xref: /openbmc/linux/kernel/sched/core.c (revision 8a6edb52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = rq->hrtick_time;
359 
360 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 	struct rq_flags rf;
370 
371 	rq_lock(rq, &rf);
372 	__hrtick_restart(rq);
373 	rq_unlock(rq, &rf);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	if (rq == this_rq())
394 		__hrtick_restart(rq);
395 	else
396 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
397 }
398 
399 #else
400 /*
401  * Called to set the hrtick timer state.
402  *
403  * called with rq->lock held and irqs disabled
404  */
405 void hrtick_start(struct rq *rq, u64 delay)
406 {
407 	/*
408 	 * Don't schedule slices shorter than 10000ns, that just
409 	 * doesn't make sense. Rely on vruntime for fairness.
410 	 */
411 	delay = max_t(u64, delay, 10000LL);
412 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
413 		      HRTIMER_MODE_REL_PINNED_HARD);
414 }
415 
416 #endif /* CONFIG_SMP */
417 
418 static void hrtick_rq_init(struct rq *rq)
419 {
420 #ifdef CONFIG_SMP
421 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
422 #endif
423 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
424 	rq->hrtick_timer.function = hrtick;
425 }
426 #else	/* CONFIG_SCHED_HRTICK */
427 static inline void hrtick_clear(struct rq *rq)
428 {
429 }
430 
431 static inline void hrtick_rq_init(struct rq *rq)
432 {
433 }
434 #endif	/* CONFIG_SCHED_HRTICK */
435 
436 /*
437  * cmpxchg based fetch_or, macro so it works for different integer types
438  */
439 #define fetch_or(ptr, mask)						\
440 	({								\
441 		typeof(ptr) _ptr = (ptr);				\
442 		typeof(mask) _mask = (mask);				\
443 		typeof(*_ptr) _old, _val = *_ptr;			\
444 									\
445 		for (;;) {						\
446 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
447 			if (_old == _val)				\
448 				break;					\
449 			_val = _old;					\
450 		}							\
451 	_old;								\
452 })
453 
454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
455 /*
456  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457  * this avoids any races wrt polling state changes and thereby avoids
458  * spurious IPIs.
459  */
460 static bool set_nr_and_not_polling(struct task_struct *p)
461 {
462 	struct thread_info *ti = task_thread_info(p);
463 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464 }
465 
466 /*
467  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468  *
469  * If this returns true, then the idle task promises to call
470  * sched_ttwu_pending() and reschedule soon.
471  */
472 static bool set_nr_if_polling(struct task_struct *p)
473 {
474 	struct thread_info *ti = task_thread_info(p);
475 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
476 
477 	for (;;) {
478 		if (!(val & _TIF_POLLING_NRFLAG))
479 			return false;
480 		if (val & _TIF_NEED_RESCHED)
481 			return true;
482 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 		if (old == val)
484 			break;
485 		val = old;
486 	}
487 	return true;
488 }
489 
490 #else
491 static bool set_nr_and_not_polling(struct task_struct *p)
492 {
493 	set_tsk_need_resched(p);
494 	return true;
495 }
496 
497 #ifdef CONFIG_SMP
498 static bool set_nr_if_polling(struct task_struct *p)
499 {
500 	return false;
501 }
502 #endif
503 #endif
504 
505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
506 {
507 	struct wake_q_node *node = &task->wake_q;
508 
509 	/*
510 	 * Atomically grab the task, if ->wake_q is !nil already it means
511 	 * it's already queued (either by us or someone else) and will get the
512 	 * wakeup due to that.
513 	 *
514 	 * In order to ensure that a pending wakeup will observe our pending
515 	 * state, even in the failed case, an explicit smp_mb() must be used.
516 	 */
517 	smp_mb__before_atomic();
518 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
519 		return false;
520 
521 	/*
522 	 * The head is context local, there can be no concurrency.
523 	 */
524 	*head->lastp = node;
525 	head->lastp = &node->next;
526 	return true;
527 }
528 
529 /**
530  * wake_q_add() - queue a wakeup for 'later' waking.
531  * @head: the wake_q_head to add @task to
532  * @task: the task to queue for 'later' wakeup
533  *
534  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536  * instantly.
537  *
538  * This function must be used as-if it were wake_up_process(); IOW the task
539  * must be ready to be woken at this location.
540  */
541 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542 {
543 	if (__wake_q_add(head, task))
544 		get_task_struct(task);
545 }
546 
547 /**
548  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549  * @head: the wake_q_head to add @task to
550  * @task: the task to queue for 'later' wakeup
551  *
552  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554  * instantly.
555  *
556  * This function must be used as-if it were wake_up_process(); IOW the task
557  * must be ready to be woken at this location.
558  *
559  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560  * that already hold reference to @task can call the 'safe' version and trust
561  * wake_q to do the right thing depending whether or not the @task is already
562  * queued for wakeup.
563  */
564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565 {
566 	if (!__wake_q_add(head, task))
567 		put_task_struct(task);
568 }
569 
570 void wake_up_q(struct wake_q_head *head)
571 {
572 	struct wake_q_node *node = head->first;
573 
574 	while (node != WAKE_Q_TAIL) {
575 		struct task_struct *task;
576 
577 		task = container_of(node, struct task_struct, wake_q);
578 		BUG_ON(!task);
579 		/* Task can safely be re-inserted now: */
580 		node = node->next;
581 		task->wake_q.next = NULL;
582 
583 		/*
584 		 * wake_up_process() executes a full barrier, which pairs with
585 		 * the queueing in wake_q_add() so as not to miss wakeups.
586 		 */
587 		wake_up_process(task);
588 		put_task_struct(task);
589 	}
590 }
591 
592 /*
593  * resched_curr - mark rq's current task 'to be rescheduled now'.
594  *
595  * On UP this means the setting of the need_resched flag, on SMP it
596  * might also involve a cross-CPU call to trigger the scheduler on
597  * the target CPU.
598  */
599 void resched_curr(struct rq *rq)
600 {
601 	struct task_struct *curr = rq->curr;
602 	int cpu;
603 
604 	lockdep_assert_held(&rq->lock);
605 
606 	if (test_tsk_need_resched(curr))
607 		return;
608 
609 	cpu = cpu_of(rq);
610 
611 	if (cpu == smp_processor_id()) {
612 		set_tsk_need_resched(curr);
613 		set_preempt_need_resched();
614 		return;
615 	}
616 
617 	if (set_nr_and_not_polling(curr))
618 		smp_send_reschedule(cpu);
619 	else
620 		trace_sched_wake_idle_without_ipi(cpu);
621 }
622 
623 void resched_cpu(int cpu)
624 {
625 	struct rq *rq = cpu_rq(cpu);
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&rq->lock, flags);
629 	if (cpu_online(cpu) || cpu == smp_processor_id())
630 		resched_curr(rq);
631 	raw_spin_unlock_irqrestore(&rq->lock, flags);
632 }
633 
634 #ifdef CONFIG_SMP
635 #ifdef CONFIG_NO_HZ_COMMON
636 /*
637  * In the semi idle case, use the nearest busy CPU for migrating timers
638  * from an idle CPU.  This is good for power-savings.
639  *
640  * We don't do similar optimization for completely idle system, as
641  * selecting an idle CPU will add more delays to the timers than intended
642  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
643  */
644 int get_nohz_timer_target(void)
645 {
646 	int i, cpu = smp_processor_id(), default_cpu = -1;
647 	struct sched_domain *sd;
648 
649 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 		if (!idle_cpu(cpu))
651 			return cpu;
652 		default_cpu = cpu;
653 	}
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu_and(i, sched_domain_span(sd),
658 			housekeeping_cpumask(HK_FLAG_TIMER)) {
659 			if (cpu == i)
660 				continue;
661 
662 			if (!idle_cpu(i)) {
663 				cpu = i;
664 				goto unlock;
665 			}
666 		}
667 	}
668 
669 	if (default_cpu == -1)
670 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 	cpu = default_cpu;
672 unlock:
673 	rcu_read_unlock();
674 	return cpu;
675 }
676 
677 /*
678  * When add_timer_on() enqueues a timer into the timer wheel of an
679  * idle CPU then this timer might expire before the next timer event
680  * which is scheduled to wake up that CPU. In case of a completely
681  * idle system the next event might even be infinite time into the
682  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683  * leaves the inner idle loop so the newly added timer is taken into
684  * account when the CPU goes back to idle and evaluates the timer
685  * wheel for the next timer event.
686  */
687 static void wake_up_idle_cpu(int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 
691 	if (cpu == smp_processor_id())
692 		return;
693 
694 	if (set_nr_and_not_polling(rq->idle))
695 		smp_send_reschedule(cpu);
696 	else
697 		trace_sched_wake_idle_without_ipi(cpu);
698 }
699 
700 static bool wake_up_full_nohz_cpu(int cpu)
701 {
702 	/*
703 	 * We just need the target to call irq_exit() and re-evaluate
704 	 * the next tick. The nohz full kick at least implies that.
705 	 * If needed we can still optimize that later with an
706 	 * empty IRQ.
707 	 */
708 	if (cpu_is_offline(cpu))
709 		return true;  /* Don't try to wake offline CPUs. */
710 	if (tick_nohz_full_cpu(cpu)) {
711 		if (cpu != smp_processor_id() ||
712 		    tick_nohz_tick_stopped())
713 			tick_nohz_full_kick_cpu(cpu);
714 		return true;
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Wake up the specified CPU.  If the CPU is going offline, it is the
722  * caller's responsibility to deal with the lost wakeup, for example,
723  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724  */
725 void wake_up_nohz_cpu(int cpu)
726 {
727 	if (!wake_up_full_nohz_cpu(cpu))
728 		wake_up_idle_cpu(cpu);
729 }
730 
731 static void nohz_csd_func(void *info)
732 {
733 	struct rq *rq = info;
734 	int cpu = cpu_of(rq);
735 	unsigned int flags;
736 
737 	/*
738 	 * Release the rq::nohz_csd.
739 	 */
740 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 	WARN_ON(!(flags & NOHZ_KICK_MASK));
742 
743 	rq->idle_balance = idle_cpu(cpu);
744 	if (rq->idle_balance && !need_resched()) {
745 		rq->nohz_idle_balance = flags;
746 		raise_softirq_irqoff(SCHED_SOFTIRQ);
747 	}
748 }
749 
750 #endif /* CONFIG_NO_HZ_COMMON */
751 
752 #ifdef CONFIG_NO_HZ_FULL
753 bool sched_can_stop_tick(struct rq *rq)
754 {
755 	int fifo_nr_running;
756 
757 	/* Deadline tasks, even if single, need the tick */
758 	if (rq->dl.dl_nr_running)
759 		return false;
760 
761 	/*
762 	 * If there are more than one RR tasks, we need the tick to affect the
763 	 * actual RR behaviour.
764 	 */
765 	if (rq->rt.rr_nr_running) {
766 		if (rq->rt.rr_nr_running == 1)
767 			return true;
768 		else
769 			return false;
770 	}
771 
772 	/*
773 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 	 * forced preemption between FIFO tasks.
775 	 */
776 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 	if (fifo_nr_running)
778 		return true;
779 
780 	/*
781 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 	 * if there's more than one we need the tick for involuntary
783 	 * preemption.
784 	 */
785 	if (rq->nr_running > 1)
786 		return false;
787 
788 	return true;
789 }
790 #endif /* CONFIG_NO_HZ_FULL */
791 #endif /* CONFIG_SMP */
792 
793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
795 /*
796  * Iterate task_group tree rooted at *from, calling @down when first entering a
797  * node and @up when leaving it for the final time.
798  *
799  * Caller must hold rcu_lock or sufficient equivalent.
800  */
801 int walk_tg_tree_from(struct task_group *from,
802 			     tg_visitor down, tg_visitor up, void *data)
803 {
804 	struct task_group *parent, *child;
805 	int ret;
806 
807 	parent = from;
808 
809 down:
810 	ret = (*down)(parent, data);
811 	if (ret)
812 		goto out;
813 	list_for_each_entry_rcu(child, &parent->children, siblings) {
814 		parent = child;
815 		goto down;
816 
817 up:
818 		continue;
819 	}
820 	ret = (*up)(parent, data);
821 	if (ret || parent == from)
822 		goto out;
823 
824 	child = parent;
825 	parent = parent->parent;
826 	if (parent)
827 		goto up;
828 out:
829 	return ret;
830 }
831 
832 int tg_nop(struct task_group *tg, void *data)
833 {
834 	return 0;
835 }
836 #endif
837 
838 static void set_load_weight(struct task_struct *p, bool update_load)
839 {
840 	int prio = p->static_prio - MAX_RT_PRIO;
841 	struct load_weight *load = &p->se.load;
842 
843 	/*
844 	 * SCHED_IDLE tasks get minimal weight:
845 	 */
846 	if (task_has_idle_policy(p)) {
847 		load->weight = scale_load(WEIGHT_IDLEPRIO);
848 		load->inv_weight = WMULT_IDLEPRIO;
849 		return;
850 	}
851 
852 	/*
853 	 * SCHED_OTHER tasks have to update their load when changing their
854 	 * weight
855 	 */
856 	if (update_load && p->sched_class == &fair_sched_class) {
857 		reweight_task(p, prio);
858 	} else {
859 		load->weight = scale_load(sched_prio_to_weight[prio]);
860 		load->inv_weight = sched_prio_to_wmult[prio];
861 	}
862 }
863 
864 #ifdef CONFIG_UCLAMP_TASK
865 /*
866  * Serializes updates of utilization clamp values
867  *
868  * The (slow-path) user-space triggers utilization clamp value updates which
869  * can require updates on (fast-path) scheduler's data structures used to
870  * support enqueue/dequeue operations.
871  * While the per-CPU rq lock protects fast-path update operations, user-space
872  * requests are serialized using a mutex to reduce the risk of conflicting
873  * updates or API abuses.
874  */
875 static DEFINE_MUTEX(uclamp_mutex);
876 
877 /* Max allowed minimum utilization */
878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879 
880 /* Max allowed maximum utilization */
881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882 
883 /*
884  * By default RT tasks run at the maximum performance point/capacity of the
885  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886  * SCHED_CAPACITY_SCALE.
887  *
888  * This knob allows admins to change the default behavior when uclamp is being
889  * used. In battery powered devices, particularly, running at the maximum
890  * capacity and frequency will increase energy consumption and shorten the
891  * battery life.
892  *
893  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894  *
895  * This knob will not override the system default sched_util_clamp_min defined
896  * above.
897  */
898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899 
900 /* All clamps are required to be less or equal than these values */
901 static struct uclamp_se uclamp_default[UCLAMP_CNT];
902 
903 /*
904  * This static key is used to reduce the uclamp overhead in the fast path. It
905  * primarily disables the call to uclamp_rq_{inc, dec}() in
906  * enqueue/dequeue_task().
907  *
908  * This allows users to continue to enable uclamp in their kernel config with
909  * minimum uclamp overhead in the fast path.
910  *
911  * As soon as userspace modifies any of the uclamp knobs, the static key is
912  * enabled, since we have an actual users that make use of uclamp
913  * functionality.
914  *
915  * The knobs that would enable this static key are:
916  *
917  *   * A task modifying its uclamp value with sched_setattr().
918  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
920  */
921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922 
923 /* Integer rounded range for each bucket */
924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925 
926 #define for_each_clamp_id(clamp_id) \
927 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928 
929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930 {
931 	return clamp_value / UCLAMP_BUCKET_DELTA;
932 }
933 
934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
935 {
936 	if (clamp_id == UCLAMP_MIN)
937 		return 0;
938 	return SCHED_CAPACITY_SCALE;
939 }
940 
941 static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 				 unsigned int value, bool user_defined)
943 {
944 	uc_se->value = value;
945 	uc_se->bucket_id = uclamp_bucket_id(value);
946 	uc_se->user_defined = user_defined;
947 }
948 
949 static inline unsigned int
950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
951 		  unsigned int clamp_value)
952 {
953 	/*
954 	 * Avoid blocked utilization pushing up the frequency when we go
955 	 * idle (which drops the max-clamp) by retaining the last known
956 	 * max-clamp.
957 	 */
958 	if (clamp_id == UCLAMP_MAX) {
959 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 		return clamp_value;
961 	}
962 
963 	return uclamp_none(UCLAMP_MIN);
964 }
965 
966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
967 				     unsigned int clamp_value)
968 {
969 	/* Reset max-clamp retention only on idle exit */
970 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 		return;
972 
973 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974 }
975 
976 static inline
977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
978 				   unsigned int clamp_value)
979 {
980 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 	int bucket_id = UCLAMP_BUCKETS - 1;
982 
983 	/*
984 	 * Since both min and max clamps are max aggregated, find the
985 	 * top most bucket with tasks in.
986 	 */
987 	for ( ; bucket_id >= 0; bucket_id--) {
988 		if (!bucket[bucket_id].tasks)
989 			continue;
990 		return bucket[bucket_id].value;
991 	}
992 
993 	/* No tasks -- default clamp values */
994 	return uclamp_idle_value(rq, clamp_id, clamp_value);
995 }
996 
997 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998 {
999 	unsigned int default_util_min;
1000 	struct uclamp_se *uc_se;
1001 
1002 	lockdep_assert_held(&p->pi_lock);
1003 
1004 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1005 
1006 	/* Only sync if user didn't override the default */
1007 	if (uc_se->user_defined)
1008 		return;
1009 
1010 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 	uclamp_se_set(uc_se, default_util_min, false);
1012 }
1013 
1014 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015 {
1016 	struct rq_flags rf;
1017 	struct rq *rq;
1018 
1019 	if (!rt_task(p))
1020 		return;
1021 
1022 	/* Protect updates to p->uclamp_* */
1023 	rq = task_rq_lock(p, &rf);
1024 	__uclamp_update_util_min_rt_default(p);
1025 	task_rq_unlock(rq, p, &rf);
1026 }
1027 
1028 static void uclamp_sync_util_min_rt_default(void)
1029 {
1030 	struct task_struct *g, *p;
1031 
1032 	/*
1033 	 * copy_process()			sysctl_uclamp
1034 	 *					  uclamp_min_rt = X;
1035 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1036 	 *   // link thread			  smp_mb__after_spinlock()
1037 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1038 	 *   sched_post_fork()			  for_each_process_thread()
1039 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1040 	 *
1041 	 * Ensures that either sched_post_fork() will observe the new
1042 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 	 * task.
1044 	 */
1045 	read_lock(&tasklist_lock);
1046 	smp_mb__after_spinlock();
1047 	read_unlock(&tasklist_lock);
1048 
1049 	rcu_read_lock();
1050 	for_each_process_thread(g, p)
1051 		uclamp_update_util_min_rt_default(p);
1052 	rcu_read_unlock();
1053 }
1054 
1055 static inline struct uclamp_se
1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1057 {
1058 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059 #ifdef CONFIG_UCLAMP_TASK_GROUP
1060 	struct uclamp_se uc_max;
1061 
1062 	/*
1063 	 * Tasks in autogroups or root task group will be
1064 	 * restricted by system defaults.
1065 	 */
1066 	if (task_group_is_autogroup(task_group(p)))
1067 		return uc_req;
1068 	if (task_group(p) == &root_task_group)
1069 		return uc_req;
1070 
1071 	uc_max = task_group(p)->uclamp[clamp_id];
1072 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 		return uc_max;
1074 #endif
1075 
1076 	return uc_req;
1077 }
1078 
1079 /*
1080  * The effective clamp bucket index of a task depends on, by increasing
1081  * priority:
1082  * - the task specific clamp value, when explicitly requested from userspace
1083  * - the task group effective clamp value, for tasks not either in the root
1084  *   group or in an autogroup
1085  * - the system default clamp value, defined by the sysadmin
1086  */
1087 static inline struct uclamp_se
1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1089 {
1090 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1091 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1092 
1093 	/* System default restrictions always apply */
1094 	if (unlikely(uc_req.value > uc_max.value))
1095 		return uc_max;
1096 
1097 	return uc_req;
1098 }
1099 
1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1101 {
1102 	struct uclamp_se uc_eff;
1103 
1104 	/* Task currently refcounted: use back-annotated (effective) value */
1105 	if (p->uclamp[clamp_id].active)
1106 		return (unsigned long)p->uclamp[clamp_id].value;
1107 
1108 	uc_eff = uclamp_eff_get(p, clamp_id);
1109 
1110 	return (unsigned long)uc_eff.value;
1111 }
1112 
1113 /*
1114  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116  * updates the rq's clamp value if required.
1117  *
1118  * Tasks can have a task-specific value requested from user-space, track
1119  * within each bucket the maximum value for tasks refcounted in it.
1120  * This "local max aggregation" allows to track the exact "requested" value
1121  * for each bucket when all its RUNNABLE tasks require the same clamp.
1122  */
1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1124 				    enum uclamp_id clamp_id)
1125 {
1126 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 	struct uclamp_bucket *bucket;
1129 
1130 	lockdep_assert_held(&rq->lock);
1131 
1132 	/* Update task effective clamp */
1133 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134 
1135 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 	bucket->tasks++;
1137 	uc_se->active = true;
1138 
1139 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140 
1141 	/*
1142 	 * Local max aggregation: rq buckets always track the max
1143 	 * "requested" clamp value of its RUNNABLE tasks.
1144 	 */
1145 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 		bucket->value = uc_se->value;
1147 
1148 	if (uc_se->value > READ_ONCE(uc_rq->value))
1149 		WRITE_ONCE(uc_rq->value, uc_se->value);
1150 }
1151 
1152 /*
1153  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154  * is released. If this is the last task reference counting the rq's max
1155  * active clamp value, then the rq's clamp value is updated.
1156  *
1157  * Both refcounted tasks and rq's cached clamp values are expected to be
1158  * always valid. If it's detected they are not, as defensive programming,
1159  * enforce the expected state and warn.
1160  */
1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1162 				    enum uclamp_id clamp_id)
1163 {
1164 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 	struct uclamp_bucket *bucket;
1167 	unsigned int bkt_clamp;
1168 	unsigned int rq_clamp;
1169 
1170 	lockdep_assert_held(&rq->lock);
1171 
1172 	/*
1173 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 	 *
1176 	 * In this case the uc_se->active flag should be false since no uclamp
1177 	 * accounting was performed at enqueue time and we can just return
1178 	 * here.
1179 	 *
1180 	 * Need to be careful of the following enqueue/dequeue ordering
1181 	 * problem too
1182 	 *
1183 	 *	enqueue(taskA)
1184 	 *	// sched_uclamp_used gets enabled
1185 	 *	enqueue(taskB)
1186 	 *	dequeue(taskA)
1187 	 *	// Must not decrement bucket->tasks here
1188 	 *	dequeue(taskB)
1189 	 *
1190 	 * where we could end up with stale data in uc_se and
1191 	 * bucket[uc_se->bucket_id].
1192 	 *
1193 	 * The following check here eliminates the possibility of such race.
1194 	 */
1195 	if (unlikely(!uc_se->active))
1196 		return;
1197 
1198 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1199 
1200 	SCHED_WARN_ON(!bucket->tasks);
1201 	if (likely(bucket->tasks))
1202 		bucket->tasks--;
1203 
1204 	uc_se->active = false;
1205 
1206 	/*
1207 	 * Keep "local max aggregation" simple and accept to (possibly)
1208 	 * overboost some RUNNABLE tasks in the same bucket.
1209 	 * The rq clamp bucket value is reset to its base value whenever
1210 	 * there are no more RUNNABLE tasks refcounting it.
1211 	 */
1212 	if (likely(bucket->tasks))
1213 		return;
1214 
1215 	rq_clamp = READ_ONCE(uc_rq->value);
1216 	/*
1217 	 * Defensive programming: this should never happen. If it happens,
1218 	 * e.g. due to future modification, warn and fixup the expected value.
1219 	 */
1220 	SCHED_WARN_ON(bucket->value > rq_clamp);
1221 	if (bucket->value >= rq_clamp) {
1222 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 	}
1225 }
1226 
1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228 {
1229 	enum uclamp_id clamp_id;
1230 
1231 	/*
1232 	 * Avoid any overhead until uclamp is actually used by the userspace.
1233 	 *
1234 	 * The condition is constructed such that a NOP is generated when
1235 	 * sched_uclamp_used is disabled.
1236 	 */
1237 	if (!static_branch_unlikely(&sched_uclamp_used))
1238 		return;
1239 
1240 	if (unlikely(!p->sched_class->uclamp_enabled))
1241 		return;
1242 
1243 	for_each_clamp_id(clamp_id)
1244 		uclamp_rq_inc_id(rq, p, clamp_id);
1245 
1246 	/* Reset clamp idle holding when there is one RUNNABLE task */
1247 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1249 }
1250 
1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252 {
1253 	enum uclamp_id clamp_id;
1254 
1255 	/*
1256 	 * Avoid any overhead until uclamp is actually used by the userspace.
1257 	 *
1258 	 * The condition is constructed such that a NOP is generated when
1259 	 * sched_uclamp_used is disabled.
1260 	 */
1261 	if (!static_branch_unlikely(&sched_uclamp_used))
1262 		return;
1263 
1264 	if (unlikely(!p->sched_class->uclamp_enabled))
1265 		return;
1266 
1267 	for_each_clamp_id(clamp_id)
1268 		uclamp_rq_dec_id(rq, p, clamp_id);
1269 }
1270 
1271 static inline void
1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1273 {
1274 	struct rq_flags rf;
1275 	struct rq *rq;
1276 
1277 	/*
1278 	 * Lock the task and the rq where the task is (or was) queued.
1279 	 *
1280 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 	 * price to pay to safely serialize util_{min,max} updates with
1282 	 * enqueues, dequeues and migration operations.
1283 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 	 */
1285 	rq = task_rq_lock(p, &rf);
1286 
1287 	/*
1288 	 * Setting the clamp bucket is serialized by task_rq_lock().
1289 	 * If the task is not yet RUNNABLE and its task_struct is not
1290 	 * affecting a valid clamp bucket, the next time it's enqueued,
1291 	 * it will already see the updated clamp bucket value.
1292 	 */
1293 	if (p->uclamp[clamp_id].active) {
1294 		uclamp_rq_dec_id(rq, p, clamp_id);
1295 		uclamp_rq_inc_id(rq, p, clamp_id);
1296 	}
1297 
1298 	task_rq_unlock(rq, p, &rf);
1299 }
1300 
1301 #ifdef CONFIG_UCLAMP_TASK_GROUP
1302 static inline void
1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 			   unsigned int clamps)
1305 {
1306 	enum uclamp_id clamp_id;
1307 	struct css_task_iter it;
1308 	struct task_struct *p;
1309 
1310 	css_task_iter_start(css, 0, &it);
1311 	while ((p = css_task_iter_next(&it))) {
1312 		for_each_clamp_id(clamp_id) {
1313 			if ((0x1 << clamp_id) & clamps)
1314 				uclamp_update_active(p, clamp_id);
1315 		}
1316 	}
1317 	css_task_iter_end(&it);
1318 }
1319 
1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321 static void uclamp_update_root_tg(void)
1322 {
1323 	struct task_group *tg = &root_task_group;
1324 
1325 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 		      sysctl_sched_uclamp_util_min, false);
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 		      sysctl_sched_uclamp_util_max, false);
1329 
1330 	rcu_read_lock();
1331 	cpu_util_update_eff(&root_task_group.css);
1332 	rcu_read_unlock();
1333 }
1334 #else
1335 static void uclamp_update_root_tg(void) { }
1336 #endif
1337 
1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1339 				void *buffer, size_t *lenp, loff_t *ppos)
1340 {
1341 	bool update_root_tg = false;
1342 	int old_min, old_max, old_min_rt;
1343 	int result;
1344 
1345 	mutex_lock(&uclamp_mutex);
1346 	old_min = sysctl_sched_uclamp_util_min;
1347 	old_max = sysctl_sched_uclamp_util_max;
1348 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1349 
1350 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 	if (result)
1352 		goto undo;
1353 	if (!write)
1354 		goto done;
1355 
1356 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1357 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1358 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359 
1360 		result = -EINVAL;
1361 		goto undo;
1362 	}
1363 
1364 	if (old_min != sysctl_sched_uclamp_util_min) {
1365 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1366 			      sysctl_sched_uclamp_util_min, false);
1367 		update_root_tg = true;
1368 	}
1369 	if (old_max != sysctl_sched_uclamp_util_max) {
1370 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1371 			      sysctl_sched_uclamp_util_max, false);
1372 		update_root_tg = true;
1373 	}
1374 
1375 	if (update_root_tg) {
1376 		static_branch_enable(&sched_uclamp_used);
1377 		uclamp_update_root_tg();
1378 	}
1379 
1380 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 		static_branch_enable(&sched_uclamp_used);
1382 		uclamp_sync_util_min_rt_default();
1383 	}
1384 
1385 	/*
1386 	 * We update all RUNNABLE tasks only when task groups are in use.
1387 	 * Otherwise, keep it simple and do just a lazy update at each next
1388 	 * task enqueue time.
1389 	 */
1390 
1391 	goto done;
1392 
1393 undo:
1394 	sysctl_sched_uclamp_util_min = old_min;
1395 	sysctl_sched_uclamp_util_max = old_max;
1396 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1397 done:
1398 	mutex_unlock(&uclamp_mutex);
1399 
1400 	return result;
1401 }
1402 
1403 static int uclamp_validate(struct task_struct *p,
1404 			   const struct sched_attr *attr)
1405 {
1406 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1408 
1409 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 		util_min = attr->sched_util_min;
1411 
1412 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 			return -EINVAL;
1414 	}
1415 
1416 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 		util_max = attr->sched_util_max;
1418 
1419 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1424 		return -EINVAL;
1425 
1426 	/*
1427 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 	 *
1429 	 * We need to do that here, because enabling static branches is a
1430 	 * blocking operation which obviously cannot be done while holding
1431 	 * scheduler locks.
1432 	 */
1433 	static_branch_enable(&sched_uclamp_used);
1434 
1435 	return 0;
1436 }
1437 
1438 static bool uclamp_reset(const struct sched_attr *attr,
1439 			 enum uclamp_id clamp_id,
1440 			 struct uclamp_se *uc_se)
1441 {
1442 	/* Reset on sched class change for a non user-defined clamp value. */
1443 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 	    !uc_se->user_defined)
1445 		return true;
1446 
1447 	/* Reset on sched_util_{min,max} == -1. */
1448 	if (clamp_id == UCLAMP_MIN &&
1449 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 	    attr->sched_util_min == -1) {
1451 		return true;
1452 	}
1453 
1454 	if (clamp_id == UCLAMP_MAX &&
1455 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 	    attr->sched_util_max == -1) {
1457 		return true;
1458 	}
1459 
1460 	return false;
1461 }
1462 
1463 static void __setscheduler_uclamp(struct task_struct *p,
1464 				  const struct sched_attr *attr)
1465 {
1466 	enum uclamp_id clamp_id;
1467 
1468 	for_each_clamp_id(clamp_id) {
1469 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1470 		unsigned int value;
1471 
1472 		if (!uclamp_reset(attr, clamp_id, uc_se))
1473 			continue;
1474 
1475 		/*
1476 		 * RT by default have a 100% boost value that could be modified
1477 		 * at runtime.
1478 		 */
1479 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1480 			value = sysctl_sched_uclamp_util_min_rt_default;
1481 		else
1482 			value = uclamp_none(clamp_id);
1483 
1484 		uclamp_se_set(uc_se, value, false);
1485 
1486 	}
1487 
1488 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 		return;
1490 
1491 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 	    attr->sched_util_min != -1) {
1493 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 			      attr->sched_util_min, true);
1495 	}
1496 
1497 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 	    attr->sched_util_max != -1) {
1499 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 			      attr->sched_util_max, true);
1501 	}
1502 }
1503 
1504 static void uclamp_fork(struct task_struct *p)
1505 {
1506 	enum uclamp_id clamp_id;
1507 
1508 	/*
1509 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 	 * as the task is still at its early fork stages.
1511 	 */
1512 	for_each_clamp_id(clamp_id)
1513 		p->uclamp[clamp_id].active = false;
1514 
1515 	if (likely(!p->sched_reset_on_fork))
1516 		return;
1517 
1518 	for_each_clamp_id(clamp_id) {
1519 		uclamp_se_set(&p->uclamp_req[clamp_id],
1520 			      uclamp_none(clamp_id), false);
1521 	}
1522 }
1523 
1524 static void uclamp_post_fork(struct task_struct *p)
1525 {
1526 	uclamp_update_util_min_rt_default(p);
1527 }
1528 
1529 static void __init init_uclamp_rq(struct rq *rq)
1530 {
1531 	enum uclamp_id clamp_id;
1532 	struct uclamp_rq *uc_rq = rq->uclamp;
1533 
1534 	for_each_clamp_id(clamp_id) {
1535 		uc_rq[clamp_id] = (struct uclamp_rq) {
1536 			.value = uclamp_none(clamp_id)
1537 		};
1538 	}
1539 
1540 	rq->uclamp_flags = 0;
1541 }
1542 
1543 static void __init init_uclamp(void)
1544 {
1545 	struct uclamp_se uc_max = {};
1546 	enum uclamp_id clamp_id;
1547 	int cpu;
1548 
1549 	for_each_possible_cpu(cpu)
1550 		init_uclamp_rq(cpu_rq(cpu));
1551 
1552 	for_each_clamp_id(clamp_id) {
1553 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1554 			      uclamp_none(clamp_id), false);
1555 	}
1556 
1557 	/* System defaults allow max clamp values for both indexes */
1558 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1559 	for_each_clamp_id(clamp_id) {
1560 		uclamp_default[clamp_id] = uc_max;
1561 #ifdef CONFIG_UCLAMP_TASK_GROUP
1562 		root_task_group.uclamp_req[clamp_id] = uc_max;
1563 		root_task_group.uclamp[clamp_id] = uc_max;
1564 #endif
1565 	}
1566 }
1567 
1568 #else /* CONFIG_UCLAMP_TASK */
1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1571 static inline int uclamp_validate(struct task_struct *p,
1572 				  const struct sched_attr *attr)
1573 {
1574 	return -EOPNOTSUPP;
1575 }
1576 static void __setscheduler_uclamp(struct task_struct *p,
1577 				  const struct sched_attr *attr) { }
1578 static inline void uclamp_fork(struct task_struct *p) { }
1579 static inline void uclamp_post_fork(struct task_struct *p) { }
1580 static inline void init_uclamp(void) { }
1581 #endif /* CONFIG_UCLAMP_TASK */
1582 
1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1584 {
1585 	if (!(flags & ENQUEUE_NOCLOCK))
1586 		update_rq_clock(rq);
1587 
1588 	if (!(flags & ENQUEUE_RESTORE)) {
1589 		sched_info_queued(rq, p);
1590 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 	}
1592 
1593 	uclamp_rq_inc(rq, p);
1594 	p->sched_class->enqueue_task(rq, p, flags);
1595 }
1596 
1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1598 {
1599 	if (!(flags & DEQUEUE_NOCLOCK))
1600 		update_rq_clock(rq);
1601 
1602 	if (!(flags & DEQUEUE_SAVE)) {
1603 		sched_info_dequeued(rq, p);
1604 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 	}
1606 
1607 	uclamp_rq_dec(rq, p);
1608 	p->sched_class->dequeue_task(rq, p, flags);
1609 }
1610 
1611 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1612 {
1613 	enqueue_task(rq, p, flags);
1614 
1615 	p->on_rq = TASK_ON_RQ_QUEUED;
1616 }
1617 
1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1619 {
1620 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621 
1622 	dequeue_task(rq, p, flags);
1623 }
1624 
1625 /*
1626  * __normal_prio - return the priority that is based on the static prio
1627  */
1628 static inline int __normal_prio(struct task_struct *p)
1629 {
1630 	return p->static_prio;
1631 }
1632 
1633 /*
1634  * Calculate the expected normal priority: i.e. priority
1635  * without taking RT-inheritance into account. Might be
1636  * boosted by interactivity modifiers. Changes upon fork,
1637  * setprio syscalls, and whenever the interactivity
1638  * estimator recalculates.
1639  */
1640 static inline int normal_prio(struct task_struct *p)
1641 {
1642 	int prio;
1643 
1644 	if (task_has_dl_policy(p))
1645 		prio = MAX_DL_PRIO-1;
1646 	else if (task_has_rt_policy(p))
1647 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 	else
1649 		prio = __normal_prio(p);
1650 	return prio;
1651 }
1652 
1653 /*
1654  * Calculate the current priority, i.e. the priority
1655  * taken into account by the scheduler. This value might
1656  * be boosted by RT tasks, or might be boosted by
1657  * interactivity modifiers. Will be RT if the task got
1658  * RT-boosted. If not then it returns p->normal_prio.
1659  */
1660 static int effective_prio(struct task_struct *p)
1661 {
1662 	p->normal_prio = normal_prio(p);
1663 	/*
1664 	 * If we are RT tasks or we were boosted to RT priority,
1665 	 * keep the priority unchanged. Otherwise, update priority
1666 	 * to the normal priority:
1667 	 */
1668 	if (!rt_prio(p->prio))
1669 		return p->normal_prio;
1670 	return p->prio;
1671 }
1672 
1673 /**
1674  * task_curr - is this task currently executing on a CPU?
1675  * @p: the task in question.
1676  *
1677  * Return: 1 if the task is currently executing. 0 otherwise.
1678  */
1679 inline int task_curr(const struct task_struct *p)
1680 {
1681 	return cpu_curr(task_cpu(p)) == p;
1682 }
1683 
1684 /*
1685  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686  * use the balance_callback list if you want balancing.
1687  *
1688  * this means any call to check_class_changed() must be followed by a call to
1689  * balance_callback().
1690  */
1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 				       const struct sched_class *prev_class,
1693 				       int oldprio)
1694 {
1695 	if (prev_class != p->sched_class) {
1696 		if (prev_class->switched_from)
1697 			prev_class->switched_from(rq, p);
1698 
1699 		p->sched_class->switched_to(rq, p);
1700 	} else if (oldprio != p->prio || dl_task(p))
1701 		p->sched_class->prio_changed(rq, p, oldprio);
1702 }
1703 
1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1705 {
1706 	if (p->sched_class == rq->curr->sched_class)
1707 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1708 	else if (p->sched_class > rq->curr->sched_class)
1709 		resched_curr(rq);
1710 
1711 	/*
1712 	 * A queue event has occurred, and we're going to schedule.  In
1713 	 * this case, we can save a useless back to back clock update.
1714 	 */
1715 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1716 		rq_clock_skip_update(rq);
1717 }
1718 
1719 #ifdef CONFIG_SMP
1720 
1721 static void
1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723 
1724 static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 				  const struct cpumask *new_mask,
1726 				  u32 flags);
1727 
1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729 {
1730 	if (likely(!p->migration_disabled))
1731 		return;
1732 
1733 	if (p->cpus_ptr != &p->cpus_mask)
1734 		return;
1735 
1736 	/*
1737 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 	 */
1739 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740 }
1741 
1742 void migrate_disable(void)
1743 {
1744 	struct task_struct *p = current;
1745 
1746 	if (p->migration_disabled) {
1747 		p->migration_disabled++;
1748 		return;
1749 	}
1750 
1751 	preempt_disable();
1752 	this_rq()->nr_pinned++;
1753 	p->migration_disabled = 1;
1754 	preempt_enable();
1755 }
1756 EXPORT_SYMBOL_GPL(migrate_disable);
1757 
1758 void migrate_enable(void)
1759 {
1760 	struct task_struct *p = current;
1761 
1762 	if (p->migration_disabled > 1) {
1763 		p->migration_disabled--;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Ensure stop_task runs either before or after this, and that
1769 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 	 */
1771 	preempt_disable();
1772 	if (p->cpus_ptr != &p->cpus_mask)
1773 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 	/*
1775 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 	 * regular cpus_mask, otherwise things that race (eg.
1777 	 * select_fallback_rq) get confused.
1778 	 */
1779 	barrier();
1780 	p->migration_disabled = 0;
1781 	this_rq()->nr_pinned--;
1782 	preempt_enable();
1783 }
1784 EXPORT_SYMBOL_GPL(migrate_enable);
1785 
1786 static inline bool rq_has_pinned_tasks(struct rq *rq)
1787 {
1788 	return rq->nr_pinned;
1789 }
1790 
1791 /*
1792  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1793  * __set_cpus_allowed_ptr() and select_fallback_rq().
1794  */
1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796 {
1797 	/* When not in the task's cpumask, no point in looking further. */
1798 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1799 		return false;
1800 
1801 	/* migrate_disabled() must be allowed to finish. */
1802 	if (is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	/* Non kernel threads are not allowed during either online or offline. */
1806 	if (!(p->flags & PF_KTHREAD))
1807 		return cpu_active(cpu);
1808 
1809 	/* KTHREAD_IS_PER_CPU is always allowed. */
1810 	if (kthread_is_per_cpu(p))
1811 		return cpu_online(cpu);
1812 
1813 	/* Regular kernel threads don't get to stay during offline. */
1814 	if (cpu_rq(cpu)->balance_push)
1815 		return false;
1816 
1817 	/* But are allowed during online. */
1818 	return cpu_online(cpu);
1819 }
1820 
1821 /*
1822  * This is how migration works:
1823  *
1824  * 1) we invoke migration_cpu_stop() on the target CPU using
1825  *    stop_one_cpu().
1826  * 2) stopper starts to run (implicitly forcing the migrated thread
1827  *    off the CPU)
1828  * 3) it checks whether the migrated task is still in the wrong runqueue.
1829  * 4) if it's in the wrong runqueue then the migration thread removes
1830  *    it and puts it into the right queue.
1831  * 5) stopper completes and stop_one_cpu() returns and the migration
1832  *    is done.
1833  */
1834 
1835 /*
1836  * move_queued_task - move a queued task to new rq.
1837  *
1838  * Returns (locked) new rq. Old rq's lock is released.
1839  */
1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 				   struct task_struct *p, int new_cpu)
1842 {
1843 	lockdep_assert_held(&rq->lock);
1844 
1845 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1846 	set_task_cpu(p, new_cpu);
1847 	rq_unlock(rq, rf);
1848 
1849 	rq = cpu_rq(new_cpu);
1850 
1851 	rq_lock(rq, rf);
1852 	BUG_ON(task_cpu(p) != new_cpu);
1853 	activate_task(rq, p, 0);
1854 	check_preempt_curr(rq, p, 0);
1855 
1856 	return rq;
1857 }
1858 
1859 struct migration_arg {
1860 	struct task_struct		*task;
1861 	int				dest_cpu;
1862 	struct set_affinity_pending	*pending;
1863 };
1864 
1865 struct set_affinity_pending {
1866 	refcount_t		refs;
1867 	struct completion	done;
1868 	struct cpu_stop_work	stop_work;
1869 	struct migration_arg	arg;
1870 };
1871 
1872 /*
1873  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1874  * this because either it can't run here any more (set_cpus_allowed()
1875  * away from this CPU, or CPU going down), or because we're
1876  * attempting to rebalance this task on exec (sched_exec).
1877  *
1878  * So we race with normal scheduler movements, but that's OK, as long
1879  * as the task is no longer on this CPU.
1880  */
1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1882 				 struct task_struct *p, int dest_cpu)
1883 {
1884 	/* Affinity changed (again). */
1885 	if (!is_cpu_allowed(p, dest_cpu))
1886 		return rq;
1887 
1888 	update_rq_clock(rq);
1889 	rq = move_queued_task(rq, rf, p, dest_cpu);
1890 
1891 	return rq;
1892 }
1893 
1894 /*
1895  * migration_cpu_stop - this will be executed by a highprio stopper thread
1896  * and performs thread migration by bumping thread off CPU then
1897  * 'pushing' onto another runqueue.
1898  */
1899 static int migration_cpu_stop(void *data)
1900 {
1901 	struct set_affinity_pending *pending;
1902 	struct migration_arg *arg = data;
1903 	struct task_struct *p = arg->task;
1904 	int dest_cpu = arg->dest_cpu;
1905 	struct rq *rq = this_rq();
1906 	bool complete = false;
1907 	struct rq_flags rf;
1908 
1909 	/*
1910 	 * The original target CPU might have gone down and we might
1911 	 * be on another CPU but it doesn't matter.
1912 	 */
1913 	local_irq_save(rf.flags);
1914 	/*
1915 	 * We need to explicitly wake pending tasks before running
1916 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1917 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1918 	 */
1919 	flush_smp_call_function_from_idle();
1920 
1921 	raw_spin_lock(&p->pi_lock);
1922 	rq_lock(rq, &rf);
1923 
1924 	pending = p->migration_pending;
1925 	if (pending && !arg->pending) {
1926 		/*
1927 		 * This happens from sched_exec() and migrate_task_to(),
1928 		 * neither of them care about pending and just want a task to
1929 		 * maybe move about.
1930 		 *
1931 		 * Even if there is a pending, we can ignore it, since
1932 		 * affine_move_task() will have it's own stop_work's in flight
1933 		 * which will manage the completion.
1934 		 *
1935 		 * Notably, pending doesn't need to match arg->pending. This can
1936 		 * happen when tripple concurrent affine_move_task() first sets
1937 		 * pending, then clears pending and eventually sets another
1938 		 * pending.
1939 		 */
1940 		pending = NULL;
1941 	}
1942 
1943 	/*
1944 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1945 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1946 	 * we're holding p->pi_lock.
1947 	 */
1948 	if (task_rq(p) == rq) {
1949 		if (is_migration_disabled(p))
1950 			goto out;
1951 
1952 		if (pending) {
1953 			p->migration_pending = NULL;
1954 			complete = true;
1955 		}
1956 
1957 		/* migrate_enable() --  we must not race against SCA */
1958 		if (dest_cpu < 0) {
1959 			/*
1960 			 * When this was migrate_enable() but we no longer
1961 			 * have a @pending, a concurrent SCA 'fixed' things
1962 			 * and we should be valid again. Nothing to do.
1963 			 */
1964 			if (!pending) {
1965 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1966 				goto out;
1967 			}
1968 
1969 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1970 		}
1971 
1972 		if (task_on_rq_queued(p))
1973 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1974 		else
1975 			p->wake_cpu = dest_cpu;
1976 
1977 	} else if (dest_cpu < 0 || pending) {
1978 		/*
1979 		 * This happens when we get migrated between migrate_enable()'s
1980 		 * preempt_enable() and scheduling the stopper task. At that
1981 		 * point we're a regular task again and not current anymore.
1982 		 *
1983 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1984 		 * more likely.
1985 		 */
1986 
1987 		/*
1988 		 * The task moved before the stopper got to run. We're holding
1989 		 * ->pi_lock, so the allowed mask is stable - if it got
1990 		 * somewhere allowed, we're done.
1991 		 */
1992 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1993 			p->migration_pending = NULL;
1994 			complete = true;
1995 			goto out;
1996 		}
1997 
1998 		/*
1999 		 * When this was migrate_enable() but we no longer have an
2000 		 * @pending, a concurrent SCA 'fixed' things and we should be
2001 		 * valid again. Nothing to do.
2002 		 */
2003 		if (!pending) {
2004 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
2005 			goto out;
2006 		}
2007 
2008 		/*
2009 		 * When migrate_enable() hits a rq mis-match we can't reliably
2010 		 * determine is_migration_disabled() and so have to chase after
2011 		 * it.
2012 		 */
2013 		task_rq_unlock(rq, p, &rf);
2014 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2015 				    &pending->arg, &pending->stop_work);
2016 		return 0;
2017 	}
2018 out:
2019 	task_rq_unlock(rq, p, &rf);
2020 
2021 	if (complete)
2022 		complete_all(&pending->done);
2023 
2024 	/* For pending->{arg,stop_work} */
2025 	pending = arg->pending;
2026 	if (pending && refcount_dec_and_test(&pending->refs))
2027 		wake_up_var(&pending->refs);
2028 
2029 	return 0;
2030 }
2031 
2032 int push_cpu_stop(void *arg)
2033 {
2034 	struct rq *lowest_rq = NULL, *rq = this_rq();
2035 	struct task_struct *p = arg;
2036 
2037 	raw_spin_lock_irq(&p->pi_lock);
2038 	raw_spin_lock(&rq->lock);
2039 
2040 	if (task_rq(p) != rq)
2041 		goto out_unlock;
2042 
2043 	if (is_migration_disabled(p)) {
2044 		p->migration_flags |= MDF_PUSH;
2045 		goto out_unlock;
2046 	}
2047 
2048 	p->migration_flags &= ~MDF_PUSH;
2049 
2050 	if (p->sched_class->find_lock_rq)
2051 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2052 
2053 	if (!lowest_rq)
2054 		goto out_unlock;
2055 
2056 	// XXX validate p is still the highest prio task
2057 	if (task_rq(p) == rq) {
2058 		deactivate_task(rq, p, 0);
2059 		set_task_cpu(p, lowest_rq->cpu);
2060 		activate_task(lowest_rq, p, 0);
2061 		resched_curr(lowest_rq);
2062 	}
2063 
2064 	double_unlock_balance(rq, lowest_rq);
2065 
2066 out_unlock:
2067 	rq->push_busy = false;
2068 	raw_spin_unlock(&rq->lock);
2069 	raw_spin_unlock_irq(&p->pi_lock);
2070 
2071 	put_task_struct(p);
2072 	return 0;
2073 }
2074 
2075 /*
2076  * sched_class::set_cpus_allowed must do the below, but is not required to
2077  * actually call this function.
2078  */
2079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2080 {
2081 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2082 		p->cpus_ptr = new_mask;
2083 		return;
2084 	}
2085 
2086 	cpumask_copy(&p->cpus_mask, new_mask);
2087 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2088 }
2089 
2090 static void
2091 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2092 {
2093 	struct rq *rq = task_rq(p);
2094 	bool queued, running;
2095 
2096 	/*
2097 	 * This here violates the locking rules for affinity, since we're only
2098 	 * supposed to change these variables while holding both rq->lock and
2099 	 * p->pi_lock.
2100 	 *
2101 	 * HOWEVER, it magically works, because ttwu() is the only code that
2102 	 * accesses these variables under p->pi_lock and only does so after
2103 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2104 	 * before finish_task().
2105 	 *
2106 	 * XXX do further audits, this smells like something putrid.
2107 	 */
2108 	if (flags & SCA_MIGRATE_DISABLE)
2109 		SCHED_WARN_ON(!p->on_cpu);
2110 	else
2111 		lockdep_assert_held(&p->pi_lock);
2112 
2113 	queued = task_on_rq_queued(p);
2114 	running = task_current(rq, p);
2115 
2116 	if (queued) {
2117 		/*
2118 		 * Because __kthread_bind() calls this on blocked tasks without
2119 		 * holding rq->lock.
2120 		 */
2121 		lockdep_assert_held(&rq->lock);
2122 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2123 	}
2124 	if (running)
2125 		put_prev_task(rq, p);
2126 
2127 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2128 
2129 	if (queued)
2130 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2131 	if (running)
2132 		set_next_task(rq, p);
2133 }
2134 
2135 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2136 {
2137 	__do_set_cpus_allowed(p, new_mask, 0);
2138 }
2139 
2140 /*
2141  * This function is wildly self concurrent; here be dragons.
2142  *
2143  *
2144  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2145  * designated task is enqueued on an allowed CPU. If that task is currently
2146  * running, we have to kick it out using the CPU stopper.
2147  *
2148  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2149  * Consider:
2150  *
2151  *     Initial conditions: P0->cpus_mask = [0, 1]
2152  *
2153  *     P0@CPU0                  P1
2154  *
2155  *     migrate_disable();
2156  *     <preempted>
2157  *                              set_cpus_allowed_ptr(P0, [1]);
2158  *
2159  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2160  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2161  * This means we need the following scheme:
2162  *
2163  *     P0@CPU0                  P1
2164  *
2165  *     migrate_disable();
2166  *     <preempted>
2167  *                              set_cpus_allowed_ptr(P0, [1]);
2168  *                                <blocks>
2169  *     <resumes>
2170  *     migrate_enable();
2171  *       __set_cpus_allowed_ptr();
2172  *       <wakes local stopper>
2173  *                         `--> <woken on migration completion>
2174  *
2175  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2176  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2177  * task p are serialized by p->pi_lock, which we can leverage: the one that
2178  * should come into effect at the end of the Migrate-Disable region is the last
2179  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2180  * but we still need to properly signal those waiting tasks at the appropriate
2181  * moment.
2182  *
2183  * This is implemented using struct set_affinity_pending. The first
2184  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2185  * setup an instance of that struct and install it on the targeted task_struct.
2186  * Any and all further callers will reuse that instance. Those then wait for
2187  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2188  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2189  *
2190  *
2191  * (1) In the cases covered above. There is one more where the completion is
2192  * signaled within affine_move_task() itself: when a subsequent affinity request
2193  * cancels the need for an active migration. Consider:
2194  *
2195  *     Initial conditions: P0->cpus_mask = [0, 1]
2196  *
2197  *     P0@CPU0            P1                             P2
2198  *
2199  *     migrate_disable();
2200  *     <preempted>
2201  *                        set_cpus_allowed_ptr(P0, [1]);
2202  *                          <blocks>
2203  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2204  *                                                         <signal completion>
2205  *                          <awakes>
2206  *
2207  * Note that the above is safe vs a concurrent migrate_enable(), as any
2208  * pending affinity completion is preceded by an uninstallation of
2209  * p->migration_pending done with p->pi_lock held.
2210  */
2211 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2212 			    int dest_cpu, unsigned int flags)
2213 {
2214 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2215 	bool complete = false;
2216 
2217 	/* Can the task run on the task's current CPU? If so, we're done */
2218 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2219 		struct task_struct *push_task = NULL;
2220 
2221 		if ((flags & SCA_MIGRATE_ENABLE) &&
2222 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2223 			rq->push_busy = true;
2224 			push_task = get_task_struct(p);
2225 		}
2226 
2227 		pending = p->migration_pending;
2228 		if (pending) {
2229 			refcount_inc(&pending->refs);
2230 			p->migration_pending = NULL;
2231 			complete = true;
2232 		}
2233 		task_rq_unlock(rq, p, rf);
2234 
2235 		if (push_task) {
2236 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2237 					    p, &rq->push_work);
2238 		}
2239 
2240 		if (complete)
2241 			goto do_complete;
2242 
2243 		return 0;
2244 	}
2245 
2246 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2247 		/* serialized by p->pi_lock */
2248 		if (!p->migration_pending) {
2249 			/* Install the request */
2250 			refcount_set(&my_pending.refs, 1);
2251 			init_completion(&my_pending.done);
2252 			my_pending.arg = (struct migration_arg) {
2253 				.task = p,
2254 				.dest_cpu = -1,		/* any */
2255 				.pending = &my_pending,
2256 			};
2257 
2258 			p->migration_pending = &my_pending;
2259 		} else {
2260 			pending = p->migration_pending;
2261 			refcount_inc(&pending->refs);
2262 		}
2263 	}
2264 	pending = p->migration_pending;
2265 	/*
2266 	 * - !MIGRATE_ENABLE:
2267 	 *   we'll have installed a pending if there wasn't one already.
2268 	 *
2269 	 * - MIGRATE_ENABLE:
2270 	 *   we're here because the current CPU isn't matching anymore,
2271 	 *   the only way that can happen is because of a concurrent
2272 	 *   set_cpus_allowed_ptr() call, which should then still be
2273 	 *   pending completion.
2274 	 *
2275 	 * Either way, we really should have a @pending here.
2276 	 */
2277 	if (WARN_ON_ONCE(!pending)) {
2278 		task_rq_unlock(rq, p, rf);
2279 		return -EINVAL;
2280 	}
2281 
2282 	if (flags & SCA_MIGRATE_ENABLE) {
2283 
2284 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2285 		p->migration_flags &= ~MDF_PUSH;
2286 		task_rq_unlock(rq, p, rf);
2287 
2288 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2289 				    &pending->arg, &pending->stop_work);
2290 
2291 		return 0;
2292 	}
2293 
2294 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2295 		/*
2296 		 * Lessen races (and headaches) by delegating
2297 		 * is_migration_disabled(p) checks to the stopper, which will
2298 		 * run on the same CPU as said p.
2299 		 */
2300 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2301 		task_rq_unlock(rq, p, rf);
2302 
2303 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2304 				    &pending->arg, &pending->stop_work);
2305 
2306 	} else {
2307 
2308 		if (!is_migration_disabled(p)) {
2309 			if (task_on_rq_queued(p))
2310 				rq = move_queued_task(rq, rf, p, dest_cpu);
2311 
2312 			p->migration_pending = NULL;
2313 			complete = true;
2314 		}
2315 		task_rq_unlock(rq, p, rf);
2316 
2317 do_complete:
2318 		if (complete)
2319 			complete_all(&pending->done);
2320 	}
2321 
2322 	wait_for_completion(&pending->done);
2323 
2324 	if (refcount_dec_and_test(&pending->refs))
2325 		wake_up_var(&pending->refs);
2326 
2327 	/*
2328 	 * Block the original owner of &pending until all subsequent callers
2329 	 * have seen the completion and decremented the refcount
2330 	 */
2331 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2332 
2333 	return 0;
2334 }
2335 
2336 /*
2337  * Change a given task's CPU affinity. Migrate the thread to a
2338  * proper CPU and schedule it away if the CPU it's executing on
2339  * is removed from the allowed bitmask.
2340  *
2341  * NOTE: the caller must have a valid reference to the task, the
2342  * task must not exit() & deallocate itself prematurely. The
2343  * call is not atomic; no spinlocks may be held.
2344  */
2345 static int __set_cpus_allowed_ptr(struct task_struct *p,
2346 				  const struct cpumask *new_mask,
2347 				  u32 flags)
2348 {
2349 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2350 	unsigned int dest_cpu;
2351 	struct rq_flags rf;
2352 	struct rq *rq;
2353 	int ret = 0;
2354 
2355 	rq = task_rq_lock(p, &rf);
2356 	update_rq_clock(rq);
2357 
2358 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2359 		/*
2360 		 * Kernel threads are allowed on online && !active CPUs,
2361 		 * however, during cpu-hot-unplug, even these might get pushed
2362 		 * away if not KTHREAD_IS_PER_CPU.
2363 		 *
2364 		 * Specifically, migration_disabled() tasks must not fail the
2365 		 * cpumask_any_and_distribute() pick below, esp. so on
2366 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2367 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2368 		 */
2369 		cpu_valid_mask = cpu_online_mask;
2370 	}
2371 
2372 	/*
2373 	 * Must re-check here, to close a race against __kthread_bind(),
2374 	 * sched_setaffinity() is not guaranteed to observe the flag.
2375 	 */
2376 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2377 		ret = -EINVAL;
2378 		goto out;
2379 	}
2380 
2381 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2382 		if (cpumask_equal(&p->cpus_mask, new_mask))
2383 			goto out;
2384 
2385 		if (WARN_ON_ONCE(p == current &&
2386 				 is_migration_disabled(p) &&
2387 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2388 			ret = -EBUSY;
2389 			goto out;
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * Picking a ~random cpu helps in cases where we are changing affinity
2395 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2396 	 * immediately required to distribute the tasks within their new mask.
2397 	 */
2398 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2399 	if (dest_cpu >= nr_cpu_ids) {
2400 		ret = -EINVAL;
2401 		goto out;
2402 	}
2403 
2404 	__do_set_cpus_allowed(p, new_mask, flags);
2405 
2406 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2407 
2408 out:
2409 	task_rq_unlock(rq, p, &rf);
2410 
2411 	return ret;
2412 }
2413 
2414 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2415 {
2416 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2417 }
2418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2419 
2420 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2421 {
2422 #ifdef CONFIG_SCHED_DEBUG
2423 	/*
2424 	 * We should never call set_task_cpu() on a blocked task,
2425 	 * ttwu() will sort out the placement.
2426 	 */
2427 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2428 			!p->on_rq);
2429 
2430 	/*
2431 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2432 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2433 	 * time relying on p->on_rq.
2434 	 */
2435 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2436 		     p->sched_class == &fair_sched_class &&
2437 		     (p->on_rq && !task_on_rq_migrating(p)));
2438 
2439 #ifdef CONFIG_LOCKDEP
2440 	/*
2441 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2442 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2443 	 *
2444 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2445 	 * see task_group().
2446 	 *
2447 	 * Furthermore, all task_rq users should acquire both locks, see
2448 	 * task_rq_lock().
2449 	 */
2450 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2451 				      lockdep_is_held(&task_rq(p)->lock)));
2452 #endif
2453 	/*
2454 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2455 	 */
2456 	WARN_ON_ONCE(!cpu_online(new_cpu));
2457 
2458 	WARN_ON_ONCE(is_migration_disabled(p));
2459 #endif
2460 
2461 	trace_sched_migrate_task(p, new_cpu);
2462 
2463 	if (task_cpu(p) != new_cpu) {
2464 		if (p->sched_class->migrate_task_rq)
2465 			p->sched_class->migrate_task_rq(p, new_cpu);
2466 		p->se.nr_migrations++;
2467 		rseq_migrate(p);
2468 		perf_event_task_migrate(p);
2469 	}
2470 
2471 	__set_task_cpu(p, new_cpu);
2472 }
2473 
2474 #ifdef CONFIG_NUMA_BALANCING
2475 static void __migrate_swap_task(struct task_struct *p, int cpu)
2476 {
2477 	if (task_on_rq_queued(p)) {
2478 		struct rq *src_rq, *dst_rq;
2479 		struct rq_flags srf, drf;
2480 
2481 		src_rq = task_rq(p);
2482 		dst_rq = cpu_rq(cpu);
2483 
2484 		rq_pin_lock(src_rq, &srf);
2485 		rq_pin_lock(dst_rq, &drf);
2486 
2487 		deactivate_task(src_rq, p, 0);
2488 		set_task_cpu(p, cpu);
2489 		activate_task(dst_rq, p, 0);
2490 		check_preempt_curr(dst_rq, p, 0);
2491 
2492 		rq_unpin_lock(dst_rq, &drf);
2493 		rq_unpin_lock(src_rq, &srf);
2494 
2495 	} else {
2496 		/*
2497 		 * Task isn't running anymore; make it appear like we migrated
2498 		 * it before it went to sleep. This means on wakeup we make the
2499 		 * previous CPU our target instead of where it really is.
2500 		 */
2501 		p->wake_cpu = cpu;
2502 	}
2503 }
2504 
2505 struct migration_swap_arg {
2506 	struct task_struct *src_task, *dst_task;
2507 	int src_cpu, dst_cpu;
2508 };
2509 
2510 static int migrate_swap_stop(void *data)
2511 {
2512 	struct migration_swap_arg *arg = data;
2513 	struct rq *src_rq, *dst_rq;
2514 	int ret = -EAGAIN;
2515 
2516 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2517 		return -EAGAIN;
2518 
2519 	src_rq = cpu_rq(arg->src_cpu);
2520 	dst_rq = cpu_rq(arg->dst_cpu);
2521 
2522 	double_raw_lock(&arg->src_task->pi_lock,
2523 			&arg->dst_task->pi_lock);
2524 	double_rq_lock(src_rq, dst_rq);
2525 
2526 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2527 		goto unlock;
2528 
2529 	if (task_cpu(arg->src_task) != arg->src_cpu)
2530 		goto unlock;
2531 
2532 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2533 		goto unlock;
2534 
2535 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2536 		goto unlock;
2537 
2538 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2539 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2540 
2541 	ret = 0;
2542 
2543 unlock:
2544 	double_rq_unlock(src_rq, dst_rq);
2545 	raw_spin_unlock(&arg->dst_task->pi_lock);
2546 	raw_spin_unlock(&arg->src_task->pi_lock);
2547 
2548 	return ret;
2549 }
2550 
2551 /*
2552  * Cross migrate two tasks
2553  */
2554 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2555 		int target_cpu, int curr_cpu)
2556 {
2557 	struct migration_swap_arg arg;
2558 	int ret = -EINVAL;
2559 
2560 	arg = (struct migration_swap_arg){
2561 		.src_task = cur,
2562 		.src_cpu = curr_cpu,
2563 		.dst_task = p,
2564 		.dst_cpu = target_cpu,
2565 	};
2566 
2567 	if (arg.src_cpu == arg.dst_cpu)
2568 		goto out;
2569 
2570 	/*
2571 	 * These three tests are all lockless; this is OK since all of them
2572 	 * will be re-checked with proper locks held further down the line.
2573 	 */
2574 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2575 		goto out;
2576 
2577 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2578 		goto out;
2579 
2580 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2581 		goto out;
2582 
2583 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2584 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2585 
2586 out:
2587 	return ret;
2588 }
2589 #endif /* CONFIG_NUMA_BALANCING */
2590 
2591 /*
2592  * wait_task_inactive - wait for a thread to unschedule.
2593  *
2594  * If @match_state is nonzero, it's the @p->state value just checked and
2595  * not expected to change.  If it changes, i.e. @p might have woken up,
2596  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2597  * we return a positive number (its total switch count).  If a second call
2598  * a short while later returns the same number, the caller can be sure that
2599  * @p has remained unscheduled the whole time.
2600  *
2601  * The caller must ensure that the task *will* unschedule sometime soon,
2602  * else this function might spin for a *long* time. This function can't
2603  * be called with interrupts off, or it may introduce deadlock with
2604  * smp_call_function() if an IPI is sent by the same process we are
2605  * waiting to become inactive.
2606  */
2607 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2608 {
2609 	int running, queued;
2610 	struct rq_flags rf;
2611 	unsigned long ncsw;
2612 	struct rq *rq;
2613 
2614 	for (;;) {
2615 		/*
2616 		 * We do the initial early heuristics without holding
2617 		 * any task-queue locks at all. We'll only try to get
2618 		 * the runqueue lock when things look like they will
2619 		 * work out!
2620 		 */
2621 		rq = task_rq(p);
2622 
2623 		/*
2624 		 * If the task is actively running on another CPU
2625 		 * still, just relax and busy-wait without holding
2626 		 * any locks.
2627 		 *
2628 		 * NOTE! Since we don't hold any locks, it's not
2629 		 * even sure that "rq" stays as the right runqueue!
2630 		 * But we don't care, since "task_running()" will
2631 		 * return false if the runqueue has changed and p
2632 		 * is actually now running somewhere else!
2633 		 */
2634 		while (task_running(rq, p)) {
2635 			if (match_state && unlikely(p->state != match_state))
2636 				return 0;
2637 			cpu_relax();
2638 		}
2639 
2640 		/*
2641 		 * Ok, time to look more closely! We need the rq
2642 		 * lock now, to be *sure*. If we're wrong, we'll
2643 		 * just go back and repeat.
2644 		 */
2645 		rq = task_rq_lock(p, &rf);
2646 		trace_sched_wait_task(p);
2647 		running = task_running(rq, p);
2648 		queued = task_on_rq_queued(p);
2649 		ncsw = 0;
2650 		if (!match_state || p->state == match_state)
2651 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2652 		task_rq_unlock(rq, p, &rf);
2653 
2654 		/*
2655 		 * If it changed from the expected state, bail out now.
2656 		 */
2657 		if (unlikely(!ncsw))
2658 			break;
2659 
2660 		/*
2661 		 * Was it really running after all now that we
2662 		 * checked with the proper locks actually held?
2663 		 *
2664 		 * Oops. Go back and try again..
2665 		 */
2666 		if (unlikely(running)) {
2667 			cpu_relax();
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * It's not enough that it's not actively running,
2673 		 * it must be off the runqueue _entirely_, and not
2674 		 * preempted!
2675 		 *
2676 		 * So if it was still runnable (but just not actively
2677 		 * running right now), it's preempted, and we should
2678 		 * yield - it could be a while.
2679 		 */
2680 		if (unlikely(queued)) {
2681 			ktime_t to = NSEC_PER_SEC / HZ;
2682 
2683 			set_current_state(TASK_UNINTERRUPTIBLE);
2684 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2685 			continue;
2686 		}
2687 
2688 		/*
2689 		 * Ahh, all good. It wasn't running, and it wasn't
2690 		 * runnable, which means that it will never become
2691 		 * running in the future either. We're all done!
2692 		 */
2693 		break;
2694 	}
2695 
2696 	return ncsw;
2697 }
2698 
2699 /***
2700  * kick_process - kick a running thread to enter/exit the kernel
2701  * @p: the to-be-kicked thread
2702  *
2703  * Cause a process which is running on another CPU to enter
2704  * kernel-mode, without any delay. (to get signals handled.)
2705  *
2706  * NOTE: this function doesn't have to take the runqueue lock,
2707  * because all it wants to ensure is that the remote task enters
2708  * the kernel. If the IPI races and the task has been migrated
2709  * to another CPU then no harm is done and the purpose has been
2710  * achieved as well.
2711  */
2712 void kick_process(struct task_struct *p)
2713 {
2714 	int cpu;
2715 
2716 	preempt_disable();
2717 	cpu = task_cpu(p);
2718 	if ((cpu != smp_processor_id()) && task_curr(p))
2719 		smp_send_reschedule(cpu);
2720 	preempt_enable();
2721 }
2722 EXPORT_SYMBOL_GPL(kick_process);
2723 
2724 /*
2725  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2726  *
2727  * A few notes on cpu_active vs cpu_online:
2728  *
2729  *  - cpu_active must be a subset of cpu_online
2730  *
2731  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2732  *    see __set_cpus_allowed_ptr(). At this point the newly online
2733  *    CPU isn't yet part of the sched domains, and balancing will not
2734  *    see it.
2735  *
2736  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2737  *    avoid the load balancer to place new tasks on the to be removed
2738  *    CPU. Existing tasks will remain running there and will be taken
2739  *    off.
2740  *
2741  * This means that fallback selection must not select !active CPUs.
2742  * And can assume that any active CPU must be online. Conversely
2743  * select_task_rq() below may allow selection of !active CPUs in order
2744  * to satisfy the above rules.
2745  */
2746 static int select_fallback_rq(int cpu, struct task_struct *p)
2747 {
2748 	int nid = cpu_to_node(cpu);
2749 	const struct cpumask *nodemask = NULL;
2750 	enum { cpuset, possible, fail } state = cpuset;
2751 	int dest_cpu;
2752 
2753 	/*
2754 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2755 	 * will return -1. There is no CPU on the node, and we should
2756 	 * select the CPU on the other node.
2757 	 */
2758 	if (nid != -1) {
2759 		nodemask = cpumask_of_node(nid);
2760 
2761 		/* Look for allowed, online CPU in same node. */
2762 		for_each_cpu(dest_cpu, nodemask) {
2763 			if (!cpu_active(dest_cpu))
2764 				continue;
2765 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2766 				return dest_cpu;
2767 		}
2768 	}
2769 
2770 	for (;;) {
2771 		/* Any allowed, online CPU? */
2772 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2773 			if (!is_cpu_allowed(p, dest_cpu))
2774 				continue;
2775 
2776 			goto out;
2777 		}
2778 
2779 		/* No more Mr. Nice Guy. */
2780 		switch (state) {
2781 		case cpuset:
2782 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2783 				cpuset_cpus_allowed_fallback(p);
2784 				state = possible;
2785 				break;
2786 			}
2787 			fallthrough;
2788 		case possible:
2789 			/*
2790 			 * XXX When called from select_task_rq() we only
2791 			 * hold p->pi_lock and again violate locking order.
2792 			 *
2793 			 * More yuck to audit.
2794 			 */
2795 			do_set_cpus_allowed(p, cpu_possible_mask);
2796 			state = fail;
2797 			break;
2798 
2799 		case fail:
2800 			BUG();
2801 			break;
2802 		}
2803 	}
2804 
2805 out:
2806 	if (state != cpuset) {
2807 		/*
2808 		 * Don't tell them about moving exiting tasks or
2809 		 * kernel threads (both mm NULL), since they never
2810 		 * leave kernel.
2811 		 */
2812 		if (p->mm && printk_ratelimit()) {
2813 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2814 					task_pid_nr(p), p->comm, cpu);
2815 		}
2816 	}
2817 
2818 	return dest_cpu;
2819 }
2820 
2821 /*
2822  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2823  */
2824 static inline
2825 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2826 {
2827 	lockdep_assert_held(&p->pi_lock);
2828 
2829 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2830 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2831 	else
2832 		cpu = cpumask_any(p->cpus_ptr);
2833 
2834 	/*
2835 	 * In order not to call set_task_cpu() on a blocking task we need
2836 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2837 	 * CPU.
2838 	 *
2839 	 * Since this is common to all placement strategies, this lives here.
2840 	 *
2841 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2842 	 *   not worry about this generic constraint ]
2843 	 */
2844 	if (unlikely(!is_cpu_allowed(p, cpu)))
2845 		cpu = select_fallback_rq(task_cpu(p), p);
2846 
2847 	return cpu;
2848 }
2849 
2850 void sched_set_stop_task(int cpu, struct task_struct *stop)
2851 {
2852 	static struct lock_class_key stop_pi_lock;
2853 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2854 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2855 
2856 	if (stop) {
2857 		/*
2858 		 * Make it appear like a SCHED_FIFO task, its something
2859 		 * userspace knows about and won't get confused about.
2860 		 *
2861 		 * Also, it will make PI more or less work without too
2862 		 * much confusion -- but then, stop work should not
2863 		 * rely on PI working anyway.
2864 		 */
2865 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2866 
2867 		stop->sched_class = &stop_sched_class;
2868 
2869 		/*
2870 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2871 		 * adjust the effective priority of a task. As a result,
2872 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2873 		 * which can then trigger wakeups of the stop thread to push
2874 		 * around the current task.
2875 		 *
2876 		 * The stop task itself will never be part of the PI-chain, it
2877 		 * never blocks, therefore that ->pi_lock recursion is safe.
2878 		 * Tell lockdep about this by placing the stop->pi_lock in its
2879 		 * own class.
2880 		 */
2881 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2882 	}
2883 
2884 	cpu_rq(cpu)->stop = stop;
2885 
2886 	if (old_stop) {
2887 		/*
2888 		 * Reset it back to a normal scheduling class so that
2889 		 * it can die in pieces.
2890 		 */
2891 		old_stop->sched_class = &rt_sched_class;
2892 	}
2893 }
2894 
2895 #else /* CONFIG_SMP */
2896 
2897 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2898 					 const struct cpumask *new_mask,
2899 					 u32 flags)
2900 {
2901 	return set_cpus_allowed_ptr(p, new_mask);
2902 }
2903 
2904 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2905 
2906 static inline bool rq_has_pinned_tasks(struct rq *rq)
2907 {
2908 	return false;
2909 }
2910 
2911 #endif /* !CONFIG_SMP */
2912 
2913 static void
2914 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2915 {
2916 	struct rq *rq;
2917 
2918 	if (!schedstat_enabled())
2919 		return;
2920 
2921 	rq = this_rq();
2922 
2923 #ifdef CONFIG_SMP
2924 	if (cpu == rq->cpu) {
2925 		__schedstat_inc(rq->ttwu_local);
2926 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2927 	} else {
2928 		struct sched_domain *sd;
2929 
2930 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2931 		rcu_read_lock();
2932 		for_each_domain(rq->cpu, sd) {
2933 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2934 				__schedstat_inc(sd->ttwu_wake_remote);
2935 				break;
2936 			}
2937 		}
2938 		rcu_read_unlock();
2939 	}
2940 
2941 	if (wake_flags & WF_MIGRATED)
2942 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2943 #endif /* CONFIG_SMP */
2944 
2945 	__schedstat_inc(rq->ttwu_count);
2946 	__schedstat_inc(p->se.statistics.nr_wakeups);
2947 
2948 	if (wake_flags & WF_SYNC)
2949 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2950 }
2951 
2952 /*
2953  * Mark the task runnable and perform wakeup-preemption.
2954  */
2955 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2956 			   struct rq_flags *rf)
2957 {
2958 	check_preempt_curr(rq, p, wake_flags);
2959 	p->state = TASK_RUNNING;
2960 	trace_sched_wakeup(p);
2961 
2962 #ifdef CONFIG_SMP
2963 	if (p->sched_class->task_woken) {
2964 		/*
2965 		 * Our task @p is fully woken up and running; so it's safe to
2966 		 * drop the rq->lock, hereafter rq is only used for statistics.
2967 		 */
2968 		rq_unpin_lock(rq, rf);
2969 		p->sched_class->task_woken(rq, p);
2970 		rq_repin_lock(rq, rf);
2971 	}
2972 
2973 	if (rq->idle_stamp) {
2974 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2975 		u64 max = 2*rq->max_idle_balance_cost;
2976 
2977 		update_avg(&rq->avg_idle, delta);
2978 
2979 		if (rq->avg_idle > max)
2980 			rq->avg_idle = max;
2981 
2982 		rq->idle_stamp = 0;
2983 	}
2984 #endif
2985 }
2986 
2987 static void
2988 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2989 		 struct rq_flags *rf)
2990 {
2991 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2992 
2993 	lockdep_assert_held(&rq->lock);
2994 
2995 	if (p->sched_contributes_to_load)
2996 		rq->nr_uninterruptible--;
2997 
2998 #ifdef CONFIG_SMP
2999 	if (wake_flags & WF_MIGRATED)
3000 		en_flags |= ENQUEUE_MIGRATED;
3001 	else
3002 #endif
3003 	if (p->in_iowait) {
3004 		delayacct_blkio_end(p);
3005 		atomic_dec(&task_rq(p)->nr_iowait);
3006 	}
3007 
3008 	activate_task(rq, p, en_flags);
3009 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3010 }
3011 
3012 /*
3013  * Consider @p being inside a wait loop:
3014  *
3015  *   for (;;) {
3016  *      set_current_state(TASK_UNINTERRUPTIBLE);
3017  *
3018  *      if (CONDITION)
3019  *         break;
3020  *
3021  *      schedule();
3022  *   }
3023  *   __set_current_state(TASK_RUNNING);
3024  *
3025  * between set_current_state() and schedule(). In this case @p is still
3026  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3027  * an atomic manner.
3028  *
3029  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3030  * then schedule() must still happen and p->state can be changed to
3031  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3032  * need to do a full wakeup with enqueue.
3033  *
3034  * Returns: %true when the wakeup is done,
3035  *          %false otherwise.
3036  */
3037 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3038 {
3039 	struct rq_flags rf;
3040 	struct rq *rq;
3041 	int ret = 0;
3042 
3043 	rq = __task_rq_lock(p, &rf);
3044 	if (task_on_rq_queued(p)) {
3045 		/* check_preempt_curr() may use rq clock */
3046 		update_rq_clock(rq);
3047 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3048 		ret = 1;
3049 	}
3050 	__task_rq_unlock(rq, &rf);
3051 
3052 	return ret;
3053 }
3054 
3055 #ifdef CONFIG_SMP
3056 void sched_ttwu_pending(void *arg)
3057 {
3058 	struct llist_node *llist = arg;
3059 	struct rq *rq = this_rq();
3060 	struct task_struct *p, *t;
3061 	struct rq_flags rf;
3062 
3063 	if (!llist)
3064 		return;
3065 
3066 	/*
3067 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3068 	 * Races such that false-negatives are possible, since they
3069 	 * are shorter lived that false-positives would be.
3070 	 */
3071 	WRITE_ONCE(rq->ttwu_pending, 0);
3072 
3073 	rq_lock_irqsave(rq, &rf);
3074 	update_rq_clock(rq);
3075 
3076 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3077 		if (WARN_ON_ONCE(p->on_cpu))
3078 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3079 
3080 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3081 			set_task_cpu(p, cpu_of(rq));
3082 
3083 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3084 	}
3085 
3086 	rq_unlock_irqrestore(rq, &rf);
3087 }
3088 
3089 void send_call_function_single_ipi(int cpu)
3090 {
3091 	struct rq *rq = cpu_rq(cpu);
3092 
3093 	if (!set_nr_if_polling(rq->idle))
3094 		arch_send_call_function_single_ipi(cpu);
3095 	else
3096 		trace_sched_wake_idle_without_ipi(cpu);
3097 }
3098 
3099 /*
3100  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3101  * necessary. The wakee CPU on receipt of the IPI will queue the task
3102  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3103  * of the wakeup instead of the waker.
3104  */
3105 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3106 {
3107 	struct rq *rq = cpu_rq(cpu);
3108 
3109 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3110 
3111 	WRITE_ONCE(rq->ttwu_pending, 1);
3112 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3113 }
3114 
3115 void wake_up_if_idle(int cpu)
3116 {
3117 	struct rq *rq = cpu_rq(cpu);
3118 	struct rq_flags rf;
3119 
3120 	rcu_read_lock();
3121 
3122 	if (!is_idle_task(rcu_dereference(rq->curr)))
3123 		goto out;
3124 
3125 	if (set_nr_if_polling(rq->idle)) {
3126 		trace_sched_wake_idle_without_ipi(cpu);
3127 	} else {
3128 		rq_lock_irqsave(rq, &rf);
3129 		if (is_idle_task(rq->curr))
3130 			smp_send_reschedule(cpu);
3131 		/* Else CPU is not idle, do nothing here: */
3132 		rq_unlock_irqrestore(rq, &rf);
3133 	}
3134 
3135 out:
3136 	rcu_read_unlock();
3137 }
3138 
3139 bool cpus_share_cache(int this_cpu, int that_cpu)
3140 {
3141 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3142 }
3143 
3144 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3145 {
3146 	/*
3147 	 * Do not complicate things with the async wake_list while the CPU is
3148 	 * in hotplug state.
3149 	 */
3150 	if (!cpu_active(cpu))
3151 		return false;
3152 
3153 	/*
3154 	 * If the CPU does not share cache, then queue the task on the
3155 	 * remote rqs wakelist to avoid accessing remote data.
3156 	 */
3157 	if (!cpus_share_cache(smp_processor_id(), cpu))
3158 		return true;
3159 
3160 	/*
3161 	 * If the task is descheduling and the only running task on the
3162 	 * CPU then use the wakelist to offload the task activation to
3163 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3164 	 * nr_running is checked to avoid unnecessary task stacking.
3165 	 */
3166 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3167 		return true;
3168 
3169 	return false;
3170 }
3171 
3172 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3173 {
3174 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3175 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3176 			return false;
3177 
3178 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3179 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3180 		return true;
3181 	}
3182 
3183 	return false;
3184 }
3185 
3186 #else /* !CONFIG_SMP */
3187 
3188 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3189 {
3190 	return false;
3191 }
3192 
3193 #endif /* CONFIG_SMP */
3194 
3195 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3196 {
3197 	struct rq *rq = cpu_rq(cpu);
3198 	struct rq_flags rf;
3199 
3200 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3201 		return;
3202 
3203 	rq_lock(rq, &rf);
3204 	update_rq_clock(rq);
3205 	ttwu_do_activate(rq, p, wake_flags, &rf);
3206 	rq_unlock(rq, &rf);
3207 }
3208 
3209 /*
3210  * Notes on Program-Order guarantees on SMP systems.
3211  *
3212  *  MIGRATION
3213  *
3214  * The basic program-order guarantee on SMP systems is that when a task [t]
3215  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3216  * execution on its new CPU [c1].
3217  *
3218  * For migration (of runnable tasks) this is provided by the following means:
3219  *
3220  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3221  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3222  *     rq(c1)->lock (if not at the same time, then in that order).
3223  *  C) LOCK of the rq(c1)->lock scheduling in task
3224  *
3225  * Release/acquire chaining guarantees that B happens after A and C after B.
3226  * Note: the CPU doing B need not be c0 or c1
3227  *
3228  * Example:
3229  *
3230  *   CPU0            CPU1            CPU2
3231  *
3232  *   LOCK rq(0)->lock
3233  *   sched-out X
3234  *   sched-in Y
3235  *   UNLOCK rq(0)->lock
3236  *
3237  *                                   LOCK rq(0)->lock // orders against CPU0
3238  *                                   dequeue X
3239  *                                   UNLOCK rq(0)->lock
3240  *
3241  *                                   LOCK rq(1)->lock
3242  *                                   enqueue X
3243  *                                   UNLOCK rq(1)->lock
3244  *
3245  *                   LOCK rq(1)->lock // orders against CPU2
3246  *                   sched-out Z
3247  *                   sched-in X
3248  *                   UNLOCK rq(1)->lock
3249  *
3250  *
3251  *  BLOCKING -- aka. SLEEP + WAKEUP
3252  *
3253  * For blocking we (obviously) need to provide the same guarantee as for
3254  * migration. However the means are completely different as there is no lock
3255  * chain to provide order. Instead we do:
3256  *
3257  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3258  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3259  *
3260  * Example:
3261  *
3262  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3263  *
3264  *   LOCK rq(0)->lock LOCK X->pi_lock
3265  *   dequeue X
3266  *   sched-out X
3267  *   smp_store_release(X->on_cpu, 0);
3268  *
3269  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3270  *                    X->state = WAKING
3271  *                    set_task_cpu(X,2)
3272  *
3273  *                    LOCK rq(2)->lock
3274  *                    enqueue X
3275  *                    X->state = RUNNING
3276  *                    UNLOCK rq(2)->lock
3277  *
3278  *                                          LOCK rq(2)->lock // orders against CPU1
3279  *                                          sched-out Z
3280  *                                          sched-in X
3281  *                                          UNLOCK rq(2)->lock
3282  *
3283  *                    UNLOCK X->pi_lock
3284  *   UNLOCK rq(0)->lock
3285  *
3286  *
3287  * However, for wakeups there is a second guarantee we must provide, namely we
3288  * must ensure that CONDITION=1 done by the caller can not be reordered with
3289  * accesses to the task state; see try_to_wake_up() and set_current_state().
3290  */
3291 
3292 /**
3293  * try_to_wake_up - wake up a thread
3294  * @p: the thread to be awakened
3295  * @state: the mask of task states that can be woken
3296  * @wake_flags: wake modifier flags (WF_*)
3297  *
3298  * Conceptually does:
3299  *
3300  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3301  *
3302  * If the task was not queued/runnable, also place it back on a runqueue.
3303  *
3304  * This function is atomic against schedule() which would dequeue the task.
3305  *
3306  * It issues a full memory barrier before accessing @p->state, see the comment
3307  * with set_current_state().
3308  *
3309  * Uses p->pi_lock to serialize against concurrent wake-ups.
3310  *
3311  * Relies on p->pi_lock stabilizing:
3312  *  - p->sched_class
3313  *  - p->cpus_ptr
3314  *  - p->sched_task_group
3315  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3316  *
3317  * Tries really hard to only take one task_rq(p)->lock for performance.
3318  * Takes rq->lock in:
3319  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3320  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3321  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3322  *
3323  * As a consequence we race really badly with just about everything. See the
3324  * many memory barriers and their comments for details.
3325  *
3326  * Return: %true if @p->state changes (an actual wakeup was done),
3327  *	   %false otherwise.
3328  */
3329 static int
3330 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3331 {
3332 	unsigned long flags;
3333 	int cpu, success = 0;
3334 
3335 	preempt_disable();
3336 	if (p == current) {
3337 		/*
3338 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3339 		 * == smp_processor_id()'. Together this means we can special
3340 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3341 		 * without taking any locks.
3342 		 *
3343 		 * In particular:
3344 		 *  - we rely on Program-Order guarantees for all the ordering,
3345 		 *  - we're serialized against set_special_state() by virtue of
3346 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3347 		 */
3348 		if (!(p->state & state))
3349 			goto out;
3350 
3351 		success = 1;
3352 		trace_sched_waking(p);
3353 		p->state = TASK_RUNNING;
3354 		trace_sched_wakeup(p);
3355 		goto out;
3356 	}
3357 
3358 	/*
3359 	 * If we are going to wake up a thread waiting for CONDITION we
3360 	 * need to ensure that CONDITION=1 done by the caller can not be
3361 	 * reordered with p->state check below. This pairs with smp_store_mb()
3362 	 * in set_current_state() that the waiting thread does.
3363 	 */
3364 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3365 	smp_mb__after_spinlock();
3366 	if (!(p->state & state))
3367 		goto unlock;
3368 
3369 	trace_sched_waking(p);
3370 
3371 	/* We're going to change ->state: */
3372 	success = 1;
3373 
3374 	/*
3375 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3376 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3377 	 * in smp_cond_load_acquire() below.
3378 	 *
3379 	 * sched_ttwu_pending()			try_to_wake_up()
3380 	 *   STORE p->on_rq = 1			  LOAD p->state
3381 	 *   UNLOCK rq->lock
3382 	 *
3383 	 * __schedule() (switch to task 'p')
3384 	 *   LOCK rq->lock			  smp_rmb();
3385 	 *   smp_mb__after_spinlock();
3386 	 *   UNLOCK rq->lock
3387 	 *
3388 	 * [task p]
3389 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3390 	 *
3391 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3392 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3393 	 *
3394 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3395 	 */
3396 	smp_rmb();
3397 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3398 		goto unlock;
3399 
3400 #ifdef CONFIG_SMP
3401 	/*
3402 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3403 	 * possible to, falsely, observe p->on_cpu == 0.
3404 	 *
3405 	 * One must be running (->on_cpu == 1) in order to remove oneself
3406 	 * from the runqueue.
3407 	 *
3408 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3409 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3410 	 *   UNLOCK rq->lock
3411 	 *
3412 	 * __schedule() (put 'p' to sleep)
3413 	 *   LOCK rq->lock			  smp_rmb();
3414 	 *   smp_mb__after_spinlock();
3415 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3416 	 *
3417 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3418 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3419 	 *
3420 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3421 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3422 	 * care about it's own p->state. See the comment in __schedule().
3423 	 */
3424 	smp_acquire__after_ctrl_dep();
3425 
3426 	/*
3427 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3428 	 * == 0), which means we need to do an enqueue, change p->state to
3429 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3430 	 * enqueue, such as ttwu_queue_wakelist().
3431 	 */
3432 	p->state = TASK_WAKING;
3433 
3434 	/*
3435 	 * If the owning (remote) CPU is still in the middle of schedule() with
3436 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3437 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3438 	 * let the waker make forward progress. This is safe because IRQs are
3439 	 * disabled and the IPI will deliver after on_cpu is cleared.
3440 	 *
3441 	 * Ensure we load task_cpu(p) after p->on_cpu:
3442 	 *
3443 	 * set_task_cpu(p, cpu);
3444 	 *   STORE p->cpu = @cpu
3445 	 * __schedule() (switch to task 'p')
3446 	 *   LOCK rq->lock
3447 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3448 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3449 	 *
3450 	 * to ensure we observe the correct CPU on which the task is currently
3451 	 * scheduling.
3452 	 */
3453 	if (smp_load_acquire(&p->on_cpu) &&
3454 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3455 		goto unlock;
3456 
3457 	/*
3458 	 * If the owning (remote) CPU is still in the middle of schedule() with
3459 	 * this task as prev, wait until it's done referencing the task.
3460 	 *
3461 	 * Pairs with the smp_store_release() in finish_task().
3462 	 *
3463 	 * This ensures that tasks getting woken will be fully ordered against
3464 	 * their previous state and preserve Program Order.
3465 	 */
3466 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3467 
3468 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3469 	if (task_cpu(p) != cpu) {
3470 		if (p->in_iowait) {
3471 			delayacct_blkio_end(p);
3472 			atomic_dec(&task_rq(p)->nr_iowait);
3473 		}
3474 
3475 		wake_flags |= WF_MIGRATED;
3476 		psi_ttwu_dequeue(p);
3477 		set_task_cpu(p, cpu);
3478 	}
3479 #else
3480 	cpu = task_cpu(p);
3481 #endif /* CONFIG_SMP */
3482 
3483 	ttwu_queue(p, cpu, wake_flags);
3484 unlock:
3485 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3486 out:
3487 	if (success)
3488 		ttwu_stat(p, task_cpu(p), wake_flags);
3489 	preempt_enable();
3490 
3491 	return success;
3492 }
3493 
3494 /**
3495  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3496  * @p: Process for which the function is to be invoked, can be @current.
3497  * @func: Function to invoke.
3498  * @arg: Argument to function.
3499  *
3500  * If the specified task can be quickly locked into a definite state
3501  * (either sleeping or on a given runqueue), arrange to keep it in that
3502  * state while invoking @func(@arg).  This function can use ->on_rq and
3503  * task_curr() to work out what the state is, if required.  Given that
3504  * @func can be invoked with a runqueue lock held, it had better be quite
3505  * lightweight.
3506  *
3507  * Returns:
3508  *	@false if the task slipped out from under the locks.
3509  *	@true if the task was locked onto a runqueue or is sleeping.
3510  *		However, @func can override this by returning @false.
3511  */
3512 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3513 {
3514 	struct rq_flags rf;
3515 	bool ret = false;
3516 	struct rq *rq;
3517 
3518 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3519 	if (p->on_rq) {
3520 		rq = __task_rq_lock(p, &rf);
3521 		if (task_rq(p) == rq)
3522 			ret = func(p, arg);
3523 		rq_unlock(rq, &rf);
3524 	} else {
3525 		switch (p->state) {
3526 		case TASK_RUNNING:
3527 		case TASK_WAKING:
3528 			break;
3529 		default:
3530 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3531 			if (!p->on_rq)
3532 				ret = func(p, arg);
3533 		}
3534 	}
3535 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3536 	return ret;
3537 }
3538 
3539 /**
3540  * wake_up_process - Wake up a specific process
3541  * @p: The process to be woken up.
3542  *
3543  * Attempt to wake up the nominated process and move it to the set of runnable
3544  * processes.
3545  *
3546  * Return: 1 if the process was woken up, 0 if it was already running.
3547  *
3548  * This function executes a full memory barrier before accessing the task state.
3549  */
3550 int wake_up_process(struct task_struct *p)
3551 {
3552 	return try_to_wake_up(p, TASK_NORMAL, 0);
3553 }
3554 EXPORT_SYMBOL(wake_up_process);
3555 
3556 int wake_up_state(struct task_struct *p, unsigned int state)
3557 {
3558 	return try_to_wake_up(p, state, 0);
3559 }
3560 
3561 /*
3562  * Perform scheduler related setup for a newly forked process p.
3563  * p is forked by current.
3564  *
3565  * __sched_fork() is basic setup used by init_idle() too:
3566  */
3567 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3568 {
3569 	p->on_rq			= 0;
3570 
3571 	p->se.on_rq			= 0;
3572 	p->se.exec_start		= 0;
3573 	p->se.sum_exec_runtime		= 0;
3574 	p->se.prev_sum_exec_runtime	= 0;
3575 	p->se.nr_migrations		= 0;
3576 	p->se.vruntime			= 0;
3577 	INIT_LIST_HEAD(&p->se.group_node);
3578 
3579 #ifdef CONFIG_FAIR_GROUP_SCHED
3580 	p->se.cfs_rq			= NULL;
3581 #endif
3582 
3583 #ifdef CONFIG_SCHEDSTATS
3584 	/* Even if schedstat is disabled, there should not be garbage */
3585 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3586 #endif
3587 
3588 	RB_CLEAR_NODE(&p->dl.rb_node);
3589 	init_dl_task_timer(&p->dl);
3590 	init_dl_inactive_task_timer(&p->dl);
3591 	__dl_clear_params(p);
3592 
3593 	INIT_LIST_HEAD(&p->rt.run_list);
3594 	p->rt.timeout		= 0;
3595 	p->rt.time_slice	= sched_rr_timeslice;
3596 	p->rt.on_rq		= 0;
3597 	p->rt.on_list		= 0;
3598 
3599 #ifdef CONFIG_PREEMPT_NOTIFIERS
3600 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3601 #endif
3602 
3603 #ifdef CONFIG_COMPACTION
3604 	p->capture_control = NULL;
3605 #endif
3606 	init_numa_balancing(clone_flags, p);
3607 #ifdef CONFIG_SMP
3608 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3609 	p->migration_pending = NULL;
3610 #endif
3611 }
3612 
3613 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3614 
3615 #ifdef CONFIG_NUMA_BALANCING
3616 
3617 void set_numabalancing_state(bool enabled)
3618 {
3619 	if (enabled)
3620 		static_branch_enable(&sched_numa_balancing);
3621 	else
3622 		static_branch_disable(&sched_numa_balancing);
3623 }
3624 
3625 #ifdef CONFIG_PROC_SYSCTL
3626 int sysctl_numa_balancing(struct ctl_table *table, int write,
3627 			  void *buffer, size_t *lenp, loff_t *ppos)
3628 {
3629 	struct ctl_table t;
3630 	int err;
3631 	int state = static_branch_likely(&sched_numa_balancing);
3632 
3633 	if (write && !capable(CAP_SYS_ADMIN))
3634 		return -EPERM;
3635 
3636 	t = *table;
3637 	t.data = &state;
3638 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3639 	if (err < 0)
3640 		return err;
3641 	if (write)
3642 		set_numabalancing_state(state);
3643 	return err;
3644 }
3645 #endif
3646 #endif
3647 
3648 #ifdef CONFIG_SCHEDSTATS
3649 
3650 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3651 static bool __initdata __sched_schedstats = false;
3652 
3653 static void set_schedstats(bool enabled)
3654 {
3655 	if (enabled)
3656 		static_branch_enable(&sched_schedstats);
3657 	else
3658 		static_branch_disable(&sched_schedstats);
3659 }
3660 
3661 void force_schedstat_enabled(void)
3662 {
3663 	if (!schedstat_enabled()) {
3664 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3665 		static_branch_enable(&sched_schedstats);
3666 	}
3667 }
3668 
3669 static int __init setup_schedstats(char *str)
3670 {
3671 	int ret = 0;
3672 	if (!str)
3673 		goto out;
3674 
3675 	/*
3676 	 * This code is called before jump labels have been set up, so we can't
3677 	 * change the static branch directly just yet.  Instead set a temporary
3678 	 * variable so init_schedstats() can do it later.
3679 	 */
3680 	if (!strcmp(str, "enable")) {
3681 		__sched_schedstats = true;
3682 		ret = 1;
3683 	} else if (!strcmp(str, "disable")) {
3684 		__sched_schedstats = false;
3685 		ret = 1;
3686 	}
3687 out:
3688 	if (!ret)
3689 		pr_warn("Unable to parse schedstats=\n");
3690 
3691 	return ret;
3692 }
3693 __setup("schedstats=", setup_schedstats);
3694 
3695 static void __init init_schedstats(void)
3696 {
3697 	set_schedstats(__sched_schedstats);
3698 }
3699 
3700 #ifdef CONFIG_PROC_SYSCTL
3701 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3702 		size_t *lenp, loff_t *ppos)
3703 {
3704 	struct ctl_table t;
3705 	int err;
3706 	int state = static_branch_likely(&sched_schedstats);
3707 
3708 	if (write && !capable(CAP_SYS_ADMIN))
3709 		return -EPERM;
3710 
3711 	t = *table;
3712 	t.data = &state;
3713 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3714 	if (err < 0)
3715 		return err;
3716 	if (write)
3717 		set_schedstats(state);
3718 	return err;
3719 }
3720 #endif /* CONFIG_PROC_SYSCTL */
3721 #else  /* !CONFIG_SCHEDSTATS */
3722 static inline void init_schedstats(void) {}
3723 #endif /* CONFIG_SCHEDSTATS */
3724 
3725 /*
3726  * fork()/clone()-time setup:
3727  */
3728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3729 {
3730 	unsigned long flags;
3731 
3732 	__sched_fork(clone_flags, p);
3733 	/*
3734 	 * We mark the process as NEW here. This guarantees that
3735 	 * nobody will actually run it, and a signal or other external
3736 	 * event cannot wake it up and insert it on the runqueue either.
3737 	 */
3738 	p->state = TASK_NEW;
3739 
3740 	/*
3741 	 * Make sure we do not leak PI boosting priority to the child.
3742 	 */
3743 	p->prio = current->normal_prio;
3744 
3745 	uclamp_fork(p);
3746 
3747 	/*
3748 	 * Revert to default priority/policy on fork if requested.
3749 	 */
3750 	if (unlikely(p->sched_reset_on_fork)) {
3751 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3752 			p->policy = SCHED_NORMAL;
3753 			p->static_prio = NICE_TO_PRIO(0);
3754 			p->rt_priority = 0;
3755 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3756 			p->static_prio = NICE_TO_PRIO(0);
3757 
3758 		p->prio = p->normal_prio = __normal_prio(p);
3759 		set_load_weight(p, false);
3760 
3761 		/*
3762 		 * We don't need the reset flag anymore after the fork. It has
3763 		 * fulfilled its duty:
3764 		 */
3765 		p->sched_reset_on_fork = 0;
3766 	}
3767 
3768 	if (dl_prio(p->prio))
3769 		return -EAGAIN;
3770 	else if (rt_prio(p->prio))
3771 		p->sched_class = &rt_sched_class;
3772 	else
3773 		p->sched_class = &fair_sched_class;
3774 
3775 	init_entity_runnable_average(&p->se);
3776 
3777 	/*
3778 	 * The child is not yet in the pid-hash so no cgroup attach races,
3779 	 * and the cgroup is pinned to this child due to cgroup_fork()
3780 	 * is ran before sched_fork().
3781 	 *
3782 	 * Silence PROVE_RCU.
3783 	 */
3784 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3785 	rseq_migrate(p);
3786 	/*
3787 	 * We're setting the CPU for the first time, we don't migrate,
3788 	 * so use __set_task_cpu().
3789 	 */
3790 	__set_task_cpu(p, smp_processor_id());
3791 	if (p->sched_class->task_fork)
3792 		p->sched_class->task_fork(p);
3793 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3794 
3795 #ifdef CONFIG_SCHED_INFO
3796 	if (likely(sched_info_on()))
3797 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3798 #endif
3799 #if defined(CONFIG_SMP)
3800 	p->on_cpu = 0;
3801 #endif
3802 	init_task_preempt_count(p);
3803 #ifdef CONFIG_SMP
3804 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3805 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3806 #endif
3807 	return 0;
3808 }
3809 
3810 void sched_post_fork(struct task_struct *p)
3811 {
3812 	uclamp_post_fork(p);
3813 }
3814 
3815 unsigned long to_ratio(u64 period, u64 runtime)
3816 {
3817 	if (runtime == RUNTIME_INF)
3818 		return BW_UNIT;
3819 
3820 	/*
3821 	 * Doing this here saves a lot of checks in all
3822 	 * the calling paths, and returning zero seems
3823 	 * safe for them anyway.
3824 	 */
3825 	if (period == 0)
3826 		return 0;
3827 
3828 	return div64_u64(runtime << BW_SHIFT, period);
3829 }
3830 
3831 /*
3832  * wake_up_new_task - wake up a newly created task for the first time.
3833  *
3834  * This function will do some initial scheduler statistics housekeeping
3835  * that must be done for every newly created context, then puts the task
3836  * on the runqueue and wakes it.
3837  */
3838 void wake_up_new_task(struct task_struct *p)
3839 {
3840 	struct rq_flags rf;
3841 	struct rq *rq;
3842 
3843 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3844 	p->state = TASK_RUNNING;
3845 #ifdef CONFIG_SMP
3846 	/*
3847 	 * Fork balancing, do it here and not earlier because:
3848 	 *  - cpus_ptr can change in the fork path
3849 	 *  - any previously selected CPU might disappear through hotplug
3850 	 *
3851 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3852 	 * as we're not fully set-up yet.
3853 	 */
3854 	p->recent_used_cpu = task_cpu(p);
3855 	rseq_migrate(p);
3856 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3857 #endif
3858 	rq = __task_rq_lock(p, &rf);
3859 	update_rq_clock(rq);
3860 	post_init_entity_util_avg(p);
3861 
3862 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3863 	trace_sched_wakeup_new(p);
3864 	check_preempt_curr(rq, p, WF_FORK);
3865 #ifdef CONFIG_SMP
3866 	if (p->sched_class->task_woken) {
3867 		/*
3868 		 * Nothing relies on rq->lock after this, so it's fine to
3869 		 * drop it.
3870 		 */
3871 		rq_unpin_lock(rq, &rf);
3872 		p->sched_class->task_woken(rq, p);
3873 		rq_repin_lock(rq, &rf);
3874 	}
3875 #endif
3876 	task_rq_unlock(rq, p, &rf);
3877 }
3878 
3879 #ifdef CONFIG_PREEMPT_NOTIFIERS
3880 
3881 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3882 
3883 void preempt_notifier_inc(void)
3884 {
3885 	static_branch_inc(&preempt_notifier_key);
3886 }
3887 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3888 
3889 void preempt_notifier_dec(void)
3890 {
3891 	static_branch_dec(&preempt_notifier_key);
3892 }
3893 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3894 
3895 /**
3896  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3897  * @notifier: notifier struct to register
3898  */
3899 void preempt_notifier_register(struct preempt_notifier *notifier)
3900 {
3901 	if (!static_branch_unlikely(&preempt_notifier_key))
3902 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3903 
3904 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3905 }
3906 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3907 
3908 /**
3909  * preempt_notifier_unregister - no longer interested in preemption notifications
3910  * @notifier: notifier struct to unregister
3911  *
3912  * This is *not* safe to call from within a preemption notifier.
3913  */
3914 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3915 {
3916 	hlist_del(&notifier->link);
3917 }
3918 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3919 
3920 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3921 {
3922 	struct preempt_notifier *notifier;
3923 
3924 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3925 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3926 }
3927 
3928 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3929 {
3930 	if (static_branch_unlikely(&preempt_notifier_key))
3931 		__fire_sched_in_preempt_notifiers(curr);
3932 }
3933 
3934 static void
3935 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3936 				   struct task_struct *next)
3937 {
3938 	struct preempt_notifier *notifier;
3939 
3940 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3941 		notifier->ops->sched_out(notifier, next);
3942 }
3943 
3944 static __always_inline void
3945 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3946 				 struct task_struct *next)
3947 {
3948 	if (static_branch_unlikely(&preempt_notifier_key))
3949 		__fire_sched_out_preempt_notifiers(curr, next);
3950 }
3951 
3952 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3953 
3954 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3955 {
3956 }
3957 
3958 static inline void
3959 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3960 				 struct task_struct *next)
3961 {
3962 }
3963 
3964 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3965 
3966 static inline void prepare_task(struct task_struct *next)
3967 {
3968 #ifdef CONFIG_SMP
3969 	/*
3970 	 * Claim the task as running, we do this before switching to it
3971 	 * such that any running task will have this set.
3972 	 *
3973 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3974 	 */
3975 	WRITE_ONCE(next->on_cpu, 1);
3976 #endif
3977 }
3978 
3979 static inline void finish_task(struct task_struct *prev)
3980 {
3981 #ifdef CONFIG_SMP
3982 	/*
3983 	 * This must be the very last reference to @prev from this CPU. After
3984 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3985 	 * must ensure this doesn't happen until the switch is completely
3986 	 * finished.
3987 	 *
3988 	 * In particular, the load of prev->state in finish_task_switch() must
3989 	 * happen before this.
3990 	 *
3991 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3992 	 */
3993 	smp_store_release(&prev->on_cpu, 0);
3994 #endif
3995 }
3996 
3997 #ifdef CONFIG_SMP
3998 
3999 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4000 {
4001 	void (*func)(struct rq *rq);
4002 	struct callback_head *next;
4003 
4004 	lockdep_assert_held(&rq->lock);
4005 
4006 	while (head) {
4007 		func = (void (*)(struct rq *))head->func;
4008 		next = head->next;
4009 		head->next = NULL;
4010 		head = next;
4011 
4012 		func(rq);
4013 	}
4014 }
4015 
4016 static void balance_push(struct rq *rq);
4017 
4018 struct callback_head balance_push_callback = {
4019 	.next = NULL,
4020 	.func = (void (*)(struct callback_head *))balance_push,
4021 };
4022 
4023 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4024 {
4025 	struct callback_head *head = rq->balance_callback;
4026 
4027 	lockdep_assert_held(&rq->lock);
4028 	if (head)
4029 		rq->balance_callback = NULL;
4030 
4031 	return head;
4032 }
4033 
4034 static void __balance_callbacks(struct rq *rq)
4035 {
4036 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4037 }
4038 
4039 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4040 {
4041 	unsigned long flags;
4042 
4043 	if (unlikely(head)) {
4044 		raw_spin_lock_irqsave(&rq->lock, flags);
4045 		do_balance_callbacks(rq, head);
4046 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4047 	}
4048 }
4049 
4050 #else
4051 
4052 static inline void __balance_callbacks(struct rq *rq)
4053 {
4054 }
4055 
4056 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4057 {
4058 	return NULL;
4059 }
4060 
4061 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4062 {
4063 }
4064 
4065 #endif
4066 
4067 static inline void
4068 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4069 {
4070 	/*
4071 	 * Since the runqueue lock will be released by the next
4072 	 * task (which is an invalid locking op but in the case
4073 	 * of the scheduler it's an obvious special-case), so we
4074 	 * do an early lockdep release here:
4075 	 */
4076 	rq_unpin_lock(rq, rf);
4077 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4078 #ifdef CONFIG_DEBUG_SPINLOCK
4079 	/* this is a valid case when another task releases the spinlock */
4080 	rq->lock.owner = next;
4081 #endif
4082 }
4083 
4084 static inline void finish_lock_switch(struct rq *rq)
4085 {
4086 	/*
4087 	 * If we are tracking spinlock dependencies then we have to
4088 	 * fix up the runqueue lock - which gets 'carried over' from
4089 	 * prev into current:
4090 	 */
4091 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4092 	__balance_callbacks(rq);
4093 	raw_spin_unlock_irq(&rq->lock);
4094 }
4095 
4096 /*
4097  * NOP if the arch has not defined these:
4098  */
4099 
4100 #ifndef prepare_arch_switch
4101 # define prepare_arch_switch(next)	do { } while (0)
4102 #endif
4103 
4104 #ifndef finish_arch_post_lock_switch
4105 # define finish_arch_post_lock_switch()	do { } while (0)
4106 #endif
4107 
4108 static inline void kmap_local_sched_out(void)
4109 {
4110 #ifdef CONFIG_KMAP_LOCAL
4111 	if (unlikely(current->kmap_ctrl.idx))
4112 		__kmap_local_sched_out();
4113 #endif
4114 }
4115 
4116 static inline void kmap_local_sched_in(void)
4117 {
4118 #ifdef CONFIG_KMAP_LOCAL
4119 	if (unlikely(current->kmap_ctrl.idx))
4120 		__kmap_local_sched_in();
4121 #endif
4122 }
4123 
4124 /**
4125  * prepare_task_switch - prepare to switch tasks
4126  * @rq: the runqueue preparing to switch
4127  * @prev: the current task that is being switched out
4128  * @next: the task we are going to switch to.
4129  *
4130  * This is called with the rq lock held and interrupts off. It must
4131  * be paired with a subsequent finish_task_switch after the context
4132  * switch.
4133  *
4134  * prepare_task_switch sets up locking and calls architecture specific
4135  * hooks.
4136  */
4137 static inline void
4138 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4139 		    struct task_struct *next)
4140 {
4141 	kcov_prepare_switch(prev);
4142 	sched_info_switch(rq, prev, next);
4143 	perf_event_task_sched_out(prev, next);
4144 	rseq_preempt(prev);
4145 	fire_sched_out_preempt_notifiers(prev, next);
4146 	kmap_local_sched_out();
4147 	prepare_task(next);
4148 	prepare_arch_switch(next);
4149 }
4150 
4151 /**
4152  * finish_task_switch - clean up after a task-switch
4153  * @prev: the thread we just switched away from.
4154  *
4155  * finish_task_switch must be called after the context switch, paired
4156  * with a prepare_task_switch call before the context switch.
4157  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4158  * and do any other architecture-specific cleanup actions.
4159  *
4160  * Note that we may have delayed dropping an mm in context_switch(). If
4161  * so, we finish that here outside of the runqueue lock. (Doing it
4162  * with the lock held can cause deadlocks; see schedule() for
4163  * details.)
4164  *
4165  * The context switch have flipped the stack from under us and restored the
4166  * local variables which were saved when this task called schedule() in the
4167  * past. prev == current is still correct but we need to recalculate this_rq
4168  * because prev may have moved to another CPU.
4169  */
4170 static struct rq *finish_task_switch(struct task_struct *prev)
4171 	__releases(rq->lock)
4172 {
4173 	struct rq *rq = this_rq();
4174 	struct mm_struct *mm = rq->prev_mm;
4175 	long prev_state;
4176 
4177 	/*
4178 	 * The previous task will have left us with a preempt_count of 2
4179 	 * because it left us after:
4180 	 *
4181 	 *	schedule()
4182 	 *	  preempt_disable();			// 1
4183 	 *	  __schedule()
4184 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4185 	 *
4186 	 * Also, see FORK_PREEMPT_COUNT.
4187 	 */
4188 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4189 		      "corrupted preempt_count: %s/%d/0x%x\n",
4190 		      current->comm, current->pid, preempt_count()))
4191 		preempt_count_set(FORK_PREEMPT_COUNT);
4192 
4193 	rq->prev_mm = NULL;
4194 
4195 	/*
4196 	 * A task struct has one reference for the use as "current".
4197 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4198 	 * schedule one last time. The schedule call will never return, and
4199 	 * the scheduled task must drop that reference.
4200 	 *
4201 	 * We must observe prev->state before clearing prev->on_cpu (in
4202 	 * finish_task), otherwise a concurrent wakeup can get prev
4203 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4204 	 * transition, resulting in a double drop.
4205 	 */
4206 	prev_state = prev->state;
4207 	vtime_task_switch(prev);
4208 	perf_event_task_sched_in(prev, current);
4209 	finish_task(prev);
4210 	finish_lock_switch(rq);
4211 	finish_arch_post_lock_switch();
4212 	kcov_finish_switch(current);
4213 	/*
4214 	 * kmap_local_sched_out() is invoked with rq::lock held and
4215 	 * interrupts disabled. There is no requirement for that, but the
4216 	 * sched out code does not have an interrupt enabled section.
4217 	 * Restoring the maps on sched in does not require interrupts being
4218 	 * disabled either.
4219 	 */
4220 	kmap_local_sched_in();
4221 
4222 	fire_sched_in_preempt_notifiers(current);
4223 	/*
4224 	 * When switching through a kernel thread, the loop in
4225 	 * membarrier_{private,global}_expedited() may have observed that
4226 	 * kernel thread and not issued an IPI. It is therefore possible to
4227 	 * schedule between user->kernel->user threads without passing though
4228 	 * switch_mm(). Membarrier requires a barrier after storing to
4229 	 * rq->curr, before returning to userspace, so provide them here:
4230 	 *
4231 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4232 	 *   provided by mmdrop(),
4233 	 * - a sync_core for SYNC_CORE.
4234 	 */
4235 	if (mm) {
4236 		membarrier_mm_sync_core_before_usermode(mm);
4237 		mmdrop(mm);
4238 	}
4239 	if (unlikely(prev_state == TASK_DEAD)) {
4240 		if (prev->sched_class->task_dead)
4241 			prev->sched_class->task_dead(prev);
4242 
4243 		/*
4244 		 * Remove function-return probe instances associated with this
4245 		 * task and put them back on the free list.
4246 		 */
4247 		kprobe_flush_task(prev);
4248 
4249 		/* Task is done with its stack. */
4250 		put_task_stack(prev);
4251 
4252 		put_task_struct_rcu_user(prev);
4253 	}
4254 
4255 	tick_nohz_task_switch();
4256 	return rq;
4257 }
4258 
4259 /**
4260  * schedule_tail - first thing a freshly forked thread must call.
4261  * @prev: the thread we just switched away from.
4262  */
4263 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4264 	__releases(rq->lock)
4265 {
4266 	struct rq *rq;
4267 
4268 	/*
4269 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4270 	 * finish_task_switch() for details.
4271 	 *
4272 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4273 	 * and the preempt_enable() will end up enabling preemption (on
4274 	 * PREEMPT_COUNT kernels).
4275 	 */
4276 
4277 	rq = finish_task_switch(prev);
4278 	preempt_enable();
4279 
4280 	if (current->set_child_tid)
4281 		put_user(task_pid_vnr(current), current->set_child_tid);
4282 
4283 	calculate_sigpending();
4284 }
4285 
4286 /*
4287  * context_switch - switch to the new MM and the new thread's register state.
4288  */
4289 static __always_inline struct rq *
4290 context_switch(struct rq *rq, struct task_struct *prev,
4291 	       struct task_struct *next, struct rq_flags *rf)
4292 {
4293 	prepare_task_switch(rq, prev, next);
4294 
4295 	/*
4296 	 * For paravirt, this is coupled with an exit in switch_to to
4297 	 * combine the page table reload and the switch backend into
4298 	 * one hypercall.
4299 	 */
4300 	arch_start_context_switch(prev);
4301 
4302 	/*
4303 	 * kernel -> kernel   lazy + transfer active
4304 	 *   user -> kernel   lazy + mmgrab() active
4305 	 *
4306 	 * kernel ->   user   switch + mmdrop() active
4307 	 *   user ->   user   switch
4308 	 */
4309 	if (!next->mm) {                                // to kernel
4310 		enter_lazy_tlb(prev->active_mm, next);
4311 
4312 		next->active_mm = prev->active_mm;
4313 		if (prev->mm)                           // from user
4314 			mmgrab(prev->active_mm);
4315 		else
4316 			prev->active_mm = NULL;
4317 	} else {                                        // to user
4318 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4319 		/*
4320 		 * sys_membarrier() requires an smp_mb() between setting
4321 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4322 		 *
4323 		 * The below provides this either through switch_mm(), or in
4324 		 * case 'prev->active_mm == next->mm' through
4325 		 * finish_task_switch()'s mmdrop().
4326 		 */
4327 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4328 
4329 		if (!prev->mm) {                        // from kernel
4330 			/* will mmdrop() in finish_task_switch(). */
4331 			rq->prev_mm = prev->active_mm;
4332 			prev->active_mm = NULL;
4333 		}
4334 	}
4335 
4336 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4337 
4338 	prepare_lock_switch(rq, next, rf);
4339 
4340 	/* Here we just switch the register state and the stack. */
4341 	switch_to(prev, next, prev);
4342 	barrier();
4343 
4344 	return finish_task_switch(prev);
4345 }
4346 
4347 /*
4348  * nr_running and nr_context_switches:
4349  *
4350  * externally visible scheduler statistics: current number of runnable
4351  * threads, total number of context switches performed since bootup.
4352  */
4353 unsigned long nr_running(void)
4354 {
4355 	unsigned long i, sum = 0;
4356 
4357 	for_each_online_cpu(i)
4358 		sum += cpu_rq(i)->nr_running;
4359 
4360 	return sum;
4361 }
4362 
4363 /*
4364  * Check if only the current task is running on the CPU.
4365  *
4366  * Caution: this function does not check that the caller has disabled
4367  * preemption, thus the result might have a time-of-check-to-time-of-use
4368  * race.  The caller is responsible to use it correctly, for example:
4369  *
4370  * - from a non-preemptible section (of course)
4371  *
4372  * - from a thread that is bound to a single CPU
4373  *
4374  * - in a loop with very short iterations (e.g. a polling loop)
4375  */
4376 bool single_task_running(void)
4377 {
4378 	return raw_rq()->nr_running == 1;
4379 }
4380 EXPORT_SYMBOL(single_task_running);
4381 
4382 unsigned long long nr_context_switches(void)
4383 {
4384 	int i;
4385 	unsigned long long sum = 0;
4386 
4387 	for_each_possible_cpu(i)
4388 		sum += cpu_rq(i)->nr_switches;
4389 
4390 	return sum;
4391 }
4392 
4393 /*
4394  * Consumers of these two interfaces, like for example the cpuidle menu
4395  * governor, are using nonsensical data. Preferring shallow idle state selection
4396  * for a CPU that has IO-wait which might not even end up running the task when
4397  * it does become runnable.
4398  */
4399 
4400 unsigned long nr_iowait_cpu(int cpu)
4401 {
4402 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4403 }
4404 
4405 /*
4406  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4407  *
4408  * The idea behind IO-wait account is to account the idle time that we could
4409  * have spend running if it were not for IO. That is, if we were to improve the
4410  * storage performance, we'd have a proportional reduction in IO-wait time.
4411  *
4412  * This all works nicely on UP, where, when a task blocks on IO, we account
4413  * idle time as IO-wait, because if the storage were faster, it could've been
4414  * running and we'd not be idle.
4415  *
4416  * This has been extended to SMP, by doing the same for each CPU. This however
4417  * is broken.
4418  *
4419  * Imagine for instance the case where two tasks block on one CPU, only the one
4420  * CPU will have IO-wait accounted, while the other has regular idle. Even
4421  * though, if the storage were faster, both could've ran at the same time,
4422  * utilising both CPUs.
4423  *
4424  * This means, that when looking globally, the current IO-wait accounting on
4425  * SMP is a lower bound, by reason of under accounting.
4426  *
4427  * Worse, since the numbers are provided per CPU, they are sometimes
4428  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4429  * associated with any one particular CPU, it can wake to another CPU than it
4430  * blocked on. This means the per CPU IO-wait number is meaningless.
4431  *
4432  * Task CPU affinities can make all that even more 'interesting'.
4433  */
4434 
4435 unsigned long nr_iowait(void)
4436 {
4437 	unsigned long i, sum = 0;
4438 
4439 	for_each_possible_cpu(i)
4440 		sum += nr_iowait_cpu(i);
4441 
4442 	return sum;
4443 }
4444 
4445 #ifdef CONFIG_SMP
4446 
4447 /*
4448  * sched_exec - execve() is a valuable balancing opportunity, because at
4449  * this point the task has the smallest effective memory and cache footprint.
4450  */
4451 void sched_exec(void)
4452 {
4453 	struct task_struct *p = current;
4454 	unsigned long flags;
4455 	int dest_cpu;
4456 
4457 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4458 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4459 	if (dest_cpu == smp_processor_id())
4460 		goto unlock;
4461 
4462 	if (likely(cpu_active(dest_cpu))) {
4463 		struct migration_arg arg = { p, dest_cpu };
4464 
4465 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4466 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4467 		return;
4468 	}
4469 unlock:
4470 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4471 }
4472 
4473 #endif
4474 
4475 DEFINE_PER_CPU(struct kernel_stat, kstat);
4476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4477 
4478 EXPORT_PER_CPU_SYMBOL(kstat);
4479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4480 
4481 /*
4482  * The function fair_sched_class.update_curr accesses the struct curr
4483  * and its field curr->exec_start; when called from task_sched_runtime(),
4484  * we observe a high rate of cache misses in practice.
4485  * Prefetching this data results in improved performance.
4486  */
4487 static inline void prefetch_curr_exec_start(struct task_struct *p)
4488 {
4489 #ifdef CONFIG_FAIR_GROUP_SCHED
4490 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4491 #else
4492 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4493 #endif
4494 	prefetch(curr);
4495 	prefetch(&curr->exec_start);
4496 }
4497 
4498 /*
4499  * Return accounted runtime for the task.
4500  * In case the task is currently running, return the runtime plus current's
4501  * pending runtime that have not been accounted yet.
4502  */
4503 unsigned long long task_sched_runtime(struct task_struct *p)
4504 {
4505 	struct rq_flags rf;
4506 	struct rq *rq;
4507 	u64 ns;
4508 
4509 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4510 	/*
4511 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4512 	 * So we have a optimization chance when the task's delta_exec is 0.
4513 	 * Reading ->on_cpu is racy, but this is ok.
4514 	 *
4515 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4516 	 * If we race with it entering CPU, unaccounted time is 0. This is
4517 	 * indistinguishable from the read occurring a few cycles earlier.
4518 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4519 	 * been accounted, so we're correct here as well.
4520 	 */
4521 	if (!p->on_cpu || !task_on_rq_queued(p))
4522 		return p->se.sum_exec_runtime;
4523 #endif
4524 
4525 	rq = task_rq_lock(p, &rf);
4526 	/*
4527 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4528 	 * project cycles that may never be accounted to this
4529 	 * thread, breaking clock_gettime().
4530 	 */
4531 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4532 		prefetch_curr_exec_start(p);
4533 		update_rq_clock(rq);
4534 		p->sched_class->update_curr(rq);
4535 	}
4536 	ns = p->se.sum_exec_runtime;
4537 	task_rq_unlock(rq, p, &rf);
4538 
4539 	return ns;
4540 }
4541 
4542 /*
4543  * This function gets called by the timer code, with HZ frequency.
4544  * We call it with interrupts disabled.
4545  */
4546 void scheduler_tick(void)
4547 {
4548 	int cpu = smp_processor_id();
4549 	struct rq *rq = cpu_rq(cpu);
4550 	struct task_struct *curr = rq->curr;
4551 	struct rq_flags rf;
4552 	unsigned long thermal_pressure;
4553 
4554 	arch_scale_freq_tick();
4555 	sched_clock_tick();
4556 
4557 	rq_lock(rq, &rf);
4558 
4559 	update_rq_clock(rq);
4560 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4561 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4562 	curr->sched_class->task_tick(rq, curr, 0);
4563 	calc_global_load_tick(rq);
4564 	psi_task_tick(rq);
4565 
4566 	rq_unlock(rq, &rf);
4567 
4568 	perf_event_task_tick();
4569 
4570 #ifdef CONFIG_SMP
4571 	rq->idle_balance = idle_cpu(cpu);
4572 	trigger_load_balance(rq);
4573 #endif
4574 }
4575 
4576 #ifdef CONFIG_NO_HZ_FULL
4577 
4578 struct tick_work {
4579 	int			cpu;
4580 	atomic_t		state;
4581 	struct delayed_work	work;
4582 };
4583 /* Values for ->state, see diagram below. */
4584 #define TICK_SCHED_REMOTE_OFFLINE	0
4585 #define TICK_SCHED_REMOTE_OFFLINING	1
4586 #define TICK_SCHED_REMOTE_RUNNING	2
4587 
4588 /*
4589  * State diagram for ->state:
4590  *
4591  *
4592  *          TICK_SCHED_REMOTE_OFFLINE
4593  *                    |   ^
4594  *                    |   |
4595  *                    |   | sched_tick_remote()
4596  *                    |   |
4597  *                    |   |
4598  *                    +--TICK_SCHED_REMOTE_OFFLINING
4599  *                    |   ^
4600  *                    |   |
4601  * sched_tick_start() |   | sched_tick_stop()
4602  *                    |   |
4603  *                    V   |
4604  *          TICK_SCHED_REMOTE_RUNNING
4605  *
4606  *
4607  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4608  * and sched_tick_start() are happy to leave the state in RUNNING.
4609  */
4610 
4611 static struct tick_work __percpu *tick_work_cpu;
4612 
4613 static void sched_tick_remote(struct work_struct *work)
4614 {
4615 	struct delayed_work *dwork = to_delayed_work(work);
4616 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4617 	int cpu = twork->cpu;
4618 	struct rq *rq = cpu_rq(cpu);
4619 	struct task_struct *curr;
4620 	struct rq_flags rf;
4621 	u64 delta;
4622 	int os;
4623 
4624 	/*
4625 	 * Handle the tick only if it appears the remote CPU is running in full
4626 	 * dynticks mode. The check is racy by nature, but missing a tick or
4627 	 * having one too much is no big deal because the scheduler tick updates
4628 	 * statistics and checks timeslices in a time-independent way, regardless
4629 	 * of when exactly it is running.
4630 	 */
4631 	if (!tick_nohz_tick_stopped_cpu(cpu))
4632 		goto out_requeue;
4633 
4634 	rq_lock_irq(rq, &rf);
4635 	curr = rq->curr;
4636 	if (cpu_is_offline(cpu))
4637 		goto out_unlock;
4638 
4639 	update_rq_clock(rq);
4640 
4641 	if (!is_idle_task(curr)) {
4642 		/*
4643 		 * Make sure the next tick runs within a reasonable
4644 		 * amount of time.
4645 		 */
4646 		delta = rq_clock_task(rq) - curr->se.exec_start;
4647 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4648 	}
4649 	curr->sched_class->task_tick(rq, curr, 0);
4650 
4651 	calc_load_nohz_remote(rq);
4652 out_unlock:
4653 	rq_unlock_irq(rq, &rf);
4654 out_requeue:
4655 
4656 	/*
4657 	 * Run the remote tick once per second (1Hz). This arbitrary
4658 	 * frequency is large enough to avoid overload but short enough
4659 	 * to keep scheduler internal stats reasonably up to date.  But
4660 	 * first update state to reflect hotplug activity if required.
4661 	 */
4662 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4663 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4664 	if (os == TICK_SCHED_REMOTE_RUNNING)
4665 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4666 }
4667 
4668 static void sched_tick_start(int cpu)
4669 {
4670 	int os;
4671 	struct tick_work *twork;
4672 
4673 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4674 		return;
4675 
4676 	WARN_ON_ONCE(!tick_work_cpu);
4677 
4678 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4679 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4680 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4681 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4682 		twork->cpu = cpu;
4683 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4684 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4685 	}
4686 }
4687 
4688 #ifdef CONFIG_HOTPLUG_CPU
4689 static void sched_tick_stop(int cpu)
4690 {
4691 	struct tick_work *twork;
4692 	int os;
4693 
4694 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4695 		return;
4696 
4697 	WARN_ON_ONCE(!tick_work_cpu);
4698 
4699 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4700 	/* There cannot be competing actions, but don't rely on stop-machine. */
4701 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4702 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4703 	/* Don't cancel, as this would mess up the state machine. */
4704 }
4705 #endif /* CONFIG_HOTPLUG_CPU */
4706 
4707 int __init sched_tick_offload_init(void)
4708 {
4709 	tick_work_cpu = alloc_percpu(struct tick_work);
4710 	BUG_ON(!tick_work_cpu);
4711 	return 0;
4712 }
4713 
4714 #else /* !CONFIG_NO_HZ_FULL */
4715 static inline void sched_tick_start(int cpu) { }
4716 static inline void sched_tick_stop(int cpu) { }
4717 #endif
4718 
4719 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4720 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4721 /*
4722  * If the value passed in is equal to the current preempt count
4723  * then we just disabled preemption. Start timing the latency.
4724  */
4725 static inline void preempt_latency_start(int val)
4726 {
4727 	if (preempt_count() == val) {
4728 		unsigned long ip = get_lock_parent_ip();
4729 #ifdef CONFIG_DEBUG_PREEMPT
4730 		current->preempt_disable_ip = ip;
4731 #endif
4732 		trace_preempt_off(CALLER_ADDR0, ip);
4733 	}
4734 }
4735 
4736 void preempt_count_add(int val)
4737 {
4738 #ifdef CONFIG_DEBUG_PREEMPT
4739 	/*
4740 	 * Underflow?
4741 	 */
4742 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4743 		return;
4744 #endif
4745 	__preempt_count_add(val);
4746 #ifdef CONFIG_DEBUG_PREEMPT
4747 	/*
4748 	 * Spinlock count overflowing soon?
4749 	 */
4750 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4751 				PREEMPT_MASK - 10);
4752 #endif
4753 	preempt_latency_start(val);
4754 }
4755 EXPORT_SYMBOL(preempt_count_add);
4756 NOKPROBE_SYMBOL(preempt_count_add);
4757 
4758 /*
4759  * If the value passed in equals to the current preempt count
4760  * then we just enabled preemption. Stop timing the latency.
4761  */
4762 static inline void preempt_latency_stop(int val)
4763 {
4764 	if (preempt_count() == val)
4765 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4766 }
4767 
4768 void preempt_count_sub(int val)
4769 {
4770 #ifdef CONFIG_DEBUG_PREEMPT
4771 	/*
4772 	 * Underflow?
4773 	 */
4774 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4775 		return;
4776 	/*
4777 	 * Is the spinlock portion underflowing?
4778 	 */
4779 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4780 			!(preempt_count() & PREEMPT_MASK)))
4781 		return;
4782 #endif
4783 
4784 	preempt_latency_stop(val);
4785 	__preempt_count_sub(val);
4786 }
4787 EXPORT_SYMBOL(preempt_count_sub);
4788 NOKPROBE_SYMBOL(preempt_count_sub);
4789 
4790 #else
4791 static inline void preempt_latency_start(int val) { }
4792 static inline void preempt_latency_stop(int val) { }
4793 #endif
4794 
4795 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4796 {
4797 #ifdef CONFIG_DEBUG_PREEMPT
4798 	return p->preempt_disable_ip;
4799 #else
4800 	return 0;
4801 #endif
4802 }
4803 
4804 /*
4805  * Print scheduling while atomic bug:
4806  */
4807 static noinline void __schedule_bug(struct task_struct *prev)
4808 {
4809 	/* Save this before calling printk(), since that will clobber it */
4810 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4811 
4812 	if (oops_in_progress)
4813 		return;
4814 
4815 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4816 		prev->comm, prev->pid, preempt_count());
4817 
4818 	debug_show_held_locks(prev);
4819 	print_modules();
4820 	if (irqs_disabled())
4821 		print_irqtrace_events(prev);
4822 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4823 	    && in_atomic_preempt_off()) {
4824 		pr_err("Preemption disabled at:");
4825 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4826 	}
4827 	if (panic_on_warn)
4828 		panic("scheduling while atomic\n");
4829 
4830 	dump_stack();
4831 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4832 }
4833 
4834 /*
4835  * Various schedule()-time debugging checks and statistics:
4836  */
4837 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4838 {
4839 #ifdef CONFIG_SCHED_STACK_END_CHECK
4840 	if (task_stack_end_corrupted(prev))
4841 		panic("corrupted stack end detected inside scheduler\n");
4842 
4843 	if (task_scs_end_corrupted(prev))
4844 		panic("corrupted shadow stack detected inside scheduler\n");
4845 #endif
4846 
4847 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4848 	if (!preempt && prev->state && prev->non_block_count) {
4849 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4850 			prev->comm, prev->pid, prev->non_block_count);
4851 		dump_stack();
4852 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4853 	}
4854 #endif
4855 
4856 	if (unlikely(in_atomic_preempt_off())) {
4857 		__schedule_bug(prev);
4858 		preempt_count_set(PREEMPT_DISABLED);
4859 	}
4860 	rcu_sleep_check();
4861 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4862 
4863 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4864 
4865 	schedstat_inc(this_rq()->sched_count);
4866 }
4867 
4868 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4869 				  struct rq_flags *rf)
4870 {
4871 #ifdef CONFIG_SMP
4872 	const struct sched_class *class;
4873 	/*
4874 	 * We must do the balancing pass before put_prev_task(), such
4875 	 * that when we release the rq->lock the task is in the same
4876 	 * state as before we took rq->lock.
4877 	 *
4878 	 * We can terminate the balance pass as soon as we know there is
4879 	 * a runnable task of @class priority or higher.
4880 	 */
4881 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4882 		if (class->balance(rq, prev, rf))
4883 			break;
4884 	}
4885 #endif
4886 
4887 	put_prev_task(rq, prev);
4888 }
4889 
4890 /*
4891  * Pick up the highest-prio task:
4892  */
4893 static inline struct task_struct *
4894 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4895 {
4896 	const struct sched_class *class;
4897 	struct task_struct *p;
4898 
4899 	/*
4900 	 * Optimization: we know that if all tasks are in the fair class we can
4901 	 * call that function directly, but only if the @prev task wasn't of a
4902 	 * higher scheduling class, because otherwise those lose the
4903 	 * opportunity to pull in more work from other CPUs.
4904 	 */
4905 	if (likely(prev->sched_class <= &fair_sched_class &&
4906 		   rq->nr_running == rq->cfs.h_nr_running)) {
4907 
4908 		p = pick_next_task_fair(rq, prev, rf);
4909 		if (unlikely(p == RETRY_TASK))
4910 			goto restart;
4911 
4912 		/* Assumes fair_sched_class->next == idle_sched_class */
4913 		if (!p) {
4914 			put_prev_task(rq, prev);
4915 			p = pick_next_task_idle(rq);
4916 		}
4917 
4918 		return p;
4919 	}
4920 
4921 restart:
4922 	put_prev_task_balance(rq, prev, rf);
4923 
4924 	for_each_class(class) {
4925 		p = class->pick_next_task(rq);
4926 		if (p)
4927 			return p;
4928 	}
4929 
4930 	/* The idle class should always have a runnable task: */
4931 	BUG();
4932 }
4933 
4934 /*
4935  * __schedule() is the main scheduler function.
4936  *
4937  * The main means of driving the scheduler and thus entering this function are:
4938  *
4939  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4940  *
4941  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4942  *      paths. For example, see arch/x86/entry_64.S.
4943  *
4944  *      To drive preemption between tasks, the scheduler sets the flag in timer
4945  *      interrupt handler scheduler_tick().
4946  *
4947  *   3. Wakeups don't really cause entry into schedule(). They add a
4948  *      task to the run-queue and that's it.
4949  *
4950  *      Now, if the new task added to the run-queue preempts the current
4951  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4952  *      called on the nearest possible occasion:
4953  *
4954  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4955  *
4956  *         - in syscall or exception context, at the next outmost
4957  *           preempt_enable(). (this might be as soon as the wake_up()'s
4958  *           spin_unlock()!)
4959  *
4960  *         - in IRQ context, return from interrupt-handler to
4961  *           preemptible context
4962  *
4963  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4964  *         then at the next:
4965  *
4966  *          - cond_resched() call
4967  *          - explicit schedule() call
4968  *          - return from syscall or exception to user-space
4969  *          - return from interrupt-handler to user-space
4970  *
4971  * WARNING: must be called with preemption disabled!
4972  */
4973 static void __sched notrace __schedule(bool preempt)
4974 {
4975 	struct task_struct *prev, *next;
4976 	unsigned long *switch_count;
4977 	unsigned long prev_state;
4978 	struct rq_flags rf;
4979 	struct rq *rq;
4980 	int cpu;
4981 
4982 	cpu = smp_processor_id();
4983 	rq = cpu_rq(cpu);
4984 	prev = rq->curr;
4985 
4986 	schedule_debug(prev, preempt);
4987 
4988 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
4989 		hrtick_clear(rq);
4990 
4991 	local_irq_disable();
4992 	rcu_note_context_switch(preempt);
4993 
4994 	/*
4995 	 * Make sure that signal_pending_state()->signal_pending() below
4996 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4997 	 * done by the caller to avoid the race with signal_wake_up():
4998 	 *
4999 	 * __set_current_state(@state)		signal_wake_up()
5000 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
5001 	 *					  wake_up_state(p, state)
5002 	 *   LOCK rq->lock			    LOCK p->pi_state
5003 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
5004 	 *     if (signal_pending_state())	    if (p->state & @state)
5005 	 *
5006 	 * Also, the membarrier system call requires a full memory barrier
5007 	 * after coming from user-space, before storing to rq->curr.
5008 	 */
5009 	rq_lock(rq, &rf);
5010 	smp_mb__after_spinlock();
5011 
5012 	/* Promote REQ to ACT */
5013 	rq->clock_update_flags <<= 1;
5014 	update_rq_clock(rq);
5015 
5016 	switch_count = &prev->nivcsw;
5017 
5018 	/*
5019 	 * We must load prev->state once (task_struct::state is volatile), such
5020 	 * that:
5021 	 *
5022 	 *  - we form a control dependency vs deactivate_task() below.
5023 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5024 	 */
5025 	prev_state = prev->state;
5026 	if (!preempt && prev_state) {
5027 		if (signal_pending_state(prev_state, prev)) {
5028 			prev->state = TASK_RUNNING;
5029 		} else {
5030 			prev->sched_contributes_to_load =
5031 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5032 				!(prev_state & TASK_NOLOAD) &&
5033 				!(prev->flags & PF_FROZEN);
5034 
5035 			if (prev->sched_contributes_to_load)
5036 				rq->nr_uninterruptible++;
5037 
5038 			/*
5039 			 * __schedule()			ttwu()
5040 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5041 			 *   if (prev_state)		    goto out;
5042 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5043 			 *				  p->state = TASK_WAKING
5044 			 *
5045 			 * Where __schedule() and ttwu() have matching control dependencies.
5046 			 *
5047 			 * After this, schedule() must not care about p->state any more.
5048 			 */
5049 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5050 
5051 			if (prev->in_iowait) {
5052 				atomic_inc(&rq->nr_iowait);
5053 				delayacct_blkio_start();
5054 			}
5055 		}
5056 		switch_count = &prev->nvcsw;
5057 	}
5058 
5059 	next = pick_next_task(rq, prev, &rf);
5060 	clear_tsk_need_resched(prev);
5061 	clear_preempt_need_resched();
5062 
5063 	if (likely(prev != next)) {
5064 		rq->nr_switches++;
5065 		/*
5066 		 * RCU users of rcu_dereference(rq->curr) may not see
5067 		 * changes to task_struct made by pick_next_task().
5068 		 */
5069 		RCU_INIT_POINTER(rq->curr, next);
5070 		/*
5071 		 * The membarrier system call requires each architecture
5072 		 * to have a full memory barrier after updating
5073 		 * rq->curr, before returning to user-space.
5074 		 *
5075 		 * Here are the schemes providing that barrier on the
5076 		 * various architectures:
5077 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5078 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5079 		 * - finish_lock_switch() for weakly-ordered
5080 		 *   architectures where spin_unlock is a full barrier,
5081 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5082 		 *   is a RELEASE barrier),
5083 		 */
5084 		++*switch_count;
5085 
5086 		migrate_disable_switch(rq, prev);
5087 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5088 
5089 		trace_sched_switch(preempt, prev, next);
5090 
5091 		/* Also unlocks the rq: */
5092 		rq = context_switch(rq, prev, next, &rf);
5093 	} else {
5094 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5095 
5096 		rq_unpin_lock(rq, &rf);
5097 		__balance_callbacks(rq);
5098 		raw_spin_unlock_irq(&rq->lock);
5099 	}
5100 }
5101 
5102 void __noreturn do_task_dead(void)
5103 {
5104 	/* Causes final put_task_struct in finish_task_switch(): */
5105 	set_special_state(TASK_DEAD);
5106 
5107 	/* Tell freezer to ignore us: */
5108 	current->flags |= PF_NOFREEZE;
5109 
5110 	__schedule(false);
5111 	BUG();
5112 
5113 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5114 	for (;;)
5115 		cpu_relax();
5116 }
5117 
5118 static inline void sched_submit_work(struct task_struct *tsk)
5119 {
5120 	unsigned int task_flags;
5121 
5122 	if (!tsk->state)
5123 		return;
5124 
5125 	task_flags = tsk->flags;
5126 	/*
5127 	 * If a worker went to sleep, notify and ask workqueue whether
5128 	 * it wants to wake up a task to maintain concurrency.
5129 	 * As this function is called inside the schedule() context,
5130 	 * we disable preemption to avoid it calling schedule() again
5131 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5132 	 * requires it.
5133 	 */
5134 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5135 		preempt_disable();
5136 		if (task_flags & PF_WQ_WORKER)
5137 			wq_worker_sleeping(tsk);
5138 		else
5139 			io_wq_worker_sleeping(tsk);
5140 		preempt_enable_no_resched();
5141 	}
5142 
5143 	if (tsk_is_pi_blocked(tsk))
5144 		return;
5145 
5146 	/*
5147 	 * If we are going to sleep and we have plugged IO queued,
5148 	 * make sure to submit it to avoid deadlocks.
5149 	 */
5150 	if (blk_needs_flush_plug(tsk))
5151 		blk_schedule_flush_plug(tsk);
5152 }
5153 
5154 static void sched_update_worker(struct task_struct *tsk)
5155 {
5156 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5157 		if (tsk->flags & PF_WQ_WORKER)
5158 			wq_worker_running(tsk);
5159 		else
5160 			io_wq_worker_running(tsk);
5161 	}
5162 }
5163 
5164 asmlinkage __visible void __sched schedule(void)
5165 {
5166 	struct task_struct *tsk = current;
5167 
5168 	sched_submit_work(tsk);
5169 	do {
5170 		preempt_disable();
5171 		__schedule(false);
5172 		sched_preempt_enable_no_resched();
5173 	} while (need_resched());
5174 	sched_update_worker(tsk);
5175 }
5176 EXPORT_SYMBOL(schedule);
5177 
5178 /*
5179  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5180  * state (have scheduled out non-voluntarily) by making sure that all
5181  * tasks have either left the run queue or have gone into user space.
5182  * As idle tasks do not do either, they must not ever be preempted
5183  * (schedule out non-voluntarily).
5184  *
5185  * schedule_idle() is similar to schedule_preempt_disable() except that it
5186  * never enables preemption because it does not call sched_submit_work().
5187  */
5188 void __sched schedule_idle(void)
5189 {
5190 	/*
5191 	 * As this skips calling sched_submit_work(), which the idle task does
5192 	 * regardless because that function is a nop when the task is in a
5193 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5194 	 * current task can be in any other state. Note, idle is always in the
5195 	 * TASK_RUNNING state.
5196 	 */
5197 	WARN_ON_ONCE(current->state);
5198 	do {
5199 		__schedule(false);
5200 	} while (need_resched());
5201 }
5202 
5203 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5204 asmlinkage __visible void __sched schedule_user(void)
5205 {
5206 	/*
5207 	 * If we come here after a random call to set_need_resched(),
5208 	 * or we have been woken up remotely but the IPI has not yet arrived,
5209 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5210 	 * we find a better solution.
5211 	 *
5212 	 * NB: There are buggy callers of this function.  Ideally we
5213 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5214 	 * too frequently to make sense yet.
5215 	 */
5216 	enum ctx_state prev_state = exception_enter();
5217 	schedule();
5218 	exception_exit(prev_state);
5219 }
5220 #endif
5221 
5222 /**
5223  * schedule_preempt_disabled - called with preemption disabled
5224  *
5225  * Returns with preemption disabled. Note: preempt_count must be 1
5226  */
5227 void __sched schedule_preempt_disabled(void)
5228 {
5229 	sched_preempt_enable_no_resched();
5230 	schedule();
5231 	preempt_disable();
5232 }
5233 
5234 static void __sched notrace preempt_schedule_common(void)
5235 {
5236 	do {
5237 		/*
5238 		 * Because the function tracer can trace preempt_count_sub()
5239 		 * and it also uses preempt_enable/disable_notrace(), if
5240 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5241 		 * by the function tracer will call this function again and
5242 		 * cause infinite recursion.
5243 		 *
5244 		 * Preemption must be disabled here before the function
5245 		 * tracer can trace. Break up preempt_disable() into two
5246 		 * calls. One to disable preemption without fear of being
5247 		 * traced. The other to still record the preemption latency,
5248 		 * which can also be traced by the function tracer.
5249 		 */
5250 		preempt_disable_notrace();
5251 		preempt_latency_start(1);
5252 		__schedule(true);
5253 		preempt_latency_stop(1);
5254 		preempt_enable_no_resched_notrace();
5255 
5256 		/*
5257 		 * Check again in case we missed a preemption opportunity
5258 		 * between schedule and now.
5259 		 */
5260 	} while (need_resched());
5261 }
5262 
5263 #ifdef CONFIG_PREEMPTION
5264 /*
5265  * This is the entry point to schedule() from in-kernel preemption
5266  * off of preempt_enable.
5267  */
5268 asmlinkage __visible void __sched notrace preempt_schedule(void)
5269 {
5270 	/*
5271 	 * If there is a non-zero preempt_count or interrupts are disabled,
5272 	 * we do not want to preempt the current task. Just return..
5273 	 */
5274 	if (likely(!preemptible()))
5275 		return;
5276 
5277 	preempt_schedule_common();
5278 }
5279 NOKPROBE_SYMBOL(preempt_schedule);
5280 EXPORT_SYMBOL(preempt_schedule);
5281 
5282 #ifdef CONFIG_PREEMPT_DYNAMIC
5283 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5284 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5285 #endif
5286 
5287 
5288 /**
5289  * preempt_schedule_notrace - preempt_schedule called by tracing
5290  *
5291  * The tracing infrastructure uses preempt_enable_notrace to prevent
5292  * recursion and tracing preempt enabling caused by the tracing
5293  * infrastructure itself. But as tracing can happen in areas coming
5294  * from userspace or just about to enter userspace, a preempt enable
5295  * can occur before user_exit() is called. This will cause the scheduler
5296  * to be called when the system is still in usermode.
5297  *
5298  * To prevent this, the preempt_enable_notrace will use this function
5299  * instead of preempt_schedule() to exit user context if needed before
5300  * calling the scheduler.
5301  */
5302 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5303 {
5304 	enum ctx_state prev_ctx;
5305 
5306 	if (likely(!preemptible()))
5307 		return;
5308 
5309 	do {
5310 		/*
5311 		 * Because the function tracer can trace preempt_count_sub()
5312 		 * and it also uses preempt_enable/disable_notrace(), if
5313 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5314 		 * by the function tracer will call this function again and
5315 		 * cause infinite recursion.
5316 		 *
5317 		 * Preemption must be disabled here before the function
5318 		 * tracer can trace. Break up preempt_disable() into two
5319 		 * calls. One to disable preemption without fear of being
5320 		 * traced. The other to still record the preemption latency,
5321 		 * which can also be traced by the function tracer.
5322 		 */
5323 		preempt_disable_notrace();
5324 		preempt_latency_start(1);
5325 		/*
5326 		 * Needs preempt disabled in case user_exit() is traced
5327 		 * and the tracer calls preempt_enable_notrace() causing
5328 		 * an infinite recursion.
5329 		 */
5330 		prev_ctx = exception_enter();
5331 		__schedule(true);
5332 		exception_exit(prev_ctx);
5333 
5334 		preempt_latency_stop(1);
5335 		preempt_enable_no_resched_notrace();
5336 	} while (need_resched());
5337 }
5338 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5339 
5340 #ifdef CONFIG_PREEMPT_DYNAMIC
5341 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5342 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5343 #endif
5344 
5345 #endif /* CONFIG_PREEMPTION */
5346 
5347 #ifdef CONFIG_PREEMPT_DYNAMIC
5348 
5349 #include <linux/entry-common.h>
5350 
5351 /*
5352  * SC:cond_resched
5353  * SC:might_resched
5354  * SC:preempt_schedule
5355  * SC:preempt_schedule_notrace
5356  * SC:irqentry_exit_cond_resched
5357  *
5358  *
5359  * NONE:
5360  *   cond_resched               <- __cond_resched
5361  *   might_resched              <- RET0
5362  *   preempt_schedule           <- NOP
5363  *   preempt_schedule_notrace   <- NOP
5364  *   irqentry_exit_cond_resched <- NOP
5365  *
5366  * VOLUNTARY:
5367  *   cond_resched               <- __cond_resched
5368  *   might_resched              <- __cond_resched
5369  *   preempt_schedule           <- NOP
5370  *   preempt_schedule_notrace   <- NOP
5371  *   irqentry_exit_cond_resched <- NOP
5372  *
5373  * FULL:
5374  *   cond_resched               <- RET0
5375  *   might_resched              <- RET0
5376  *   preempt_schedule           <- preempt_schedule
5377  *   preempt_schedule_notrace   <- preempt_schedule_notrace
5378  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5379  */
5380 
5381 enum {
5382 	preempt_dynamic_none = 0,
5383 	preempt_dynamic_voluntary,
5384 	preempt_dynamic_full,
5385 };
5386 
5387 static int preempt_dynamic_mode = preempt_dynamic_full;
5388 
5389 static int sched_dynamic_mode(const char *str)
5390 {
5391 	if (!strcmp(str, "none"))
5392 		return 0;
5393 
5394 	if (!strcmp(str, "voluntary"))
5395 		return 1;
5396 
5397 	if (!strcmp(str, "full"))
5398 		return 2;
5399 
5400 	return -1;
5401 }
5402 
5403 static void sched_dynamic_update(int mode)
5404 {
5405 	/*
5406 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5407 	 * the ZERO state, which is invalid.
5408 	 */
5409 	static_call_update(cond_resched, __cond_resched);
5410 	static_call_update(might_resched, __cond_resched);
5411 	static_call_update(preempt_schedule, __preempt_schedule_func);
5412 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5413 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5414 
5415 	switch (mode) {
5416 	case preempt_dynamic_none:
5417 		static_call_update(cond_resched, __cond_resched);
5418 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5419 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5420 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5421 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5422 		pr_info("Dynamic Preempt: none\n");
5423 		break;
5424 
5425 	case preempt_dynamic_voluntary:
5426 		static_call_update(cond_resched, __cond_resched);
5427 		static_call_update(might_resched, __cond_resched);
5428 		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5429 		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5430 		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
5431 		pr_info("Dynamic Preempt: voluntary\n");
5432 		break;
5433 
5434 	case preempt_dynamic_full:
5435 		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5436 		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5437 		static_call_update(preempt_schedule, __preempt_schedule_func);
5438 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5439 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5440 		pr_info("Dynamic Preempt: full\n");
5441 		break;
5442 	}
5443 
5444 	preempt_dynamic_mode = mode;
5445 }
5446 
5447 static int __init setup_preempt_mode(char *str)
5448 {
5449 	int mode = sched_dynamic_mode(str);
5450 	if (mode < 0) {
5451 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5452 		return 1;
5453 	}
5454 
5455 	sched_dynamic_update(mode);
5456 	return 0;
5457 }
5458 __setup("preempt=", setup_preempt_mode);
5459 
5460 #ifdef CONFIG_SCHED_DEBUG
5461 
5462 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5463 				   size_t cnt, loff_t *ppos)
5464 {
5465 	char buf[16];
5466 	int mode;
5467 
5468 	if (cnt > 15)
5469 		cnt = 15;
5470 
5471 	if (copy_from_user(&buf, ubuf, cnt))
5472 		return -EFAULT;
5473 
5474 	buf[cnt] = 0;
5475 	mode = sched_dynamic_mode(strstrip(buf));
5476 	if (mode < 0)
5477 		return mode;
5478 
5479 	sched_dynamic_update(mode);
5480 
5481 	*ppos += cnt;
5482 
5483 	return cnt;
5484 }
5485 
5486 static int sched_dynamic_show(struct seq_file *m, void *v)
5487 {
5488 	static const char * preempt_modes[] = {
5489 		"none", "voluntary", "full"
5490 	};
5491 	int i;
5492 
5493 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5494 		if (preempt_dynamic_mode == i)
5495 			seq_puts(m, "(");
5496 		seq_puts(m, preempt_modes[i]);
5497 		if (preempt_dynamic_mode == i)
5498 			seq_puts(m, ")");
5499 
5500 		seq_puts(m, " ");
5501 	}
5502 
5503 	seq_puts(m, "\n");
5504 	return 0;
5505 }
5506 
5507 static int sched_dynamic_open(struct inode *inode, struct file *filp)
5508 {
5509 	return single_open(filp, sched_dynamic_show, NULL);
5510 }
5511 
5512 static const struct file_operations sched_dynamic_fops = {
5513 	.open		= sched_dynamic_open,
5514 	.write		= sched_dynamic_write,
5515 	.read		= seq_read,
5516 	.llseek		= seq_lseek,
5517 	.release	= single_release,
5518 };
5519 
5520 static __init int sched_init_debug_dynamic(void)
5521 {
5522 	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5523 	return 0;
5524 }
5525 late_initcall(sched_init_debug_dynamic);
5526 
5527 #endif /* CONFIG_SCHED_DEBUG */
5528 #endif /* CONFIG_PREEMPT_DYNAMIC */
5529 
5530 
5531 /*
5532  * This is the entry point to schedule() from kernel preemption
5533  * off of irq context.
5534  * Note, that this is called and return with irqs disabled. This will
5535  * protect us against recursive calling from irq.
5536  */
5537 asmlinkage __visible void __sched preempt_schedule_irq(void)
5538 {
5539 	enum ctx_state prev_state;
5540 
5541 	/* Catch callers which need to be fixed */
5542 	BUG_ON(preempt_count() || !irqs_disabled());
5543 
5544 	prev_state = exception_enter();
5545 
5546 	do {
5547 		preempt_disable();
5548 		local_irq_enable();
5549 		__schedule(true);
5550 		local_irq_disable();
5551 		sched_preempt_enable_no_resched();
5552 	} while (need_resched());
5553 
5554 	exception_exit(prev_state);
5555 }
5556 
5557 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5558 			  void *key)
5559 {
5560 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5561 	return try_to_wake_up(curr->private, mode, wake_flags);
5562 }
5563 EXPORT_SYMBOL(default_wake_function);
5564 
5565 #ifdef CONFIG_RT_MUTEXES
5566 
5567 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5568 {
5569 	if (pi_task)
5570 		prio = min(prio, pi_task->prio);
5571 
5572 	return prio;
5573 }
5574 
5575 static inline int rt_effective_prio(struct task_struct *p, int prio)
5576 {
5577 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5578 
5579 	return __rt_effective_prio(pi_task, prio);
5580 }
5581 
5582 /*
5583  * rt_mutex_setprio - set the current priority of a task
5584  * @p: task to boost
5585  * @pi_task: donor task
5586  *
5587  * This function changes the 'effective' priority of a task. It does
5588  * not touch ->normal_prio like __setscheduler().
5589  *
5590  * Used by the rt_mutex code to implement priority inheritance
5591  * logic. Call site only calls if the priority of the task changed.
5592  */
5593 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5594 {
5595 	int prio, oldprio, queued, running, queue_flag =
5596 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5597 	const struct sched_class *prev_class;
5598 	struct rq_flags rf;
5599 	struct rq *rq;
5600 
5601 	/* XXX used to be waiter->prio, not waiter->task->prio */
5602 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5603 
5604 	/*
5605 	 * If nothing changed; bail early.
5606 	 */
5607 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5608 		return;
5609 
5610 	rq = __task_rq_lock(p, &rf);
5611 	update_rq_clock(rq);
5612 	/*
5613 	 * Set under pi_lock && rq->lock, such that the value can be used under
5614 	 * either lock.
5615 	 *
5616 	 * Note that there is loads of tricky to make this pointer cache work
5617 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5618 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5619 	 * task is allowed to run again (and can exit). This ensures the pointer
5620 	 * points to a blocked task -- which guarantees the task is present.
5621 	 */
5622 	p->pi_top_task = pi_task;
5623 
5624 	/*
5625 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5626 	 */
5627 	if (prio == p->prio && !dl_prio(prio))
5628 		goto out_unlock;
5629 
5630 	/*
5631 	 * Idle task boosting is a nono in general. There is one
5632 	 * exception, when PREEMPT_RT and NOHZ is active:
5633 	 *
5634 	 * The idle task calls get_next_timer_interrupt() and holds
5635 	 * the timer wheel base->lock on the CPU and another CPU wants
5636 	 * to access the timer (probably to cancel it). We can safely
5637 	 * ignore the boosting request, as the idle CPU runs this code
5638 	 * with interrupts disabled and will complete the lock
5639 	 * protected section without being interrupted. So there is no
5640 	 * real need to boost.
5641 	 */
5642 	if (unlikely(p == rq->idle)) {
5643 		WARN_ON(p != rq->curr);
5644 		WARN_ON(p->pi_blocked_on);
5645 		goto out_unlock;
5646 	}
5647 
5648 	trace_sched_pi_setprio(p, pi_task);
5649 	oldprio = p->prio;
5650 
5651 	if (oldprio == prio)
5652 		queue_flag &= ~DEQUEUE_MOVE;
5653 
5654 	prev_class = p->sched_class;
5655 	queued = task_on_rq_queued(p);
5656 	running = task_current(rq, p);
5657 	if (queued)
5658 		dequeue_task(rq, p, queue_flag);
5659 	if (running)
5660 		put_prev_task(rq, p);
5661 
5662 	/*
5663 	 * Boosting condition are:
5664 	 * 1. -rt task is running and holds mutex A
5665 	 *      --> -dl task blocks on mutex A
5666 	 *
5667 	 * 2. -dl task is running and holds mutex A
5668 	 *      --> -dl task blocks on mutex A and could preempt the
5669 	 *          running task
5670 	 */
5671 	if (dl_prio(prio)) {
5672 		if (!dl_prio(p->normal_prio) ||
5673 		    (pi_task && dl_prio(pi_task->prio) &&
5674 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5675 			p->dl.pi_se = pi_task->dl.pi_se;
5676 			queue_flag |= ENQUEUE_REPLENISH;
5677 		} else {
5678 			p->dl.pi_se = &p->dl;
5679 		}
5680 		p->sched_class = &dl_sched_class;
5681 	} else if (rt_prio(prio)) {
5682 		if (dl_prio(oldprio))
5683 			p->dl.pi_se = &p->dl;
5684 		if (oldprio < prio)
5685 			queue_flag |= ENQUEUE_HEAD;
5686 		p->sched_class = &rt_sched_class;
5687 	} else {
5688 		if (dl_prio(oldprio))
5689 			p->dl.pi_se = &p->dl;
5690 		if (rt_prio(oldprio))
5691 			p->rt.timeout = 0;
5692 		p->sched_class = &fair_sched_class;
5693 	}
5694 
5695 	p->prio = prio;
5696 
5697 	if (queued)
5698 		enqueue_task(rq, p, queue_flag);
5699 	if (running)
5700 		set_next_task(rq, p);
5701 
5702 	check_class_changed(rq, p, prev_class, oldprio);
5703 out_unlock:
5704 	/* Avoid rq from going away on us: */
5705 	preempt_disable();
5706 
5707 	rq_unpin_lock(rq, &rf);
5708 	__balance_callbacks(rq);
5709 	raw_spin_unlock(&rq->lock);
5710 
5711 	preempt_enable();
5712 }
5713 #else
5714 static inline int rt_effective_prio(struct task_struct *p, int prio)
5715 {
5716 	return prio;
5717 }
5718 #endif
5719 
5720 void set_user_nice(struct task_struct *p, long nice)
5721 {
5722 	bool queued, running;
5723 	int old_prio;
5724 	struct rq_flags rf;
5725 	struct rq *rq;
5726 
5727 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5728 		return;
5729 	/*
5730 	 * We have to be careful, if called from sys_setpriority(),
5731 	 * the task might be in the middle of scheduling on another CPU.
5732 	 */
5733 	rq = task_rq_lock(p, &rf);
5734 	update_rq_clock(rq);
5735 
5736 	/*
5737 	 * The RT priorities are set via sched_setscheduler(), but we still
5738 	 * allow the 'normal' nice value to be set - but as expected
5739 	 * it won't have any effect on scheduling until the task is
5740 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5741 	 */
5742 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5743 		p->static_prio = NICE_TO_PRIO(nice);
5744 		goto out_unlock;
5745 	}
5746 	queued = task_on_rq_queued(p);
5747 	running = task_current(rq, p);
5748 	if (queued)
5749 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5750 	if (running)
5751 		put_prev_task(rq, p);
5752 
5753 	p->static_prio = NICE_TO_PRIO(nice);
5754 	set_load_weight(p, true);
5755 	old_prio = p->prio;
5756 	p->prio = effective_prio(p);
5757 
5758 	if (queued)
5759 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5760 	if (running)
5761 		set_next_task(rq, p);
5762 
5763 	/*
5764 	 * If the task increased its priority or is running and
5765 	 * lowered its priority, then reschedule its CPU:
5766 	 */
5767 	p->sched_class->prio_changed(rq, p, old_prio);
5768 
5769 out_unlock:
5770 	task_rq_unlock(rq, p, &rf);
5771 }
5772 EXPORT_SYMBOL(set_user_nice);
5773 
5774 /*
5775  * can_nice - check if a task can reduce its nice value
5776  * @p: task
5777  * @nice: nice value
5778  */
5779 int can_nice(const struct task_struct *p, const int nice)
5780 {
5781 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5782 	int nice_rlim = nice_to_rlimit(nice);
5783 
5784 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5785 		capable(CAP_SYS_NICE));
5786 }
5787 
5788 #ifdef __ARCH_WANT_SYS_NICE
5789 
5790 /*
5791  * sys_nice - change the priority of the current process.
5792  * @increment: priority increment
5793  *
5794  * sys_setpriority is a more generic, but much slower function that
5795  * does similar things.
5796  */
5797 SYSCALL_DEFINE1(nice, int, increment)
5798 {
5799 	long nice, retval;
5800 
5801 	/*
5802 	 * Setpriority might change our priority at the same moment.
5803 	 * We don't have to worry. Conceptually one call occurs first
5804 	 * and we have a single winner.
5805 	 */
5806 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5807 	nice = task_nice(current) + increment;
5808 
5809 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5810 	if (increment < 0 && !can_nice(current, nice))
5811 		return -EPERM;
5812 
5813 	retval = security_task_setnice(current, nice);
5814 	if (retval)
5815 		return retval;
5816 
5817 	set_user_nice(current, nice);
5818 	return 0;
5819 }
5820 
5821 #endif
5822 
5823 /**
5824  * task_prio - return the priority value of a given task.
5825  * @p: the task in question.
5826  *
5827  * Return: The priority value as seen by users in /proc.
5828  *
5829  * sched policy         return value   kernel prio    user prio/nice
5830  *
5831  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
5832  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
5833  * deadline                     -101             -1           0
5834  */
5835 int task_prio(const struct task_struct *p)
5836 {
5837 	return p->prio - MAX_RT_PRIO;
5838 }
5839 
5840 /**
5841  * idle_cpu - is a given CPU idle currently?
5842  * @cpu: the processor in question.
5843  *
5844  * Return: 1 if the CPU is currently idle. 0 otherwise.
5845  */
5846 int idle_cpu(int cpu)
5847 {
5848 	struct rq *rq = cpu_rq(cpu);
5849 
5850 	if (rq->curr != rq->idle)
5851 		return 0;
5852 
5853 	if (rq->nr_running)
5854 		return 0;
5855 
5856 #ifdef CONFIG_SMP
5857 	if (rq->ttwu_pending)
5858 		return 0;
5859 #endif
5860 
5861 	return 1;
5862 }
5863 
5864 /**
5865  * available_idle_cpu - is a given CPU idle for enqueuing work.
5866  * @cpu: the CPU in question.
5867  *
5868  * Return: 1 if the CPU is currently idle. 0 otherwise.
5869  */
5870 int available_idle_cpu(int cpu)
5871 {
5872 	if (!idle_cpu(cpu))
5873 		return 0;
5874 
5875 	if (vcpu_is_preempted(cpu))
5876 		return 0;
5877 
5878 	return 1;
5879 }
5880 
5881 /**
5882  * idle_task - return the idle task for a given CPU.
5883  * @cpu: the processor in question.
5884  *
5885  * Return: The idle task for the CPU @cpu.
5886  */
5887 struct task_struct *idle_task(int cpu)
5888 {
5889 	return cpu_rq(cpu)->idle;
5890 }
5891 
5892 #ifdef CONFIG_SMP
5893 /*
5894  * This function computes an effective utilization for the given CPU, to be
5895  * used for frequency selection given the linear relation: f = u * f_max.
5896  *
5897  * The scheduler tracks the following metrics:
5898  *
5899  *   cpu_util_{cfs,rt,dl,irq}()
5900  *   cpu_bw_dl()
5901  *
5902  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5903  * synchronized windows and are thus directly comparable.
5904  *
5905  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5906  * which excludes things like IRQ and steal-time. These latter are then accrued
5907  * in the irq utilization.
5908  *
5909  * The DL bandwidth number otoh is not a measured metric but a value computed
5910  * based on the task model parameters and gives the minimal utilization
5911  * required to meet deadlines.
5912  */
5913 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5914 				 unsigned long max, enum cpu_util_type type,
5915 				 struct task_struct *p)
5916 {
5917 	unsigned long dl_util, util, irq;
5918 	struct rq *rq = cpu_rq(cpu);
5919 
5920 	if (!uclamp_is_used() &&
5921 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5922 		return max;
5923 	}
5924 
5925 	/*
5926 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5927 	 * because of inaccuracies in how we track these -- see
5928 	 * update_irq_load_avg().
5929 	 */
5930 	irq = cpu_util_irq(rq);
5931 	if (unlikely(irq >= max))
5932 		return max;
5933 
5934 	/*
5935 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5936 	 * CFS tasks and we use the same metric to track the effective
5937 	 * utilization (PELT windows are synchronized) we can directly add them
5938 	 * to obtain the CPU's actual utilization.
5939 	 *
5940 	 * CFS and RT utilization can be boosted or capped, depending on
5941 	 * utilization clamp constraints requested by currently RUNNABLE
5942 	 * tasks.
5943 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5944 	 * frequency will be gracefully reduced with the utilization decay.
5945 	 */
5946 	util = util_cfs + cpu_util_rt(rq);
5947 	if (type == FREQUENCY_UTIL)
5948 		util = uclamp_rq_util_with(rq, util, p);
5949 
5950 	dl_util = cpu_util_dl(rq);
5951 
5952 	/*
5953 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5954 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5955 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5956 	 * that we select f_max when there is no idle time.
5957 	 *
5958 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5959 	 * saturation when we should -- something for later.
5960 	 */
5961 	if (util + dl_util >= max)
5962 		return max;
5963 
5964 	/*
5965 	 * OTOH, for energy computation we need the estimated running time, so
5966 	 * include util_dl and ignore dl_bw.
5967 	 */
5968 	if (type == ENERGY_UTIL)
5969 		util += dl_util;
5970 
5971 	/*
5972 	 * There is still idle time; further improve the number by using the
5973 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5974 	 * need to scale the task numbers:
5975 	 *
5976 	 *              max - irq
5977 	 *   U' = irq + --------- * U
5978 	 *                 max
5979 	 */
5980 	util = scale_irq_capacity(util, irq, max);
5981 	util += irq;
5982 
5983 	/*
5984 	 * Bandwidth required by DEADLINE must always be granted while, for
5985 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5986 	 * to gracefully reduce the frequency when no tasks show up for longer
5987 	 * periods of time.
5988 	 *
5989 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5990 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5991 	 * an interface. So, we only do the latter for now.
5992 	 */
5993 	if (type == FREQUENCY_UTIL)
5994 		util += cpu_bw_dl(rq);
5995 
5996 	return min(max, util);
5997 }
5998 
5999 unsigned long sched_cpu_util(int cpu, unsigned long max)
6000 {
6001 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6002 				  ENERGY_UTIL, NULL);
6003 }
6004 #endif /* CONFIG_SMP */
6005 
6006 /**
6007  * find_process_by_pid - find a process with a matching PID value.
6008  * @pid: the pid in question.
6009  *
6010  * The task of @pid, if found. %NULL otherwise.
6011  */
6012 static struct task_struct *find_process_by_pid(pid_t pid)
6013 {
6014 	return pid ? find_task_by_vpid(pid) : current;
6015 }
6016 
6017 /*
6018  * sched_setparam() passes in -1 for its policy, to let the functions
6019  * it calls know not to change it.
6020  */
6021 #define SETPARAM_POLICY	-1
6022 
6023 static void __setscheduler_params(struct task_struct *p,
6024 		const struct sched_attr *attr)
6025 {
6026 	int policy = attr->sched_policy;
6027 
6028 	if (policy == SETPARAM_POLICY)
6029 		policy = p->policy;
6030 
6031 	p->policy = policy;
6032 
6033 	if (dl_policy(policy))
6034 		__setparam_dl(p, attr);
6035 	else if (fair_policy(policy))
6036 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6037 
6038 	/*
6039 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6040 	 * !rt_policy. Always setting this ensures that things like
6041 	 * getparam()/getattr() don't report silly values for !rt tasks.
6042 	 */
6043 	p->rt_priority = attr->sched_priority;
6044 	p->normal_prio = normal_prio(p);
6045 	set_load_weight(p, true);
6046 }
6047 
6048 /* Actually do priority change: must hold pi & rq lock. */
6049 static void __setscheduler(struct rq *rq, struct task_struct *p,
6050 			   const struct sched_attr *attr, bool keep_boost)
6051 {
6052 	/*
6053 	 * If params can't change scheduling class changes aren't allowed
6054 	 * either.
6055 	 */
6056 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6057 		return;
6058 
6059 	__setscheduler_params(p, attr);
6060 
6061 	/*
6062 	 * Keep a potential priority boosting if called from
6063 	 * sched_setscheduler().
6064 	 */
6065 	p->prio = normal_prio(p);
6066 	if (keep_boost)
6067 		p->prio = rt_effective_prio(p, p->prio);
6068 
6069 	if (dl_prio(p->prio))
6070 		p->sched_class = &dl_sched_class;
6071 	else if (rt_prio(p->prio))
6072 		p->sched_class = &rt_sched_class;
6073 	else
6074 		p->sched_class = &fair_sched_class;
6075 }
6076 
6077 /*
6078  * Check the target process has a UID that matches the current process's:
6079  */
6080 static bool check_same_owner(struct task_struct *p)
6081 {
6082 	const struct cred *cred = current_cred(), *pcred;
6083 	bool match;
6084 
6085 	rcu_read_lock();
6086 	pcred = __task_cred(p);
6087 	match = (uid_eq(cred->euid, pcred->euid) ||
6088 		 uid_eq(cred->euid, pcred->uid));
6089 	rcu_read_unlock();
6090 	return match;
6091 }
6092 
6093 static int __sched_setscheduler(struct task_struct *p,
6094 				const struct sched_attr *attr,
6095 				bool user, bool pi)
6096 {
6097 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6098 		      MAX_RT_PRIO - 1 - attr->sched_priority;
6099 	int retval, oldprio, oldpolicy = -1, queued, running;
6100 	int new_effective_prio, policy = attr->sched_policy;
6101 	const struct sched_class *prev_class;
6102 	struct callback_head *head;
6103 	struct rq_flags rf;
6104 	int reset_on_fork;
6105 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6106 	struct rq *rq;
6107 
6108 	/* The pi code expects interrupts enabled */
6109 	BUG_ON(pi && in_interrupt());
6110 recheck:
6111 	/* Double check policy once rq lock held: */
6112 	if (policy < 0) {
6113 		reset_on_fork = p->sched_reset_on_fork;
6114 		policy = oldpolicy = p->policy;
6115 	} else {
6116 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6117 
6118 		if (!valid_policy(policy))
6119 			return -EINVAL;
6120 	}
6121 
6122 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6123 		return -EINVAL;
6124 
6125 	/*
6126 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6127 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6128 	 * SCHED_BATCH and SCHED_IDLE is 0.
6129 	 */
6130 	if (attr->sched_priority > MAX_RT_PRIO-1)
6131 		return -EINVAL;
6132 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6133 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6134 		return -EINVAL;
6135 
6136 	/*
6137 	 * Allow unprivileged RT tasks to decrease priority:
6138 	 */
6139 	if (user && !capable(CAP_SYS_NICE)) {
6140 		if (fair_policy(policy)) {
6141 			if (attr->sched_nice < task_nice(p) &&
6142 			    !can_nice(p, attr->sched_nice))
6143 				return -EPERM;
6144 		}
6145 
6146 		if (rt_policy(policy)) {
6147 			unsigned long rlim_rtprio =
6148 					task_rlimit(p, RLIMIT_RTPRIO);
6149 
6150 			/* Can't set/change the rt policy: */
6151 			if (policy != p->policy && !rlim_rtprio)
6152 				return -EPERM;
6153 
6154 			/* Can't increase priority: */
6155 			if (attr->sched_priority > p->rt_priority &&
6156 			    attr->sched_priority > rlim_rtprio)
6157 				return -EPERM;
6158 		}
6159 
6160 		 /*
6161 		  * Can't set/change SCHED_DEADLINE policy at all for now
6162 		  * (safest behavior); in the future we would like to allow
6163 		  * unprivileged DL tasks to increase their relative deadline
6164 		  * or reduce their runtime (both ways reducing utilization)
6165 		  */
6166 		if (dl_policy(policy))
6167 			return -EPERM;
6168 
6169 		/*
6170 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6171 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6172 		 */
6173 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6174 			if (!can_nice(p, task_nice(p)))
6175 				return -EPERM;
6176 		}
6177 
6178 		/* Can't change other user's priorities: */
6179 		if (!check_same_owner(p))
6180 			return -EPERM;
6181 
6182 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6183 		if (p->sched_reset_on_fork && !reset_on_fork)
6184 			return -EPERM;
6185 	}
6186 
6187 	if (user) {
6188 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6189 			return -EINVAL;
6190 
6191 		retval = security_task_setscheduler(p);
6192 		if (retval)
6193 			return retval;
6194 	}
6195 
6196 	/* Update task specific "requested" clamps */
6197 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6198 		retval = uclamp_validate(p, attr);
6199 		if (retval)
6200 			return retval;
6201 	}
6202 
6203 	if (pi)
6204 		cpuset_read_lock();
6205 
6206 	/*
6207 	 * Make sure no PI-waiters arrive (or leave) while we are
6208 	 * changing the priority of the task:
6209 	 *
6210 	 * To be able to change p->policy safely, the appropriate
6211 	 * runqueue lock must be held.
6212 	 */
6213 	rq = task_rq_lock(p, &rf);
6214 	update_rq_clock(rq);
6215 
6216 	/*
6217 	 * Changing the policy of the stop threads its a very bad idea:
6218 	 */
6219 	if (p == rq->stop) {
6220 		retval = -EINVAL;
6221 		goto unlock;
6222 	}
6223 
6224 	/*
6225 	 * If not changing anything there's no need to proceed further,
6226 	 * but store a possible modification of reset_on_fork.
6227 	 */
6228 	if (unlikely(policy == p->policy)) {
6229 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6230 			goto change;
6231 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6232 			goto change;
6233 		if (dl_policy(policy) && dl_param_changed(p, attr))
6234 			goto change;
6235 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6236 			goto change;
6237 
6238 		p->sched_reset_on_fork = reset_on_fork;
6239 		retval = 0;
6240 		goto unlock;
6241 	}
6242 change:
6243 
6244 	if (user) {
6245 #ifdef CONFIG_RT_GROUP_SCHED
6246 		/*
6247 		 * Do not allow realtime tasks into groups that have no runtime
6248 		 * assigned.
6249 		 */
6250 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6251 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6252 				!task_group_is_autogroup(task_group(p))) {
6253 			retval = -EPERM;
6254 			goto unlock;
6255 		}
6256 #endif
6257 #ifdef CONFIG_SMP
6258 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6259 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6260 			cpumask_t *span = rq->rd->span;
6261 
6262 			/*
6263 			 * Don't allow tasks with an affinity mask smaller than
6264 			 * the entire root_domain to become SCHED_DEADLINE. We
6265 			 * will also fail if there's no bandwidth available.
6266 			 */
6267 			if (!cpumask_subset(span, p->cpus_ptr) ||
6268 			    rq->rd->dl_bw.bw == 0) {
6269 				retval = -EPERM;
6270 				goto unlock;
6271 			}
6272 		}
6273 #endif
6274 	}
6275 
6276 	/* Re-check policy now with rq lock held: */
6277 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6278 		policy = oldpolicy = -1;
6279 		task_rq_unlock(rq, p, &rf);
6280 		if (pi)
6281 			cpuset_read_unlock();
6282 		goto recheck;
6283 	}
6284 
6285 	/*
6286 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6287 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6288 	 * is available.
6289 	 */
6290 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6291 		retval = -EBUSY;
6292 		goto unlock;
6293 	}
6294 
6295 	p->sched_reset_on_fork = reset_on_fork;
6296 	oldprio = p->prio;
6297 
6298 	if (pi) {
6299 		/*
6300 		 * Take priority boosted tasks into account. If the new
6301 		 * effective priority is unchanged, we just store the new
6302 		 * normal parameters and do not touch the scheduler class and
6303 		 * the runqueue. This will be done when the task deboost
6304 		 * itself.
6305 		 */
6306 		new_effective_prio = rt_effective_prio(p, newprio);
6307 		if (new_effective_prio == oldprio)
6308 			queue_flags &= ~DEQUEUE_MOVE;
6309 	}
6310 
6311 	queued = task_on_rq_queued(p);
6312 	running = task_current(rq, p);
6313 	if (queued)
6314 		dequeue_task(rq, p, queue_flags);
6315 	if (running)
6316 		put_prev_task(rq, p);
6317 
6318 	prev_class = p->sched_class;
6319 
6320 	__setscheduler(rq, p, attr, pi);
6321 	__setscheduler_uclamp(p, attr);
6322 
6323 	if (queued) {
6324 		/*
6325 		 * We enqueue to tail when the priority of a task is
6326 		 * increased (user space view).
6327 		 */
6328 		if (oldprio < p->prio)
6329 			queue_flags |= ENQUEUE_HEAD;
6330 
6331 		enqueue_task(rq, p, queue_flags);
6332 	}
6333 	if (running)
6334 		set_next_task(rq, p);
6335 
6336 	check_class_changed(rq, p, prev_class, oldprio);
6337 
6338 	/* Avoid rq from going away on us: */
6339 	preempt_disable();
6340 	head = splice_balance_callbacks(rq);
6341 	task_rq_unlock(rq, p, &rf);
6342 
6343 	if (pi) {
6344 		cpuset_read_unlock();
6345 		rt_mutex_adjust_pi(p);
6346 	}
6347 
6348 	/* Run balance callbacks after we've adjusted the PI chain: */
6349 	balance_callbacks(rq, head);
6350 	preempt_enable();
6351 
6352 	return 0;
6353 
6354 unlock:
6355 	task_rq_unlock(rq, p, &rf);
6356 	if (pi)
6357 		cpuset_read_unlock();
6358 	return retval;
6359 }
6360 
6361 static int _sched_setscheduler(struct task_struct *p, int policy,
6362 			       const struct sched_param *param, bool check)
6363 {
6364 	struct sched_attr attr = {
6365 		.sched_policy   = policy,
6366 		.sched_priority = param->sched_priority,
6367 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6368 	};
6369 
6370 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6371 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6372 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6373 		policy &= ~SCHED_RESET_ON_FORK;
6374 		attr.sched_policy = policy;
6375 	}
6376 
6377 	return __sched_setscheduler(p, &attr, check, true);
6378 }
6379 /**
6380  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6381  * @p: the task in question.
6382  * @policy: new policy.
6383  * @param: structure containing the new RT priority.
6384  *
6385  * Use sched_set_fifo(), read its comment.
6386  *
6387  * Return: 0 on success. An error code otherwise.
6388  *
6389  * NOTE that the task may be already dead.
6390  */
6391 int sched_setscheduler(struct task_struct *p, int policy,
6392 		       const struct sched_param *param)
6393 {
6394 	return _sched_setscheduler(p, policy, param, true);
6395 }
6396 
6397 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6398 {
6399 	return __sched_setscheduler(p, attr, true, true);
6400 }
6401 
6402 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6403 {
6404 	return __sched_setscheduler(p, attr, false, true);
6405 }
6406 
6407 /**
6408  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6409  * @p: the task in question.
6410  * @policy: new policy.
6411  * @param: structure containing the new RT priority.
6412  *
6413  * Just like sched_setscheduler, only don't bother checking if the
6414  * current context has permission.  For example, this is needed in
6415  * stop_machine(): we create temporary high priority worker threads,
6416  * but our caller might not have that capability.
6417  *
6418  * Return: 0 on success. An error code otherwise.
6419  */
6420 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6421 			       const struct sched_param *param)
6422 {
6423 	return _sched_setscheduler(p, policy, param, false);
6424 }
6425 
6426 /*
6427  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6428  * incapable of resource management, which is the one thing an OS really should
6429  * be doing.
6430  *
6431  * This is of course the reason it is limited to privileged users only.
6432  *
6433  * Worse still; it is fundamentally impossible to compose static priority
6434  * workloads. You cannot take two correctly working static prio workloads
6435  * and smash them together and still expect them to work.
6436  *
6437  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6438  *
6439  *   MAX_RT_PRIO / 2
6440  *
6441  * The administrator _MUST_ configure the system, the kernel simply doesn't
6442  * know enough information to make a sensible choice.
6443  */
6444 void sched_set_fifo(struct task_struct *p)
6445 {
6446 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6447 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6448 }
6449 EXPORT_SYMBOL_GPL(sched_set_fifo);
6450 
6451 /*
6452  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6453  */
6454 void sched_set_fifo_low(struct task_struct *p)
6455 {
6456 	struct sched_param sp = { .sched_priority = 1 };
6457 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6458 }
6459 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6460 
6461 void sched_set_normal(struct task_struct *p, int nice)
6462 {
6463 	struct sched_attr attr = {
6464 		.sched_policy = SCHED_NORMAL,
6465 		.sched_nice = nice,
6466 	};
6467 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6468 }
6469 EXPORT_SYMBOL_GPL(sched_set_normal);
6470 
6471 static int
6472 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6473 {
6474 	struct sched_param lparam;
6475 	struct task_struct *p;
6476 	int retval;
6477 
6478 	if (!param || pid < 0)
6479 		return -EINVAL;
6480 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6481 		return -EFAULT;
6482 
6483 	rcu_read_lock();
6484 	retval = -ESRCH;
6485 	p = find_process_by_pid(pid);
6486 	if (likely(p))
6487 		get_task_struct(p);
6488 	rcu_read_unlock();
6489 
6490 	if (likely(p)) {
6491 		retval = sched_setscheduler(p, policy, &lparam);
6492 		put_task_struct(p);
6493 	}
6494 
6495 	return retval;
6496 }
6497 
6498 /*
6499  * Mimics kernel/events/core.c perf_copy_attr().
6500  */
6501 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6502 {
6503 	u32 size;
6504 	int ret;
6505 
6506 	/* Zero the full structure, so that a short copy will be nice: */
6507 	memset(attr, 0, sizeof(*attr));
6508 
6509 	ret = get_user(size, &uattr->size);
6510 	if (ret)
6511 		return ret;
6512 
6513 	/* ABI compatibility quirk: */
6514 	if (!size)
6515 		size = SCHED_ATTR_SIZE_VER0;
6516 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6517 		goto err_size;
6518 
6519 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6520 	if (ret) {
6521 		if (ret == -E2BIG)
6522 			goto err_size;
6523 		return ret;
6524 	}
6525 
6526 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6527 	    size < SCHED_ATTR_SIZE_VER1)
6528 		return -EINVAL;
6529 
6530 	/*
6531 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6532 	 * to be strict and return an error on out-of-bounds values?
6533 	 */
6534 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6535 
6536 	return 0;
6537 
6538 err_size:
6539 	put_user(sizeof(*attr), &uattr->size);
6540 	return -E2BIG;
6541 }
6542 
6543 /**
6544  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6545  * @pid: the pid in question.
6546  * @policy: new policy.
6547  * @param: structure containing the new RT priority.
6548  *
6549  * Return: 0 on success. An error code otherwise.
6550  */
6551 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6552 {
6553 	if (policy < 0)
6554 		return -EINVAL;
6555 
6556 	return do_sched_setscheduler(pid, policy, param);
6557 }
6558 
6559 /**
6560  * sys_sched_setparam - set/change the RT priority of a thread
6561  * @pid: the pid in question.
6562  * @param: structure containing the new RT priority.
6563  *
6564  * Return: 0 on success. An error code otherwise.
6565  */
6566 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6567 {
6568 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6569 }
6570 
6571 /**
6572  * sys_sched_setattr - same as above, but with extended sched_attr
6573  * @pid: the pid in question.
6574  * @uattr: structure containing the extended parameters.
6575  * @flags: for future extension.
6576  */
6577 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6578 			       unsigned int, flags)
6579 {
6580 	struct sched_attr attr;
6581 	struct task_struct *p;
6582 	int retval;
6583 
6584 	if (!uattr || pid < 0 || flags)
6585 		return -EINVAL;
6586 
6587 	retval = sched_copy_attr(uattr, &attr);
6588 	if (retval)
6589 		return retval;
6590 
6591 	if ((int)attr.sched_policy < 0)
6592 		return -EINVAL;
6593 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6594 		attr.sched_policy = SETPARAM_POLICY;
6595 
6596 	rcu_read_lock();
6597 	retval = -ESRCH;
6598 	p = find_process_by_pid(pid);
6599 	if (likely(p))
6600 		get_task_struct(p);
6601 	rcu_read_unlock();
6602 
6603 	if (likely(p)) {
6604 		retval = sched_setattr(p, &attr);
6605 		put_task_struct(p);
6606 	}
6607 
6608 	return retval;
6609 }
6610 
6611 /**
6612  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6613  * @pid: the pid in question.
6614  *
6615  * Return: On success, the policy of the thread. Otherwise, a negative error
6616  * code.
6617  */
6618 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6619 {
6620 	struct task_struct *p;
6621 	int retval;
6622 
6623 	if (pid < 0)
6624 		return -EINVAL;
6625 
6626 	retval = -ESRCH;
6627 	rcu_read_lock();
6628 	p = find_process_by_pid(pid);
6629 	if (p) {
6630 		retval = security_task_getscheduler(p);
6631 		if (!retval)
6632 			retval = p->policy
6633 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6634 	}
6635 	rcu_read_unlock();
6636 	return retval;
6637 }
6638 
6639 /**
6640  * sys_sched_getparam - get the RT priority of a thread
6641  * @pid: the pid in question.
6642  * @param: structure containing the RT priority.
6643  *
6644  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6645  * code.
6646  */
6647 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6648 {
6649 	struct sched_param lp = { .sched_priority = 0 };
6650 	struct task_struct *p;
6651 	int retval;
6652 
6653 	if (!param || pid < 0)
6654 		return -EINVAL;
6655 
6656 	rcu_read_lock();
6657 	p = find_process_by_pid(pid);
6658 	retval = -ESRCH;
6659 	if (!p)
6660 		goto out_unlock;
6661 
6662 	retval = security_task_getscheduler(p);
6663 	if (retval)
6664 		goto out_unlock;
6665 
6666 	if (task_has_rt_policy(p))
6667 		lp.sched_priority = p->rt_priority;
6668 	rcu_read_unlock();
6669 
6670 	/*
6671 	 * This one might sleep, we cannot do it with a spinlock held ...
6672 	 */
6673 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6674 
6675 	return retval;
6676 
6677 out_unlock:
6678 	rcu_read_unlock();
6679 	return retval;
6680 }
6681 
6682 /*
6683  * Copy the kernel size attribute structure (which might be larger
6684  * than what user-space knows about) to user-space.
6685  *
6686  * Note that all cases are valid: user-space buffer can be larger or
6687  * smaller than the kernel-space buffer. The usual case is that both
6688  * have the same size.
6689  */
6690 static int
6691 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6692 			struct sched_attr *kattr,
6693 			unsigned int usize)
6694 {
6695 	unsigned int ksize = sizeof(*kattr);
6696 
6697 	if (!access_ok(uattr, usize))
6698 		return -EFAULT;
6699 
6700 	/*
6701 	 * sched_getattr() ABI forwards and backwards compatibility:
6702 	 *
6703 	 * If usize == ksize then we just copy everything to user-space and all is good.
6704 	 *
6705 	 * If usize < ksize then we only copy as much as user-space has space for,
6706 	 * this keeps ABI compatibility as well. We skip the rest.
6707 	 *
6708 	 * If usize > ksize then user-space is using a newer version of the ABI,
6709 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6710 	 * detect the kernel's knowledge of attributes from the attr->size value
6711 	 * which is set to ksize in this case.
6712 	 */
6713 	kattr->size = min(usize, ksize);
6714 
6715 	if (copy_to_user(uattr, kattr, kattr->size))
6716 		return -EFAULT;
6717 
6718 	return 0;
6719 }
6720 
6721 /**
6722  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6723  * @pid: the pid in question.
6724  * @uattr: structure containing the extended parameters.
6725  * @usize: sizeof(attr) for fwd/bwd comp.
6726  * @flags: for future extension.
6727  */
6728 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6729 		unsigned int, usize, unsigned int, flags)
6730 {
6731 	struct sched_attr kattr = { };
6732 	struct task_struct *p;
6733 	int retval;
6734 
6735 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6736 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6737 		return -EINVAL;
6738 
6739 	rcu_read_lock();
6740 	p = find_process_by_pid(pid);
6741 	retval = -ESRCH;
6742 	if (!p)
6743 		goto out_unlock;
6744 
6745 	retval = security_task_getscheduler(p);
6746 	if (retval)
6747 		goto out_unlock;
6748 
6749 	kattr.sched_policy = p->policy;
6750 	if (p->sched_reset_on_fork)
6751 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6752 	if (task_has_dl_policy(p))
6753 		__getparam_dl(p, &kattr);
6754 	else if (task_has_rt_policy(p))
6755 		kattr.sched_priority = p->rt_priority;
6756 	else
6757 		kattr.sched_nice = task_nice(p);
6758 
6759 #ifdef CONFIG_UCLAMP_TASK
6760 	/*
6761 	 * This could race with another potential updater, but this is fine
6762 	 * because it'll correctly read the old or the new value. We don't need
6763 	 * to guarantee who wins the race as long as it doesn't return garbage.
6764 	 */
6765 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6766 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6767 #endif
6768 
6769 	rcu_read_unlock();
6770 
6771 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6772 
6773 out_unlock:
6774 	rcu_read_unlock();
6775 	return retval;
6776 }
6777 
6778 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6779 {
6780 	cpumask_var_t cpus_allowed, new_mask;
6781 	struct task_struct *p;
6782 	int retval;
6783 
6784 	rcu_read_lock();
6785 
6786 	p = find_process_by_pid(pid);
6787 	if (!p) {
6788 		rcu_read_unlock();
6789 		return -ESRCH;
6790 	}
6791 
6792 	/* Prevent p going away */
6793 	get_task_struct(p);
6794 	rcu_read_unlock();
6795 
6796 	if (p->flags & PF_NO_SETAFFINITY) {
6797 		retval = -EINVAL;
6798 		goto out_put_task;
6799 	}
6800 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6801 		retval = -ENOMEM;
6802 		goto out_put_task;
6803 	}
6804 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6805 		retval = -ENOMEM;
6806 		goto out_free_cpus_allowed;
6807 	}
6808 	retval = -EPERM;
6809 	if (!check_same_owner(p)) {
6810 		rcu_read_lock();
6811 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6812 			rcu_read_unlock();
6813 			goto out_free_new_mask;
6814 		}
6815 		rcu_read_unlock();
6816 	}
6817 
6818 	retval = security_task_setscheduler(p);
6819 	if (retval)
6820 		goto out_free_new_mask;
6821 
6822 
6823 	cpuset_cpus_allowed(p, cpus_allowed);
6824 	cpumask_and(new_mask, in_mask, cpus_allowed);
6825 
6826 	/*
6827 	 * Since bandwidth control happens on root_domain basis,
6828 	 * if admission test is enabled, we only admit -deadline
6829 	 * tasks allowed to run on all the CPUs in the task's
6830 	 * root_domain.
6831 	 */
6832 #ifdef CONFIG_SMP
6833 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6834 		rcu_read_lock();
6835 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6836 			retval = -EBUSY;
6837 			rcu_read_unlock();
6838 			goto out_free_new_mask;
6839 		}
6840 		rcu_read_unlock();
6841 	}
6842 #endif
6843 again:
6844 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6845 
6846 	if (!retval) {
6847 		cpuset_cpus_allowed(p, cpus_allowed);
6848 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6849 			/*
6850 			 * We must have raced with a concurrent cpuset
6851 			 * update. Just reset the cpus_allowed to the
6852 			 * cpuset's cpus_allowed
6853 			 */
6854 			cpumask_copy(new_mask, cpus_allowed);
6855 			goto again;
6856 		}
6857 	}
6858 out_free_new_mask:
6859 	free_cpumask_var(new_mask);
6860 out_free_cpus_allowed:
6861 	free_cpumask_var(cpus_allowed);
6862 out_put_task:
6863 	put_task_struct(p);
6864 	return retval;
6865 }
6866 
6867 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6868 			     struct cpumask *new_mask)
6869 {
6870 	if (len < cpumask_size())
6871 		cpumask_clear(new_mask);
6872 	else if (len > cpumask_size())
6873 		len = cpumask_size();
6874 
6875 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6876 }
6877 
6878 /**
6879  * sys_sched_setaffinity - set the CPU affinity of a process
6880  * @pid: pid of the process
6881  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6882  * @user_mask_ptr: user-space pointer to the new CPU mask
6883  *
6884  * Return: 0 on success. An error code otherwise.
6885  */
6886 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6887 		unsigned long __user *, user_mask_ptr)
6888 {
6889 	cpumask_var_t new_mask;
6890 	int retval;
6891 
6892 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6893 		return -ENOMEM;
6894 
6895 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6896 	if (retval == 0)
6897 		retval = sched_setaffinity(pid, new_mask);
6898 	free_cpumask_var(new_mask);
6899 	return retval;
6900 }
6901 
6902 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6903 {
6904 	struct task_struct *p;
6905 	unsigned long flags;
6906 	int retval;
6907 
6908 	rcu_read_lock();
6909 
6910 	retval = -ESRCH;
6911 	p = find_process_by_pid(pid);
6912 	if (!p)
6913 		goto out_unlock;
6914 
6915 	retval = security_task_getscheduler(p);
6916 	if (retval)
6917 		goto out_unlock;
6918 
6919 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6920 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6921 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6922 
6923 out_unlock:
6924 	rcu_read_unlock();
6925 
6926 	return retval;
6927 }
6928 
6929 /**
6930  * sys_sched_getaffinity - get the CPU affinity of a process
6931  * @pid: pid of the process
6932  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6933  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6934  *
6935  * Return: size of CPU mask copied to user_mask_ptr on success. An
6936  * error code otherwise.
6937  */
6938 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6939 		unsigned long __user *, user_mask_ptr)
6940 {
6941 	int ret;
6942 	cpumask_var_t mask;
6943 
6944 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6945 		return -EINVAL;
6946 	if (len & (sizeof(unsigned long)-1))
6947 		return -EINVAL;
6948 
6949 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6950 		return -ENOMEM;
6951 
6952 	ret = sched_getaffinity(pid, mask);
6953 	if (ret == 0) {
6954 		unsigned int retlen = min(len, cpumask_size());
6955 
6956 		if (copy_to_user(user_mask_ptr, mask, retlen))
6957 			ret = -EFAULT;
6958 		else
6959 			ret = retlen;
6960 	}
6961 	free_cpumask_var(mask);
6962 
6963 	return ret;
6964 }
6965 
6966 static void do_sched_yield(void)
6967 {
6968 	struct rq_flags rf;
6969 	struct rq *rq;
6970 
6971 	rq = this_rq_lock_irq(&rf);
6972 
6973 	schedstat_inc(rq->yld_count);
6974 	current->sched_class->yield_task(rq);
6975 
6976 	preempt_disable();
6977 	rq_unlock_irq(rq, &rf);
6978 	sched_preempt_enable_no_resched();
6979 
6980 	schedule();
6981 }
6982 
6983 /**
6984  * sys_sched_yield - yield the current processor to other threads.
6985  *
6986  * This function yields the current CPU to other tasks. If there are no
6987  * other threads running on this CPU then this function will return.
6988  *
6989  * Return: 0.
6990  */
6991 SYSCALL_DEFINE0(sched_yield)
6992 {
6993 	do_sched_yield();
6994 	return 0;
6995 }
6996 
6997 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6998 int __sched __cond_resched(void)
6999 {
7000 	if (should_resched(0)) {
7001 		preempt_schedule_common();
7002 		return 1;
7003 	}
7004 #ifndef CONFIG_PREEMPT_RCU
7005 	rcu_all_qs();
7006 #endif
7007 	return 0;
7008 }
7009 EXPORT_SYMBOL(__cond_resched);
7010 #endif
7011 
7012 #ifdef CONFIG_PREEMPT_DYNAMIC
7013 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7014 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7015 
7016 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7017 EXPORT_STATIC_CALL_TRAMP(might_resched);
7018 #endif
7019 
7020 /*
7021  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7022  * call schedule, and on return reacquire the lock.
7023  *
7024  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7025  * operations here to prevent schedule() from being called twice (once via
7026  * spin_unlock(), once by hand).
7027  */
7028 int __cond_resched_lock(spinlock_t *lock)
7029 {
7030 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7031 	int ret = 0;
7032 
7033 	lockdep_assert_held(lock);
7034 
7035 	if (spin_needbreak(lock) || resched) {
7036 		spin_unlock(lock);
7037 		if (resched)
7038 			preempt_schedule_common();
7039 		else
7040 			cpu_relax();
7041 		ret = 1;
7042 		spin_lock(lock);
7043 	}
7044 	return ret;
7045 }
7046 EXPORT_SYMBOL(__cond_resched_lock);
7047 
7048 int __cond_resched_rwlock_read(rwlock_t *lock)
7049 {
7050 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7051 	int ret = 0;
7052 
7053 	lockdep_assert_held_read(lock);
7054 
7055 	if (rwlock_needbreak(lock) || resched) {
7056 		read_unlock(lock);
7057 		if (resched)
7058 			preempt_schedule_common();
7059 		else
7060 			cpu_relax();
7061 		ret = 1;
7062 		read_lock(lock);
7063 	}
7064 	return ret;
7065 }
7066 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7067 
7068 int __cond_resched_rwlock_write(rwlock_t *lock)
7069 {
7070 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7071 	int ret = 0;
7072 
7073 	lockdep_assert_held_write(lock);
7074 
7075 	if (rwlock_needbreak(lock) || resched) {
7076 		write_unlock(lock);
7077 		if (resched)
7078 			preempt_schedule_common();
7079 		else
7080 			cpu_relax();
7081 		ret = 1;
7082 		write_lock(lock);
7083 	}
7084 	return ret;
7085 }
7086 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7087 
7088 /**
7089  * yield - yield the current processor to other threads.
7090  *
7091  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7092  *
7093  * The scheduler is at all times free to pick the calling task as the most
7094  * eligible task to run, if removing the yield() call from your code breaks
7095  * it, it's already broken.
7096  *
7097  * Typical broken usage is:
7098  *
7099  * while (!event)
7100  *	yield();
7101  *
7102  * where one assumes that yield() will let 'the other' process run that will
7103  * make event true. If the current task is a SCHED_FIFO task that will never
7104  * happen. Never use yield() as a progress guarantee!!
7105  *
7106  * If you want to use yield() to wait for something, use wait_event().
7107  * If you want to use yield() to be 'nice' for others, use cond_resched().
7108  * If you still want to use yield(), do not!
7109  */
7110 void __sched yield(void)
7111 {
7112 	set_current_state(TASK_RUNNING);
7113 	do_sched_yield();
7114 }
7115 EXPORT_SYMBOL(yield);
7116 
7117 /**
7118  * yield_to - yield the current processor to another thread in
7119  * your thread group, or accelerate that thread toward the
7120  * processor it's on.
7121  * @p: target task
7122  * @preempt: whether task preemption is allowed or not
7123  *
7124  * It's the caller's job to ensure that the target task struct
7125  * can't go away on us before we can do any checks.
7126  *
7127  * Return:
7128  *	true (>0) if we indeed boosted the target task.
7129  *	false (0) if we failed to boost the target.
7130  *	-ESRCH if there's no task to yield to.
7131  */
7132 int __sched yield_to(struct task_struct *p, bool preempt)
7133 {
7134 	struct task_struct *curr = current;
7135 	struct rq *rq, *p_rq;
7136 	unsigned long flags;
7137 	int yielded = 0;
7138 
7139 	local_irq_save(flags);
7140 	rq = this_rq();
7141 
7142 again:
7143 	p_rq = task_rq(p);
7144 	/*
7145 	 * If we're the only runnable task on the rq and target rq also
7146 	 * has only one task, there's absolutely no point in yielding.
7147 	 */
7148 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7149 		yielded = -ESRCH;
7150 		goto out_irq;
7151 	}
7152 
7153 	double_rq_lock(rq, p_rq);
7154 	if (task_rq(p) != p_rq) {
7155 		double_rq_unlock(rq, p_rq);
7156 		goto again;
7157 	}
7158 
7159 	if (!curr->sched_class->yield_to_task)
7160 		goto out_unlock;
7161 
7162 	if (curr->sched_class != p->sched_class)
7163 		goto out_unlock;
7164 
7165 	if (task_running(p_rq, p) || p->state)
7166 		goto out_unlock;
7167 
7168 	yielded = curr->sched_class->yield_to_task(rq, p);
7169 	if (yielded) {
7170 		schedstat_inc(rq->yld_count);
7171 		/*
7172 		 * Make p's CPU reschedule; pick_next_entity takes care of
7173 		 * fairness.
7174 		 */
7175 		if (preempt && rq != p_rq)
7176 			resched_curr(p_rq);
7177 	}
7178 
7179 out_unlock:
7180 	double_rq_unlock(rq, p_rq);
7181 out_irq:
7182 	local_irq_restore(flags);
7183 
7184 	if (yielded > 0)
7185 		schedule();
7186 
7187 	return yielded;
7188 }
7189 EXPORT_SYMBOL_GPL(yield_to);
7190 
7191 int io_schedule_prepare(void)
7192 {
7193 	int old_iowait = current->in_iowait;
7194 
7195 	current->in_iowait = 1;
7196 	blk_schedule_flush_plug(current);
7197 
7198 	return old_iowait;
7199 }
7200 
7201 void io_schedule_finish(int token)
7202 {
7203 	current->in_iowait = token;
7204 }
7205 
7206 /*
7207  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7208  * that process accounting knows that this is a task in IO wait state.
7209  */
7210 long __sched io_schedule_timeout(long timeout)
7211 {
7212 	int token;
7213 	long ret;
7214 
7215 	token = io_schedule_prepare();
7216 	ret = schedule_timeout(timeout);
7217 	io_schedule_finish(token);
7218 
7219 	return ret;
7220 }
7221 EXPORT_SYMBOL(io_schedule_timeout);
7222 
7223 void __sched io_schedule(void)
7224 {
7225 	int token;
7226 
7227 	token = io_schedule_prepare();
7228 	schedule();
7229 	io_schedule_finish(token);
7230 }
7231 EXPORT_SYMBOL(io_schedule);
7232 
7233 /**
7234  * sys_sched_get_priority_max - return maximum RT priority.
7235  * @policy: scheduling class.
7236  *
7237  * Return: On success, this syscall returns the maximum
7238  * rt_priority that can be used by a given scheduling class.
7239  * On failure, a negative error code is returned.
7240  */
7241 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7242 {
7243 	int ret = -EINVAL;
7244 
7245 	switch (policy) {
7246 	case SCHED_FIFO:
7247 	case SCHED_RR:
7248 		ret = MAX_RT_PRIO-1;
7249 		break;
7250 	case SCHED_DEADLINE:
7251 	case SCHED_NORMAL:
7252 	case SCHED_BATCH:
7253 	case SCHED_IDLE:
7254 		ret = 0;
7255 		break;
7256 	}
7257 	return ret;
7258 }
7259 
7260 /**
7261  * sys_sched_get_priority_min - return minimum RT priority.
7262  * @policy: scheduling class.
7263  *
7264  * Return: On success, this syscall returns the minimum
7265  * rt_priority that can be used by a given scheduling class.
7266  * On failure, a negative error code is returned.
7267  */
7268 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7269 {
7270 	int ret = -EINVAL;
7271 
7272 	switch (policy) {
7273 	case SCHED_FIFO:
7274 	case SCHED_RR:
7275 		ret = 1;
7276 		break;
7277 	case SCHED_DEADLINE:
7278 	case SCHED_NORMAL:
7279 	case SCHED_BATCH:
7280 	case SCHED_IDLE:
7281 		ret = 0;
7282 	}
7283 	return ret;
7284 }
7285 
7286 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7287 {
7288 	struct task_struct *p;
7289 	unsigned int time_slice;
7290 	struct rq_flags rf;
7291 	struct rq *rq;
7292 	int retval;
7293 
7294 	if (pid < 0)
7295 		return -EINVAL;
7296 
7297 	retval = -ESRCH;
7298 	rcu_read_lock();
7299 	p = find_process_by_pid(pid);
7300 	if (!p)
7301 		goto out_unlock;
7302 
7303 	retval = security_task_getscheduler(p);
7304 	if (retval)
7305 		goto out_unlock;
7306 
7307 	rq = task_rq_lock(p, &rf);
7308 	time_slice = 0;
7309 	if (p->sched_class->get_rr_interval)
7310 		time_slice = p->sched_class->get_rr_interval(rq, p);
7311 	task_rq_unlock(rq, p, &rf);
7312 
7313 	rcu_read_unlock();
7314 	jiffies_to_timespec64(time_slice, t);
7315 	return 0;
7316 
7317 out_unlock:
7318 	rcu_read_unlock();
7319 	return retval;
7320 }
7321 
7322 /**
7323  * sys_sched_rr_get_interval - return the default timeslice of a process.
7324  * @pid: pid of the process.
7325  * @interval: userspace pointer to the timeslice value.
7326  *
7327  * this syscall writes the default timeslice value of a given process
7328  * into the user-space timespec buffer. A value of '0' means infinity.
7329  *
7330  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7331  * an error code.
7332  */
7333 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7334 		struct __kernel_timespec __user *, interval)
7335 {
7336 	struct timespec64 t;
7337 	int retval = sched_rr_get_interval(pid, &t);
7338 
7339 	if (retval == 0)
7340 		retval = put_timespec64(&t, interval);
7341 
7342 	return retval;
7343 }
7344 
7345 #ifdef CONFIG_COMPAT_32BIT_TIME
7346 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7347 		struct old_timespec32 __user *, interval)
7348 {
7349 	struct timespec64 t;
7350 	int retval = sched_rr_get_interval(pid, &t);
7351 
7352 	if (retval == 0)
7353 		retval = put_old_timespec32(&t, interval);
7354 	return retval;
7355 }
7356 #endif
7357 
7358 void sched_show_task(struct task_struct *p)
7359 {
7360 	unsigned long free = 0;
7361 	int ppid;
7362 
7363 	if (!try_get_task_stack(p))
7364 		return;
7365 
7366 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7367 
7368 	if (p->state == TASK_RUNNING)
7369 		pr_cont("  running task    ");
7370 #ifdef CONFIG_DEBUG_STACK_USAGE
7371 	free = stack_not_used(p);
7372 #endif
7373 	ppid = 0;
7374 	rcu_read_lock();
7375 	if (pid_alive(p))
7376 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7377 	rcu_read_unlock();
7378 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7379 		free, task_pid_nr(p), ppid,
7380 		(unsigned long)task_thread_info(p)->flags);
7381 
7382 	print_worker_info(KERN_INFO, p);
7383 	print_stop_info(KERN_INFO, p);
7384 	show_stack(p, NULL, KERN_INFO);
7385 	put_task_stack(p);
7386 }
7387 EXPORT_SYMBOL_GPL(sched_show_task);
7388 
7389 static inline bool
7390 state_filter_match(unsigned long state_filter, struct task_struct *p)
7391 {
7392 	/* no filter, everything matches */
7393 	if (!state_filter)
7394 		return true;
7395 
7396 	/* filter, but doesn't match */
7397 	if (!(p->state & state_filter))
7398 		return false;
7399 
7400 	/*
7401 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7402 	 * TASK_KILLABLE).
7403 	 */
7404 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7405 		return false;
7406 
7407 	return true;
7408 }
7409 
7410 
7411 void show_state_filter(unsigned long state_filter)
7412 {
7413 	struct task_struct *g, *p;
7414 
7415 	rcu_read_lock();
7416 	for_each_process_thread(g, p) {
7417 		/*
7418 		 * reset the NMI-timeout, listing all files on a slow
7419 		 * console might take a lot of time:
7420 		 * Also, reset softlockup watchdogs on all CPUs, because
7421 		 * another CPU might be blocked waiting for us to process
7422 		 * an IPI.
7423 		 */
7424 		touch_nmi_watchdog();
7425 		touch_all_softlockup_watchdogs();
7426 		if (state_filter_match(state_filter, p))
7427 			sched_show_task(p);
7428 	}
7429 
7430 #ifdef CONFIG_SCHED_DEBUG
7431 	if (!state_filter)
7432 		sysrq_sched_debug_show();
7433 #endif
7434 	rcu_read_unlock();
7435 	/*
7436 	 * Only show locks if all tasks are dumped:
7437 	 */
7438 	if (!state_filter)
7439 		debug_show_all_locks();
7440 }
7441 
7442 /**
7443  * init_idle - set up an idle thread for a given CPU
7444  * @idle: task in question
7445  * @cpu: CPU the idle task belongs to
7446  *
7447  * NOTE: this function does not set the idle thread's NEED_RESCHED
7448  * flag, to make booting more robust.
7449  */
7450 void init_idle(struct task_struct *idle, int cpu)
7451 {
7452 	struct rq *rq = cpu_rq(cpu);
7453 	unsigned long flags;
7454 
7455 	__sched_fork(0, idle);
7456 
7457 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7458 	raw_spin_lock(&rq->lock);
7459 
7460 	idle->state = TASK_RUNNING;
7461 	idle->se.exec_start = sched_clock();
7462 	idle->flags |= PF_IDLE;
7463 
7464 	scs_task_reset(idle);
7465 	kasan_unpoison_task_stack(idle);
7466 
7467 #ifdef CONFIG_SMP
7468 	/*
7469 	 * It's possible that init_idle() gets called multiple times on a task,
7470 	 * in that case do_set_cpus_allowed() will not do the right thing.
7471 	 *
7472 	 * And since this is boot we can forgo the serialization.
7473 	 */
7474 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7475 #endif
7476 	/*
7477 	 * We're having a chicken and egg problem, even though we are
7478 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7479 	 * lockdep check in task_group() will fail.
7480 	 *
7481 	 * Similar case to sched_fork(). / Alternatively we could
7482 	 * use task_rq_lock() here and obtain the other rq->lock.
7483 	 *
7484 	 * Silence PROVE_RCU
7485 	 */
7486 	rcu_read_lock();
7487 	__set_task_cpu(idle, cpu);
7488 	rcu_read_unlock();
7489 
7490 	rq->idle = idle;
7491 	rcu_assign_pointer(rq->curr, idle);
7492 	idle->on_rq = TASK_ON_RQ_QUEUED;
7493 #ifdef CONFIG_SMP
7494 	idle->on_cpu = 1;
7495 #endif
7496 	raw_spin_unlock(&rq->lock);
7497 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7498 
7499 	/* Set the preempt count _outside_ the spinlocks! */
7500 	init_idle_preempt_count(idle, cpu);
7501 
7502 	/*
7503 	 * The idle tasks have their own, simple scheduling class:
7504 	 */
7505 	idle->sched_class = &idle_sched_class;
7506 	ftrace_graph_init_idle_task(idle, cpu);
7507 	vtime_init_idle(idle, cpu);
7508 #ifdef CONFIG_SMP
7509 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7510 #endif
7511 }
7512 
7513 #ifdef CONFIG_SMP
7514 
7515 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7516 			      const struct cpumask *trial)
7517 {
7518 	int ret = 1;
7519 
7520 	if (!cpumask_weight(cur))
7521 		return ret;
7522 
7523 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7524 
7525 	return ret;
7526 }
7527 
7528 int task_can_attach(struct task_struct *p,
7529 		    const struct cpumask *cs_cpus_allowed)
7530 {
7531 	int ret = 0;
7532 
7533 	/*
7534 	 * Kthreads which disallow setaffinity shouldn't be moved
7535 	 * to a new cpuset; we don't want to change their CPU
7536 	 * affinity and isolating such threads by their set of
7537 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7538 	 * applicable for such threads.  This prevents checking for
7539 	 * success of set_cpus_allowed_ptr() on all attached tasks
7540 	 * before cpus_mask may be changed.
7541 	 */
7542 	if (p->flags & PF_NO_SETAFFINITY) {
7543 		ret = -EINVAL;
7544 		goto out;
7545 	}
7546 
7547 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7548 					      cs_cpus_allowed))
7549 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7550 
7551 out:
7552 	return ret;
7553 }
7554 
7555 bool sched_smp_initialized __read_mostly;
7556 
7557 #ifdef CONFIG_NUMA_BALANCING
7558 /* Migrate current task p to target_cpu */
7559 int migrate_task_to(struct task_struct *p, int target_cpu)
7560 {
7561 	struct migration_arg arg = { p, target_cpu };
7562 	int curr_cpu = task_cpu(p);
7563 
7564 	if (curr_cpu == target_cpu)
7565 		return 0;
7566 
7567 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7568 		return -EINVAL;
7569 
7570 	/* TODO: This is not properly updating schedstats */
7571 
7572 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7573 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7574 }
7575 
7576 /*
7577  * Requeue a task on a given node and accurately track the number of NUMA
7578  * tasks on the runqueues
7579  */
7580 void sched_setnuma(struct task_struct *p, int nid)
7581 {
7582 	bool queued, running;
7583 	struct rq_flags rf;
7584 	struct rq *rq;
7585 
7586 	rq = task_rq_lock(p, &rf);
7587 	queued = task_on_rq_queued(p);
7588 	running = task_current(rq, p);
7589 
7590 	if (queued)
7591 		dequeue_task(rq, p, DEQUEUE_SAVE);
7592 	if (running)
7593 		put_prev_task(rq, p);
7594 
7595 	p->numa_preferred_nid = nid;
7596 
7597 	if (queued)
7598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7599 	if (running)
7600 		set_next_task(rq, p);
7601 	task_rq_unlock(rq, p, &rf);
7602 }
7603 #endif /* CONFIG_NUMA_BALANCING */
7604 
7605 #ifdef CONFIG_HOTPLUG_CPU
7606 /*
7607  * Ensure that the idle task is using init_mm right before its CPU goes
7608  * offline.
7609  */
7610 void idle_task_exit(void)
7611 {
7612 	struct mm_struct *mm = current->active_mm;
7613 
7614 	BUG_ON(cpu_online(smp_processor_id()));
7615 	BUG_ON(current != this_rq()->idle);
7616 
7617 	if (mm != &init_mm) {
7618 		switch_mm(mm, &init_mm, current);
7619 		finish_arch_post_lock_switch();
7620 	}
7621 
7622 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7623 }
7624 
7625 static int __balance_push_cpu_stop(void *arg)
7626 {
7627 	struct task_struct *p = arg;
7628 	struct rq *rq = this_rq();
7629 	struct rq_flags rf;
7630 	int cpu;
7631 
7632 	raw_spin_lock_irq(&p->pi_lock);
7633 	rq_lock(rq, &rf);
7634 
7635 	update_rq_clock(rq);
7636 
7637 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7638 		cpu = select_fallback_rq(rq->cpu, p);
7639 		rq = __migrate_task(rq, &rf, p, cpu);
7640 	}
7641 
7642 	rq_unlock(rq, &rf);
7643 	raw_spin_unlock_irq(&p->pi_lock);
7644 
7645 	put_task_struct(p);
7646 
7647 	return 0;
7648 }
7649 
7650 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7651 
7652 /*
7653  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7654  */
7655 static void balance_push(struct rq *rq)
7656 {
7657 	struct task_struct *push_task = rq->curr;
7658 
7659 	lockdep_assert_held(&rq->lock);
7660 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7661 	/*
7662 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7663 	 */
7664 	rq->balance_callback = &balance_push_callback;
7665 
7666 	/*
7667 	 * Both the cpu-hotplug and stop task are in this case and are
7668 	 * required to complete the hotplug process.
7669 	 *
7670 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7671 	 * histerical raisins.
7672 	 */
7673 	if (rq->idle == push_task ||
7674 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7675 	    is_migration_disabled(push_task)) {
7676 
7677 		/*
7678 		 * If this is the idle task on the outgoing CPU try to wake
7679 		 * up the hotplug control thread which might wait for the
7680 		 * last task to vanish. The rcuwait_active() check is
7681 		 * accurate here because the waiter is pinned on this CPU
7682 		 * and can't obviously be running in parallel.
7683 		 *
7684 		 * On RT kernels this also has to check whether there are
7685 		 * pinned and scheduled out tasks on the runqueue. They
7686 		 * need to leave the migrate disabled section first.
7687 		 */
7688 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7689 		    rcuwait_active(&rq->hotplug_wait)) {
7690 			raw_spin_unlock(&rq->lock);
7691 			rcuwait_wake_up(&rq->hotplug_wait);
7692 			raw_spin_lock(&rq->lock);
7693 		}
7694 		return;
7695 	}
7696 
7697 	get_task_struct(push_task);
7698 	/*
7699 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7700 	 * Both preemption and IRQs are still disabled.
7701 	 */
7702 	raw_spin_unlock(&rq->lock);
7703 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7704 			    this_cpu_ptr(&push_work));
7705 	/*
7706 	 * At this point need_resched() is true and we'll take the loop in
7707 	 * schedule(). The next pick is obviously going to be the stop task
7708 	 * which kthread_is_per_cpu() and will push this task away.
7709 	 */
7710 	raw_spin_lock(&rq->lock);
7711 }
7712 
7713 static void balance_push_set(int cpu, bool on)
7714 {
7715 	struct rq *rq = cpu_rq(cpu);
7716 	struct rq_flags rf;
7717 
7718 	rq_lock_irqsave(rq, &rf);
7719 	rq->balance_push = on;
7720 	if (on) {
7721 		WARN_ON_ONCE(rq->balance_callback);
7722 		rq->balance_callback = &balance_push_callback;
7723 	} else if (rq->balance_callback == &balance_push_callback) {
7724 		rq->balance_callback = NULL;
7725 	}
7726 	rq_unlock_irqrestore(rq, &rf);
7727 }
7728 
7729 /*
7730  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7731  * inactive. All tasks which are not per CPU kernel threads are either
7732  * pushed off this CPU now via balance_push() or placed on a different CPU
7733  * during wakeup. Wait until the CPU is quiescent.
7734  */
7735 static void balance_hotplug_wait(void)
7736 {
7737 	struct rq *rq = this_rq();
7738 
7739 	rcuwait_wait_event(&rq->hotplug_wait,
7740 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7741 			   TASK_UNINTERRUPTIBLE);
7742 }
7743 
7744 #else
7745 
7746 static inline void balance_push(struct rq *rq)
7747 {
7748 }
7749 
7750 static inline void balance_push_set(int cpu, bool on)
7751 {
7752 }
7753 
7754 static inline void balance_hotplug_wait(void)
7755 {
7756 }
7757 
7758 #endif /* CONFIG_HOTPLUG_CPU */
7759 
7760 void set_rq_online(struct rq *rq)
7761 {
7762 	if (!rq->online) {
7763 		const struct sched_class *class;
7764 
7765 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7766 		rq->online = 1;
7767 
7768 		for_each_class(class) {
7769 			if (class->rq_online)
7770 				class->rq_online(rq);
7771 		}
7772 	}
7773 }
7774 
7775 void set_rq_offline(struct rq *rq)
7776 {
7777 	if (rq->online) {
7778 		const struct sched_class *class;
7779 
7780 		for_each_class(class) {
7781 			if (class->rq_offline)
7782 				class->rq_offline(rq);
7783 		}
7784 
7785 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7786 		rq->online = 0;
7787 	}
7788 }
7789 
7790 /*
7791  * used to mark begin/end of suspend/resume:
7792  */
7793 static int num_cpus_frozen;
7794 
7795 /*
7796  * Update cpusets according to cpu_active mask.  If cpusets are
7797  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7798  * around partition_sched_domains().
7799  *
7800  * If we come here as part of a suspend/resume, don't touch cpusets because we
7801  * want to restore it back to its original state upon resume anyway.
7802  */
7803 static void cpuset_cpu_active(void)
7804 {
7805 	if (cpuhp_tasks_frozen) {
7806 		/*
7807 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7808 		 * resume sequence. As long as this is not the last online
7809 		 * operation in the resume sequence, just build a single sched
7810 		 * domain, ignoring cpusets.
7811 		 */
7812 		partition_sched_domains(1, NULL, NULL);
7813 		if (--num_cpus_frozen)
7814 			return;
7815 		/*
7816 		 * This is the last CPU online operation. So fall through and
7817 		 * restore the original sched domains by considering the
7818 		 * cpuset configurations.
7819 		 */
7820 		cpuset_force_rebuild();
7821 	}
7822 	cpuset_update_active_cpus();
7823 }
7824 
7825 static int cpuset_cpu_inactive(unsigned int cpu)
7826 {
7827 	if (!cpuhp_tasks_frozen) {
7828 		if (dl_cpu_busy(cpu))
7829 			return -EBUSY;
7830 		cpuset_update_active_cpus();
7831 	} else {
7832 		num_cpus_frozen++;
7833 		partition_sched_domains(1, NULL, NULL);
7834 	}
7835 	return 0;
7836 }
7837 
7838 int sched_cpu_activate(unsigned int cpu)
7839 {
7840 	struct rq *rq = cpu_rq(cpu);
7841 	struct rq_flags rf;
7842 
7843 	/*
7844 	 * Make sure that when the hotplug state machine does a roll-back
7845 	 * we clear balance_push. Ideally that would happen earlier...
7846 	 */
7847 	balance_push_set(cpu, false);
7848 
7849 #ifdef CONFIG_SCHED_SMT
7850 	/*
7851 	 * When going up, increment the number of cores with SMT present.
7852 	 */
7853 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7854 		static_branch_inc_cpuslocked(&sched_smt_present);
7855 #endif
7856 	set_cpu_active(cpu, true);
7857 
7858 	if (sched_smp_initialized) {
7859 		sched_domains_numa_masks_set(cpu);
7860 		cpuset_cpu_active();
7861 	}
7862 
7863 	/*
7864 	 * Put the rq online, if not already. This happens:
7865 	 *
7866 	 * 1) In the early boot process, because we build the real domains
7867 	 *    after all CPUs have been brought up.
7868 	 *
7869 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7870 	 *    domains.
7871 	 */
7872 	rq_lock_irqsave(rq, &rf);
7873 	if (rq->rd) {
7874 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7875 		set_rq_online(rq);
7876 	}
7877 	rq_unlock_irqrestore(rq, &rf);
7878 
7879 	return 0;
7880 }
7881 
7882 int sched_cpu_deactivate(unsigned int cpu)
7883 {
7884 	struct rq *rq = cpu_rq(cpu);
7885 	struct rq_flags rf;
7886 	int ret;
7887 
7888 	/*
7889 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7890 	 * load balancing when not active
7891 	 */
7892 	nohz_balance_exit_idle(rq);
7893 
7894 	set_cpu_active(cpu, false);
7895 
7896 	/*
7897 	 * From this point forward, this CPU will refuse to run any task that
7898 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7899 	 * push those tasks away until this gets cleared, see
7900 	 * sched_cpu_dying().
7901 	 */
7902 	balance_push_set(cpu, true);
7903 
7904 	/*
7905 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7906 	 * preempt-disabled and RCU users of this state to go away such that
7907 	 * all new such users will observe it.
7908 	 *
7909 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7910 	 * ttwu_queue_cond() and is_cpu_allowed().
7911 	 *
7912 	 * Do sync before park smpboot threads to take care the rcu boost case.
7913 	 */
7914 	synchronize_rcu();
7915 
7916 	rq_lock_irqsave(rq, &rf);
7917 	if (rq->rd) {
7918 		update_rq_clock(rq);
7919 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7920 		set_rq_offline(rq);
7921 	}
7922 	rq_unlock_irqrestore(rq, &rf);
7923 
7924 #ifdef CONFIG_SCHED_SMT
7925 	/*
7926 	 * When going down, decrement the number of cores with SMT present.
7927 	 */
7928 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7929 		static_branch_dec_cpuslocked(&sched_smt_present);
7930 #endif
7931 
7932 	if (!sched_smp_initialized)
7933 		return 0;
7934 
7935 	ret = cpuset_cpu_inactive(cpu);
7936 	if (ret) {
7937 		balance_push_set(cpu, false);
7938 		set_cpu_active(cpu, true);
7939 		return ret;
7940 	}
7941 	sched_domains_numa_masks_clear(cpu);
7942 	return 0;
7943 }
7944 
7945 static void sched_rq_cpu_starting(unsigned int cpu)
7946 {
7947 	struct rq *rq = cpu_rq(cpu);
7948 
7949 	rq->calc_load_update = calc_load_update;
7950 	update_max_interval();
7951 }
7952 
7953 int sched_cpu_starting(unsigned int cpu)
7954 {
7955 	sched_rq_cpu_starting(cpu);
7956 	sched_tick_start(cpu);
7957 	return 0;
7958 }
7959 
7960 #ifdef CONFIG_HOTPLUG_CPU
7961 
7962 /*
7963  * Invoked immediately before the stopper thread is invoked to bring the
7964  * CPU down completely. At this point all per CPU kthreads except the
7965  * hotplug thread (current) and the stopper thread (inactive) have been
7966  * either parked or have been unbound from the outgoing CPU. Ensure that
7967  * any of those which might be on the way out are gone.
7968  *
7969  * If after this point a bound task is being woken on this CPU then the
7970  * responsible hotplug callback has failed to do it's job.
7971  * sched_cpu_dying() will catch it with the appropriate fireworks.
7972  */
7973 int sched_cpu_wait_empty(unsigned int cpu)
7974 {
7975 	balance_hotplug_wait();
7976 	return 0;
7977 }
7978 
7979 /*
7980  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7981  * might have. Called from the CPU stopper task after ensuring that the
7982  * stopper is the last running task on the CPU, so nr_active count is
7983  * stable. We need to take the teardown thread which is calling this into
7984  * account, so we hand in adjust = 1 to the load calculation.
7985  *
7986  * Also see the comment "Global load-average calculations".
7987  */
7988 static void calc_load_migrate(struct rq *rq)
7989 {
7990 	long delta = calc_load_fold_active(rq, 1);
7991 
7992 	if (delta)
7993 		atomic_long_add(delta, &calc_load_tasks);
7994 }
7995 
7996 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7997 {
7998 	struct task_struct *g, *p;
7999 	int cpu = cpu_of(rq);
8000 
8001 	lockdep_assert_held(&rq->lock);
8002 
8003 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8004 	for_each_process_thread(g, p) {
8005 		if (task_cpu(p) != cpu)
8006 			continue;
8007 
8008 		if (!task_on_rq_queued(p))
8009 			continue;
8010 
8011 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8012 	}
8013 }
8014 
8015 int sched_cpu_dying(unsigned int cpu)
8016 {
8017 	struct rq *rq = cpu_rq(cpu);
8018 	struct rq_flags rf;
8019 
8020 	/* Handle pending wakeups and then migrate everything off */
8021 	sched_tick_stop(cpu);
8022 
8023 	rq_lock_irqsave(rq, &rf);
8024 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8025 		WARN(true, "Dying CPU not properly vacated!");
8026 		dump_rq_tasks(rq, KERN_WARNING);
8027 	}
8028 	rq_unlock_irqrestore(rq, &rf);
8029 
8030 	/*
8031 	 * Now that the CPU is offline, make sure we're welcome
8032 	 * to new tasks once we come back up.
8033 	 */
8034 	balance_push_set(cpu, false);
8035 
8036 	calc_load_migrate(rq);
8037 	update_max_interval();
8038 	hrtick_clear(rq);
8039 	return 0;
8040 }
8041 #endif
8042 
8043 void __init sched_init_smp(void)
8044 {
8045 	sched_init_numa();
8046 
8047 	/*
8048 	 * There's no userspace yet to cause hotplug operations; hence all the
8049 	 * CPU masks are stable and all blatant races in the below code cannot
8050 	 * happen.
8051 	 */
8052 	mutex_lock(&sched_domains_mutex);
8053 	sched_init_domains(cpu_active_mask);
8054 	mutex_unlock(&sched_domains_mutex);
8055 
8056 	/* Move init over to a non-isolated CPU */
8057 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8058 		BUG();
8059 	sched_init_granularity();
8060 
8061 	init_sched_rt_class();
8062 	init_sched_dl_class();
8063 
8064 	sched_smp_initialized = true;
8065 }
8066 
8067 static int __init migration_init(void)
8068 {
8069 	sched_cpu_starting(smp_processor_id());
8070 	return 0;
8071 }
8072 early_initcall(migration_init);
8073 
8074 #else
8075 void __init sched_init_smp(void)
8076 {
8077 	sched_init_granularity();
8078 }
8079 #endif /* CONFIG_SMP */
8080 
8081 int in_sched_functions(unsigned long addr)
8082 {
8083 	return in_lock_functions(addr) ||
8084 		(addr >= (unsigned long)__sched_text_start
8085 		&& addr < (unsigned long)__sched_text_end);
8086 }
8087 
8088 #ifdef CONFIG_CGROUP_SCHED
8089 /*
8090  * Default task group.
8091  * Every task in system belongs to this group at bootup.
8092  */
8093 struct task_group root_task_group;
8094 LIST_HEAD(task_groups);
8095 
8096 /* Cacheline aligned slab cache for task_group */
8097 static struct kmem_cache *task_group_cache __read_mostly;
8098 #endif
8099 
8100 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8101 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8102 
8103 void __init sched_init(void)
8104 {
8105 	unsigned long ptr = 0;
8106 	int i;
8107 
8108 	/* Make sure the linker didn't screw up */
8109 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8110 	       &fair_sched_class + 1 != &rt_sched_class ||
8111 	       &rt_sched_class + 1   != &dl_sched_class);
8112 #ifdef CONFIG_SMP
8113 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8114 #endif
8115 
8116 	wait_bit_init();
8117 
8118 #ifdef CONFIG_FAIR_GROUP_SCHED
8119 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8120 #endif
8121 #ifdef CONFIG_RT_GROUP_SCHED
8122 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8123 #endif
8124 	if (ptr) {
8125 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8126 
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 		root_task_group.se = (struct sched_entity **)ptr;
8129 		ptr += nr_cpu_ids * sizeof(void **);
8130 
8131 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8132 		ptr += nr_cpu_ids * sizeof(void **);
8133 
8134 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8135 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8136 #endif /* CONFIG_FAIR_GROUP_SCHED */
8137 #ifdef CONFIG_RT_GROUP_SCHED
8138 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8139 		ptr += nr_cpu_ids * sizeof(void **);
8140 
8141 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8142 		ptr += nr_cpu_ids * sizeof(void **);
8143 
8144 #endif /* CONFIG_RT_GROUP_SCHED */
8145 	}
8146 #ifdef CONFIG_CPUMASK_OFFSTACK
8147 	for_each_possible_cpu(i) {
8148 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8149 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8150 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8151 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8152 	}
8153 #endif /* CONFIG_CPUMASK_OFFSTACK */
8154 
8155 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8156 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8157 
8158 #ifdef CONFIG_SMP
8159 	init_defrootdomain();
8160 #endif
8161 
8162 #ifdef CONFIG_RT_GROUP_SCHED
8163 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8164 			global_rt_period(), global_rt_runtime());
8165 #endif /* CONFIG_RT_GROUP_SCHED */
8166 
8167 #ifdef CONFIG_CGROUP_SCHED
8168 	task_group_cache = KMEM_CACHE(task_group, 0);
8169 
8170 	list_add(&root_task_group.list, &task_groups);
8171 	INIT_LIST_HEAD(&root_task_group.children);
8172 	INIT_LIST_HEAD(&root_task_group.siblings);
8173 	autogroup_init(&init_task);
8174 #endif /* CONFIG_CGROUP_SCHED */
8175 
8176 	for_each_possible_cpu(i) {
8177 		struct rq *rq;
8178 
8179 		rq = cpu_rq(i);
8180 		raw_spin_lock_init(&rq->lock);
8181 		rq->nr_running = 0;
8182 		rq->calc_load_active = 0;
8183 		rq->calc_load_update = jiffies + LOAD_FREQ;
8184 		init_cfs_rq(&rq->cfs);
8185 		init_rt_rq(&rq->rt);
8186 		init_dl_rq(&rq->dl);
8187 #ifdef CONFIG_FAIR_GROUP_SCHED
8188 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8189 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8190 		/*
8191 		 * How much CPU bandwidth does root_task_group get?
8192 		 *
8193 		 * In case of task-groups formed thr' the cgroup filesystem, it
8194 		 * gets 100% of the CPU resources in the system. This overall
8195 		 * system CPU resource is divided among the tasks of
8196 		 * root_task_group and its child task-groups in a fair manner,
8197 		 * based on each entity's (task or task-group's) weight
8198 		 * (se->load.weight).
8199 		 *
8200 		 * In other words, if root_task_group has 10 tasks of weight
8201 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8202 		 * then A0's share of the CPU resource is:
8203 		 *
8204 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8205 		 *
8206 		 * We achieve this by letting root_task_group's tasks sit
8207 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8208 		 */
8209 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8210 #endif /* CONFIG_FAIR_GROUP_SCHED */
8211 
8212 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8215 #endif
8216 #ifdef CONFIG_SMP
8217 		rq->sd = NULL;
8218 		rq->rd = NULL;
8219 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8220 		rq->balance_callback = NULL;
8221 		rq->active_balance = 0;
8222 		rq->next_balance = jiffies;
8223 		rq->push_cpu = 0;
8224 		rq->cpu = i;
8225 		rq->online = 0;
8226 		rq->idle_stamp = 0;
8227 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8228 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8229 
8230 		INIT_LIST_HEAD(&rq->cfs_tasks);
8231 
8232 		rq_attach_root(rq, &def_root_domain);
8233 #ifdef CONFIG_NO_HZ_COMMON
8234 		rq->last_blocked_load_update_tick = jiffies;
8235 		atomic_set(&rq->nohz_flags, 0);
8236 
8237 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8238 #endif
8239 #ifdef CONFIG_HOTPLUG_CPU
8240 		rcuwait_init(&rq->hotplug_wait);
8241 #endif
8242 #endif /* CONFIG_SMP */
8243 		hrtick_rq_init(rq);
8244 		atomic_set(&rq->nr_iowait, 0);
8245 	}
8246 
8247 	set_load_weight(&init_task, false);
8248 
8249 	/*
8250 	 * The boot idle thread does lazy MMU switching as well:
8251 	 */
8252 	mmgrab(&init_mm);
8253 	enter_lazy_tlb(&init_mm, current);
8254 
8255 	/*
8256 	 * Make us the idle thread. Technically, schedule() should not be
8257 	 * called from this thread, however somewhere below it might be,
8258 	 * but because we are the idle thread, we just pick up running again
8259 	 * when this runqueue becomes "idle".
8260 	 */
8261 	init_idle(current, smp_processor_id());
8262 
8263 	calc_load_update = jiffies + LOAD_FREQ;
8264 
8265 #ifdef CONFIG_SMP
8266 	idle_thread_set_boot_cpu();
8267 #endif
8268 	init_sched_fair_class();
8269 
8270 	init_schedstats();
8271 
8272 	psi_init();
8273 
8274 	init_uclamp();
8275 
8276 	scheduler_running = 1;
8277 }
8278 
8279 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8280 static inline int preempt_count_equals(int preempt_offset)
8281 {
8282 	int nested = preempt_count() + rcu_preempt_depth();
8283 
8284 	return (nested == preempt_offset);
8285 }
8286 
8287 void __might_sleep(const char *file, int line, int preempt_offset)
8288 {
8289 	/*
8290 	 * Blocking primitives will set (and therefore destroy) current->state,
8291 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8292 	 * otherwise we will destroy state.
8293 	 */
8294 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8295 			"do not call blocking ops when !TASK_RUNNING; "
8296 			"state=%lx set at [<%p>] %pS\n",
8297 			current->state,
8298 			(void *)current->task_state_change,
8299 			(void *)current->task_state_change);
8300 
8301 	___might_sleep(file, line, preempt_offset);
8302 }
8303 EXPORT_SYMBOL(__might_sleep);
8304 
8305 void ___might_sleep(const char *file, int line, int preempt_offset)
8306 {
8307 	/* Ratelimiting timestamp: */
8308 	static unsigned long prev_jiffy;
8309 
8310 	unsigned long preempt_disable_ip;
8311 
8312 	/* WARN_ON_ONCE() by default, no rate limit required: */
8313 	rcu_sleep_check();
8314 
8315 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8316 	     !is_idle_task(current) && !current->non_block_count) ||
8317 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8318 	    oops_in_progress)
8319 		return;
8320 
8321 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8322 		return;
8323 	prev_jiffy = jiffies;
8324 
8325 	/* Save this before calling printk(), since that will clobber it: */
8326 	preempt_disable_ip = get_preempt_disable_ip(current);
8327 
8328 	printk(KERN_ERR
8329 		"BUG: sleeping function called from invalid context at %s:%d\n",
8330 			file, line);
8331 	printk(KERN_ERR
8332 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8333 			in_atomic(), irqs_disabled(), current->non_block_count,
8334 			current->pid, current->comm);
8335 
8336 	if (task_stack_end_corrupted(current))
8337 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8338 
8339 	debug_show_held_locks(current);
8340 	if (irqs_disabled())
8341 		print_irqtrace_events(current);
8342 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8343 	    && !preempt_count_equals(preempt_offset)) {
8344 		pr_err("Preemption disabled at:");
8345 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8346 	}
8347 	dump_stack();
8348 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8349 }
8350 EXPORT_SYMBOL(___might_sleep);
8351 
8352 void __cant_sleep(const char *file, int line, int preempt_offset)
8353 {
8354 	static unsigned long prev_jiffy;
8355 
8356 	if (irqs_disabled())
8357 		return;
8358 
8359 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8360 		return;
8361 
8362 	if (preempt_count() > preempt_offset)
8363 		return;
8364 
8365 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8366 		return;
8367 	prev_jiffy = jiffies;
8368 
8369 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8370 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8371 			in_atomic(), irqs_disabled(),
8372 			current->pid, current->comm);
8373 
8374 	debug_show_held_locks(current);
8375 	dump_stack();
8376 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8377 }
8378 EXPORT_SYMBOL_GPL(__cant_sleep);
8379 
8380 #ifdef CONFIG_SMP
8381 void __cant_migrate(const char *file, int line)
8382 {
8383 	static unsigned long prev_jiffy;
8384 
8385 	if (irqs_disabled())
8386 		return;
8387 
8388 	if (is_migration_disabled(current))
8389 		return;
8390 
8391 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8392 		return;
8393 
8394 	if (preempt_count() > 0)
8395 		return;
8396 
8397 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8398 		return;
8399 	prev_jiffy = jiffies;
8400 
8401 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8402 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8403 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8404 	       current->pid, current->comm);
8405 
8406 	debug_show_held_locks(current);
8407 	dump_stack();
8408 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8409 }
8410 EXPORT_SYMBOL_GPL(__cant_migrate);
8411 #endif
8412 #endif
8413 
8414 #ifdef CONFIG_MAGIC_SYSRQ
8415 void normalize_rt_tasks(void)
8416 {
8417 	struct task_struct *g, *p;
8418 	struct sched_attr attr = {
8419 		.sched_policy = SCHED_NORMAL,
8420 	};
8421 
8422 	read_lock(&tasklist_lock);
8423 	for_each_process_thread(g, p) {
8424 		/*
8425 		 * Only normalize user tasks:
8426 		 */
8427 		if (p->flags & PF_KTHREAD)
8428 			continue;
8429 
8430 		p->se.exec_start = 0;
8431 		schedstat_set(p->se.statistics.wait_start,  0);
8432 		schedstat_set(p->se.statistics.sleep_start, 0);
8433 		schedstat_set(p->se.statistics.block_start, 0);
8434 
8435 		if (!dl_task(p) && !rt_task(p)) {
8436 			/*
8437 			 * Renice negative nice level userspace
8438 			 * tasks back to 0:
8439 			 */
8440 			if (task_nice(p) < 0)
8441 				set_user_nice(p, 0);
8442 			continue;
8443 		}
8444 
8445 		__sched_setscheduler(p, &attr, false, false);
8446 	}
8447 	read_unlock(&tasklist_lock);
8448 }
8449 
8450 #endif /* CONFIG_MAGIC_SYSRQ */
8451 
8452 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8453 /*
8454  * These functions are only useful for the IA64 MCA handling, or kdb.
8455  *
8456  * They can only be called when the whole system has been
8457  * stopped - every CPU needs to be quiescent, and no scheduling
8458  * activity can take place. Using them for anything else would
8459  * be a serious bug, and as a result, they aren't even visible
8460  * under any other configuration.
8461  */
8462 
8463 /**
8464  * curr_task - return the current task for a given CPU.
8465  * @cpu: the processor in question.
8466  *
8467  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8468  *
8469  * Return: The current task for @cpu.
8470  */
8471 struct task_struct *curr_task(int cpu)
8472 {
8473 	return cpu_curr(cpu);
8474 }
8475 
8476 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8477 
8478 #ifdef CONFIG_IA64
8479 /**
8480  * ia64_set_curr_task - set the current task for a given CPU.
8481  * @cpu: the processor in question.
8482  * @p: the task pointer to set.
8483  *
8484  * Description: This function must only be used when non-maskable interrupts
8485  * are serviced on a separate stack. It allows the architecture to switch the
8486  * notion of the current task on a CPU in a non-blocking manner. This function
8487  * must be called with all CPU's synchronized, and interrupts disabled, the
8488  * and caller must save the original value of the current task (see
8489  * curr_task() above) and restore that value before reenabling interrupts and
8490  * re-starting the system.
8491  *
8492  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8493  */
8494 void ia64_set_curr_task(int cpu, struct task_struct *p)
8495 {
8496 	cpu_curr(cpu) = p;
8497 }
8498 
8499 #endif
8500 
8501 #ifdef CONFIG_CGROUP_SCHED
8502 /* task_group_lock serializes the addition/removal of task groups */
8503 static DEFINE_SPINLOCK(task_group_lock);
8504 
8505 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8506 					    struct task_group *parent)
8507 {
8508 #ifdef CONFIG_UCLAMP_TASK_GROUP
8509 	enum uclamp_id clamp_id;
8510 
8511 	for_each_clamp_id(clamp_id) {
8512 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8513 			      uclamp_none(clamp_id), false);
8514 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8515 	}
8516 #endif
8517 }
8518 
8519 static void sched_free_group(struct task_group *tg)
8520 {
8521 	free_fair_sched_group(tg);
8522 	free_rt_sched_group(tg);
8523 	autogroup_free(tg);
8524 	kmem_cache_free(task_group_cache, tg);
8525 }
8526 
8527 /* allocate runqueue etc for a new task group */
8528 struct task_group *sched_create_group(struct task_group *parent)
8529 {
8530 	struct task_group *tg;
8531 
8532 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8533 	if (!tg)
8534 		return ERR_PTR(-ENOMEM);
8535 
8536 	if (!alloc_fair_sched_group(tg, parent))
8537 		goto err;
8538 
8539 	if (!alloc_rt_sched_group(tg, parent))
8540 		goto err;
8541 
8542 	alloc_uclamp_sched_group(tg, parent);
8543 
8544 	return tg;
8545 
8546 err:
8547 	sched_free_group(tg);
8548 	return ERR_PTR(-ENOMEM);
8549 }
8550 
8551 void sched_online_group(struct task_group *tg, struct task_group *parent)
8552 {
8553 	unsigned long flags;
8554 
8555 	spin_lock_irqsave(&task_group_lock, flags);
8556 	list_add_rcu(&tg->list, &task_groups);
8557 
8558 	/* Root should already exist: */
8559 	WARN_ON(!parent);
8560 
8561 	tg->parent = parent;
8562 	INIT_LIST_HEAD(&tg->children);
8563 	list_add_rcu(&tg->siblings, &parent->children);
8564 	spin_unlock_irqrestore(&task_group_lock, flags);
8565 
8566 	online_fair_sched_group(tg);
8567 }
8568 
8569 /* rcu callback to free various structures associated with a task group */
8570 static void sched_free_group_rcu(struct rcu_head *rhp)
8571 {
8572 	/* Now it should be safe to free those cfs_rqs: */
8573 	sched_free_group(container_of(rhp, struct task_group, rcu));
8574 }
8575 
8576 void sched_destroy_group(struct task_group *tg)
8577 {
8578 	/* Wait for possible concurrent references to cfs_rqs complete: */
8579 	call_rcu(&tg->rcu, sched_free_group_rcu);
8580 }
8581 
8582 void sched_offline_group(struct task_group *tg)
8583 {
8584 	unsigned long flags;
8585 
8586 	/* End participation in shares distribution: */
8587 	unregister_fair_sched_group(tg);
8588 
8589 	spin_lock_irqsave(&task_group_lock, flags);
8590 	list_del_rcu(&tg->list);
8591 	list_del_rcu(&tg->siblings);
8592 	spin_unlock_irqrestore(&task_group_lock, flags);
8593 }
8594 
8595 static void sched_change_group(struct task_struct *tsk, int type)
8596 {
8597 	struct task_group *tg;
8598 
8599 	/*
8600 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8601 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8602 	 * to prevent lockdep warnings.
8603 	 */
8604 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8605 			  struct task_group, css);
8606 	tg = autogroup_task_group(tsk, tg);
8607 	tsk->sched_task_group = tg;
8608 
8609 #ifdef CONFIG_FAIR_GROUP_SCHED
8610 	if (tsk->sched_class->task_change_group)
8611 		tsk->sched_class->task_change_group(tsk, type);
8612 	else
8613 #endif
8614 		set_task_rq(tsk, task_cpu(tsk));
8615 }
8616 
8617 /*
8618  * Change task's runqueue when it moves between groups.
8619  *
8620  * The caller of this function should have put the task in its new group by
8621  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8622  * its new group.
8623  */
8624 void sched_move_task(struct task_struct *tsk)
8625 {
8626 	int queued, running, queue_flags =
8627 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8628 	struct rq_flags rf;
8629 	struct rq *rq;
8630 
8631 	rq = task_rq_lock(tsk, &rf);
8632 	update_rq_clock(rq);
8633 
8634 	running = task_current(rq, tsk);
8635 	queued = task_on_rq_queued(tsk);
8636 
8637 	if (queued)
8638 		dequeue_task(rq, tsk, queue_flags);
8639 	if (running)
8640 		put_prev_task(rq, tsk);
8641 
8642 	sched_change_group(tsk, TASK_MOVE_GROUP);
8643 
8644 	if (queued)
8645 		enqueue_task(rq, tsk, queue_flags);
8646 	if (running) {
8647 		set_next_task(rq, tsk);
8648 		/*
8649 		 * After changing group, the running task may have joined a
8650 		 * throttled one but it's still the running task. Trigger a
8651 		 * resched to make sure that task can still run.
8652 		 */
8653 		resched_curr(rq);
8654 	}
8655 
8656 	task_rq_unlock(rq, tsk, &rf);
8657 }
8658 
8659 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8660 {
8661 	return css ? container_of(css, struct task_group, css) : NULL;
8662 }
8663 
8664 static struct cgroup_subsys_state *
8665 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8666 {
8667 	struct task_group *parent = css_tg(parent_css);
8668 	struct task_group *tg;
8669 
8670 	if (!parent) {
8671 		/* This is early initialization for the top cgroup */
8672 		return &root_task_group.css;
8673 	}
8674 
8675 	tg = sched_create_group(parent);
8676 	if (IS_ERR(tg))
8677 		return ERR_PTR(-ENOMEM);
8678 
8679 	return &tg->css;
8680 }
8681 
8682 /* Expose task group only after completing cgroup initialization */
8683 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8684 {
8685 	struct task_group *tg = css_tg(css);
8686 	struct task_group *parent = css_tg(css->parent);
8687 
8688 	if (parent)
8689 		sched_online_group(tg, parent);
8690 
8691 #ifdef CONFIG_UCLAMP_TASK_GROUP
8692 	/* Propagate the effective uclamp value for the new group */
8693 	cpu_util_update_eff(css);
8694 #endif
8695 
8696 	return 0;
8697 }
8698 
8699 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8700 {
8701 	struct task_group *tg = css_tg(css);
8702 
8703 	sched_offline_group(tg);
8704 }
8705 
8706 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8707 {
8708 	struct task_group *tg = css_tg(css);
8709 
8710 	/*
8711 	 * Relies on the RCU grace period between css_released() and this.
8712 	 */
8713 	sched_free_group(tg);
8714 }
8715 
8716 /*
8717  * This is called before wake_up_new_task(), therefore we really only
8718  * have to set its group bits, all the other stuff does not apply.
8719  */
8720 static void cpu_cgroup_fork(struct task_struct *task)
8721 {
8722 	struct rq_flags rf;
8723 	struct rq *rq;
8724 
8725 	rq = task_rq_lock(task, &rf);
8726 
8727 	update_rq_clock(rq);
8728 	sched_change_group(task, TASK_SET_GROUP);
8729 
8730 	task_rq_unlock(rq, task, &rf);
8731 }
8732 
8733 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8734 {
8735 	struct task_struct *task;
8736 	struct cgroup_subsys_state *css;
8737 	int ret = 0;
8738 
8739 	cgroup_taskset_for_each(task, css, tset) {
8740 #ifdef CONFIG_RT_GROUP_SCHED
8741 		if (!sched_rt_can_attach(css_tg(css), task))
8742 			return -EINVAL;
8743 #endif
8744 		/*
8745 		 * Serialize against wake_up_new_task() such that if it's
8746 		 * running, we're sure to observe its full state.
8747 		 */
8748 		raw_spin_lock_irq(&task->pi_lock);
8749 		/*
8750 		 * Avoid calling sched_move_task() before wake_up_new_task()
8751 		 * has happened. This would lead to problems with PELT, due to
8752 		 * move wanting to detach+attach while we're not attached yet.
8753 		 */
8754 		if (task->state == TASK_NEW)
8755 			ret = -EINVAL;
8756 		raw_spin_unlock_irq(&task->pi_lock);
8757 
8758 		if (ret)
8759 			break;
8760 	}
8761 	return ret;
8762 }
8763 
8764 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8765 {
8766 	struct task_struct *task;
8767 	struct cgroup_subsys_state *css;
8768 
8769 	cgroup_taskset_for_each(task, css, tset)
8770 		sched_move_task(task);
8771 }
8772 
8773 #ifdef CONFIG_UCLAMP_TASK_GROUP
8774 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8775 {
8776 	struct cgroup_subsys_state *top_css = css;
8777 	struct uclamp_se *uc_parent = NULL;
8778 	struct uclamp_se *uc_se = NULL;
8779 	unsigned int eff[UCLAMP_CNT];
8780 	enum uclamp_id clamp_id;
8781 	unsigned int clamps;
8782 
8783 	css_for_each_descendant_pre(css, top_css) {
8784 		uc_parent = css_tg(css)->parent
8785 			? css_tg(css)->parent->uclamp : NULL;
8786 
8787 		for_each_clamp_id(clamp_id) {
8788 			/* Assume effective clamps matches requested clamps */
8789 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8790 			/* Cap effective clamps with parent's effective clamps */
8791 			if (uc_parent &&
8792 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8793 				eff[clamp_id] = uc_parent[clamp_id].value;
8794 			}
8795 		}
8796 		/* Ensure protection is always capped by limit */
8797 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8798 
8799 		/* Propagate most restrictive effective clamps */
8800 		clamps = 0x0;
8801 		uc_se = css_tg(css)->uclamp;
8802 		for_each_clamp_id(clamp_id) {
8803 			if (eff[clamp_id] == uc_se[clamp_id].value)
8804 				continue;
8805 			uc_se[clamp_id].value = eff[clamp_id];
8806 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8807 			clamps |= (0x1 << clamp_id);
8808 		}
8809 		if (!clamps) {
8810 			css = css_rightmost_descendant(css);
8811 			continue;
8812 		}
8813 
8814 		/* Immediately update descendants RUNNABLE tasks */
8815 		uclamp_update_active_tasks(css, clamps);
8816 	}
8817 }
8818 
8819 /*
8820  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8821  * C expression. Since there is no way to convert a macro argument (N) into a
8822  * character constant, use two levels of macros.
8823  */
8824 #define _POW10(exp) ((unsigned int)1e##exp)
8825 #define POW10(exp) _POW10(exp)
8826 
8827 struct uclamp_request {
8828 #define UCLAMP_PERCENT_SHIFT	2
8829 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8830 	s64 percent;
8831 	u64 util;
8832 	int ret;
8833 };
8834 
8835 static inline struct uclamp_request
8836 capacity_from_percent(char *buf)
8837 {
8838 	struct uclamp_request req = {
8839 		.percent = UCLAMP_PERCENT_SCALE,
8840 		.util = SCHED_CAPACITY_SCALE,
8841 		.ret = 0,
8842 	};
8843 
8844 	buf = strim(buf);
8845 	if (strcmp(buf, "max")) {
8846 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8847 					     &req.percent);
8848 		if (req.ret)
8849 			return req;
8850 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8851 			req.ret = -ERANGE;
8852 			return req;
8853 		}
8854 
8855 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8856 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8857 	}
8858 
8859 	return req;
8860 }
8861 
8862 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8863 				size_t nbytes, loff_t off,
8864 				enum uclamp_id clamp_id)
8865 {
8866 	struct uclamp_request req;
8867 	struct task_group *tg;
8868 
8869 	req = capacity_from_percent(buf);
8870 	if (req.ret)
8871 		return req.ret;
8872 
8873 	static_branch_enable(&sched_uclamp_used);
8874 
8875 	mutex_lock(&uclamp_mutex);
8876 	rcu_read_lock();
8877 
8878 	tg = css_tg(of_css(of));
8879 	if (tg->uclamp_req[clamp_id].value != req.util)
8880 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8881 
8882 	/*
8883 	 * Because of not recoverable conversion rounding we keep track of the
8884 	 * exact requested value
8885 	 */
8886 	tg->uclamp_pct[clamp_id] = req.percent;
8887 
8888 	/* Update effective clamps to track the most restrictive value */
8889 	cpu_util_update_eff(of_css(of));
8890 
8891 	rcu_read_unlock();
8892 	mutex_unlock(&uclamp_mutex);
8893 
8894 	return nbytes;
8895 }
8896 
8897 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8898 				    char *buf, size_t nbytes,
8899 				    loff_t off)
8900 {
8901 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8902 }
8903 
8904 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8905 				    char *buf, size_t nbytes,
8906 				    loff_t off)
8907 {
8908 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8909 }
8910 
8911 static inline void cpu_uclamp_print(struct seq_file *sf,
8912 				    enum uclamp_id clamp_id)
8913 {
8914 	struct task_group *tg;
8915 	u64 util_clamp;
8916 	u64 percent;
8917 	u32 rem;
8918 
8919 	rcu_read_lock();
8920 	tg = css_tg(seq_css(sf));
8921 	util_clamp = tg->uclamp_req[clamp_id].value;
8922 	rcu_read_unlock();
8923 
8924 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8925 		seq_puts(sf, "max\n");
8926 		return;
8927 	}
8928 
8929 	percent = tg->uclamp_pct[clamp_id];
8930 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8931 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8932 }
8933 
8934 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8935 {
8936 	cpu_uclamp_print(sf, UCLAMP_MIN);
8937 	return 0;
8938 }
8939 
8940 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8941 {
8942 	cpu_uclamp_print(sf, UCLAMP_MAX);
8943 	return 0;
8944 }
8945 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8946 
8947 #ifdef CONFIG_FAIR_GROUP_SCHED
8948 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8949 				struct cftype *cftype, u64 shareval)
8950 {
8951 	if (shareval > scale_load_down(ULONG_MAX))
8952 		shareval = MAX_SHARES;
8953 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8954 }
8955 
8956 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8957 			       struct cftype *cft)
8958 {
8959 	struct task_group *tg = css_tg(css);
8960 
8961 	return (u64) scale_load_down(tg->shares);
8962 }
8963 
8964 #ifdef CONFIG_CFS_BANDWIDTH
8965 static DEFINE_MUTEX(cfs_constraints_mutex);
8966 
8967 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8968 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8969 /* More than 203 days if BW_SHIFT equals 20. */
8970 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8971 
8972 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8973 
8974 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8975 {
8976 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8977 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8978 
8979 	if (tg == &root_task_group)
8980 		return -EINVAL;
8981 
8982 	/*
8983 	 * Ensure we have at some amount of bandwidth every period.  This is
8984 	 * to prevent reaching a state of large arrears when throttled via
8985 	 * entity_tick() resulting in prolonged exit starvation.
8986 	 */
8987 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8988 		return -EINVAL;
8989 
8990 	/*
8991 	 * Likewise, bound things on the otherside by preventing insane quota
8992 	 * periods.  This also allows us to normalize in computing quota
8993 	 * feasibility.
8994 	 */
8995 	if (period > max_cfs_quota_period)
8996 		return -EINVAL;
8997 
8998 	/*
8999 	 * Bound quota to defend quota against overflow during bandwidth shift.
9000 	 */
9001 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9002 		return -EINVAL;
9003 
9004 	/*
9005 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9006 	 * unthrottle_offline_cfs_rqs().
9007 	 */
9008 	get_online_cpus();
9009 	mutex_lock(&cfs_constraints_mutex);
9010 	ret = __cfs_schedulable(tg, period, quota);
9011 	if (ret)
9012 		goto out_unlock;
9013 
9014 	runtime_enabled = quota != RUNTIME_INF;
9015 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9016 	/*
9017 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9018 	 * before making related changes, and on->off must occur afterwards
9019 	 */
9020 	if (runtime_enabled && !runtime_was_enabled)
9021 		cfs_bandwidth_usage_inc();
9022 	raw_spin_lock_irq(&cfs_b->lock);
9023 	cfs_b->period = ns_to_ktime(period);
9024 	cfs_b->quota = quota;
9025 
9026 	__refill_cfs_bandwidth_runtime(cfs_b);
9027 
9028 	/* Restart the period timer (if active) to handle new period expiry: */
9029 	if (runtime_enabled)
9030 		start_cfs_bandwidth(cfs_b);
9031 
9032 	raw_spin_unlock_irq(&cfs_b->lock);
9033 
9034 	for_each_online_cpu(i) {
9035 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9036 		struct rq *rq = cfs_rq->rq;
9037 		struct rq_flags rf;
9038 
9039 		rq_lock_irq(rq, &rf);
9040 		cfs_rq->runtime_enabled = runtime_enabled;
9041 		cfs_rq->runtime_remaining = 0;
9042 
9043 		if (cfs_rq->throttled)
9044 			unthrottle_cfs_rq(cfs_rq);
9045 		rq_unlock_irq(rq, &rf);
9046 	}
9047 	if (runtime_was_enabled && !runtime_enabled)
9048 		cfs_bandwidth_usage_dec();
9049 out_unlock:
9050 	mutex_unlock(&cfs_constraints_mutex);
9051 	put_online_cpus();
9052 
9053 	return ret;
9054 }
9055 
9056 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9057 {
9058 	u64 quota, period;
9059 
9060 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9061 	if (cfs_quota_us < 0)
9062 		quota = RUNTIME_INF;
9063 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9064 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9065 	else
9066 		return -EINVAL;
9067 
9068 	return tg_set_cfs_bandwidth(tg, period, quota);
9069 }
9070 
9071 static long tg_get_cfs_quota(struct task_group *tg)
9072 {
9073 	u64 quota_us;
9074 
9075 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9076 		return -1;
9077 
9078 	quota_us = tg->cfs_bandwidth.quota;
9079 	do_div(quota_us, NSEC_PER_USEC);
9080 
9081 	return quota_us;
9082 }
9083 
9084 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9085 {
9086 	u64 quota, period;
9087 
9088 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9089 		return -EINVAL;
9090 
9091 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9092 	quota = tg->cfs_bandwidth.quota;
9093 
9094 	return tg_set_cfs_bandwidth(tg, period, quota);
9095 }
9096 
9097 static long tg_get_cfs_period(struct task_group *tg)
9098 {
9099 	u64 cfs_period_us;
9100 
9101 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9102 	do_div(cfs_period_us, NSEC_PER_USEC);
9103 
9104 	return cfs_period_us;
9105 }
9106 
9107 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9108 				  struct cftype *cft)
9109 {
9110 	return tg_get_cfs_quota(css_tg(css));
9111 }
9112 
9113 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9114 				   struct cftype *cftype, s64 cfs_quota_us)
9115 {
9116 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9117 }
9118 
9119 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9120 				   struct cftype *cft)
9121 {
9122 	return tg_get_cfs_period(css_tg(css));
9123 }
9124 
9125 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9126 				    struct cftype *cftype, u64 cfs_period_us)
9127 {
9128 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9129 }
9130 
9131 struct cfs_schedulable_data {
9132 	struct task_group *tg;
9133 	u64 period, quota;
9134 };
9135 
9136 /*
9137  * normalize group quota/period to be quota/max_period
9138  * note: units are usecs
9139  */
9140 static u64 normalize_cfs_quota(struct task_group *tg,
9141 			       struct cfs_schedulable_data *d)
9142 {
9143 	u64 quota, period;
9144 
9145 	if (tg == d->tg) {
9146 		period = d->period;
9147 		quota = d->quota;
9148 	} else {
9149 		period = tg_get_cfs_period(tg);
9150 		quota = tg_get_cfs_quota(tg);
9151 	}
9152 
9153 	/* note: these should typically be equivalent */
9154 	if (quota == RUNTIME_INF || quota == -1)
9155 		return RUNTIME_INF;
9156 
9157 	return to_ratio(period, quota);
9158 }
9159 
9160 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9161 {
9162 	struct cfs_schedulable_data *d = data;
9163 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9164 	s64 quota = 0, parent_quota = -1;
9165 
9166 	if (!tg->parent) {
9167 		quota = RUNTIME_INF;
9168 	} else {
9169 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9170 
9171 		quota = normalize_cfs_quota(tg, d);
9172 		parent_quota = parent_b->hierarchical_quota;
9173 
9174 		/*
9175 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9176 		 * always take the min.  On cgroup1, only inherit when no
9177 		 * limit is set:
9178 		 */
9179 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9180 			quota = min(quota, parent_quota);
9181 		} else {
9182 			if (quota == RUNTIME_INF)
9183 				quota = parent_quota;
9184 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9185 				return -EINVAL;
9186 		}
9187 	}
9188 	cfs_b->hierarchical_quota = quota;
9189 
9190 	return 0;
9191 }
9192 
9193 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9194 {
9195 	int ret;
9196 	struct cfs_schedulable_data data = {
9197 		.tg = tg,
9198 		.period = period,
9199 		.quota = quota,
9200 	};
9201 
9202 	if (quota != RUNTIME_INF) {
9203 		do_div(data.period, NSEC_PER_USEC);
9204 		do_div(data.quota, NSEC_PER_USEC);
9205 	}
9206 
9207 	rcu_read_lock();
9208 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9209 	rcu_read_unlock();
9210 
9211 	return ret;
9212 }
9213 
9214 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9215 {
9216 	struct task_group *tg = css_tg(seq_css(sf));
9217 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9218 
9219 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9220 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9221 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9222 
9223 	if (schedstat_enabled() && tg != &root_task_group) {
9224 		u64 ws = 0;
9225 		int i;
9226 
9227 		for_each_possible_cpu(i)
9228 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9229 
9230 		seq_printf(sf, "wait_sum %llu\n", ws);
9231 	}
9232 
9233 	return 0;
9234 }
9235 #endif /* CONFIG_CFS_BANDWIDTH */
9236 #endif /* CONFIG_FAIR_GROUP_SCHED */
9237 
9238 #ifdef CONFIG_RT_GROUP_SCHED
9239 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9240 				struct cftype *cft, s64 val)
9241 {
9242 	return sched_group_set_rt_runtime(css_tg(css), val);
9243 }
9244 
9245 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9246 			       struct cftype *cft)
9247 {
9248 	return sched_group_rt_runtime(css_tg(css));
9249 }
9250 
9251 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9252 				    struct cftype *cftype, u64 rt_period_us)
9253 {
9254 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9255 }
9256 
9257 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9258 				   struct cftype *cft)
9259 {
9260 	return sched_group_rt_period(css_tg(css));
9261 }
9262 #endif /* CONFIG_RT_GROUP_SCHED */
9263 
9264 static struct cftype cpu_legacy_files[] = {
9265 #ifdef CONFIG_FAIR_GROUP_SCHED
9266 	{
9267 		.name = "shares",
9268 		.read_u64 = cpu_shares_read_u64,
9269 		.write_u64 = cpu_shares_write_u64,
9270 	},
9271 #endif
9272 #ifdef CONFIG_CFS_BANDWIDTH
9273 	{
9274 		.name = "cfs_quota_us",
9275 		.read_s64 = cpu_cfs_quota_read_s64,
9276 		.write_s64 = cpu_cfs_quota_write_s64,
9277 	},
9278 	{
9279 		.name = "cfs_period_us",
9280 		.read_u64 = cpu_cfs_period_read_u64,
9281 		.write_u64 = cpu_cfs_period_write_u64,
9282 	},
9283 	{
9284 		.name = "stat",
9285 		.seq_show = cpu_cfs_stat_show,
9286 	},
9287 #endif
9288 #ifdef CONFIG_RT_GROUP_SCHED
9289 	{
9290 		.name = "rt_runtime_us",
9291 		.read_s64 = cpu_rt_runtime_read,
9292 		.write_s64 = cpu_rt_runtime_write,
9293 	},
9294 	{
9295 		.name = "rt_period_us",
9296 		.read_u64 = cpu_rt_period_read_uint,
9297 		.write_u64 = cpu_rt_period_write_uint,
9298 	},
9299 #endif
9300 #ifdef CONFIG_UCLAMP_TASK_GROUP
9301 	{
9302 		.name = "uclamp.min",
9303 		.flags = CFTYPE_NOT_ON_ROOT,
9304 		.seq_show = cpu_uclamp_min_show,
9305 		.write = cpu_uclamp_min_write,
9306 	},
9307 	{
9308 		.name = "uclamp.max",
9309 		.flags = CFTYPE_NOT_ON_ROOT,
9310 		.seq_show = cpu_uclamp_max_show,
9311 		.write = cpu_uclamp_max_write,
9312 	},
9313 #endif
9314 	{ }	/* Terminate */
9315 };
9316 
9317 static int cpu_extra_stat_show(struct seq_file *sf,
9318 			       struct cgroup_subsys_state *css)
9319 {
9320 #ifdef CONFIG_CFS_BANDWIDTH
9321 	{
9322 		struct task_group *tg = css_tg(css);
9323 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9324 		u64 throttled_usec;
9325 
9326 		throttled_usec = cfs_b->throttled_time;
9327 		do_div(throttled_usec, NSEC_PER_USEC);
9328 
9329 		seq_printf(sf, "nr_periods %d\n"
9330 			   "nr_throttled %d\n"
9331 			   "throttled_usec %llu\n",
9332 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9333 			   throttled_usec);
9334 	}
9335 #endif
9336 	return 0;
9337 }
9338 
9339 #ifdef CONFIG_FAIR_GROUP_SCHED
9340 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9341 			       struct cftype *cft)
9342 {
9343 	struct task_group *tg = css_tg(css);
9344 	u64 weight = scale_load_down(tg->shares);
9345 
9346 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9347 }
9348 
9349 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9350 				struct cftype *cft, u64 weight)
9351 {
9352 	/*
9353 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9354 	 * values which are 1, 100 and 10000 respectively.  While it loses
9355 	 * a bit of range on both ends, it maps pretty well onto the shares
9356 	 * value used by scheduler and the round-trip conversions preserve
9357 	 * the original value over the entire range.
9358 	 */
9359 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9360 		return -ERANGE;
9361 
9362 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9363 
9364 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9365 }
9366 
9367 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9368 				    struct cftype *cft)
9369 {
9370 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9371 	int last_delta = INT_MAX;
9372 	int prio, delta;
9373 
9374 	/* find the closest nice value to the current weight */
9375 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9376 		delta = abs(sched_prio_to_weight[prio] - weight);
9377 		if (delta >= last_delta)
9378 			break;
9379 		last_delta = delta;
9380 	}
9381 
9382 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9383 }
9384 
9385 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9386 				     struct cftype *cft, s64 nice)
9387 {
9388 	unsigned long weight;
9389 	int idx;
9390 
9391 	if (nice < MIN_NICE || nice > MAX_NICE)
9392 		return -ERANGE;
9393 
9394 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9395 	idx = array_index_nospec(idx, 40);
9396 	weight = sched_prio_to_weight[idx];
9397 
9398 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9399 }
9400 #endif
9401 
9402 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9403 						  long period, long quota)
9404 {
9405 	if (quota < 0)
9406 		seq_puts(sf, "max");
9407 	else
9408 		seq_printf(sf, "%ld", quota);
9409 
9410 	seq_printf(sf, " %ld\n", period);
9411 }
9412 
9413 /* caller should put the current value in *@periodp before calling */
9414 static int __maybe_unused cpu_period_quota_parse(char *buf,
9415 						 u64 *periodp, u64 *quotap)
9416 {
9417 	char tok[21];	/* U64_MAX */
9418 
9419 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9420 		return -EINVAL;
9421 
9422 	*periodp *= NSEC_PER_USEC;
9423 
9424 	if (sscanf(tok, "%llu", quotap))
9425 		*quotap *= NSEC_PER_USEC;
9426 	else if (!strcmp(tok, "max"))
9427 		*quotap = RUNTIME_INF;
9428 	else
9429 		return -EINVAL;
9430 
9431 	return 0;
9432 }
9433 
9434 #ifdef CONFIG_CFS_BANDWIDTH
9435 static int cpu_max_show(struct seq_file *sf, void *v)
9436 {
9437 	struct task_group *tg = css_tg(seq_css(sf));
9438 
9439 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9440 	return 0;
9441 }
9442 
9443 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9444 			     char *buf, size_t nbytes, loff_t off)
9445 {
9446 	struct task_group *tg = css_tg(of_css(of));
9447 	u64 period = tg_get_cfs_period(tg);
9448 	u64 quota;
9449 	int ret;
9450 
9451 	ret = cpu_period_quota_parse(buf, &period, &quota);
9452 	if (!ret)
9453 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9454 	return ret ?: nbytes;
9455 }
9456 #endif
9457 
9458 static struct cftype cpu_files[] = {
9459 #ifdef CONFIG_FAIR_GROUP_SCHED
9460 	{
9461 		.name = "weight",
9462 		.flags = CFTYPE_NOT_ON_ROOT,
9463 		.read_u64 = cpu_weight_read_u64,
9464 		.write_u64 = cpu_weight_write_u64,
9465 	},
9466 	{
9467 		.name = "weight.nice",
9468 		.flags = CFTYPE_NOT_ON_ROOT,
9469 		.read_s64 = cpu_weight_nice_read_s64,
9470 		.write_s64 = cpu_weight_nice_write_s64,
9471 	},
9472 #endif
9473 #ifdef CONFIG_CFS_BANDWIDTH
9474 	{
9475 		.name = "max",
9476 		.flags = CFTYPE_NOT_ON_ROOT,
9477 		.seq_show = cpu_max_show,
9478 		.write = cpu_max_write,
9479 	},
9480 #endif
9481 #ifdef CONFIG_UCLAMP_TASK_GROUP
9482 	{
9483 		.name = "uclamp.min",
9484 		.flags = CFTYPE_NOT_ON_ROOT,
9485 		.seq_show = cpu_uclamp_min_show,
9486 		.write = cpu_uclamp_min_write,
9487 	},
9488 	{
9489 		.name = "uclamp.max",
9490 		.flags = CFTYPE_NOT_ON_ROOT,
9491 		.seq_show = cpu_uclamp_max_show,
9492 		.write = cpu_uclamp_max_write,
9493 	},
9494 #endif
9495 	{ }	/* terminate */
9496 };
9497 
9498 struct cgroup_subsys cpu_cgrp_subsys = {
9499 	.css_alloc	= cpu_cgroup_css_alloc,
9500 	.css_online	= cpu_cgroup_css_online,
9501 	.css_released	= cpu_cgroup_css_released,
9502 	.css_free	= cpu_cgroup_css_free,
9503 	.css_extra_stat_show = cpu_extra_stat_show,
9504 	.fork		= cpu_cgroup_fork,
9505 	.can_attach	= cpu_cgroup_can_attach,
9506 	.attach		= cpu_cgroup_attach,
9507 	.legacy_cftypes	= cpu_legacy_files,
9508 	.dfl_cftypes	= cpu_files,
9509 	.early_init	= true,
9510 	.threaded	= true,
9511 };
9512 
9513 #endif	/* CONFIG_CGROUP_SCHED */
9514 
9515 void dump_cpu_task(int cpu)
9516 {
9517 	pr_info("Task dump for CPU %d:\n", cpu);
9518 	sched_show_task(cpu_curr(cpu));
9519 }
9520 
9521 /*
9522  * Nice levels are multiplicative, with a gentle 10% change for every
9523  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9524  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9525  * that remained on nice 0.
9526  *
9527  * The "10% effect" is relative and cumulative: from _any_ nice level,
9528  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9529  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9530  * If a task goes up by ~10% and another task goes down by ~10% then
9531  * the relative distance between them is ~25%.)
9532  */
9533 const int sched_prio_to_weight[40] = {
9534  /* -20 */     88761,     71755,     56483,     46273,     36291,
9535  /* -15 */     29154,     23254,     18705,     14949,     11916,
9536  /* -10 */      9548,      7620,      6100,      4904,      3906,
9537  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9538  /*   0 */      1024,       820,       655,       526,       423,
9539  /*   5 */       335,       272,       215,       172,       137,
9540  /*  10 */       110,        87,        70,        56,        45,
9541  /*  15 */        36,        29,        23,        18,        15,
9542 };
9543 
9544 /*
9545  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9546  *
9547  * In cases where the weight does not change often, we can use the
9548  * precalculated inverse to speed up arithmetics by turning divisions
9549  * into multiplications:
9550  */
9551 const u32 sched_prio_to_wmult[40] = {
9552  /* -20 */     48388,     59856,     76040,     92818,    118348,
9553  /* -15 */    147320,    184698,    229616,    287308,    360437,
9554  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9555  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9556  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9557  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9558  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9559  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9560 };
9561 
9562 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9563 {
9564         trace_sched_update_nr_running_tp(rq, count);
9565 }
9566