xref: /openbmc/linux/kernel/sched/core.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20 
21 #include "pelt.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25 
26 /*
27  * Export tracepoints that act as a bare tracehook (ie: have no trace event
28  * associated with them) to allow external modules to probe them.
29  */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36 
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38 
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41  * Debugging: various feature bits
42  *
43  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44  * sysctl_sched_features, defined in sched.h, to allow constants propagation
45  * at compile time and compiler optimization based on features default.
46  */
47 #define SCHED_FEAT(name, enabled)	\
48 	(1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 	0;
52 #undef SCHED_FEAT
53 #endif
54 
55 /*
56  * Number of tasks to iterate in a single balance run.
57  * Limited because this is done with IRQs disabled.
58  */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60 
61 /*
62  * period over which we measure -rt task CPU usage in us.
63  * default: 1s
64  */
65 unsigned int sysctl_sched_rt_period = 1000000;
66 
67 __read_mostly int scheduler_running;
68 
69 /*
70  * part of the period that we allow rt tasks to run in us.
71  * default: 0.95s
72  */
73 int sysctl_sched_rt_runtime = 950000;
74 
75 /*
76  * __task_rq_lock - lock the rq @p resides on.
77  */
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 	__acquires(rq->lock)
80 {
81 	struct rq *rq;
82 
83 	lockdep_assert_held(&p->pi_lock);
84 
85 	for (;;) {
86 		rq = task_rq(p);
87 		raw_spin_lock(&rq->lock);
88 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 			rq_pin_lock(rq, rf);
90 			return rq;
91 		}
92 		raw_spin_unlock(&rq->lock);
93 
94 		while (unlikely(task_on_rq_migrating(p)))
95 			cpu_relax();
96 	}
97 }
98 
99 /*
100  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101  */
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 	__acquires(p->pi_lock)
104 	__acquires(rq->lock)
105 {
106 	struct rq *rq;
107 
108 	for (;;) {
109 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 		rq = task_rq(p);
111 		raw_spin_lock(&rq->lock);
112 		/*
113 		 *	move_queued_task()		task_rq_lock()
114 		 *
115 		 *	ACQUIRE (rq->lock)
116 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
117 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
118 		 *	[S] ->cpu = new_cpu		[L] task_rq()
119 		 *					[L] ->on_rq
120 		 *	RELEASE (rq->lock)
121 		 *
122 		 * If we observe the old CPU in task_rq_lock(), the acquire of
123 		 * the old rq->lock will fully serialize against the stores.
124 		 *
125 		 * If we observe the new CPU in task_rq_lock(), the address
126 		 * dependency headed by '[L] rq = task_rq()' and the acquire
127 		 * will pair with the WMB to ensure we then also see migrating.
128 		 */
129 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 			rq_pin_lock(rq, rf);
131 			return rq;
132 		}
133 		raw_spin_unlock(&rq->lock);
134 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135 
136 		while (unlikely(task_on_rq_migrating(p)))
137 			cpu_relax();
138 	}
139 }
140 
141 /*
142  * RQ-clock updating methods:
143  */
144 
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148  * In theory, the compile should just see 0 here, and optimize out the call
149  * to sched_rt_avg_update. But I don't trust it...
150  */
151 	s64 __maybe_unused steal = 0, irq_delta = 0;
152 
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155 
156 	/*
157 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 	 * this case when a previous update_rq_clock() happened inside a
159 	 * {soft,}irq region.
160 	 *
161 	 * When this happens, we stop ->clock_task and only update the
162 	 * prev_irq_time stamp to account for the part that fit, so that a next
163 	 * update will consume the rest. This ensures ->clock_task is
164 	 * monotonic.
165 	 *
166 	 * It does however cause some slight miss-attribution of {soft,}irq
167 	 * time, a more accurate solution would be to update the irq_time using
168 	 * the current rq->clock timestamp, except that would require using
169 	 * atomic ops.
170 	 */
171 	if (irq_delta > delta)
172 		irq_delta = delta;
173 
174 	rq->prev_irq_time += irq_delta;
175 	delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 	if (static_key_false((&paravirt_steal_rq_enabled))) {
179 		steal = paravirt_steal_clock(cpu_of(rq));
180 		steal -= rq->prev_steal_time_rq;
181 
182 		if (unlikely(steal > delta))
183 			steal = delta;
184 
185 		rq->prev_steal_time_rq += steal;
186 		delta -= steal;
187 	}
188 #endif
189 
190 	rq->clock_task += delta;
191 
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 		update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 	update_rq_clock_pelt(rq, delta);
197 }
198 
199 void update_rq_clock(struct rq *rq)
200 {
201 	s64 delta;
202 
203 	lockdep_assert_held(&rq->lock);
204 
205 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 		return;
207 
208 #ifdef CONFIG_SCHED_DEBUG
209 	if (sched_feat(WARN_DOUBLE_CLOCK))
210 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 	rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213 
214 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 	if (delta < 0)
216 		return;
217 	rq->clock += delta;
218 	update_rq_clock_task(rq, delta);
219 }
220 
221 
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224  * Use HR-timers to deliver accurate preemption points.
225  */
226 
227 static void hrtick_clear(struct rq *rq)
228 {
229 	if (hrtimer_active(&rq->hrtick_timer))
230 		hrtimer_cancel(&rq->hrtick_timer);
231 }
232 
233 /*
234  * High-resolution timer tick.
235  * Runs from hardirq context with interrupts disabled.
236  */
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 	struct rq_flags rf;
241 
242 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243 
244 	rq_lock(rq, &rf);
245 	update_rq_clock(rq);
246 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 	rq_unlock(rq, &rf);
248 
249 	return HRTIMER_NORESTART;
250 }
251 
252 #ifdef CONFIG_SMP
253 
254 static void __hrtick_restart(struct rq *rq)
255 {
256 	struct hrtimer *timer = &rq->hrtick_timer;
257 
258 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
259 }
260 
261 /*
262  * called from hardirq (IPI) context
263  */
264 static void __hrtick_start(void *arg)
265 {
266 	struct rq *rq = arg;
267 	struct rq_flags rf;
268 
269 	rq_lock(rq, &rf);
270 	__hrtick_restart(rq);
271 	rq->hrtick_csd_pending = 0;
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq()) {
296 		__hrtick_restart(rq);
297 	} else if (!rq->hrtick_csd_pending) {
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 		rq->hrtick_csd_pending = 1;
300 	}
301 }
302 
303 #else
304 /*
305  * Called to set the hrtick timer state.
306  *
307  * called with rq->lock held and irqs disabled
308  */
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 	/*
312 	 * Don't schedule slices shorter than 10000ns, that just
313 	 * doesn't make sense. Rely on vruntime for fairness.
314 	 */
315 	delay = max_t(u64, delay, 10000LL);
316 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 		      HRTIMER_MODE_REL_PINNED);
318 }
319 #endif /* CONFIG_SMP */
320 
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 	rq->hrtick_csd_pending = 0;
325 
326 	rq->hrtick_csd.flags = 0;
327 	rq->hrtick_csd.func = __hrtick_start;
328 	rq->hrtick_csd.info = rq;
329 #endif
330 
331 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 	rq->hrtick_timer.function = hrtick;
333 }
334 #else	/* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338 
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif	/* CONFIG_SCHED_HRTICK */
343 
344 /*
345  * cmpxchg based fetch_or, macro so it works for different integer types
346  */
347 #define fetch_or(ptr, mask)						\
348 	({								\
349 		typeof(ptr) _ptr = (ptr);				\
350 		typeof(mask) _mask = (mask);				\
351 		typeof(*_ptr) _old, _val = *_ptr;			\
352 									\
353 		for (;;) {						\
354 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
355 			if (_old == _val)				\
356 				break;					\
357 			_val = _old;					\
358 		}							\
359 	_old;								\
360 })
361 
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365  * this avoids any races wrt polling state changes and thereby avoids
366  * spurious IPIs.
367  */
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373 
374 /*
375  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376  *
377  * If this returns true, then the idle task promises to call
378  * sched_ttwu_pending() and reschedule soon.
379  */
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384 
385 	for (;;) {
386 		if (!(val & _TIF_POLLING_NRFLAG))
387 			return false;
388 		if (val & _TIF_NEED_RESCHED)
389 			return true;
390 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 		if (old == val)
392 			break;
393 		val = old;
394 	}
395 	return true;
396 }
397 
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 	set_tsk_need_resched(p);
402 	return true;
403 }
404 
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 	return false;
409 }
410 #endif
411 #endif
412 
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 	struct wake_q_node *node = &task->wake_q;
416 
417 	/*
418 	 * Atomically grab the task, if ->wake_q is !nil already it means
419 	 * its already queued (either by us or someone else) and will get the
420 	 * wakeup due to that.
421 	 *
422 	 * In order to ensure that a pending wakeup will observe our pending
423 	 * state, even in the failed case, an explicit smp_mb() must be used.
424 	 */
425 	smp_mb__before_atomic();
426 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 		return false;
428 
429 	/*
430 	 * The head is context local, there can be no concurrency.
431 	 */
432 	*head->lastp = node;
433 	head->lastp = &node->next;
434 	return true;
435 }
436 
437 /**
438  * wake_q_add() - queue a wakeup for 'later' waking.
439  * @head: the wake_q_head to add @task to
440  * @task: the task to queue for 'later' wakeup
441  *
442  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444  * instantly.
445  *
446  * This function must be used as-if it were wake_up_process(); IOW the task
447  * must be ready to be woken at this location.
448  */
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 	if (__wake_q_add(head, task))
452 		get_task_struct(task);
453 }
454 
455 /**
456  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457  * @head: the wake_q_head to add @task to
458  * @task: the task to queue for 'later' wakeup
459  *
460  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462  * instantly.
463  *
464  * This function must be used as-if it were wake_up_process(); IOW the task
465  * must be ready to be woken at this location.
466  *
467  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468  * that already hold reference to @task can call the 'safe' version and trust
469  * wake_q to do the right thing depending whether or not the @task is already
470  * queued for wakeup.
471  */
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 	if (!__wake_q_add(head, task))
475 		put_task_struct(task);
476 }
477 
478 void wake_up_q(struct wake_q_head *head)
479 {
480 	struct wake_q_node *node = head->first;
481 
482 	while (node != WAKE_Q_TAIL) {
483 		struct task_struct *task;
484 
485 		task = container_of(node, struct task_struct, wake_q);
486 		BUG_ON(!task);
487 		/* Task can safely be re-inserted now: */
488 		node = node->next;
489 		task->wake_q.next = NULL;
490 
491 		/*
492 		 * wake_up_process() executes a full barrier, which pairs with
493 		 * the queueing in wake_q_add() so as not to miss wakeups.
494 		 */
495 		wake_up_process(task);
496 		put_task_struct(task);
497 	}
498 }
499 
500 /*
501  * resched_curr - mark rq's current task 'to be rescheduled now'.
502  *
503  * On UP this means the setting of the need_resched flag, on SMP it
504  * might also involve a cross-CPU call to trigger the scheduler on
505  * the target CPU.
506  */
507 void resched_curr(struct rq *rq)
508 {
509 	struct task_struct *curr = rq->curr;
510 	int cpu;
511 
512 	lockdep_assert_held(&rq->lock);
513 
514 	if (test_tsk_need_resched(curr))
515 		return;
516 
517 	cpu = cpu_of(rq);
518 
519 	if (cpu == smp_processor_id()) {
520 		set_tsk_need_resched(curr);
521 		set_preempt_need_resched();
522 		return;
523 	}
524 
525 	if (set_nr_and_not_polling(curr))
526 		smp_send_reschedule(cpu);
527 	else
528 		trace_sched_wake_idle_without_ipi(cpu);
529 }
530 
531 void resched_cpu(int cpu)
532 {
533 	struct rq *rq = cpu_rq(cpu);
534 	unsigned long flags;
535 
536 	raw_spin_lock_irqsave(&rq->lock, flags);
537 	if (cpu_online(cpu) || cpu == smp_processor_id())
538 		resched_curr(rq);
539 	raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541 
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545  * In the semi idle case, use the nearest busy CPU for migrating timers
546  * from an idle CPU.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle CPU will add more delays to the timers than intended
550  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int i, cpu = smp_processor_id();
555 	struct sched_domain *sd;
556 
557 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 		return cpu;
559 
560 	rcu_read_lock();
561 	for_each_domain(cpu, sd) {
562 		for_each_cpu(i, sched_domain_span(sd)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	if (set_nr_and_not_polling(rq->idle))
598 		smp_send_reschedule(cpu);
599 	else
600 		trace_sched_wake_idle_without_ipi(cpu);
601 }
602 
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 	/*
606 	 * We just need the target to call irq_exit() and re-evaluate
607 	 * the next tick. The nohz full kick at least implies that.
608 	 * If needed we can still optimize that later with an
609 	 * empty IRQ.
610 	 */
611 	if (cpu_is_offline(cpu))
612 		return true;  /* Don't try to wake offline CPUs. */
613 	if (tick_nohz_full_cpu(cpu)) {
614 		if (cpu != smp_processor_id() ||
615 		    tick_nohz_tick_stopped())
616 			tick_nohz_full_kick_cpu(cpu);
617 		return true;
618 	}
619 
620 	return false;
621 }
622 
623 /*
624  * Wake up the specified CPU.  If the CPU is going offline, it is the
625  * caller's responsibility to deal with the lost wakeup, for example,
626  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627  */
628 void wake_up_nohz_cpu(int cpu)
629 {
630 	if (!wake_up_full_nohz_cpu(cpu))
631 		wake_up_idle_cpu(cpu);
632 }
633 
634 static inline bool got_nohz_idle_kick(void)
635 {
636 	int cpu = smp_processor_id();
637 
638 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 		return false;
640 
641 	if (idle_cpu(cpu) && !need_resched())
642 		return true;
643 
644 	/*
645 	 * We can't run Idle Load Balance on this CPU for this time so we
646 	 * cancel it and clear NOHZ_BALANCE_KICK
647 	 */
648 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 	return false;
650 }
651 
652 #else /* CONFIG_NO_HZ_COMMON */
653 
654 static inline bool got_nohz_idle_kick(void)
655 {
656 	return false;
657 }
658 
659 #endif /* CONFIG_NO_HZ_COMMON */
660 
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 	int fifo_nr_running;
665 
666 	/* Deadline tasks, even if single, need the tick */
667 	if (rq->dl.dl_nr_running)
668 		return false;
669 
670 	/*
671 	 * If there are more than one RR tasks, we need the tick to effect the
672 	 * actual RR behaviour.
673 	 */
674 	if (rq->rt.rr_nr_running) {
675 		if (rq->rt.rr_nr_running == 1)
676 			return true;
677 		else
678 			return false;
679 	}
680 
681 	/*
682 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 	 * forced preemption between FIFO tasks.
684 	 */
685 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 	if (fifo_nr_running)
687 		return true;
688 
689 	/*
690 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 	 * if there's more than one we need the tick for involuntary
692 	 * preemption.
693 	 */
694 	if (rq->nr_running > 1)
695 		return false;
696 
697 	return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (task_has_idle_policy(p)) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		p->se.runnable_weight = load->weight;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 		p->se.runnable_weight = load->weight;
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /* Max allowed minimum utilization */
777 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778 
779 /* Max allowed maximum utilization */
780 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781 
782 /* All clamps are required to be less or equal than these values */
783 static struct uclamp_se uclamp_default[UCLAMP_CNT];
784 
785 /* Integer rounded range for each bucket */
786 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787 
788 #define for_each_clamp_id(clamp_id) \
789 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790 
791 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792 {
793 	return clamp_value / UCLAMP_BUCKET_DELTA;
794 }
795 
796 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797 {
798 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799 }
800 
801 static inline unsigned int uclamp_none(int clamp_id)
802 {
803 	if (clamp_id == UCLAMP_MIN)
804 		return 0;
805 	return SCHED_CAPACITY_SCALE;
806 }
807 
808 static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 				 unsigned int value, bool user_defined)
810 {
811 	uc_se->value = value;
812 	uc_se->bucket_id = uclamp_bucket_id(value);
813 	uc_se->user_defined = user_defined;
814 }
815 
816 static inline unsigned int
817 uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 		  unsigned int clamp_value)
819 {
820 	/*
821 	 * Avoid blocked utilization pushing up the frequency when we go
822 	 * idle (which drops the max-clamp) by retaining the last known
823 	 * max-clamp.
824 	 */
825 	if (clamp_id == UCLAMP_MAX) {
826 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 		return clamp_value;
828 	}
829 
830 	return uclamp_none(UCLAMP_MIN);
831 }
832 
833 static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 				     unsigned int clamp_value)
835 {
836 	/* Reset max-clamp retention only on idle exit */
837 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 		return;
839 
840 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841 }
842 
843 static inline
844 unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 				 unsigned int clamp_value)
846 {
847 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 	int bucket_id = UCLAMP_BUCKETS - 1;
849 
850 	/*
851 	 * Since both min and max clamps are max aggregated, find the
852 	 * top most bucket with tasks in.
853 	 */
854 	for ( ; bucket_id >= 0; bucket_id--) {
855 		if (!bucket[bucket_id].tasks)
856 			continue;
857 		return bucket[bucket_id].value;
858 	}
859 
860 	/* No tasks -- default clamp values */
861 	return uclamp_idle_value(rq, clamp_id, clamp_value);
862 }
863 
864 /*
865  * The effective clamp bucket index of a task depends on, by increasing
866  * priority:
867  * - the task specific clamp value, when explicitly requested from userspace
868  * - the system default clamp value, defined by the sysadmin
869  */
870 static inline struct uclamp_se
871 uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872 {
873 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 	struct uclamp_se uc_max = uclamp_default[clamp_id];
875 
876 	/* System default restrictions always apply */
877 	if (unlikely(uc_req.value > uc_max.value))
878 		return uc_max;
879 
880 	return uc_req;
881 }
882 
883 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
884 {
885 	struct uclamp_se uc_eff;
886 
887 	/* Task currently refcounted: use back-annotated (effective) value */
888 	if (p->uclamp[clamp_id].active)
889 		return p->uclamp[clamp_id].value;
890 
891 	uc_eff = uclamp_eff_get(p, clamp_id);
892 
893 	return uc_eff.value;
894 }
895 
896 /*
897  * When a task is enqueued on a rq, the clamp bucket currently defined by the
898  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899  * updates the rq's clamp value if required.
900  *
901  * Tasks can have a task-specific value requested from user-space, track
902  * within each bucket the maximum value for tasks refcounted in it.
903  * This "local max aggregation" allows to track the exact "requested" value
904  * for each bucket when all its RUNNABLE tasks require the same clamp.
905  */
906 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 				    unsigned int clamp_id)
908 {
909 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 	struct uclamp_bucket *bucket;
912 
913 	lockdep_assert_held(&rq->lock);
914 
915 	/* Update task effective clamp */
916 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
917 
918 	bucket = &uc_rq->bucket[uc_se->bucket_id];
919 	bucket->tasks++;
920 	uc_se->active = true;
921 
922 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
923 
924 	/*
925 	 * Local max aggregation: rq buckets always track the max
926 	 * "requested" clamp value of its RUNNABLE tasks.
927 	 */
928 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 		bucket->value = uc_se->value;
930 
931 	if (uc_se->value > READ_ONCE(uc_rq->value))
932 		WRITE_ONCE(uc_rq->value, uc_se->value);
933 }
934 
935 /*
936  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937  * is released. If this is the last task reference counting the rq's max
938  * active clamp value, then the rq's clamp value is updated.
939  *
940  * Both refcounted tasks and rq's cached clamp values are expected to be
941  * always valid. If it's detected they are not, as defensive programming,
942  * enforce the expected state and warn.
943  */
944 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 				    unsigned int clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 	unsigned int bkt_clamp;
951 	unsigned int rq_clamp;
952 
953 	lockdep_assert_held(&rq->lock);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	SCHED_WARN_ON(!bucket->tasks);
957 	if (likely(bucket->tasks))
958 		bucket->tasks--;
959 	uc_se->active = false;
960 
961 	/*
962 	 * Keep "local max aggregation" simple and accept to (possibly)
963 	 * overboost some RUNNABLE tasks in the same bucket.
964 	 * The rq clamp bucket value is reset to its base value whenever
965 	 * there are no more RUNNABLE tasks refcounting it.
966 	 */
967 	if (likely(bucket->tasks))
968 		return;
969 
970 	rq_clamp = READ_ONCE(uc_rq->value);
971 	/*
972 	 * Defensive programming: this should never happen. If it happens,
973 	 * e.g. due to future modification, warn and fixup the expected value.
974 	 */
975 	SCHED_WARN_ON(bucket->value > rq_clamp);
976 	if (bucket->value >= rq_clamp) {
977 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 		WRITE_ONCE(uc_rq->value, bkt_clamp);
979 	}
980 }
981 
982 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
983 {
984 	unsigned int clamp_id;
985 
986 	if (unlikely(!p->sched_class->uclamp_enabled))
987 		return;
988 
989 	for_each_clamp_id(clamp_id)
990 		uclamp_rq_inc_id(rq, p, clamp_id);
991 
992 	/* Reset clamp idle holding when there is one RUNNABLE task */
993 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
995 }
996 
997 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
998 {
999 	unsigned int clamp_id;
1000 
1001 	if (unlikely(!p->sched_class->uclamp_enabled))
1002 		return;
1003 
1004 	for_each_clamp_id(clamp_id)
1005 		uclamp_rq_dec_id(rq, p, clamp_id);
1006 }
1007 
1008 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 				void __user *buffer, size_t *lenp,
1010 				loff_t *ppos)
1011 {
1012 	int old_min, old_max;
1013 	static DEFINE_MUTEX(mutex);
1014 	int result;
1015 
1016 	mutex_lock(&mutex);
1017 	old_min = sysctl_sched_uclamp_util_min;
1018 	old_max = sysctl_sched_uclamp_util_max;
1019 
1020 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1021 	if (result)
1022 		goto undo;
1023 	if (!write)
1024 		goto done;
1025 
1026 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028 		result = -EINVAL;
1029 		goto undo;
1030 	}
1031 
1032 	if (old_min != sysctl_sched_uclamp_util_min) {
1033 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1034 			      sysctl_sched_uclamp_util_min, false);
1035 	}
1036 	if (old_max != sysctl_sched_uclamp_util_max) {
1037 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1038 			      sysctl_sched_uclamp_util_max, false);
1039 	}
1040 
1041 	/*
1042 	 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 	 * just a lazy update at each next enqueue time.
1044 	 */
1045 	goto done;
1046 
1047 undo:
1048 	sysctl_sched_uclamp_util_min = old_min;
1049 	sysctl_sched_uclamp_util_max = old_max;
1050 done:
1051 	mutex_unlock(&mutex);
1052 
1053 	return result;
1054 }
1055 
1056 static int uclamp_validate(struct task_struct *p,
1057 			   const struct sched_attr *attr)
1058 {
1059 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061 
1062 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 		lower_bound = attr->sched_util_min;
1064 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 		upper_bound = attr->sched_util_max;
1066 
1067 	if (lower_bound > upper_bound)
1068 		return -EINVAL;
1069 	if (upper_bound > SCHED_CAPACITY_SCALE)
1070 		return -EINVAL;
1071 
1072 	return 0;
1073 }
1074 
1075 static void __setscheduler_uclamp(struct task_struct *p,
1076 				  const struct sched_attr *attr)
1077 {
1078 	unsigned int clamp_id;
1079 
1080 	/*
1081 	 * On scheduling class change, reset to default clamps for tasks
1082 	 * without a task-specific value.
1083 	 */
1084 	for_each_clamp_id(clamp_id) {
1085 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 		unsigned int clamp_value = uclamp_none(clamp_id);
1087 
1088 		/* Keep using defined clamps across class changes */
1089 		if (uc_se->user_defined)
1090 			continue;
1091 
1092 		/* By default, RT tasks always get 100% boost */
1093 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 			clamp_value = uclamp_none(UCLAMP_MAX);
1095 
1096 		uclamp_se_set(uc_se, clamp_value, false);
1097 	}
1098 
1099 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100 		return;
1101 
1102 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 			      attr->sched_util_min, true);
1105 	}
1106 
1107 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 			      attr->sched_util_max, true);
1110 	}
1111 }
1112 
1113 static void uclamp_fork(struct task_struct *p)
1114 {
1115 	unsigned int clamp_id;
1116 
1117 	for_each_clamp_id(clamp_id)
1118 		p->uclamp[clamp_id].active = false;
1119 
1120 	if (likely(!p->sched_reset_on_fork))
1121 		return;
1122 
1123 	for_each_clamp_id(clamp_id) {
1124 		unsigned int clamp_value = uclamp_none(clamp_id);
1125 
1126 		/* By default, RT tasks always get 100% boost */
1127 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 			clamp_value = uclamp_none(UCLAMP_MAX);
1129 
1130 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1131 	}
1132 }
1133 
1134 static void __init init_uclamp(void)
1135 {
1136 	struct uclamp_se uc_max = {};
1137 	unsigned int clamp_id;
1138 	int cpu;
1139 
1140 	for_each_possible_cpu(cpu) {
1141 		memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1142 		cpu_rq(cpu)->uclamp_flags = 0;
1143 	}
1144 
1145 	for_each_clamp_id(clamp_id) {
1146 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1147 			      uclamp_none(clamp_id), false);
1148 	}
1149 
1150 	/* System defaults allow max clamp values for both indexes */
1151 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1152 	for_each_clamp_id(clamp_id)
1153 		uclamp_default[clamp_id] = uc_max;
1154 }
1155 
1156 #else /* CONFIG_UCLAMP_TASK */
1157 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1159 static inline int uclamp_validate(struct task_struct *p,
1160 				  const struct sched_attr *attr)
1161 {
1162 	return -EOPNOTSUPP;
1163 }
1164 static void __setscheduler_uclamp(struct task_struct *p,
1165 				  const struct sched_attr *attr) { }
1166 static inline void uclamp_fork(struct task_struct *p) { }
1167 static inline void init_uclamp(void) { }
1168 #endif /* CONFIG_UCLAMP_TASK */
1169 
1170 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1171 {
1172 	if (!(flags & ENQUEUE_NOCLOCK))
1173 		update_rq_clock(rq);
1174 
1175 	if (!(flags & ENQUEUE_RESTORE)) {
1176 		sched_info_queued(rq, p);
1177 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178 	}
1179 
1180 	uclamp_rq_inc(rq, p);
1181 	p->sched_class->enqueue_task(rq, p, flags);
1182 }
1183 
1184 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1185 {
1186 	if (!(flags & DEQUEUE_NOCLOCK))
1187 		update_rq_clock(rq);
1188 
1189 	if (!(flags & DEQUEUE_SAVE)) {
1190 		sched_info_dequeued(rq, p);
1191 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192 	}
1193 
1194 	uclamp_rq_dec(rq, p);
1195 	p->sched_class->dequeue_task(rq, p, flags);
1196 }
1197 
1198 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1199 {
1200 	if (task_contributes_to_load(p))
1201 		rq->nr_uninterruptible--;
1202 
1203 	enqueue_task(rq, p, flags);
1204 
1205 	p->on_rq = TASK_ON_RQ_QUEUED;
1206 }
1207 
1208 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1209 {
1210 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211 
1212 	if (task_contributes_to_load(p))
1213 		rq->nr_uninterruptible++;
1214 
1215 	dequeue_task(rq, p, flags);
1216 }
1217 
1218 /*
1219  * __normal_prio - return the priority that is based on the static prio
1220  */
1221 static inline int __normal_prio(struct task_struct *p)
1222 {
1223 	return p->static_prio;
1224 }
1225 
1226 /*
1227  * Calculate the expected normal priority: i.e. priority
1228  * without taking RT-inheritance into account. Might be
1229  * boosted by interactivity modifiers. Changes upon fork,
1230  * setprio syscalls, and whenever the interactivity
1231  * estimator recalculates.
1232  */
1233 static inline int normal_prio(struct task_struct *p)
1234 {
1235 	int prio;
1236 
1237 	if (task_has_dl_policy(p))
1238 		prio = MAX_DL_PRIO-1;
1239 	else if (task_has_rt_policy(p))
1240 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1241 	else
1242 		prio = __normal_prio(p);
1243 	return prio;
1244 }
1245 
1246 /*
1247  * Calculate the current priority, i.e. the priority
1248  * taken into account by the scheduler. This value might
1249  * be boosted by RT tasks, or might be boosted by
1250  * interactivity modifiers. Will be RT if the task got
1251  * RT-boosted. If not then it returns p->normal_prio.
1252  */
1253 static int effective_prio(struct task_struct *p)
1254 {
1255 	p->normal_prio = normal_prio(p);
1256 	/*
1257 	 * If we are RT tasks or we were boosted to RT priority,
1258 	 * keep the priority unchanged. Otherwise, update priority
1259 	 * to the normal priority:
1260 	 */
1261 	if (!rt_prio(p->prio))
1262 		return p->normal_prio;
1263 	return p->prio;
1264 }
1265 
1266 /**
1267  * task_curr - is this task currently executing on a CPU?
1268  * @p: the task in question.
1269  *
1270  * Return: 1 if the task is currently executing. 0 otherwise.
1271  */
1272 inline int task_curr(const struct task_struct *p)
1273 {
1274 	return cpu_curr(task_cpu(p)) == p;
1275 }
1276 
1277 /*
1278  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279  * use the balance_callback list if you want balancing.
1280  *
1281  * this means any call to check_class_changed() must be followed by a call to
1282  * balance_callback().
1283  */
1284 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 				       const struct sched_class *prev_class,
1286 				       int oldprio)
1287 {
1288 	if (prev_class != p->sched_class) {
1289 		if (prev_class->switched_from)
1290 			prev_class->switched_from(rq, p);
1291 
1292 		p->sched_class->switched_to(rq, p);
1293 	} else if (oldprio != p->prio || dl_task(p))
1294 		p->sched_class->prio_changed(rq, p, oldprio);
1295 }
1296 
1297 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299 	const struct sched_class *class;
1300 
1301 	if (p->sched_class == rq->curr->sched_class) {
1302 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303 	} else {
1304 		for_each_class(class) {
1305 			if (class == rq->curr->sched_class)
1306 				break;
1307 			if (class == p->sched_class) {
1308 				resched_curr(rq);
1309 				break;
1310 			}
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * A queue event has occurred, and we're going to schedule.  In
1316 	 * this case, we can save a useless back to back clock update.
1317 	 */
1318 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1319 		rq_clock_skip_update(rq);
1320 }
1321 
1322 #ifdef CONFIG_SMP
1323 
1324 static inline bool is_per_cpu_kthread(struct task_struct *p)
1325 {
1326 	if (!(p->flags & PF_KTHREAD))
1327 		return false;
1328 
1329 	if (p->nr_cpus_allowed != 1)
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
1335 /*
1336  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1337  * __set_cpus_allowed_ptr() and select_fallback_rq().
1338  */
1339 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340 {
1341 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1342 		return false;
1343 
1344 	if (is_per_cpu_kthread(p))
1345 		return cpu_online(cpu);
1346 
1347 	return cpu_active(cpu);
1348 }
1349 
1350 /*
1351  * This is how migration works:
1352  *
1353  * 1) we invoke migration_cpu_stop() on the target CPU using
1354  *    stop_one_cpu().
1355  * 2) stopper starts to run (implicitly forcing the migrated thread
1356  *    off the CPU)
1357  * 3) it checks whether the migrated task is still in the wrong runqueue.
1358  * 4) if it's in the wrong runqueue then the migration thread removes
1359  *    it and puts it into the right queue.
1360  * 5) stopper completes and stop_one_cpu() returns and the migration
1361  *    is done.
1362  */
1363 
1364 /*
1365  * move_queued_task - move a queued task to new rq.
1366  *
1367  * Returns (locked) new rq. Old rq's lock is released.
1368  */
1369 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 				   struct task_struct *p, int new_cpu)
1371 {
1372 	lockdep_assert_held(&rq->lock);
1373 
1374 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1375 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1376 	set_task_cpu(p, new_cpu);
1377 	rq_unlock(rq, rf);
1378 
1379 	rq = cpu_rq(new_cpu);
1380 
1381 	rq_lock(rq, rf);
1382 	BUG_ON(task_cpu(p) != new_cpu);
1383 	enqueue_task(rq, p, 0);
1384 	p->on_rq = TASK_ON_RQ_QUEUED;
1385 	check_preempt_curr(rq, p, 0);
1386 
1387 	return rq;
1388 }
1389 
1390 struct migration_arg {
1391 	struct task_struct *task;
1392 	int dest_cpu;
1393 };
1394 
1395 /*
1396  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1397  * this because either it can't run here any more (set_cpus_allowed()
1398  * away from this CPU, or CPU going down), or because we're
1399  * attempting to rebalance this task on exec (sched_exec).
1400  *
1401  * So we race with normal scheduler movements, but that's OK, as long
1402  * as the task is no longer on this CPU.
1403  */
1404 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 				 struct task_struct *p, int dest_cpu)
1406 {
1407 	/* Affinity changed (again). */
1408 	if (!is_cpu_allowed(p, dest_cpu))
1409 		return rq;
1410 
1411 	update_rq_clock(rq);
1412 	rq = move_queued_task(rq, rf, p, dest_cpu);
1413 
1414 	return rq;
1415 }
1416 
1417 /*
1418  * migration_cpu_stop - this will be executed by a highprio stopper thread
1419  * and performs thread migration by bumping thread off CPU then
1420  * 'pushing' onto another runqueue.
1421  */
1422 static int migration_cpu_stop(void *data)
1423 {
1424 	struct migration_arg *arg = data;
1425 	struct task_struct *p = arg->task;
1426 	struct rq *rq = this_rq();
1427 	struct rq_flags rf;
1428 
1429 	/*
1430 	 * The original target CPU might have gone down and we might
1431 	 * be on another CPU but it doesn't matter.
1432 	 */
1433 	local_irq_disable();
1434 	/*
1435 	 * We need to explicitly wake pending tasks before running
1436 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1437 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438 	 */
1439 	sched_ttwu_pending();
1440 
1441 	raw_spin_lock(&p->pi_lock);
1442 	rq_lock(rq, &rf);
1443 	/*
1444 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 	 * we're holding p->pi_lock.
1447 	 */
1448 	if (task_rq(p) == rq) {
1449 		if (task_on_rq_queued(p))
1450 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1451 		else
1452 			p->wake_cpu = arg->dest_cpu;
1453 	}
1454 	rq_unlock(rq, &rf);
1455 	raw_spin_unlock(&p->pi_lock);
1456 
1457 	local_irq_enable();
1458 	return 0;
1459 }
1460 
1461 /*
1462  * sched_class::set_cpus_allowed must do the below, but is not required to
1463  * actually call this function.
1464  */
1465 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1466 {
1467 	cpumask_copy(&p->cpus_mask, new_mask);
1468 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1469 }
1470 
1471 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472 {
1473 	struct rq *rq = task_rq(p);
1474 	bool queued, running;
1475 
1476 	lockdep_assert_held(&p->pi_lock);
1477 
1478 	queued = task_on_rq_queued(p);
1479 	running = task_current(rq, p);
1480 
1481 	if (queued) {
1482 		/*
1483 		 * Because __kthread_bind() calls this on blocked tasks without
1484 		 * holding rq->lock.
1485 		 */
1486 		lockdep_assert_held(&rq->lock);
1487 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1488 	}
1489 	if (running)
1490 		put_prev_task(rq, p);
1491 
1492 	p->sched_class->set_cpus_allowed(p, new_mask);
1493 
1494 	if (queued)
1495 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1496 	if (running)
1497 		set_curr_task(rq, p);
1498 }
1499 
1500 /*
1501  * Change a given task's CPU affinity. Migrate the thread to a
1502  * proper CPU and schedule it away if the CPU it's executing on
1503  * is removed from the allowed bitmask.
1504  *
1505  * NOTE: the caller must have a valid reference to the task, the
1506  * task must not exit() & deallocate itself prematurely. The
1507  * call is not atomic; no spinlocks may be held.
1508  */
1509 static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 				  const struct cpumask *new_mask, bool check)
1511 {
1512 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1513 	unsigned int dest_cpu;
1514 	struct rq_flags rf;
1515 	struct rq *rq;
1516 	int ret = 0;
1517 
1518 	rq = task_rq_lock(p, &rf);
1519 	update_rq_clock(rq);
1520 
1521 	if (p->flags & PF_KTHREAD) {
1522 		/*
1523 		 * Kernel threads are allowed on online && !active CPUs
1524 		 */
1525 		cpu_valid_mask = cpu_online_mask;
1526 	}
1527 
1528 	/*
1529 	 * Must re-check here, to close a race against __kthread_bind(),
1530 	 * sched_setaffinity() is not guaranteed to observe the flag.
1531 	 */
1532 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533 		ret = -EINVAL;
1534 		goto out;
1535 	}
1536 
1537 	if (cpumask_equal(p->cpus_ptr, new_mask))
1538 		goto out;
1539 
1540 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1541 		ret = -EINVAL;
1542 		goto out;
1543 	}
1544 
1545 	do_set_cpus_allowed(p, new_mask);
1546 
1547 	if (p->flags & PF_KTHREAD) {
1548 		/*
1549 		 * For kernel threads that do indeed end up on online &&
1550 		 * !active we want to ensure they are strict per-CPU threads.
1551 		 */
1552 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1554 			p->nr_cpus_allowed != 1);
1555 	}
1556 
1557 	/* Can the task run on the task's current CPU? If so, we're done */
1558 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1559 		goto out;
1560 
1561 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1562 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 		struct migration_arg arg = { p, dest_cpu };
1564 		/* Need help from migration thread: drop lock and wait. */
1565 		task_rq_unlock(rq, p, &rf);
1566 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1567 		return 0;
1568 	} else if (task_on_rq_queued(p)) {
1569 		/*
1570 		 * OK, since we're going to drop the lock immediately
1571 		 * afterwards anyway.
1572 		 */
1573 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1574 	}
1575 out:
1576 	task_rq_unlock(rq, p, &rf);
1577 
1578 	return ret;
1579 }
1580 
1581 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582 {
1583 	return __set_cpus_allowed_ptr(p, new_mask, false);
1584 }
1585 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586 
1587 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1588 {
1589 #ifdef CONFIG_SCHED_DEBUG
1590 	/*
1591 	 * We should never call set_task_cpu() on a blocked task,
1592 	 * ttwu() will sort out the placement.
1593 	 */
1594 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1595 			!p->on_rq);
1596 
1597 	/*
1598 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 	 * time relying on p->on_rq.
1601 	 */
1602 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 		     p->sched_class == &fair_sched_class &&
1604 		     (p->on_rq && !task_on_rq_migrating(p)));
1605 
1606 #ifdef CONFIG_LOCKDEP
1607 	/*
1608 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610 	 *
1611 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1612 	 * see task_group().
1613 	 *
1614 	 * Furthermore, all task_rq users should acquire both locks, see
1615 	 * task_rq_lock().
1616 	 */
1617 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 				      lockdep_is_held(&task_rq(p)->lock)));
1619 #endif
1620 	/*
1621 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622 	 */
1623 	WARN_ON_ONCE(!cpu_online(new_cpu));
1624 #endif
1625 
1626 	trace_sched_migrate_task(p, new_cpu);
1627 
1628 	if (task_cpu(p) != new_cpu) {
1629 		if (p->sched_class->migrate_task_rq)
1630 			p->sched_class->migrate_task_rq(p, new_cpu);
1631 		p->se.nr_migrations++;
1632 		rseq_migrate(p);
1633 		perf_event_task_migrate(p);
1634 	}
1635 
1636 	__set_task_cpu(p, new_cpu);
1637 }
1638 
1639 #ifdef CONFIG_NUMA_BALANCING
1640 static void __migrate_swap_task(struct task_struct *p, int cpu)
1641 {
1642 	if (task_on_rq_queued(p)) {
1643 		struct rq *src_rq, *dst_rq;
1644 		struct rq_flags srf, drf;
1645 
1646 		src_rq = task_rq(p);
1647 		dst_rq = cpu_rq(cpu);
1648 
1649 		rq_pin_lock(src_rq, &srf);
1650 		rq_pin_lock(dst_rq, &drf);
1651 
1652 		deactivate_task(src_rq, p, 0);
1653 		set_task_cpu(p, cpu);
1654 		activate_task(dst_rq, p, 0);
1655 		check_preempt_curr(dst_rq, p, 0);
1656 
1657 		rq_unpin_lock(dst_rq, &drf);
1658 		rq_unpin_lock(src_rq, &srf);
1659 
1660 	} else {
1661 		/*
1662 		 * Task isn't running anymore; make it appear like we migrated
1663 		 * it before it went to sleep. This means on wakeup we make the
1664 		 * previous CPU our target instead of where it really is.
1665 		 */
1666 		p->wake_cpu = cpu;
1667 	}
1668 }
1669 
1670 struct migration_swap_arg {
1671 	struct task_struct *src_task, *dst_task;
1672 	int src_cpu, dst_cpu;
1673 };
1674 
1675 static int migrate_swap_stop(void *data)
1676 {
1677 	struct migration_swap_arg *arg = data;
1678 	struct rq *src_rq, *dst_rq;
1679 	int ret = -EAGAIN;
1680 
1681 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682 		return -EAGAIN;
1683 
1684 	src_rq = cpu_rq(arg->src_cpu);
1685 	dst_rq = cpu_rq(arg->dst_cpu);
1686 
1687 	double_raw_lock(&arg->src_task->pi_lock,
1688 			&arg->dst_task->pi_lock);
1689 	double_rq_lock(src_rq, dst_rq);
1690 
1691 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692 		goto unlock;
1693 
1694 	if (task_cpu(arg->src_task) != arg->src_cpu)
1695 		goto unlock;
1696 
1697 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1698 		goto unlock;
1699 
1700 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1701 		goto unlock;
1702 
1703 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1705 
1706 	ret = 0;
1707 
1708 unlock:
1709 	double_rq_unlock(src_rq, dst_rq);
1710 	raw_spin_unlock(&arg->dst_task->pi_lock);
1711 	raw_spin_unlock(&arg->src_task->pi_lock);
1712 
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Cross migrate two tasks
1718  */
1719 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 		int target_cpu, int curr_cpu)
1721 {
1722 	struct migration_swap_arg arg;
1723 	int ret = -EINVAL;
1724 
1725 	arg = (struct migration_swap_arg){
1726 		.src_task = cur,
1727 		.src_cpu = curr_cpu,
1728 		.dst_task = p,
1729 		.dst_cpu = target_cpu,
1730 	};
1731 
1732 	if (arg.src_cpu == arg.dst_cpu)
1733 		goto out;
1734 
1735 	/*
1736 	 * These three tests are all lockless; this is OK since all of them
1737 	 * will be re-checked with proper locks held further down the line.
1738 	 */
1739 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740 		goto out;
1741 
1742 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1743 		goto out;
1744 
1745 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1746 		goto out;
1747 
1748 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1749 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750 
1751 out:
1752 	return ret;
1753 }
1754 #endif /* CONFIG_NUMA_BALANCING */
1755 
1756 /*
1757  * wait_task_inactive - wait for a thread to unschedule.
1758  *
1759  * If @match_state is nonzero, it's the @p->state value just checked and
1760  * not expected to change.  If it changes, i.e. @p might have woken up,
1761  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1762  * we return a positive number (its total switch count).  If a second call
1763  * a short while later returns the same number, the caller can be sure that
1764  * @p has remained unscheduled the whole time.
1765  *
1766  * The caller must ensure that the task *will* unschedule sometime soon,
1767  * else this function might spin for a *long* time. This function can't
1768  * be called with interrupts off, or it may introduce deadlock with
1769  * smp_call_function() if an IPI is sent by the same process we are
1770  * waiting to become inactive.
1771  */
1772 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1773 {
1774 	int running, queued;
1775 	struct rq_flags rf;
1776 	unsigned long ncsw;
1777 	struct rq *rq;
1778 
1779 	for (;;) {
1780 		/*
1781 		 * We do the initial early heuristics without holding
1782 		 * any task-queue locks at all. We'll only try to get
1783 		 * the runqueue lock when things look like they will
1784 		 * work out!
1785 		 */
1786 		rq = task_rq(p);
1787 
1788 		/*
1789 		 * If the task is actively running on another CPU
1790 		 * still, just relax and busy-wait without holding
1791 		 * any locks.
1792 		 *
1793 		 * NOTE! Since we don't hold any locks, it's not
1794 		 * even sure that "rq" stays as the right runqueue!
1795 		 * But we don't care, since "task_running()" will
1796 		 * return false if the runqueue has changed and p
1797 		 * is actually now running somewhere else!
1798 		 */
1799 		while (task_running(rq, p)) {
1800 			if (match_state && unlikely(p->state != match_state))
1801 				return 0;
1802 			cpu_relax();
1803 		}
1804 
1805 		/*
1806 		 * Ok, time to look more closely! We need the rq
1807 		 * lock now, to be *sure*. If we're wrong, we'll
1808 		 * just go back and repeat.
1809 		 */
1810 		rq = task_rq_lock(p, &rf);
1811 		trace_sched_wait_task(p);
1812 		running = task_running(rq, p);
1813 		queued = task_on_rq_queued(p);
1814 		ncsw = 0;
1815 		if (!match_state || p->state == match_state)
1816 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1817 		task_rq_unlock(rq, p, &rf);
1818 
1819 		/*
1820 		 * If it changed from the expected state, bail out now.
1821 		 */
1822 		if (unlikely(!ncsw))
1823 			break;
1824 
1825 		/*
1826 		 * Was it really running after all now that we
1827 		 * checked with the proper locks actually held?
1828 		 *
1829 		 * Oops. Go back and try again..
1830 		 */
1831 		if (unlikely(running)) {
1832 			cpu_relax();
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * It's not enough that it's not actively running,
1838 		 * it must be off the runqueue _entirely_, and not
1839 		 * preempted!
1840 		 *
1841 		 * So if it was still runnable (but just not actively
1842 		 * running right now), it's preempted, and we should
1843 		 * yield - it could be a while.
1844 		 */
1845 		if (unlikely(queued)) {
1846 			ktime_t to = NSEC_PER_SEC / HZ;
1847 
1848 			set_current_state(TASK_UNINTERRUPTIBLE);
1849 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1850 			continue;
1851 		}
1852 
1853 		/*
1854 		 * Ahh, all good. It wasn't running, and it wasn't
1855 		 * runnable, which means that it will never become
1856 		 * running in the future either. We're all done!
1857 		 */
1858 		break;
1859 	}
1860 
1861 	return ncsw;
1862 }
1863 
1864 /***
1865  * kick_process - kick a running thread to enter/exit the kernel
1866  * @p: the to-be-kicked thread
1867  *
1868  * Cause a process which is running on another CPU to enter
1869  * kernel-mode, without any delay. (to get signals handled.)
1870  *
1871  * NOTE: this function doesn't have to take the runqueue lock,
1872  * because all it wants to ensure is that the remote task enters
1873  * the kernel. If the IPI races and the task has been migrated
1874  * to another CPU then no harm is done and the purpose has been
1875  * achieved as well.
1876  */
1877 void kick_process(struct task_struct *p)
1878 {
1879 	int cpu;
1880 
1881 	preempt_disable();
1882 	cpu = task_cpu(p);
1883 	if ((cpu != smp_processor_id()) && task_curr(p))
1884 		smp_send_reschedule(cpu);
1885 	preempt_enable();
1886 }
1887 EXPORT_SYMBOL_GPL(kick_process);
1888 
1889 /*
1890  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1891  *
1892  * A few notes on cpu_active vs cpu_online:
1893  *
1894  *  - cpu_active must be a subset of cpu_online
1895  *
1896  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1897  *    see __set_cpus_allowed_ptr(). At this point the newly online
1898  *    CPU isn't yet part of the sched domains, and balancing will not
1899  *    see it.
1900  *
1901  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1902  *    avoid the load balancer to place new tasks on the to be removed
1903  *    CPU. Existing tasks will remain running there and will be taken
1904  *    off.
1905  *
1906  * This means that fallback selection must not select !active CPUs.
1907  * And can assume that any active CPU must be online. Conversely
1908  * select_task_rq() below may allow selection of !active CPUs in order
1909  * to satisfy the above rules.
1910  */
1911 static int select_fallback_rq(int cpu, struct task_struct *p)
1912 {
1913 	int nid = cpu_to_node(cpu);
1914 	const struct cpumask *nodemask = NULL;
1915 	enum { cpuset, possible, fail } state = cpuset;
1916 	int dest_cpu;
1917 
1918 	/*
1919 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 	 * will return -1. There is no CPU on the node, and we should
1921 	 * select the CPU on the other node.
1922 	 */
1923 	if (nid != -1) {
1924 		nodemask = cpumask_of_node(nid);
1925 
1926 		/* Look for allowed, online CPU in same node. */
1927 		for_each_cpu(dest_cpu, nodemask) {
1928 			if (!cpu_active(dest_cpu))
1929 				continue;
1930 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
1931 				return dest_cpu;
1932 		}
1933 	}
1934 
1935 	for (;;) {
1936 		/* Any allowed, online CPU? */
1937 		for_each_cpu(dest_cpu, p->cpus_ptr) {
1938 			if (!is_cpu_allowed(p, dest_cpu))
1939 				continue;
1940 
1941 			goto out;
1942 		}
1943 
1944 		/* No more Mr. Nice Guy. */
1945 		switch (state) {
1946 		case cpuset:
1947 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 				cpuset_cpus_allowed_fallback(p);
1949 				state = possible;
1950 				break;
1951 			}
1952 			/* Fall-through */
1953 		case possible:
1954 			do_set_cpus_allowed(p, cpu_possible_mask);
1955 			state = fail;
1956 			break;
1957 
1958 		case fail:
1959 			BUG();
1960 			break;
1961 		}
1962 	}
1963 
1964 out:
1965 	if (state != cpuset) {
1966 		/*
1967 		 * Don't tell them about moving exiting tasks or
1968 		 * kernel threads (both mm NULL), since they never
1969 		 * leave kernel.
1970 		 */
1971 		if (p->mm && printk_ratelimit()) {
1972 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1973 					task_pid_nr(p), p->comm, cpu);
1974 		}
1975 	}
1976 
1977 	return dest_cpu;
1978 }
1979 
1980 /*
1981  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
1982  */
1983 static inline
1984 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1985 {
1986 	lockdep_assert_held(&p->pi_lock);
1987 
1988 	if (p->nr_cpus_allowed > 1)
1989 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1990 	else
1991 		cpu = cpumask_any(p->cpus_ptr);
1992 
1993 	/*
1994 	 * In order not to call set_task_cpu() on a blocking task we need
1995 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
1996 	 * CPU.
1997 	 *
1998 	 * Since this is common to all placement strategies, this lives here.
1999 	 *
2000 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 	 *   not worry about this generic constraint ]
2002 	 */
2003 	if (unlikely(!is_cpu_allowed(p, cpu)))
2004 		cpu = select_fallback_rq(task_cpu(p), p);
2005 
2006 	return cpu;
2007 }
2008 
2009 static void update_avg(u64 *avg, u64 sample)
2010 {
2011 	s64 diff = sample - *avg;
2012 	*avg += diff >> 3;
2013 }
2014 
2015 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 {
2017 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019 
2020 	if (stop) {
2021 		/*
2022 		 * Make it appear like a SCHED_FIFO task, its something
2023 		 * userspace knows about and won't get confused about.
2024 		 *
2025 		 * Also, it will make PI more or less work without too
2026 		 * much confusion -- but then, stop work should not
2027 		 * rely on PI working anyway.
2028 		 */
2029 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030 
2031 		stop->sched_class = &stop_sched_class;
2032 	}
2033 
2034 	cpu_rq(cpu)->stop = stop;
2035 
2036 	if (old_stop) {
2037 		/*
2038 		 * Reset it back to a normal scheduling class so that
2039 		 * it can die in pieces.
2040 		 */
2041 		old_stop->sched_class = &rt_sched_class;
2042 	}
2043 }
2044 
2045 #else
2046 
2047 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 					 const struct cpumask *new_mask, bool check)
2049 {
2050 	return set_cpus_allowed_ptr(p, new_mask);
2051 }
2052 
2053 #endif /* CONFIG_SMP */
2054 
2055 static void
2056 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2057 {
2058 	struct rq *rq;
2059 
2060 	if (!schedstat_enabled())
2061 		return;
2062 
2063 	rq = this_rq();
2064 
2065 #ifdef CONFIG_SMP
2066 	if (cpu == rq->cpu) {
2067 		__schedstat_inc(rq->ttwu_local);
2068 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2069 	} else {
2070 		struct sched_domain *sd;
2071 
2072 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2073 		rcu_read_lock();
2074 		for_each_domain(rq->cpu, sd) {
2075 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2076 				__schedstat_inc(sd->ttwu_wake_remote);
2077 				break;
2078 			}
2079 		}
2080 		rcu_read_unlock();
2081 	}
2082 
2083 	if (wake_flags & WF_MIGRATED)
2084 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2085 #endif /* CONFIG_SMP */
2086 
2087 	__schedstat_inc(rq->ttwu_count);
2088 	__schedstat_inc(p->se.statistics.nr_wakeups);
2089 
2090 	if (wake_flags & WF_SYNC)
2091 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2092 }
2093 
2094 /*
2095  * Mark the task runnable and perform wakeup-preemption.
2096  */
2097 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2098 			   struct rq_flags *rf)
2099 {
2100 	check_preempt_curr(rq, p, wake_flags);
2101 	p->state = TASK_RUNNING;
2102 	trace_sched_wakeup(p);
2103 
2104 #ifdef CONFIG_SMP
2105 	if (p->sched_class->task_woken) {
2106 		/*
2107 		 * Our task @p is fully woken up and running; so its safe to
2108 		 * drop the rq->lock, hereafter rq is only used for statistics.
2109 		 */
2110 		rq_unpin_lock(rq, rf);
2111 		p->sched_class->task_woken(rq, p);
2112 		rq_repin_lock(rq, rf);
2113 	}
2114 
2115 	if (rq->idle_stamp) {
2116 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2117 		u64 max = 2*rq->max_idle_balance_cost;
2118 
2119 		update_avg(&rq->avg_idle, delta);
2120 
2121 		if (rq->avg_idle > max)
2122 			rq->avg_idle = max;
2123 
2124 		rq->idle_stamp = 0;
2125 	}
2126 #endif
2127 }
2128 
2129 static void
2130 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2131 		 struct rq_flags *rf)
2132 {
2133 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2134 
2135 	lockdep_assert_held(&rq->lock);
2136 
2137 #ifdef CONFIG_SMP
2138 	if (p->sched_contributes_to_load)
2139 		rq->nr_uninterruptible--;
2140 
2141 	if (wake_flags & WF_MIGRATED)
2142 		en_flags |= ENQUEUE_MIGRATED;
2143 #endif
2144 
2145 	activate_task(rq, p, en_flags);
2146 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2147 }
2148 
2149 /*
2150  * Called in case the task @p isn't fully descheduled from its runqueue,
2151  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152  * since all we need to do is flip p->state to TASK_RUNNING, since
2153  * the task is still ->on_rq.
2154  */
2155 static int ttwu_remote(struct task_struct *p, int wake_flags)
2156 {
2157 	struct rq_flags rf;
2158 	struct rq *rq;
2159 	int ret = 0;
2160 
2161 	rq = __task_rq_lock(p, &rf);
2162 	if (task_on_rq_queued(p)) {
2163 		/* check_preempt_curr() may use rq clock */
2164 		update_rq_clock(rq);
2165 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2166 		ret = 1;
2167 	}
2168 	__task_rq_unlock(rq, &rf);
2169 
2170 	return ret;
2171 }
2172 
2173 #ifdef CONFIG_SMP
2174 void sched_ttwu_pending(void)
2175 {
2176 	struct rq *rq = this_rq();
2177 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2178 	struct task_struct *p, *t;
2179 	struct rq_flags rf;
2180 
2181 	if (!llist)
2182 		return;
2183 
2184 	rq_lock_irqsave(rq, &rf);
2185 	update_rq_clock(rq);
2186 
2187 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2189 
2190 	rq_unlock_irqrestore(rq, &rf);
2191 }
2192 
2193 void scheduler_ipi(void)
2194 {
2195 	/*
2196 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2198 	 * this IPI.
2199 	 */
2200 	preempt_fold_need_resched();
2201 
2202 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2203 		return;
2204 
2205 	/*
2206 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 	 * traditionally all their work was done from the interrupt return
2208 	 * path. Now that we actually do some work, we need to make sure
2209 	 * we do call them.
2210 	 *
2211 	 * Some archs already do call them, luckily irq_enter/exit nest
2212 	 * properly.
2213 	 *
2214 	 * Arguably we should visit all archs and update all handlers,
2215 	 * however a fair share of IPIs are still resched only so this would
2216 	 * somewhat pessimize the simple resched case.
2217 	 */
2218 	irq_enter();
2219 	sched_ttwu_pending();
2220 
2221 	/*
2222 	 * Check if someone kicked us for doing the nohz idle load balance.
2223 	 */
2224 	if (unlikely(got_nohz_idle_kick())) {
2225 		this_rq()->idle_balance = 1;
2226 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2227 	}
2228 	irq_exit();
2229 }
2230 
2231 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2232 {
2233 	struct rq *rq = cpu_rq(cpu);
2234 
2235 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236 
2237 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 		if (!set_nr_if_polling(rq->idle))
2239 			smp_send_reschedule(cpu);
2240 		else
2241 			trace_sched_wake_idle_without_ipi(cpu);
2242 	}
2243 }
2244 
2245 void wake_up_if_idle(int cpu)
2246 {
2247 	struct rq *rq = cpu_rq(cpu);
2248 	struct rq_flags rf;
2249 
2250 	rcu_read_lock();
2251 
2252 	if (!is_idle_task(rcu_dereference(rq->curr)))
2253 		goto out;
2254 
2255 	if (set_nr_if_polling(rq->idle)) {
2256 		trace_sched_wake_idle_without_ipi(cpu);
2257 	} else {
2258 		rq_lock_irqsave(rq, &rf);
2259 		if (is_idle_task(rq->curr))
2260 			smp_send_reschedule(cpu);
2261 		/* Else CPU is not idle, do nothing here: */
2262 		rq_unlock_irqrestore(rq, &rf);
2263 	}
2264 
2265 out:
2266 	rcu_read_unlock();
2267 }
2268 
2269 bool cpus_share_cache(int this_cpu, int that_cpu)
2270 {
2271 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272 }
2273 #endif /* CONFIG_SMP */
2274 
2275 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2276 {
2277 	struct rq *rq = cpu_rq(cpu);
2278 	struct rq_flags rf;
2279 
2280 #if defined(CONFIG_SMP)
2281 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2282 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2283 		ttwu_queue_remote(p, cpu, wake_flags);
2284 		return;
2285 	}
2286 #endif
2287 
2288 	rq_lock(rq, &rf);
2289 	update_rq_clock(rq);
2290 	ttwu_do_activate(rq, p, wake_flags, &rf);
2291 	rq_unlock(rq, &rf);
2292 }
2293 
2294 /*
2295  * Notes on Program-Order guarantees on SMP systems.
2296  *
2297  *  MIGRATION
2298  *
2299  * The basic program-order guarantee on SMP systems is that when a task [t]
2300  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301  * execution on its new CPU [c1].
2302  *
2303  * For migration (of runnable tasks) this is provided by the following means:
2304  *
2305  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2306  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2307  *     rq(c1)->lock (if not at the same time, then in that order).
2308  *  C) LOCK of the rq(c1)->lock scheduling in task
2309  *
2310  * Release/acquire chaining guarantees that B happens after A and C after B.
2311  * Note: the CPU doing B need not be c0 or c1
2312  *
2313  * Example:
2314  *
2315  *   CPU0            CPU1            CPU2
2316  *
2317  *   LOCK rq(0)->lock
2318  *   sched-out X
2319  *   sched-in Y
2320  *   UNLOCK rq(0)->lock
2321  *
2322  *                                   LOCK rq(0)->lock // orders against CPU0
2323  *                                   dequeue X
2324  *                                   UNLOCK rq(0)->lock
2325  *
2326  *                                   LOCK rq(1)->lock
2327  *                                   enqueue X
2328  *                                   UNLOCK rq(1)->lock
2329  *
2330  *                   LOCK rq(1)->lock // orders against CPU2
2331  *                   sched-out Z
2332  *                   sched-in X
2333  *                   UNLOCK rq(1)->lock
2334  *
2335  *
2336  *  BLOCKING -- aka. SLEEP + WAKEUP
2337  *
2338  * For blocking we (obviously) need to provide the same guarantee as for
2339  * migration. However the means are completely different as there is no lock
2340  * chain to provide order. Instead we do:
2341  *
2342  *   1) smp_store_release(X->on_cpu, 0)
2343  *   2) smp_cond_load_acquire(!X->on_cpu)
2344  *
2345  * Example:
2346  *
2347  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2348  *
2349  *   LOCK rq(0)->lock LOCK X->pi_lock
2350  *   dequeue X
2351  *   sched-out X
2352  *   smp_store_release(X->on_cpu, 0);
2353  *
2354  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2355  *                    X->state = WAKING
2356  *                    set_task_cpu(X,2)
2357  *
2358  *                    LOCK rq(2)->lock
2359  *                    enqueue X
2360  *                    X->state = RUNNING
2361  *                    UNLOCK rq(2)->lock
2362  *
2363  *                                          LOCK rq(2)->lock // orders against CPU1
2364  *                                          sched-out Z
2365  *                                          sched-in X
2366  *                                          UNLOCK rq(2)->lock
2367  *
2368  *                    UNLOCK X->pi_lock
2369  *   UNLOCK rq(0)->lock
2370  *
2371  *
2372  * However, for wakeups there is a second guarantee we must provide, namely we
2373  * must ensure that CONDITION=1 done by the caller can not be reordered with
2374  * accesses to the task state; see try_to_wake_up() and set_current_state().
2375  */
2376 
2377 /**
2378  * try_to_wake_up - wake up a thread
2379  * @p: the thread to be awakened
2380  * @state: the mask of task states that can be woken
2381  * @wake_flags: wake modifier flags (WF_*)
2382  *
2383  * If (@state & @p->state) @p->state = TASK_RUNNING.
2384  *
2385  * If the task was not queued/runnable, also place it back on a runqueue.
2386  *
2387  * Atomic against schedule() which would dequeue a task, also see
2388  * set_current_state().
2389  *
2390  * This function executes a full memory barrier before accessing the task
2391  * state; see set_current_state().
2392  *
2393  * Return: %true if @p->state changes (an actual wakeup was done),
2394  *	   %false otherwise.
2395  */
2396 static int
2397 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2398 {
2399 	unsigned long flags;
2400 	int cpu, success = 0;
2401 
2402 	preempt_disable();
2403 	if (p == current) {
2404 		/*
2405 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406 		 * == smp_processor_id()'. Together this means we can special
2407 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2408 		 * without taking any locks.
2409 		 *
2410 		 * In particular:
2411 		 *  - we rely on Program-Order guarantees for all the ordering,
2412 		 *  - we're serialized against set_special_state() by virtue of
2413 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2414 		 */
2415 		if (!(p->state & state))
2416 			goto out;
2417 
2418 		success = 1;
2419 		cpu = task_cpu(p);
2420 		trace_sched_waking(p);
2421 		p->state = TASK_RUNNING;
2422 		trace_sched_wakeup(p);
2423 		goto out;
2424 	}
2425 
2426 	/*
2427 	 * If we are going to wake up a thread waiting for CONDITION we
2428 	 * need to ensure that CONDITION=1 done by the caller can not be
2429 	 * reordered with p->state check below. This pairs with mb() in
2430 	 * set_current_state() the waiting thread does.
2431 	 */
2432 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2433 	smp_mb__after_spinlock();
2434 	if (!(p->state & state))
2435 		goto unlock;
2436 
2437 	trace_sched_waking(p);
2438 
2439 	/* We're going to change ->state: */
2440 	success = 1;
2441 	cpu = task_cpu(p);
2442 
2443 	/*
2444 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446 	 * in smp_cond_load_acquire() below.
2447 	 *
2448 	 * sched_ttwu_pending()			try_to_wake_up()
2449 	 *   STORE p->on_rq = 1			  LOAD p->state
2450 	 *   UNLOCK rq->lock
2451 	 *
2452 	 * __schedule() (switch to task 'p')
2453 	 *   LOCK rq->lock			  smp_rmb();
2454 	 *   smp_mb__after_spinlock();
2455 	 *   UNLOCK rq->lock
2456 	 *
2457 	 * [task p]
2458 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2459 	 *
2460 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2462 	 */
2463 	smp_rmb();
2464 	if (p->on_rq && ttwu_remote(p, wake_flags))
2465 		goto unlock;
2466 
2467 #ifdef CONFIG_SMP
2468 	/*
2469 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470 	 * possible to, falsely, observe p->on_cpu == 0.
2471 	 *
2472 	 * One must be running (->on_cpu == 1) in order to remove oneself
2473 	 * from the runqueue.
2474 	 *
2475 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2476 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2477 	 *   UNLOCK rq->lock
2478 	 *
2479 	 * __schedule() (put 'p' to sleep)
2480 	 *   LOCK rq->lock			  smp_rmb();
2481 	 *   smp_mb__after_spinlock();
2482 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2483 	 *
2484 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2486 	 */
2487 	smp_rmb();
2488 
2489 	/*
2490 	 * If the owning (remote) CPU is still in the middle of schedule() with
2491 	 * this task as prev, wait until its done referencing the task.
2492 	 *
2493 	 * Pairs with the smp_store_release() in finish_task().
2494 	 *
2495 	 * This ensures that tasks getting woken will be fully ordered against
2496 	 * their previous state and preserve Program Order.
2497 	 */
2498 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2499 
2500 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2501 	p->state = TASK_WAKING;
2502 
2503 	if (p->in_iowait) {
2504 		delayacct_blkio_end(p);
2505 		atomic_dec(&task_rq(p)->nr_iowait);
2506 	}
2507 
2508 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2509 	if (task_cpu(p) != cpu) {
2510 		wake_flags |= WF_MIGRATED;
2511 		psi_ttwu_dequeue(p);
2512 		set_task_cpu(p, cpu);
2513 	}
2514 
2515 #else /* CONFIG_SMP */
2516 
2517 	if (p->in_iowait) {
2518 		delayacct_blkio_end(p);
2519 		atomic_dec(&task_rq(p)->nr_iowait);
2520 	}
2521 
2522 #endif /* CONFIG_SMP */
2523 
2524 	ttwu_queue(p, cpu, wake_flags);
2525 unlock:
2526 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2527 out:
2528 	if (success)
2529 		ttwu_stat(p, cpu, wake_flags);
2530 	preempt_enable();
2531 
2532 	return success;
2533 }
2534 
2535 /**
2536  * wake_up_process - Wake up a specific process
2537  * @p: The process to be woken up.
2538  *
2539  * Attempt to wake up the nominated process and move it to the set of runnable
2540  * processes.
2541  *
2542  * Return: 1 if the process was woken up, 0 if it was already running.
2543  *
2544  * This function executes a full memory barrier before accessing the task state.
2545  */
2546 int wake_up_process(struct task_struct *p)
2547 {
2548 	return try_to_wake_up(p, TASK_NORMAL, 0);
2549 }
2550 EXPORT_SYMBOL(wake_up_process);
2551 
2552 int wake_up_state(struct task_struct *p, unsigned int state)
2553 {
2554 	return try_to_wake_up(p, state, 0);
2555 }
2556 
2557 /*
2558  * Perform scheduler related setup for a newly forked process p.
2559  * p is forked by current.
2560  *
2561  * __sched_fork() is basic setup used by init_idle() too:
2562  */
2563 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2564 {
2565 	p->on_rq			= 0;
2566 
2567 	p->se.on_rq			= 0;
2568 	p->se.exec_start		= 0;
2569 	p->se.sum_exec_runtime		= 0;
2570 	p->se.prev_sum_exec_runtime	= 0;
2571 	p->se.nr_migrations		= 0;
2572 	p->se.vruntime			= 0;
2573 	INIT_LIST_HEAD(&p->se.group_node);
2574 
2575 #ifdef CONFIG_FAIR_GROUP_SCHED
2576 	p->se.cfs_rq			= NULL;
2577 #endif
2578 
2579 #ifdef CONFIG_SCHEDSTATS
2580 	/* Even if schedstat is disabled, there should not be garbage */
2581 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2582 #endif
2583 
2584 	RB_CLEAR_NODE(&p->dl.rb_node);
2585 	init_dl_task_timer(&p->dl);
2586 	init_dl_inactive_task_timer(&p->dl);
2587 	__dl_clear_params(p);
2588 
2589 	INIT_LIST_HEAD(&p->rt.run_list);
2590 	p->rt.timeout		= 0;
2591 	p->rt.time_slice	= sched_rr_timeslice;
2592 	p->rt.on_rq		= 0;
2593 	p->rt.on_list		= 0;
2594 
2595 #ifdef CONFIG_PREEMPT_NOTIFIERS
2596 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2597 #endif
2598 
2599 #ifdef CONFIG_COMPACTION
2600 	p->capture_control = NULL;
2601 #endif
2602 	init_numa_balancing(clone_flags, p);
2603 }
2604 
2605 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2606 
2607 #ifdef CONFIG_NUMA_BALANCING
2608 
2609 void set_numabalancing_state(bool enabled)
2610 {
2611 	if (enabled)
2612 		static_branch_enable(&sched_numa_balancing);
2613 	else
2614 		static_branch_disable(&sched_numa_balancing);
2615 }
2616 
2617 #ifdef CONFIG_PROC_SYSCTL
2618 int sysctl_numa_balancing(struct ctl_table *table, int write,
2619 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2620 {
2621 	struct ctl_table t;
2622 	int err;
2623 	int state = static_branch_likely(&sched_numa_balancing);
2624 
2625 	if (write && !capable(CAP_SYS_ADMIN))
2626 		return -EPERM;
2627 
2628 	t = *table;
2629 	t.data = &state;
2630 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2631 	if (err < 0)
2632 		return err;
2633 	if (write)
2634 		set_numabalancing_state(state);
2635 	return err;
2636 }
2637 #endif
2638 #endif
2639 
2640 #ifdef CONFIG_SCHEDSTATS
2641 
2642 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2643 static bool __initdata __sched_schedstats = false;
2644 
2645 static void set_schedstats(bool enabled)
2646 {
2647 	if (enabled)
2648 		static_branch_enable(&sched_schedstats);
2649 	else
2650 		static_branch_disable(&sched_schedstats);
2651 }
2652 
2653 void force_schedstat_enabled(void)
2654 {
2655 	if (!schedstat_enabled()) {
2656 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657 		static_branch_enable(&sched_schedstats);
2658 	}
2659 }
2660 
2661 static int __init setup_schedstats(char *str)
2662 {
2663 	int ret = 0;
2664 	if (!str)
2665 		goto out;
2666 
2667 	/*
2668 	 * This code is called before jump labels have been set up, so we can't
2669 	 * change the static branch directly just yet.  Instead set a temporary
2670 	 * variable so init_schedstats() can do it later.
2671 	 */
2672 	if (!strcmp(str, "enable")) {
2673 		__sched_schedstats = true;
2674 		ret = 1;
2675 	} else if (!strcmp(str, "disable")) {
2676 		__sched_schedstats = false;
2677 		ret = 1;
2678 	}
2679 out:
2680 	if (!ret)
2681 		pr_warn("Unable to parse schedstats=\n");
2682 
2683 	return ret;
2684 }
2685 __setup("schedstats=", setup_schedstats);
2686 
2687 static void __init init_schedstats(void)
2688 {
2689 	set_schedstats(__sched_schedstats);
2690 }
2691 
2692 #ifdef CONFIG_PROC_SYSCTL
2693 int sysctl_schedstats(struct ctl_table *table, int write,
2694 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2695 {
2696 	struct ctl_table t;
2697 	int err;
2698 	int state = static_branch_likely(&sched_schedstats);
2699 
2700 	if (write && !capable(CAP_SYS_ADMIN))
2701 		return -EPERM;
2702 
2703 	t = *table;
2704 	t.data = &state;
2705 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2706 	if (err < 0)
2707 		return err;
2708 	if (write)
2709 		set_schedstats(state);
2710 	return err;
2711 }
2712 #endif /* CONFIG_PROC_SYSCTL */
2713 #else  /* !CONFIG_SCHEDSTATS */
2714 static inline void init_schedstats(void) {}
2715 #endif /* CONFIG_SCHEDSTATS */
2716 
2717 /*
2718  * fork()/clone()-time setup:
2719  */
2720 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2721 {
2722 	unsigned long flags;
2723 
2724 	__sched_fork(clone_flags, p);
2725 	/*
2726 	 * We mark the process as NEW here. This guarantees that
2727 	 * nobody will actually run it, and a signal or other external
2728 	 * event cannot wake it up and insert it on the runqueue either.
2729 	 */
2730 	p->state = TASK_NEW;
2731 
2732 	/*
2733 	 * Make sure we do not leak PI boosting priority to the child.
2734 	 */
2735 	p->prio = current->normal_prio;
2736 
2737 	uclamp_fork(p);
2738 
2739 	/*
2740 	 * Revert to default priority/policy on fork if requested.
2741 	 */
2742 	if (unlikely(p->sched_reset_on_fork)) {
2743 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2744 			p->policy = SCHED_NORMAL;
2745 			p->static_prio = NICE_TO_PRIO(0);
2746 			p->rt_priority = 0;
2747 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2748 			p->static_prio = NICE_TO_PRIO(0);
2749 
2750 		p->prio = p->normal_prio = __normal_prio(p);
2751 		set_load_weight(p, false);
2752 
2753 		/*
2754 		 * We don't need the reset flag anymore after the fork. It has
2755 		 * fulfilled its duty:
2756 		 */
2757 		p->sched_reset_on_fork = 0;
2758 	}
2759 
2760 	if (dl_prio(p->prio))
2761 		return -EAGAIN;
2762 	else if (rt_prio(p->prio))
2763 		p->sched_class = &rt_sched_class;
2764 	else
2765 		p->sched_class = &fair_sched_class;
2766 
2767 	init_entity_runnable_average(&p->se);
2768 
2769 	/*
2770 	 * The child is not yet in the pid-hash so no cgroup attach races,
2771 	 * and the cgroup is pinned to this child due to cgroup_fork()
2772 	 * is ran before sched_fork().
2773 	 *
2774 	 * Silence PROVE_RCU.
2775 	 */
2776 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2777 	/*
2778 	 * We're setting the CPU for the first time, we don't migrate,
2779 	 * so use __set_task_cpu().
2780 	 */
2781 	__set_task_cpu(p, smp_processor_id());
2782 	if (p->sched_class->task_fork)
2783 		p->sched_class->task_fork(p);
2784 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2785 
2786 #ifdef CONFIG_SCHED_INFO
2787 	if (likely(sched_info_on()))
2788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2789 #endif
2790 #if defined(CONFIG_SMP)
2791 	p->on_cpu = 0;
2792 #endif
2793 	init_task_preempt_count(p);
2794 #ifdef CONFIG_SMP
2795 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2796 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2797 #endif
2798 	return 0;
2799 }
2800 
2801 unsigned long to_ratio(u64 period, u64 runtime)
2802 {
2803 	if (runtime == RUNTIME_INF)
2804 		return BW_UNIT;
2805 
2806 	/*
2807 	 * Doing this here saves a lot of checks in all
2808 	 * the calling paths, and returning zero seems
2809 	 * safe for them anyway.
2810 	 */
2811 	if (period == 0)
2812 		return 0;
2813 
2814 	return div64_u64(runtime << BW_SHIFT, period);
2815 }
2816 
2817 /*
2818  * wake_up_new_task - wake up a newly created task for the first time.
2819  *
2820  * This function will do some initial scheduler statistics housekeeping
2821  * that must be done for every newly created context, then puts the task
2822  * on the runqueue and wakes it.
2823  */
2824 void wake_up_new_task(struct task_struct *p)
2825 {
2826 	struct rq_flags rf;
2827 	struct rq *rq;
2828 
2829 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2830 	p->state = TASK_RUNNING;
2831 #ifdef CONFIG_SMP
2832 	/*
2833 	 * Fork balancing, do it here and not earlier because:
2834 	 *  - cpus_ptr can change in the fork path
2835 	 *  - any previously selected CPU might disappear through hotplug
2836 	 *
2837 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838 	 * as we're not fully set-up yet.
2839 	 */
2840 	p->recent_used_cpu = task_cpu(p);
2841 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2842 #endif
2843 	rq = __task_rq_lock(p, &rf);
2844 	update_rq_clock(rq);
2845 	post_init_entity_util_avg(p);
2846 
2847 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2848 	trace_sched_wakeup_new(p);
2849 	check_preempt_curr(rq, p, WF_FORK);
2850 #ifdef CONFIG_SMP
2851 	if (p->sched_class->task_woken) {
2852 		/*
2853 		 * Nothing relies on rq->lock after this, so its fine to
2854 		 * drop it.
2855 		 */
2856 		rq_unpin_lock(rq, &rf);
2857 		p->sched_class->task_woken(rq, p);
2858 		rq_repin_lock(rq, &rf);
2859 	}
2860 #endif
2861 	task_rq_unlock(rq, p, &rf);
2862 }
2863 
2864 #ifdef CONFIG_PREEMPT_NOTIFIERS
2865 
2866 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2867 
2868 void preempt_notifier_inc(void)
2869 {
2870 	static_branch_inc(&preempt_notifier_key);
2871 }
2872 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2873 
2874 void preempt_notifier_dec(void)
2875 {
2876 	static_branch_dec(&preempt_notifier_key);
2877 }
2878 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2879 
2880 /**
2881  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2882  * @notifier: notifier struct to register
2883  */
2884 void preempt_notifier_register(struct preempt_notifier *notifier)
2885 {
2886 	if (!static_branch_unlikely(&preempt_notifier_key))
2887 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2888 
2889 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2890 }
2891 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2892 
2893 /**
2894  * preempt_notifier_unregister - no longer interested in preemption notifications
2895  * @notifier: notifier struct to unregister
2896  *
2897  * This is *not* safe to call from within a preemption notifier.
2898  */
2899 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2900 {
2901 	hlist_del(&notifier->link);
2902 }
2903 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2904 
2905 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2906 {
2907 	struct preempt_notifier *notifier;
2908 
2909 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2910 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2911 }
2912 
2913 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2914 {
2915 	if (static_branch_unlikely(&preempt_notifier_key))
2916 		__fire_sched_in_preempt_notifiers(curr);
2917 }
2918 
2919 static void
2920 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921 				   struct task_struct *next)
2922 {
2923 	struct preempt_notifier *notifier;
2924 
2925 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2926 		notifier->ops->sched_out(notifier, next);
2927 }
2928 
2929 static __always_inline void
2930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931 				 struct task_struct *next)
2932 {
2933 	if (static_branch_unlikely(&preempt_notifier_key))
2934 		__fire_sched_out_preempt_notifiers(curr, next);
2935 }
2936 
2937 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2938 
2939 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2940 {
2941 }
2942 
2943 static inline void
2944 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945 				 struct task_struct *next)
2946 {
2947 }
2948 
2949 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2950 
2951 static inline void prepare_task(struct task_struct *next)
2952 {
2953 #ifdef CONFIG_SMP
2954 	/*
2955 	 * Claim the task as running, we do this before switching to it
2956 	 * such that any running task will have this set.
2957 	 */
2958 	next->on_cpu = 1;
2959 #endif
2960 }
2961 
2962 static inline void finish_task(struct task_struct *prev)
2963 {
2964 #ifdef CONFIG_SMP
2965 	/*
2966 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967 	 * We must ensure this doesn't happen until the switch is completely
2968 	 * finished.
2969 	 *
2970 	 * In particular, the load of prev->state in finish_task_switch() must
2971 	 * happen before this.
2972 	 *
2973 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2974 	 */
2975 	smp_store_release(&prev->on_cpu, 0);
2976 #endif
2977 }
2978 
2979 static inline void
2980 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2981 {
2982 	/*
2983 	 * Since the runqueue lock will be released by the next
2984 	 * task (which is an invalid locking op but in the case
2985 	 * of the scheduler it's an obvious special-case), so we
2986 	 * do an early lockdep release here:
2987 	 */
2988 	rq_unpin_lock(rq, rf);
2989 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2990 #ifdef CONFIG_DEBUG_SPINLOCK
2991 	/* this is a valid case when another task releases the spinlock */
2992 	rq->lock.owner = next;
2993 #endif
2994 }
2995 
2996 static inline void finish_lock_switch(struct rq *rq)
2997 {
2998 	/*
2999 	 * If we are tracking spinlock dependencies then we have to
3000 	 * fix up the runqueue lock - which gets 'carried over' from
3001 	 * prev into current:
3002 	 */
3003 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3004 	raw_spin_unlock_irq(&rq->lock);
3005 }
3006 
3007 /*
3008  * NOP if the arch has not defined these:
3009  */
3010 
3011 #ifndef prepare_arch_switch
3012 # define prepare_arch_switch(next)	do { } while (0)
3013 #endif
3014 
3015 #ifndef finish_arch_post_lock_switch
3016 # define finish_arch_post_lock_switch()	do { } while (0)
3017 #endif
3018 
3019 /**
3020  * prepare_task_switch - prepare to switch tasks
3021  * @rq: the runqueue preparing to switch
3022  * @prev: the current task that is being switched out
3023  * @next: the task we are going to switch to.
3024  *
3025  * This is called with the rq lock held and interrupts off. It must
3026  * be paired with a subsequent finish_task_switch after the context
3027  * switch.
3028  *
3029  * prepare_task_switch sets up locking and calls architecture specific
3030  * hooks.
3031  */
3032 static inline void
3033 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034 		    struct task_struct *next)
3035 {
3036 	kcov_prepare_switch(prev);
3037 	sched_info_switch(rq, prev, next);
3038 	perf_event_task_sched_out(prev, next);
3039 	rseq_preempt(prev);
3040 	fire_sched_out_preempt_notifiers(prev, next);
3041 	prepare_task(next);
3042 	prepare_arch_switch(next);
3043 }
3044 
3045 /**
3046  * finish_task_switch - clean up after a task-switch
3047  * @prev: the thread we just switched away from.
3048  *
3049  * finish_task_switch must be called after the context switch, paired
3050  * with a prepare_task_switch call before the context switch.
3051  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052  * and do any other architecture-specific cleanup actions.
3053  *
3054  * Note that we may have delayed dropping an mm in context_switch(). If
3055  * so, we finish that here outside of the runqueue lock. (Doing it
3056  * with the lock held can cause deadlocks; see schedule() for
3057  * details.)
3058  *
3059  * The context switch have flipped the stack from under us and restored the
3060  * local variables which were saved when this task called schedule() in the
3061  * past. prev == current is still correct but we need to recalculate this_rq
3062  * because prev may have moved to another CPU.
3063  */
3064 static struct rq *finish_task_switch(struct task_struct *prev)
3065 	__releases(rq->lock)
3066 {
3067 	struct rq *rq = this_rq();
3068 	struct mm_struct *mm = rq->prev_mm;
3069 	long prev_state;
3070 
3071 	/*
3072 	 * The previous task will have left us with a preempt_count of 2
3073 	 * because it left us after:
3074 	 *
3075 	 *	schedule()
3076 	 *	  preempt_disable();			// 1
3077 	 *	  __schedule()
3078 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3079 	 *
3080 	 * Also, see FORK_PREEMPT_COUNT.
3081 	 */
3082 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083 		      "corrupted preempt_count: %s/%d/0x%x\n",
3084 		      current->comm, current->pid, preempt_count()))
3085 		preempt_count_set(FORK_PREEMPT_COUNT);
3086 
3087 	rq->prev_mm = NULL;
3088 
3089 	/*
3090 	 * A task struct has one reference for the use as "current".
3091 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3092 	 * schedule one last time. The schedule call will never return, and
3093 	 * the scheduled task must drop that reference.
3094 	 *
3095 	 * We must observe prev->state before clearing prev->on_cpu (in
3096 	 * finish_task), otherwise a concurrent wakeup can get prev
3097 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3098 	 * transition, resulting in a double drop.
3099 	 */
3100 	prev_state = prev->state;
3101 	vtime_task_switch(prev);
3102 	perf_event_task_sched_in(prev, current);
3103 	finish_task(prev);
3104 	finish_lock_switch(rq);
3105 	finish_arch_post_lock_switch();
3106 	kcov_finish_switch(current);
3107 
3108 	fire_sched_in_preempt_notifiers(current);
3109 	/*
3110 	 * When switching through a kernel thread, the loop in
3111 	 * membarrier_{private,global}_expedited() may have observed that
3112 	 * kernel thread and not issued an IPI. It is therefore possible to
3113 	 * schedule between user->kernel->user threads without passing though
3114 	 * switch_mm(). Membarrier requires a barrier after storing to
3115 	 * rq->curr, before returning to userspace, so provide them here:
3116 	 *
3117 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118 	 *   provided by mmdrop(),
3119 	 * - a sync_core for SYNC_CORE.
3120 	 */
3121 	if (mm) {
3122 		membarrier_mm_sync_core_before_usermode(mm);
3123 		mmdrop(mm);
3124 	}
3125 	if (unlikely(prev_state == TASK_DEAD)) {
3126 		if (prev->sched_class->task_dead)
3127 			prev->sched_class->task_dead(prev);
3128 
3129 		/*
3130 		 * Remove function-return probe instances associated with this
3131 		 * task and put them back on the free list.
3132 		 */
3133 		kprobe_flush_task(prev);
3134 
3135 		/* Task is done with its stack. */
3136 		put_task_stack(prev);
3137 
3138 		put_task_struct(prev);
3139 	}
3140 
3141 	tick_nohz_task_switch();
3142 	return rq;
3143 }
3144 
3145 #ifdef CONFIG_SMP
3146 
3147 /* rq->lock is NOT held, but preemption is disabled */
3148 static void __balance_callback(struct rq *rq)
3149 {
3150 	struct callback_head *head, *next;
3151 	void (*func)(struct rq *rq);
3152 	unsigned long flags;
3153 
3154 	raw_spin_lock_irqsave(&rq->lock, flags);
3155 	head = rq->balance_callback;
3156 	rq->balance_callback = NULL;
3157 	while (head) {
3158 		func = (void (*)(struct rq *))head->func;
3159 		next = head->next;
3160 		head->next = NULL;
3161 		head = next;
3162 
3163 		func(rq);
3164 	}
3165 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3166 }
3167 
3168 static inline void balance_callback(struct rq *rq)
3169 {
3170 	if (unlikely(rq->balance_callback))
3171 		__balance_callback(rq);
3172 }
3173 
3174 #else
3175 
3176 static inline void balance_callback(struct rq *rq)
3177 {
3178 }
3179 
3180 #endif
3181 
3182 /**
3183  * schedule_tail - first thing a freshly forked thread must call.
3184  * @prev: the thread we just switched away from.
3185  */
3186 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3187 	__releases(rq->lock)
3188 {
3189 	struct rq *rq;
3190 
3191 	/*
3192 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3193 	 * finish_task_switch() for details.
3194 	 *
3195 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3196 	 * and the preempt_enable() will end up enabling preemption (on
3197 	 * PREEMPT_COUNT kernels).
3198 	 */
3199 
3200 	rq = finish_task_switch(prev);
3201 	balance_callback(rq);
3202 	preempt_enable();
3203 
3204 	if (current->set_child_tid)
3205 		put_user(task_pid_vnr(current), current->set_child_tid);
3206 
3207 	calculate_sigpending();
3208 }
3209 
3210 /*
3211  * context_switch - switch to the new MM and the new thread's register state.
3212  */
3213 static __always_inline struct rq *
3214 context_switch(struct rq *rq, struct task_struct *prev,
3215 	       struct task_struct *next, struct rq_flags *rf)
3216 {
3217 	struct mm_struct *mm, *oldmm;
3218 
3219 	prepare_task_switch(rq, prev, next);
3220 
3221 	mm = next->mm;
3222 	oldmm = prev->active_mm;
3223 	/*
3224 	 * For paravirt, this is coupled with an exit in switch_to to
3225 	 * combine the page table reload and the switch backend into
3226 	 * one hypercall.
3227 	 */
3228 	arch_start_context_switch(prev);
3229 
3230 	/*
3231 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
3232 	 * NULL, we will pass through mmdrop() in finish_task_switch().
3233 	 * Both of these contain the full memory barrier required by
3234 	 * membarrier after storing to rq->curr, before returning to
3235 	 * user-space.
3236 	 */
3237 	if (!mm) {
3238 		next->active_mm = oldmm;
3239 		mmgrab(oldmm);
3240 		enter_lazy_tlb(oldmm, next);
3241 	} else
3242 		switch_mm_irqs_off(oldmm, mm, next);
3243 
3244 	if (!prev->mm) {
3245 		prev->active_mm = NULL;
3246 		rq->prev_mm = oldmm;
3247 	}
3248 
3249 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3250 
3251 	prepare_lock_switch(rq, next, rf);
3252 
3253 	/* Here we just switch the register state and the stack. */
3254 	switch_to(prev, next, prev);
3255 	barrier();
3256 
3257 	return finish_task_switch(prev);
3258 }
3259 
3260 /*
3261  * nr_running and nr_context_switches:
3262  *
3263  * externally visible scheduler statistics: current number of runnable
3264  * threads, total number of context switches performed since bootup.
3265  */
3266 unsigned long nr_running(void)
3267 {
3268 	unsigned long i, sum = 0;
3269 
3270 	for_each_online_cpu(i)
3271 		sum += cpu_rq(i)->nr_running;
3272 
3273 	return sum;
3274 }
3275 
3276 /*
3277  * Check if only the current task is running on the CPU.
3278  *
3279  * Caution: this function does not check that the caller has disabled
3280  * preemption, thus the result might have a time-of-check-to-time-of-use
3281  * race.  The caller is responsible to use it correctly, for example:
3282  *
3283  * - from a non-preemptible section (of course)
3284  *
3285  * - from a thread that is bound to a single CPU
3286  *
3287  * - in a loop with very short iterations (e.g. a polling loop)
3288  */
3289 bool single_task_running(void)
3290 {
3291 	return raw_rq()->nr_running == 1;
3292 }
3293 EXPORT_SYMBOL(single_task_running);
3294 
3295 unsigned long long nr_context_switches(void)
3296 {
3297 	int i;
3298 	unsigned long long sum = 0;
3299 
3300 	for_each_possible_cpu(i)
3301 		sum += cpu_rq(i)->nr_switches;
3302 
3303 	return sum;
3304 }
3305 
3306 /*
3307  * Consumers of these two interfaces, like for example the cpuidle menu
3308  * governor, are using nonsensical data. Preferring shallow idle state selection
3309  * for a CPU that has IO-wait which might not even end up running the task when
3310  * it does become runnable.
3311  */
3312 
3313 unsigned long nr_iowait_cpu(int cpu)
3314 {
3315 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3316 }
3317 
3318 /*
3319  * IO-wait accounting, and how its mostly bollocks (on SMP).
3320  *
3321  * The idea behind IO-wait account is to account the idle time that we could
3322  * have spend running if it were not for IO. That is, if we were to improve the
3323  * storage performance, we'd have a proportional reduction in IO-wait time.
3324  *
3325  * This all works nicely on UP, where, when a task blocks on IO, we account
3326  * idle time as IO-wait, because if the storage were faster, it could've been
3327  * running and we'd not be idle.
3328  *
3329  * This has been extended to SMP, by doing the same for each CPU. This however
3330  * is broken.
3331  *
3332  * Imagine for instance the case where two tasks block on one CPU, only the one
3333  * CPU will have IO-wait accounted, while the other has regular idle. Even
3334  * though, if the storage were faster, both could've ran at the same time,
3335  * utilising both CPUs.
3336  *
3337  * This means, that when looking globally, the current IO-wait accounting on
3338  * SMP is a lower bound, by reason of under accounting.
3339  *
3340  * Worse, since the numbers are provided per CPU, they are sometimes
3341  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3342  * associated with any one particular CPU, it can wake to another CPU than it
3343  * blocked on. This means the per CPU IO-wait number is meaningless.
3344  *
3345  * Task CPU affinities can make all that even more 'interesting'.
3346  */
3347 
3348 unsigned long nr_iowait(void)
3349 {
3350 	unsigned long i, sum = 0;
3351 
3352 	for_each_possible_cpu(i)
3353 		sum += nr_iowait_cpu(i);
3354 
3355 	return sum;
3356 }
3357 
3358 #ifdef CONFIG_SMP
3359 
3360 /*
3361  * sched_exec - execve() is a valuable balancing opportunity, because at
3362  * this point the task has the smallest effective memory and cache footprint.
3363  */
3364 void sched_exec(void)
3365 {
3366 	struct task_struct *p = current;
3367 	unsigned long flags;
3368 	int dest_cpu;
3369 
3370 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3371 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3372 	if (dest_cpu == smp_processor_id())
3373 		goto unlock;
3374 
3375 	if (likely(cpu_active(dest_cpu))) {
3376 		struct migration_arg arg = { p, dest_cpu };
3377 
3378 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3379 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3380 		return;
3381 	}
3382 unlock:
3383 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3384 }
3385 
3386 #endif
3387 
3388 DEFINE_PER_CPU(struct kernel_stat, kstat);
3389 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3390 
3391 EXPORT_PER_CPU_SYMBOL(kstat);
3392 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3393 
3394 /*
3395  * The function fair_sched_class.update_curr accesses the struct curr
3396  * and its field curr->exec_start; when called from task_sched_runtime(),
3397  * we observe a high rate of cache misses in practice.
3398  * Prefetching this data results in improved performance.
3399  */
3400 static inline void prefetch_curr_exec_start(struct task_struct *p)
3401 {
3402 #ifdef CONFIG_FAIR_GROUP_SCHED
3403 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3404 #else
3405 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3406 #endif
3407 	prefetch(curr);
3408 	prefetch(&curr->exec_start);
3409 }
3410 
3411 /*
3412  * Return accounted runtime for the task.
3413  * In case the task is currently running, return the runtime plus current's
3414  * pending runtime that have not been accounted yet.
3415  */
3416 unsigned long long task_sched_runtime(struct task_struct *p)
3417 {
3418 	struct rq_flags rf;
3419 	struct rq *rq;
3420 	u64 ns;
3421 
3422 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3423 	/*
3424 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3425 	 * So we have a optimization chance when the task's delta_exec is 0.
3426 	 * Reading ->on_cpu is racy, but this is ok.
3427 	 *
3428 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3429 	 * If we race with it entering CPU, unaccounted time is 0. This is
3430 	 * indistinguishable from the read occurring a few cycles earlier.
3431 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3432 	 * been accounted, so we're correct here as well.
3433 	 */
3434 	if (!p->on_cpu || !task_on_rq_queued(p))
3435 		return p->se.sum_exec_runtime;
3436 #endif
3437 
3438 	rq = task_rq_lock(p, &rf);
3439 	/*
3440 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3441 	 * project cycles that may never be accounted to this
3442 	 * thread, breaking clock_gettime().
3443 	 */
3444 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3445 		prefetch_curr_exec_start(p);
3446 		update_rq_clock(rq);
3447 		p->sched_class->update_curr(rq);
3448 	}
3449 	ns = p->se.sum_exec_runtime;
3450 	task_rq_unlock(rq, p, &rf);
3451 
3452 	return ns;
3453 }
3454 
3455 /*
3456  * This function gets called by the timer code, with HZ frequency.
3457  * We call it with interrupts disabled.
3458  */
3459 void scheduler_tick(void)
3460 {
3461 	int cpu = smp_processor_id();
3462 	struct rq *rq = cpu_rq(cpu);
3463 	struct task_struct *curr = rq->curr;
3464 	struct rq_flags rf;
3465 
3466 	sched_clock_tick();
3467 
3468 	rq_lock(rq, &rf);
3469 
3470 	update_rq_clock(rq);
3471 	curr->sched_class->task_tick(rq, curr, 0);
3472 	calc_global_load_tick(rq);
3473 	psi_task_tick(rq);
3474 
3475 	rq_unlock(rq, &rf);
3476 
3477 	perf_event_task_tick();
3478 
3479 #ifdef CONFIG_SMP
3480 	rq->idle_balance = idle_cpu(cpu);
3481 	trigger_load_balance(rq);
3482 #endif
3483 }
3484 
3485 #ifdef CONFIG_NO_HZ_FULL
3486 
3487 struct tick_work {
3488 	int			cpu;
3489 	struct delayed_work	work;
3490 };
3491 
3492 static struct tick_work __percpu *tick_work_cpu;
3493 
3494 static void sched_tick_remote(struct work_struct *work)
3495 {
3496 	struct delayed_work *dwork = to_delayed_work(work);
3497 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3498 	int cpu = twork->cpu;
3499 	struct rq *rq = cpu_rq(cpu);
3500 	struct task_struct *curr;
3501 	struct rq_flags rf;
3502 	u64 delta;
3503 
3504 	/*
3505 	 * Handle the tick only if it appears the remote CPU is running in full
3506 	 * dynticks mode. The check is racy by nature, but missing a tick or
3507 	 * having one too much is no big deal because the scheduler tick updates
3508 	 * statistics and checks timeslices in a time-independent way, regardless
3509 	 * of when exactly it is running.
3510 	 */
3511 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3512 		goto out_requeue;
3513 
3514 	rq_lock_irq(rq, &rf);
3515 	curr = rq->curr;
3516 	if (is_idle_task(curr))
3517 		goto out_unlock;
3518 
3519 	update_rq_clock(rq);
3520 	delta = rq_clock_task(rq) - curr->se.exec_start;
3521 
3522 	/*
3523 	 * Make sure the next tick runs within a reasonable
3524 	 * amount of time.
3525 	 */
3526 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3527 	curr->sched_class->task_tick(rq, curr, 0);
3528 
3529 out_unlock:
3530 	rq_unlock_irq(rq, &rf);
3531 
3532 out_requeue:
3533 	/*
3534 	 * Run the remote tick once per second (1Hz). This arbitrary
3535 	 * frequency is large enough to avoid overload but short enough
3536 	 * to keep scheduler internal stats reasonably up to date.
3537 	 */
3538 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3539 }
3540 
3541 static void sched_tick_start(int cpu)
3542 {
3543 	struct tick_work *twork;
3544 
3545 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3546 		return;
3547 
3548 	WARN_ON_ONCE(!tick_work_cpu);
3549 
3550 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3551 	twork->cpu = cpu;
3552 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3553 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3554 }
3555 
3556 #ifdef CONFIG_HOTPLUG_CPU
3557 static void sched_tick_stop(int cpu)
3558 {
3559 	struct tick_work *twork;
3560 
3561 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3562 		return;
3563 
3564 	WARN_ON_ONCE(!tick_work_cpu);
3565 
3566 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3567 	cancel_delayed_work_sync(&twork->work);
3568 }
3569 #endif /* CONFIG_HOTPLUG_CPU */
3570 
3571 int __init sched_tick_offload_init(void)
3572 {
3573 	tick_work_cpu = alloc_percpu(struct tick_work);
3574 	BUG_ON(!tick_work_cpu);
3575 
3576 	return 0;
3577 }
3578 
3579 #else /* !CONFIG_NO_HZ_FULL */
3580 static inline void sched_tick_start(int cpu) { }
3581 static inline void sched_tick_stop(int cpu) { }
3582 #endif
3583 
3584 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3585 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3586 /*
3587  * If the value passed in is equal to the current preempt count
3588  * then we just disabled preemption. Start timing the latency.
3589  */
3590 static inline void preempt_latency_start(int val)
3591 {
3592 	if (preempt_count() == val) {
3593 		unsigned long ip = get_lock_parent_ip();
3594 #ifdef CONFIG_DEBUG_PREEMPT
3595 		current->preempt_disable_ip = ip;
3596 #endif
3597 		trace_preempt_off(CALLER_ADDR0, ip);
3598 	}
3599 }
3600 
3601 void preempt_count_add(int val)
3602 {
3603 #ifdef CONFIG_DEBUG_PREEMPT
3604 	/*
3605 	 * Underflow?
3606 	 */
3607 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3608 		return;
3609 #endif
3610 	__preempt_count_add(val);
3611 #ifdef CONFIG_DEBUG_PREEMPT
3612 	/*
3613 	 * Spinlock count overflowing soon?
3614 	 */
3615 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3616 				PREEMPT_MASK - 10);
3617 #endif
3618 	preempt_latency_start(val);
3619 }
3620 EXPORT_SYMBOL(preempt_count_add);
3621 NOKPROBE_SYMBOL(preempt_count_add);
3622 
3623 /*
3624  * If the value passed in equals to the current preempt count
3625  * then we just enabled preemption. Stop timing the latency.
3626  */
3627 static inline void preempt_latency_stop(int val)
3628 {
3629 	if (preempt_count() == val)
3630 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3631 }
3632 
3633 void preempt_count_sub(int val)
3634 {
3635 #ifdef CONFIG_DEBUG_PREEMPT
3636 	/*
3637 	 * Underflow?
3638 	 */
3639 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3640 		return;
3641 	/*
3642 	 * Is the spinlock portion underflowing?
3643 	 */
3644 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3645 			!(preempt_count() & PREEMPT_MASK)))
3646 		return;
3647 #endif
3648 
3649 	preempt_latency_stop(val);
3650 	__preempt_count_sub(val);
3651 }
3652 EXPORT_SYMBOL(preempt_count_sub);
3653 NOKPROBE_SYMBOL(preempt_count_sub);
3654 
3655 #else
3656 static inline void preempt_latency_start(int val) { }
3657 static inline void preempt_latency_stop(int val) { }
3658 #endif
3659 
3660 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3661 {
3662 #ifdef CONFIG_DEBUG_PREEMPT
3663 	return p->preempt_disable_ip;
3664 #else
3665 	return 0;
3666 #endif
3667 }
3668 
3669 /*
3670  * Print scheduling while atomic bug:
3671  */
3672 static noinline void __schedule_bug(struct task_struct *prev)
3673 {
3674 	/* Save this before calling printk(), since that will clobber it */
3675 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3676 
3677 	if (oops_in_progress)
3678 		return;
3679 
3680 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3681 		prev->comm, prev->pid, preempt_count());
3682 
3683 	debug_show_held_locks(prev);
3684 	print_modules();
3685 	if (irqs_disabled())
3686 		print_irqtrace_events(prev);
3687 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3688 	    && in_atomic_preempt_off()) {
3689 		pr_err("Preemption disabled at:");
3690 		print_ip_sym(preempt_disable_ip);
3691 		pr_cont("\n");
3692 	}
3693 	if (panic_on_warn)
3694 		panic("scheduling while atomic\n");
3695 
3696 	dump_stack();
3697 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3698 }
3699 
3700 /*
3701  * Various schedule()-time debugging checks and statistics:
3702  */
3703 static inline void schedule_debug(struct task_struct *prev)
3704 {
3705 #ifdef CONFIG_SCHED_STACK_END_CHECK
3706 	if (task_stack_end_corrupted(prev))
3707 		panic("corrupted stack end detected inside scheduler\n");
3708 #endif
3709 
3710 	if (unlikely(in_atomic_preempt_off())) {
3711 		__schedule_bug(prev);
3712 		preempt_count_set(PREEMPT_DISABLED);
3713 	}
3714 	rcu_sleep_check();
3715 
3716 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3717 
3718 	schedstat_inc(this_rq()->sched_count);
3719 }
3720 
3721 /*
3722  * Pick up the highest-prio task:
3723  */
3724 static inline struct task_struct *
3725 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3726 {
3727 	const struct sched_class *class;
3728 	struct task_struct *p;
3729 
3730 	/*
3731 	 * Optimization: we know that if all tasks are in the fair class we can
3732 	 * call that function directly, but only if the @prev task wasn't of a
3733 	 * higher scheduling class, because otherwise those loose the
3734 	 * opportunity to pull in more work from other CPUs.
3735 	 */
3736 	if (likely((prev->sched_class == &idle_sched_class ||
3737 		    prev->sched_class == &fair_sched_class) &&
3738 		   rq->nr_running == rq->cfs.h_nr_running)) {
3739 
3740 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3741 		if (unlikely(p == RETRY_TASK))
3742 			goto again;
3743 
3744 		/* Assumes fair_sched_class->next == idle_sched_class */
3745 		if (unlikely(!p))
3746 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3747 
3748 		return p;
3749 	}
3750 
3751 again:
3752 	for_each_class(class) {
3753 		p = class->pick_next_task(rq, prev, rf);
3754 		if (p) {
3755 			if (unlikely(p == RETRY_TASK))
3756 				goto again;
3757 			return p;
3758 		}
3759 	}
3760 
3761 	/* The idle class should always have a runnable task: */
3762 	BUG();
3763 }
3764 
3765 /*
3766  * __schedule() is the main scheduler function.
3767  *
3768  * The main means of driving the scheduler and thus entering this function are:
3769  *
3770  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3771  *
3772  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3773  *      paths. For example, see arch/x86/entry_64.S.
3774  *
3775  *      To drive preemption between tasks, the scheduler sets the flag in timer
3776  *      interrupt handler scheduler_tick().
3777  *
3778  *   3. Wakeups don't really cause entry into schedule(). They add a
3779  *      task to the run-queue and that's it.
3780  *
3781  *      Now, if the new task added to the run-queue preempts the current
3782  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3783  *      called on the nearest possible occasion:
3784  *
3785  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3786  *
3787  *         - in syscall or exception context, at the next outmost
3788  *           preempt_enable(). (this might be as soon as the wake_up()'s
3789  *           spin_unlock()!)
3790  *
3791  *         - in IRQ context, return from interrupt-handler to
3792  *           preemptible context
3793  *
3794  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3795  *         then at the next:
3796  *
3797  *          - cond_resched() call
3798  *          - explicit schedule() call
3799  *          - return from syscall or exception to user-space
3800  *          - return from interrupt-handler to user-space
3801  *
3802  * WARNING: must be called with preemption disabled!
3803  */
3804 static void __sched notrace __schedule(bool preempt)
3805 {
3806 	struct task_struct *prev, *next;
3807 	unsigned long *switch_count;
3808 	struct rq_flags rf;
3809 	struct rq *rq;
3810 	int cpu;
3811 
3812 	cpu = smp_processor_id();
3813 	rq = cpu_rq(cpu);
3814 	prev = rq->curr;
3815 
3816 	schedule_debug(prev);
3817 
3818 	if (sched_feat(HRTICK))
3819 		hrtick_clear(rq);
3820 
3821 	local_irq_disable();
3822 	rcu_note_context_switch(preempt);
3823 
3824 	/*
3825 	 * Make sure that signal_pending_state()->signal_pending() below
3826 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3827 	 * done by the caller to avoid the race with signal_wake_up().
3828 	 *
3829 	 * The membarrier system call requires a full memory barrier
3830 	 * after coming from user-space, before storing to rq->curr.
3831 	 */
3832 	rq_lock(rq, &rf);
3833 	smp_mb__after_spinlock();
3834 
3835 	/* Promote REQ to ACT */
3836 	rq->clock_update_flags <<= 1;
3837 	update_rq_clock(rq);
3838 
3839 	switch_count = &prev->nivcsw;
3840 	if (!preempt && prev->state) {
3841 		if (signal_pending_state(prev->state, prev)) {
3842 			prev->state = TASK_RUNNING;
3843 		} else {
3844 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3845 
3846 			if (prev->in_iowait) {
3847 				atomic_inc(&rq->nr_iowait);
3848 				delayacct_blkio_start();
3849 			}
3850 		}
3851 		switch_count = &prev->nvcsw;
3852 	}
3853 
3854 	next = pick_next_task(rq, prev, &rf);
3855 	clear_tsk_need_resched(prev);
3856 	clear_preempt_need_resched();
3857 
3858 	if (likely(prev != next)) {
3859 		rq->nr_switches++;
3860 		rq->curr = next;
3861 		/*
3862 		 * The membarrier system call requires each architecture
3863 		 * to have a full memory barrier after updating
3864 		 * rq->curr, before returning to user-space.
3865 		 *
3866 		 * Here are the schemes providing that barrier on the
3867 		 * various architectures:
3868 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3869 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3870 		 * - finish_lock_switch() for weakly-ordered
3871 		 *   architectures where spin_unlock is a full barrier,
3872 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3873 		 *   is a RELEASE barrier),
3874 		 */
3875 		++*switch_count;
3876 
3877 		trace_sched_switch(preempt, prev, next);
3878 
3879 		/* Also unlocks the rq: */
3880 		rq = context_switch(rq, prev, next, &rf);
3881 	} else {
3882 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3883 		rq_unlock_irq(rq, &rf);
3884 	}
3885 
3886 	balance_callback(rq);
3887 }
3888 
3889 void __noreturn do_task_dead(void)
3890 {
3891 	/* Causes final put_task_struct in finish_task_switch(): */
3892 	set_special_state(TASK_DEAD);
3893 
3894 	/* Tell freezer to ignore us: */
3895 	current->flags |= PF_NOFREEZE;
3896 
3897 	__schedule(false);
3898 	BUG();
3899 
3900 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3901 	for (;;)
3902 		cpu_relax();
3903 }
3904 
3905 static inline void sched_submit_work(struct task_struct *tsk)
3906 {
3907 	if (!tsk->state)
3908 		return;
3909 
3910 	/*
3911 	 * If a worker went to sleep, notify and ask workqueue whether
3912 	 * it wants to wake up a task to maintain concurrency.
3913 	 * As this function is called inside the schedule() context,
3914 	 * we disable preemption to avoid it calling schedule() again
3915 	 * in the possible wakeup of a kworker.
3916 	 */
3917 	if (tsk->flags & PF_WQ_WORKER) {
3918 		preempt_disable();
3919 		wq_worker_sleeping(tsk);
3920 		preempt_enable_no_resched();
3921 	}
3922 
3923 	if (tsk_is_pi_blocked(tsk))
3924 		return;
3925 
3926 	/*
3927 	 * If we are going to sleep and we have plugged IO queued,
3928 	 * make sure to submit it to avoid deadlocks.
3929 	 */
3930 	if (blk_needs_flush_plug(tsk))
3931 		blk_schedule_flush_plug(tsk);
3932 }
3933 
3934 static void sched_update_worker(struct task_struct *tsk)
3935 {
3936 	if (tsk->flags & PF_WQ_WORKER)
3937 		wq_worker_running(tsk);
3938 }
3939 
3940 asmlinkage __visible void __sched schedule(void)
3941 {
3942 	struct task_struct *tsk = current;
3943 
3944 	sched_submit_work(tsk);
3945 	do {
3946 		preempt_disable();
3947 		__schedule(false);
3948 		sched_preempt_enable_no_resched();
3949 	} while (need_resched());
3950 	sched_update_worker(tsk);
3951 }
3952 EXPORT_SYMBOL(schedule);
3953 
3954 /*
3955  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3956  * state (have scheduled out non-voluntarily) by making sure that all
3957  * tasks have either left the run queue or have gone into user space.
3958  * As idle tasks do not do either, they must not ever be preempted
3959  * (schedule out non-voluntarily).
3960  *
3961  * schedule_idle() is similar to schedule_preempt_disable() except that it
3962  * never enables preemption because it does not call sched_submit_work().
3963  */
3964 void __sched schedule_idle(void)
3965 {
3966 	/*
3967 	 * As this skips calling sched_submit_work(), which the idle task does
3968 	 * regardless because that function is a nop when the task is in a
3969 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3970 	 * current task can be in any other state. Note, idle is always in the
3971 	 * TASK_RUNNING state.
3972 	 */
3973 	WARN_ON_ONCE(current->state);
3974 	do {
3975 		__schedule(false);
3976 	} while (need_resched());
3977 }
3978 
3979 #ifdef CONFIG_CONTEXT_TRACKING
3980 asmlinkage __visible void __sched schedule_user(void)
3981 {
3982 	/*
3983 	 * If we come here after a random call to set_need_resched(),
3984 	 * or we have been woken up remotely but the IPI has not yet arrived,
3985 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3986 	 * we find a better solution.
3987 	 *
3988 	 * NB: There are buggy callers of this function.  Ideally we
3989 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3990 	 * too frequently to make sense yet.
3991 	 */
3992 	enum ctx_state prev_state = exception_enter();
3993 	schedule();
3994 	exception_exit(prev_state);
3995 }
3996 #endif
3997 
3998 /**
3999  * schedule_preempt_disabled - called with preemption disabled
4000  *
4001  * Returns with preemption disabled. Note: preempt_count must be 1
4002  */
4003 void __sched schedule_preempt_disabled(void)
4004 {
4005 	sched_preempt_enable_no_resched();
4006 	schedule();
4007 	preempt_disable();
4008 }
4009 
4010 static void __sched notrace preempt_schedule_common(void)
4011 {
4012 	do {
4013 		/*
4014 		 * Because the function tracer can trace preempt_count_sub()
4015 		 * and it also uses preempt_enable/disable_notrace(), if
4016 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4017 		 * by the function tracer will call this function again and
4018 		 * cause infinite recursion.
4019 		 *
4020 		 * Preemption must be disabled here before the function
4021 		 * tracer can trace. Break up preempt_disable() into two
4022 		 * calls. One to disable preemption without fear of being
4023 		 * traced. The other to still record the preemption latency,
4024 		 * which can also be traced by the function tracer.
4025 		 */
4026 		preempt_disable_notrace();
4027 		preempt_latency_start(1);
4028 		__schedule(true);
4029 		preempt_latency_stop(1);
4030 		preempt_enable_no_resched_notrace();
4031 
4032 		/*
4033 		 * Check again in case we missed a preemption opportunity
4034 		 * between schedule and now.
4035 		 */
4036 	} while (need_resched());
4037 }
4038 
4039 #ifdef CONFIG_PREEMPT
4040 /*
4041  * this is the entry point to schedule() from in-kernel preemption
4042  * off of preempt_enable. Kernel preemptions off return from interrupt
4043  * occur there and call schedule directly.
4044  */
4045 asmlinkage __visible void __sched notrace preempt_schedule(void)
4046 {
4047 	/*
4048 	 * If there is a non-zero preempt_count or interrupts are disabled,
4049 	 * we do not want to preempt the current task. Just return..
4050 	 */
4051 	if (likely(!preemptible()))
4052 		return;
4053 
4054 	preempt_schedule_common();
4055 }
4056 NOKPROBE_SYMBOL(preempt_schedule);
4057 EXPORT_SYMBOL(preempt_schedule);
4058 
4059 /**
4060  * preempt_schedule_notrace - preempt_schedule called by tracing
4061  *
4062  * The tracing infrastructure uses preempt_enable_notrace to prevent
4063  * recursion and tracing preempt enabling caused by the tracing
4064  * infrastructure itself. But as tracing can happen in areas coming
4065  * from userspace or just about to enter userspace, a preempt enable
4066  * can occur before user_exit() is called. This will cause the scheduler
4067  * to be called when the system is still in usermode.
4068  *
4069  * To prevent this, the preempt_enable_notrace will use this function
4070  * instead of preempt_schedule() to exit user context if needed before
4071  * calling the scheduler.
4072  */
4073 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4074 {
4075 	enum ctx_state prev_ctx;
4076 
4077 	if (likely(!preemptible()))
4078 		return;
4079 
4080 	do {
4081 		/*
4082 		 * Because the function tracer can trace preempt_count_sub()
4083 		 * and it also uses preempt_enable/disable_notrace(), if
4084 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4085 		 * by the function tracer will call this function again and
4086 		 * cause infinite recursion.
4087 		 *
4088 		 * Preemption must be disabled here before the function
4089 		 * tracer can trace. Break up preempt_disable() into two
4090 		 * calls. One to disable preemption without fear of being
4091 		 * traced. The other to still record the preemption latency,
4092 		 * which can also be traced by the function tracer.
4093 		 */
4094 		preempt_disable_notrace();
4095 		preempt_latency_start(1);
4096 		/*
4097 		 * Needs preempt disabled in case user_exit() is traced
4098 		 * and the tracer calls preempt_enable_notrace() causing
4099 		 * an infinite recursion.
4100 		 */
4101 		prev_ctx = exception_enter();
4102 		__schedule(true);
4103 		exception_exit(prev_ctx);
4104 
4105 		preempt_latency_stop(1);
4106 		preempt_enable_no_resched_notrace();
4107 	} while (need_resched());
4108 }
4109 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4110 
4111 #endif /* CONFIG_PREEMPT */
4112 
4113 /*
4114  * this is the entry point to schedule() from kernel preemption
4115  * off of irq context.
4116  * Note, that this is called and return with irqs disabled. This will
4117  * protect us against recursive calling from irq.
4118  */
4119 asmlinkage __visible void __sched preempt_schedule_irq(void)
4120 {
4121 	enum ctx_state prev_state;
4122 
4123 	/* Catch callers which need to be fixed */
4124 	BUG_ON(preempt_count() || !irqs_disabled());
4125 
4126 	prev_state = exception_enter();
4127 
4128 	do {
4129 		preempt_disable();
4130 		local_irq_enable();
4131 		__schedule(true);
4132 		local_irq_disable();
4133 		sched_preempt_enable_no_resched();
4134 	} while (need_resched());
4135 
4136 	exception_exit(prev_state);
4137 }
4138 
4139 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4140 			  void *key)
4141 {
4142 	return try_to_wake_up(curr->private, mode, wake_flags);
4143 }
4144 EXPORT_SYMBOL(default_wake_function);
4145 
4146 #ifdef CONFIG_RT_MUTEXES
4147 
4148 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4149 {
4150 	if (pi_task)
4151 		prio = min(prio, pi_task->prio);
4152 
4153 	return prio;
4154 }
4155 
4156 static inline int rt_effective_prio(struct task_struct *p, int prio)
4157 {
4158 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4159 
4160 	return __rt_effective_prio(pi_task, prio);
4161 }
4162 
4163 /*
4164  * rt_mutex_setprio - set the current priority of a task
4165  * @p: task to boost
4166  * @pi_task: donor task
4167  *
4168  * This function changes the 'effective' priority of a task. It does
4169  * not touch ->normal_prio like __setscheduler().
4170  *
4171  * Used by the rt_mutex code to implement priority inheritance
4172  * logic. Call site only calls if the priority of the task changed.
4173  */
4174 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4175 {
4176 	int prio, oldprio, queued, running, queue_flag =
4177 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4178 	const struct sched_class *prev_class;
4179 	struct rq_flags rf;
4180 	struct rq *rq;
4181 
4182 	/* XXX used to be waiter->prio, not waiter->task->prio */
4183 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4184 
4185 	/*
4186 	 * If nothing changed; bail early.
4187 	 */
4188 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4189 		return;
4190 
4191 	rq = __task_rq_lock(p, &rf);
4192 	update_rq_clock(rq);
4193 	/*
4194 	 * Set under pi_lock && rq->lock, such that the value can be used under
4195 	 * either lock.
4196 	 *
4197 	 * Note that there is loads of tricky to make this pointer cache work
4198 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4199 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4200 	 * task is allowed to run again (and can exit). This ensures the pointer
4201 	 * points to a blocked task -- which guaratees the task is present.
4202 	 */
4203 	p->pi_top_task = pi_task;
4204 
4205 	/*
4206 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4207 	 */
4208 	if (prio == p->prio && !dl_prio(prio))
4209 		goto out_unlock;
4210 
4211 	/*
4212 	 * Idle task boosting is a nono in general. There is one
4213 	 * exception, when PREEMPT_RT and NOHZ is active:
4214 	 *
4215 	 * The idle task calls get_next_timer_interrupt() and holds
4216 	 * the timer wheel base->lock on the CPU and another CPU wants
4217 	 * to access the timer (probably to cancel it). We can safely
4218 	 * ignore the boosting request, as the idle CPU runs this code
4219 	 * with interrupts disabled and will complete the lock
4220 	 * protected section without being interrupted. So there is no
4221 	 * real need to boost.
4222 	 */
4223 	if (unlikely(p == rq->idle)) {
4224 		WARN_ON(p != rq->curr);
4225 		WARN_ON(p->pi_blocked_on);
4226 		goto out_unlock;
4227 	}
4228 
4229 	trace_sched_pi_setprio(p, pi_task);
4230 	oldprio = p->prio;
4231 
4232 	if (oldprio == prio)
4233 		queue_flag &= ~DEQUEUE_MOVE;
4234 
4235 	prev_class = p->sched_class;
4236 	queued = task_on_rq_queued(p);
4237 	running = task_current(rq, p);
4238 	if (queued)
4239 		dequeue_task(rq, p, queue_flag);
4240 	if (running)
4241 		put_prev_task(rq, p);
4242 
4243 	/*
4244 	 * Boosting condition are:
4245 	 * 1. -rt task is running and holds mutex A
4246 	 *      --> -dl task blocks on mutex A
4247 	 *
4248 	 * 2. -dl task is running and holds mutex A
4249 	 *      --> -dl task blocks on mutex A and could preempt the
4250 	 *          running task
4251 	 */
4252 	if (dl_prio(prio)) {
4253 		if (!dl_prio(p->normal_prio) ||
4254 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4255 			p->dl.dl_boosted = 1;
4256 			queue_flag |= ENQUEUE_REPLENISH;
4257 		} else
4258 			p->dl.dl_boosted = 0;
4259 		p->sched_class = &dl_sched_class;
4260 	} else if (rt_prio(prio)) {
4261 		if (dl_prio(oldprio))
4262 			p->dl.dl_boosted = 0;
4263 		if (oldprio < prio)
4264 			queue_flag |= ENQUEUE_HEAD;
4265 		p->sched_class = &rt_sched_class;
4266 	} else {
4267 		if (dl_prio(oldprio))
4268 			p->dl.dl_boosted = 0;
4269 		if (rt_prio(oldprio))
4270 			p->rt.timeout = 0;
4271 		p->sched_class = &fair_sched_class;
4272 	}
4273 
4274 	p->prio = prio;
4275 
4276 	if (queued)
4277 		enqueue_task(rq, p, queue_flag);
4278 	if (running)
4279 		set_curr_task(rq, p);
4280 
4281 	check_class_changed(rq, p, prev_class, oldprio);
4282 out_unlock:
4283 	/* Avoid rq from going away on us: */
4284 	preempt_disable();
4285 	__task_rq_unlock(rq, &rf);
4286 
4287 	balance_callback(rq);
4288 	preempt_enable();
4289 }
4290 #else
4291 static inline int rt_effective_prio(struct task_struct *p, int prio)
4292 {
4293 	return prio;
4294 }
4295 #endif
4296 
4297 void set_user_nice(struct task_struct *p, long nice)
4298 {
4299 	bool queued, running;
4300 	int old_prio, delta;
4301 	struct rq_flags rf;
4302 	struct rq *rq;
4303 
4304 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4305 		return;
4306 	/*
4307 	 * We have to be careful, if called from sys_setpriority(),
4308 	 * the task might be in the middle of scheduling on another CPU.
4309 	 */
4310 	rq = task_rq_lock(p, &rf);
4311 	update_rq_clock(rq);
4312 
4313 	/*
4314 	 * The RT priorities are set via sched_setscheduler(), but we still
4315 	 * allow the 'normal' nice value to be set - but as expected
4316 	 * it wont have any effect on scheduling until the task is
4317 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4318 	 */
4319 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4320 		p->static_prio = NICE_TO_PRIO(nice);
4321 		goto out_unlock;
4322 	}
4323 	queued = task_on_rq_queued(p);
4324 	running = task_current(rq, p);
4325 	if (queued)
4326 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4327 	if (running)
4328 		put_prev_task(rq, p);
4329 
4330 	p->static_prio = NICE_TO_PRIO(nice);
4331 	set_load_weight(p, true);
4332 	old_prio = p->prio;
4333 	p->prio = effective_prio(p);
4334 	delta = p->prio - old_prio;
4335 
4336 	if (queued) {
4337 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4338 		/*
4339 		 * If the task increased its priority or is running and
4340 		 * lowered its priority, then reschedule its CPU:
4341 		 */
4342 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4343 			resched_curr(rq);
4344 	}
4345 	if (running)
4346 		set_curr_task(rq, p);
4347 out_unlock:
4348 	task_rq_unlock(rq, p, &rf);
4349 }
4350 EXPORT_SYMBOL(set_user_nice);
4351 
4352 /*
4353  * can_nice - check if a task can reduce its nice value
4354  * @p: task
4355  * @nice: nice value
4356  */
4357 int can_nice(const struct task_struct *p, const int nice)
4358 {
4359 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4360 	int nice_rlim = nice_to_rlimit(nice);
4361 
4362 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4363 		capable(CAP_SYS_NICE));
4364 }
4365 
4366 #ifdef __ARCH_WANT_SYS_NICE
4367 
4368 /*
4369  * sys_nice - change the priority of the current process.
4370  * @increment: priority increment
4371  *
4372  * sys_setpriority is a more generic, but much slower function that
4373  * does similar things.
4374  */
4375 SYSCALL_DEFINE1(nice, int, increment)
4376 {
4377 	long nice, retval;
4378 
4379 	/*
4380 	 * Setpriority might change our priority at the same moment.
4381 	 * We don't have to worry. Conceptually one call occurs first
4382 	 * and we have a single winner.
4383 	 */
4384 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4385 	nice = task_nice(current) + increment;
4386 
4387 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4388 	if (increment < 0 && !can_nice(current, nice))
4389 		return -EPERM;
4390 
4391 	retval = security_task_setnice(current, nice);
4392 	if (retval)
4393 		return retval;
4394 
4395 	set_user_nice(current, nice);
4396 	return 0;
4397 }
4398 
4399 #endif
4400 
4401 /**
4402  * task_prio - return the priority value of a given task.
4403  * @p: the task in question.
4404  *
4405  * Return: The priority value as seen by users in /proc.
4406  * RT tasks are offset by -200. Normal tasks are centered
4407  * around 0, value goes from -16 to +15.
4408  */
4409 int task_prio(const struct task_struct *p)
4410 {
4411 	return p->prio - MAX_RT_PRIO;
4412 }
4413 
4414 /**
4415  * idle_cpu - is a given CPU idle currently?
4416  * @cpu: the processor in question.
4417  *
4418  * Return: 1 if the CPU is currently idle. 0 otherwise.
4419  */
4420 int idle_cpu(int cpu)
4421 {
4422 	struct rq *rq = cpu_rq(cpu);
4423 
4424 	if (rq->curr != rq->idle)
4425 		return 0;
4426 
4427 	if (rq->nr_running)
4428 		return 0;
4429 
4430 #ifdef CONFIG_SMP
4431 	if (!llist_empty(&rq->wake_list))
4432 		return 0;
4433 #endif
4434 
4435 	return 1;
4436 }
4437 
4438 /**
4439  * available_idle_cpu - is a given CPU idle for enqueuing work.
4440  * @cpu: the CPU in question.
4441  *
4442  * Return: 1 if the CPU is currently idle. 0 otherwise.
4443  */
4444 int available_idle_cpu(int cpu)
4445 {
4446 	if (!idle_cpu(cpu))
4447 		return 0;
4448 
4449 	if (vcpu_is_preempted(cpu))
4450 		return 0;
4451 
4452 	return 1;
4453 }
4454 
4455 /**
4456  * idle_task - return the idle task for a given CPU.
4457  * @cpu: the processor in question.
4458  *
4459  * Return: The idle task for the CPU @cpu.
4460  */
4461 struct task_struct *idle_task(int cpu)
4462 {
4463 	return cpu_rq(cpu)->idle;
4464 }
4465 
4466 /**
4467  * find_process_by_pid - find a process with a matching PID value.
4468  * @pid: the pid in question.
4469  *
4470  * The task of @pid, if found. %NULL otherwise.
4471  */
4472 static struct task_struct *find_process_by_pid(pid_t pid)
4473 {
4474 	return pid ? find_task_by_vpid(pid) : current;
4475 }
4476 
4477 /*
4478  * sched_setparam() passes in -1 for its policy, to let the functions
4479  * it calls know not to change it.
4480  */
4481 #define SETPARAM_POLICY	-1
4482 
4483 static void __setscheduler_params(struct task_struct *p,
4484 		const struct sched_attr *attr)
4485 {
4486 	int policy = attr->sched_policy;
4487 
4488 	if (policy == SETPARAM_POLICY)
4489 		policy = p->policy;
4490 
4491 	p->policy = policy;
4492 
4493 	if (dl_policy(policy))
4494 		__setparam_dl(p, attr);
4495 	else if (fair_policy(policy))
4496 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4497 
4498 	/*
4499 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4500 	 * !rt_policy. Always setting this ensures that things like
4501 	 * getparam()/getattr() don't report silly values for !rt tasks.
4502 	 */
4503 	p->rt_priority = attr->sched_priority;
4504 	p->normal_prio = normal_prio(p);
4505 	set_load_weight(p, true);
4506 }
4507 
4508 /* Actually do priority change: must hold pi & rq lock. */
4509 static void __setscheduler(struct rq *rq, struct task_struct *p,
4510 			   const struct sched_attr *attr, bool keep_boost)
4511 {
4512 	/*
4513 	 * If params can't change scheduling class changes aren't allowed
4514 	 * either.
4515 	 */
4516 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4517 		return;
4518 
4519 	__setscheduler_params(p, attr);
4520 
4521 	/*
4522 	 * Keep a potential priority boosting if called from
4523 	 * sched_setscheduler().
4524 	 */
4525 	p->prio = normal_prio(p);
4526 	if (keep_boost)
4527 		p->prio = rt_effective_prio(p, p->prio);
4528 
4529 	if (dl_prio(p->prio))
4530 		p->sched_class = &dl_sched_class;
4531 	else if (rt_prio(p->prio))
4532 		p->sched_class = &rt_sched_class;
4533 	else
4534 		p->sched_class = &fair_sched_class;
4535 }
4536 
4537 /*
4538  * Check the target process has a UID that matches the current process's:
4539  */
4540 static bool check_same_owner(struct task_struct *p)
4541 {
4542 	const struct cred *cred = current_cred(), *pcred;
4543 	bool match;
4544 
4545 	rcu_read_lock();
4546 	pcred = __task_cred(p);
4547 	match = (uid_eq(cred->euid, pcred->euid) ||
4548 		 uid_eq(cred->euid, pcred->uid));
4549 	rcu_read_unlock();
4550 	return match;
4551 }
4552 
4553 static int __sched_setscheduler(struct task_struct *p,
4554 				const struct sched_attr *attr,
4555 				bool user, bool pi)
4556 {
4557 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4558 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4559 	int retval, oldprio, oldpolicy = -1, queued, running;
4560 	int new_effective_prio, policy = attr->sched_policy;
4561 	const struct sched_class *prev_class;
4562 	struct rq_flags rf;
4563 	int reset_on_fork;
4564 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4565 	struct rq *rq;
4566 
4567 	/* The pi code expects interrupts enabled */
4568 	BUG_ON(pi && in_interrupt());
4569 recheck:
4570 	/* Double check policy once rq lock held: */
4571 	if (policy < 0) {
4572 		reset_on_fork = p->sched_reset_on_fork;
4573 		policy = oldpolicy = p->policy;
4574 	} else {
4575 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4576 
4577 		if (!valid_policy(policy))
4578 			return -EINVAL;
4579 	}
4580 
4581 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4582 		return -EINVAL;
4583 
4584 	/*
4585 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4586 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4587 	 * SCHED_BATCH and SCHED_IDLE is 0.
4588 	 */
4589 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4590 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4591 		return -EINVAL;
4592 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4593 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4594 		return -EINVAL;
4595 
4596 	/*
4597 	 * Allow unprivileged RT tasks to decrease priority:
4598 	 */
4599 	if (user && !capable(CAP_SYS_NICE)) {
4600 		if (fair_policy(policy)) {
4601 			if (attr->sched_nice < task_nice(p) &&
4602 			    !can_nice(p, attr->sched_nice))
4603 				return -EPERM;
4604 		}
4605 
4606 		if (rt_policy(policy)) {
4607 			unsigned long rlim_rtprio =
4608 					task_rlimit(p, RLIMIT_RTPRIO);
4609 
4610 			/* Can't set/change the rt policy: */
4611 			if (policy != p->policy && !rlim_rtprio)
4612 				return -EPERM;
4613 
4614 			/* Can't increase priority: */
4615 			if (attr->sched_priority > p->rt_priority &&
4616 			    attr->sched_priority > rlim_rtprio)
4617 				return -EPERM;
4618 		}
4619 
4620 		 /*
4621 		  * Can't set/change SCHED_DEADLINE policy at all for now
4622 		  * (safest behavior); in the future we would like to allow
4623 		  * unprivileged DL tasks to increase their relative deadline
4624 		  * or reduce their runtime (both ways reducing utilization)
4625 		  */
4626 		if (dl_policy(policy))
4627 			return -EPERM;
4628 
4629 		/*
4630 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4631 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4632 		 */
4633 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4634 			if (!can_nice(p, task_nice(p)))
4635 				return -EPERM;
4636 		}
4637 
4638 		/* Can't change other user's priorities: */
4639 		if (!check_same_owner(p))
4640 			return -EPERM;
4641 
4642 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4643 		if (p->sched_reset_on_fork && !reset_on_fork)
4644 			return -EPERM;
4645 	}
4646 
4647 	if (user) {
4648 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4649 			return -EINVAL;
4650 
4651 		retval = security_task_setscheduler(p);
4652 		if (retval)
4653 			return retval;
4654 	}
4655 
4656 	/* Update task specific "requested" clamps */
4657 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4658 		retval = uclamp_validate(p, attr);
4659 		if (retval)
4660 			return retval;
4661 	}
4662 
4663 	/*
4664 	 * Make sure no PI-waiters arrive (or leave) while we are
4665 	 * changing the priority of the task:
4666 	 *
4667 	 * To be able to change p->policy safely, the appropriate
4668 	 * runqueue lock must be held.
4669 	 */
4670 	rq = task_rq_lock(p, &rf);
4671 	update_rq_clock(rq);
4672 
4673 	/*
4674 	 * Changing the policy of the stop threads its a very bad idea:
4675 	 */
4676 	if (p == rq->stop) {
4677 		task_rq_unlock(rq, p, &rf);
4678 		return -EINVAL;
4679 	}
4680 
4681 	/*
4682 	 * If not changing anything there's no need to proceed further,
4683 	 * but store a possible modification of reset_on_fork.
4684 	 */
4685 	if (unlikely(policy == p->policy)) {
4686 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4687 			goto change;
4688 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4689 			goto change;
4690 		if (dl_policy(policy) && dl_param_changed(p, attr))
4691 			goto change;
4692 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4693 			goto change;
4694 
4695 		p->sched_reset_on_fork = reset_on_fork;
4696 		task_rq_unlock(rq, p, &rf);
4697 		return 0;
4698 	}
4699 change:
4700 
4701 	if (user) {
4702 #ifdef CONFIG_RT_GROUP_SCHED
4703 		/*
4704 		 * Do not allow realtime tasks into groups that have no runtime
4705 		 * assigned.
4706 		 */
4707 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4708 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4709 				!task_group_is_autogroup(task_group(p))) {
4710 			task_rq_unlock(rq, p, &rf);
4711 			return -EPERM;
4712 		}
4713 #endif
4714 #ifdef CONFIG_SMP
4715 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4716 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4717 			cpumask_t *span = rq->rd->span;
4718 
4719 			/*
4720 			 * Don't allow tasks with an affinity mask smaller than
4721 			 * the entire root_domain to become SCHED_DEADLINE. We
4722 			 * will also fail if there's no bandwidth available.
4723 			 */
4724 			if (!cpumask_subset(span, p->cpus_ptr) ||
4725 			    rq->rd->dl_bw.bw == 0) {
4726 				task_rq_unlock(rq, p, &rf);
4727 				return -EPERM;
4728 			}
4729 		}
4730 #endif
4731 	}
4732 
4733 	/* Re-check policy now with rq lock held: */
4734 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4735 		policy = oldpolicy = -1;
4736 		task_rq_unlock(rq, p, &rf);
4737 		goto recheck;
4738 	}
4739 
4740 	/*
4741 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4742 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4743 	 * is available.
4744 	 */
4745 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4746 		task_rq_unlock(rq, p, &rf);
4747 		return -EBUSY;
4748 	}
4749 
4750 	p->sched_reset_on_fork = reset_on_fork;
4751 	oldprio = p->prio;
4752 
4753 	if (pi) {
4754 		/*
4755 		 * Take priority boosted tasks into account. If the new
4756 		 * effective priority is unchanged, we just store the new
4757 		 * normal parameters and do not touch the scheduler class and
4758 		 * the runqueue. This will be done when the task deboost
4759 		 * itself.
4760 		 */
4761 		new_effective_prio = rt_effective_prio(p, newprio);
4762 		if (new_effective_prio == oldprio)
4763 			queue_flags &= ~DEQUEUE_MOVE;
4764 	}
4765 
4766 	queued = task_on_rq_queued(p);
4767 	running = task_current(rq, p);
4768 	if (queued)
4769 		dequeue_task(rq, p, queue_flags);
4770 	if (running)
4771 		put_prev_task(rq, p);
4772 
4773 	prev_class = p->sched_class;
4774 
4775 	__setscheduler(rq, p, attr, pi);
4776 	__setscheduler_uclamp(p, attr);
4777 
4778 	if (queued) {
4779 		/*
4780 		 * We enqueue to tail when the priority of a task is
4781 		 * increased (user space view).
4782 		 */
4783 		if (oldprio < p->prio)
4784 			queue_flags |= ENQUEUE_HEAD;
4785 
4786 		enqueue_task(rq, p, queue_flags);
4787 	}
4788 	if (running)
4789 		set_curr_task(rq, p);
4790 
4791 	check_class_changed(rq, p, prev_class, oldprio);
4792 
4793 	/* Avoid rq from going away on us: */
4794 	preempt_disable();
4795 	task_rq_unlock(rq, p, &rf);
4796 
4797 	if (pi)
4798 		rt_mutex_adjust_pi(p);
4799 
4800 	/* Run balance callbacks after we've adjusted the PI chain: */
4801 	balance_callback(rq);
4802 	preempt_enable();
4803 
4804 	return 0;
4805 }
4806 
4807 static int _sched_setscheduler(struct task_struct *p, int policy,
4808 			       const struct sched_param *param, bool check)
4809 {
4810 	struct sched_attr attr = {
4811 		.sched_policy   = policy,
4812 		.sched_priority = param->sched_priority,
4813 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4814 	};
4815 
4816 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4817 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4818 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4819 		policy &= ~SCHED_RESET_ON_FORK;
4820 		attr.sched_policy = policy;
4821 	}
4822 
4823 	return __sched_setscheduler(p, &attr, check, true);
4824 }
4825 /**
4826  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4827  * @p: the task in question.
4828  * @policy: new policy.
4829  * @param: structure containing the new RT priority.
4830  *
4831  * Return: 0 on success. An error code otherwise.
4832  *
4833  * NOTE that the task may be already dead.
4834  */
4835 int sched_setscheduler(struct task_struct *p, int policy,
4836 		       const struct sched_param *param)
4837 {
4838 	return _sched_setscheduler(p, policy, param, true);
4839 }
4840 EXPORT_SYMBOL_GPL(sched_setscheduler);
4841 
4842 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4843 {
4844 	return __sched_setscheduler(p, attr, true, true);
4845 }
4846 EXPORT_SYMBOL_GPL(sched_setattr);
4847 
4848 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4849 {
4850 	return __sched_setscheduler(p, attr, false, true);
4851 }
4852 
4853 /**
4854  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4855  * @p: the task in question.
4856  * @policy: new policy.
4857  * @param: structure containing the new RT priority.
4858  *
4859  * Just like sched_setscheduler, only don't bother checking if the
4860  * current context has permission.  For example, this is needed in
4861  * stop_machine(): we create temporary high priority worker threads,
4862  * but our caller might not have that capability.
4863  *
4864  * Return: 0 on success. An error code otherwise.
4865  */
4866 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4867 			       const struct sched_param *param)
4868 {
4869 	return _sched_setscheduler(p, policy, param, false);
4870 }
4871 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4872 
4873 static int
4874 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4875 {
4876 	struct sched_param lparam;
4877 	struct task_struct *p;
4878 	int retval;
4879 
4880 	if (!param || pid < 0)
4881 		return -EINVAL;
4882 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4883 		return -EFAULT;
4884 
4885 	rcu_read_lock();
4886 	retval = -ESRCH;
4887 	p = find_process_by_pid(pid);
4888 	if (p != NULL)
4889 		retval = sched_setscheduler(p, policy, &lparam);
4890 	rcu_read_unlock();
4891 
4892 	return retval;
4893 }
4894 
4895 /*
4896  * Mimics kernel/events/core.c perf_copy_attr().
4897  */
4898 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4899 {
4900 	u32 size;
4901 	int ret;
4902 
4903 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4904 		return -EFAULT;
4905 
4906 	/* Zero the full structure, so that a short copy will be nice: */
4907 	memset(attr, 0, sizeof(*attr));
4908 
4909 	ret = get_user(size, &uattr->size);
4910 	if (ret)
4911 		return ret;
4912 
4913 	/* Bail out on silly large: */
4914 	if (size > PAGE_SIZE)
4915 		goto err_size;
4916 
4917 	/* ABI compatibility quirk: */
4918 	if (!size)
4919 		size = SCHED_ATTR_SIZE_VER0;
4920 
4921 	if (size < SCHED_ATTR_SIZE_VER0)
4922 		goto err_size;
4923 
4924 	/*
4925 	 * If we're handed a bigger struct than we know of,
4926 	 * ensure all the unknown bits are 0 - i.e. new
4927 	 * user-space does not rely on any kernel feature
4928 	 * extensions we dont know about yet.
4929 	 */
4930 	if (size > sizeof(*attr)) {
4931 		unsigned char __user *addr;
4932 		unsigned char __user *end;
4933 		unsigned char val;
4934 
4935 		addr = (void __user *)uattr + sizeof(*attr);
4936 		end  = (void __user *)uattr + size;
4937 
4938 		for (; addr < end; addr++) {
4939 			ret = get_user(val, addr);
4940 			if (ret)
4941 				return ret;
4942 			if (val)
4943 				goto err_size;
4944 		}
4945 		size = sizeof(*attr);
4946 	}
4947 
4948 	ret = copy_from_user(attr, uattr, size);
4949 	if (ret)
4950 		return -EFAULT;
4951 
4952 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4953 	    size < SCHED_ATTR_SIZE_VER1)
4954 		return -EINVAL;
4955 
4956 	/*
4957 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4958 	 * to be strict and return an error on out-of-bounds values?
4959 	 */
4960 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4961 
4962 	return 0;
4963 
4964 err_size:
4965 	put_user(sizeof(*attr), &uattr->size);
4966 	return -E2BIG;
4967 }
4968 
4969 /**
4970  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4971  * @pid: the pid in question.
4972  * @policy: new policy.
4973  * @param: structure containing the new RT priority.
4974  *
4975  * Return: 0 on success. An error code otherwise.
4976  */
4977 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4978 {
4979 	if (policy < 0)
4980 		return -EINVAL;
4981 
4982 	return do_sched_setscheduler(pid, policy, param);
4983 }
4984 
4985 /**
4986  * sys_sched_setparam - set/change the RT priority of a thread
4987  * @pid: the pid in question.
4988  * @param: structure containing the new RT priority.
4989  *
4990  * Return: 0 on success. An error code otherwise.
4991  */
4992 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4993 {
4994 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4995 }
4996 
4997 /**
4998  * sys_sched_setattr - same as above, but with extended sched_attr
4999  * @pid: the pid in question.
5000  * @uattr: structure containing the extended parameters.
5001  * @flags: for future extension.
5002  */
5003 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5004 			       unsigned int, flags)
5005 {
5006 	struct sched_attr attr;
5007 	struct task_struct *p;
5008 	int retval;
5009 
5010 	if (!uattr || pid < 0 || flags)
5011 		return -EINVAL;
5012 
5013 	retval = sched_copy_attr(uattr, &attr);
5014 	if (retval)
5015 		return retval;
5016 
5017 	if ((int)attr.sched_policy < 0)
5018 		return -EINVAL;
5019 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5020 		attr.sched_policy = SETPARAM_POLICY;
5021 
5022 	rcu_read_lock();
5023 	retval = -ESRCH;
5024 	p = find_process_by_pid(pid);
5025 	if (likely(p))
5026 		get_task_struct(p);
5027 	rcu_read_unlock();
5028 
5029 	if (likely(p)) {
5030 		retval = sched_setattr(p, &attr);
5031 		put_task_struct(p);
5032 	}
5033 
5034 	return retval;
5035 }
5036 
5037 /**
5038  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5039  * @pid: the pid in question.
5040  *
5041  * Return: On success, the policy of the thread. Otherwise, a negative error
5042  * code.
5043  */
5044 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5045 {
5046 	struct task_struct *p;
5047 	int retval;
5048 
5049 	if (pid < 0)
5050 		return -EINVAL;
5051 
5052 	retval = -ESRCH;
5053 	rcu_read_lock();
5054 	p = find_process_by_pid(pid);
5055 	if (p) {
5056 		retval = security_task_getscheduler(p);
5057 		if (!retval)
5058 			retval = p->policy
5059 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5060 	}
5061 	rcu_read_unlock();
5062 	return retval;
5063 }
5064 
5065 /**
5066  * sys_sched_getparam - get the RT priority of a thread
5067  * @pid: the pid in question.
5068  * @param: structure containing the RT priority.
5069  *
5070  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5071  * code.
5072  */
5073 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5074 {
5075 	struct sched_param lp = { .sched_priority = 0 };
5076 	struct task_struct *p;
5077 	int retval;
5078 
5079 	if (!param || pid < 0)
5080 		return -EINVAL;
5081 
5082 	rcu_read_lock();
5083 	p = find_process_by_pid(pid);
5084 	retval = -ESRCH;
5085 	if (!p)
5086 		goto out_unlock;
5087 
5088 	retval = security_task_getscheduler(p);
5089 	if (retval)
5090 		goto out_unlock;
5091 
5092 	if (task_has_rt_policy(p))
5093 		lp.sched_priority = p->rt_priority;
5094 	rcu_read_unlock();
5095 
5096 	/*
5097 	 * This one might sleep, we cannot do it with a spinlock held ...
5098 	 */
5099 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5100 
5101 	return retval;
5102 
5103 out_unlock:
5104 	rcu_read_unlock();
5105 	return retval;
5106 }
5107 
5108 static int sched_read_attr(struct sched_attr __user *uattr,
5109 			   struct sched_attr *attr,
5110 			   unsigned int usize)
5111 {
5112 	int ret;
5113 
5114 	if (!access_ok(uattr, usize))
5115 		return -EFAULT;
5116 
5117 	/*
5118 	 * If we're handed a smaller struct than we know of,
5119 	 * ensure all the unknown bits are 0 - i.e. old
5120 	 * user-space does not get uncomplete information.
5121 	 */
5122 	if (usize < sizeof(*attr)) {
5123 		unsigned char *addr;
5124 		unsigned char *end;
5125 
5126 		addr = (void *)attr + usize;
5127 		end  = (void *)attr + sizeof(*attr);
5128 
5129 		for (; addr < end; addr++) {
5130 			if (*addr)
5131 				return -EFBIG;
5132 		}
5133 
5134 		attr->size = usize;
5135 	}
5136 
5137 	ret = copy_to_user(uattr, attr, attr->size);
5138 	if (ret)
5139 		return -EFAULT;
5140 
5141 	return 0;
5142 }
5143 
5144 /**
5145  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5146  * @pid: the pid in question.
5147  * @uattr: structure containing the extended parameters.
5148  * @size: sizeof(attr) for fwd/bwd comp.
5149  * @flags: for future extension.
5150  */
5151 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5152 		unsigned int, size, unsigned int, flags)
5153 {
5154 	struct sched_attr attr = {
5155 		.size = sizeof(struct sched_attr),
5156 	};
5157 	struct task_struct *p;
5158 	int retval;
5159 
5160 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
5161 	    size < SCHED_ATTR_SIZE_VER0 || flags)
5162 		return -EINVAL;
5163 
5164 	rcu_read_lock();
5165 	p = find_process_by_pid(pid);
5166 	retval = -ESRCH;
5167 	if (!p)
5168 		goto out_unlock;
5169 
5170 	retval = security_task_getscheduler(p);
5171 	if (retval)
5172 		goto out_unlock;
5173 
5174 	attr.sched_policy = p->policy;
5175 	if (p->sched_reset_on_fork)
5176 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5177 	if (task_has_dl_policy(p))
5178 		__getparam_dl(p, &attr);
5179 	else if (task_has_rt_policy(p))
5180 		attr.sched_priority = p->rt_priority;
5181 	else
5182 		attr.sched_nice = task_nice(p);
5183 
5184 #ifdef CONFIG_UCLAMP_TASK
5185 	attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5186 	attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5187 #endif
5188 
5189 	rcu_read_unlock();
5190 
5191 	retval = sched_read_attr(uattr, &attr, size);
5192 	return retval;
5193 
5194 out_unlock:
5195 	rcu_read_unlock();
5196 	return retval;
5197 }
5198 
5199 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5200 {
5201 	cpumask_var_t cpus_allowed, new_mask;
5202 	struct task_struct *p;
5203 	int retval;
5204 
5205 	rcu_read_lock();
5206 
5207 	p = find_process_by_pid(pid);
5208 	if (!p) {
5209 		rcu_read_unlock();
5210 		return -ESRCH;
5211 	}
5212 
5213 	/* Prevent p going away */
5214 	get_task_struct(p);
5215 	rcu_read_unlock();
5216 
5217 	if (p->flags & PF_NO_SETAFFINITY) {
5218 		retval = -EINVAL;
5219 		goto out_put_task;
5220 	}
5221 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5222 		retval = -ENOMEM;
5223 		goto out_put_task;
5224 	}
5225 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5226 		retval = -ENOMEM;
5227 		goto out_free_cpus_allowed;
5228 	}
5229 	retval = -EPERM;
5230 	if (!check_same_owner(p)) {
5231 		rcu_read_lock();
5232 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5233 			rcu_read_unlock();
5234 			goto out_free_new_mask;
5235 		}
5236 		rcu_read_unlock();
5237 	}
5238 
5239 	retval = security_task_setscheduler(p);
5240 	if (retval)
5241 		goto out_free_new_mask;
5242 
5243 
5244 	cpuset_cpus_allowed(p, cpus_allowed);
5245 	cpumask_and(new_mask, in_mask, cpus_allowed);
5246 
5247 	/*
5248 	 * Since bandwidth control happens on root_domain basis,
5249 	 * if admission test is enabled, we only admit -deadline
5250 	 * tasks allowed to run on all the CPUs in the task's
5251 	 * root_domain.
5252 	 */
5253 #ifdef CONFIG_SMP
5254 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5255 		rcu_read_lock();
5256 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5257 			retval = -EBUSY;
5258 			rcu_read_unlock();
5259 			goto out_free_new_mask;
5260 		}
5261 		rcu_read_unlock();
5262 	}
5263 #endif
5264 again:
5265 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5266 
5267 	if (!retval) {
5268 		cpuset_cpus_allowed(p, cpus_allowed);
5269 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5270 			/*
5271 			 * We must have raced with a concurrent cpuset
5272 			 * update. Just reset the cpus_allowed to the
5273 			 * cpuset's cpus_allowed
5274 			 */
5275 			cpumask_copy(new_mask, cpus_allowed);
5276 			goto again;
5277 		}
5278 	}
5279 out_free_new_mask:
5280 	free_cpumask_var(new_mask);
5281 out_free_cpus_allowed:
5282 	free_cpumask_var(cpus_allowed);
5283 out_put_task:
5284 	put_task_struct(p);
5285 	return retval;
5286 }
5287 
5288 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5289 			     struct cpumask *new_mask)
5290 {
5291 	if (len < cpumask_size())
5292 		cpumask_clear(new_mask);
5293 	else if (len > cpumask_size())
5294 		len = cpumask_size();
5295 
5296 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5297 }
5298 
5299 /**
5300  * sys_sched_setaffinity - set the CPU affinity of a process
5301  * @pid: pid of the process
5302  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5303  * @user_mask_ptr: user-space pointer to the new CPU mask
5304  *
5305  * Return: 0 on success. An error code otherwise.
5306  */
5307 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5308 		unsigned long __user *, user_mask_ptr)
5309 {
5310 	cpumask_var_t new_mask;
5311 	int retval;
5312 
5313 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5314 		return -ENOMEM;
5315 
5316 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5317 	if (retval == 0)
5318 		retval = sched_setaffinity(pid, new_mask);
5319 	free_cpumask_var(new_mask);
5320 	return retval;
5321 }
5322 
5323 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5324 {
5325 	struct task_struct *p;
5326 	unsigned long flags;
5327 	int retval;
5328 
5329 	rcu_read_lock();
5330 
5331 	retval = -ESRCH;
5332 	p = find_process_by_pid(pid);
5333 	if (!p)
5334 		goto out_unlock;
5335 
5336 	retval = security_task_getscheduler(p);
5337 	if (retval)
5338 		goto out_unlock;
5339 
5340 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5341 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5342 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5343 
5344 out_unlock:
5345 	rcu_read_unlock();
5346 
5347 	return retval;
5348 }
5349 
5350 /**
5351  * sys_sched_getaffinity - get the CPU affinity of a process
5352  * @pid: pid of the process
5353  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5354  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5355  *
5356  * Return: size of CPU mask copied to user_mask_ptr on success. An
5357  * error code otherwise.
5358  */
5359 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5360 		unsigned long __user *, user_mask_ptr)
5361 {
5362 	int ret;
5363 	cpumask_var_t mask;
5364 
5365 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5366 		return -EINVAL;
5367 	if (len & (sizeof(unsigned long)-1))
5368 		return -EINVAL;
5369 
5370 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5371 		return -ENOMEM;
5372 
5373 	ret = sched_getaffinity(pid, mask);
5374 	if (ret == 0) {
5375 		unsigned int retlen = min(len, cpumask_size());
5376 
5377 		if (copy_to_user(user_mask_ptr, mask, retlen))
5378 			ret = -EFAULT;
5379 		else
5380 			ret = retlen;
5381 	}
5382 	free_cpumask_var(mask);
5383 
5384 	return ret;
5385 }
5386 
5387 /**
5388  * sys_sched_yield - yield the current processor to other threads.
5389  *
5390  * This function yields the current CPU to other tasks. If there are no
5391  * other threads running on this CPU then this function will return.
5392  *
5393  * Return: 0.
5394  */
5395 static void do_sched_yield(void)
5396 {
5397 	struct rq_flags rf;
5398 	struct rq *rq;
5399 
5400 	rq = this_rq_lock_irq(&rf);
5401 
5402 	schedstat_inc(rq->yld_count);
5403 	current->sched_class->yield_task(rq);
5404 
5405 	/*
5406 	 * Since we are going to call schedule() anyway, there's
5407 	 * no need to preempt or enable interrupts:
5408 	 */
5409 	preempt_disable();
5410 	rq_unlock(rq, &rf);
5411 	sched_preempt_enable_no_resched();
5412 
5413 	schedule();
5414 }
5415 
5416 SYSCALL_DEFINE0(sched_yield)
5417 {
5418 	do_sched_yield();
5419 	return 0;
5420 }
5421 
5422 #ifndef CONFIG_PREEMPT
5423 int __sched _cond_resched(void)
5424 {
5425 	if (should_resched(0)) {
5426 		preempt_schedule_common();
5427 		return 1;
5428 	}
5429 	rcu_all_qs();
5430 	return 0;
5431 }
5432 EXPORT_SYMBOL(_cond_resched);
5433 #endif
5434 
5435 /*
5436  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5437  * call schedule, and on return reacquire the lock.
5438  *
5439  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5440  * operations here to prevent schedule() from being called twice (once via
5441  * spin_unlock(), once by hand).
5442  */
5443 int __cond_resched_lock(spinlock_t *lock)
5444 {
5445 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5446 	int ret = 0;
5447 
5448 	lockdep_assert_held(lock);
5449 
5450 	if (spin_needbreak(lock) || resched) {
5451 		spin_unlock(lock);
5452 		if (resched)
5453 			preempt_schedule_common();
5454 		else
5455 			cpu_relax();
5456 		ret = 1;
5457 		spin_lock(lock);
5458 	}
5459 	return ret;
5460 }
5461 EXPORT_SYMBOL(__cond_resched_lock);
5462 
5463 /**
5464  * yield - yield the current processor to other threads.
5465  *
5466  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5467  *
5468  * The scheduler is at all times free to pick the calling task as the most
5469  * eligible task to run, if removing the yield() call from your code breaks
5470  * it, its already broken.
5471  *
5472  * Typical broken usage is:
5473  *
5474  * while (!event)
5475  *	yield();
5476  *
5477  * where one assumes that yield() will let 'the other' process run that will
5478  * make event true. If the current task is a SCHED_FIFO task that will never
5479  * happen. Never use yield() as a progress guarantee!!
5480  *
5481  * If you want to use yield() to wait for something, use wait_event().
5482  * If you want to use yield() to be 'nice' for others, use cond_resched().
5483  * If you still want to use yield(), do not!
5484  */
5485 void __sched yield(void)
5486 {
5487 	set_current_state(TASK_RUNNING);
5488 	do_sched_yield();
5489 }
5490 EXPORT_SYMBOL(yield);
5491 
5492 /**
5493  * yield_to - yield the current processor to another thread in
5494  * your thread group, or accelerate that thread toward the
5495  * processor it's on.
5496  * @p: target task
5497  * @preempt: whether task preemption is allowed or not
5498  *
5499  * It's the caller's job to ensure that the target task struct
5500  * can't go away on us before we can do any checks.
5501  *
5502  * Return:
5503  *	true (>0) if we indeed boosted the target task.
5504  *	false (0) if we failed to boost the target.
5505  *	-ESRCH if there's no task to yield to.
5506  */
5507 int __sched yield_to(struct task_struct *p, bool preempt)
5508 {
5509 	struct task_struct *curr = current;
5510 	struct rq *rq, *p_rq;
5511 	unsigned long flags;
5512 	int yielded = 0;
5513 
5514 	local_irq_save(flags);
5515 	rq = this_rq();
5516 
5517 again:
5518 	p_rq = task_rq(p);
5519 	/*
5520 	 * If we're the only runnable task on the rq and target rq also
5521 	 * has only one task, there's absolutely no point in yielding.
5522 	 */
5523 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5524 		yielded = -ESRCH;
5525 		goto out_irq;
5526 	}
5527 
5528 	double_rq_lock(rq, p_rq);
5529 	if (task_rq(p) != p_rq) {
5530 		double_rq_unlock(rq, p_rq);
5531 		goto again;
5532 	}
5533 
5534 	if (!curr->sched_class->yield_to_task)
5535 		goto out_unlock;
5536 
5537 	if (curr->sched_class != p->sched_class)
5538 		goto out_unlock;
5539 
5540 	if (task_running(p_rq, p) || p->state)
5541 		goto out_unlock;
5542 
5543 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5544 	if (yielded) {
5545 		schedstat_inc(rq->yld_count);
5546 		/*
5547 		 * Make p's CPU reschedule; pick_next_entity takes care of
5548 		 * fairness.
5549 		 */
5550 		if (preempt && rq != p_rq)
5551 			resched_curr(p_rq);
5552 	}
5553 
5554 out_unlock:
5555 	double_rq_unlock(rq, p_rq);
5556 out_irq:
5557 	local_irq_restore(flags);
5558 
5559 	if (yielded > 0)
5560 		schedule();
5561 
5562 	return yielded;
5563 }
5564 EXPORT_SYMBOL_GPL(yield_to);
5565 
5566 int io_schedule_prepare(void)
5567 {
5568 	int old_iowait = current->in_iowait;
5569 
5570 	current->in_iowait = 1;
5571 	blk_schedule_flush_plug(current);
5572 
5573 	return old_iowait;
5574 }
5575 
5576 void io_schedule_finish(int token)
5577 {
5578 	current->in_iowait = token;
5579 }
5580 
5581 /*
5582  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5583  * that process accounting knows that this is a task in IO wait state.
5584  */
5585 long __sched io_schedule_timeout(long timeout)
5586 {
5587 	int token;
5588 	long ret;
5589 
5590 	token = io_schedule_prepare();
5591 	ret = schedule_timeout(timeout);
5592 	io_schedule_finish(token);
5593 
5594 	return ret;
5595 }
5596 EXPORT_SYMBOL(io_schedule_timeout);
5597 
5598 void __sched io_schedule(void)
5599 {
5600 	int token;
5601 
5602 	token = io_schedule_prepare();
5603 	schedule();
5604 	io_schedule_finish(token);
5605 }
5606 EXPORT_SYMBOL(io_schedule);
5607 
5608 /**
5609  * sys_sched_get_priority_max - return maximum RT priority.
5610  * @policy: scheduling class.
5611  *
5612  * Return: On success, this syscall returns the maximum
5613  * rt_priority that can be used by a given scheduling class.
5614  * On failure, a negative error code is returned.
5615  */
5616 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5617 {
5618 	int ret = -EINVAL;
5619 
5620 	switch (policy) {
5621 	case SCHED_FIFO:
5622 	case SCHED_RR:
5623 		ret = MAX_USER_RT_PRIO-1;
5624 		break;
5625 	case SCHED_DEADLINE:
5626 	case SCHED_NORMAL:
5627 	case SCHED_BATCH:
5628 	case SCHED_IDLE:
5629 		ret = 0;
5630 		break;
5631 	}
5632 	return ret;
5633 }
5634 
5635 /**
5636  * sys_sched_get_priority_min - return minimum RT priority.
5637  * @policy: scheduling class.
5638  *
5639  * Return: On success, this syscall returns the minimum
5640  * rt_priority that can be used by a given scheduling class.
5641  * On failure, a negative error code is returned.
5642  */
5643 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5644 {
5645 	int ret = -EINVAL;
5646 
5647 	switch (policy) {
5648 	case SCHED_FIFO:
5649 	case SCHED_RR:
5650 		ret = 1;
5651 		break;
5652 	case SCHED_DEADLINE:
5653 	case SCHED_NORMAL:
5654 	case SCHED_BATCH:
5655 	case SCHED_IDLE:
5656 		ret = 0;
5657 	}
5658 	return ret;
5659 }
5660 
5661 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5662 {
5663 	struct task_struct *p;
5664 	unsigned int time_slice;
5665 	struct rq_flags rf;
5666 	struct rq *rq;
5667 	int retval;
5668 
5669 	if (pid < 0)
5670 		return -EINVAL;
5671 
5672 	retval = -ESRCH;
5673 	rcu_read_lock();
5674 	p = find_process_by_pid(pid);
5675 	if (!p)
5676 		goto out_unlock;
5677 
5678 	retval = security_task_getscheduler(p);
5679 	if (retval)
5680 		goto out_unlock;
5681 
5682 	rq = task_rq_lock(p, &rf);
5683 	time_slice = 0;
5684 	if (p->sched_class->get_rr_interval)
5685 		time_slice = p->sched_class->get_rr_interval(rq, p);
5686 	task_rq_unlock(rq, p, &rf);
5687 
5688 	rcu_read_unlock();
5689 	jiffies_to_timespec64(time_slice, t);
5690 	return 0;
5691 
5692 out_unlock:
5693 	rcu_read_unlock();
5694 	return retval;
5695 }
5696 
5697 /**
5698  * sys_sched_rr_get_interval - return the default timeslice of a process.
5699  * @pid: pid of the process.
5700  * @interval: userspace pointer to the timeslice value.
5701  *
5702  * this syscall writes the default timeslice value of a given process
5703  * into the user-space timespec buffer. A value of '0' means infinity.
5704  *
5705  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5706  * an error code.
5707  */
5708 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5709 		struct __kernel_timespec __user *, interval)
5710 {
5711 	struct timespec64 t;
5712 	int retval = sched_rr_get_interval(pid, &t);
5713 
5714 	if (retval == 0)
5715 		retval = put_timespec64(&t, interval);
5716 
5717 	return retval;
5718 }
5719 
5720 #ifdef CONFIG_COMPAT_32BIT_TIME
5721 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5722 		struct old_timespec32 __user *, interval)
5723 {
5724 	struct timespec64 t;
5725 	int retval = sched_rr_get_interval(pid, &t);
5726 
5727 	if (retval == 0)
5728 		retval = put_old_timespec32(&t, interval);
5729 	return retval;
5730 }
5731 #endif
5732 
5733 void sched_show_task(struct task_struct *p)
5734 {
5735 	unsigned long free = 0;
5736 	int ppid;
5737 
5738 	if (!try_get_task_stack(p))
5739 		return;
5740 
5741 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5742 
5743 	if (p->state == TASK_RUNNING)
5744 		printk(KERN_CONT "  running task    ");
5745 #ifdef CONFIG_DEBUG_STACK_USAGE
5746 	free = stack_not_used(p);
5747 #endif
5748 	ppid = 0;
5749 	rcu_read_lock();
5750 	if (pid_alive(p))
5751 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5752 	rcu_read_unlock();
5753 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5754 		task_pid_nr(p), ppid,
5755 		(unsigned long)task_thread_info(p)->flags);
5756 
5757 	print_worker_info(KERN_INFO, p);
5758 	show_stack(p, NULL);
5759 	put_task_stack(p);
5760 }
5761 EXPORT_SYMBOL_GPL(sched_show_task);
5762 
5763 static inline bool
5764 state_filter_match(unsigned long state_filter, struct task_struct *p)
5765 {
5766 	/* no filter, everything matches */
5767 	if (!state_filter)
5768 		return true;
5769 
5770 	/* filter, but doesn't match */
5771 	if (!(p->state & state_filter))
5772 		return false;
5773 
5774 	/*
5775 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5776 	 * TASK_KILLABLE).
5777 	 */
5778 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5779 		return false;
5780 
5781 	return true;
5782 }
5783 
5784 
5785 void show_state_filter(unsigned long state_filter)
5786 {
5787 	struct task_struct *g, *p;
5788 
5789 #if BITS_PER_LONG == 32
5790 	printk(KERN_INFO
5791 		"  task                PC stack   pid father\n");
5792 #else
5793 	printk(KERN_INFO
5794 		"  task                        PC stack   pid father\n");
5795 #endif
5796 	rcu_read_lock();
5797 	for_each_process_thread(g, p) {
5798 		/*
5799 		 * reset the NMI-timeout, listing all files on a slow
5800 		 * console might take a lot of time:
5801 		 * Also, reset softlockup watchdogs on all CPUs, because
5802 		 * another CPU might be blocked waiting for us to process
5803 		 * an IPI.
5804 		 */
5805 		touch_nmi_watchdog();
5806 		touch_all_softlockup_watchdogs();
5807 		if (state_filter_match(state_filter, p))
5808 			sched_show_task(p);
5809 	}
5810 
5811 #ifdef CONFIG_SCHED_DEBUG
5812 	if (!state_filter)
5813 		sysrq_sched_debug_show();
5814 #endif
5815 	rcu_read_unlock();
5816 	/*
5817 	 * Only show locks if all tasks are dumped:
5818 	 */
5819 	if (!state_filter)
5820 		debug_show_all_locks();
5821 }
5822 
5823 /**
5824  * init_idle - set up an idle thread for a given CPU
5825  * @idle: task in question
5826  * @cpu: CPU the idle task belongs to
5827  *
5828  * NOTE: this function does not set the idle thread's NEED_RESCHED
5829  * flag, to make booting more robust.
5830  */
5831 void init_idle(struct task_struct *idle, int cpu)
5832 {
5833 	struct rq *rq = cpu_rq(cpu);
5834 	unsigned long flags;
5835 
5836 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5837 	raw_spin_lock(&rq->lock);
5838 
5839 	__sched_fork(0, idle);
5840 	idle->state = TASK_RUNNING;
5841 	idle->se.exec_start = sched_clock();
5842 	idle->flags |= PF_IDLE;
5843 
5844 	kasan_unpoison_task_stack(idle);
5845 
5846 #ifdef CONFIG_SMP
5847 	/*
5848 	 * Its possible that init_idle() gets called multiple times on a task,
5849 	 * in that case do_set_cpus_allowed() will not do the right thing.
5850 	 *
5851 	 * And since this is boot we can forgo the serialization.
5852 	 */
5853 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5854 #endif
5855 	/*
5856 	 * We're having a chicken and egg problem, even though we are
5857 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5858 	 * lockdep check in task_group() will fail.
5859 	 *
5860 	 * Similar case to sched_fork(). / Alternatively we could
5861 	 * use task_rq_lock() here and obtain the other rq->lock.
5862 	 *
5863 	 * Silence PROVE_RCU
5864 	 */
5865 	rcu_read_lock();
5866 	__set_task_cpu(idle, cpu);
5867 	rcu_read_unlock();
5868 
5869 	rq->curr = rq->idle = idle;
5870 	idle->on_rq = TASK_ON_RQ_QUEUED;
5871 #ifdef CONFIG_SMP
5872 	idle->on_cpu = 1;
5873 #endif
5874 	raw_spin_unlock(&rq->lock);
5875 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5876 
5877 	/* Set the preempt count _outside_ the spinlocks! */
5878 	init_idle_preempt_count(idle, cpu);
5879 
5880 	/*
5881 	 * The idle tasks have their own, simple scheduling class:
5882 	 */
5883 	idle->sched_class = &idle_sched_class;
5884 	ftrace_graph_init_idle_task(idle, cpu);
5885 	vtime_init_idle(idle, cpu);
5886 #ifdef CONFIG_SMP
5887 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5888 #endif
5889 }
5890 
5891 #ifdef CONFIG_SMP
5892 
5893 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5894 			      const struct cpumask *trial)
5895 {
5896 	int ret = 1;
5897 
5898 	if (!cpumask_weight(cur))
5899 		return ret;
5900 
5901 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5902 
5903 	return ret;
5904 }
5905 
5906 int task_can_attach(struct task_struct *p,
5907 		    const struct cpumask *cs_cpus_allowed)
5908 {
5909 	int ret = 0;
5910 
5911 	/*
5912 	 * Kthreads which disallow setaffinity shouldn't be moved
5913 	 * to a new cpuset; we don't want to change their CPU
5914 	 * affinity and isolating such threads by their set of
5915 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5916 	 * applicable for such threads.  This prevents checking for
5917 	 * success of set_cpus_allowed_ptr() on all attached tasks
5918 	 * before cpus_mask may be changed.
5919 	 */
5920 	if (p->flags & PF_NO_SETAFFINITY) {
5921 		ret = -EINVAL;
5922 		goto out;
5923 	}
5924 
5925 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5926 					      cs_cpus_allowed))
5927 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5928 
5929 out:
5930 	return ret;
5931 }
5932 
5933 bool sched_smp_initialized __read_mostly;
5934 
5935 #ifdef CONFIG_NUMA_BALANCING
5936 /* Migrate current task p to target_cpu */
5937 int migrate_task_to(struct task_struct *p, int target_cpu)
5938 {
5939 	struct migration_arg arg = { p, target_cpu };
5940 	int curr_cpu = task_cpu(p);
5941 
5942 	if (curr_cpu == target_cpu)
5943 		return 0;
5944 
5945 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
5946 		return -EINVAL;
5947 
5948 	/* TODO: This is not properly updating schedstats */
5949 
5950 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5951 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5952 }
5953 
5954 /*
5955  * Requeue a task on a given node and accurately track the number of NUMA
5956  * tasks on the runqueues
5957  */
5958 void sched_setnuma(struct task_struct *p, int nid)
5959 {
5960 	bool queued, running;
5961 	struct rq_flags rf;
5962 	struct rq *rq;
5963 
5964 	rq = task_rq_lock(p, &rf);
5965 	queued = task_on_rq_queued(p);
5966 	running = task_current(rq, p);
5967 
5968 	if (queued)
5969 		dequeue_task(rq, p, DEQUEUE_SAVE);
5970 	if (running)
5971 		put_prev_task(rq, p);
5972 
5973 	p->numa_preferred_nid = nid;
5974 
5975 	if (queued)
5976 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5977 	if (running)
5978 		set_curr_task(rq, p);
5979 	task_rq_unlock(rq, p, &rf);
5980 }
5981 #endif /* CONFIG_NUMA_BALANCING */
5982 
5983 #ifdef CONFIG_HOTPLUG_CPU
5984 /*
5985  * Ensure that the idle task is using init_mm right before its CPU goes
5986  * offline.
5987  */
5988 void idle_task_exit(void)
5989 {
5990 	struct mm_struct *mm = current->active_mm;
5991 
5992 	BUG_ON(cpu_online(smp_processor_id()));
5993 
5994 	if (mm != &init_mm) {
5995 		switch_mm(mm, &init_mm, current);
5996 		current->active_mm = &init_mm;
5997 		finish_arch_post_lock_switch();
5998 	}
5999 	mmdrop(mm);
6000 }
6001 
6002 /*
6003  * Since this CPU is going 'away' for a while, fold any nr_active delta
6004  * we might have. Assumes we're called after migrate_tasks() so that the
6005  * nr_active count is stable. We need to take the teardown thread which
6006  * is calling this into account, so we hand in adjust = 1 to the load
6007  * calculation.
6008  *
6009  * Also see the comment "Global load-average calculations".
6010  */
6011 static void calc_load_migrate(struct rq *rq)
6012 {
6013 	long delta = calc_load_fold_active(rq, 1);
6014 	if (delta)
6015 		atomic_long_add(delta, &calc_load_tasks);
6016 }
6017 
6018 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6019 {
6020 }
6021 
6022 static const struct sched_class fake_sched_class = {
6023 	.put_prev_task = put_prev_task_fake,
6024 };
6025 
6026 static struct task_struct fake_task = {
6027 	/*
6028 	 * Avoid pull_{rt,dl}_task()
6029 	 */
6030 	.prio = MAX_PRIO + 1,
6031 	.sched_class = &fake_sched_class,
6032 };
6033 
6034 /*
6035  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6036  * try_to_wake_up()->select_task_rq().
6037  *
6038  * Called with rq->lock held even though we'er in stop_machine() and
6039  * there's no concurrency possible, we hold the required locks anyway
6040  * because of lock validation efforts.
6041  */
6042 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6043 {
6044 	struct rq *rq = dead_rq;
6045 	struct task_struct *next, *stop = rq->stop;
6046 	struct rq_flags orf = *rf;
6047 	int dest_cpu;
6048 
6049 	/*
6050 	 * Fudge the rq selection such that the below task selection loop
6051 	 * doesn't get stuck on the currently eligible stop task.
6052 	 *
6053 	 * We're currently inside stop_machine() and the rq is either stuck
6054 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6055 	 * either way we should never end up calling schedule() until we're
6056 	 * done here.
6057 	 */
6058 	rq->stop = NULL;
6059 
6060 	/*
6061 	 * put_prev_task() and pick_next_task() sched
6062 	 * class method both need to have an up-to-date
6063 	 * value of rq->clock[_task]
6064 	 */
6065 	update_rq_clock(rq);
6066 
6067 	for (;;) {
6068 		/*
6069 		 * There's this thread running, bail when that's the only
6070 		 * remaining thread:
6071 		 */
6072 		if (rq->nr_running == 1)
6073 			break;
6074 
6075 		/*
6076 		 * pick_next_task() assumes pinned rq->lock:
6077 		 */
6078 		next = pick_next_task(rq, &fake_task, rf);
6079 		BUG_ON(!next);
6080 		put_prev_task(rq, next);
6081 
6082 		/*
6083 		 * Rules for changing task_struct::cpus_mask are holding
6084 		 * both pi_lock and rq->lock, such that holding either
6085 		 * stabilizes the mask.
6086 		 *
6087 		 * Drop rq->lock is not quite as disastrous as it usually is
6088 		 * because !cpu_active at this point, which means load-balance
6089 		 * will not interfere. Also, stop-machine.
6090 		 */
6091 		rq_unlock(rq, rf);
6092 		raw_spin_lock(&next->pi_lock);
6093 		rq_relock(rq, rf);
6094 
6095 		/*
6096 		 * Since we're inside stop-machine, _nothing_ should have
6097 		 * changed the task, WARN if weird stuff happened, because in
6098 		 * that case the above rq->lock drop is a fail too.
6099 		 */
6100 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6101 			raw_spin_unlock(&next->pi_lock);
6102 			continue;
6103 		}
6104 
6105 		/* Find suitable destination for @next, with force if needed. */
6106 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6107 		rq = __migrate_task(rq, rf, next, dest_cpu);
6108 		if (rq != dead_rq) {
6109 			rq_unlock(rq, rf);
6110 			rq = dead_rq;
6111 			*rf = orf;
6112 			rq_relock(rq, rf);
6113 		}
6114 		raw_spin_unlock(&next->pi_lock);
6115 	}
6116 
6117 	rq->stop = stop;
6118 }
6119 #endif /* CONFIG_HOTPLUG_CPU */
6120 
6121 void set_rq_online(struct rq *rq)
6122 {
6123 	if (!rq->online) {
6124 		const struct sched_class *class;
6125 
6126 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6127 		rq->online = 1;
6128 
6129 		for_each_class(class) {
6130 			if (class->rq_online)
6131 				class->rq_online(rq);
6132 		}
6133 	}
6134 }
6135 
6136 void set_rq_offline(struct rq *rq)
6137 {
6138 	if (rq->online) {
6139 		const struct sched_class *class;
6140 
6141 		for_each_class(class) {
6142 			if (class->rq_offline)
6143 				class->rq_offline(rq);
6144 		}
6145 
6146 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6147 		rq->online = 0;
6148 	}
6149 }
6150 
6151 /*
6152  * used to mark begin/end of suspend/resume:
6153  */
6154 static int num_cpus_frozen;
6155 
6156 /*
6157  * Update cpusets according to cpu_active mask.  If cpusets are
6158  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6159  * around partition_sched_domains().
6160  *
6161  * If we come here as part of a suspend/resume, don't touch cpusets because we
6162  * want to restore it back to its original state upon resume anyway.
6163  */
6164 static void cpuset_cpu_active(void)
6165 {
6166 	if (cpuhp_tasks_frozen) {
6167 		/*
6168 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6169 		 * resume sequence. As long as this is not the last online
6170 		 * operation in the resume sequence, just build a single sched
6171 		 * domain, ignoring cpusets.
6172 		 */
6173 		partition_sched_domains(1, NULL, NULL);
6174 		if (--num_cpus_frozen)
6175 			return;
6176 		/*
6177 		 * This is the last CPU online operation. So fall through and
6178 		 * restore the original sched domains by considering the
6179 		 * cpuset configurations.
6180 		 */
6181 		cpuset_force_rebuild();
6182 	}
6183 	cpuset_update_active_cpus();
6184 }
6185 
6186 static int cpuset_cpu_inactive(unsigned int cpu)
6187 {
6188 	if (!cpuhp_tasks_frozen) {
6189 		if (dl_cpu_busy(cpu))
6190 			return -EBUSY;
6191 		cpuset_update_active_cpus();
6192 	} else {
6193 		num_cpus_frozen++;
6194 		partition_sched_domains(1, NULL, NULL);
6195 	}
6196 	return 0;
6197 }
6198 
6199 int sched_cpu_activate(unsigned int cpu)
6200 {
6201 	struct rq *rq = cpu_rq(cpu);
6202 	struct rq_flags rf;
6203 
6204 #ifdef CONFIG_SCHED_SMT
6205 	/*
6206 	 * When going up, increment the number of cores with SMT present.
6207 	 */
6208 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6209 		static_branch_inc_cpuslocked(&sched_smt_present);
6210 #endif
6211 	set_cpu_active(cpu, true);
6212 
6213 	if (sched_smp_initialized) {
6214 		sched_domains_numa_masks_set(cpu);
6215 		cpuset_cpu_active();
6216 	}
6217 
6218 	/*
6219 	 * Put the rq online, if not already. This happens:
6220 	 *
6221 	 * 1) In the early boot process, because we build the real domains
6222 	 *    after all CPUs have been brought up.
6223 	 *
6224 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6225 	 *    domains.
6226 	 */
6227 	rq_lock_irqsave(rq, &rf);
6228 	if (rq->rd) {
6229 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6230 		set_rq_online(rq);
6231 	}
6232 	rq_unlock_irqrestore(rq, &rf);
6233 
6234 	update_max_interval();
6235 
6236 	return 0;
6237 }
6238 
6239 int sched_cpu_deactivate(unsigned int cpu)
6240 {
6241 	int ret;
6242 
6243 	set_cpu_active(cpu, false);
6244 	/*
6245 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6246 	 * users of this state to go away such that all new such users will
6247 	 * observe it.
6248 	 *
6249 	 * Do sync before park smpboot threads to take care the rcu boost case.
6250 	 */
6251 	synchronize_rcu();
6252 
6253 #ifdef CONFIG_SCHED_SMT
6254 	/*
6255 	 * When going down, decrement the number of cores with SMT present.
6256 	 */
6257 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6258 		static_branch_dec_cpuslocked(&sched_smt_present);
6259 #endif
6260 
6261 	if (!sched_smp_initialized)
6262 		return 0;
6263 
6264 	ret = cpuset_cpu_inactive(cpu);
6265 	if (ret) {
6266 		set_cpu_active(cpu, true);
6267 		return ret;
6268 	}
6269 	sched_domains_numa_masks_clear(cpu);
6270 	return 0;
6271 }
6272 
6273 static void sched_rq_cpu_starting(unsigned int cpu)
6274 {
6275 	struct rq *rq = cpu_rq(cpu);
6276 
6277 	rq->calc_load_update = calc_load_update;
6278 	update_max_interval();
6279 }
6280 
6281 int sched_cpu_starting(unsigned int cpu)
6282 {
6283 	sched_rq_cpu_starting(cpu);
6284 	sched_tick_start(cpu);
6285 	return 0;
6286 }
6287 
6288 #ifdef CONFIG_HOTPLUG_CPU
6289 int sched_cpu_dying(unsigned int cpu)
6290 {
6291 	struct rq *rq = cpu_rq(cpu);
6292 	struct rq_flags rf;
6293 
6294 	/* Handle pending wakeups and then migrate everything off */
6295 	sched_ttwu_pending();
6296 	sched_tick_stop(cpu);
6297 
6298 	rq_lock_irqsave(rq, &rf);
6299 	if (rq->rd) {
6300 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6301 		set_rq_offline(rq);
6302 	}
6303 	migrate_tasks(rq, &rf);
6304 	BUG_ON(rq->nr_running != 1);
6305 	rq_unlock_irqrestore(rq, &rf);
6306 
6307 	calc_load_migrate(rq);
6308 	update_max_interval();
6309 	nohz_balance_exit_idle(rq);
6310 	hrtick_clear(rq);
6311 	return 0;
6312 }
6313 #endif
6314 
6315 void __init sched_init_smp(void)
6316 {
6317 	sched_init_numa();
6318 
6319 	/*
6320 	 * There's no userspace yet to cause hotplug operations; hence all the
6321 	 * CPU masks are stable and all blatant races in the below code cannot
6322 	 * happen.
6323 	 */
6324 	mutex_lock(&sched_domains_mutex);
6325 	sched_init_domains(cpu_active_mask);
6326 	mutex_unlock(&sched_domains_mutex);
6327 
6328 	/* Move init over to a non-isolated CPU */
6329 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6330 		BUG();
6331 	sched_init_granularity();
6332 
6333 	init_sched_rt_class();
6334 	init_sched_dl_class();
6335 
6336 	sched_smp_initialized = true;
6337 }
6338 
6339 static int __init migration_init(void)
6340 {
6341 	sched_cpu_starting(smp_processor_id());
6342 	return 0;
6343 }
6344 early_initcall(migration_init);
6345 
6346 #else
6347 void __init sched_init_smp(void)
6348 {
6349 	sched_init_granularity();
6350 }
6351 #endif /* CONFIG_SMP */
6352 
6353 int in_sched_functions(unsigned long addr)
6354 {
6355 	return in_lock_functions(addr) ||
6356 		(addr >= (unsigned long)__sched_text_start
6357 		&& addr < (unsigned long)__sched_text_end);
6358 }
6359 
6360 #ifdef CONFIG_CGROUP_SCHED
6361 /*
6362  * Default task group.
6363  * Every task in system belongs to this group at bootup.
6364  */
6365 struct task_group root_task_group;
6366 LIST_HEAD(task_groups);
6367 
6368 /* Cacheline aligned slab cache for task_group */
6369 static struct kmem_cache *task_group_cache __read_mostly;
6370 #endif
6371 
6372 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6373 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6374 
6375 void __init sched_init(void)
6376 {
6377 	unsigned long alloc_size = 0, ptr;
6378 	int i;
6379 
6380 	wait_bit_init();
6381 
6382 #ifdef CONFIG_FAIR_GROUP_SCHED
6383 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6384 #endif
6385 #ifdef CONFIG_RT_GROUP_SCHED
6386 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6387 #endif
6388 	if (alloc_size) {
6389 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6390 
6391 #ifdef CONFIG_FAIR_GROUP_SCHED
6392 		root_task_group.se = (struct sched_entity **)ptr;
6393 		ptr += nr_cpu_ids * sizeof(void **);
6394 
6395 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6396 		ptr += nr_cpu_ids * sizeof(void **);
6397 
6398 #endif /* CONFIG_FAIR_GROUP_SCHED */
6399 #ifdef CONFIG_RT_GROUP_SCHED
6400 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6401 		ptr += nr_cpu_ids * sizeof(void **);
6402 
6403 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6404 		ptr += nr_cpu_ids * sizeof(void **);
6405 
6406 #endif /* CONFIG_RT_GROUP_SCHED */
6407 	}
6408 #ifdef CONFIG_CPUMASK_OFFSTACK
6409 	for_each_possible_cpu(i) {
6410 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6411 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6412 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6413 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6414 	}
6415 #endif /* CONFIG_CPUMASK_OFFSTACK */
6416 
6417 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6418 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6419 
6420 #ifdef CONFIG_SMP
6421 	init_defrootdomain();
6422 #endif
6423 
6424 #ifdef CONFIG_RT_GROUP_SCHED
6425 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6426 			global_rt_period(), global_rt_runtime());
6427 #endif /* CONFIG_RT_GROUP_SCHED */
6428 
6429 #ifdef CONFIG_CGROUP_SCHED
6430 	task_group_cache = KMEM_CACHE(task_group, 0);
6431 
6432 	list_add(&root_task_group.list, &task_groups);
6433 	INIT_LIST_HEAD(&root_task_group.children);
6434 	INIT_LIST_HEAD(&root_task_group.siblings);
6435 	autogroup_init(&init_task);
6436 #endif /* CONFIG_CGROUP_SCHED */
6437 
6438 	for_each_possible_cpu(i) {
6439 		struct rq *rq;
6440 
6441 		rq = cpu_rq(i);
6442 		raw_spin_lock_init(&rq->lock);
6443 		rq->nr_running = 0;
6444 		rq->calc_load_active = 0;
6445 		rq->calc_load_update = jiffies + LOAD_FREQ;
6446 		init_cfs_rq(&rq->cfs);
6447 		init_rt_rq(&rq->rt);
6448 		init_dl_rq(&rq->dl);
6449 #ifdef CONFIG_FAIR_GROUP_SCHED
6450 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6451 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6452 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6453 		/*
6454 		 * How much CPU bandwidth does root_task_group get?
6455 		 *
6456 		 * In case of task-groups formed thr' the cgroup filesystem, it
6457 		 * gets 100% of the CPU resources in the system. This overall
6458 		 * system CPU resource is divided among the tasks of
6459 		 * root_task_group and its child task-groups in a fair manner,
6460 		 * based on each entity's (task or task-group's) weight
6461 		 * (se->load.weight).
6462 		 *
6463 		 * In other words, if root_task_group has 10 tasks of weight
6464 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6465 		 * then A0's share of the CPU resource is:
6466 		 *
6467 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6468 		 *
6469 		 * We achieve this by letting root_task_group's tasks sit
6470 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6471 		 */
6472 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6473 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6474 #endif /* CONFIG_FAIR_GROUP_SCHED */
6475 
6476 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6477 #ifdef CONFIG_RT_GROUP_SCHED
6478 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6479 #endif
6480 #ifdef CONFIG_SMP
6481 		rq->sd = NULL;
6482 		rq->rd = NULL;
6483 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6484 		rq->balance_callback = NULL;
6485 		rq->active_balance = 0;
6486 		rq->next_balance = jiffies;
6487 		rq->push_cpu = 0;
6488 		rq->cpu = i;
6489 		rq->online = 0;
6490 		rq->idle_stamp = 0;
6491 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6492 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6493 
6494 		INIT_LIST_HEAD(&rq->cfs_tasks);
6495 
6496 		rq_attach_root(rq, &def_root_domain);
6497 #ifdef CONFIG_NO_HZ_COMMON
6498 		rq->last_load_update_tick = jiffies;
6499 		rq->last_blocked_load_update_tick = jiffies;
6500 		atomic_set(&rq->nohz_flags, 0);
6501 #endif
6502 #endif /* CONFIG_SMP */
6503 		hrtick_rq_init(rq);
6504 		atomic_set(&rq->nr_iowait, 0);
6505 	}
6506 
6507 	set_load_weight(&init_task, false);
6508 
6509 	/*
6510 	 * The boot idle thread does lazy MMU switching as well:
6511 	 */
6512 	mmgrab(&init_mm);
6513 	enter_lazy_tlb(&init_mm, current);
6514 
6515 	/*
6516 	 * Make us the idle thread. Technically, schedule() should not be
6517 	 * called from this thread, however somewhere below it might be,
6518 	 * but because we are the idle thread, we just pick up running again
6519 	 * when this runqueue becomes "idle".
6520 	 */
6521 	init_idle(current, smp_processor_id());
6522 
6523 	calc_load_update = jiffies + LOAD_FREQ;
6524 
6525 #ifdef CONFIG_SMP
6526 	idle_thread_set_boot_cpu();
6527 #endif
6528 	init_sched_fair_class();
6529 
6530 	init_schedstats();
6531 
6532 	psi_init();
6533 
6534 	init_uclamp();
6535 
6536 	scheduler_running = 1;
6537 }
6538 
6539 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6540 static inline int preempt_count_equals(int preempt_offset)
6541 {
6542 	int nested = preempt_count() + rcu_preempt_depth();
6543 
6544 	return (nested == preempt_offset);
6545 }
6546 
6547 void __might_sleep(const char *file, int line, int preempt_offset)
6548 {
6549 	/*
6550 	 * Blocking primitives will set (and therefore destroy) current->state,
6551 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6552 	 * otherwise we will destroy state.
6553 	 */
6554 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6555 			"do not call blocking ops when !TASK_RUNNING; "
6556 			"state=%lx set at [<%p>] %pS\n",
6557 			current->state,
6558 			(void *)current->task_state_change,
6559 			(void *)current->task_state_change);
6560 
6561 	___might_sleep(file, line, preempt_offset);
6562 }
6563 EXPORT_SYMBOL(__might_sleep);
6564 
6565 void ___might_sleep(const char *file, int line, int preempt_offset)
6566 {
6567 	/* Ratelimiting timestamp: */
6568 	static unsigned long prev_jiffy;
6569 
6570 	unsigned long preempt_disable_ip;
6571 
6572 	/* WARN_ON_ONCE() by default, no rate limit required: */
6573 	rcu_sleep_check();
6574 
6575 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6576 	     !is_idle_task(current)) ||
6577 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6578 	    oops_in_progress)
6579 		return;
6580 
6581 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6582 		return;
6583 	prev_jiffy = jiffies;
6584 
6585 	/* Save this before calling printk(), since that will clobber it: */
6586 	preempt_disable_ip = get_preempt_disable_ip(current);
6587 
6588 	printk(KERN_ERR
6589 		"BUG: sleeping function called from invalid context at %s:%d\n",
6590 			file, line);
6591 	printk(KERN_ERR
6592 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6593 			in_atomic(), irqs_disabled(),
6594 			current->pid, current->comm);
6595 
6596 	if (task_stack_end_corrupted(current))
6597 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6598 
6599 	debug_show_held_locks(current);
6600 	if (irqs_disabled())
6601 		print_irqtrace_events(current);
6602 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6603 	    && !preempt_count_equals(preempt_offset)) {
6604 		pr_err("Preemption disabled at:");
6605 		print_ip_sym(preempt_disable_ip);
6606 		pr_cont("\n");
6607 	}
6608 	dump_stack();
6609 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6610 }
6611 EXPORT_SYMBOL(___might_sleep);
6612 
6613 void __cant_sleep(const char *file, int line, int preempt_offset)
6614 {
6615 	static unsigned long prev_jiffy;
6616 
6617 	if (irqs_disabled())
6618 		return;
6619 
6620 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6621 		return;
6622 
6623 	if (preempt_count() > preempt_offset)
6624 		return;
6625 
6626 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6627 		return;
6628 	prev_jiffy = jiffies;
6629 
6630 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6631 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6632 			in_atomic(), irqs_disabled(),
6633 			current->pid, current->comm);
6634 
6635 	debug_show_held_locks(current);
6636 	dump_stack();
6637 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6638 }
6639 EXPORT_SYMBOL_GPL(__cant_sleep);
6640 #endif
6641 
6642 #ifdef CONFIG_MAGIC_SYSRQ
6643 void normalize_rt_tasks(void)
6644 {
6645 	struct task_struct *g, *p;
6646 	struct sched_attr attr = {
6647 		.sched_policy = SCHED_NORMAL,
6648 	};
6649 
6650 	read_lock(&tasklist_lock);
6651 	for_each_process_thread(g, p) {
6652 		/*
6653 		 * Only normalize user tasks:
6654 		 */
6655 		if (p->flags & PF_KTHREAD)
6656 			continue;
6657 
6658 		p->se.exec_start = 0;
6659 		schedstat_set(p->se.statistics.wait_start,  0);
6660 		schedstat_set(p->se.statistics.sleep_start, 0);
6661 		schedstat_set(p->se.statistics.block_start, 0);
6662 
6663 		if (!dl_task(p) && !rt_task(p)) {
6664 			/*
6665 			 * Renice negative nice level userspace
6666 			 * tasks back to 0:
6667 			 */
6668 			if (task_nice(p) < 0)
6669 				set_user_nice(p, 0);
6670 			continue;
6671 		}
6672 
6673 		__sched_setscheduler(p, &attr, false, false);
6674 	}
6675 	read_unlock(&tasklist_lock);
6676 }
6677 
6678 #endif /* CONFIG_MAGIC_SYSRQ */
6679 
6680 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6681 /*
6682  * These functions are only useful for the IA64 MCA handling, or kdb.
6683  *
6684  * They can only be called when the whole system has been
6685  * stopped - every CPU needs to be quiescent, and no scheduling
6686  * activity can take place. Using them for anything else would
6687  * be a serious bug, and as a result, they aren't even visible
6688  * under any other configuration.
6689  */
6690 
6691 /**
6692  * curr_task - return the current task for a given CPU.
6693  * @cpu: the processor in question.
6694  *
6695  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6696  *
6697  * Return: The current task for @cpu.
6698  */
6699 struct task_struct *curr_task(int cpu)
6700 {
6701 	return cpu_curr(cpu);
6702 }
6703 
6704 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6705 
6706 #ifdef CONFIG_IA64
6707 /**
6708  * set_curr_task - set the current task for a given CPU.
6709  * @cpu: the processor in question.
6710  * @p: the task pointer to set.
6711  *
6712  * Description: This function must only be used when non-maskable interrupts
6713  * are serviced on a separate stack. It allows the architecture to switch the
6714  * notion of the current task on a CPU in a non-blocking manner. This function
6715  * must be called with all CPU's synchronized, and interrupts disabled, the
6716  * and caller must save the original value of the current task (see
6717  * curr_task() above) and restore that value before reenabling interrupts and
6718  * re-starting the system.
6719  *
6720  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6721  */
6722 void ia64_set_curr_task(int cpu, struct task_struct *p)
6723 {
6724 	cpu_curr(cpu) = p;
6725 }
6726 
6727 #endif
6728 
6729 #ifdef CONFIG_CGROUP_SCHED
6730 /* task_group_lock serializes the addition/removal of task groups */
6731 static DEFINE_SPINLOCK(task_group_lock);
6732 
6733 static void sched_free_group(struct task_group *tg)
6734 {
6735 	free_fair_sched_group(tg);
6736 	free_rt_sched_group(tg);
6737 	autogroup_free(tg);
6738 	kmem_cache_free(task_group_cache, tg);
6739 }
6740 
6741 /* allocate runqueue etc for a new task group */
6742 struct task_group *sched_create_group(struct task_group *parent)
6743 {
6744 	struct task_group *tg;
6745 
6746 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6747 	if (!tg)
6748 		return ERR_PTR(-ENOMEM);
6749 
6750 	if (!alloc_fair_sched_group(tg, parent))
6751 		goto err;
6752 
6753 	if (!alloc_rt_sched_group(tg, parent))
6754 		goto err;
6755 
6756 	return tg;
6757 
6758 err:
6759 	sched_free_group(tg);
6760 	return ERR_PTR(-ENOMEM);
6761 }
6762 
6763 void sched_online_group(struct task_group *tg, struct task_group *parent)
6764 {
6765 	unsigned long flags;
6766 
6767 	spin_lock_irqsave(&task_group_lock, flags);
6768 	list_add_rcu(&tg->list, &task_groups);
6769 
6770 	/* Root should already exist: */
6771 	WARN_ON(!parent);
6772 
6773 	tg->parent = parent;
6774 	INIT_LIST_HEAD(&tg->children);
6775 	list_add_rcu(&tg->siblings, &parent->children);
6776 	spin_unlock_irqrestore(&task_group_lock, flags);
6777 
6778 	online_fair_sched_group(tg);
6779 }
6780 
6781 /* rcu callback to free various structures associated with a task group */
6782 static void sched_free_group_rcu(struct rcu_head *rhp)
6783 {
6784 	/* Now it should be safe to free those cfs_rqs: */
6785 	sched_free_group(container_of(rhp, struct task_group, rcu));
6786 }
6787 
6788 void sched_destroy_group(struct task_group *tg)
6789 {
6790 	/* Wait for possible concurrent references to cfs_rqs complete: */
6791 	call_rcu(&tg->rcu, sched_free_group_rcu);
6792 }
6793 
6794 void sched_offline_group(struct task_group *tg)
6795 {
6796 	unsigned long flags;
6797 
6798 	/* End participation in shares distribution: */
6799 	unregister_fair_sched_group(tg);
6800 
6801 	spin_lock_irqsave(&task_group_lock, flags);
6802 	list_del_rcu(&tg->list);
6803 	list_del_rcu(&tg->siblings);
6804 	spin_unlock_irqrestore(&task_group_lock, flags);
6805 }
6806 
6807 static void sched_change_group(struct task_struct *tsk, int type)
6808 {
6809 	struct task_group *tg;
6810 
6811 	/*
6812 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6813 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6814 	 * to prevent lockdep warnings.
6815 	 */
6816 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6817 			  struct task_group, css);
6818 	tg = autogroup_task_group(tsk, tg);
6819 	tsk->sched_task_group = tg;
6820 
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 	if (tsk->sched_class->task_change_group)
6823 		tsk->sched_class->task_change_group(tsk, type);
6824 	else
6825 #endif
6826 		set_task_rq(tsk, task_cpu(tsk));
6827 }
6828 
6829 /*
6830  * Change task's runqueue when it moves between groups.
6831  *
6832  * The caller of this function should have put the task in its new group by
6833  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6834  * its new group.
6835  */
6836 void sched_move_task(struct task_struct *tsk)
6837 {
6838 	int queued, running, queue_flags =
6839 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6840 	struct rq_flags rf;
6841 	struct rq *rq;
6842 
6843 	rq = task_rq_lock(tsk, &rf);
6844 	update_rq_clock(rq);
6845 
6846 	running = task_current(rq, tsk);
6847 	queued = task_on_rq_queued(tsk);
6848 
6849 	if (queued)
6850 		dequeue_task(rq, tsk, queue_flags);
6851 	if (running)
6852 		put_prev_task(rq, tsk);
6853 
6854 	sched_change_group(tsk, TASK_MOVE_GROUP);
6855 
6856 	if (queued)
6857 		enqueue_task(rq, tsk, queue_flags);
6858 	if (running)
6859 		set_curr_task(rq, tsk);
6860 
6861 	task_rq_unlock(rq, tsk, &rf);
6862 }
6863 
6864 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6865 {
6866 	return css ? container_of(css, struct task_group, css) : NULL;
6867 }
6868 
6869 static struct cgroup_subsys_state *
6870 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6871 {
6872 	struct task_group *parent = css_tg(parent_css);
6873 	struct task_group *tg;
6874 
6875 	if (!parent) {
6876 		/* This is early initialization for the top cgroup */
6877 		return &root_task_group.css;
6878 	}
6879 
6880 	tg = sched_create_group(parent);
6881 	if (IS_ERR(tg))
6882 		return ERR_PTR(-ENOMEM);
6883 
6884 	return &tg->css;
6885 }
6886 
6887 /* Expose task group only after completing cgroup initialization */
6888 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6889 {
6890 	struct task_group *tg = css_tg(css);
6891 	struct task_group *parent = css_tg(css->parent);
6892 
6893 	if (parent)
6894 		sched_online_group(tg, parent);
6895 	return 0;
6896 }
6897 
6898 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6899 {
6900 	struct task_group *tg = css_tg(css);
6901 
6902 	sched_offline_group(tg);
6903 }
6904 
6905 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6906 {
6907 	struct task_group *tg = css_tg(css);
6908 
6909 	/*
6910 	 * Relies on the RCU grace period between css_released() and this.
6911 	 */
6912 	sched_free_group(tg);
6913 }
6914 
6915 /*
6916  * This is called before wake_up_new_task(), therefore we really only
6917  * have to set its group bits, all the other stuff does not apply.
6918  */
6919 static void cpu_cgroup_fork(struct task_struct *task)
6920 {
6921 	struct rq_flags rf;
6922 	struct rq *rq;
6923 
6924 	rq = task_rq_lock(task, &rf);
6925 
6926 	update_rq_clock(rq);
6927 	sched_change_group(task, TASK_SET_GROUP);
6928 
6929 	task_rq_unlock(rq, task, &rf);
6930 }
6931 
6932 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6933 {
6934 	struct task_struct *task;
6935 	struct cgroup_subsys_state *css;
6936 	int ret = 0;
6937 
6938 	cgroup_taskset_for_each(task, css, tset) {
6939 #ifdef CONFIG_RT_GROUP_SCHED
6940 		if (!sched_rt_can_attach(css_tg(css), task))
6941 			return -EINVAL;
6942 #else
6943 		/* We don't support RT-tasks being in separate groups */
6944 		if (task->sched_class != &fair_sched_class)
6945 			return -EINVAL;
6946 #endif
6947 		/*
6948 		 * Serialize against wake_up_new_task() such that if its
6949 		 * running, we're sure to observe its full state.
6950 		 */
6951 		raw_spin_lock_irq(&task->pi_lock);
6952 		/*
6953 		 * Avoid calling sched_move_task() before wake_up_new_task()
6954 		 * has happened. This would lead to problems with PELT, due to
6955 		 * move wanting to detach+attach while we're not attached yet.
6956 		 */
6957 		if (task->state == TASK_NEW)
6958 			ret = -EINVAL;
6959 		raw_spin_unlock_irq(&task->pi_lock);
6960 
6961 		if (ret)
6962 			break;
6963 	}
6964 	return ret;
6965 }
6966 
6967 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6968 {
6969 	struct task_struct *task;
6970 	struct cgroup_subsys_state *css;
6971 
6972 	cgroup_taskset_for_each(task, css, tset)
6973 		sched_move_task(task);
6974 }
6975 
6976 #ifdef CONFIG_FAIR_GROUP_SCHED
6977 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6978 				struct cftype *cftype, u64 shareval)
6979 {
6980 	if (shareval > scale_load_down(ULONG_MAX))
6981 		shareval = MAX_SHARES;
6982 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6983 }
6984 
6985 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6986 			       struct cftype *cft)
6987 {
6988 	struct task_group *tg = css_tg(css);
6989 
6990 	return (u64) scale_load_down(tg->shares);
6991 }
6992 
6993 #ifdef CONFIG_CFS_BANDWIDTH
6994 static DEFINE_MUTEX(cfs_constraints_mutex);
6995 
6996 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6997 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6998 
6999 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7000 
7001 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7002 {
7003 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7004 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7005 
7006 	if (tg == &root_task_group)
7007 		return -EINVAL;
7008 
7009 	/*
7010 	 * Ensure we have at some amount of bandwidth every period.  This is
7011 	 * to prevent reaching a state of large arrears when throttled via
7012 	 * entity_tick() resulting in prolonged exit starvation.
7013 	 */
7014 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7015 		return -EINVAL;
7016 
7017 	/*
7018 	 * Likewise, bound things on the otherside by preventing insane quota
7019 	 * periods.  This also allows us to normalize in computing quota
7020 	 * feasibility.
7021 	 */
7022 	if (period > max_cfs_quota_period)
7023 		return -EINVAL;
7024 
7025 	/*
7026 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7027 	 * unthrottle_offline_cfs_rqs().
7028 	 */
7029 	get_online_cpus();
7030 	mutex_lock(&cfs_constraints_mutex);
7031 	ret = __cfs_schedulable(tg, period, quota);
7032 	if (ret)
7033 		goto out_unlock;
7034 
7035 	runtime_enabled = quota != RUNTIME_INF;
7036 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7037 	/*
7038 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7039 	 * before making related changes, and on->off must occur afterwards
7040 	 */
7041 	if (runtime_enabled && !runtime_was_enabled)
7042 		cfs_bandwidth_usage_inc();
7043 	raw_spin_lock_irq(&cfs_b->lock);
7044 	cfs_b->period = ns_to_ktime(period);
7045 	cfs_b->quota = quota;
7046 
7047 	__refill_cfs_bandwidth_runtime(cfs_b);
7048 
7049 	/* Restart the period timer (if active) to handle new period expiry: */
7050 	if (runtime_enabled)
7051 		start_cfs_bandwidth(cfs_b);
7052 
7053 	raw_spin_unlock_irq(&cfs_b->lock);
7054 
7055 	for_each_online_cpu(i) {
7056 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7057 		struct rq *rq = cfs_rq->rq;
7058 		struct rq_flags rf;
7059 
7060 		rq_lock_irq(rq, &rf);
7061 		cfs_rq->runtime_enabled = runtime_enabled;
7062 		cfs_rq->runtime_remaining = 0;
7063 
7064 		if (cfs_rq->throttled)
7065 			unthrottle_cfs_rq(cfs_rq);
7066 		rq_unlock_irq(rq, &rf);
7067 	}
7068 	if (runtime_was_enabled && !runtime_enabled)
7069 		cfs_bandwidth_usage_dec();
7070 out_unlock:
7071 	mutex_unlock(&cfs_constraints_mutex);
7072 	put_online_cpus();
7073 
7074 	return ret;
7075 }
7076 
7077 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7078 {
7079 	u64 quota, period;
7080 
7081 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7082 	if (cfs_quota_us < 0)
7083 		quota = RUNTIME_INF;
7084 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7085 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7086 	else
7087 		return -EINVAL;
7088 
7089 	return tg_set_cfs_bandwidth(tg, period, quota);
7090 }
7091 
7092 static long tg_get_cfs_quota(struct task_group *tg)
7093 {
7094 	u64 quota_us;
7095 
7096 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7097 		return -1;
7098 
7099 	quota_us = tg->cfs_bandwidth.quota;
7100 	do_div(quota_us, NSEC_PER_USEC);
7101 
7102 	return quota_us;
7103 }
7104 
7105 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7106 {
7107 	u64 quota, period;
7108 
7109 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7110 		return -EINVAL;
7111 
7112 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7113 	quota = tg->cfs_bandwidth.quota;
7114 
7115 	return tg_set_cfs_bandwidth(tg, period, quota);
7116 }
7117 
7118 static long tg_get_cfs_period(struct task_group *tg)
7119 {
7120 	u64 cfs_period_us;
7121 
7122 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7123 	do_div(cfs_period_us, NSEC_PER_USEC);
7124 
7125 	return cfs_period_us;
7126 }
7127 
7128 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7129 				  struct cftype *cft)
7130 {
7131 	return tg_get_cfs_quota(css_tg(css));
7132 }
7133 
7134 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7135 				   struct cftype *cftype, s64 cfs_quota_us)
7136 {
7137 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7138 }
7139 
7140 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7141 				   struct cftype *cft)
7142 {
7143 	return tg_get_cfs_period(css_tg(css));
7144 }
7145 
7146 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7147 				    struct cftype *cftype, u64 cfs_period_us)
7148 {
7149 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7150 }
7151 
7152 struct cfs_schedulable_data {
7153 	struct task_group *tg;
7154 	u64 period, quota;
7155 };
7156 
7157 /*
7158  * normalize group quota/period to be quota/max_period
7159  * note: units are usecs
7160  */
7161 static u64 normalize_cfs_quota(struct task_group *tg,
7162 			       struct cfs_schedulable_data *d)
7163 {
7164 	u64 quota, period;
7165 
7166 	if (tg == d->tg) {
7167 		period = d->period;
7168 		quota = d->quota;
7169 	} else {
7170 		period = tg_get_cfs_period(tg);
7171 		quota = tg_get_cfs_quota(tg);
7172 	}
7173 
7174 	/* note: these should typically be equivalent */
7175 	if (quota == RUNTIME_INF || quota == -1)
7176 		return RUNTIME_INF;
7177 
7178 	return to_ratio(period, quota);
7179 }
7180 
7181 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7182 {
7183 	struct cfs_schedulable_data *d = data;
7184 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7185 	s64 quota = 0, parent_quota = -1;
7186 
7187 	if (!tg->parent) {
7188 		quota = RUNTIME_INF;
7189 	} else {
7190 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7191 
7192 		quota = normalize_cfs_quota(tg, d);
7193 		parent_quota = parent_b->hierarchical_quota;
7194 
7195 		/*
7196 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7197 		 * always take the min.  On cgroup1, only inherit when no
7198 		 * limit is set:
7199 		 */
7200 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7201 			quota = min(quota, parent_quota);
7202 		} else {
7203 			if (quota == RUNTIME_INF)
7204 				quota = parent_quota;
7205 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7206 				return -EINVAL;
7207 		}
7208 	}
7209 	cfs_b->hierarchical_quota = quota;
7210 
7211 	return 0;
7212 }
7213 
7214 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7215 {
7216 	int ret;
7217 	struct cfs_schedulable_data data = {
7218 		.tg = tg,
7219 		.period = period,
7220 		.quota = quota,
7221 	};
7222 
7223 	if (quota != RUNTIME_INF) {
7224 		do_div(data.period, NSEC_PER_USEC);
7225 		do_div(data.quota, NSEC_PER_USEC);
7226 	}
7227 
7228 	rcu_read_lock();
7229 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7230 	rcu_read_unlock();
7231 
7232 	return ret;
7233 }
7234 
7235 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7236 {
7237 	struct task_group *tg = css_tg(seq_css(sf));
7238 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7239 
7240 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7241 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7242 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7243 
7244 	if (schedstat_enabled() && tg != &root_task_group) {
7245 		u64 ws = 0;
7246 		int i;
7247 
7248 		for_each_possible_cpu(i)
7249 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7250 
7251 		seq_printf(sf, "wait_sum %llu\n", ws);
7252 	}
7253 
7254 	return 0;
7255 }
7256 #endif /* CONFIG_CFS_BANDWIDTH */
7257 #endif /* CONFIG_FAIR_GROUP_SCHED */
7258 
7259 #ifdef CONFIG_RT_GROUP_SCHED
7260 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7261 				struct cftype *cft, s64 val)
7262 {
7263 	return sched_group_set_rt_runtime(css_tg(css), val);
7264 }
7265 
7266 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7267 			       struct cftype *cft)
7268 {
7269 	return sched_group_rt_runtime(css_tg(css));
7270 }
7271 
7272 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7273 				    struct cftype *cftype, u64 rt_period_us)
7274 {
7275 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7276 }
7277 
7278 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7279 				   struct cftype *cft)
7280 {
7281 	return sched_group_rt_period(css_tg(css));
7282 }
7283 #endif /* CONFIG_RT_GROUP_SCHED */
7284 
7285 static struct cftype cpu_legacy_files[] = {
7286 #ifdef CONFIG_FAIR_GROUP_SCHED
7287 	{
7288 		.name = "shares",
7289 		.read_u64 = cpu_shares_read_u64,
7290 		.write_u64 = cpu_shares_write_u64,
7291 	},
7292 #endif
7293 #ifdef CONFIG_CFS_BANDWIDTH
7294 	{
7295 		.name = "cfs_quota_us",
7296 		.read_s64 = cpu_cfs_quota_read_s64,
7297 		.write_s64 = cpu_cfs_quota_write_s64,
7298 	},
7299 	{
7300 		.name = "cfs_period_us",
7301 		.read_u64 = cpu_cfs_period_read_u64,
7302 		.write_u64 = cpu_cfs_period_write_u64,
7303 	},
7304 	{
7305 		.name = "stat",
7306 		.seq_show = cpu_cfs_stat_show,
7307 	},
7308 #endif
7309 #ifdef CONFIG_RT_GROUP_SCHED
7310 	{
7311 		.name = "rt_runtime_us",
7312 		.read_s64 = cpu_rt_runtime_read,
7313 		.write_s64 = cpu_rt_runtime_write,
7314 	},
7315 	{
7316 		.name = "rt_period_us",
7317 		.read_u64 = cpu_rt_period_read_uint,
7318 		.write_u64 = cpu_rt_period_write_uint,
7319 	},
7320 #endif
7321 	{ }	/* Terminate */
7322 };
7323 
7324 static int cpu_extra_stat_show(struct seq_file *sf,
7325 			       struct cgroup_subsys_state *css)
7326 {
7327 #ifdef CONFIG_CFS_BANDWIDTH
7328 	{
7329 		struct task_group *tg = css_tg(css);
7330 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7331 		u64 throttled_usec;
7332 
7333 		throttled_usec = cfs_b->throttled_time;
7334 		do_div(throttled_usec, NSEC_PER_USEC);
7335 
7336 		seq_printf(sf, "nr_periods %d\n"
7337 			   "nr_throttled %d\n"
7338 			   "throttled_usec %llu\n",
7339 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7340 			   throttled_usec);
7341 	}
7342 #endif
7343 	return 0;
7344 }
7345 
7346 #ifdef CONFIG_FAIR_GROUP_SCHED
7347 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7348 			       struct cftype *cft)
7349 {
7350 	struct task_group *tg = css_tg(css);
7351 	u64 weight = scale_load_down(tg->shares);
7352 
7353 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7354 }
7355 
7356 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7357 				struct cftype *cft, u64 weight)
7358 {
7359 	/*
7360 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7361 	 * values which are 1, 100 and 10000 respectively.  While it loses
7362 	 * a bit of range on both ends, it maps pretty well onto the shares
7363 	 * value used by scheduler and the round-trip conversions preserve
7364 	 * the original value over the entire range.
7365 	 */
7366 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7367 		return -ERANGE;
7368 
7369 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7370 
7371 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7372 }
7373 
7374 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7375 				    struct cftype *cft)
7376 {
7377 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7378 	int last_delta = INT_MAX;
7379 	int prio, delta;
7380 
7381 	/* find the closest nice value to the current weight */
7382 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7383 		delta = abs(sched_prio_to_weight[prio] - weight);
7384 		if (delta >= last_delta)
7385 			break;
7386 		last_delta = delta;
7387 	}
7388 
7389 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7390 }
7391 
7392 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7393 				     struct cftype *cft, s64 nice)
7394 {
7395 	unsigned long weight;
7396 	int idx;
7397 
7398 	if (nice < MIN_NICE || nice > MAX_NICE)
7399 		return -ERANGE;
7400 
7401 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7402 	idx = array_index_nospec(idx, 40);
7403 	weight = sched_prio_to_weight[idx];
7404 
7405 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7406 }
7407 #endif
7408 
7409 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7410 						  long period, long quota)
7411 {
7412 	if (quota < 0)
7413 		seq_puts(sf, "max");
7414 	else
7415 		seq_printf(sf, "%ld", quota);
7416 
7417 	seq_printf(sf, " %ld\n", period);
7418 }
7419 
7420 /* caller should put the current value in *@periodp before calling */
7421 static int __maybe_unused cpu_period_quota_parse(char *buf,
7422 						 u64 *periodp, u64 *quotap)
7423 {
7424 	char tok[21];	/* U64_MAX */
7425 
7426 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7427 		return -EINVAL;
7428 
7429 	*periodp *= NSEC_PER_USEC;
7430 
7431 	if (sscanf(tok, "%llu", quotap))
7432 		*quotap *= NSEC_PER_USEC;
7433 	else if (!strcmp(tok, "max"))
7434 		*quotap = RUNTIME_INF;
7435 	else
7436 		return -EINVAL;
7437 
7438 	return 0;
7439 }
7440 
7441 #ifdef CONFIG_CFS_BANDWIDTH
7442 static int cpu_max_show(struct seq_file *sf, void *v)
7443 {
7444 	struct task_group *tg = css_tg(seq_css(sf));
7445 
7446 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7447 	return 0;
7448 }
7449 
7450 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7451 			     char *buf, size_t nbytes, loff_t off)
7452 {
7453 	struct task_group *tg = css_tg(of_css(of));
7454 	u64 period = tg_get_cfs_period(tg);
7455 	u64 quota;
7456 	int ret;
7457 
7458 	ret = cpu_period_quota_parse(buf, &period, &quota);
7459 	if (!ret)
7460 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7461 	return ret ?: nbytes;
7462 }
7463 #endif
7464 
7465 static struct cftype cpu_files[] = {
7466 #ifdef CONFIG_FAIR_GROUP_SCHED
7467 	{
7468 		.name = "weight",
7469 		.flags = CFTYPE_NOT_ON_ROOT,
7470 		.read_u64 = cpu_weight_read_u64,
7471 		.write_u64 = cpu_weight_write_u64,
7472 	},
7473 	{
7474 		.name = "weight.nice",
7475 		.flags = CFTYPE_NOT_ON_ROOT,
7476 		.read_s64 = cpu_weight_nice_read_s64,
7477 		.write_s64 = cpu_weight_nice_write_s64,
7478 	},
7479 #endif
7480 #ifdef CONFIG_CFS_BANDWIDTH
7481 	{
7482 		.name = "max",
7483 		.flags = CFTYPE_NOT_ON_ROOT,
7484 		.seq_show = cpu_max_show,
7485 		.write = cpu_max_write,
7486 	},
7487 #endif
7488 	{ }	/* terminate */
7489 };
7490 
7491 struct cgroup_subsys cpu_cgrp_subsys = {
7492 	.css_alloc	= cpu_cgroup_css_alloc,
7493 	.css_online	= cpu_cgroup_css_online,
7494 	.css_released	= cpu_cgroup_css_released,
7495 	.css_free	= cpu_cgroup_css_free,
7496 	.css_extra_stat_show = cpu_extra_stat_show,
7497 	.fork		= cpu_cgroup_fork,
7498 	.can_attach	= cpu_cgroup_can_attach,
7499 	.attach		= cpu_cgroup_attach,
7500 	.legacy_cftypes	= cpu_legacy_files,
7501 	.dfl_cftypes	= cpu_files,
7502 	.early_init	= true,
7503 	.threaded	= true,
7504 };
7505 
7506 #endif	/* CONFIG_CGROUP_SCHED */
7507 
7508 void dump_cpu_task(int cpu)
7509 {
7510 	pr_info("Task dump for CPU %d:\n", cpu);
7511 	sched_show_task(cpu_curr(cpu));
7512 }
7513 
7514 /*
7515  * Nice levels are multiplicative, with a gentle 10% change for every
7516  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7517  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7518  * that remained on nice 0.
7519  *
7520  * The "10% effect" is relative and cumulative: from _any_ nice level,
7521  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7522  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7523  * If a task goes up by ~10% and another task goes down by ~10% then
7524  * the relative distance between them is ~25%.)
7525  */
7526 const int sched_prio_to_weight[40] = {
7527  /* -20 */     88761,     71755,     56483,     46273,     36291,
7528  /* -15 */     29154,     23254,     18705,     14949,     11916,
7529  /* -10 */      9548,      7620,      6100,      4904,      3906,
7530  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7531  /*   0 */      1024,       820,       655,       526,       423,
7532  /*   5 */       335,       272,       215,       172,       137,
7533  /*  10 */       110,        87,        70,        56,        45,
7534  /*  15 */        36,        29,        23,        18,        15,
7535 };
7536 
7537 /*
7538  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7539  *
7540  * In cases where the weight does not change often, we can use the
7541  * precalculated inverse to speed up arithmetics by turning divisions
7542  * into multiplications:
7543  */
7544 const u32 sched_prio_to_wmult[40] = {
7545  /* -20 */     48388,     59856,     76040,     92818,    118348,
7546  /* -15 */    147320,    184698,    229616,    287308,    360437,
7547  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7548  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7549  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7550  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7551  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7552  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7553 };
7554 
7555 #undef CREATE_TRACE_POINTS
7556