1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 #ifdef smp_mb__before_atomic 94 void __smp_mb__before_atomic(void) 95 { 96 smp_mb__before_atomic(); 97 } 98 EXPORT_SYMBOL(__smp_mb__before_atomic); 99 #endif 100 101 #ifdef smp_mb__after_atomic 102 void __smp_mb__after_atomic(void) 103 { 104 smp_mb__after_atomic(); 105 } 106 EXPORT_SYMBOL(__smp_mb__after_atomic); 107 #endif 108 109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 110 { 111 unsigned long delta; 112 ktime_t soft, hard, now; 113 114 for (;;) { 115 if (hrtimer_active(period_timer)) 116 break; 117 118 now = hrtimer_cb_get_time(period_timer); 119 hrtimer_forward(period_timer, now, period); 120 121 soft = hrtimer_get_softexpires(period_timer); 122 hard = hrtimer_get_expires(period_timer); 123 delta = ktime_to_ns(ktime_sub(hard, soft)); 124 __hrtimer_start_range_ns(period_timer, soft, delta, 125 HRTIMER_MODE_ABS_PINNED, 0); 126 } 127 } 128 129 DEFINE_MUTEX(sched_domains_mutex); 130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta); 133 134 void update_rq_clock(struct rq *rq) 135 { 136 s64 delta; 137 138 if (rq->skip_clock_update > 0) 139 return; 140 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 142 rq->clock += delta; 143 update_rq_clock_task(rq, delta); 144 } 145 146 /* 147 * Debugging: various feature bits 148 */ 149 150 #define SCHED_FEAT(name, enabled) \ 151 (1UL << __SCHED_FEAT_##name) * enabled | 152 153 const_debug unsigned int sysctl_sched_features = 154 #include "features.h" 155 0; 156 157 #undef SCHED_FEAT 158 159 #ifdef CONFIG_SCHED_DEBUG 160 #define SCHED_FEAT(name, enabled) \ 161 #name , 162 163 static const char * const sched_feat_names[] = { 164 #include "features.h" 165 }; 166 167 #undef SCHED_FEAT 168 169 static int sched_feat_show(struct seq_file *m, void *v) 170 { 171 int i; 172 173 for (i = 0; i < __SCHED_FEAT_NR; i++) { 174 if (!(sysctl_sched_features & (1UL << i))) 175 seq_puts(m, "NO_"); 176 seq_printf(m, "%s ", sched_feat_names[i]); 177 } 178 seq_puts(m, "\n"); 179 180 return 0; 181 } 182 183 #ifdef HAVE_JUMP_LABEL 184 185 #define jump_label_key__true STATIC_KEY_INIT_TRUE 186 #define jump_label_key__false STATIC_KEY_INIT_FALSE 187 188 #define SCHED_FEAT(name, enabled) \ 189 jump_label_key__##enabled , 190 191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 192 #include "features.h" 193 }; 194 195 #undef SCHED_FEAT 196 197 static void sched_feat_disable(int i) 198 { 199 if (static_key_enabled(&sched_feat_keys[i])) 200 static_key_slow_dec(&sched_feat_keys[i]); 201 } 202 203 static void sched_feat_enable(int i) 204 { 205 if (!static_key_enabled(&sched_feat_keys[i])) 206 static_key_slow_inc(&sched_feat_keys[i]); 207 } 208 #else 209 static void sched_feat_disable(int i) { }; 210 static void sched_feat_enable(int i) { }; 211 #endif /* HAVE_JUMP_LABEL */ 212 213 static int sched_feat_set(char *cmp) 214 { 215 int i; 216 int neg = 0; 217 218 if (strncmp(cmp, "NO_", 3) == 0) { 219 neg = 1; 220 cmp += 3; 221 } 222 223 for (i = 0; i < __SCHED_FEAT_NR; i++) { 224 if (strcmp(cmp, sched_feat_names[i]) == 0) { 225 if (neg) { 226 sysctl_sched_features &= ~(1UL << i); 227 sched_feat_disable(i); 228 } else { 229 sysctl_sched_features |= (1UL << i); 230 sched_feat_enable(i); 231 } 232 break; 233 } 234 } 235 236 return i; 237 } 238 239 static ssize_t 240 sched_feat_write(struct file *filp, const char __user *ubuf, 241 size_t cnt, loff_t *ppos) 242 { 243 char buf[64]; 244 char *cmp; 245 int i; 246 247 if (cnt > 63) 248 cnt = 63; 249 250 if (copy_from_user(&buf, ubuf, cnt)) 251 return -EFAULT; 252 253 buf[cnt] = 0; 254 cmp = strstrip(buf); 255 256 i = sched_feat_set(cmp); 257 if (i == __SCHED_FEAT_NR) 258 return -EINVAL; 259 260 *ppos += cnt; 261 262 return cnt; 263 } 264 265 static int sched_feat_open(struct inode *inode, struct file *filp) 266 { 267 return single_open(filp, sched_feat_show, NULL); 268 } 269 270 static const struct file_operations sched_feat_fops = { 271 .open = sched_feat_open, 272 .write = sched_feat_write, 273 .read = seq_read, 274 .llseek = seq_lseek, 275 .release = single_release, 276 }; 277 278 static __init int sched_init_debug(void) 279 { 280 debugfs_create_file("sched_features", 0644, NULL, NULL, 281 &sched_feat_fops); 282 283 return 0; 284 } 285 late_initcall(sched_init_debug); 286 #endif /* CONFIG_SCHED_DEBUG */ 287 288 /* 289 * Number of tasks to iterate in a single balance run. 290 * Limited because this is done with IRQs disabled. 291 */ 292 const_debug unsigned int sysctl_sched_nr_migrate = 32; 293 294 /* 295 * period over which we average the RT time consumption, measured 296 * in ms. 297 * 298 * default: 1s 299 */ 300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 301 302 /* 303 * period over which we measure -rt task cpu usage in us. 304 * default: 1s 305 */ 306 unsigned int sysctl_sched_rt_period = 1000000; 307 308 __read_mostly int scheduler_running; 309 310 /* 311 * part of the period that we allow rt tasks to run in us. 312 * default: 0.95s 313 */ 314 int sysctl_sched_rt_runtime = 950000; 315 316 /* 317 * __task_rq_lock - lock the rq @p resides on. 318 */ 319 static inline struct rq *__task_rq_lock(struct task_struct *p) 320 __acquires(rq->lock) 321 { 322 struct rq *rq; 323 324 lockdep_assert_held(&p->pi_lock); 325 326 for (;;) { 327 rq = task_rq(p); 328 raw_spin_lock(&rq->lock); 329 if (likely(rq == task_rq(p))) 330 return rq; 331 raw_spin_unlock(&rq->lock); 332 } 333 } 334 335 /* 336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 337 */ 338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 339 __acquires(p->pi_lock) 340 __acquires(rq->lock) 341 { 342 struct rq *rq; 343 344 for (;;) { 345 raw_spin_lock_irqsave(&p->pi_lock, *flags); 346 rq = task_rq(p); 347 raw_spin_lock(&rq->lock); 348 if (likely(rq == task_rq(p))) 349 return rq; 350 raw_spin_unlock(&rq->lock); 351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 352 } 353 } 354 355 static void __task_rq_unlock(struct rq *rq) 356 __releases(rq->lock) 357 { 358 raw_spin_unlock(&rq->lock); 359 } 360 361 static inline void 362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 363 __releases(rq->lock) 364 __releases(p->pi_lock) 365 { 366 raw_spin_unlock(&rq->lock); 367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 368 } 369 370 /* 371 * this_rq_lock - lock this runqueue and disable interrupts. 372 */ 373 static struct rq *this_rq_lock(void) 374 __acquires(rq->lock) 375 { 376 struct rq *rq; 377 378 local_irq_disable(); 379 rq = this_rq(); 380 raw_spin_lock(&rq->lock); 381 382 return rq; 383 } 384 385 #ifdef CONFIG_SCHED_HRTICK 386 /* 387 * Use HR-timers to deliver accurate preemption points. 388 */ 389 390 static void hrtick_clear(struct rq *rq) 391 { 392 if (hrtimer_active(&rq->hrtick_timer)) 393 hrtimer_cancel(&rq->hrtick_timer); 394 } 395 396 /* 397 * High-resolution timer tick. 398 * Runs from hardirq context with interrupts disabled. 399 */ 400 static enum hrtimer_restart hrtick(struct hrtimer *timer) 401 { 402 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 403 404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 405 406 raw_spin_lock(&rq->lock); 407 update_rq_clock(rq); 408 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 409 raw_spin_unlock(&rq->lock); 410 411 return HRTIMER_NORESTART; 412 } 413 414 #ifdef CONFIG_SMP 415 416 static int __hrtick_restart(struct rq *rq) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = hrtimer_get_softexpires(timer); 420 421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 422 } 423 424 /* 425 * called from hardirq (IPI) context 426 */ 427 static void __hrtick_start(void *arg) 428 { 429 struct rq *rq = arg; 430 431 raw_spin_lock(&rq->lock); 432 __hrtick_restart(rq); 433 rq->hrtick_csd_pending = 0; 434 raw_spin_unlock(&rq->lock); 435 } 436 437 /* 438 * Called to set the hrtick timer state. 439 * 440 * called with rq->lock held and irqs disabled 441 */ 442 void hrtick_start(struct rq *rq, u64 delay) 443 { 444 struct hrtimer *timer = &rq->hrtick_timer; 445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 446 447 hrtimer_set_expires(timer, time); 448 449 if (rq == this_rq()) { 450 __hrtick_restart(rq); 451 } else if (!rq->hrtick_csd_pending) { 452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 453 rq->hrtick_csd_pending = 1; 454 } 455 } 456 457 static int 458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 459 { 460 int cpu = (int)(long)hcpu; 461 462 switch (action) { 463 case CPU_UP_CANCELED: 464 case CPU_UP_CANCELED_FROZEN: 465 case CPU_DOWN_PREPARE: 466 case CPU_DOWN_PREPARE_FROZEN: 467 case CPU_DEAD: 468 case CPU_DEAD_FROZEN: 469 hrtick_clear(cpu_rq(cpu)); 470 return NOTIFY_OK; 471 } 472 473 return NOTIFY_DONE; 474 } 475 476 static __init void init_hrtick(void) 477 { 478 hotcpu_notifier(hotplug_hrtick, 0); 479 } 480 #else 481 /* 482 * Called to set the hrtick timer state. 483 * 484 * called with rq->lock held and irqs disabled 485 */ 486 void hrtick_start(struct rq *rq, u64 delay) 487 { 488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 489 HRTIMER_MODE_REL_PINNED, 0); 490 } 491 492 static inline void init_hrtick(void) 493 { 494 } 495 #endif /* CONFIG_SMP */ 496 497 static void init_rq_hrtick(struct rq *rq) 498 { 499 #ifdef CONFIG_SMP 500 rq->hrtick_csd_pending = 0; 501 502 rq->hrtick_csd.flags = 0; 503 rq->hrtick_csd.func = __hrtick_start; 504 rq->hrtick_csd.info = rq; 505 #endif 506 507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 508 rq->hrtick_timer.function = hrtick; 509 } 510 #else /* CONFIG_SCHED_HRTICK */ 511 static inline void hrtick_clear(struct rq *rq) 512 { 513 } 514 515 static inline void init_rq_hrtick(struct rq *rq) 516 { 517 } 518 519 static inline void init_hrtick(void) 520 { 521 } 522 #endif /* CONFIG_SCHED_HRTICK */ 523 524 /* 525 * cmpxchg based fetch_or, macro so it works for different integer types 526 */ 527 #define fetch_or(ptr, val) \ 528 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 529 for (;;) { \ 530 __old = cmpxchg((ptr), __val, __val | (val)); \ 531 if (__old == __val) \ 532 break; \ 533 __val = __old; \ 534 } \ 535 __old; \ 536 }) 537 538 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 539 /* 540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 541 * this avoids any races wrt polling state changes and thereby avoids 542 * spurious IPIs. 543 */ 544 static bool set_nr_and_not_polling(struct task_struct *p) 545 { 546 struct thread_info *ti = task_thread_info(p); 547 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 548 } 549 550 /* 551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 552 * 553 * If this returns true, then the idle task promises to call 554 * sched_ttwu_pending() and reschedule soon. 555 */ 556 static bool set_nr_if_polling(struct task_struct *p) 557 { 558 struct thread_info *ti = task_thread_info(p); 559 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 560 561 for (;;) { 562 if (!(val & _TIF_POLLING_NRFLAG)) 563 return false; 564 if (val & _TIF_NEED_RESCHED) 565 return true; 566 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 567 if (old == val) 568 break; 569 val = old; 570 } 571 return true; 572 } 573 574 #else 575 static bool set_nr_and_not_polling(struct task_struct *p) 576 { 577 set_tsk_need_resched(p); 578 return true; 579 } 580 581 #ifdef CONFIG_SMP 582 static bool set_nr_if_polling(struct task_struct *p) 583 { 584 return false; 585 } 586 #endif 587 #endif 588 589 /* 590 * resched_task - mark a task 'to be rescheduled now'. 591 * 592 * On UP this means the setting of the need_resched flag, on SMP it 593 * might also involve a cross-CPU call to trigger the scheduler on 594 * the target CPU. 595 */ 596 void resched_task(struct task_struct *p) 597 { 598 int cpu; 599 600 lockdep_assert_held(&task_rq(p)->lock); 601 602 if (test_tsk_need_resched(p)) 603 return; 604 605 cpu = task_cpu(p); 606 607 if (cpu == smp_processor_id()) { 608 set_tsk_need_resched(p); 609 set_preempt_need_resched(); 610 return; 611 } 612 613 if (set_nr_and_not_polling(p)) 614 smp_send_reschedule(cpu); 615 else 616 trace_sched_wake_idle_without_ipi(cpu); 617 } 618 619 void resched_cpu(int cpu) 620 { 621 struct rq *rq = cpu_rq(cpu); 622 unsigned long flags; 623 624 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 625 return; 626 resched_task(cpu_curr(cpu)); 627 raw_spin_unlock_irqrestore(&rq->lock, flags); 628 } 629 630 #ifdef CONFIG_SMP 631 #ifdef CONFIG_NO_HZ_COMMON 632 /* 633 * In the semi idle case, use the nearest busy cpu for migrating timers 634 * from an idle cpu. This is good for power-savings. 635 * 636 * We don't do similar optimization for completely idle system, as 637 * selecting an idle cpu will add more delays to the timers than intended 638 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 639 */ 640 int get_nohz_timer_target(int pinned) 641 { 642 int cpu = smp_processor_id(); 643 int i; 644 struct sched_domain *sd; 645 646 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 647 return cpu; 648 649 rcu_read_lock(); 650 for_each_domain(cpu, sd) { 651 for_each_cpu(i, sched_domain_span(sd)) { 652 if (!idle_cpu(i)) { 653 cpu = i; 654 goto unlock; 655 } 656 } 657 } 658 unlock: 659 rcu_read_unlock(); 660 return cpu; 661 } 662 /* 663 * When add_timer_on() enqueues a timer into the timer wheel of an 664 * idle CPU then this timer might expire before the next timer event 665 * which is scheduled to wake up that CPU. In case of a completely 666 * idle system the next event might even be infinite time into the 667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 668 * leaves the inner idle loop so the newly added timer is taken into 669 * account when the CPU goes back to idle and evaluates the timer 670 * wheel for the next timer event. 671 */ 672 static void wake_up_idle_cpu(int cpu) 673 { 674 struct rq *rq = cpu_rq(cpu); 675 676 if (cpu == smp_processor_id()) 677 return; 678 679 if (set_nr_and_not_polling(rq->idle)) 680 smp_send_reschedule(cpu); 681 else 682 trace_sched_wake_idle_without_ipi(cpu); 683 } 684 685 static bool wake_up_full_nohz_cpu(int cpu) 686 { 687 if (tick_nohz_full_cpu(cpu)) { 688 if (cpu != smp_processor_id() || 689 tick_nohz_tick_stopped()) 690 smp_send_reschedule(cpu); 691 return true; 692 } 693 694 return false; 695 } 696 697 void wake_up_nohz_cpu(int cpu) 698 { 699 if (!wake_up_full_nohz_cpu(cpu)) 700 wake_up_idle_cpu(cpu); 701 } 702 703 static inline bool got_nohz_idle_kick(void) 704 { 705 int cpu = smp_processor_id(); 706 707 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 708 return false; 709 710 if (idle_cpu(cpu) && !need_resched()) 711 return true; 712 713 /* 714 * We can't run Idle Load Balance on this CPU for this time so we 715 * cancel it and clear NOHZ_BALANCE_KICK 716 */ 717 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 718 return false; 719 } 720 721 #else /* CONFIG_NO_HZ_COMMON */ 722 723 static inline bool got_nohz_idle_kick(void) 724 { 725 return false; 726 } 727 728 #endif /* CONFIG_NO_HZ_COMMON */ 729 730 #ifdef CONFIG_NO_HZ_FULL 731 bool sched_can_stop_tick(void) 732 { 733 struct rq *rq; 734 735 rq = this_rq(); 736 737 /* Make sure rq->nr_running update is visible after the IPI */ 738 smp_rmb(); 739 740 /* More than one running task need preemption */ 741 if (rq->nr_running > 1) 742 return false; 743 744 return true; 745 } 746 #endif /* CONFIG_NO_HZ_FULL */ 747 748 void sched_avg_update(struct rq *rq) 749 { 750 s64 period = sched_avg_period(); 751 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 753 /* 754 * Inline assembly required to prevent the compiler 755 * optimising this loop into a divmod call. 756 * See __iter_div_u64_rem() for another example of this. 757 */ 758 asm("" : "+rm" (rq->age_stamp)); 759 rq->age_stamp += period; 760 rq->rt_avg /= 2; 761 } 762 } 763 764 #endif /* CONFIG_SMP */ 765 766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 768 /* 769 * Iterate task_group tree rooted at *from, calling @down when first entering a 770 * node and @up when leaving it for the final time. 771 * 772 * Caller must hold rcu_lock or sufficient equivalent. 773 */ 774 int walk_tg_tree_from(struct task_group *from, 775 tg_visitor down, tg_visitor up, void *data) 776 { 777 struct task_group *parent, *child; 778 int ret; 779 780 parent = from; 781 782 down: 783 ret = (*down)(parent, data); 784 if (ret) 785 goto out; 786 list_for_each_entry_rcu(child, &parent->children, siblings) { 787 parent = child; 788 goto down; 789 790 up: 791 continue; 792 } 793 ret = (*up)(parent, data); 794 if (ret || parent == from) 795 goto out; 796 797 child = parent; 798 parent = parent->parent; 799 if (parent) 800 goto up; 801 out: 802 return ret; 803 } 804 805 int tg_nop(struct task_group *tg, void *data) 806 { 807 return 0; 808 } 809 #endif 810 811 static void set_load_weight(struct task_struct *p) 812 { 813 int prio = p->static_prio - MAX_RT_PRIO; 814 struct load_weight *load = &p->se.load; 815 816 /* 817 * SCHED_IDLE tasks get minimal weight: 818 */ 819 if (p->policy == SCHED_IDLE) { 820 load->weight = scale_load(WEIGHT_IDLEPRIO); 821 load->inv_weight = WMULT_IDLEPRIO; 822 return; 823 } 824 825 load->weight = scale_load(prio_to_weight[prio]); 826 load->inv_weight = prio_to_wmult[prio]; 827 } 828 829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 830 { 831 update_rq_clock(rq); 832 sched_info_queued(rq, p); 833 p->sched_class->enqueue_task(rq, p, flags); 834 } 835 836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 837 { 838 update_rq_clock(rq); 839 sched_info_dequeued(rq, p); 840 p->sched_class->dequeue_task(rq, p, flags); 841 } 842 843 void activate_task(struct rq *rq, struct task_struct *p, int flags) 844 { 845 if (task_contributes_to_load(p)) 846 rq->nr_uninterruptible--; 847 848 enqueue_task(rq, p, flags); 849 } 850 851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 852 { 853 if (task_contributes_to_load(p)) 854 rq->nr_uninterruptible++; 855 856 dequeue_task(rq, p, flags); 857 } 858 859 static void update_rq_clock_task(struct rq *rq, s64 delta) 860 { 861 /* 862 * In theory, the compile should just see 0 here, and optimize out the call 863 * to sched_rt_avg_update. But I don't trust it... 864 */ 865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 866 s64 steal = 0, irq_delta = 0; 867 #endif 868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 870 871 /* 872 * Since irq_time is only updated on {soft,}irq_exit, we might run into 873 * this case when a previous update_rq_clock() happened inside a 874 * {soft,}irq region. 875 * 876 * When this happens, we stop ->clock_task and only update the 877 * prev_irq_time stamp to account for the part that fit, so that a next 878 * update will consume the rest. This ensures ->clock_task is 879 * monotonic. 880 * 881 * It does however cause some slight miss-attribution of {soft,}irq 882 * time, a more accurate solution would be to update the irq_time using 883 * the current rq->clock timestamp, except that would require using 884 * atomic ops. 885 */ 886 if (irq_delta > delta) 887 irq_delta = delta; 888 889 rq->prev_irq_time += irq_delta; 890 delta -= irq_delta; 891 #endif 892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 893 if (static_key_false((¶virt_steal_rq_enabled))) { 894 steal = paravirt_steal_clock(cpu_of(rq)); 895 steal -= rq->prev_steal_time_rq; 896 897 if (unlikely(steal > delta)) 898 steal = delta; 899 900 rq->prev_steal_time_rq += steal; 901 delta -= steal; 902 } 903 #endif 904 905 rq->clock_task += delta; 906 907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 909 sched_rt_avg_update(rq, irq_delta + steal); 910 #endif 911 } 912 913 void sched_set_stop_task(int cpu, struct task_struct *stop) 914 { 915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 916 struct task_struct *old_stop = cpu_rq(cpu)->stop; 917 918 if (stop) { 919 /* 920 * Make it appear like a SCHED_FIFO task, its something 921 * userspace knows about and won't get confused about. 922 * 923 * Also, it will make PI more or less work without too 924 * much confusion -- but then, stop work should not 925 * rely on PI working anyway. 926 */ 927 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 928 929 stop->sched_class = &stop_sched_class; 930 } 931 932 cpu_rq(cpu)->stop = stop; 933 934 if (old_stop) { 935 /* 936 * Reset it back to a normal scheduling class so that 937 * it can die in pieces. 938 */ 939 old_stop->sched_class = &rt_sched_class; 940 } 941 } 942 943 /* 944 * __normal_prio - return the priority that is based on the static prio 945 */ 946 static inline int __normal_prio(struct task_struct *p) 947 { 948 return p->static_prio; 949 } 950 951 /* 952 * Calculate the expected normal priority: i.e. priority 953 * without taking RT-inheritance into account. Might be 954 * boosted by interactivity modifiers. Changes upon fork, 955 * setprio syscalls, and whenever the interactivity 956 * estimator recalculates. 957 */ 958 static inline int normal_prio(struct task_struct *p) 959 { 960 int prio; 961 962 if (task_has_dl_policy(p)) 963 prio = MAX_DL_PRIO-1; 964 else if (task_has_rt_policy(p)) 965 prio = MAX_RT_PRIO-1 - p->rt_priority; 966 else 967 prio = __normal_prio(p); 968 return prio; 969 } 970 971 /* 972 * Calculate the current priority, i.e. the priority 973 * taken into account by the scheduler. This value might 974 * be boosted by RT tasks, or might be boosted by 975 * interactivity modifiers. Will be RT if the task got 976 * RT-boosted. If not then it returns p->normal_prio. 977 */ 978 static int effective_prio(struct task_struct *p) 979 { 980 p->normal_prio = normal_prio(p); 981 /* 982 * If we are RT tasks or we were boosted to RT priority, 983 * keep the priority unchanged. Otherwise, update priority 984 * to the normal priority: 985 */ 986 if (!rt_prio(p->prio)) 987 return p->normal_prio; 988 return p->prio; 989 } 990 991 /** 992 * task_curr - is this task currently executing on a CPU? 993 * @p: the task in question. 994 * 995 * Return: 1 if the task is currently executing. 0 otherwise. 996 */ 997 inline int task_curr(const struct task_struct *p) 998 { 999 return cpu_curr(task_cpu(p)) == p; 1000 } 1001 1002 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1003 const struct sched_class *prev_class, 1004 int oldprio) 1005 { 1006 if (prev_class != p->sched_class) { 1007 if (prev_class->switched_from) 1008 prev_class->switched_from(rq, p); 1009 p->sched_class->switched_to(rq, p); 1010 } else if (oldprio != p->prio || dl_task(p)) 1011 p->sched_class->prio_changed(rq, p, oldprio); 1012 } 1013 1014 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1015 { 1016 const struct sched_class *class; 1017 1018 if (p->sched_class == rq->curr->sched_class) { 1019 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1020 } else { 1021 for_each_class(class) { 1022 if (class == rq->curr->sched_class) 1023 break; 1024 if (class == p->sched_class) { 1025 resched_task(rq->curr); 1026 break; 1027 } 1028 } 1029 } 1030 1031 /* 1032 * A queue event has occurred, and we're going to schedule. In 1033 * this case, we can save a useless back to back clock update. 1034 */ 1035 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1036 rq->skip_clock_update = 1; 1037 } 1038 1039 #ifdef CONFIG_SMP 1040 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1041 { 1042 #ifdef CONFIG_SCHED_DEBUG 1043 /* 1044 * We should never call set_task_cpu() on a blocked task, 1045 * ttwu() will sort out the placement. 1046 */ 1047 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1048 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1049 1050 #ifdef CONFIG_LOCKDEP 1051 /* 1052 * The caller should hold either p->pi_lock or rq->lock, when changing 1053 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1054 * 1055 * sched_move_task() holds both and thus holding either pins the cgroup, 1056 * see task_group(). 1057 * 1058 * Furthermore, all task_rq users should acquire both locks, see 1059 * task_rq_lock(). 1060 */ 1061 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1062 lockdep_is_held(&task_rq(p)->lock))); 1063 #endif 1064 #endif 1065 1066 trace_sched_migrate_task(p, new_cpu); 1067 1068 if (task_cpu(p) != new_cpu) { 1069 if (p->sched_class->migrate_task_rq) 1070 p->sched_class->migrate_task_rq(p, new_cpu); 1071 p->se.nr_migrations++; 1072 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1073 } 1074 1075 __set_task_cpu(p, new_cpu); 1076 } 1077 1078 static void __migrate_swap_task(struct task_struct *p, int cpu) 1079 { 1080 if (p->on_rq) { 1081 struct rq *src_rq, *dst_rq; 1082 1083 src_rq = task_rq(p); 1084 dst_rq = cpu_rq(cpu); 1085 1086 deactivate_task(src_rq, p, 0); 1087 set_task_cpu(p, cpu); 1088 activate_task(dst_rq, p, 0); 1089 check_preempt_curr(dst_rq, p, 0); 1090 } else { 1091 /* 1092 * Task isn't running anymore; make it appear like we migrated 1093 * it before it went to sleep. This means on wakeup we make the 1094 * previous cpu our targer instead of where it really is. 1095 */ 1096 p->wake_cpu = cpu; 1097 } 1098 } 1099 1100 struct migration_swap_arg { 1101 struct task_struct *src_task, *dst_task; 1102 int src_cpu, dst_cpu; 1103 }; 1104 1105 static int migrate_swap_stop(void *data) 1106 { 1107 struct migration_swap_arg *arg = data; 1108 struct rq *src_rq, *dst_rq; 1109 int ret = -EAGAIN; 1110 1111 src_rq = cpu_rq(arg->src_cpu); 1112 dst_rq = cpu_rq(arg->dst_cpu); 1113 1114 double_raw_lock(&arg->src_task->pi_lock, 1115 &arg->dst_task->pi_lock); 1116 double_rq_lock(src_rq, dst_rq); 1117 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1118 goto unlock; 1119 1120 if (task_cpu(arg->src_task) != arg->src_cpu) 1121 goto unlock; 1122 1123 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1124 goto unlock; 1125 1126 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1127 goto unlock; 1128 1129 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1130 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1131 1132 ret = 0; 1133 1134 unlock: 1135 double_rq_unlock(src_rq, dst_rq); 1136 raw_spin_unlock(&arg->dst_task->pi_lock); 1137 raw_spin_unlock(&arg->src_task->pi_lock); 1138 1139 return ret; 1140 } 1141 1142 /* 1143 * Cross migrate two tasks 1144 */ 1145 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1146 { 1147 struct migration_swap_arg arg; 1148 int ret = -EINVAL; 1149 1150 arg = (struct migration_swap_arg){ 1151 .src_task = cur, 1152 .src_cpu = task_cpu(cur), 1153 .dst_task = p, 1154 .dst_cpu = task_cpu(p), 1155 }; 1156 1157 if (arg.src_cpu == arg.dst_cpu) 1158 goto out; 1159 1160 /* 1161 * These three tests are all lockless; this is OK since all of them 1162 * will be re-checked with proper locks held further down the line. 1163 */ 1164 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1165 goto out; 1166 1167 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1168 goto out; 1169 1170 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1171 goto out; 1172 1173 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1174 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1175 1176 out: 1177 return ret; 1178 } 1179 1180 struct migration_arg { 1181 struct task_struct *task; 1182 int dest_cpu; 1183 }; 1184 1185 static int migration_cpu_stop(void *data); 1186 1187 /* 1188 * wait_task_inactive - wait for a thread to unschedule. 1189 * 1190 * If @match_state is nonzero, it's the @p->state value just checked and 1191 * not expected to change. If it changes, i.e. @p might have woken up, 1192 * then return zero. When we succeed in waiting for @p to be off its CPU, 1193 * we return a positive number (its total switch count). If a second call 1194 * a short while later returns the same number, the caller can be sure that 1195 * @p has remained unscheduled the whole time. 1196 * 1197 * The caller must ensure that the task *will* unschedule sometime soon, 1198 * else this function might spin for a *long* time. This function can't 1199 * be called with interrupts off, or it may introduce deadlock with 1200 * smp_call_function() if an IPI is sent by the same process we are 1201 * waiting to become inactive. 1202 */ 1203 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1204 { 1205 unsigned long flags; 1206 int running, on_rq; 1207 unsigned long ncsw; 1208 struct rq *rq; 1209 1210 for (;;) { 1211 /* 1212 * We do the initial early heuristics without holding 1213 * any task-queue locks at all. We'll only try to get 1214 * the runqueue lock when things look like they will 1215 * work out! 1216 */ 1217 rq = task_rq(p); 1218 1219 /* 1220 * If the task is actively running on another CPU 1221 * still, just relax and busy-wait without holding 1222 * any locks. 1223 * 1224 * NOTE! Since we don't hold any locks, it's not 1225 * even sure that "rq" stays as the right runqueue! 1226 * But we don't care, since "task_running()" will 1227 * return false if the runqueue has changed and p 1228 * is actually now running somewhere else! 1229 */ 1230 while (task_running(rq, p)) { 1231 if (match_state && unlikely(p->state != match_state)) 1232 return 0; 1233 cpu_relax(); 1234 } 1235 1236 /* 1237 * Ok, time to look more closely! We need the rq 1238 * lock now, to be *sure*. If we're wrong, we'll 1239 * just go back and repeat. 1240 */ 1241 rq = task_rq_lock(p, &flags); 1242 trace_sched_wait_task(p); 1243 running = task_running(rq, p); 1244 on_rq = p->on_rq; 1245 ncsw = 0; 1246 if (!match_state || p->state == match_state) 1247 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1248 task_rq_unlock(rq, p, &flags); 1249 1250 /* 1251 * If it changed from the expected state, bail out now. 1252 */ 1253 if (unlikely(!ncsw)) 1254 break; 1255 1256 /* 1257 * Was it really running after all now that we 1258 * checked with the proper locks actually held? 1259 * 1260 * Oops. Go back and try again.. 1261 */ 1262 if (unlikely(running)) { 1263 cpu_relax(); 1264 continue; 1265 } 1266 1267 /* 1268 * It's not enough that it's not actively running, 1269 * it must be off the runqueue _entirely_, and not 1270 * preempted! 1271 * 1272 * So if it was still runnable (but just not actively 1273 * running right now), it's preempted, and we should 1274 * yield - it could be a while. 1275 */ 1276 if (unlikely(on_rq)) { 1277 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1278 1279 set_current_state(TASK_UNINTERRUPTIBLE); 1280 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1281 continue; 1282 } 1283 1284 /* 1285 * Ahh, all good. It wasn't running, and it wasn't 1286 * runnable, which means that it will never become 1287 * running in the future either. We're all done! 1288 */ 1289 break; 1290 } 1291 1292 return ncsw; 1293 } 1294 1295 /*** 1296 * kick_process - kick a running thread to enter/exit the kernel 1297 * @p: the to-be-kicked thread 1298 * 1299 * Cause a process which is running on another CPU to enter 1300 * kernel-mode, without any delay. (to get signals handled.) 1301 * 1302 * NOTE: this function doesn't have to take the runqueue lock, 1303 * because all it wants to ensure is that the remote task enters 1304 * the kernel. If the IPI races and the task has been migrated 1305 * to another CPU then no harm is done and the purpose has been 1306 * achieved as well. 1307 */ 1308 void kick_process(struct task_struct *p) 1309 { 1310 int cpu; 1311 1312 preempt_disable(); 1313 cpu = task_cpu(p); 1314 if ((cpu != smp_processor_id()) && task_curr(p)) 1315 smp_send_reschedule(cpu); 1316 preempt_enable(); 1317 } 1318 EXPORT_SYMBOL_GPL(kick_process); 1319 #endif /* CONFIG_SMP */ 1320 1321 #ifdef CONFIG_SMP 1322 /* 1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1324 */ 1325 static int select_fallback_rq(int cpu, struct task_struct *p) 1326 { 1327 int nid = cpu_to_node(cpu); 1328 const struct cpumask *nodemask = NULL; 1329 enum { cpuset, possible, fail } state = cpuset; 1330 int dest_cpu; 1331 1332 /* 1333 * If the node that the cpu is on has been offlined, cpu_to_node() 1334 * will return -1. There is no cpu on the node, and we should 1335 * select the cpu on the other node. 1336 */ 1337 if (nid != -1) { 1338 nodemask = cpumask_of_node(nid); 1339 1340 /* Look for allowed, online CPU in same node. */ 1341 for_each_cpu(dest_cpu, nodemask) { 1342 if (!cpu_online(dest_cpu)) 1343 continue; 1344 if (!cpu_active(dest_cpu)) 1345 continue; 1346 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1347 return dest_cpu; 1348 } 1349 } 1350 1351 for (;;) { 1352 /* Any allowed, online CPU? */ 1353 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1354 if (!cpu_online(dest_cpu)) 1355 continue; 1356 if (!cpu_active(dest_cpu)) 1357 continue; 1358 goto out; 1359 } 1360 1361 switch (state) { 1362 case cpuset: 1363 /* No more Mr. Nice Guy. */ 1364 cpuset_cpus_allowed_fallback(p); 1365 state = possible; 1366 break; 1367 1368 case possible: 1369 do_set_cpus_allowed(p, cpu_possible_mask); 1370 state = fail; 1371 break; 1372 1373 case fail: 1374 BUG(); 1375 break; 1376 } 1377 } 1378 1379 out: 1380 if (state != cpuset) { 1381 /* 1382 * Don't tell them about moving exiting tasks or 1383 * kernel threads (both mm NULL), since they never 1384 * leave kernel. 1385 */ 1386 if (p->mm && printk_ratelimit()) { 1387 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1388 task_pid_nr(p), p->comm, cpu); 1389 } 1390 } 1391 1392 return dest_cpu; 1393 } 1394 1395 /* 1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1397 */ 1398 static inline 1399 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1400 { 1401 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1402 1403 /* 1404 * In order not to call set_task_cpu() on a blocking task we need 1405 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1406 * cpu. 1407 * 1408 * Since this is common to all placement strategies, this lives here. 1409 * 1410 * [ this allows ->select_task() to simply return task_cpu(p) and 1411 * not worry about this generic constraint ] 1412 */ 1413 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1414 !cpu_online(cpu))) 1415 cpu = select_fallback_rq(task_cpu(p), p); 1416 1417 return cpu; 1418 } 1419 1420 static void update_avg(u64 *avg, u64 sample) 1421 { 1422 s64 diff = sample - *avg; 1423 *avg += diff >> 3; 1424 } 1425 #endif 1426 1427 static void 1428 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1429 { 1430 #ifdef CONFIG_SCHEDSTATS 1431 struct rq *rq = this_rq(); 1432 1433 #ifdef CONFIG_SMP 1434 int this_cpu = smp_processor_id(); 1435 1436 if (cpu == this_cpu) { 1437 schedstat_inc(rq, ttwu_local); 1438 schedstat_inc(p, se.statistics.nr_wakeups_local); 1439 } else { 1440 struct sched_domain *sd; 1441 1442 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1443 rcu_read_lock(); 1444 for_each_domain(this_cpu, sd) { 1445 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1446 schedstat_inc(sd, ttwu_wake_remote); 1447 break; 1448 } 1449 } 1450 rcu_read_unlock(); 1451 } 1452 1453 if (wake_flags & WF_MIGRATED) 1454 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1455 1456 #endif /* CONFIG_SMP */ 1457 1458 schedstat_inc(rq, ttwu_count); 1459 schedstat_inc(p, se.statistics.nr_wakeups); 1460 1461 if (wake_flags & WF_SYNC) 1462 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1463 1464 #endif /* CONFIG_SCHEDSTATS */ 1465 } 1466 1467 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1468 { 1469 activate_task(rq, p, en_flags); 1470 p->on_rq = 1; 1471 1472 /* if a worker is waking up, notify workqueue */ 1473 if (p->flags & PF_WQ_WORKER) 1474 wq_worker_waking_up(p, cpu_of(rq)); 1475 } 1476 1477 /* 1478 * Mark the task runnable and perform wakeup-preemption. 1479 */ 1480 static void 1481 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1482 { 1483 check_preempt_curr(rq, p, wake_flags); 1484 trace_sched_wakeup(p, true); 1485 1486 p->state = TASK_RUNNING; 1487 #ifdef CONFIG_SMP 1488 if (p->sched_class->task_woken) 1489 p->sched_class->task_woken(rq, p); 1490 1491 if (rq->idle_stamp) { 1492 u64 delta = rq_clock(rq) - rq->idle_stamp; 1493 u64 max = 2*rq->max_idle_balance_cost; 1494 1495 update_avg(&rq->avg_idle, delta); 1496 1497 if (rq->avg_idle > max) 1498 rq->avg_idle = max; 1499 1500 rq->idle_stamp = 0; 1501 } 1502 #endif 1503 } 1504 1505 static void 1506 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1507 { 1508 #ifdef CONFIG_SMP 1509 if (p->sched_contributes_to_load) 1510 rq->nr_uninterruptible--; 1511 #endif 1512 1513 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1514 ttwu_do_wakeup(rq, p, wake_flags); 1515 } 1516 1517 /* 1518 * Called in case the task @p isn't fully descheduled from its runqueue, 1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1520 * since all we need to do is flip p->state to TASK_RUNNING, since 1521 * the task is still ->on_rq. 1522 */ 1523 static int ttwu_remote(struct task_struct *p, int wake_flags) 1524 { 1525 struct rq *rq; 1526 int ret = 0; 1527 1528 rq = __task_rq_lock(p); 1529 if (p->on_rq) { 1530 /* check_preempt_curr() may use rq clock */ 1531 update_rq_clock(rq); 1532 ttwu_do_wakeup(rq, p, wake_flags); 1533 ret = 1; 1534 } 1535 __task_rq_unlock(rq); 1536 1537 return ret; 1538 } 1539 1540 #ifdef CONFIG_SMP 1541 void sched_ttwu_pending(void) 1542 { 1543 struct rq *rq = this_rq(); 1544 struct llist_node *llist = llist_del_all(&rq->wake_list); 1545 struct task_struct *p; 1546 unsigned long flags; 1547 1548 if (!llist) 1549 return; 1550 1551 raw_spin_lock_irqsave(&rq->lock, flags); 1552 1553 while (llist) { 1554 p = llist_entry(llist, struct task_struct, wake_entry); 1555 llist = llist_next(llist); 1556 ttwu_do_activate(rq, p, 0); 1557 } 1558 1559 raw_spin_unlock_irqrestore(&rq->lock, flags); 1560 } 1561 1562 void scheduler_ipi(void) 1563 { 1564 /* 1565 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1566 * TIF_NEED_RESCHED remotely (for the first time) will also send 1567 * this IPI. 1568 */ 1569 preempt_fold_need_resched(); 1570 1571 if (llist_empty(&this_rq()->wake_list) 1572 && !tick_nohz_full_cpu(smp_processor_id()) 1573 && !got_nohz_idle_kick()) 1574 return; 1575 1576 /* 1577 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1578 * traditionally all their work was done from the interrupt return 1579 * path. Now that we actually do some work, we need to make sure 1580 * we do call them. 1581 * 1582 * Some archs already do call them, luckily irq_enter/exit nest 1583 * properly. 1584 * 1585 * Arguably we should visit all archs and update all handlers, 1586 * however a fair share of IPIs are still resched only so this would 1587 * somewhat pessimize the simple resched case. 1588 */ 1589 irq_enter(); 1590 tick_nohz_full_check(); 1591 sched_ttwu_pending(); 1592 1593 /* 1594 * Check if someone kicked us for doing the nohz idle load balance. 1595 */ 1596 if (unlikely(got_nohz_idle_kick())) { 1597 this_rq()->idle_balance = 1; 1598 raise_softirq_irqoff(SCHED_SOFTIRQ); 1599 } 1600 irq_exit(); 1601 } 1602 1603 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1604 { 1605 struct rq *rq = cpu_rq(cpu); 1606 1607 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1608 if (!set_nr_if_polling(rq->idle)) 1609 smp_send_reschedule(cpu); 1610 else 1611 trace_sched_wake_idle_without_ipi(cpu); 1612 } 1613 } 1614 1615 bool cpus_share_cache(int this_cpu, int that_cpu) 1616 { 1617 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1618 } 1619 #endif /* CONFIG_SMP */ 1620 1621 static void ttwu_queue(struct task_struct *p, int cpu) 1622 { 1623 struct rq *rq = cpu_rq(cpu); 1624 1625 #if defined(CONFIG_SMP) 1626 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1627 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1628 ttwu_queue_remote(p, cpu); 1629 return; 1630 } 1631 #endif 1632 1633 raw_spin_lock(&rq->lock); 1634 ttwu_do_activate(rq, p, 0); 1635 raw_spin_unlock(&rq->lock); 1636 } 1637 1638 /** 1639 * try_to_wake_up - wake up a thread 1640 * @p: the thread to be awakened 1641 * @state: the mask of task states that can be woken 1642 * @wake_flags: wake modifier flags (WF_*) 1643 * 1644 * Put it on the run-queue if it's not already there. The "current" 1645 * thread is always on the run-queue (except when the actual 1646 * re-schedule is in progress), and as such you're allowed to do 1647 * the simpler "current->state = TASK_RUNNING" to mark yourself 1648 * runnable without the overhead of this. 1649 * 1650 * Return: %true if @p was woken up, %false if it was already running. 1651 * or @state didn't match @p's state. 1652 */ 1653 static int 1654 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1655 { 1656 unsigned long flags; 1657 int cpu, success = 0; 1658 1659 /* 1660 * If we are going to wake up a thread waiting for CONDITION we 1661 * need to ensure that CONDITION=1 done by the caller can not be 1662 * reordered with p->state check below. This pairs with mb() in 1663 * set_current_state() the waiting thread does. 1664 */ 1665 smp_mb__before_spinlock(); 1666 raw_spin_lock_irqsave(&p->pi_lock, flags); 1667 if (!(p->state & state)) 1668 goto out; 1669 1670 success = 1; /* we're going to change ->state */ 1671 cpu = task_cpu(p); 1672 1673 if (p->on_rq && ttwu_remote(p, wake_flags)) 1674 goto stat; 1675 1676 #ifdef CONFIG_SMP 1677 /* 1678 * If the owning (remote) cpu is still in the middle of schedule() with 1679 * this task as prev, wait until its done referencing the task. 1680 */ 1681 while (p->on_cpu) 1682 cpu_relax(); 1683 /* 1684 * Pairs with the smp_wmb() in finish_lock_switch(). 1685 */ 1686 smp_rmb(); 1687 1688 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1689 p->state = TASK_WAKING; 1690 1691 if (p->sched_class->task_waking) 1692 p->sched_class->task_waking(p); 1693 1694 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1695 if (task_cpu(p) != cpu) { 1696 wake_flags |= WF_MIGRATED; 1697 set_task_cpu(p, cpu); 1698 } 1699 #endif /* CONFIG_SMP */ 1700 1701 ttwu_queue(p, cpu); 1702 stat: 1703 ttwu_stat(p, cpu, wake_flags); 1704 out: 1705 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1706 1707 return success; 1708 } 1709 1710 /** 1711 * try_to_wake_up_local - try to wake up a local task with rq lock held 1712 * @p: the thread to be awakened 1713 * 1714 * Put @p on the run-queue if it's not already there. The caller must 1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1716 * the current task. 1717 */ 1718 static void try_to_wake_up_local(struct task_struct *p) 1719 { 1720 struct rq *rq = task_rq(p); 1721 1722 if (WARN_ON_ONCE(rq != this_rq()) || 1723 WARN_ON_ONCE(p == current)) 1724 return; 1725 1726 lockdep_assert_held(&rq->lock); 1727 1728 if (!raw_spin_trylock(&p->pi_lock)) { 1729 raw_spin_unlock(&rq->lock); 1730 raw_spin_lock(&p->pi_lock); 1731 raw_spin_lock(&rq->lock); 1732 } 1733 1734 if (!(p->state & TASK_NORMAL)) 1735 goto out; 1736 1737 if (!p->on_rq) 1738 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1739 1740 ttwu_do_wakeup(rq, p, 0); 1741 ttwu_stat(p, smp_processor_id(), 0); 1742 out: 1743 raw_spin_unlock(&p->pi_lock); 1744 } 1745 1746 /** 1747 * wake_up_process - Wake up a specific process 1748 * @p: The process to be woken up. 1749 * 1750 * Attempt to wake up the nominated process and move it to the set of runnable 1751 * processes. 1752 * 1753 * Return: 1 if the process was woken up, 0 if it was already running. 1754 * 1755 * It may be assumed that this function implies a write memory barrier before 1756 * changing the task state if and only if any tasks are woken up. 1757 */ 1758 int wake_up_process(struct task_struct *p) 1759 { 1760 WARN_ON(task_is_stopped_or_traced(p)); 1761 return try_to_wake_up(p, TASK_NORMAL, 0); 1762 } 1763 EXPORT_SYMBOL(wake_up_process); 1764 1765 int wake_up_state(struct task_struct *p, unsigned int state) 1766 { 1767 return try_to_wake_up(p, state, 0); 1768 } 1769 1770 /* 1771 * Perform scheduler related setup for a newly forked process p. 1772 * p is forked by current. 1773 * 1774 * __sched_fork() is basic setup used by init_idle() too: 1775 */ 1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1777 { 1778 p->on_rq = 0; 1779 1780 p->se.on_rq = 0; 1781 p->se.exec_start = 0; 1782 p->se.sum_exec_runtime = 0; 1783 p->se.prev_sum_exec_runtime = 0; 1784 p->se.nr_migrations = 0; 1785 p->se.vruntime = 0; 1786 INIT_LIST_HEAD(&p->se.group_node); 1787 1788 #ifdef CONFIG_SCHEDSTATS 1789 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1790 #endif 1791 1792 RB_CLEAR_NODE(&p->dl.rb_node); 1793 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1794 p->dl.dl_runtime = p->dl.runtime = 0; 1795 p->dl.dl_deadline = p->dl.deadline = 0; 1796 p->dl.dl_period = 0; 1797 p->dl.flags = 0; 1798 1799 INIT_LIST_HEAD(&p->rt.run_list); 1800 1801 #ifdef CONFIG_PREEMPT_NOTIFIERS 1802 INIT_HLIST_HEAD(&p->preempt_notifiers); 1803 #endif 1804 1805 #ifdef CONFIG_NUMA_BALANCING 1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1808 p->mm->numa_scan_seq = 0; 1809 } 1810 1811 if (clone_flags & CLONE_VM) 1812 p->numa_preferred_nid = current->numa_preferred_nid; 1813 else 1814 p->numa_preferred_nid = -1; 1815 1816 p->node_stamp = 0ULL; 1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1819 p->numa_work.next = &p->numa_work; 1820 p->numa_faults_memory = NULL; 1821 p->numa_faults_buffer_memory = NULL; 1822 p->last_task_numa_placement = 0; 1823 p->last_sum_exec_runtime = 0; 1824 1825 INIT_LIST_HEAD(&p->numa_entry); 1826 p->numa_group = NULL; 1827 #endif /* CONFIG_NUMA_BALANCING */ 1828 } 1829 1830 #ifdef CONFIG_NUMA_BALANCING 1831 #ifdef CONFIG_SCHED_DEBUG 1832 void set_numabalancing_state(bool enabled) 1833 { 1834 if (enabled) 1835 sched_feat_set("NUMA"); 1836 else 1837 sched_feat_set("NO_NUMA"); 1838 } 1839 #else 1840 __read_mostly bool numabalancing_enabled; 1841 1842 void set_numabalancing_state(bool enabled) 1843 { 1844 numabalancing_enabled = enabled; 1845 } 1846 #endif /* CONFIG_SCHED_DEBUG */ 1847 1848 #ifdef CONFIG_PROC_SYSCTL 1849 int sysctl_numa_balancing(struct ctl_table *table, int write, 1850 void __user *buffer, size_t *lenp, loff_t *ppos) 1851 { 1852 struct ctl_table t; 1853 int err; 1854 int state = numabalancing_enabled; 1855 1856 if (write && !capable(CAP_SYS_ADMIN)) 1857 return -EPERM; 1858 1859 t = *table; 1860 t.data = &state; 1861 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1862 if (err < 0) 1863 return err; 1864 if (write) 1865 set_numabalancing_state(state); 1866 return err; 1867 } 1868 #endif 1869 #endif 1870 1871 /* 1872 * fork()/clone()-time setup: 1873 */ 1874 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1875 { 1876 unsigned long flags; 1877 int cpu = get_cpu(); 1878 1879 __sched_fork(clone_flags, p); 1880 /* 1881 * We mark the process as running here. This guarantees that 1882 * nobody will actually run it, and a signal or other external 1883 * event cannot wake it up and insert it on the runqueue either. 1884 */ 1885 p->state = TASK_RUNNING; 1886 1887 /* 1888 * Make sure we do not leak PI boosting priority to the child. 1889 */ 1890 p->prio = current->normal_prio; 1891 1892 /* 1893 * Revert to default priority/policy on fork if requested. 1894 */ 1895 if (unlikely(p->sched_reset_on_fork)) { 1896 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1897 p->policy = SCHED_NORMAL; 1898 p->static_prio = NICE_TO_PRIO(0); 1899 p->rt_priority = 0; 1900 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1901 p->static_prio = NICE_TO_PRIO(0); 1902 1903 p->prio = p->normal_prio = __normal_prio(p); 1904 set_load_weight(p); 1905 1906 /* 1907 * We don't need the reset flag anymore after the fork. It has 1908 * fulfilled its duty: 1909 */ 1910 p->sched_reset_on_fork = 0; 1911 } 1912 1913 if (dl_prio(p->prio)) { 1914 put_cpu(); 1915 return -EAGAIN; 1916 } else if (rt_prio(p->prio)) { 1917 p->sched_class = &rt_sched_class; 1918 } else { 1919 p->sched_class = &fair_sched_class; 1920 } 1921 1922 if (p->sched_class->task_fork) 1923 p->sched_class->task_fork(p); 1924 1925 /* 1926 * The child is not yet in the pid-hash so no cgroup attach races, 1927 * and the cgroup is pinned to this child due to cgroup_fork() 1928 * is ran before sched_fork(). 1929 * 1930 * Silence PROVE_RCU. 1931 */ 1932 raw_spin_lock_irqsave(&p->pi_lock, flags); 1933 set_task_cpu(p, cpu); 1934 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1935 1936 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1937 if (likely(sched_info_on())) 1938 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1939 #endif 1940 #if defined(CONFIG_SMP) 1941 p->on_cpu = 0; 1942 #endif 1943 init_task_preempt_count(p); 1944 #ifdef CONFIG_SMP 1945 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1946 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1947 #endif 1948 1949 put_cpu(); 1950 return 0; 1951 } 1952 1953 unsigned long to_ratio(u64 period, u64 runtime) 1954 { 1955 if (runtime == RUNTIME_INF) 1956 return 1ULL << 20; 1957 1958 /* 1959 * Doing this here saves a lot of checks in all 1960 * the calling paths, and returning zero seems 1961 * safe for them anyway. 1962 */ 1963 if (period == 0) 1964 return 0; 1965 1966 return div64_u64(runtime << 20, period); 1967 } 1968 1969 #ifdef CONFIG_SMP 1970 inline struct dl_bw *dl_bw_of(int i) 1971 { 1972 return &cpu_rq(i)->rd->dl_bw; 1973 } 1974 1975 static inline int dl_bw_cpus(int i) 1976 { 1977 struct root_domain *rd = cpu_rq(i)->rd; 1978 int cpus = 0; 1979 1980 for_each_cpu_and(i, rd->span, cpu_active_mask) 1981 cpus++; 1982 1983 return cpus; 1984 } 1985 #else 1986 inline struct dl_bw *dl_bw_of(int i) 1987 { 1988 return &cpu_rq(i)->dl.dl_bw; 1989 } 1990 1991 static inline int dl_bw_cpus(int i) 1992 { 1993 return 1; 1994 } 1995 #endif 1996 1997 static inline 1998 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 1999 { 2000 dl_b->total_bw -= tsk_bw; 2001 } 2002 2003 static inline 2004 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 2005 { 2006 dl_b->total_bw += tsk_bw; 2007 } 2008 2009 static inline 2010 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 2011 { 2012 return dl_b->bw != -1 && 2013 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 2014 } 2015 2016 /* 2017 * We must be sure that accepting a new task (or allowing changing the 2018 * parameters of an existing one) is consistent with the bandwidth 2019 * constraints. If yes, this function also accordingly updates the currently 2020 * allocated bandwidth to reflect the new situation. 2021 * 2022 * This function is called while holding p's rq->lock. 2023 */ 2024 static int dl_overflow(struct task_struct *p, int policy, 2025 const struct sched_attr *attr) 2026 { 2027 2028 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2029 u64 period = attr->sched_period ?: attr->sched_deadline; 2030 u64 runtime = attr->sched_runtime; 2031 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2032 int cpus, err = -1; 2033 2034 if (new_bw == p->dl.dl_bw) 2035 return 0; 2036 2037 /* 2038 * Either if a task, enters, leave, or stays -deadline but changes 2039 * its parameters, we may need to update accordingly the total 2040 * allocated bandwidth of the container. 2041 */ 2042 raw_spin_lock(&dl_b->lock); 2043 cpus = dl_bw_cpus(task_cpu(p)); 2044 if (dl_policy(policy) && !task_has_dl_policy(p) && 2045 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2046 __dl_add(dl_b, new_bw); 2047 err = 0; 2048 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2049 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2050 __dl_clear(dl_b, p->dl.dl_bw); 2051 __dl_add(dl_b, new_bw); 2052 err = 0; 2053 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2054 __dl_clear(dl_b, p->dl.dl_bw); 2055 err = 0; 2056 } 2057 raw_spin_unlock(&dl_b->lock); 2058 2059 return err; 2060 } 2061 2062 extern void init_dl_bw(struct dl_bw *dl_b); 2063 2064 /* 2065 * wake_up_new_task - wake up a newly created task for the first time. 2066 * 2067 * This function will do some initial scheduler statistics housekeeping 2068 * that must be done for every newly created context, then puts the task 2069 * on the runqueue and wakes it. 2070 */ 2071 void wake_up_new_task(struct task_struct *p) 2072 { 2073 unsigned long flags; 2074 struct rq *rq; 2075 2076 raw_spin_lock_irqsave(&p->pi_lock, flags); 2077 #ifdef CONFIG_SMP 2078 /* 2079 * Fork balancing, do it here and not earlier because: 2080 * - cpus_allowed can change in the fork path 2081 * - any previously selected cpu might disappear through hotplug 2082 */ 2083 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2084 #endif 2085 2086 /* Initialize new task's runnable average */ 2087 init_task_runnable_average(p); 2088 rq = __task_rq_lock(p); 2089 activate_task(rq, p, 0); 2090 p->on_rq = 1; 2091 trace_sched_wakeup_new(p, true); 2092 check_preempt_curr(rq, p, WF_FORK); 2093 #ifdef CONFIG_SMP 2094 if (p->sched_class->task_woken) 2095 p->sched_class->task_woken(rq, p); 2096 #endif 2097 task_rq_unlock(rq, p, &flags); 2098 } 2099 2100 #ifdef CONFIG_PREEMPT_NOTIFIERS 2101 2102 /** 2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2104 * @notifier: notifier struct to register 2105 */ 2106 void preempt_notifier_register(struct preempt_notifier *notifier) 2107 { 2108 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2109 } 2110 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2111 2112 /** 2113 * preempt_notifier_unregister - no longer interested in preemption notifications 2114 * @notifier: notifier struct to unregister 2115 * 2116 * This is safe to call from within a preemption notifier. 2117 */ 2118 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2119 { 2120 hlist_del(¬ifier->link); 2121 } 2122 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2123 2124 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2125 { 2126 struct preempt_notifier *notifier; 2127 2128 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2129 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2130 } 2131 2132 static void 2133 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2134 struct task_struct *next) 2135 { 2136 struct preempt_notifier *notifier; 2137 2138 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2139 notifier->ops->sched_out(notifier, next); 2140 } 2141 2142 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2143 2144 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2145 { 2146 } 2147 2148 static void 2149 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2150 struct task_struct *next) 2151 { 2152 } 2153 2154 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2155 2156 /** 2157 * prepare_task_switch - prepare to switch tasks 2158 * @rq: the runqueue preparing to switch 2159 * @prev: the current task that is being switched out 2160 * @next: the task we are going to switch to. 2161 * 2162 * This is called with the rq lock held and interrupts off. It must 2163 * be paired with a subsequent finish_task_switch after the context 2164 * switch. 2165 * 2166 * prepare_task_switch sets up locking and calls architecture specific 2167 * hooks. 2168 */ 2169 static inline void 2170 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2171 struct task_struct *next) 2172 { 2173 trace_sched_switch(prev, next); 2174 sched_info_switch(rq, prev, next); 2175 perf_event_task_sched_out(prev, next); 2176 fire_sched_out_preempt_notifiers(prev, next); 2177 prepare_lock_switch(rq, next); 2178 prepare_arch_switch(next); 2179 } 2180 2181 /** 2182 * finish_task_switch - clean up after a task-switch 2183 * @rq: runqueue associated with task-switch 2184 * @prev: the thread we just switched away from. 2185 * 2186 * finish_task_switch must be called after the context switch, paired 2187 * with a prepare_task_switch call before the context switch. 2188 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2189 * and do any other architecture-specific cleanup actions. 2190 * 2191 * Note that we may have delayed dropping an mm in context_switch(). If 2192 * so, we finish that here outside of the runqueue lock. (Doing it 2193 * with the lock held can cause deadlocks; see schedule() for 2194 * details.) 2195 */ 2196 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2197 __releases(rq->lock) 2198 { 2199 struct mm_struct *mm = rq->prev_mm; 2200 long prev_state; 2201 2202 rq->prev_mm = NULL; 2203 2204 /* 2205 * A task struct has one reference for the use as "current". 2206 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2207 * schedule one last time. The schedule call will never return, and 2208 * the scheduled task must drop that reference. 2209 * The test for TASK_DEAD must occur while the runqueue locks are 2210 * still held, otherwise prev could be scheduled on another cpu, die 2211 * there before we look at prev->state, and then the reference would 2212 * be dropped twice. 2213 * Manfred Spraul <manfred@colorfullife.com> 2214 */ 2215 prev_state = prev->state; 2216 vtime_task_switch(prev); 2217 finish_arch_switch(prev); 2218 perf_event_task_sched_in(prev, current); 2219 finish_lock_switch(rq, prev); 2220 finish_arch_post_lock_switch(); 2221 2222 fire_sched_in_preempt_notifiers(current); 2223 if (mm) 2224 mmdrop(mm); 2225 if (unlikely(prev_state == TASK_DEAD)) { 2226 if (prev->sched_class->task_dead) 2227 prev->sched_class->task_dead(prev); 2228 2229 /* 2230 * Remove function-return probe instances associated with this 2231 * task and put them back on the free list. 2232 */ 2233 kprobe_flush_task(prev); 2234 put_task_struct(prev); 2235 } 2236 2237 tick_nohz_task_switch(current); 2238 } 2239 2240 #ifdef CONFIG_SMP 2241 2242 /* rq->lock is NOT held, but preemption is disabled */ 2243 static inline void post_schedule(struct rq *rq) 2244 { 2245 if (rq->post_schedule) { 2246 unsigned long flags; 2247 2248 raw_spin_lock_irqsave(&rq->lock, flags); 2249 if (rq->curr->sched_class->post_schedule) 2250 rq->curr->sched_class->post_schedule(rq); 2251 raw_spin_unlock_irqrestore(&rq->lock, flags); 2252 2253 rq->post_schedule = 0; 2254 } 2255 } 2256 2257 #else 2258 2259 static inline void post_schedule(struct rq *rq) 2260 { 2261 } 2262 2263 #endif 2264 2265 /** 2266 * schedule_tail - first thing a freshly forked thread must call. 2267 * @prev: the thread we just switched away from. 2268 */ 2269 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2270 __releases(rq->lock) 2271 { 2272 struct rq *rq = this_rq(); 2273 2274 finish_task_switch(rq, prev); 2275 2276 /* 2277 * FIXME: do we need to worry about rq being invalidated by the 2278 * task_switch? 2279 */ 2280 post_schedule(rq); 2281 2282 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2283 /* In this case, finish_task_switch does not reenable preemption */ 2284 preempt_enable(); 2285 #endif 2286 if (current->set_child_tid) 2287 put_user(task_pid_vnr(current), current->set_child_tid); 2288 } 2289 2290 /* 2291 * context_switch - switch to the new MM and the new 2292 * thread's register state. 2293 */ 2294 static inline void 2295 context_switch(struct rq *rq, struct task_struct *prev, 2296 struct task_struct *next) 2297 { 2298 struct mm_struct *mm, *oldmm; 2299 2300 prepare_task_switch(rq, prev, next); 2301 2302 mm = next->mm; 2303 oldmm = prev->active_mm; 2304 /* 2305 * For paravirt, this is coupled with an exit in switch_to to 2306 * combine the page table reload and the switch backend into 2307 * one hypercall. 2308 */ 2309 arch_start_context_switch(prev); 2310 2311 if (!mm) { 2312 next->active_mm = oldmm; 2313 atomic_inc(&oldmm->mm_count); 2314 enter_lazy_tlb(oldmm, next); 2315 } else 2316 switch_mm(oldmm, mm, next); 2317 2318 if (!prev->mm) { 2319 prev->active_mm = NULL; 2320 rq->prev_mm = oldmm; 2321 } 2322 /* 2323 * Since the runqueue lock will be released by the next 2324 * task (which is an invalid locking op but in the case 2325 * of the scheduler it's an obvious special-case), so we 2326 * do an early lockdep release here: 2327 */ 2328 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2329 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2330 #endif 2331 2332 context_tracking_task_switch(prev, next); 2333 /* Here we just switch the register state and the stack. */ 2334 switch_to(prev, next, prev); 2335 2336 barrier(); 2337 /* 2338 * this_rq must be evaluated again because prev may have moved 2339 * CPUs since it called schedule(), thus the 'rq' on its stack 2340 * frame will be invalid. 2341 */ 2342 finish_task_switch(this_rq(), prev); 2343 } 2344 2345 /* 2346 * nr_running and nr_context_switches: 2347 * 2348 * externally visible scheduler statistics: current number of runnable 2349 * threads, total number of context switches performed since bootup. 2350 */ 2351 unsigned long nr_running(void) 2352 { 2353 unsigned long i, sum = 0; 2354 2355 for_each_online_cpu(i) 2356 sum += cpu_rq(i)->nr_running; 2357 2358 return sum; 2359 } 2360 2361 unsigned long long nr_context_switches(void) 2362 { 2363 int i; 2364 unsigned long long sum = 0; 2365 2366 for_each_possible_cpu(i) 2367 sum += cpu_rq(i)->nr_switches; 2368 2369 return sum; 2370 } 2371 2372 unsigned long nr_iowait(void) 2373 { 2374 unsigned long i, sum = 0; 2375 2376 for_each_possible_cpu(i) 2377 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2378 2379 return sum; 2380 } 2381 2382 unsigned long nr_iowait_cpu(int cpu) 2383 { 2384 struct rq *this = cpu_rq(cpu); 2385 return atomic_read(&this->nr_iowait); 2386 } 2387 2388 #ifdef CONFIG_SMP 2389 2390 /* 2391 * sched_exec - execve() is a valuable balancing opportunity, because at 2392 * this point the task has the smallest effective memory and cache footprint. 2393 */ 2394 void sched_exec(void) 2395 { 2396 struct task_struct *p = current; 2397 unsigned long flags; 2398 int dest_cpu; 2399 2400 raw_spin_lock_irqsave(&p->pi_lock, flags); 2401 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2402 if (dest_cpu == smp_processor_id()) 2403 goto unlock; 2404 2405 if (likely(cpu_active(dest_cpu))) { 2406 struct migration_arg arg = { p, dest_cpu }; 2407 2408 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2409 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2410 return; 2411 } 2412 unlock: 2413 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2414 } 2415 2416 #endif 2417 2418 DEFINE_PER_CPU(struct kernel_stat, kstat); 2419 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2420 2421 EXPORT_PER_CPU_SYMBOL(kstat); 2422 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2423 2424 /* 2425 * Return any ns on the sched_clock that have not yet been accounted in 2426 * @p in case that task is currently running. 2427 * 2428 * Called with task_rq_lock() held on @rq. 2429 */ 2430 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2431 { 2432 u64 ns = 0; 2433 2434 if (task_current(rq, p)) { 2435 update_rq_clock(rq); 2436 ns = rq_clock_task(rq) - p->se.exec_start; 2437 if ((s64)ns < 0) 2438 ns = 0; 2439 } 2440 2441 return ns; 2442 } 2443 2444 unsigned long long task_delta_exec(struct task_struct *p) 2445 { 2446 unsigned long flags; 2447 struct rq *rq; 2448 u64 ns = 0; 2449 2450 rq = task_rq_lock(p, &flags); 2451 ns = do_task_delta_exec(p, rq); 2452 task_rq_unlock(rq, p, &flags); 2453 2454 return ns; 2455 } 2456 2457 /* 2458 * Return accounted runtime for the task. 2459 * In case the task is currently running, return the runtime plus current's 2460 * pending runtime that have not been accounted yet. 2461 */ 2462 unsigned long long task_sched_runtime(struct task_struct *p) 2463 { 2464 unsigned long flags; 2465 struct rq *rq; 2466 u64 ns = 0; 2467 2468 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2469 /* 2470 * 64-bit doesn't need locks to atomically read a 64bit value. 2471 * So we have a optimization chance when the task's delta_exec is 0. 2472 * Reading ->on_cpu is racy, but this is ok. 2473 * 2474 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2475 * If we race with it entering cpu, unaccounted time is 0. This is 2476 * indistinguishable from the read occurring a few cycles earlier. 2477 */ 2478 if (!p->on_cpu) 2479 return p->se.sum_exec_runtime; 2480 #endif 2481 2482 rq = task_rq_lock(p, &flags); 2483 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2484 task_rq_unlock(rq, p, &flags); 2485 2486 return ns; 2487 } 2488 2489 /* 2490 * This function gets called by the timer code, with HZ frequency. 2491 * We call it with interrupts disabled. 2492 */ 2493 void scheduler_tick(void) 2494 { 2495 int cpu = smp_processor_id(); 2496 struct rq *rq = cpu_rq(cpu); 2497 struct task_struct *curr = rq->curr; 2498 2499 sched_clock_tick(); 2500 2501 raw_spin_lock(&rq->lock); 2502 update_rq_clock(rq); 2503 curr->sched_class->task_tick(rq, curr, 0); 2504 update_cpu_load_active(rq); 2505 raw_spin_unlock(&rq->lock); 2506 2507 perf_event_task_tick(); 2508 2509 #ifdef CONFIG_SMP 2510 rq->idle_balance = idle_cpu(cpu); 2511 trigger_load_balance(rq); 2512 #endif 2513 rq_last_tick_reset(rq); 2514 } 2515 2516 #ifdef CONFIG_NO_HZ_FULL 2517 /** 2518 * scheduler_tick_max_deferment 2519 * 2520 * Keep at least one tick per second when a single 2521 * active task is running because the scheduler doesn't 2522 * yet completely support full dynticks environment. 2523 * 2524 * This makes sure that uptime, CFS vruntime, load 2525 * balancing, etc... continue to move forward, even 2526 * with a very low granularity. 2527 * 2528 * Return: Maximum deferment in nanoseconds. 2529 */ 2530 u64 scheduler_tick_max_deferment(void) 2531 { 2532 struct rq *rq = this_rq(); 2533 unsigned long next, now = ACCESS_ONCE(jiffies); 2534 2535 next = rq->last_sched_tick + HZ; 2536 2537 if (time_before_eq(next, now)) 2538 return 0; 2539 2540 return jiffies_to_nsecs(next - now); 2541 } 2542 #endif 2543 2544 notrace unsigned long get_parent_ip(unsigned long addr) 2545 { 2546 if (in_lock_functions(addr)) { 2547 addr = CALLER_ADDR2; 2548 if (in_lock_functions(addr)) 2549 addr = CALLER_ADDR3; 2550 } 2551 return addr; 2552 } 2553 2554 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2555 defined(CONFIG_PREEMPT_TRACER)) 2556 2557 void preempt_count_add(int val) 2558 { 2559 #ifdef CONFIG_DEBUG_PREEMPT 2560 /* 2561 * Underflow? 2562 */ 2563 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2564 return; 2565 #endif 2566 __preempt_count_add(val); 2567 #ifdef CONFIG_DEBUG_PREEMPT 2568 /* 2569 * Spinlock count overflowing soon? 2570 */ 2571 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2572 PREEMPT_MASK - 10); 2573 #endif 2574 if (preempt_count() == val) { 2575 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2576 #ifdef CONFIG_DEBUG_PREEMPT 2577 current->preempt_disable_ip = ip; 2578 #endif 2579 trace_preempt_off(CALLER_ADDR0, ip); 2580 } 2581 } 2582 EXPORT_SYMBOL(preempt_count_add); 2583 NOKPROBE_SYMBOL(preempt_count_add); 2584 2585 void preempt_count_sub(int val) 2586 { 2587 #ifdef CONFIG_DEBUG_PREEMPT 2588 /* 2589 * Underflow? 2590 */ 2591 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2592 return; 2593 /* 2594 * Is the spinlock portion underflowing? 2595 */ 2596 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2597 !(preempt_count() & PREEMPT_MASK))) 2598 return; 2599 #endif 2600 2601 if (preempt_count() == val) 2602 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2603 __preempt_count_sub(val); 2604 } 2605 EXPORT_SYMBOL(preempt_count_sub); 2606 NOKPROBE_SYMBOL(preempt_count_sub); 2607 2608 #endif 2609 2610 /* 2611 * Print scheduling while atomic bug: 2612 */ 2613 static noinline void __schedule_bug(struct task_struct *prev) 2614 { 2615 if (oops_in_progress) 2616 return; 2617 2618 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2619 prev->comm, prev->pid, preempt_count()); 2620 2621 debug_show_held_locks(prev); 2622 print_modules(); 2623 if (irqs_disabled()) 2624 print_irqtrace_events(prev); 2625 #ifdef CONFIG_DEBUG_PREEMPT 2626 if (in_atomic_preempt_off()) { 2627 pr_err("Preemption disabled at:"); 2628 print_ip_sym(current->preempt_disable_ip); 2629 pr_cont("\n"); 2630 } 2631 #endif 2632 dump_stack(); 2633 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2634 } 2635 2636 /* 2637 * Various schedule()-time debugging checks and statistics: 2638 */ 2639 static inline void schedule_debug(struct task_struct *prev) 2640 { 2641 /* 2642 * Test if we are atomic. Since do_exit() needs to call into 2643 * schedule() atomically, we ignore that path. Otherwise whine 2644 * if we are scheduling when we should not. 2645 */ 2646 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2647 __schedule_bug(prev); 2648 rcu_sleep_check(); 2649 2650 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2651 2652 schedstat_inc(this_rq(), sched_count); 2653 } 2654 2655 /* 2656 * Pick up the highest-prio task: 2657 */ 2658 static inline struct task_struct * 2659 pick_next_task(struct rq *rq, struct task_struct *prev) 2660 { 2661 const struct sched_class *class = &fair_sched_class; 2662 struct task_struct *p; 2663 2664 /* 2665 * Optimization: we know that if all tasks are in 2666 * the fair class we can call that function directly: 2667 */ 2668 if (likely(prev->sched_class == class && 2669 rq->nr_running == rq->cfs.h_nr_running)) { 2670 p = fair_sched_class.pick_next_task(rq, prev); 2671 if (unlikely(p == RETRY_TASK)) 2672 goto again; 2673 2674 /* assumes fair_sched_class->next == idle_sched_class */ 2675 if (unlikely(!p)) 2676 p = idle_sched_class.pick_next_task(rq, prev); 2677 2678 return p; 2679 } 2680 2681 again: 2682 for_each_class(class) { 2683 p = class->pick_next_task(rq, prev); 2684 if (p) { 2685 if (unlikely(p == RETRY_TASK)) 2686 goto again; 2687 return p; 2688 } 2689 } 2690 2691 BUG(); /* the idle class will always have a runnable task */ 2692 } 2693 2694 /* 2695 * __schedule() is the main scheduler function. 2696 * 2697 * The main means of driving the scheduler and thus entering this function are: 2698 * 2699 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2700 * 2701 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2702 * paths. For example, see arch/x86/entry_64.S. 2703 * 2704 * To drive preemption between tasks, the scheduler sets the flag in timer 2705 * interrupt handler scheduler_tick(). 2706 * 2707 * 3. Wakeups don't really cause entry into schedule(). They add a 2708 * task to the run-queue and that's it. 2709 * 2710 * Now, if the new task added to the run-queue preempts the current 2711 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2712 * called on the nearest possible occasion: 2713 * 2714 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2715 * 2716 * - in syscall or exception context, at the next outmost 2717 * preempt_enable(). (this might be as soon as the wake_up()'s 2718 * spin_unlock()!) 2719 * 2720 * - in IRQ context, return from interrupt-handler to 2721 * preemptible context 2722 * 2723 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2724 * then at the next: 2725 * 2726 * - cond_resched() call 2727 * - explicit schedule() call 2728 * - return from syscall or exception to user-space 2729 * - return from interrupt-handler to user-space 2730 */ 2731 static void __sched __schedule(void) 2732 { 2733 struct task_struct *prev, *next; 2734 unsigned long *switch_count; 2735 struct rq *rq; 2736 int cpu; 2737 2738 need_resched: 2739 preempt_disable(); 2740 cpu = smp_processor_id(); 2741 rq = cpu_rq(cpu); 2742 rcu_note_context_switch(cpu); 2743 prev = rq->curr; 2744 2745 schedule_debug(prev); 2746 2747 if (sched_feat(HRTICK)) 2748 hrtick_clear(rq); 2749 2750 /* 2751 * Make sure that signal_pending_state()->signal_pending() below 2752 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2753 * done by the caller to avoid the race with signal_wake_up(). 2754 */ 2755 smp_mb__before_spinlock(); 2756 raw_spin_lock_irq(&rq->lock); 2757 2758 switch_count = &prev->nivcsw; 2759 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2760 if (unlikely(signal_pending_state(prev->state, prev))) { 2761 prev->state = TASK_RUNNING; 2762 } else { 2763 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2764 prev->on_rq = 0; 2765 2766 /* 2767 * If a worker went to sleep, notify and ask workqueue 2768 * whether it wants to wake up a task to maintain 2769 * concurrency. 2770 */ 2771 if (prev->flags & PF_WQ_WORKER) { 2772 struct task_struct *to_wakeup; 2773 2774 to_wakeup = wq_worker_sleeping(prev, cpu); 2775 if (to_wakeup) 2776 try_to_wake_up_local(to_wakeup); 2777 } 2778 } 2779 switch_count = &prev->nvcsw; 2780 } 2781 2782 if (prev->on_rq || rq->skip_clock_update < 0) 2783 update_rq_clock(rq); 2784 2785 next = pick_next_task(rq, prev); 2786 clear_tsk_need_resched(prev); 2787 clear_preempt_need_resched(); 2788 rq->skip_clock_update = 0; 2789 2790 if (likely(prev != next)) { 2791 rq->nr_switches++; 2792 rq->curr = next; 2793 ++*switch_count; 2794 2795 context_switch(rq, prev, next); /* unlocks the rq */ 2796 /* 2797 * The context switch have flipped the stack from under us 2798 * and restored the local variables which were saved when 2799 * this task called schedule() in the past. prev == current 2800 * is still correct, but it can be moved to another cpu/rq. 2801 */ 2802 cpu = smp_processor_id(); 2803 rq = cpu_rq(cpu); 2804 } else 2805 raw_spin_unlock_irq(&rq->lock); 2806 2807 post_schedule(rq); 2808 2809 sched_preempt_enable_no_resched(); 2810 if (need_resched()) 2811 goto need_resched; 2812 } 2813 2814 static inline void sched_submit_work(struct task_struct *tsk) 2815 { 2816 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2817 return; 2818 /* 2819 * If we are going to sleep and we have plugged IO queued, 2820 * make sure to submit it to avoid deadlocks. 2821 */ 2822 if (blk_needs_flush_plug(tsk)) 2823 blk_schedule_flush_plug(tsk); 2824 } 2825 2826 asmlinkage __visible void __sched schedule(void) 2827 { 2828 struct task_struct *tsk = current; 2829 2830 sched_submit_work(tsk); 2831 __schedule(); 2832 } 2833 EXPORT_SYMBOL(schedule); 2834 2835 #ifdef CONFIG_CONTEXT_TRACKING 2836 asmlinkage __visible void __sched schedule_user(void) 2837 { 2838 /* 2839 * If we come here after a random call to set_need_resched(), 2840 * or we have been woken up remotely but the IPI has not yet arrived, 2841 * we haven't yet exited the RCU idle mode. Do it here manually until 2842 * we find a better solution. 2843 */ 2844 user_exit(); 2845 schedule(); 2846 user_enter(); 2847 } 2848 #endif 2849 2850 /** 2851 * schedule_preempt_disabled - called with preemption disabled 2852 * 2853 * Returns with preemption disabled. Note: preempt_count must be 1 2854 */ 2855 void __sched schedule_preempt_disabled(void) 2856 { 2857 sched_preempt_enable_no_resched(); 2858 schedule(); 2859 preempt_disable(); 2860 } 2861 2862 #ifdef CONFIG_PREEMPT 2863 /* 2864 * this is the entry point to schedule() from in-kernel preemption 2865 * off of preempt_enable. Kernel preemptions off return from interrupt 2866 * occur there and call schedule directly. 2867 */ 2868 asmlinkage __visible void __sched notrace preempt_schedule(void) 2869 { 2870 /* 2871 * If there is a non-zero preempt_count or interrupts are disabled, 2872 * we do not want to preempt the current task. Just return.. 2873 */ 2874 if (likely(!preemptible())) 2875 return; 2876 2877 do { 2878 __preempt_count_add(PREEMPT_ACTIVE); 2879 __schedule(); 2880 __preempt_count_sub(PREEMPT_ACTIVE); 2881 2882 /* 2883 * Check again in case we missed a preemption opportunity 2884 * between schedule and now. 2885 */ 2886 barrier(); 2887 } while (need_resched()); 2888 } 2889 NOKPROBE_SYMBOL(preempt_schedule); 2890 EXPORT_SYMBOL(preempt_schedule); 2891 #endif /* CONFIG_PREEMPT */ 2892 2893 /* 2894 * this is the entry point to schedule() from kernel preemption 2895 * off of irq context. 2896 * Note, that this is called and return with irqs disabled. This will 2897 * protect us against recursive calling from irq. 2898 */ 2899 asmlinkage __visible void __sched preempt_schedule_irq(void) 2900 { 2901 enum ctx_state prev_state; 2902 2903 /* Catch callers which need to be fixed */ 2904 BUG_ON(preempt_count() || !irqs_disabled()); 2905 2906 prev_state = exception_enter(); 2907 2908 do { 2909 __preempt_count_add(PREEMPT_ACTIVE); 2910 local_irq_enable(); 2911 __schedule(); 2912 local_irq_disable(); 2913 __preempt_count_sub(PREEMPT_ACTIVE); 2914 2915 /* 2916 * Check again in case we missed a preemption opportunity 2917 * between schedule and now. 2918 */ 2919 barrier(); 2920 } while (need_resched()); 2921 2922 exception_exit(prev_state); 2923 } 2924 2925 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2926 void *key) 2927 { 2928 return try_to_wake_up(curr->private, mode, wake_flags); 2929 } 2930 EXPORT_SYMBOL(default_wake_function); 2931 2932 #ifdef CONFIG_RT_MUTEXES 2933 2934 /* 2935 * rt_mutex_setprio - set the current priority of a task 2936 * @p: task 2937 * @prio: prio value (kernel-internal form) 2938 * 2939 * This function changes the 'effective' priority of a task. It does 2940 * not touch ->normal_prio like __setscheduler(). 2941 * 2942 * Used by the rt_mutex code to implement priority inheritance 2943 * logic. Call site only calls if the priority of the task changed. 2944 */ 2945 void rt_mutex_setprio(struct task_struct *p, int prio) 2946 { 2947 int oldprio, on_rq, running, enqueue_flag = 0; 2948 struct rq *rq; 2949 const struct sched_class *prev_class; 2950 2951 BUG_ON(prio > MAX_PRIO); 2952 2953 rq = __task_rq_lock(p); 2954 2955 /* 2956 * Idle task boosting is a nono in general. There is one 2957 * exception, when PREEMPT_RT and NOHZ is active: 2958 * 2959 * The idle task calls get_next_timer_interrupt() and holds 2960 * the timer wheel base->lock on the CPU and another CPU wants 2961 * to access the timer (probably to cancel it). We can safely 2962 * ignore the boosting request, as the idle CPU runs this code 2963 * with interrupts disabled and will complete the lock 2964 * protected section without being interrupted. So there is no 2965 * real need to boost. 2966 */ 2967 if (unlikely(p == rq->idle)) { 2968 WARN_ON(p != rq->curr); 2969 WARN_ON(p->pi_blocked_on); 2970 goto out_unlock; 2971 } 2972 2973 trace_sched_pi_setprio(p, prio); 2974 p->pi_top_task = rt_mutex_get_top_task(p); 2975 oldprio = p->prio; 2976 prev_class = p->sched_class; 2977 on_rq = p->on_rq; 2978 running = task_current(rq, p); 2979 if (on_rq) 2980 dequeue_task(rq, p, 0); 2981 if (running) 2982 p->sched_class->put_prev_task(rq, p); 2983 2984 /* 2985 * Boosting condition are: 2986 * 1. -rt task is running and holds mutex A 2987 * --> -dl task blocks on mutex A 2988 * 2989 * 2. -dl task is running and holds mutex A 2990 * --> -dl task blocks on mutex A and could preempt the 2991 * running task 2992 */ 2993 if (dl_prio(prio)) { 2994 if (!dl_prio(p->normal_prio) || (p->pi_top_task && 2995 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { 2996 p->dl.dl_boosted = 1; 2997 p->dl.dl_throttled = 0; 2998 enqueue_flag = ENQUEUE_REPLENISH; 2999 } else 3000 p->dl.dl_boosted = 0; 3001 p->sched_class = &dl_sched_class; 3002 } else if (rt_prio(prio)) { 3003 if (dl_prio(oldprio)) 3004 p->dl.dl_boosted = 0; 3005 if (oldprio < prio) 3006 enqueue_flag = ENQUEUE_HEAD; 3007 p->sched_class = &rt_sched_class; 3008 } else { 3009 if (dl_prio(oldprio)) 3010 p->dl.dl_boosted = 0; 3011 p->sched_class = &fair_sched_class; 3012 } 3013 3014 p->prio = prio; 3015 3016 if (running) 3017 p->sched_class->set_curr_task(rq); 3018 if (on_rq) 3019 enqueue_task(rq, p, enqueue_flag); 3020 3021 check_class_changed(rq, p, prev_class, oldprio); 3022 out_unlock: 3023 __task_rq_unlock(rq); 3024 } 3025 #endif 3026 3027 void set_user_nice(struct task_struct *p, long nice) 3028 { 3029 int old_prio, delta, on_rq; 3030 unsigned long flags; 3031 struct rq *rq; 3032 3033 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3034 return; 3035 /* 3036 * We have to be careful, if called from sys_setpriority(), 3037 * the task might be in the middle of scheduling on another CPU. 3038 */ 3039 rq = task_rq_lock(p, &flags); 3040 /* 3041 * The RT priorities are set via sched_setscheduler(), but we still 3042 * allow the 'normal' nice value to be set - but as expected 3043 * it wont have any effect on scheduling until the task is 3044 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3045 */ 3046 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3047 p->static_prio = NICE_TO_PRIO(nice); 3048 goto out_unlock; 3049 } 3050 on_rq = p->on_rq; 3051 if (on_rq) 3052 dequeue_task(rq, p, 0); 3053 3054 p->static_prio = NICE_TO_PRIO(nice); 3055 set_load_weight(p); 3056 old_prio = p->prio; 3057 p->prio = effective_prio(p); 3058 delta = p->prio - old_prio; 3059 3060 if (on_rq) { 3061 enqueue_task(rq, p, 0); 3062 /* 3063 * If the task increased its priority or is running and 3064 * lowered its priority, then reschedule its CPU: 3065 */ 3066 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3067 resched_task(rq->curr); 3068 } 3069 out_unlock: 3070 task_rq_unlock(rq, p, &flags); 3071 } 3072 EXPORT_SYMBOL(set_user_nice); 3073 3074 /* 3075 * can_nice - check if a task can reduce its nice value 3076 * @p: task 3077 * @nice: nice value 3078 */ 3079 int can_nice(const struct task_struct *p, const int nice) 3080 { 3081 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3082 int nice_rlim = nice_to_rlimit(nice); 3083 3084 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3085 capable(CAP_SYS_NICE)); 3086 } 3087 3088 #ifdef __ARCH_WANT_SYS_NICE 3089 3090 /* 3091 * sys_nice - change the priority of the current process. 3092 * @increment: priority increment 3093 * 3094 * sys_setpriority is a more generic, but much slower function that 3095 * does similar things. 3096 */ 3097 SYSCALL_DEFINE1(nice, int, increment) 3098 { 3099 long nice, retval; 3100 3101 /* 3102 * Setpriority might change our priority at the same moment. 3103 * We don't have to worry. Conceptually one call occurs first 3104 * and we have a single winner. 3105 */ 3106 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3107 nice = task_nice(current) + increment; 3108 3109 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3110 if (increment < 0 && !can_nice(current, nice)) 3111 return -EPERM; 3112 3113 retval = security_task_setnice(current, nice); 3114 if (retval) 3115 return retval; 3116 3117 set_user_nice(current, nice); 3118 return 0; 3119 } 3120 3121 #endif 3122 3123 /** 3124 * task_prio - return the priority value of a given task. 3125 * @p: the task in question. 3126 * 3127 * Return: The priority value as seen by users in /proc. 3128 * RT tasks are offset by -200. Normal tasks are centered 3129 * around 0, value goes from -16 to +15. 3130 */ 3131 int task_prio(const struct task_struct *p) 3132 { 3133 return p->prio - MAX_RT_PRIO; 3134 } 3135 3136 /** 3137 * idle_cpu - is a given cpu idle currently? 3138 * @cpu: the processor in question. 3139 * 3140 * Return: 1 if the CPU is currently idle. 0 otherwise. 3141 */ 3142 int idle_cpu(int cpu) 3143 { 3144 struct rq *rq = cpu_rq(cpu); 3145 3146 if (rq->curr != rq->idle) 3147 return 0; 3148 3149 if (rq->nr_running) 3150 return 0; 3151 3152 #ifdef CONFIG_SMP 3153 if (!llist_empty(&rq->wake_list)) 3154 return 0; 3155 #endif 3156 3157 return 1; 3158 } 3159 3160 /** 3161 * idle_task - return the idle task for a given cpu. 3162 * @cpu: the processor in question. 3163 * 3164 * Return: The idle task for the cpu @cpu. 3165 */ 3166 struct task_struct *idle_task(int cpu) 3167 { 3168 return cpu_rq(cpu)->idle; 3169 } 3170 3171 /** 3172 * find_process_by_pid - find a process with a matching PID value. 3173 * @pid: the pid in question. 3174 * 3175 * The task of @pid, if found. %NULL otherwise. 3176 */ 3177 static struct task_struct *find_process_by_pid(pid_t pid) 3178 { 3179 return pid ? find_task_by_vpid(pid) : current; 3180 } 3181 3182 /* 3183 * This function initializes the sched_dl_entity of a newly becoming 3184 * SCHED_DEADLINE task. 3185 * 3186 * Only the static values are considered here, the actual runtime and the 3187 * absolute deadline will be properly calculated when the task is enqueued 3188 * for the first time with its new policy. 3189 */ 3190 static void 3191 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3192 { 3193 struct sched_dl_entity *dl_se = &p->dl; 3194 3195 init_dl_task_timer(dl_se); 3196 dl_se->dl_runtime = attr->sched_runtime; 3197 dl_se->dl_deadline = attr->sched_deadline; 3198 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3199 dl_se->flags = attr->sched_flags; 3200 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3201 dl_se->dl_throttled = 0; 3202 dl_se->dl_new = 1; 3203 dl_se->dl_yielded = 0; 3204 } 3205 3206 static void __setscheduler_params(struct task_struct *p, 3207 const struct sched_attr *attr) 3208 { 3209 int policy = attr->sched_policy; 3210 3211 if (policy == -1) /* setparam */ 3212 policy = p->policy; 3213 3214 p->policy = policy; 3215 3216 if (dl_policy(policy)) 3217 __setparam_dl(p, attr); 3218 else if (fair_policy(policy)) 3219 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3220 3221 /* 3222 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3223 * !rt_policy. Always setting this ensures that things like 3224 * getparam()/getattr() don't report silly values for !rt tasks. 3225 */ 3226 p->rt_priority = attr->sched_priority; 3227 p->normal_prio = normal_prio(p); 3228 set_load_weight(p); 3229 } 3230 3231 /* Actually do priority change: must hold pi & rq lock. */ 3232 static void __setscheduler(struct rq *rq, struct task_struct *p, 3233 const struct sched_attr *attr) 3234 { 3235 __setscheduler_params(p, attr); 3236 3237 /* 3238 * If we get here, there was no pi waiters boosting the 3239 * task. It is safe to use the normal prio. 3240 */ 3241 p->prio = normal_prio(p); 3242 3243 if (dl_prio(p->prio)) 3244 p->sched_class = &dl_sched_class; 3245 else if (rt_prio(p->prio)) 3246 p->sched_class = &rt_sched_class; 3247 else 3248 p->sched_class = &fair_sched_class; 3249 } 3250 3251 static void 3252 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3253 { 3254 struct sched_dl_entity *dl_se = &p->dl; 3255 3256 attr->sched_priority = p->rt_priority; 3257 attr->sched_runtime = dl_se->dl_runtime; 3258 attr->sched_deadline = dl_se->dl_deadline; 3259 attr->sched_period = dl_se->dl_period; 3260 attr->sched_flags = dl_se->flags; 3261 } 3262 3263 /* 3264 * This function validates the new parameters of a -deadline task. 3265 * We ask for the deadline not being zero, and greater or equal 3266 * than the runtime, as well as the period of being zero or 3267 * greater than deadline. Furthermore, we have to be sure that 3268 * user parameters are above the internal resolution of 1us (we 3269 * check sched_runtime only since it is always the smaller one) and 3270 * below 2^63 ns (we have to check both sched_deadline and 3271 * sched_period, as the latter can be zero). 3272 */ 3273 static bool 3274 __checkparam_dl(const struct sched_attr *attr) 3275 { 3276 /* deadline != 0 */ 3277 if (attr->sched_deadline == 0) 3278 return false; 3279 3280 /* 3281 * Since we truncate DL_SCALE bits, make sure we're at least 3282 * that big. 3283 */ 3284 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3285 return false; 3286 3287 /* 3288 * Since we use the MSB for wrap-around and sign issues, make 3289 * sure it's not set (mind that period can be equal to zero). 3290 */ 3291 if (attr->sched_deadline & (1ULL << 63) || 3292 attr->sched_period & (1ULL << 63)) 3293 return false; 3294 3295 /* runtime <= deadline <= period (if period != 0) */ 3296 if ((attr->sched_period != 0 && 3297 attr->sched_period < attr->sched_deadline) || 3298 attr->sched_deadline < attr->sched_runtime) 3299 return false; 3300 3301 return true; 3302 } 3303 3304 /* 3305 * check the target process has a UID that matches the current process's 3306 */ 3307 static bool check_same_owner(struct task_struct *p) 3308 { 3309 const struct cred *cred = current_cred(), *pcred; 3310 bool match; 3311 3312 rcu_read_lock(); 3313 pcred = __task_cred(p); 3314 match = (uid_eq(cred->euid, pcred->euid) || 3315 uid_eq(cred->euid, pcred->uid)); 3316 rcu_read_unlock(); 3317 return match; 3318 } 3319 3320 static int __sched_setscheduler(struct task_struct *p, 3321 const struct sched_attr *attr, 3322 bool user) 3323 { 3324 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3325 MAX_RT_PRIO - 1 - attr->sched_priority; 3326 int retval, oldprio, oldpolicy = -1, on_rq, running; 3327 int policy = attr->sched_policy; 3328 unsigned long flags; 3329 const struct sched_class *prev_class; 3330 struct rq *rq; 3331 int reset_on_fork; 3332 3333 /* may grab non-irq protected spin_locks */ 3334 BUG_ON(in_interrupt()); 3335 recheck: 3336 /* double check policy once rq lock held */ 3337 if (policy < 0) { 3338 reset_on_fork = p->sched_reset_on_fork; 3339 policy = oldpolicy = p->policy; 3340 } else { 3341 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3342 3343 if (policy != SCHED_DEADLINE && 3344 policy != SCHED_FIFO && policy != SCHED_RR && 3345 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3346 policy != SCHED_IDLE) 3347 return -EINVAL; 3348 } 3349 3350 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3351 return -EINVAL; 3352 3353 /* 3354 * Valid priorities for SCHED_FIFO and SCHED_RR are 3355 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3356 * SCHED_BATCH and SCHED_IDLE is 0. 3357 */ 3358 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3359 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3360 return -EINVAL; 3361 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3362 (rt_policy(policy) != (attr->sched_priority != 0))) 3363 return -EINVAL; 3364 3365 /* 3366 * Allow unprivileged RT tasks to decrease priority: 3367 */ 3368 if (user && !capable(CAP_SYS_NICE)) { 3369 if (fair_policy(policy)) { 3370 if (attr->sched_nice < task_nice(p) && 3371 !can_nice(p, attr->sched_nice)) 3372 return -EPERM; 3373 } 3374 3375 if (rt_policy(policy)) { 3376 unsigned long rlim_rtprio = 3377 task_rlimit(p, RLIMIT_RTPRIO); 3378 3379 /* can't set/change the rt policy */ 3380 if (policy != p->policy && !rlim_rtprio) 3381 return -EPERM; 3382 3383 /* can't increase priority */ 3384 if (attr->sched_priority > p->rt_priority && 3385 attr->sched_priority > rlim_rtprio) 3386 return -EPERM; 3387 } 3388 3389 /* 3390 * Can't set/change SCHED_DEADLINE policy at all for now 3391 * (safest behavior); in the future we would like to allow 3392 * unprivileged DL tasks to increase their relative deadline 3393 * or reduce their runtime (both ways reducing utilization) 3394 */ 3395 if (dl_policy(policy)) 3396 return -EPERM; 3397 3398 /* 3399 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3400 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3401 */ 3402 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3403 if (!can_nice(p, task_nice(p))) 3404 return -EPERM; 3405 } 3406 3407 /* can't change other user's priorities */ 3408 if (!check_same_owner(p)) 3409 return -EPERM; 3410 3411 /* Normal users shall not reset the sched_reset_on_fork flag */ 3412 if (p->sched_reset_on_fork && !reset_on_fork) 3413 return -EPERM; 3414 } 3415 3416 if (user) { 3417 retval = security_task_setscheduler(p); 3418 if (retval) 3419 return retval; 3420 } 3421 3422 /* 3423 * make sure no PI-waiters arrive (or leave) while we are 3424 * changing the priority of the task: 3425 * 3426 * To be able to change p->policy safely, the appropriate 3427 * runqueue lock must be held. 3428 */ 3429 rq = task_rq_lock(p, &flags); 3430 3431 /* 3432 * Changing the policy of the stop threads its a very bad idea 3433 */ 3434 if (p == rq->stop) { 3435 task_rq_unlock(rq, p, &flags); 3436 return -EINVAL; 3437 } 3438 3439 /* 3440 * If not changing anything there's no need to proceed further, 3441 * but store a possible modification of reset_on_fork. 3442 */ 3443 if (unlikely(policy == p->policy)) { 3444 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3445 goto change; 3446 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3447 goto change; 3448 if (dl_policy(policy)) 3449 goto change; 3450 3451 p->sched_reset_on_fork = reset_on_fork; 3452 task_rq_unlock(rq, p, &flags); 3453 return 0; 3454 } 3455 change: 3456 3457 if (user) { 3458 #ifdef CONFIG_RT_GROUP_SCHED 3459 /* 3460 * Do not allow realtime tasks into groups that have no runtime 3461 * assigned. 3462 */ 3463 if (rt_bandwidth_enabled() && rt_policy(policy) && 3464 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3465 !task_group_is_autogroup(task_group(p))) { 3466 task_rq_unlock(rq, p, &flags); 3467 return -EPERM; 3468 } 3469 #endif 3470 #ifdef CONFIG_SMP 3471 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3472 cpumask_t *span = rq->rd->span; 3473 3474 /* 3475 * Don't allow tasks with an affinity mask smaller than 3476 * the entire root_domain to become SCHED_DEADLINE. We 3477 * will also fail if there's no bandwidth available. 3478 */ 3479 if (!cpumask_subset(span, &p->cpus_allowed) || 3480 rq->rd->dl_bw.bw == 0) { 3481 task_rq_unlock(rq, p, &flags); 3482 return -EPERM; 3483 } 3484 } 3485 #endif 3486 } 3487 3488 /* recheck policy now with rq lock held */ 3489 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3490 policy = oldpolicy = -1; 3491 task_rq_unlock(rq, p, &flags); 3492 goto recheck; 3493 } 3494 3495 /* 3496 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3497 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3498 * is available. 3499 */ 3500 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3501 task_rq_unlock(rq, p, &flags); 3502 return -EBUSY; 3503 } 3504 3505 p->sched_reset_on_fork = reset_on_fork; 3506 oldprio = p->prio; 3507 3508 /* 3509 * Special case for priority boosted tasks. 3510 * 3511 * If the new priority is lower or equal (user space view) 3512 * than the current (boosted) priority, we just store the new 3513 * normal parameters and do not touch the scheduler class and 3514 * the runqueue. This will be done when the task deboost 3515 * itself. 3516 */ 3517 if (rt_mutex_check_prio(p, newprio)) { 3518 __setscheduler_params(p, attr); 3519 task_rq_unlock(rq, p, &flags); 3520 return 0; 3521 } 3522 3523 on_rq = p->on_rq; 3524 running = task_current(rq, p); 3525 if (on_rq) 3526 dequeue_task(rq, p, 0); 3527 if (running) 3528 p->sched_class->put_prev_task(rq, p); 3529 3530 prev_class = p->sched_class; 3531 __setscheduler(rq, p, attr); 3532 3533 if (running) 3534 p->sched_class->set_curr_task(rq); 3535 if (on_rq) { 3536 /* 3537 * We enqueue to tail when the priority of a task is 3538 * increased (user space view). 3539 */ 3540 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3541 } 3542 3543 check_class_changed(rq, p, prev_class, oldprio); 3544 task_rq_unlock(rq, p, &flags); 3545 3546 rt_mutex_adjust_pi(p); 3547 3548 return 0; 3549 } 3550 3551 static int _sched_setscheduler(struct task_struct *p, int policy, 3552 const struct sched_param *param, bool check) 3553 { 3554 struct sched_attr attr = { 3555 .sched_policy = policy, 3556 .sched_priority = param->sched_priority, 3557 .sched_nice = PRIO_TO_NICE(p->static_prio), 3558 }; 3559 3560 /* 3561 * Fixup the legacy SCHED_RESET_ON_FORK hack 3562 */ 3563 if (policy & SCHED_RESET_ON_FORK) { 3564 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3565 policy &= ~SCHED_RESET_ON_FORK; 3566 attr.sched_policy = policy; 3567 } 3568 3569 return __sched_setscheduler(p, &attr, check); 3570 } 3571 /** 3572 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3573 * @p: the task in question. 3574 * @policy: new policy. 3575 * @param: structure containing the new RT priority. 3576 * 3577 * Return: 0 on success. An error code otherwise. 3578 * 3579 * NOTE that the task may be already dead. 3580 */ 3581 int sched_setscheduler(struct task_struct *p, int policy, 3582 const struct sched_param *param) 3583 { 3584 return _sched_setscheduler(p, policy, param, true); 3585 } 3586 EXPORT_SYMBOL_GPL(sched_setscheduler); 3587 3588 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3589 { 3590 return __sched_setscheduler(p, attr, true); 3591 } 3592 EXPORT_SYMBOL_GPL(sched_setattr); 3593 3594 /** 3595 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3596 * @p: the task in question. 3597 * @policy: new policy. 3598 * @param: structure containing the new RT priority. 3599 * 3600 * Just like sched_setscheduler, only don't bother checking if the 3601 * current context has permission. For example, this is needed in 3602 * stop_machine(): we create temporary high priority worker threads, 3603 * but our caller might not have that capability. 3604 * 3605 * Return: 0 on success. An error code otherwise. 3606 */ 3607 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3608 const struct sched_param *param) 3609 { 3610 return _sched_setscheduler(p, policy, param, false); 3611 } 3612 3613 static int 3614 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3615 { 3616 struct sched_param lparam; 3617 struct task_struct *p; 3618 int retval; 3619 3620 if (!param || pid < 0) 3621 return -EINVAL; 3622 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3623 return -EFAULT; 3624 3625 rcu_read_lock(); 3626 retval = -ESRCH; 3627 p = find_process_by_pid(pid); 3628 if (p != NULL) 3629 retval = sched_setscheduler(p, policy, &lparam); 3630 rcu_read_unlock(); 3631 3632 return retval; 3633 } 3634 3635 /* 3636 * Mimics kernel/events/core.c perf_copy_attr(). 3637 */ 3638 static int sched_copy_attr(struct sched_attr __user *uattr, 3639 struct sched_attr *attr) 3640 { 3641 u32 size; 3642 int ret; 3643 3644 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3645 return -EFAULT; 3646 3647 /* 3648 * zero the full structure, so that a short copy will be nice. 3649 */ 3650 memset(attr, 0, sizeof(*attr)); 3651 3652 ret = get_user(size, &uattr->size); 3653 if (ret) 3654 return ret; 3655 3656 if (size > PAGE_SIZE) /* silly large */ 3657 goto err_size; 3658 3659 if (!size) /* abi compat */ 3660 size = SCHED_ATTR_SIZE_VER0; 3661 3662 if (size < SCHED_ATTR_SIZE_VER0) 3663 goto err_size; 3664 3665 /* 3666 * If we're handed a bigger struct than we know of, 3667 * ensure all the unknown bits are 0 - i.e. new 3668 * user-space does not rely on any kernel feature 3669 * extensions we dont know about yet. 3670 */ 3671 if (size > sizeof(*attr)) { 3672 unsigned char __user *addr; 3673 unsigned char __user *end; 3674 unsigned char val; 3675 3676 addr = (void __user *)uattr + sizeof(*attr); 3677 end = (void __user *)uattr + size; 3678 3679 for (; addr < end; addr++) { 3680 ret = get_user(val, addr); 3681 if (ret) 3682 return ret; 3683 if (val) 3684 goto err_size; 3685 } 3686 size = sizeof(*attr); 3687 } 3688 3689 ret = copy_from_user(attr, uattr, size); 3690 if (ret) 3691 return -EFAULT; 3692 3693 /* 3694 * XXX: do we want to be lenient like existing syscalls; or do we want 3695 * to be strict and return an error on out-of-bounds values? 3696 */ 3697 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3698 3699 return 0; 3700 3701 err_size: 3702 put_user(sizeof(*attr), &uattr->size); 3703 return -E2BIG; 3704 } 3705 3706 /** 3707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3708 * @pid: the pid in question. 3709 * @policy: new policy. 3710 * @param: structure containing the new RT priority. 3711 * 3712 * Return: 0 on success. An error code otherwise. 3713 */ 3714 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3715 struct sched_param __user *, param) 3716 { 3717 /* negative values for policy are not valid */ 3718 if (policy < 0) 3719 return -EINVAL; 3720 3721 return do_sched_setscheduler(pid, policy, param); 3722 } 3723 3724 /** 3725 * sys_sched_setparam - set/change the RT priority of a thread 3726 * @pid: the pid in question. 3727 * @param: structure containing the new RT priority. 3728 * 3729 * Return: 0 on success. An error code otherwise. 3730 */ 3731 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3732 { 3733 return do_sched_setscheduler(pid, -1, param); 3734 } 3735 3736 /** 3737 * sys_sched_setattr - same as above, but with extended sched_attr 3738 * @pid: the pid in question. 3739 * @uattr: structure containing the extended parameters. 3740 * @flags: for future extension. 3741 */ 3742 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3743 unsigned int, flags) 3744 { 3745 struct sched_attr attr; 3746 struct task_struct *p; 3747 int retval; 3748 3749 if (!uattr || pid < 0 || flags) 3750 return -EINVAL; 3751 3752 retval = sched_copy_attr(uattr, &attr); 3753 if (retval) 3754 return retval; 3755 3756 if ((int)attr.sched_policy < 0) 3757 return -EINVAL; 3758 3759 rcu_read_lock(); 3760 retval = -ESRCH; 3761 p = find_process_by_pid(pid); 3762 if (p != NULL) 3763 retval = sched_setattr(p, &attr); 3764 rcu_read_unlock(); 3765 3766 return retval; 3767 } 3768 3769 /** 3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3771 * @pid: the pid in question. 3772 * 3773 * Return: On success, the policy of the thread. Otherwise, a negative error 3774 * code. 3775 */ 3776 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3777 { 3778 struct task_struct *p; 3779 int retval; 3780 3781 if (pid < 0) 3782 return -EINVAL; 3783 3784 retval = -ESRCH; 3785 rcu_read_lock(); 3786 p = find_process_by_pid(pid); 3787 if (p) { 3788 retval = security_task_getscheduler(p); 3789 if (!retval) 3790 retval = p->policy 3791 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3792 } 3793 rcu_read_unlock(); 3794 return retval; 3795 } 3796 3797 /** 3798 * sys_sched_getparam - get the RT priority of a thread 3799 * @pid: the pid in question. 3800 * @param: structure containing the RT priority. 3801 * 3802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3803 * code. 3804 */ 3805 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3806 { 3807 struct sched_param lp = { .sched_priority = 0 }; 3808 struct task_struct *p; 3809 int retval; 3810 3811 if (!param || pid < 0) 3812 return -EINVAL; 3813 3814 rcu_read_lock(); 3815 p = find_process_by_pid(pid); 3816 retval = -ESRCH; 3817 if (!p) 3818 goto out_unlock; 3819 3820 retval = security_task_getscheduler(p); 3821 if (retval) 3822 goto out_unlock; 3823 3824 if (task_has_rt_policy(p)) 3825 lp.sched_priority = p->rt_priority; 3826 rcu_read_unlock(); 3827 3828 /* 3829 * This one might sleep, we cannot do it with a spinlock held ... 3830 */ 3831 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3832 3833 return retval; 3834 3835 out_unlock: 3836 rcu_read_unlock(); 3837 return retval; 3838 } 3839 3840 static int sched_read_attr(struct sched_attr __user *uattr, 3841 struct sched_attr *attr, 3842 unsigned int usize) 3843 { 3844 int ret; 3845 3846 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3847 return -EFAULT; 3848 3849 /* 3850 * If we're handed a smaller struct than we know of, 3851 * ensure all the unknown bits are 0 - i.e. old 3852 * user-space does not get uncomplete information. 3853 */ 3854 if (usize < sizeof(*attr)) { 3855 unsigned char *addr; 3856 unsigned char *end; 3857 3858 addr = (void *)attr + usize; 3859 end = (void *)attr + sizeof(*attr); 3860 3861 for (; addr < end; addr++) { 3862 if (*addr) 3863 return -EFBIG; 3864 } 3865 3866 attr->size = usize; 3867 } 3868 3869 ret = copy_to_user(uattr, attr, attr->size); 3870 if (ret) 3871 return -EFAULT; 3872 3873 return 0; 3874 } 3875 3876 /** 3877 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3878 * @pid: the pid in question. 3879 * @uattr: structure containing the extended parameters. 3880 * @size: sizeof(attr) for fwd/bwd comp. 3881 * @flags: for future extension. 3882 */ 3883 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3884 unsigned int, size, unsigned int, flags) 3885 { 3886 struct sched_attr attr = { 3887 .size = sizeof(struct sched_attr), 3888 }; 3889 struct task_struct *p; 3890 int retval; 3891 3892 if (!uattr || pid < 0 || size > PAGE_SIZE || 3893 size < SCHED_ATTR_SIZE_VER0 || flags) 3894 return -EINVAL; 3895 3896 rcu_read_lock(); 3897 p = find_process_by_pid(pid); 3898 retval = -ESRCH; 3899 if (!p) 3900 goto out_unlock; 3901 3902 retval = security_task_getscheduler(p); 3903 if (retval) 3904 goto out_unlock; 3905 3906 attr.sched_policy = p->policy; 3907 if (p->sched_reset_on_fork) 3908 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3909 if (task_has_dl_policy(p)) 3910 __getparam_dl(p, &attr); 3911 else if (task_has_rt_policy(p)) 3912 attr.sched_priority = p->rt_priority; 3913 else 3914 attr.sched_nice = task_nice(p); 3915 3916 rcu_read_unlock(); 3917 3918 retval = sched_read_attr(uattr, &attr, size); 3919 return retval; 3920 3921 out_unlock: 3922 rcu_read_unlock(); 3923 return retval; 3924 } 3925 3926 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3927 { 3928 cpumask_var_t cpus_allowed, new_mask; 3929 struct task_struct *p; 3930 int retval; 3931 3932 rcu_read_lock(); 3933 3934 p = find_process_by_pid(pid); 3935 if (!p) { 3936 rcu_read_unlock(); 3937 return -ESRCH; 3938 } 3939 3940 /* Prevent p going away */ 3941 get_task_struct(p); 3942 rcu_read_unlock(); 3943 3944 if (p->flags & PF_NO_SETAFFINITY) { 3945 retval = -EINVAL; 3946 goto out_put_task; 3947 } 3948 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3949 retval = -ENOMEM; 3950 goto out_put_task; 3951 } 3952 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3953 retval = -ENOMEM; 3954 goto out_free_cpus_allowed; 3955 } 3956 retval = -EPERM; 3957 if (!check_same_owner(p)) { 3958 rcu_read_lock(); 3959 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3960 rcu_read_unlock(); 3961 goto out_unlock; 3962 } 3963 rcu_read_unlock(); 3964 } 3965 3966 retval = security_task_setscheduler(p); 3967 if (retval) 3968 goto out_unlock; 3969 3970 3971 cpuset_cpus_allowed(p, cpus_allowed); 3972 cpumask_and(new_mask, in_mask, cpus_allowed); 3973 3974 /* 3975 * Since bandwidth control happens on root_domain basis, 3976 * if admission test is enabled, we only admit -deadline 3977 * tasks allowed to run on all the CPUs in the task's 3978 * root_domain. 3979 */ 3980 #ifdef CONFIG_SMP 3981 if (task_has_dl_policy(p)) { 3982 const struct cpumask *span = task_rq(p)->rd->span; 3983 3984 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 3985 retval = -EBUSY; 3986 goto out_unlock; 3987 } 3988 } 3989 #endif 3990 again: 3991 retval = set_cpus_allowed_ptr(p, new_mask); 3992 3993 if (!retval) { 3994 cpuset_cpus_allowed(p, cpus_allowed); 3995 if (!cpumask_subset(new_mask, cpus_allowed)) { 3996 /* 3997 * We must have raced with a concurrent cpuset 3998 * update. Just reset the cpus_allowed to the 3999 * cpuset's cpus_allowed 4000 */ 4001 cpumask_copy(new_mask, cpus_allowed); 4002 goto again; 4003 } 4004 } 4005 out_unlock: 4006 free_cpumask_var(new_mask); 4007 out_free_cpus_allowed: 4008 free_cpumask_var(cpus_allowed); 4009 out_put_task: 4010 put_task_struct(p); 4011 return retval; 4012 } 4013 4014 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4015 struct cpumask *new_mask) 4016 { 4017 if (len < cpumask_size()) 4018 cpumask_clear(new_mask); 4019 else if (len > cpumask_size()) 4020 len = cpumask_size(); 4021 4022 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4023 } 4024 4025 /** 4026 * sys_sched_setaffinity - set the cpu affinity of a process 4027 * @pid: pid of the process 4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4029 * @user_mask_ptr: user-space pointer to the new cpu mask 4030 * 4031 * Return: 0 on success. An error code otherwise. 4032 */ 4033 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4034 unsigned long __user *, user_mask_ptr) 4035 { 4036 cpumask_var_t new_mask; 4037 int retval; 4038 4039 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4040 return -ENOMEM; 4041 4042 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4043 if (retval == 0) 4044 retval = sched_setaffinity(pid, new_mask); 4045 free_cpumask_var(new_mask); 4046 return retval; 4047 } 4048 4049 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4050 { 4051 struct task_struct *p; 4052 unsigned long flags; 4053 int retval; 4054 4055 rcu_read_lock(); 4056 4057 retval = -ESRCH; 4058 p = find_process_by_pid(pid); 4059 if (!p) 4060 goto out_unlock; 4061 4062 retval = security_task_getscheduler(p); 4063 if (retval) 4064 goto out_unlock; 4065 4066 raw_spin_lock_irqsave(&p->pi_lock, flags); 4067 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4068 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4069 4070 out_unlock: 4071 rcu_read_unlock(); 4072 4073 return retval; 4074 } 4075 4076 /** 4077 * sys_sched_getaffinity - get the cpu affinity of a process 4078 * @pid: pid of the process 4079 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4080 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4081 * 4082 * Return: 0 on success. An error code otherwise. 4083 */ 4084 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4085 unsigned long __user *, user_mask_ptr) 4086 { 4087 int ret; 4088 cpumask_var_t mask; 4089 4090 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4091 return -EINVAL; 4092 if (len & (sizeof(unsigned long)-1)) 4093 return -EINVAL; 4094 4095 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4096 return -ENOMEM; 4097 4098 ret = sched_getaffinity(pid, mask); 4099 if (ret == 0) { 4100 size_t retlen = min_t(size_t, len, cpumask_size()); 4101 4102 if (copy_to_user(user_mask_ptr, mask, retlen)) 4103 ret = -EFAULT; 4104 else 4105 ret = retlen; 4106 } 4107 free_cpumask_var(mask); 4108 4109 return ret; 4110 } 4111 4112 /** 4113 * sys_sched_yield - yield the current processor to other threads. 4114 * 4115 * This function yields the current CPU to other tasks. If there are no 4116 * other threads running on this CPU then this function will return. 4117 * 4118 * Return: 0. 4119 */ 4120 SYSCALL_DEFINE0(sched_yield) 4121 { 4122 struct rq *rq = this_rq_lock(); 4123 4124 schedstat_inc(rq, yld_count); 4125 current->sched_class->yield_task(rq); 4126 4127 /* 4128 * Since we are going to call schedule() anyway, there's 4129 * no need to preempt or enable interrupts: 4130 */ 4131 __release(rq->lock); 4132 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4133 do_raw_spin_unlock(&rq->lock); 4134 sched_preempt_enable_no_resched(); 4135 4136 schedule(); 4137 4138 return 0; 4139 } 4140 4141 static void __cond_resched(void) 4142 { 4143 __preempt_count_add(PREEMPT_ACTIVE); 4144 __schedule(); 4145 __preempt_count_sub(PREEMPT_ACTIVE); 4146 } 4147 4148 int __sched _cond_resched(void) 4149 { 4150 rcu_cond_resched(); 4151 if (should_resched()) { 4152 __cond_resched(); 4153 return 1; 4154 } 4155 return 0; 4156 } 4157 EXPORT_SYMBOL(_cond_resched); 4158 4159 /* 4160 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4161 * call schedule, and on return reacquire the lock. 4162 * 4163 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4164 * operations here to prevent schedule() from being called twice (once via 4165 * spin_unlock(), once by hand). 4166 */ 4167 int __cond_resched_lock(spinlock_t *lock) 4168 { 4169 bool need_rcu_resched = rcu_should_resched(); 4170 int resched = should_resched(); 4171 int ret = 0; 4172 4173 lockdep_assert_held(lock); 4174 4175 if (spin_needbreak(lock) || resched || need_rcu_resched) { 4176 spin_unlock(lock); 4177 if (resched) 4178 __cond_resched(); 4179 else if (unlikely(need_rcu_resched)) 4180 rcu_resched(); 4181 else 4182 cpu_relax(); 4183 ret = 1; 4184 spin_lock(lock); 4185 } 4186 return ret; 4187 } 4188 EXPORT_SYMBOL(__cond_resched_lock); 4189 4190 int __sched __cond_resched_softirq(void) 4191 { 4192 BUG_ON(!in_softirq()); 4193 4194 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */ 4195 if (should_resched()) { 4196 local_bh_enable(); 4197 __cond_resched(); 4198 local_bh_disable(); 4199 return 1; 4200 } 4201 return 0; 4202 } 4203 EXPORT_SYMBOL(__cond_resched_softirq); 4204 4205 /** 4206 * yield - yield the current processor to other threads. 4207 * 4208 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4209 * 4210 * The scheduler is at all times free to pick the calling task as the most 4211 * eligible task to run, if removing the yield() call from your code breaks 4212 * it, its already broken. 4213 * 4214 * Typical broken usage is: 4215 * 4216 * while (!event) 4217 * yield(); 4218 * 4219 * where one assumes that yield() will let 'the other' process run that will 4220 * make event true. If the current task is a SCHED_FIFO task that will never 4221 * happen. Never use yield() as a progress guarantee!! 4222 * 4223 * If you want to use yield() to wait for something, use wait_event(). 4224 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4225 * If you still want to use yield(), do not! 4226 */ 4227 void __sched yield(void) 4228 { 4229 set_current_state(TASK_RUNNING); 4230 sys_sched_yield(); 4231 } 4232 EXPORT_SYMBOL(yield); 4233 4234 /** 4235 * yield_to - yield the current processor to another thread in 4236 * your thread group, or accelerate that thread toward the 4237 * processor it's on. 4238 * @p: target task 4239 * @preempt: whether task preemption is allowed or not 4240 * 4241 * It's the caller's job to ensure that the target task struct 4242 * can't go away on us before we can do any checks. 4243 * 4244 * Return: 4245 * true (>0) if we indeed boosted the target task. 4246 * false (0) if we failed to boost the target. 4247 * -ESRCH if there's no task to yield to. 4248 */ 4249 int __sched yield_to(struct task_struct *p, bool preempt) 4250 { 4251 struct task_struct *curr = current; 4252 struct rq *rq, *p_rq; 4253 unsigned long flags; 4254 int yielded = 0; 4255 4256 local_irq_save(flags); 4257 rq = this_rq(); 4258 4259 again: 4260 p_rq = task_rq(p); 4261 /* 4262 * If we're the only runnable task on the rq and target rq also 4263 * has only one task, there's absolutely no point in yielding. 4264 */ 4265 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4266 yielded = -ESRCH; 4267 goto out_irq; 4268 } 4269 4270 double_rq_lock(rq, p_rq); 4271 if (task_rq(p) != p_rq) { 4272 double_rq_unlock(rq, p_rq); 4273 goto again; 4274 } 4275 4276 if (!curr->sched_class->yield_to_task) 4277 goto out_unlock; 4278 4279 if (curr->sched_class != p->sched_class) 4280 goto out_unlock; 4281 4282 if (task_running(p_rq, p) || p->state) 4283 goto out_unlock; 4284 4285 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4286 if (yielded) { 4287 schedstat_inc(rq, yld_count); 4288 /* 4289 * Make p's CPU reschedule; pick_next_entity takes care of 4290 * fairness. 4291 */ 4292 if (preempt && rq != p_rq) 4293 resched_task(p_rq->curr); 4294 } 4295 4296 out_unlock: 4297 double_rq_unlock(rq, p_rq); 4298 out_irq: 4299 local_irq_restore(flags); 4300 4301 if (yielded > 0) 4302 schedule(); 4303 4304 return yielded; 4305 } 4306 EXPORT_SYMBOL_GPL(yield_to); 4307 4308 /* 4309 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4310 * that process accounting knows that this is a task in IO wait state. 4311 */ 4312 void __sched io_schedule(void) 4313 { 4314 struct rq *rq = raw_rq(); 4315 4316 delayacct_blkio_start(); 4317 atomic_inc(&rq->nr_iowait); 4318 blk_flush_plug(current); 4319 current->in_iowait = 1; 4320 schedule(); 4321 current->in_iowait = 0; 4322 atomic_dec(&rq->nr_iowait); 4323 delayacct_blkio_end(); 4324 } 4325 EXPORT_SYMBOL(io_schedule); 4326 4327 long __sched io_schedule_timeout(long timeout) 4328 { 4329 struct rq *rq = raw_rq(); 4330 long ret; 4331 4332 delayacct_blkio_start(); 4333 atomic_inc(&rq->nr_iowait); 4334 blk_flush_plug(current); 4335 current->in_iowait = 1; 4336 ret = schedule_timeout(timeout); 4337 current->in_iowait = 0; 4338 atomic_dec(&rq->nr_iowait); 4339 delayacct_blkio_end(); 4340 return ret; 4341 } 4342 4343 /** 4344 * sys_sched_get_priority_max - return maximum RT priority. 4345 * @policy: scheduling class. 4346 * 4347 * Return: On success, this syscall returns the maximum 4348 * rt_priority that can be used by a given scheduling class. 4349 * On failure, a negative error code is returned. 4350 */ 4351 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4352 { 4353 int ret = -EINVAL; 4354 4355 switch (policy) { 4356 case SCHED_FIFO: 4357 case SCHED_RR: 4358 ret = MAX_USER_RT_PRIO-1; 4359 break; 4360 case SCHED_DEADLINE: 4361 case SCHED_NORMAL: 4362 case SCHED_BATCH: 4363 case SCHED_IDLE: 4364 ret = 0; 4365 break; 4366 } 4367 return ret; 4368 } 4369 4370 /** 4371 * sys_sched_get_priority_min - return minimum RT priority. 4372 * @policy: scheduling class. 4373 * 4374 * Return: On success, this syscall returns the minimum 4375 * rt_priority that can be used by a given scheduling class. 4376 * On failure, a negative error code is returned. 4377 */ 4378 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4379 { 4380 int ret = -EINVAL; 4381 4382 switch (policy) { 4383 case SCHED_FIFO: 4384 case SCHED_RR: 4385 ret = 1; 4386 break; 4387 case SCHED_DEADLINE: 4388 case SCHED_NORMAL: 4389 case SCHED_BATCH: 4390 case SCHED_IDLE: 4391 ret = 0; 4392 } 4393 return ret; 4394 } 4395 4396 /** 4397 * sys_sched_rr_get_interval - return the default timeslice of a process. 4398 * @pid: pid of the process. 4399 * @interval: userspace pointer to the timeslice value. 4400 * 4401 * this syscall writes the default timeslice value of a given process 4402 * into the user-space timespec buffer. A value of '0' means infinity. 4403 * 4404 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4405 * an error code. 4406 */ 4407 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4408 struct timespec __user *, interval) 4409 { 4410 struct task_struct *p; 4411 unsigned int time_slice; 4412 unsigned long flags; 4413 struct rq *rq; 4414 int retval; 4415 struct timespec t; 4416 4417 if (pid < 0) 4418 return -EINVAL; 4419 4420 retval = -ESRCH; 4421 rcu_read_lock(); 4422 p = find_process_by_pid(pid); 4423 if (!p) 4424 goto out_unlock; 4425 4426 retval = security_task_getscheduler(p); 4427 if (retval) 4428 goto out_unlock; 4429 4430 rq = task_rq_lock(p, &flags); 4431 time_slice = 0; 4432 if (p->sched_class->get_rr_interval) 4433 time_slice = p->sched_class->get_rr_interval(rq, p); 4434 task_rq_unlock(rq, p, &flags); 4435 4436 rcu_read_unlock(); 4437 jiffies_to_timespec(time_slice, &t); 4438 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4439 return retval; 4440 4441 out_unlock: 4442 rcu_read_unlock(); 4443 return retval; 4444 } 4445 4446 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4447 4448 void sched_show_task(struct task_struct *p) 4449 { 4450 unsigned long free = 0; 4451 int ppid; 4452 unsigned state; 4453 4454 state = p->state ? __ffs(p->state) + 1 : 0; 4455 printk(KERN_INFO "%-15.15s %c", p->comm, 4456 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4457 #if BITS_PER_LONG == 32 4458 if (state == TASK_RUNNING) 4459 printk(KERN_CONT " running "); 4460 else 4461 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4462 #else 4463 if (state == TASK_RUNNING) 4464 printk(KERN_CONT " running task "); 4465 else 4466 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4467 #endif 4468 #ifdef CONFIG_DEBUG_STACK_USAGE 4469 free = stack_not_used(p); 4470 #endif 4471 rcu_read_lock(); 4472 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4473 rcu_read_unlock(); 4474 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4475 task_pid_nr(p), ppid, 4476 (unsigned long)task_thread_info(p)->flags); 4477 4478 print_worker_info(KERN_INFO, p); 4479 show_stack(p, NULL); 4480 } 4481 4482 void show_state_filter(unsigned long state_filter) 4483 { 4484 struct task_struct *g, *p; 4485 4486 #if BITS_PER_LONG == 32 4487 printk(KERN_INFO 4488 " task PC stack pid father\n"); 4489 #else 4490 printk(KERN_INFO 4491 " task PC stack pid father\n"); 4492 #endif 4493 rcu_read_lock(); 4494 do_each_thread(g, p) { 4495 /* 4496 * reset the NMI-timeout, listing all files on a slow 4497 * console might take a lot of time: 4498 */ 4499 touch_nmi_watchdog(); 4500 if (!state_filter || (p->state & state_filter)) 4501 sched_show_task(p); 4502 } while_each_thread(g, p); 4503 4504 touch_all_softlockup_watchdogs(); 4505 4506 #ifdef CONFIG_SCHED_DEBUG 4507 sysrq_sched_debug_show(); 4508 #endif 4509 rcu_read_unlock(); 4510 /* 4511 * Only show locks if all tasks are dumped: 4512 */ 4513 if (!state_filter) 4514 debug_show_all_locks(); 4515 } 4516 4517 void init_idle_bootup_task(struct task_struct *idle) 4518 { 4519 idle->sched_class = &idle_sched_class; 4520 } 4521 4522 /** 4523 * init_idle - set up an idle thread for a given CPU 4524 * @idle: task in question 4525 * @cpu: cpu the idle task belongs to 4526 * 4527 * NOTE: this function does not set the idle thread's NEED_RESCHED 4528 * flag, to make booting more robust. 4529 */ 4530 void init_idle(struct task_struct *idle, int cpu) 4531 { 4532 struct rq *rq = cpu_rq(cpu); 4533 unsigned long flags; 4534 4535 raw_spin_lock_irqsave(&rq->lock, flags); 4536 4537 __sched_fork(0, idle); 4538 idle->state = TASK_RUNNING; 4539 idle->se.exec_start = sched_clock(); 4540 4541 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4542 /* 4543 * We're having a chicken and egg problem, even though we are 4544 * holding rq->lock, the cpu isn't yet set to this cpu so the 4545 * lockdep check in task_group() will fail. 4546 * 4547 * Similar case to sched_fork(). / Alternatively we could 4548 * use task_rq_lock() here and obtain the other rq->lock. 4549 * 4550 * Silence PROVE_RCU 4551 */ 4552 rcu_read_lock(); 4553 __set_task_cpu(idle, cpu); 4554 rcu_read_unlock(); 4555 4556 rq->curr = rq->idle = idle; 4557 idle->on_rq = 1; 4558 #if defined(CONFIG_SMP) 4559 idle->on_cpu = 1; 4560 #endif 4561 raw_spin_unlock_irqrestore(&rq->lock, flags); 4562 4563 /* Set the preempt count _outside_ the spinlocks! */ 4564 init_idle_preempt_count(idle, cpu); 4565 4566 /* 4567 * The idle tasks have their own, simple scheduling class: 4568 */ 4569 idle->sched_class = &idle_sched_class; 4570 ftrace_graph_init_idle_task(idle, cpu); 4571 vtime_init_idle(idle, cpu); 4572 #if defined(CONFIG_SMP) 4573 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4574 #endif 4575 } 4576 4577 #ifdef CONFIG_SMP 4578 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4579 { 4580 if (p->sched_class && p->sched_class->set_cpus_allowed) 4581 p->sched_class->set_cpus_allowed(p, new_mask); 4582 4583 cpumask_copy(&p->cpus_allowed, new_mask); 4584 p->nr_cpus_allowed = cpumask_weight(new_mask); 4585 } 4586 4587 /* 4588 * This is how migration works: 4589 * 4590 * 1) we invoke migration_cpu_stop() on the target CPU using 4591 * stop_one_cpu(). 4592 * 2) stopper starts to run (implicitly forcing the migrated thread 4593 * off the CPU) 4594 * 3) it checks whether the migrated task is still in the wrong runqueue. 4595 * 4) if it's in the wrong runqueue then the migration thread removes 4596 * it and puts it into the right queue. 4597 * 5) stopper completes and stop_one_cpu() returns and the migration 4598 * is done. 4599 */ 4600 4601 /* 4602 * Change a given task's CPU affinity. Migrate the thread to a 4603 * proper CPU and schedule it away if the CPU it's executing on 4604 * is removed from the allowed bitmask. 4605 * 4606 * NOTE: the caller must have a valid reference to the task, the 4607 * task must not exit() & deallocate itself prematurely. The 4608 * call is not atomic; no spinlocks may be held. 4609 */ 4610 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4611 { 4612 unsigned long flags; 4613 struct rq *rq; 4614 unsigned int dest_cpu; 4615 int ret = 0; 4616 4617 rq = task_rq_lock(p, &flags); 4618 4619 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4620 goto out; 4621 4622 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4623 ret = -EINVAL; 4624 goto out; 4625 } 4626 4627 do_set_cpus_allowed(p, new_mask); 4628 4629 /* Can the task run on the task's current CPU? If so, we're done */ 4630 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4631 goto out; 4632 4633 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4634 if (p->on_rq) { 4635 struct migration_arg arg = { p, dest_cpu }; 4636 /* Need help from migration thread: drop lock and wait. */ 4637 task_rq_unlock(rq, p, &flags); 4638 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4639 tlb_migrate_finish(p->mm); 4640 return 0; 4641 } 4642 out: 4643 task_rq_unlock(rq, p, &flags); 4644 4645 return ret; 4646 } 4647 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4648 4649 /* 4650 * Move (not current) task off this cpu, onto dest cpu. We're doing 4651 * this because either it can't run here any more (set_cpus_allowed() 4652 * away from this CPU, or CPU going down), or because we're 4653 * attempting to rebalance this task on exec (sched_exec). 4654 * 4655 * So we race with normal scheduler movements, but that's OK, as long 4656 * as the task is no longer on this CPU. 4657 * 4658 * Returns non-zero if task was successfully migrated. 4659 */ 4660 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4661 { 4662 struct rq *rq_dest, *rq_src; 4663 int ret = 0; 4664 4665 if (unlikely(!cpu_active(dest_cpu))) 4666 return ret; 4667 4668 rq_src = cpu_rq(src_cpu); 4669 rq_dest = cpu_rq(dest_cpu); 4670 4671 raw_spin_lock(&p->pi_lock); 4672 double_rq_lock(rq_src, rq_dest); 4673 /* Already moved. */ 4674 if (task_cpu(p) != src_cpu) 4675 goto done; 4676 /* Affinity changed (again). */ 4677 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4678 goto fail; 4679 4680 /* 4681 * If we're not on a rq, the next wake-up will ensure we're 4682 * placed properly. 4683 */ 4684 if (p->on_rq) { 4685 dequeue_task(rq_src, p, 0); 4686 set_task_cpu(p, dest_cpu); 4687 enqueue_task(rq_dest, p, 0); 4688 check_preempt_curr(rq_dest, p, 0); 4689 } 4690 done: 4691 ret = 1; 4692 fail: 4693 double_rq_unlock(rq_src, rq_dest); 4694 raw_spin_unlock(&p->pi_lock); 4695 return ret; 4696 } 4697 4698 #ifdef CONFIG_NUMA_BALANCING 4699 /* Migrate current task p to target_cpu */ 4700 int migrate_task_to(struct task_struct *p, int target_cpu) 4701 { 4702 struct migration_arg arg = { p, target_cpu }; 4703 int curr_cpu = task_cpu(p); 4704 4705 if (curr_cpu == target_cpu) 4706 return 0; 4707 4708 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4709 return -EINVAL; 4710 4711 /* TODO: This is not properly updating schedstats */ 4712 4713 trace_sched_move_numa(p, curr_cpu, target_cpu); 4714 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4715 } 4716 4717 /* 4718 * Requeue a task on a given node and accurately track the number of NUMA 4719 * tasks on the runqueues 4720 */ 4721 void sched_setnuma(struct task_struct *p, int nid) 4722 { 4723 struct rq *rq; 4724 unsigned long flags; 4725 bool on_rq, running; 4726 4727 rq = task_rq_lock(p, &flags); 4728 on_rq = p->on_rq; 4729 running = task_current(rq, p); 4730 4731 if (on_rq) 4732 dequeue_task(rq, p, 0); 4733 if (running) 4734 p->sched_class->put_prev_task(rq, p); 4735 4736 p->numa_preferred_nid = nid; 4737 4738 if (running) 4739 p->sched_class->set_curr_task(rq); 4740 if (on_rq) 4741 enqueue_task(rq, p, 0); 4742 task_rq_unlock(rq, p, &flags); 4743 } 4744 #endif 4745 4746 /* 4747 * migration_cpu_stop - this will be executed by a highprio stopper thread 4748 * and performs thread migration by bumping thread off CPU then 4749 * 'pushing' onto another runqueue. 4750 */ 4751 static int migration_cpu_stop(void *data) 4752 { 4753 struct migration_arg *arg = data; 4754 4755 /* 4756 * The original target cpu might have gone down and we might 4757 * be on another cpu but it doesn't matter. 4758 */ 4759 local_irq_disable(); 4760 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4761 local_irq_enable(); 4762 return 0; 4763 } 4764 4765 #ifdef CONFIG_HOTPLUG_CPU 4766 4767 /* 4768 * Ensures that the idle task is using init_mm right before its cpu goes 4769 * offline. 4770 */ 4771 void idle_task_exit(void) 4772 { 4773 struct mm_struct *mm = current->active_mm; 4774 4775 BUG_ON(cpu_online(smp_processor_id())); 4776 4777 if (mm != &init_mm) { 4778 switch_mm(mm, &init_mm, current); 4779 finish_arch_post_lock_switch(); 4780 } 4781 mmdrop(mm); 4782 } 4783 4784 /* 4785 * Since this CPU is going 'away' for a while, fold any nr_active delta 4786 * we might have. Assumes we're called after migrate_tasks() so that the 4787 * nr_active count is stable. 4788 * 4789 * Also see the comment "Global load-average calculations". 4790 */ 4791 static void calc_load_migrate(struct rq *rq) 4792 { 4793 long delta = calc_load_fold_active(rq); 4794 if (delta) 4795 atomic_long_add(delta, &calc_load_tasks); 4796 } 4797 4798 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4799 { 4800 } 4801 4802 static const struct sched_class fake_sched_class = { 4803 .put_prev_task = put_prev_task_fake, 4804 }; 4805 4806 static struct task_struct fake_task = { 4807 /* 4808 * Avoid pull_{rt,dl}_task() 4809 */ 4810 .prio = MAX_PRIO + 1, 4811 .sched_class = &fake_sched_class, 4812 }; 4813 4814 /* 4815 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4816 * try_to_wake_up()->select_task_rq(). 4817 * 4818 * Called with rq->lock held even though we'er in stop_machine() and 4819 * there's no concurrency possible, we hold the required locks anyway 4820 * because of lock validation efforts. 4821 */ 4822 static void migrate_tasks(unsigned int dead_cpu) 4823 { 4824 struct rq *rq = cpu_rq(dead_cpu); 4825 struct task_struct *next, *stop = rq->stop; 4826 int dest_cpu; 4827 4828 /* 4829 * Fudge the rq selection such that the below task selection loop 4830 * doesn't get stuck on the currently eligible stop task. 4831 * 4832 * We're currently inside stop_machine() and the rq is either stuck 4833 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4834 * either way we should never end up calling schedule() until we're 4835 * done here. 4836 */ 4837 rq->stop = NULL; 4838 4839 /* 4840 * put_prev_task() and pick_next_task() sched 4841 * class method both need to have an up-to-date 4842 * value of rq->clock[_task] 4843 */ 4844 update_rq_clock(rq); 4845 4846 for ( ; ; ) { 4847 /* 4848 * There's this thread running, bail when that's the only 4849 * remaining thread. 4850 */ 4851 if (rq->nr_running == 1) 4852 break; 4853 4854 next = pick_next_task(rq, &fake_task); 4855 BUG_ON(!next); 4856 next->sched_class->put_prev_task(rq, next); 4857 4858 /* Find suitable destination for @next, with force if needed. */ 4859 dest_cpu = select_fallback_rq(dead_cpu, next); 4860 raw_spin_unlock(&rq->lock); 4861 4862 __migrate_task(next, dead_cpu, dest_cpu); 4863 4864 raw_spin_lock(&rq->lock); 4865 } 4866 4867 rq->stop = stop; 4868 } 4869 4870 #endif /* CONFIG_HOTPLUG_CPU */ 4871 4872 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4873 4874 static struct ctl_table sd_ctl_dir[] = { 4875 { 4876 .procname = "sched_domain", 4877 .mode = 0555, 4878 }, 4879 {} 4880 }; 4881 4882 static struct ctl_table sd_ctl_root[] = { 4883 { 4884 .procname = "kernel", 4885 .mode = 0555, 4886 .child = sd_ctl_dir, 4887 }, 4888 {} 4889 }; 4890 4891 static struct ctl_table *sd_alloc_ctl_entry(int n) 4892 { 4893 struct ctl_table *entry = 4894 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4895 4896 return entry; 4897 } 4898 4899 static void sd_free_ctl_entry(struct ctl_table **tablep) 4900 { 4901 struct ctl_table *entry; 4902 4903 /* 4904 * In the intermediate directories, both the child directory and 4905 * procname are dynamically allocated and could fail but the mode 4906 * will always be set. In the lowest directory the names are 4907 * static strings and all have proc handlers. 4908 */ 4909 for (entry = *tablep; entry->mode; entry++) { 4910 if (entry->child) 4911 sd_free_ctl_entry(&entry->child); 4912 if (entry->proc_handler == NULL) 4913 kfree(entry->procname); 4914 } 4915 4916 kfree(*tablep); 4917 *tablep = NULL; 4918 } 4919 4920 static int min_load_idx = 0; 4921 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4922 4923 static void 4924 set_table_entry(struct ctl_table *entry, 4925 const char *procname, void *data, int maxlen, 4926 umode_t mode, proc_handler *proc_handler, 4927 bool load_idx) 4928 { 4929 entry->procname = procname; 4930 entry->data = data; 4931 entry->maxlen = maxlen; 4932 entry->mode = mode; 4933 entry->proc_handler = proc_handler; 4934 4935 if (load_idx) { 4936 entry->extra1 = &min_load_idx; 4937 entry->extra2 = &max_load_idx; 4938 } 4939 } 4940 4941 static struct ctl_table * 4942 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4943 { 4944 struct ctl_table *table = sd_alloc_ctl_entry(14); 4945 4946 if (table == NULL) 4947 return NULL; 4948 4949 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4950 sizeof(long), 0644, proc_doulongvec_minmax, false); 4951 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4952 sizeof(long), 0644, proc_doulongvec_minmax, false); 4953 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4954 sizeof(int), 0644, proc_dointvec_minmax, true); 4955 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4956 sizeof(int), 0644, proc_dointvec_minmax, true); 4957 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4958 sizeof(int), 0644, proc_dointvec_minmax, true); 4959 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4960 sizeof(int), 0644, proc_dointvec_minmax, true); 4961 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4962 sizeof(int), 0644, proc_dointvec_minmax, true); 4963 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4964 sizeof(int), 0644, proc_dointvec_minmax, false); 4965 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4966 sizeof(int), 0644, proc_dointvec_minmax, false); 4967 set_table_entry(&table[9], "cache_nice_tries", 4968 &sd->cache_nice_tries, 4969 sizeof(int), 0644, proc_dointvec_minmax, false); 4970 set_table_entry(&table[10], "flags", &sd->flags, 4971 sizeof(int), 0644, proc_dointvec_minmax, false); 4972 set_table_entry(&table[11], "max_newidle_lb_cost", 4973 &sd->max_newidle_lb_cost, 4974 sizeof(long), 0644, proc_doulongvec_minmax, false); 4975 set_table_entry(&table[12], "name", sd->name, 4976 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4977 /* &table[13] is terminator */ 4978 4979 return table; 4980 } 4981 4982 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4983 { 4984 struct ctl_table *entry, *table; 4985 struct sched_domain *sd; 4986 int domain_num = 0, i; 4987 char buf[32]; 4988 4989 for_each_domain(cpu, sd) 4990 domain_num++; 4991 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4992 if (table == NULL) 4993 return NULL; 4994 4995 i = 0; 4996 for_each_domain(cpu, sd) { 4997 snprintf(buf, 32, "domain%d", i); 4998 entry->procname = kstrdup(buf, GFP_KERNEL); 4999 entry->mode = 0555; 5000 entry->child = sd_alloc_ctl_domain_table(sd); 5001 entry++; 5002 i++; 5003 } 5004 return table; 5005 } 5006 5007 static struct ctl_table_header *sd_sysctl_header; 5008 static void register_sched_domain_sysctl(void) 5009 { 5010 int i, cpu_num = num_possible_cpus(); 5011 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5012 char buf[32]; 5013 5014 WARN_ON(sd_ctl_dir[0].child); 5015 sd_ctl_dir[0].child = entry; 5016 5017 if (entry == NULL) 5018 return; 5019 5020 for_each_possible_cpu(i) { 5021 snprintf(buf, 32, "cpu%d", i); 5022 entry->procname = kstrdup(buf, GFP_KERNEL); 5023 entry->mode = 0555; 5024 entry->child = sd_alloc_ctl_cpu_table(i); 5025 entry++; 5026 } 5027 5028 WARN_ON(sd_sysctl_header); 5029 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5030 } 5031 5032 /* may be called multiple times per register */ 5033 static void unregister_sched_domain_sysctl(void) 5034 { 5035 if (sd_sysctl_header) 5036 unregister_sysctl_table(sd_sysctl_header); 5037 sd_sysctl_header = NULL; 5038 if (sd_ctl_dir[0].child) 5039 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5040 } 5041 #else 5042 static void register_sched_domain_sysctl(void) 5043 { 5044 } 5045 static void unregister_sched_domain_sysctl(void) 5046 { 5047 } 5048 #endif 5049 5050 static void set_rq_online(struct rq *rq) 5051 { 5052 if (!rq->online) { 5053 const struct sched_class *class; 5054 5055 cpumask_set_cpu(rq->cpu, rq->rd->online); 5056 rq->online = 1; 5057 5058 for_each_class(class) { 5059 if (class->rq_online) 5060 class->rq_online(rq); 5061 } 5062 } 5063 } 5064 5065 static void set_rq_offline(struct rq *rq) 5066 { 5067 if (rq->online) { 5068 const struct sched_class *class; 5069 5070 for_each_class(class) { 5071 if (class->rq_offline) 5072 class->rq_offline(rq); 5073 } 5074 5075 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5076 rq->online = 0; 5077 } 5078 } 5079 5080 /* 5081 * migration_call - callback that gets triggered when a CPU is added. 5082 * Here we can start up the necessary migration thread for the new CPU. 5083 */ 5084 static int 5085 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5086 { 5087 int cpu = (long)hcpu; 5088 unsigned long flags; 5089 struct rq *rq = cpu_rq(cpu); 5090 5091 switch (action & ~CPU_TASKS_FROZEN) { 5092 5093 case CPU_UP_PREPARE: 5094 rq->calc_load_update = calc_load_update; 5095 break; 5096 5097 case CPU_ONLINE: 5098 /* Update our root-domain */ 5099 raw_spin_lock_irqsave(&rq->lock, flags); 5100 if (rq->rd) { 5101 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5102 5103 set_rq_online(rq); 5104 } 5105 raw_spin_unlock_irqrestore(&rq->lock, flags); 5106 break; 5107 5108 #ifdef CONFIG_HOTPLUG_CPU 5109 case CPU_DYING: 5110 sched_ttwu_pending(); 5111 /* Update our root-domain */ 5112 raw_spin_lock_irqsave(&rq->lock, flags); 5113 if (rq->rd) { 5114 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5115 set_rq_offline(rq); 5116 } 5117 migrate_tasks(cpu); 5118 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5119 raw_spin_unlock_irqrestore(&rq->lock, flags); 5120 break; 5121 5122 case CPU_DEAD: 5123 calc_load_migrate(rq); 5124 break; 5125 #endif 5126 } 5127 5128 update_max_interval(); 5129 5130 return NOTIFY_OK; 5131 } 5132 5133 /* 5134 * Register at high priority so that task migration (migrate_all_tasks) 5135 * happens before everything else. This has to be lower priority than 5136 * the notifier in the perf_event subsystem, though. 5137 */ 5138 static struct notifier_block migration_notifier = { 5139 .notifier_call = migration_call, 5140 .priority = CPU_PRI_MIGRATION, 5141 }; 5142 5143 static void __cpuinit set_cpu_rq_start_time(void) 5144 { 5145 int cpu = smp_processor_id(); 5146 struct rq *rq = cpu_rq(cpu); 5147 rq->age_stamp = sched_clock_cpu(cpu); 5148 } 5149 5150 static int sched_cpu_active(struct notifier_block *nfb, 5151 unsigned long action, void *hcpu) 5152 { 5153 switch (action & ~CPU_TASKS_FROZEN) { 5154 case CPU_STARTING: 5155 set_cpu_rq_start_time(); 5156 return NOTIFY_OK; 5157 case CPU_DOWN_FAILED: 5158 set_cpu_active((long)hcpu, true); 5159 return NOTIFY_OK; 5160 default: 5161 return NOTIFY_DONE; 5162 } 5163 } 5164 5165 static int sched_cpu_inactive(struct notifier_block *nfb, 5166 unsigned long action, void *hcpu) 5167 { 5168 unsigned long flags; 5169 long cpu = (long)hcpu; 5170 5171 switch (action & ~CPU_TASKS_FROZEN) { 5172 case CPU_DOWN_PREPARE: 5173 set_cpu_active(cpu, false); 5174 5175 /* explicitly allow suspend */ 5176 if (!(action & CPU_TASKS_FROZEN)) { 5177 struct dl_bw *dl_b = dl_bw_of(cpu); 5178 bool overflow; 5179 int cpus; 5180 5181 raw_spin_lock_irqsave(&dl_b->lock, flags); 5182 cpus = dl_bw_cpus(cpu); 5183 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5184 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5185 5186 if (overflow) 5187 return notifier_from_errno(-EBUSY); 5188 } 5189 return NOTIFY_OK; 5190 } 5191 5192 return NOTIFY_DONE; 5193 } 5194 5195 static int __init migration_init(void) 5196 { 5197 void *cpu = (void *)(long)smp_processor_id(); 5198 int err; 5199 5200 /* Initialize migration for the boot CPU */ 5201 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5202 BUG_ON(err == NOTIFY_BAD); 5203 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5204 register_cpu_notifier(&migration_notifier); 5205 5206 /* Register cpu active notifiers */ 5207 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5208 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5209 5210 return 0; 5211 } 5212 early_initcall(migration_init); 5213 #endif 5214 5215 #ifdef CONFIG_SMP 5216 5217 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5218 5219 #ifdef CONFIG_SCHED_DEBUG 5220 5221 static __read_mostly int sched_debug_enabled; 5222 5223 static int __init sched_debug_setup(char *str) 5224 { 5225 sched_debug_enabled = 1; 5226 5227 return 0; 5228 } 5229 early_param("sched_debug", sched_debug_setup); 5230 5231 static inline bool sched_debug(void) 5232 { 5233 return sched_debug_enabled; 5234 } 5235 5236 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5237 struct cpumask *groupmask) 5238 { 5239 struct sched_group *group = sd->groups; 5240 char str[256]; 5241 5242 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5243 cpumask_clear(groupmask); 5244 5245 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5246 5247 if (!(sd->flags & SD_LOAD_BALANCE)) { 5248 printk("does not load-balance\n"); 5249 if (sd->parent) 5250 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5251 " has parent"); 5252 return -1; 5253 } 5254 5255 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5256 5257 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5258 printk(KERN_ERR "ERROR: domain->span does not contain " 5259 "CPU%d\n", cpu); 5260 } 5261 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5262 printk(KERN_ERR "ERROR: domain->groups does not contain" 5263 " CPU%d\n", cpu); 5264 } 5265 5266 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5267 do { 5268 if (!group) { 5269 printk("\n"); 5270 printk(KERN_ERR "ERROR: group is NULL\n"); 5271 break; 5272 } 5273 5274 /* 5275 * Even though we initialize ->capacity to something semi-sane, 5276 * we leave capacity_orig unset. This allows us to detect if 5277 * domain iteration is still funny without causing /0 traps. 5278 */ 5279 if (!group->sgc->capacity_orig) { 5280 printk(KERN_CONT "\n"); 5281 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5282 break; 5283 } 5284 5285 if (!cpumask_weight(sched_group_cpus(group))) { 5286 printk(KERN_CONT "\n"); 5287 printk(KERN_ERR "ERROR: empty group\n"); 5288 break; 5289 } 5290 5291 if (!(sd->flags & SD_OVERLAP) && 5292 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5293 printk(KERN_CONT "\n"); 5294 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5295 break; 5296 } 5297 5298 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5299 5300 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5301 5302 printk(KERN_CONT " %s", str); 5303 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5304 printk(KERN_CONT " (cpu_capacity = %d)", 5305 group->sgc->capacity); 5306 } 5307 5308 group = group->next; 5309 } while (group != sd->groups); 5310 printk(KERN_CONT "\n"); 5311 5312 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5313 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5314 5315 if (sd->parent && 5316 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5317 printk(KERN_ERR "ERROR: parent span is not a superset " 5318 "of domain->span\n"); 5319 return 0; 5320 } 5321 5322 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5323 { 5324 int level = 0; 5325 5326 if (!sched_debug_enabled) 5327 return; 5328 5329 if (!sd) { 5330 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5331 return; 5332 } 5333 5334 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5335 5336 for (;;) { 5337 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5338 break; 5339 level++; 5340 sd = sd->parent; 5341 if (!sd) 5342 break; 5343 } 5344 } 5345 #else /* !CONFIG_SCHED_DEBUG */ 5346 # define sched_domain_debug(sd, cpu) do { } while (0) 5347 static inline bool sched_debug(void) 5348 { 5349 return false; 5350 } 5351 #endif /* CONFIG_SCHED_DEBUG */ 5352 5353 static int sd_degenerate(struct sched_domain *sd) 5354 { 5355 if (cpumask_weight(sched_domain_span(sd)) == 1) 5356 return 1; 5357 5358 /* Following flags need at least 2 groups */ 5359 if (sd->flags & (SD_LOAD_BALANCE | 5360 SD_BALANCE_NEWIDLE | 5361 SD_BALANCE_FORK | 5362 SD_BALANCE_EXEC | 5363 SD_SHARE_CPUCAPACITY | 5364 SD_SHARE_PKG_RESOURCES | 5365 SD_SHARE_POWERDOMAIN)) { 5366 if (sd->groups != sd->groups->next) 5367 return 0; 5368 } 5369 5370 /* Following flags don't use groups */ 5371 if (sd->flags & (SD_WAKE_AFFINE)) 5372 return 0; 5373 5374 return 1; 5375 } 5376 5377 static int 5378 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5379 { 5380 unsigned long cflags = sd->flags, pflags = parent->flags; 5381 5382 if (sd_degenerate(parent)) 5383 return 1; 5384 5385 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5386 return 0; 5387 5388 /* Flags needing groups don't count if only 1 group in parent */ 5389 if (parent->groups == parent->groups->next) { 5390 pflags &= ~(SD_LOAD_BALANCE | 5391 SD_BALANCE_NEWIDLE | 5392 SD_BALANCE_FORK | 5393 SD_BALANCE_EXEC | 5394 SD_SHARE_CPUCAPACITY | 5395 SD_SHARE_PKG_RESOURCES | 5396 SD_PREFER_SIBLING | 5397 SD_SHARE_POWERDOMAIN); 5398 if (nr_node_ids == 1) 5399 pflags &= ~SD_SERIALIZE; 5400 } 5401 if (~cflags & pflags) 5402 return 0; 5403 5404 return 1; 5405 } 5406 5407 static void free_rootdomain(struct rcu_head *rcu) 5408 { 5409 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5410 5411 cpupri_cleanup(&rd->cpupri); 5412 cpudl_cleanup(&rd->cpudl); 5413 free_cpumask_var(rd->dlo_mask); 5414 free_cpumask_var(rd->rto_mask); 5415 free_cpumask_var(rd->online); 5416 free_cpumask_var(rd->span); 5417 kfree(rd); 5418 } 5419 5420 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5421 { 5422 struct root_domain *old_rd = NULL; 5423 unsigned long flags; 5424 5425 raw_spin_lock_irqsave(&rq->lock, flags); 5426 5427 if (rq->rd) { 5428 old_rd = rq->rd; 5429 5430 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5431 set_rq_offline(rq); 5432 5433 cpumask_clear_cpu(rq->cpu, old_rd->span); 5434 5435 /* 5436 * If we dont want to free the old_rd yet then 5437 * set old_rd to NULL to skip the freeing later 5438 * in this function: 5439 */ 5440 if (!atomic_dec_and_test(&old_rd->refcount)) 5441 old_rd = NULL; 5442 } 5443 5444 atomic_inc(&rd->refcount); 5445 rq->rd = rd; 5446 5447 cpumask_set_cpu(rq->cpu, rd->span); 5448 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5449 set_rq_online(rq); 5450 5451 raw_spin_unlock_irqrestore(&rq->lock, flags); 5452 5453 if (old_rd) 5454 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5455 } 5456 5457 static int init_rootdomain(struct root_domain *rd) 5458 { 5459 memset(rd, 0, sizeof(*rd)); 5460 5461 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5462 goto out; 5463 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5464 goto free_span; 5465 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5466 goto free_online; 5467 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5468 goto free_dlo_mask; 5469 5470 init_dl_bw(&rd->dl_bw); 5471 if (cpudl_init(&rd->cpudl) != 0) 5472 goto free_dlo_mask; 5473 5474 if (cpupri_init(&rd->cpupri) != 0) 5475 goto free_rto_mask; 5476 return 0; 5477 5478 free_rto_mask: 5479 free_cpumask_var(rd->rto_mask); 5480 free_dlo_mask: 5481 free_cpumask_var(rd->dlo_mask); 5482 free_online: 5483 free_cpumask_var(rd->online); 5484 free_span: 5485 free_cpumask_var(rd->span); 5486 out: 5487 return -ENOMEM; 5488 } 5489 5490 /* 5491 * By default the system creates a single root-domain with all cpus as 5492 * members (mimicking the global state we have today). 5493 */ 5494 struct root_domain def_root_domain; 5495 5496 static void init_defrootdomain(void) 5497 { 5498 init_rootdomain(&def_root_domain); 5499 5500 atomic_set(&def_root_domain.refcount, 1); 5501 } 5502 5503 static struct root_domain *alloc_rootdomain(void) 5504 { 5505 struct root_domain *rd; 5506 5507 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5508 if (!rd) 5509 return NULL; 5510 5511 if (init_rootdomain(rd) != 0) { 5512 kfree(rd); 5513 return NULL; 5514 } 5515 5516 return rd; 5517 } 5518 5519 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5520 { 5521 struct sched_group *tmp, *first; 5522 5523 if (!sg) 5524 return; 5525 5526 first = sg; 5527 do { 5528 tmp = sg->next; 5529 5530 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5531 kfree(sg->sgc); 5532 5533 kfree(sg); 5534 sg = tmp; 5535 } while (sg != first); 5536 } 5537 5538 static void free_sched_domain(struct rcu_head *rcu) 5539 { 5540 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5541 5542 /* 5543 * If its an overlapping domain it has private groups, iterate and 5544 * nuke them all. 5545 */ 5546 if (sd->flags & SD_OVERLAP) { 5547 free_sched_groups(sd->groups, 1); 5548 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5549 kfree(sd->groups->sgc); 5550 kfree(sd->groups); 5551 } 5552 kfree(sd); 5553 } 5554 5555 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5556 { 5557 call_rcu(&sd->rcu, free_sched_domain); 5558 } 5559 5560 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5561 { 5562 for (; sd; sd = sd->parent) 5563 destroy_sched_domain(sd, cpu); 5564 } 5565 5566 /* 5567 * Keep a special pointer to the highest sched_domain that has 5568 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5569 * allows us to avoid some pointer chasing select_idle_sibling(). 5570 * 5571 * Also keep a unique ID per domain (we use the first cpu number in 5572 * the cpumask of the domain), this allows us to quickly tell if 5573 * two cpus are in the same cache domain, see cpus_share_cache(). 5574 */ 5575 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5576 DEFINE_PER_CPU(int, sd_llc_size); 5577 DEFINE_PER_CPU(int, sd_llc_id); 5578 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5579 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5580 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5581 5582 static void update_top_cache_domain(int cpu) 5583 { 5584 struct sched_domain *sd; 5585 struct sched_domain *busy_sd = NULL; 5586 int id = cpu; 5587 int size = 1; 5588 5589 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5590 if (sd) { 5591 id = cpumask_first(sched_domain_span(sd)); 5592 size = cpumask_weight(sched_domain_span(sd)); 5593 busy_sd = sd->parent; /* sd_busy */ 5594 } 5595 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5596 5597 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5598 per_cpu(sd_llc_size, cpu) = size; 5599 per_cpu(sd_llc_id, cpu) = id; 5600 5601 sd = lowest_flag_domain(cpu, SD_NUMA); 5602 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5603 5604 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5605 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5606 } 5607 5608 /* 5609 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5610 * hold the hotplug lock. 5611 */ 5612 static void 5613 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5614 { 5615 struct rq *rq = cpu_rq(cpu); 5616 struct sched_domain *tmp; 5617 5618 /* Remove the sched domains which do not contribute to scheduling. */ 5619 for (tmp = sd; tmp; ) { 5620 struct sched_domain *parent = tmp->parent; 5621 if (!parent) 5622 break; 5623 5624 if (sd_parent_degenerate(tmp, parent)) { 5625 tmp->parent = parent->parent; 5626 if (parent->parent) 5627 parent->parent->child = tmp; 5628 /* 5629 * Transfer SD_PREFER_SIBLING down in case of a 5630 * degenerate parent; the spans match for this 5631 * so the property transfers. 5632 */ 5633 if (parent->flags & SD_PREFER_SIBLING) 5634 tmp->flags |= SD_PREFER_SIBLING; 5635 destroy_sched_domain(parent, cpu); 5636 } else 5637 tmp = tmp->parent; 5638 } 5639 5640 if (sd && sd_degenerate(sd)) { 5641 tmp = sd; 5642 sd = sd->parent; 5643 destroy_sched_domain(tmp, cpu); 5644 if (sd) 5645 sd->child = NULL; 5646 } 5647 5648 sched_domain_debug(sd, cpu); 5649 5650 rq_attach_root(rq, rd); 5651 tmp = rq->sd; 5652 rcu_assign_pointer(rq->sd, sd); 5653 destroy_sched_domains(tmp, cpu); 5654 5655 update_top_cache_domain(cpu); 5656 } 5657 5658 /* cpus with isolated domains */ 5659 static cpumask_var_t cpu_isolated_map; 5660 5661 /* Setup the mask of cpus configured for isolated domains */ 5662 static int __init isolated_cpu_setup(char *str) 5663 { 5664 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5665 cpulist_parse(str, cpu_isolated_map); 5666 return 1; 5667 } 5668 5669 __setup("isolcpus=", isolated_cpu_setup); 5670 5671 struct s_data { 5672 struct sched_domain ** __percpu sd; 5673 struct root_domain *rd; 5674 }; 5675 5676 enum s_alloc { 5677 sa_rootdomain, 5678 sa_sd, 5679 sa_sd_storage, 5680 sa_none, 5681 }; 5682 5683 /* 5684 * Build an iteration mask that can exclude certain CPUs from the upwards 5685 * domain traversal. 5686 * 5687 * Asymmetric node setups can result in situations where the domain tree is of 5688 * unequal depth, make sure to skip domains that already cover the entire 5689 * range. 5690 * 5691 * In that case build_sched_domains() will have terminated the iteration early 5692 * and our sibling sd spans will be empty. Domains should always include the 5693 * cpu they're built on, so check that. 5694 * 5695 */ 5696 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5697 { 5698 const struct cpumask *span = sched_domain_span(sd); 5699 struct sd_data *sdd = sd->private; 5700 struct sched_domain *sibling; 5701 int i; 5702 5703 for_each_cpu(i, span) { 5704 sibling = *per_cpu_ptr(sdd->sd, i); 5705 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5706 continue; 5707 5708 cpumask_set_cpu(i, sched_group_mask(sg)); 5709 } 5710 } 5711 5712 /* 5713 * Return the canonical balance cpu for this group, this is the first cpu 5714 * of this group that's also in the iteration mask. 5715 */ 5716 int group_balance_cpu(struct sched_group *sg) 5717 { 5718 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5719 } 5720 5721 static int 5722 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5723 { 5724 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5725 const struct cpumask *span = sched_domain_span(sd); 5726 struct cpumask *covered = sched_domains_tmpmask; 5727 struct sd_data *sdd = sd->private; 5728 struct sched_domain *child; 5729 int i; 5730 5731 cpumask_clear(covered); 5732 5733 for_each_cpu(i, span) { 5734 struct cpumask *sg_span; 5735 5736 if (cpumask_test_cpu(i, covered)) 5737 continue; 5738 5739 child = *per_cpu_ptr(sdd->sd, i); 5740 5741 /* See the comment near build_group_mask(). */ 5742 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5743 continue; 5744 5745 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5746 GFP_KERNEL, cpu_to_node(cpu)); 5747 5748 if (!sg) 5749 goto fail; 5750 5751 sg_span = sched_group_cpus(sg); 5752 if (child->child) { 5753 child = child->child; 5754 cpumask_copy(sg_span, sched_domain_span(child)); 5755 } else 5756 cpumask_set_cpu(i, sg_span); 5757 5758 cpumask_or(covered, covered, sg_span); 5759 5760 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5761 if (atomic_inc_return(&sg->sgc->ref) == 1) 5762 build_group_mask(sd, sg); 5763 5764 /* 5765 * Initialize sgc->capacity such that even if we mess up the 5766 * domains and no possible iteration will get us here, we won't 5767 * die on a /0 trap. 5768 */ 5769 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5770 sg->sgc->capacity_orig = sg->sgc->capacity; 5771 5772 /* 5773 * Make sure the first group of this domain contains the 5774 * canonical balance cpu. Otherwise the sched_domain iteration 5775 * breaks. See update_sg_lb_stats(). 5776 */ 5777 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5778 group_balance_cpu(sg) == cpu) 5779 groups = sg; 5780 5781 if (!first) 5782 first = sg; 5783 if (last) 5784 last->next = sg; 5785 last = sg; 5786 last->next = first; 5787 } 5788 sd->groups = groups; 5789 5790 return 0; 5791 5792 fail: 5793 free_sched_groups(first, 0); 5794 5795 return -ENOMEM; 5796 } 5797 5798 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5799 { 5800 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5801 struct sched_domain *child = sd->child; 5802 5803 if (child) 5804 cpu = cpumask_first(sched_domain_span(child)); 5805 5806 if (sg) { 5807 *sg = *per_cpu_ptr(sdd->sg, cpu); 5808 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5809 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5810 } 5811 5812 return cpu; 5813 } 5814 5815 /* 5816 * build_sched_groups will build a circular linked list of the groups 5817 * covered by the given span, and will set each group's ->cpumask correctly, 5818 * and ->cpu_capacity to 0. 5819 * 5820 * Assumes the sched_domain tree is fully constructed 5821 */ 5822 static int 5823 build_sched_groups(struct sched_domain *sd, int cpu) 5824 { 5825 struct sched_group *first = NULL, *last = NULL; 5826 struct sd_data *sdd = sd->private; 5827 const struct cpumask *span = sched_domain_span(sd); 5828 struct cpumask *covered; 5829 int i; 5830 5831 get_group(cpu, sdd, &sd->groups); 5832 atomic_inc(&sd->groups->ref); 5833 5834 if (cpu != cpumask_first(span)) 5835 return 0; 5836 5837 lockdep_assert_held(&sched_domains_mutex); 5838 covered = sched_domains_tmpmask; 5839 5840 cpumask_clear(covered); 5841 5842 for_each_cpu(i, span) { 5843 struct sched_group *sg; 5844 int group, j; 5845 5846 if (cpumask_test_cpu(i, covered)) 5847 continue; 5848 5849 group = get_group(i, sdd, &sg); 5850 cpumask_setall(sched_group_mask(sg)); 5851 5852 for_each_cpu(j, span) { 5853 if (get_group(j, sdd, NULL) != group) 5854 continue; 5855 5856 cpumask_set_cpu(j, covered); 5857 cpumask_set_cpu(j, sched_group_cpus(sg)); 5858 } 5859 5860 if (!first) 5861 first = sg; 5862 if (last) 5863 last->next = sg; 5864 last = sg; 5865 } 5866 last->next = first; 5867 5868 return 0; 5869 } 5870 5871 /* 5872 * Initialize sched groups cpu_capacity. 5873 * 5874 * cpu_capacity indicates the capacity of sched group, which is used while 5875 * distributing the load between different sched groups in a sched domain. 5876 * Typically cpu_capacity for all the groups in a sched domain will be same 5877 * unless there are asymmetries in the topology. If there are asymmetries, 5878 * group having more cpu_capacity will pickup more load compared to the 5879 * group having less cpu_capacity. 5880 */ 5881 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 5882 { 5883 struct sched_group *sg = sd->groups; 5884 5885 WARN_ON(!sg); 5886 5887 do { 5888 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5889 sg = sg->next; 5890 } while (sg != sd->groups); 5891 5892 if (cpu != group_balance_cpu(sg)) 5893 return; 5894 5895 update_group_capacity(sd, cpu); 5896 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 5897 } 5898 5899 /* 5900 * Initializers for schedule domains 5901 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5902 */ 5903 5904 static int default_relax_domain_level = -1; 5905 int sched_domain_level_max; 5906 5907 static int __init setup_relax_domain_level(char *str) 5908 { 5909 if (kstrtoint(str, 0, &default_relax_domain_level)) 5910 pr_warn("Unable to set relax_domain_level\n"); 5911 5912 return 1; 5913 } 5914 __setup("relax_domain_level=", setup_relax_domain_level); 5915 5916 static void set_domain_attribute(struct sched_domain *sd, 5917 struct sched_domain_attr *attr) 5918 { 5919 int request; 5920 5921 if (!attr || attr->relax_domain_level < 0) { 5922 if (default_relax_domain_level < 0) 5923 return; 5924 else 5925 request = default_relax_domain_level; 5926 } else 5927 request = attr->relax_domain_level; 5928 if (request < sd->level) { 5929 /* turn off idle balance on this domain */ 5930 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5931 } else { 5932 /* turn on idle balance on this domain */ 5933 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5934 } 5935 } 5936 5937 static void __sdt_free(const struct cpumask *cpu_map); 5938 static int __sdt_alloc(const struct cpumask *cpu_map); 5939 5940 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5941 const struct cpumask *cpu_map) 5942 { 5943 switch (what) { 5944 case sa_rootdomain: 5945 if (!atomic_read(&d->rd->refcount)) 5946 free_rootdomain(&d->rd->rcu); /* fall through */ 5947 case sa_sd: 5948 free_percpu(d->sd); /* fall through */ 5949 case sa_sd_storage: 5950 __sdt_free(cpu_map); /* fall through */ 5951 case sa_none: 5952 break; 5953 } 5954 } 5955 5956 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5957 const struct cpumask *cpu_map) 5958 { 5959 memset(d, 0, sizeof(*d)); 5960 5961 if (__sdt_alloc(cpu_map)) 5962 return sa_sd_storage; 5963 d->sd = alloc_percpu(struct sched_domain *); 5964 if (!d->sd) 5965 return sa_sd_storage; 5966 d->rd = alloc_rootdomain(); 5967 if (!d->rd) 5968 return sa_sd; 5969 return sa_rootdomain; 5970 } 5971 5972 /* 5973 * NULL the sd_data elements we've used to build the sched_domain and 5974 * sched_group structure so that the subsequent __free_domain_allocs() 5975 * will not free the data we're using. 5976 */ 5977 static void claim_allocations(int cpu, struct sched_domain *sd) 5978 { 5979 struct sd_data *sdd = sd->private; 5980 5981 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5982 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5983 5984 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5985 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5986 5987 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 5988 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 5989 } 5990 5991 #ifdef CONFIG_NUMA 5992 static int sched_domains_numa_levels; 5993 static int *sched_domains_numa_distance; 5994 static struct cpumask ***sched_domains_numa_masks; 5995 static int sched_domains_curr_level; 5996 #endif 5997 5998 /* 5999 * SD_flags allowed in topology descriptions. 6000 * 6001 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6002 * SD_SHARE_PKG_RESOURCES - describes shared caches 6003 * SD_NUMA - describes NUMA topologies 6004 * SD_SHARE_POWERDOMAIN - describes shared power domain 6005 * 6006 * Odd one out: 6007 * SD_ASYM_PACKING - describes SMT quirks 6008 */ 6009 #define TOPOLOGY_SD_FLAGS \ 6010 (SD_SHARE_CPUCAPACITY | \ 6011 SD_SHARE_PKG_RESOURCES | \ 6012 SD_NUMA | \ 6013 SD_ASYM_PACKING | \ 6014 SD_SHARE_POWERDOMAIN) 6015 6016 static struct sched_domain * 6017 sd_init(struct sched_domain_topology_level *tl, int cpu) 6018 { 6019 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6020 int sd_weight, sd_flags = 0; 6021 6022 #ifdef CONFIG_NUMA 6023 /* 6024 * Ugly hack to pass state to sd_numa_mask()... 6025 */ 6026 sched_domains_curr_level = tl->numa_level; 6027 #endif 6028 6029 sd_weight = cpumask_weight(tl->mask(cpu)); 6030 6031 if (tl->sd_flags) 6032 sd_flags = (*tl->sd_flags)(); 6033 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6034 "wrong sd_flags in topology description\n")) 6035 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6036 6037 *sd = (struct sched_domain){ 6038 .min_interval = sd_weight, 6039 .max_interval = 2*sd_weight, 6040 .busy_factor = 32, 6041 .imbalance_pct = 125, 6042 6043 .cache_nice_tries = 0, 6044 .busy_idx = 0, 6045 .idle_idx = 0, 6046 .newidle_idx = 0, 6047 .wake_idx = 0, 6048 .forkexec_idx = 0, 6049 6050 .flags = 1*SD_LOAD_BALANCE 6051 | 1*SD_BALANCE_NEWIDLE 6052 | 1*SD_BALANCE_EXEC 6053 | 1*SD_BALANCE_FORK 6054 | 0*SD_BALANCE_WAKE 6055 | 1*SD_WAKE_AFFINE 6056 | 0*SD_SHARE_CPUCAPACITY 6057 | 0*SD_SHARE_PKG_RESOURCES 6058 | 0*SD_SERIALIZE 6059 | 0*SD_PREFER_SIBLING 6060 | 0*SD_NUMA 6061 | sd_flags 6062 , 6063 6064 .last_balance = jiffies, 6065 .balance_interval = sd_weight, 6066 .smt_gain = 0, 6067 .max_newidle_lb_cost = 0, 6068 .next_decay_max_lb_cost = jiffies, 6069 #ifdef CONFIG_SCHED_DEBUG 6070 .name = tl->name, 6071 #endif 6072 }; 6073 6074 /* 6075 * Convert topological properties into behaviour. 6076 */ 6077 6078 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6079 sd->imbalance_pct = 110; 6080 sd->smt_gain = 1178; /* ~15% */ 6081 6082 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6083 sd->imbalance_pct = 117; 6084 sd->cache_nice_tries = 1; 6085 sd->busy_idx = 2; 6086 6087 #ifdef CONFIG_NUMA 6088 } else if (sd->flags & SD_NUMA) { 6089 sd->cache_nice_tries = 2; 6090 sd->busy_idx = 3; 6091 sd->idle_idx = 2; 6092 6093 sd->flags |= SD_SERIALIZE; 6094 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6095 sd->flags &= ~(SD_BALANCE_EXEC | 6096 SD_BALANCE_FORK | 6097 SD_WAKE_AFFINE); 6098 } 6099 6100 #endif 6101 } else { 6102 sd->flags |= SD_PREFER_SIBLING; 6103 sd->cache_nice_tries = 1; 6104 sd->busy_idx = 2; 6105 sd->idle_idx = 1; 6106 } 6107 6108 sd->private = &tl->data; 6109 6110 return sd; 6111 } 6112 6113 /* 6114 * Topology list, bottom-up. 6115 */ 6116 static struct sched_domain_topology_level default_topology[] = { 6117 #ifdef CONFIG_SCHED_SMT 6118 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6119 #endif 6120 #ifdef CONFIG_SCHED_MC 6121 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6122 #endif 6123 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6124 { NULL, }, 6125 }; 6126 6127 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6128 6129 #define for_each_sd_topology(tl) \ 6130 for (tl = sched_domain_topology; tl->mask; tl++) 6131 6132 void set_sched_topology(struct sched_domain_topology_level *tl) 6133 { 6134 sched_domain_topology = tl; 6135 } 6136 6137 #ifdef CONFIG_NUMA 6138 6139 static const struct cpumask *sd_numa_mask(int cpu) 6140 { 6141 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6142 } 6143 6144 static void sched_numa_warn(const char *str) 6145 { 6146 static int done = false; 6147 int i,j; 6148 6149 if (done) 6150 return; 6151 6152 done = true; 6153 6154 printk(KERN_WARNING "ERROR: %s\n\n", str); 6155 6156 for (i = 0; i < nr_node_ids; i++) { 6157 printk(KERN_WARNING " "); 6158 for (j = 0; j < nr_node_ids; j++) 6159 printk(KERN_CONT "%02d ", node_distance(i,j)); 6160 printk(KERN_CONT "\n"); 6161 } 6162 printk(KERN_WARNING "\n"); 6163 } 6164 6165 static bool find_numa_distance(int distance) 6166 { 6167 int i; 6168 6169 if (distance == node_distance(0, 0)) 6170 return true; 6171 6172 for (i = 0; i < sched_domains_numa_levels; i++) { 6173 if (sched_domains_numa_distance[i] == distance) 6174 return true; 6175 } 6176 6177 return false; 6178 } 6179 6180 static void sched_init_numa(void) 6181 { 6182 int next_distance, curr_distance = node_distance(0, 0); 6183 struct sched_domain_topology_level *tl; 6184 int level = 0; 6185 int i, j, k; 6186 6187 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6188 if (!sched_domains_numa_distance) 6189 return; 6190 6191 /* 6192 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6193 * unique distances in the node_distance() table. 6194 * 6195 * Assumes node_distance(0,j) includes all distances in 6196 * node_distance(i,j) in order to avoid cubic time. 6197 */ 6198 next_distance = curr_distance; 6199 for (i = 0; i < nr_node_ids; i++) { 6200 for (j = 0; j < nr_node_ids; j++) { 6201 for (k = 0; k < nr_node_ids; k++) { 6202 int distance = node_distance(i, k); 6203 6204 if (distance > curr_distance && 6205 (distance < next_distance || 6206 next_distance == curr_distance)) 6207 next_distance = distance; 6208 6209 /* 6210 * While not a strong assumption it would be nice to know 6211 * about cases where if node A is connected to B, B is not 6212 * equally connected to A. 6213 */ 6214 if (sched_debug() && node_distance(k, i) != distance) 6215 sched_numa_warn("Node-distance not symmetric"); 6216 6217 if (sched_debug() && i && !find_numa_distance(distance)) 6218 sched_numa_warn("Node-0 not representative"); 6219 } 6220 if (next_distance != curr_distance) { 6221 sched_domains_numa_distance[level++] = next_distance; 6222 sched_domains_numa_levels = level; 6223 curr_distance = next_distance; 6224 } else break; 6225 } 6226 6227 /* 6228 * In case of sched_debug() we verify the above assumption. 6229 */ 6230 if (!sched_debug()) 6231 break; 6232 } 6233 /* 6234 * 'level' contains the number of unique distances, excluding the 6235 * identity distance node_distance(i,i). 6236 * 6237 * The sched_domains_numa_distance[] array includes the actual distance 6238 * numbers. 6239 */ 6240 6241 /* 6242 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6243 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6244 * the array will contain less then 'level' members. This could be 6245 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6246 * in other functions. 6247 * 6248 * We reset it to 'level' at the end of this function. 6249 */ 6250 sched_domains_numa_levels = 0; 6251 6252 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6253 if (!sched_domains_numa_masks) 6254 return; 6255 6256 /* 6257 * Now for each level, construct a mask per node which contains all 6258 * cpus of nodes that are that many hops away from us. 6259 */ 6260 for (i = 0; i < level; i++) { 6261 sched_domains_numa_masks[i] = 6262 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6263 if (!sched_domains_numa_masks[i]) 6264 return; 6265 6266 for (j = 0; j < nr_node_ids; j++) { 6267 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6268 if (!mask) 6269 return; 6270 6271 sched_domains_numa_masks[i][j] = mask; 6272 6273 for (k = 0; k < nr_node_ids; k++) { 6274 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6275 continue; 6276 6277 cpumask_or(mask, mask, cpumask_of_node(k)); 6278 } 6279 } 6280 } 6281 6282 /* Compute default topology size */ 6283 for (i = 0; sched_domain_topology[i].mask; i++); 6284 6285 tl = kzalloc((i + level + 1) * 6286 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6287 if (!tl) 6288 return; 6289 6290 /* 6291 * Copy the default topology bits.. 6292 */ 6293 for (i = 0; sched_domain_topology[i].mask; i++) 6294 tl[i] = sched_domain_topology[i]; 6295 6296 /* 6297 * .. and append 'j' levels of NUMA goodness. 6298 */ 6299 for (j = 0; j < level; i++, j++) { 6300 tl[i] = (struct sched_domain_topology_level){ 6301 .mask = sd_numa_mask, 6302 .sd_flags = cpu_numa_flags, 6303 .flags = SDTL_OVERLAP, 6304 .numa_level = j, 6305 SD_INIT_NAME(NUMA) 6306 }; 6307 } 6308 6309 sched_domain_topology = tl; 6310 6311 sched_domains_numa_levels = level; 6312 } 6313 6314 static void sched_domains_numa_masks_set(int cpu) 6315 { 6316 int i, j; 6317 int node = cpu_to_node(cpu); 6318 6319 for (i = 0; i < sched_domains_numa_levels; i++) { 6320 for (j = 0; j < nr_node_ids; j++) { 6321 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6322 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6323 } 6324 } 6325 } 6326 6327 static void sched_domains_numa_masks_clear(int cpu) 6328 { 6329 int i, j; 6330 for (i = 0; i < sched_domains_numa_levels; i++) { 6331 for (j = 0; j < nr_node_ids; j++) 6332 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6333 } 6334 } 6335 6336 /* 6337 * Update sched_domains_numa_masks[level][node] array when new cpus 6338 * are onlined. 6339 */ 6340 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6341 unsigned long action, 6342 void *hcpu) 6343 { 6344 int cpu = (long)hcpu; 6345 6346 switch (action & ~CPU_TASKS_FROZEN) { 6347 case CPU_ONLINE: 6348 sched_domains_numa_masks_set(cpu); 6349 break; 6350 6351 case CPU_DEAD: 6352 sched_domains_numa_masks_clear(cpu); 6353 break; 6354 6355 default: 6356 return NOTIFY_DONE; 6357 } 6358 6359 return NOTIFY_OK; 6360 } 6361 #else 6362 static inline void sched_init_numa(void) 6363 { 6364 } 6365 6366 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6367 unsigned long action, 6368 void *hcpu) 6369 { 6370 return 0; 6371 } 6372 #endif /* CONFIG_NUMA */ 6373 6374 static int __sdt_alloc(const struct cpumask *cpu_map) 6375 { 6376 struct sched_domain_topology_level *tl; 6377 int j; 6378 6379 for_each_sd_topology(tl) { 6380 struct sd_data *sdd = &tl->data; 6381 6382 sdd->sd = alloc_percpu(struct sched_domain *); 6383 if (!sdd->sd) 6384 return -ENOMEM; 6385 6386 sdd->sg = alloc_percpu(struct sched_group *); 6387 if (!sdd->sg) 6388 return -ENOMEM; 6389 6390 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6391 if (!sdd->sgc) 6392 return -ENOMEM; 6393 6394 for_each_cpu(j, cpu_map) { 6395 struct sched_domain *sd; 6396 struct sched_group *sg; 6397 struct sched_group_capacity *sgc; 6398 6399 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6400 GFP_KERNEL, cpu_to_node(j)); 6401 if (!sd) 6402 return -ENOMEM; 6403 6404 *per_cpu_ptr(sdd->sd, j) = sd; 6405 6406 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6407 GFP_KERNEL, cpu_to_node(j)); 6408 if (!sg) 6409 return -ENOMEM; 6410 6411 sg->next = sg; 6412 6413 *per_cpu_ptr(sdd->sg, j) = sg; 6414 6415 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6416 GFP_KERNEL, cpu_to_node(j)); 6417 if (!sgc) 6418 return -ENOMEM; 6419 6420 *per_cpu_ptr(sdd->sgc, j) = sgc; 6421 } 6422 } 6423 6424 return 0; 6425 } 6426 6427 static void __sdt_free(const struct cpumask *cpu_map) 6428 { 6429 struct sched_domain_topology_level *tl; 6430 int j; 6431 6432 for_each_sd_topology(tl) { 6433 struct sd_data *sdd = &tl->data; 6434 6435 for_each_cpu(j, cpu_map) { 6436 struct sched_domain *sd; 6437 6438 if (sdd->sd) { 6439 sd = *per_cpu_ptr(sdd->sd, j); 6440 if (sd && (sd->flags & SD_OVERLAP)) 6441 free_sched_groups(sd->groups, 0); 6442 kfree(*per_cpu_ptr(sdd->sd, j)); 6443 } 6444 6445 if (sdd->sg) 6446 kfree(*per_cpu_ptr(sdd->sg, j)); 6447 if (sdd->sgc) 6448 kfree(*per_cpu_ptr(sdd->sgc, j)); 6449 } 6450 free_percpu(sdd->sd); 6451 sdd->sd = NULL; 6452 free_percpu(sdd->sg); 6453 sdd->sg = NULL; 6454 free_percpu(sdd->sgc); 6455 sdd->sgc = NULL; 6456 } 6457 } 6458 6459 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6460 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6461 struct sched_domain *child, int cpu) 6462 { 6463 struct sched_domain *sd = sd_init(tl, cpu); 6464 if (!sd) 6465 return child; 6466 6467 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6468 if (child) { 6469 sd->level = child->level + 1; 6470 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6471 child->parent = sd; 6472 sd->child = child; 6473 } 6474 set_domain_attribute(sd, attr); 6475 6476 return sd; 6477 } 6478 6479 /* 6480 * Build sched domains for a given set of cpus and attach the sched domains 6481 * to the individual cpus 6482 */ 6483 static int build_sched_domains(const struct cpumask *cpu_map, 6484 struct sched_domain_attr *attr) 6485 { 6486 enum s_alloc alloc_state; 6487 struct sched_domain *sd; 6488 struct s_data d; 6489 int i, ret = -ENOMEM; 6490 6491 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6492 if (alloc_state != sa_rootdomain) 6493 goto error; 6494 6495 /* Set up domains for cpus specified by the cpu_map. */ 6496 for_each_cpu(i, cpu_map) { 6497 struct sched_domain_topology_level *tl; 6498 6499 sd = NULL; 6500 for_each_sd_topology(tl) { 6501 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6502 if (tl == sched_domain_topology) 6503 *per_cpu_ptr(d.sd, i) = sd; 6504 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6505 sd->flags |= SD_OVERLAP; 6506 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6507 break; 6508 } 6509 } 6510 6511 /* Build the groups for the domains */ 6512 for_each_cpu(i, cpu_map) { 6513 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6514 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6515 if (sd->flags & SD_OVERLAP) { 6516 if (build_overlap_sched_groups(sd, i)) 6517 goto error; 6518 } else { 6519 if (build_sched_groups(sd, i)) 6520 goto error; 6521 } 6522 } 6523 } 6524 6525 /* Calculate CPU capacity for physical packages and nodes */ 6526 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6527 if (!cpumask_test_cpu(i, cpu_map)) 6528 continue; 6529 6530 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6531 claim_allocations(i, sd); 6532 init_sched_groups_capacity(i, sd); 6533 } 6534 } 6535 6536 /* Attach the domains */ 6537 rcu_read_lock(); 6538 for_each_cpu(i, cpu_map) { 6539 sd = *per_cpu_ptr(d.sd, i); 6540 cpu_attach_domain(sd, d.rd, i); 6541 } 6542 rcu_read_unlock(); 6543 6544 ret = 0; 6545 error: 6546 __free_domain_allocs(&d, alloc_state, cpu_map); 6547 return ret; 6548 } 6549 6550 static cpumask_var_t *doms_cur; /* current sched domains */ 6551 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6552 static struct sched_domain_attr *dattr_cur; 6553 /* attribues of custom domains in 'doms_cur' */ 6554 6555 /* 6556 * Special case: If a kmalloc of a doms_cur partition (array of 6557 * cpumask) fails, then fallback to a single sched domain, 6558 * as determined by the single cpumask fallback_doms. 6559 */ 6560 static cpumask_var_t fallback_doms; 6561 6562 /* 6563 * arch_update_cpu_topology lets virtualized architectures update the 6564 * cpu core maps. It is supposed to return 1 if the topology changed 6565 * or 0 if it stayed the same. 6566 */ 6567 int __weak arch_update_cpu_topology(void) 6568 { 6569 return 0; 6570 } 6571 6572 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6573 { 6574 int i; 6575 cpumask_var_t *doms; 6576 6577 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6578 if (!doms) 6579 return NULL; 6580 for (i = 0; i < ndoms; i++) { 6581 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6582 free_sched_domains(doms, i); 6583 return NULL; 6584 } 6585 } 6586 return doms; 6587 } 6588 6589 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6590 { 6591 unsigned int i; 6592 for (i = 0; i < ndoms; i++) 6593 free_cpumask_var(doms[i]); 6594 kfree(doms); 6595 } 6596 6597 /* 6598 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6599 * For now this just excludes isolated cpus, but could be used to 6600 * exclude other special cases in the future. 6601 */ 6602 static int init_sched_domains(const struct cpumask *cpu_map) 6603 { 6604 int err; 6605 6606 arch_update_cpu_topology(); 6607 ndoms_cur = 1; 6608 doms_cur = alloc_sched_domains(ndoms_cur); 6609 if (!doms_cur) 6610 doms_cur = &fallback_doms; 6611 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6612 err = build_sched_domains(doms_cur[0], NULL); 6613 register_sched_domain_sysctl(); 6614 6615 return err; 6616 } 6617 6618 /* 6619 * Detach sched domains from a group of cpus specified in cpu_map 6620 * These cpus will now be attached to the NULL domain 6621 */ 6622 static void detach_destroy_domains(const struct cpumask *cpu_map) 6623 { 6624 int i; 6625 6626 rcu_read_lock(); 6627 for_each_cpu(i, cpu_map) 6628 cpu_attach_domain(NULL, &def_root_domain, i); 6629 rcu_read_unlock(); 6630 } 6631 6632 /* handle null as "default" */ 6633 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6634 struct sched_domain_attr *new, int idx_new) 6635 { 6636 struct sched_domain_attr tmp; 6637 6638 /* fast path */ 6639 if (!new && !cur) 6640 return 1; 6641 6642 tmp = SD_ATTR_INIT; 6643 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6644 new ? (new + idx_new) : &tmp, 6645 sizeof(struct sched_domain_attr)); 6646 } 6647 6648 /* 6649 * Partition sched domains as specified by the 'ndoms_new' 6650 * cpumasks in the array doms_new[] of cpumasks. This compares 6651 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6652 * It destroys each deleted domain and builds each new domain. 6653 * 6654 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6655 * The masks don't intersect (don't overlap.) We should setup one 6656 * sched domain for each mask. CPUs not in any of the cpumasks will 6657 * not be load balanced. If the same cpumask appears both in the 6658 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6659 * it as it is. 6660 * 6661 * The passed in 'doms_new' should be allocated using 6662 * alloc_sched_domains. This routine takes ownership of it and will 6663 * free_sched_domains it when done with it. If the caller failed the 6664 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6665 * and partition_sched_domains() will fallback to the single partition 6666 * 'fallback_doms', it also forces the domains to be rebuilt. 6667 * 6668 * If doms_new == NULL it will be replaced with cpu_online_mask. 6669 * ndoms_new == 0 is a special case for destroying existing domains, 6670 * and it will not create the default domain. 6671 * 6672 * Call with hotplug lock held 6673 */ 6674 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6675 struct sched_domain_attr *dattr_new) 6676 { 6677 int i, j, n; 6678 int new_topology; 6679 6680 mutex_lock(&sched_domains_mutex); 6681 6682 /* always unregister in case we don't destroy any domains */ 6683 unregister_sched_domain_sysctl(); 6684 6685 /* Let architecture update cpu core mappings. */ 6686 new_topology = arch_update_cpu_topology(); 6687 6688 n = doms_new ? ndoms_new : 0; 6689 6690 /* Destroy deleted domains */ 6691 for (i = 0; i < ndoms_cur; i++) { 6692 for (j = 0; j < n && !new_topology; j++) { 6693 if (cpumask_equal(doms_cur[i], doms_new[j]) 6694 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6695 goto match1; 6696 } 6697 /* no match - a current sched domain not in new doms_new[] */ 6698 detach_destroy_domains(doms_cur[i]); 6699 match1: 6700 ; 6701 } 6702 6703 n = ndoms_cur; 6704 if (doms_new == NULL) { 6705 n = 0; 6706 doms_new = &fallback_doms; 6707 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6708 WARN_ON_ONCE(dattr_new); 6709 } 6710 6711 /* Build new domains */ 6712 for (i = 0; i < ndoms_new; i++) { 6713 for (j = 0; j < n && !new_topology; j++) { 6714 if (cpumask_equal(doms_new[i], doms_cur[j]) 6715 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6716 goto match2; 6717 } 6718 /* no match - add a new doms_new */ 6719 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6720 match2: 6721 ; 6722 } 6723 6724 /* Remember the new sched domains */ 6725 if (doms_cur != &fallback_doms) 6726 free_sched_domains(doms_cur, ndoms_cur); 6727 kfree(dattr_cur); /* kfree(NULL) is safe */ 6728 doms_cur = doms_new; 6729 dattr_cur = dattr_new; 6730 ndoms_cur = ndoms_new; 6731 6732 register_sched_domain_sysctl(); 6733 6734 mutex_unlock(&sched_domains_mutex); 6735 } 6736 6737 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6738 6739 /* 6740 * Update cpusets according to cpu_active mask. If cpusets are 6741 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6742 * around partition_sched_domains(). 6743 * 6744 * If we come here as part of a suspend/resume, don't touch cpusets because we 6745 * want to restore it back to its original state upon resume anyway. 6746 */ 6747 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6748 void *hcpu) 6749 { 6750 switch (action) { 6751 case CPU_ONLINE_FROZEN: 6752 case CPU_DOWN_FAILED_FROZEN: 6753 6754 /* 6755 * num_cpus_frozen tracks how many CPUs are involved in suspend 6756 * resume sequence. As long as this is not the last online 6757 * operation in the resume sequence, just build a single sched 6758 * domain, ignoring cpusets. 6759 */ 6760 num_cpus_frozen--; 6761 if (likely(num_cpus_frozen)) { 6762 partition_sched_domains(1, NULL, NULL); 6763 break; 6764 } 6765 6766 /* 6767 * This is the last CPU online operation. So fall through and 6768 * restore the original sched domains by considering the 6769 * cpuset configurations. 6770 */ 6771 6772 case CPU_ONLINE: 6773 case CPU_DOWN_FAILED: 6774 cpuset_update_active_cpus(true); 6775 break; 6776 default: 6777 return NOTIFY_DONE; 6778 } 6779 return NOTIFY_OK; 6780 } 6781 6782 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6783 void *hcpu) 6784 { 6785 switch (action) { 6786 case CPU_DOWN_PREPARE: 6787 cpuset_update_active_cpus(false); 6788 break; 6789 case CPU_DOWN_PREPARE_FROZEN: 6790 num_cpus_frozen++; 6791 partition_sched_domains(1, NULL, NULL); 6792 break; 6793 default: 6794 return NOTIFY_DONE; 6795 } 6796 return NOTIFY_OK; 6797 } 6798 6799 void __init sched_init_smp(void) 6800 { 6801 cpumask_var_t non_isolated_cpus; 6802 6803 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6804 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6805 6806 sched_init_numa(); 6807 6808 /* 6809 * There's no userspace yet to cause hotplug operations; hence all the 6810 * cpu masks are stable and all blatant races in the below code cannot 6811 * happen. 6812 */ 6813 mutex_lock(&sched_domains_mutex); 6814 init_sched_domains(cpu_active_mask); 6815 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6816 if (cpumask_empty(non_isolated_cpus)) 6817 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6818 mutex_unlock(&sched_domains_mutex); 6819 6820 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6821 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6822 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6823 6824 init_hrtick(); 6825 6826 /* Move init over to a non-isolated CPU */ 6827 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6828 BUG(); 6829 sched_init_granularity(); 6830 free_cpumask_var(non_isolated_cpus); 6831 6832 init_sched_rt_class(); 6833 init_sched_dl_class(); 6834 } 6835 #else 6836 void __init sched_init_smp(void) 6837 { 6838 sched_init_granularity(); 6839 } 6840 #endif /* CONFIG_SMP */ 6841 6842 const_debug unsigned int sysctl_timer_migration = 1; 6843 6844 int in_sched_functions(unsigned long addr) 6845 { 6846 return in_lock_functions(addr) || 6847 (addr >= (unsigned long)__sched_text_start 6848 && addr < (unsigned long)__sched_text_end); 6849 } 6850 6851 #ifdef CONFIG_CGROUP_SCHED 6852 /* 6853 * Default task group. 6854 * Every task in system belongs to this group at bootup. 6855 */ 6856 struct task_group root_task_group; 6857 LIST_HEAD(task_groups); 6858 #endif 6859 6860 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6861 6862 void __init sched_init(void) 6863 { 6864 int i, j; 6865 unsigned long alloc_size = 0, ptr; 6866 6867 #ifdef CONFIG_FAIR_GROUP_SCHED 6868 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6869 #endif 6870 #ifdef CONFIG_RT_GROUP_SCHED 6871 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6872 #endif 6873 #ifdef CONFIG_CPUMASK_OFFSTACK 6874 alloc_size += num_possible_cpus() * cpumask_size(); 6875 #endif 6876 if (alloc_size) { 6877 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6878 6879 #ifdef CONFIG_FAIR_GROUP_SCHED 6880 root_task_group.se = (struct sched_entity **)ptr; 6881 ptr += nr_cpu_ids * sizeof(void **); 6882 6883 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6884 ptr += nr_cpu_ids * sizeof(void **); 6885 6886 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6887 #ifdef CONFIG_RT_GROUP_SCHED 6888 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6889 ptr += nr_cpu_ids * sizeof(void **); 6890 6891 root_task_group.rt_rq = (struct rt_rq **)ptr; 6892 ptr += nr_cpu_ids * sizeof(void **); 6893 6894 #endif /* CONFIG_RT_GROUP_SCHED */ 6895 #ifdef CONFIG_CPUMASK_OFFSTACK 6896 for_each_possible_cpu(i) { 6897 per_cpu(load_balance_mask, i) = (void *)ptr; 6898 ptr += cpumask_size(); 6899 } 6900 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6901 } 6902 6903 init_rt_bandwidth(&def_rt_bandwidth, 6904 global_rt_period(), global_rt_runtime()); 6905 init_dl_bandwidth(&def_dl_bandwidth, 6906 global_rt_period(), global_rt_runtime()); 6907 6908 #ifdef CONFIG_SMP 6909 init_defrootdomain(); 6910 #endif 6911 6912 #ifdef CONFIG_RT_GROUP_SCHED 6913 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6914 global_rt_period(), global_rt_runtime()); 6915 #endif /* CONFIG_RT_GROUP_SCHED */ 6916 6917 #ifdef CONFIG_CGROUP_SCHED 6918 list_add(&root_task_group.list, &task_groups); 6919 INIT_LIST_HEAD(&root_task_group.children); 6920 INIT_LIST_HEAD(&root_task_group.siblings); 6921 autogroup_init(&init_task); 6922 6923 #endif /* CONFIG_CGROUP_SCHED */ 6924 6925 for_each_possible_cpu(i) { 6926 struct rq *rq; 6927 6928 rq = cpu_rq(i); 6929 raw_spin_lock_init(&rq->lock); 6930 rq->nr_running = 0; 6931 rq->calc_load_active = 0; 6932 rq->calc_load_update = jiffies + LOAD_FREQ; 6933 init_cfs_rq(&rq->cfs); 6934 init_rt_rq(&rq->rt, rq); 6935 init_dl_rq(&rq->dl, rq); 6936 #ifdef CONFIG_FAIR_GROUP_SCHED 6937 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6938 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6939 /* 6940 * How much cpu bandwidth does root_task_group get? 6941 * 6942 * In case of task-groups formed thr' the cgroup filesystem, it 6943 * gets 100% of the cpu resources in the system. This overall 6944 * system cpu resource is divided among the tasks of 6945 * root_task_group and its child task-groups in a fair manner, 6946 * based on each entity's (task or task-group's) weight 6947 * (se->load.weight). 6948 * 6949 * In other words, if root_task_group has 10 tasks of weight 6950 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6951 * then A0's share of the cpu resource is: 6952 * 6953 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6954 * 6955 * We achieve this by letting root_task_group's tasks sit 6956 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6957 */ 6958 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6959 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6960 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6961 6962 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6963 #ifdef CONFIG_RT_GROUP_SCHED 6964 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6965 #endif 6966 6967 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6968 rq->cpu_load[j] = 0; 6969 6970 rq->last_load_update_tick = jiffies; 6971 6972 #ifdef CONFIG_SMP 6973 rq->sd = NULL; 6974 rq->rd = NULL; 6975 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 6976 rq->post_schedule = 0; 6977 rq->active_balance = 0; 6978 rq->next_balance = jiffies; 6979 rq->push_cpu = 0; 6980 rq->cpu = i; 6981 rq->online = 0; 6982 rq->idle_stamp = 0; 6983 rq->avg_idle = 2*sysctl_sched_migration_cost; 6984 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6985 6986 INIT_LIST_HEAD(&rq->cfs_tasks); 6987 6988 rq_attach_root(rq, &def_root_domain); 6989 #ifdef CONFIG_NO_HZ_COMMON 6990 rq->nohz_flags = 0; 6991 #endif 6992 #ifdef CONFIG_NO_HZ_FULL 6993 rq->last_sched_tick = 0; 6994 #endif 6995 #endif 6996 init_rq_hrtick(rq); 6997 atomic_set(&rq->nr_iowait, 0); 6998 } 6999 7000 set_load_weight(&init_task); 7001 7002 #ifdef CONFIG_PREEMPT_NOTIFIERS 7003 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7004 #endif 7005 7006 /* 7007 * The boot idle thread does lazy MMU switching as well: 7008 */ 7009 atomic_inc(&init_mm.mm_count); 7010 enter_lazy_tlb(&init_mm, current); 7011 7012 /* 7013 * Make us the idle thread. Technically, schedule() should not be 7014 * called from this thread, however somewhere below it might be, 7015 * but because we are the idle thread, we just pick up running again 7016 * when this runqueue becomes "idle". 7017 */ 7018 init_idle(current, smp_processor_id()); 7019 7020 calc_load_update = jiffies + LOAD_FREQ; 7021 7022 /* 7023 * During early bootup we pretend to be a normal task: 7024 */ 7025 current->sched_class = &fair_sched_class; 7026 7027 #ifdef CONFIG_SMP 7028 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7029 /* May be allocated at isolcpus cmdline parse time */ 7030 if (cpu_isolated_map == NULL) 7031 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7032 idle_thread_set_boot_cpu(); 7033 set_cpu_rq_start_time(); 7034 #endif 7035 init_sched_fair_class(); 7036 7037 scheduler_running = 1; 7038 } 7039 7040 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7041 static inline int preempt_count_equals(int preempt_offset) 7042 { 7043 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7044 7045 return (nested == preempt_offset); 7046 } 7047 7048 void __might_sleep(const char *file, int line, int preempt_offset) 7049 { 7050 static unsigned long prev_jiffy; /* ratelimiting */ 7051 7052 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7053 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7054 !is_idle_task(current)) || 7055 system_state != SYSTEM_RUNNING || oops_in_progress) 7056 return; 7057 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7058 return; 7059 prev_jiffy = jiffies; 7060 7061 printk(KERN_ERR 7062 "BUG: sleeping function called from invalid context at %s:%d\n", 7063 file, line); 7064 printk(KERN_ERR 7065 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7066 in_atomic(), irqs_disabled(), 7067 current->pid, current->comm); 7068 7069 debug_show_held_locks(current); 7070 if (irqs_disabled()) 7071 print_irqtrace_events(current); 7072 #ifdef CONFIG_DEBUG_PREEMPT 7073 if (!preempt_count_equals(preempt_offset)) { 7074 pr_err("Preemption disabled at:"); 7075 print_ip_sym(current->preempt_disable_ip); 7076 pr_cont("\n"); 7077 } 7078 #endif 7079 dump_stack(); 7080 } 7081 EXPORT_SYMBOL(__might_sleep); 7082 #endif 7083 7084 #ifdef CONFIG_MAGIC_SYSRQ 7085 static void normalize_task(struct rq *rq, struct task_struct *p) 7086 { 7087 const struct sched_class *prev_class = p->sched_class; 7088 struct sched_attr attr = { 7089 .sched_policy = SCHED_NORMAL, 7090 }; 7091 int old_prio = p->prio; 7092 int on_rq; 7093 7094 on_rq = p->on_rq; 7095 if (on_rq) 7096 dequeue_task(rq, p, 0); 7097 __setscheduler(rq, p, &attr); 7098 if (on_rq) { 7099 enqueue_task(rq, p, 0); 7100 resched_task(rq->curr); 7101 } 7102 7103 check_class_changed(rq, p, prev_class, old_prio); 7104 } 7105 7106 void normalize_rt_tasks(void) 7107 { 7108 struct task_struct *g, *p; 7109 unsigned long flags; 7110 struct rq *rq; 7111 7112 read_lock_irqsave(&tasklist_lock, flags); 7113 do_each_thread(g, p) { 7114 /* 7115 * Only normalize user tasks: 7116 */ 7117 if (!p->mm) 7118 continue; 7119 7120 p->se.exec_start = 0; 7121 #ifdef CONFIG_SCHEDSTATS 7122 p->se.statistics.wait_start = 0; 7123 p->se.statistics.sleep_start = 0; 7124 p->se.statistics.block_start = 0; 7125 #endif 7126 7127 if (!dl_task(p) && !rt_task(p)) { 7128 /* 7129 * Renice negative nice level userspace 7130 * tasks back to 0: 7131 */ 7132 if (task_nice(p) < 0 && p->mm) 7133 set_user_nice(p, 0); 7134 continue; 7135 } 7136 7137 raw_spin_lock(&p->pi_lock); 7138 rq = __task_rq_lock(p); 7139 7140 normalize_task(rq, p); 7141 7142 __task_rq_unlock(rq); 7143 raw_spin_unlock(&p->pi_lock); 7144 } while_each_thread(g, p); 7145 7146 read_unlock_irqrestore(&tasklist_lock, flags); 7147 } 7148 7149 #endif /* CONFIG_MAGIC_SYSRQ */ 7150 7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7152 /* 7153 * These functions are only useful for the IA64 MCA handling, or kdb. 7154 * 7155 * They can only be called when the whole system has been 7156 * stopped - every CPU needs to be quiescent, and no scheduling 7157 * activity can take place. Using them for anything else would 7158 * be a serious bug, and as a result, they aren't even visible 7159 * under any other configuration. 7160 */ 7161 7162 /** 7163 * curr_task - return the current task for a given cpu. 7164 * @cpu: the processor in question. 7165 * 7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7167 * 7168 * Return: The current task for @cpu. 7169 */ 7170 struct task_struct *curr_task(int cpu) 7171 { 7172 return cpu_curr(cpu); 7173 } 7174 7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7176 7177 #ifdef CONFIG_IA64 7178 /** 7179 * set_curr_task - set the current task for a given cpu. 7180 * @cpu: the processor in question. 7181 * @p: the task pointer to set. 7182 * 7183 * Description: This function must only be used when non-maskable interrupts 7184 * are serviced on a separate stack. It allows the architecture to switch the 7185 * notion of the current task on a cpu in a non-blocking manner. This function 7186 * must be called with all CPU's synchronized, and interrupts disabled, the 7187 * and caller must save the original value of the current task (see 7188 * curr_task() above) and restore that value before reenabling interrupts and 7189 * re-starting the system. 7190 * 7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7192 */ 7193 void set_curr_task(int cpu, struct task_struct *p) 7194 { 7195 cpu_curr(cpu) = p; 7196 } 7197 7198 #endif 7199 7200 #ifdef CONFIG_CGROUP_SCHED 7201 /* task_group_lock serializes the addition/removal of task groups */ 7202 static DEFINE_SPINLOCK(task_group_lock); 7203 7204 static void free_sched_group(struct task_group *tg) 7205 { 7206 free_fair_sched_group(tg); 7207 free_rt_sched_group(tg); 7208 autogroup_free(tg); 7209 kfree(tg); 7210 } 7211 7212 /* allocate runqueue etc for a new task group */ 7213 struct task_group *sched_create_group(struct task_group *parent) 7214 { 7215 struct task_group *tg; 7216 7217 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7218 if (!tg) 7219 return ERR_PTR(-ENOMEM); 7220 7221 if (!alloc_fair_sched_group(tg, parent)) 7222 goto err; 7223 7224 if (!alloc_rt_sched_group(tg, parent)) 7225 goto err; 7226 7227 return tg; 7228 7229 err: 7230 free_sched_group(tg); 7231 return ERR_PTR(-ENOMEM); 7232 } 7233 7234 void sched_online_group(struct task_group *tg, struct task_group *parent) 7235 { 7236 unsigned long flags; 7237 7238 spin_lock_irqsave(&task_group_lock, flags); 7239 list_add_rcu(&tg->list, &task_groups); 7240 7241 WARN_ON(!parent); /* root should already exist */ 7242 7243 tg->parent = parent; 7244 INIT_LIST_HEAD(&tg->children); 7245 list_add_rcu(&tg->siblings, &parent->children); 7246 spin_unlock_irqrestore(&task_group_lock, flags); 7247 } 7248 7249 /* rcu callback to free various structures associated with a task group */ 7250 static void free_sched_group_rcu(struct rcu_head *rhp) 7251 { 7252 /* now it should be safe to free those cfs_rqs */ 7253 free_sched_group(container_of(rhp, struct task_group, rcu)); 7254 } 7255 7256 /* Destroy runqueue etc associated with a task group */ 7257 void sched_destroy_group(struct task_group *tg) 7258 { 7259 /* wait for possible concurrent references to cfs_rqs complete */ 7260 call_rcu(&tg->rcu, free_sched_group_rcu); 7261 } 7262 7263 void sched_offline_group(struct task_group *tg) 7264 { 7265 unsigned long flags; 7266 int i; 7267 7268 /* end participation in shares distribution */ 7269 for_each_possible_cpu(i) 7270 unregister_fair_sched_group(tg, i); 7271 7272 spin_lock_irqsave(&task_group_lock, flags); 7273 list_del_rcu(&tg->list); 7274 list_del_rcu(&tg->siblings); 7275 spin_unlock_irqrestore(&task_group_lock, flags); 7276 } 7277 7278 /* change task's runqueue when it moves between groups. 7279 * The caller of this function should have put the task in its new group 7280 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7281 * reflect its new group. 7282 */ 7283 void sched_move_task(struct task_struct *tsk) 7284 { 7285 struct task_group *tg; 7286 int on_rq, running; 7287 unsigned long flags; 7288 struct rq *rq; 7289 7290 rq = task_rq_lock(tsk, &flags); 7291 7292 running = task_current(rq, tsk); 7293 on_rq = tsk->on_rq; 7294 7295 if (on_rq) 7296 dequeue_task(rq, tsk, 0); 7297 if (unlikely(running)) 7298 tsk->sched_class->put_prev_task(rq, tsk); 7299 7300 tg = container_of(task_css_check(tsk, cpu_cgrp_id, 7301 lockdep_is_held(&tsk->sighand->siglock)), 7302 struct task_group, css); 7303 tg = autogroup_task_group(tsk, tg); 7304 tsk->sched_task_group = tg; 7305 7306 #ifdef CONFIG_FAIR_GROUP_SCHED 7307 if (tsk->sched_class->task_move_group) 7308 tsk->sched_class->task_move_group(tsk, on_rq); 7309 else 7310 #endif 7311 set_task_rq(tsk, task_cpu(tsk)); 7312 7313 if (unlikely(running)) 7314 tsk->sched_class->set_curr_task(rq); 7315 if (on_rq) 7316 enqueue_task(rq, tsk, 0); 7317 7318 task_rq_unlock(rq, tsk, &flags); 7319 } 7320 #endif /* CONFIG_CGROUP_SCHED */ 7321 7322 #ifdef CONFIG_RT_GROUP_SCHED 7323 /* 7324 * Ensure that the real time constraints are schedulable. 7325 */ 7326 static DEFINE_MUTEX(rt_constraints_mutex); 7327 7328 /* Must be called with tasklist_lock held */ 7329 static inline int tg_has_rt_tasks(struct task_group *tg) 7330 { 7331 struct task_struct *g, *p; 7332 7333 do_each_thread(g, p) { 7334 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7335 return 1; 7336 } while_each_thread(g, p); 7337 7338 return 0; 7339 } 7340 7341 struct rt_schedulable_data { 7342 struct task_group *tg; 7343 u64 rt_period; 7344 u64 rt_runtime; 7345 }; 7346 7347 static int tg_rt_schedulable(struct task_group *tg, void *data) 7348 { 7349 struct rt_schedulable_data *d = data; 7350 struct task_group *child; 7351 unsigned long total, sum = 0; 7352 u64 period, runtime; 7353 7354 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7355 runtime = tg->rt_bandwidth.rt_runtime; 7356 7357 if (tg == d->tg) { 7358 period = d->rt_period; 7359 runtime = d->rt_runtime; 7360 } 7361 7362 /* 7363 * Cannot have more runtime than the period. 7364 */ 7365 if (runtime > period && runtime != RUNTIME_INF) 7366 return -EINVAL; 7367 7368 /* 7369 * Ensure we don't starve existing RT tasks. 7370 */ 7371 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7372 return -EBUSY; 7373 7374 total = to_ratio(period, runtime); 7375 7376 /* 7377 * Nobody can have more than the global setting allows. 7378 */ 7379 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7380 return -EINVAL; 7381 7382 /* 7383 * The sum of our children's runtime should not exceed our own. 7384 */ 7385 list_for_each_entry_rcu(child, &tg->children, siblings) { 7386 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7387 runtime = child->rt_bandwidth.rt_runtime; 7388 7389 if (child == d->tg) { 7390 period = d->rt_period; 7391 runtime = d->rt_runtime; 7392 } 7393 7394 sum += to_ratio(period, runtime); 7395 } 7396 7397 if (sum > total) 7398 return -EINVAL; 7399 7400 return 0; 7401 } 7402 7403 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7404 { 7405 int ret; 7406 7407 struct rt_schedulable_data data = { 7408 .tg = tg, 7409 .rt_period = period, 7410 .rt_runtime = runtime, 7411 }; 7412 7413 rcu_read_lock(); 7414 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7415 rcu_read_unlock(); 7416 7417 return ret; 7418 } 7419 7420 static int tg_set_rt_bandwidth(struct task_group *tg, 7421 u64 rt_period, u64 rt_runtime) 7422 { 7423 int i, err = 0; 7424 7425 mutex_lock(&rt_constraints_mutex); 7426 read_lock(&tasklist_lock); 7427 err = __rt_schedulable(tg, rt_period, rt_runtime); 7428 if (err) 7429 goto unlock; 7430 7431 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7432 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7433 tg->rt_bandwidth.rt_runtime = rt_runtime; 7434 7435 for_each_possible_cpu(i) { 7436 struct rt_rq *rt_rq = tg->rt_rq[i]; 7437 7438 raw_spin_lock(&rt_rq->rt_runtime_lock); 7439 rt_rq->rt_runtime = rt_runtime; 7440 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7441 } 7442 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7443 unlock: 7444 read_unlock(&tasklist_lock); 7445 mutex_unlock(&rt_constraints_mutex); 7446 7447 return err; 7448 } 7449 7450 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7451 { 7452 u64 rt_runtime, rt_period; 7453 7454 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7455 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7456 if (rt_runtime_us < 0) 7457 rt_runtime = RUNTIME_INF; 7458 7459 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7460 } 7461 7462 static long sched_group_rt_runtime(struct task_group *tg) 7463 { 7464 u64 rt_runtime_us; 7465 7466 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7467 return -1; 7468 7469 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7470 do_div(rt_runtime_us, NSEC_PER_USEC); 7471 return rt_runtime_us; 7472 } 7473 7474 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7475 { 7476 u64 rt_runtime, rt_period; 7477 7478 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7479 rt_runtime = tg->rt_bandwidth.rt_runtime; 7480 7481 if (rt_period == 0) 7482 return -EINVAL; 7483 7484 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7485 } 7486 7487 static long sched_group_rt_period(struct task_group *tg) 7488 { 7489 u64 rt_period_us; 7490 7491 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7492 do_div(rt_period_us, NSEC_PER_USEC); 7493 return rt_period_us; 7494 } 7495 #endif /* CONFIG_RT_GROUP_SCHED */ 7496 7497 #ifdef CONFIG_RT_GROUP_SCHED 7498 static int sched_rt_global_constraints(void) 7499 { 7500 int ret = 0; 7501 7502 mutex_lock(&rt_constraints_mutex); 7503 read_lock(&tasklist_lock); 7504 ret = __rt_schedulable(NULL, 0, 0); 7505 read_unlock(&tasklist_lock); 7506 mutex_unlock(&rt_constraints_mutex); 7507 7508 return ret; 7509 } 7510 7511 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7512 { 7513 /* Don't accept realtime tasks when there is no way for them to run */ 7514 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7515 return 0; 7516 7517 return 1; 7518 } 7519 7520 #else /* !CONFIG_RT_GROUP_SCHED */ 7521 static int sched_rt_global_constraints(void) 7522 { 7523 unsigned long flags; 7524 int i, ret = 0; 7525 7526 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7527 for_each_possible_cpu(i) { 7528 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7529 7530 raw_spin_lock(&rt_rq->rt_runtime_lock); 7531 rt_rq->rt_runtime = global_rt_runtime(); 7532 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7533 } 7534 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7535 7536 return ret; 7537 } 7538 #endif /* CONFIG_RT_GROUP_SCHED */ 7539 7540 static int sched_dl_global_constraints(void) 7541 { 7542 u64 runtime = global_rt_runtime(); 7543 u64 period = global_rt_period(); 7544 u64 new_bw = to_ratio(period, runtime); 7545 int cpu, ret = 0; 7546 unsigned long flags; 7547 7548 /* 7549 * Here we want to check the bandwidth not being set to some 7550 * value smaller than the currently allocated bandwidth in 7551 * any of the root_domains. 7552 * 7553 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7554 * cycling on root_domains... Discussion on different/better 7555 * solutions is welcome! 7556 */ 7557 for_each_possible_cpu(cpu) { 7558 struct dl_bw *dl_b = dl_bw_of(cpu); 7559 7560 raw_spin_lock_irqsave(&dl_b->lock, flags); 7561 if (new_bw < dl_b->total_bw) 7562 ret = -EBUSY; 7563 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7564 7565 if (ret) 7566 break; 7567 } 7568 7569 return ret; 7570 } 7571 7572 static void sched_dl_do_global(void) 7573 { 7574 u64 new_bw = -1; 7575 int cpu; 7576 unsigned long flags; 7577 7578 def_dl_bandwidth.dl_period = global_rt_period(); 7579 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7580 7581 if (global_rt_runtime() != RUNTIME_INF) 7582 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7583 7584 /* 7585 * FIXME: As above... 7586 */ 7587 for_each_possible_cpu(cpu) { 7588 struct dl_bw *dl_b = dl_bw_of(cpu); 7589 7590 raw_spin_lock_irqsave(&dl_b->lock, flags); 7591 dl_b->bw = new_bw; 7592 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7593 } 7594 } 7595 7596 static int sched_rt_global_validate(void) 7597 { 7598 if (sysctl_sched_rt_period <= 0) 7599 return -EINVAL; 7600 7601 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7602 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7603 return -EINVAL; 7604 7605 return 0; 7606 } 7607 7608 static void sched_rt_do_global(void) 7609 { 7610 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7611 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7612 } 7613 7614 int sched_rt_handler(struct ctl_table *table, int write, 7615 void __user *buffer, size_t *lenp, 7616 loff_t *ppos) 7617 { 7618 int old_period, old_runtime; 7619 static DEFINE_MUTEX(mutex); 7620 int ret; 7621 7622 mutex_lock(&mutex); 7623 old_period = sysctl_sched_rt_period; 7624 old_runtime = sysctl_sched_rt_runtime; 7625 7626 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7627 7628 if (!ret && write) { 7629 ret = sched_rt_global_validate(); 7630 if (ret) 7631 goto undo; 7632 7633 ret = sched_rt_global_constraints(); 7634 if (ret) 7635 goto undo; 7636 7637 ret = sched_dl_global_constraints(); 7638 if (ret) 7639 goto undo; 7640 7641 sched_rt_do_global(); 7642 sched_dl_do_global(); 7643 } 7644 if (0) { 7645 undo: 7646 sysctl_sched_rt_period = old_period; 7647 sysctl_sched_rt_runtime = old_runtime; 7648 } 7649 mutex_unlock(&mutex); 7650 7651 return ret; 7652 } 7653 7654 int sched_rr_handler(struct ctl_table *table, int write, 7655 void __user *buffer, size_t *lenp, 7656 loff_t *ppos) 7657 { 7658 int ret; 7659 static DEFINE_MUTEX(mutex); 7660 7661 mutex_lock(&mutex); 7662 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7663 /* make sure that internally we keep jiffies */ 7664 /* also, writing zero resets timeslice to default */ 7665 if (!ret && write) { 7666 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7667 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7668 } 7669 mutex_unlock(&mutex); 7670 return ret; 7671 } 7672 7673 #ifdef CONFIG_CGROUP_SCHED 7674 7675 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7676 { 7677 return css ? container_of(css, struct task_group, css) : NULL; 7678 } 7679 7680 static struct cgroup_subsys_state * 7681 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7682 { 7683 struct task_group *parent = css_tg(parent_css); 7684 struct task_group *tg; 7685 7686 if (!parent) { 7687 /* This is early initialization for the top cgroup */ 7688 return &root_task_group.css; 7689 } 7690 7691 tg = sched_create_group(parent); 7692 if (IS_ERR(tg)) 7693 return ERR_PTR(-ENOMEM); 7694 7695 return &tg->css; 7696 } 7697 7698 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7699 { 7700 struct task_group *tg = css_tg(css); 7701 struct task_group *parent = css_tg(css->parent); 7702 7703 if (parent) 7704 sched_online_group(tg, parent); 7705 return 0; 7706 } 7707 7708 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7709 { 7710 struct task_group *tg = css_tg(css); 7711 7712 sched_destroy_group(tg); 7713 } 7714 7715 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7716 { 7717 struct task_group *tg = css_tg(css); 7718 7719 sched_offline_group(tg); 7720 } 7721 7722 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7723 struct cgroup_taskset *tset) 7724 { 7725 struct task_struct *task; 7726 7727 cgroup_taskset_for_each(task, tset) { 7728 #ifdef CONFIG_RT_GROUP_SCHED 7729 if (!sched_rt_can_attach(css_tg(css), task)) 7730 return -EINVAL; 7731 #else 7732 /* We don't support RT-tasks being in separate groups */ 7733 if (task->sched_class != &fair_sched_class) 7734 return -EINVAL; 7735 #endif 7736 } 7737 return 0; 7738 } 7739 7740 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7741 struct cgroup_taskset *tset) 7742 { 7743 struct task_struct *task; 7744 7745 cgroup_taskset_for_each(task, tset) 7746 sched_move_task(task); 7747 } 7748 7749 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7750 struct cgroup_subsys_state *old_css, 7751 struct task_struct *task) 7752 { 7753 /* 7754 * cgroup_exit() is called in the copy_process() failure path. 7755 * Ignore this case since the task hasn't ran yet, this avoids 7756 * trying to poke a half freed task state from generic code. 7757 */ 7758 if (!(task->flags & PF_EXITING)) 7759 return; 7760 7761 sched_move_task(task); 7762 } 7763 7764 #ifdef CONFIG_FAIR_GROUP_SCHED 7765 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7766 struct cftype *cftype, u64 shareval) 7767 { 7768 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7769 } 7770 7771 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7772 struct cftype *cft) 7773 { 7774 struct task_group *tg = css_tg(css); 7775 7776 return (u64) scale_load_down(tg->shares); 7777 } 7778 7779 #ifdef CONFIG_CFS_BANDWIDTH 7780 static DEFINE_MUTEX(cfs_constraints_mutex); 7781 7782 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7783 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7784 7785 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7786 7787 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7788 { 7789 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7790 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7791 7792 if (tg == &root_task_group) 7793 return -EINVAL; 7794 7795 /* 7796 * Ensure we have at some amount of bandwidth every period. This is 7797 * to prevent reaching a state of large arrears when throttled via 7798 * entity_tick() resulting in prolonged exit starvation. 7799 */ 7800 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7801 return -EINVAL; 7802 7803 /* 7804 * Likewise, bound things on the otherside by preventing insane quota 7805 * periods. This also allows us to normalize in computing quota 7806 * feasibility. 7807 */ 7808 if (period > max_cfs_quota_period) 7809 return -EINVAL; 7810 7811 mutex_lock(&cfs_constraints_mutex); 7812 ret = __cfs_schedulable(tg, period, quota); 7813 if (ret) 7814 goto out_unlock; 7815 7816 runtime_enabled = quota != RUNTIME_INF; 7817 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7818 /* 7819 * If we need to toggle cfs_bandwidth_used, off->on must occur 7820 * before making related changes, and on->off must occur afterwards 7821 */ 7822 if (runtime_enabled && !runtime_was_enabled) 7823 cfs_bandwidth_usage_inc(); 7824 raw_spin_lock_irq(&cfs_b->lock); 7825 cfs_b->period = ns_to_ktime(period); 7826 cfs_b->quota = quota; 7827 7828 __refill_cfs_bandwidth_runtime(cfs_b); 7829 /* restart the period timer (if active) to handle new period expiry */ 7830 if (runtime_enabled && cfs_b->timer_active) { 7831 /* force a reprogram */ 7832 __start_cfs_bandwidth(cfs_b, true); 7833 } 7834 raw_spin_unlock_irq(&cfs_b->lock); 7835 7836 for_each_possible_cpu(i) { 7837 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7838 struct rq *rq = cfs_rq->rq; 7839 7840 raw_spin_lock_irq(&rq->lock); 7841 cfs_rq->runtime_enabled = runtime_enabled; 7842 cfs_rq->runtime_remaining = 0; 7843 7844 if (cfs_rq->throttled) 7845 unthrottle_cfs_rq(cfs_rq); 7846 raw_spin_unlock_irq(&rq->lock); 7847 } 7848 if (runtime_was_enabled && !runtime_enabled) 7849 cfs_bandwidth_usage_dec(); 7850 out_unlock: 7851 mutex_unlock(&cfs_constraints_mutex); 7852 7853 return ret; 7854 } 7855 7856 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7857 { 7858 u64 quota, period; 7859 7860 period = ktime_to_ns(tg->cfs_bandwidth.period); 7861 if (cfs_quota_us < 0) 7862 quota = RUNTIME_INF; 7863 else 7864 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7865 7866 return tg_set_cfs_bandwidth(tg, period, quota); 7867 } 7868 7869 long tg_get_cfs_quota(struct task_group *tg) 7870 { 7871 u64 quota_us; 7872 7873 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7874 return -1; 7875 7876 quota_us = tg->cfs_bandwidth.quota; 7877 do_div(quota_us, NSEC_PER_USEC); 7878 7879 return quota_us; 7880 } 7881 7882 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7883 { 7884 u64 quota, period; 7885 7886 period = (u64)cfs_period_us * NSEC_PER_USEC; 7887 quota = tg->cfs_bandwidth.quota; 7888 7889 return tg_set_cfs_bandwidth(tg, period, quota); 7890 } 7891 7892 long tg_get_cfs_period(struct task_group *tg) 7893 { 7894 u64 cfs_period_us; 7895 7896 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7897 do_div(cfs_period_us, NSEC_PER_USEC); 7898 7899 return cfs_period_us; 7900 } 7901 7902 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7903 struct cftype *cft) 7904 { 7905 return tg_get_cfs_quota(css_tg(css)); 7906 } 7907 7908 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7909 struct cftype *cftype, s64 cfs_quota_us) 7910 { 7911 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7912 } 7913 7914 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7915 struct cftype *cft) 7916 { 7917 return tg_get_cfs_period(css_tg(css)); 7918 } 7919 7920 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7921 struct cftype *cftype, u64 cfs_period_us) 7922 { 7923 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7924 } 7925 7926 struct cfs_schedulable_data { 7927 struct task_group *tg; 7928 u64 period, quota; 7929 }; 7930 7931 /* 7932 * normalize group quota/period to be quota/max_period 7933 * note: units are usecs 7934 */ 7935 static u64 normalize_cfs_quota(struct task_group *tg, 7936 struct cfs_schedulable_data *d) 7937 { 7938 u64 quota, period; 7939 7940 if (tg == d->tg) { 7941 period = d->period; 7942 quota = d->quota; 7943 } else { 7944 period = tg_get_cfs_period(tg); 7945 quota = tg_get_cfs_quota(tg); 7946 } 7947 7948 /* note: these should typically be equivalent */ 7949 if (quota == RUNTIME_INF || quota == -1) 7950 return RUNTIME_INF; 7951 7952 return to_ratio(period, quota); 7953 } 7954 7955 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7956 { 7957 struct cfs_schedulable_data *d = data; 7958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7959 s64 quota = 0, parent_quota = -1; 7960 7961 if (!tg->parent) { 7962 quota = RUNTIME_INF; 7963 } else { 7964 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7965 7966 quota = normalize_cfs_quota(tg, d); 7967 parent_quota = parent_b->hierarchal_quota; 7968 7969 /* 7970 * ensure max(child_quota) <= parent_quota, inherit when no 7971 * limit is set 7972 */ 7973 if (quota == RUNTIME_INF) 7974 quota = parent_quota; 7975 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7976 return -EINVAL; 7977 } 7978 cfs_b->hierarchal_quota = quota; 7979 7980 return 0; 7981 } 7982 7983 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7984 { 7985 int ret; 7986 struct cfs_schedulable_data data = { 7987 .tg = tg, 7988 .period = period, 7989 .quota = quota, 7990 }; 7991 7992 if (quota != RUNTIME_INF) { 7993 do_div(data.period, NSEC_PER_USEC); 7994 do_div(data.quota, NSEC_PER_USEC); 7995 } 7996 7997 rcu_read_lock(); 7998 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7999 rcu_read_unlock(); 8000 8001 return ret; 8002 } 8003 8004 static int cpu_stats_show(struct seq_file *sf, void *v) 8005 { 8006 struct task_group *tg = css_tg(seq_css(sf)); 8007 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8008 8009 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8010 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8011 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8012 8013 return 0; 8014 } 8015 #endif /* CONFIG_CFS_BANDWIDTH */ 8016 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8017 8018 #ifdef CONFIG_RT_GROUP_SCHED 8019 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8020 struct cftype *cft, s64 val) 8021 { 8022 return sched_group_set_rt_runtime(css_tg(css), val); 8023 } 8024 8025 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8026 struct cftype *cft) 8027 { 8028 return sched_group_rt_runtime(css_tg(css)); 8029 } 8030 8031 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8032 struct cftype *cftype, u64 rt_period_us) 8033 { 8034 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8035 } 8036 8037 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8038 struct cftype *cft) 8039 { 8040 return sched_group_rt_period(css_tg(css)); 8041 } 8042 #endif /* CONFIG_RT_GROUP_SCHED */ 8043 8044 static struct cftype cpu_files[] = { 8045 #ifdef CONFIG_FAIR_GROUP_SCHED 8046 { 8047 .name = "shares", 8048 .read_u64 = cpu_shares_read_u64, 8049 .write_u64 = cpu_shares_write_u64, 8050 }, 8051 #endif 8052 #ifdef CONFIG_CFS_BANDWIDTH 8053 { 8054 .name = "cfs_quota_us", 8055 .read_s64 = cpu_cfs_quota_read_s64, 8056 .write_s64 = cpu_cfs_quota_write_s64, 8057 }, 8058 { 8059 .name = "cfs_period_us", 8060 .read_u64 = cpu_cfs_period_read_u64, 8061 .write_u64 = cpu_cfs_period_write_u64, 8062 }, 8063 { 8064 .name = "stat", 8065 .seq_show = cpu_stats_show, 8066 }, 8067 #endif 8068 #ifdef CONFIG_RT_GROUP_SCHED 8069 { 8070 .name = "rt_runtime_us", 8071 .read_s64 = cpu_rt_runtime_read, 8072 .write_s64 = cpu_rt_runtime_write, 8073 }, 8074 { 8075 .name = "rt_period_us", 8076 .read_u64 = cpu_rt_period_read_uint, 8077 .write_u64 = cpu_rt_period_write_uint, 8078 }, 8079 #endif 8080 { } /* terminate */ 8081 }; 8082 8083 struct cgroup_subsys cpu_cgrp_subsys = { 8084 .css_alloc = cpu_cgroup_css_alloc, 8085 .css_free = cpu_cgroup_css_free, 8086 .css_online = cpu_cgroup_css_online, 8087 .css_offline = cpu_cgroup_css_offline, 8088 .can_attach = cpu_cgroup_can_attach, 8089 .attach = cpu_cgroup_attach, 8090 .exit = cpu_cgroup_exit, 8091 .base_cftypes = cpu_files, 8092 .early_init = 1, 8093 }; 8094 8095 #endif /* CONFIG_CGROUP_SCHED */ 8096 8097 void dump_cpu_task(int cpu) 8098 { 8099 pr_info("Task dump for CPU %d:\n", cpu); 8100 sched_show_task(cpu_curr(cpu)); 8101 } 8102