endif
3955 
3956 /**
3957  * task_prio - return the priority value of a given task.
3958  * @p: the task in question.
3959  *
3960  * This is the priority value as seen by users in /proc.
3961  * RT tasks are offset by -200. Normal tasks are centered
3962  * around 0, value goes from -16 to +15.
3963  */
3964 int task_prio(const struct task_struct *p)
3965 {
3966 	return p->prio - MAX_RT_PRIO;
3967 }
3968 
3969 /**
3970  * task_nice - return the nice value of a given task.
3971  * @p: the task in question.
3972  */
3973 int task_nice(const struct task_struct *p)
3974 {
3975 	return TASK_NICE(p);
3976 }
3977 EXPORT_SYMBOL(task_nice);
3978 
3979 /**
3980  * idle_cpu - is a given cpu idle currently?
3981  * @cpu: the processor in question.
3982  */
3983 int idle_cpu(int cpu)
3984 {
3985 	struct rq *rq = cpu_rq(cpu);
3986 
3987 	if (rq->curr != rq->idle)
3988 		return 0;
3989 
3990 	if (rq->nr_running)
3991 		return 0;
3992 
3993 #ifdef CONFIG_SMP
3994 	if (!llist_empty(&rq->wake_list))
3995 		return 0;
3996 #endif
3997 
3998 	return 1;
3999 }
4000 
4001 /**
4002  * idle_task - return the idle task for a given cpu.
4003  * @cpu: the processor in question.
4004  */
4005 struct task_struct *idle_task(int cpu)
4006 {
4007 	return cpu_rq(cpu)->idle;
4008 }
4009 
4010 /**
4011  * find_process_by_pid - find a process with a matching PID value.
4012  * @pid: the pid in question.
4013  */
4014 static struct task_struct *find_process_by_pid(pid_t pid)
4015 {
4016 	return pid ? find_task_by_vpid(pid) : current;
4017 }
4018 
4019 /* Actually do priority change: must hold rq lock. */
4020 static void
4021 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4022 {
4023 	p->policy = policy;
4024 	p->rt_priority = prio;
4025 	p->normal_prio = normal_prio(p);
4026 	/* we are holding p->pi_lock already */
4027 	p->prio = rt_mutex_getprio(p);
4028 	if (rt_prio(p->prio))
4029 		p->sched_class = &rt_sched_class;
4030 	else
4031 		p->sched_class = &fair_sched_class;
4032 	set_load_weight(p);
4033 }
4034 
4035 /*
4036  * check the target process has a UID that matches the current process's
4037  */
4038 static bool check_same_owner(struct task_struct *p)
4039 {
4040 	const struct cred *cred = current_cred(), *pcred;
4041 	bool match;
4042 
4043 	rcu_read_lock();
4044 	pcred = __task_cred(p);
4045 	if (cred->user->user_ns == pcred->user->user_ns)
4046 		match = (cred->euid == pcred->euid ||
4047 			 cred->euid == pcred->uid);
4048 	else
4049 		match = false;
4050 	rcu_read_unlock();
4051 	return match;
4052 }
4053 
4054 static int __sched_setscheduler(struct task_struct *p, int policy,
4055 				const struct sched_param *param, bool user)
4056 {
4057 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4058 	unsigned long flags;
4059 	const struct sched_class *prev_class;
4060 	struct rq *rq;
4061 	int reset_on_fork;
4062 
4063 	/* may grab non-irq protected spin_locks */
4064 	BUG_ON(in_interrupt());
4065 recheck:
4066 	/* double check policy once rq lock held */
4067 	if (policy < 0) {
4068 		reset_on_fork = p->sched_reset_on_fork;
4069 		policy = oldpolicy = p->policy;
4070 	} else {
4071 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4072 		policy &= ~SCHED_RESET_ON_FORK;
4073 
4074 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4075 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4076 				policy != SCHED_IDLE)
4077 			return -EINVAL;
4078 	}
4079 
4080 	/*
4081 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4082 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4083 	 * SCHED_BATCH and SCHED_IDLE is 0.
4084 	 */
4085 	if (param->sched_priority < 0 ||
4086 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4087 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4088 		return -EINVAL;
4089 	if (rt_policy(policy) != (param->sched_priority != 0))
4090 		return -EINVAL;
4091 
4092 	/*
4093 	 * Allow unprivileged RT tasks to decrease priority:
4094 	 */
4095 	if (user && !capable(CAP_SYS_NICE)) {
4096 		if (rt_policy(policy)) {
4097 			unsigned long rlim_rtprio =
4098 					task_rlimit(p, RLIMIT_RTPRIO);
4099 
4100 			/* can't set/change the rt policy */
4101 			if (policy != p->policy && !rlim_rtprio)
4102 				return -EPERM;
4103 
4104 			/* can't increase priority */
4105 			if (param->sched_priority > p->rt_priority &&
4106 			    param->sched_priority > rlim_rtprio)
4107 				return -EPERM;
4108 		}
4109 
4110 		/*
4111 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4112 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4113 		 */
4114 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4115 			if (!can_nice(p, TASK_NICE(p)))
4116 				return -EPERM;
4117 		}
4118 
4119 		/* can't change other user's priorities */
4120 		if (!check_same_owner(p))
4121 			return -EPERM;
4122 
4123 		/* Normal users shall not reset the sched_reset_on_fork flag */
4124 		if (p->sched_reset_on_fork && !reset_on_fork)
4125 			return -EPERM;
4126 	}
4127 
4128 	if (user) {
4129 		retval = security_task_setscheduler(p);
4130 		if (retval)
4131 			return retval;
4132 	}
4133 
4134 	/*
4135 	 * make sure no PI-waiters arrive (or leave) while we are
4136 	 * changing the priority of the task:
4137 	 *
4138 	 * To be able to change p->policy safely, the appropriate
4139 	 * runqueue lock must be held.
4140 	 */
4141 	rq = task_rq_lock(p, &flags);
4142 
4143 	/*
4144 	 * Changing the policy of the stop threads its a very bad idea
4145 	 */
4146 	if (p == rq->stop) {
4147 		task_rq_unlock(rq, p, &flags);
4148 		return -EINVAL;
4149 	}
4150 
4151 	/*
4152 	 * If not changing anything there's no need to proceed further:
4153 	 */
4154 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4155 			param->sched_priority == p->rt_priority))) {
4156 
4157 		__task_rq_unlock(rq);
4158 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4159 		return 0;
4160 	}
4161 
4162 #ifdef CONFIG_RT_GROUP_SCHED
4163 	if (user) {
4164 		/*
4165 		 * Do not allow realtime tasks into groups that have no runtime
4166 		 * assigned.
4167 		 */
4168 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4169 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4170 				!task_group_is_autogroup(task_group(p))) {
4171 			task_rq_unlock(rq, p, &flags);
4172 			return -EPERM;
4173 		}
4174 	}
4175 #endif
4176 
4177 	/* recheck policy now with rq lock held */
4178 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4179 		policy = oldpolicy = -1;
4180 		task_rq_unlock(rq, p, &flags);
4181 		goto recheck;
4182 	}
4183 	on_rq = p->on_rq;
4184 	running = task_current(rq, p);
4185 	if (on_rq)
4186 		dequeue_task(rq, p, 0);
4187 	if (running)
4188 		p->sched_class->put_prev_task(rq, p);
4189 
4190 	p->sched_reset_on_fork = reset_on_fork;
4191 
4192 	oldprio = p->prio;
4193 	prev_class = p->sched_class;
4194 	__setscheduler(rq, p, policy, param->sched_priority);
4195 
4196 	if (running)
4197 		p->sched_class->set_curr_task(rq);
4198 	if (on_rq)
4199 		enqueue_task(rq, p, 0);
4200 
4201 	check_class_changed(rq, p, prev_class, oldprio);
4202 	task_rq_unlock(rq, p, &flags);
4203 
4204 	rt_mutex_adjust_pi(p);
4205 
4206 	return 0;
4207 }
4208 
4209 /**
4210  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4211  * @p: the task in question.
4212  * @policy: new policy.
4213  * @param: structure containing the new RT priority.
4214  *
4215  * NOTE that the task may be already dead.
4216  */
4217 int sched_setscheduler(struct task_struct *p, int policy,
4218 		       const struct sched_param *param)
4219 {
4220 	return __sched_setscheduler(p, policy, param, true);
4221 }
4222 EXPORT_SYMBOL_GPL(sched_setscheduler);
4223 
4224 /**
4225  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4226  * @p: the task in question.
4227  * @policy: new policy.
4228  * @param: structure containing the new RT priority.
4229  *
4230  * Just like sched_setscheduler, only don't bother checking if the
4231  * current context has permission.  For example, this is needed in
4232  * stop_machine(): we create temporary high priority worker threads,
4233  * but our caller might not have that capability.
4234  */
4235 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4236 			       const struct sched_param *param)
4237 {
4238 	return __sched_setscheduler(p, policy, param, false);
4239 }
4240 
4241 static int
4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243 {
4244 	struct sched_param lparam;
4245 	struct task_struct *p;
4246 	int retval;
4247 
4248 	if (!param || pid < 0)
4249 		return -EINVAL;
4250 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 		return -EFAULT;
4252 
4253 	rcu_read_lock();
4254 	retval = -ESRCH;
4255 	p = find_process_by_pid(pid);
4256 	if (p != NULL)
4257 		retval = sched_setscheduler(p, policy, &lparam);
4258 	rcu_read_unlock();
4259 
4260 	return retval;
4261 }
4262 
4263 /**
4264  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4265  * @pid: the pid in question.
4266  * @policy: new policy.
4267  * @param: structure containing the new RT priority.
4268  */
4269 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4270 		struct sched_param __user *, param)
4271 {
4272 	/* negative values for policy are not valid */
4273 	if (policy < 0)
4274 		return -EINVAL;
4275 
4276 	return do_sched_setscheduler(pid, policy, param);
4277 }
4278 
4279 /**
4280  * sys_sched_setparam - set/change the RT priority of a thread
4281  * @pid: the pid in question.
4282  * @param: structure containing the new RT priority.
4283  */
4284 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4285 {
4286 	return do_sched_setscheduler(pid, -1, param);
4287 }
4288 
4289 /**
4290  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4291  * @pid: the pid in question.
4292  */
4293 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4294 {
4295 	struct task_struct *p;
4296 	int retval;
4297 
4298 	if (pid < 0)
4299 		return -EINVAL;
4300 
4301 	retval = -ESRCH;
4302 	rcu_read_lock();
4303 	p = find_process_by_pid(pid);
4304 	if (p) {
4305 		retval = security_task_getscheduler(p);
4306 		if (!retval)
4307 			retval = p->policy
4308 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4309 	}
4310 	rcu_read_unlock();
4311 	return retval;
4312 }
4313 
4314 /**
4315  * sys_sched_getparam - get the RT priority of a thread
4316  * @pid: the pid in question.
4317  * @param: structure containing the RT priority.
4318  */
4319 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4320 {
4321 	struct sched_param lp;
4322 	struct task_struct *p;
4323 	int retval;
4324 
4325 	if (!param || pid < 0)
4326 		return -EINVAL;
4327 
4328 	rcu_read_lock();
4329 	p = find_process_by_pid(pid);
4330 	retval = -ESRCH;
4331 	if (!p)
4332 		goto out_unlock;
4333 
4334 	retval = security_task_getscheduler(p);
4335 	if (retval)
4336 		goto out_unlock;
4337 
4338 	lp.sched_priority = p->rt_priority;
4339 	rcu_read_unlock();
4340 
4341 	/*
4342 	 * This one might sleep, we cannot do it with a spinlock held ...
4343 	 */
4344 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4345 
4346 	return retval;
4347 
4348 out_unlock:
4349 	rcu_read_unlock();
4350 	return retval;
4351 }
4352 
4353 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4354 {
4355 	cpumask_var_t cpus_allowed, new_mask;
4356 	struct task_struct *p;
4357 	int retval;
4358 
4359 	get_online_cpus();
4360 	rcu_read_lock();
4361 
4362 	p = find_process_by_pid(pid);
4363 	if (!p) {
4364 		rcu_read_unlock();
4365 		put_online_cpus();
4366 		return -ESRCH;
4367 	}
4368 
4369 	/* Prevent p going away */
4370 	get_task_struct(p);
4371 	rcu_read_unlock();
4372 
4373 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4374 		retval = -ENOMEM;
4375 		goto out_put_task;
4376 	}
4377 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4378 		retval = -ENOMEM;
4379 		goto out_free_cpus_allowed;
4380 	}
4381 	retval = -EPERM;
4382 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4383 		goto out_unlock;
4384 
4385 	retval = security_task_setscheduler(p);
4386 	if (retval)
4387 		goto out_unlock;
4388 
4389 	cpuset_cpus_allowed(p, cpus_allowed);
4390 	cpumask_and(new_mask, in_mask, cpus_allowed);
4391 again:
4392 	retval = set_cpus_allowed_ptr(p, new_mask);
4393 
4394 	if (!retval) {
4395 		cpuset_cpus_allowed(p, cpus_allowed);
4396 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4397 			/*
4398 			 * We must have raced with a concurrent cpuset
4399 			 * update. Just reset the cpus_allowed to the
4400 			 * cpuset's cpus_allowed
4401 			 */
4402 			cpumask_copy(new_mask, cpus_allowed);
4403 			goto again;
4404 		}
4405 	}
4406 out_unlock:
4407 	free_cpumask_var(new_mask);
4408 out_free_cpus_allowed:
4409 	free_cpumask_var(cpus_allowed);
4410 out_put_task:
4411 	put_task_struct(p);
4412 	put_online_cpus();
4413 	return retval;
4414 }
4415 
4416 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417 			     struct cpumask *new_mask)
4418 {
4419 	if (len < cpumask_size())
4420 		cpumask_clear(new_mask);
4421 	else if (len > cpumask_size())
4422 		len = cpumask_size();
4423 
4424 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4425 }
4426 
4427 /**
4428  * sys_sched_setaffinity - set the cpu affinity of a process
4429  * @pid: pid of the process
4430  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431  * @user_mask_ptr: user-space pointer to the new cpu mask
4432  */
4433 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4434 		unsigned long __user *, user_mask_ptr)
4435 {
4436 	cpumask_var_t new_mask;
4437 	int retval;
4438 
4439 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4440 		return -ENOMEM;
4441 
4442 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4443 	if (retval == 0)
4444 		retval = sched_setaffinity(pid, new_mask);
4445 	free_cpumask_var(new_mask);
4446 	return retval;
4447 }
4448 
4449 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4450 {
4451 	struct task_struct *p;
4452 	unsigned long flags;
4453 	int retval;
4454 
4455 	get_online_cpus();
4456 	rcu_read_lock();
4457 
4458 	retval = -ESRCH;
4459 	p = find_process_by_pid(pid);
4460 	if (!p)
4461 		goto out_unlock;
4462 
4463 	retval = security_task_getscheduler(p);
4464 	if (retval)
4465 		goto out_unlock;
4466 
4467 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4468 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4469 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4470 
4471 out_unlock:
4472 	rcu_read_unlock();
4473 	put_online_cpus();
4474 
4475 	return retval;
4476 }
4477 
4478 /**
4479  * sys_sched_getaffinity - get the cpu affinity of a process
4480  * @pid: pid of the process
4481  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4482  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4483  */
4484 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4485 		unsigned long __user *, user_mask_ptr)
4486 {
4487 	int ret;
4488 	cpumask_var_t mask;
4489 
4490 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4491 		return -EINVAL;
4492 	if (len & (sizeof(unsigned long)-1))
4493 		return -EINVAL;
4494 
4495 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4496 		return -ENOMEM;
4497 
4498 	ret = sched_getaffinity(pid, mask);
4499 	if (ret == 0) {
4500 		size_t retlen = min_t(size_t, len, cpumask_size());
4501 
4502 		if (copy_to_user(user_mask_ptr, mask, retlen))
4503 			ret = -EFAULT;
4504 		else
4505 			ret = retlen;
4506 	}
4507 	free_cpumask_var(mask);
4508 
4509 	return ret;
4510 }
4511 
4512 /**
4513  * sys_sched_yield - yield the current processor to other threads.
4514  *
4515  * This function yields the current CPU to other tasks. If there are no
4516  * other threads running on this CPU then this function will return.
4517  */
4518 SYSCALL_DEFINE0(sched_yield)
4519 {
4520 	struct rq *rq = this_rq_lock();
4521 
4522 	schedstat_inc(rq, yld_count);
4523 	current->sched_class->yield_task(rq);
4524 
4525 	/*
4526 	 * Since we are going to call schedule() anyway, there's
4527 	 * no need to preempt or enable interrupts:
4528 	 */
4529 	__release(rq->lock);
4530 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4531 	do_raw_spin_unlock(&rq->lock);
4532 	sched_preempt_enable_no_resched();
4533 
4534 	schedule();
4535 
4536 	return 0;
4537 }
4538 
4539 static inline int should_resched(void)
4540 {
4541 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4542 }
4543 
4544 static void __cond_resched(void)
4545 {
4546 	add_preempt_count(PREEMPT_ACTIVE);
4547 	__schedule();
4548 	sub_preempt_count(PREEMPT_ACTIVE);
4549 }
4550 
4551 int __sched _cond_resched(void)
4552 {
4553 	if (should_resched()) {
4554 		__cond_resched();
4555 		return 1;
4556 	}
4557 	return 0;
4558 }
4559 EXPORT_SYMBOL(_cond_resched);
4560 
4561 /*
4562  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4563  * call schedule, and on return reacquire the lock.
4564  *
4565  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4566  * operations here to prevent schedule() from being called twice (once via
4567  * spin_unlock(), once by hand).
4568  */
4569 int __cond_resched_lock(spinlock_t *lock)
4570 {
4571 	int resched = should_resched();
4572 	int ret = 0;
4573 
4574 	lockdep_assert_held(lock);
4575 
4576 	if (spin_needbreak(lock) || resched) {
4577 		spin_unlock(lock);
4578 		if (resched)
4579 			__cond_resched();
4580 		else
4581 			cpu_relax();
4582 		ret = 1;
4583 		spin_lock(lock);
4584 	}
4585 	return ret;
4586 }
4587 EXPORT_SYMBOL(__cond_resched_lock);
4588 
4589 int __sched __cond_resched_softirq(void)
4590 {
4591 	BUG_ON(!in_softirq());
4592 
4593 	if (should_resched()) {
4594 		local_bh_enable();
4595 		__cond_resched();
4596 		local_bh_disable();
4597 		return 1;
4598 	}
4599 	return 0;
4600 }
4601 EXPORT_SYMBOL(__cond_resched_softirq);
4602 
4603 /**
4604  * yield - yield the current processor to other threads.
4605  *
4606  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4607  *
4608  * The scheduler is at all times free to pick the calling task as the most
4609  * eligible task to run, if removing the yield() call from your code breaks
4610  * it, its already broken.
4611  *
4612  * Typical broken usage is:
4613  *
4614  * while (!event)
4615  * 	yield();
4616  *
4617  * where one assumes that yield() will let 'the other' process run that will
4618  * make event true. If the current task is a SCHED_FIFO task that will never
4619  * happen. Never use yield() as a progress guarantee!!
4620  *
4621  * If you want to use yield() to wait for something, use wait_event().
4622  * If you want to use yield() to be 'nice' for others, use cond_resched().
4623  * If you still want to use yield(), do not!
4624  */
4625 void __sched yield(void)
4626 {
4627 	set_current_state(TASK_RUNNING);
4628 	sys_sched_yield();
4629 }
4630 EXPORT_SYMBOL(yield);
4631 
4632 /**
4633  * yield_to - yield the current processor to another thread in
4634  * your thread group, or accelerate that thread toward the
4635  * processor it's on.
4636  * @p: target task
4637  * @preempt: whether task preemption is allowed or not
4638  *
4639  * It's the caller's job to ensure that the target task struct
4640  * can't go away on us before we can do any checks.
4641  *
4642  * Returns true if we indeed boosted the target task.
4643  */
4644 bool __sched yield_to(struct task_struct *p, bool preempt)
4645 {
4646 	struct task_struct *curr = current;
4647 	struct rq *rq, *p_rq;
4648 	unsigned long flags;
4649 	bool yielded = 0;
4650 
4651 	local_irq_save(flags);
4652 	rq = this_rq();
4653 
4654 again:
4655 	p_rq = task_rq(p);
4656 	double_rq_lock(rq, p_rq);
4657 	while (task_rq(p) != p_rq) {
4658 		double_rq_unlock(rq, p_rq);
4659 		goto again;
4660 	}
4661 
4662 	if (!curr->sched_class->yield_to_task)
4663 		goto out;
4664 
4665 	if (curr->sched_class != p->sched_class)
4666 		goto out;
4667 
4668 	if (task_running(p_rq, p) || p->state)
4669 		goto out;
4670 
4671 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4672 	if (yielded) {
4673 		schedstat_inc(rq, yld_count);
4674 		/*
4675 		 * Make p's CPU reschedule; pick_next_entity takes care of
4676 		 * fairness.
4677 		 */
4678 		if (preempt && rq != p_rq)
4679 			resched_task(p_rq->curr);
4680 	} else {
4681 		/*
4682 		 * We might have set it in task_yield_fair(), but are
4683 		 * not going to schedule(), so don't want to skip
4684 		 * the next update.
4685 		 */
4686 		rq->skip_clock_update = 0;
4687 	}
4688 
4689 out:
4690 	double_rq_unlock(rq, p_rq);
4691 	local_irq_restore(flags);
4692 
4693 	if (yielded)
4694 		schedule();
4695 
4696 	return yielded;
4697 }
4698 EXPORT_SYMBOL_GPL(yield_to);
4699 
4700 /*
4701  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702  * that process accounting knows that this is a task in IO wait state.
4703  */
4704 void __sched io_schedule(void)
4705 {
4706 	struct rq *rq = raw_rq();
4707 
4708 	delayacct_blkio_start();
4709 	atomic_inc(&rq->nr_iowait);
4710 	blk_flush_plug(current);
4711 	current->in_iowait = 1;
4712 	schedule();
4713 	current->in_iowait = 0;
4714 	atomic_dec(&rq->nr_iowait);
4715 	delayacct_blkio_end();
4716 }
4717 EXPORT_SYMBOL(io_schedule);
4718 
4719 long __sched io_schedule_timeout(long timeout)
4720 {
4721 	struct rq *rq = raw_rq();
4722 	long ret;
4723 
4724 	delayacct_blkio_start();
4725 	atomic_inc(&rq->nr_iowait);
4726 	blk_flush_plug(current);
4727 	current->in_iowait = 1;
4728 	ret = schedule_timeout(timeout);
4729 	current->in_iowait = 0;
4730 	atomic_dec(&rq->nr_iowait);
4731 	delayacct_blkio_end();
4732 	return ret;
4733 }
4734 
4735 /**
4736  * sys_sched_get_priority_max - return maximum RT priority.
4737  * @policy: scheduling class.
4738  *
4739  * this syscall returns the maximum rt_priority that can be used
4740  * by a given scheduling class.
4741  */
4742 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4743 {
4744 	int ret = -EINVAL;
4745 
4746 	switch (policy) {
4747 	case SCHED_FIFO:
4748 	case SCHED_RR:
4749 		ret = MAX_USER_RT_PRIO-1;
4750 		break;
4751 	case SCHED_NORMAL:
4752 	case SCHED_BATCH:
4753 	case SCHED_IDLE:
4754 		ret = 0;
4755 		break;
4756 	}
4757 	return ret;
4758 }
4759 
4760 /**
4761  * sys_sched_get_priority_min - return minimum RT priority.
4762  * @policy: scheduling class.
4763  *
4764  * this syscall returns the minimum rt_priority that can be used
4765  * by a given scheduling class.
4766  */
4767 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4768 {
4769 	int ret = -EINVAL;
4770 
4771 	switch (policy) {
4772 	case SCHED_FIFO:
4773 	case SCHED_RR:
4774 		ret = 1;
4775 		break;
4776 	case SCHED_NORMAL:
4777 	case SCHED_BATCH:
4778 	case SCHED_IDLE:
4779 		ret = 0;
4780 	}
4781 	return ret;
4782 }
4783 
4784 /**
4785  * sys_sched_rr_get_interval - return the default timeslice of a process.
4786  * @pid: pid of the process.
4787  * @interval: userspace pointer to the timeslice value.
4788  *
4789  * this syscall writes the default timeslice value of a given process
4790  * into the user-space timespec buffer. A value of '0' means infinity.
4791  */
4792 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4793 		struct timespec __user *, interval)
4794 {
4795 	struct task_struct *p;
4796 	unsigned int time_slice;
4797 	unsigned long flags;
4798 	struct rq *rq;
4799 	int retval;
4800 	struct timespec t;
4801 
4802 	if (pid < 0)
4803 		return -EINVAL;
4804 
4805 	retval = -ESRCH;
4806 	rcu_read_lock();
4807 	p = find_process_by_pid(pid);
4808 	if (!p)
4809 		goto out_unlock;
4810 
4811 	retval = security_task_getscheduler(p);
4812 	if (retval)
4813 		goto out_unlock;
4814 
4815 	rq = task_rq_lock(p, &flags);
4816 	time_slice = p->sched_class->get_rr_interval(rq, p);
4817 	task_rq_unlock(rq, p, &flags);
4818 
4819 	rcu_read_unlock();
4820 	jiffies_to_timespec(time_slice, &t);
4821 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4822 	return retval;
4823 
4824 out_unlock:
4825 	rcu_read_unlock();
4826 	return retval;
4827 }
4828 
4829 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4830 
4831 void sched_show_task(struct task_struct *p)
4832 {
4833 	unsigned long free = 0;
4834 	unsigned state;
4835 
4836 	state = p->state ? __ffs(p->state) + 1 : 0;
4837 	printk(KERN_INFO "%-15.15s %c", p->comm,
4838 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4839 #if BITS_PER_LONG == 32
4840 	if (state == TASK_RUNNING)
4841 		printk(KERN_CONT " running  ");
4842 	else
4843 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4844 #else
4845 	if (state == TASK_RUNNING)
4846 		printk(KERN_CONT "  running task    ");
4847 	else
4848 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4849 #endif
4850 #ifdef CONFIG_DEBUG_STACK_USAGE
4851 	free = stack_not_used(p);
4852 #endif
4853 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4854 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4855 		(unsigned long)task_thread_info(p)->flags);
4856 
4857 	show_stack(p, NULL);
4858 }
4859 
4860 void show_state_filter(unsigned long state_filter)
4861 {
4862 	struct task_struct *g, *p;
4863 
4864 #if BITS_PER_LONG == 32
4865 	printk(KERN_INFO
4866 		"  task                PC stack   pid father\n");
4867 #else
4868 	printk(KERN_INFO
4869 		"  task                        PC stack   pid father\n");
4870 #endif
4871 	rcu_read_lock();
4872 	do_each_thread(g, p) {
4873 		/*
4874 		 * reset the NMI-timeout, listing all files on a slow
4875 		 * console might take a lot of time:
4876 		 */
4877 		touch_nmi_watchdog();
4878 		if (!state_filter || (p->state & state_filter))
4879 			sched_show_task(p);
4880 	} while_each_thread(g, p);
4881 
4882 	touch_all_softlockup_watchdogs();
4883 
4884 #ifdef CONFIG_SCHED_DEBUG
4885 	sysrq_sched_debug_show();
4886 #endif
4887 	rcu_read_unlock();
4888 	/*
4889 	 * Only show locks if all tasks are dumped:
4890 	 */
4891 	if (!state_filter)
4892 		debug_show_all_locks();
4893 }
4894 
4895 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4896 {
4897 	idle->sched_class = &idle_sched_class;
4898 }
4899 
4900 /**
4901  * init_idle - set up an idle thread for a given CPU
4902  * @idle: task in question
4903  * @cpu: cpu the idle task belongs to
4904  *
4905  * NOTE: this function does not set the idle thread's NEED_RESCHED
4906  * flag, to make booting more robust.
4907  */
4908 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4909 {
4910 	struct rq *rq = cpu_rq(cpu);
4911 	unsigned long flags;
4912 
4913 	raw_spin_lock_irqsave(&rq->lock, flags);
4914 
4915 	__sched_fork(idle);
4916 	idle->state = TASK_RUNNING;
4917 	idle->se.exec_start = sched_clock();
4918 
4919 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4920 	/*
4921 	 * We're having a chicken and egg problem, even though we are
4922 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4923 	 * lockdep check in task_group() will fail.
4924 	 *
4925 	 * Similar case to sched_fork(). / Alternatively we could
4926 	 * use task_rq_lock() here and obtain the other rq->lock.
4927 	 *
4928 	 * Silence PROVE_RCU
4929 	 */
4930 	rcu_read_lock();
4931 	__set_task_cpu(idle, cpu);
4932 	rcu_read_unlock();
4933 
4934 	rq->curr = rq->idle = idle;
4935 #if defined(CONFIG_SMP)
4936 	idle->on_cpu = 1;
4937 #endif
4938 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4939 
4940 	/* Set the preempt count _outside_ the spinlocks! */
4941 	task_thread_info(idle)->preempt_count = 0;
4942 
4943 	/*
4944 	 * The idle tasks have their own, simple scheduling class:
4945 	 */
4946 	idle->sched_class = &idle_sched_class;
4947 	ftrace_graph_init_idle_task(idle, cpu);
4948 #if defined(CONFIG_SMP)
4949 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4950 #endif
4951 }
4952 
4953 #ifdef CONFIG_SMP
4954 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4955 {
4956 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4957 		p->sched_class->set_cpus_allowed(p, new_mask);
4958 
4959 	cpumask_copy(&p->cpus_allowed, new_mask);
4960 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4961 }
4962 
4963 /*
4964  * This is how migration works:
4965  *
4966  * 1) we invoke migration_cpu_stop() on the target CPU using
4967  *    stop_one_cpu().
4968  * 2) stopper starts to run (implicitly forcing the migrated thread
4969  *    off the CPU)
4970  * 3) it checks whether the migrated task is still in the wrong runqueue.
4971  * 4) if it's in the wrong runqueue then the migration thread removes
4972  *    it and puts it into the right queue.
4973  * 5) stopper completes and stop_one_cpu() returns and the migration
4974  *    is done.
4975  */
4976 
4977 /*
4978  * Change a given task's CPU affinity. Migrate the thread to a
4979  * proper CPU and schedule it away if the CPU it's executing on
4980  * is removed from the allowed bitmask.
4981  *
4982  * NOTE: the caller must have a valid reference to the task, the
4983  * task must not exit() & deallocate itself prematurely. The
4984  * call is not atomic; no spinlocks may be held.
4985  */
4986 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4987 {
4988 	unsigned long flags;
4989 	struct rq *rq;
4990 	unsigned int dest_cpu;
4991 	int ret = 0;
4992 
4993 	rq = task_rq_lock(p, &flags);
4994 
4995 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4996 		goto out;
4997 
4998 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4999 		ret = -EINVAL;
5000 		goto out;
5001 	}
5002 
5003 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5004 		ret = -EINVAL;
5005 		goto out;
5006 	}
5007 
5008 	do_set_cpus_allowed(p, new_mask);
5009 
5010 	/* Can the task run on the task's current CPU? If so, we're done */
5011 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5012 		goto out;
5013 
5014 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5015 	if (p->on_rq) {
5016 		struct migration_arg arg = { p, dest_cpu };
5017 		/* Need help from migration thread: drop lock and wait. */
5018 		task_rq_unlock(rq, p, &flags);
5019 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5020 		tlb_migrate_finish(p->mm);
5021 		return 0;
5022 	}
5023 out:
5024 	task_rq_unlock(rq, p, &flags);
5025 
5026 	return ret;
5027 }
5028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5029 
5030 /*
5031  * Move (not current) task off this cpu, onto dest cpu. We're doing
5032  * this because either it can't run here any more (set_cpus_allowed()
5033  * away from this CPU, or CPU going down), or because we're
5034  * attempting to rebalance this task on exec (sched_exec).
5035  *
5036  * So we race with normal scheduler movements, but that's OK, as long
5037  * as the task is no longer on this CPU.
5038  *
5039  * Returns non-zero if task was successfully migrated.
5040  */
5041 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5042 {
5043 	struct rq *rq_dest, *rq_src;
5044 	int ret = 0;
5045 
5046 	if (unlikely(!cpu_active(dest_cpu)))
5047 		return ret;
5048 
5049 	rq_src = cpu_rq(src_cpu);
5050 	rq_dest = cpu_rq(dest_cpu);
5051 
5052 	raw_spin_lock(&p->pi_lock);
5053 	double_rq_lock(rq_src, rq_dest);
5054 	/* Already moved. */
5055 	if (task_cpu(p) != src_cpu)
5056 		goto done;
5057 	/* Affinity changed (again). */
5058 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5059 		goto fail;
5060 
5061 	/*
5062 	 * If we're not on a rq, the next wake-up will ensure we're
5063 	 * placed properly.
5064 	 */
5065 	if (p->on_rq) {
5066 		dequeue_task(rq_src, p, 0);
5067 		set_task_cpu(p, dest_cpu);
5068 		enqueue_task(rq_dest, p, 0);
5069 		check_preempt_curr(rq_dest, p, 0);
5070 	}
5071 done:
5072 	ret = 1;
5073 fail:
5074 	double_rq_unlock(rq_src, rq_dest);
5075 	raw_spin_unlock(&p->pi_lock);
5076 	return ret;
5077 }
5078 
5079 /*
5080  * migration_cpu_stop - this will be executed by a highprio stopper thread
5081  * and performs thread migration by bumping thread off CPU then
5082  * 'pushing' onto another runqueue.
5083  */
5084 static int migration_cpu_stop(void *data)
5085 {
5086 	struct migration_arg *arg = data;
5087 
5088 	/*
5089 	 * The original target cpu might have gone down and we might
5090 	 * be on another cpu but it doesn't matter.
5091 	 */
5092 	local_irq_disable();
5093 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5094 	local_irq_enable();
5095 	return 0;
5096 }
5097 
5098 #ifdef CONFIG_HOTPLUG_CPU
5099 
5100 /*
5101  * Ensures that the idle task is using init_mm right before its cpu goes
5102  * offline.
5103  */
5104 void idle_task_exit(void)
5105 {
5106 	struct mm_struct *mm = current->active_mm;
5107 
5108 	BUG_ON(cpu_online(smp_processor_id()));
5109 
5110 	if (mm != &init_mm)
5111 		switch_mm(mm, &init_mm, current);
5112 	mmdrop(mm);
5113 }
5114 
5115 /*
5116  * While a dead CPU has no uninterruptible tasks queued at this point,
5117  * it might still have a nonzero ->nr_uninterruptible counter, because
5118  * for performance reasons the counter is not stricly tracking tasks to
5119  * their home CPUs. So we just add the counter to another CPU's counter,
5120  * to keep the global sum constant after CPU-down:
5121  */
5122 static void migrate_nr_uninterruptible(struct rq *rq_src)
5123 {
5124 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5125 
5126 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5127 	rq_src->nr_uninterruptible = 0;
5128 }
5129 
5130 /*
5131  * remove the tasks which were accounted by rq from calc_load_tasks.
5132  */
5133 static void calc_global_load_remove(struct rq *rq)
5134 {
5135 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5136 	rq->calc_load_active = 0;
5137 }
5138 
5139 /*
5140  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5141  * try_to_wake_up()->select_task_rq().
5142  *
5143  * Called with rq->lock held even though we'er in stop_machine() and
5144  * there's no concurrency possible, we hold the required locks anyway
5145  * because of lock validation efforts.
5146  */
5147 static void migrate_tasks(unsigned int dead_cpu)
5148 {
5149 	struct rq *rq = cpu_rq(dead_cpu);
5150 	struct task_struct *next, *stop = rq->stop;
5151 	int dest_cpu;
5152 
5153 	/*
5154 	 * Fudge the rq selection such that the below task selection loop
5155 	 * doesn't get stuck on the currently eligible stop task.
5156 	 *
5157 	 * We're currently inside stop_machine() and the rq is either stuck
5158 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5159 	 * either way we should never end up calling schedule() until we're
5160 	 * done here.
5161 	 */
5162 	rq->stop = NULL;
5163 
5164 	/* Ensure any throttled groups are reachable by pick_next_task */
5165 	unthrottle_offline_cfs_rqs(rq);
5166 
5167 	for ( ; ; ) {
5168 		/*
5169 		 * There's this thread running, bail when that's the only
5170 		 * remaining thread.
5171 		 */
5172 		if (rq->nr_running == 1)
5173 			break;
5174 
5175 		next = pick_next_task(rq);
5176 		BUG_ON(!next);
5177 		next->sched_class->put_prev_task(rq, next);
5178 
5179 		/* Find suitable destination for @next, with force if needed. */
5180 		dest_cpu = select_fallback_rq(dead_cpu, next);
5181 		raw_spin_unlock(&rq->lock);
5182 
5183 		__migrate_task(next, dead_cpu, dest_cpu);
5184 
5185 		raw_spin_lock(&rq->lock);
5186 	}
5187 
5188 	rq->stop = stop;
5189 }
5190 
5191 #endif /* CONFIG_HOTPLUG_CPU */
5192 
5193 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5194 
5195 static struct ctl_table sd_ctl_dir[] = {
5196 	{
5197 		.procname	= "sched_domain",
5198 		.mode		= 0555,
5199 	},
5200 	{}
5201 };
5202 
5203 static struct ctl_table sd_ctl_root[] = {
5204 	{
5205 		.procname	= "kernel",
5206 		.mode		= 0555,
5207 		.child		= sd_ctl_dir,
5208 	},
5209 	{}
5210 };
5211 
5212 static struct ctl_table *sd_alloc_ctl_entry(int n)
5213 {
5214 	struct ctl_table *entry =
5215 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5216 
5217 	return entry;
5218 }
5219 
5220 static void sd_free_ctl_entry(struct ctl_table **tablep)
5221 {
5222 	struct ctl_table *entry;
5223 
5224 	/*
5225 	 * In the intermediate directories, both the child directory and
5226 	 * procname are dynamically allocated and could fail but the mode
5227 	 * will always be set. In the lowest directory the names are
5228 	 * static strings and all have proc handlers.
5229 	 */
5230 	for (entry = *tablep; entry->mode; entry++) {
5231 		if (entry->child)
5232 			sd_free_ctl_entry(&entry->child);
5233 		if (entry->proc_handler == NULL)
5234 			kfree(entry->procname);
5235 	}
5236 
5237 	kfree(*tablep);
5238 	*tablep = NULL;
5239 }
5240 
5241 static void
5242 set_table_entry(struct ctl_table *entry,
5243 		const char *procname, void *data, int maxlen,
5244 		umode_t mode, proc_handler *proc_handler)
5245 {
5246 	entry->procname = procname;
5247 	entry->data = data;
5248 	entry->maxlen = maxlen;
5249 	entry->mode = mode;
5250 	entry->proc_handler = proc_handler;
5251 }
5252 
5253 static struct ctl_table *
5254 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255 {
5256 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5257 
5258 	if (table == NULL)
5259 		return NULL;
5260 
5261 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262 		sizeof(long), 0644, proc_doulongvec_minmax);
5263 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264 		sizeof(long), 0644, proc_doulongvec_minmax);
5265 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266 		sizeof(int), 0644, proc_dointvec_minmax);
5267 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268 		sizeof(int), 0644, proc_dointvec_minmax);
5269 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270 		sizeof(int), 0644, proc_dointvec_minmax);
5271 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272 		sizeof(int), 0644, proc_dointvec_minmax);
5273 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274 		sizeof(int), 0644, proc_dointvec_minmax);
5275 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276 		sizeof(int), 0644, proc_dointvec_minmax);
5277 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278 		sizeof(int), 0644, proc_dointvec_minmax);
5279 	set_table_entry(&table[9], "cache_nice_tries",
5280 		&sd->cache_nice_tries,
5281 		sizeof(int), 0644, proc_dointvec_minmax);
5282 	set_table_entry(&table[10], "flags", &sd->flags,
5283 		sizeof(int), 0644, proc_dointvec_minmax);
5284 	set_table_entry(&table[11], "name", sd->name,
5285 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5286 	/* &table[12] is terminator */
5287 
5288 	return table;
5289 }
5290 
5291 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5292 {
5293 	struct ctl_table *entry, *table;
5294 	struct sched_domain *sd;
5295 	int domain_num = 0, i;
5296 	char buf[32];
5297 
5298 	for_each_domain(cpu, sd)
5299 		domain_num++;
5300 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5301 	if (table == NULL)
5302 		return NULL;
5303 
5304 	i = 0;
5305 	for_each_domain(cpu, sd) {
5306 		snprintf(buf, 32, "domain%d", i);
5307 		entry->procname = kstrdup(buf, GFP_KERNEL);
5308 		entry->mode = 0555;
5309 		entry->child = sd_alloc_ctl_domain_table(sd);
5310 		entry++;
5311 		i++;
5312 	}
5313 	return table;
5314 }
5315 
5316 static struct ctl_table_header *sd_sysctl_header;
5317 static void register_sched_domain_sysctl(void)
5318 {
5319 	int i, cpu_num = num_possible_cpus();
5320 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5321 	char buf[32];
5322 
5323 	WARN_ON(sd_ctl_dir[0].child);
5324 	sd_ctl_dir[0].child = entry;
5325 
5326 	if (entry == NULL)
5327 		return;
5328 
5329 	for_each_possible_cpu(i) {
5330 		snprintf(buf, 32, "cpu%d", i);
5331 		entry->procname = kstrdup(buf, GFP_KERNEL);
5332 		entry->mode = 0555;
5333 		entry->child = sd_alloc_ctl_cpu_table(i);
5334 		entry++;
5335 	}
5336 
5337 	WARN_ON(sd_sysctl_header);
5338 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5339 }
5340 
5341 /* may be called multiple times per register */
5342 static void unregister_sched_domain_sysctl(void)
5343 {
5344 	if (sd_sysctl_header)
5345 		unregister_sysctl_table(sd_sysctl_header);
5346 	sd_sysctl_header = NULL;
5347 	if (sd_ctl_dir[0].child)
5348 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5349 }
5350 #else
5351 static void register_sched_domain_sysctl(void)
5352 {
5353 }
5354 static void unregister_sched_domain_sysctl(void)
5355 {
5356 }
5357 #endif
5358 
5359 static void set_rq_online(struct rq *rq)
5360 {
5361 	if (!rq->online) {
5362 		const struct sched_class *class;
5363 
5364 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5365 		rq->online = 1;
5366 
5367 		for_each_class(class) {
5368 			if (class->rq_online)
5369 				class->rq_online(rq);
5370 		}
5371 	}
5372 }
5373 
5374 static void set_rq_offline(struct rq *rq)
5375 {
5376 	if (rq->online) {
5377 		const struct sched_class *class;
5378 
5379 		for_each_class(class) {
5380 			if (class->rq_offline)
5381 				class->rq_offline(rq);
5382 		}
5383 
5384 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5385 		rq->online = 0;
5386 	}
5387 }
5388 
5389 /*
5390  * migration_call - callback that gets triggered when a CPU is added.
5391  * Here we can start up the necessary migration thread for the new CPU.
5392  */
5393 static int __cpuinit
5394 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5395 {
5396 	int cpu = (long)hcpu;
5397 	unsigned long flags;
5398 	struct rq *rq = cpu_rq(cpu);
5399 
5400 	switch (action & ~CPU_TASKS_FROZEN) {
5401 
5402 	case CPU_UP_PREPARE:
5403 		rq->calc_load_update = calc_load_update;
5404 		break;
5405 
5406 	case CPU_ONLINE:
5407 		/* Update our root-domain */
5408 		raw_spin_lock_irqsave(&rq->lock, flags);
5409 		if (rq->rd) {
5410 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5411 
5412 			set_rq_online(rq);
5413 		}
5414 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5415 		break;
5416 
5417 #ifdef CONFIG_HOTPLUG_CPU
5418 	case CPU_DYING:
5419 		sched_ttwu_pending();
5420 		/* Update our root-domain */
5421 		raw_spin_lock_irqsave(&rq->lock, flags);
5422 		if (rq->rd) {
5423 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5424 			set_rq_offline(rq);
5425 		}
5426 		migrate_tasks(cpu);
5427 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5428 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5429 
5430 		migrate_nr_uninterruptible(rq);
5431 		calc_global_load_remove(rq);
5432 		break;
5433 #endif
5434 	}
5435 
5436 	update_max_interval();
5437 
5438 	return NOTIFY_OK;
5439 }
5440 
5441 /*
5442  * Register at high priority so that task migration (migrate_all_tasks)
5443  * happens before everything else.  This has to be lower priority than
5444  * the notifier in the perf_event subsystem, though.
5445  */
5446 static struct notifier_block __cpuinitdata migration_notifier = {
5447 	.notifier_call = migration_call,
5448 	.priority = CPU_PRI_MIGRATION,
5449 };
5450 
5451 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5452 				      unsigned long action, void *hcpu)
5453 {
5454 	switch (action & ~CPU_TASKS_FROZEN) {
5455 	case CPU_STARTING:
5456 	case CPU_DOWN_FAILED:
5457 		set_cpu_active((long)hcpu, true);
5458 		return NOTIFY_OK;
5459 	default:
5460 		return NOTIFY_DONE;
5461 	}
5462 }
5463 
5464 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5465 					unsigned long action, void *hcpu)
5466 {
5467 	switch (action & ~CPU_TASKS_FROZEN) {
5468 	case CPU_DOWN_PREPARE:
5469 		set_cpu_active((long)hcpu, false);
5470 		return NOTIFY_OK;
5471 	default:
5472 		return NOTIFY_DONE;
5473 	}
5474 }
5475 
5476 static int __init migration_init(void)
5477 {
5478 	void *cpu = (void *)(long)smp_processor_id();
5479 	int err;
5480 
5481 	/* Initialize migration for the boot CPU */
5482 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5483 	BUG_ON(err == NOTIFY_BAD);
5484 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5485 	register_cpu_notifier(&migration_notifier);
5486 
5487 	/* Register cpu active notifiers */
5488 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5489 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5490 
5491 	return 0;
5492 }
5493 early_initcall(migration_init);
5494 #endif
5495 
5496 #ifdef CONFIG_SMP
5497 
5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499 
5500 #ifdef CONFIG_SCHED_DEBUG
5501 
5502 static __read_mostly int sched_domain_debug_enabled;
5503 
5504 static int __init sched_domain_debug_setup(char *str)
5505 {
5506 	sched_domain_debug_enabled = 1;
5507 
5508 	return 0;
5509 }
5510 early_param("sched_debug", sched_domain_debug_setup);
5511 
5512 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5513 				  struct cpumask *groupmask)
5514 {
5515 	struct sched_group *group = sd->groups;
5516 	char str[256];
5517 
5518 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5519 	cpumask_clear(groupmask);
5520 
5521 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5522 
5523 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5524 		printk("does not load-balance\n");
5525 		if (sd->parent)
5526 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5527 					" has parent");
5528 		return -1;
5529 	}
5530 
5531 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5532 
5533 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5534 		printk(KERN_ERR "ERROR: domain->span does not contain "
5535 				"CPU%d\n", cpu);
5536 	}
5537 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5538 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5539 				" CPU%d\n", cpu);
5540 	}
5541 
5542 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5543 	do {
5544 		if (!group) {
5545 			printk("\n");
5546 			printk(KERN_ERR "ERROR: group is NULL\n");
5547 			break;
5548 		}
5549 
5550 		if (!group->sgp->power) {
5551 			printk(KERN_CONT "\n");
5552 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5553 					"set\n");
5554 			break;
5555 		}
5556 
5557 		if (!cpumask_weight(sched_group_cpus(group))) {
5558 			printk(KERN_CONT "\n");
5559 			printk(KERN_ERR "ERROR: empty group\n");
5560 			break;
5561 		}
5562 
5563 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5564 			printk(KERN_CONT "\n");
5565 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5566 			break;
5567 		}
5568 
5569 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5570 
5571 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5572 
5573 		printk(KERN_CONT " %s", str);
5574 		if (group->sgp->power != SCHED_POWER_SCALE) {
5575 			printk(KERN_CONT " (cpu_power = %d)",
5576 				group->sgp->power);
5577 		}
5578 
5579 		group = group->next;
5580 	} while (group != sd->groups);
5581 	printk(KERN_CONT "\n");
5582 
5583 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585 
5586 	if (sd->parent &&
5587 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588 		printk(KERN_ERR "ERROR: parent span is not a superset "
5589 			"of domain->span\n");
5590 	return 0;
5591 }
5592 
5593 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594 {
5595 	int level = 0;
5596 
5597 	if (!sched_domain_debug_enabled)
5598 		return;
5599 
5600 	if (!sd) {
5601 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 		return;
5603 	}
5604 
5605 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606 
5607 	for (;;) {
5608 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609 			break;
5610 		level++;
5611 		sd = sd->parent;
5612 		if (!sd)
5613 			break;
5614 	}
5615 }
5616 #else /* !CONFIG_SCHED_DEBUG */
5617 # define sched_domain_debug(sd, cpu) do { } while (0)
5618 #endif /* CONFIG_SCHED_DEBUG */
5619 
5620 static int sd_degenerate(struct sched_domain *sd)
5621 {
5622 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5623 		return 1;
5624 
5625 	/* Following flags need at least 2 groups */
5626 	if (sd->flags & (SD_LOAD_BALANCE |
5627 			 SD_BALANCE_NEWIDLE |
5628 			 SD_BALANCE_FORK |
5629 			 SD_BALANCE_EXEC |
5630 			 SD_SHARE_CPUPOWER |
5631 			 SD_SHARE_PKG_RESOURCES)) {
5632 		if (sd->groups != sd->groups->next)
5633 			return 0;
5634 	}
5635 
5636 	/* Following flags don't use groups */
5637 	if (sd->flags & (SD_WAKE_AFFINE))
5638 		return 0;
5639 
5640 	return 1;
5641 }
5642 
5643 static int
5644 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5645 {
5646 	unsigned long cflags = sd->flags, pflags = parent->flags;
5647 
5648 	if (sd_degenerate(parent))
5649 		return 1;
5650 
5651 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5652 		return 0;
5653 
5654 	/* Flags needing groups don't count if only 1 group in parent */
5655 	if (parent->groups == parent->groups->next) {
5656 		pflags &= ~(SD_LOAD_BALANCE |
5657 				SD_BALANCE_NEWIDLE |
5658 				SD_BALANCE_FORK |
5659 				SD_BALANCE_EXEC |
5660 				SD_SHARE_CPUPOWER |
5661 				SD_SHARE_PKG_RESOURCES);
5662 		if (nr_node_ids == 1)
5663 			pflags &= ~SD_SERIALIZE;
5664 	}
5665 	if (~cflags & pflags)
5666 		return 0;
5667 
5668 	return 1;
5669 }
5670 
5671 static void free_rootdomain(struct rcu_head *rcu)
5672 {
5673 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5674 
5675 	cpupri_cleanup(&rd->cpupri);
5676 	free_cpumask_var(rd->rto_mask);
5677 	free_cpumask_var(rd->online);
5678 	free_cpumask_var(rd->span);
5679 	kfree(rd);
5680 }
5681 
5682 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5683 {
5684 	struct root_domain *old_rd = NULL;
5685 	unsigned long flags;
5686 
5687 	raw_spin_lock_irqsave(&rq->lock, flags);
5688 
5689 	if (rq->rd) {
5690 		old_rd = rq->rd;
5691 
5692 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5693 			set_rq_offline(rq);
5694 
5695 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5696 
5697 		/*
5698 		 * If we dont want to free the old_rt yet then
5699 		 * set old_rd to NULL to skip the freeing later
5700 		 * in this function:
5701 		 */
5702 		if (!atomic_dec_and_test(&old_rd->refcount))
5703 			old_rd = NULL;
5704 	}
5705 
5706 	atomic_inc(&rd->refcount);
5707 	rq->rd = rd;
5708 
5709 	cpumask_set_cpu(rq->cpu, rd->span);
5710 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5711 		set_rq_online(rq);
5712 
5713 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5714 
5715 	if (old_rd)
5716 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5717 }
5718 
5719 static int init_rootdomain(struct root_domain *rd)
5720 {
5721 	memset(rd, 0, sizeof(*rd));
5722 
5723 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5724 		goto out;
5725 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5726 		goto free_span;
5727 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5728 		goto free_online;
5729 
5730 	if (cpupri_init(&rd->cpupri) != 0)
5731 		goto free_rto_mask;
5732 	return 0;
5733 
5734 free_rto_mask:
5735 	free_cpumask_var(rd->rto_mask);
5736 free_online:
5737 	free_cpumask_var(rd->online);
5738 free_span:
5739 	free_cpumask_var(rd->span);
5740 out:
5741 	return -ENOMEM;
5742 }
5743 
5744 /*
5745  * By default the system creates a single root-domain with all cpus as
5746  * members (mimicking the global state we have today).
5747  */
5748 struct root_domain def_root_domain;
5749 
5750 static void init_defrootdomain(void)
5751 {
5752 	init_rootdomain(&def_root_domain);
5753 
5754 	atomic_set(&def_root_domain.refcount, 1);
5755 }
5756 
5757 static struct root_domain *alloc_rootdomain(void)
5758 {
5759 	struct root_domain *rd;
5760 
5761 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5762 	if (!rd)
5763 		return NULL;
5764 
5765 	if (init_rootdomain(rd) != 0) {
5766 		kfree(rd);
5767 		return NULL;
5768 	}
5769 
5770 	return rd;
5771 }
5772 
5773 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5774 {
5775 	struct sched_group *tmp, *first;
5776 
5777 	if (!sg)
5778 		return;
5779 
5780 	first = sg;
5781 	do {
5782 		tmp = sg->next;
5783 
5784 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5785 			kfree(sg->sgp);
5786 
5787 		kfree(sg);
5788 		sg = tmp;
5789 	} while (sg != first);
5790 }
5791 
5792 static void free_sched_domain(struct rcu_head *rcu)
5793 {
5794 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5795 
5796 	/*
5797 	 * If its an overlapping domain it has private groups, iterate and
5798 	 * nuke them all.
5799 	 */
5800 	if (sd->flags & SD_OVERLAP) {
5801 		free_sched_groups(sd->groups, 1);
5802 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5803 		kfree(sd->groups->sgp);
5804 		kfree(sd->groups);
5805 	}
5806 	kfree(sd);
5807 }
5808 
5809 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5810 {
5811 	call_rcu(&sd->rcu, free_sched_domain);
5812 }
5813 
5814 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5815 {
5816 	for (; sd; sd = sd->parent)
5817 		destroy_sched_domain(sd, cpu);
5818 }
5819 
5820 /*
5821  * Keep a special pointer to the highest sched_domain that has
5822  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5823  * allows us to avoid some pointer chasing select_idle_sibling().
5824  *
5825  * Also keep a unique ID per domain (we use the first cpu number in
5826  * the cpumask of the domain), this allows us to quickly tell if
5827  * two cpus are in the same cache domain, see cpus_share_cache().
5828  */
5829 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5830 DEFINE_PER_CPU(int, sd_llc_id);
5831 
5832 static void update_top_cache_domain(int cpu)
5833 {
5834 	struct sched_domain *sd;
5835 	int id = cpu;
5836 
5837 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5838 	if (sd)
5839 		id = cpumask_first(sched_domain_span(sd));
5840 
5841 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5842 	per_cpu(sd_llc_id, cpu) = id;
5843 }
5844 
5845 /*
5846  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5847  * hold the hotplug lock.
5848  */
5849 static void
5850 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5851 {
5852 	struct rq *rq = cpu_rq(cpu);
5853 	struct sched_domain *tmp;
5854 
5855 	/* Remove the sched domains which do not contribute to scheduling. */
5856 	for (tmp = sd; tmp; ) {
5857 		struct sched_domain *parent = tmp->parent;
5858 		if (!parent)
5859 			break;
5860 
5861 		if (sd_parent_degenerate(tmp, parent)) {
5862 			tmp->parent = parent->parent;
5863 			if (parent->parent)
5864 				parent->parent->child = tmp;
5865 			destroy_sched_domain(parent, cpu);
5866 		} else
5867 			tmp = tmp->parent;
5868 	}
5869 
5870 	if (sd && sd_degenerate(sd)) {
5871 		tmp = sd;
5872 		sd = sd->parent;
5873 		destroy_sched_domain(tmp, cpu);
5874 		if (sd)
5875 			sd->child = NULL;
5876 	}
5877 
5878 	sched_domain_debug(sd, cpu);
5879 
5880 	rq_attach_root(rq, rd);
5881 	tmp = rq->sd;
5882 	rcu_assign_pointer(rq->sd, sd);
5883 	destroy_sched_domains(tmp, cpu);
5884 
5885 	update_top_cache_domain(cpu);
5886 }
5887 
5888 /* cpus with isolated domains */
5889 static cpumask_var_t cpu_isolated_map;
5890 
5891 /* Setup the mask of cpus configured for isolated domains */
5892 static int __init isolated_cpu_setup(char *str)
5893 {
5894 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5895 	cpulist_parse(str, cpu_isolated_map);
5896 	return 1;
5897 }
5898 
5899 __setup("isolcpus=", isolated_cpu_setup);
5900 
5901 #ifdef CONFIG_NUMA
5902 
5903 /**
5904  * find_next_best_node - find the next node to include in a sched_domain
5905  * @node: node whose sched_domain we're building
5906  * @used_nodes: nodes already in the sched_domain
5907  *
5908  * Find the next node to include in a given scheduling domain. Simply
5909  * finds the closest node not already in the @used_nodes map.
5910  *
5911  * Should use nodemask_t.
5912  */
5913 static int find_next_best_node(int node, nodemask_t *used_nodes)
5914 {
5915 	int i, n, val, min_val, best_node = -1;
5916 
5917 	min_val = INT_MAX;
5918 
5919 	for (i = 0; i < nr_node_ids; i++) {
5920 		/* Start at @node */
5921 		n = (node + i) % nr_node_ids;
5922 
5923 		if (!nr_cpus_node(n))
5924 			continue;
5925 
5926 		/* Skip already used nodes */
5927 		if (node_isset(n, *used_nodes))
5928 			continue;
5929 
5930 		/* Simple min distance search */
5931 		val = node_distance(node, n);
5932 
5933 		if (val < min_val) {
5934 			min_val = val;
5935 			best_node = n;
5936 		}
5937 	}
5938 
5939 	if (best_node != -1)
5940 		node_set(best_node, *used_nodes);
5941 	return best_node;
5942 }
5943 
5944 /**
5945  * sched_domain_node_span - get a cpumask for a node's sched_domain
5946  * @node: node whose cpumask we're constructing
5947  * @span: resulting cpumask
5948  *
5949  * Given a node, construct a good cpumask for its sched_domain to span. It
5950  * should be one that prevents unnecessary balancing, but also spreads tasks
5951  * out optimally.
5952  */
5953 static void sched_domain_node_span(int node, struct cpumask *span)
5954 {
5955 	nodemask_t used_nodes;
5956 	int i;
5957 
5958 	cpumask_clear(span);
5959 	nodes_clear(used_nodes);
5960 
5961 	cpumask_or(span, span, cpumask_of_node(node));
5962 	node_set(node, used_nodes);
5963 
5964 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5965 		int next_node = find_next_best_node(node, &used_nodes);
5966 		if (next_node < 0)
5967 			break;
5968 		cpumask_or(span, span, cpumask_of_node(next_node));
5969 	}
5970 }
5971 
5972 static const struct cpumask *cpu_node_mask(int cpu)
5973 {
5974 	lockdep_assert_held(&sched_domains_mutex);
5975 
5976 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5977 
5978 	return sched_domains_tmpmask;
5979 }
5980 
5981 static const struct cpumask *cpu_allnodes_mask(int cpu)
5982 {
5983 	return cpu_possible_mask;
5984 }
5985 #endif /* CONFIG_NUMA */
5986 
5987 static const struct cpumask *cpu_cpu_mask(int cpu)
5988 {
5989 	return cpumask_of_node(cpu_to_node(cpu));
5990 }
5991 
5992 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5993 
5994 struct sd_data {
5995 	struct sched_domain **__percpu sd;
5996 	struct sched_group **__percpu sg;
5997 	struct sched_group_power **__percpu sgp;
5998 };
5999 
6000 struct s_data {
6001 	struct sched_domain ** __percpu sd;
6002 	struct root_domain	*rd;
6003 };
6004 
6005 enum s_alloc {
6006 	sa_rootdomain,
6007 	sa_sd,
6008 	sa_sd_storage,
6009 	sa_none,
6010 };
6011 
6012 struct sched_domain_topology_level;
6013 
6014 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6015 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6016 
6017 #define SDTL_OVERLAP	0x01
6018 
6019 struct sched_domain_topology_level {
6020 	sched_domain_init_f init;
6021 	sched_domain_mask_f mask;
6022 	int		    flags;
6023 	struct sd_data      data;
6024 };
6025 
6026 static int
6027 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6028 {
6029 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030 	const struct cpumask *span = sched_domain_span(sd);
6031 	struct cpumask *covered = sched_domains_tmpmask;
6032 	struct sd_data *sdd = sd->private;
6033 	struct sched_domain *child;
6034 	int i;
6035 
6036 	cpumask_clear(covered);
6037 
6038 	for_each_cpu(i, span) {
6039 		struct cpumask *sg_span;
6040 
6041 		if (cpumask_test_cpu(i, covered))
6042 			continue;
6043 
6044 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6045 				GFP_KERNEL, cpu_to_node(cpu));
6046 
6047 		if (!sg)
6048 			goto fail;
6049 
6050 		sg_span = sched_group_cpus(sg);
6051 
6052 		child = *per_cpu_ptr(sdd->sd, i);
6053 		if (child->child) {
6054 			child = child->child;
6055 			cpumask_copy(sg_span, sched_domain_span(child));
6056 		} else
6057 			cpumask_set_cpu(i, sg_span);
6058 
6059 		cpumask_or(covered, covered, sg_span);
6060 
6061 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6062 		atomic_inc(&sg->sgp->ref);
6063 
6064 		if (cpumask_test_cpu(cpu, sg_span))
6065 			groups = sg;
6066 
6067 		if (!first)
6068 			first = sg;
6069 		if (last)
6070 			last->next = sg;
6071 		last = sg;
6072 		last->next = first;
6073 	}
6074 	sd->groups = groups;
6075 
6076 	return 0;
6077 
6078 fail:
6079 	free_sched_groups(first, 0);
6080 
6081 	return -ENOMEM;
6082 }
6083 
6084 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6085 {
6086 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6087 	struct sched_domain *child = sd->child;
6088 
6089 	if (child)
6090 		cpu = cpumask_first(sched_domain_span(child));
6091 
6092 	if (sg) {
6093 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6094 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6095 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6096 	}
6097 
6098 	return cpu;
6099 }
6100 
6101 /*
6102  * build_sched_groups will build a circular linked list of the groups
6103  * covered by the given span, and will set each group's ->cpumask correctly,
6104  * and ->cpu_power to 0.
6105  *
6106  * Assumes the sched_domain tree is fully constructed
6107  */
6108 static int
6109 build_sched_groups(struct sched_domain *sd, int cpu)
6110 {
6111 	struct sched_group *first = NULL, *last = NULL;
6112 	struct sd_data *sdd = sd->private;
6113 	const struct cpumask *span = sched_domain_span(sd);
6114 	struct cpumask *covered;
6115 	int i;
6116 
6117 	get_group(cpu, sdd, &sd->groups);
6118 	atomic_inc(&sd->groups->ref);
6119 
6120 	if (cpu != cpumask_first(sched_domain_span(sd)))
6121 		return 0;
6122 
6123 	lockdep_assert_held(&sched_domains_mutex);
6124 	covered = sched_domains_tmpmask;
6125 
6126 	cpumask_clear(covered);
6127 
6128 	for_each_cpu(i, span) {
6129 		struct sched_group *sg;
6130 		int group = get_group(i, sdd, &sg);
6131 		int j;
6132 
6133 		if (cpumask_test_cpu(i, covered))
6134 			continue;
6135 
6136 		cpumask_clear(sched_group_cpus(sg));
6137 		sg->sgp->power = 0;
6138 
6139 		for_each_cpu(j, span) {
6140 			if (get_group(j, sdd, NULL) != group)
6141 				continue;
6142 
6143 			cpumask_set_cpu(j, covered);
6144 			cpumask_set_cpu(j, sched_group_cpus(sg));
6145 		}
6146 
6147 		if (!first)
6148 			first = sg;
6149 		if (last)
6150 			last->next = sg;
6151 		last = sg;
6152 	}
6153 	last->next = first;
6154 
6155 	return 0;
6156 }
6157 
6158 /*
6159  * Initialize sched groups cpu_power.
6160  *
6161  * cpu_power indicates the capacity of sched group, which is used while
6162  * distributing the load between different sched groups in a sched domain.
6163  * Typically cpu_power for all the groups in a sched domain will be same unless
6164  * there are asymmetries in the topology. If there are asymmetries, group
6165  * having more cpu_power will pickup more load compared to the group having
6166  * less cpu_power.
6167  */
6168 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6169 {
6170 	struct sched_group *sg = sd->groups;
6171 
6172 	WARN_ON(!sd || !sg);
6173 
6174 	do {
6175 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6176 		sg = sg->next;
6177 	} while (sg != sd->groups);
6178 
6179 	if (cpu != group_first_cpu(sg))
6180 		return;
6181 
6182 	update_group_power(sd, cpu);
6183 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6184 }
6185 
6186 int __weak arch_sd_sibling_asym_packing(void)
6187 {
6188        return 0*SD_ASYM_PACKING;
6189 }
6190 
6191 /*
6192  * Initializers for schedule domains
6193  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6194  */
6195 
6196 #ifdef CONFIG_SCHED_DEBUG
6197 # define SD_INIT_NAME(sd, type)		sd->name = #type
6198 #else
6199 # define SD_INIT_NAME(sd, type)		do { } while (0)
6200 #endif
6201 
6202 #define SD_INIT_FUNC(type)						\
6203 static noinline struct sched_domain *					\
6204 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6205 {									\
6206 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6207 	*sd = SD_##type##_INIT;						\
6208 	SD_INIT_NAME(sd, type);						\
6209 	sd->private = &tl->data;					\
6210 	return sd;							\
6211 }
6212 
6213 SD_INIT_FUNC(CPU)
6214 #ifdef CONFIG_NUMA
6215  SD_INIT_FUNC(ALLNODES)
6216  SD_INIT_FUNC(NODE)
6217 #endif
6218 #ifdef CONFIG_SCHED_SMT
6219  SD_INIT_FUNC(SIBLING)
6220 #endif
6221 #ifdef CONFIG_SCHED_MC
6222  SD_INIT_FUNC(MC)
6223 #endif
6224 #ifdef CONFIG_SCHED_BOOK
6225  SD_INIT_FUNC(BOOK)
6226 #endif
6227 
6228 static int default_relax_domain_level = -1;
6229 int sched_domain_level_max;
6230 
6231 static int __init setup_relax_domain_level(char *str)
6232 {
6233 	unsigned long val;
6234 
6235 	val = simple_strtoul(str, NULL, 0);
6236 	if (val < sched_domain_level_max)
6237 		default_relax_domain_level = val;
6238 
6239 	return 1;
6240 }
6241 __setup("relax_domain_level=", setup_relax_domain_level);
6242 
6243 static void set_domain_attribute(struct sched_domain *sd,
6244 				 struct sched_domain_attr *attr)
6245 {
6246 	int request;
6247 
6248 	if (!attr || attr->relax_domain_level < 0) {
6249 		if (default_relax_domain_level < 0)
6250 			return;
6251 		else
6252 			request = default_relax_domain_level;
6253 	} else
6254 		request = attr->relax_domain_level;
6255 	if (request < sd->level) {
6256 		/* turn off idle balance on this domain */
6257 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6258 	} else {
6259 		/* turn on idle balance on this domain */
6260 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6261 	}
6262 }
6263 
6264 static void __sdt_free(const struct cpumask *cpu_map);
6265 static int __sdt_alloc(const struct cpumask *cpu_map);
6266 
6267 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6268 				 const struct cpumask *cpu_map)
6269 {
6270 	switch (what) {
6271 	case sa_rootdomain:
6272 		if (!atomic_read(&d->rd->refcount))
6273 			free_rootdomain(&d->rd->rcu); /* fall through */
6274 	case sa_sd:
6275 		free_percpu(d->sd); /* fall through */
6276 	case sa_sd_storage:
6277 		__sdt_free(cpu_map); /* fall through */
6278 	case sa_none:
6279 		break;
6280 	}
6281 }
6282 
6283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6284 						   const struct cpumask *cpu_map)
6285 {
6286 	memset(d, 0, sizeof(*d));
6287 
6288 	if (__sdt_alloc(cpu_map))
6289 		return sa_sd_storage;
6290 	d->sd = alloc_percpu(struct sched_domain *);
6291 	if (!d->sd)
6292 		return sa_sd_storage;
6293 	d->rd = alloc_rootdomain();
6294 	if (!d->rd)
6295 		return sa_sd;
6296 	return sa_rootdomain;
6297 }
6298 
6299 /*
6300  * NULL the sd_data elements we've used to build the sched_domain and
6301  * sched_group structure so that the subsequent __free_domain_allocs()
6302  * will not free the data we're using.
6303  */
6304 static void claim_allocations(int cpu, struct sched_domain *sd)
6305 {
6306 	struct sd_data *sdd = sd->private;
6307 
6308 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6309 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6310 
6311 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6312 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6313 
6314 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6315 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6316 }
6317 
6318 #ifdef CONFIG_SCHED_SMT
6319 static const struct cpumask *cpu_smt_mask(int cpu)
6320 {
6321 	return topology_thread_cpumask(cpu);
6322 }
6323 #endif
6324 
6325 /*
6326  * Topology list, bottom-up.
6327  */
6328 static struct sched_domain_topology_level default_topology[] = {
6329 #ifdef CONFIG_SCHED_SMT
6330 	{ sd_init_SIBLING, cpu_smt_mask, },
6331 #endif
6332 #ifdef CONFIG_SCHED_MC
6333 	{ sd_init_MC, cpu_coregroup_mask, },
6334 #endif
6335 #ifdef CONFIG_SCHED_BOOK
6336 	{ sd_init_BOOK, cpu_book_mask, },
6337 #endif
6338 	{ sd_init_CPU, cpu_cpu_mask, },
6339 #ifdef CONFIG_NUMA
6340 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6341 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6342 #endif
6343 	{ NULL, },
6344 };
6345 
6346 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6347 
6348 static int __sdt_alloc(const struct cpumask *cpu_map)
6349 {
6350 	struct sched_domain_topology_level *tl;
6351 	int j;
6352 
6353 	for (tl = sched_domain_topology; tl->init; tl++) {
6354 		struct sd_data *sdd = &tl->data;
6355 
6356 		sdd->sd = alloc_percpu(struct sched_domain *);
6357 		if (!sdd->sd)
6358 			return -ENOMEM;
6359 
6360 		sdd->sg = alloc_percpu(struct sched_group *);
6361 		if (!sdd->sg)
6362 			return -ENOMEM;
6363 
6364 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6365 		if (!sdd->sgp)
6366 			return -ENOMEM;
6367 
6368 		for_each_cpu(j, cpu_map) {
6369 			struct sched_domain *sd;
6370 			struct sched_group *sg;
6371 			struct sched_group_power *sgp;
6372 
6373 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6374 					GFP_KERNEL, cpu_to_node(j));
6375 			if (!sd)
6376 				return -ENOMEM;
6377 
6378 			*per_cpu_ptr(sdd->sd, j) = sd;
6379 
6380 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6381 					GFP_KERNEL, cpu_to_node(j));
6382 			if (!sg)
6383 				return -ENOMEM;
6384 
6385 			*per_cpu_ptr(sdd->sg, j) = sg;
6386 
6387 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6388 					GFP_KERNEL, cpu_to_node(j));
6389 			if (!sgp)
6390 				return -ENOMEM;
6391 
6392 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6393 		}
6394 	}
6395 
6396 	return 0;
6397 }
6398 
6399 static void __sdt_free(const struct cpumask *cpu_map)
6400 {
6401 	struct sched_domain_topology_level *tl;
6402 	int j;
6403 
6404 	for (tl = sched_domain_topology; tl->init; tl++) {
6405 		struct sd_data *sdd = &tl->data;
6406 
6407 		for_each_cpu(j, cpu_map) {
6408 			struct sched_domain *sd;
6409 
6410 			if (sdd->sd) {
6411 				sd = *per_cpu_ptr(sdd->sd, j);
6412 				if (sd && (sd->flags & SD_OVERLAP))
6413 					free_sched_groups(sd->groups, 0);
6414 				kfree(*per_cpu_ptr(sdd->sd, j));
6415 			}
6416 
6417 			if (sdd->sg)
6418 				kfree(*per_cpu_ptr(sdd->sg, j));
6419 			if (sdd->sgp)
6420 				kfree(*per_cpu_ptr(sdd->sgp, j));
6421 		}
6422 		free_percpu(sdd->sd);
6423 		sdd->sd = NULL;
6424 		free_percpu(sdd->sg);
6425 		sdd->sg = NULL;
6426 		free_percpu(sdd->sgp);
6427 		sdd->sgp = NULL;
6428 	}
6429 }
6430 
6431 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6432 		struct s_data *d, const struct cpumask *cpu_map,
6433 		struct sched_domain_attr *attr, struct sched_domain *child,
6434 		int cpu)
6435 {
6436 	struct sched_domain *sd = tl->init(tl, cpu);
6437 	if (!sd)
6438 		return child;
6439 
6440 	set_domain_attribute(sd, attr);
6441 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6442 	if (child) {
6443 		sd->level = child->level + 1;
6444 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6445 		child->parent = sd;
6446 	}
6447 	sd->child = child;
6448 
6449 	return sd;
6450 }
6451 
6452 /*
6453  * Build sched domains for a given set of cpus and attach the sched domains
6454  * to the individual cpus
6455  */
6456 static int build_sched_domains(const struct cpumask *cpu_map,
6457 			       struct sched_domain_attr *attr)
6458 {
6459 	enum s_alloc alloc_state = sa_none;
6460 	struct sched_domain *sd;
6461 	struct s_data d;
6462 	int i, ret = -ENOMEM;
6463 
6464 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6465 	if (alloc_state != sa_rootdomain)
6466 		goto error;
6467 
6468 	/* Set up domains for cpus specified by the cpu_map. */
6469 	for_each_cpu(i, cpu_map) {
6470 		struct sched_domain_topology_level *tl;
6471 
6472 		sd = NULL;
6473 		for (tl = sched_domain_topology; tl->init; tl++) {
6474 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6475 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6476 				sd->flags |= SD_OVERLAP;
6477 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6478 				break;
6479 		}
6480 
6481 		while (sd->child)
6482 			sd = sd->child;
6483 
6484 		*per_cpu_ptr(d.sd, i) = sd;
6485 	}
6486 
6487 	/* Build the groups for the domains */
6488 	for_each_cpu(i, cpu_map) {
6489 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6490 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6491 			if (sd->flags & SD_OVERLAP) {
6492 				if (build_overlap_sched_groups(sd, i))
6493 					goto error;
6494 			} else {
6495 				if (build_sched_groups(sd, i))
6496 					goto error;
6497 			}
6498 		}
6499 	}
6500 
6501 	/* Calculate CPU power for physical packages and nodes */
6502 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6503 		if (!cpumask_test_cpu(i, cpu_map))
6504 			continue;
6505 
6506 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6507 			claim_allocations(i, sd);
6508 			init_sched_groups_power(i, sd);
6509 		}
6510 	}
6511 
6512 	/* Attach the domains */
6513 	rcu_read_lock();
6514 	for_each_cpu(i, cpu_map) {
6515 		sd = *per_cpu_ptr(d.sd, i);
6516 		cpu_attach_domain(sd, d.rd, i);
6517 	}
6518 	rcu_read_unlock();
6519 
6520 	ret = 0;
6521 error:
6522 	__free_domain_allocs(&d, alloc_state, cpu_map);
6523 	return ret;
6524 }
6525 
6526 static cpumask_var_t *doms_cur;	/* current sched domains */
6527 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6528 static struct sched_domain_attr *dattr_cur;
6529 				/* attribues of custom domains in 'doms_cur' */
6530 
6531 /*
6532  * Special case: If a kmalloc of a doms_cur partition (array of
6533  * cpumask) fails, then fallback to a single sched domain,
6534  * as determined by the single cpumask fallback_doms.
6535  */
6536 static cpumask_var_t fallback_doms;
6537 
6538 /*
6539  * arch_update_cpu_topology lets virtualized architectures update the
6540  * cpu core maps. It is supposed to return 1 if the topology changed
6541  * or 0 if it stayed the same.
6542  */
6543 int __attribute__((weak)) arch_update_cpu_topology(void)
6544 {
6545 	return 0;
6546 }
6547 
6548 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6549 {
6550 	int i;
6551 	cpumask_var_t *doms;
6552 
6553 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6554 	if (!doms)
6555 		return NULL;
6556 	for (i = 0; i < ndoms; i++) {
6557 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6558 			free_sched_domains(doms, i);
6559 			return NULL;
6560 		}
6561 	}
6562 	return doms;
6563 }
6564 
6565 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6566 {
6567 	unsigned int i;
6568 	for (i = 0; i < ndoms; i++)
6569 		free_cpumask_var(doms[i]);
6570 	kfree(doms);
6571 }
6572 
6573 /*
6574  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6575  * For now this just excludes isolated cpus, but could be used to
6576  * exclude other special cases in the future.
6577  */
6578 static int init_sched_domains(const struct cpumask *cpu_map)
6579 {
6580 	int err;
6581 
6582 	arch_update_cpu_topology();
6583 	ndoms_cur = 1;
6584 	doms_cur = alloc_sched_domains(ndoms_cur);
6585 	if (!doms_cur)
6586 		doms_cur = &fallback_doms;
6587 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6588 	dattr_cur = NULL;
6589 	err = build_sched_domains(doms_cur[0], NULL);
6590 	register_sched_domain_sysctl();
6591 
6592 	return err;
6593 }
6594 
6595 /*
6596  * Detach sched domains from a group of cpus specified in cpu_map
6597  * These cpus will now be attached to the NULL domain
6598  */
6599 static void detach_destroy_domains(const struct cpumask *cpu_map)
6600 {
6601 	int i;
6602 
6603 	rcu_read_lock();
6604 	for_each_cpu(i, cpu_map)
6605 		cpu_attach_domain(NULL, &def_root_domain, i);
6606 	rcu_read_unlock();
6607 }
6608 
6609 /* handle null as "default" */
6610 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6611 			struct sched_domain_attr *new, int idx_new)
6612 {
6613 	struct sched_domain_attr tmp;
6614 
6615 	/* fast path */
6616 	if (!new && !cur)
6617 		return 1;
6618 
6619 	tmp = SD_ATTR_INIT;
6620 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6621 			new ? (new + idx_new) : &tmp,
6622 			sizeof(struct sched_domain_attr));
6623 }
6624 
6625 /*
6626  * Partition sched domains as specified by the 'ndoms_new'
6627  * cpumasks in the array doms_new[] of cpumasks. This compares
6628  * doms_new[] to the current sched domain partitioning, doms_cur[].
6629  * It destroys each deleted domain and builds each new domain.
6630  *
6631  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6632  * The masks don't intersect (don't overlap.) We should setup one
6633  * sched domain for each mask. CPUs not in any of the cpumasks will
6634  * not be load balanced. If the same cpumask appears both in the
6635  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6636  * it as it is.
6637  *
6638  * The passed in 'doms_new' should be allocated using
6639  * alloc_sched_domains.  This routine takes ownership of it and will
6640  * free_sched_domains it when done with it. If the caller failed the
6641  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6642  * and partition_sched_domains() will fallback to the single partition
6643  * 'fallback_doms', it also forces the domains to be rebuilt.
6644  *
6645  * If doms_new == NULL it will be replaced with cpu_online_mask.
6646  * ndoms_new == 0 is a special case for destroying existing domains,
6647  * and it will not create the default domain.
6648  *
6649  * Call with hotplug lock held
6650  */
6651 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6652 			     struct sched_domain_attr *dattr_new)
6653 {
6654 	int i, j, n;
6655 	int new_topology;
6656 
6657 	mutex_lock(&sched_domains_mutex);
6658 
6659 	/* always unregister in case we don't destroy any domains */
6660 	unregister_sched_domain_sysctl();
6661 
6662 	/* Let architecture update cpu core mappings. */
6663 	new_topology = arch_update_cpu_topology();
6664 
6665 	n = doms_new ? ndoms_new : 0;
6666 
6667 	/* Destroy deleted domains */
6668 	for (i = 0; i < ndoms_cur; i++) {
6669 		for (j = 0; j < n && !new_topology; j++) {
6670 			if (cpumask_equal(doms_cur[i], doms_new[j])
6671 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6672 				goto match1;
6673 		}
6674 		/* no match - a current sched domain not in new doms_new[] */
6675 		detach_destroy_domains(doms_cur[i]);
6676 match1:
6677 		;
6678 	}
6679 
6680 	if (doms_new == NULL) {
6681 		ndoms_cur = 0;
6682 		doms_new = &fallback_doms;
6683 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6684 		WARN_ON_ONCE(dattr_new);
6685 	}
6686 
6687 	/* Build new domains */
6688 	for (i = 0; i < ndoms_new; i++) {
6689 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6690 			if (cpumask_equal(doms_new[i], doms_cur[j])
6691 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6692 				goto match2;
6693 		}
6694 		/* no match - add a new doms_new */
6695 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6696 match2:
6697 		;
6698 	}
6699 
6700 	/* Remember the new sched domains */
6701 	if (doms_cur != &fallback_doms)
6702 		free_sched_domains(doms_cur, ndoms_cur);
6703 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6704 	doms_cur = doms_new;
6705 	dattr_cur = dattr_new;
6706 	ndoms_cur = ndoms_new;
6707 
6708 	register_sched_domain_sysctl();
6709 
6710 	mutex_unlock(&sched_domains_mutex);
6711 }
6712 
6713 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6714 static void reinit_sched_domains(void)
6715 {
6716 	get_online_cpus();
6717 
6718 	/* Destroy domains first to force the rebuild */
6719 	partition_sched_domains(0, NULL, NULL);
6720 
6721 	rebuild_sched_domains();
6722 	put_online_cpus();
6723 }
6724 
6725 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6726 {
6727 	unsigned int level = 0;
6728 
6729 	if (sscanf(buf, "%u", &level) != 1)
6730 		return -EINVAL;
6731 
6732 	/*
6733 	 * level is always be positive so don't check for
6734 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6735 	 * What happens on 0 or 1 byte write,
6736 	 * need to check for count as well?
6737 	 */
6738 
6739 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6740 		return -EINVAL;
6741 
6742 	if (smt)
6743 		sched_smt_power_savings = level;
6744 	else
6745 		sched_mc_power_savings = level;
6746 
6747 	reinit_sched_domains();
6748 
6749 	return count;
6750 }
6751 
6752 #ifdef CONFIG_SCHED_MC
6753 static ssize_t sched_mc_power_savings_show(struct device *dev,
6754 					   struct device_attribute *attr,
6755 					   char *buf)
6756 {
6757 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6758 }
6759 static ssize_t sched_mc_power_savings_store(struct device *dev,
6760 					    struct device_attribute *attr,
6761 					    const char *buf, size_t count)
6762 {
6763 	return sched_power_savings_store(buf, count, 0);
6764 }
6765 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6766 		   sched_mc_power_savings_show,
6767 		   sched_mc_power_savings_store);
6768 #endif
6769 
6770 #ifdef CONFIG_SCHED_SMT
6771 static ssize_t sched_smt_power_savings_show(struct device *dev,
6772 					    struct device_attribute *attr,
6773 					    char *buf)
6774 {
6775 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6776 }
6777 static ssize_t sched_smt_power_savings_store(struct device *dev,
6778 					    struct device_attribute *attr,
6779 					     const char *buf, size_t count)
6780 {
6781 	return sched_power_savings_store(buf, count, 1);
6782 }
6783 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6784 		   sched_smt_power_savings_show,
6785 		   sched_smt_power_savings_store);
6786 #endif
6787 
6788 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6789 {
6790 	int err = 0;
6791 
6792 #ifdef CONFIG_SCHED_SMT
6793 	if (smt_capable())
6794 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6795 #endif
6796 #ifdef CONFIG_SCHED_MC
6797 	if (!err && mc_capable())
6798 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6799 #endif
6800 	return err;
6801 }
6802 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6803 
6804 /*
6805  * Update cpusets according to cpu_active mask.  If cpusets are
6806  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6807  * around partition_sched_domains().
6808  */
6809 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6810 			     void *hcpu)
6811 {
6812 	switch (action & ~CPU_TASKS_FROZEN) {
6813 	case CPU_ONLINE:
6814 	case CPU_DOWN_FAILED:
6815 		cpuset_update_active_cpus();
6816 		return NOTIFY_OK;
6817 	default:
6818 		return NOTIFY_DONE;
6819 	}
6820 }
6821 
6822 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6823 			       void *hcpu)
6824 {
6825 	switch (action & ~CPU_TASKS_FROZEN) {
6826 	case CPU_DOWN_PREPARE:
6827 		cpuset_update_active_cpus();
6828 		return NOTIFY_OK;
6829 	default:
6830 		return NOTIFY_DONE;
6831 	}
6832 }
6833 
6834 void __init sched_init_smp(void)
6835 {
6836 	cpumask_var_t non_isolated_cpus;
6837 
6838 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6840 
6841 	get_online_cpus();
6842 	mutex_lock(&sched_domains_mutex);
6843 	init_sched_domains(cpu_active_mask);
6844 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6845 	if (cpumask_empty(non_isolated_cpus))
6846 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6847 	mutex_unlock(&sched_domains_mutex);
6848 	put_online_cpus();
6849 
6850 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6851 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6852 
6853 	/* RT runtime code needs to handle some hotplug events */
6854 	hotcpu_notifier(update_runtime, 0);
6855 
6856 	init_hrtick();
6857 
6858 	/* Move init over to a non-isolated CPU */
6859 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6860 		BUG();
6861 	sched_init_granularity();
6862 	free_cpumask_var(non_isolated_cpus);
6863 
6864 	init_sched_rt_class();
6865 }
6866 #else
6867 void __init sched_init_smp(void)
6868 {
6869 	sched_init_granularity();
6870 }
6871 #endif /* CONFIG_SMP */
6872 
6873 const_debug unsigned int sysctl_timer_migration = 1;
6874 
6875 int in_sched_functions(unsigned long addr)
6876 {
6877 	return in_lock_functions(addr) ||
6878 		(addr >= (unsigned long)__sched_text_start
6879 		&& addr < (unsigned long)__sched_text_end);
6880 }
6881 
6882 #ifdef CONFIG_CGROUP_SCHED
6883 struct task_group root_task_group;
6884 #endif
6885 
6886 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6887 
6888 void __init sched_init(void)
6889 {
6890 	int i, j;
6891 	unsigned long alloc_size = 0, ptr;
6892 
6893 #ifdef CONFIG_FAIR_GROUP_SCHED
6894 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6895 #endif
6896 #ifdef CONFIG_RT_GROUP_SCHED
6897 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6898 #endif
6899 #ifdef CONFIG_CPUMASK_OFFSTACK
6900 	alloc_size += num_possible_cpus() * cpumask_size();
6901 #endif
6902 	if (alloc_size) {
6903 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6904 
6905 #ifdef CONFIG_FAIR_GROUP_SCHED
6906 		root_task_group.se = (struct sched_entity **)ptr;
6907 		ptr += nr_cpu_ids * sizeof(void **);
6908 
6909 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6910 		ptr += nr_cpu_ids * sizeof(void **);
6911 
6912 #endif /* CONFIG_FAIR_GROUP_SCHED */
6913 #ifdef CONFIG_RT_GROUP_SCHED
6914 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6915 		ptr += nr_cpu_ids * sizeof(void **);
6916 
6917 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6918 		ptr += nr_cpu_ids * sizeof(void **);
6919 
6920 #endif /* CONFIG_RT_GROUP_SCHED */
6921 #ifdef CONFIG_CPUMASK_OFFSTACK
6922 		for_each_possible_cpu(i) {
6923 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6924 			ptr += cpumask_size();
6925 		}
6926 #endif /* CONFIG_CPUMASK_OFFSTACK */
6927 	}
6928 
6929 #ifdef CONFIG_SMP
6930 	init_defrootdomain();
6931 #endif
6932 
6933 	init_rt_bandwidth(&def_rt_bandwidth,
6934 			global_rt_period(), global_rt_runtime());
6935 
6936 #ifdef CONFIG_RT_GROUP_SCHED
6937 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6938 			global_rt_period(), global_rt_runtime());
6939 #endif /* CONFIG_RT_GROUP_SCHED */
6940 
6941 #ifdef CONFIG_CGROUP_SCHED
6942 	list_add(&root_task_group.list, &task_groups);
6943 	INIT_LIST_HEAD(&root_task_group.children);
6944 	INIT_LIST_HEAD(&root_task_group.siblings);
6945 	autogroup_init(&init_task);
6946 
6947 #endif /* CONFIG_CGROUP_SCHED */
6948 
6949 #ifdef CONFIG_CGROUP_CPUACCT
6950 	root_cpuacct.cpustat = &kernel_cpustat;
6951 	root_cpuacct.cpuusage = alloc_percpu(u64);
6952 	/* Too early, not expected to fail */
6953 	BUG_ON(!root_cpuacct.cpuusage);
6954 #endif
6955 	for_each_possible_cpu(i) {
6956 		struct rq *rq;
6957 
6958 		rq = cpu_rq(i);
6959 		raw_spin_lock_init(&rq->lock);
6960 		rq->nr_running = 0;
6961 		rq->calc_load_active = 0;
6962 		rq->calc_load_update = jiffies + LOAD_FREQ;
6963 		init_cfs_rq(&rq->cfs);
6964 		init_rt_rq(&rq->rt, rq);
6965 #ifdef CONFIG_FAIR_GROUP_SCHED
6966 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6967 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6968 		/*
6969 		 * How much cpu bandwidth does root_task_group get?
6970 		 *
6971 		 * In case of task-groups formed thr' the cgroup filesystem, it
6972 		 * gets 100% of the cpu resources in the system. This overall
6973 		 * system cpu resource is divided among the tasks of
6974 		 * root_task_group and its child task-groups in a fair manner,
6975 		 * based on each entity's (task or task-group's) weight
6976 		 * (se->load.weight).
6977 		 *
6978 		 * In other words, if root_task_group has 10 tasks of weight
6979 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6980 		 * then A0's share of the cpu resource is:
6981 		 *
6982 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6983 		 *
6984 		 * We achieve this by letting root_task_group's tasks sit
6985 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6986 		 */
6987 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6988 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6989 #endif /* CONFIG_FAIR_GROUP_SCHED */
6990 
6991 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6992 #ifdef CONFIG_RT_GROUP_SCHED
6993 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6994 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6995 #endif
6996 
6997 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6998 			rq->cpu_load[j] = 0;
6999 
7000 		rq->last_load_update_tick = jiffies;
7001 
7002 #ifdef CONFIG_SMP
7003 		rq->sd = NULL;
7004 		rq->rd = NULL;
7005 		rq->cpu_power = SCHED_POWER_SCALE;
7006 		rq->post_schedule = 0;
7007 		rq->active_balance = 0;
7008 		rq->next_balance = jiffies;
7009 		rq->push_cpu = 0;
7010 		rq->cpu = i;
7011 		rq->online = 0;
7012 		rq->idle_stamp = 0;
7013 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7014 
7015 		INIT_LIST_HEAD(&rq->cfs_tasks);
7016 
7017 		rq_attach_root(rq, &def_root_domain);
7018 #ifdef CONFIG_NO_HZ
7019 		rq->nohz_flags = 0;
7020 #endif
7021 #endif
7022 		init_rq_hrtick(rq);
7023 		atomic_set(&rq->nr_iowait, 0);
7024 	}
7025 
7026 	set_load_weight(&init_task);
7027 
7028 #ifdef CONFIG_PREEMPT_NOTIFIERS
7029 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7030 #endif
7031 
7032 #ifdef CONFIG_RT_MUTEXES
7033 	plist_head_init(&init_task.pi_waiters);
7034 #endif
7035 
7036 	/*
7037 	 * The boot idle thread does lazy MMU switching as well:
7038 	 */
7039 	atomic_inc(&init_mm.mm_count);
7040 	enter_lazy_tlb(&init_mm, current);
7041 
7042 	/*
7043 	 * Make us the idle thread. Technically, schedule() should not be
7044 	 * called from this thread, however somewhere below it might be,
7045 	 * but because we are the idle thread, we just pick up running again
7046 	 * when this runqueue becomes "idle".
7047 	 */
7048 	init_idle(current, smp_processor_id());
7049 
7050 	calc_load_update = jiffies + LOAD_FREQ;
7051 
7052 	/*
7053 	 * During early bootup we pretend to be a normal task:
7054 	 */
7055 	current->sched_class = &fair_sched_class;
7056 
7057 #ifdef CONFIG_SMP
7058 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7059 	/* May be allocated at isolcpus cmdline parse time */
7060 	if (cpu_isolated_map == NULL)
7061 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7062 #endif
7063 	init_sched_fair_class();
7064 
7065 	scheduler_running = 1;
7066 }
7067 
7068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7069 static inline int preempt_count_equals(int preempt_offset)
7070 {
7071 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7072 
7073 	return (nested == preempt_offset);
7074 }
7075 
7076 void __might_sleep(const char *file, int line, int preempt_offset)
7077 {
7078 	static unsigned long prev_jiffy;	/* ratelimiting */
7079 
7080 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7081 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7082 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7083 		return;
7084 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7085 		return;
7086 	prev_jiffy = jiffies;
7087 
7088 	printk(KERN_ERR
7089 		"BUG: sleeping function called from invalid context at %s:%d\n",
7090 			file, line);
7091 	printk(KERN_ERR
7092 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7093 			in_atomic(), irqs_disabled(),
7094 			current->pid, current->comm);
7095 
7096 	debug_show_held_locks(current);
7097 	if (irqs_disabled())
7098 		print_irqtrace_events(current);
7099 	dump_stack();
7100 }
7101 EXPORT_SYMBOL(__might_sleep);
7102 #endif
7103 
7104 #ifdef CONFIG_MAGIC_SYSRQ
7105 static void normalize_task(struct rq *rq, struct task_struct *p)
7106 {
7107 	const struct sched_class *prev_class = p->sched_class;
7108 	int old_prio = p->prio;
7109 	int on_rq;
7110 
7111 	on_rq = p->on_rq;
7112 	if (on_rq)
7113 		dequeue_task(rq, p, 0);
7114 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7115 	if (on_rq) {
7116 		enqueue_task(rq, p, 0);
7117 		resched_task(rq->curr);
7118 	}
7119 
7120 	check_class_changed(rq, p, prev_class, old_prio);
7121 }
7122 
7123 void normalize_rt_tasks(void)
7124 {
7125 	struct task_struct *g, *p;
7126 	unsigned long flags;
7127 	struct rq *rq;
7128 
7129 	read_lock_irqsave(&tasklist_lock, flags);
7130 	do_each_thread(g, p) {
7131 		/*
7132 		 * Only normalize user tasks:
7133 		 */
7134 		if (!p->mm)
7135 			continue;
7136 
7137 		p->se.exec_start		= 0;
7138 #ifdef CONFIG_SCHEDSTATS
7139 		p->se.statistics.wait_start	= 0;
7140 		p->se.statistics.sleep_start	= 0;
7141 		p->se.statistics.block_start	= 0;
7142 #endif
7143 
7144 		if (!rt_task(p)) {
7145 			/*
7146 			 * Renice negative nice level userspace
7147 			 * tasks back to 0:
7148 			 */
7149 			if (TASK_NICE(p) < 0 && p->mm)
7150 				set_user_nice(p, 0);
7151 			continue;
7152 		}
7153 
7154 		raw_spin_lock(&p->pi_lock);
7155 		rq = __task_rq_lock(p);
7156 
7157 		normalize_task(rq, p);
7158 
7159 		__task_rq_unlock(rq);
7160 		raw_spin_unlock(&p->pi_lock);
7161 	} while_each_thread(g, p);
7162 
7163 	read_unlock_irqrestore(&tasklist_lock, flags);
7164 }
7165 
7166 #endif /* CONFIG_MAGIC_SYSRQ */
7167 
7168 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7169 /*
7170  * These functions are only useful for the IA64 MCA handling, or kdb.
7171  *
7172  * They can only be called when the whole system has been
7173  * stopped - every CPU needs to be quiescent, and no scheduling
7174  * activity can take place. Using them for anything else would
7175  * be a serious bug, and as a result, they aren't even visible
7176  * under any other configuration.
7177  */
7178 
7179 /**
7180  * curr_task - return the current task for a given cpu.
7181  * @cpu: the processor in question.
7182  *
7183  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7184  */
7185 struct task_struct *curr_task(int cpu)
7186 {
7187 	return cpu_curr(cpu);
7188 }
7189 
7190 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7191 
7192 #ifdef CONFIG_IA64
7193 /**
7194  * set_curr_task - set the current task for a given cpu.
7195  * @cpu: the processor in question.
7196  * @p: the task pointer to set.
7197  *
7198  * Description: This function must only be used when non-maskable interrupts
7199  * are serviced on a separate stack. It allows the architecture to switch the
7200  * notion of the current task on a cpu in a non-blocking manner. This function
7201  * must be called with all CPU's synchronized, and interrupts disabled, the
7202  * and caller must save the original value of the current task (see
7203  * curr_task() above) and restore that value before reenabling interrupts and
7204  * re-starting the system.
7205  *
7206  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7207  */
7208 void set_curr_task(int cpu, struct task_struct *p)
7209 {
7210 	cpu_curr(cpu) = p;
7211 }
7212 
7213 #endif
7214 
7215 #ifdef CONFIG_CGROUP_SCHED
7216 /* task_group_lock serializes the addition/removal of task groups */
7217 static DEFINE_SPINLOCK(task_group_lock);
7218 
7219 static void free_sched_group(struct task_group *tg)
7220 {
7221 	free_fair_sched_group(tg);
7222 	free_rt_sched_group(tg);
7223 	autogroup_free(tg);
7224 	kfree(tg);
7225 }
7226 
7227 /* allocate runqueue etc for a new task group */
7228 struct task_group *sched_create_group(struct task_group *parent)
7229 {
7230 	struct task_group *tg;
7231 	unsigned long flags;
7232 
7233 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7234 	if (!tg)
7235 		return ERR_PTR(-ENOMEM);
7236 
7237 	if (!alloc_fair_sched_group(tg, parent))
7238 		goto err;
7239 
7240 	if (!alloc_rt_sched_group(tg, parent))
7241 		goto err;
7242 
7243 	spin_lock_irqsave(&task_group_lock, flags);
7244 	list_add_rcu(&tg->list, &task_groups);
7245 
7246 	WARN_ON(!parent); /* root should already exist */
7247 
7248 	tg->parent = parent;
7249 	INIT_LIST_HEAD(&tg->children);
7250 	list_add_rcu(&tg->siblings, &parent->children);
7251 	spin_unlock_irqrestore(&task_group_lock, flags);
7252 
7253 	return tg;
7254 
7255 err:
7256 	free_sched_group(tg);
7257 	return ERR_PTR(-ENOMEM);
7258 }
7259 
7260 /* rcu callback to free various structures associated with a task group */
7261 static void free_sched_group_rcu(struct rcu_head *rhp)
7262 {
7263 	/* now it should be safe to free those cfs_rqs */
7264 	free_sched_group(container_of(rhp, struct task_group, rcu));
7265 }
7266 
7267 /* Destroy runqueue etc associated with a task group */
7268 void sched_destroy_group(struct task_group *tg)
7269 {
7270 	unsigned long flags;
7271 	int i;
7272 
7273 	/* end participation in shares distribution */
7274 	for_each_possible_cpu(i)
7275 		unregister_fair_sched_group(tg, i);
7276 
7277 	spin_lock_irqsave(&task_group_lock, flags);
7278 	list_del_rcu(&tg->list);
7279 	list_del_rcu(&tg->siblings);
7280 	spin_unlock_irqrestore(&task_group_lock, flags);
7281 
7282 	/* wait for possible concurrent references to cfs_rqs complete */
7283 	call_rcu(&tg->rcu, free_sched_group_rcu);
7284 }
7285 
7286 /* change task's runqueue when it moves between groups.
7287  *	The caller of this function should have put the task in its new group
7288  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7289  *	reflect its new group.
7290  */
7291 void sched_move_task(struct task_struct *tsk)
7292 {
7293 	int on_rq, running;
7294 	unsigned long flags;
7295 	struct rq *rq;
7296 
7297 	rq = task_rq_lock(tsk, &flags);
7298 
7299 	running = task_current(rq, tsk);
7300 	on_rq = tsk->on_rq;
7301 
7302 	if (on_rq)
7303 		dequeue_task(rq, tsk, 0);
7304 	if (unlikely(running))
7305 		tsk->sched_class->put_prev_task(rq, tsk);
7306 
7307 #ifdef CONFIG_FAIR_GROUP_SCHED
7308 	if (tsk->sched_class->task_move_group)
7309 		tsk->sched_class->task_move_group(tsk, on_rq);
7310 	else
7311 #endif
7312 		set_task_rq(tsk, task_cpu(tsk));
7313 
7314 	if (unlikely(running))
7315 		tsk->sched_class->set_curr_task(rq);
7316 	if (on_rq)
7317 		enqueue_task(rq, tsk, 0);
7318 
7319 	task_rq_unlock(rq, tsk, &flags);
7320 }
7321 #endif /* CONFIG_CGROUP_SCHED */
7322 
7323 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7324 static unsigned long to_ratio(u64 period, u64 runtime)
7325 {
7326 	if (runtime == RUNTIME_INF)
7327 		return 1ULL << 20;
7328 
7329 	return div64_u64(runtime << 20, period);
7330 }
7331 #endif
7332 
7333 #ifdef CONFIG_RT_GROUP_SCHED
7334 /*
7335  * Ensure that the real time constraints are schedulable.
7336  */
7337 static DEFINE_MUTEX(rt_constraints_mutex);
7338 
7339 /* Must be called with tasklist_lock held */
7340 static inline int tg_has_rt_tasks(struct task_group *tg)
7341 {
7342 	struct task_struct *g, *p;
7343 
7344 	do_each_thread(g, p) {
7345 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7346 			return 1;
7347 	} while_each_thread(g, p);
7348 
7349 	return 0;
7350 }
7351 
7352 struct rt_schedulable_data {
7353 	struct task_group *tg;
7354 	u64 rt_period;
7355 	u64 rt_runtime;
7356 };
7357 
7358 static int tg_rt_schedulable(struct task_group *tg, void *data)
7359 {
7360 	struct rt_schedulable_data *d = data;
7361 	struct task_group *child;
7362 	unsigned long total, sum = 0;
7363 	u64 period, runtime;
7364 
7365 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7366 	runtime = tg->rt_bandwidth.rt_runtime;
7367 
7368 	if (tg == d->tg) {
7369 		period = d->rt_period;
7370 		runtime = d->rt_runtime;
7371 	}
7372 
7373 	/*
7374 	 * Cannot have more runtime than the period.
7375 	 */
7376 	if (runtime > period && runtime != RUNTIME_INF)
7377 		return -EINVAL;
7378 
7379 	/*
7380 	 * Ensure we don't starve existing RT tasks.
7381 	 */
7382 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7383 		return -EBUSY;
7384 
7385 	total = to_ratio(period, runtime);
7386 
7387 	/*
7388 	 * Nobody can have more than the global setting allows.
7389 	 */
7390 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7391 		return -EINVAL;
7392 
7393 	/*
7394 	 * The sum of our children's runtime should not exceed our own.
7395 	 */
7396 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7397 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7398 		runtime = child->rt_bandwidth.rt_runtime;
7399 
7400 		if (child == d->tg) {
7401 			period = d->rt_period;
7402 			runtime = d->rt_runtime;
7403 		}
7404 
7405 		sum += to_ratio(period, runtime);
7406 	}
7407 
7408 	if (sum > total)
7409 		return -EINVAL;
7410 
7411 	return 0;
7412 }
7413 
7414 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7415 {
7416 	int ret;
7417 
7418 	struct rt_schedulable_data data = {
7419 		.tg = tg,
7420 		.rt_period = period,
7421 		.rt_runtime = runtime,
7422 	};
7423 
7424 	rcu_read_lock();
7425 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7426 	rcu_read_unlock();
7427 
7428 	return ret;
7429 }
7430 
7431 static int tg_set_rt_bandwidth(struct task_group *tg,
7432 		u64 rt_period, u64 rt_runtime)
7433 {
7434 	int i, err = 0;
7435 
7436 	mutex_lock(&rt_constraints_mutex);
7437 	read_lock(&tasklist_lock);
7438 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7439 	if (err)
7440 		goto unlock;
7441 
7442 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7443 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7444 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7445 
7446 	for_each_possible_cpu(i) {
7447 		struct rt_rq *rt_rq = tg->rt_rq[i];
7448 
7449 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7450 		rt_rq->rt_runtime = rt_runtime;
7451 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7452 	}
7453 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7454 unlock:
7455 	read_unlock(&tasklist_lock);
7456 	mutex_unlock(&rt_constraints_mutex);
7457 
7458 	return err;
7459 }
7460 
7461 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7462 {
7463 	u64 rt_runtime, rt_period;
7464 
7465 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7467 	if (rt_runtime_us < 0)
7468 		rt_runtime = RUNTIME_INF;
7469 
7470 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7471 }
7472 
7473 long sched_group_rt_runtime(struct task_group *tg)
7474 {
7475 	u64 rt_runtime_us;
7476 
7477 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7478 		return -1;
7479 
7480 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7481 	do_div(rt_runtime_us, NSEC_PER_USEC);
7482 	return rt_runtime_us;
7483 }
7484 
7485 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7486 {
7487 	u64 rt_runtime, rt_period;
7488 
7489 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7490 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7491 
7492 	if (rt_period == 0)
7493 		return -EINVAL;
7494 
7495 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7496 }
7497 
7498 long sched_group_rt_period(struct task_group *tg)
7499 {
7500 	u64 rt_period_us;
7501 
7502 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7503 	do_div(rt_period_us, NSEC_PER_USEC);
7504 	return rt_period_us;
7505 }
7506 
7507 static int sched_rt_global_constraints(void)
7508 {
7509 	u64 runtime, period;
7510 	int ret = 0;
7511 
7512 	if (sysctl_sched_rt_period <= 0)
7513 		return -EINVAL;
7514 
7515 	runtime = global_rt_runtime();
7516 	period = global_rt_period();
7517 
7518 	/*
7519 	 * Sanity check on the sysctl variables.
7520 	 */
7521 	if (runtime > period && runtime != RUNTIME_INF)
7522 		return -EINVAL;
7523 
7524 	mutex_lock(&rt_constraints_mutex);
7525 	read_lock(&tasklist_lock);
7526 	ret = __rt_schedulable(NULL, 0, 0);
7527 	read_unlock(&tasklist_lock);
7528 	mutex_unlock(&rt_constraints_mutex);
7529 
7530 	return ret;
7531 }
7532 
7533 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7534 {
7535 	/* Don't accept realtime tasks when there is no way for them to run */
7536 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7537 		return 0;
7538 
7539 	return 1;
7540 }
7541 
7542 #else /* !CONFIG_RT_GROUP_SCHED */
7543 static int sched_rt_global_constraints(void)
7544 {
7545 	unsigned long flags;
7546 	int i;
7547 
7548 	if (sysctl_sched_rt_period <= 0)
7549 		return -EINVAL;
7550 
7551 	/*
7552 	 * There's always some RT tasks in the root group
7553 	 * -- migration, kstopmachine etc..
7554 	 */
7555 	if (sysctl_sched_rt_runtime == 0)
7556 		return -EBUSY;
7557 
7558 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7559 	for_each_possible_cpu(i) {
7560 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7561 
7562 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7563 		rt_rq->rt_runtime = global_rt_runtime();
7564 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7565 	}
7566 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7567 
7568 	return 0;
7569 }
7570 #endif /* CONFIG_RT_GROUP_SCHED */
7571 
7572 int sched_rt_handler(struct ctl_table *table, int write,
7573 		void __user *buffer, size_t *lenp,
7574 		loff_t *ppos)
7575 {
7576 	int ret;
7577 	int old_period, old_runtime;
7578 	static DEFINE_MUTEX(mutex);
7579 
7580 	mutex_lock(&mutex);
7581 	old_period = sysctl_sched_rt_period;
7582 	old_runtime = sysctl_sched_rt_runtime;
7583 
7584 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585 
7586 	if (!ret && write) {
7587 		ret = sched_rt_global_constraints();
7588 		if (ret) {
7589 			sysctl_sched_rt_period = old_period;
7590 			sysctl_sched_rt_runtime = old_runtime;
7591 		} else {
7592 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7593 			def_rt_bandwidth.rt_period =
7594 				ns_to_ktime(global_rt_period());
7595 		}
7596 	}
7597 	mutex_unlock(&mutex);
7598 
7599 	return ret;
7600 }
7601 
7602 #ifdef CONFIG_CGROUP_SCHED
7603 
7604 /* return corresponding task_group object of a cgroup */
7605 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7606 {
7607 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7608 			    struct task_group, css);
7609 }
7610 
7611 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7612 {
7613 	struct task_group *tg, *parent;
7614 
7615 	if (!cgrp->parent) {
7616 		/* This is early initialization for the top cgroup */
7617 		return &root_task_group.css;
7618 	}
7619 
7620 	parent = cgroup_tg(cgrp->parent);
7621 	tg = sched_create_group(parent);
7622 	if (IS_ERR(tg))
7623 		return ERR_PTR(-ENOMEM);
7624 
7625 	return &tg->css;
7626 }
7627 
7628 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7629 {
7630 	struct task_group *tg = cgroup_tg(cgrp);
7631 
7632 	sched_destroy_group(tg);
7633 }
7634 
7635 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7636 				 struct cgroup_taskset *tset)
7637 {
7638 	struct task_struct *task;
7639 
7640 	cgroup_taskset_for_each(task, cgrp, tset) {
7641 #ifdef CONFIG_RT_GROUP_SCHED
7642 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7643 			return -EINVAL;
7644 #else
7645 		/* We don't support RT-tasks being in separate groups */
7646 		if (task->sched_class != &fair_sched_class)
7647 			return -EINVAL;
7648 #endif
7649 	}
7650 	return 0;
7651 }
7652 
7653 static void cpu_cgroup_attach(struct cgroup *cgrp,
7654 			      struct cgroup_taskset *tset)
7655 {
7656 	struct task_struct *task;
7657 
7658 	cgroup_taskset_for_each(task, cgrp, tset)
7659 		sched_move_task(task);
7660 }
7661 
7662 static void
7663 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7664 		struct task_struct *task)
7665 {
7666 	/*
7667 	 * cgroup_exit() is called in the copy_process() failure path.
7668 	 * Ignore this case since the task hasn't ran yet, this avoids
7669 	 * trying to poke a half freed task state from generic code.
7670 	 */
7671 	if (!(task->flags & PF_EXITING))
7672 		return;
7673 
7674 	sched_move_task(task);
7675 }
7676 
7677 #ifdef CONFIG_FAIR_GROUP_SCHED
7678 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7679 				u64 shareval)
7680 {
7681 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7682 }
7683 
7684 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7685 {
7686 	struct task_group *tg = cgroup_tg(cgrp);
7687 
7688 	return (u64) scale_load_down(tg->shares);
7689 }
7690 
7691 #ifdef CONFIG_CFS_BANDWIDTH
7692 static DEFINE_MUTEX(cfs_constraints_mutex);
7693 
7694 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7695 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7696 
7697 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7698 
7699 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7700 {
7701 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7702 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7703 
7704 	if (tg == &root_task_group)
7705 		return -EINVAL;
7706 
7707 	/*
7708 	 * Ensure we have at some amount of bandwidth every period.  This is
7709 	 * to prevent reaching a state of large arrears when throttled via
7710 	 * entity_tick() resulting in prolonged exit starvation.
7711 	 */
7712 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7713 		return -EINVAL;
7714 
7715 	/*
7716 	 * Likewise, bound things on the otherside by preventing insane quota
7717 	 * periods.  This also allows us to normalize in computing quota
7718 	 * feasibility.
7719 	 */
7720 	if (period > max_cfs_quota_period)
7721 		return -EINVAL;
7722 
7723 	mutex_lock(&cfs_constraints_mutex);
7724 	ret = __cfs_schedulable(tg, period, quota);
7725 	if (ret)
7726 		goto out_unlock;
7727 
7728 	runtime_enabled = quota != RUNTIME_INF;
7729 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7730 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7731 	raw_spin_lock_irq(&cfs_b->lock);
7732 	cfs_b->period = ns_to_ktime(period);
7733 	cfs_b->quota = quota;
7734 
7735 	__refill_cfs_bandwidth_runtime(cfs_b);
7736 	/* restart the period timer (if active) to handle new period expiry */
7737 	if (runtime_enabled && cfs_b->timer_active) {
7738 		/* force a reprogram */
7739 		cfs_b->timer_active = 0;
7740 		__start_cfs_bandwidth(cfs_b);
7741 	}
7742 	raw_spin_unlock_irq(&cfs_b->lock);
7743 
7744 	for_each_possible_cpu(i) {
7745 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7746 		struct rq *rq = cfs_rq->rq;
7747 
7748 		raw_spin_lock_irq(&rq->lock);
7749 		cfs_rq->runtime_enabled = runtime_enabled;
7750 		cfs_rq->runtime_remaining = 0;
7751 
7752 		if (cfs_rq->throttled)
7753 			unthrottle_cfs_rq(cfs_rq);
7754 		raw_spin_unlock_irq(&rq->lock);
7755 	}
7756 out_unlock:
7757 	mutex_unlock(&cfs_constraints_mutex);
7758 
7759 	return ret;
7760 }
7761 
7762 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7763 {
7764 	u64 quota, period;
7765 
7766 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7767 	if (cfs_quota_us < 0)
7768 		quota = RUNTIME_INF;
7769 	else
7770 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7771 
7772 	return tg_set_cfs_bandwidth(tg, period, quota);
7773 }
7774 
7775 long tg_get_cfs_quota(struct task_group *tg)
7776 {
7777 	u64 quota_us;
7778 
7779 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7780 		return -1;
7781 
7782 	quota_us = tg->cfs_bandwidth.quota;
7783 	do_div(quota_us, NSEC_PER_USEC);
7784 
7785 	return quota_us;
7786 }
7787 
7788 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7789 {
7790 	u64 quota, period;
7791 
7792 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7793 	quota = tg->cfs_bandwidth.quota;
7794 
7795 	return tg_set_cfs_bandwidth(tg, period, quota);
7796 }
7797 
7798 long tg_get_cfs_period(struct task_group *tg)
7799 {
7800 	u64 cfs_period_us;
7801 
7802 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7803 	do_div(cfs_period_us, NSEC_PER_USEC);
7804 
7805 	return cfs_period_us;
7806 }
7807 
7808 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7809 {
7810 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7811 }
7812 
7813 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7814 				s64 cfs_quota_us)
7815 {
7816 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7817 }
7818 
7819 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7820 {
7821 	return tg_get_cfs_period(cgroup_tg(cgrp));
7822 }
7823 
7824 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7825 				u64 cfs_period_us)
7826 {
7827 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7828 }
7829 
7830 struct cfs_schedulable_data {
7831 	struct task_group *tg;
7832 	u64 period, quota;
7833 };
7834 
7835 /*
7836  * normalize group quota/period to be quota/max_period
7837  * note: units are usecs
7838  */
7839 static u64 normalize_cfs_quota(struct task_group *tg,
7840 			       struct cfs_schedulable_data *d)
7841 {
7842 	u64 quota, period;
7843 
7844 	if (tg == d->tg) {
7845 		period = d->period;
7846 		quota = d->quota;
7847 	} else {
7848 		period = tg_get_cfs_period(tg);
7849 		quota = tg_get_cfs_quota(tg);
7850 	}
7851 
7852 	/* note: these should typically be equivalent */
7853 	if (quota == RUNTIME_INF || quota == -1)
7854 		return RUNTIME_INF;
7855 
7856 	return to_ratio(period, quota);
7857 }
7858 
7859 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7860 {
7861 	struct cfs_schedulable_data *d = data;
7862 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7863 	s64 quota = 0, parent_quota = -1;
7864 
7865 	if (!tg->parent) {
7866 		quota = RUNTIME_INF;
7867 	} else {
7868 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7869 
7870 		quota = normalize_cfs_quota(tg, d);
7871 		parent_quota = parent_b->hierarchal_quota;
7872 
7873 		/*
7874 		 * ensure max(child_quota) <= parent_quota, inherit when no
7875 		 * limit is set
7876 		 */
7877 		if (quota == RUNTIME_INF)
7878 			quota = parent_quota;
7879 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7880 			return -EINVAL;
7881 	}
7882 	cfs_b->hierarchal_quota = quota;
7883 
7884 	return 0;
7885 }
7886 
7887 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7888 {
7889 	int ret;
7890 	struct cfs_schedulable_data data = {
7891 		.tg = tg,
7892 		.period = period,
7893 		.quota = quota,
7894 	};
7895 
7896 	if (quota != RUNTIME_INF) {
7897 		do_div(data.period, NSEC_PER_USEC);
7898 		do_div(data.quota, NSEC_PER_USEC);
7899 	}
7900 
7901 	rcu_read_lock();
7902 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7903 	rcu_read_unlock();
7904 
7905 	return ret;
7906 }
7907 
7908 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7909 		struct cgroup_map_cb *cb)
7910 {
7911 	struct task_group *tg = cgroup_tg(cgrp);
7912 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7913 
7914 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7915 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7916 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7917 
7918 	return 0;
7919 }
7920 #endif /* CONFIG_CFS_BANDWIDTH */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922 
7923 #ifdef CONFIG_RT_GROUP_SCHED
7924 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7925 				s64 val)
7926 {
7927 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7928 }
7929 
7930 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7931 {
7932 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7933 }
7934 
7935 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7936 		u64 rt_period_us)
7937 {
7938 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7939 }
7940 
7941 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7942 {
7943 	return sched_group_rt_period(cgroup_tg(cgrp));
7944 }
7945 #endif /* CONFIG_RT_GROUP_SCHED */
7946 
7947 static struct cftype cpu_files[] = {
7948 #ifdef CONFIG_FAIR_GROUP_SCHED
7949 	{
7950 		.name = "shares",
7951 		.read_u64 = cpu_shares_read_u64,
7952 		.write_u64 = cpu_shares_write_u64,
7953 	},
7954 #endif
7955 #ifdef CONFIG_CFS_BANDWIDTH
7956 	{
7957 		.name = "cfs_quota_us",
7958 		.read_s64 = cpu_cfs_quota_read_s64,
7959 		.write_s64 = cpu_cfs_quota_write_s64,
7960 	},
7961 	{
7962 		.name = "cfs_period_us",
7963 		.read_u64 = cpu_cfs_period_read_u64,
7964 		.write_u64 = cpu_cfs_period_write_u64,
7965 	},
7966 	{
7967 		.name = "stat",
7968 		.read_map = cpu_stats_show,
7969 	},
7970 #endif
7971 #ifdef CONFIG_RT_GROUP_SCHED
7972 	{
7973 		.name = "rt_runtime_us",
7974 		.read_s64 = cpu_rt_runtime_read,
7975 		.write_s64 = cpu_rt_runtime_write,
7976 	},
7977 	{
7978 		.name = "rt_period_us",
7979 		.read_u64 = cpu_rt_period_read_uint,
7980 		.write_u64 = cpu_rt_period_write_uint,
7981 	},
7982 #endif
7983 };
7984 
7985 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7986 {
7987 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7988 }
7989 
7990 struct cgroup_subsys cpu_cgroup_subsys = {
7991 	.name		= "cpu",
7992 	.create		= cpu_cgroup_create,
7993 	.destroy	= cpu_cgroup_destroy,
7994 	.can_attach	= cpu_cgroup_can_attach,
7995 	.attach		= cpu_cgroup_attach,
7996 	.exit		= cpu_cgroup_exit,
7997 	.populate	= cpu_cgroup_populate,
7998 	.subsys_id	= cpu_cgroup_subsys_id,
7999 	.early_init	= 1,
8000 };
8001 
8002 #endif	/* CONFIG_CGROUP_SCHED */
8003 
8004 #ifdef CONFIG_CGROUP_CPUACCT
8005 
8006 /*
8007  * CPU accounting code for task groups.
8008  *
8009  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8010  * (balbir@in.ibm.com).
8011  */
8012 
8013 /* create a new cpu accounting group */
8014 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8015 {
8016 	struct cpuacct *ca;
8017 
8018 	if (!cgrp->parent)
8019 		return &root_cpuacct.css;
8020 
8021 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8022 	if (!ca)
8023 		goto out;
8024 
8025 	ca->cpuusage = alloc_percpu(u64);
8026 	if (!ca->cpuusage)
8027 		goto out_free_ca;
8028 
8029 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8030 	if (!ca->cpustat)
8031 		goto out_free_cpuusage;
8032 
8033 	return &ca->css;
8034 
8035 out_free_cpuusage:
8036 	free_percpu(ca->cpuusage);
8037 out_free_ca:
8038 	kfree(ca);
8039 out:
8040 	return ERR_PTR(-ENOMEM);
8041 }
8042 
8043 /* destroy an existing cpu accounting group */
8044 static void cpuacct_destroy(struct cgroup *cgrp)
8045 {
8046 	struct cpuacct *ca = cgroup_ca(cgrp);
8047 
8048 	free_percpu(ca->cpustat);
8049 	free_percpu(ca->cpuusage);
8050 	kfree(ca);
8051 }
8052 
8053 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8054 {
8055 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8056 	u64 data;
8057 
8058 #ifndef CONFIG_64BIT
8059 	/*
8060 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8061 	 */
8062 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8063 	data = *cpuusage;
8064 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8065 #else
8066 	data = *cpuusage;
8067 #endif
8068 
8069 	return data;
8070 }
8071 
8072 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8073 {
8074 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8075 
8076 #ifndef CONFIG_64BIT
8077 	/*
8078 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8079 	 */
8080 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8081 	*cpuusage = val;
8082 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8083 #else
8084 	*cpuusage = val;
8085 #endif
8086 }
8087 
8088 /* return total cpu usage (in nanoseconds) of a group */
8089 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8090 {
8091 	struct cpuacct *ca = cgroup_ca(cgrp);
8092 	u64 totalcpuusage = 0;
8093 	int i;
8094 
8095 	for_each_present_cpu(i)
8096 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8097 
8098 	return totalcpuusage;
8099 }
8100 
8101 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8102 								u64 reset)
8103 {
8104 	struct cpuacct *ca = cgroup_ca(cgrp);
8105 	int err = 0;
8106 	int i;
8107 
8108 	if (reset) {
8109 		err = -EINVAL;
8110 		goto out;
8111 	}
8112 
8113 	for_each_present_cpu(i)
8114 		cpuacct_cpuusage_write(ca, i, 0);
8115 
8116 out:
8117 	return err;
8118 }
8119 
8120 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8121 				   struct seq_file *m)
8122 {
8123 	struct cpuacct *ca = cgroup_ca(cgroup);
8124 	u64 percpu;
8125 	int i;
8126 
8127 	for_each_present_cpu(i) {
8128 		percpu = cpuacct_cpuusage_read(ca, i);
8129 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8130 	}
8131 	seq_printf(m, "\n");
8132 	return 0;
8133 }
8134 
8135 static const char *cpuacct_stat_desc[] = {
8136 	[CPUACCT_STAT_USER] = "user",
8137 	[CPUACCT_STAT_SYSTEM] = "system",
8138 };
8139 
8140 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8141 			      struct cgroup_map_cb *cb)
8142 {
8143 	struct cpuacct *ca = cgroup_ca(cgrp);
8144 	int cpu;
8145 	s64 val = 0;
8146 
8147 	for_each_online_cpu(cpu) {
8148 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8149 		val += kcpustat->cpustat[CPUTIME_USER];
8150 		val += kcpustat->cpustat[CPUTIME_NICE];
8151 	}
8152 	val = cputime64_to_clock_t(val);
8153 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8154 
8155 	val = 0;
8156 	for_each_online_cpu(cpu) {
8157 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8158 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8159 		val += kcpustat->cpustat[CPUTIME_IRQ];
8160 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8161 	}
8162 
8163 	val = cputime64_to_clock_t(val);
8164 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8165 
8166 	return 0;
8167 }
8168 
8169 static struct cftype files[] = {
8170 	{
8171 		.name = "usage",
8172 		.read_u64 = cpuusage_read,
8173 		.write_u64 = cpuusage_write,
8174 	},
8175 	{
8176 		.name = "usage_percpu",
8177 		.read_seq_string = cpuacct_percpu_seq_read,
8178 	},
8179 	{
8180 		.name = "stat",
8181 		.read_map = cpuacct_stats_show,
8182 	},
8183 };
8184 
8185 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8186 {
8187 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8188 }
8189 
8190 /*
8191  * charge this task's execution time to its accounting group.
8192  *
8193  * called with rq->lock held.
8194  */
8195 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8196 {
8197 	struct cpuacct *ca;
8198 	int cpu;
8199 
8200 	if (unlikely(!cpuacct_subsys.active))
8201 		return;
8202 
8203 	cpu = task_cpu(tsk);
8204 
8205 	rcu_read_lock();
8206 
8207 	ca = task_ca(tsk);
8208 
8209 	for (; ca; ca = parent_ca(ca)) {
8210 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8211 		*cpuusage += cputime;
8212 	}
8213 
8214 	rcu_read_unlock();
8215 }
8216 
8217 struct cgroup_subsys cpuacct_subsys = {
8218 	.name = "cpuacct",
8219 	.create = cpuacct_create,
8220 	.destroy = cpuacct_destroy,
8221 	.populate = cpuacct_populate,
8222 	.subsys_id = cpuacct_subsys_id,
8223 };
8224 #endif	/* CONFIG_CGROUP_CPUACCT */
8225