xref: /openbmc/linux/kernel/sched/core.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock(), the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock(), the address
114 		 * dependency headed by '[L] rq = task_rq()' and the acquire
115 		 * will pair with the WMB to ensure we then also see migrating.
116 		 */
117 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
118 			rq_pin_lock(rq, rf);
119 			return rq;
120 		}
121 		raw_spin_unlock(&rq->lock);
122 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
123 
124 		while (unlikely(task_on_rq_migrating(p)))
125 			cpu_relax();
126 	}
127 }
128 
129 /*
130  * RQ-clock updating methods:
131  */
132 
133 static void update_rq_clock_task(struct rq *rq, s64 delta)
134 {
135 /*
136  * In theory, the compile should just see 0 here, and optimize out the call
137  * to sched_rt_avg_update. But I don't trust it...
138  */
139 	s64 __maybe_unused steal = 0, irq_delta = 0;
140 
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
143 
144 	/*
145 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 	 * this case when a previous update_rq_clock() happened inside a
147 	 * {soft,}irq region.
148 	 *
149 	 * When this happens, we stop ->clock_task and only update the
150 	 * prev_irq_time stamp to account for the part that fit, so that a next
151 	 * update will consume the rest. This ensures ->clock_task is
152 	 * monotonic.
153 	 *
154 	 * It does however cause some slight miss-attribution of {soft,}irq
155 	 * time, a more accurate solution would be to update the irq_time using
156 	 * the current rq->clock timestamp, except that would require using
157 	 * atomic ops.
158 	 */
159 	if (irq_delta > delta)
160 		irq_delta = delta;
161 
162 	rq->prev_irq_time += irq_delta;
163 	delta -= irq_delta;
164 #endif
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 	if (static_key_false((&paravirt_steal_rq_enabled))) {
167 		steal = paravirt_steal_clock(cpu_of(rq));
168 		steal -= rq->prev_steal_time_rq;
169 
170 		if (unlikely(steal > delta))
171 			steal = delta;
172 
173 		rq->prev_steal_time_rq += steal;
174 		delta -= steal;
175 	}
176 #endif
177 
178 	rq->clock_task += delta;
179 
180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
181 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 		update_irq_load_avg(rq, irq_delta + steal);
183 #endif
184 	update_rq_clock_pelt(rq, delta);
185 }
186 
187 void update_rq_clock(struct rq *rq)
188 {
189 	s64 delta;
190 
191 	lockdep_assert_held(&rq->lock);
192 
193 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
194 		return;
195 
196 #ifdef CONFIG_SCHED_DEBUG
197 	if (sched_feat(WARN_DOUBLE_CLOCK))
198 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
199 	rq->clock_update_flags |= RQCF_UPDATED;
200 #endif
201 
202 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
203 	if (delta < 0)
204 		return;
205 	rq->clock += delta;
206 	update_rq_clock_task(rq, delta);
207 }
208 
209 
210 #ifdef CONFIG_SCHED_HRTICK
211 /*
212  * Use HR-timers to deliver accurate preemption points.
213  */
214 
215 static void hrtick_clear(struct rq *rq)
216 {
217 	if (hrtimer_active(&rq->hrtick_timer))
218 		hrtimer_cancel(&rq->hrtick_timer);
219 }
220 
221 /*
222  * High-resolution timer tick.
223  * Runs from hardirq context with interrupts disabled.
224  */
225 static enum hrtimer_restart hrtick(struct hrtimer *timer)
226 {
227 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
228 	struct rq_flags rf;
229 
230 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
231 
232 	rq_lock(rq, &rf);
233 	update_rq_clock(rq);
234 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
235 	rq_unlock(rq, &rf);
236 
237 	return HRTIMER_NORESTART;
238 }
239 
240 #ifdef CONFIG_SMP
241 
242 static void __hrtick_restart(struct rq *rq)
243 {
244 	struct hrtimer *timer = &rq->hrtick_timer;
245 
246 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
247 }
248 
249 /*
250  * called from hardirq (IPI) context
251  */
252 static void __hrtick_start(void *arg)
253 {
254 	struct rq *rq = arg;
255 	struct rq_flags rf;
256 
257 	rq_lock(rq, &rf);
258 	__hrtick_restart(rq);
259 	rq->hrtick_csd_pending = 0;
260 	rq_unlock(rq, &rf);
261 }
262 
263 /*
264  * Called to set the hrtick timer state.
265  *
266  * called with rq->lock held and irqs disabled
267  */
268 void hrtick_start(struct rq *rq, u64 delay)
269 {
270 	struct hrtimer *timer = &rq->hrtick_timer;
271 	ktime_t time;
272 	s64 delta;
273 
274 	/*
275 	 * Don't schedule slices shorter than 10000ns, that just
276 	 * doesn't make sense and can cause timer DoS.
277 	 */
278 	delta = max_t(s64, delay, 10000LL);
279 	time = ktime_add_ns(timer->base->get_time(), delta);
280 
281 	hrtimer_set_expires(timer, time);
282 
283 	if (rq == this_rq()) {
284 		__hrtick_restart(rq);
285 	} else if (!rq->hrtick_csd_pending) {
286 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
287 		rq->hrtick_csd_pending = 1;
288 	}
289 }
290 
291 #else
292 /*
293  * Called to set the hrtick timer state.
294  *
295  * called with rq->lock held and irqs disabled
296  */
297 void hrtick_start(struct rq *rq, u64 delay)
298 {
299 	/*
300 	 * Don't schedule slices shorter than 10000ns, that just
301 	 * doesn't make sense. Rely on vruntime for fairness.
302 	 */
303 	delay = max_t(u64, delay, 10000LL);
304 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
305 		      HRTIMER_MODE_REL_PINNED);
306 }
307 #endif /* CONFIG_SMP */
308 
309 static void hrtick_rq_init(struct rq *rq)
310 {
311 #ifdef CONFIG_SMP
312 	rq->hrtick_csd_pending = 0;
313 
314 	rq->hrtick_csd.flags = 0;
315 	rq->hrtick_csd.func = __hrtick_start;
316 	rq->hrtick_csd.info = rq;
317 #endif
318 
319 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
320 	rq->hrtick_timer.function = hrtick;
321 }
322 #else	/* CONFIG_SCHED_HRTICK */
323 static inline void hrtick_clear(struct rq *rq)
324 {
325 }
326 
327 static inline void hrtick_rq_init(struct rq *rq)
328 {
329 }
330 #endif	/* CONFIG_SCHED_HRTICK */
331 
332 /*
333  * cmpxchg based fetch_or, macro so it works for different integer types
334  */
335 #define fetch_or(ptr, mask)						\
336 	({								\
337 		typeof(ptr) _ptr = (ptr);				\
338 		typeof(mask) _mask = (mask);				\
339 		typeof(*_ptr) _old, _val = *_ptr;			\
340 									\
341 		for (;;) {						\
342 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
343 			if (_old == _val)				\
344 				break;					\
345 			_val = _old;					\
346 		}							\
347 	_old;								\
348 })
349 
350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 /*
352  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
353  * this avoids any races wrt polling state changes and thereby avoids
354  * spurious IPIs.
355  */
356 static bool set_nr_and_not_polling(struct task_struct *p)
357 {
358 	struct thread_info *ti = task_thread_info(p);
359 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
360 }
361 
362 /*
363  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
364  *
365  * If this returns true, then the idle task promises to call
366  * sched_ttwu_pending() and reschedule soon.
367  */
368 static bool set_nr_if_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
372 
373 	for (;;) {
374 		if (!(val & _TIF_POLLING_NRFLAG))
375 			return false;
376 		if (val & _TIF_NEED_RESCHED)
377 			return true;
378 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
379 		if (old == val)
380 			break;
381 		val = old;
382 	}
383 	return true;
384 }
385 
386 #else
387 static bool set_nr_and_not_polling(struct task_struct *p)
388 {
389 	set_tsk_need_resched(p);
390 	return true;
391 }
392 
393 #ifdef CONFIG_SMP
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	return false;
397 }
398 #endif
399 #endif
400 
401 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
402 {
403 	struct wake_q_node *node = &task->wake_q;
404 
405 	/*
406 	 * Atomically grab the task, if ->wake_q is !nil already it means
407 	 * its already queued (either by us or someone else) and will get the
408 	 * wakeup due to that.
409 	 *
410 	 * In order to ensure that a pending wakeup will observe our pending
411 	 * state, even in the failed case, an explicit smp_mb() must be used.
412 	 */
413 	smp_mb__before_atomic();
414 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
415 		return false;
416 
417 	/*
418 	 * The head is context local, there can be no concurrency.
419 	 */
420 	*head->lastp = node;
421 	head->lastp = &node->next;
422 	return true;
423 }
424 
425 /**
426  * wake_q_add() - queue a wakeup for 'later' waking.
427  * @head: the wake_q_head to add @task to
428  * @task: the task to queue for 'later' wakeup
429  *
430  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
431  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
432  * instantly.
433  *
434  * This function must be used as-if it were wake_up_process(); IOW the task
435  * must be ready to be woken at this location.
436  */
437 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
438 {
439 	if (__wake_q_add(head, task))
440 		get_task_struct(task);
441 }
442 
443 /**
444  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
445  * @head: the wake_q_head to add @task to
446  * @task: the task to queue for 'later' wakeup
447  *
448  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
449  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
450  * instantly.
451  *
452  * This function must be used as-if it were wake_up_process(); IOW the task
453  * must be ready to be woken at this location.
454  *
455  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
456  * that already hold reference to @task can call the 'safe' version and trust
457  * wake_q to do the right thing depending whether or not the @task is already
458  * queued for wakeup.
459  */
460 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
461 {
462 	if (!__wake_q_add(head, task))
463 		put_task_struct(task);
464 }
465 
466 void wake_up_q(struct wake_q_head *head)
467 {
468 	struct wake_q_node *node = head->first;
469 
470 	while (node != WAKE_Q_TAIL) {
471 		struct task_struct *task;
472 
473 		task = container_of(node, struct task_struct, wake_q);
474 		BUG_ON(!task);
475 		/* Task can safely be re-inserted now: */
476 		node = node->next;
477 		task->wake_q.next = NULL;
478 
479 		/*
480 		 * wake_up_process() executes a full barrier, which pairs with
481 		 * the queueing in wake_q_add() so as not to miss wakeups.
482 		 */
483 		wake_up_process(task);
484 		put_task_struct(task);
485 	}
486 }
487 
488 /*
489  * resched_curr - mark rq's current task 'to be rescheduled now'.
490  *
491  * On UP this means the setting of the need_resched flag, on SMP it
492  * might also involve a cross-CPU call to trigger the scheduler on
493  * the target CPU.
494  */
495 void resched_curr(struct rq *rq)
496 {
497 	struct task_struct *curr = rq->curr;
498 	int cpu;
499 
500 	lockdep_assert_held(&rq->lock);
501 
502 	if (test_tsk_need_resched(curr))
503 		return;
504 
505 	cpu = cpu_of(rq);
506 
507 	if (cpu == smp_processor_id()) {
508 		set_tsk_need_resched(curr);
509 		set_preempt_need_resched();
510 		return;
511 	}
512 
513 	if (set_nr_and_not_polling(curr))
514 		smp_send_reschedule(cpu);
515 	else
516 		trace_sched_wake_idle_without_ipi(cpu);
517 }
518 
519 void resched_cpu(int cpu)
520 {
521 	struct rq *rq = cpu_rq(cpu);
522 	unsigned long flags;
523 
524 	raw_spin_lock_irqsave(&rq->lock, flags);
525 	if (cpu_online(cpu) || cpu == smp_processor_id())
526 		resched_curr(rq);
527 	raw_spin_unlock_irqrestore(&rq->lock, flags);
528 }
529 
530 #ifdef CONFIG_SMP
531 #ifdef CONFIG_NO_HZ_COMMON
532 /*
533  * In the semi idle case, use the nearest busy CPU for migrating timers
534  * from an idle CPU.  This is good for power-savings.
535  *
536  * We don't do similar optimization for completely idle system, as
537  * selecting an idle CPU will add more delays to the timers than intended
538  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
539  */
540 int get_nohz_timer_target(void)
541 {
542 	int i, cpu = smp_processor_id();
543 	struct sched_domain *sd;
544 
545 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
546 		return cpu;
547 
548 	rcu_read_lock();
549 	for_each_domain(cpu, sd) {
550 		for_each_cpu(i, sched_domain_span(sd)) {
551 			if (cpu == i)
552 				continue;
553 
554 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
555 				cpu = i;
556 				goto unlock;
557 			}
558 		}
559 	}
560 
561 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
562 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
563 unlock:
564 	rcu_read_unlock();
565 	return cpu;
566 }
567 
568 /*
569  * When add_timer_on() enqueues a timer into the timer wheel of an
570  * idle CPU then this timer might expire before the next timer event
571  * which is scheduled to wake up that CPU. In case of a completely
572  * idle system the next event might even be infinite time into the
573  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574  * leaves the inner idle loop so the newly added timer is taken into
575  * account when the CPU goes back to idle and evaluates the timer
576  * wheel for the next timer event.
577  */
578 static void wake_up_idle_cpu(int cpu)
579 {
580 	struct rq *rq = cpu_rq(cpu);
581 
582 	if (cpu == smp_processor_id())
583 		return;
584 
585 	if (set_nr_and_not_polling(rq->idle))
586 		smp_send_reschedule(cpu);
587 	else
588 		trace_sched_wake_idle_without_ipi(cpu);
589 }
590 
591 static bool wake_up_full_nohz_cpu(int cpu)
592 {
593 	/*
594 	 * We just need the target to call irq_exit() and re-evaluate
595 	 * the next tick. The nohz full kick at least implies that.
596 	 * If needed we can still optimize that later with an
597 	 * empty IRQ.
598 	 */
599 	if (cpu_is_offline(cpu))
600 		return true;  /* Don't try to wake offline CPUs. */
601 	if (tick_nohz_full_cpu(cpu)) {
602 		if (cpu != smp_processor_id() ||
603 		    tick_nohz_tick_stopped())
604 			tick_nohz_full_kick_cpu(cpu);
605 		return true;
606 	}
607 
608 	return false;
609 }
610 
611 /*
612  * Wake up the specified CPU.  If the CPU is going offline, it is the
613  * caller's responsibility to deal with the lost wakeup, for example,
614  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
615  */
616 void wake_up_nohz_cpu(int cpu)
617 {
618 	if (!wake_up_full_nohz_cpu(cpu))
619 		wake_up_idle_cpu(cpu);
620 }
621 
622 static inline bool got_nohz_idle_kick(void)
623 {
624 	int cpu = smp_processor_id();
625 
626 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
627 		return false;
628 
629 	if (idle_cpu(cpu) && !need_resched())
630 		return true;
631 
632 	/*
633 	 * We can't run Idle Load Balance on this CPU for this time so we
634 	 * cancel it and clear NOHZ_BALANCE_KICK
635 	 */
636 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
637 	return false;
638 }
639 
640 #else /* CONFIG_NO_HZ_COMMON */
641 
642 static inline bool got_nohz_idle_kick(void)
643 {
644 	return false;
645 }
646 
647 #endif /* CONFIG_NO_HZ_COMMON */
648 
649 #ifdef CONFIG_NO_HZ_FULL
650 bool sched_can_stop_tick(struct rq *rq)
651 {
652 	int fifo_nr_running;
653 
654 	/* Deadline tasks, even if single, need the tick */
655 	if (rq->dl.dl_nr_running)
656 		return false;
657 
658 	/*
659 	 * If there are more than one RR tasks, we need the tick to effect the
660 	 * actual RR behaviour.
661 	 */
662 	if (rq->rt.rr_nr_running) {
663 		if (rq->rt.rr_nr_running == 1)
664 			return true;
665 		else
666 			return false;
667 	}
668 
669 	/*
670 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
671 	 * forced preemption between FIFO tasks.
672 	 */
673 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
674 	if (fifo_nr_running)
675 		return true;
676 
677 	/*
678 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
679 	 * if there's more than one we need the tick for involuntary
680 	 * preemption.
681 	 */
682 	if (rq->nr_running > 1)
683 		return false;
684 
685 	return true;
686 }
687 #endif /* CONFIG_NO_HZ_FULL */
688 #endif /* CONFIG_SMP */
689 
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693  * Iterate task_group tree rooted at *from, calling @down when first entering a
694  * node and @up when leaving it for the final time.
695  *
696  * Caller must hold rcu_lock or sufficient equivalent.
697  */
698 int walk_tg_tree_from(struct task_group *from,
699 			     tg_visitor down, tg_visitor up, void *data)
700 {
701 	struct task_group *parent, *child;
702 	int ret;
703 
704 	parent = from;
705 
706 down:
707 	ret = (*down)(parent, data);
708 	if (ret)
709 		goto out;
710 	list_for_each_entry_rcu(child, &parent->children, siblings) {
711 		parent = child;
712 		goto down;
713 
714 up:
715 		continue;
716 	}
717 	ret = (*up)(parent, data);
718 	if (ret || parent == from)
719 		goto out;
720 
721 	child = parent;
722 	parent = parent->parent;
723 	if (parent)
724 		goto up;
725 out:
726 	return ret;
727 }
728 
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_load_weight(struct task_struct *p, bool update_load)
736 {
737 	int prio = p->static_prio - MAX_RT_PRIO;
738 	struct load_weight *load = &p->se.load;
739 
740 	/*
741 	 * SCHED_IDLE tasks get minimal weight:
742 	 */
743 	if (task_has_idle_policy(p)) {
744 		load->weight = scale_load(WEIGHT_IDLEPRIO);
745 		load->inv_weight = WMULT_IDLEPRIO;
746 		p->se.runnable_weight = load->weight;
747 		return;
748 	}
749 
750 	/*
751 	 * SCHED_OTHER tasks have to update their load when changing their
752 	 * weight
753 	 */
754 	if (update_load && p->sched_class == &fair_sched_class) {
755 		reweight_task(p, prio);
756 	} else {
757 		load->weight = scale_load(sched_prio_to_weight[prio]);
758 		load->inv_weight = sched_prio_to_wmult[prio];
759 		p->se.runnable_weight = load->weight;
760 	}
761 }
762 
763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (!(flags & ENQUEUE_NOCLOCK))
766 		update_rq_clock(rq);
767 
768 	if (!(flags & ENQUEUE_RESTORE)) {
769 		sched_info_queued(rq, p);
770 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
771 	}
772 
773 	p->sched_class->enqueue_task(rq, p, flags);
774 }
775 
776 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 	if (!(flags & DEQUEUE_NOCLOCK))
779 		update_rq_clock(rq);
780 
781 	if (!(flags & DEQUEUE_SAVE)) {
782 		sched_info_dequeued(rq, p);
783 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
784 	}
785 
786 	p->sched_class->dequeue_task(rq, p, flags);
787 }
788 
789 void activate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 	if (task_contributes_to_load(p))
792 		rq->nr_uninterruptible--;
793 
794 	enqueue_task(rq, p, flags);
795 }
796 
797 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
798 {
799 	if (task_contributes_to_load(p))
800 		rq->nr_uninterruptible++;
801 
802 	dequeue_task(rq, p, flags);
803 }
804 
805 /*
806  * __normal_prio - return the priority that is based on the static prio
807  */
808 static inline int __normal_prio(struct task_struct *p)
809 {
810 	return p->static_prio;
811 }
812 
813 /*
814  * Calculate the expected normal priority: i.e. priority
815  * without taking RT-inheritance into account. Might be
816  * boosted by interactivity modifiers. Changes upon fork,
817  * setprio syscalls, and whenever the interactivity
818  * estimator recalculates.
819  */
820 static inline int normal_prio(struct task_struct *p)
821 {
822 	int prio;
823 
824 	if (task_has_dl_policy(p))
825 		prio = MAX_DL_PRIO-1;
826 	else if (task_has_rt_policy(p))
827 		prio = MAX_RT_PRIO-1 - p->rt_priority;
828 	else
829 		prio = __normal_prio(p);
830 	return prio;
831 }
832 
833 /*
834  * Calculate the current priority, i.e. the priority
835  * taken into account by the scheduler. This value might
836  * be boosted by RT tasks, or might be boosted by
837  * interactivity modifiers. Will be RT if the task got
838  * RT-boosted. If not then it returns p->normal_prio.
839  */
840 static int effective_prio(struct task_struct *p)
841 {
842 	p->normal_prio = normal_prio(p);
843 	/*
844 	 * If we are RT tasks or we were boosted to RT priority,
845 	 * keep the priority unchanged. Otherwise, update priority
846 	 * to the normal priority:
847 	 */
848 	if (!rt_prio(p->prio))
849 		return p->normal_prio;
850 	return p->prio;
851 }
852 
853 /**
854  * task_curr - is this task currently executing on a CPU?
855  * @p: the task in question.
856  *
857  * Return: 1 if the task is currently executing. 0 otherwise.
858  */
859 inline int task_curr(const struct task_struct *p)
860 {
861 	return cpu_curr(task_cpu(p)) == p;
862 }
863 
864 /*
865  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
866  * use the balance_callback list if you want balancing.
867  *
868  * this means any call to check_class_changed() must be followed by a call to
869  * balance_callback().
870  */
871 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
872 				       const struct sched_class *prev_class,
873 				       int oldprio)
874 {
875 	if (prev_class != p->sched_class) {
876 		if (prev_class->switched_from)
877 			prev_class->switched_from(rq, p);
878 
879 		p->sched_class->switched_to(rq, p);
880 	} else if (oldprio != p->prio || dl_task(p))
881 		p->sched_class->prio_changed(rq, p, oldprio);
882 }
883 
884 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
885 {
886 	const struct sched_class *class;
887 
888 	if (p->sched_class == rq->curr->sched_class) {
889 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
890 	} else {
891 		for_each_class(class) {
892 			if (class == rq->curr->sched_class)
893 				break;
894 			if (class == p->sched_class) {
895 				resched_curr(rq);
896 				break;
897 			}
898 		}
899 	}
900 
901 	/*
902 	 * A queue event has occurred, and we're going to schedule.  In
903 	 * this case, we can save a useless back to back clock update.
904 	 */
905 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
906 		rq_clock_skip_update(rq);
907 }
908 
909 #ifdef CONFIG_SMP
910 
911 static inline bool is_per_cpu_kthread(struct task_struct *p)
912 {
913 	if (!(p->flags & PF_KTHREAD))
914 		return false;
915 
916 	if (p->nr_cpus_allowed != 1)
917 		return false;
918 
919 	return true;
920 }
921 
922 /*
923  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
924  * __set_cpus_allowed_ptr() and select_fallback_rq().
925  */
926 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
927 {
928 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
929 		return false;
930 
931 	if (is_per_cpu_kthread(p))
932 		return cpu_online(cpu);
933 
934 	return cpu_active(cpu);
935 }
936 
937 /*
938  * This is how migration works:
939  *
940  * 1) we invoke migration_cpu_stop() on the target CPU using
941  *    stop_one_cpu().
942  * 2) stopper starts to run (implicitly forcing the migrated thread
943  *    off the CPU)
944  * 3) it checks whether the migrated task is still in the wrong runqueue.
945  * 4) if it's in the wrong runqueue then the migration thread removes
946  *    it and puts it into the right queue.
947  * 5) stopper completes and stop_one_cpu() returns and the migration
948  *    is done.
949  */
950 
951 /*
952  * move_queued_task - move a queued task to new rq.
953  *
954  * Returns (locked) new rq. Old rq's lock is released.
955  */
956 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
957 				   struct task_struct *p, int new_cpu)
958 {
959 	lockdep_assert_held(&rq->lock);
960 
961 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
962 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
963 	set_task_cpu(p, new_cpu);
964 	rq_unlock(rq, rf);
965 
966 	rq = cpu_rq(new_cpu);
967 
968 	rq_lock(rq, rf);
969 	BUG_ON(task_cpu(p) != new_cpu);
970 	enqueue_task(rq, p, 0);
971 	p->on_rq = TASK_ON_RQ_QUEUED;
972 	check_preempt_curr(rq, p, 0);
973 
974 	return rq;
975 }
976 
977 struct migration_arg {
978 	struct task_struct *task;
979 	int dest_cpu;
980 };
981 
982 /*
983  * Move (not current) task off this CPU, onto the destination CPU. We're doing
984  * this because either it can't run here any more (set_cpus_allowed()
985  * away from this CPU, or CPU going down), or because we're
986  * attempting to rebalance this task on exec (sched_exec).
987  *
988  * So we race with normal scheduler movements, but that's OK, as long
989  * as the task is no longer on this CPU.
990  */
991 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
992 				 struct task_struct *p, int dest_cpu)
993 {
994 	/* Affinity changed (again). */
995 	if (!is_cpu_allowed(p, dest_cpu))
996 		return rq;
997 
998 	update_rq_clock(rq);
999 	rq = move_queued_task(rq, rf, p, dest_cpu);
1000 
1001 	return rq;
1002 }
1003 
1004 /*
1005  * migration_cpu_stop - this will be executed by a highprio stopper thread
1006  * and performs thread migration by bumping thread off CPU then
1007  * 'pushing' onto another runqueue.
1008  */
1009 static int migration_cpu_stop(void *data)
1010 {
1011 	struct migration_arg *arg = data;
1012 	struct task_struct *p = arg->task;
1013 	struct rq *rq = this_rq();
1014 	struct rq_flags rf;
1015 
1016 	/*
1017 	 * The original target CPU might have gone down and we might
1018 	 * be on another CPU but it doesn't matter.
1019 	 */
1020 	local_irq_disable();
1021 	/*
1022 	 * We need to explicitly wake pending tasks before running
1023 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1024 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1025 	 */
1026 	sched_ttwu_pending();
1027 
1028 	raw_spin_lock(&p->pi_lock);
1029 	rq_lock(rq, &rf);
1030 	/*
1031 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1032 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1033 	 * we're holding p->pi_lock.
1034 	 */
1035 	if (task_rq(p) == rq) {
1036 		if (task_on_rq_queued(p))
1037 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1038 		else
1039 			p->wake_cpu = arg->dest_cpu;
1040 	}
1041 	rq_unlock(rq, &rf);
1042 	raw_spin_unlock(&p->pi_lock);
1043 
1044 	local_irq_enable();
1045 	return 0;
1046 }
1047 
1048 /*
1049  * sched_class::set_cpus_allowed must do the below, but is not required to
1050  * actually call this function.
1051  */
1052 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1053 {
1054 	cpumask_copy(&p->cpus_allowed, new_mask);
1055 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1056 }
1057 
1058 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1059 {
1060 	struct rq *rq = task_rq(p);
1061 	bool queued, running;
1062 
1063 	lockdep_assert_held(&p->pi_lock);
1064 
1065 	queued = task_on_rq_queued(p);
1066 	running = task_current(rq, p);
1067 
1068 	if (queued) {
1069 		/*
1070 		 * Because __kthread_bind() calls this on blocked tasks without
1071 		 * holding rq->lock.
1072 		 */
1073 		lockdep_assert_held(&rq->lock);
1074 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1075 	}
1076 	if (running)
1077 		put_prev_task(rq, p);
1078 
1079 	p->sched_class->set_cpus_allowed(p, new_mask);
1080 
1081 	if (queued)
1082 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1083 	if (running)
1084 		set_curr_task(rq, p);
1085 }
1086 
1087 /*
1088  * Change a given task's CPU affinity. Migrate the thread to a
1089  * proper CPU and schedule it away if the CPU it's executing on
1090  * is removed from the allowed bitmask.
1091  *
1092  * NOTE: the caller must have a valid reference to the task, the
1093  * task must not exit() & deallocate itself prematurely. The
1094  * call is not atomic; no spinlocks may be held.
1095  */
1096 static int __set_cpus_allowed_ptr(struct task_struct *p,
1097 				  const struct cpumask *new_mask, bool check)
1098 {
1099 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1100 	unsigned int dest_cpu;
1101 	struct rq_flags rf;
1102 	struct rq *rq;
1103 	int ret = 0;
1104 
1105 	rq = task_rq_lock(p, &rf);
1106 	update_rq_clock(rq);
1107 
1108 	if (p->flags & PF_KTHREAD) {
1109 		/*
1110 		 * Kernel threads are allowed on online && !active CPUs
1111 		 */
1112 		cpu_valid_mask = cpu_online_mask;
1113 	}
1114 
1115 	/*
1116 	 * Must re-check here, to close a race against __kthread_bind(),
1117 	 * sched_setaffinity() is not guaranteed to observe the flag.
1118 	 */
1119 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1120 		ret = -EINVAL;
1121 		goto out;
1122 	}
1123 
1124 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1125 		goto out;
1126 
1127 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1128 		ret = -EINVAL;
1129 		goto out;
1130 	}
1131 
1132 	do_set_cpus_allowed(p, new_mask);
1133 
1134 	if (p->flags & PF_KTHREAD) {
1135 		/*
1136 		 * For kernel threads that do indeed end up on online &&
1137 		 * !active we want to ensure they are strict per-CPU threads.
1138 		 */
1139 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1140 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1141 			p->nr_cpus_allowed != 1);
1142 	}
1143 
1144 	/* Can the task run on the task's current CPU? If so, we're done */
1145 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1146 		goto out;
1147 
1148 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1149 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1150 		struct migration_arg arg = { p, dest_cpu };
1151 		/* Need help from migration thread: drop lock and wait. */
1152 		task_rq_unlock(rq, p, &rf);
1153 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1154 		tlb_migrate_finish(p->mm);
1155 		return 0;
1156 	} else if (task_on_rq_queued(p)) {
1157 		/*
1158 		 * OK, since we're going to drop the lock immediately
1159 		 * afterwards anyway.
1160 		 */
1161 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1162 	}
1163 out:
1164 	task_rq_unlock(rq, p, &rf);
1165 
1166 	return ret;
1167 }
1168 
1169 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1170 {
1171 	return __set_cpus_allowed_ptr(p, new_mask, false);
1172 }
1173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1174 
1175 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1176 {
1177 #ifdef CONFIG_SCHED_DEBUG
1178 	/*
1179 	 * We should never call set_task_cpu() on a blocked task,
1180 	 * ttwu() will sort out the placement.
1181 	 */
1182 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1183 			!p->on_rq);
1184 
1185 	/*
1186 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1187 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1188 	 * time relying on p->on_rq.
1189 	 */
1190 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1191 		     p->sched_class == &fair_sched_class &&
1192 		     (p->on_rq && !task_on_rq_migrating(p)));
1193 
1194 #ifdef CONFIG_LOCKDEP
1195 	/*
1196 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1197 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1198 	 *
1199 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1200 	 * see task_group().
1201 	 *
1202 	 * Furthermore, all task_rq users should acquire both locks, see
1203 	 * task_rq_lock().
1204 	 */
1205 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1206 				      lockdep_is_held(&task_rq(p)->lock)));
1207 #endif
1208 	/*
1209 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1210 	 */
1211 	WARN_ON_ONCE(!cpu_online(new_cpu));
1212 #endif
1213 
1214 	trace_sched_migrate_task(p, new_cpu);
1215 
1216 	if (task_cpu(p) != new_cpu) {
1217 		if (p->sched_class->migrate_task_rq)
1218 			p->sched_class->migrate_task_rq(p, new_cpu);
1219 		p->se.nr_migrations++;
1220 		rseq_migrate(p);
1221 		perf_event_task_migrate(p);
1222 	}
1223 
1224 	__set_task_cpu(p, new_cpu);
1225 }
1226 
1227 #ifdef CONFIG_NUMA_BALANCING
1228 static void __migrate_swap_task(struct task_struct *p, int cpu)
1229 {
1230 	if (task_on_rq_queued(p)) {
1231 		struct rq *src_rq, *dst_rq;
1232 		struct rq_flags srf, drf;
1233 
1234 		src_rq = task_rq(p);
1235 		dst_rq = cpu_rq(cpu);
1236 
1237 		rq_pin_lock(src_rq, &srf);
1238 		rq_pin_lock(dst_rq, &drf);
1239 
1240 		p->on_rq = TASK_ON_RQ_MIGRATING;
1241 		deactivate_task(src_rq, p, 0);
1242 		set_task_cpu(p, cpu);
1243 		activate_task(dst_rq, p, 0);
1244 		p->on_rq = TASK_ON_RQ_QUEUED;
1245 		check_preempt_curr(dst_rq, p, 0);
1246 
1247 		rq_unpin_lock(dst_rq, &drf);
1248 		rq_unpin_lock(src_rq, &srf);
1249 
1250 	} else {
1251 		/*
1252 		 * Task isn't running anymore; make it appear like we migrated
1253 		 * it before it went to sleep. This means on wakeup we make the
1254 		 * previous CPU our target instead of where it really is.
1255 		 */
1256 		p->wake_cpu = cpu;
1257 	}
1258 }
1259 
1260 struct migration_swap_arg {
1261 	struct task_struct *src_task, *dst_task;
1262 	int src_cpu, dst_cpu;
1263 };
1264 
1265 static int migrate_swap_stop(void *data)
1266 {
1267 	struct migration_swap_arg *arg = data;
1268 	struct rq *src_rq, *dst_rq;
1269 	int ret = -EAGAIN;
1270 
1271 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1272 		return -EAGAIN;
1273 
1274 	src_rq = cpu_rq(arg->src_cpu);
1275 	dst_rq = cpu_rq(arg->dst_cpu);
1276 
1277 	double_raw_lock(&arg->src_task->pi_lock,
1278 			&arg->dst_task->pi_lock);
1279 	double_rq_lock(src_rq, dst_rq);
1280 
1281 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1282 		goto unlock;
1283 
1284 	if (task_cpu(arg->src_task) != arg->src_cpu)
1285 		goto unlock;
1286 
1287 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1288 		goto unlock;
1289 
1290 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1291 		goto unlock;
1292 
1293 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1294 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1295 
1296 	ret = 0;
1297 
1298 unlock:
1299 	double_rq_unlock(src_rq, dst_rq);
1300 	raw_spin_unlock(&arg->dst_task->pi_lock);
1301 	raw_spin_unlock(&arg->src_task->pi_lock);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Cross migrate two tasks
1308  */
1309 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1310 		int target_cpu, int curr_cpu)
1311 {
1312 	struct migration_swap_arg arg;
1313 	int ret = -EINVAL;
1314 
1315 	arg = (struct migration_swap_arg){
1316 		.src_task = cur,
1317 		.src_cpu = curr_cpu,
1318 		.dst_task = p,
1319 		.dst_cpu = target_cpu,
1320 	};
1321 
1322 	if (arg.src_cpu == arg.dst_cpu)
1323 		goto out;
1324 
1325 	/*
1326 	 * These three tests are all lockless; this is OK since all of them
1327 	 * will be re-checked with proper locks held further down the line.
1328 	 */
1329 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1330 		goto out;
1331 
1332 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1333 		goto out;
1334 
1335 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1336 		goto out;
1337 
1338 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1339 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1340 
1341 out:
1342 	return ret;
1343 }
1344 #endif /* CONFIG_NUMA_BALANCING */
1345 
1346 /*
1347  * wait_task_inactive - wait for a thread to unschedule.
1348  *
1349  * If @match_state is nonzero, it's the @p->state value just checked and
1350  * not expected to change.  If it changes, i.e. @p might have woken up,
1351  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1352  * we return a positive number (its total switch count).  If a second call
1353  * a short while later returns the same number, the caller can be sure that
1354  * @p has remained unscheduled the whole time.
1355  *
1356  * The caller must ensure that the task *will* unschedule sometime soon,
1357  * else this function might spin for a *long* time. This function can't
1358  * be called with interrupts off, or it may introduce deadlock with
1359  * smp_call_function() if an IPI is sent by the same process we are
1360  * waiting to become inactive.
1361  */
1362 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1363 {
1364 	int running, queued;
1365 	struct rq_flags rf;
1366 	unsigned long ncsw;
1367 	struct rq *rq;
1368 
1369 	for (;;) {
1370 		/*
1371 		 * We do the initial early heuristics without holding
1372 		 * any task-queue locks at all. We'll only try to get
1373 		 * the runqueue lock when things look like they will
1374 		 * work out!
1375 		 */
1376 		rq = task_rq(p);
1377 
1378 		/*
1379 		 * If the task is actively running on another CPU
1380 		 * still, just relax and busy-wait without holding
1381 		 * any locks.
1382 		 *
1383 		 * NOTE! Since we don't hold any locks, it's not
1384 		 * even sure that "rq" stays as the right runqueue!
1385 		 * But we don't care, since "task_running()" will
1386 		 * return false if the runqueue has changed and p
1387 		 * is actually now running somewhere else!
1388 		 */
1389 		while (task_running(rq, p)) {
1390 			if (match_state && unlikely(p->state != match_state))
1391 				return 0;
1392 			cpu_relax();
1393 		}
1394 
1395 		/*
1396 		 * Ok, time to look more closely! We need the rq
1397 		 * lock now, to be *sure*. If we're wrong, we'll
1398 		 * just go back and repeat.
1399 		 */
1400 		rq = task_rq_lock(p, &rf);
1401 		trace_sched_wait_task(p);
1402 		running = task_running(rq, p);
1403 		queued = task_on_rq_queued(p);
1404 		ncsw = 0;
1405 		if (!match_state || p->state == match_state)
1406 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1407 		task_rq_unlock(rq, p, &rf);
1408 
1409 		/*
1410 		 * If it changed from the expected state, bail out now.
1411 		 */
1412 		if (unlikely(!ncsw))
1413 			break;
1414 
1415 		/*
1416 		 * Was it really running after all now that we
1417 		 * checked with the proper locks actually held?
1418 		 *
1419 		 * Oops. Go back and try again..
1420 		 */
1421 		if (unlikely(running)) {
1422 			cpu_relax();
1423 			continue;
1424 		}
1425 
1426 		/*
1427 		 * It's not enough that it's not actively running,
1428 		 * it must be off the runqueue _entirely_, and not
1429 		 * preempted!
1430 		 *
1431 		 * So if it was still runnable (but just not actively
1432 		 * running right now), it's preempted, and we should
1433 		 * yield - it could be a while.
1434 		 */
1435 		if (unlikely(queued)) {
1436 			ktime_t to = NSEC_PER_SEC / HZ;
1437 
1438 			set_current_state(TASK_UNINTERRUPTIBLE);
1439 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1440 			continue;
1441 		}
1442 
1443 		/*
1444 		 * Ahh, all good. It wasn't running, and it wasn't
1445 		 * runnable, which means that it will never become
1446 		 * running in the future either. We're all done!
1447 		 */
1448 		break;
1449 	}
1450 
1451 	return ncsw;
1452 }
1453 
1454 /***
1455  * kick_process - kick a running thread to enter/exit the kernel
1456  * @p: the to-be-kicked thread
1457  *
1458  * Cause a process which is running on another CPU to enter
1459  * kernel-mode, without any delay. (to get signals handled.)
1460  *
1461  * NOTE: this function doesn't have to take the runqueue lock,
1462  * because all it wants to ensure is that the remote task enters
1463  * the kernel. If the IPI races and the task has been migrated
1464  * to another CPU then no harm is done and the purpose has been
1465  * achieved as well.
1466  */
1467 void kick_process(struct task_struct *p)
1468 {
1469 	int cpu;
1470 
1471 	preempt_disable();
1472 	cpu = task_cpu(p);
1473 	if ((cpu != smp_processor_id()) && task_curr(p))
1474 		smp_send_reschedule(cpu);
1475 	preempt_enable();
1476 }
1477 EXPORT_SYMBOL_GPL(kick_process);
1478 
1479 /*
1480  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1481  *
1482  * A few notes on cpu_active vs cpu_online:
1483  *
1484  *  - cpu_active must be a subset of cpu_online
1485  *
1486  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1487  *    see __set_cpus_allowed_ptr(). At this point the newly online
1488  *    CPU isn't yet part of the sched domains, and balancing will not
1489  *    see it.
1490  *
1491  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1492  *    avoid the load balancer to place new tasks on the to be removed
1493  *    CPU. Existing tasks will remain running there and will be taken
1494  *    off.
1495  *
1496  * This means that fallback selection must not select !active CPUs.
1497  * And can assume that any active CPU must be online. Conversely
1498  * select_task_rq() below may allow selection of !active CPUs in order
1499  * to satisfy the above rules.
1500  */
1501 static int select_fallback_rq(int cpu, struct task_struct *p)
1502 {
1503 	int nid = cpu_to_node(cpu);
1504 	const struct cpumask *nodemask = NULL;
1505 	enum { cpuset, possible, fail } state = cpuset;
1506 	int dest_cpu;
1507 
1508 	/*
1509 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1510 	 * will return -1. There is no CPU on the node, and we should
1511 	 * select the CPU on the other node.
1512 	 */
1513 	if (nid != -1) {
1514 		nodemask = cpumask_of_node(nid);
1515 
1516 		/* Look for allowed, online CPU in same node. */
1517 		for_each_cpu(dest_cpu, nodemask) {
1518 			if (!cpu_active(dest_cpu))
1519 				continue;
1520 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1521 				return dest_cpu;
1522 		}
1523 	}
1524 
1525 	for (;;) {
1526 		/* Any allowed, online CPU? */
1527 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1528 			if (!is_cpu_allowed(p, dest_cpu))
1529 				continue;
1530 
1531 			goto out;
1532 		}
1533 
1534 		/* No more Mr. Nice Guy. */
1535 		switch (state) {
1536 		case cpuset:
1537 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1538 				cpuset_cpus_allowed_fallback(p);
1539 				state = possible;
1540 				break;
1541 			}
1542 			/* Fall-through */
1543 		case possible:
1544 			do_set_cpus_allowed(p, cpu_possible_mask);
1545 			state = fail;
1546 			break;
1547 
1548 		case fail:
1549 			BUG();
1550 			break;
1551 		}
1552 	}
1553 
1554 out:
1555 	if (state != cpuset) {
1556 		/*
1557 		 * Don't tell them about moving exiting tasks or
1558 		 * kernel threads (both mm NULL), since they never
1559 		 * leave kernel.
1560 		 */
1561 		if (p->mm && printk_ratelimit()) {
1562 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1563 					task_pid_nr(p), p->comm, cpu);
1564 		}
1565 	}
1566 
1567 	return dest_cpu;
1568 }
1569 
1570 /*
1571  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1572  */
1573 static inline
1574 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1575 {
1576 	lockdep_assert_held(&p->pi_lock);
1577 
1578 	if (p->nr_cpus_allowed > 1)
1579 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1580 	else
1581 		cpu = cpumask_any(&p->cpus_allowed);
1582 
1583 	/*
1584 	 * In order not to call set_task_cpu() on a blocking task we need
1585 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1586 	 * CPU.
1587 	 *
1588 	 * Since this is common to all placement strategies, this lives here.
1589 	 *
1590 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1591 	 *   not worry about this generic constraint ]
1592 	 */
1593 	if (unlikely(!is_cpu_allowed(p, cpu)))
1594 		cpu = select_fallback_rq(task_cpu(p), p);
1595 
1596 	return cpu;
1597 }
1598 
1599 static void update_avg(u64 *avg, u64 sample)
1600 {
1601 	s64 diff = sample - *avg;
1602 	*avg += diff >> 3;
1603 }
1604 
1605 void sched_set_stop_task(int cpu, struct task_struct *stop)
1606 {
1607 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1608 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1609 
1610 	if (stop) {
1611 		/*
1612 		 * Make it appear like a SCHED_FIFO task, its something
1613 		 * userspace knows about and won't get confused about.
1614 		 *
1615 		 * Also, it will make PI more or less work without too
1616 		 * much confusion -- but then, stop work should not
1617 		 * rely on PI working anyway.
1618 		 */
1619 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1620 
1621 		stop->sched_class = &stop_sched_class;
1622 	}
1623 
1624 	cpu_rq(cpu)->stop = stop;
1625 
1626 	if (old_stop) {
1627 		/*
1628 		 * Reset it back to a normal scheduling class so that
1629 		 * it can die in pieces.
1630 		 */
1631 		old_stop->sched_class = &rt_sched_class;
1632 	}
1633 }
1634 
1635 #else
1636 
1637 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1638 					 const struct cpumask *new_mask, bool check)
1639 {
1640 	return set_cpus_allowed_ptr(p, new_mask);
1641 }
1642 
1643 #endif /* CONFIG_SMP */
1644 
1645 static void
1646 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1647 {
1648 	struct rq *rq;
1649 
1650 	if (!schedstat_enabled())
1651 		return;
1652 
1653 	rq = this_rq();
1654 
1655 #ifdef CONFIG_SMP
1656 	if (cpu == rq->cpu) {
1657 		__schedstat_inc(rq->ttwu_local);
1658 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1659 	} else {
1660 		struct sched_domain *sd;
1661 
1662 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1663 		rcu_read_lock();
1664 		for_each_domain(rq->cpu, sd) {
1665 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1666 				__schedstat_inc(sd->ttwu_wake_remote);
1667 				break;
1668 			}
1669 		}
1670 		rcu_read_unlock();
1671 	}
1672 
1673 	if (wake_flags & WF_MIGRATED)
1674 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1675 #endif /* CONFIG_SMP */
1676 
1677 	__schedstat_inc(rq->ttwu_count);
1678 	__schedstat_inc(p->se.statistics.nr_wakeups);
1679 
1680 	if (wake_flags & WF_SYNC)
1681 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1682 }
1683 
1684 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1685 {
1686 	activate_task(rq, p, en_flags);
1687 	p->on_rq = TASK_ON_RQ_QUEUED;
1688 
1689 	/* If a worker is waking up, notify the workqueue: */
1690 	if (p->flags & PF_WQ_WORKER)
1691 		wq_worker_waking_up(p, cpu_of(rq));
1692 }
1693 
1694 /*
1695  * Mark the task runnable and perform wakeup-preemption.
1696  */
1697 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1698 			   struct rq_flags *rf)
1699 {
1700 	check_preempt_curr(rq, p, wake_flags);
1701 	p->state = TASK_RUNNING;
1702 	trace_sched_wakeup(p);
1703 
1704 #ifdef CONFIG_SMP
1705 	if (p->sched_class->task_woken) {
1706 		/*
1707 		 * Our task @p is fully woken up and running; so its safe to
1708 		 * drop the rq->lock, hereafter rq is only used for statistics.
1709 		 */
1710 		rq_unpin_lock(rq, rf);
1711 		p->sched_class->task_woken(rq, p);
1712 		rq_repin_lock(rq, rf);
1713 	}
1714 
1715 	if (rq->idle_stamp) {
1716 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1717 		u64 max = 2*rq->max_idle_balance_cost;
1718 
1719 		update_avg(&rq->avg_idle, delta);
1720 
1721 		if (rq->avg_idle > max)
1722 			rq->avg_idle = max;
1723 
1724 		rq->idle_stamp = 0;
1725 	}
1726 #endif
1727 }
1728 
1729 static void
1730 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1731 		 struct rq_flags *rf)
1732 {
1733 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1734 
1735 	lockdep_assert_held(&rq->lock);
1736 
1737 #ifdef CONFIG_SMP
1738 	if (p->sched_contributes_to_load)
1739 		rq->nr_uninterruptible--;
1740 
1741 	if (wake_flags & WF_MIGRATED)
1742 		en_flags |= ENQUEUE_MIGRATED;
1743 #endif
1744 
1745 	ttwu_activate(rq, p, en_flags);
1746 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1747 }
1748 
1749 /*
1750  * Called in case the task @p isn't fully descheduled from its runqueue,
1751  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1752  * since all we need to do is flip p->state to TASK_RUNNING, since
1753  * the task is still ->on_rq.
1754  */
1755 static int ttwu_remote(struct task_struct *p, int wake_flags)
1756 {
1757 	struct rq_flags rf;
1758 	struct rq *rq;
1759 	int ret = 0;
1760 
1761 	rq = __task_rq_lock(p, &rf);
1762 	if (task_on_rq_queued(p)) {
1763 		/* check_preempt_curr() may use rq clock */
1764 		update_rq_clock(rq);
1765 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1766 		ret = 1;
1767 	}
1768 	__task_rq_unlock(rq, &rf);
1769 
1770 	return ret;
1771 }
1772 
1773 #ifdef CONFIG_SMP
1774 void sched_ttwu_pending(void)
1775 {
1776 	struct rq *rq = this_rq();
1777 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1778 	struct task_struct *p, *t;
1779 	struct rq_flags rf;
1780 
1781 	if (!llist)
1782 		return;
1783 
1784 	rq_lock_irqsave(rq, &rf);
1785 	update_rq_clock(rq);
1786 
1787 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1788 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1789 
1790 	rq_unlock_irqrestore(rq, &rf);
1791 }
1792 
1793 void scheduler_ipi(void)
1794 {
1795 	/*
1796 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1797 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1798 	 * this IPI.
1799 	 */
1800 	preempt_fold_need_resched();
1801 
1802 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1803 		return;
1804 
1805 	/*
1806 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1807 	 * traditionally all their work was done from the interrupt return
1808 	 * path. Now that we actually do some work, we need to make sure
1809 	 * we do call them.
1810 	 *
1811 	 * Some archs already do call them, luckily irq_enter/exit nest
1812 	 * properly.
1813 	 *
1814 	 * Arguably we should visit all archs and update all handlers,
1815 	 * however a fair share of IPIs are still resched only so this would
1816 	 * somewhat pessimize the simple resched case.
1817 	 */
1818 	irq_enter();
1819 	sched_ttwu_pending();
1820 
1821 	/*
1822 	 * Check if someone kicked us for doing the nohz idle load balance.
1823 	 */
1824 	if (unlikely(got_nohz_idle_kick())) {
1825 		this_rq()->idle_balance = 1;
1826 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1827 	}
1828 	irq_exit();
1829 }
1830 
1831 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1832 {
1833 	struct rq *rq = cpu_rq(cpu);
1834 
1835 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1836 
1837 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1838 		if (!set_nr_if_polling(rq->idle))
1839 			smp_send_reschedule(cpu);
1840 		else
1841 			trace_sched_wake_idle_without_ipi(cpu);
1842 	}
1843 }
1844 
1845 void wake_up_if_idle(int cpu)
1846 {
1847 	struct rq *rq = cpu_rq(cpu);
1848 	struct rq_flags rf;
1849 
1850 	rcu_read_lock();
1851 
1852 	if (!is_idle_task(rcu_dereference(rq->curr)))
1853 		goto out;
1854 
1855 	if (set_nr_if_polling(rq->idle)) {
1856 		trace_sched_wake_idle_without_ipi(cpu);
1857 	} else {
1858 		rq_lock_irqsave(rq, &rf);
1859 		if (is_idle_task(rq->curr))
1860 			smp_send_reschedule(cpu);
1861 		/* Else CPU is not idle, do nothing here: */
1862 		rq_unlock_irqrestore(rq, &rf);
1863 	}
1864 
1865 out:
1866 	rcu_read_unlock();
1867 }
1868 
1869 bool cpus_share_cache(int this_cpu, int that_cpu)
1870 {
1871 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1872 }
1873 #endif /* CONFIG_SMP */
1874 
1875 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1876 {
1877 	struct rq *rq = cpu_rq(cpu);
1878 	struct rq_flags rf;
1879 
1880 #if defined(CONFIG_SMP)
1881 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1882 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1883 		ttwu_queue_remote(p, cpu, wake_flags);
1884 		return;
1885 	}
1886 #endif
1887 
1888 	rq_lock(rq, &rf);
1889 	update_rq_clock(rq);
1890 	ttwu_do_activate(rq, p, wake_flags, &rf);
1891 	rq_unlock(rq, &rf);
1892 }
1893 
1894 /*
1895  * Notes on Program-Order guarantees on SMP systems.
1896  *
1897  *  MIGRATION
1898  *
1899  * The basic program-order guarantee on SMP systems is that when a task [t]
1900  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1901  * execution on its new CPU [c1].
1902  *
1903  * For migration (of runnable tasks) this is provided by the following means:
1904  *
1905  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1906  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1907  *     rq(c1)->lock (if not at the same time, then in that order).
1908  *  C) LOCK of the rq(c1)->lock scheduling in task
1909  *
1910  * Release/acquire chaining guarantees that B happens after A and C after B.
1911  * Note: the CPU doing B need not be c0 or c1
1912  *
1913  * Example:
1914  *
1915  *   CPU0            CPU1            CPU2
1916  *
1917  *   LOCK rq(0)->lock
1918  *   sched-out X
1919  *   sched-in Y
1920  *   UNLOCK rq(0)->lock
1921  *
1922  *                                   LOCK rq(0)->lock // orders against CPU0
1923  *                                   dequeue X
1924  *                                   UNLOCK rq(0)->lock
1925  *
1926  *                                   LOCK rq(1)->lock
1927  *                                   enqueue X
1928  *                                   UNLOCK rq(1)->lock
1929  *
1930  *                   LOCK rq(1)->lock // orders against CPU2
1931  *                   sched-out Z
1932  *                   sched-in X
1933  *                   UNLOCK rq(1)->lock
1934  *
1935  *
1936  *  BLOCKING -- aka. SLEEP + WAKEUP
1937  *
1938  * For blocking we (obviously) need to provide the same guarantee as for
1939  * migration. However the means are completely different as there is no lock
1940  * chain to provide order. Instead we do:
1941  *
1942  *   1) smp_store_release(X->on_cpu, 0)
1943  *   2) smp_cond_load_acquire(!X->on_cpu)
1944  *
1945  * Example:
1946  *
1947  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1948  *
1949  *   LOCK rq(0)->lock LOCK X->pi_lock
1950  *   dequeue X
1951  *   sched-out X
1952  *   smp_store_release(X->on_cpu, 0);
1953  *
1954  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1955  *                    X->state = WAKING
1956  *                    set_task_cpu(X,2)
1957  *
1958  *                    LOCK rq(2)->lock
1959  *                    enqueue X
1960  *                    X->state = RUNNING
1961  *                    UNLOCK rq(2)->lock
1962  *
1963  *                                          LOCK rq(2)->lock // orders against CPU1
1964  *                                          sched-out Z
1965  *                                          sched-in X
1966  *                                          UNLOCK rq(2)->lock
1967  *
1968  *                    UNLOCK X->pi_lock
1969  *   UNLOCK rq(0)->lock
1970  *
1971  *
1972  * However, for wakeups there is a second guarantee we must provide, namely we
1973  * must ensure that CONDITION=1 done by the caller can not be reordered with
1974  * accesses to the task state; see try_to_wake_up() and set_current_state().
1975  */
1976 
1977 /**
1978  * try_to_wake_up - wake up a thread
1979  * @p: the thread to be awakened
1980  * @state: the mask of task states that can be woken
1981  * @wake_flags: wake modifier flags (WF_*)
1982  *
1983  * If (@state & @p->state) @p->state = TASK_RUNNING.
1984  *
1985  * If the task was not queued/runnable, also place it back on a runqueue.
1986  *
1987  * Atomic against schedule() which would dequeue a task, also see
1988  * set_current_state().
1989  *
1990  * This function executes a full memory barrier before accessing the task
1991  * state; see set_current_state().
1992  *
1993  * Return: %true if @p->state changes (an actual wakeup was done),
1994  *	   %false otherwise.
1995  */
1996 static int
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998 {
1999 	unsigned long flags;
2000 	int cpu, success = 0;
2001 
2002 	/*
2003 	 * If we are going to wake up a thread waiting for CONDITION we
2004 	 * need to ensure that CONDITION=1 done by the caller can not be
2005 	 * reordered with p->state check below. This pairs with mb() in
2006 	 * set_current_state() the waiting thread does.
2007 	 */
2008 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2009 	smp_mb__after_spinlock();
2010 	if (!(p->state & state))
2011 		goto out;
2012 
2013 	trace_sched_waking(p);
2014 
2015 	/* We're going to change ->state: */
2016 	success = 1;
2017 	cpu = task_cpu(p);
2018 
2019 	/*
2020 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 	 * in smp_cond_load_acquire() below.
2023 	 *
2024 	 * sched_ttwu_pending()			try_to_wake_up()
2025 	 *   STORE p->on_rq = 1			  LOAD p->state
2026 	 *   UNLOCK rq->lock
2027 	 *
2028 	 * __schedule() (switch to task 'p')
2029 	 *   LOCK rq->lock			  smp_rmb();
2030 	 *   smp_mb__after_spinlock();
2031 	 *   UNLOCK rq->lock
2032 	 *
2033 	 * [task p]
2034 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2035 	 *
2036 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2037 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2038 	 */
2039 	smp_rmb();
2040 	if (p->on_rq && ttwu_remote(p, wake_flags))
2041 		goto stat;
2042 
2043 #ifdef CONFIG_SMP
2044 	/*
2045 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2046 	 * possible to, falsely, observe p->on_cpu == 0.
2047 	 *
2048 	 * One must be running (->on_cpu == 1) in order to remove oneself
2049 	 * from the runqueue.
2050 	 *
2051 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2052 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2053 	 *   UNLOCK rq->lock
2054 	 *
2055 	 * __schedule() (put 'p' to sleep)
2056 	 *   LOCK rq->lock			  smp_rmb();
2057 	 *   smp_mb__after_spinlock();
2058 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2059 	 *
2060 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2061 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2062 	 */
2063 	smp_rmb();
2064 
2065 	/*
2066 	 * If the owning (remote) CPU is still in the middle of schedule() with
2067 	 * this task as prev, wait until its done referencing the task.
2068 	 *
2069 	 * Pairs with the smp_store_release() in finish_task().
2070 	 *
2071 	 * This ensures that tasks getting woken will be fully ordered against
2072 	 * their previous state and preserve Program Order.
2073 	 */
2074 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2075 
2076 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2077 	p->state = TASK_WAKING;
2078 
2079 	if (p->in_iowait) {
2080 		delayacct_blkio_end(p);
2081 		atomic_dec(&task_rq(p)->nr_iowait);
2082 	}
2083 
2084 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2085 	if (task_cpu(p) != cpu) {
2086 		wake_flags |= WF_MIGRATED;
2087 		psi_ttwu_dequeue(p);
2088 		set_task_cpu(p, cpu);
2089 	}
2090 
2091 #else /* CONFIG_SMP */
2092 
2093 	if (p->in_iowait) {
2094 		delayacct_blkio_end(p);
2095 		atomic_dec(&task_rq(p)->nr_iowait);
2096 	}
2097 
2098 #endif /* CONFIG_SMP */
2099 
2100 	ttwu_queue(p, cpu, wake_flags);
2101 stat:
2102 	ttwu_stat(p, cpu, wake_flags);
2103 out:
2104 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2105 
2106 	return success;
2107 }
2108 
2109 /**
2110  * try_to_wake_up_local - try to wake up a local task with rq lock held
2111  * @p: the thread to be awakened
2112  * @rf: request-queue flags for pinning
2113  *
2114  * Put @p on the run-queue if it's not already there. The caller must
2115  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2116  * the current task.
2117  */
2118 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2119 {
2120 	struct rq *rq = task_rq(p);
2121 
2122 	if (WARN_ON_ONCE(rq != this_rq()) ||
2123 	    WARN_ON_ONCE(p == current))
2124 		return;
2125 
2126 	lockdep_assert_held(&rq->lock);
2127 
2128 	if (!raw_spin_trylock(&p->pi_lock)) {
2129 		/*
2130 		 * This is OK, because current is on_cpu, which avoids it being
2131 		 * picked for load-balance and preemption/IRQs are still
2132 		 * disabled avoiding further scheduler activity on it and we've
2133 		 * not yet picked a replacement task.
2134 		 */
2135 		rq_unlock(rq, rf);
2136 		raw_spin_lock(&p->pi_lock);
2137 		rq_relock(rq, rf);
2138 	}
2139 
2140 	if (!(p->state & TASK_NORMAL))
2141 		goto out;
2142 
2143 	trace_sched_waking(p);
2144 
2145 	if (!task_on_rq_queued(p)) {
2146 		if (p->in_iowait) {
2147 			delayacct_blkio_end(p);
2148 			atomic_dec(&rq->nr_iowait);
2149 		}
2150 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2151 	}
2152 
2153 	ttwu_do_wakeup(rq, p, 0, rf);
2154 	ttwu_stat(p, smp_processor_id(), 0);
2155 out:
2156 	raw_spin_unlock(&p->pi_lock);
2157 }
2158 
2159 /**
2160  * wake_up_process - Wake up a specific process
2161  * @p: The process to be woken up.
2162  *
2163  * Attempt to wake up the nominated process and move it to the set of runnable
2164  * processes.
2165  *
2166  * Return: 1 if the process was woken up, 0 if it was already running.
2167  *
2168  * This function executes a full memory barrier before accessing the task state.
2169  */
2170 int wake_up_process(struct task_struct *p)
2171 {
2172 	return try_to_wake_up(p, TASK_NORMAL, 0);
2173 }
2174 EXPORT_SYMBOL(wake_up_process);
2175 
2176 int wake_up_state(struct task_struct *p, unsigned int state)
2177 {
2178 	return try_to_wake_up(p, state, 0);
2179 }
2180 
2181 /*
2182  * Perform scheduler related setup for a newly forked process p.
2183  * p is forked by current.
2184  *
2185  * __sched_fork() is basic setup used by init_idle() too:
2186  */
2187 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2188 {
2189 	p->on_rq			= 0;
2190 
2191 	p->se.on_rq			= 0;
2192 	p->se.exec_start		= 0;
2193 	p->se.sum_exec_runtime		= 0;
2194 	p->se.prev_sum_exec_runtime	= 0;
2195 	p->se.nr_migrations		= 0;
2196 	p->se.vruntime			= 0;
2197 	INIT_LIST_HEAD(&p->se.group_node);
2198 
2199 #ifdef CONFIG_FAIR_GROUP_SCHED
2200 	p->se.cfs_rq			= NULL;
2201 #endif
2202 
2203 #ifdef CONFIG_SCHEDSTATS
2204 	/* Even if schedstat is disabled, there should not be garbage */
2205 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2206 #endif
2207 
2208 	RB_CLEAR_NODE(&p->dl.rb_node);
2209 	init_dl_task_timer(&p->dl);
2210 	init_dl_inactive_task_timer(&p->dl);
2211 	__dl_clear_params(p);
2212 
2213 	INIT_LIST_HEAD(&p->rt.run_list);
2214 	p->rt.timeout		= 0;
2215 	p->rt.time_slice	= sched_rr_timeslice;
2216 	p->rt.on_rq		= 0;
2217 	p->rt.on_list		= 0;
2218 
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2221 #endif
2222 
2223 #ifdef CONFIG_COMPACTION
2224 	p->capture_control = NULL;
2225 #endif
2226 	init_numa_balancing(clone_flags, p);
2227 }
2228 
2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2230 
2231 #ifdef CONFIG_NUMA_BALANCING
2232 
2233 void set_numabalancing_state(bool enabled)
2234 {
2235 	if (enabled)
2236 		static_branch_enable(&sched_numa_balancing);
2237 	else
2238 		static_branch_disable(&sched_numa_balancing);
2239 }
2240 
2241 #ifdef CONFIG_PROC_SYSCTL
2242 int sysctl_numa_balancing(struct ctl_table *table, int write,
2243 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2244 {
2245 	struct ctl_table t;
2246 	int err;
2247 	int state = static_branch_likely(&sched_numa_balancing);
2248 
2249 	if (write && !capable(CAP_SYS_ADMIN))
2250 		return -EPERM;
2251 
2252 	t = *table;
2253 	t.data = &state;
2254 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2255 	if (err < 0)
2256 		return err;
2257 	if (write)
2258 		set_numabalancing_state(state);
2259 	return err;
2260 }
2261 #endif
2262 #endif
2263 
2264 #ifdef CONFIG_SCHEDSTATS
2265 
2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2267 static bool __initdata __sched_schedstats = false;
2268 
2269 static void set_schedstats(bool enabled)
2270 {
2271 	if (enabled)
2272 		static_branch_enable(&sched_schedstats);
2273 	else
2274 		static_branch_disable(&sched_schedstats);
2275 }
2276 
2277 void force_schedstat_enabled(void)
2278 {
2279 	if (!schedstat_enabled()) {
2280 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2281 		static_branch_enable(&sched_schedstats);
2282 	}
2283 }
2284 
2285 static int __init setup_schedstats(char *str)
2286 {
2287 	int ret = 0;
2288 	if (!str)
2289 		goto out;
2290 
2291 	/*
2292 	 * This code is called before jump labels have been set up, so we can't
2293 	 * change the static branch directly just yet.  Instead set a temporary
2294 	 * variable so init_schedstats() can do it later.
2295 	 */
2296 	if (!strcmp(str, "enable")) {
2297 		__sched_schedstats = true;
2298 		ret = 1;
2299 	} else if (!strcmp(str, "disable")) {
2300 		__sched_schedstats = false;
2301 		ret = 1;
2302 	}
2303 out:
2304 	if (!ret)
2305 		pr_warn("Unable to parse schedstats=\n");
2306 
2307 	return ret;
2308 }
2309 __setup("schedstats=", setup_schedstats);
2310 
2311 static void __init init_schedstats(void)
2312 {
2313 	set_schedstats(__sched_schedstats);
2314 }
2315 
2316 #ifdef CONFIG_PROC_SYSCTL
2317 int sysctl_schedstats(struct ctl_table *table, int write,
2318 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2319 {
2320 	struct ctl_table t;
2321 	int err;
2322 	int state = static_branch_likely(&sched_schedstats);
2323 
2324 	if (write && !capable(CAP_SYS_ADMIN))
2325 		return -EPERM;
2326 
2327 	t = *table;
2328 	t.data = &state;
2329 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2330 	if (err < 0)
2331 		return err;
2332 	if (write)
2333 		set_schedstats(state);
2334 	return err;
2335 }
2336 #endif /* CONFIG_PROC_SYSCTL */
2337 #else  /* !CONFIG_SCHEDSTATS */
2338 static inline void init_schedstats(void) {}
2339 #endif /* CONFIG_SCHEDSTATS */
2340 
2341 /*
2342  * fork()/clone()-time setup:
2343  */
2344 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2345 {
2346 	unsigned long flags;
2347 
2348 	__sched_fork(clone_flags, p);
2349 	/*
2350 	 * We mark the process as NEW here. This guarantees that
2351 	 * nobody will actually run it, and a signal or other external
2352 	 * event cannot wake it up and insert it on the runqueue either.
2353 	 */
2354 	p->state = TASK_NEW;
2355 
2356 	/*
2357 	 * Make sure we do not leak PI boosting priority to the child.
2358 	 */
2359 	p->prio = current->normal_prio;
2360 
2361 	/*
2362 	 * Revert to default priority/policy on fork if requested.
2363 	 */
2364 	if (unlikely(p->sched_reset_on_fork)) {
2365 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2366 			p->policy = SCHED_NORMAL;
2367 			p->static_prio = NICE_TO_PRIO(0);
2368 			p->rt_priority = 0;
2369 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2370 			p->static_prio = NICE_TO_PRIO(0);
2371 
2372 		p->prio = p->normal_prio = __normal_prio(p);
2373 		set_load_weight(p, false);
2374 
2375 		/*
2376 		 * We don't need the reset flag anymore after the fork. It has
2377 		 * fulfilled its duty:
2378 		 */
2379 		p->sched_reset_on_fork = 0;
2380 	}
2381 
2382 	if (dl_prio(p->prio))
2383 		return -EAGAIN;
2384 	else if (rt_prio(p->prio))
2385 		p->sched_class = &rt_sched_class;
2386 	else
2387 		p->sched_class = &fair_sched_class;
2388 
2389 	init_entity_runnable_average(&p->se);
2390 
2391 	/*
2392 	 * The child is not yet in the pid-hash so no cgroup attach races,
2393 	 * and the cgroup is pinned to this child due to cgroup_fork()
2394 	 * is ran before sched_fork().
2395 	 *
2396 	 * Silence PROVE_RCU.
2397 	 */
2398 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2399 	/*
2400 	 * We're setting the CPU for the first time, we don't migrate,
2401 	 * so use __set_task_cpu().
2402 	 */
2403 	__set_task_cpu(p, smp_processor_id());
2404 	if (p->sched_class->task_fork)
2405 		p->sched_class->task_fork(p);
2406 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407 
2408 #ifdef CONFIG_SCHED_INFO
2409 	if (likely(sched_info_on()))
2410 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2411 #endif
2412 #if defined(CONFIG_SMP)
2413 	p->on_cpu = 0;
2414 #endif
2415 	init_task_preempt_count(p);
2416 #ifdef CONFIG_SMP
2417 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 #endif
2420 	return 0;
2421 }
2422 
2423 unsigned long to_ratio(u64 period, u64 runtime)
2424 {
2425 	if (runtime == RUNTIME_INF)
2426 		return BW_UNIT;
2427 
2428 	/*
2429 	 * Doing this here saves a lot of checks in all
2430 	 * the calling paths, and returning zero seems
2431 	 * safe for them anyway.
2432 	 */
2433 	if (period == 0)
2434 		return 0;
2435 
2436 	return div64_u64(runtime << BW_SHIFT, period);
2437 }
2438 
2439 /*
2440  * wake_up_new_task - wake up a newly created task for the first time.
2441  *
2442  * This function will do some initial scheduler statistics housekeeping
2443  * that must be done for every newly created context, then puts the task
2444  * on the runqueue and wakes it.
2445  */
2446 void wake_up_new_task(struct task_struct *p)
2447 {
2448 	struct rq_flags rf;
2449 	struct rq *rq;
2450 
2451 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2452 	p->state = TASK_RUNNING;
2453 #ifdef CONFIG_SMP
2454 	/*
2455 	 * Fork balancing, do it here and not earlier because:
2456 	 *  - cpus_allowed can change in the fork path
2457 	 *  - any previously selected CPU might disappear through hotplug
2458 	 *
2459 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2460 	 * as we're not fully set-up yet.
2461 	 */
2462 	p->recent_used_cpu = task_cpu(p);
2463 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2464 #endif
2465 	rq = __task_rq_lock(p, &rf);
2466 	update_rq_clock(rq);
2467 	post_init_entity_util_avg(p);
2468 
2469 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2470 	p->on_rq = TASK_ON_RQ_QUEUED;
2471 	trace_sched_wakeup_new(p);
2472 	check_preempt_curr(rq, p, WF_FORK);
2473 #ifdef CONFIG_SMP
2474 	if (p->sched_class->task_woken) {
2475 		/*
2476 		 * Nothing relies on rq->lock after this, so its fine to
2477 		 * drop it.
2478 		 */
2479 		rq_unpin_lock(rq, &rf);
2480 		p->sched_class->task_woken(rq, p);
2481 		rq_repin_lock(rq, &rf);
2482 	}
2483 #endif
2484 	task_rq_unlock(rq, p, &rf);
2485 }
2486 
2487 #ifdef CONFIG_PREEMPT_NOTIFIERS
2488 
2489 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2490 
2491 void preempt_notifier_inc(void)
2492 {
2493 	static_branch_inc(&preempt_notifier_key);
2494 }
2495 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2496 
2497 void preempt_notifier_dec(void)
2498 {
2499 	static_branch_dec(&preempt_notifier_key);
2500 }
2501 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2502 
2503 /**
2504  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2505  * @notifier: notifier struct to register
2506  */
2507 void preempt_notifier_register(struct preempt_notifier *notifier)
2508 {
2509 	if (!static_branch_unlikely(&preempt_notifier_key))
2510 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2511 
2512 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2513 }
2514 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2515 
2516 /**
2517  * preempt_notifier_unregister - no longer interested in preemption notifications
2518  * @notifier: notifier struct to unregister
2519  *
2520  * This is *not* safe to call from within a preemption notifier.
2521  */
2522 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2523 {
2524 	hlist_del(&notifier->link);
2525 }
2526 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2527 
2528 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2529 {
2530 	struct preempt_notifier *notifier;
2531 
2532 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2533 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2534 }
2535 
2536 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2537 {
2538 	if (static_branch_unlikely(&preempt_notifier_key))
2539 		__fire_sched_in_preempt_notifiers(curr);
2540 }
2541 
2542 static void
2543 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 				   struct task_struct *next)
2545 {
2546 	struct preempt_notifier *notifier;
2547 
2548 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2549 		notifier->ops->sched_out(notifier, next);
2550 }
2551 
2552 static __always_inline void
2553 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2554 				 struct task_struct *next)
2555 {
2556 	if (static_branch_unlikely(&preempt_notifier_key))
2557 		__fire_sched_out_preempt_notifiers(curr, next);
2558 }
2559 
2560 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2561 
2562 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2563 {
2564 }
2565 
2566 static inline void
2567 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2568 				 struct task_struct *next)
2569 {
2570 }
2571 
2572 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2573 
2574 static inline void prepare_task(struct task_struct *next)
2575 {
2576 #ifdef CONFIG_SMP
2577 	/*
2578 	 * Claim the task as running, we do this before switching to it
2579 	 * such that any running task will have this set.
2580 	 */
2581 	next->on_cpu = 1;
2582 #endif
2583 }
2584 
2585 static inline void finish_task(struct task_struct *prev)
2586 {
2587 #ifdef CONFIG_SMP
2588 	/*
2589 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2590 	 * We must ensure this doesn't happen until the switch is completely
2591 	 * finished.
2592 	 *
2593 	 * In particular, the load of prev->state in finish_task_switch() must
2594 	 * happen before this.
2595 	 *
2596 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2597 	 */
2598 	smp_store_release(&prev->on_cpu, 0);
2599 #endif
2600 }
2601 
2602 static inline void
2603 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2604 {
2605 	/*
2606 	 * Since the runqueue lock will be released by the next
2607 	 * task (which is an invalid locking op but in the case
2608 	 * of the scheduler it's an obvious special-case), so we
2609 	 * do an early lockdep release here:
2610 	 */
2611 	rq_unpin_lock(rq, rf);
2612 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2613 #ifdef CONFIG_DEBUG_SPINLOCK
2614 	/* this is a valid case when another task releases the spinlock */
2615 	rq->lock.owner = next;
2616 #endif
2617 }
2618 
2619 static inline void finish_lock_switch(struct rq *rq)
2620 {
2621 	/*
2622 	 * If we are tracking spinlock dependencies then we have to
2623 	 * fix up the runqueue lock - which gets 'carried over' from
2624 	 * prev into current:
2625 	 */
2626 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2627 	raw_spin_unlock_irq(&rq->lock);
2628 }
2629 
2630 /*
2631  * NOP if the arch has not defined these:
2632  */
2633 
2634 #ifndef prepare_arch_switch
2635 # define prepare_arch_switch(next)	do { } while (0)
2636 #endif
2637 
2638 #ifndef finish_arch_post_lock_switch
2639 # define finish_arch_post_lock_switch()	do { } while (0)
2640 #endif
2641 
2642 /**
2643  * prepare_task_switch - prepare to switch tasks
2644  * @rq: the runqueue preparing to switch
2645  * @prev: the current task that is being switched out
2646  * @next: the task we are going to switch to.
2647  *
2648  * This is called with the rq lock held and interrupts off. It must
2649  * be paired with a subsequent finish_task_switch after the context
2650  * switch.
2651  *
2652  * prepare_task_switch sets up locking and calls architecture specific
2653  * hooks.
2654  */
2655 static inline void
2656 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2657 		    struct task_struct *next)
2658 {
2659 	kcov_prepare_switch(prev);
2660 	sched_info_switch(rq, prev, next);
2661 	perf_event_task_sched_out(prev, next);
2662 	rseq_preempt(prev);
2663 	fire_sched_out_preempt_notifiers(prev, next);
2664 	prepare_task(next);
2665 	prepare_arch_switch(next);
2666 }
2667 
2668 /**
2669  * finish_task_switch - clean up after a task-switch
2670  * @prev: the thread we just switched away from.
2671  *
2672  * finish_task_switch must be called after the context switch, paired
2673  * with a prepare_task_switch call before the context switch.
2674  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675  * and do any other architecture-specific cleanup actions.
2676  *
2677  * Note that we may have delayed dropping an mm in context_switch(). If
2678  * so, we finish that here outside of the runqueue lock. (Doing it
2679  * with the lock held can cause deadlocks; see schedule() for
2680  * details.)
2681  *
2682  * The context switch have flipped the stack from under us and restored the
2683  * local variables which were saved when this task called schedule() in the
2684  * past. prev == current is still correct but we need to recalculate this_rq
2685  * because prev may have moved to another CPU.
2686  */
2687 static struct rq *finish_task_switch(struct task_struct *prev)
2688 	__releases(rq->lock)
2689 {
2690 	struct rq *rq = this_rq();
2691 	struct mm_struct *mm = rq->prev_mm;
2692 	long prev_state;
2693 
2694 	/*
2695 	 * The previous task will have left us with a preempt_count of 2
2696 	 * because it left us after:
2697 	 *
2698 	 *	schedule()
2699 	 *	  preempt_disable();			// 1
2700 	 *	  __schedule()
2701 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2702 	 *
2703 	 * Also, see FORK_PREEMPT_COUNT.
2704 	 */
2705 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2706 		      "corrupted preempt_count: %s/%d/0x%x\n",
2707 		      current->comm, current->pid, preempt_count()))
2708 		preempt_count_set(FORK_PREEMPT_COUNT);
2709 
2710 	rq->prev_mm = NULL;
2711 
2712 	/*
2713 	 * A task struct has one reference for the use as "current".
2714 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2715 	 * schedule one last time. The schedule call will never return, and
2716 	 * the scheduled task must drop that reference.
2717 	 *
2718 	 * We must observe prev->state before clearing prev->on_cpu (in
2719 	 * finish_task), otherwise a concurrent wakeup can get prev
2720 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2721 	 * transition, resulting in a double drop.
2722 	 */
2723 	prev_state = prev->state;
2724 	vtime_task_switch(prev);
2725 	perf_event_task_sched_in(prev, current);
2726 	finish_task(prev);
2727 	finish_lock_switch(rq);
2728 	finish_arch_post_lock_switch();
2729 	kcov_finish_switch(current);
2730 
2731 	fire_sched_in_preempt_notifiers(current);
2732 	/*
2733 	 * When switching through a kernel thread, the loop in
2734 	 * membarrier_{private,global}_expedited() may have observed that
2735 	 * kernel thread and not issued an IPI. It is therefore possible to
2736 	 * schedule between user->kernel->user threads without passing though
2737 	 * switch_mm(). Membarrier requires a barrier after storing to
2738 	 * rq->curr, before returning to userspace, so provide them here:
2739 	 *
2740 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2741 	 *   provided by mmdrop(),
2742 	 * - a sync_core for SYNC_CORE.
2743 	 */
2744 	if (mm) {
2745 		membarrier_mm_sync_core_before_usermode(mm);
2746 		mmdrop(mm);
2747 	}
2748 	if (unlikely(prev_state == TASK_DEAD)) {
2749 		if (prev->sched_class->task_dead)
2750 			prev->sched_class->task_dead(prev);
2751 
2752 		/*
2753 		 * Remove function-return probe instances associated with this
2754 		 * task and put them back on the free list.
2755 		 */
2756 		kprobe_flush_task(prev);
2757 
2758 		/* Task is done with its stack. */
2759 		put_task_stack(prev);
2760 
2761 		put_task_struct(prev);
2762 	}
2763 
2764 	tick_nohz_task_switch();
2765 	return rq;
2766 }
2767 
2768 #ifdef CONFIG_SMP
2769 
2770 /* rq->lock is NOT held, but preemption is disabled */
2771 static void __balance_callback(struct rq *rq)
2772 {
2773 	struct callback_head *head, *next;
2774 	void (*func)(struct rq *rq);
2775 	unsigned long flags;
2776 
2777 	raw_spin_lock_irqsave(&rq->lock, flags);
2778 	head = rq->balance_callback;
2779 	rq->balance_callback = NULL;
2780 	while (head) {
2781 		func = (void (*)(struct rq *))head->func;
2782 		next = head->next;
2783 		head->next = NULL;
2784 		head = next;
2785 
2786 		func(rq);
2787 	}
2788 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2789 }
2790 
2791 static inline void balance_callback(struct rq *rq)
2792 {
2793 	if (unlikely(rq->balance_callback))
2794 		__balance_callback(rq);
2795 }
2796 
2797 #else
2798 
2799 static inline void balance_callback(struct rq *rq)
2800 {
2801 }
2802 
2803 #endif
2804 
2805 /**
2806  * schedule_tail - first thing a freshly forked thread must call.
2807  * @prev: the thread we just switched away from.
2808  */
2809 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2810 	__releases(rq->lock)
2811 {
2812 	struct rq *rq;
2813 
2814 	/*
2815 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2816 	 * finish_task_switch() for details.
2817 	 *
2818 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2819 	 * and the preempt_enable() will end up enabling preemption (on
2820 	 * PREEMPT_COUNT kernels).
2821 	 */
2822 
2823 	rq = finish_task_switch(prev);
2824 	balance_callback(rq);
2825 	preempt_enable();
2826 
2827 	if (current->set_child_tid)
2828 		put_user(task_pid_vnr(current), current->set_child_tid);
2829 
2830 	calculate_sigpending();
2831 }
2832 
2833 /*
2834  * context_switch - switch to the new MM and the new thread's register state.
2835  */
2836 static __always_inline struct rq *
2837 context_switch(struct rq *rq, struct task_struct *prev,
2838 	       struct task_struct *next, struct rq_flags *rf)
2839 {
2840 	struct mm_struct *mm, *oldmm;
2841 
2842 	prepare_task_switch(rq, prev, next);
2843 
2844 	mm = next->mm;
2845 	oldmm = prev->active_mm;
2846 	/*
2847 	 * For paravirt, this is coupled with an exit in switch_to to
2848 	 * combine the page table reload and the switch backend into
2849 	 * one hypercall.
2850 	 */
2851 	arch_start_context_switch(prev);
2852 
2853 	/*
2854 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2855 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2856 	 * Both of these contain the full memory barrier required by
2857 	 * membarrier after storing to rq->curr, before returning to
2858 	 * user-space.
2859 	 */
2860 	if (!mm) {
2861 		next->active_mm = oldmm;
2862 		mmgrab(oldmm);
2863 		enter_lazy_tlb(oldmm, next);
2864 	} else
2865 		switch_mm_irqs_off(oldmm, mm, next);
2866 
2867 	if (!prev->mm) {
2868 		prev->active_mm = NULL;
2869 		rq->prev_mm = oldmm;
2870 	}
2871 
2872 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2873 
2874 	prepare_lock_switch(rq, next, rf);
2875 
2876 	/* Here we just switch the register state and the stack. */
2877 	switch_to(prev, next, prev);
2878 	barrier();
2879 
2880 	return finish_task_switch(prev);
2881 }
2882 
2883 /*
2884  * nr_running and nr_context_switches:
2885  *
2886  * externally visible scheduler statistics: current number of runnable
2887  * threads, total number of context switches performed since bootup.
2888  */
2889 unsigned long nr_running(void)
2890 {
2891 	unsigned long i, sum = 0;
2892 
2893 	for_each_online_cpu(i)
2894 		sum += cpu_rq(i)->nr_running;
2895 
2896 	return sum;
2897 }
2898 
2899 /*
2900  * Check if only the current task is running on the CPU.
2901  *
2902  * Caution: this function does not check that the caller has disabled
2903  * preemption, thus the result might have a time-of-check-to-time-of-use
2904  * race.  The caller is responsible to use it correctly, for example:
2905  *
2906  * - from a non-preemptible section (of course)
2907  *
2908  * - from a thread that is bound to a single CPU
2909  *
2910  * - in a loop with very short iterations (e.g. a polling loop)
2911  */
2912 bool single_task_running(void)
2913 {
2914 	return raw_rq()->nr_running == 1;
2915 }
2916 EXPORT_SYMBOL(single_task_running);
2917 
2918 unsigned long long nr_context_switches(void)
2919 {
2920 	int i;
2921 	unsigned long long sum = 0;
2922 
2923 	for_each_possible_cpu(i)
2924 		sum += cpu_rq(i)->nr_switches;
2925 
2926 	return sum;
2927 }
2928 
2929 /*
2930  * Consumers of these two interfaces, like for example the cpuidle menu
2931  * governor, are using nonsensical data. Preferring shallow idle state selection
2932  * for a CPU that has IO-wait which might not even end up running the task when
2933  * it does become runnable.
2934  */
2935 
2936 unsigned long nr_iowait_cpu(int cpu)
2937 {
2938 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
2939 }
2940 
2941 /*
2942  * IO-wait accounting, and how its mostly bollocks (on SMP).
2943  *
2944  * The idea behind IO-wait account is to account the idle time that we could
2945  * have spend running if it were not for IO. That is, if we were to improve the
2946  * storage performance, we'd have a proportional reduction in IO-wait time.
2947  *
2948  * This all works nicely on UP, where, when a task blocks on IO, we account
2949  * idle time as IO-wait, because if the storage were faster, it could've been
2950  * running and we'd not be idle.
2951  *
2952  * This has been extended to SMP, by doing the same for each CPU. This however
2953  * is broken.
2954  *
2955  * Imagine for instance the case where two tasks block on one CPU, only the one
2956  * CPU will have IO-wait accounted, while the other has regular idle. Even
2957  * though, if the storage were faster, both could've ran at the same time,
2958  * utilising both CPUs.
2959  *
2960  * This means, that when looking globally, the current IO-wait accounting on
2961  * SMP is a lower bound, by reason of under accounting.
2962  *
2963  * Worse, since the numbers are provided per CPU, they are sometimes
2964  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2965  * associated with any one particular CPU, it can wake to another CPU than it
2966  * blocked on. This means the per CPU IO-wait number is meaningless.
2967  *
2968  * Task CPU affinities can make all that even more 'interesting'.
2969  */
2970 
2971 unsigned long nr_iowait(void)
2972 {
2973 	unsigned long i, sum = 0;
2974 
2975 	for_each_possible_cpu(i)
2976 		sum += nr_iowait_cpu(i);
2977 
2978 	return sum;
2979 }
2980 
2981 #ifdef CONFIG_SMP
2982 
2983 /*
2984  * sched_exec - execve() is a valuable balancing opportunity, because at
2985  * this point the task has the smallest effective memory and cache footprint.
2986  */
2987 void sched_exec(void)
2988 {
2989 	struct task_struct *p = current;
2990 	unsigned long flags;
2991 	int dest_cpu;
2992 
2993 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2994 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2995 	if (dest_cpu == smp_processor_id())
2996 		goto unlock;
2997 
2998 	if (likely(cpu_active(dest_cpu))) {
2999 		struct migration_arg arg = { p, dest_cpu };
3000 
3001 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3002 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3003 		return;
3004 	}
3005 unlock:
3006 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3007 }
3008 
3009 #endif
3010 
3011 DEFINE_PER_CPU(struct kernel_stat, kstat);
3012 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3013 
3014 EXPORT_PER_CPU_SYMBOL(kstat);
3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3016 
3017 /*
3018  * The function fair_sched_class.update_curr accesses the struct curr
3019  * and its field curr->exec_start; when called from task_sched_runtime(),
3020  * we observe a high rate of cache misses in practice.
3021  * Prefetching this data results in improved performance.
3022  */
3023 static inline void prefetch_curr_exec_start(struct task_struct *p)
3024 {
3025 #ifdef CONFIG_FAIR_GROUP_SCHED
3026 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3027 #else
3028 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3029 #endif
3030 	prefetch(curr);
3031 	prefetch(&curr->exec_start);
3032 }
3033 
3034 /*
3035  * Return accounted runtime for the task.
3036  * In case the task is currently running, return the runtime plus current's
3037  * pending runtime that have not been accounted yet.
3038  */
3039 unsigned long long task_sched_runtime(struct task_struct *p)
3040 {
3041 	struct rq_flags rf;
3042 	struct rq *rq;
3043 	u64 ns;
3044 
3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3046 	/*
3047 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3048 	 * So we have a optimization chance when the task's delta_exec is 0.
3049 	 * Reading ->on_cpu is racy, but this is ok.
3050 	 *
3051 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3052 	 * If we race with it entering CPU, unaccounted time is 0. This is
3053 	 * indistinguishable from the read occurring a few cycles earlier.
3054 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3055 	 * been accounted, so we're correct here as well.
3056 	 */
3057 	if (!p->on_cpu || !task_on_rq_queued(p))
3058 		return p->se.sum_exec_runtime;
3059 #endif
3060 
3061 	rq = task_rq_lock(p, &rf);
3062 	/*
3063 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3064 	 * project cycles that may never be accounted to this
3065 	 * thread, breaking clock_gettime().
3066 	 */
3067 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3068 		prefetch_curr_exec_start(p);
3069 		update_rq_clock(rq);
3070 		p->sched_class->update_curr(rq);
3071 	}
3072 	ns = p->se.sum_exec_runtime;
3073 	task_rq_unlock(rq, p, &rf);
3074 
3075 	return ns;
3076 }
3077 
3078 /*
3079  * This function gets called by the timer code, with HZ frequency.
3080  * We call it with interrupts disabled.
3081  */
3082 void scheduler_tick(void)
3083 {
3084 	int cpu = smp_processor_id();
3085 	struct rq *rq = cpu_rq(cpu);
3086 	struct task_struct *curr = rq->curr;
3087 	struct rq_flags rf;
3088 
3089 	sched_clock_tick();
3090 
3091 	rq_lock(rq, &rf);
3092 
3093 	update_rq_clock(rq);
3094 	curr->sched_class->task_tick(rq, curr, 0);
3095 	cpu_load_update_active(rq);
3096 	calc_global_load_tick(rq);
3097 	psi_task_tick(rq);
3098 
3099 	rq_unlock(rq, &rf);
3100 
3101 	perf_event_task_tick();
3102 
3103 #ifdef CONFIG_SMP
3104 	rq->idle_balance = idle_cpu(cpu);
3105 	trigger_load_balance(rq);
3106 #endif
3107 }
3108 
3109 #ifdef CONFIG_NO_HZ_FULL
3110 
3111 struct tick_work {
3112 	int			cpu;
3113 	struct delayed_work	work;
3114 };
3115 
3116 static struct tick_work __percpu *tick_work_cpu;
3117 
3118 static void sched_tick_remote(struct work_struct *work)
3119 {
3120 	struct delayed_work *dwork = to_delayed_work(work);
3121 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3122 	int cpu = twork->cpu;
3123 	struct rq *rq = cpu_rq(cpu);
3124 	struct task_struct *curr;
3125 	struct rq_flags rf;
3126 	u64 delta;
3127 
3128 	/*
3129 	 * Handle the tick only if it appears the remote CPU is running in full
3130 	 * dynticks mode. The check is racy by nature, but missing a tick or
3131 	 * having one too much is no big deal because the scheduler tick updates
3132 	 * statistics and checks timeslices in a time-independent way, regardless
3133 	 * of when exactly it is running.
3134 	 */
3135 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3136 		goto out_requeue;
3137 
3138 	rq_lock_irq(rq, &rf);
3139 	curr = rq->curr;
3140 	if (is_idle_task(curr))
3141 		goto out_unlock;
3142 
3143 	update_rq_clock(rq);
3144 	delta = rq_clock_task(rq) - curr->se.exec_start;
3145 
3146 	/*
3147 	 * Make sure the next tick runs within a reasonable
3148 	 * amount of time.
3149 	 */
3150 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3151 	curr->sched_class->task_tick(rq, curr, 0);
3152 
3153 out_unlock:
3154 	rq_unlock_irq(rq, &rf);
3155 
3156 out_requeue:
3157 	/*
3158 	 * Run the remote tick once per second (1Hz). This arbitrary
3159 	 * frequency is large enough to avoid overload but short enough
3160 	 * to keep scheduler internal stats reasonably up to date.
3161 	 */
3162 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3163 }
3164 
3165 static void sched_tick_start(int cpu)
3166 {
3167 	struct tick_work *twork;
3168 
3169 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3170 		return;
3171 
3172 	WARN_ON_ONCE(!tick_work_cpu);
3173 
3174 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3175 	twork->cpu = cpu;
3176 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3178 }
3179 
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void sched_tick_stop(int cpu)
3182 {
3183 	struct tick_work *twork;
3184 
3185 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3186 		return;
3187 
3188 	WARN_ON_ONCE(!tick_work_cpu);
3189 
3190 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 	cancel_delayed_work_sync(&twork->work);
3192 }
3193 #endif /* CONFIG_HOTPLUG_CPU */
3194 
3195 int __init sched_tick_offload_init(void)
3196 {
3197 	tick_work_cpu = alloc_percpu(struct tick_work);
3198 	BUG_ON(!tick_work_cpu);
3199 
3200 	return 0;
3201 }
3202 
3203 #else /* !CONFIG_NO_HZ_FULL */
3204 static inline void sched_tick_start(int cpu) { }
3205 static inline void sched_tick_stop(int cpu) { }
3206 #endif
3207 
3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3210 /*
3211  * If the value passed in is equal to the current preempt count
3212  * then we just disabled preemption. Start timing the latency.
3213  */
3214 static inline void preempt_latency_start(int val)
3215 {
3216 	if (preempt_count() == val) {
3217 		unsigned long ip = get_lock_parent_ip();
3218 #ifdef CONFIG_DEBUG_PREEMPT
3219 		current->preempt_disable_ip = ip;
3220 #endif
3221 		trace_preempt_off(CALLER_ADDR0, ip);
3222 	}
3223 }
3224 
3225 void preempt_count_add(int val)
3226 {
3227 #ifdef CONFIG_DEBUG_PREEMPT
3228 	/*
3229 	 * Underflow?
3230 	 */
3231 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3232 		return;
3233 #endif
3234 	__preempt_count_add(val);
3235 #ifdef CONFIG_DEBUG_PREEMPT
3236 	/*
3237 	 * Spinlock count overflowing soon?
3238 	 */
3239 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3240 				PREEMPT_MASK - 10);
3241 #endif
3242 	preempt_latency_start(val);
3243 }
3244 EXPORT_SYMBOL(preempt_count_add);
3245 NOKPROBE_SYMBOL(preempt_count_add);
3246 
3247 /*
3248  * If the value passed in equals to the current preempt count
3249  * then we just enabled preemption. Stop timing the latency.
3250  */
3251 static inline void preempt_latency_stop(int val)
3252 {
3253 	if (preempt_count() == val)
3254 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3255 }
3256 
3257 void preempt_count_sub(int val)
3258 {
3259 #ifdef CONFIG_DEBUG_PREEMPT
3260 	/*
3261 	 * Underflow?
3262 	 */
3263 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3264 		return;
3265 	/*
3266 	 * Is the spinlock portion underflowing?
3267 	 */
3268 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 			!(preempt_count() & PREEMPT_MASK)))
3270 		return;
3271 #endif
3272 
3273 	preempt_latency_stop(val);
3274 	__preempt_count_sub(val);
3275 }
3276 EXPORT_SYMBOL(preempt_count_sub);
3277 NOKPROBE_SYMBOL(preempt_count_sub);
3278 
3279 #else
3280 static inline void preempt_latency_start(int val) { }
3281 static inline void preempt_latency_stop(int val) { }
3282 #endif
3283 
3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285 {
3286 #ifdef CONFIG_DEBUG_PREEMPT
3287 	return p->preempt_disable_ip;
3288 #else
3289 	return 0;
3290 #endif
3291 }
3292 
3293 /*
3294  * Print scheduling while atomic bug:
3295  */
3296 static noinline void __schedule_bug(struct task_struct *prev)
3297 {
3298 	/* Save this before calling printk(), since that will clobber it */
3299 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300 
3301 	if (oops_in_progress)
3302 		return;
3303 
3304 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 		prev->comm, prev->pid, preempt_count());
3306 
3307 	debug_show_held_locks(prev);
3308 	print_modules();
3309 	if (irqs_disabled())
3310 		print_irqtrace_events(prev);
3311 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 	    && in_atomic_preempt_off()) {
3313 		pr_err("Preemption disabled at:");
3314 		print_ip_sym(preempt_disable_ip);
3315 		pr_cont("\n");
3316 	}
3317 	if (panic_on_warn)
3318 		panic("scheduling while atomic\n");
3319 
3320 	dump_stack();
3321 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3322 }
3323 
3324 /*
3325  * Various schedule()-time debugging checks and statistics:
3326  */
3327 static inline void schedule_debug(struct task_struct *prev)
3328 {
3329 #ifdef CONFIG_SCHED_STACK_END_CHECK
3330 	if (task_stack_end_corrupted(prev))
3331 		panic("corrupted stack end detected inside scheduler\n");
3332 #endif
3333 
3334 	if (unlikely(in_atomic_preempt_off())) {
3335 		__schedule_bug(prev);
3336 		preempt_count_set(PREEMPT_DISABLED);
3337 	}
3338 	rcu_sleep_check();
3339 
3340 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341 
3342 	schedstat_inc(this_rq()->sched_count);
3343 }
3344 
3345 /*
3346  * Pick up the highest-prio task:
3347  */
3348 static inline struct task_struct *
3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350 {
3351 	const struct sched_class *class;
3352 	struct task_struct *p;
3353 
3354 	/*
3355 	 * Optimization: we know that if all tasks are in the fair class we can
3356 	 * call that function directly, but only if the @prev task wasn't of a
3357 	 * higher scheduling class, because otherwise those loose the
3358 	 * opportunity to pull in more work from other CPUs.
3359 	 */
3360 	if (likely((prev->sched_class == &idle_sched_class ||
3361 		    prev->sched_class == &fair_sched_class) &&
3362 		   rq->nr_running == rq->cfs.h_nr_running)) {
3363 
3364 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 		if (unlikely(p == RETRY_TASK))
3366 			goto again;
3367 
3368 		/* Assumes fair_sched_class->next == idle_sched_class */
3369 		if (unlikely(!p))
3370 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3371 
3372 		return p;
3373 	}
3374 
3375 again:
3376 	for_each_class(class) {
3377 		p = class->pick_next_task(rq, prev, rf);
3378 		if (p) {
3379 			if (unlikely(p == RETRY_TASK))
3380 				goto again;
3381 			return p;
3382 		}
3383 	}
3384 
3385 	/* The idle class should always have a runnable task: */
3386 	BUG();
3387 }
3388 
3389 /*
3390  * __schedule() is the main scheduler function.
3391  *
3392  * The main means of driving the scheduler and thus entering this function are:
3393  *
3394  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395  *
3396  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397  *      paths. For example, see arch/x86/entry_64.S.
3398  *
3399  *      To drive preemption between tasks, the scheduler sets the flag in timer
3400  *      interrupt handler scheduler_tick().
3401  *
3402  *   3. Wakeups don't really cause entry into schedule(). They add a
3403  *      task to the run-queue and that's it.
3404  *
3405  *      Now, if the new task added to the run-queue preempts the current
3406  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407  *      called on the nearest possible occasion:
3408  *
3409  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410  *
3411  *         - in syscall or exception context, at the next outmost
3412  *           preempt_enable(). (this might be as soon as the wake_up()'s
3413  *           spin_unlock()!)
3414  *
3415  *         - in IRQ context, return from interrupt-handler to
3416  *           preemptible context
3417  *
3418  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3419  *         then at the next:
3420  *
3421  *          - cond_resched() call
3422  *          - explicit schedule() call
3423  *          - return from syscall or exception to user-space
3424  *          - return from interrupt-handler to user-space
3425  *
3426  * WARNING: must be called with preemption disabled!
3427  */
3428 static void __sched notrace __schedule(bool preempt)
3429 {
3430 	struct task_struct *prev, *next;
3431 	unsigned long *switch_count;
3432 	struct rq_flags rf;
3433 	struct rq *rq;
3434 	int cpu;
3435 
3436 	cpu = smp_processor_id();
3437 	rq = cpu_rq(cpu);
3438 	prev = rq->curr;
3439 
3440 	schedule_debug(prev);
3441 
3442 	if (sched_feat(HRTICK))
3443 		hrtick_clear(rq);
3444 
3445 	local_irq_disable();
3446 	rcu_note_context_switch(preempt);
3447 
3448 	/*
3449 	 * Make sure that signal_pending_state()->signal_pending() below
3450 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 	 * done by the caller to avoid the race with signal_wake_up().
3452 	 *
3453 	 * The membarrier system call requires a full memory barrier
3454 	 * after coming from user-space, before storing to rq->curr.
3455 	 */
3456 	rq_lock(rq, &rf);
3457 	smp_mb__after_spinlock();
3458 
3459 	/* Promote REQ to ACT */
3460 	rq->clock_update_flags <<= 1;
3461 	update_rq_clock(rq);
3462 
3463 	switch_count = &prev->nivcsw;
3464 	if (!preempt && prev->state) {
3465 		if (signal_pending_state(prev->state, prev)) {
3466 			prev->state = TASK_RUNNING;
3467 		} else {
3468 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3469 			prev->on_rq = 0;
3470 
3471 			if (prev->in_iowait) {
3472 				atomic_inc(&rq->nr_iowait);
3473 				delayacct_blkio_start();
3474 			}
3475 
3476 			/*
3477 			 * If a worker went to sleep, notify and ask workqueue
3478 			 * whether it wants to wake up a task to maintain
3479 			 * concurrency.
3480 			 */
3481 			if (prev->flags & PF_WQ_WORKER) {
3482 				struct task_struct *to_wakeup;
3483 
3484 				to_wakeup = wq_worker_sleeping(prev);
3485 				if (to_wakeup)
3486 					try_to_wake_up_local(to_wakeup, &rf);
3487 			}
3488 		}
3489 		switch_count = &prev->nvcsw;
3490 	}
3491 
3492 	next = pick_next_task(rq, prev, &rf);
3493 	clear_tsk_need_resched(prev);
3494 	clear_preempt_need_resched();
3495 
3496 	if (likely(prev != next)) {
3497 		rq->nr_switches++;
3498 		rq->curr = next;
3499 		/*
3500 		 * The membarrier system call requires each architecture
3501 		 * to have a full memory barrier after updating
3502 		 * rq->curr, before returning to user-space.
3503 		 *
3504 		 * Here are the schemes providing that barrier on the
3505 		 * various architectures:
3506 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 		 * - finish_lock_switch() for weakly-ordered
3509 		 *   architectures where spin_unlock is a full barrier,
3510 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 		 *   is a RELEASE barrier),
3512 		 */
3513 		++*switch_count;
3514 
3515 		trace_sched_switch(preempt, prev, next);
3516 
3517 		/* Also unlocks the rq: */
3518 		rq = context_switch(rq, prev, next, &rf);
3519 	} else {
3520 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 		rq_unlock_irq(rq, &rf);
3522 	}
3523 
3524 	balance_callback(rq);
3525 }
3526 
3527 void __noreturn do_task_dead(void)
3528 {
3529 	/* Causes final put_task_struct in finish_task_switch(): */
3530 	set_special_state(TASK_DEAD);
3531 
3532 	/* Tell freezer to ignore us: */
3533 	current->flags |= PF_NOFREEZE;
3534 
3535 	__schedule(false);
3536 	BUG();
3537 
3538 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3539 	for (;;)
3540 		cpu_relax();
3541 }
3542 
3543 static inline void sched_submit_work(struct task_struct *tsk)
3544 {
3545 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3546 		return;
3547 	/*
3548 	 * If we are going to sleep and we have plugged IO queued,
3549 	 * make sure to submit it to avoid deadlocks.
3550 	 */
3551 	if (blk_needs_flush_plug(tsk))
3552 		blk_schedule_flush_plug(tsk);
3553 }
3554 
3555 asmlinkage __visible void __sched schedule(void)
3556 {
3557 	struct task_struct *tsk = current;
3558 
3559 	sched_submit_work(tsk);
3560 	do {
3561 		preempt_disable();
3562 		__schedule(false);
3563 		sched_preempt_enable_no_resched();
3564 	} while (need_resched());
3565 }
3566 EXPORT_SYMBOL(schedule);
3567 
3568 /*
3569  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570  * state (have scheduled out non-voluntarily) by making sure that all
3571  * tasks have either left the run queue or have gone into user space.
3572  * As idle tasks do not do either, they must not ever be preempted
3573  * (schedule out non-voluntarily).
3574  *
3575  * schedule_idle() is similar to schedule_preempt_disable() except that it
3576  * never enables preemption because it does not call sched_submit_work().
3577  */
3578 void __sched schedule_idle(void)
3579 {
3580 	/*
3581 	 * As this skips calling sched_submit_work(), which the idle task does
3582 	 * regardless because that function is a nop when the task is in a
3583 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 	 * current task can be in any other state. Note, idle is always in the
3585 	 * TASK_RUNNING state.
3586 	 */
3587 	WARN_ON_ONCE(current->state);
3588 	do {
3589 		__schedule(false);
3590 	} while (need_resched());
3591 }
3592 
3593 #ifdef CONFIG_CONTEXT_TRACKING
3594 asmlinkage __visible void __sched schedule_user(void)
3595 {
3596 	/*
3597 	 * If we come here after a random call to set_need_resched(),
3598 	 * or we have been woken up remotely but the IPI has not yet arrived,
3599 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 	 * we find a better solution.
3601 	 *
3602 	 * NB: There are buggy callers of this function.  Ideally we
3603 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 	 * too frequently to make sense yet.
3605 	 */
3606 	enum ctx_state prev_state = exception_enter();
3607 	schedule();
3608 	exception_exit(prev_state);
3609 }
3610 #endif
3611 
3612 /**
3613  * schedule_preempt_disabled - called with preemption disabled
3614  *
3615  * Returns with preemption disabled. Note: preempt_count must be 1
3616  */
3617 void __sched schedule_preempt_disabled(void)
3618 {
3619 	sched_preempt_enable_no_resched();
3620 	schedule();
3621 	preempt_disable();
3622 }
3623 
3624 static void __sched notrace preempt_schedule_common(void)
3625 {
3626 	do {
3627 		/*
3628 		 * Because the function tracer can trace preempt_count_sub()
3629 		 * and it also uses preempt_enable/disable_notrace(), if
3630 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 		 * by the function tracer will call this function again and
3632 		 * cause infinite recursion.
3633 		 *
3634 		 * Preemption must be disabled here before the function
3635 		 * tracer can trace. Break up preempt_disable() into two
3636 		 * calls. One to disable preemption without fear of being
3637 		 * traced. The other to still record the preemption latency,
3638 		 * which can also be traced by the function tracer.
3639 		 */
3640 		preempt_disable_notrace();
3641 		preempt_latency_start(1);
3642 		__schedule(true);
3643 		preempt_latency_stop(1);
3644 		preempt_enable_no_resched_notrace();
3645 
3646 		/*
3647 		 * Check again in case we missed a preemption opportunity
3648 		 * between schedule and now.
3649 		 */
3650 	} while (need_resched());
3651 }
3652 
3653 #ifdef CONFIG_PREEMPT
3654 /*
3655  * this is the entry point to schedule() from in-kernel preemption
3656  * off of preempt_enable. Kernel preemptions off return from interrupt
3657  * occur there and call schedule directly.
3658  */
3659 asmlinkage __visible void __sched notrace preempt_schedule(void)
3660 {
3661 	/*
3662 	 * If there is a non-zero preempt_count or interrupts are disabled,
3663 	 * we do not want to preempt the current task. Just return..
3664 	 */
3665 	if (likely(!preemptible()))
3666 		return;
3667 
3668 	preempt_schedule_common();
3669 }
3670 NOKPROBE_SYMBOL(preempt_schedule);
3671 EXPORT_SYMBOL(preempt_schedule);
3672 
3673 /**
3674  * preempt_schedule_notrace - preempt_schedule called by tracing
3675  *
3676  * The tracing infrastructure uses preempt_enable_notrace to prevent
3677  * recursion and tracing preempt enabling caused by the tracing
3678  * infrastructure itself. But as tracing can happen in areas coming
3679  * from userspace or just about to enter userspace, a preempt enable
3680  * can occur before user_exit() is called. This will cause the scheduler
3681  * to be called when the system is still in usermode.
3682  *
3683  * To prevent this, the preempt_enable_notrace will use this function
3684  * instead of preempt_schedule() to exit user context if needed before
3685  * calling the scheduler.
3686  */
3687 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688 {
3689 	enum ctx_state prev_ctx;
3690 
3691 	if (likely(!preemptible()))
3692 		return;
3693 
3694 	do {
3695 		/*
3696 		 * Because the function tracer can trace preempt_count_sub()
3697 		 * and it also uses preempt_enable/disable_notrace(), if
3698 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699 		 * by the function tracer will call this function again and
3700 		 * cause infinite recursion.
3701 		 *
3702 		 * Preemption must be disabled here before the function
3703 		 * tracer can trace. Break up preempt_disable() into two
3704 		 * calls. One to disable preemption without fear of being
3705 		 * traced. The other to still record the preemption latency,
3706 		 * which can also be traced by the function tracer.
3707 		 */
3708 		preempt_disable_notrace();
3709 		preempt_latency_start(1);
3710 		/*
3711 		 * Needs preempt disabled in case user_exit() is traced
3712 		 * and the tracer calls preempt_enable_notrace() causing
3713 		 * an infinite recursion.
3714 		 */
3715 		prev_ctx = exception_enter();
3716 		__schedule(true);
3717 		exception_exit(prev_ctx);
3718 
3719 		preempt_latency_stop(1);
3720 		preempt_enable_no_resched_notrace();
3721 	} while (need_resched());
3722 }
3723 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724 
3725 #endif /* CONFIG_PREEMPT */
3726 
3727 /*
3728  * this is the entry point to schedule() from kernel preemption
3729  * off of irq context.
3730  * Note, that this is called and return with irqs disabled. This will
3731  * protect us against recursive calling from irq.
3732  */
3733 asmlinkage __visible void __sched preempt_schedule_irq(void)
3734 {
3735 	enum ctx_state prev_state;
3736 
3737 	/* Catch callers which need to be fixed */
3738 	BUG_ON(preempt_count() || !irqs_disabled());
3739 
3740 	prev_state = exception_enter();
3741 
3742 	do {
3743 		preempt_disable();
3744 		local_irq_enable();
3745 		__schedule(true);
3746 		local_irq_disable();
3747 		sched_preempt_enable_no_resched();
3748 	} while (need_resched());
3749 
3750 	exception_exit(prev_state);
3751 }
3752 
3753 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3754 			  void *key)
3755 {
3756 	return try_to_wake_up(curr->private, mode, wake_flags);
3757 }
3758 EXPORT_SYMBOL(default_wake_function);
3759 
3760 #ifdef CONFIG_RT_MUTEXES
3761 
3762 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3763 {
3764 	if (pi_task)
3765 		prio = min(prio, pi_task->prio);
3766 
3767 	return prio;
3768 }
3769 
3770 static inline int rt_effective_prio(struct task_struct *p, int prio)
3771 {
3772 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773 
3774 	return __rt_effective_prio(pi_task, prio);
3775 }
3776 
3777 /*
3778  * rt_mutex_setprio - set the current priority of a task
3779  * @p: task to boost
3780  * @pi_task: donor task
3781  *
3782  * This function changes the 'effective' priority of a task. It does
3783  * not touch ->normal_prio like __setscheduler().
3784  *
3785  * Used by the rt_mutex code to implement priority inheritance
3786  * logic. Call site only calls if the priority of the task changed.
3787  */
3788 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789 {
3790 	int prio, oldprio, queued, running, queue_flag =
3791 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3792 	const struct sched_class *prev_class;
3793 	struct rq_flags rf;
3794 	struct rq *rq;
3795 
3796 	/* XXX used to be waiter->prio, not waiter->task->prio */
3797 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3798 
3799 	/*
3800 	 * If nothing changed; bail early.
3801 	 */
3802 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3803 		return;
3804 
3805 	rq = __task_rq_lock(p, &rf);
3806 	update_rq_clock(rq);
3807 	/*
3808 	 * Set under pi_lock && rq->lock, such that the value can be used under
3809 	 * either lock.
3810 	 *
3811 	 * Note that there is loads of tricky to make this pointer cache work
3812 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814 	 * task is allowed to run again (and can exit). This ensures the pointer
3815 	 * points to a blocked task -- which guaratees the task is present.
3816 	 */
3817 	p->pi_top_task = pi_task;
3818 
3819 	/*
3820 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3821 	 */
3822 	if (prio == p->prio && !dl_prio(prio))
3823 		goto out_unlock;
3824 
3825 	/*
3826 	 * Idle task boosting is a nono in general. There is one
3827 	 * exception, when PREEMPT_RT and NOHZ is active:
3828 	 *
3829 	 * The idle task calls get_next_timer_interrupt() and holds
3830 	 * the timer wheel base->lock on the CPU and another CPU wants
3831 	 * to access the timer (probably to cancel it). We can safely
3832 	 * ignore the boosting request, as the idle CPU runs this code
3833 	 * with interrupts disabled and will complete the lock
3834 	 * protected section without being interrupted. So there is no
3835 	 * real need to boost.
3836 	 */
3837 	if (unlikely(p == rq->idle)) {
3838 		WARN_ON(p != rq->curr);
3839 		WARN_ON(p->pi_blocked_on);
3840 		goto out_unlock;
3841 	}
3842 
3843 	trace_sched_pi_setprio(p, pi_task);
3844 	oldprio = p->prio;
3845 
3846 	if (oldprio == prio)
3847 		queue_flag &= ~DEQUEUE_MOVE;
3848 
3849 	prev_class = p->sched_class;
3850 	queued = task_on_rq_queued(p);
3851 	running = task_current(rq, p);
3852 	if (queued)
3853 		dequeue_task(rq, p, queue_flag);
3854 	if (running)
3855 		put_prev_task(rq, p);
3856 
3857 	/*
3858 	 * Boosting condition are:
3859 	 * 1. -rt task is running and holds mutex A
3860 	 *      --> -dl task blocks on mutex A
3861 	 *
3862 	 * 2. -dl task is running and holds mutex A
3863 	 *      --> -dl task blocks on mutex A and could preempt the
3864 	 *          running task
3865 	 */
3866 	if (dl_prio(prio)) {
3867 		if (!dl_prio(p->normal_prio) ||
3868 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3869 			p->dl.dl_boosted = 1;
3870 			queue_flag |= ENQUEUE_REPLENISH;
3871 		} else
3872 			p->dl.dl_boosted = 0;
3873 		p->sched_class = &dl_sched_class;
3874 	} else if (rt_prio(prio)) {
3875 		if (dl_prio(oldprio))
3876 			p->dl.dl_boosted = 0;
3877 		if (oldprio < prio)
3878 			queue_flag |= ENQUEUE_HEAD;
3879 		p->sched_class = &rt_sched_class;
3880 	} else {
3881 		if (dl_prio(oldprio))
3882 			p->dl.dl_boosted = 0;
3883 		if (rt_prio(oldprio))
3884 			p->rt.timeout = 0;
3885 		p->sched_class = &fair_sched_class;
3886 	}
3887 
3888 	p->prio = prio;
3889 
3890 	if (queued)
3891 		enqueue_task(rq, p, queue_flag);
3892 	if (running)
3893 		set_curr_task(rq, p);
3894 
3895 	check_class_changed(rq, p, prev_class, oldprio);
3896 out_unlock:
3897 	/* Avoid rq from going away on us: */
3898 	preempt_disable();
3899 	__task_rq_unlock(rq, &rf);
3900 
3901 	balance_callback(rq);
3902 	preempt_enable();
3903 }
3904 #else
3905 static inline int rt_effective_prio(struct task_struct *p, int prio)
3906 {
3907 	return prio;
3908 }
3909 #endif
3910 
3911 void set_user_nice(struct task_struct *p, long nice)
3912 {
3913 	bool queued, running;
3914 	int old_prio, delta;
3915 	struct rq_flags rf;
3916 	struct rq *rq;
3917 
3918 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3919 		return;
3920 	/*
3921 	 * We have to be careful, if called from sys_setpriority(),
3922 	 * the task might be in the middle of scheduling on another CPU.
3923 	 */
3924 	rq = task_rq_lock(p, &rf);
3925 	update_rq_clock(rq);
3926 
3927 	/*
3928 	 * The RT priorities are set via sched_setscheduler(), but we still
3929 	 * allow the 'normal' nice value to be set - but as expected
3930 	 * it wont have any effect on scheduling until the task is
3931 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3932 	 */
3933 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934 		p->static_prio = NICE_TO_PRIO(nice);
3935 		goto out_unlock;
3936 	}
3937 	queued = task_on_rq_queued(p);
3938 	running = task_current(rq, p);
3939 	if (queued)
3940 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3941 	if (running)
3942 		put_prev_task(rq, p);
3943 
3944 	p->static_prio = NICE_TO_PRIO(nice);
3945 	set_load_weight(p, true);
3946 	old_prio = p->prio;
3947 	p->prio = effective_prio(p);
3948 	delta = p->prio - old_prio;
3949 
3950 	if (queued) {
3951 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3952 		/*
3953 		 * If the task increased its priority or is running and
3954 		 * lowered its priority, then reschedule its CPU:
3955 		 */
3956 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3957 			resched_curr(rq);
3958 	}
3959 	if (running)
3960 		set_curr_task(rq, p);
3961 out_unlock:
3962 	task_rq_unlock(rq, p, &rf);
3963 }
3964 EXPORT_SYMBOL(set_user_nice);
3965 
3966 /*
3967  * can_nice - check if a task can reduce its nice value
3968  * @p: task
3969  * @nice: nice value
3970  */
3971 int can_nice(const struct task_struct *p, const int nice)
3972 {
3973 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 	int nice_rlim = nice_to_rlimit(nice);
3975 
3976 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977 		capable(CAP_SYS_NICE));
3978 }
3979 
3980 #ifdef __ARCH_WANT_SYS_NICE
3981 
3982 /*
3983  * sys_nice - change the priority of the current process.
3984  * @increment: priority increment
3985  *
3986  * sys_setpriority is a more generic, but much slower function that
3987  * does similar things.
3988  */
3989 SYSCALL_DEFINE1(nice, int, increment)
3990 {
3991 	long nice, retval;
3992 
3993 	/*
3994 	 * Setpriority might change our priority at the same moment.
3995 	 * We don't have to worry. Conceptually one call occurs first
3996 	 * and we have a single winner.
3997 	 */
3998 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999 	nice = task_nice(current) + increment;
4000 
4001 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002 	if (increment < 0 && !can_nice(current, nice))
4003 		return -EPERM;
4004 
4005 	retval = security_task_setnice(current, nice);
4006 	if (retval)
4007 		return retval;
4008 
4009 	set_user_nice(current, nice);
4010 	return 0;
4011 }
4012 
4013 #endif
4014 
4015 /**
4016  * task_prio - return the priority value of a given task.
4017  * @p: the task in question.
4018  *
4019  * Return: The priority value as seen by users in /proc.
4020  * RT tasks are offset by -200. Normal tasks are centered
4021  * around 0, value goes from -16 to +15.
4022  */
4023 int task_prio(const struct task_struct *p)
4024 {
4025 	return p->prio - MAX_RT_PRIO;
4026 }
4027 
4028 /**
4029  * idle_cpu - is a given CPU idle currently?
4030  * @cpu: the processor in question.
4031  *
4032  * Return: 1 if the CPU is currently idle. 0 otherwise.
4033  */
4034 int idle_cpu(int cpu)
4035 {
4036 	struct rq *rq = cpu_rq(cpu);
4037 
4038 	if (rq->curr != rq->idle)
4039 		return 0;
4040 
4041 	if (rq->nr_running)
4042 		return 0;
4043 
4044 #ifdef CONFIG_SMP
4045 	if (!llist_empty(&rq->wake_list))
4046 		return 0;
4047 #endif
4048 
4049 	return 1;
4050 }
4051 
4052 /**
4053  * available_idle_cpu - is a given CPU idle for enqueuing work.
4054  * @cpu: the CPU in question.
4055  *
4056  * Return: 1 if the CPU is currently idle. 0 otherwise.
4057  */
4058 int available_idle_cpu(int cpu)
4059 {
4060 	if (!idle_cpu(cpu))
4061 		return 0;
4062 
4063 	if (vcpu_is_preempted(cpu))
4064 		return 0;
4065 
4066 	return 1;
4067 }
4068 
4069 /**
4070  * idle_task - return the idle task for a given CPU.
4071  * @cpu: the processor in question.
4072  *
4073  * Return: The idle task for the CPU @cpu.
4074  */
4075 struct task_struct *idle_task(int cpu)
4076 {
4077 	return cpu_rq(cpu)->idle;
4078 }
4079 
4080 /**
4081  * find_process_by_pid - find a process with a matching PID value.
4082  * @pid: the pid in question.
4083  *
4084  * The task of @pid, if found. %NULL otherwise.
4085  */
4086 static struct task_struct *find_process_by_pid(pid_t pid)
4087 {
4088 	return pid ? find_task_by_vpid(pid) : current;
4089 }
4090 
4091 /*
4092  * sched_setparam() passes in -1 for its policy, to let the functions
4093  * it calls know not to change it.
4094  */
4095 #define SETPARAM_POLICY	-1
4096 
4097 static void __setscheduler_params(struct task_struct *p,
4098 		const struct sched_attr *attr)
4099 {
4100 	int policy = attr->sched_policy;
4101 
4102 	if (policy == SETPARAM_POLICY)
4103 		policy = p->policy;
4104 
4105 	p->policy = policy;
4106 
4107 	if (dl_policy(policy))
4108 		__setparam_dl(p, attr);
4109 	else if (fair_policy(policy))
4110 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4111 
4112 	/*
4113 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4114 	 * !rt_policy. Always setting this ensures that things like
4115 	 * getparam()/getattr() don't report silly values for !rt tasks.
4116 	 */
4117 	p->rt_priority = attr->sched_priority;
4118 	p->normal_prio = normal_prio(p);
4119 	set_load_weight(p, true);
4120 }
4121 
4122 /* Actually do priority change: must hold pi & rq lock. */
4123 static void __setscheduler(struct rq *rq, struct task_struct *p,
4124 			   const struct sched_attr *attr, bool keep_boost)
4125 {
4126 	__setscheduler_params(p, attr);
4127 
4128 	/*
4129 	 * Keep a potential priority boosting if called from
4130 	 * sched_setscheduler().
4131 	 */
4132 	p->prio = normal_prio(p);
4133 	if (keep_boost)
4134 		p->prio = rt_effective_prio(p, p->prio);
4135 
4136 	if (dl_prio(p->prio))
4137 		p->sched_class = &dl_sched_class;
4138 	else if (rt_prio(p->prio))
4139 		p->sched_class = &rt_sched_class;
4140 	else
4141 		p->sched_class = &fair_sched_class;
4142 }
4143 
4144 /*
4145  * Check the target process has a UID that matches the current process's:
4146  */
4147 static bool check_same_owner(struct task_struct *p)
4148 {
4149 	const struct cred *cred = current_cred(), *pcred;
4150 	bool match;
4151 
4152 	rcu_read_lock();
4153 	pcred = __task_cred(p);
4154 	match = (uid_eq(cred->euid, pcred->euid) ||
4155 		 uid_eq(cred->euid, pcred->uid));
4156 	rcu_read_unlock();
4157 	return match;
4158 }
4159 
4160 static int __sched_setscheduler(struct task_struct *p,
4161 				const struct sched_attr *attr,
4162 				bool user, bool pi)
4163 {
4164 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4165 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4166 	int retval, oldprio, oldpolicy = -1, queued, running;
4167 	int new_effective_prio, policy = attr->sched_policy;
4168 	const struct sched_class *prev_class;
4169 	struct rq_flags rf;
4170 	int reset_on_fork;
4171 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4172 	struct rq *rq;
4173 
4174 	/* The pi code expects interrupts enabled */
4175 	BUG_ON(pi && in_interrupt());
4176 recheck:
4177 	/* Double check policy once rq lock held: */
4178 	if (policy < 0) {
4179 		reset_on_fork = p->sched_reset_on_fork;
4180 		policy = oldpolicy = p->policy;
4181 	} else {
4182 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4183 
4184 		if (!valid_policy(policy))
4185 			return -EINVAL;
4186 	}
4187 
4188 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4189 		return -EINVAL;
4190 
4191 	/*
4192 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4193 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4194 	 * SCHED_BATCH and SCHED_IDLE is 0.
4195 	 */
4196 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4197 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4198 		return -EINVAL;
4199 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4200 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4201 		return -EINVAL;
4202 
4203 	/*
4204 	 * Allow unprivileged RT tasks to decrease priority:
4205 	 */
4206 	if (user && !capable(CAP_SYS_NICE)) {
4207 		if (fair_policy(policy)) {
4208 			if (attr->sched_nice < task_nice(p) &&
4209 			    !can_nice(p, attr->sched_nice))
4210 				return -EPERM;
4211 		}
4212 
4213 		if (rt_policy(policy)) {
4214 			unsigned long rlim_rtprio =
4215 					task_rlimit(p, RLIMIT_RTPRIO);
4216 
4217 			/* Can't set/change the rt policy: */
4218 			if (policy != p->policy && !rlim_rtprio)
4219 				return -EPERM;
4220 
4221 			/* Can't increase priority: */
4222 			if (attr->sched_priority > p->rt_priority &&
4223 			    attr->sched_priority > rlim_rtprio)
4224 				return -EPERM;
4225 		}
4226 
4227 		 /*
4228 		  * Can't set/change SCHED_DEADLINE policy at all for now
4229 		  * (safest behavior); in the future we would like to allow
4230 		  * unprivileged DL tasks to increase their relative deadline
4231 		  * or reduce their runtime (both ways reducing utilization)
4232 		  */
4233 		if (dl_policy(policy))
4234 			return -EPERM;
4235 
4236 		/*
4237 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4238 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4239 		 */
4240 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4241 			if (!can_nice(p, task_nice(p)))
4242 				return -EPERM;
4243 		}
4244 
4245 		/* Can't change other user's priorities: */
4246 		if (!check_same_owner(p))
4247 			return -EPERM;
4248 
4249 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4250 		if (p->sched_reset_on_fork && !reset_on_fork)
4251 			return -EPERM;
4252 	}
4253 
4254 	if (user) {
4255 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4256 			return -EINVAL;
4257 
4258 		retval = security_task_setscheduler(p);
4259 		if (retval)
4260 			return retval;
4261 	}
4262 
4263 	/*
4264 	 * Make sure no PI-waiters arrive (or leave) while we are
4265 	 * changing the priority of the task:
4266 	 *
4267 	 * To be able to change p->policy safely, the appropriate
4268 	 * runqueue lock must be held.
4269 	 */
4270 	rq = task_rq_lock(p, &rf);
4271 	update_rq_clock(rq);
4272 
4273 	/*
4274 	 * Changing the policy of the stop threads its a very bad idea:
4275 	 */
4276 	if (p == rq->stop) {
4277 		task_rq_unlock(rq, p, &rf);
4278 		return -EINVAL;
4279 	}
4280 
4281 	/*
4282 	 * If not changing anything there's no need to proceed further,
4283 	 * but store a possible modification of reset_on_fork.
4284 	 */
4285 	if (unlikely(policy == p->policy)) {
4286 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4287 			goto change;
4288 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4289 			goto change;
4290 		if (dl_policy(policy) && dl_param_changed(p, attr))
4291 			goto change;
4292 
4293 		p->sched_reset_on_fork = reset_on_fork;
4294 		task_rq_unlock(rq, p, &rf);
4295 		return 0;
4296 	}
4297 change:
4298 
4299 	if (user) {
4300 #ifdef CONFIG_RT_GROUP_SCHED
4301 		/*
4302 		 * Do not allow realtime tasks into groups that have no runtime
4303 		 * assigned.
4304 		 */
4305 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4306 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4307 				!task_group_is_autogroup(task_group(p))) {
4308 			task_rq_unlock(rq, p, &rf);
4309 			return -EPERM;
4310 		}
4311 #endif
4312 #ifdef CONFIG_SMP
4313 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4314 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4315 			cpumask_t *span = rq->rd->span;
4316 
4317 			/*
4318 			 * Don't allow tasks with an affinity mask smaller than
4319 			 * the entire root_domain to become SCHED_DEADLINE. We
4320 			 * will also fail if there's no bandwidth available.
4321 			 */
4322 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4323 			    rq->rd->dl_bw.bw == 0) {
4324 				task_rq_unlock(rq, p, &rf);
4325 				return -EPERM;
4326 			}
4327 		}
4328 #endif
4329 	}
4330 
4331 	/* Re-check policy now with rq lock held: */
4332 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4333 		policy = oldpolicy = -1;
4334 		task_rq_unlock(rq, p, &rf);
4335 		goto recheck;
4336 	}
4337 
4338 	/*
4339 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4340 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4341 	 * is available.
4342 	 */
4343 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4344 		task_rq_unlock(rq, p, &rf);
4345 		return -EBUSY;
4346 	}
4347 
4348 	p->sched_reset_on_fork = reset_on_fork;
4349 	oldprio = p->prio;
4350 
4351 	if (pi) {
4352 		/*
4353 		 * Take priority boosted tasks into account. If the new
4354 		 * effective priority is unchanged, we just store the new
4355 		 * normal parameters and do not touch the scheduler class and
4356 		 * the runqueue. This will be done when the task deboost
4357 		 * itself.
4358 		 */
4359 		new_effective_prio = rt_effective_prio(p, newprio);
4360 		if (new_effective_prio == oldprio)
4361 			queue_flags &= ~DEQUEUE_MOVE;
4362 	}
4363 
4364 	queued = task_on_rq_queued(p);
4365 	running = task_current(rq, p);
4366 	if (queued)
4367 		dequeue_task(rq, p, queue_flags);
4368 	if (running)
4369 		put_prev_task(rq, p);
4370 
4371 	prev_class = p->sched_class;
4372 	__setscheduler(rq, p, attr, pi);
4373 
4374 	if (queued) {
4375 		/*
4376 		 * We enqueue to tail when the priority of a task is
4377 		 * increased (user space view).
4378 		 */
4379 		if (oldprio < p->prio)
4380 			queue_flags |= ENQUEUE_HEAD;
4381 
4382 		enqueue_task(rq, p, queue_flags);
4383 	}
4384 	if (running)
4385 		set_curr_task(rq, p);
4386 
4387 	check_class_changed(rq, p, prev_class, oldprio);
4388 
4389 	/* Avoid rq from going away on us: */
4390 	preempt_disable();
4391 	task_rq_unlock(rq, p, &rf);
4392 
4393 	if (pi)
4394 		rt_mutex_adjust_pi(p);
4395 
4396 	/* Run balance callbacks after we've adjusted the PI chain: */
4397 	balance_callback(rq);
4398 	preempt_enable();
4399 
4400 	return 0;
4401 }
4402 
4403 static int _sched_setscheduler(struct task_struct *p, int policy,
4404 			       const struct sched_param *param, bool check)
4405 {
4406 	struct sched_attr attr = {
4407 		.sched_policy   = policy,
4408 		.sched_priority = param->sched_priority,
4409 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4410 	};
4411 
4412 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4413 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4414 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4415 		policy &= ~SCHED_RESET_ON_FORK;
4416 		attr.sched_policy = policy;
4417 	}
4418 
4419 	return __sched_setscheduler(p, &attr, check, true);
4420 }
4421 /**
4422  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4423  * @p: the task in question.
4424  * @policy: new policy.
4425  * @param: structure containing the new RT priority.
4426  *
4427  * Return: 0 on success. An error code otherwise.
4428  *
4429  * NOTE that the task may be already dead.
4430  */
4431 int sched_setscheduler(struct task_struct *p, int policy,
4432 		       const struct sched_param *param)
4433 {
4434 	return _sched_setscheduler(p, policy, param, true);
4435 }
4436 EXPORT_SYMBOL_GPL(sched_setscheduler);
4437 
4438 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4439 {
4440 	return __sched_setscheduler(p, attr, true, true);
4441 }
4442 EXPORT_SYMBOL_GPL(sched_setattr);
4443 
4444 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4445 {
4446 	return __sched_setscheduler(p, attr, false, true);
4447 }
4448 
4449 /**
4450  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4451  * @p: the task in question.
4452  * @policy: new policy.
4453  * @param: structure containing the new RT priority.
4454  *
4455  * Just like sched_setscheduler, only don't bother checking if the
4456  * current context has permission.  For example, this is needed in
4457  * stop_machine(): we create temporary high priority worker threads,
4458  * but our caller might not have that capability.
4459  *
4460  * Return: 0 on success. An error code otherwise.
4461  */
4462 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4463 			       const struct sched_param *param)
4464 {
4465 	return _sched_setscheduler(p, policy, param, false);
4466 }
4467 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4468 
4469 static int
4470 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4471 {
4472 	struct sched_param lparam;
4473 	struct task_struct *p;
4474 	int retval;
4475 
4476 	if (!param || pid < 0)
4477 		return -EINVAL;
4478 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4479 		return -EFAULT;
4480 
4481 	rcu_read_lock();
4482 	retval = -ESRCH;
4483 	p = find_process_by_pid(pid);
4484 	if (p != NULL)
4485 		retval = sched_setscheduler(p, policy, &lparam);
4486 	rcu_read_unlock();
4487 
4488 	return retval;
4489 }
4490 
4491 /*
4492  * Mimics kernel/events/core.c perf_copy_attr().
4493  */
4494 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4495 {
4496 	u32 size;
4497 	int ret;
4498 
4499 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4500 		return -EFAULT;
4501 
4502 	/* Zero the full structure, so that a short copy will be nice: */
4503 	memset(attr, 0, sizeof(*attr));
4504 
4505 	ret = get_user(size, &uattr->size);
4506 	if (ret)
4507 		return ret;
4508 
4509 	/* Bail out on silly large: */
4510 	if (size > PAGE_SIZE)
4511 		goto err_size;
4512 
4513 	/* ABI compatibility quirk: */
4514 	if (!size)
4515 		size = SCHED_ATTR_SIZE_VER0;
4516 
4517 	if (size < SCHED_ATTR_SIZE_VER0)
4518 		goto err_size;
4519 
4520 	/*
4521 	 * If we're handed a bigger struct than we know of,
4522 	 * ensure all the unknown bits are 0 - i.e. new
4523 	 * user-space does not rely on any kernel feature
4524 	 * extensions we dont know about yet.
4525 	 */
4526 	if (size > sizeof(*attr)) {
4527 		unsigned char __user *addr;
4528 		unsigned char __user *end;
4529 		unsigned char val;
4530 
4531 		addr = (void __user *)uattr + sizeof(*attr);
4532 		end  = (void __user *)uattr + size;
4533 
4534 		for (; addr < end; addr++) {
4535 			ret = get_user(val, addr);
4536 			if (ret)
4537 				return ret;
4538 			if (val)
4539 				goto err_size;
4540 		}
4541 		size = sizeof(*attr);
4542 	}
4543 
4544 	ret = copy_from_user(attr, uattr, size);
4545 	if (ret)
4546 		return -EFAULT;
4547 
4548 	/*
4549 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4550 	 * to be strict and return an error on out-of-bounds values?
4551 	 */
4552 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4553 
4554 	return 0;
4555 
4556 err_size:
4557 	put_user(sizeof(*attr), &uattr->size);
4558 	return -E2BIG;
4559 }
4560 
4561 /**
4562  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4563  * @pid: the pid in question.
4564  * @policy: new policy.
4565  * @param: structure containing the new RT priority.
4566  *
4567  * Return: 0 on success. An error code otherwise.
4568  */
4569 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4570 {
4571 	if (policy < 0)
4572 		return -EINVAL;
4573 
4574 	return do_sched_setscheduler(pid, policy, param);
4575 }
4576 
4577 /**
4578  * sys_sched_setparam - set/change the RT priority of a thread
4579  * @pid: the pid in question.
4580  * @param: structure containing the new RT priority.
4581  *
4582  * Return: 0 on success. An error code otherwise.
4583  */
4584 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4585 {
4586 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4587 }
4588 
4589 /**
4590  * sys_sched_setattr - same as above, but with extended sched_attr
4591  * @pid: the pid in question.
4592  * @uattr: structure containing the extended parameters.
4593  * @flags: for future extension.
4594  */
4595 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4596 			       unsigned int, flags)
4597 {
4598 	struct sched_attr attr;
4599 	struct task_struct *p;
4600 	int retval;
4601 
4602 	if (!uattr || pid < 0 || flags)
4603 		return -EINVAL;
4604 
4605 	retval = sched_copy_attr(uattr, &attr);
4606 	if (retval)
4607 		return retval;
4608 
4609 	if ((int)attr.sched_policy < 0)
4610 		return -EINVAL;
4611 
4612 	rcu_read_lock();
4613 	retval = -ESRCH;
4614 	p = find_process_by_pid(pid);
4615 	if (p != NULL)
4616 		retval = sched_setattr(p, &attr);
4617 	rcu_read_unlock();
4618 
4619 	return retval;
4620 }
4621 
4622 /**
4623  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4624  * @pid: the pid in question.
4625  *
4626  * Return: On success, the policy of the thread. Otherwise, a negative error
4627  * code.
4628  */
4629 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4630 {
4631 	struct task_struct *p;
4632 	int retval;
4633 
4634 	if (pid < 0)
4635 		return -EINVAL;
4636 
4637 	retval = -ESRCH;
4638 	rcu_read_lock();
4639 	p = find_process_by_pid(pid);
4640 	if (p) {
4641 		retval = security_task_getscheduler(p);
4642 		if (!retval)
4643 			retval = p->policy
4644 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4645 	}
4646 	rcu_read_unlock();
4647 	return retval;
4648 }
4649 
4650 /**
4651  * sys_sched_getparam - get the RT priority of a thread
4652  * @pid: the pid in question.
4653  * @param: structure containing the RT priority.
4654  *
4655  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4656  * code.
4657  */
4658 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4659 {
4660 	struct sched_param lp = { .sched_priority = 0 };
4661 	struct task_struct *p;
4662 	int retval;
4663 
4664 	if (!param || pid < 0)
4665 		return -EINVAL;
4666 
4667 	rcu_read_lock();
4668 	p = find_process_by_pid(pid);
4669 	retval = -ESRCH;
4670 	if (!p)
4671 		goto out_unlock;
4672 
4673 	retval = security_task_getscheduler(p);
4674 	if (retval)
4675 		goto out_unlock;
4676 
4677 	if (task_has_rt_policy(p))
4678 		lp.sched_priority = p->rt_priority;
4679 	rcu_read_unlock();
4680 
4681 	/*
4682 	 * This one might sleep, we cannot do it with a spinlock held ...
4683 	 */
4684 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4685 
4686 	return retval;
4687 
4688 out_unlock:
4689 	rcu_read_unlock();
4690 	return retval;
4691 }
4692 
4693 static int sched_read_attr(struct sched_attr __user *uattr,
4694 			   struct sched_attr *attr,
4695 			   unsigned int usize)
4696 {
4697 	int ret;
4698 
4699 	if (!access_ok(uattr, usize))
4700 		return -EFAULT;
4701 
4702 	/*
4703 	 * If we're handed a smaller struct than we know of,
4704 	 * ensure all the unknown bits are 0 - i.e. old
4705 	 * user-space does not get uncomplete information.
4706 	 */
4707 	if (usize < sizeof(*attr)) {
4708 		unsigned char *addr;
4709 		unsigned char *end;
4710 
4711 		addr = (void *)attr + usize;
4712 		end  = (void *)attr + sizeof(*attr);
4713 
4714 		for (; addr < end; addr++) {
4715 			if (*addr)
4716 				return -EFBIG;
4717 		}
4718 
4719 		attr->size = usize;
4720 	}
4721 
4722 	ret = copy_to_user(uattr, attr, attr->size);
4723 	if (ret)
4724 		return -EFAULT;
4725 
4726 	return 0;
4727 }
4728 
4729 /**
4730  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4731  * @pid: the pid in question.
4732  * @uattr: structure containing the extended parameters.
4733  * @size: sizeof(attr) for fwd/bwd comp.
4734  * @flags: for future extension.
4735  */
4736 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4737 		unsigned int, size, unsigned int, flags)
4738 {
4739 	struct sched_attr attr = {
4740 		.size = sizeof(struct sched_attr),
4741 	};
4742 	struct task_struct *p;
4743 	int retval;
4744 
4745 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4746 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4747 		return -EINVAL;
4748 
4749 	rcu_read_lock();
4750 	p = find_process_by_pid(pid);
4751 	retval = -ESRCH;
4752 	if (!p)
4753 		goto out_unlock;
4754 
4755 	retval = security_task_getscheduler(p);
4756 	if (retval)
4757 		goto out_unlock;
4758 
4759 	attr.sched_policy = p->policy;
4760 	if (p->sched_reset_on_fork)
4761 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4762 	if (task_has_dl_policy(p))
4763 		__getparam_dl(p, &attr);
4764 	else if (task_has_rt_policy(p))
4765 		attr.sched_priority = p->rt_priority;
4766 	else
4767 		attr.sched_nice = task_nice(p);
4768 
4769 	rcu_read_unlock();
4770 
4771 	retval = sched_read_attr(uattr, &attr, size);
4772 	return retval;
4773 
4774 out_unlock:
4775 	rcu_read_unlock();
4776 	return retval;
4777 }
4778 
4779 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4780 {
4781 	cpumask_var_t cpus_allowed, new_mask;
4782 	struct task_struct *p;
4783 	int retval;
4784 
4785 	rcu_read_lock();
4786 
4787 	p = find_process_by_pid(pid);
4788 	if (!p) {
4789 		rcu_read_unlock();
4790 		return -ESRCH;
4791 	}
4792 
4793 	/* Prevent p going away */
4794 	get_task_struct(p);
4795 	rcu_read_unlock();
4796 
4797 	if (p->flags & PF_NO_SETAFFINITY) {
4798 		retval = -EINVAL;
4799 		goto out_put_task;
4800 	}
4801 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4802 		retval = -ENOMEM;
4803 		goto out_put_task;
4804 	}
4805 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4806 		retval = -ENOMEM;
4807 		goto out_free_cpus_allowed;
4808 	}
4809 	retval = -EPERM;
4810 	if (!check_same_owner(p)) {
4811 		rcu_read_lock();
4812 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4813 			rcu_read_unlock();
4814 			goto out_free_new_mask;
4815 		}
4816 		rcu_read_unlock();
4817 	}
4818 
4819 	retval = security_task_setscheduler(p);
4820 	if (retval)
4821 		goto out_free_new_mask;
4822 
4823 
4824 	cpuset_cpus_allowed(p, cpus_allowed);
4825 	cpumask_and(new_mask, in_mask, cpus_allowed);
4826 
4827 	/*
4828 	 * Since bandwidth control happens on root_domain basis,
4829 	 * if admission test is enabled, we only admit -deadline
4830 	 * tasks allowed to run on all the CPUs in the task's
4831 	 * root_domain.
4832 	 */
4833 #ifdef CONFIG_SMP
4834 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4835 		rcu_read_lock();
4836 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4837 			retval = -EBUSY;
4838 			rcu_read_unlock();
4839 			goto out_free_new_mask;
4840 		}
4841 		rcu_read_unlock();
4842 	}
4843 #endif
4844 again:
4845 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4846 
4847 	if (!retval) {
4848 		cpuset_cpus_allowed(p, cpus_allowed);
4849 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4850 			/*
4851 			 * We must have raced with a concurrent cpuset
4852 			 * update. Just reset the cpus_allowed to the
4853 			 * cpuset's cpus_allowed
4854 			 */
4855 			cpumask_copy(new_mask, cpus_allowed);
4856 			goto again;
4857 		}
4858 	}
4859 out_free_new_mask:
4860 	free_cpumask_var(new_mask);
4861 out_free_cpus_allowed:
4862 	free_cpumask_var(cpus_allowed);
4863 out_put_task:
4864 	put_task_struct(p);
4865 	return retval;
4866 }
4867 
4868 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4869 			     struct cpumask *new_mask)
4870 {
4871 	if (len < cpumask_size())
4872 		cpumask_clear(new_mask);
4873 	else if (len > cpumask_size())
4874 		len = cpumask_size();
4875 
4876 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4877 }
4878 
4879 /**
4880  * sys_sched_setaffinity - set the CPU affinity of a process
4881  * @pid: pid of the process
4882  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4883  * @user_mask_ptr: user-space pointer to the new CPU mask
4884  *
4885  * Return: 0 on success. An error code otherwise.
4886  */
4887 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4888 		unsigned long __user *, user_mask_ptr)
4889 {
4890 	cpumask_var_t new_mask;
4891 	int retval;
4892 
4893 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4894 		return -ENOMEM;
4895 
4896 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4897 	if (retval == 0)
4898 		retval = sched_setaffinity(pid, new_mask);
4899 	free_cpumask_var(new_mask);
4900 	return retval;
4901 }
4902 
4903 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4904 {
4905 	struct task_struct *p;
4906 	unsigned long flags;
4907 	int retval;
4908 
4909 	rcu_read_lock();
4910 
4911 	retval = -ESRCH;
4912 	p = find_process_by_pid(pid);
4913 	if (!p)
4914 		goto out_unlock;
4915 
4916 	retval = security_task_getscheduler(p);
4917 	if (retval)
4918 		goto out_unlock;
4919 
4920 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4921 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4922 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4923 
4924 out_unlock:
4925 	rcu_read_unlock();
4926 
4927 	return retval;
4928 }
4929 
4930 /**
4931  * sys_sched_getaffinity - get the CPU affinity of a process
4932  * @pid: pid of the process
4933  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4934  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4935  *
4936  * Return: size of CPU mask copied to user_mask_ptr on success. An
4937  * error code otherwise.
4938  */
4939 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4940 		unsigned long __user *, user_mask_ptr)
4941 {
4942 	int ret;
4943 	cpumask_var_t mask;
4944 
4945 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4946 		return -EINVAL;
4947 	if (len & (sizeof(unsigned long)-1))
4948 		return -EINVAL;
4949 
4950 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4951 		return -ENOMEM;
4952 
4953 	ret = sched_getaffinity(pid, mask);
4954 	if (ret == 0) {
4955 		unsigned int retlen = min(len, cpumask_size());
4956 
4957 		if (copy_to_user(user_mask_ptr, mask, retlen))
4958 			ret = -EFAULT;
4959 		else
4960 			ret = retlen;
4961 	}
4962 	free_cpumask_var(mask);
4963 
4964 	return ret;
4965 }
4966 
4967 /**
4968  * sys_sched_yield - yield the current processor to other threads.
4969  *
4970  * This function yields the current CPU to other tasks. If there are no
4971  * other threads running on this CPU then this function will return.
4972  *
4973  * Return: 0.
4974  */
4975 static void do_sched_yield(void)
4976 {
4977 	struct rq_flags rf;
4978 	struct rq *rq;
4979 
4980 	rq = this_rq_lock_irq(&rf);
4981 
4982 	schedstat_inc(rq->yld_count);
4983 	current->sched_class->yield_task(rq);
4984 
4985 	/*
4986 	 * Since we are going to call schedule() anyway, there's
4987 	 * no need to preempt or enable interrupts:
4988 	 */
4989 	preempt_disable();
4990 	rq_unlock(rq, &rf);
4991 	sched_preempt_enable_no_resched();
4992 
4993 	schedule();
4994 }
4995 
4996 SYSCALL_DEFINE0(sched_yield)
4997 {
4998 	do_sched_yield();
4999 	return 0;
5000 }
5001 
5002 #ifndef CONFIG_PREEMPT
5003 int __sched _cond_resched(void)
5004 {
5005 	if (should_resched(0)) {
5006 		preempt_schedule_common();
5007 		return 1;
5008 	}
5009 	rcu_all_qs();
5010 	return 0;
5011 }
5012 EXPORT_SYMBOL(_cond_resched);
5013 #endif
5014 
5015 /*
5016  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5017  * call schedule, and on return reacquire the lock.
5018  *
5019  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5020  * operations here to prevent schedule() from being called twice (once via
5021  * spin_unlock(), once by hand).
5022  */
5023 int __cond_resched_lock(spinlock_t *lock)
5024 {
5025 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5026 	int ret = 0;
5027 
5028 	lockdep_assert_held(lock);
5029 
5030 	if (spin_needbreak(lock) || resched) {
5031 		spin_unlock(lock);
5032 		if (resched)
5033 			preempt_schedule_common();
5034 		else
5035 			cpu_relax();
5036 		ret = 1;
5037 		spin_lock(lock);
5038 	}
5039 	return ret;
5040 }
5041 EXPORT_SYMBOL(__cond_resched_lock);
5042 
5043 /**
5044  * yield - yield the current processor to other threads.
5045  *
5046  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5047  *
5048  * The scheduler is at all times free to pick the calling task as the most
5049  * eligible task to run, if removing the yield() call from your code breaks
5050  * it, its already broken.
5051  *
5052  * Typical broken usage is:
5053  *
5054  * while (!event)
5055  *	yield();
5056  *
5057  * where one assumes that yield() will let 'the other' process run that will
5058  * make event true. If the current task is a SCHED_FIFO task that will never
5059  * happen. Never use yield() as a progress guarantee!!
5060  *
5061  * If you want to use yield() to wait for something, use wait_event().
5062  * If you want to use yield() to be 'nice' for others, use cond_resched().
5063  * If you still want to use yield(), do not!
5064  */
5065 void __sched yield(void)
5066 {
5067 	set_current_state(TASK_RUNNING);
5068 	do_sched_yield();
5069 }
5070 EXPORT_SYMBOL(yield);
5071 
5072 /**
5073  * yield_to - yield the current processor to another thread in
5074  * your thread group, or accelerate that thread toward the
5075  * processor it's on.
5076  * @p: target task
5077  * @preempt: whether task preemption is allowed or not
5078  *
5079  * It's the caller's job to ensure that the target task struct
5080  * can't go away on us before we can do any checks.
5081  *
5082  * Return:
5083  *	true (>0) if we indeed boosted the target task.
5084  *	false (0) if we failed to boost the target.
5085  *	-ESRCH if there's no task to yield to.
5086  */
5087 int __sched yield_to(struct task_struct *p, bool preempt)
5088 {
5089 	struct task_struct *curr = current;
5090 	struct rq *rq, *p_rq;
5091 	unsigned long flags;
5092 	int yielded = 0;
5093 
5094 	local_irq_save(flags);
5095 	rq = this_rq();
5096 
5097 again:
5098 	p_rq = task_rq(p);
5099 	/*
5100 	 * If we're the only runnable task on the rq and target rq also
5101 	 * has only one task, there's absolutely no point in yielding.
5102 	 */
5103 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5104 		yielded = -ESRCH;
5105 		goto out_irq;
5106 	}
5107 
5108 	double_rq_lock(rq, p_rq);
5109 	if (task_rq(p) != p_rq) {
5110 		double_rq_unlock(rq, p_rq);
5111 		goto again;
5112 	}
5113 
5114 	if (!curr->sched_class->yield_to_task)
5115 		goto out_unlock;
5116 
5117 	if (curr->sched_class != p->sched_class)
5118 		goto out_unlock;
5119 
5120 	if (task_running(p_rq, p) || p->state)
5121 		goto out_unlock;
5122 
5123 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5124 	if (yielded) {
5125 		schedstat_inc(rq->yld_count);
5126 		/*
5127 		 * Make p's CPU reschedule; pick_next_entity takes care of
5128 		 * fairness.
5129 		 */
5130 		if (preempt && rq != p_rq)
5131 			resched_curr(p_rq);
5132 	}
5133 
5134 out_unlock:
5135 	double_rq_unlock(rq, p_rq);
5136 out_irq:
5137 	local_irq_restore(flags);
5138 
5139 	if (yielded > 0)
5140 		schedule();
5141 
5142 	return yielded;
5143 }
5144 EXPORT_SYMBOL_GPL(yield_to);
5145 
5146 int io_schedule_prepare(void)
5147 {
5148 	int old_iowait = current->in_iowait;
5149 
5150 	current->in_iowait = 1;
5151 	blk_schedule_flush_plug(current);
5152 
5153 	return old_iowait;
5154 }
5155 
5156 void io_schedule_finish(int token)
5157 {
5158 	current->in_iowait = token;
5159 }
5160 
5161 /*
5162  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5163  * that process accounting knows that this is a task in IO wait state.
5164  */
5165 long __sched io_schedule_timeout(long timeout)
5166 {
5167 	int token;
5168 	long ret;
5169 
5170 	token = io_schedule_prepare();
5171 	ret = schedule_timeout(timeout);
5172 	io_schedule_finish(token);
5173 
5174 	return ret;
5175 }
5176 EXPORT_SYMBOL(io_schedule_timeout);
5177 
5178 void io_schedule(void)
5179 {
5180 	int token;
5181 
5182 	token = io_schedule_prepare();
5183 	schedule();
5184 	io_schedule_finish(token);
5185 }
5186 EXPORT_SYMBOL(io_schedule);
5187 
5188 /**
5189  * sys_sched_get_priority_max - return maximum RT priority.
5190  * @policy: scheduling class.
5191  *
5192  * Return: On success, this syscall returns the maximum
5193  * rt_priority that can be used by a given scheduling class.
5194  * On failure, a negative error code is returned.
5195  */
5196 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5197 {
5198 	int ret = -EINVAL;
5199 
5200 	switch (policy) {
5201 	case SCHED_FIFO:
5202 	case SCHED_RR:
5203 		ret = MAX_USER_RT_PRIO-1;
5204 		break;
5205 	case SCHED_DEADLINE:
5206 	case SCHED_NORMAL:
5207 	case SCHED_BATCH:
5208 	case SCHED_IDLE:
5209 		ret = 0;
5210 		break;
5211 	}
5212 	return ret;
5213 }
5214 
5215 /**
5216  * sys_sched_get_priority_min - return minimum RT priority.
5217  * @policy: scheduling class.
5218  *
5219  * Return: On success, this syscall returns the minimum
5220  * rt_priority that can be used by a given scheduling class.
5221  * On failure, a negative error code is returned.
5222  */
5223 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5224 {
5225 	int ret = -EINVAL;
5226 
5227 	switch (policy) {
5228 	case SCHED_FIFO:
5229 	case SCHED_RR:
5230 		ret = 1;
5231 		break;
5232 	case SCHED_DEADLINE:
5233 	case SCHED_NORMAL:
5234 	case SCHED_BATCH:
5235 	case SCHED_IDLE:
5236 		ret = 0;
5237 	}
5238 	return ret;
5239 }
5240 
5241 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5242 {
5243 	struct task_struct *p;
5244 	unsigned int time_slice;
5245 	struct rq_flags rf;
5246 	struct rq *rq;
5247 	int retval;
5248 
5249 	if (pid < 0)
5250 		return -EINVAL;
5251 
5252 	retval = -ESRCH;
5253 	rcu_read_lock();
5254 	p = find_process_by_pid(pid);
5255 	if (!p)
5256 		goto out_unlock;
5257 
5258 	retval = security_task_getscheduler(p);
5259 	if (retval)
5260 		goto out_unlock;
5261 
5262 	rq = task_rq_lock(p, &rf);
5263 	time_slice = 0;
5264 	if (p->sched_class->get_rr_interval)
5265 		time_slice = p->sched_class->get_rr_interval(rq, p);
5266 	task_rq_unlock(rq, p, &rf);
5267 
5268 	rcu_read_unlock();
5269 	jiffies_to_timespec64(time_slice, t);
5270 	return 0;
5271 
5272 out_unlock:
5273 	rcu_read_unlock();
5274 	return retval;
5275 }
5276 
5277 /**
5278  * sys_sched_rr_get_interval - return the default timeslice of a process.
5279  * @pid: pid of the process.
5280  * @interval: userspace pointer to the timeslice value.
5281  *
5282  * this syscall writes the default timeslice value of a given process
5283  * into the user-space timespec buffer. A value of '0' means infinity.
5284  *
5285  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5286  * an error code.
5287  */
5288 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5289 		struct __kernel_timespec __user *, interval)
5290 {
5291 	struct timespec64 t;
5292 	int retval = sched_rr_get_interval(pid, &t);
5293 
5294 	if (retval == 0)
5295 		retval = put_timespec64(&t, interval);
5296 
5297 	return retval;
5298 }
5299 
5300 #ifdef CONFIG_COMPAT_32BIT_TIME
5301 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5302 		struct old_timespec32 __user *, interval)
5303 {
5304 	struct timespec64 t;
5305 	int retval = sched_rr_get_interval(pid, &t);
5306 
5307 	if (retval == 0)
5308 		retval = put_old_timespec32(&t, interval);
5309 	return retval;
5310 }
5311 #endif
5312 
5313 void sched_show_task(struct task_struct *p)
5314 {
5315 	unsigned long free = 0;
5316 	int ppid;
5317 
5318 	if (!try_get_task_stack(p))
5319 		return;
5320 
5321 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322 
5323 	if (p->state == TASK_RUNNING)
5324 		printk(KERN_CONT "  running task    ");
5325 #ifdef CONFIG_DEBUG_STACK_USAGE
5326 	free = stack_not_used(p);
5327 #endif
5328 	ppid = 0;
5329 	rcu_read_lock();
5330 	if (pid_alive(p))
5331 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332 	rcu_read_unlock();
5333 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5334 		task_pid_nr(p), ppid,
5335 		(unsigned long)task_thread_info(p)->flags);
5336 
5337 	print_worker_info(KERN_INFO, p);
5338 	show_stack(p, NULL);
5339 	put_task_stack(p);
5340 }
5341 EXPORT_SYMBOL_GPL(sched_show_task);
5342 
5343 static inline bool
5344 state_filter_match(unsigned long state_filter, struct task_struct *p)
5345 {
5346 	/* no filter, everything matches */
5347 	if (!state_filter)
5348 		return true;
5349 
5350 	/* filter, but doesn't match */
5351 	if (!(p->state & state_filter))
5352 		return false;
5353 
5354 	/*
5355 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5356 	 * TASK_KILLABLE).
5357 	 */
5358 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5359 		return false;
5360 
5361 	return true;
5362 }
5363 
5364 
5365 void show_state_filter(unsigned long state_filter)
5366 {
5367 	struct task_struct *g, *p;
5368 
5369 #if BITS_PER_LONG == 32
5370 	printk(KERN_INFO
5371 		"  task                PC stack   pid father\n");
5372 #else
5373 	printk(KERN_INFO
5374 		"  task                        PC stack   pid father\n");
5375 #endif
5376 	rcu_read_lock();
5377 	for_each_process_thread(g, p) {
5378 		/*
5379 		 * reset the NMI-timeout, listing all files on a slow
5380 		 * console might take a lot of time:
5381 		 * Also, reset softlockup watchdogs on all CPUs, because
5382 		 * another CPU might be blocked waiting for us to process
5383 		 * an IPI.
5384 		 */
5385 		touch_nmi_watchdog();
5386 		touch_all_softlockup_watchdogs();
5387 		if (state_filter_match(state_filter, p))
5388 			sched_show_task(p);
5389 	}
5390 
5391 #ifdef CONFIG_SCHED_DEBUG
5392 	if (!state_filter)
5393 		sysrq_sched_debug_show();
5394 #endif
5395 	rcu_read_unlock();
5396 	/*
5397 	 * Only show locks if all tasks are dumped:
5398 	 */
5399 	if (!state_filter)
5400 		debug_show_all_locks();
5401 }
5402 
5403 /**
5404  * init_idle - set up an idle thread for a given CPU
5405  * @idle: task in question
5406  * @cpu: CPU the idle task belongs to
5407  *
5408  * NOTE: this function does not set the idle thread's NEED_RESCHED
5409  * flag, to make booting more robust.
5410  */
5411 void init_idle(struct task_struct *idle, int cpu)
5412 {
5413 	struct rq *rq = cpu_rq(cpu);
5414 	unsigned long flags;
5415 
5416 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5417 	raw_spin_lock(&rq->lock);
5418 
5419 	__sched_fork(0, idle);
5420 	idle->state = TASK_RUNNING;
5421 	idle->se.exec_start = sched_clock();
5422 	idle->flags |= PF_IDLE;
5423 
5424 	kasan_unpoison_task_stack(idle);
5425 
5426 #ifdef CONFIG_SMP
5427 	/*
5428 	 * Its possible that init_idle() gets called multiple times on a task,
5429 	 * in that case do_set_cpus_allowed() will not do the right thing.
5430 	 *
5431 	 * And since this is boot we can forgo the serialization.
5432 	 */
5433 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5434 #endif
5435 	/*
5436 	 * We're having a chicken and egg problem, even though we are
5437 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 	 * lockdep check in task_group() will fail.
5439 	 *
5440 	 * Similar case to sched_fork(). / Alternatively we could
5441 	 * use task_rq_lock() here and obtain the other rq->lock.
5442 	 *
5443 	 * Silence PROVE_RCU
5444 	 */
5445 	rcu_read_lock();
5446 	__set_task_cpu(idle, cpu);
5447 	rcu_read_unlock();
5448 
5449 	rq->curr = rq->idle = idle;
5450 	idle->on_rq = TASK_ON_RQ_QUEUED;
5451 #ifdef CONFIG_SMP
5452 	idle->on_cpu = 1;
5453 #endif
5454 	raw_spin_unlock(&rq->lock);
5455 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5456 
5457 	/* Set the preempt count _outside_ the spinlocks! */
5458 	init_idle_preempt_count(idle, cpu);
5459 
5460 	/*
5461 	 * The idle tasks have their own, simple scheduling class:
5462 	 */
5463 	idle->sched_class = &idle_sched_class;
5464 	ftrace_graph_init_idle_task(idle, cpu);
5465 	vtime_init_idle(idle, cpu);
5466 #ifdef CONFIG_SMP
5467 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5468 #endif
5469 }
5470 
5471 #ifdef CONFIG_SMP
5472 
5473 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474 			      const struct cpumask *trial)
5475 {
5476 	int ret = 1;
5477 
5478 	if (!cpumask_weight(cur))
5479 		return ret;
5480 
5481 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5482 
5483 	return ret;
5484 }
5485 
5486 int task_can_attach(struct task_struct *p,
5487 		    const struct cpumask *cs_cpus_allowed)
5488 {
5489 	int ret = 0;
5490 
5491 	/*
5492 	 * Kthreads which disallow setaffinity shouldn't be moved
5493 	 * to a new cpuset; we don't want to change their CPU
5494 	 * affinity and isolating such threads by their set of
5495 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5496 	 * applicable for such threads.  This prevents checking for
5497 	 * success of set_cpus_allowed_ptr() on all attached tasks
5498 	 * before cpus_allowed may be changed.
5499 	 */
5500 	if (p->flags & PF_NO_SETAFFINITY) {
5501 		ret = -EINVAL;
5502 		goto out;
5503 	}
5504 
5505 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5506 					      cs_cpus_allowed))
5507 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5508 
5509 out:
5510 	return ret;
5511 }
5512 
5513 bool sched_smp_initialized __read_mostly;
5514 
5515 #ifdef CONFIG_NUMA_BALANCING
5516 /* Migrate current task p to target_cpu */
5517 int migrate_task_to(struct task_struct *p, int target_cpu)
5518 {
5519 	struct migration_arg arg = { p, target_cpu };
5520 	int curr_cpu = task_cpu(p);
5521 
5522 	if (curr_cpu == target_cpu)
5523 		return 0;
5524 
5525 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5526 		return -EINVAL;
5527 
5528 	/* TODO: This is not properly updating schedstats */
5529 
5530 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5531 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5532 }
5533 
5534 /*
5535  * Requeue a task on a given node and accurately track the number of NUMA
5536  * tasks on the runqueues
5537  */
5538 void sched_setnuma(struct task_struct *p, int nid)
5539 {
5540 	bool queued, running;
5541 	struct rq_flags rf;
5542 	struct rq *rq;
5543 
5544 	rq = task_rq_lock(p, &rf);
5545 	queued = task_on_rq_queued(p);
5546 	running = task_current(rq, p);
5547 
5548 	if (queued)
5549 		dequeue_task(rq, p, DEQUEUE_SAVE);
5550 	if (running)
5551 		put_prev_task(rq, p);
5552 
5553 	p->numa_preferred_nid = nid;
5554 
5555 	if (queued)
5556 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5557 	if (running)
5558 		set_curr_task(rq, p);
5559 	task_rq_unlock(rq, p, &rf);
5560 }
5561 #endif /* CONFIG_NUMA_BALANCING */
5562 
5563 #ifdef CONFIG_HOTPLUG_CPU
5564 /*
5565  * Ensure that the idle task is using init_mm right before its CPU goes
5566  * offline.
5567  */
5568 void idle_task_exit(void)
5569 {
5570 	struct mm_struct *mm = current->active_mm;
5571 
5572 	BUG_ON(cpu_online(smp_processor_id()));
5573 
5574 	if (mm != &init_mm) {
5575 		switch_mm(mm, &init_mm, current);
5576 		current->active_mm = &init_mm;
5577 		finish_arch_post_lock_switch();
5578 	}
5579 	mmdrop(mm);
5580 }
5581 
5582 /*
5583  * Since this CPU is going 'away' for a while, fold any nr_active delta
5584  * we might have. Assumes we're called after migrate_tasks() so that the
5585  * nr_active count is stable. We need to take the teardown thread which
5586  * is calling this into account, so we hand in adjust = 1 to the load
5587  * calculation.
5588  *
5589  * Also see the comment "Global load-average calculations".
5590  */
5591 static void calc_load_migrate(struct rq *rq)
5592 {
5593 	long delta = calc_load_fold_active(rq, 1);
5594 	if (delta)
5595 		atomic_long_add(delta, &calc_load_tasks);
5596 }
5597 
5598 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5599 {
5600 }
5601 
5602 static const struct sched_class fake_sched_class = {
5603 	.put_prev_task = put_prev_task_fake,
5604 };
5605 
5606 static struct task_struct fake_task = {
5607 	/*
5608 	 * Avoid pull_{rt,dl}_task()
5609 	 */
5610 	.prio = MAX_PRIO + 1,
5611 	.sched_class = &fake_sched_class,
5612 };
5613 
5614 /*
5615  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616  * try_to_wake_up()->select_task_rq().
5617  *
5618  * Called with rq->lock held even though we'er in stop_machine() and
5619  * there's no concurrency possible, we hold the required locks anyway
5620  * because of lock validation efforts.
5621  */
5622 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5623 {
5624 	struct rq *rq = dead_rq;
5625 	struct task_struct *next, *stop = rq->stop;
5626 	struct rq_flags orf = *rf;
5627 	int dest_cpu;
5628 
5629 	/*
5630 	 * Fudge the rq selection such that the below task selection loop
5631 	 * doesn't get stuck on the currently eligible stop task.
5632 	 *
5633 	 * We're currently inside stop_machine() and the rq is either stuck
5634 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635 	 * either way we should never end up calling schedule() until we're
5636 	 * done here.
5637 	 */
5638 	rq->stop = NULL;
5639 
5640 	/*
5641 	 * put_prev_task() and pick_next_task() sched
5642 	 * class method both need to have an up-to-date
5643 	 * value of rq->clock[_task]
5644 	 */
5645 	update_rq_clock(rq);
5646 
5647 	for (;;) {
5648 		/*
5649 		 * There's this thread running, bail when that's the only
5650 		 * remaining thread:
5651 		 */
5652 		if (rq->nr_running == 1)
5653 			break;
5654 
5655 		/*
5656 		 * pick_next_task() assumes pinned rq->lock:
5657 		 */
5658 		next = pick_next_task(rq, &fake_task, rf);
5659 		BUG_ON(!next);
5660 		put_prev_task(rq, next);
5661 
5662 		/*
5663 		 * Rules for changing task_struct::cpus_allowed are holding
5664 		 * both pi_lock and rq->lock, such that holding either
5665 		 * stabilizes the mask.
5666 		 *
5667 		 * Drop rq->lock is not quite as disastrous as it usually is
5668 		 * because !cpu_active at this point, which means load-balance
5669 		 * will not interfere. Also, stop-machine.
5670 		 */
5671 		rq_unlock(rq, rf);
5672 		raw_spin_lock(&next->pi_lock);
5673 		rq_relock(rq, rf);
5674 
5675 		/*
5676 		 * Since we're inside stop-machine, _nothing_ should have
5677 		 * changed the task, WARN if weird stuff happened, because in
5678 		 * that case the above rq->lock drop is a fail too.
5679 		 */
5680 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5681 			raw_spin_unlock(&next->pi_lock);
5682 			continue;
5683 		}
5684 
5685 		/* Find suitable destination for @next, with force if needed. */
5686 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5687 		rq = __migrate_task(rq, rf, next, dest_cpu);
5688 		if (rq != dead_rq) {
5689 			rq_unlock(rq, rf);
5690 			rq = dead_rq;
5691 			*rf = orf;
5692 			rq_relock(rq, rf);
5693 		}
5694 		raw_spin_unlock(&next->pi_lock);
5695 	}
5696 
5697 	rq->stop = stop;
5698 }
5699 #endif /* CONFIG_HOTPLUG_CPU */
5700 
5701 void set_rq_online(struct rq *rq)
5702 {
5703 	if (!rq->online) {
5704 		const struct sched_class *class;
5705 
5706 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5707 		rq->online = 1;
5708 
5709 		for_each_class(class) {
5710 			if (class->rq_online)
5711 				class->rq_online(rq);
5712 		}
5713 	}
5714 }
5715 
5716 void set_rq_offline(struct rq *rq)
5717 {
5718 	if (rq->online) {
5719 		const struct sched_class *class;
5720 
5721 		for_each_class(class) {
5722 			if (class->rq_offline)
5723 				class->rq_offline(rq);
5724 		}
5725 
5726 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5727 		rq->online = 0;
5728 	}
5729 }
5730 
5731 /*
5732  * used to mark begin/end of suspend/resume:
5733  */
5734 static int num_cpus_frozen;
5735 
5736 /*
5737  * Update cpusets according to cpu_active mask.  If cpusets are
5738  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5739  * around partition_sched_domains().
5740  *
5741  * If we come here as part of a suspend/resume, don't touch cpusets because we
5742  * want to restore it back to its original state upon resume anyway.
5743  */
5744 static void cpuset_cpu_active(void)
5745 {
5746 	if (cpuhp_tasks_frozen) {
5747 		/*
5748 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5749 		 * resume sequence. As long as this is not the last online
5750 		 * operation in the resume sequence, just build a single sched
5751 		 * domain, ignoring cpusets.
5752 		 */
5753 		partition_sched_domains(1, NULL, NULL);
5754 		if (--num_cpus_frozen)
5755 			return;
5756 		/*
5757 		 * This is the last CPU online operation. So fall through and
5758 		 * restore the original sched domains by considering the
5759 		 * cpuset configurations.
5760 		 */
5761 		cpuset_force_rebuild();
5762 	}
5763 	cpuset_update_active_cpus();
5764 }
5765 
5766 static int cpuset_cpu_inactive(unsigned int cpu)
5767 {
5768 	if (!cpuhp_tasks_frozen) {
5769 		if (dl_cpu_busy(cpu))
5770 			return -EBUSY;
5771 		cpuset_update_active_cpus();
5772 	} else {
5773 		num_cpus_frozen++;
5774 		partition_sched_domains(1, NULL, NULL);
5775 	}
5776 	return 0;
5777 }
5778 
5779 int sched_cpu_activate(unsigned int cpu)
5780 {
5781 	struct rq *rq = cpu_rq(cpu);
5782 	struct rq_flags rf;
5783 
5784 #ifdef CONFIG_SCHED_SMT
5785 	/*
5786 	 * When going up, increment the number of cores with SMT present.
5787 	 */
5788 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5789 		static_branch_inc_cpuslocked(&sched_smt_present);
5790 #endif
5791 	set_cpu_active(cpu, true);
5792 
5793 	if (sched_smp_initialized) {
5794 		sched_domains_numa_masks_set(cpu);
5795 		cpuset_cpu_active();
5796 	}
5797 
5798 	/*
5799 	 * Put the rq online, if not already. This happens:
5800 	 *
5801 	 * 1) In the early boot process, because we build the real domains
5802 	 *    after all CPUs have been brought up.
5803 	 *
5804 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5805 	 *    domains.
5806 	 */
5807 	rq_lock_irqsave(rq, &rf);
5808 	if (rq->rd) {
5809 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5810 		set_rq_online(rq);
5811 	}
5812 	rq_unlock_irqrestore(rq, &rf);
5813 
5814 	update_max_interval();
5815 
5816 	return 0;
5817 }
5818 
5819 int sched_cpu_deactivate(unsigned int cpu)
5820 {
5821 	int ret;
5822 
5823 	set_cpu_active(cpu, false);
5824 	/*
5825 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826 	 * users of this state to go away such that all new such users will
5827 	 * observe it.
5828 	 *
5829 	 * Do sync before park smpboot threads to take care the rcu boost case.
5830 	 */
5831 	synchronize_rcu();
5832 
5833 #ifdef CONFIG_SCHED_SMT
5834 	/*
5835 	 * When going down, decrement the number of cores with SMT present.
5836 	 */
5837 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5838 		static_branch_dec_cpuslocked(&sched_smt_present);
5839 #endif
5840 
5841 	if (!sched_smp_initialized)
5842 		return 0;
5843 
5844 	ret = cpuset_cpu_inactive(cpu);
5845 	if (ret) {
5846 		set_cpu_active(cpu, true);
5847 		return ret;
5848 	}
5849 	sched_domains_numa_masks_clear(cpu);
5850 	return 0;
5851 }
5852 
5853 static void sched_rq_cpu_starting(unsigned int cpu)
5854 {
5855 	struct rq *rq = cpu_rq(cpu);
5856 
5857 	rq->calc_load_update = calc_load_update;
5858 	update_max_interval();
5859 }
5860 
5861 int sched_cpu_starting(unsigned int cpu)
5862 {
5863 	sched_rq_cpu_starting(cpu);
5864 	sched_tick_start(cpu);
5865 	return 0;
5866 }
5867 
5868 #ifdef CONFIG_HOTPLUG_CPU
5869 int sched_cpu_dying(unsigned int cpu)
5870 {
5871 	struct rq *rq = cpu_rq(cpu);
5872 	struct rq_flags rf;
5873 
5874 	/* Handle pending wakeups and then migrate everything off */
5875 	sched_ttwu_pending();
5876 	sched_tick_stop(cpu);
5877 
5878 	rq_lock_irqsave(rq, &rf);
5879 	if (rq->rd) {
5880 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5881 		set_rq_offline(rq);
5882 	}
5883 	migrate_tasks(rq, &rf);
5884 	BUG_ON(rq->nr_running != 1);
5885 	rq_unlock_irqrestore(rq, &rf);
5886 
5887 	calc_load_migrate(rq);
5888 	update_max_interval();
5889 	nohz_balance_exit_idle(rq);
5890 	hrtick_clear(rq);
5891 	return 0;
5892 }
5893 #endif
5894 
5895 void __init sched_init_smp(void)
5896 {
5897 	sched_init_numa();
5898 
5899 	/*
5900 	 * There's no userspace yet to cause hotplug operations; hence all the
5901 	 * CPU masks are stable and all blatant races in the below code cannot
5902 	 * happen.
5903 	 */
5904 	mutex_lock(&sched_domains_mutex);
5905 	sched_init_domains(cpu_active_mask);
5906 	mutex_unlock(&sched_domains_mutex);
5907 
5908 	/* Move init over to a non-isolated CPU */
5909 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5910 		BUG();
5911 	sched_init_granularity();
5912 
5913 	init_sched_rt_class();
5914 	init_sched_dl_class();
5915 
5916 	sched_smp_initialized = true;
5917 }
5918 
5919 static int __init migration_init(void)
5920 {
5921 	sched_rq_cpu_starting(smp_processor_id());
5922 	return 0;
5923 }
5924 early_initcall(migration_init);
5925 
5926 #else
5927 void __init sched_init_smp(void)
5928 {
5929 	sched_init_granularity();
5930 }
5931 #endif /* CONFIG_SMP */
5932 
5933 int in_sched_functions(unsigned long addr)
5934 {
5935 	return in_lock_functions(addr) ||
5936 		(addr >= (unsigned long)__sched_text_start
5937 		&& addr < (unsigned long)__sched_text_end);
5938 }
5939 
5940 #ifdef CONFIG_CGROUP_SCHED
5941 /*
5942  * Default task group.
5943  * Every task in system belongs to this group at bootup.
5944  */
5945 struct task_group root_task_group;
5946 LIST_HEAD(task_groups);
5947 
5948 /* Cacheline aligned slab cache for task_group */
5949 static struct kmem_cache *task_group_cache __read_mostly;
5950 #endif
5951 
5952 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5953 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5954 
5955 void __init sched_init(void)
5956 {
5957 	int i, j;
5958 	unsigned long alloc_size = 0, ptr;
5959 
5960 	wait_bit_init();
5961 
5962 #ifdef CONFIG_FAIR_GROUP_SCHED
5963 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5964 #endif
5965 #ifdef CONFIG_RT_GROUP_SCHED
5966 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5967 #endif
5968 	if (alloc_size) {
5969 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5970 
5971 #ifdef CONFIG_FAIR_GROUP_SCHED
5972 		root_task_group.se = (struct sched_entity **)ptr;
5973 		ptr += nr_cpu_ids * sizeof(void **);
5974 
5975 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5976 		ptr += nr_cpu_ids * sizeof(void **);
5977 
5978 #endif /* CONFIG_FAIR_GROUP_SCHED */
5979 #ifdef CONFIG_RT_GROUP_SCHED
5980 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5981 		ptr += nr_cpu_ids * sizeof(void **);
5982 
5983 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5984 		ptr += nr_cpu_ids * sizeof(void **);
5985 
5986 #endif /* CONFIG_RT_GROUP_SCHED */
5987 	}
5988 #ifdef CONFIG_CPUMASK_OFFSTACK
5989 	for_each_possible_cpu(i) {
5990 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5991 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5992 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5993 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5994 	}
5995 #endif /* CONFIG_CPUMASK_OFFSTACK */
5996 
5997 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5998 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5999 
6000 #ifdef CONFIG_SMP
6001 	init_defrootdomain();
6002 #endif
6003 
6004 #ifdef CONFIG_RT_GROUP_SCHED
6005 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6006 			global_rt_period(), global_rt_runtime());
6007 #endif /* CONFIG_RT_GROUP_SCHED */
6008 
6009 #ifdef CONFIG_CGROUP_SCHED
6010 	task_group_cache = KMEM_CACHE(task_group, 0);
6011 
6012 	list_add(&root_task_group.list, &task_groups);
6013 	INIT_LIST_HEAD(&root_task_group.children);
6014 	INIT_LIST_HEAD(&root_task_group.siblings);
6015 	autogroup_init(&init_task);
6016 #endif /* CONFIG_CGROUP_SCHED */
6017 
6018 	for_each_possible_cpu(i) {
6019 		struct rq *rq;
6020 
6021 		rq = cpu_rq(i);
6022 		raw_spin_lock_init(&rq->lock);
6023 		rq->nr_running = 0;
6024 		rq->calc_load_active = 0;
6025 		rq->calc_load_update = jiffies + LOAD_FREQ;
6026 		init_cfs_rq(&rq->cfs);
6027 		init_rt_rq(&rq->rt);
6028 		init_dl_rq(&rq->dl);
6029 #ifdef CONFIG_FAIR_GROUP_SCHED
6030 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6031 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6032 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6033 		/*
6034 		 * How much CPU bandwidth does root_task_group get?
6035 		 *
6036 		 * In case of task-groups formed thr' the cgroup filesystem, it
6037 		 * gets 100% of the CPU resources in the system. This overall
6038 		 * system CPU resource is divided among the tasks of
6039 		 * root_task_group and its child task-groups in a fair manner,
6040 		 * based on each entity's (task or task-group's) weight
6041 		 * (se->load.weight).
6042 		 *
6043 		 * In other words, if root_task_group has 10 tasks of weight
6044 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6045 		 * then A0's share of the CPU resource is:
6046 		 *
6047 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6048 		 *
6049 		 * We achieve this by letting root_task_group's tasks sit
6050 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6051 		 */
6052 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6053 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6054 #endif /* CONFIG_FAIR_GROUP_SCHED */
6055 
6056 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6057 #ifdef CONFIG_RT_GROUP_SCHED
6058 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6059 #endif
6060 
6061 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6062 			rq->cpu_load[j] = 0;
6063 
6064 #ifdef CONFIG_SMP
6065 		rq->sd = NULL;
6066 		rq->rd = NULL;
6067 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6068 		rq->balance_callback = NULL;
6069 		rq->active_balance = 0;
6070 		rq->next_balance = jiffies;
6071 		rq->push_cpu = 0;
6072 		rq->cpu = i;
6073 		rq->online = 0;
6074 		rq->idle_stamp = 0;
6075 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6076 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6077 
6078 		INIT_LIST_HEAD(&rq->cfs_tasks);
6079 
6080 		rq_attach_root(rq, &def_root_domain);
6081 #ifdef CONFIG_NO_HZ_COMMON
6082 		rq->last_load_update_tick = jiffies;
6083 		rq->last_blocked_load_update_tick = jiffies;
6084 		atomic_set(&rq->nohz_flags, 0);
6085 #endif
6086 #endif /* CONFIG_SMP */
6087 		hrtick_rq_init(rq);
6088 		atomic_set(&rq->nr_iowait, 0);
6089 	}
6090 
6091 	set_load_weight(&init_task, false);
6092 
6093 	/*
6094 	 * The boot idle thread does lazy MMU switching as well:
6095 	 */
6096 	mmgrab(&init_mm);
6097 	enter_lazy_tlb(&init_mm, current);
6098 
6099 	/*
6100 	 * Make us the idle thread. Technically, schedule() should not be
6101 	 * called from this thread, however somewhere below it might be,
6102 	 * but because we are the idle thread, we just pick up running again
6103 	 * when this runqueue becomes "idle".
6104 	 */
6105 	init_idle(current, smp_processor_id());
6106 
6107 	calc_load_update = jiffies + LOAD_FREQ;
6108 
6109 #ifdef CONFIG_SMP
6110 	idle_thread_set_boot_cpu();
6111 #endif
6112 	init_sched_fair_class();
6113 
6114 	init_schedstats();
6115 
6116 	psi_init();
6117 
6118 	scheduler_running = 1;
6119 }
6120 
6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6122 static inline int preempt_count_equals(int preempt_offset)
6123 {
6124 	int nested = preempt_count() + rcu_preempt_depth();
6125 
6126 	return (nested == preempt_offset);
6127 }
6128 
6129 void __might_sleep(const char *file, int line, int preempt_offset)
6130 {
6131 	/*
6132 	 * Blocking primitives will set (and therefore destroy) current->state,
6133 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6134 	 * otherwise we will destroy state.
6135 	 */
6136 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6137 			"do not call blocking ops when !TASK_RUNNING; "
6138 			"state=%lx set at [<%p>] %pS\n",
6139 			current->state,
6140 			(void *)current->task_state_change,
6141 			(void *)current->task_state_change);
6142 
6143 	___might_sleep(file, line, preempt_offset);
6144 }
6145 EXPORT_SYMBOL(__might_sleep);
6146 
6147 void ___might_sleep(const char *file, int line, int preempt_offset)
6148 {
6149 	/* Ratelimiting timestamp: */
6150 	static unsigned long prev_jiffy;
6151 
6152 	unsigned long preempt_disable_ip;
6153 
6154 	/* WARN_ON_ONCE() by default, no rate limit required: */
6155 	rcu_sleep_check();
6156 
6157 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6158 	     !is_idle_task(current)) ||
6159 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6160 	    oops_in_progress)
6161 		return;
6162 
6163 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6164 		return;
6165 	prev_jiffy = jiffies;
6166 
6167 	/* Save this before calling printk(), since that will clobber it: */
6168 	preempt_disable_ip = get_preempt_disable_ip(current);
6169 
6170 	printk(KERN_ERR
6171 		"BUG: sleeping function called from invalid context at %s:%d\n",
6172 			file, line);
6173 	printk(KERN_ERR
6174 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6175 			in_atomic(), irqs_disabled(),
6176 			current->pid, current->comm);
6177 
6178 	if (task_stack_end_corrupted(current))
6179 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6180 
6181 	debug_show_held_locks(current);
6182 	if (irqs_disabled())
6183 		print_irqtrace_events(current);
6184 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6185 	    && !preempt_count_equals(preempt_offset)) {
6186 		pr_err("Preemption disabled at:");
6187 		print_ip_sym(preempt_disable_ip);
6188 		pr_cont("\n");
6189 	}
6190 	dump_stack();
6191 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6192 }
6193 EXPORT_SYMBOL(___might_sleep);
6194 
6195 void __cant_sleep(const char *file, int line, int preempt_offset)
6196 {
6197 	static unsigned long prev_jiffy;
6198 
6199 	if (irqs_disabled())
6200 		return;
6201 
6202 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6203 		return;
6204 
6205 	if (preempt_count() > preempt_offset)
6206 		return;
6207 
6208 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6209 		return;
6210 	prev_jiffy = jiffies;
6211 
6212 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6213 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6214 			in_atomic(), irqs_disabled(),
6215 			current->pid, current->comm);
6216 
6217 	debug_show_held_locks(current);
6218 	dump_stack();
6219 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6220 }
6221 EXPORT_SYMBOL_GPL(__cant_sleep);
6222 #endif
6223 
6224 #ifdef CONFIG_MAGIC_SYSRQ
6225 void normalize_rt_tasks(void)
6226 {
6227 	struct task_struct *g, *p;
6228 	struct sched_attr attr = {
6229 		.sched_policy = SCHED_NORMAL,
6230 	};
6231 
6232 	read_lock(&tasklist_lock);
6233 	for_each_process_thread(g, p) {
6234 		/*
6235 		 * Only normalize user tasks:
6236 		 */
6237 		if (p->flags & PF_KTHREAD)
6238 			continue;
6239 
6240 		p->se.exec_start = 0;
6241 		schedstat_set(p->se.statistics.wait_start,  0);
6242 		schedstat_set(p->se.statistics.sleep_start, 0);
6243 		schedstat_set(p->se.statistics.block_start, 0);
6244 
6245 		if (!dl_task(p) && !rt_task(p)) {
6246 			/*
6247 			 * Renice negative nice level userspace
6248 			 * tasks back to 0:
6249 			 */
6250 			if (task_nice(p) < 0)
6251 				set_user_nice(p, 0);
6252 			continue;
6253 		}
6254 
6255 		__sched_setscheduler(p, &attr, false, false);
6256 	}
6257 	read_unlock(&tasklist_lock);
6258 }
6259 
6260 #endif /* CONFIG_MAGIC_SYSRQ */
6261 
6262 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6263 /*
6264  * These functions are only useful for the IA64 MCA handling, or kdb.
6265  *
6266  * They can only be called when the whole system has been
6267  * stopped - every CPU needs to be quiescent, and no scheduling
6268  * activity can take place. Using them for anything else would
6269  * be a serious bug, and as a result, they aren't even visible
6270  * under any other configuration.
6271  */
6272 
6273 /**
6274  * curr_task - return the current task for a given CPU.
6275  * @cpu: the processor in question.
6276  *
6277  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6278  *
6279  * Return: The current task for @cpu.
6280  */
6281 struct task_struct *curr_task(int cpu)
6282 {
6283 	return cpu_curr(cpu);
6284 }
6285 
6286 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6287 
6288 #ifdef CONFIG_IA64
6289 /**
6290  * set_curr_task - set the current task for a given CPU.
6291  * @cpu: the processor in question.
6292  * @p: the task pointer to set.
6293  *
6294  * Description: This function must only be used when non-maskable interrupts
6295  * are serviced on a separate stack. It allows the architecture to switch the
6296  * notion of the current task on a CPU in a non-blocking manner. This function
6297  * must be called with all CPU's synchronized, and interrupts disabled, the
6298  * and caller must save the original value of the current task (see
6299  * curr_task() above) and restore that value before reenabling interrupts and
6300  * re-starting the system.
6301  *
6302  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6303  */
6304 void ia64_set_curr_task(int cpu, struct task_struct *p)
6305 {
6306 	cpu_curr(cpu) = p;
6307 }
6308 
6309 #endif
6310 
6311 #ifdef CONFIG_CGROUP_SCHED
6312 /* task_group_lock serializes the addition/removal of task groups */
6313 static DEFINE_SPINLOCK(task_group_lock);
6314 
6315 static void sched_free_group(struct task_group *tg)
6316 {
6317 	free_fair_sched_group(tg);
6318 	free_rt_sched_group(tg);
6319 	autogroup_free(tg);
6320 	kmem_cache_free(task_group_cache, tg);
6321 }
6322 
6323 /* allocate runqueue etc for a new task group */
6324 struct task_group *sched_create_group(struct task_group *parent)
6325 {
6326 	struct task_group *tg;
6327 
6328 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6329 	if (!tg)
6330 		return ERR_PTR(-ENOMEM);
6331 
6332 	if (!alloc_fair_sched_group(tg, parent))
6333 		goto err;
6334 
6335 	if (!alloc_rt_sched_group(tg, parent))
6336 		goto err;
6337 
6338 	return tg;
6339 
6340 err:
6341 	sched_free_group(tg);
6342 	return ERR_PTR(-ENOMEM);
6343 }
6344 
6345 void sched_online_group(struct task_group *tg, struct task_group *parent)
6346 {
6347 	unsigned long flags;
6348 
6349 	spin_lock_irqsave(&task_group_lock, flags);
6350 	list_add_rcu(&tg->list, &task_groups);
6351 
6352 	/* Root should already exist: */
6353 	WARN_ON(!parent);
6354 
6355 	tg->parent = parent;
6356 	INIT_LIST_HEAD(&tg->children);
6357 	list_add_rcu(&tg->siblings, &parent->children);
6358 	spin_unlock_irqrestore(&task_group_lock, flags);
6359 
6360 	online_fair_sched_group(tg);
6361 }
6362 
6363 /* rcu callback to free various structures associated with a task group */
6364 static void sched_free_group_rcu(struct rcu_head *rhp)
6365 {
6366 	/* Now it should be safe to free those cfs_rqs: */
6367 	sched_free_group(container_of(rhp, struct task_group, rcu));
6368 }
6369 
6370 void sched_destroy_group(struct task_group *tg)
6371 {
6372 	/* Wait for possible concurrent references to cfs_rqs complete: */
6373 	call_rcu(&tg->rcu, sched_free_group_rcu);
6374 }
6375 
6376 void sched_offline_group(struct task_group *tg)
6377 {
6378 	unsigned long flags;
6379 
6380 	/* End participation in shares distribution: */
6381 	unregister_fair_sched_group(tg);
6382 
6383 	spin_lock_irqsave(&task_group_lock, flags);
6384 	list_del_rcu(&tg->list);
6385 	list_del_rcu(&tg->siblings);
6386 	spin_unlock_irqrestore(&task_group_lock, flags);
6387 }
6388 
6389 static void sched_change_group(struct task_struct *tsk, int type)
6390 {
6391 	struct task_group *tg;
6392 
6393 	/*
6394 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6395 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6396 	 * to prevent lockdep warnings.
6397 	 */
6398 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6399 			  struct task_group, css);
6400 	tg = autogroup_task_group(tsk, tg);
6401 	tsk->sched_task_group = tg;
6402 
6403 #ifdef CONFIG_FAIR_GROUP_SCHED
6404 	if (tsk->sched_class->task_change_group)
6405 		tsk->sched_class->task_change_group(tsk, type);
6406 	else
6407 #endif
6408 		set_task_rq(tsk, task_cpu(tsk));
6409 }
6410 
6411 /*
6412  * Change task's runqueue when it moves between groups.
6413  *
6414  * The caller of this function should have put the task in its new group by
6415  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6416  * its new group.
6417  */
6418 void sched_move_task(struct task_struct *tsk)
6419 {
6420 	int queued, running, queue_flags =
6421 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6422 	struct rq_flags rf;
6423 	struct rq *rq;
6424 
6425 	rq = task_rq_lock(tsk, &rf);
6426 	update_rq_clock(rq);
6427 
6428 	running = task_current(rq, tsk);
6429 	queued = task_on_rq_queued(tsk);
6430 
6431 	if (queued)
6432 		dequeue_task(rq, tsk, queue_flags);
6433 	if (running)
6434 		put_prev_task(rq, tsk);
6435 
6436 	sched_change_group(tsk, TASK_MOVE_GROUP);
6437 
6438 	if (queued)
6439 		enqueue_task(rq, tsk, queue_flags);
6440 	if (running)
6441 		set_curr_task(rq, tsk);
6442 
6443 	task_rq_unlock(rq, tsk, &rf);
6444 }
6445 
6446 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6447 {
6448 	return css ? container_of(css, struct task_group, css) : NULL;
6449 }
6450 
6451 static struct cgroup_subsys_state *
6452 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6453 {
6454 	struct task_group *parent = css_tg(parent_css);
6455 	struct task_group *tg;
6456 
6457 	if (!parent) {
6458 		/* This is early initialization for the top cgroup */
6459 		return &root_task_group.css;
6460 	}
6461 
6462 	tg = sched_create_group(parent);
6463 	if (IS_ERR(tg))
6464 		return ERR_PTR(-ENOMEM);
6465 
6466 	return &tg->css;
6467 }
6468 
6469 /* Expose task group only after completing cgroup initialization */
6470 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6471 {
6472 	struct task_group *tg = css_tg(css);
6473 	struct task_group *parent = css_tg(css->parent);
6474 
6475 	if (parent)
6476 		sched_online_group(tg, parent);
6477 	return 0;
6478 }
6479 
6480 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6481 {
6482 	struct task_group *tg = css_tg(css);
6483 
6484 	sched_offline_group(tg);
6485 }
6486 
6487 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6488 {
6489 	struct task_group *tg = css_tg(css);
6490 
6491 	/*
6492 	 * Relies on the RCU grace period between css_released() and this.
6493 	 */
6494 	sched_free_group(tg);
6495 }
6496 
6497 /*
6498  * This is called before wake_up_new_task(), therefore we really only
6499  * have to set its group bits, all the other stuff does not apply.
6500  */
6501 static void cpu_cgroup_fork(struct task_struct *task)
6502 {
6503 	struct rq_flags rf;
6504 	struct rq *rq;
6505 
6506 	rq = task_rq_lock(task, &rf);
6507 
6508 	update_rq_clock(rq);
6509 	sched_change_group(task, TASK_SET_GROUP);
6510 
6511 	task_rq_unlock(rq, task, &rf);
6512 }
6513 
6514 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6515 {
6516 	struct task_struct *task;
6517 	struct cgroup_subsys_state *css;
6518 	int ret = 0;
6519 
6520 	cgroup_taskset_for_each(task, css, tset) {
6521 #ifdef CONFIG_RT_GROUP_SCHED
6522 		if (!sched_rt_can_attach(css_tg(css), task))
6523 			return -EINVAL;
6524 #else
6525 		/* We don't support RT-tasks being in separate groups */
6526 		if (task->sched_class != &fair_sched_class)
6527 			return -EINVAL;
6528 #endif
6529 		/*
6530 		 * Serialize against wake_up_new_task() such that if its
6531 		 * running, we're sure to observe its full state.
6532 		 */
6533 		raw_spin_lock_irq(&task->pi_lock);
6534 		/*
6535 		 * Avoid calling sched_move_task() before wake_up_new_task()
6536 		 * has happened. This would lead to problems with PELT, due to
6537 		 * move wanting to detach+attach while we're not attached yet.
6538 		 */
6539 		if (task->state == TASK_NEW)
6540 			ret = -EINVAL;
6541 		raw_spin_unlock_irq(&task->pi_lock);
6542 
6543 		if (ret)
6544 			break;
6545 	}
6546 	return ret;
6547 }
6548 
6549 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6550 {
6551 	struct task_struct *task;
6552 	struct cgroup_subsys_state *css;
6553 
6554 	cgroup_taskset_for_each(task, css, tset)
6555 		sched_move_task(task);
6556 }
6557 
6558 #ifdef CONFIG_FAIR_GROUP_SCHED
6559 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6560 				struct cftype *cftype, u64 shareval)
6561 {
6562 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6563 }
6564 
6565 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6566 			       struct cftype *cft)
6567 {
6568 	struct task_group *tg = css_tg(css);
6569 
6570 	return (u64) scale_load_down(tg->shares);
6571 }
6572 
6573 #ifdef CONFIG_CFS_BANDWIDTH
6574 static DEFINE_MUTEX(cfs_constraints_mutex);
6575 
6576 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6577 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6578 
6579 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6580 
6581 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6582 {
6583 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6584 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6585 
6586 	if (tg == &root_task_group)
6587 		return -EINVAL;
6588 
6589 	/*
6590 	 * Ensure we have at some amount of bandwidth every period.  This is
6591 	 * to prevent reaching a state of large arrears when throttled via
6592 	 * entity_tick() resulting in prolonged exit starvation.
6593 	 */
6594 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6595 		return -EINVAL;
6596 
6597 	/*
6598 	 * Likewise, bound things on the otherside by preventing insane quota
6599 	 * periods.  This also allows us to normalize in computing quota
6600 	 * feasibility.
6601 	 */
6602 	if (period > max_cfs_quota_period)
6603 		return -EINVAL;
6604 
6605 	/*
6606 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6607 	 * unthrottle_offline_cfs_rqs().
6608 	 */
6609 	get_online_cpus();
6610 	mutex_lock(&cfs_constraints_mutex);
6611 	ret = __cfs_schedulable(tg, period, quota);
6612 	if (ret)
6613 		goto out_unlock;
6614 
6615 	runtime_enabled = quota != RUNTIME_INF;
6616 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6617 	/*
6618 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6619 	 * before making related changes, and on->off must occur afterwards
6620 	 */
6621 	if (runtime_enabled && !runtime_was_enabled)
6622 		cfs_bandwidth_usage_inc();
6623 	raw_spin_lock_irq(&cfs_b->lock);
6624 	cfs_b->period = ns_to_ktime(period);
6625 	cfs_b->quota = quota;
6626 
6627 	__refill_cfs_bandwidth_runtime(cfs_b);
6628 
6629 	/* Restart the period timer (if active) to handle new period expiry: */
6630 	if (runtime_enabled)
6631 		start_cfs_bandwidth(cfs_b);
6632 
6633 	raw_spin_unlock_irq(&cfs_b->lock);
6634 
6635 	for_each_online_cpu(i) {
6636 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6637 		struct rq *rq = cfs_rq->rq;
6638 		struct rq_flags rf;
6639 
6640 		rq_lock_irq(rq, &rf);
6641 		cfs_rq->runtime_enabled = runtime_enabled;
6642 		cfs_rq->runtime_remaining = 0;
6643 
6644 		if (cfs_rq->throttled)
6645 			unthrottle_cfs_rq(cfs_rq);
6646 		rq_unlock_irq(rq, &rf);
6647 	}
6648 	if (runtime_was_enabled && !runtime_enabled)
6649 		cfs_bandwidth_usage_dec();
6650 out_unlock:
6651 	mutex_unlock(&cfs_constraints_mutex);
6652 	put_online_cpus();
6653 
6654 	return ret;
6655 }
6656 
6657 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6658 {
6659 	u64 quota, period;
6660 
6661 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6662 	if (cfs_quota_us < 0)
6663 		quota = RUNTIME_INF;
6664 	else
6665 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6666 
6667 	return tg_set_cfs_bandwidth(tg, period, quota);
6668 }
6669 
6670 long tg_get_cfs_quota(struct task_group *tg)
6671 {
6672 	u64 quota_us;
6673 
6674 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6675 		return -1;
6676 
6677 	quota_us = tg->cfs_bandwidth.quota;
6678 	do_div(quota_us, NSEC_PER_USEC);
6679 
6680 	return quota_us;
6681 }
6682 
6683 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6684 {
6685 	u64 quota, period;
6686 
6687 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6688 	quota = tg->cfs_bandwidth.quota;
6689 
6690 	return tg_set_cfs_bandwidth(tg, period, quota);
6691 }
6692 
6693 long tg_get_cfs_period(struct task_group *tg)
6694 {
6695 	u64 cfs_period_us;
6696 
6697 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6698 	do_div(cfs_period_us, NSEC_PER_USEC);
6699 
6700 	return cfs_period_us;
6701 }
6702 
6703 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6704 				  struct cftype *cft)
6705 {
6706 	return tg_get_cfs_quota(css_tg(css));
6707 }
6708 
6709 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6710 				   struct cftype *cftype, s64 cfs_quota_us)
6711 {
6712 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6713 }
6714 
6715 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6716 				   struct cftype *cft)
6717 {
6718 	return tg_get_cfs_period(css_tg(css));
6719 }
6720 
6721 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6722 				    struct cftype *cftype, u64 cfs_period_us)
6723 {
6724 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6725 }
6726 
6727 struct cfs_schedulable_data {
6728 	struct task_group *tg;
6729 	u64 period, quota;
6730 };
6731 
6732 /*
6733  * normalize group quota/period to be quota/max_period
6734  * note: units are usecs
6735  */
6736 static u64 normalize_cfs_quota(struct task_group *tg,
6737 			       struct cfs_schedulable_data *d)
6738 {
6739 	u64 quota, period;
6740 
6741 	if (tg == d->tg) {
6742 		period = d->period;
6743 		quota = d->quota;
6744 	} else {
6745 		period = tg_get_cfs_period(tg);
6746 		quota = tg_get_cfs_quota(tg);
6747 	}
6748 
6749 	/* note: these should typically be equivalent */
6750 	if (quota == RUNTIME_INF || quota == -1)
6751 		return RUNTIME_INF;
6752 
6753 	return to_ratio(period, quota);
6754 }
6755 
6756 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6757 {
6758 	struct cfs_schedulable_data *d = data;
6759 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6760 	s64 quota = 0, parent_quota = -1;
6761 
6762 	if (!tg->parent) {
6763 		quota = RUNTIME_INF;
6764 	} else {
6765 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6766 
6767 		quota = normalize_cfs_quota(tg, d);
6768 		parent_quota = parent_b->hierarchical_quota;
6769 
6770 		/*
6771 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6772 		 * always take the min.  On cgroup1, only inherit when no
6773 		 * limit is set:
6774 		 */
6775 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6776 			quota = min(quota, parent_quota);
6777 		} else {
6778 			if (quota == RUNTIME_INF)
6779 				quota = parent_quota;
6780 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6781 				return -EINVAL;
6782 		}
6783 	}
6784 	cfs_b->hierarchical_quota = quota;
6785 
6786 	return 0;
6787 }
6788 
6789 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6790 {
6791 	int ret;
6792 	struct cfs_schedulable_data data = {
6793 		.tg = tg,
6794 		.period = period,
6795 		.quota = quota,
6796 	};
6797 
6798 	if (quota != RUNTIME_INF) {
6799 		do_div(data.period, NSEC_PER_USEC);
6800 		do_div(data.quota, NSEC_PER_USEC);
6801 	}
6802 
6803 	rcu_read_lock();
6804 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6805 	rcu_read_unlock();
6806 
6807 	return ret;
6808 }
6809 
6810 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6811 {
6812 	struct task_group *tg = css_tg(seq_css(sf));
6813 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6814 
6815 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6816 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6817 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6818 
6819 	if (schedstat_enabled() && tg != &root_task_group) {
6820 		u64 ws = 0;
6821 		int i;
6822 
6823 		for_each_possible_cpu(i)
6824 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6825 
6826 		seq_printf(sf, "wait_sum %llu\n", ws);
6827 	}
6828 
6829 	return 0;
6830 }
6831 #endif /* CONFIG_CFS_BANDWIDTH */
6832 #endif /* CONFIG_FAIR_GROUP_SCHED */
6833 
6834 #ifdef CONFIG_RT_GROUP_SCHED
6835 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6836 				struct cftype *cft, s64 val)
6837 {
6838 	return sched_group_set_rt_runtime(css_tg(css), val);
6839 }
6840 
6841 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6842 			       struct cftype *cft)
6843 {
6844 	return sched_group_rt_runtime(css_tg(css));
6845 }
6846 
6847 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6848 				    struct cftype *cftype, u64 rt_period_us)
6849 {
6850 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6851 }
6852 
6853 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6854 				   struct cftype *cft)
6855 {
6856 	return sched_group_rt_period(css_tg(css));
6857 }
6858 #endif /* CONFIG_RT_GROUP_SCHED */
6859 
6860 static struct cftype cpu_legacy_files[] = {
6861 #ifdef CONFIG_FAIR_GROUP_SCHED
6862 	{
6863 		.name = "shares",
6864 		.read_u64 = cpu_shares_read_u64,
6865 		.write_u64 = cpu_shares_write_u64,
6866 	},
6867 #endif
6868 #ifdef CONFIG_CFS_BANDWIDTH
6869 	{
6870 		.name = "cfs_quota_us",
6871 		.read_s64 = cpu_cfs_quota_read_s64,
6872 		.write_s64 = cpu_cfs_quota_write_s64,
6873 	},
6874 	{
6875 		.name = "cfs_period_us",
6876 		.read_u64 = cpu_cfs_period_read_u64,
6877 		.write_u64 = cpu_cfs_period_write_u64,
6878 	},
6879 	{
6880 		.name = "stat",
6881 		.seq_show = cpu_cfs_stat_show,
6882 	},
6883 #endif
6884 #ifdef CONFIG_RT_GROUP_SCHED
6885 	{
6886 		.name = "rt_runtime_us",
6887 		.read_s64 = cpu_rt_runtime_read,
6888 		.write_s64 = cpu_rt_runtime_write,
6889 	},
6890 	{
6891 		.name = "rt_period_us",
6892 		.read_u64 = cpu_rt_period_read_uint,
6893 		.write_u64 = cpu_rt_period_write_uint,
6894 	},
6895 #endif
6896 	{ }	/* Terminate */
6897 };
6898 
6899 static int cpu_extra_stat_show(struct seq_file *sf,
6900 			       struct cgroup_subsys_state *css)
6901 {
6902 #ifdef CONFIG_CFS_BANDWIDTH
6903 	{
6904 		struct task_group *tg = css_tg(css);
6905 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6906 		u64 throttled_usec;
6907 
6908 		throttled_usec = cfs_b->throttled_time;
6909 		do_div(throttled_usec, NSEC_PER_USEC);
6910 
6911 		seq_printf(sf, "nr_periods %d\n"
6912 			   "nr_throttled %d\n"
6913 			   "throttled_usec %llu\n",
6914 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6915 			   throttled_usec);
6916 	}
6917 #endif
6918 	return 0;
6919 }
6920 
6921 #ifdef CONFIG_FAIR_GROUP_SCHED
6922 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6923 			       struct cftype *cft)
6924 {
6925 	struct task_group *tg = css_tg(css);
6926 	u64 weight = scale_load_down(tg->shares);
6927 
6928 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6929 }
6930 
6931 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6932 				struct cftype *cft, u64 weight)
6933 {
6934 	/*
6935 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6936 	 * values which are 1, 100 and 10000 respectively.  While it loses
6937 	 * a bit of range on both ends, it maps pretty well onto the shares
6938 	 * value used by scheduler and the round-trip conversions preserve
6939 	 * the original value over the entire range.
6940 	 */
6941 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6942 		return -ERANGE;
6943 
6944 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6945 
6946 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6947 }
6948 
6949 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6950 				    struct cftype *cft)
6951 {
6952 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6953 	int last_delta = INT_MAX;
6954 	int prio, delta;
6955 
6956 	/* find the closest nice value to the current weight */
6957 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6958 		delta = abs(sched_prio_to_weight[prio] - weight);
6959 		if (delta >= last_delta)
6960 			break;
6961 		last_delta = delta;
6962 	}
6963 
6964 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6965 }
6966 
6967 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6968 				     struct cftype *cft, s64 nice)
6969 {
6970 	unsigned long weight;
6971 	int idx;
6972 
6973 	if (nice < MIN_NICE || nice > MAX_NICE)
6974 		return -ERANGE;
6975 
6976 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6977 	idx = array_index_nospec(idx, 40);
6978 	weight = sched_prio_to_weight[idx];
6979 
6980 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6981 }
6982 #endif
6983 
6984 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6985 						  long period, long quota)
6986 {
6987 	if (quota < 0)
6988 		seq_puts(sf, "max");
6989 	else
6990 		seq_printf(sf, "%ld", quota);
6991 
6992 	seq_printf(sf, " %ld\n", period);
6993 }
6994 
6995 /* caller should put the current value in *@periodp before calling */
6996 static int __maybe_unused cpu_period_quota_parse(char *buf,
6997 						 u64 *periodp, u64 *quotap)
6998 {
6999 	char tok[21];	/* U64_MAX */
7000 
7001 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7002 		return -EINVAL;
7003 
7004 	*periodp *= NSEC_PER_USEC;
7005 
7006 	if (sscanf(tok, "%llu", quotap))
7007 		*quotap *= NSEC_PER_USEC;
7008 	else if (!strcmp(tok, "max"))
7009 		*quotap = RUNTIME_INF;
7010 	else
7011 		return -EINVAL;
7012 
7013 	return 0;
7014 }
7015 
7016 #ifdef CONFIG_CFS_BANDWIDTH
7017 static int cpu_max_show(struct seq_file *sf, void *v)
7018 {
7019 	struct task_group *tg = css_tg(seq_css(sf));
7020 
7021 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7022 	return 0;
7023 }
7024 
7025 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7026 			     char *buf, size_t nbytes, loff_t off)
7027 {
7028 	struct task_group *tg = css_tg(of_css(of));
7029 	u64 period = tg_get_cfs_period(tg);
7030 	u64 quota;
7031 	int ret;
7032 
7033 	ret = cpu_period_quota_parse(buf, &period, &quota);
7034 	if (!ret)
7035 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7036 	return ret ?: nbytes;
7037 }
7038 #endif
7039 
7040 static struct cftype cpu_files[] = {
7041 #ifdef CONFIG_FAIR_GROUP_SCHED
7042 	{
7043 		.name = "weight",
7044 		.flags = CFTYPE_NOT_ON_ROOT,
7045 		.read_u64 = cpu_weight_read_u64,
7046 		.write_u64 = cpu_weight_write_u64,
7047 	},
7048 	{
7049 		.name = "weight.nice",
7050 		.flags = CFTYPE_NOT_ON_ROOT,
7051 		.read_s64 = cpu_weight_nice_read_s64,
7052 		.write_s64 = cpu_weight_nice_write_s64,
7053 	},
7054 #endif
7055 #ifdef CONFIG_CFS_BANDWIDTH
7056 	{
7057 		.name = "max",
7058 		.flags = CFTYPE_NOT_ON_ROOT,
7059 		.seq_show = cpu_max_show,
7060 		.write = cpu_max_write,
7061 	},
7062 #endif
7063 	{ }	/* terminate */
7064 };
7065 
7066 struct cgroup_subsys cpu_cgrp_subsys = {
7067 	.css_alloc	= cpu_cgroup_css_alloc,
7068 	.css_online	= cpu_cgroup_css_online,
7069 	.css_released	= cpu_cgroup_css_released,
7070 	.css_free	= cpu_cgroup_css_free,
7071 	.css_extra_stat_show = cpu_extra_stat_show,
7072 	.fork		= cpu_cgroup_fork,
7073 	.can_attach	= cpu_cgroup_can_attach,
7074 	.attach		= cpu_cgroup_attach,
7075 	.legacy_cftypes	= cpu_legacy_files,
7076 	.dfl_cftypes	= cpu_files,
7077 	.early_init	= true,
7078 	.threaded	= true,
7079 };
7080 
7081 #endif	/* CONFIG_CGROUP_SCHED */
7082 
7083 void dump_cpu_task(int cpu)
7084 {
7085 	pr_info("Task dump for CPU %d:\n", cpu);
7086 	sched_show_task(cpu_curr(cpu));
7087 }
7088 
7089 /*
7090  * Nice levels are multiplicative, with a gentle 10% change for every
7091  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7092  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7093  * that remained on nice 0.
7094  *
7095  * The "10% effect" is relative and cumulative: from _any_ nice level,
7096  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7097  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7098  * If a task goes up by ~10% and another task goes down by ~10% then
7099  * the relative distance between them is ~25%.)
7100  */
7101 const int sched_prio_to_weight[40] = {
7102  /* -20 */     88761,     71755,     56483,     46273,     36291,
7103  /* -15 */     29154,     23254,     18705,     14949,     11916,
7104  /* -10 */      9548,      7620,      6100,      4904,      3906,
7105  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7106  /*   0 */      1024,       820,       655,       526,       423,
7107  /*   5 */       335,       272,       215,       172,       137,
7108  /*  10 */       110,        87,        70,        56,        45,
7109  /*  15 */        36,        29,        23,        18,        15,
7110 };
7111 
7112 /*
7113  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7114  *
7115  * In cases where the weight does not change often, we can use the
7116  * precalculated inverse to speed up arithmetics by turning divisions
7117  * into multiplications:
7118  */
7119 const u32 sched_prio_to_wmult[40] = {
7120  /* -20 */     48388,     59856,     76040,     92818,    118348,
7121  /* -15 */    147320,    184698,    229616,    287308,    360437,
7122  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7123  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7124  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7125  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7126  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7127  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7128 };
7129 
7130 #undef CREATE_TRACE_POINTS
7131