xref: /openbmc/linux/kernel/sched/core.c (revision 8ee90c5c)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/switch_to.h>
31 #include <asm/tlb.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
34 #endif
35 
36 #include "sched.h"
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
42 
43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44 
45 /*
46  * Debugging: various feature bits
47  */
48 
49 #define SCHED_FEAT(name, enabled)	\
50 	(1UL << __SCHED_FEAT_##name) * enabled |
51 
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 
56 #undef SCHED_FEAT
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we average the RT time consumption, measured
66  * in ms.
67  *
68  * default: 1s
69  */
70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
71 
72 /*
73  * period over which we measure -rt task CPU usage in us.
74  * default: 1s
75  */
76 unsigned int sysctl_sched_rt_period = 1000000;
77 
78 __read_mostly int scheduler_running;
79 
80 /*
81  * part of the period that we allow rt tasks to run in us.
82  * default: 0.95s
83  */
84 int sysctl_sched_rt_runtime = 950000;
85 
86 /* CPUs with isolated domains */
87 cpumask_var_t cpu_isolated_map;
88 
89 /*
90  * __task_rq_lock - lock the rq @p resides on.
91  */
92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 	__acquires(rq->lock)
94 {
95 	struct rq *rq;
96 
97 	lockdep_assert_held(&p->pi_lock);
98 
99 	for (;;) {
100 		rq = task_rq(p);
101 		raw_spin_lock(&rq->lock);
102 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103 			rq_pin_lock(rq, rf);
104 			return rq;
105 		}
106 		raw_spin_unlock(&rq->lock);
107 
108 		while (unlikely(task_on_rq_migrating(p)))
109 			cpu_relax();
110 	}
111 }
112 
113 /*
114  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
115  */
116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 	__acquires(p->pi_lock)
118 	__acquires(rq->lock)
119 {
120 	struct rq *rq;
121 
122 	for (;;) {
123 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 		rq = task_rq(p);
125 		raw_spin_lock(&rq->lock);
126 		/*
127 		 *	move_queued_task()		task_rq_lock()
128 		 *
129 		 *	ACQUIRE (rq->lock)
130 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
131 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
132 		 *	[S] ->cpu = new_cpu		[L] task_rq()
133 		 *					[L] ->on_rq
134 		 *	RELEASE (rq->lock)
135 		 *
136 		 * If we observe the old cpu in task_rq_lock, the acquire of
137 		 * the old rq->lock will fully serialize against the stores.
138 		 *
139 		 * If we observe the new CPU in task_rq_lock, the acquire will
140 		 * pair with the WMB to ensure we must then also see migrating.
141 		 */
142 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143 			rq_pin_lock(rq, rf);
144 			return rq;
145 		}
146 		raw_spin_unlock(&rq->lock);
147 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148 
149 		while (unlikely(task_on_rq_migrating(p)))
150 			cpu_relax();
151 	}
152 }
153 
154 /*
155  * RQ-clock updating methods:
156  */
157 
158 static void update_rq_clock_task(struct rq *rq, s64 delta)
159 {
160 /*
161  * In theory, the compile should just see 0 here, and optimize out the call
162  * to sched_rt_avg_update. But I don't trust it...
163  */
164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 	s64 steal = 0, irq_delta = 0;
166 #endif
167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
169 
170 	/*
171 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 	 * this case when a previous update_rq_clock() happened inside a
173 	 * {soft,}irq region.
174 	 *
175 	 * When this happens, we stop ->clock_task and only update the
176 	 * prev_irq_time stamp to account for the part that fit, so that a next
177 	 * update will consume the rest. This ensures ->clock_task is
178 	 * monotonic.
179 	 *
180 	 * It does however cause some slight miss-attribution of {soft,}irq
181 	 * time, a more accurate solution would be to update the irq_time using
182 	 * the current rq->clock timestamp, except that would require using
183 	 * atomic ops.
184 	 */
185 	if (irq_delta > delta)
186 		irq_delta = delta;
187 
188 	rq->prev_irq_time += irq_delta;
189 	delta -= irq_delta;
190 #endif
191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 	if (static_key_false((&paravirt_steal_rq_enabled))) {
193 		steal = paravirt_steal_clock(cpu_of(rq));
194 		steal -= rq->prev_steal_time_rq;
195 
196 		if (unlikely(steal > delta))
197 			steal = delta;
198 
199 		rq->prev_steal_time_rq += steal;
200 		delta -= steal;
201 	}
202 #endif
203 
204 	rq->clock_task += delta;
205 
206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
208 		sched_rt_avg_update(rq, irq_delta + steal);
209 #endif
210 }
211 
212 void update_rq_clock(struct rq *rq)
213 {
214 	s64 delta;
215 
216 	lockdep_assert_held(&rq->lock);
217 
218 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
219 		return;
220 
221 #ifdef CONFIG_SCHED_DEBUG
222 	if (sched_feat(WARN_DOUBLE_CLOCK))
223 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 	rq->clock_update_flags |= RQCF_UPDATED;
225 #endif
226 
227 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
228 	if (delta < 0)
229 		return;
230 	rq->clock += delta;
231 	update_rq_clock_task(rq, delta);
232 }
233 
234 
235 #ifdef CONFIG_SCHED_HRTICK
236 /*
237  * Use HR-timers to deliver accurate preemption points.
238  */
239 
240 static void hrtick_clear(struct rq *rq)
241 {
242 	if (hrtimer_active(&rq->hrtick_timer))
243 		hrtimer_cancel(&rq->hrtick_timer);
244 }
245 
246 /*
247  * High-resolution timer tick.
248  * Runs from hardirq context with interrupts disabled.
249  */
250 static enum hrtimer_restart hrtick(struct hrtimer *timer)
251 {
252 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253 	struct rq_flags rf;
254 
255 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
256 
257 	rq_lock(rq, &rf);
258 	update_rq_clock(rq);
259 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260 	rq_unlock(rq, &rf);
261 
262 	return HRTIMER_NORESTART;
263 }
264 
265 #ifdef CONFIG_SMP
266 
267 static void __hrtick_restart(struct rq *rq)
268 {
269 	struct hrtimer *timer = &rq->hrtick_timer;
270 
271 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
272 }
273 
274 /*
275  * called from hardirq (IPI) context
276  */
277 static void __hrtick_start(void *arg)
278 {
279 	struct rq *rq = arg;
280 	struct rq_flags rf;
281 
282 	rq_lock(rq, &rf);
283 	__hrtick_restart(rq);
284 	rq->hrtick_csd_pending = 0;
285 	rq_unlock(rq, &rf);
286 }
287 
288 /*
289  * Called to set the hrtick timer state.
290  *
291  * called with rq->lock held and irqs disabled
292  */
293 void hrtick_start(struct rq *rq, u64 delay)
294 {
295 	struct hrtimer *timer = &rq->hrtick_timer;
296 	ktime_t time;
297 	s64 delta;
298 
299 	/*
300 	 * Don't schedule slices shorter than 10000ns, that just
301 	 * doesn't make sense and can cause timer DoS.
302 	 */
303 	delta = max_t(s64, delay, 10000LL);
304 	time = ktime_add_ns(timer->base->get_time(), delta);
305 
306 	hrtimer_set_expires(timer, time);
307 
308 	if (rq == this_rq()) {
309 		__hrtick_restart(rq);
310 	} else if (!rq->hrtick_csd_pending) {
311 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 		rq->hrtick_csd_pending = 1;
313 	}
314 }
315 
316 #else
317 /*
318  * Called to set the hrtick timer state.
319  *
320  * called with rq->lock held and irqs disabled
321  */
322 void hrtick_start(struct rq *rq, u64 delay)
323 {
324 	/*
325 	 * Don't schedule slices shorter than 10000ns, that just
326 	 * doesn't make sense. Rely on vruntime for fairness.
327 	 */
328 	delay = max_t(u64, delay, 10000LL);
329 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
330 		      HRTIMER_MODE_REL_PINNED);
331 }
332 #endif /* CONFIG_SMP */
333 
334 static void init_rq_hrtick(struct rq *rq)
335 {
336 #ifdef CONFIG_SMP
337 	rq->hrtick_csd_pending = 0;
338 
339 	rq->hrtick_csd.flags = 0;
340 	rq->hrtick_csd.func = __hrtick_start;
341 	rq->hrtick_csd.info = rq;
342 #endif
343 
344 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
345 	rq->hrtick_timer.function = hrtick;
346 }
347 #else	/* CONFIG_SCHED_HRTICK */
348 static inline void hrtick_clear(struct rq *rq)
349 {
350 }
351 
352 static inline void init_rq_hrtick(struct rq *rq)
353 {
354 }
355 #endif	/* CONFIG_SCHED_HRTICK */
356 
357 /*
358  * cmpxchg based fetch_or, macro so it works for different integer types
359  */
360 #define fetch_or(ptr, mask)						\
361 	({								\
362 		typeof(ptr) _ptr = (ptr);				\
363 		typeof(mask) _mask = (mask);				\
364 		typeof(*_ptr) _old, _val = *_ptr;			\
365 									\
366 		for (;;) {						\
367 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
368 			if (_old == _val)				\
369 				break;					\
370 			_val = _old;					\
371 		}							\
372 	_old;								\
373 })
374 
375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 /*
377  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378  * this avoids any races wrt polling state changes and thereby avoids
379  * spurious IPIs.
380  */
381 static bool set_nr_and_not_polling(struct task_struct *p)
382 {
383 	struct thread_info *ti = task_thread_info(p);
384 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
385 }
386 
387 /*
388  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
389  *
390  * If this returns true, then the idle task promises to call
391  * sched_ttwu_pending() and reschedule soon.
392  */
393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 	struct thread_info *ti = task_thread_info(p);
396 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397 
398 	for (;;) {
399 		if (!(val & _TIF_POLLING_NRFLAG))
400 			return false;
401 		if (val & _TIF_NEED_RESCHED)
402 			return true;
403 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
404 		if (old == val)
405 			break;
406 		val = old;
407 	}
408 	return true;
409 }
410 
411 #else
412 static bool set_nr_and_not_polling(struct task_struct *p)
413 {
414 	set_tsk_need_resched(p);
415 	return true;
416 }
417 
418 #ifdef CONFIG_SMP
419 static bool set_nr_if_polling(struct task_struct *p)
420 {
421 	return false;
422 }
423 #endif
424 #endif
425 
426 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
427 {
428 	struct wake_q_node *node = &task->wake_q;
429 
430 	/*
431 	 * Atomically grab the task, if ->wake_q is !nil already it means
432 	 * its already queued (either by us or someone else) and will get the
433 	 * wakeup due to that.
434 	 *
435 	 * This cmpxchg() implies a full barrier, which pairs with the write
436 	 * barrier implied by the wakeup in wake_up_q().
437 	 */
438 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
439 		return;
440 
441 	get_task_struct(task);
442 
443 	/*
444 	 * The head is context local, there can be no concurrency.
445 	 */
446 	*head->lastp = node;
447 	head->lastp = &node->next;
448 }
449 
450 void wake_up_q(struct wake_q_head *head)
451 {
452 	struct wake_q_node *node = head->first;
453 
454 	while (node != WAKE_Q_TAIL) {
455 		struct task_struct *task;
456 
457 		task = container_of(node, struct task_struct, wake_q);
458 		BUG_ON(!task);
459 		/* Task can safely be re-inserted now: */
460 		node = node->next;
461 		task->wake_q.next = NULL;
462 
463 		/*
464 		 * wake_up_process() implies a wmb() to pair with the queueing
465 		 * in wake_q_add() so as not to miss wakeups.
466 		 */
467 		wake_up_process(task);
468 		put_task_struct(task);
469 	}
470 }
471 
472 /*
473  * resched_curr - mark rq's current task 'to be rescheduled now'.
474  *
475  * On UP this means the setting of the need_resched flag, on SMP it
476  * might also involve a cross-CPU call to trigger the scheduler on
477  * the target CPU.
478  */
479 void resched_curr(struct rq *rq)
480 {
481 	struct task_struct *curr = rq->curr;
482 	int cpu;
483 
484 	lockdep_assert_held(&rq->lock);
485 
486 	if (test_tsk_need_resched(curr))
487 		return;
488 
489 	cpu = cpu_of(rq);
490 
491 	if (cpu == smp_processor_id()) {
492 		set_tsk_need_resched(curr);
493 		set_preempt_need_resched();
494 		return;
495 	}
496 
497 	if (set_nr_and_not_polling(curr))
498 		smp_send_reschedule(cpu);
499 	else
500 		trace_sched_wake_idle_without_ipi(cpu);
501 }
502 
503 void resched_cpu(int cpu)
504 {
505 	struct rq *rq = cpu_rq(cpu);
506 	unsigned long flags;
507 
508 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
509 		return;
510 	resched_curr(rq);
511 	raw_spin_unlock_irqrestore(&rq->lock, flags);
512 }
513 
514 #ifdef CONFIG_SMP
515 #ifdef CONFIG_NO_HZ_COMMON
516 /*
517  * In the semi idle case, use the nearest busy CPU for migrating timers
518  * from an idle CPU.  This is good for power-savings.
519  *
520  * We don't do similar optimization for completely idle system, as
521  * selecting an idle CPU will add more delays to the timers than intended
522  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523  */
524 int get_nohz_timer_target(void)
525 {
526 	int i, cpu = smp_processor_id();
527 	struct sched_domain *sd;
528 
529 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 		return cpu;
531 
532 	rcu_read_lock();
533 	for_each_domain(cpu, sd) {
534 		for_each_cpu(i, sched_domain_span(sd)) {
535 			if (cpu == i)
536 				continue;
537 
538 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 				cpu = i;
540 				goto unlock;
541 			}
542 		}
543 	}
544 
545 	if (!is_housekeeping_cpu(cpu))
546 		cpu = housekeeping_any_cpu();
547 unlock:
548 	rcu_read_unlock();
549 	return cpu;
550 }
551 
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (cpu_is_offline(cpu))
584 		return true;  /* Don't try to wake offline CPUs. */
585 	if (tick_nohz_full_cpu(cpu)) {
586 		if (cpu != smp_processor_id() ||
587 		    tick_nohz_tick_stopped())
588 			tick_nohz_full_kick_cpu(cpu);
589 		return true;
590 	}
591 
592 	return false;
593 }
594 
595 /*
596  * Wake up the specified CPU.  If the CPU is going offline, it is the
597  * caller's responsibility to deal with the lost wakeup, for example,
598  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599  */
600 void wake_up_nohz_cpu(int cpu)
601 {
602 	if (!wake_up_full_nohz_cpu(cpu))
603 		wake_up_idle_cpu(cpu);
604 }
605 
606 static inline bool got_nohz_idle_kick(void)
607 {
608 	int cpu = smp_processor_id();
609 
610 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 		return false;
612 
613 	if (idle_cpu(cpu) && !need_resched())
614 		return true;
615 
616 	/*
617 	 * We can't run Idle Load Balance on this CPU for this time so we
618 	 * cancel it and clear NOHZ_BALANCE_KICK
619 	 */
620 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 	return false;
622 }
623 
624 #else /* CONFIG_NO_HZ_COMMON */
625 
626 static inline bool got_nohz_idle_kick(void)
627 {
628 	return false;
629 }
630 
631 #endif /* CONFIG_NO_HZ_COMMON */
632 
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq *rq)
635 {
636 	int fifo_nr_running;
637 
638 	/* Deadline tasks, even if single, need the tick */
639 	if (rq->dl.dl_nr_running)
640 		return false;
641 
642 	/*
643 	 * If there are more than one RR tasks, we need the tick to effect the
644 	 * actual RR behaviour.
645 	 */
646 	if (rq->rt.rr_nr_running) {
647 		if (rq->rt.rr_nr_running == 1)
648 			return true;
649 		else
650 			return false;
651 	}
652 
653 	/*
654 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 	 * forced preemption between FIFO tasks.
656 	 */
657 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 	if (fifo_nr_running)
659 		return true;
660 
661 	/*
662 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 	 * if there's more than one we need the tick for involuntary
664 	 * preemption.
665 	 */
666 	if (rq->nr_running > 1)
667 		return false;
668 
669 	return true;
670 }
671 #endif /* CONFIG_NO_HZ_FULL */
672 
673 void sched_avg_update(struct rq *rq)
674 {
675 	s64 period = sched_avg_period();
676 
677 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 		/*
679 		 * Inline assembly required to prevent the compiler
680 		 * optimising this loop into a divmod call.
681 		 * See __iter_div_u64_rem() for another example of this.
682 		 */
683 		asm("" : "+rm" (rq->age_stamp));
684 		rq->age_stamp += period;
685 		rq->rt_avg /= 2;
686 	}
687 }
688 
689 #endif /* CONFIG_SMP */
690 
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 /*
694  * Iterate task_group tree rooted at *from, calling @down when first entering a
695  * node and @up when leaving it for the final time.
696  *
697  * Caller must hold rcu_lock or sufficient equivalent.
698  */
699 int walk_tg_tree_from(struct task_group *from,
700 			     tg_visitor down, tg_visitor up, void *data)
701 {
702 	struct task_group *parent, *child;
703 	int ret;
704 
705 	parent = from;
706 
707 down:
708 	ret = (*down)(parent, data);
709 	if (ret)
710 		goto out;
711 	list_for_each_entry_rcu(child, &parent->children, siblings) {
712 		parent = child;
713 		goto down;
714 
715 up:
716 		continue;
717 	}
718 	ret = (*up)(parent, data);
719 	if (ret || parent == from)
720 		goto out;
721 
722 	child = parent;
723 	parent = parent->parent;
724 	if (parent)
725 		goto up;
726 out:
727 	return ret;
728 }
729 
730 int tg_nop(struct task_group *tg, void *data)
731 {
732 	return 0;
733 }
734 #endif
735 
736 static void set_load_weight(struct task_struct *p)
737 {
738 	int prio = p->static_prio - MAX_RT_PRIO;
739 	struct load_weight *load = &p->se.load;
740 
741 	/*
742 	 * SCHED_IDLE tasks get minimal weight:
743 	 */
744 	if (idle_policy(p->policy)) {
745 		load->weight = scale_load(WEIGHT_IDLEPRIO);
746 		load->inv_weight = WMULT_IDLEPRIO;
747 		return;
748 	}
749 
750 	load->weight = scale_load(sched_prio_to_weight[prio]);
751 	load->inv_weight = sched_prio_to_wmult[prio];
752 }
753 
754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 	if (!(flags & ENQUEUE_NOCLOCK))
757 		update_rq_clock(rq);
758 
759 	if (!(flags & ENQUEUE_RESTORE))
760 		sched_info_queued(rq, p);
761 
762 	p->sched_class->enqueue_task(rq, p, flags);
763 }
764 
765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	if (!(flags & DEQUEUE_NOCLOCK))
768 		update_rq_clock(rq);
769 
770 	if (!(flags & DEQUEUE_SAVE))
771 		sched_info_dequeued(rq, p);
772 
773 	p->sched_class->dequeue_task(rq, p, flags);
774 }
775 
776 void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 	if (task_contributes_to_load(p))
779 		rq->nr_uninterruptible--;
780 
781 	enqueue_task(rq, p, flags);
782 }
783 
784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 	if (task_contributes_to_load(p))
787 		rq->nr_uninterruptible++;
788 
789 	dequeue_task(rq, p, flags);
790 }
791 
792 /*
793  * __normal_prio - return the priority that is based on the static prio
794  */
795 static inline int __normal_prio(struct task_struct *p)
796 {
797 	return p->static_prio;
798 }
799 
800 /*
801  * Calculate the expected normal priority: i.e. priority
802  * without taking RT-inheritance into account. Might be
803  * boosted by interactivity modifiers. Changes upon fork,
804  * setprio syscalls, and whenever the interactivity
805  * estimator recalculates.
806  */
807 static inline int normal_prio(struct task_struct *p)
808 {
809 	int prio;
810 
811 	if (task_has_dl_policy(p))
812 		prio = MAX_DL_PRIO-1;
813 	else if (task_has_rt_policy(p))
814 		prio = MAX_RT_PRIO-1 - p->rt_priority;
815 	else
816 		prio = __normal_prio(p);
817 	return prio;
818 }
819 
820 /*
821  * Calculate the current priority, i.e. the priority
822  * taken into account by the scheduler. This value might
823  * be boosted by RT tasks, or might be boosted by
824  * interactivity modifiers. Will be RT if the task got
825  * RT-boosted. If not then it returns p->normal_prio.
826  */
827 static int effective_prio(struct task_struct *p)
828 {
829 	p->normal_prio = normal_prio(p);
830 	/*
831 	 * If we are RT tasks or we were boosted to RT priority,
832 	 * keep the priority unchanged. Otherwise, update priority
833 	 * to the normal priority:
834 	 */
835 	if (!rt_prio(p->prio))
836 		return p->normal_prio;
837 	return p->prio;
838 }
839 
840 /**
841  * task_curr - is this task currently executing on a CPU?
842  * @p: the task in question.
843  *
844  * Return: 1 if the task is currently executing. 0 otherwise.
845  */
846 inline int task_curr(const struct task_struct *p)
847 {
848 	return cpu_curr(task_cpu(p)) == p;
849 }
850 
851 /*
852  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853  * use the balance_callback list if you want balancing.
854  *
855  * this means any call to check_class_changed() must be followed by a call to
856  * balance_callback().
857  */
858 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
859 				       const struct sched_class *prev_class,
860 				       int oldprio)
861 {
862 	if (prev_class != p->sched_class) {
863 		if (prev_class->switched_from)
864 			prev_class->switched_from(rq, p);
865 
866 		p->sched_class->switched_to(rq, p);
867 	} else if (oldprio != p->prio || dl_task(p))
868 		p->sched_class->prio_changed(rq, p, oldprio);
869 }
870 
871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 {
873 	const struct sched_class *class;
874 
875 	if (p->sched_class == rq->curr->sched_class) {
876 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
877 	} else {
878 		for_each_class(class) {
879 			if (class == rq->curr->sched_class)
880 				break;
881 			if (class == p->sched_class) {
882 				resched_curr(rq);
883 				break;
884 			}
885 		}
886 	}
887 
888 	/*
889 	 * A queue event has occurred, and we're going to schedule.  In
890 	 * this case, we can save a useless back to back clock update.
891 	 */
892 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893 		rq_clock_skip_update(rq, true);
894 }
895 
896 #ifdef CONFIG_SMP
897 /*
898  * This is how migration works:
899  *
900  * 1) we invoke migration_cpu_stop() on the target CPU using
901  *    stop_one_cpu().
902  * 2) stopper starts to run (implicitly forcing the migrated thread
903  *    off the CPU)
904  * 3) it checks whether the migrated task is still in the wrong runqueue.
905  * 4) if it's in the wrong runqueue then the migration thread removes
906  *    it and puts it into the right queue.
907  * 5) stopper completes and stop_one_cpu() returns and the migration
908  *    is done.
909  */
910 
911 /*
912  * move_queued_task - move a queued task to new rq.
913  *
914  * Returns (locked) new rq. Old rq's lock is released.
915  */
916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
917 				   struct task_struct *p, int new_cpu)
918 {
919 	lockdep_assert_held(&rq->lock);
920 
921 	p->on_rq = TASK_ON_RQ_MIGRATING;
922 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
923 	set_task_cpu(p, new_cpu);
924 	rq_unlock(rq, rf);
925 
926 	rq = cpu_rq(new_cpu);
927 
928 	rq_lock(rq, rf);
929 	BUG_ON(task_cpu(p) != new_cpu);
930 	enqueue_task(rq, p, 0);
931 	p->on_rq = TASK_ON_RQ_QUEUED;
932 	check_preempt_curr(rq, p, 0);
933 
934 	return rq;
935 }
936 
937 struct migration_arg {
938 	struct task_struct *task;
939 	int dest_cpu;
940 };
941 
942 /*
943  * Move (not current) task off this CPU, onto the destination CPU. We're doing
944  * this because either it can't run here any more (set_cpus_allowed()
945  * away from this CPU, or CPU going down), or because we're
946  * attempting to rebalance this task on exec (sched_exec).
947  *
948  * So we race with normal scheduler movements, but that's OK, as long
949  * as the task is no longer on this CPU.
950  */
951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
952 				 struct task_struct *p, int dest_cpu)
953 {
954 	if (p->flags & PF_KTHREAD) {
955 		if (unlikely(!cpu_online(dest_cpu)))
956 			return rq;
957 	} else {
958 		if (unlikely(!cpu_active(dest_cpu)))
959 			return rq;
960 	}
961 
962 	/* Affinity changed (again). */
963 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
964 		return rq;
965 
966 	update_rq_clock(rq);
967 	rq = move_queued_task(rq, rf, p, dest_cpu);
968 
969 	return rq;
970 }
971 
972 /*
973  * migration_cpu_stop - this will be executed by a highprio stopper thread
974  * and performs thread migration by bumping thread off CPU then
975  * 'pushing' onto another runqueue.
976  */
977 static int migration_cpu_stop(void *data)
978 {
979 	struct migration_arg *arg = data;
980 	struct task_struct *p = arg->task;
981 	struct rq *rq = this_rq();
982 	struct rq_flags rf;
983 
984 	/*
985 	 * The original target CPU might have gone down and we might
986 	 * be on another CPU but it doesn't matter.
987 	 */
988 	local_irq_disable();
989 	/*
990 	 * We need to explicitly wake pending tasks before running
991 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
992 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
993 	 */
994 	sched_ttwu_pending();
995 
996 	raw_spin_lock(&p->pi_lock);
997 	rq_lock(rq, &rf);
998 	/*
999 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1000 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1001 	 * we're holding p->pi_lock.
1002 	 */
1003 	if (task_rq(p) == rq) {
1004 		if (task_on_rq_queued(p))
1005 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1006 		else
1007 			p->wake_cpu = arg->dest_cpu;
1008 	}
1009 	rq_unlock(rq, &rf);
1010 	raw_spin_unlock(&p->pi_lock);
1011 
1012 	local_irq_enable();
1013 	return 0;
1014 }
1015 
1016 /*
1017  * sched_class::set_cpus_allowed must do the below, but is not required to
1018  * actually call this function.
1019  */
1020 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1021 {
1022 	cpumask_copy(&p->cpus_allowed, new_mask);
1023 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1024 }
1025 
1026 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 	struct rq *rq = task_rq(p);
1029 	bool queued, running;
1030 
1031 	lockdep_assert_held(&p->pi_lock);
1032 
1033 	queued = task_on_rq_queued(p);
1034 	running = task_current(rq, p);
1035 
1036 	if (queued) {
1037 		/*
1038 		 * Because __kthread_bind() calls this on blocked tasks without
1039 		 * holding rq->lock.
1040 		 */
1041 		lockdep_assert_held(&rq->lock);
1042 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1043 	}
1044 	if (running)
1045 		put_prev_task(rq, p);
1046 
1047 	p->sched_class->set_cpus_allowed(p, new_mask);
1048 
1049 	if (queued)
1050 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1051 	if (running)
1052 		set_curr_task(rq, p);
1053 }
1054 
1055 /*
1056  * Change a given task's CPU affinity. Migrate the thread to a
1057  * proper CPU and schedule it away if the CPU it's executing on
1058  * is removed from the allowed bitmask.
1059  *
1060  * NOTE: the caller must have a valid reference to the task, the
1061  * task must not exit() & deallocate itself prematurely. The
1062  * call is not atomic; no spinlocks may be held.
1063  */
1064 static int __set_cpus_allowed_ptr(struct task_struct *p,
1065 				  const struct cpumask *new_mask, bool check)
1066 {
1067 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1068 	unsigned int dest_cpu;
1069 	struct rq_flags rf;
1070 	struct rq *rq;
1071 	int ret = 0;
1072 
1073 	rq = task_rq_lock(p, &rf);
1074 	update_rq_clock(rq);
1075 
1076 	if (p->flags & PF_KTHREAD) {
1077 		/*
1078 		 * Kernel threads are allowed on online && !active CPUs
1079 		 */
1080 		cpu_valid_mask = cpu_online_mask;
1081 	}
1082 
1083 	/*
1084 	 * Must re-check here, to close a race against __kthread_bind(),
1085 	 * sched_setaffinity() is not guaranteed to observe the flag.
1086 	 */
1087 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1088 		ret = -EINVAL;
1089 		goto out;
1090 	}
1091 
1092 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1093 		goto out;
1094 
1095 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1096 		ret = -EINVAL;
1097 		goto out;
1098 	}
1099 
1100 	do_set_cpus_allowed(p, new_mask);
1101 
1102 	if (p->flags & PF_KTHREAD) {
1103 		/*
1104 		 * For kernel threads that do indeed end up on online &&
1105 		 * !active we want to ensure they are strict per-CPU threads.
1106 		 */
1107 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1108 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1109 			p->nr_cpus_allowed != 1);
1110 	}
1111 
1112 	/* Can the task run on the task's current CPU? If so, we're done */
1113 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1114 		goto out;
1115 
1116 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1117 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1118 		struct migration_arg arg = { p, dest_cpu };
1119 		/* Need help from migration thread: drop lock and wait. */
1120 		task_rq_unlock(rq, p, &rf);
1121 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1122 		tlb_migrate_finish(p->mm);
1123 		return 0;
1124 	} else if (task_on_rq_queued(p)) {
1125 		/*
1126 		 * OK, since we're going to drop the lock immediately
1127 		 * afterwards anyway.
1128 		 */
1129 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1130 	}
1131 out:
1132 	task_rq_unlock(rq, p, &rf);
1133 
1134 	return ret;
1135 }
1136 
1137 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1138 {
1139 	return __set_cpus_allowed_ptr(p, new_mask, false);
1140 }
1141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1142 
1143 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1144 {
1145 #ifdef CONFIG_SCHED_DEBUG
1146 	/*
1147 	 * We should never call set_task_cpu() on a blocked task,
1148 	 * ttwu() will sort out the placement.
1149 	 */
1150 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1151 			!p->on_rq);
1152 
1153 	/*
1154 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1155 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1156 	 * time relying on p->on_rq.
1157 	 */
1158 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1159 		     p->sched_class == &fair_sched_class &&
1160 		     (p->on_rq && !task_on_rq_migrating(p)));
1161 
1162 #ifdef CONFIG_LOCKDEP
1163 	/*
1164 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1165 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1166 	 *
1167 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1168 	 * see task_group().
1169 	 *
1170 	 * Furthermore, all task_rq users should acquire both locks, see
1171 	 * task_rq_lock().
1172 	 */
1173 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1174 				      lockdep_is_held(&task_rq(p)->lock)));
1175 #endif
1176 	/*
1177 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1178 	 */
1179 	WARN_ON_ONCE(!cpu_online(new_cpu));
1180 #endif
1181 
1182 	trace_sched_migrate_task(p, new_cpu);
1183 
1184 	if (task_cpu(p) != new_cpu) {
1185 		if (p->sched_class->migrate_task_rq)
1186 			p->sched_class->migrate_task_rq(p);
1187 		p->se.nr_migrations++;
1188 		perf_event_task_migrate(p);
1189 	}
1190 
1191 	__set_task_cpu(p, new_cpu);
1192 }
1193 
1194 static void __migrate_swap_task(struct task_struct *p, int cpu)
1195 {
1196 	if (task_on_rq_queued(p)) {
1197 		struct rq *src_rq, *dst_rq;
1198 		struct rq_flags srf, drf;
1199 
1200 		src_rq = task_rq(p);
1201 		dst_rq = cpu_rq(cpu);
1202 
1203 		rq_pin_lock(src_rq, &srf);
1204 		rq_pin_lock(dst_rq, &drf);
1205 
1206 		p->on_rq = TASK_ON_RQ_MIGRATING;
1207 		deactivate_task(src_rq, p, 0);
1208 		set_task_cpu(p, cpu);
1209 		activate_task(dst_rq, p, 0);
1210 		p->on_rq = TASK_ON_RQ_QUEUED;
1211 		check_preempt_curr(dst_rq, p, 0);
1212 
1213 		rq_unpin_lock(dst_rq, &drf);
1214 		rq_unpin_lock(src_rq, &srf);
1215 
1216 	} else {
1217 		/*
1218 		 * Task isn't running anymore; make it appear like we migrated
1219 		 * it before it went to sleep. This means on wakeup we make the
1220 		 * previous CPU our target instead of where it really is.
1221 		 */
1222 		p->wake_cpu = cpu;
1223 	}
1224 }
1225 
1226 struct migration_swap_arg {
1227 	struct task_struct *src_task, *dst_task;
1228 	int src_cpu, dst_cpu;
1229 };
1230 
1231 static int migrate_swap_stop(void *data)
1232 {
1233 	struct migration_swap_arg *arg = data;
1234 	struct rq *src_rq, *dst_rq;
1235 	int ret = -EAGAIN;
1236 
1237 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1238 		return -EAGAIN;
1239 
1240 	src_rq = cpu_rq(arg->src_cpu);
1241 	dst_rq = cpu_rq(arg->dst_cpu);
1242 
1243 	double_raw_lock(&arg->src_task->pi_lock,
1244 			&arg->dst_task->pi_lock);
1245 	double_rq_lock(src_rq, dst_rq);
1246 
1247 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1248 		goto unlock;
1249 
1250 	if (task_cpu(arg->src_task) != arg->src_cpu)
1251 		goto unlock;
1252 
1253 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1254 		goto unlock;
1255 
1256 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1257 		goto unlock;
1258 
1259 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1260 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1261 
1262 	ret = 0;
1263 
1264 unlock:
1265 	double_rq_unlock(src_rq, dst_rq);
1266 	raw_spin_unlock(&arg->dst_task->pi_lock);
1267 	raw_spin_unlock(&arg->src_task->pi_lock);
1268 
1269 	return ret;
1270 }
1271 
1272 /*
1273  * Cross migrate two tasks
1274  */
1275 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1276 {
1277 	struct migration_swap_arg arg;
1278 	int ret = -EINVAL;
1279 
1280 	arg = (struct migration_swap_arg){
1281 		.src_task = cur,
1282 		.src_cpu = task_cpu(cur),
1283 		.dst_task = p,
1284 		.dst_cpu = task_cpu(p),
1285 	};
1286 
1287 	if (arg.src_cpu == arg.dst_cpu)
1288 		goto out;
1289 
1290 	/*
1291 	 * These three tests are all lockless; this is OK since all of them
1292 	 * will be re-checked with proper locks held further down the line.
1293 	 */
1294 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1295 		goto out;
1296 
1297 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1298 		goto out;
1299 
1300 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1301 		goto out;
1302 
1303 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1304 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1305 
1306 out:
1307 	return ret;
1308 }
1309 
1310 /*
1311  * wait_task_inactive - wait for a thread to unschedule.
1312  *
1313  * If @match_state is nonzero, it's the @p->state value just checked and
1314  * not expected to change.  If it changes, i.e. @p might have woken up,
1315  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1316  * we return a positive number (its total switch count).  If a second call
1317  * a short while later returns the same number, the caller can be sure that
1318  * @p has remained unscheduled the whole time.
1319  *
1320  * The caller must ensure that the task *will* unschedule sometime soon,
1321  * else this function might spin for a *long* time. This function can't
1322  * be called with interrupts off, or it may introduce deadlock with
1323  * smp_call_function() if an IPI is sent by the same process we are
1324  * waiting to become inactive.
1325  */
1326 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1327 {
1328 	int running, queued;
1329 	struct rq_flags rf;
1330 	unsigned long ncsw;
1331 	struct rq *rq;
1332 
1333 	for (;;) {
1334 		/*
1335 		 * We do the initial early heuristics without holding
1336 		 * any task-queue locks at all. We'll only try to get
1337 		 * the runqueue lock when things look like they will
1338 		 * work out!
1339 		 */
1340 		rq = task_rq(p);
1341 
1342 		/*
1343 		 * If the task is actively running on another CPU
1344 		 * still, just relax and busy-wait without holding
1345 		 * any locks.
1346 		 *
1347 		 * NOTE! Since we don't hold any locks, it's not
1348 		 * even sure that "rq" stays as the right runqueue!
1349 		 * But we don't care, since "task_running()" will
1350 		 * return false if the runqueue has changed and p
1351 		 * is actually now running somewhere else!
1352 		 */
1353 		while (task_running(rq, p)) {
1354 			if (match_state && unlikely(p->state != match_state))
1355 				return 0;
1356 			cpu_relax();
1357 		}
1358 
1359 		/*
1360 		 * Ok, time to look more closely! We need the rq
1361 		 * lock now, to be *sure*. If we're wrong, we'll
1362 		 * just go back and repeat.
1363 		 */
1364 		rq = task_rq_lock(p, &rf);
1365 		trace_sched_wait_task(p);
1366 		running = task_running(rq, p);
1367 		queued = task_on_rq_queued(p);
1368 		ncsw = 0;
1369 		if (!match_state || p->state == match_state)
1370 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1371 		task_rq_unlock(rq, p, &rf);
1372 
1373 		/*
1374 		 * If it changed from the expected state, bail out now.
1375 		 */
1376 		if (unlikely(!ncsw))
1377 			break;
1378 
1379 		/*
1380 		 * Was it really running after all now that we
1381 		 * checked with the proper locks actually held?
1382 		 *
1383 		 * Oops. Go back and try again..
1384 		 */
1385 		if (unlikely(running)) {
1386 			cpu_relax();
1387 			continue;
1388 		}
1389 
1390 		/*
1391 		 * It's not enough that it's not actively running,
1392 		 * it must be off the runqueue _entirely_, and not
1393 		 * preempted!
1394 		 *
1395 		 * So if it was still runnable (but just not actively
1396 		 * running right now), it's preempted, and we should
1397 		 * yield - it could be a while.
1398 		 */
1399 		if (unlikely(queued)) {
1400 			ktime_t to = NSEC_PER_SEC / HZ;
1401 
1402 			set_current_state(TASK_UNINTERRUPTIBLE);
1403 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1404 			continue;
1405 		}
1406 
1407 		/*
1408 		 * Ahh, all good. It wasn't running, and it wasn't
1409 		 * runnable, which means that it will never become
1410 		 * running in the future either. We're all done!
1411 		 */
1412 		break;
1413 	}
1414 
1415 	return ncsw;
1416 }
1417 
1418 /***
1419  * kick_process - kick a running thread to enter/exit the kernel
1420  * @p: the to-be-kicked thread
1421  *
1422  * Cause a process which is running on another CPU to enter
1423  * kernel-mode, without any delay. (to get signals handled.)
1424  *
1425  * NOTE: this function doesn't have to take the runqueue lock,
1426  * because all it wants to ensure is that the remote task enters
1427  * the kernel. If the IPI races and the task has been migrated
1428  * to another CPU then no harm is done and the purpose has been
1429  * achieved as well.
1430  */
1431 void kick_process(struct task_struct *p)
1432 {
1433 	int cpu;
1434 
1435 	preempt_disable();
1436 	cpu = task_cpu(p);
1437 	if ((cpu != smp_processor_id()) && task_curr(p))
1438 		smp_send_reschedule(cpu);
1439 	preempt_enable();
1440 }
1441 EXPORT_SYMBOL_GPL(kick_process);
1442 
1443 /*
1444  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1445  *
1446  * A few notes on cpu_active vs cpu_online:
1447  *
1448  *  - cpu_active must be a subset of cpu_online
1449  *
1450  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1451  *    see __set_cpus_allowed_ptr(). At this point the newly online
1452  *    CPU isn't yet part of the sched domains, and balancing will not
1453  *    see it.
1454  *
1455  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1456  *    avoid the load balancer to place new tasks on the to be removed
1457  *    CPU. Existing tasks will remain running there and will be taken
1458  *    off.
1459  *
1460  * This means that fallback selection must not select !active CPUs.
1461  * And can assume that any active CPU must be online. Conversely
1462  * select_task_rq() below may allow selection of !active CPUs in order
1463  * to satisfy the above rules.
1464  */
1465 static int select_fallback_rq(int cpu, struct task_struct *p)
1466 {
1467 	int nid = cpu_to_node(cpu);
1468 	const struct cpumask *nodemask = NULL;
1469 	enum { cpuset, possible, fail } state = cpuset;
1470 	int dest_cpu;
1471 
1472 	/*
1473 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1474 	 * will return -1. There is no CPU on the node, and we should
1475 	 * select the CPU on the other node.
1476 	 */
1477 	if (nid != -1) {
1478 		nodemask = cpumask_of_node(nid);
1479 
1480 		/* Look for allowed, online CPU in same node. */
1481 		for_each_cpu(dest_cpu, nodemask) {
1482 			if (!cpu_active(dest_cpu))
1483 				continue;
1484 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1485 				return dest_cpu;
1486 		}
1487 	}
1488 
1489 	for (;;) {
1490 		/* Any allowed, online CPU? */
1491 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1492 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1493 				continue;
1494 			if (!cpu_online(dest_cpu))
1495 				continue;
1496 			goto out;
1497 		}
1498 
1499 		/* No more Mr. Nice Guy. */
1500 		switch (state) {
1501 		case cpuset:
1502 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1503 				cpuset_cpus_allowed_fallback(p);
1504 				state = possible;
1505 				break;
1506 			}
1507 			/* Fall-through */
1508 		case possible:
1509 			do_set_cpus_allowed(p, cpu_possible_mask);
1510 			state = fail;
1511 			break;
1512 
1513 		case fail:
1514 			BUG();
1515 			break;
1516 		}
1517 	}
1518 
1519 out:
1520 	if (state != cpuset) {
1521 		/*
1522 		 * Don't tell them about moving exiting tasks or
1523 		 * kernel threads (both mm NULL), since they never
1524 		 * leave kernel.
1525 		 */
1526 		if (p->mm && printk_ratelimit()) {
1527 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1528 					task_pid_nr(p), p->comm, cpu);
1529 		}
1530 	}
1531 
1532 	return dest_cpu;
1533 }
1534 
1535 /*
1536  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1537  */
1538 static inline
1539 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1540 {
1541 	lockdep_assert_held(&p->pi_lock);
1542 
1543 	if (p->nr_cpus_allowed > 1)
1544 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1545 	else
1546 		cpu = cpumask_any(&p->cpus_allowed);
1547 
1548 	/*
1549 	 * In order not to call set_task_cpu() on a blocking task we need
1550 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1551 	 * CPU.
1552 	 *
1553 	 * Since this is common to all placement strategies, this lives here.
1554 	 *
1555 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1556 	 *   not worry about this generic constraint ]
1557 	 */
1558 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1559 		     !cpu_online(cpu)))
1560 		cpu = select_fallback_rq(task_cpu(p), p);
1561 
1562 	return cpu;
1563 }
1564 
1565 static void update_avg(u64 *avg, u64 sample)
1566 {
1567 	s64 diff = sample - *avg;
1568 	*avg += diff >> 3;
1569 }
1570 
1571 void sched_set_stop_task(int cpu, struct task_struct *stop)
1572 {
1573 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1574 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1575 
1576 	if (stop) {
1577 		/*
1578 		 * Make it appear like a SCHED_FIFO task, its something
1579 		 * userspace knows about and won't get confused about.
1580 		 *
1581 		 * Also, it will make PI more or less work without too
1582 		 * much confusion -- but then, stop work should not
1583 		 * rely on PI working anyway.
1584 		 */
1585 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1586 
1587 		stop->sched_class = &stop_sched_class;
1588 	}
1589 
1590 	cpu_rq(cpu)->stop = stop;
1591 
1592 	if (old_stop) {
1593 		/*
1594 		 * Reset it back to a normal scheduling class so that
1595 		 * it can die in pieces.
1596 		 */
1597 		old_stop->sched_class = &rt_sched_class;
1598 	}
1599 }
1600 
1601 #else
1602 
1603 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1604 					 const struct cpumask *new_mask, bool check)
1605 {
1606 	return set_cpus_allowed_ptr(p, new_mask);
1607 }
1608 
1609 #endif /* CONFIG_SMP */
1610 
1611 static void
1612 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1613 {
1614 	struct rq *rq;
1615 
1616 	if (!schedstat_enabled())
1617 		return;
1618 
1619 	rq = this_rq();
1620 
1621 #ifdef CONFIG_SMP
1622 	if (cpu == rq->cpu) {
1623 		schedstat_inc(rq->ttwu_local);
1624 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1625 	} else {
1626 		struct sched_domain *sd;
1627 
1628 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1629 		rcu_read_lock();
1630 		for_each_domain(rq->cpu, sd) {
1631 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1632 				schedstat_inc(sd->ttwu_wake_remote);
1633 				break;
1634 			}
1635 		}
1636 		rcu_read_unlock();
1637 	}
1638 
1639 	if (wake_flags & WF_MIGRATED)
1640 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1641 #endif /* CONFIG_SMP */
1642 
1643 	schedstat_inc(rq->ttwu_count);
1644 	schedstat_inc(p->se.statistics.nr_wakeups);
1645 
1646 	if (wake_flags & WF_SYNC)
1647 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1648 }
1649 
1650 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1651 {
1652 	activate_task(rq, p, en_flags);
1653 	p->on_rq = TASK_ON_RQ_QUEUED;
1654 
1655 	/* If a worker is waking up, notify the workqueue: */
1656 	if (p->flags & PF_WQ_WORKER)
1657 		wq_worker_waking_up(p, cpu_of(rq));
1658 }
1659 
1660 /*
1661  * Mark the task runnable and perform wakeup-preemption.
1662  */
1663 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1664 			   struct rq_flags *rf)
1665 {
1666 	check_preempt_curr(rq, p, wake_flags);
1667 	p->state = TASK_RUNNING;
1668 	trace_sched_wakeup(p);
1669 
1670 #ifdef CONFIG_SMP
1671 	if (p->sched_class->task_woken) {
1672 		/*
1673 		 * Our task @p is fully woken up and running; so its safe to
1674 		 * drop the rq->lock, hereafter rq is only used for statistics.
1675 		 */
1676 		rq_unpin_lock(rq, rf);
1677 		p->sched_class->task_woken(rq, p);
1678 		rq_repin_lock(rq, rf);
1679 	}
1680 
1681 	if (rq->idle_stamp) {
1682 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1683 		u64 max = 2*rq->max_idle_balance_cost;
1684 
1685 		update_avg(&rq->avg_idle, delta);
1686 
1687 		if (rq->avg_idle > max)
1688 			rq->avg_idle = max;
1689 
1690 		rq->idle_stamp = 0;
1691 	}
1692 #endif
1693 }
1694 
1695 static void
1696 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1697 		 struct rq_flags *rf)
1698 {
1699 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1700 
1701 	lockdep_assert_held(&rq->lock);
1702 
1703 #ifdef CONFIG_SMP
1704 	if (p->sched_contributes_to_load)
1705 		rq->nr_uninterruptible--;
1706 
1707 	if (wake_flags & WF_MIGRATED)
1708 		en_flags |= ENQUEUE_MIGRATED;
1709 #endif
1710 
1711 	ttwu_activate(rq, p, en_flags);
1712 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1713 }
1714 
1715 /*
1716  * Called in case the task @p isn't fully descheduled from its runqueue,
1717  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1718  * since all we need to do is flip p->state to TASK_RUNNING, since
1719  * the task is still ->on_rq.
1720  */
1721 static int ttwu_remote(struct task_struct *p, int wake_flags)
1722 {
1723 	struct rq_flags rf;
1724 	struct rq *rq;
1725 	int ret = 0;
1726 
1727 	rq = __task_rq_lock(p, &rf);
1728 	if (task_on_rq_queued(p)) {
1729 		/* check_preempt_curr() may use rq clock */
1730 		update_rq_clock(rq);
1731 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1732 		ret = 1;
1733 	}
1734 	__task_rq_unlock(rq, &rf);
1735 
1736 	return ret;
1737 }
1738 
1739 #ifdef CONFIG_SMP
1740 void sched_ttwu_pending(void)
1741 {
1742 	struct rq *rq = this_rq();
1743 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1744 	struct task_struct *p, *t;
1745 	struct rq_flags rf;
1746 
1747 	if (!llist)
1748 		return;
1749 
1750 	rq_lock_irqsave(rq, &rf);
1751 	update_rq_clock(rq);
1752 
1753 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1754 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1755 
1756 	rq_unlock_irqrestore(rq, &rf);
1757 }
1758 
1759 void scheduler_ipi(void)
1760 {
1761 	/*
1762 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1763 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1764 	 * this IPI.
1765 	 */
1766 	preempt_fold_need_resched();
1767 
1768 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1769 		return;
1770 
1771 	/*
1772 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1773 	 * traditionally all their work was done from the interrupt return
1774 	 * path. Now that we actually do some work, we need to make sure
1775 	 * we do call them.
1776 	 *
1777 	 * Some archs already do call them, luckily irq_enter/exit nest
1778 	 * properly.
1779 	 *
1780 	 * Arguably we should visit all archs and update all handlers,
1781 	 * however a fair share of IPIs are still resched only so this would
1782 	 * somewhat pessimize the simple resched case.
1783 	 */
1784 	irq_enter();
1785 	sched_ttwu_pending();
1786 
1787 	/*
1788 	 * Check if someone kicked us for doing the nohz idle load balance.
1789 	 */
1790 	if (unlikely(got_nohz_idle_kick())) {
1791 		this_rq()->idle_balance = 1;
1792 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1793 	}
1794 	irq_exit();
1795 }
1796 
1797 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1798 {
1799 	struct rq *rq = cpu_rq(cpu);
1800 
1801 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1802 
1803 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1804 		if (!set_nr_if_polling(rq->idle))
1805 			smp_send_reschedule(cpu);
1806 		else
1807 			trace_sched_wake_idle_without_ipi(cpu);
1808 	}
1809 }
1810 
1811 void wake_up_if_idle(int cpu)
1812 {
1813 	struct rq *rq = cpu_rq(cpu);
1814 	struct rq_flags rf;
1815 
1816 	rcu_read_lock();
1817 
1818 	if (!is_idle_task(rcu_dereference(rq->curr)))
1819 		goto out;
1820 
1821 	if (set_nr_if_polling(rq->idle)) {
1822 		trace_sched_wake_idle_without_ipi(cpu);
1823 	} else {
1824 		rq_lock_irqsave(rq, &rf);
1825 		if (is_idle_task(rq->curr))
1826 			smp_send_reschedule(cpu);
1827 		/* Else CPU is not idle, do nothing here: */
1828 		rq_unlock_irqrestore(rq, &rf);
1829 	}
1830 
1831 out:
1832 	rcu_read_unlock();
1833 }
1834 
1835 bool cpus_share_cache(int this_cpu, int that_cpu)
1836 {
1837 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1838 }
1839 #endif /* CONFIG_SMP */
1840 
1841 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1842 {
1843 	struct rq *rq = cpu_rq(cpu);
1844 	struct rq_flags rf;
1845 
1846 #if defined(CONFIG_SMP)
1847 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1848 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1849 		ttwu_queue_remote(p, cpu, wake_flags);
1850 		return;
1851 	}
1852 #endif
1853 
1854 	rq_lock(rq, &rf);
1855 	update_rq_clock(rq);
1856 	ttwu_do_activate(rq, p, wake_flags, &rf);
1857 	rq_unlock(rq, &rf);
1858 }
1859 
1860 /*
1861  * Notes on Program-Order guarantees on SMP systems.
1862  *
1863  *  MIGRATION
1864  *
1865  * The basic program-order guarantee on SMP systems is that when a task [t]
1866  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1867  * execution on its new CPU [c1].
1868  *
1869  * For migration (of runnable tasks) this is provided by the following means:
1870  *
1871  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1872  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1873  *     rq(c1)->lock (if not at the same time, then in that order).
1874  *  C) LOCK of the rq(c1)->lock scheduling in task
1875  *
1876  * Transitivity guarantees that B happens after A and C after B.
1877  * Note: we only require RCpc transitivity.
1878  * Note: the CPU doing B need not be c0 or c1
1879  *
1880  * Example:
1881  *
1882  *   CPU0            CPU1            CPU2
1883  *
1884  *   LOCK rq(0)->lock
1885  *   sched-out X
1886  *   sched-in Y
1887  *   UNLOCK rq(0)->lock
1888  *
1889  *                                   LOCK rq(0)->lock // orders against CPU0
1890  *                                   dequeue X
1891  *                                   UNLOCK rq(0)->lock
1892  *
1893  *                                   LOCK rq(1)->lock
1894  *                                   enqueue X
1895  *                                   UNLOCK rq(1)->lock
1896  *
1897  *                   LOCK rq(1)->lock // orders against CPU2
1898  *                   sched-out Z
1899  *                   sched-in X
1900  *                   UNLOCK rq(1)->lock
1901  *
1902  *
1903  *  BLOCKING -- aka. SLEEP + WAKEUP
1904  *
1905  * For blocking we (obviously) need to provide the same guarantee as for
1906  * migration. However the means are completely different as there is no lock
1907  * chain to provide order. Instead we do:
1908  *
1909  *   1) smp_store_release(X->on_cpu, 0)
1910  *   2) smp_cond_load_acquire(!X->on_cpu)
1911  *
1912  * Example:
1913  *
1914  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1915  *
1916  *   LOCK rq(0)->lock LOCK X->pi_lock
1917  *   dequeue X
1918  *   sched-out X
1919  *   smp_store_release(X->on_cpu, 0);
1920  *
1921  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1922  *                    X->state = WAKING
1923  *                    set_task_cpu(X,2)
1924  *
1925  *                    LOCK rq(2)->lock
1926  *                    enqueue X
1927  *                    X->state = RUNNING
1928  *                    UNLOCK rq(2)->lock
1929  *
1930  *                                          LOCK rq(2)->lock // orders against CPU1
1931  *                                          sched-out Z
1932  *                                          sched-in X
1933  *                                          UNLOCK rq(2)->lock
1934  *
1935  *                    UNLOCK X->pi_lock
1936  *   UNLOCK rq(0)->lock
1937  *
1938  *
1939  * However; for wakeups there is a second guarantee we must provide, namely we
1940  * must observe the state that lead to our wakeup. That is, not only must our
1941  * task observe its own prior state, it must also observe the stores prior to
1942  * its wakeup.
1943  *
1944  * This means that any means of doing remote wakeups must order the CPU doing
1945  * the wakeup against the CPU the task is going to end up running on. This,
1946  * however, is already required for the regular Program-Order guarantee above,
1947  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1948  *
1949  */
1950 
1951 /**
1952  * try_to_wake_up - wake up a thread
1953  * @p: the thread to be awakened
1954  * @state: the mask of task states that can be woken
1955  * @wake_flags: wake modifier flags (WF_*)
1956  *
1957  * If (@state & @p->state) @p->state = TASK_RUNNING.
1958  *
1959  * If the task was not queued/runnable, also place it back on a runqueue.
1960  *
1961  * Atomic against schedule() which would dequeue a task, also see
1962  * set_current_state().
1963  *
1964  * Return: %true if @p->state changes (an actual wakeup was done),
1965  *	   %false otherwise.
1966  */
1967 static int
1968 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1969 {
1970 	unsigned long flags;
1971 	int cpu, success = 0;
1972 
1973 	/*
1974 	 * If we are going to wake up a thread waiting for CONDITION we
1975 	 * need to ensure that CONDITION=1 done by the caller can not be
1976 	 * reordered with p->state check below. This pairs with mb() in
1977 	 * set_current_state() the waiting thread does.
1978 	 */
1979 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1980 	smp_mb__after_spinlock();
1981 	if (!(p->state & state))
1982 		goto out;
1983 
1984 	trace_sched_waking(p);
1985 
1986 	/* We're going to change ->state: */
1987 	success = 1;
1988 	cpu = task_cpu(p);
1989 
1990 	/*
1991 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1992 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1993 	 * in smp_cond_load_acquire() below.
1994 	 *
1995 	 * sched_ttwu_pending()                 try_to_wake_up()
1996 	 *   [S] p->on_rq = 1;                  [L] P->state
1997 	 *       UNLOCK rq->lock  -----.
1998 	 *                              \
1999 	 *				 +---   RMB
2000 	 * schedule()                   /
2001 	 *       LOCK rq->lock    -----'
2002 	 *       UNLOCK rq->lock
2003 	 *
2004 	 * [task p]
2005 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2006 	 *
2007 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2008 	 * last wakeup of our task and the schedule that got our task
2009 	 * current.
2010 	 */
2011 	smp_rmb();
2012 	if (p->on_rq && ttwu_remote(p, wake_flags))
2013 		goto stat;
2014 
2015 #ifdef CONFIG_SMP
2016 	/*
2017 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2018 	 * possible to, falsely, observe p->on_cpu == 0.
2019 	 *
2020 	 * One must be running (->on_cpu == 1) in order to remove oneself
2021 	 * from the runqueue.
2022 	 *
2023 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2024 	 *      UNLOCK rq->lock
2025 	 *			RMB
2026 	 *      LOCK   rq->lock
2027 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2028 	 *
2029 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2030 	 * from the consecutive calls to schedule(); the first switching to our
2031 	 * task, the second putting it to sleep.
2032 	 */
2033 	smp_rmb();
2034 
2035 	/*
2036 	 * If the owning (remote) CPU is still in the middle of schedule() with
2037 	 * this task as prev, wait until its done referencing the task.
2038 	 *
2039 	 * Pairs with the smp_store_release() in finish_lock_switch().
2040 	 *
2041 	 * This ensures that tasks getting woken will be fully ordered against
2042 	 * their previous state and preserve Program Order.
2043 	 */
2044 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2045 
2046 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2047 	p->state = TASK_WAKING;
2048 
2049 	if (p->in_iowait) {
2050 		delayacct_blkio_end();
2051 		atomic_dec(&task_rq(p)->nr_iowait);
2052 	}
2053 
2054 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2055 	if (task_cpu(p) != cpu) {
2056 		wake_flags |= WF_MIGRATED;
2057 		set_task_cpu(p, cpu);
2058 	}
2059 
2060 #else /* CONFIG_SMP */
2061 
2062 	if (p->in_iowait) {
2063 		delayacct_blkio_end();
2064 		atomic_dec(&task_rq(p)->nr_iowait);
2065 	}
2066 
2067 #endif /* CONFIG_SMP */
2068 
2069 	ttwu_queue(p, cpu, wake_flags);
2070 stat:
2071 	ttwu_stat(p, cpu, wake_flags);
2072 out:
2073 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2074 
2075 	return success;
2076 }
2077 
2078 /**
2079  * try_to_wake_up_local - try to wake up a local task with rq lock held
2080  * @p: the thread to be awakened
2081  * @rf: request-queue flags for pinning
2082  *
2083  * Put @p on the run-queue if it's not already there. The caller must
2084  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2085  * the current task.
2086  */
2087 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2088 {
2089 	struct rq *rq = task_rq(p);
2090 
2091 	if (WARN_ON_ONCE(rq != this_rq()) ||
2092 	    WARN_ON_ONCE(p == current))
2093 		return;
2094 
2095 	lockdep_assert_held(&rq->lock);
2096 
2097 	if (!raw_spin_trylock(&p->pi_lock)) {
2098 		/*
2099 		 * This is OK, because current is on_cpu, which avoids it being
2100 		 * picked for load-balance and preemption/IRQs are still
2101 		 * disabled avoiding further scheduler activity on it and we've
2102 		 * not yet picked a replacement task.
2103 		 */
2104 		rq_unlock(rq, rf);
2105 		raw_spin_lock(&p->pi_lock);
2106 		rq_relock(rq, rf);
2107 	}
2108 
2109 	if (!(p->state & TASK_NORMAL))
2110 		goto out;
2111 
2112 	trace_sched_waking(p);
2113 
2114 	if (!task_on_rq_queued(p)) {
2115 		if (p->in_iowait) {
2116 			delayacct_blkio_end();
2117 			atomic_dec(&rq->nr_iowait);
2118 		}
2119 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2120 	}
2121 
2122 	ttwu_do_wakeup(rq, p, 0, rf);
2123 	ttwu_stat(p, smp_processor_id(), 0);
2124 out:
2125 	raw_spin_unlock(&p->pi_lock);
2126 }
2127 
2128 /**
2129  * wake_up_process - Wake up a specific process
2130  * @p: The process to be woken up.
2131  *
2132  * Attempt to wake up the nominated process and move it to the set of runnable
2133  * processes.
2134  *
2135  * Return: 1 if the process was woken up, 0 if it was already running.
2136  *
2137  * It may be assumed that this function implies a write memory barrier before
2138  * changing the task state if and only if any tasks are woken up.
2139  */
2140 int wake_up_process(struct task_struct *p)
2141 {
2142 	return try_to_wake_up(p, TASK_NORMAL, 0);
2143 }
2144 EXPORT_SYMBOL(wake_up_process);
2145 
2146 int wake_up_state(struct task_struct *p, unsigned int state)
2147 {
2148 	return try_to_wake_up(p, state, 0);
2149 }
2150 
2151 /*
2152  * Perform scheduler related setup for a newly forked process p.
2153  * p is forked by current.
2154  *
2155  * __sched_fork() is basic setup used by init_idle() too:
2156  */
2157 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2158 {
2159 	p->on_rq			= 0;
2160 
2161 	p->se.on_rq			= 0;
2162 	p->se.exec_start		= 0;
2163 	p->se.sum_exec_runtime		= 0;
2164 	p->se.prev_sum_exec_runtime	= 0;
2165 	p->se.nr_migrations		= 0;
2166 	p->se.vruntime			= 0;
2167 	INIT_LIST_HEAD(&p->se.group_node);
2168 
2169 #ifdef CONFIG_FAIR_GROUP_SCHED
2170 	p->se.cfs_rq			= NULL;
2171 #endif
2172 
2173 #ifdef CONFIG_SCHEDSTATS
2174 	/* Even if schedstat is disabled, there should not be garbage */
2175 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2176 #endif
2177 
2178 	RB_CLEAR_NODE(&p->dl.rb_node);
2179 	init_dl_task_timer(&p->dl);
2180 	init_dl_inactive_task_timer(&p->dl);
2181 	__dl_clear_params(p);
2182 
2183 	INIT_LIST_HEAD(&p->rt.run_list);
2184 	p->rt.timeout		= 0;
2185 	p->rt.time_slice	= sched_rr_timeslice;
2186 	p->rt.on_rq		= 0;
2187 	p->rt.on_list		= 0;
2188 
2189 #ifdef CONFIG_PREEMPT_NOTIFIERS
2190 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2191 #endif
2192 
2193 #ifdef CONFIG_NUMA_BALANCING
2194 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2195 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2196 		p->mm->numa_scan_seq = 0;
2197 	}
2198 
2199 	if (clone_flags & CLONE_VM)
2200 		p->numa_preferred_nid = current->numa_preferred_nid;
2201 	else
2202 		p->numa_preferred_nid = -1;
2203 
2204 	p->node_stamp = 0ULL;
2205 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2206 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2207 	p->numa_work.next = &p->numa_work;
2208 	p->numa_faults = NULL;
2209 	p->last_task_numa_placement = 0;
2210 	p->last_sum_exec_runtime = 0;
2211 
2212 	p->numa_group = NULL;
2213 #endif /* CONFIG_NUMA_BALANCING */
2214 }
2215 
2216 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2217 
2218 #ifdef CONFIG_NUMA_BALANCING
2219 
2220 void set_numabalancing_state(bool enabled)
2221 {
2222 	if (enabled)
2223 		static_branch_enable(&sched_numa_balancing);
2224 	else
2225 		static_branch_disable(&sched_numa_balancing);
2226 }
2227 
2228 #ifdef CONFIG_PROC_SYSCTL
2229 int sysctl_numa_balancing(struct ctl_table *table, int write,
2230 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2231 {
2232 	struct ctl_table t;
2233 	int err;
2234 	int state = static_branch_likely(&sched_numa_balancing);
2235 
2236 	if (write && !capable(CAP_SYS_ADMIN))
2237 		return -EPERM;
2238 
2239 	t = *table;
2240 	t.data = &state;
2241 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2242 	if (err < 0)
2243 		return err;
2244 	if (write)
2245 		set_numabalancing_state(state);
2246 	return err;
2247 }
2248 #endif
2249 #endif
2250 
2251 #ifdef CONFIG_SCHEDSTATS
2252 
2253 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2254 static bool __initdata __sched_schedstats = false;
2255 
2256 static void set_schedstats(bool enabled)
2257 {
2258 	if (enabled)
2259 		static_branch_enable(&sched_schedstats);
2260 	else
2261 		static_branch_disable(&sched_schedstats);
2262 }
2263 
2264 void force_schedstat_enabled(void)
2265 {
2266 	if (!schedstat_enabled()) {
2267 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2268 		static_branch_enable(&sched_schedstats);
2269 	}
2270 }
2271 
2272 static int __init setup_schedstats(char *str)
2273 {
2274 	int ret = 0;
2275 	if (!str)
2276 		goto out;
2277 
2278 	/*
2279 	 * This code is called before jump labels have been set up, so we can't
2280 	 * change the static branch directly just yet.  Instead set a temporary
2281 	 * variable so init_schedstats() can do it later.
2282 	 */
2283 	if (!strcmp(str, "enable")) {
2284 		__sched_schedstats = true;
2285 		ret = 1;
2286 	} else if (!strcmp(str, "disable")) {
2287 		__sched_schedstats = false;
2288 		ret = 1;
2289 	}
2290 out:
2291 	if (!ret)
2292 		pr_warn("Unable to parse schedstats=\n");
2293 
2294 	return ret;
2295 }
2296 __setup("schedstats=", setup_schedstats);
2297 
2298 static void __init init_schedstats(void)
2299 {
2300 	set_schedstats(__sched_schedstats);
2301 }
2302 
2303 #ifdef CONFIG_PROC_SYSCTL
2304 int sysctl_schedstats(struct ctl_table *table, int write,
2305 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2306 {
2307 	struct ctl_table t;
2308 	int err;
2309 	int state = static_branch_likely(&sched_schedstats);
2310 
2311 	if (write && !capable(CAP_SYS_ADMIN))
2312 		return -EPERM;
2313 
2314 	t = *table;
2315 	t.data = &state;
2316 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2317 	if (err < 0)
2318 		return err;
2319 	if (write)
2320 		set_schedstats(state);
2321 	return err;
2322 }
2323 #endif /* CONFIG_PROC_SYSCTL */
2324 #else  /* !CONFIG_SCHEDSTATS */
2325 static inline void init_schedstats(void) {}
2326 #endif /* CONFIG_SCHEDSTATS */
2327 
2328 /*
2329  * fork()/clone()-time setup:
2330  */
2331 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2332 {
2333 	unsigned long flags;
2334 	int cpu = get_cpu();
2335 
2336 	__sched_fork(clone_flags, p);
2337 	/*
2338 	 * We mark the process as NEW here. This guarantees that
2339 	 * nobody will actually run it, and a signal or other external
2340 	 * event cannot wake it up and insert it on the runqueue either.
2341 	 */
2342 	p->state = TASK_NEW;
2343 
2344 	/*
2345 	 * Make sure we do not leak PI boosting priority to the child.
2346 	 */
2347 	p->prio = current->normal_prio;
2348 
2349 	/*
2350 	 * Revert to default priority/policy on fork if requested.
2351 	 */
2352 	if (unlikely(p->sched_reset_on_fork)) {
2353 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2354 			p->policy = SCHED_NORMAL;
2355 			p->static_prio = NICE_TO_PRIO(0);
2356 			p->rt_priority = 0;
2357 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2358 			p->static_prio = NICE_TO_PRIO(0);
2359 
2360 		p->prio = p->normal_prio = __normal_prio(p);
2361 		set_load_weight(p);
2362 
2363 		/*
2364 		 * We don't need the reset flag anymore after the fork. It has
2365 		 * fulfilled its duty:
2366 		 */
2367 		p->sched_reset_on_fork = 0;
2368 	}
2369 
2370 	if (dl_prio(p->prio)) {
2371 		put_cpu();
2372 		return -EAGAIN;
2373 	} else if (rt_prio(p->prio)) {
2374 		p->sched_class = &rt_sched_class;
2375 	} else {
2376 		p->sched_class = &fair_sched_class;
2377 	}
2378 
2379 	init_entity_runnable_average(&p->se);
2380 
2381 	/*
2382 	 * The child is not yet in the pid-hash so no cgroup attach races,
2383 	 * and the cgroup is pinned to this child due to cgroup_fork()
2384 	 * is ran before sched_fork().
2385 	 *
2386 	 * Silence PROVE_RCU.
2387 	 */
2388 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2389 	/*
2390 	 * We're setting the CPU for the first time, we don't migrate,
2391 	 * so use __set_task_cpu().
2392 	 */
2393 	__set_task_cpu(p, cpu);
2394 	if (p->sched_class->task_fork)
2395 		p->sched_class->task_fork(p);
2396 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397 
2398 #ifdef CONFIG_SCHED_INFO
2399 	if (likely(sched_info_on()))
2400 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP)
2403 	p->on_cpu = 0;
2404 #endif
2405 	init_task_preempt_count(p);
2406 #ifdef CONFIG_SMP
2407 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409 #endif
2410 
2411 	put_cpu();
2412 	return 0;
2413 }
2414 
2415 unsigned long to_ratio(u64 period, u64 runtime)
2416 {
2417 	if (runtime == RUNTIME_INF)
2418 		return BW_UNIT;
2419 
2420 	/*
2421 	 * Doing this here saves a lot of checks in all
2422 	 * the calling paths, and returning zero seems
2423 	 * safe for them anyway.
2424 	 */
2425 	if (period == 0)
2426 		return 0;
2427 
2428 	return div64_u64(runtime << BW_SHIFT, period);
2429 }
2430 
2431 /*
2432  * wake_up_new_task - wake up a newly created task for the first time.
2433  *
2434  * This function will do some initial scheduler statistics housekeeping
2435  * that must be done for every newly created context, then puts the task
2436  * on the runqueue and wakes it.
2437  */
2438 void wake_up_new_task(struct task_struct *p)
2439 {
2440 	struct rq_flags rf;
2441 	struct rq *rq;
2442 
2443 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2444 	p->state = TASK_RUNNING;
2445 #ifdef CONFIG_SMP
2446 	/*
2447 	 * Fork balancing, do it here and not earlier because:
2448 	 *  - cpus_allowed can change in the fork path
2449 	 *  - any previously selected CPU might disappear through hotplug
2450 	 *
2451 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2452 	 * as we're not fully set-up yet.
2453 	 */
2454 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2455 #endif
2456 	rq = __task_rq_lock(p, &rf);
2457 	update_rq_clock(rq);
2458 	post_init_entity_util_avg(&p->se);
2459 
2460 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2461 	p->on_rq = TASK_ON_RQ_QUEUED;
2462 	trace_sched_wakeup_new(p);
2463 	check_preempt_curr(rq, p, WF_FORK);
2464 #ifdef CONFIG_SMP
2465 	if (p->sched_class->task_woken) {
2466 		/*
2467 		 * Nothing relies on rq->lock after this, so its fine to
2468 		 * drop it.
2469 		 */
2470 		rq_unpin_lock(rq, &rf);
2471 		p->sched_class->task_woken(rq, p);
2472 		rq_repin_lock(rq, &rf);
2473 	}
2474 #endif
2475 	task_rq_unlock(rq, p, &rf);
2476 }
2477 
2478 #ifdef CONFIG_PREEMPT_NOTIFIERS
2479 
2480 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2481 
2482 void preempt_notifier_inc(void)
2483 {
2484 	static_key_slow_inc(&preempt_notifier_key);
2485 }
2486 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2487 
2488 void preempt_notifier_dec(void)
2489 {
2490 	static_key_slow_dec(&preempt_notifier_key);
2491 }
2492 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2493 
2494 /**
2495  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2496  * @notifier: notifier struct to register
2497  */
2498 void preempt_notifier_register(struct preempt_notifier *notifier)
2499 {
2500 	if (!static_key_false(&preempt_notifier_key))
2501 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2502 
2503 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2504 }
2505 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2506 
2507 /**
2508  * preempt_notifier_unregister - no longer interested in preemption notifications
2509  * @notifier: notifier struct to unregister
2510  *
2511  * This is *not* safe to call from within a preemption notifier.
2512  */
2513 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2514 {
2515 	hlist_del(&notifier->link);
2516 }
2517 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2518 
2519 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2520 {
2521 	struct preempt_notifier *notifier;
2522 
2523 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2524 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2525 }
2526 
2527 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2528 {
2529 	if (static_key_false(&preempt_notifier_key))
2530 		__fire_sched_in_preempt_notifiers(curr);
2531 }
2532 
2533 static void
2534 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 				   struct task_struct *next)
2536 {
2537 	struct preempt_notifier *notifier;
2538 
2539 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2540 		notifier->ops->sched_out(notifier, next);
2541 }
2542 
2543 static __always_inline void
2544 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 				 struct task_struct *next)
2546 {
2547 	if (static_key_false(&preempt_notifier_key))
2548 		__fire_sched_out_preempt_notifiers(curr, next);
2549 }
2550 
2551 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2552 
2553 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2554 {
2555 }
2556 
2557 static inline void
2558 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2559 				 struct task_struct *next)
2560 {
2561 }
2562 
2563 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2564 
2565 /**
2566  * prepare_task_switch - prepare to switch tasks
2567  * @rq: the runqueue preparing to switch
2568  * @prev: the current task that is being switched out
2569  * @next: the task we are going to switch to.
2570  *
2571  * This is called with the rq lock held and interrupts off. It must
2572  * be paired with a subsequent finish_task_switch after the context
2573  * switch.
2574  *
2575  * prepare_task_switch sets up locking and calls architecture specific
2576  * hooks.
2577  */
2578 static inline void
2579 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2580 		    struct task_struct *next)
2581 {
2582 	sched_info_switch(rq, prev, next);
2583 	perf_event_task_sched_out(prev, next);
2584 	fire_sched_out_preempt_notifiers(prev, next);
2585 	prepare_lock_switch(rq, next);
2586 	prepare_arch_switch(next);
2587 }
2588 
2589 /**
2590  * finish_task_switch - clean up after a task-switch
2591  * @prev: the thread we just switched away from.
2592  *
2593  * finish_task_switch must be called after the context switch, paired
2594  * with a prepare_task_switch call before the context switch.
2595  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2596  * and do any other architecture-specific cleanup actions.
2597  *
2598  * Note that we may have delayed dropping an mm in context_switch(). If
2599  * so, we finish that here outside of the runqueue lock. (Doing it
2600  * with the lock held can cause deadlocks; see schedule() for
2601  * details.)
2602  *
2603  * The context switch have flipped the stack from under us and restored the
2604  * local variables which were saved when this task called schedule() in the
2605  * past. prev == current is still correct but we need to recalculate this_rq
2606  * because prev may have moved to another CPU.
2607  */
2608 static struct rq *finish_task_switch(struct task_struct *prev)
2609 	__releases(rq->lock)
2610 {
2611 	struct rq *rq = this_rq();
2612 	struct mm_struct *mm = rq->prev_mm;
2613 	long prev_state;
2614 
2615 	/*
2616 	 * The previous task will have left us with a preempt_count of 2
2617 	 * because it left us after:
2618 	 *
2619 	 *	schedule()
2620 	 *	  preempt_disable();			// 1
2621 	 *	  __schedule()
2622 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2623 	 *
2624 	 * Also, see FORK_PREEMPT_COUNT.
2625 	 */
2626 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2627 		      "corrupted preempt_count: %s/%d/0x%x\n",
2628 		      current->comm, current->pid, preempt_count()))
2629 		preempt_count_set(FORK_PREEMPT_COUNT);
2630 
2631 	rq->prev_mm = NULL;
2632 
2633 	/*
2634 	 * A task struct has one reference for the use as "current".
2635 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2636 	 * schedule one last time. The schedule call will never return, and
2637 	 * the scheduled task must drop that reference.
2638 	 *
2639 	 * We must observe prev->state before clearing prev->on_cpu (in
2640 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2641 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2642 	 * transition, resulting in a double drop.
2643 	 */
2644 	prev_state = prev->state;
2645 	vtime_task_switch(prev);
2646 	perf_event_task_sched_in(prev, current);
2647 	/*
2648 	 * The membarrier system call requires a full memory barrier
2649 	 * after storing to rq->curr, before going back to user-space.
2650 	 *
2651 	 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2652 	 * up adding a full barrier to switch_mm(), or we should figure
2653 	 * out if a smp_mb__after_unlock_lock is really the proper API
2654 	 * to use.
2655 	 */
2656 	smp_mb__after_unlock_lock();
2657 	finish_lock_switch(rq, prev);
2658 	finish_arch_post_lock_switch();
2659 
2660 	fire_sched_in_preempt_notifiers(current);
2661 	if (mm)
2662 		mmdrop(mm);
2663 	if (unlikely(prev_state == TASK_DEAD)) {
2664 		if (prev->sched_class->task_dead)
2665 			prev->sched_class->task_dead(prev);
2666 
2667 		/*
2668 		 * Remove function-return probe instances associated with this
2669 		 * task and put them back on the free list.
2670 		 */
2671 		kprobe_flush_task(prev);
2672 
2673 		/* Task is done with its stack. */
2674 		put_task_stack(prev);
2675 
2676 		put_task_struct(prev);
2677 	}
2678 
2679 	tick_nohz_task_switch();
2680 	return rq;
2681 }
2682 
2683 #ifdef CONFIG_SMP
2684 
2685 /* rq->lock is NOT held, but preemption is disabled */
2686 static void __balance_callback(struct rq *rq)
2687 {
2688 	struct callback_head *head, *next;
2689 	void (*func)(struct rq *rq);
2690 	unsigned long flags;
2691 
2692 	raw_spin_lock_irqsave(&rq->lock, flags);
2693 	head = rq->balance_callback;
2694 	rq->balance_callback = NULL;
2695 	while (head) {
2696 		func = (void (*)(struct rq *))head->func;
2697 		next = head->next;
2698 		head->next = NULL;
2699 		head = next;
2700 
2701 		func(rq);
2702 	}
2703 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2704 }
2705 
2706 static inline void balance_callback(struct rq *rq)
2707 {
2708 	if (unlikely(rq->balance_callback))
2709 		__balance_callback(rq);
2710 }
2711 
2712 #else
2713 
2714 static inline void balance_callback(struct rq *rq)
2715 {
2716 }
2717 
2718 #endif
2719 
2720 /**
2721  * schedule_tail - first thing a freshly forked thread must call.
2722  * @prev: the thread we just switched away from.
2723  */
2724 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2725 	__releases(rq->lock)
2726 {
2727 	struct rq *rq;
2728 
2729 	/*
2730 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2731 	 * finish_task_switch() for details.
2732 	 *
2733 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2734 	 * and the preempt_enable() will end up enabling preemption (on
2735 	 * PREEMPT_COUNT kernels).
2736 	 */
2737 
2738 	rq = finish_task_switch(prev);
2739 	balance_callback(rq);
2740 	preempt_enable();
2741 
2742 	if (current->set_child_tid)
2743 		put_user(task_pid_vnr(current), current->set_child_tid);
2744 }
2745 
2746 /*
2747  * context_switch - switch to the new MM and the new thread's register state.
2748  */
2749 static __always_inline struct rq *
2750 context_switch(struct rq *rq, struct task_struct *prev,
2751 	       struct task_struct *next, struct rq_flags *rf)
2752 {
2753 	struct mm_struct *mm, *oldmm;
2754 
2755 	prepare_task_switch(rq, prev, next);
2756 
2757 	mm = next->mm;
2758 	oldmm = prev->active_mm;
2759 	/*
2760 	 * For paravirt, this is coupled with an exit in switch_to to
2761 	 * combine the page table reload and the switch backend into
2762 	 * one hypercall.
2763 	 */
2764 	arch_start_context_switch(prev);
2765 
2766 	if (!mm) {
2767 		next->active_mm = oldmm;
2768 		mmgrab(oldmm);
2769 		enter_lazy_tlb(oldmm, next);
2770 	} else
2771 		switch_mm_irqs_off(oldmm, mm, next);
2772 
2773 	if (!prev->mm) {
2774 		prev->active_mm = NULL;
2775 		rq->prev_mm = oldmm;
2776 	}
2777 
2778 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2779 
2780 	/*
2781 	 * Since the runqueue lock will be released by the next
2782 	 * task (which is an invalid locking op but in the case
2783 	 * of the scheduler it's an obvious special-case), so we
2784 	 * do an early lockdep release here:
2785 	 */
2786 	rq_unpin_lock(rq, rf);
2787 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2788 
2789 	/* Here we just switch the register state and the stack. */
2790 	switch_to(prev, next, prev);
2791 	barrier();
2792 
2793 	return finish_task_switch(prev);
2794 }
2795 
2796 /*
2797  * nr_running and nr_context_switches:
2798  *
2799  * externally visible scheduler statistics: current number of runnable
2800  * threads, total number of context switches performed since bootup.
2801  */
2802 unsigned long nr_running(void)
2803 {
2804 	unsigned long i, sum = 0;
2805 
2806 	for_each_online_cpu(i)
2807 		sum += cpu_rq(i)->nr_running;
2808 
2809 	return sum;
2810 }
2811 
2812 /*
2813  * Check if only the current task is running on the CPU.
2814  *
2815  * Caution: this function does not check that the caller has disabled
2816  * preemption, thus the result might have a time-of-check-to-time-of-use
2817  * race.  The caller is responsible to use it correctly, for example:
2818  *
2819  * - from a non-preemptable section (of course)
2820  *
2821  * - from a thread that is bound to a single CPU
2822  *
2823  * - in a loop with very short iterations (e.g. a polling loop)
2824  */
2825 bool single_task_running(void)
2826 {
2827 	return raw_rq()->nr_running == 1;
2828 }
2829 EXPORT_SYMBOL(single_task_running);
2830 
2831 unsigned long long nr_context_switches(void)
2832 {
2833 	int i;
2834 	unsigned long long sum = 0;
2835 
2836 	for_each_possible_cpu(i)
2837 		sum += cpu_rq(i)->nr_switches;
2838 
2839 	return sum;
2840 }
2841 
2842 /*
2843  * IO-wait accounting, and how its mostly bollocks (on SMP).
2844  *
2845  * The idea behind IO-wait account is to account the idle time that we could
2846  * have spend running if it were not for IO. That is, if we were to improve the
2847  * storage performance, we'd have a proportional reduction in IO-wait time.
2848  *
2849  * This all works nicely on UP, where, when a task blocks on IO, we account
2850  * idle time as IO-wait, because if the storage were faster, it could've been
2851  * running and we'd not be idle.
2852  *
2853  * This has been extended to SMP, by doing the same for each CPU. This however
2854  * is broken.
2855  *
2856  * Imagine for instance the case where two tasks block on one CPU, only the one
2857  * CPU will have IO-wait accounted, while the other has regular idle. Even
2858  * though, if the storage were faster, both could've ran at the same time,
2859  * utilising both CPUs.
2860  *
2861  * This means, that when looking globally, the current IO-wait accounting on
2862  * SMP is a lower bound, by reason of under accounting.
2863  *
2864  * Worse, since the numbers are provided per CPU, they are sometimes
2865  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2866  * associated with any one particular CPU, it can wake to another CPU than it
2867  * blocked on. This means the per CPU IO-wait number is meaningless.
2868  *
2869  * Task CPU affinities can make all that even more 'interesting'.
2870  */
2871 
2872 unsigned long nr_iowait(void)
2873 {
2874 	unsigned long i, sum = 0;
2875 
2876 	for_each_possible_cpu(i)
2877 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2878 
2879 	return sum;
2880 }
2881 
2882 /*
2883  * Consumers of these two interfaces, like for example the cpufreq menu
2884  * governor are using nonsensical data. Boosting frequency for a CPU that has
2885  * IO-wait which might not even end up running the task when it does become
2886  * runnable.
2887  */
2888 
2889 unsigned long nr_iowait_cpu(int cpu)
2890 {
2891 	struct rq *this = cpu_rq(cpu);
2892 	return atomic_read(&this->nr_iowait);
2893 }
2894 
2895 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2896 {
2897 	struct rq *rq = this_rq();
2898 	*nr_waiters = atomic_read(&rq->nr_iowait);
2899 	*load = rq->load.weight;
2900 }
2901 
2902 #ifdef CONFIG_SMP
2903 
2904 /*
2905  * sched_exec - execve() is a valuable balancing opportunity, because at
2906  * this point the task has the smallest effective memory and cache footprint.
2907  */
2908 void sched_exec(void)
2909 {
2910 	struct task_struct *p = current;
2911 	unsigned long flags;
2912 	int dest_cpu;
2913 
2914 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2915 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2916 	if (dest_cpu == smp_processor_id())
2917 		goto unlock;
2918 
2919 	if (likely(cpu_active(dest_cpu))) {
2920 		struct migration_arg arg = { p, dest_cpu };
2921 
2922 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2923 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2924 		return;
2925 	}
2926 unlock:
2927 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2928 }
2929 
2930 #endif
2931 
2932 DEFINE_PER_CPU(struct kernel_stat, kstat);
2933 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2934 
2935 EXPORT_PER_CPU_SYMBOL(kstat);
2936 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2937 
2938 /*
2939  * The function fair_sched_class.update_curr accesses the struct curr
2940  * and its field curr->exec_start; when called from task_sched_runtime(),
2941  * we observe a high rate of cache misses in practice.
2942  * Prefetching this data results in improved performance.
2943  */
2944 static inline void prefetch_curr_exec_start(struct task_struct *p)
2945 {
2946 #ifdef CONFIG_FAIR_GROUP_SCHED
2947 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2948 #else
2949 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2950 #endif
2951 	prefetch(curr);
2952 	prefetch(&curr->exec_start);
2953 }
2954 
2955 /*
2956  * Return accounted runtime for the task.
2957  * In case the task is currently running, return the runtime plus current's
2958  * pending runtime that have not been accounted yet.
2959  */
2960 unsigned long long task_sched_runtime(struct task_struct *p)
2961 {
2962 	struct rq_flags rf;
2963 	struct rq *rq;
2964 	u64 ns;
2965 
2966 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2967 	/*
2968 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2969 	 * So we have a optimization chance when the task's delta_exec is 0.
2970 	 * Reading ->on_cpu is racy, but this is ok.
2971 	 *
2972 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2973 	 * If we race with it entering CPU, unaccounted time is 0. This is
2974 	 * indistinguishable from the read occurring a few cycles earlier.
2975 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2976 	 * been accounted, so we're correct here as well.
2977 	 */
2978 	if (!p->on_cpu || !task_on_rq_queued(p))
2979 		return p->se.sum_exec_runtime;
2980 #endif
2981 
2982 	rq = task_rq_lock(p, &rf);
2983 	/*
2984 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2985 	 * project cycles that may never be accounted to this
2986 	 * thread, breaking clock_gettime().
2987 	 */
2988 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2989 		prefetch_curr_exec_start(p);
2990 		update_rq_clock(rq);
2991 		p->sched_class->update_curr(rq);
2992 	}
2993 	ns = p->se.sum_exec_runtime;
2994 	task_rq_unlock(rq, p, &rf);
2995 
2996 	return ns;
2997 }
2998 
2999 /*
3000  * This function gets called by the timer code, with HZ frequency.
3001  * We call it with interrupts disabled.
3002  */
3003 void scheduler_tick(void)
3004 {
3005 	int cpu = smp_processor_id();
3006 	struct rq *rq = cpu_rq(cpu);
3007 	struct task_struct *curr = rq->curr;
3008 	struct rq_flags rf;
3009 
3010 	sched_clock_tick();
3011 
3012 	rq_lock(rq, &rf);
3013 
3014 	update_rq_clock(rq);
3015 	curr->sched_class->task_tick(rq, curr, 0);
3016 	cpu_load_update_active(rq);
3017 	calc_global_load_tick(rq);
3018 
3019 	rq_unlock(rq, &rf);
3020 
3021 	perf_event_task_tick();
3022 
3023 #ifdef CONFIG_SMP
3024 	rq->idle_balance = idle_cpu(cpu);
3025 	trigger_load_balance(rq);
3026 #endif
3027 	rq_last_tick_reset(rq);
3028 }
3029 
3030 #ifdef CONFIG_NO_HZ_FULL
3031 /**
3032  * scheduler_tick_max_deferment
3033  *
3034  * Keep at least one tick per second when a single
3035  * active task is running because the scheduler doesn't
3036  * yet completely support full dynticks environment.
3037  *
3038  * This makes sure that uptime, CFS vruntime, load
3039  * balancing, etc... continue to move forward, even
3040  * with a very low granularity.
3041  *
3042  * Return: Maximum deferment in nanoseconds.
3043  */
3044 u64 scheduler_tick_max_deferment(void)
3045 {
3046 	struct rq *rq = this_rq();
3047 	unsigned long next, now = READ_ONCE(jiffies);
3048 
3049 	next = rq->last_sched_tick + HZ;
3050 
3051 	if (time_before_eq(next, now))
3052 		return 0;
3053 
3054 	return jiffies_to_nsecs(next - now);
3055 }
3056 #endif
3057 
3058 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3059 				defined(CONFIG_PREEMPT_TRACER))
3060 /*
3061  * If the value passed in is equal to the current preempt count
3062  * then we just disabled preemption. Start timing the latency.
3063  */
3064 static inline void preempt_latency_start(int val)
3065 {
3066 	if (preempt_count() == val) {
3067 		unsigned long ip = get_lock_parent_ip();
3068 #ifdef CONFIG_DEBUG_PREEMPT
3069 		current->preempt_disable_ip = ip;
3070 #endif
3071 		trace_preempt_off(CALLER_ADDR0, ip);
3072 	}
3073 }
3074 
3075 void preempt_count_add(int val)
3076 {
3077 #ifdef CONFIG_DEBUG_PREEMPT
3078 	/*
3079 	 * Underflow?
3080 	 */
3081 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3082 		return;
3083 #endif
3084 	__preempt_count_add(val);
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 	/*
3087 	 * Spinlock count overflowing soon?
3088 	 */
3089 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3090 				PREEMPT_MASK - 10);
3091 #endif
3092 	preempt_latency_start(val);
3093 }
3094 EXPORT_SYMBOL(preempt_count_add);
3095 NOKPROBE_SYMBOL(preempt_count_add);
3096 
3097 /*
3098  * If the value passed in equals to the current preempt count
3099  * then we just enabled preemption. Stop timing the latency.
3100  */
3101 static inline void preempt_latency_stop(int val)
3102 {
3103 	if (preempt_count() == val)
3104 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3105 }
3106 
3107 void preempt_count_sub(int val)
3108 {
3109 #ifdef CONFIG_DEBUG_PREEMPT
3110 	/*
3111 	 * Underflow?
3112 	 */
3113 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3114 		return;
3115 	/*
3116 	 * Is the spinlock portion underflowing?
3117 	 */
3118 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3119 			!(preempt_count() & PREEMPT_MASK)))
3120 		return;
3121 #endif
3122 
3123 	preempt_latency_stop(val);
3124 	__preempt_count_sub(val);
3125 }
3126 EXPORT_SYMBOL(preempt_count_sub);
3127 NOKPROBE_SYMBOL(preempt_count_sub);
3128 
3129 #else
3130 static inline void preempt_latency_start(int val) { }
3131 static inline void preempt_latency_stop(int val) { }
3132 #endif
3133 
3134 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3135 {
3136 #ifdef CONFIG_DEBUG_PREEMPT
3137 	return p->preempt_disable_ip;
3138 #else
3139 	return 0;
3140 #endif
3141 }
3142 
3143 /*
3144  * Print scheduling while atomic bug:
3145  */
3146 static noinline void __schedule_bug(struct task_struct *prev)
3147 {
3148 	/* Save this before calling printk(), since that will clobber it */
3149 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3150 
3151 	if (oops_in_progress)
3152 		return;
3153 
3154 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3155 		prev->comm, prev->pid, preempt_count());
3156 
3157 	debug_show_held_locks(prev);
3158 	print_modules();
3159 	if (irqs_disabled())
3160 		print_irqtrace_events(prev);
3161 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3162 	    && in_atomic_preempt_off()) {
3163 		pr_err("Preemption disabled at:");
3164 		print_ip_sym(preempt_disable_ip);
3165 		pr_cont("\n");
3166 	}
3167 	if (panic_on_warn)
3168 		panic("scheduling while atomic\n");
3169 
3170 	dump_stack();
3171 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3172 }
3173 
3174 /*
3175  * Various schedule()-time debugging checks and statistics:
3176  */
3177 static inline void schedule_debug(struct task_struct *prev)
3178 {
3179 #ifdef CONFIG_SCHED_STACK_END_CHECK
3180 	if (task_stack_end_corrupted(prev))
3181 		panic("corrupted stack end detected inside scheduler\n");
3182 #endif
3183 
3184 	if (unlikely(in_atomic_preempt_off())) {
3185 		__schedule_bug(prev);
3186 		preempt_count_set(PREEMPT_DISABLED);
3187 	}
3188 	rcu_sleep_check();
3189 
3190 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3191 
3192 	schedstat_inc(this_rq()->sched_count);
3193 }
3194 
3195 /*
3196  * Pick up the highest-prio task:
3197  */
3198 static inline struct task_struct *
3199 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3200 {
3201 	const struct sched_class *class;
3202 	struct task_struct *p;
3203 
3204 	/*
3205 	 * Optimization: we know that if all tasks are in the fair class we can
3206 	 * call that function directly, but only if the @prev task wasn't of a
3207 	 * higher scheduling class, because otherwise those loose the
3208 	 * opportunity to pull in more work from other CPUs.
3209 	 */
3210 	if (likely((prev->sched_class == &idle_sched_class ||
3211 		    prev->sched_class == &fair_sched_class) &&
3212 		   rq->nr_running == rq->cfs.h_nr_running)) {
3213 
3214 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3215 		if (unlikely(p == RETRY_TASK))
3216 			goto again;
3217 
3218 		/* Assumes fair_sched_class->next == idle_sched_class */
3219 		if (unlikely(!p))
3220 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3221 
3222 		return p;
3223 	}
3224 
3225 again:
3226 	for_each_class(class) {
3227 		p = class->pick_next_task(rq, prev, rf);
3228 		if (p) {
3229 			if (unlikely(p == RETRY_TASK))
3230 				goto again;
3231 			return p;
3232 		}
3233 	}
3234 
3235 	/* The idle class should always have a runnable task: */
3236 	BUG();
3237 }
3238 
3239 /*
3240  * __schedule() is the main scheduler function.
3241  *
3242  * The main means of driving the scheduler and thus entering this function are:
3243  *
3244  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3245  *
3246  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3247  *      paths. For example, see arch/x86/entry_64.S.
3248  *
3249  *      To drive preemption between tasks, the scheduler sets the flag in timer
3250  *      interrupt handler scheduler_tick().
3251  *
3252  *   3. Wakeups don't really cause entry into schedule(). They add a
3253  *      task to the run-queue and that's it.
3254  *
3255  *      Now, if the new task added to the run-queue preempts the current
3256  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3257  *      called on the nearest possible occasion:
3258  *
3259  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3260  *
3261  *         - in syscall or exception context, at the next outmost
3262  *           preempt_enable(). (this might be as soon as the wake_up()'s
3263  *           spin_unlock()!)
3264  *
3265  *         - in IRQ context, return from interrupt-handler to
3266  *           preemptible context
3267  *
3268  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3269  *         then at the next:
3270  *
3271  *          - cond_resched() call
3272  *          - explicit schedule() call
3273  *          - return from syscall or exception to user-space
3274  *          - return from interrupt-handler to user-space
3275  *
3276  * WARNING: must be called with preemption disabled!
3277  */
3278 static void __sched notrace __schedule(bool preempt)
3279 {
3280 	struct task_struct *prev, *next;
3281 	unsigned long *switch_count;
3282 	struct rq_flags rf;
3283 	struct rq *rq;
3284 	int cpu;
3285 
3286 	cpu = smp_processor_id();
3287 	rq = cpu_rq(cpu);
3288 	prev = rq->curr;
3289 
3290 	schedule_debug(prev);
3291 
3292 	if (sched_feat(HRTICK))
3293 		hrtick_clear(rq);
3294 
3295 	local_irq_disable();
3296 	rcu_note_context_switch(preempt);
3297 
3298 	/*
3299 	 * Make sure that signal_pending_state()->signal_pending() below
3300 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3301 	 * done by the caller to avoid the race with signal_wake_up().
3302 	 */
3303 	rq_lock(rq, &rf);
3304 	smp_mb__after_spinlock();
3305 
3306 	/* Promote REQ to ACT */
3307 	rq->clock_update_flags <<= 1;
3308 	update_rq_clock(rq);
3309 
3310 	switch_count = &prev->nivcsw;
3311 	if (!preempt && prev->state) {
3312 		if (unlikely(signal_pending_state(prev->state, prev))) {
3313 			prev->state = TASK_RUNNING;
3314 		} else {
3315 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3316 			prev->on_rq = 0;
3317 
3318 			if (prev->in_iowait) {
3319 				atomic_inc(&rq->nr_iowait);
3320 				delayacct_blkio_start();
3321 			}
3322 
3323 			/*
3324 			 * If a worker went to sleep, notify and ask workqueue
3325 			 * whether it wants to wake up a task to maintain
3326 			 * concurrency.
3327 			 */
3328 			if (prev->flags & PF_WQ_WORKER) {
3329 				struct task_struct *to_wakeup;
3330 
3331 				to_wakeup = wq_worker_sleeping(prev);
3332 				if (to_wakeup)
3333 					try_to_wake_up_local(to_wakeup, &rf);
3334 			}
3335 		}
3336 		switch_count = &prev->nvcsw;
3337 	}
3338 
3339 	next = pick_next_task(rq, prev, &rf);
3340 	clear_tsk_need_resched(prev);
3341 	clear_preempt_need_resched();
3342 
3343 	if (likely(prev != next)) {
3344 		rq->nr_switches++;
3345 		rq->curr = next;
3346 		/*
3347 		 * The membarrier system call requires each architecture
3348 		 * to have a full memory barrier after updating
3349 		 * rq->curr, before returning to user-space. For TSO
3350 		 * (e.g. x86), the architecture must provide its own
3351 		 * barrier in switch_mm(). For weakly ordered machines
3352 		 * for which spin_unlock() acts as a full memory
3353 		 * barrier, finish_lock_switch() in common code takes
3354 		 * care of this barrier. For weakly ordered machines for
3355 		 * which spin_unlock() acts as a RELEASE barrier (only
3356 		 * arm64 and PowerPC), arm64 has a full barrier in
3357 		 * switch_to(), and PowerPC has
3358 		 * smp_mb__after_unlock_lock() before
3359 		 * finish_lock_switch().
3360 		 */
3361 		++*switch_count;
3362 
3363 		trace_sched_switch(preempt, prev, next);
3364 
3365 		/* Also unlocks the rq: */
3366 		rq = context_switch(rq, prev, next, &rf);
3367 	} else {
3368 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3369 		rq_unlock_irq(rq, &rf);
3370 	}
3371 
3372 	balance_callback(rq);
3373 }
3374 
3375 void __noreturn do_task_dead(void)
3376 {
3377 	/*
3378 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3379 	 * when the following two conditions become true.
3380 	 *   - There is race condition of mmap_sem (It is acquired by
3381 	 *     exit_mm()), and
3382 	 *   - SMI occurs before setting TASK_RUNINNG.
3383 	 *     (or hypervisor of virtual machine switches to other guest)
3384 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3385 	 *
3386 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3387 	 * is held by try_to_wake_up()
3388 	 */
3389 	raw_spin_lock_irq(&current->pi_lock);
3390 	raw_spin_unlock_irq(&current->pi_lock);
3391 
3392 	/* Causes final put_task_struct in finish_task_switch(): */
3393 	__set_current_state(TASK_DEAD);
3394 
3395 	/* Tell freezer to ignore us: */
3396 	current->flags |= PF_NOFREEZE;
3397 
3398 	__schedule(false);
3399 	BUG();
3400 
3401 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3402 	for (;;)
3403 		cpu_relax();
3404 }
3405 
3406 static inline void sched_submit_work(struct task_struct *tsk)
3407 {
3408 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3409 		return;
3410 	/*
3411 	 * If we are going to sleep and we have plugged IO queued,
3412 	 * make sure to submit it to avoid deadlocks.
3413 	 */
3414 	if (blk_needs_flush_plug(tsk))
3415 		blk_schedule_flush_plug(tsk);
3416 }
3417 
3418 asmlinkage __visible void __sched schedule(void)
3419 {
3420 	struct task_struct *tsk = current;
3421 
3422 	sched_submit_work(tsk);
3423 	do {
3424 		preempt_disable();
3425 		__schedule(false);
3426 		sched_preempt_enable_no_resched();
3427 	} while (need_resched());
3428 }
3429 EXPORT_SYMBOL(schedule);
3430 
3431 /*
3432  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3433  * state (have scheduled out non-voluntarily) by making sure that all
3434  * tasks have either left the run queue or have gone into user space.
3435  * As idle tasks do not do either, they must not ever be preempted
3436  * (schedule out non-voluntarily).
3437  *
3438  * schedule_idle() is similar to schedule_preempt_disable() except that it
3439  * never enables preemption because it does not call sched_submit_work().
3440  */
3441 void __sched schedule_idle(void)
3442 {
3443 	/*
3444 	 * As this skips calling sched_submit_work(), which the idle task does
3445 	 * regardless because that function is a nop when the task is in a
3446 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3447 	 * current task can be in any other state. Note, idle is always in the
3448 	 * TASK_RUNNING state.
3449 	 */
3450 	WARN_ON_ONCE(current->state);
3451 	do {
3452 		__schedule(false);
3453 	} while (need_resched());
3454 }
3455 
3456 #ifdef CONFIG_CONTEXT_TRACKING
3457 asmlinkage __visible void __sched schedule_user(void)
3458 {
3459 	/*
3460 	 * If we come here after a random call to set_need_resched(),
3461 	 * or we have been woken up remotely but the IPI has not yet arrived,
3462 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3463 	 * we find a better solution.
3464 	 *
3465 	 * NB: There are buggy callers of this function.  Ideally we
3466 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3467 	 * too frequently to make sense yet.
3468 	 */
3469 	enum ctx_state prev_state = exception_enter();
3470 	schedule();
3471 	exception_exit(prev_state);
3472 }
3473 #endif
3474 
3475 /**
3476  * schedule_preempt_disabled - called with preemption disabled
3477  *
3478  * Returns with preemption disabled. Note: preempt_count must be 1
3479  */
3480 void __sched schedule_preempt_disabled(void)
3481 {
3482 	sched_preempt_enable_no_resched();
3483 	schedule();
3484 	preempt_disable();
3485 }
3486 
3487 static void __sched notrace preempt_schedule_common(void)
3488 {
3489 	do {
3490 		/*
3491 		 * Because the function tracer can trace preempt_count_sub()
3492 		 * and it also uses preempt_enable/disable_notrace(), if
3493 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3494 		 * by the function tracer will call this function again and
3495 		 * cause infinite recursion.
3496 		 *
3497 		 * Preemption must be disabled here before the function
3498 		 * tracer can trace. Break up preempt_disable() into two
3499 		 * calls. One to disable preemption without fear of being
3500 		 * traced. The other to still record the preemption latency,
3501 		 * which can also be traced by the function tracer.
3502 		 */
3503 		preempt_disable_notrace();
3504 		preempt_latency_start(1);
3505 		__schedule(true);
3506 		preempt_latency_stop(1);
3507 		preempt_enable_no_resched_notrace();
3508 
3509 		/*
3510 		 * Check again in case we missed a preemption opportunity
3511 		 * between schedule and now.
3512 		 */
3513 	} while (need_resched());
3514 }
3515 
3516 #ifdef CONFIG_PREEMPT
3517 /*
3518  * this is the entry point to schedule() from in-kernel preemption
3519  * off of preempt_enable. Kernel preemptions off return from interrupt
3520  * occur there and call schedule directly.
3521  */
3522 asmlinkage __visible void __sched notrace preempt_schedule(void)
3523 {
3524 	/*
3525 	 * If there is a non-zero preempt_count or interrupts are disabled,
3526 	 * we do not want to preempt the current task. Just return..
3527 	 */
3528 	if (likely(!preemptible()))
3529 		return;
3530 
3531 	preempt_schedule_common();
3532 }
3533 NOKPROBE_SYMBOL(preempt_schedule);
3534 EXPORT_SYMBOL(preempt_schedule);
3535 
3536 /**
3537  * preempt_schedule_notrace - preempt_schedule called by tracing
3538  *
3539  * The tracing infrastructure uses preempt_enable_notrace to prevent
3540  * recursion and tracing preempt enabling caused by the tracing
3541  * infrastructure itself. But as tracing can happen in areas coming
3542  * from userspace or just about to enter userspace, a preempt enable
3543  * can occur before user_exit() is called. This will cause the scheduler
3544  * to be called when the system is still in usermode.
3545  *
3546  * To prevent this, the preempt_enable_notrace will use this function
3547  * instead of preempt_schedule() to exit user context if needed before
3548  * calling the scheduler.
3549  */
3550 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3551 {
3552 	enum ctx_state prev_ctx;
3553 
3554 	if (likely(!preemptible()))
3555 		return;
3556 
3557 	do {
3558 		/*
3559 		 * Because the function tracer can trace preempt_count_sub()
3560 		 * and it also uses preempt_enable/disable_notrace(), if
3561 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3562 		 * by the function tracer will call this function again and
3563 		 * cause infinite recursion.
3564 		 *
3565 		 * Preemption must be disabled here before the function
3566 		 * tracer can trace. Break up preempt_disable() into two
3567 		 * calls. One to disable preemption without fear of being
3568 		 * traced. The other to still record the preemption latency,
3569 		 * which can also be traced by the function tracer.
3570 		 */
3571 		preempt_disable_notrace();
3572 		preempt_latency_start(1);
3573 		/*
3574 		 * Needs preempt disabled in case user_exit() is traced
3575 		 * and the tracer calls preempt_enable_notrace() causing
3576 		 * an infinite recursion.
3577 		 */
3578 		prev_ctx = exception_enter();
3579 		__schedule(true);
3580 		exception_exit(prev_ctx);
3581 
3582 		preempt_latency_stop(1);
3583 		preempt_enable_no_resched_notrace();
3584 	} while (need_resched());
3585 }
3586 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3587 
3588 #endif /* CONFIG_PREEMPT */
3589 
3590 /*
3591  * this is the entry point to schedule() from kernel preemption
3592  * off of irq context.
3593  * Note, that this is called and return with irqs disabled. This will
3594  * protect us against recursive calling from irq.
3595  */
3596 asmlinkage __visible void __sched preempt_schedule_irq(void)
3597 {
3598 	enum ctx_state prev_state;
3599 
3600 	/* Catch callers which need to be fixed */
3601 	BUG_ON(preempt_count() || !irqs_disabled());
3602 
3603 	prev_state = exception_enter();
3604 
3605 	do {
3606 		preempt_disable();
3607 		local_irq_enable();
3608 		__schedule(true);
3609 		local_irq_disable();
3610 		sched_preempt_enable_no_resched();
3611 	} while (need_resched());
3612 
3613 	exception_exit(prev_state);
3614 }
3615 
3616 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3617 			  void *key)
3618 {
3619 	return try_to_wake_up(curr->private, mode, wake_flags);
3620 }
3621 EXPORT_SYMBOL(default_wake_function);
3622 
3623 #ifdef CONFIG_RT_MUTEXES
3624 
3625 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3626 {
3627 	if (pi_task)
3628 		prio = min(prio, pi_task->prio);
3629 
3630 	return prio;
3631 }
3632 
3633 static inline int rt_effective_prio(struct task_struct *p, int prio)
3634 {
3635 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3636 
3637 	return __rt_effective_prio(pi_task, prio);
3638 }
3639 
3640 /*
3641  * rt_mutex_setprio - set the current priority of a task
3642  * @p: task to boost
3643  * @pi_task: donor task
3644  *
3645  * This function changes the 'effective' priority of a task. It does
3646  * not touch ->normal_prio like __setscheduler().
3647  *
3648  * Used by the rt_mutex code to implement priority inheritance
3649  * logic. Call site only calls if the priority of the task changed.
3650  */
3651 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3652 {
3653 	int prio, oldprio, queued, running, queue_flag =
3654 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3655 	const struct sched_class *prev_class;
3656 	struct rq_flags rf;
3657 	struct rq *rq;
3658 
3659 	/* XXX used to be waiter->prio, not waiter->task->prio */
3660 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3661 
3662 	/*
3663 	 * If nothing changed; bail early.
3664 	 */
3665 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3666 		return;
3667 
3668 	rq = __task_rq_lock(p, &rf);
3669 	update_rq_clock(rq);
3670 	/*
3671 	 * Set under pi_lock && rq->lock, such that the value can be used under
3672 	 * either lock.
3673 	 *
3674 	 * Note that there is loads of tricky to make this pointer cache work
3675 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3676 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3677 	 * task is allowed to run again (and can exit). This ensures the pointer
3678 	 * points to a blocked task -- which guaratees the task is present.
3679 	 */
3680 	p->pi_top_task = pi_task;
3681 
3682 	/*
3683 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3684 	 */
3685 	if (prio == p->prio && !dl_prio(prio))
3686 		goto out_unlock;
3687 
3688 	/*
3689 	 * Idle task boosting is a nono in general. There is one
3690 	 * exception, when PREEMPT_RT and NOHZ is active:
3691 	 *
3692 	 * The idle task calls get_next_timer_interrupt() and holds
3693 	 * the timer wheel base->lock on the CPU and another CPU wants
3694 	 * to access the timer (probably to cancel it). We can safely
3695 	 * ignore the boosting request, as the idle CPU runs this code
3696 	 * with interrupts disabled and will complete the lock
3697 	 * protected section without being interrupted. So there is no
3698 	 * real need to boost.
3699 	 */
3700 	if (unlikely(p == rq->idle)) {
3701 		WARN_ON(p != rq->curr);
3702 		WARN_ON(p->pi_blocked_on);
3703 		goto out_unlock;
3704 	}
3705 
3706 	trace_sched_pi_setprio(p, pi_task);
3707 	oldprio = p->prio;
3708 
3709 	if (oldprio == prio)
3710 		queue_flag &= ~DEQUEUE_MOVE;
3711 
3712 	prev_class = p->sched_class;
3713 	queued = task_on_rq_queued(p);
3714 	running = task_current(rq, p);
3715 	if (queued)
3716 		dequeue_task(rq, p, queue_flag);
3717 	if (running)
3718 		put_prev_task(rq, p);
3719 
3720 	/*
3721 	 * Boosting condition are:
3722 	 * 1. -rt task is running and holds mutex A
3723 	 *      --> -dl task blocks on mutex A
3724 	 *
3725 	 * 2. -dl task is running and holds mutex A
3726 	 *      --> -dl task blocks on mutex A and could preempt the
3727 	 *          running task
3728 	 */
3729 	if (dl_prio(prio)) {
3730 		if (!dl_prio(p->normal_prio) ||
3731 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3732 			p->dl.dl_boosted = 1;
3733 			queue_flag |= ENQUEUE_REPLENISH;
3734 		} else
3735 			p->dl.dl_boosted = 0;
3736 		p->sched_class = &dl_sched_class;
3737 	} else if (rt_prio(prio)) {
3738 		if (dl_prio(oldprio))
3739 			p->dl.dl_boosted = 0;
3740 		if (oldprio < prio)
3741 			queue_flag |= ENQUEUE_HEAD;
3742 		p->sched_class = &rt_sched_class;
3743 	} else {
3744 		if (dl_prio(oldprio))
3745 			p->dl.dl_boosted = 0;
3746 		if (rt_prio(oldprio))
3747 			p->rt.timeout = 0;
3748 		p->sched_class = &fair_sched_class;
3749 	}
3750 
3751 	p->prio = prio;
3752 
3753 	if (queued)
3754 		enqueue_task(rq, p, queue_flag);
3755 	if (running)
3756 		set_curr_task(rq, p);
3757 
3758 	check_class_changed(rq, p, prev_class, oldprio);
3759 out_unlock:
3760 	/* Avoid rq from going away on us: */
3761 	preempt_disable();
3762 	__task_rq_unlock(rq, &rf);
3763 
3764 	balance_callback(rq);
3765 	preempt_enable();
3766 }
3767 #else
3768 static inline int rt_effective_prio(struct task_struct *p, int prio)
3769 {
3770 	return prio;
3771 }
3772 #endif
3773 
3774 void set_user_nice(struct task_struct *p, long nice)
3775 {
3776 	bool queued, running;
3777 	int old_prio, delta;
3778 	struct rq_flags rf;
3779 	struct rq *rq;
3780 
3781 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3782 		return;
3783 	/*
3784 	 * We have to be careful, if called from sys_setpriority(),
3785 	 * the task might be in the middle of scheduling on another CPU.
3786 	 */
3787 	rq = task_rq_lock(p, &rf);
3788 	update_rq_clock(rq);
3789 
3790 	/*
3791 	 * The RT priorities are set via sched_setscheduler(), but we still
3792 	 * allow the 'normal' nice value to be set - but as expected
3793 	 * it wont have any effect on scheduling until the task is
3794 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3795 	 */
3796 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3797 		p->static_prio = NICE_TO_PRIO(nice);
3798 		goto out_unlock;
3799 	}
3800 	queued = task_on_rq_queued(p);
3801 	running = task_current(rq, p);
3802 	if (queued)
3803 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3804 	if (running)
3805 		put_prev_task(rq, p);
3806 
3807 	p->static_prio = NICE_TO_PRIO(nice);
3808 	set_load_weight(p);
3809 	old_prio = p->prio;
3810 	p->prio = effective_prio(p);
3811 	delta = p->prio - old_prio;
3812 
3813 	if (queued) {
3814 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3815 		/*
3816 		 * If the task increased its priority or is running and
3817 		 * lowered its priority, then reschedule its CPU:
3818 		 */
3819 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3820 			resched_curr(rq);
3821 	}
3822 	if (running)
3823 		set_curr_task(rq, p);
3824 out_unlock:
3825 	task_rq_unlock(rq, p, &rf);
3826 }
3827 EXPORT_SYMBOL(set_user_nice);
3828 
3829 /*
3830  * can_nice - check if a task can reduce its nice value
3831  * @p: task
3832  * @nice: nice value
3833  */
3834 int can_nice(const struct task_struct *p, const int nice)
3835 {
3836 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3837 	int nice_rlim = nice_to_rlimit(nice);
3838 
3839 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3840 		capable(CAP_SYS_NICE));
3841 }
3842 
3843 #ifdef __ARCH_WANT_SYS_NICE
3844 
3845 /*
3846  * sys_nice - change the priority of the current process.
3847  * @increment: priority increment
3848  *
3849  * sys_setpriority is a more generic, but much slower function that
3850  * does similar things.
3851  */
3852 SYSCALL_DEFINE1(nice, int, increment)
3853 {
3854 	long nice, retval;
3855 
3856 	/*
3857 	 * Setpriority might change our priority at the same moment.
3858 	 * We don't have to worry. Conceptually one call occurs first
3859 	 * and we have a single winner.
3860 	 */
3861 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3862 	nice = task_nice(current) + increment;
3863 
3864 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3865 	if (increment < 0 && !can_nice(current, nice))
3866 		return -EPERM;
3867 
3868 	retval = security_task_setnice(current, nice);
3869 	if (retval)
3870 		return retval;
3871 
3872 	set_user_nice(current, nice);
3873 	return 0;
3874 }
3875 
3876 #endif
3877 
3878 /**
3879  * task_prio - return the priority value of a given task.
3880  * @p: the task in question.
3881  *
3882  * Return: The priority value as seen by users in /proc.
3883  * RT tasks are offset by -200. Normal tasks are centered
3884  * around 0, value goes from -16 to +15.
3885  */
3886 int task_prio(const struct task_struct *p)
3887 {
3888 	return p->prio - MAX_RT_PRIO;
3889 }
3890 
3891 /**
3892  * idle_cpu - is a given CPU idle currently?
3893  * @cpu: the processor in question.
3894  *
3895  * Return: 1 if the CPU is currently idle. 0 otherwise.
3896  */
3897 int idle_cpu(int cpu)
3898 {
3899 	struct rq *rq = cpu_rq(cpu);
3900 
3901 	if (rq->curr != rq->idle)
3902 		return 0;
3903 
3904 	if (rq->nr_running)
3905 		return 0;
3906 
3907 #ifdef CONFIG_SMP
3908 	if (!llist_empty(&rq->wake_list))
3909 		return 0;
3910 #endif
3911 
3912 	return 1;
3913 }
3914 
3915 /**
3916  * idle_task - return the idle task for a given CPU.
3917  * @cpu: the processor in question.
3918  *
3919  * Return: The idle task for the CPU @cpu.
3920  */
3921 struct task_struct *idle_task(int cpu)
3922 {
3923 	return cpu_rq(cpu)->idle;
3924 }
3925 
3926 /**
3927  * find_process_by_pid - find a process with a matching PID value.
3928  * @pid: the pid in question.
3929  *
3930  * The task of @pid, if found. %NULL otherwise.
3931  */
3932 static struct task_struct *find_process_by_pid(pid_t pid)
3933 {
3934 	return pid ? find_task_by_vpid(pid) : current;
3935 }
3936 
3937 /*
3938  * sched_setparam() passes in -1 for its policy, to let the functions
3939  * it calls know not to change it.
3940  */
3941 #define SETPARAM_POLICY	-1
3942 
3943 static void __setscheduler_params(struct task_struct *p,
3944 		const struct sched_attr *attr)
3945 {
3946 	int policy = attr->sched_policy;
3947 
3948 	if (policy == SETPARAM_POLICY)
3949 		policy = p->policy;
3950 
3951 	p->policy = policy;
3952 
3953 	if (dl_policy(policy))
3954 		__setparam_dl(p, attr);
3955 	else if (fair_policy(policy))
3956 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957 
3958 	/*
3959 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 	 * !rt_policy. Always setting this ensures that things like
3961 	 * getparam()/getattr() don't report silly values for !rt tasks.
3962 	 */
3963 	p->rt_priority = attr->sched_priority;
3964 	p->normal_prio = normal_prio(p);
3965 	set_load_weight(p);
3966 }
3967 
3968 /* Actually do priority change: must hold pi & rq lock. */
3969 static void __setscheduler(struct rq *rq, struct task_struct *p,
3970 			   const struct sched_attr *attr, bool keep_boost)
3971 {
3972 	__setscheduler_params(p, attr);
3973 
3974 	/*
3975 	 * Keep a potential priority boosting if called from
3976 	 * sched_setscheduler().
3977 	 */
3978 	p->prio = normal_prio(p);
3979 	if (keep_boost)
3980 		p->prio = rt_effective_prio(p, p->prio);
3981 
3982 	if (dl_prio(p->prio))
3983 		p->sched_class = &dl_sched_class;
3984 	else if (rt_prio(p->prio))
3985 		p->sched_class = &rt_sched_class;
3986 	else
3987 		p->sched_class = &fair_sched_class;
3988 }
3989 
3990 /*
3991  * Check the target process has a UID that matches the current process's:
3992  */
3993 static bool check_same_owner(struct task_struct *p)
3994 {
3995 	const struct cred *cred = current_cred(), *pcred;
3996 	bool match;
3997 
3998 	rcu_read_lock();
3999 	pcred = __task_cred(p);
4000 	match = (uid_eq(cred->euid, pcred->euid) ||
4001 		 uid_eq(cred->euid, pcred->uid));
4002 	rcu_read_unlock();
4003 	return match;
4004 }
4005 
4006 static int __sched_setscheduler(struct task_struct *p,
4007 				const struct sched_attr *attr,
4008 				bool user, bool pi)
4009 {
4010 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4011 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4012 	int retval, oldprio, oldpolicy = -1, queued, running;
4013 	int new_effective_prio, policy = attr->sched_policy;
4014 	const struct sched_class *prev_class;
4015 	struct rq_flags rf;
4016 	int reset_on_fork;
4017 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4018 	struct rq *rq;
4019 
4020 	/* The pi code expects interrupts enabled */
4021 	BUG_ON(pi && in_interrupt());
4022 recheck:
4023 	/* Double check policy once rq lock held: */
4024 	if (policy < 0) {
4025 		reset_on_fork = p->sched_reset_on_fork;
4026 		policy = oldpolicy = p->policy;
4027 	} else {
4028 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4029 
4030 		if (!valid_policy(policy))
4031 			return -EINVAL;
4032 	}
4033 
4034 	if (attr->sched_flags &
4035 		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4036 		return -EINVAL;
4037 
4038 	/*
4039 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4040 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4041 	 * SCHED_BATCH and SCHED_IDLE is 0.
4042 	 */
4043 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4044 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4045 		return -EINVAL;
4046 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4047 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4048 		return -EINVAL;
4049 
4050 	/*
4051 	 * Allow unprivileged RT tasks to decrease priority:
4052 	 */
4053 	if (user && !capable(CAP_SYS_NICE)) {
4054 		if (fair_policy(policy)) {
4055 			if (attr->sched_nice < task_nice(p) &&
4056 			    !can_nice(p, attr->sched_nice))
4057 				return -EPERM;
4058 		}
4059 
4060 		if (rt_policy(policy)) {
4061 			unsigned long rlim_rtprio =
4062 					task_rlimit(p, RLIMIT_RTPRIO);
4063 
4064 			/* Can't set/change the rt policy: */
4065 			if (policy != p->policy && !rlim_rtprio)
4066 				return -EPERM;
4067 
4068 			/* Can't increase priority: */
4069 			if (attr->sched_priority > p->rt_priority &&
4070 			    attr->sched_priority > rlim_rtprio)
4071 				return -EPERM;
4072 		}
4073 
4074 		 /*
4075 		  * Can't set/change SCHED_DEADLINE policy at all for now
4076 		  * (safest behavior); in the future we would like to allow
4077 		  * unprivileged DL tasks to increase their relative deadline
4078 		  * or reduce their runtime (both ways reducing utilization)
4079 		  */
4080 		if (dl_policy(policy))
4081 			return -EPERM;
4082 
4083 		/*
4084 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4085 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4086 		 */
4087 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4088 			if (!can_nice(p, task_nice(p)))
4089 				return -EPERM;
4090 		}
4091 
4092 		/* Can't change other user's priorities: */
4093 		if (!check_same_owner(p))
4094 			return -EPERM;
4095 
4096 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4097 		if (p->sched_reset_on_fork && !reset_on_fork)
4098 			return -EPERM;
4099 	}
4100 
4101 	if (user) {
4102 		retval = security_task_setscheduler(p);
4103 		if (retval)
4104 			return retval;
4105 	}
4106 
4107 	/*
4108 	 * Make sure no PI-waiters arrive (or leave) while we are
4109 	 * changing the priority of the task:
4110 	 *
4111 	 * To be able to change p->policy safely, the appropriate
4112 	 * runqueue lock must be held.
4113 	 */
4114 	rq = task_rq_lock(p, &rf);
4115 	update_rq_clock(rq);
4116 
4117 	/*
4118 	 * Changing the policy of the stop threads its a very bad idea:
4119 	 */
4120 	if (p == rq->stop) {
4121 		task_rq_unlock(rq, p, &rf);
4122 		return -EINVAL;
4123 	}
4124 
4125 	/*
4126 	 * If not changing anything there's no need to proceed further,
4127 	 * but store a possible modification of reset_on_fork.
4128 	 */
4129 	if (unlikely(policy == p->policy)) {
4130 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4131 			goto change;
4132 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4133 			goto change;
4134 		if (dl_policy(policy) && dl_param_changed(p, attr))
4135 			goto change;
4136 
4137 		p->sched_reset_on_fork = reset_on_fork;
4138 		task_rq_unlock(rq, p, &rf);
4139 		return 0;
4140 	}
4141 change:
4142 
4143 	if (user) {
4144 #ifdef CONFIG_RT_GROUP_SCHED
4145 		/*
4146 		 * Do not allow realtime tasks into groups that have no runtime
4147 		 * assigned.
4148 		 */
4149 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4150 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4151 				!task_group_is_autogroup(task_group(p))) {
4152 			task_rq_unlock(rq, p, &rf);
4153 			return -EPERM;
4154 		}
4155 #endif
4156 #ifdef CONFIG_SMP
4157 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4158 			cpumask_t *span = rq->rd->span;
4159 
4160 			/*
4161 			 * Don't allow tasks with an affinity mask smaller than
4162 			 * the entire root_domain to become SCHED_DEADLINE. We
4163 			 * will also fail if there's no bandwidth available.
4164 			 */
4165 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4166 			    rq->rd->dl_bw.bw == 0) {
4167 				task_rq_unlock(rq, p, &rf);
4168 				return -EPERM;
4169 			}
4170 		}
4171 #endif
4172 	}
4173 
4174 	/* Re-check policy now with rq lock held: */
4175 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4176 		policy = oldpolicy = -1;
4177 		task_rq_unlock(rq, p, &rf);
4178 		goto recheck;
4179 	}
4180 
4181 	/*
4182 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4183 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4184 	 * is available.
4185 	 */
4186 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4187 		task_rq_unlock(rq, p, &rf);
4188 		return -EBUSY;
4189 	}
4190 
4191 	p->sched_reset_on_fork = reset_on_fork;
4192 	oldprio = p->prio;
4193 
4194 	if (pi) {
4195 		/*
4196 		 * Take priority boosted tasks into account. If the new
4197 		 * effective priority is unchanged, we just store the new
4198 		 * normal parameters and do not touch the scheduler class and
4199 		 * the runqueue. This will be done when the task deboost
4200 		 * itself.
4201 		 */
4202 		new_effective_prio = rt_effective_prio(p, newprio);
4203 		if (new_effective_prio == oldprio)
4204 			queue_flags &= ~DEQUEUE_MOVE;
4205 	}
4206 
4207 	queued = task_on_rq_queued(p);
4208 	running = task_current(rq, p);
4209 	if (queued)
4210 		dequeue_task(rq, p, queue_flags);
4211 	if (running)
4212 		put_prev_task(rq, p);
4213 
4214 	prev_class = p->sched_class;
4215 	__setscheduler(rq, p, attr, pi);
4216 
4217 	if (queued) {
4218 		/*
4219 		 * We enqueue to tail when the priority of a task is
4220 		 * increased (user space view).
4221 		 */
4222 		if (oldprio < p->prio)
4223 			queue_flags |= ENQUEUE_HEAD;
4224 
4225 		enqueue_task(rq, p, queue_flags);
4226 	}
4227 	if (running)
4228 		set_curr_task(rq, p);
4229 
4230 	check_class_changed(rq, p, prev_class, oldprio);
4231 
4232 	/* Avoid rq from going away on us: */
4233 	preempt_disable();
4234 	task_rq_unlock(rq, p, &rf);
4235 
4236 	if (pi)
4237 		rt_mutex_adjust_pi(p);
4238 
4239 	/* Run balance callbacks after we've adjusted the PI chain: */
4240 	balance_callback(rq);
4241 	preempt_enable();
4242 
4243 	return 0;
4244 }
4245 
4246 static int _sched_setscheduler(struct task_struct *p, int policy,
4247 			       const struct sched_param *param, bool check)
4248 {
4249 	struct sched_attr attr = {
4250 		.sched_policy   = policy,
4251 		.sched_priority = param->sched_priority,
4252 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4253 	};
4254 
4255 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4256 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4257 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4258 		policy &= ~SCHED_RESET_ON_FORK;
4259 		attr.sched_policy = policy;
4260 	}
4261 
4262 	return __sched_setscheduler(p, &attr, check, true);
4263 }
4264 /**
4265  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4266  * @p: the task in question.
4267  * @policy: new policy.
4268  * @param: structure containing the new RT priority.
4269  *
4270  * Return: 0 on success. An error code otherwise.
4271  *
4272  * NOTE that the task may be already dead.
4273  */
4274 int sched_setscheduler(struct task_struct *p, int policy,
4275 		       const struct sched_param *param)
4276 {
4277 	return _sched_setscheduler(p, policy, param, true);
4278 }
4279 EXPORT_SYMBOL_GPL(sched_setscheduler);
4280 
4281 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4282 {
4283 	return __sched_setscheduler(p, attr, true, true);
4284 }
4285 EXPORT_SYMBOL_GPL(sched_setattr);
4286 
4287 /**
4288  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4289  * @p: the task in question.
4290  * @policy: new policy.
4291  * @param: structure containing the new RT priority.
4292  *
4293  * Just like sched_setscheduler, only don't bother checking if the
4294  * current context has permission.  For example, this is needed in
4295  * stop_machine(): we create temporary high priority worker threads,
4296  * but our caller might not have that capability.
4297  *
4298  * Return: 0 on success. An error code otherwise.
4299  */
4300 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4301 			       const struct sched_param *param)
4302 {
4303 	return _sched_setscheduler(p, policy, param, false);
4304 }
4305 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4306 
4307 static int
4308 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4309 {
4310 	struct sched_param lparam;
4311 	struct task_struct *p;
4312 	int retval;
4313 
4314 	if (!param || pid < 0)
4315 		return -EINVAL;
4316 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4317 		return -EFAULT;
4318 
4319 	rcu_read_lock();
4320 	retval = -ESRCH;
4321 	p = find_process_by_pid(pid);
4322 	if (p != NULL)
4323 		retval = sched_setscheduler(p, policy, &lparam);
4324 	rcu_read_unlock();
4325 
4326 	return retval;
4327 }
4328 
4329 /*
4330  * Mimics kernel/events/core.c perf_copy_attr().
4331  */
4332 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4333 {
4334 	u32 size;
4335 	int ret;
4336 
4337 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4338 		return -EFAULT;
4339 
4340 	/* Zero the full structure, so that a short copy will be nice: */
4341 	memset(attr, 0, sizeof(*attr));
4342 
4343 	ret = get_user(size, &uattr->size);
4344 	if (ret)
4345 		return ret;
4346 
4347 	/* Bail out on silly large: */
4348 	if (size > PAGE_SIZE)
4349 		goto err_size;
4350 
4351 	/* ABI compatibility quirk: */
4352 	if (!size)
4353 		size = SCHED_ATTR_SIZE_VER0;
4354 
4355 	if (size < SCHED_ATTR_SIZE_VER0)
4356 		goto err_size;
4357 
4358 	/*
4359 	 * If we're handed a bigger struct than we know of,
4360 	 * ensure all the unknown bits are 0 - i.e. new
4361 	 * user-space does not rely on any kernel feature
4362 	 * extensions we dont know about yet.
4363 	 */
4364 	if (size > sizeof(*attr)) {
4365 		unsigned char __user *addr;
4366 		unsigned char __user *end;
4367 		unsigned char val;
4368 
4369 		addr = (void __user *)uattr + sizeof(*attr);
4370 		end  = (void __user *)uattr + size;
4371 
4372 		for (; addr < end; addr++) {
4373 			ret = get_user(val, addr);
4374 			if (ret)
4375 				return ret;
4376 			if (val)
4377 				goto err_size;
4378 		}
4379 		size = sizeof(*attr);
4380 	}
4381 
4382 	ret = copy_from_user(attr, uattr, size);
4383 	if (ret)
4384 		return -EFAULT;
4385 
4386 	/*
4387 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4388 	 * to be strict and return an error on out-of-bounds values?
4389 	 */
4390 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4391 
4392 	return 0;
4393 
4394 err_size:
4395 	put_user(sizeof(*attr), &uattr->size);
4396 	return -E2BIG;
4397 }
4398 
4399 /**
4400  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4401  * @pid: the pid in question.
4402  * @policy: new policy.
4403  * @param: structure containing the new RT priority.
4404  *
4405  * Return: 0 on success. An error code otherwise.
4406  */
4407 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4408 {
4409 	if (policy < 0)
4410 		return -EINVAL;
4411 
4412 	return do_sched_setscheduler(pid, policy, param);
4413 }
4414 
4415 /**
4416  * sys_sched_setparam - set/change the RT priority of a thread
4417  * @pid: the pid in question.
4418  * @param: structure containing the new RT priority.
4419  *
4420  * Return: 0 on success. An error code otherwise.
4421  */
4422 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4423 {
4424 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4425 }
4426 
4427 /**
4428  * sys_sched_setattr - same as above, but with extended sched_attr
4429  * @pid: the pid in question.
4430  * @uattr: structure containing the extended parameters.
4431  * @flags: for future extension.
4432  */
4433 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4434 			       unsigned int, flags)
4435 {
4436 	struct sched_attr attr;
4437 	struct task_struct *p;
4438 	int retval;
4439 
4440 	if (!uattr || pid < 0 || flags)
4441 		return -EINVAL;
4442 
4443 	retval = sched_copy_attr(uattr, &attr);
4444 	if (retval)
4445 		return retval;
4446 
4447 	if ((int)attr.sched_policy < 0)
4448 		return -EINVAL;
4449 
4450 	rcu_read_lock();
4451 	retval = -ESRCH;
4452 	p = find_process_by_pid(pid);
4453 	if (p != NULL)
4454 		retval = sched_setattr(p, &attr);
4455 	rcu_read_unlock();
4456 
4457 	return retval;
4458 }
4459 
4460 /**
4461  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4462  * @pid: the pid in question.
4463  *
4464  * Return: On success, the policy of the thread. Otherwise, a negative error
4465  * code.
4466  */
4467 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4468 {
4469 	struct task_struct *p;
4470 	int retval;
4471 
4472 	if (pid < 0)
4473 		return -EINVAL;
4474 
4475 	retval = -ESRCH;
4476 	rcu_read_lock();
4477 	p = find_process_by_pid(pid);
4478 	if (p) {
4479 		retval = security_task_getscheduler(p);
4480 		if (!retval)
4481 			retval = p->policy
4482 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4483 	}
4484 	rcu_read_unlock();
4485 	return retval;
4486 }
4487 
4488 /**
4489  * sys_sched_getparam - get the RT priority of a thread
4490  * @pid: the pid in question.
4491  * @param: structure containing the RT priority.
4492  *
4493  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4494  * code.
4495  */
4496 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4497 {
4498 	struct sched_param lp = { .sched_priority = 0 };
4499 	struct task_struct *p;
4500 	int retval;
4501 
4502 	if (!param || pid < 0)
4503 		return -EINVAL;
4504 
4505 	rcu_read_lock();
4506 	p = find_process_by_pid(pid);
4507 	retval = -ESRCH;
4508 	if (!p)
4509 		goto out_unlock;
4510 
4511 	retval = security_task_getscheduler(p);
4512 	if (retval)
4513 		goto out_unlock;
4514 
4515 	if (task_has_rt_policy(p))
4516 		lp.sched_priority = p->rt_priority;
4517 	rcu_read_unlock();
4518 
4519 	/*
4520 	 * This one might sleep, we cannot do it with a spinlock held ...
4521 	 */
4522 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4523 
4524 	return retval;
4525 
4526 out_unlock:
4527 	rcu_read_unlock();
4528 	return retval;
4529 }
4530 
4531 static int sched_read_attr(struct sched_attr __user *uattr,
4532 			   struct sched_attr *attr,
4533 			   unsigned int usize)
4534 {
4535 	int ret;
4536 
4537 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4538 		return -EFAULT;
4539 
4540 	/*
4541 	 * If we're handed a smaller struct than we know of,
4542 	 * ensure all the unknown bits are 0 - i.e. old
4543 	 * user-space does not get uncomplete information.
4544 	 */
4545 	if (usize < sizeof(*attr)) {
4546 		unsigned char *addr;
4547 		unsigned char *end;
4548 
4549 		addr = (void *)attr + usize;
4550 		end  = (void *)attr + sizeof(*attr);
4551 
4552 		for (; addr < end; addr++) {
4553 			if (*addr)
4554 				return -EFBIG;
4555 		}
4556 
4557 		attr->size = usize;
4558 	}
4559 
4560 	ret = copy_to_user(uattr, attr, attr->size);
4561 	if (ret)
4562 		return -EFAULT;
4563 
4564 	return 0;
4565 }
4566 
4567 /**
4568  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4569  * @pid: the pid in question.
4570  * @uattr: structure containing the extended parameters.
4571  * @size: sizeof(attr) for fwd/bwd comp.
4572  * @flags: for future extension.
4573  */
4574 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4575 		unsigned int, size, unsigned int, flags)
4576 {
4577 	struct sched_attr attr = {
4578 		.size = sizeof(struct sched_attr),
4579 	};
4580 	struct task_struct *p;
4581 	int retval;
4582 
4583 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4584 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4585 		return -EINVAL;
4586 
4587 	rcu_read_lock();
4588 	p = find_process_by_pid(pid);
4589 	retval = -ESRCH;
4590 	if (!p)
4591 		goto out_unlock;
4592 
4593 	retval = security_task_getscheduler(p);
4594 	if (retval)
4595 		goto out_unlock;
4596 
4597 	attr.sched_policy = p->policy;
4598 	if (p->sched_reset_on_fork)
4599 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4600 	if (task_has_dl_policy(p))
4601 		__getparam_dl(p, &attr);
4602 	else if (task_has_rt_policy(p))
4603 		attr.sched_priority = p->rt_priority;
4604 	else
4605 		attr.sched_nice = task_nice(p);
4606 
4607 	rcu_read_unlock();
4608 
4609 	retval = sched_read_attr(uattr, &attr, size);
4610 	return retval;
4611 
4612 out_unlock:
4613 	rcu_read_unlock();
4614 	return retval;
4615 }
4616 
4617 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4618 {
4619 	cpumask_var_t cpus_allowed, new_mask;
4620 	struct task_struct *p;
4621 	int retval;
4622 
4623 	rcu_read_lock();
4624 
4625 	p = find_process_by_pid(pid);
4626 	if (!p) {
4627 		rcu_read_unlock();
4628 		return -ESRCH;
4629 	}
4630 
4631 	/* Prevent p going away */
4632 	get_task_struct(p);
4633 	rcu_read_unlock();
4634 
4635 	if (p->flags & PF_NO_SETAFFINITY) {
4636 		retval = -EINVAL;
4637 		goto out_put_task;
4638 	}
4639 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4640 		retval = -ENOMEM;
4641 		goto out_put_task;
4642 	}
4643 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4644 		retval = -ENOMEM;
4645 		goto out_free_cpus_allowed;
4646 	}
4647 	retval = -EPERM;
4648 	if (!check_same_owner(p)) {
4649 		rcu_read_lock();
4650 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4651 			rcu_read_unlock();
4652 			goto out_free_new_mask;
4653 		}
4654 		rcu_read_unlock();
4655 	}
4656 
4657 	retval = security_task_setscheduler(p);
4658 	if (retval)
4659 		goto out_free_new_mask;
4660 
4661 
4662 	cpuset_cpus_allowed(p, cpus_allowed);
4663 	cpumask_and(new_mask, in_mask, cpus_allowed);
4664 
4665 	/*
4666 	 * Since bandwidth control happens on root_domain basis,
4667 	 * if admission test is enabled, we only admit -deadline
4668 	 * tasks allowed to run on all the CPUs in the task's
4669 	 * root_domain.
4670 	 */
4671 #ifdef CONFIG_SMP
4672 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4673 		rcu_read_lock();
4674 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4675 			retval = -EBUSY;
4676 			rcu_read_unlock();
4677 			goto out_free_new_mask;
4678 		}
4679 		rcu_read_unlock();
4680 	}
4681 #endif
4682 again:
4683 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4684 
4685 	if (!retval) {
4686 		cpuset_cpus_allowed(p, cpus_allowed);
4687 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4688 			/*
4689 			 * We must have raced with a concurrent cpuset
4690 			 * update. Just reset the cpus_allowed to the
4691 			 * cpuset's cpus_allowed
4692 			 */
4693 			cpumask_copy(new_mask, cpus_allowed);
4694 			goto again;
4695 		}
4696 	}
4697 out_free_new_mask:
4698 	free_cpumask_var(new_mask);
4699 out_free_cpus_allowed:
4700 	free_cpumask_var(cpus_allowed);
4701 out_put_task:
4702 	put_task_struct(p);
4703 	return retval;
4704 }
4705 
4706 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4707 			     struct cpumask *new_mask)
4708 {
4709 	if (len < cpumask_size())
4710 		cpumask_clear(new_mask);
4711 	else if (len > cpumask_size())
4712 		len = cpumask_size();
4713 
4714 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4715 }
4716 
4717 /**
4718  * sys_sched_setaffinity - set the CPU affinity of a process
4719  * @pid: pid of the process
4720  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4721  * @user_mask_ptr: user-space pointer to the new CPU mask
4722  *
4723  * Return: 0 on success. An error code otherwise.
4724  */
4725 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4726 		unsigned long __user *, user_mask_ptr)
4727 {
4728 	cpumask_var_t new_mask;
4729 	int retval;
4730 
4731 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4732 		return -ENOMEM;
4733 
4734 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4735 	if (retval == 0)
4736 		retval = sched_setaffinity(pid, new_mask);
4737 	free_cpumask_var(new_mask);
4738 	return retval;
4739 }
4740 
4741 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4742 {
4743 	struct task_struct *p;
4744 	unsigned long flags;
4745 	int retval;
4746 
4747 	rcu_read_lock();
4748 
4749 	retval = -ESRCH;
4750 	p = find_process_by_pid(pid);
4751 	if (!p)
4752 		goto out_unlock;
4753 
4754 	retval = security_task_getscheduler(p);
4755 	if (retval)
4756 		goto out_unlock;
4757 
4758 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4759 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4760 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4761 
4762 out_unlock:
4763 	rcu_read_unlock();
4764 
4765 	return retval;
4766 }
4767 
4768 /**
4769  * sys_sched_getaffinity - get the CPU affinity of a process
4770  * @pid: pid of the process
4771  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4772  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4773  *
4774  * Return: size of CPU mask copied to user_mask_ptr on success. An
4775  * error code otherwise.
4776  */
4777 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4778 		unsigned long __user *, user_mask_ptr)
4779 {
4780 	int ret;
4781 	cpumask_var_t mask;
4782 
4783 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4784 		return -EINVAL;
4785 	if (len & (sizeof(unsigned long)-1))
4786 		return -EINVAL;
4787 
4788 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4789 		return -ENOMEM;
4790 
4791 	ret = sched_getaffinity(pid, mask);
4792 	if (ret == 0) {
4793 		size_t retlen = min_t(size_t, len, cpumask_size());
4794 
4795 		if (copy_to_user(user_mask_ptr, mask, retlen))
4796 			ret = -EFAULT;
4797 		else
4798 			ret = retlen;
4799 	}
4800 	free_cpumask_var(mask);
4801 
4802 	return ret;
4803 }
4804 
4805 /**
4806  * sys_sched_yield - yield the current processor to other threads.
4807  *
4808  * This function yields the current CPU to other tasks. If there are no
4809  * other threads running on this CPU then this function will return.
4810  *
4811  * Return: 0.
4812  */
4813 SYSCALL_DEFINE0(sched_yield)
4814 {
4815 	struct rq_flags rf;
4816 	struct rq *rq;
4817 
4818 	local_irq_disable();
4819 	rq = this_rq();
4820 	rq_lock(rq, &rf);
4821 
4822 	schedstat_inc(rq->yld_count);
4823 	current->sched_class->yield_task(rq);
4824 
4825 	/*
4826 	 * Since we are going to call schedule() anyway, there's
4827 	 * no need to preempt or enable interrupts:
4828 	 */
4829 	preempt_disable();
4830 	rq_unlock(rq, &rf);
4831 	sched_preempt_enable_no_resched();
4832 
4833 	schedule();
4834 
4835 	return 0;
4836 }
4837 
4838 #ifndef CONFIG_PREEMPT
4839 int __sched _cond_resched(void)
4840 {
4841 	if (should_resched(0)) {
4842 		preempt_schedule_common();
4843 		return 1;
4844 	}
4845 	return 0;
4846 }
4847 EXPORT_SYMBOL(_cond_resched);
4848 #endif
4849 
4850 /*
4851  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4852  * call schedule, and on return reacquire the lock.
4853  *
4854  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4855  * operations here to prevent schedule() from being called twice (once via
4856  * spin_unlock(), once by hand).
4857  */
4858 int __cond_resched_lock(spinlock_t *lock)
4859 {
4860 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4861 	int ret = 0;
4862 
4863 	lockdep_assert_held(lock);
4864 
4865 	if (spin_needbreak(lock) || resched) {
4866 		spin_unlock(lock);
4867 		if (resched)
4868 			preempt_schedule_common();
4869 		else
4870 			cpu_relax();
4871 		ret = 1;
4872 		spin_lock(lock);
4873 	}
4874 	return ret;
4875 }
4876 EXPORT_SYMBOL(__cond_resched_lock);
4877 
4878 int __sched __cond_resched_softirq(void)
4879 {
4880 	BUG_ON(!in_softirq());
4881 
4882 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4883 		local_bh_enable();
4884 		preempt_schedule_common();
4885 		local_bh_disable();
4886 		return 1;
4887 	}
4888 	return 0;
4889 }
4890 EXPORT_SYMBOL(__cond_resched_softirq);
4891 
4892 /**
4893  * yield - yield the current processor to other threads.
4894  *
4895  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4896  *
4897  * The scheduler is at all times free to pick the calling task as the most
4898  * eligible task to run, if removing the yield() call from your code breaks
4899  * it, its already broken.
4900  *
4901  * Typical broken usage is:
4902  *
4903  * while (!event)
4904  *	yield();
4905  *
4906  * where one assumes that yield() will let 'the other' process run that will
4907  * make event true. If the current task is a SCHED_FIFO task that will never
4908  * happen. Never use yield() as a progress guarantee!!
4909  *
4910  * If you want to use yield() to wait for something, use wait_event().
4911  * If you want to use yield() to be 'nice' for others, use cond_resched().
4912  * If you still want to use yield(), do not!
4913  */
4914 void __sched yield(void)
4915 {
4916 	set_current_state(TASK_RUNNING);
4917 	sys_sched_yield();
4918 }
4919 EXPORT_SYMBOL(yield);
4920 
4921 /**
4922  * yield_to - yield the current processor to another thread in
4923  * your thread group, or accelerate that thread toward the
4924  * processor it's on.
4925  * @p: target task
4926  * @preempt: whether task preemption is allowed or not
4927  *
4928  * It's the caller's job to ensure that the target task struct
4929  * can't go away on us before we can do any checks.
4930  *
4931  * Return:
4932  *	true (>0) if we indeed boosted the target task.
4933  *	false (0) if we failed to boost the target.
4934  *	-ESRCH if there's no task to yield to.
4935  */
4936 int __sched yield_to(struct task_struct *p, bool preempt)
4937 {
4938 	struct task_struct *curr = current;
4939 	struct rq *rq, *p_rq;
4940 	unsigned long flags;
4941 	int yielded = 0;
4942 
4943 	local_irq_save(flags);
4944 	rq = this_rq();
4945 
4946 again:
4947 	p_rq = task_rq(p);
4948 	/*
4949 	 * If we're the only runnable task on the rq and target rq also
4950 	 * has only one task, there's absolutely no point in yielding.
4951 	 */
4952 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4953 		yielded = -ESRCH;
4954 		goto out_irq;
4955 	}
4956 
4957 	double_rq_lock(rq, p_rq);
4958 	if (task_rq(p) != p_rq) {
4959 		double_rq_unlock(rq, p_rq);
4960 		goto again;
4961 	}
4962 
4963 	if (!curr->sched_class->yield_to_task)
4964 		goto out_unlock;
4965 
4966 	if (curr->sched_class != p->sched_class)
4967 		goto out_unlock;
4968 
4969 	if (task_running(p_rq, p) || p->state)
4970 		goto out_unlock;
4971 
4972 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4973 	if (yielded) {
4974 		schedstat_inc(rq->yld_count);
4975 		/*
4976 		 * Make p's CPU reschedule; pick_next_entity takes care of
4977 		 * fairness.
4978 		 */
4979 		if (preempt && rq != p_rq)
4980 			resched_curr(p_rq);
4981 	}
4982 
4983 out_unlock:
4984 	double_rq_unlock(rq, p_rq);
4985 out_irq:
4986 	local_irq_restore(flags);
4987 
4988 	if (yielded > 0)
4989 		schedule();
4990 
4991 	return yielded;
4992 }
4993 EXPORT_SYMBOL_GPL(yield_to);
4994 
4995 int io_schedule_prepare(void)
4996 {
4997 	int old_iowait = current->in_iowait;
4998 
4999 	current->in_iowait = 1;
5000 	blk_schedule_flush_plug(current);
5001 
5002 	return old_iowait;
5003 }
5004 
5005 void io_schedule_finish(int token)
5006 {
5007 	current->in_iowait = token;
5008 }
5009 
5010 /*
5011  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5012  * that process accounting knows that this is a task in IO wait state.
5013  */
5014 long __sched io_schedule_timeout(long timeout)
5015 {
5016 	int token;
5017 	long ret;
5018 
5019 	token = io_schedule_prepare();
5020 	ret = schedule_timeout(timeout);
5021 	io_schedule_finish(token);
5022 
5023 	return ret;
5024 }
5025 EXPORT_SYMBOL(io_schedule_timeout);
5026 
5027 void io_schedule(void)
5028 {
5029 	int token;
5030 
5031 	token = io_schedule_prepare();
5032 	schedule();
5033 	io_schedule_finish(token);
5034 }
5035 EXPORT_SYMBOL(io_schedule);
5036 
5037 /**
5038  * sys_sched_get_priority_max - return maximum RT priority.
5039  * @policy: scheduling class.
5040  *
5041  * Return: On success, this syscall returns the maximum
5042  * rt_priority that can be used by a given scheduling class.
5043  * On failure, a negative error code is returned.
5044  */
5045 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5046 {
5047 	int ret = -EINVAL;
5048 
5049 	switch (policy) {
5050 	case SCHED_FIFO:
5051 	case SCHED_RR:
5052 		ret = MAX_USER_RT_PRIO-1;
5053 		break;
5054 	case SCHED_DEADLINE:
5055 	case SCHED_NORMAL:
5056 	case SCHED_BATCH:
5057 	case SCHED_IDLE:
5058 		ret = 0;
5059 		break;
5060 	}
5061 	return ret;
5062 }
5063 
5064 /**
5065  * sys_sched_get_priority_min - return minimum RT priority.
5066  * @policy: scheduling class.
5067  *
5068  * Return: On success, this syscall returns the minimum
5069  * rt_priority that can be used by a given scheduling class.
5070  * On failure, a negative error code is returned.
5071  */
5072 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5073 {
5074 	int ret = -EINVAL;
5075 
5076 	switch (policy) {
5077 	case SCHED_FIFO:
5078 	case SCHED_RR:
5079 		ret = 1;
5080 		break;
5081 	case SCHED_DEADLINE:
5082 	case SCHED_NORMAL:
5083 	case SCHED_BATCH:
5084 	case SCHED_IDLE:
5085 		ret = 0;
5086 	}
5087 	return ret;
5088 }
5089 
5090 /**
5091  * sys_sched_rr_get_interval - return the default timeslice of a process.
5092  * @pid: pid of the process.
5093  * @interval: userspace pointer to the timeslice value.
5094  *
5095  * this syscall writes the default timeslice value of a given process
5096  * into the user-space timespec buffer. A value of '0' means infinity.
5097  *
5098  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5099  * an error code.
5100  */
5101 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5102 		struct timespec __user *, interval)
5103 {
5104 	struct task_struct *p;
5105 	unsigned int time_slice;
5106 	struct rq_flags rf;
5107 	struct timespec t;
5108 	struct rq *rq;
5109 	int retval;
5110 
5111 	if (pid < 0)
5112 		return -EINVAL;
5113 
5114 	retval = -ESRCH;
5115 	rcu_read_lock();
5116 	p = find_process_by_pid(pid);
5117 	if (!p)
5118 		goto out_unlock;
5119 
5120 	retval = security_task_getscheduler(p);
5121 	if (retval)
5122 		goto out_unlock;
5123 
5124 	rq = task_rq_lock(p, &rf);
5125 	time_slice = 0;
5126 	if (p->sched_class->get_rr_interval)
5127 		time_slice = p->sched_class->get_rr_interval(rq, p);
5128 	task_rq_unlock(rq, p, &rf);
5129 
5130 	rcu_read_unlock();
5131 	jiffies_to_timespec(time_slice, &t);
5132 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5133 	return retval;
5134 
5135 out_unlock:
5136 	rcu_read_unlock();
5137 	return retval;
5138 }
5139 
5140 void sched_show_task(struct task_struct *p)
5141 {
5142 	unsigned long free = 0;
5143 	int ppid;
5144 
5145 	if (!try_get_task_stack(p))
5146 		return;
5147 
5148 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5149 
5150 	if (p->state == TASK_RUNNING)
5151 		printk(KERN_CONT "  running task    ");
5152 #ifdef CONFIG_DEBUG_STACK_USAGE
5153 	free = stack_not_used(p);
5154 #endif
5155 	ppid = 0;
5156 	rcu_read_lock();
5157 	if (pid_alive(p))
5158 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5159 	rcu_read_unlock();
5160 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5161 		task_pid_nr(p), ppid,
5162 		(unsigned long)task_thread_info(p)->flags);
5163 
5164 	print_worker_info(KERN_INFO, p);
5165 	show_stack(p, NULL);
5166 	put_task_stack(p);
5167 }
5168 
5169 static inline bool
5170 state_filter_match(unsigned long state_filter, struct task_struct *p)
5171 {
5172 	/* no filter, everything matches */
5173 	if (!state_filter)
5174 		return true;
5175 
5176 	/* filter, but doesn't match */
5177 	if (!(p->state & state_filter))
5178 		return false;
5179 
5180 	/*
5181 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5182 	 * TASK_KILLABLE).
5183 	 */
5184 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5185 		return false;
5186 
5187 	return true;
5188 }
5189 
5190 
5191 void show_state_filter(unsigned long state_filter)
5192 {
5193 	struct task_struct *g, *p;
5194 
5195 #if BITS_PER_LONG == 32
5196 	printk(KERN_INFO
5197 		"  task                PC stack   pid father\n");
5198 #else
5199 	printk(KERN_INFO
5200 		"  task                        PC stack   pid father\n");
5201 #endif
5202 	rcu_read_lock();
5203 	for_each_process_thread(g, p) {
5204 		/*
5205 		 * reset the NMI-timeout, listing all files on a slow
5206 		 * console might take a lot of time:
5207 		 * Also, reset softlockup watchdogs on all CPUs, because
5208 		 * another CPU might be blocked waiting for us to process
5209 		 * an IPI.
5210 		 */
5211 		touch_nmi_watchdog();
5212 		touch_all_softlockup_watchdogs();
5213 		if (state_filter_match(state_filter, p))
5214 			sched_show_task(p);
5215 	}
5216 
5217 #ifdef CONFIG_SCHED_DEBUG
5218 	if (!state_filter)
5219 		sysrq_sched_debug_show();
5220 #endif
5221 	rcu_read_unlock();
5222 	/*
5223 	 * Only show locks if all tasks are dumped:
5224 	 */
5225 	if (!state_filter)
5226 		debug_show_all_locks();
5227 }
5228 
5229 /**
5230  * init_idle - set up an idle thread for a given CPU
5231  * @idle: task in question
5232  * @cpu: CPU the idle task belongs to
5233  *
5234  * NOTE: this function does not set the idle thread's NEED_RESCHED
5235  * flag, to make booting more robust.
5236  */
5237 void init_idle(struct task_struct *idle, int cpu)
5238 {
5239 	struct rq *rq = cpu_rq(cpu);
5240 	unsigned long flags;
5241 
5242 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5243 	raw_spin_lock(&rq->lock);
5244 
5245 	__sched_fork(0, idle);
5246 	idle->state = TASK_RUNNING;
5247 	idle->se.exec_start = sched_clock();
5248 	idle->flags |= PF_IDLE;
5249 
5250 	kasan_unpoison_task_stack(idle);
5251 
5252 #ifdef CONFIG_SMP
5253 	/*
5254 	 * Its possible that init_idle() gets called multiple times on a task,
5255 	 * in that case do_set_cpus_allowed() will not do the right thing.
5256 	 *
5257 	 * And since this is boot we can forgo the serialization.
5258 	 */
5259 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5260 #endif
5261 	/*
5262 	 * We're having a chicken and egg problem, even though we are
5263 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5264 	 * lockdep check in task_group() will fail.
5265 	 *
5266 	 * Similar case to sched_fork(). / Alternatively we could
5267 	 * use task_rq_lock() here and obtain the other rq->lock.
5268 	 *
5269 	 * Silence PROVE_RCU
5270 	 */
5271 	rcu_read_lock();
5272 	__set_task_cpu(idle, cpu);
5273 	rcu_read_unlock();
5274 
5275 	rq->curr = rq->idle = idle;
5276 	idle->on_rq = TASK_ON_RQ_QUEUED;
5277 #ifdef CONFIG_SMP
5278 	idle->on_cpu = 1;
5279 #endif
5280 	raw_spin_unlock(&rq->lock);
5281 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5282 
5283 	/* Set the preempt count _outside_ the spinlocks! */
5284 	init_idle_preempt_count(idle, cpu);
5285 
5286 	/*
5287 	 * The idle tasks have their own, simple scheduling class:
5288 	 */
5289 	idle->sched_class = &idle_sched_class;
5290 	ftrace_graph_init_idle_task(idle, cpu);
5291 	vtime_init_idle(idle, cpu);
5292 #ifdef CONFIG_SMP
5293 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5294 #endif
5295 }
5296 
5297 #ifdef CONFIG_SMP
5298 
5299 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5300 			      const struct cpumask *trial)
5301 {
5302 	int ret = 1;
5303 
5304 	if (!cpumask_weight(cur))
5305 		return ret;
5306 
5307 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5308 
5309 	return ret;
5310 }
5311 
5312 int task_can_attach(struct task_struct *p,
5313 		    const struct cpumask *cs_cpus_allowed)
5314 {
5315 	int ret = 0;
5316 
5317 	/*
5318 	 * Kthreads which disallow setaffinity shouldn't be moved
5319 	 * to a new cpuset; we don't want to change their CPU
5320 	 * affinity and isolating such threads by their set of
5321 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5322 	 * applicable for such threads.  This prevents checking for
5323 	 * success of set_cpus_allowed_ptr() on all attached tasks
5324 	 * before cpus_allowed may be changed.
5325 	 */
5326 	if (p->flags & PF_NO_SETAFFINITY) {
5327 		ret = -EINVAL;
5328 		goto out;
5329 	}
5330 
5331 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5332 					      cs_cpus_allowed))
5333 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5334 
5335 out:
5336 	return ret;
5337 }
5338 
5339 bool sched_smp_initialized __read_mostly;
5340 
5341 #ifdef CONFIG_NUMA_BALANCING
5342 /* Migrate current task p to target_cpu */
5343 int migrate_task_to(struct task_struct *p, int target_cpu)
5344 {
5345 	struct migration_arg arg = { p, target_cpu };
5346 	int curr_cpu = task_cpu(p);
5347 
5348 	if (curr_cpu == target_cpu)
5349 		return 0;
5350 
5351 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5352 		return -EINVAL;
5353 
5354 	/* TODO: This is not properly updating schedstats */
5355 
5356 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5357 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5358 }
5359 
5360 /*
5361  * Requeue a task on a given node and accurately track the number of NUMA
5362  * tasks on the runqueues
5363  */
5364 void sched_setnuma(struct task_struct *p, int nid)
5365 {
5366 	bool queued, running;
5367 	struct rq_flags rf;
5368 	struct rq *rq;
5369 
5370 	rq = task_rq_lock(p, &rf);
5371 	queued = task_on_rq_queued(p);
5372 	running = task_current(rq, p);
5373 
5374 	if (queued)
5375 		dequeue_task(rq, p, DEQUEUE_SAVE);
5376 	if (running)
5377 		put_prev_task(rq, p);
5378 
5379 	p->numa_preferred_nid = nid;
5380 
5381 	if (queued)
5382 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5383 	if (running)
5384 		set_curr_task(rq, p);
5385 	task_rq_unlock(rq, p, &rf);
5386 }
5387 #endif /* CONFIG_NUMA_BALANCING */
5388 
5389 #ifdef CONFIG_HOTPLUG_CPU
5390 /*
5391  * Ensure that the idle task is using init_mm right before its CPU goes
5392  * offline.
5393  */
5394 void idle_task_exit(void)
5395 {
5396 	struct mm_struct *mm = current->active_mm;
5397 
5398 	BUG_ON(cpu_online(smp_processor_id()));
5399 
5400 	if (mm != &init_mm) {
5401 		switch_mm(mm, &init_mm, current);
5402 		finish_arch_post_lock_switch();
5403 	}
5404 	mmdrop(mm);
5405 }
5406 
5407 /*
5408  * Since this CPU is going 'away' for a while, fold any nr_active delta
5409  * we might have. Assumes we're called after migrate_tasks() so that the
5410  * nr_active count is stable. We need to take the teardown thread which
5411  * is calling this into account, so we hand in adjust = 1 to the load
5412  * calculation.
5413  *
5414  * Also see the comment "Global load-average calculations".
5415  */
5416 static void calc_load_migrate(struct rq *rq)
5417 {
5418 	long delta = calc_load_fold_active(rq, 1);
5419 	if (delta)
5420 		atomic_long_add(delta, &calc_load_tasks);
5421 }
5422 
5423 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5424 {
5425 }
5426 
5427 static const struct sched_class fake_sched_class = {
5428 	.put_prev_task = put_prev_task_fake,
5429 };
5430 
5431 static struct task_struct fake_task = {
5432 	/*
5433 	 * Avoid pull_{rt,dl}_task()
5434 	 */
5435 	.prio = MAX_PRIO + 1,
5436 	.sched_class = &fake_sched_class,
5437 };
5438 
5439 /*
5440  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5441  * try_to_wake_up()->select_task_rq().
5442  *
5443  * Called with rq->lock held even though we'er in stop_machine() and
5444  * there's no concurrency possible, we hold the required locks anyway
5445  * because of lock validation efforts.
5446  */
5447 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5448 {
5449 	struct rq *rq = dead_rq;
5450 	struct task_struct *next, *stop = rq->stop;
5451 	struct rq_flags orf = *rf;
5452 	int dest_cpu;
5453 
5454 	/*
5455 	 * Fudge the rq selection such that the below task selection loop
5456 	 * doesn't get stuck on the currently eligible stop task.
5457 	 *
5458 	 * We're currently inside stop_machine() and the rq is either stuck
5459 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5460 	 * either way we should never end up calling schedule() until we're
5461 	 * done here.
5462 	 */
5463 	rq->stop = NULL;
5464 
5465 	/*
5466 	 * put_prev_task() and pick_next_task() sched
5467 	 * class method both need to have an up-to-date
5468 	 * value of rq->clock[_task]
5469 	 */
5470 	update_rq_clock(rq);
5471 
5472 	for (;;) {
5473 		/*
5474 		 * There's this thread running, bail when that's the only
5475 		 * remaining thread:
5476 		 */
5477 		if (rq->nr_running == 1)
5478 			break;
5479 
5480 		/*
5481 		 * pick_next_task() assumes pinned rq->lock:
5482 		 */
5483 		next = pick_next_task(rq, &fake_task, rf);
5484 		BUG_ON(!next);
5485 		put_prev_task(rq, next);
5486 
5487 		/*
5488 		 * Rules for changing task_struct::cpus_allowed are holding
5489 		 * both pi_lock and rq->lock, such that holding either
5490 		 * stabilizes the mask.
5491 		 *
5492 		 * Drop rq->lock is not quite as disastrous as it usually is
5493 		 * because !cpu_active at this point, which means load-balance
5494 		 * will not interfere. Also, stop-machine.
5495 		 */
5496 		rq_unlock(rq, rf);
5497 		raw_spin_lock(&next->pi_lock);
5498 		rq_relock(rq, rf);
5499 
5500 		/*
5501 		 * Since we're inside stop-machine, _nothing_ should have
5502 		 * changed the task, WARN if weird stuff happened, because in
5503 		 * that case the above rq->lock drop is a fail too.
5504 		 */
5505 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5506 			raw_spin_unlock(&next->pi_lock);
5507 			continue;
5508 		}
5509 
5510 		/* Find suitable destination for @next, with force if needed. */
5511 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5512 		rq = __migrate_task(rq, rf, next, dest_cpu);
5513 		if (rq != dead_rq) {
5514 			rq_unlock(rq, rf);
5515 			rq = dead_rq;
5516 			*rf = orf;
5517 			rq_relock(rq, rf);
5518 		}
5519 		raw_spin_unlock(&next->pi_lock);
5520 	}
5521 
5522 	rq->stop = stop;
5523 }
5524 #endif /* CONFIG_HOTPLUG_CPU */
5525 
5526 void set_rq_online(struct rq *rq)
5527 {
5528 	if (!rq->online) {
5529 		const struct sched_class *class;
5530 
5531 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5532 		rq->online = 1;
5533 
5534 		for_each_class(class) {
5535 			if (class->rq_online)
5536 				class->rq_online(rq);
5537 		}
5538 	}
5539 }
5540 
5541 void set_rq_offline(struct rq *rq)
5542 {
5543 	if (rq->online) {
5544 		const struct sched_class *class;
5545 
5546 		for_each_class(class) {
5547 			if (class->rq_offline)
5548 				class->rq_offline(rq);
5549 		}
5550 
5551 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5552 		rq->online = 0;
5553 	}
5554 }
5555 
5556 static void set_cpu_rq_start_time(unsigned int cpu)
5557 {
5558 	struct rq *rq = cpu_rq(cpu);
5559 
5560 	rq->age_stamp = sched_clock_cpu(cpu);
5561 }
5562 
5563 /*
5564  * used to mark begin/end of suspend/resume:
5565  */
5566 static int num_cpus_frozen;
5567 
5568 /*
5569  * Update cpusets according to cpu_active mask.  If cpusets are
5570  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5571  * around partition_sched_domains().
5572  *
5573  * If we come here as part of a suspend/resume, don't touch cpusets because we
5574  * want to restore it back to its original state upon resume anyway.
5575  */
5576 static void cpuset_cpu_active(void)
5577 {
5578 	if (cpuhp_tasks_frozen) {
5579 		/*
5580 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5581 		 * resume sequence. As long as this is not the last online
5582 		 * operation in the resume sequence, just build a single sched
5583 		 * domain, ignoring cpusets.
5584 		 */
5585 		partition_sched_domains(1, NULL, NULL);
5586 		if (--num_cpus_frozen)
5587 			return;
5588 		/*
5589 		 * This is the last CPU online operation. So fall through and
5590 		 * restore the original sched domains by considering the
5591 		 * cpuset configurations.
5592 		 */
5593 		cpuset_force_rebuild();
5594 	}
5595 	cpuset_update_active_cpus();
5596 }
5597 
5598 static int cpuset_cpu_inactive(unsigned int cpu)
5599 {
5600 	if (!cpuhp_tasks_frozen) {
5601 		if (dl_cpu_busy(cpu))
5602 			return -EBUSY;
5603 		cpuset_update_active_cpus();
5604 	} else {
5605 		num_cpus_frozen++;
5606 		partition_sched_domains(1, NULL, NULL);
5607 	}
5608 	return 0;
5609 }
5610 
5611 int sched_cpu_activate(unsigned int cpu)
5612 {
5613 	struct rq *rq = cpu_rq(cpu);
5614 	struct rq_flags rf;
5615 
5616 	set_cpu_active(cpu, true);
5617 
5618 	if (sched_smp_initialized) {
5619 		sched_domains_numa_masks_set(cpu);
5620 		cpuset_cpu_active();
5621 	}
5622 
5623 	/*
5624 	 * Put the rq online, if not already. This happens:
5625 	 *
5626 	 * 1) In the early boot process, because we build the real domains
5627 	 *    after all CPUs have been brought up.
5628 	 *
5629 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5630 	 *    domains.
5631 	 */
5632 	rq_lock_irqsave(rq, &rf);
5633 	if (rq->rd) {
5634 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5635 		set_rq_online(rq);
5636 	}
5637 	rq_unlock_irqrestore(rq, &rf);
5638 
5639 	update_max_interval();
5640 
5641 	return 0;
5642 }
5643 
5644 int sched_cpu_deactivate(unsigned int cpu)
5645 {
5646 	int ret;
5647 
5648 	set_cpu_active(cpu, false);
5649 	/*
5650 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5651 	 * users of this state to go away such that all new such users will
5652 	 * observe it.
5653 	 *
5654 	 * Do sync before park smpboot threads to take care the rcu boost case.
5655 	 */
5656 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5657 
5658 	if (!sched_smp_initialized)
5659 		return 0;
5660 
5661 	ret = cpuset_cpu_inactive(cpu);
5662 	if (ret) {
5663 		set_cpu_active(cpu, true);
5664 		return ret;
5665 	}
5666 	sched_domains_numa_masks_clear(cpu);
5667 	return 0;
5668 }
5669 
5670 static void sched_rq_cpu_starting(unsigned int cpu)
5671 {
5672 	struct rq *rq = cpu_rq(cpu);
5673 
5674 	rq->calc_load_update = calc_load_update;
5675 	update_max_interval();
5676 }
5677 
5678 int sched_cpu_starting(unsigned int cpu)
5679 {
5680 	set_cpu_rq_start_time(cpu);
5681 	sched_rq_cpu_starting(cpu);
5682 	return 0;
5683 }
5684 
5685 #ifdef CONFIG_HOTPLUG_CPU
5686 int sched_cpu_dying(unsigned int cpu)
5687 {
5688 	struct rq *rq = cpu_rq(cpu);
5689 	struct rq_flags rf;
5690 
5691 	/* Handle pending wakeups and then migrate everything off */
5692 	sched_ttwu_pending();
5693 
5694 	rq_lock_irqsave(rq, &rf);
5695 	if (rq->rd) {
5696 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5697 		set_rq_offline(rq);
5698 	}
5699 	migrate_tasks(rq, &rf);
5700 	BUG_ON(rq->nr_running != 1);
5701 	rq_unlock_irqrestore(rq, &rf);
5702 
5703 	calc_load_migrate(rq);
5704 	update_max_interval();
5705 	nohz_balance_exit_idle(cpu);
5706 	hrtick_clear(rq);
5707 	return 0;
5708 }
5709 #endif
5710 
5711 #ifdef CONFIG_SCHED_SMT
5712 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5713 
5714 static void sched_init_smt(void)
5715 {
5716 	/*
5717 	 * We've enumerated all CPUs and will assume that if any CPU
5718 	 * has SMT siblings, CPU0 will too.
5719 	 */
5720 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5721 		static_branch_enable(&sched_smt_present);
5722 }
5723 #else
5724 static inline void sched_init_smt(void) { }
5725 #endif
5726 
5727 void __init sched_init_smp(void)
5728 {
5729 	cpumask_var_t non_isolated_cpus;
5730 
5731 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5732 
5733 	sched_init_numa();
5734 
5735 	/*
5736 	 * There's no userspace yet to cause hotplug operations; hence all the
5737 	 * CPU masks are stable and all blatant races in the below code cannot
5738 	 * happen.
5739 	 */
5740 	mutex_lock(&sched_domains_mutex);
5741 	sched_init_domains(cpu_active_mask);
5742 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5743 	if (cpumask_empty(non_isolated_cpus))
5744 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5745 	mutex_unlock(&sched_domains_mutex);
5746 
5747 	/* Move init over to a non-isolated CPU */
5748 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5749 		BUG();
5750 	sched_init_granularity();
5751 	free_cpumask_var(non_isolated_cpus);
5752 
5753 	init_sched_rt_class();
5754 	init_sched_dl_class();
5755 
5756 	sched_init_smt();
5757 
5758 	sched_smp_initialized = true;
5759 }
5760 
5761 static int __init migration_init(void)
5762 {
5763 	sched_rq_cpu_starting(smp_processor_id());
5764 	return 0;
5765 }
5766 early_initcall(migration_init);
5767 
5768 #else
5769 void __init sched_init_smp(void)
5770 {
5771 	sched_init_granularity();
5772 }
5773 #endif /* CONFIG_SMP */
5774 
5775 int in_sched_functions(unsigned long addr)
5776 {
5777 	return in_lock_functions(addr) ||
5778 		(addr >= (unsigned long)__sched_text_start
5779 		&& addr < (unsigned long)__sched_text_end);
5780 }
5781 
5782 #ifdef CONFIG_CGROUP_SCHED
5783 /*
5784  * Default task group.
5785  * Every task in system belongs to this group at bootup.
5786  */
5787 struct task_group root_task_group;
5788 LIST_HEAD(task_groups);
5789 
5790 /* Cacheline aligned slab cache for task_group */
5791 static struct kmem_cache *task_group_cache __read_mostly;
5792 #endif
5793 
5794 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5795 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5796 
5797 void __init sched_init(void)
5798 {
5799 	int i, j;
5800 	unsigned long alloc_size = 0, ptr;
5801 
5802 	sched_clock_init();
5803 	wait_bit_init();
5804 
5805 #ifdef CONFIG_FAIR_GROUP_SCHED
5806 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5807 #endif
5808 #ifdef CONFIG_RT_GROUP_SCHED
5809 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5810 #endif
5811 	if (alloc_size) {
5812 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5813 
5814 #ifdef CONFIG_FAIR_GROUP_SCHED
5815 		root_task_group.se = (struct sched_entity **)ptr;
5816 		ptr += nr_cpu_ids * sizeof(void **);
5817 
5818 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5819 		ptr += nr_cpu_ids * sizeof(void **);
5820 
5821 #endif /* CONFIG_FAIR_GROUP_SCHED */
5822 #ifdef CONFIG_RT_GROUP_SCHED
5823 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5824 		ptr += nr_cpu_ids * sizeof(void **);
5825 
5826 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5827 		ptr += nr_cpu_ids * sizeof(void **);
5828 
5829 #endif /* CONFIG_RT_GROUP_SCHED */
5830 	}
5831 #ifdef CONFIG_CPUMASK_OFFSTACK
5832 	for_each_possible_cpu(i) {
5833 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5834 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5835 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5836 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5837 	}
5838 #endif /* CONFIG_CPUMASK_OFFSTACK */
5839 
5840 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5841 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5842 
5843 #ifdef CONFIG_SMP
5844 	init_defrootdomain();
5845 #endif
5846 
5847 #ifdef CONFIG_RT_GROUP_SCHED
5848 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5849 			global_rt_period(), global_rt_runtime());
5850 #endif /* CONFIG_RT_GROUP_SCHED */
5851 
5852 #ifdef CONFIG_CGROUP_SCHED
5853 	task_group_cache = KMEM_CACHE(task_group, 0);
5854 
5855 	list_add(&root_task_group.list, &task_groups);
5856 	INIT_LIST_HEAD(&root_task_group.children);
5857 	INIT_LIST_HEAD(&root_task_group.siblings);
5858 	autogroup_init(&init_task);
5859 #endif /* CONFIG_CGROUP_SCHED */
5860 
5861 	for_each_possible_cpu(i) {
5862 		struct rq *rq;
5863 
5864 		rq = cpu_rq(i);
5865 		raw_spin_lock_init(&rq->lock);
5866 		rq->nr_running = 0;
5867 		rq->calc_load_active = 0;
5868 		rq->calc_load_update = jiffies + LOAD_FREQ;
5869 		init_cfs_rq(&rq->cfs);
5870 		init_rt_rq(&rq->rt);
5871 		init_dl_rq(&rq->dl);
5872 #ifdef CONFIG_FAIR_GROUP_SCHED
5873 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5874 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5875 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5876 		/*
5877 		 * How much CPU bandwidth does root_task_group get?
5878 		 *
5879 		 * In case of task-groups formed thr' the cgroup filesystem, it
5880 		 * gets 100% of the CPU resources in the system. This overall
5881 		 * system CPU resource is divided among the tasks of
5882 		 * root_task_group and its child task-groups in a fair manner,
5883 		 * based on each entity's (task or task-group's) weight
5884 		 * (se->load.weight).
5885 		 *
5886 		 * In other words, if root_task_group has 10 tasks of weight
5887 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5888 		 * then A0's share of the CPU resource is:
5889 		 *
5890 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5891 		 *
5892 		 * We achieve this by letting root_task_group's tasks sit
5893 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5894 		 */
5895 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5896 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5897 #endif /* CONFIG_FAIR_GROUP_SCHED */
5898 
5899 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5900 #ifdef CONFIG_RT_GROUP_SCHED
5901 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5902 #endif
5903 
5904 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5905 			rq->cpu_load[j] = 0;
5906 
5907 #ifdef CONFIG_SMP
5908 		rq->sd = NULL;
5909 		rq->rd = NULL;
5910 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5911 		rq->balance_callback = NULL;
5912 		rq->active_balance = 0;
5913 		rq->next_balance = jiffies;
5914 		rq->push_cpu = 0;
5915 		rq->cpu = i;
5916 		rq->online = 0;
5917 		rq->idle_stamp = 0;
5918 		rq->avg_idle = 2*sysctl_sched_migration_cost;
5919 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5920 
5921 		INIT_LIST_HEAD(&rq->cfs_tasks);
5922 
5923 		rq_attach_root(rq, &def_root_domain);
5924 #ifdef CONFIG_NO_HZ_COMMON
5925 		rq->last_load_update_tick = jiffies;
5926 		rq->nohz_flags = 0;
5927 #endif
5928 #ifdef CONFIG_NO_HZ_FULL
5929 		rq->last_sched_tick = 0;
5930 #endif
5931 #endif /* CONFIG_SMP */
5932 		init_rq_hrtick(rq);
5933 		atomic_set(&rq->nr_iowait, 0);
5934 	}
5935 
5936 	set_load_weight(&init_task);
5937 
5938 	/*
5939 	 * The boot idle thread does lazy MMU switching as well:
5940 	 */
5941 	mmgrab(&init_mm);
5942 	enter_lazy_tlb(&init_mm, current);
5943 
5944 	/*
5945 	 * Make us the idle thread. Technically, schedule() should not be
5946 	 * called from this thread, however somewhere below it might be,
5947 	 * but because we are the idle thread, we just pick up running again
5948 	 * when this runqueue becomes "idle".
5949 	 */
5950 	init_idle(current, smp_processor_id());
5951 
5952 	calc_load_update = jiffies + LOAD_FREQ;
5953 
5954 #ifdef CONFIG_SMP
5955 	/* May be allocated at isolcpus cmdline parse time */
5956 	if (cpu_isolated_map == NULL)
5957 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5958 	idle_thread_set_boot_cpu();
5959 	set_cpu_rq_start_time(smp_processor_id());
5960 #endif
5961 	init_sched_fair_class();
5962 
5963 	init_schedstats();
5964 
5965 	scheduler_running = 1;
5966 }
5967 
5968 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5969 static inline int preempt_count_equals(int preempt_offset)
5970 {
5971 	int nested = preempt_count() + rcu_preempt_depth();
5972 
5973 	return (nested == preempt_offset);
5974 }
5975 
5976 void __might_sleep(const char *file, int line, int preempt_offset)
5977 {
5978 	/*
5979 	 * Blocking primitives will set (and therefore destroy) current->state,
5980 	 * since we will exit with TASK_RUNNING make sure we enter with it,
5981 	 * otherwise we will destroy state.
5982 	 */
5983 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
5984 			"do not call blocking ops when !TASK_RUNNING; "
5985 			"state=%lx set at [<%p>] %pS\n",
5986 			current->state,
5987 			(void *)current->task_state_change,
5988 			(void *)current->task_state_change);
5989 
5990 	___might_sleep(file, line, preempt_offset);
5991 }
5992 EXPORT_SYMBOL(__might_sleep);
5993 
5994 void ___might_sleep(const char *file, int line, int preempt_offset)
5995 {
5996 	/* Ratelimiting timestamp: */
5997 	static unsigned long prev_jiffy;
5998 
5999 	unsigned long preempt_disable_ip;
6000 
6001 	/* WARN_ON_ONCE() by default, no rate limit required: */
6002 	rcu_sleep_check();
6003 
6004 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6005 	     !is_idle_task(current)) ||
6006 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6007 	    oops_in_progress)
6008 		return;
6009 
6010 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6011 		return;
6012 	prev_jiffy = jiffies;
6013 
6014 	/* Save this before calling printk(), since that will clobber it: */
6015 	preempt_disable_ip = get_preempt_disable_ip(current);
6016 
6017 	printk(KERN_ERR
6018 		"BUG: sleeping function called from invalid context at %s:%d\n",
6019 			file, line);
6020 	printk(KERN_ERR
6021 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6022 			in_atomic(), irqs_disabled(),
6023 			current->pid, current->comm);
6024 
6025 	if (task_stack_end_corrupted(current))
6026 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6027 
6028 	debug_show_held_locks(current);
6029 	if (irqs_disabled())
6030 		print_irqtrace_events(current);
6031 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6032 	    && !preempt_count_equals(preempt_offset)) {
6033 		pr_err("Preemption disabled at:");
6034 		print_ip_sym(preempt_disable_ip);
6035 		pr_cont("\n");
6036 	}
6037 	dump_stack();
6038 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6039 }
6040 EXPORT_SYMBOL(___might_sleep);
6041 #endif
6042 
6043 #ifdef CONFIG_MAGIC_SYSRQ
6044 void normalize_rt_tasks(void)
6045 {
6046 	struct task_struct *g, *p;
6047 	struct sched_attr attr = {
6048 		.sched_policy = SCHED_NORMAL,
6049 	};
6050 
6051 	read_lock(&tasklist_lock);
6052 	for_each_process_thread(g, p) {
6053 		/*
6054 		 * Only normalize user tasks:
6055 		 */
6056 		if (p->flags & PF_KTHREAD)
6057 			continue;
6058 
6059 		p->se.exec_start = 0;
6060 		schedstat_set(p->se.statistics.wait_start,  0);
6061 		schedstat_set(p->se.statistics.sleep_start, 0);
6062 		schedstat_set(p->se.statistics.block_start, 0);
6063 
6064 		if (!dl_task(p) && !rt_task(p)) {
6065 			/*
6066 			 * Renice negative nice level userspace
6067 			 * tasks back to 0:
6068 			 */
6069 			if (task_nice(p) < 0)
6070 				set_user_nice(p, 0);
6071 			continue;
6072 		}
6073 
6074 		__sched_setscheduler(p, &attr, false, false);
6075 	}
6076 	read_unlock(&tasklist_lock);
6077 }
6078 
6079 #endif /* CONFIG_MAGIC_SYSRQ */
6080 
6081 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6082 /*
6083  * These functions are only useful for the IA64 MCA handling, or kdb.
6084  *
6085  * They can only be called when the whole system has been
6086  * stopped - every CPU needs to be quiescent, and no scheduling
6087  * activity can take place. Using them for anything else would
6088  * be a serious bug, and as a result, they aren't even visible
6089  * under any other configuration.
6090  */
6091 
6092 /**
6093  * curr_task - return the current task for a given CPU.
6094  * @cpu: the processor in question.
6095  *
6096  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6097  *
6098  * Return: The current task for @cpu.
6099  */
6100 struct task_struct *curr_task(int cpu)
6101 {
6102 	return cpu_curr(cpu);
6103 }
6104 
6105 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6106 
6107 #ifdef CONFIG_IA64
6108 /**
6109  * set_curr_task - set the current task for a given CPU.
6110  * @cpu: the processor in question.
6111  * @p: the task pointer to set.
6112  *
6113  * Description: This function must only be used when non-maskable interrupts
6114  * are serviced on a separate stack. It allows the architecture to switch the
6115  * notion of the current task on a CPU in a non-blocking manner. This function
6116  * must be called with all CPU's synchronized, and interrupts disabled, the
6117  * and caller must save the original value of the current task (see
6118  * curr_task() above) and restore that value before reenabling interrupts and
6119  * re-starting the system.
6120  *
6121  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6122  */
6123 void ia64_set_curr_task(int cpu, struct task_struct *p)
6124 {
6125 	cpu_curr(cpu) = p;
6126 }
6127 
6128 #endif
6129 
6130 #ifdef CONFIG_CGROUP_SCHED
6131 /* task_group_lock serializes the addition/removal of task groups */
6132 static DEFINE_SPINLOCK(task_group_lock);
6133 
6134 static void sched_free_group(struct task_group *tg)
6135 {
6136 	free_fair_sched_group(tg);
6137 	free_rt_sched_group(tg);
6138 	autogroup_free(tg);
6139 	kmem_cache_free(task_group_cache, tg);
6140 }
6141 
6142 /* allocate runqueue etc for a new task group */
6143 struct task_group *sched_create_group(struct task_group *parent)
6144 {
6145 	struct task_group *tg;
6146 
6147 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6148 	if (!tg)
6149 		return ERR_PTR(-ENOMEM);
6150 
6151 	if (!alloc_fair_sched_group(tg, parent))
6152 		goto err;
6153 
6154 	if (!alloc_rt_sched_group(tg, parent))
6155 		goto err;
6156 
6157 	return tg;
6158 
6159 err:
6160 	sched_free_group(tg);
6161 	return ERR_PTR(-ENOMEM);
6162 }
6163 
6164 void sched_online_group(struct task_group *tg, struct task_group *parent)
6165 {
6166 	unsigned long flags;
6167 
6168 	spin_lock_irqsave(&task_group_lock, flags);
6169 	list_add_rcu(&tg->list, &task_groups);
6170 
6171 	/* Root should already exist: */
6172 	WARN_ON(!parent);
6173 
6174 	tg->parent = parent;
6175 	INIT_LIST_HEAD(&tg->children);
6176 	list_add_rcu(&tg->siblings, &parent->children);
6177 	spin_unlock_irqrestore(&task_group_lock, flags);
6178 
6179 	online_fair_sched_group(tg);
6180 }
6181 
6182 /* rcu callback to free various structures associated with a task group */
6183 static void sched_free_group_rcu(struct rcu_head *rhp)
6184 {
6185 	/* Now it should be safe to free those cfs_rqs: */
6186 	sched_free_group(container_of(rhp, struct task_group, rcu));
6187 }
6188 
6189 void sched_destroy_group(struct task_group *tg)
6190 {
6191 	/* Wait for possible concurrent references to cfs_rqs complete: */
6192 	call_rcu(&tg->rcu, sched_free_group_rcu);
6193 }
6194 
6195 void sched_offline_group(struct task_group *tg)
6196 {
6197 	unsigned long flags;
6198 
6199 	/* End participation in shares distribution: */
6200 	unregister_fair_sched_group(tg);
6201 
6202 	spin_lock_irqsave(&task_group_lock, flags);
6203 	list_del_rcu(&tg->list);
6204 	list_del_rcu(&tg->siblings);
6205 	spin_unlock_irqrestore(&task_group_lock, flags);
6206 }
6207 
6208 static void sched_change_group(struct task_struct *tsk, int type)
6209 {
6210 	struct task_group *tg;
6211 
6212 	/*
6213 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6214 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6215 	 * to prevent lockdep warnings.
6216 	 */
6217 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6218 			  struct task_group, css);
6219 	tg = autogroup_task_group(tsk, tg);
6220 	tsk->sched_task_group = tg;
6221 
6222 #ifdef CONFIG_FAIR_GROUP_SCHED
6223 	if (tsk->sched_class->task_change_group)
6224 		tsk->sched_class->task_change_group(tsk, type);
6225 	else
6226 #endif
6227 		set_task_rq(tsk, task_cpu(tsk));
6228 }
6229 
6230 /*
6231  * Change task's runqueue when it moves between groups.
6232  *
6233  * The caller of this function should have put the task in its new group by
6234  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6235  * its new group.
6236  */
6237 void sched_move_task(struct task_struct *tsk)
6238 {
6239 	int queued, running, queue_flags =
6240 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6241 	struct rq_flags rf;
6242 	struct rq *rq;
6243 
6244 	rq = task_rq_lock(tsk, &rf);
6245 	update_rq_clock(rq);
6246 
6247 	running = task_current(rq, tsk);
6248 	queued = task_on_rq_queued(tsk);
6249 
6250 	if (queued)
6251 		dequeue_task(rq, tsk, queue_flags);
6252 	if (running)
6253 		put_prev_task(rq, tsk);
6254 
6255 	sched_change_group(tsk, TASK_MOVE_GROUP);
6256 
6257 	if (queued)
6258 		enqueue_task(rq, tsk, queue_flags);
6259 	if (running)
6260 		set_curr_task(rq, tsk);
6261 
6262 	task_rq_unlock(rq, tsk, &rf);
6263 }
6264 
6265 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6266 {
6267 	return css ? container_of(css, struct task_group, css) : NULL;
6268 }
6269 
6270 static struct cgroup_subsys_state *
6271 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6272 {
6273 	struct task_group *parent = css_tg(parent_css);
6274 	struct task_group *tg;
6275 
6276 	if (!parent) {
6277 		/* This is early initialization for the top cgroup */
6278 		return &root_task_group.css;
6279 	}
6280 
6281 	tg = sched_create_group(parent);
6282 	if (IS_ERR(tg))
6283 		return ERR_PTR(-ENOMEM);
6284 
6285 	return &tg->css;
6286 }
6287 
6288 /* Expose task group only after completing cgroup initialization */
6289 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6290 {
6291 	struct task_group *tg = css_tg(css);
6292 	struct task_group *parent = css_tg(css->parent);
6293 
6294 	if (parent)
6295 		sched_online_group(tg, parent);
6296 	return 0;
6297 }
6298 
6299 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6300 {
6301 	struct task_group *tg = css_tg(css);
6302 
6303 	sched_offline_group(tg);
6304 }
6305 
6306 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6307 {
6308 	struct task_group *tg = css_tg(css);
6309 
6310 	/*
6311 	 * Relies on the RCU grace period between css_released() and this.
6312 	 */
6313 	sched_free_group(tg);
6314 }
6315 
6316 /*
6317  * This is called before wake_up_new_task(), therefore we really only
6318  * have to set its group bits, all the other stuff does not apply.
6319  */
6320 static void cpu_cgroup_fork(struct task_struct *task)
6321 {
6322 	struct rq_flags rf;
6323 	struct rq *rq;
6324 
6325 	rq = task_rq_lock(task, &rf);
6326 
6327 	update_rq_clock(rq);
6328 	sched_change_group(task, TASK_SET_GROUP);
6329 
6330 	task_rq_unlock(rq, task, &rf);
6331 }
6332 
6333 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6334 {
6335 	struct task_struct *task;
6336 	struct cgroup_subsys_state *css;
6337 	int ret = 0;
6338 
6339 	cgroup_taskset_for_each(task, css, tset) {
6340 #ifdef CONFIG_RT_GROUP_SCHED
6341 		if (!sched_rt_can_attach(css_tg(css), task))
6342 			return -EINVAL;
6343 #else
6344 		/* We don't support RT-tasks being in separate groups */
6345 		if (task->sched_class != &fair_sched_class)
6346 			return -EINVAL;
6347 #endif
6348 		/*
6349 		 * Serialize against wake_up_new_task() such that if its
6350 		 * running, we're sure to observe its full state.
6351 		 */
6352 		raw_spin_lock_irq(&task->pi_lock);
6353 		/*
6354 		 * Avoid calling sched_move_task() before wake_up_new_task()
6355 		 * has happened. This would lead to problems with PELT, due to
6356 		 * move wanting to detach+attach while we're not attached yet.
6357 		 */
6358 		if (task->state == TASK_NEW)
6359 			ret = -EINVAL;
6360 		raw_spin_unlock_irq(&task->pi_lock);
6361 
6362 		if (ret)
6363 			break;
6364 	}
6365 	return ret;
6366 }
6367 
6368 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6369 {
6370 	struct task_struct *task;
6371 	struct cgroup_subsys_state *css;
6372 
6373 	cgroup_taskset_for_each(task, css, tset)
6374 		sched_move_task(task);
6375 }
6376 
6377 #ifdef CONFIG_FAIR_GROUP_SCHED
6378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6379 				struct cftype *cftype, u64 shareval)
6380 {
6381 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6382 }
6383 
6384 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6385 			       struct cftype *cft)
6386 {
6387 	struct task_group *tg = css_tg(css);
6388 
6389 	return (u64) scale_load_down(tg->shares);
6390 }
6391 
6392 #ifdef CONFIG_CFS_BANDWIDTH
6393 static DEFINE_MUTEX(cfs_constraints_mutex);
6394 
6395 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6396 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6397 
6398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6399 
6400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6401 {
6402 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6403 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6404 
6405 	if (tg == &root_task_group)
6406 		return -EINVAL;
6407 
6408 	/*
6409 	 * Ensure we have at some amount of bandwidth every period.  This is
6410 	 * to prevent reaching a state of large arrears when throttled via
6411 	 * entity_tick() resulting in prolonged exit starvation.
6412 	 */
6413 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6414 		return -EINVAL;
6415 
6416 	/*
6417 	 * Likewise, bound things on the otherside by preventing insane quota
6418 	 * periods.  This also allows us to normalize in computing quota
6419 	 * feasibility.
6420 	 */
6421 	if (period > max_cfs_quota_period)
6422 		return -EINVAL;
6423 
6424 	/*
6425 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6426 	 * unthrottle_offline_cfs_rqs().
6427 	 */
6428 	get_online_cpus();
6429 	mutex_lock(&cfs_constraints_mutex);
6430 	ret = __cfs_schedulable(tg, period, quota);
6431 	if (ret)
6432 		goto out_unlock;
6433 
6434 	runtime_enabled = quota != RUNTIME_INF;
6435 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6436 	/*
6437 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6438 	 * before making related changes, and on->off must occur afterwards
6439 	 */
6440 	if (runtime_enabled && !runtime_was_enabled)
6441 		cfs_bandwidth_usage_inc();
6442 	raw_spin_lock_irq(&cfs_b->lock);
6443 	cfs_b->period = ns_to_ktime(period);
6444 	cfs_b->quota = quota;
6445 
6446 	__refill_cfs_bandwidth_runtime(cfs_b);
6447 
6448 	/* Restart the period timer (if active) to handle new period expiry: */
6449 	if (runtime_enabled)
6450 		start_cfs_bandwidth(cfs_b);
6451 
6452 	raw_spin_unlock_irq(&cfs_b->lock);
6453 
6454 	for_each_online_cpu(i) {
6455 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6456 		struct rq *rq = cfs_rq->rq;
6457 		struct rq_flags rf;
6458 
6459 		rq_lock_irq(rq, &rf);
6460 		cfs_rq->runtime_enabled = runtime_enabled;
6461 		cfs_rq->runtime_remaining = 0;
6462 
6463 		if (cfs_rq->throttled)
6464 			unthrottle_cfs_rq(cfs_rq);
6465 		rq_unlock_irq(rq, &rf);
6466 	}
6467 	if (runtime_was_enabled && !runtime_enabled)
6468 		cfs_bandwidth_usage_dec();
6469 out_unlock:
6470 	mutex_unlock(&cfs_constraints_mutex);
6471 	put_online_cpus();
6472 
6473 	return ret;
6474 }
6475 
6476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6477 {
6478 	u64 quota, period;
6479 
6480 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6481 	if (cfs_quota_us < 0)
6482 		quota = RUNTIME_INF;
6483 	else
6484 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6485 
6486 	return tg_set_cfs_bandwidth(tg, period, quota);
6487 }
6488 
6489 long tg_get_cfs_quota(struct task_group *tg)
6490 {
6491 	u64 quota_us;
6492 
6493 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6494 		return -1;
6495 
6496 	quota_us = tg->cfs_bandwidth.quota;
6497 	do_div(quota_us, NSEC_PER_USEC);
6498 
6499 	return quota_us;
6500 }
6501 
6502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6503 {
6504 	u64 quota, period;
6505 
6506 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6507 	quota = tg->cfs_bandwidth.quota;
6508 
6509 	return tg_set_cfs_bandwidth(tg, period, quota);
6510 }
6511 
6512 long tg_get_cfs_period(struct task_group *tg)
6513 {
6514 	u64 cfs_period_us;
6515 
6516 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6517 	do_div(cfs_period_us, NSEC_PER_USEC);
6518 
6519 	return cfs_period_us;
6520 }
6521 
6522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6523 				  struct cftype *cft)
6524 {
6525 	return tg_get_cfs_quota(css_tg(css));
6526 }
6527 
6528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6529 				   struct cftype *cftype, s64 cfs_quota_us)
6530 {
6531 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6532 }
6533 
6534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6535 				   struct cftype *cft)
6536 {
6537 	return tg_get_cfs_period(css_tg(css));
6538 }
6539 
6540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6541 				    struct cftype *cftype, u64 cfs_period_us)
6542 {
6543 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6544 }
6545 
6546 struct cfs_schedulable_data {
6547 	struct task_group *tg;
6548 	u64 period, quota;
6549 };
6550 
6551 /*
6552  * normalize group quota/period to be quota/max_period
6553  * note: units are usecs
6554  */
6555 static u64 normalize_cfs_quota(struct task_group *tg,
6556 			       struct cfs_schedulable_data *d)
6557 {
6558 	u64 quota, period;
6559 
6560 	if (tg == d->tg) {
6561 		period = d->period;
6562 		quota = d->quota;
6563 	} else {
6564 		period = tg_get_cfs_period(tg);
6565 		quota = tg_get_cfs_quota(tg);
6566 	}
6567 
6568 	/* note: these should typically be equivalent */
6569 	if (quota == RUNTIME_INF || quota == -1)
6570 		return RUNTIME_INF;
6571 
6572 	return to_ratio(period, quota);
6573 }
6574 
6575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6576 {
6577 	struct cfs_schedulable_data *d = data;
6578 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6579 	s64 quota = 0, parent_quota = -1;
6580 
6581 	if (!tg->parent) {
6582 		quota = RUNTIME_INF;
6583 	} else {
6584 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6585 
6586 		quota = normalize_cfs_quota(tg, d);
6587 		parent_quota = parent_b->hierarchical_quota;
6588 
6589 		/*
6590 		 * Ensure max(child_quota) <= parent_quota, inherit when no
6591 		 * limit is set:
6592 		 */
6593 		if (quota == RUNTIME_INF)
6594 			quota = parent_quota;
6595 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6596 			return -EINVAL;
6597 	}
6598 	cfs_b->hierarchical_quota = quota;
6599 
6600 	return 0;
6601 }
6602 
6603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6604 {
6605 	int ret;
6606 	struct cfs_schedulable_data data = {
6607 		.tg = tg,
6608 		.period = period,
6609 		.quota = quota,
6610 	};
6611 
6612 	if (quota != RUNTIME_INF) {
6613 		do_div(data.period, NSEC_PER_USEC);
6614 		do_div(data.quota, NSEC_PER_USEC);
6615 	}
6616 
6617 	rcu_read_lock();
6618 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6619 	rcu_read_unlock();
6620 
6621 	return ret;
6622 }
6623 
6624 static int cpu_stats_show(struct seq_file *sf, void *v)
6625 {
6626 	struct task_group *tg = css_tg(seq_css(sf));
6627 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6628 
6629 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6630 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6631 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6632 
6633 	return 0;
6634 }
6635 #endif /* CONFIG_CFS_BANDWIDTH */
6636 #endif /* CONFIG_FAIR_GROUP_SCHED */
6637 
6638 #ifdef CONFIG_RT_GROUP_SCHED
6639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6640 				struct cftype *cft, s64 val)
6641 {
6642 	return sched_group_set_rt_runtime(css_tg(css), val);
6643 }
6644 
6645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6646 			       struct cftype *cft)
6647 {
6648 	return sched_group_rt_runtime(css_tg(css));
6649 }
6650 
6651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6652 				    struct cftype *cftype, u64 rt_period_us)
6653 {
6654 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6655 }
6656 
6657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6658 				   struct cftype *cft)
6659 {
6660 	return sched_group_rt_period(css_tg(css));
6661 }
6662 #endif /* CONFIG_RT_GROUP_SCHED */
6663 
6664 static struct cftype cpu_files[] = {
6665 #ifdef CONFIG_FAIR_GROUP_SCHED
6666 	{
6667 		.name = "shares",
6668 		.read_u64 = cpu_shares_read_u64,
6669 		.write_u64 = cpu_shares_write_u64,
6670 	},
6671 #endif
6672 #ifdef CONFIG_CFS_BANDWIDTH
6673 	{
6674 		.name = "cfs_quota_us",
6675 		.read_s64 = cpu_cfs_quota_read_s64,
6676 		.write_s64 = cpu_cfs_quota_write_s64,
6677 	},
6678 	{
6679 		.name = "cfs_period_us",
6680 		.read_u64 = cpu_cfs_period_read_u64,
6681 		.write_u64 = cpu_cfs_period_write_u64,
6682 	},
6683 	{
6684 		.name = "stat",
6685 		.seq_show = cpu_stats_show,
6686 	},
6687 #endif
6688 #ifdef CONFIG_RT_GROUP_SCHED
6689 	{
6690 		.name = "rt_runtime_us",
6691 		.read_s64 = cpu_rt_runtime_read,
6692 		.write_s64 = cpu_rt_runtime_write,
6693 	},
6694 	{
6695 		.name = "rt_period_us",
6696 		.read_u64 = cpu_rt_period_read_uint,
6697 		.write_u64 = cpu_rt_period_write_uint,
6698 	},
6699 #endif
6700 	{ }	/* Terminate */
6701 };
6702 
6703 struct cgroup_subsys cpu_cgrp_subsys = {
6704 	.css_alloc	= cpu_cgroup_css_alloc,
6705 	.css_online	= cpu_cgroup_css_online,
6706 	.css_released	= cpu_cgroup_css_released,
6707 	.css_free	= cpu_cgroup_css_free,
6708 	.fork		= cpu_cgroup_fork,
6709 	.can_attach	= cpu_cgroup_can_attach,
6710 	.attach		= cpu_cgroup_attach,
6711 	.legacy_cftypes	= cpu_files,
6712 	.early_init	= true,
6713 };
6714 
6715 #endif	/* CONFIG_CGROUP_SCHED */
6716 
6717 void dump_cpu_task(int cpu)
6718 {
6719 	pr_info("Task dump for CPU %d:\n", cpu);
6720 	sched_show_task(cpu_curr(cpu));
6721 }
6722 
6723 /*
6724  * Nice levels are multiplicative, with a gentle 10% change for every
6725  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6726  * nice 1, it will get ~10% less CPU time than another CPU-bound task
6727  * that remained on nice 0.
6728  *
6729  * The "10% effect" is relative and cumulative: from _any_ nice level,
6730  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6731  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6732  * If a task goes up by ~10% and another task goes down by ~10% then
6733  * the relative distance between them is ~25%.)
6734  */
6735 const int sched_prio_to_weight[40] = {
6736  /* -20 */     88761,     71755,     56483,     46273,     36291,
6737  /* -15 */     29154,     23254,     18705,     14949,     11916,
6738  /* -10 */      9548,      7620,      6100,      4904,      3906,
6739  /*  -5 */      3121,      2501,      1991,      1586,      1277,
6740  /*   0 */      1024,       820,       655,       526,       423,
6741  /*   5 */       335,       272,       215,       172,       137,
6742  /*  10 */       110,        87,        70,        56,        45,
6743  /*  15 */        36,        29,        23,        18,        15,
6744 };
6745 
6746 /*
6747  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6748  *
6749  * In cases where the weight does not change often, we can use the
6750  * precalculated inverse to speed up arithmetics by turning divisions
6751  * into multiplications:
6752  */
6753 const u32 sched_prio_to_wmult[40] = {
6754  /* -20 */     48388,     59856,     76040,     92818,    118348,
6755  /* -15 */    147320,    184698,    229616,    287308,    360437,
6756  /* -10 */    449829,    563644,    704093,    875809,   1099582,
6757  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
6758  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
6759  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
6760  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
6761  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6762 };
6763