1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 #include <asm/irq_regs.h> 79 #include <asm/mutex.h> 80 #ifdef CONFIG_PARAVIRT 81 #include <asm/paravirt.h> 82 #endif 83 84 #include "sched.h" 85 #include "../workqueue_sched.h" 86 87 #define CREATE_TRACE_POINTS 88 #include <trace/events/sched.h> 89 90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 91 { 92 unsigned long delta; 93 ktime_t soft, hard, now; 94 95 for (;;) { 96 if (hrtimer_active(period_timer)) 97 break; 98 99 now = hrtimer_cb_get_time(period_timer); 100 hrtimer_forward(period_timer, now, period); 101 102 soft = hrtimer_get_softexpires(period_timer); 103 hard = hrtimer_get_expires(period_timer); 104 delta = ktime_to_ns(ktime_sub(hard, soft)); 105 __hrtimer_start_range_ns(period_timer, soft, delta, 106 HRTIMER_MODE_ABS_PINNED, 0); 107 } 108 } 109 110 DEFINE_MUTEX(sched_domains_mutex); 111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 112 113 static void update_rq_clock_task(struct rq *rq, s64 delta); 114 115 void update_rq_clock(struct rq *rq) 116 { 117 s64 delta; 118 119 if (rq->skip_clock_update > 0) 120 return; 121 122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 123 rq->clock += delta; 124 update_rq_clock_task(rq, delta); 125 } 126 127 /* 128 * Debugging: various feature bits 129 */ 130 131 #define SCHED_FEAT(name, enabled) \ 132 (1UL << __SCHED_FEAT_##name) * enabled | 133 134 const_debug unsigned int sysctl_sched_features = 135 #include "features.h" 136 0; 137 138 #undef SCHED_FEAT 139 140 #ifdef CONFIG_SCHED_DEBUG 141 #define SCHED_FEAT(name, enabled) \ 142 #name , 143 144 static __read_mostly char *sched_feat_names[] = { 145 #include "features.h" 146 NULL 147 }; 148 149 #undef SCHED_FEAT 150 151 static int sched_feat_show(struct seq_file *m, void *v) 152 { 153 int i; 154 155 for (i = 0; i < __SCHED_FEAT_NR; i++) { 156 if (!(sysctl_sched_features & (1UL << i))) 157 seq_puts(m, "NO_"); 158 seq_printf(m, "%s ", sched_feat_names[i]); 159 } 160 seq_puts(m, "\n"); 161 162 return 0; 163 } 164 165 #ifdef HAVE_JUMP_LABEL 166 167 #define jump_label_key__true STATIC_KEY_INIT_TRUE 168 #define jump_label_key__false STATIC_KEY_INIT_FALSE 169 170 #define SCHED_FEAT(name, enabled) \ 171 jump_label_key__##enabled , 172 173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 174 #include "features.h" 175 }; 176 177 #undef SCHED_FEAT 178 179 static void sched_feat_disable(int i) 180 { 181 if (static_key_enabled(&sched_feat_keys[i])) 182 static_key_slow_dec(&sched_feat_keys[i]); 183 } 184 185 static void sched_feat_enable(int i) 186 { 187 if (!static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_inc(&sched_feat_keys[i]); 189 } 190 #else 191 static void sched_feat_disable(int i) { }; 192 static void sched_feat_enable(int i) { }; 193 #endif /* HAVE_JUMP_LABEL */ 194 195 static ssize_t 196 sched_feat_write(struct file *filp, const char __user *ubuf, 197 size_t cnt, loff_t *ppos) 198 { 199 char buf[64]; 200 char *cmp; 201 int neg = 0; 202 int i; 203 204 if (cnt > 63) 205 cnt = 63; 206 207 if (copy_from_user(&buf, ubuf, cnt)) 208 return -EFAULT; 209 210 buf[cnt] = 0; 211 cmp = strstrip(buf); 212 213 if (strncmp(cmp, "NO_", 3) == 0) { 214 neg = 1; 215 cmp += 3; 216 } 217 218 for (i = 0; i < __SCHED_FEAT_NR; i++) { 219 if (strcmp(cmp, sched_feat_names[i]) == 0) { 220 if (neg) { 221 sysctl_sched_features &= ~(1UL << i); 222 sched_feat_disable(i); 223 } else { 224 sysctl_sched_features |= (1UL << i); 225 sched_feat_enable(i); 226 } 227 break; 228 } 229 } 230 231 if (i == __SCHED_FEAT_NR) 232 return -EINVAL; 233 234 *ppos += cnt; 235 236 return cnt; 237 } 238 239 static int sched_feat_open(struct inode *inode, struct file *filp) 240 { 241 return single_open(filp, sched_feat_show, NULL); 242 } 243 244 static const struct file_operations sched_feat_fops = { 245 .open = sched_feat_open, 246 .write = sched_feat_write, 247 .read = seq_read, 248 .llseek = seq_lseek, 249 .release = single_release, 250 }; 251 252 static __init int sched_init_debug(void) 253 { 254 debugfs_create_file("sched_features", 0644, NULL, NULL, 255 &sched_feat_fops); 256 257 return 0; 258 } 259 late_initcall(sched_init_debug); 260 #endif /* CONFIG_SCHED_DEBUG */ 261 262 /* 263 * Number of tasks to iterate in a single balance run. 264 * Limited because this is done with IRQs disabled. 265 */ 266 const_debug unsigned int sysctl_sched_nr_migrate = 32; 267 268 /* 269 * period over which we average the RT time consumption, measured 270 * in ms. 271 * 272 * default: 1s 273 */ 274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 275 276 /* 277 * period over which we measure -rt task cpu usage in us. 278 * default: 1s 279 */ 280 unsigned int sysctl_sched_rt_period = 1000000; 281 282 __read_mostly int scheduler_running; 283 284 /* 285 * part of the period that we allow rt tasks to run in us. 286 * default: 0.95s 287 */ 288 int sysctl_sched_rt_runtime = 950000; 289 290 291 292 /* 293 * __task_rq_lock - lock the rq @p resides on. 294 */ 295 static inline struct rq *__task_rq_lock(struct task_struct *p) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 lockdep_assert_held(&p->pi_lock); 301 302 for (;;) { 303 rq = task_rq(p); 304 raw_spin_lock(&rq->lock); 305 if (likely(rq == task_rq(p))) 306 return rq; 307 raw_spin_unlock(&rq->lock); 308 } 309 } 310 311 /* 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 313 */ 314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 315 __acquires(p->pi_lock) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 for (;;) { 321 raw_spin_lock_irqsave(&p->pi_lock, *flags); 322 rq = task_rq(p); 323 raw_spin_lock(&rq->lock); 324 if (likely(rq == task_rq(p))) 325 return rq; 326 raw_spin_unlock(&rq->lock); 327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 328 } 329 } 330 331 static void __task_rq_unlock(struct rq *rq) 332 __releases(rq->lock) 333 { 334 raw_spin_unlock(&rq->lock); 335 } 336 337 static inline void 338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 339 __releases(rq->lock) 340 __releases(p->pi_lock) 341 { 342 raw_spin_unlock(&rq->lock); 343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 344 } 345 346 /* 347 * this_rq_lock - lock this runqueue and disable interrupts. 348 */ 349 static struct rq *this_rq_lock(void) 350 __acquires(rq->lock) 351 { 352 struct rq *rq; 353 354 local_irq_disable(); 355 rq = this_rq(); 356 raw_spin_lock(&rq->lock); 357 358 return rq; 359 } 360 361 #ifdef CONFIG_SCHED_HRTICK 362 /* 363 * Use HR-timers to deliver accurate preemption points. 364 * 365 * Its all a bit involved since we cannot program an hrt while holding the 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 367 * reschedule event. 368 * 369 * When we get rescheduled we reprogram the hrtick_timer outside of the 370 * rq->lock. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 /* 399 * called from hardirq (IPI) context 400 */ 401 static void __hrtick_start(void *arg) 402 { 403 struct rq *rq = arg; 404 405 raw_spin_lock(&rq->lock); 406 hrtimer_restart(&rq->hrtick_timer); 407 rq->hrtick_csd_pending = 0; 408 raw_spin_unlock(&rq->lock); 409 } 410 411 /* 412 * Called to set the hrtick timer state. 413 * 414 * called with rq->lock held and irqs disabled 415 */ 416 void hrtick_start(struct rq *rq, u64 delay) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 420 421 hrtimer_set_expires(timer, time); 422 423 if (rq == this_rq()) { 424 hrtimer_restart(timer); 425 } else if (!rq->hrtick_csd_pending) { 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 427 rq->hrtick_csd_pending = 1; 428 } 429 } 430 431 static int 432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 433 { 434 int cpu = (int)(long)hcpu; 435 436 switch (action) { 437 case CPU_UP_CANCELED: 438 case CPU_UP_CANCELED_FROZEN: 439 case CPU_DOWN_PREPARE: 440 case CPU_DOWN_PREPARE_FROZEN: 441 case CPU_DEAD: 442 case CPU_DEAD_FROZEN: 443 hrtick_clear(cpu_rq(cpu)); 444 return NOTIFY_OK; 445 } 446 447 return NOTIFY_DONE; 448 } 449 450 static __init void init_hrtick(void) 451 { 452 hotcpu_notifier(hotplug_hrtick, 0); 453 } 454 #else 455 /* 456 * Called to set the hrtick timer state. 457 * 458 * called with rq->lock held and irqs disabled 459 */ 460 void hrtick_start(struct rq *rq, u64 delay) 461 { 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 463 HRTIMER_MODE_REL_PINNED, 0); 464 } 465 466 static inline void init_hrtick(void) 467 { 468 } 469 #endif /* CONFIG_SMP */ 470 471 static void init_rq_hrtick(struct rq *rq) 472 { 473 #ifdef CONFIG_SMP 474 rq->hrtick_csd_pending = 0; 475 476 rq->hrtick_csd.flags = 0; 477 rq->hrtick_csd.func = __hrtick_start; 478 rq->hrtick_csd.info = rq; 479 #endif 480 481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 482 rq->hrtick_timer.function = hrtick; 483 } 484 #else /* CONFIG_SCHED_HRTICK */ 485 static inline void hrtick_clear(struct rq *rq) 486 { 487 } 488 489 static inline void init_rq_hrtick(struct rq *rq) 490 { 491 } 492 493 static inline void init_hrtick(void) 494 { 495 } 496 #endif /* CONFIG_SCHED_HRTICK */ 497 498 /* 499 * resched_task - mark a task 'to be rescheduled now'. 500 * 501 * On UP this means the setting of the need_resched flag, on SMP it 502 * might also involve a cross-CPU call to trigger the scheduler on 503 * the target CPU. 504 */ 505 #ifdef CONFIG_SMP 506 507 #ifndef tsk_is_polling 508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 509 #endif 510 511 void resched_task(struct task_struct *p) 512 { 513 int cpu; 514 515 assert_raw_spin_locked(&task_rq(p)->lock); 516 517 if (test_tsk_need_resched(p)) 518 return; 519 520 set_tsk_need_resched(p); 521 522 cpu = task_cpu(p); 523 if (cpu == smp_processor_id()) 524 return; 525 526 /* NEED_RESCHED must be visible before we test polling */ 527 smp_mb(); 528 if (!tsk_is_polling(p)) 529 smp_send_reschedule(cpu); 530 } 531 532 void resched_cpu(int cpu) 533 { 534 struct rq *rq = cpu_rq(cpu); 535 unsigned long flags; 536 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 538 return; 539 resched_task(cpu_curr(cpu)); 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 } 542 543 #ifdef CONFIG_NO_HZ 544 /* 545 * In the semi idle case, use the nearest busy cpu for migrating timers 546 * from an idle cpu. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle cpu will add more delays to the timers than intended 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int cpu = smp_processor_id(); 555 int i; 556 struct sched_domain *sd; 557 558 rcu_read_lock(); 559 for_each_domain(cpu, sd) { 560 for_each_cpu(i, sched_domain_span(sd)) { 561 if (!idle_cpu(i)) { 562 cpu = i; 563 goto unlock; 564 } 565 } 566 } 567 unlock: 568 rcu_read_unlock(); 569 return cpu; 570 } 571 /* 572 * When add_timer_on() enqueues a timer into the timer wheel of an 573 * idle CPU then this timer might expire before the next timer event 574 * which is scheduled to wake up that CPU. In case of a completely 575 * idle system the next event might even be infinite time into the 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 577 * leaves the inner idle loop so the newly added timer is taken into 578 * account when the CPU goes back to idle and evaluates the timer 579 * wheel for the next timer event. 580 */ 581 void wake_up_idle_cpu(int cpu) 582 { 583 struct rq *rq = cpu_rq(cpu); 584 585 if (cpu == smp_processor_id()) 586 return; 587 588 /* 589 * This is safe, as this function is called with the timer 590 * wheel base lock of (cpu) held. When the CPU is on the way 591 * to idle and has not yet set rq->curr to idle then it will 592 * be serialized on the timer wheel base lock and take the new 593 * timer into account automatically. 594 */ 595 if (rq->curr != rq->idle) 596 return; 597 598 /* 599 * We can set TIF_RESCHED on the idle task of the other CPU 600 * lockless. The worst case is that the other CPU runs the 601 * idle task through an additional NOOP schedule() 602 */ 603 set_tsk_need_resched(rq->idle); 604 605 /* NEED_RESCHED must be visible before we test polling */ 606 smp_mb(); 607 if (!tsk_is_polling(rq->idle)) 608 smp_send_reschedule(cpu); 609 } 610 611 static inline bool got_nohz_idle_kick(void) 612 { 613 int cpu = smp_processor_id(); 614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 615 } 616 617 #else /* CONFIG_NO_HZ */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ */ 625 626 void sched_avg_update(struct rq *rq) 627 { 628 s64 period = sched_avg_period(); 629 630 while ((s64)(rq->clock - rq->age_stamp) > period) { 631 /* 632 * Inline assembly required to prevent the compiler 633 * optimising this loop into a divmod call. 634 * See __iter_div_u64_rem() for another example of this. 635 */ 636 asm("" : "+rm" (rq->age_stamp)); 637 rq->age_stamp += period; 638 rq->rt_avg /= 2; 639 } 640 } 641 642 #else /* !CONFIG_SMP */ 643 void resched_task(struct task_struct *p) 644 { 645 assert_raw_spin_locked(&task_rq(p)->lock); 646 set_tsk_need_resched(p); 647 } 648 #endif /* CONFIG_SMP */ 649 650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 652 /* 653 * Iterate task_group tree rooted at *from, calling @down when first entering a 654 * node and @up when leaving it for the final time. 655 * 656 * Caller must hold rcu_lock or sufficient equivalent. 657 */ 658 int walk_tg_tree_from(struct task_group *from, 659 tg_visitor down, tg_visitor up, void *data) 660 { 661 struct task_group *parent, *child; 662 int ret; 663 664 parent = from; 665 666 down: 667 ret = (*down)(parent, data); 668 if (ret) 669 goto out; 670 list_for_each_entry_rcu(child, &parent->children, siblings) { 671 parent = child; 672 goto down; 673 674 up: 675 continue; 676 } 677 ret = (*up)(parent, data); 678 if (ret || parent == from) 679 goto out; 680 681 child = parent; 682 parent = parent->parent; 683 if (parent) 684 goto up; 685 out: 686 return ret; 687 } 688 689 int tg_nop(struct task_group *tg, void *data) 690 { 691 return 0; 692 } 693 #endif 694 695 void update_cpu_load(struct rq *this_rq); 696 697 static void set_load_weight(struct task_struct *p) 698 { 699 int prio = p->static_prio - MAX_RT_PRIO; 700 struct load_weight *load = &p->se.load; 701 702 /* 703 * SCHED_IDLE tasks get minimal weight: 704 */ 705 if (p->policy == SCHED_IDLE) { 706 load->weight = scale_load(WEIGHT_IDLEPRIO); 707 load->inv_weight = WMULT_IDLEPRIO; 708 return; 709 } 710 711 load->weight = scale_load(prio_to_weight[prio]); 712 load->inv_weight = prio_to_wmult[prio]; 713 } 714 715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 716 { 717 update_rq_clock(rq); 718 sched_info_queued(p); 719 p->sched_class->enqueue_task(rq, p, flags); 720 } 721 722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_dequeued(p); 726 p->sched_class->dequeue_task(rq, p, flags); 727 } 728 729 void activate_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 if (task_contributes_to_load(p)) 732 rq->nr_uninterruptible--; 733 734 enqueue_task(rq, p, flags); 735 } 736 737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 738 { 739 if (task_contributes_to_load(p)) 740 rq->nr_uninterruptible++; 741 742 dequeue_task(rq, p, flags); 743 } 744 745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 746 747 /* 748 * There are no locks covering percpu hardirq/softirq time. 749 * They are only modified in account_system_vtime, on corresponding CPU 750 * with interrupts disabled. So, writes are safe. 751 * They are read and saved off onto struct rq in update_rq_clock(). 752 * This may result in other CPU reading this CPU's irq time and can 753 * race with irq/account_system_vtime on this CPU. We would either get old 754 * or new value with a side effect of accounting a slice of irq time to wrong 755 * task when irq is in progress while we read rq->clock. That is a worthy 756 * compromise in place of having locks on each irq in account_system_time. 757 */ 758 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 759 static DEFINE_PER_CPU(u64, cpu_softirq_time); 760 761 static DEFINE_PER_CPU(u64, irq_start_time); 762 static int sched_clock_irqtime; 763 764 void enable_sched_clock_irqtime(void) 765 { 766 sched_clock_irqtime = 1; 767 } 768 769 void disable_sched_clock_irqtime(void) 770 { 771 sched_clock_irqtime = 0; 772 } 773 774 #ifndef CONFIG_64BIT 775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 776 777 static inline void irq_time_write_begin(void) 778 { 779 __this_cpu_inc(irq_time_seq.sequence); 780 smp_wmb(); 781 } 782 783 static inline void irq_time_write_end(void) 784 { 785 smp_wmb(); 786 __this_cpu_inc(irq_time_seq.sequence); 787 } 788 789 static inline u64 irq_time_read(int cpu) 790 { 791 u64 irq_time; 792 unsigned seq; 793 794 do { 795 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 796 irq_time = per_cpu(cpu_softirq_time, cpu) + 797 per_cpu(cpu_hardirq_time, cpu); 798 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 799 800 return irq_time; 801 } 802 #else /* CONFIG_64BIT */ 803 static inline void irq_time_write_begin(void) 804 { 805 } 806 807 static inline void irq_time_write_end(void) 808 { 809 } 810 811 static inline u64 irq_time_read(int cpu) 812 { 813 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 814 } 815 #endif /* CONFIG_64BIT */ 816 817 /* 818 * Called before incrementing preempt_count on {soft,}irq_enter 819 * and before decrementing preempt_count on {soft,}irq_exit. 820 */ 821 void account_system_vtime(struct task_struct *curr) 822 { 823 unsigned long flags; 824 s64 delta; 825 int cpu; 826 827 if (!sched_clock_irqtime) 828 return; 829 830 local_irq_save(flags); 831 832 cpu = smp_processor_id(); 833 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 834 __this_cpu_add(irq_start_time, delta); 835 836 irq_time_write_begin(); 837 /* 838 * We do not account for softirq time from ksoftirqd here. 839 * We want to continue accounting softirq time to ksoftirqd thread 840 * in that case, so as not to confuse scheduler with a special task 841 * that do not consume any time, but still wants to run. 842 */ 843 if (hardirq_count()) 844 __this_cpu_add(cpu_hardirq_time, delta); 845 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 846 __this_cpu_add(cpu_softirq_time, delta); 847 848 irq_time_write_end(); 849 local_irq_restore(flags); 850 } 851 EXPORT_SYMBOL_GPL(account_system_vtime); 852 853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 854 855 #ifdef CONFIG_PARAVIRT 856 static inline u64 steal_ticks(u64 steal) 857 { 858 if (unlikely(steal > NSEC_PER_SEC)) 859 return div_u64(steal, TICK_NSEC); 860 861 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 862 } 863 #endif 864 865 static void update_rq_clock_task(struct rq *rq, s64 delta) 866 { 867 /* 868 * In theory, the compile should just see 0 here, and optimize out the call 869 * to sched_rt_avg_update. But I don't trust it... 870 */ 871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 872 s64 steal = 0, irq_delta = 0; 873 #endif 874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 876 877 /* 878 * Since irq_time is only updated on {soft,}irq_exit, we might run into 879 * this case when a previous update_rq_clock() happened inside a 880 * {soft,}irq region. 881 * 882 * When this happens, we stop ->clock_task and only update the 883 * prev_irq_time stamp to account for the part that fit, so that a next 884 * update will consume the rest. This ensures ->clock_task is 885 * monotonic. 886 * 887 * It does however cause some slight miss-attribution of {soft,}irq 888 * time, a more accurate solution would be to update the irq_time using 889 * the current rq->clock timestamp, except that would require using 890 * atomic ops. 891 */ 892 if (irq_delta > delta) 893 irq_delta = delta; 894 895 rq->prev_irq_time += irq_delta; 896 delta -= irq_delta; 897 #endif 898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 899 if (static_key_false((¶virt_steal_rq_enabled))) { 900 u64 st; 901 902 steal = paravirt_steal_clock(cpu_of(rq)); 903 steal -= rq->prev_steal_time_rq; 904 905 if (unlikely(steal > delta)) 906 steal = delta; 907 908 st = steal_ticks(steal); 909 steal = st * TICK_NSEC; 910 911 rq->prev_steal_time_rq += steal; 912 913 delta -= steal; 914 } 915 #endif 916 917 rq->clock_task += delta; 918 919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 920 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 921 sched_rt_avg_update(rq, irq_delta + steal); 922 #endif 923 } 924 925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 926 static int irqtime_account_hi_update(void) 927 { 928 u64 *cpustat = kcpustat_this_cpu->cpustat; 929 unsigned long flags; 930 u64 latest_ns; 931 int ret = 0; 932 933 local_irq_save(flags); 934 latest_ns = this_cpu_read(cpu_hardirq_time); 935 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 936 ret = 1; 937 local_irq_restore(flags); 938 return ret; 939 } 940 941 static int irqtime_account_si_update(void) 942 { 943 u64 *cpustat = kcpustat_this_cpu->cpustat; 944 unsigned long flags; 945 u64 latest_ns; 946 int ret = 0; 947 948 local_irq_save(flags); 949 latest_ns = this_cpu_read(cpu_softirq_time); 950 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 951 ret = 1; 952 local_irq_restore(flags); 953 return ret; 954 } 955 956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 957 958 #define sched_clock_irqtime (0) 959 960 #endif 961 962 void sched_set_stop_task(int cpu, struct task_struct *stop) 963 { 964 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 965 struct task_struct *old_stop = cpu_rq(cpu)->stop; 966 967 if (stop) { 968 /* 969 * Make it appear like a SCHED_FIFO task, its something 970 * userspace knows about and won't get confused about. 971 * 972 * Also, it will make PI more or less work without too 973 * much confusion -- but then, stop work should not 974 * rely on PI working anyway. 975 */ 976 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 977 978 stop->sched_class = &stop_sched_class; 979 } 980 981 cpu_rq(cpu)->stop = stop; 982 983 if (old_stop) { 984 /* 985 * Reset it back to a normal scheduling class so that 986 * it can die in pieces. 987 */ 988 old_stop->sched_class = &rt_sched_class; 989 } 990 } 991 992 /* 993 * __normal_prio - return the priority that is based on the static prio 994 */ 995 static inline int __normal_prio(struct task_struct *p) 996 { 997 return p->static_prio; 998 } 999 1000 /* 1001 * Calculate the expected normal priority: i.e. priority 1002 * without taking RT-inheritance into account. Might be 1003 * boosted by interactivity modifiers. Changes upon fork, 1004 * setprio syscalls, and whenever the interactivity 1005 * estimator recalculates. 1006 */ 1007 static inline int normal_prio(struct task_struct *p) 1008 { 1009 int prio; 1010 1011 if (task_has_rt_policy(p)) 1012 prio = MAX_RT_PRIO-1 - p->rt_priority; 1013 else 1014 prio = __normal_prio(p); 1015 return prio; 1016 } 1017 1018 /* 1019 * Calculate the current priority, i.e. the priority 1020 * taken into account by the scheduler. This value might 1021 * be boosted by RT tasks, or might be boosted by 1022 * interactivity modifiers. Will be RT if the task got 1023 * RT-boosted. If not then it returns p->normal_prio. 1024 */ 1025 static int effective_prio(struct task_struct *p) 1026 { 1027 p->normal_prio = normal_prio(p); 1028 /* 1029 * If we are RT tasks or we were boosted to RT priority, 1030 * keep the priority unchanged. Otherwise, update priority 1031 * to the normal priority: 1032 */ 1033 if (!rt_prio(p->prio)) 1034 return p->normal_prio; 1035 return p->prio; 1036 } 1037 1038 /** 1039 * task_curr - is this task currently executing on a CPU? 1040 * @p: the task in question. 1041 */ 1042 inline int task_curr(const struct task_struct *p) 1043 { 1044 return cpu_curr(task_cpu(p)) == p; 1045 } 1046 1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1048 const struct sched_class *prev_class, 1049 int oldprio) 1050 { 1051 if (prev_class != p->sched_class) { 1052 if (prev_class->switched_from) 1053 prev_class->switched_from(rq, p); 1054 p->sched_class->switched_to(rq, p); 1055 } else if (oldprio != p->prio) 1056 p->sched_class->prio_changed(rq, p, oldprio); 1057 } 1058 1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1060 { 1061 const struct sched_class *class; 1062 1063 if (p->sched_class == rq->curr->sched_class) { 1064 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1065 } else { 1066 for_each_class(class) { 1067 if (class == rq->curr->sched_class) 1068 break; 1069 if (class == p->sched_class) { 1070 resched_task(rq->curr); 1071 break; 1072 } 1073 } 1074 } 1075 1076 /* 1077 * A queue event has occurred, and we're going to schedule. In 1078 * this case, we can save a useless back to back clock update. 1079 */ 1080 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1081 rq->skip_clock_update = 1; 1082 } 1083 1084 #ifdef CONFIG_SMP 1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1086 { 1087 #ifdef CONFIG_SCHED_DEBUG 1088 /* 1089 * We should never call set_task_cpu() on a blocked task, 1090 * ttwu() will sort out the placement. 1091 */ 1092 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1093 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1094 1095 #ifdef CONFIG_LOCKDEP 1096 /* 1097 * The caller should hold either p->pi_lock or rq->lock, when changing 1098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1099 * 1100 * sched_move_task() holds both and thus holding either pins the cgroup, 1101 * see set_task_rq(). 1102 * 1103 * Furthermore, all task_rq users should acquire both locks, see 1104 * task_rq_lock(). 1105 */ 1106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1107 lockdep_is_held(&task_rq(p)->lock))); 1108 #endif 1109 #endif 1110 1111 trace_sched_migrate_task(p, new_cpu); 1112 1113 if (task_cpu(p) != new_cpu) { 1114 p->se.nr_migrations++; 1115 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1116 } 1117 1118 __set_task_cpu(p, new_cpu); 1119 } 1120 1121 struct migration_arg { 1122 struct task_struct *task; 1123 int dest_cpu; 1124 }; 1125 1126 static int migration_cpu_stop(void *data); 1127 1128 /* 1129 * wait_task_inactive - wait for a thread to unschedule. 1130 * 1131 * If @match_state is nonzero, it's the @p->state value just checked and 1132 * not expected to change. If it changes, i.e. @p might have woken up, 1133 * then return zero. When we succeed in waiting for @p to be off its CPU, 1134 * we return a positive number (its total switch count). If a second call 1135 * a short while later returns the same number, the caller can be sure that 1136 * @p has remained unscheduled the whole time. 1137 * 1138 * The caller must ensure that the task *will* unschedule sometime soon, 1139 * else this function might spin for a *long* time. This function can't 1140 * be called with interrupts off, or it may introduce deadlock with 1141 * smp_call_function() if an IPI is sent by the same process we are 1142 * waiting to become inactive. 1143 */ 1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1145 { 1146 unsigned long flags; 1147 int running, on_rq; 1148 unsigned long ncsw; 1149 struct rq *rq; 1150 1151 for (;;) { 1152 /* 1153 * We do the initial early heuristics without holding 1154 * any task-queue locks at all. We'll only try to get 1155 * the runqueue lock when things look like they will 1156 * work out! 1157 */ 1158 rq = task_rq(p); 1159 1160 /* 1161 * If the task is actively running on another CPU 1162 * still, just relax and busy-wait without holding 1163 * any locks. 1164 * 1165 * NOTE! Since we don't hold any locks, it's not 1166 * even sure that "rq" stays as the right runqueue! 1167 * But we don't care, since "task_running()" will 1168 * return false if the runqueue has changed and p 1169 * is actually now running somewhere else! 1170 */ 1171 while (task_running(rq, p)) { 1172 if (match_state && unlikely(p->state != match_state)) 1173 return 0; 1174 cpu_relax(); 1175 } 1176 1177 /* 1178 * Ok, time to look more closely! We need the rq 1179 * lock now, to be *sure*. If we're wrong, we'll 1180 * just go back and repeat. 1181 */ 1182 rq = task_rq_lock(p, &flags); 1183 trace_sched_wait_task(p); 1184 running = task_running(rq, p); 1185 on_rq = p->on_rq; 1186 ncsw = 0; 1187 if (!match_state || p->state == match_state) 1188 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1189 task_rq_unlock(rq, p, &flags); 1190 1191 /* 1192 * If it changed from the expected state, bail out now. 1193 */ 1194 if (unlikely(!ncsw)) 1195 break; 1196 1197 /* 1198 * Was it really running after all now that we 1199 * checked with the proper locks actually held? 1200 * 1201 * Oops. Go back and try again.. 1202 */ 1203 if (unlikely(running)) { 1204 cpu_relax(); 1205 continue; 1206 } 1207 1208 /* 1209 * It's not enough that it's not actively running, 1210 * it must be off the runqueue _entirely_, and not 1211 * preempted! 1212 * 1213 * So if it was still runnable (but just not actively 1214 * running right now), it's preempted, and we should 1215 * yield - it could be a while. 1216 */ 1217 if (unlikely(on_rq)) { 1218 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1219 1220 set_current_state(TASK_UNINTERRUPTIBLE); 1221 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1222 continue; 1223 } 1224 1225 /* 1226 * Ahh, all good. It wasn't running, and it wasn't 1227 * runnable, which means that it will never become 1228 * running in the future either. We're all done! 1229 */ 1230 break; 1231 } 1232 1233 return ncsw; 1234 } 1235 1236 /*** 1237 * kick_process - kick a running thread to enter/exit the kernel 1238 * @p: the to-be-kicked thread 1239 * 1240 * Cause a process which is running on another CPU to enter 1241 * kernel-mode, without any delay. (to get signals handled.) 1242 * 1243 * NOTE: this function doesn't have to take the runqueue lock, 1244 * because all it wants to ensure is that the remote task enters 1245 * the kernel. If the IPI races and the task has been migrated 1246 * to another CPU then no harm is done and the purpose has been 1247 * achieved as well. 1248 */ 1249 void kick_process(struct task_struct *p) 1250 { 1251 int cpu; 1252 1253 preempt_disable(); 1254 cpu = task_cpu(p); 1255 if ((cpu != smp_processor_id()) && task_curr(p)) 1256 smp_send_reschedule(cpu); 1257 preempt_enable(); 1258 } 1259 EXPORT_SYMBOL_GPL(kick_process); 1260 #endif /* CONFIG_SMP */ 1261 1262 #ifdef CONFIG_SMP 1263 /* 1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1265 */ 1266 static int select_fallback_rq(int cpu, struct task_struct *p) 1267 { 1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1269 enum { cpuset, possible, fail } state = cpuset; 1270 int dest_cpu; 1271 1272 /* Look for allowed, online CPU in same node. */ 1273 for_each_cpu(dest_cpu, nodemask) { 1274 if (!cpu_online(dest_cpu)) 1275 continue; 1276 if (!cpu_active(dest_cpu)) 1277 continue; 1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1279 return dest_cpu; 1280 } 1281 1282 for (;;) { 1283 /* Any allowed, online CPU? */ 1284 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1285 if (!cpu_online(dest_cpu)) 1286 continue; 1287 if (!cpu_active(dest_cpu)) 1288 continue; 1289 goto out; 1290 } 1291 1292 switch (state) { 1293 case cpuset: 1294 /* No more Mr. Nice Guy. */ 1295 cpuset_cpus_allowed_fallback(p); 1296 state = possible; 1297 break; 1298 1299 case possible: 1300 do_set_cpus_allowed(p, cpu_possible_mask); 1301 state = fail; 1302 break; 1303 1304 case fail: 1305 BUG(); 1306 break; 1307 } 1308 } 1309 1310 out: 1311 if (state != cpuset) { 1312 /* 1313 * Don't tell them about moving exiting tasks or 1314 * kernel threads (both mm NULL), since they never 1315 * leave kernel. 1316 */ 1317 if (p->mm && printk_ratelimit()) { 1318 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1319 task_pid_nr(p), p->comm, cpu); 1320 } 1321 } 1322 1323 return dest_cpu; 1324 } 1325 1326 /* 1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1328 */ 1329 static inline 1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1331 { 1332 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1333 1334 /* 1335 * In order not to call set_task_cpu() on a blocking task we need 1336 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1337 * cpu. 1338 * 1339 * Since this is common to all placement strategies, this lives here. 1340 * 1341 * [ this allows ->select_task() to simply return task_cpu(p) and 1342 * not worry about this generic constraint ] 1343 */ 1344 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1345 !cpu_online(cpu))) 1346 cpu = select_fallback_rq(task_cpu(p), p); 1347 1348 return cpu; 1349 } 1350 1351 static void update_avg(u64 *avg, u64 sample) 1352 { 1353 s64 diff = sample - *avg; 1354 *avg += diff >> 3; 1355 } 1356 #endif 1357 1358 static void 1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1360 { 1361 #ifdef CONFIG_SCHEDSTATS 1362 struct rq *rq = this_rq(); 1363 1364 #ifdef CONFIG_SMP 1365 int this_cpu = smp_processor_id(); 1366 1367 if (cpu == this_cpu) { 1368 schedstat_inc(rq, ttwu_local); 1369 schedstat_inc(p, se.statistics.nr_wakeups_local); 1370 } else { 1371 struct sched_domain *sd; 1372 1373 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1374 rcu_read_lock(); 1375 for_each_domain(this_cpu, sd) { 1376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1377 schedstat_inc(sd, ttwu_wake_remote); 1378 break; 1379 } 1380 } 1381 rcu_read_unlock(); 1382 } 1383 1384 if (wake_flags & WF_MIGRATED) 1385 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1386 1387 #endif /* CONFIG_SMP */ 1388 1389 schedstat_inc(rq, ttwu_count); 1390 schedstat_inc(p, se.statistics.nr_wakeups); 1391 1392 if (wake_flags & WF_SYNC) 1393 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1394 1395 #endif /* CONFIG_SCHEDSTATS */ 1396 } 1397 1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1399 { 1400 activate_task(rq, p, en_flags); 1401 p->on_rq = 1; 1402 1403 /* if a worker is waking up, notify workqueue */ 1404 if (p->flags & PF_WQ_WORKER) 1405 wq_worker_waking_up(p, cpu_of(rq)); 1406 } 1407 1408 /* 1409 * Mark the task runnable and perform wakeup-preemption. 1410 */ 1411 static void 1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1413 { 1414 trace_sched_wakeup(p, true); 1415 check_preempt_curr(rq, p, wake_flags); 1416 1417 p->state = TASK_RUNNING; 1418 #ifdef CONFIG_SMP 1419 if (p->sched_class->task_woken) 1420 p->sched_class->task_woken(rq, p); 1421 1422 if (rq->idle_stamp) { 1423 u64 delta = rq->clock - rq->idle_stamp; 1424 u64 max = 2*sysctl_sched_migration_cost; 1425 1426 if (delta > max) 1427 rq->avg_idle = max; 1428 else 1429 update_avg(&rq->avg_idle, delta); 1430 rq->idle_stamp = 0; 1431 } 1432 #endif 1433 } 1434 1435 static void 1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1437 { 1438 #ifdef CONFIG_SMP 1439 if (p->sched_contributes_to_load) 1440 rq->nr_uninterruptible--; 1441 #endif 1442 1443 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1444 ttwu_do_wakeup(rq, p, wake_flags); 1445 } 1446 1447 /* 1448 * Called in case the task @p isn't fully descheduled from its runqueue, 1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1450 * since all we need to do is flip p->state to TASK_RUNNING, since 1451 * the task is still ->on_rq. 1452 */ 1453 static int ttwu_remote(struct task_struct *p, int wake_flags) 1454 { 1455 struct rq *rq; 1456 int ret = 0; 1457 1458 rq = __task_rq_lock(p); 1459 if (p->on_rq) { 1460 ttwu_do_wakeup(rq, p, wake_flags); 1461 ret = 1; 1462 } 1463 __task_rq_unlock(rq); 1464 1465 return ret; 1466 } 1467 1468 #ifdef CONFIG_SMP 1469 static void sched_ttwu_pending(void) 1470 { 1471 struct rq *rq = this_rq(); 1472 struct llist_node *llist = llist_del_all(&rq->wake_list); 1473 struct task_struct *p; 1474 1475 raw_spin_lock(&rq->lock); 1476 1477 while (llist) { 1478 p = llist_entry(llist, struct task_struct, wake_entry); 1479 llist = llist_next(llist); 1480 ttwu_do_activate(rq, p, 0); 1481 } 1482 1483 raw_spin_unlock(&rq->lock); 1484 } 1485 1486 void scheduler_ipi(void) 1487 { 1488 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1489 return; 1490 1491 /* 1492 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1493 * traditionally all their work was done from the interrupt return 1494 * path. Now that we actually do some work, we need to make sure 1495 * we do call them. 1496 * 1497 * Some archs already do call them, luckily irq_enter/exit nest 1498 * properly. 1499 * 1500 * Arguably we should visit all archs and update all handlers, 1501 * however a fair share of IPIs are still resched only so this would 1502 * somewhat pessimize the simple resched case. 1503 */ 1504 irq_enter(); 1505 sched_ttwu_pending(); 1506 1507 /* 1508 * Check if someone kicked us for doing the nohz idle load balance. 1509 */ 1510 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1511 this_rq()->idle_balance = 1; 1512 raise_softirq_irqoff(SCHED_SOFTIRQ); 1513 } 1514 irq_exit(); 1515 } 1516 1517 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1518 { 1519 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1520 smp_send_reschedule(cpu); 1521 } 1522 1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1525 { 1526 struct rq *rq; 1527 int ret = 0; 1528 1529 rq = __task_rq_lock(p); 1530 if (p->on_cpu) { 1531 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1532 ttwu_do_wakeup(rq, p, wake_flags); 1533 ret = 1; 1534 } 1535 __task_rq_unlock(rq); 1536 1537 return ret; 1538 1539 } 1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1541 1542 bool cpus_share_cache(int this_cpu, int that_cpu) 1543 { 1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1545 } 1546 #endif /* CONFIG_SMP */ 1547 1548 static void ttwu_queue(struct task_struct *p, int cpu) 1549 { 1550 struct rq *rq = cpu_rq(cpu); 1551 1552 #if defined(CONFIG_SMP) 1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1555 ttwu_queue_remote(p, cpu); 1556 return; 1557 } 1558 #endif 1559 1560 raw_spin_lock(&rq->lock); 1561 ttwu_do_activate(rq, p, 0); 1562 raw_spin_unlock(&rq->lock); 1563 } 1564 1565 /** 1566 * try_to_wake_up - wake up a thread 1567 * @p: the thread to be awakened 1568 * @state: the mask of task states that can be woken 1569 * @wake_flags: wake modifier flags (WF_*) 1570 * 1571 * Put it on the run-queue if it's not already there. The "current" 1572 * thread is always on the run-queue (except when the actual 1573 * re-schedule is in progress), and as such you're allowed to do 1574 * the simpler "current->state = TASK_RUNNING" to mark yourself 1575 * runnable without the overhead of this. 1576 * 1577 * Returns %true if @p was woken up, %false if it was already running 1578 * or @state didn't match @p's state. 1579 */ 1580 static int 1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1582 { 1583 unsigned long flags; 1584 int cpu, success = 0; 1585 1586 smp_wmb(); 1587 raw_spin_lock_irqsave(&p->pi_lock, flags); 1588 if (!(p->state & state)) 1589 goto out; 1590 1591 success = 1; /* we're going to change ->state */ 1592 cpu = task_cpu(p); 1593 1594 if (p->on_rq && ttwu_remote(p, wake_flags)) 1595 goto stat; 1596 1597 #ifdef CONFIG_SMP 1598 /* 1599 * If the owning (remote) cpu is still in the middle of schedule() with 1600 * this task as prev, wait until its done referencing the task. 1601 */ 1602 while (p->on_cpu) { 1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1604 /* 1605 * In case the architecture enables interrupts in 1606 * context_switch(), we cannot busy wait, since that 1607 * would lead to deadlocks when an interrupt hits and 1608 * tries to wake up @prev. So bail and do a complete 1609 * remote wakeup. 1610 */ 1611 if (ttwu_activate_remote(p, wake_flags)) 1612 goto stat; 1613 #else 1614 cpu_relax(); 1615 #endif 1616 } 1617 /* 1618 * Pairs with the smp_wmb() in finish_lock_switch(). 1619 */ 1620 smp_rmb(); 1621 1622 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1623 p->state = TASK_WAKING; 1624 1625 if (p->sched_class->task_waking) 1626 p->sched_class->task_waking(p); 1627 1628 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1629 if (task_cpu(p) != cpu) { 1630 wake_flags |= WF_MIGRATED; 1631 set_task_cpu(p, cpu); 1632 } 1633 #endif /* CONFIG_SMP */ 1634 1635 ttwu_queue(p, cpu); 1636 stat: 1637 ttwu_stat(p, cpu, wake_flags); 1638 out: 1639 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1640 1641 return success; 1642 } 1643 1644 /** 1645 * try_to_wake_up_local - try to wake up a local task with rq lock held 1646 * @p: the thread to be awakened 1647 * 1648 * Put @p on the run-queue if it's not already there. The caller must 1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1650 * the current task. 1651 */ 1652 static void try_to_wake_up_local(struct task_struct *p) 1653 { 1654 struct rq *rq = task_rq(p); 1655 1656 BUG_ON(rq != this_rq()); 1657 BUG_ON(p == current); 1658 lockdep_assert_held(&rq->lock); 1659 1660 if (!raw_spin_trylock(&p->pi_lock)) { 1661 raw_spin_unlock(&rq->lock); 1662 raw_spin_lock(&p->pi_lock); 1663 raw_spin_lock(&rq->lock); 1664 } 1665 1666 if (!(p->state & TASK_NORMAL)) 1667 goto out; 1668 1669 if (!p->on_rq) 1670 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1671 1672 ttwu_do_wakeup(rq, p, 0); 1673 ttwu_stat(p, smp_processor_id(), 0); 1674 out: 1675 raw_spin_unlock(&p->pi_lock); 1676 } 1677 1678 /** 1679 * wake_up_process - Wake up a specific process 1680 * @p: The process to be woken up. 1681 * 1682 * Attempt to wake up the nominated process and move it to the set of runnable 1683 * processes. Returns 1 if the process was woken up, 0 if it was already 1684 * running. 1685 * 1686 * It may be assumed that this function implies a write memory barrier before 1687 * changing the task state if and only if any tasks are woken up. 1688 */ 1689 int wake_up_process(struct task_struct *p) 1690 { 1691 return try_to_wake_up(p, TASK_ALL, 0); 1692 } 1693 EXPORT_SYMBOL(wake_up_process); 1694 1695 int wake_up_state(struct task_struct *p, unsigned int state) 1696 { 1697 return try_to_wake_up(p, state, 0); 1698 } 1699 1700 /* 1701 * Perform scheduler related setup for a newly forked process p. 1702 * p is forked by current. 1703 * 1704 * __sched_fork() is basic setup used by init_idle() too: 1705 */ 1706 static void __sched_fork(struct task_struct *p) 1707 { 1708 p->on_rq = 0; 1709 1710 p->se.on_rq = 0; 1711 p->se.exec_start = 0; 1712 p->se.sum_exec_runtime = 0; 1713 p->se.prev_sum_exec_runtime = 0; 1714 p->se.nr_migrations = 0; 1715 p->se.vruntime = 0; 1716 INIT_LIST_HEAD(&p->se.group_node); 1717 1718 #ifdef CONFIG_SCHEDSTATS 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1720 #endif 1721 1722 INIT_LIST_HEAD(&p->rt.run_list); 1723 1724 #ifdef CONFIG_PREEMPT_NOTIFIERS 1725 INIT_HLIST_HEAD(&p->preempt_notifiers); 1726 #endif 1727 } 1728 1729 /* 1730 * fork()/clone()-time setup: 1731 */ 1732 void sched_fork(struct task_struct *p) 1733 { 1734 unsigned long flags; 1735 int cpu = get_cpu(); 1736 1737 __sched_fork(p); 1738 /* 1739 * We mark the process as running here. This guarantees that 1740 * nobody will actually run it, and a signal or other external 1741 * event cannot wake it up and insert it on the runqueue either. 1742 */ 1743 p->state = TASK_RUNNING; 1744 1745 /* 1746 * Make sure we do not leak PI boosting priority to the child. 1747 */ 1748 p->prio = current->normal_prio; 1749 1750 /* 1751 * Revert to default priority/policy on fork if requested. 1752 */ 1753 if (unlikely(p->sched_reset_on_fork)) { 1754 if (task_has_rt_policy(p)) { 1755 p->policy = SCHED_NORMAL; 1756 p->static_prio = NICE_TO_PRIO(0); 1757 p->rt_priority = 0; 1758 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1759 p->static_prio = NICE_TO_PRIO(0); 1760 1761 p->prio = p->normal_prio = __normal_prio(p); 1762 set_load_weight(p); 1763 1764 /* 1765 * We don't need the reset flag anymore after the fork. It has 1766 * fulfilled its duty: 1767 */ 1768 p->sched_reset_on_fork = 0; 1769 } 1770 1771 if (!rt_prio(p->prio)) 1772 p->sched_class = &fair_sched_class; 1773 1774 if (p->sched_class->task_fork) 1775 p->sched_class->task_fork(p); 1776 1777 /* 1778 * The child is not yet in the pid-hash so no cgroup attach races, 1779 * and the cgroup is pinned to this child due to cgroup_fork() 1780 * is ran before sched_fork(). 1781 * 1782 * Silence PROVE_RCU. 1783 */ 1784 raw_spin_lock_irqsave(&p->pi_lock, flags); 1785 set_task_cpu(p, cpu); 1786 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1787 1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1789 if (likely(sched_info_on())) 1790 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1791 #endif 1792 #if defined(CONFIG_SMP) 1793 p->on_cpu = 0; 1794 #endif 1795 #ifdef CONFIG_PREEMPT_COUNT 1796 /* Want to start with kernel preemption disabled. */ 1797 task_thread_info(p)->preempt_count = 1; 1798 #endif 1799 #ifdef CONFIG_SMP 1800 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1801 #endif 1802 1803 put_cpu(); 1804 } 1805 1806 /* 1807 * wake_up_new_task - wake up a newly created task for the first time. 1808 * 1809 * This function will do some initial scheduler statistics housekeeping 1810 * that must be done for every newly created context, then puts the task 1811 * on the runqueue and wakes it. 1812 */ 1813 void wake_up_new_task(struct task_struct *p) 1814 { 1815 unsigned long flags; 1816 struct rq *rq; 1817 1818 raw_spin_lock_irqsave(&p->pi_lock, flags); 1819 #ifdef CONFIG_SMP 1820 /* 1821 * Fork balancing, do it here and not earlier because: 1822 * - cpus_allowed can change in the fork path 1823 * - any previously selected cpu might disappear through hotplug 1824 */ 1825 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1826 #endif 1827 1828 rq = __task_rq_lock(p); 1829 activate_task(rq, p, 0); 1830 p->on_rq = 1; 1831 trace_sched_wakeup_new(p, true); 1832 check_preempt_curr(rq, p, WF_FORK); 1833 #ifdef CONFIG_SMP 1834 if (p->sched_class->task_woken) 1835 p->sched_class->task_woken(rq, p); 1836 #endif 1837 task_rq_unlock(rq, p, &flags); 1838 } 1839 1840 #ifdef CONFIG_PREEMPT_NOTIFIERS 1841 1842 /** 1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1844 * @notifier: notifier struct to register 1845 */ 1846 void preempt_notifier_register(struct preempt_notifier *notifier) 1847 { 1848 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1849 } 1850 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1851 1852 /** 1853 * preempt_notifier_unregister - no longer interested in preemption notifications 1854 * @notifier: notifier struct to unregister 1855 * 1856 * This is safe to call from within a preemption notifier. 1857 */ 1858 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1859 { 1860 hlist_del(¬ifier->link); 1861 } 1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1863 1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1865 { 1866 struct preempt_notifier *notifier; 1867 struct hlist_node *node; 1868 1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1870 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1871 } 1872 1873 static void 1874 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1875 struct task_struct *next) 1876 { 1877 struct preempt_notifier *notifier; 1878 struct hlist_node *node; 1879 1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1881 notifier->ops->sched_out(notifier, next); 1882 } 1883 1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1885 1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1887 { 1888 } 1889 1890 static void 1891 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1892 struct task_struct *next) 1893 { 1894 } 1895 1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1897 1898 /** 1899 * prepare_task_switch - prepare to switch tasks 1900 * @rq: the runqueue preparing to switch 1901 * @prev: the current task that is being switched out 1902 * @next: the task we are going to switch to. 1903 * 1904 * This is called with the rq lock held and interrupts off. It must 1905 * be paired with a subsequent finish_task_switch after the context 1906 * switch. 1907 * 1908 * prepare_task_switch sets up locking and calls architecture specific 1909 * hooks. 1910 */ 1911 static inline void 1912 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1913 struct task_struct *next) 1914 { 1915 sched_info_switch(prev, next); 1916 perf_event_task_sched_out(prev, next); 1917 fire_sched_out_preempt_notifiers(prev, next); 1918 prepare_lock_switch(rq, next); 1919 prepare_arch_switch(next); 1920 trace_sched_switch(prev, next); 1921 } 1922 1923 /** 1924 * finish_task_switch - clean up after a task-switch 1925 * @rq: runqueue associated with task-switch 1926 * @prev: the thread we just switched away from. 1927 * 1928 * finish_task_switch must be called after the context switch, paired 1929 * with a prepare_task_switch call before the context switch. 1930 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1931 * and do any other architecture-specific cleanup actions. 1932 * 1933 * Note that we may have delayed dropping an mm in context_switch(). If 1934 * so, we finish that here outside of the runqueue lock. (Doing it 1935 * with the lock held can cause deadlocks; see schedule() for 1936 * details.) 1937 */ 1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1939 __releases(rq->lock) 1940 { 1941 struct mm_struct *mm = rq->prev_mm; 1942 long prev_state; 1943 1944 rq->prev_mm = NULL; 1945 1946 /* 1947 * A task struct has one reference for the use as "current". 1948 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1949 * schedule one last time. The schedule call will never return, and 1950 * the scheduled task must drop that reference. 1951 * The test for TASK_DEAD must occur while the runqueue locks are 1952 * still held, otherwise prev could be scheduled on another cpu, die 1953 * there before we look at prev->state, and then the reference would 1954 * be dropped twice. 1955 * Manfred Spraul <manfred@colorfullife.com> 1956 */ 1957 prev_state = prev->state; 1958 finish_arch_switch(prev); 1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1960 local_irq_disable(); 1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1962 perf_event_task_sched_in(prev, current); 1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1964 local_irq_enable(); 1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1966 finish_lock_switch(rq, prev); 1967 finish_arch_post_lock_switch(); 1968 1969 fire_sched_in_preempt_notifiers(current); 1970 if (mm) 1971 mmdrop(mm); 1972 if (unlikely(prev_state == TASK_DEAD)) { 1973 /* 1974 * Remove function-return probe instances associated with this 1975 * task and put them back on the free list. 1976 */ 1977 kprobe_flush_task(prev); 1978 put_task_struct(prev); 1979 } 1980 } 1981 1982 #ifdef CONFIG_SMP 1983 1984 /* assumes rq->lock is held */ 1985 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1986 { 1987 if (prev->sched_class->pre_schedule) 1988 prev->sched_class->pre_schedule(rq, prev); 1989 } 1990 1991 /* rq->lock is NOT held, but preemption is disabled */ 1992 static inline void post_schedule(struct rq *rq) 1993 { 1994 if (rq->post_schedule) { 1995 unsigned long flags; 1996 1997 raw_spin_lock_irqsave(&rq->lock, flags); 1998 if (rq->curr->sched_class->post_schedule) 1999 rq->curr->sched_class->post_schedule(rq); 2000 raw_spin_unlock_irqrestore(&rq->lock, flags); 2001 2002 rq->post_schedule = 0; 2003 } 2004 } 2005 2006 #else 2007 2008 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2009 { 2010 } 2011 2012 static inline void post_schedule(struct rq *rq) 2013 { 2014 } 2015 2016 #endif 2017 2018 /** 2019 * schedule_tail - first thing a freshly forked thread must call. 2020 * @prev: the thread we just switched away from. 2021 */ 2022 asmlinkage void schedule_tail(struct task_struct *prev) 2023 __releases(rq->lock) 2024 { 2025 struct rq *rq = this_rq(); 2026 2027 finish_task_switch(rq, prev); 2028 2029 /* 2030 * FIXME: do we need to worry about rq being invalidated by the 2031 * task_switch? 2032 */ 2033 post_schedule(rq); 2034 2035 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2036 /* In this case, finish_task_switch does not reenable preemption */ 2037 preempt_enable(); 2038 #endif 2039 if (current->set_child_tid) 2040 put_user(task_pid_vnr(current), current->set_child_tid); 2041 } 2042 2043 /* 2044 * context_switch - switch to the new MM and the new 2045 * thread's register state. 2046 */ 2047 static inline void 2048 context_switch(struct rq *rq, struct task_struct *prev, 2049 struct task_struct *next) 2050 { 2051 struct mm_struct *mm, *oldmm; 2052 2053 prepare_task_switch(rq, prev, next); 2054 2055 mm = next->mm; 2056 oldmm = prev->active_mm; 2057 /* 2058 * For paravirt, this is coupled with an exit in switch_to to 2059 * combine the page table reload and the switch backend into 2060 * one hypercall. 2061 */ 2062 arch_start_context_switch(prev); 2063 2064 if (!mm) { 2065 next->active_mm = oldmm; 2066 atomic_inc(&oldmm->mm_count); 2067 enter_lazy_tlb(oldmm, next); 2068 } else 2069 switch_mm(oldmm, mm, next); 2070 2071 if (!prev->mm) { 2072 prev->active_mm = NULL; 2073 rq->prev_mm = oldmm; 2074 } 2075 /* 2076 * Since the runqueue lock will be released by the next 2077 * task (which is an invalid locking op but in the case 2078 * of the scheduler it's an obvious special-case), so we 2079 * do an early lockdep release here: 2080 */ 2081 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2082 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2083 #endif 2084 2085 /* Here we just switch the register state and the stack. */ 2086 switch_to(prev, next, prev); 2087 2088 barrier(); 2089 /* 2090 * this_rq must be evaluated again because prev may have moved 2091 * CPUs since it called schedule(), thus the 'rq' on its stack 2092 * frame will be invalid. 2093 */ 2094 finish_task_switch(this_rq(), prev); 2095 } 2096 2097 /* 2098 * nr_running, nr_uninterruptible and nr_context_switches: 2099 * 2100 * externally visible scheduler statistics: current number of runnable 2101 * threads, current number of uninterruptible-sleeping threads, total 2102 * number of context switches performed since bootup. 2103 */ 2104 unsigned long nr_running(void) 2105 { 2106 unsigned long i, sum = 0; 2107 2108 for_each_online_cpu(i) 2109 sum += cpu_rq(i)->nr_running; 2110 2111 return sum; 2112 } 2113 2114 unsigned long nr_uninterruptible(void) 2115 { 2116 unsigned long i, sum = 0; 2117 2118 for_each_possible_cpu(i) 2119 sum += cpu_rq(i)->nr_uninterruptible; 2120 2121 /* 2122 * Since we read the counters lockless, it might be slightly 2123 * inaccurate. Do not allow it to go below zero though: 2124 */ 2125 if (unlikely((long)sum < 0)) 2126 sum = 0; 2127 2128 return sum; 2129 } 2130 2131 unsigned long long nr_context_switches(void) 2132 { 2133 int i; 2134 unsigned long long sum = 0; 2135 2136 for_each_possible_cpu(i) 2137 sum += cpu_rq(i)->nr_switches; 2138 2139 return sum; 2140 } 2141 2142 unsigned long nr_iowait(void) 2143 { 2144 unsigned long i, sum = 0; 2145 2146 for_each_possible_cpu(i) 2147 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2148 2149 return sum; 2150 } 2151 2152 unsigned long nr_iowait_cpu(int cpu) 2153 { 2154 struct rq *this = cpu_rq(cpu); 2155 return atomic_read(&this->nr_iowait); 2156 } 2157 2158 unsigned long this_cpu_load(void) 2159 { 2160 struct rq *this = this_rq(); 2161 return this->cpu_load[0]; 2162 } 2163 2164 2165 /* Variables and functions for calc_load */ 2166 static atomic_long_t calc_load_tasks; 2167 static unsigned long calc_load_update; 2168 unsigned long avenrun[3]; 2169 EXPORT_SYMBOL(avenrun); 2170 2171 static long calc_load_fold_active(struct rq *this_rq) 2172 { 2173 long nr_active, delta = 0; 2174 2175 nr_active = this_rq->nr_running; 2176 nr_active += (long) this_rq->nr_uninterruptible; 2177 2178 if (nr_active != this_rq->calc_load_active) { 2179 delta = nr_active - this_rq->calc_load_active; 2180 this_rq->calc_load_active = nr_active; 2181 } 2182 2183 return delta; 2184 } 2185 2186 static unsigned long 2187 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2188 { 2189 load *= exp; 2190 load += active * (FIXED_1 - exp); 2191 load += 1UL << (FSHIFT - 1); 2192 return load >> FSHIFT; 2193 } 2194 2195 #ifdef CONFIG_NO_HZ 2196 /* 2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2198 * 2199 * When making the ILB scale, we should try to pull this in as well. 2200 */ 2201 static atomic_long_t calc_load_tasks_idle; 2202 2203 void calc_load_account_idle(struct rq *this_rq) 2204 { 2205 long delta; 2206 2207 delta = calc_load_fold_active(this_rq); 2208 if (delta) 2209 atomic_long_add(delta, &calc_load_tasks_idle); 2210 } 2211 2212 static long calc_load_fold_idle(void) 2213 { 2214 long delta = 0; 2215 2216 /* 2217 * Its got a race, we don't care... 2218 */ 2219 if (atomic_long_read(&calc_load_tasks_idle)) 2220 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2221 2222 return delta; 2223 } 2224 2225 /** 2226 * fixed_power_int - compute: x^n, in O(log n) time 2227 * 2228 * @x: base of the power 2229 * @frac_bits: fractional bits of @x 2230 * @n: power to raise @x to. 2231 * 2232 * By exploiting the relation between the definition of the natural power 2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2235 * (where: n_i \elem {0, 1}, the binary vector representing n), 2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2237 * of course trivially computable in O(log_2 n), the length of our binary 2238 * vector. 2239 */ 2240 static unsigned long 2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2242 { 2243 unsigned long result = 1UL << frac_bits; 2244 2245 if (n) for (;;) { 2246 if (n & 1) { 2247 result *= x; 2248 result += 1UL << (frac_bits - 1); 2249 result >>= frac_bits; 2250 } 2251 n >>= 1; 2252 if (!n) 2253 break; 2254 x *= x; 2255 x += 1UL << (frac_bits - 1); 2256 x >>= frac_bits; 2257 } 2258 2259 return result; 2260 } 2261 2262 /* 2263 * a1 = a0 * e + a * (1 - e) 2264 * 2265 * a2 = a1 * e + a * (1 - e) 2266 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2267 * = a0 * e^2 + a * (1 - e) * (1 + e) 2268 * 2269 * a3 = a2 * e + a * (1 - e) 2270 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2271 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2272 * 2273 * ... 2274 * 2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2276 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2277 * = a0 * e^n + a * (1 - e^n) 2278 * 2279 * [1] application of the geometric series: 2280 * 2281 * n 1 - x^(n+1) 2282 * S_n := \Sum x^i = ------------- 2283 * i=0 1 - x 2284 */ 2285 static unsigned long 2286 calc_load_n(unsigned long load, unsigned long exp, 2287 unsigned long active, unsigned int n) 2288 { 2289 2290 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2291 } 2292 2293 /* 2294 * NO_HZ can leave us missing all per-cpu ticks calling 2295 * calc_load_account_active(), but since an idle CPU folds its delta into 2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2297 * in the pending idle delta if our idle period crossed a load cycle boundary. 2298 * 2299 * Once we've updated the global active value, we need to apply the exponential 2300 * weights adjusted to the number of cycles missed. 2301 */ 2302 static void calc_global_nohz(void) 2303 { 2304 long delta, active, n; 2305 2306 /* 2307 * If we crossed a calc_load_update boundary, make sure to fold 2308 * any pending idle changes, the respective CPUs might have 2309 * missed the tick driven calc_load_account_active() update 2310 * due to NO_HZ. 2311 */ 2312 delta = calc_load_fold_idle(); 2313 if (delta) 2314 atomic_long_add(delta, &calc_load_tasks); 2315 2316 /* 2317 * It could be the one fold was all it took, we done! 2318 */ 2319 if (time_before(jiffies, calc_load_update + 10)) 2320 return; 2321 2322 /* 2323 * Catch-up, fold however many we are behind still 2324 */ 2325 delta = jiffies - calc_load_update - 10; 2326 n = 1 + (delta / LOAD_FREQ); 2327 2328 active = atomic_long_read(&calc_load_tasks); 2329 active = active > 0 ? active * FIXED_1 : 0; 2330 2331 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2332 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2333 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2334 2335 calc_load_update += n * LOAD_FREQ; 2336 } 2337 #else 2338 void calc_load_account_idle(struct rq *this_rq) 2339 { 2340 } 2341 2342 static inline long calc_load_fold_idle(void) 2343 { 2344 return 0; 2345 } 2346 2347 static void calc_global_nohz(void) 2348 { 2349 } 2350 #endif 2351 2352 /** 2353 * get_avenrun - get the load average array 2354 * @loads: pointer to dest load array 2355 * @offset: offset to add 2356 * @shift: shift count to shift the result left 2357 * 2358 * These values are estimates at best, so no need for locking. 2359 */ 2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2361 { 2362 loads[0] = (avenrun[0] + offset) << shift; 2363 loads[1] = (avenrun[1] + offset) << shift; 2364 loads[2] = (avenrun[2] + offset) << shift; 2365 } 2366 2367 /* 2368 * calc_load - update the avenrun load estimates 10 ticks after the 2369 * CPUs have updated calc_load_tasks. 2370 */ 2371 void calc_global_load(unsigned long ticks) 2372 { 2373 long active; 2374 2375 if (time_before(jiffies, calc_load_update + 10)) 2376 return; 2377 2378 active = atomic_long_read(&calc_load_tasks); 2379 active = active > 0 ? active * FIXED_1 : 0; 2380 2381 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2382 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2383 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2384 2385 calc_load_update += LOAD_FREQ; 2386 2387 /* 2388 * Account one period with whatever state we found before 2389 * folding in the nohz state and ageing the entire idle period. 2390 * 2391 * This avoids loosing a sample when we go idle between 2392 * calc_load_account_active() (10 ticks ago) and now and thus 2393 * under-accounting. 2394 */ 2395 calc_global_nohz(); 2396 } 2397 2398 /* 2399 * Called from update_cpu_load() to periodically update this CPU's 2400 * active count. 2401 */ 2402 static void calc_load_account_active(struct rq *this_rq) 2403 { 2404 long delta; 2405 2406 if (time_before(jiffies, this_rq->calc_load_update)) 2407 return; 2408 2409 delta = calc_load_fold_active(this_rq); 2410 delta += calc_load_fold_idle(); 2411 if (delta) 2412 atomic_long_add(delta, &calc_load_tasks); 2413 2414 this_rq->calc_load_update += LOAD_FREQ; 2415 } 2416 2417 /* 2418 * The exact cpuload at various idx values, calculated at every tick would be 2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2420 * 2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2422 * on nth tick when cpu may be busy, then we have: 2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2425 * 2426 * decay_load_missed() below does efficient calculation of 2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2429 * 2430 * The calculation is approximated on a 128 point scale. 2431 * degrade_zero_ticks is the number of ticks after which load at any 2432 * particular idx is approximated to be zero. 2433 * degrade_factor is a precomputed table, a row for each load idx. 2434 * Each column corresponds to degradation factor for a power of two ticks, 2435 * based on 128 point scale. 2436 * Example: 2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2439 * 2440 * With this power of 2 load factors, we can degrade the load n times 2441 * by looking at 1 bits in n and doing as many mult/shift instead of 2442 * n mult/shifts needed by the exact degradation. 2443 */ 2444 #define DEGRADE_SHIFT 7 2445 static const unsigned char 2446 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2447 static const unsigned char 2448 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2449 {0, 0, 0, 0, 0, 0, 0, 0}, 2450 {64, 32, 8, 0, 0, 0, 0, 0}, 2451 {96, 72, 40, 12, 1, 0, 0}, 2452 {112, 98, 75, 43, 15, 1, 0}, 2453 {120, 112, 98, 76, 45, 16, 2} }; 2454 2455 /* 2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2457 * would be when CPU is idle and so we just decay the old load without 2458 * adding any new load. 2459 */ 2460 static unsigned long 2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2462 { 2463 int j = 0; 2464 2465 if (!missed_updates) 2466 return load; 2467 2468 if (missed_updates >= degrade_zero_ticks[idx]) 2469 return 0; 2470 2471 if (idx == 1) 2472 return load >> missed_updates; 2473 2474 while (missed_updates) { 2475 if (missed_updates % 2) 2476 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2477 2478 missed_updates >>= 1; 2479 j++; 2480 } 2481 return load; 2482 } 2483 2484 /* 2485 * Update rq->cpu_load[] statistics. This function is usually called every 2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2487 * every tick. We fix it up based on jiffies. 2488 */ 2489 void update_cpu_load(struct rq *this_rq) 2490 { 2491 unsigned long this_load = this_rq->load.weight; 2492 unsigned long curr_jiffies = jiffies; 2493 unsigned long pending_updates; 2494 int i, scale; 2495 2496 this_rq->nr_load_updates++; 2497 2498 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2499 if (curr_jiffies == this_rq->last_load_update_tick) 2500 return; 2501 2502 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2503 this_rq->last_load_update_tick = curr_jiffies; 2504 2505 /* Update our load: */ 2506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2508 unsigned long old_load, new_load; 2509 2510 /* scale is effectively 1 << i now, and >> i divides by scale */ 2511 2512 old_load = this_rq->cpu_load[i]; 2513 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2514 new_load = this_load; 2515 /* 2516 * Round up the averaging division if load is increasing. This 2517 * prevents us from getting stuck on 9 if the load is 10, for 2518 * example. 2519 */ 2520 if (new_load > old_load) 2521 new_load += scale - 1; 2522 2523 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2524 } 2525 2526 sched_avg_update(this_rq); 2527 } 2528 2529 static void update_cpu_load_active(struct rq *this_rq) 2530 { 2531 update_cpu_load(this_rq); 2532 2533 calc_load_account_active(this_rq); 2534 } 2535 2536 #ifdef CONFIG_SMP 2537 2538 /* 2539 * sched_exec - execve() is a valuable balancing opportunity, because at 2540 * this point the task has the smallest effective memory and cache footprint. 2541 */ 2542 void sched_exec(void) 2543 { 2544 struct task_struct *p = current; 2545 unsigned long flags; 2546 int dest_cpu; 2547 2548 raw_spin_lock_irqsave(&p->pi_lock, flags); 2549 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2550 if (dest_cpu == smp_processor_id()) 2551 goto unlock; 2552 2553 if (likely(cpu_active(dest_cpu))) { 2554 struct migration_arg arg = { p, dest_cpu }; 2555 2556 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2557 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2558 return; 2559 } 2560 unlock: 2561 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2562 } 2563 2564 #endif 2565 2566 DEFINE_PER_CPU(struct kernel_stat, kstat); 2567 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2568 2569 EXPORT_PER_CPU_SYMBOL(kstat); 2570 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2571 2572 /* 2573 * Return any ns on the sched_clock that have not yet been accounted in 2574 * @p in case that task is currently running. 2575 * 2576 * Called with task_rq_lock() held on @rq. 2577 */ 2578 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2579 { 2580 u64 ns = 0; 2581 2582 if (task_current(rq, p)) { 2583 update_rq_clock(rq); 2584 ns = rq->clock_task - p->se.exec_start; 2585 if ((s64)ns < 0) 2586 ns = 0; 2587 } 2588 2589 return ns; 2590 } 2591 2592 unsigned long long task_delta_exec(struct task_struct *p) 2593 { 2594 unsigned long flags; 2595 struct rq *rq; 2596 u64 ns = 0; 2597 2598 rq = task_rq_lock(p, &flags); 2599 ns = do_task_delta_exec(p, rq); 2600 task_rq_unlock(rq, p, &flags); 2601 2602 return ns; 2603 } 2604 2605 /* 2606 * Return accounted runtime for the task. 2607 * In case the task is currently running, return the runtime plus current's 2608 * pending runtime that have not been accounted yet. 2609 */ 2610 unsigned long long task_sched_runtime(struct task_struct *p) 2611 { 2612 unsigned long flags; 2613 struct rq *rq; 2614 u64 ns = 0; 2615 2616 rq = task_rq_lock(p, &flags); 2617 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2618 task_rq_unlock(rq, p, &flags); 2619 2620 return ns; 2621 } 2622 2623 #ifdef CONFIG_CGROUP_CPUACCT 2624 struct cgroup_subsys cpuacct_subsys; 2625 struct cpuacct root_cpuacct; 2626 #endif 2627 2628 static inline void task_group_account_field(struct task_struct *p, int index, 2629 u64 tmp) 2630 { 2631 #ifdef CONFIG_CGROUP_CPUACCT 2632 struct kernel_cpustat *kcpustat; 2633 struct cpuacct *ca; 2634 #endif 2635 /* 2636 * Since all updates are sure to touch the root cgroup, we 2637 * get ourselves ahead and touch it first. If the root cgroup 2638 * is the only cgroup, then nothing else should be necessary. 2639 * 2640 */ 2641 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2642 2643 #ifdef CONFIG_CGROUP_CPUACCT 2644 if (unlikely(!cpuacct_subsys.active)) 2645 return; 2646 2647 rcu_read_lock(); 2648 ca = task_ca(p); 2649 while (ca && (ca != &root_cpuacct)) { 2650 kcpustat = this_cpu_ptr(ca->cpustat); 2651 kcpustat->cpustat[index] += tmp; 2652 ca = parent_ca(ca); 2653 } 2654 rcu_read_unlock(); 2655 #endif 2656 } 2657 2658 2659 /* 2660 * Account user cpu time to a process. 2661 * @p: the process that the cpu time gets accounted to 2662 * @cputime: the cpu time spent in user space since the last update 2663 * @cputime_scaled: cputime scaled by cpu frequency 2664 */ 2665 void account_user_time(struct task_struct *p, cputime_t cputime, 2666 cputime_t cputime_scaled) 2667 { 2668 int index; 2669 2670 /* Add user time to process. */ 2671 p->utime += cputime; 2672 p->utimescaled += cputime_scaled; 2673 account_group_user_time(p, cputime); 2674 2675 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2676 2677 /* Add user time to cpustat. */ 2678 task_group_account_field(p, index, (__force u64) cputime); 2679 2680 /* Account for user time used */ 2681 acct_update_integrals(p); 2682 } 2683 2684 /* 2685 * Account guest cpu time to a process. 2686 * @p: the process that the cpu time gets accounted to 2687 * @cputime: the cpu time spent in virtual machine since the last update 2688 * @cputime_scaled: cputime scaled by cpu frequency 2689 */ 2690 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2691 cputime_t cputime_scaled) 2692 { 2693 u64 *cpustat = kcpustat_this_cpu->cpustat; 2694 2695 /* Add guest time to process. */ 2696 p->utime += cputime; 2697 p->utimescaled += cputime_scaled; 2698 account_group_user_time(p, cputime); 2699 p->gtime += cputime; 2700 2701 /* Add guest time to cpustat. */ 2702 if (TASK_NICE(p) > 0) { 2703 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2704 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2705 } else { 2706 cpustat[CPUTIME_USER] += (__force u64) cputime; 2707 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2708 } 2709 } 2710 2711 /* 2712 * Account system cpu time to a process and desired cpustat field 2713 * @p: the process that the cpu time gets accounted to 2714 * @cputime: the cpu time spent in kernel space since the last update 2715 * @cputime_scaled: cputime scaled by cpu frequency 2716 * @target_cputime64: pointer to cpustat field that has to be updated 2717 */ 2718 static inline 2719 void __account_system_time(struct task_struct *p, cputime_t cputime, 2720 cputime_t cputime_scaled, int index) 2721 { 2722 /* Add system time to process. */ 2723 p->stime += cputime; 2724 p->stimescaled += cputime_scaled; 2725 account_group_system_time(p, cputime); 2726 2727 /* Add system time to cpustat. */ 2728 task_group_account_field(p, index, (__force u64) cputime); 2729 2730 /* Account for system time used */ 2731 acct_update_integrals(p); 2732 } 2733 2734 /* 2735 * Account system cpu time to a process. 2736 * @p: the process that the cpu time gets accounted to 2737 * @hardirq_offset: the offset to subtract from hardirq_count() 2738 * @cputime: the cpu time spent in kernel space since the last update 2739 * @cputime_scaled: cputime scaled by cpu frequency 2740 */ 2741 void account_system_time(struct task_struct *p, int hardirq_offset, 2742 cputime_t cputime, cputime_t cputime_scaled) 2743 { 2744 int index; 2745 2746 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2747 account_guest_time(p, cputime, cputime_scaled); 2748 return; 2749 } 2750 2751 if (hardirq_count() - hardirq_offset) 2752 index = CPUTIME_IRQ; 2753 else if (in_serving_softirq()) 2754 index = CPUTIME_SOFTIRQ; 2755 else 2756 index = CPUTIME_SYSTEM; 2757 2758 __account_system_time(p, cputime, cputime_scaled, index); 2759 } 2760 2761 /* 2762 * Account for involuntary wait time. 2763 * @cputime: the cpu time spent in involuntary wait 2764 */ 2765 void account_steal_time(cputime_t cputime) 2766 { 2767 u64 *cpustat = kcpustat_this_cpu->cpustat; 2768 2769 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2770 } 2771 2772 /* 2773 * Account for idle time. 2774 * @cputime: the cpu time spent in idle wait 2775 */ 2776 void account_idle_time(cputime_t cputime) 2777 { 2778 u64 *cpustat = kcpustat_this_cpu->cpustat; 2779 struct rq *rq = this_rq(); 2780 2781 if (atomic_read(&rq->nr_iowait) > 0) 2782 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2783 else 2784 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2785 } 2786 2787 static __always_inline bool steal_account_process_tick(void) 2788 { 2789 #ifdef CONFIG_PARAVIRT 2790 if (static_key_false(¶virt_steal_enabled)) { 2791 u64 steal, st = 0; 2792 2793 steal = paravirt_steal_clock(smp_processor_id()); 2794 steal -= this_rq()->prev_steal_time; 2795 2796 st = steal_ticks(steal); 2797 this_rq()->prev_steal_time += st * TICK_NSEC; 2798 2799 account_steal_time(st); 2800 return st; 2801 } 2802 #endif 2803 return false; 2804 } 2805 2806 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2807 2808 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2809 /* 2810 * Account a tick to a process and cpustat 2811 * @p: the process that the cpu time gets accounted to 2812 * @user_tick: is the tick from userspace 2813 * @rq: the pointer to rq 2814 * 2815 * Tick demultiplexing follows the order 2816 * - pending hardirq update 2817 * - pending softirq update 2818 * - user_time 2819 * - idle_time 2820 * - system time 2821 * - check for guest_time 2822 * - else account as system_time 2823 * 2824 * Check for hardirq is done both for system and user time as there is 2825 * no timer going off while we are on hardirq and hence we may never get an 2826 * opportunity to update it solely in system time. 2827 * p->stime and friends are only updated on system time and not on irq 2828 * softirq as those do not count in task exec_runtime any more. 2829 */ 2830 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2831 struct rq *rq) 2832 { 2833 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2834 u64 *cpustat = kcpustat_this_cpu->cpustat; 2835 2836 if (steal_account_process_tick()) 2837 return; 2838 2839 if (irqtime_account_hi_update()) { 2840 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2841 } else if (irqtime_account_si_update()) { 2842 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2843 } else if (this_cpu_ksoftirqd() == p) { 2844 /* 2845 * ksoftirqd time do not get accounted in cpu_softirq_time. 2846 * So, we have to handle it separately here. 2847 * Also, p->stime needs to be updated for ksoftirqd. 2848 */ 2849 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2850 CPUTIME_SOFTIRQ); 2851 } else if (user_tick) { 2852 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2853 } else if (p == rq->idle) { 2854 account_idle_time(cputime_one_jiffy); 2855 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2856 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2857 } else { 2858 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2859 CPUTIME_SYSTEM); 2860 } 2861 } 2862 2863 static void irqtime_account_idle_ticks(int ticks) 2864 { 2865 int i; 2866 struct rq *rq = this_rq(); 2867 2868 for (i = 0; i < ticks; i++) 2869 irqtime_account_process_tick(current, 0, rq); 2870 } 2871 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2872 static void irqtime_account_idle_ticks(int ticks) {} 2873 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2874 struct rq *rq) {} 2875 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2876 2877 /* 2878 * Account a single tick of cpu time. 2879 * @p: the process that the cpu time gets accounted to 2880 * @user_tick: indicates if the tick is a user or a system tick 2881 */ 2882 void account_process_tick(struct task_struct *p, int user_tick) 2883 { 2884 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2885 struct rq *rq = this_rq(); 2886 2887 if (sched_clock_irqtime) { 2888 irqtime_account_process_tick(p, user_tick, rq); 2889 return; 2890 } 2891 2892 if (steal_account_process_tick()) 2893 return; 2894 2895 if (user_tick) 2896 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2897 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2898 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2899 one_jiffy_scaled); 2900 else 2901 account_idle_time(cputime_one_jiffy); 2902 } 2903 2904 /* 2905 * Account multiple ticks of steal time. 2906 * @p: the process from which the cpu time has been stolen 2907 * @ticks: number of stolen ticks 2908 */ 2909 void account_steal_ticks(unsigned long ticks) 2910 { 2911 account_steal_time(jiffies_to_cputime(ticks)); 2912 } 2913 2914 /* 2915 * Account multiple ticks of idle time. 2916 * @ticks: number of stolen ticks 2917 */ 2918 void account_idle_ticks(unsigned long ticks) 2919 { 2920 2921 if (sched_clock_irqtime) { 2922 irqtime_account_idle_ticks(ticks); 2923 return; 2924 } 2925 2926 account_idle_time(jiffies_to_cputime(ticks)); 2927 } 2928 2929 #endif 2930 2931 /* 2932 * Use precise platform statistics if available: 2933 */ 2934 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2935 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2936 { 2937 *ut = p->utime; 2938 *st = p->stime; 2939 } 2940 2941 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2942 { 2943 struct task_cputime cputime; 2944 2945 thread_group_cputime(p, &cputime); 2946 2947 *ut = cputime.utime; 2948 *st = cputime.stime; 2949 } 2950 #else 2951 2952 #ifndef nsecs_to_cputime 2953 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2954 #endif 2955 2956 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2957 { 2958 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2959 2960 /* 2961 * Use CFS's precise accounting: 2962 */ 2963 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2964 2965 if (total) { 2966 u64 temp = (__force u64) rtime; 2967 2968 temp *= (__force u64) utime; 2969 do_div(temp, (__force u32) total); 2970 utime = (__force cputime_t) temp; 2971 } else 2972 utime = rtime; 2973 2974 /* 2975 * Compare with previous values, to keep monotonicity: 2976 */ 2977 p->prev_utime = max(p->prev_utime, utime); 2978 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2979 2980 *ut = p->prev_utime; 2981 *st = p->prev_stime; 2982 } 2983 2984 /* 2985 * Must be called with siglock held. 2986 */ 2987 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2988 { 2989 struct signal_struct *sig = p->signal; 2990 struct task_cputime cputime; 2991 cputime_t rtime, utime, total; 2992 2993 thread_group_cputime(p, &cputime); 2994 2995 total = cputime.utime + cputime.stime; 2996 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2997 2998 if (total) { 2999 u64 temp = (__force u64) rtime; 3000 3001 temp *= (__force u64) cputime.utime; 3002 do_div(temp, (__force u32) total); 3003 utime = (__force cputime_t) temp; 3004 } else 3005 utime = rtime; 3006 3007 sig->prev_utime = max(sig->prev_utime, utime); 3008 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 3009 3010 *ut = sig->prev_utime; 3011 *st = sig->prev_stime; 3012 } 3013 #endif 3014 3015 /* 3016 * This function gets called by the timer code, with HZ frequency. 3017 * We call it with interrupts disabled. 3018 */ 3019 void scheduler_tick(void) 3020 { 3021 int cpu = smp_processor_id(); 3022 struct rq *rq = cpu_rq(cpu); 3023 struct task_struct *curr = rq->curr; 3024 3025 sched_clock_tick(); 3026 3027 raw_spin_lock(&rq->lock); 3028 update_rq_clock(rq); 3029 update_cpu_load_active(rq); 3030 curr->sched_class->task_tick(rq, curr, 0); 3031 raw_spin_unlock(&rq->lock); 3032 3033 perf_event_task_tick(); 3034 3035 #ifdef CONFIG_SMP 3036 rq->idle_balance = idle_cpu(cpu); 3037 trigger_load_balance(rq, cpu); 3038 #endif 3039 } 3040 3041 notrace unsigned long get_parent_ip(unsigned long addr) 3042 { 3043 if (in_lock_functions(addr)) { 3044 addr = CALLER_ADDR2; 3045 if (in_lock_functions(addr)) 3046 addr = CALLER_ADDR3; 3047 } 3048 return addr; 3049 } 3050 3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3052 defined(CONFIG_PREEMPT_TRACER)) 3053 3054 void __kprobes add_preempt_count(int val) 3055 { 3056 #ifdef CONFIG_DEBUG_PREEMPT 3057 /* 3058 * Underflow? 3059 */ 3060 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3061 return; 3062 #endif 3063 preempt_count() += val; 3064 #ifdef CONFIG_DEBUG_PREEMPT 3065 /* 3066 * Spinlock count overflowing soon? 3067 */ 3068 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3069 PREEMPT_MASK - 10); 3070 #endif 3071 if (preempt_count() == val) 3072 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3073 } 3074 EXPORT_SYMBOL(add_preempt_count); 3075 3076 void __kprobes sub_preempt_count(int val) 3077 { 3078 #ifdef CONFIG_DEBUG_PREEMPT 3079 /* 3080 * Underflow? 3081 */ 3082 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3083 return; 3084 /* 3085 * Is the spinlock portion underflowing? 3086 */ 3087 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3088 !(preempt_count() & PREEMPT_MASK))) 3089 return; 3090 #endif 3091 3092 if (preempt_count() == val) 3093 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3094 preempt_count() -= val; 3095 } 3096 EXPORT_SYMBOL(sub_preempt_count); 3097 3098 #endif 3099 3100 /* 3101 * Print scheduling while atomic bug: 3102 */ 3103 static noinline void __schedule_bug(struct task_struct *prev) 3104 { 3105 if (oops_in_progress) 3106 return; 3107 3108 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3109 prev->comm, prev->pid, preempt_count()); 3110 3111 debug_show_held_locks(prev); 3112 print_modules(); 3113 if (irqs_disabled()) 3114 print_irqtrace_events(prev); 3115 dump_stack(); 3116 } 3117 3118 /* 3119 * Various schedule()-time debugging checks and statistics: 3120 */ 3121 static inline void schedule_debug(struct task_struct *prev) 3122 { 3123 /* 3124 * Test if we are atomic. Since do_exit() needs to call into 3125 * schedule() atomically, we ignore that path for now. 3126 * Otherwise, whine if we are scheduling when we should not be. 3127 */ 3128 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3129 __schedule_bug(prev); 3130 rcu_sleep_check(); 3131 3132 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3133 3134 schedstat_inc(this_rq(), sched_count); 3135 } 3136 3137 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3138 { 3139 if (prev->on_rq || rq->skip_clock_update < 0) 3140 update_rq_clock(rq); 3141 prev->sched_class->put_prev_task(rq, prev); 3142 } 3143 3144 /* 3145 * Pick up the highest-prio task: 3146 */ 3147 static inline struct task_struct * 3148 pick_next_task(struct rq *rq) 3149 { 3150 const struct sched_class *class; 3151 struct task_struct *p; 3152 3153 /* 3154 * Optimization: we know that if all tasks are in 3155 * the fair class we can call that function directly: 3156 */ 3157 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3158 p = fair_sched_class.pick_next_task(rq); 3159 if (likely(p)) 3160 return p; 3161 } 3162 3163 for_each_class(class) { 3164 p = class->pick_next_task(rq); 3165 if (p) 3166 return p; 3167 } 3168 3169 BUG(); /* the idle class will always have a runnable task */ 3170 } 3171 3172 /* 3173 * __schedule() is the main scheduler function. 3174 */ 3175 static void __sched __schedule(void) 3176 { 3177 struct task_struct *prev, *next; 3178 unsigned long *switch_count; 3179 struct rq *rq; 3180 int cpu; 3181 3182 need_resched: 3183 preempt_disable(); 3184 cpu = smp_processor_id(); 3185 rq = cpu_rq(cpu); 3186 rcu_note_context_switch(cpu); 3187 prev = rq->curr; 3188 3189 schedule_debug(prev); 3190 3191 if (sched_feat(HRTICK)) 3192 hrtick_clear(rq); 3193 3194 raw_spin_lock_irq(&rq->lock); 3195 3196 switch_count = &prev->nivcsw; 3197 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3198 if (unlikely(signal_pending_state(prev->state, prev))) { 3199 prev->state = TASK_RUNNING; 3200 } else { 3201 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3202 prev->on_rq = 0; 3203 3204 /* 3205 * If a worker went to sleep, notify and ask workqueue 3206 * whether it wants to wake up a task to maintain 3207 * concurrency. 3208 */ 3209 if (prev->flags & PF_WQ_WORKER) { 3210 struct task_struct *to_wakeup; 3211 3212 to_wakeup = wq_worker_sleeping(prev, cpu); 3213 if (to_wakeup) 3214 try_to_wake_up_local(to_wakeup); 3215 } 3216 } 3217 switch_count = &prev->nvcsw; 3218 } 3219 3220 pre_schedule(rq, prev); 3221 3222 if (unlikely(!rq->nr_running)) 3223 idle_balance(cpu, rq); 3224 3225 put_prev_task(rq, prev); 3226 next = pick_next_task(rq); 3227 clear_tsk_need_resched(prev); 3228 rq->skip_clock_update = 0; 3229 3230 if (likely(prev != next)) { 3231 rq->nr_switches++; 3232 rq->curr = next; 3233 ++*switch_count; 3234 3235 context_switch(rq, prev, next); /* unlocks the rq */ 3236 /* 3237 * The context switch have flipped the stack from under us 3238 * and restored the local variables which were saved when 3239 * this task called schedule() in the past. prev == current 3240 * is still correct, but it can be moved to another cpu/rq. 3241 */ 3242 cpu = smp_processor_id(); 3243 rq = cpu_rq(cpu); 3244 } else 3245 raw_spin_unlock_irq(&rq->lock); 3246 3247 post_schedule(rq); 3248 3249 sched_preempt_enable_no_resched(); 3250 if (need_resched()) 3251 goto need_resched; 3252 } 3253 3254 static inline void sched_submit_work(struct task_struct *tsk) 3255 { 3256 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3257 return; 3258 /* 3259 * If we are going to sleep and we have plugged IO queued, 3260 * make sure to submit it to avoid deadlocks. 3261 */ 3262 if (blk_needs_flush_plug(tsk)) 3263 blk_schedule_flush_plug(tsk); 3264 } 3265 3266 asmlinkage void __sched schedule(void) 3267 { 3268 struct task_struct *tsk = current; 3269 3270 sched_submit_work(tsk); 3271 __schedule(); 3272 } 3273 EXPORT_SYMBOL(schedule); 3274 3275 /** 3276 * schedule_preempt_disabled - called with preemption disabled 3277 * 3278 * Returns with preemption disabled. Note: preempt_count must be 1 3279 */ 3280 void __sched schedule_preempt_disabled(void) 3281 { 3282 sched_preempt_enable_no_resched(); 3283 schedule(); 3284 preempt_disable(); 3285 } 3286 3287 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3288 3289 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3290 { 3291 if (lock->owner != owner) 3292 return false; 3293 3294 /* 3295 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3296 * lock->owner still matches owner, if that fails, owner might 3297 * point to free()d memory, if it still matches, the rcu_read_lock() 3298 * ensures the memory stays valid. 3299 */ 3300 barrier(); 3301 3302 return owner->on_cpu; 3303 } 3304 3305 /* 3306 * Look out! "owner" is an entirely speculative pointer 3307 * access and not reliable. 3308 */ 3309 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3310 { 3311 if (!sched_feat(OWNER_SPIN)) 3312 return 0; 3313 3314 rcu_read_lock(); 3315 while (owner_running(lock, owner)) { 3316 if (need_resched()) 3317 break; 3318 3319 arch_mutex_cpu_relax(); 3320 } 3321 rcu_read_unlock(); 3322 3323 /* 3324 * We break out the loop above on need_resched() and when the 3325 * owner changed, which is a sign for heavy contention. Return 3326 * success only when lock->owner is NULL. 3327 */ 3328 return lock->owner == NULL; 3329 } 3330 #endif 3331 3332 #ifdef CONFIG_PREEMPT 3333 /* 3334 * this is the entry point to schedule() from in-kernel preemption 3335 * off of preempt_enable. Kernel preemptions off return from interrupt 3336 * occur there and call schedule directly. 3337 */ 3338 asmlinkage void __sched notrace preempt_schedule(void) 3339 { 3340 struct thread_info *ti = current_thread_info(); 3341 3342 /* 3343 * If there is a non-zero preempt_count or interrupts are disabled, 3344 * we do not want to preempt the current task. Just return.. 3345 */ 3346 if (likely(ti->preempt_count || irqs_disabled())) 3347 return; 3348 3349 do { 3350 add_preempt_count_notrace(PREEMPT_ACTIVE); 3351 __schedule(); 3352 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3353 3354 /* 3355 * Check again in case we missed a preemption opportunity 3356 * between schedule and now. 3357 */ 3358 barrier(); 3359 } while (need_resched()); 3360 } 3361 EXPORT_SYMBOL(preempt_schedule); 3362 3363 /* 3364 * this is the entry point to schedule() from kernel preemption 3365 * off of irq context. 3366 * Note, that this is called and return with irqs disabled. This will 3367 * protect us against recursive calling from irq. 3368 */ 3369 asmlinkage void __sched preempt_schedule_irq(void) 3370 { 3371 struct thread_info *ti = current_thread_info(); 3372 3373 /* Catch callers which need to be fixed */ 3374 BUG_ON(ti->preempt_count || !irqs_disabled()); 3375 3376 do { 3377 add_preempt_count(PREEMPT_ACTIVE); 3378 local_irq_enable(); 3379 __schedule(); 3380 local_irq_disable(); 3381 sub_preempt_count(PREEMPT_ACTIVE); 3382 3383 /* 3384 * Check again in case we missed a preemption opportunity 3385 * between schedule and now. 3386 */ 3387 barrier(); 3388 } while (need_resched()); 3389 } 3390 3391 #endif /* CONFIG_PREEMPT */ 3392 3393 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3394 void *key) 3395 { 3396 return try_to_wake_up(curr->private, mode, wake_flags); 3397 } 3398 EXPORT_SYMBOL(default_wake_function); 3399 3400 /* 3401 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3402 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3403 * number) then we wake all the non-exclusive tasks and one exclusive task. 3404 * 3405 * There are circumstances in which we can try to wake a task which has already 3406 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3407 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3408 */ 3409 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3410 int nr_exclusive, int wake_flags, void *key) 3411 { 3412 wait_queue_t *curr, *next; 3413 3414 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3415 unsigned flags = curr->flags; 3416 3417 if (curr->func(curr, mode, wake_flags, key) && 3418 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3419 break; 3420 } 3421 } 3422 3423 /** 3424 * __wake_up - wake up threads blocked on a waitqueue. 3425 * @q: the waitqueue 3426 * @mode: which threads 3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3428 * @key: is directly passed to the wakeup function 3429 * 3430 * It may be assumed that this function implies a write memory barrier before 3431 * changing the task state if and only if any tasks are woken up. 3432 */ 3433 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3434 int nr_exclusive, void *key) 3435 { 3436 unsigned long flags; 3437 3438 spin_lock_irqsave(&q->lock, flags); 3439 __wake_up_common(q, mode, nr_exclusive, 0, key); 3440 spin_unlock_irqrestore(&q->lock, flags); 3441 } 3442 EXPORT_SYMBOL(__wake_up); 3443 3444 /* 3445 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3446 */ 3447 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3448 { 3449 __wake_up_common(q, mode, nr, 0, NULL); 3450 } 3451 EXPORT_SYMBOL_GPL(__wake_up_locked); 3452 3453 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3454 { 3455 __wake_up_common(q, mode, 1, 0, key); 3456 } 3457 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3458 3459 /** 3460 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3461 * @q: the waitqueue 3462 * @mode: which threads 3463 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3464 * @key: opaque value to be passed to wakeup targets 3465 * 3466 * The sync wakeup differs that the waker knows that it will schedule 3467 * away soon, so while the target thread will be woken up, it will not 3468 * be migrated to another CPU - ie. the two threads are 'synchronized' 3469 * with each other. This can prevent needless bouncing between CPUs. 3470 * 3471 * On UP it can prevent extra preemption. 3472 * 3473 * It may be assumed that this function implies a write memory barrier before 3474 * changing the task state if and only if any tasks are woken up. 3475 */ 3476 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3477 int nr_exclusive, void *key) 3478 { 3479 unsigned long flags; 3480 int wake_flags = WF_SYNC; 3481 3482 if (unlikely(!q)) 3483 return; 3484 3485 if (unlikely(!nr_exclusive)) 3486 wake_flags = 0; 3487 3488 spin_lock_irqsave(&q->lock, flags); 3489 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3490 spin_unlock_irqrestore(&q->lock, flags); 3491 } 3492 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3493 3494 /* 3495 * __wake_up_sync - see __wake_up_sync_key() 3496 */ 3497 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3498 { 3499 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3500 } 3501 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3502 3503 /** 3504 * complete: - signals a single thread waiting on this completion 3505 * @x: holds the state of this particular completion 3506 * 3507 * This will wake up a single thread waiting on this completion. Threads will be 3508 * awakened in the same order in which they were queued. 3509 * 3510 * See also complete_all(), wait_for_completion() and related routines. 3511 * 3512 * It may be assumed that this function implies a write memory barrier before 3513 * changing the task state if and only if any tasks are woken up. 3514 */ 3515 void complete(struct completion *x) 3516 { 3517 unsigned long flags; 3518 3519 spin_lock_irqsave(&x->wait.lock, flags); 3520 x->done++; 3521 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3522 spin_unlock_irqrestore(&x->wait.lock, flags); 3523 } 3524 EXPORT_SYMBOL(complete); 3525 3526 /** 3527 * complete_all: - signals all threads waiting on this completion 3528 * @x: holds the state of this particular completion 3529 * 3530 * This will wake up all threads waiting on this particular completion event. 3531 * 3532 * It may be assumed that this function implies a write memory barrier before 3533 * changing the task state if and only if any tasks are woken up. 3534 */ 3535 void complete_all(struct completion *x) 3536 { 3537 unsigned long flags; 3538 3539 spin_lock_irqsave(&x->wait.lock, flags); 3540 x->done += UINT_MAX/2; 3541 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3542 spin_unlock_irqrestore(&x->wait.lock, flags); 3543 } 3544 EXPORT_SYMBOL(complete_all); 3545 3546 static inline long __sched 3547 do_wait_for_common(struct completion *x, long timeout, int state) 3548 { 3549 if (!x->done) { 3550 DECLARE_WAITQUEUE(wait, current); 3551 3552 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3553 do { 3554 if (signal_pending_state(state, current)) { 3555 timeout = -ERESTARTSYS; 3556 break; 3557 } 3558 __set_current_state(state); 3559 spin_unlock_irq(&x->wait.lock); 3560 timeout = schedule_timeout(timeout); 3561 spin_lock_irq(&x->wait.lock); 3562 } while (!x->done && timeout); 3563 __remove_wait_queue(&x->wait, &wait); 3564 if (!x->done) 3565 return timeout; 3566 } 3567 x->done--; 3568 return timeout ?: 1; 3569 } 3570 3571 static long __sched 3572 wait_for_common(struct completion *x, long timeout, int state) 3573 { 3574 might_sleep(); 3575 3576 spin_lock_irq(&x->wait.lock); 3577 timeout = do_wait_for_common(x, timeout, state); 3578 spin_unlock_irq(&x->wait.lock); 3579 return timeout; 3580 } 3581 3582 /** 3583 * wait_for_completion: - waits for completion of a task 3584 * @x: holds the state of this particular completion 3585 * 3586 * This waits to be signaled for completion of a specific task. It is NOT 3587 * interruptible and there is no timeout. 3588 * 3589 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3590 * and interrupt capability. Also see complete(). 3591 */ 3592 void __sched wait_for_completion(struct completion *x) 3593 { 3594 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3595 } 3596 EXPORT_SYMBOL(wait_for_completion); 3597 3598 /** 3599 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3600 * @x: holds the state of this particular completion 3601 * @timeout: timeout value in jiffies 3602 * 3603 * This waits for either a completion of a specific task to be signaled or for a 3604 * specified timeout to expire. The timeout is in jiffies. It is not 3605 * interruptible. 3606 * 3607 * The return value is 0 if timed out, and positive (at least 1, or number of 3608 * jiffies left till timeout) if completed. 3609 */ 3610 unsigned long __sched 3611 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3612 { 3613 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3614 } 3615 EXPORT_SYMBOL(wait_for_completion_timeout); 3616 3617 /** 3618 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3619 * @x: holds the state of this particular completion 3620 * 3621 * This waits for completion of a specific task to be signaled. It is 3622 * interruptible. 3623 * 3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3625 */ 3626 int __sched wait_for_completion_interruptible(struct completion *x) 3627 { 3628 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3629 if (t == -ERESTARTSYS) 3630 return t; 3631 return 0; 3632 } 3633 EXPORT_SYMBOL(wait_for_completion_interruptible); 3634 3635 /** 3636 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3637 * @x: holds the state of this particular completion 3638 * @timeout: timeout value in jiffies 3639 * 3640 * This waits for either a completion of a specific task to be signaled or for a 3641 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3642 * 3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3644 * positive (at least 1, or number of jiffies left till timeout) if completed. 3645 */ 3646 long __sched 3647 wait_for_completion_interruptible_timeout(struct completion *x, 3648 unsigned long timeout) 3649 { 3650 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3651 } 3652 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3653 3654 /** 3655 * wait_for_completion_killable: - waits for completion of a task (killable) 3656 * @x: holds the state of this particular completion 3657 * 3658 * This waits to be signaled for completion of a specific task. It can be 3659 * interrupted by a kill signal. 3660 * 3661 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3662 */ 3663 int __sched wait_for_completion_killable(struct completion *x) 3664 { 3665 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3666 if (t == -ERESTARTSYS) 3667 return t; 3668 return 0; 3669 } 3670 EXPORT_SYMBOL(wait_for_completion_killable); 3671 3672 /** 3673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3674 * @x: holds the state of this particular completion 3675 * @timeout: timeout value in jiffies 3676 * 3677 * This waits for either a completion of a specific task to be 3678 * signaled or for a specified timeout to expire. It can be 3679 * interrupted by a kill signal. The timeout is in jiffies. 3680 * 3681 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3682 * positive (at least 1, or number of jiffies left till timeout) if completed. 3683 */ 3684 long __sched 3685 wait_for_completion_killable_timeout(struct completion *x, 3686 unsigned long timeout) 3687 { 3688 return wait_for_common(x, timeout, TASK_KILLABLE); 3689 } 3690 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3691 3692 /** 3693 * try_wait_for_completion - try to decrement a completion without blocking 3694 * @x: completion structure 3695 * 3696 * Returns: 0 if a decrement cannot be done without blocking 3697 * 1 if a decrement succeeded. 3698 * 3699 * If a completion is being used as a counting completion, 3700 * attempt to decrement the counter without blocking. This 3701 * enables us to avoid waiting if the resource the completion 3702 * is protecting is not available. 3703 */ 3704 bool try_wait_for_completion(struct completion *x) 3705 { 3706 unsigned long flags; 3707 int ret = 1; 3708 3709 spin_lock_irqsave(&x->wait.lock, flags); 3710 if (!x->done) 3711 ret = 0; 3712 else 3713 x->done--; 3714 spin_unlock_irqrestore(&x->wait.lock, flags); 3715 return ret; 3716 } 3717 EXPORT_SYMBOL(try_wait_for_completion); 3718 3719 /** 3720 * completion_done - Test to see if a completion has any waiters 3721 * @x: completion structure 3722 * 3723 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3724 * 1 if there are no waiters. 3725 * 3726 */ 3727 bool completion_done(struct completion *x) 3728 { 3729 unsigned long flags; 3730 int ret = 1; 3731 3732 spin_lock_irqsave(&x->wait.lock, flags); 3733 if (!x->done) 3734 ret = 0; 3735 spin_unlock_irqrestore(&x->wait.lock, flags); 3736 return ret; 3737 } 3738 EXPORT_SYMBOL(completion_done); 3739 3740 static long __sched 3741 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3742 { 3743 unsigned long flags; 3744 wait_queue_t wait; 3745 3746 init_waitqueue_entry(&wait, current); 3747 3748 __set_current_state(state); 3749 3750 spin_lock_irqsave(&q->lock, flags); 3751 __add_wait_queue(q, &wait); 3752 spin_unlock(&q->lock); 3753 timeout = schedule_timeout(timeout); 3754 spin_lock_irq(&q->lock); 3755 __remove_wait_queue(q, &wait); 3756 spin_unlock_irqrestore(&q->lock, flags); 3757 3758 return timeout; 3759 } 3760 3761 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3762 { 3763 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3764 } 3765 EXPORT_SYMBOL(interruptible_sleep_on); 3766 3767 long __sched 3768 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3769 { 3770 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3771 } 3772 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3773 3774 void __sched sleep_on(wait_queue_head_t *q) 3775 { 3776 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3777 } 3778 EXPORT_SYMBOL(sleep_on); 3779 3780 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3781 { 3782 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3783 } 3784 EXPORT_SYMBOL(sleep_on_timeout); 3785 3786 #ifdef CONFIG_RT_MUTEXES 3787 3788 /* 3789 * rt_mutex_setprio - set the current priority of a task 3790 * @p: task 3791 * @prio: prio value (kernel-internal form) 3792 * 3793 * This function changes the 'effective' priority of a task. It does 3794 * not touch ->normal_prio like __setscheduler(). 3795 * 3796 * Used by the rt_mutex code to implement priority inheritance logic. 3797 */ 3798 void rt_mutex_setprio(struct task_struct *p, int prio) 3799 { 3800 int oldprio, on_rq, running; 3801 struct rq *rq; 3802 const struct sched_class *prev_class; 3803 3804 BUG_ON(prio < 0 || prio > MAX_PRIO); 3805 3806 rq = __task_rq_lock(p); 3807 3808 /* 3809 * Idle task boosting is a nono in general. There is one 3810 * exception, when PREEMPT_RT and NOHZ is active: 3811 * 3812 * The idle task calls get_next_timer_interrupt() and holds 3813 * the timer wheel base->lock on the CPU and another CPU wants 3814 * to access the timer (probably to cancel it). We can safely 3815 * ignore the boosting request, as the idle CPU runs this code 3816 * with interrupts disabled and will complete the lock 3817 * protected section without being interrupted. So there is no 3818 * real need to boost. 3819 */ 3820 if (unlikely(p == rq->idle)) { 3821 WARN_ON(p != rq->curr); 3822 WARN_ON(p->pi_blocked_on); 3823 goto out_unlock; 3824 } 3825 3826 trace_sched_pi_setprio(p, prio); 3827 oldprio = p->prio; 3828 prev_class = p->sched_class; 3829 on_rq = p->on_rq; 3830 running = task_current(rq, p); 3831 if (on_rq) 3832 dequeue_task(rq, p, 0); 3833 if (running) 3834 p->sched_class->put_prev_task(rq, p); 3835 3836 if (rt_prio(prio)) 3837 p->sched_class = &rt_sched_class; 3838 else 3839 p->sched_class = &fair_sched_class; 3840 3841 p->prio = prio; 3842 3843 if (running) 3844 p->sched_class->set_curr_task(rq); 3845 if (on_rq) 3846 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3847 3848 check_class_changed(rq, p, prev_class, oldprio); 3849 out_unlock: 3850 __task_rq_unlock(rq); 3851 } 3852 #endif 3853 void set_user_nice(struct task_struct *p, long nice) 3854 { 3855 int old_prio, delta, on_rq; 3856 unsigned long flags; 3857 struct rq *rq; 3858 3859 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3860 return; 3861 /* 3862 * We have to be careful, if called from sys_setpriority(), 3863 * the task might be in the middle of scheduling on another CPU. 3864 */ 3865 rq = task_rq_lock(p, &flags); 3866 /* 3867 * The RT priorities are set via sched_setscheduler(), but we still 3868 * allow the 'normal' nice value to be set - but as expected 3869 * it wont have any effect on scheduling until the task is 3870 * SCHED_FIFO/SCHED_RR: 3871 */ 3872 if (task_has_rt_policy(p)) { 3873 p->static_prio = NICE_TO_PRIO(nice); 3874 goto out_unlock; 3875 } 3876 on_rq = p->on_rq; 3877 if (on_rq) 3878 dequeue_task(rq, p, 0); 3879 3880 p->static_prio = NICE_TO_PRIO(nice); 3881 set_load_weight(p); 3882 old_prio = p->prio; 3883 p->prio = effective_prio(p); 3884 delta = p->prio - old_prio; 3885 3886 if (on_rq) { 3887 enqueue_task(rq, p, 0); 3888 /* 3889 * If the task increased its priority or is running and 3890 * lowered its priority, then reschedule its CPU: 3891 */ 3892 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3893 resched_task(rq->curr); 3894 } 3895 out_unlock: 3896 task_rq_unlock(rq, p, &flags); 3897 } 3898 EXPORT_SYMBOL(set_user_nice); 3899 3900 /* 3901 * can_nice - check if a task can reduce its nice value 3902 * @p: task 3903 * @nice: nice value 3904 */ 3905 int can_nice(const struct task_struct *p, const int nice) 3906 { 3907 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3908 int nice_rlim = 20 - nice; 3909 3910 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3911 capable(CAP_SYS_NICE)); 3912 } 3913 3914 #ifdef __ARCH_WANT_SYS_NICE 3915 3916 /* 3917 * sys_nice - change the priority of the current process. 3918 * @increment: priority increment 3919 * 3920 * sys_setpriority is a more generic, but much slower function that 3921 * does similar things. 3922 */ 3923 SYSCALL_DEFINE1(nice, int, increment) 3924 { 3925 long nice, retval; 3926 3927 /* 3928 * Setpriority might change our priority at the same moment. 3929 * We don't have to worry. Conceptually one call occurs first 3930 * and we have a single winner. 3931 */ 3932 if (increment < -40) 3933 increment = -40; 3934 if (increment > 40) 3935 increment = 40; 3936 3937 nice = TASK_NICE(current) + increment; 3938 if (nice < -20) 3939 nice = -20; 3940 if (nice > 19) 3941 nice = 19; 3942 3943 if (increment < 0 && !can_nice(current, nice)) 3944 return -EPERM; 3945 3946 retval = security_task_setnice(current, nice); 3947 if (retval) 3948 return retval; 3949 3950 set_user_nice(current, nice); 3951 return 0; 3952 } 3953 3954 #endif 3955 3956 /** 3957 * task_prio - return the priority value of a given task. 3958 * @p: the task in question. 3959 * 3960 * This is the priority value as seen by users in /proc. 3961 * RT tasks are offset by -200. Normal tasks are centered 3962 * around 0, value goes from -16 to +15. 3963 */ 3964 int task_prio(const struct task_struct *p) 3965 { 3966 return p->prio - MAX_RT_PRIO; 3967 } 3968 3969 /** 3970 * task_nice - return the nice value of a given task. 3971 * @p: the task in question. 3972 */ 3973 int task_nice(const struct task_struct *p) 3974 { 3975 return TASK_NICE(p); 3976 } 3977 EXPORT_SYMBOL(task_nice); 3978 3979 /** 3980 * idle_cpu - is a given cpu idle currently? 3981 * @cpu: the processor in question. 3982 */ 3983 int idle_cpu(int cpu) 3984 { 3985 struct rq *rq = cpu_rq(cpu); 3986 3987 if (rq->curr != rq->idle) 3988 return 0; 3989 3990 if (rq->nr_running) 3991 return 0; 3992 3993 #ifdef CONFIG_SMP 3994 if (!llist_empty(&rq->wake_list)) 3995 return 0; 3996 #endif 3997 3998 return 1; 3999 } 4000 4001 /** 4002 * idle_task - return the idle task for a given cpu. 4003 * @cpu: the processor in question. 4004 */ 4005 struct task_struct *idle_task(int cpu) 4006 { 4007 return cpu_rq(cpu)->idle; 4008 } 4009 4010 /** 4011 * find_process_by_pid - find a process with a matching PID value. 4012 * @pid: the pid in question. 4013 */ 4014 static struct task_struct *find_process_by_pid(pid_t pid) 4015 { 4016 return pid ? find_task_by_vpid(pid) : current; 4017 } 4018 4019 /* Actually do priority change: must hold rq lock. */ 4020 static void 4021 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 4022 { 4023 p->policy = policy; 4024 p->rt_priority = prio; 4025 p->normal_prio = normal_prio(p); 4026 /* we are holding p->pi_lock already */ 4027 p->prio = rt_mutex_getprio(p); 4028 if (rt_prio(p->prio)) 4029 p->sched_class = &rt_sched_class; 4030 else 4031 p->sched_class = &fair_sched_class; 4032 set_load_weight(p); 4033 } 4034 4035 /* 4036 * check the target process has a UID that matches the current process's 4037 */ 4038 static bool check_same_owner(struct task_struct *p) 4039 { 4040 const struct cred *cred = current_cred(), *pcred; 4041 bool match; 4042 4043 rcu_read_lock(); 4044 pcred = __task_cred(p); 4045 if (cred->user->user_ns == pcred->user->user_ns) 4046 match = (cred->euid == pcred->euid || 4047 cred->euid == pcred->uid); 4048 else 4049 match = false; 4050 rcu_read_unlock(); 4051 return match; 4052 } 4053 4054 static int __sched_setscheduler(struct task_struct *p, int policy, 4055 const struct sched_param *param, bool user) 4056 { 4057 int retval, oldprio, oldpolicy = -1, on_rq, running; 4058 unsigned long flags; 4059 const struct sched_class *prev_class; 4060 struct rq *rq; 4061 int reset_on_fork; 4062 4063 /* may grab non-irq protected spin_locks */ 4064 BUG_ON(in_interrupt()); 4065 recheck: 4066 /* double check policy once rq lock held */ 4067 if (policy < 0) { 4068 reset_on_fork = p->sched_reset_on_fork; 4069 policy = oldpolicy = p->policy; 4070 } else { 4071 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4072 policy &= ~SCHED_RESET_ON_FORK; 4073 4074 if (policy != SCHED_FIFO && policy != SCHED_RR && 4075 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4076 policy != SCHED_IDLE) 4077 return -EINVAL; 4078 } 4079 4080 /* 4081 * Valid priorities for SCHED_FIFO and SCHED_RR are 4082 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4083 * SCHED_BATCH and SCHED_IDLE is 0. 4084 */ 4085 if (param->sched_priority < 0 || 4086 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4087 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4088 return -EINVAL; 4089 if (rt_policy(policy) != (param->sched_priority != 0)) 4090 return -EINVAL; 4091 4092 /* 4093 * Allow unprivileged RT tasks to decrease priority: 4094 */ 4095 if (user && !capable(CAP_SYS_NICE)) { 4096 if (rt_policy(policy)) { 4097 unsigned long rlim_rtprio = 4098 task_rlimit(p, RLIMIT_RTPRIO); 4099 4100 /* can't set/change the rt policy */ 4101 if (policy != p->policy && !rlim_rtprio) 4102 return -EPERM; 4103 4104 /* can't increase priority */ 4105 if (param->sched_priority > p->rt_priority && 4106 param->sched_priority > rlim_rtprio) 4107 return -EPERM; 4108 } 4109 4110 /* 4111 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4112 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4113 */ 4114 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4115 if (!can_nice(p, TASK_NICE(p))) 4116 return -EPERM; 4117 } 4118 4119 /* can't change other user's priorities */ 4120 if (!check_same_owner(p)) 4121 return -EPERM; 4122 4123 /* Normal users shall not reset the sched_reset_on_fork flag */ 4124 if (p->sched_reset_on_fork && !reset_on_fork) 4125 return -EPERM; 4126 } 4127 4128 if (user) { 4129 retval = security_task_setscheduler(p); 4130 if (retval) 4131 return retval; 4132 } 4133 4134 /* 4135 * make sure no PI-waiters arrive (or leave) while we are 4136 * changing the priority of the task: 4137 * 4138 * To be able to change p->policy safely, the appropriate 4139 * runqueue lock must be held. 4140 */ 4141 rq = task_rq_lock(p, &flags); 4142 4143 /* 4144 * Changing the policy of the stop threads its a very bad idea 4145 */ 4146 if (p == rq->stop) { 4147 task_rq_unlock(rq, p, &flags); 4148 return -EINVAL; 4149 } 4150 4151 /* 4152 * If not changing anything there's no need to proceed further: 4153 */ 4154 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4155 param->sched_priority == p->rt_priority))) { 4156 4157 __task_rq_unlock(rq); 4158 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4159 return 0; 4160 } 4161 4162 #ifdef CONFIG_RT_GROUP_SCHED 4163 if (user) { 4164 /* 4165 * Do not allow realtime tasks into groups that have no runtime 4166 * assigned. 4167 */ 4168 if (rt_bandwidth_enabled() && rt_policy(policy) && 4169 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4170 !task_group_is_autogroup(task_group(p))) { 4171 task_rq_unlock(rq, p, &flags); 4172 return -EPERM; 4173 } 4174 } 4175 #endif 4176 4177 /* recheck policy now with rq lock held */ 4178 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4179 policy = oldpolicy = -1; 4180 task_rq_unlock(rq, p, &flags); 4181 goto recheck; 4182 } 4183 on_rq = p->on_rq; 4184 running = task_current(rq, p); 4185 if (on_rq) 4186 dequeue_task(rq, p, 0); 4187 if (running) 4188 p->sched_class->put_prev_task(rq, p); 4189 4190 p->sched_reset_on_fork = reset_on_fork; 4191 4192 oldprio = p->prio; 4193 prev_class = p->sched_class; 4194 __setscheduler(rq, p, policy, param->sched_priority); 4195 4196 if (running) 4197 p->sched_class->set_curr_task(rq); 4198 if (on_rq) 4199 enqueue_task(rq, p, 0); 4200 4201 check_class_changed(rq, p, prev_class, oldprio); 4202 task_rq_unlock(rq, p, &flags); 4203 4204 rt_mutex_adjust_pi(p); 4205 4206 return 0; 4207 } 4208 4209 /** 4210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4211 * @p: the task in question. 4212 * @policy: new policy. 4213 * @param: structure containing the new RT priority. 4214 * 4215 * NOTE that the task may be already dead. 4216 */ 4217 int sched_setscheduler(struct task_struct *p, int policy, 4218 const struct sched_param *param) 4219 { 4220 return __sched_setscheduler(p, policy, param, true); 4221 } 4222 EXPORT_SYMBOL_GPL(sched_setscheduler); 4223 4224 /** 4225 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4226 * @p: the task in question. 4227 * @policy: new policy. 4228 * @param: structure containing the new RT priority. 4229 * 4230 * Just like sched_setscheduler, only don't bother checking if the 4231 * current context has permission. For example, this is needed in 4232 * stop_machine(): we create temporary high priority worker threads, 4233 * but our caller might not have that capability. 4234 */ 4235 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4236 const struct sched_param *param) 4237 { 4238 return __sched_setscheduler(p, policy, param, false); 4239 } 4240 4241 static int 4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4243 { 4244 struct sched_param lparam; 4245 struct task_struct *p; 4246 int retval; 4247 4248 if (!param || pid < 0) 4249 return -EINVAL; 4250 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4251 return -EFAULT; 4252 4253 rcu_read_lock(); 4254 retval = -ESRCH; 4255 p = find_process_by_pid(pid); 4256 if (p != NULL) 4257 retval = sched_setscheduler(p, policy, &lparam); 4258 rcu_read_unlock(); 4259 4260 return retval; 4261 } 4262 4263 /** 4264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4265 * @pid: the pid in question. 4266 * @policy: new policy. 4267 * @param: structure containing the new RT priority. 4268 */ 4269 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4270 struct sched_param __user *, param) 4271 { 4272 /* negative values for policy are not valid */ 4273 if (policy < 0) 4274 return -EINVAL; 4275 4276 return do_sched_setscheduler(pid, policy, param); 4277 } 4278 4279 /** 4280 * sys_sched_setparam - set/change the RT priority of a thread 4281 * @pid: the pid in question. 4282 * @param: structure containing the new RT priority. 4283 */ 4284 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4285 { 4286 return do_sched_setscheduler(pid, -1, param); 4287 } 4288 4289 /** 4290 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4291 * @pid: the pid in question. 4292 */ 4293 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4294 { 4295 struct task_struct *p; 4296 int retval; 4297 4298 if (pid < 0) 4299 return -EINVAL; 4300 4301 retval = -ESRCH; 4302 rcu_read_lock(); 4303 p = find_process_by_pid(pid); 4304 if (p) { 4305 retval = security_task_getscheduler(p); 4306 if (!retval) 4307 retval = p->policy 4308 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4309 } 4310 rcu_read_unlock(); 4311 return retval; 4312 } 4313 4314 /** 4315 * sys_sched_getparam - get the RT priority of a thread 4316 * @pid: the pid in question. 4317 * @param: structure containing the RT priority. 4318 */ 4319 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4320 { 4321 struct sched_param lp; 4322 struct task_struct *p; 4323 int retval; 4324 4325 if (!param || pid < 0) 4326 return -EINVAL; 4327 4328 rcu_read_lock(); 4329 p = find_process_by_pid(pid); 4330 retval = -ESRCH; 4331 if (!p) 4332 goto out_unlock; 4333 4334 retval = security_task_getscheduler(p); 4335 if (retval) 4336 goto out_unlock; 4337 4338 lp.sched_priority = p->rt_priority; 4339 rcu_read_unlock(); 4340 4341 /* 4342 * This one might sleep, we cannot do it with a spinlock held ... 4343 */ 4344 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4345 4346 return retval; 4347 4348 out_unlock: 4349 rcu_read_unlock(); 4350 return retval; 4351 } 4352 4353 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4354 { 4355 cpumask_var_t cpus_allowed, new_mask; 4356 struct task_struct *p; 4357 int retval; 4358 4359 get_online_cpus(); 4360 rcu_read_lock(); 4361 4362 p = find_process_by_pid(pid); 4363 if (!p) { 4364 rcu_read_unlock(); 4365 put_online_cpus(); 4366 return -ESRCH; 4367 } 4368 4369 /* Prevent p going away */ 4370 get_task_struct(p); 4371 rcu_read_unlock(); 4372 4373 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4374 retval = -ENOMEM; 4375 goto out_put_task; 4376 } 4377 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4378 retval = -ENOMEM; 4379 goto out_free_cpus_allowed; 4380 } 4381 retval = -EPERM; 4382 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4383 goto out_unlock; 4384 4385 retval = security_task_setscheduler(p); 4386 if (retval) 4387 goto out_unlock; 4388 4389 cpuset_cpus_allowed(p, cpus_allowed); 4390 cpumask_and(new_mask, in_mask, cpus_allowed); 4391 again: 4392 retval = set_cpus_allowed_ptr(p, new_mask); 4393 4394 if (!retval) { 4395 cpuset_cpus_allowed(p, cpus_allowed); 4396 if (!cpumask_subset(new_mask, cpus_allowed)) { 4397 /* 4398 * We must have raced with a concurrent cpuset 4399 * update. Just reset the cpus_allowed to the 4400 * cpuset's cpus_allowed 4401 */ 4402 cpumask_copy(new_mask, cpus_allowed); 4403 goto again; 4404 } 4405 } 4406 out_unlock: 4407 free_cpumask_var(new_mask); 4408 out_free_cpus_allowed: 4409 free_cpumask_var(cpus_allowed); 4410 out_put_task: 4411 put_task_struct(p); 4412 put_online_cpus(); 4413 return retval; 4414 } 4415 4416 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4417 struct cpumask *new_mask) 4418 { 4419 if (len < cpumask_size()) 4420 cpumask_clear(new_mask); 4421 else if (len > cpumask_size()) 4422 len = cpumask_size(); 4423 4424 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4425 } 4426 4427 /** 4428 * sys_sched_setaffinity - set the cpu affinity of a process 4429 * @pid: pid of the process 4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4431 * @user_mask_ptr: user-space pointer to the new cpu mask 4432 */ 4433 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4434 unsigned long __user *, user_mask_ptr) 4435 { 4436 cpumask_var_t new_mask; 4437 int retval; 4438 4439 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4440 return -ENOMEM; 4441 4442 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4443 if (retval == 0) 4444 retval = sched_setaffinity(pid, new_mask); 4445 free_cpumask_var(new_mask); 4446 return retval; 4447 } 4448 4449 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4450 { 4451 struct task_struct *p; 4452 unsigned long flags; 4453 int retval; 4454 4455 get_online_cpus(); 4456 rcu_read_lock(); 4457 4458 retval = -ESRCH; 4459 p = find_process_by_pid(pid); 4460 if (!p) 4461 goto out_unlock; 4462 4463 retval = security_task_getscheduler(p); 4464 if (retval) 4465 goto out_unlock; 4466 4467 raw_spin_lock_irqsave(&p->pi_lock, flags); 4468 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4469 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4470 4471 out_unlock: 4472 rcu_read_unlock(); 4473 put_online_cpus(); 4474 4475 return retval; 4476 } 4477 4478 /** 4479 * sys_sched_getaffinity - get the cpu affinity of a process 4480 * @pid: pid of the process 4481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4482 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4483 */ 4484 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4485 unsigned long __user *, user_mask_ptr) 4486 { 4487 int ret; 4488 cpumask_var_t mask; 4489 4490 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4491 return -EINVAL; 4492 if (len & (sizeof(unsigned long)-1)) 4493 return -EINVAL; 4494 4495 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4496 return -ENOMEM; 4497 4498 ret = sched_getaffinity(pid, mask); 4499 if (ret == 0) { 4500 size_t retlen = min_t(size_t, len, cpumask_size()); 4501 4502 if (copy_to_user(user_mask_ptr, mask, retlen)) 4503 ret = -EFAULT; 4504 else 4505 ret = retlen; 4506 } 4507 free_cpumask_var(mask); 4508 4509 return ret; 4510 } 4511 4512 /** 4513 * sys_sched_yield - yield the current processor to other threads. 4514 * 4515 * This function yields the current CPU to other tasks. If there are no 4516 * other threads running on this CPU then this function will return. 4517 */ 4518 SYSCALL_DEFINE0(sched_yield) 4519 { 4520 struct rq *rq = this_rq_lock(); 4521 4522 schedstat_inc(rq, yld_count); 4523 current->sched_class->yield_task(rq); 4524 4525 /* 4526 * Since we are going to call schedule() anyway, there's 4527 * no need to preempt or enable interrupts: 4528 */ 4529 __release(rq->lock); 4530 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4531 do_raw_spin_unlock(&rq->lock); 4532 sched_preempt_enable_no_resched(); 4533 4534 schedule(); 4535 4536 return 0; 4537 } 4538 4539 static inline int should_resched(void) 4540 { 4541 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4542 } 4543 4544 static void __cond_resched(void) 4545 { 4546 add_preempt_count(PREEMPT_ACTIVE); 4547 __schedule(); 4548 sub_preempt_count(PREEMPT_ACTIVE); 4549 } 4550 4551 int __sched _cond_resched(void) 4552 { 4553 if (should_resched()) { 4554 __cond_resched(); 4555 return 1; 4556 } 4557 return 0; 4558 } 4559 EXPORT_SYMBOL(_cond_resched); 4560 4561 /* 4562 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4563 * call schedule, and on return reacquire the lock. 4564 * 4565 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4566 * operations here to prevent schedule() from being called twice (once via 4567 * spin_unlock(), once by hand). 4568 */ 4569 int __cond_resched_lock(spinlock_t *lock) 4570 { 4571 int resched = should_resched(); 4572 int ret = 0; 4573 4574 lockdep_assert_held(lock); 4575 4576 if (spin_needbreak(lock) || resched) { 4577 spin_unlock(lock); 4578 if (resched) 4579 __cond_resched(); 4580 else 4581 cpu_relax(); 4582 ret = 1; 4583 spin_lock(lock); 4584 } 4585 return ret; 4586 } 4587 EXPORT_SYMBOL(__cond_resched_lock); 4588 4589 int __sched __cond_resched_softirq(void) 4590 { 4591 BUG_ON(!in_softirq()); 4592 4593 if (should_resched()) { 4594 local_bh_enable(); 4595 __cond_resched(); 4596 local_bh_disable(); 4597 return 1; 4598 } 4599 return 0; 4600 } 4601 EXPORT_SYMBOL(__cond_resched_softirq); 4602 4603 /** 4604 * yield - yield the current processor to other threads. 4605 * 4606 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4607 * 4608 * The scheduler is at all times free to pick the calling task as the most 4609 * eligible task to run, if removing the yield() call from your code breaks 4610 * it, its already broken. 4611 * 4612 * Typical broken usage is: 4613 * 4614 * while (!event) 4615 * yield(); 4616 * 4617 * where one assumes that yield() will let 'the other' process run that will 4618 * make event true. If the current task is a SCHED_FIFO task that will never 4619 * happen. Never use yield() as a progress guarantee!! 4620 * 4621 * If you want to use yield() to wait for something, use wait_event(). 4622 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4623 * If you still want to use yield(), do not! 4624 */ 4625 void __sched yield(void) 4626 { 4627 set_current_state(TASK_RUNNING); 4628 sys_sched_yield(); 4629 } 4630 EXPORT_SYMBOL(yield); 4631 4632 /** 4633 * yield_to - yield the current processor to another thread in 4634 * your thread group, or accelerate that thread toward the 4635 * processor it's on. 4636 * @p: target task 4637 * @preempt: whether task preemption is allowed or not 4638 * 4639 * It's the caller's job to ensure that the target task struct 4640 * can't go away on us before we can do any checks. 4641 * 4642 * Returns true if we indeed boosted the target task. 4643 */ 4644 bool __sched yield_to(struct task_struct *p, bool preempt) 4645 { 4646 struct task_struct *curr = current; 4647 struct rq *rq, *p_rq; 4648 unsigned long flags; 4649 bool yielded = 0; 4650 4651 local_irq_save(flags); 4652 rq = this_rq(); 4653 4654 again: 4655 p_rq = task_rq(p); 4656 double_rq_lock(rq, p_rq); 4657 while (task_rq(p) != p_rq) { 4658 double_rq_unlock(rq, p_rq); 4659 goto again; 4660 } 4661 4662 if (!curr->sched_class->yield_to_task) 4663 goto out; 4664 4665 if (curr->sched_class != p->sched_class) 4666 goto out; 4667 4668 if (task_running(p_rq, p) || p->state) 4669 goto out; 4670 4671 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4672 if (yielded) { 4673 schedstat_inc(rq, yld_count); 4674 /* 4675 * Make p's CPU reschedule; pick_next_entity takes care of 4676 * fairness. 4677 */ 4678 if (preempt && rq != p_rq) 4679 resched_task(p_rq->curr); 4680 } else { 4681 /* 4682 * We might have set it in task_yield_fair(), but are 4683 * not going to schedule(), so don't want to skip 4684 * the next update. 4685 */ 4686 rq->skip_clock_update = 0; 4687 } 4688 4689 out: 4690 double_rq_unlock(rq, p_rq); 4691 local_irq_restore(flags); 4692 4693 if (yielded) 4694 schedule(); 4695 4696 return yielded; 4697 } 4698 EXPORT_SYMBOL_GPL(yield_to); 4699 4700 /* 4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4702 * that process accounting knows that this is a task in IO wait state. 4703 */ 4704 void __sched io_schedule(void) 4705 { 4706 struct rq *rq = raw_rq(); 4707 4708 delayacct_blkio_start(); 4709 atomic_inc(&rq->nr_iowait); 4710 blk_flush_plug(current); 4711 current->in_iowait = 1; 4712 schedule(); 4713 current->in_iowait = 0; 4714 atomic_dec(&rq->nr_iowait); 4715 delayacct_blkio_end(); 4716 } 4717 EXPORT_SYMBOL(io_schedule); 4718 4719 long __sched io_schedule_timeout(long timeout) 4720 { 4721 struct rq *rq = raw_rq(); 4722 long ret; 4723 4724 delayacct_blkio_start(); 4725 atomic_inc(&rq->nr_iowait); 4726 blk_flush_plug(current); 4727 current->in_iowait = 1; 4728 ret = schedule_timeout(timeout); 4729 current->in_iowait = 0; 4730 atomic_dec(&rq->nr_iowait); 4731 delayacct_blkio_end(); 4732 return ret; 4733 } 4734 4735 /** 4736 * sys_sched_get_priority_max - return maximum RT priority. 4737 * @policy: scheduling class. 4738 * 4739 * this syscall returns the maximum rt_priority that can be used 4740 * by a given scheduling class. 4741 */ 4742 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4743 { 4744 int ret = -EINVAL; 4745 4746 switch (policy) { 4747 case SCHED_FIFO: 4748 case SCHED_RR: 4749 ret = MAX_USER_RT_PRIO-1; 4750 break; 4751 case SCHED_NORMAL: 4752 case SCHED_BATCH: 4753 case SCHED_IDLE: 4754 ret = 0; 4755 break; 4756 } 4757 return ret; 4758 } 4759 4760 /** 4761 * sys_sched_get_priority_min - return minimum RT priority. 4762 * @policy: scheduling class. 4763 * 4764 * this syscall returns the minimum rt_priority that can be used 4765 * by a given scheduling class. 4766 */ 4767 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4768 { 4769 int ret = -EINVAL; 4770 4771 switch (policy) { 4772 case SCHED_FIFO: 4773 case SCHED_RR: 4774 ret = 1; 4775 break; 4776 case SCHED_NORMAL: 4777 case SCHED_BATCH: 4778 case SCHED_IDLE: 4779 ret = 0; 4780 } 4781 return ret; 4782 } 4783 4784 /** 4785 * sys_sched_rr_get_interval - return the default timeslice of a process. 4786 * @pid: pid of the process. 4787 * @interval: userspace pointer to the timeslice value. 4788 * 4789 * this syscall writes the default timeslice value of a given process 4790 * into the user-space timespec buffer. A value of '0' means infinity. 4791 */ 4792 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4793 struct timespec __user *, interval) 4794 { 4795 struct task_struct *p; 4796 unsigned int time_slice; 4797 unsigned long flags; 4798 struct rq *rq; 4799 int retval; 4800 struct timespec t; 4801 4802 if (pid < 0) 4803 return -EINVAL; 4804 4805 retval = -ESRCH; 4806 rcu_read_lock(); 4807 p = find_process_by_pid(pid); 4808 if (!p) 4809 goto out_unlock; 4810 4811 retval = security_task_getscheduler(p); 4812 if (retval) 4813 goto out_unlock; 4814 4815 rq = task_rq_lock(p, &flags); 4816 time_slice = p->sched_class->get_rr_interval(rq, p); 4817 task_rq_unlock(rq, p, &flags); 4818 4819 rcu_read_unlock(); 4820 jiffies_to_timespec(time_slice, &t); 4821 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4822 return retval; 4823 4824 out_unlock: 4825 rcu_read_unlock(); 4826 return retval; 4827 } 4828 4829 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4830 4831 void sched_show_task(struct task_struct *p) 4832 { 4833 unsigned long free = 0; 4834 unsigned state; 4835 4836 state = p->state ? __ffs(p->state) + 1 : 0; 4837 printk(KERN_INFO "%-15.15s %c", p->comm, 4838 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4839 #if BITS_PER_LONG == 32 4840 if (state == TASK_RUNNING) 4841 printk(KERN_CONT " running "); 4842 else 4843 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4844 #else 4845 if (state == TASK_RUNNING) 4846 printk(KERN_CONT " running task "); 4847 else 4848 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4849 #endif 4850 #ifdef CONFIG_DEBUG_STACK_USAGE 4851 free = stack_not_used(p); 4852 #endif 4853 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4854 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4855 (unsigned long)task_thread_info(p)->flags); 4856 4857 show_stack(p, NULL); 4858 } 4859 4860 void show_state_filter(unsigned long state_filter) 4861 { 4862 struct task_struct *g, *p; 4863 4864 #if BITS_PER_LONG == 32 4865 printk(KERN_INFO 4866 " task PC stack pid father\n"); 4867 #else 4868 printk(KERN_INFO 4869 " task PC stack pid father\n"); 4870 #endif 4871 rcu_read_lock(); 4872 do_each_thread(g, p) { 4873 /* 4874 * reset the NMI-timeout, listing all files on a slow 4875 * console might take a lot of time: 4876 */ 4877 touch_nmi_watchdog(); 4878 if (!state_filter || (p->state & state_filter)) 4879 sched_show_task(p); 4880 } while_each_thread(g, p); 4881 4882 touch_all_softlockup_watchdogs(); 4883 4884 #ifdef CONFIG_SCHED_DEBUG 4885 sysrq_sched_debug_show(); 4886 #endif 4887 rcu_read_unlock(); 4888 /* 4889 * Only show locks if all tasks are dumped: 4890 */ 4891 if (!state_filter) 4892 debug_show_all_locks(); 4893 } 4894 4895 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4896 { 4897 idle->sched_class = &idle_sched_class; 4898 } 4899 4900 /** 4901 * init_idle - set up an idle thread for a given CPU 4902 * @idle: task in question 4903 * @cpu: cpu the idle task belongs to 4904 * 4905 * NOTE: this function does not set the idle thread's NEED_RESCHED 4906 * flag, to make booting more robust. 4907 */ 4908 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4909 { 4910 struct rq *rq = cpu_rq(cpu); 4911 unsigned long flags; 4912 4913 raw_spin_lock_irqsave(&rq->lock, flags); 4914 4915 __sched_fork(idle); 4916 idle->state = TASK_RUNNING; 4917 idle->se.exec_start = sched_clock(); 4918 4919 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4920 /* 4921 * We're having a chicken and egg problem, even though we are 4922 * holding rq->lock, the cpu isn't yet set to this cpu so the 4923 * lockdep check in task_group() will fail. 4924 * 4925 * Similar case to sched_fork(). / Alternatively we could 4926 * use task_rq_lock() here and obtain the other rq->lock. 4927 * 4928 * Silence PROVE_RCU 4929 */ 4930 rcu_read_lock(); 4931 __set_task_cpu(idle, cpu); 4932 rcu_read_unlock(); 4933 4934 rq->curr = rq->idle = idle; 4935 #if defined(CONFIG_SMP) 4936 idle->on_cpu = 1; 4937 #endif 4938 raw_spin_unlock_irqrestore(&rq->lock, flags); 4939 4940 /* Set the preempt count _outside_ the spinlocks! */ 4941 task_thread_info(idle)->preempt_count = 0; 4942 4943 /* 4944 * The idle tasks have their own, simple scheduling class: 4945 */ 4946 idle->sched_class = &idle_sched_class; 4947 ftrace_graph_init_idle_task(idle, cpu); 4948 #if defined(CONFIG_SMP) 4949 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4950 #endif 4951 } 4952 4953 #ifdef CONFIG_SMP 4954 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4955 { 4956 if (p->sched_class && p->sched_class->set_cpus_allowed) 4957 p->sched_class->set_cpus_allowed(p, new_mask); 4958 4959 cpumask_copy(&p->cpus_allowed, new_mask); 4960 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4961 } 4962 4963 /* 4964 * This is how migration works: 4965 * 4966 * 1) we invoke migration_cpu_stop() on the target CPU using 4967 * stop_one_cpu(). 4968 * 2) stopper starts to run (implicitly forcing the migrated thread 4969 * off the CPU) 4970 * 3) it checks whether the migrated task is still in the wrong runqueue. 4971 * 4) if it's in the wrong runqueue then the migration thread removes 4972 * it and puts it into the right queue. 4973 * 5) stopper completes and stop_one_cpu() returns and the migration 4974 * is done. 4975 */ 4976 4977 /* 4978 * Change a given task's CPU affinity. Migrate the thread to a 4979 * proper CPU and schedule it away if the CPU it's executing on 4980 * is removed from the allowed bitmask. 4981 * 4982 * NOTE: the caller must have a valid reference to the task, the 4983 * task must not exit() & deallocate itself prematurely. The 4984 * call is not atomic; no spinlocks may be held. 4985 */ 4986 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4987 { 4988 unsigned long flags; 4989 struct rq *rq; 4990 unsigned int dest_cpu; 4991 int ret = 0; 4992 4993 rq = task_rq_lock(p, &flags); 4994 4995 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4996 goto out; 4997 4998 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4999 ret = -EINVAL; 5000 goto out; 5001 } 5002 5003 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 5004 ret = -EINVAL; 5005 goto out; 5006 } 5007 5008 do_set_cpus_allowed(p, new_mask); 5009 5010 /* Can the task run on the task's current CPU? If so, we're done */ 5011 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5012 goto out; 5013 5014 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 5015 if (p->on_rq) { 5016 struct migration_arg arg = { p, dest_cpu }; 5017 /* Need help from migration thread: drop lock and wait. */ 5018 task_rq_unlock(rq, p, &flags); 5019 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 5020 tlb_migrate_finish(p->mm); 5021 return 0; 5022 } 5023 out: 5024 task_rq_unlock(rq, p, &flags); 5025 5026 return ret; 5027 } 5028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5029 5030 /* 5031 * Move (not current) task off this cpu, onto dest cpu. We're doing 5032 * this because either it can't run here any more (set_cpus_allowed() 5033 * away from this CPU, or CPU going down), or because we're 5034 * attempting to rebalance this task on exec (sched_exec). 5035 * 5036 * So we race with normal scheduler movements, but that's OK, as long 5037 * as the task is no longer on this CPU. 5038 * 5039 * Returns non-zero if task was successfully migrated. 5040 */ 5041 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5042 { 5043 struct rq *rq_dest, *rq_src; 5044 int ret = 0; 5045 5046 if (unlikely(!cpu_active(dest_cpu))) 5047 return ret; 5048 5049 rq_src = cpu_rq(src_cpu); 5050 rq_dest = cpu_rq(dest_cpu); 5051 5052 raw_spin_lock(&p->pi_lock); 5053 double_rq_lock(rq_src, rq_dest); 5054 /* Already moved. */ 5055 if (task_cpu(p) != src_cpu) 5056 goto done; 5057 /* Affinity changed (again). */ 5058 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5059 goto fail; 5060 5061 /* 5062 * If we're not on a rq, the next wake-up will ensure we're 5063 * placed properly. 5064 */ 5065 if (p->on_rq) { 5066 dequeue_task(rq_src, p, 0); 5067 set_task_cpu(p, dest_cpu); 5068 enqueue_task(rq_dest, p, 0); 5069 check_preempt_curr(rq_dest, p, 0); 5070 } 5071 done: 5072 ret = 1; 5073 fail: 5074 double_rq_unlock(rq_src, rq_dest); 5075 raw_spin_unlock(&p->pi_lock); 5076 return ret; 5077 } 5078 5079 /* 5080 * migration_cpu_stop - this will be executed by a highprio stopper thread 5081 * and performs thread migration by bumping thread off CPU then 5082 * 'pushing' onto another runqueue. 5083 */ 5084 static int migration_cpu_stop(void *data) 5085 { 5086 struct migration_arg *arg = data; 5087 5088 /* 5089 * The original target cpu might have gone down and we might 5090 * be on another cpu but it doesn't matter. 5091 */ 5092 local_irq_disable(); 5093 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5094 local_irq_enable(); 5095 return 0; 5096 } 5097 5098 #ifdef CONFIG_HOTPLUG_CPU 5099 5100 /* 5101 * Ensures that the idle task is using init_mm right before its cpu goes 5102 * offline. 5103 */ 5104 void idle_task_exit(void) 5105 { 5106 struct mm_struct *mm = current->active_mm; 5107 5108 BUG_ON(cpu_online(smp_processor_id())); 5109 5110 if (mm != &init_mm) 5111 switch_mm(mm, &init_mm, current); 5112 mmdrop(mm); 5113 } 5114 5115 /* 5116 * While a dead CPU has no uninterruptible tasks queued at this point, 5117 * it might still have a nonzero ->nr_uninterruptible counter, because 5118 * for performance reasons the counter is not stricly tracking tasks to 5119 * their home CPUs. So we just add the counter to another CPU's counter, 5120 * to keep the global sum constant after CPU-down: 5121 */ 5122 static void migrate_nr_uninterruptible(struct rq *rq_src) 5123 { 5124 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5125 5126 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5127 rq_src->nr_uninterruptible = 0; 5128 } 5129 5130 /* 5131 * remove the tasks which were accounted by rq from calc_load_tasks. 5132 */ 5133 static void calc_global_load_remove(struct rq *rq) 5134 { 5135 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5136 rq->calc_load_active = 0; 5137 } 5138 5139 /* 5140 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5141 * try_to_wake_up()->select_task_rq(). 5142 * 5143 * Called with rq->lock held even though we'er in stop_machine() and 5144 * there's no concurrency possible, we hold the required locks anyway 5145 * because of lock validation efforts. 5146 */ 5147 static void migrate_tasks(unsigned int dead_cpu) 5148 { 5149 struct rq *rq = cpu_rq(dead_cpu); 5150 struct task_struct *next, *stop = rq->stop; 5151 int dest_cpu; 5152 5153 /* 5154 * Fudge the rq selection such that the below task selection loop 5155 * doesn't get stuck on the currently eligible stop task. 5156 * 5157 * We're currently inside stop_machine() and the rq is either stuck 5158 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5159 * either way we should never end up calling schedule() until we're 5160 * done here. 5161 */ 5162 rq->stop = NULL; 5163 5164 /* Ensure any throttled groups are reachable by pick_next_task */ 5165 unthrottle_offline_cfs_rqs(rq); 5166 5167 for ( ; ; ) { 5168 /* 5169 * There's this thread running, bail when that's the only 5170 * remaining thread. 5171 */ 5172 if (rq->nr_running == 1) 5173 break; 5174 5175 next = pick_next_task(rq); 5176 BUG_ON(!next); 5177 next->sched_class->put_prev_task(rq, next); 5178 5179 /* Find suitable destination for @next, with force if needed. */ 5180 dest_cpu = select_fallback_rq(dead_cpu, next); 5181 raw_spin_unlock(&rq->lock); 5182 5183 __migrate_task(next, dead_cpu, dest_cpu); 5184 5185 raw_spin_lock(&rq->lock); 5186 } 5187 5188 rq->stop = stop; 5189 } 5190 5191 #endif /* CONFIG_HOTPLUG_CPU */ 5192 5193 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5194 5195 static struct ctl_table sd_ctl_dir[] = { 5196 { 5197 .procname = "sched_domain", 5198 .mode = 0555, 5199 }, 5200 {} 5201 }; 5202 5203 static struct ctl_table sd_ctl_root[] = { 5204 { 5205 .procname = "kernel", 5206 .mode = 0555, 5207 .child = sd_ctl_dir, 5208 }, 5209 {} 5210 }; 5211 5212 static struct ctl_table *sd_alloc_ctl_entry(int n) 5213 { 5214 struct ctl_table *entry = 5215 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5216 5217 return entry; 5218 } 5219 5220 static void sd_free_ctl_entry(struct ctl_table **tablep) 5221 { 5222 struct ctl_table *entry; 5223 5224 /* 5225 * In the intermediate directories, both the child directory and 5226 * procname are dynamically allocated and could fail but the mode 5227 * will always be set. In the lowest directory the names are 5228 * static strings and all have proc handlers. 5229 */ 5230 for (entry = *tablep; entry->mode; entry++) { 5231 if (entry->child) 5232 sd_free_ctl_entry(&entry->child); 5233 if (entry->proc_handler == NULL) 5234 kfree(entry->procname); 5235 } 5236 5237 kfree(*tablep); 5238 *tablep = NULL; 5239 } 5240 5241 static void 5242 set_table_entry(struct ctl_table *entry, 5243 const char *procname, void *data, int maxlen, 5244 umode_t mode, proc_handler *proc_handler) 5245 { 5246 entry->procname = procname; 5247 entry->data = data; 5248 entry->maxlen = maxlen; 5249 entry->mode = mode; 5250 entry->proc_handler = proc_handler; 5251 } 5252 5253 static struct ctl_table * 5254 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5255 { 5256 struct ctl_table *table = sd_alloc_ctl_entry(13); 5257 5258 if (table == NULL) 5259 return NULL; 5260 5261 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5262 sizeof(long), 0644, proc_doulongvec_minmax); 5263 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5264 sizeof(long), 0644, proc_doulongvec_minmax); 5265 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5266 sizeof(int), 0644, proc_dointvec_minmax); 5267 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5268 sizeof(int), 0644, proc_dointvec_minmax); 5269 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5270 sizeof(int), 0644, proc_dointvec_minmax); 5271 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5272 sizeof(int), 0644, proc_dointvec_minmax); 5273 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5274 sizeof(int), 0644, proc_dointvec_minmax); 5275 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5276 sizeof(int), 0644, proc_dointvec_minmax); 5277 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5278 sizeof(int), 0644, proc_dointvec_minmax); 5279 set_table_entry(&table[9], "cache_nice_tries", 5280 &sd->cache_nice_tries, 5281 sizeof(int), 0644, proc_dointvec_minmax); 5282 set_table_entry(&table[10], "flags", &sd->flags, 5283 sizeof(int), 0644, proc_dointvec_minmax); 5284 set_table_entry(&table[11], "name", sd->name, 5285 CORENAME_MAX_SIZE, 0444, proc_dostring); 5286 /* &table[12] is terminator */ 5287 5288 return table; 5289 } 5290 5291 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5292 { 5293 struct ctl_table *entry, *table; 5294 struct sched_domain *sd; 5295 int domain_num = 0, i; 5296 char buf[32]; 5297 5298 for_each_domain(cpu, sd) 5299 domain_num++; 5300 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5301 if (table == NULL) 5302 return NULL; 5303 5304 i = 0; 5305 for_each_domain(cpu, sd) { 5306 snprintf(buf, 32, "domain%d", i); 5307 entry->procname = kstrdup(buf, GFP_KERNEL); 5308 entry->mode = 0555; 5309 entry->child = sd_alloc_ctl_domain_table(sd); 5310 entry++; 5311 i++; 5312 } 5313 return table; 5314 } 5315 5316 static struct ctl_table_header *sd_sysctl_header; 5317 static void register_sched_domain_sysctl(void) 5318 { 5319 int i, cpu_num = num_possible_cpus(); 5320 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5321 char buf[32]; 5322 5323 WARN_ON(sd_ctl_dir[0].child); 5324 sd_ctl_dir[0].child = entry; 5325 5326 if (entry == NULL) 5327 return; 5328 5329 for_each_possible_cpu(i) { 5330 snprintf(buf, 32, "cpu%d", i); 5331 entry->procname = kstrdup(buf, GFP_KERNEL); 5332 entry->mode = 0555; 5333 entry->child = sd_alloc_ctl_cpu_table(i); 5334 entry++; 5335 } 5336 5337 WARN_ON(sd_sysctl_header); 5338 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5339 } 5340 5341 /* may be called multiple times per register */ 5342 static void unregister_sched_domain_sysctl(void) 5343 { 5344 if (sd_sysctl_header) 5345 unregister_sysctl_table(sd_sysctl_header); 5346 sd_sysctl_header = NULL; 5347 if (sd_ctl_dir[0].child) 5348 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5349 } 5350 #else 5351 static void register_sched_domain_sysctl(void) 5352 { 5353 } 5354 static void unregister_sched_domain_sysctl(void) 5355 { 5356 } 5357 #endif 5358 5359 static void set_rq_online(struct rq *rq) 5360 { 5361 if (!rq->online) { 5362 const struct sched_class *class; 5363 5364 cpumask_set_cpu(rq->cpu, rq->rd->online); 5365 rq->online = 1; 5366 5367 for_each_class(class) { 5368 if (class->rq_online) 5369 class->rq_online(rq); 5370 } 5371 } 5372 } 5373 5374 static void set_rq_offline(struct rq *rq) 5375 { 5376 if (rq->online) { 5377 const struct sched_class *class; 5378 5379 for_each_class(class) { 5380 if (class->rq_offline) 5381 class->rq_offline(rq); 5382 } 5383 5384 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5385 rq->online = 0; 5386 } 5387 } 5388 5389 /* 5390 * migration_call - callback that gets triggered when a CPU is added. 5391 * Here we can start up the necessary migration thread for the new CPU. 5392 */ 5393 static int __cpuinit 5394 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5395 { 5396 int cpu = (long)hcpu; 5397 unsigned long flags; 5398 struct rq *rq = cpu_rq(cpu); 5399 5400 switch (action & ~CPU_TASKS_FROZEN) { 5401 5402 case CPU_UP_PREPARE: 5403 rq->calc_load_update = calc_load_update; 5404 break; 5405 5406 case CPU_ONLINE: 5407 /* Update our root-domain */ 5408 raw_spin_lock_irqsave(&rq->lock, flags); 5409 if (rq->rd) { 5410 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5411 5412 set_rq_online(rq); 5413 } 5414 raw_spin_unlock_irqrestore(&rq->lock, flags); 5415 break; 5416 5417 #ifdef CONFIG_HOTPLUG_CPU 5418 case CPU_DYING: 5419 sched_ttwu_pending(); 5420 /* Update our root-domain */ 5421 raw_spin_lock_irqsave(&rq->lock, flags); 5422 if (rq->rd) { 5423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5424 set_rq_offline(rq); 5425 } 5426 migrate_tasks(cpu); 5427 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5428 raw_spin_unlock_irqrestore(&rq->lock, flags); 5429 5430 migrate_nr_uninterruptible(rq); 5431 calc_global_load_remove(rq); 5432 break; 5433 #endif 5434 } 5435 5436 update_max_interval(); 5437 5438 return NOTIFY_OK; 5439 } 5440 5441 /* 5442 * Register at high priority so that task migration (migrate_all_tasks) 5443 * happens before everything else. This has to be lower priority than 5444 * the notifier in the perf_event subsystem, though. 5445 */ 5446 static struct notifier_block __cpuinitdata migration_notifier = { 5447 .notifier_call = migration_call, 5448 .priority = CPU_PRI_MIGRATION, 5449 }; 5450 5451 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5452 unsigned long action, void *hcpu) 5453 { 5454 switch (action & ~CPU_TASKS_FROZEN) { 5455 case CPU_STARTING: 5456 case CPU_DOWN_FAILED: 5457 set_cpu_active((long)hcpu, true); 5458 return NOTIFY_OK; 5459 default: 5460 return NOTIFY_DONE; 5461 } 5462 } 5463 5464 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5465 unsigned long action, void *hcpu) 5466 { 5467 switch (action & ~CPU_TASKS_FROZEN) { 5468 case CPU_DOWN_PREPARE: 5469 set_cpu_active((long)hcpu, false); 5470 return NOTIFY_OK; 5471 default: 5472 return NOTIFY_DONE; 5473 } 5474 } 5475 5476 static int __init migration_init(void) 5477 { 5478 void *cpu = (void *)(long)smp_processor_id(); 5479 int err; 5480 5481 /* Initialize migration for the boot CPU */ 5482 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5483 BUG_ON(err == NOTIFY_BAD); 5484 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5485 register_cpu_notifier(&migration_notifier); 5486 5487 /* Register cpu active notifiers */ 5488 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5489 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5490 5491 return 0; 5492 } 5493 early_initcall(migration_init); 5494 #endif 5495 5496 #ifdef CONFIG_SMP 5497 5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5499 5500 #ifdef CONFIG_SCHED_DEBUG 5501 5502 static __read_mostly int sched_domain_debug_enabled; 5503 5504 static int __init sched_domain_debug_setup(char *str) 5505 { 5506 sched_domain_debug_enabled = 1; 5507 5508 return 0; 5509 } 5510 early_param("sched_debug", sched_domain_debug_setup); 5511 5512 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5513 struct cpumask *groupmask) 5514 { 5515 struct sched_group *group = sd->groups; 5516 char str[256]; 5517 5518 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5519 cpumask_clear(groupmask); 5520 5521 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5522 5523 if (!(sd->flags & SD_LOAD_BALANCE)) { 5524 printk("does not load-balance\n"); 5525 if (sd->parent) 5526 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5527 " has parent"); 5528 return -1; 5529 } 5530 5531 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5532 5533 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5534 printk(KERN_ERR "ERROR: domain->span does not contain " 5535 "CPU%d\n", cpu); 5536 } 5537 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5538 printk(KERN_ERR "ERROR: domain->groups does not contain" 5539 " CPU%d\n", cpu); 5540 } 5541 5542 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5543 do { 5544 if (!group) { 5545 printk("\n"); 5546 printk(KERN_ERR "ERROR: group is NULL\n"); 5547 break; 5548 } 5549 5550 if (!group->sgp->power) { 5551 printk(KERN_CONT "\n"); 5552 printk(KERN_ERR "ERROR: domain->cpu_power not " 5553 "set\n"); 5554 break; 5555 } 5556 5557 if (!cpumask_weight(sched_group_cpus(group))) { 5558 printk(KERN_CONT "\n"); 5559 printk(KERN_ERR "ERROR: empty group\n"); 5560 break; 5561 } 5562 5563 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5564 printk(KERN_CONT "\n"); 5565 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5566 break; 5567 } 5568 5569 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5570 5571 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5572 5573 printk(KERN_CONT " %s", str); 5574 if (group->sgp->power != SCHED_POWER_SCALE) { 5575 printk(KERN_CONT " (cpu_power = %d)", 5576 group->sgp->power); 5577 } 5578 5579 group = group->next; 5580 } while (group != sd->groups); 5581 printk(KERN_CONT "\n"); 5582 5583 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5585 5586 if (sd->parent && 5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5588 printk(KERN_ERR "ERROR: parent span is not a superset " 5589 "of domain->span\n"); 5590 return 0; 5591 } 5592 5593 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5594 { 5595 int level = 0; 5596 5597 if (!sched_domain_debug_enabled) 5598 return; 5599 5600 if (!sd) { 5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5602 return; 5603 } 5604 5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5606 5607 for (;;) { 5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5609 break; 5610 level++; 5611 sd = sd->parent; 5612 if (!sd) 5613 break; 5614 } 5615 } 5616 #else /* !CONFIG_SCHED_DEBUG */ 5617 # define sched_domain_debug(sd, cpu) do { } while (0) 5618 #endif /* CONFIG_SCHED_DEBUG */ 5619 5620 static int sd_degenerate(struct sched_domain *sd) 5621 { 5622 if (cpumask_weight(sched_domain_span(sd)) == 1) 5623 return 1; 5624 5625 /* Following flags need at least 2 groups */ 5626 if (sd->flags & (SD_LOAD_BALANCE | 5627 SD_BALANCE_NEWIDLE | 5628 SD_BALANCE_FORK | 5629 SD_BALANCE_EXEC | 5630 SD_SHARE_CPUPOWER | 5631 SD_SHARE_PKG_RESOURCES)) { 5632 if (sd->groups != sd->groups->next) 5633 return 0; 5634 } 5635 5636 /* Following flags don't use groups */ 5637 if (sd->flags & (SD_WAKE_AFFINE)) 5638 return 0; 5639 5640 return 1; 5641 } 5642 5643 static int 5644 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5645 { 5646 unsigned long cflags = sd->flags, pflags = parent->flags; 5647 5648 if (sd_degenerate(parent)) 5649 return 1; 5650 5651 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5652 return 0; 5653 5654 /* Flags needing groups don't count if only 1 group in parent */ 5655 if (parent->groups == parent->groups->next) { 5656 pflags &= ~(SD_LOAD_BALANCE | 5657 SD_BALANCE_NEWIDLE | 5658 SD_BALANCE_FORK | 5659 SD_BALANCE_EXEC | 5660 SD_SHARE_CPUPOWER | 5661 SD_SHARE_PKG_RESOURCES); 5662 if (nr_node_ids == 1) 5663 pflags &= ~SD_SERIALIZE; 5664 } 5665 if (~cflags & pflags) 5666 return 0; 5667 5668 return 1; 5669 } 5670 5671 static void free_rootdomain(struct rcu_head *rcu) 5672 { 5673 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5674 5675 cpupri_cleanup(&rd->cpupri); 5676 free_cpumask_var(rd->rto_mask); 5677 free_cpumask_var(rd->online); 5678 free_cpumask_var(rd->span); 5679 kfree(rd); 5680 } 5681 5682 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5683 { 5684 struct root_domain *old_rd = NULL; 5685 unsigned long flags; 5686 5687 raw_spin_lock_irqsave(&rq->lock, flags); 5688 5689 if (rq->rd) { 5690 old_rd = rq->rd; 5691 5692 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5693 set_rq_offline(rq); 5694 5695 cpumask_clear_cpu(rq->cpu, old_rd->span); 5696 5697 /* 5698 * If we dont want to free the old_rt yet then 5699 * set old_rd to NULL to skip the freeing later 5700 * in this function: 5701 */ 5702 if (!atomic_dec_and_test(&old_rd->refcount)) 5703 old_rd = NULL; 5704 } 5705 5706 atomic_inc(&rd->refcount); 5707 rq->rd = rd; 5708 5709 cpumask_set_cpu(rq->cpu, rd->span); 5710 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5711 set_rq_online(rq); 5712 5713 raw_spin_unlock_irqrestore(&rq->lock, flags); 5714 5715 if (old_rd) 5716 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5717 } 5718 5719 static int init_rootdomain(struct root_domain *rd) 5720 { 5721 memset(rd, 0, sizeof(*rd)); 5722 5723 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5724 goto out; 5725 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5726 goto free_span; 5727 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5728 goto free_online; 5729 5730 if (cpupri_init(&rd->cpupri) != 0) 5731 goto free_rto_mask; 5732 return 0; 5733 5734 free_rto_mask: 5735 free_cpumask_var(rd->rto_mask); 5736 free_online: 5737 free_cpumask_var(rd->online); 5738 free_span: 5739 free_cpumask_var(rd->span); 5740 out: 5741 return -ENOMEM; 5742 } 5743 5744 /* 5745 * By default the system creates a single root-domain with all cpus as 5746 * members (mimicking the global state we have today). 5747 */ 5748 struct root_domain def_root_domain; 5749 5750 static void init_defrootdomain(void) 5751 { 5752 init_rootdomain(&def_root_domain); 5753 5754 atomic_set(&def_root_domain.refcount, 1); 5755 } 5756 5757 static struct root_domain *alloc_rootdomain(void) 5758 { 5759 struct root_domain *rd; 5760 5761 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5762 if (!rd) 5763 return NULL; 5764 5765 if (init_rootdomain(rd) != 0) { 5766 kfree(rd); 5767 return NULL; 5768 } 5769 5770 return rd; 5771 } 5772 5773 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5774 { 5775 struct sched_group *tmp, *first; 5776 5777 if (!sg) 5778 return; 5779 5780 first = sg; 5781 do { 5782 tmp = sg->next; 5783 5784 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5785 kfree(sg->sgp); 5786 5787 kfree(sg); 5788 sg = tmp; 5789 } while (sg != first); 5790 } 5791 5792 static void free_sched_domain(struct rcu_head *rcu) 5793 { 5794 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5795 5796 /* 5797 * If its an overlapping domain it has private groups, iterate and 5798 * nuke them all. 5799 */ 5800 if (sd->flags & SD_OVERLAP) { 5801 free_sched_groups(sd->groups, 1); 5802 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5803 kfree(sd->groups->sgp); 5804 kfree(sd->groups); 5805 } 5806 kfree(sd); 5807 } 5808 5809 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5810 { 5811 call_rcu(&sd->rcu, free_sched_domain); 5812 } 5813 5814 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5815 { 5816 for (; sd; sd = sd->parent) 5817 destroy_sched_domain(sd, cpu); 5818 } 5819 5820 /* 5821 * Keep a special pointer to the highest sched_domain that has 5822 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5823 * allows us to avoid some pointer chasing select_idle_sibling(). 5824 * 5825 * Also keep a unique ID per domain (we use the first cpu number in 5826 * the cpumask of the domain), this allows us to quickly tell if 5827 * two cpus are in the same cache domain, see cpus_share_cache(). 5828 */ 5829 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5830 DEFINE_PER_CPU(int, sd_llc_id); 5831 5832 static void update_top_cache_domain(int cpu) 5833 { 5834 struct sched_domain *sd; 5835 int id = cpu; 5836 5837 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5838 if (sd) 5839 id = cpumask_first(sched_domain_span(sd)); 5840 5841 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5842 per_cpu(sd_llc_id, cpu) = id; 5843 } 5844 5845 /* 5846 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5847 * hold the hotplug lock. 5848 */ 5849 static void 5850 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5851 { 5852 struct rq *rq = cpu_rq(cpu); 5853 struct sched_domain *tmp; 5854 5855 /* Remove the sched domains which do not contribute to scheduling. */ 5856 for (tmp = sd; tmp; ) { 5857 struct sched_domain *parent = tmp->parent; 5858 if (!parent) 5859 break; 5860 5861 if (sd_parent_degenerate(tmp, parent)) { 5862 tmp->parent = parent->parent; 5863 if (parent->parent) 5864 parent->parent->child = tmp; 5865 destroy_sched_domain(parent, cpu); 5866 } else 5867 tmp = tmp->parent; 5868 } 5869 5870 if (sd && sd_degenerate(sd)) { 5871 tmp = sd; 5872 sd = sd->parent; 5873 destroy_sched_domain(tmp, cpu); 5874 if (sd) 5875 sd->child = NULL; 5876 } 5877 5878 sched_domain_debug(sd, cpu); 5879 5880 rq_attach_root(rq, rd); 5881 tmp = rq->sd; 5882 rcu_assign_pointer(rq->sd, sd); 5883 destroy_sched_domains(tmp, cpu); 5884 5885 update_top_cache_domain(cpu); 5886 } 5887 5888 /* cpus with isolated domains */ 5889 static cpumask_var_t cpu_isolated_map; 5890 5891 /* Setup the mask of cpus configured for isolated domains */ 5892 static int __init isolated_cpu_setup(char *str) 5893 { 5894 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5895 cpulist_parse(str, cpu_isolated_map); 5896 return 1; 5897 } 5898 5899 __setup("isolcpus=", isolated_cpu_setup); 5900 5901 #ifdef CONFIG_NUMA 5902 5903 /** 5904 * find_next_best_node - find the next node to include in a sched_domain 5905 * @node: node whose sched_domain we're building 5906 * @used_nodes: nodes already in the sched_domain 5907 * 5908 * Find the next node to include in a given scheduling domain. Simply 5909 * finds the closest node not already in the @used_nodes map. 5910 * 5911 * Should use nodemask_t. 5912 */ 5913 static int find_next_best_node(int node, nodemask_t *used_nodes) 5914 { 5915 int i, n, val, min_val, best_node = -1; 5916 5917 min_val = INT_MAX; 5918 5919 for (i = 0; i < nr_node_ids; i++) { 5920 /* Start at @node */ 5921 n = (node + i) % nr_node_ids; 5922 5923 if (!nr_cpus_node(n)) 5924 continue; 5925 5926 /* Skip already used nodes */ 5927 if (node_isset(n, *used_nodes)) 5928 continue; 5929 5930 /* Simple min distance search */ 5931 val = node_distance(node, n); 5932 5933 if (val < min_val) { 5934 min_val = val; 5935 best_node = n; 5936 } 5937 } 5938 5939 if (best_node != -1) 5940 node_set(best_node, *used_nodes); 5941 return best_node; 5942 } 5943 5944 /** 5945 * sched_domain_node_span - get a cpumask for a node's sched_domain 5946 * @node: node whose cpumask we're constructing 5947 * @span: resulting cpumask 5948 * 5949 * Given a node, construct a good cpumask for its sched_domain to span. It 5950 * should be one that prevents unnecessary balancing, but also spreads tasks 5951 * out optimally. 5952 */ 5953 static void sched_domain_node_span(int node, struct cpumask *span) 5954 { 5955 nodemask_t used_nodes; 5956 int i; 5957 5958 cpumask_clear(span); 5959 nodes_clear(used_nodes); 5960 5961 cpumask_or(span, span, cpumask_of_node(node)); 5962 node_set(node, used_nodes); 5963 5964 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5965 int next_node = find_next_best_node(node, &used_nodes); 5966 if (next_node < 0) 5967 break; 5968 cpumask_or(span, span, cpumask_of_node(next_node)); 5969 } 5970 } 5971 5972 static const struct cpumask *cpu_node_mask(int cpu) 5973 { 5974 lockdep_assert_held(&sched_domains_mutex); 5975 5976 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5977 5978 return sched_domains_tmpmask; 5979 } 5980 5981 static const struct cpumask *cpu_allnodes_mask(int cpu) 5982 { 5983 return cpu_possible_mask; 5984 } 5985 #endif /* CONFIG_NUMA */ 5986 5987 static const struct cpumask *cpu_cpu_mask(int cpu) 5988 { 5989 return cpumask_of_node(cpu_to_node(cpu)); 5990 } 5991 5992 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5993 5994 struct sd_data { 5995 struct sched_domain **__percpu sd; 5996 struct sched_group **__percpu sg; 5997 struct sched_group_power **__percpu sgp; 5998 }; 5999 6000 struct s_data { 6001 struct sched_domain ** __percpu sd; 6002 struct root_domain *rd; 6003 }; 6004 6005 enum s_alloc { 6006 sa_rootdomain, 6007 sa_sd, 6008 sa_sd_storage, 6009 sa_none, 6010 }; 6011 6012 struct sched_domain_topology_level; 6013 6014 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 6015 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 6016 6017 #define SDTL_OVERLAP 0x01 6018 6019 struct sched_domain_topology_level { 6020 sched_domain_init_f init; 6021 sched_domain_mask_f mask; 6022 int flags; 6023 struct sd_data data; 6024 }; 6025 6026 static int 6027 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6028 { 6029 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6030 const struct cpumask *span = sched_domain_span(sd); 6031 struct cpumask *covered = sched_domains_tmpmask; 6032 struct sd_data *sdd = sd->private; 6033 struct sched_domain *child; 6034 int i; 6035 6036 cpumask_clear(covered); 6037 6038 for_each_cpu(i, span) { 6039 struct cpumask *sg_span; 6040 6041 if (cpumask_test_cpu(i, covered)) 6042 continue; 6043 6044 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6045 GFP_KERNEL, cpu_to_node(cpu)); 6046 6047 if (!sg) 6048 goto fail; 6049 6050 sg_span = sched_group_cpus(sg); 6051 6052 child = *per_cpu_ptr(sdd->sd, i); 6053 if (child->child) { 6054 child = child->child; 6055 cpumask_copy(sg_span, sched_domain_span(child)); 6056 } else 6057 cpumask_set_cpu(i, sg_span); 6058 6059 cpumask_or(covered, covered, sg_span); 6060 6061 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 6062 atomic_inc(&sg->sgp->ref); 6063 6064 if (cpumask_test_cpu(cpu, sg_span)) 6065 groups = sg; 6066 6067 if (!first) 6068 first = sg; 6069 if (last) 6070 last->next = sg; 6071 last = sg; 6072 last->next = first; 6073 } 6074 sd->groups = groups; 6075 6076 return 0; 6077 6078 fail: 6079 free_sched_groups(first, 0); 6080 6081 return -ENOMEM; 6082 } 6083 6084 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6085 { 6086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6087 struct sched_domain *child = sd->child; 6088 6089 if (child) 6090 cpu = cpumask_first(sched_domain_span(child)); 6091 6092 if (sg) { 6093 *sg = *per_cpu_ptr(sdd->sg, cpu); 6094 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6095 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6096 } 6097 6098 return cpu; 6099 } 6100 6101 /* 6102 * build_sched_groups will build a circular linked list of the groups 6103 * covered by the given span, and will set each group's ->cpumask correctly, 6104 * and ->cpu_power to 0. 6105 * 6106 * Assumes the sched_domain tree is fully constructed 6107 */ 6108 static int 6109 build_sched_groups(struct sched_domain *sd, int cpu) 6110 { 6111 struct sched_group *first = NULL, *last = NULL; 6112 struct sd_data *sdd = sd->private; 6113 const struct cpumask *span = sched_domain_span(sd); 6114 struct cpumask *covered; 6115 int i; 6116 6117 get_group(cpu, sdd, &sd->groups); 6118 atomic_inc(&sd->groups->ref); 6119 6120 if (cpu != cpumask_first(sched_domain_span(sd))) 6121 return 0; 6122 6123 lockdep_assert_held(&sched_domains_mutex); 6124 covered = sched_domains_tmpmask; 6125 6126 cpumask_clear(covered); 6127 6128 for_each_cpu(i, span) { 6129 struct sched_group *sg; 6130 int group = get_group(i, sdd, &sg); 6131 int j; 6132 6133 if (cpumask_test_cpu(i, covered)) 6134 continue; 6135 6136 cpumask_clear(sched_group_cpus(sg)); 6137 sg->sgp->power = 0; 6138 6139 for_each_cpu(j, span) { 6140 if (get_group(j, sdd, NULL) != group) 6141 continue; 6142 6143 cpumask_set_cpu(j, covered); 6144 cpumask_set_cpu(j, sched_group_cpus(sg)); 6145 } 6146 6147 if (!first) 6148 first = sg; 6149 if (last) 6150 last->next = sg; 6151 last = sg; 6152 } 6153 last->next = first; 6154 6155 return 0; 6156 } 6157 6158 /* 6159 * Initialize sched groups cpu_power. 6160 * 6161 * cpu_power indicates the capacity of sched group, which is used while 6162 * distributing the load between different sched groups in a sched domain. 6163 * Typically cpu_power for all the groups in a sched domain will be same unless 6164 * there are asymmetries in the topology. If there are asymmetries, group 6165 * having more cpu_power will pickup more load compared to the group having 6166 * less cpu_power. 6167 */ 6168 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6169 { 6170 struct sched_group *sg = sd->groups; 6171 6172 WARN_ON(!sd || !sg); 6173 6174 do { 6175 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6176 sg = sg->next; 6177 } while (sg != sd->groups); 6178 6179 if (cpu != group_first_cpu(sg)) 6180 return; 6181 6182 update_group_power(sd, cpu); 6183 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6184 } 6185 6186 int __weak arch_sd_sibling_asym_packing(void) 6187 { 6188 return 0*SD_ASYM_PACKING; 6189 } 6190 6191 /* 6192 * Initializers for schedule domains 6193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6194 */ 6195 6196 #ifdef CONFIG_SCHED_DEBUG 6197 # define SD_INIT_NAME(sd, type) sd->name = #type 6198 #else 6199 # define SD_INIT_NAME(sd, type) do { } while (0) 6200 #endif 6201 6202 #define SD_INIT_FUNC(type) \ 6203 static noinline struct sched_domain * \ 6204 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6205 { \ 6206 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6207 *sd = SD_##type##_INIT; \ 6208 SD_INIT_NAME(sd, type); \ 6209 sd->private = &tl->data; \ 6210 return sd; \ 6211 } 6212 6213 SD_INIT_FUNC(CPU) 6214 #ifdef CONFIG_NUMA 6215 SD_INIT_FUNC(ALLNODES) 6216 SD_INIT_FUNC(NODE) 6217 #endif 6218 #ifdef CONFIG_SCHED_SMT 6219 SD_INIT_FUNC(SIBLING) 6220 #endif 6221 #ifdef CONFIG_SCHED_MC 6222 SD_INIT_FUNC(MC) 6223 #endif 6224 #ifdef CONFIG_SCHED_BOOK 6225 SD_INIT_FUNC(BOOK) 6226 #endif 6227 6228 static int default_relax_domain_level = -1; 6229 int sched_domain_level_max; 6230 6231 static int __init setup_relax_domain_level(char *str) 6232 { 6233 unsigned long val; 6234 6235 val = simple_strtoul(str, NULL, 0); 6236 if (val < sched_domain_level_max) 6237 default_relax_domain_level = val; 6238 6239 return 1; 6240 } 6241 __setup("relax_domain_level=", setup_relax_domain_level); 6242 6243 static void set_domain_attribute(struct sched_domain *sd, 6244 struct sched_domain_attr *attr) 6245 { 6246 int request; 6247 6248 if (!attr || attr->relax_domain_level < 0) { 6249 if (default_relax_domain_level < 0) 6250 return; 6251 else 6252 request = default_relax_domain_level; 6253 } else 6254 request = attr->relax_domain_level; 6255 if (request < sd->level) { 6256 /* turn off idle balance on this domain */ 6257 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6258 } else { 6259 /* turn on idle balance on this domain */ 6260 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6261 } 6262 } 6263 6264 static void __sdt_free(const struct cpumask *cpu_map); 6265 static int __sdt_alloc(const struct cpumask *cpu_map); 6266 6267 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6268 const struct cpumask *cpu_map) 6269 { 6270 switch (what) { 6271 case sa_rootdomain: 6272 if (!atomic_read(&d->rd->refcount)) 6273 free_rootdomain(&d->rd->rcu); /* fall through */ 6274 case sa_sd: 6275 free_percpu(d->sd); /* fall through */ 6276 case sa_sd_storage: 6277 __sdt_free(cpu_map); /* fall through */ 6278 case sa_none: 6279 break; 6280 } 6281 } 6282 6283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6284 const struct cpumask *cpu_map) 6285 { 6286 memset(d, 0, sizeof(*d)); 6287 6288 if (__sdt_alloc(cpu_map)) 6289 return sa_sd_storage; 6290 d->sd = alloc_percpu(struct sched_domain *); 6291 if (!d->sd) 6292 return sa_sd_storage; 6293 d->rd = alloc_rootdomain(); 6294 if (!d->rd) 6295 return sa_sd; 6296 return sa_rootdomain; 6297 } 6298 6299 /* 6300 * NULL the sd_data elements we've used to build the sched_domain and 6301 * sched_group structure so that the subsequent __free_domain_allocs() 6302 * will not free the data we're using. 6303 */ 6304 static void claim_allocations(int cpu, struct sched_domain *sd) 6305 { 6306 struct sd_data *sdd = sd->private; 6307 6308 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6309 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6310 6311 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6312 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6313 6314 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6315 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6316 } 6317 6318 #ifdef CONFIG_SCHED_SMT 6319 static const struct cpumask *cpu_smt_mask(int cpu) 6320 { 6321 return topology_thread_cpumask(cpu); 6322 } 6323 #endif 6324 6325 /* 6326 * Topology list, bottom-up. 6327 */ 6328 static struct sched_domain_topology_level default_topology[] = { 6329 #ifdef CONFIG_SCHED_SMT 6330 { sd_init_SIBLING, cpu_smt_mask, }, 6331 #endif 6332 #ifdef CONFIG_SCHED_MC 6333 { sd_init_MC, cpu_coregroup_mask, }, 6334 #endif 6335 #ifdef CONFIG_SCHED_BOOK 6336 { sd_init_BOOK, cpu_book_mask, }, 6337 #endif 6338 { sd_init_CPU, cpu_cpu_mask, }, 6339 #ifdef CONFIG_NUMA 6340 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6341 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6342 #endif 6343 { NULL, }, 6344 }; 6345 6346 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6347 6348 static int __sdt_alloc(const struct cpumask *cpu_map) 6349 { 6350 struct sched_domain_topology_level *tl; 6351 int j; 6352 6353 for (tl = sched_domain_topology; tl->init; tl++) { 6354 struct sd_data *sdd = &tl->data; 6355 6356 sdd->sd = alloc_percpu(struct sched_domain *); 6357 if (!sdd->sd) 6358 return -ENOMEM; 6359 6360 sdd->sg = alloc_percpu(struct sched_group *); 6361 if (!sdd->sg) 6362 return -ENOMEM; 6363 6364 sdd->sgp = alloc_percpu(struct sched_group_power *); 6365 if (!sdd->sgp) 6366 return -ENOMEM; 6367 6368 for_each_cpu(j, cpu_map) { 6369 struct sched_domain *sd; 6370 struct sched_group *sg; 6371 struct sched_group_power *sgp; 6372 6373 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6374 GFP_KERNEL, cpu_to_node(j)); 6375 if (!sd) 6376 return -ENOMEM; 6377 6378 *per_cpu_ptr(sdd->sd, j) = sd; 6379 6380 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6381 GFP_KERNEL, cpu_to_node(j)); 6382 if (!sg) 6383 return -ENOMEM; 6384 6385 *per_cpu_ptr(sdd->sg, j) = sg; 6386 6387 sgp = kzalloc_node(sizeof(struct sched_group_power), 6388 GFP_KERNEL, cpu_to_node(j)); 6389 if (!sgp) 6390 return -ENOMEM; 6391 6392 *per_cpu_ptr(sdd->sgp, j) = sgp; 6393 } 6394 } 6395 6396 return 0; 6397 } 6398 6399 static void __sdt_free(const struct cpumask *cpu_map) 6400 { 6401 struct sched_domain_topology_level *tl; 6402 int j; 6403 6404 for (tl = sched_domain_topology; tl->init; tl++) { 6405 struct sd_data *sdd = &tl->data; 6406 6407 for_each_cpu(j, cpu_map) { 6408 struct sched_domain *sd; 6409 6410 if (sdd->sd) { 6411 sd = *per_cpu_ptr(sdd->sd, j); 6412 if (sd && (sd->flags & SD_OVERLAP)) 6413 free_sched_groups(sd->groups, 0); 6414 kfree(*per_cpu_ptr(sdd->sd, j)); 6415 } 6416 6417 if (sdd->sg) 6418 kfree(*per_cpu_ptr(sdd->sg, j)); 6419 if (sdd->sgp) 6420 kfree(*per_cpu_ptr(sdd->sgp, j)); 6421 } 6422 free_percpu(sdd->sd); 6423 sdd->sd = NULL; 6424 free_percpu(sdd->sg); 6425 sdd->sg = NULL; 6426 free_percpu(sdd->sgp); 6427 sdd->sgp = NULL; 6428 } 6429 } 6430 6431 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6432 struct s_data *d, const struct cpumask *cpu_map, 6433 struct sched_domain_attr *attr, struct sched_domain *child, 6434 int cpu) 6435 { 6436 struct sched_domain *sd = tl->init(tl, cpu); 6437 if (!sd) 6438 return child; 6439 6440 set_domain_attribute(sd, attr); 6441 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6442 if (child) { 6443 sd->level = child->level + 1; 6444 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6445 child->parent = sd; 6446 } 6447 sd->child = child; 6448 6449 return sd; 6450 } 6451 6452 /* 6453 * Build sched domains for a given set of cpus and attach the sched domains 6454 * to the individual cpus 6455 */ 6456 static int build_sched_domains(const struct cpumask *cpu_map, 6457 struct sched_domain_attr *attr) 6458 { 6459 enum s_alloc alloc_state = sa_none; 6460 struct sched_domain *sd; 6461 struct s_data d; 6462 int i, ret = -ENOMEM; 6463 6464 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6465 if (alloc_state != sa_rootdomain) 6466 goto error; 6467 6468 /* Set up domains for cpus specified by the cpu_map. */ 6469 for_each_cpu(i, cpu_map) { 6470 struct sched_domain_topology_level *tl; 6471 6472 sd = NULL; 6473 for (tl = sched_domain_topology; tl->init; tl++) { 6474 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6475 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6476 sd->flags |= SD_OVERLAP; 6477 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6478 break; 6479 } 6480 6481 while (sd->child) 6482 sd = sd->child; 6483 6484 *per_cpu_ptr(d.sd, i) = sd; 6485 } 6486 6487 /* Build the groups for the domains */ 6488 for_each_cpu(i, cpu_map) { 6489 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6490 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6491 if (sd->flags & SD_OVERLAP) { 6492 if (build_overlap_sched_groups(sd, i)) 6493 goto error; 6494 } else { 6495 if (build_sched_groups(sd, i)) 6496 goto error; 6497 } 6498 } 6499 } 6500 6501 /* Calculate CPU power for physical packages and nodes */ 6502 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6503 if (!cpumask_test_cpu(i, cpu_map)) 6504 continue; 6505 6506 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6507 claim_allocations(i, sd); 6508 init_sched_groups_power(i, sd); 6509 } 6510 } 6511 6512 /* Attach the domains */ 6513 rcu_read_lock(); 6514 for_each_cpu(i, cpu_map) { 6515 sd = *per_cpu_ptr(d.sd, i); 6516 cpu_attach_domain(sd, d.rd, i); 6517 } 6518 rcu_read_unlock(); 6519 6520 ret = 0; 6521 error: 6522 __free_domain_allocs(&d, alloc_state, cpu_map); 6523 return ret; 6524 } 6525 6526 static cpumask_var_t *doms_cur; /* current sched domains */ 6527 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6528 static struct sched_domain_attr *dattr_cur; 6529 /* attribues of custom domains in 'doms_cur' */ 6530 6531 /* 6532 * Special case: If a kmalloc of a doms_cur partition (array of 6533 * cpumask) fails, then fallback to a single sched domain, 6534 * as determined by the single cpumask fallback_doms. 6535 */ 6536 static cpumask_var_t fallback_doms; 6537 6538 /* 6539 * arch_update_cpu_topology lets virtualized architectures update the 6540 * cpu core maps. It is supposed to return 1 if the topology changed 6541 * or 0 if it stayed the same. 6542 */ 6543 int __attribute__((weak)) arch_update_cpu_topology(void) 6544 { 6545 return 0; 6546 } 6547 6548 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6549 { 6550 int i; 6551 cpumask_var_t *doms; 6552 6553 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6554 if (!doms) 6555 return NULL; 6556 for (i = 0; i < ndoms; i++) { 6557 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6558 free_sched_domains(doms, i); 6559 return NULL; 6560 } 6561 } 6562 return doms; 6563 } 6564 6565 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6566 { 6567 unsigned int i; 6568 for (i = 0; i < ndoms; i++) 6569 free_cpumask_var(doms[i]); 6570 kfree(doms); 6571 } 6572 6573 /* 6574 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6575 * For now this just excludes isolated cpus, but could be used to 6576 * exclude other special cases in the future. 6577 */ 6578 static int init_sched_domains(const struct cpumask *cpu_map) 6579 { 6580 int err; 6581 6582 arch_update_cpu_topology(); 6583 ndoms_cur = 1; 6584 doms_cur = alloc_sched_domains(ndoms_cur); 6585 if (!doms_cur) 6586 doms_cur = &fallback_doms; 6587 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6588 dattr_cur = NULL; 6589 err = build_sched_domains(doms_cur[0], NULL); 6590 register_sched_domain_sysctl(); 6591 6592 return err; 6593 } 6594 6595 /* 6596 * Detach sched domains from a group of cpus specified in cpu_map 6597 * These cpus will now be attached to the NULL domain 6598 */ 6599 static void detach_destroy_domains(const struct cpumask *cpu_map) 6600 { 6601 int i; 6602 6603 rcu_read_lock(); 6604 for_each_cpu(i, cpu_map) 6605 cpu_attach_domain(NULL, &def_root_domain, i); 6606 rcu_read_unlock(); 6607 } 6608 6609 /* handle null as "default" */ 6610 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6611 struct sched_domain_attr *new, int idx_new) 6612 { 6613 struct sched_domain_attr tmp; 6614 6615 /* fast path */ 6616 if (!new && !cur) 6617 return 1; 6618 6619 tmp = SD_ATTR_INIT; 6620 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6621 new ? (new + idx_new) : &tmp, 6622 sizeof(struct sched_domain_attr)); 6623 } 6624 6625 /* 6626 * Partition sched domains as specified by the 'ndoms_new' 6627 * cpumasks in the array doms_new[] of cpumasks. This compares 6628 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6629 * It destroys each deleted domain and builds each new domain. 6630 * 6631 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6632 * The masks don't intersect (don't overlap.) We should setup one 6633 * sched domain for each mask. CPUs not in any of the cpumasks will 6634 * not be load balanced. If the same cpumask appears both in the 6635 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6636 * it as it is. 6637 * 6638 * The passed in 'doms_new' should be allocated using 6639 * alloc_sched_domains. This routine takes ownership of it and will 6640 * free_sched_domains it when done with it. If the caller failed the 6641 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6642 * and partition_sched_domains() will fallback to the single partition 6643 * 'fallback_doms', it also forces the domains to be rebuilt. 6644 * 6645 * If doms_new == NULL it will be replaced with cpu_online_mask. 6646 * ndoms_new == 0 is a special case for destroying existing domains, 6647 * and it will not create the default domain. 6648 * 6649 * Call with hotplug lock held 6650 */ 6651 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6652 struct sched_domain_attr *dattr_new) 6653 { 6654 int i, j, n; 6655 int new_topology; 6656 6657 mutex_lock(&sched_domains_mutex); 6658 6659 /* always unregister in case we don't destroy any domains */ 6660 unregister_sched_domain_sysctl(); 6661 6662 /* Let architecture update cpu core mappings. */ 6663 new_topology = arch_update_cpu_topology(); 6664 6665 n = doms_new ? ndoms_new : 0; 6666 6667 /* Destroy deleted domains */ 6668 for (i = 0; i < ndoms_cur; i++) { 6669 for (j = 0; j < n && !new_topology; j++) { 6670 if (cpumask_equal(doms_cur[i], doms_new[j]) 6671 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6672 goto match1; 6673 } 6674 /* no match - a current sched domain not in new doms_new[] */ 6675 detach_destroy_domains(doms_cur[i]); 6676 match1: 6677 ; 6678 } 6679 6680 if (doms_new == NULL) { 6681 ndoms_cur = 0; 6682 doms_new = &fallback_doms; 6683 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6684 WARN_ON_ONCE(dattr_new); 6685 } 6686 6687 /* Build new domains */ 6688 for (i = 0; i < ndoms_new; i++) { 6689 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6690 if (cpumask_equal(doms_new[i], doms_cur[j]) 6691 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6692 goto match2; 6693 } 6694 /* no match - add a new doms_new */ 6695 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6696 match2: 6697 ; 6698 } 6699 6700 /* Remember the new sched domains */ 6701 if (doms_cur != &fallback_doms) 6702 free_sched_domains(doms_cur, ndoms_cur); 6703 kfree(dattr_cur); /* kfree(NULL) is safe */ 6704 doms_cur = doms_new; 6705 dattr_cur = dattr_new; 6706 ndoms_cur = ndoms_new; 6707 6708 register_sched_domain_sysctl(); 6709 6710 mutex_unlock(&sched_domains_mutex); 6711 } 6712 6713 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6714 static void reinit_sched_domains(void) 6715 { 6716 get_online_cpus(); 6717 6718 /* Destroy domains first to force the rebuild */ 6719 partition_sched_domains(0, NULL, NULL); 6720 6721 rebuild_sched_domains(); 6722 put_online_cpus(); 6723 } 6724 6725 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6726 { 6727 unsigned int level = 0; 6728 6729 if (sscanf(buf, "%u", &level) != 1) 6730 return -EINVAL; 6731 6732 /* 6733 * level is always be positive so don't check for 6734 * level < POWERSAVINGS_BALANCE_NONE which is 0 6735 * What happens on 0 or 1 byte write, 6736 * need to check for count as well? 6737 */ 6738 6739 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6740 return -EINVAL; 6741 6742 if (smt) 6743 sched_smt_power_savings = level; 6744 else 6745 sched_mc_power_savings = level; 6746 6747 reinit_sched_domains(); 6748 6749 return count; 6750 } 6751 6752 #ifdef CONFIG_SCHED_MC 6753 static ssize_t sched_mc_power_savings_show(struct device *dev, 6754 struct device_attribute *attr, 6755 char *buf) 6756 { 6757 return sprintf(buf, "%u\n", sched_mc_power_savings); 6758 } 6759 static ssize_t sched_mc_power_savings_store(struct device *dev, 6760 struct device_attribute *attr, 6761 const char *buf, size_t count) 6762 { 6763 return sched_power_savings_store(buf, count, 0); 6764 } 6765 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6766 sched_mc_power_savings_show, 6767 sched_mc_power_savings_store); 6768 #endif 6769 6770 #ifdef CONFIG_SCHED_SMT 6771 static ssize_t sched_smt_power_savings_show(struct device *dev, 6772 struct device_attribute *attr, 6773 char *buf) 6774 { 6775 return sprintf(buf, "%u\n", sched_smt_power_savings); 6776 } 6777 static ssize_t sched_smt_power_savings_store(struct device *dev, 6778 struct device_attribute *attr, 6779 const char *buf, size_t count) 6780 { 6781 return sched_power_savings_store(buf, count, 1); 6782 } 6783 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6784 sched_smt_power_savings_show, 6785 sched_smt_power_savings_store); 6786 #endif 6787 6788 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6789 { 6790 int err = 0; 6791 6792 #ifdef CONFIG_SCHED_SMT 6793 if (smt_capable()) 6794 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6795 #endif 6796 #ifdef CONFIG_SCHED_MC 6797 if (!err && mc_capable()) 6798 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6799 #endif 6800 return err; 6801 } 6802 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6803 6804 /* 6805 * Update cpusets according to cpu_active mask. If cpusets are 6806 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6807 * around partition_sched_domains(). 6808 */ 6809 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6810 void *hcpu) 6811 { 6812 switch (action & ~CPU_TASKS_FROZEN) { 6813 case CPU_ONLINE: 6814 case CPU_DOWN_FAILED: 6815 cpuset_update_active_cpus(); 6816 return NOTIFY_OK; 6817 default: 6818 return NOTIFY_DONE; 6819 } 6820 } 6821 6822 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6823 void *hcpu) 6824 { 6825 switch (action & ~CPU_TASKS_FROZEN) { 6826 case CPU_DOWN_PREPARE: 6827 cpuset_update_active_cpus(); 6828 return NOTIFY_OK; 6829 default: 6830 return NOTIFY_DONE; 6831 } 6832 } 6833 6834 void __init sched_init_smp(void) 6835 { 6836 cpumask_var_t non_isolated_cpus; 6837 6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6840 6841 get_online_cpus(); 6842 mutex_lock(&sched_domains_mutex); 6843 init_sched_domains(cpu_active_mask); 6844 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6845 if (cpumask_empty(non_isolated_cpus)) 6846 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6847 mutex_unlock(&sched_domains_mutex); 6848 put_online_cpus(); 6849 6850 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6851 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6852 6853 /* RT runtime code needs to handle some hotplug events */ 6854 hotcpu_notifier(update_runtime, 0); 6855 6856 init_hrtick(); 6857 6858 /* Move init over to a non-isolated CPU */ 6859 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6860 BUG(); 6861 sched_init_granularity(); 6862 free_cpumask_var(non_isolated_cpus); 6863 6864 init_sched_rt_class(); 6865 } 6866 #else 6867 void __init sched_init_smp(void) 6868 { 6869 sched_init_granularity(); 6870 } 6871 #endif /* CONFIG_SMP */ 6872 6873 const_debug unsigned int sysctl_timer_migration = 1; 6874 6875 int in_sched_functions(unsigned long addr) 6876 { 6877 return in_lock_functions(addr) || 6878 (addr >= (unsigned long)__sched_text_start 6879 && addr < (unsigned long)__sched_text_end); 6880 } 6881 6882 #ifdef CONFIG_CGROUP_SCHED 6883 struct task_group root_task_group; 6884 #endif 6885 6886 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6887 6888 void __init sched_init(void) 6889 { 6890 int i, j; 6891 unsigned long alloc_size = 0, ptr; 6892 6893 #ifdef CONFIG_FAIR_GROUP_SCHED 6894 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6895 #endif 6896 #ifdef CONFIG_RT_GROUP_SCHED 6897 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6898 #endif 6899 #ifdef CONFIG_CPUMASK_OFFSTACK 6900 alloc_size += num_possible_cpus() * cpumask_size(); 6901 #endif 6902 if (alloc_size) { 6903 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6904 6905 #ifdef CONFIG_FAIR_GROUP_SCHED 6906 root_task_group.se = (struct sched_entity **)ptr; 6907 ptr += nr_cpu_ids * sizeof(void **); 6908 6909 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6910 ptr += nr_cpu_ids * sizeof(void **); 6911 6912 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6913 #ifdef CONFIG_RT_GROUP_SCHED 6914 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6915 ptr += nr_cpu_ids * sizeof(void **); 6916 6917 root_task_group.rt_rq = (struct rt_rq **)ptr; 6918 ptr += nr_cpu_ids * sizeof(void **); 6919 6920 #endif /* CONFIG_RT_GROUP_SCHED */ 6921 #ifdef CONFIG_CPUMASK_OFFSTACK 6922 for_each_possible_cpu(i) { 6923 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6924 ptr += cpumask_size(); 6925 } 6926 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6927 } 6928 6929 #ifdef CONFIG_SMP 6930 init_defrootdomain(); 6931 #endif 6932 6933 init_rt_bandwidth(&def_rt_bandwidth, 6934 global_rt_period(), global_rt_runtime()); 6935 6936 #ifdef CONFIG_RT_GROUP_SCHED 6937 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6938 global_rt_period(), global_rt_runtime()); 6939 #endif /* CONFIG_RT_GROUP_SCHED */ 6940 6941 #ifdef CONFIG_CGROUP_SCHED 6942 list_add(&root_task_group.list, &task_groups); 6943 INIT_LIST_HEAD(&root_task_group.children); 6944 INIT_LIST_HEAD(&root_task_group.siblings); 6945 autogroup_init(&init_task); 6946 6947 #endif /* CONFIG_CGROUP_SCHED */ 6948 6949 #ifdef CONFIG_CGROUP_CPUACCT 6950 root_cpuacct.cpustat = &kernel_cpustat; 6951 root_cpuacct.cpuusage = alloc_percpu(u64); 6952 /* Too early, not expected to fail */ 6953 BUG_ON(!root_cpuacct.cpuusage); 6954 #endif 6955 for_each_possible_cpu(i) { 6956 struct rq *rq; 6957 6958 rq = cpu_rq(i); 6959 raw_spin_lock_init(&rq->lock); 6960 rq->nr_running = 0; 6961 rq->calc_load_active = 0; 6962 rq->calc_load_update = jiffies + LOAD_FREQ; 6963 init_cfs_rq(&rq->cfs); 6964 init_rt_rq(&rq->rt, rq); 6965 #ifdef CONFIG_FAIR_GROUP_SCHED 6966 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6967 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6968 /* 6969 * How much cpu bandwidth does root_task_group get? 6970 * 6971 * In case of task-groups formed thr' the cgroup filesystem, it 6972 * gets 100% of the cpu resources in the system. This overall 6973 * system cpu resource is divided among the tasks of 6974 * root_task_group and its child task-groups in a fair manner, 6975 * based on each entity's (task or task-group's) weight 6976 * (se->load.weight). 6977 * 6978 * In other words, if root_task_group has 10 tasks of weight 6979 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6980 * then A0's share of the cpu resource is: 6981 * 6982 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6983 * 6984 * We achieve this by letting root_task_group's tasks sit 6985 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6986 */ 6987 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6988 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6989 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6990 6991 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6992 #ifdef CONFIG_RT_GROUP_SCHED 6993 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6994 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6995 #endif 6996 6997 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6998 rq->cpu_load[j] = 0; 6999 7000 rq->last_load_update_tick = jiffies; 7001 7002 #ifdef CONFIG_SMP 7003 rq->sd = NULL; 7004 rq->rd = NULL; 7005 rq->cpu_power = SCHED_POWER_SCALE; 7006 rq->post_schedule = 0; 7007 rq->active_balance = 0; 7008 rq->next_balance = jiffies; 7009 rq->push_cpu = 0; 7010 rq->cpu = i; 7011 rq->online = 0; 7012 rq->idle_stamp = 0; 7013 rq->avg_idle = 2*sysctl_sched_migration_cost; 7014 7015 INIT_LIST_HEAD(&rq->cfs_tasks); 7016 7017 rq_attach_root(rq, &def_root_domain); 7018 #ifdef CONFIG_NO_HZ 7019 rq->nohz_flags = 0; 7020 #endif 7021 #endif 7022 init_rq_hrtick(rq); 7023 atomic_set(&rq->nr_iowait, 0); 7024 } 7025 7026 set_load_weight(&init_task); 7027 7028 #ifdef CONFIG_PREEMPT_NOTIFIERS 7029 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7030 #endif 7031 7032 #ifdef CONFIG_RT_MUTEXES 7033 plist_head_init(&init_task.pi_waiters); 7034 #endif 7035 7036 /* 7037 * The boot idle thread does lazy MMU switching as well: 7038 */ 7039 atomic_inc(&init_mm.mm_count); 7040 enter_lazy_tlb(&init_mm, current); 7041 7042 /* 7043 * Make us the idle thread. Technically, schedule() should not be 7044 * called from this thread, however somewhere below it might be, 7045 * but because we are the idle thread, we just pick up running again 7046 * when this runqueue becomes "idle". 7047 */ 7048 init_idle(current, smp_processor_id()); 7049 7050 calc_load_update = jiffies + LOAD_FREQ; 7051 7052 /* 7053 * During early bootup we pretend to be a normal task: 7054 */ 7055 current->sched_class = &fair_sched_class; 7056 7057 #ifdef CONFIG_SMP 7058 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7059 /* May be allocated at isolcpus cmdline parse time */ 7060 if (cpu_isolated_map == NULL) 7061 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7062 #endif 7063 init_sched_fair_class(); 7064 7065 scheduler_running = 1; 7066 } 7067 7068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7069 static inline int preempt_count_equals(int preempt_offset) 7070 { 7071 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7072 7073 return (nested == preempt_offset); 7074 } 7075 7076 void __might_sleep(const char *file, int line, int preempt_offset) 7077 { 7078 static unsigned long prev_jiffy; /* ratelimiting */ 7079 7080 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7081 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7082 system_state != SYSTEM_RUNNING || oops_in_progress) 7083 return; 7084 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7085 return; 7086 prev_jiffy = jiffies; 7087 7088 printk(KERN_ERR 7089 "BUG: sleeping function called from invalid context at %s:%d\n", 7090 file, line); 7091 printk(KERN_ERR 7092 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7093 in_atomic(), irqs_disabled(), 7094 current->pid, current->comm); 7095 7096 debug_show_held_locks(current); 7097 if (irqs_disabled()) 7098 print_irqtrace_events(current); 7099 dump_stack(); 7100 } 7101 EXPORT_SYMBOL(__might_sleep); 7102 #endif 7103 7104 #ifdef CONFIG_MAGIC_SYSRQ 7105 static void normalize_task(struct rq *rq, struct task_struct *p) 7106 { 7107 const struct sched_class *prev_class = p->sched_class; 7108 int old_prio = p->prio; 7109 int on_rq; 7110 7111 on_rq = p->on_rq; 7112 if (on_rq) 7113 dequeue_task(rq, p, 0); 7114 __setscheduler(rq, p, SCHED_NORMAL, 0); 7115 if (on_rq) { 7116 enqueue_task(rq, p, 0); 7117 resched_task(rq->curr); 7118 } 7119 7120 check_class_changed(rq, p, prev_class, old_prio); 7121 } 7122 7123 void normalize_rt_tasks(void) 7124 { 7125 struct task_struct *g, *p; 7126 unsigned long flags; 7127 struct rq *rq; 7128 7129 read_lock_irqsave(&tasklist_lock, flags); 7130 do_each_thread(g, p) { 7131 /* 7132 * Only normalize user tasks: 7133 */ 7134 if (!p->mm) 7135 continue; 7136 7137 p->se.exec_start = 0; 7138 #ifdef CONFIG_SCHEDSTATS 7139 p->se.statistics.wait_start = 0; 7140 p->se.statistics.sleep_start = 0; 7141 p->se.statistics.block_start = 0; 7142 #endif 7143 7144 if (!rt_task(p)) { 7145 /* 7146 * Renice negative nice level userspace 7147 * tasks back to 0: 7148 */ 7149 if (TASK_NICE(p) < 0 && p->mm) 7150 set_user_nice(p, 0); 7151 continue; 7152 } 7153 7154 raw_spin_lock(&p->pi_lock); 7155 rq = __task_rq_lock(p); 7156 7157 normalize_task(rq, p); 7158 7159 __task_rq_unlock(rq); 7160 raw_spin_unlock(&p->pi_lock); 7161 } while_each_thread(g, p); 7162 7163 read_unlock_irqrestore(&tasklist_lock, flags); 7164 } 7165 7166 #endif /* CONFIG_MAGIC_SYSRQ */ 7167 7168 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7169 /* 7170 * These functions are only useful for the IA64 MCA handling, or kdb. 7171 * 7172 * They can only be called when the whole system has been 7173 * stopped - every CPU needs to be quiescent, and no scheduling 7174 * activity can take place. Using them for anything else would 7175 * be a serious bug, and as a result, they aren't even visible 7176 * under any other configuration. 7177 */ 7178 7179 /** 7180 * curr_task - return the current task for a given cpu. 7181 * @cpu: the processor in question. 7182 * 7183 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7184 */ 7185 struct task_struct *curr_task(int cpu) 7186 { 7187 return cpu_curr(cpu); 7188 } 7189 7190 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7191 7192 #ifdef CONFIG_IA64 7193 /** 7194 * set_curr_task - set the current task for a given cpu. 7195 * @cpu: the processor in question. 7196 * @p: the task pointer to set. 7197 * 7198 * Description: This function must only be used when non-maskable interrupts 7199 * are serviced on a separate stack. It allows the architecture to switch the 7200 * notion of the current task on a cpu in a non-blocking manner. This function 7201 * must be called with all CPU's synchronized, and interrupts disabled, the 7202 * and caller must save the original value of the current task (see 7203 * curr_task() above) and restore that value before reenabling interrupts and 7204 * re-starting the system. 7205 * 7206 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7207 */ 7208 void set_curr_task(int cpu, struct task_struct *p) 7209 { 7210 cpu_curr(cpu) = p; 7211 } 7212 7213 #endif 7214 7215 #ifdef CONFIG_CGROUP_SCHED 7216 /* task_group_lock serializes the addition/removal of task groups */ 7217 static DEFINE_SPINLOCK(task_group_lock); 7218 7219 static void free_sched_group(struct task_group *tg) 7220 { 7221 free_fair_sched_group(tg); 7222 free_rt_sched_group(tg); 7223 autogroup_free(tg); 7224 kfree(tg); 7225 } 7226 7227 /* allocate runqueue etc for a new task group */ 7228 struct task_group *sched_create_group(struct task_group *parent) 7229 { 7230 struct task_group *tg; 7231 unsigned long flags; 7232 7233 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7234 if (!tg) 7235 return ERR_PTR(-ENOMEM); 7236 7237 if (!alloc_fair_sched_group(tg, parent)) 7238 goto err; 7239 7240 if (!alloc_rt_sched_group(tg, parent)) 7241 goto err; 7242 7243 spin_lock_irqsave(&task_group_lock, flags); 7244 list_add_rcu(&tg->list, &task_groups); 7245 7246 WARN_ON(!parent); /* root should already exist */ 7247 7248 tg->parent = parent; 7249 INIT_LIST_HEAD(&tg->children); 7250 list_add_rcu(&tg->siblings, &parent->children); 7251 spin_unlock_irqrestore(&task_group_lock, flags); 7252 7253 return tg; 7254 7255 err: 7256 free_sched_group(tg); 7257 return ERR_PTR(-ENOMEM); 7258 } 7259 7260 /* rcu callback to free various structures associated with a task group */ 7261 static void free_sched_group_rcu(struct rcu_head *rhp) 7262 { 7263 /* now it should be safe to free those cfs_rqs */ 7264 free_sched_group(container_of(rhp, struct task_group, rcu)); 7265 } 7266 7267 /* Destroy runqueue etc associated with a task group */ 7268 void sched_destroy_group(struct task_group *tg) 7269 { 7270 unsigned long flags; 7271 int i; 7272 7273 /* end participation in shares distribution */ 7274 for_each_possible_cpu(i) 7275 unregister_fair_sched_group(tg, i); 7276 7277 spin_lock_irqsave(&task_group_lock, flags); 7278 list_del_rcu(&tg->list); 7279 list_del_rcu(&tg->siblings); 7280 spin_unlock_irqrestore(&task_group_lock, flags); 7281 7282 /* wait for possible concurrent references to cfs_rqs complete */ 7283 call_rcu(&tg->rcu, free_sched_group_rcu); 7284 } 7285 7286 /* change task's runqueue when it moves between groups. 7287 * The caller of this function should have put the task in its new group 7288 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7289 * reflect its new group. 7290 */ 7291 void sched_move_task(struct task_struct *tsk) 7292 { 7293 int on_rq, running; 7294 unsigned long flags; 7295 struct rq *rq; 7296 7297 rq = task_rq_lock(tsk, &flags); 7298 7299 running = task_current(rq, tsk); 7300 on_rq = tsk->on_rq; 7301 7302 if (on_rq) 7303 dequeue_task(rq, tsk, 0); 7304 if (unlikely(running)) 7305 tsk->sched_class->put_prev_task(rq, tsk); 7306 7307 #ifdef CONFIG_FAIR_GROUP_SCHED 7308 if (tsk->sched_class->task_move_group) 7309 tsk->sched_class->task_move_group(tsk, on_rq); 7310 else 7311 #endif 7312 set_task_rq(tsk, task_cpu(tsk)); 7313 7314 if (unlikely(running)) 7315 tsk->sched_class->set_curr_task(rq); 7316 if (on_rq) 7317 enqueue_task(rq, tsk, 0); 7318 7319 task_rq_unlock(rq, tsk, &flags); 7320 } 7321 #endif /* CONFIG_CGROUP_SCHED */ 7322 7323 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7324 static unsigned long to_ratio(u64 period, u64 runtime) 7325 { 7326 if (runtime == RUNTIME_INF) 7327 return 1ULL << 20; 7328 7329 return div64_u64(runtime << 20, period); 7330 } 7331 #endif 7332 7333 #ifdef CONFIG_RT_GROUP_SCHED 7334 /* 7335 * Ensure that the real time constraints are schedulable. 7336 */ 7337 static DEFINE_MUTEX(rt_constraints_mutex); 7338 7339 /* Must be called with tasklist_lock held */ 7340 static inline int tg_has_rt_tasks(struct task_group *tg) 7341 { 7342 struct task_struct *g, *p; 7343 7344 do_each_thread(g, p) { 7345 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7346 return 1; 7347 } while_each_thread(g, p); 7348 7349 return 0; 7350 } 7351 7352 struct rt_schedulable_data { 7353 struct task_group *tg; 7354 u64 rt_period; 7355 u64 rt_runtime; 7356 }; 7357 7358 static int tg_rt_schedulable(struct task_group *tg, void *data) 7359 { 7360 struct rt_schedulable_data *d = data; 7361 struct task_group *child; 7362 unsigned long total, sum = 0; 7363 u64 period, runtime; 7364 7365 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7366 runtime = tg->rt_bandwidth.rt_runtime; 7367 7368 if (tg == d->tg) { 7369 period = d->rt_period; 7370 runtime = d->rt_runtime; 7371 } 7372 7373 /* 7374 * Cannot have more runtime than the period. 7375 */ 7376 if (runtime > period && runtime != RUNTIME_INF) 7377 return -EINVAL; 7378 7379 /* 7380 * Ensure we don't starve existing RT tasks. 7381 */ 7382 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7383 return -EBUSY; 7384 7385 total = to_ratio(period, runtime); 7386 7387 /* 7388 * Nobody can have more than the global setting allows. 7389 */ 7390 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7391 return -EINVAL; 7392 7393 /* 7394 * The sum of our children's runtime should not exceed our own. 7395 */ 7396 list_for_each_entry_rcu(child, &tg->children, siblings) { 7397 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7398 runtime = child->rt_bandwidth.rt_runtime; 7399 7400 if (child == d->tg) { 7401 period = d->rt_period; 7402 runtime = d->rt_runtime; 7403 } 7404 7405 sum += to_ratio(period, runtime); 7406 } 7407 7408 if (sum > total) 7409 return -EINVAL; 7410 7411 return 0; 7412 } 7413 7414 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7415 { 7416 int ret; 7417 7418 struct rt_schedulable_data data = { 7419 .tg = tg, 7420 .rt_period = period, 7421 .rt_runtime = runtime, 7422 }; 7423 7424 rcu_read_lock(); 7425 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7426 rcu_read_unlock(); 7427 7428 return ret; 7429 } 7430 7431 static int tg_set_rt_bandwidth(struct task_group *tg, 7432 u64 rt_period, u64 rt_runtime) 7433 { 7434 int i, err = 0; 7435 7436 mutex_lock(&rt_constraints_mutex); 7437 read_lock(&tasklist_lock); 7438 err = __rt_schedulable(tg, rt_period, rt_runtime); 7439 if (err) 7440 goto unlock; 7441 7442 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7443 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7444 tg->rt_bandwidth.rt_runtime = rt_runtime; 7445 7446 for_each_possible_cpu(i) { 7447 struct rt_rq *rt_rq = tg->rt_rq[i]; 7448 7449 raw_spin_lock(&rt_rq->rt_runtime_lock); 7450 rt_rq->rt_runtime = rt_runtime; 7451 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7452 } 7453 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7454 unlock: 7455 read_unlock(&tasklist_lock); 7456 mutex_unlock(&rt_constraints_mutex); 7457 7458 return err; 7459 } 7460 7461 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7462 { 7463 u64 rt_runtime, rt_period; 7464 7465 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7466 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7467 if (rt_runtime_us < 0) 7468 rt_runtime = RUNTIME_INF; 7469 7470 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7471 } 7472 7473 long sched_group_rt_runtime(struct task_group *tg) 7474 { 7475 u64 rt_runtime_us; 7476 7477 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7478 return -1; 7479 7480 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7481 do_div(rt_runtime_us, NSEC_PER_USEC); 7482 return rt_runtime_us; 7483 } 7484 7485 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7486 { 7487 u64 rt_runtime, rt_period; 7488 7489 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7490 rt_runtime = tg->rt_bandwidth.rt_runtime; 7491 7492 if (rt_period == 0) 7493 return -EINVAL; 7494 7495 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7496 } 7497 7498 long sched_group_rt_period(struct task_group *tg) 7499 { 7500 u64 rt_period_us; 7501 7502 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7503 do_div(rt_period_us, NSEC_PER_USEC); 7504 return rt_period_us; 7505 } 7506 7507 static int sched_rt_global_constraints(void) 7508 { 7509 u64 runtime, period; 7510 int ret = 0; 7511 7512 if (sysctl_sched_rt_period <= 0) 7513 return -EINVAL; 7514 7515 runtime = global_rt_runtime(); 7516 period = global_rt_period(); 7517 7518 /* 7519 * Sanity check on the sysctl variables. 7520 */ 7521 if (runtime > period && runtime != RUNTIME_INF) 7522 return -EINVAL; 7523 7524 mutex_lock(&rt_constraints_mutex); 7525 read_lock(&tasklist_lock); 7526 ret = __rt_schedulable(NULL, 0, 0); 7527 read_unlock(&tasklist_lock); 7528 mutex_unlock(&rt_constraints_mutex); 7529 7530 return ret; 7531 } 7532 7533 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7534 { 7535 /* Don't accept realtime tasks when there is no way for them to run */ 7536 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7537 return 0; 7538 7539 return 1; 7540 } 7541 7542 #else /* !CONFIG_RT_GROUP_SCHED */ 7543 static int sched_rt_global_constraints(void) 7544 { 7545 unsigned long flags; 7546 int i; 7547 7548 if (sysctl_sched_rt_period <= 0) 7549 return -EINVAL; 7550 7551 /* 7552 * There's always some RT tasks in the root group 7553 * -- migration, kstopmachine etc.. 7554 */ 7555 if (sysctl_sched_rt_runtime == 0) 7556 return -EBUSY; 7557 7558 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7559 for_each_possible_cpu(i) { 7560 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7561 7562 raw_spin_lock(&rt_rq->rt_runtime_lock); 7563 rt_rq->rt_runtime = global_rt_runtime(); 7564 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7565 } 7566 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7567 7568 return 0; 7569 } 7570 #endif /* CONFIG_RT_GROUP_SCHED */ 7571 7572 int sched_rt_handler(struct ctl_table *table, int write, 7573 void __user *buffer, size_t *lenp, 7574 loff_t *ppos) 7575 { 7576 int ret; 7577 int old_period, old_runtime; 7578 static DEFINE_MUTEX(mutex); 7579 7580 mutex_lock(&mutex); 7581 old_period = sysctl_sched_rt_period; 7582 old_runtime = sysctl_sched_rt_runtime; 7583 7584 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7585 7586 if (!ret && write) { 7587 ret = sched_rt_global_constraints(); 7588 if (ret) { 7589 sysctl_sched_rt_period = old_period; 7590 sysctl_sched_rt_runtime = old_runtime; 7591 } else { 7592 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7593 def_rt_bandwidth.rt_period = 7594 ns_to_ktime(global_rt_period()); 7595 } 7596 } 7597 mutex_unlock(&mutex); 7598 7599 return ret; 7600 } 7601 7602 #ifdef CONFIG_CGROUP_SCHED 7603 7604 /* return corresponding task_group object of a cgroup */ 7605 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7606 { 7607 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7608 struct task_group, css); 7609 } 7610 7611 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp) 7612 { 7613 struct task_group *tg, *parent; 7614 7615 if (!cgrp->parent) { 7616 /* This is early initialization for the top cgroup */ 7617 return &root_task_group.css; 7618 } 7619 7620 parent = cgroup_tg(cgrp->parent); 7621 tg = sched_create_group(parent); 7622 if (IS_ERR(tg)) 7623 return ERR_PTR(-ENOMEM); 7624 7625 return &tg->css; 7626 } 7627 7628 static void cpu_cgroup_destroy(struct cgroup *cgrp) 7629 { 7630 struct task_group *tg = cgroup_tg(cgrp); 7631 7632 sched_destroy_group(tg); 7633 } 7634 7635 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7636 struct cgroup_taskset *tset) 7637 { 7638 struct task_struct *task; 7639 7640 cgroup_taskset_for_each(task, cgrp, tset) { 7641 #ifdef CONFIG_RT_GROUP_SCHED 7642 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7643 return -EINVAL; 7644 #else 7645 /* We don't support RT-tasks being in separate groups */ 7646 if (task->sched_class != &fair_sched_class) 7647 return -EINVAL; 7648 #endif 7649 } 7650 return 0; 7651 } 7652 7653 static void cpu_cgroup_attach(struct cgroup *cgrp, 7654 struct cgroup_taskset *tset) 7655 { 7656 struct task_struct *task; 7657 7658 cgroup_taskset_for_each(task, cgrp, tset) 7659 sched_move_task(task); 7660 } 7661 7662 static void 7663 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7664 struct task_struct *task) 7665 { 7666 /* 7667 * cgroup_exit() is called in the copy_process() failure path. 7668 * Ignore this case since the task hasn't ran yet, this avoids 7669 * trying to poke a half freed task state from generic code. 7670 */ 7671 if (!(task->flags & PF_EXITING)) 7672 return; 7673 7674 sched_move_task(task); 7675 } 7676 7677 #ifdef CONFIG_FAIR_GROUP_SCHED 7678 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7679 u64 shareval) 7680 { 7681 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7682 } 7683 7684 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7685 { 7686 struct task_group *tg = cgroup_tg(cgrp); 7687 7688 return (u64) scale_load_down(tg->shares); 7689 } 7690 7691 #ifdef CONFIG_CFS_BANDWIDTH 7692 static DEFINE_MUTEX(cfs_constraints_mutex); 7693 7694 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7695 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7696 7697 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7698 7699 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7700 { 7701 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7702 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7703 7704 if (tg == &root_task_group) 7705 return -EINVAL; 7706 7707 /* 7708 * Ensure we have at some amount of bandwidth every period. This is 7709 * to prevent reaching a state of large arrears when throttled via 7710 * entity_tick() resulting in prolonged exit starvation. 7711 */ 7712 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7713 return -EINVAL; 7714 7715 /* 7716 * Likewise, bound things on the otherside by preventing insane quota 7717 * periods. This also allows us to normalize in computing quota 7718 * feasibility. 7719 */ 7720 if (period > max_cfs_quota_period) 7721 return -EINVAL; 7722 7723 mutex_lock(&cfs_constraints_mutex); 7724 ret = __cfs_schedulable(tg, period, quota); 7725 if (ret) 7726 goto out_unlock; 7727 7728 runtime_enabled = quota != RUNTIME_INF; 7729 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7730 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7731 raw_spin_lock_irq(&cfs_b->lock); 7732 cfs_b->period = ns_to_ktime(period); 7733 cfs_b->quota = quota; 7734 7735 __refill_cfs_bandwidth_runtime(cfs_b); 7736 /* restart the period timer (if active) to handle new period expiry */ 7737 if (runtime_enabled && cfs_b->timer_active) { 7738 /* force a reprogram */ 7739 cfs_b->timer_active = 0; 7740 __start_cfs_bandwidth(cfs_b); 7741 } 7742 raw_spin_unlock_irq(&cfs_b->lock); 7743 7744 for_each_possible_cpu(i) { 7745 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7746 struct rq *rq = cfs_rq->rq; 7747 7748 raw_spin_lock_irq(&rq->lock); 7749 cfs_rq->runtime_enabled = runtime_enabled; 7750 cfs_rq->runtime_remaining = 0; 7751 7752 if (cfs_rq->throttled) 7753 unthrottle_cfs_rq(cfs_rq); 7754 raw_spin_unlock_irq(&rq->lock); 7755 } 7756 out_unlock: 7757 mutex_unlock(&cfs_constraints_mutex); 7758 7759 return ret; 7760 } 7761 7762 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7763 { 7764 u64 quota, period; 7765 7766 period = ktime_to_ns(tg->cfs_bandwidth.period); 7767 if (cfs_quota_us < 0) 7768 quota = RUNTIME_INF; 7769 else 7770 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7771 7772 return tg_set_cfs_bandwidth(tg, period, quota); 7773 } 7774 7775 long tg_get_cfs_quota(struct task_group *tg) 7776 { 7777 u64 quota_us; 7778 7779 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7780 return -1; 7781 7782 quota_us = tg->cfs_bandwidth.quota; 7783 do_div(quota_us, NSEC_PER_USEC); 7784 7785 return quota_us; 7786 } 7787 7788 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7789 { 7790 u64 quota, period; 7791 7792 period = (u64)cfs_period_us * NSEC_PER_USEC; 7793 quota = tg->cfs_bandwidth.quota; 7794 7795 return tg_set_cfs_bandwidth(tg, period, quota); 7796 } 7797 7798 long tg_get_cfs_period(struct task_group *tg) 7799 { 7800 u64 cfs_period_us; 7801 7802 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7803 do_div(cfs_period_us, NSEC_PER_USEC); 7804 7805 return cfs_period_us; 7806 } 7807 7808 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7809 { 7810 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7811 } 7812 7813 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7814 s64 cfs_quota_us) 7815 { 7816 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7817 } 7818 7819 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7820 { 7821 return tg_get_cfs_period(cgroup_tg(cgrp)); 7822 } 7823 7824 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7825 u64 cfs_period_us) 7826 { 7827 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7828 } 7829 7830 struct cfs_schedulable_data { 7831 struct task_group *tg; 7832 u64 period, quota; 7833 }; 7834 7835 /* 7836 * normalize group quota/period to be quota/max_period 7837 * note: units are usecs 7838 */ 7839 static u64 normalize_cfs_quota(struct task_group *tg, 7840 struct cfs_schedulable_data *d) 7841 { 7842 u64 quota, period; 7843 7844 if (tg == d->tg) { 7845 period = d->period; 7846 quota = d->quota; 7847 } else { 7848 period = tg_get_cfs_period(tg); 7849 quota = tg_get_cfs_quota(tg); 7850 } 7851 7852 /* note: these should typically be equivalent */ 7853 if (quota == RUNTIME_INF || quota == -1) 7854 return RUNTIME_INF; 7855 7856 return to_ratio(period, quota); 7857 } 7858 7859 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7860 { 7861 struct cfs_schedulable_data *d = data; 7862 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7863 s64 quota = 0, parent_quota = -1; 7864 7865 if (!tg->parent) { 7866 quota = RUNTIME_INF; 7867 } else { 7868 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7869 7870 quota = normalize_cfs_quota(tg, d); 7871 parent_quota = parent_b->hierarchal_quota; 7872 7873 /* 7874 * ensure max(child_quota) <= parent_quota, inherit when no 7875 * limit is set 7876 */ 7877 if (quota == RUNTIME_INF) 7878 quota = parent_quota; 7879 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7880 return -EINVAL; 7881 } 7882 cfs_b->hierarchal_quota = quota; 7883 7884 return 0; 7885 } 7886 7887 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7888 { 7889 int ret; 7890 struct cfs_schedulable_data data = { 7891 .tg = tg, 7892 .period = period, 7893 .quota = quota, 7894 }; 7895 7896 if (quota != RUNTIME_INF) { 7897 do_div(data.period, NSEC_PER_USEC); 7898 do_div(data.quota, NSEC_PER_USEC); 7899 } 7900 7901 rcu_read_lock(); 7902 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7903 rcu_read_unlock(); 7904 7905 return ret; 7906 } 7907 7908 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7909 struct cgroup_map_cb *cb) 7910 { 7911 struct task_group *tg = cgroup_tg(cgrp); 7912 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7913 7914 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7915 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7916 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7917 7918 return 0; 7919 } 7920 #endif /* CONFIG_CFS_BANDWIDTH */ 7921 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7922 7923 #ifdef CONFIG_RT_GROUP_SCHED 7924 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7925 s64 val) 7926 { 7927 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7928 } 7929 7930 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7931 { 7932 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7933 } 7934 7935 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7936 u64 rt_period_us) 7937 { 7938 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7939 } 7940 7941 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7942 { 7943 return sched_group_rt_period(cgroup_tg(cgrp)); 7944 } 7945 #endif /* CONFIG_RT_GROUP_SCHED */ 7946 7947 static struct cftype cpu_files[] = { 7948 #ifdef CONFIG_FAIR_GROUP_SCHED 7949 { 7950 .name = "shares", 7951 .read_u64 = cpu_shares_read_u64, 7952 .write_u64 = cpu_shares_write_u64, 7953 }, 7954 #endif 7955 #ifdef CONFIG_CFS_BANDWIDTH 7956 { 7957 .name = "cfs_quota_us", 7958 .read_s64 = cpu_cfs_quota_read_s64, 7959 .write_s64 = cpu_cfs_quota_write_s64, 7960 }, 7961 { 7962 .name = "cfs_period_us", 7963 .read_u64 = cpu_cfs_period_read_u64, 7964 .write_u64 = cpu_cfs_period_write_u64, 7965 }, 7966 { 7967 .name = "stat", 7968 .read_map = cpu_stats_show, 7969 }, 7970 #endif 7971 #ifdef CONFIG_RT_GROUP_SCHED 7972 { 7973 .name = "rt_runtime_us", 7974 .read_s64 = cpu_rt_runtime_read, 7975 .write_s64 = cpu_rt_runtime_write, 7976 }, 7977 { 7978 .name = "rt_period_us", 7979 .read_u64 = cpu_rt_period_read_uint, 7980 .write_u64 = cpu_rt_period_write_uint, 7981 }, 7982 #endif 7983 }; 7984 7985 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7986 { 7987 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7988 } 7989 7990 struct cgroup_subsys cpu_cgroup_subsys = { 7991 .name = "cpu", 7992 .create = cpu_cgroup_create, 7993 .destroy = cpu_cgroup_destroy, 7994 .can_attach = cpu_cgroup_can_attach, 7995 .attach = cpu_cgroup_attach, 7996 .exit = cpu_cgroup_exit, 7997 .populate = cpu_cgroup_populate, 7998 .subsys_id = cpu_cgroup_subsys_id, 7999 .early_init = 1, 8000 }; 8001 8002 #endif /* CONFIG_CGROUP_SCHED */ 8003 8004 #ifdef CONFIG_CGROUP_CPUACCT 8005 8006 /* 8007 * CPU accounting code for task groups. 8008 * 8009 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8010 * (balbir@in.ibm.com). 8011 */ 8012 8013 /* create a new cpu accounting group */ 8014 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) 8015 { 8016 struct cpuacct *ca; 8017 8018 if (!cgrp->parent) 8019 return &root_cpuacct.css; 8020 8021 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8022 if (!ca) 8023 goto out; 8024 8025 ca->cpuusage = alloc_percpu(u64); 8026 if (!ca->cpuusage) 8027 goto out_free_ca; 8028 8029 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8030 if (!ca->cpustat) 8031 goto out_free_cpuusage; 8032 8033 return &ca->css; 8034 8035 out_free_cpuusage: 8036 free_percpu(ca->cpuusage); 8037 out_free_ca: 8038 kfree(ca); 8039 out: 8040 return ERR_PTR(-ENOMEM); 8041 } 8042 8043 /* destroy an existing cpu accounting group */ 8044 static void cpuacct_destroy(struct cgroup *cgrp) 8045 { 8046 struct cpuacct *ca = cgroup_ca(cgrp); 8047 8048 free_percpu(ca->cpustat); 8049 free_percpu(ca->cpuusage); 8050 kfree(ca); 8051 } 8052 8053 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8054 { 8055 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8056 u64 data; 8057 8058 #ifndef CONFIG_64BIT 8059 /* 8060 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8061 */ 8062 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8063 data = *cpuusage; 8064 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8065 #else 8066 data = *cpuusage; 8067 #endif 8068 8069 return data; 8070 } 8071 8072 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8073 { 8074 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8075 8076 #ifndef CONFIG_64BIT 8077 /* 8078 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8079 */ 8080 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8081 *cpuusage = val; 8082 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8083 #else 8084 *cpuusage = val; 8085 #endif 8086 } 8087 8088 /* return total cpu usage (in nanoseconds) of a group */ 8089 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8090 { 8091 struct cpuacct *ca = cgroup_ca(cgrp); 8092 u64 totalcpuusage = 0; 8093 int i; 8094 8095 for_each_present_cpu(i) 8096 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8097 8098 return totalcpuusage; 8099 } 8100 8101 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8102 u64 reset) 8103 { 8104 struct cpuacct *ca = cgroup_ca(cgrp); 8105 int err = 0; 8106 int i; 8107 8108 if (reset) { 8109 err = -EINVAL; 8110 goto out; 8111 } 8112 8113 for_each_present_cpu(i) 8114 cpuacct_cpuusage_write(ca, i, 0); 8115 8116 out: 8117 return err; 8118 } 8119 8120 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8121 struct seq_file *m) 8122 { 8123 struct cpuacct *ca = cgroup_ca(cgroup); 8124 u64 percpu; 8125 int i; 8126 8127 for_each_present_cpu(i) { 8128 percpu = cpuacct_cpuusage_read(ca, i); 8129 seq_printf(m, "%llu ", (unsigned long long) percpu); 8130 } 8131 seq_printf(m, "\n"); 8132 return 0; 8133 } 8134 8135 static const char *cpuacct_stat_desc[] = { 8136 [CPUACCT_STAT_USER] = "user", 8137 [CPUACCT_STAT_SYSTEM] = "system", 8138 }; 8139 8140 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8141 struct cgroup_map_cb *cb) 8142 { 8143 struct cpuacct *ca = cgroup_ca(cgrp); 8144 int cpu; 8145 s64 val = 0; 8146 8147 for_each_online_cpu(cpu) { 8148 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8149 val += kcpustat->cpustat[CPUTIME_USER]; 8150 val += kcpustat->cpustat[CPUTIME_NICE]; 8151 } 8152 val = cputime64_to_clock_t(val); 8153 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8154 8155 val = 0; 8156 for_each_online_cpu(cpu) { 8157 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8158 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8159 val += kcpustat->cpustat[CPUTIME_IRQ]; 8160 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8161 } 8162 8163 val = cputime64_to_clock_t(val); 8164 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8165 8166 return 0; 8167 } 8168 8169 static struct cftype files[] = { 8170 { 8171 .name = "usage", 8172 .read_u64 = cpuusage_read, 8173 .write_u64 = cpuusage_write, 8174 }, 8175 { 8176 .name = "usage_percpu", 8177 .read_seq_string = cpuacct_percpu_seq_read, 8178 }, 8179 { 8180 .name = "stat", 8181 .read_map = cpuacct_stats_show, 8182 }, 8183 }; 8184 8185 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8186 { 8187 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8188 } 8189 8190 /* 8191 * charge this task's execution time to its accounting group. 8192 * 8193 * called with rq->lock held. 8194 */ 8195 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8196 { 8197 struct cpuacct *ca; 8198 int cpu; 8199 8200 if (unlikely(!cpuacct_subsys.active)) 8201 return; 8202 8203 cpu = task_cpu(tsk); 8204 8205 rcu_read_lock(); 8206 8207 ca = task_ca(tsk); 8208 8209 for (; ca; ca = parent_ca(ca)) { 8210 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8211 *cpuusage += cputime; 8212 } 8213 8214 rcu_read_unlock(); 8215 } 8216 8217 struct cgroup_subsys cpuacct_subsys = { 8218 .name = "cpuacct", 8219 .create = cpuacct_create, 8220 .destroy = cpuacct_destroy, 8221 .populate = cpuacct_populate, 8222 .subsys_id = cpuacct_subsys_id, 8223 }; 8224 #endif /* CONFIG_CGROUP_CPUACCT */ 8225