xref: /openbmc/linux/kernel/sched/core.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78 
79 /*
80  * period over which we measure -rt task CPU usage in us.
81  * default: 1s
82  */
83 unsigned int sysctl_sched_rt_period = 1000000;
84 
85 __read_mostly int scheduler_running;
86 
87 #ifdef CONFIG_SCHED_CORE
88 
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90 
91 /* kernel prio, less is more */
92 static inline int __task_prio(struct task_struct *p)
93 {
94 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 		return -2;
96 
97 	if (rt_prio(p->prio)) /* includes deadline */
98 		return p->prio; /* [-1, 99] */
99 
100 	if (p->sched_class == &idle_sched_class)
101 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102 
103 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105 
106 /*
107  * l(a,b)
108  * le(a,b) := !l(b,a)
109  * g(a,b)  := l(b,a)
110  * ge(a,b) := !l(a,b)
111  */
112 
113 /* real prio, less is less */
114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116 
117 	int pa = __task_prio(a), pb = __task_prio(b);
118 
119 	if (-pa < -pb)
120 		return true;
121 
122 	if (-pb < -pa)
123 		return false;
124 
125 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
127 
128 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
129 		return cfs_prio_less(a, b, in_fi);
130 
131 	return false;
132 }
133 
134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136 	if (a->core_cookie < b->core_cookie)
137 		return true;
138 
139 	if (a->core_cookie > b->core_cookie)
140 		return false;
141 
142 	/* flip prio, so high prio is leftmost */
143 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 		return true;
145 
146 	return false;
147 }
148 
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150 
151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155 
156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158 	const struct task_struct *p = __node_2_sc(node);
159 	unsigned long cookie = (unsigned long)key;
160 
161 	if (cookie < p->core_cookie)
162 		return -1;
163 
164 	if (cookie > p->core_cookie)
165 		return 1;
166 
167 	return 0;
168 }
169 
170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172 	rq->core->core_task_seq++;
173 
174 	if (!p->core_cookie)
175 		return;
176 
177 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179 
180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182 	rq->core->core_task_seq++;
183 
184 	if (!sched_core_enqueued(p))
185 		return;
186 
187 	rb_erase(&p->core_node, &rq->core_tree);
188 	RB_CLEAR_NODE(&p->core_node);
189 }
190 
191 /*
192  * Find left-most (aka, highest priority) task matching @cookie.
193  */
194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196 	struct rb_node *node;
197 
198 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 	/*
200 	 * The idle task always matches any cookie!
201 	 */
202 	if (!node)
203 		return idle_sched_class.pick_task(rq);
204 
205 	return __node_2_sc(node);
206 }
207 
208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210 	struct rb_node *node = &p->core_node;
211 
212 	node = rb_next(node);
213 	if (!node)
214 		return NULL;
215 
216 	p = container_of(node, struct task_struct, core_node);
217 	if (p->core_cookie != cookie)
218 		return NULL;
219 
220 	return p;
221 }
222 
223 /*
224  * Magic required such that:
225  *
226  *	raw_spin_rq_lock(rq);
227  *	...
228  *	raw_spin_rq_unlock(rq);
229  *
230  * ends up locking and unlocking the _same_ lock, and all CPUs
231  * always agree on what rq has what lock.
232  *
233  * XXX entirely possible to selectively enable cores, don't bother for now.
234  */
235 
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239 
240 static void __sched_core_flip(bool enabled)
241 {
242 	int cpu, t, i;
243 
244 	cpus_read_lock();
245 
246 	/*
247 	 * Toggle the online cores, one by one.
248 	 */
249 	cpumask_copy(&sched_core_mask, cpu_online_mask);
250 	for_each_cpu(cpu, &sched_core_mask) {
251 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252 
253 		i = 0;
254 		local_irq_disable();
255 		for_each_cpu(t, smt_mask) {
256 			/* supports up to SMT8 */
257 			raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 		}
259 
260 		for_each_cpu(t, smt_mask)
261 			cpu_rq(t)->core_enabled = enabled;
262 
263 		for_each_cpu(t, smt_mask)
264 			raw_spin_unlock(&cpu_rq(t)->__lock);
265 		local_irq_enable();
266 
267 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 	}
269 
270 	/*
271 	 * Toggle the offline CPUs.
272 	 */
273 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275 
276 	for_each_cpu(cpu, &sched_core_mask)
277 		cpu_rq(cpu)->core_enabled = enabled;
278 
279 	cpus_read_unlock();
280 }
281 
282 static void sched_core_assert_empty(void)
283 {
284 	int cpu;
285 
286 	for_each_possible_cpu(cpu)
287 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288 }
289 
290 static void __sched_core_enable(void)
291 {
292 	static_branch_enable(&__sched_core_enabled);
293 	/*
294 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 	 * and future ones will observe !sched_core_disabled().
296 	 */
297 	synchronize_rcu();
298 	__sched_core_flip(true);
299 	sched_core_assert_empty();
300 }
301 
302 static void __sched_core_disable(void)
303 {
304 	sched_core_assert_empty();
305 	__sched_core_flip(false);
306 	static_branch_disable(&__sched_core_enabled);
307 }
308 
309 void sched_core_get(void)
310 {
311 	if (atomic_inc_not_zero(&sched_core_count))
312 		return;
313 
314 	mutex_lock(&sched_core_mutex);
315 	if (!atomic_read(&sched_core_count))
316 		__sched_core_enable();
317 
318 	smp_mb__before_atomic();
319 	atomic_inc(&sched_core_count);
320 	mutex_unlock(&sched_core_mutex);
321 }
322 
323 static void __sched_core_put(struct work_struct *work)
324 {
325 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
326 		__sched_core_disable();
327 		mutex_unlock(&sched_core_mutex);
328 	}
329 }
330 
331 void sched_core_put(void)
332 {
333 	static DECLARE_WORK(_work, __sched_core_put);
334 
335 	/*
336 	 * "There can be only one"
337 	 *
338 	 * Either this is the last one, or we don't actually need to do any
339 	 * 'work'. If it is the last *again*, we rely on
340 	 * WORK_STRUCT_PENDING_BIT.
341 	 */
342 	if (!atomic_add_unless(&sched_core_count, -1, 1))
343 		schedule_work(&_work);
344 }
345 
346 #else /* !CONFIG_SCHED_CORE */
347 
348 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350 
351 #endif /* CONFIG_SCHED_CORE */
352 
353 /*
354  * part of the period that we allow rt tasks to run in us.
355  * default: 0.95s
356  */
357 int sysctl_sched_rt_runtime = 950000;
358 
359 
360 /*
361  * Serialization rules:
362  *
363  * Lock order:
364  *
365  *   p->pi_lock
366  *     rq->lock
367  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368  *
369  *  rq1->lock
370  *    rq2->lock  where: rq1 < rq2
371  *
372  * Regular state:
373  *
374  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375  * local CPU's rq->lock, it optionally removes the task from the runqueue and
376  * always looks at the local rq data structures to find the most eligible task
377  * to run next.
378  *
379  * Task enqueue is also under rq->lock, possibly taken from another CPU.
380  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381  * the local CPU to avoid bouncing the runqueue state around [ see
382  * ttwu_queue_wakelist() ]
383  *
384  * Task wakeup, specifically wakeups that involve migration, are horribly
385  * complicated to avoid having to take two rq->locks.
386  *
387  * Special state:
388  *
389  * System-calls and anything external will use task_rq_lock() which acquires
390  * both p->pi_lock and rq->lock. As a consequence the state they change is
391  * stable while holding either lock:
392  *
393  *  - sched_setaffinity()/
394  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
395  *  - set_user_nice():		p->se.load, p->*prio
396  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
397  *				p->se.load, p->rt_priority,
398  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
399  *  - sched_setnuma():		p->numa_preferred_nid
400  *  - sched_move_task()/
401  *    cpu_cgroup_fork():	p->sched_task_group
402  *  - uclamp_update_active()	p->uclamp*
403  *
404  * p->state <- TASK_*:
405  *
406  *   is changed locklessly using set_current_state(), __set_current_state() or
407  *   set_special_state(), see their respective comments, or by
408  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
409  *   concurrent self.
410  *
411  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412  *
413  *   is set by activate_task() and cleared by deactivate_task(), under
414  *   rq->lock. Non-zero indicates the task is runnable, the special
415  *   ON_RQ_MIGRATING state is used for migration without holding both
416  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417  *
418  * p->on_cpu <- { 0, 1 }:
419  *
420  *   is set by prepare_task() and cleared by finish_task() such that it will be
421  *   set before p is scheduled-in and cleared after p is scheduled-out, both
422  *   under rq->lock. Non-zero indicates the task is running on its CPU.
423  *
424  *   [ The astute reader will observe that it is possible for two tasks on one
425  *     CPU to have ->on_cpu = 1 at the same time. ]
426  *
427  * task_cpu(p): is changed by set_task_cpu(), the rules are:
428  *
429  *  - Don't call set_task_cpu() on a blocked task:
430  *
431  *    We don't care what CPU we're not running on, this simplifies hotplug,
432  *    the CPU assignment of blocked tasks isn't required to be valid.
433  *
434  *  - for try_to_wake_up(), called under p->pi_lock:
435  *
436  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
437  *
438  *  - for migration called under rq->lock:
439  *    [ see task_on_rq_migrating() in task_rq_lock() ]
440  *
441  *    o move_queued_task()
442  *    o detach_task()
443  *
444  *  - for migration called under double_rq_lock():
445  *
446  *    o __migrate_swap_task()
447  *    o push_rt_task() / pull_rt_task()
448  *    o push_dl_task() / pull_dl_task()
449  *    o dl_task_offline_migration()
450  *
451  */
452 
453 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454 {
455 	raw_spinlock_t *lock;
456 
457 	/* Matches synchronize_rcu() in __sched_core_enable() */
458 	preempt_disable();
459 	if (sched_core_disabled()) {
460 		raw_spin_lock_nested(&rq->__lock, subclass);
461 		/* preempt_count *MUST* be > 1 */
462 		preempt_enable_no_resched();
463 		return;
464 	}
465 
466 	for (;;) {
467 		lock = __rq_lockp(rq);
468 		raw_spin_lock_nested(lock, subclass);
469 		if (likely(lock == __rq_lockp(rq))) {
470 			/* preempt_count *MUST* be > 1 */
471 			preempt_enable_no_resched();
472 			return;
473 		}
474 		raw_spin_unlock(lock);
475 	}
476 }
477 
478 bool raw_spin_rq_trylock(struct rq *rq)
479 {
480 	raw_spinlock_t *lock;
481 	bool ret;
482 
483 	/* Matches synchronize_rcu() in __sched_core_enable() */
484 	preempt_disable();
485 	if (sched_core_disabled()) {
486 		ret = raw_spin_trylock(&rq->__lock);
487 		preempt_enable();
488 		return ret;
489 	}
490 
491 	for (;;) {
492 		lock = __rq_lockp(rq);
493 		ret = raw_spin_trylock(lock);
494 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
495 			preempt_enable();
496 			return ret;
497 		}
498 		raw_spin_unlock(lock);
499 	}
500 }
501 
502 void raw_spin_rq_unlock(struct rq *rq)
503 {
504 	raw_spin_unlock(rq_lockp(rq));
505 }
506 
507 #ifdef CONFIG_SMP
508 /*
509  * double_rq_lock - safely lock two runqueues
510  */
511 void double_rq_lock(struct rq *rq1, struct rq *rq2)
512 {
513 	lockdep_assert_irqs_disabled();
514 
515 	if (rq_order_less(rq2, rq1))
516 		swap(rq1, rq2);
517 
518 	raw_spin_rq_lock(rq1);
519 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
520 		return;
521 
522 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523 }
524 #endif
525 
526 /*
527  * __task_rq_lock - lock the rq @p resides on.
528  */
529 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
530 	__acquires(rq->lock)
531 {
532 	struct rq *rq;
533 
534 	lockdep_assert_held(&p->pi_lock);
535 
536 	for (;;) {
537 		rq = task_rq(p);
538 		raw_spin_rq_lock(rq);
539 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
540 			rq_pin_lock(rq, rf);
541 			return rq;
542 		}
543 		raw_spin_rq_unlock(rq);
544 
545 		while (unlikely(task_on_rq_migrating(p)))
546 			cpu_relax();
547 	}
548 }
549 
550 /*
551  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552  */
553 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
554 	__acquires(p->pi_lock)
555 	__acquires(rq->lock)
556 {
557 	struct rq *rq;
558 
559 	for (;;) {
560 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
561 		rq = task_rq(p);
562 		raw_spin_rq_lock(rq);
563 		/*
564 		 *	move_queued_task()		task_rq_lock()
565 		 *
566 		 *	ACQUIRE (rq->lock)
567 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
568 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
569 		 *	[S] ->cpu = new_cpu		[L] task_rq()
570 		 *					[L] ->on_rq
571 		 *	RELEASE (rq->lock)
572 		 *
573 		 * If we observe the old CPU in task_rq_lock(), the acquire of
574 		 * the old rq->lock will fully serialize against the stores.
575 		 *
576 		 * If we observe the new CPU in task_rq_lock(), the address
577 		 * dependency headed by '[L] rq = task_rq()' and the acquire
578 		 * will pair with the WMB to ensure we then also see migrating.
579 		 */
580 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
581 			rq_pin_lock(rq, rf);
582 			return rq;
583 		}
584 		raw_spin_rq_unlock(rq);
585 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
586 
587 		while (unlikely(task_on_rq_migrating(p)))
588 			cpu_relax();
589 	}
590 }
591 
592 /*
593  * RQ-clock updating methods:
594  */
595 
596 static void update_rq_clock_task(struct rq *rq, s64 delta)
597 {
598 /*
599  * In theory, the compile should just see 0 here, and optimize out the call
600  * to sched_rt_avg_update. But I don't trust it...
601  */
602 	s64 __maybe_unused steal = 0, irq_delta = 0;
603 
604 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606 
607 	/*
608 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 	 * this case when a previous update_rq_clock() happened inside a
610 	 * {soft,}irq region.
611 	 *
612 	 * When this happens, we stop ->clock_task and only update the
613 	 * prev_irq_time stamp to account for the part that fit, so that a next
614 	 * update will consume the rest. This ensures ->clock_task is
615 	 * monotonic.
616 	 *
617 	 * It does however cause some slight miss-attribution of {soft,}irq
618 	 * time, a more accurate solution would be to update the irq_time using
619 	 * the current rq->clock timestamp, except that would require using
620 	 * atomic ops.
621 	 */
622 	if (irq_delta > delta)
623 		irq_delta = delta;
624 
625 	rq->prev_irq_time += irq_delta;
626 	delta -= irq_delta;
627 #endif
628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 	if (static_key_false((&paravirt_steal_rq_enabled))) {
630 		steal = paravirt_steal_clock(cpu_of(rq));
631 		steal -= rq->prev_steal_time_rq;
632 
633 		if (unlikely(steal > delta))
634 			steal = delta;
635 
636 		rq->prev_steal_time_rq += steal;
637 		delta -= steal;
638 	}
639 #endif
640 
641 	rq->clock_task += delta;
642 
643 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
644 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
645 		update_irq_load_avg(rq, irq_delta + steal);
646 #endif
647 	update_rq_clock_pelt(rq, delta);
648 }
649 
650 void update_rq_clock(struct rq *rq)
651 {
652 	s64 delta;
653 
654 	lockdep_assert_rq_held(rq);
655 
656 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 		return;
658 
659 #ifdef CONFIG_SCHED_DEBUG
660 	if (sched_feat(WARN_DOUBLE_CLOCK))
661 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
662 	rq->clock_update_flags |= RQCF_UPDATED;
663 #endif
664 
665 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 	if (delta < 0)
667 		return;
668 	rq->clock += delta;
669 	update_rq_clock_task(rq, delta);
670 }
671 
672 #ifdef CONFIG_SCHED_HRTICK
673 /*
674  * Use HR-timers to deliver accurate preemption points.
675  */
676 
677 static void hrtick_clear(struct rq *rq)
678 {
679 	if (hrtimer_active(&rq->hrtick_timer))
680 		hrtimer_cancel(&rq->hrtick_timer);
681 }
682 
683 /*
684  * High-resolution timer tick.
685  * Runs from hardirq context with interrupts disabled.
686  */
687 static enum hrtimer_restart hrtick(struct hrtimer *timer)
688 {
689 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
690 	struct rq_flags rf;
691 
692 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693 
694 	rq_lock(rq, &rf);
695 	update_rq_clock(rq);
696 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
697 	rq_unlock(rq, &rf);
698 
699 	return HRTIMER_NORESTART;
700 }
701 
702 #ifdef CONFIG_SMP
703 
704 static void __hrtick_restart(struct rq *rq)
705 {
706 	struct hrtimer *timer = &rq->hrtick_timer;
707 	ktime_t time = rq->hrtick_time;
708 
709 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
710 }
711 
712 /*
713  * called from hardirq (IPI) context
714  */
715 static void __hrtick_start(void *arg)
716 {
717 	struct rq *rq = arg;
718 	struct rq_flags rf;
719 
720 	rq_lock(rq, &rf);
721 	__hrtick_restart(rq);
722 	rq_unlock(rq, &rf);
723 }
724 
725 /*
726  * Called to set the hrtick timer state.
727  *
728  * called with rq->lock held and irqs disabled
729  */
730 void hrtick_start(struct rq *rq, u64 delay)
731 {
732 	struct hrtimer *timer = &rq->hrtick_timer;
733 	s64 delta;
734 
735 	/*
736 	 * Don't schedule slices shorter than 10000ns, that just
737 	 * doesn't make sense and can cause timer DoS.
738 	 */
739 	delta = max_t(s64, delay, 10000LL);
740 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
741 
742 	if (rq == this_rq())
743 		__hrtick_restart(rq);
744 	else
745 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
746 }
747 
748 #else
749 /*
750  * Called to set the hrtick timer state.
751  *
752  * called with rq->lock held and irqs disabled
753  */
754 void hrtick_start(struct rq *rq, u64 delay)
755 {
756 	/*
757 	 * Don't schedule slices shorter than 10000ns, that just
758 	 * doesn't make sense. Rely on vruntime for fairness.
759 	 */
760 	delay = max_t(u64, delay, 10000LL);
761 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
762 		      HRTIMER_MODE_REL_PINNED_HARD);
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 static void hrtick_rq_init(struct rq *rq)
768 {
769 #ifdef CONFIG_SMP
770 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
771 #endif
772 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
773 	rq->hrtick_timer.function = hrtick;
774 }
775 #else	/* CONFIG_SCHED_HRTICK */
776 static inline void hrtick_clear(struct rq *rq)
777 {
778 }
779 
780 static inline void hrtick_rq_init(struct rq *rq)
781 {
782 }
783 #endif	/* CONFIG_SCHED_HRTICK */
784 
785 /*
786  * cmpxchg based fetch_or, macro so it works for different integer types
787  */
788 #define fetch_or(ptr, mask)						\
789 	({								\
790 		typeof(ptr) _ptr = (ptr);				\
791 		typeof(mask) _mask = (mask);				\
792 		typeof(*_ptr) _old, _val = *_ptr;			\
793 									\
794 		for (;;) {						\
795 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
796 			if (_old == _val)				\
797 				break;					\
798 			_val = _old;					\
799 		}							\
800 	_old;								\
801 })
802 
803 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
804 /*
805  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806  * this avoids any races wrt polling state changes and thereby avoids
807  * spurious IPIs.
808  */
809 static bool set_nr_and_not_polling(struct task_struct *p)
810 {
811 	struct thread_info *ti = task_thread_info(p);
812 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813 }
814 
815 /*
816  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817  *
818  * If this returns true, then the idle task promises to call
819  * sched_ttwu_pending() and reschedule soon.
820  */
821 static bool set_nr_if_polling(struct task_struct *p)
822 {
823 	struct thread_info *ti = task_thread_info(p);
824 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
825 
826 	for (;;) {
827 		if (!(val & _TIF_POLLING_NRFLAG))
828 			return false;
829 		if (val & _TIF_NEED_RESCHED)
830 			return true;
831 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 		if (old == val)
833 			break;
834 		val = old;
835 	}
836 	return true;
837 }
838 
839 #else
840 static bool set_nr_and_not_polling(struct task_struct *p)
841 {
842 	set_tsk_need_resched(p);
843 	return true;
844 }
845 
846 #ifdef CONFIG_SMP
847 static bool set_nr_if_polling(struct task_struct *p)
848 {
849 	return false;
850 }
851 #endif
852 #endif
853 
854 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
855 {
856 	struct wake_q_node *node = &task->wake_q;
857 
858 	/*
859 	 * Atomically grab the task, if ->wake_q is !nil already it means
860 	 * it's already queued (either by us or someone else) and will get the
861 	 * wakeup due to that.
862 	 *
863 	 * In order to ensure that a pending wakeup will observe our pending
864 	 * state, even in the failed case, an explicit smp_mb() must be used.
865 	 */
866 	smp_mb__before_atomic();
867 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
868 		return false;
869 
870 	/*
871 	 * The head is context local, there can be no concurrency.
872 	 */
873 	*head->lastp = node;
874 	head->lastp = &node->next;
875 	return true;
876 }
877 
878 /**
879  * wake_q_add() - queue a wakeup for 'later' waking.
880  * @head: the wake_q_head to add @task to
881  * @task: the task to queue for 'later' wakeup
882  *
883  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885  * instantly.
886  *
887  * This function must be used as-if it were wake_up_process(); IOW the task
888  * must be ready to be woken at this location.
889  */
890 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891 {
892 	if (__wake_q_add(head, task))
893 		get_task_struct(task);
894 }
895 
896 /**
897  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898  * @head: the wake_q_head to add @task to
899  * @task: the task to queue for 'later' wakeup
900  *
901  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903  * instantly.
904  *
905  * This function must be used as-if it were wake_up_process(); IOW the task
906  * must be ready to be woken at this location.
907  *
908  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909  * that already hold reference to @task can call the 'safe' version and trust
910  * wake_q to do the right thing depending whether or not the @task is already
911  * queued for wakeup.
912  */
913 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914 {
915 	if (!__wake_q_add(head, task))
916 		put_task_struct(task);
917 }
918 
919 void wake_up_q(struct wake_q_head *head)
920 {
921 	struct wake_q_node *node = head->first;
922 
923 	while (node != WAKE_Q_TAIL) {
924 		struct task_struct *task;
925 
926 		task = container_of(node, struct task_struct, wake_q);
927 		/* Task can safely be re-inserted now: */
928 		node = node->next;
929 		task->wake_q.next = NULL;
930 
931 		/*
932 		 * wake_up_process() executes a full barrier, which pairs with
933 		 * the queueing in wake_q_add() so as not to miss wakeups.
934 		 */
935 		wake_up_process(task);
936 		put_task_struct(task);
937 	}
938 }
939 
940 /*
941  * resched_curr - mark rq's current task 'to be rescheduled now'.
942  *
943  * On UP this means the setting of the need_resched flag, on SMP it
944  * might also involve a cross-CPU call to trigger the scheduler on
945  * the target CPU.
946  */
947 void resched_curr(struct rq *rq)
948 {
949 	struct task_struct *curr = rq->curr;
950 	int cpu;
951 
952 	lockdep_assert_rq_held(rq);
953 
954 	if (test_tsk_need_resched(curr))
955 		return;
956 
957 	cpu = cpu_of(rq);
958 
959 	if (cpu == smp_processor_id()) {
960 		set_tsk_need_resched(curr);
961 		set_preempt_need_resched();
962 		return;
963 	}
964 
965 	if (set_nr_and_not_polling(curr))
966 		smp_send_reschedule(cpu);
967 	else
968 		trace_sched_wake_idle_without_ipi(cpu);
969 }
970 
971 void resched_cpu(int cpu)
972 {
973 	struct rq *rq = cpu_rq(cpu);
974 	unsigned long flags;
975 
976 	raw_spin_rq_lock_irqsave(rq, flags);
977 	if (cpu_online(cpu) || cpu == smp_processor_id())
978 		resched_curr(rq);
979 	raw_spin_rq_unlock_irqrestore(rq, flags);
980 }
981 
982 #ifdef CONFIG_SMP
983 #ifdef CONFIG_NO_HZ_COMMON
984 /*
985  * In the semi idle case, use the nearest busy CPU for migrating timers
986  * from an idle CPU.  This is good for power-savings.
987  *
988  * We don't do similar optimization for completely idle system, as
989  * selecting an idle CPU will add more delays to the timers than intended
990  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
991  */
992 int get_nohz_timer_target(void)
993 {
994 	int i, cpu = smp_processor_id(), default_cpu = -1;
995 	struct sched_domain *sd;
996 
997 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
998 		if (!idle_cpu(cpu))
999 			return cpu;
1000 		default_cpu = cpu;
1001 	}
1002 
1003 	rcu_read_lock();
1004 	for_each_domain(cpu, sd) {
1005 		for_each_cpu_and(i, sched_domain_span(sd),
1006 			housekeeping_cpumask(HK_FLAG_TIMER)) {
1007 			if (cpu == i)
1008 				continue;
1009 
1010 			if (!idle_cpu(i)) {
1011 				cpu = i;
1012 				goto unlock;
1013 			}
1014 		}
1015 	}
1016 
1017 	if (default_cpu == -1)
1018 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1019 	cpu = default_cpu;
1020 unlock:
1021 	rcu_read_unlock();
1022 	return cpu;
1023 }
1024 
1025 /*
1026  * When add_timer_on() enqueues a timer into the timer wheel of an
1027  * idle CPU then this timer might expire before the next timer event
1028  * which is scheduled to wake up that CPU. In case of a completely
1029  * idle system the next event might even be infinite time into the
1030  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1031  * leaves the inner idle loop so the newly added timer is taken into
1032  * account when the CPU goes back to idle and evaluates the timer
1033  * wheel for the next timer event.
1034  */
1035 static void wake_up_idle_cpu(int cpu)
1036 {
1037 	struct rq *rq = cpu_rq(cpu);
1038 
1039 	if (cpu == smp_processor_id())
1040 		return;
1041 
1042 	if (set_nr_and_not_polling(rq->idle))
1043 		smp_send_reschedule(cpu);
1044 	else
1045 		trace_sched_wake_idle_without_ipi(cpu);
1046 }
1047 
1048 static bool wake_up_full_nohz_cpu(int cpu)
1049 {
1050 	/*
1051 	 * We just need the target to call irq_exit() and re-evaluate
1052 	 * the next tick. The nohz full kick at least implies that.
1053 	 * If needed we can still optimize that later with an
1054 	 * empty IRQ.
1055 	 */
1056 	if (cpu_is_offline(cpu))
1057 		return true;  /* Don't try to wake offline CPUs. */
1058 	if (tick_nohz_full_cpu(cpu)) {
1059 		if (cpu != smp_processor_id() ||
1060 		    tick_nohz_tick_stopped())
1061 			tick_nohz_full_kick_cpu(cpu);
1062 		return true;
1063 	}
1064 
1065 	return false;
1066 }
1067 
1068 /*
1069  * Wake up the specified CPU.  If the CPU is going offline, it is the
1070  * caller's responsibility to deal with the lost wakeup, for example,
1071  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1072  */
1073 void wake_up_nohz_cpu(int cpu)
1074 {
1075 	if (!wake_up_full_nohz_cpu(cpu))
1076 		wake_up_idle_cpu(cpu);
1077 }
1078 
1079 static void nohz_csd_func(void *info)
1080 {
1081 	struct rq *rq = info;
1082 	int cpu = cpu_of(rq);
1083 	unsigned int flags;
1084 
1085 	/*
1086 	 * Release the rq::nohz_csd.
1087 	 */
1088 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1089 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1090 
1091 	rq->idle_balance = idle_cpu(cpu);
1092 	if (rq->idle_balance && !need_resched()) {
1093 		rq->nohz_idle_balance = flags;
1094 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1095 	}
1096 }
1097 
1098 #endif /* CONFIG_NO_HZ_COMMON */
1099 
1100 #ifdef CONFIG_NO_HZ_FULL
1101 bool sched_can_stop_tick(struct rq *rq)
1102 {
1103 	int fifo_nr_running;
1104 
1105 	/* Deadline tasks, even if single, need the tick */
1106 	if (rq->dl.dl_nr_running)
1107 		return false;
1108 
1109 	/*
1110 	 * If there are more than one RR tasks, we need the tick to affect the
1111 	 * actual RR behaviour.
1112 	 */
1113 	if (rq->rt.rr_nr_running) {
1114 		if (rq->rt.rr_nr_running == 1)
1115 			return true;
1116 		else
1117 			return false;
1118 	}
1119 
1120 	/*
1121 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1122 	 * forced preemption between FIFO tasks.
1123 	 */
1124 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1125 	if (fifo_nr_running)
1126 		return true;
1127 
1128 	/*
1129 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1130 	 * if there's more than one we need the tick for involuntary
1131 	 * preemption.
1132 	 */
1133 	if (rq->nr_running > 1)
1134 		return false;
1135 
1136 	return true;
1137 }
1138 #endif /* CONFIG_NO_HZ_FULL */
1139 #endif /* CONFIG_SMP */
1140 
1141 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1142 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1143 /*
1144  * Iterate task_group tree rooted at *from, calling @down when first entering a
1145  * node and @up when leaving it for the final time.
1146  *
1147  * Caller must hold rcu_lock or sufficient equivalent.
1148  */
1149 int walk_tg_tree_from(struct task_group *from,
1150 			     tg_visitor down, tg_visitor up, void *data)
1151 {
1152 	struct task_group *parent, *child;
1153 	int ret;
1154 
1155 	parent = from;
1156 
1157 down:
1158 	ret = (*down)(parent, data);
1159 	if (ret)
1160 		goto out;
1161 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1162 		parent = child;
1163 		goto down;
1164 
1165 up:
1166 		continue;
1167 	}
1168 	ret = (*up)(parent, data);
1169 	if (ret || parent == from)
1170 		goto out;
1171 
1172 	child = parent;
1173 	parent = parent->parent;
1174 	if (parent)
1175 		goto up;
1176 out:
1177 	return ret;
1178 }
1179 
1180 int tg_nop(struct task_group *tg, void *data)
1181 {
1182 	return 0;
1183 }
1184 #endif
1185 
1186 static void set_load_weight(struct task_struct *p, bool update_load)
1187 {
1188 	int prio = p->static_prio - MAX_RT_PRIO;
1189 	struct load_weight *load = &p->se.load;
1190 
1191 	/*
1192 	 * SCHED_IDLE tasks get minimal weight:
1193 	 */
1194 	if (task_has_idle_policy(p)) {
1195 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1196 		load->inv_weight = WMULT_IDLEPRIO;
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * SCHED_OTHER tasks have to update their load when changing their
1202 	 * weight
1203 	 */
1204 	if (update_load && p->sched_class == &fair_sched_class) {
1205 		reweight_task(p, prio);
1206 	} else {
1207 		load->weight = scale_load(sched_prio_to_weight[prio]);
1208 		load->inv_weight = sched_prio_to_wmult[prio];
1209 	}
1210 }
1211 
1212 #ifdef CONFIG_UCLAMP_TASK
1213 /*
1214  * Serializes updates of utilization clamp values
1215  *
1216  * The (slow-path) user-space triggers utilization clamp value updates which
1217  * can require updates on (fast-path) scheduler's data structures used to
1218  * support enqueue/dequeue operations.
1219  * While the per-CPU rq lock protects fast-path update operations, user-space
1220  * requests are serialized using a mutex to reduce the risk of conflicting
1221  * updates or API abuses.
1222  */
1223 static DEFINE_MUTEX(uclamp_mutex);
1224 
1225 /* Max allowed minimum utilization */
1226 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1227 
1228 /* Max allowed maximum utilization */
1229 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1230 
1231 /*
1232  * By default RT tasks run at the maximum performance point/capacity of the
1233  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1234  * SCHED_CAPACITY_SCALE.
1235  *
1236  * This knob allows admins to change the default behavior when uclamp is being
1237  * used. In battery powered devices, particularly, running at the maximum
1238  * capacity and frequency will increase energy consumption and shorten the
1239  * battery life.
1240  *
1241  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1242  *
1243  * This knob will not override the system default sched_util_clamp_min defined
1244  * above.
1245  */
1246 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1247 
1248 /* All clamps are required to be less or equal than these values */
1249 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1250 
1251 /*
1252  * This static key is used to reduce the uclamp overhead in the fast path. It
1253  * primarily disables the call to uclamp_rq_{inc, dec}() in
1254  * enqueue/dequeue_task().
1255  *
1256  * This allows users to continue to enable uclamp in their kernel config with
1257  * minimum uclamp overhead in the fast path.
1258  *
1259  * As soon as userspace modifies any of the uclamp knobs, the static key is
1260  * enabled, since we have an actual users that make use of uclamp
1261  * functionality.
1262  *
1263  * The knobs that would enable this static key are:
1264  *
1265  *   * A task modifying its uclamp value with sched_setattr().
1266  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1267  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1268  */
1269 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1270 
1271 /* Integer rounded range for each bucket */
1272 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1273 
1274 #define for_each_clamp_id(clamp_id) \
1275 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1276 
1277 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1278 {
1279 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1280 }
1281 
1282 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1283 {
1284 	if (clamp_id == UCLAMP_MIN)
1285 		return 0;
1286 	return SCHED_CAPACITY_SCALE;
1287 }
1288 
1289 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1290 				 unsigned int value, bool user_defined)
1291 {
1292 	uc_se->value = value;
1293 	uc_se->bucket_id = uclamp_bucket_id(value);
1294 	uc_se->user_defined = user_defined;
1295 }
1296 
1297 static inline unsigned int
1298 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1299 		  unsigned int clamp_value)
1300 {
1301 	/*
1302 	 * Avoid blocked utilization pushing up the frequency when we go
1303 	 * idle (which drops the max-clamp) by retaining the last known
1304 	 * max-clamp.
1305 	 */
1306 	if (clamp_id == UCLAMP_MAX) {
1307 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1308 		return clamp_value;
1309 	}
1310 
1311 	return uclamp_none(UCLAMP_MIN);
1312 }
1313 
1314 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1315 				     unsigned int clamp_value)
1316 {
1317 	/* Reset max-clamp retention only on idle exit */
1318 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1319 		return;
1320 
1321 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1322 }
1323 
1324 static inline
1325 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1326 				   unsigned int clamp_value)
1327 {
1328 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1329 	int bucket_id = UCLAMP_BUCKETS - 1;
1330 
1331 	/*
1332 	 * Since both min and max clamps are max aggregated, find the
1333 	 * top most bucket with tasks in.
1334 	 */
1335 	for ( ; bucket_id >= 0; bucket_id--) {
1336 		if (!bucket[bucket_id].tasks)
1337 			continue;
1338 		return bucket[bucket_id].value;
1339 	}
1340 
1341 	/* No tasks -- default clamp values */
1342 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1343 }
1344 
1345 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1346 {
1347 	unsigned int default_util_min;
1348 	struct uclamp_se *uc_se;
1349 
1350 	lockdep_assert_held(&p->pi_lock);
1351 
1352 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1353 
1354 	/* Only sync if user didn't override the default */
1355 	if (uc_se->user_defined)
1356 		return;
1357 
1358 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1359 	uclamp_se_set(uc_se, default_util_min, false);
1360 }
1361 
1362 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1363 {
1364 	struct rq_flags rf;
1365 	struct rq *rq;
1366 
1367 	if (!rt_task(p))
1368 		return;
1369 
1370 	/* Protect updates to p->uclamp_* */
1371 	rq = task_rq_lock(p, &rf);
1372 	__uclamp_update_util_min_rt_default(p);
1373 	task_rq_unlock(rq, p, &rf);
1374 }
1375 
1376 static void uclamp_sync_util_min_rt_default(void)
1377 {
1378 	struct task_struct *g, *p;
1379 
1380 	/*
1381 	 * copy_process()			sysctl_uclamp
1382 	 *					  uclamp_min_rt = X;
1383 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1384 	 *   // link thread			  smp_mb__after_spinlock()
1385 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1386 	 *   sched_post_fork()			  for_each_process_thread()
1387 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1388 	 *
1389 	 * Ensures that either sched_post_fork() will observe the new
1390 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1391 	 * task.
1392 	 */
1393 	read_lock(&tasklist_lock);
1394 	smp_mb__after_spinlock();
1395 	read_unlock(&tasklist_lock);
1396 
1397 	rcu_read_lock();
1398 	for_each_process_thread(g, p)
1399 		uclamp_update_util_min_rt_default(p);
1400 	rcu_read_unlock();
1401 }
1402 
1403 static inline struct uclamp_se
1404 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1405 {
1406 	/* Copy by value as we could modify it */
1407 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1408 #ifdef CONFIG_UCLAMP_TASK_GROUP
1409 	unsigned int tg_min, tg_max, value;
1410 
1411 	/*
1412 	 * Tasks in autogroups or root task group will be
1413 	 * restricted by system defaults.
1414 	 */
1415 	if (task_group_is_autogroup(task_group(p)))
1416 		return uc_req;
1417 	if (task_group(p) == &root_task_group)
1418 		return uc_req;
1419 
1420 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1421 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1422 	value = uc_req.value;
1423 	value = clamp(value, tg_min, tg_max);
1424 	uclamp_se_set(&uc_req, value, false);
1425 #endif
1426 
1427 	return uc_req;
1428 }
1429 
1430 /*
1431  * The effective clamp bucket index of a task depends on, by increasing
1432  * priority:
1433  * - the task specific clamp value, when explicitly requested from userspace
1434  * - the task group effective clamp value, for tasks not either in the root
1435  *   group or in an autogroup
1436  * - the system default clamp value, defined by the sysadmin
1437  */
1438 static inline struct uclamp_se
1439 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1440 {
1441 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1442 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1443 
1444 	/* System default restrictions always apply */
1445 	if (unlikely(uc_req.value > uc_max.value))
1446 		return uc_max;
1447 
1448 	return uc_req;
1449 }
1450 
1451 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	struct uclamp_se uc_eff;
1454 
1455 	/* Task currently refcounted: use back-annotated (effective) value */
1456 	if (p->uclamp[clamp_id].active)
1457 		return (unsigned long)p->uclamp[clamp_id].value;
1458 
1459 	uc_eff = uclamp_eff_get(p, clamp_id);
1460 
1461 	return (unsigned long)uc_eff.value;
1462 }
1463 
1464 /*
1465  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1466  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1467  * updates the rq's clamp value if required.
1468  *
1469  * Tasks can have a task-specific value requested from user-space, track
1470  * within each bucket the maximum value for tasks refcounted in it.
1471  * This "local max aggregation" allows to track the exact "requested" value
1472  * for each bucket when all its RUNNABLE tasks require the same clamp.
1473  */
1474 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1475 				    enum uclamp_id clamp_id)
1476 {
1477 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1478 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1479 	struct uclamp_bucket *bucket;
1480 
1481 	lockdep_assert_rq_held(rq);
1482 
1483 	/* Update task effective clamp */
1484 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1485 
1486 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1487 	bucket->tasks++;
1488 	uc_se->active = true;
1489 
1490 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1491 
1492 	/*
1493 	 * Local max aggregation: rq buckets always track the max
1494 	 * "requested" clamp value of its RUNNABLE tasks.
1495 	 */
1496 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1497 		bucket->value = uc_se->value;
1498 
1499 	if (uc_se->value > READ_ONCE(uc_rq->value))
1500 		WRITE_ONCE(uc_rq->value, uc_se->value);
1501 }
1502 
1503 /*
1504  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1505  * is released. If this is the last task reference counting the rq's max
1506  * active clamp value, then the rq's clamp value is updated.
1507  *
1508  * Both refcounted tasks and rq's cached clamp values are expected to be
1509  * always valid. If it's detected they are not, as defensive programming,
1510  * enforce the expected state and warn.
1511  */
1512 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1513 				    enum uclamp_id clamp_id)
1514 {
1515 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1516 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1517 	struct uclamp_bucket *bucket;
1518 	unsigned int bkt_clamp;
1519 	unsigned int rq_clamp;
1520 
1521 	lockdep_assert_rq_held(rq);
1522 
1523 	/*
1524 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1525 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1526 	 *
1527 	 * In this case the uc_se->active flag should be false since no uclamp
1528 	 * accounting was performed at enqueue time and we can just return
1529 	 * here.
1530 	 *
1531 	 * Need to be careful of the following enqueue/dequeue ordering
1532 	 * problem too
1533 	 *
1534 	 *	enqueue(taskA)
1535 	 *	// sched_uclamp_used gets enabled
1536 	 *	enqueue(taskB)
1537 	 *	dequeue(taskA)
1538 	 *	// Must not decrement bucket->tasks here
1539 	 *	dequeue(taskB)
1540 	 *
1541 	 * where we could end up with stale data in uc_se and
1542 	 * bucket[uc_se->bucket_id].
1543 	 *
1544 	 * The following check here eliminates the possibility of such race.
1545 	 */
1546 	if (unlikely(!uc_se->active))
1547 		return;
1548 
1549 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1550 
1551 	SCHED_WARN_ON(!bucket->tasks);
1552 	if (likely(bucket->tasks))
1553 		bucket->tasks--;
1554 
1555 	uc_se->active = false;
1556 
1557 	/*
1558 	 * Keep "local max aggregation" simple and accept to (possibly)
1559 	 * overboost some RUNNABLE tasks in the same bucket.
1560 	 * The rq clamp bucket value is reset to its base value whenever
1561 	 * there are no more RUNNABLE tasks refcounting it.
1562 	 */
1563 	if (likely(bucket->tasks))
1564 		return;
1565 
1566 	rq_clamp = READ_ONCE(uc_rq->value);
1567 	/*
1568 	 * Defensive programming: this should never happen. If it happens,
1569 	 * e.g. due to future modification, warn and fixup the expected value.
1570 	 */
1571 	SCHED_WARN_ON(bucket->value > rq_clamp);
1572 	if (bucket->value >= rq_clamp) {
1573 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1574 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1575 	}
1576 }
1577 
1578 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1579 {
1580 	enum uclamp_id clamp_id;
1581 
1582 	/*
1583 	 * Avoid any overhead until uclamp is actually used by the userspace.
1584 	 *
1585 	 * The condition is constructed such that a NOP is generated when
1586 	 * sched_uclamp_used is disabled.
1587 	 */
1588 	if (!static_branch_unlikely(&sched_uclamp_used))
1589 		return;
1590 
1591 	if (unlikely(!p->sched_class->uclamp_enabled))
1592 		return;
1593 
1594 	for_each_clamp_id(clamp_id)
1595 		uclamp_rq_inc_id(rq, p, clamp_id);
1596 
1597 	/* Reset clamp idle holding when there is one RUNNABLE task */
1598 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1599 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1600 }
1601 
1602 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1603 {
1604 	enum uclamp_id clamp_id;
1605 
1606 	/*
1607 	 * Avoid any overhead until uclamp is actually used by the userspace.
1608 	 *
1609 	 * The condition is constructed such that a NOP is generated when
1610 	 * sched_uclamp_used is disabled.
1611 	 */
1612 	if (!static_branch_unlikely(&sched_uclamp_used))
1613 		return;
1614 
1615 	if (unlikely(!p->sched_class->uclamp_enabled))
1616 		return;
1617 
1618 	for_each_clamp_id(clamp_id)
1619 		uclamp_rq_dec_id(rq, p, clamp_id);
1620 }
1621 
1622 static inline void
1623 uclamp_update_active(struct task_struct *p)
1624 {
1625 	enum uclamp_id clamp_id;
1626 	struct rq_flags rf;
1627 	struct rq *rq;
1628 
1629 	/*
1630 	 * Lock the task and the rq where the task is (or was) queued.
1631 	 *
1632 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1633 	 * price to pay to safely serialize util_{min,max} updates with
1634 	 * enqueues, dequeues and migration operations.
1635 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1636 	 */
1637 	rq = task_rq_lock(p, &rf);
1638 
1639 	/*
1640 	 * Setting the clamp bucket is serialized by task_rq_lock().
1641 	 * If the task is not yet RUNNABLE and its task_struct is not
1642 	 * affecting a valid clamp bucket, the next time it's enqueued,
1643 	 * it will already see the updated clamp bucket value.
1644 	 */
1645 	for_each_clamp_id(clamp_id) {
1646 		if (p->uclamp[clamp_id].active) {
1647 			uclamp_rq_dec_id(rq, p, clamp_id);
1648 			uclamp_rq_inc_id(rq, p, clamp_id);
1649 		}
1650 	}
1651 
1652 	task_rq_unlock(rq, p, &rf);
1653 }
1654 
1655 #ifdef CONFIG_UCLAMP_TASK_GROUP
1656 static inline void
1657 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1658 {
1659 	struct css_task_iter it;
1660 	struct task_struct *p;
1661 
1662 	css_task_iter_start(css, 0, &it);
1663 	while ((p = css_task_iter_next(&it)))
1664 		uclamp_update_active(p);
1665 	css_task_iter_end(&it);
1666 }
1667 
1668 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1669 static void uclamp_update_root_tg(void)
1670 {
1671 	struct task_group *tg = &root_task_group;
1672 
1673 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1674 		      sysctl_sched_uclamp_util_min, false);
1675 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1676 		      sysctl_sched_uclamp_util_max, false);
1677 
1678 	rcu_read_lock();
1679 	cpu_util_update_eff(&root_task_group.css);
1680 	rcu_read_unlock();
1681 }
1682 #else
1683 static void uclamp_update_root_tg(void) { }
1684 #endif
1685 
1686 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1687 				void *buffer, size_t *lenp, loff_t *ppos)
1688 {
1689 	bool update_root_tg = false;
1690 	int old_min, old_max, old_min_rt;
1691 	int result;
1692 
1693 	mutex_lock(&uclamp_mutex);
1694 	old_min = sysctl_sched_uclamp_util_min;
1695 	old_max = sysctl_sched_uclamp_util_max;
1696 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1697 
1698 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1699 	if (result)
1700 		goto undo;
1701 	if (!write)
1702 		goto done;
1703 
1704 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1705 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1706 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1707 
1708 		result = -EINVAL;
1709 		goto undo;
1710 	}
1711 
1712 	if (old_min != sysctl_sched_uclamp_util_min) {
1713 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1714 			      sysctl_sched_uclamp_util_min, false);
1715 		update_root_tg = true;
1716 	}
1717 	if (old_max != sysctl_sched_uclamp_util_max) {
1718 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1719 			      sysctl_sched_uclamp_util_max, false);
1720 		update_root_tg = true;
1721 	}
1722 
1723 	if (update_root_tg) {
1724 		static_branch_enable(&sched_uclamp_used);
1725 		uclamp_update_root_tg();
1726 	}
1727 
1728 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1729 		static_branch_enable(&sched_uclamp_used);
1730 		uclamp_sync_util_min_rt_default();
1731 	}
1732 
1733 	/*
1734 	 * We update all RUNNABLE tasks only when task groups are in use.
1735 	 * Otherwise, keep it simple and do just a lazy update at each next
1736 	 * task enqueue time.
1737 	 */
1738 
1739 	goto done;
1740 
1741 undo:
1742 	sysctl_sched_uclamp_util_min = old_min;
1743 	sysctl_sched_uclamp_util_max = old_max;
1744 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1745 done:
1746 	mutex_unlock(&uclamp_mutex);
1747 
1748 	return result;
1749 }
1750 
1751 static int uclamp_validate(struct task_struct *p,
1752 			   const struct sched_attr *attr)
1753 {
1754 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1755 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1756 
1757 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1758 		util_min = attr->sched_util_min;
1759 
1760 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1761 			return -EINVAL;
1762 	}
1763 
1764 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1765 		util_max = attr->sched_util_max;
1766 
1767 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1768 			return -EINVAL;
1769 	}
1770 
1771 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1772 		return -EINVAL;
1773 
1774 	/*
1775 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1776 	 *
1777 	 * We need to do that here, because enabling static branches is a
1778 	 * blocking operation which obviously cannot be done while holding
1779 	 * scheduler locks.
1780 	 */
1781 	static_branch_enable(&sched_uclamp_used);
1782 
1783 	return 0;
1784 }
1785 
1786 static bool uclamp_reset(const struct sched_attr *attr,
1787 			 enum uclamp_id clamp_id,
1788 			 struct uclamp_se *uc_se)
1789 {
1790 	/* Reset on sched class change for a non user-defined clamp value. */
1791 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1792 	    !uc_se->user_defined)
1793 		return true;
1794 
1795 	/* Reset on sched_util_{min,max} == -1. */
1796 	if (clamp_id == UCLAMP_MIN &&
1797 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1798 	    attr->sched_util_min == -1) {
1799 		return true;
1800 	}
1801 
1802 	if (clamp_id == UCLAMP_MAX &&
1803 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1804 	    attr->sched_util_max == -1) {
1805 		return true;
1806 	}
1807 
1808 	return false;
1809 }
1810 
1811 static void __setscheduler_uclamp(struct task_struct *p,
1812 				  const struct sched_attr *attr)
1813 {
1814 	enum uclamp_id clamp_id;
1815 
1816 	for_each_clamp_id(clamp_id) {
1817 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1818 		unsigned int value;
1819 
1820 		if (!uclamp_reset(attr, clamp_id, uc_se))
1821 			continue;
1822 
1823 		/*
1824 		 * RT by default have a 100% boost value that could be modified
1825 		 * at runtime.
1826 		 */
1827 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1828 			value = sysctl_sched_uclamp_util_min_rt_default;
1829 		else
1830 			value = uclamp_none(clamp_id);
1831 
1832 		uclamp_se_set(uc_se, value, false);
1833 
1834 	}
1835 
1836 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1837 		return;
1838 
1839 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1840 	    attr->sched_util_min != -1) {
1841 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1842 			      attr->sched_util_min, true);
1843 	}
1844 
1845 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1846 	    attr->sched_util_max != -1) {
1847 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1848 			      attr->sched_util_max, true);
1849 	}
1850 }
1851 
1852 static void uclamp_fork(struct task_struct *p)
1853 {
1854 	enum uclamp_id clamp_id;
1855 
1856 	/*
1857 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1858 	 * as the task is still at its early fork stages.
1859 	 */
1860 	for_each_clamp_id(clamp_id)
1861 		p->uclamp[clamp_id].active = false;
1862 
1863 	if (likely(!p->sched_reset_on_fork))
1864 		return;
1865 
1866 	for_each_clamp_id(clamp_id) {
1867 		uclamp_se_set(&p->uclamp_req[clamp_id],
1868 			      uclamp_none(clamp_id), false);
1869 	}
1870 }
1871 
1872 static void uclamp_post_fork(struct task_struct *p)
1873 {
1874 	uclamp_update_util_min_rt_default(p);
1875 }
1876 
1877 static void __init init_uclamp_rq(struct rq *rq)
1878 {
1879 	enum uclamp_id clamp_id;
1880 	struct uclamp_rq *uc_rq = rq->uclamp;
1881 
1882 	for_each_clamp_id(clamp_id) {
1883 		uc_rq[clamp_id] = (struct uclamp_rq) {
1884 			.value = uclamp_none(clamp_id)
1885 		};
1886 	}
1887 
1888 	rq->uclamp_flags = 0;
1889 }
1890 
1891 static void __init init_uclamp(void)
1892 {
1893 	struct uclamp_se uc_max = {};
1894 	enum uclamp_id clamp_id;
1895 	int cpu;
1896 
1897 	for_each_possible_cpu(cpu)
1898 		init_uclamp_rq(cpu_rq(cpu));
1899 
1900 	for_each_clamp_id(clamp_id) {
1901 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1902 			      uclamp_none(clamp_id), false);
1903 	}
1904 
1905 	/* System defaults allow max clamp values for both indexes */
1906 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1907 	for_each_clamp_id(clamp_id) {
1908 		uclamp_default[clamp_id] = uc_max;
1909 #ifdef CONFIG_UCLAMP_TASK_GROUP
1910 		root_task_group.uclamp_req[clamp_id] = uc_max;
1911 		root_task_group.uclamp[clamp_id] = uc_max;
1912 #endif
1913 	}
1914 }
1915 
1916 #else /* CONFIG_UCLAMP_TASK */
1917 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1918 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1919 static inline int uclamp_validate(struct task_struct *p,
1920 				  const struct sched_attr *attr)
1921 {
1922 	return -EOPNOTSUPP;
1923 }
1924 static void __setscheduler_uclamp(struct task_struct *p,
1925 				  const struct sched_attr *attr) { }
1926 static inline void uclamp_fork(struct task_struct *p) { }
1927 static inline void uclamp_post_fork(struct task_struct *p) { }
1928 static inline void init_uclamp(void) { }
1929 #endif /* CONFIG_UCLAMP_TASK */
1930 
1931 bool sched_task_on_rq(struct task_struct *p)
1932 {
1933 	return task_on_rq_queued(p);
1934 }
1935 
1936 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1937 {
1938 	if (!(flags & ENQUEUE_NOCLOCK))
1939 		update_rq_clock(rq);
1940 
1941 	if (!(flags & ENQUEUE_RESTORE)) {
1942 		sched_info_enqueue(rq, p);
1943 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1944 	}
1945 
1946 	uclamp_rq_inc(rq, p);
1947 	p->sched_class->enqueue_task(rq, p, flags);
1948 
1949 	if (sched_core_enabled(rq))
1950 		sched_core_enqueue(rq, p);
1951 }
1952 
1953 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1954 {
1955 	if (sched_core_enabled(rq))
1956 		sched_core_dequeue(rq, p);
1957 
1958 	if (!(flags & DEQUEUE_NOCLOCK))
1959 		update_rq_clock(rq);
1960 
1961 	if (!(flags & DEQUEUE_SAVE)) {
1962 		sched_info_dequeue(rq, p);
1963 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1964 	}
1965 
1966 	uclamp_rq_dec(rq, p);
1967 	p->sched_class->dequeue_task(rq, p, flags);
1968 }
1969 
1970 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1971 {
1972 	enqueue_task(rq, p, flags);
1973 
1974 	p->on_rq = TASK_ON_RQ_QUEUED;
1975 }
1976 
1977 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1978 {
1979 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1980 
1981 	dequeue_task(rq, p, flags);
1982 }
1983 
1984 /*
1985  * __normal_prio - return the priority that is based on the static prio
1986  */
1987 static inline int __normal_prio(struct task_struct *p)
1988 {
1989 	return p->static_prio;
1990 }
1991 
1992 /*
1993  * Calculate the expected normal priority: i.e. priority
1994  * without taking RT-inheritance into account. Might be
1995  * boosted by interactivity modifiers. Changes upon fork,
1996  * setprio syscalls, and whenever the interactivity
1997  * estimator recalculates.
1998  */
1999 static inline int normal_prio(struct task_struct *p)
2000 {
2001 	int prio;
2002 
2003 	if (task_has_dl_policy(p))
2004 		prio = MAX_DL_PRIO-1;
2005 	else if (task_has_rt_policy(p))
2006 		prio = MAX_RT_PRIO-1 - p->rt_priority;
2007 	else
2008 		prio = __normal_prio(p);
2009 	return prio;
2010 }
2011 
2012 /*
2013  * Calculate the current priority, i.e. the priority
2014  * taken into account by the scheduler. This value might
2015  * be boosted by RT tasks, or might be boosted by
2016  * interactivity modifiers. Will be RT if the task got
2017  * RT-boosted. If not then it returns p->normal_prio.
2018  */
2019 static int effective_prio(struct task_struct *p)
2020 {
2021 	p->normal_prio = normal_prio(p);
2022 	/*
2023 	 * If we are RT tasks or we were boosted to RT priority,
2024 	 * keep the priority unchanged. Otherwise, update priority
2025 	 * to the normal priority:
2026 	 */
2027 	if (!rt_prio(p->prio))
2028 		return p->normal_prio;
2029 	return p->prio;
2030 }
2031 
2032 /**
2033  * task_curr - is this task currently executing on a CPU?
2034  * @p: the task in question.
2035  *
2036  * Return: 1 if the task is currently executing. 0 otherwise.
2037  */
2038 inline int task_curr(const struct task_struct *p)
2039 {
2040 	return cpu_curr(task_cpu(p)) == p;
2041 }
2042 
2043 /*
2044  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2045  * use the balance_callback list if you want balancing.
2046  *
2047  * this means any call to check_class_changed() must be followed by a call to
2048  * balance_callback().
2049  */
2050 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2051 				       const struct sched_class *prev_class,
2052 				       int oldprio)
2053 {
2054 	if (prev_class != p->sched_class) {
2055 		if (prev_class->switched_from)
2056 			prev_class->switched_from(rq, p);
2057 
2058 		p->sched_class->switched_to(rq, p);
2059 	} else if (oldprio != p->prio || dl_task(p))
2060 		p->sched_class->prio_changed(rq, p, oldprio);
2061 }
2062 
2063 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2064 {
2065 	if (p->sched_class == rq->curr->sched_class)
2066 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2067 	else if (p->sched_class > rq->curr->sched_class)
2068 		resched_curr(rq);
2069 
2070 	/*
2071 	 * A queue event has occurred, and we're going to schedule.  In
2072 	 * this case, we can save a useless back to back clock update.
2073 	 */
2074 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2075 		rq_clock_skip_update(rq);
2076 }
2077 
2078 #ifdef CONFIG_SMP
2079 
2080 static void
2081 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2082 
2083 static int __set_cpus_allowed_ptr(struct task_struct *p,
2084 				  const struct cpumask *new_mask,
2085 				  u32 flags);
2086 
2087 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2088 {
2089 	if (likely(!p->migration_disabled))
2090 		return;
2091 
2092 	if (p->cpus_ptr != &p->cpus_mask)
2093 		return;
2094 
2095 	/*
2096 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2097 	 */
2098 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2099 }
2100 
2101 void migrate_disable(void)
2102 {
2103 	struct task_struct *p = current;
2104 
2105 	if (p->migration_disabled) {
2106 		p->migration_disabled++;
2107 		return;
2108 	}
2109 
2110 	preempt_disable();
2111 	this_rq()->nr_pinned++;
2112 	p->migration_disabled = 1;
2113 	preempt_enable();
2114 }
2115 EXPORT_SYMBOL_GPL(migrate_disable);
2116 
2117 void migrate_enable(void)
2118 {
2119 	struct task_struct *p = current;
2120 
2121 	if (p->migration_disabled > 1) {
2122 		p->migration_disabled--;
2123 		return;
2124 	}
2125 
2126 	/*
2127 	 * Ensure stop_task runs either before or after this, and that
2128 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2129 	 */
2130 	preempt_disable();
2131 	if (p->cpus_ptr != &p->cpus_mask)
2132 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2133 	/*
2134 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2135 	 * regular cpus_mask, otherwise things that race (eg.
2136 	 * select_fallback_rq) get confused.
2137 	 */
2138 	barrier();
2139 	p->migration_disabled = 0;
2140 	this_rq()->nr_pinned--;
2141 	preempt_enable();
2142 }
2143 EXPORT_SYMBOL_GPL(migrate_enable);
2144 
2145 static inline bool rq_has_pinned_tasks(struct rq *rq)
2146 {
2147 	return rq->nr_pinned;
2148 }
2149 
2150 /*
2151  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2152  * __set_cpus_allowed_ptr() and select_fallback_rq().
2153  */
2154 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2155 {
2156 	/* When not in the task's cpumask, no point in looking further. */
2157 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2158 		return false;
2159 
2160 	/* migrate_disabled() must be allowed to finish. */
2161 	if (is_migration_disabled(p))
2162 		return cpu_online(cpu);
2163 
2164 	/* Non kernel threads are not allowed during either online or offline. */
2165 	if (!(p->flags & PF_KTHREAD))
2166 		return cpu_active(cpu);
2167 
2168 	/* KTHREAD_IS_PER_CPU is always allowed. */
2169 	if (kthread_is_per_cpu(p))
2170 		return cpu_online(cpu);
2171 
2172 	/* Regular kernel threads don't get to stay during offline. */
2173 	if (cpu_dying(cpu))
2174 		return false;
2175 
2176 	/* But are allowed during online. */
2177 	return cpu_online(cpu);
2178 }
2179 
2180 /*
2181  * This is how migration works:
2182  *
2183  * 1) we invoke migration_cpu_stop() on the target CPU using
2184  *    stop_one_cpu().
2185  * 2) stopper starts to run (implicitly forcing the migrated thread
2186  *    off the CPU)
2187  * 3) it checks whether the migrated task is still in the wrong runqueue.
2188  * 4) if it's in the wrong runqueue then the migration thread removes
2189  *    it and puts it into the right queue.
2190  * 5) stopper completes and stop_one_cpu() returns and the migration
2191  *    is done.
2192  */
2193 
2194 /*
2195  * move_queued_task - move a queued task to new rq.
2196  *
2197  * Returns (locked) new rq. Old rq's lock is released.
2198  */
2199 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2200 				   struct task_struct *p, int new_cpu)
2201 {
2202 	lockdep_assert_rq_held(rq);
2203 
2204 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2205 	set_task_cpu(p, new_cpu);
2206 	rq_unlock(rq, rf);
2207 
2208 	rq = cpu_rq(new_cpu);
2209 
2210 	rq_lock(rq, rf);
2211 	BUG_ON(task_cpu(p) != new_cpu);
2212 	activate_task(rq, p, 0);
2213 	check_preempt_curr(rq, p, 0);
2214 
2215 	return rq;
2216 }
2217 
2218 struct migration_arg {
2219 	struct task_struct		*task;
2220 	int				dest_cpu;
2221 	struct set_affinity_pending	*pending;
2222 };
2223 
2224 /*
2225  * @refs: number of wait_for_completion()
2226  * @stop_pending: is @stop_work in use
2227  */
2228 struct set_affinity_pending {
2229 	refcount_t		refs;
2230 	unsigned int		stop_pending;
2231 	struct completion	done;
2232 	struct cpu_stop_work	stop_work;
2233 	struct migration_arg	arg;
2234 };
2235 
2236 /*
2237  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2238  * this because either it can't run here any more (set_cpus_allowed()
2239  * away from this CPU, or CPU going down), or because we're
2240  * attempting to rebalance this task on exec (sched_exec).
2241  *
2242  * So we race with normal scheduler movements, but that's OK, as long
2243  * as the task is no longer on this CPU.
2244  */
2245 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2246 				 struct task_struct *p, int dest_cpu)
2247 {
2248 	/* Affinity changed (again). */
2249 	if (!is_cpu_allowed(p, dest_cpu))
2250 		return rq;
2251 
2252 	update_rq_clock(rq);
2253 	rq = move_queued_task(rq, rf, p, dest_cpu);
2254 
2255 	return rq;
2256 }
2257 
2258 /*
2259  * migration_cpu_stop - this will be executed by a highprio stopper thread
2260  * and performs thread migration by bumping thread off CPU then
2261  * 'pushing' onto another runqueue.
2262  */
2263 static int migration_cpu_stop(void *data)
2264 {
2265 	struct migration_arg *arg = data;
2266 	struct set_affinity_pending *pending = arg->pending;
2267 	struct task_struct *p = arg->task;
2268 	struct rq *rq = this_rq();
2269 	bool complete = false;
2270 	struct rq_flags rf;
2271 
2272 	/*
2273 	 * The original target CPU might have gone down and we might
2274 	 * be on another CPU but it doesn't matter.
2275 	 */
2276 	local_irq_save(rf.flags);
2277 	/*
2278 	 * We need to explicitly wake pending tasks before running
2279 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2280 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2281 	 */
2282 	flush_smp_call_function_from_idle();
2283 
2284 	raw_spin_lock(&p->pi_lock);
2285 	rq_lock(rq, &rf);
2286 
2287 	/*
2288 	 * If we were passed a pending, then ->stop_pending was set, thus
2289 	 * p->migration_pending must have remained stable.
2290 	 */
2291 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2292 
2293 	/*
2294 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2295 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2296 	 * we're holding p->pi_lock.
2297 	 */
2298 	if (task_rq(p) == rq) {
2299 		if (is_migration_disabled(p))
2300 			goto out;
2301 
2302 		if (pending) {
2303 			p->migration_pending = NULL;
2304 			complete = true;
2305 
2306 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2307 				goto out;
2308 		}
2309 
2310 		if (task_on_rq_queued(p))
2311 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2312 		else
2313 			p->wake_cpu = arg->dest_cpu;
2314 
2315 		/*
2316 		 * XXX __migrate_task() can fail, at which point we might end
2317 		 * up running on a dodgy CPU, AFAICT this can only happen
2318 		 * during CPU hotplug, at which point we'll get pushed out
2319 		 * anyway, so it's probably not a big deal.
2320 		 */
2321 
2322 	} else if (pending) {
2323 		/*
2324 		 * This happens when we get migrated between migrate_enable()'s
2325 		 * preempt_enable() and scheduling the stopper task. At that
2326 		 * point we're a regular task again and not current anymore.
2327 		 *
2328 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2329 		 * more likely.
2330 		 */
2331 
2332 		/*
2333 		 * The task moved before the stopper got to run. We're holding
2334 		 * ->pi_lock, so the allowed mask is stable - if it got
2335 		 * somewhere allowed, we're done.
2336 		 */
2337 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2338 			p->migration_pending = NULL;
2339 			complete = true;
2340 			goto out;
2341 		}
2342 
2343 		/*
2344 		 * When migrate_enable() hits a rq mis-match we can't reliably
2345 		 * determine is_migration_disabled() and so have to chase after
2346 		 * it.
2347 		 */
2348 		WARN_ON_ONCE(!pending->stop_pending);
2349 		task_rq_unlock(rq, p, &rf);
2350 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2351 				    &pending->arg, &pending->stop_work);
2352 		return 0;
2353 	}
2354 out:
2355 	if (pending)
2356 		pending->stop_pending = false;
2357 	task_rq_unlock(rq, p, &rf);
2358 
2359 	if (complete)
2360 		complete_all(&pending->done);
2361 
2362 	return 0;
2363 }
2364 
2365 int push_cpu_stop(void *arg)
2366 {
2367 	struct rq *lowest_rq = NULL, *rq = this_rq();
2368 	struct task_struct *p = arg;
2369 
2370 	raw_spin_lock_irq(&p->pi_lock);
2371 	raw_spin_rq_lock(rq);
2372 
2373 	if (task_rq(p) != rq)
2374 		goto out_unlock;
2375 
2376 	if (is_migration_disabled(p)) {
2377 		p->migration_flags |= MDF_PUSH;
2378 		goto out_unlock;
2379 	}
2380 
2381 	p->migration_flags &= ~MDF_PUSH;
2382 
2383 	if (p->sched_class->find_lock_rq)
2384 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2385 
2386 	if (!lowest_rq)
2387 		goto out_unlock;
2388 
2389 	// XXX validate p is still the highest prio task
2390 	if (task_rq(p) == rq) {
2391 		deactivate_task(rq, p, 0);
2392 		set_task_cpu(p, lowest_rq->cpu);
2393 		activate_task(lowest_rq, p, 0);
2394 		resched_curr(lowest_rq);
2395 	}
2396 
2397 	double_unlock_balance(rq, lowest_rq);
2398 
2399 out_unlock:
2400 	rq->push_busy = false;
2401 	raw_spin_rq_unlock(rq);
2402 	raw_spin_unlock_irq(&p->pi_lock);
2403 
2404 	put_task_struct(p);
2405 	return 0;
2406 }
2407 
2408 /*
2409  * sched_class::set_cpus_allowed must do the below, but is not required to
2410  * actually call this function.
2411  */
2412 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2413 {
2414 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2415 		p->cpus_ptr = new_mask;
2416 		return;
2417 	}
2418 
2419 	cpumask_copy(&p->cpus_mask, new_mask);
2420 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2421 }
2422 
2423 static void
2424 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2425 {
2426 	struct rq *rq = task_rq(p);
2427 	bool queued, running;
2428 
2429 	/*
2430 	 * This here violates the locking rules for affinity, since we're only
2431 	 * supposed to change these variables while holding both rq->lock and
2432 	 * p->pi_lock.
2433 	 *
2434 	 * HOWEVER, it magically works, because ttwu() is the only code that
2435 	 * accesses these variables under p->pi_lock and only does so after
2436 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2437 	 * before finish_task().
2438 	 *
2439 	 * XXX do further audits, this smells like something putrid.
2440 	 */
2441 	if (flags & SCA_MIGRATE_DISABLE)
2442 		SCHED_WARN_ON(!p->on_cpu);
2443 	else
2444 		lockdep_assert_held(&p->pi_lock);
2445 
2446 	queued = task_on_rq_queued(p);
2447 	running = task_current(rq, p);
2448 
2449 	if (queued) {
2450 		/*
2451 		 * Because __kthread_bind() calls this on blocked tasks without
2452 		 * holding rq->lock.
2453 		 */
2454 		lockdep_assert_rq_held(rq);
2455 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2456 	}
2457 	if (running)
2458 		put_prev_task(rq, p);
2459 
2460 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2461 
2462 	if (queued)
2463 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2464 	if (running)
2465 		set_next_task(rq, p);
2466 }
2467 
2468 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2469 {
2470 	__do_set_cpus_allowed(p, new_mask, 0);
2471 }
2472 
2473 /*
2474  * This function is wildly self concurrent; here be dragons.
2475  *
2476  *
2477  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2478  * designated task is enqueued on an allowed CPU. If that task is currently
2479  * running, we have to kick it out using the CPU stopper.
2480  *
2481  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2482  * Consider:
2483  *
2484  *     Initial conditions: P0->cpus_mask = [0, 1]
2485  *
2486  *     P0@CPU0                  P1
2487  *
2488  *     migrate_disable();
2489  *     <preempted>
2490  *                              set_cpus_allowed_ptr(P0, [1]);
2491  *
2492  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2493  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2494  * This means we need the following scheme:
2495  *
2496  *     P0@CPU0                  P1
2497  *
2498  *     migrate_disable();
2499  *     <preempted>
2500  *                              set_cpus_allowed_ptr(P0, [1]);
2501  *                                <blocks>
2502  *     <resumes>
2503  *     migrate_enable();
2504  *       __set_cpus_allowed_ptr();
2505  *       <wakes local stopper>
2506  *                         `--> <woken on migration completion>
2507  *
2508  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2509  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2510  * task p are serialized by p->pi_lock, which we can leverage: the one that
2511  * should come into effect at the end of the Migrate-Disable region is the last
2512  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2513  * but we still need to properly signal those waiting tasks at the appropriate
2514  * moment.
2515  *
2516  * This is implemented using struct set_affinity_pending. The first
2517  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2518  * setup an instance of that struct and install it on the targeted task_struct.
2519  * Any and all further callers will reuse that instance. Those then wait for
2520  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2521  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2522  *
2523  *
2524  * (1) In the cases covered above. There is one more where the completion is
2525  * signaled within affine_move_task() itself: when a subsequent affinity request
2526  * occurs after the stopper bailed out due to the targeted task still being
2527  * Migrate-Disable. Consider:
2528  *
2529  *     Initial conditions: P0->cpus_mask = [0, 1]
2530  *
2531  *     CPU0		  P1				P2
2532  *     <P0>
2533  *       migrate_disable();
2534  *       <preempted>
2535  *                        set_cpus_allowed_ptr(P0, [1]);
2536  *                          <blocks>
2537  *     <migration/0>
2538  *       migration_cpu_stop()
2539  *         is_migration_disabled()
2540  *           <bails>
2541  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2542  *                                                         <signal completion>
2543  *                          <awakes>
2544  *
2545  * Note that the above is safe vs a concurrent migrate_enable(), as any
2546  * pending affinity completion is preceded by an uninstallation of
2547  * p->migration_pending done with p->pi_lock held.
2548  */
2549 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2550 			    int dest_cpu, unsigned int flags)
2551 {
2552 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2553 	bool stop_pending, complete = false;
2554 
2555 	/* Can the task run on the task's current CPU? If so, we're done */
2556 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2557 		struct task_struct *push_task = NULL;
2558 
2559 		if ((flags & SCA_MIGRATE_ENABLE) &&
2560 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2561 			rq->push_busy = true;
2562 			push_task = get_task_struct(p);
2563 		}
2564 
2565 		/*
2566 		 * If there are pending waiters, but no pending stop_work,
2567 		 * then complete now.
2568 		 */
2569 		pending = p->migration_pending;
2570 		if (pending && !pending->stop_pending) {
2571 			p->migration_pending = NULL;
2572 			complete = true;
2573 		}
2574 
2575 		task_rq_unlock(rq, p, rf);
2576 
2577 		if (push_task) {
2578 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2579 					    p, &rq->push_work);
2580 		}
2581 
2582 		if (complete)
2583 			complete_all(&pending->done);
2584 
2585 		return 0;
2586 	}
2587 
2588 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2589 		/* serialized by p->pi_lock */
2590 		if (!p->migration_pending) {
2591 			/* Install the request */
2592 			refcount_set(&my_pending.refs, 1);
2593 			init_completion(&my_pending.done);
2594 			my_pending.arg = (struct migration_arg) {
2595 				.task = p,
2596 				.dest_cpu = dest_cpu,
2597 				.pending = &my_pending,
2598 			};
2599 
2600 			p->migration_pending = &my_pending;
2601 		} else {
2602 			pending = p->migration_pending;
2603 			refcount_inc(&pending->refs);
2604 			/*
2605 			 * Affinity has changed, but we've already installed a
2606 			 * pending. migration_cpu_stop() *must* see this, else
2607 			 * we risk a completion of the pending despite having a
2608 			 * task on a disallowed CPU.
2609 			 *
2610 			 * Serialized by p->pi_lock, so this is safe.
2611 			 */
2612 			pending->arg.dest_cpu = dest_cpu;
2613 		}
2614 	}
2615 	pending = p->migration_pending;
2616 	/*
2617 	 * - !MIGRATE_ENABLE:
2618 	 *   we'll have installed a pending if there wasn't one already.
2619 	 *
2620 	 * - MIGRATE_ENABLE:
2621 	 *   we're here because the current CPU isn't matching anymore,
2622 	 *   the only way that can happen is because of a concurrent
2623 	 *   set_cpus_allowed_ptr() call, which should then still be
2624 	 *   pending completion.
2625 	 *
2626 	 * Either way, we really should have a @pending here.
2627 	 */
2628 	if (WARN_ON_ONCE(!pending)) {
2629 		task_rq_unlock(rq, p, rf);
2630 		return -EINVAL;
2631 	}
2632 
2633 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2634 		/*
2635 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2636 		 * anything else we cannot do is_migration_disabled(), punt
2637 		 * and have the stopper function handle it all race-free.
2638 		 */
2639 		stop_pending = pending->stop_pending;
2640 		if (!stop_pending)
2641 			pending->stop_pending = true;
2642 
2643 		if (flags & SCA_MIGRATE_ENABLE)
2644 			p->migration_flags &= ~MDF_PUSH;
2645 
2646 		task_rq_unlock(rq, p, rf);
2647 
2648 		if (!stop_pending) {
2649 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2650 					    &pending->arg, &pending->stop_work);
2651 		}
2652 
2653 		if (flags & SCA_MIGRATE_ENABLE)
2654 			return 0;
2655 	} else {
2656 
2657 		if (!is_migration_disabled(p)) {
2658 			if (task_on_rq_queued(p))
2659 				rq = move_queued_task(rq, rf, p, dest_cpu);
2660 
2661 			if (!pending->stop_pending) {
2662 				p->migration_pending = NULL;
2663 				complete = true;
2664 			}
2665 		}
2666 		task_rq_unlock(rq, p, rf);
2667 
2668 		if (complete)
2669 			complete_all(&pending->done);
2670 	}
2671 
2672 	wait_for_completion(&pending->done);
2673 
2674 	if (refcount_dec_and_test(&pending->refs))
2675 		wake_up_var(&pending->refs); /* No UaF, just an address */
2676 
2677 	/*
2678 	 * Block the original owner of &pending until all subsequent callers
2679 	 * have seen the completion and decremented the refcount
2680 	 */
2681 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2682 
2683 	/* ARGH */
2684 	WARN_ON_ONCE(my_pending.stop_pending);
2685 
2686 	return 0;
2687 }
2688 
2689 /*
2690  * Change a given task's CPU affinity. Migrate the thread to a
2691  * proper CPU and schedule it away if the CPU it's executing on
2692  * is removed from the allowed bitmask.
2693  *
2694  * NOTE: the caller must have a valid reference to the task, the
2695  * task must not exit() & deallocate itself prematurely. The
2696  * call is not atomic; no spinlocks may be held.
2697  */
2698 static int __set_cpus_allowed_ptr(struct task_struct *p,
2699 				  const struct cpumask *new_mask,
2700 				  u32 flags)
2701 {
2702 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2703 	unsigned int dest_cpu;
2704 	struct rq_flags rf;
2705 	struct rq *rq;
2706 	int ret = 0;
2707 
2708 	rq = task_rq_lock(p, &rf);
2709 	update_rq_clock(rq);
2710 
2711 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2712 		/*
2713 		 * Kernel threads are allowed on online && !active CPUs,
2714 		 * however, during cpu-hot-unplug, even these might get pushed
2715 		 * away if not KTHREAD_IS_PER_CPU.
2716 		 *
2717 		 * Specifically, migration_disabled() tasks must not fail the
2718 		 * cpumask_any_and_distribute() pick below, esp. so on
2719 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2720 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2721 		 */
2722 		cpu_valid_mask = cpu_online_mask;
2723 	}
2724 
2725 	/*
2726 	 * Must re-check here, to close a race against __kthread_bind(),
2727 	 * sched_setaffinity() is not guaranteed to observe the flag.
2728 	 */
2729 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2730 		ret = -EINVAL;
2731 		goto out;
2732 	}
2733 
2734 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2735 		if (cpumask_equal(&p->cpus_mask, new_mask))
2736 			goto out;
2737 
2738 		if (WARN_ON_ONCE(p == current &&
2739 				 is_migration_disabled(p) &&
2740 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2741 			ret = -EBUSY;
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	/*
2747 	 * Picking a ~random cpu helps in cases where we are changing affinity
2748 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2749 	 * immediately required to distribute the tasks within their new mask.
2750 	 */
2751 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2752 	if (dest_cpu >= nr_cpu_ids) {
2753 		ret = -EINVAL;
2754 		goto out;
2755 	}
2756 
2757 	__do_set_cpus_allowed(p, new_mask, flags);
2758 
2759 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2760 
2761 out:
2762 	task_rq_unlock(rq, p, &rf);
2763 
2764 	return ret;
2765 }
2766 
2767 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2768 {
2769 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2770 }
2771 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2772 
2773 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2774 {
2775 #ifdef CONFIG_SCHED_DEBUG
2776 	unsigned int state = READ_ONCE(p->__state);
2777 
2778 	/*
2779 	 * We should never call set_task_cpu() on a blocked task,
2780 	 * ttwu() will sort out the placement.
2781 	 */
2782 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2783 
2784 	/*
2785 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2786 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2787 	 * time relying on p->on_rq.
2788 	 */
2789 	WARN_ON_ONCE(state == TASK_RUNNING &&
2790 		     p->sched_class == &fair_sched_class &&
2791 		     (p->on_rq && !task_on_rq_migrating(p)));
2792 
2793 #ifdef CONFIG_LOCKDEP
2794 	/*
2795 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2796 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2797 	 *
2798 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2799 	 * see task_group().
2800 	 *
2801 	 * Furthermore, all task_rq users should acquire both locks, see
2802 	 * task_rq_lock().
2803 	 */
2804 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2805 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
2806 #endif
2807 	/*
2808 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2809 	 */
2810 	WARN_ON_ONCE(!cpu_online(new_cpu));
2811 
2812 	WARN_ON_ONCE(is_migration_disabled(p));
2813 #endif
2814 
2815 	trace_sched_migrate_task(p, new_cpu);
2816 
2817 	if (task_cpu(p) != new_cpu) {
2818 		if (p->sched_class->migrate_task_rq)
2819 			p->sched_class->migrate_task_rq(p, new_cpu);
2820 		p->se.nr_migrations++;
2821 		rseq_migrate(p);
2822 		perf_event_task_migrate(p);
2823 	}
2824 
2825 	__set_task_cpu(p, new_cpu);
2826 }
2827 
2828 #ifdef CONFIG_NUMA_BALANCING
2829 static void __migrate_swap_task(struct task_struct *p, int cpu)
2830 {
2831 	if (task_on_rq_queued(p)) {
2832 		struct rq *src_rq, *dst_rq;
2833 		struct rq_flags srf, drf;
2834 
2835 		src_rq = task_rq(p);
2836 		dst_rq = cpu_rq(cpu);
2837 
2838 		rq_pin_lock(src_rq, &srf);
2839 		rq_pin_lock(dst_rq, &drf);
2840 
2841 		deactivate_task(src_rq, p, 0);
2842 		set_task_cpu(p, cpu);
2843 		activate_task(dst_rq, p, 0);
2844 		check_preempt_curr(dst_rq, p, 0);
2845 
2846 		rq_unpin_lock(dst_rq, &drf);
2847 		rq_unpin_lock(src_rq, &srf);
2848 
2849 	} else {
2850 		/*
2851 		 * Task isn't running anymore; make it appear like we migrated
2852 		 * it before it went to sleep. This means on wakeup we make the
2853 		 * previous CPU our target instead of where it really is.
2854 		 */
2855 		p->wake_cpu = cpu;
2856 	}
2857 }
2858 
2859 struct migration_swap_arg {
2860 	struct task_struct *src_task, *dst_task;
2861 	int src_cpu, dst_cpu;
2862 };
2863 
2864 static int migrate_swap_stop(void *data)
2865 {
2866 	struct migration_swap_arg *arg = data;
2867 	struct rq *src_rq, *dst_rq;
2868 	int ret = -EAGAIN;
2869 
2870 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2871 		return -EAGAIN;
2872 
2873 	src_rq = cpu_rq(arg->src_cpu);
2874 	dst_rq = cpu_rq(arg->dst_cpu);
2875 
2876 	double_raw_lock(&arg->src_task->pi_lock,
2877 			&arg->dst_task->pi_lock);
2878 	double_rq_lock(src_rq, dst_rq);
2879 
2880 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2881 		goto unlock;
2882 
2883 	if (task_cpu(arg->src_task) != arg->src_cpu)
2884 		goto unlock;
2885 
2886 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2887 		goto unlock;
2888 
2889 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2890 		goto unlock;
2891 
2892 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2893 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2894 
2895 	ret = 0;
2896 
2897 unlock:
2898 	double_rq_unlock(src_rq, dst_rq);
2899 	raw_spin_unlock(&arg->dst_task->pi_lock);
2900 	raw_spin_unlock(&arg->src_task->pi_lock);
2901 
2902 	return ret;
2903 }
2904 
2905 /*
2906  * Cross migrate two tasks
2907  */
2908 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2909 		int target_cpu, int curr_cpu)
2910 {
2911 	struct migration_swap_arg arg;
2912 	int ret = -EINVAL;
2913 
2914 	arg = (struct migration_swap_arg){
2915 		.src_task = cur,
2916 		.src_cpu = curr_cpu,
2917 		.dst_task = p,
2918 		.dst_cpu = target_cpu,
2919 	};
2920 
2921 	if (arg.src_cpu == arg.dst_cpu)
2922 		goto out;
2923 
2924 	/*
2925 	 * These three tests are all lockless; this is OK since all of them
2926 	 * will be re-checked with proper locks held further down the line.
2927 	 */
2928 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2929 		goto out;
2930 
2931 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2932 		goto out;
2933 
2934 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2935 		goto out;
2936 
2937 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2938 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2939 
2940 out:
2941 	return ret;
2942 }
2943 #endif /* CONFIG_NUMA_BALANCING */
2944 
2945 /*
2946  * wait_task_inactive - wait for a thread to unschedule.
2947  *
2948  * If @match_state is nonzero, it's the @p->state value just checked and
2949  * not expected to change.  If it changes, i.e. @p might have woken up,
2950  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2951  * we return a positive number (its total switch count).  If a second call
2952  * a short while later returns the same number, the caller can be sure that
2953  * @p has remained unscheduled the whole time.
2954  *
2955  * The caller must ensure that the task *will* unschedule sometime soon,
2956  * else this function might spin for a *long* time. This function can't
2957  * be called with interrupts off, or it may introduce deadlock with
2958  * smp_call_function() if an IPI is sent by the same process we are
2959  * waiting to become inactive.
2960  */
2961 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2962 {
2963 	int running, queued;
2964 	struct rq_flags rf;
2965 	unsigned long ncsw;
2966 	struct rq *rq;
2967 
2968 	for (;;) {
2969 		/*
2970 		 * We do the initial early heuristics without holding
2971 		 * any task-queue locks at all. We'll only try to get
2972 		 * the runqueue lock when things look like they will
2973 		 * work out!
2974 		 */
2975 		rq = task_rq(p);
2976 
2977 		/*
2978 		 * If the task is actively running on another CPU
2979 		 * still, just relax and busy-wait without holding
2980 		 * any locks.
2981 		 *
2982 		 * NOTE! Since we don't hold any locks, it's not
2983 		 * even sure that "rq" stays as the right runqueue!
2984 		 * But we don't care, since "task_running()" will
2985 		 * return false if the runqueue has changed and p
2986 		 * is actually now running somewhere else!
2987 		 */
2988 		while (task_running(rq, p)) {
2989 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
2990 				return 0;
2991 			cpu_relax();
2992 		}
2993 
2994 		/*
2995 		 * Ok, time to look more closely! We need the rq
2996 		 * lock now, to be *sure*. If we're wrong, we'll
2997 		 * just go back and repeat.
2998 		 */
2999 		rq = task_rq_lock(p, &rf);
3000 		trace_sched_wait_task(p);
3001 		running = task_running(rq, p);
3002 		queued = task_on_rq_queued(p);
3003 		ncsw = 0;
3004 		if (!match_state || READ_ONCE(p->__state) == match_state)
3005 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3006 		task_rq_unlock(rq, p, &rf);
3007 
3008 		/*
3009 		 * If it changed from the expected state, bail out now.
3010 		 */
3011 		if (unlikely(!ncsw))
3012 			break;
3013 
3014 		/*
3015 		 * Was it really running after all now that we
3016 		 * checked with the proper locks actually held?
3017 		 *
3018 		 * Oops. Go back and try again..
3019 		 */
3020 		if (unlikely(running)) {
3021 			cpu_relax();
3022 			continue;
3023 		}
3024 
3025 		/*
3026 		 * It's not enough that it's not actively running,
3027 		 * it must be off the runqueue _entirely_, and not
3028 		 * preempted!
3029 		 *
3030 		 * So if it was still runnable (but just not actively
3031 		 * running right now), it's preempted, and we should
3032 		 * yield - it could be a while.
3033 		 */
3034 		if (unlikely(queued)) {
3035 			ktime_t to = NSEC_PER_SEC / HZ;
3036 
3037 			set_current_state(TASK_UNINTERRUPTIBLE);
3038 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3039 			continue;
3040 		}
3041 
3042 		/*
3043 		 * Ahh, all good. It wasn't running, and it wasn't
3044 		 * runnable, which means that it will never become
3045 		 * running in the future either. We're all done!
3046 		 */
3047 		break;
3048 	}
3049 
3050 	return ncsw;
3051 }
3052 
3053 /***
3054  * kick_process - kick a running thread to enter/exit the kernel
3055  * @p: the to-be-kicked thread
3056  *
3057  * Cause a process which is running on another CPU to enter
3058  * kernel-mode, without any delay. (to get signals handled.)
3059  *
3060  * NOTE: this function doesn't have to take the runqueue lock,
3061  * because all it wants to ensure is that the remote task enters
3062  * the kernel. If the IPI races and the task has been migrated
3063  * to another CPU then no harm is done and the purpose has been
3064  * achieved as well.
3065  */
3066 void kick_process(struct task_struct *p)
3067 {
3068 	int cpu;
3069 
3070 	preempt_disable();
3071 	cpu = task_cpu(p);
3072 	if ((cpu != smp_processor_id()) && task_curr(p))
3073 		smp_send_reschedule(cpu);
3074 	preempt_enable();
3075 }
3076 EXPORT_SYMBOL_GPL(kick_process);
3077 
3078 /*
3079  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3080  *
3081  * A few notes on cpu_active vs cpu_online:
3082  *
3083  *  - cpu_active must be a subset of cpu_online
3084  *
3085  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3086  *    see __set_cpus_allowed_ptr(). At this point the newly online
3087  *    CPU isn't yet part of the sched domains, and balancing will not
3088  *    see it.
3089  *
3090  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3091  *    avoid the load balancer to place new tasks on the to be removed
3092  *    CPU. Existing tasks will remain running there and will be taken
3093  *    off.
3094  *
3095  * This means that fallback selection must not select !active CPUs.
3096  * And can assume that any active CPU must be online. Conversely
3097  * select_task_rq() below may allow selection of !active CPUs in order
3098  * to satisfy the above rules.
3099  */
3100 static int select_fallback_rq(int cpu, struct task_struct *p)
3101 {
3102 	int nid = cpu_to_node(cpu);
3103 	const struct cpumask *nodemask = NULL;
3104 	enum { cpuset, possible, fail } state = cpuset;
3105 	int dest_cpu;
3106 
3107 	/*
3108 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3109 	 * will return -1. There is no CPU on the node, and we should
3110 	 * select the CPU on the other node.
3111 	 */
3112 	if (nid != -1) {
3113 		nodemask = cpumask_of_node(nid);
3114 
3115 		/* Look for allowed, online CPU in same node. */
3116 		for_each_cpu(dest_cpu, nodemask) {
3117 			if (!cpu_active(dest_cpu))
3118 				continue;
3119 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3120 				return dest_cpu;
3121 		}
3122 	}
3123 
3124 	for (;;) {
3125 		/* Any allowed, online CPU? */
3126 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3127 			if (!is_cpu_allowed(p, dest_cpu))
3128 				continue;
3129 
3130 			goto out;
3131 		}
3132 
3133 		/* No more Mr. Nice Guy. */
3134 		switch (state) {
3135 		case cpuset:
3136 			if (IS_ENABLED(CONFIG_CPUSETS)) {
3137 				cpuset_cpus_allowed_fallback(p);
3138 				state = possible;
3139 				break;
3140 			}
3141 			fallthrough;
3142 		case possible:
3143 			/*
3144 			 * XXX When called from select_task_rq() we only
3145 			 * hold p->pi_lock and again violate locking order.
3146 			 *
3147 			 * More yuck to audit.
3148 			 */
3149 			do_set_cpus_allowed(p, cpu_possible_mask);
3150 			state = fail;
3151 			break;
3152 
3153 		case fail:
3154 			BUG();
3155 			break;
3156 		}
3157 	}
3158 
3159 out:
3160 	if (state != cpuset) {
3161 		/*
3162 		 * Don't tell them about moving exiting tasks or
3163 		 * kernel threads (both mm NULL), since they never
3164 		 * leave kernel.
3165 		 */
3166 		if (p->mm && printk_ratelimit()) {
3167 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3168 					task_pid_nr(p), p->comm, cpu);
3169 		}
3170 	}
3171 
3172 	return dest_cpu;
3173 }
3174 
3175 /*
3176  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3177  */
3178 static inline
3179 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3180 {
3181 	lockdep_assert_held(&p->pi_lock);
3182 
3183 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3184 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3185 	else
3186 		cpu = cpumask_any(p->cpus_ptr);
3187 
3188 	/*
3189 	 * In order not to call set_task_cpu() on a blocking task we need
3190 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3191 	 * CPU.
3192 	 *
3193 	 * Since this is common to all placement strategies, this lives here.
3194 	 *
3195 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3196 	 *   not worry about this generic constraint ]
3197 	 */
3198 	if (unlikely(!is_cpu_allowed(p, cpu)))
3199 		cpu = select_fallback_rq(task_cpu(p), p);
3200 
3201 	return cpu;
3202 }
3203 
3204 void sched_set_stop_task(int cpu, struct task_struct *stop)
3205 {
3206 	static struct lock_class_key stop_pi_lock;
3207 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3208 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3209 
3210 	if (stop) {
3211 		/*
3212 		 * Make it appear like a SCHED_FIFO task, its something
3213 		 * userspace knows about and won't get confused about.
3214 		 *
3215 		 * Also, it will make PI more or less work without too
3216 		 * much confusion -- but then, stop work should not
3217 		 * rely on PI working anyway.
3218 		 */
3219 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3220 
3221 		stop->sched_class = &stop_sched_class;
3222 
3223 		/*
3224 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3225 		 * adjust the effective priority of a task. As a result,
3226 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3227 		 * which can then trigger wakeups of the stop thread to push
3228 		 * around the current task.
3229 		 *
3230 		 * The stop task itself will never be part of the PI-chain, it
3231 		 * never blocks, therefore that ->pi_lock recursion is safe.
3232 		 * Tell lockdep about this by placing the stop->pi_lock in its
3233 		 * own class.
3234 		 */
3235 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3236 	}
3237 
3238 	cpu_rq(cpu)->stop = stop;
3239 
3240 	if (old_stop) {
3241 		/*
3242 		 * Reset it back to a normal scheduling class so that
3243 		 * it can die in pieces.
3244 		 */
3245 		old_stop->sched_class = &rt_sched_class;
3246 	}
3247 }
3248 
3249 #else /* CONFIG_SMP */
3250 
3251 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3252 					 const struct cpumask *new_mask,
3253 					 u32 flags)
3254 {
3255 	return set_cpus_allowed_ptr(p, new_mask);
3256 }
3257 
3258 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3259 
3260 static inline bool rq_has_pinned_tasks(struct rq *rq)
3261 {
3262 	return false;
3263 }
3264 
3265 #endif /* !CONFIG_SMP */
3266 
3267 static void
3268 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3269 {
3270 	struct rq *rq;
3271 
3272 	if (!schedstat_enabled())
3273 		return;
3274 
3275 	rq = this_rq();
3276 
3277 #ifdef CONFIG_SMP
3278 	if (cpu == rq->cpu) {
3279 		__schedstat_inc(rq->ttwu_local);
3280 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
3281 	} else {
3282 		struct sched_domain *sd;
3283 
3284 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
3285 		rcu_read_lock();
3286 		for_each_domain(rq->cpu, sd) {
3287 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3288 				__schedstat_inc(sd->ttwu_wake_remote);
3289 				break;
3290 			}
3291 		}
3292 		rcu_read_unlock();
3293 	}
3294 
3295 	if (wake_flags & WF_MIGRATED)
3296 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3297 #endif /* CONFIG_SMP */
3298 
3299 	__schedstat_inc(rq->ttwu_count);
3300 	__schedstat_inc(p->se.statistics.nr_wakeups);
3301 
3302 	if (wake_flags & WF_SYNC)
3303 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
3304 }
3305 
3306 /*
3307  * Mark the task runnable and perform wakeup-preemption.
3308  */
3309 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3310 			   struct rq_flags *rf)
3311 {
3312 	check_preempt_curr(rq, p, wake_flags);
3313 	WRITE_ONCE(p->__state, TASK_RUNNING);
3314 	trace_sched_wakeup(p);
3315 
3316 #ifdef CONFIG_SMP
3317 	if (p->sched_class->task_woken) {
3318 		/*
3319 		 * Our task @p is fully woken up and running; so it's safe to
3320 		 * drop the rq->lock, hereafter rq is only used for statistics.
3321 		 */
3322 		rq_unpin_lock(rq, rf);
3323 		p->sched_class->task_woken(rq, p);
3324 		rq_repin_lock(rq, rf);
3325 	}
3326 
3327 	if (rq->idle_stamp) {
3328 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3329 		u64 max = 2*rq->max_idle_balance_cost;
3330 
3331 		update_avg(&rq->avg_idle, delta);
3332 
3333 		if (rq->avg_idle > max)
3334 			rq->avg_idle = max;
3335 
3336 		rq->wake_stamp = jiffies;
3337 		rq->wake_avg_idle = rq->avg_idle / 2;
3338 
3339 		rq->idle_stamp = 0;
3340 	}
3341 #endif
3342 }
3343 
3344 static void
3345 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3346 		 struct rq_flags *rf)
3347 {
3348 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3349 
3350 	lockdep_assert_rq_held(rq);
3351 
3352 	if (p->sched_contributes_to_load)
3353 		rq->nr_uninterruptible--;
3354 
3355 #ifdef CONFIG_SMP
3356 	if (wake_flags & WF_MIGRATED)
3357 		en_flags |= ENQUEUE_MIGRATED;
3358 	else
3359 #endif
3360 	if (p->in_iowait) {
3361 		delayacct_blkio_end(p);
3362 		atomic_dec(&task_rq(p)->nr_iowait);
3363 	}
3364 
3365 	activate_task(rq, p, en_flags);
3366 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3367 }
3368 
3369 /*
3370  * Consider @p being inside a wait loop:
3371  *
3372  *   for (;;) {
3373  *      set_current_state(TASK_UNINTERRUPTIBLE);
3374  *
3375  *      if (CONDITION)
3376  *         break;
3377  *
3378  *      schedule();
3379  *   }
3380  *   __set_current_state(TASK_RUNNING);
3381  *
3382  * between set_current_state() and schedule(). In this case @p is still
3383  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3384  * an atomic manner.
3385  *
3386  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3387  * then schedule() must still happen and p->state can be changed to
3388  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3389  * need to do a full wakeup with enqueue.
3390  *
3391  * Returns: %true when the wakeup is done,
3392  *          %false otherwise.
3393  */
3394 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3395 {
3396 	struct rq_flags rf;
3397 	struct rq *rq;
3398 	int ret = 0;
3399 
3400 	rq = __task_rq_lock(p, &rf);
3401 	if (task_on_rq_queued(p)) {
3402 		/* check_preempt_curr() may use rq clock */
3403 		update_rq_clock(rq);
3404 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3405 		ret = 1;
3406 	}
3407 	__task_rq_unlock(rq, &rf);
3408 
3409 	return ret;
3410 }
3411 
3412 #ifdef CONFIG_SMP
3413 void sched_ttwu_pending(void *arg)
3414 {
3415 	struct llist_node *llist = arg;
3416 	struct rq *rq = this_rq();
3417 	struct task_struct *p, *t;
3418 	struct rq_flags rf;
3419 
3420 	if (!llist)
3421 		return;
3422 
3423 	/*
3424 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3425 	 * Races such that false-negatives are possible, since they
3426 	 * are shorter lived that false-positives would be.
3427 	 */
3428 	WRITE_ONCE(rq->ttwu_pending, 0);
3429 
3430 	rq_lock_irqsave(rq, &rf);
3431 	update_rq_clock(rq);
3432 
3433 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3434 		if (WARN_ON_ONCE(p->on_cpu))
3435 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3436 
3437 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3438 			set_task_cpu(p, cpu_of(rq));
3439 
3440 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3441 	}
3442 
3443 	rq_unlock_irqrestore(rq, &rf);
3444 }
3445 
3446 void send_call_function_single_ipi(int cpu)
3447 {
3448 	struct rq *rq = cpu_rq(cpu);
3449 
3450 	if (!set_nr_if_polling(rq->idle))
3451 		arch_send_call_function_single_ipi(cpu);
3452 	else
3453 		trace_sched_wake_idle_without_ipi(cpu);
3454 }
3455 
3456 /*
3457  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3458  * necessary. The wakee CPU on receipt of the IPI will queue the task
3459  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3460  * of the wakeup instead of the waker.
3461  */
3462 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3463 {
3464 	struct rq *rq = cpu_rq(cpu);
3465 
3466 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3467 
3468 	WRITE_ONCE(rq->ttwu_pending, 1);
3469 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3470 }
3471 
3472 void wake_up_if_idle(int cpu)
3473 {
3474 	struct rq *rq = cpu_rq(cpu);
3475 	struct rq_flags rf;
3476 
3477 	rcu_read_lock();
3478 
3479 	if (!is_idle_task(rcu_dereference(rq->curr)))
3480 		goto out;
3481 
3482 	if (set_nr_if_polling(rq->idle)) {
3483 		trace_sched_wake_idle_without_ipi(cpu);
3484 	} else {
3485 		rq_lock_irqsave(rq, &rf);
3486 		if (is_idle_task(rq->curr))
3487 			smp_send_reschedule(cpu);
3488 		/* Else CPU is not idle, do nothing here: */
3489 		rq_unlock_irqrestore(rq, &rf);
3490 	}
3491 
3492 out:
3493 	rcu_read_unlock();
3494 }
3495 
3496 bool cpus_share_cache(int this_cpu, int that_cpu)
3497 {
3498 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3499 }
3500 
3501 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3502 {
3503 	/*
3504 	 * Do not complicate things with the async wake_list while the CPU is
3505 	 * in hotplug state.
3506 	 */
3507 	if (!cpu_active(cpu))
3508 		return false;
3509 
3510 	/*
3511 	 * If the CPU does not share cache, then queue the task on the
3512 	 * remote rqs wakelist to avoid accessing remote data.
3513 	 */
3514 	if (!cpus_share_cache(smp_processor_id(), cpu))
3515 		return true;
3516 
3517 	/*
3518 	 * If the task is descheduling and the only running task on the
3519 	 * CPU then use the wakelist to offload the task activation to
3520 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3521 	 * nr_running is checked to avoid unnecessary task stacking.
3522 	 */
3523 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3524 		return true;
3525 
3526 	return false;
3527 }
3528 
3529 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3530 {
3531 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3532 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3533 			return false;
3534 
3535 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3536 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3537 		return true;
3538 	}
3539 
3540 	return false;
3541 }
3542 
3543 #else /* !CONFIG_SMP */
3544 
3545 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3546 {
3547 	return false;
3548 }
3549 
3550 #endif /* CONFIG_SMP */
3551 
3552 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3553 {
3554 	struct rq *rq = cpu_rq(cpu);
3555 	struct rq_flags rf;
3556 
3557 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3558 		return;
3559 
3560 	rq_lock(rq, &rf);
3561 	update_rq_clock(rq);
3562 	ttwu_do_activate(rq, p, wake_flags, &rf);
3563 	rq_unlock(rq, &rf);
3564 }
3565 
3566 /*
3567  * Notes on Program-Order guarantees on SMP systems.
3568  *
3569  *  MIGRATION
3570  *
3571  * The basic program-order guarantee on SMP systems is that when a task [t]
3572  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3573  * execution on its new CPU [c1].
3574  *
3575  * For migration (of runnable tasks) this is provided by the following means:
3576  *
3577  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3578  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3579  *     rq(c1)->lock (if not at the same time, then in that order).
3580  *  C) LOCK of the rq(c1)->lock scheduling in task
3581  *
3582  * Release/acquire chaining guarantees that B happens after A and C after B.
3583  * Note: the CPU doing B need not be c0 or c1
3584  *
3585  * Example:
3586  *
3587  *   CPU0            CPU1            CPU2
3588  *
3589  *   LOCK rq(0)->lock
3590  *   sched-out X
3591  *   sched-in Y
3592  *   UNLOCK rq(0)->lock
3593  *
3594  *                                   LOCK rq(0)->lock // orders against CPU0
3595  *                                   dequeue X
3596  *                                   UNLOCK rq(0)->lock
3597  *
3598  *                                   LOCK rq(1)->lock
3599  *                                   enqueue X
3600  *                                   UNLOCK rq(1)->lock
3601  *
3602  *                   LOCK rq(1)->lock // orders against CPU2
3603  *                   sched-out Z
3604  *                   sched-in X
3605  *                   UNLOCK rq(1)->lock
3606  *
3607  *
3608  *  BLOCKING -- aka. SLEEP + WAKEUP
3609  *
3610  * For blocking we (obviously) need to provide the same guarantee as for
3611  * migration. However the means are completely different as there is no lock
3612  * chain to provide order. Instead we do:
3613  *
3614  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3615  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3616  *
3617  * Example:
3618  *
3619  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3620  *
3621  *   LOCK rq(0)->lock LOCK X->pi_lock
3622  *   dequeue X
3623  *   sched-out X
3624  *   smp_store_release(X->on_cpu, 0);
3625  *
3626  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3627  *                    X->state = WAKING
3628  *                    set_task_cpu(X,2)
3629  *
3630  *                    LOCK rq(2)->lock
3631  *                    enqueue X
3632  *                    X->state = RUNNING
3633  *                    UNLOCK rq(2)->lock
3634  *
3635  *                                          LOCK rq(2)->lock // orders against CPU1
3636  *                                          sched-out Z
3637  *                                          sched-in X
3638  *                                          UNLOCK rq(2)->lock
3639  *
3640  *                    UNLOCK X->pi_lock
3641  *   UNLOCK rq(0)->lock
3642  *
3643  *
3644  * However, for wakeups there is a second guarantee we must provide, namely we
3645  * must ensure that CONDITION=1 done by the caller can not be reordered with
3646  * accesses to the task state; see try_to_wake_up() and set_current_state().
3647  */
3648 
3649 /**
3650  * try_to_wake_up - wake up a thread
3651  * @p: the thread to be awakened
3652  * @state: the mask of task states that can be woken
3653  * @wake_flags: wake modifier flags (WF_*)
3654  *
3655  * Conceptually does:
3656  *
3657  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3658  *
3659  * If the task was not queued/runnable, also place it back on a runqueue.
3660  *
3661  * This function is atomic against schedule() which would dequeue the task.
3662  *
3663  * It issues a full memory barrier before accessing @p->state, see the comment
3664  * with set_current_state().
3665  *
3666  * Uses p->pi_lock to serialize against concurrent wake-ups.
3667  *
3668  * Relies on p->pi_lock stabilizing:
3669  *  - p->sched_class
3670  *  - p->cpus_ptr
3671  *  - p->sched_task_group
3672  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3673  *
3674  * Tries really hard to only take one task_rq(p)->lock for performance.
3675  * Takes rq->lock in:
3676  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3677  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3678  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3679  *
3680  * As a consequence we race really badly with just about everything. See the
3681  * many memory barriers and their comments for details.
3682  *
3683  * Return: %true if @p->state changes (an actual wakeup was done),
3684  *	   %false otherwise.
3685  */
3686 static int
3687 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3688 {
3689 	unsigned long flags;
3690 	int cpu, success = 0;
3691 
3692 	preempt_disable();
3693 	if (p == current) {
3694 		/*
3695 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3696 		 * == smp_processor_id()'. Together this means we can special
3697 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3698 		 * without taking any locks.
3699 		 *
3700 		 * In particular:
3701 		 *  - we rely on Program-Order guarantees for all the ordering,
3702 		 *  - we're serialized against set_special_state() by virtue of
3703 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3704 		 */
3705 		if (!(READ_ONCE(p->__state) & state))
3706 			goto out;
3707 
3708 		success = 1;
3709 		trace_sched_waking(p);
3710 		WRITE_ONCE(p->__state, TASK_RUNNING);
3711 		trace_sched_wakeup(p);
3712 		goto out;
3713 	}
3714 
3715 	/*
3716 	 * If we are going to wake up a thread waiting for CONDITION we
3717 	 * need to ensure that CONDITION=1 done by the caller can not be
3718 	 * reordered with p->state check below. This pairs with smp_store_mb()
3719 	 * in set_current_state() that the waiting thread does.
3720 	 */
3721 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3722 	smp_mb__after_spinlock();
3723 	if (!(READ_ONCE(p->__state) & state))
3724 		goto unlock;
3725 
3726 	trace_sched_waking(p);
3727 
3728 	/* We're going to change ->state: */
3729 	success = 1;
3730 
3731 	/*
3732 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3733 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3734 	 * in smp_cond_load_acquire() below.
3735 	 *
3736 	 * sched_ttwu_pending()			try_to_wake_up()
3737 	 *   STORE p->on_rq = 1			  LOAD p->state
3738 	 *   UNLOCK rq->lock
3739 	 *
3740 	 * __schedule() (switch to task 'p')
3741 	 *   LOCK rq->lock			  smp_rmb();
3742 	 *   smp_mb__after_spinlock();
3743 	 *   UNLOCK rq->lock
3744 	 *
3745 	 * [task p]
3746 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3747 	 *
3748 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3749 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3750 	 *
3751 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3752 	 */
3753 	smp_rmb();
3754 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3755 		goto unlock;
3756 
3757 #ifdef CONFIG_SMP
3758 	/*
3759 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3760 	 * possible to, falsely, observe p->on_cpu == 0.
3761 	 *
3762 	 * One must be running (->on_cpu == 1) in order to remove oneself
3763 	 * from the runqueue.
3764 	 *
3765 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3766 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3767 	 *   UNLOCK rq->lock
3768 	 *
3769 	 * __schedule() (put 'p' to sleep)
3770 	 *   LOCK rq->lock			  smp_rmb();
3771 	 *   smp_mb__after_spinlock();
3772 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3773 	 *
3774 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3775 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3776 	 *
3777 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3778 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3779 	 * care about it's own p->state. See the comment in __schedule().
3780 	 */
3781 	smp_acquire__after_ctrl_dep();
3782 
3783 	/*
3784 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3785 	 * == 0), which means we need to do an enqueue, change p->state to
3786 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3787 	 * enqueue, such as ttwu_queue_wakelist().
3788 	 */
3789 	WRITE_ONCE(p->__state, TASK_WAKING);
3790 
3791 	/*
3792 	 * If the owning (remote) CPU is still in the middle of schedule() with
3793 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3794 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3795 	 * let the waker make forward progress. This is safe because IRQs are
3796 	 * disabled and the IPI will deliver after on_cpu is cleared.
3797 	 *
3798 	 * Ensure we load task_cpu(p) after p->on_cpu:
3799 	 *
3800 	 * set_task_cpu(p, cpu);
3801 	 *   STORE p->cpu = @cpu
3802 	 * __schedule() (switch to task 'p')
3803 	 *   LOCK rq->lock
3804 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3805 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3806 	 *
3807 	 * to ensure we observe the correct CPU on which the task is currently
3808 	 * scheduling.
3809 	 */
3810 	if (smp_load_acquire(&p->on_cpu) &&
3811 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3812 		goto unlock;
3813 
3814 	/*
3815 	 * If the owning (remote) CPU is still in the middle of schedule() with
3816 	 * this task as prev, wait until it's done referencing the task.
3817 	 *
3818 	 * Pairs with the smp_store_release() in finish_task().
3819 	 *
3820 	 * This ensures that tasks getting woken will be fully ordered against
3821 	 * their previous state and preserve Program Order.
3822 	 */
3823 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3824 
3825 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3826 	if (task_cpu(p) != cpu) {
3827 		if (p->in_iowait) {
3828 			delayacct_blkio_end(p);
3829 			atomic_dec(&task_rq(p)->nr_iowait);
3830 		}
3831 
3832 		wake_flags |= WF_MIGRATED;
3833 		psi_ttwu_dequeue(p);
3834 		set_task_cpu(p, cpu);
3835 	}
3836 #else
3837 	cpu = task_cpu(p);
3838 #endif /* CONFIG_SMP */
3839 
3840 	ttwu_queue(p, cpu, wake_flags);
3841 unlock:
3842 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3843 out:
3844 	if (success)
3845 		ttwu_stat(p, task_cpu(p), wake_flags);
3846 	preempt_enable();
3847 
3848 	return success;
3849 }
3850 
3851 /**
3852  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3853  * @p: Process for which the function is to be invoked, can be @current.
3854  * @func: Function to invoke.
3855  * @arg: Argument to function.
3856  *
3857  * If the specified task can be quickly locked into a definite state
3858  * (either sleeping or on a given runqueue), arrange to keep it in that
3859  * state while invoking @func(@arg).  This function can use ->on_rq and
3860  * task_curr() to work out what the state is, if required.  Given that
3861  * @func can be invoked with a runqueue lock held, it had better be quite
3862  * lightweight.
3863  *
3864  * Returns:
3865  *	@false if the task slipped out from under the locks.
3866  *	@true if the task was locked onto a runqueue or is sleeping.
3867  *		However, @func can override this by returning @false.
3868  */
3869 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3870 {
3871 	struct rq_flags rf;
3872 	bool ret = false;
3873 	struct rq *rq;
3874 
3875 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3876 	if (p->on_rq) {
3877 		rq = __task_rq_lock(p, &rf);
3878 		if (task_rq(p) == rq)
3879 			ret = func(p, arg);
3880 		rq_unlock(rq, &rf);
3881 	} else {
3882 		switch (READ_ONCE(p->__state)) {
3883 		case TASK_RUNNING:
3884 		case TASK_WAKING:
3885 			break;
3886 		default:
3887 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3888 			if (!p->on_rq)
3889 				ret = func(p, arg);
3890 		}
3891 	}
3892 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3893 	return ret;
3894 }
3895 
3896 /**
3897  * wake_up_process - Wake up a specific process
3898  * @p: The process to be woken up.
3899  *
3900  * Attempt to wake up the nominated process and move it to the set of runnable
3901  * processes.
3902  *
3903  * Return: 1 if the process was woken up, 0 if it was already running.
3904  *
3905  * This function executes a full memory barrier before accessing the task state.
3906  */
3907 int wake_up_process(struct task_struct *p)
3908 {
3909 	return try_to_wake_up(p, TASK_NORMAL, 0);
3910 }
3911 EXPORT_SYMBOL(wake_up_process);
3912 
3913 int wake_up_state(struct task_struct *p, unsigned int state)
3914 {
3915 	return try_to_wake_up(p, state, 0);
3916 }
3917 
3918 /*
3919  * Perform scheduler related setup for a newly forked process p.
3920  * p is forked by current.
3921  *
3922  * __sched_fork() is basic setup used by init_idle() too:
3923  */
3924 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3925 {
3926 	p->on_rq			= 0;
3927 
3928 	p->se.on_rq			= 0;
3929 	p->se.exec_start		= 0;
3930 	p->se.sum_exec_runtime		= 0;
3931 	p->se.prev_sum_exec_runtime	= 0;
3932 	p->se.nr_migrations		= 0;
3933 	p->se.vruntime			= 0;
3934 	INIT_LIST_HEAD(&p->se.group_node);
3935 
3936 #ifdef CONFIG_FAIR_GROUP_SCHED
3937 	p->se.cfs_rq			= NULL;
3938 #endif
3939 
3940 #ifdef CONFIG_SCHEDSTATS
3941 	/* Even if schedstat is disabled, there should not be garbage */
3942 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3943 #endif
3944 
3945 	RB_CLEAR_NODE(&p->dl.rb_node);
3946 	init_dl_task_timer(&p->dl);
3947 	init_dl_inactive_task_timer(&p->dl);
3948 	__dl_clear_params(p);
3949 
3950 	INIT_LIST_HEAD(&p->rt.run_list);
3951 	p->rt.timeout		= 0;
3952 	p->rt.time_slice	= sched_rr_timeslice;
3953 	p->rt.on_rq		= 0;
3954 	p->rt.on_list		= 0;
3955 
3956 #ifdef CONFIG_PREEMPT_NOTIFIERS
3957 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3958 #endif
3959 
3960 #ifdef CONFIG_COMPACTION
3961 	p->capture_control = NULL;
3962 #endif
3963 	init_numa_balancing(clone_flags, p);
3964 #ifdef CONFIG_SMP
3965 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3966 	p->migration_pending = NULL;
3967 #endif
3968 }
3969 
3970 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3971 
3972 #ifdef CONFIG_NUMA_BALANCING
3973 
3974 void set_numabalancing_state(bool enabled)
3975 {
3976 	if (enabled)
3977 		static_branch_enable(&sched_numa_balancing);
3978 	else
3979 		static_branch_disable(&sched_numa_balancing);
3980 }
3981 
3982 #ifdef CONFIG_PROC_SYSCTL
3983 int sysctl_numa_balancing(struct ctl_table *table, int write,
3984 			  void *buffer, size_t *lenp, loff_t *ppos)
3985 {
3986 	struct ctl_table t;
3987 	int err;
3988 	int state = static_branch_likely(&sched_numa_balancing);
3989 
3990 	if (write && !capable(CAP_SYS_ADMIN))
3991 		return -EPERM;
3992 
3993 	t = *table;
3994 	t.data = &state;
3995 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3996 	if (err < 0)
3997 		return err;
3998 	if (write)
3999 		set_numabalancing_state(state);
4000 	return err;
4001 }
4002 #endif
4003 #endif
4004 
4005 #ifdef CONFIG_SCHEDSTATS
4006 
4007 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4008 
4009 static void set_schedstats(bool enabled)
4010 {
4011 	if (enabled)
4012 		static_branch_enable(&sched_schedstats);
4013 	else
4014 		static_branch_disable(&sched_schedstats);
4015 }
4016 
4017 void force_schedstat_enabled(void)
4018 {
4019 	if (!schedstat_enabled()) {
4020 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4021 		static_branch_enable(&sched_schedstats);
4022 	}
4023 }
4024 
4025 static int __init setup_schedstats(char *str)
4026 {
4027 	int ret = 0;
4028 	if (!str)
4029 		goto out;
4030 
4031 	if (!strcmp(str, "enable")) {
4032 		set_schedstats(true);
4033 		ret = 1;
4034 	} else if (!strcmp(str, "disable")) {
4035 		set_schedstats(false);
4036 		ret = 1;
4037 	}
4038 out:
4039 	if (!ret)
4040 		pr_warn("Unable to parse schedstats=\n");
4041 
4042 	return ret;
4043 }
4044 __setup("schedstats=", setup_schedstats);
4045 
4046 #ifdef CONFIG_PROC_SYSCTL
4047 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4048 		size_t *lenp, loff_t *ppos)
4049 {
4050 	struct ctl_table t;
4051 	int err;
4052 	int state = static_branch_likely(&sched_schedstats);
4053 
4054 	if (write && !capable(CAP_SYS_ADMIN))
4055 		return -EPERM;
4056 
4057 	t = *table;
4058 	t.data = &state;
4059 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4060 	if (err < 0)
4061 		return err;
4062 	if (write)
4063 		set_schedstats(state);
4064 	return err;
4065 }
4066 #endif /* CONFIG_PROC_SYSCTL */
4067 #endif /* CONFIG_SCHEDSTATS */
4068 
4069 /*
4070  * fork()/clone()-time setup:
4071  */
4072 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4073 {
4074 	unsigned long flags;
4075 
4076 	__sched_fork(clone_flags, p);
4077 	/*
4078 	 * We mark the process as NEW here. This guarantees that
4079 	 * nobody will actually run it, and a signal or other external
4080 	 * event cannot wake it up and insert it on the runqueue either.
4081 	 */
4082 	p->__state = TASK_NEW;
4083 
4084 	/*
4085 	 * Make sure we do not leak PI boosting priority to the child.
4086 	 */
4087 	p->prio = current->normal_prio;
4088 
4089 	uclamp_fork(p);
4090 
4091 	/*
4092 	 * Revert to default priority/policy on fork if requested.
4093 	 */
4094 	if (unlikely(p->sched_reset_on_fork)) {
4095 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4096 			p->policy = SCHED_NORMAL;
4097 			p->static_prio = NICE_TO_PRIO(0);
4098 			p->rt_priority = 0;
4099 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4100 			p->static_prio = NICE_TO_PRIO(0);
4101 
4102 		p->prio = p->normal_prio = __normal_prio(p);
4103 		set_load_weight(p, false);
4104 
4105 		/*
4106 		 * We don't need the reset flag anymore after the fork. It has
4107 		 * fulfilled its duty:
4108 		 */
4109 		p->sched_reset_on_fork = 0;
4110 	}
4111 
4112 	if (dl_prio(p->prio))
4113 		return -EAGAIN;
4114 	else if (rt_prio(p->prio))
4115 		p->sched_class = &rt_sched_class;
4116 	else
4117 		p->sched_class = &fair_sched_class;
4118 
4119 	init_entity_runnable_average(&p->se);
4120 
4121 	/*
4122 	 * The child is not yet in the pid-hash so no cgroup attach races,
4123 	 * and the cgroup is pinned to this child due to cgroup_fork()
4124 	 * is ran before sched_fork().
4125 	 *
4126 	 * Silence PROVE_RCU.
4127 	 */
4128 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4129 	rseq_migrate(p);
4130 	/*
4131 	 * We're setting the CPU for the first time, we don't migrate,
4132 	 * so use __set_task_cpu().
4133 	 */
4134 	__set_task_cpu(p, smp_processor_id());
4135 	if (p->sched_class->task_fork)
4136 		p->sched_class->task_fork(p);
4137 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4138 
4139 #ifdef CONFIG_SCHED_INFO
4140 	if (likely(sched_info_on()))
4141 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4142 #endif
4143 #if defined(CONFIG_SMP)
4144 	p->on_cpu = 0;
4145 #endif
4146 	init_task_preempt_count(p);
4147 #ifdef CONFIG_SMP
4148 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4149 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4150 #endif
4151 	return 0;
4152 }
4153 
4154 void sched_post_fork(struct task_struct *p)
4155 {
4156 	uclamp_post_fork(p);
4157 }
4158 
4159 unsigned long to_ratio(u64 period, u64 runtime)
4160 {
4161 	if (runtime == RUNTIME_INF)
4162 		return BW_UNIT;
4163 
4164 	/*
4165 	 * Doing this here saves a lot of checks in all
4166 	 * the calling paths, and returning zero seems
4167 	 * safe for them anyway.
4168 	 */
4169 	if (period == 0)
4170 		return 0;
4171 
4172 	return div64_u64(runtime << BW_SHIFT, period);
4173 }
4174 
4175 /*
4176  * wake_up_new_task - wake up a newly created task for the first time.
4177  *
4178  * This function will do some initial scheduler statistics housekeeping
4179  * that must be done for every newly created context, then puts the task
4180  * on the runqueue and wakes it.
4181  */
4182 void wake_up_new_task(struct task_struct *p)
4183 {
4184 	struct rq_flags rf;
4185 	struct rq *rq;
4186 
4187 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4188 	WRITE_ONCE(p->__state, TASK_RUNNING);
4189 #ifdef CONFIG_SMP
4190 	/*
4191 	 * Fork balancing, do it here and not earlier because:
4192 	 *  - cpus_ptr can change in the fork path
4193 	 *  - any previously selected CPU might disappear through hotplug
4194 	 *
4195 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4196 	 * as we're not fully set-up yet.
4197 	 */
4198 	p->recent_used_cpu = task_cpu(p);
4199 	rseq_migrate(p);
4200 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4201 #endif
4202 	rq = __task_rq_lock(p, &rf);
4203 	update_rq_clock(rq);
4204 	post_init_entity_util_avg(p);
4205 
4206 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4207 	trace_sched_wakeup_new(p);
4208 	check_preempt_curr(rq, p, WF_FORK);
4209 #ifdef CONFIG_SMP
4210 	if (p->sched_class->task_woken) {
4211 		/*
4212 		 * Nothing relies on rq->lock after this, so it's fine to
4213 		 * drop it.
4214 		 */
4215 		rq_unpin_lock(rq, &rf);
4216 		p->sched_class->task_woken(rq, p);
4217 		rq_repin_lock(rq, &rf);
4218 	}
4219 #endif
4220 	task_rq_unlock(rq, p, &rf);
4221 }
4222 
4223 #ifdef CONFIG_PREEMPT_NOTIFIERS
4224 
4225 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4226 
4227 void preempt_notifier_inc(void)
4228 {
4229 	static_branch_inc(&preempt_notifier_key);
4230 }
4231 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4232 
4233 void preempt_notifier_dec(void)
4234 {
4235 	static_branch_dec(&preempt_notifier_key);
4236 }
4237 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4238 
4239 /**
4240  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4241  * @notifier: notifier struct to register
4242  */
4243 void preempt_notifier_register(struct preempt_notifier *notifier)
4244 {
4245 	if (!static_branch_unlikely(&preempt_notifier_key))
4246 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4247 
4248 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4249 }
4250 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4251 
4252 /**
4253  * preempt_notifier_unregister - no longer interested in preemption notifications
4254  * @notifier: notifier struct to unregister
4255  *
4256  * This is *not* safe to call from within a preemption notifier.
4257  */
4258 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4259 {
4260 	hlist_del(&notifier->link);
4261 }
4262 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4263 
4264 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4265 {
4266 	struct preempt_notifier *notifier;
4267 
4268 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4269 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4270 }
4271 
4272 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4273 {
4274 	if (static_branch_unlikely(&preempt_notifier_key))
4275 		__fire_sched_in_preempt_notifiers(curr);
4276 }
4277 
4278 static void
4279 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4280 				   struct task_struct *next)
4281 {
4282 	struct preempt_notifier *notifier;
4283 
4284 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4285 		notifier->ops->sched_out(notifier, next);
4286 }
4287 
4288 static __always_inline void
4289 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4290 				 struct task_struct *next)
4291 {
4292 	if (static_branch_unlikely(&preempt_notifier_key))
4293 		__fire_sched_out_preempt_notifiers(curr, next);
4294 }
4295 
4296 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4297 
4298 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4299 {
4300 }
4301 
4302 static inline void
4303 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4304 				 struct task_struct *next)
4305 {
4306 }
4307 
4308 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4309 
4310 static inline void prepare_task(struct task_struct *next)
4311 {
4312 #ifdef CONFIG_SMP
4313 	/*
4314 	 * Claim the task as running, we do this before switching to it
4315 	 * such that any running task will have this set.
4316 	 *
4317 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4318 	 */
4319 	WRITE_ONCE(next->on_cpu, 1);
4320 #endif
4321 }
4322 
4323 static inline void finish_task(struct task_struct *prev)
4324 {
4325 #ifdef CONFIG_SMP
4326 	/*
4327 	 * This must be the very last reference to @prev from this CPU. After
4328 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4329 	 * must ensure this doesn't happen until the switch is completely
4330 	 * finished.
4331 	 *
4332 	 * In particular, the load of prev->state in finish_task_switch() must
4333 	 * happen before this.
4334 	 *
4335 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4336 	 */
4337 	smp_store_release(&prev->on_cpu, 0);
4338 #endif
4339 }
4340 
4341 #ifdef CONFIG_SMP
4342 
4343 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4344 {
4345 	void (*func)(struct rq *rq);
4346 	struct callback_head *next;
4347 
4348 	lockdep_assert_rq_held(rq);
4349 
4350 	while (head) {
4351 		func = (void (*)(struct rq *))head->func;
4352 		next = head->next;
4353 		head->next = NULL;
4354 		head = next;
4355 
4356 		func(rq);
4357 	}
4358 }
4359 
4360 static void balance_push(struct rq *rq);
4361 
4362 struct callback_head balance_push_callback = {
4363 	.next = NULL,
4364 	.func = (void (*)(struct callback_head *))balance_push,
4365 };
4366 
4367 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4368 {
4369 	struct callback_head *head = rq->balance_callback;
4370 
4371 	lockdep_assert_rq_held(rq);
4372 	if (head)
4373 		rq->balance_callback = NULL;
4374 
4375 	return head;
4376 }
4377 
4378 static void __balance_callbacks(struct rq *rq)
4379 {
4380 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4381 }
4382 
4383 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4384 {
4385 	unsigned long flags;
4386 
4387 	if (unlikely(head)) {
4388 		raw_spin_rq_lock_irqsave(rq, flags);
4389 		do_balance_callbacks(rq, head);
4390 		raw_spin_rq_unlock_irqrestore(rq, flags);
4391 	}
4392 }
4393 
4394 #else
4395 
4396 static inline void __balance_callbacks(struct rq *rq)
4397 {
4398 }
4399 
4400 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4401 {
4402 	return NULL;
4403 }
4404 
4405 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4406 {
4407 }
4408 
4409 #endif
4410 
4411 static inline void
4412 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4413 {
4414 	/*
4415 	 * Since the runqueue lock will be released by the next
4416 	 * task (which is an invalid locking op but in the case
4417 	 * of the scheduler it's an obvious special-case), so we
4418 	 * do an early lockdep release here:
4419 	 */
4420 	rq_unpin_lock(rq, rf);
4421 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4422 #ifdef CONFIG_DEBUG_SPINLOCK
4423 	/* this is a valid case when another task releases the spinlock */
4424 	rq_lockp(rq)->owner = next;
4425 #endif
4426 }
4427 
4428 static inline void finish_lock_switch(struct rq *rq)
4429 {
4430 	/*
4431 	 * If we are tracking spinlock dependencies then we have to
4432 	 * fix up the runqueue lock - which gets 'carried over' from
4433 	 * prev into current:
4434 	 */
4435 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4436 	__balance_callbacks(rq);
4437 	raw_spin_rq_unlock_irq(rq);
4438 }
4439 
4440 /*
4441  * NOP if the arch has not defined these:
4442  */
4443 
4444 #ifndef prepare_arch_switch
4445 # define prepare_arch_switch(next)	do { } while (0)
4446 #endif
4447 
4448 #ifndef finish_arch_post_lock_switch
4449 # define finish_arch_post_lock_switch()	do { } while (0)
4450 #endif
4451 
4452 static inline void kmap_local_sched_out(void)
4453 {
4454 #ifdef CONFIG_KMAP_LOCAL
4455 	if (unlikely(current->kmap_ctrl.idx))
4456 		__kmap_local_sched_out();
4457 #endif
4458 }
4459 
4460 static inline void kmap_local_sched_in(void)
4461 {
4462 #ifdef CONFIG_KMAP_LOCAL
4463 	if (unlikely(current->kmap_ctrl.idx))
4464 		__kmap_local_sched_in();
4465 #endif
4466 }
4467 
4468 /**
4469  * prepare_task_switch - prepare to switch tasks
4470  * @rq: the runqueue preparing to switch
4471  * @prev: the current task that is being switched out
4472  * @next: the task we are going to switch to.
4473  *
4474  * This is called with the rq lock held and interrupts off. It must
4475  * be paired with a subsequent finish_task_switch after the context
4476  * switch.
4477  *
4478  * prepare_task_switch sets up locking and calls architecture specific
4479  * hooks.
4480  */
4481 static inline void
4482 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4483 		    struct task_struct *next)
4484 {
4485 	kcov_prepare_switch(prev);
4486 	sched_info_switch(rq, prev, next);
4487 	perf_event_task_sched_out(prev, next);
4488 	rseq_preempt(prev);
4489 	fire_sched_out_preempt_notifiers(prev, next);
4490 	kmap_local_sched_out();
4491 	prepare_task(next);
4492 	prepare_arch_switch(next);
4493 }
4494 
4495 /**
4496  * finish_task_switch - clean up after a task-switch
4497  * @prev: the thread we just switched away from.
4498  *
4499  * finish_task_switch must be called after the context switch, paired
4500  * with a prepare_task_switch call before the context switch.
4501  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4502  * and do any other architecture-specific cleanup actions.
4503  *
4504  * Note that we may have delayed dropping an mm in context_switch(). If
4505  * so, we finish that here outside of the runqueue lock. (Doing it
4506  * with the lock held can cause deadlocks; see schedule() for
4507  * details.)
4508  *
4509  * The context switch have flipped the stack from under us and restored the
4510  * local variables which were saved when this task called schedule() in the
4511  * past. prev == current is still correct but we need to recalculate this_rq
4512  * because prev may have moved to another CPU.
4513  */
4514 static struct rq *finish_task_switch(struct task_struct *prev)
4515 	__releases(rq->lock)
4516 {
4517 	struct rq *rq = this_rq();
4518 	struct mm_struct *mm = rq->prev_mm;
4519 	long prev_state;
4520 
4521 	/*
4522 	 * The previous task will have left us with a preempt_count of 2
4523 	 * because it left us after:
4524 	 *
4525 	 *	schedule()
4526 	 *	  preempt_disable();			// 1
4527 	 *	  __schedule()
4528 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4529 	 *
4530 	 * Also, see FORK_PREEMPT_COUNT.
4531 	 */
4532 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4533 		      "corrupted preempt_count: %s/%d/0x%x\n",
4534 		      current->comm, current->pid, preempt_count()))
4535 		preempt_count_set(FORK_PREEMPT_COUNT);
4536 
4537 	rq->prev_mm = NULL;
4538 
4539 	/*
4540 	 * A task struct has one reference for the use as "current".
4541 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4542 	 * schedule one last time. The schedule call will never return, and
4543 	 * the scheduled task must drop that reference.
4544 	 *
4545 	 * We must observe prev->state before clearing prev->on_cpu (in
4546 	 * finish_task), otherwise a concurrent wakeup can get prev
4547 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4548 	 * transition, resulting in a double drop.
4549 	 */
4550 	prev_state = READ_ONCE(prev->__state);
4551 	vtime_task_switch(prev);
4552 	perf_event_task_sched_in(prev, current);
4553 	finish_task(prev);
4554 	tick_nohz_task_switch();
4555 	finish_lock_switch(rq);
4556 	finish_arch_post_lock_switch();
4557 	kcov_finish_switch(current);
4558 	/*
4559 	 * kmap_local_sched_out() is invoked with rq::lock held and
4560 	 * interrupts disabled. There is no requirement for that, but the
4561 	 * sched out code does not have an interrupt enabled section.
4562 	 * Restoring the maps on sched in does not require interrupts being
4563 	 * disabled either.
4564 	 */
4565 	kmap_local_sched_in();
4566 
4567 	fire_sched_in_preempt_notifiers(current);
4568 	/*
4569 	 * When switching through a kernel thread, the loop in
4570 	 * membarrier_{private,global}_expedited() may have observed that
4571 	 * kernel thread and not issued an IPI. It is therefore possible to
4572 	 * schedule between user->kernel->user threads without passing though
4573 	 * switch_mm(). Membarrier requires a barrier after storing to
4574 	 * rq->curr, before returning to userspace, so provide them here:
4575 	 *
4576 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4577 	 *   provided by mmdrop(),
4578 	 * - a sync_core for SYNC_CORE.
4579 	 */
4580 	if (mm) {
4581 		membarrier_mm_sync_core_before_usermode(mm);
4582 		mmdrop(mm);
4583 	}
4584 	if (unlikely(prev_state == TASK_DEAD)) {
4585 		if (prev->sched_class->task_dead)
4586 			prev->sched_class->task_dead(prev);
4587 
4588 		/*
4589 		 * Remove function-return probe instances associated with this
4590 		 * task and put them back on the free list.
4591 		 */
4592 		kprobe_flush_task(prev);
4593 
4594 		/* Task is done with its stack. */
4595 		put_task_stack(prev);
4596 
4597 		put_task_struct_rcu_user(prev);
4598 	}
4599 
4600 	return rq;
4601 }
4602 
4603 /**
4604  * schedule_tail - first thing a freshly forked thread must call.
4605  * @prev: the thread we just switched away from.
4606  */
4607 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4608 	__releases(rq->lock)
4609 {
4610 	/*
4611 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4612 	 * finish_task_switch() for details.
4613 	 *
4614 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4615 	 * and the preempt_enable() will end up enabling preemption (on
4616 	 * PREEMPT_COUNT kernels).
4617 	 */
4618 
4619 	finish_task_switch(prev);
4620 	preempt_enable();
4621 
4622 	if (current->set_child_tid)
4623 		put_user(task_pid_vnr(current), current->set_child_tid);
4624 
4625 	calculate_sigpending();
4626 }
4627 
4628 /*
4629  * context_switch - switch to the new MM and the new thread's register state.
4630  */
4631 static __always_inline struct rq *
4632 context_switch(struct rq *rq, struct task_struct *prev,
4633 	       struct task_struct *next, struct rq_flags *rf)
4634 {
4635 	prepare_task_switch(rq, prev, next);
4636 
4637 	/*
4638 	 * For paravirt, this is coupled with an exit in switch_to to
4639 	 * combine the page table reload and the switch backend into
4640 	 * one hypercall.
4641 	 */
4642 	arch_start_context_switch(prev);
4643 
4644 	/*
4645 	 * kernel -> kernel   lazy + transfer active
4646 	 *   user -> kernel   lazy + mmgrab() active
4647 	 *
4648 	 * kernel ->   user   switch + mmdrop() active
4649 	 *   user ->   user   switch
4650 	 */
4651 	if (!next->mm) {                                // to kernel
4652 		enter_lazy_tlb(prev->active_mm, next);
4653 
4654 		next->active_mm = prev->active_mm;
4655 		if (prev->mm)                           // from user
4656 			mmgrab(prev->active_mm);
4657 		else
4658 			prev->active_mm = NULL;
4659 	} else {                                        // to user
4660 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4661 		/*
4662 		 * sys_membarrier() requires an smp_mb() between setting
4663 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4664 		 *
4665 		 * The below provides this either through switch_mm(), or in
4666 		 * case 'prev->active_mm == next->mm' through
4667 		 * finish_task_switch()'s mmdrop().
4668 		 */
4669 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4670 
4671 		if (!prev->mm) {                        // from kernel
4672 			/* will mmdrop() in finish_task_switch(). */
4673 			rq->prev_mm = prev->active_mm;
4674 			prev->active_mm = NULL;
4675 		}
4676 	}
4677 
4678 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4679 
4680 	prepare_lock_switch(rq, next, rf);
4681 
4682 	/* Here we just switch the register state and the stack. */
4683 	switch_to(prev, next, prev);
4684 	barrier();
4685 
4686 	return finish_task_switch(prev);
4687 }
4688 
4689 /*
4690  * nr_running and nr_context_switches:
4691  *
4692  * externally visible scheduler statistics: current number of runnable
4693  * threads, total number of context switches performed since bootup.
4694  */
4695 unsigned int nr_running(void)
4696 {
4697 	unsigned int i, sum = 0;
4698 
4699 	for_each_online_cpu(i)
4700 		sum += cpu_rq(i)->nr_running;
4701 
4702 	return sum;
4703 }
4704 
4705 /*
4706  * Check if only the current task is running on the CPU.
4707  *
4708  * Caution: this function does not check that the caller has disabled
4709  * preemption, thus the result might have a time-of-check-to-time-of-use
4710  * race.  The caller is responsible to use it correctly, for example:
4711  *
4712  * - from a non-preemptible section (of course)
4713  *
4714  * - from a thread that is bound to a single CPU
4715  *
4716  * - in a loop with very short iterations (e.g. a polling loop)
4717  */
4718 bool single_task_running(void)
4719 {
4720 	return raw_rq()->nr_running == 1;
4721 }
4722 EXPORT_SYMBOL(single_task_running);
4723 
4724 unsigned long long nr_context_switches(void)
4725 {
4726 	int i;
4727 	unsigned long long sum = 0;
4728 
4729 	for_each_possible_cpu(i)
4730 		sum += cpu_rq(i)->nr_switches;
4731 
4732 	return sum;
4733 }
4734 
4735 /*
4736  * Consumers of these two interfaces, like for example the cpuidle menu
4737  * governor, are using nonsensical data. Preferring shallow idle state selection
4738  * for a CPU that has IO-wait which might not even end up running the task when
4739  * it does become runnable.
4740  */
4741 
4742 unsigned int nr_iowait_cpu(int cpu)
4743 {
4744 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4745 }
4746 
4747 /*
4748  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4749  *
4750  * The idea behind IO-wait account is to account the idle time that we could
4751  * have spend running if it were not for IO. That is, if we were to improve the
4752  * storage performance, we'd have a proportional reduction in IO-wait time.
4753  *
4754  * This all works nicely on UP, where, when a task blocks on IO, we account
4755  * idle time as IO-wait, because if the storage were faster, it could've been
4756  * running and we'd not be idle.
4757  *
4758  * This has been extended to SMP, by doing the same for each CPU. This however
4759  * is broken.
4760  *
4761  * Imagine for instance the case where two tasks block on one CPU, only the one
4762  * CPU will have IO-wait accounted, while the other has regular idle. Even
4763  * though, if the storage were faster, both could've ran at the same time,
4764  * utilising both CPUs.
4765  *
4766  * This means, that when looking globally, the current IO-wait accounting on
4767  * SMP is a lower bound, by reason of under accounting.
4768  *
4769  * Worse, since the numbers are provided per CPU, they are sometimes
4770  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4771  * associated with any one particular CPU, it can wake to another CPU than it
4772  * blocked on. This means the per CPU IO-wait number is meaningless.
4773  *
4774  * Task CPU affinities can make all that even more 'interesting'.
4775  */
4776 
4777 unsigned int nr_iowait(void)
4778 {
4779 	unsigned int i, sum = 0;
4780 
4781 	for_each_possible_cpu(i)
4782 		sum += nr_iowait_cpu(i);
4783 
4784 	return sum;
4785 }
4786 
4787 #ifdef CONFIG_SMP
4788 
4789 /*
4790  * sched_exec - execve() is a valuable balancing opportunity, because at
4791  * this point the task has the smallest effective memory and cache footprint.
4792  */
4793 void sched_exec(void)
4794 {
4795 	struct task_struct *p = current;
4796 	unsigned long flags;
4797 	int dest_cpu;
4798 
4799 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4800 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4801 	if (dest_cpu == smp_processor_id())
4802 		goto unlock;
4803 
4804 	if (likely(cpu_active(dest_cpu))) {
4805 		struct migration_arg arg = { p, dest_cpu };
4806 
4807 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4808 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4809 		return;
4810 	}
4811 unlock:
4812 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4813 }
4814 
4815 #endif
4816 
4817 DEFINE_PER_CPU(struct kernel_stat, kstat);
4818 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4819 
4820 EXPORT_PER_CPU_SYMBOL(kstat);
4821 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4822 
4823 /*
4824  * The function fair_sched_class.update_curr accesses the struct curr
4825  * and its field curr->exec_start; when called from task_sched_runtime(),
4826  * we observe a high rate of cache misses in practice.
4827  * Prefetching this data results in improved performance.
4828  */
4829 static inline void prefetch_curr_exec_start(struct task_struct *p)
4830 {
4831 #ifdef CONFIG_FAIR_GROUP_SCHED
4832 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4833 #else
4834 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4835 #endif
4836 	prefetch(curr);
4837 	prefetch(&curr->exec_start);
4838 }
4839 
4840 /*
4841  * Return accounted runtime for the task.
4842  * In case the task is currently running, return the runtime plus current's
4843  * pending runtime that have not been accounted yet.
4844  */
4845 unsigned long long task_sched_runtime(struct task_struct *p)
4846 {
4847 	struct rq_flags rf;
4848 	struct rq *rq;
4849 	u64 ns;
4850 
4851 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4852 	/*
4853 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4854 	 * So we have a optimization chance when the task's delta_exec is 0.
4855 	 * Reading ->on_cpu is racy, but this is ok.
4856 	 *
4857 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4858 	 * If we race with it entering CPU, unaccounted time is 0. This is
4859 	 * indistinguishable from the read occurring a few cycles earlier.
4860 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4861 	 * been accounted, so we're correct here as well.
4862 	 */
4863 	if (!p->on_cpu || !task_on_rq_queued(p))
4864 		return p->se.sum_exec_runtime;
4865 #endif
4866 
4867 	rq = task_rq_lock(p, &rf);
4868 	/*
4869 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4870 	 * project cycles that may never be accounted to this
4871 	 * thread, breaking clock_gettime().
4872 	 */
4873 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4874 		prefetch_curr_exec_start(p);
4875 		update_rq_clock(rq);
4876 		p->sched_class->update_curr(rq);
4877 	}
4878 	ns = p->se.sum_exec_runtime;
4879 	task_rq_unlock(rq, p, &rf);
4880 
4881 	return ns;
4882 }
4883 
4884 #ifdef CONFIG_SCHED_DEBUG
4885 static u64 cpu_resched_latency(struct rq *rq)
4886 {
4887 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4888 	u64 resched_latency, now = rq_clock(rq);
4889 	static bool warned_once;
4890 
4891 	if (sysctl_resched_latency_warn_once && warned_once)
4892 		return 0;
4893 
4894 	if (!need_resched() || !latency_warn_ms)
4895 		return 0;
4896 
4897 	if (system_state == SYSTEM_BOOTING)
4898 		return 0;
4899 
4900 	if (!rq->last_seen_need_resched_ns) {
4901 		rq->last_seen_need_resched_ns = now;
4902 		rq->ticks_without_resched = 0;
4903 		return 0;
4904 	}
4905 
4906 	rq->ticks_without_resched++;
4907 	resched_latency = now - rq->last_seen_need_resched_ns;
4908 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4909 		return 0;
4910 
4911 	warned_once = true;
4912 
4913 	return resched_latency;
4914 }
4915 
4916 static int __init setup_resched_latency_warn_ms(char *str)
4917 {
4918 	long val;
4919 
4920 	if ((kstrtol(str, 0, &val))) {
4921 		pr_warn("Unable to set resched_latency_warn_ms\n");
4922 		return 1;
4923 	}
4924 
4925 	sysctl_resched_latency_warn_ms = val;
4926 	return 1;
4927 }
4928 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4929 #else
4930 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4931 #endif /* CONFIG_SCHED_DEBUG */
4932 
4933 /*
4934  * This function gets called by the timer code, with HZ frequency.
4935  * We call it with interrupts disabled.
4936  */
4937 void scheduler_tick(void)
4938 {
4939 	int cpu = smp_processor_id();
4940 	struct rq *rq = cpu_rq(cpu);
4941 	struct task_struct *curr = rq->curr;
4942 	struct rq_flags rf;
4943 	unsigned long thermal_pressure;
4944 	u64 resched_latency;
4945 
4946 	arch_scale_freq_tick();
4947 	sched_clock_tick();
4948 
4949 	rq_lock(rq, &rf);
4950 
4951 	update_rq_clock(rq);
4952 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4953 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4954 	curr->sched_class->task_tick(rq, curr, 0);
4955 	if (sched_feat(LATENCY_WARN))
4956 		resched_latency = cpu_resched_latency(rq);
4957 	calc_global_load_tick(rq);
4958 
4959 	rq_unlock(rq, &rf);
4960 
4961 	if (sched_feat(LATENCY_WARN) && resched_latency)
4962 		resched_latency_warn(cpu, resched_latency);
4963 
4964 	perf_event_task_tick();
4965 
4966 #ifdef CONFIG_SMP
4967 	rq->idle_balance = idle_cpu(cpu);
4968 	trigger_load_balance(rq);
4969 #endif
4970 }
4971 
4972 #ifdef CONFIG_NO_HZ_FULL
4973 
4974 struct tick_work {
4975 	int			cpu;
4976 	atomic_t		state;
4977 	struct delayed_work	work;
4978 };
4979 /* Values for ->state, see diagram below. */
4980 #define TICK_SCHED_REMOTE_OFFLINE	0
4981 #define TICK_SCHED_REMOTE_OFFLINING	1
4982 #define TICK_SCHED_REMOTE_RUNNING	2
4983 
4984 /*
4985  * State diagram for ->state:
4986  *
4987  *
4988  *          TICK_SCHED_REMOTE_OFFLINE
4989  *                    |   ^
4990  *                    |   |
4991  *                    |   | sched_tick_remote()
4992  *                    |   |
4993  *                    |   |
4994  *                    +--TICK_SCHED_REMOTE_OFFLINING
4995  *                    |   ^
4996  *                    |   |
4997  * sched_tick_start() |   | sched_tick_stop()
4998  *                    |   |
4999  *                    V   |
5000  *          TICK_SCHED_REMOTE_RUNNING
5001  *
5002  *
5003  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5004  * and sched_tick_start() are happy to leave the state in RUNNING.
5005  */
5006 
5007 static struct tick_work __percpu *tick_work_cpu;
5008 
5009 static void sched_tick_remote(struct work_struct *work)
5010 {
5011 	struct delayed_work *dwork = to_delayed_work(work);
5012 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5013 	int cpu = twork->cpu;
5014 	struct rq *rq = cpu_rq(cpu);
5015 	struct task_struct *curr;
5016 	struct rq_flags rf;
5017 	u64 delta;
5018 	int os;
5019 
5020 	/*
5021 	 * Handle the tick only if it appears the remote CPU is running in full
5022 	 * dynticks mode. The check is racy by nature, but missing a tick or
5023 	 * having one too much is no big deal because the scheduler tick updates
5024 	 * statistics and checks timeslices in a time-independent way, regardless
5025 	 * of when exactly it is running.
5026 	 */
5027 	if (!tick_nohz_tick_stopped_cpu(cpu))
5028 		goto out_requeue;
5029 
5030 	rq_lock_irq(rq, &rf);
5031 	curr = rq->curr;
5032 	if (cpu_is_offline(cpu))
5033 		goto out_unlock;
5034 
5035 	update_rq_clock(rq);
5036 
5037 	if (!is_idle_task(curr)) {
5038 		/*
5039 		 * Make sure the next tick runs within a reasonable
5040 		 * amount of time.
5041 		 */
5042 		delta = rq_clock_task(rq) - curr->se.exec_start;
5043 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5044 	}
5045 	curr->sched_class->task_tick(rq, curr, 0);
5046 
5047 	calc_load_nohz_remote(rq);
5048 out_unlock:
5049 	rq_unlock_irq(rq, &rf);
5050 out_requeue:
5051 
5052 	/*
5053 	 * Run the remote tick once per second (1Hz). This arbitrary
5054 	 * frequency is large enough to avoid overload but short enough
5055 	 * to keep scheduler internal stats reasonably up to date.  But
5056 	 * first update state to reflect hotplug activity if required.
5057 	 */
5058 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5059 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5060 	if (os == TICK_SCHED_REMOTE_RUNNING)
5061 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5062 }
5063 
5064 static void sched_tick_start(int cpu)
5065 {
5066 	int os;
5067 	struct tick_work *twork;
5068 
5069 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5070 		return;
5071 
5072 	WARN_ON_ONCE(!tick_work_cpu);
5073 
5074 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5075 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5076 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5077 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5078 		twork->cpu = cpu;
5079 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5080 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5081 	}
5082 }
5083 
5084 #ifdef CONFIG_HOTPLUG_CPU
5085 static void sched_tick_stop(int cpu)
5086 {
5087 	struct tick_work *twork;
5088 	int os;
5089 
5090 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5091 		return;
5092 
5093 	WARN_ON_ONCE(!tick_work_cpu);
5094 
5095 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5096 	/* There cannot be competing actions, but don't rely on stop-machine. */
5097 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5098 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5099 	/* Don't cancel, as this would mess up the state machine. */
5100 }
5101 #endif /* CONFIG_HOTPLUG_CPU */
5102 
5103 int __init sched_tick_offload_init(void)
5104 {
5105 	tick_work_cpu = alloc_percpu(struct tick_work);
5106 	BUG_ON(!tick_work_cpu);
5107 	return 0;
5108 }
5109 
5110 #else /* !CONFIG_NO_HZ_FULL */
5111 static inline void sched_tick_start(int cpu) { }
5112 static inline void sched_tick_stop(int cpu) { }
5113 #endif
5114 
5115 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5116 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5117 /*
5118  * If the value passed in is equal to the current preempt count
5119  * then we just disabled preemption. Start timing the latency.
5120  */
5121 static inline void preempt_latency_start(int val)
5122 {
5123 	if (preempt_count() == val) {
5124 		unsigned long ip = get_lock_parent_ip();
5125 #ifdef CONFIG_DEBUG_PREEMPT
5126 		current->preempt_disable_ip = ip;
5127 #endif
5128 		trace_preempt_off(CALLER_ADDR0, ip);
5129 	}
5130 }
5131 
5132 void preempt_count_add(int val)
5133 {
5134 #ifdef CONFIG_DEBUG_PREEMPT
5135 	/*
5136 	 * Underflow?
5137 	 */
5138 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5139 		return;
5140 #endif
5141 	__preempt_count_add(val);
5142 #ifdef CONFIG_DEBUG_PREEMPT
5143 	/*
5144 	 * Spinlock count overflowing soon?
5145 	 */
5146 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5147 				PREEMPT_MASK - 10);
5148 #endif
5149 	preempt_latency_start(val);
5150 }
5151 EXPORT_SYMBOL(preempt_count_add);
5152 NOKPROBE_SYMBOL(preempt_count_add);
5153 
5154 /*
5155  * If the value passed in equals to the current preempt count
5156  * then we just enabled preemption. Stop timing the latency.
5157  */
5158 static inline void preempt_latency_stop(int val)
5159 {
5160 	if (preempt_count() == val)
5161 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5162 }
5163 
5164 void preempt_count_sub(int val)
5165 {
5166 #ifdef CONFIG_DEBUG_PREEMPT
5167 	/*
5168 	 * Underflow?
5169 	 */
5170 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5171 		return;
5172 	/*
5173 	 * Is the spinlock portion underflowing?
5174 	 */
5175 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5176 			!(preempt_count() & PREEMPT_MASK)))
5177 		return;
5178 #endif
5179 
5180 	preempt_latency_stop(val);
5181 	__preempt_count_sub(val);
5182 }
5183 EXPORT_SYMBOL(preempt_count_sub);
5184 NOKPROBE_SYMBOL(preempt_count_sub);
5185 
5186 #else
5187 static inline void preempt_latency_start(int val) { }
5188 static inline void preempt_latency_stop(int val) { }
5189 #endif
5190 
5191 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5192 {
5193 #ifdef CONFIG_DEBUG_PREEMPT
5194 	return p->preempt_disable_ip;
5195 #else
5196 	return 0;
5197 #endif
5198 }
5199 
5200 /*
5201  * Print scheduling while atomic bug:
5202  */
5203 static noinline void __schedule_bug(struct task_struct *prev)
5204 {
5205 	/* Save this before calling printk(), since that will clobber it */
5206 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5207 
5208 	if (oops_in_progress)
5209 		return;
5210 
5211 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5212 		prev->comm, prev->pid, preempt_count());
5213 
5214 	debug_show_held_locks(prev);
5215 	print_modules();
5216 	if (irqs_disabled())
5217 		print_irqtrace_events(prev);
5218 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5219 	    && in_atomic_preempt_off()) {
5220 		pr_err("Preemption disabled at:");
5221 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5222 	}
5223 	if (panic_on_warn)
5224 		panic("scheduling while atomic\n");
5225 
5226 	dump_stack();
5227 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5228 }
5229 
5230 /*
5231  * Various schedule()-time debugging checks and statistics:
5232  */
5233 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5234 {
5235 #ifdef CONFIG_SCHED_STACK_END_CHECK
5236 	if (task_stack_end_corrupted(prev))
5237 		panic("corrupted stack end detected inside scheduler\n");
5238 
5239 	if (task_scs_end_corrupted(prev))
5240 		panic("corrupted shadow stack detected inside scheduler\n");
5241 #endif
5242 
5243 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5244 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5245 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5246 			prev->comm, prev->pid, prev->non_block_count);
5247 		dump_stack();
5248 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5249 	}
5250 #endif
5251 
5252 	if (unlikely(in_atomic_preempt_off())) {
5253 		__schedule_bug(prev);
5254 		preempt_count_set(PREEMPT_DISABLED);
5255 	}
5256 	rcu_sleep_check();
5257 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5258 
5259 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5260 
5261 	schedstat_inc(this_rq()->sched_count);
5262 }
5263 
5264 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5265 				  struct rq_flags *rf)
5266 {
5267 #ifdef CONFIG_SMP
5268 	const struct sched_class *class;
5269 	/*
5270 	 * We must do the balancing pass before put_prev_task(), such
5271 	 * that when we release the rq->lock the task is in the same
5272 	 * state as before we took rq->lock.
5273 	 *
5274 	 * We can terminate the balance pass as soon as we know there is
5275 	 * a runnable task of @class priority or higher.
5276 	 */
5277 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5278 		if (class->balance(rq, prev, rf))
5279 			break;
5280 	}
5281 #endif
5282 
5283 	put_prev_task(rq, prev);
5284 }
5285 
5286 /*
5287  * Pick up the highest-prio task:
5288  */
5289 static inline struct task_struct *
5290 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5291 {
5292 	const struct sched_class *class;
5293 	struct task_struct *p;
5294 
5295 	/*
5296 	 * Optimization: we know that if all tasks are in the fair class we can
5297 	 * call that function directly, but only if the @prev task wasn't of a
5298 	 * higher scheduling class, because otherwise those lose the
5299 	 * opportunity to pull in more work from other CPUs.
5300 	 */
5301 	if (likely(prev->sched_class <= &fair_sched_class &&
5302 		   rq->nr_running == rq->cfs.h_nr_running)) {
5303 
5304 		p = pick_next_task_fair(rq, prev, rf);
5305 		if (unlikely(p == RETRY_TASK))
5306 			goto restart;
5307 
5308 		/* Assume the next prioritized class is idle_sched_class */
5309 		if (!p) {
5310 			put_prev_task(rq, prev);
5311 			p = pick_next_task_idle(rq);
5312 		}
5313 
5314 		return p;
5315 	}
5316 
5317 restart:
5318 	put_prev_task_balance(rq, prev, rf);
5319 
5320 	for_each_class(class) {
5321 		p = class->pick_next_task(rq);
5322 		if (p)
5323 			return p;
5324 	}
5325 
5326 	/* The idle class should always have a runnable task: */
5327 	BUG();
5328 }
5329 
5330 #ifdef CONFIG_SCHED_CORE
5331 static inline bool is_task_rq_idle(struct task_struct *t)
5332 {
5333 	return (task_rq(t)->idle == t);
5334 }
5335 
5336 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5337 {
5338 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5339 }
5340 
5341 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5342 {
5343 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5344 		return true;
5345 
5346 	return a->core_cookie == b->core_cookie;
5347 }
5348 
5349 // XXX fairness/fwd progress conditions
5350 /*
5351  * Returns
5352  * - NULL if there is no runnable task for this class.
5353  * - the highest priority task for this runqueue if it matches
5354  *   rq->core->core_cookie or its priority is greater than max.
5355  * - Else returns idle_task.
5356  */
5357 static struct task_struct *
5358 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5359 {
5360 	struct task_struct *class_pick, *cookie_pick;
5361 	unsigned long cookie = rq->core->core_cookie;
5362 
5363 	class_pick = class->pick_task(rq);
5364 	if (!class_pick)
5365 		return NULL;
5366 
5367 	if (!cookie) {
5368 		/*
5369 		 * If class_pick is tagged, return it only if it has
5370 		 * higher priority than max.
5371 		 */
5372 		if (max && class_pick->core_cookie &&
5373 		    prio_less(class_pick, max, in_fi))
5374 			return idle_sched_class.pick_task(rq);
5375 
5376 		return class_pick;
5377 	}
5378 
5379 	/*
5380 	 * If class_pick is idle or matches cookie, return early.
5381 	 */
5382 	if (cookie_equals(class_pick, cookie))
5383 		return class_pick;
5384 
5385 	cookie_pick = sched_core_find(rq, cookie);
5386 
5387 	/*
5388 	 * If class > max && class > cookie, it is the highest priority task on
5389 	 * the core (so far) and it must be selected, otherwise we must go with
5390 	 * the cookie pick in order to satisfy the constraint.
5391 	 */
5392 	if (prio_less(cookie_pick, class_pick, in_fi) &&
5393 	    (!max || prio_less(max, class_pick, in_fi)))
5394 		return class_pick;
5395 
5396 	return cookie_pick;
5397 }
5398 
5399 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5400 
5401 static struct task_struct *
5402 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5403 {
5404 	struct task_struct *next, *max = NULL;
5405 	const struct sched_class *class;
5406 	const struct cpumask *smt_mask;
5407 	bool fi_before = false;
5408 	int i, j, cpu, occ = 0;
5409 	bool need_sync;
5410 
5411 	if (!sched_core_enabled(rq))
5412 		return __pick_next_task(rq, prev, rf);
5413 
5414 	cpu = cpu_of(rq);
5415 
5416 	/* Stopper task is switching into idle, no need core-wide selection. */
5417 	if (cpu_is_offline(cpu)) {
5418 		/*
5419 		 * Reset core_pick so that we don't enter the fastpath when
5420 		 * coming online. core_pick would already be migrated to
5421 		 * another cpu during offline.
5422 		 */
5423 		rq->core_pick = NULL;
5424 		return __pick_next_task(rq, prev, rf);
5425 	}
5426 
5427 	/*
5428 	 * If there were no {en,de}queues since we picked (IOW, the task
5429 	 * pointers are all still valid), and we haven't scheduled the last
5430 	 * pick yet, do so now.
5431 	 *
5432 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5433 	 * it was either offline or went offline during a sibling's core-wide
5434 	 * selection. In this case, do a core-wide selection.
5435 	 */
5436 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5437 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5438 	    rq->core_pick) {
5439 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5440 
5441 		next = rq->core_pick;
5442 		if (next != prev) {
5443 			put_prev_task(rq, prev);
5444 			set_next_task(rq, next);
5445 		}
5446 
5447 		rq->core_pick = NULL;
5448 		return next;
5449 	}
5450 
5451 	put_prev_task_balance(rq, prev, rf);
5452 
5453 	smt_mask = cpu_smt_mask(cpu);
5454 	need_sync = !!rq->core->core_cookie;
5455 
5456 	/* reset state */
5457 	rq->core->core_cookie = 0UL;
5458 	if (rq->core->core_forceidle) {
5459 		need_sync = true;
5460 		fi_before = true;
5461 		rq->core->core_forceidle = false;
5462 	}
5463 
5464 	/*
5465 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5466 	 *
5467 	 * @task_seq guards the task state ({en,de}queues)
5468 	 * @pick_seq is the @task_seq we did a selection on
5469 	 * @sched_seq is the @pick_seq we scheduled
5470 	 *
5471 	 * However, preemptions can cause multiple picks on the same task set.
5472 	 * 'Fix' this by also increasing @task_seq for every pick.
5473 	 */
5474 	rq->core->core_task_seq++;
5475 
5476 	/*
5477 	 * Optimize for common case where this CPU has no cookies
5478 	 * and there are no cookied tasks running on siblings.
5479 	 */
5480 	if (!need_sync) {
5481 		for_each_class(class) {
5482 			next = class->pick_task(rq);
5483 			if (next)
5484 				break;
5485 		}
5486 
5487 		if (!next->core_cookie) {
5488 			rq->core_pick = NULL;
5489 			/*
5490 			 * For robustness, update the min_vruntime_fi for
5491 			 * unconstrained picks as well.
5492 			 */
5493 			WARN_ON_ONCE(fi_before);
5494 			task_vruntime_update(rq, next, false);
5495 			goto done;
5496 		}
5497 	}
5498 
5499 	for_each_cpu(i, smt_mask) {
5500 		struct rq *rq_i = cpu_rq(i);
5501 
5502 		rq_i->core_pick = NULL;
5503 
5504 		if (i != cpu)
5505 			update_rq_clock(rq_i);
5506 	}
5507 
5508 	/*
5509 	 * Try and select tasks for each sibling in descending sched_class
5510 	 * order.
5511 	 */
5512 	for_each_class(class) {
5513 again:
5514 		for_each_cpu_wrap(i, smt_mask, cpu) {
5515 			struct rq *rq_i = cpu_rq(i);
5516 			struct task_struct *p;
5517 
5518 			if (rq_i->core_pick)
5519 				continue;
5520 
5521 			/*
5522 			 * If this sibling doesn't yet have a suitable task to
5523 			 * run; ask for the most eligible task, given the
5524 			 * highest priority task already selected for this
5525 			 * core.
5526 			 */
5527 			p = pick_task(rq_i, class, max, fi_before);
5528 			if (!p)
5529 				continue;
5530 
5531 			if (!is_task_rq_idle(p))
5532 				occ++;
5533 
5534 			rq_i->core_pick = p;
5535 			if (rq_i->idle == p && rq_i->nr_running) {
5536 				rq->core->core_forceidle = true;
5537 				if (!fi_before)
5538 					rq->core->core_forceidle_seq++;
5539 			}
5540 
5541 			/*
5542 			 * If this new candidate is of higher priority than the
5543 			 * previous; and they're incompatible; we need to wipe
5544 			 * the slate and start over. pick_task makes sure that
5545 			 * p's priority is more than max if it doesn't match
5546 			 * max's cookie.
5547 			 *
5548 			 * NOTE: this is a linear max-filter and is thus bounded
5549 			 * in execution time.
5550 			 */
5551 			if (!max || !cookie_match(max, p)) {
5552 				struct task_struct *old_max = max;
5553 
5554 				rq->core->core_cookie = p->core_cookie;
5555 				max = p;
5556 
5557 				if (old_max) {
5558 					rq->core->core_forceidle = false;
5559 					for_each_cpu(j, smt_mask) {
5560 						if (j == i)
5561 							continue;
5562 
5563 						cpu_rq(j)->core_pick = NULL;
5564 					}
5565 					occ = 1;
5566 					goto again;
5567 				}
5568 			}
5569 		}
5570 	}
5571 
5572 	rq->core->core_pick_seq = rq->core->core_task_seq;
5573 	next = rq->core_pick;
5574 	rq->core_sched_seq = rq->core->core_pick_seq;
5575 
5576 	/* Something should have been selected for current CPU */
5577 	WARN_ON_ONCE(!next);
5578 
5579 	/*
5580 	 * Reschedule siblings
5581 	 *
5582 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5583 	 * sending an IPI (below) ensures the sibling will no longer be running
5584 	 * their task. This ensures there is no inter-sibling overlap between
5585 	 * non-matching user state.
5586 	 */
5587 	for_each_cpu(i, smt_mask) {
5588 		struct rq *rq_i = cpu_rq(i);
5589 
5590 		/*
5591 		 * An online sibling might have gone offline before a task
5592 		 * could be picked for it, or it might be offline but later
5593 		 * happen to come online, but its too late and nothing was
5594 		 * picked for it.  That's Ok - it will pick tasks for itself,
5595 		 * so ignore it.
5596 		 */
5597 		if (!rq_i->core_pick)
5598 			continue;
5599 
5600 		/*
5601 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5602 		 * fi_before     fi      update?
5603 		 *  0            0       1
5604 		 *  0            1       1
5605 		 *  1            0       1
5606 		 *  1            1       0
5607 		 */
5608 		if (!(fi_before && rq->core->core_forceidle))
5609 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5610 
5611 		rq_i->core_pick->core_occupation = occ;
5612 
5613 		if (i == cpu) {
5614 			rq_i->core_pick = NULL;
5615 			continue;
5616 		}
5617 
5618 		/* Did we break L1TF mitigation requirements? */
5619 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5620 
5621 		if (rq_i->curr == rq_i->core_pick) {
5622 			rq_i->core_pick = NULL;
5623 			continue;
5624 		}
5625 
5626 		resched_curr(rq_i);
5627 	}
5628 
5629 done:
5630 	set_next_task(rq, next);
5631 	return next;
5632 }
5633 
5634 static bool try_steal_cookie(int this, int that)
5635 {
5636 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5637 	struct task_struct *p;
5638 	unsigned long cookie;
5639 	bool success = false;
5640 
5641 	local_irq_disable();
5642 	double_rq_lock(dst, src);
5643 
5644 	cookie = dst->core->core_cookie;
5645 	if (!cookie)
5646 		goto unlock;
5647 
5648 	if (dst->curr != dst->idle)
5649 		goto unlock;
5650 
5651 	p = sched_core_find(src, cookie);
5652 	if (p == src->idle)
5653 		goto unlock;
5654 
5655 	do {
5656 		if (p == src->core_pick || p == src->curr)
5657 			goto next;
5658 
5659 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5660 			goto next;
5661 
5662 		if (p->core_occupation > dst->idle->core_occupation)
5663 			goto next;
5664 
5665 		p->on_rq = TASK_ON_RQ_MIGRATING;
5666 		deactivate_task(src, p, 0);
5667 		set_task_cpu(p, this);
5668 		activate_task(dst, p, 0);
5669 		p->on_rq = TASK_ON_RQ_QUEUED;
5670 
5671 		resched_curr(dst);
5672 
5673 		success = true;
5674 		break;
5675 
5676 next:
5677 		p = sched_core_next(p, cookie);
5678 	} while (p);
5679 
5680 unlock:
5681 	double_rq_unlock(dst, src);
5682 	local_irq_enable();
5683 
5684 	return success;
5685 }
5686 
5687 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5688 {
5689 	int i;
5690 
5691 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5692 		if (i == cpu)
5693 			continue;
5694 
5695 		if (need_resched())
5696 			break;
5697 
5698 		if (try_steal_cookie(cpu, i))
5699 			return true;
5700 	}
5701 
5702 	return false;
5703 }
5704 
5705 static void sched_core_balance(struct rq *rq)
5706 {
5707 	struct sched_domain *sd;
5708 	int cpu = cpu_of(rq);
5709 
5710 	preempt_disable();
5711 	rcu_read_lock();
5712 	raw_spin_rq_unlock_irq(rq);
5713 	for_each_domain(cpu, sd) {
5714 		if (need_resched())
5715 			break;
5716 
5717 		if (steal_cookie_task(cpu, sd))
5718 			break;
5719 	}
5720 	raw_spin_rq_lock_irq(rq);
5721 	rcu_read_unlock();
5722 	preempt_enable();
5723 }
5724 
5725 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5726 
5727 void queue_core_balance(struct rq *rq)
5728 {
5729 	if (!sched_core_enabled(rq))
5730 		return;
5731 
5732 	if (!rq->core->core_cookie)
5733 		return;
5734 
5735 	if (!rq->nr_running) /* not forced idle */
5736 		return;
5737 
5738 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5739 }
5740 
5741 static inline void sched_core_cpu_starting(unsigned int cpu)
5742 {
5743 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5744 	struct rq *rq, *core_rq = NULL;
5745 	int i;
5746 
5747 	core_rq = cpu_rq(cpu)->core;
5748 
5749 	if (!core_rq) {
5750 		for_each_cpu(i, smt_mask) {
5751 			rq = cpu_rq(i);
5752 			if (rq->core && rq->core == rq)
5753 				core_rq = rq;
5754 		}
5755 
5756 		if (!core_rq)
5757 			core_rq = cpu_rq(cpu);
5758 
5759 		for_each_cpu(i, smt_mask) {
5760 			rq = cpu_rq(i);
5761 
5762 			WARN_ON_ONCE(rq->core && rq->core != core_rq);
5763 			rq->core = core_rq;
5764 		}
5765 	}
5766 }
5767 #else /* !CONFIG_SCHED_CORE */
5768 
5769 static inline void sched_core_cpu_starting(unsigned int cpu) {}
5770 
5771 static struct task_struct *
5772 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5773 {
5774 	return __pick_next_task(rq, prev, rf);
5775 }
5776 
5777 #endif /* CONFIG_SCHED_CORE */
5778 
5779 /*
5780  * __schedule() is the main scheduler function.
5781  *
5782  * The main means of driving the scheduler and thus entering this function are:
5783  *
5784  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5785  *
5786  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5787  *      paths. For example, see arch/x86/entry_64.S.
5788  *
5789  *      To drive preemption between tasks, the scheduler sets the flag in timer
5790  *      interrupt handler scheduler_tick().
5791  *
5792  *   3. Wakeups don't really cause entry into schedule(). They add a
5793  *      task to the run-queue and that's it.
5794  *
5795  *      Now, if the new task added to the run-queue preempts the current
5796  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5797  *      called on the nearest possible occasion:
5798  *
5799  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5800  *
5801  *         - in syscall or exception context, at the next outmost
5802  *           preempt_enable(). (this might be as soon as the wake_up()'s
5803  *           spin_unlock()!)
5804  *
5805  *         - in IRQ context, return from interrupt-handler to
5806  *           preemptible context
5807  *
5808  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5809  *         then at the next:
5810  *
5811  *          - cond_resched() call
5812  *          - explicit schedule() call
5813  *          - return from syscall or exception to user-space
5814  *          - return from interrupt-handler to user-space
5815  *
5816  * WARNING: must be called with preemption disabled!
5817  */
5818 static void __sched notrace __schedule(bool preempt)
5819 {
5820 	struct task_struct *prev, *next;
5821 	unsigned long *switch_count;
5822 	unsigned long prev_state;
5823 	struct rq_flags rf;
5824 	struct rq *rq;
5825 	int cpu;
5826 
5827 	cpu = smp_processor_id();
5828 	rq = cpu_rq(cpu);
5829 	prev = rq->curr;
5830 
5831 	schedule_debug(prev, preempt);
5832 
5833 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5834 		hrtick_clear(rq);
5835 
5836 	local_irq_disable();
5837 	rcu_note_context_switch(preempt);
5838 
5839 	/*
5840 	 * Make sure that signal_pending_state()->signal_pending() below
5841 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5842 	 * done by the caller to avoid the race with signal_wake_up():
5843 	 *
5844 	 * __set_current_state(@state)		signal_wake_up()
5845 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
5846 	 *					  wake_up_state(p, state)
5847 	 *   LOCK rq->lock			    LOCK p->pi_state
5848 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
5849 	 *     if (signal_pending_state())	    if (p->state & @state)
5850 	 *
5851 	 * Also, the membarrier system call requires a full memory barrier
5852 	 * after coming from user-space, before storing to rq->curr.
5853 	 */
5854 	rq_lock(rq, &rf);
5855 	smp_mb__after_spinlock();
5856 
5857 	/* Promote REQ to ACT */
5858 	rq->clock_update_flags <<= 1;
5859 	update_rq_clock(rq);
5860 
5861 	switch_count = &prev->nivcsw;
5862 
5863 	/*
5864 	 * We must load prev->state once (task_struct::state is volatile), such
5865 	 * that:
5866 	 *
5867 	 *  - we form a control dependency vs deactivate_task() below.
5868 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5869 	 */
5870 	prev_state = READ_ONCE(prev->__state);
5871 	if (!preempt && prev_state) {
5872 		if (signal_pending_state(prev_state, prev)) {
5873 			WRITE_ONCE(prev->__state, TASK_RUNNING);
5874 		} else {
5875 			prev->sched_contributes_to_load =
5876 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5877 				!(prev_state & TASK_NOLOAD) &&
5878 				!(prev->flags & PF_FROZEN);
5879 
5880 			if (prev->sched_contributes_to_load)
5881 				rq->nr_uninterruptible++;
5882 
5883 			/*
5884 			 * __schedule()			ttwu()
5885 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5886 			 *   if (prev_state)		    goto out;
5887 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5888 			 *				  p->state = TASK_WAKING
5889 			 *
5890 			 * Where __schedule() and ttwu() have matching control dependencies.
5891 			 *
5892 			 * After this, schedule() must not care about p->state any more.
5893 			 */
5894 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5895 
5896 			if (prev->in_iowait) {
5897 				atomic_inc(&rq->nr_iowait);
5898 				delayacct_blkio_start();
5899 			}
5900 		}
5901 		switch_count = &prev->nvcsw;
5902 	}
5903 
5904 	next = pick_next_task(rq, prev, &rf);
5905 	clear_tsk_need_resched(prev);
5906 	clear_preempt_need_resched();
5907 #ifdef CONFIG_SCHED_DEBUG
5908 	rq->last_seen_need_resched_ns = 0;
5909 #endif
5910 
5911 	if (likely(prev != next)) {
5912 		rq->nr_switches++;
5913 		/*
5914 		 * RCU users of rcu_dereference(rq->curr) may not see
5915 		 * changes to task_struct made by pick_next_task().
5916 		 */
5917 		RCU_INIT_POINTER(rq->curr, next);
5918 		/*
5919 		 * The membarrier system call requires each architecture
5920 		 * to have a full memory barrier after updating
5921 		 * rq->curr, before returning to user-space.
5922 		 *
5923 		 * Here are the schemes providing that barrier on the
5924 		 * various architectures:
5925 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5926 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5927 		 * - finish_lock_switch() for weakly-ordered
5928 		 *   architectures where spin_unlock is a full barrier,
5929 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5930 		 *   is a RELEASE barrier),
5931 		 */
5932 		++*switch_count;
5933 
5934 		migrate_disable_switch(rq, prev);
5935 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5936 
5937 		trace_sched_switch(preempt, prev, next);
5938 
5939 		/* Also unlocks the rq: */
5940 		rq = context_switch(rq, prev, next, &rf);
5941 	} else {
5942 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5943 
5944 		rq_unpin_lock(rq, &rf);
5945 		__balance_callbacks(rq);
5946 		raw_spin_rq_unlock_irq(rq);
5947 	}
5948 }
5949 
5950 void __noreturn do_task_dead(void)
5951 {
5952 	/* Causes final put_task_struct in finish_task_switch(): */
5953 	set_special_state(TASK_DEAD);
5954 
5955 	/* Tell freezer to ignore us: */
5956 	current->flags |= PF_NOFREEZE;
5957 
5958 	__schedule(false);
5959 	BUG();
5960 
5961 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5962 	for (;;)
5963 		cpu_relax();
5964 }
5965 
5966 static inline void sched_submit_work(struct task_struct *tsk)
5967 {
5968 	unsigned int task_flags;
5969 
5970 	if (task_is_running(tsk))
5971 		return;
5972 
5973 	task_flags = tsk->flags;
5974 	/*
5975 	 * If a worker went to sleep, notify and ask workqueue whether
5976 	 * it wants to wake up a task to maintain concurrency.
5977 	 * As this function is called inside the schedule() context,
5978 	 * we disable preemption to avoid it calling schedule() again
5979 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5980 	 * requires it.
5981 	 */
5982 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5983 		preempt_disable();
5984 		if (task_flags & PF_WQ_WORKER)
5985 			wq_worker_sleeping(tsk);
5986 		else
5987 			io_wq_worker_sleeping(tsk);
5988 		preempt_enable_no_resched();
5989 	}
5990 
5991 	if (tsk_is_pi_blocked(tsk))
5992 		return;
5993 
5994 	/*
5995 	 * If we are going to sleep and we have plugged IO queued,
5996 	 * make sure to submit it to avoid deadlocks.
5997 	 */
5998 	if (blk_needs_flush_plug(tsk))
5999 		blk_schedule_flush_plug(tsk);
6000 }
6001 
6002 static void sched_update_worker(struct task_struct *tsk)
6003 {
6004 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6005 		if (tsk->flags & PF_WQ_WORKER)
6006 			wq_worker_running(tsk);
6007 		else
6008 			io_wq_worker_running(tsk);
6009 	}
6010 }
6011 
6012 asmlinkage __visible void __sched schedule(void)
6013 {
6014 	struct task_struct *tsk = current;
6015 
6016 	sched_submit_work(tsk);
6017 	do {
6018 		preempt_disable();
6019 		__schedule(false);
6020 		sched_preempt_enable_no_resched();
6021 	} while (need_resched());
6022 	sched_update_worker(tsk);
6023 }
6024 EXPORT_SYMBOL(schedule);
6025 
6026 /*
6027  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6028  * state (have scheduled out non-voluntarily) by making sure that all
6029  * tasks have either left the run queue or have gone into user space.
6030  * As idle tasks do not do either, they must not ever be preempted
6031  * (schedule out non-voluntarily).
6032  *
6033  * schedule_idle() is similar to schedule_preempt_disable() except that it
6034  * never enables preemption because it does not call sched_submit_work().
6035  */
6036 void __sched schedule_idle(void)
6037 {
6038 	/*
6039 	 * As this skips calling sched_submit_work(), which the idle task does
6040 	 * regardless because that function is a nop when the task is in a
6041 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6042 	 * current task can be in any other state. Note, idle is always in the
6043 	 * TASK_RUNNING state.
6044 	 */
6045 	WARN_ON_ONCE(current->__state);
6046 	do {
6047 		__schedule(false);
6048 	} while (need_resched());
6049 }
6050 
6051 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6052 asmlinkage __visible void __sched schedule_user(void)
6053 {
6054 	/*
6055 	 * If we come here after a random call to set_need_resched(),
6056 	 * or we have been woken up remotely but the IPI has not yet arrived,
6057 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6058 	 * we find a better solution.
6059 	 *
6060 	 * NB: There are buggy callers of this function.  Ideally we
6061 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6062 	 * too frequently to make sense yet.
6063 	 */
6064 	enum ctx_state prev_state = exception_enter();
6065 	schedule();
6066 	exception_exit(prev_state);
6067 }
6068 #endif
6069 
6070 /**
6071  * schedule_preempt_disabled - called with preemption disabled
6072  *
6073  * Returns with preemption disabled. Note: preempt_count must be 1
6074  */
6075 void __sched schedule_preempt_disabled(void)
6076 {
6077 	sched_preempt_enable_no_resched();
6078 	schedule();
6079 	preempt_disable();
6080 }
6081 
6082 static void __sched notrace preempt_schedule_common(void)
6083 {
6084 	do {
6085 		/*
6086 		 * Because the function tracer can trace preempt_count_sub()
6087 		 * and it also uses preempt_enable/disable_notrace(), if
6088 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6089 		 * by the function tracer will call this function again and
6090 		 * cause infinite recursion.
6091 		 *
6092 		 * Preemption must be disabled here before the function
6093 		 * tracer can trace. Break up preempt_disable() into two
6094 		 * calls. One to disable preemption without fear of being
6095 		 * traced. The other to still record the preemption latency,
6096 		 * which can also be traced by the function tracer.
6097 		 */
6098 		preempt_disable_notrace();
6099 		preempt_latency_start(1);
6100 		__schedule(true);
6101 		preempt_latency_stop(1);
6102 		preempt_enable_no_resched_notrace();
6103 
6104 		/*
6105 		 * Check again in case we missed a preemption opportunity
6106 		 * between schedule and now.
6107 		 */
6108 	} while (need_resched());
6109 }
6110 
6111 #ifdef CONFIG_PREEMPTION
6112 /*
6113  * This is the entry point to schedule() from in-kernel preemption
6114  * off of preempt_enable.
6115  */
6116 asmlinkage __visible void __sched notrace preempt_schedule(void)
6117 {
6118 	/*
6119 	 * If there is a non-zero preempt_count or interrupts are disabled,
6120 	 * we do not want to preempt the current task. Just return..
6121 	 */
6122 	if (likely(!preemptible()))
6123 		return;
6124 
6125 	preempt_schedule_common();
6126 }
6127 NOKPROBE_SYMBOL(preempt_schedule);
6128 EXPORT_SYMBOL(preempt_schedule);
6129 
6130 #ifdef CONFIG_PREEMPT_DYNAMIC
6131 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6132 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6133 #endif
6134 
6135 
6136 /**
6137  * preempt_schedule_notrace - preempt_schedule called by tracing
6138  *
6139  * The tracing infrastructure uses preempt_enable_notrace to prevent
6140  * recursion and tracing preempt enabling caused by the tracing
6141  * infrastructure itself. But as tracing can happen in areas coming
6142  * from userspace or just about to enter userspace, a preempt enable
6143  * can occur before user_exit() is called. This will cause the scheduler
6144  * to be called when the system is still in usermode.
6145  *
6146  * To prevent this, the preempt_enable_notrace will use this function
6147  * instead of preempt_schedule() to exit user context if needed before
6148  * calling the scheduler.
6149  */
6150 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6151 {
6152 	enum ctx_state prev_ctx;
6153 
6154 	if (likely(!preemptible()))
6155 		return;
6156 
6157 	do {
6158 		/*
6159 		 * Because the function tracer can trace preempt_count_sub()
6160 		 * and it also uses preempt_enable/disable_notrace(), if
6161 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6162 		 * by the function tracer will call this function again and
6163 		 * cause infinite recursion.
6164 		 *
6165 		 * Preemption must be disabled here before the function
6166 		 * tracer can trace. Break up preempt_disable() into two
6167 		 * calls. One to disable preemption without fear of being
6168 		 * traced. The other to still record the preemption latency,
6169 		 * which can also be traced by the function tracer.
6170 		 */
6171 		preempt_disable_notrace();
6172 		preempt_latency_start(1);
6173 		/*
6174 		 * Needs preempt disabled in case user_exit() is traced
6175 		 * and the tracer calls preempt_enable_notrace() causing
6176 		 * an infinite recursion.
6177 		 */
6178 		prev_ctx = exception_enter();
6179 		__schedule(true);
6180 		exception_exit(prev_ctx);
6181 
6182 		preempt_latency_stop(1);
6183 		preempt_enable_no_resched_notrace();
6184 	} while (need_resched());
6185 }
6186 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6187 
6188 #ifdef CONFIG_PREEMPT_DYNAMIC
6189 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6190 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6191 #endif
6192 
6193 #endif /* CONFIG_PREEMPTION */
6194 
6195 #ifdef CONFIG_PREEMPT_DYNAMIC
6196 
6197 #include <linux/entry-common.h>
6198 
6199 /*
6200  * SC:cond_resched
6201  * SC:might_resched
6202  * SC:preempt_schedule
6203  * SC:preempt_schedule_notrace
6204  * SC:irqentry_exit_cond_resched
6205  *
6206  *
6207  * NONE:
6208  *   cond_resched               <- __cond_resched
6209  *   might_resched              <- RET0
6210  *   preempt_schedule           <- NOP
6211  *   preempt_schedule_notrace   <- NOP
6212  *   irqentry_exit_cond_resched <- NOP
6213  *
6214  * VOLUNTARY:
6215  *   cond_resched               <- __cond_resched
6216  *   might_resched              <- __cond_resched
6217  *   preempt_schedule           <- NOP
6218  *   preempt_schedule_notrace   <- NOP
6219  *   irqentry_exit_cond_resched <- NOP
6220  *
6221  * FULL:
6222  *   cond_resched               <- RET0
6223  *   might_resched              <- RET0
6224  *   preempt_schedule           <- preempt_schedule
6225  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6226  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6227  */
6228 
6229 enum {
6230 	preempt_dynamic_none = 0,
6231 	preempt_dynamic_voluntary,
6232 	preempt_dynamic_full,
6233 };
6234 
6235 int preempt_dynamic_mode = preempt_dynamic_full;
6236 
6237 int sched_dynamic_mode(const char *str)
6238 {
6239 	if (!strcmp(str, "none"))
6240 		return preempt_dynamic_none;
6241 
6242 	if (!strcmp(str, "voluntary"))
6243 		return preempt_dynamic_voluntary;
6244 
6245 	if (!strcmp(str, "full"))
6246 		return preempt_dynamic_full;
6247 
6248 	return -EINVAL;
6249 }
6250 
6251 void sched_dynamic_update(int mode)
6252 {
6253 	/*
6254 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6255 	 * the ZERO state, which is invalid.
6256 	 */
6257 	static_call_update(cond_resched, __cond_resched);
6258 	static_call_update(might_resched, __cond_resched);
6259 	static_call_update(preempt_schedule, __preempt_schedule_func);
6260 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6261 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6262 
6263 	switch (mode) {
6264 	case preempt_dynamic_none:
6265 		static_call_update(cond_resched, __cond_resched);
6266 		static_call_update(might_resched, (void *)&__static_call_return0);
6267 		static_call_update(preempt_schedule, NULL);
6268 		static_call_update(preempt_schedule_notrace, NULL);
6269 		static_call_update(irqentry_exit_cond_resched, NULL);
6270 		pr_info("Dynamic Preempt: none\n");
6271 		break;
6272 
6273 	case preempt_dynamic_voluntary:
6274 		static_call_update(cond_resched, __cond_resched);
6275 		static_call_update(might_resched, __cond_resched);
6276 		static_call_update(preempt_schedule, NULL);
6277 		static_call_update(preempt_schedule_notrace, NULL);
6278 		static_call_update(irqentry_exit_cond_resched, NULL);
6279 		pr_info("Dynamic Preempt: voluntary\n");
6280 		break;
6281 
6282 	case preempt_dynamic_full:
6283 		static_call_update(cond_resched, (void *)&__static_call_return0);
6284 		static_call_update(might_resched, (void *)&__static_call_return0);
6285 		static_call_update(preempt_schedule, __preempt_schedule_func);
6286 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6287 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6288 		pr_info("Dynamic Preempt: full\n");
6289 		break;
6290 	}
6291 
6292 	preempt_dynamic_mode = mode;
6293 }
6294 
6295 static int __init setup_preempt_mode(char *str)
6296 {
6297 	int mode = sched_dynamic_mode(str);
6298 	if (mode < 0) {
6299 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6300 		return 1;
6301 	}
6302 
6303 	sched_dynamic_update(mode);
6304 	return 0;
6305 }
6306 __setup("preempt=", setup_preempt_mode);
6307 
6308 #endif /* CONFIG_PREEMPT_DYNAMIC */
6309 
6310 /*
6311  * This is the entry point to schedule() from kernel preemption
6312  * off of irq context.
6313  * Note, that this is called and return with irqs disabled. This will
6314  * protect us against recursive calling from irq.
6315  */
6316 asmlinkage __visible void __sched preempt_schedule_irq(void)
6317 {
6318 	enum ctx_state prev_state;
6319 
6320 	/* Catch callers which need to be fixed */
6321 	BUG_ON(preempt_count() || !irqs_disabled());
6322 
6323 	prev_state = exception_enter();
6324 
6325 	do {
6326 		preempt_disable();
6327 		local_irq_enable();
6328 		__schedule(true);
6329 		local_irq_disable();
6330 		sched_preempt_enable_no_resched();
6331 	} while (need_resched());
6332 
6333 	exception_exit(prev_state);
6334 }
6335 
6336 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6337 			  void *key)
6338 {
6339 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6340 	return try_to_wake_up(curr->private, mode, wake_flags);
6341 }
6342 EXPORT_SYMBOL(default_wake_function);
6343 
6344 #ifdef CONFIG_RT_MUTEXES
6345 
6346 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6347 {
6348 	if (pi_task)
6349 		prio = min(prio, pi_task->prio);
6350 
6351 	return prio;
6352 }
6353 
6354 static inline int rt_effective_prio(struct task_struct *p, int prio)
6355 {
6356 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6357 
6358 	return __rt_effective_prio(pi_task, prio);
6359 }
6360 
6361 /*
6362  * rt_mutex_setprio - set the current priority of a task
6363  * @p: task to boost
6364  * @pi_task: donor task
6365  *
6366  * This function changes the 'effective' priority of a task. It does
6367  * not touch ->normal_prio like __setscheduler().
6368  *
6369  * Used by the rt_mutex code to implement priority inheritance
6370  * logic. Call site only calls if the priority of the task changed.
6371  */
6372 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6373 {
6374 	int prio, oldprio, queued, running, queue_flag =
6375 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6376 	const struct sched_class *prev_class;
6377 	struct rq_flags rf;
6378 	struct rq *rq;
6379 
6380 	/* XXX used to be waiter->prio, not waiter->task->prio */
6381 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6382 
6383 	/*
6384 	 * If nothing changed; bail early.
6385 	 */
6386 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6387 		return;
6388 
6389 	rq = __task_rq_lock(p, &rf);
6390 	update_rq_clock(rq);
6391 	/*
6392 	 * Set under pi_lock && rq->lock, such that the value can be used under
6393 	 * either lock.
6394 	 *
6395 	 * Note that there is loads of tricky to make this pointer cache work
6396 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6397 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6398 	 * task is allowed to run again (and can exit). This ensures the pointer
6399 	 * points to a blocked task -- which guarantees the task is present.
6400 	 */
6401 	p->pi_top_task = pi_task;
6402 
6403 	/*
6404 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6405 	 */
6406 	if (prio == p->prio && !dl_prio(prio))
6407 		goto out_unlock;
6408 
6409 	/*
6410 	 * Idle task boosting is a nono in general. There is one
6411 	 * exception, when PREEMPT_RT and NOHZ is active:
6412 	 *
6413 	 * The idle task calls get_next_timer_interrupt() and holds
6414 	 * the timer wheel base->lock on the CPU and another CPU wants
6415 	 * to access the timer (probably to cancel it). We can safely
6416 	 * ignore the boosting request, as the idle CPU runs this code
6417 	 * with interrupts disabled and will complete the lock
6418 	 * protected section without being interrupted. So there is no
6419 	 * real need to boost.
6420 	 */
6421 	if (unlikely(p == rq->idle)) {
6422 		WARN_ON(p != rq->curr);
6423 		WARN_ON(p->pi_blocked_on);
6424 		goto out_unlock;
6425 	}
6426 
6427 	trace_sched_pi_setprio(p, pi_task);
6428 	oldprio = p->prio;
6429 
6430 	if (oldprio == prio)
6431 		queue_flag &= ~DEQUEUE_MOVE;
6432 
6433 	prev_class = p->sched_class;
6434 	queued = task_on_rq_queued(p);
6435 	running = task_current(rq, p);
6436 	if (queued)
6437 		dequeue_task(rq, p, queue_flag);
6438 	if (running)
6439 		put_prev_task(rq, p);
6440 
6441 	/*
6442 	 * Boosting condition are:
6443 	 * 1. -rt task is running and holds mutex A
6444 	 *      --> -dl task blocks on mutex A
6445 	 *
6446 	 * 2. -dl task is running and holds mutex A
6447 	 *      --> -dl task blocks on mutex A and could preempt the
6448 	 *          running task
6449 	 */
6450 	if (dl_prio(prio)) {
6451 		if (!dl_prio(p->normal_prio) ||
6452 		    (pi_task && dl_prio(pi_task->prio) &&
6453 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6454 			p->dl.pi_se = pi_task->dl.pi_se;
6455 			queue_flag |= ENQUEUE_REPLENISH;
6456 		} else {
6457 			p->dl.pi_se = &p->dl;
6458 		}
6459 		p->sched_class = &dl_sched_class;
6460 	} else if (rt_prio(prio)) {
6461 		if (dl_prio(oldprio))
6462 			p->dl.pi_se = &p->dl;
6463 		if (oldprio < prio)
6464 			queue_flag |= ENQUEUE_HEAD;
6465 		p->sched_class = &rt_sched_class;
6466 	} else {
6467 		if (dl_prio(oldprio))
6468 			p->dl.pi_se = &p->dl;
6469 		if (rt_prio(oldprio))
6470 			p->rt.timeout = 0;
6471 		p->sched_class = &fair_sched_class;
6472 	}
6473 
6474 	p->prio = prio;
6475 
6476 	if (queued)
6477 		enqueue_task(rq, p, queue_flag);
6478 	if (running)
6479 		set_next_task(rq, p);
6480 
6481 	check_class_changed(rq, p, prev_class, oldprio);
6482 out_unlock:
6483 	/* Avoid rq from going away on us: */
6484 	preempt_disable();
6485 
6486 	rq_unpin_lock(rq, &rf);
6487 	__balance_callbacks(rq);
6488 	raw_spin_rq_unlock(rq);
6489 
6490 	preempt_enable();
6491 }
6492 #else
6493 static inline int rt_effective_prio(struct task_struct *p, int prio)
6494 {
6495 	return prio;
6496 }
6497 #endif
6498 
6499 void set_user_nice(struct task_struct *p, long nice)
6500 {
6501 	bool queued, running;
6502 	int old_prio;
6503 	struct rq_flags rf;
6504 	struct rq *rq;
6505 
6506 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6507 		return;
6508 	/*
6509 	 * We have to be careful, if called from sys_setpriority(),
6510 	 * the task might be in the middle of scheduling on another CPU.
6511 	 */
6512 	rq = task_rq_lock(p, &rf);
6513 	update_rq_clock(rq);
6514 
6515 	/*
6516 	 * The RT priorities are set via sched_setscheduler(), but we still
6517 	 * allow the 'normal' nice value to be set - but as expected
6518 	 * it won't have any effect on scheduling until the task is
6519 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6520 	 */
6521 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6522 		p->static_prio = NICE_TO_PRIO(nice);
6523 		goto out_unlock;
6524 	}
6525 	queued = task_on_rq_queued(p);
6526 	running = task_current(rq, p);
6527 	if (queued)
6528 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6529 	if (running)
6530 		put_prev_task(rq, p);
6531 
6532 	p->static_prio = NICE_TO_PRIO(nice);
6533 	set_load_weight(p, true);
6534 	old_prio = p->prio;
6535 	p->prio = effective_prio(p);
6536 
6537 	if (queued)
6538 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6539 	if (running)
6540 		set_next_task(rq, p);
6541 
6542 	/*
6543 	 * If the task increased its priority or is running and
6544 	 * lowered its priority, then reschedule its CPU:
6545 	 */
6546 	p->sched_class->prio_changed(rq, p, old_prio);
6547 
6548 out_unlock:
6549 	task_rq_unlock(rq, p, &rf);
6550 }
6551 EXPORT_SYMBOL(set_user_nice);
6552 
6553 /*
6554  * can_nice - check if a task can reduce its nice value
6555  * @p: task
6556  * @nice: nice value
6557  */
6558 int can_nice(const struct task_struct *p, const int nice)
6559 {
6560 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6561 	int nice_rlim = nice_to_rlimit(nice);
6562 
6563 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6564 		capable(CAP_SYS_NICE));
6565 }
6566 
6567 #ifdef __ARCH_WANT_SYS_NICE
6568 
6569 /*
6570  * sys_nice - change the priority of the current process.
6571  * @increment: priority increment
6572  *
6573  * sys_setpriority is a more generic, but much slower function that
6574  * does similar things.
6575  */
6576 SYSCALL_DEFINE1(nice, int, increment)
6577 {
6578 	long nice, retval;
6579 
6580 	/*
6581 	 * Setpriority might change our priority at the same moment.
6582 	 * We don't have to worry. Conceptually one call occurs first
6583 	 * and we have a single winner.
6584 	 */
6585 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6586 	nice = task_nice(current) + increment;
6587 
6588 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6589 	if (increment < 0 && !can_nice(current, nice))
6590 		return -EPERM;
6591 
6592 	retval = security_task_setnice(current, nice);
6593 	if (retval)
6594 		return retval;
6595 
6596 	set_user_nice(current, nice);
6597 	return 0;
6598 }
6599 
6600 #endif
6601 
6602 /**
6603  * task_prio - return the priority value of a given task.
6604  * @p: the task in question.
6605  *
6606  * Return: The priority value as seen by users in /proc.
6607  *
6608  * sched policy         return value   kernel prio    user prio/nice
6609  *
6610  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6611  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6612  * deadline                     -101             -1           0
6613  */
6614 int task_prio(const struct task_struct *p)
6615 {
6616 	return p->prio - MAX_RT_PRIO;
6617 }
6618 
6619 /**
6620  * idle_cpu - is a given CPU idle currently?
6621  * @cpu: the processor in question.
6622  *
6623  * Return: 1 if the CPU is currently idle. 0 otherwise.
6624  */
6625 int idle_cpu(int cpu)
6626 {
6627 	struct rq *rq = cpu_rq(cpu);
6628 
6629 	if (rq->curr != rq->idle)
6630 		return 0;
6631 
6632 	if (rq->nr_running)
6633 		return 0;
6634 
6635 #ifdef CONFIG_SMP
6636 	if (rq->ttwu_pending)
6637 		return 0;
6638 #endif
6639 
6640 	return 1;
6641 }
6642 
6643 /**
6644  * available_idle_cpu - is a given CPU idle for enqueuing work.
6645  * @cpu: the CPU in question.
6646  *
6647  * Return: 1 if the CPU is currently idle. 0 otherwise.
6648  */
6649 int available_idle_cpu(int cpu)
6650 {
6651 	if (!idle_cpu(cpu))
6652 		return 0;
6653 
6654 	if (vcpu_is_preempted(cpu))
6655 		return 0;
6656 
6657 	return 1;
6658 }
6659 
6660 /**
6661  * idle_task - return the idle task for a given CPU.
6662  * @cpu: the processor in question.
6663  *
6664  * Return: The idle task for the CPU @cpu.
6665  */
6666 struct task_struct *idle_task(int cpu)
6667 {
6668 	return cpu_rq(cpu)->idle;
6669 }
6670 
6671 #ifdef CONFIG_SMP
6672 /*
6673  * This function computes an effective utilization for the given CPU, to be
6674  * used for frequency selection given the linear relation: f = u * f_max.
6675  *
6676  * The scheduler tracks the following metrics:
6677  *
6678  *   cpu_util_{cfs,rt,dl,irq}()
6679  *   cpu_bw_dl()
6680  *
6681  * Where the cfs,rt and dl util numbers are tracked with the same metric and
6682  * synchronized windows and are thus directly comparable.
6683  *
6684  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6685  * which excludes things like IRQ and steal-time. These latter are then accrued
6686  * in the irq utilization.
6687  *
6688  * The DL bandwidth number otoh is not a measured metric but a value computed
6689  * based on the task model parameters and gives the minimal utilization
6690  * required to meet deadlines.
6691  */
6692 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6693 				 unsigned long max, enum cpu_util_type type,
6694 				 struct task_struct *p)
6695 {
6696 	unsigned long dl_util, util, irq;
6697 	struct rq *rq = cpu_rq(cpu);
6698 
6699 	if (!uclamp_is_used() &&
6700 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6701 		return max;
6702 	}
6703 
6704 	/*
6705 	 * Early check to see if IRQ/steal time saturates the CPU, can be
6706 	 * because of inaccuracies in how we track these -- see
6707 	 * update_irq_load_avg().
6708 	 */
6709 	irq = cpu_util_irq(rq);
6710 	if (unlikely(irq >= max))
6711 		return max;
6712 
6713 	/*
6714 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6715 	 * CFS tasks and we use the same metric to track the effective
6716 	 * utilization (PELT windows are synchronized) we can directly add them
6717 	 * to obtain the CPU's actual utilization.
6718 	 *
6719 	 * CFS and RT utilization can be boosted or capped, depending on
6720 	 * utilization clamp constraints requested by currently RUNNABLE
6721 	 * tasks.
6722 	 * When there are no CFS RUNNABLE tasks, clamps are released and
6723 	 * frequency will be gracefully reduced with the utilization decay.
6724 	 */
6725 	util = util_cfs + cpu_util_rt(rq);
6726 	if (type == FREQUENCY_UTIL)
6727 		util = uclamp_rq_util_with(rq, util, p);
6728 
6729 	dl_util = cpu_util_dl(rq);
6730 
6731 	/*
6732 	 * For frequency selection we do not make cpu_util_dl() a permanent part
6733 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
6734 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6735 	 * that we select f_max when there is no idle time.
6736 	 *
6737 	 * NOTE: numerical errors or stop class might cause us to not quite hit
6738 	 * saturation when we should -- something for later.
6739 	 */
6740 	if (util + dl_util >= max)
6741 		return max;
6742 
6743 	/*
6744 	 * OTOH, for energy computation we need the estimated running time, so
6745 	 * include util_dl and ignore dl_bw.
6746 	 */
6747 	if (type == ENERGY_UTIL)
6748 		util += dl_util;
6749 
6750 	/*
6751 	 * There is still idle time; further improve the number by using the
6752 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
6753 	 * need to scale the task numbers:
6754 	 *
6755 	 *              max - irq
6756 	 *   U' = irq + --------- * U
6757 	 *                 max
6758 	 */
6759 	util = scale_irq_capacity(util, irq, max);
6760 	util += irq;
6761 
6762 	/*
6763 	 * Bandwidth required by DEADLINE must always be granted while, for
6764 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6765 	 * to gracefully reduce the frequency when no tasks show up for longer
6766 	 * periods of time.
6767 	 *
6768 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6769 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6770 	 * an interface. So, we only do the latter for now.
6771 	 */
6772 	if (type == FREQUENCY_UTIL)
6773 		util += cpu_bw_dl(rq);
6774 
6775 	return min(max, util);
6776 }
6777 
6778 unsigned long sched_cpu_util(int cpu, unsigned long max)
6779 {
6780 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6781 				  ENERGY_UTIL, NULL);
6782 }
6783 #endif /* CONFIG_SMP */
6784 
6785 /**
6786  * find_process_by_pid - find a process with a matching PID value.
6787  * @pid: the pid in question.
6788  *
6789  * The task of @pid, if found. %NULL otherwise.
6790  */
6791 static struct task_struct *find_process_by_pid(pid_t pid)
6792 {
6793 	return pid ? find_task_by_vpid(pid) : current;
6794 }
6795 
6796 /*
6797  * sched_setparam() passes in -1 for its policy, to let the functions
6798  * it calls know not to change it.
6799  */
6800 #define SETPARAM_POLICY	-1
6801 
6802 static void __setscheduler_params(struct task_struct *p,
6803 		const struct sched_attr *attr)
6804 {
6805 	int policy = attr->sched_policy;
6806 
6807 	if (policy == SETPARAM_POLICY)
6808 		policy = p->policy;
6809 
6810 	p->policy = policy;
6811 
6812 	if (dl_policy(policy))
6813 		__setparam_dl(p, attr);
6814 	else if (fair_policy(policy))
6815 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6816 
6817 	/*
6818 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6819 	 * !rt_policy. Always setting this ensures that things like
6820 	 * getparam()/getattr() don't report silly values for !rt tasks.
6821 	 */
6822 	p->rt_priority = attr->sched_priority;
6823 	p->normal_prio = normal_prio(p);
6824 	set_load_weight(p, true);
6825 }
6826 
6827 /* Actually do priority change: must hold pi & rq lock. */
6828 static void __setscheduler(struct rq *rq, struct task_struct *p,
6829 			   const struct sched_attr *attr, bool keep_boost)
6830 {
6831 	/*
6832 	 * If params can't change scheduling class changes aren't allowed
6833 	 * either.
6834 	 */
6835 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6836 		return;
6837 
6838 	__setscheduler_params(p, attr);
6839 
6840 	/*
6841 	 * Keep a potential priority boosting if called from
6842 	 * sched_setscheduler().
6843 	 */
6844 	p->prio = normal_prio(p);
6845 	if (keep_boost)
6846 		p->prio = rt_effective_prio(p, p->prio);
6847 
6848 	if (dl_prio(p->prio))
6849 		p->sched_class = &dl_sched_class;
6850 	else if (rt_prio(p->prio))
6851 		p->sched_class = &rt_sched_class;
6852 	else
6853 		p->sched_class = &fair_sched_class;
6854 }
6855 
6856 /*
6857  * Check the target process has a UID that matches the current process's:
6858  */
6859 static bool check_same_owner(struct task_struct *p)
6860 {
6861 	const struct cred *cred = current_cred(), *pcred;
6862 	bool match;
6863 
6864 	rcu_read_lock();
6865 	pcred = __task_cred(p);
6866 	match = (uid_eq(cred->euid, pcred->euid) ||
6867 		 uid_eq(cred->euid, pcred->uid));
6868 	rcu_read_unlock();
6869 	return match;
6870 }
6871 
6872 static int __sched_setscheduler(struct task_struct *p,
6873 				const struct sched_attr *attr,
6874 				bool user, bool pi)
6875 {
6876 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6877 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6878 	int retval, oldprio, oldpolicy = -1, queued, running;
6879 	int new_effective_prio, policy = attr->sched_policy;
6880 	const struct sched_class *prev_class;
6881 	struct callback_head *head;
6882 	struct rq_flags rf;
6883 	int reset_on_fork;
6884 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6885 	struct rq *rq;
6886 
6887 	/* The pi code expects interrupts enabled */
6888 	BUG_ON(pi && in_interrupt());
6889 recheck:
6890 	/* Double check policy once rq lock held: */
6891 	if (policy < 0) {
6892 		reset_on_fork = p->sched_reset_on_fork;
6893 		policy = oldpolicy = p->policy;
6894 	} else {
6895 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6896 
6897 		if (!valid_policy(policy))
6898 			return -EINVAL;
6899 	}
6900 
6901 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6902 		return -EINVAL;
6903 
6904 	/*
6905 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6906 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6907 	 * SCHED_BATCH and SCHED_IDLE is 0.
6908 	 */
6909 	if (attr->sched_priority > MAX_RT_PRIO-1)
6910 		return -EINVAL;
6911 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6912 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6913 		return -EINVAL;
6914 
6915 	/*
6916 	 * Allow unprivileged RT tasks to decrease priority:
6917 	 */
6918 	if (user && !capable(CAP_SYS_NICE)) {
6919 		if (fair_policy(policy)) {
6920 			if (attr->sched_nice < task_nice(p) &&
6921 			    !can_nice(p, attr->sched_nice))
6922 				return -EPERM;
6923 		}
6924 
6925 		if (rt_policy(policy)) {
6926 			unsigned long rlim_rtprio =
6927 					task_rlimit(p, RLIMIT_RTPRIO);
6928 
6929 			/* Can't set/change the rt policy: */
6930 			if (policy != p->policy && !rlim_rtprio)
6931 				return -EPERM;
6932 
6933 			/* Can't increase priority: */
6934 			if (attr->sched_priority > p->rt_priority &&
6935 			    attr->sched_priority > rlim_rtprio)
6936 				return -EPERM;
6937 		}
6938 
6939 		 /*
6940 		  * Can't set/change SCHED_DEADLINE policy at all for now
6941 		  * (safest behavior); in the future we would like to allow
6942 		  * unprivileged DL tasks to increase their relative deadline
6943 		  * or reduce their runtime (both ways reducing utilization)
6944 		  */
6945 		if (dl_policy(policy))
6946 			return -EPERM;
6947 
6948 		/*
6949 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6950 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6951 		 */
6952 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6953 			if (!can_nice(p, task_nice(p)))
6954 				return -EPERM;
6955 		}
6956 
6957 		/* Can't change other user's priorities: */
6958 		if (!check_same_owner(p))
6959 			return -EPERM;
6960 
6961 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6962 		if (p->sched_reset_on_fork && !reset_on_fork)
6963 			return -EPERM;
6964 	}
6965 
6966 	if (user) {
6967 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6968 			return -EINVAL;
6969 
6970 		retval = security_task_setscheduler(p);
6971 		if (retval)
6972 			return retval;
6973 	}
6974 
6975 	/* Update task specific "requested" clamps */
6976 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6977 		retval = uclamp_validate(p, attr);
6978 		if (retval)
6979 			return retval;
6980 	}
6981 
6982 	if (pi)
6983 		cpuset_read_lock();
6984 
6985 	/*
6986 	 * Make sure no PI-waiters arrive (or leave) while we are
6987 	 * changing the priority of the task:
6988 	 *
6989 	 * To be able to change p->policy safely, the appropriate
6990 	 * runqueue lock must be held.
6991 	 */
6992 	rq = task_rq_lock(p, &rf);
6993 	update_rq_clock(rq);
6994 
6995 	/*
6996 	 * Changing the policy of the stop threads its a very bad idea:
6997 	 */
6998 	if (p == rq->stop) {
6999 		retval = -EINVAL;
7000 		goto unlock;
7001 	}
7002 
7003 	/*
7004 	 * If not changing anything there's no need to proceed further,
7005 	 * but store a possible modification of reset_on_fork.
7006 	 */
7007 	if (unlikely(policy == p->policy)) {
7008 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7009 			goto change;
7010 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7011 			goto change;
7012 		if (dl_policy(policy) && dl_param_changed(p, attr))
7013 			goto change;
7014 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7015 			goto change;
7016 
7017 		p->sched_reset_on_fork = reset_on_fork;
7018 		retval = 0;
7019 		goto unlock;
7020 	}
7021 change:
7022 
7023 	if (user) {
7024 #ifdef CONFIG_RT_GROUP_SCHED
7025 		/*
7026 		 * Do not allow realtime tasks into groups that have no runtime
7027 		 * assigned.
7028 		 */
7029 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7030 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7031 				!task_group_is_autogroup(task_group(p))) {
7032 			retval = -EPERM;
7033 			goto unlock;
7034 		}
7035 #endif
7036 #ifdef CONFIG_SMP
7037 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7038 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7039 			cpumask_t *span = rq->rd->span;
7040 
7041 			/*
7042 			 * Don't allow tasks with an affinity mask smaller than
7043 			 * the entire root_domain to become SCHED_DEADLINE. We
7044 			 * will also fail if there's no bandwidth available.
7045 			 */
7046 			if (!cpumask_subset(span, p->cpus_ptr) ||
7047 			    rq->rd->dl_bw.bw == 0) {
7048 				retval = -EPERM;
7049 				goto unlock;
7050 			}
7051 		}
7052 #endif
7053 	}
7054 
7055 	/* Re-check policy now with rq lock held: */
7056 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7057 		policy = oldpolicy = -1;
7058 		task_rq_unlock(rq, p, &rf);
7059 		if (pi)
7060 			cpuset_read_unlock();
7061 		goto recheck;
7062 	}
7063 
7064 	/*
7065 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7066 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7067 	 * is available.
7068 	 */
7069 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7070 		retval = -EBUSY;
7071 		goto unlock;
7072 	}
7073 
7074 	p->sched_reset_on_fork = reset_on_fork;
7075 	oldprio = p->prio;
7076 
7077 	if (pi) {
7078 		/*
7079 		 * Take priority boosted tasks into account. If the new
7080 		 * effective priority is unchanged, we just store the new
7081 		 * normal parameters and do not touch the scheduler class and
7082 		 * the runqueue. This will be done when the task deboost
7083 		 * itself.
7084 		 */
7085 		new_effective_prio = rt_effective_prio(p, newprio);
7086 		if (new_effective_prio == oldprio)
7087 			queue_flags &= ~DEQUEUE_MOVE;
7088 	}
7089 
7090 	queued = task_on_rq_queued(p);
7091 	running = task_current(rq, p);
7092 	if (queued)
7093 		dequeue_task(rq, p, queue_flags);
7094 	if (running)
7095 		put_prev_task(rq, p);
7096 
7097 	prev_class = p->sched_class;
7098 
7099 	__setscheduler(rq, p, attr, pi);
7100 	__setscheduler_uclamp(p, attr);
7101 
7102 	if (queued) {
7103 		/*
7104 		 * We enqueue to tail when the priority of a task is
7105 		 * increased (user space view).
7106 		 */
7107 		if (oldprio < p->prio)
7108 			queue_flags |= ENQUEUE_HEAD;
7109 
7110 		enqueue_task(rq, p, queue_flags);
7111 	}
7112 	if (running)
7113 		set_next_task(rq, p);
7114 
7115 	check_class_changed(rq, p, prev_class, oldprio);
7116 
7117 	/* Avoid rq from going away on us: */
7118 	preempt_disable();
7119 	head = splice_balance_callbacks(rq);
7120 	task_rq_unlock(rq, p, &rf);
7121 
7122 	if (pi) {
7123 		cpuset_read_unlock();
7124 		rt_mutex_adjust_pi(p);
7125 	}
7126 
7127 	/* Run balance callbacks after we've adjusted the PI chain: */
7128 	balance_callbacks(rq, head);
7129 	preempt_enable();
7130 
7131 	return 0;
7132 
7133 unlock:
7134 	task_rq_unlock(rq, p, &rf);
7135 	if (pi)
7136 		cpuset_read_unlock();
7137 	return retval;
7138 }
7139 
7140 static int _sched_setscheduler(struct task_struct *p, int policy,
7141 			       const struct sched_param *param, bool check)
7142 {
7143 	struct sched_attr attr = {
7144 		.sched_policy   = policy,
7145 		.sched_priority = param->sched_priority,
7146 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7147 	};
7148 
7149 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7150 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7151 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7152 		policy &= ~SCHED_RESET_ON_FORK;
7153 		attr.sched_policy = policy;
7154 	}
7155 
7156 	return __sched_setscheduler(p, &attr, check, true);
7157 }
7158 /**
7159  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7160  * @p: the task in question.
7161  * @policy: new policy.
7162  * @param: structure containing the new RT priority.
7163  *
7164  * Use sched_set_fifo(), read its comment.
7165  *
7166  * Return: 0 on success. An error code otherwise.
7167  *
7168  * NOTE that the task may be already dead.
7169  */
7170 int sched_setscheduler(struct task_struct *p, int policy,
7171 		       const struct sched_param *param)
7172 {
7173 	return _sched_setscheduler(p, policy, param, true);
7174 }
7175 
7176 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7177 {
7178 	return __sched_setscheduler(p, attr, true, true);
7179 }
7180 
7181 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7182 {
7183 	return __sched_setscheduler(p, attr, false, true);
7184 }
7185 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7186 
7187 /**
7188  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7189  * @p: the task in question.
7190  * @policy: new policy.
7191  * @param: structure containing the new RT priority.
7192  *
7193  * Just like sched_setscheduler, only don't bother checking if the
7194  * current context has permission.  For example, this is needed in
7195  * stop_machine(): we create temporary high priority worker threads,
7196  * but our caller might not have that capability.
7197  *
7198  * Return: 0 on success. An error code otherwise.
7199  */
7200 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7201 			       const struct sched_param *param)
7202 {
7203 	return _sched_setscheduler(p, policy, param, false);
7204 }
7205 
7206 /*
7207  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7208  * incapable of resource management, which is the one thing an OS really should
7209  * be doing.
7210  *
7211  * This is of course the reason it is limited to privileged users only.
7212  *
7213  * Worse still; it is fundamentally impossible to compose static priority
7214  * workloads. You cannot take two correctly working static prio workloads
7215  * and smash them together and still expect them to work.
7216  *
7217  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7218  *
7219  *   MAX_RT_PRIO / 2
7220  *
7221  * The administrator _MUST_ configure the system, the kernel simply doesn't
7222  * know enough information to make a sensible choice.
7223  */
7224 void sched_set_fifo(struct task_struct *p)
7225 {
7226 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7227 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7228 }
7229 EXPORT_SYMBOL_GPL(sched_set_fifo);
7230 
7231 /*
7232  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7233  */
7234 void sched_set_fifo_low(struct task_struct *p)
7235 {
7236 	struct sched_param sp = { .sched_priority = 1 };
7237 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7238 }
7239 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7240 
7241 void sched_set_normal(struct task_struct *p, int nice)
7242 {
7243 	struct sched_attr attr = {
7244 		.sched_policy = SCHED_NORMAL,
7245 		.sched_nice = nice,
7246 	};
7247 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7248 }
7249 EXPORT_SYMBOL_GPL(sched_set_normal);
7250 
7251 static int
7252 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7253 {
7254 	struct sched_param lparam;
7255 	struct task_struct *p;
7256 	int retval;
7257 
7258 	if (!param || pid < 0)
7259 		return -EINVAL;
7260 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7261 		return -EFAULT;
7262 
7263 	rcu_read_lock();
7264 	retval = -ESRCH;
7265 	p = find_process_by_pid(pid);
7266 	if (likely(p))
7267 		get_task_struct(p);
7268 	rcu_read_unlock();
7269 
7270 	if (likely(p)) {
7271 		retval = sched_setscheduler(p, policy, &lparam);
7272 		put_task_struct(p);
7273 	}
7274 
7275 	return retval;
7276 }
7277 
7278 /*
7279  * Mimics kernel/events/core.c perf_copy_attr().
7280  */
7281 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7282 {
7283 	u32 size;
7284 	int ret;
7285 
7286 	/* Zero the full structure, so that a short copy will be nice: */
7287 	memset(attr, 0, sizeof(*attr));
7288 
7289 	ret = get_user(size, &uattr->size);
7290 	if (ret)
7291 		return ret;
7292 
7293 	/* ABI compatibility quirk: */
7294 	if (!size)
7295 		size = SCHED_ATTR_SIZE_VER0;
7296 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7297 		goto err_size;
7298 
7299 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7300 	if (ret) {
7301 		if (ret == -E2BIG)
7302 			goto err_size;
7303 		return ret;
7304 	}
7305 
7306 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7307 	    size < SCHED_ATTR_SIZE_VER1)
7308 		return -EINVAL;
7309 
7310 	/*
7311 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7312 	 * to be strict and return an error on out-of-bounds values?
7313 	 */
7314 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7315 
7316 	return 0;
7317 
7318 err_size:
7319 	put_user(sizeof(*attr), &uattr->size);
7320 	return -E2BIG;
7321 }
7322 
7323 /**
7324  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7325  * @pid: the pid in question.
7326  * @policy: new policy.
7327  * @param: structure containing the new RT priority.
7328  *
7329  * Return: 0 on success. An error code otherwise.
7330  */
7331 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7332 {
7333 	if (policy < 0)
7334 		return -EINVAL;
7335 
7336 	return do_sched_setscheduler(pid, policy, param);
7337 }
7338 
7339 /**
7340  * sys_sched_setparam - set/change the RT priority of a thread
7341  * @pid: the pid in question.
7342  * @param: structure containing the new RT priority.
7343  *
7344  * Return: 0 on success. An error code otherwise.
7345  */
7346 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7347 {
7348 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7349 }
7350 
7351 /**
7352  * sys_sched_setattr - same as above, but with extended sched_attr
7353  * @pid: the pid in question.
7354  * @uattr: structure containing the extended parameters.
7355  * @flags: for future extension.
7356  */
7357 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7358 			       unsigned int, flags)
7359 {
7360 	struct sched_attr attr;
7361 	struct task_struct *p;
7362 	int retval;
7363 
7364 	if (!uattr || pid < 0 || flags)
7365 		return -EINVAL;
7366 
7367 	retval = sched_copy_attr(uattr, &attr);
7368 	if (retval)
7369 		return retval;
7370 
7371 	if ((int)attr.sched_policy < 0)
7372 		return -EINVAL;
7373 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7374 		attr.sched_policy = SETPARAM_POLICY;
7375 
7376 	rcu_read_lock();
7377 	retval = -ESRCH;
7378 	p = find_process_by_pid(pid);
7379 	if (likely(p))
7380 		get_task_struct(p);
7381 	rcu_read_unlock();
7382 
7383 	if (likely(p)) {
7384 		retval = sched_setattr(p, &attr);
7385 		put_task_struct(p);
7386 	}
7387 
7388 	return retval;
7389 }
7390 
7391 /**
7392  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7393  * @pid: the pid in question.
7394  *
7395  * Return: On success, the policy of the thread. Otherwise, a negative error
7396  * code.
7397  */
7398 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7399 {
7400 	struct task_struct *p;
7401 	int retval;
7402 
7403 	if (pid < 0)
7404 		return -EINVAL;
7405 
7406 	retval = -ESRCH;
7407 	rcu_read_lock();
7408 	p = find_process_by_pid(pid);
7409 	if (p) {
7410 		retval = security_task_getscheduler(p);
7411 		if (!retval)
7412 			retval = p->policy
7413 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7414 	}
7415 	rcu_read_unlock();
7416 	return retval;
7417 }
7418 
7419 /**
7420  * sys_sched_getparam - get the RT priority of a thread
7421  * @pid: the pid in question.
7422  * @param: structure containing the RT priority.
7423  *
7424  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7425  * code.
7426  */
7427 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7428 {
7429 	struct sched_param lp = { .sched_priority = 0 };
7430 	struct task_struct *p;
7431 	int retval;
7432 
7433 	if (!param || pid < 0)
7434 		return -EINVAL;
7435 
7436 	rcu_read_lock();
7437 	p = find_process_by_pid(pid);
7438 	retval = -ESRCH;
7439 	if (!p)
7440 		goto out_unlock;
7441 
7442 	retval = security_task_getscheduler(p);
7443 	if (retval)
7444 		goto out_unlock;
7445 
7446 	if (task_has_rt_policy(p))
7447 		lp.sched_priority = p->rt_priority;
7448 	rcu_read_unlock();
7449 
7450 	/*
7451 	 * This one might sleep, we cannot do it with a spinlock held ...
7452 	 */
7453 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7454 
7455 	return retval;
7456 
7457 out_unlock:
7458 	rcu_read_unlock();
7459 	return retval;
7460 }
7461 
7462 /*
7463  * Copy the kernel size attribute structure (which might be larger
7464  * than what user-space knows about) to user-space.
7465  *
7466  * Note that all cases are valid: user-space buffer can be larger or
7467  * smaller than the kernel-space buffer. The usual case is that both
7468  * have the same size.
7469  */
7470 static int
7471 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7472 			struct sched_attr *kattr,
7473 			unsigned int usize)
7474 {
7475 	unsigned int ksize = sizeof(*kattr);
7476 
7477 	if (!access_ok(uattr, usize))
7478 		return -EFAULT;
7479 
7480 	/*
7481 	 * sched_getattr() ABI forwards and backwards compatibility:
7482 	 *
7483 	 * If usize == ksize then we just copy everything to user-space and all is good.
7484 	 *
7485 	 * If usize < ksize then we only copy as much as user-space has space for,
7486 	 * this keeps ABI compatibility as well. We skip the rest.
7487 	 *
7488 	 * If usize > ksize then user-space is using a newer version of the ABI,
7489 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7490 	 * detect the kernel's knowledge of attributes from the attr->size value
7491 	 * which is set to ksize in this case.
7492 	 */
7493 	kattr->size = min(usize, ksize);
7494 
7495 	if (copy_to_user(uattr, kattr, kattr->size))
7496 		return -EFAULT;
7497 
7498 	return 0;
7499 }
7500 
7501 /**
7502  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7503  * @pid: the pid in question.
7504  * @uattr: structure containing the extended parameters.
7505  * @usize: sizeof(attr) for fwd/bwd comp.
7506  * @flags: for future extension.
7507  */
7508 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7509 		unsigned int, usize, unsigned int, flags)
7510 {
7511 	struct sched_attr kattr = { };
7512 	struct task_struct *p;
7513 	int retval;
7514 
7515 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7516 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7517 		return -EINVAL;
7518 
7519 	rcu_read_lock();
7520 	p = find_process_by_pid(pid);
7521 	retval = -ESRCH;
7522 	if (!p)
7523 		goto out_unlock;
7524 
7525 	retval = security_task_getscheduler(p);
7526 	if (retval)
7527 		goto out_unlock;
7528 
7529 	kattr.sched_policy = p->policy;
7530 	if (p->sched_reset_on_fork)
7531 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7532 	if (task_has_dl_policy(p))
7533 		__getparam_dl(p, &kattr);
7534 	else if (task_has_rt_policy(p))
7535 		kattr.sched_priority = p->rt_priority;
7536 	else
7537 		kattr.sched_nice = task_nice(p);
7538 
7539 #ifdef CONFIG_UCLAMP_TASK
7540 	/*
7541 	 * This could race with another potential updater, but this is fine
7542 	 * because it'll correctly read the old or the new value. We don't need
7543 	 * to guarantee who wins the race as long as it doesn't return garbage.
7544 	 */
7545 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7546 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7547 #endif
7548 
7549 	rcu_read_unlock();
7550 
7551 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7552 
7553 out_unlock:
7554 	rcu_read_unlock();
7555 	return retval;
7556 }
7557 
7558 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7559 {
7560 	cpumask_var_t cpus_allowed, new_mask;
7561 	struct task_struct *p;
7562 	int retval;
7563 
7564 	rcu_read_lock();
7565 
7566 	p = find_process_by_pid(pid);
7567 	if (!p) {
7568 		rcu_read_unlock();
7569 		return -ESRCH;
7570 	}
7571 
7572 	/* Prevent p going away */
7573 	get_task_struct(p);
7574 	rcu_read_unlock();
7575 
7576 	if (p->flags & PF_NO_SETAFFINITY) {
7577 		retval = -EINVAL;
7578 		goto out_put_task;
7579 	}
7580 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7581 		retval = -ENOMEM;
7582 		goto out_put_task;
7583 	}
7584 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7585 		retval = -ENOMEM;
7586 		goto out_free_cpus_allowed;
7587 	}
7588 	retval = -EPERM;
7589 	if (!check_same_owner(p)) {
7590 		rcu_read_lock();
7591 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7592 			rcu_read_unlock();
7593 			goto out_free_new_mask;
7594 		}
7595 		rcu_read_unlock();
7596 	}
7597 
7598 	retval = security_task_setscheduler(p);
7599 	if (retval)
7600 		goto out_free_new_mask;
7601 
7602 
7603 	cpuset_cpus_allowed(p, cpus_allowed);
7604 	cpumask_and(new_mask, in_mask, cpus_allowed);
7605 
7606 	/*
7607 	 * Since bandwidth control happens on root_domain basis,
7608 	 * if admission test is enabled, we only admit -deadline
7609 	 * tasks allowed to run on all the CPUs in the task's
7610 	 * root_domain.
7611 	 */
7612 #ifdef CONFIG_SMP
7613 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7614 		rcu_read_lock();
7615 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7616 			retval = -EBUSY;
7617 			rcu_read_unlock();
7618 			goto out_free_new_mask;
7619 		}
7620 		rcu_read_unlock();
7621 	}
7622 #endif
7623 again:
7624 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7625 
7626 	if (!retval) {
7627 		cpuset_cpus_allowed(p, cpus_allowed);
7628 		if (!cpumask_subset(new_mask, cpus_allowed)) {
7629 			/*
7630 			 * We must have raced with a concurrent cpuset
7631 			 * update. Just reset the cpus_allowed to the
7632 			 * cpuset's cpus_allowed
7633 			 */
7634 			cpumask_copy(new_mask, cpus_allowed);
7635 			goto again;
7636 		}
7637 	}
7638 out_free_new_mask:
7639 	free_cpumask_var(new_mask);
7640 out_free_cpus_allowed:
7641 	free_cpumask_var(cpus_allowed);
7642 out_put_task:
7643 	put_task_struct(p);
7644 	return retval;
7645 }
7646 
7647 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7648 			     struct cpumask *new_mask)
7649 {
7650 	if (len < cpumask_size())
7651 		cpumask_clear(new_mask);
7652 	else if (len > cpumask_size())
7653 		len = cpumask_size();
7654 
7655 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7656 }
7657 
7658 /**
7659  * sys_sched_setaffinity - set the CPU affinity of a process
7660  * @pid: pid of the process
7661  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7662  * @user_mask_ptr: user-space pointer to the new CPU mask
7663  *
7664  * Return: 0 on success. An error code otherwise.
7665  */
7666 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7667 		unsigned long __user *, user_mask_ptr)
7668 {
7669 	cpumask_var_t new_mask;
7670 	int retval;
7671 
7672 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7673 		return -ENOMEM;
7674 
7675 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7676 	if (retval == 0)
7677 		retval = sched_setaffinity(pid, new_mask);
7678 	free_cpumask_var(new_mask);
7679 	return retval;
7680 }
7681 
7682 long sched_getaffinity(pid_t pid, struct cpumask *mask)
7683 {
7684 	struct task_struct *p;
7685 	unsigned long flags;
7686 	int retval;
7687 
7688 	rcu_read_lock();
7689 
7690 	retval = -ESRCH;
7691 	p = find_process_by_pid(pid);
7692 	if (!p)
7693 		goto out_unlock;
7694 
7695 	retval = security_task_getscheduler(p);
7696 	if (retval)
7697 		goto out_unlock;
7698 
7699 	raw_spin_lock_irqsave(&p->pi_lock, flags);
7700 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7701 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7702 
7703 out_unlock:
7704 	rcu_read_unlock();
7705 
7706 	return retval;
7707 }
7708 
7709 /**
7710  * sys_sched_getaffinity - get the CPU affinity of a process
7711  * @pid: pid of the process
7712  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7713  * @user_mask_ptr: user-space pointer to hold the current CPU mask
7714  *
7715  * Return: size of CPU mask copied to user_mask_ptr on success. An
7716  * error code otherwise.
7717  */
7718 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7719 		unsigned long __user *, user_mask_ptr)
7720 {
7721 	int ret;
7722 	cpumask_var_t mask;
7723 
7724 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7725 		return -EINVAL;
7726 	if (len & (sizeof(unsigned long)-1))
7727 		return -EINVAL;
7728 
7729 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7730 		return -ENOMEM;
7731 
7732 	ret = sched_getaffinity(pid, mask);
7733 	if (ret == 0) {
7734 		unsigned int retlen = min(len, cpumask_size());
7735 
7736 		if (copy_to_user(user_mask_ptr, mask, retlen))
7737 			ret = -EFAULT;
7738 		else
7739 			ret = retlen;
7740 	}
7741 	free_cpumask_var(mask);
7742 
7743 	return ret;
7744 }
7745 
7746 static void do_sched_yield(void)
7747 {
7748 	struct rq_flags rf;
7749 	struct rq *rq;
7750 
7751 	rq = this_rq_lock_irq(&rf);
7752 
7753 	schedstat_inc(rq->yld_count);
7754 	current->sched_class->yield_task(rq);
7755 
7756 	preempt_disable();
7757 	rq_unlock_irq(rq, &rf);
7758 	sched_preempt_enable_no_resched();
7759 
7760 	schedule();
7761 }
7762 
7763 /**
7764  * sys_sched_yield - yield the current processor to other threads.
7765  *
7766  * This function yields the current CPU to other tasks. If there are no
7767  * other threads running on this CPU then this function will return.
7768  *
7769  * Return: 0.
7770  */
7771 SYSCALL_DEFINE0(sched_yield)
7772 {
7773 	do_sched_yield();
7774 	return 0;
7775 }
7776 
7777 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7778 int __sched __cond_resched(void)
7779 {
7780 	if (should_resched(0)) {
7781 		preempt_schedule_common();
7782 		return 1;
7783 	}
7784 #ifndef CONFIG_PREEMPT_RCU
7785 	rcu_all_qs();
7786 #endif
7787 	return 0;
7788 }
7789 EXPORT_SYMBOL(__cond_resched);
7790 #endif
7791 
7792 #ifdef CONFIG_PREEMPT_DYNAMIC
7793 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7794 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7795 
7796 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7797 EXPORT_STATIC_CALL_TRAMP(might_resched);
7798 #endif
7799 
7800 /*
7801  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7802  * call schedule, and on return reacquire the lock.
7803  *
7804  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7805  * operations here to prevent schedule() from being called twice (once via
7806  * spin_unlock(), once by hand).
7807  */
7808 int __cond_resched_lock(spinlock_t *lock)
7809 {
7810 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7811 	int ret = 0;
7812 
7813 	lockdep_assert_held(lock);
7814 
7815 	if (spin_needbreak(lock) || resched) {
7816 		spin_unlock(lock);
7817 		if (resched)
7818 			preempt_schedule_common();
7819 		else
7820 			cpu_relax();
7821 		ret = 1;
7822 		spin_lock(lock);
7823 	}
7824 	return ret;
7825 }
7826 EXPORT_SYMBOL(__cond_resched_lock);
7827 
7828 int __cond_resched_rwlock_read(rwlock_t *lock)
7829 {
7830 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7831 	int ret = 0;
7832 
7833 	lockdep_assert_held_read(lock);
7834 
7835 	if (rwlock_needbreak(lock) || resched) {
7836 		read_unlock(lock);
7837 		if (resched)
7838 			preempt_schedule_common();
7839 		else
7840 			cpu_relax();
7841 		ret = 1;
7842 		read_lock(lock);
7843 	}
7844 	return ret;
7845 }
7846 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7847 
7848 int __cond_resched_rwlock_write(rwlock_t *lock)
7849 {
7850 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7851 	int ret = 0;
7852 
7853 	lockdep_assert_held_write(lock);
7854 
7855 	if (rwlock_needbreak(lock) || resched) {
7856 		write_unlock(lock);
7857 		if (resched)
7858 			preempt_schedule_common();
7859 		else
7860 			cpu_relax();
7861 		ret = 1;
7862 		write_lock(lock);
7863 	}
7864 	return ret;
7865 }
7866 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7867 
7868 /**
7869  * yield - yield the current processor to other threads.
7870  *
7871  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7872  *
7873  * The scheduler is at all times free to pick the calling task as the most
7874  * eligible task to run, if removing the yield() call from your code breaks
7875  * it, it's already broken.
7876  *
7877  * Typical broken usage is:
7878  *
7879  * while (!event)
7880  *	yield();
7881  *
7882  * where one assumes that yield() will let 'the other' process run that will
7883  * make event true. If the current task is a SCHED_FIFO task that will never
7884  * happen. Never use yield() as a progress guarantee!!
7885  *
7886  * If you want to use yield() to wait for something, use wait_event().
7887  * If you want to use yield() to be 'nice' for others, use cond_resched().
7888  * If you still want to use yield(), do not!
7889  */
7890 void __sched yield(void)
7891 {
7892 	set_current_state(TASK_RUNNING);
7893 	do_sched_yield();
7894 }
7895 EXPORT_SYMBOL(yield);
7896 
7897 /**
7898  * yield_to - yield the current processor to another thread in
7899  * your thread group, or accelerate that thread toward the
7900  * processor it's on.
7901  * @p: target task
7902  * @preempt: whether task preemption is allowed or not
7903  *
7904  * It's the caller's job to ensure that the target task struct
7905  * can't go away on us before we can do any checks.
7906  *
7907  * Return:
7908  *	true (>0) if we indeed boosted the target task.
7909  *	false (0) if we failed to boost the target.
7910  *	-ESRCH if there's no task to yield to.
7911  */
7912 int __sched yield_to(struct task_struct *p, bool preempt)
7913 {
7914 	struct task_struct *curr = current;
7915 	struct rq *rq, *p_rq;
7916 	unsigned long flags;
7917 	int yielded = 0;
7918 
7919 	local_irq_save(flags);
7920 	rq = this_rq();
7921 
7922 again:
7923 	p_rq = task_rq(p);
7924 	/*
7925 	 * If we're the only runnable task on the rq and target rq also
7926 	 * has only one task, there's absolutely no point in yielding.
7927 	 */
7928 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7929 		yielded = -ESRCH;
7930 		goto out_irq;
7931 	}
7932 
7933 	double_rq_lock(rq, p_rq);
7934 	if (task_rq(p) != p_rq) {
7935 		double_rq_unlock(rq, p_rq);
7936 		goto again;
7937 	}
7938 
7939 	if (!curr->sched_class->yield_to_task)
7940 		goto out_unlock;
7941 
7942 	if (curr->sched_class != p->sched_class)
7943 		goto out_unlock;
7944 
7945 	if (task_running(p_rq, p) || !task_is_running(p))
7946 		goto out_unlock;
7947 
7948 	yielded = curr->sched_class->yield_to_task(rq, p);
7949 	if (yielded) {
7950 		schedstat_inc(rq->yld_count);
7951 		/*
7952 		 * Make p's CPU reschedule; pick_next_entity takes care of
7953 		 * fairness.
7954 		 */
7955 		if (preempt && rq != p_rq)
7956 			resched_curr(p_rq);
7957 	}
7958 
7959 out_unlock:
7960 	double_rq_unlock(rq, p_rq);
7961 out_irq:
7962 	local_irq_restore(flags);
7963 
7964 	if (yielded > 0)
7965 		schedule();
7966 
7967 	return yielded;
7968 }
7969 EXPORT_SYMBOL_GPL(yield_to);
7970 
7971 int io_schedule_prepare(void)
7972 {
7973 	int old_iowait = current->in_iowait;
7974 
7975 	current->in_iowait = 1;
7976 	blk_schedule_flush_plug(current);
7977 
7978 	return old_iowait;
7979 }
7980 
7981 void io_schedule_finish(int token)
7982 {
7983 	current->in_iowait = token;
7984 }
7985 
7986 /*
7987  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7988  * that process accounting knows that this is a task in IO wait state.
7989  */
7990 long __sched io_schedule_timeout(long timeout)
7991 {
7992 	int token;
7993 	long ret;
7994 
7995 	token = io_schedule_prepare();
7996 	ret = schedule_timeout(timeout);
7997 	io_schedule_finish(token);
7998 
7999 	return ret;
8000 }
8001 EXPORT_SYMBOL(io_schedule_timeout);
8002 
8003 void __sched io_schedule(void)
8004 {
8005 	int token;
8006 
8007 	token = io_schedule_prepare();
8008 	schedule();
8009 	io_schedule_finish(token);
8010 }
8011 EXPORT_SYMBOL(io_schedule);
8012 
8013 /**
8014  * sys_sched_get_priority_max - return maximum RT priority.
8015  * @policy: scheduling class.
8016  *
8017  * Return: On success, this syscall returns the maximum
8018  * rt_priority that can be used by a given scheduling class.
8019  * On failure, a negative error code is returned.
8020  */
8021 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8022 {
8023 	int ret = -EINVAL;
8024 
8025 	switch (policy) {
8026 	case SCHED_FIFO:
8027 	case SCHED_RR:
8028 		ret = MAX_RT_PRIO-1;
8029 		break;
8030 	case SCHED_DEADLINE:
8031 	case SCHED_NORMAL:
8032 	case SCHED_BATCH:
8033 	case SCHED_IDLE:
8034 		ret = 0;
8035 		break;
8036 	}
8037 	return ret;
8038 }
8039 
8040 /**
8041  * sys_sched_get_priority_min - return minimum RT priority.
8042  * @policy: scheduling class.
8043  *
8044  * Return: On success, this syscall returns the minimum
8045  * rt_priority that can be used by a given scheduling class.
8046  * On failure, a negative error code is returned.
8047  */
8048 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8049 {
8050 	int ret = -EINVAL;
8051 
8052 	switch (policy) {
8053 	case SCHED_FIFO:
8054 	case SCHED_RR:
8055 		ret = 1;
8056 		break;
8057 	case SCHED_DEADLINE:
8058 	case SCHED_NORMAL:
8059 	case SCHED_BATCH:
8060 	case SCHED_IDLE:
8061 		ret = 0;
8062 	}
8063 	return ret;
8064 }
8065 
8066 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8067 {
8068 	struct task_struct *p;
8069 	unsigned int time_slice;
8070 	struct rq_flags rf;
8071 	struct rq *rq;
8072 	int retval;
8073 
8074 	if (pid < 0)
8075 		return -EINVAL;
8076 
8077 	retval = -ESRCH;
8078 	rcu_read_lock();
8079 	p = find_process_by_pid(pid);
8080 	if (!p)
8081 		goto out_unlock;
8082 
8083 	retval = security_task_getscheduler(p);
8084 	if (retval)
8085 		goto out_unlock;
8086 
8087 	rq = task_rq_lock(p, &rf);
8088 	time_slice = 0;
8089 	if (p->sched_class->get_rr_interval)
8090 		time_slice = p->sched_class->get_rr_interval(rq, p);
8091 	task_rq_unlock(rq, p, &rf);
8092 
8093 	rcu_read_unlock();
8094 	jiffies_to_timespec64(time_slice, t);
8095 	return 0;
8096 
8097 out_unlock:
8098 	rcu_read_unlock();
8099 	return retval;
8100 }
8101 
8102 /**
8103  * sys_sched_rr_get_interval - return the default timeslice of a process.
8104  * @pid: pid of the process.
8105  * @interval: userspace pointer to the timeslice value.
8106  *
8107  * this syscall writes the default timeslice value of a given process
8108  * into the user-space timespec buffer. A value of '0' means infinity.
8109  *
8110  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8111  * an error code.
8112  */
8113 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8114 		struct __kernel_timespec __user *, interval)
8115 {
8116 	struct timespec64 t;
8117 	int retval = sched_rr_get_interval(pid, &t);
8118 
8119 	if (retval == 0)
8120 		retval = put_timespec64(&t, interval);
8121 
8122 	return retval;
8123 }
8124 
8125 #ifdef CONFIG_COMPAT_32BIT_TIME
8126 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8127 		struct old_timespec32 __user *, interval)
8128 {
8129 	struct timespec64 t;
8130 	int retval = sched_rr_get_interval(pid, &t);
8131 
8132 	if (retval == 0)
8133 		retval = put_old_timespec32(&t, interval);
8134 	return retval;
8135 }
8136 #endif
8137 
8138 void sched_show_task(struct task_struct *p)
8139 {
8140 	unsigned long free = 0;
8141 	int ppid;
8142 
8143 	if (!try_get_task_stack(p))
8144 		return;
8145 
8146 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8147 
8148 	if (task_is_running(p))
8149 		pr_cont("  running task    ");
8150 #ifdef CONFIG_DEBUG_STACK_USAGE
8151 	free = stack_not_used(p);
8152 #endif
8153 	ppid = 0;
8154 	rcu_read_lock();
8155 	if (pid_alive(p))
8156 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8157 	rcu_read_unlock();
8158 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8159 		free, task_pid_nr(p), ppid,
8160 		(unsigned long)task_thread_info(p)->flags);
8161 
8162 	print_worker_info(KERN_INFO, p);
8163 	print_stop_info(KERN_INFO, p);
8164 	show_stack(p, NULL, KERN_INFO);
8165 	put_task_stack(p);
8166 }
8167 EXPORT_SYMBOL_GPL(sched_show_task);
8168 
8169 static inline bool
8170 state_filter_match(unsigned long state_filter, struct task_struct *p)
8171 {
8172 	unsigned int state = READ_ONCE(p->__state);
8173 
8174 	/* no filter, everything matches */
8175 	if (!state_filter)
8176 		return true;
8177 
8178 	/* filter, but doesn't match */
8179 	if (!(state & state_filter))
8180 		return false;
8181 
8182 	/*
8183 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8184 	 * TASK_KILLABLE).
8185 	 */
8186 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8187 		return false;
8188 
8189 	return true;
8190 }
8191 
8192 
8193 void show_state_filter(unsigned int state_filter)
8194 {
8195 	struct task_struct *g, *p;
8196 
8197 	rcu_read_lock();
8198 	for_each_process_thread(g, p) {
8199 		/*
8200 		 * reset the NMI-timeout, listing all files on a slow
8201 		 * console might take a lot of time:
8202 		 * Also, reset softlockup watchdogs on all CPUs, because
8203 		 * another CPU might be blocked waiting for us to process
8204 		 * an IPI.
8205 		 */
8206 		touch_nmi_watchdog();
8207 		touch_all_softlockup_watchdogs();
8208 		if (state_filter_match(state_filter, p))
8209 			sched_show_task(p);
8210 	}
8211 
8212 #ifdef CONFIG_SCHED_DEBUG
8213 	if (!state_filter)
8214 		sysrq_sched_debug_show();
8215 #endif
8216 	rcu_read_unlock();
8217 	/*
8218 	 * Only show locks if all tasks are dumped:
8219 	 */
8220 	if (!state_filter)
8221 		debug_show_all_locks();
8222 }
8223 
8224 /**
8225  * init_idle - set up an idle thread for a given CPU
8226  * @idle: task in question
8227  * @cpu: CPU the idle task belongs to
8228  *
8229  * NOTE: this function does not set the idle thread's NEED_RESCHED
8230  * flag, to make booting more robust.
8231  */
8232 void __init init_idle(struct task_struct *idle, int cpu)
8233 {
8234 	struct rq *rq = cpu_rq(cpu);
8235 	unsigned long flags;
8236 
8237 	__sched_fork(0, idle);
8238 
8239 	/*
8240 	 * The idle task doesn't need the kthread struct to function, but it
8241 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8242 	 * if we want to avoid special-casing it in code that deals with per-CPU
8243 	 * kthreads.
8244 	 */
8245 	set_kthread_struct(idle);
8246 
8247 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8248 	raw_spin_rq_lock(rq);
8249 
8250 	idle->__state = TASK_RUNNING;
8251 	idle->se.exec_start = sched_clock();
8252 	/*
8253 	 * PF_KTHREAD should already be set at this point; regardless, make it
8254 	 * look like a proper per-CPU kthread.
8255 	 */
8256 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8257 	kthread_set_per_cpu(idle, cpu);
8258 
8259 	scs_task_reset(idle);
8260 	kasan_unpoison_task_stack(idle);
8261 
8262 #ifdef CONFIG_SMP
8263 	/*
8264 	 * It's possible that init_idle() gets called multiple times on a task,
8265 	 * in that case do_set_cpus_allowed() will not do the right thing.
8266 	 *
8267 	 * And since this is boot we can forgo the serialization.
8268 	 */
8269 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8270 #endif
8271 	/*
8272 	 * We're having a chicken and egg problem, even though we are
8273 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8274 	 * lockdep check in task_group() will fail.
8275 	 *
8276 	 * Similar case to sched_fork(). / Alternatively we could
8277 	 * use task_rq_lock() here and obtain the other rq->lock.
8278 	 *
8279 	 * Silence PROVE_RCU
8280 	 */
8281 	rcu_read_lock();
8282 	__set_task_cpu(idle, cpu);
8283 	rcu_read_unlock();
8284 
8285 	rq->idle = idle;
8286 	rcu_assign_pointer(rq->curr, idle);
8287 	idle->on_rq = TASK_ON_RQ_QUEUED;
8288 #ifdef CONFIG_SMP
8289 	idle->on_cpu = 1;
8290 #endif
8291 	raw_spin_rq_unlock(rq);
8292 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8293 
8294 	/* Set the preempt count _outside_ the spinlocks! */
8295 	init_idle_preempt_count(idle, cpu);
8296 
8297 	/*
8298 	 * The idle tasks have their own, simple scheduling class:
8299 	 */
8300 	idle->sched_class = &idle_sched_class;
8301 	ftrace_graph_init_idle_task(idle, cpu);
8302 	vtime_init_idle(idle, cpu);
8303 #ifdef CONFIG_SMP
8304 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8305 #endif
8306 }
8307 
8308 #ifdef CONFIG_SMP
8309 
8310 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8311 			      const struct cpumask *trial)
8312 {
8313 	int ret = 1;
8314 
8315 	if (!cpumask_weight(cur))
8316 		return ret;
8317 
8318 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8319 
8320 	return ret;
8321 }
8322 
8323 int task_can_attach(struct task_struct *p,
8324 		    const struct cpumask *cs_cpus_allowed)
8325 {
8326 	int ret = 0;
8327 
8328 	/*
8329 	 * Kthreads which disallow setaffinity shouldn't be moved
8330 	 * to a new cpuset; we don't want to change their CPU
8331 	 * affinity and isolating such threads by their set of
8332 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8333 	 * applicable for such threads.  This prevents checking for
8334 	 * success of set_cpus_allowed_ptr() on all attached tasks
8335 	 * before cpus_mask may be changed.
8336 	 */
8337 	if (p->flags & PF_NO_SETAFFINITY) {
8338 		ret = -EINVAL;
8339 		goto out;
8340 	}
8341 
8342 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8343 					      cs_cpus_allowed))
8344 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8345 
8346 out:
8347 	return ret;
8348 }
8349 
8350 bool sched_smp_initialized __read_mostly;
8351 
8352 #ifdef CONFIG_NUMA_BALANCING
8353 /* Migrate current task p to target_cpu */
8354 int migrate_task_to(struct task_struct *p, int target_cpu)
8355 {
8356 	struct migration_arg arg = { p, target_cpu };
8357 	int curr_cpu = task_cpu(p);
8358 
8359 	if (curr_cpu == target_cpu)
8360 		return 0;
8361 
8362 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8363 		return -EINVAL;
8364 
8365 	/* TODO: This is not properly updating schedstats */
8366 
8367 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8368 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8369 }
8370 
8371 /*
8372  * Requeue a task on a given node and accurately track the number of NUMA
8373  * tasks on the runqueues
8374  */
8375 void sched_setnuma(struct task_struct *p, int nid)
8376 {
8377 	bool queued, running;
8378 	struct rq_flags rf;
8379 	struct rq *rq;
8380 
8381 	rq = task_rq_lock(p, &rf);
8382 	queued = task_on_rq_queued(p);
8383 	running = task_current(rq, p);
8384 
8385 	if (queued)
8386 		dequeue_task(rq, p, DEQUEUE_SAVE);
8387 	if (running)
8388 		put_prev_task(rq, p);
8389 
8390 	p->numa_preferred_nid = nid;
8391 
8392 	if (queued)
8393 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8394 	if (running)
8395 		set_next_task(rq, p);
8396 	task_rq_unlock(rq, p, &rf);
8397 }
8398 #endif /* CONFIG_NUMA_BALANCING */
8399 
8400 #ifdef CONFIG_HOTPLUG_CPU
8401 /*
8402  * Ensure that the idle task is using init_mm right before its CPU goes
8403  * offline.
8404  */
8405 void idle_task_exit(void)
8406 {
8407 	struct mm_struct *mm = current->active_mm;
8408 
8409 	BUG_ON(cpu_online(smp_processor_id()));
8410 	BUG_ON(current != this_rq()->idle);
8411 
8412 	if (mm != &init_mm) {
8413 		switch_mm(mm, &init_mm, current);
8414 		finish_arch_post_lock_switch();
8415 	}
8416 
8417 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8418 }
8419 
8420 static int __balance_push_cpu_stop(void *arg)
8421 {
8422 	struct task_struct *p = arg;
8423 	struct rq *rq = this_rq();
8424 	struct rq_flags rf;
8425 	int cpu;
8426 
8427 	raw_spin_lock_irq(&p->pi_lock);
8428 	rq_lock(rq, &rf);
8429 
8430 	update_rq_clock(rq);
8431 
8432 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8433 		cpu = select_fallback_rq(rq->cpu, p);
8434 		rq = __migrate_task(rq, &rf, p, cpu);
8435 	}
8436 
8437 	rq_unlock(rq, &rf);
8438 	raw_spin_unlock_irq(&p->pi_lock);
8439 
8440 	put_task_struct(p);
8441 
8442 	return 0;
8443 }
8444 
8445 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8446 
8447 /*
8448  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8449  *
8450  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8451  * effective when the hotplug motion is down.
8452  */
8453 static void balance_push(struct rq *rq)
8454 {
8455 	struct task_struct *push_task = rq->curr;
8456 
8457 	lockdep_assert_rq_held(rq);
8458 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
8459 
8460 	/*
8461 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8462 	 */
8463 	rq->balance_callback = &balance_push_callback;
8464 
8465 	/*
8466 	 * Only active while going offline.
8467 	 */
8468 	if (!cpu_dying(rq->cpu))
8469 		return;
8470 
8471 	/*
8472 	 * Both the cpu-hotplug and stop task are in this case and are
8473 	 * required to complete the hotplug process.
8474 	 */
8475 	if (kthread_is_per_cpu(push_task) ||
8476 	    is_migration_disabled(push_task)) {
8477 
8478 		/*
8479 		 * If this is the idle task on the outgoing CPU try to wake
8480 		 * up the hotplug control thread which might wait for the
8481 		 * last task to vanish. The rcuwait_active() check is
8482 		 * accurate here because the waiter is pinned on this CPU
8483 		 * and can't obviously be running in parallel.
8484 		 *
8485 		 * On RT kernels this also has to check whether there are
8486 		 * pinned and scheduled out tasks on the runqueue. They
8487 		 * need to leave the migrate disabled section first.
8488 		 */
8489 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8490 		    rcuwait_active(&rq->hotplug_wait)) {
8491 			raw_spin_rq_unlock(rq);
8492 			rcuwait_wake_up(&rq->hotplug_wait);
8493 			raw_spin_rq_lock(rq);
8494 		}
8495 		return;
8496 	}
8497 
8498 	get_task_struct(push_task);
8499 	/*
8500 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8501 	 * Both preemption and IRQs are still disabled.
8502 	 */
8503 	raw_spin_rq_unlock(rq);
8504 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8505 			    this_cpu_ptr(&push_work));
8506 	/*
8507 	 * At this point need_resched() is true and we'll take the loop in
8508 	 * schedule(). The next pick is obviously going to be the stop task
8509 	 * which kthread_is_per_cpu() and will push this task away.
8510 	 */
8511 	raw_spin_rq_lock(rq);
8512 }
8513 
8514 static void balance_push_set(int cpu, bool on)
8515 {
8516 	struct rq *rq = cpu_rq(cpu);
8517 	struct rq_flags rf;
8518 
8519 	rq_lock_irqsave(rq, &rf);
8520 	if (on) {
8521 		WARN_ON_ONCE(rq->balance_callback);
8522 		rq->balance_callback = &balance_push_callback;
8523 	} else if (rq->balance_callback == &balance_push_callback) {
8524 		rq->balance_callback = NULL;
8525 	}
8526 	rq_unlock_irqrestore(rq, &rf);
8527 }
8528 
8529 /*
8530  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8531  * inactive. All tasks which are not per CPU kernel threads are either
8532  * pushed off this CPU now via balance_push() or placed on a different CPU
8533  * during wakeup. Wait until the CPU is quiescent.
8534  */
8535 static void balance_hotplug_wait(void)
8536 {
8537 	struct rq *rq = this_rq();
8538 
8539 	rcuwait_wait_event(&rq->hotplug_wait,
8540 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8541 			   TASK_UNINTERRUPTIBLE);
8542 }
8543 
8544 #else
8545 
8546 static inline void balance_push(struct rq *rq)
8547 {
8548 }
8549 
8550 static inline void balance_push_set(int cpu, bool on)
8551 {
8552 }
8553 
8554 static inline void balance_hotplug_wait(void)
8555 {
8556 }
8557 
8558 #endif /* CONFIG_HOTPLUG_CPU */
8559 
8560 void set_rq_online(struct rq *rq)
8561 {
8562 	if (!rq->online) {
8563 		const struct sched_class *class;
8564 
8565 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8566 		rq->online = 1;
8567 
8568 		for_each_class(class) {
8569 			if (class->rq_online)
8570 				class->rq_online(rq);
8571 		}
8572 	}
8573 }
8574 
8575 void set_rq_offline(struct rq *rq)
8576 {
8577 	if (rq->online) {
8578 		const struct sched_class *class;
8579 
8580 		for_each_class(class) {
8581 			if (class->rq_offline)
8582 				class->rq_offline(rq);
8583 		}
8584 
8585 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8586 		rq->online = 0;
8587 	}
8588 }
8589 
8590 /*
8591  * used to mark begin/end of suspend/resume:
8592  */
8593 static int num_cpus_frozen;
8594 
8595 /*
8596  * Update cpusets according to cpu_active mask.  If cpusets are
8597  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8598  * around partition_sched_domains().
8599  *
8600  * If we come here as part of a suspend/resume, don't touch cpusets because we
8601  * want to restore it back to its original state upon resume anyway.
8602  */
8603 static void cpuset_cpu_active(void)
8604 {
8605 	if (cpuhp_tasks_frozen) {
8606 		/*
8607 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8608 		 * resume sequence. As long as this is not the last online
8609 		 * operation in the resume sequence, just build a single sched
8610 		 * domain, ignoring cpusets.
8611 		 */
8612 		partition_sched_domains(1, NULL, NULL);
8613 		if (--num_cpus_frozen)
8614 			return;
8615 		/*
8616 		 * This is the last CPU online operation. So fall through and
8617 		 * restore the original sched domains by considering the
8618 		 * cpuset configurations.
8619 		 */
8620 		cpuset_force_rebuild();
8621 	}
8622 	cpuset_update_active_cpus();
8623 }
8624 
8625 static int cpuset_cpu_inactive(unsigned int cpu)
8626 {
8627 	if (!cpuhp_tasks_frozen) {
8628 		if (dl_cpu_busy(cpu))
8629 			return -EBUSY;
8630 		cpuset_update_active_cpus();
8631 	} else {
8632 		num_cpus_frozen++;
8633 		partition_sched_domains(1, NULL, NULL);
8634 	}
8635 	return 0;
8636 }
8637 
8638 int sched_cpu_activate(unsigned int cpu)
8639 {
8640 	struct rq *rq = cpu_rq(cpu);
8641 	struct rq_flags rf;
8642 
8643 	/*
8644 	 * Clear the balance_push callback and prepare to schedule
8645 	 * regular tasks.
8646 	 */
8647 	balance_push_set(cpu, false);
8648 
8649 #ifdef CONFIG_SCHED_SMT
8650 	/*
8651 	 * When going up, increment the number of cores with SMT present.
8652 	 */
8653 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8654 		static_branch_inc_cpuslocked(&sched_smt_present);
8655 #endif
8656 	set_cpu_active(cpu, true);
8657 
8658 	if (sched_smp_initialized) {
8659 		sched_domains_numa_masks_set(cpu);
8660 		cpuset_cpu_active();
8661 	}
8662 
8663 	/*
8664 	 * Put the rq online, if not already. This happens:
8665 	 *
8666 	 * 1) In the early boot process, because we build the real domains
8667 	 *    after all CPUs have been brought up.
8668 	 *
8669 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8670 	 *    domains.
8671 	 */
8672 	rq_lock_irqsave(rq, &rf);
8673 	if (rq->rd) {
8674 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8675 		set_rq_online(rq);
8676 	}
8677 	rq_unlock_irqrestore(rq, &rf);
8678 
8679 	return 0;
8680 }
8681 
8682 int sched_cpu_deactivate(unsigned int cpu)
8683 {
8684 	struct rq *rq = cpu_rq(cpu);
8685 	struct rq_flags rf;
8686 	int ret;
8687 
8688 	/*
8689 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8690 	 * load balancing when not active
8691 	 */
8692 	nohz_balance_exit_idle(rq);
8693 
8694 	set_cpu_active(cpu, false);
8695 
8696 	/*
8697 	 * From this point forward, this CPU will refuse to run any task that
8698 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8699 	 * push those tasks away until this gets cleared, see
8700 	 * sched_cpu_dying().
8701 	 */
8702 	balance_push_set(cpu, true);
8703 
8704 	/*
8705 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8706 	 * preempt-disabled and RCU users of this state to go away such that
8707 	 * all new such users will observe it.
8708 	 *
8709 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8710 	 * ttwu_queue_cond() and is_cpu_allowed().
8711 	 *
8712 	 * Do sync before park smpboot threads to take care the rcu boost case.
8713 	 */
8714 	synchronize_rcu();
8715 
8716 	rq_lock_irqsave(rq, &rf);
8717 	if (rq->rd) {
8718 		update_rq_clock(rq);
8719 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8720 		set_rq_offline(rq);
8721 	}
8722 	rq_unlock_irqrestore(rq, &rf);
8723 
8724 #ifdef CONFIG_SCHED_SMT
8725 	/*
8726 	 * When going down, decrement the number of cores with SMT present.
8727 	 */
8728 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8729 		static_branch_dec_cpuslocked(&sched_smt_present);
8730 #endif
8731 
8732 	if (!sched_smp_initialized)
8733 		return 0;
8734 
8735 	ret = cpuset_cpu_inactive(cpu);
8736 	if (ret) {
8737 		balance_push_set(cpu, false);
8738 		set_cpu_active(cpu, true);
8739 		return ret;
8740 	}
8741 	sched_domains_numa_masks_clear(cpu);
8742 	return 0;
8743 }
8744 
8745 static void sched_rq_cpu_starting(unsigned int cpu)
8746 {
8747 	struct rq *rq = cpu_rq(cpu);
8748 
8749 	rq->calc_load_update = calc_load_update;
8750 	update_max_interval();
8751 }
8752 
8753 int sched_cpu_starting(unsigned int cpu)
8754 {
8755 	sched_core_cpu_starting(cpu);
8756 	sched_rq_cpu_starting(cpu);
8757 	sched_tick_start(cpu);
8758 	return 0;
8759 }
8760 
8761 #ifdef CONFIG_HOTPLUG_CPU
8762 
8763 /*
8764  * Invoked immediately before the stopper thread is invoked to bring the
8765  * CPU down completely. At this point all per CPU kthreads except the
8766  * hotplug thread (current) and the stopper thread (inactive) have been
8767  * either parked or have been unbound from the outgoing CPU. Ensure that
8768  * any of those which might be on the way out are gone.
8769  *
8770  * If after this point a bound task is being woken on this CPU then the
8771  * responsible hotplug callback has failed to do it's job.
8772  * sched_cpu_dying() will catch it with the appropriate fireworks.
8773  */
8774 int sched_cpu_wait_empty(unsigned int cpu)
8775 {
8776 	balance_hotplug_wait();
8777 	return 0;
8778 }
8779 
8780 /*
8781  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8782  * might have. Called from the CPU stopper task after ensuring that the
8783  * stopper is the last running task on the CPU, so nr_active count is
8784  * stable. We need to take the teardown thread which is calling this into
8785  * account, so we hand in adjust = 1 to the load calculation.
8786  *
8787  * Also see the comment "Global load-average calculations".
8788  */
8789 static void calc_load_migrate(struct rq *rq)
8790 {
8791 	long delta = calc_load_fold_active(rq, 1);
8792 
8793 	if (delta)
8794 		atomic_long_add(delta, &calc_load_tasks);
8795 }
8796 
8797 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8798 {
8799 	struct task_struct *g, *p;
8800 	int cpu = cpu_of(rq);
8801 
8802 	lockdep_assert_rq_held(rq);
8803 
8804 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8805 	for_each_process_thread(g, p) {
8806 		if (task_cpu(p) != cpu)
8807 			continue;
8808 
8809 		if (!task_on_rq_queued(p))
8810 			continue;
8811 
8812 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8813 	}
8814 }
8815 
8816 int sched_cpu_dying(unsigned int cpu)
8817 {
8818 	struct rq *rq = cpu_rq(cpu);
8819 	struct rq_flags rf;
8820 
8821 	/* Handle pending wakeups and then migrate everything off */
8822 	sched_tick_stop(cpu);
8823 
8824 	rq_lock_irqsave(rq, &rf);
8825 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8826 		WARN(true, "Dying CPU not properly vacated!");
8827 		dump_rq_tasks(rq, KERN_WARNING);
8828 	}
8829 	rq_unlock_irqrestore(rq, &rf);
8830 
8831 	calc_load_migrate(rq);
8832 	update_max_interval();
8833 	hrtick_clear(rq);
8834 	return 0;
8835 }
8836 #endif
8837 
8838 void __init sched_init_smp(void)
8839 {
8840 	sched_init_numa();
8841 
8842 	/*
8843 	 * There's no userspace yet to cause hotplug operations; hence all the
8844 	 * CPU masks are stable and all blatant races in the below code cannot
8845 	 * happen.
8846 	 */
8847 	mutex_lock(&sched_domains_mutex);
8848 	sched_init_domains(cpu_active_mask);
8849 	mutex_unlock(&sched_domains_mutex);
8850 
8851 	/* Move init over to a non-isolated CPU */
8852 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8853 		BUG();
8854 	current->flags &= ~PF_NO_SETAFFINITY;
8855 	sched_init_granularity();
8856 
8857 	init_sched_rt_class();
8858 	init_sched_dl_class();
8859 
8860 	sched_smp_initialized = true;
8861 }
8862 
8863 static int __init migration_init(void)
8864 {
8865 	sched_cpu_starting(smp_processor_id());
8866 	return 0;
8867 }
8868 early_initcall(migration_init);
8869 
8870 #else
8871 void __init sched_init_smp(void)
8872 {
8873 	sched_init_granularity();
8874 }
8875 #endif /* CONFIG_SMP */
8876 
8877 int in_sched_functions(unsigned long addr)
8878 {
8879 	return in_lock_functions(addr) ||
8880 		(addr >= (unsigned long)__sched_text_start
8881 		&& addr < (unsigned long)__sched_text_end);
8882 }
8883 
8884 #ifdef CONFIG_CGROUP_SCHED
8885 /*
8886  * Default task group.
8887  * Every task in system belongs to this group at bootup.
8888  */
8889 struct task_group root_task_group;
8890 LIST_HEAD(task_groups);
8891 
8892 /* Cacheline aligned slab cache for task_group */
8893 static struct kmem_cache *task_group_cache __read_mostly;
8894 #endif
8895 
8896 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8897 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8898 
8899 void __init sched_init(void)
8900 {
8901 	unsigned long ptr = 0;
8902 	int i;
8903 
8904 	/* Make sure the linker didn't screw up */
8905 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8906 	       &fair_sched_class + 1 != &rt_sched_class ||
8907 	       &rt_sched_class + 1   != &dl_sched_class);
8908 #ifdef CONFIG_SMP
8909 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8910 #endif
8911 
8912 	wait_bit_init();
8913 
8914 #ifdef CONFIG_FAIR_GROUP_SCHED
8915 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8916 #endif
8917 #ifdef CONFIG_RT_GROUP_SCHED
8918 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8919 #endif
8920 	if (ptr) {
8921 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8922 
8923 #ifdef CONFIG_FAIR_GROUP_SCHED
8924 		root_task_group.se = (struct sched_entity **)ptr;
8925 		ptr += nr_cpu_ids * sizeof(void **);
8926 
8927 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8928 		ptr += nr_cpu_ids * sizeof(void **);
8929 
8930 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8931 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8932 #endif /* CONFIG_FAIR_GROUP_SCHED */
8933 #ifdef CONFIG_RT_GROUP_SCHED
8934 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8935 		ptr += nr_cpu_ids * sizeof(void **);
8936 
8937 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8938 		ptr += nr_cpu_ids * sizeof(void **);
8939 
8940 #endif /* CONFIG_RT_GROUP_SCHED */
8941 	}
8942 #ifdef CONFIG_CPUMASK_OFFSTACK
8943 	for_each_possible_cpu(i) {
8944 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8945 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8946 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8947 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8948 	}
8949 #endif /* CONFIG_CPUMASK_OFFSTACK */
8950 
8951 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8952 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8953 
8954 #ifdef CONFIG_SMP
8955 	init_defrootdomain();
8956 #endif
8957 
8958 #ifdef CONFIG_RT_GROUP_SCHED
8959 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8960 			global_rt_period(), global_rt_runtime());
8961 #endif /* CONFIG_RT_GROUP_SCHED */
8962 
8963 #ifdef CONFIG_CGROUP_SCHED
8964 	task_group_cache = KMEM_CACHE(task_group, 0);
8965 
8966 	list_add(&root_task_group.list, &task_groups);
8967 	INIT_LIST_HEAD(&root_task_group.children);
8968 	INIT_LIST_HEAD(&root_task_group.siblings);
8969 	autogroup_init(&init_task);
8970 #endif /* CONFIG_CGROUP_SCHED */
8971 
8972 	for_each_possible_cpu(i) {
8973 		struct rq *rq;
8974 
8975 		rq = cpu_rq(i);
8976 		raw_spin_lock_init(&rq->__lock);
8977 		rq->nr_running = 0;
8978 		rq->calc_load_active = 0;
8979 		rq->calc_load_update = jiffies + LOAD_FREQ;
8980 		init_cfs_rq(&rq->cfs);
8981 		init_rt_rq(&rq->rt);
8982 		init_dl_rq(&rq->dl);
8983 #ifdef CONFIG_FAIR_GROUP_SCHED
8984 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8985 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8986 		/*
8987 		 * How much CPU bandwidth does root_task_group get?
8988 		 *
8989 		 * In case of task-groups formed thr' the cgroup filesystem, it
8990 		 * gets 100% of the CPU resources in the system. This overall
8991 		 * system CPU resource is divided among the tasks of
8992 		 * root_task_group and its child task-groups in a fair manner,
8993 		 * based on each entity's (task or task-group's) weight
8994 		 * (se->load.weight).
8995 		 *
8996 		 * In other words, if root_task_group has 10 tasks of weight
8997 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8998 		 * then A0's share of the CPU resource is:
8999 		 *
9000 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9001 		 *
9002 		 * We achieve this by letting root_task_group's tasks sit
9003 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9004 		 */
9005 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9006 #endif /* CONFIG_FAIR_GROUP_SCHED */
9007 
9008 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9009 #ifdef CONFIG_RT_GROUP_SCHED
9010 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9011 #endif
9012 #ifdef CONFIG_SMP
9013 		rq->sd = NULL;
9014 		rq->rd = NULL;
9015 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9016 		rq->balance_callback = &balance_push_callback;
9017 		rq->active_balance = 0;
9018 		rq->next_balance = jiffies;
9019 		rq->push_cpu = 0;
9020 		rq->cpu = i;
9021 		rq->online = 0;
9022 		rq->idle_stamp = 0;
9023 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9024 		rq->wake_stamp = jiffies;
9025 		rq->wake_avg_idle = rq->avg_idle;
9026 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9027 
9028 		INIT_LIST_HEAD(&rq->cfs_tasks);
9029 
9030 		rq_attach_root(rq, &def_root_domain);
9031 #ifdef CONFIG_NO_HZ_COMMON
9032 		rq->last_blocked_load_update_tick = jiffies;
9033 		atomic_set(&rq->nohz_flags, 0);
9034 
9035 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9036 #endif
9037 #ifdef CONFIG_HOTPLUG_CPU
9038 		rcuwait_init(&rq->hotplug_wait);
9039 #endif
9040 #endif /* CONFIG_SMP */
9041 		hrtick_rq_init(rq);
9042 		atomic_set(&rq->nr_iowait, 0);
9043 
9044 #ifdef CONFIG_SCHED_CORE
9045 		rq->core = NULL;
9046 		rq->core_pick = NULL;
9047 		rq->core_enabled = 0;
9048 		rq->core_tree = RB_ROOT;
9049 		rq->core_forceidle = false;
9050 
9051 		rq->core_cookie = 0UL;
9052 #endif
9053 	}
9054 
9055 	set_load_weight(&init_task, false);
9056 
9057 	/*
9058 	 * The boot idle thread does lazy MMU switching as well:
9059 	 */
9060 	mmgrab(&init_mm);
9061 	enter_lazy_tlb(&init_mm, current);
9062 
9063 	/*
9064 	 * Make us the idle thread. Technically, schedule() should not be
9065 	 * called from this thread, however somewhere below it might be,
9066 	 * but because we are the idle thread, we just pick up running again
9067 	 * when this runqueue becomes "idle".
9068 	 */
9069 	init_idle(current, smp_processor_id());
9070 
9071 	calc_load_update = jiffies + LOAD_FREQ;
9072 
9073 #ifdef CONFIG_SMP
9074 	idle_thread_set_boot_cpu();
9075 	balance_push_set(smp_processor_id(), false);
9076 #endif
9077 	init_sched_fair_class();
9078 
9079 	psi_init();
9080 
9081 	init_uclamp();
9082 
9083 	scheduler_running = 1;
9084 }
9085 
9086 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9087 static inline int preempt_count_equals(int preempt_offset)
9088 {
9089 	int nested = preempt_count() + rcu_preempt_depth();
9090 
9091 	return (nested == preempt_offset);
9092 }
9093 
9094 void __might_sleep(const char *file, int line, int preempt_offset)
9095 {
9096 	unsigned int state = get_current_state();
9097 	/*
9098 	 * Blocking primitives will set (and therefore destroy) current->state,
9099 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9100 	 * otherwise we will destroy state.
9101 	 */
9102 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9103 			"do not call blocking ops when !TASK_RUNNING; "
9104 			"state=%x set at [<%p>] %pS\n", state,
9105 			(void *)current->task_state_change,
9106 			(void *)current->task_state_change);
9107 
9108 	___might_sleep(file, line, preempt_offset);
9109 }
9110 EXPORT_SYMBOL(__might_sleep);
9111 
9112 void ___might_sleep(const char *file, int line, int preempt_offset)
9113 {
9114 	/* Ratelimiting timestamp: */
9115 	static unsigned long prev_jiffy;
9116 
9117 	unsigned long preempt_disable_ip;
9118 
9119 	/* WARN_ON_ONCE() by default, no rate limit required: */
9120 	rcu_sleep_check();
9121 
9122 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9123 	     !is_idle_task(current) && !current->non_block_count) ||
9124 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9125 	    oops_in_progress)
9126 		return;
9127 
9128 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9129 		return;
9130 	prev_jiffy = jiffies;
9131 
9132 	/* Save this before calling printk(), since that will clobber it: */
9133 	preempt_disable_ip = get_preempt_disable_ip(current);
9134 
9135 	printk(KERN_ERR
9136 		"BUG: sleeping function called from invalid context at %s:%d\n",
9137 			file, line);
9138 	printk(KERN_ERR
9139 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9140 			in_atomic(), irqs_disabled(), current->non_block_count,
9141 			current->pid, current->comm);
9142 
9143 	if (task_stack_end_corrupted(current))
9144 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9145 
9146 	debug_show_held_locks(current);
9147 	if (irqs_disabled())
9148 		print_irqtrace_events(current);
9149 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9150 	    && !preempt_count_equals(preempt_offset)) {
9151 		pr_err("Preemption disabled at:");
9152 		print_ip_sym(KERN_ERR, preempt_disable_ip);
9153 	}
9154 	dump_stack();
9155 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9156 }
9157 EXPORT_SYMBOL(___might_sleep);
9158 
9159 void __cant_sleep(const char *file, int line, int preempt_offset)
9160 {
9161 	static unsigned long prev_jiffy;
9162 
9163 	if (irqs_disabled())
9164 		return;
9165 
9166 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9167 		return;
9168 
9169 	if (preempt_count() > preempt_offset)
9170 		return;
9171 
9172 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9173 		return;
9174 	prev_jiffy = jiffies;
9175 
9176 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9177 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9178 			in_atomic(), irqs_disabled(),
9179 			current->pid, current->comm);
9180 
9181 	debug_show_held_locks(current);
9182 	dump_stack();
9183 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9184 }
9185 EXPORT_SYMBOL_GPL(__cant_sleep);
9186 
9187 #ifdef CONFIG_SMP
9188 void __cant_migrate(const char *file, int line)
9189 {
9190 	static unsigned long prev_jiffy;
9191 
9192 	if (irqs_disabled())
9193 		return;
9194 
9195 	if (is_migration_disabled(current))
9196 		return;
9197 
9198 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9199 		return;
9200 
9201 	if (preempt_count() > 0)
9202 		return;
9203 
9204 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9205 		return;
9206 	prev_jiffy = jiffies;
9207 
9208 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9209 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9210 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9211 	       current->pid, current->comm);
9212 
9213 	debug_show_held_locks(current);
9214 	dump_stack();
9215 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9216 }
9217 EXPORT_SYMBOL_GPL(__cant_migrate);
9218 #endif
9219 #endif
9220 
9221 #ifdef CONFIG_MAGIC_SYSRQ
9222 void normalize_rt_tasks(void)
9223 {
9224 	struct task_struct *g, *p;
9225 	struct sched_attr attr = {
9226 		.sched_policy = SCHED_NORMAL,
9227 	};
9228 
9229 	read_lock(&tasklist_lock);
9230 	for_each_process_thread(g, p) {
9231 		/*
9232 		 * Only normalize user tasks:
9233 		 */
9234 		if (p->flags & PF_KTHREAD)
9235 			continue;
9236 
9237 		p->se.exec_start = 0;
9238 		schedstat_set(p->se.statistics.wait_start,  0);
9239 		schedstat_set(p->se.statistics.sleep_start, 0);
9240 		schedstat_set(p->se.statistics.block_start, 0);
9241 
9242 		if (!dl_task(p) && !rt_task(p)) {
9243 			/*
9244 			 * Renice negative nice level userspace
9245 			 * tasks back to 0:
9246 			 */
9247 			if (task_nice(p) < 0)
9248 				set_user_nice(p, 0);
9249 			continue;
9250 		}
9251 
9252 		__sched_setscheduler(p, &attr, false, false);
9253 	}
9254 	read_unlock(&tasklist_lock);
9255 }
9256 
9257 #endif /* CONFIG_MAGIC_SYSRQ */
9258 
9259 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9260 /*
9261  * These functions are only useful for the IA64 MCA handling, or kdb.
9262  *
9263  * They can only be called when the whole system has been
9264  * stopped - every CPU needs to be quiescent, and no scheduling
9265  * activity can take place. Using them for anything else would
9266  * be a serious bug, and as a result, they aren't even visible
9267  * under any other configuration.
9268  */
9269 
9270 /**
9271  * curr_task - return the current task for a given CPU.
9272  * @cpu: the processor in question.
9273  *
9274  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9275  *
9276  * Return: The current task for @cpu.
9277  */
9278 struct task_struct *curr_task(int cpu)
9279 {
9280 	return cpu_curr(cpu);
9281 }
9282 
9283 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9284 
9285 #ifdef CONFIG_IA64
9286 /**
9287  * ia64_set_curr_task - set the current task for a given CPU.
9288  * @cpu: the processor in question.
9289  * @p: the task pointer to set.
9290  *
9291  * Description: This function must only be used when non-maskable interrupts
9292  * are serviced on a separate stack. It allows the architecture to switch the
9293  * notion of the current task on a CPU in a non-blocking manner. This function
9294  * must be called with all CPU's synchronized, and interrupts disabled, the
9295  * and caller must save the original value of the current task (see
9296  * curr_task() above) and restore that value before reenabling interrupts and
9297  * re-starting the system.
9298  *
9299  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9300  */
9301 void ia64_set_curr_task(int cpu, struct task_struct *p)
9302 {
9303 	cpu_curr(cpu) = p;
9304 }
9305 
9306 #endif
9307 
9308 #ifdef CONFIG_CGROUP_SCHED
9309 /* task_group_lock serializes the addition/removal of task groups */
9310 static DEFINE_SPINLOCK(task_group_lock);
9311 
9312 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9313 					    struct task_group *parent)
9314 {
9315 #ifdef CONFIG_UCLAMP_TASK_GROUP
9316 	enum uclamp_id clamp_id;
9317 
9318 	for_each_clamp_id(clamp_id) {
9319 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9320 			      uclamp_none(clamp_id), false);
9321 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9322 	}
9323 #endif
9324 }
9325 
9326 static void sched_free_group(struct task_group *tg)
9327 {
9328 	free_fair_sched_group(tg);
9329 	free_rt_sched_group(tg);
9330 	autogroup_free(tg);
9331 	kmem_cache_free(task_group_cache, tg);
9332 }
9333 
9334 /* allocate runqueue etc for a new task group */
9335 struct task_group *sched_create_group(struct task_group *parent)
9336 {
9337 	struct task_group *tg;
9338 
9339 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9340 	if (!tg)
9341 		return ERR_PTR(-ENOMEM);
9342 
9343 	if (!alloc_fair_sched_group(tg, parent))
9344 		goto err;
9345 
9346 	if (!alloc_rt_sched_group(tg, parent))
9347 		goto err;
9348 
9349 	alloc_uclamp_sched_group(tg, parent);
9350 
9351 	return tg;
9352 
9353 err:
9354 	sched_free_group(tg);
9355 	return ERR_PTR(-ENOMEM);
9356 }
9357 
9358 void sched_online_group(struct task_group *tg, struct task_group *parent)
9359 {
9360 	unsigned long flags;
9361 
9362 	spin_lock_irqsave(&task_group_lock, flags);
9363 	list_add_rcu(&tg->list, &task_groups);
9364 
9365 	/* Root should already exist: */
9366 	WARN_ON(!parent);
9367 
9368 	tg->parent = parent;
9369 	INIT_LIST_HEAD(&tg->children);
9370 	list_add_rcu(&tg->siblings, &parent->children);
9371 	spin_unlock_irqrestore(&task_group_lock, flags);
9372 
9373 	online_fair_sched_group(tg);
9374 }
9375 
9376 /* rcu callback to free various structures associated with a task group */
9377 static void sched_free_group_rcu(struct rcu_head *rhp)
9378 {
9379 	/* Now it should be safe to free those cfs_rqs: */
9380 	sched_free_group(container_of(rhp, struct task_group, rcu));
9381 }
9382 
9383 void sched_destroy_group(struct task_group *tg)
9384 {
9385 	/* Wait for possible concurrent references to cfs_rqs complete: */
9386 	call_rcu(&tg->rcu, sched_free_group_rcu);
9387 }
9388 
9389 void sched_offline_group(struct task_group *tg)
9390 {
9391 	unsigned long flags;
9392 
9393 	/* End participation in shares distribution: */
9394 	unregister_fair_sched_group(tg);
9395 
9396 	spin_lock_irqsave(&task_group_lock, flags);
9397 	list_del_rcu(&tg->list);
9398 	list_del_rcu(&tg->siblings);
9399 	spin_unlock_irqrestore(&task_group_lock, flags);
9400 }
9401 
9402 static void sched_change_group(struct task_struct *tsk, int type)
9403 {
9404 	struct task_group *tg;
9405 
9406 	/*
9407 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9408 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9409 	 * to prevent lockdep warnings.
9410 	 */
9411 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9412 			  struct task_group, css);
9413 	tg = autogroup_task_group(tsk, tg);
9414 	tsk->sched_task_group = tg;
9415 
9416 #ifdef CONFIG_FAIR_GROUP_SCHED
9417 	if (tsk->sched_class->task_change_group)
9418 		tsk->sched_class->task_change_group(tsk, type);
9419 	else
9420 #endif
9421 		set_task_rq(tsk, task_cpu(tsk));
9422 }
9423 
9424 /*
9425  * Change task's runqueue when it moves between groups.
9426  *
9427  * The caller of this function should have put the task in its new group by
9428  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9429  * its new group.
9430  */
9431 void sched_move_task(struct task_struct *tsk)
9432 {
9433 	int queued, running, queue_flags =
9434 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9435 	struct rq_flags rf;
9436 	struct rq *rq;
9437 
9438 	rq = task_rq_lock(tsk, &rf);
9439 	update_rq_clock(rq);
9440 
9441 	running = task_current(rq, tsk);
9442 	queued = task_on_rq_queued(tsk);
9443 
9444 	if (queued)
9445 		dequeue_task(rq, tsk, queue_flags);
9446 	if (running)
9447 		put_prev_task(rq, tsk);
9448 
9449 	sched_change_group(tsk, TASK_MOVE_GROUP);
9450 
9451 	if (queued)
9452 		enqueue_task(rq, tsk, queue_flags);
9453 	if (running) {
9454 		set_next_task(rq, tsk);
9455 		/*
9456 		 * After changing group, the running task may have joined a
9457 		 * throttled one but it's still the running task. Trigger a
9458 		 * resched to make sure that task can still run.
9459 		 */
9460 		resched_curr(rq);
9461 	}
9462 
9463 	task_rq_unlock(rq, tsk, &rf);
9464 }
9465 
9466 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9467 {
9468 	return css ? container_of(css, struct task_group, css) : NULL;
9469 }
9470 
9471 static struct cgroup_subsys_state *
9472 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9473 {
9474 	struct task_group *parent = css_tg(parent_css);
9475 	struct task_group *tg;
9476 
9477 	if (!parent) {
9478 		/* This is early initialization for the top cgroup */
9479 		return &root_task_group.css;
9480 	}
9481 
9482 	tg = sched_create_group(parent);
9483 	if (IS_ERR(tg))
9484 		return ERR_PTR(-ENOMEM);
9485 
9486 	return &tg->css;
9487 }
9488 
9489 /* Expose task group only after completing cgroup initialization */
9490 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9491 {
9492 	struct task_group *tg = css_tg(css);
9493 	struct task_group *parent = css_tg(css->parent);
9494 
9495 	if (parent)
9496 		sched_online_group(tg, parent);
9497 
9498 #ifdef CONFIG_UCLAMP_TASK_GROUP
9499 	/* Propagate the effective uclamp value for the new group */
9500 	mutex_lock(&uclamp_mutex);
9501 	rcu_read_lock();
9502 	cpu_util_update_eff(css);
9503 	rcu_read_unlock();
9504 	mutex_unlock(&uclamp_mutex);
9505 #endif
9506 
9507 	return 0;
9508 }
9509 
9510 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9511 {
9512 	struct task_group *tg = css_tg(css);
9513 
9514 	sched_offline_group(tg);
9515 }
9516 
9517 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9518 {
9519 	struct task_group *tg = css_tg(css);
9520 
9521 	/*
9522 	 * Relies on the RCU grace period between css_released() and this.
9523 	 */
9524 	sched_free_group(tg);
9525 }
9526 
9527 /*
9528  * This is called before wake_up_new_task(), therefore we really only
9529  * have to set its group bits, all the other stuff does not apply.
9530  */
9531 static void cpu_cgroup_fork(struct task_struct *task)
9532 {
9533 	struct rq_flags rf;
9534 	struct rq *rq;
9535 
9536 	rq = task_rq_lock(task, &rf);
9537 
9538 	update_rq_clock(rq);
9539 	sched_change_group(task, TASK_SET_GROUP);
9540 
9541 	task_rq_unlock(rq, task, &rf);
9542 }
9543 
9544 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9545 {
9546 	struct task_struct *task;
9547 	struct cgroup_subsys_state *css;
9548 	int ret = 0;
9549 
9550 	cgroup_taskset_for_each(task, css, tset) {
9551 #ifdef CONFIG_RT_GROUP_SCHED
9552 		if (!sched_rt_can_attach(css_tg(css), task))
9553 			return -EINVAL;
9554 #endif
9555 		/*
9556 		 * Serialize against wake_up_new_task() such that if it's
9557 		 * running, we're sure to observe its full state.
9558 		 */
9559 		raw_spin_lock_irq(&task->pi_lock);
9560 		/*
9561 		 * Avoid calling sched_move_task() before wake_up_new_task()
9562 		 * has happened. This would lead to problems with PELT, due to
9563 		 * move wanting to detach+attach while we're not attached yet.
9564 		 */
9565 		if (READ_ONCE(task->__state) == TASK_NEW)
9566 			ret = -EINVAL;
9567 		raw_spin_unlock_irq(&task->pi_lock);
9568 
9569 		if (ret)
9570 			break;
9571 	}
9572 	return ret;
9573 }
9574 
9575 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9576 {
9577 	struct task_struct *task;
9578 	struct cgroup_subsys_state *css;
9579 
9580 	cgroup_taskset_for_each(task, css, tset)
9581 		sched_move_task(task);
9582 }
9583 
9584 #ifdef CONFIG_UCLAMP_TASK_GROUP
9585 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9586 {
9587 	struct cgroup_subsys_state *top_css = css;
9588 	struct uclamp_se *uc_parent = NULL;
9589 	struct uclamp_se *uc_se = NULL;
9590 	unsigned int eff[UCLAMP_CNT];
9591 	enum uclamp_id clamp_id;
9592 	unsigned int clamps;
9593 
9594 	lockdep_assert_held(&uclamp_mutex);
9595 	SCHED_WARN_ON(!rcu_read_lock_held());
9596 
9597 	css_for_each_descendant_pre(css, top_css) {
9598 		uc_parent = css_tg(css)->parent
9599 			? css_tg(css)->parent->uclamp : NULL;
9600 
9601 		for_each_clamp_id(clamp_id) {
9602 			/* Assume effective clamps matches requested clamps */
9603 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9604 			/* Cap effective clamps with parent's effective clamps */
9605 			if (uc_parent &&
9606 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9607 				eff[clamp_id] = uc_parent[clamp_id].value;
9608 			}
9609 		}
9610 		/* Ensure protection is always capped by limit */
9611 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9612 
9613 		/* Propagate most restrictive effective clamps */
9614 		clamps = 0x0;
9615 		uc_se = css_tg(css)->uclamp;
9616 		for_each_clamp_id(clamp_id) {
9617 			if (eff[clamp_id] == uc_se[clamp_id].value)
9618 				continue;
9619 			uc_se[clamp_id].value = eff[clamp_id];
9620 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9621 			clamps |= (0x1 << clamp_id);
9622 		}
9623 		if (!clamps) {
9624 			css = css_rightmost_descendant(css);
9625 			continue;
9626 		}
9627 
9628 		/* Immediately update descendants RUNNABLE tasks */
9629 		uclamp_update_active_tasks(css);
9630 	}
9631 }
9632 
9633 /*
9634  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9635  * C expression. Since there is no way to convert a macro argument (N) into a
9636  * character constant, use two levels of macros.
9637  */
9638 #define _POW10(exp) ((unsigned int)1e##exp)
9639 #define POW10(exp) _POW10(exp)
9640 
9641 struct uclamp_request {
9642 #define UCLAMP_PERCENT_SHIFT	2
9643 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9644 	s64 percent;
9645 	u64 util;
9646 	int ret;
9647 };
9648 
9649 static inline struct uclamp_request
9650 capacity_from_percent(char *buf)
9651 {
9652 	struct uclamp_request req = {
9653 		.percent = UCLAMP_PERCENT_SCALE,
9654 		.util = SCHED_CAPACITY_SCALE,
9655 		.ret = 0,
9656 	};
9657 
9658 	buf = strim(buf);
9659 	if (strcmp(buf, "max")) {
9660 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9661 					     &req.percent);
9662 		if (req.ret)
9663 			return req;
9664 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9665 			req.ret = -ERANGE;
9666 			return req;
9667 		}
9668 
9669 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9670 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9671 	}
9672 
9673 	return req;
9674 }
9675 
9676 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9677 				size_t nbytes, loff_t off,
9678 				enum uclamp_id clamp_id)
9679 {
9680 	struct uclamp_request req;
9681 	struct task_group *tg;
9682 
9683 	req = capacity_from_percent(buf);
9684 	if (req.ret)
9685 		return req.ret;
9686 
9687 	static_branch_enable(&sched_uclamp_used);
9688 
9689 	mutex_lock(&uclamp_mutex);
9690 	rcu_read_lock();
9691 
9692 	tg = css_tg(of_css(of));
9693 	if (tg->uclamp_req[clamp_id].value != req.util)
9694 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9695 
9696 	/*
9697 	 * Because of not recoverable conversion rounding we keep track of the
9698 	 * exact requested value
9699 	 */
9700 	tg->uclamp_pct[clamp_id] = req.percent;
9701 
9702 	/* Update effective clamps to track the most restrictive value */
9703 	cpu_util_update_eff(of_css(of));
9704 
9705 	rcu_read_unlock();
9706 	mutex_unlock(&uclamp_mutex);
9707 
9708 	return nbytes;
9709 }
9710 
9711 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9712 				    char *buf, size_t nbytes,
9713 				    loff_t off)
9714 {
9715 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9716 }
9717 
9718 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9719 				    char *buf, size_t nbytes,
9720 				    loff_t off)
9721 {
9722 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9723 }
9724 
9725 static inline void cpu_uclamp_print(struct seq_file *sf,
9726 				    enum uclamp_id clamp_id)
9727 {
9728 	struct task_group *tg;
9729 	u64 util_clamp;
9730 	u64 percent;
9731 	u32 rem;
9732 
9733 	rcu_read_lock();
9734 	tg = css_tg(seq_css(sf));
9735 	util_clamp = tg->uclamp_req[clamp_id].value;
9736 	rcu_read_unlock();
9737 
9738 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9739 		seq_puts(sf, "max\n");
9740 		return;
9741 	}
9742 
9743 	percent = tg->uclamp_pct[clamp_id];
9744 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9745 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9746 }
9747 
9748 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9749 {
9750 	cpu_uclamp_print(sf, UCLAMP_MIN);
9751 	return 0;
9752 }
9753 
9754 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9755 {
9756 	cpu_uclamp_print(sf, UCLAMP_MAX);
9757 	return 0;
9758 }
9759 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9760 
9761 #ifdef CONFIG_FAIR_GROUP_SCHED
9762 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9763 				struct cftype *cftype, u64 shareval)
9764 {
9765 	if (shareval > scale_load_down(ULONG_MAX))
9766 		shareval = MAX_SHARES;
9767 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
9768 }
9769 
9770 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9771 			       struct cftype *cft)
9772 {
9773 	struct task_group *tg = css_tg(css);
9774 
9775 	return (u64) scale_load_down(tg->shares);
9776 }
9777 
9778 #ifdef CONFIG_CFS_BANDWIDTH
9779 static DEFINE_MUTEX(cfs_constraints_mutex);
9780 
9781 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9782 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9783 /* More than 203 days if BW_SHIFT equals 20. */
9784 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9785 
9786 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9787 
9788 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9789 				u64 burst)
9790 {
9791 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9792 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9793 
9794 	if (tg == &root_task_group)
9795 		return -EINVAL;
9796 
9797 	/*
9798 	 * Ensure we have at some amount of bandwidth every period.  This is
9799 	 * to prevent reaching a state of large arrears when throttled via
9800 	 * entity_tick() resulting in prolonged exit starvation.
9801 	 */
9802 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9803 		return -EINVAL;
9804 
9805 	/*
9806 	 * Likewise, bound things on the other side by preventing insane quota
9807 	 * periods.  This also allows us to normalize in computing quota
9808 	 * feasibility.
9809 	 */
9810 	if (period > max_cfs_quota_period)
9811 		return -EINVAL;
9812 
9813 	/*
9814 	 * Bound quota to defend quota against overflow during bandwidth shift.
9815 	 */
9816 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9817 		return -EINVAL;
9818 
9819 	if (quota != RUNTIME_INF && (burst > quota ||
9820 				     burst + quota > max_cfs_runtime))
9821 		return -EINVAL;
9822 
9823 	/*
9824 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9825 	 * unthrottle_offline_cfs_rqs().
9826 	 */
9827 	get_online_cpus();
9828 	mutex_lock(&cfs_constraints_mutex);
9829 	ret = __cfs_schedulable(tg, period, quota);
9830 	if (ret)
9831 		goto out_unlock;
9832 
9833 	runtime_enabled = quota != RUNTIME_INF;
9834 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9835 	/*
9836 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9837 	 * before making related changes, and on->off must occur afterwards
9838 	 */
9839 	if (runtime_enabled && !runtime_was_enabled)
9840 		cfs_bandwidth_usage_inc();
9841 	raw_spin_lock_irq(&cfs_b->lock);
9842 	cfs_b->period = ns_to_ktime(period);
9843 	cfs_b->quota = quota;
9844 	cfs_b->burst = burst;
9845 
9846 	__refill_cfs_bandwidth_runtime(cfs_b);
9847 
9848 	/* Restart the period timer (if active) to handle new period expiry: */
9849 	if (runtime_enabled)
9850 		start_cfs_bandwidth(cfs_b);
9851 
9852 	raw_spin_unlock_irq(&cfs_b->lock);
9853 
9854 	for_each_online_cpu(i) {
9855 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9856 		struct rq *rq = cfs_rq->rq;
9857 		struct rq_flags rf;
9858 
9859 		rq_lock_irq(rq, &rf);
9860 		cfs_rq->runtime_enabled = runtime_enabled;
9861 		cfs_rq->runtime_remaining = 0;
9862 
9863 		if (cfs_rq->throttled)
9864 			unthrottle_cfs_rq(cfs_rq);
9865 		rq_unlock_irq(rq, &rf);
9866 	}
9867 	if (runtime_was_enabled && !runtime_enabled)
9868 		cfs_bandwidth_usage_dec();
9869 out_unlock:
9870 	mutex_unlock(&cfs_constraints_mutex);
9871 	put_online_cpus();
9872 
9873 	return ret;
9874 }
9875 
9876 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9877 {
9878 	u64 quota, period, burst;
9879 
9880 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9881 	burst = tg->cfs_bandwidth.burst;
9882 	if (cfs_quota_us < 0)
9883 		quota = RUNTIME_INF;
9884 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9885 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9886 	else
9887 		return -EINVAL;
9888 
9889 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9890 }
9891 
9892 static long tg_get_cfs_quota(struct task_group *tg)
9893 {
9894 	u64 quota_us;
9895 
9896 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9897 		return -1;
9898 
9899 	quota_us = tg->cfs_bandwidth.quota;
9900 	do_div(quota_us, NSEC_PER_USEC);
9901 
9902 	return quota_us;
9903 }
9904 
9905 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9906 {
9907 	u64 quota, period, burst;
9908 
9909 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9910 		return -EINVAL;
9911 
9912 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9913 	quota = tg->cfs_bandwidth.quota;
9914 	burst = tg->cfs_bandwidth.burst;
9915 
9916 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9917 }
9918 
9919 static long tg_get_cfs_period(struct task_group *tg)
9920 {
9921 	u64 cfs_period_us;
9922 
9923 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9924 	do_div(cfs_period_us, NSEC_PER_USEC);
9925 
9926 	return cfs_period_us;
9927 }
9928 
9929 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9930 {
9931 	u64 quota, period, burst;
9932 
9933 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9934 		return -EINVAL;
9935 
9936 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9937 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9938 	quota = tg->cfs_bandwidth.quota;
9939 
9940 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9941 }
9942 
9943 static long tg_get_cfs_burst(struct task_group *tg)
9944 {
9945 	u64 burst_us;
9946 
9947 	burst_us = tg->cfs_bandwidth.burst;
9948 	do_div(burst_us, NSEC_PER_USEC);
9949 
9950 	return burst_us;
9951 }
9952 
9953 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9954 				  struct cftype *cft)
9955 {
9956 	return tg_get_cfs_quota(css_tg(css));
9957 }
9958 
9959 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9960 				   struct cftype *cftype, s64 cfs_quota_us)
9961 {
9962 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9963 }
9964 
9965 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9966 				   struct cftype *cft)
9967 {
9968 	return tg_get_cfs_period(css_tg(css));
9969 }
9970 
9971 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9972 				    struct cftype *cftype, u64 cfs_period_us)
9973 {
9974 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9975 }
9976 
9977 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9978 				  struct cftype *cft)
9979 {
9980 	return tg_get_cfs_burst(css_tg(css));
9981 }
9982 
9983 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9984 				   struct cftype *cftype, u64 cfs_burst_us)
9985 {
9986 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9987 }
9988 
9989 struct cfs_schedulable_data {
9990 	struct task_group *tg;
9991 	u64 period, quota;
9992 };
9993 
9994 /*
9995  * normalize group quota/period to be quota/max_period
9996  * note: units are usecs
9997  */
9998 static u64 normalize_cfs_quota(struct task_group *tg,
9999 			       struct cfs_schedulable_data *d)
10000 {
10001 	u64 quota, period;
10002 
10003 	if (tg == d->tg) {
10004 		period = d->period;
10005 		quota = d->quota;
10006 	} else {
10007 		period = tg_get_cfs_period(tg);
10008 		quota = tg_get_cfs_quota(tg);
10009 	}
10010 
10011 	/* note: these should typically be equivalent */
10012 	if (quota == RUNTIME_INF || quota == -1)
10013 		return RUNTIME_INF;
10014 
10015 	return to_ratio(period, quota);
10016 }
10017 
10018 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10019 {
10020 	struct cfs_schedulable_data *d = data;
10021 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10022 	s64 quota = 0, parent_quota = -1;
10023 
10024 	if (!tg->parent) {
10025 		quota = RUNTIME_INF;
10026 	} else {
10027 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10028 
10029 		quota = normalize_cfs_quota(tg, d);
10030 		parent_quota = parent_b->hierarchical_quota;
10031 
10032 		/*
10033 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10034 		 * always take the min.  On cgroup1, only inherit when no
10035 		 * limit is set:
10036 		 */
10037 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10038 			quota = min(quota, parent_quota);
10039 		} else {
10040 			if (quota == RUNTIME_INF)
10041 				quota = parent_quota;
10042 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10043 				return -EINVAL;
10044 		}
10045 	}
10046 	cfs_b->hierarchical_quota = quota;
10047 
10048 	return 0;
10049 }
10050 
10051 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10052 {
10053 	int ret;
10054 	struct cfs_schedulable_data data = {
10055 		.tg = tg,
10056 		.period = period,
10057 		.quota = quota,
10058 	};
10059 
10060 	if (quota != RUNTIME_INF) {
10061 		do_div(data.period, NSEC_PER_USEC);
10062 		do_div(data.quota, NSEC_PER_USEC);
10063 	}
10064 
10065 	rcu_read_lock();
10066 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10067 	rcu_read_unlock();
10068 
10069 	return ret;
10070 }
10071 
10072 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10073 {
10074 	struct task_group *tg = css_tg(seq_css(sf));
10075 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10076 
10077 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10078 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10079 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10080 
10081 	if (schedstat_enabled() && tg != &root_task_group) {
10082 		u64 ws = 0;
10083 		int i;
10084 
10085 		for_each_possible_cpu(i)
10086 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10087 
10088 		seq_printf(sf, "wait_sum %llu\n", ws);
10089 	}
10090 
10091 	return 0;
10092 }
10093 #endif /* CONFIG_CFS_BANDWIDTH */
10094 #endif /* CONFIG_FAIR_GROUP_SCHED */
10095 
10096 #ifdef CONFIG_RT_GROUP_SCHED
10097 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10098 				struct cftype *cft, s64 val)
10099 {
10100 	return sched_group_set_rt_runtime(css_tg(css), val);
10101 }
10102 
10103 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10104 			       struct cftype *cft)
10105 {
10106 	return sched_group_rt_runtime(css_tg(css));
10107 }
10108 
10109 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10110 				    struct cftype *cftype, u64 rt_period_us)
10111 {
10112 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10113 }
10114 
10115 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10116 				   struct cftype *cft)
10117 {
10118 	return sched_group_rt_period(css_tg(css));
10119 }
10120 #endif /* CONFIG_RT_GROUP_SCHED */
10121 
10122 static struct cftype cpu_legacy_files[] = {
10123 #ifdef CONFIG_FAIR_GROUP_SCHED
10124 	{
10125 		.name = "shares",
10126 		.read_u64 = cpu_shares_read_u64,
10127 		.write_u64 = cpu_shares_write_u64,
10128 	},
10129 #endif
10130 #ifdef CONFIG_CFS_BANDWIDTH
10131 	{
10132 		.name = "cfs_quota_us",
10133 		.read_s64 = cpu_cfs_quota_read_s64,
10134 		.write_s64 = cpu_cfs_quota_write_s64,
10135 	},
10136 	{
10137 		.name = "cfs_period_us",
10138 		.read_u64 = cpu_cfs_period_read_u64,
10139 		.write_u64 = cpu_cfs_period_write_u64,
10140 	},
10141 	{
10142 		.name = "cfs_burst_us",
10143 		.read_u64 = cpu_cfs_burst_read_u64,
10144 		.write_u64 = cpu_cfs_burst_write_u64,
10145 	},
10146 	{
10147 		.name = "stat",
10148 		.seq_show = cpu_cfs_stat_show,
10149 	},
10150 #endif
10151 #ifdef CONFIG_RT_GROUP_SCHED
10152 	{
10153 		.name = "rt_runtime_us",
10154 		.read_s64 = cpu_rt_runtime_read,
10155 		.write_s64 = cpu_rt_runtime_write,
10156 	},
10157 	{
10158 		.name = "rt_period_us",
10159 		.read_u64 = cpu_rt_period_read_uint,
10160 		.write_u64 = cpu_rt_period_write_uint,
10161 	},
10162 #endif
10163 #ifdef CONFIG_UCLAMP_TASK_GROUP
10164 	{
10165 		.name = "uclamp.min",
10166 		.flags = CFTYPE_NOT_ON_ROOT,
10167 		.seq_show = cpu_uclamp_min_show,
10168 		.write = cpu_uclamp_min_write,
10169 	},
10170 	{
10171 		.name = "uclamp.max",
10172 		.flags = CFTYPE_NOT_ON_ROOT,
10173 		.seq_show = cpu_uclamp_max_show,
10174 		.write = cpu_uclamp_max_write,
10175 	},
10176 #endif
10177 	{ }	/* Terminate */
10178 };
10179 
10180 static int cpu_extra_stat_show(struct seq_file *sf,
10181 			       struct cgroup_subsys_state *css)
10182 {
10183 #ifdef CONFIG_CFS_BANDWIDTH
10184 	{
10185 		struct task_group *tg = css_tg(css);
10186 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10187 		u64 throttled_usec;
10188 
10189 		throttled_usec = cfs_b->throttled_time;
10190 		do_div(throttled_usec, NSEC_PER_USEC);
10191 
10192 		seq_printf(sf, "nr_periods %d\n"
10193 			   "nr_throttled %d\n"
10194 			   "throttled_usec %llu\n",
10195 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10196 			   throttled_usec);
10197 	}
10198 #endif
10199 	return 0;
10200 }
10201 
10202 #ifdef CONFIG_FAIR_GROUP_SCHED
10203 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10204 			       struct cftype *cft)
10205 {
10206 	struct task_group *tg = css_tg(css);
10207 	u64 weight = scale_load_down(tg->shares);
10208 
10209 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10210 }
10211 
10212 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10213 				struct cftype *cft, u64 weight)
10214 {
10215 	/*
10216 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10217 	 * values which are 1, 100 and 10000 respectively.  While it loses
10218 	 * a bit of range on both ends, it maps pretty well onto the shares
10219 	 * value used by scheduler and the round-trip conversions preserve
10220 	 * the original value over the entire range.
10221 	 */
10222 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10223 		return -ERANGE;
10224 
10225 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10226 
10227 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10228 }
10229 
10230 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10231 				    struct cftype *cft)
10232 {
10233 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10234 	int last_delta = INT_MAX;
10235 	int prio, delta;
10236 
10237 	/* find the closest nice value to the current weight */
10238 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10239 		delta = abs(sched_prio_to_weight[prio] - weight);
10240 		if (delta >= last_delta)
10241 			break;
10242 		last_delta = delta;
10243 	}
10244 
10245 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10246 }
10247 
10248 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10249 				     struct cftype *cft, s64 nice)
10250 {
10251 	unsigned long weight;
10252 	int idx;
10253 
10254 	if (nice < MIN_NICE || nice > MAX_NICE)
10255 		return -ERANGE;
10256 
10257 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10258 	idx = array_index_nospec(idx, 40);
10259 	weight = sched_prio_to_weight[idx];
10260 
10261 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10262 }
10263 #endif
10264 
10265 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10266 						  long period, long quota)
10267 {
10268 	if (quota < 0)
10269 		seq_puts(sf, "max");
10270 	else
10271 		seq_printf(sf, "%ld", quota);
10272 
10273 	seq_printf(sf, " %ld\n", period);
10274 }
10275 
10276 /* caller should put the current value in *@periodp before calling */
10277 static int __maybe_unused cpu_period_quota_parse(char *buf,
10278 						 u64 *periodp, u64 *quotap)
10279 {
10280 	char tok[21];	/* U64_MAX */
10281 
10282 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10283 		return -EINVAL;
10284 
10285 	*periodp *= NSEC_PER_USEC;
10286 
10287 	if (sscanf(tok, "%llu", quotap))
10288 		*quotap *= NSEC_PER_USEC;
10289 	else if (!strcmp(tok, "max"))
10290 		*quotap = RUNTIME_INF;
10291 	else
10292 		return -EINVAL;
10293 
10294 	return 0;
10295 }
10296 
10297 #ifdef CONFIG_CFS_BANDWIDTH
10298 static int cpu_max_show(struct seq_file *sf, void *v)
10299 {
10300 	struct task_group *tg = css_tg(seq_css(sf));
10301 
10302 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10303 	return 0;
10304 }
10305 
10306 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10307 			     char *buf, size_t nbytes, loff_t off)
10308 {
10309 	struct task_group *tg = css_tg(of_css(of));
10310 	u64 period = tg_get_cfs_period(tg);
10311 	u64 burst = tg_get_cfs_burst(tg);
10312 	u64 quota;
10313 	int ret;
10314 
10315 	ret = cpu_period_quota_parse(buf, &period, &quota);
10316 	if (!ret)
10317 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10318 	return ret ?: nbytes;
10319 }
10320 #endif
10321 
10322 static struct cftype cpu_files[] = {
10323 #ifdef CONFIG_FAIR_GROUP_SCHED
10324 	{
10325 		.name = "weight",
10326 		.flags = CFTYPE_NOT_ON_ROOT,
10327 		.read_u64 = cpu_weight_read_u64,
10328 		.write_u64 = cpu_weight_write_u64,
10329 	},
10330 	{
10331 		.name = "weight.nice",
10332 		.flags = CFTYPE_NOT_ON_ROOT,
10333 		.read_s64 = cpu_weight_nice_read_s64,
10334 		.write_s64 = cpu_weight_nice_write_s64,
10335 	},
10336 #endif
10337 #ifdef CONFIG_CFS_BANDWIDTH
10338 	{
10339 		.name = "max",
10340 		.flags = CFTYPE_NOT_ON_ROOT,
10341 		.seq_show = cpu_max_show,
10342 		.write = cpu_max_write,
10343 	},
10344 	{
10345 		.name = "max.burst",
10346 		.flags = CFTYPE_NOT_ON_ROOT,
10347 		.read_u64 = cpu_cfs_burst_read_u64,
10348 		.write_u64 = cpu_cfs_burst_write_u64,
10349 	},
10350 #endif
10351 #ifdef CONFIG_UCLAMP_TASK_GROUP
10352 	{
10353 		.name = "uclamp.min",
10354 		.flags = CFTYPE_NOT_ON_ROOT,
10355 		.seq_show = cpu_uclamp_min_show,
10356 		.write = cpu_uclamp_min_write,
10357 	},
10358 	{
10359 		.name = "uclamp.max",
10360 		.flags = CFTYPE_NOT_ON_ROOT,
10361 		.seq_show = cpu_uclamp_max_show,
10362 		.write = cpu_uclamp_max_write,
10363 	},
10364 #endif
10365 	{ }	/* terminate */
10366 };
10367 
10368 struct cgroup_subsys cpu_cgrp_subsys = {
10369 	.css_alloc	= cpu_cgroup_css_alloc,
10370 	.css_online	= cpu_cgroup_css_online,
10371 	.css_released	= cpu_cgroup_css_released,
10372 	.css_free	= cpu_cgroup_css_free,
10373 	.css_extra_stat_show = cpu_extra_stat_show,
10374 	.fork		= cpu_cgroup_fork,
10375 	.can_attach	= cpu_cgroup_can_attach,
10376 	.attach		= cpu_cgroup_attach,
10377 	.legacy_cftypes	= cpu_legacy_files,
10378 	.dfl_cftypes	= cpu_files,
10379 	.early_init	= true,
10380 	.threaded	= true,
10381 };
10382 
10383 #endif	/* CONFIG_CGROUP_SCHED */
10384 
10385 void dump_cpu_task(int cpu)
10386 {
10387 	pr_info("Task dump for CPU %d:\n", cpu);
10388 	sched_show_task(cpu_curr(cpu));
10389 }
10390 
10391 /*
10392  * Nice levels are multiplicative, with a gentle 10% change for every
10393  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10394  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10395  * that remained on nice 0.
10396  *
10397  * The "10% effect" is relative and cumulative: from _any_ nice level,
10398  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10399  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10400  * If a task goes up by ~10% and another task goes down by ~10% then
10401  * the relative distance between them is ~25%.)
10402  */
10403 const int sched_prio_to_weight[40] = {
10404  /* -20 */     88761,     71755,     56483,     46273,     36291,
10405  /* -15 */     29154,     23254,     18705,     14949,     11916,
10406  /* -10 */      9548,      7620,      6100,      4904,      3906,
10407  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10408  /*   0 */      1024,       820,       655,       526,       423,
10409  /*   5 */       335,       272,       215,       172,       137,
10410  /*  10 */       110,        87,        70,        56,        45,
10411  /*  15 */        36,        29,        23,        18,        15,
10412 };
10413 
10414 /*
10415  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10416  *
10417  * In cases where the weight does not change often, we can use the
10418  * precalculated inverse to speed up arithmetics by turning divisions
10419  * into multiplications:
10420  */
10421 const u32 sched_prio_to_wmult[40] = {
10422  /* -20 */     48388,     59856,     76040,     92818,    118348,
10423  /* -15 */    147320,    184698,    229616,    287308,    360437,
10424  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10425  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10426  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10427  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10428  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10429  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10430 };
10431 
10432 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10433 {
10434         trace_sched_update_nr_running_tp(rq, count);
10435 }
10436