xref: /openbmc/linux/kernel/sched/core.c (revision 8a26af30)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 	smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100 
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 	smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108 
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 	unsigned long delta;
112 	ktime_t soft, hard, now;
113 
114 	for (;;) {
115 		if (hrtimer_active(period_timer))
116 			break;
117 
118 		now = hrtimer_cb_get_time(period_timer);
119 		hrtimer_forward(period_timer, now, period);
120 
121 		soft = hrtimer_get_softexpires(period_timer);
122 		hard = hrtimer_get_expires(period_timer);
123 		delta = ktime_to_ns(ktime_sub(hard, soft));
124 		__hrtimer_start_range_ns(period_timer, soft, delta,
125 					 HRTIMER_MODE_ABS_PINNED, 0);
126 	}
127 }
128 
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133 
134 void update_rq_clock(struct rq *rq)
135 {
136 	s64 delta;
137 
138 	if (rq->skip_clock_update > 0)
139 		return;
140 
141 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 	rq->clock += delta;
143 	update_rq_clock_task(rq, delta);
144 }
145 
146 /*
147  * Debugging: various feature bits
148  */
149 
150 #define SCHED_FEAT(name, enabled)	\
151 	(1UL << __SCHED_FEAT_##name) * enabled |
152 
153 const_debug unsigned int sysctl_sched_features =
154 #include "features.h"
155 	0;
156 
157 #undef SCHED_FEAT
158 
159 #ifdef CONFIG_SCHED_DEBUG
160 #define SCHED_FEAT(name, enabled)	\
161 	#name ,
162 
163 static const char * const sched_feat_names[] = {
164 #include "features.h"
165 };
166 
167 #undef SCHED_FEAT
168 
169 static int sched_feat_show(struct seq_file *m, void *v)
170 {
171 	int i;
172 
173 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174 		if (!(sysctl_sched_features & (1UL << i)))
175 			seq_puts(m, "NO_");
176 		seq_printf(m, "%s ", sched_feat_names[i]);
177 	}
178 	seq_puts(m, "\n");
179 
180 	return 0;
181 }
182 
183 #ifdef HAVE_JUMP_LABEL
184 
185 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
186 #define jump_label_key__false STATIC_KEY_INIT_FALSE
187 
188 #define SCHED_FEAT(name, enabled)	\
189 	jump_label_key__##enabled ,
190 
191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 #include "features.h"
193 };
194 
195 #undef SCHED_FEAT
196 
197 static void sched_feat_disable(int i)
198 {
199 	if (static_key_enabled(&sched_feat_keys[i]))
200 		static_key_slow_dec(&sched_feat_keys[i]);
201 }
202 
203 static void sched_feat_enable(int i)
204 {
205 	if (!static_key_enabled(&sched_feat_keys[i]))
206 		static_key_slow_inc(&sched_feat_keys[i]);
207 }
208 #else
209 static void sched_feat_disable(int i) { };
210 static void sched_feat_enable(int i) { };
211 #endif /* HAVE_JUMP_LABEL */
212 
213 static int sched_feat_set(char *cmp)
214 {
215 	int i;
216 	int neg = 0;
217 
218 	if (strncmp(cmp, "NO_", 3) == 0) {
219 		neg = 1;
220 		cmp += 3;
221 	}
222 
223 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225 			if (neg) {
226 				sysctl_sched_features &= ~(1UL << i);
227 				sched_feat_disable(i);
228 			} else {
229 				sysctl_sched_features |= (1UL << i);
230 				sched_feat_enable(i);
231 			}
232 			break;
233 		}
234 	}
235 
236 	return i;
237 }
238 
239 static ssize_t
240 sched_feat_write(struct file *filp, const char __user *ubuf,
241 		size_t cnt, loff_t *ppos)
242 {
243 	char buf[64];
244 	char *cmp;
245 	int i;
246 
247 	if (cnt > 63)
248 		cnt = 63;
249 
250 	if (copy_from_user(&buf, ubuf, cnt))
251 		return -EFAULT;
252 
253 	buf[cnt] = 0;
254 	cmp = strstrip(buf);
255 
256 	i = sched_feat_set(cmp);
257 	if (i == __SCHED_FEAT_NR)
258 		return -EINVAL;
259 
260 	*ppos += cnt;
261 
262 	return cnt;
263 }
264 
265 static int sched_feat_open(struct inode *inode, struct file *filp)
266 {
267 	return single_open(filp, sched_feat_show, NULL);
268 }
269 
270 static const struct file_operations sched_feat_fops = {
271 	.open		= sched_feat_open,
272 	.write		= sched_feat_write,
273 	.read		= seq_read,
274 	.llseek		= seq_lseek,
275 	.release	= single_release,
276 };
277 
278 static __init int sched_init_debug(void)
279 {
280 	debugfs_create_file("sched_features", 0644, NULL, NULL,
281 			&sched_feat_fops);
282 
283 	return 0;
284 }
285 late_initcall(sched_init_debug);
286 #endif /* CONFIG_SCHED_DEBUG */
287 
288 /*
289  * Number of tasks to iterate in a single balance run.
290  * Limited because this is done with IRQs disabled.
291  */
292 const_debug unsigned int sysctl_sched_nr_migrate = 32;
293 
294 /*
295  * period over which we average the RT time consumption, measured
296  * in ms.
297  *
298  * default: 1s
299  */
300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301 
302 /*
303  * period over which we measure -rt task cpu usage in us.
304  * default: 1s
305  */
306 unsigned int sysctl_sched_rt_period = 1000000;
307 
308 __read_mostly int scheduler_running;
309 
310 /*
311  * part of the period that we allow rt tasks to run in us.
312  * default: 0.95s
313  */
314 int sysctl_sched_rt_runtime = 950000;
315 
316 /*
317  * __task_rq_lock - lock the rq @p resides on.
318  */
319 static inline struct rq *__task_rq_lock(struct task_struct *p)
320 	__acquires(rq->lock)
321 {
322 	struct rq *rq;
323 
324 	lockdep_assert_held(&p->pi_lock);
325 
326 	for (;;) {
327 		rq = task_rq(p);
328 		raw_spin_lock(&rq->lock);
329 		if (likely(rq == task_rq(p)))
330 			return rq;
331 		raw_spin_unlock(&rq->lock);
332 	}
333 }
334 
335 /*
336  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337  */
338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339 	__acquires(p->pi_lock)
340 	__acquires(rq->lock)
341 {
342 	struct rq *rq;
343 
344 	for (;;) {
345 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346 		rq = task_rq(p);
347 		raw_spin_lock(&rq->lock);
348 		if (likely(rq == task_rq(p)))
349 			return rq;
350 		raw_spin_unlock(&rq->lock);
351 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 	}
353 }
354 
355 static void __task_rq_unlock(struct rq *rq)
356 	__releases(rq->lock)
357 {
358 	raw_spin_unlock(&rq->lock);
359 }
360 
361 static inline void
362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363 	__releases(rq->lock)
364 	__releases(p->pi_lock)
365 {
366 	raw_spin_unlock(&rq->lock);
367 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368 }
369 
370 /*
371  * this_rq_lock - lock this runqueue and disable interrupts.
372  */
373 static struct rq *this_rq_lock(void)
374 	__acquires(rq->lock)
375 {
376 	struct rq *rq;
377 
378 	local_irq_disable();
379 	rq = this_rq();
380 	raw_spin_lock(&rq->lock);
381 
382 	return rq;
383 }
384 
385 #ifdef CONFIG_SCHED_HRTICK
386 /*
387  * Use HR-timers to deliver accurate preemption points.
388  */
389 
390 static void hrtick_clear(struct rq *rq)
391 {
392 	if (hrtimer_active(&rq->hrtick_timer))
393 		hrtimer_cancel(&rq->hrtick_timer);
394 }
395 
396 /*
397  * High-resolution timer tick.
398  * Runs from hardirq context with interrupts disabled.
399  */
400 static enum hrtimer_restart hrtick(struct hrtimer *timer)
401 {
402 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403 
404 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405 
406 	raw_spin_lock(&rq->lock);
407 	update_rq_clock(rq);
408 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409 	raw_spin_unlock(&rq->lock);
410 
411 	return HRTIMER_NORESTART;
412 }
413 
414 #ifdef CONFIG_SMP
415 
416 static int __hrtick_restart(struct rq *rq)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = hrtimer_get_softexpires(timer);
420 
421 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422 }
423 
424 /*
425  * called from hardirq (IPI) context
426  */
427 static void __hrtick_start(void *arg)
428 {
429 	struct rq *rq = arg;
430 
431 	raw_spin_lock(&rq->lock);
432 	__hrtick_restart(rq);
433 	rq->hrtick_csd_pending = 0;
434 	raw_spin_unlock(&rq->lock);
435 }
436 
437 /*
438  * Called to set the hrtick timer state.
439  *
440  * called with rq->lock held and irqs disabled
441  */
442 void hrtick_start(struct rq *rq, u64 delay)
443 {
444 	struct hrtimer *timer = &rq->hrtick_timer;
445 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446 
447 	hrtimer_set_expires(timer, time);
448 
449 	if (rq == this_rq()) {
450 		__hrtick_restart(rq);
451 	} else if (!rq->hrtick_csd_pending) {
452 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 		rq->hrtick_csd_pending = 1;
454 	}
455 }
456 
457 static int
458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459 {
460 	int cpu = (int)(long)hcpu;
461 
462 	switch (action) {
463 	case CPU_UP_CANCELED:
464 	case CPU_UP_CANCELED_FROZEN:
465 	case CPU_DOWN_PREPARE:
466 	case CPU_DOWN_PREPARE_FROZEN:
467 	case CPU_DEAD:
468 	case CPU_DEAD_FROZEN:
469 		hrtick_clear(cpu_rq(cpu));
470 		return NOTIFY_OK;
471 	}
472 
473 	return NOTIFY_DONE;
474 }
475 
476 static __init void init_hrtick(void)
477 {
478 	hotcpu_notifier(hotplug_hrtick, 0);
479 }
480 #else
481 /*
482  * Called to set the hrtick timer state.
483  *
484  * called with rq->lock held and irqs disabled
485  */
486 void hrtick_start(struct rq *rq, u64 delay)
487 {
488 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489 			HRTIMER_MODE_REL_PINNED, 0);
490 }
491 
492 static inline void init_hrtick(void)
493 {
494 }
495 #endif /* CONFIG_SMP */
496 
497 static void init_rq_hrtick(struct rq *rq)
498 {
499 #ifdef CONFIG_SMP
500 	rq->hrtick_csd_pending = 0;
501 
502 	rq->hrtick_csd.flags = 0;
503 	rq->hrtick_csd.func = __hrtick_start;
504 	rq->hrtick_csd.info = rq;
505 #endif
506 
507 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 	rq->hrtick_timer.function = hrtick;
509 }
510 #else	/* CONFIG_SCHED_HRTICK */
511 static inline void hrtick_clear(struct rq *rq)
512 {
513 }
514 
515 static inline void init_rq_hrtick(struct rq *rq)
516 {
517 }
518 
519 static inline void init_hrtick(void)
520 {
521 }
522 #endif	/* CONFIG_SCHED_HRTICK */
523 
524 /*
525  * cmpxchg based fetch_or, macro so it works for different integer types
526  */
527 #define fetch_or(ptr, val)						\
528 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
529  	for (;;) {							\
530  		__old = cmpxchg((ptr), __val, __val | (val));		\
531  		if (__old == __val)					\
532  			break;						\
533  		__val = __old;						\
534  	}								\
535  	__old;								\
536 })
537 
538 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539 /*
540  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541  * this avoids any races wrt polling state changes and thereby avoids
542  * spurious IPIs.
543  */
544 static bool set_nr_and_not_polling(struct task_struct *p)
545 {
546 	struct thread_info *ti = task_thread_info(p);
547 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548 }
549 
550 /*
551  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552  *
553  * If this returns true, then the idle task promises to call
554  * sched_ttwu_pending() and reschedule soon.
555  */
556 static bool set_nr_if_polling(struct task_struct *p)
557 {
558 	struct thread_info *ti = task_thread_info(p);
559 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560 
561 	for (;;) {
562 		if (!(val & _TIF_POLLING_NRFLAG))
563 			return false;
564 		if (val & _TIF_NEED_RESCHED)
565 			return true;
566 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567 		if (old == val)
568 			break;
569 		val = old;
570 	}
571 	return true;
572 }
573 
574 #else
575 static bool set_nr_and_not_polling(struct task_struct *p)
576 {
577 	set_tsk_need_resched(p);
578 	return true;
579 }
580 
581 #ifdef CONFIG_SMP
582 static bool set_nr_if_polling(struct task_struct *p)
583 {
584 	return false;
585 }
586 #endif
587 #endif
588 
589 /*
590  * resched_task - mark a task 'to be rescheduled now'.
591  *
592  * On UP this means the setting of the need_resched flag, on SMP it
593  * might also involve a cross-CPU call to trigger the scheduler on
594  * the target CPU.
595  */
596 void resched_task(struct task_struct *p)
597 {
598 	int cpu;
599 
600 	lockdep_assert_held(&task_rq(p)->lock);
601 
602 	if (test_tsk_need_resched(p))
603 		return;
604 
605 	cpu = task_cpu(p);
606 
607 	if (cpu == smp_processor_id()) {
608 		set_tsk_need_resched(p);
609 		set_preempt_need_resched();
610 		return;
611 	}
612 
613 	if (set_nr_and_not_polling(p))
614 		smp_send_reschedule(cpu);
615 	else
616 		trace_sched_wake_idle_without_ipi(cpu);
617 }
618 
619 void resched_cpu(int cpu)
620 {
621 	struct rq *rq = cpu_rq(cpu);
622 	unsigned long flags;
623 
624 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625 		return;
626 	resched_task(cpu_curr(cpu));
627 	raw_spin_unlock_irqrestore(&rq->lock, flags);
628 }
629 
630 #ifdef CONFIG_SMP
631 #ifdef CONFIG_NO_HZ_COMMON
632 /*
633  * In the semi idle case, use the nearest busy cpu for migrating timers
634  * from an idle cpu.  This is good for power-savings.
635  *
636  * We don't do similar optimization for completely idle system, as
637  * selecting an idle cpu will add more delays to the timers than intended
638  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639  */
640 int get_nohz_timer_target(int pinned)
641 {
642 	int cpu = smp_processor_id();
643 	int i;
644 	struct sched_domain *sd;
645 
646 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647 		return cpu;
648 
649 	rcu_read_lock();
650 	for_each_domain(cpu, sd) {
651 		for_each_cpu(i, sched_domain_span(sd)) {
652 			if (!idle_cpu(i)) {
653 				cpu = i;
654 				goto unlock;
655 			}
656 		}
657 	}
658 unlock:
659 	rcu_read_unlock();
660 	return cpu;
661 }
662 /*
663  * When add_timer_on() enqueues a timer into the timer wheel of an
664  * idle CPU then this timer might expire before the next timer event
665  * which is scheduled to wake up that CPU. In case of a completely
666  * idle system the next event might even be infinite time into the
667  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668  * leaves the inner idle loop so the newly added timer is taken into
669  * account when the CPU goes back to idle and evaluates the timer
670  * wheel for the next timer event.
671  */
672 static void wake_up_idle_cpu(int cpu)
673 {
674 	struct rq *rq = cpu_rq(cpu);
675 
676 	if (cpu == smp_processor_id())
677 		return;
678 
679 	if (set_nr_and_not_polling(rq->idle))
680 		smp_send_reschedule(cpu);
681 	else
682 		trace_sched_wake_idle_without_ipi(cpu);
683 }
684 
685 static bool wake_up_full_nohz_cpu(int cpu)
686 {
687 	if (tick_nohz_full_cpu(cpu)) {
688 		if (cpu != smp_processor_id() ||
689 		    tick_nohz_tick_stopped())
690 			smp_send_reschedule(cpu);
691 		return true;
692 	}
693 
694 	return false;
695 }
696 
697 void wake_up_nohz_cpu(int cpu)
698 {
699 	if (!wake_up_full_nohz_cpu(cpu))
700 		wake_up_idle_cpu(cpu);
701 }
702 
703 static inline bool got_nohz_idle_kick(void)
704 {
705 	int cpu = smp_processor_id();
706 
707 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
708 		return false;
709 
710 	if (idle_cpu(cpu) && !need_resched())
711 		return true;
712 
713 	/*
714 	 * We can't run Idle Load Balance on this CPU for this time so we
715 	 * cancel it and clear NOHZ_BALANCE_KICK
716 	 */
717 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
718 	return false;
719 }
720 
721 #else /* CONFIG_NO_HZ_COMMON */
722 
723 static inline bool got_nohz_idle_kick(void)
724 {
725 	return false;
726 }
727 
728 #endif /* CONFIG_NO_HZ_COMMON */
729 
730 #ifdef CONFIG_NO_HZ_FULL
731 bool sched_can_stop_tick(void)
732 {
733        struct rq *rq;
734 
735        rq = this_rq();
736 
737        /* Make sure rq->nr_running update is visible after the IPI */
738        smp_rmb();
739 
740        /* More than one running task need preemption */
741        if (rq->nr_running > 1)
742                return false;
743 
744        return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747 
748 void sched_avg_update(struct rq *rq)
749 {
750 	s64 period = sched_avg_period();
751 
752 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 		/*
754 		 * Inline assembly required to prevent the compiler
755 		 * optimising this loop into a divmod call.
756 		 * See __iter_div_u64_rem() for another example of this.
757 		 */
758 		asm("" : "+rm" (rq->age_stamp));
759 		rq->age_stamp += period;
760 		rq->rt_avg /= 2;
761 	}
762 }
763 
764 #endif /* CONFIG_SMP */
765 
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769  * Iterate task_group tree rooted at *from, calling @down when first entering a
770  * node and @up when leaving it for the final time.
771  *
772  * Caller must hold rcu_lock or sufficient equivalent.
773  */
774 int walk_tg_tree_from(struct task_group *from,
775 			     tg_visitor down, tg_visitor up, void *data)
776 {
777 	struct task_group *parent, *child;
778 	int ret;
779 
780 	parent = from;
781 
782 down:
783 	ret = (*down)(parent, data);
784 	if (ret)
785 		goto out;
786 	list_for_each_entry_rcu(child, &parent->children, siblings) {
787 		parent = child;
788 		goto down;
789 
790 up:
791 		continue;
792 	}
793 	ret = (*up)(parent, data);
794 	if (ret || parent == from)
795 		goto out;
796 
797 	child = parent;
798 	parent = parent->parent;
799 	if (parent)
800 		goto up;
801 out:
802 	return ret;
803 }
804 
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 	return 0;
808 }
809 #endif
810 
811 static void set_load_weight(struct task_struct *p)
812 {
813 	int prio = p->static_prio - MAX_RT_PRIO;
814 	struct load_weight *load = &p->se.load;
815 
816 	/*
817 	 * SCHED_IDLE tasks get minimal weight:
818 	 */
819 	if (p->policy == SCHED_IDLE) {
820 		load->weight = scale_load(WEIGHT_IDLEPRIO);
821 		load->inv_weight = WMULT_IDLEPRIO;
822 		return;
823 	}
824 
825 	load->weight = scale_load(prio_to_weight[prio]);
826 	load->inv_weight = prio_to_wmult[prio];
827 }
828 
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 	update_rq_clock(rq);
832 	sched_info_queued(rq, p);
833 	p->sched_class->enqueue_task(rq, p, flags);
834 }
835 
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	update_rq_clock(rq);
839 	sched_info_dequeued(rq, p);
840 	p->sched_class->dequeue_task(rq, p, flags);
841 }
842 
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	if (task_contributes_to_load(p))
846 		rq->nr_uninterruptible--;
847 
848 	enqueue_task(rq, p, flags);
849 }
850 
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 	if (task_contributes_to_load(p))
854 		rq->nr_uninterruptible++;
855 
856 	dequeue_task(rq, p, flags);
857 }
858 
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862  * In theory, the compile should just see 0 here, and optimize out the call
863  * to sched_rt_avg_update. But I don't trust it...
864  */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 	s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 
871 	/*
872 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 	 * this case when a previous update_rq_clock() happened inside a
874 	 * {soft,}irq region.
875 	 *
876 	 * When this happens, we stop ->clock_task and only update the
877 	 * prev_irq_time stamp to account for the part that fit, so that a next
878 	 * update will consume the rest. This ensures ->clock_task is
879 	 * monotonic.
880 	 *
881 	 * It does however cause some slight miss-attribution of {soft,}irq
882 	 * time, a more accurate solution would be to update the irq_time using
883 	 * the current rq->clock timestamp, except that would require using
884 	 * atomic ops.
885 	 */
886 	if (irq_delta > delta)
887 		irq_delta = delta;
888 
889 	rq->prev_irq_time += irq_delta;
890 	delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 		steal = paravirt_steal_clock(cpu_of(rq));
895 		steal -= rq->prev_steal_time_rq;
896 
897 		if (unlikely(steal > delta))
898 			steal = delta;
899 
900 		rq->prev_steal_time_rq += steal;
901 		delta -= steal;
902 	}
903 #endif
904 
905 	rq->clock_task += delta;
906 
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 		sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912 
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917 
918 	if (stop) {
919 		/*
920 		 * Make it appear like a SCHED_FIFO task, its something
921 		 * userspace knows about and won't get confused about.
922 		 *
923 		 * Also, it will make PI more or less work without too
924 		 * much confusion -- but then, stop work should not
925 		 * rely on PI working anyway.
926 		 */
927 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928 
929 		stop->sched_class = &stop_sched_class;
930 	}
931 
932 	cpu_rq(cpu)->stop = stop;
933 
934 	if (old_stop) {
935 		/*
936 		 * Reset it back to a normal scheduling class so that
937 		 * it can die in pieces.
938 		 */
939 		old_stop->sched_class = &rt_sched_class;
940 	}
941 }
942 
943 /*
944  * __normal_prio - return the priority that is based on the static prio
945  */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 	return p->static_prio;
949 }
950 
951 /*
952  * Calculate the expected normal priority: i.e. priority
953  * without taking RT-inheritance into account. Might be
954  * boosted by interactivity modifiers. Changes upon fork,
955  * setprio syscalls, and whenever the interactivity
956  * estimator recalculates.
957  */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 	int prio;
961 
962 	if (task_has_dl_policy(p))
963 		prio = MAX_DL_PRIO-1;
964 	else if (task_has_rt_policy(p))
965 		prio = MAX_RT_PRIO-1 - p->rt_priority;
966 	else
967 		prio = __normal_prio(p);
968 	return prio;
969 }
970 
971 /*
972  * Calculate the current priority, i.e. the priority
973  * taken into account by the scheduler. This value might
974  * be boosted by RT tasks, or might be boosted by
975  * interactivity modifiers. Will be RT if the task got
976  * RT-boosted. If not then it returns p->normal_prio.
977  */
978 static int effective_prio(struct task_struct *p)
979 {
980 	p->normal_prio = normal_prio(p);
981 	/*
982 	 * If we are RT tasks or we were boosted to RT priority,
983 	 * keep the priority unchanged. Otherwise, update priority
984 	 * to the normal priority:
985 	 */
986 	if (!rt_prio(p->prio))
987 		return p->normal_prio;
988 	return p->prio;
989 }
990 
991 /**
992  * task_curr - is this task currently executing on a CPU?
993  * @p: the task in question.
994  *
995  * Return: 1 if the task is currently executing. 0 otherwise.
996  */
997 inline int task_curr(const struct task_struct *p)
998 {
999 	return cpu_curr(task_cpu(p)) == p;
1000 }
1001 
1002 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1003 				       const struct sched_class *prev_class,
1004 				       int oldprio)
1005 {
1006 	if (prev_class != p->sched_class) {
1007 		if (prev_class->switched_from)
1008 			prev_class->switched_from(rq, p);
1009 		p->sched_class->switched_to(rq, p);
1010 	} else if (oldprio != p->prio || dl_task(p))
1011 		p->sched_class->prio_changed(rq, p, oldprio);
1012 }
1013 
1014 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1015 {
1016 	const struct sched_class *class;
1017 
1018 	if (p->sched_class == rq->curr->sched_class) {
1019 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1020 	} else {
1021 		for_each_class(class) {
1022 			if (class == rq->curr->sched_class)
1023 				break;
1024 			if (class == p->sched_class) {
1025 				resched_task(rq->curr);
1026 				break;
1027 			}
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * A queue event has occurred, and we're going to schedule.  In
1033 	 * this case, we can save a useless back to back clock update.
1034 	 */
1035 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1036 		rq->skip_clock_update = 1;
1037 }
1038 
1039 #ifdef CONFIG_SMP
1040 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1041 {
1042 #ifdef CONFIG_SCHED_DEBUG
1043 	/*
1044 	 * We should never call set_task_cpu() on a blocked task,
1045 	 * ttwu() will sort out the placement.
1046 	 */
1047 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1048 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1049 
1050 #ifdef CONFIG_LOCKDEP
1051 	/*
1052 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1053 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1054 	 *
1055 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1056 	 * see task_group().
1057 	 *
1058 	 * Furthermore, all task_rq users should acquire both locks, see
1059 	 * task_rq_lock().
1060 	 */
1061 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1062 				      lockdep_is_held(&task_rq(p)->lock)));
1063 #endif
1064 #endif
1065 
1066 	trace_sched_migrate_task(p, new_cpu);
1067 
1068 	if (task_cpu(p) != new_cpu) {
1069 		if (p->sched_class->migrate_task_rq)
1070 			p->sched_class->migrate_task_rq(p, new_cpu);
1071 		p->se.nr_migrations++;
1072 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1073 	}
1074 
1075 	__set_task_cpu(p, new_cpu);
1076 }
1077 
1078 static void __migrate_swap_task(struct task_struct *p, int cpu)
1079 {
1080 	if (p->on_rq) {
1081 		struct rq *src_rq, *dst_rq;
1082 
1083 		src_rq = task_rq(p);
1084 		dst_rq = cpu_rq(cpu);
1085 
1086 		deactivate_task(src_rq, p, 0);
1087 		set_task_cpu(p, cpu);
1088 		activate_task(dst_rq, p, 0);
1089 		check_preempt_curr(dst_rq, p, 0);
1090 	} else {
1091 		/*
1092 		 * Task isn't running anymore; make it appear like we migrated
1093 		 * it before it went to sleep. This means on wakeup we make the
1094 		 * previous cpu our targer instead of where it really is.
1095 		 */
1096 		p->wake_cpu = cpu;
1097 	}
1098 }
1099 
1100 struct migration_swap_arg {
1101 	struct task_struct *src_task, *dst_task;
1102 	int src_cpu, dst_cpu;
1103 };
1104 
1105 static int migrate_swap_stop(void *data)
1106 {
1107 	struct migration_swap_arg *arg = data;
1108 	struct rq *src_rq, *dst_rq;
1109 	int ret = -EAGAIN;
1110 
1111 	src_rq = cpu_rq(arg->src_cpu);
1112 	dst_rq = cpu_rq(arg->dst_cpu);
1113 
1114 	double_raw_lock(&arg->src_task->pi_lock,
1115 			&arg->dst_task->pi_lock);
1116 	double_rq_lock(src_rq, dst_rq);
1117 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1118 		goto unlock;
1119 
1120 	if (task_cpu(arg->src_task) != arg->src_cpu)
1121 		goto unlock;
1122 
1123 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1124 		goto unlock;
1125 
1126 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1127 		goto unlock;
1128 
1129 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1130 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1131 
1132 	ret = 0;
1133 
1134 unlock:
1135 	double_rq_unlock(src_rq, dst_rq);
1136 	raw_spin_unlock(&arg->dst_task->pi_lock);
1137 	raw_spin_unlock(&arg->src_task->pi_lock);
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Cross migrate two tasks
1144  */
1145 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1146 {
1147 	struct migration_swap_arg arg;
1148 	int ret = -EINVAL;
1149 
1150 	arg = (struct migration_swap_arg){
1151 		.src_task = cur,
1152 		.src_cpu = task_cpu(cur),
1153 		.dst_task = p,
1154 		.dst_cpu = task_cpu(p),
1155 	};
1156 
1157 	if (arg.src_cpu == arg.dst_cpu)
1158 		goto out;
1159 
1160 	/*
1161 	 * These three tests are all lockless; this is OK since all of them
1162 	 * will be re-checked with proper locks held further down the line.
1163 	 */
1164 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1165 		goto out;
1166 
1167 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1168 		goto out;
1169 
1170 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1171 		goto out;
1172 
1173 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1174 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1175 
1176 out:
1177 	return ret;
1178 }
1179 
1180 struct migration_arg {
1181 	struct task_struct *task;
1182 	int dest_cpu;
1183 };
1184 
1185 static int migration_cpu_stop(void *data);
1186 
1187 /*
1188  * wait_task_inactive - wait for a thread to unschedule.
1189  *
1190  * If @match_state is nonzero, it's the @p->state value just checked and
1191  * not expected to change.  If it changes, i.e. @p might have woken up,
1192  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1193  * we return a positive number (its total switch count).  If a second call
1194  * a short while later returns the same number, the caller can be sure that
1195  * @p has remained unscheduled the whole time.
1196  *
1197  * The caller must ensure that the task *will* unschedule sometime soon,
1198  * else this function might spin for a *long* time. This function can't
1199  * be called with interrupts off, or it may introduce deadlock with
1200  * smp_call_function() if an IPI is sent by the same process we are
1201  * waiting to become inactive.
1202  */
1203 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1204 {
1205 	unsigned long flags;
1206 	int running, on_rq;
1207 	unsigned long ncsw;
1208 	struct rq *rq;
1209 
1210 	for (;;) {
1211 		/*
1212 		 * We do the initial early heuristics without holding
1213 		 * any task-queue locks at all. We'll only try to get
1214 		 * the runqueue lock when things look like they will
1215 		 * work out!
1216 		 */
1217 		rq = task_rq(p);
1218 
1219 		/*
1220 		 * If the task is actively running on another CPU
1221 		 * still, just relax and busy-wait without holding
1222 		 * any locks.
1223 		 *
1224 		 * NOTE! Since we don't hold any locks, it's not
1225 		 * even sure that "rq" stays as the right runqueue!
1226 		 * But we don't care, since "task_running()" will
1227 		 * return false if the runqueue has changed and p
1228 		 * is actually now running somewhere else!
1229 		 */
1230 		while (task_running(rq, p)) {
1231 			if (match_state && unlikely(p->state != match_state))
1232 				return 0;
1233 			cpu_relax();
1234 		}
1235 
1236 		/*
1237 		 * Ok, time to look more closely! We need the rq
1238 		 * lock now, to be *sure*. If we're wrong, we'll
1239 		 * just go back and repeat.
1240 		 */
1241 		rq = task_rq_lock(p, &flags);
1242 		trace_sched_wait_task(p);
1243 		running = task_running(rq, p);
1244 		on_rq = p->on_rq;
1245 		ncsw = 0;
1246 		if (!match_state || p->state == match_state)
1247 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1248 		task_rq_unlock(rq, p, &flags);
1249 
1250 		/*
1251 		 * If it changed from the expected state, bail out now.
1252 		 */
1253 		if (unlikely(!ncsw))
1254 			break;
1255 
1256 		/*
1257 		 * Was it really running after all now that we
1258 		 * checked with the proper locks actually held?
1259 		 *
1260 		 * Oops. Go back and try again..
1261 		 */
1262 		if (unlikely(running)) {
1263 			cpu_relax();
1264 			continue;
1265 		}
1266 
1267 		/*
1268 		 * It's not enough that it's not actively running,
1269 		 * it must be off the runqueue _entirely_, and not
1270 		 * preempted!
1271 		 *
1272 		 * So if it was still runnable (but just not actively
1273 		 * running right now), it's preempted, and we should
1274 		 * yield - it could be a while.
1275 		 */
1276 		if (unlikely(on_rq)) {
1277 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1278 
1279 			set_current_state(TASK_UNINTERRUPTIBLE);
1280 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1281 			continue;
1282 		}
1283 
1284 		/*
1285 		 * Ahh, all good. It wasn't running, and it wasn't
1286 		 * runnable, which means that it will never become
1287 		 * running in the future either. We're all done!
1288 		 */
1289 		break;
1290 	}
1291 
1292 	return ncsw;
1293 }
1294 
1295 /***
1296  * kick_process - kick a running thread to enter/exit the kernel
1297  * @p: the to-be-kicked thread
1298  *
1299  * Cause a process which is running on another CPU to enter
1300  * kernel-mode, without any delay. (to get signals handled.)
1301  *
1302  * NOTE: this function doesn't have to take the runqueue lock,
1303  * because all it wants to ensure is that the remote task enters
1304  * the kernel. If the IPI races and the task has been migrated
1305  * to another CPU then no harm is done and the purpose has been
1306  * achieved as well.
1307  */
1308 void kick_process(struct task_struct *p)
1309 {
1310 	int cpu;
1311 
1312 	preempt_disable();
1313 	cpu = task_cpu(p);
1314 	if ((cpu != smp_processor_id()) && task_curr(p))
1315 		smp_send_reschedule(cpu);
1316 	preempt_enable();
1317 }
1318 EXPORT_SYMBOL_GPL(kick_process);
1319 #endif /* CONFIG_SMP */
1320 
1321 #ifdef CONFIG_SMP
1322 /*
1323  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1324  */
1325 static int select_fallback_rq(int cpu, struct task_struct *p)
1326 {
1327 	int nid = cpu_to_node(cpu);
1328 	const struct cpumask *nodemask = NULL;
1329 	enum { cpuset, possible, fail } state = cpuset;
1330 	int dest_cpu;
1331 
1332 	/*
1333 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1334 	 * will return -1. There is no cpu on the node, and we should
1335 	 * select the cpu on the other node.
1336 	 */
1337 	if (nid != -1) {
1338 		nodemask = cpumask_of_node(nid);
1339 
1340 		/* Look for allowed, online CPU in same node. */
1341 		for_each_cpu(dest_cpu, nodemask) {
1342 			if (!cpu_online(dest_cpu))
1343 				continue;
1344 			if (!cpu_active(dest_cpu))
1345 				continue;
1346 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1347 				return dest_cpu;
1348 		}
1349 	}
1350 
1351 	for (;;) {
1352 		/* Any allowed, online CPU? */
1353 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1354 			if (!cpu_online(dest_cpu))
1355 				continue;
1356 			if (!cpu_active(dest_cpu))
1357 				continue;
1358 			goto out;
1359 		}
1360 
1361 		switch (state) {
1362 		case cpuset:
1363 			/* No more Mr. Nice Guy. */
1364 			cpuset_cpus_allowed_fallback(p);
1365 			state = possible;
1366 			break;
1367 
1368 		case possible:
1369 			do_set_cpus_allowed(p, cpu_possible_mask);
1370 			state = fail;
1371 			break;
1372 
1373 		case fail:
1374 			BUG();
1375 			break;
1376 		}
1377 	}
1378 
1379 out:
1380 	if (state != cpuset) {
1381 		/*
1382 		 * Don't tell them about moving exiting tasks or
1383 		 * kernel threads (both mm NULL), since they never
1384 		 * leave kernel.
1385 		 */
1386 		if (p->mm && printk_ratelimit()) {
1387 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388 					task_pid_nr(p), p->comm, cpu);
1389 		}
1390 	}
1391 
1392 	return dest_cpu;
1393 }
1394 
1395 /*
1396  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1397  */
1398 static inline
1399 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1400 {
1401 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1402 
1403 	/*
1404 	 * In order not to call set_task_cpu() on a blocking task we need
1405 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1406 	 * cpu.
1407 	 *
1408 	 * Since this is common to all placement strategies, this lives here.
1409 	 *
1410 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1411 	 *   not worry about this generic constraint ]
1412 	 */
1413 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1414 		     !cpu_online(cpu)))
1415 		cpu = select_fallback_rq(task_cpu(p), p);
1416 
1417 	return cpu;
1418 }
1419 
1420 static void update_avg(u64 *avg, u64 sample)
1421 {
1422 	s64 diff = sample - *avg;
1423 	*avg += diff >> 3;
1424 }
1425 #endif
1426 
1427 static void
1428 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1429 {
1430 #ifdef CONFIG_SCHEDSTATS
1431 	struct rq *rq = this_rq();
1432 
1433 #ifdef CONFIG_SMP
1434 	int this_cpu = smp_processor_id();
1435 
1436 	if (cpu == this_cpu) {
1437 		schedstat_inc(rq, ttwu_local);
1438 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1439 	} else {
1440 		struct sched_domain *sd;
1441 
1442 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1443 		rcu_read_lock();
1444 		for_each_domain(this_cpu, sd) {
1445 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1446 				schedstat_inc(sd, ttwu_wake_remote);
1447 				break;
1448 			}
1449 		}
1450 		rcu_read_unlock();
1451 	}
1452 
1453 	if (wake_flags & WF_MIGRATED)
1454 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1455 
1456 #endif /* CONFIG_SMP */
1457 
1458 	schedstat_inc(rq, ttwu_count);
1459 	schedstat_inc(p, se.statistics.nr_wakeups);
1460 
1461 	if (wake_flags & WF_SYNC)
1462 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1463 
1464 #endif /* CONFIG_SCHEDSTATS */
1465 }
1466 
1467 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1468 {
1469 	activate_task(rq, p, en_flags);
1470 	p->on_rq = 1;
1471 
1472 	/* if a worker is waking up, notify workqueue */
1473 	if (p->flags & PF_WQ_WORKER)
1474 		wq_worker_waking_up(p, cpu_of(rq));
1475 }
1476 
1477 /*
1478  * Mark the task runnable and perform wakeup-preemption.
1479  */
1480 static void
1481 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1482 {
1483 	check_preempt_curr(rq, p, wake_flags);
1484 	trace_sched_wakeup(p, true);
1485 
1486 	p->state = TASK_RUNNING;
1487 #ifdef CONFIG_SMP
1488 	if (p->sched_class->task_woken)
1489 		p->sched_class->task_woken(rq, p);
1490 
1491 	if (rq->idle_stamp) {
1492 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1493 		u64 max = 2*rq->max_idle_balance_cost;
1494 
1495 		update_avg(&rq->avg_idle, delta);
1496 
1497 		if (rq->avg_idle > max)
1498 			rq->avg_idle = max;
1499 
1500 		rq->idle_stamp = 0;
1501 	}
1502 #endif
1503 }
1504 
1505 static void
1506 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1507 {
1508 #ifdef CONFIG_SMP
1509 	if (p->sched_contributes_to_load)
1510 		rq->nr_uninterruptible--;
1511 #endif
1512 
1513 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1514 	ttwu_do_wakeup(rq, p, wake_flags);
1515 }
1516 
1517 /*
1518  * Called in case the task @p isn't fully descheduled from its runqueue,
1519  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520  * since all we need to do is flip p->state to TASK_RUNNING, since
1521  * the task is still ->on_rq.
1522  */
1523 static int ttwu_remote(struct task_struct *p, int wake_flags)
1524 {
1525 	struct rq *rq;
1526 	int ret = 0;
1527 
1528 	rq = __task_rq_lock(p);
1529 	if (p->on_rq) {
1530 		/* check_preempt_curr() may use rq clock */
1531 		update_rq_clock(rq);
1532 		ttwu_do_wakeup(rq, p, wake_flags);
1533 		ret = 1;
1534 	}
1535 	__task_rq_unlock(rq);
1536 
1537 	return ret;
1538 }
1539 
1540 #ifdef CONFIG_SMP
1541 void sched_ttwu_pending(void)
1542 {
1543 	struct rq *rq = this_rq();
1544 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1545 	struct task_struct *p;
1546 	unsigned long flags;
1547 
1548 	if (!llist)
1549 		return;
1550 
1551 	raw_spin_lock_irqsave(&rq->lock, flags);
1552 
1553 	while (llist) {
1554 		p = llist_entry(llist, struct task_struct, wake_entry);
1555 		llist = llist_next(llist);
1556 		ttwu_do_activate(rq, p, 0);
1557 	}
1558 
1559 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1560 }
1561 
1562 void scheduler_ipi(void)
1563 {
1564 	/*
1565 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1567 	 * this IPI.
1568 	 */
1569 	preempt_fold_need_resched();
1570 
1571 	if (llist_empty(&this_rq()->wake_list)
1572 			&& !tick_nohz_full_cpu(smp_processor_id())
1573 			&& !got_nohz_idle_kick())
1574 		return;
1575 
1576 	/*
1577 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578 	 * traditionally all their work was done from the interrupt return
1579 	 * path. Now that we actually do some work, we need to make sure
1580 	 * we do call them.
1581 	 *
1582 	 * Some archs already do call them, luckily irq_enter/exit nest
1583 	 * properly.
1584 	 *
1585 	 * Arguably we should visit all archs and update all handlers,
1586 	 * however a fair share of IPIs are still resched only so this would
1587 	 * somewhat pessimize the simple resched case.
1588 	 */
1589 	irq_enter();
1590 	tick_nohz_full_check();
1591 	sched_ttwu_pending();
1592 
1593 	/*
1594 	 * Check if someone kicked us for doing the nohz idle load balance.
1595 	 */
1596 	if (unlikely(got_nohz_idle_kick())) {
1597 		this_rq()->idle_balance = 1;
1598 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1599 	}
1600 	irq_exit();
1601 }
1602 
1603 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1604 {
1605 	struct rq *rq = cpu_rq(cpu);
1606 
1607 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1608 		if (!set_nr_if_polling(rq->idle))
1609 			smp_send_reschedule(cpu);
1610 		else
1611 			trace_sched_wake_idle_without_ipi(cpu);
1612 	}
1613 }
1614 
1615 bool cpus_share_cache(int this_cpu, int that_cpu)
1616 {
1617 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1618 }
1619 #endif /* CONFIG_SMP */
1620 
1621 static void ttwu_queue(struct task_struct *p, int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 
1625 #if defined(CONFIG_SMP)
1626 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1627 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1628 		ttwu_queue_remote(p, cpu);
1629 		return;
1630 	}
1631 #endif
1632 
1633 	raw_spin_lock(&rq->lock);
1634 	ttwu_do_activate(rq, p, 0);
1635 	raw_spin_unlock(&rq->lock);
1636 }
1637 
1638 /**
1639  * try_to_wake_up - wake up a thread
1640  * @p: the thread to be awakened
1641  * @state: the mask of task states that can be woken
1642  * @wake_flags: wake modifier flags (WF_*)
1643  *
1644  * Put it on the run-queue if it's not already there. The "current"
1645  * thread is always on the run-queue (except when the actual
1646  * re-schedule is in progress), and as such you're allowed to do
1647  * the simpler "current->state = TASK_RUNNING" to mark yourself
1648  * runnable without the overhead of this.
1649  *
1650  * Return: %true if @p was woken up, %false if it was already running.
1651  * or @state didn't match @p's state.
1652  */
1653 static int
1654 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1655 {
1656 	unsigned long flags;
1657 	int cpu, success = 0;
1658 
1659 	/*
1660 	 * If we are going to wake up a thread waiting for CONDITION we
1661 	 * need to ensure that CONDITION=1 done by the caller can not be
1662 	 * reordered with p->state check below. This pairs with mb() in
1663 	 * set_current_state() the waiting thread does.
1664 	 */
1665 	smp_mb__before_spinlock();
1666 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1667 	if (!(p->state & state))
1668 		goto out;
1669 
1670 	success = 1; /* we're going to change ->state */
1671 	cpu = task_cpu(p);
1672 
1673 	if (p->on_rq && ttwu_remote(p, wake_flags))
1674 		goto stat;
1675 
1676 #ifdef CONFIG_SMP
1677 	/*
1678 	 * If the owning (remote) cpu is still in the middle of schedule() with
1679 	 * this task as prev, wait until its done referencing the task.
1680 	 */
1681 	while (p->on_cpu)
1682 		cpu_relax();
1683 	/*
1684 	 * Pairs with the smp_wmb() in finish_lock_switch().
1685 	 */
1686 	smp_rmb();
1687 
1688 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1689 	p->state = TASK_WAKING;
1690 
1691 	if (p->sched_class->task_waking)
1692 		p->sched_class->task_waking(p);
1693 
1694 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1695 	if (task_cpu(p) != cpu) {
1696 		wake_flags |= WF_MIGRATED;
1697 		set_task_cpu(p, cpu);
1698 	}
1699 #endif /* CONFIG_SMP */
1700 
1701 	ttwu_queue(p, cpu);
1702 stat:
1703 	ttwu_stat(p, cpu, wake_flags);
1704 out:
1705 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1706 
1707 	return success;
1708 }
1709 
1710 /**
1711  * try_to_wake_up_local - try to wake up a local task with rq lock held
1712  * @p: the thread to be awakened
1713  *
1714  * Put @p on the run-queue if it's not already there. The caller must
1715  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1716  * the current task.
1717  */
1718 static void try_to_wake_up_local(struct task_struct *p)
1719 {
1720 	struct rq *rq = task_rq(p);
1721 
1722 	if (WARN_ON_ONCE(rq != this_rq()) ||
1723 	    WARN_ON_ONCE(p == current))
1724 		return;
1725 
1726 	lockdep_assert_held(&rq->lock);
1727 
1728 	if (!raw_spin_trylock(&p->pi_lock)) {
1729 		raw_spin_unlock(&rq->lock);
1730 		raw_spin_lock(&p->pi_lock);
1731 		raw_spin_lock(&rq->lock);
1732 	}
1733 
1734 	if (!(p->state & TASK_NORMAL))
1735 		goto out;
1736 
1737 	if (!p->on_rq)
1738 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1739 
1740 	ttwu_do_wakeup(rq, p, 0);
1741 	ttwu_stat(p, smp_processor_id(), 0);
1742 out:
1743 	raw_spin_unlock(&p->pi_lock);
1744 }
1745 
1746 /**
1747  * wake_up_process - Wake up a specific process
1748  * @p: The process to be woken up.
1749  *
1750  * Attempt to wake up the nominated process and move it to the set of runnable
1751  * processes.
1752  *
1753  * Return: 1 if the process was woken up, 0 if it was already running.
1754  *
1755  * It may be assumed that this function implies a write memory barrier before
1756  * changing the task state if and only if any tasks are woken up.
1757  */
1758 int wake_up_process(struct task_struct *p)
1759 {
1760 	WARN_ON(task_is_stopped_or_traced(p));
1761 	return try_to_wake_up(p, TASK_NORMAL, 0);
1762 }
1763 EXPORT_SYMBOL(wake_up_process);
1764 
1765 int wake_up_state(struct task_struct *p, unsigned int state)
1766 {
1767 	return try_to_wake_up(p, state, 0);
1768 }
1769 
1770 /*
1771  * Perform scheduler related setup for a newly forked process p.
1772  * p is forked by current.
1773  *
1774  * __sched_fork() is basic setup used by init_idle() too:
1775  */
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 	p->on_rq			= 0;
1779 
1780 	p->se.on_rq			= 0;
1781 	p->se.exec_start		= 0;
1782 	p->se.sum_exec_runtime		= 0;
1783 	p->se.prev_sum_exec_runtime	= 0;
1784 	p->se.nr_migrations		= 0;
1785 	p->se.vruntime			= 0;
1786 	INIT_LIST_HEAD(&p->se.group_node);
1787 
1788 #ifdef CONFIG_SCHEDSTATS
1789 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1790 #endif
1791 
1792 	RB_CLEAR_NODE(&p->dl.rb_node);
1793 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1794 	p->dl.dl_runtime = p->dl.runtime = 0;
1795 	p->dl.dl_deadline = p->dl.deadline = 0;
1796 	p->dl.dl_period = 0;
1797 	p->dl.flags = 0;
1798 
1799 	INIT_LIST_HEAD(&p->rt.run_list);
1800 
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1803 #endif
1804 
1805 #ifdef CONFIG_NUMA_BALANCING
1806 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 		p->mm->numa_scan_seq = 0;
1809 	}
1810 
1811 	if (clone_flags & CLONE_VM)
1812 		p->numa_preferred_nid = current->numa_preferred_nid;
1813 	else
1814 		p->numa_preferred_nid = -1;
1815 
1816 	p->node_stamp = 0ULL;
1817 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 	p->numa_work.next = &p->numa_work;
1820 	p->numa_faults_memory = NULL;
1821 	p->numa_faults_buffer_memory = NULL;
1822 	p->last_task_numa_placement = 0;
1823 	p->last_sum_exec_runtime = 0;
1824 
1825 	INIT_LIST_HEAD(&p->numa_entry);
1826 	p->numa_group = NULL;
1827 #endif /* CONFIG_NUMA_BALANCING */
1828 }
1829 
1830 #ifdef CONFIG_NUMA_BALANCING
1831 #ifdef CONFIG_SCHED_DEBUG
1832 void set_numabalancing_state(bool enabled)
1833 {
1834 	if (enabled)
1835 		sched_feat_set("NUMA");
1836 	else
1837 		sched_feat_set("NO_NUMA");
1838 }
1839 #else
1840 __read_mostly bool numabalancing_enabled;
1841 
1842 void set_numabalancing_state(bool enabled)
1843 {
1844 	numabalancing_enabled = enabled;
1845 }
1846 #endif /* CONFIG_SCHED_DEBUG */
1847 
1848 #ifdef CONFIG_PROC_SYSCTL
1849 int sysctl_numa_balancing(struct ctl_table *table, int write,
1850 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1851 {
1852 	struct ctl_table t;
1853 	int err;
1854 	int state = numabalancing_enabled;
1855 
1856 	if (write && !capable(CAP_SYS_ADMIN))
1857 		return -EPERM;
1858 
1859 	t = *table;
1860 	t.data = &state;
1861 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1862 	if (err < 0)
1863 		return err;
1864 	if (write)
1865 		set_numabalancing_state(state);
1866 	return err;
1867 }
1868 #endif
1869 #endif
1870 
1871 /*
1872  * fork()/clone()-time setup:
1873  */
1874 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1875 {
1876 	unsigned long flags;
1877 	int cpu = get_cpu();
1878 
1879 	__sched_fork(clone_flags, p);
1880 	/*
1881 	 * We mark the process as running here. This guarantees that
1882 	 * nobody will actually run it, and a signal or other external
1883 	 * event cannot wake it up and insert it on the runqueue either.
1884 	 */
1885 	p->state = TASK_RUNNING;
1886 
1887 	/*
1888 	 * Make sure we do not leak PI boosting priority to the child.
1889 	 */
1890 	p->prio = current->normal_prio;
1891 
1892 	/*
1893 	 * Revert to default priority/policy on fork if requested.
1894 	 */
1895 	if (unlikely(p->sched_reset_on_fork)) {
1896 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1897 			p->policy = SCHED_NORMAL;
1898 			p->static_prio = NICE_TO_PRIO(0);
1899 			p->rt_priority = 0;
1900 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1901 			p->static_prio = NICE_TO_PRIO(0);
1902 
1903 		p->prio = p->normal_prio = __normal_prio(p);
1904 		set_load_weight(p);
1905 
1906 		/*
1907 		 * We don't need the reset flag anymore after the fork. It has
1908 		 * fulfilled its duty:
1909 		 */
1910 		p->sched_reset_on_fork = 0;
1911 	}
1912 
1913 	if (dl_prio(p->prio)) {
1914 		put_cpu();
1915 		return -EAGAIN;
1916 	} else if (rt_prio(p->prio)) {
1917 		p->sched_class = &rt_sched_class;
1918 	} else {
1919 		p->sched_class = &fair_sched_class;
1920 	}
1921 
1922 	if (p->sched_class->task_fork)
1923 		p->sched_class->task_fork(p);
1924 
1925 	/*
1926 	 * The child is not yet in the pid-hash so no cgroup attach races,
1927 	 * and the cgroup is pinned to this child due to cgroup_fork()
1928 	 * is ran before sched_fork().
1929 	 *
1930 	 * Silence PROVE_RCU.
1931 	 */
1932 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1933 	set_task_cpu(p, cpu);
1934 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1935 
1936 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1937 	if (likely(sched_info_on()))
1938 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1939 #endif
1940 #if defined(CONFIG_SMP)
1941 	p->on_cpu = 0;
1942 #endif
1943 	init_task_preempt_count(p);
1944 #ifdef CONFIG_SMP
1945 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1946 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1947 #endif
1948 
1949 	put_cpu();
1950 	return 0;
1951 }
1952 
1953 unsigned long to_ratio(u64 period, u64 runtime)
1954 {
1955 	if (runtime == RUNTIME_INF)
1956 		return 1ULL << 20;
1957 
1958 	/*
1959 	 * Doing this here saves a lot of checks in all
1960 	 * the calling paths, and returning zero seems
1961 	 * safe for them anyway.
1962 	 */
1963 	if (period == 0)
1964 		return 0;
1965 
1966 	return div64_u64(runtime << 20, period);
1967 }
1968 
1969 #ifdef CONFIG_SMP
1970 inline struct dl_bw *dl_bw_of(int i)
1971 {
1972 	return &cpu_rq(i)->rd->dl_bw;
1973 }
1974 
1975 static inline int dl_bw_cpus(int i)
1976 {
1977 	struct root_domain *rd = cpu_rq(i)->rd;
1978 	int cpus = 0;
1979 
1980 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1981 		cpus++;
1982 
1983 	return cpus;
1984 }
1985 #else
1986 inline struct dl_bw *dl_bw_of(int i)
1987 {
1988 	return &cpu_rq(i)->dl.dl_bw;
1989 }
1990 
1991 static inline int dl_bw_cpus(int i)
1992 {
1993 	return 1;
1994 }
1995 #endif
1996 
1997 static inline
1998 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1999 {
2000 	dl_b->total_bw -= tsk_bw;
2001 }
2002 
2003 static inline
2004 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2005 {
2006 	dl_b->total_bw += tsk_bw;
2007 }
2008 
2009 static inline
2010 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2011 {
2012 	return dl_b->bw != -1 &&
2013 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2014 }
2015 
2016 /*
2017  * We must be sure that accepting a new task (or allowing changing the
2018  * parameters of an existing one) is consistent with the bandwidth
2019  * constraints. If yes, this function also accordingly updates the currently
2020  * allocated bandwidth to reflect the new situation.
2021  *
2022  * This function is called while holding p's rq->lock.
2023  */
2024 static int dl_overflow(struct task_struct *p, int policy,
2025 		       const struct sched_attr *attr)
2026 {
2027 
2028 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2029 	u64 period = attr->sched_period ?: attr->sched_deadline;
2030 	u64 runtime = attr->sched_runtime;
2031 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2032 	int cpus, err = -1;
2033 
2034 	if (new_bw == p->dl.dl_bw)
2035 		return 0;
2036 
2037 	/*
2038 	 * Either if a task, enters, leave, or stays -deadline but changes
2039 	 * its parameters, we may need to update accordingly the total
2040 	 * allocated bandwidth of the container.
2041 	 */
2042 	raw_spin_lock(&dl_b->lock);
2043 	cpus = dl_bw_cpus(task_cpu(p));
2044 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2045 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2046 		__dl_add(dl_b, new_bw);
2047 		err = 0;
2048 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2049 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2050 		__dl_clear(dl_b, p->dl.dl_bw);
2051 		__dl_add(dl_b, new_bw);
2052 		err = 0;
2053 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2054 		__dl_clear(dl_b, p->dl.dl_bw);
2055 		err = 0;
2056 	}
2057 	raw_spin_unlock(&dl_b->lock);
2058 
2059 	return err;
2060 }
2061 
2062 extern void init_dl_bw(struct dl_bw *dl_b);
2063 
2064 /*
2065  * wake_up_new_task - wake up a newly created task for the first time.
2066  *
2067  * This function will do some initial scheduler statistics housekeeping
2068  * that must be done for every newly created context, then puts the task
2069  * on the runqueue and wakes it.
2070  */
2071 void wake_up_new_task(struct task_struct *p)
2072 {
2073 	unsigned long flags;
2074 	struct rq *rq;
2075 
2076 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2077 #ifdef CONFIG_SMP
2078 	/*
2079 	 * Fork balancing, do it here and not earlier because:
2080 	 *  - cpus_allowed can change in the fork path
2081 	 *  - any previously selected cpu might disappear through hotplug
2082 	 */
2083 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2084 #endif
2085 
2086 	/* Initialize new task's runnable average */
2087 	init_task_runnable_average(p);
2088 	rq = __task_rq_lock(p);
2089 	activate_task(rq, p, 0);
2090 	p->on_rq = 1;
2091 	trace_sched_wakeup_new(p, true);
2092 	check_preempt_curr(rq, p, WF_FORK);
2093 #ifdef CONFIG_SMP
2094 	if (p->sched_class->task_woken)
2095 		p->sched_class->task_woken(rq, p);
2096 #endif
2097 	task_rq_unlock(rq, p, &flags);
2098 }
2099 
2100 #ifdef CONFIG_PREEMPT_NOTIFIERS
2101 
2102 /**
2103  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2104  * @notifier: notifier struct to register
2105  */
2106 void preempt_notifier_register(struct preempt_notifier *notifier)
2107 {
2108 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2109 }
2110 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2111 
2112 /**
2113  * preempt_notifier_unregister - no longer interested in preemption notifications
2114  * @notifier: notifier struct to unregister
2115  *
2116  * This is safe to call from within a preemption notifier.
2117  */
2118 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2119 {
2120 	hlist_del(&notifier->link);
2121 }
2122 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2123 
2124 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2125 {
2126 	struct preempt_notifier *notifier;
2127 
2128 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2129 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2130 }
2131 
2132 static void
2133 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134 				 struct task_struct *next)
2135 {
2136 	struct preempt_notifier *notifier;
2137 
2138 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2139 		notifier->ops->sched_out(notifier, next);
2140 }
2141 
2142 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2143 
2144 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145 {
2146 }
2147 
2148 static void
2149 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2150 				 struct task_struct *next)
2151 {
2152 }
2153 
2154 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2155 
2156 /**
2157  * prepare_task_switch - prepare to switch tasks
2158  * @rq: the runqueue preparing to switch
2159  * @prev: the current task that is being switched out
2160  * @next: the task we are going to switch to.
2161  *
2162  * This is called with the rq lock held and interrupts off. It must
2163  * be paired with a subsequent finish_task_switch after the context
2164  * switch.
2165  *
2166  * prepare_task_switch sets up locking and calls architecture specific
2167  * hooks.
2168  */
2169 static inline void
2170 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2171 		    struct task_struct *next)
2172 {
2173 	trace_sched_switch(prev, next);
2174 	sched_info_switch(rq, prev, next);
2175 	perf_event_task_sched_out(prev, next);
2176 	fire_sched_out_preempt_notifiers(prev, next);
2177 	prepare_lock_switch(rq, next);
2178 	prepare_arch_switch(next);
2179 }
2180 
2181 /**
2182  * finish_task_switch - clean up after a task-switch
2183  * @rq: runqueue associated with task-switch
2184  * @prev: the thread we just switched away from.
2185  *
2186  * finish_task_switch must be called after the context switch, paired
2187  * with a prepare_task_switch call before the context switch.
2188  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189  * and do any other architecture-specific cleanup actions.
2190  *
2191  * Note that we may have delayed dropping an mm in context_switch(). If
2192  * so, we finish that here outside of the runqueue lock. (Doing it
2193  * with the lock held can cause deadlocks; see schedule() for
2194  * details.)
2195  */
2196 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2197 	__releases(rq->lock)
2198 {
2199 	struct mm_struct *mm = rq->prev_mm;
2200 	long prev_state;
2201 
2202 	rq->prev_mm = NULL;
2203 
2204 	/*
2205 	 * A task struct has one reference for the use as "current".
2206 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2207 	 * schedule one last time. The schedule call will never return, and
2208 	 * the scheduled task must drop that reference.
2209 	 * The test for TASK_DEAD must occur while the runqueue locks are
2210 	 * still held, otherwise prev could be scheduled on another cpu, die
2211 	 * there before we look at prev->state, and then the reference would
2212 	 * be dropped twice.
2213 	 *		Manfred Spraul <manfred@colorfullife.com>
2214 	 */
2215 	prev_state = prev->state;
2216 	vtime_task_switch(prev);
2217 	finish_arch_switch(prev);
2218 	perf_event_task_sched_in(prev, current);
2219 	finish_lock_switch(rq, prev);
2220 	finish_arch_post_lock_switch();
2221 
2222 	fire_sched_in_preempt_notifiers(current);
2223 	if (mm)
2224 		mmdrop(mm);
2225 	if (unlikely(prev_state == TASK_DEAD)) {
2226 		if (prev->sched_class->task_dead)
2227 			prev->sched_class->task_dead(prev);
2228 
2229 		/*
2230 		 * Remove function-return probe instances associated with this
2231 		 * task and put them back on the free list.
2232 		 */
2233 		kprobe_flush_task(prev);
2234 		put_task_struct(prev);
2235 	}
2236 
2237 	tick_nohz_task_switch(current);
2238 }
2239 
2240 #ifdef CONFIG_SMP
2241 
2242 /* rq->lock is NOT held, but preemption is disabled */
2243 static inline void post_schedule(struct rq *rq)
2244 {
2245 	if (rq->post_schedule) {
2246 		unsigned long flags;
2247 
2248 		raw_spin_lock_irqsave(&rq->lock, flags);
2249 		if (rq->curr->sched_class->post_schedule)
2250 			rq->curr->sched_class->post_schedule(rq);
2251 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2252 
2253 		rq->post_schedule = 0;
2254 	}
2255 }
2256 
2257 #else
2258 
2259 static inline void post_schedule(struct rq *rq)
2260 {
2261 }
2262 
2263 #endif
2264 
2265 /**
2266  * schedule_tail - first thing a freshly forked thread must call.
2267  * @prev: the thread we just switched away from.
2268  */
2269 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2270 	__releases(rq->lock)
2271 {
2272 	struct rq *rq = this_rq();
2273 
2274 	finish_task_switch(rq, prev);
2275 
2276 	/*
2277 	 * FIXME: do we need to worry about rq being invalidated by the
2278 	 * task_switch?
2279 	 */
2280 	post_schedule(rq);
2281 
2282 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283 	/* In this case, finish_task_switch does not reenable preemption */
2284 	preempt_enable();
2285 #endif
2286 	if (current->set_child_tid)
2287 		put_user(task_pid_vnr(current), current->set_child_tid);
2288 }
2289 
2290 /*
2291  * context_switch - switch to the new MM and the new
2292  * thread's register state.
2293  */
2294 static inline void
2295 context_switch(struct rq *rq, struct task_struct *prev,
2296 	       struct task_struct *next)
2297 {
2298 	struct mm_struct *mm, *oldmm;
2299 
2300 	prepare_task_switch(rq, prev, next);
2301 
2302 	mm = next->mm;
2303 	oldmm = prev->active_mm;
2304 	/*
2305 	 * For paravirt, this is coupled with an exit in switch_to to
2306 	 * combine the page table reload and the switch backend into
2307 	 * one hypercall.
2308 	 */
2309 	arch_start_context_switch(prev);
2310 
2311 	if (!mm) {
2312 		next->active_mm = oldmm;
2313 		atomic_inc(&oldmm->mm_count);
2314 		enter_lazy_tlb(oldmm, next);
2315 	} else
2316 		switch_mm(oldmm, mm, next);
2317 
2318 	if (!prev->mm) {
2319 		prev->active_mm = NULL;
2320 		rq->prev_mm = oldmm;
2321 	}
2322 	/*
2323 	 * Since the runqueue lock will be released by the next
2324 	 * task (which is an invalid locking op but in the case
2325 	 * of the scheduler it's an obvious special-case), so we
2326 	 * do an early lockdep release here:
2327 	 */
2328 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2330 #endif
2331 
2332 	context_tracking_task_switch(prev, next);
2333 	/* Here we just switch the register state and the stack. */
2334 	switch_to(prev, next, prev);
2335 
2336 	barrier();
2337 	/*
2338 	 * this_rq must be evaluated again because prev may have moved
2339 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2340 	 * frame will be invalid.
2341 	 */
2342 	finish_task_switch(this_rq(), prev);
2343 }
2344 
2345 /*
2346  * nr_running and nr_context_switches:
2347  *
2348  * externally visible scheduler statistics: current number of runnable
2349  * threads, total number of context switches performed since bootup.
2350  */
2351 unsigned long nr_running(void)
2352 {
2353 	unsigned long i, sum = 0;
2354 
2355 	for_each_online_cpu(i)
2356 		sum += cpu_rq(i)->nr_running;
2357 
2358 	return sum;
2359 }
2360 
2361 unsigned long long nr_context_switches(void)
2362 {
2363 	int i;
2364 	unsigned long long sum = 0;
2365 
2366 	for_each_possible_cpu(i)
2367 		sum += cpu_rq(i)->nr_switches;
2368 
2369 	return sum;
2370 }
2371 
2372 unsigned long nr_iowait(void)
2373 {
2374 	unsigned long i, sum = 0;
2375 
2376 	for_each_possible_cpu(i)
2377 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2378 
2379 	return sum;
2380 }
2381 
2382 unsigned long nr_iowait_cpu(int cpu)
2383 {
2384 	struct rq *this = cpu_rq(cpu);
2385 	return atomic_read(&this->nr_iowait);
2386 }
2387 
2388 #ifdef CONFIG_SMP
2389 
2390 /*
2391  * sched_exec - execve() is a valuable balancing opportunity, because at
2392  * this point the task has the smallest effective memory and cache footprint.
2393  */
2394 void sched_exec(void)
2395 {
2396 	struct task_struct *p = current;
2397 	unsigned long flags;
2398 	int dest_cpu;
2399 
2400 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2401 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2402 	if (dest_cpu == smp_processor_id())
2403 		goto unlock;
2404 
2405 	if (likely(cpu_active(dest_cpu))) {
2406 		struct migration_arg arg = { p, dest_cpu };
2407 
2408 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2410 		return;
2411 	}
2412 unlock:
2413 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2414 }
2415 
2416 #endif
2417 
2418 DEFINE_PER_CPU(struct kernel_stat, kstat);
2419 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2420 
2421 EXPORT_PER_CPU_SYMBOL(kstat);
2422 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2423 
2424 /*
2425  * Return any ns on the sched_clock that have not yet been accounted in
2426  * @p in case that task is currently running.
2427  *
2428  * Called with task_rq_lock() held on @rq.
2429  */
2430 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2431 {
2432 	u64 ns = 0;
2433 
2434 	if (task_current(rq, p)) {
2435 		update_rq_clock(rq);
2436 		ns = rq_clock_task(rq) - p->se.exec_start;
2437 		if ((s64)ns < 0)
2438 			ns = 0;
2439 	}
2440 
2441 	return ns;
2442 }
2443 
2444 unsigned long long task_delta_exec(struct task_struct *p)
2445 {
2446 	unsigned long flags;
2447 	struct rq *rq;
2448 	u64 ns = 0;
2449 
2450 	rq = task_rq_lock(p, &flags);
2451 	ns = do_task_delta_exec(p, rq);
2452 	task_rq_unlock(rq, p, &flags);
2453 
2454 	return ns;
2455 }
2456 
2457 /*
2458  * Return accounted runtime for the task.
2459  * In case the task is currently running, return the runtime plus current's
2460  * pending runtime that have not been accounted yet.
2461  */
2462 unsigned long long task_sched_runtime(struct task_struct *p)
2463 {
2464 	unsigned long flags;
2465 	struct rq *rq;
2466 	u64 ns = 0;
2467 
2468 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2469 	/*
2470 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2471 	 * So we have a optimization chance when the task's delta_exec is 0.
2472 	 * Reading ->on_cpu is racy, but this is ok.
2473 	 *
2474 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475 	 * If we race with it entering cpu, unaccounted time is 0. This is
2476 	 * indistinguishable from the read occurring a few cycles earlier.
2477 	 */
2478 	if (!p->on_cpu)
2479 		return p->se.sum_exec_runtime;
2480 #endif
2481 
2482 	rq = task_rq_lock(p, &flags);
2483 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2484 	task_rq_unlock(rq, p, &flags);
2485 
2486 	return ns;
2487 }
2488 
2489 /*
2490  * This function gets called by the timer code, with HZ frequency.
2491  * We call it with interrupts disabled.
2492  */
2493 void scheduler_tick(void)
2494 {
2495 	int cpu = smp_processor_id();
2496 	struct rq *rq = cpu_rq(cpu);
2497 	struct task_struct *curr = rq->curr;
2498 
2499 	sched_clock_tick();
2500 
2501 	raw_spin_lock(&rq->lock);
2502 	update_rq_clock(rq);
2503 	curr->sched_class->task_tick(rq, curr, 0);
2504 	update_cpu_load_active(rq);
2505 	raw_spin_unlock(&rq->lock);
2506 
2507 	perf_event_task_tick();
2508 
2509 #ifdef CONFIG_SMP
2510 	rq->idle_balance = idle_cpu(cpu);
2511 	trigger_load_balance(rq);
2512 #endif
2513 	rq_last_tick_reset(rq);
2514 }
2515 
2516 #ifdef CONFIG_NO_HZ_FULL
2517 /**
2518  * scheduler_tick_max_deferment
2519  *
2520  * Keep at least one tick per second when a single
2521  * active task is running because the scheduler doesn't
2522  * yet completely support full dynticks environment.
2523  *
2524  * This makes sure that uptime, CFS vruntime, load
2525  * balancing, etc... continue to move forward, even
2526  * with a very low granularity.
2527  *
2528  * Return: Maximum deferment in nanoseconds.
2529  */
2530 u64 scheduler_tick_max_deferment(void)
2531 {
2532 	struct rq *rq = this_rq();
2533 	unsigned long next, now = ACCESS_ONCE(jiffies);
2534 
2535 	next = rq->last_sched_tick + HZ;
2536 
2537 	if (time_before_eq(next, now))
2538 		return 0;
2539 
2540 	return jiffies_to_nsecs(next - now);
2541 }
2542 #endif
2543 
2544 notrace unsigned long get_parent_ip(unsigned long addr)
2545 {
2546 	if (in_lock_functions(addr)) {
2547 		addr = CALLER_ADDR2;
2548 		if (in_lock_functions(addr))
2549 			addr = CALLER_ADDR3;
2550 	}
2551 	return addr;
2552 }
2553 
2554 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555 				defined(CONFIG_PREEMPT_TRACER))
2556 
2557 void preempt_count_add(int val)
2558 {
2559 #ifdef CONFIG_DEBUG_PREEMPT
2560 	/*
2561 	 * Underflow?
2562 	 */
2563 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2564 		return;
2565 #endif
2566 	__preempt_count_add(val);
2567 #ifdef CONFIG_DEBUG_PREEMPT
2568 	/*
2569 	 * Spinlock count overflowing soon?
2570 	 */
2571 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2572 				PREEMPT_MASK - 10);
2573 #endif
2574 	if (preempt_count() == val) {
2575 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2576 #ifdef CONFIG_DEBUG_PREEMPT
2577 		current->preempt_disable_ip = ip;
2578 #endif
2579 		trace_preempt_off(CALLER_ADDR0, ip);
2580 	}
2581 }
2582 EXPORT_SYMBOL(preempt_count_add);
2583 NOKPROBE_SYMBOL(preempt_count_add);
2584 
2585 void preempt_count_sub(int val)
2586 {
2587 #ifdef CONFIG_DEBUG_PREEMPT
2588 	/*
2589 	 * Underflow?
2590 	 */
2591 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2592 		return;
2593 	/*
2594 	 * Is the spinlock portion underflowing?
2595 	 */
2596 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2597 			!(preempt_count() & PREEMPT_MASK)))
2598 		return;
2599 #endif
2600 
2601 	if (preempt_count() == val)
2602 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2603 	__preempt_count_sub(val);
2604 }
2605 EXPORT_SYMBOL(preempt_count_sub);
2606 NOKPROBE_SYMBOL(preempt_count_sub);
2607 
2608 #endif
2609 
2610 /*
2611  * Print scheduling while atomic bug:
2612  */
2613 static noinline void __schedule_bug(struct task_struct *prev)
2614 {
2615 	if (oops_in_progress)
2616 		return;
2617 
2618 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619 		prev->comm, prev->pid, preempt_count());
2620 
2621 	debug_show_held_locks(prev);
2622 	print_modules();
2623 	if (irqs_disabled())
2624 		print_irqtrace_events(prev);
2625 #ifdef CONFIG_DEBUG_PREEMPT
2626 	if (in_atomic_preempt_off()) {
2627 		pr_err("Preemption disabled at:");
2628 		print_ip_sym(current->preempt_disable_ip);
2629 		pr_cont("\n");
2630 	}
2631 #endif
2632 	dump_stack();
2633 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2634 }
2635 
2636 /*
2637  * Various schedule()-time debugging checks and statistics:
2638  */
2639 static inline void schedule_debug(struct task_struct *prev)
2640 {
2641 	/*
2642 	 * Test if we are atomic. Since do_exit() needs to call into
2643 	 * schedule() atomically, we ignore that path. Otherwise whine
2644 	 * if we are scheduling when we should not.
2645 	 */
2646 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2647 		__schedule_bug(prev);
2648 	rcu_sleep_check();
2649 
2650 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2651 
2652 	schedstat_inc(this_rq(), sched_count);
2653 }
2654 
2655 /*
2656  * Pick up the highest-prio task:
2657  */
2658 static inline struct task_struct *
2659 pick_next_task(struct rq *rq, struct task_struct *prev)
2660 {
2661 	const struct sched_class *class = &fair_sched_class;
2662 	struct task_struct *p;
2663 
2664 	/*
2665 	 * Optimization: we know that if all tasks are in
2666 	 * the fair class we can call that function directly:
2667 	 */
2668 	if (likely(prev->sched_class == class &&
2669 		   rq->nr_running == rq->cfs.h_nr_running)) {
2670 		p = fair_sched_class.pick_next_task(rq, prev);
2671 		if (unlikely(p == RETRY_TASK))
2672 			goto again;
2673 
2674 		/* assumes fair_sched_class->next == idle_sched_class */
2675 		if (unlikely(!p))
2676 			p = idle_sched_class.pick_next_task(rq, prev);
2677 
2678 		return p;
2679 	}
2680 
2681 again:
2682 	for_each_class(class) {
2683 		p = class->pick_next_task(rq, prev);
2684 		if (p) {
2685 			if (unlikely(p == RETRY_TASK))
2686 				goto again;
2687 			return p;
2688 		}
2689 	}
2690 
2691 	BUG(); /* the idle class will always have a runnable task */
2692 }
2693 
2694 /*
2695  * __schedule() is the main scheduler function.
2696  *
2697  * The main means of driving the scheduler and thus entering this function are:
2698  *
2699  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2700  *
2701  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702  *      paths. For example, see arch/x86/entry_64.S.
2703  *
2704  *      To drive preemption between tasks, the scheduler sets the flag in timer
2705  *      interrupt handler scheduler_tick().
2706  *
2707  *   3. Wakeups don't really cause entry into schedule(). They add a
2708  *      task to the run-queue and that's it.
2709  *
2710  *      Now, if the new task added to the run-queue preempts the current
2711  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712  *      called on the nearest possible occasion:
2713  *
2714  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2715  *
2716  *         - in syscall or exception context, at the next outmost
2717  *           preempt_enable(). (this might be as soon as the wake_up()'s
2718  *           spin_unlock()!)
2719  *
2720  *         - in IRQ context, return from interrupt-handler to
2721  *           preemptible context
2722  *
2723  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2724  *         then at the next:
2725  *
2726  *          - cond_resched() call
2727  *          - explicit schedule() call
2728  *          - return from syscall or exception to user-space
2729  *          - return from interrupt-handler to user-space
2730  */
2731 static void __sched __schedule(void)
2732 {
2733 	struct task_struct *prev, *next;
2734 	unsigned long *switch_count;
2735 	struct rq *rq;
2736 	int cpu;
2737 
2738 need_resched:
2739 	preempt_disable();
2740 	cpu = smp_processor_id();
2741 	rq = cpu_rq(cpu);
2742 	rcu_note_context_switch(cpu);
2743 	prev = rq->curr;
2744 
2745 	schedule_debug(prev);
2746 
2747 	if (sched_feat(HRTICK))
2748 		hrtick_clear(rq);
2749 
2750 	/*
2751 	 * Make sure that signal_pending_state()->signal_pending() below
2752 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753 	 * done by the caller to avoid the race with signal_wake_up().
2754 	 */
2755 	smp_mb__before_spinlock();
2756 	raw_spin_lock_irq(&rq->lock);
2757 
2758 	switch_count = &prev->nivcsw;
2759 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2760 		if (unlikely(signal_pending_state(prev->state, prev))) {
2761 			prev->state = TASK_RUNNING;
2762 		} else {
2763 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764 			prev->on_rq = 0;
2765 
2766 			/*
2767 			 * If a worker went to sleep, notify and ask workqueue
2768 			 * whether it wants to wake up a task to maintain
2769 			 * concurrency.
2770 			 */
2771 			if (prev->flags & PF_WQ_WORKER) {
2772 				struct task_struct *to_wakeup;
2773 
2774 				to_wakeup = wq_worker_sleeping(prev, cpu);
2775 				if (to_wakeup)
2776 					try_to_wake_up_local(to_wakeup);
2777 			}
2778 		}
2779 		switch_count = &prev->nvcsw;
2780 	}
2781 
2782 	if (prev->on_rq || rq->skip_clock_update < 0)
2783 		update_rq_clock(rq);
2784 
2785 	next = pick_next_task(rq, prev);
2786 	clear_tsk_need_resched(prev);
2787 	clear_preempt_need_resched();
2788 	rq->skip_clock_update = 0;
2789 
2790 	if (likely(prev != next)) {
2791 		rq->nr_switches++;
2792 		rq->curr = next;
2793 		++*switch_count;
2794 
2795 		context_switch(rq, prev, next); /* unlocks the rq */
2796 		/*
2797 		 * The context switch have flipped the stack from under us
2798 		 * and restored the local variables which were saved when
2799 		 * this task called schedule() in the past. prev == current
2800 		 * is still correct, but it can be moved to another cpu/rq.
2801 		 */
2802 		cpu = smp_processor_id();
2803 		rq = cpu_rq(cpu);
2804 	} else
2805 		raw_spin_unlock_irq(&rq->lock);
2806 
2807 	post_schedule(rq);
2808 
2809 	sched_preempt_enable_no_resched();
2810 	if (need_resched())
2811 		goto need_resched;
2812 }
2813 
2814 static inline void sched_submit_work(struct task_struct *tsk)
2815 {
2816 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2817 		return;
2818 	/*
2819 	 * If we are going to sleep and we have plugged IO queued,
2820 	 * make sure to submit it to avoid deadlocks.
2821 	 */
2822 	if (blk_needs_flush_plug(tsk))
2823 		blk_schedule_flush_plug(tsk);
2824 }
2825 
2826 asmlinkage __visible void __sched schedule(void)
2827 {
2828 	struct task_struct *tsk = current;
2829 
2830 	sched_submit_work(tsk);
2831 	__schedule();
2832 }
2833 EXPORT_SYMBOL(schedule);
2834 
2835 #ifdef CONFIG_CONTEXT_TRACKING
2836 asmlinkage __visible void __sched schedule_user(void)
2837 {
2838 	/*
2839 	 * If we come here after a random call to set_need_resched(),
2840 	 * or we have been woken up remotely but the IPI has not yet arrived,
2841 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2842 	 * we find a better solution.
2843 	 */
2844 	user_exit();
2845 	schedule();
2846 	user_enter();
2847 }
2848 #endif
2849 
2850 /**
2851  * schedule_preempt_disabled - called with preemption disabled
2852  *
2853  * Returns with preemption disabled. Note: preempt_count must be 1
2854  */
2855 void __sched schedule_preempt_disabled(void)
2856 {
2857 	sched_preempt_enable_no_resched();
2858 	schedule();
2859 	preempt_disable();
2860 }
2861 
2862 #ifdef CONFIG_PREEMPT
2863 /*
2864  * this is the entry point to schedule() from in-kernel preemption
2865  * off of preempt_enable. Kernel preemptions off return from interrupt
2866  * occur there and call schedule directly.
2867  */
2868 asmlinkage __visible void __sched notrace preempt_schedule(void)
2869 {
2870 	/*
2871 	 * If there is a non-zero preempt_count or interrupts are disabled,
2872 	 * we do not want to preempt the current task. Just return..
2873 	 */
2874 	if (likely(!preemptible()))
2875 		return;
2876 
2877 	do {
2878 		__preempt_count_add(PREEMPT_ACTIVE);
2879 		__schedule();
2880 		__preempt_count_sub(PREEMPT_ACTIVE);
2881 
2882 		/*
2883 		 * Check again in case we missed a preemption opportunity
2884 		 * between schedule and now.
2885 		 */
2886 		barrier();
2887 	} while (need_resched());
2888 }
2889 NOKPROBE_SYMBOL(preempt_schedule);
2890 EXPORT_SYMBOL(preempt_schedule);
2891 #endif /* CONFIG_PREEMPT */
2892 
2893 /*
2894  * this is the entry point to schedule() from kernel preemption
2895  * off of irq context.
2896  * Note, that this is called and return with irqs disabled. This will
2897  * protect us against recursive calling from irq.
2898  */
2899 asmlinkage __visible void __sched preempt_schedule_irq(void)
2900 {
2901 	enum ctx_state prev_state;
2902 
2903 	/* Catch callers which need to be fixed */
2904 	BUG_ON(preempt_count() || !irqs_disabled());
2905 
2906 	prev_state = exception_enter();
2907 
2908 	do {
2909 		__preempt_count_add(PREEMPT_ACTIVE);
2910 		local_irq_enable();
2911 		__schedule();
2912 		local_irq_disable();
2913 		__preempt_count_sub(PREEMPT_ACTIVE);
2914 
2915 		/*
2916 		 * Check again in case we missed a preemption opportunity
2917 		 * between schedule and now.
2918 		 */
2919 		barrier();
2920 	} while (need_resched());
2921 
2922 	exception_exit(prev_state);
2923 }
2924 
2925 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2926 			  void *key)
2927 {
2928 	return try_to_wake_up(curr->private, mode, wake_flags);
2929 }
2930 EXPORT_SYMBOL(default_wake_function);
2931 
2932 #ifdef CONFIG_RT_MUTEXES
2933 
2934 /*
2935  * rt_mutex_setprio - set the current priority of a task
2936  * @p: task
2937  * @prio: prio value (kernel-internal form)
2938  *
2939  * This function changes the 'effective' priority of a task. It does
2940  * not touch ->normal_prio like __setscheduler().
2941  *
2942  * Used by the rt_mutex code to implement priority inheritance
2943  * logic. Call site only calls if the priority of the task changed.
2944  */
2945 void rt_mutex_setprio(struct task_struct *p, int prio)
2946 {
2947 	int oldprio, on_rq, running, enqueue_flag = 0;
2948 	struct rq *rq;
2949 	const struct sched_class *prev_class;
2950 
2951 	BUG_ON(prio > MAX_PRIO);
2952 
2953 	rq = __task_rq_lock(p);
2954 
2955 	/*
2956 	 * Idle task boosting is a nono in general. There is one
2957 	 * exception, when PREEMPT_RT and NOHZ is active:
2958 	 *
2959 	 * The idle task calls get_next_timer_interrupt() and holds
2960 	 * the timer wheel base->lock on the CPU and another CPU wants
2961 	 * to access the timer (probably to cancel it). We can safely
2962 	 * ignore the boosting request, as the idle CPU runs this code
2963 	 * with interrupts disabled and will complete the lock
2964 	 * protected section without being interrupted. So there is no
2965 	 * real need to boost.
2966 	 */
2967 	if (unlikely(p == rq->idle)) {
2968 		WARN_ON(p != rq->curr);
2969 		WARN_ON(p->pi_blocked_on);
2970 		goto out_unlock;
2971 	}
2972 
2973 	trace_sched_pi_setprio(p, prio);
2974 	p->pi_top_task = rt_mutex_get_top_task(p);
2975 	oldprio = p->prio;
2976 	prev_class = p->sched_class;
2977 	on_rq = p->on_rq;
2978 	running = task_current(rq, p);
2979 	if (on_rq)
2980 		dequeue_task(rq, p, 0);
2981 	if (running)
2982 		p->sched_class->put_prev_task(rq, p);
2983 
2984 	/*
2985 	 * Boosting condition are:
2986 	 * 1. -rt task is running and holds mutex A
2987 	 *      --> -dl task blocks on mutex A
2988 	 *
2989 	 * 2. -dl task is running and holds mutex A
2990 	 *      --> -dl task blocks on mutex A and could preempt the
2991 	 *          running task
2992 	 */
2993 	if (dl_prio(prio)) {
2994 		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2995 			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2996 			p->dl.dl_boosted = 1;
2997 			p->dl.dl_throttled = 0;
2998 			enqueue_flag = ENQUEUE_REPLENISH;
2999 		} else
3000 			p->dl.dl_boosted = 0;
3001 		p->sched_class = &dl_sched_class;
3002 	} else if (rt_prio(prio)) {
3003 		if (dl_prio(oldprio))
3004 			p->dl.dl_boosted = 0;
3005 		if (oldprio < prio)
3006 			enqueue_flag = ENQUEUE_HEAD;
3007 		p->sched_class = &rt_sched_class;
3008 	} else {
3009 		if (dl_prio(oldprio))
3010 			p->dl.dl_boosted = 0;
3011 		p->sched_class = &fair_sched_class;
3012 	}
3013 
3014 	p->prio = prio;
3015 
3016 	if (running)
3017 		p->sched_class->set_curr_task(rq);
3018 	if (on_rq)
3019 		enqueue_task(rq, p, enqueue_flag);
3020 
3021 	check_class_changed(rq, p, prev_class, oldprio);
3022 out_unlock:
3023 	__task_rq_unlock(rq);
3024 }
3025 #endif
3026 
3027 void set_user_nice(struct task_struct *p, long nice)
3028 {
3029 	int old_prio, delta, on_rq;
3030 	unsigned long flags;
3031 	struct rq *rq;
3032 
3033 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3034 		return;
3035 	/*
3036 	 * We have to be careful, if called from sys_setpriority(),
3037 	 * the task might be in the middle of scheduling on another CPU.
3038 	 */
3039 	rq = task_rq_lock(p, &flags);
3040 	/*
3041 	 * The RT priorities are set via sched_setscheduler(), but we still
3042 	 * allow the 'normal' nice value to be set - but as expected
3043 	 * it wont have any effect on scheduling until the task is
3044 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3045 	 */
3046 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3047 		p->static_prio = NICE_TO_PRIO(nice);
3048 		goto out_unlock;
3049 	}
3050 	on_rq = p->on_rq;
3051 	if (on_rq)
3052 		dequeue_task(rq, p, 0);
3053 
3054 	p->static_prio = NICE_TO_PRIO(nice);
3055 	set_load_weight(p);
3056 	old_prio = p->prio;
3057 	p->prio = effective_prio(p);
3058 	delta = p->prio - old_prio;
3059 
3060 	if (on_rq) {
3061 		enqueue_task(rq, p, 0);
3062 		/*
3063 		 * If the task increased its priority or is running and
3064 		 * lowered its priority, then reschedule its CPU:
3065 		 */
3066 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3067 			resched_task(rq->curr);
3068 	}
3069 out_unlock:
3070 	task_rq_unlock(rq, p, &flags);
3071 }
3072 EXPORT_SYMBOL(set_user_nice);
3073 
3074 /*
3075  * can_nice - check if a task can reduce its nice value
3076  * @p: task
3077  * @nice: nice value
3078  */
3079 int can_nice(const struct task_struct *p, const int nice)
3080 {
3081 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3082 	int nice_rlim = nice_to_rlimit(nice);
3083 
3084 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3085 		capable(CAP_SYS_NICE));
3086 }
3087 
3088 #ifdef __ARCH_WANT_SYS_NICE
3089 
3090 /*
3091  * sys_nice - change the priority of the current process.
3092  * @increment: priority increment
3093  *
3094  * sys_setpriority is a more generic, but much slower function that
3095  * does similar things.
3096  */
3097 SYSCALL_DEFINE1(nice, int, increment)
3098 {
3099 	long nice, retval;
3100 
3101 	/*
3102 	 * Setpriority might change our priority at the same moment.
3103 	 * We don't have to worry. Conceptually one call occurs first
3104 	 * and we have a single winner.
3105 	 */
3106 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3107 	nice = task_nice(current) + increment;
3108 
3109 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3110 	if (increment < 0 && !can_nice(current, nice))
3111 		return -EPERM;
3112 
3113 	retval = security_task_setnice(current, nice);
3114 	if (retval)
3115 		return retval;
3116 
3117 	set_user_nice(current, nice);
3118 	return 0;
3119 }
3120 
3121 #endif
3122 
3123 /**
3124  * task_prio - return the priority value of a given task.
3125  * @p: the task in question.
3126  *
3127  * Return: The priority value as seen by users in /proc.
3128  * RT tasks are offset by -200. Normal tasks are centered
3129  * around 0, value goes from -16 to +15.
3130  */
3131 int task_prio(const struct task_struct *p)
3132 {
3133 	return p->prio - MAX_RT_PRIO;
3134 }
3135 
3136 /**
3137  * idle_cpu - is a given cpu idle currently?
3138  * @cpu: the processor in question.
3139  *
3140  * Return: 1 if the CPU is currently idle. 0 otherwise.
3141  */
3142 int idle_cpu(int cpu)
3143 {
3144 	struct rq *rq = cpu_rq(cpu);
3145 
3146 	if (rq->curr != rq->idle)
3147 		return 0;
3148 
3149 	if (rq->nr_running)
3150 		return 0;
3151 
3152 #ifdef CONFIG_SMP
3153 	if (!llist_empty(&rq->wake_list))
3154 		return 0;
3155 #endif
3156 
3157 	return 1;
3158 }
3159 
3160 /**
3161  * idle_task - return the idle task for a given cpu.
3162  * @cpu: the processor in question.
3163  *
3164  * Return: The idle task for the cpu @cpu.
3165  */
3166 struct task_struct *idle_task(int cpu)
3167 {
3168 	return cpu_rq(cpu)->idle;
3169 }
3170 
3171 /**
3172  * find_process_by_pid - find a process with a matching PID value.
3173  * @pid: the pid in question.
3174  *
3175  * The task of @pid, if found. %NULL otherwise.
3176  */
3177 static struct task_struct *find_process_by_pid(pid_t pid)
3178 {
3179 	return pid ? find_task_by_vpid(pid) : current;
3180 }
3181 
3182 /*
3183  * This function initializes the sched_dl_entity of a newly becoming
3184  * SCHED_DEADLINE task.
3185  *
3186  * Only the static values are considered here, the actual runtime and the
3187  * absolute deadline will be properly calculated when the task is enqueued
3188  * for the first time with its new policy.
3189  */
3190 static void
3191 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3192 {
3193 	struct sched_dl_entity *dl_se = &p->dl;
3194 
3195 	init_dl_task_timer(dl_se);
3196 	dl_se->dl_runtime = attr->sched_runtime;
3197 	dl_se->dl_deadline = attr->sched_deadline;
3198 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3199 	dl_se->flags = attr->sched_flags;
3200 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3201 	dl_se->dl_throttled = 0;
3202 	dl_se->dl_new = 1;
3203 	dl_se->dl_yielded = 0;
3204 }
3205 
3206 static void __setscheduler_params(struct task_struct *p,
3207 		const struct sched_attr *attr)
3208 {
3209 	int policy = attr->sched_policy;
3210 
3211 	if (policy == -1) /* setparam */
3212 		policy = p->policy;
3213 
3214 	p->policy = policy;
3215 
3216 	if (dl_policy(policy))
3217 		__setparam_dl(p, attr);
3218 	else if (fair_policy(policy))
3219 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3220 
3221 	/*
3222 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223 	 * !rt_policy. Always setting this ensures that things like
3224 	 * getparam()/getattr() don't report silly values for !rt tasks.
3225 	 */
3226 	p->rt_priority = attr->sched_priority;
3227 	p->normal_prio = normal_prio(p);
3228 	set_load_weight(p);
3229 }
3230 
3231 /* Actually do priority change: must hold pi & rq lock. */
3232 static void __setscheduler(struct rq *rq, struct task_struct *p,
3233 			   const struct sched_attr *attr)
3234 {
3235 	__setscheduler_params(p, attr);
3236 
3237 	/*
3238 	 * If we get here, there was no pi waiters boosting the
3239 	 * task. It is safe to use the normal prio.
3240 	 */
3241 	p->prio = normal_prio(p);
3242 
3243 	if (dl_prio(p->prio))
3244 		p->sched_class = &dl_sched_class;
3245 	else if (rt_prio(p->prio))
3246 		p->sched_class = &rt_sched_class;
3247 	else
3248 		p->sched_class = &fair_sched_class;
3249 }
3250 
3251 static void
3252 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3253 {
3254 	struct sched_dl_entity *dl_se = &p->dl;
3255 
3256 	attr->sched_priority = p->rt_priority;
3257 	attr->sched_runtime = dl_se->dl_runtime;
3258 	attr->sched_deadline = dl_se->dl_deadline;
3259 	attr->sched_period = dl_se->dl_period;
3260 	attr->sched_flags = dl_se->flags;
3261 }
3262 
3263 /*
3264  * This function validates the new parameters of a -deadline task.
3265  * We ask for the deadline not being zero, and greater or equal
3266  * than the runtime, as well as the period of being zero or
3267  * greater than deadline. Furthermore, we have to be sure that
3268  * user parameters are above the internal resolution of 1us (we
3269  * check sched_runtime only since it is always the smaller one) and
3270  * below 2^63 ns (we have to check both sched_deadline and
3271  * sched_period, as the latter can be zero).
3272  */
3273 static bool
3274 __checkparam_dl(const struct sched_attr *attr)
3275 {
3276 	/* deadline != 0 */
3277 	if (attr->sched_deadline == 0)
3278 		return false;
3279 
3280 	/*
3281 	 * Since we truncate DL_SCALE bits, make sure we're at least
3282 	 * that big.
3283 	 */
3284 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3285 		return false;
3286 
3287 	/*
3288 	 * Since we use the MSB for wrap-around and sign issues, make
3289 	 * sure it's not set (mind that period can be equal to zero).
3290 	 */
3291 	if (attr->sched_deadline & (1ULL << 63) ||
3292 	    attr->sched_period & (1ULL << 63))
3293 		return false;
3294 
3295 	/* runtime <= deadline <= period (if period != 0) */
3296 	if ((attr->sched_period != 0 &&
3297 	     attr->sched_period < attr->sched_deadline) ||
3298 	    attr->sched_deadline < attr->sched_runtime)
3299 		return false;
3300 
3301 	return true;
3302 }
3303 
3304 /*
3305  * check the target process has a UID that matches the current process's
3306  */
3307 static bool check_same_owner(struct task_struct *p)
3308 {
3309 	const struct cred *cred = current_cred(), *pcred;
3310 	bool match;
3311 
3312 	rcu_read_lock();
3313 	pcred = __task_cred(p);
3314 	match = (uid_eq(cred->euid, pcred->euid) ||
3315 		 uid_eq(cred->euid, pcred->uid));
3316 	rcu_read_unlock();
3317 	return match;
3318 }
3319 
3320 static int __sched_setscheduler(struct task_struct *p,
3321 				const struct sched_attr *attr,
3322 				bool user)
3323 {
3324 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3325 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3326 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3327 	int policy = attr->sched_policy;
3328 	unsigned long flags;
3329 	const struct sched_class *prev_class;
3330 	struct rq *rq;
3331 	int reset_on_fork;
3332 
3333 	/* may grab non-irq protected spin_locks */
3334 	BUG_ON(in_interrupt());
3335 recheck:
3336 	/* double check policy once rq lock held */
3337 	if (policy < 0) {
3338 		reset_on_fork = p->sched_reset_on_fork;
3339 		policy = oldpolicy = p->policy;
3340 	} else {
3341 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3342 
3343 		if (policy != SCHED_DEADLINE &&
3344 				policy != SCHED_FIFO && policy != SCHED_RR &&
3345 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3346 				policy != SCHED_IDLE)
3347 			return -EINVAL;
3348 	}
3349 
3350 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3351 		return -EINVAL;
3352 
3353 	/*
3354 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3355 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356 	 * SCHED_BATCH and SCHED_IDLE is 0.
3357 	 */
3358 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3359 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3360 		return -EINVAL;
3361 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3362 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3363 		return -EINVAL;
3364 
3365 	/*
3366 	 * Allow unprivileged RT tasks to decrease priority:
3367 	 */
3368 	if (user && !capable(CAP_SYS_NICE)) {
3369 		if (fair_policy(policy)) {
3370 			if (attr->sched_nice < task_nice(p) &&
3371 			    !can_nice(p, attr->sched_nice))
3372 				return -EPERM;
3373 		}
3374 
3375 		if (rt_policy(policy)) {
3376 			unsigned long rlim_rtprio =
3377 					task_rlimit(p, RLIMIT_RTPRIO);
3378 
3379 			/* can't set/change the rt policy */
3380 			if (policy != p->policy && !rlim_rtprio)
3381 				return -EPERM;
3382 
3383 			/* can't increase priority */
3384 			if (attr->sched_priority > p->rt_priority &&
3385 			    attr->sched_priority > rlim_rtprio)
3386 				return -EPERM;
3387 		}
3388 
3389 		 /*
3390 		  * Can't set/change SCHED_DEADLINE policy at all for now
3391 		  * (safest behavior); in the future we would like to allow
3392 		  * unprivileged DL tasks to increase their relative deadline
3393 		  * or reduce their runtime (both ways reducing utilization)
3394 		  */
3395 		if (dl_policy(policy))
3396 			return -EPERM;
3397 
3398 		/*
3399 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3401 		 */
3402 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3403 			if (!can_nice(p, task_nice(p)))
3404 				return -EPERM;
3405 		}
3406 
3407 		/* can't change other user's priorities */
3408 		if (!check_same_owner(p))
3409 			return -EPERM;
3410 
3411 		/* Normal users shall not reset the sched_reset_on_fork flag */
3412 		if (p->sched_reset_on_fork && !reset_on_fork)
3413 			return -EPERM;
3414 	}
3415 
3416 	if (user) {
3417 		retval = security_task_setscheduler(p);
3418 		if (retval)
3419 			return retval;
3420 	}
3421 
3422 	/*
3423 	 * make sure no PI-waiters arrive (or leave) while we are
3424 	 * changing the priority of the task:
3425 	 *
3426 	 * To be able to change p->policy safely, the appropriate
3427 	 * runqueue lock must be held.
3428 	 */
3429 	rq = task_rq_lock(p, &flags);
3430 
3431 	/*
3432 	 * Changing the policy of the stop threads its a very bad idea
3433 	 */
3434 	if (p == rq->stop) {
3435 		task_rq_unlock(rq, p, &flags);
3436 		return -EINVAL;
3437 	}
3438 
3439 	/*
3440 	 * If not changing anything there's no need to proceed further,
3441 	 * but store a possible modification of reset_on_fork.
3442 	 */
3443 	if (unlikely(policy == p->policy)) {
3444 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3445 			goto change;
3446 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3447 			goto change;
3448 		if (dl_policy(policy))
3449 			goto change;
3450 
3451 		p->sched_reset_on_fork = reset_on_fork;
3452 		task_rq_unlock(rq, p, &flags);
3453 		return 0;
3454 	}
3455 change:
3456 
3457 	if (user) {
3458 #ifdef CONFIG_RT_GROUP_SCHED
3459 		/*
3460 		 * Do not allow realtime tasks into groups that have no runtime
3461 		 * assigned.
3462 		 */
3463 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3464 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3465 				!task_group_is_autogroup(task_group(p))) {
3466 			task_rq_unlock(rq, p, &flags);
3467 			return -EPERM;
3468 		}
3469 #endif
3470 #ifdef CONFIG_SMP
3471 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3472 			cpumask_t *span = rq->rd->span;
3473 
3474 			/*
3475 			 * Don't allow tasks with an affinity mask smaller than
3476 			 * the entire root_domain to become SCHED_DEADLINE. We
3477 			 * will also fail if there's no bandwidth available.
3478 			 */
3479 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3480 			    rq->rd->dl_bw.bw == 0) {
3481 				task_rq_unlock(rq, p, &flags);
3482 				return -EPERM;
3483 			}
3484 		}
3485 #endif
3486 	}
3487 
3488 	/* recheck policy now with rq lock held */
3489 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3490 		policy = oldpolicy = -1;
3491 		task_rq_unlock(rq, p, &flags);
3492 		goto recheck;
3493 	}
3494 
3495 	/*
3496 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3498 	 * is available.
3499 	 */
3500 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3501 		task_rq_unlock(rq, p, &flags);
3502 		return -EBUSY;
3503 	}
3504 
3505 	p->sched_reset_on_fork = reset_on_fork;
3506 	oldprio = p->prio;
3507 
3508 	/*
3509 	 * Special case for priority boosted tasks.
3510 	 *
3511 	 * If the new priority is lower or equal (user space view)
3512 	 * than the current (boosted) priority, we just store the new
3513 	 * normal parameters and do not touch the scheduler class and
3514 	 * the runqueue. This will be done when the task deboost
3515 	 * itself.
3516 	 */
3517 	if (rt_mutex_check_prio(p, newprio)) {
3518 		__setscheduler_params(p, attr);
3519 		task_rq_unlock(rq, p, &flags);
3520 		return 0;
3521 	}
3522 
3523 	on_rq = p->on_rq;
3524 	running = task_current(rq, p);
3525 	if (on_rq)
3526 		dequeue_task(rq, p, 0);
3527 	if (running)
3528 		p->sched_class->put_prev_task(rq, p);
3529 
3530 	prev_class = p->sched_class;
3531 	__setscheduler(rq, p, attr);
3532 
3533 	if (running)
3534 		p->sched_class->set_curr_task(rq);
3535 	if (on_rq) {
3536 		/*
3537 		 * We enqueue to tail when the priority of a task is
3538 		 * increased (user space view).
3539 		 */
3540 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3541 	}
3542 
3543 	check_class_changed(rq, p, prev_class, oldprio);
3544 	task_rq_unlock(rq, p, &flags);
3545 
3546 	rt_mutex_adjust_pi(p);
3547 
3548 	return 0;
3549 }
3550 
3551 static int _sched_setscheduler(struct task_struct *p, int policy,
3552 			       const struct sched_param *param, bool check)
3553 {
3554 	struct sched_attr attr = {
3555 		.sched_policy   = policy,
3556 		.sched_priority = param->sched_priority,
3557 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3558 	};
3559 
3560 	/*
3561 	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3562 	 */
3563 	if (policy & SCHED_RESET_ON_FORK) {
3564 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3565 		policy &= ~SCHED_RESET_ON_FORK;
3566 		attr.sched_policy = policy;
3567 	}
3568 
3569 	return __sched_setscheduler(p, &attr, check);
3570 }
3571 /**
3572  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3573  * @p: the task in question.
3574  * @policy: new policy.
3575  * @param: structure containing the new RT priority.
3576  *
3577  * Return: 0 on success. An error code otherwise.
3578  *
3579  * NOTE that the task may be already dead.
3580  */
3581 int sched_setscheduler(struct task_struct *p, int policy,
3582 		       const struct sched_param *param)
3583 {
3584 	return _sched_setscheduler(p, policy, param, true);
3585 }
3586 EXPORT_SYMBOL_GPL(sched_setscheduler);
3587 
3588 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3589 {
3590 	return __sched_setscheduler(p, attr, true);
3591 }
3592 EXPORT_SYMBOL_GPL(sched_setattr);
3593 
3594 /**
3595  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3596  * @p: the task in question.
3597  * @policy: new policy.
3598  * @param: structure containing the new RT priority.
3599  *
3600  * Just like sched_setscheduler, only don't bother checking if the
3601  * current context has permission.  For example, this is needed in
3602  * stop_machine(): we create temporary high priority worker threads,
3603  * but our caller might not have that capability.
3604  *
3605  * Return: 0 on success. An error code otherwise.
3606  */
3607 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3608 			       const struct sched_param *param)
3609 {
3610 	return _sched_setscheduler(p, policy, param, false);
3611 }
3612 
3613 static int
3614 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3615 {
3616 	struct sched_param lparam;
3617 	struct task_struct *p;
3618 	int retval;
3619 
3620 	if (!param || pid < 0)
3621 		return -EINVAL;
3622 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3623 		return -EFAULT;
3624 
3625 	rcu_read_lock();
3626 	retval = -ESRCH;
3627 	p = find_process_by_pid(pid);
3628 	if (p != NULL)
3629 		retval = sched_setscheduler(p, policy, &lparam);
3630 	rcu_read_unlock();
3631 
3632 	return retval;
3633 }
3634 
3635 /*
3636  * Mimics kernel/events/core.c perf_copy_attr().
3637  */
3638 static int sched_copy_attr(struct sched_attr __user *uattr,
3639 			   struct sched_attr *attr)
3640 {
3641 	u32 size;
3642 	int ret;
3643 
3644 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3645 		return -EFAULT;
3646 
3647 	/*
3648 	 * zero the full structure, so that a short copy will be nice.
3649 	 */
3650 	memset(attr, 0, sizeof(*attr));
3651 
3652 	ret = get_user(size, &uattr->size);
3653 	if (ret)
3654 		return ret;
3655 
3656 	if (size > PAGE_SIZE)	/* silly large */
3657 		goto err_size;
3658 
3659 	if (!size)		/* abi compat */
3660 		size = SCHED_ATTR_SIZE_VER0;
3661 
3662 	if (size < SCHED_ATTR_SIZE_VER0)
3663 		goto err_size;
3664 
3665 	/*
3666 	 * If we're handed a bigger struct than we know of,
3667 	 * ensure all the unknown bits are 0 - i.e. new
3668 	 * user-space does not rely on any kernel feature
3669 	 * extensions we dont know about yet.
3670 	 */
3671 	if (size > sizeof(*attr)) {
3672 		unsigned char __user *addr;
3673 		unsigned char __user *end;
3674 		unsigned char val;
3675 
3676 		addr = (void __user *)uattr + sizeof(*attr);
3677 		end  = (void __user *)uattr + size;
3678 
3679 		for (; addr < end; addr++) {
3680 			ret = get_user(val, addr);
3681 			if (ret)
3682 				return ret;
3683 			if (val)
3684 				goto err_size;
3685 		}
3686 		size = sizeof(*attr);
3687 	}
3688 
3689 	ret = copy_from_user(attr, uattr, size);
3690 	if (ret)
3691 		return -EFAULT;
3692 
3693 	/*
3694 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3695 	 * to be strict and return an error on out-of-bounds values?
3696 	 */
3697 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3698 
3699 	return 0;
3700 
3701 err_size:
3702 	put_user(sizeof(*attr), &uattr->size);
3703 	return -E2BIG;
3704 }
3705 
3706 /**
3707  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3708  * @pid: the pid in question.
3709  * @policy: new policy.
3710  * @param: structure containing the new RT priority.
3711  *
3712  * Return: 0 on success. An error code otherwise.
3713  */
3714 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3715 		struct sched_param __user *, param)
3716 {
3717 	/* negative values for policy are not valid */
3718 	if (policy < 0)
3719 		return -EINVAL;
3720 
3721 	return do_sched_setscheduler(pid, policy, param);
3722 }
3723 
3724 /**
3725  * sys_sched_setparam - set/change the RT priority of a thread
3726  * @pid: the pid in question.
3727  * @param: structure containing the new RT priority.
3728  *
3729  * Return: 0 on success. An error code otherwise.
3730  */
3731 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3732 {
3733 	return do_sched_setscheduler(pid, -1, param);
3734 }
3735 
3736 /**
3737  * sys_sched_setattr - same as above, but with extended sched_attr
3738  * @pid: the pid in question.
3739  * @uattr: structure containing the extended parameters.
3740  * @flags: for future extension.
3741  */
3742 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3743 			       unsigned int, flags)
3744 {
3745 	struct sched_attr attr;
3746 	struct task_struct *p;
3747 	int retval;
3748 
3749 	if (!uattr || pid < 0 || flags)
3750 		return -EINVAL;
3751 
3752 	retval = sched_copy_attr(uattr, &attr);
3753 	if (retval)
3754 		return retval;
3755 
3756 	if ((int)attr.sched_policy < 0)
3757 		return -EINVAL;
3758 
3759 	rcu_read_lock();
3760 	retval = -ESRCH;
3761 	p = find_process_by_pid(pid);
3762 	if (p != NULL)
3763 		retval = sched_setattr(p, &attr);
3764 	rcu_read_unlock();
3765 
3766 	return retval;
3767 }
3768 
3769 /**
3770  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771  * @pid: the pid in question.
3772  *
3773  * Return: On success, the policy of the thread. Otherwise, a negative error
3774  * code.
3775  */
3776 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3777 {
3778 	struct task_struct *p;
3779 	int retval;
3780 
3781 	if (pid < 0)
3782 		return -EINVAL;
3783 
3784 	retval = -ESRCH;
3785 	rcu_read_lock();
3786 	p = find_process_by_pid(pid);
3787 	if (p) {
3788 		retval = security_task_getscheduler(p);
3789 		if (!retval)
3790 			retval = p->policy
3791 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3792 	}
3793 	rcu_read_unlock();
3794 	return retval;
3795 }
3796 
3797 /**
3798  * sys_sched_getparam - get the RT priority of a thread
3799  * @pid: the pid in question.
3800  * @param: structure containing the RT priority.
3801  *
3802  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3803  * code.
3804  */
3805 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3806 {
3807 	struct sched_param lp = { .sched_priority = 0 };
3808 	struct task_struct *p;
3809 	int retval;
3810 
3811 	if (!param || pid < 0)
3812 		return -EINVAL;
3813 
3814 	rcu_read_lock();
3815 	p = find_process_by_pid(pid);
3816 	retval = -ESRCH;
3817 	if (!p)
3818 		goto out_unlock;
3819 
3820 	retval = security_task_getscheduler(p);
3821 	if (retval)
3822 		goto out_unlock;
3823 
3824 	if (task_has_rt_policy(p))
3825 		lp.sched_priority = p->rt_priority;
3826 	rcu_read_unlock();
3827 
3828 	/*
3829 	 * This one might sleep, we cannot do it with a spinlock held ...
3830 	 */
3831 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3832 
3833 	return retval;
3834 
3835 out_unlock:
3836 	rcu_read_unlock();
3837 	return retval;
3838 }
3839 
3840 static int sched_read_attr(struct sched_attr __user *uattr,
3841 			   struct sched_attr *attr,
3842 			   unsigned int usize)
3843 {
3844 	int ret;
3845 
3846 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3847 		return -EFAULT;
3848 
3849 	/*
3850 	 * If we're handed a smaller struct than we know of,
3851 	 * ensure all the unknown bits are 0 - i.e. old
3852 	 * user-space does not get uncomplete information.
3853 	 */
3854 	if (usize < sizeof(*attr)) {
3855 		unsigned char *addr;
3856 		unsigned char *end;
3857 
3858 		addr = (void *)attr + usize;
3859 		end  = (void *)attr + sizeof(*attr);
3860 
3861 		for (; addr < end; addr++) {
3862 			if (*addr)
3863 				return -EFBIG;
3864 		}
3865 
3866 		attr->size = usize;
3867 	}
3868 
3869 	ret = copy_to_user(uattr, attr, attr->size);
3870 	if (ret)
3871 		return -EFAULT;
3872 
3873 	return 0;
3874 }
3875 
3876 /**
3877  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3878  * @pid: the pid in question.
3879  * @uattr: structure containing the extended parameters.
3880  * @size: sizeof(attr) for fwd/bwd comp.
3881  * @flags: for future extension.
3882  */
3883 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3884 		unsigned int, size, unsigned int, flags)
3885 {
3886 	struct sched_attr attr = {
3887 		.size = sizeof(struct sched_attr),
3888 	};
3889 	struct task_struct *p;
3890 	int retval;
3891 
3892 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3893 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3894 		return -EINVAL;
3895 
3896 	rcu_read_lock();
3897 	p = find_process_by_pid(pid);
3898 	retval = -ESRCH;
3899 	if (!p)
3900 		goto out_unlock;
3901 
3902 	retval = security_task_getscheduler(p);
3903 	if (retval)
3904 		goto out_unlock;
3905 
3906 	attr.sched_policy = p->policy;
3907 	if (p->sched_reset_on_fork)
3908 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3909 	if (task_has_dl_policy(p))
3910 		__getparam_dl(p, &attr);
3911 	else if (task_has_rt_policy(p))
3912 		attr.sched_priority = p->rt_priority;
3913 	else
3914 		attr.sched_nice = task_nice(p);
3915 
3916 	rcu_read_unlock();
3917 
3918 	retval = sched_read_attr(uattr, &attr, size);
3919 	return retval;
3920 
3921 out_unlock:
3922 	rcu_read_unlock();
3923 	return retval;
3924 }
3925 
3926 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3927 {
3928 	cpumask_var_t cpus_allowed, new_mask;
3929 	struct task_struct *p;
3930 	int retval;
3931 
3932 	rcu_read_lock();
3933 
3934 	p = find_process_by_pid(pid);
3935 	if (!p) {
3936 		rcu_read_unlock();
3937 		return -ESRCH;
3938 	}
3939 
3940 	/* Prevent p going away */
3941 	get_task_struct(p);
3942 	rcu_read_unlock();
3943 
3944 	if (p->flags & PF_NO_SETAFFINITY) {
3945 		retval = -EINVAL;
3946 		goto out_put_task;
3947 	}
3948 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3949 		retval = -ENOMEM;
3950 		goto out_put_task;
3951 	}
3952 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3953 		retval = -ENOMEM;
3954 		goto out_free_cpus_allowed;
3955 	}
3956 	retval = -EPERM;
3957 	if (!check_same_owner(p)) {
3958 		rcu_read_lock();
3959 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3960 			rcu_read_unlock();
3961 			goto out_unlock;
3962 		}
3963 		rcu_read_unlock();
3964 	}
3965 
3966 	retval = security_task_setscheduler(p);
3967 	if (retval)
3968 		goto out_unlock;
3969 
3970 
3971 	cpuset_cpus_allowed(p, cpus_allowed);
3972 	cpumask_and(new_mask, in_mask, cpus_allowed);
3973 
3974 	/*
3975 	 * Since bandwidth control happens on root_domain basis,
3976 	 * if admission test is enabled, we only admit -deadline
3977 	 * tasks allowed to run on all the CPUs in the task's
3978 	 * root_domain.
3979 	 */
3980 #ifdef CONFIG_SMP
3981 	if (task_has_dl_policy(p)) {
3982 		const struct cpumask *span = task_rq(p)->rd->span;
3983 
3984 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3985 			retval = -EBUSY;
3986 			goto out_unlock;
3987 		}
3988 	}
3989 #endif
3990 again:
3991 	retval = set_cpus_allowed_ptr(p, new_mask);
3992 
3993 	if (!retval) {
3994 		cpuset_cpus_allowed(p, cpus_allowed);
3995 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3996 			/*
3997 			 * We must have raced with a concurrent cpuset
3998 			 * update. Just reset the cpus_allowed to the
3999 			 * cpuset's cpus_allowed
4000 			 */
4001 			cpumask_copy(new_mask, cpus_allowed);
4002 			goto again;
4003 		}
4004 	}
4005 out_unlock:
4006 	free_cpumask_var(new_mask);
4007 out_free_cpus_allowed:
4008 	free_cpumask_var(cpus_allowed);
4009 out_put_task:
4010 	put_task_struct(p);
4011 	return retval;
4012 }
4013 
4014 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4015 			     struct cpumask *new_mask)
4016 {
4017 	if (len < cpumask_size())
4018 		cpumask_clear(new_mask);
4019 	else if (len > cpumask_size())
4020 		len = cpumask_size();
4021 
4022 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4023 }
4024 
4025 /**
4026  * sys_sched_setaffinity - set the cpu affinity of a process
4027  * @pid: pid of the process
4028  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029  * @user_mask_ptr: user-space pointer to the new cpu mask
4030  *
4031  * Return: 0 on success. An error code otherwise.
4032  */
4033 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4034 		unsigned long __user *, user_mask_ptr)
4035 {
4036 	cpumask_var_t new_mask;
4037 	int retval;
4038 
4039 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4040 		return -ENOMEM;
4041 
4042 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4043 	if (retval == 0)
4044 		retval = sched_setaffinity(pid, new_mask);
4045 	free_cpumask_var(new_mask);
4046 	return retval;
4047 }
4048 
4049 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4050 {
4051 	struct task_struct *p;
4052 	unsigned long flags;
4053 	int retval;
4054 
4055 	rcu_read_lock();
4056 
4057 	retval = -ESRCH;
4058 	p = find_process_by_pid(pid);
4059 	if (!p)
4060 		goto out_unlock;
4061 
4062 	retval = security_task_getscheduler(p);
4063 	if (retval)
4064 		goto out_unlock;
4065 
4066 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4067 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4068 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4069 
4070 out_unlock:
4071 	rcu_read_unlock();
4072 
4073 	return retval;
4074 }
4075 
4076 /**
4077  * sys_sched_getaffinity - get the cpu affinity of a process
4078  * @pid: pid of the process
4079  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4080  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4081  *
4082  * Return: 0 on success. An error code otherwise.
4083  */
4084 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4085 		unsigned long __user *, user_mask_ptr)
4086 {
4087 	int ret;
4088 	cpumask_var_t mask;
4089 
4090 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4091 		return -EINVAL;
4092 	if (len & (sizeof(unsigned long)-1))
4093 		return -EINVAL;
4094 
4095 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4096 		return -ENOMEM;
4097 
4098 	ret = sched_getaffinity(pid, mask);
4099 	if (ret == 0) {
4100 		size_t retlen = min_t(size_t, len, cpumask_size());
4101 
4102 		if (copy_to_user(user_mask_ptr, mask, retlen))
4103 			ret = -EFAULT;
4104 		else
4105 			ret = retlen;
4106 	}
4107 	free_cpumask_var(mask);
4108 
4109 	return ret;
4110 }
4111 
4112 /**
4113  * sys_sched_yield - yield the current processor to other threads.
4114  *
4115  * This function yields the current CPU to other tasks. If there are no
4116  * other threads running on this CPU then this function will return.
4117  *
4118  * Return: 0.
4119  */
4120 SYSCALL_DEFINE0(sched_yield)
4121 {
4122 	struct rq *rq = this_rq_lock();
4123 
4124 	schedstat_inc(rq, yld_count);
4125 	current->sched_class->yield_task(rq);
4126 
4127 	/*
4128 	 * Since we are going to call schedule() anyway, there's
4129 	 * no need to preempt or enable interrupts:
4130 	 */
4131 	__release(rq->lock);
4132 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4133 	do_raw_spin_unlock(&rq->lock);
4134 	sched_preempt_enable_no_resched();
4135 
4136 	schedule();
4137 
4138 	return 0;
4139 }
4140 
4141 static void __cond_resched(void)
4142 {
4143 	__preempt_count_add(PREEMPT_ACTIVE);
4144 	__schedule();
4145 	__preempt_count_sub(PREEMPT_ACTIVE);
4146 }
4147 
4148 int __sched _cond_resched(void)
4149 {
4150 	rcu_cond_resched();
4151 	if (should_resched()) {
4152 		__cond_resched();
4153 		return 1;
4154 	}
4155 	return 0;
4156 }
4157 EXPORT_SYMBOL(_cond_resched);
4158 
4159 /*
4160  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4161  * call schedule, and on return reacquire the lock.
4162  *
4163  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4164  * operations here to prevent schedule() from being called twice (once via
4165  * spin_unlock(), once by hand).
4166  */
4167 int __cond_resched_lock(spinlock_t *lock)
4168 {
4169 	bool need_rcu_resched = rcu_should_resched();
4170 	int resched = should_resched();
4171 	int ret = 0;
4172 
4173 	lockdep_assert_held(lock);
4174 
4175 	if (spin_needbreak(lock) || resched || need_rcu_resched) {
4176 		spin_unlock(lock);
4177 		if (resched)
4178 			__cond_resched();
4179 		else if (unlikely(need_rcu_resched))
4180 			rcu_resched();
4181 		else
4182 			cpu_relax();
4183 		ret = 1;
4184 		spin_lock(lock);
4185 	}
4186 	return ret;
4187 }
4188 EXPORT_SYMBOL(__cond_resched_lock);
4189 
4190 int __sched __cond_resched_softirq(void)
4191 {
4192 	BUG_ON(!in_softirq());
4193 
4194 	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
4195 	if (should_resched()) {
4196 		local_bh_enable();
4197 		__cond_resched();
4198 		local_bh_disable();
4199 		return 1;
4200 	}
4201 	return 0;
4202 }
4203 EXPORT_SYMBOL(__cond_resched_softirq);
4204 
4205 /**
4206  * yield - yield the current processor to other threads.
4207  *
4208  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4209  *
4210  * The scheduler is at all times free to pick the calling task as the most
4211  * eligible task to run, if removing the yield() call from your code breaks
4212  * it, its already broken.
4213  *
4214  * Typical broken usage is:
4215  *
4216  * while (!event)
4217  * 	yield();
4218  *
4219  * where one assumes that yield() will let 'the other' process run that will
4220  * make event true. If the current task is a SCHED_FIFO task that will never
4221  * happen. Never use yield() as a progress guarantee!!
4222  *
4223  * If you want to use yield() to wait for something, use wait_event().
4224  * If you want to use yield() to be 'nice' for others, use cond_resched().
4225  * If you still want to use yield(), do not!
4226  */
4227 void __sched yield(void)
4228 {
4229 	set_current_state(TASK_RUNNING);
4230 	sys_sched_yield();
4231 }
4232 EXPORT_SYMBOL(yield);
4233 
4234 /**
4235  * yield_to - yield the current processor to another thread in
4236  * your thread group, or accelerate that thread toward the
4237  * processor it's on.
4238  * @p: target task
4239  * @preempt: whether task preemption is allowed or not
4240  *
4241  * It's the caller's job to ensure that the target task struct
4242  * can't go away on us before we can do any checks.
4243  *
4244  * Return:
4245  *	true (>0) if we indeed boosted the target task.
4246  *	false (0) if we failed to boost the target.
4247  *	-ESRCH if there's no task to yield to.
4248  */
4249 int __sched yield_to(struct task_struct *p, bool preempt)
4250 {
4251 	struct task_struct *curr = current;
4252 	struct rq *rq, *p_rq;
4253 	unsigned long flags;
4254 	int yielded = 0;
4255 
4256 	local_irq_save(flags);
4257 	rq = this_rq();
4258 
4259 again:
4260 	p_rq = task_rq(p);
4261 	/*
4262 	 * If we're the only runnable task on the rq and target rq also
4263 	 * has only one task, there's absolutely no point in yielding.
4264 	 */
4265 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4266 		yielded = -ESRCH;
4267 		goto out_irq;
4268 	}
4269 
4270 	double_rq_lock(rq, p_rq);
4271 	if (task_rq(p) != p_rq) {
4272 		double_rq_unlock(rq, p_rq);
4273 		goto again;
4274 	}
4275 
4276 	if (!curr->sched_class->yield_to_task)
4277 		goto out_unlock;
4278 
4279 	if (curr->sched_class != p->sched_class)
4280 		goto out_unlock;
4281 
4282 	if (task_running(p_rq, p) || p->state)
4283 		goto out_unlock;
4284 
4285 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4286 	if (yielded) {
4287 		schedstat_inc(rq, yld_count);
4288 		/*
4289 		 * Make p's CPU reschedule; pick_next_entity takes care of
4290 		 * fairness.
4291 		 */
4292 		if (preempt && rq != p_rq)
4293 			resched_task(p_rq->curr);
4294 	}
4295 
4296 out_unlock:
4297 	double_rq_unlock(rq, p_rq);
4298 out_irq:
4299 	local_irq_restore(flags);
4300 
4301 	if (yielded > 0)
4302 		schedule();
4303 
4304 	return yielded;
4305 }
4306 EXPORT_SYMBOL_GPL(yield_to);
4307 
4308 /*
4309  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4310  * that process accounting knows that this is a task in IO wait state.
4311  */
4312 void __sched io_schedule(void)
4313 {
4314 	struct rq *rq = raw_rq();
4315 
4316 	delayacct_blkio_start();
4317 	atomic_inc(&rq->nr_iowait);
4318 	blk_flush_plug(current);
4319 	current->in_iowait = 1;
4320 	schedule();
4321 	current->in_iowait = 0;
4322 	atomic_dec(&rq->nr_iowait);
4323 	delayacct_blkio_end();
4324 }
4325 EXPORT_SYMBOL(io_schedule);
4326 
4327 long __sched io_schedule_timeout(long timeout)
4328 {
4329 	struct rq *rq = raw_rq();
4330 	long ret;
4331 
4332 	delayacct_blkio_start();
4333 	atomic_inc(&rq->nr_iowait);
4334 	blk_flush_plug(current);
4335 	current->in_iowait = 1;
4336 	ret = schedule_timeout(timeout);
4337 	current->in_iowait = 0;
4338 	atomic_dec(&rq->nr_iowait);
4339 	delayacct_blkio_end();
4340 	return ret;
4341 }
4342 
4343 /**
4344  * sys_sched_get_priority_max - return maximum RT priority.
4345  * @policy: scheduling class.
4346  *
4347  * Return: On success, this syscall returns the maximum
4348  * rt_priority that can be used by a given scheduling class.
4349  * On failure, a negative error code is returned.
4350  */
4351 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4352 {
4353 	int ret = -EINVAL;
4354 
4355 	switch (policy) {
4356 	case SCHED_FIFO:
4357 	case SCHED_RR:
4358 		ret = MAX_USER_RT_PRIO-1;
4359 		break;
4360 	case SCHED_DEADLINE:
4361 	case SCHED_NORMAL:
4362 	case SCHED_BATCH:
4363 	case SCHED_IDLE:
4364 		ret = 0;
4365 		break;
4366 	}
4367 	return ret;
4368 }
4369 
4370 /**
4371  * sys_sched_get_priority_min - return minimum RT priority.
4372  * @policy: scheduling class.
4373  *
4374  * Return: On success, this syscall returns the minimum
4375  * rt_priority that can be used by a given scheduling class.
4376  * On failure, a negative error code is returned.
4377  */
4378 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4379 {
4380 	int ret = -EINVAL;
4381 
4382 	switch (policy) {
4383 	case SCHED_FIFO:
4384 	case SCHED_RR:
4385 		ret = 1;
4386 		break;
4387 	case SCHED_DEADLINE:
4388 	case SCHED_NORMAL:
4389 	case SCHED_BATCH:
4390 	case SCHED_IDLE:
4391 		ret = 0;
4392 	}
4393 	return ret;
4394 }
4395 
4396 /**
4397  * sys_sched_rr_get_interval - return the default timeslice of a process.
4398  * @pid: pid of the process.
4399  * @interval: userspace pointer to the timeslice value.
4400  *
4401  * this syscall writes the default timeslice value of a given process
4402  * into the user-space timespec buffer. A value of '0' means infinity.
4403  *
4404  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4405  * an error code.
4406  */
4407 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4408 		struct timespec __user *, interval)
4409 {
4410 	struct task_struct *p;
4411 	unsigned int time_slice;
4412 	unsigned long flags;
4413 	struct rq *rq;
4414 	int retval;
4415 	struct timespec t;
4416 
4417 	if (pid < 0)
4418 		return -EINVAL;
4419 
4420 	retval = -ESRCH;
4421 	rcu_read_lock();
4422 	p = find_process_by_pid(pid);
4423 	if (!p)
4424 		goto out_unlock;
4425 
4426 	retval = security_task_getscheduler(p);
4427 	if (retval)
4428 		goto out_unlock;
4429 
4430 	rq = task_rq_lock(p, &flags);
4431 	time_slice = 0;
4432 	if (p->sched_class->get_rr_interval)
4433 		time_slice = p->sched_class->get_rr_interval(rq, p);
4434 	task_rq_unlock(rq, p, &flags);
4435 
4436 	rcu_read_unlock();
4437 	jiffies_to_timespec(time_slice, &t);
4438 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4439 	return retval;
4440 
4441 out_unlock:
4442 	rcu_read_unlock();
4443 	return retval;
4444 }
4445 
4446 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4447 
4448 void sched_show_task(struct task_struct *p)
4449 {
4450 	unsigned long free = 0;
4451 	int ppid;
4452 	unsigned state;
4453 
4454 	state = p->state ? __ffs(p->state) + 1 : 0;
4455 	printk(KERN_INFO "%-15.15s %c", p->comm,
4456 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4457 #if BITS_PER_LONG == 32
4458 	if (state == TASK_RUNNING)
4459 		printk(KERN_CONT " running  ");
4460 	else
4461 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4462 #else
4463 	if (state == TASK_RUNNING)
4464 		printk(KERN_CONT "  running task    ");
4465 	else
4466 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4467 #endif
4468 #ifdef CONFIG_DEBUG_STACK_USAGE
4469 	free = stack_not_used(p);
4470 #endif
4471 	rcu_read_lock();
4472 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4473 	rcu_read_unlock();
4474 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4475 		task_pid_nr(p), ppid,
4476 		(unsigned long)task_thread_info(p)->flags);
4477 
4478 	print_worker_info(KERN_INFO, p);
4479 	show_stack(p, NULL);
4480 }
4481 
4482 void show_state_filter(unsigned long state_filter)
4483 {
4484 	struct task_struct *g, *p;
4485 
4486 #if BITS_PER_LONG == 32
4487 	printk(KERN_INFO
4488 		"  task                PC stack   pid father\n");
4489 #else
4490 	printk(KERN_INFO
4491 		"  task                        PC stack   pid father\n");
4492 #endif
4493 	rcu_read_lock();
4494 	do_each_thread(g, p) {
4495 		/*
4496 		 * reset the NMI-timeout, listing all files on a slow
4497 		 * console might take a lot of time:
4498 		 */
4499 		touch_nmi_watchdog();
4500 		if (!state_filter || (p->state & state_filter))
4501 			sched_show_task(p);
4502 	} while_each_thread(g, p);
4503 
4504 	touch_all_softlockup_watchdogs();
4505 
4506 #ifdef CONFIG_SCHED_DEBUG
4507 	sysrq_sched_debug_show();
4508 #endif
4509 	rcu_read_unlock();
4510 	/*
4511 	 * Only show locks if all tasks are dumped:
4512 	 */
4513 	if (!state_filter)
4514 		debug_show_all_locks();
4515 }
4516 
4517 void init_idle_bootup_task(struct task_struct *idle)
4518 {
4519 	idle->sched_class = &idle_sched_class;
4520 }
4521 
4522 /**
4523  * init_idle - set up an idle thread for a given CPU
4524  * @idle: task in question
4525  * @cpu: cpu the idle task belongs to
4526  *
4527  * NOTE: this function does not set the idle thread's NEED_RESCHED
4528  * flag, to make booting more robust.
4529  */
4530 void init_idle(struct task_struct *idle, int cpu)
4531 {
4532 	struct rq *rq = cpu_rq(cpu);
4533 	unsigned long flags;
4534 
4535 	raw_spin_lock_irqsave(&rq->lock, flags);
4536 
4537 	__sched_fork(0, idle);
4538 	idle->state = TASK_RUNNING;
4539 	idle->se.exec_start = sched_clock();
4540 
4541 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4542 	/*
4543 	 * We're having a chicken and egg problem, even though we are
4544 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4545 	 * lockdep check in task_group() will fail.
4546 	 *
4547 	 * Similar case to sched_fork(). / Alternatively we could
4548 	 * use task_rq_lock() here and obtain the other rq->lock.
4549 	 *
4550 	 * Silence PROVE_RCU
4551 	 */
4552 	rcu_read_lock();
4553 	__set_task_cpu(idle, cpu);
4554 	rcu_read_unlock();
4555 
4556 	rq->curr = rq->idle = idle;
4557 	idle->on_rq = 1;
4558 #if defined(CONFIG_SMP)
4559 	idle->on_cpu = 1;
4560 #endif
4561 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4562 
4563 	/* Set the preempt count _outside_ the spinlocks! */
4564 	init_idle_preempt_count(idle, cpu);
4565 
4566 	/*
4567 	 * The idle tasks have their own, simple scheduling class:
4568 	 */
4569 	idle->sched_class = &idle_sched_class;
4570 	ftrace_graph_init_idle_task(idle, cpu);
4571 	vtime_init_idle(idle, cpu);
4572 #if defined(CONFIG_SMP)
4573 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4574 #endif
4575 }
4576 
4577 #ifdef CONFIG_SMP
4578 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4579 {
4580 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4581 		p->sched_class->set_cpus_allowed(p, new_mask);
4582 
4583 	cpumask_copy(&p->cpus_allowed, new_mask);
4584 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4585 }
4586 
4587 /*
4588  * This is how migration works:
4589  *
4590  * 1) we invoke migration_cpu_stop() on the target CPU using
4591  *    stop_one_cpu().
4592  * 2) stopper starts to run (implicitly forcing the migrated thread
4593  *    off the CPU)
4594  * 3) it checks whether the migrated task is still in the wrong runqueue.
4595  * 4) if it's in the wrong runqueue then the migration thread removes
4596  *    it and puts it into the right queue.
4597  * 5) stopper completes and stop_one_cpu() returns and the migration
4598  *    is done.
4599  */
4600 
4601 /*
4602  * Change a given task's CPU affinity. Migrate the thread to a
4603  * proper CPU and schedule it away if the CPU it's executing on
4604  * is removed from the allowed bitmask.
4605  *
4606  * NOTE: the caller must have a valid reference to the task, the
4607  * task must not exit() & deallocate itself prematurely. The
4608  * call is not atomic; no spinlocks may be held.
4609  */
4610 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4611 {
4612 	unsigned long flags;
4613 	struct rq *rq;
4614 	unsigned int dest_cpu;
4615 	int ret = 0;
4616 
4617 	rq = task_rq_lock(p, &flags);
4618 
4619 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4620 		goto out;
4621 
4622 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4623 		ret = -EINVAL;
4624 		goto out;
4625 	}
4626 
4627 	do_set_cpus_allowed(p, new_mask);
4628 
4629 	/* Can the task run on the task's current CPU? If so, we're done */
4630 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4631 		goto out;
4632 
4633 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4634 	if (p->on_rq) {
4635 		struct migration_arg arg = { p, dest_cpu };
4636 		/* Need help from migration thread: drop lock and wait. */
4637 		task_rq_unlock(rq, p, &flags);
4638 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4639 		tlb_migrate_finish(p->mm);
4640 		return 0;
4641 	}
4642 out:
4643 	task_rq_unlock(rq, p, &flags);
4644 
4645 	return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4648 
4649 /*
4650  * Move (not current) task off this cpu, onto dest cpu. We're doing
4651  * this because either it can't run here any more (set_cpus_allowed()
4652  * away from this CPU, or CPU going down), or because we're
4653  * attempting to rebalance this task on exec (sched_exec).
4654  *
4655  * So we race with normal scheduler movements, but that's OK, as long
4656  * as the task is no longer on this CPU.
4657  *
4658  * Returns non-zero if task was successfully migrated.
4659  */
4660 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4661 {
4662 	struct rq *rq_dest, *rq_src;
4663 	int ret = 0;
4664 
4665 	if (unlikely(!cpu_active(dest_cpu)))
4666 		return ret;
4667 
4668 	rq_src = cpu_rq(src_cpu);
4669 	rq_dest = cpu_rq(dest_cpu);
4670 
4671 	raw_spin_lock(&p->pi_lock);
4672 	double_rq_lock(rq_src, rq_dest);
4673 	/* Already moved. */
4674 	if (task_cpu(p) != src_cpu)
4675 		goto done;
4676 	/* Affinity changed (again). */
4677 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4678 		goto fail;
4679 
4680 	/*
4681 	 * If we're not on a rq, the next wake-up will ensure we're
4682 	 * placed properly.
4683 	 */
4684 	if (p->on_rq) {
4685 		dequeue_task(rq_src, p, 0);
4686 		set_task_cpu(p, dest_cpu);
4687 		enqueue_task(rq_dest, p, 0);
4688 		check_preempt_curr(rq_dest, p, 0);
4689 	}
4690 done:
4691 	ret = 1;
4692 fail:
4693 	double_rq_unlock(rq_src, rq_dest);
4694 	raw_spin_unlock(&p->pi_lock);
4695 	return ret;
4696 }
4697 
4698 #ifdef CONFIG_NUMA_BALANCING
4699 /* Migrate current task p to target_cpu */
4700 int migrate_task_to(struct task_struct *p, int target_cpu)
4701 {
4702 	struct migration_arg arg = { p, target_cpu };
4703 	int curr_cpu = task_cpu(p);
4704 
4705 	if (curr_cpu == target_cpu)
4706 		return 0;
4707 
4708 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4709 		return -EINVAL;
4710 
4711 	/* TODO: This is not properly updating schedstats */
4712 
4713 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4714 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4715 }
4716 
4717 /*
4718  * Requeue a task on a given node and accurately track the number of NUMA
4719  * tasks on the runqueues
4720  */
4721 void sched_setnuma(struct task_struct *p, int nid)
4722 {
4723 	struct rq *rq;
4724 	unsigned long flags;
4725 	bool on_rq, running;
4726 
4727 	rq = task_rq_lock(p, &flags);
4728 	on_rq = p->on_rq;
4729 	running = task_current(rq, p);
4730 
4731 	if (on_rq)
4732 		dequeue_task(rq, p, 0);
4733 	if (running)
4734 		p->sched_class->put_prev_task(rq, p);
4735 
4736 	p->numa_preferred_nid = nid;
4737 
4738 	if (running)
4739 		p->sched_class->set_curr_task(rq);
4740 	if (on_rq)
4741 		enqueue_task(rq, p, 0);
4742 	task_rq_unlock(rq, p, &flags);
4743 }
4744 #endif
4745 
4746 /*
4747  * migration_cpu_stop - this will be executed by a highprio stopper thread
4748  * and performs thread migration by bumping thread off CPU then
4749  * 'pushing' onto another runqueue.
4750  */
4751 static int migration_cpu_stop(void *data)
4752 {
4753 	struct migration_arg *arg = data;
4754 
4755 	/*
4756 	 * The original target cpu might have gone down and we might
4757 	 * be on another cpu but it doesn't matter.
4758 	 */
4759 	local_irq_disable();
4760 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4761 	local_irq_enable();
4762 	return 0;
4763 }
4764 
4765 #ifdef CONFIG_HOTPLUG_CPU
4766 
4767 /*
4768  * Ensures that the idle task is using init_mm right before its cpu goes
4769  * offline.
4770  */
4771 void idle_task_exit(void)
4772 {
4773 	struct mm_struct *mm = current->active_mm;
4774 
4775 	BUG_ON(cpu_online(smp_processor_id()));
4776 
4777 	if (mm != &init_mm) {
4778 		switch_mm(mm, &init_mm, current);
4779 		finish_arch_post_lock_switch();
4780 	}
4781 	mmdrop(mm);
4782 }
4783 
4784 /*
4785  * Since this CPU is going 'away' for a while, fold any nr_active delta
4786  * we might have. Assumes we're called after migrate_tasks() so that the
4787  * nr_active count is stable.
4788  *
4789  * Also see the comment "Global load-average calculations".
4790  */
4791 static void calc_load_migrate(struct rq *rq)
4792 {
4793 	long delta = calc_load_fold_active(rq);
4794 	if (delta)
4795 		atomic_long_add(delta, &calc_load_tasks);
4796 }
4797 
4798 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4799 {
4800 }
4801 
4802 static const struct sched_class fake_sched_class = {
4803 	.put_prev_task = put_prev_task_fake,
4804 };
4805 
4806 static struct task_struct fake_task = {
4807 	/*
4808 	 * Avoid pull_{rt,dl}_task()
4809 	 */
4810 	.prio = MAX_PRIO + 1,
4811 	.sched_class = &fake_sched_class,
4812 };
4813 
4814 /*
4815  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4816  * try_to_wake_up()->select_task_rq().
4817  *
4818  * Called with rq->lock held even though we'er in stop_machine() and
4819  * there's no concurrency possible, we hold the required locks anyway
4820  * because of lock validation efforts.
4821  */
4822 static void migrate_tasks(unsigned int dead_cpu)
4823 {
4824 	struct rq *rq = cpu_rq(dead_cpu);
4825 	struct task_struct *next, *stop = rq->stop;
4826 	int dest_cpu;
4827 
4828 	/*
4829 	 * Fudge the rq selection such that the below task selection loop
4830 	 * doesn't get stuck on the currently eligible stop task.
4831 	 *
4832 	 * We're currently inside stop_machine() and the rq is either stuck
4833 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4834 	 * either way we should never end up calling schedule() until we're
4835 	 * done here.
4836 	 */
4837 	rq->stop = NULL;
4838 
4839 	/*
4840 	 * put_prev_task() and pick_next_task() sched
4841 	 * class method both need to have an up-to-date
4842 	 * value of rq->clock[_task]
4843 	 */
4844 	update_rq_clock(rq);
4845 
4846 	for ( ; ; ) {
4847 		/*
4848 		 * There's this thread running, bail when that's the only
4849 		 * remaining thread.
4850 		 */
4851 		if (rq->nr_running == 1)
4852 			break;
4853 
4854 		next = pick_next_task(rq, &fake_task);
4855 		BUG_ON(!next);
4856 		next->sched_class->put_prev_task(rq, next);
4857 
4858 		/* Find suitable destination for @next, with force if needed. */
4859 		dest_cpu = select_fallback_rq(dead_cpu, next);
4860 		raw_spin_unlock(&rq->lock);
4861 
4862 		__migrate_task(next, dead_cpu, dest_cpu);
4863 
4864 		raw_spin_lock(&rq->lock);
4865 	}
4866 
4867 	rq->stop = stop;
4868 }
4869 
4870 #endif /* CONFIG_HOTPLUG_CPU */
4871 
4872 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4873 
4874 static struct ctl_table sd_ctl_dir[] = {
4875 	{
4876 		.procname	= "sched_domain",
4877 		.mode		= 0555,
4878 	},
4879 	{}
4880 };
4881 
4882 static struct ctl_table sd_ctl_root[] = {
4883 	{
4884 		.procname	= "kernel",
4885 		.mode		= 0555,
4886 		.child		= sd_ctl_dir,
4887 	},
4888 	{}
4889 };
4890 
4891 static struct ctl_table *sd_alloc_ctl_entry(int n)
4892 {
4893 	struct ctl_table *entry =
4894 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4895 
4896 	return entry;
4897 }
4898 
4899 static void sd_free_ctl_entry(struct ctl_table **tablep)
4900 {
4901 	struct ctl_table *entry;
4902 
4903 	/*
4904 	 * In the intermediate directories, both the child directory and
4905 	 * procname are dynamically allocated and could fail but the mode
4906 	 * will always be set. In the lowest directory the names are
4907 	 * static strings and all have proc handlers.
4908 	 */
4909 	for (entry = *tablep; entry->mode; entry++) {
4910 		if (entry->child)
4911 			sd_free_ctl_entry(&entry->child);
4912 		if (entry->proc_handler == NULL)
4913 			kfree(entry->procname);
4914 	}
4915 
4916 	kfree(*tablep);
4917 	*tablep = NULL;
4918 }
4919 
4920 static int min_load_idx = 0;
4921 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4922 
4923 static void
4924 set_table_entry(struct ctl_table *entry,
4925 		const char *procname, void *data, int maxlen,
4926 		umode_t mode, proc_handler *proc_handler,
4927 		bool load_idx)
4928 {
4929 	entry->procname = procname;
4930 	entry->data = data;
4931 	entry->maxlen = maxlen;
4932 	entry->mode = mode;
4933 	entry->proc_handler = proc_handler;
4934 
4935 	if (load_idx) {
4936 		entry->extra1 = &min_load_idx;
4937 		entry->extra2 = &max_load_idx;
4938 	}
4939 }
4940 
4941 static struct ctl_table *
4942 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4943 {
4944 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4945 
4946 	if (table == NULL)
4947 		return NULL;
4948 
4949 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4950 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4951 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4952 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4953 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4954 		sizeof(int), 0644, proc_dointvec_minmax, true);
4955 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4956 		sizeof(int), 0644, proc_dointvec_minmax, true);
4957 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4958 		sizeof(int), 0644, proc_dointvec_minmax, true);
4959 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4960 		sizeof(int), 0644, proc_dointvec_minmax, true);
4961 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4962 		sizeof(int), 0644, proc_dointvec_minmax, true);
4963 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4964 		sizeof(int), 0644, proc_dointvec_minmax, false);
4965 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4966 		sizeof(int), 0644, proc_dointvec_minmax, false);
4967 	set_table_entry(&table[9], "cache_nice_tries",
4968 		&sd->cache_nice_tries,
4969 		sizeof(int), 0644, proc_dointvec_minmax, false);
4970 	set_table_entry(&table[10], "flags", &sd->flags,
4971 		sizeof(int), 0644, proc_dointvec_minmax, false);
4972 	set_table_entry(&table[11], "max_newidle_lb_cost",
4973 		&sd->max_newidle_lb_cost,
4974 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4975 	set_table_entry(&table[12], "name", sd->name,
4976 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4977 	/* &table[13] is terminator */
4978 
4979 	return table;
4980 }
4981 
4982 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4983 {
4984 	struct ctl_table *entry, *table;
4985 	struct sched_domain *sd;
4986 	int domain_num = 0, i;
4987 	char buf[32];
4988 
4989 	for_each_domain(cpu, sd)
4990 		domain_num++;
4991 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4992 	if (table == NULL)
4993 		return NULL;
4994 
4995 	i = 0;
4996 	for_each_domain(cpu, sd) {
4997 		snprintf(buf, 32, "domain%d", i);
4998 		entry->procname = kstrdup(buf, GFP_KERNEL);
4999 		entry->mode = 0555;
5000 		entry->child = sd_alloc_ctl_domain_table(sd);
5001 		entry++;
5002 		i++;
5003 	}
5004 	return table;
5005 }
5006 
5007 static struct ctl_table_header *sd_sysctl_header;
5008 static void register_sched_domain_sysctl(void)
5009 {
5010 	int i, cpu_num = num_possible_cpus();
5011 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5012 	char buf[32];
5013 
5014 	WARN_ON(sd_ctl_dir[0].child);
5015 	sd_ctl_dir[0].child = entry;
5016 
5017 	if (entry == NULL)
5018 		return;
5019 
5020 	for_each_possible_cpu(i) {
5021 		snprintf(buf, 32, "cpu%d", i);
5022 		entry->procname = kstrdup(buf, GFP_KERNEL);
5023 		entry->mode = 0555;
5024 		entry->child = sd_alloc_ctl_cpu_table(i);
5025 		entry++;
5026 	}
5027 
5028 	WARN_ON(sd_sysctl_header);
5029 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5030 }
5031 
5032 /* may be called multiple times per register */
5033 static void unregister_sched_domain_sysctl(void)
5034 {
5035 	if (sd_sysctl_header)
5036 		unregister_sysctl_table(sd_sysctl_header);
5037 	sd_sysctl_header = NULL;
5038 	if (sd_ctl_dir[0].child)
5039 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5040 }
5041 #else
5042 static void register_sched_domain_sysctl(void)
5043 {
5044 }
5045 static void unregister_sched_domain_sysctl(void)
5046 {
5047 }
5048 #endif
5049 
5050 static void set_rq_online(struct rq *rq)
5051 {
5052 	if (!rq->online) {
5053 		const struct sched_class *class;
5054 
5055 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5056 		rq->online = 1;
5057 
5058 		for_each_class(class) {
5059 			if (class->rq_online)
5060 				class->rq_online(rq);
5061 		}
5062 	}
5063 }
5064 
5065 static void set_rq_offline(struct rq *rq)
5066 {
5067 	if (rq->online) {
5068 		const struct sched_class *class;
5069 
5070 		for_each_class(class) {
5071 			if (class->rq_offline)
5072 				class->rq_offline(rq);
5073 		}
5074 
5075 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5076 		rq->online = 0;
5077 	}
5078 }
5079 
5080 /*
5081  * migration_call - callback that gets triggered when a CPU is added.
5082  * Here we can start up the necessary migration thread for the new CPU.
5083  */
5084 static int
5085 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5086 {
5087 	int cpu = (long)hcpu;
5088 	unsigned long flags;
5089 	struct rq *rq = cpu_rq(cpu);
5090 
5091 	switch (action & ~CPU_TASKS_FROZEN) {
5092 
5093 	case CPU_UP_PREPARE:
5094 		rq->calc_load_update = calc_load_update;
5095 		break;
5096 
5097 	case CPU_ONLINE:
5098 		/* Update our root-domain */
5099 		raw_spin_lock_irqsave(&rq->lock, flags);
5100 		if (rq->rd) {
5101 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5102 
5103 			set_rq_online(rq);
5104 		}
5105 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5106 		break;
5107 
5108 #ifdef CONFIG_HOTPLUG_CPU
5109 	case CPU_DYING:
5110 		sched_ttwu_pending();
5111 		/* Update our root-domain */
5112 		raw_spin_lock_irqsave(&rq->lock, flags);
5113 		if (rq->rd) {
5114 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5115 			set_rq_offline(rq);
5116 		}
5117 		migrate_tasks(cpu);
5118 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5119 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5120 		break;
5121 
5122 	case CPU_DEAD:
5123 		calc_load_migrate(rq);
5124 		break;
5125 #endif
5126 	}
5127 
5128 	update_max_interval();
5129 
5130 	return NOTIFY_OK;
5131 }
5132 
5133 /*
5134  * Register at high priority so that task migration (migrate_all_tasks)
5135  * happens before everything else.  This has to be lower priority than
5136  * the notifier in the perf_event subsystem, though.
5137  */
5138 static struct notifier_block migration_notifier = {
5139 	.notifier_call = migration_call,
5140 	.priority = CPU_PRI_MIGRATION,
5141 };
5142 
5143 static void __cpuinit set_cpu_rq_start_time(void)
5144 {
5145 	int cpu = smp_processor_id();
5146 	struct rq *rq = cpu_rq(cpu);
5147 	rq->age_stamp = sched_clock_cpu(cpu);
5148 }
5149 
5150 static int sched_cpu_active(struct notifier_block *nfb,
5151 				      unsigned long action, void *hcpu)
5152 {
5153 	switch (action & ~CPU_TASKS_FROZEN) {
5154 	case CPU_STARTING:
5155 		set_cpu_rq_start_time();
5156 		return NOTIFY_OK;
5157 	case CPU_DOWN_FAILED:
5158 		set_cpu_active((long)hcpu, true);
5159 		return NOTIFY_OK;
5160 	default:
5161 		return NOTIFY_DONE;
5162 	}
5163 }
5164 
5165 static int sched_cpu_inactive(struct notifier_block *nfb,
5166 					unsigned long action, void *hcpu)
5167 {
5168 	unsigned long flags;
5169 	long cpu = (long)hcpu;
5170 
5171 	switch (action & ~CPU_TASKS_FROZEN) {
5172 	case CPU_DOWN_PREPARE:
5173 		set_cpu_active(cpu, false);
5174 
5175 		/* explicitly allow suspend */
5176 		if (!(action & CPU_TASKS_FROZEN)) {
5177 			struct dl_bw *dl_b = dl_bw_of(cpu);
5178 			bool overflow;
5179 			int cpus;
5180 
5181 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5182 			cpus = dl_bw_cpus(cpu);
5183 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5184 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5185 
5186 			if (overflow)
5187 				return notifier_from_errno(-EBUSY);
5188 		}
5189 		return NOTIFY_OK;
5190 	}
5191 
5192 	return NOTIFY_DONE;
5193 }
5194 
5195 static int __init migration_init(void)
5196 {
5197 	void *cpu = (void *)(long)smp_processor_id();
5198 	int err;
5199 
5200 	/* Initialize migration for the boot CPU */
5201 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5202 	BUG_ON(err == NOTIFY_BAD);
5203 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5204 	register_cpu_notifier(&migration_notifier);
5205 
5206 	/* Register cpu active notifiers */
5207 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5208 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5209 
5210 	return 0;
5211 }
5212 early_initcall(migration_init);
5213 #endif
5214 
5215 #ifdef CONFIG_SMP
5216 
5217 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5218 
5219 #ifdef CONFIG_SCHED_DEBUG
5220 
5221 static __read_mostly int sched_debug_enabled;
5222 
5223 static int __init sched_debug_setup(char *str)
5224 {
5225 	sched_debug_enabled = 1;
5226 
5227 	return 0;
5228 }
5229 early_param("sched_debug", sched_debug_setup);
5230 
5231 static inline bool sched_debug(void)
5232 {
5233 	return sched_debug_enabled;
5234 }
5235 
5236 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5237 				  struct cpumask *groupmask)
5238 {
5239 	struct sched_group *group = sd->groups;
5240 	char str[256];
5241 
5242 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5243 	cpumask_clear(groupmask);
5244 
5245 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5246 
5247 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5248 		printk("does not load-balance\n");
5249 		if (sd->parent)
5250 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5251 					" has parent");
5252 		return -1;
5253 	}
5254 
5255 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5256 
5257 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5258 		printk(KERN_ERR "ERROR: domain->span does not contain "
5259 				"CPU%d\n", cpu);
5260 	}
5261 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5262 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5263 				" CPU%d\n", cpu);
5264 	}
5265 
5266 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5267 	do {
5268 		if (!group) {
5269 			printk("\n");
5270 			printk(KERN_ERR "ERROR: group is NULL\n");
5271 			break;
5272 		}
5273 
5274 		/*
5275 		 * Even though we initialize ->capacity to something semi-sane,
5276 		 * we leave capacity_orig unset. This allows us to detect if
5277 		 * domain iteration is still funny without causing /0 traps.
5278 		 */
5279 		if (!group->sgc->capacity_orig) {
5280 			printk(KERN_CONT "\n");
5281 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5282 			break;
5283 		}
5284 
5285 		if (!cpumask_weight(sched_group_cpus(group))) {
5286 			printk(KERN_CONT "\n");
5287 			printk(KERN_ERR "ERROR: empty group\n");
5288 			break;
5289 		}
5290 
5291 		if (!(sd->flags & SD_OVERLAP) &&
5292 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5293 			printk(KERN_CONT "\n");
5294 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5295 			break;
5296 		}
5297 
5298 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5299 
5300 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5301 
5302 		printk(KERN_CONT " %s", str);
5303 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5304 			printk(KERN_CONT " (cpu_capacity = %d)",
5305 				group->sgc->capacity);
5306 		}
5307 
5308 		group = group->next;
5309 	} while (group != sd->groups);
5310 	printk(KERN_CONT "\n");
5311 
5312 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5313 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5314 
5315 	if (sd->parent &&
5316 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5317 		printk(KERN_ERR "ERROR: parent span is not a superset "
5318 			"of domain->span\n");
5319 	return 0;
5320 }
5321 
5322 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5323 {
5324 	int level = 0;
5325 
5326 	if (!sched_debug_enabled)
5327 		return;
5328 
5329 	if (!sd) {
5330 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5331 		return;
5332 	}
5333 
5334 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5335 
5336 	for (;;) {
5337 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5338 			break;
5339 		level++;
5340 		sd = sd->parent;
5341 		if (!sd)
5342 			break;
5343 	}
5344 }
5345 #else /* !CONFIG_SCHED_DEBUG */
5346 # define sched_domain_debug(sd, cpu) do { } while (0)
5347 static inline bool sched_debug(void)
5348 {
5349 	return false;
5350 }
5351 #endif /* CONFIG_SCHED_DEBUG */
5352 
5353 static int sd_degenerate(struct sched_domain *sd)
5354 {
5355 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5356 		return 1;
5357 
5358 	/* Following flags need at least 2 groups */
5359 	if (sd->flags & (SD_LOAD_BALANCE |
5360 			 SD_BALANCE_NEWIDLE |
5361 			 SD_BALANCE_FORK |
5362 			 SD_BALANCE_EXEC |
5363 			 SD_SHARE_CPUCAPACITY |
5364 			 SD_SHARE_PKG_RESOURCES |
5365 			 SD_SHARE_POWERDOMAIN)) {
5366 		if (sd->groups != sd->groups->next)
5367 			return 0;
5368 	}
5369 
5370 	/* Following flags don't use groups */
5371 	if (sd->flags & (SD_WAKE_AFFINE))
5372 		return 0;
5373 
5374 	return 1;
5375 }
5376 
5377 static int
5378 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5379 {
5380 	unsigned long cflags = sd->flags, pflags = parent->flags;
5381 
5382 	if (sd_degenerate(parent))
5383 		return 1;
5384 
5385 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5386 		return 0;
5387 
5388 	/* Flags needing groups don't count if only 1 group in parent */
5389 	if (parent->groups == parent->groups->next) {
5390 		pflags &= ~(SD_LOAD_BALANCE |
5391 				SD_BALANCE_NEWIDLE |
5392 				SD_BALANCE_FORK |
5393 				SD_BALANCE_EXEC |
5394 				SD_SHARE_CPUCAPACITY |
5395 				SD_SHARE_PKG_RESOURCES |
5396 				SD_PREFER_SIBLING |
5397 				SD_SHARE_POWERDOMAIN);
5398 		if (nr_node_ids == 1)
5399 			pflags &= ~SD_SERIALIZE;
5400 	}
5401 	if (~cflags & pflags)
5402 		return 0;
5403 
5404 	return 1;
5405 }
5406 
5407 static void free_rootdomain(struct rcu_head *rcu)
5408 {
5409 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5410 
5411 	cpupri_cleanup(&rd->cpupri);
5412 	cpudl_cleanup(&rd->cpudl);
5413 	free_cpumask_var(rd->dlo_mask);
5414 	free_cpumask_var(rd->rto_mask);
5415 	free_cpumask_var(rd->online);
5416 	free_cpumask_var(rd->span);
5417 	kfree(rd);
5418 }
5419 
5420 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5421 {
5422 	struct root_domain *old_rd = NULL;
5423 	unsigned long flags;
5424 
5425 	raw_spin_lock_irqsave(&rq->lock, flags);
5426 
5427 	if (rq->rd) {
5428 		old_rd = rq->rd;
5429 
5430 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5431 			set_rq_offline(rq);
5432 
5433 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5434 
5435 		/*
5436 		 * If we dont want to free the old_rd yet then
5437 		 * set old_rd to NULL to skip the freeing later
5438 		 * in this function:
5439 		 */
5440 		if (!atomic_dec_and_test(&old_rd->refcount))
5441 			old_rd = NULL;
5442 	}
5443 
5444 	atomic_inc(&rd->refcount);
5445 	rq->rd = rd;
5446 
5447 	cpumask_set_cpu(rq->cpu, rd->span);
5448 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5449 		set_rq_online(rq);
5450 
5451 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5452 
5453 	if (old_rd)
5454 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5455 }
5456 
5457 static int init_rootdomain(struct root_domain *rd)
5458 {
5459 	memset(rd, 0, sizeof(*rd));
5460 
5461 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5462 		goto out;
5463 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5464 		goto free_span;
5465 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5466 		goto free_online;
5467 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5468 		goto free_dlo_mask;
5469 
5470 	init_dl_bw(&rd->dl_bw);
5471 	if (cpudl_init(&rd->cpudl) != 0)
5472 		goto free_dlo_mask;
5473 
5474 	if (cpupri_init(&rd->cpupri) != 0)
5475 		goto free_rto_mask;
5476 	return 0;
5477 
5478 free_rto_mask:
5479 	free_cpumask_var(rd->rto_mask);
5480 free_dlo_mask:
5481 	free_cpumask_var(rd->dlo_mask);
5482 free_online:
5483 	free_cpumask_var(rd->online);
5484 free_span:
5485 	free_cpumask_var(rd->span);
5486 out:
5487 	return -ENOMEM;
5488 }
5489 
5490 /*
5491  * By default the system creates a single root-domain with all cpus as
5492  * members (mimicking the global state we have today).
5493  */
5494 struct root_domain def_root_domain;
5495 
5496 static void init_defrootdomain(void)
5497 {
5498 	init_rootdomain(&def_root_domain);
5499 
5500 	atomic_set(&def_root_domain.refcount, 1);
5501 }
5502 
5503 static struct root_domain *alloc_rootdomain(void)
5504 {
5505 	struct root_domain *rd;
5506 
5507 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5508 	if (!rd)
5509 		return NULL;
5510 
5511 	if (init_rootdomain(rd) != 0) {
5512 		kfree(rd);
5513 		return NULL;
5514 	}
5515 
5516 	return rd;
5517 }
5518 
5519 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5520 {
5521 	struct sched_group *tmp, *first;
5522 
5523 	if (!sg)
5524 		return;
5525 
5526 	first = sg;
5527 	do {
5528 		tmp = sg->next;
5529 
5530 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5531 			kfree(sg->sgc);
5532 
5533 		kfree(sg);
5534 		sg = tmp;
5535 	} while (sg != first);
5536 }
5537 
5538 static void free_sched_domain(struct rcu_head *rcu)
5539 {
5540 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5541 
5542 	/*
5543 	 * If its an overlapping domain it has private groups, iterate and
5544 	 * nuke them all.
5545 	 */
5546 	if (sd->flags & SD_OVERLAP) {
5547 		free_sched_groups(sd->groups, 1);
5548 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5549 		kfree(sd->groups->sgc);
5550 		kfree(sd->groups);
5551 	}
5552 	kfree(sd);
5553 }
5554 
5555 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5556 {
5557 	call_rcu(&sd->rcu, free_sched_domain);
5558 }
5559 
5560 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5561 {
5562 	for (; sd; sd = sd->parent)
5563 		destroy_sched_domain(sd, cpu);
5564 }
5565 
5566 /*
5567  * Keep a special pointer to the highest sched_domain that has
5568  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5569  * allows us to avoid some pointer chasing select_idle_sibling().
5570  *
5571  * Also keep a unique ID per domain (we use the first cpu number in
5572  * the cpumask of the domain), this allows us to quickly tell if
5573  * two cpus are in the same cache domain, see cpus_share_cache().
5574  */
5575 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5576 DEFINE_PER_CPU(int, sd_llc_size);
5577 DEFINE_PER_CPU(int, sd_llc_id);
5578 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5579 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5580 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5581 
5582 static void update_top_cache_domain(int cpu)
5583 {
5584 	struct sched_domain *sd;
5585 	struct sched_domain *busy_sd = NULL;
5586 	int id = cpu;
5587 	int size = 1;
5588 
5589 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5590 	if (sd) {
5591 		id = cpumask_first(sched_domain_span(sd));
5592 		size = cpumask_weight(sched_domain_span(sd));
5593 		busy_sd = sd->parent; /* sd_busy */
5594 	}
5595 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5596 
5597 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5598 	per_cpu(sd_llc_size, cpu) = size;
5599 	per_cpu(sd_llc_id, cpu) = id;
5600 
5601 	sd = lowest_flag_domain(cpu, SD_NUMA);
5602 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5603 
5604 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5605 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5606 }
5607 
5608 /*
5609  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5610  * hold the hotplug lock.
5611  */
5612 static void
5613 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5614 {
5615 	struct rq *rq = cpu_rq(cpu);
5616 	struct sched_domain *tmp;
5617 
5618 	/* Remove the sched domains which do not contribute to scheduling. */
5619 	for (tmp = sd; tmp; ) {
5620 		struct sched_domain *parent = tmp->parent;
5621 		if (!parent)
5622 			break;
5623 
5624 		if (sd_parent_degenerate(tmp, parent)) {
5625 			tmp->parent = parent->parent;
5626 			if (parent->parent)
5627 				parent->parent->child = tmp;
5628 			/*
5629 			 * Transfer SD_PREFER_SIBLING down in case of a
5630 			 * degenerate parent; the spans match for this
5631 			 * so the property transfers.
5632 			 */
5633 			if (parent->flags & SD_PREFER_SIBLING)
5634 				tmp->flags |= SD_PREFER_SIBLING;
5635 			destroy_sched_domain(parent, cpu);
5636 		} else
5637 			tmp = tmp->parent;
5638 	}
5639 
5640 	if (sd && sd_degenerate(sd)) {
5641 		tmp = sd;
5642 		sd = sd->parent;
5643 		destroy_sched_domain(tmp, cpu);
5644 		if (sd)
5645 			sd->child = NULL;
5646 	}
5647 
5648 	sched_domain_debug(sd, cpu);
5649 
5650 	rq_attach_root(rq, rd);
5651 	tmp = rq->sd;
5652 	rcu_assign_pointer(rq->sd, sd);
5653 	destroy_sched_domains(tmp, cpu);
5654 
5655 	update_top_cache_domain(cpu);
5656 }
5657 
5658 /* cpus with isolated domains */
5659 static cpumask_var_t cpu_isolated_map;
5660 
5661 /* Setup the mask of cpus configured for isolated domains */
5662 static int __init isolated_cpu_setup(char *str)
5663 {
5664 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5665 	cpulist_parse(str, cpu_isolated_map);
5666 	return 1;
5667 }
5668 
5669 __setup("isolcpus=", isolated_cpu_setup);
5670 
5671 struct s_data {
5672 	struct sched_domain ** __percpu sd;
5673 	struct root_domain	*rd;
5674 };
5675 
5676 enum s_alloc {
5677 	sa_rootdomain,
5678 	sa_sd,
5679 	sa_sd_storage,
5680 	sa_none,
5681 };
5682 
5683 /*
5684  * Build an iteration mask that can exclude certain CPUs from the upwards
5685  * domain traversal.
5686  *
5687  * Asymmetric node setups can result in situations where the domain tree is of
5688  * unequal depth, make sure to skip domains that already cover the entire
5689  * range.
5690  *
5691  * In that case build_sched_domains() will have terminated the iteration early
5692  * and our sibling sd spans will be empty. Domains should always include the
5693  * cpu they're built on, so check that.
5694  *
5695  */
5696 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5697 {
5698 	const struct cpumask *span = sched_domain_span(sd);
5699 	struct sd_data *sdd = sd->private;
5700 	struct sched_domain *sibling;
5701 	int i;
5702 
5703 	for_each_cpu(i, span) {
5704 		sibling = *per_cpu_ptr(sdd->sd, i);
5705 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5706 			continue;
5707 
5708 		cpumask_set_cpu(i, sched_group_mask(sg));
5709 	}
5710 }
5711 
5712 /*
5713  * Return the canonical balance cpu for this group, this is the first cpu
5714  * of this group that's also in the iteration mask.
5715  */
5716 int group_balance_cpu(struct sched_group *sg)
5717 {
5718 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5719 }
5720 
5721 static int
5722 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5723 {
5724 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5725 	const struct cpumask *span = sched_domain_span(sd);
5726 	struct cpumask *covered = sched_domains_tmpmask;
5727 	struct sd_data *sdd = sd->private;
5728 	struct sched_domain *child;
5729 	int i;
5730 
5731 	cpumask_clear(covered);
5732 
5733 	for_each_cpu(i, span) {
5734 		struct cpumask *sg_span;
5735 
5736 		if (cpumask_test_cpu(i, covered))
5737 			continue;
5738 
5739 		child = *per_cpu_ptr(sdd->sd, i);
5740 
5741 		/* See the comment near build_group_mask(). */
5742 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5743 			continue;
5744 
5745 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5746 				GFP_KERNEL, cpu_to_node(cpu));
5747 
5748 		if (!sg)
5749 			goto fail;
5750 
5751 		sg_span = sched_group_cpus(sg);
5752 		if (child->child) {
5753 			child = child->child;
5754 			cpumask_copy(sg_span, sched_domain_span(child));
5755 		} else
5756 			cpumask_set_cpu(i, sg_span);
5757 
5758 		cpumask_or(covered, covered, sg_span);
5759 
5760 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5761 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5762 			build_group_mask(sd, sg);
5763 
5764 		/*
5765 		 * Initialize sgc->capacity such that even if we mess up the
5766 		 * domains and no possible iteration will get us here, we won't
5767 		 * die on a /0 trap.
5768 		 */
5769 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5770 		sg->sgc->capacity_orig = sg->sgc->capacity;
5771 
5772 		/*
5773 		 * Make sure the first group of this domain contains the
5774 		 * canonical balance cpu. Otherwise the sched_domain iteration
5775 		 * breaks. See update_sg_lb_stats().
5776 		 */
5777 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5778 		    group_balance_cpu(sg) == cpu)
5779 			groups = sg;
5780 
5781 		if (!first)
5782 			first = sg;
5783 		if (last)
5784 			last->next = sg;
5785 		last = sg;
5786 		last->next = first;
5787 	}
5788 	sd->groups = groups;
5789 
5790 	return 0;
5791 
5792 fail:
5793 	free_sched_groups(first, 0);
5794 
5795 	return -ENOMEM;
5796 }
5797 
5798 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5799 {
5800 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5801 	struct sched_domain *child = sd->child;
5802 
5803 	if (child)
5804 		cpu = cpumask_first(sched_domain_span(child));
5805 
5806 	if (sg) {
5807 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5808 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5809 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5810 	}
5811 
5812 	return cpu;
5813 }
5814 
5815 /*
5816  * build_sched_groups will build a circular linked list of the groups
5817  * covered by the given span, and will set each group's ->cpumask correctly,
5818  * and ->cpu_capacity to 0.
5819  *
5820  * Assumes the sched_domain tree is fully constructed
5821  */
5822 static int
5823 build_sched_groups(struct sched_domain *sd, int cpu)
5824 {
5825 	struct sched_group *first = NULL, *last = NULL;
5826 	struct sd_data *sdd = sd->private;
5827 	const struct cpumask *span = sched_domain_span(sd);
5828 	struct cpumask *covered;
5829 	int i;
5830 
5831 	get_group(cpu, sdd, &sd->groups);
5832 	atomic_inc(&sd->groups->ref);
5833 
5834 	if (cpu != cpumask_first(span))
5835 		return 0;
5836 
5837 	lockdep_assert_held(&sched_domains_mutex);
5838 	covered = sched_domains_tmpmask;
5839 
5840 	cpumask_clear(covered);
5841 
5842 	for_each_cpu(i, span) {
5843 		struct sched_group *sg;
5844 		int group, j;
5845 
5846 		if (cpumask_test_cpu(i, covered))
5847 			continue;
5848 
5849 		group = get_group(i, sdd, &sg);
5850 		cpumask_setall(sched_group_mask(sg));
5851 
5852 		for_each_cpu(j, span) {
5853 			if (get_group(j, sdd, NULL) != group)
5854 				continue;
5855 
5856 			cpumask_set_cpu(j, covered);
5857 			cpumask_set_cpu(j, sched_group_cpus(sg));
5858 		}
5859 
5860 		if (!first)
5861 			first = sg;
5862 		if (last)
5863 			last->next = sg;
5864 		last = sg;
5865 	}
5866 	last->next = first;
5867 
5868 	return 0;
5869 }
5870 
5871 /*
5872  * Initialize sched groups cpu_capacity.
5873  *
5874  * cpu_capacity indicates the capacity of sched group, which is used while
5875  * distributing the load between different sched groups in a sched domain.
5876  * Typically cpu_capacity for all the groups in a sched domain will be same
5877  * unless there are asymmetries in the topology. If there are asymmetries,
5878  * group having more cpu_capacity will pickup more load compared to the
5879  * group having less cpu_capacity.
5880  */
5881 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5882 {
5883 	struct sched_group *sg = sd->groups;
5884 
5885 	WARN_ON(!sg);
5886 
5887 	do {
5888 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5889 		sg = sg->next;
5890 	} while (sg != sd->groups);
5891 
5892 	if (cpu != group_balance_cpu(sg))
5893 		return;
5894 
5895 	update_group_capacity(sd, cpu);
5896 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5897 }
5898 
5899 /*
5900  * Initializers for schedule domains
5901  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5902  */
5903 
5904 static int default_relax_domain_level = -1;
5905 int sched_domain_level_max;
5906 
5907 static int __init setup_relax_domain_level(char *str)
5908 {
5909 	if (kstrtoint(str, 0, &default_relax_domain_level))
5910 		pr_warn("Unable to set relax_domain_level\n");
5911 
5912 	return 1;
5913 }
5914 __setup("relax_domain_level=", setup_relax_domain_level);
5915 
5916 static void set_domain_attribute(struct sched_domain *sd,
5917 				 struct sched_domain_attr *attr)
5918 {
5919 	int request;
5920 
5921 	if (!attr || attr->relax_domain_level < 0) {
5922 		if (default_relax_domain_level < 0)
5923 			return;
5924 		else
5925 			request = default_relax_domain_level;
5926 	} else
5927 		request = attr->relax_domain_level;
5928 	if (request < sd->level) {
5929 		/* turn off idle balance on this domain */
5930 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5931 	} else {
5932 		/* turn on idle balance on this domain */
5933 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5934 	}
5935 }
5936 
5937 static void __sdt_free(const struct cpumask *cpu_map);
5938 static int __sdt_alloc(const struct cpumask *cpu_map);
5939 
5940 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5941 				 const struct cpumask *cpu_map)
5942 {
5943 	switch (what) {
5944 	case sa_rootdomain:
5945 		if (!atomic_read(&d->rd->refcount))
5946 			free_rootdomain(&d->rd->rcu); /* fall through */
5947 	case sa_sd:
5948 		free_percpu(d->sd); /* fall through */
5949 	case sa_sd_storage:
5950 		__sdt_free(cpu_map); /* fall through */
5951 	case sa_none:
5952 		break;
5953 	}
5954 }
5955 
5956 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5957 						   const struct cpumask *cpu_map)
5958 {
5959 	memset(d, 0, sizeof(*d));
5960 
5961 	if (__sdt_alloc(cpu_map))
5962 		return sa_sd_storage;
5963 	d->sd = alloc_percpu(struct sched_domain *);
5964 	if (!d->sd)
5965 		return sa_sd_storage;
5966 	d->rd = alloc_rootdomain();
5967 	if (!d->rd)
5968 		return sa_sd;
5969 	return sa_rootdomain;
5970 }
5971 
5972 /*
5973  * NULL the sd_data elements we've used to build the sched_domain and
5974  * sched_group structure so that the subsequent __free_domain_allocs()
5975  * will not free the data we're using.
5976  */
5977 static void claim_allocations(int cpu, struct sched_domain *sd)
5978 {
5979 	struct sd_data *sdd = sd->private;
5980 
5981 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5982 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5983 
5984 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5985 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5986 
5987 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5988 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5989 }
5990 
5991 #ifdef CONFIG_NUMA
5992 static int sched_domains_numa_levels;
5993 static int *sched_domains_numa_distance;
5994 static struct cpumask ***sched_domains_numa_masks;
5995 static int sched_domains_curr_level;
5996 #endif
5997 
5998 /*
5999  * SD_flags allowed in topology descriptions.
6000  *
6001  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6002  * SD_SHARE_PKG_RESOURCES - describes shared caches
6003  * SD_NUMA                - describes NUMA topologies
6004  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6005  *
6006  * Odd one out:
6007  * SD_ASYM_PACKING        - describes SMT quirks
6008  */
6009 #define TOPOLOGY_SD_FLAGS		\
6010 	(SD_SHARE_CPUCAPACITY |		\
6011 	 SD_SHARE_PKG_RESOURCES |	\
6012 	 SD_NUMA |			\
6013 	 SD_ASYM_PACKING |		\
6014 	 SD_SHARE_POWERDOMAIN)
6015 
6016 static struct sched_domain *
6017 sd_init(struct sched_domain_topology_level *tl, int cpu)
6018 {
6019 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6020 	int sd_weight, sd_flags = 0;
6021 
6022 #ifdef CONFIG_NUMA
6023 	/*
6024 	 * Ugly hack to pass state to sd_numa_mask()...
6025 	 */
6026 	sched_domains_curr_level = tl->numa_level;
6027 #endif
6028 
6029 	sd_weight = cpumask_weight(tl->mask(cpu));
6030 
6031 	if (tl->sd_flags)
6032 		sd_flags = (*tl->sd_flags)();
6033 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6034 			"wrong sd_flags in topology description\n"))
6035 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6036 
6037 	*sd = (struct sched_domain){
6038 		.min_interval		= sd_weight,
6039 		.max_interval		= 2*sd_weight,
6040 		.busy_factor		= 32,
6041 		.imbalance_pct		= 125,
6042 
6043 		.cache_nice_tries	= 0,
6044 		.busy_idx		= 0,
6045 		.idle_idx		= 0,
6046 		.newidle_idx		= 0,
6047 		.wake_idx		= 0,
6048 		.forkexec_idx		= 0,
6049 
6050 		.flags			= 1*SD_LOAD_BALANCE
6051 					| 1*SD_BALANCE_NEWIDLE
6052 					| 1*SD_BALANCE_EXEC
6053 					| 1*SD_BALANCE_FORK
6054 					| 0*SD_BALANCE_WAKE
6055 					| 1*SD_WAKE_AFFINE
6056 					| 0*SD_SHARE_CPUCAPACITY
6057 					| 0*SD_SHARE_PKG_RESOURCES
6058 					| 0*SD_SERIALIZE
6059 					| 0*SD_PREFER_SIBLING
6060 					| 0*SD_NUMA
6061 					| sd_flags
6062 					,
6063 
6064 		.last_balance		= jiffies,
6065 		.balance_interval	= sd_weight,
6066 		.smt_gain		= 0,
6067 		.max_newidle_lb_cost	= 0,
6068 		.next_decay_max_lb_cost	= jiffies,
6069 #ifdef CONFIG_SCHED_DEBUG
6070 		.name			= tl->name,
6071 #endif
6072 	};
6073 
6074 	/*
6075 	 * Convert topological properties into behaviour.
6076 	 */
6077 
6078 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6079 		sd->imbalance_pct = 110;
6080 		sd->smt_gain = 1178; /* ~15% */
6081 
6082 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6083 		sd->imbalance_pct = 117;
6084 		sd->cache_nice_tries = 1;
6085 		sd->busy_idx = 2;
6086 
6087 #ifdef CONFIG_NUMA
6088 	} else if (sd->flags & SD_NUMA) {
6089 		sd->cache_nice_tries = 2;
6090 		sd->busy_idx = 3;
6091 		sd->idle_idx = 2;
6092 
6093 		sd->flags |= SD_SERIALIZE;
6094 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6095 			sd->flags &= ~(SD_BALANCE_EXEC |
6096 				       SD_BALANCE_FORK |
6097 				       SD_WAKE_AFFINE);
6098 		}
6099 
6100 #endif
6101 	} else {
6102 		sd->flags |= SD_PREFER_SIBLING;
6103 		sd->cache_nice_tries = 1;
6104 		sd->busy_idx = 2;
6105 		sd->idle_idx = 1;
6106 	}
6107 
6108 	sd->private = &tl->data;
6109 
6110 	return sd;
6111 }
6112 
6113 /*
6114  * Topology list, bottom-up.
6115  */
6116 static struct sched_domain_topology_level default_topology[] = {
6117 #ifdef CONFIG_SCHED_SMT
6118 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6119 #endif
6120 #ifdef CONFIG_SCHED_MC
6121 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6122 #endif
6123 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6124 	{ NULL, },
6125 };
6126 
6127 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6128 
6129 #define for_each_sd_topology(tl)			\
6130 	for (tl = sched_domain_topology; tl->mask; tl++)
6131 
6132 void set_sched_topology(struct sched_domain_topology_level *tl)
6133 {
6134 	sched_domain_topology = tl;
6135 }
6136 
6137 #ifdef CONFIG_NUMA
6138 
6139 static const struct cpumask *sd_numa_mask(int cpu)
6140 {
6141 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6142 }
6143 
6144 static void sched_numa_warn(const char *str)
6145 {
6146 	static int done = false;
6147 	int i,j;
6148 
6149 	if (done)
6150 		return;
6151 
6152 	done = true;
6153 
6154 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6155 
6156 	for (i = 0; i < nr_node_ids; i++) {
6157 		printk(KERN_WARNING "  ");
6158 		for (j = 0; j < nr_node_ids; j++)
6159 			printk(KERN_CONT "%02d ", node_distance(i,j));
6160 		printk(KERN_CONT "\n");
6161 	}
6162 	printk(KERN_WARNING "\n");
6163 }
6164 
6165 static bool find_numa_distance(int distance)
6166 {
6167 	int i;
6168 
6169 	if (distance == node_distance(0, 0))
6170 		return true;
6171 
6172 	for (i = 0; i < sched_domains_numa_levels; i++) {
6173 		if (sched_domains_numa_distance[i] == distance)
6174 			return true;
6175 	}
6176 
6177 	return false;
6178 }
6179 
6180 static void sched_init_numa(void)
6181 {
6182 	int next_distance, curr_distance = node_distance(0, 0);
6183 	struct sched_domain_topology_level *tl;
6184 	int level = 0;
6185 	int i, j, k;
6186 
6187 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6188 	if (!sched_domains_numa_distance)
6189 		return;
6190 
6191 	/*
6192 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6193 	 * unique distances in the node_distance() table.
6194 	 *
6195 	 * Assumes node_distance(0,j) includes all distances in
6196 	 * node_distance(i,j) in order to avoid cubic time.
6197 	 */
6198 	next_distance = curr_distance;
6199 	for (i = 0; i < nr_node_ids; i++) {
6200 		for (j = 0; j < nr_node_ids; j++) {
6201 			for (k = 0; k < nr_node_ids; k++) {
6202 				int distance = node_distance(i, k);
6203 
6204 				if (distance > curr_distance &&
6205 				    (distance < next_distance ||
6206 				     next_distance == curr_distance))
6207 					next_distance = distance;
6208 
6209 				/*
6210 				 * While not a strong assumption it would be nice to know
6211 				 * about cases where if node A is connected to B, B is not
6212 				 * equally connected to A.
6213 				 */
6214 				if (sched_debug() && node_distance(k, i) != distance)
6215 					sched_numa_warn("Node-distance not symmetric");
6216 
6217 				if (sched_debug() && i && !find_numa_distance(distance))
6218 					sched_numa_warn("Node-0 not representative");
6219 			}
6220 			if (next_distance != curr_distance) {
6221 				sched_domains_numa_distance[level++] = next_distance;
6222 				sched_domains_numa_levels = level;
6223 				curr_distance = next_distance;
6224 			} else break;
6225 		}
6226 
6227 		/*
6228 		 * In case of sched_debug() we verify the above assumption.
6229 		 */
6230 		if (!sched_debug())
6231 			break;
6232 	}
6233 	/*
6234 	 * 'level' contains the number of unique distances, excluding the
6235 	 * identity distance node_distance(i,i).
6236 	 *
6237 	 * The sched_domains_numa_distance[] array includes the actual distance
6238 	 * numbers.
6239 	 */
6240 
6241 	/*
6242 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6243 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6244 	 * the array will contain less then 'level' members. This could be
6245 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6246 	 * in other functions.
6247 	 *
6248 	 * We reset it to 'level' at the end of this function.
6249 	 */
6250 	sched_domains_numa_levels = 0;
6251 
6252 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6253 	if (!sched_domains_numa_masks)
6254 		return;
6255 
6256 	/*
6257 	 * Now for each level, construct a mask per node which contains all
6258 	 * cpus of nodes that are that many hops away from us.
6259 	 */
6260 	for (i = 0; i < level; i++) {
6261 		sched_domains_numa_masks[i] =
6262 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6263 		if (!sched_domains_numa_masks[i])
6264 			return;
6265 
6266 		for (j = 0; j < nr_node_ids; j++) {
6267 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6268 			if (!mask)
6269 				return;
6270 
6271 			sched_domains_numa_masks[i][j] = mask;
6272 
6273 			for (k = 0; k < nr_node_ids; k++) {
6274 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6275 					continue;
6276 
6277 				cpumask_or(mask, mask, cpumask_of_node(k));
6278 			}
6279 		}
6280 	}
6281 
6282 	/* Compute default topology size */
6283 	for (i = 0; sched_domain_topology[i].mask; i++);
6284 
6285 	tl = kzalloc((i + level + 1) *
6286 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6287 	if (!tl)
6288 		return;
6289 
6290 	/*
6291 	 * Copy the default topology bits..
6292 	 */
6293 	for (i = 0; sched_domain_topology[i].mask; i++)
6294 		tl[i] = sched_domain_topology[i];
6295 
6296 	/*
6297 	 * .. and append 'j' levels of NUMA goodness.
6298 	 */
6299 	for (j = 0; j < level; i++, j++) {
6300 		tl[i] = (struct sched_domain_topology_level){
6301 			.mask = sd_numa_mask,
6302 			.sd_flags = cpu_numa_flags,
6303 			.flags = SDTL_OVERLAP,
6304 			.numa_level = j,
6305 			SD_INIT_NAME(NUMA)
6306 		};
6307 	}
6308 
6309 	sched_domain_topology = tl;
6310 
6311 	sched_domains_numa_levels = level;
6312 }
6313 
6314 static void sched_domains_numa_masks_set(int cpu)
6315 {
6316 	int i, j;
6317 	int node = cpu_to_node(cpu);
6318 
6319 	for (i = 0; i < sched_domains_numa_levels; i++) {
6320 		for (j = 0; j < nr_node_ids; j++) {
6321 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6322 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6323 		}
6324 	}
6325 }
6326 
6327 static void sched_domains_numa_masks_clear(int cpu)
6328 {
6329 	int i, j;
6330 	for (i = 0; i < sched_domains_numa_levels; i++) {
6331 		for (j = 0; j < nr_node_ids; j++)
6332 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6333 	}
6334 }
6335 
6336 /*
6337  * Update sched_domains_numa_masks[level][node] array when new cpus
6338  * are onlined.
6339  */
6340 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6341 					   unsigned long action,
6342 					   void *hcpu)
6343 {
6344 	int cpu = (long)hcpu;
6345 
6346 	switch (action & ~CPU_TASKS_FROZEN) {
6347 	case CPU_ONLINE:
6348 		sched_domains_numa_masks_set(cpu);
6349 		break;
6350 
6351 	case CPU_DEAD:
6352 		sched_domains_numa_masks_clear(cpu);
6353 		break;
6354 
6355 	default:
6356 		return NOTIFY_DONE;
6357 	}
6358 
6359 	return NOTIFY_OK;
6360 }
6361 #else
6362 static inline void sched_init_numa(void)
6363 {
6364 }
6365 
6366 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6367 					   unsigned long action,
6368 					   void *hcpu)
6369 {
6370 	return 0;
6371 }
6372 #endif /* CONFIG_NUMA */
6373 
6374 static int __sdt_alloc(const struct cpumask *cpu_map)
6375 {
6376 	struct sched_domain_topology_level *tl;
6377 	int j;
6378 
6379 	for_each_sd_topology(tl) {
6380 		struct sd_data *sdd = &tl->data;
6381 
6382 		sdd->sd = alloc_percpu(struct sched_domain *);
6383 		if (!sdd->sd)
6384 			return -ENOMEM;
6385 
6386 		sdd->sg = alloc_percpu(struct sched_group *);
6387 		if (!sdd->sg)
6388 			return -ENOMEM;
6389 
6390 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6391 		if (!sdd->sgc)
6392 			return -ENOMEM;
6393 
6394 		for_each_cpu(j, cpu_map) {
6395 			struct sched_domain *sd;
6396 			struct sched_group *sg;
6397 			struct sched_group_capacity *sgc;
6398 
6399 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6400 					GFP_KERNEL, cpu_to_node(j));
6401 			if (!sd)
6402 				return -ENOMEM;
6403 
6404 			*per_cpu_ptr(sdd->sd, j) = sd;
6405 
6406 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6407 					GFP_KERNEL, cpu_to_node(j));
6408 			if (!sg)
6409 				return -ENOMEM;
6410 
6411 			sg->next = sg;
6412 
6413 			*per_cpu_ptr(sdd->sg, j) = sg;
6414 
6415 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6416 					GFP_KERNEL, cpu_to_node(j));
6417 			if (!sgc)
6418 				return -ENOMEM;
6419 
6420 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6421 		}
6422 	}
6423 
6424 	return 0;
6425 }
6426 
6427 static void __sdt_free(const struct cpumask *cpu_map)
6428 {
6429 	struct sched_domain_topology_level *tl;
6430 	int j;
6431 
6432 	for_each_sd_topology(tl) {
6433 		struct sd_data *sdd = &tl->data;
6434 
6435 		for_each_cpu(j, cpu_map) {
6436 			struct sched_domain *sd;
6437 
6438 			if (sdd->sd) {
6439 				sd = *per_cpu_ptr(sdd->sd, j);
6440 				if (sd && (sd->flags & SD_OVERLAP))
6441 					free_sched_groups(sd->groups, 0);
6442 				kfree(*per_cpu_ptr(sdd->sd, j));
6443 			}
6444 
6445 			if (sdd->sg)
6446 				kfree(*per_cpu_ptr(sdd->sg, j));
6447 			if (sdd->sgc)
6448 				kfree(*per_cpu_ptr(sdd->sgc, j));
6449 		}
6450 		free_percpu(sdd->sd);
6451 		sdd->sd = NULL;
6452 		free_percpu(sdd->sg);
6453 		sdd->sg = NULL;
6454 		free_percpu(sdd->sgc);
6455 		sdd->sgc = NULL;
6456 	}
6457 }
6458 
6459 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6460 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6461 		struct sched_domain *child, int cpu)
6462 {
6463 	struct sched_domain *sd = sd_init(tl, cpu);
6464 	if (!sd)
6465 		return child;
6466 
6467 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6468 	if (child) {
6469 		sd->level = child->level + 1;
6470 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6471 		child->parent = sd;
6472 		sd->child = child;
6473 	}
6474 	set_domain_attribute(sd, attr);
6475 
6476 	return sd;
6477 }
6478 
6479 /*
6480  * Build sched domains for a given set of cpus and attach the sched domains
6481  * to the individual cpus
6482  */
6483 static int build_sched_domains(const struct cpumask *cpu_map,
6484 			       struct sched_domain_attr *attr)
6485 {
6486 	enum s_alloc alloc_state;
6487 	struct sched_domain *sd;
6488 	struct s_data d;
6489 	int i, ret = -ENOMEM;
6490 
6491 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6492 	if (alloc_state != sa_rootdomain)
6493 		goto error;
6494 
6495 	/* Set up domains for cpus specified by the cpu_map. */
6496 	for_each_cpu(i, cpu_map) {
6497 		struct sched_domain_topology_level *tl;
6498 
6499 		sd = NULL;
6500 		for_each_sd_topology(tl) {
6501 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6502 			if (tl == sched_domain_topology)
6503 				*per_cpu_ptr(d.sd, i) = sd;
6504 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6505 				sd->flags |= SD_OVERLAP;
6506 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6507 				break;
6508 		}
6509 	}
6510 
6511 	/* Build the groups for the domains */
6512 	for_each_cpu(i, cpu_map) {
6513 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6514 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6515 			if (sd->flags & SD_OVERLAP) {
6516 				if (build_overlap_sched_groups(sd, i))
6517 					goto error;
6518 			} else {
6519 				if (build_sched_groups(sd, i))
6520 					goto error;
6521 			}
6522 		}
6523 	}
6524 
6525 	/* Calculate CPU capacity for physical packages and nodes */
6526 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6527 		if (!cpumask_test_cpu(i, cpu_map))
6528 			continue;
6529 
6530 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6531 			claim_allocations(i, sd);
6532 			init_sched_groups_capacity(i, sd);
6533 		}
6534 	}
6535 
6536 	/* Attach the domains */
6537 	rcu_read_lock();
6538 	for_each_cpu(i, cpu_map) {
6539 		sd = *per_cpu_ptr(d.sd, i);
6540 		cpu_attach_domain(sd, d.rd, i);
6541 	}
6542 	rcu_read_unlock();
6543 
6544 	ret = 0;
6545 error:
6546 	__free_domain_allocs(&d, alloc_state, cpu_map);
6547 	return ret;
6548 }
6549 
6550 static cpumask_var_t *doms_cur;	/* current sched domains */
6551 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6552 static struct sched_domain_attr *dattr_cur;
6553 				/* attribues of custom domains in 'doms_cur' */
6554 
6555 /*
6556  * Special case: If a kmalloc of a doms_cur partition (array of
6557  * cpumask) fails, then fallback to a single sched domain,
6558  * as determined by the single cpumask fallback_doms.
6559  */
6560 static cpumask_var_t fallback_doms;
6561 
6562 /*
6563  * arch_update_cpu_topology lets virtualized architectures update the
6564  * cpu core maps. It is supposed to return 1 if the topology changed
6565  * or 0 if it stayed the same.
6566  */
6567 int __weak arch_update_cpu_topology(void)
6568 {
6569 	return 0;
6570 }
6571 
6572 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6573 {
6574 	int i;
6575 	cpumask_var_t *doms;
6576 
6577 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6578 	if (!doms)
6579 		return NULL;
6580 	for (i = 0; i < ndoms; i++) {
6581 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6582 			free_sched_domains(doms, i);
6583 			return NULL;
6584 		}
6585 	}
6586 	return doms;
6587 }
6588 
6589 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6590 {
6591 	unsigned int i;
6592 	for (i = 0; i < ndoms; i++)
6593 		free_cpumask_var(doms[i]);
6594 	kfree(doms);
6595 }
6596 
6597 /*
6598  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6599  * For now this just excludes isolated cpus, but could be used to
6600  * exclude other special cases in the future.
6601  */
6602 static int init_sched_domains(const struct cpumask *cpu_map)
6603 {
6604 	int err;
6605 
6606 	arch_update_cpu_topology();
6607 	ndoms_cur = 1;
6608 	doms_cur = alloc_sched_domains(ndoms_cur);
6609 	if (!doms_cur)
6610 		doms_cur = &fallback_doms;
6611 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6612 	err = build_sched_domains(doms_cur[0], NULL);
6613 	register_sched_domain_sysctl();
6614 
6615 	return err;
6616 }
6617 
6618 /*
6619  * Detach sched domains from a group of cpus specified in cpu_map
6620  * These cpus will now be attached to the NULL domain
6621  */
6622 static void detach_destroy_domains(const struct cpumask *cpu_map)
6623 {
6624 	int i;
6625 
6626 	rcu_read_lock();
6627 	for_each_cpu(i, cpu_map)
6628 		cpu_attach_domain(NULL, &def_root_domain, i);
6629 	rcu_read_unlock();
6630 }
6631 
6632 /* handle null as "default" */
6633 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6634 			struct sched_domain_attr *new, int idx_new)
6635 {
6636 	struct sched_domain_attr tmp;
6637 
6638 	/* fast path */
6639 	if (!new && !cur)
6640 		return 1;
6641 
6642 	tmp = SD_ATTR_INIT;
6643 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6644 			new ? (new + idx_new) : &tmp,
6645 			sizeof(struct sched_domain_attr));
6646 }
6647 
6648 /*
6649  * Partition sched domains as specified by the 'ndoms_new'
6650  * cpumasks in the array doms_new[] of cpumasks. This compares
6651  * doms_new[] to the current sched domain partitioning, doms_cur[].
6652  * It destroys each deleted domain and builds each new domain.
6653  *
6654  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6655  * The masks don't intersect (don't overlap.) We should setup one
6656  * sched domain for each mask. CPUs not in any of the cpumasks will
6657  * not be load balanced. If the same cpumask appears both in the
6658  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6659  * it as it is.
6660  *
6661  * The passed in 'doms_new' should be allocated using
6662  * alloc_sched_domains.  This routine takes ownership of it and will
6663  * free_sched_domains it when done with it. If the caller failed the
6664  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6665  * and partition_sched_domains() will fallback to the single partition
6666  * 'fallback_doms', it also forces the domains to be rebuilt.
6667  *
6668  * If doms_new == NULL it will be replaced with cpu_online_mask.
6669  * ndoms_new == 0 is a special case for destroying existing domains,
6670  * and it will not create the default domain.
6671  *
6672  * Call with hotplug lock held
6673  */
6674 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6675 			     struct sched_domain_attr *dattr_new)
6676 {
6677 	int i, j, n;
6678 	int new_topology;
6679 
6680 	mutex_lock(&sched_domains_mutex);
6681 
6682 	/* always unregister in case we don't destroy any domains */
6683 	unregister_sched_domain_sysctl();
6684 
6685 	/* Let architecture update cpu core mappings. */
6686 	new_topology = arch_update_cpu_topology();
6687 
6688 	n = doms_new ? ndoms_new : 0;
6689 
6690 	/* Destroy deleted domains */
6691 	for (i = 0; i < ndoms_cur; i++) {
6692 		for (j = 0; j < n && !new_topology; j++) {
6693 			if (cpumask_equal(doms_cur[i], doms_new[j])
6694 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6695 				goto match1;
6696 		}
6697 		/* no match - a current sched domain not in new doms_new[] */
6698 		detach_destroy_domains(doms_cur[i]);
6699 match1:
6700 		;
6701 	}
6702 
6703 	n = ndoms_cur;
6704 	if (doms_new == NULL) {
6705 		n = 0;
6706 		doms_new = &fallback_doms;
6707 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6708 		WARN_ON_ONCE(dattr_new);
6709 	}
6710 
6711 	/* Build new domains */
6712 	for (i = 0; i < ndoms_new; i++) {
6713 		for (j = 0; j < n && !new_topology; j++) {
6714 			if (cpumask_equal(doms_new[i], doms_cur[j])
6715 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6716 				goto match2;
6717 		}
6718 		/* no match - add a new doms_new */
6719 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6720 match2:
6721 		;
6722 	}
6723 
6724 	/* Remember the new sched domains */
6725 	if (doms_cur != &fallback_doms)
6726 		free_sched_domains(doms_cur, ndoms_cur);
6727 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6728 	doms_cur = doms_new;
6729 	dattr_cur = dattr_new;
6730 	ndoms_cur = ndoms_new;
6731 
6732 	register_sched_domain_sysctl();
6733 
6734 	mutex_unlock(&sched_domains_mutex);
6735 }
6736 
6737 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6738 
6739 /*
6740  * Update cpusets according to cpu_active mask.  If cpusets are
6741  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6742  * around partition_sched_domains().
6743  *
6744  * If we come here as part of a suspend/resume, don't touch cpusets because we
6745  * want to restore it back to its original state upon resume anyway.
6746  */
6747 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6748 			     void *hcpu)
6749 {
6750 	switch (action) {
6751 	case CPU_ONLINE_FROZEN:
6752 	case CPU_DOWN_FAILED_FROZEN:
6753 
6754 		/*
6755 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6756 		 * resume sequence. As long as this is not the last online
6757 		 * operation in the resume sequence, just build a single sched
6758 		 * domain, ignoring cpusets.
6759 		 */
6760 		num_cpus_frozen--;
6761 		if (likely(num_cpus_frozen)) {
6762 			partition_sched_domains(1, NULL, NULL);
6763 			break;
6764 		}
6765 
6766 		/*
6767 		 * This is the last CPU online operation. So fall through and
6768 		 * restore the original sched domains by considering the
6769 		 * cpuset configurations.
6770 		 */
6771 
6772 	case CPU_ONLINE:
6773 	case CPU_DOWN_FAILED:
6774 		cpuset_update_active_cpus(true);
6775 		break;
6776 	default:
6777 		return NOTIFY_DONE;
6778 	}
6779 	return NOTIFY_OK;
6780 }
6781 
6782 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6783 			       void *hcpu)
6784 {
6785 	switch (action) {
6786 	case CPU_DOWN_PREPARE:
6787 		cpuset_update_active_cpus(false);
6788 		break;
6789 	case CPU_DOWN_PREPARE_FROZEN:
6790 		num_cpus_frozen++;
6791 		partition_sched_domains(1, NULL, NULL);
6792 		break;
6793 	default:
6794 		return NOTIFY_DONE;
6795 	}
6796 	return NOTIFY_OK;
6797 }
6798 
6799 void __init sched_init_smp(void)
6800 {
6801 	cpumask_var_t non_isolated_cpus;
6802 
6803 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6804 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6805 
6806 	sched_init_numa();
6807 
6808 	/*
6809 	 * There's no userspace yet to cause hotplug operations; hence all the
6810 	 * cpu masks are stable and all blatant races in the below code cannot
6811 	 * happen.
6812 	 */
6813 	mutex_lock(&sched_domains_mutex);
6814 	init_sched_domains(cpu_active_mask);
6815 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6816 	if (cpumask_empty(non_isolated_cpus))
6817 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6818 	mutex_unlock(&sched_domains_mutex);
6819 
6820 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6821 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6822 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6823 
6824 	init_hrtick();
6825 
6826 	/* Move init over to a non-isolated CPU */
6827 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6828 		BUG();
6829 	sched_init_granularity();
6830 	free_cpumask_var(non_isolated_cpus);
6831 
6832 	init_sched_rt_class();
6833 	init_sched_dl_class();
6834 }
6835 #else
6836 void __init sched_init_smp(void)
6837 {
6838 	sched_init_granularity();
6839 }
6840 #endif /* CONFIG_SMP */
6841 
6842 const_debug unsigned int sysctl_timer_migration = 1;
6843 
6844 int in_sched_functions(unsigned long addr)
6845 {
6846 	return in_lock_functions(addr) ||
6847 		(addr >= (unsigned long)__sched_text_start
6848 		&& addr < (unsigned long)__sched_text_end);
6849 }
6850 
6851 #ifdef CONFIG_CGROUP_SCHED
6852 /*
6853  * Default task group.
6854  * Every task in system belongs to this group at bootup.
6855  */
6856 struct task_group root_task_group;
6857 LIST_HEAD(task_groups);
6858 #endif
6859 
6860 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6861 
6862 void __init sched_init(void)
6863 {
6864 	int i, j;
6865 	unsigned long alloc_size = 0, ptr;
6866 
6867 #ifdef CONFIG_FAIR_GROUP_SCHED
6868 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6869 #endif
6870 #ifdef CONFIG_RT_GROUP_SCHED
6871 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6872 #endif
6873 #ifdef CONFIG_CPUMASK_OFFSTACK
6874 	alloc_size += num_possible_cpus() * cpumask_size();
6875 #endif
6876 	if (alloc_size) {
6877 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6878 
6879 #ifdef CONFIG_FAIR_GROUP_SCHED
6880 		root_task_group.se = (struct sched_entity **)ptr;
6881 		ptr += nr_cpu_ids * sizeof(void **);
6882 
6883 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6884 		ptr += nr_cpu_ids * sizeof(void **);
6885 
6886 #endif /* CONFIG_FAIR_GROUP_SCHED */
6887 #ifdef CONFIG_RT_GROUP_SCHED
6888 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6889 		ptr += nr_cpu_ids * sizeof(void **);
6890 
6891 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6892 		ptr += nr_cpu_ids * sizeof(void **);
6893 
6894 #endif /* CONFIG_RT_GROUP_SCHED */
6895 #ifdef CONFIG_CPUMASK_OFFSTACK
6896 		for_each_possible_cpu(i) {
6897 			per_cpu(load_balance_mask, i) = (void *)ptr;
6898 			ptr += cpumask_size();
6899 		}
6900 #endif /* CONFIG_CPUMASK_OFFSTACK */
6901 	}
6902 
6903 	init_rt_bandwidth(&def_rt_bandwidth,
6904 			global_rt_period(), global_rt_runtime());
6905 	init_dl_bandwidth(&def_dl_bandwidth,
6906 			global_rt_period(), global_rt_runtime());
6907 
6908 #ifdef CONFIG_SMP
6909 	init_defrootdomain();
6910 #endif
6911 
6912 #ifdef CONFIG_RT_GROUP_SCHED
6913 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6914 			global_rt_period(), global_rt_runtime());
6915 #endif /* CONFIG_RT_GROUP_SCHED */
6916 
6917 #ifdef CONFIG_CGROUP_SCHED
6918 	list_add(&root_task_group.list, &task_groups);
6919 	INIT_LIST_HEAD(&root_task_group.children);
6920 	INIT_LIST_HEAD(&root_task_group.siblings);
6921 	autogroup_init(&init_task);
6922 
6923 #endif /* CONFIG_CGROUP_SCHED */
6924 
6925 	for_each_possible_cpu(i) {
6926 		struct rq *rq;
6927 
6928 		rq = cpu_rq(i);
6929 		raw_spin_lock_init(&rq->lock);
6930 		rq->nr_running = 0;
6931 		rq->calc_load_active = 0;
6932 		rq->calc_load_update = jiffies + LOAD_FREQ;
6933 		init_cfs_rq(&rq->cfs);
6934 		init_rt_rq(&rq->rt, rq);
6935 		init_dl_rq(&rq->dl, rq);
6936 #ifdef CONFIG_FAIR_GROUP_SCHED
6937 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6938 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6939 		/*
6940 		 * How much cpu bandwidth does root_task_group get?
6941 		 *
6942 		 * In case of task-groups formed thr' the cgroup filesystem, it
6943 		 * gets 100% of the cpu resources in the system. This overall
6944 		 * system cpu resource is divided among the tasks of
6945 		 * root_task_group and its child task-groups in a fair manner,
6946 		 * based on each entity's (task or task-group's) weight
6947 		 * (se->load.weight).
6948 		 *
6949 		 * In other words, if root_task_group has 10 tasks of weight
6950 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6951 		 * then A0's share of the cpu resource is:
6952 		 *
6953 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6954 		 *
6955 		 * We achieve this by letting root_task_group's tasks sit
6956 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6957 		 */
6958 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6959 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6960 #endif /* CONFIG_FAIR_GROUP_SCHED */
6961 
6962 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6963 #ifdef CONFIG_RT_GROUP_SCHED
6964 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6965 #endif
6966 
6967 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6968 			rq->cpu_load[j] = 0;
6969 
6970 		rq->last_load_update_tick = jiffies;
6971 
6972 #ifdef CONFIG_SMP
6973 		rq->sd = NULL;
6974 		rq->rd = NULL;
6975 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6976 		rq->post_schedule = 0;
6977 		rq->active_balance = 0;
6978 		rq->next_balance = jiffies;
6979 		rq->push_cpu = 0;
6980 		rq->cpu = i;
6981 		rq->online = 0;
6982 		rq->idle_stamp = 0;
6983 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6984 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6985 
6986 		INIT_LIST_HEAD(&rq->cfs_tasks);
6987 
6988 		rq_attach_root(rq, &def_root_domain);
6989 #ifdef CONFIG_NO_HZ_COMMON
6990 		rq->nohz_flags = 0;
6991 #endif
6992 #ifdef CONFIG_NO_HZ_FULL
6993 		rq->last_sched_tick = 0;
6994 #endif
6995 #endif
6996 		init_rq_hrtick(rq);
6997 		atomic_set(&rq->nr_iowait, 0);
6998 	}
6999 
7000 	set_load_weight(&init_task);
7001 
7002 #ifdef CONFIG_PREEMPT_NOTIFIERS
7003 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7004 #endif
7005 
7006 	/*
7007 	 * The boot idle thread does lazy MMU switching as well:
7008 	 */
7009 	atomic_inc(&init_mm.mm_count);
7010 	enter_lazy_tlb(&init_mm, current);
7011 
7012 	/*
7013 	 * Make us the idle thread. Technically, schedule() should not be
7014 	 * called from this thread, however somewhere below it might be,
7015 	 * but because we are the idle thread, we just pick up running again
7016 	 * when this runqueue becomes "idle".
7017 	 */
7018 	init_idle(current, smp_processor_id());
7019 
7020 	calc_load_update = jiffies + LOAD_FREQ;
7021 
7022 	/*
7023 	 * During early bootup we pretend to be a normal task:
7024 	 */
7025 	current->sched_class = &fair_sched_class;
7026 
7027 #ifdef CONFIG_SMP
7028 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7029 	/* May be allocated at isolcpus cmdline parse time */
7030 	if (cpu_isolated_map == NULL)
7031 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7032 	idle_thread_set_boot_cpu();
7033 	set_cpu_rq_start_time();
7034 #endif
7035 	init_sched_fair_class();
7036 
7037 	scheduler_running = 1;
7038 }
7039 
7040 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7041 static inline int preempt_count_equals(int preempt_offset)
7042 {
7043 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7044 
7045 	return (nested == preempt_offset);
7046 }
7047 
7048 void __might_sleep(const char *file, int line, int preempt_offset)
7049 {
7050 	static unsigned long prev_jiffy;	/* ratelimiting */
7051 
7052 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7053 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7054 	     !is_idle_task(current)) ||
7055 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7056 		return;
7057 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7058 		return;
7059 	prev_jiffy = jiffies;
7060 
7061 	printk(KERN_ERR
7062 		"BUG: sleeping function called from invalid context at %s:%d\n",
7063 			file, line);
7064 	printk(KERN_ERR
7065 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7066 			in_atomic(), irqs_disabled(),
7067 			current->pid, current->comm);
7068 
7069 	debug_show_held_locks(current);
7070 	if (irqs_disabled())
7071 		print_irqtrace_events(current);
7072 #ifdef CONFIG_DEBUG_PREEMPT
7073 	if (!preempt_count_equals(preempt_offset)) {
7074 		pr_err("Preemption disabled at:");
7075 		print_ip_sym(current->preempt_disable_ip);
7076 		pr_cont("\n");
7077 	}
7078 #endif
7079 	dump_stack();
7080 }
7081 EXPORT_SYMBOL(__might_sleep);
7082 #endif
7083 
7084 #ifdef CONFIG_MAGIC_SYSRQ
7085 static void normalize_task(struct rq *rq, struct task_struct *p)
7086 {
7087 	const struct sched_class *prev_class = p->sched_class;
7088 	struct sched_attr attr = {
7089 		.sched_policy = SCHED_NORMAL,
7090 	};
7091 	int old_prio = p->prio;
7092 	int on_rq;
7093 
7094 	on_rq = p->on_rq;
7095 	if (on_rq)
7096 		dequeue_task(rq, p, 0);
7097 	__setscheduler(rq, p, &attr);
7098 	if (on_rq) {
7099 		enqueue_task(rq, p, 0);
7100 		resched_task(rq->curr);
7101 	}
7102 
7103 	check_class_changed(rq, p, prev_class, old_prio);
7104 }
7105 
7106 void normalize_rt_tasks(void)
7107 {
7108 	struct task_struct *g, *p;
7109 	unsigned long flags;
7110 	struct rq *rq;
7111 
7112 	read_lock_irqsave(&tasklist_lock, flags);
7113 	do_each_thread(g, p) {
7114 		/*
7115 		 * Only normalize user tasks:
7116 		 */
7117 		if (!p->mm)
7118 			continue;
7119 
7120 		p->se.exec_start		= 0;
7121 #ifdef CONFIG_SCHEDSTATS
7122 		p->se.statistics.wait_start	= 0;
7123 		p->se.statistics.sleep_start	= 0;
7124 		p->se.statistics.block_start	= 0;
7125 #endif
7126 
7127 		if (!dl_task(p) && !rt_task(p)) {
7128 			/*
7129 			 * Renice negative nice level userspace
7130 			 * tasks back to 0:
7131 			 */
7132 			if (task_nice(p) < 0 && p->mm)
7133 				set_user_nice(p, 0);
7134 			continue;
7135 		}
7136 
7137 		raw_spin_lock(&p->pi_lock);
7138 		rq = __task_rq_lock(p);
7139 
7140 		normalize_task(rq, p);
7141 
7142 		__task_rq_unlock(rq);
7143 		raw_spin_unlock(&p->pi_lock);
7144 	} while_each_thread(g, p);
7145 
7146 	read_unlock_irqrestore(&tasklist_lock, flags);
7147 }
7148 
7149 #endif /* CONFIG_MAGIC_SYSRQ */
7150 
7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7152 /*
7153  * These functions are only useful for the IA64 MCA handling, or kdb.
7154  *
7155  * They can only be called when the whole system has been
7156  * stopped - every CPU needs to be quiescent, and no scheduling
7157  * activity can take place. Using them for anything else would
7158  * be a serious bug, and as a result, they aren't even visible
7159  * under any other configuration.
7160  */
7161 
7162 /**
7163  * curr_task - return the current task for a given cpu.
7164  * @cpu: the processor in question.
7165  *
7166  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7167  *
7168  * Return: The current task for @cpu.
7169  */
7170 struct task_struct *curr_task(int cpu)
7171 {
7172 	return cpu_curr(cpu);
7173 }
7174 
7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7176 
7177 #ifdef CONFIG_IA64
7178 /**
7179  * set_curr_task - set the current task for a given cpu.
7180  * @cpu: the processor in question.
7181  * @p: the task pointer to set.
7182  *
7183  * Description: This function must only be used when non-maskable interrupts
7184  * are serviced on a separate stack. It allows the architecture to switch the
7185  * notion of the current task on a cpu in a non-blocking manner. This function
7186  * must be called with all CPU's synchronized, and interrupts disabled, the
7187  * and caller must save the original value of the current task (see
7188  * curr_task() above) and restore that value before reenabling interrupts and
7189  * re-starting the system.
7190  *
7191  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7192  */
7193 void set_curr_task(int cpu, struct task_struct *p)
7194 {
7195 	cpu_curr(cpu) = p;
7196 }
7197 
7198 #endif
7199 
7200 #ifdef CONFIG_CGROUP_SCHED
7201 /* task_group_lock serializes the addition/removal of task groups */
7202 static DEFINE_SPINLOCK(task_group_lock);
7203 
7204 static void free_sched_group(struct task_group *tg)
7205 {
7206 	free_fair_sched_group(tg);
7207 	free_rt_sched_group(tg);
7208 	autogroup_free(tg);
7209 	kfree(tg);
7210 }
7211 
7212 /* allocate runqueue etc for a new task group */
7213 struct task_group *sched_create_group(struct task_group *parent)
7214 {
7215 	struct task_group *tg;
7216 
7217 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7218 	if (!tg)
7219 		return ERR_PTR(-ENOMEM);
7220 
7221 	if (!alloc_fair_sched_group(tg, parent))
7222 		goto err;
7223 
7224 	if (!alloc_rt_sched_group(tg, parent))
7225 		goto err;
7226 
7227 	return tg;
7228 
7229 err:
7230 	free_sched_group(tg);
7231 	return ERR_PTR(-ENOMEM);
7232 }
7233 
7234 void sched_online_group(struct task_group *tg, struct task_group *parent)
7235 {
7236 	unsigned long flags;
7237 
7238 	spin_lock_irqsave(&task_group_lock, flags);
7239 	list_add_rcu(&tg->list, &task_groups);
7240 
7241 	WARN_ON(!parent); /* root should already exist */
7242 
7243 	tg->parent = parent;
7244 	INIT_LIST_HEAD(&tg->children);
7245 	list_add_rcu(&tg->siblings, &parent->children);
7246 	spin_unlock_irqrestore(&task_group_lock, flags);
7247 }
7248 
7249 /* rcu callback to free various structures associated with a task group */
7250 static void free_sched_group_rcu(struct rcu_head *rhp)
7251 {
7252 	/* now it should be safe to free those cfs_rqs */
7253 	free_sched_group(container_of(rhp, struct task_group, rcu));
7254 }
7255 
7256 /* Destroy runqueue etc associated with a task group */
7257 void sched_destroy_group(struct task_group *tg)
7258 {
7259 	/* wait for possible concurrent references to cfs_rqs complete */
7260 	call_rcu(&tg->rcu, free_sched_group_rcu);
7261 }
7262 
7263 void sched_offline_group(struct task_group *tg)
7264 {
7265 	unsigned long flags;
7266 	int i;
7267 
7268 	/* end participation in shares distribution */
7269 	for_each_possible_cpu(i)
7270 		unregister_fair_sched_group(tg, i);
7271 
7272 	spin_lock_irqsave(&task_group_lock, flags);
7273 	list_del_rcu(&tg->list);
7274 	list_del_rcu(&tg->siblings);
7275 	spin_unlock_irqrestore(&task_group_lock, flags);
7276 }
7277 
7278 /* change task's runqueue when it moves between groups.
7279  *	The caller of this function should have put the task in its new group
7280  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7281  *	reflect its new group.
7282  */
7283 void sched_move_task(struct task_struct *tsk)
7284 {
7285 	struct task_group *tg;
7286 	int on_rq, running;
7287 	unsigned long flags;
7288 	struct rq *rq;
7289 
7290 	rq = task_rq_lock(tsk, &flags);
7291 
7292 	running = task_current(rq, tsk);
7293 	on_rq = tsk->on_rq;
7294 
7295 	if (on_rq)
7296 		dequeue_task(rq, tsk, 0);
7297 	if (unlikely(running))
7298 		tsk->sched_class->put_prev_task(rq, tsk);
7299 
7300 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7301 				lockdep_is_held(&tsk->sighand->siglock)),
7302 			  struct task_group, css);
7303 	tg = autogroup_task_group(tsk, tg);
7304 	tsk->sched_task_group = tg;
7305 
7306 #ifdef CONFIG_FAIR_GROUP_SCHED
7307 	if (tsk->sched_class->task_move_group)
7308 		tsk->sched_class->task_move_group(tsk, on_rq);
7309 	else
7310 #endif
7311 		set_task_rq(tsk, task_cpu(tsk));
7312 
7313 	if (unlikely(running))
7314 		tsk->sched_class->set_curr_task(rq);
7315 	if (on_rq)
7316 		enqueue_task(rq, tsk, 0);
7317 
7318 	task_rq_unlock(rq, tsk, &flags);
7319 }
7320 #endif /* CONFIG_CGROUP_SCHED */
7321 
7322 #ifdef CONFIG_RT_GROUP_SCHED
7323 /*
7324  * Ensure that the real time constraints are schedulable.
7325  */
7326 static DEFINE_MUTEX(rt_constraints_mutex);
7327 
7328 /* Must be called with tasklist_lock held */
7329 static inline int tg_has_rt_tasks(struct task_group *tg)
7330 {
7331 	struct task_struct *g, *p;
7332 
7333 	do_each_thread(g, p) {
7334 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7335 			return 1;
7336 	} while_each_thread(g, p);
7337 
7338 	return 0;
7339 }
7340 
7341 struct rt_schedulable_data {
7342 	struct task_group *tg;
7343 	u64 rt_period;
7344 	u64 rt_runtime;
7345 };
7346 
7347 static int tg_rt_schedulable(struct task_group *tg, void *data)
7348 {
7349 	struct rt_schedulable_data *d = data;
7350 	struct task_group *child;
7351 	unsigned long total, sum = 0;
7352 	u64 period, runtime;
7353 
7354 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7355 	runtime = tg->rt_bandwidth.rt_runtime;
7356 
7357 	if (tg == d->tg) {
7358 		period = d->rt_period;
7359 		runtime = d->rt_runtime;
7360 	}
7361 
7362 	/*
7363 	 * Cannot have more runtime than the period.
7364 	 */
7365 	if (runtime > period && runtime != RUNTIME_INF)
7366 		return -EINVAL;
7367 
7368 	/*
7369 	 * Ensure we don't starve existing RT tasks.
7370 	 */
7371 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7372 		return -EBUSY;
7373 
7374 	total = to_ratio(period, runtime);
7375 
7376 	/*
7377 	 * Nobody can have more than the global setting allows.
7378 	 */
7379 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7380 		return -EINVAL;
7381 
7382 	/*
7383 	 * The sum of our children's runtime should not exceed our own.
7384 	 */
7385 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7386 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7387 		runtime = child->rt_bandwidth.rt_runtime;
7388 
7389 		if (child == d->tg) {
7390 			period = d->rt_period;
7391 			runtime = d->rt_runtime;
7392 		}
7393 
7394 		sum += to_ratio(period, runtime);
7395 	}
7396 
7397 	if (sum > total)
7398 		return -EINVAL;
7399 
7400 	return 0;
7401 }
7402 
7403 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7404 {
7405 	int ret;
7406 
7407 	struct rt_schedulable_data data = {
7408 		.tg = tg,
7409 		.rt_period = period,
7410 		.rt_runtime = runtime,
7411 	};
7412 
7413 	rcu_read_lock();
7414 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7415 	rcu_read_unlock();
7416 
7417 	return ret;
7418 }
7419 
7420 static int tg_set_rt_bandwidth(struct task_group *tg,
7421 		u64 rt_period, u64 rt_runtime)
7422 {
7423 	int i, err = 0;
7424 
7425 	mutex_lock(&rt_constraints_mutex);
7426 	read_lock(&tasklist_lock);
7427 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7428 	if (err)
7429 		goto unlock;
7430 
7431 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7432 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7433 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7434 
7435 	for_each_possible_cpu(i) {
7436 		struct rt_rq *rt_rq = tg->rt_rq[i];
7437 
7438 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7439 		rt_rq->rt_runtime = rt_runtime;
7440 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7441 	}
7442 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7443 unlock:
7444 	read_unlock(&tasklist_lock);
7445 	mutex_unlock(&rt_constraints_mutex);
7446 
7447 	return err;
7448 }
7449 
7450 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7451 {
7452 	u64 rt_runtime, rt_period;
7453 
7454 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7455 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7456 	if (rt_runtime_us < 0)
7457 		rt_runtime = RUNTIME_INF;
7458 
7459 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7460 }
7461 
7462 static long sched_group_rt_runtime(struct task_group *tg)
7463 {
7464 	u64 rt_runtime_us;
7465 
7466 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7467 		return -1;
7468 
7469 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7470 	do_div(rt_runtime_us, NSEC_PER_USEC);
7471 	return rt_runtime_us;
7472 }
7473 
7474 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7475 {
7476 	u64 rt_runtime, rt_period;
7477 
7478 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7479 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7480 
7481 	if (rt_period == 0)
7482 		return -EINVAL;
7483 
7484 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7485 }
7486 
7487 static long sched_group_rt_period(struct task_group *tg)
7488 {
7489 	u64 rt_period_us;
7490 
7491 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7492 	do_div(rt_period_us, NSEC_PER_USEC);
7493 	return rt_period_us;
7494 }
7495 #endif /* CONFIG_RT_GROUP_SCHED */
7496 
7497 #ifdef CONFIG_RT_GROUP_SCHED
7498 static int sched_rt_global_constraints(void)
7499 {
7500 	int ret = 0;
7501 
7502 	mutex_lock(&rt_constraints_mutex);
7503 	read_lock(&tasklist_lock);
7504 	ret = __rt_schedulable(NULL, 0, 0);
7505 	read_unlock(&tasklist_lock);
7506 	mutex_unlock(&rt_constraints_mutex);
7507 
7508 	return ret;
7509 }
7510 
7511 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7512 {
7513 	/* Don't accept realtime tasks when there is no way for them to run */
7514 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7515 		return 0;
7516 
7517 	return 1;
7518 }
7519 
7520 #else /* !CONFIG_RT_GROUP_SCHED */
7521 static int sched_rt_global_constraints(void)
7522 {
7523 	unsigned long flags;
7524 	int i, ret = 0;
7525 
7526 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7527 	for_each_possible_cpu(i) {
7528 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7529 
7530 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7531 		rt_rq->rt_runtime = global_rt_runtime();
7532 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7533 	}
7534 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7535 
7536 	return ret;
7537 }
7538 #endif /* CONFIG_RT_GROUP_SCHED */
7539 
7540 static int sched_dl_global_constraints(void)
7541 {
7542 	u64 runtime = global_rt_runtime();
7543 	u64 period = global_rt_period();
7544 	u64 new_bw = to_ratio(period, runtime);
7545 	int cpu, ret = 0;
7546 	unsigned long flags;
7547 
7548 	/*
7549 	 * Here we want to check the bandwidth not being set to some
7550 	 * value smaller than the currently allocated bandwidth in
7551 	 * any of the root_domains.
7552 	 *
7553 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7554 	 * cycling on root_domains... Discussion on different/better
7555 	 * solutions is welcome!
7556 	 */
7557 	for_each_possible_cpu(cpu) {
7558 		struct dl_bw *dl_b = dl_bw_of(cpu);
7559 
7560 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7561 		if (new_bw < dl_b->total_bw)
7562 			ret = -EBUSY;
7563 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7564 
7565 		if (ret)
7566 			break;
7567 	}
7568 
7569 	return ret;
7570 }
7571 
7572 static void sched_dl_do_global(void)
7573 {
7574 	u64 new_bw = -1;
7575 	int cpu;
7576 	unsigned long flags;
7577 
7578 	def_dl_bandwidth.dl_period = global_rt_period();
7579 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7580 
7581 	if (global_rt_runtime() != RUNTIME_INF)
7582 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7583 
7584 	/*
7585 	 * FIXME: As above...
7586 	 */
7587 	for_each_possible_cpu(cpu) {
7588 		struct dl_bw *dl_b = dl_bw_of(cpu);
7589 
7590 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7591 		dl_b->bw = new_bw;
7592 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7593 	}
7594 }
7595 
7596 static int sched_rt_global_validate(void)
7597 {
7598 	if (sysctl_sched_rt_period <= 0)
7599 		return -EINVAL;
7600 
7601 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7602 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7603 		return -EINVAL;
7604 
7605 	return 0;
7606 }
7607 
7608 static void sched_rt_do_global(void)
7609 {
7610 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7612 }
7613 
7614 int sched_rt_handler(struct ctl_table *table, int write,
7615 		void __user *buffer, size_t *lenp,
7616 		loff_t *ppos)
7617 {
7618 	int old_period, old_runtime;
7619 	static DEFINE_MUTEX(mutex);
7620 	int ret;
7621 
7622 	mutex_lock(&mutex);
7623 	old_period = sysctl_sched_rt_period;
7624 	old_runtime = sysctl_sched_rt_runtime;
7625 
7626 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7627 
7628 	if (!ret && write) {
7629 		ret = sched_rt_global_validate();
7630 		if (ret)
7631 			goto undo;
7632 
7633 		ret = sched_rt_global_constraints();
7634 		if (ret)
7635 			goto undo;
7636 
7637 		ret = sched_dl_global_constraints();
7638 		if (ret)
7639 			goto undo;
7640 
7641 		sched_rt_do_global();
7642 		sched_dl_do_global();
7643 	}
7644 	if (0) {
7645 undo:
7646 		sysctl_sched_rt_period = old_period;
7647 		sysctl_sched_rt_runtime = old_runtime;
7648 	}
7649 	mutex_unlock(&mutex);
7650 
7651 	return ret;
7652 }
7653 
7654 int sched_rr_handler(struct ctl_table *table, int write,
7655 		void __user *buffer, size_t *lenp,
7656 		loff_t *ppos)
7657 {
7658 	int ret;
7659 	static DEFINE_MUTEX(mutex);
7660 
7661 	mutex_lock(&mutex);
7662 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7663 	/* make sure that internally we keep jiffies */
7664 	/* also, writing zero resets timeslice to default */
7665 	if (!ret && write) {
7666 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7667 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7668 	}
7669 	mutex_unlock(&mutex);
7670 	return ret;
7671 }
7672 
7673 #ifdef CONFIG_CGROUP_SCHED
7674 
7675 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7676 {
7677 	return css ? container_of(css, struct task_group, css) : NULL;
7678 }
7679 
7680 static struct cgroup_subsys_state *
7681 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7682 {
7683 	struct task_group *parent = css_tg(parent_css);
7684 	struct task_group *tg;
7685 
7686 	if (!parent) {
7687 		/* This is early initialization for the top cgroup */
7688 		return &root_task_group.css;
7689 	}
7690 
7691 	tg = sched_create_group(parent);
7692 	if (IS_ERR(tg))
7693 		return ERR_PTR(-ENOMEM);
7694 
7695 	return &tg->css;
7696 }
7697 
7698 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7699 {
7700 	struct task_group *tg = css_tg(css);
7701 	struct task_group *parent = css_tg(css->parent);
7702 
7703 	if (parent)
7704 		sched_online_group(tg, parent);
7705 	return 0;
7706 }
7707 
7708 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7709 {
7710 	struct task_group *tg = css_tg(css);
7711 
7712 	sched_destroy_group(tg);
7713 }
7714 
7715 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7716 {
7717 	struct task_group *tg = css_tg(css);
7718 
7719 	sched_offline_group(tg);
7720 }
7721 
7722 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7723 				 struct cgroup_taskset *tset)
7724 {
7725 	struct task_struct *task;
7726 
7727 	cgroup_taskset_for_each(task, tset) {
7728 #ifdef CONFIG_RT_GROUP_SCHED
7729 		if (!sched_rt_can_attach(css_tg(css), task))
7730 			return -EINVAL;
7731 #else
7732 		/* We don't support RT-tasks being in separate groups */
7733 		if (task->sched_class != &fair_sched_class)
7734 			return -EINVAL;
7735 #endif
7736 	}
7737 	return 0;
7738 }
7739 
7740 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7741 			      struct cgroup_taskset *tset)
7742 {
7743 	struct task_struct *task;
7744 
7745 	cgroup_taskset_for_each(task, tset)
7746 		sched_move_task(task);
7747 }
7748 
7749 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7750 			    struct cgroup_subsys_state *old_css,
7751 			    struct task_struct *task)
7752 {
7753 	/*
7754 	 * cgroup_exit() is called in the copy_process() failure path.
7755 	 * Ignore this case since the task hasn't ran yet, this avoids
7756 	 * trying to poke a half freed task state from generic code.
7757 	 */
7758 	if (!(task->flags & PF_EXITING))
7759 		return;
7760 
7761 	sched_move_task(task);
7762 }
7763 
7764 #ifdef CONFIG_FAIR_GROUP_SCHED
7765 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7766 				struct cftype *cftype, u64 shareval)
7767 {
7768 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7769 }
7770 
7771 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7772 			       struct cftype *cft)
7773 {
7774 	struct task_group *tg = css_tg(css);
7775 
7776 	return (u64) scale_load_down(tg->shares);
7777 }
7778 
7779 #ifdef CONFIG_CFS_BANDWIDTH
7780 static DEFINE_MUTEX(cfs_constraints_mutex);
7781 
7782 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7783 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7784 
7785 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7786 
7787 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7788 {
7789 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7790 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7791 
7792 	if (tg == &root_task_group)
7793 		return -EINVAL;
7794 
7795 	/*
7796 	 * Ensure we have at some amount of bandwidth every period.  This is
7797 	 * to prevent reaching a state of large arrears when throttled via
7798 	 * entity_tick() resulting in prolonged exit starvation.
7799 	 */
7800 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7801 		return -EINVAL;
7802 
7803 	/*
7804 	 * Likewise, bound things on the otherside by preventing insane quota
7805 	 * periods.  This also allows us to normalize in computing quota
7806 	 * feasibility.
7807 	 */
7808 	if (period > max_cfs_quota_period)
7809 		return -EINVAL;
7810 
7811 	mutex_lock(&cfs_constraints_mutex);
7812 	ret = __cfs_schedulable(tg, period, quota);
7813 	if (ret)
7814 		goto out_unlock;
7815 
7816 	runtime_enabled = quota != RUNTIME_INF;
7817 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7818 	/*
7819 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7820 	 * before making related changes, and on->off must occur afterwards
7821 	 */
7822 	if (runtime_enabled && !runtime_was_enabled)
7823 		cfs_bandwidth_usage_inc();
7824 	raw_spin_lock_irq(&cfs_b->lock);
7825 	cfs_b->period = ns_to_ktime(period);
7826 	cfs_b->quota = quota;
7827 
7828 	__refill_cfs_bandwidth_runtime(cfs_b);
7829 	/* restart the period timer (if active) to handle new period expiry */
7830 	if (runtime_enabled && cfs_b->timer_active) {
7831 		/* force a reprogram */
7832 		__start_cfs_bandwidth(cfs_b, true);
7833 	}
7834 	raw_spin_unlock_irq(&cfs_b->lock);
7835 
7836 	for_each_possible_cpu(i) {
7837 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7838 		struct rq *rq = cfs_rq->rq;
7839 
7840 		raw_spin_lock_irq(&rq->lock);
7841 		cfs_rq->runtime_enabled = runtime_enabled;
7842 		cfs_rq->runtime_remaining = 0;
7843 
7844 		if (cfs_rq->throttled)
7845 			unthrottle_cfs_rq(cfs_rq);
7846 		raw_spin_unlock_irq(&rq->lock);
7847 	}
7848 	if (runtime_was_enabled && !runtime_enabled)
7849 		cfs_bandwidth_usage_dec();
7850 out_unlock:
7851 	mutex_unlock(&cfs_constraints_mutex);
7852 
7853 	return ret;
7854 }
7855 
7856 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7857 {
7858 	u64 quota, period;
7859 
7860 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7861 	if (cfs_quota_us < 0)
7862 		quota = RUNTIME_INF;
7863 	else
7864 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7865 
7866 	return tg_set_cfs_bandwidth(tg, period, quota);
7867 }
7868 
7869 long tg_get_cfs_quota(struct task_group *tg)
7870 {
7871 	u64 quota_us;
7872 
7873 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7874 		return -1;
7875 
7876 	quota_us = tg->cfs_bandwidth.quota;
7877 	do_div(quota_us, NSEC_PER_USEC);
7878 
7879 	return quota_us;
7880 }
7881 
7882 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7883 {
7884 	u64 quota, period;
7885 
7886 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7887 	quota = tg->cfs_bandwidth.quota;
7888 
7889 	return tg_set_cfs_bandwidth(tg, period, quota);
7890 }
7891 
7892 long tg_get_cfs_period(struct task_group *tg)
7893 {
7894 	u64 cfs_period_us;
7895 
7896 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7897 	do_div(cfs_period_us, NSEC_PER_USEC);
7898 
7899 	return cfs_period_us;
7900 }
7901 
7902 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7903 				  struct cftype *cft)
7904 {
7905 	return tg_get_cfs_quota(css_tg(css));
7906 }
7907 
7908 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7909 				   struct cftype *cftype, s64 cfs_quota_us)
7910 {
7911 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7912 }
7913 
7914 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7915 				   struct cftype *cft)
7916 {
7917 	return tg_get_cfs_period(css_tg(css));
7918 }
7919 
7920 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7921 				    struct cftype *cftype, u64 cfs_period_us)
7922 {
7923 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7924 }
7925 
7926 struct cfs_schedulable_data {
7927 	struct task_group *tg;
7928 	u64 period, quota;
7929 };
7930 
7931 /*
7932  * normalize group quota/period to be quota/max_period
7933  * note: units are usecs
7934  */
7935 static u64 normalize_cfs_quota(struct task_group *tg,
7936 			       struct cfs_schedulable_data *d)
7937 {
7938 	u64 quota, period;
7939 
7940 	if (tg == d->tg) {
7941 		period = d->period;
7942 		quota = d->quota;
7943 	} else {
7944 		period = tg_get_cfs_period(tg);
7945 		quota = tg_get_cfs_quota(tg);
7946 	}
7947 
7948 	/* note: these should typically be equivalent */
7949 	if (quota == RUNTIME_INF || quota == -1)
7950 		return RUNTIME_INF;
7951 
7952 	return to_ratio(period, quota);
7953 }
7954 
7955 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7956 {
7957 	struct cfs_schedulable_data *d = data;
7958 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7959 	s64 quota = 0, parent_quota = -1;
7960 
7961 	if (!tg->parent) {
7962 		quota = RUNTIME_INF;
7963 	} else {
7964 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7965 
7966 		quota = normalize_cfs_quota(tg, d);
7967 		parent_quota = parent_b->hierarchal_quota;
7968 
7969 		/*
7970 		 * ensure max(child_quota) <= parent_quota, inherit when no
7971 		 * limit is set
7972 		 */
7973 		if (quota == RUNTIME_INF)
7974 			quota = parent_quota;
7975 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7976 			return -EINVAL;
7977 	}
7978 	cfs_b->hierarchal_quota = quota;
7979 
7980 	return 0;
7981 }
7982 
7983 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7984 {
7985 	int ret;
7986 	struct cfs_schedulable_data data = {
7987 		.tg = tg,
7988 		.period = period,
7989 		.quota = quota,
7990 	};
7991 
7992 	if (quota != RUNTIME_INF) {
7993 		do_div(data.period, NSEC_PER_USEC);
7994 		do_div(data.quota, NSEC_PER_USEC);
7995 	}
7996 
7997 	rcu_read_lock();
7998 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7999 	rcu_read_unlock();
8000 
8001 	return ret;
8002 }
8003 
8004 static int cpu_stats_show(struct seq_file *sf, void *v)
8005 {
8006 	struct task_group *tg = css_tg(seq_css(sf));
8007 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8008 
8009 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8010 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8011 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8012 
8013 	return 0;
8014 }
8015 #endif /* CONFIG_CFS_BANDWIDTH */
8016 #endif /* CONFIG_FAIR_GROUP_SCHED */
8017 
8018 #ifdef CONFIG_RT_GROUP_SCHED
8019 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8020 				struct cftype *cft, s64 val)
8021 {
8022 	return sched_group_set_rt_runtime(css_tg(css), val);
8023 }
8024 
8025 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8026 			       struct cftype *cft)
8027 {
8028 	return sched_group_rt_runtime(css_tg(css));
8029 }
8030 
8031 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8032 				    struct cftype *cftype, u64 rt_period_us)
8033 {
8034 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8035 }
8036 
8037 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8038 				   struct cftype *cft)
8039 {
8040 	return sched_group_rt_period(css_tg(css));
8041 }
8042 #endif /* CONFIG_RT_GROUP_SCHED */
8043 
8044 static struct cftype cpu_files[] = {
8045 #ifdef CONFIG_FAIR_GROUP_SCHED
8046 	{
8047 		.name = "shares",
8048 		.read_u64 = cpu_shares_read_u64,
8049 		.write_u64 = cpu_shares_write_u64,
8050 	},
8051 #endif
8052 #ifdef CONFIG_CFS_BANDWIDTH
8053 	{
8054 		.name = "cfs_quota_us",
8055 		.read_s64 = cpu_cfs_quota_read_s64,
8056 		.write_s64 = cpu_cfs_quota_write_s64,
8057 	},
8058 	{
8059 		.name = "cfs_period_us",
8060 		.read_u64 = cpu_cfs_period_read_u64,
8061 		.write_u64 = cpu_cfs_period_write_u64,
8062 	},
8063 	{
8064 		.name = "stat",
8065 		.seq_show = cpu_stats_show,
8066 	},
8067 #endif
8068 #ifdef CONFIG_RT_GROUP_SCHED
8069 	{
8070 		.name = "rt_runtime_us",
8071 		.read_s64 = cpu_rt_runtime_read,
8072 		.write_s64 = cpu_rt_runtime_write,
8073 	},
8074 	{
8075 		.name = "rt_period_us",
8076 		.read_u64 = cpu_rt_period_read_uint,
8077 		.write_u64 = cpu_rt_period_write_uint,
8078 	},
8079 #endif
8080 	{ }	/* terminate */
8081 };
8082 
8083 struct cgroup_subsys cpu_cgrp_subsys = {
8084 	.css_alloc	= cpu_cgroup_css_alloc,
8085 	.css_free	= cpu_cgroup_css_free,
8086 	.css_online	= cpu_cgroup_css_online,
8087 	.css_offline	= cpu_cgroup_css_offline,
8088 	.can_attach	= cpu_cgroup_can_attach,
8089 	.attach		= cpu_cgroup_attach,
8090 	.exit		= cpu_cgroup_exit,
8091 	.base_cftypes	= cpu_files,
8092 	.early_init	= 1,
8093 };
8094 
8095 #endif	/* CONFIG_CGROUP_SCHED */
8096 
8097 void dump_cpu_task(int cpu)
8098 {
8099 	pr_info("Task dump for CPU %d:\n", cpu);
8100 	sched_show_task(cpu_curr(cpu));
8101 }
8102