1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most eligible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 #ifdef CONFIG_SCHED_HRTICK 324 /* 325 * Use HR-timers to deliver accurate preemption points. 326 */ 327 328 static void hrtick_clear(struct rq *rq) 329 { 330 if (hrtimer_active(&rq->hrtick_timer)) 331 hrtimer_cancel(&rq->hrtick_timer); 332 } 333 334 /* 335 * High-resolution timer tick. 336 * Runs from hardirq context with interrupts disabled. 337 */ 338 static enum hrtimer_restart hrtick(struct hrtimer *timer) 339 { 340 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 341 struct rq_flags rf; 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 rq_lock(rq, &rf); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 rq_unlock(rq, &rf); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static void __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = rq->hrtick_time; 359 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 struct rq_flags rf; 370 371 rq_lock(rq, &rf); 372 __hrtick_restart(rq); 373 rq_unlock(rq, &rf); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 s64 delta; 385 386 /* 387 * Don't schedule slices shorter than 10000ns, that just 388 * doesn't make sense and can cause timer DoS. 389 */ 390 delta = max_t(s64, delay, 10000LL); 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 392 393 if (rq == this_rq()) 394 __hrtick_restart(rq); 395 else 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 397 } 398 399 #else 400 /* 401 * Called to set the hrtick timer state. 402 * 403 * called with rq->lock held and irqs disabled 404 */ 405 void hrtick_start(struct rq *rq, u64 delay) 406 { 407 /* 408 * Don't schedule slices shorter than 10000ns, that just 409 * doesn't make sense. Rely on vruntime for fairness. 410 */ 411 delay = max_t(u64, delay, 10000LL); 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 413 HRTIMER_MODE_REL_PINNED_HARD); 414 } 415 416 #endif /* CONFIG_SMP */ 417 418 static void hrtick_rq_init(struct rq *rq) 419 { 420 #ifdef CONFIG_SMP 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 422 #endif 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 424 rq->hrtick_timer.function = hrtick; 425 } 426 #else /* CONFIG_SCHED_HRTICK */ 427 static inline void hrtick_clear(struct rq *rq) 428 { 429 } 430 431 static inline void hrtick_rq_init(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SCHED_HRTICK */ 435 436 /* 437 * cmpxchg based fetch_or, macro so it works for different integer types 438 */ 439 #define fetch_or(ptr, mask) \ 440 ({ \ 441 typeof(ptr) _ptr = (ptr); \ 442 typeof(mask) _mask = (mask); \ 443 typeof(*_ptr) _old, _val = *_ptr; \ 444 \ 445 for (;;) { \ 446 _old = cmpxchg(_ptr, _val, _val | _mask); \ 447 if (_old == _val) \ 448 break; \ 449 _val = _old; \ 450 } \ 451 _old; \ 452 }) 453 454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 455 /* 456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 457 * this avoids any races wrt polling state changes and thereby avoids 458 * spurious IPIs. 459 */ 460 static bool set_nr_and_not_polling(struct task_struct *p) 461 { 462 struct thread_info *ti = task_thread_info(p); 463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 464 } 465 466 /* 467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 468 * 469 * If this returns true, then the idle task promises to call 470 * sched_ttwu_pending() and reschedule soon. 471 */ 472 static bool set_nr_if_polling(struct task_struct *p) 473 { 474 struct thread_info *ti = task_thread_info(p); 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 476 477 for (;;) { 478 if (!(val & _TIF_POLLING_NRFLAG)) 479 return false; 480 if (val & _TIF_NEED_RESCHED) 481 return true; 482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 483 if (old == val) 484 break; 485 val = old; 486 } 487 return true; 488 } 489 490 #else 491 static bool set_nr_and_not_polling(struct task_struct *p) 492 { 493 set_tsk_need_resched(p); 494 return true; 495 } 496 497 #ifdef CONFIG_SMP 498 static bool set_nr_if_polling(struct task_struct *p) 499 { 500 return false; 501 } 502 #endif 503 #endif 504 505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 506 { 507 struct wake_q_node *node = &task->wake_q; 508 509 /* 510 * Atomically grab the task, if ->wake_q is !nil already it means 511 * it's already queued (either by us or someone else) and will get the 512 * wakeup due to that. 513 * 514 * In order to ensure that a pending wakeup will observe our pending 515 * state, even in the failed case, an explicit smp_mb() must be used. 516 */ 517 smp_mb__before_atomic(); 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 519 return false; 520 521 /* 522 * The head is context local, there can be no concurrency. 523 */ 524 *head->lastp = node; 525 head->lastp = &node->next; 526 return true; 527 } 528 529 /** 530 * wake_q_add() - queue a wakeup for 'later' waking. 531 * @head: the wake_q_head to add @task to 532 * @task: the task to queue for 'later' wakeup 533 * 534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 536 * instantly. 537 * 538 * This function must be used as-if it were wake_up_process(); IOW the task 539 * must be ready to be woken at this location. 540 */ 541 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 542 { 543 if (__wake_q_add(head, task)) 544 get_task_struct(task); 545 } 546 547 /** 548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 549 * @head: the wake_q_head to add @task to 550 * @task: the task to queue for 'later' wakeup 551 * 552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 554 * instantly. 555 * 556 * This function must be used as-if it were wake_up_process(); IOW the task 557 * must be ready to be woken at this location. 558 * 559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 560 * that already hold reference to @task can call the 'safe' version and trust 561 * wake_q to do the right thing depending whether or not the @task is already 562 * queued for wakeup. 563 */ 564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 565 { 566 if (!__wake_q_add(head, task)) 567 put_task_struct(task); 568 } 569 570 void wake_up_q(struct wake_q_head *head) 571 { 572 struct wake_q_node *node = head->first; 573 574 while (node != WAKE_Q_TAIL) { 575 struct task_struct *task; 576 577 task = container_of(node, struct task_struct, wake_q); 578 BUG_ON(!task); 579 /* Task can safely be re-inserted now: */ 580 node = node->next; 581 task->wake_q.next = NULL; 582 583 /* 584 * wake_up_process() executes a full barrier, which pairs with 585 * the queueing in wake_q_add() so as not to miss wakeups. 586 */ 587 wake_up_process(task); 588 put_task_struct(task); 589 } 590 } 591 592 /* 593 * resched_curr - mark rq's current task 'to be rescheduled now'. 594 * 595 * On UP this means the setting of the need_resched flag, on SMP it 596 * might also involve a cross-CPU call to trigger the scheduler on 597 * the target CPU. 598 */ 599 void resched_curr(struct rq *rq) 600 { 601 struct task_struct *curr = rq->curr; 602 int cpu; 603 604 lockdep_assert_held(&rq->lock); 605 606 if (test_tsk_need_resched(curr)) 607 return; 608 609 cpu = cpu_of(rq); 610 611 if (cpu == smp_processor_id()) { 612 set_tsk_need_resched(curr); 613 set_preempt_need_resched(); 614 return; 615 } 616 617 if (set_nr_and_not_polling(curr)) 618 smp_send_reschedule(cpu); 619 else 620 trace_sched_wake_idle_without_ipi(cpu); 621 } 622 623 void resched_cpu(int cpu) 624 { 625 struct rq *rq = cpu_rq(cpu); 626 unsigned long flags; 627 628 raw_spin_lock_irqsave(&rq->lock, flags); 629 if (cpu_online(cpu) || cpu == smp_processor_id()) 630 resched_curr(rq); 631 raw_spin_unlock_irqrestore(&rq->lock, flags); 632 } 633 634 #ifdef CONFIG_SMP 635 #ifdef CONFIG_NO_HZ_COMMON 636 /* 637 * In the semi idle case, use the nearest busy CPU for migrating timers 638 * from an idle CPU. This is good for power-savings. 639 * 640 * We don't do similar optimization for completely idle system, as 641 * selecting an idle CPU will add more delays to the timers than intended 642 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 643 */ 644 int get_nohz_timer_target(void) 645 { 646 int i, cpu = smp_processor_id(), default_cpu = -1; 647 struct sched_domain *sd; 648 649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 650 if (!idle_cpu(cpu)) 651 return cpu; 652 default_cpu = cpu; 653 } 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu_and(i, sched_domain_span(sd), 658 housekeeping_cpumask(HK_FLAG_TIMER)) { 659 if (cpu == i) 660 continue; 661 662 if (!idle_cpu(i)) { 663 cpu = i; 664 goto unlock; 665 } 666 } 667 } 668 669 if (default_cpu == -1) 670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 671 cpu = default_cpu; 672 unlock: 673 rcu_read_unlock(); 674 return cpu; 675 } 676 677 /* 678 * When add_timer_on() enqueues a timer into the timer wheel of an 679 * idle CPU then this timer might expire before the next timer event 680 * which is scheduled to wake up that CPU. In case of a completely 681 * idle system the next event might even be infinite time into the 682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 683 * leaves the inner idle loop so the newly added timer is taken into 684 * account when the CPU goes back to idle and evaluates the timer 685 * wheel for the next timer event. 686 */ 687 static void wake_up_idle_cpu(int cpu) 688 { 689 struct rq *rq = cpu_rq(cpu); 690 691 if (cpu == smp_processor_id()) 692 return; 693 694 if (set_nr_and_not_polling(rq->idle)) 695 smp_send_reschedule(cpu); 696 else 697 trace_sched_wake_idle_without_ipi(cpu); 698 } 699 700 static bool wake_up_full_nohz_cpu(int cpu) 701 { 702 /* 703 * We just need the target to call irq_exit() and re-evaluate 704 * the next tick. The nohz full kick at least implies that. 705 * If needed we can still optimize that later with an 706 * empty IRQ. 707 */ 708 if (cpu_is_offline(cpu)) 709 return true; /* Don't try to wake offline CPUs. */ 710 if (tick_nohz_full_cpu(cpu)) { 711 if (cpu != smp_processor_id() || 712 tick_nohz_tick_stopped()) 713 tick_nohz_full_kick_cpu(cpu); 714 return true; 715 } 716 717 return false; 718 } 719 720 /* 721 * Wake up the specified CPU. If the CPU is going offline, it is the 722 * caller's responsibility to deal with the lost wakeup, for example, 723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 724 */ 725 void wake_up_nohz_cpu(int cpu) 726 { 727 if (!wake_up_full_nohz_cpu(cpu)) 728 wake_up_idle_cpu(cpu); 729 } 730 731 static void nohz_csd_func(void *info) 732 { 733 struct rq *rq = info; 734 int cpu = cpu_of(rq); 735 unsigned int flags; 736 737 /* 738 * Release the rq::nohz_csd. 739 */ 740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 741 WARN_ON(!(flags & NOHZ_KICK_MASK)); 742 743 rq->idle_balance = idle_cpu(cpu); 744 if (rq->idle_balance && !need_resched()) { 745 rq->nohz_idle_balance = flags; 746 raise_softirq_irqoff(SCHED_SOFTIRQ); 747 } 748 } 749 750 #endif /* CONFIG_NO_HZ_COMMON */ 751 752 #ifdef CONFIG_NO_HZ_FULL 753 bool sched_can_stop_tick(struct rq *rq) 754 { 755 int fifo_nr_running; 756 757 /* Deadline tasks, even if single, need the tick */ 758 if (rq->dl.dl_nr_running) 759 return false; 760 761 /* 762 * If there are more than one RR tasks, we need the tick to affect the 763 * actual RR behaviour. 764 */ 765 if (rq->rt.rr_nr_running) { 766 if (rq->rt.rr_nr_running == 1) 767 return true; 768 else 769 return false; 770 } 771 772 /* 773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 774 * forced preemption between FIFO tasks. 775 */ 776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 777 if (fifo_nr_running) 778 return true; 779 780 /* 781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 782 * if there's more than one we need the tick for involuntary 783 * preemption. 784 */ 785 if (rq->nr_running > 1) 786 return false; 787 788 return true; 789 } 790 #endif /* CONFIG_NO_HZ_FULL */ 791 #endif /* CONFIG_SMP */ 792 793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 795 /* 796 * Iterate task_group tree rooted at *from, calling @down when first entering a 797 * node and @up when leaving it for the final time. 798 * 799 * Caller must hold rcu_lock or sufficient equivalent. 800 */ 801 int walk_tg_tree_from(struct task_group *from, 802 tg_visitor down, tg_visitor up, void *data) 803 { 804 struct task_group *parent, *child; 805 int ret; 806 807 parent = from; 808 809 down: 810 ret = (*down)(parent, data); 811 if (ret) 812 goto out; 813 list_for_each_entry_rcu(child, &parent->children, siblings) { 814 parent = child; 815 goto down; 816 817 up: 818 continue; 819 } 820 ret = (*up)(parent, data); 821 if (ret || parent == from) 822 goto out; 823 824 child = parent; 825 parent = parent->parent; 826 if (parent) 827 goto up; 828 out: 829 return ret; 830 } 831 832 int tg_nop(struct task_group *tg, void *data) 833 { 834 return 0; 835 } 836 #endif 837 838 static void set_load_weight(struct task_struct *p, bool update_load) 839 { 840 int prio = p->static_prio - MAX_RT_PRIO; 841 struct load_weight *load = &p->se.load; 842 843 /* 844 * SCHED_IDLE tasks get minimal weight: 845 */ 846 if (task_has_idle_policy(p)) { 847 load->weight = scale_load(WEIGHT_IDLEPRIO); 848 load->inv_weight = WMULT_IDLEPRIO; 849 return; 850 } 851 852 /* 853 * SCHED_OTHER tasks have to update their load when changing their 854 * weight 855 */ 856 if (update_load && p->sched_class == &fair_sched_class) { 857 reweight_task(p, prio); 858 } else { 859 load->weight = scale_load(sched_prio_to_weight[prio]); 860 load->inv_weight = sched_prio_to_wmult[prio]; 861 } 862 } 863 864 #ifdef CONFIG_UCLAMP_TASK 865 /* 866 * Serializes updates of utilization clamp values 867 * 868 * The (slow-path) user-space triggers utilization clamp value updates which 869 * can require updates on (fast-path) scheduler's data structures used to 870 * support enqueue/dequeue operations. 871 * While the per-CPU rq lock protects fast-path update operations, user-space 872 * requests are serialized using a mutex to reduce the risk of conflicting 873 * updates or API abuses. 874 */ 875 static DEFINE_MUTEX(uclamp_mutex); 876 877 /* Max allowed minimum utilization */ 878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 879 880 /* Max allowed maximum utilization */ 881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 882 883 /* 884 * By default RT tasks run at the maximum performance point/capacity of the 885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 886 * SCHED_CAPACITY_SCALE. 887 * 888 * This knob allows admins to change the default behavior when uclamp is being 889 * used. In battery powered devices, particularly, running at the maximum 890 * capacity and frequency will increase energy consumption and shorten the 891 * battery life. 892 * 893 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 894 * 895 * This knob will not override the system default sched_util_clamp_min defined 896 * above. 897 */ 898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 899 900 /* All clamps are required to be less or equal than these values */ 901 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 902 903 /* 904 * This static key is used to reduce the uclamp overhead in the fast path. It 905 * primarily disables the call to uclamp_rq_{inc, dec}() in 906 * enqueue/dequeue_task(). 907 * 908 * This allows users to continue to enable uclamp in their kernel config with 909 * minimum uclamp overhead in the fast path. 910 * 911 * As soon as userspace modifies any of the uclamp knobs, the static key is 912 * enabled, since we have an actual users that make use of uclamp 913 * functionality. 914 * 915 * The knobs that would enable this static key are: 916 * 917 * * A task modifying its uclamp value with sched_setattr(). 918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 919 * * An admin modifying the cgroup cpu.uclamp.{min, max} 920 */ 921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 922 923 /* Integer rounded range for each bucket */ 924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 925 926 #define for_each_clamp_id(clamp_id) \ 927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 928 929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 930 { 931 return clamp_value / UCLAMP_BUCKET_DELTA; 932 } 933 934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 935 { 936 if (clamp_id == UCLAMP_MIN) 937 return 0; 938 return SCHED_CAPACITY_SCALE; 939 } 940 941 static inline void uclamp_se_set(struct uclamp_se *uc_se, 942 unsigned int value, bool user_defined) 943 { 944 uc_se->value = value; 945 uc_se->bucket_id = uclamp_bucket_id(value); 946 uc_se->user_defined = user_defined; 947 } 948 949 static inline unsigned int 950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 951 unsigned int clamp_value) 952 { 953 /* 954 * Avoid blocked utilization pushing up the frequency when we go 955 * idle (which drops the max-clamp) by retaining the last known 956 * max-clamp. 957 */ 958 if (clamp_id == UCLAMP_MAX) { 959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 960 return clamp_value; 961 } 962 963 return uclamp_none(UCLAMP_MIN); 964 } 965 966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 967 unsigned int clamp_value) 968 { 969 /* Reset max-clamp retention only on idle exit */ 970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 971 return; 972 973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 974 } 975 976 static inline 977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 978 unsigned int clamp_value) 979 { 980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 981 int bucket_id = UCLAMP_BUCKETS - 1; 982 983 /* 984 * Since both min and max clamps are max aggregated, find the 985 * top most bucket with tasks in. 986 */ 987 for ( ; bucket_id >= 0; bucket_id--) { 988 if (!bucket[bucket_id].tasks) 989 continue; 990 return bucket[bucket_id].value; 991 } 992 993 /* No tasks -- default clamp values */ 994 return uclamp_idle_value(rq, clamp_id, clamp_value); 995 } 996 997 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 998 { 999 unsigned int default_util_min; 1000 struct uclamp_se *uc_se; 1001 1002 lockdep_assert_held(&p->pi_lock); 1003 1004 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1005 1006 /* Only sync if user didn't override the default */ 1007 if (uc_se->user_defined) 1008 return; 1009 1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1011 uclamp_se_set(uc_se, default_util_min, false); 1012 } 1013 1014 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1015 { 1016 struct rq_flags rf; 1017 struct rq *rq; 1018 1019 if (!rt_task(p)) 1020 return; 1021 1022 /* Protect updates to p->uclamp_* */ 1023 rq = task_rq_lock(p, &rf); 1024 __uclamp_update_util_min_rt_default(p); 1025 task_rq_unlock(rq, p, &rf); 1026 } 1027 1028 static void uclamp_sync_util_min_rt_default(void) 1029 { 1030 struct task_struct *g, *p; 1031 1032 /* 1033 * copy_process() sysctl_uclamp 1034 * uclamp_min_rt = X; 1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1036 * // link thread smp_mb__after_spinlock() 1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1038 * sched_post_fork() for_each_process_thread() 1039 * __uclamp_sync_rt() __uclamp_sync_rt() 1040 * 1041 * Ensures that either sched_post_fork() will observe the new 1042 * uclamp_min_rt or for_each_process_thread() will observe the new 1043 * task. 1044 */ 1045 read_lock(&tasklist_lock); 1046 smp_mb__after_spinlock(); 1047 read_unlock(&tasklist_lock); 1048 1049 rcu_read_lock(); 1050 for_each_process_thread(g, p) 1051 uclamp_update_util_min_rt_default(p); 1052 rcu_read_unlock(); 1053 } 1054 1055 static inline struct uclamp_se 1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1057 { 1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1059 #ifdef CONFIG_UCLAMP_TASK_GROUP 1060 struct uclamp_se uc_max; 1061 1062 /* 1063 * Tasks in autogroups or root task group will be 1064 * restricted by system defaults. 1065 */ 1066 if (task_group_is_autogroup(task_group(p))) 1067 return uc_req; 1068 if (task_group(p) == &root_task_group) 1069 return uc_req; 1070 1071 uc_max = task_group(p)->uclamp[clamp_id]; 1072 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1073 return uc_max; 1074 #endif 1075 1076 return uc_req; 1077 } 1078 1079 /* 1080 * The effective clamp bucket index of a task depends on, by increasing 1081 * priority: 1082 * - the task specific clamp value, when explicitly requested from userspace 1083 * - the task group effective clamp value, for tasks not either in the root 1084 * group or in an autogroup 1085 * - the system default clamp value, defined by the sysadmin 1086 */ 1087 static inline struct uclamp_se 1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1089 { 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1091 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1092 1093 /* System default restrictions always apply */ 1094 if (unlikely(uc_req.value > uc_max.value)) 1095 return uc_max; 1096 1097 return uc_req; 1098 } 1099 1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1101 { 1102 struct uclamp_se uc_eff; 1103 1104 /* Task currently refcounted: use back-annotated (effective) value */ 1105 if (p->uclamp[clamp_id].active) 1106 return (unsigned long)p->uclamp[clamp_id].value; 1107 1108 uc_eff = uclamp_eff_get(p, clamp_id); 1109 1110 return (unsigned long)uc_eff.value; 1111 } 1112 1113 /* 1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1116 * updates the rq's clamp value if required. 1117 * 1118 * Tasks can have a task-specific value requested from user-space, track 1119 * within each bucket the maximum value for tasks refcounted in it. 1120 * This "local max aggregation" allows to track the exact "requested" value 1121 * for each bucket when all its RUNNABLE tasks require the same clamp. 1122 */ 1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1124 enum uclamp_id clamp_id) 1125 { 1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1128 struct uclamp_bucket *bucket; 1129 1130 lockdep_assert_held(&rq->lock); 1131 1132 /* Update task effective clamp */ 1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1134 1135 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1136 bucket->tasks++; 1137 uc_se->active = true; 1138 1139 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1140 1141 /* 1142 * Local max aggregation: rq buckets always track the max 1143 * "requested" clamp value of its RUNNABLE tasks. 1144 */ 1145 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1146 bucket->value = uc_se->value; 1147 1148 if (uc_se->value > READ_ONCE(uc_rq->value)) 1149 WRITE_ONCE(uc_rq->value, uc_se->value); 1150 } 1151 1152 /* 1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1154 * is released. If this is the last task reference counting the rq's max 1155 * active clamp value, then the rq's clamp value is updated. 1156 * 1157 * Both refcounted tasks and rq's cached clamp values are expected to be 1158 * always valid. If it's detected they are not, as defensive programming, 1159 * enforce the expected state and warn. 1160 */ 1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1162 enum uclamp_id clamp_id) 1163 { 1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1166 struct uclamp_bucket *bucket; 1167 unsigned int bkt_clamp; 1168 unsigned int rq_clamp; 1169 1170 lockdep_assert_held(&rq->lock); 1171 1172 /* 1173 * If sched_uclamp_used was enabled after task @p was enqueued, 1174 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1175 * 1176 * In this case the uc_se->active flag should be false since no uclamp 1177 * accounting was performed at enqueue time and we can just return 1178 * here. 1179 * 1180 * Need to be careful of the following enqueue/dequeue ordering 1181 * problem too 1182 * 1183 * enqueue(taskA) 1184 * // sched_uclamp_used gets enabled 1185 * enqueue(taskB) 1186 * dequeue(taskA) 1187 * // Must not decrement bucket->tasks here 1188 * dequeue(taskB) 1189 * 1190 * where we could end up with stale data in uc_se and 1191 * bucket[uc_se->bucket_id]. 1192 * 1193 * The following check here eliminates the possibility of such race. 1194 */ 1195 if (unlikely(!uc_se->active)) 1196 return; 1197 1198 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1199 1200 SCHED_WARN_ON(!bucket->tasks); 1201 if (likely(bucket->tasks)) 1202 bucket->tasks--; 1203 1204 uc_se->active = false; 1205 1206 /* 1207 * Keep "local max aggregation" simple and accept to (possibly) 1208 * overboost some RUNNABLE tasks in the same bucket. 1209 * The rq clamp bucket value is reset to its base value whenever 1210 * there are no more RUNNABLE tasks refcounting it. 1211 */ 1212 if (likely(bucket->tasks)) 1213 return; 1214 1215 rq_clamp = READ_ONCE(uc_rq->value); 1216 /* 1217 * Defensive programming: this should never happen. If it happens, 1218 * e.g. due to future modification, warn and fixup the expected value. 1219 */ 1220 SCHED_WARN_ON(bucket->value > rq_clamp); 1221 if (bucket->value >= rq_clamp) { 1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1223 WRITE_ONCE(uc_rq->value, bkt_clamp); 1224 } 1225 } 1226 1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1228 { 1229 enum uclamp_id clamp_id; 1230 1231 /* 1232 * Avoid any overhead until uclamp is actually used by the userspace. 1233 * 1234 * The condition is constructed such that a NOP is generated when 1235 * sched_uclamp_used is disabled. 1236 */ 1237 if (!static_branch_unlikely(&sched_uclamp_used)) 1238 return; 1239 1240 if (unlikely(!p->sched_class->uclamp_enabled)) 1241 return; 1242 1243 for_each_clamp_id(clamp_id) 1244 uclamp_rq_inc_id(rq, p, clamp_id); 1245 1246 /* Reset clamp idle holding when there is one RUNNABLE task */ 1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1249 } 1250 1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1252 { 1253 enum uclamp_id clamp_id; 1254 1255 /* 1256 * Avoid any overhead until uclamp is actually used by the userspace. 1257 * 1258 * The condition is constructed such that a NOP is generated when 1259 * sched_uclamp_used is disabled. 1260 */ 1261 if (!static_branch_unlikely(&sched_uclamp_used)) 1262 return; 1263 1264 if (unlikely(!p->sched_class->uclamp_enabled)) 1265 return; 1266 1267 for_each_clamp_id(clamp_id) 1268 uclamp_rq_dec_id(rq, p, clamp_id); 1269 } 1270 1271 static inline void 1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1273 { 1274 struct rq_flags rf; 1275 struct rq *rq; 1276 1277 /* 1278 * Lock the task and the rq where the task is (or was) queued. 1279 * 1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1281 * price to pay to safely serialize util_{min,max} updates with 1282 * enqueues, dequeues and migration operations. 1283 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1284 */ 1285 rq = task_rq_lock(p, &rf); 1286 1287 /* 1288 * Setting the clamp bucket is serialized by task_rq_lock(). 1289 * If the task is not yet RUNNABLE and its task_struct is not 1290 * affecting a valid clamp bucket, the next time it's enqueued, 1291 * it will already see the updated clamp bucket value. 1292 */ 1293 if (p->uclamp[clamp_id].active) { 1294 uclamp_rq_dec_id(rq, p, clamp_id); 1295 uclamp_rq_inc_id(rq, p, clamp_id); 1296 } 1297 1298 task_rq_unlock(rq, p, &rf); 1299 } 1300 1301 #ifdef CONFIG_UCLAMP_TASK_GROUP 1302 static inline void 1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1304 unsigned int clamps) 1305 { 1306 enum uclamp_id clamp_id; 1307 struct css_task_iter it; 1308 struct task_struct *p; 1309 1310 css_task_iter_start(css, 0, &it); 1311 while ((p = css_task_iter_next(&it))) { 1312 for_each_clamp_id(clamp_id) { 1313 if ((0x1 << clamp_id) & clamps) 1314 uclamp_update_active(p, clamp_id); 1315 } 1316 } 1317 css_task_iter_end(&it); 1318 } 1319 1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1321 static void uclamp_update_root_tg(void) 1322 { 1323 struct task_group *tg = &root_task_group; 1324 1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1326 sysctl_sched_uclamp_util_min, false); 1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1328 sysctl_sched_uclamp_util_max, false); 1329 1330 rcu_read_lock(); 1331 cpu_util_update_eff(&root_task_group.css); 1332 rcu_read_unlock(); 1333 } 1334 #else 1335 static void uclamp_update_root_tg(void) { } 1336 #endif 1337 1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1339 void *buffer, size_t *lenp, loff_t *ppos) 1340 { 1341 bool update_root_tg = false; 1342 int old_min, old_max, old_min_rt; 1343 int result; 1344 1345 mutex_lock(&uclamp_mutex); 1346 old_min = sysctl_sched_uclamp_util_min; 1347 old_max = sysctl_sched_uclamp_util_max; 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1349 1350 result = proc_dointvec(table, write, buffer, lenp, ppos); 1351 if (result) 1352 goto undo; 1353 if (!write) 1354 goto done; 1355 1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1359 1360 result = -EINVAL; 1361 goto undo; 1362 } 1363 1364 if (old_min != sysctl_sched_uclamp_util_min) { 1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1366 sysctl_sched_uclamp_util_min, false); 1367 update_root_tg = true; 1368 } 1369 if (old_max != sysctl_sched_uclamp_util_max) { 1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1371 sysctl_sched_uclamp_util_max, false); 1372 update_root_tg = true; 1373 } 1374 1375 if (update_root_tg) { 1376 static_branch_enable(&sched_uclamp_used); 1377 uclamp_update_root_tg(); 1378 } 1379 1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1381 static_branch_enable(&sched_uclamp_used); 1382 uclamp_sync_util_min_rt_default(); 1383 } 1384 1385 /* 1386 * We update all RUNNABLE tasks only when task groups are in use. 1387 * Otherwise, keep it simple and do just a lazy update at each next 1388 * task enqueue time. 1389 */ 1390 1391 goto done; 1392 1393 undo: 1394 sysctl_sched_uclamp_util_min = old_min; 1395 sysctl_sched_uclamp_util_max = old_max; 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1397 done: 1398 mutex_unlock(&uclamp_mutex); 1399 1400 return result; 1401 } 1402 1403 static int uclamp_validate(struct task_struct *p, 1404 const struct sched_attr *attr) 1405 { 1406 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1407 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1408 1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1410 util_min = attr->sched_util_min; 1411 1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1413 return -EINVAL; 1414 } 1415 1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1417 util_max = attr->sched_util_max; 1418 1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1420 return -EINVAL; 1421 } 1422 1423 if (util_min != -1 && util_max != -1 && util_min > util_max) 1424 return -EINVAL; 1425 1426 /* 1427 * We have valid uclamp attributes; make sure uclamp is enabled. 1428 * 1429 * We need to do that here, because enabling static branches is a 1430 * blocking operation which obviously cannot be done while holding 1431 * scheduler locks. 1432 */ 1433 static_branch_enable(&sched_uclamp_used); 1434 1435 return 0; 1436 } 1437 1438 static bool uclamp_reset(const struct sched_attr *attr, 1439 enum uclamp_id clamp_id, 1440 struct uclamp_se *uc_se) 1441 { 1442 /* Reset on sched class change for a non user-defined clamp value. */ 1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1444 !uc_se->user_defined) 1445 return true; 1446 1447 /* Reset on sched_util_{min,max} == -1. */ 1448 if (clamp_id == UCLAMP_MIN && 1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1450 attr->sched_util_min == -1) { 1451 return true; 1452 } 1453 1454 if (clamp_id == UCLAMP_MAX && 1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1456 attr->sched_util_max == -1) { 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 static void __setscheduler_uclamp(struct task_struct *p, 1464 const struct sched_attr *attr) 1465 { 1466 enum uclamp_id clamp_id; 1467 1468 for_each_clamp_id(clamp_id) { 1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1470 unsigned int value; 1471 1472 if (!uclamp_reset(attr, clamp_id, uc_se)) 1473 continue; 1474 1475 /* 1476 * RT by default have a 100% boost value that could be modified 1477 * at runtime. 1478 */ 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1480 value = sysctl_sched_uclamp_util_min_rt_default; 1481 else 1482 value = uclamp_none(clamp_id); 1483 1484 uclamp_se_set(uc_se, value, false); 1485 1486 } 1487 1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1489 return; 1490 1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1492 attr->sched_util_min != -1) { 1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1494 attr->sched_util_min, true); 1495 } 1496 1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1498 attr->sched_util_max != -1) { 1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1500 attr->sched_util_max, true); 1501 } 1502 } 1503 1504 static void uclamp_fork(struct task_struct *p) 1505 { 1506 enum uclamp_id clamp_id; 1507 1508 /* 1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1510 * as the task is still at its early fork stages. 1511 */ 1512 for_each_clamp_id(clamp_id) 1513 p->uclamp[clamp_id].active = false; 1514 1515 if (likely(!p->sched_reset_on_fork)) 1516 return; 1517 1518 for_each_clamp_id(clamp_id) { 1519 uclamp_se_set(&p->uclamp_req[clamp_id], 1520 uclamp_none(clamp_id), false); 1521 } 1522 } 1523 1524 static void uclamp_post_fork(struct task_struct *p) 1525 { 1526 uclamp_update_util_min_rt_default(p); 1527 } 1528 1529 static void __init init_uclamp_rq(struct rq *rq) 1530 { 1531 enum uclamp_id clamp_id; 1532 struct uclamp_rq *uc_rq = rq->uclamp; 1533 1534 for_each_clamp_id(clamp_id) { 1535 uc_rq[clamp_id] = (struct uclamp_rq) { 1536 .value = uclamp_none(clamp_id) 1537 }; 1538 } 1539 1540 rq->uclamp_flags = 0; 1541 } 1542 1543 static void __init init_uclamp(void) 1544 { 1545 struct uclamp_se uc_max = {}; 1546 enum uclamp_id clamp_id; 1547 int cpu; 1548 1549 for_each_possible_cpu(cpu) 1550 init_uclamp_rq(cpu_rq(cpu)); 1551 1552 for_each_clamp_id(clamp_id) { 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1554 uclamp_none(clamp_id), false); 1555 } 1556 1557 /* System defaults allow max clamp values for both indexes */ 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1559 for_each_clamp_id(clamp_id) { 1560 uclamp_default[clamp_id] = uc_max; 1561 #ifdef CONFIG_UCLAMP_TASK_GROUP 1562 root_task_group.uclamp_req[clamp_id] = uc_max; 1563 root_task_group.uclamp[clamp_id] = uc_max; 1564 #endif 1565 } 1566 } 1567 1568 #else /* CONFIG_UCLAMP_TASK */ 1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1571 static inline int uclamp_validate(struct task_struct *p, 1572 const struct sched_attr *attr) 1573 { 1574 return -EOPNOTSUPP; 1575 } 1576 static void __setscheduler_uclamp(struct task_struct *p, 1577 const struct sched_attr *attr) { } 1578 static inline void uclamp_fork(struct task_struct *p) { } 1579 static inline void uclamp_post_fork(struct task_struct *p) { } 1580 static inline void init_uclamp(void) { } 1581 #endif /* CONFIG_UCLAMP_TASK */ 1582 1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1584 { 1585 if (!(flags & ENQUEUE_NOCLOCK)) 1586 update_rq_clock(rq); 1587 1588 if (!(flags & ENQUEUE_RESTORE)) { 1589 sched_info_queued(rq, p); 1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1591 } 1592 1593 uclamp_rq_inc(rq, p); 1594 p->sched_class->enqueue_task(rq, p, flags); 1595 } 1596 1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1598 { 1599 if (!(flags & DEQUEUE_NOCLOCK)) 1600 update_rq_clock(rq); 1601 1602 if (!(flags & DEQUEUE_SAVE)) { 1603 sched_info_dequeued(rq, p); 1604 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1605 } 1606 1607 uclamp_rq_dec(rq, p); 1608 p->sched_class->dequeue_task(rq, p, flags); 1609 } 1610 1611 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1612 { 1613 enqueue_task(rq, p, flags); 1614 1615 p->on_rq = TASK_ON_RQ_QUEUED; 1616 } 1617 1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1619 { 1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1621 1622 dequeue_task(rq, p, flags); 1623 } 1624 1625 /* 1626 * __normal_prio - return the priority that is based on the static prio 1627 */ 1628 static inline int __normal_prio(struct task_struct *p) 1629 { 1630 return p->static_prio; 1631 } 1632 1633 /* 1634 * Calculate the expected normal priority: i.e. priority 1635 * without taking RT-inheritance into account. Might be 1636 * boosted by interactivity modifiers. Changes upon fork, 1637 * setprio syscalls, and whenever the interactivity 1638 * estimator recalculates. 1639 */ 1640 static inline int normal_prio(struct task_struct *p) 1641 { 1642 int prio; 1643 1644 if (task_has_dl_policy(p)) 1645 prio = MAX_DL_PRIO-1; 1646 else if (task_has_rt_policy(p)) 1647 prio = MAX_RT_PRIO-1 - p->rt_priority; 1648 else 1649 prio = __normal_prio(p); 1650 return prio; 1651 } 1652 1653 /* 1654 * Calculate the current priority, i.e. the priority 1655 * taken into account by the scheduler. This value might 1656 * be boosted by RT tasks, or might be boosted by 1657 * interactivity modifiers. Will be RT if the task got 1658 * RT-boosted. If not then it returns p->normal_prio. 1659 */ 1660 static int effective_prio(struct task_struct *p) 1661 { 1662 p->normal_prio = normal_prio(p); 1663 /* 1664 * If we are RT tasks or we were boosted to RT priority, 1665 * keep the priority unchanged. Otherwise, update priority 1666 * to the normal priority: 1667 */ 1668 if (!rt_prio(p->prio)) 1669 return p->normal_prio; 1670 return p->prio; 1671 } 1672 1673 /** 1674 * task_curr - is this task currently executing on a CPU? 1675 * @p: the task in question. 1676 * 1677 * Return: 1 if the task is currently executing. 0 otherwise. 1678 */ 1679 inline int task_curr(const struct task_struct *p) 1680 { 1681 return cpu_curr(task_cpu(p)) == p; 1682 } 1683 1684 /* 1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1686 * use the balance_callback list if you want balancing. 1687 * 1688 * this means any call to check_class_changed() must be followed by a call to 1689 * balance_callback(). 1690 */ 1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1692 const struct sched_class *prev_class, 1693 int oldprio) 1694 { 1695 if (prev_class != p->sched_class) { 1696 if (prev_class->switched_from) 1697 prev_class->switched_from(rq, p); 1698 1699 p->sched_class->switched_to(rq, p); 1700 } else if (oldprio != p->prio || dl_task(p)) 1701 p->sched_class->prio_changed(rq, p, oldprio); 1702 } 1703 1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1705 { 1706 if (p->sched_class == rq->curr->sched_class) 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1708 else if (p->sched_class > rq->curr->sched_class) 1709 resched_curr(rq); 1710 1711 /* 1712 * A queue event has occurred, and we're going to schedule. In 1713 * this case, we can save a useless back to back clock update. 1714 */ 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1716 rq_clock_skip_update(rq); 1717 } 1718 1719 #ifdef CONFIG_SMP 1720 1721 static void 1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1723 1724 static int __set_cpus_allowed_ptr(struct task_struct *p, 1725 const struct cpumask *new_mask, 1726 u32 flags); 1727 1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1729 { 1730 if (likely(!p->migration_disabled)) 1731 return; 1732 1733 if (p->cpus_ptr != &p->cpus_mask) 1734 return; 1735 1736 /* 1737 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1738 */ 1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1740 } 1741 1742 void migrate_disable(void) 1743 { 1744 struct task_struct *p = current; 1745 1746 if (p->migration_disabled) { 1747 p->migration_disabled++; 1748 return; 1749 } 1750 1751 preempt_disable(); 1752 this_rq()->nr_pinned++; 1753 p->migration_disabled = 1; 1754 preempt_enable(); 1755 } 1756 EXPORT_SYMBOL_GPL(migrate_disable); 1757 1758 void migrate_enable(void) 1759 { 1760 struct task_struct *p = current; 1761 1762 if (p->migration_disabled > 1) { 1763 p->migration_disabled--; 1764 return; 1765 } 1766 1767 /* 1768 * Ensure stop_task runs either before or after this, and that 1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1770 */ 1771 preempt_disable(); 1772 if (p->cpus_ptr != &p->cpus_mask) 1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1774 /* 1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1776 * regular cpus_mask, otherwise things that race (eg. 1777 * select_fallback_rq) get confused. 1778 */ 1779 barrier(); 1780 p->migration_disabled = 0; 1781 this_rq()->nr_pinned--; 1782 preempt_enable(); 1783 } 1784 EXPORT_SYMBOL_GPL(migrate_enable); 1785 1786 static inline bool rq_has_pinned_tasks(struct rq *rq) 1787 { 1788 return rq->nr_pinned; 1789 } 1790 1791 /* 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1793 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1794 */ 1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1796 { 1797 /* When not in the task's cpumask, no point in looking further. */ 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1799 return false; 1800 1801 /* migrate_disabled() must be allowed to finish. */ 1802 if (is_migration_disabled(p)) 1803 return cpu_online(cpu); 1804 1805 /* Non kernel threads are not allowed during either online or offline. */ 1806 if (!(p->flags & PF_KTHREAD)) 1807 return cpu_active(cpu); 1808 1809 /* KTHREAD_IS_PER_CPU is always allowed. */ 1810 if (kthread_is_per_cpu(p)) 1811 return cpu_online(cpu); 1812 1813 /* Regular kernel threads don't get to stay during offline. */ 1814 if (cpu_rq(cpu)->balance_push) 1815 return false; 1816 1817 /* But are allowed during online. */ 1818 return cpu_online(cpu); 1819 } 1820 1821 /* 1822 * This is how migration works: 1823 * 1824 * 1) we invoke migration_cpu_stop() on the target CPU using 1825 * stop_one_cpu(). 1826 * 2) stopper starts to run (implicitly forcing the migrated thread 1827 * off the CPU) 1828 * 3) it checks whether the migrated task is still in the wrong runqueue. 1829 * 4) if it's in the wrong runqueue then the migration thread removes 1830 * it and puts it into the right queue. 1831 * 5) stopper completes and stop_one_cpu() returns and the migration 1832 * is done. 1833 */ 1834 1835 /* 1836 * move_queued_task - move a queued task to new rq. 1837 * 1838 * Returns (locked) new rq. Old rq's lock is released. 1839 */ 1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1841 struct task_struct *p, int new_cpu) 1842 { 1843 lockdep_assert_held(&rq->lock); 1844 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1846 set_task_cpu(p, new_cpu); 1847 rq_unlock(rq, rf); 1848 1849 rq = cpu_rq(new_cpu); 1850 1851 rq_lock(rq, rf); 1852 BUG_ON(task_cpu(p) != new_cpu); 1853 activate_task(rq, p, 0); 1854 check_preempt_curr(rq, p, 0); 1855 1856 return rq; 1857 } 1858 1859 struct migration_arg { 1860 struct task_struct *task; 1861 int dest_cpu; 1862 struct set_affinity_pending *pending; 1863 }; 1864 1865 struct set_affinity_pending { 1866 refcount_t refs; 1867 struct completion done; 1868 struct cpu_stop_work stop_work; 1869 struct migration_arg arg; 1870 }; 1871 1872 /* 1873 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1874 * this because either it can't run here any more (set_cpus_allowed() 1875 * away from this CPU, or CPU going down), or because we're 1876 * attempting to rebalance this task on exec (sched_exec). 1877 * 1878 * So we race with normal scheduler movements, but that's OK, as long 1879 * as the task is no longer on this CPU. 1880 */ 1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1882 struct task_struct *p, int dest_cpu) 1883 { 1884 /* Affinity changed (again). */ 1885 if (!is_cpu_allowed(p, dest_cpu)) 1886 return rq; 1887 1888 update_rq_clock(rq); 1889 rq = move_queued_task(rq, rf, p, dest_cpu); 1890 1891 return rq; 1892 } 1893 1894 /* 1895 * migration_cpu_stop - this will be executed by a highprio stopper thread 1896 * and performs thread migration by bumping thread off CPU then 1897 * 'pushing' onto another runqueue. 1898 */ 1899 static int migration_cpu_stop(void *data) 1900 { 1901 struct set_affinity_pending *pending; 1902 struct migration_arg *arg = data; 1903 struct task_struct *p = arg->task; 1904 int dest_cpu = arg->dest_cpu; 1905 struct rq *rq = this_rq(); 1906 bool complete = false; 1907 struct rq_flags rf; 1908 1909 /* 1910 * The original target CPU might have gone down and we might 1911 * be on another CPU but it doesn't matter. 1912 */ 1913 local_irq_save(rf.flags); 1914 /* 1915 * We need to explicitly wake pending tasks before running 1916 * __migrate_task() such that we will not miss enforcing cpus_ptr 1917 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1918 */ 1919 flush_smp_call_function_from_idle(); 1920 1921 raw_spin_lock(&p->pi_lock); 1922 rq_lock(rq, &rf); 1923 1924 pending = p->migration_pending; 1925 if (pending && !arg->pending) { 1926 /* 1927 * This happens from sched_exec() and migrate_task_to(), 1928 * neither of them care about pending and just want a task to 1929 * maybe move about. 1930 * 1931 * Even if there is a pending, we can ignore it, since 1932 * affine_move_task() will have it's own stop_work's in flight 1933 * which will manage the completion. 1934 * 1935 * Notably, pending doesn't need to match arg->pending. This can 1936 * happen when tripple concurrent affine_move_task() first sets 1937 * pending, then clears pending and eventually sets another 1938 * pending. 1939 */ 1940 pending = NULL; 1941 } 1942 1943 /* 1944 * If task_rq(p) != rq, it cannot be migrated here, because we're 1945 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1946 * we're holding p->pi_lock. 1947 */ 1948 if (task_rq(p) == rq) { 1949 if (is_migration_disabled(p)) 1950 goto out; 1951 1952 if (pending) { 1953 p->migration_pending = NULL; 1954 complete = true; 1955 } 1956 1957 /* migrate_enable() -- we must not race against SCA */ 1958 if (dest_cpu < 0) { 1959 /* 1960 * When this was migrate_enable() but we no longer 1961 * have a @pending, a concurrent SCA 'fixed' things 1962 * and we should be valid again. Nothing to do. 1963 */ 1964 if (!pending) { 1965 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 1966 goto out; 1967 } 1968 1969 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1970 } 1971 1972 if (task_on_rq_queued(p)) 1973 rq = __migrate_task(rq, &rf, p, dest_cpu); 1974 else 1975 p->wake_cpu = dest_cpu; 1976 1977 } else if (dest_cpu < 0 || pending) { 1978 /* 1979 * This happens when we get migrated between migrate_enable()'s 1980 * preempt_enable() and scheduling the stopper task. At that 1981 * point we're a regular task again and not current anymore. 1982 * 1983 * A !PREEMPT kernel has a giant hole here, which makes it far 1984 * more likely. 1985 */ 1986 1987 /* 1988 * The task moved before the stopper got to run. We're holding 1989 * ->pi_lock, so the allowed mask is stable - if it got 1990 * somewhere allowed, we're done. 1991 */ 1992 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1993 p->migration_pending = NULL; 1994 complete = true; 1995 goto out; 1996 } 1997 1998 /* 1999 * When this was migrate_enable() but we no longer have an 2000 * @pending, a concurrent SCA 'fixed' things and we should be 2001 * valid again. Nothing to do. 2002 */ 2003 if (!pending) { 2004 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 2005 goto out; 2006 } 2007 2008 /* 2009 * When migrate_enable() hits a rq mis-match we can't reliably 2010 * determine is_migration_disabled() and so have to chase after 2011 * it. 2012 */ 2013 task_rq_unlock(rq, p, &rf); 2014 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2015 &pending->arg, &pending->stop_work); 2016 return 0; 2017 } 2018 out: 2019 task_rq_unlock(rq, p, &rf); 2020 2021 if (complete) 2022 complete_all(&pending->done); 2023 2024 /* For pending->{arg,stop_work} */ 2025 pending = arg->pending; 2026 if (pending && refcount_dec_and_test(&pending->refs)) 2027 wake_up_var(&pending->refs); 2028 2029 return 0; 2030 } 2031 2032 int push_cpu_stop(void *arg) 2033 { 2034 struct rq *lowest_rq = NULL, *rq = this_rq(); 2035 struct task_struct *p = arg; 2036 2037 raw_spin_lock_irq(&p->pi_lock); 2038 raw_spin_lock(&rq->lock); 2039 2040 if (task_rq(p) != rq) 2041 goto out_unlock; 2042 2043 if (is_migration_disabled(p)) { 2044 p->migration_flags |= MDF_PUSH; 2045 goto out_unlock; 2046 } 2047 2048 p->migration_flags &= ~MDF_PUSH; 2049 2050 if (p->sched_class->find_lock_rq) 2051 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2052 2053 if (!lowest_rq) 2054 goto out_unlock; 2055 2056 // XXX validate p is still the highest prio task 2057 if (task_rq(p) == rq) { 2058 deactivate_task(rq, p, 0); 2059 set_task_cpu(p, lowest_rq->cpu); 2060 activate_task(lowest_rq, p, 0); 2061 resched_curr(lowest_rq); 2062 } 2063 2064 double_unlock_balance(rq, lowest_rq); 2065 2066 out_unlock: 2067 rq->push_busy = false; 2068 raw_spin_unlock(&rq->lock); 2069 raw_spin_unlock_irq(&p->pi_lock); 2070 2071 put_task_struct(p); 2072 return 0; 2073 } 2074 2075 /* 2076 * sched_class::set_cpus_allowed must do the below, but is not required to 2077 * actually call this function. 2078 */ 2079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2080 { 2081 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2082 p->cpus_ptr = new_mask; 2083 return; 2084 } 2085 2086 cpumask_copy(&p->cpus_mask, new_mask); 2087 p->nr_cpus_allowed = cpumask_weight(new_mask); 2088 } 2089 2090 static void 2091 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2092 { 2093 struct rq *rq = task_rq(p); 2094 bool queued, running; 2095 2096 /* 2097 * This here violates the locking rules for affinity, since we're only 2098 * supposed to change these variables while holding both rq->lock and 2099 * p->pi_lock. 2100 * 2101 * HOWEVER, it magically works, because ttwu() is the only code that 2102 * accesses these variables under p->pi_lock and only does so after 2103 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2104 * before finish_task(). 2105 * 2106 * XXX do further audits, this smells like something putrid. 2107 */ 2108 if (flags & SCA_MIGRATE_DISABLE) 2109 SCHED_WARN_ON(!p->on_cpu); 2110 else 2111 lockdep_assert_held(&p->pi_lock); 2112 2113 queued = task_on_rq_queued(p); 2114 running = task_current(rq, p); 2115 2116 if (queued) { 2117 /* 2118 * Because __kthread_bind() calls this on blocked tasks without 2119 * holding rq->lock. 2120 */ 2121 lockdep_assert_held(&rq->lock); 2122 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2123 } 2124 if (running) 2125 put_prev_task(rq, p); 2126 2127 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2128 2129 if (queued) 2130 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2131 if (running) 2132 set_next_task(rq, p); 2133 } 2134 2135 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2136 { 2137 __do_set_cpus_allowed(p, new_mask, 0); 2138 } 2139 2140 /* 2141 * This function is wildly self concurrent; here be dragons. 2142 * 2143 * 2144 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2145 * designated task is enqueued on an allowed CPU. If that task is currently 2146 * running, we have to kick it out using the CPU stopper. 2147 * 2148 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2149 * Consider: 2150 * 2151 * Initial conditions: P0->cpus_mask = [0, 1] 2152 * 2153 * P0@CPU0 P1 2154 * 2155 * migrate_disable(); 2156 * <preempted> 2157 * set_cpus_allowed_ptr(P0, [1]); 2158 * 2159 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2160 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2161 * This means we need the following scheme: 2162 * 2163 * P0@CPU0 P1 2164 * 2165 * migrate_disable(); 2166 * <preempted> 2167 * set_cpus_allowed_ptr(P0, [1]); 2168 * <blocks> 2169 * <resumes> 2170 * migrate_enable(); 2171 * __set_cpus_allowed_ptr(); 2172 * <wakes local stopper> 2173 * `--> <woken on migration completion> 2174 * 2175 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2176 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2177 * task p are serialized by p->pi_lock, which we can leverage: the one that 2178 * should come into effect at the end of the Migrate-Disable region is the last 2179 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2180 * but we still need to properly signal those waiting tasks at the appropriate 2181 * moment. 2182 * 2183 * This is implemented using struct set_affinity_pending. The first 2184 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2185 * setup an instance of that struct and install it on the targeted task_struct. 2186 * Any and all further callers will reuse that instance. Those then wait for 2187 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2188 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2189 * 2190 * 2191 * (1) In the cases covered above. There is one more where the completion is 2192 * signaled within affine_move_task() itself: when a subsequent affinity request 2193 * cancels the need for an active migration. Consider: 2194 * 2195 * Initial conditions: P0->cpus_mask = [0, 1] 2196 * 2197 * P0@CPU0 P1 P2 2198 * 2199 * migrate_disable(); 2200 * <preempted> 2201 * set_cpus_allowed_ptr(P0, [1]); 2202 * <blocks> 2203 * set_cpus_allowed_ptr(P0, [0, 1]); 2204 * <signal completion> 2205 * <awakes> 2206 * 2207 * Note that the above is safe vs a concurrent migrate_enable(), as any 2208 * pending affinity completion is preceded by an uninstallation of 2209 * p->migration_pending done with p->pi_lock held. 2210 */ 2211 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2212 int dest_cpu, unsigned int flags) 2213 { 2214 struct set_affinity_pending my_pending = { }, *pending = NULL; 2215 bool complete = false; 2216 2217 /* Can the task run on the task's current CPU? If so, we're done */ 2218 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2219 struct task_struct *push_task = NULL; 2220 2221 if ((flags & SCA_MIGRATE_ENABLE) && 2222 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2223 rq->push_busy = true; 2224 push_task = get_task_struct(p); 2225 } 2226 2227 pending = p->migration_pending; 2228 if (pending) { 2229 refcount_inc(&pending->refs); 2230 p->migration_pending = NULL; 2231 complete = true; 2232 } 2233 task_rq_unlock(rq, p, rf); 2234 2235 if (push_task) { 2236 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2237 p, &rq->push_work); 2238 } 2239 2240 if (complete) 2241 goto do_complete; 2242 2243 return 0; 2244 } 2245 2246 if (!(flags & SCA_MIGRATE_ENABLE)) { 2247 /* serialized by p->pi_lock */ 2248 if (!p->migration_pending) { 2249 /* Install the request */ 2250 refcount_set(&my_pending.refs, 1); 2251 init_completion(&my_pending.done); 2252 my_pending.arg = (struct migration_arg) { 2253 .task = p, 2254 .dest_cpu = -1, /* any */ 2255 .pending = &my_pending, 2256 }; 2257 2258 p->migration_pending = &my_pending; 2259 } else { 2260 pending = p->migration_pending; 2261 refcount_inc(&pending->refs); 2262 } 2263 } 2264 pending = p->migration_pending; 2265 /* 2266 * - !MIGRATE_ENABLE: 2267 * we'll have installed a pending if there wasn't one already. 2268 * 2269 * - MIGRATE_ENABLE: 2270 * we're here because the current CPU isn't matching anymore, 2271 * the only way that can happen is because of a concurrent 2272 * set_cpus_allowed_ptr() call, which should then still be 2273 * pending completion. 2274 * 2275 * Either way, we really should have a @pending here. 2276 */ 2277 if (WARN_ON_ONCE(!pending)) { 2278 task_rq_unlock(rq, p, rf); 2279 return -EINVAL; 2280 } 2281 2282 if (flags & SCA_MIGRATE_ENABLE) { 2283 2284 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */ 2285 p->migration_flags &= ~MDF_PUSH; 2286 task_rq_unlock(rq, p, rf); 2287 2288 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2289 &pending->arg, &pending->stop_work); 2290 2291 return 0; 2292 } 2293 2294 if (task_running(rq, p) || p->state == TASK_WAKING) { 2295 /* 2296 * Lessen races (and headaches) by delegating 2297 * is_migration_disabled(p) checks to the stopper, which will 2298 * run on the same CPU as said p. 2299 */ 2300 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */ 2301 task_rq_unlock(rq, p, rf); 2302 2303 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2304 &pending->arg, &pending->stop_work); 2305 2306 } else { 2307 2308 if (!is_migration_disabled(p)) { 2309 if (task_on_rq_queued(p)) 2310 rq = move_queued_task(rq, rf, p, dest_cpu); 2311 2312 p->migration_pending = NULL; 2313 complete = true; 2314 } 2315 task_rq_unlock(rq, p, rf); 2316 2317 do_complete: 2318 if (complete) 2319 complete_all(&pending->done); 2320 } 2321 2322 wait_for_completion(&pending->done); 2323 2324 if (refcount_dec_and_test(&pending->refs)) 2325 wake_up_var(&pending->refs); 2326 2327 /* 2328 * Block the original owner of &pending until all subsequent callers 2329 * have seen the completion and decremented the refcount 2330 */ 2331 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2332 2333 return 0; 2334 } 2335 2336 /* 2337 * Change a given task's CPU affinity. Migrate the thread to a 2338 * proper CPU and schedule it away if the CPU it's executing on 2339 * is removed from the allowed bitmask. 2340 * 2341 * NOTE: the caller must have a valid reference to the task, the 2342 * task must not exit() & deallocate itself prematurely. The 2343 * call is not atomic; no spinlocks may be held. 2344 */ 2345 static int __set_cpus_allowed_ptr(struct task_struct *p, 2346 const struct cpumask *new_mask, 2347 u32 flags) 2348 { 2349 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2350 unsigned int dest_cpu; 2351 struct rq_flags rf; 2352 struct rq *rq; 2353 int ret = 0; 2354 2355 rq = task_rq_lock(p, &rf); 2356 update_rq_clock(rq); 2357 2358 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2359 /* 2360 * Kernel threads are allowed on online && !active CPUs, 2361 * however, during cpu-hot-unplug, even these might get pushed 2362 * away if not KTHREAD_IS_PER_CPU. 2363 * 2364 * Specifically, migration_disabled() tasks must not fail the 2365 * cpumask_any_and_distribute() pick below, esp. so on 2366 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2367 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2368 */ 2369 cpu_valid_mask = cpu_online_mask; 2370 } 2371 2372 /* 2373 * Must re-check here, to close a race against __kthread_bind(), 2374 * sched_setaffinity() is not guaranteed to observe the flag. 2375 */ 2376 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2377 ret = -EINVAL; 2378 goto out; 2379 } 2380 2381 if (!(flags & SCA_MIGRATE_ENABLE)) { 2382 if (cpumask_equal(&p->cpus_mask, new_mask)) 2383 goto out; 2384 2385 if (WARN_ON_ONCE(p == current && 2386 is_migration_disabled(p) && 2387 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2388 ret = -EBUSY; 2389 goto out; 2390 } 2391 } 2392 2393 /* 2394 * Picking a ~random cpu helps in cases where we are changing affinity 2395 * for groups of tasks (ie. cpuset), so that load balancing is not 2396 * immediately required to distribute the tasks within their new mask. 2397 */ 2398 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2399 if (dest_cpu >= nr_cpu_ids) { 2400 ret = -EINVAL; 2401 goto out; 2402 } 2403 2404 __do_set_cpus_allowed(p, new_mask, flags); 2405 2406 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2407 2408 out: 2409 task_rq_unlock(rq, p, &rf); 2410 2411 return ret; 2412 } 2413 2414 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2415 { 2416 return __set_cpus_allowed_ptr(p, new_mask, 0); 2417 } 2418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2419 2420 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2421 { 2422 #ifdef CONFIG_SCHED_DEBUG 2423 /* 2424 * We should never call set_task_cpu() on a blocked task, 2425 * ttwu() will sort out the placement. 2426 */ 2427 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2428 !p->on_rq); 2429 2430 /* 2431 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2432 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2433 * time relying on p->on_rq. 2434 */ 2435 WARN_ON_ONCE(p->state == TASK_RUNNING && 2436 p->sched_class == &fair_sched_class && 2437 (p->on_rq && !task_on_rq_migrating(p))); 2438 2439 #ifdef CONFIG_LOCKDEP 2440 /* 2441 * The caller should hold either p->pi_lock or rq->lock, when changing 2442 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2443 * 2444 * sched_move_task() holds both and thus holding either pins the cgroup, 2445 * see task_group(). 2446 * 2447 * Furthermore, all task_rq users should acquire both locks, see 2448 * task_rq_lock(). 2449 */ 2450 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2451 lockdep_is_held(&task_rq(p)->lock))); 2452 #endif 2453 /* 2454 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2455 */ 2456 WARN_ON_ONCE(!cpu_online(new_cpu)); 2457 2458 WARN_ON_ONCE(is_migration_disabled(p)); 2459 #endif 2460 2461 trace_sched_migrate_task(p, new_cpu); 2462 2463 if (task_cpu(p) != new_cpu) { 2464 if (p->sched_class->migrate_task_rq) 2465 p->sched_class->migrate_task_rq(p, new_cpu); 2466 p->se.nr_migrations++; 2467 rseq_migrate(p); 2468 perf_event_task_migrate(p); 2469 } 2470 2471 __set_task_cpu(p, new_cpu); 2472 } 2473 2474 #ifdef CONFIG_NUMA_BALANCING 2475 static void __migrate_swap_task(struct task_struct *p, int cpu) 2476 { 2477 if (task_on_rq_queued(p)) { 2478 struct rq *src_rq, *dst_rq; 2479 struct rq_flags srf, drf; 2480 2481 src_rq = task_rq(p); 2482 dst_rq = cpu_rq(cpu); 2483 2484 rq_pin_lock(src_rq, &srf); 2485 rq_pin_lock(dst_rq, &drf); 2486 2487 deactivate_task(src_rq, p, 0); 2488 set_task_cpu(p, cpu); 2489 activate_task(dst_rq, p, 0); 2490 check_preempt_curr(dst_rq, p, 0); 2491 2492 rq_unpin_lock(dst_rq, &drf); 2493 rq_unpin_lock(src_rq, &srf); 2494 2495 } else { 2496 /* 2497 * Task isn't running anymore; make it appear like we migrated 2498 * it before it went to sleep. This means on wakeup we make the 2499 * previous CPU our target instead of where it really is. 2500 */ 2501 p->wake_cpu = cpu; 2502 } 2503 } 2504 2505 struct migration_swap_arg { 2506 struct task_struct *src_task, *dst_task; 2507 int src_cpu, dst_cpu; 2508 }; 2509 2510 static int migrate_swap_stop(void *data) 2511 { 2512 struct migration_swap_arg *arg = data; 2513 struct rq *src_rq, *dst_rq; 2514 int ret = -EAGAIN; 2515 2516 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2517 return -EAGAIN; 2518 2519 src_rq = cpu_rq(arg->src_cpu); 2520 dst_rq = cpu_rq(arg->dst_cpu); 2521 2522 double_raw_lock(&arg->src_task->pi_lock, 2523 &arg->dst_task->pi_lock); 2524 double_rq_lock(src_rq, dst_rq); 2525 2526 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2527 goto unlock; 2528 2529 if (task_cpu(arg->src_task) != arg->src_cpu) 2530 goto unlock; 2531 2532 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2533 goto unlock; 2534 2535 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2536 goto unlock; 2537 2538 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2539 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2540 2541 ret = 0; 2542 2543 unlock: 2544 double_rq_unlock(src_rq, dst_rq); 2545 raw_spin_unlock(&arg->dst_task->pi_lock); 2546 raw_spin_unlock(&arg->src_task->pi_lock); 2547 2548 return ret; 2549 } 2550 2551 /* 2552 * Cross migrate two tasks 2553 */ 2554 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2555 int target_cpu, int curr_cpu) 2556 { 2557 struct migration_swap_arg arg; 2558 int ret = -EINVAL; 2559 2560 arg = (struct migration_swap_arg){ 2561 .src_task = cur, 2562 .src_cpu = curr_cpu, 2563 .dst_task = p, 2564 .dst_cpu = target_cpu, 2565 }; 2566 2567 if (arg.src_cpu == arg.dst_cpu) 2568 goto out; 2569 2570 /* 2571 * These three tests are all lockless; this is OK since all of them 2572 * will be re-checked with proper locks held further down the line. 2573 */ 2574 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2575 goto out; 2576 2577 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2578 goto out; 2579 2580 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2581 goto out; 2582 2583 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2584 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2585 2586 out: 2587 return ret; 2588 } 2589 #endif /* CONFIG_NUMA_BALANCING */ 2590 2591 /* 2592 * wait_task_inactive - wait for a thread to unschedule. 2593 * 2594 * If @match_state is nonzero, it's the @p->state value just checked and 2595 * not expected to change. If it changes, i.e. @p might have woken up, 2596 * then return zero. When we succeed in waiting for @p to be off its CPU, 2597 * we return a positive number (its total switch count). If a second call 2598 * a short while later returns the same number, the caller can be sure that 2599 * @p has remained unscheduled the whole time. 2600 * 2601 * The caller must ensure that the task *will* unschedule sometime soon, 2602 * else this function might spin for a *long* time. This function can't 2603 * be called with interrupts off, or it may introduce deadlock with 2604 * smp_call_function() if an IPI is sent by the same process we are 2605 * waiting to become inactive. 2606 */ 2607 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2608 { 2609 int running, queued; 2610 struct rq_flags rf; 2611 unsigned long ncsw; 2612 struct rq *rq; 2613 2614 for (;;) { 2615 /* 2616 * We do the initial early heuristics without holding 2617 * any task-queue locks at all. We'll only try to get 2618 * the runqueue lock when things look like they will 2619 * work out! 2620 */ 2621 rq = task_rq(p); 2622 2623 /* 2624 * If the task is actively running on another CPU 2625 * still, just relax and busy-wait without holding 2626 * any locks. 2627 * 2628 * NOTE! Since we don't hold any locks, it's not 2629 * even sure that "rq" stays as the right runqueue! 2630 * But we don't care, since "task_running()" will 2631 * return false if the runqueue has changed and p 2632 * is actually now running somewhere else! 2633 */ 2634 while (task_running(rq, p)) { 2635 if (match_state && unlikely(p->state != match_state)) 2636 return 0; 2637 cpu_relax(); 2638 } 2639 2640 /* 2641 * Ok, time to look more closely! We need the rq 2642 * lock now, to be *sure*. If we're wrong, we'll 2643 * just go back and repeat. 2644 */ 2645 rq = task_rq_lock(p, &rf); 2646 trace_sched_wait_task(p); 2647 running = task_running(rq, p); 2648 queued = task_on_rq_queued(p); 2649 ncsw = 0; 2650 if (!match_state || p->state == match_state) 2651 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2652 task_rq_unlock(rq, p, &rf); 2653 2654 /* 2655 * If it changed from the expected state, bail out now. 2656 */ 2657 if (unlikely(!ncsw)) 2658 break; 2659 2660 /* 2661 * Was it really running after all now that we 2662 * checked with the proper locks actually held? 2663 * 2664 * Oops. Go back and try again.. 2665 */ 2666 if (unlikely(running)) { 2667 cpu_relax(); 2668 continue; 2669 } 2670 2671 /* 2672 * It's not enough that it's not actively running, 2673 * it must be off the runqueue _entirely_, and not 2674 * preempted! 2675 * 2676 * So if it was still runnable (but just not actively 2677 * running right now), it's preempted, and we should 2678 * yield - it could be a while. 2679 */ 2680 if (unlikely(queued)) { 2681 ktime_t to = NSEC_PER_SEC / HZ; 2682 2683 set_current_state(TASK_UNINTERRUPTIBLE); 2684 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2685 continue; 2686 } 2687 2688 /* 2689 * Ahh, all good. It wasn't running, and it wasn't 2690 * runnable, which means that it will never become 2691 * running in the future either. We're all done! 2692 */ 2693 break; 2694 } 2695 2696 return ncsw; 2697 } 2698 2699 /*** 2700 * kick_process - kick a running thread to enter/exit the kernel 2701 * @p: the to-be-kicked thread 2702 * 2703 * Cause a process which is running on another CPU to enter 2704 * kernel-mode, without any delay. (to get signals handled.) 2705 * 2706 * NOTE: this function doesn't have to take the runqueue lock, 2707 * because all it wants to ensure is that the remote task enters 2708 * the kernel. If the IPI races and the task has been migrated 2709 * to another CPU then no harm is done and the purpose has been 2710 * achieved as well. 2711 */ 2712 void kick_process(struct task_struct *p) 2713 { 2714 int cpu; 2715 2716 preempt_disable(); 2717 cpu = task_cpu(p); 2718 if ((cpu != smp_processor_id()) && task_curr(p)) 2719 smp_send_reschedule(cpu); 2720 preempt_enable(); 2721 } 2722 EXPORT_SYMBOL_GPL(kick_process); 2723 2724 /* 2725 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2726 * 2727 * A few notes on cpu_active vs cpu_online: 2728 * 2729 * - cpu_active must be a subset of cpu_online 2730 * 2731 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2732 * see __set_cpus_allowed_ptr(). At this point the newly online 2733 * CPU isn't yet part of the sched domains, and balancing will not 2734 * see it. 2735 * 2736 * - on CPU-down we clear cpu_active() to mask the sched domains and 2737 * avoid the load balancer to place new tasks on the to be removed 2738 * CPU. Existing tasks will remain running there and will be taken 2739 * off. 2740 * 2741 * This means that fallback selection must not select !active CPUs. 2742 * And can assume that any active CPU must be online. Conversely 2743 * select_task_rq() below may allow selection of !active CPUs in order 2744 * to satisfy the above rules. 2745 */ 2746 static int select_fallback_rq(int cpu, struct task_struct *p) 2747 { 2748 int nid = cpu_to_node(cpu); 2749 const struct cpumask *nodemask = NULL; 2750 enum { cpuset, possible, fail } state = cpuset; 2751 int dest_cpu; 2752 2753 /* 2754 * If the node that the CPU is on has been offlined, cpu_to_node() 2755 * will return -1. There is no CPU on the node, and we should 2756 * select the CPU on the other node. 2757 */ 2758 if (nid != -1) { 2759 nodemask = cpumask_of_node(nid); 2760 2761 /* Look for allowed, online CPU in same node. */ 2762 for_each_cpu(dest_cpu, nodemask) { 2763 if (!cpu_active(dest_cpu)) 2764 continue; 2765 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2766 return dest_cpu; 2767 } 2768 } 2769 2770 for (;;) { 2771 /* Any allowed, online CPU? */ 2772 for_each_cpu(dest_cpu, p->cpus_ptr) { 2773 if (!is_cpu_allowed(p, dest_cpu)) 2774 continue; 2775 2776 goto out; 2777 } 2778 2779 /* No more Mr. Nice Guy. */ 2780 switch (state) { 2781 case cpuset: 2782 if (IS_ENABLED(CONFIG_CPUSETS)) { 2783 cpuset_cpus_allowed_fallback(p); 2784 state = possible; 2785 break; 2786 } 2787 fallthrough; 2788 case possible: 2789 /* 2790 * XXX When called from select_task_rq() we only 2791 * hold p->pi_lock and again violate locking order. 2792 * 2793 * More yuck to audit. 2794 */ 2795 do_set_cpus_allowed(p, cpu_possible_mask); 2796 state = fail; 2797 break; 2798 2799 case fail: 2800 BUG(); 2801 break; 2802 } 2803 } 2804 2805 out: 2806 if (state != cpuset) { 2807 /* 2808 * Don't tell them about moving exiting tasks or 2809 * kernel threads (both mm NULL), since they never 2810 * leave kernel. 2811 */ 2812 if (p->mm && printk_ratelimit()) { 2813 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2814 task_pid_nr(p), p->comm, cpu); 2815 } 2816 } 2817 2818 return dest_cpu; 2819 } 2820 2821 /* 2822 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2823 */ 2824 static inline 2825 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2826 { 2827 lockdep_assert_held(&p->pi_lock); 2828 2829 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2830 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2831 else 2832 cpu = cpumask_any(p->cpus_ptr); 2833 2834 /* 2835 * In order not to call set_task_cpu() on a blocking task we need 2836 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2837 * CPU. 2838 * 2839 * Since this is common to all placement strategies, this lives here. 2840 * 2841 * [ this allows ->select_task() to simply return task_cpu(p) and 2842 * not worry about this generic constraint ] 2843 */ 2844 if (unlikely(!is_cpu_allowed(p, cpu))) 2845 cpu = select_fallback_rq(task_cpu(p), p); 2846 2847 return cpu; 2848 } 2849 2850 void sched_set_stop_task(int cpu, struct task_struct *stop) 2851 { 2852 static struct lock_class_key stop_pi_lock; 2853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2854 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2855 2856 if (stop) { 2857 /* 2858 * Make it appear like a SCHED_FIFO task, its something 2859 * userspace knows about and won't get confused about. 2860 * 2861 * Also, it will make PI more or less work without too 2862 * much confusion -- but then, stop work should not 2863 * rely on PI working anyway. 2864 */ 2865 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2866 2867 stop->sched_class = &stop_sched_class; 2868 2869 /* 2870 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2871 * adjust the effective priority of a task. As a result, 2872 * rt_mutex_setprio() can trigger (RT) balancing operations, 2873 * which can then trigger wakeups of the stop thread to push 2874 * around the current task. 2875 * 2876 * The stop task itself will never be part of the PI-chain, it 2877 * never blocks, therefore that ->pi_lock recursion is safe. 2878 * Tell lockdep about this by placing the stop->pi_lock in its 2879 * own class. 2880 */ 2881 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2882 } 2883 2884 cpu_rq(cpu)->stop = stop; 2885 2886 if (old_stop) { 2887 /* 2888 * Reset it back to a normal scheduling class so that 2889 * it can die in pieces. 2890 */ 2891 old_stop->sched_class = &rt_sched_class; 2892 } 2893 } 2894 2895 #else /* CONFIG_SMP */ 2896 2897 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2898 const struct cpumask *new_mask, 2899 u32 flags) 2900 { 2901 return set_cpus_allowed_ptr(p, new_mask); 2902 } 2903 2904 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2905 2906 static inline bool rq_has_pinned_tasks(struct rq *rq) 2907 { 2908 return false; 2909 } 2910 2911 #endif /* !CONFIG_SMP */ 2912 2913 static void 2914 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2915 { 2916 struct rq *rq; 2917 2918 if (!schedstat_enabled()) 2919 return; 2920 2921 rq = this_rq(); 2922 2923 #ifdef CONFIG_SMP 2924 if (cpu == rq->cpu) { 2925 __schedstat_inc(rq->ttwu_local); 2926 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2927 } else { 2928 struct sched_domain *sd; 2929 2930 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2931 rcu_read_lock(); 2932 for_each_domain(rq->cpu, sd) { 2933 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2934 __schedstat_inc(sd->ttwu_wake_remote); 2935 break; 2936 } 2937 } 2938 rcu_read_unlock(); 2939 } 2940 2941 if (wake_flags & WF_MIGRATED) 2942 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2943 #endif /* CONFIG_SMP */ 2944 2945 __schedstat_inc(rq->ttwu_count); 2946 __schedstat_inc(p->se.statistics.nr_wakeups); 2947 2948 if (wake_flags & WF_SYNC) 2949 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2950 } 2951 2952 /* 2953 * Mark the task runnable and perform wakeup-preemption. 2954 */ 2955 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2956 struct rq_flags *rf) 2957 { 2958 check_preempt_curr(rq, p, wake_flags); 2959 p->state = TASK_RUNNING; 2960 trace_sched_wakeup(p); 2961 2962 #ifdef CONFIG_SMP 2963 if (p->sched_class->task_woken) { 2964 /* 2965 * Our task @p is fully woken up and running; so it's safe to 2966 * drop the rq->lock, hereafter rq is only used for statistics. 2967 */ 2968 rq_unpin_lock(rq, rf); 2969 p->sched_class->task_woken(rq, p); 2970 rq_repin_lock(rq, rf); 2971 } 2972 2973 if (rq->idle_stamp) { 2974 u64 delta = rq_clock(rq) - rq->idle_stamp; 2975 u64 max = 2*rq->max_idle_balance_cost; 2976 2977 update_avg(&rq->avg_idle, delta); 2978 2979 if (rq->avg_idle > max) 2980 rq->avg_idle = max; 2981 2982 rq->idle_stamp = 0; 2983 } 2984 #endif 2985 } 2986 2987 static void 2988 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2989 struct rq_flags *rf) 2990 { 2991 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2992 2993 lockdep_assert_held(&rq->lock); 2994 2995 if (p->sched_contributes_to_load) 2996 rq->nr_uninterruptible--; 2997 2998 #ifdef CONFIG_SMP 2999 if (wake_flags & WF_MIGRATED) 3000 en_flags |= ENQUEUE_MIGRATED; 3001 else 3002 #endif 3003 if (p->in_iowait) { 3004 delayacct_blkio_end(p); 3005 atomic_dec(&task_rq(p)->nr_iowait); 3006 } 3007 3008 activate_task(rq, p, en_flags); 3009 ttwu_do_wakeup(rq, p, wake_flags, rf); 3010 } 3011 3012 /* 3013 * Consider @p being inside a wait loop: 3014 * 3015 * for (;;) { 3016 * set_current_state(TASK_UNINTERRUPTIBLE); 3017 * 3018 * if (CONDITION) 3019 * break; 3020 * 3021 * schedule(); 3022 * } 3023 * __set_current_state(TASK_RUNNING); 3024 * 3025 * between set_current_state() and schedule(). In this case @p is still 3026 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3027 * an atomic manner. 3028 * 3029 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3030 * then schedule() must still happen and p->state can be changed to 3031 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3032 * need to do a full wakeup with enqueue. 3033 * 3034 * Returns: %true when the wakeup is done, 3035 * %false otherwise. 3036 */ 3037 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3038 { 3039 struct rq_flags rf; 3040 struct rq *rq; 3041 int ret = 0; 3042 3043 rq = __task_rq_lock(p, &rf); 3044 if (task_on_rq_queued(p)) { 3045 /* check_preempt_curr() may use rq clock */ 3046 update_rq_clock(rq); 3047 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3048 ret = 1; 3049 } 3050 __task_rq_unlock(rq, &rf); 3051 3052 return ret; 3053 } 3054 3055 #ifdef CONFIG_SMP 3056 void sched_ttwu_pending(void *arg) 3057 { 3058 struct llist_node *llist = arg; 3059 struct rq *rq = this_rq(); 3060 struct task_struct *p, *t; 3061 struct rq_flags rf; 3062 3063 if (!llist) 3064 return; 3065 3066 /* 3067 * rq::ttwu_pending racy indication of out-standing wakeups. 3068 * Races such that false-negatives are possible, since they 3069 * are shorter lived that false-positives would be. 3070 */ 3071 WRITE_ONCE(rq->ttwu_pending, 0); 3072 3073 rq_lock_irqsave(rq, &rf); 3074 update_rq_clock(rq); 3075 3076 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3077 if (WARN_ON_ONCE(p->on_cpu)) 3078 smp_cond_load_acquire(&p->on_cpu, !VAL); 3079 3080 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3081 set_task_cpu(p, cpu_of(rq)); 3082 3083 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3084 } 3085 3086 rq_unlock_irqrestore(rq, &rf); 3087 } 3088 3089 void send_call_function_single_ipi(int cpu) 3090 { 3091 struct rq *rq = cpu_rq(cpu); 3092 3093 if (!set_nr_if_polling(rq->idle)) 3094 arch_send_call_function_single_ipi(cpu); 3095 else 3096 trace_sched_wake_idle_without_ipi(cpu); 3097 } 3098 3099 /* 3100 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3101 * necessary. The wakee CPU on receipt of the IPI will queue the task 3102 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3103 * of the wakeup instead of the waker. 3104 */ 3105 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3106 { 3107 struct rq *rq = cpu_rq(cpu); 3108 3109 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3110 3111 WRITE_ONCE(rq->ttwu_pending, 1); 3112 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3113 } 3114 3115 void wake_up_if_idle(int cpu) 3116 { 3117 struct rq *rq = cpu_rq(cpu); 3118 struct rq_flags rf; 3119 3120 rcu_read_lock(); 3121 3122 if (!is_idle_task(rcu_dereference(rq->curr))) 3123 goto out; 3124 3125 if (set_nr_if_polling(rq->idle)) { 3126 trace_sched_wake_idle_without_ipi(cpu); 3127 } else { 3128 rq_lock_irqsave(rq, &rf); 3129 if (is_idle_task(rq->curr)) 3130 smp_send_reschedule(cpu); 3131 /* Else CPU is not idle, do nothing here: */ 3132 rq_unlock_irqrestore(rq, &rf); 3133 } 3134 3135 out: 3136 rcu_read_unlock(); 3137 } 3138 3139 bool cpus_share_cache(int this_cpu, int that_cpu) 3140 { 3141 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3142 } 3143 3144 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3145 { 3146 /* 3147 * Do not complicate things with the async wake_list while the CPU is 3148 * in hotplug state. 3149 */ 3150 if (!cpu_active(cpu)) 3151 return false; 3152 3153 /* 3154 * If the CPU does not share cache, then queue the task on the 3155 * remote rqs wakelist to avoid accessing remote data. 3156 */ 3157 if (!cpus_share_cache(smp_processor_id(), cpu)) 3158 return true; 3159 3160 /* 3161 * If the task is descheduling and the only running task on the 3162 * CPU then use the wakelist to offload the task activation to 3163 * the soon-to-be-idle CPU as the current CPU is likely busy. 3164 * nr_running is checked to avoid unnecessary task stacking. 3165 */ 3166 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3173 { 3174 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3175 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3176 return false; 3177 3178 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3179 __ttwu_queue_wakelist(p, cpu, wake_flags); 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 #else /* !CONFIG_SMP */ 3187 3188 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3189 { 3190 return false; 3191 } 3192 3193 #endif /* CONFIG_SMP */ 3194 3195 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3196 { 3197 struct rq *rq = cpu_rq(cpu); 3198 struct rq_flags rf; 3199 3200 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3201 return; 3202 3203 rq_lock(rq, &rf); 3204 update_rq_clock(rq); 3205 ttwu_do_activate(rq, p, wake_flags, &rf); 3206 rq_unlock(rq, &rf); 3207 } 3208 3209 /* 3210 * Notes on Program-Order guarantees on SMP systems. 3211 * 3212 * MIGRATION 3213 * 3214 * The basic program-order guarantee on SMP systems is that when a task [t] 3215 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3216 * execution on its new CPU [c1]. 3217 * 3218 * For migration (of runnable tasks) this is provided by the following means: 3219 * 3220 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3221 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3222 * rq(c1)->lock (if not at the same time, then in that order). 3223 * C) LOCK of the rq(c1)->lock scheduling in task 3224 * 3225 * Release/acquire chaining guarantees that B happens after A and C after B. 3226 * Note: the CPU doing B need not be c0 or c1 3227 * 3228 * Example: 3229 * 3230 * CPU0 CPU1 CPU2 3231 * 3232 * LOCK rq(0)->lock 3233 * sched-out X 3234 * sched-in Y 3235 * UNLOCK rq(0)->lock 3236 * 3237 * LOCK rq(0)->lock // orders against CPU0 3238 * dequeue X 3239 * UNLOCK rq(0)->lock 3240 * 3241 * LOCK rq(1)->lock 3242 * enqueue X 3243 * UNLOCK rq(1)->lock 3244 * 3245 * LOCK rq(1)->lock // orders against CPU2 3246 * sched-out Z 3247 * sched-in X 3248 * UNLOCK rq(1)->lock 3249 * 3250 * 3251 * BLOCKING -- aka. SLEEP + WAKEUP 3252 * 3253 * For blocking we (obviously) need to provide the same guarantee as for 3254 * migration. However the means are completely different as there is no lock 3255 * chain to provide order. Instead we do: 3256 * 3257 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3258 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3259 * 3260 * Example: 3261 * 3262 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3263 * 3264 * LOCK rq(0)->lock LOCK X->pi_lock 3265 * dequeue X 3266 * sched-out X 3267 * smp_store_release(X->on_cpu, 0); 3268 * 3269 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3270 * X->state = WAKING 3271 * set_task_cpu(X,2) 3272 * 3273 * LOCK rq(2)->lock 3274 * enqueue X 3275 * X->state = RUNNING 3276 * UNLOCK rq(2)->lock 3277 * 3278 * LOCK rq(2)->lock // orders against CPU1 3279 * sched-out Z 3280 * sched-in X 3281 * UNLOCK rq(2)->lock 3282 * 3283 * UNLOCK X->pi_lock 3284 * UNLOCK rq(0)->lock 3285 * 3286 * 3287 * However, for wakeups there is a second guarantee we must provide, namely we 3288 * must ensure that CONDITION=1 done by the caller can not be reordered with 3289 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3290 */ 3291 3292 /** 3293 * try_to_wake_up - wake up a thread 3294 * @p: the thread to be awakened 3295 * @state: the mask of task states that can be woken 3296 * @wake_flags: wake modifier flags (WF_*) 3297 * 3298 * Conceptually does: 3299 * 3300 * If (@state & @p->state) @p->state = TASK_RUNNING. 3301 * 3302 * If the task was not queued/runnable, also place it back on a runqueue. 3303 * 3304 * This function is atomic against schedule() which would dequeue the task. 3305 * 3306 * It issues a full memory barrier before accessing @p->state, see the comment 3307 * with set_current_state(). 3308 * 3309 * Uses p->pi_lock to serialize against concurrent wake-ups. 3310 * 3311 * Relies on p->pi_lock stabilizing: 3312 * - p->sched_class 3313 * - p->cpus_ptr 3314 * - p->sched_task_group 3315 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3316 * 3317 * Tries really hard to only take one task_rq(p)->lock for performance. 3318 * Takes rq->lock in: 3319 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3320 * - ttwu_queue() -- new rq, for enqueue of the task; 3321 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3322 * 3323 * As a consequence we race really badly with just about everything. See the 3324 * many memory barriers and their comments for details. 3325 * 3326 * Return: %true if @p->state changes (an actual wakeup was done), 3327 * %false otherwise. 3328 */ 3329 static int 3330 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3331 { 3332 unsigned long flags; 3333 int cpu, success = 0; 3334 3335 preempt_disable(); 3336 if (p == current) { 3337 /* 3338 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3339 * == smp_processor_id()'. Together this means we can special 3340 * case the whole 'p->on_rq && ttwu_runnable()' case below 3341 * without taking any locks. 3342 * 3343 * In particular: 3344 * - we rely on Program-Order guarantees for all the ordering, 3345 * - we're serialized against set_special_state() by virtue of 3346 * it disabling IRQs (this allows not taking ->pi_lock). 3347 */ 3348 if (!(p->state & state)) 3349 goto out; 3350 3351 success = 1; 3352 trace_sched_waking(p); 3353 p->state = TASK_RUNNING; 3354 trace_sched_wakeup(p); 3355 goto out; 3356 } 3357 3358 /* 3359 * If we are going to wake up a thread waiting for CONDITION we 3360 * need to ensure that CONDITION=1 done by the caller can not be 3361 * reordered with p->state check below. This pairs with smp_store_mb() 3362 * in set_current_state() that the waiting thread does. 3363 */ 3364 raw_spin_lock_irqsave(&p->pi_lock, flags); 3365 smp_mb__after_spinlock(); 3366 if (!(p->state & state)) 3367 goto unlock; 3368 3369 trace_sched_waking(p); 3370 3371 /* We're going to change ->state: */ 3372 success = 1; 3373 3374 /* 3375 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3376 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3377 * in smp_cond_load_acquire() below. 3378 * 3379 * sched_ttwu_pending() try_to_wake_up() 3380 * STORE p->on_rq = 1 LOAD p->state 3381 * UNLOCK rq->lock 3382 * 3383 * __schedule() (switch to task 'p') 3384 * LOCK rq->lock smp_rmb(); 3385 * smp_mb__after_spinlock(); 3386 * UNLOCK rq->lock 3387 * 3388 * [task p] 3389 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3390 * 3391 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3392 * __schedule(). See the comment for smp_mb__after_spinlock(). 3393 * 3394 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3395 */ 3396 smp_rmb(); 3397 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3398 goto unlock; 3399 3400 #ifdef CONFIG_SMP 3401 /* 3402 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3403 * possible to, falsely, observe p->on_cpu == 0. 3404 * 3405 * One must be running (->on_cpu == 1) in order to remove oneself 3406 * from the runqueue. 3407 * 3408 * __schedule() (switch to task 'p') try_to_wake_up() 3409 * STORE p->on_cpu = 1 LOAD p->on_rq 3410 * UNLOCK rq->lock 3411 * 3412 * __schedule() (put 'p' to sleep) 3413 * LOCK rq->lock smp_rmb(); 3414 * smp_mb__after_spinlock(); 3415 * STORE p->on_rq = 0 LOAD p->on_cpu 3416 * 3417 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3418 * __schedule(). See the comment for smp_mb__after_spinlock(). 3419 * 3420 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3421 * schedule()'s deactivate_task() has 'happened' and p will no longer 3422 * care about it's own p->state. See the comment in __schedule(). 3423 */ 3424 smp_acquire__after_ctrl_dep(); 3425 3426 /* 3427 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3428 * == 0), which means we need to do an enqueue, change p->state to 3429 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3430 * enqueue, such as ttwu_queue_wakelist(). 3431 */ 3432 p->state = TASK_WAKING; 3433 3434 /* 3435 * If the owning (remote) CPU is still in the middle of schedule() with 3436 * this task as prev, considering queueing p on the remote CPUs wake_list 3437 * which potentially sends an IPI instead of spinning on p->on_cpu to 3438 * let the waker make forward progress. This is safe because IRQs are 3439 * disabled and the IPI will deliver after on_cpu is cleared. 3440 * 3441 * Ensure we load task_cpu(p) after p->on_cpu: 3442 * 3443 * set_task_cpu(p, cpu); 3444 * STORE p->cpu = @cpu 3445 * __schedule() (switch to task 'p') 3446 * LOCK rq->lock 3447 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3448 * STORE p->on_cpu = 1 LOAD p->cpu 3449 * 3450 * to ensure we observe the correct CPU on which the task is currently 3451 * scheduling. 3452 */ 3453 if (smp_load_acquire(&p->on_cpu) && 3454 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3455 goto unlock; 3456 3457 /* 3458 * If the owning (remote) CPU is still in the middle of schedule() with 3459 * this task as prev, wait until it's done referencing the task. 3460 * 3461 * Pairs with the smp_store_release() in finish_task(). 3462 * 3463 * This ensures that tasks getting woken will be fully ordered against 3464 * their previous state and preserve Program Order. 3465 */ 3466 smp_cond_load_acquire(&p->on_cpu, !VAL); 3467 3468 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3469 if (task_cpu(p) != cpu) { 3470 if (p->in_iowait) { 3471 delayacct_blkio_end(p); 3472 atomic_dec(&task_rq(p)->nr_iowait); 3473 } 3474 3475 wake_flags |= WF_MIGRATED; 3476 psi_ttwu_dequeue(p); 3477 set_task_cpu(p, cpu); 3478 } 3479 #else 3480 cpu = task_cpu(p); 3481 #endif /* CONFIG_SMP */ 3482 3483 ttwu_queue(p, cpu, wake_flags); 3484 unlock: 3485 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3486 out: 3487 if (success) 3488 ttwu_stat(p, task_cpu(p), wake_flags); 3489 preempt_enable(); 3490 3491 return success; 3492 } 3493 3494 /** 3495 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3496 * @p: Process for which the function is to be invoked, can be @current. 3497 * @func: Function to invoke. 3498 * @arg: Argument to function. 3499 * 3500 * If the specified task can be quickly locked into a definite state 3501 * (either sleeping or on a given runqueue), arrange to keep it in that 3502 * state while invoking @func(@arg). This function can use ->on_rq and 3503 * task_curr() to work out what the state is, if required. Given that 3504 * @func can be invoked with a runqueue lock held, it had better be quite 3505 * lightweight. 3506 * 3507 * Returns: 3508 * @false if the task slipped out from under the locks. 3509 * @true if the task was locked onto a runqueue or is sleeping. 3510 * However, @func can override this by returning @false. 3511 */ 3512 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3513 { 3514 struct rq_flags rf; 3515 bool ret = false; 3516 struct rq *rq; 3517 3518 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3519 if (p->on_rq) { 3520 rq = __task_rq_lock(p, &rf); 3521 if (task_rq(p) == rq) 3522 ret = func(p, arg); 3523 rq_unlock(rq, &rf); 3524 } else { 3525 switch (p->state) { 3526 case TASK_RUNNING: 3527 case TASK_WAKING: 3528 break; 3529 default: 3530 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3531 if (!p->on_rq) 3532 ret = func(p, arg); 3533 } 3534 } 3535 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3536 return ret; 3537 } 3538 3539 /** 3540 * wake_up_process - Wake up a specific process 3541 * @p: The process to be woken up. 3542 * 3543 * Attempt to wake up the nominated process and move it to the set of runnable 3544 * processes. 3545 * 3546 * Return: 1 if the process was woken up, 0 if it was already running. 3547 * 3548 * This function executes a full memory barrier before accessing the task state. 3549 */ 3550 int wake_up_process(struct task_struct *p) 3551 { 3552 return try_to_wake_up(p, TASK_NORMAL, 0); 3553 } 3554 EXPORT_SYMBOL(wake_up_process); 3555 3556 int wake_up_state(struct task_struct *p, unsigned int state) 3557 { 3558 return try_to_wake_up(p, state, 0); 3559 } 3560 3561 /* 3562 * Perform scheduler related setup for a newly forked process p. 3563 * p is forked by current. 3564 * 3565 * __sched_fork() is basic setup used by init_idle() too: 3566 */ 3567 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3568 { 3569 p->on_rq = 0; 3570 3571 p->se.on_rq = 0; 3572 p->se.exec_start = 0; 3573 p->se.sum_exec_runtime = 0; 3574 p->se.prev_sum_exec_runtime = 0; 3575 p->se.nr_migrations = 0; 3576 p->se.vruntime = 0; 3577 INIT_LIST_HEAD(&p->se.group_node); 3578 3579 #ifdef CONFIG_FAIR_GROUP_SCHED 3580 p->se.cfs_rq = NULL; 3581 #endif 3582 3583 #ifdef CONFIG_SCHEDSTATS 3584 /* Even if schedstat is disabled, there should not be garbage */ 3585 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3586 #endif 3587 3588 RB_CLEAR_NODE(&p->dl.rb_node); 3589 init_dl_task_timer(&p->dl); 3590 init_dl_inactive_task_timer(&p->dl); 3591 __dl_clear_params(p); 3592 3593 INIT_LIST_HEAD(&p->rt.run_list); 3594 p->rt.timeout = 0; 3595 p->rt.time_slice = sched_rr_timeslice; 3596 p->rt.on_rq = 0; 3597 p->rt.on_list = 0; 3598 3599 #ifdef CONFIG_PREEMPT_NOTIFIERS 3600 INIT_HLIST_HEAD(&p->preempt_notifiers); 3601 #endif 3602 3603 #ifdef CONFIG_COMPACTION 3604 p->capture_control = NULL; 3605 #endif 3606 init_numa_balancing(clone_flags, p); 3607 #ifdef CONFIG_SMP 3608 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3609 p->migration_pending = NULL; 3610 #endif 3611 } 3612 3613 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3614 3615 #ifdef CONFIG_NUMA_BALANCING 3616 3617 void set_numabalancing_state(bool enabled) 3618 { 3619 if (enabled) 3620 static_branch_enable(&sched_numa_balancing); 3621 else 3622 static_branch_disable(&sched_numa_balancing); 3623 } 3624 3625 #ifdef CONFIG_PROC_SYSCTL 3626 int sysctl_numa_balancing(struct ctl_table *table, int write, 3627 void *buffer, size_t *lenp, loff_t *ppos) 3628 { 3629 struct ctl_table t; 3630 int err; 3631 int state = static_branch_likely(&sched_numa_balancing); 3632 3633 if (write && !capable(CAP_SYS_ADMIN)) 3634 return -EPERM; 3635 3636 t = *table; 3637 t.data = &state; 3638 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3639 if (err < 0) 3640 return err; 3641 if (write) 3642 set_numabalancing_state(state); 3643 return err; 3644 } 3645 #endif 3646 #endif 3647 3648 #ifdef CONFIG_SCHEDSTATS 3649 3650 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3651 static bool __initdata __sched_schedstats = false; 3652 3653 static void set_schedstats(bool enabled) 3654 { 3655 if (enabled) 3656 static_branch_enable(&sched_schedstats); 3657 else 3658 static_branch_disable(&sched_schedstats); 3659 } 3660 3661 void force_schedstat_enabled(void) 3662 { 3663 if (!schedstat_enabled()) { 3664 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3665 static_branch_enable(&sched_schedstats); 3666 } 3667 } 3668 3669 static int __init setup_schedstats(char *str) 3670 { 3671 int ret = 0; 3672 if (!str) 3673 goto out; 3674 3675 /* 3676 * This code is called before jump labels have been set up, so we can't 3677 * change the static branch directly just yet. Instead set a temporary 3678 * variable so init_schedstats() can do it later. 3679 */ 3680 if (!strcmp(str, "enable")) { 3681 __sched_schedstats = true; 3682 ret = 1; 3683 } else if (!strcmp(str, "disable")) { 3684 __sched_schedstats = false; 3685 ret = 1; 3686 } 3687 out: 3688 if (!ret) 3689 pr_warn("Unable to parse schedstats=\n"); 3690 3691 return ret; 3692 } 3693 __setup("schedstats=", setup_schedstats); 3694 3695 static void __init init_schedstats(void) 3696 { 3697 set_schedstats(__sched_schedstats); 3698 } 3699 3700 #ifdef CONFIG_PROC_SYSCTL 3701 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3702 size_t *lenp, loff_t *ppos) 3703 { 3704 struct ctl_table t; 3705 int err; 3706 int state = static_branch_likely(&sched_schedstats); 3707 3708 if (write && !capable(CAP_SYS_ADMIN)) 3709 return -EPERM; 3710 3711 t = *table; 3712 t.data = &state; 3713 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3714 if (err < 0) 3715 return err; 3716 if (write) 3717 set_schedstats(state); 3718 return err; 3719 } 3720 #endif /* CONFIG_PROC_SYSCTL */ 3721 #else /* !CONFIG_SCHEDSTATS */ 3722 static inline void init_schedstats(void) {} 3723 #endif /* CONFIG_SCHEDSTATS */ 3724 3725 /* 3726 * fork()/clone()-time setup: 3727 */ 3728 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3729 { 3730 unsigned long flags; 3731 3732 __sched_fork(clone_flags, p); 3733 /* 3734 * We mark the process as NEW here. This guarantees that 3735 * nobody will actually run it, and a signal or other external 3736 * event cannot wake it up and insert it on the runqueue either. 3737 */ 3738 p->state = TASK_NEW; 3739 3740 /* 3741 * Make sure we do not leak PI boosting priority to the child. 3742 */ 3743 p->prio = current->normal_prio; 3744 3745 uclamp_fork(p); 3746 3747 /* 3748 * Revert to default priority/policy on fork if requested. 3749 */ 3750 if (unlikely(p->sched_reset_on_fork)) { 3751 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3752 p->policy = SCHED_NORMAL; 3753 p->static_prio = NICE_TO_PRIO(0); 3754 p->rt_priority = 0; 3755 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3756 p->static_prio = NICE_TO_PRIO(0); 3757 3758 p->prio = p->normal_prio = __normal_prio(p); 3759 set_load_weight(p, false); 3760 3761 /* 3762 * We don't need the reset flag anymore after the fork. It has 3763 * fulfilled its duty: 3764 */ 3765 p->sched_reset_on_fork = 0; 3766 } 3767 3768 if (dl_prio(p->prio)) 3769 return -EAGAIN; 3770 else if (rt_prio(p->prio)) 3771 p->sched_class = &rt_sched_class; 3772 else 3773 p->sched_class = &fair_sched_class; 3774 3775 init_entity_runnable_average(&p->se); 3776 3777 /* 3778 * The child is not yet in the pid-hash so no cgroup attach races, 3779 * and the cgroup is pinned to this child due to cgroup_fork() 3780 * is ran before sched_fork(). 3781 * 3782 * Silence PROVE_RCU. 3783 */ 3784 raw_spin_lock_irqsave(&p->pi_lock, flags); 3785 rseq_migrate(p); 3786 /* 3787 * We're setting the CPU for the first time, we don't migrate, 3788 * so use __set_task_cpu(). 3789 */ 3790 __set_task_cpu(p, smp_processor_id()); 3791 if (p->sched_class->task_fork) 3792 p->sched_class->task_fork(p); 3793 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3794 3795 #ifdef CONFIG_SCHED_INFO 3796 if (likely(sched_info_on())) 3797 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3798 #endif 3799 #if defined(CONFIG_SMP) 3800 p->on_cpu = 0; 3801 #endif 3802 init_task_preempt_count(p); 3803 #ifdef CONFIG_SMP 3804 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3805 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3806 #endif 3807 return 0; 3808 } 3809 3810 void sched_post_fork(struct task_struct *p) 3811 { 3812 uclamp_post_fork(p); 3813 } 3814 3815 unsigned long to_ratio(u64 period, u64 runtime) 3816 { 3817 if (runtime == RUNTIME_INF) 3818 return BW_UNIT; 3819 3820 /* 3821 * Doing this here saves a lot of checks in all 3822 * the calling paths, and returning zero seems 3823 * safe for them anyway. 3824 */ 3825 if (period == 0) 3826 return 0; 3827 3828 return div64_u64(runtime << BW_SHIFT, period); 3829 } 3830 3831 /* 3832 * wake_up_new_task - wake up a newly created task for the first time. 3833 * 3834 * This function will do some initial scheduler statistics housekeeping 3835 * that must be done for every newly created context, then puts the task 3836 * on the runqueue and wakes it. 3837 */ 3838 void wake_up_new_task(struct task_struct *p) 3839 { 3840 struct rq_flags rf; 3841 struct rq *rq; 3842 3843 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3844 p->state = TASK_RUNNING; 3845 #ifdef CONFIG_SMP 3846 /* 3847 * Fork balancing, do it here and not earlier because: 3848 * - cpus_ptr can change in the fork path 3849 * - any previously selected CPU might disappear through hotplug 3850 * 3851 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3852 * as we're not fully set-up yet. 3853 */ 3854 p->recent_used_cpu = task_cpu(p); 3855 rseq_migrate(p); 3856 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3857 #endif 3858 rq = __task_rq_lock(p, &rf); 3859 update_rq_clock(rq); 3860 post_init_entity_util_avg(p); 3861 3862 activate_task(rq, p, ENQUEUE_NOCLOCK); 3863 trace_sched_wakeup_new(p); 3864 check_preempt_curr(rq, p, WF_FORK); 3865 #ifdef CONFIG_SMP 3866 if (p->sched_class->task_woken) { 3867 /* 3868 * Nothing relies on rq->lock after this, so it's fine to 3869 * drop it. 3870 */ 3871 rq_unpin_lock(rq, &rf); 3872 p->sched_class->task_woken(rq, p); 3873 rq_repin_lock(rq, &rf); 3874 } 3875 #endif 3876 task_rq_unlock(rq, p, &rf); 3877 } 3878 3879 #ifdef CONFIG_PREEMPT_NOTIFIERS 3880 3881 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3882 3883 void preempt_notifier_inc(void) 3884 { 3885 static_branch_inc(&preempt_notifier_key); 3886 } 3887 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3888 3889 void preempt_notifier_dec(void) 3890 { 3891 static_branch_dec(&preempt_notifier_key); 3892 } 3893 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3894 3895 /** 3896 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3897 * @notifier: notifier struct to register 3898 */ 3899 void preempt_notifier_register(struct preempt_notifier *notifier) 3900 { 3901 if (!static_branch_unlikely(&preempt_notifier_key)) 3902 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3903 3904 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3905 } 3906 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3907 3908 /** 3909 * preempt_notifier_unregister - no longer interested in preemption notifications 3910 * @notifier: notifier struct to unregister 3911 * 3912 * This is *not* safe to call from within a preemption notifier. 3913 */ 3914 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3915 { 3916 hlist_del(¬ifier->link); 3917 } 3918 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3919 3920 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3921 { 3922 struct preempt_notifier *notifier; 3923 3924 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3925 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3926 } 3927 3928 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3929 { 3930 if (static_branch_unlikely(&preempt_notifier_key)) 3931 __fire_sched_in_preempt_notifiers(curr); 3932 } 3933 3934 static void 3935 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3936 struct task_struct *next) 3937 { 3938 struct preempt_notifier *notifier; 3939 3940 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3941 notifier->ops->sched_out(notifier, next); 3942 } 3943 3944 static __always_inline void 3945 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3946 struct task_struct *next) 3947 { 3948 if (static_branch_unlikely(&preempt_notifier_key)) 3949 __fire_sched_out_preempt_notifiers(curr, next); 3950 } 3951 3952 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3953 3954 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3955 { 3956 } 3957 3958 static inline void 3959 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3960 struct task_struct *next) 3961 { 3962 } 3963 3964 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3965 3966 static inline void prepare_task(struct task_struct *next) 3967 { 3968 #ifdef CONFIG_SMP 3969 /* 3970 * Claim the task as running, we do this before switching to it 3971 * such that any running task will have this set. 3972 * 3973 * See the ttwu() WF_ON_CPU case and its ordering comment. 3974 */ 3975 WRITE_ONCE(next->on_cpu, 1); 3976 #endif 3977 } 3978 3979 static inline void finish_task(struct task_struct *prev) 3980 { 3981 #ifdef CONFIG_SMP 3982 /* 3983 * This must be the very last reference to @prev from this CPU. After 3984 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3985 * must ensure this doesn't happen until the switch is completely 3986 * finished. 3987 * 3988 * In particular, the load of prev->state in finish_task_switch() must 3989 * happen before this. 3990 * 3991 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3992 */ 3993 smp_store_release(&prev->on_cpu, 0); 3994 #endif 3995 } 3996 3997 #ifdef CONFIG_SMP 3998 3999 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4000 { 4001 void (*func)(struct rq *rq); 4002 struct callback_head *next; 4003 4004 lockdep_assert_held(&rq->lock); 4005 4006 while (head) { 4007 func = (void (*)(struct rq *))head->func; 4008 next = head->next; 4009 head->next = NULL; 4010 head = next; 4011 4012 func(rq); 4013 } 4014 } 4015 4016 static void balance_push(struct rq *rq); 4017 4018 struct callback_head balance_push_callback = { 4019 .next = NULL, 4020 .func = (void (*)(struct callback_head *))balance_push, 4021 }; 4022 4023 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4024 { 4025 struct callback_head *head = rq->balance_callback; 4026 4027 lockdep_assert_held(&rq->lock); 4028 if (head) 4029 rq->balance_callback = NULL; 4030 4031 return head; 4032 } 4033 4034 static void __balance_callbacks(struct rq *rq) 4035 { 4036 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4037 } 4038 4039 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4040 { 4041 unsigned long flags; 4042 4043 if (unlikely(head)) { 4044 raw_spin_lock_irqsave(&rq->lock, flags); 4045 do_balance_callbacks(rq, head); 4046 raw_spin_unlock_irqrestore(&rq->lock, flags); 4047 } 4048 } 4049 4050 #else 4051 4052 static inline void __balance_callbacks(struct rq *rq) 4053 { 4054 } 4055 4056 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4057 { 4058 return NULL; 4059 } 4060 4061 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4062 { 4063 } 4064 4065 #endif 4066 4067 static inline void 4068 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4069 { 4070 /* 4071 * Since the runqueue lock will be released by the next 4072 * task (which is an invalid locking op but in the case 4073 * of the scheduler it's an obvious special-case), so we 4074 * do an early lockdep release here: 4075 */ 4076 rq_unpin_lock(rq, rf); 4077 spin_release(&rq->lock.dep_map, _THIS_IP_); 4078 #ifdef CONFIG_DEBUG_SPINLOCK 4079 /* this is a valid case when another task releases the spinlock */ 4080 rq->lock.owner = next; 4081 #endif 4082 } 4083 4084 static inline void finish_lock_switch(struct rq *rq) 4085 { 4086 /* 4087 * If we are tracking spinlock dependencies then we have to 4088 * fix up the runqueue lock - which gets 'carried over' from 4089 * prev into current: 4090 */ 4091 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4092 __balance_callbacks(rq); 4093 raw_spin_unlock_irq(&rq->lock); 4094 } 4095 4096 /* 4097 * NOP if the arch has not defined these: 4098 */ 4099 4100 #ifndef prepare_arch_switch 4101 # define prepare_arch_switch(next) do { } while (0) 4102 #endif 4103 4104 #ifndef finish_arch_post_lock_switch 4105 # define finish_arch_post_lock_switch() do { } while (0) 4106 #endif 4107 4108 static inline void kmap_local_sched_out(void) 4109 { 4110 #ifdef CONFIG_KMAP_LOCAL 4111 if (unlikely(current->kmap_ctrl.idx)) 4112 __kmap_local_sched_out(); 4113 #endif 4114 } 4115 4116 static inline void kmap_local_sched_in(void) 4117 { 4118 #ifdef CONFIG_KMAP_LOCAL 4119 if (unlikely(current->kmap_ctrl.idx)) 4120 __kmap_local_sched_in(); 4121 #endif 4122 } 4123 4124 /** 4125 * prepare_task_switch - prepare to switch tasks 4126 * @rq: the runqueue preparing to switch 4127 * @prev: the current task that is being switched out 4128 * @next: the task we are going to switch to. 4129 * 4130 * This is called with the rq lock held and interrupts off. It must 4131 * be paired with a subsequent finish_task_switch after the context 4132 * switch. 4133 * 4134 * prepare_task_switch sets up locking and calls architecture specific 4135 * hooks. 4136 */ 4137 static inline void 4138 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4139 struct task_struct *next) 4140 { 4141 kcov_prepare_switch(prev); 4142 sched_info_switch(rq, prev, next); 4143 perf_event_task_sched_out(prev, next); 4144 rseq_preempt(prev); 4145 fire_sched_out_preempt_notifiers(prev, next); 4146 kmap_local_sched_out(); 4147 prepare_task(next); 4148 prepare_arch_switch(next); 4149 } 4150 4151 /** 4152 * finish_task_switch - clean up after a task-switch 4153 * @prev: the thread we just switched away from. 4154 * 4155 * finish_task_switch must be called after the context switch, paired 4156 * with a prepare_task_switch call before the context switch. 4157 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4158 * and do any other architecture-specific cleanup actions. 4159 * 4160 * Note that we may have delayed dropping an mm in context_switch(). If 4161 * so, we finish that here outside of the runqueue lock. (Doing it 4162 * with the lock held can cause deadlocks; see schedule() for 4163 * details.) 4164 * 4165 * The context switch have flipped the stack from under us and restored the 4166 * local variables which were saved when this task called schedule() in the 4167 * past. prev == current is still correct but we need to recalculate this_rq 4168 * because prev may have moved to another CPU. 4169 */ 4170 static struct rq *finish_task_switch(struct task_struct *prev) 4171 __releases(rq->lock) 4172 { 4173 struct rq *rq = this_rq(); 4174 struct mm_struct *mm = rq->prev_mm; 4175 long prev_state; 4176 4177 /* 4178 * The previous task will have left us with a preempt_count of 2 4179 * because it left us after: 4180 * 4181 * schedule() 4182 * preempt_disable(); // 1 4183 * __schedule() 4184 * raw_spin_lock_irq(&rq->lock) // 2 4185 * 4186 * Also, see FORK_PREEMPT_COUNT. 4187 */ 4188 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4189 "corrupted preempt_count: %s/%d/0x%x\n", 4190 current->comm, current->pid, preempt_count())) 4191 preempt_count_set(FORK_PREEMPT_COUNT); 4192 4193 rq->prev_mm = NULL; 4194 4195 /* 4196 * A task struct has one reference for the use as "current". 4197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4198 * schedule one last time. The schedule call will never return, and 4199 * the scheduled task must drop that reference. 4200 * 4201 * We must observe prev->state before clearing prev->on_cpu (in 4202 * finish_task), otherwise a concurrent wakeup can get prev 4203 * running on another CPU and we could rave with its RUNNING -> DEAD 4204 * transition, resulting in a double drop. 4205 */ 4206 prev_state = prev->state; 4207 vtime_task_switch(prev); 4208 perf_event_task_sched_in(prev, current); 4209 finish_task(prev); 4210 finish_lock_switch(rq); 4211 finish_arch_post_lock_switch(); 4212 kcov_finish_switch(current); 4213 /* 4214 * kmap_local_sched_out() is invoked with rq::lock held and 4215 * interrupts disabled. There is no requirement for that, but the 4216 * sched out code does not have an interrupt enabled section. 4217 * Restoring the maps on sched in does not require interrupts being 4218 * disabled either. 4219 */ 4220 kmap_local_sched_in(); 4221 4222 fire_sched_in_preempt_notifiers(current); 4223 /* 4224 * When switching through a kernel thread, the loop in 4225 * membarrier_{private,global}_expedited() may have observed that 4226 * kernel thread and not issued an IPI. It is therefore possible to 4227 * schedule between user->kernel->user threads without passing though 4228 * switch_mm(). Membarrier requires a barrier after storing to 4229 * rq->curr, before returning to userspace, so provide them here: 4230 * 4231 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4232 * provided by mmdrop(), 4233 * - a sync_core for SYNC_CORE. 4234 */ 4235 if (mm) { 4236 membarrier_mm_sync_core_before_usermode(mm); 4237 mmdrop(mm); 4238 } 4239 if (unlikely(prev_state == TASK_DEAD)) { 4240 if (prev->sched_class->task_dead) 4241 prev->sched_class->task_dead(prev); 4242 4243 /* 4244 * Remove function-return probe instances associated with this 4245 * task and put them back on the free list. 4246 */ 4247 kprobe_flush_task(prev); 4248 4249 /* Task is done with its stack. */ 4250 put_task_stack(prev); 4251 4252 put_task_struct_rcu_user(prev); 4253 } 4254 4255 tick_nohz_task_switch(); 4256 return rq; 4257 } 4258 4259 /** 4260 * schedule_tail - first thing a freshly forked thread must call. 4261 * @prev: the thread we just switched away from. 4262 */ 4263 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4264 __releases(rq->lock) 4265 { 4266 struct rq *rq; 4267 4268 /* 4269 * New tasks start with FORK_PREEMPT_COUNT, see there and 4270 * finish_task_switch() for details. 4271 * 4272 * finish_task_switch() will drop rq->lock() and lower preempt_count 4273 * and the preempt_enable() will end up enabling preemption (on 4274 * PREEMPT_COUNT kernels). 4275 */ 4276 4277 rq = finish_task_switch(prev); 4278 preempt_enable(); 4279 4280 if (current->set_child_tid) 4281 put_user(task_pid_vnr(current), current->set_child_tid); 4282 4283 calculate_sigpending(); 4284 } 4285 4286 /* 4287 * context_switch - switch to the new MM and the new thread's register state. 4288 */ 4289 static __always_inline struct rq * 4290 context_switch(struct rq *rq, struct task_struct *prev, 4291 struct task_struct *next, struct rq_flags *rf) 4292 { 4293 prepare_task_switch(rq, prev, next); 4294 4295 /* 4296 * For paravirt, this is coupled with an exit in switch_to to 4297 * combine the page table reload and the switch backend into 4298 * one hypercall. 4299 */ 4300 arch_start_context_switch(prev); 4301 4302 /* 4303 * kernel -> kernel lazy + transfer active 4304 * user -> kernel lazy + mmgrab() active 4305 * 4306 * kernel -> user switch + mmdrop() active 4307 * user -> user switch 4308 */ 4309 if (!next->mm) { // to kernel 4310 enter_lazy_tlb(prev->active_mm, next); 4311 4312 next->active_mm = prev->active_mm; 4313 if (prev->mm) // from user 4314 mmgrab(prev->active_mm); 4315 else 4316 prev->active_mm = NULL; 4317 } else { // to user 4318 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4319 /* 4320 * sys_membarrier() requires an smp_mb() between setting 4321 * rq->curr / membarrier_switch_mm() and returning to userspace. 4322 * 4323 * The below provides this either through switch_mm(), or in 4324 * case 'prev->active_mm == next->mm' through 4325 * finish_task_switch()'s mmdrop(). 4326 */ 4327 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4328 4329 if (!prev->mm) { // from kernel 4330 /* will mmdrop() in finish_task_switch(). */ 4331 rq->prev_mm = prev->active_mm; 4332 prev->active_mm = NULL; 4333 } 4334 } 4335 4336 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4337 4338 prepare_lock_switch(rq, next, rf); 4339 4340 /* Here we just switch the register state and the stack. */ 4341 switch_to(prev, next, prev); 4342 barrier(); 4343 4344 return finish_task_switch(prev); 4345 } 4346 4347 /* 4348 * nr_running and nr_context_switches: 4349 * 4350 * externally visible scheduler statistics: current number of runnable 4351 * threads, total number of context switches performed since bootup. 4352 */ 4353 unsigned long nr_running(void) 4354 { 4355 unsigned long i, sum = 0; 4356 4357 for_each_online_cpu(i) 4358 sum += cpu_rq(i)->nr_running; 4359 4360 return sum; 4361 } 4362 4363 /* 4364 * Check if only the current task is running on the CPU. 4365 * 4366 * Caution: this function does not check that the caller has disabled 4367 * preemption, thus the result might have a time-of-check-to-time-of-use 4368 * race. The caller is responsible to use it correctly, for example: 4369 * 4370 * - from a non-preemptible section (of course) 4371 * 4372 * - from a thread that is bound to a single CPU 4373 * 4374 * - in a loop with very short iterations (e.g. a polling loop) 4375 */ 4376 bool single_task_running(void) 4377 { 4378 return raw_rq()->nr_running == 1; 4379 } 4380 EXPORT_SYMBOL(single_task_running); 4381 4382 unsigned long long nr_context_switches(void) 4383 { 4384 int i; 4385 unsigned long long sum = 0; 4386 4387 for_each_possible_cpu(i) 4388 sum += cpu_rq(i)->nr_switches; 4389 4390 return sum; 4391 } 4392 4393 /* 4394 * Consumers of these two interfaces, like for example the cpuidle menu 4395 * governor, are using nonsensical data. Preferring shallow idle state selection 4396 * for a CPU that has IO-wait which might not even end up running the task when 4397 * it does become runnable. 4398 */ 4399 4400 unsigned long nr_iowait_cpu(int cpu) 4401 { 4402 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4403 } 4404 4405 /* 4406 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4407 * 4408 * The idea behind IO-wait account is to account the idle time that we could 4409 * have spend running if it were not for IO. That is, if we were to improve the 4410 * storage performance, we'd have a proportional reduction in IO-wait time. 4411 * 4412 * This all works nicely on UP, where, when a task blocks on IO, we account 4413 * idle time as IO-wait, because if the storage were faster, it could've been 4414 * running and we'd not be idle. 4415 * 4416 * This has been extended to SMP, by doing the same for each CPU. This however 4417 * is broken. 4418 * 4419 * Imagine for instance the case where two tasks block on one CPU, only the one 4420 * CPU will have IO-wait accounted, while the other has regular idle. Even 4421 * though, if the storage were faster, both could've ran at the same time, 4422 * utilising both CPUs. 4423 * 4424 * This means, that when looking globally, the current IO-wait accounting on 4425 * SMP is a lower bound, by reason of under accounting. 4426 * 4427 * Worse, since the numbers are provided per CPU, they are sometimes 4428 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4429 * associated with any one particular CPU, it can wake to another CPU than it 4430 * blocked on. This means the per CPU IO-wait number is meaningless. 4431 * 4432 * Task CPU affinities can make all that even more 'interesting'. 4433 */ 4434 4435 unsigned long nr_iowait(void) 4436 { 4437 unsigned long i, sum = 0; 4438 4439 for_each_possible_cpu(i) 4440 sum += nr_iowait_cpu(i); 4441 4442 return sum; 4443 } 4444 4445 #ifdef CONFIG_SMP 4446 4447 /* 4448 * sched_exec - execve() is a valuable balancing opportunity, because at 4449 * this point the task has the smallest effective memory and cache footprint. 4450 */ 4451 void sched_exec(void) 4452 { 4453 struct task_struct *p = current; 4454 unsigned long flags; 4455 int dest_cpu; 4456 4457 raw_spin_lock_irqsave(&p->pi_lock, flags); 4458 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4459 if (dest_cpu == smp_processor_id()) 4460 goto unlock; 4461 4462 if (likely(cpu_active(dest_cpu))) { 4463 struct migration_arg arg = { p, dest_cpu }; 4464 4465 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4466 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4467 return; 4468 } 4469 unlock: 4470 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4471 } 4472 4473 #endif 4474 4475 DEFINE_PER_CPU(struct kernel_stat, kstat); 4476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4477 4478 EXPORT_PER_CPU_SYMBOL(kstat); 4479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4480 4481 /* 4482 * The function fair_sched_class.update_curr accesses the struct curr 4483 * and its field curr->exec_start; when called from task_sched_runtime(), 4484 * we observe a high rate of cache misses in practice. 4485 * Prefetching this data results in improved performance. 4486 */ 4487 static inline void prefetch_curr_exec_start(struct task_struct *p) 4488 { 4489 #ifdef CONFIG_FAIR_GROUP_SCHED 4490 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4491 #else 4492 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4493 #endif 4494 prefetch(curr); 4495 prefetch(&curr->exec_start); 4496 } 4497 4498 /* 4499 * Return accounted runtime for the task. 4500 * In case the task is currently running, return the runtime plus current's 4501 * pending runtime that have not been accounted yet. 4502 */ 4503 unsigned long long task_sched_runtime(struct task_struct *p) 4504 { 4505 struct rq_flags rf; 4506 struct rq *rq; 4507 u64 ns; 4508 4509 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4510 /* 4511 * 64-bit doesn't need locks to atomically read a 64-bit value. 4512 * So we have a optimization chance when the task's delta_exec is 0. 4513 * Reading ->on_cpu is racy, but this is ok. 4514 * 4515 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4516 * If we race with it entering CPU, unaccounted time is 0. This is 4517 * indistinguishable from the read occurring a few cycles earlier. 4518 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4519 * been accounted, so we're correct here as well. 4520 */ 4521 if (!p->on_cpu || !task_on_rq_queued(p)) 4522 return p->se.sum_exec_runtime; 4523 #endif 4524 4525 rq = task_rq_lock(p, &rf); 4526 /* 4527 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4528 * project cycles that may never be accounted to this 4529 * thread, breaking clock_gettime(). 4530 */ 4531 if (task_current(rq, p) && task_on_rq_queued(p)) { 4532 prefetch_curr_exec_start(p); 4533 update_rq_clock(rq); 4534 p->sched_class->update_curr(rq); 4535 } 4536 ns = p->se.sum_exec_runtime; 4537 task_rq_unlock(rq, p, &rf); 4538 4539 return ns; 4540 } 4541 4542 /* 4543 * This function gets called by the timer code, with HZ frequency. 4544 * We call it with interrupts disabled. 4545 */ 4546 void scheduler_tick(void) 4547 { 4548 int cpu = smp_processor_id(); 4549 struct rq *rq = cpu_rq(cpu); 4550 struct task_struct *curr = rq->curr; 4551 struct rq_flags rf; 4552 unsigned long thermal_pressure; 4553 4554 arch_scale_freq_tick(); 4555 sched_clock_tick(); 4556 4557 rq_lock(rq, &rf); 4558 4559 update_rq_clock(rq); 4560 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4561 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4562 curr->sched_class->task_tick(rq, curr, 0); 4563 calc_global_load_tick(rq); 4564 psi_task_tick(rq); 4565 4566 rq_unlock(rq, &rf); 4567 4568 perf_event_task_tick(); 4569 4570 #ifdef CONFIG_SMP 4571 rq->idle_balance = idle_cpu(cpu); 4572 trigger_load_balance(rq); 4573 #endif 4574 } 4575 4576 #ifdef CONFIG_NO_HZ_FULL 4577 4578 struct tick_work { 4579 int cpu; 4580 atomic_t state; 4581 struct delayed_work work; 4582 }; 4583 /* Values for ->state, see diagram below. */ 4584 #define TICK_SCHED_REMOTE_OFFLINE 0 4585 #define TICK_SCHED_REMOTE_OFFLINING 1 4586 #define TICK_SCHED_REMOTE_RUNNING 2 4587 4588 /* 4589 * State diagram for ->state: 4590 * 4591 * 4592 * TICK_SCHED_REMOTE_OFFLINE 4593 * | ^ 4594 * | | 4595 * | | sched_tick_remote() 4596 * | | 4597 * | | 4598 * +--TICK_SCHED_REMOTE_OFFLINING 4599 * | ^ 4600 * | | 4601 * sched_tick_start() | | sched_tick_stop() 4602 * | | 4603 * V | 4604 * TICK_SCHED_REMOTE_RUNNING 4605 * 4606 * 4607 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4608 * and sched_tick_start() are happy to leave the state in RUNNING. 4609 */ 4610 4611 static struct tick_work __percpu *tick_work_cpu; 4612 4613 static void sched_tick_remote(struct work_struct *work) 4614 { 4615 struct delayed_work *dwork = to_delayed_work(work); 4616 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4617 int cpu = twork->cpu; 4618 struct rq *rq = cpu_rq(cpu); 4619 struct task_struct *curr; 4620 struct rq_flags rf; 4621 u64 delta; 4622 int os; 4623 4624 /* 4625 * Handle the tick only if it appears the remote CPU is running in full 4626 * dynticks mode. The check is racy by nature, but missing a tick or 4627 * having one too much is no big deal because the scheduler tick updates 4628 * statistics and checks timeslices in a time-independent way, regardless 4629 * of when exactly it is running. 4630 */ 4631 if (!tick_nohz_tick_stopped_cpu(cpu)) 4632 goto out_requeue; 4633 4634 rq_lock_irq(rq, &rf); 4635 curr = rq->curr; 4636 if (cpu_is_offline(cpu)) 4637 goto out_unlock; 4638 4639 update_rq_clock(rq); 4640 4641 if (!is_idle_task(curr)) { 4642 /* 4643 * Make sure the next tick runs within a reasonable 4644 * amount of time. 4645 */ 4646 delta = rq_clock_task(rq) - curr->se.exec_start; 4647 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4648 } 4649 curr->sched_class->task_tick(rq, curr, 0); 4650 4651 calc_load_nohz_remote(rq); 4652 out_unlock: 4653 rq_unlock_irq(rq, &rf); 4654 out_requeue: 4655 4656 /* 4657 * Run the remote tick once per second (1Hz). This arbitrary 4658 * frequency is large enough to avoid overload but short enough 4659 * to keep scheduler internal stats reasonably up to date. But 4660 * first update state to reflect hotplug activity if required. 4661 */ 4662 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4663 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4664 if (os == TICK_SCHED_REMOTE_RUNNING) 4665 queue_delayed_work(system_unbound_wq, dwork, HZ); 4666 } 4667 4668 static void sched_tick_start(int cpu) 4669 { 4670 int os; 4671 struct tick_work *twork; 4672 4673 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4674 return; 4675 4676 WARN_ON_ONCE(!tick_work_cpu); 4677 4678 twork = per_cpu_ptr(tick_work_cpu, cpu); 4679 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4680 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4681 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4682 twork->cpu = cpu; 4683 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4684 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4685 } 4686 } 4687 4688 #ifdef CONFIG_HOTPLUG_CPU 4689 static void sched_tick_stop(int cpu) 4690 { 4691 struct tick_work *twork; 4692 int os; 4693 4694 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4695 return; 4696 4697 WARN_ON_ONCE(!tick_work_cpu); 4698 4699 twork = per_cpu_ptr(tick_work_cpu, cpu); 4700 /* There cannot be competing actions, but don't rely on stop-machine. */ 4701 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4702 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4703 /* Don't cancel, as this would mess up the state machine. */ 4704 } 4705 #endif /* CONFIG_HOTPLUG_CPU */ 4706 4707 int __init sched_tick_offload_init(void) 4708 { 4709 tick_work_cpu = alloc_percpu(struct tick_work); 4710 BUG_ON(!tick_work_cpu); 4711 return 0; 4712 } 4713 4714 #else /* !CONFIG_NO_HZ_FULL */ 4715 static inline void sched_tick_start(int cpu) { } 4716 static inline void sched_tick_stop(int cpu) { } 4717 #endif 4718 4719 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4720 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4721 /* 4722 * If the value passed in is equal to the current preempt count 4723 * then we just disabled preemption. Start timing the latency. 4724 */ 4725 static inline void preempt_latency_start(int val) 4726 { 4727 if (preempt_count() == val) { 4728 unsigned long ip = get_lock_parent_ip(); 4729 #ifdef CONFIG_DEBUG_PREEMPT 4730 current->preempt_disable_ip = ip; 4731 #endif 4732 trace_preempt_off(CALLER_ADDR0, ip); 4733 } 4734 } 4735 4736 void preempt_count_add(int val) 4737 { 4738 #ifdef CONFIG_DEBUG_PREEMPT 4739 /* 4740 * Underflow? 4741 */ 4742 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4743 return; 4744 #endif 4745 __preempt_count_add(val); 4746 #ifdef CONFIG_DEBUG_PREEMPT 4747 /* 4748 * Spinlock count overflowing soon? 4749 */ 4750 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4751 PREEMPT_MASK - 10); 4752 #endif 4753 preempt_latency_start(val); 4754 } 4755 EXPORT_SYMBOL(preempt_count_add); 4756 NOKPROBE_SYMBOL(preempt_count_add); 4757 4758 /* 4759 * If the value passed in equals to the current preempt count 4760 * then we just enabled preemption. Stop timing the latency. 4761 */ 4762 static inline void preempt_latency_stop(int val) 4763 { 4764 if (preempt_count() == val) 4765 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4766 } 4767 4768 void preempt_count_sub(int val) 4769 { 4770 #ifdef CONFIG_DEBUG_PREEMPT 4771 /* 4772 * Underflow? 4773 */ 4774 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4775 return; 4776 /* 4777 * Is the spinlock portion underflowing? 4778 */ 4779 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4780 !(preempt_count() & PREEMPT_MASK))) 4781 return; 4782 #endif 4783 4784 preempt_latency_stop(val); 4785 __preempt_count_sub(val); 4786 } 4787 EXPORT_SYMBOL(preempt_count_sub); 4788 NOKPROBE_SYMBOL(preempt_count_sub); 4789 4790 #else 4791 static inline void preempt_latency_start(int val) { } 4792 static inline void preempt_latency_stop(int val) { } 4793 #endif 4794 4795 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4796 { 4797 #ifdef CONFIG_DEBUG_PREEMPT 4798 return p->preempt_disable_ip; 4799 #else 4800 return 0; 4801 #endif 4802 } 4803 4804 /* 4805 * Print scheduling while atomic bug: 4806 */ 4807 static noinline void __schedule_bug(struct task_struct *prev) 4808 { 4809 /* Save this before calling printk(), since that will clobber it */ 4810 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4811 4812 if (oops_in_progress) 4813 return; 4814 4815 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4816 prev->comm, prev->pid, preempt_count()); 4817 4818 debug_show_held_locks(prev); 4819 print_modules(); 4820 if (irqs_disabled()) 4821 print_irqtrace_events(prev); 4822 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4823 && in_atomic_preempt_off()) { 4824 pr_err("Preemption disabled at:"); 4825 print_ip_sym(KERN_ERR, preempt_disable_ip); 4826 } 4827 if (panic_on_warn) 4828 panic("scheduling while atomic\n"); 4829 4830 dump_stack(); 4831 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4832 } 4833 4834 /* 4835 * Various schedule()-time debugging checks and statistics: 4836 */ 4837 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4838 { 4839 #ifdef CONFIG_SCHED_STACK_END_CHECK 4840 if (task_stack_end_corrupted(prev)) 4841 panic("corrupted stack end detected inside scheduler\n"); 4842 4843 if (task_scs_end_corrupted(prev)) 4844 panic("corrupted shadow stack detected inside scheduler\n"); 4845 #endif 4846 4847 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4848 if (!preempt && prev->state && prev->non_block_count) { 4849 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4850 prev->comm, prev->pid, prev->non_block_count); 4851 dump_stack(); 4852 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4853 } 4854 #endif 4855 4856 if (unlikely(in_atomic_preempt_off())) { 4857 __schedule_bug(prev); 4858 preempt_count_set(PREEMPT_DISABLED); 4859 } 4860 rcu_sleep_check(); 4861 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4862 4863 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4864 4865 schedstat_inc(this_rq()->sched_count); 4866 } 4867 4868 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4869 struct rq_flags *rf) 4870 { 4871 #ifdef CONFIG_SMP 4872 const struct sched_class *class; 4873 /* 4874 * We must do the balancing pass before put_prev_task(), such 4875 * that when we release the rq->lock the task is in the same 4876 * state as before we took rq->lock. 4877 * 4878 * We can terminate the balance pass as soon as we know there is 4879 * a runnable task of @class priority or higher. 4880 */ 4881 for_class_range(class, prev->sched_class, &idle_sched_class) { 4882 if (class->balance(rq, prev, rf)) 4883 break; 4884 } 4885 #endif 4886 4887 put_prev_task(rq, prev); 4888 } 4889 4890 /* 4891 * Pick up the highest-prio task: 4892 */ 4893 static inline struct task_struct * 4894 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4895 { 4896 const struct sched_class *class; 4897 struct task_struct *p; 4898 4899 /* 4900 * Optimization: we know that if all tasks are in the fair class we can 4901 * call that function directly, but only if the @prev task wasn't of a 4902 * higher scheduling class, because otherwise those lose the 4903 * opportunity to pull in more work from other CPUs. 4904 */ 4905 if (likely(prev->sched_class <= &fair_sched_class && 4906 rq->nr_running == rq->cfs.h_nr_running)) { 4907 4908 p = pick_next_task_fair(rq, prev, rf); 4909 if (unlikely(p == RETRY_TASK)) 4910 goto restart; 4911 4912 /* Assumes fair_sched_class->next == idle_sched_class */ 4913 if (!p) { 4914 put_prev_task(rq, prev); 4915 p = pick_next_task_idle(rq); 4916 } 4917 4918 return p; 4919 } 4920 4921 restart: 4922 put_prev_task_balance(rq, prev, rf); 4923 4924 for_each_class(class) { 4925 p = class->pick_next_task(rq); 4926 if (p) 4927 return p; 4928 } 4929 4930 /* The idle class should always have a runnable task: */ 4931 BUG(); 4932 } 4933 4934 /* 4935 * __schedule() is the main scheduler function. 4936 * 4937 * The main means of driving the scheduler and thus entering this function are: 4938 * 4939 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4940 * 4941 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4942 * paths. For example, see arch/x86/entry_64.S. 4943 * 4944 * To drive preemption between tasks, the scheduler sets the flag in timer 4945 * interrupt handler scheduler_tick(). 4946 * 4947 * 3. Wakeups don't really cause entry into schedule(). They add a 4948 * task to the run-queue and that's it. 4949 * 4950 * Now, if the new task added to the run-queue preempts the current 4951 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4952 * called on the nearest possible occasion: 4953 * 4954 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4955 * 4956 * - in syscall or exception context, at the next outmost 4957 * preempt_enable(). (this might be as soon as the wake_up()'s 4958 * spin_unlock()!) 4959 * 4960 * - in IRQ context, return from interrupt-handler to 4961 * preemptible context 4962 * 4963 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4964 * then at the next: 4965 * 4966 * - cond_resched() call 4967 * - explicit schedule() call 4968 * - return from syscall or exception to user-space 4969 * - return from interrupt-handler to user-space 4970 * 4971 * WARNING: must be called with preemption disabled! 4972 */ 4973 static void __sched notrace __schedule(bool preempt) 4974 { 4975 struct task_struct *prev, *next; 4976 unsigned long *switch_count; 4977 unsigned long prev_state; 4978 struct rq_flags rf; 4979 struct rq *rq; 4980 int cpu; 4981 4982 cpu = smp_processor_id(); 4983 rq = cpu_rq(cpu); 4984 prev = rq->curr; 4985 4986 schedule_debug(prev, preempt); 4987 4988 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 4989 hrtick_clear(rq); 4990 4991 local_irq_disable(); 4992 rcu_note_context_switch(preempt); 4993 4994 /* 4995 * Make sure that signal_pending_state()->signal_pending() below 4996 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4997 * done by the caller to avoid the race with signal_wake_up(): 4998 * 4999 * __set_current_state(@state) signal_wake_up() 5000 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 5001 * wake_up_state(p, state) 5002 * LOCK rq->lock LOCK p->pi_state 5003 * smp_mb__after_spinlock() smp_mb__after_spinlock() 5004 * if (signal_pending_state()) if (p->state & @state) 5005 * 5006 * Also, the membarrier system call requires a full memory barrier 5007 * after coming from user-space, before storing to rq->curr. 5008 */ 5009 rq_lock(rq, &rf); 5010 smp_mb__after_spinlock(); 5011 5012 /* Promote REQ to ACT */ 5013 rq->clock_update_flags <<= 1; 5014 update_rq_clock(rq); 5015 5016 switch_count = &prev->nivcsw; 5017 5018 /* 5019 * We must load prev->state once (task_struct::state is volatile), such 5020 * that: 5021 * 5022 * - we form a control dependency vs deactivate_task() below. 5023 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 5024 */ 5025 prev_state = prev->state; 5026 if (!preempt && prev_state) { 5027 if (signal_pending_state(prev_state, prev)) { 5028 prev->state = TASK_RUNNING; 5029 } else { 5030 prev->sched_contributes_to_load = 5031 (prev_state & TASK_UNINTERRUPTIBLE) && 5032 !(prev_state & TASK_NOLOAD) && 5033 !(prev->flags & PF_FROZEN); 5034 5035 if (prev->sched_contributes_to_load) 5036 rq->nr_uninterruptible++; 5037 5038 /* 5039 * __schedule() ttwu() 5040 * prev_state = prev->state; if (p->on_rq && ...) 5041 * if (prev_state) goto out; 5042 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5043 * p->state = TASK_WAKING 5044 * 5045 * Where __schedule() and ttwu() have matching control dependencies. 5046 * 5047 * After this, schedule() must not care about p->state any more. 5048 */ 5049 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5050 5051 if (prev->in_iowait) { 5052 atomic_inc(&rq->nr_iowait); 5053 delayacct_blkio_start(); 5054 } 5055 } 5056 switch_count = &prev->nvcsw; 5057 } 5058 5059 next = pick_next_task(rq, prev, &rf); 5060 clear_tsk_need_resched(prev); 5061 clear_preempt_need_resched(); 5062 5063 if (likely(prev != next)) { 5064 rq->nr_switches++; 5065 /* 5066 * RCU users of rcu_dereference(rq->curr) may not see 5067 * changes to task_struct made by pick_next_task(). 5068 */ 5069 RCU_INIT_POINTER(rq->curr, next); 5070 /* 5071 * The membarrier system call requires each architecture 5072 * to have a full memory barrier after updating 5073 * rq->curr, before returning to user-space. 5074 * 5075 * Here are the schemes providing that barrier on the 5076 * various architectures: 5077 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5078 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5079 * - finish_lock_switch() for weakly-ordered 5080 * architectures where spin_unlock is a full barrier, 5081 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5082 * is a RELEASE barrier), 5083 */ 5084 ++*switch_count; 5085 5086 migrate_disable_switch(rq, prev); 5087 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5088 5089 trace_sched_switch(preempt, prev, next); 5090 5091 /* Also unlocks the rq: */ 5092 rq = context_switch(rq, prev, next, &rf); 5093 } else { 5094 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5095 5096 rq_unpin_lock(rq, &rf); 5097 __balance_callbacks(rq); 5098 raw_spin_unlock_irq(&rq->lock); 5099 } 5100 } 5101 5102 void __noreturn do_task_dead(void) 5103 { 5104 /* Causes final put_task_struct in finish_task_switch(): */ 5105 set_special_state(TASK_DEAD); 5106 5107 /* Tell freezer to ignore us: */ 5108 current->flags |= PF_NOFREEZE; 5109 5110 __schedule(false); 5111 BUG(); 5112 5113 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5114 for (;;) 5115 cpu_relax(); 5116 } 5117 5118 static inline void sched_submit_work(struct task_struct *tsk) 5119 { 5120 unsigned int task_flags; 5121 5122 if (!tsk->state) 5123 return; 5124 5125 task_flags = tsk->flags; 5126 /* 5127 * If a worker went to sleep, notify and ask workqueue whether 5128 * it wants to wake up a task to maintain concurrency. 5129 * As this function is called inside the schedule() context, 5130 * we disable preemption to avoid it calling schedule() again 5131 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5132 * requires it. 5133 */ 5134 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5135 preempt_disable(); 5136 if (task_flags & PF_WQ_WORKER) 5137 wq_worker_sleeping(tsk); 5138 else 5139 io_wq_worker_sleeping(tsk); 5140 preempt_enable_no_resched(); 5141 } 5142 5143 if (tsk_is_pi_blocked(tsk)) 5144 return; 5145 5146 /* 5147 * If we are going to sleep and we have plugged IO queued, 5148 * make sure to submit it to avoid deadlocks. 5149 */ 5150 if (blk_needs_flush_plug(tsk)) 5151 blk_schedule_flush_plug(tsk); 5152 } 5153 5154 static void sched_update_worker(struct task_struct *tsk) 5155 { 5156 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5157 if (tsk->flags & PF_WQ_WORKER) 5158 wq_worker_running(tsk); 5159 else 5160 io_wq_worker_running(tsk); 5161 } 5162 } 5163 5164 asmlinkage __visible void __sched schedule(void) 5165 { 5166 struct task_struct *tsk = current; 5167 5168 sched_submit_work(tsk); 5169 do { 5170 preempt_disable(); 5171 __schedule(false); 5172 sched_preempt_enable_no_resched(); 5173 } while (need_resched()); 5174 sched_update_worker(tsk); 5175 } 5176 EXPORT_SYMBOL(schedule); 5177 5178 /* 5179 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5180 * state (have scheduled out non-voluntarily) by making sure that all 5181 * tasks have either left the run queue or have gone into user space. 5182 * As idle tasks do not do either, they must not ever be preempted 5183 * (schedule out non-voluntarily). 5184 * 5185 * schedule_idle() is similar to schedule_preempt_disable() except that it 5186 * never enables preemption because it does not call sched_submit_work(). 5187 */ 5188 void __sched schedule_idle(void) 5189 { 5190 /* 5191 * As this skips calling sched_submit_work(), which the idle task does 5192 * regardless because that function is a nop when the task is in a 5193 * TASK_RUNNING state, make sure this isn't used someplace that the 5194 * current task can be in any other state. Note, idle is always in the 5195 * TASK_RUNNING state. 5196 */ 5197 WARN_ON_ONCE(current->state); 5198 do { 5199 __schedule(false); 5200 } while (need_resched()); 5201 } 5202 5203 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5204 asmlinkage __visible void __sched schedule_user(void) 5205 { 5206 /* 5207 * If we come here after a random call to set_need_resched(), 5208 * or we have been woken up remotely but the IPI has not yet arrived, 5209 * we haven't yet exited the RCU idle mode. Do it here manually until 5210 * we find a better solution. 5211 * 5212 * NB: There are buggy callers of this function. Ideally we 5213 * should warn if prev_state != CONTEXT_USER, but that will trigger 5214 * too frequently to make sense yet. 5215 */ 5216 enum ctx_state prev_state = exception_enter(); 5217 schedule(); 5218 exception_exit(prev_state); 5219 } 5220 #endif 5221 5222 /** 5223 * schedule_preempt_disabled - called with preemption disabled 5224 * 5225 * Returns with preemption disabled. Note: preempt_count must be 1 5226 */ 5227 void __sched schedule_preempt_disabled(void) 5228 { 5229 sched_preempt_enable_no_resched(); 5230 schedule(); 5231 preempt_disable(); 5232 } 5233 5234 static void __sched notrace preempt_schedule_common(void) 5235 { 5236 do { 5237 /* 5238 * Because the function tracer can trace preempt_count_sub() 5239 * and it also uses preempt_enable/disable_notrace(), if 5240 * NEED_RESCHED is set, the preempt_enable_notrace() called 5241 * by the function tracer will call this function again and 5242 * cause infinite recursion. 5243 * 5244 * Preemption must be disabled here before the function 5245 * tracer can trace. Break up preempt_disable() into two 5246 * calls. One to disable preemption without fear of being 5247 * traced. The other to still record the preemption latency, 5248 * which can also be traced by the function tracer. 5249 */ 5250 preempt_disable_notrace(); 5251 preempt_latency_start(1); 5252 __schedule(true); 5253 preempt_latency_stop(1); 5254 preempt_enable_no_resched_notrace(); 5255 5256 /* 5257 * Check again in case we missed a preemption opportunity 5258 * between schedule and now. 5259 */ 5260 } while (need_resched()); 5261 } 5262 5263 #ifdef CONFIG_PREEMPTION 5264 /* 5265 * This is the entry point to schedule() from in-kernel preemption 5266 * off of preempt_enable. 5267 */ 5268 asmlinkage __visible void __sched notrace preempt_schedule(void) 5269 { 5270 /* 5271 * If there is a non-zero preempt_count or interrupts are disabled, 5272 * we do not want to preempt the current task. Just return.. 5273 */ 5274 if (likely(!preemptible())) 5275 return; 5276 5277 preempt_schedule_common(); 5278 } 5279 NOKPROBE_SYMBOL(preempt_schedule); 5280 EXPORT_SYMBOL(preempt_schedule); 5281 5282 #ifdef CONFIG_PREEMPT_DYNAMIC 5283 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 5284 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 5285 #endif 5286 5287 5288 /** 5289 * preempt_schedule_notrace - preempt_schedule called by tracing 5290 * 5291 * The tracing infrastructure uses preempt_enable_notrace to prevent 5292 * recursion and tracing preempt enabling caused by the tracing 5293 * infrastructure itself. But as tracing can happen in areas coming 5294 * from userspace or just about to enter userspace, a preempt enable 5295 * can occur before user_exit() is called. This will cause the scheduler 5296 * to be called when the system is still in usermode. 5297 * 5298 * To prevent this, the preempt_enable_notrace will use this function 5299 * instead of preempt_schedule() to exit user context if needed before 5300 * calling the scheduler. 5301 */ 5302 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5303 { 5304 enum ctx_state prev_ctx; 5305 5306 if (likely(!preemptible())) 5307 return; 5308 5309 do { 5310 /* 5311 * Because the function tracer can trace preempt_count_sub() 5312 * and it also uses preempt_enable/disable_notrace(), if 5313 * NEED_RESCHED is set, the preempt_enable_notrace() called 5314 * by the function tracer will call this function again and 5315 * cause infinite recursion. 5316 * 5317 * Preemption must be disabled here before the function 5318 * tracer can trace. Break up preempt_disable() into two 5319 * calls. One to disable preemption without fear of being 5320 * traced. The other to still record the preemption latency, 5321 * which can also be traced by the function tracer. 5322 */ 5323 preempt_disable_notrace(); 5324 preempt_latency_start(1); 5325 /* 5326 * Needs preempt disabled in case user_exit() is traced 5327 * and the tracer calls preempt_enable_notrace() causing 5328 * an infinite recursion. 5329 */ 5330 prev_ctx = exception_enter(); 5331 __schedule(true); 5332 exception_exit(prev_ctx); 5333 5334 preempt_latency_stop(1); 5335 preempt_enable_no_resched_notrace(); 5336 } while (need_resched()); 5337 } 5338 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5339 5340 #ifdef CONFIG_PREEMPT_DYNAMIC 5341 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5342 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 5343 #endif 5344 5345 #endif /* CONFIG_PREEMPTION */ 5346 5347 #ifdef CONFIG_PREEMPT_DYNAMIC 5348 5349 #include <linux/entry-common.h> 5350 5351 /* 5352 * SC:cond_resched 5353 * SC:might_resched 5354 * SC:preempt_schedule 5355 * SC:preempt_schedule_notrace 5356 * SC:irqentry_exit_cond_resched 5357 * 5358 * 5359 * NONE: 5360 * cond_resched <- __cond_resched 5361 * might_resched <- RET0 5362 * preempt_schedule <- NOP 5363 * preempt_schedule_notrace <- NOP 5364 * irqentry_exit_cond_resched <- NOP 5365 * 5366 * VOLUNTARY: 5367 * cond_resched <- __cond_resched 5368 * might_resched <- __cond_resched 5369 * preempt_schedule <- NOP 5370 * preempt_schedule_notrace <- NOP 5371 * irqentry_exit_cond_resched <- NOP 5372 * 5373 * FULL: 5374 * cond_resched <- RET0 5375 * might_resched <- RET0 5376 * preempt_schedule <- preempt_schedule 5377 * preempt_schedule_notrace <- preempt_schedule_notrace 5378 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 5379 */ 5380 5381 enum { 5382 preempt_dynamic_none = 0, 5383 preempt_dynamic_voluntary, 5384 preempt_dynamic_full, 5385 }; 5386 5387 static int preempt_dynamic_mode = preempt_dynamic_full; 5388 5389 static int sched_dynamic_mode(const char *str) 5390 { 5391 if (!strcmp(str, "none")) 5392 return 0; 5393 5394 if (!strcmp(str, "voluntary")) 5395 return 1; 5396 5397 if (!strcmp(str, "full")) 5398 return 2; 5399 5400 return -1; 5401 } 5402 5403 static void sched_dynamic_update(int mode) 5404 { 5405 /* 5406 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 5407 * the ZERO state, which is invalid. 5408 */ 5409 static_call_update(cond_resched, __cond_resched); 5410 static_call_update(might_resched, __cond_resched); 5411 static_call_update(preempt_schedule, __preempt_schedule_func); 5412 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5413 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5414 5415 switch (mode) { 5416 case preempt_dynamic_none: 5417 static_call_update(cond_resched, __cond_resched); 5418 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5419 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5420 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5421 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5422 pr_info("Dynamic Preempt: none\n"); 5423 break; 5424 5425 case preempt_dynamic_voluntary: 5426 static_call_update(cond_resched, __cond_resched); 5427 static_call_update(might_resched, __cond_resched); 5428 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5429 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5430 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5431 pr_info("Dynamic Preempt: voluntary\n"); 5432 break; 5433 5434 case preempt_dynamic_full: 5435 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0); 5436 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5437 static_call_update(preempt_schedule, __preempt_schedule_func); 5438 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5439 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5440 pr_info("Dynamic Preempt: full\n"); 5441 break; 5442 } 5443 5444 preempt_dynamic_mode = mode; 5445 } 5446 5447 static int __init setup_preempt_mode(char *str) 5448 { 5449 int mode = sched_dynamic_mode(str); 5450 if (mode < 0) { 5451 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 5452 return 1; 5453 } 5454 5455 sched_dynamic_update(mode); 5456 return 0; 5457 } 5458 __setup("preempt=", setup_preempt_mode); 5459 5460 #ifdef CONFIG_SCHED_DEBUG 5461 5462 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 5463 size_t cnt, loff_t *ppos) 5464 { 5465 char buf[16]; 5466 int mode; 5467 5468 if (cnt > 15) 5469 cnt = 15; 5470 5471 if (copy_from_user(&buf, ubuf, cnt)) 5472 return -EFAULT; 5473 5474 buf[cnt] = 0; 5475 mode = sched_dynamic_mode(strstrip(buf)); 5476 if (mode < 0) 5477 return mode; 5478 5479 sched_dynamic_update(mode); 5480 5481 *ppos += cnt; 5482 5483 return cnt; 5484 } 5485 5486 static int sched_dynamic_show(struct seq_file *m, void *v) 5487 { 5488 static const char * preempt_modes[] = { 5489 "none", "voluntary", "full" 5490 }; 5491 int i; 5492 5493 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 5494 if (preempt_dynamic_mode == i) 5495 seq_puts(m, "("); 5496 seq_puts(m, preempt_modes[i]); 5497 if (preempt_dynamic_mode == i) 5498 seq_puts(m, ")"); 5499 5500 seq_puts(m, " "); 5501 } 5502 5503 seq_puts(m, "\n"); 5504 return 0; 5505 } 5506 5507 static int sched_dynamic_open(struct inode *inode, struct file *filp) 5508 { 5509 return single_open(filp, sched_dynamic_show, NULL); 5510 } 5511 5512 static const struct file_operations sched_dynamic_fops = { 5513 .open = sched_dynamic_open, 5514 .write = sched_dynamic_write, 5515 .read = seq_read, 5516 .llseek = seq_lseek, 5517 .release = single_release, 5518 }; 5519 5520 static __init int sched_init_debug_dynamic(void) 5521 { 5522 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops); 5523 return 0; 5524 } 5525 late_initcall(sched_init_debug_dynamic); 5526 5527 #endif /* CONFIG_SCHED_DEBUG */ 5528 #endif /* CONFIG_PREEMPT_DYNAMIC */ 5529 5530 5531 /* 5532 * This is the entry point to schedule() from kernel preemption 5533 * off of irq context. 5534 * Note, that this is called and return with irqs disabled. This will 5535 * protect us against recursive calling from irq. 5536 */ 5537 asmlinkage __visible void __sched preempt_schedule_irq(void) 5538 { 5539 enum ctx_state prev_state; 5540 5541 /* Catch callers which need to be fixed */ 5542 BUG_ON(preempt_count() || !irqs_disabled()); 5543 5544 prev_state = exception_enter(); 5545 5546 do { 5547 preempt_disable(); 5548 local_irq_enable(); 5549 __schedule(true); 5550 local_irq_disable(); 5551 sched_preempt_enable_no_resched(); 5552 } while (need_resched()); 5553 5554 exception_exit(prev_state); 5555 } 5556 5557 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5558 void *key) 5559 { 5560 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5561 return try_to_wake_up(curr->private, mode, wake_flags); 5562 } 5563 EXPORT_SYMBOL(default_wake_function); 5564 5565 #ifdef CONFIG_RT_MUTEXES 5566 5567 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5568 { 5569 if (pi_task) 5570 prio = min(prio, pi_task->prio); 5571 5572 return prio; 5573 } 5574 5575 static inline int rt_effective_prio(struct task_struct *p, int prio) 5576 { 5577 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5578 5579 return __rt_effective_prio(pi_task, prio); 5580 } 5581 5582 /* 5583 * rt_mutex_setprio - set the current priority of a task 5584 * @p: task to boost 5585 * @pi_task: donor task 5586 * 5587 * This function changes the 'effective' priority of a task. It does 5588 * not touch ->normal_prio like __setscheduler(). 5589 * 5590 * Used by the rt_mutex code to implement priority inheritance 5591 * logic. Call site only calls if the priority of the task changed. 5592 */ 5593 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5594 { 5595 int prio, oldprio, queued, running, queue_flag = 5596 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5597 const struct sched_class *prev_class; 5598 struct rq_flags rf; 5599 struct rq *rq; 5600 5601 /* XXX used to be waiter->prio, not waiter->task->prio */ 5602 prio = __rt_effective_prio(pi_task, p->normal_prio); 5603 5604 /* 5605 * If nothing changed; bail early. 5606 */ 5607 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5608 return; 5609 5610 rq = __task_rq_lock(p, &rf); 5611 update_rq_clock(rq); 5612 /* 5613 * Set under pi_lock && rq->lock, such that the value can be used under 5614 * either lock. 5615 * 5616 * Note that there is loads of tricky to make this pointer cache work 5617 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5618 * ensure a task is de-boosted (pi_task is set to NULL) before the 5619 * task is allowed to run again (and can exit). This ensures the pointer 5620 * points to a blocked task -- which guarantees the task is present. 5621 */ 5622 p->pi_top_task = pi_task; 5623 5624 /* 5625 * For FIFO/RR we only need to set prio, if that matches we're done. 5626 */ 5627 if (prio == p->prio && !dl_prio(prio)) 5628 goto out_unlock; 5629 5630 /* 5631 * Idle task boosting is a nono in general. There is one 5632 * exception, when PREEMPT_RT and NOHZ is active: 5633 * 5634 * The idle task calls get_next_timer_interrupt() and holds 5635 * the timer wheel base->lock on the CPU and another CPU wants 5636 * to access the timer (probably to cancel it). We can safely 5637 * ignore the boosting request, as the idle CPU runs this code 5638 * with interrupts disabled and will complete the lock 5639 * protected section without being interrupted. So there is no 5640 * real need to boost. 5641 */ 5642 if (unlikely(p == rq->idle)) { 5643 WARN_ON(p != rq->curr); 5644 WARN_ON(p->pi_blocked_on); 5645 goto out_unlock; 5646 } 5647 5648 trace_sched_pi_setprio(p, pi_task); 5649 oldprio = p->prio; 5650 5651 if (oldprio == prio) 5652 queue_flag &= ~DEQUEUE_MOVE; 5653 5654 prev_class = p->sched_class; 5655 queued = task_on_rq_queued(p); 5656 running = task_current(rq, p); 5657 if (queued) 5658 dequeue_task(rq, p, queue_flag); 5659 if (running) 5660 put_prev_task(rq, p); 5661 5662 /* 5663 * Boosting condition are: 5664 * 1. -rt task is running and holds mutex A 5665 * --> -dl task blocks on mutex A 5666 * 5667 * 2. -dl task is running and holds mutex A 5668 * --> -dl task blocks on mutex A and could preempt the 5669 * running task 5670 */ 5671 if (dl_prio(prio)) { 5672 if (!dl_prio(p->normal_prio) || 5673 (pi_task && dl_prio(pi_task->prio) && 5674 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5675 p->dl.pi_se = pi_task->dl.pi_se; 5676 queue_flag |= ENQUEUE_REPLENISH; 5677 } else { 5678 p->dl.pi_se = &p->dl; 5679 } 5680 p->sched_class = &dl_sched_class; 5681 } else if (rt_prio(prio)) { 5682 if (dl_prio(oldprio)) 5683 p->dl.pi_se = &p->dl; 5684 if (oldprio < prio) 5685 queue_flag |= ENQUEUE_HEAD; 5686 p->sched_class = &rt_sched_class; 5687 } else { 5688 if (dl_prio(oldprio)) 5689 p->dl.pi_se = &p->dl; 5690 if (rt_prio(oldprio)) 5691 p->rt.timeout = 0; 5692 p->sched_class = &fair_sched_class; 5693 } 5694 5695 p->prio = prio; 5696 5697 if (queued) 5698 enqueue_task(rq, p, queue_flag); 5699 if (running) 5700 set_next_task(rq, p); 5701 5702 check_class_changed(rq, p, prev_class, oldprio); 5703 out_unlock: 5704 /* Avoid rq from going away on us: */ 5705 preempt_disable(); 5706 5707 rq_unpin_lock(rq, &rf); 5708 __balance_callbacks(rq); 5709 raw_spin_unlock(&rq->lock); 5710 5711 preempt_enable(); 5712 } 5713 #else 5714 static inline int rt_effective_prio(struct task_struct *p, int prio) 5715 { 5716 return prio; 5717 } 5718 #endif 5719 5720 void set_user_nice(struct task_struct *p, long nice) 5721 { 5722 bool queued, running; 5723 int old_prio; 5724 struct rq_flags rf; 5725 struct rq *rq; 5726 5727 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5728 return; 5729 /* 5730 * We have to be careful, if called from sys_setpriority(), 5731 * the task might be in the middle of scheduling on another CPU. 5732 */ 5733 rq = task_rq_lock(p, &rf); 5734 update_rq_clock(rq); 5735 5736 /* 5737 * The RT priorities are set via sched_setscheduler(), but we still 5738 * allow the 'normal' nice value to be set - but as expected 5739 * it won't have any effect on scheduling until the task is 5740 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5741 */ 5742 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5743 p->static_prio = NICE_TO_PRIO(nice); 5744 goto out_unlock; 5745 } 5746 queued = task_on_rq_queued(p); 5747 running = task_current(rq, p); 5748 if (queued) 5749 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5750 if (running) 5751 put_prev_task(rq, p); 5752 5753 p->static_prio = NICE_TO_PRIO(nice); 5754 set_load_weight(p, true); 5755 old_prio = p->prio; 5756 p->prio = effective_prio(p); 5757 5758 if (queued) 5759 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5760 if (running) 5761 set_next_task(rq, p); 5762 5763 /* 5764 * If the task increased its priority or is running and 5765 * lowered its priority, then reschedule its CPU: 5766 */ 5767 p->sched_class->prio_changed(rq, p, old_prio); 5768 5769 out_unlock: 5770 task_rq_unlock(rq, p, &rf); 5771 } 5772 EXPORT_SYMBOL(set_user_nice); 5773 5774 /* 5775 * can_nice - check if a task can reduce its nice value 5776 * @p: task 5777 * @nice: nice value 5778 */ 5779 int can_nice(const struct task_struct *p, const int nice) 5780 { 5781 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5782 int nice_rlim = nice_to_rlimit(nice); 5783 5784 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5785 capable(CAP_SYS_NICE)); 5786 } 5787 5788 #ifdef __ARCH_WANT_SYS_NICE 5789 5790 /* 5791 * sys_nice - change the priority of the current process. 5792 * @increment: priority increment 5793 * 5794 * sys_setpriority is a more generic, but much slower function that 5795 * does similar things. 5796 */ 5797 SYSCALL_DEFINE1(nice, int, increment) 5798 { 5799 long nice, retval; 5800 5801 /* 5802 * Setpriority might change our priority at the same moment. 5803 * We don't have to worry. Conceptually one call occurs first 5804 * and we have a single winner. 5805 */ 5806 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5807 nice = task_nice(current) + increment; 5808 5809 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5810 if (increment < 0 && !can_nice(current, nice)) 5811 return -EPERM; 5812 5813 retval = security_task_setnice(current, nice); 5814 if (retval) 5815 return retval; 5816 5817 set_user_nice(current, nice); 5818 return 0; 5819 } 5820 5821 #endif 5822 5823 /** 5824 * task_prio - return the priority value of a given task. 5825 * @p: the task in question. 5826 * 5827 * Return: The priority value as seen by users in /proc. 5828 * 5829 * sched policy return value kernel prio user prio/nice 5830 * 5831 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 5832 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 5833 * deadline -101 -1 0 5834 */ 5835 int task_prio(const struct task_struct *p) 5836 { 5837 return p->prio - MAX_RT_PRIO; 5838 } 5839 5840 /** 5841 * idle_cpu - is a given CPU idle currently? 5842 * @cpu: the processor in question. 5843 * 5844 * Return: 1 if the CPU is currently idle. 0 otherwise. 5845 */ 5846 int idle_cpu(int cpu) 5847 { 5848 struct rq *rq = cpu_rq(cpu); 5849 5850 if (rq->curr != rq->idle) 5851 return 0; 5852 5853 if (rq->nr_running) 5854 return 0; 5855 5856 #ifdef CONFIG_SMP 5857 if (rq->ttwu_pending) 5858 return 0; 5859 #endif 5860 5861 return 1; 5862 } 5863 5864 /** 5865 * available_idle_cpu - is a given CPU idle for enqueuing work. 5866 * @cpu: the CPU in question. 5867 * 5868 * Return: 1 if the CPU is currently idle. 0 otherwise. 5869 */ 5870 int available_idle_cpu(int cpu) 5871 { 5872 if (!idle_cpu(cpu)) 5873 return 0; 5874 5875 if (vcpu_is_preempted(cpu)) 5876 return 0; 5877 5878 return 1; 5879 } 5880 5881 /** 5882 * idle_task - return the idle task for a given CPU. 5883 * @cpu: the processor in question. 5884 * 5885 * Return: The idle task for the CPU @cpu. 5886 */ 5887 struct task_struct *idle_task(int cpu) 5888 { 5889 return cpu_rq(cpu)->idle; 5890 } 5891 5892 #ifdef CONFIG_SMP 5893 /* 5894 * This function computes an effective utilization for the given CPU, to be 5895 * used for frequency selection given the linear relation: f = u * f_max. 5896 * 5897 * The scheduler tracks the following metrics: 5898 * 5899 * cpu_util_{cfs,rt,dl,irq}() 5900 * cpu_bw_dl() 5901 * 5902 * Where the cfs,rt and dl util numbers are tracked with the same metric and 5903 * synchronized windows and are thus directly comparable. 5904 * 5905 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 5906 * which excludes things like IRQ and steal-time. These latter are then accrued 5907 * in the irq utilization. 5908 * 5909 * The DL bandwidth number otoh is not a measured metric but a value computed 5910 * based on the task model parameters and gives the minimal utilization 5911 * required to meet deadlines. 5912 */ 5913 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 5914 unsigned long max, enum cpu_util_type type, 5915 struct task_struct *p) 5916 { 5917 unsigned long dl_util, util, irq; 5918 struct rq *rq = cpu_rq(cpu); 5919 5920 if (!uclamp_is_used() && 5921 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 5922 return max; 5923 } 5924 5925 /* 5926 * Early check to see if IRQ/steal time saturates the CPU, can be 5927 * because of inaccuracies in how we track these -- see 5928 * update_irq_load_avg(). 5929 */ 5930 irq = cpu_util_irq(rq); 5931 if (unlikely(irq >= max)) 5932 return max; 5933 5934 /* 5935 * Because the time spend on RT/DL tasks is visible as 'lost' time to 5936 * CFS tasks and we use the same metric to track the effective 5937 * utilization (PELT windows are synchronized) we can directly add them 5938 * to obtain the CPU's actual utilization. 5939 * 5940 * CFS and RT utilization can be boosted or capped, depending on 5941 * utilization clamp constraints requested by currently RUNNABLE 5942 * tasks. 5943 * When there are no CFS RUNNABLE tasks, clamps are released and 5944 * frequency will be gracefully reduced with the utilization decay. 5945 */ 5946 util = util_cfs + cpu_util_rt(rq); 5947 if (type == FREQUENCY_UTIL) 5948 util = uclamp_rq_util_with(rq, util, p); 5949 5950 dl_util = cpu_util_dl(rq); 5951 5952 /* 5953 * For frequency selection we do not make cpu_util_dl() a permanent part 5954 * of this sum because we want to use cpu_bw_dl() later on, but we need 5955 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 5956 * that we select f_max when there is no idle time. 5957 * 5958 * NOTE: numerical errors or stop class might cause us to not quite hit 5959 * saturation when we should -- something for later. 5960 */ 5961 if (util + dl_util >= max) 5962 return max; 5963 5964 /* 5965 * OTOH, for energy computation we need the estimated running time, so 5966 * include util_dl and ignore dl_bw. 5967 */ 5968 if (type == ENERGY_UTIL) 5969 util += dl_util; 5970 5971 /* 5972 * There is still idle time; further improve the number by using the 5973 * irq metric. Because IRQ/steal time is hidden from the task clock we 5974 * need to scale the task numbers: 5975 * 5976 * max - irq 5977 * U' = irq + --------- * U 5978 * max 5979 */ 5980 util = scale_irq_capacity(util, irq, max); 5981 util += irq; 5982 5983 /* 5984 * Bandwidth required by DEADLINE must always be granted while, for 5985 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 5986 * to gracefully reduce the frequency when no tasks show up for longer 5987 * periods of time. 5988 * 5989 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 5990 * bw_dl as requested freq. However, cpufreq is not yet ready for such 5991 * an interface. So, we only do the latter for now. 5992 */ 5993 if (type == FREQUENCY_UTIL) 5994 util += cpu_bw_dl(rq); 5995 5996 return min(max, util); 5997 } 5998 5999 unsigned long sched_cpu_util(int cpu, unsigned long max) 6000 { 6001 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 6002 ENERGY_UTIL, NULL); 6003 } 6004 #endif /* CONFIG_SMP */ 6005 6006 /** 6007 * find_process_by_pid - find a process with a matching PID value. 6008 * @pid: the pid in question. 6009 * 6010 * The task of @pid, if found. %NULL otherwise. 6011 */ 6012 static struct task_struct *find_process_by_pid(pid_t pid) 6013 { 6014 return pid ? find_task_by_vpid(pid) : current; 6015 } 6016 6017 /* 6018 * sched_setparam() passes in -1 for its policy, to let the functions 6019 * it calls know not to change it. 6020 */ 6021 #define SETPARAM_POLICY -1 6022 6023 static void __setscheduler_params(struct task_struct *p, 6024 const struct sched_attr *attr) 6025 { 6026 int policy = attr->sched_policy; 6027 6028 if (policy == SETPARAM_POLICY) 6029 policy = p->policy; 6030 6031 p->policy = policy; 6032 6033 if (dl_policy(policy)) 6034 __setparam_dl(p, attr); 6035 else if (fair_policy(policy)) 6036 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6037 6038 /* 6039 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6040 * !rt_policy. Always setting this ensures that things like 6041 * getparam()/getattr() don't report silly values for !rt tasks. 6042 */ 6043 p->rt_priority = attr->sched_priority; 6044 p->normal_prio = normal_prio(p); 6045 set_load_weight(p, true); 6046 } 6047 6048 /* Actually do priority change: must hold pi & rq lock. */ 6049 static void __setscheduler(struct rq *rq, struct task_struct *p, 6050 const struct sched_attr *attr, bool keep_boost) 6051 { 6052 /* 6053 * If params can't change scheduling class changes aren't allowed 6054 * either. 6055 */ 6056 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6057 return; 6058 6059 __setscheduler_params(p, attr); 6060 6061 /* 6062 * Keep a potential priority boosting if called from 6063 * sched_setscheduler(). 6064 */ 6065 p->prio = normal_prio(p); 6066 if (keep_boost) 6067 p->prio = rt_effective_prio(p, p->prio); 6068 6069 if (dl_prio(p->prio)) 6070 p->sched_class = &dl_sched_class; 6071 else if (rt_prio(p->prio)) 6072 p->sched_class = &rt_sched_class; 6073 else 6074 p->sched_class = &fair_sched_class; 6075 } 6076 6077 /* 6078 * Check the target process has a UID that matches the current process's: 6079 */ 6080 static bool check_same_owner(struct task_struct *p) 6081 { 6082 const struct cred *cred = current_cred(), *pcred; 6083 bool match; 6084 6085 rcu_read_lock(); 6086 pcred = __task_cred(p); 6087 match = (uid_eq(cred->euid, pcred->euid) || 6088 uid_eq(cred->euid, pcred->uid)); 6089 rcu_read_unlock(); 6090 return match; 6091 } 6092 6093 static int __sched_setscheduler(struct task_struct *p, 6094 const struct sched_attr *attr, 6095 bool user, bool pi) 6096 { 6097 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6098 MAX_RT_PRIO - 1 - attr->sched_priority; 6099 int retval, oldprio, oldpolicy = -1, queued, running; 6100 int new_effective_prio, policy = attr->sched_policy; 6101 const struct sched_class *prev_class; 6102 struct callback_head *head; 6103 struct rq_flags rf; 6104 int reset_on_fork; 6105 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6106 struct rq *rq; 6107 6108 /* The pi code expects interrupts enabled */ 6109 BUG_ON(pi && in_interrupt()); 6110 recheck: 6111 /* Double check policy once rq lock held: */ 6112 if (policy < 0) { 6113 reset_on_fork = p->sched_reset_on_fork; 6114 policy = oldpolicy = p->policy; 6115 } else { 6116 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6117 6118 if (!valid_policy(policy)) 6119 return -EINVAL; 6120 } 6121 6122 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6123 return -EINVAL; 6124 6125 /* 6126 * Valid priorities for SCHED_FIFO and SCHED_RR are 6127 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6128 * SCHED_BATCH and SCHED_IDLE is 0. 6129 */ 6130 if (attr->sched_priority > MAX_RT_PRIO-1) 6131 return -EINVAL; 6132 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6133 (rt_policy(policy) != (attr->sched_priority != 0))) 6134 return -EINVAL; 6135 6136 /* 6137 * Allow unprivileged RT tasks to decrease priority: 6138 */ 6139 if (user && !capable(CAP_SYS_NICE)) { 6140 if (fair_policy(policy)) { 6141 if (attr->sched_nice < task_nice(p) && 6142 !can_nice(p, attr->sched_nice)) 6143 return -EPERM; 6144 } 6145 6146 if (rt_policy(policy)) { 6147 unsigned long rlim_rtprio = 6148 task_rlimit(p, RLIMIT_RTPRIO); 6149 6150 /* Can't set/change the rt policy: */ 6151 if (policy != p->policy && !rlim_rtprio) 6152 return -EPERM; 6153 6154 /* Can't increase priority: */ 6155 if (attr->sched_priority > p->rt_priority && 6156 attr->sched_priority > rlim_rtprio) 6157 return -EPERM; 6158 } 6159 6160 /* 6161 * Can't set/change SCHED_DEADLINE policy at all for now 6162 * (safest behavior); in the future we would like to allow 6163 * unprivileged DL tasks to increase their relative deadline 6164 * or reduce their runtime (both ways reducing utilization) 6165 */ 6166 if (dl_policy(policy)) 6167 return -EPERM; 6168 6169 /* 6170 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6171 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6172 */ 6173 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6174 if (!can_nice(p, task_nice(p))) 6175 return -EPERM; 6176 } 6177 6178 /* Can't change other user's priorities: */ 6179 if (!check_same_owner(p)) 6180 return -EPERM; 6181 6182 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6183 if (p->sched_reset_on_fork && !reset_on_fork) 6184 return -EPERM; 6185 } 6186 6187 if (user) { 6188 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6189 return -EINVAL; 6190 6191 retval = security_task_setscheduler(p); 6192 if (retval) 6193 return retval; 6194 } 6195 6196 /* Update task specific "requested" clamps */ 6197 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6198 retval = uclamp_validate(p, attr); 6199 if (retval) 6200 return retval; 6201 } 6202 6203 if (pi) 6204 cpuset_read_lock(); 6205 6206 /* 6207 * Make sure no PI-waiters arrive (or leave) while we are 6208 * changing the priority of the task: 6209 * 6210 * To be able to change p->policy safely, the appropriate 6211 * runqueue lock must be held. 6212 */ 6213 rq = task_rq_lock(p, &rf); 6214 update_rq_clock(rq); 6215 6216 /* 6217 * Changing the policy of the stop threads its a very bad idea: 6218 */ 6219 if (p == rq->stop) { 6220 retval = -EINVAL; 6221 goto unlock; 6222 } 6223 6224 /* 6225 * If not changing anything there's no need to proceed further, 6226 * but store a possible modification of reset_on_fork. 6227 */ 6228 if (unlikely(policy == p->policy)) { 6229 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 6230 goto change; 6231 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 6232 goto change; 6233 if (dl_policy(policy) && dl_param_changed(p, attr)) 6234 goto change; 6235 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 6236 goto change; 6237 6238 p->sched_reset_on_fork = reset_on_fork; 6239 retval = 0; 6240 goto unlock; 6241 } 6242 change: 6243 6244 if (user) { 6245 #ifdef CONFIG_RT_GROUP_SCHED 6246 /* 6247 * Do not allow realtime tasks into groups that have no runtime 6248 * assigned. 6249 */ 6250 if (rt_bandwidth_enabled() && rt_policy(policy) && 6251 task_group(p)->rt_bandwidth.rt_runtime == 0 && 6252 !task_group_is_autogroup(task_group(p))) { 6253 retval = -EPERM; 6254 goto unlock; 6255 } 6256 #endif 6257 #ifdef CONFIG_SMP 6258 if (dl_bandwidth_enabled() && dl_policy(policy) && 6259 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 6260 cpumask_t *span = rq->rd->span; 6261 6262 /* 6263 * Don't allow tasks with an affinity mask smaller than 6264 * the entire root_domain to become SCHED_DEADLINE. We 6265 * will also fail if there's no bandwidth available. 6266 */ 6267 if (!cpumask_subset(span, p->cpus_ptr) || 6268 rq->rd->dl_bw.bw == 0) { 6269 retval = -EPERM; 6270 goto unlock; 6271 } 6272 } 6273 #endif 6274 } 6275 6276 /* Re-check policy now with rq lock held: */ 6277 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6278 policy = oldpolicy = -1; 6279 task_rq_unlock(rq, p, &rf); 6280 if (pi) 6281 cpuset_read_unlock(); 6282 goto recheck; 6283 } 6284 6285 /* 6286 * If setscheduling to SCHED_DEADLINE (or changing the parameters 6287 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 6288 * is available. 6289 */ 6290 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 6291 retval = -EBUSY; 6292 goto unlock; 6293 } 6294 6295 p->sched_reset_on_fork = reset_on_fork; 6296 oldprio = p->prio; 6297 6298 if (pi) { 6299 /* 6300 * Take priority boosted tasks into account. If the new 6301 * effective priority is unchanged, we just store the new 6302 * normal parameters and do not touch the scheduler class and 6303 * the runqueue. This will be done when the task deboost 6304 * itself. 6305 */ 6306 new_effective_prio = rt_effective_prio(p, newprio); 6307 if (new_effective_prio == oldprio) 6308 queue_flags &= ~DEQUEUE_MOVE; 6309 } 6310 6311 queued = task_on_rq_queued(p); 6312 running = task_current(rq, p); 6313 if (queued) 6314 dequeue_task(rq, p, queue_flags); 6315 if (running) 6316 put_prev_task(rq, p); 6317 6318 prev_class = p->sched_class; 6319 6320 __setscheduler(rq, p, attr, pi); 6321 __setscheduler_uclamp(p, attr); 6322 6323 if (queued) { 6324 /* 6325 * We enqueue to tail when the priority of a task is 6326 * increased (user space view). 6327 */ 6328 if (oldprio < p->prio) 6329 queue_flags |= ENQUEUE_HEAD; 6330 6331 enqueue_task(rq, p, queue_flags); 6332 } 6333 if (running) 6334 set_next_task(rq, p); 6335 6336 check_class_changed(rq, p, prev_class, oldprio); 6337 6338 /* Avoid rq from going away on us: */ 6339 preempt_disable(); 6340 head = splice_balance_callbacks(rq); 6341 task_rq_unlock(rq, p, &rf); 6342 6343 if (pi) { 6344 cpuset_read_unlock(); 6345 rt_mutex_adjust_pi(p); 6346 } 6347 6348 /* Run balance callbacks after we've adjusted the PI chain: */ 6349 balance_callbacks(rq, head); 6350 preempt_enable(); 6351 6352 return 0; 6353 6354 unlock: 6355 task_rq_unlock(rq, p, &rf); 6356 if (pi) 6357 cpuset_read_unlock(); 6358 return retval; 6359 } 6360 6361 static int _sched_setscheduler(struct task_struct *p, int policy, 6362 const struct sched_param *param, bool check) 6363 { 6364 struct sched_attr attr = { 6365 .sched_policy = policy, 6366 .sched_priority = param->sched_priority, 6367 .sched_nice = PRIO_TO_NICE(p->static_prio), 6368 }; 6369 6370 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6371 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6372 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6373 policy &= ~SCHED_RESET_ON_FORK; 6374 attr.sched_policy = policy; 6375 } 6376 6377 return __sched_setscheduler(p, &attr, check, true); 6378 } 6379 /** 6380 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6381 * @p: the task in question. 6382 * @policy: new policy. 6383 * @param: structure containing the new RT priority. 6384 * 6385 * Use sched_set_fifo(), read its comment. 6386 * 6387 * Return: 0 on success. An error code otherwise. 6388 * 6389 * NOTE that the task may be already dead. 6390 */ 6391 int sched_setscheduler(struct task_struct *p, int policy, 6392 const struct sched_param *param) 6393 { 6394 return _sched_setscheduler(p, policy, param, true); 6395 } 6396 6397 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6398 { 6399 return __sched_setscheduler(p, attr, true, true); 6400 } 6401 6402 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6403 { 6404 return __sched_setscheduler(p, attr, false, true); 6405 } 6406 6407 /** 6408 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6409 * @p: the task in question. 6410 * @policy: new policy. 6411 * @param: structure containing the new RT priority. 6412 * 6413 * Just like sched_setscheduler, only don't bother checking if the 6414 * current context has permission. For example, this is needed in 6415 * stop_machine(): we create temporary high priority worker threads, 6416 * but our caller might not have that capability. 6417 * 6418 * Return: 0 on success. An error code otherwise. 6419 */ 6420 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6421 const struct sched_param *param) 6422 { 6423 return _sched_setscheduler(p, policy, param, false); 6424 } 6425 6426 /* 6427 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6428 * incapable of resource management, which is the one thing an OS really should 6429 * be doing. 6430 * 6431 * This is of course the reason it is limited to privileged users only. 6432 * 6433 * Worse still; it is fundamentally impossible to compose static priority 6434 * workloads. You cannot take two correctly working static prio workloads 6435 * and smash them together and still expect them to work. 6436 * 6437 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6438 * 6439 * MAX_RT_PRIO / 2 6440 * 6441 * The administrator _MUST_ configure the system, the kernel simply doesn't 6442 * know enough information to make a sensible choice. 6443 */ 6444 void sched_set_fifo(struct task_struct *p) 6445 { 6446 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6447 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6448 } 6449 EXPORT_SYMBOL_GPL(sched_set_fifo); 6450 6451 /* 6452 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6453 */ 6454 void sched_set_fifo_low(struct task_struct *p) 6455 { 6456 struct sched_param sp = { .sched_priority = 1 }; 6457 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6458 } 6459 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6460 6461 void sched_set_normal(struct task_struct *p, int nice) 6462 { 6463 struct sched_attr attr = { 6464 .sched_policy = SCHED_NORMAL, 6465 .sched_nice = nice, 6466 }; 6467 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6468 } 6469 EXPORT_SYMBOL_GPL(sched_set_normal); 6470 6471 static int 6472 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6473 { 6474 struct sched_param lparam; 6475 struct task_struct *p; 6476 int retval; 6477 6478 if (!param || pid < 0) 6479 return -EINVAL; 6480 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6481 return -EFAULT; 6482 6483 rcu_read_lock(); 6484 retval = -ESRCH; 6485 p = find_process_by_pid(pid); 6486 if (likely(p)) 6487 get_task_struct(p); 6488 rcu_read_unlock(); 6489 6490 if (likely(p)) { 6491 retval = sched_setscheduler(p, policy, &lparam); 6492 put_task_struct(p); 6493 } 6494 6495 return retval; 6496 } 6497 6498 /* 6499 * Mimics kernel/events/core.c perf_copy_attr(). 6500 */ 6501 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6502 { 6503 u32 size; 6504 int ret; 6505 6506 /* Zero the full structure, so that a short copy will be nice: */ 6507 memset(attr, 0, sizeof(*attr)); 6508 6509 ret = get_user(size, &uattr->size); 6510 if (ret) 6511 return ret; 6512 6513 /* ABI compatibility quirk: */ 6514 if (!size) 6515 size = SCHED_ATTR_SIZE_VER0; 6516 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6517 goto err_size; 6518 6519 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6520 if (ret) { 6521 if (ret == -E2BIG) 6522 goto err_size; 6523 return ret; 6524 } 6525 6526 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6527 size < SCHED_ATTR_SIZE_VER1) 6528 return -EINVAL; 6529 6530 /* 6531 * XXX: Do we want to be lenient like existing syscalls; or do we want 6532 * to be strict and return an error on out-of-bounds values? 6533 */ 6534 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6535 6536 return 0; 6537 6538 err_size: 6539 put_user(sizeof(*attr), &uattr->size); 6540 return -E2BIG; 6541 } 6542 6543 /** 6544 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6545 * @pid: the pid in question. 6546 * @policy: new policy. 6547 * @param: structure containing the new RT priority. 6548 * 6549 * Return: 0 on success. An error code otherwise. 6550 */ 6551 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6552 { 6553 if (policy < 0) 6554 return -EINVAL; 6555 6556 return do_sched_setscheduler(pid, policy, param); 6557 } 6558 6559 /** 6560 * sys_sched_setparam - set/change the RT priority of a thread 6561 * @pid: the pid in question. 6562 * @param: structure containing the new RT priority. 6563 * 6564 * Return: 0 on success. An error code otherwise. 6565 */ 6566 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6567 { 6568 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6569 } 6570 6571 /** 6572 * sys_sched_setattr - same as above, but with extended sched_attr 6573 * @pid: the pid in question. 6574 * @uattr: structure containing the extended parameters. 6575 * @flags: for future extension. 6576 */ 6577 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6578 unsigned int, flags) 6579 { 6580 struct sched_attr attr; 6581 struct task_struct *p; 6582 int retval; 6583 6584 if (!uattr || pid < 0 || flags) 6585 return -EINVAL; 6586 6587 retval = sched_copy_attr(uattr, &attr); 6588 if (retval) 6589 return retval; 6590 6591 if ((int)attr.sched_policy < 0) 6592 return -EINVAL; 6593 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6594 attr.sched_policy = SETPARAM_POLICY; 6595 6596 rcu_read_lock(); 6597 retval = -ESRCH; 6598 p = find_process_by_pid(pid); 6599 if (likely(p)) 6600 get_task_struct(p); 6601 rcu_read_unlock(); 6602 6603 if (likely(p)) { 6604 retval = sched_setattr(p, &attr); 6605 put_task_struct(p); 6606 } 6607 6608 return retval; 6609 } 6610 6611 /** 6612 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6613 * @pid: the pid in question. 6614 * 6615 * Return: On success, the policy of the thread. Otherwise, a negative error 6616 * code. 6617 */ 6618 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6619 { 6620 struct task_struct *p; 6621 int retval; 6622 6623 if (pid < 0) 6624 return -EINVAL; 6625 6626 retval = -ESRCH; 6627 rcu_read_lock(); 6628 p = find_process_by_pid(pid); 6629 if (p) { 6630 retval = security_task_getscheduler(p); 6631 if (!retval) 6632 retval = p->policy 6633 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6634 } 6635 rcu_read_unlock(); 6636 return retval; 6637 } 6638 6639 /** 6640 * sys_sched_getparam - get the RT priority of a thread 6641 * @pid: the pid in question. 6642 * @param: structure containing the RT priority. 6643 * 6644 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6645 * code. 6646 */ 6647 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6648 { 6649 struct sched_param lp = { .sched_priority = 0 }; 6650 struct task_struct *p; 6651 int retval; 6652 6653 if (!param || pid < 0) 6654 return -EINVAL; 6655 6656 rcu_read_lock(); 6657 p = find_process_by_pid(pid); 6658 retval = -ESRCH; 6659 if (!p) 6660 goto out_unlock; 6661 6662 retval = security_task_getscheduler(p); 6663 if (retval) 6664 goto out_unlock; 6665 6666 if (task_has_rt_policy(p)) 6667 lp.sched_priority = p->rt_priority; 6668 rcu_read_unlock(); 6669 6670 /* 6671 * This one might sleep, we cannot do it with a spinlock held ... 6672 */ 6673 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6674 6675 return retval; 6676 6677 out_unlock: 6678 rcu_read_unlock(); 6679 return retval; 6680 } 6681 6682 /* 6683 * Copy the kernel size attribute structure (which might be larger 6684 * than what user-space knows about) to user-space. 6685 * 6686 * Note that all cases are valid: user-space buffer can be larger or 6687 * smaller than the kernel-space buffer. The usual case is that both 6688 * have the same size. 6689 */ 6690 static int 6691 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6692 struct sched_attr *kattr, 6693 unsigned int usize) 6694 { 6695 unsigned int ksize = sizeof(*kattr); 6696 6697 if (!access_ok(uattr, usize)) 6698 return -EFAULT; 6699 6700 /* 6701 * sched_getattr() ABI forwards and backwards compatibility: 6702 * 6703 * If usize == ksize then we just copy everything to user-space and all is good. 6704 * 6705 * If usize < ksize then we only copy as much as user-space has space for, 6706 * this keeps ABI compatibility as well. We skip the rest. 6707 * 6708 * If usize > ksize then user-space is using a newer version of the ABI, 6709 * which part the kernel doesn't know about. Just ignore it - tooling can 6710 * detect the kernel's knowledge of attributes from the attr->size value 6711 * which is set to ksize in this case. 6712 */ 6713 kattr->size = min(usize, ksize); 6714 6715 if (copy_to_user(uattr, kattr, kattr->size)) 6716 return -EFAULT; 6717 6718 return 0; 6719 } 6720 6721 /** 6722 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6723 * @pid: the pid in question. 6724 * @uattr: structure containing the extended parameters. 6725 * @usize: sizeof(attr) for fwd/bwd comp. 6726 * @flags: for future extension. 6727 */ 6728 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6729 unsigned int, usize, unsigned int, flags) 6730 { 6731 struct sched_attr kattr = { }; 6732 struct task_struct *p; 6733 int retval; 6734 6735 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6736 usize < SCHED_ATTR_SIZE_VER0 || flags) 6737 return -EINVAL; 6738 6739 rcu_read_lock(); 6740 p = find_process_by_pid(pid); 6741 retval = -ESRCH; 6742 if (!p) 6743 goto out_unlock; 6744 6745 retval = security_task_getscheduler(p); 6746 if (retval) 6747 goto out_unlock; 6748 6749 kattr.sched_policy = p->policy; 6750 if (p->sched_reset_on_fork) 6751 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6752 if (task_has_dl_policy(p)) 6753 __getparam_dl(p, &kattr); 6754 else if (task_has_rt_policy(p)) 6755 kattr.sched_priority = p->rt_priority; 6756 else 6757 kattr.sched_nice = task_nice(p); 6758 6759 #ifdef CONFIG_UCLAMP_TASK 6760 /* 6761 * This could race with another potential updater, but this is fine 6762 * because it'll correctly read the old or the new value. We don't need 6763 * to guarantee who wins the race as long as it doesn't return garbage. 6764 */ 6765 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6766 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6767 #endif 6768 6769 rcu_read_unlock(); 6770 6771 return sched_attr_copy_to_user(uattr, &kattr, usize); 6772 6773 out_unlock: 6774 rcu_read_unlock(); 6775 return retval; 6776 } 6777 6778 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6779 { 6780 cpumask_var_t cpus_allowed, new_mask; 6781 struct task_struct *p; 6782 int retval; 6783 6784 rcu_read_lock(); 6785 6786 p = find_process_by_pid(pid); 6787 if (!p) { 6788 rcu_read_unlock(); 6789 return -ESRCH; 6790 } 6791 6792 /* Prevent p going away */ 6793 get_task_struct(p); 6794 rcu_read_unlock(); 6795 6796 if (p->flags & PF_NO_SETAFFINITY) { 6797 retval = -EINVAL; 6798 goto out_put_task; 6799 } 6800 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6801 retval = -ENOMEM; 6802 goto out_put_task; 6803 } 6804 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6805 retval = -ENOMEM; 6806 goto out_free_cpus_allowed; 6807 } 6808 retval = -EPERM; 6809 if (!check_same_owner(p)) { 6810 rcu_read_lock(); 6811 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6812 rcu_read_unlock(); 6813 goto out_free_new_mask; 6814 } 6815 rcu_read_unlock(); 6816 } 6817 6818 retval = security_task_setscheduler(p); 6819 if (retval) 6820 goto out_free_new_mask; 6821 6822 6823 cpuset_cpus_allowed(p, cpus_allowed); 6824 cpumask_and(new_mask, in_mask, cpus_allowed); 6825 6826 /* 6827 * Since bandwidth control happens on root_domain basis, 6828 * if admission test is enabled, we only admit -deadline 6829 * tasks allowed to run on all the CPUs in the task's 6830 * root_domain. 6831 */ 6832 #ifdef CONFIG_SMP 6833 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6834 rcu_read_lock(); 6835 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6836 retval = -EBUSY; 6837 rcu_read_unlock(); 6838 goto out_free_new_mask; 6839 } 6840 rcu_read_unlock(); 6841 } 6842 #endif 6843 again: 6844 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6845 6846 if (!retval) { 6847 cpuset_cpus_allowed(p, cpus_allowed); 6848 if (!cpumask_subset(new_mask, cpus_allowed)) { 6849 /* 6850 * We must have raced with a concurrent cpuset 6851 * update. Just reset the cpus_allowed to the 6852 * cpuset's cpus_allowed 6853 */ 6854 cpumask_copy(new_mask, cpus_allowed); 6855 goto again; 6856 } 6857 } 6858 out_free_new_mask: 6859 free_cpumask_var(new_mask); 6860 out_free_cpus_allowed: 6861 free_cpumask_var(cpus_allowed); 6862 out_put_task: 6863 put_task_struct(p); 6864 return retval; 6865 } 6866 6867 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6868 struct cpumask *new_mask) 6869 { 6870 if (len < cpumask_size()) 6871 cpumask_clear(new_mask); 6872 else if (len > cpumask_size()) 6873 len = cpumask_size(); 6874 6875 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6876 } 6877 6878 /** 6879 * sys_sched_setaffinity - set the CPU affinity of a process 6880 * @pid: pid of the process 6881 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6882 * @user_mask_ptr: user-space pointer to the new CPU mask 6883 * 6884 * Return: 0 on success. An error code otherwise. 6885 */ 6886 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6887 unsigned long __user *, user_mask_ptr) 6888 { 6889 cpumask_var_t new_mask; 6890 int retval; 6891 6892 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6893 return -ENOMEM; 6894 6895 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6896 if (retval == 0) 6897 retval = sched_setaffinity(pid, new_mask); 6898 free_cpumask_var(new_mask); 6899 return retval; 6900 } 6901 6902 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6903 { 6904 struct task_struct *p; 6905 unsigned long flags; 6906 int retval; 6907 6908 rcu_read_lock(); 6909 6910 retval = -ESRCH; 6911 p = find_process_by_pid(pid); 6912 if (!p) 6913 goto out_unlock; 6914 6915 retval = security_task_getscheduler(p); 6916 if (retval) 6917 goto out_unlock; 6918 6919 raw_spin_lock_irqsave(&p->pi_lock, flags); 6920 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6921 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6922 6923 out_unlock: 6924 rcu_read_unlock(); 6925 6926 return retval; 6927 } 6928 6929 /** 6930 * sys_sched_getaffinity - get the CPU affinity of a process 6931 * @pid: pid of the process 6932 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6933 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6934 * 6935 * Return: size of CPU mask copied to user_mask_ptr on success. An 6936 * error code otherwise. 6937 */ 6938 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6939 unsigned long __user *, user_mask_ptr) 6940 { 6941 int ret; 6942 cpumask_var_t mask; 6943 6944 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6945 return -EINVAL; 6946 if (len & (sizeof(unsigned long)-1)) 6947 return -EINVAL; 6948 6949 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6950 return -ENOMEM; 6951 6952 ret = sched_getaffinity(pid, mask); 6953 if (ret == 0) { 6954 unsigned int retlen = min(len, cpumask_size()); 6955 6956 if (copy_to_user(user_mask_ptr, mask, retlen)) 6957 ret = -EFAULT; 6958 else 6959 ret = retlen; 6960 } 6961 free_cpumask_var(mask); 6962 6963 return ret; 6964 } 6965 6966 static void do_sched_yield(void) 6967 { 6968 struct rq_flags rf; 6969 struct rq *rq; 6970 6971 rq = this_rq_lock_irq(&rf); 6972 6973 schedstat_inc(rq->yld_count); 6974 current->sched_class->yield_task(rq); 6975 6976 preempt_disable(); 6977 rq_unlock_irq(rq, &rf); 6978 sched_preempt_enable_no_resched(); 6979 6980 schedule(); 6981 } 6982 6983 /** 6984 * sys_sched_yield - yield the current processor to other threads. 6985 * 6986 * This function yields the current CPU to other tasks. If there are no 6987 * other threads running on this CPU then this function will return. 6988 * 6989 * Return: 0. 6990 */ 6991 SYSCALL_DEFINE0(sched_yield) 6992 { 6993 do_sched_yield(); 6994 return 0; 6995 } 6996 6997 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 6998 int __sched __cond_resched(void) 6999 { 7000 if (should_resched(0)) { 7001 preempt_schedule_common(); 7002 return 1; 7003 } 7004 #ifndef CONFIG_PREEMPT_RCU 7005 rcu_all_qs(); 7006 #endif 7007 return 0; 7008 } 7009 EXPORT_SYMBOL(__cond_resched); 7010 #endif 7011 7012 #ifdef CONFIG_PREEMPT_DYNAMIC 7013 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7014 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7015 7016 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7017 EXPORT_STATIC_CALL_TRAMP(might_resched); 7018 #endif 7019 7020 /* 7021 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7022 * call schedule, and on return reacquire the lock. 7023 * 7024 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7025 * operations here to prevent schedule() from being called twice (once via 7026 * spin_unlock(), once by hand). 7027 */ 7028 int __cond_resched_lock(spinlock_t *lock) 7029 { 7030 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7031 int ret = 0; 7032 7033 lockdep_assert_held(lock); 7034 7035 if (spin_needbreak(lock) || resched) { 7036 spin_unlock(lock); 7037 if (resched) 7038 preempt_schedule_common(); 7039 else 7040 cpu_relax(); 7041 ret = 1; 7042 spin_lock(lock); 7043 } 7044 return ret; 7045 } 7046 EXPORT_SYMBOL(__cond_resched_lock); 7047 7048 int __cond_resched_rwlock_read(rwlock_t *lock) 7049 { 7050 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7051 int ret = 0; 7052 7053 lockdep_assert_held_read(lock); 7054 7055 if (rwlock_needbreak(lock) || resched) { 7056 read_unlock(lock); 7057 if (resched) 7058 preempt_schedule_common(); 7059 else 7060 cpu_relax(); 7061 ret = 1; 7062 read_lock(lock); 7063 } 7064 return ret; 7065 } 7066 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7067 7068 int __cond_resched_rwlock_write(rwlock_t *lock) 7069 { 7070 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7071 int ret = 0; 7072 7073 lockdep_assert_held_write(lock); 7074 7075 if (rwlock_needbreak(lock) || resched) { 7076 write_unlock(lock); 7077 if (resched) 7078 preempt_schedule_common(); 7079 else 7080 cpu_relax(); 7081 ret = 1; 7082 write_lock(lock); 7083 } 7084 return ret; 7085 } 7086 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7087 7088 /** 7089 * yield - yield the current processor to other threads. 7090 * 7091 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7092 * 7093 * The scheduler is at all times free to pick the calling task as the most 7094 * eligible task to run, if removing the yield() call from your code breaks 7095 * it, it's already broken. 7096 * 7097 * Typical broken usage is: 7098 * 7099 * while (!event) 7100 * yield(); 7101 * 7102 * where one assumes that yield() will let 'the other' process run that will 7103 * make event true. If the current task is a SCHED_FIFO task that will never 7104 * happen. Never use yield() as a progress guarantee!! 7105 * 7106 * If you want to use yield() to wait for something, use wait_event(). 7107 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7108 * If you still want to use yield(), do not! 7109 */ 7110 void __sched yield(void) 7111 { 7112 set_current_state(TASK_RUNNING); 7113 do_sched_yield(); 7114 } 7115 EXPORT_SYMBOL(yield); 7116 7117 /** 7118 * yield_to - yield the current processor to another thread in 7119 * your thread group, or accelerate that thread toward the 7120 * processor it's on. 7121 * @p: target task 7122 * @preempt: whether task preemption is allowed or not 7123 * 7124 * It's the caller's job to ensure that the target task struct 7125 * can't go away on us before we can do any checks. 7126 * 7127 * Return: 7128 * true (>0) if we indeed boosted the target task. 7129 * false (0) if we failed to boost the target. 7130 * -ESRCH if there's no task to yield to. 7131 */ 7132 int __sched yield_to(struct task_struct *p, bool preempt) 7133 { 7134 struct task_struct *curr = current; 7135 struct rq *rq, *p_rq; 7136 unsigned long flags; 7137 int yielded = 0; 7138 7139 local_irq_save(flags); 7140 rq = this_rq(); 7141 7142 again: 7143 p_rq = task_rq(p); 7144 /* 7145 * If we're the only runnable task on the rq and target rq also 7146 * has only one task, there's absolutely no point in yielding. 7147 */ 7148 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7149 yielded = -ESRCH; 7150 goto out_irq; 7151 } 7152 7153 double_rq_lock(rq, p_rq); 7154 if (task_rq(p) != p_rq) { 7155 double_rq_unlock(rq, p_rq); 7156 goto again; 7157 } 7158 7159 if (!curr->sched_class->yield_to_task) 7160 goto out_unlock; 7161 7162 if (curr->sched_class != p->sched_class) 7163 goto out_unlock; 7164 7165 if (task_running(p_rq, p) || p->state) 7166 goto out_unlock; 7167 7168 yielded = curr->sched_class->yield_to_task(rq, p); 7169 if (yielded) { 7170 schedstat_inc(rq->yld_count); 7171 /* 7172 * Make p's CPU reschedule; pick_next_entity takes care of 7173 * fairness. 7174 */ 7175 if (preempt && rq != p_rq) 7176 resched_curr(p_rq); 7177 } 7178 7179 out_unlock: 7180 double_rq_unlock(rq, p_rq); 7181 out_irq: 7182 local_irq_restore(flags); 7183 7184 if (yielded > 0) 7185 schedule(); 7186 7187 return yielded; 7188 } 7189 EXPORT_SYMBOL_GPL(yield_to); 7190 7191 int io_schedule_prepare(void) 7192 { 7193 int old_iowait = current->in_iowait; 7194 7195 current->in_iowait = 1; 7196 blk_schedule_flush_plug(current); 7197 7198 return old_iowait; 7199 } 7200 7201 void io_schedule_finish(int token) 7202 { 7203 current->in_iowait = token; 7204 } 7205 7206 /* 7207 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7208 * that process accounting knows that this is a task in IO wait state. 7209 */ 7210 long __sched io_schedule_timeout(long timeout) 7211 { 7212 int token; 7213 long ret; 7214 7215 token = io_schedule_prepare(); 7216 ret = schedule_timeout(timeout); 7217 io_schedule_finish(token); 7218 7219 return ret; 7220 } 7221 EXPORT_SYMBOL(io_schedule_timeout); 7222 7223 void __sched io_schedule(void) 7224 { 7225 int token; 7226 7227 token = io_schedule_prepare(); 7228 schedule(); 7229 io_schedule_finish(token); 7230 } 7231 EXPORT_SYMBOL(io_schedule); 7232 7233 /** 7234 * sys_sched_get_priority_max - return maximum RT priority. 7235 * @policy: scheduling class. 7236 * 7237 * Return: On success, this syscall returns the maximum 7238 * rt_priority that can be used by a given scheduling class. 7239 * On failure, a negative error code is returned. 7240 */ 7241 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 7242 { 7243 int ret = -EINVAL; 7244 7245 switch (policy) { 7246 case SCHED_FIFO: 7247 case SCHED_RR: 7248 ret = MAX_RT_PRIO-1; 7249 break; 7250 case SCHED_DEADLINE: 7251 case SCHED_NORMAL: 7252 case SCHED_BATCH: 7253 case SCHED_IDLE: 7254 ret = 0; 7255 break; 7256 } 7257 return ret; 7258 } 7259 7260 /** 7261 * sys_sched_get_priority_min - return minimum RT priority. 7262 * @policy: scheduling class. 7263 * 7264 * Return: On success, this syscall returns the minimum 7265 * rt_priority that can be used by a given scheduling class. 7266 * On failure, a negative error code is returned. 7267 */ 7268 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 7269 { 7270 int ret = -EINVAL; 7271 7272 switch (policy) { 7273 case SCHED_FIFO: 7274 case SCHED_RR: 7275 ret = 1; 7276 break; 7277 case SCHED_DEADLINE: 7278 case SCHED_NORMAL: 7279 case SCHED_BATCH: 7280 case SCHED_IDLE: 7281 ret = 0; 7282 } 7283 return ret; 7284 } 7285 7286 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 7287 { 7288 struct task_struct *p; 7289 unsigned int time_slice; 7290 struct rq_flags rf; 7291 struct rq *rq; 7292 int retval; 7293 7294 if (pid < 0) 7295 return -EINVAL; 7296 7297 retval = -ESRCH; 7298 rcu_read_lock(); 7299 p = find_process_by_pid(pid); 7300 if (!p) 7301 goto out_unlock; 7302 7303 retval = security_task_getscheduler(p); 7304 if (retval) 7305 goto out_unlock; 7306 7307 rq = task_rq_lock(p, &rf); 7308 time_slice = 0; 7309 if (p->sched_class->get_rr_interval) 7310 time_slice = p->sched_class->get_rr_interval(rq, p); 7311 task_rq_unlock(rq, p, &rf); 7312 7313 rcu_read_unlock(); 7314 jiffies_to_timespec64(time_slice, t); 7315 return 0; 7316 7317 out_unlock: 7318 rcu_read_unlock(); 7319 return retval; 7320 } 7321 7322 /** 7323 * sys_sched_rr_get_interval - return the default timeslice of a process. 7324 * @pid: pid of the process. 7325 * @interval: userspace pointer to the timeslice value. 7326 * 7327 * this syscall writes the default timeslice value of a given process 7328 * into the user-space timespec buffer. A value of '0' means infinity. 7329 * 7330 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 7331 * an error code. 7332 */ 7333 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 7334 struct __kernel_timespec __user *, interval) 7335 { 7336 struct timespec64 t; 7337 int retval = sched_rr_get_interval(pid, &t); 7338 7339 if (retval == 0) 7340 retval = put_timespec64(&t, interval); 7341 7342 return retval; 7343 } 7344 7345 #ifdef CONFIG_COMPAT_32BIT_TIME 7346 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 7347 struct old_timespec32 __user *, interval) 7348 { 7349 struct timespec64 t; 7350 int retval = sched_rr_get_interval(pid, &t); 7351 7352 if (retval == 0) 7353 retval = put_old_timespec32(&t, interval); 7354 return retval; 7355 } 7356 #endif 7357 7358 void sched_show_task(struct task_struct *p) 7359 { 7360 unsigned long free = 0; 7361 int ppid; 7362 7363 if (!try_get_task_stack(p)) 7364 return; 7365 7366 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7367 7368 if (p->state == TASK_RUNNING) 7369 pr_cont(" running task "); 7370 #ifdef CONFIG_DEBUG_STACK_USAGE 7371 free = stack_not_used(p); 7372 #endif 7373 ppid = 0; 7374 rcu_read_lock(); 7375 if (pid_alive(p)) 7376 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7377 rcu_read_unlock(); 7378 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 7379 free, task_pid_nr(p), ppid, 7380 (unsigned long)task_thread_info(p)->flags); 7381 7382 print_worker_info(KERN_INFO, p); 7383 print_stop_info(KERN_INFO, p); 7384 show_stack(p, NULL, KERN_INFO); 7385 put_task_stack(p); 7386 } 7387 EXPORT_SYMBOL_GPL(sched_show_task); 7388 7389 static inline bool 7390 state_filter_match(unsigned long state_filter, struct task_struct *p) 7391 { 7392 /* no filter, everything matches */ 7393 if (!state_filter) 7394 return true; 7395 7396 /* filter, but doesn't match */ 7397 if (!(p->state & state_filter)) 7398 return false; 7399 7400 /* 7401 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7402 * TASK_KILLABLE). 7403 */ 7404 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7405 return false; 7406 7407 return true; 7408 } 7409 7410 7411 void show_state_filter(unsigned long state_filter) 7412 { 7413 struct task_struct *g, *p; 7414 7415 rcu_read_lock(); 7416 for_each_process_thread(g, p) { 7417 /* 7418 * reset the NMI-timeout, listing all files on a slow 7419 * console might take a lot of time: 7420 * Also, reset softlockup watchdogs on all CPUs, because 7421 * another CPU might be blocked waiting for us to process 7422 * an IPI. 7423 */ 7424 touch_nmi_watchdog(); 7425 touch_all_softlockup_watchdogs(); 7426 if (state_filter_match(state_filter, p)) 7427 sched_show_task(p); 7428 } 7429 7430 #ifdef CONFIG_SCHED_DEBUG 7431 if (!state_filter) 7432 sysrq_sched_debug_show(); 7433 #endif 7434 rcu_read_unlock(); 7435 /* 7436 * Only show locks if all tasks are dumped: 7437 */ 7438 if (!state_filter) 7439 debug_show_all_locks(); 7440 } 7441 7442 /** 7443 * init_idle - set up an idle thread for a given CPU 7444 * @idle: task in question 7445 * @cpu: CPU the idle task belongs to 7446 * 7447 * NOTE: this function does not set the idle thread's NEED_RESCHED 7448 * flag, to make booting more robust. 7449 */ 7450 void init_idle(struct task_struct *idle, int cpu) 7451 { 7452 struct rq *rq = cpu_rq(cpu); 7453 unsigned long flags; 7454 7455 __sched_fork(0, idle); 7456 7457 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7458 raw_spin_lock(&rq->lock); 7459 7460 idle->state = TASK_RUNNING; 7461 idle->se.exec_start = sched_clock(); 7462 idle->flags |= PF_IDLE; 7463 7464 scs_task_reset(idle); 7465 kasan_unpoison_task_stack(idle); 7466 7467 #ifdef CONFIG_SMP 7468 /* 7469 * It's possible that init_idle() gets called multiple times on a task, 7470 * in that case do_set_cpus_allowed() will not do the right thing. 7471 * 7472 * And since this is boot we can forgo the serialization. 7473 */ 7474 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7475 #endif 7476 /* 7477 * We're having a chicken and egg problem, even though we are 7478 * holding rq->lock, the CPU isn't yet set to this CPU so the 7479 * lockdep check in task_group() will fail. 7480 * 7481 * Similar case to sched_fork(). / Alternatively we could 7482 * use task_rq_lock() here and obtain the other rq->lock. 7483 * 7484 * Silence PROVE_RCU 7485 */ 7486 rcu_read_lock(); 7487 __set_task_cpu(idle, cpu); 7488 rcu_read_unlock(); 7489 7490 rq->idle = idle; 7491 rcu_assign_pointer(rq->curr, idle); 7492 idle->on_rq = TASK_ON_RQ_QUEUED; 7493 #ifdef CONFIG_SMP 7494 idle->on_cpu = 1; 7495 #endif 7496 raw_spin_unlock(&rq->lock); 7497 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7498 7499 /* Set the preempt count _outside_ the spinlocks! */ 7500 init_idle_preempt_count(idle, cpu); 7501 7502 /* 7503 * The idle tasks have their own, simple scheduling class: 7504 */ 7505 idle->sched_class = &idle_sched_class; 7506 ftrace_graph_init_idle_task(idle, cpu); 7507 vtime_init_idle(idle, cpu); 7508 #ifdef CONFIG_SMP 7509 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7510 #endif 7511 } 7512 7513 #ifdef CONFIG_SMP 7514 7515 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7516 const struct cpumask *trial) 7517 { 7518 int ret = 1; 7519 7520 if (!cpumask_weight(cur)) 7521 return ret; 7522 7523 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7524 7525 return ret; 7526 } 7527 7528 int task_can_attach(struct task_struct *p, 7529 const struct cpumask *cs_cpus_allowed) 7530 { 7531 int ret = 0; 7532 7533 /* 7534 * Kthreads which disallow setaffinity shouldn't be moved 7535 * to a new cpuset; we don't want to change their CPU 7536 * affinity and isolating such threads by their set of 7537 * allowed nodes is unnecessary. Thus, cpusets are not 7538 * applicable for such threads. This prevents checking for 7539 * success of set_cpus_allowed_ptr() on all attached tasks 7540 * before cpus_mask may be changed. 7541 */ 7542 if (p->flags & PF_NO_SETAFFINITY) { 7543 ret = -EINVAL; 7544 goto out; 7545 } 7546 7547 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7548 cs_cpus_allowed)) 7549 ret = dl_task_can_attach(p, cs_cpus_allowed); 7550 7551 out: 7552 return ret; 7553 } 7554 7555 bool sched_smp_initialized __read_mostly; 7556 7557 #ifdef CONFIG_NUMA_BALANCING 7558 /* Migrate current task p to target_cpu */ 7559 int migrate_task_to(struct task_struct *p, int target_cpu) 7560 { 7561 struct migration_arg arg = { p, target_cpu }; 7562 int curr_cpu = task_cpu(p); 7563 7564 if (curr_cpu == target_cpu) 7565 return 0; 7566 7567 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7568 return -EINVAL; 7569 7570 /* TODO: This is not properly updating schedstats */ 7571 7572 trace_sched_move_numa(p, curr_cpu, target_cpu); 7573 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7574 } 7575 7576 /* 7577 * Requeue a task on a given node and accurately track the number of NUMA 7578 * tasks on the runqueues 7579 */ 7580 void sched_setnuma(struct task_struct *p, int nid) 7581 { 7582 bool queued, running; 7583 struct rq_flags rf; 7584 struct rq *rq; 7585 7586 rq = task_rq_lock(p, &rf); 7587 queued = task_on_rq_queued(p); 7588 running = task_current(rq, p); 7589 7590 if (queued) 7591 dequeue_task(rq, p, DEQUEUE_SAVE); 7592 if (running) 7593 put_prev_task(rq, p); 7594 7595 p->numa_preferred_nid = nid; 7596 7597 if (queued) 7598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7599 if (running) 7600 set_next_task(rq, p); 7601 task_rq_unlock(rq, p, &rf); 7602 } 7603 #endif /* CONFIG_NUMA_BALANCING */ 7604 7605 #ifdef CONFIG_HOTPLUG_CPU 7606 /* 7607 * Ensure that the idle task is using init_mm right before its CPU goes 7608 * offline. 7609 */ 7610 void idle_task_exit(void) 7611 { 7612 struct mm_struct *mm = current->active_mm; 7613 7614 BUG_ON(cpu_online(smp_processor_id())); 7615 BUG_ON(current != this_rq()->idle); 7616 7617 if (mm != &init_mm) { 7618 switch_mm(mm, &init_mm, current); 7619 finish_arch_post_lock_switch(); 7620 } 7621 7622 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7623 } 7624 7625 static int __balance_push_cpu_stop(void *arg) 7626 { 7627 struct task_struct *p = arg; 7628 struct rq *rq = this_rq(); 7629 struct rq_flags rf; 7630 int cpu; 7631 7632 raw_spin_lock_irq(&p->pi_lock); 7633 rq_lock(rq, &rf); 7634 7635 update_rq_clock(rq); 7636 7637 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7638 cpu = select_fallback_rq(rq->cpu, p); 7639 rq = __migrate_task(rq, &rf, p, cpu); 7640 } 7641 7642 rq_unlock(rq, &rf); 7643 raw_spin_unlock_irq(&p->pi_lock); 7644 7645 put_task_struct(p); 7646 7647 return 0; 7648 } 7649 7650 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7651 7652 /* 7653 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7654 */ 7655 static void balance_push(struct rq *rq) 7656 { 7657 struct task_struct *push_task = rq->curr; 7658 7659 lockdep_assert_held(&rq->lock); 7660 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7661 /* 7662 * Ensure the thing is persistent until balance_push_set(.on = false); 7663 */ 7664 rq->balance_callback = &balance_push_callback; 7665 7666 /* 7667 * Both the cpu-hotplug and stop task are in this case and are 7668 * required to complete the hotplug process. 7669 * 7670 * XXX: the idle task does not match kthread_is_per_cpu() due to 7671 * histerical raisins. 7672 */ 7673 if (rq->idle == push_task || 7674 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) || 7675 is_migration_disabled(push_task)) { 7676 7677 /* 7678 * If this is the idle task on the outgoing CPU try to wake 7679 * up the hotplug control thread which might wait for the 7680 * last task to vanish. The rcuwait_active() check is 7681 * accurate here because the waiter is pinned on this CPU 7682 * and can't obviously be running in parallel. 7683 * 7684 * On RT kernels this also has to check whether there are 7685 * pinned and scheduled out tasks on the runqueue. They 7686 * need to leave the migrate disabled section first. 7687 */ 7688 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7689 rcuwait_active(&rq->hotplug_wait)) { 7690 raw_spin_unlock(&rq->lock); 7691 rcuwait_wake_up(&rq->hotplug_wait); 7692 raw_spin_lock(&rq->lock); 7693 } 7694 return; 7695 } 7696 7697 get_task_struct(push_task); 7698 /* 7699 * Temporarily drop rq->lock such that we can wake-up the stop task. 7700 * Both preemption and IRQs are still disabled. 7701 */ 7702 raw_spin_unlock(&rq->lock); 7703 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7704 this_cpu_ptr(&push_work)); 7705 /* 7706 * At this point need_resched() is true and we'll take the loop in 7707 * schedule(). The next pick is obviously going to be the stop task 7708 * which kthread_is_per_cpu() and will push this task away. 7709 */ 7710 raw_spin_lock(&rq->lock); 7711 } 7712 7713 static void balance_push_set(int cpu, bool on) 7714 { 7715 struct rq *rq = cpu_rq(cpu); 7716 struct rq_flags rf; 7717 7718 rq_lock_irqsave(rq, &rf); 7719 rq->balance_push = on; 7720 if (on) { 7721 WARN_ON_ONCE(rq->balance_callback); 7722 rq->balance_callback = &balance_push_callback; 7723 } else if (rq->balance_callback == &balance_push_callback) { 7724 rq->balance_callback = NULL; 7725 } 7726 rq_unlock_irqrestore(rq, &rf); 7727 } 7728 7729 /* 7730 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7731 * inactive. All tasks which are not per CPU kernel threads are either 7732 * pushed off this CPU now via balance_push() or placed on a different CPU 7733 * during wakeup. Wait until the CPU is quiescent. 7734 */ 7735 static void balance_hotplug_wait(void) 7736 { 7737 struct rq *rq = this_rq(); 7738 7739 rcuwait_wait_event(&rq->hotplug_wait, 7740 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7741 TASK_UNINTERRUPTIBLE); 7742 } 7743 7744 #else 7745 7746 static inline void balance_push(struct rq *rq) 7747 { 7748 } 7749 7750 static inline void balance_push_set(int cpu, bool on) 7751 { 7752 } 7753 7754 static inline void balance_hotplug_wait(void) 7755 { 7756 } 7757 7758 #endif /* CONFIG_HOTPLUG_CPU */ 7759 7760 void set_rq_online(struct rq *rq) 7761 { 7762 if (!rq->online) { 7763 const struct sched_class *class; 7764 7765 cpumask_set_cpu(rq->cpu, rq->rd->online); 7766 rq->online = 1; 7767 7768 for_each_class(class) { 7769 if (class->rq_online) 7770 class->rq_online(rq); 7771 } 7772 } 7773 } 7774 7775 void set_rq_offline(struct rq *rq) 7776 { 7777 if (rq->online) { 7778 const struct sched_class *class; 7779 7780 for_each_class(class) { 7781 if (class->rq_offline) 7782 class->rq_offline(rq); 7783 } 7784 7785 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7786 rq->online = 0; 7787 } 7788 } 7789 7790 /* 7791 * used to mark begin/end of suspend/resume: 7792 */ 7793 static int num_cpus_frozen; 7794 7795 /* 7796 * Update cpusets according to cpu_active mask. If cpusets are 7797 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7798 * around partition_sched_domains(). 7799 * 7800 * If we come here as part of a suspend/resume, don't touch cpusets because we 7801 * want to restore it back to its original state upon resume anyway. 7802 */ 7803 static void cpuset_cpu_active(void) 7804 { 7805 if (cpuhp_tasks_frozen) { 7806 /* 7807 * num_cpus_frozen tracks how many CPUs are involved in suspend 7808 * resume sequence. As long as this is not the last online 7809 * operation in the resume sequence, just build a single sched 7810 * domain, ignoring cpusets. 7811 */ 7812 partition_sched_domains(1, NULL, NULL); 7813 if (--num_cpus_frozen) 7814 return; 7815 /* 7816 * This is the last CPU online operation. So fall through and 7817 * restore the original sched domains by considering the 7818 * cpuset configurations. 7819 */ 7820 cpuset_force_rebuild(); 7821 } 7822 cpuset_update_active_cpus(); 7823 } 7824 7825 static int cpuset_cpu_inactive(unsigned int cpu) 7826 { 7827 if (!cpuhp_tasks_frozen) { 7828 if (dl_cpu_busy(cpu)) 7829 return -EBUSY; 7830 cpuset_update_active_cpus(); 7831 } else { 7832 num_cpus_frozen++; 7833 partition_sched_domains(1, NULL, NULL); 7834 } 7835 return 0; 7836 } 7837 7838 int sched_cpu_activate(unsigned int cpu) 7839 { 7840 struct rq *rq = cpu_rq(cpu); 7841 struct rq_flags rf; 7842 7843 /* 7844 * Make sure that when the hotplug state machine does a roll-back 7845 * we clear balance_push. Ideally that would happen earlier... 7846 */ 7847 balance_push_set(cpu, false); 7848 7849 #ifdef CONFIG_SCHED_SMT 7850 /* 7851 * When going up, increment the number of cores with SMT present. 7852 */ 7853 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7854 static_branch_inc_cpuslocked(&sched_smt_present); 7855 #endif 7856 set_cpu_active(cpu, true); 7857 7858 if (sched_smp_initialized) { 7859 sched_domains_numa_masks_set(cpu); 7860 cpuset_cpu_active(); 7861 } 7862 7863 /* 7864 * Put the rq online, if not already. This happens: 7865 * 7866 * 1) In the early boot process, because we build the real domains 7867 * after all CPUs have been brought up. 7868 * 7869 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7870 * domains. 7871 */ 7872 rq_lock_irqsave(rq, &rf); 7873 if (rq->rd) { 7874 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7875 set_rq_online(rq); 7876 } 7877 rq_unlock_irqrestore(rq, &rf); 7878 7879 return 0; 7880 } 7881 7882 int sched_cpu_deactivate(unsigned int cpu) 7883 { 7884 struct rq *rq = cpu_rq(cpu); 7885 struct rq_flags rf; 7886 int ret; 7887 7888 /* 7889 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7890 * load balancing when not active 7891 */ 7892 nohz_balance_exit_idle(rq); 7893 7894 set_cpu_active(cpu, false); 7895 7896 /* 7897 * From this point forward, this CPU will refuse to run any task that 7898 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 7899 * push those tasks away until this gets cleared, see 7900 * sched_cpu_dying(). 7901 */ 7902 balance_push_set(cpu, true); 7903 7904 /* 7905 * We've cleared cpu_active_mask / set balance_push, wait for all 7906 * preempt-disabled and RCU users of this state to go away such that 7907 * all new such users will observe it. 7908 * 7909 * Specifically, we rely on ttwu to no longer target this CPU, see 7910 * ttwu_queue_cond() and is_cpu_allowed(). 7911 * 7912 * Do sync before park smpboot threads to take care the rcu boost case. 7913 */ 7914 synchronize_rcu(); 7915 7916 rq_lock_irqsave(rq, &rf); 7917 if (rq->rd) { 7918 update_rq_clock(rq); 7919 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7920 set_rq_offline(rq); 7921 } 7922 rq_unlock_irqrestore(rq, &rf); 7923 7924 #ifdef CONFIG_SCHED_SMT 7925 /* 7926 * When going down, decrement the number of cores with SMT present. 7927 */ 7928 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7929 static_branch_dec_cpuslocked(&sched_smt_present); 7930 #endif 7931 7932 if (!sched_smp_initialized) 7933 return 0; 7934 7935 ret = cpuset_cpu_inactive(cpu); 7936 if (ret) { 7937 balance_push_set(cpu, false); 7938 set_cpu_active(cpu, true); 7939 return ret; 7940 } 7941 sched_domains_numa_masks_clear(cpu); 7942 return 0; 7943 } 7944 7945 static void sched_rq_cpu_starting(unsigned int cpu) 7946 { 7947 struct rq *rq = cpu_rq(cpu); 7948 7949 rq->calc_load_update = calc_load_update; 7950 update_max_interval(); 7951 } 7952 7953 int sched_cpu_starting(unsigned int cpu) 7954 { 7955 sched_rq_cpu_starting(cpu); 7956 sched_tick_start(cpu); 7957 return 0; 7958 } 7959 7960 #ifdef CONFIG_HOTPLUG_CPU 7961 7962 /* 7963 * Invoked immediately before the stopper thread is invoked to bring the 7964 * CPU down completely. At this point all per CPU kthreads except the 7965 * hotplug thread (current) and the stopper thread (inactive) have been 7966 * either parked or have been unbound from the outgoing CPU. Ensure that 7967 * any of those which might be on the way out are gone. 7968 * 7969 * If after this point a bound task is being woken on this CPU then the 7970 * responsible hotplug callback has failed to do it's job. 7971 * sched_cpu_dying() will catch it with the appropriate fireworks. 7972 */ 7973 int sched_cpu_wait_empty(unsigned int cpu) 7974 { 7975 balance_hotplug_wait(); 7976 return 0; 7977 } 7978 7979 /* 7980 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7981 * might have. Called from the CPU stopper task after ensuring that the 7982 * stopper is the last running task on the CPU, so nr_active count is 7983 * stable. We need to take the teardown thread which is calling this into 7984 * account, so we hand in adjust = 1 to the load calculation. 7985 * 7986 * Also see the comment "Global load-average calculations". 7987 */ 7988 static void calc_load_migrate(struct rq *rq) 7989 { 7990 long delta = calc_load_fold_active(rq, 1); 7991 7992 if (delta) 7993 atomic_long_add(delta, &calc_load_tasks); 7994 } 7995 7996 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 7997 { 7998 struct task_struct *g, *p; 7999 int cpu = cpu_of(rq); 8000 8001 lockdep_assert_held(&rq->lock); 8002 8003 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8004 for_each_process_thread(g, p) { 8005 if (task_cpu(p) != cpu) 8006 continue; 8007 8008 if (!task_on_rq_queued(p)) 8009 continue; 8010 8011 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8012 } 8013 } 8014 8015 int sched_cpu_dying(unsigned int cpu) 8016 { 8017 struct rq *rq = cpu_rq(cpu); 8018 struct rq_flags rf; 8019 8020 /* Handle pending wakeups and then migrate everything off */ 8021 sched_tick_stop(cpu); 8022 8023 rq_lock_irqsave(rq, &rf); 8024 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8025 WARN(true, "Dying CPU not properly vacated!"); 8026 dump_rq_tasks(rq, KERN_WARNING); 8027 } 8028 rq_unlock_irqrestore(rq, &rf); 8029 8030 /* 8031 * Now that the CPU is offline, make sure we're welcome 8032 * to new tasks once we come back up. 8033 */ 8034 balance_push_set(cpu, false); 8035 8036 calc_load_migrate(rq); 8037 update_max_interval(); 8038 hrtick_clear(rq); 8039 return 0; 8040 } 8041 #endif 8042 8043 void __init sched_init_smp(void) 8044 { 8045 sched_init_numa(); 8046 8047 /* 8048 * There's no userspace yet to cause hotplug operations; hence all the 8049 * CPU masks are stable and all blatant races in the below code cannot 8050 * happen. 8051 */ 8052 mutex_lock(&sched_domains_mutex); 8053 sched_init_domains(cpu_active_mask); 8054 mutex_unlock(&sched_domains_mutex); 8055 8056 /* Move init over to a non-isolated CPU */ 8057 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8058 BUG(); 8059 sched_init_granularity(); 8060 8061 init_sched_rt_class(); 8062 init_sched_dl_class(); 8063 8064 sched_smp_initialized = true; 8065 } 8066 8067 static int __init migration_init(void) 8068 { 8069 sched_cpu_starting(smp_processor_id()); 8070 return 0; 8071 } 8072 early_initcall(migration_init); 8073 8074 #else 8075 void __init sched_init_smp(void) 8076 { 8077 sched_init_granularity(); 8078 } 8079 #endif /* CONFIG_SMP */ 8080 8081 int in_sched_functions(unsigned long addr) 8082 { 8083 return in_lock_functions(addr) || 8084 (addr >= (unsigned long)__sched_text_start 8085 && addr < (unsigned long)__sched_text_end); 8086 } 8087 8088 #ifdef CONFIG_CGROUP_SCHED 8089 /* 8090 * Default task group. 8091 * Every task in system belongs to this group at bootup. 8092 */ 8093 struct task_group root_task_group; 8094 LIST_HEAD(task_groups); 8095 8096 /* Cacheline aligned slab cache for task_group */ 8097 static struct kmem_cache *task_group_cache __read_mostly; 8098 #endif 8099 8100 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8101 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8102 8103 void __init sched_init(void) 8104 { 8105 unsigned long ptr = 0; 8106 int i; 8107 8108 /* Make sure the linker didn't screw up */ 8109 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8110 &fair_sched_class + 1 != &rt_sched_class || 8111 &rt_sched_class + 1 != &dl_sched_class); 8112 #ifdef CONFIG_SMP 8113 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8114 #endif 8115 8116 wait_bit_init(); 8117 8118 #ifdef CONFIG_FAIR_GROUP_SCHED 8119 ptr += 2 * nr_cpu_ids * sizeof(void **); 8120 #endif 8121 #ifdef CONFIG_RT_GROUP_SCHED 8122 ptr += 2 * nr_cpu_ids * sizeof(void **); 8123 #endif 8124 if (ptr) { 8125 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8126 8127 #ifdef CONFIG_FAIR_GROUP_SCHED 8128 root_task_group.se = (struct sched_entity **)ptr; 8129 ptr += nr_cpu_ids * sizeof(void **); 8130 8131 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8132 ptr += nr_cpu_ids * sizeof(void **); 8133 8134 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8135 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8136 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8137 #ifdef CONFIG_RT_GROUP_SCHED 8138 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8139 ptr += nr_cpu_ids * sizeof(void **); 8140 8141 root_task_group.rt_rq = (struct rt_rq **)ptr; 8142 ptr += nr_cpu_ids * sizeof(void **); 8143 8144 #endif /* CONFIG_RT_GROUP_SCHED */ 8145 } 8146 #ifdef CONFIG_CPUMASK_OFFSTACK 8147 for_each_possible_cpu(i) { 8148 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8149 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8150 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8151 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8152 } 8153 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8154 8155 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8156 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8157 8158 #ifdef CONFIG_SMP 8159 init_defrootdomain(); 8160 #endif 8161 8162 #ifdef CONFIG_RT_GROUP_SCHED 8163 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8164 global_rt_period(), global_rt_runtime()); 8165 #endif /* CONFIG_RT_GROUP_SCHED */ 8166 8167 #ifdef CONFIG_CGROUP_SCHED 8168 task_group_cache = KMEM_CACHE(task_group, 0); 8169 8170 list_add(&root_task_group.list, &task_groups); 8171 INIT_LIST_HEAD(&root_task_group.children); 8172 INIT_LIST_HEAD(&root_task_group.siblings); 8173 autogroup_init(&init_task); 8174 #endif /* CONFIG_CGROUP_SCHED */ 8175 8176 for_each_possible_cpu(i) { 8177 struct rq *rq; 8178 8179 rq = cpu_rq(i); 8180 raw_spin_lock_init(&rq->lock); 8181 rq->nr_running = 0; 8182 rq->calc_load_active = 0; 8183 rq->calc_load_update = jiffies + LOAD_FREQ; 8184 init_cfs_rq(&rq->cfs); 8185 init_rt_rq(&rq->rt); 8186 init_dl_rq(&rq->dl); 8187 #ifdef CONFIG_FAIR_GROUP_SCHED 8188 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8189 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8190 /* 8191 * How much CPU bandwidth does root_task_group get? 8192 * 8193 * In case of task-groups formed thr' the cgroup filesystem, it 8194 * gets 100% of the CPU resources in the system. This overall 8195 * system CPU resource is divided among the tasks of 8196 * root_task_group and its child task-groups in a fair manner, 8197 * based on each entity's (task or task-group's) weight 8198 * (se->load.weight). 8199 * 8200 * In other words, if root_task_group has 10 tasks of weight 8201 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8202 * then A0's share of the CPU resource is: 8203 * 8204 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8205 * 8206 * We achieve this by letting root_task_group's tasks sit 8207 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8208 */ 8209 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8210 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8211 8212 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8213 #ifdef CONFIG_RT_GROUP_SCHED 8214 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8215 #endif 8216 #ifdef CONFIG_SMP 8217 rq->sd = NULL; 8218 rq->rd = NULL; 8219 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 8220 rq->balance_callback = NULL; 8221 rq->active_balance = 0; 8222 rq->next_balance = jiffies; 8223 rq->push_cpu = 0; 8224 rq->cpu = i; 8225 rq->online = 0; 8226 rq->idle_stamp = 0; 8227 rq->avg_idle = 2*sysctl_sched_migration_cost; 8228 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8229 8230 INIT_LIST_HEAD(&rq->cfs_tasks); 8231 8232 rq_attach_root(rq, &def_root_domain); 8233 #ifdef CONFIG_NO_HZ_COMMON 8234 rq->last_blocked_load_update_tick = jiffies; 8235 atomic_set(&rq->nohz_flags, 0); 8236 8237 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8238 #endif 8239 #ifdef CONFIG_HOTPLUG_CPU 8240 rcuwait_init(&rq->hotplug_wait); 8241 #endif 8242 #endif /* CONFIG_SMP */ 8243 hrtick_rq_init(rq); 8244 atomic_set(&rq->nr_iowait, 0); 8245 } 8246 8247 set_load_weight(&init_task, false); 8248 8249 /* 8250 * The boot idle thread does lazy MMU switching as well: 8251 */ 8252 mmgrab(&init_mm); 8253 enter_lazy_tlb(&init_mm, current); 8254 8255 /* 8256 * Make us the idle thread. Technically, schedule() should not be 8257 * called from this thread, however somewhere below it might be, 8258 * but because we are the idle thread, we just pick up running again 8259 * when this runqueue becomes "idle". 8260 */ 8261 init_idle(current, smp_processor_id()); 8262 8263 calc_load_update = jiffies + LOAD_FREQ; 8264 8265 #ifdef CONFIG_SMP 8266 idle_thread_set_boot_cpu(); 8267 #endif 8268 init_sched_fair_class(); 8269 8270 init_schedstats(); 8271 8272 psi_init(); 8273 8274 init_uclamp(); 8275 8276 scheduler_running = 1; 8277 } 8278 8279 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8280 static inline int preempt_count_equals(int preempt_offset) 8281 { 8282 int nested = preempt_count() + rcu_preempt_depth(); 8283 8284 return (nested == preempt_offset); 8285 } 8286 8287 void __might_sleep(const char *file, int line, int preempt_offset) 8288 { 8289 /* 8290 * Blocking primitives will set (and therefore destroy) current->state, 8291 * since we will exit with TASK_RUNNING make sure we enter with it, 8292 * otherwise we will destroy state. 8293 */ 8294 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 8295 "do not call blocking ops when !TASK_RUNNING; " 8296 "state=%lx set at [<%p>] %pS\n", 8297 current->state, 8298 (void *)current->task_state_change, 8299 (void *)current->task_state_change); 8300 8301 ___might_sleep(file, line, preempt_offset); 8302 } 8303 EXPORT_SYMBOL(__might_sleep); 8304 8305 void ___might_sleep(const char *file, int line, int preempt_offset) 8306 { 8307 /* Ratelimiting timestamp: */ 8308 static unsigned long prev_jiffy; 8309 8310 unsigned long preempt_disable_ip; 8311 8312 /* WARN_ON_ONCE() by default, no rate limit required: */ 8313 rcu_sleep_check(); 8314 8315 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 8316 !is_idle_task(current) && !current->non_block_count) || 8317 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8318 oops_in_progress) 8319 return; 8320 8321 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8322 return; 8323 prev_jiffy = jiffies; 8324 8325 /* Save this before calling printk(), since that will clobber it: */ 8326 preempt_disable_ip = get_preempt_disable_ip(current); 8327 8328 printk(KERN_ERR 8329 "BUG: sleeping function called from invalid context at %s:%d\n", 8330 file, line); 8331 printk(KERN_ERR 8332 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8333 in_atomic(), irqs_disabled(), current->non_block_count, 8334 current->pid, current->comm); 8335 8336 if (task_stack_end_corrupted(current)) 8337 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 8338 8339 debug_show_held_locks(current); 8340 if (irqs_disabled()) 8341 print_irqtrace_events(current); 8342 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 8343 && !preempt_count_equals(preempt_offset)) { 8344 pr_err("Preemption disabled at:"); 8345 print_ip_sym(KERN_ERR, preempt_disable_ip); 8346 } 8347 dump_stack(); 8348 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8349 } 8350 EXPORT_SYMBOL(___might_sleep); 8351 8352 void __cant_sleep(const char *file, int line, int preempt_offset) 8353 { 8354 static unsigned long prev_jiffy; 8355 8356 if (irqs_disabled()) 8357 return; 8358 8359 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8360 return; 8361 8362 if (preempt_count() > preempt_offset) 8363 return; 8364 8365 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8366 return; 8367 prev_jiffy = jiffies; 8368 8369 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8370 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8371 in_atomic(), irqs_disabled(), 8372 current->pid, current->comm); 8373 8374 debug_show_held_locks(current); 8375 dump_stack(); 8376 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8377 } 8378 EXPORT_SYMBOL_GPL(__cant_sleep); 8379 8380 #ifdef CONFIG_SMP 8381 void __cant_migrate(const char *file, int line) 8382 { 8383 static unsigned long prev_jiffy; 8384 8385 if (irqs_disabled()) 8386 return; 8387 8388 if (is_migration_disabled(current)) 8389 return; 8390 8391 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8392 return; 8393 8394 if (preempt_count() > 0) 8395 return; 8396 8397 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8398 return; 8399 prev_jiffy = jiffies; 8400 8401 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8402 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8403 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8404 current->pid, current->comm); 8405 8406 debug_show_held_locks(current); 8407 dump_stack(); 8408 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8409 } 8410 EXPORT_SYMBOL_GPL(__cant_migrate); 8411 #endif 8412 #endif 8413 8414 #ifdef CONFIG_MAGIC_SYSRQ 8415 void normalize_rt_tasks(void) 8416 { 8417 struct task_struct *g, *p; 8418 struct sched_attr attr = { 8419 .sched_policy = SCHED_NORMAL, 8420 }; 8421 8422 read_lock(&tasklist_lock); 8423 for_each_process_thread(g, p) { 8424 /* 8425 * Only normalize user tasks: 8426 */ 8427 if (p->flags & PF_KTHREAD) 8428 continue; 8429 8430 p->se.exec_start = 0; 8431 schedstat_set(p->se.statistics.wait_start, 0); 8432 schedstat_set(p->se.statistics.sleep_start, 0); 8433 schedstat_set(p->se.statistics.block_start, 0); 8434 8435 if (!dl_task(p) && !rt_task(p)) { 8436 /* 8437 * Renice negative nice level userspace 8438 * tasks back to 0: 8439 */ 8440 if (task_nice(p) < 0) 8441 set_user_nice(p, 0); 8442 continue; 8443 } 8444 8445 __sched_setscheduler(p, &attr, false, false); 8446 } 8447 read_unlock(&tasklist_lock); 8448 } 8449 8450 #endif /* CONFIG_MAGIC_SYSRQ */ 8451 8452 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8453 /* 8454 * These functions are only useful for the IA64 MCA handling, or kdb. 8455 * 8456 * They can only be called when the whole system has been 8457 * stopped - every CPU needs to be quiescent, and no scheduling 8458 * activity can take place. Using them for anything else would 8459 * be a serious bug, and as a result, they aren't even visible 8460 * under any other configuration. 8461 */ 8462 8463 /** 8464 * curr_task - return the current task for a given CPU. 8465 * @cpu: the processor in question. 8466 * 8467 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8468 * 8469 * Return: The current task for @cpu. 8470 */ 8471 struct task_struct *curr_task(int cpu) 8472 { 8473 return cpu_curr(cpu); 8474 } 8475 8476 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8477 8478 #ifdef CONFIG_IA64 8479 /** 8480 * ia64_set_curr_task - set the current task for a given CPU. 8481 * @cpu: the processor in question. 8482 * @p: the task pointer to set. 8483 * 8484 * Description: This function must only be used when non-maskable interrupts 8485 * are serviced on a separate stack. It allows the architecture to switch the 8486 * notion of the current task on a CPU in a non-blocking manner. This function 8487 * must be called with all CPU's synchronized, and interrupts disabled, the 8488 * and caller must save the original value of the current task (see 8489 * curr_task() above) and restore that value before reenabling interrupts and 8490 * re-starting the system. 8491 * 8492 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8493 */ 8494 void ia64_set_curr_task(int cpu, struct task_struct *p) 8495 { 8496 cpu_curr(cpu) = p; 8497 } 8498 8499 #endif 8500 8501 #ifdef CONFIG_CGROUP_SCHED 8502 /* task_group_lock serializes the addition/removal of task groups */ 8503 static DEFINE_SPINLOCK(task_group_lock); 8504 8505 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8506 struct task_group *parent) 8507 { 8508 #ifdef CONFIG_UCLAMP_TASK_GROUP 8509 enum uclamp_id clamp_id; 8510 8511 for_each_clamp_id(clamp_id) { 8512 uclamp_se_set(&tg->uclamp_req[clamp_id], 8513 uclamp_none(clamp_id), false); 8514 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8515 } 8516 #endif 8517 } 8518 8519 static void sched_free_group(struct task_group *tg) 8520 { 8521 free_fair_sched_group(tg); 8522 free_rt_sched_group(tg); 8523 autogroup_free(tg); 8524 kmem_cache_free(task_group_cache, tg); 8525 } 8526 8527 /* allocate runqueue etc for a new task group */ 8528 struct task_group *sched_create_group(struct task_group *parent) 8529 { 8530 struct task_group *tg; 8531 8532 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8533 if (!tg) 8534 return ERR_PTR(-ENOMEM); 8535 8536 if (!alloc_fair_sched_group(tg, parent)) 8537 goto err; 8538 8539 if (!alloc_rt_sched_group(tg, parent)) 8540 goto err; 8541 8542 alloc_uclamp_sched_group(tg, parent); 8543 8544 return tg; 8545 8546 err: 8547 sched_free_group(tg); 8548 return ERR_PTR(-ENOMEM); 8549 } 8550 8551 void sched_online_group(struct task_group *tg, struct task_group *parent) 8552 { 8553 unsigned long flags; 8554 8555 spin_lock_irqsave(&task_group_lock, flags); 8556 list_add_rcu(&tg->list, &task_groups); 8557 8558 /* Root should already exist: */ 8559 WARN_ON(!parent); 8560 8561 tg->parent = parent; 8562 INIT_LIST_HEAD(&tg->children); 8563 list_add_rcu(&tg->siblings, &parent->children); 8564 spin_unlock_irqrestore(&task_group_lock, flags); 8565 8566 online_fair_sched_group(tg); 8567 } 8568 8569 /* rcu callback to free various structures associated with a task group */ 8570 static void sched_free_group_rcu(struct rcu_head *rhp) 8571 { 8572 /* Now it should be safe to free those cfs_rqs: */ 8573 sched_free_group(container_of(rhp, struct task_group, rcu)); 8574 } 8575 8576 void sched_destroy_group(struct task_group *tg) 8577 { 8578 /* Wait for possible concurrent references to cfs_rqs complete: */ 8579 call_rcu(&tg->rcu, sched_free_group_rcu); 8580 } 8581 8582 void sched_offline_group(struct task_group *tg) 8583 { 8584 unsigned long flags; 8585 8586 /* End participation in shares distribution: */ 8587 unregister_fair_sched_group(tg); 8588 8589 spin_lock_irqsave(&task_group_lock, flags); 8590 list_del_rcu(&tg->list); 8591 list_del_rcu(&tg->siblings); 8592 spin_unlock_irqrestore(&task_group_lock, flags); 8593 } 8594 8595 static void sched_change_group(struct task_struct *tsk, int type) 8596 { 8597 struct task_group *tg; 8598 8599 /* 8600 * All callers are synchronized by task_rq_lock(); we do not use RCU 8601 * which is pointless here. Thus, we pass "true" to task_css_check() 8602 * to prevent lockdep warnings. 8603 */ 8604 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8605 struct task_group, css); 8606 tg = autogroup_task_group(tsk, tg); 8607 tsk->sched_task_group = tg; 8608 8609 #ifdef CONFIG_FAIR_GROUP_SCHED 8610 if (tsk->sched_class->task_change_group) 8611 tsk->sched_class->task_change_group(tsk, type); 8612 else 8613 #endif 8614 set_task_rq(tsk, task_cpu(tsk)); 8615 } 8616 8617 /* 8618 * Change task's runqueue when it moves between groups. 8619 * 8620 * The caller of this function should have put the task in its new group by 8621 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8622 * its new group. 8623 */ 8624 void sched_move_task(struct task_struct *tsk) 8625 { 8626 int queued, running, queue_flags = 8627 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8628 struct rq_flags rf; 8629 struct rq *rq; 8630 8631 rq = task_rq_lock(tsk, &rf); 8632 update_rq_clock(rq); 8633 8634 running = task_current(rq, tsk); 8635 queued = task_on_rq_queued(tsk); 8636 8637 if (queued) 8638 dequeue_task(rq, tsk, queue_flags); 8639 if (running) 8640 put_prev_task(rq, tsk); 8641 8642 sched_change_group(tsk, TASK_MOVE_GROUP); 8643 8644 if (queued) 8645 enqueue_task(rq, tsk, queue_flags); 8646 if (running) { 8647 set_next_task(rq, tsk); 8648 /* 8649 * After changing group, the running task may have joined a 8650 * throttled one but it's still the running task. Trigger a 8651 * resched to make sure that task can still run. 8652 */ 8653 resched_curr(rq); 8654 } 8655 8656 task_rq_unlock(rq, tsk, &rf); 8657 } 8658 8659 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8660 { 8661 return css ? container_of(css, struct task_group, css) : NULL; 8662 } 8663 8664 static struct cgroup_subsys_state * 8665 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8666 { 8667 struct task_group *parent = css_tg(parent_css); 8668 struct task_group *tg; 8669 8670 if (!parent) { 8671 /* This is early initialization for the top cgroup */ 8672 return &root_task_group.css; 8673 } 8674 8675 tg = sched_create_group(parent); 8676 if (IS_ERR(tg)) 8677 return ERR_PTR(-ENOMEM); 8678 8679 return &tg->css; 8680 } 8681 8682 /* Expose task group only after completing cgroup initialization */ 8683 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8684 { 8685 struct task_group *tg = css_tg(css); 8686 struct task_group *parent = css_tg(css->parent); 8687 8688 if (parent) 8689 sched_online_group(tg, parent); 8690 8691 #ifdef CONFIG_UCLAMP_TASK_GROUP 8692 /* Propagate the effective uclamp value for the new group */ 8693 cpu_util_update_eff(css); 8694 #endif 8695 8696 return 0; 8697 } 8698 8699 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8700 { 8701 struct task_group *tg = css_tg(css); 8702 8703 sched_offline_group(tg); 8704 } 8705 8706 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8707 { 8708 struct task_group *tg = css_tg(css); 8709 8710 /* 8711 * Relies on the RCU grace period between css_released() and this. 8712 */ 8713 sched_free_group(tg); 8714 } 8715 8716 /* 8717 * This is called before wake_up_new_task(), therefore we really only 8718 * have to set its group bits, all the other stuff does not apply. 8719 */ 8720 static void cpu_cgroup_fork(struct task_struct *task) 8721 { 8722 struct rq_flags rf; 8723 struct rq *rq; 8724 8725 rq = task_rq_lock(task, &rf); 8726 8727 update_rq_clock(rq); 8728 sched_change_group(task, TASK_SET_GROUP); 8729 8730 task_rq_unlock(rq, task, &rf); 8731 } 8732 8733 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8734 { 8735 struct task_struct *task; 8736 struct cgroup_subsys_state *css; 8737 int ret = 0; 8738 8739 cgroup_taskset_for_each(task, css, tset) { 8740 #ifdef CONFIG_RT_GROUP_SCHED 8741 if (!sched_rt_can_attach(css_tg(css), task)) 8742 return -EINVAL; 8743 #endif 8744 /* 8745 * Serialize against wake_up_new_task() such that if it's 8746 * running, we're sure to observe its full state. 8747 */ 8748 raw_spin_lock_irq(&task->pi_lock); 8749 /* 8750 * Avoid calling sched_move_task() before wake_up_new_task() 8751 * has happened. This would lead to problems with PELT, due to 8752 * move wanting to detach+attach while we're not attached yet. 8753 */ 8754 if (task->state == TASK_NEW) 8755 ret = -EINVAL; 8756 raw_spin_unlock_irq(&task->pi_lock); 8757 8758 if (ret) 8759 break; 8760 } 8761 return ret; 8762 } 8763 8764 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8765 { 8766 struct task_struct *task; 8767 struct cgroup_subsys_state *css; 8768 8769 cgroup_taskset_for_each(task, css, tset) 8770 sched_move_task(task); 8771 } 8772 8773 #ifdef CONFIG_UCLAMP_TASK_GROUP 8774 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8775 { 8776 struct cgroup_subsys_state *top_css = css; 8777 struct uclamp_se *uc_parent = NULL; 8778 struct uclamp_se *uc_se = NULL; 8779 unsigned int eff[UCLAMP_CNT]; 8780 enum uclamp_id clamp_id; 8781 unsigned int clamps; 8782 8783 css_for_each_descendant_pre(css, top_css) { 8784 uc_parent = css_tg(css)->parent 8785 ? css_tg(css)->parent->uclamp : NULL; 8786 8787 for_each_clamp_id(clamp_id) { 8788 /* Assume effective clamps matches requested clamps */ 8789 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8790 /* Cap effective clamps with parent's effective clamps */ 8791 if (uc_parent && 8792 eff[clamp_id] > uc_parent[clamp_id].value) { 8793 eff[clamp_id] = uc_parent[clamp_id].value; 8794 } 8795 } 8796 /* Ensure protection is always capped by limit */ 8797 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8798 8799 /* Propagate most restrictive effective clamps */ 8800 clamps = 0x0; 8801 uc_se = css_tg(css)->uclamp; 8802 for_each_clamp_id(clamp_id) { 8803 if (eff[clamp_id] == uc_se[clamp_id].value) 8804 continue; 8805 uc_se[clamp_id].value = eff[clamp_id]; 8806 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8807 clamps |= (0x1 << clamp_id); 8808 } 8809 if (!clamps) { 8810 css = css_rightmost_descendant(css); 8811 continue; 8812 } 8813 8814 /* Immediately update descendants RUNNABLE tasks */ 8815 uclamp_update_active_tasks(css, clamps); 8816 } 8817 } 8818 8819 /* 8820 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8821 * C expression. Since there is no way to convert a macro argument (N) into a 8822 * character constant, use two levels of macros. 8823 */ 8824 #define _POW10(exp) ((unsigned int)1e##exp) 8825 #define POW10(exp) _POW10(exp) 8826 8827 struct uclamp_request { 8828 #define UCLAMP_PERCENT_SHIFT 2 8829 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8830 s64 percent; 8831 u64 util; 8832 int ret; 8833 }; 8834 8835 static inline struct uclamp_request 8836 capacity_from_percent(char *buf) 8837 { 8838 struct uclamp_request req = { 8839 .percent = UCLAMP_PERCENT_SCALE, 8840 .util = SCHED_CAPACITY_SCALE, 8841 .ret = 0, 8842 }; 8843 8844 buf = strim(buf); 8845 if (strcmp(buf, "max")) { 8846 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8847 &req.percent); 8848 if (req.ret) 8849 return req; 8850 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8851 req.ret = -ERANGE; 8852 return req; 8853 } 8854 8855 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8856 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8857 } 8858 8859 return req; 8860 } 8861 8862 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8863 size_t nbytes, loff_t off, 8864 enum uclamp_id clamp_id) 8865 { 8866 struct uclamp_request req; 8867 struct task_group *tg; 8868 8869 req = capacity_from_percent(buf); 8870 if (req.ret) 8871 return req.ret; 8872 8873 static_branch_enable(&sched_uclamp_used); 8874 8875 mutex_lock(&uclamp_mutex); 8876 rcu_read_lock(); 8877 8878 tg = css_tg(of_css(of)); 8879 if (tg->uclamp_req[clamp_id].value != req.util) 8880 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8881 8882 /* 8883 * Because of not recoverable conversion rounding we keep track of the 8884 * exact requested value 8885 */ 8886 tg->uclamp_pct[clamp_id] = req.percent; 8887 8888 /* Update effective clamps to track the most restrictive value */ 8889 cpu_util_update_eff(of_css(of)); 8890 8891 rcu_read_unlock(); 8892 mutex_unlock(&uclamp_mutex); 8893 8894 return nbytes; 8895 } 8896 8897 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8898 char *buf, size_t nbytes, 8899 loff_t off) 8900 { 8901 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8902 } 8903 8904 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8905 char *buf, size_t nbytes, 8906 loff_t off) 8907 { 8908 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8909 } 8910 8911 static inline void cpu_uclamp_print(struct seq_file *sf, 8912 enum uclamp_id clamp_id) 8913 { 8914 struct task_group *tg; 8915 u64 util_clamp; 8916 u64 percent; 8917 u32 rem; 8918 8919 rcu_read_lock(); 8920 tg = css_tg(seq_css(sf)); 8921 util_clamp = tg->uclamp_req[clamp_id].value; 8922 rcu_read_unlock(); 8923 8924 if (util_clamp == SCHED_CAPACITY_SCALE) { 8925 seq_puts(sf, "max\n"); 8926 return; 8927 } 8928 8929 percent = tg->uclamp_pct[clamp_id]; 8930 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8931 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8932 } 8933 8934 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8935 { 8936 cpu_uclamp_print(sf, UCLAMP_MIN); 8937 return 0; 8938 } 8939 8940 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8941 { 8942 cpu_uclamp_print(sf, UCLAMP_MAX); 8943 return 0; 8944 } 8945 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8946 8947 #ifdef CONFIG_FAIR_GROUP_SCHED 8948 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8949 struct cftype *cftype, u64 shareval) 8950 { 8951 if (shareval > scale_load_down(ULONG_MAX)) 8952 shareval = MAX_SHARES; 8953 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8954 } 8955 8956 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8957 struct cftype *cft) 8958 { 8959 struct task_group *tg = css_tg(css); 8960 8961 return (u64) scale_load_down(tg->shares); 8962 } 8963 8964 #ifdef CONFIG_CFS_BANDWIDTH 8965 static DEFINE_MUTEX(cfs_constraints_mutex); 8966 8967 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8968 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8969 /* More than 203 days if BW_SHIFT equals 20. */ 8970 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8971 8972 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8973 8974 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8975 { 8976 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8977 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8978 8979 if (tg == &root_task_group) 8980 return -EINVAL; 8981 8982 /* 8983 * Ensure we have at some amount of bandwidth every period. This is 8984 * to prevent reaching a state of large arrears when throttled via 8985 * entity_tick() resulting in prolonged exit starvation. 8986 */ 8987 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8988 return -EINVAL; 8989 8990 /* 8991 * Likewise, bound things on the otherside by preventing insane quota 8992 * periods. This also allows us to normalize in computing quota 8993 * feasibility. 8994 */ 8995 if (period > max_cfs_quota_period) 8996 return -EINVAL; 8997 8998 /* 8999 * Bound quota to defend quota against overflow during bandwidth shift. 9000 */ 9001 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9002 return -EINVAL; 9003 9004 /* 9005 * Prevent race between setting of cfs_rq->runtime_enabled and 9006 * unthrottle_offline_cfs_rqs(). 9007 */ 9008 get_online_cpus(); 9009 mutex_lock(&cfs_constraints_mutex); 9010 ret = __cfs_schedulable(tg, period, quota); 9011 if (ret) 9012 goto out_unlock; 9013 9014 runtime_enabled = quota != RUNTIME_INF; 9015 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9016 /* 9017 * If we need to toggle cfs_bandwidth_used, off->on must occur 9018 * before making related changes, and on->off must occur afterwards 9019 */ 9020 if (runtime_enabled && !runtime_was_enabled) 9021 cfs_bandwidth_usage_inc(); 9022 raw_spin_lock_irq(&cfs_b->lock); 9023 cfs_b->period = ns_to_ktime(period); 9024 cfs_b->quota = quota; 9025 9026 __refill_cfs_bandwidth_runtime(cfs_b); 9027 9028 /* Restart the period timer (if active) to handle new period expiry: */ 9029 if (runtime_enabled) 9030 start_cfs_bandwidth(cfs_b); 9031 9032 raw_spin_unlock_irq(&cfs_b->lock); 9033 9034 for_each_online_cpu(i) { 9035 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9036 struct rq *rq = cfs_rq->rq; 9037 struct rq_flags rf; 9038 9039 rq_lock_irq(rq, &rf); 9040 cfs_rq->runtime_enabled = runtime_enabled; 9041 cfs_rq->runtime_remaining = 0; 9042 9043 if (cfs_rq->throttled) 9044 unthrottle_cfs_rq(cfs_rq); 9045 rq_unlock_irq(rq, &rf); 9046 } 9047 if (runtime_was_enabled && !runtime_enabled) 9048 cfs_bandwidth_usage_dec(); 9049 out_unlock: 9050 mutex_unlock(&cfs_constraints_mutex); 9051 put_online_cpus(); 9052 9053 return ret; 9054 } 9055 9056 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9057 { 9058 u64 quota, period; 9059 9060 period = ktime_to_ns(tg->cfs_bandwidth.period); 9061 if (cfs_quota_us < 0) 9062 quota = RUNTIME_INF; 9063 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9064 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9065 else 9066 return -EINVAL; 9067 9068 return tg_set_cfs_bandwidth(tg, period, quota); 9069 } 9070 9071 static long tg_get_cfs_quota(struct task_group *tg) 9072 { 9073 u64 quota_us; 9074 9075 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9076 return -1; 9077 9078 quota_us = tg->cfs_bandwidth.quota; 9079 do_div(quota_us, NSEC_PER_USEC); 9080 9081 return quota_us; 9082 } 9083 9084 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9085 { 9086 u64 quota, period; 9087 9088 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9089 return -EINVAL; 9090 9091 period = (u64)cfs_period_us * NSEC_PER_USEC; 9092 quota = tg->cfs_bandwidth.quota; 9093 9094 return tg_set_cfs_bandwidth(tg, period, quota); 9095 } 9096 9097 static long tg_get_cfs_period(struct task_group *tg) 9098 { 9099 u64 cfs_period_us; 9100 9101 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9102 do_div(cfs_period_us, NSEC_PER_USEC); 9103 9104 return cfs_period_us; 9105 } 9106 9107 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9108 struct cftype *cft) 9109 { 9110 return tg_get_cfs_quota(css_tg(css)); 9111 } 9112 9113 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9114 struct cftype *cftype, s64 cfs_quota_us) 9115 { 9116 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9117 } 9118 9119 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9120 struct cftype *cft) 9121 { 9122 return tg_get_cfs_period(css_tg(css)); 9123 } 9124 9125 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9126 struct cftype *cftype, u64 cfs_period_us) 9127 { 9128 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9129 } 9130 9131 struct cfs_schedulable_data { 9132 struct task_group *tg; 9133 u64 period, quota; 9134 }; 9135 9136 /* 9137 * normalize group quota/period to be quota/max_period 9138 * note: units are usecs 9139 */ 9140 static u64 normalize_cfs_quota(struct task_group *tg, 9141 struct cfs_schedulable_data *d) 9142 { 9143 u64 quota, period; 9144 9145 if (tg == d->tg) { 9146 period = d->period; 9147 quota = d->quota; 9148 } else { 9149 period = tg_get_cfs_period(tg); 9150 quota = tg_get_cfs_quota(tg); 9151 } 9152 9153 /* note: these should typically be equivalent */ 9154 if (quota == RUNTIME_INF || quota == -1) 9155 return RUNTIME_INF; 9156 9157 return to_ratio(period, quota); 9158 } 9159 9160 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9161 { 9162 struct cfs_schedulable_data *d = data; 9163 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9164 s64 quota = 0, parent_quota = -1; 9165 9166 if (!tg->parent) { 9167 quota = RUNTIME_INF; 9168 } else { 9169 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9170 9171 quota = normalize_cfs_quota(tg, d); 9172 parent_quota = parent_b->hierarchical_quota; 9173 9174 /* 9175 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9176 * always take the min. On cgroup1, only inherit when no 9177 * limit is set: 9178 */ 9179 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9180 quota = min(quota, parent_quota); 9181 } else { 9182 if (quota == RUNTIME_INF) 9183 quota = parent_quota; 9184 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9185 return -EINVAL; 9186 } 9187 } 9188 cfs_b->hierarchical_quota = quota; 9189 9190 return 0; 9191 } 9192 9193 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9194 { 9195 int ret; 9196 struct cfs_schedulable_data data = { 9197 .tg = tg, 9198 .period = period, 9199 .quota = quota, 9200 }; 9201 9202 if (quota != RUNTIME_INF) { 9203 do_div(data.period, NSEC_PER_USEC); 9204 do_div(data.quota, NSEC_PER_USEC); 9205 } 9206 9207 rcu_read_lock(); 9208 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9209 rcu_read_unlock(); 9210 9211 return ret; 9212 } 9213 9214 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9215 { 9216 struct task_group *tg = css_tg(seq_css(sf)); 9217 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9218 9219 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9220 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9221 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9222 9223 if (schedstat_enabled() && tg != &root_task_group) { 9224 u64 ws = 0; 9225 int i; 9226 9227 for_each_possible_cpu(i) 9228 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 9229 9230 seq_printf(sf, "wait_sum %llu\n", ws); 9231 } 9232 9233 return 0; 9234 } 9235 #endif /* CONFIG_CFS_BANDWIDTH */ 9236 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9237 9238 #ifdef CONFIG_RT_GROUP_SCHED 9239 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9240 struct cftype *cft, s64 val) 9241 { 9242 return sched_group_set_rt_runtime(css_tg(css), val); 9243 } 9244 9245 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9246 struct cftype *cft) 9247 { 9248 return sched_group_rt_runtime(css_tg(css)); 9249 } 9250 9251 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9252 struct cftype *cftype, u64 rt_period_us) 9253 { 9254 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9255 } 9256 9257 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9258 struct cftype *cft) 9259 { 9260 return sched_group_rt_period(css_tg(css)); 9261 } 9262 #endif /* CONFIG_RT_GROUP_SCHED */ 9263 9264 static struct cftype cpu_legacy_files[] = { 9265 #ifdef CONFIG_FAIR_GROUP_SCHED 9266 { 9267 .name = "shares", 9268 .read_u64 = cpu_shares_read_u64, 9269 .write_u64 = cpu_shares_write_u64, 9270 }, 9271 #endif 9272 #ifdef CONFIG_CFS_BANDWIDTH 9273 { 9274 .name = "cfs_quota_us", 9275 .read_s64 = cpu_cfs_quota_read_s64, 9276 .write_s64 = cpu_cfs_quota_write_s64, 9277 }, 9278 { 9279 .name = "cfs_period_us", 9280 .read_u64 = cpu_cfs_period_read_u64, 9281 .write_u64 = cpu_cfs_period_write_u64, 9282 }, 9283 { 9284 .name = "stat", 9285 .seq_show = cpu_cfs_stat_show, 9286 }, 9287 #endif 9288 #ifdef CONFIG_RT_GROUP_SCHED 9289 { 9290 .name = "rt_runtime_us", 9291 .read_s64 = cpu_rt_runtime_read, 9292 .write_s64 = cpu_rt_runtime_write, 9293 }, 9294 { 9295 .name = "rt_period_us", 9296 .read_u64 = cpu_rt_period_read_uint, 9297 .write_u64 = cpu_rt_period_write_uint, 9298 }, 9299 #endif 9300 #ifdef CONFIG_UCLAMP_TASK_GROUP 9301 { 9302 .name = "uclamp.min", 9303 .flags = CFTYPE_NOT_ON_ROOT, 9304 .seq_show = cpu_uclamp_min_show, 9305 .write = cpu_uclamp_min_write, 9306 }, 9307 { 9308 .name = "uclamp.max", 9309 .flags = CFTYPE_NOT_ON_ROOT, 9310 .seq_show = cpu_uclamp_max_show, 9311 .write = cpu_uclamp_max_write, 9312 }, 9313 #endif 9314 { } /* Terminate */ 9315 }; 9316 9317 static int cpu_extra_stat_show(struct seq_file *sf, 9318 struct cgroup_subsys_state *css) 9319 { 9320 #ifdef CONFIG_CFS_BANDWIDTH 9321 { 9322 struct task_group *tg = css_tg(css); 9323 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9324 u64 throttled_usec; 9325 9326 throttled_usec = cfs_b->throttled_time; 9327 do_div(throttled_usec, NSEC_PER_USEC); 9328 9329 seq_printf(sf, "nr_periods %d\n" 9330 "nr_throttled %d\n" 9331 "throttled_usec %llu\n", 9332 cfs_b->nr_periods, cfs_b->nr_throttled, 9333 throttled_usec); 9334 } 9335 #endif 9336 return 0; 9337 } 9338 9339 #ifdef CONFIG_FAIR_GROUP_SCHED 9340 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9341 struct cftype *cft) 9342 { 9343 struct task_group *tg = css_tg(css); 9344 u64 weight = scale_load_down(tg->shares); 9345 9346 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9347 } 9348 9349 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9350 struct cftype *cft, u64 weight) 9351 { 9352 /* 9353 * cgroup weight knobs should use the common MIN, DFL and MAX 9354 * values which are 1, 100 and 10000 respectively. While it loses 9355 * a bit of range on both ends, it maps pretty well onto the shares 9356 * value used by scheduler and the round-trip conversions preserve 9357 * the original value over the entire range. 9358 */ 9359 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9360 return -ERANGE; 9361 9362 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9363 9364 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9365 } 9366 9367 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9368 struct cftype *cft) 9369 { 9370 unsigned long weight = scale_load_down(css_tg(css)->shares); 9371 int last_delta = INT_MAX; 9372 int prio, delta; 9373 9374 /* find the closest nice value to the current weight */ 9375 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9376 delta = abs(sched_prio_to_weight[prio] - weight); 9377 if (delta >= last_delta) 9378 break; 9379 last_delta = delta; 9380 } 9381 9382 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9383 } 9384 9385 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9386 struct cftype *cft, s64 nice) 9387 { 9388 unsigned long weight; 9389 int idx; 9390 9391 if (nice < MIN_NICE || nice > MAX_NICE) 9392 return -ERANGE; 9393 9394 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9395 idx = array_index_nospec(idx, 40); 9396 weight = sched_prio_to_weight[idx]; 9397 9398 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9399 } 9400 #endif 9401 9402 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9403 long period, long quota) 9404 { 9405 if (quota < 0) 9406 seq_puts(sf, "max"); 9407 else 9408 seq_printf(sf, "%ld", quota); 9409 9410 seq_printf(sf, " %ld\n", period); 9411 } 9412 9413 /* caller should put the current value in *@periodp before calling */ 9414 static int __maybe_unused cpu_period_quota_parse(char *buf, 9415 u64 *periodp, u64 *quotap) 9416 { 9417 char tok[21]; /* U64_MAX */ 9418 9419 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9420 return -EINVAL; 9421 9422 *periodp *= NSEC_PER_USEC; 9423 9424 if (sscanf(tok, "%llu", quotap)) 9425 *quotap *= NSEC_PER_USEC; 9426 else if (!strcmp(tok, "max")) 9427 *quotap = RUNTIME_INF; 9428 else 9429 return -EINVAL; 9430 9431 return 0; 9432 } 9433 9434 #ifdef CONFIG_CFS_BANDWIDTH 9435 static int cpu_max_show(struct seq_file *sf, void *v) 9436 { 9437 struct task_group *tg = css_tg(seq_css(sf)); 9438 9439 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9440 return 0; 9441 } 9442 9443 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9444 char *buf, size_t nbytes, loff_t off) 9445 { 9446 struct task_group *tg = css_tg(of_css(of)); 9447 u64 period = tg_get_cfs_period(tg); 9448 u64 quota; 9449 int ret; 9450 9451 ret = cpu_period_quota_parse(buf, &period, "a); 9452 if (!ret) 9453 ret = tg_set_cfs_bandwidth(tg, period, quota); 9454 return ret ?: nbytes; 9455 } 9456 #endif 9457 9458 static struct cftype cpu_files[] = { 9459 #ifdef CONFIG_FAIR_GROUP_SCHED 9460 { 9461 .name = "weight", 9462 .flags = CFTYPE_NOT_ON_ROOT, 9463 .read_u64 = cpu_weight_read_u64, 9464 .write_u64 = cpu_weight_write_u64, 9465 }, 9466 { 9467 .name = "weight.nice", 9468 .flags = CFTYPE_NOT_ON_ROOT, 9469 .read_s64 = cpu_weight_nice_read_s64, 9470 .write_s64 = cpu_weight_nice_write_s64, 9471 }, 9472 #endif 9473 #ifdef CONFIG_CFS_BANDWIDTH 9474 { 9475 .name = "max", 9476 .flags = CFTYPE_NOT_ON_ROOT, 9477 .seq_show = cpu_max_show, 9478 .write = cpu_max_write, 9479 }, 9480 #endif 9481 #ifdef CONFIG_UCLAMP_TASK_GROUP 9482 { 9483 .name = "uclamp.min", 9484 .flags = CFTYPE_NOT_ON_ROOT, 9485 .seq_show = cpu_uclamp_min_show, 9486 .write = cpu_uclamp_min_write, 9487 }, 9488 { 9489 .name = "uclamp.max", 9490 .flags = CFTYPE_NOT_ON_ROOT, 9491 .seq_show = cpu_uclamp_max_show, 9492 .write = cpu_uclamp_max_write, 9493 }, 9494 #endif 9495 { } /* terminate */ 9496 }; 9497 9498 struct cgroup_subsys cpu_cgrp_subsys = { 9499 .css_alloc = cpu_cgroup_css_alloc, 9500 .css_online = cpu_cgroup_css_online, 9501 .css_released = cpu_cgroup_css_released, 9502 .css_free = cpu_cgroup_css_free, 9503 .css_extra_stat_show = cpu_extra_stat_show, 9504 .fork = cpu_cgroup_fork, 9505 .can_attach = cpu_cgroup_can_attach, 9506 .attach = cpu_cgroup_attach, 9507 .legacy_cftypes = cpu_legacy_files, 9508 .dfl_cftypes = cpu_files, 9509 .early_init = true, 9510 .threaded = true, 9511 }; 9512 9513 #endif /* CONFIG_CGROUP_SCHED */ 9514 9515 void dump_cpu_task(int cpu) 9516 { 9517 pr_info("Task dump for CPU %d:\n", cpu); 9518 sched_show_task(cpu_curr(cpu)); 9519 } 9520 9521 /* 9522 * Nice levels are multiplicative, with a gentle 10% change for every 9523 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9524 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9525 * that remained on nice 0. 9526 * 9527 * The "10% effect" is relative and cumulative: from _any_ nice level, 9528 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9529 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9530 * If a task goes up by ~10% and another task goes down by ~10% then 9531 * the relative distance between them is ~25%.) 9532 */ 9533 const int sched_prio_to_weight[40] = { 9534 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9535 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9536 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9537 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9538 /* 0 */ 1024, 820, 655, 526, 423, 9539 /* 5 */ 335, 272, 215, 172, 137, 9540 /* 10 */ 110, 87, 70, 56, 45, 9541 /* 15 */ 36, 29, 23, 18, 15, 9542 }; 9543 9544 /* 9545 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9546 * 9547 * In cases where the weight does not change often, we can use the 9548 * precalculated inverse to speed up arithmetics by turning divisions 9549 * into multiplications: 9550 */ 9551 const u32 sched_prio_to_wmult[40] = { 9552 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9553 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9554 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9555 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9556 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9557 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9558 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9559 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9560 }; 9561 9562 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9563 { 9564 trace_sched_update_nr_running_tp(rq, count); 9565 } 9566