1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 if (rq->skip_clock_update > 0) 123 return; 124 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 126 if (delta < 0) 127 return; 128 rq->clock += delta; 129 update_rq_clock_task(rq, delta); 130 } 131 132 /* 133 * Debugging: various feature bits 134 */ 135 136 #define SCHED_FEAT(name, enabled) \ 137 (1UL << __SCHED_FEAT_##name) * enabled | 138 139 const_debug unsigned int sysctl_sched_features = 140 #include "features.h" 141 0; 142 143 #undef SCHED_FEAT 144 145 #ifdef CONFIG_SCHED_DEBUG 146 #define SCHED_FEAT(name, enabled) \ 147 #name , 148 149 static const char * const sched_feat_names[] = { 150 #include "features.h" 151 }; 152 153 #undef SCHED_FEAT 154 155 static int sched_feat_show(struct seq_file *m, void *v) 156 { 157 int i; 158 159 for (i = 0; i < __SCHED_FEAT_NR; i++) { 160 if (!(sysctl_sched_features & (1UL << i))) 161 seq_puts(m, "NO_"); 162 seq_printf(m, "%s ", sched_feat_names[i]); 163 } 164 seq_puts(m, "\n"); 165 166 return 0; 167 } 168 169 #ifdef HAVE_JUMP_LABEL 170 171 #define jump_label_key__true STATIC_KEY_INIT_TRUE 172 #define jump_label_key__false STATIC_KEY_INIT_FALSE 173 174 #define SCHED_FEAT(name, enabled) \ 175 jump_label_key__##enabled , 176 177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 178 #include "features.h" 179 }; 180 181 #undef SCHED_FEAT 182 183 static void sched_feat_disable(int i) 184 { 185 if (static_key_enabled(&sched_feat_keys[i])) 186 static_key_slow_dec(&sched_feat_keys[i]); 187 } 188 189 static void sched_feat_enable(int i) 190 { 191 if (!static_key_enabled(&sched_feat_keys[i])) 192 static_key_slow_inc(&sched_feat_keys[i]); 193 } 194 #else 195 static void sched_feat_disable(int i) { }; 196 static void sched_feat_enable(int i) { }; 197 #endif /* HAVE_JUMP_LABEL */ 198 199 static int sched_feat_set(char *cmp) 200 { 201 int i; 202 int neg = 0; 203 204 if (strncmp(cmp, "NO_", 3) == 0) { 205 neg = 1; 206 cmp += 3; 207 } 208 209 for (i = 0; i < __SCHED_FEAT_NR; i++) { 210 if (strcmp(cmp, sched_feat_names[i]) == 0) { 211 if (neg) { 212 sysctl_sched_features &= ~(1UL << i); 213 sched_feat_disable(i); 214 } else { 215 sysctl_sched_features |= (1UL << i); 216 sched_feat_enable(i); 217 } 218 break; 219 } 220 } 221 222 return i; 223 } 224 225 static ssize_t 226 sched_feat_write(struct file *filp, const char __user *ubuf, 227 size_t cnt, loff_t *ppos) 228 { 229 char buf[64]; 230 char *cmp; 231 int i; 232 struct inode *inode; 233 234 if (cnt > 63) 235 cnt = 63; 236 237 if (copy_from_user(&buf, ubuf, cnt)) 238 return -EFAULT; 239 240 buf[cnt] = 0; 241 cmp = strstrip(buf); 242 243 /* Ensure the static_key remains in a consistent state */ 244 inode = file_inode(filp); 245 mutex_lock(&inode->i_mutex); 246 i = sched_feat_set(cmp); 247 mutex_unlock(&inode->i_mutex); 248 if (i == __SCHED_FEAT_NR) 249 return -EINVAL; 250 251 *ppos += cnt; 252 253 return cnt; 254 } 255 256 static int sched_feat_open(struct inode *inode, struct file *filp) 257 { 258 return single_open(filp, sched_feat_show, NULL); 259 } 260 261 static const struct file_operations sched_feat_fops = { 262 .open = sched_feat_open, 263 .write = sched_feat_write, 264 .read = seq_read, 265 .llseek = seq_lseek, 266 .release = single_release, 267 }; 268 269 static __init int sched_init_debug(void) 270 { 271 debugfs_create_file("sched_features", 0644, NULL, NULL, 272 &sched_feat_fops); 273 274 return 0; 275 } 276 late_initcall(sched_init_debug); 277 #endif /* CONFIG_SCHED_DEBUG */ 278 279 /* 280 * Number of tasks to iterate in a single balance run. 281 * Limited because this is done with IRQs disabled. 282 */ 283 const_debug unsigned int sysctl_sched_nr_migrate = 32; 284 285 /* 286 * period over which we average the RT time consumption, measured 287 * in ms. 288 * 289 * default: 1s 290 */ 291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 292 293 /* 294 * period over which we measure -rt task cpu usage in us. 295 * default: 1s 296 */ 297 unsigned int sysctl_sched_rt_period = 1000000; 298 299 __read_mostly int scheduler_running; 300 301 /* 302 * part of the period that we allow rt tasks to run in us. 303 * default: 0.95s 304 */ 305 int sysctl_sched_rt_runtime = 950000; 306 307 /* 308 * __task_rq_lock - lock the rq @p resides on. 309 */ 310 static inline struct rq *__task_rq_lock(struct task_struct *p) 311 __acquires(rq->lock) 312 { 313 struct rq *rq; 314 315 lockdep_assert_held(&p->pi_lock); 316 317 for (;;) { 318 rq = task_rq(p); 319 raw_spin_lock(&rq->lock); 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 321 return rq; 322 raw_spin_unlock(&rq->lock); 323 324 while (unlikely(task_on_rq_migrating(p))) 325 cpu_relax(); 326 } 327 } 328 329 /* 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 331 */ 332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 333 __acquires(p->pi_lock) 334 __acquires(rq->lock) 335 { 336 struct rq *rq; 337 338 for (;;) { 339 raw_spin_lock_irqsave(&p->pi_lock, *flags); 340 rq = task_rq(p); 341 raw_spin_lock(&rq->lock); 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 343 return rq; 344 raw_spin_unlock(&rq->lock); 345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 346 347 while (unlikely(task_on_rq_migrating(p))) 348 cpu_relax(); 349 } 350 } 351 352 static void __task_rq_unlock(struct rq *rq) 353 __releases(rq->lock) 354 { 355 raw_spin_unlock(&rq->lock); 356 } 357 358 static inline void 359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 360 __releases(rq->lock) 361 __releases(p->pi_lock) 362 { 363 raw_spin_unlock(&rq->lock); 364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 365 } 366 367 /* 368 * this_rq_lock - lock this runqueue and disable interrupts. 369 */ 370 static struct rq *this_rq_lock(void) 371 __acquires(rq->lock) 372 { 373 struct rq *rq; 374 375 local_irq_disable(); 376 rq = this_rq(); 377 raw_spin_lock(&rq->lock); 378 379 return rq; 380 } 381 382 #ifdef CONFIG_SCHED_HRTICK 383 /* 384 * Use HR-timers to deliver accurate preemption points. 385 */ 386 387 static void hrtick_clear(struct rq *rq) 388 { 389 if (hrtimer_active(&rq->hrtick_timer)) 390 hrtimer_cancel(&rq->hrtick_timer); 391 } 392 393 /* 394 * High-resolution timer tick. 395 * Runs from hardirq context with interrupts disabled. 396 */ 397 static enum hrtimer_restart hrtick(struct hrtimer *timer) 398 { 399 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 400 401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 402 403 raw_spin_lock(&rq->lock); 404 update_rq_clock(rq); 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 406 raw_spin_unlock(&rq->lock); 407 408 return HRTIMER_NORESTART; 409 } 410 411 #ifdef CONFIG_SMP 412 413 static int __hrtick_restart(struct rq *rq) 414 { 415 struct hrtimer *timer = &rq->hrtick_timer; 416 ktime_t time = hrtimer_get_softexpires(timer); 417 418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 419 } 420 421 /* 422 * called from hardirq (IPI) context 423 */ 424 static void __hrtick_start(void *arg) 425 { 426 struct rq *rq = arg; 427 428 raw_spin_lock(&rq->lock); 429 __hrtick_restart(rq); 430 rq->hrtick_csd_pending = 0; 431 raw_spin_unlock(&rq->lock); 432 } 433 434 /* 435 * Called to set the hrtick timer state. 436 * 437 * called with rq->lock held and irqs disabled 438 */ 439 void hrtick_start(struct rq *rq, u64 delay) 440 { 441 struct hrtimer *timer = &rq->hrtick_timer; 442 ktime_t time; 443 s64 delta; 444 445 /* 446 * Don't schedule slices shorter than 10000ns, that just 447 * doesn't make sense and can cause timer DoS. 448 */ 449 delta = max_t(s64, delay, 10000LL); 450 time = ktime_add_ns(timer->base->get_time(), delta); 451 452 hrtimer_set_expires(timer, time); 453 454 if (rq == this_rq()) { 455 __hrtick_restart(rq); 456 } else if (!rq->hrtick_csd_pending) { 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 458 rq->hrtick_csd_pending = 1; 459 } 460 } 461 462 static int 463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 464 { 465 int cpu = (int)(long)hcpu; 466 467 switch (action) { 468 case CPU_UP_CANCELED: 469 case CPU_UP_CANCELED_FROZEN: 470 case CPU_DOWN_PREPARE: 471 case CPU_DOWN_PREPARE_FROZEN: 472 case CPU_DEAD: 473 case CPU_DEAD_FROZEN: 474 hrtick_clear(cpu_rq(cpu)); 475 return NOTIFY_OK; 476 } 477 478 return NOTIFY_DONE; 479 } 480 481 static __init void init_hrtick(void) 482 { 483 hotcpu_notifier(hotplug_hrtick, 0); 484 } 485 #else 486 /* 487 * Called to set the hrtick timer state. 488 * 489 * called with rq->lock held and irqs disabled 490 */ 491 void hrtick_start(struct rq *rq, u64 delay) 492 { 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 494 HRTIMER_MODE_REL_PINNED, 0); 495 } 496 497 static inline void init_hrtick(void) 498 { 499 } 500 #endif /* CONFIG_SMP */ 501 502 static void init_rq_hrtick(struct rq *rq) 503 { 504 #ifdef CONFIG_SMP 505 rq->hrtick_csd_pending = 0; 506 507 rq->hrtick_csd.flags = 0; 508 rq->hrtick_csd.func = __hrtick_start; 509 rq->hrtick_csd.info = rq; 510 #endif 511 512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 513 rq->hrtick_timer.function = hrtick; 514 } 515 #else /* CONFIG_SCHED_HRTICK */ 516 static inline void hrtick_clear(struct rq *rq) 517 { 518 } 519 520 static inline void init_rq_hrtick(struct rq *rq) 521 { 522 } 523 524 static inline void init_hrtick(void) 525 { 526 } 527 #endif /* CONFIG_SCHED_HRTICK */ 528 529 /* 530 * cmpxchg based fetch_or, macro so it works for different integer types 531 */ 532 #define fetch_or(ptr, val) \ 533 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 534 for (;;) { \ 535 __old = cmpxchg((ptr), __val, __val | (val)); \ 536 if (__old == __val) \ 537 break; \ 538 __val = __old; \ 539 } \ 540 __old; \ 541 }) 542 543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 544 /* 545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 546 * this avoids any races wrt polling state changes and thereby avoids 547 * spurious IPIs. 548 */ 549 static bool set_nr_and_not_polling(struct task_struct *p) 550 { 551 struct thread_info *ti = task_thread_info(p); 552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 553 } 554 555 /* 556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 557 * 558 * If this returns true, then the idle task promises to call 559 * sched_ttwu_pending() and reschedule soon. 560 */ 561 static bool set_nr_if_polling(struct task_struct *p) 562 { 563 struct thread_info *ti = task_thread_info(p); 564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 565 566 for (;;) { 567 if (!(val & _TIF_POLLING_NRFLAG)) 568 return false; 569 if (val & _TIF_NEED_RESCHED) 570 return true; 571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 572 if (old == val) 573 break; 574 val = old; 575 } 576 return true; 577 } 578 579 #else 580 static bool set_nr_and_not_polling(struct task_struct *p) 581 { 582 set_tsk_need_resched(p); 583 return true; 584 } 585 586 #ifdef CONFIG_SMP 587 static bool set_nr_if_polling(struct task_struct *p) 588 { 589 return false; 590 } 591 #endif 592 #endif 593 594 /* 595 * resched_curr - mark rq's current task 'to be rescheduled now'. 596 * 597 * On UP this means the setting of the need_resched flag, on SMP it 598 * might also involve a cross-CPU call to trigger the scheduler on 599 * the target CPU. 600 */ 601 void resched_curr(struct rq *rq) 602 { 603 struct task_struct *curr = rq->curr; 604 int cpu; 605 606 lockdep_assert_held(&rq->lock); 607 608 if (test_tsk_need_resched(curr)) 609 return; 610 611 cpu = cpu_of(rq); 612 613 if (cpu == smp_processor_id()) { 614 set_tsk_need_resched(curr); 615 set_preempt_need_resched(); 616 return; 617 } 618 619 if (set_nr_and_not_polling(curr)) 620 smp_send_reschedule(cpu); 621 else 622 trace_sched_wake_idle_without_ipi(cpu); 623 } 624 625 void resched_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 unsigned long flags; 629 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 631 return; 632 resched_curr(rq); 633 raw_spin_unlock_irqrestore(&rq->lock, flags); 634 } 635 636 #ifdef CONFIG_SMP 637 #ifdef CONFIG_NO_HZ_COMMON 638 /* 639 * In the semi idle case, use the nearest busy cpu for migrating timers 640 * from an idle cpu. This is good for power-savings. 641 * 642 * We don't do similar optimization for completely idle system, as 643 * selecting an idle cpu will add more delays to the timers than intended 644 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 645 */ 646 int get_nohz_timer_target(int pinned) 647 { 648 int cpu = smp_processor_id(); 649 int i; 650 struct sched_domain *sd; 651 652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 653 return cpu; 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu(i, sched_domain_span(sd)) { 658 if (!idle_cpu(i)) { 659 cpu = i; 660 goto unlock; 661 } 662 } 663 } 664 unlock: 665 rcu_read_unlock(); 666 return cpu; 667 } 668 /* 669 * When add_timer_on() enqueues a timer into the timer wheel of an 670 * idle CPU then this timer might expire before the next timer event 671 * which is scheduled to wake up that CPU. In case of a completely 672 * idle system the next event might even be infinite time into the 673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 674 * leaves the inner idle loop so the newly added timer is taken into 675 * account when the CPU goes back to idle and evaluates the timer 676 * wheel for the next timer event. 677 */ 678 static void wake_up_idle_cpu(int cpu) 679 { 680 struct rq *rq = cpu_rq(cpu); 681 682 if (cpu == smp_processor_id()) 683 return; 684 685 if (set_nr_and_not_polling(rq->idle)) 686 smp_send_reschedule(cpu); 687 else 688 trace_sched_wake_idle_without_ipi(cpu); 689 } 690 691 static bool wake_up_full_nohz_cpu(int cpu) 692 { 693 /* 694 * We just need the target to call irq_exit() and re-evaluate 695 * the next tick. The nohz full kick at least implies that. 696 * If needed we can still optimize that later with an 697 * empty IRQ. 698 */ 699 if (tick_nohz_full_cpu(cpu)) { 700 if (cpu != smp_processor_id() || 701 tick_nohz_tick_stopped()) 702 tick_nohz_full_kick_cpu(cpu); 703 return true; 704 } 705 706 return false; 707 } 708 709 void wake_up_nohz_cpu(int cpu) 710 { 711 if (!wake_up_full_nohz_cpu(cpu)) 712 wake_up_idle_cpu(cpu); 713 } 714 715 static inline bool got_nohz_idle_kick(void) 716 { 717 int cpu = smp_processor_id(); 718 719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 720 return false; 721 722 if (idle_cpu(cpu) && !need_resched()) 723 return true; 724 725 /* 726 * We can't run Idle Load Balance on this CPU for this time so we 727 * cancel it and clear NOHZ_BALANCE_KICK 728 */ 729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 730 return false; 731 } 732 733 #else /* CONFIG_NO_HZ_COMMON */ 734 735 static inline bool got_nohz_idle_kick(void) 736 { 737 return false; 738 } 739 740 #endif /* CONFIG_NO_HZ_COMMON */ 741 742 #ifdef CONFIG_NO_HZ_FULL 743 bool sched_can_stop_tick(void) 744 { 745 /* 746 * More than one running task need preemption. 747 * nr_running update is assumed to be visible 748 * after IPI is sent from wakers. 749 */ 750 if (this_rq()->nr_running > 1) 751 return false; 752 753 return true; 754 } 755 #endif /* CONFIG_NO_HZ_FULL */ 756 757 void sched_avg_update(struct rq *rq) 758 { 759 s64 period = sched_avg_period(); 760 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 762 /* 763 * Inline assembly required to prevent the compiler 764 * optimising this loop into a divmod call. 765 * See __iter_div_u64_rem() for another example of this. 766 */ 767 asm("" : "+rm" (rq->age_stamp)); 768 rq->age_stamp += period; 769 rq->rt_avg /= 2; 770 } 771 } 772 773 #endif /* CONFIG_SMP */ 774 775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 777 /* 778 * Iterate task_group tree rooted at *from, calling @down when first entering a 779 * node and @up when leaving it for the final time. 780 * 781 * Caller must hold rcu_lock or sufficient equivalent. 782 */ 783 int walk_tg_tree_from(struct task_group *from, 784 tg_visitor down, tg_visitor up, void *data) 785 { 786 struct task_group *parent, *child; 787 int ret; 788 789 parent = from; 790 791 down: 792 ret = (*down)(parent, data); 793 if (ret) 794 goto out; 795 list_for_each_entry_rcu(child, &parent->children, siblings) { 796 parent = child; 797 goto down; 798 799 up: 800 continue; 801 } 802 ret = (*up)(parent, data); 803 if (ret || parent == from) 804 goto out; 805 806 child = parent; 807 parent = parent->parent; 808 if (parent) 809 goto up; 810 out: 811 return ret; 812 } 813 814 int tg_nop(struct task_group *tg, void *data) 815 { 816 return 0; 817 } 818 #endif 819 820 static void set_load_weight(struct task_struct *p) 821 { 822 int prio = p->static_prio - MAX_RT_PRIO; 823 struct load_weight *load = &p->se.load; 824 825 /* 826 * SCHED_IDLE tasks get minimal weight: 827 */ 828 if (p->policy == SCHED_IDLE) { 829 load->weight = scale_load(WEIGHT_IDLEPRIO); 830 load->inv_weight = WMULT_IDLEPRIO; 831 return; 832 } 833 834 load->weight = scale_load(prio_to_weight[prio]); 835 load->inv_weight = prio_to_wmult[prio]; 836 } 837 838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 839 { 840 update_rq_clock(rq); 841 sched_info_queued(rq, p); 842 p->sched_class->enqueue_task(rq, p, flags); 843 } 844 845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 846 { 847 update_rq_clock(rq); 848 sched_info_dequeued(rq, p); 849 p->sched_class->dequeue_task(rq, p, flags); 850 } 851 852 void activate_task(struct rq *rq, struct task_struct *p, int flags) 853 { 854 if (task_contributes_to_load(p)) 855 rq->nr_uninterruptible--; 856 857 enqueue_task(rq, p, flags); 858 } 859 860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 861 { 862 if (task_contributes_to_load(p)) 863 rq->nr_uninterruptible++; 864 865 dequeue_task(rq, p, flags); 866 } 867 868 static void update_rq_clock_task(struct rq *rq, s64 delta) 869 { 870 /* 871 * In theory, the compile should just see 0 here, and optimize out the call 872 * to sched_rt_avg_update. But I don't trust it... 873 */ 874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 875 s64 steal = 0, irq_delta = 0; 876 #endif 877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 879 880 /* 881 * Since irq_time is only updated on {soft,}irq_exit, we might run into 882 * this case when a previous update_rq_clock() happened inside a 883 * {soft,}irq region. 884 * 885 * When this happens, we stop ->clock_task and only update the 886 * prev_irq_time stamp to account for the part that fit, so that a next 887 * update will consume the rest. This ensures ->clock_task is 888 * monotonic. 889 * 890 * It does however cause some slight miss-attribution of {soft,}irq 891 * time, a more accurate solution would be to update the irq_time using 892 * the current rq->clock timestamp, except that would require using 893 * atomic ops. 894 */ 895 if (irq_delta > delta) 896 irq_delta = delta; 897 898 rq->prev_irq_time += irq_delta; 899 delta -= irq_delta; 900 #endif 901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 902 if (static_key_false((¶virt_steal_rq_enabled))) { 903 steal = paravirt_steal_clock(cpu_of(rq)); 904 steal -= rq->prev_steal_time_rq; 905 906 if (unlikely(steal > delta)) 907 steal = delta; 908 909 rq->prev_steal_time_rq += steal; 910 delta -= steal; 911 } 912 #endif 913 914 rq->clock_task += delta; 915 916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 918 sched_rt_avg_update(rq, irq_delta + steal); 919 #endif 920 } 921 922 void sched_set_stop_task(int cpu, struct task_struct *stop) 923 { 924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 925 struct task_struct *old_stop = cpu_rq(cpu)->stop; 926 927 if (stop) { 928 /* 929 * Make it appear like a SCHED_FIFO task, its something 930 * userspace knows about and won't get confused about. 931 * 932 * Also, it will make PI more or less work without too 933 * much confusion -- but then, stop work should not 934 * rely on PI working anyway. 935 */ 936 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 937 938 stop->sched_class = &stop_sched_class; 939 } 940 941 cpu_rq(cpu)->stop = stop; 942 943 if (old_stop) { 944 /* 945 * Reset it back to a normal scheduling class so that 946 * it can die in pieces. 947 */ 948 old_stop->sched_class = &rt_sched_class; 949 } 950 } 951 952 /* 953 * __normal_prio - return the priority that is based on the static prio 954 */ 955 static inline int __normal_prio(struct task_struct *p) 956 { 957 return p->static_prio; 958 } 959 960 /* 961 * Calculate the expected normal priority: i.e. priority 962 * without taking RT-inheritance into account. Might be 963 * boosted by interactivity modifiers. Changes upon fork, 964 * setprio syscalls, and whenever the interactivity 965 * estimator recalculates. 966 */ 967 static inline int normal_prio(struct task_struct *p) 968 { 969 int prio; 970 971 if (task_has_dl_policy(p)) 972 prio = MAX_DL_PRIO-1; 973 else if (task_has_rt_policy(p)) 974 prio = MAX_RT_PRIO-1 - p->rt_priority; 975 else 976 prio = __normal_prio(p); 977 return prio; 978 } 979 980 /* 981 * Calculate the current priority, i.e. the priority 982 * taken into account by the scheduler. This value might 983 * be boosted by RT tasks, or might be boosted by 984 * interactivity modifiers. Will be RT if the task got 985 * RT-boosted. If not then it returns p->normal_prio. 986 */ 987 static int effective_prio(struct task_struct *p) 988 { 989 p->normal_prio = normal_prio(p); 990 /* 991 * If we are RT tasks or we were boosted to RT priority, 992 * keep the priority unchanged. Otherwise, update priority 993 * to the normal priority: 994 */ 995 if (!rt_prio(p->prio)) 996 return p->normal_prio; 997 return p->prio; 998 } 999 1000 /** 1001 * task_curr - is this task currently executing on a CPU? 1002 * @p: the task in question. 1003 * 1004 * Return: 1 if the task is currently executing. 0 otherwise. 1005 */ 1006 inline int task_curr(const struct task_struct *p) 1007 { 1008 return cpu_curr(task_cpu(p)) == p; 1009 } 1010 1011 /* 1012 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 1013 */ 1014 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1015 const struct sched_class *prev_class, 1016 int oldprio) 1017 { 1018 if (prev_class != p->sched_class) { 1019 if (prev_class->switched_from) 1020 prev_class->switched_from(rq, p); 1021 /* Possble rq->lock 'hole'. */ 1022 p->sched_class->switched_to(rq, p); 1023 } else if (oldprio != p->prio || dl_task(p)) 1024 p->sched_class->prio_changed(rq, p, oldprio); 1025 } 1026 1027 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1028 { 1029 const struct sched_class *class; 1030 1031 if (p->sched_class == rq->curr->sched_class) { 1032 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1033 } else { 1034 for_each_class(class) { 1035 if (class == rq->curr->sched_class) 1036 break; 1037 if (class == p->sched_class) { 1038 resched_curr(rq); 1039 break; 1040 } 1041 } 1042 } 1043 1044 /* 1045 * A queue event has occurred, and we're going to schedule. In 1046 * this case, we can save a useless back to back clock update. 1047 */ 1048 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1049 rq->skip_clock_update = 1; 1050 } 1051 1052 #ifdef CONFIG_SMP 1053 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1054 { 1055 #ifdef CONFIG_SCHED_DEBUG 1056 /* 1057 * We should never call set_task_cpu() on a blocked task, 1058 * ttwu() will sort out the placement. 1059 */ 1060 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1061 !p->on_rq); 1062 1063 #ifdef CONFIG_LOCKDEP 1064 /* 1065 * The caller should hold either p->pi_lock or rq->lock, when changing 1066 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1067 * 1068 * sched_move_task() holds both and thus holding either pins the cgroup, 1069 * see task_group(). 1070 * 1071 * Furthermore, all task_rq users should acquire both locks, see 1072 * task_rq_lock(). 1073 */ 1074 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1075 lockdep_is_held(&task_rq(p)->lock))); 1076 #endif 1077 #endif 1078 1079 trace_sched_migrate_task(p, new_cpu); 1080 1081 if (task_cpu(p) != new_cpu) { 1082 if (p->sched_class->migrate_task_rq) 1083 p->sched_class->migrate_task_rq(p, new_cpu); 1084 p->se.nr_migrations++; 1085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1086 } 1087 1088 __set_task_cpu(p, new_cpu); 1089 } 1090 1091 static void __migrate_swap_task(struct task_struct *p, int cpu) 1092 { 1093 if (task_on_rq_queued(p)) { 1094 struct rq *src_rq, *dst_rq; 1095 1096 src_rq = task_rq(p); 1097 dst_rq = cpu_rq(cpu); 1098 1099 deactivate_task(src_rq, p, 0); 1100 set_task_cpu(p, cpu); 1101 activate_task(dst_rq, p, 0); 1102 check_preempt_curr(dst_rq, p, 0); 1103 } else { 1104 /* 1105 * Task isn't running anymore; make it appear like we migrated 1106 * it before it went to sleep. This means on wakeup we make the 1107 * previous cpu our targer instead of where it really is. 1108 */ 1109 p->wake_cpu = cpu; 1110 } 1111 } 1112 1113 struct migration_swap_arg { 1114 struct task_struct *src_task, *dst_task; 1115 int src_cpu, dst_cpu; 1116 }; 1117 1118 static int migrate_swap_stop(void *data) 1119 { 1120 struct migration_swap_arg *arg = data; 1121 struct rq *src_rq, *dst_rq; 1122 int ret = -EAGAIN; 1123 1124 src_rq = cpu_rq(arg->src_cpu); 1125 dst_rq = cpu_rq(arg->dst_cpu); 1126 1127 double_raw_lock(&arg->src_task->pi_lock, 1128 &arg->dst_task->pi_lock); 1129 double_rq_lock(src_rq, dst_rq); 1130 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1131 goto unlock; 1132 1133 if (task_cpu(arg->src_task) != arg->src_cpu) 1134 goto unlock; 1135 1136 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1137 goto unlock; 1138 1139 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1140 goto unlock; 1141 1142 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1143 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1144 1145 ret = 0; 1146 1147 unlock: 1148 double_rq_unlock(src_rq, dst_rq); 1149 raw_spin_unlock(&arg->dst_task->pi_lock); 1150 raw_spin_unlock(&arg->src_task->pi_lock); 1151 1152 return ret; 1153 } 1154 1155 /* 1156 * Cross migrate two tasks 1157 */ 1158 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1159 { 1160 struct migration_swap_arg arg; 1161 int ret = -EINVAL; 1162 1163 arg = (struct migration_swap_arg){ 1164 .src_task = cur, 1165 .src_cpu = task_cpu(cur), 1166 .dst_task = p, 1167 .dst_cpu = task_cpu(p), 1168 }; 1169 1170 if (arg.src_cpu == arg.dst_cpu) 1171 goto out; 1172 1173 /* 1174 * These three tests are all lockless; this is OK since all of them 1175 * will be re-checked with proper locks held further down the line. 1176 */ 1177 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1178 goto out; 1179 1180 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1181 goto out; 1182 1183 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1184 goto out; 1185 1186 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1187 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1188 1189 out: 1190 return ret; 1191 } 1192 1193 struct migration_arg { 1194 struct task_struct *task; 1195 int dest_cpu; 1196 }; 1197 1198 static int migration_cpu_stop(void *data); 1199 1200 /* 1201 * wait_task_inactive - wait for a thread to unschedule. 1202 * 1203 * If @match_state is nonzero, it's the @p->state value just checked and 1204 * not expected to change. If it changes, i.e. @p might have woken up, 1205 * then return zero. When we succeed in waiting for @p to be off its CPU, 1206 * we return a positive number (its total switch count). If a second call 1207 * a short while later returns the same number, the caller can be sure that 1208 * @p has remained unscheduled the whole time. 1209 * 1210 * The caller must ensure that the task *will* unschedule sometime soon, 1211 * else this function might spin for a *long* time. This function can't 1212 * be called with interrupts off, or it may introduce deadlock with 1213 * smp_call_function() if an IPI is sent by the same process we are 1214 * waiting to become inactive. 1215 */ 1216 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1217 { 1218 unsigned long flags; 1219 int running, queued; 1220 unsigned long ncsw; 1221 struct rq *rq; 1222 1223 for (;;) { 1224 /* 1225 * We do the initial early heuristics without holding 1226 * any task-queue locks at all. We'll only try to get 1227 * the runqueue lock when things look like they will 1228 * work out! 1229 */ 1230 rq = task_rq(p); 1231 1232 /* 1233 * If the task is actively running on another CPU 1234 * still, just relax and busy-wait without holding 1235 * any locks. 1236 * 1237 * NOTE! Since we don't hold any locks, it's not 1238 * even sure that "rq" stays as the right runqueue! 1239 * But we don't care, since "task_running()" will 1240 * return false if the runqueue has changed and p 1241 * is actually now running somewhere else! 1242 */ 1243 while (task_running(rq, p)) { 1244 if (match_state && unlikely(p->state != match_state)) 1245 return 0; 1246 cpu_relax(); 1247 } 1248 1249 /* 1250 * Ok, time to look more closely! We need the rq 1251 * lock now, to be *sure*. If we're wrong, we'll 1252 * just go back and repeat. 1253 */ 1254 rq = task_rq_lock(p, &flags); 1255 trace_sched_wait_task(p); 1256 running = task_running(rq, p); 1257 queued = task_on_rq_queued(p); 1258 ncsw = 0; 1259 if (!match_state || p->state == match_state) 1260 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1261 task_rq_unlock(rq, p, &flags); 1262 1263 /* 1264 * If it changed from the expected state, bail out now. 1265 */ 1266 if (unlikely(!ncsw)) 1267 break; 1268 1269 /* 1270 * Was it really running after all now that we 1271 * checked with the proper locks actually held? 1272 * 1273 * Oops. Go back and try again.. 1274 */ 1275 if (unlikely(running)) { 1276 cpu_relax(); 1277 continue; 1278 } 1279 1280 /* 1281 * It's not enough that it's not actively running, 1282 * it must be off the runqueue _entirely_, and not 1283 * preempted! 1284 * 1285 * So if it was still runnable (but just not actively 1286 * running right now), it's preempted, and we should 1287 * yield - it could be a while. 1288 */ 1289 if (unlikely(queued)) { 1290 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1291 1292 set_current_state(TASK_UNINTERRUPTIBLE); 1293 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1294 continue; 1295 } 1296 1297 /* 1298 * Ahh, all good. It wasn't running, and it wasn't 1299 * runnable, which means that it will never become 1300 * running in the future either. We're all done! 1301 */ 1302 break; 1303 } 1304 1305 return ncsw; 1306 } 1307 1308 /*** 1309 * kick_process - kick a running thread to enter/exit the kernel 1310 * @p: the to-be-kicked thread 1311 * 1312 * Cause a process which is running on another CPU to enter 1313 * kernel-mode, without any delay. (to get signals handled.) 1314 * 1315 * NOTE: this function doesn't have to take the runqueue lock, 1316 * because all it wants to ensure is that the remote task enters 1317 * the kernel. If the IPI races and the task has been migrated 1318 * to another CPU then no harm is done and the purpose has been 1319 * achieved as well. 1320 */ 1321 void kick_process(struct task_struct *p) 1322 { 1323 int cpu; 1324 1325 preempt_disable(); 1326 cpu = task_cpu(p); 1327 if ((cpu != smp_processor_id()) && task_curr(p)) 1328 smp_send_reschedule(cpu); 1329 preempt_enable(); 1330 } 1331 EXPORT_SYMBOL_GPL(kick_process); 1332 #endif /* CONFIG_SMP */ 1333 1334 #ifdef CONFIG_SMP 1335 /* 1336 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1337 */ 1338 static int select_fallback_rq(int cpu, struct task_struct *p) 1339 { 1340 int nid = cpu_to_node(cpu); 1341 const struct cpumask *nodemask = NULL; 1342 enum { cpuset, possible, fail } state = cpuset; 1343 int dest_cpu; 1344 1345 /* 1346 * If the node that the cpu is on has been offlined, cpu_to_node() 1347 * will return -1. There is no cpu on the node, and we should 1348 * select the cpu on the other node. 1349 */ 1350 if (nid != -1) { 1351 nodemask = cpumask_of_node(nid); 1352 1353 /* Look for allowed, online CPU in same node. */ 1354 for_each_cpu(dest_cpu, nodemask) { 1355 if (!cpu_online(dest_cpu)) 1356 continue; 1357 if (!cpu_active(dest_cpu)) 1358 continue; 1359 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1360 return dest_cpu; 1361 } 1362 } 1363 1364 for (;;) { 1365 /* Any allowed, online CPU? */ 1366 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1367 if (!cpu_online(dest_cpu)) 1368 continue; 1369 if (!cpu_active(dest_cpu)) 1370 continue; 1371 goto out; 1372 } 1373 1374 switch (state) { 1375 case cpuset: 1376 /* No more Mr. Nice Guy. */ 1377 cpuset_cpus_allowed_fallback(p); 1378 state = possible; 1379 break; 1380 1381 case possible: 1382 do_set_cpus_allowed(p, cpu_possible_mask); 1383 state = fail; 1384 break; 1385 1386 case fail: 1387 BUG(); 1388 break; 1389 } 1390 } 1391 1392 out: 1393 if (state != cpuset) { 1394 /* 1395 * Don't tell them about moving exiting tasks or 1396 * kernel threads (both mm NULL), since they never 1397 * leave kernel. 1398 */ 1399 if (p->mm && printk_ratelimit()) { 1400 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1401 task_pid_nr(p), p->comm, cpu); 1402 } 1403 } 1404 1405 return dest_cpu; 1406 } 1407 1408 /* 1409 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1410 */ 1411 static inline 1412 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1413 { 1414 if (p->nr_cpus_allowed > 1) 1415 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1416 1417 /* 1418 * In order not to call set_task_cpu() on a blocking task we need 1419 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1420 * cpu. 1421 * 1422 * Since this is common to all placement strategies, this lives here. 1423 * 1424 * [ this allows ->select_task() to simply return task_cpu(p) and 1425 * not worry about this generic constraint ] 1426 */ 1427 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1428 !cpu_online(cpu))) 1429 cpu = select_fallback_rq(task_cpu(p), p); 1430 1431 return cpu; 1432 } 1433 1434 static void update_avg(u64 *avg, u64 sample) 1435 { 1436 s64 diff = sample - *avg; 1437 *avg += diff >> 3; 1438 } 1439 #endif 1440 1441 static void 1442 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1443 { 1444 #ifdef CONFIG_SCHEDSTATS 1445 struct rq *rq = this_rq(); 1446 1447 #ifdef CONFIG_SMP 1448 int this_cpu = smp_processor_id(); 1449 1450 if (cpu == this_cpu) { 1451 schedstat_inc(rq, ttwu_local); 1452 schedstat_inc(p, se.statistics.nr_wakeups_local); 1453 } else { 1454 struct sched_domain *sd; 1455 1456 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1457 rcu_read_lock(); 1458 for_each_domain(this_cpu, sd) { 1459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1460 schedstat_inc(sd, ttwu_wake_remote); 1461 break; 1462 } 1463 } 1464 rcu_read_unlock(); 1465 } 1466 1467 if (wake_flags & WF_MIGRATED) 1468 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1469 1470 #endif /* CONFIG_SMP */ 1471 1472 schedstat_inc(rq, ttwu_count); 1473 schedstat_inc(p, se.statistics.nr_wakeups); 1474 1475 if (wake_flags & WF_SYNC) 1476 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1477 1478 #endif /* CONFIG_SCHEDSTATS */ 1479 } 1480 1481 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1482 { 1483 activate_task(rq, p, en_flags); 1484 p->on_rq = TASK_ON_RQ_QUEUED; 1485 1486 /* if a worker is waking up, notify workqueue */ 1487 if (p->flags & PF_WQ_WORKER) 1488 wq_worker_waking_up(p, cpu_of(rq)); 1489 } 1490 1491 /* 1492 * Mark the task runnable and perform wakeup-preemption. 1493 */ 1494 static void 1495 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1496 { 1497 check_preempt_curr(rq, p, wake_flags); 1498 trace_sched_wakeup(p, true); 1499 1500 p->state = TASK_RUNNING; 1501 #ifdef CONFIG_SMP 1502 if (p->sched_class->task_woken) 1503 p->sched_class->task_woken(rq, p); 1504 1505 if (rq->idle_stamp) { 1506 u64 delta = rq_clock(rq) - rq->idle_stamp; 1507 u64 max = 2*rq->max_idle_balance_cost; 1508 1509 update_avg(&rq->avg_idle, delta); 1510 1511 if (rq->avg_idle > max) 1512 rq->avg_idle = max; 1513 1514 rq->idle_stamp = 0; 1515 } 1516 #endif 1517 } 1518 1519 static void 1520 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1521 { 1522 #ifdef CONFIG_SMP 1523 if (p->sched_contributes_to_load) 1524 rq->nr_uninterruptible--; 1525 #endif 1526 1527 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1528 ttwu_do_wakeup(rq, p, wake_flags); 1529 } 1530 1531 /* 1532 * Called in case the task @p isn't fully descheduled from its runqueue, 1533 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1534 * since all we need to do is flip p->state to TASK_RUNNING, since 1535 * the task is still ->on_rq. 1536 */ 1537 static int ttwu_remote(struct task_struct *p, int wake_flags) 1538 { 1539 struct rq *rq; 1540 int ret = 0; 1541 1542 rq = __task_rq_lock(p); 1543 if (task_on_rq_queued(p)) { 1544 /* check_preempt_curr() may use rq clock */ 1545 update_rq_clock(rq); 1546 ttwu_do_wakeup(rq, p, wake_flags); 1547 ret = 1; 1548 } 1549 __task_rq_unlock(rq); 1550 1551 return ret; 1552 } 1553 1554 #ifdef CONFIG_SMP 1555 void sched_ttwu_pending(void) 1556 { 1557 struct rq *rq = this_rq(); 1558 struct llist_node *llist = llist_del_all(&rq->wake_list); 1559 struct task_struct *p; 1560 unsigned long flags; 1561 1562 if (!llist) 1563 return; 1564 1565 raw_spin_lock_irqsave(&rq->lock, flags); 1566 1567 while (llist) { 1568 p = llist_entry(llist, struct task_struct, wake_entry); 1569 llist = llist_next(llist); 1570 ttwu_do_activate(rq, p, 0); 1571 } 1572 1573 raw_spin_unlock_irqrestore(&rq->lock, flags); 1574 } 1575 1576 void scheduler_ipi(void) 1577 { 1578 /* 1579 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1580 * TIF_NEED_RESCHED remotely (for the first time) will also send 1581 * this IPI. 1582 */ 1583 preempt_fold_need_resched(); 1584 1585 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1586 return; 1587 1588 /* 1589 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1590 * traditionally all their work was done from the interrupt return 1591 * path. Now that we actually do some work, we need to make sure 1592 * we do call them. 1593 * 1594 * Some archs already do call them, luckily irq_enter/exit nest 1595 * properly. 1596 * 1597 * Arguably we should visit all archs and update all handlers, 1598 * however a fair share of IPIs are still resched only so this would 1599 * somewhat pessimize the simple resched case. 1600 */ 1601 irq_enter(); 1602 sched_ttwu_pending(); 1603 1604 /* 1605 * Check if someone kicked us for doing the nohz idle load balance. 1606 */ 1607 if (unlikely(got_nohz_idle_kick())) { 1608 this_rq()->idle_balance = 1; 1609 raise_softirq_irqoff(SCHED_SOFTIRQ); 1610 } 1611 irq_exit(); 1612 } 1613 1614 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1615 { 1616 struct rq *rq = cpu_rq(cpu); 1617 1618 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1619 if (!set_nr_if_polling(rq->idle)) 1620 smp_send_reschedule(cpu); 1621 else 1622 trace_sched_wake_idle_without_ipi(cpu); 1623 } 1624 } 1625 1626 void wake_up_if_idle(int cpu) 1627 { 1628 struct rq *rq = cpu_rq(cpu); 1629 unsigned long flags; 1630 1631 rcu_read_lock(); 1632 1633 if (!is_idle_task(rcu_dereference(rq->curr))) 1634 goto out; 1635 1636 if (set_nr_if_polling(rq->idle)) { 1637 trace_sched_wake_idle_without_ipi(cpu); 1638 } else { 1639 raw_spin_lock_irqsave(&rq->lock, flags); 1640 if (is_idle_task(rq->curr)) 1641 smp_send_reschedule(cpu); 1642 /* Else cpu is not in idle, do nothing here */ 1643 raw_spin_unlock_irqrestore(&rq->lock, flags); 1644 } 1645 1646 out: 1647 rcu_read_unlock(); 1648 } 1649 1650 bool cpus_share_cache(int this_cpu, int that_cpu) 1651 { 1652 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1653 } 1654 #endif /* CONFIG_SMP */ 1655 1656 static void ttwu_queue(struct task_struct *p, int cpu) 1657 { 1658 struct rq *rq = cpu_rq(cpu); 1659 1660 #if defined(CONFIG_SMP) 1661 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1662 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1663 ttwu_queue_remote(p, cpu); 1664 return; 1665 } 1666 #endif 1667 1668 raw_spin_lock(&rq->lock); 1669 ttwu_do_activate(rq, p, 0); 1670 raw_spin_unlock(&rq->lock); 1671 } 1672 1673 /** 1674 * try_to_wake_up - wake up a thread 1675 * @p: the thread to be awakened 1676 * @state: the mask of task states that can be woken 1677 * @wake_flags: wake modifier flags (WF_*) 1678 * 1679 * Put it on the run-queue if it's not already there. The "current" 1680 * thread is always on the run-queue (except when the actual 1681 * re-schedule is in progress), and as such you're allowed to do 1682 * the simpler "current->state = TASK_RUNNING" to mark yourself 1683 * runnable without the overhead of this. 1684 * 1685 * Return: %true if @p was woken up, %false if it was already running. 1686 * or @state didn't match @p's state. 1687 */ 1688 static int 1689 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1690 { 1691 unsigned long flags; 1692 int cpu, success = 0; 1693 1694 /* 1695 * If we are going to wake up a thread waiting for CONDITION we 1696 * need to ensure that CONDITION=1 done by the caller can not be 1697 * reordered with p->state check below. This pairs with mb() in 1698 * set_current_state() the waiting thread does. 1699 */ 1700 smp_mb__before_spinlock(); 1701 raw_spin_lock_irqsave(&p->pi_lock, flags); 1702 if (!(p->state & state)) 1703 goto out; 1704 1705 success = 1; /* we're going to change ->state */ 1706 cpu = task_cpu(p); 1707 1708 if (p->on_rq && ttwu_remote(p, wake_flags)) 1709 goto stat; 1710 1711 #ifdef CONFIG_SMP 1712 /* 1713 * If the owning (remote) cpu is still in the middle of schedule() with 1714 * this task as prev, wait until its done referencing the task. 1715 */ 1716 while (p->on_cpu) 1717 cpu_relax(); 1718 /* 1719 * Pairs with the smp_wmb() in finish_lock_switch(). 1720 */ 1721 smp_rmb(); 1722 1723 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1724 p->state = TASK_WAKING; 1725 1726 if (p->sched_class->task_waking) 1727 p->sched_class->task_waking(p); 1728 1729 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1730 if (task_cpu(p) != cpu) { 1731 wake_flags |= WF_MIGRATED; 1732 set_task_cpu(p, cpu); 1733 } 1734 #endif /* CONFIG_SMP */ 1735 1736 ttwu_queue(p, cpu); 1737 stat: 1738 ttwu_stat(p, cpu, wake_flags); 1739 out: 1740 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1741 1742 return success; 1743 } 1744 1745 /** 1746 * try_to_wake_up_local - try to wake up a local task with rq lock held 1747 * @p: the thread to be awakened 1748 * 1749 * Put @p on the run-queue if it's not already there. The caller must 1750 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1751 * the current task. 1752 */ 1753 static void try_to_wake_up_local(struct task_struct *p) 1754 { 1755 struct rq *rq = task_rq(p); 1756 1757 if (WARN_ON_ONCE(rq != this_rq()) || 1758 WARN_ON_ONCE(p == current)) 1759 return; 1760 1761 lockdep_assert_held(&rq->lock); 1762 1763 if (!raw_spin_trylock(&p->pi_lock)) { 1764 raw_spin_unlock(&rq->lock); 1765 raw_spin_lock(&p->pi_lock); 1766 raw_spin_lock(&rq->lock); 1767 } 1768 1769 if (!(p->state & TASK_NORMAL)) 1770 goto out; 1771 1772 if (!task_on_rq_queued(p)) 1773 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1774 1775 ttwu_do_wakeup(rq, p, 0); 1776 ttwu_stat(p, smp_processor_id(), 0); 1777 out: 1778 raw_spin_unlock(&p->pi_lock); 1779 } 1780 1781 /** 1782 * wake_up_process - Wake up a specific process 1783 * @p: The process to be woken up. 1784 * 1785 * Attempt to wake up the nominated process and move it to the set of runnable 1786 * processes. 1787 * 1788 * Return: 1 if the process was woken up, 0 if it was already running. 1789 * 1790 * It may be assumed that this function implies a write memory barrier before 1791 * changing the task state if and only if any tasks are woken up. 1792 */ 1793 int wake_up_process(struct task_struct *p) 1794 { 1795 WARN_ON(task_is_stopped_or_traced(p)); 1796 return try_to_wake_up(p, TASK_NORMAL, 0); 1797 } 1798 EXPORT_SYMBOL(wake_up_process); 1799 1800 int wake_up_state(struct task_struct *p, unsigned int state) 1801 { 1802 return try_to_wake_up(p, state, 0); 1803 } 1804 1805 /* 1806 * This function clears the sched_dl_entity static params. 1807 */ 1808 void __dl_clear_params(struct task_struct *p) 1809 { 1810 struct sched_dl_entity *dl_se = &p->dl; 1811 1812 dl_se->dl_runtime = 0; 1813 dl_se->dl_deadline = 0; 1814 dl_se->dl_period = 0; 1815 dl_se->flags = 0; 1816 dl_se->dl_bw = 0; 1817 } 1818 1819 /* 1820 * Perform scheduler related setup for a newly forked process p. 1821 * p is forked by current. 1822 * 1823 * __sched_fork() is basic setup used by init_idle() too: 1824 */ 1825 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1826 { 1827 p->on_rq = 0; 1828 1829 p->se.on_rq = 0; 1830 p->se.exec_start = 0; 1831 p->se.sum_exec_runtime = 0; 1832 p->se.prev_sum_exec_runtime = 0; 1833 p->se.nr_migrations = 0; 1834 p->se.vruntime = 0; 1835 INIT_LIST_HEAD(&p->se.group_node); 1836 1837 #ifdef CONFIG_SCHEDSTATS 1838 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1839 #endif 1840 1841 RB_CLEAR_NODE(&p->dl.rb_node); 1842 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1843 __dl_clear_params(p); 1844 1845 INIT_LIST_HEAD(&p->rt.run_list); 1846 1847 #ifdef CONFIG_PREEMPT_NOTIFIERS 1848 INIT_HLIST_HEAD(&p->preempt_notifiers); 1849 #endif 1850 1851 #ifdef CONFIG_NUMA_BALANCING 1852 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1853 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1854 p->mm->numa_scan_seq = 0; 1855 } 1856 1857 if (clone_flags & CLONE_VM) 1858 p->numa_preferred_nid = current->numa_preferred_nid; 1859 else 1860 p->numa_preferred_nid = -1; 1861 1862 p->node_stamp = 0ULL; 1863 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1864 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1865 p->numa_work.next = &p->numa_work; 1866 p->numa_faults = NULL; 1867 p->last_task_numa_placement = 0; 1868 p->last_sum_exec_runtime = 0; 1869 1870 p->numa_group = NULL; 1871 #endif /* CONFIG_NUMA_BALANCING */ 1872 } 1873 1874 #ifdef CONFIG_NUMA_BALANCING 1875 #ifdef CONFIG_SCHED_DEBUG 1876 void set_numabalancing_state(bool enabled) 1877 { 1878 if (enabled) 1879 sched_feat_set("NUMA"); 1880 else 1881 sched_feat_set("NO_NUMA"); 1882 } 1883 #else 1884 __read_mostly bool numabalancing_enabled; 1885 1886 void set_numabalancing_state(bool enabled) 1887 { 1888 numabalancing_enabled = enabled; 1889 } 1890 #endif /* CONFIG_SCHED_DEBUG */ 1891 1892 #ifdef CONFIG_PROC_SYSCTL 1893 int sysctl_numa_balancing(struct ctl_table *table, int write, 1894 void __user *buffer, size_t *lenp, loff_t *ppos) 1895 { 1896 struct ctl_table t; 1897 int err; 1898 int state = numabalancing_enabled; 1899 1900 if (write && !capable(CAP_SYS_ADMIN)) 1901 return -EPERM; 1902 1903 t = *table; 1904 t.data = &state; 1905 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1906 if (err < 0) 1907 return err; 1908 if (write) 1909 set_numabalancing_state(state); 1910 return err; 1911 } 1912 #endif 1913 #endif 1914 1915 /* 1916 * fork()/clone()-time setup: 1917 */ 1918 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1919 { 1920 unsigned long flags; 1921 int cpu = get_cpu(); 1922 1923 __sched_fork(clone_flags, p); 1924 /* 1925 * We mark the process as running here. This guarantees that 1926 * nobody will actually run it, and a signal or other external 1927 * event cannot wake it up and insert it on the runqueue either. 1928 */ 1929 p->state = TASK_RUNNING; 1930 1931 /* 1932 * Make sure we do not leak PI boosting priority to the child. 1933 */ 1934 p->prio = current->normal_prio; 1935 1936 /* 1937 * Revert to default priority/policy on fork if requested. 1938 */ 1939 if (unlikely(p->sched_reset_on_fork)) { 1940 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1941 p->policy = SCHED_NORMAL; 1942 p->static_prio = NICE_TO_PRIO(0); 1943 p->rt_priority = 0; 1944 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1945 p->static_prio = NICE_TO_PRIO(0); 1946 1947 p->prio = p->normal_prio = __normal_prio(p); 1948 set_load_weight(p); 1949 1950 /* 1951 * We don't need the reset flag anymore after the fork. It has 1952 * fulfilled its duty: 1953 */ 1954 p->sched_reset_on_fork = 0; 1955 } 1956 1957 if (dl_prio(p->prio)) { 1958 put_cpu(); 1959 return -EAGAIN; 1960 } else if (rt_prio(p->prio)) { 1961 p->sched_class = &rt_sched_class; 1962 } else { 1963 p->sched_class = &fair_sched_class; 1964 } 1965 1966 if (p->sched_class->task_fork) 1967 p->sched_class->task_fork(p); 1968 1969 /* 1970 * The child is not yet in the pid-hash so no cgroup attach races, 1971 * and the cgroup is pinned to this child due to cgroup_fork() 1972 * is ran before sched_fork(). 1973 * 1974 * Silence PROVE_RCU. 1975 */ 1976 raw_spin_lock_irqsave(&p->pi_lock, flags); 1977 set_task_cpu(p, cpu); 1978 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1979 1980 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1981 if (likely(sched_info_on())) 1982 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1983 #endif 1984 #if defined(CONFIG_SMP) 1985 p->on_cpu = 0; 1986 #endif 1987 init_task_preempt_count(p); 1988 #ifdef CONFIG_SMP 1989 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1990 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1991 #endif 1992 1993 put_cpu(); 1994 return 0; 1995 } 1996 1997 unsigned long to_ratio(u64 period, u64 runtime) 1998 { 1999 if (runtime == RUNTIME_INF) 2000 return 1ULL << 20; 2001 2002 /* 2003 * Doing this here saves a lot of checks in all 2004 * the calling paths, and returning zero seems 2005 * safe for them anyway. 2006 */ 2007 if (period == 0) 2008 return 0; 2009 2010 return div64_u64(runtime << 20, period); 2011 } 2012 2013 #ifdef CONFIG_SMP 2014 inline struct dl_bw *dl_bw_of(int i) 2015 { 2016 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2017 "sched RCU must be held"); 2018 return &cpu_rq(i)->rd->dl_bw; 2019 } 2020 2021 static inline int dl_bw_cpus(int i) 2022 { 2023 struct root_domain *rd = cpu_rq(i)->rd; 2024 int cpus = 0; 2025 2026 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2027 "sched RCU must be held"); 2028 for_each_cpu_and(i, rd->span, cpu_active_mask) 2029 cpus++; 2030 2031 return cpus; 2032 } 2033 #else 2034 inline struct dl_bw *dl_bw_of(int i) 2035 { 2036 return &cpu_rq(i)->dl.dl_bw; 2037 } 2038 2039 static inline int dl_bw_cpus(int i) 2040 { 2041 return 1; 2042 } 2043 #endif 2044 2045 /* 2046 * We must be sure that accepting a new task (or allowing changing the 2047 * parameters of an existing one) is consistent with the bandwidth 2048 * constraints. If yes, this function also accordingly updates the currently 2049 * allocated bandwidth to reflect the new situation. 2050 * 2051 * This function is called while holding p's rq->lock. 2052 */ 2053 static int dl_overflow(struct task_struct *p, int policy, 2054 const struct sched_attr *attr) 2055 { 2056 2057 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2058 u64 period = attr->sched_period ?: attr->sched_deadline; 2059 u64 runtime = attr->sched_runtime; 2060 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2061 int cpus, err = -1; 2062 2063 if (new_bw == p->dl.dl_bw) 2064 return 0; 2065 2066 /* 2067 * Either if a task, enters, leave, or stays -deadline but changes 2068 * its parameters, we may need to update accordingly the total 2069 * allocated bandwidth of the container. 2070 */ 2071 raw_spin_lock(&dl_b->lock); 2072 cpus = dl_bw_cpus(task_cpu(p)); 2073 if (dl_policy(policy) && !task_has_dl_policy(p) && 2074 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2075 __dl_add(dl_b, new_bw); 2076 err = 0; 2077 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2078 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2079 __dl_clear(dl_b, p->dl.dl_bw); 2080 __dl_add(dl_b, new_bw); 2081 err = 0; 2082 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2083 __dl_clear(dl_b, p->dl.dl_bw); 2084 err = 0; 2085 } 2086 raw_spin_unlock(&dl_b->lock); 2087 2088 return err; 2089 } 2090 2091 extern void init_dl_bw(struct dl_bw *dl_b); 2092 2093 /* 2094 * wake_up_new_task - wake up a newly created task for the first time. 2095 * 2096 * This function will do some initial scheduler statistics housekeeping 2097 * that must be done for every newly created context, then puts the task 2098 * on the runqueue and wakes it. 2099 */ 2100 void wake_up_new_task(struct task_struct *p) 2101 { 2102 unsigned long flags; 2103 struct rq *rq; 2104 2105 raw_spin_lock_irqsave(&p->pi_lock, flags); 2106 #ifdef CONFIG_SMP 2107 /* 2108 * Fork balancing, do it here and not earlier because: 2109 * - cpus_allowed can change in the fork path 2110 * - any previously selected cpu might disappear through hotplug 2111 */ 2112 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2113 #endif 2114 2115 /* Initialize new task's runnable average */ 2116 init_task_runnable_average(p); 2117 rq = __task_rq_lock(p); 2118 activate_task(rq, p, 0); 2119 p->on_rq = TASK_ON_RQ_QUEUED; 2120 trace_sched_wakeup_new(p, true); 2121 check_preempt_curr(rq, p, WF_FORK); 2122 #ifdef CONFIG_SMP 2123 if (p->sched_class->task_woken) 2124 p->sched_class->task_woken(rq, p); 2125 #endif 2126 task_rq_unlock(rq, p, &flags); 2127 } 2128 2129 #ifdef CONFIG_PREEMPT_NOTIFIERS 2130 2131 /** 2132 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2133 * @notifier: notifier struct to register 2134 */ 2135 void preempt_notifier_register(struct preempt_notifier *notifier) 2136 { 2137 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2138 } 2139 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2140 2141 /** 2142 * preempt_notifier_unregister - no longer interested in preemption notifications 2143 * @notifier: notifier struct to unregister 2144 * 2145 * This is safe to call from within a preemption notifier. 2146 */ 2147 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2148 { 2149 hlist_del(¬ifier->link); 2150 } 2151 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2152 2153 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2154 { 2155 struct preempt_notifier *notifier; 2156 2157 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2158 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2159 } 2160 2161 static void 2162 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2163 struct task_struct *next) 2164 { 2165 struct preempt_notifier *notifier; 2166 2167 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2168 notifier->ops->sched_out(notifier, next); 2169 } 2170 2171 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2172 2173 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2174 { 2175 } 2176 2177 static void 2178 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2179 struct task_struct *next) 2180 { 2181 } 2182 2183 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2184 2185 /** 2186 * prepare_task_switch - prepare to switch tasks 2187 * @rq: the runqueue preparing to switch 2188 * @prev: the current task that is being switched out 2189 * @next: the task we are going to switch to. 2190 * 2191 * This is called with the rq lock held and interrupts off. It must 2192 * be paired with a subsequent finish_task_switch after the context 2193 * switch. 2194 * 2195 * prepare_task_switch sets up locking and calls architecture specific 2196 * hooks. 2197 */ 2198 static inline void 2199 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2200 struct task_struct *next) 2201 { 2202 trace_sched_switch(prev, next); 2203 sched_info_switch(rq, prev, next); 2204 perf_event_task_sched_out(prev, next); 2205 fire_sched_out_preempt_notifiers(prev, next); 2206 prepare_lock_switch(rq, next); 2207 prepare_arch_switch(next); 2208 } 2209 2210 /** 2211 * finish_task_switch - clean up after a task-switch 2212 * @prev: the thread we just switched away from. 2213 * 2214 * finish_task_switch must be called after the context switch, paired 2215 * with a prepare_task_switch call before the context switch. 2216 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2217 * and do any other architecture-specific cleanup actions. 2218 * 2219 * Note that we may have delayed dropping an mm in context_switch(). If 2220 * so, we finish that here outside of the runqueue lock. (Doing it 2221 * with the lock held can cause deadlocks; see schedule() for 2222 * details.) 2223 * 2224 * The context switch have flipped the stack from under us and restored the 2225 * local variables which were saved when this task called schedule() in the 2226 * past. prev == current is still correct but we need to recalculate this_rq 2227 * because prev may have moved to another CPU. 2228 */ 2229 static struct rq *finish_task_switch(struct task_struct *prev) 2230 __releases(rq->lock) 2231 { 2232 struct rq *rq = this_rq(); 2233 struct mm_struct *mm = rq->prev_mm; 2234 long prev_state; 2235 2236 rq->prev_mm = NULL; 2237 2238 /* 2239 * A task struct has one reference for the use as "current". 2240 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2241 * schedule one last time. The schedule call will never return, and 2242 * the scheduled task must drop that reference. 2243 * The test for TASK_DEAD must occur while the runqueue locks are 2244 * still held, otherwise prev could be scheduled on another cpu, die 2245 * there before we look at prev->state, and then the reference would 2246 * be dropped twice. 2247 * Manfred Spraul <manfred@colorfullife.com> 2248 */ 2249 prev_state = prev->state; 2250 vtime_task_switch(prev); 2251 finish_arch_switch(prev); 2252 perf_event_task_sched_in(prev, current); 2253 finish_lock_switch(rq, prev); 2254 finish_arch_post_lock_switch(); 2255 2256 fire_sched_in_preempt_notifiers(current); 2257 if (mm) 2258 mmdrop(mm); 2259 if (unlikely(prev_state == TASK_DEAD)) { 2260 if (prev->sched_class->task_dead) 2261 prev->sched_class->task_dead(prev); 2262 2263 /* 2264 * Remove function-return probe instances associated with this 2265 * task and put them back on the free list. 2266 */ 2267 kprobe_flush_task(prev); 2268 put_task_struct(prev); 2269 } 2270 2271 tick_nohz_task_switch(current); 2272 return rq; 2273 } 2274 2275 #ifdef CONFIG_SMP 2276 2277 /* rq->lock is NOT held, but preemption is disabled */ 2278 static inline void post_schedule(struct rq *rq) 2279 { 2280 if (rq->post_schedule) { 2281 unsigned long flags; 2282 2283 raw_spin_lock_irqsave(&rq->lock, flags); 2284 if (rq->curr->sched_class->post_schedule) 2285 rq->curr->sched_class->post_schedule(rq); 2286 raw_spin_unlock_irqrestore(&rq->lock, flags); 2287 2288 rq->post_schedule = 0; 2289 } 2290 } 2291 2292 #else 2293 2294 static inline void post_schedule(struct rq *rq) 2295 { 2296 } 2297 2298 #endif 2299 2300 /** 2301 * schedule_tail - first thing a freshly forked thread must call. 2302 * @prev: the thread we just switched away from. 2303 */ 2304 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2305 __releases(rq->lock) 2306 { 2307 struct rq *rq; 2308 2309 /* finish_task_switch() drops rq->lock and enables preemtion */ 2310 preempt_disable(); 2311 rq = finish_task_switch(prev); 2312 post_schedule(rq); 2313 preempt_enable(); 2314 2315 if (current->set_child_tid) 2316 put_user(task_pid_vnr(current), current->set_child_tid); 2317 } 2318 2319 /* 2320 * context_switch - switch to the new MM and the new thread's register state. 2321 */ 2322 static inline struct rq * 2323 context_switch(struct rq *rq, struct task_struct *prev, 2324 struct task_struct *next) 2325 { 2326 struct mm_struct *mm, *oldmm; 2327 2328 prepare_task_switch(rq, prev, next); 2329 2330 mm = next->mm; 2331 oldmm = prev->active_mm; 2332 /* 2333 * For paravirt, this is coupled with an exit in switch_to to 2334 * combine the page table reload and the switch backend into 2335 * one hypercall. 2336 */ 2337 arch_start_context_switch(prev); 2338 2339 if (!mm) { 2340 next->active_mm = oldmm; 2341 atomic_inc(&oldmm->mm_count); 2342 enter_lazy_tlb(oldmm, next); 2343 } else 2344 switch_mm(oldmm, mm, next); 2345 2346 if (!prev->mm) { 2347 prev->active_mm = NULL; 2348 rq->prev_mm = oldmm; 2349 } 2350 /* 2351 * Since the runqueue lock will be released by the next 2352 * task (which is an invalid locking op but in the case 2353 * of the scheduler it's an obvious special-case), so we 2354 * do an early lockdep release here: 2355 */ 2356 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2357 2358 context_tracking_task_switch(prev, next); 2359 /* Here we just switch the register state and the stack. */ 2360 switch_to(prev, next, prev); 2361 barrier(); 2362 2363 return finish_task_switch(prev); 2364 } 2365 2366 /* 2367 * nr_running and nr_context_switches: 2368 * 2369 * externally visible scheduler statistics: current number of runnable 2370 * threads, total number of context switches performed since bootup. 2371 */ 2372 unsigned long nr_running(void) 2373 { 2374 unsigned long i, sum = 0; 2375 2376 for_each_online_cpu(i) 2377 sum += cpu_rq(i)->nr_running; 2378 2379 return sum; 2380 } 2381 2382 /* 2383 * Check if only the current task is running on the cpu. 2384 */ 2385 bool single_task_running(void) 2386 { 2387 if (cpu_rq(smp_processor_id())->nr_running == 1) 2388 return true; 2389 else 2390 return false; 2391 } 2392 EXPORT_SYMBOL(single_task_running); 2393 2394 unsigned long long nr_context_switches(void) 2395 { 2396 int i; 2397 unsigned long long sum = 0; 2398 2399 for_each_possible_cpu(i) 2400 sum += cpu_rq(i)->nr_switches; 2401 2402 return sum; 2403 } 2404 2405 unsigned long nr_iowait(void) 2406 { 2407 unsigned long i, sum = 0; 2408 2409 for_each_possible_cpu(i) 2410 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2411 2412 return sum; 2413 } 2414 2415 unsigned long nr_iowait_cpu(int cpu) 2416 { 2417 struct rq *this = cpu_rq(cpu); 2418 return atomic_read(&this->nr_iowait); 2419 } 2420 2421 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2422 { 2423 struct rq *this = this_rq(); 2424 *nr_waiters = atomic_read(&this->nr_iowait); 2425 *load = this->cpu_load[0]; 2426 } 2427 2428 #ifdef CONFIG_SMP 2429 2430 /* 2431 * sched_exec - execve() is a valuable balancing opportunity, because at 2432 * this point the task has the smallest effective memory and cache footprint. 2433 */ 2434 void sched_exec(void) 2435 { 2436 struct task_struct *p = current; 2437 unsigned long flags; 2438 int dest_cpu; 2439 2440 raw_spin_lock_irqsave(&p->pi_lock, flags); 2441 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2442 if (dest_cpu == smp_processor_id()) 2443 goto unlock; 2444 2445 if (likely(cpu_active(dest_cpu))) { 2446 struct migration_arg arg = { p, dest_cpu }; 2447 2448 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2449 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2450 return; 2451 } 2452 unlock: 2453 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2454 } 2455 2456 #endif 2457 2458 DEFINE_PER_CPU(struct kernel_stat, kstat); 2459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2460 2461 EXPORT_PER_CPU_SYMBOL(kstat); 2462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2463 2464 /* 2465 * Return accounted runtime for the task. 2466 * In case the task is currently running, return the runtime plus current's 2467 * pending runtime that have not been accounted yet. 2468 */ 2469 unsigned long long task_sched_runtime(struct task_struct *p) 2470 { 2471 unsigned long flags; 2472 struct rq *rq; 2473 u64 ns; 2474 2475 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2476 /* 2477 * 64-bit doesn't need locks to atomically read a 64bit value. 2478 * So we have a optimization chance when the task's delta_exec is 0. 2479 * Reading ->on_cpu is racy, but this is ok. 2480 * 2481 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2482 * If we race with it entering cpu, unaccounted time is 0. This is 2483 * indistinguishable from the read occurring a few cycles earlier. 2484 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2485 * been accounted, so we're correct here as well. 2486 */ 2487 if (!p->on_cpu || !task_on_rq_queued(p)) 2488 return p->se.sum_exec_runtime; 2489 #endif 2490 2491 rq = task_rq_lock(p, &flags); 2492 /* 2493 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2494 * project cycles that may never be accounted to this 2495 * thread, breaking clock_gettime(). 2496 */ 2497 if (task_current(rq, p) && task_on_rq_queued(p)) { 2498 update_rq_clock(rq); 2499 p->sched_class->update_curr(rq); 2500 } 2501 ns = p->se.sum_exec_runtime; 2502 task_rq_unlock(rq, p, &flags); 2503 2504 return ns; 2505 } 2506 2507 /* 2508 * This function gets called by the timer code, with HZ frequency. 2509 * We call it with interrupts disabled. 2510 */ 2511 void scheduler_tick(void) 2512 { 2513 int cpu = smp_processor_id(); 2514 struct rq *rq = cpu_rq(cpu); 2515 struct task_struct *curr = rq->curr; 2516 2517 sched_clock_tick(); 2518 2519 raw_spin_lock(&rq->lock); 2520 update_rq_clock(rq); 2521 curr->sched_class->task_tick(rq, curr, 0); 2522 update_cpu_load_active(rq); 2523 raw_spin_unlock(&rq->lock); 2524 2525 perf_event_task_tick(); 2526 2527 #ifdef CONFIG_SMP 2528 rq->idle_balance = idle_cpu(cpu); 2529 trigger_load_balance(rq); 2530 #endif 2531 rq_last_tick_reset(rq); 2532 } 2533 2534 #ifdef CONFIG_NO_HZ_FULL 2535 /** 2536 * scheduler_tick_max_deferment 2537 * 2538 * Keep at least one tick per second when a single 2539 * active task is running because the scheduler doesn't 2540 * yet completely support full dynticks environment. 2541 * 2542 * This makes sure that uptime, CFS vruntime, load 2543 * balancing, etc... continue to move forward, even 2544 * with a very low granularity. 2545 * 2546 * Return: Maximum deferment in nanoseconds. 2547 */ 2548 u64 scheduler_tick_max_deferment(void) 2549 { 2550 struct rq *rq = this_rq(); 2551 unsigned long next, now = ACCESS_ONCE(jiffies); 2552 2553 next = rq->last_sched_tick + HZ; 2554 2555 if (time_before_eq(next, now)) 2556 return 0; 2557 2558 return jiffies_to_nsecs(next - now); 2559 } 2560 #endif 2561 2562 notrace unsigned long get_parent_ip(unsigned long addr) 2563 { 2564 if (in_lock_functions(addr)) { 2565 addr = CALLER_ADDR2; 2566 if (in_lock_functions(addr)) 2567 addr = CALLER_ADDR3; 2568 } 2569 return addr; 2570 } 2571 2572 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2573 defined(CONFIG_PREEMPT_TRACER)) 2574 2575 void preempt_count_add(int val) 2576 { 2577 #ifdef CONFIG_DEBUG_PREEMPT 2578 /* 2579 * Underflow? 2580 */ 2581 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2582 return; 2583 #endif 2584 __preempt_count_add(val); 2585 #ifdef CONFIG_DEBUG_PREEMPT 2586 /* 2587 * Spinlock count overflowing soon? 2588 */ 2589 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2590 PREEMPT_MASK - 10); 2591 #endif 2592 if (preempt_count() == val) { 2593 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2594 #ifdef CONFIG_DEBUG_PREEMPT 2595 current->preempt_disable_ip = ip; 2596 #endif 2597 trace_preempt_off(CALLER_ADDR0, ip); 2598 } 2599 } 2600 EXPORT_SYMBOL(preempt_count_add); 2601 NOKPROBE_SYMBOL(preempt_count_add); 2602 2603 void preempt_count_sub(int val) 2604 { 2605 #ifdef CONFIG_DEBUG_PREEMPT 2606 /* 2607 * Underflow? 2608 */ 2609 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2610 return; 2611 /* 2612 * Is the spinlock portion underflowing? 2613 */ 2614 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2615 !(preempt_count() & PREEMPT_MASK))) 2616 return; 2617 #endif 2618 2619 if (preempt_count() == val) 2620 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2621 __preempt_count_sub(val); 2622 } 2623 EXPORT_SYMBOL(preempt_count_sub); 2624 NOKPROBE_SYMBOL(preempt_count_sub); 2625 2626 #endif 2627 2628 /* 2629 * Print scheduling while atomic bug: 2630 */ 2631 static noinline void __schedule_bug(struct task_struct *prev) 2632 { 2633 if (oops_in_progress) 2634 return; 2635 2636 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2637 prev->comm, prev->pid, preempt_count()); 2638 2639 debug_show_held_locks(prev); 2640 print_modules(); 2641 if (irqs_disabled()) 2642 print_irqtrace_events(prev); 2643 #ifdef CONFIG_DEBUG_PREEMPT 2644 if (in_atomic_preempt_off()) { 2645 pr_err("Preemption disabled at:"); 2646 print_ip_sym(current->preempt_disable_ip); 2647 pr_cont("\n"); 2648 } 2649 #endif 2650 dump_stack(); 2651 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2652 } 2653 2654 /* 2655 * Various schedule()-time debugging checks and statistics: 2656 */ 2657 static inline void schedule_debug(struct task_struct *prev) 2658 { 2659 #ifdef CONFIG_SCHED_STACK_END_CHECK 2660 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2661 #endif 2662 /* 2663 * Test if we are atomic. Since do_exit() needs to call into 2664 * schedule() atomically, we ignore that path. Otherwise whine 2665 * if we are scheduling when we should not. 2666 */ 2667 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2668 __schedule_bug(prev); 2669 rcu_sleep_check(); 2670 2671 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2672 2673 schedstat_inc(this_rq(), sched_count); 2674 } 2675 2676 /* 2677 * Pick up the highest-prio task: 2678 */ 2679 static inline struct task_struct * 2680 pick_next_task(struct rq *rq, struct task_struct *prev) 2681 { 2682 const struct sched_class *class = &fair_sched_class; 2683 struct task_struct *p; 2684 2685 /* 2686 * Optimization: we know that if all tasks are in 2687 * the fair class we can call that function directly: 2688 */ 2689 if (likely(prev->sched_class == class && 2690 rq->nr_running == rq->cfs.h_nr_running)) { 2691 p = fair_sched_class.pick_next_task(rq, prev); 2692 if (unlikely(p == RETRY_TASK)) 2693 goto again; 2694 2695 /* assumes fair_sched_class->next == idle_sched_class */ 2696 if (unlikely(!p)) 2697 p = idle_sched_class.pick_next_task(rq, prev); 2698 2699 return p; 2700 } 2701 2702 again: 2703 for_each_class(class) { 2704 p = class->pick_next_task(rq, prev); 2705 if (p) { 2706 if (unlikely(p == RETRY_TASK)) 2707 goto again; 2708 return p; 2709 } 2710 } 2711 2712 BUG(); /* the idle class will always have a runnable task */ 2713 } 2714 2715 /* 2716 * __schedule() is the main scheduler function. 2717 * 2718 * The main means of driving the scheduler and thus entering this function are: 2719 * 2720 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2721 * 2722 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2723 * paths. For example, see arch/x86/entry_64.S. 2724 * 2725 * To drive preemption between tasks, the scheduler sets the flag in timer 2726 * interrupt handler scheduler_tick(). 2727 * 2728 * 3. Wakeups don't really cause entry into schedule(). They add a 2729 * task to the run-queue and that's it. 2730 * 2731 * Now, if the new task added to the run-queue preempts the current 2732 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2733 * called on the nearest possible occasion: 2734 * 2735 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2736 * 2737 * - in syscall or exception context, at the next outmost 2738 * preempt_enable(). (this might be as soon as the wake_up()'s 2739 * spin_unlock()!) 2740 * 2741 * - in IRQ context, return from interrupt-handler to 2742 * preemptible context 2743 * 2744 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2745 * then at the next: 2746 * 2747 * - cond_resched() call 2748 * - explicit schedule() call 2749 * - return from syscall or exception to user-space 2750 * - return from interrupt-handler to user-space 2751 */ 2752 static void __sched __schedule(void) 2753 { 2754 struct task_struct *prev, *next; 2755 unsigned long *switch_count; 2756 struct rq *rq; 2757 int cpu; 2758 2759 need_resched: 2760 preempt_disable(); 2761 cpu = smp_processor_id(); 2762 rq = cpu_rq(cpu); 2763 rcu_note_context_switch(); 2764 prev = rq->curr; 2765 2766 schedule_debug(prev); 2767 2768 if (sched_feat(HRTICK)) 2769 hrtick_clear(rq); 2770 2771 /* 2772 * Make sure that signal_pending_state()->signal_pending() below 2773 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2774 * done by the caller to avoid the race with signal_wake_up(). 2775 */ 2776 smp_mb__before_spinlock(); 2777 raw_spin_lock_irq(&rq->lock); 2778 2779 switch_count = &prev->nivcsw; 2780 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2781 if (unlikely(signal_pending_state(prev->state, prev))) { 2782 prev->state = TASK_RUNNING; 2783 } else { 2784 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2785 prev->on_rq = 0; 2786 2787 /* 2788 * If a worker went to sleep, notify and ask workqueue 2789 * whether it wants to wake up a task to maintain 2790 * concurrency. 2791 */ 2792 if (prev->flags & PF_WQ_WORKER) { 2793 struct task_struct *to_wakeup; 2794 2795 to_wakeup = wq_worker_sleeping(prev, cpu); 2796 if (to_wakeup) 2797 try_to_wake_up_local(to_wakeup); 2798 } 2799 } 2800 switch_count = &prev->nvcsw; 2801 } 2802 2803 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0) 2804 update_rq_clock(rq); 2805 2806 next = pick_next_task(rq, prev); 2807 clear_tsk_need_resched(prev); 2808 clear_preempt_need_resched(); 2809 rq->skip_clock_update = 0; 2810 2811 if (likely(prev != next)) { 2812 rq->nr_switches++; 2813 rq->curr = next; 2814 ++*switch_count; 2815 2816 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2817 cpu = cpu_of(rq); 2818 } else 2819 raw_spin_unlock_irq(&rq->lock); 2820 2821 post_schedule(rq); 2822 2823 sched_preempt_enable_no_resched(); 2824 if (need_resched()) 2825 goto need_resched; 2826 } 2827 2828 static inline void sched_submit_work(struct task_struct *tsk) 2829 { 2830 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2831 return; 2832 /* 2833 * If we are going to sleep and we have plugged IO queued, 2834 * make sure to submit it to avoid deadlocks. 2835 */ 2836 if (blk_needs_flush_plug(tsk)) 2837 blk_schedule_flush_plug(tsk); 2838 } 2839 2840 asmlinkage __visible void __sched schedule(void) 2841 { 2842 struct task_struct *tsk = current; 2843 2844 sched_submit_work(tsk); 2845 __schedule(); 2846 } 2847 EXPORT_SYMBOL(schedule); 2848 2849 #ifdef CONFIG_CONTEXT_TRACKING 2850 asmlinkage __visible void __sched schedule_user(void) 2851 { 2852 /* 2853 * If we come here after a random call to set_need_resched(), 2854 * or we have been woken up remotely but the IPI has not yet arrived, 2855 * we haven't yet exited the RCU idle mode. Do it here manually until 2856 * we find a better solution. 2857 * 2858 * NB: There are buggy callers of this function. Ideally we 2859 * should warn if prev_state != IN_USER, but that will trigger 2860 * too frequently to make sense yet. 2861 */ 2862 enum ctx_state prev_state = exception_enter(); 2863 schedule(); 2864 exception_exit(prev_state); 2865 } 2866 #endif 2867 2868 /** 2869 * schedule_preempt_disabled - called with preemption disabled 2870 * 2871 * Returns with preemption disabled. Note: preempt_count must be 1 2872 */ 2873 void __sched schedule_preempt_disabled(void) 2874 { 2875 sched_preempt_enable_no_resched(); 2876 schedule(); 2877 preempt_disable(); 2878 } 2879 2880 #ifdef CONFIG_PREEMPT 2881 /* 2882 * this is the entry point to schedule() from in-kernel preemption 2883 * off of preempt_enable. Kernel preemptions off return from interrupt 2884 * occur there and call schedule directly. 2885 */ 2886 asmlinkage __visible void __sched notrace preempt_schedule(void) 2887 { 2888 /* 2889 * If there is a non-zero preempt_count or interrupts are disabled, 2890 * we do not want to preempt the current task. Just return.. 2891 */ 2892 if (likely(!preemptible())) 2893 return; 2894 2895 do { 2896 __preempt_count_add(PREEMPT_ACTIVE); 2897 __schedule(); 2898 __preempt_count_sub(PREEMPT_ACTIVE); 2899 2900 /* 2901 * Check again in case we missed a preemption opportunity 2902 * between schedule and now. 2903 */ 2904 barrier(); 2905 } while (need_resched()); 2906 } 2907 NOKPROBE_SYMBOL(preempt_schedule); 2908 EXPORT_SYMBOL(preempt_schedule); 2909 2910 #ifdef CONFIG_CONTEXT_TRACKING 2911 /** 2912 * preempt_schedule_context - preempt_schedule called by tracing 2913 * 2914 * The tracing infrastructure uses preempt_enable_notrace to prevent 2915 * recursion and tracing preempt enabling caused by the tracing 2916 * infrastructure itself. But as tracing can happen in areas coming 2917 * from userspace or just about to enter userspace, a preempt enable 2918 * can occur before user_exit() is called. This will cause the scheduler 2919 * to be called when the system is still in usermode. 2920 * 2921 * To prevent this, the preempt_enable_notrace will use this function 2922 * instead of preempt_schedule() to exit user context if needed before 2923 * calling the scheduler. 2924 */ 2925 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2926 { 2927 enum ctx_state prev_ctx; 2928 2929 if (likely(!preemptible())) 2930 return; 2931 2932 do { 2933 __preempt_count_add(PREEMPT_ACTIVE); 2934 /* 2935 * Needs preempt disabled in case user_exit() is traced 2936 * and the tracer calls preempt_enable_notrace() causing 2937 * an infinite recursion. 2938 */ 2939 prev_ctx = exception_enter(); 2940 __schedule(); 2941 exception_exit(prev_ctx); 2942 2943 __preempt_count_sub(PREEMPT_ACTIVE); 2944 barrier(); 2945 } while (need_resched()); 2946 } 2947 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2948 #endif /* CONFIG_CONTEXT_TRACKING */ 2949 2950 #endif /* CONFIG_PREEMPT */ 2951 2952 /* 2953 * this is the entry point to schedule() from kernel preemption 2954 * off of irq context. 2955 * Note, that this is called and return with irqs disabled. This will 2956 * protect us against recursive calling from irq. 2957 */ 2958 asmlinkage __visible void __sched preempt_schedule_irq(void) 2959 { 2960 enum ctx_state prev_state; 2961 2962 /* Catch callers which need to be fixed */ 2963 BUG_ON(preempt_count() || !irqs_disabled()); 2964 2965 prev_state = exception_enter(); 2966 2967 do { 2968 __preempt_count_add(PREEMPT_ACTIVE); 2969 local_irq_enable(); 2970 __schedule(); 2971 local_irq_disable(); 2972 __preempt_count_sub(PREEMPT_ACTIVE); 2973 2974 /* 2975 * Check again in case we missed a preemption opportunity 2976 * between schedule and now. 2977 */ 2978 barrier(); 2979 } while (need_resched()); 2980 2981 exception_exit(prev_state); 2982 } 2983 2984 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2985 void *key) 2986 { 2987 return try_to_wake_up(curr->private, mode, wake_flags); 2988 } 2989 EXPORT_SYMBOL(default_wake_function); 2990 2991 #ifdef CONFIG_RT_MUTEXES 2992 2993 /* 2994 * rt_mutex_setprio - set the current priority of a task 2995 * @p: task 2996 * @prio: prio value (kernel-internal form) 2997 * 2998 * This function changes the 'effective' priority of a task. It does 2999 * not touch ->normal_prio like __setscheduler(). 3000 * 3001 * Used by the rt_mutex code to implement priority inheritance 3002 * logic. Call site only calls if the priority of the task changed. 3003 */ 3004 void rt_mutex_setprio(struct task_struct *p, int prio) 3005 { 3006 int oldprio, queued, running, enqueue_flag = 0; 3007 struct rq *rq; 3008 const struct sched_class *prev_class; 3009 3010 BUG_ON(prio > MAX_PRIO); 3011 3012 rq = __task_rq_lock(p); 3013 3014 /* 3015 * Idle task boosting is a nono in general. There is one 3016 * exception, when PREEMPT_RT and NOHZ is active: 3017 * 3018 * The idle task calls get_next_timer_interrupt() and holds 3019 * the timer wheel base->lock on the CPU and another CPU wants 3020 * to access the timer (probably to cancel it). We can safely 3021 * ignore the boosting request, as the idle CPU runs this code 3022 * with interrupts disabled and will complete the lock 3023 * protected section without being interrupted. So there is no 3024 * real need to boost. 3025 */ 3026 if (unlikely(p == rq->idle)) { 3027 WARN_ON(p != rq->curr); 3028 WARN_ON(p->pi_blocked_on); 3029 goto out_unlock; 3030 } 3031 3032 trace_sched_pi_setprio(p, prio); 3033 oldprio = p->prio; 3034 prev_class = p->sched_class; 3035 queued = task_on_rq_queued(p); 3036 running = task_current(rq, p); 3037 if (queued) 3038 dequeue_task(rq, p, 0); 3039 if (running) 3040 put_prev_task(rq, p); 3041 3042 /* 3043 * Boosting condition are: 3044 * 1. -rt task is running and holds mutex A 3045 * --> -dl task blocks on mutex A 3046 * 3047 * 2. -dl task is running and holds mutex A 3048 * --> -dl task blocks on mutex A and could preempt the 3049 * running task 3050 */ 3051 if (dl_prio(prio)) { 3052 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3053 if (!dl_prio(p->normal_prio) || 3054 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3055 p->dl.dl_boosted = 1; 3056 p->dl.dl_throttled = 0; 3057 enqueue_flag = ENQUEUE_REPLENISH; 3058 } else 3059 p->dl.dl_boosted = 0; 3060 p->sched_class = &dl_sched_class; 3061 } else if (rt_prio(prio)) { 3062 if (dl_prio(oldprio)) 3063 p->dl.dl_boosted = 0; 3064 if (oldprio < prio) 3065 enqueue_flag = ENQUEUE_HEAD; 3066 p->sched_class = &rt_sched_class; 3067 } else { 3068 if (dl_prio(oldprio)) 3069 p->dl.dl_boosted = 0; 3070 p->sched_class = &fair_sched_class; 3071 } 3072 3073 p->prio = prio; 3074 3075 if (running) 3076 p->sched_class->set_curr_task(rq); 3077 if (queued) 3078 enqueue_task(rq, p, enqueue_flag); 3079 3080 check_class_changed(rq, p, prev_class, oldprio); 3081 out_unlock: 3082 __task_rq_unlock(rq); 3083 } 3084 #endif 3085 3086 void set_user_nice(struct task_struct *p, long nice) 3087 { 3088 int old_prio, delta, queued; 3089 unsigned long flags; 3090 struct rq *rq; 3091 3092 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3093 return; 3094 /* 3095 * We have to be careful, if called from sys_setpriority(), 3096 * the task might be in the middle of scheduling on another CPU. 3097 */ 3098 rq = task_rq_lock(p, &flags); 3099 /* 3100 * The RT priorities are set via sched_setscheduler(), but we still 3101 * allow the 'normal' nice value to be set - but as expected 3102 * it wont have any effect on scheduling until the task is 3103 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3104 */ 3105 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3106 p->static_prio = NICE_TO_PRIO(nice); 3107 goto out_unlock; 3108 } 3109 queued = task_on_rq_queued(p); 3110 if (queued) 3111 dequeue_task(rq, p, 0); 3112 3113 p->static_prio = NICE_TO_PRIO(nice); 3114 set_load_weight(p); 3115 old_prio = p->prio; 3116 p->prio = effective_prio(p); 3117 delta = p->prio - old_prio; 3118 3119 if (queued) { 3120 enqueue_task(rq, p, 0); 3121 /* 3122 * If the task increased its priority or is running and 3123 * lowered its priority, then reschedule its CPU: 3124 */ 3125 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3126 resched_curr(rq); 3127 } 3128 out_unlock: 3129 task_rq_unlock(rq, p, &flags); 3130 } 3131 EXPORT_SYMBOL(set_user_nice); 3132 3133 /* 3134 * can_nice - check if a task can reduce its nice value 3135 * @p: task 3136 * @nice: nice value 3137 */ 3138 int can_nice(const struct task_struct *p, const int nice) 3139 { 3140 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3141 int nice_rlim = nice_to_rlimit(nice); 3142 3143 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3144 capable(CAP_SYS_NICE)); 3145 } 3146 3147 #ifdef __ARCH_WANT_SYS_NICE 3148 3149 /* 3150 * sys_nice - change the priority of the current process. 3151 * @increment: priority increment 3152 * 3153 * sys_setpriority is a more generic, but much slower function that 3154 * does similar things. 3155 */ 3156 SYSCALL_DEFINE1(nice, int, increment) 3157 { 3158 long nice, retval; 3159 3160 /* 3161 * Setpriority might change our priority at the same moment. 3162 * We don't have to worry. Conceptually one call occurs first 3163 * and we have a single winner. 3164 */ 3165 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3166 nice = task_nice(current) + increment; 3167 3168 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3169 if (increment < 0 && !can_nice(current, nice)) 3170 return -EPERM; 3171 3172 retval = security_task_setnice(current, nice); 3173 if (retval) 3174 return retval; 3175 3176 set_user_nice(current, nice); 3177 return 0; 3178 } 3179 3180 #endif 3181 3182 /** 3183 * task_prio - return the priority value of a given task. 3184 * @p: the task in question. 3185 * 3186 * Return: The priority value as seen by users in /proc. 3187 * RT tasks are offset by -200. Normal tasks are centered 3188 * around 0, value goes from -16 to +15. 3189 */ 3190 int task_prio(const struct task_struct *p) 3191 { 3192 return p->prio - MAX_RT_PRIO; 3193 } 3194 3195 /** 3196 * idle_cpu - is a given cpu idle currently? 3197 * @cpu: the processor in question. 3198 * 3199 * Return: 1 if the CPU is currently idle. 0 otherwise. 3200 */ 3201 int idle_cpu(int cpu) 3202 { 3203 struct rq *rq = cpu_rq(cpu); 3204 3205 if (rq->curr != rq->idle) 3206 return 0; 3207 3208 if (rq->nr_running) 3209 return 0; 3210 3211 #ifdef CONFIG_SMP 3212 if (!llist_empty(&rq->wake_list)) 3213 return 0; 3214 #endif 3215 3216 return 1; 3217 } 3218 3219 /** 3220 * idle_task - return the idle task for a given cpu. 3221 * @cpu: the processor in question. 3222 * 3223 * Return: The idle task for the cpu @cpu. 3224 */ 3225 struct task_struct *idle_task(int cpu) 3226 { 3227 return cpu_rq(cpu)->idle; 3228 } 3229 3230 /** 3231 * find_process_by_pid - find a process with a matching PID value. 3232 * @pid: the pid in question. 3233 * 3234 * The task of @pid, if found. %NULL otherwise. 3235 */ 3236 static struct task_struct *find_process_by_pid(pid_t pid) 3237 { 3238 return pid ? find_task_by_vpid(pid) : current; 3239 } 3240 3241 /* 3242 * This function initializes the sched_dl_entity of a newly becoming 3243 * SCHED_DEADLINE task. 3244 * 3245 * Only the static values are considered here, the actual runtime and the 3246 * absolute deadline will be properly calculated when the task is enqueued 3247 * for the first time with its new policy. 3248 */ 3249 static void 3250 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3251 { 3252 struct sched_dl_entity *dl_se = &p->dl; 3253 3254 init_dl_task_timer(dl_se); 3255 dl_se->dl_runtime = attr->sched_runtime; 3256 dl_se->dl_deadline = attr->sched_deadline; 3257 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3258 dl_se->flags = attr->sched_flags; 3259 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3260 dl_se->dl_throttled = 0; 3261 dl_se->dl_new = 1; 3262 dl_se->dl_yielded = 0; 3263 } 3264 3265 /* 3266 * sched_setparam() passes in -1 for its policy, to let the functions 3267 * it calls know not to change it. 3268 */ 3269 #define SETPARAM_POLICY -1 3270 3271 static void __setscheduler_params(struct task_struct *p, 3272 const struct sched_attr *attr) 3273 { 3274 int policy = attr->sched_policy; 3275 3276 if (policy == SETPARAM_POLICY) 3277 policy = p->policy; 3278 3279 p->policy = policy; 3280 3281 if (dl_policy(policy)) 3282 __setparam_dl(p, attr); 3283 else if (fair_policy(policy)) 3284 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3285 3286 /* 3287 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3288 * !rt_policy. Always setting this ensures that things like 3289 * getparam()/getattr() don't report silly values for !rt tasks. 3290 */ 3291 p->rt_priority = attr->sched_priority; 3292 p->normal_prio = normal_prio(p); 3293 set_load_weight(p); 3294 } 3295 3296 /* Actually do priority change: must hold pi & rq lock. */ 3297 static void __setscheduler(struct rq *rq, struct task_struct *p, 3298 const struct sched_attr *attr) 3299 { 3300 __setscheduler_params(p, attr); 3301 3302 /* 3303 * If we get here, there was no pi waiters boosting the 3304 * task. It is safe to use the normal prio. 3305 */ 3306 p->prio = normal_prio(p); 3307 3308 if (dl_prio(p->prio)) 3309 p->sched_class = &dl_sched_class; 3310 else if (rt_prio(p->prio)) 3311 p->sched_class = &rt_sched_class; 3312 else 3313 p->sched_class = &fair_sched_class; 3314 } 3315 3316 static void 3317 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3318 { 3319 struct sched_dl_entity *dl_se = &p->dl; 3320 3321 attr->sched_priority = p->rt_priority; 3322 attr->sched_runtime = dl_se->dl_runtime; 3323 attr->sched_deadline = dl_se->dl_deadline; 3324 attr->sched_period = dl_se->dl_period; 3325 attr->sched_flags = dl_se->flags; 3326 } 3327 3328 /* 3329 * This function validates the new parameters of a -deadline task. 3330 * We ask for the deadline not being zero, and greater or equal 3331 * than the runtime, as well as the period of being zero or 3332 * greater than deadline. Furthermore, we have to be sure that 3333 * user parameters are above the internal resolution of 1us (we 3334 * check sched_runtime only since it is always the smaller one) and 3335 * below 2^63 ns (we have to check both sched_deadline and 3336 * sched_period, as the latter can be zero). 3337 */ 3338 static bool 3339 __checkparam_dl(const struct sched_attr *attr) 3340 { 3341 /* deadline != 0 */ 3342 if (attr->sched_deadline == 0) 3343 return false; 3344 3345 /* 3346 * Since we truncate DL_SCALE bits, make sure we're at least 3347 * that big. 3348 */ 3349 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3350 return false; 3351 3352 /* 3353 * Since we use the MSB for wrap-around and sign issues, make 3354 * sure it's not set (mind that period can be equal to zero). 3355 */ 3356 if (attr->sched_deadline & (1ULL << 63) || 3357 attr->sched_period & (1ULL << 63)) 3358 return false; 3359 3360 /* runtime <= deadline <= period (if period != 0) */ 3361 if ((attr->sched_period != 0 && 3362 attr->sched_period < attr->sched_deadline) || 3363 attr->sched_deadline < attr->sched_runtime) 3364 return false; 3365 3366 return true; 3367 } 3368 3369 /* 3370 * check the target process has a UID that matches the current process's 3371 */ 3372 static bool check_same_owner(struct task_struct *p) 3373 { 3374 const struct cred *cred = current_cred(), *pcred; 3375 bool match; 3376 3377 rcu_read_lock(); 3378 pcred = __task_cred(p); 3379 match = (uid_eq(cred->euid, pcred->euid) || 3380 uid_eq(cred->euid, pcred->uid)); 3381 rcu_read_unlock(); 3382 return match; 3383 } 3384 3385 static int __sched_setscheduler(struct task_struct *p, 3386 const struct sched_attr *attr, 3387 bool user) 3388 { 3389 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3390 MAX_RT_PRIO - 1 - attr->sched_priority; 3391 int retval, oldprio, oldpolicy = -1, queued, running; 3392 int policy = attr->sched_policy; 3393 unsigned long flags; 3394 const struct sched_class *prev_class; 3395 struct rq *rq; 3396 int reset_on_fork; 3397 3398 /* may grab non-irq protected spin_locks */ 3399 BUG_ON(in_interrupt()); 3400 recheck: 3401 /* double check policy once rq lock held */ 3402 if (policy < 0) { 3403 reset_on_fork = p->sched_reset_on_fork; 3404 policy = oldpolicy = p->policy; 3405 } else { 3406 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3407 3408 if (policy != SCHED_DEADLINE && 3409 policy != SCHED_FIFO && policy != SCHED_RR && 3410 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3411 policy != SCHED_IDLE) 3412 return -EINVAL; 3413 } 3414 3415 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3416 return -EINVAL; 3417 3418 /* 3419 * Valid priorities for SCHED_FIFO and SCHED_RR are 3420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3421 * SCHED_BATCH and SCHED_IDLE is 0. 3422 */ 3423 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3424 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3425 return -EINVAL; 3426 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3427 (rt_policy(policy) != (attr->sched_priority != 0))) 3428 return -EINVAL; 3429 3430 /* 3431 * Allow unprivileged RT tasks to decrease priority: 3432 */ 3433 if (user && !capable(CAP_SYS_NICE)) { 3434 if (fair_policy(policy)) { 3435 if (attr->sched_nice < task_nice(p) && 3436 !can_nice(p, attr->sched_nice)) 3437 return -EPERM; 3438 } 3439 3440 if (rt_policy(policy)) { 3441 unsigned long rlim_rtprio = 3442 task_rlimit(p, RLIMIT_RTPRIO); 3443 3444 /* can't set/change the rt policy */ 3445 if (policy != p->policy && !rlim_rtprio) 3446 return -EPERM; 3447 3448 /* can't increase priority */ 3449 if (attr->sched_priority > p->rt_priority && 3450 attr->sched_priority > rlim_rtprio) 3451 return -EPERM; 3452 } 3453 3454 /* 3455 * Can't set/change SCHED_DEADLINE policy at all for now 3456 * (safest behavior); in the future we would like to allow 3457 * unprivileged DL tasks to increase their relative deadline 3458 * or reduce their runtime (both ways reducing utilization) 3459 */ 3460 if (dl_policy(policy)) 3461 return -EPERM; 3462 3463 /* 3464 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3465 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3466 */ 3467 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3468 if (!can_nice(p, task_nice(p))) 3469 return -EPERM; 3470 } 3471 3472 /* can't change other user's priorities */ 3473 if (!check_same_owner(p)) 3474 return -EPERM; 3475 3476 /* Normal users shall not reset the sched_reset_on_fork flag */ 3477 if (p->sched_reset_on_fork && !reset_on_fork) 3478 return -EPERM; 3479 } 3480 3481 if (user) { 3482 retval = security_task_setscheduler(p); 3483 if (retval) 3484 return retval; 3485 } 3486 3487 /* 3488 * make sure no PI-waiters arrive (or leave) while we are 3489 * changing the priority of the task: 3490 * 3491 * To be able to change p->policy safely, the appropriate 3492 * runqueue lock must be held. 3493 */ 3494 rq = task_rq_lock(p, &flags); 3495 3496 /* 3497 * Changing the policy of the stop threads its a very bad idea 3498 */ 3499 if (p == rq->stop) { 3500 task_rq_unlock(rq, p, &flags); 3501 return -EINVAL; 3502 } 3503 3504 /* 3505 * If not changing anything there's no need to proceed further, 3506 * but store a possible modification of reset_on_fork. 3507 */ 3508 if (unlikely(policy == p->policy)) { 3509 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3510 goto change; 3511 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3512 goto change; 3513 if (dl_policy(policy)) 3514 goto change; 3515 3516 p->sched_reset_on_fork = reset_on_fork; 3517 task_rq_unlock(rq, p, &flags); 3518 return 0; 3519 } 3520 change: 3521 3522 if (user) { 3523 #ifdef CONFIG_RT_GROUP_SCHED 3524 /* 3525 * Do not allow realtime tasks into groups that have no runtime 3526 * assigned. 3527 */ 3528 if (rt_bandwidth_enabled() && rt_policy(policy) && 3529 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3530 !task_group_is_autogroup(task_group(p))) { 3531 task_rq_unlock(rq, p, &flags); 3532 return -EPERM; 3533 } 3534 #endif 3535 #ifdef CONFIG_SMP 3536 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3537 cpumask_t *span = rq->rd->span; 3538 3539 /* 3540 * Don't allow tasks with an affinity mask smaller than 3541 * the entire root_domain to become SCHED_DEADLINE. We 3542 * will also fail if there's no bandwidth available. 3543 */ 3544 if (!cpumask_subset(span, &p->cpus_allowed) || 3545 rq->rd->dl_bw.bw == 0) { 3546 task_rq_unlock(rq, p, &flags); 3547 return -EPERM; 3548 } 3549 } 3550 #endif 3551 } 3552 3553 /* recheck policy now with rq lock held */ 3554 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3555 policy = oldpolicy = -1; 3556 task_rq_unlock(rq, p, &flags); 3557 goto recheck; 3558 } 3559 3560 /* 3561 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3562 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3563 * is available. 3564 */ 3565 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3566 task_rq_unlock(rq, p, &flags); 3567 return -EBUSY; 3568 } 3569 3570 p->sched_reset_on_fork = reset_on_fork; 3571 oldprio = p->prio; 3572 3573 /* 3574 * Special case for priority boosted tasks. 3575 * 3576 * If the new priority is lower or equal (user space view) 3577 * than the current (boosted) priority, we just store the new 3578 * normal parameters and do not touch the scheduler class and 3579 * the runqueue. This will be done when the task deboost 3580 * itself. 3581 */ 3582 if (rt_mutex_check_prio(p, newprio)) { 3583 __setscheduler_params(p, attr); 3584 task_rq_unlock(rq, p, &flags); 3585 return 0; 3586 } 3587 3588 queued = task_on_rq_queued(p); 3589 running = task_current(rq, p); 3590 if (queued) 3591 dequeue_task(rq, p, 0); 3592 if (running) 3593 put_prev_task(rq, p); 3594 3595 prev_class = p->sched_class; 3596 __setscheduler(rq, p, attr); 3597 3598 if (running) 3599 p->sched_class->set_curr_task(rq); 3600 if (queued) { 3601 /* 3602 * We enqueue to tail when the priority of a task is 3603 * increased (user space view). 3604 */ 3605 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3606 } 3607 3608 check_class_changed(rq, p, prev_class, oldprio); 3609 task_rq_unlock(rq, p, &flags); 3610 3611 rt_mutex_adjust_pi(p); 3612 3613 return 0; 3614 } 3615 3616 static int _sched_setscheduler(struct task_struct *p, int policy, 3617 const struct sched_param *param, bool check) 3618 { 3619 struct sched_attr attr = { 3620 .sched_policy = policy, 3621 .sched_priority = param->sched_priority, 3622 .sched_nice = PRIO_TO_NICE(p->static_prio), 3623 }; 3624 3625 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3626 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3627 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3628 policy &= ~SCHED_RESET_ON_FORK; 3629 attr.sched_policy = policy; 3630 } 3631 3632 return __sched_setscheduler(p, &attr, check); 3633 } 3634 /** 3635 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3636 * @p: the task in question. 3637 * @policy: new policy. 3638 * @param: structure containing the new RT priority. 3639 * 3640 * Return: 0 on success. An error code otherwise. 3641 * 3642 * NOTE that the task may be already dead. 3643 */ 3644 int sched_setscheduler(struct task_struct *p, int policy, 3645 const struct sched_param *param) 3646 { 3647 return _sched_setscheduler(p, policy, param, true); 3648 } 3649 EXPORT_SYMBOL_GPL(sched_setscheduler); 3650 3651 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3652 { 3653 return __sched_setscheduler(p, attr, true); 3654 } 3655 EXPORT_SYMBOL_GPL(sched_setattr); 3656 3657 /** 3658 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3659 * @p: the task in question. 3660 * @policy: new policy. 3661 * @param: structure containing the new RT priority. 3662 * 3663 * Just like sched_setscheduler, only don't bother checking if the 3664 * current context has permission. For example, this is needed in 3665 * stop_machine(): we create temporary high priority worker threads, 3666 * but our caller might not have that capability. 3667 * 3668 * Return: 0 on success. An error code otherwise. 3669 */ 3670 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3671 const struct sched_param *param) 3672 { 3673 return _sched_setscheduler(p, policy, param, false); 3674 } 3675 3676 static int 3677 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3678 { 3679 struct sched_param lparam; 3680 struct task_struct *p; 3681 int retval; 3682 3683 if (!param || pid < 0) 3684 return -EINVAL; 3685 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3686 return -EFAULT; 3687 3688 rcu_read_lock(); 3689 retval = -ESRCH; 3690 p = find_process_by_pid(pid); 3691 if (p != NULL) 3692 retval = sched_setscheduler(p, policy, &lparam); 3693 rcu_read_unlock(); 3694 3695 return retval; 3696 } 3697 3698 /* 3699 * Mimics kernel/events/core.c perf_copy_attr(). 3700 */ 3701 static int sched_copy_attr(struct sched_attr __user *uattr, 3702 struct sched_attr *attr) 3703 { 3704 u32 size; 3705 int ret; 3706 3707 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3708 return -EFAULT; 3709 3710 /* 3711 * zero the full structure, so that a short copy will be nice. 3712 */ 3713 memset(attr, 0, sizeof(*attr)); 3714 3715 ret = get_user(size, &uattr->size); 3716 if (ret) 3717 return ret; 3718 3719 if (size > PAGE_SIZE) /* silly large */ 3720 goto err_size; 3721 3722 if (!size) /* abi compat */ 3723 size = SCHED_ATTR_SIZE_VER0; 3724 3725 if (size < SCHED_ATTR_SIZE_VER0) 3726 goto err_size; 3727 3728 /* 3729 * If we're handed a bigger struct than we know of, 3730 * ensure all the unknown bits are 0 - i.e. new 3731 * user-space does not rely on any kernel feature 3732 * extensions we dont know about yet. 3733 */ 3734 if (size > sizeof(*attr)) { 3735 unsigned char __user *addr; 3736 unsigned char __user *end; 3737 unsigned char val; 3738 3739 addr = (void __user *)uattr + sizeof(*attr); 3740 end = (void __user *)uattr + size; 3741 3742 for (; addr < end; addr++) { 3743 ret = get_user(val, addr); 3744 if (ret) 3745 return ret; 3746 if (val) 3747 goto err_size; 3748 } 3749 size = sizeof(*attr); 3750 } 3751 3752 ret = copy_from_user(attr, uattr, size); 3753 if (ret) 3754 return -EFAULT; 3755 3756 /* 3757 * XXX: do we want to be lenient like existing syscalls; or do we want 3758 * to be strict and return an error on out-of-bounds values? 3759 */ 3760 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3761 3762 return 0; 3763 3764 err_size: 3765 put_user(sizeof(*attr), &uattr->size); 3766 return -E2BIG; 3767 } 3768 3769 /** 3770 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3771 * @pid: the pid in question. 3772 * @policy: new policy. 3773 * @param: structure containing the new RT priority. 3774 * 3775 * Return: 0 on success. An error code otherwise. 3776 */ 3777 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3778 struct sched_param __user *, param) 3779 { 3780 /* negative values for policy are not valid */ 3781 if (policy < 0) 3782 return -EINVAL; 3783 3784 return do_sched_setscheduler(pid, policy, param); 3785 } 3786 3787 /** 3788 * sys_sched_setparam - set/change the RT priority of a thread 3789 * @pid: the pid in question. 3790 * @param: structure containing the new RT priority. 3791 * 3792 * Return: 0 on success. An error code otherwise. 3793 */ 3794 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3795 { 3796 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3797 } 3798 3799 /** 3800 * sys_sched_setattr - same as above, but with extended sched_attr 3801 * @pid: the pid in question. 3802 * @uattr: structure containing the extended parameters. 3803 * @flags: for future extension. 3804 */ 3805 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3806 unsigned int, flags) 3807 { 3808 struct sched_attr attr; 3809 struct task_struct *p; 3810 int retval; 3811 3812 if (!uattr || pid < 0 || flags) 3813 return -EINVAL; 3814 3815 retval = sched_copy_attr(uattr, &attr); 3816 if (retval) 3817 return retval; 3818 3819 if ((int)attr.sched_policy < 0) 3820 return -EINVAL; 3821 3822 rcu_read_lock(); 3823 retval = -ESRCH; 3824 p = find_process_by_pid(pid); 3825 if (p != NULL) 3826 retval = sched_setattr(p, &attr); 3827 rcu_read_unlock(); 3828 3829 return retval; 3830 } 3831 3832 /** 3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3834 * @pid: the pid in question. 3835 * 3836 * Return: On success, the policy of the thread. Otherwise, a negative error 3837 * code. 3838 */ 3839 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3840 { 3841 struct task_struct *p; 3842 int retval; 3843 3844 if (pid < 0) 3845 return -EINVAL; 3846 3847 retval = -ESRCH; 3848 rcu_read_lock(); 3849 p = find_process_by_pid(pid); 3850 if (p) { 3851 retval = security_task_getscheduler(p); 3852 if (!retval) 3853 retval = p->policy 3854 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3855 } 3856 rcu_read_unlock(); 3857 return retval; 3858 } 3859 3860 /** 3861 * sys_sched_getparam - get the RT priority of a thread 3862 * @pid: the pid in question. 3863 * @param: structure containing the RT priority. 3864 * 3865 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3866 * code. 3867 */ 3868 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3869 { 3870 struct sched_param lp = { .sched_priority = 0 }; 3871 struct task_struct *p; 3872 int retval; 3873 3874 if (!param || pid < 0) 3875 return -EINVAL; 3876 3877 rcu_read_lock(); 3878 p = find_process_by_pid(pid); 3879 retval = -ESRCH; 3880 if (!p) 3881 goto out_unlock; 3882 3883 retval = security_task_getscheduler(p); 3884 if (retval) 3885 goto out_unlock; 3886 3887 if (task_has_rt_policy(p)) 3888 lp.sched_priority = p->rt_priority; 3889 rcu_read_unlock(); 3890 3891 /* 3892 * This one might sleep, we cannot do it with a spinlock held ... 3893 */ 3894 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3895 3896 return retval; 3897 3898 out_unlock: 3899 rcu_read_unlock(); 3900 return retval; 3901 } 3902 3903 static int sched_read_attr(struct sched_attr __user *uattr, 3904 struct sched_attr *attr, 3905 unsigned int usize) 3906 { 3907 int ret; 3908 3909 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3910 return -EFAULT; 3911 3912 /* 3913 * If we're handed a smaller struct than we know of, 3914 * ensure all the unknown bits are 0 - i.e. old 3915 * user-space does not get uncomplete information. 3916 */ 3917 if (usize < sizeof(*attr)) { 3918 unsigned char *addr; 3919 unsigned char *end; 3920 3921 addr = (void *)attr + usize; 3922 end = (void *)attr + sizeof(*attr); 3923 3924 for (; addr < end; addr++) { 3925 if (*addr) 3926 return -EFBIG; 3927 } 3928 3929 attr->size = usize; 3930 } 3931 3932 ret = copy_to_user(uattr, attr, attr->size); 3933 if (ret) 3934 return -EFAULT; 3935 3936 return 0; 3937 } 3938 3939 /** 3940 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3941 * @pid: the pid in question. 3942 * @uattr: structure containing the extended parameters. 3943 * @size: sizeof(attr) for fwd/bwd comp. 3944 * @flags: for future extension. 3945 */ 3946 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3947 unsigned int, size, unsigned int, flags) 3948 { 3949 struct sched_attr attr = { 3950 .size = sizeof(struct sched_attr), 3951 }; 3952 struct task_struct *p; 3953 int retval; 3954 3955 if (!uattr || pid < 0 || size > PAGE_SIZE || 3956 size < SCHED_ATTR_SIZE_VER0 || flags) 3957 return -EINVAL; 3958 3959 rcu_read_lock(); 3960 p = find_process_by_pid(pid); 3961 retval = -ESRCH; 3962 if (!p) 3963 goto out_unlock; 3964 3965 retval = security_task_getscheduler(p); 3966 if (retval) 3967 goto out_unlock; 3968 3969 attr.sched_policy = p->policy; 3970 if (p->sched_reset_on_fork) 3971 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3972 if (task_has_dl_policy(p)) 3973 __getparam_dl(p, &attr); 3974 else if (task_has_rt_policy(p)) 3975 attr.sched_priority = p->rt_priority; 3976 else 3977 attr.sched_nice = task_nice(p); 3978 3979 rcu_read_unlock(); 3980 3981 retval = sched_read_attr(uattr, &attr, size); 3982 return retval; 3983 3984 out_unlock: 3985 rcu_read_unlock(); 3986 return retval; 3987 } 3988 3989 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3990 { 3991 cpumask_var_t cpus_allowed, new_mask; 3992 struct task_struct *p; 3993 int retval; 3994 3995 rcu_read_lock(); 3996 3997 p = find_process_by_pid(pid); 3998 if (!p) { 3999 rcu_read_unlock(); 4000 return -ESRCH; 4001 } 4002 4003 /* Prevent p going away */ 4004 get_task_struct(p); 4005 rcu_read_unlock(); 4006 4007 if (p->flags & PF_NO_SETAFFINITY) { 4008 retval = -EINVAL; 4009 goto out_put_task; 4010 } 4011 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4012 retval = -ENOMEM; 4013 goto out_put_task; 4014 } 4015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4016 retval = -ENOMEM; 4017 goto out_free_cpus_allowed; 4018 } 4019 retval = -EPERM; 4020 if (!check_same_owner(p)) { 4021 rcu_read_lock(); 4022 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4023 rcu_read_unlock(); 4024 goto out_free_new_mask; 4025 } 4026 rcu_read_unlock(); 4027 } 4028 4029 retval = security_task_setscheduler(p); 4030 if (retval) 4031 goto out_free_new_mask; 4032 4033 4034 cpuset_cpus_allowed(p, cpus_allowed); 4035 cpumask_and(new_mask, in_mask, cpus_allowed); 4036 4037 /* 4038 * Since bandwidth control happens on root_domain basis, 4039 * if admission test is enabled, we only admit -deadline 4040 * tasks allowed to run on all the CPUs in the task's 4041 * root_domain. 4042 */ 4043 #ifdef CONFIG_SMP 4044 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4045 rcu_read_lock(); 4046 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4047 retval = -EBUSY; 4048 rcu_read_unlock(); 4049 goto out_free_new_mask; 4050 } 4051 rcu_read_unlock(); 4052 } 4053 #endif 4054 again: 4055 retval = set_cpus_allowed_ptr(p, new_mask); 4056 4057 if (!retval) { 4058 cpuset_cpus_allowed(p, cpus_allowed); 4059 if (!cpumask_subset(new_mask, cpus_allowed)) { 4060 /* 4061 * We must have raced with a concurrent cpuset 4062 * update. Just reset the cpus_allowed to the 4063 * cpuset's cpus_allowed 4064 */ 4065 cpumask_copy(new_mask, cpus_allowed); 4066 goto again; 4067 } 4068 } 4069 out_free_new_mask: 4070 free_cpumask_var(new_mask); 4071 out_free_cpus_allowed: 4072 free_cpumask_var(cpus_allowed); 4073 out_put_task: 4074 put_task_struct(p); 4075 return retval; 4076 } 4077 4078 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4079 struct cpumask *new_mask) 4080 { 4081 if (len < cpumask_size()) 4082 cpumask_clear(new_mask); 4083 else if (len > cpumask_size()) 4084 len = cpumask_size(); 4085 4086 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4087 } 4088 4089 /** 4090 * sys_sched_setaffinity - set the cpu affinity of a process 4091 * @pid: pid of the process 4092 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4093 * @user_mask_ptr: user-space pointer to the new cpu mask 4094 * 4095 * Return: 0 on success. An error code otherwise. 4096 */ 4097 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4098 unsigned long __user *, user_mask_ptr) 4099 { 4100 cpumask_var_t new_mask; 4101 int retval; 4102 4103 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4104 return -ENOMEM; 4105 4106 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4107 if (retval == 0) 4108 retval = sched_setaffinity(pid, new_mask); 4109 free_cpumask_var(new_mask); 4110 return retval; 4111 } 4112 4113 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4114 { 4115 struct task_struct *p; 4116 unsigned long flags; 4117 int retval; 4118 4119 rcu_read_lock(); 4120 4121 retval = -ESRCH; 4122 p = find_process_by_pid(pid); 4123 if (!p) 4124 goto out_unlock; 4125 4126 retval = security_task_getscheduler(p); 4127 if (retval) 4128 goto out_unlock; 4129 4130 raw_spin_lock_irqsave(&p->pi_lock, flags); 4131 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4133 4134 out_unlock: 4135 rcu_read_unlock(); 4136 4137 return retval; 4138 } 4139 4140 /** 4141 * sys_sched_getaffinity - get the cpu affinity of a process 4142 * @pid: pid of the process 4143 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4144 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4145 * 4146 * Return: 0 on success. An error code otherwise. 4147 */ 4148 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4149 unsigned long __user *, user_mask_ptr) 4150 { 4151 int ret; 4152 cpumask_var_t mask; 4153 4154 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4155 return -EINVAL; 4156 if (len & (sizeof(unsigned long)-1)) 4157 return -EINVAL; 4158 4159 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4160 return -ENOMEM; 4161 4162 ret = sched_getaffinity(pid, mask); 4163 if (ret == 0) { 4164 size_t retlen = min_t(size_t, len, cpumask_size()); 4165 4166 if (copy_to_user(user_mask_ptr, mask, retlen)) 4167 ret = -EFAULT; 4168 else 4169 ret = retlen; 4170 } 4171 free_cpumask_var(mask); 4172 4173 return ret; 4174 } 4175 4176 /** 4177 * sys_sched_yield - yield the current processor to other threads. 4178 * 4179 * This function yields the current CPU to other tasks. If there are no 4180 * other threads running on this CPU then this function will return. 4181 * 4182 * Return: 0. 4183 */ 4184 SYSCALL_DEFINE0(sched_yield) 4185 { 4186 struct rq *rq = this_rq_lock(); 4187 4188 schedstat_inc(rq, yld_count); 4189 current->sched_class->yield_task(rq); 4190 4191 /* 4192 * Since we are going to call schedule() anyway, there's 4193 * no need to preempt or enable interrupts: 4194 */ 4195 __release(rq->lock); 4196 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4197 do_raw_spin_unlock(&rq->lock); 4198 sched_preempt_enable_no_resched(); 4199 4200 schedule(); 4201 4202 return 0; 4203 } 4204 4205 static void __cond_resched(void) 4206 { 4207 __preempt_count_add(PREEMPT_ACTIVE); 4208 __schedule(); 4209 __preempt_count_sub(PREEMPT_ACTIVE); 4210 } 4211 4212 int __sched _cond_resched(void) 4213 { 4214 if (should_resched()) { 4215 __cond_resched(); 4216 return 1; 4217 } 4218 return 0; 4219 } 4220 EXPORT_SYMBOL(_cond_resched); 4221 4222 /* 4223 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4224 * call schedule, and on return reacquire the lock. 4225 * 4226 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4227 * operations here to prevent schedule() from being called twice (once via 4228 * spin_unlock(), once by hand). 4229 */ 4230 int __cond_resched_lock(spinlock_t *lock) 4231 { 4232 int resched = should_resched(); 4233 int ret = 0; 4234 4235 lockdep_assert_held(lock); 4236 4237 if (spin_needbreak(lock) || resched) { 4238 spin_unlock(lock); 4239 if (resched) 4240 __cond_resched(); 4241 else 4242 cpu_relax(); 4243 ret = 1; 4244 spin_lock(lock); 4245 } 4246 return ret; 4247 } 4248 EXPORT_SYMBOL(__cond_resched_lock); 4249 4250 int __sched __cond_resched_softirq(void) 4251 { 4252 BUG_ON(!in_softirq()); 4253 4254 if (should_resched()) { 4255 local_bh_enable(); 4256 __cond_resched(); 4257 local_bh_disable(); 4258 return 1; 4259 } 4260 return 0; 4261 } 4262 EXPORT_SYMBOL(__cond_resched_softirq); 4263 4264 /** 4265 * yield - yield the current processor to other threads. 4266 * 4267 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4268 * 4269 * The scheduler is at all times free to pick the calling task as the most 4270 * eligible task to run, if removing the yield() call from your code breaks 4271 * it, its already broken. 4272 * 4273 * Typical broken usage is: 4274 * 4275 * while (!event) 4276 * yield(); 4277 * 4278 * where one assumes that yield() will let 'the other' process run that will 4279 * make event true. If the current task is a SCHED_FIFO task that will never 4280 * happen. Never use yield() as a progress guarantee!! 4281 * 4282 * If you want to use yield() to wait for something, use wait_event(). 4283 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4284 * If you still want to use yield(), do not! 4285 */ 4286 void __sched yield(void) 4287 { 4288 set_current_state(TASK_RUNNING); 4289 sys_sched_yield(); 4290 } 4291 EXPORT_SYMBOL(yield); 4292 4293 /** 4294 * yield_to - yield the current processor to another thread in 4295 * your thread group, or accelerate that thread toward the 4296 * processor it's on. 4297 * @p: target task 4298 * @preempt: whether task preemption is allowed or not 4299 * 4300 * It's the caller's job to ensure that the target task struct 4301 * can't go away on us before we can do any checks. 4302 * 4303 * Return: 4304 * true (>0) if we indeed boosted the target task. 4305 * false (0) if we failed to boost the target. 4306 * -ESRCH if there's no task to yield to. 4307 */ 4308 int __sched yield_to(struct task_struct *p, bool preempt) 4309 { 4310 struct task_struct *curr = current; 4311 struct rq *rq, *p_rq; 4312 unsigned long flags; 4313 int yielded = 0; 4314 4315 local_irq_save(flags); 4316 rq = this_rq(); 4317 4318 again: 4319 p_rq = task_rq(p); 4320 /* 4321 * If we're the only runnable task on the rq and target rq also 4322 * has only one task, there's absolutely no point in yielding. 4323 */ 4324 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4325 yielded = -ESRCH; 4326 goto out_irq; 4327 } 4328 4329 double_rq_lock(rq, p_rq); 4330 if (task_rq(p) != p_rq) { 4331 double_rq_unlock(rq, p_rq); 4332 goto again; 4333 } 4334 4335 if (!curr->sched_class->yield_to_task) 4336 goto out_unlock; 4337 4338 if (curr->sched_class != p->sched_class) 4339 goto out_unlock; 4340 4341 if (task_running(p_rq, p) || p->state) 4342 goto out_unlock; 4343 4344 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4345 if (yielded) { 4346 schedstat_inc(rq, yld_count); 4347 /* 4348 * Make p's CPU reschedule; pick_next_entity takes care of 4349 * fairness. 4350 */ 4351 if (preempt && rq != p_rq) 4352 resched_curr(p_rq); 4353 } 4354 4355 out_unlock: 4356 double_rq_unlock(rq, p_rq); 4357 out_irq: 4358 local_irq_restore(flags); 4359 4360 if (yielded > 0) 4361 schedule(); 4362 4363 return yielded; 4364 } 4365 EXPORT_SYMBOL_GPL(yield_to); 4366 4367 /* 4368 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4369 * that process accounting knows that this is a task in IO wait state. 4370 */ 4371 void __sched io_schedule(void) 4372 { 4373 struct rq *rq = raw_rq(); 4374 4375 delayacct_blkio_start(); 4376 atomic_inc(&rq->nr_iowait); 4377 blk_flush_plug(current); 4378 current->in_iowait = 1; 4379 schedule(); 4380 current->in_iowait = 0; 4381 atomic_dec(&rq->nr_iowait); 4382 delayacct_blkio_end(); 4383 } 4384 EXPORT_SYMBOL(io_schedule); 4385 4386 long __sched io_schedule_timeout(long timeout) 4387 { 4388 struct rq *rq = raw_rq(); 4389 long ret; 4390 4391 delayacct_blkio_start(); 4392 atomic_inc(&rq->nr_iowait); 4393 blk_flush_plug(current); 4394 current->in_iowait = 1; 4395 ret = schedule_timeout(timeout); 4396 current->in_iowait = 0; 4397 atomic_dec(&rq->nr_iowait); 4398 delayacct_blkio_end(); 4399 return ret; 4400 } 4401 4402 /** 4403 * sys_sched_get_priority_max - return maximum RT priority. 4404 * @policy: scheduling class. 4405 * 4406 * Return: On success, this syscall returns the maximum 4407 * rt_priority that can be used by a given scheduling class. 4408 * On failure, a negative error code is returned. 4409 */ 4410 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4411 { 4412 int ret = -EINVAL; 4413 4414 switch (policy) { 4415 case SCHED_FIFO: 4416 case SCHED_RR: 4417 ret = MAX_USER_RT_PRIO-1; 4418 break; 4419 case SCHED_DEADLINE: 4420 case SCHED_NORMAL: 4421 case SCHED_BATCH: 4422 case SCHED_IDLE: 4423 ret = 0; 4424 break; 4425 } 4426 return ret; 4427 } 4428 4429 /** 4430 * sys_sched_get_priority_min - return minimum RT priority. 4431 * @policy: scheduling class. 4432 * 4433 * Return: On success, this syscall returns the minimum 4434 * rt_priority that can be used by a given scheduling class. 4435 * On failure, a negative error code is returned. 4436 */ 4437 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4438 { 4439 int ret = -EINVAL; 4440 4441 switch (policy) { 4442 case SCHED_FIFO: 4443 case SCHED_RR: 4444 ret = 1; 4445 break; 4446 case SCHED_DEADLINE: 4447 case SCHED_NORMAL: 4448 case SCHED_BATCH: 4449 case SCHED_IDLE: 4450 ret = 0; 4451 } 4452 return ret; 4453 } 4454 4455 /** 4456 * sys_sched_rr_get_interval - return the default timeslice of a process. 4457 * @pid: pid of the process. 4458 * @interval: userspace pointer to the timeslice value. 4459 * 4460 * this syscall writes the default timeslice value of a given process 4461 * into the user-space timespec buffer. A value of '0' means infinity. 4462 * 4463 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4464 * an error code. 4465 */ 4466 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4467 struct timespec __user *, interval) 4468 { 4469 struct task_struct *p; 4470 unsigned int time_slice; 4471 unsigned long flags; 4472 struct rq *rq; 4473 int retval; 4474 struct timespec t; 4475 4476 if (pid < 0) 4477 return -EINVAL; 4478 4479 retval = -ESRCH; 4480 rcu_read_lock(); 4481 p = find_process_by_pid(pid); 4482 if (!p) 4483 goto out_unlock; 4484 4485 retval = security_task_getscheduler(p); 4486 if (retval) 4487 goto out_unlock; 4488 4489 rq = task_rq_lock(p, &flags); 4490 time_slice = 0; 4491 if (p->sched_class->get_rr_interval) 4492 time_slice = p->sched_class->get_rr_interval(rq, p); 4493 task_rq_unlock(rq, p, &flags); 4494 4495 rcu_read_unlock(); 4496 jiffies_to_timespec(time_slice, &t); 4497 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4498 return retval; 4499 4500 out_unlock: 4501 rcu_read_unlock(); 4502 return retval; 4503 } 4504 4505 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4506 4507 void sched_show_task(struct task_struct *p) 4508 { 4509 unsigned long free = 0; 4510 int ppid; 4511 unsigned state; 4512 4513 state = p->state ? __ffs(p->state) + 1 : 0; 4514 printk(KERN_INFO "%-15.15s %c", p->comm, 4515 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4516 #if BITS_PER_LONG == 32 4517 if (state == TASK_RUNNING) 4518 printk(KERN_CONT " running "); 4519 else 4520 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4521 #else 4522 if (state == TASK_RUNNING) 4523 printk(KERN_CONT " running task "); 4524 else 4525 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4526 #endif 4527 #ifdef CONFIG_DEBUG_STACK_USAGE 4528 free = stack_not_used(p); 4529 #endif 4530 ppid = 0; 4531 rcu_read_lock(); 4532 if (pid_alive(p)) 4533 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4534 rcu_read_unlock(); 4535 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4536 task_pid_nr(p), ppid, 4537 (unsigned long)task_thread_info(p)->flags); 4538 4539 print_worker_info(KERN_INFO, p); 4540 show_stack(p, NULL); 4541 } 4542 4543 void show_state_filter(unsigned long state_filter) 4544 { 4545 struct task_struct *g, *p; 4546 4547 #if BITS_PER_LONG == 32 4548 printk(KERN_INFO 4549 " task PC stack pid father\n"); 4550 #else 4551 printk(KERN_INFO 4552 " task PC stack pid father\n"); 4553 #endif 4554 rcu_read_lock(); 4555 for_each_process_thread(g, p) { 4556 /* 4557 * reset the NMI-timeout, listing all files on a slow 4558 * console might take a lot of time: 4559 */ 4560 touch_nmi_watchdog(); 4561 if (!state_filter || (p->state & state_filter)) 4562 sched_show_task(p); 4563 } 4564 4565 touch_all_softlockup_watchdogs(); 4566 4567 #ifdef CONFIG_SCHED_DEBUG 4568 sysrq_sched_debug_show(); 4569 #endif 4570 rcu_read_unlock(); 4571 /* 4572 * Only show locks if all tasks are dumped: 4573 */ 4574 if (!state_filter) 4575 debug_show_all_locks(); 4576 } 4577 4578 void init_idle_bootup_task(struct task_struct *idle) 4579 { 4580 idle->sched_class = &idle_sched_class; 4581 } 4582 4583 /** 4584 * init_idle - set up an idle thread for a given CPU 4585 * @idle: task in question 4586 * @cpu: cpu the idle task belongs to 4587 * 4588 * NOTE: this function does not set the idle thread's NEED_RESCHED 4589 * flag, to make booting more robust. 4590 */ 4591 void init_idle(struct task_struct *idle, int cpu) 4592 { 4593 struct rq *rq = cpu_rq(cpu); 4594 unsigned long flags; 4595 4596 raw_spin_lock_irqsave(&rq->lock, flags); 4597 4598 __sched_fork(0, idle); 4599 idle->state = TASK_RUNNING; 4600 idle->se.exec_start = sched_clock(); 4601 4602 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4603 /* 4604 * We're having a chicken and egg problem, even though we are 4605 * holding rq->lock, the cpu isn't yet set to this cpu so the 4606 * lockdep check in task_group() will fail. 4607 * 4608 * Similar case to sched_fork(). / Alternatively we could 4609 * use task_rq_lock() here and obtain the other rq->lock. 4610 * 4611 * Silence PROVE_RCU 4612 */ 4613 rcu_read_lock(); 4614 __set_task_cpu(idle, cpu); 4615 rcu_read_unlock(); 4616 4617 rq->curr = rq->idle = idle; 4618 idle->on_rq = TASK_ON_RQ_QUEUED; 4619 #if defined(CONFIG_SMP) 4620 idle->on_cpu = 1; 4621 #endif 4622 raw_spin_unlock_irqrestore(&rq->lock, flags); 4623 4624 /* Set the preempt count _outside_ the spinlocks! */ 4625 init_idle_preempt_count(idle, cpu); 4626 4627 /* 4628 * The idle tasks have their own, simple scheduling class: 4629 */ 4630 idle->sched_class = &idle_sched_class; 4631 ftrace_graph_init_idle_task(idle, cpu); 4632 vtime_init_idle(idle, cpu); 4633 #if defined(CONFIG_SMP) 4634 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4635 #endif 4636 } 4637 4638 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4639 const struct cpumask *trial) 4640 { 4641 int ret = 1, trial_cpus; 4642 struct dl_bw *cur_dl_b; 4643 unsigned long flags; 4644 4645 rcu_read_lock_sched(); 4646 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4647 trial_cpus = cpumask_weight(trial); 4648 4649 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4650 if (cur_dl_b->bw != -1 && 4651 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4652 ret = 0; 4653 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4654 rcu_read_unlock_sched(); 4655 4656 return ret; 4657 } 4658 4659 int task_can_attach(struct task_struct *p, 4660 const struct cpumask *cs_cpus_allowed) 4661 { 4662 int ret = 0; 4663 4664 /* 4665 * Kthreads which disallow setaffinity shouldn't be moved 4666 * to a new cpuset; we don't want to change their cpu 4667 * affinity and isolating such threads by their set of 4668 * allowed nodes is unnecessary. Thus, cpusets are not 4669 * applicable for such threads. This prevents checking for 4670 * success of set_cpus_allowed_ptr() on all attached tasks 4671 * before cpus_allowed may be changed. 4672 */ 4673 if (p->flags & PF_NO_SETAFFINITY) { 4674 ret = -EINVAL; 4675 goto out; 4676 } 4677 4678 #ifdef CONFIG_SMP 4679 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4680 cs_cpus_allowed)) { 4681 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4682 cs_cpus_allowed); 4683 struct dl_bw *dl_b; 4684 bool overflow; 4685 int cpus; 4686 unsigned long flags; 4687 4688 rcu_read_lock_sched(); 4689 dl_b = dl_bw_of(dest_cpu); 4690 raw_spin_lock_irqsave(&dl_b->lock, flags); 4691 cpus = dl_bw_cpus(dest_cpu); 4692 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4693 if (overflow) 4694 ret = -EBUSY; 4695 else { 4696 /* 4697 * We reserve space for this task in the destination 4698 * root_domain, as we can't fail after this point. 4699 * We will free resources in the source root_domain 4700 * later on (see set_cpus_allowed_dl()). 4701 */ 4702 __dl_add(dl_b, p->dl.dl_bw); 4703 } 4704 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4705 rcu_read_unlock_sched(); 4706 4707 } 4708 #endif 4709 out: 4710 return ret; 4711 } 4712 4713 #ifdef CONFIG_SMP 4714 /* 4715 * move_queued_task - move a queued task to new rq. 4716 * 4717 * Returns (locked) new rq. Old rq's lock is released. 4718 */ 4719 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4720 { 4721 struct rq *rq = task_rq(p); 4722 4723 lockdep_assert_held(&rq->lock); 4724 4725 dequeue_task(rq, p, 0); 4726 p->on_rq = TASK_ON_RQ_MIGRATING; 4727 set_task_cpu(p, new_cpu); 4728 raw_spin_unlock(&rq->lock); 4729 4730 rq = cpu_rq(new_cpu); 4731 4732 raw_spin_lock(&rq->lock); 4733 BUG_ON(task_cpu(p) != new_cpu); 4734 p->on_rq = TASK_ON_RQ_QUEUED; 4735 enqueue_task(rq, p, 0); 4736 check_preempt_curr(rq, p, 0); 4737 4738 return rq; 4739 } 4740 4741 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4742 { 4743 if (p->sched_class && p->sched_class->set_cpus_allowed) 4744 p->sched_class->set_cpus_allowed(p, new_mask); 4745 4746 cpumask_copy(&p->cpus_allowed, new_mask); 4747 p->nr_cpus_allowed = cpumask_weight(new_mask); 4748 } 4749 4750 /* 4751 * This is how migration works: 4752 * 4753 * 1) we invoke migration_cpu_stop() on the target CPU using 4754 * stop_one_cpu(). 4755 * 2) stopper starts to run (implicitly forcing the migrated thread 4756 * off the CPU) 4757 * 3) it checks whether the migrated task is still in the wrong runqueue. 4758 * 4) if it's in the wrong runqueue then the migration thread removes 4759 * it and puts it into the right queue. 4760 * 5) stopper completes and stop_one_cpu() returns and the migration 4761 * is done. 4762 */ 4763 4764 /* 4765 * Change a given task's CPU affinity. Migrate the thread to a 4766 * proper CPU and schedule it away if the CPU it's executing on 4767 * is removed from the allowed bitmask. 4768 * 4769 * NOTE: the caller must have a valid reference to the task, the 4770 * task must not exit() & deallocate itself prematurely. The 4771 * call is not atomic; no spinlocks may be held. 4772 */ 4773 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4774 { 4775 unsigned long flags; 4776 struct rq *rq; 4777 unsigned int dest_cpu; 4778 int ret = 0; 4779 4780 rq = task_rq_lock(p, &flags); 4781 4782 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4783 goto out; 4784 4785 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4786 ret = -EINVAL; 4787 goto out; 4788 } 4789 4790 do_set_cpus_allowed(p, new_mask); 4791 4792 /* Can the task run on the task's current CPU? If so, we're done */ 4793 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4794 goto out; 4795 4796 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4797 if (task_running(rq, p) || p->state == TASK_WAKING) { 4798 struct migration_arg arg = { p, dest_cpu }; 4799 /* Need help from migration thread: drop lock and wait. */ 4800 task_rq_unlock(rq, p, &flags); 4801 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4802 tlb_migrate_finish(p->mm); 4803 return 0; 4804 } else if (task_on_rq_queued(p)) 4805 rq = move_queued_task(p, dest_cpu); 4806 out: 4807 task_rq_unlock(rq, p, &flags); 4808 4809 return ret; 4810 } 4811 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4812 4813 /* 4814 * Move (not current) task off this cpu, onto dest cpu. We're doing 4815 * this because either it can't run here any more (set_cpus_allowed() 4816 * away from this CPU, or CPU going down), or because we're 4817 * attempting to rebalance this task on exec (sched_exec). 4818 * 4819 * So we race with normal scheduler movements, but that's OK, as long 4820 * as the task is no longer on this CPU. 4821 * 4822 * Returns non-zero if task was successfully migrated. 4823 */ 4824 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4825 { 4826 struct rq *rq; 4827 int ret = 0; 4828 4829 if (unlikely(!cpu_active(dest_cpu))) 4830 return ret; 4831 4832 rq = cpu_rq(src_cpu); 4833 4834 raw_spin_lock(&p->pi_lock); 4835 raw_spin_lock(&rq->lock); 4836 /* Already moved. */ 4837 if (task_cpu(p) != src_cpu) 4838 goto done; 4839 4840 /* Affinity changed (again). */ 4841 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4842 goto fail; 4843 4844 /* 4845 * If we're not on a rq, the next wake-up will ensure we're 4846 * placed properly. 4847 */ 4848 if (task_on_rq_queued(p)) 4849 rq = move_queued_task(p, dest_cpu); 4850 done: 4851 ret = 1; 4852 fail: 4853 raw_spin_unlock(&rq->lock); 4854 raw_spin_unlock(&p->pi_lock); 4855 return ret; 4856 } 4857 4858 #ifdef CONFIG_NUMA_BALANCING 4859 /* Migrate current task p to target_cpu */ 4860 int migrate_task_to(struct task_struct *p, int target_cpu) 4861 { 4862 struct migration_arg arg = { p, target_cpu }; 4863 int curr_cpu = task_cpu(p); 4864 4865 if (curr_cpu == target_cpu) 4866 return 0; 4867 4868 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4869 return -EINVAL; 4870 4871 /* TODO: This is not properly updating schedstats */ 4872 4873 trace_sched_move_numa(p, curr_cpu, target_cpu); 4874 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4875 } 4876 4877 /* 4878 * Requeue a task on a given node and accurately track the number of NUMA 4879 * tasks on the runqueues 4880 */ 4881 void sched_setnuma(struct task_struct *p, int nid) 4882 { 4883 struct rq *rq; 4884 unsigned long flags; 4885 bool queued, running; 4886 4887 rq = task_rq_lock(p, &flags); 4888 queued = task_on_rq_queued(p); 4889 running = task_current(rq, p); 4890 4891 if (queued) 4892 dequeue_task(rq, p, 0); 4893 if (running) 4894 put_prev_task(rq, p); 4895 4896 p->numa_preferred_nid = nid; 4897 4898 if (running) 4899 p->sched_class->set_curr_task(rq); 4900 if (queued) 4901 enqueue_task(rq, p, 0); 4902 task_rq_unlock(rq, p, &flags); 4903 } 4904 #endif 4905 4906 /* 4907 * migration_cpu_stop - this will be executed by a highprio stopper thread 4908 * and performs thread migration by bumping thread off CPU then 4909 * 'pushing' onto another runqueue. 4910 */ 4911 static int migration_cpu_stop(void *data) 4912 { 4913 struct migration_arg *arg = data; 4914 4915 /* 4916 * The original target cpu might have gone down and we might 4917 * be on another cpu but it doesn't matter. 4918 */ 4919 local_irq_disable(); 4920 /* 4921 * We need to explicitly wake pending tasks before running 4922 * __migrate_task() such that we will not miss enforcing cpus_allowed 4923 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4924 */ 4925 sched_ttwu_pending(); 4926 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4927 local_irq_enable(); 4928 return 0; 4929 } 4930 4931 #ifdef CONFIG_HOTPLUG_CPU 4932 4933 /* 4934 * Ensures that the idle task is using init_mm right before its cpu goes 4935 * offline. 4936 */ 4937 void idle_task_exit(void) 4938 { 4939 struct mm_struct *mm = current->active_mm; 4940 4941 BUG_ON(cpu_online(smp_processor_id())); 4942 4943 if (mm != &init_mm) { 4944 switch_mm(mm, &init_mm, current); 4945 finish_arch_post_lock_switch(); 4946 } 4947 mmdrop(mm); 4948 } 4949 4950 /* 4951 * Since this CPU is going 'away' for a while, fold any nr_active delta 4952 * we might have. Assumes we're called after migrate_tasks() so that the 4953 * nr_active count is stable. 4954 * 4955 * Also see the comment "Global load-average calculations". 4956 */ 4957 static void calc_load_migrate(struct rq *rq) 4958 { 4959 long delta = calc_load_fold_active(rq); 4960 if (delta) 4961 atomic_long_add(delta, &calc_load_tasks); 4962 } 4963 4964 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4965 { 4966 } 4967 4968 static const struct sched_class fake_sched_class = { 4969 .put_prev_task = put_prev_task_fake, 4970 }; 4971 4972 static struct task_struct fake_task = { 4973 /* 4974 * Avoid pull_{rt,dl}_task() 4975 */ 4976 .prio = MAX_PRIO + 1, 4977 .sched_class = &fake_sched_class, 4978 }; 4979 4980 /* 4981 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4982 * try_to_wake_up()->select_task_rq(). 4983 * 4984 * Called with rq->lock held even though we'er in stop_machine() and 4985 * there's no concurrency possible, we hold the required locks anyway 4986 * because of lock validation efforts. 4987 */ 4988 static void migrate_tasks(unsigned int dead_cpu) 4989 { 4990 struct rq *rq = cpu_rq(dead_cpu); 4991 struct task_struct *next, *stop = rq->stop; 4992 int dest_cpu; 4993 4994 /* 4995 * Fudge the rq selection such that the below task selection loop 4996 * doesn't get stuck on the currently eligible stop task. 4997 * 4998 * We're currently inside stop_machine() and the rq is either stuck 4999 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5000 * either way we should never end up calling schedule() until we're 5001 * done here. 5002 */ 5003 rq->stop = NULL; 5004 5005 /* 5006 * put_prev_task() and pick_next_task() sched 5007 * class method both need to have an up-to-date 5008 * value of rq->clock[_task] 5009 */ 5010 update_rq_clock(rq); 5011 5012 for ( ; ; ) { 5013 /* 5014 * There's this thread running, bail when that's the only 5015 * remaining thread. 5016 */ 5017 if (rq->nr_running == 1) 5018 break; 5019 5020 next = pick_next_task(rq, &fake_task); 5021 BUG_ON(!next); 5022 next->sched_class->put_prev_task(rq, next); 5023 5024 /* Find suitable destination for @next, with force if needed. */ 5025 dest_cpu = select_fallback_rq(dead_cpu, next); 5026 raw_spin_unlock(&rq->lock); 5027 5028 __migrate_task(next, dead_cpu, dest_cpu); 5029 5030 raw_spin_lock(&rq->lock); 5031 } 5032 5033 rq->stop = stop; 5034 } 5035 5036 #endif /* CONFIG_HOTPLUG_CPU */ 5037 5038 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5039 5040 static struct ctl_table sd_ctl_dir[] = { 5041 { 5042 .procname = "sched_domain", 5043 .mode = 0555, 5044 }, 5045 {} 5046 }; 5047 5048 static struct ctl_table sd_ctl_root[] = { 5049 { 5050 .procname = "kernel", 5051 .mode = 0555, 5052 .child = sd_ctl_dir, 5053 }, 5054 {} 5055 }; 5056 5057 static struct ctl_table *sd_alloc_ctl_entry(int n) 5058 { 5059 struct ctl_table *entry = 5060 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5061 5062 return entry; 5063 } 5064 5065 static void sd_free_ctl_entry(struct ctl_table **tablep) 5066 { 5067 struct ctl_table *entry; 5068 5069 /* 5070 * In the intermediate directories, both the child directory and 5071 * procname are dynamically allocated and could fail but the mode 5072 * will always be set. In the lowest directory the names are 5073 * static strings and all have proc handlers. 5074 */ 5075 for (entry = *tablep; entry->mode; entry++) { 5076 if (entry->child) 5077 sd_free_ctl_entry(&entry->child); 5078 if (entry->proc_handler == NULL) 5079 kfree(entry->procname); 5080 } 5081 5082 kfree(*tablep); 5083 *tablep = NULL; 5084 } 5085 5086 static int min_load_idx = 0; 5087 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5088 5089 static void 5090 set_table_entry(struct ctl_table *entry, 5091 const char *procname, void *data, int maxlen, 5092 umode_t mode, proc_handler *proc_handler, 5093 bool load_idx) 5094 { 5095 entry->procname = procname; 5096 entry->data = data; 5097 entry->maxlen = maxlen; 5098 entry->mode = mode; 5099 entry->proc_handler = proc_handler; 5100 5101 if (load_idx) { 5102 entry->extra1 = &min_load_idx; 5103 entry->extra2 = &max_load_idx; 5104 } 5105 } 5106 5107 static struct ctl_table * 5108 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5109 { 5110 struct ctl_table *table = sd_alloc_ctl_entry(14); 5111 5112 if (table == NULL) 5113 return NULL; 5114 5115 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5116 sizeof(long), 0644, proc_doulongvec_minmax, false); 5117 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5118 sizeof(long), 0644, proc_doulongvec_minmax, false); 5119 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5120 sizeof(int), 0644, proc_dointvec_minmax, true); 5121 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5122 sizeof(int), 0644, proc_dointvec_minmax, true); 5123 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5124 sizeof(int), 0644, proc_dointvec_minmax, true); 5125 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5126 sizeof(int), 0644, proc_dointvec_minmax, true); 5127 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5128 sizeof(int), 0644, proc_dointvec_minmax, true); 5129 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5130 sizeof(int), 0644, proc_dointvec_minmax, false); 5131 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5132 sizeof(int), 0644, proc_dointvec_minmax, false); 5133 set_table_entry(&table[9], "cache_nice_tries", 5134 &sd->cache_nice_tries, 5135 sizeof(int), 0644, proc_dointvec_minmax, false); 5136 set_table_entry(&table[10], "flags", &sd->flags, 5137 sizeof(int), 0644, proc_dointvec_minmax, false); 5138 set_table_entry(&table[11], "max_newidle_lb_cost", 5139 &sd->max_newidle_lb_cost, 5140 sizeof(long), 0644, proc_doulongvec_minmax, false); 5141 set_table_entry(&table[12], "name", sd->name, 5142 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5143 /* &table[13] is terminator */ 5144 5145 return table; 5146 } 5147 5148 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5149 { 5150 struct ctl_table *entry, *table; 5151 struct sched_domain *sd; 5152 int domain_num = 0, i; 5153 char buf[32]; 5154 5155 for_each_domain(cpu, sd) 5156 domain_num++; 5157 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5158 if (table == NULL) 5159 return NULL; 5160 5161 i = 0; 5162 for_each_domain(cpu, sd) { 5163 snprintf(buf, 32, "domain%d", i); 5164 entry->procname = kstrdup(buf, GFP_KERNEL); 5165 entry->mode = 0555; 5166 entry->child = sd_alloc_ctl_domain_table(sd); 5167 entry++; 5168 i++; 5169 } 5170 return table; 5171 } 5172 5173 static struct ctl_table_header *sd_sysctl_header; 5174 static void register_sched_domain_sysctl(void) 5175 { 5176 int i, cpu_num = num_possible_cpus(); 5177 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5178 char buf[32]; 5179 5180 WARN_ON(sd_ctl_dir[0].child); 5181 sd_ctl_dir[0].child = entry; 5182 5183 if (entry == NULL) 5184 return; 5185 5186 for_each_possible_cpu(i) { 5187 snprintf(buf, 32, "cpu%d", i); 5188 entry->procname = kstrdup(buf, GFP_KERNEL); 5189 entry->mode = 0555; 5190 entry->child = sd_alloc_ctl_cpu_table(i); 5191 entry++; 5192 } 5193 5194 WARN_ON(sd_sysctl_header); 5195 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5196 } 5197 5198 /* may be called multiple times per register */ 5199 static void unregister_sched_domain_sysctl(void) 5200 { 5201 if (sd_sysctl_header) 5202 unregister_sysctl_table(sd_sysctl_header); 5203 sd_sysctl_header = NULL; 5204 if (sd_ctl_dir[0].child) 5205 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5206 } 5207 #else 5208 static void register_sched_domain_sysctl(void) 5209 { 5210 } 5211 static void unregister_sched_domain_sysctl(void) 5212 { 5213 } 5214 #endif 5215 5216 static void set_rq_online(struct rq *rq) 5217 { 5218 if (!rq->online) { 5219 const struct sched_class *class; 5220 5221 cpumask_set_cpu(rq->cpu, rq->rd->online); 5222 rq->online = 1; 5223 5224 for_each_class(class) { 5225 if (class->rq_online) 5226 class->rq_online(rq); 5227 } 5228 } 5229 } 5230 5231 static void set_rq_offline(struct rq *rq) 5232 { 5233 if (rq->online) { 5234 const struct sched_class *class; 5235 5236 for_each_class(class) { 5237 if (class->rq_offline) 5238 class->rq_offline(rq); 5239 } 5240 5241 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5242 rq->online = 0; 5243 } 5244 } 5245 5246 /* 5247 * migration_call - callback that gets triggered when a CPU is added. 5248 * Here we can start up the necessary migration thread for the new CPU. 5249 */ 5250 static int 5251 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5252 { 5253 int cpu = (long)hcpu; 5254 unsigned long flags; 5255 struct rq *rq = cpu_rq(cpu); 5256 5257 switch (action & ~CPU_TASKS_FROZEN) { 5258 5259 case CPU_UP_PREPARE: 5260 rq->calc_load_update = calc_load_update; 5261 break; 5262 5263 case CPU_ONLINE: 5264 /* Update our root-domain */ 5265 raw_spin_lock_irqsave(&rq->lock, flags); 5266 if (rq->rd) { 5267 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5268 5269 set_rq_online(rq); 5270 } 5271 raw_spin_unlock_irqrestore(&rq->lock, flags); 5272 break; 5273 5274 #ifdef CONFIG_HOTPLUG_CPU 5275 case CPU_DYING: 5276 sched_ttwu_pending(); 5277 /* Update our root-domain */ 5278 raw_spin_lock_irqsave(&rq->lock, flags); 5279 if (rq->rd) { 5280 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5281 set_rq_offline(rq); 5282 } 5283 migrate_tasks(cpu); 5284 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5285 raw_spin_unlock_irqrestore(&rq->lock, flags); 5286 break; 5287 5288 case CPU_DEAD: 5289 calc_load_migrate(rq); 5290 break; 5291 #endif 5292 } 5293 5294 update_max_interval(); 5295 5296 return NOTIFY_OK; 5297 } 5298 5299 /* 5300 * Register at high priority so that task migration (migrate_all_tasks) 5301 * happens before everything else. This has to be lower priority than 5302 * the notifier in the perf_event subsystem, though. 5303 */ 5304 static struct notifier_block migration_notifier = { 5305 .notifier_call = migration_call, 5306 .priority = CPU_PRI_MIGRATION, 5307 }; 5308 5309 static void __cpuinit set_cpu_rq_start_time(void) 5310 { 5311 int cpu = smp_processor_id(); 5312 struct rq *rq = cpu_rq(cpu); 5313 rq->age_stamp = sched_clock_cpu(cpu); 5314 } 5315 5316 static int sched_cpu_active(struct notifier_block *nfb, 5317 unsigned long action, void *hcpu) 5318 { 5319 switch (action & ~CPU_TASKS_FROZEN) { 5320 case CPU_STARTING: 5321 set_cpu_rq_start_time(); 5322 return NOTIFY_OK; 5323 case CPU_DOWN_FAILED: 5324 set_cpu_active((long)hcpu, true); 5325 return NOTIFY_OK; 5326 default: 5327 return NOTIFY_DONE; 5328 } 5329 } 5330 5331 static int sched_cpu_inactive(struct notifier_block *nfb, 5332 unsigned long action, void *hcpu) 5333 { 5334 unsigned long flags; 5335 long cpu = (long)hcpu; 5336 struct dl_bw *dl_b; 5337 5338 switch (action & ~CPU_TASKS_FROZEN) { 5339 case CPU_DOWN_PREPARE: 5340 set_cpu_active(cpu, false); 5341 5342 /* explicitly allow suspend */ 5343 if (!(action & CPU_TASKS_FROZEN)) { 5344 bool overflow; 5345 int cpus; 5346 5347 rcu_read_lock_sched(); 5348 dl_b = dl_bw_of(cpu); 5349 5350 raw_spin_lock_irqsave(&dl_b->lock, flags); 5351 cpus = dl_bw_cpus(cpu); 5352 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5353 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5354 5355 rcu_read_unlock_sched(); 5356 5357 if (overflow) 5358 return notifier_from_errno(-EBUSY); 5359 } 5360 return NOTIFY_OK; 5361 } 5362 5363 return NOTIFY_DONE; 5364 } 5365 5366 static int __init migration_init(void) 5367 { 5368 void *cpu = (void *)(long)smp_processor_id(); 5369 int err; 5370 5371 /* Initialize migration for the boot CPU */ 5372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5373 BUG_ON(err == NOTIFY_BAD); 5374 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5375 register_cpu_notifier(&migration_notifier); 5376 5377 /* Register cpu active notifiers */ 5378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5380 5381 return 0; 5382 } 5383 early_initcall(migration_init); 5384 #endif 5385 5386 #ifdef CONFIG_SMP 5387 5388 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5389 5390 #ifdef CONFIG_SCHED_DEBUG 5391 5392 static __read_mostly int sched_debug_enabled; 5393 5394 static int __init sched_debug_setup(char *str) 5395 { 5396 sched_debug_enabled = 1; 5397 5398 return 0; 5399 } 5400 early_param("sched_debug", sched_debug_setup); 5401 5402 static inline bool sched_debug(void) 5403 { 5404 return sched_debug_enabled; 5405 } 5406 5407 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5408 struct cpumask *groupmask) 5409 { 5410 struct sched_group *group = sd->groups; 5411 char str[256]; 5412 5413 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5414 cpumask_clear(groupmask); 5415 5416 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5417 5418 if (!(sd->flags & SD_LOAD_BALANCE)) { 5419 printk("does not load-balance\n"); 5420 if (sd->parent) 5421 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5422 " has parent"); 5423 return -1; 5424 } 5425 5426 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5427 5428 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5429 printk(KERN_ERR "ERROR: domain->span does not contain " 5430 "CPU%d\n", cpu); 5431 } 5432 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5433 printk(KERN_ERR "ERROR: domain->groups does not contain" 5434 " CPU%d\n", cpu); 5435 } 5436 5437 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5438 do { 5439 if (!group) { 5440 printk("\n"); 5441 printk(KERN_ERR "ERROR: group is NULL\n"); 5442 break; 5443 } 5444 5445 /* 5446 * Even though we initialize ->capacity to something semi-sane, 5447 * we leave capacity_orig unset. This allows us to detect if 5448 * domain iteration is still funny without causing /0 traps. 5449 */ 5450 if (!group->sgc->capacity_orig) { 5451 printk(KERN_CONT "\n"); 5452 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5453 break; 5454 } 5455 5456 if (!cpumask_weight(sched_group_cpus(group))) { 5457 printk(KERN_CONT "\n"); 5458 printk(KERN_ERR "ERROR: empty group\n"); 5459 break; 5460 } 5461 5462 if (!(sd->flags & SD_OVERLAP) && 5463 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5464 printk(KERN_CONT "\n"); 5465 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5466 break; 5467 } 5468 5469 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5470 5471 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5472 5473 printk(KERN_CONT " %s", str); 5474 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5475 printk(KERN_CONT " (cpu_capacity = %d)", 5476 group->sgc->capacity); 5477 } 5478 5479 group = group->next; 5480 } while (group != sd->groups); 5481 printk(KERN_CONT "\n"); 5482 5483 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5484 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5485 5486 if (sd->parent && 5487 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5488 printk(KERN_ERR "ERROR: parent span is not a superset " 5489 "of domain->span\n"); 5490 return 0; 5491 } 5492 5493 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5494 { 5495 int level = 0; 5496 5497 if (!sched_debug_enabled) 5498 return; 5499 5500 if (!sd) { 5501 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5502 return; 5503 } 5504 5505 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5506 5507 for (;;) { 5508 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5509 break; 5510 level++; 5511 sd = sd->parent; 5512 if (!sd) 5513 break; 5514 } 5515 } 5516 #else /* !CONFIG_SCHED_DEBUG */ 5517 # define sched_domain_debug(sd, cpu) do { } while (0) 5518 static inline bool sched_debug(void) 5519 { 5520 return false; 5521 } 5522 #endif /* CONFIG_SCHED_DEBUG */ 5523 5524 static int sd_degenerate(struct sched_domain *sd) 5525 { 5526 if (cpumask_weight(sched_domain_span(sd)) == 1) 5527 return 1; 5528 5529 /* Following flags need at least 2 groups */ 5530 if (sd->flags & (SD_LOAD_BALANCE | 5531 SD_BALANCE_NEWIDLE | 5532 SD_BALANCE_FORK | 5533 SD_BALANCE_EXEC | 5534 SD_SHARE_CPUCAPACITY | 5535 SD_SHARE_PKG_RESOURCES | 5536 SD_SHARE_POWERDOMAIN)) { 5537 if (sd->groups != sd->groups->next) 5538 return 0; 5539 } 5540 5541 /* Following flags don't use groups */ 5542 if (sd->flags & (SD_WAKE_AFFINE)) 5543 return 0; 5544 5545 return 1; 5546 } 5547 5548 static int 5549 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5550 { 5551 unsigned long cflags = sd->flags, pflags = parent->flags; 5552 5553 if (sd_degenerate(parent)) 5554 return 1; 5555 5556 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5557 return 0; 5558 5559 /* Flags needing groups don't count if only 1 group in parent */ 5560 if (parent->groups == parent->groups->next) { 5561 pflags &= ~(SD_LOAD_BALANCE | 5562 SD_BALANCE_NEWIDLE | 5563 SD_BALANCE_FORK | 5564 SD_BALANCE_EXEC | 5565 SD_SHARE_CPUCAPACITY | 5566 SD_SHARE_PKG_RESOURCES | 5567 SD_PREFER_SIBLING | 5568 SD_SHARE_POWERDOMAIN); 5569 if (nr_node_ids == 1) 5570 pflags &= ~SD_SERIALIZE; 5571 } 5572 if (~cflags & pflags) 5573 return 0; 5574 5575 return 1; 5576 } 5577 5578 static void free_rootdomain(struct rcu_head *rcu) 5579 { 5580 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5581 5582 cpupri_cleanup(&rd->cpupri); 5583 cpudl_cleanup(&rd->cpudl); 5584 free_cpumask_var(rd->dlo_mask); 5585 free_cpumask_var(rd->rto_mask); 5586 free_cpumask_var(rd->online); 5587 free_cpumask_var(rd->span); 5588 kfree(rd); 5589 } 5590 5591 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5592 { 5593 struct root_domain *old_rd = NULL; 5594 unsigned long flags; 5595 5596 raw_spin_lock_irqsave(&rq->lock, flags); 5597 5598 if (rq->rd) { 5599 old_rd = rq->rd; 5600 5601 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5602 set_rq_offline(rq); 5603 5604 cpumask_clear_cpu(rq->cpu, old_rd->span); 5605 5606 /* 5607 * If we dont want to free the old_rd yet then 5608 * set old_rd to NULL to skip the freeing later 5609 * in this function: 5610 */ 5611 if (!atomic_dec_and_test(&old_rd->refcount)) 5612 old_rd = NULL; 5613 } 5614 5615 atomic_inc(&rd->refcount); 5616 rq->rd = rd; 5617 5618 cpumask_set_cpu(rq->cpu, rd->span); 5619 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5620 set_rq_online(rq); 5621 5622 raw_spin_unlock_irqrestore(&rq->lock, flags); 5623 5624 if (old_rd) 5625 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5626 } 5627 5628 static int init_rootdomain(struct root_domain *rd) 5629 { 5630 memset(rd, 0, sizeof(*rd)); 5631 5632 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5633 goto out; 5634 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5635 goto free_span; 5636 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5637 goto free_online; 5638 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5639 goto free_dlo_mask; 5640 5641 init_dl_bw(&rd->dl_bw); 5642 if (cpudl_init(&rd->cpudl) != 0) 5643 goto free_dlo_mask; 5644 5645 if (cpupri_init(&rd->cpupri) != 0) 5646 goto free_rto_mask; 5647 return 0; 5648 5649 free_rto_mask: 5650 free_cpumask_var(rd->rto_mask); 5651 free_dlo_mask: 5652 free_cpumask_var(rd->dlo_mask); 5653 free_online: 5654 free_cpumask_var(rd->online); 5655 free_span: 5656 free_cpumask_var(rd->span); 5657 out: 5658 return -ENOMEM; 5659 } 5660 5661 /* 5662 * By default the system creates a single root-domain with all cpus as 5663 * members (mimicking the global state we have today). 5664 */ 5665 struct root_domain def_root_domain; 5666 5667 static void init_defrootdomain(void) 5668 { 5669 init_rootdomain(&def_root_domain); 5670 5671 atomic_set(&def_root_domain.refcount, 1); 5672 } 5673 5674 static struct root_domain *alloc_rootdomain(void) 5675 { 5676 struct root_domain *rd; 5677 5678 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5679 if (!rd) 5680 return NULL; 5681 5682 if (init_rootdomain(rd) != 0) { 5683 kfree(rd); 5684 return NULL; 5685 } 5686 5687 return rd; 5688 } 5689 5690 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5691 { 5692 struct sched_group *tmp, *first; 5693 5694 if (!sg) 5695 return; 5696 5697 first = sg; 5698 do { 5699 tmp = sg->next; 5700 5701 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5702 kfree(sg->sgc); 5703 5704 kfree(sg); 5705 sg = tmp; 5706 } while (sg != first); 5707 } 5708 5709 static void free_sched_domain(struct rcu_head *rcu) 5710 { 5711 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5712 5713 /* 5714 * If its an overlapping domain it has private groups, iterate and 5715 * nuke them all. 5716 */ 5717 if (sd->flags & SD_OVERLAP) { 5718 free_sched_groups(sd->groups, 1); 5719 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5720 kfree(sd->groups->sgc); 5721 kfree(sd->groups); 5722 } 5723 kfree(sd); 5724 } 5725 5726 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5727 { 5728 call_rcu(&sd->rcu, free_sched_domain); 5729 } 5730 5731 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5732 { 5733 for (; sd; sd = sd->parent) 5734 destroy_sched_domain(sd, cpu); 5735 } 5736 5737 /* 5738 * Keep a special pointer to the highest sched_domain that has 5739 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5740 * allows us to avoid some pointer chasing select_idle_sibling(). 5741 * 5742 * Also keep a unique ID per domain (we use the first cpu number in 5743 * the cpumask of the domain), this allows us to quickly tell if 5744 * two cpus are in the same cache domain, see cpus_share_cache(). 5745 */ 5746 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5747 DEFINE_PER_CPU(int, sd_llc_size); 5748 DEFINE_PER_CPU(int, sd_llc_id); 5749 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5750 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5751 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5752 5753 static void update_top_cache_domain(int cpu) 5754 { 5755 struct sched_domain *sd; 5756 struct sched_domain *busy_sd = NULL; 5757 int id = cpu; 5758 int size = 1; 5759 5760 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5761 if (sd) { 5762 id = cpumask_first(sched_domain_span(sd)); 5763 size = cpumask_weight(sched_domain_span(sd)); 5764 busy_sd = sd->parent; /* sd_busy */ 5765 } 5766 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5767 5768 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5769 per_cpu(sd_llc_size, cpu) = size; 5770 per_cpu(sd_llc_id, cpu) = id; 5771 5772 sd = lowest_flag_domain(cpu, SD_NUMA); 5773 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5774 5775 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5776 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5777 } 5778 5779 /* 5780 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5781 * hold the hotplug lock. 5782 */ 5783 static void 5784 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5785 { 5786 struct rq *rq = cpu_rq(cpu); 5787 struct sched_domain *tmp; 5788 5789 /* Remove the sched domains which do not contribute to scheduling. */ 5790 for (tmp = sd; tmp; ) { 5791 struct sched_domain *parent = tmp->parent; 5792 if (!parent) 5793 break; 5794 5795 if (sd_parent_degenerate(tmp, parent)) { 5796 tmp->parent = parent->parent; 5797 if (parent->parent) 5798 parent->parent->child = tmp; 5799 /* 5800 * Transfer SD_PREFER_SIBLING down in case of a 5801 * degenerate parent; the spans match for this 5802 * so the property transfers. 5803 */ 5804 if (parent->flags & SD_PREFER_SIBLING) 5805 tmp->flags |= SD_PREFER_SIBLING; 5806 destroy_sched_domain(parent, cpu); 5807 } else 5808 tmp = tmp->parent; 5809 } 5810 5811 if (sd && sd_degenerate(sd)) { 5812 tmp = sd; 5813 sd = sd->parent; 5814 destroy_sched_domain(tmp, cpu); 5815 if (sd) 5816 sd->child = NULL; 5817 } 5818 5819 sched_domain_debug(sd, cpu); 5820 5821 rq_attach_root(rq, rd); 5822 tmp = rq->sd; 5823 rcu_assign_pointer(rq->sd, sd); 5824 destroy_sched_domains(tmp, cpu); 5825 5826 update_top_cache_domain(cpu); 5827 } 5828 5829 /* cpus with isolated domains */ 5830 static cpumask_var_t cpu_isolated_map; 5831 5832 /* Setup the mask of cpus configured for isolated domains */ 5833 static int __init isolated_cpu_setup(char *str) 5834 { 5835 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5836 cpulist_parse(str, cpu_isolated_map); 5837 return 1; 5838 } 5839 5840 __setup("isolcpus=", isolated_cpu_setup); 5841 5842 struct s_data { 5843 struct sched_domain ** __percpu sd; 5844 struct root_domain *rd; 5845 }; 5846 5847 enum s_alloc { 5848 sa_rootdomain, 5849 sa_sd, 5850 sa_sd_storage, 5851 sa_none, 5852 }; 5853 5854 /* 5855 * Build an iteration mask that can exclude certain CPUs from the upwards 5856 * domain traversal. 5857 * 5858 * Asymmetric node setups can result in situations where the domain tree is of 5859 * unequal depth, make sure to skip domains that already cover the entire 5860 * range. 5861 * 5862 * In that case build_sched_domains() will have terminated the iteration early 5863 * and our sibling sd spans will be empty. Domains should always include the 5864 * cpu they're built on, so check that. 5865 * 5866 */ 5867 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5868 { 5869 const struct cpumask *span = sched_domain_span(sd); 5870 struct sd_data *sdd = sd->private; 5871 struct sched_domain *sibling; 5872 int i; 5873 5874 for_each_cpu(i, span) { 5875 sibling = *per_cpu_ptr(sdd->sd, i); 5876 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5877 continue; 5878 5879 cpumask_set_cpu(i, sched_group_mask(sg)); 5880 } 5881 } 5882 5883 /* 5884 * Return the canonical balance cpu for this group, this is the first cpu 5885 * of this group that's also in the iteration mask. 5886 */ 5887 int group_balance_cpu(struct sched_group *sg) 5888 { 5889 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5890 } 5891 5892 static int 5893 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5894 { 5895 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5896 const struct cpumask *span = sched_domain_span(sd); 5897 struct cpumask *covered = sched_domains_tmpmask; 5898 struct sd_data *sdd = sd->private; 5899 struct sched_domain *sibling; 5900 int i; 5901 5902 cpumask_clear(covered); 5903 5904 for_each_cpu(i, span) { 5905 struct cpumask *sg_span; 5906 5907 if (cpumask_test_cpu(i, covered)) 5908 continue; 5909 5910 sibling = *per_cpu_ptr(sdd->sd, i); 5911 5912 /* See the comment near build_group_mask(). */ 5913 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5914 continue; 5915 5916 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5917 GFP_KERNEL, cpu_to_node(cpu)); 5918 5919 if (!sg) 5920 goto fail; 5921 5922 sg_span = sched_group_cpus(sg); 5923 if (sibling->child) 5924 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5925 else 5926 cpumask_set_cpu(i, sg_span); 5927 5928 cpumask_or(covered, covered, sg_span); 5929 5930 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5931 if (atomic_inc_return(&sg->sgc->ref) == 1) 5932 build_group_mask(sd, sg); 5933 5934 /* 5935 * Initialize sgc->capacity such that even if we mess up the 5936 * domains and no possible iteration will get us here, we won't 5937 * die on a /0 trap. 5938 */ 5939 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5940 sg->sgc->capacity_orig = sg->sgc->capacity; 5941 5942 /* 5943 * Make sure the first group of this domain contains the 5944 * canonical balance cpu. Otherwise the sched_domain iteration 5945 * breaks. See update_sg_lb_stats(). 5946 */ 5947 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5948 group_balance_cpu(sg) == cpu) 5949 groups = sg; 5950 5951 if (!first) 5952 first = sg; 5953 if (last) 5954 last->next = sg; 5955 last = sg; 5956 last->next = first; 5957 } 5958 sd->groups = groups; 5959 5960 return 0; 5961 5962 fail: 5963 free_sched_groups(first, 0); 5964 5965 return -ENOMEM; 5966 } 5967 5968 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5969 { 5970 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5971 struct sched_domain *child = sd->child; 5972 5973 if (child) 5974 cpu = cpumask_first(sched_domain_span(child)); 5975 5976 if (sg) { 5977 *sg = *per_cpu_ptr(sdd->sg, cpu); 5978 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5979 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5980 } 5981 5982 return cpu; 5983 } 5984 5985 /* 5986 * build_sched_groups will build a circular linked list of the groups 5987 * covered by the given span, and will set each group's ->cpumask correctly, 5988 * and ->cpu_capacity to 0. 5989 * 5990 * Assumes the sched_domain tree is fully constructed 5991 */ 5992 static int 5993 build_sched_groups(struct sched_domain *sd, int cpu) 5994 { 5995 struct sched_group *first = NULL, *last = NULL; 5996 struct sd_data *sdd = sd->private; 5997 const struct cpumask *span = sched_domain_span(sd); 5998 struct cpumask *covered; 5999 int i; 6000 6001 get_group(cpu, sdd, &sd->groups); 6002 atomic_inc(&sd->groups->ref); 6003 6004 if (cpu != cpumask_first(span)) 6005 return 0; 6006 6007 lockdep_assert_held(&sched_domains_mutex); 6008 covered = sched_domains_tmpmask; 6009 6010 cpumask_clear(covered); 6011 6012 for_each_cpu(i, span) { 6013 struct sched_group *sg; 6014 int group, j; 6015 6016 if (cpumask_test_cpu(i, covered)) 6017 continue; 6018 6019 group = get_group(i, sdd, &sg); 6020 cpumask_setall(sched_group_mask(sg)); 6021 6022 for_each_cpu(j, span) { 6023 if (get_group(j, sdd, NULL) != group) 6024 continue; 6025 6026 cpumask_set_cpu(j, covered); 6027 cpumask_set_cpu(j, sched_group_cpus(sg)); 6028 } 6029 6030 if (!first) 6031 first = sg; 6032 if (last) 6033 last->next = sg; 6034 last = sg; 6035 } 6036 last->next = first; 6037 6038 return 0; 6039 } 6040 6041 /* 6042 * Initialize sched groups cpu_capacity. 6043 * 6044 * cpu_capacity indicates the capacity of sched group, which is used while 6045 * distributing the load between different sched groups in a sched domain. 6046 * Typically cpu_capacity for all the groups in a sched domain will be same 6047 * unless there are asymmetries in the topology. If there are asymmetries, 6048 * group having more cpu_capacity will pickup more load compared to the 6049 * group having less cpu_capacity. 6050 */ 6051 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6052 { 6053 struct sched_group *sg = sd->groups; 6054 6055 WARN_ON(!sg); 6056 6057 do { 6058 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6059 sg = sg->next; 6060 } while (sg != sd->groups); 6061 6062 if (cpu != group_balance_cpu(sg)) 6063 return; 6064 6065 update_group_capacity(sd, cpu); 6066 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6067 } 6068 6069 /* 6070 * Initializers for schedule domains 6071 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6072 */ 6073 6074 static int default_relax_domain_level = -1; 6075 int sched_domain_level_max; 6076 6077 static int __init setup_relax_domain_level(char *str) 6078 { 6079 if (kstrtoint(str, 0, &default_relax_domain_level)) 6080 pr_warn("Unable to set relax_domain_level\n"); 6081 6082 return 1; 6083 } 6084 __setup("relax_domain_level=", setup_relax_domain_level); 6085 6086 static void set_domain_attribute(struct sched_domain *sd, 6087 struct sched_domain_attr *attr) 6088 { 6089 int request; 6090 6091 if (!attr || attr->relax_domain_level < 0) { 6092 if (default_relax_domain_level < 0) 6093 return; 6094 else 6095 request = default_relax_domain_level; 6096 } else 6097 request = attr->relax_domain_level; 6098 if (request < sd->level) { 6099 /* turn off idle balance on this domain */ 6100 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6101 } else { 6102 /* turn on idle balance on this domain */ 6103 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6104 } 6105 } 6106 6107 static void __sdt_free(const struct cpumask *cpu_map); 6108 static int __sdt_alloc(const struct cpumask *cpu_map); 6109 6110 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6111 const struct cpumask *cpu_map) 6112 { 6113 switch (what) { 6114 case sa_rootdomain: 6115 if (!atomic_read(&d->rd->refcount)) 6116 free_rootdomain(&d->rd->rcu); /* fall through */ 6117 case sa_sd: 6118 free_percpu(d->sd); /* fall through */ 6119 case sa_sd_storage: 6120 __sdt_free(cpu_map); /* fall through */ 6121 case sa_none: 6122 break; 6123 } 6124 } 6125 6126 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6127 const struct cpumask *cpu_map) 6128 { 6129 memset(d, 0, sizeof(*d)); 6130 6131 if (__sdt_alloc(cpu_map)) 6132 return sa_sd_storage; 6133 d->sd = alloc_percpu(struct sched_domain *); 6134 if (!d->sd) 6135 return sa_sd_storage; 6136 d->rd = alloc_rootdomain(); 6137 if (!d->rd) 6138 return sa_sd; 6139 return sa_rootdomain; 6140 } 6141 6142 /* 6143 * NULL the sd_data elements we've used to build the sched_domain and 6144 * sched_group structure so that the subsequent __free_domain_allocs() 6145 * will not free the data we're using. 6146 */ 6147 static void claim_allocations(int cpu, struct sched_domain *sd) 6148 { 6149 struct sd_data *sdd = sd->private; 6150 6151 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6152 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6153 6154 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6155 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6156 6157 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6158 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6159 } 6160 6161 #ifdef CONFIG_NUMA 6162 static int sched_domains_numa_levels; 6163 enum numa_topology_type sched_numa_topology_type; 6164 static int *sched_domains_numa_distance; 6165 int sched_max_numa_distance; 6166 static struct cpumask ***sched_domains_numa_masks; 6167 static int sched_domains_curr_level; 6168 #endif 6169 6170 /* 6171 * SD_flags allowed in topology descriptions. 6172 * 6173 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6174 * SD_SHARE_PKG_RESOURCES - describes shared caches 6175 * SD_NUMA - describes NUMA topologies 6176 * SD_SHARE_POWERDOMAIN - describes shared power domain 6177 * 6178 * Odd one out: 6179 * SD_ASYM_PACKING - describes SMT quirks 6180 */ 6181 #define TOPOLOGY_SD_FLAGS \ 6182 (SD_SHARE_CPUCAPACITY | \ 6183 SD_SHARE_PKG_RESOURCES | \ 6184 SD_NUMA | \ 6185 SD_ASYM_PACKING | \ 6186 SD_SHARE_POWERDOMAIN) 6187 6188 static struct sched_domain * 6189 sd_init(struct sched_domain_topology_level *tl, int cpu) 6190 { 6191 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6192 int sd_weight, sd_flags = 0; 6193 6194 #ifdef CONFIG_NUMA 6195 /* 6196 * Ugly hack to pass state to sd_numa_mask()... 6197 */ 6198 sched_domains_curr_level = tl->numa_level; 6199 #endif 6200 6201 sd_weight = cpumask_weight(tl->mask(cpu)); 6202 6203 if (tl->sd_flags) 6204 sd_flags = (*tl->sd_flags)(); 6205 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6206 "wrong sd_flags in topology description\n")) 6207 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6208 6209 *sd = (struct sched_domain){ 6210 .min_interval = sd_weight, 6211 .max_interval = 2*sd_weight, 6212 .busy_factor = 32, 6213 .imbalance_pct = 125, 6214 6215 .cache_nice_tries = 0, 6216 .busy_idx = 0, 6217 .idle_idx = 0, 6218 .newidle_idx = 0, 6219 .wake_idx = 0, 6220 .forkexec_idx = 0, 6221 6222 .flags = 1*SD_LOAD_BALANCE 6223 | 1*SD_BALANCE_NEWIDLE 6224 | 1*SD_BALANCE_EXEC 6225 | 1*SD_BALANCE_FORK 6226 | 0*SD_BALANCE_WAKE 6227 | 1*SD_WAKE_AFFINE 6228 | 0*SD_SHARE_CPUCAPACITY 6229 | 0*SD_SHARE_PKG_RESOURCES 6230 | 0*SD_SERIALIZE 6231 | 0*SD_PREFER_SIBLING 6232 | 0*SD_NUMA 6233 | sd_flags 6234 , 6235 6236 .last_balance = jiffies, 6237 .balance_interval = sd_weight, 6238 .smt_gain = 0, 6239 .max_newidle_lb_cost = 0, 6240 .next_decay_max_lb_cost = jiffies, 6241 #ifdef CONFIG_SCHED_DEBUG 6242 .name = tl->name, 6243 #endif 6244 }; 6245 6246 /* 6247 * Convert topological properties into behaviour. 6248 */ 6249 6250 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6251 sd->imbalance_pct = 110; 6252 sd->smt_gain = 1178; /* ~15% */ 6253 6254 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6255 sd->imbalance_pct = 117; 6256 sd->cache_nice_tries = 1; 6257 sd->busy_idx = 2; 6258 6259 #ifdef CONFIG_NUMA 6260 } else if (sd->flags & SD_NUMA) { 6261 sd->cache_nice_tries = 2; 6262 sd->busy_idx = 3; 6263 sd->idle_idx = 2; 6264 6265 sd->flags |= SD_SERIALIZE; 6266 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6267 sd->flags &= ~(SD_BALANCE_EXEC | 6268 SD_BALANCE_FORK | 6269 SD_WAKE_AFFINE); 6270 } 6271 6272 #endif 6273 } else { 6274 sd->flags |= SD_PREFER_SIBLING; 6275 sd->cache_nice_tries = 1; 6276 sd->busy_idx = 2; 6277 sd->idle_idx = 1; 6278 } 6279 6280 sd->private = &tl->data; 6281 6282 return sd; 6283 } 6284 6285 /* 6286 * Topology list, bottom-up. 6287 */ 6288 static struct sched_domain_topology_level default_topology[] = { 6289 #ifdef CONFIG_SCHED_SMT 6290 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6291 #endif 6292 #ifdef CONFIG_SCHED_MC 6293 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6294 #endif 6295 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6296 { NULL, }, 6297 }; 6298 6299 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6300 6301 #define for_each_sd_topology(tl) \ 6302 for (tl = sched_domain_topology; tl->mask; tl++) 6303 6304 void set_sched_topology(struct sched_domain_topology_level *tl) 6305 { 6306 sched_domain_topology = tl; 6307 } 6308 6309 #ifdef CONFIG_NUMA 6310 6311 static const struct cpumask *sd_numa_mask(int cpu) 6312 { 6313 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6314 } 6315 6316 static void sched_numa_warn(const char *str) 6317 { 6318 static int done = false; 6319 int i,j; 6320 6321 if (done) 6322 return; 6323 6324 done = true; 6325 6326 printk(KERN_WARNING "ERROR: %s\n\n", str); 6327 6328 for (i = 0; i < nr_node_ids; i++) { 6329 printk(KERN_WARNING " "); 6330 for (j = 0; j < nr_node_ids; j++) 6331 printk(KERN_CONT "%02d ", node_distance(i,j)); 6332 printk(KERN_CONT "\n"); 6333 } 6334 printk(KERN_WARNING "\n"); 6335 } 6336 6337 bool find_numa_distance(int distance) 6338 { 6339 int i; 6340 6341 if (distance == node_distance(0, 0)) 6342 return true; 6343 6344 for (i = 0; i < sched_domains_numa_levels; i++) { 6345 if (sched_domains_numa_distance[i] == distance) 6346 return true; 6347 } 6348 6349 return false; 6350 } 6351 6352 /* 6353 * A system can have three types of NUMA topology: 6354 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6355 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6356 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6357 * 6358 * The difference between a glueless mesh topology and a backplane 6359 * topology lies in whether communication between not directly 6360 * connected nodes goes through intermediary nodes (where programs 6361 * could run), or through backplane controllers. This affects 6362 * placement of programs. 6363 * 6364 * The type of topology can be discerned with the following tests: 6365 * - If the maximum distance between any nodes is 1 hop, the system 6366 * is directly connected. 6367 * - If for two nodes A and B, located N > 1 hops away from each other, 6368 * there is an intermediary node C, which is < N hops away from both 6369 * nodes A and B, the system is a glueless mesh. 6370 */ 6371 static void init_numa_topology_type(void) 6372 { 6373 int a, b, c, n; 6374 6375 n = sched_max_numa_distance; 6376 6377 if (n <= 1) 6378 sched_numa_topology_type = NUMA_DIRECT; 6379 6380 for_each_online_node(a) { 6381 for_each_online_node(b) { 6382 /* Find two nodes furthest removed from each other. */ 6383 if (node_distance(a, b) < n) 6384 continue; 6385 6386 /* Is there an intermediary node between a and b? */ 6387 for_each_online_node(c) { 6388 if (node_distance(a, c) < n && 6389 node_distance(b, c) < n) { 6390 sched_numa_topology_type = 6391 NUMA_GLUELESS_MESH; 6392 return; 6393 } 6394 } 6395 6396 sched_numa_topology_type = NUMA_BACKPLANE; 6397 return; 6398 } 6399 } 6400 } 6401 6402 static void sched_init_numa(void) 6403 { 6404 int next_distance, curr_distance = node_distance(0, 0); 6405 struct sched_domain_topology_level *tl; 6406 int level = 0; 6407 int i, j, k; 6408 6409 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6410 if (!sched_domains_numa_distance) 6411 return; 6412 6413 /* 6414 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6415 * unique distances in the node_distance() table. 6416 * 6417 * Assumes node_distance(0,j) includes all distances in 6418 * node_distance(i,j) in order to avoid cubic time. 6419 */ 6420 next_distance = curr_distance; 6421 for (i = 0; i < nr_node_ids; i++) { 6422 for (j = 0; j < nr_node_ids; j++) { 6423 for (k = 0; k < nr_node_ids; k++) { 6424 int distance = node_distance(i, k); 6425 6426 if (distance > curr_distance && 6427 (distance < next_distance || 6428 next_distance == curr_distance)) 6429 next_distance = distance; 6430 6431 /* 6432 * While not a strong assumption it would be nice to know 6433 * about cases where if node A is connected to B, B is not 6434 * equally connected to A. 6435 */ 6436 if (sched_debug() && node_distance(k, i) != distance) 6437 sched_numa_warn("Node-distance not symmetric"); 6438 6439 if (sched_debug() && i && !find_numa_distance(distance)) 6440 sched_numa_warn("Node-0 not representative"); 6441 } 6442 if (next_distance != curr_distance) { 6443 sched_domains_numa_distance[level++] = next_distance; 6444 sched_domains_numa_levels = level; 6445 curr_distance = next_distance; 6446 } else break; 6447 } 6448 6449 /* 6450 * In case of sched_debug() we verify the above assumption. 6451 */ 6452 if (!sched_debug()) 6453 break; 6454 } 6455 6456 if (!level) 6457 return; 6458 6459 /* 6460 * 'level' contains the number of unique distances, excluding the 6461 * identity distance node_distance(i,i). 6462 * 6463 * The sched_domains_numa_distance[] array includes the actual distance 6464 * numbers. 6465 */ 6466 6467 /* 6468 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6469 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6470 * the array will contain less then 'level' members. This could be 6471 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6472 * in other functions. 6473 * 6474 * We reset it to 'level' at the end of this function. 6475 */ 6476 sched_domains_numa_levels = 0; 6477 6478 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6479 if (!sched_domains_numa_masks) 6480 return; 6481 6482 /* 6483 * Now for each level, construct a mask per node which contains all 6484 * cpus of nodes that are that many hops away from us. 6485 */ 6486 for (i = 0; i < level; i++) { 6487 sched_domains_numa_masks[i] = 6488 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6489 if (!sched_domains_numa_masks[i]) 6490 return; 6491 6492 for (j = 0; j < nr_node_ids; j++) { 6493 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6494 if (!mask) 6495 return; 6496 6497 sched_domains_numa_masks[i][j] = mask; 6498 6499 for (k = 0; k < nr_node_ids; k++) { 6500 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6501 continue; 6502 6503 cpumask_or(mask, mask, cpumask_of_node(k)); 6504 } 6505 } 6506 } 6507 6508 /* Compute default topology size */ 6509 for (i = 0; sched_domain_topology[i].mask; i++); 6510 6511 tl = kzalloc((i + level + 1) * 6512 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6513 if (!tl) 6514 return; 6515 6516 /* 6517 * Copy the default topology bits.. 6518 */ 6519 for (i = 0; sched_domain_topology[i].mask; i++) 6520 tl[i] = sched_domain_topology[i]; 6521 6522 /* 6523 * .. and append 'j' levels of NUMA goodness. 6524 */ 6525 for (j = 0; j < level; i++, j++) { 6526 tl[i] = (struct sched_domain_topology_level){ 6527 .mask = sd_numa_mask, 6528 .sd_flags = cpu_numa_flags, 6529 .flags = SDTL_OVERLAP, 6530 .numa_level = j, 6531 SD_INIT_NAME(NUMA) 6532 }; 6533 } 6534 6535 sched_domain_topology = tl; 6536 6537 sched_domains_numa_levels = level; 6538 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6539 6540 init_numa_topology_type(); 6541 } 6542 6543 static void sched_domains_numa_masks_set(int cpu) 6544 { 6545 int i, j; 6546 int node = cpu_to_node(cpu); 6547 6548 for (i = 0; i < sched_domains_numa_levels; i++) { 6549 for (j = 0; j < nr_node_ids; j++) { 6550 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6551 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6552 } 6553 } 6554 } 6555 6556 static void sched_domains_numa_masks_clear(int cpu) 6557 { 6558 int i, j; 6559 for (i = 0; i < sched_domains_numa_levels; i++) { 6560 for (j = 0; j < nr_node_ids; j++) 6561 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6562 } 6563 } 6564 6565 /* 6566 * Update sched_domains_numa_masks[level][node] array when new cpus 6567 * are onlined. 6568 */ 6569 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6570 unsigned long action, 6571 void *hcpu) 6572 { 6573 int cpu = (long)hcpu; 6574 6575 switch (action & ~CPU_TASKS_FROZEN) { 6576 case CPU_ONLINE: 6577 sched_domains_numa_masks_set(cpu); 6578 break; 6579 6580 case CPU_DEAD: 6581 sched_domains_numa_masks_clear(cpu); 6582 break; 6583 6584 default: 6585 return NOTIFY_DONE; 6586 } 6587 6588 return NOTIFY_OK; 6589 } 6590 #else 6591 static inline void sched_init_numa(void) 6592 { 6593 } 6594 6595 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6596 unsigned long action, 6597 void *hcpu) 6598 { 6599 return 0; 6600 } 6601 #endif /* CONFIG_NUMA */ 6602 6603 static int __sdt_alloc(const struct cpumask *cpu_map) 6604 { 6605 struct sched_domain_topology_level *tl; 6606 int j; 6607 6608 for_each_sd_topology(tl) { 6609 struct sd_data *sdd = &tl->data; 6610 6611 sdd->sd = alloc_percpu(struct sched_domain *); 6612 if (!sdd->sd) 6613 return -ENOMEM; 6614 6615 sdd->sg = alloc_percpu(struct sched_group *); 6616 if (!sdd->sg) 6617 return -ENOMEM; 6618 6619 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6620 if (!sdd->sgc) 6621 return -ENOMEM; 6622 6623 for_each_cpu(j, cpu_map) { 6624 struct sched_domain *sd; 6625 struct sched_group *sg; 6626 struct sched_group_capacity *sgc; 6627 6628 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6629 GFP_KERNEL, cpu_to_node(j)); 6630 if (!sd) 6631 return -ENOMEM; 6632 6633 *per_cpu_ptr(sdd->sd, j) = sd; 6634 6635 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6636 GFP_KERNEL, cpu_to_node(j)); 6637 if (!sg) 6638 return -ENOMEM; 6639 6640 sg->next = sg; 6641 6642 *per_cpu_ptr(sdd->sg, j) = sg; 6643 6644 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6645 GFP_KERNEL, cpu_to_node(j)); 6646 if (!sgc) 6647 return -ENOMEM; 6648 6649 *per_cpu_ptr(sdd->sgc, j) = sgc; 6650 } 6651 } 6652 6653 return 0; 6654 } 6655 6656 static void __sdt_free(const struct cpumask *cpu_map) 6657 { 6658 struct sched_domain_topology_level *tl; 6659 int j; 6660 6661 for_each_sd_topology(tl) { 6662 struct sd_data *sdd = &tl->data; 6663 6664 for_each_cpu(j, cpu_map) { 6665 struct sched_domain *sd; 6666 6667 if (sdd->sd) { 6668 sd = *per_cpu_ptr(sdd->sd, j); 6669 if (sd && (sd->flags & SD_OVERLAP)) 6670 free_sched_groups(sd->groups, 0); 6671 kfree(*per_cpu_ptr(sdd->sd, j)); 6672 } 6673 6674 if (sdd->sg) 6675 kfree(*per_cpu_ptr(sdd->sg, j)); 6676 if (sdd->sgc) 6677 kfree(*per_cpu_ptr(sdd->sgc, j)); 6678 } 6679 free_percpu(sdd->sd); 6680 sdd->sd = NULL; 6681 free_percpu(sdd->sg); 6682 sdd->sg = NULL; 6683 free_percpu(sdd->sgc); 6684 sdd->sgc = NULL; 6685 } 6686 } 6687 6688 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6689 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6690 struct sched_domain *child, int cpu) 6691 { 6692 struct sched_domain *sd = sd_init(tl, cpu); 6693 if (!sd) 6694 return child; 6695 6696 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6697 if (child) { 6698 sd->level = child->level + 1; 6699 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6700 child->parent = sd; 6701 sd->child = child; 6702 6703 if (!cpumask_subset(sched_domain_span(child), 6704 sched_domain_span(sd))) { 6705 pr_err("BUG: arch topology borken\n"); 6706 #ifdef CONFIG_SCHED_DEBUG 6707 pr_err(" the %s domain not a subset of the %s domain\n", 6708 child->name, sd->name); 6709 #endif 6710 /* Fixup, ensure @sd has at least @child cpus. */ 6711 cpumask_or(sched_domain_span(sd), 6712 sched_domain_span(sd), 6713 sched_domain_span(child)); 6714 } 6715 6716 } 6717 set_domain_attribute(sd, attr); 6718 6719 return sd; 6720 } 6721 6722 /* 6723 * Build sched domains for a given set of cpus and attach the sched domains 6724 * to the individual cpus 6725 */ 6726 static int build_sched_domains(const struct cpumask *cpu_map, 6727 struct sched_domain_attr *attr) 6728 { 6729 enum s_alloc alloc_state; 6730 struct sched_domain *sd; 6731 struct s_data d; 6732 int i, ret = -ENOMEM; 6733 6734 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6735 if (alloc_state != sa_rootdomain) 6736 goto error; 6737 6738 /* Set up domains for cpus specified by the cpu_map. */ 6739 for_each_cpu(i, cpu_map) { 6740 struct sched_domain_topology_level *tl; 6741 6742 sd = NULL; 6743 for_each_sd_topology(tl) { 6744 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6745 if (tl == sched_domain_topology) 6746 *per_cpu_ptr(d.sd, i) = sd; 6747 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6748 sd->flags |= SD_OVERLAP; 6749 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6750 break; 6751 } 6752 } 6753 6754 /* Build the groups for the domains */ 6755 for_each_cpu(i, cpu_map) { 6756 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6757 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6758 if (sd->flags & SD_OVERLAP) { 6759 if (build_overlap_sched_groups(sd, i)) 6760 goto error; 6761 } else { 6762 if (build_sched_groups(sd, i)) 6763 goto error; 6764 } 6765 } 6766 } 6767 6768 /* Calculate CPU capacity for physical packages and nodes */ 6769 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6770 if (!cpumask_test_cpu(i, cpu_map)) 6771 continue; 6772 6773 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6774 claim_allocations(i, sd); 6775 init_sched_groups_capacity(i, sd); 6776 } 6777 } 6778 6779 /* Attach the domains */ 6780 rcu_read_lock(); 6781 for_each_cpu(i, cpu_map) { 6782 sd = *per_cpu_ptr(d.sd, i); 6783 cpu_attach_domain(sd, d.rd, i); 6784 } 6785 rcu_read_unlock(); 6786 6787 ret = 0; 6788 error: 6789 __free_domain_allocs(&d, alloc_state, cpu_map); 6790 return ret; 6791 } 6792 6793 static cpumask_var_t *doms_cur; /* current sched domains */ 6794 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6795 static struct sched_domain_attr *dattr_cur; 6796 /* attribues of custom domains in 'doms_cur' */ 6797 6798 /* 6799 * Special case: If a kmalloc of a doms_cur partition (array of 6800 * cpumask) fails, then fallback to a single sched domain, 6801 * as determined by the single cpumask fallback_doms. 6802 */ 6803 static cpumask_var_t fallback_doms; 6804 6805 /* 6806 * arch_update_cpu_topology lets virtualized architectures update the 6807 * cpu core maps. It is supposed to return 1 if the topology changed 6808 * or 0 if it stayed the same. 6809 */ 6810 int __weak arch_update_cpu_topology(void) 6811 { 6812 return 0; 6813 } 6814 6815 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6816 { 6817 int i; 6818 cpumask_var_t *doms; 6819 6820 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6821 if (!doms) 6822 return NULL; 6823 for (i = 0; i < ndoms; i++) { 6824 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6825 free_sched_domains(doms, i); 6826 return NULL; 6827 } 6828 } 6829 return doms; 6830 } 6831 6832 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6833 { 6834 unsigned int i; 6835 for (i = 0; i < ndoms; i++) 6836 free_cpumask_var(doms[i]); 6837 kfree(doms); 6838 } 6839 6840 /* 6841 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6842 * For now this just excludes isolated cpus, but could be used to 6843 * exclude other special cases in the future. 6844 */ 6845 static int init_sched_domains(const struct cpumask *cpu_map) 6846 { 6847 int err; 6848 6849 arch_update_cpu_topology(); 6850 ndoms_cur = 1; 6851 doms_cur = alloc_sched_domains(ndoms_cur); 6852 if (!doms_cur) 6853 doms_cur = &fallback_doms; 6854 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6855 err = build_sched_domains(doms_cur[0], NULL); 6856 register_sched_domain_sysctl(); 6857 6858 return err; 6859 } 6860 6861 /* 6862 * Detach sched domains from a group of cpus specified in cpu_map 6863 * These cpus will now be attached to the NULL domain 6864 */ 6865 static void detach_destroy_domains(const struct cpumask *cpu_map) 6866 { 6867 int i; 6868 6869 rcu_read_lock(); 6870 for_each_cpu(i, cpu_map) 6871 cpu_attach_domain(NULL, &def_root_domain, i); 6872 rcu_read_unlock(); 6873 } 6874 6875 /* handle null as "default" */ 6876 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6877 struct sched_domain_attr *new, int idx_new) 6878 { 6879 struct sched_domain_attr tmp; 6880 6881 /* fast path */ 6882 if (!new && !cur) 6883 return 1; 6884 6885 tmp = SD_ATTR_INIT; 6886 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6887 new ? (new + idx_new) : &tmp, 6888 sizeof(struct sched_domain_attr)); 6889 } 6890 6891 /* 6892 * Partition sched domains as specified by the 'ndoms_new' 6893 * cpumasks in the array doms_new[] of cpumasks. This compares 6894 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6895 * It destroys each deleted domain and builds each new domain. 6896 * 6897 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6898 * The masks don't intersect (don't overlap.) We should setup one 6899 * sched domain for each mask. CPUs not in any of the cpumasks will 6900 * not be load balanced. If the same cpumask appears both in the 6901 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6902 * it as it is. 6903 * 6904 * The passed in 'doms_new' should be allocated using 6905 * alloc_sched_domains. This routine takes ownership of it and will 6906 * free_sched_domains it when done with it. If the caller failed the 6907 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6908 * and partition_sched_domains() will fallback to the single partition 6909 * 'fallback_doms', it also forces the domains to be rebuilt. 6910 * 6911 * If doms_new == NULL it will be replaced with cpu_online_mask. 6912 * ndoms_new == 0 is a special case for destroying existing domains, 6913 * and it will not create the default domain. 6914 * 6915 * Call with hotplug lock held 6916 */ 6917 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6918 struct sched_domain_attr *dattr_new) 6919 { 6920 int i, j, n; 6921 int new_topology; 6922 6923 mutex_lock(&sched_domains_mutex); 6924 6925 /* always unregister in case we don't destroy any domains */ 6926 unregister_sched_domain_sysctl(); 6927 6928 /* Let architecture update cpu core mappings. */ 6929 new_topology = arch_update_cpu_topology(); 6930 6931 n = doms_new ? ndoms_new : 0; 6932 6933 /* Destroy deleted domains */ 6934 for (i = 0; i < ndoms_cur; i++) { 6935 for (j = 0; j < n && !new_topology; j++) { 6936 if (cpumask_equal(doms_cur[i], doms_new[j]) 6937 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6938 goto match1; 6939 } 6940 /* no match - a current sched domain not in new doms_new[] */ 6941 detach_destroy_domains(doms_cur[i]); 6942 match1: 6943 ; 6944 } 6945 6946 n = ndoms_cur; 6947 if (doms_new == NULL) { 6948 n = 0; 6949 doms_new = &fallback_doms; 6950 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6951 WARN_ON_ONCE(dattr_new); 6952 } 6953 6954 /* Build new domains */ 6955 for (i = 0; i < ndoms_new; i++) { 6956 for (j = 0; j < n && !new_topology; j++) { 6957 if (cpumask_equal(doms_new[i], doms_cur[j]) 6958 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6959 goto match2; 6960 } 6961 /* no match - add a new doms_new */ 6962 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6963 match2: 6964 ; 6965 } 6966 6967 /* Remember the new sched domains */ 6968 if (doms_cur != &fallback_doms) 6969 free_sched_domains(doms_cur, ndoms_cur); 6970 kfree(dattr_cur); /* kfree(NULL) is safe */ 6971 doms_cur = doms_new; 6972 dattr_cur = dattr_new; 6973 ndoms_cur = ndoms_new; 6974 6975 register_sched_domain_sysctl(); 6976 6977 mutex_unlock(&sched_domains_mutex); 6978 } 6979 6980 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6981 6982 /* 6983 * Update cpusets according to cpu_active mask. If cpusets are 6984 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6985 * around partition_sched_domains(). 6986 * 6987 * If we come here as part of a suspend/resume, don't touch cpusets because we 6988 * want to restore it back to its original state upon resume anyway. 6989 */ 6990 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6991 void *hcpu) 6992 { 6993 switch (action) { 6994 case CPU_ONLINE_FROZEN: 6995 case CPU_DOWN_FAILED_FROZEN: 6996 6997 /* 6998 * num_cpus_frozen tracks how many CPUs are involved in suspend 6999 * resume sequence. As long as this is not the last online 7000 * operation in the resume sequence, just build a single sched 7001 * domain, ignoring cpusets. 7002 */ 7003 num_cpus_frozen--; 7004 if (likely(num_cpus_frozen)) { 7005 partition_sched_domains(1, NULL, NULL); 7006 break; 7007 } 7008 7009 /* 7010 * This is the last CPU online operation. So fall through and 7011 * restore the original sched domains by considering the 7012 * cpuset configurations. 7013 */ 7014 7015 case CPU_ONLINE: 7016 case CPU_DOWN_FAILED: 7017 cpuset_update_active_cpus(true); 7018 break; 7019 default: 7020 return NOTIFY_DONE; 7021 } 7022 return NOTIFY_OK; 7023 } 7024 7025 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7026 void *hcpu) 7027 { 7028 switch (action) { 7029 case CPU_DOWN_PREPARE: 7030 cpuset_update_active_cpus(false); 7031 break; 7032 case CPU_DOWN_PREPARE_FROZEN: 7033 num_cpus_frozen++; 7034 partition_sched_domains(1, NULL, NULL); 7035 break; 7036 default: 7037 return NOTIFY_DONE; 7038 } 7039 return NOTIFY_OK; 7040 } 7041 7042 void __init sched_init_smp(void) 7043 { 7044 cpumask_var_t non_isolated_cpus; 7045 7046 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7047 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7048 7049 sched_init_numa(); 7050 7051 /* 7052 * There's no userspace yet to cause hotplug operations; hence all the 7053 * cpu masks are stable and all blatant races in the below code cannot 7054 * happen. 7055 */ 7056 mutex_lock(&sched_domains_mutex); 7057 init_sched_domains(cpu_active_mask); 7058 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7059 if (cpumask_empty(non_isolated_cpus)) 7060 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7061 mutex_unlock(&sched_domains_mutex); 7062 7063 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7064 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7065 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7066 7067 init_hrtick(); 7068 7069 /* Move init over to a non-isolated CPU */ 7070 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7071 BUG(); 7072 sched_init_granularity(); 7073 free_cpumask_var(non_isolated_cpus); 7074 7075 init_sched_rt_class(); 7076 init_sched_dl_class(); 7077 } 7078 #else 7079 void __init sched_init_smp(void) 7080 { 7081 sched_init_granularity(); 7082 } 7083 #endif /* CONFIG_SMP */ 7084 7085 const_debug unsigned int sysctl_timer_migration = 1; 7086 7087 int in_sched_functions(unsigned long addr) 7088 { 7089 return in_lock_functions(addr) || 7090 (addr >= (unsigned long)__sched_text_start 7091 && addr < (unsigned long)__sched_text_end); 7092 } 7093 7094 #ifdef CONFIG_CGROUP_SCHED 7095 /* 7096 * Default task group. 7097 * Every task in system belongs to this group at bootup. 7098 */ 7099 struct task_group root_task_group; 7100 LIST_HEAD(task_groups); 7101 #endif 7102 7103 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7104 7105 void __init sched_init(void) 7106 { 7107 int i, j; 7108 unsigned long alloc_size = 0, ptr; 7109 7110 #ifdef CONFIG_FAIR_GROUP_SCHED 7111 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7112 #endif 7113 #ifdef CONFIG_RT_GROUP_SCHED 7114 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7115 #endif 7116 if (alloc_size) { 7117 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7118 7119 #ifdef CONFIG_FAIR_GROUP_SCHED 7120 root_task_group.se = (struct sched_entity **)ptr; 7121 ptr += nr_cpu_ids * sizeof(void **); 7122 7123 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7124 ptr += nr_cpu_ids * sizeof(void **); 7125 7126 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7127 #ifdef CONFIG_RT_GROUP_SCHED 7128 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7129 ptr += nr_cpu_ids * sizeof(void **); 7130 7131 root_task_group.rt_rq = (struct rt_rq **)ptr; 7132 ptr += nr_cpu_ids * sizeof(void **); 7133 7134 #endif /* CONFIG_RT_GROUP_SCHED */ 7135 } 7136 #ifdef CONFIG_CPUMASK_OFFSTACK 7137 for_each_possible_cpu(i) { 7138 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7139 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7140 } 7141 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7142 7143 init_rt_bandwidth(&def_rt_bandwidth, 7144 global_rt_period(), global_rt_runtime()); 7145 init_dl_bandwidth(&def_dl_bandwidth, 7146 global_rt_period(), global_rt_runtime()); 7147 7148 #ifdef CONFIG_SMP 7149 init_defrootdomain(); 7150 #endif 7151 7152 #ifdef CONFIG_RT_GROUP_SCHED 7153 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7154 global_rt_period(), global_rt_runtime()); 7155 #endif /* CONFIG_RT_GROUP_SCHED */ 7156 7157 #ifdef CONFIG_CGROUP_SCHED 7158 list_add(&root_task_group.list, &task_groups); 7159 INIT_LIST_HEAD(&root_task_group.children); 7160 INIT_LIST_HEAD(&root_task_group.siblings); 7161 autogroup_init(&init_task); 7162 7163 #endif /* CONFIG_CGROUP_SCHED */ 7164 7165 for_each_possible_cpu(i) { 7166 struct rq *rq; 7167 7168 rq = cpu_rq(i); 7169 raw_spin_lock_init(&rq->lock); 7170 rq->nr_running = 0; 7171 rq->calc_load_active = 0; 7172 rq->calc_load_update = jiffies + LOAD_FREQ; 7173 init_cfs_rq(&rq->cfs); 7174 init_rt_rq(&rq->rt, rq); 7175 init_dl_rq(&rq->dl, rq); 7176 #ifdef CONFIG_FAIR_GROUP_SCHED 7177 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7179 /* 7180 * How much cpu bandwidth does root_task_group get? 7181 * 7182 * In case of task-groups formed thr' the cgroup filesystem, it 7183 * gets 100% of the cpu resources in the system. This overall 7184 * system cpu resource is divided among the tasks of 7185 * root_task_group and its child task-groups in a fair manner, 7186 * based on each entity's (task or task-group's) weight 7187 * (se->load.weight). 7188 * 7189 * In other words, if root_task_group has 10 tasks of weight 7190 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7191 * then A0's share of the cpu resource is: 7192 * 7193 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7194 * 7195 * We achieve this by letting root_task_group's tasks sit 7196 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7197 */ 7198 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7199 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7200 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7201 7202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7203 #ifdef CONFIG_RT_GROUP_SCHED 7204 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7205 #endif 7206 7207 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7208 rq->cpu_load[j] = 0; 7209 7210 rq->last_load_update_tick = jiffies; 7211 7212 #ifdef CONFIG_SMP 7213 rq->sd = NULL; 7214 rq->rd = NULL; 7215 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7216 rq->post_schedule = 0; 7217 rq->active_balance = 0; 7218 rq->next_balance = jiffies; 7219 rq->push_cpu = 0; 7220 rq->cpu = i; 7221 rq->online = 0; 7222 rq->idle_stamp = 0; 7223 rq->avg_idle = 2*sysctl_sched_migration_cost; 7224 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7225 7226 INIT_LIST_HEAD(&rq->cfs_tasks); 7227 7228 rq_attach_root(rq, &def_root_domain); 7229 #ifdef CONFIG_NO_HZ_COMMON 7230 rq->nohz_flags = 0; 7231 #endif 7232 #ifdef CONFIG_NO_HZ_FULL 7233 rq->last_sched_tick = 0; 7234 #endif 7235 #endif 7236 init_rq_hrtick(rq); 7237 atomic_set(&rq->nr_iowait, 0); 7238 } 7239 7240 set_load_weight(&init_task); 7241 7242 #ifdef CONFIG_PREEMPT_NOTIFIERS 7243 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7244 #endif 7245 7246 /* 7247 * The boot idle thread does lazy MMU switching as well: 7248 */ 7249 atomic_inc(&init_mm.mm_count); 7250 enter_lazy_tlb(&init_mm, current); 7251 7252 /* 7253 * Make us the idle thread. Technically, schedule() should not be 7254 * called from this thread, however somewhere below it might be, 7255 * but because we are the idle thread, we just pick up running again 7256 * when this runqueue becomes "idle". 7257 */ 7258 init_idle(current, smp_processor_id()); 7259 7260 calc_load_update = jiffies + LOAD_FREQ; 7261 7262 /* 7263 * During early bootup we pretend to be a normal task: 7264 */ 7265 current->sched_class = &fair_sched_class; 7266 7267 #ifdef CONFIG_SMP 7268 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7269 /* May be allocated at isolcpus cmdline parse time */ 7270 if (cpu_isolated_map == NULL) 7271 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7272 idle_thread_set_boot_cpu(); 7273 set_cpu_rq_start_time(); 7274 #endif 7275 init_sched_fair_class(); 7276 7277 scheduler_running = 1; 7278 } 7279 7280 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7281 static inline int preempt_count_equals(int preempt_offset) 7282 { 7283 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7284 7285 return (nested == preempt_offset); 7286 } 7287 7288 void __might_sleep(const char *file, int line, int preempt_offset) 7289 { 7290 /* 7291 * Blocking primitives will set (and therefore destroy) current->state, 7292 * since we will exit with TASK_RUNNING make sure we enter with it, 7293 * otherwise we will destroy state. 7294 */ 7295 if (WARN_ONCE(current->state != TASK_RUNNING, 7296 "do not call blocking ops when !TASK_RUNNING; " 7297 "state=%lx set at [<%p>] %pS\n", 7298 current->state, 7299 (void *)current->task_state_change, 7300 (void *)current->task_state_change)) 7301 __set_current_state(TASK_RUNNING); 7302 7303 ___might_sleep(file, line, preempt_offset); 7304 } 7305 EXPORT_SYMBOL(__might_sleep); 7306 7307 void ___might_sleep(const char *file, int line, int preempt_offset) 7308 { 7309 static unsigned long prev_jiffy; /* ratelimiting */ 7310 7311 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7312 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7313 !is_idle_task(current)) || 7314 system_state != SYSTEM_RUNNING || oops_in_progress) 7315 return; 7316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7317 return; 7318 prev_jiffy = jiffies; 7319 7320 printk(KERN_ERR 7321 "BUG: sleeping function called from invalid context at %s:%d\n", 7322 file, line); 7323 printk(KERN_ERR 7324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7325 in_atomic(), irqs_disabled(), 7326 current->pid, current->comm); 7327 7328 debug_show_held_locks(current); 7329 if (irqs_disabled()) 7330 print_irqtrace_events(current); 7331 #ifdef CONFIG_DEBUG_PREEMPT 7332 if (!preempt_count_equals(preempt_offset)) { 7333 pr_err("Preemption disabled at:"); 7334 print_ip_sym(current->preempt_disable_ip); 7335 pr_cont("\n"); 7336 } 7337 #endif 7338 dump_stack(); 7339 } 7340 EXPORT_SYMBOL(___might_sleep); 7341 #endif 7342 7343 #ifdef CONFIG_MAGIC_SYSRQ 7344 static void normalize_task(struct rq *rq, struct task_struct *p) 7345 { 7346 const struct sched_class *prev_class = p->sched_class; 7347 struct sched_attr attr = { 7348 .sched_policy = SCHED_NORMAL, 7349 }; 7350 int old_prio = p->prio; 7351 int queued; 7352 7353 queued = task_on_rq_queued(p); 7354 if (queued) 7355 dequeue_task(rq, p, 0); 7356 __setscheduler(rq, p, &attr); 7357 if (queued) { 7358 enqueue_task(rq, p, 0); 7359 resched_curr(rq); 7360 } 7361 7362 check_class_changed(rq, p, prev_class, old_prio); 7363 } 7364 7365 void normalize_rt_tasks(void) 7366 { 7367 struct task_struct *g, *p; 7368 unsigned long flags; 7369 struct rq *rq; 7370 7371 read_lock(&tasklist_lock); 7372 for_each_process_thread(g, p) { 7373 /* 7374 * Only normalize user tasks: 7375 */ 7376 if (p->flags & PF_KTHREAD) 7377 continue; 7378 7379 p->se.exec_start = 0; 7380 #ifdef CONFIG_SCHEDSTATS 7381 p->se.statistics.wait_start = 0; 7382 p->se.statistics.sleep_start = 0; 7383 p->se.statistics.block_start = 0; 7384 #endif 7385 7386 if (!dl_task(p) && !rt_task(p)) { 7387 /* 7388 * Renice negative nice level userspace 7389 * tasks back to 0: 7390 */ 7391 if (task_nice(p) < 0) 7392 set_user_nice(p, 0); 7393 continue; 7394 } 7395 7396 rq = task_rq_lock(p, &flags); 7397 normalize_task(rq, p); 7398 task_rq_unlock(rq, p, &flags); 7399 } 7400 read_unlock(&tasklist_lock); 7401 } 7402 7403 #endif /* CONFIG_MAGIC_SYSRQ */ 7404 7405 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7406 /* 7407 * These functions are only useful for the IA64 MCA handling, or kdb. 7408 * 7409 * They can only be called when the whole system has been 7410 * stopped - every CPU needs to be quiescent, and no scheduling 7411 * activity can take place. Using them for anything else would 7412 * be a serious bug, and as a result, they aren't even visible 7413 * under any other configuration. 7414 */ 7415 7416 /** 7417 * curr_task - return the current task for a given cpu. 7418 * @cpu: the processor in question. 7419 * 7420 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7421 * 7422 * Return: The current task for @cpu. 7423 */ 7424 struct task_struct *curr_task(int cpu) 7425 { 7426 return cpu_curr(cpu); 7427 } 7428 7429 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7430 7431 #ifdef CONFIG_IA64 7432 /** 7433 * set_curr_task - set the current task for a given cpu. 7434 * @cpu: the processor in question. 7435 * @p: the task pointer to set. 7436 * 7437 * Description: This function must only be used when non-maskable interrupts 7438 * are serviced on a separate stack. It allows the architecture to switch the 7439 * notion of the current task on a cpu in a non-blocking manner. This function 7440 * must be called with all CPU's synchronized, and interrupts disabled, the 7441 * and caller must save the original value of the current task (see 7442 * curr_task() above) and restore that value before reenabling interrupts and 7443 * re-starting the system. 7444 * 7445 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7446 */ 7447 void set_curr_task(int cpu, struct task_struct *p) 7448 { 7449 cpu_curr(cpu) = p; 7450 } 7451 7452 #endif 7453 7454 #ifdef CONFIG_CGROUP_SCHED 7455 /* task_group_lock serializes the addition/removal of task groups */ 7456 static DEFINE_SPINLOCK(task_group_lock); 7457 7458 static void free_sched_group(struct task_group *tg) 7459 { 7460 free_fair_sched_group(tg); 7461 free_rt_sched_group(tg); 7462 autogroup_free(tg); 7463 kfree(tg); 7464 } 7465 7466 /* allocate runqueue etc for a new task group */ 7467 struct task_group *sched_create_group(struct task_group *parent) 7468 { 7469 struct task_group *tg; 7470 7471 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7472 if (!tg) 7473 return ERR_PTR(-ENOMEM); 7474 7475 if (!alloc_fair_sched_group(tg, parent)) 7476 goto err; 7477 7478 if (!alloc_rt_sched_group(tg, parent)) 7479 goto err; 7480 7481 return tg; 7482 7483 err: 7484 free_sched_group(tg); 7485 return ERR_PTR(-ENOMEM); 7486 } 7487 7488 void sched_online_group(struct task_group *tg, struct task_group *parent) 7489 { 7490 unsigned long flags; 7491 7492 spin_lock_irqsave(&task_group_lock, flags); 7493 list_add_rcu(&tg->list, &task_groups); 7494 7495 WARN_ON(!parent); /* root should already exist */ 7496 7497 tg->parent = parent; 7498 INIT_LIST_HEAD(&tg->children); 7499 list_add_rcu(&tg->siblings, &parent->children); 7500 spin_unlock_irqrestore(&task_group_lock, flags); 7501 } 7502 7503 /* rcu callback to free various structures associated with a task group */ 7504 static void free_sched_group_rcu(struct rcu_head *rhp) 7505 { 7506 /* now it should be safe to free those cfs_rqs */ 7507 free_sched_group(container_of(rhp, struct task_group, rcu)); 7508 } 7509 7510 /* Destroy runqueue etc associated with a task group */ 7511 void sched_destroy_group(struct task_group *tg) 7512 { 7513 /* wait for possible concurrent references to cfs_rqs complete */ 7514 call_rcu(&tg->rcu, free_sched_group_rcu); 7515 } 7516 7517 void sched_offline_group(struct task_group *tg) 7518 { 7519 unsigned long flags; 7520 int i; 7521 7522 /* end participation in shares distribution */ 7523 for_each_possible_cpu(i) 7524 unregister_fair_sched_group(tg, i); 7525 7526 spin_lock_irqsave(&task_group_lock, flags); 7527 list_del_rcu(&tg->list); 7528 list_del_rcu(&tg->siblings); 7529 spin_unlock_irqrestore(&task_group_lock, flags); 7530 } 7531 7532 /* change task's runqueue when it moves between groups. 7533 * The caller of this function should have put the task in its new group 7534 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7535 * reflect its new group. 7536 */ 7537 void sched_move_task(struct task_struct *tsk) 7538 { 7539 struct task_group *tg; 7540 int queued, running; 7541 unsigned long flags; 7542 struct rq *rq; 7543 7544 rq = task_rq_lock(tsk, &flags); 7545 7546 running = task_current(rq, tsk); 7547 queued = task_on_rq_queued(tsk); 7548 7549 if (queued) 7550 dequeue_task(rq, tsk, 0); 7551 if (unlikely(running)) 7552 put_prev_task(rq, tsk); 7553 7554 /* 7555 * All callers are synchronized by task_rq_lock(); we do not use RCU 7556 * which is pointless here. Thus, we pass "true" to task_css_check() 7557 * to prevent lockdep warnings. 7558 */ 7559 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7560 struct task_group, css); 7561 tg = autogroup_task_group(tsk, tg); 7562 tsk->sched_task_group = tg; 7563 7564 #ifdef CONFIG_FAIR_GROUP_SCHED 7565 if (tsk->sched_class->task_move_group) 7566 tsk->sched_class->task_move_group(tsk, queued); 7567 else 7568 #endif 7569 set_task_rq(tsk, task_cpu(tsk)); 7570 7571 if (unlikely(running)) 7572 tsk->sched_class->set_curr_task(rq); 7573 if (queued) 7574 enqueue_task(rq, tsk, 0); 7575 7576 task_rq_unlock(rq, tsk, &flags); 7577 } 7578 #endif /* CONFIG_CGROUP_SCHED */ 7579 7580 #ifdef CONFIG_RT_GROUP_SCHED 7581 /* 7582 * Ensure that the real time constraints are schedulable. 7583 */ 7584 static DEFINE_MUTEX(rt_constraints_mutex); 7585 7586 /* Must be called with tasklist_lock held */ 7587 static inline int tg_has_rt_tasks(struct task_group *tg) 7588 { 7589 struct task_struct *g, *p; 7590 7591 for_each_process_thread(g, p) { 7592 if (rt_task(p) && task_group(p) == tg) 7593 return 1; 7594 } 7595 7596 return 0; 7597 } 7598 7599 struct rt_schedulable_data { 7600 struct task_group *tg; 7601 u64 rt_period; 7602 u64 rt_runtime; 7603 }; 7604 7605 static int tg_rt_schedulable(struct task_group *tg, void *data) 7606 { 7607 struct rt_schedulable_data *d = data; 7608 struct task_group *child; 7609 unsigned long total, sum = 0; 7610 u64 period, runtime; 7611 7612 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7613 runtime = tg->rt_bandwidth.rt_runtime; 7614 7615 if (tg == d->tg) { 7616 period = d->rt_period; 7617 runtime = d->rt_runtime; 7618 } 7619 7620 /* 7621 * Cannot have more runtime than the period. 7622 */ 7623 if (runtime > period && runtime != RUNTIME_INF) 7624 return -EINVAL; 7625 7626 /* 7627 * Ensure we don't starve existing RT tasks. 7628 */ 7629 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7630 return -EBUSY; 7631 7632 total = to_ratio(period, runtime); 7633 7634 /* 7635 * Nobody can have more than the global setting allows. 7636 */ 7637 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7638 return -EINVAL; 7639 7640 /* 7641 * The sum of our children's runtime should not exceed our own. 7642 */ 7643 list_for_each_entry_rcu(child, &tg->children, siblings) { 7644 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7645 runtime = child->rt_bandwidth.rt_runtime; 7646 7647 if (child == d->tg) { 7648 period = d->rt_period; 7649 runtime = d->rt_runtime; 7650 } 7651 7652 sum += to_ratio(period, runtime); 7653 } 7654 7655 if (sum > total) 7656 return -EINVAL; 7657 7658 return 0; 7659 } 7660 7661 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7662 { 7663 int ret; 7664 7665 struct rt_schedulable_data data = { 7666 .tg = tg, 7667 .rt_period = period, 7668 .rt_runtime = runtime, 7669 }; 7670 7671 rcu_read_lock(); 7672 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7673 rcu_read_unlock(); 7674 7675 return ret; 7676 } 7677 7678 static int tg_set_rt_bandwidth(struct task_group *tg, 7679 u64 rt_period, u64 rt_runtime) 7680 { 7681 int i, err = 0; 7682 7683 mutex_lock(&rt_constraints_mutex); 7684 read_lock(&tasklist_lock); 7685 err = __rt_schedulable(tg, rt_period, rt_runtime); 7686 if (err) 7687 goto unlock; 7688 7689 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7690 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7691 tg->rt_bandwidth.rt_runtime = rt_runtime; 7692 7693 for_each_possible_cpu(i) { 7694 struct rt_rq *rt_rq = tg->rt_rq[i]; 7695 7696 raw_spin_lock(&rt_rq->rt_runtime_lock); 7697 rt_rq->rt_runtime = rt_runtime; 7698 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7699 } 7700 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7701 unlock: 7702 read_unlock(&tasklist_lock); 7703 mutex_unlock(&rt_constraints_mutex); 7704 7705 return err; 7706 } 7707 7708 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7709 { 7710 u64 rt_runtime, rt_period; 7711 7712 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7713 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7714 if (rt_runtime_us < 0) 7715 rt_runtime = RUNTIME_INF; 7716 7717 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7718 } 7719 7720 static long sched_group_rt_runtime(struct task_group *tg) 7721 { 7722 u64 rt_runtime_us; 7723 7724 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7725 return -1; 7726 7727 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7728 do_div(rt_runtime_us, NSEC_PER_USEC); 7729 return rt_runtime_us; 7730 } 7731 7732 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7733 { 7734 u64 rt_runtime, rt_period; 7735 7736 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7737 rt_runtime = tg->rt_bandwidth.rt_runtime; 7738 7739 if (rt_period == 0) 7740 return -EINVAL; 7741 7742 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7743 } 7744 7745 static long sched_group_rt_period(struct task_group *tg) 7746 { 7747 u64 rt_period_us; 7748 7749 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7750 do_div(rt_period_us, NSEC_PER_USEC); 7751 return rt_period_us; 7752 } 7753 #endif /* CONFIG_RT_GROUP_SCHED */ 7754 7755 #ifdef CONFIG_RT_GROUP_SCHED 7756 static int sched_rt_global_constraints(void) 7757 { 7758 int ret = 0; 7759 7760 mutex_lock(&rt_constraints_mutex); 7761 read_lock(&tasklist_lock); 7762 ret = __rt_schedulable(NULL, 0, 0); 7763 read_unlock(&tasklist_lock); 7764 mutex_unlock(&rt_constraints_mutex); 7765 7766 return ret; 7767 } 7768 7769 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7770 { 7771 /* Don't accept realtime tasks when there is no way for them to run */ 7772 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7773 return 0; 7774 7775 return 1; 7776 } 7777 7778 #else /* !CONFIG_RT_GROUP_SCHED */ 7779 static int sched_rt_global_constraints(void) 7780 { 7781 unsigned long flags; 7782 int i, ret = 0; 7783 7784 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7785 for_each_possible_cpu(i) { 7786 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7787 7788 raw_spin_lock(&rt_rq->rt_runtime_lock); 7789 rt_rq->rt_runtime = global_rt_runtime(); 7790 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7791 } 7792 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7793 7794 return ret; 7795 } 7796 #endif /* CONFIG_RT_GROUP_SCHED */ 7797 7798 static int sched_dl_global_constraints(void) 7799 { 7800 u64 runtime = global_rt_runtime(); 7801 u64 period = global_rt_period(); 7802 u64 new_bw = to_ratio(period, runtime); 7803 struct dl_bw *dl_b; 7804 int cpu, ret = 0; 7805 unsigned long flags; 7806 7807 /* 7808 * Here we want to check the bandwidth not being set to some 7809 * value smaller than the currently allocated bandwidth in 7810 * any of the root_domains. 7811 * 7812 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7813 * cycling on root_domains... Discussion on different/better 7814 * solutions is welcome! 7815 */ 7816 for_each_possible_cpu(cpu) { 7817 rcu_read_lock_sched(); 7818 dl_b = dl_bw_of(cpu); 7819 7820 raw_spin_lock_irqsave(&dl_b->lock, flags); 7821 if (new_bw < dl_b->total_bw) 7822 ret = -EBUSY; 7823 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7824 7825 rcu_read_unlock_sched(); 7826 7827 if (ret) 7828 break; 7829 } 7830 7831 return ret; 7832 } 7833 7834 static void sched_dl_do_global(void) 7835 { 7836 u64 new_bw = -1; 7837 struct dl_bw *dl_b; 7838 int cpu; 7839 unsigned long flags; 7840 7841 def_dl_bandwidth.dl_period = global_rt_period(); 7842 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7843 7844 if (global_rt_runtime() != RUNTIME_INF) 7845 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7846 7847 /* 7848 * FIXME: As above... 7849 */ 7850 for_each_possible_cpu(cpu) { 7851 rcu_read_lock_sched(); 7852 dl_b = dl_bw_of(cpu); 7853 7854 raw_spin_lock_irqsave(&dl_b->lock, flags); 7855 dl_b->bw = new_bw; 7856 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7857 7858 rcu_read_unlock_sched(); 7859 } 7860 } 7861 7862 static int sched_rt_global_validate(void) 7863 { 7864 if (sysctl_sched_rt_period <= 0) 7865 return -EINVAL; 7866 7867 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7868 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7869 return -EINVAL; 7870 7871 return 0; 7872 } 7873 7874 static void sched_rt_do_global(void) 7875 { 7876 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7877 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7878 } 7879 7880 int sched_rt_handler(struct ctl_table *table, int write, 7881 void __user *buffer, size_t *lenp, 7882 loff_t *ppos) 7883 { 7884 int old_period, old_runtime; 7885 static DEFINE_MUTEX(mutex); 7886 int ret; 7887 7888 mutex_lock(&mutex); 7889 old_period = sysctl_sched_rt_period; 7890 old_runtime = sysctl_sched_rt_runtime; 7891 7892 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7893 7894 if (!ret && write) { 7895 ret = sched_rt_global_validate(); 7896 if (ret) 7897 goto undo; 7898 7899 ret = sched_rt_global_constraints(); 7900 if (ret) 7901 goto undo; 7902 7903 ret = sched_dl_global_constraints(); 7904 if (ret) 7905 goto undo; 7906 7907 sched_rt_do_global(); 7908 sched_dl_do_global(); 7909 } 7910 if (0) { 7911 undo: 7912 sysctl_sched_rt_period = old_period; 7913 sysctl_sched_rt_runtime = old_runtime; 7914 } 7915 mutex_unlock(&mutex); 7916 7917 return ret; 7918 } 7919 7920 int sched_rr_handler(struct ctl_table *table, int write, 7921 void __user *buffer, size_t *lenp, 7922 loff_t *ppos) 7923 { 7924 int ret; 7925 static DEFINE_MUTEX(mutex); 7926 7927 mutex_lock(&mutex); 7928 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7929 /* make sure that internally we keep jiffies */ 7930 /* also, writing zero resets timeslice to default */ 7931 if (!ret && write) { 7932 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7933 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7934 } 7935 mutex_unlock(&mutex); 7936 return ret; 7937 } 7938 7939 #ifdef CONFIG_CGROUP_SCHED 7940 7941 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7942 { 7943 return css ? container_of(css, struct task_group, css) : NULL; 7944 } 7945 7946 static struct cgroup_subsys_state * 7947 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7948 { 7949 struct task_group *parent = css_tg(parent_css); 7950 struct task_group *tg; 7951 7952 if (!parent) { 7953 /* This is early initialization for the top cgroup */ 7954 return &root_task_group.css; 7955 } 7956 7957 tg = sched_create_group(parent); 7958 if (IS_ERR(tg)) 7959 return ERR_PTR(-ENOMEM); 7960 7961 return &tg->css; 7962 } 7963 7964 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7965 { 7966 struct task_group *tg = css_tg(css); 7967 struct task_group *parent = css_tg(css->parent); 7968 7969 if (parent) 7970 sched_online_group(tg, parent); 7971 return 0; 7972 } 7973 7974 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7975 { 7976 struct task_group *tg = css_tg(css); 7977 7978 sched_destroy_group(tg); 7979 } 7980 7981 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7982 { 7983 struct task_group *tg = css_tg(css); 7984 7985 sched_offline_group(tg); 7986 } 7987 7988 static void cpu_cgroup_fork(struct task_struct *task) 7989 { 7990 sched_move_task(task); 7991 } 7992 7993 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7994 struct cgroup_taskset *tset) 7995 { 7996 struct task_struct *task; 7997 7998 cgroup_taskset_for_each(task, tset) { 7999 #ifdef CONFIG_RT_GROUP_SCHED 8000 if (!sched_rt_can_attach(css_tg(css), task)) 8001 return -EINVAL; 8002 #else 8003 /* We don't support RT-tasks being in separate groups */ 8004 if (task->sched_class != &fair_sched_class) 8005 return -EINVAL; 8006 #endif 8007 } 8008 return 0; 8009 } 8010 8011 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8012 struct cgroup_taskset *tset) 8013 { 8014 struct task_struct *task; 8015 8016 cgroup_taskset_for_each(task, tset) 8017 sched_move_task(task); 8018 } 8019 8020 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8021 struct cgroup_subsys_state *old_css, 8022 struct task_struct *task) 8023 { 8024 /* 8025 * cgroup_exit() is called in the copy_process() failure path. 8026 * Ignore this case since the task hasn't ran yet, this avoids 8027 * trying to poke a half freed task state from generic code. 8028 */ 8029 if (!(task->flags & PF_EXITING)) 8030 return; 8031 8032 sched_move_task(task); 8033 } 8034 8035 #ifdef CONFIG_FAIR_GROUP_SCHED 8036 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8037 struct cftype *cftype, u64 shareval) 8038 { 8039 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8040 } 8041 8042 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8043 struct cftype *cft) 8044 { 8045 struct task_group *tg = css_tg(css); 8046 8047 return (u64) scale_load_down(tg->shares); 8048 } 8049 8050 #ifdef CONFIG_CFS_BANDWIDTH 8051 static DEFINE_MUTEX(cfs_constraints_mutex); 8052 8053 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8054 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8055 8056 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8057 8058 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8059 { 8060 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8061 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8062 8063 if (tg == &root_task_group) 8064 return -EINVAL; 8065 8066 /* 8067 * Ensure we have at some amount of bandwidth every period. This is 8068 * to prevent reaching a state of large arrears when throttled via 8069 * entity_tick() resulting in prolonged exit starvation. 8070 */ 8071 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8072 return -EINVAL; 8073 8074 /* 8075 * Likewise, bound things on the otherside by preventing insane quota 8076 * periods. This also allows us to normalize in computing quota 8077 * feasibility. 8078 */ 8079 if (period > max_cfs_quota_period) 8080 return -EINVAL; 8081 8082 /* 8083 * Prevent race between setting of cfs_rq->runtime_enabled and 8084 * unthrottle_offline_cfs_rqs(). 8085 */ 8086 get_online_cpus(); 8087 mutex_lock(&cfs_constraints_mutex); 8088 ret = __cfs_schedulable(tg, period, quota); 8089 if (ret) 8090 goto out_unlock; 8091 8092 runtime_enabled = quota != RUNTIME_INF; 8093 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8094 /* 8095 * If we need to toggle cfs_bandwidth_used, off->on must occur 8096 * before making related changes, and on->off must occur afterwards 8097 */ 8098 if (runtime_enabled && !runtime_was_enabled) 8099 cfs_bandwidth_usage_inc(); 8100 raw_spin_lock_irq(&cfs_b->lock); 8101 cfs_b->period = ns_to_ktime(period); 8102 cfs_b->quota = quota; 8103 8104 __refill_cfs_bandwidth_runtime(cfs_b); 8105 /* restart the period timer (if active) to handle new period expiry */ 8106 if (runtime_enabled && cfs_b->timer_active) { 8107 /* force a reprogram */ 8108 __start_cfs_bandwidth(cfs_b, true); 8109 } 8110 raw_spin_unlock_irq(&cfs_b->lock); 8111 8112 for_each_online_cpu(i) { 8113 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8114 struct rq *rq = cfs_rq->rq; 8115 8116 raw_spin_lock_irq(&rq->lock); 8117 cfs_rq->runtime_enabled = runtime_enabled; 8118 cfs_rq->runtime_remaining = 0; 8119 8120 if (cfs_rq->throttled) 8121 unthrottle_cfs_rq(cfs_rq); 8122 raw_spin_unlock_irq(&rq->lock); 8123 } 8124 if (runtime_was_enabled && !runtime_enabled) 8125 cfs_bandwidth_usage_dec(); 8126 out_unlock: 8127 mutex_unlock(&cfs_constraints_mutex); 8128 put_online_cpus(); 8129 8130 return ret; 8131 } 8132 8133 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8134 { 8135 u64 quota, period; 8136 8137 period = ktime_to_ns(tg->cfs_bandwidth.period); 8138 if (cfs_quota_us < 0) 8139 quota = RUNTIME_INF; 8140 else 8141 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8142 8143 return tg_set_cfs_bandwidth(tg, period, quota); 8144 } 8145 8146 long tg_get_cfs_quota(struct task_group *tg) 8147 { 8148 u64 quota_us; 8149 8150 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8151 return -1; 8152 8153 quota_us = tg->cfs_bandwidth.quota; 8154 do_div(quota_us, NSEC_PER_USEC); 8155 8156 return quota_us; 8157 } 8158 8159 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8160 { 8161 u64 quota, period; 8162 8163 period = (u64)cfs_period_us * NSEC_PER_USEC; 8164 quota = tg->cfs_bandwidth.quota; 8165 8166 return tg_set_cfs_bandwidth(tg, period, quota); 8167 } 8168 8169 long tg_get_cfs_period(struct task_group *tg) 8170 { 8171 u64 cfs_period_us; 8172 8173 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8174 do_div(cfs_period_us, NSEC_PER_USEC); 8175 8176 return cfs_period_us; 8177 } 8178 8179 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8180 struct cftype *cft) 8181 { 8182 return tg_get_cfs_quota(css_tg(css)); 8183 } 8184 8185 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8186 struct cftype *cftype, s64 cfs_quota_us) 8187 { 8188 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8189 } 8190 8191 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8192 struct cftype *cft) 8193 { 8194 return tg_get_cfs_period(css_tg(css)); 8195 } 8196 8197 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8198 struct cftype *cftype, u64 cfs_period_us) 8199 { 8200 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8201 } 8202 8203 struct cfs_schedulable_data { 8204 struct task_group *tg; 8205 u64 period, quota; 8206 }; 8207 8208 /* 8209 * normalize group quota/period to be quota/max_period 8210 * note: units are usecs 8211 */ 8212 static u64 normalize_cfs_quota(struct task_group *tg, 8213 struct cfs_schedulable_data *d) 8214 { 8215 u64 quota, period; 8216 8217 if (tg == d->tg) { 8218 period = d->period; 8219 quota = d->quota; 8220 } else { 8221 period = tg_get_cfs_period(tg); 8222 quota = tg_get_cfs_quota(tg); 8223 } 8224 8225 /* note: these should typically be equivalent */ 8226 if (quota == RUNTIME_INF || quota == -1) 8227 return RUNTIME_INF; 8228 8229 return to_ratio(period, quota); 8230 } 8231 8232 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8233 { 8234 struct cfs_schedulable_data *d = data; 8235 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8236 s64 quota = 0, parent_quota = -1; 8237 8238 if (!tg->parent) { 8239 quota = RUNTIME_INF; 8240 } else { 8241 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8242 8243 quota = normalize_cfs_quota(tg, d); 8244 parent_quota = parent_b->hierarchical_quota; 8245 8246 /* 8247 * ensure max(child_quota) <= parent_quota, inherit when no 8248 * limit is set 8249 */ 8250 if (quota == RUNTIME_INF) 8251 quota = parent_quota; 8252 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8253 return -EINVAL; 8254 } 8255 cfs_b->hierarchical_quota = quota; 8256 8257 return 0; 8258 } 8259 8260 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8261 { 8262 int ret; 8263 struct cfs_schedulable_data data = { 8264 .tg = tg, 8265 .period = period, 8266 .quota = quota, 8267 }; 8268 8269 if (quota != RUNTIME_INF) { 8270 do_div(data.period, NSEC_PER_USEC); 8271 do_div(data.quota, NSEC_PER_USEC); 8272 } 8273 8274 rcu_read_lock(); 8275 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8276 rcu_read_unlock(); 8277 8278 return ret; 8279 } 8280 8281 static int cpu_stats_show(struct seq_file *sf, void *v) 8282 { 8283 struct task_group *tg = css_tg(seq_css(sf)); 8284 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8285 8286 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8287 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8288 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8289 8290 return 0; 8291 } 8292 #endif /* CONFIG_CFS_BANDWIDTH */ 8293 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8294 8295 #ifdef CONFIG_RT_GROUP_SCHED 8296 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8297 struct cftype *cft, s64 val) 8298 { 8299 return sched_group_set_rt_runtime(css_tg(css), val); 8300 } 8301 8302 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8303 struct cftype *cft) 8304 { 8305 return sched_group_rt_runtime(css_tg(css)); 8306 } 8307 8308 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8309 struct cftype *cftype, u64 rt_period_us) 8310 { 8311 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8312 } 8313 8314 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8315 struct cftype *cft) 8316 { 8317 return sched_group_rt_period(css_tg(css)); 8318 } 8319 #endif /* CONFIG_RT_GROUP_SCHED */ 8320 8321 static struct cftype cpu_files[] = { 8322 #ifdef CONFIG_FAIR_GROUP_SCHED 8323 { 8324 .name = "shares", 8325 .read_u64 = cpu_shares_read_u64, 8326 .write_u64 = cpu_shares_write_u64, 8327 }, 8328 #endif 8329 #ifdef CONFIG_CFS_BANDWIDTH 8330 { 8331 .name = "cfs_quota_us", 8332 .read_s64 = cpu_cfs_quota_read_s64, 8333 .write_s64 = cpu_cfs_quota_write_s64, 8334 }, 8335 { 8336 .name = "cfs_period_us", 8337 .read_u64 = cpu_cfs_period_read_u64, 8338 .write_u64 = cpu_cfs_period_write_u64, 8339 }, 8340 { 8341 .name = "stat", 8342 .seq_show = cpu_stats_show, 8343 }, 8344 #endif 8345 #ifdef CONFIG_RT_GROUP_SCHED 8346 { 8347 .name = "rt_runtime_us", 8348 .read_s64 = cpu_rt_runtime_read, 8349 .write_s64 = cpu_rt_runtime_write, 8350 }, 8351 { 8352 .name = "rt_period_us", 8353 .read_u64 = cpu_rt_period_read_uint, 8354 .write_u64 = cpu_rt_period_write_uint, 8355 }, 8356 #endif 8357 { } /* terminate */ 8358 }; 8359 8360 struct cgroup_subsys cpu_cgrp_subsys = { 8361 .css_alloc = cpu_cgroup_css_alloc, 8362 .css_free = cpu_cgroup_css_free, 8363 .css_online = cpu_cgroup_css_online, 8364 .css_offline = cpu_cgroup_css_offline, 8365 .fork = cpu_cgroup_fork, 8366 .can_attach = cpu_cgroup_can_attach, 8367 .attach = cpu_cgroup_attach, 8368 .exit = cpu_cgroup_exit, 8369 .legacy_cftypes = cpu_files, 8370 .early_init = 1, 8371 }; 8372 8373 #endif /* CONFIG_CGROUP_SCHED */ 8374 8375 void dump_cpu_task(int cpu) 8376 { 8377 pr_info("Task dump for CPU %d:\n", cpu); 8378 sched_show_task(cpu_curr(cpu)); 8379 } 8380