xref: /openbmc/linux/kernel/sched/core.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519 
520 void resched_task(struct task_struct *p)
521 {
522 	int cpu;
523 
524 	assert_raw_spin_locked(&task_rq(p)->lock);
525 
526 	if (test_tsk_need_resched(p))
527 		return;
528 
529 	set_tsk_need_resched(p);
530 
531 	cpu = task_cpu(p);
532 	if (cpu == smp_processor_id())
533 		return;
534 
535 	/* NEED_RESCHED must be visible before we test polling */
536 	smp_mb();
537 	if (!tsk_is_polling(p))
538 		smp_send_reschedule(cpu);
539 }
540 
541 void resched_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 	unsigned long flags;
545 
546 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 		return;
548 	resched_task(cpu_curr(cpu));
549 	raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551 
552 #ifdef CONFIG_NO_HZ
553 /*
554  * In the semi idle case, use the nearest busy cpu for migrating timers
555  * from an idle cpu.  This is good for power-savings.
556  *
557  * We don't do similar optimization for completely idle system, as
558  * selecting an idle cpu will add more delays to the timers than intended
559  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560  */
561 int get_nohz_timer_target(void)
562 {
563 	int cpu = smp_processor_id();
564 	int i;
565 	struct sched_domain *sd;
566 
567 	rcu_read_lock();
568 	for_each_domain(cpu, sd) {
569 		for_each_cpu(i, sched_domain_span(sd)) {
570 			if (!idle_cpu(i)) {
571 				cpu = i;
572 				goto unlock;
573 			}
574 		}
575 	}
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	/*
598 	 * This is safe, as this function is called with the timer
599 	 * wheel base lock of (cpu) held. When the CPU is on the way
600 	 * to idle and has not yet set rq->curr to idle then it will
601 	 * be serialized on the timer wheel base lock and take the new
602 	 * timer into account automatically.
603 	 */
604 	if (rq->curr != rq->idle)
605 		return;
606 
607 	/*
608 	 * We can set TIF_RESCHED on the idle task of the other CPU
609 	 * lockless. The worst case is that the other CPU runs the
610 	 * idle task through an additional NOOP schedule()
611 	 */
612 	set_tsk_need_resched(rq->idle);
613 
614 	/* NEED_RESCHED must be visible before we test polling */
615 	smp_mb();
616 	if (!tsk_is_polling(rq->idle))
617 		smp_send_reschedule(cpu);
618 }
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	int cpu = smp_processor_id();
623 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625 
626 #else /* CONFIG_NO_HZ */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ */
634 
635 void sched_avg_update(struct rq *rq)
636 {
637 	s64 period = sched_avg_period();
638 
639 	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 		/*
641 		 * Inline assembly required to prevent the compiler
642 		 * optimising this loop into a divmod call.
643 		 * See __iter_div_u64_rem() for another example of this.
644 		 */
645 		asm("" : "+rm" (rq->age_stamp));
646 		rq->age_stamp += period;
647 		rq->rt_avg /= 2;
648 	}
649 }
650 
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 	assert_raw_spin_locked(&task_rq(p)->lock);
655 	set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658 
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662  * Iterate task_group tree rooted at *from, calling @down when first entering a
663  * node and @up when leaving it for the final time.
664  *
665  * Caller must hold rcu_lock or sufficient equivalent.
666  */
667 int walk_tg_tree_from(struct task_group *from,
668 			     tg_visitor down, tg_visitor up, void *data)
669 {
670 	struct task_group *parent, *child;
671 	int ret;
672 
673 	parent = from;
674 
675 down:
676 	ret = (*down)(parent, data);
677 	if (ret)
678 		goto out;
679 	list_for_each_entry_rcu(child, &parent->children, siblings) {
680 		parent = child;
681 		goto down;
682 
683 up:
684 		continue;
685 	}
686 	ret = (*up)(parent, data);
687 	if (ret || parent == from)
688 		goto out;
689 
690 	child = parent;
691 	parent = parent->parent;
692 	if (parent)
693 		goto up;
694 out:
695 	return ret;
696 }
697 
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 	return 0;
701 }
702 #endif
703 
704 static void set_load_weight(struct task_struct *p)
705 {
706 	int prio = p->static_prio - MAX_RT_PRIO;
707 	struct load_weight *load = &p->se.load;
708 
709 	/*
710 	 * SCHED_IDLE tasks get minimal weight:
711 	 */
712 	if (p->policy == SCHED_IDLE) {
713 		load->weight = scale_load(WEIGHT_IDLEPRIO);
714 		load->inv_weight = WMULT_IDLEPRIO;
715 		return;
716 	}
717 
718 	load->weight = scale_load(prio_to_weight[prio]);
719 	load->inv_weight = prio_to_wmult[prio];
720 }
721 
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_queued(p);
726 	p->sched_class->enqueue_task(rq, p, flags);
727 }
728 
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	update_rq_clock(rq);
732 	sched_info_dequeued(p);
733 	p->sched_class->dequeue_task(rq, p, flags);
734 }
735 
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible--;
740 
741 	enqueue_task(rq, p, flags);
742 }
743 
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 	if (task_contributes_to_load(p))
747 		rq->nr_uninterruptible++;
748 
749 	dequeue_task(rq, p, flags);
750 }
751 
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755  * In theory, the compile should just see 0 here, and optimize out the call
756  * to sched_rt_avg_update. But I don't trust it...
757  */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 	s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 
764 	/*
765 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 	 * this case when a previous update_rq_clock() happened inside a
767 	 * {soft,}irq region.
768 	 *
769 	 * When this happens, we stop ->clock_task and only update the
770 	 * prev_irq_time stamp to account for the part that fit, so that a next
771 	 * update will consume the rest. This ensures ->clock_task is
772 	 * monotonic.
773 	 *
774 	 * It does however cause some slight miss-attribution of {soft,}irq
775 	 * time, a more accurate solution would be to update the irq_time using
776 	 * the current rq->clock timestamp, except that would require using
777 	 * atomic ops.
778 	 */
779 	if (irq_delta > delta)
780 		irq_delta = delta;
781 
782 	rq->prev_irq_time += irq_delta;
783 	delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 		u64 st;
788 
789 		steal = paravirt_steal_clock(cpu_of(rq));
790 		steal -= rq->prev_steal_time_rq;
791 
792 		if (unlikely(steal > delta))
793 			steal = delta;
794 
795 		st = steal_ticks(steal);
796 		steal = st * TICK_NSEC;
797 
798 		rq->prev_steal_time_rq += steal;
799 
800 		delta -= steal;
801 	}
802 #endif
803 
804 	rq->clock_task += delta;
805 
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 		sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811 
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816 
817 	if (stop) {
818 		/*
819 		 * Make it appear like a SCHED_FIFO task, its something
820 		 * userspace knows about and won't get confused about.
821 		 *
822 		 * Also, it will make PI more or less work without too
823 		 * much confusion -- but then, stop work should not
824 		 * rely on PI working anyway.
825 		 */
826 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827 
828 		stop->sched_class = &stop_sched_class;
829 	}
830 
831 	cpu_rq(cpu)->stop = stop;
832 
833 	if (old_stop) {
834 		/*
835 		 * Reset it back to a normal scheduling class so that
836 		 * it can die in pieces.
837 		 */
838 		old_stop->sched_class = &rt_sched_class;
839 	}
840 }
841 
842 /*
843  * __normal_prio - return the priority that is based on the static prio
844  */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 	return p->static_prio;
848 }
849 
850 /*
851  * Calculate the expected normal priority: i.e. priority
852  * without taking RT-inheritance into account. Might be
853  * boosted by interactivity modifiers. Changes upon fork,
854  * setprio syscalls, and whenever the interactivity
855  * estimator recalculates.
856  */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 	int prio;
860 
861 	if (task_has_rt_policy(p))
862 		prio = MAX_RT_PRIO-1 - p->rt_priority;
863 	else
864 		prio = __normal_prio(p);
865 	return prio;
866 }
867 
868 /*
869  * Calculate the current priority, i.e. the priority
870  * taken into account by the scheduler. This value might
871  * be boosted by RT tasks, or might be boosted by
872  * interactivity modifiers. Will be RT if the task got
873  * RT-boosted. If not then it returns p->normal_prio.
874  */
875 static int effective_prio(struct task_struct *p)
876 {
877 	p->normal_prio = normal_prio(p);
878 	/*
879 	 * If we are RT tasks or we were boosted to RT priority,
880 	 * keep the priority unchanged. Otherwise, update priority
881 	 * to the normal priority:
882 	 */
883 	if (!rt_prio(p->prio))
884 		return p->normal_prio;
885 	return p->prio;
886 }
887 
888 /**
889  * task_curr - is this task currently executing on a CPU?
890  * @p: the task in question.
891  */
892 inline int task_curr(const struct task_struct *p)
893 {
894 	return cpu_curr(task_cpu(p)) == p;
895 }
896 
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 				       const struct sched_class *prev_class,
899 				       int oldprio)
900 {
901 	if (prev_class != p->sched_class) {
902 		if (prev_class->switched_from)
903 			prev_class->switched_from(rq, p);
904 		p->sched_class->switched_to(rq, p);
905 	} else if (oldprio != p->prio)
906 		p->sched_class->prio_changed(rq, p, oldprio);
907 }
908 
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 	const struct sched_class *class;
912 
913 	if (p->sched_class == rq->curr->sched_class) {
914 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 	} else {
916 		for_each_class(class) {
917 			if (class == rq->curr->sched_class)
918 				break;
919 			if (class == p->sched_class) {
920 				resched_task(rq->curr);
921 				break;
922 			}
923 		}
924 	}
925 
926 	/*
927 	 * A queue event has occurred, and we're going to schedule.  In
928 	 * this case, we can save a useless back to back clock update.
929 	 */
930 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 		rq->skip_clock_update = 1;
932 }
933 
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935 
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 	atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940 
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 	/*
946 	 * We should never call set_task_cpu() on a blocked task,
947 	 * ttwu() will sort out the placement.
948 	 */
949 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 
952 #ifdef CONFIG_LOCKDEP
953 	/*
954 	 * The caller should hold either p->pi_lock or rq->lock, when changing
955 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 	 *
957 	 * sched_move_task() holds both and thus holding either pins the cgroup,
958 	 * see task_group().
959 	 *
960 	 * Furthermore, all task_rq users should acquire both locks, see
961 	 * task_rq_lock().
962 	 */
963 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 				      lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967 
968 	trace_sched_migrate_task(p, new_cpu);
969 
970 	if (task_cpu(p) != new_cpu) {
971 		struct task_migration_notifier tmn;
972 
973 		if (p->sched_class->migrate_task_rq)
974 			p->sched_class->migrate_task_rq(p, new_cpu);
975 		p->se.nr_migrations++;
976 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 
978 		tmn.task = p;
979 		tmn.from_cpu = task_cpu(p);
980 		tmn.to_cpu = new_cpu;
981 
982 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 	}
984 
985 	__set_task_cpu(p, new_cpu);
986 }
987 
988 struct migration_arg {
989 	struct task_struct *task;
990 	int dest_cpu;
991 };
992 
993 static int migration_cpu_stop(void *data);
994 
995 /*
996  * wait_task_inactive - wait for a thread to unschedule.
997  *
998  * If @match_state is nonzero, it's the @p->state value just checked and
999  * not expected to change.  If it changes, i.e. @p might have woken up,
1000  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001  * we return a positive number (its total switch count).  If a second call
1002  * a short while later returns the same number, the caller can be sure that
1003  * @p has remained unscheduled the whole time.
1004  *
1005  * The caller must ensure that the task *will* unschedule sometime soon,
1006  * else this function might spin for a *long* time. This function can't
1007  * be called with interrupts off, or it may introduce deadlock with
1008  * smp_call_function() if an IPI is sent by the same process we are
1009  * waiting to become inactive.
1010  */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 	unsigned long flags;
1014 	int running, on_rq;
1015 	unsigned long ncsw;
1016 	struct rq *rq;
1017 
1018 	for (;;) {
1019 		/*
1020 		 * We do the initial early heuristics without holding
1021 		 * any task-queue locks at all. We'll only try to get
1022 		 * the runqueue lock when things look like they will
1023 		 * work out!
1024 		 */
1025 		rq = task_rq(p);
1026 
1027 		/*
1028 		 * If the task is actively running on another CPU
1029 		 * still, just relax and busy-wait without holding
1030 		 * any locks.
1031 		 *
1032 		 * NOTE! Since we don't hold any locks, it's not
1033 		 * even sure that "rq" stays as the right runqueue!
1034 		 * But we don't care, since "task_running()" will
1035 		 * return false if the runqueue has changed and p
1036 		 * is actually now running somewhere else!
1037 		 */
1038 		while (task_running(rq, p)) {
1039 			if (match_state && unlikely(p->state != match_state))
1040 				return 0;
1041 			cpu_relax();
1042 		}
1043 
1044 		/*
1045 		 * Ok, time to look more closely! We need the rq
1046 		 * lock now, to be *sure*. If we're wrong, we'll
1047 		 * just go back and repeat.
1048 		 */
1049 		rq = task_rq_lock(p, &flags);
1050 		trace_sched_wait_task(p);
1051 		running = task_running(rq, p);
1052 		on_rq = p->on_rq;
1053 		ncsw = 0;
1054 		if (!match_state || p->state == match_state)
1055 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 		task_rq_unlock(rq, p, &flags);
1057 
1058 		/*
1059 		 * If it changed from the expected state, bail out now.
1060 		 */
1061 		if (unlikely(!ncsw))
1062 			break;
1063 
1064 		/*
1065 		 * Was it really running after all now that we
1066 		 * checked with the proper locks actually held?
1067 		 *
1068 		 * Oops. Go back and try again..
1069 		 */
1070 		if (unlikely(running)) {
1071 			cpu_relax();
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * It's not enough that it's not actively running,
1077 		 * it must be off the runqueue _entirely_, and not
1078 		 * preempted!
1079 		 *
1080 		 * So if it was still runnable (but just not actively
1081 		 * running right now), it's preempted, and we should
1082 		 * yield - it could be a while.
1083 		 */
1084 		if (unlikely(on_rq)) {
1085 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086 
1087 			set_current_state(TASK_UNINTERRUPTIBLE);
1088 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 			continue;
1090 		}
1091 
1092 		/*
1093 		 * Ahh, all good. It wasn't running, and it wasn't
1094 		 * runnable, which means that it will never become
1095 		 * running in the future either. We're all done!
1096 		 */
1097 		break;
1098 	}
1099 
1100 	return ncsw;
1101 }
1102 
1103 /***
1104  * kick_process - kick a running thread to enter/exit the kernel
1105  * @p: the to-be-kicked thread
1106  *
1107  * Cause a process which is running on another CPU to enter
1108  * kernel-mode, without any delay. (to get signals handled.)
1109  *
1110  * NOTE: this function doesn't have to take the runqueue lock,
1111  * because all it wants to ensure is that the remote task enters
1112  * the kernel. If the IPI races and the task has been migrated
1113  * to another CPU then no harm is done and the purpose has been
1114  * achieved as well.
1115  */
1116 void kick_process(struct task_struct *p)
1117 {
1118 	int cpu;
1119 
1120 	preempt_disable();
1121 	cpu = task_cpu(p);
1122 	if ((cpu != smp_processor_id()) && task_curr(p))
1123 		smp_send_reschedule(cpu);
1124 	preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128 
1129 #ifdef CONFIG_SMP
1130 /*
1131  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132  */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 	int nid = cpu_to_node(cpu);
1136 	const struct cpumask *nodemask = NULL;
1137 	enum { cpuset, possible, fail } state = cpuset;
1138 	int dest_cpu;
1139 
1140 	/*
1141 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 	 * will return -1. There is no cpu on the node, and we should
1143 	 * select the cpu on the other node.
1144 	 */
1145 	if (nid != -1) {
1146 		nodemask = cpumask_of_node(nid);
1147 
1148 		/* Look for allowed, online CPU in same node. */
1149 		for_each_cpu(dest_cpu, nodemask) {
1150 			if (!cpu_online(dest_cpu))
1151 				continue;
1152 			if (!cpu_active(dest_cpu))
1153 				continue;
1154 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 				return dest_cpu;
1156 		}
1157 	}
1158 
1159 	for (;;) {
1160 		/* Any allowed, online CPU? */
1161 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 			if (!cpu_online(dest_cpu))
1163 				continue;
1164 			if (!cpu_active(dest_cpu))
1165 				continue;
1166 			goto out;
1167 		}
1168 
1169 		switch (state) {
1170 		case cpuset:
1171 			/* No more Mr. Nice Guy. */
1172 			cpuset_cpus_allowed_fallback(p);
1173 			state = possible;
1174 			break;
1175 
1176 		case possible:
1177 			do_set_cpus_allowed(p, cpu_possible_mask);
1178 			state = fail;
1179 			break;
1180 
1181 		case fail:
1182 			BUG();
1183 			break;
1184 		}
1185 	}
1186 
1187 out:
1188 	if (state != cpuset) {
1189 		/*
1190 		 * Don't tell them about moving exiting tasks or
1191 		 * kernel threads (both mm NULL), since they never
1192 		 * leave kernel.
1193 		 */
1194 		if (p->mm && printk_ratelimit()) {
1195 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 					task_pid_nr(p), p->comm, cpu);
1197 		}
1198 	}
1199 
1200 	return dest_cpu;
1201 }
1202 
1203 /*
1204  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205  */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210 
1211 	/*
1212 	 * In order not to call set_task_cpu() on a blocking task we need
1213 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 	 * cpu.
1215 	 *
1216 	 * Since this is common to all placement strategies, this lives here.
1217 	 *
1218 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 	 *   not worry about this generic constraint ]
1220 	 */
1221 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 		     !cpu_online(cpu)))
1223 		cpu = select_fallback_rq(task_cpu(p), p);
1224 
1225 	return cpu;
1226 }
1227 
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 	s64 diff = sample - *avg;
1231 	*avg += diff >> 3;
1232 }
1233 #endif
1234 
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 	struct rq *rq = this_rq();
1240 
1241 #ifdef CONFIG_SMP
1242 	int this_cpu = smp_processor_id();
1243 
1244 	if (cpu == this_cpu) {
1245 		schedstat_inc(rq, ttwu_local);
1246 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 	} else {
1248 		struct sched_domain *sd;
1249 
1250 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 		rcu_read_lock();
1252 		for_each_domain(this_cpu, sd) {
1253 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 				schedstat_inc(sd, ttwu_wake_remote);
1255 				break;
1256 			}
1257 		}
1258 		rcu_read_unlock();
1259 	}
1260 
1261 	if (wake_flags & WF_MIGRATED)
1262 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263 
1264 #endif /* CONFIG_SMP */
1265 
1266 	schedstat_inc(rq, ttwu_count);
1267 	schedstat_inc(p, se.statistics.nr_wakeups);
1268 
1269 	if (wake_flags & WF_SYNC)
1270 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271 
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274 
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 	activate_task(rq, p, en_flags);
1278 	p->on_rq = 1;
1279 
1280 	/* if a worker is waking up, notify workqueue */
1281 	if (p->flags & PF_WQ_WORKER)
1282 		wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284 
1285 /*
1286  * Mark the task runnable and perform wakeup-preemption.
1287  */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 	trace_sched_wakeup(p, true);
1292 	check_preempt_curr(rq, p, wake_flags);
1293 
1294 	p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 	if (p->sched_class->task_woken)
1297 		p->sched_class->task_woken(rq, p);
1298 
1299 	if (rq->idle_stamp) {
1300 		u64 delta = rq->clock - rq->idle_stamp;
1301 		u64 max = 2*sysctl_sched_migration_cost;
1302 
1303 		if (delta > max)
1304 			rq->avg_idle = max;
1305 		else
1306 			update_avg(&rq->avg_idle, delta);
1307 		rq->idle_stamp = 0;
1308 	}
1309 #endif
1310 }
1311 
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 	if (p->sched_contributes_to_load)
1317 		rq->nr_uninterruptible--;
1318 #endif
1319 
1320 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 	ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323 
1324 /*
1325  * Called in case the task @p isn't fully descheduled from its runqueue,
1326  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327  * since all we need to do is flip p->state to TASK_RUNNING, since
1328  * the task is still ->on_rq.
1329  */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 	struct rq *rq;
1333 	int ret = 0;
1334 
1335 	rq = __task_rq_lock(p);
1336 	if (p->on_rq) {
1337 		ttwu_do_wakeup(rq, p, wake_flags);
1338 		ret = 1;
1339 	}
1340 	__task_rq_unlock(rq);
1341 
1342 	return ret;
1343 }
1344 
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 	struct rq *rq = this_rq();
1349 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 	struct task_struct *p;
1351 
1352 	raw_spin_lock(&rq->lock);
1353 
1354 	while (llist) {
1355 		p = llist_entry(llist, struct task_struct, wake_entry);
1356 		llist = llist_next(llist);
1357 		ttwu_do_activate(rq, p, 0);
1358 	}
1359 
1360 	raw_spin_unlock(&rq->lock);
1361 }
1362 
1363 void scheduler_ipi(void)
1364 {
1365 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 		return;
1367 
1368 	/*
1369 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 	 * traditionally all their work was done from the interrupt return
1371 	 * path. Now that we actually do some work, we need to make sure
1372 	 * we do call them.
1373 	 *
1374 	 * Some archs already do call them, luckily irq_enter/exit nest
1375 	 * properly.
1376 	 *
1377 	 * Arguably we should visit all archs and update all handlers,
1378 	 * however a fair share of IPIs are still resched only so this would
1379 	 * somewhat pessimize the simple resched case.
1380 	 */
1381 	irq_enter();
1382 	sched_ttwu_pending();
1383 
1384 	/*
1385 	 * Check if someone kicked us for doing the nohz idle load balance.
1386 	 */
1387 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 		this_rq()->idle_balance = 1;
1389 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 	}
1391 	irq_exit();
1392 }
1393 
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 		smp_send_reschedule(cpu);
1398 }
1399 
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405 
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 	struct rq *rq = cpu_rq(cpu);
1409 
1410 #if defined(CONFIG_SMP)
1411 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 		ttwu_queue_remote(p, cpu);
1414 		return;
1415 	}
1416 #endif
1417 
1418 	raw_spin_lock(&rq->lock);
1419 	ttwu_do_activate(rq, p, 0);
1420 	raw_spin_unlock(&rq->lock);
1421 }
1422 
1423 /**
1424  * try_to_wake_up - wake up a thread
1425  * @p: the thread to be awakened
1426  * @state: the mask of task states that can be woken
1427  * @wake_flags: wake modifier flags (WF_*)
1428  *
1429  * Put it on the run-queue if it's not already there. The "current"
1430  * thread is always on the run-queue (except when the actual
1431  * re-schedule is in progress), and as such you're allowed to do
1432  * the simpler "current->state = TASK_RUNNING" to mark yourself
1433  * runnable without the overhead of this.
1434  *
1435  * Returns %true if @p was woken up, %false if it was already running
1436  * or @state didn't match @p's state.
1437  */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 	unsigned long flags;
1442 	int cpu, success = 0;
1443 
1444 	smp_wmb();
1445 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 	if (!(p->state & state))
1447 		goto out;
1448 
1449 	success = 1; /* we're going to change ->state */
1450 	cpu = task_cpu(p);
1451 
1452 	if (p->on_rq && ttwu_remote(p, wake_flags))
1453 		goto stat;
1454 
1455 #ifdef CONFIG_SMP
1456 	/*
1457 	 * If the owning (remote) cpu is still in the middle of schedule() with
1458 	 * this task as prev, wait until its done referencing the task.
1459 	 */
1460 	while (p->on_cpu)
1461 		cpu_relax();
1462 	/*
1463 	 * Pairs with the smp_wmb() in finish_lock_switch().
1464 	 */
1465 	smp_rmb();
1466 
1467 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 	p->state = TASK_WAKING;
1469 
1470 	if (p->sched_class->task_waking)
1471 		p->sched_class->task_waking(p);
1472 
1473 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 	if (task_cpu(p) != cpu) {
1475 		wake_flags |= WF_MIGRATED;
1476 		set_task_cpu(p, cpu);
1477 	}
1478 #endif /* CONFIG_SMP */
1479 
1480 	ttwu_queue(p, cpu);
1481 stat:
1482 	ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485 
1486 	return success;
1487 }
1488 
1489 /**
1490  * try_to_wake_up_local - try to wake up a local task with rq lock held
1491  * @p: the thread to be awakened
1492  *
1493  * Put @p on the run-queue if it's not already there. The caller must
1494  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495  * the current task.
1496  */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 	struct rq *rq = task_rq(p);
1500 
1501 	BUG_ON(rq != this_rq());
1502 	BUG_ON(p == current);
1503 	lockdep_assert_held(&rq->lock);
1504 
1505 	if (!raw_spin_trylock(&p->pi_lock)) {
1506 		raw_spin_unlock(&rq->lock);
1507 		raw_spin_lock(&p->pi_lock);
1508 		raw_spin_lock(&rq->lock);
1509 	}
1510 
1511 	if (!(p->state & TASK_NORMAL))
1512 		goto out;
1513 
1514 	if (!p->on_rq)
1515 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516 
1517 	ttwu_do_wakeup(rq, p, 0);
1518 	ttwu_stat(p, smp_processor_id(), 0);
1519 out:
1520 	raw_spin_unlock(&p->pi_lock);
1521 }
1522 
1523 /**
1524  * wake_up_process - Wake up a specific process
1525  * @p: The process to be woken up.
1526  *
1527  * Attempt to wake up the nominated process and move it to the set of runnable
1528  * processes.  Returns 1 if the process was woken up, 0 if it was already
1529  * running.
1530  *
1531  * It may be assumed that this function implies a write memory barrier before
1532  * changing the task state if and only if any tasks are woken up.
1533  */
1534 int wake_up_process(struct task_struct *p)
1535 {
1536 	WARN_ON(task_is_stopped_or_traced(p));
1537 	return try_to_wake_up(p, TASK_NORMAL, 0);
1538 }
1539 EXPORT_SYMBOL(wake_up_process);
1540 
1541 int wake_up_state(struct task_struct *p, unsigned int state)
1542 {
1543 	return try_to_wake_up(p, state, 0);
1544 }
1545 
1546 /*
1547  * Perform scheduler related setup for a newly forked process p.
1548  * p is forked by current.
1549  *
1550  * __sched_fork() is basic setup used by init_idle() too:
1551  */
1552 static void __sched_fork(struct task_struct *p)
1553 {
1554 	p->on_rq			= 0;
1555 
1556 	p->se.on_rq			= 0;
1557 	p->se.exec_start		= 0;
1558 	p->se.sum_exec_runtime		= 0;
1559 	p->se.prev_sum_exec_runtime	= 0;
1560 	p->se.nr_migrations		= 0;
1561 	p->se.vruntime			= 0;
1562 	INIT_LIST_HEAD(&p->se.group_node);
1563 
1564 /*
1565  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566  * removed when useful for applications beyond shares distribution (e.g.
1567  * load-balance).
1568  */
1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 	p->se.avg.runnable_avg_period = 0;
1571 	p->se.avg.runnable_avg_sum = 0;
1572 #endif
1573 #ifdef CONFIG_SCHEDSTATS
1574 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1575 #endif
1576 
1577 	INIT_LIST_HEAD(&p->rt.run_list);
1578 
1579 #ifdef CONFIG_PREEMPT_NOTIFIERS
1580 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1581 #endif
1582 
1583 #ifdef CONFIG_NUMA_BALANCING
1584 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 		p->mm->numa_next_scan = jiffies;
1586 		p->mm->numa_next_reset = jiffies;
1587 		p->mm->numa_scan_seq = 0;
1588 	}
1589 
1590 	p->node_stamp = 0ULL;
1591 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 	p->numa_work.next = &p->numa_work;
1595 #endif /* CONFIG_NUMA_BALANCING */
1596 }
1597 
1598 #ifdef CONFIG_NUMA_BALANCING
1599 #ifdef CONFIG_SCHED_DEBUG
1600 void set_numabalancing_state(bool enabled)
1601 {
1602 	if (enabled)
1603 		sched_feat_set("NUMA");
1604 	else
1605 		sched_feat_set("NO_NUMA");
1606 }
1607 #else
1608 __read_mostly bool numabalancing_enabled;
1609 
1610 void set_numabalancing_state(bool enabled)
1611 {
1612 	numabalancing_enabled = enabled;
1613 }
1614 #endif /* CONFIG_SCHED_DEBUG */
1615 #endif /* CONFIG_NUMA_BALANCING */
1616 
1617 /*
1618  * fork()/clone()-time setup:
1619  */
1620 void sched_fork(struct task_struct *p)
1621 {
1622 	unsigned long flags;
1623 	int cpu = get_cpu();
1624 
1625 	__sched_fork(p);
1626 	/*
1627 	 * We mark the process as running here. This guarantees that
1628 	 * nobody will actually run it, and a signal or other external
1629 	 * event cannot wake it up and insert it on the runqueue either.
1630 	 */
1631 	p->state = TASK_RUNNING;
1632 
1633 	/*
1634 	 * Make sure we do not leak PI boosting priority to the child.
1635 	 */
1636 	p->prio = current->normal_prio;
1637 
1638 	/*
1639 	 * Revert to default priority/policy on fork if requested.
1640 	 */
1641 	if (unlikely(p->sched_reset_on_fork)) {
1642 		if (task_has_rt_policy(p)) {
1643 			p->policy = SCHED_NORMAL;
1644 			p->static_prio = NICE_TO_PRIO(0);
1645 			p->rt_priority = 0;
1646 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 			p->static_prio = NICE_TO_PRIO(0);
1648 
1649 		p->prio = p->normal_prio = __normal_prio(p);
1650 		set_load_weight(p);
1651 
1652 		/*
1653 		 * We don't need the reset flag anymore after the fork. It has
1654 		 * fulfilled its duty:
1655 		 */
1656 		p->sched_reset_on_fork = 0;
1657 	}
1658 
1659 	if (!rt_prio(p->prio))
1660 		p->sched_class = &fair_sched_class;
1661 
1662 	if (p->sched_class->task_fork)
1663 		p->sched_class->task_fork(p);
1664 
1665 	/*
1666 	 * The child is not yet in the pid-hash so no cgroup attach races,
1667 	 * and the cgroup is pinned to this child due to cgroup_fork()
1668 	 * is ran before sched_fork().
1669 	 *
1670 	 * Silence PROVE_RCU.
1671 	 */
1672 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1673 	set_task_cpu(p, cpu);
1674 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675 
1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677 	if (likely(sched_info_on()))
1678 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1679 #endif
1680 #if defined(CONFIG_SMP)
1681 	p->on_cpu = 0;
1682 #endif
1683 #ifdef CONFIG_PREEMPT_COUNT
1684 	/* Want to start with kernel preemption disabled. */
1685 	task_thread_info(p)->preempt_count = 1;
1686 #endif
1687 #ifdef CONFIG_SMP
1688 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689 #endif
1690 
1691 	put_cpu();
1692 }
1693 
1694 /*
1695  * wake_up_new_task - wake up a newly created task for the first time.
1696  *
1697  * This function will do some initial scheduler statistics housekeeping
1698  * that must be done for every newly created context, then puts the task
1699  * on the runqueue and wakes it.
1700  */
1701 void wake_up_new_task(struct task_struct *p)
1702 {
1703 	unsigned long flags;
1704 	struct rq *rq;
1705 
1706 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 #ifdef CONFIG_SMP
1708 	/*
1709 	 * Fork balancing, do it here and not earlier because:
1710 	 *  - cpus_allowed can change in the fork path
1711 	 *  - any previously selected cpu might disappear through hotplug
1712 	 */
1713 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 #endif
1715 
1716 	rq = __task_rq_lock(p);
1717 	activate_task(rq, p, 0);
1718 	p->on_rq = 1;
1719 	trace_sched_wakeup_new(p, true);
1720 	check_preempt_curr(rq, p, WF_FORK);
1721 #ifdef CONFIG_SMP
1722 	if (p->sched_class->task_woken)
1723 		p->sched_class->task_woken(rq, p);
1724 #endif
1725 	task_rq_unlock(rq, p, &flags);
1726 }
1727 
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1729 
1730 /**
1731  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732  * @notifier: notifier struct to register
1733  */
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 {
1736 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 }
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739 
1740 /**
1741  * preempt_notifier_unregister - no longer interested in preemption notifications
1742  * @notifier: notifier struct to unregister
1743  *
1744  * This is safe to call from within a preemption notifier.
1745  */
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 {
1748 	hlist_del(&notifier->link);
1749 }
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751 
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 {
1754 	struct preempt_notifier *notifier;
1755 
1756 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758 }
1759 
1760 static void
1761 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 				 struct task_struct *next)
1763 {
1764 	struct preempt_notifier *notifier;
1765 
1766 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 		notifier->ops->sched_out(notifier, next);
1768 }
1769 
1770 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1771 
1772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773 {
1774 }
1775 
1776 static void
1777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 				 struct task_struct *next)
1779 {
1780 }
1781 
1782 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1783 
1784 /**
1785  * prepare_task_switch - prepare to switch tasks
1786  * @rq: the runqueue preparing to switch
1787  * @prev: the current task that is being switched out
1788  * @next: the task we are going to switch to.
1789  *
1790  * This is called with the rq lock held and interrupts off. It must
1791  * be paired with a subsequent finish_task_switch after the context
1792  * switch.
1793  *
1794  * prepare_task_switch sets up locking and calls architecture specific
1795  * hooks.
1796  */
1797 static inline void
1798 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 		    struct task_struct *next)
1800 {
1801 	trace_sched_switch(prev, next);
1802 	sched_info_switch(prev, next);
1803 	perf_event_task_sched_out(prev, next);
1804 	fire_sched_out_preempt_notifiers(prev, next);
1805 	prepare_lock_switch(rq, next);
1806 	prepare_arch_switch(next);
1807 }
1808 
1809 /**
1810  * finish_task_switch - clean up after a task-switch
1811  * @rq: runqueue associated with task-switch
1812  * @prev: the thread we just switched away from.
1813  *
1814  * finish_task_switch must be called after the context switch, paired
1815  * with a prepare_task_switch call before the context switch.
1816  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817  * and do any other architecture-specific cleanup actions.
1818  *
1819  * Note that we may have delayed dropping an mm in context_switch(). If
1820  * so, we finish that here outside of the runqueue lock. (Doing it
1821  * with the lock held can cause deadlocks; see schedule() for
1822  * details.)
1823  */
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 	__releases(rq->lock)
1826 {
1827 	struct mm_struct *mm = rq->prev_mm;
1828 	long prev_state;
1829 
1830 	rq->prev_mm = NULL;
1831 
1832 	/*
1833 	 * A task struct has one reference for the use as "current".
1834 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 	 * schedule one last time. The schedule call will never return, and
1836 	 * the scheduled task must drop that reference.
1837 	 * The test for TASK_DEAD must occur while the runqueue locks are
1838 	 * still held, otherwise prev could be scheduled on another cpu, die
1839 	 * there before we look at prev->state, and then the reference would
1840 	 * be dropped twice.
1841 	 *		Manfred Spraul <manfred@colorfullife.com>
1842 	 */
1843 	prev_state = prev->state;
1844 	vtime_task_switch(prev);
1845 	finish_arch_switch(prev);
1846 	perf_event_task_sched_in(prev, current);
1847 	finish_lock_switch(rq, prev);
1848 	finish_arch_post_lock_switch();
1849 
1850 	fire_sched_in_preempt_notifiers(current);
1851 	if (mm)
1852 		mmdrop(mm);
1853 	if (unlikely(prev_state == TASK_DEAD)) {
1854 		/*
1855 		 * Remove function-return probe instances associated with this
1856 		 * task and put them back on the free list.
1857 		 */
1858 		kprobe_flush_task(prev);
1859 		put_task_struct(prev);
1860 	}
1861 }
1862 
1863 #ifdef CONFIG_SMP
1864 
1865 /* assumes rq->lock is held */
1866 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867 {
1868 	if (prev->sched_class->pre_schedule)
1869 		prev->sched_class->pre_schedule(rq, prev);
1870 }
1871 
1872 /* rq->lock is NOT held, but preemption is disabled */
1873 static inline void post_schedule(struct rq *rq)
1874 {
1875 	if (rq->post_schedule) {
1876 		unsigned long flags;
1877 
1878 		raw_spin_lock_irqsave(&rq->lock, flags);
1879 		if (rq->curr->sched_class->post_schedule)
1880 			rq->curr->sched_class->post_schedule(rq);
1881 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1882 
1883 		rq->post_schedule = 0;
1884 	}
1885 }
1886 
1887 #else
1888 
1889 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890 {
1891 }
1892 
1893 static inline void post_schedule(struct rq *rq)
1894 {
1895 }
1896 
1897 #endif
1898 
1899 /**
1900  * schedule_tail - first thing a freshly forked thread must call.
1901  * @prev: the thread we just switched away from.
1902  */
1903 asmlinkage void schedule_tail(struct task_struct *prev)
1904 	__releases(rq->lock)
1905 {
1906 	struct rq *rq = this_rq();
1907 
1908 	finish_task_switch(rq, prev);
1909 
1910 	/*
1911 	 * FIXME: do we need to worry about rq being invalidated by the
1912 	 * task_switch?
1913 	 */
1914 	post_schedule(rq);
1915 
1916 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 	/* In this case, finish_task_switch does not reenable preemption */
1918 	preempt_enable();
1919 #endif
1920 	if (current->set_child_tid)
1921 		put_user(task_pid_vnr(current), current->set_child_tid);
1922 }
1923 
1924 /*
1925  * context_switch - switch to the new MM and the new
1926  * thread's register state.
1927  */
1928 static inline void
1929 context_switch(struct rq *rq, struct task_struct *prev,
1930 	       struct task_struct *next)
1931 {
1932 	struct mm_struct *mm, *oldmm;
1933 
1934 	prepare_task_switch(rq, prev, next);
1935 
1936 	mm = next->mm;
1937 	oldmm = prev->active_mm;
1938 	/*
1939 	 * For paravirt, this is coupled with an exit in switch_to to
1940 	 * combine the page table reload and the switch backend into
1941 	 * one hypercall.
1942 	 */
1943 	arch_start_context_switch(prev);
1944 
1945 	if (!mm) {
1946 		next->active_mm = oldmm;
1947 		atomic_inc(&oldmm->mm_count);
1948 		enter_lazy_tlb(oldmm, next);
1949 	} else
1950 		switch_mm(oldmm, mm, next);
1951 
1952 	if (!prev->mm) {
1953 		prev->active_mm = NULL;
1954 		rq->prev_mm = oldmm;
1955 	}
1956 	/*
1957 	 * Since the runqueue lock will be released by the next
1958 	 * task (which is an invalid locking op but in the case
1959 	 * of the scheduler it's an obvious special-case), so we
1960 	 * do an early lockdep release here:
1961 	 */
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964 #endif
1965 
1966 	context_tracking_task_switch(prev, next);
1967 	/* Here we just switch the register state and the stack. */
1968 	switch_to(prev, next, prev);
1969 
1970 	barrier();
1971 	/*
1972 	 * this_rq must be evaluated again because prev may have moved
1973 	 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 	 * frame will be invalid.
1975 	 */
1976 	finish_task_switch(this_rq(), prev);
1977 }
1978 
1979 /*
1980  * nr_running and nr_context_switches:
1981  *
1982  * externally visible scheduler statistics: current number of runnable
1983  * threads, total number of context switches performed since bootup.
1984  */
1985 unsigned long nr_running(void)
1986 {
1987 	unsigned long i, sum = 0;
1988 
1989 	for_each_online_cpu(i)
1990 		sum += cpu_rq(i)->nr_running;
1991 
1992 	return sum;
1993 }
1994 
1995 unsigned long long nr_context_switches(void)
1996 {
1997 	int i;
1998 	unsigned long long sum = 0;
1999 
2000 	for_each_possible_cpu(i)
2001 		sum += cpu_rq(i)->nr_switches;
2002 
2003 	return sum;
2004 }
2005 
2006 unsigned long nr_iowait(void)
2007 {
2008 	unsigned long i, sum = 0;
2009 
2010 	for_each_possible_cpu(i)
2011 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012 
2013 	return sum;
2014 }
2015 
2016 unsigned long nr_iowait_cpu(int cpu)
2017 {
2018 	struct rq *this = cpu_rq(cpu);
2019 	return atomic_read(&this->nr_iowait);
2020 }
2021 
2022 unsigned long this_cpu_load(void)
2023 {
2024 	struct rq *this = this_rq();
2025 	return this->cpu_load[0];
2026 }
2027 
2028 
2029 /*
2030  * Global load-average calculations
2031  *
2032  * We take a distributed and async approach to calculating the global load-avg
2033  * in order to minimize overhead.
2034  *
2035  * The global load average is an exponentially decaying average of nr_running +
2036  * nr_uninterruptible.
2037  *
2038  * Once every LOAD_FREQ:
2039  *
2040  *   nr_active = 0;
2041  *   for_each_possible_cpu(cpu)
2042  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043  *
2044  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045  *
2046  * Due to a number of reasons the above turns in the mess below:
2047  *
2048  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2049  *    serious number of cpus, therefore we need to take a distributed approach
2050  *    to calculating nr_active.
2051  *
2052  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054  *
2055  *    So assuming nr_active := 0 when we start out -- true per definition, we
2056  *    can simply take per-cpu deltas and fold those into a global accumulate
2057  *    to obtain the same result. See calc_load_fold_active().
2058  *
2059  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060  *    across the machine, we assume 10 ticks is sufficient time for every
2061  *    cpu to have completed this task.
2062  *
2063  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2064  *    again, being late doesn't loose the delta, just wrecks the sample.
2065  *
2066  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067  *    this would add another cross-cpu cacheline miss and atomic operation
2068  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2069  *    when it went into uninterruptible state and decrement on whatever cpu
2070  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2071  *    all cpus yields the correct result.
2072  *
2073  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074  */
2075 
2076 /* Variables and functions for calc_load */
2077 static atomic_long_t calc_load_tasks;
2078 static unsigned long calc_load_update;
2079 unsigned long avenrun[3];
2080 EXPORT_SYMBOL(avenrun); /* should be removed */
2081 
2082 /**
2083  * get_avenrun - get the load average array
2084  * @loads:	pointer to dest load array
2085  * @offset:	offset to add
2086  * @shift:	shift count to shift the result left
2087  *
2088  * These values are estimates at best, so no need for locking.
2089  */
2090 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091 {
2092 	loads[0] = (avenrun[0] + offset) << shift;
2093 	loads[1] = (avenrun[1] + offset) << shift;
2094 	loads[2] = (avenrun[2] + offset) << shift;
2095 }
2096 
2097 static long calc_load_fold_active(struct rq *this_rq)
2098 {
2099 	long nr_active, delta = 0;
2100 
2101 	nr_active = this_rq->nr_running;
2102 	nr_active += (long) this_rq->nr_uninterruptible;
2103 
2104 	if (nr_active != this_rq->calc_load_active) {
2105 		delta = nr_active - this_rq->calc_load_active;
2106 		this_rq->calc_load_active = nr_active;
2107 	}
2108 
2109 	return delta;
2110 }
2111 
2112 /*
2113  * a1 = a0 * e + a * (1 - e)
2114  */
2115 static unsigned long
2116 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117 {
2118 	load *= exp;
2119 	load += active * (FIXED_1 - exp);
2120 	load += 1UL << (FSHIFT - 1);
2121 	return load >> FSHIFT;
2122 }
2123 
2124 #ifdef CONFIG_NO_HZ
2125 /*
2126  * Handle NO_HZ for the global load-average.
2127  *
2128  * Since the above described distributed algorithm to compute the global
2129  * load-average relies on per-cpu sampling from the tick, it is affected by
2130  * NO_HZ.
2131  *
2132  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134  * when we read the global state.
2135  *
2136  * Obviously reality has to ruin such a delightfully simple scheme:
2137  *
2138  *  - When we go NO_HZ idle during the window, we can negate our sample
2139  *    contribution, causing under-accounting.
2140  *
2141  *    We avoid this by keeping two idle-delta counters and flipping them
2142  *    when the window starts, thus separating old and new NO_HZ load.
2143  *
2144  *    The only trick is the slight shift in index flip for read vs write.
2145  *
2146  *        0s            5s            10s           15s
2147  *          +10           +10           +10           +10
2148  *        |-|-----------|-|-----------|-|-----------|-|
2149  *    r:0 0 1           1 0           0 1           1 0
2150  *    w:0 1 1           0 0           1 1           0 0
2151  *
2152  *    This ensures we'll fold the old idle contribution in this window while
2153  *    accumlating the new one.
2154  *
2155  *  - When we wake up from NO_HZ idle during the window, we push up our
2156  *    contribution, since we effectively move our sample point to a known
2157  *    busy state.
2158  *
2159  *    This is solved by pushing the window forward, and thus skipping the
2160  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2161  *    was in effect at the time the window opened). This also solves the issue
2162  *    of having to deal with a cpu having been in NOHZ idle for multiple
2163  *    LOAD_FREQ intervals.
2164  *
2165  * When making the ILB scale, we should try to pull this in as well.
2166  */
2167 static atomic_long_t calc_load_idle[2];
2168 static int calc_load_idx;
2169 
2170 static inline int calc_load_write_idx(void)
2171 {
2172 	int idx = calc_load_idx;
2173 
2174 	/*
2175 	 * See calc_global_nohz(), if we observe the new index, we also
2176 	 * need to observe the new update time.
2177 	 */
2178 	smp_rmb();
2179 
2180 	/*
2181 	 * If the folding window started, make sure we start writing in the
2182 	 * next idle-delta.
2183 	 */
2184 	if (!time_before(jiffies, calc_load_update))
2185 		idx++;
2186 
2187 	return idx & 1;
2188 }
2189 
2190 static inline int calc_load_read_idx(void)
2191 {
2192 	return calc_load_idx & 1;
2193 }
2194 
2195 void calc_load_enter_idle(void)
2196 {
2197 	struct rq *this_rq = this_rq();
2198 	long delta;
2199 
2200 	/*
2201 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 	 * into the pending idle delta.
2203 	 */
2204 	delta = calc_load_fold_active(this_rq);
2205 	if (delta) {
2206 		int idx = calc_load_write_idx();
2207 		atomic_long_add(delta, &calc_load_idle[idx]);
2208 	}
2209 }
2210 
2211 void calc_load_exit_idle(void)
2212 {
2213 	struct rq *this_rq = this_rq();
2214 
2215 	/*
2216 	 * If we're still before the sample window, we're done.
2217 	 */
2218 	if (time_before(jiffies, this_rq->calc_load_update))
2219 		return;
2220 
2221 	/*
2222 	 * We woke inside or after the sample window, this means we're already
2223 	 * accounted through the nohz accounting, so skip the entire deal and
2224 	 * sync up for the next window.
2225 	 */
2226 	this_rq->calc_load_update = calc_load_update;
2227 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 		this_rq->calc_load_update += LOAD_FREQ;
2229 }
2230 
2231 static long calc_load_fold_idle(void)
2232 {
2233 	int idx = calc_load_read_idx();
2234 	long delta = 0;
2235 
2236 	if (atomic_long_read(&calc_load_idle[idx]))
2237 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238 
2239 	return delta;
2240 }
2241 
2242 /**
2243  * fixed_power_int - compute: x^n, in O(log n) time
2244  *
2245  * @x:         base of the power
2246  * @frac_bits: fractional bits of @x
2247  * @n:         power to raise @x to.
2248  *
2249  * By exploiting the relation between the definition of the natural power
2250  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252  * (where: n_i \elem {0, 1}, the binary vector representing n),
2253  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254  * of course trivially computable in O(log_2 n), the length of our binary
2255  * vector.
2256  */
2257 static unsigned long
2258 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259 {
2260 	unsigned long result = 1UL << frac_bits;
2261 
2262 	if (n) for (;;) {
2263 		if (n & 1) {
2264 			result *= x;
2265 			result += 1UL << (frac_bits - 1);
2266 			result >>= frac_bits;
2267 		}
2268 		n >>= 1;
2269 		if (!n)
2270 			break;
2271 		x *= x;
2272 		x += 1UL << (frac_bits - 1);
2273 		x >>= frac_bits;
2274 	}
2275 
2276 	return result;
2277 }
2278 
2279 /*
2280  * a1 = a0 * e + a * (1 - e)
2281  *
2282  * a2 = a1 * e + a * (1 - e)
2283  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2285  *
2286  * a3 = a2 * e + a * (1 - e)
2287  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289  *
2290  *  ...
2291  *
2292  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294  *    = a0 * e^n + a * (1 - e^n)
2295  *
2296  * [1] application of the geometric series:
2297  *
2298  *              n         1 - x^(n+1)
2299  *     S_n := \Sum x^i = -------------
2300  *             i=0          1 - x
2301  */
2302 static unsigned long
2303 calc_load_n(unsigned long load, unsigned long exp,
2304 	    unsigned long active, unsigned int n)
2305 {
2306 
2307 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308 }
2309 
2310 /*
2311  * NO_HZ can leave us missing all per-cpu ticks calling
2312  * calc_load_account_active(), but since an idle CPU folds its delta into
2313  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314  * in the pending idle delta if our idle period crossed a load cycle boundary.
2315  *
2316  * Once we've updated the global active value, we need to apply the exponential
2317  * weights adjusted to the number of cycles missed.
2318  */
2319 static void calc_global_nohz(void)
2320 {
2321 	long delta, active, n;
2322 
2323 	if (!time_before(jiffies, calc_load_update + 10)) {
2324 		/*
2325 		 * Catch-up, fold however many we are behind still
2326 		 */
2327 		delta = jiffies - calc_load_update - 10;
2328 		n = 1 + (delta / LOAD_FREQ);
2329 
2330 		active = atomic_long_read(&calc_load_tasks);
2331 		active = active > 0 ? active * FIXED_1 : 0;
2332 
2333 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336 
2337 		calc_load_update += n * LOAD_FREQ;
2338 	}
2339 
2340 	/*
2341 	 * Flip the idle index...
2342 	 *
2343 	 * Make sure we first write the new time then flip the index, so that
2344 	 * calc_load_write_idx() will see the new time when it reads the new
2345 	 * index, this avoids a double flip messing things up.
2346 	 */
2347 	smp_wmb();
2348 	calc_load_idx++;
2349 }
2350 #else /* !CONFIG_NO_HZ */
2351 
2352 static inline long calc_load_fold_idle(void) { return 0; }
2353 static inline void calc_global_nohz(void) { }
2354 
2355 #endif /* CONFIG_NO_HZ */
2356 
2357 /*
2358  * calc_load - update the avenrun load estimates 10 ticks after the
2359  * CPUs have updated calc_load_tasks.
2360  */
2361 void calc_global_load(unsigned long ticks)
2362 {
2363 	long active, delta;
2364 
2365 	if (time_before(jiffies, calc_load_update + 10))
2366 		return;
2367 
2368 	/*
2369 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 	 */
2371 	delta = calc_load_fold_idle();
2372 	if (delta)
2373 		atomic_long_add(delta, &calc_load_tasks);
2374 
2375 	active = atomic_long_read(&calc_load_tasks);
2376 	active = active > 0 ? active * FIXED_1 : 0;
2377 
2378 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2381 
2382 	calc_load_update += LOAD_FREQ;
2383 
2384 	/*
2385 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386 	 */
2387 	calc_global_nohz();
2388 }
2389 
2390 /*
2391  * Called from update_cpu_load() to periodically update this CPU's
2392  * active count.
2393  */
2394 static void calc_load_account_active(struct rq *this_rq)
2395 {
2396 	long delta;
2397 
2398 	if (time_before(jiffies, this_rq->calc_load_update))
2399 		return;
2400 
2401 	delta  = calc_load_fold_active(this_rq);
2402 	if (delta)
2403 		atomic_long_add(delta, &calc_load_tasks);
2404 
2405 	this_rq->calc_load_update += LOAD_FREQ;
2406 }
2407 
2408 /*
2409  * End of global load-average stuff
2410  */
2411 
2412 /*
2413  * The exact cpuload at various idx values, calculated at every tick would be
2414  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415  *
2416  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417  * on nth tick when cpu may be busy, then we have:
2418  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420  *
2421  * decay_load_missed() below does efficient calculation of
2422  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424  *
2425  * The calculation is approximated on a 128 point scale.
2426  * degrade_zero_ticks is the number of ticks after which load at any
2427  * particular idx is approximated to be zero.
2428  * degrade_factor is a precomputed table, a row for each load idx.
2429  * Each column corresponds to degradation factor for a power of two ticks,
2430  * based on 128 point scale.
2431  * Example:
2432  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434  *
2435  * With this power of 2 load factors, we can degrade the load n times
2436  * by looking at 1 bits in n and doing as many mult/shift instead of
2437  * n mult/shifts needed by the exact degradation.
2438  */
2439 #define DEGRADE_SHIFT		7
2440 static const unsigned char
2441 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442 static const unsigned char
2443 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 					{0, 0, 0, 0, 0, 0, 0, 0},
2445 					{64, 32, 8, 0, 0, 0, 0, 0},
2446 					{96, 72, 40, 12, 1, 0, 0},
2447 					{112, 98, 75, 43, 15, 1, 0},
2448 					{120, 112, 98, 76, 45, 16, 2} };
2449 
2450 /*
2451  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452  * would be when CPU is idle and so we just decay the old load without
2453  * adding any new load.
2454  */
2455 static unsigned long
2456 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457 {
2458 	int j = 0;
2459 
2460 	if (!missed_updates)
2461 		return load;
2462 
2463 	if (missed_updates >= degrade_zero_ticks[idx])
2464 		return 0;
2465 
2466 	if (idx == 1)
2467 		return load >> missed_updates;
2468 
2469 	while (missed_updates) {
2470 		if (missed_updates % 2)
2471 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472 
2473 		missed_updates >>= 1;
2474 		j++;
2475 	}
2476 	return load;
2477 }
2478 
2479 /*
2480  * Update rq->cpu_load[] statistics. This function is usually called every
2481  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482  * every tick. We fix it up based on jiffies.
2483  */
2484 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 			      unsigned long pending_updates)
2486 {
2487 	int i, scale;
2488 
2489 	this_rq->nr_load_updates++;
2490 
2491 	/* Update our load: */
2492 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2494 		unsigned long old_load, new_load;
2495 
2496 		/* scale is effectively 1 << i now, and >> i divides by scale */
2497 
2498 		old_load = this_rq->cpu_load[i];
2499 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2500 		new_load = this_load;
2501 		/*
2502 		 * Round up the averaging division if load is increasing. This
2503 		 * prevents us from getting stuck on 9 if the load is 10, for
2504 		 * example.
2505 		 */
2506 		if (new_load > old_load)
2507 			new_load += scale - 1;
2508 
2509 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2510 	}
2511 
2512 	sched_avg_update(this_rq);
2513 }
2514 
2515 #ifdef CONFIG_NO_HZ
2516 /*
2517  * There is no sane way to deal with nohz on smp when using jiffies because the
2518  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520  *
2521  * Therefore we cannot use the delta approach from the regular tick since that
2522  * would seriously skew the load calculation. However we'll make do for those
2523  * updates happening while idle (nohz_idle_balance) or coming out of idle
2524  * (tick_nohz_idle_exit).
2525  *
2526  * This means we might still be one tick off for nohz periods.
2527  */
2528 
2529 /*
2530  * Called from nohz_idle_balance() to update the load ratings before doing the
2531  * idle balance.
2532  */
2533 void update_idle_cpu_load(struct rq *this_rq)
2534 {
2535 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 	unsigned long load = this_rq->load.weight;
2537 	unsigned long pending_updates;
2538 
2539 	/*
2540 	 * bail if there's load or we're actually up-to-date.
2541 	 */
2542 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 		return;
2544 
2545 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 	this_rq->last_load_update_tick = curr_jiffies;
2547 
2548 	__update_cpu_load(this_rq, load, pending_updates);
2549 }
2550 
2551 /*
2552  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553  */
2554 void update_cpu_load_nohz(void)
2555 {
2556 	struct rq *this_rq = this_rq();
2557 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 	unsigned long pending_updates;
2559 
2560 	if (curr_jiffies == this_rq->last_load_update_tick)
2561 		return;
2562 
2563 	raw_spin_lock(&this_rq->lock);
2564 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 	if (pending_updates) {
2566 		this_rq->last_load_update_tick = curr_jiffies;
2567 		/*
2568 		 * We were idle, this means load 0, the current load might be
2569 		 * !0 due to remote wakeups and the sort.
2570 		 */
2571 		__update_cpu_load(this_rq, 0, pending_updates);
2572 	}
2573 	raw_spin_unlock(&this_rq->lock);
2574 }
2575 #endif /* CONFIG_NO_HZ */
2576 
2577 /*
2578  * Called from scheduler_tick()
2579  */
2580 static void update_cpu_load_active(struct rq *this_rq)
2581 {
2582 	/*
2583 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584 	 */
2585 	this_rq->last_load_update_tick = jiffies;
2586 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2587 
2588 	calc_load_account_active(this_rq);
2589 }
2590 
2591 #ifdef CONFIG_SMP
2592 
2593 /*
2594  * sched_exec - execve() is a valuable balancing opportunity, because at
2595  * this point the task has the smallest effective memory and cache footprint.
2596  */
2597 void sched_exec(void)
2598 {
2599 	struct task_struct *p = current;
2600 	unsigned long flags;
2601 	int dest_cpu;
2602 
2603 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2604 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 	if (dest_cpu == smp_processor_id())
2606 		goto unlock;
2607 
2608 	if (likely(cpu_active(dest_cpu))) {
2609 		struct migration_arg arg = { p, dest_cpu };
2610 
2611 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2613 		return;
2614 	}
2615 unlock:
2616 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617 }
2618 
2619 #endif
2620 
2621 DEFINE_PER_CPU(struct kernel_stat, kstat);
2622 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2623 
2624 EXPORT_PER_CPU_SYMBOL(kstat);
2625 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2626 
2627 /*
2628  * Return any ns on the sched_clock that have not yet been accounted in
2629  * @p in case that task is currently running.
2630  *
2631  * Called with task_rq_lock() held on @rq.
2632  */
2633 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634 {
2635 	u64 ns = 0;
2636 
2637 	if (task_current(rq, p)) {
2638 		update_rq_clock(rq);
2639 		ns = rq->clock_task - p->se.exec_start;
2640 		if ((s64)ns < 0)
2641 			ns = 0;
2642 	}
2643 
2644 	return ns;
2645 }
2646 
2647 unsigned long long task_delta_exec(struct task_struct *p)
2648 {
2649 	unsigned long flags;
2650 	struct rq *rq;
2651 	u64 ns = 0;
2652 
2653 	rq = task_rq_lock(p, &flags);
2654 	ns = do_task_delta_exec(p, rq);
2655 	task_rq_unlock(rq, p, &flags);
2656 
2657 	return ns;
2658 }
2659 
2660 /*
2661  * Return accounted runtime for the task.
2662  * In case the task is currently running, return the runtime plus current's
2663  * pending runtime that have not been accounted yet.
2664  */
2665 unsigned long long task_sched_runtime(struct task_struct *p)
2666 {
2667 	unsigned long flags;
2668 	struct rq *rq;
2669 	u64 ns = 0;
2670 
2671 	rq = task_rq_lock(p, &flags);
2672 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673 	task_rq_unlock(rq, p, &flags);
2674 
2675 	return ns;
2676 }
2677 
2678 /*
2679  * This function gets called by the timer code, with HZ frequency.
2680  * We call it with interrupts disabled.
2681  */
2682 void scheduler_tick(void)
2683 {
2684 	int cpu = smp_processor_id();
2685 	struct rq *rq = cpu_rq(cpu);
2686 	struct task_struct *curr = rq->curr;
2687 
2688 	sched_clock_tick();
2689 
2690 	raw_spin_lock(&rq->lock);
2691 	update_rq_clock(rq);
2692 	update_cpu_load_active(rq);
2693 	curr->sched_class->task_tick(rq, curr, 0);
2694 	raw_spin_unlock(&rq->lock);
2695 
2696 	perf_event_task_tick();
2697 
2698 #ifdef CONFIG_SMP
2699 	rq->idle_balance = idle_cpu(cpu);
2700 	trigger_load_balance(rq, cpu);
2701 #endif
2702 }
2703 
2704 notrace unsigned long get_parent_ip(unsigned long addr)
2705 {
2706 	if (in_lock_functions(addr)) {
2707 		addr = CALLER_ADDR2;
2708 		if (in_lock_functions(addr))
2709 			addr = CALLER_ADDR3;
2710 	}
2711 	return addr;
2712 }
2713 
2714 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 				defined(CONFIG_PREEMPT_TRACER))
2716 
2717 void __kprobes add_preempt_count(int val)
2718 {
2719 #ifdef CONFIG_DEBUG_PREEMPT
2720 	/*
2721 	 * Underflow?
2722 	 */
2723 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 		return;
2725 #endif
2726 	preempt_count() += val;
2727 #ifdef CONFIG_DEBUG_PREEMPT
2728 	/*
2729 	 * Spinlock count overflowing soon?
2730 	 */
2731 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 				PREEMPT_MASK - 10);
2733 #endif
2734 	if (preempt_count() == val)
2735 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2736 }
2737 EXPORT_SYMBOL(add_preempt_count);
2738 
2739 void __kprobes sub_preempt_count(int val)
2740 {
2741 #ifdef CONFIG_DEBUG_PREEMPT
2742 	/*
2743 	 * Underflow?
2744 	 */
2745 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746 		return;
2747 	/*
2748 	 * Is the spinlock portion underflowing?
2749 	 */
2750 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 			!(preempt_count() & PREEMPT_MASK)))
2752 		return;
2753 #endif
2754 
2755 	if (preempt_count() == val)
2756 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2757 	preempt_count() -= val;
2758 }
2759 EXPORT_SYMBOL(sub_preempt_count);
2760 
2761 #endif
2762 
2763 /*
2764  * Print scheduling while atomic bug:
2765  */
2766 static noinline void __schedule_bug(struct task_struct *prev)
2767 {
2768 	if (oops_in_progress)
2769 		return;
2770 
2771 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 		prev->comm, prev->pid, preempt_count());
2773 
2774 	debug_show_held_locks(prev);
2775 	print_modules();
2776 	if (irqs_disabled())
2777 		print_irqtrace_events(prev);
2778 	dump_stack();
2779 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2780 }
2781 
2782 /*
2783  * Various schedule()-time debugging checks and statistics:
2784  */
2785 static inline void schedule_debug(struct task_struct *prev)
2786 {
2787 	/*
2788 	 * Test if we are atomic. Since do_exit() needs to call into
2789 	 * schedule() atomically, we ignore that path for now.
2790 	 * Otherwise, whine if we are scheduling when we should not be.
2791 	 */
2792 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2793 		__schedule_bug(prev);
2794 	rcu_sleep_check();
2795 
2796 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797 
2798 	schedstat_inc(this_rq(), sched_count);
2799 }
2800 
2801 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2802 {
2803 	if (prev->on_rq || rq->skip_clock_update < 0)
2804 		update_rq_clock(rq);
2805 	prev->sched_class->put_prev_task(rq, prev);
2806 }
2807 
2808 /*
2809  * Pick up the highest-prio task:
2810  */
2811 static inline struct task_struct *
2812 pick_next_task(struct rq *rq)
2813 {
2814 	const struct sched_class *class;
2815 	struct task_struct *p;
2816 
2817 	/*
2818 	 * Optimization: we know that if all tasks are in
2819 	 * the fair class we can call that function directly:
2820 	 */
2821 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822 		p = fair_sched_class.pick_next_task(rq);
2823 		if (likely(p))
2824 			return p;
2825 	}
2826 
2827 	for_each_class(class) {
2828 		p = class->pick_next_task(rq);
2829 		if (p)
2830 			return p;
2831 	}
2832 
2833 	BUG(); /* the idle class will always have a runnable task */
2834 }
2835 
2836 /*
2837  * __schedule() is the main scheduler function.
2838  *
2839  * The main means of driving the scheduler and thus entering this function are:
2840  *
2841  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842  *
2843  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844  *      paths. For example, see arch/x86/entry_64.S.
2845  *
2846  *      To drive preemption between tasks, the scheduler sets the flag in timer
2847  *      interrupt handler scheduler_tick().
2848  *
2849  *   3. Wakeups don't really cause entry into schedule(). They add a
2850  *      task to the run-queue and that's it.
2851  *
2852  *      Now, if the new task added to the run-queue preempts the current
2853  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854  *      called on the nearest possible occasion:
2855  *
2856  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857  *
2858  *         - in syscall or exception context, at the next outmost
2859  *           preempt_enable(). (this might be as soon as the wake_up()'s
2860  *           spin_unlock()!)
2861  *
2862  *         - in IRQ context, return from interrupt-handler to
2863  *           preemptible context
2864  *
2865  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866  *         then at the next:
2867  *
2868  *          - cond_resched() call
2869  *          - explicit schedule() call
2870  *          - return from syscall or exception to user-space
2871  *          - return from interrupt-handler to user-space
2872  */
2873 static void __sched __schedule(void)
2874 {
2875 	struct task_struct *prev, *next;
2876 	unsigned long *switch_count;
2877 	struct rq *rq;
2878 	int cpu;
2879 
2880 need_resched:
2881 	preempt_disable();
2882 	cpu = smp_processor_id();
2883 	rq = cpu_rq(cpu);
2884 	rcu_note_context_switch(cpu);
2885 	prev = rq->curr;
2886 
2887 	schedule_debug(prev);
2888 
2889 	if (sched_feat(HRTICK))
2890 		hrtick_clear(rq);
2891 
2892 	raw_spin_lock_irq(&rq->lock);
2893 
2894 	switch_count = &prev->nivcsw;
2895 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2896 		if (unlikely(signal_pending_state(prev->state, prev))) {
2897 			prev->state = TASK_RUNNING;
2898 		} else {
2899 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 			prev->on_rq = 0;
2901 
2902 			/*
2903 			 * If a worker went to sleep, notify and ask workqueue
2904 			 * whether it wants to wake up a task to maintain
2905 			 * concurrency.
2906 			 */
2907 			if (prev->flags & PF_WQ_WORKER) {
2908 				struct task_struct *to_wakeup;
2909 
2910 				to_wakeup = wq_worker_sleeping(prev, cpu);
2911 				if (to_wakeup)
2912 					try_to_wake_up_local(to_wakeup);
2913 			}
2914 		}
2915 		switch_count = &prev->nvcsw;
2916 	}
2917 
2918 	pre_schedule(rq, prev);
2919 
2920 	if (unlikely(!rq->nr_running))
2921 		idle_balance(cpu, rq);
2922 
2923 	put_prev_task(rq, prev);
2924 	next = pick_next_task(rq);
2925 	clear_tsk_need_resched(prev);
2926 	rq->skip_clock_update = 0;
2927 
2928 	if (likely(prev != next)) {
2929 		rq->nr_switches++;
2930 		rq->curr = next;
2931 		++*switch_count;
2932 
2933 		context_switch(rq, prev, next); /* unlocks the rq */
2934 		/*
2935 		 * The context switch have flipped the stack from under us
2936 		 * and restored the local variables which were saved when
2937 		 * this task called schedule() in the past. prev == current
2938 		 * is still correct, but it can be moved to another cpu/rq.
2939 		 */
2940 		cpu = smp_processor_id();
2941 		rq = cpu_rq(cpu);
2942 	} else
2943 		raw_spin_unlock_irq(&rq->lock);
2944 
2945 	post_schedule(rq);
2946 
2947 	sched_preempt_enable_no_resched();
2948 	if (need_resched())
2949 		goto need_resched;
2950 }
2951 
2952 static inline void sched_submit_work(struct task_struct *tsk)
2953 {
2954 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2955 		return;
2956 	/*
2957 	 * If we are going to sleep and we have plugged IO queued,
2958 	 * make sure to submit it to avoid deadlocks.
2959 	 */
2960 	if (blk_needs_flush_plug(tsk))
2961 		blk_schedule_flush_plug(tsk);
2962 }
2963 
2964 asmlinkage void __sched schedule(void)
2965 {
2966 	struct task_struct *tsk = current;
2967 
2968 	sched_submit_work(tsk);
2969 	__schedule();
2970 }
2971 EXPORT_SYMBOL(schedule);
2972 
2973 #ifdef CONFIG_CONTEXT_TRACKING
2974 asmlinkage void __sched schedule_user(void)
2975 {
2976 	/*
2977 	 * If we come here after a random call to set_need_resched(),
2978 	 * or we have been woken up remotely but the IPI has not yet arrived,
2979 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 	 * we find a better solution.
2981 	 */
2982 	user_exit();
2983 	schedule();
2984 	user_enter();
2985 }
2986 #endif
2987 
2988 /**
2989  * schedule_preempt_disabled - called with preemption disabled
2990  *
2991  * Returns with preemption disabled. Note: preempt_count must be 1
2992  */
2993 void __sched schedule_preempt_disabled(void)
2994 {
2995 	sched_preempt_enable_no_resched();
2996 	schedule();
2997 	preempt_disable();
2998 }
2999 
3000 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001 
3002 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003 {
3004 	if (lock->owner != owner)
3005 		return false;
3006 
3007 	/*
3008 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 	 * lock->owner still matches owner, if that fails, owner might
3010 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 	 * ensures the memory stays valid.
3012 	 */
3013 	barrier();
3014 
3015 	return owner->on_cpu;
3016 }
3017 
3018 /*
3019  * Look out! "owner" is an entirely speculative pointer
3020  * access and not reliable.
3021  */
3022 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023 {
3024 	if (!sched_feat(OWNER_SPIN))
3025 		return 0;
3026 
3027 	rcu_read_lock();
3028 	while (owner_running(lock, owner)) {
3029 		if (need_resched())
3030 			break;
3031 
3032 		arch_mutex_cpu_relax();
3033 	}
3034 	rcu_read_unlock();
3035 
3036 	/*
3037 	 * We break out the loop above on need_resched() and when the
3038 	 * owner changed, which is a sign for heavy contention. Return
3039 	 * success only when lock->owner is NULL.
3040 	 */
3041 	return lock->owner == NULL;
3042 }
3043 #endif
3044 
3045 #ifdef CONFIG_PREEMPT
3046 /*
3047  * this is the entry point to schedule() from in-kernel preemption
3048  * off of preempt_enable. Kernel preemptions off return from interrupt
3049  * occur there and call schedule directly.
3050  */
3051 asmlinkage void __sched notrace preempt_schedule(void)
3052 {
3053 	struct thread_info *ti = current_thread_info();
3054 
3055 	/*
3056 	 * If there is a non-zero preempt_count or interrupts are disabled,
3057 	 * we do not want to preempt the current task. Just return..
3058 	 */
3059 	if (likely(ti->preempt_count || irqs_disabled()))
3060 		return;
3061 
3062 	do {
3063 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3064 		__schedule();
3065 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3066 
3067 		/*
3068 		 * Check again in case we missed a preemption opportunity
3069 		 * between schedule and now.
3070 		 */
3071 		barrier();
3072 	} while (need_resched());
3073 }
3074 EXPORT_SYMBOL(preempt_schedule);
3075 
3076 /*
3077  * this is the entry point to schedule() from kernel preemption
3078  * off of irq context.
3079  * Note, that this is called and return with irqs disabled. This will
3080  * protect us against recursive calling from irq.
3081  */
3082 asmlinkage void __sched preempt_schedule_irq(void)
3083 {
3084 	struct thread_info *ti = current_thread_info();
3085 
3086 	/* Catch callers which need to be fixed */
3087 	BUG_ON(ti->preempt_count || !irqs_disabled());
3088 
3089 	user_exit();
3090 	do {
3091 		add_preempt_count(PREEMPT_ACTIVE);
3092 		local_irq_enable();
3093 		__schedule();
3094 		local_irq_disable();
3095 		sub_preempt_count(PREEMPT_ACTIVE);
3096 
3097 		/*
3098 		 * Check again in case we missed a preemption opportunity
3099 		 * between schedule and now.
3100 		 */
3101 		barrier();
3102 	} while (need_resched());
3103 }
3104 
3105 #endif /* CONFIG_PREEMPT */
3106 
3107 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3108 			  void *key)
3109 {
3110 	return try_to_wake_up(curr->private, mode, wake_flags);
3111 }
3112 EXPORT_SYMBOL(default_wake_function);
3113 
3114 /*
3115  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117  * number) then we wake all the non-exclusive tasks and one exclusive task.
3118  *
3119  * There are circumstances in which we can try to wake a task which has already
3120  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122  */
3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3124 			int nr_exclusive, int wake_flags, void *key)
3125 {
3126 	wait_queue_t *curr, *next;
3127 
3128 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3129 		unsigned flags = curr->flags;
3130 
3131 		if (curr->func(curr, mode, wake_flags, key) &&
3132 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3133 			break;
3134 	}
3135 }
3136 
3137 /**
3138  * __wake_up - wake up threads blocked on a waitqueue.
3139  * @q: the waitqueue
3140  * @mode: which threads
3141  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142  * @key: is directly passed to the wakeup function
3143  *
3144  * It may be assumed that this function implies a write memory barrier before
3145  * changing the task state if and only if any tasks are woken up.
3146  */
3147 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3148 			int nr_exclusive, void *key)
3149 {
3150 	unsigned long flags;
3151 
3152 	spin_lock_irqsave(&q->lock, flags);
3153 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3154 	spin_unlock_irqrestore(&q->lock, flags);
3155 }
3156 EXPORT_SYMBOL(__wake_up);
3157 
3158 /*
3159  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3160  */
3161 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3162 {
3163 	__wake_up_common(q, mode, nr, 0, NULL);
3164 }
3165 EXPORT_SYMBOL_GPL(__wake_up_locked);
3166 
3167 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3168 {
3169 	__wake_up_common(q, mode, 1, 0, key);
3170 }
3171 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3172 
3173 /**
3174  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3175  * @q: the waitqueue
3176  * @mode: which threads
3177  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178  * @key: opaque value to be passed to wakeup targets
3179  *
3180  * The sync wakeup differs that the waker knows that it will schedule
3181  * away soon, so while the target thread will be woken up, it will not
3182  * be migrated to another CPU - ie. the two threads are 'synchronized'
3183  * with each other. This can prevent needless bouncing between CPUs.
3184  *
3185  * On UP it can prevent extra preemption.
3186  *
3187  * It may be assumed that this function implies a write memory barrier before
3188  * changing the task state if and only if any tasks are woken up.
3189  */
3190 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 			int nr_exclusive, void *key)
3192 {
3193 	unsigned long flags;
3194 	int wake_flags = WF_SYNC;
3195 
3196 	if (unlikely(!q))
3197 		return;
3198 
3199 	if (unlikely(!nr_exclusive))
3200 		wake_flags = 0;
3201 
3202 	spin_lock_irqsave(&q->lock, flags);
3203 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3204 	spin_unlock_irqrestore(&q->lock, flags);
3205 }
3206 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3207 
3208 /*
3209  * __wake_up_sync - see __wake_up_sync_key()
3210  */
3211 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3212 {
3213 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3214 }
3215 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3216 
3217 /**
3218  * complete: - signals a single thread waiting on this completion
3219  * @x:  holds the state of this particular completion
3220  *
3221  * This will wake up a single thread waiting on this completion. Threads will be
3222  * awakened in the same order in which they were queued.
3223  *
3224  * See also complete_all(), wait_for_completion() and related routines.
3225  *
3226  * It may be assumed that this function implies a write memory barrier before
3227  * changing the task state if and only if any tasks are woken up.
3228  */
3229 void complete(struct completion *x)
3230 {
3231 	unsigned long flags;
3232 
3233 	spin_lock_irqsave(&x->wait.lock, flags);
3234 	x->done++;
3235 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3236 	spin_unlock_irqrestore(&x->wait.lock, flags);
3237 }
3238 EXPORT_SYMBOL(complete);
3239 
3240 /**
3241  * complete_all: - signals all threads waiting on this completion
3242  * @x:  holds the state of this particular completion
3243  *
3244  * This will wake up all threads waiting on this particular completion event.
3245  *
3246  * It may be assumed that this function implies a write memory barrier before
3247  * changing the task state if and only if any tasks are woken up.
3248  */
3249 void complete_all(struct completion *x)
3250 {
3251 	unsigned long flags;
3252 
3253 	spin_lock_irqsave(&x->wait.lock, flags);
3254 	x->done += UINT_MAX/2;
3255 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3256 	spin_unlock_irqrestore(&x->wait.lock, flags);
3257 }
3258 EXPORT_SYMBOL(complete_all);
3259 
3260 static inline long __sched
3261 do_wait_for_common(struct completion *x,
3262 		   long (*action)(long), long timeout, int state)
3263 {
3264 	if (!x->done) {
3265 		DECLARE_WAITQUEUE(wait, current);
3266 
3267 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3268 		do {
3269 			if (signal_pending_state(state, current)) {
3270 				timeout = -ERESTARTSYS;
3271 				break;
3272 			}
3273 			__set_current_state(state);
3274 			spin_unlock_irq(&x->wait.lock);
3275 			timeout = action(timeout);
3276 			spin_lock_irq(&x->wait.lock);
3277 		} while (!x->done && timeout);
3278 		__remove_wait_queue(&x->wait, &wait);
3279 		if (!x->done)
3280 			return timeout;
3281 	}
3282 	x->done--;
3283 	return timeout ?: 1;
3284 }
3285 
3286 static inline long __sched
3287 __wait_for_common(struct completion *x,
3288 		  long (*action)(long), long timeout, int state)
3289 {
3290 	might_sleep();
3291 
3292 	spin_lock_irq(&x->wait.lock);
3293 	timeout = do_wait_for_common(x, action, timeout, state);
3294 	spin_unlock_irq(&x->wait.lock);
3295 	return timeout;
3296 }
3297 
3298 static long __sched
3299 wait_for_common(struct completion *x, long timeout, int state)
3300 {
3301 	return __wait_for_common(x, schedule_timeout, timeout, state);
3302 }
3303 
3304 static long __sched
3305 wait_for_common_io(struct completion *x, long timeout, int state)
3306 {
3307 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3308 }
3309 
3310 /**
3311  * wait_for_completion: - waits for completion of a task
3312  * @x:  holds the state of this particular completion
3313  *
3314  * This waits to be signaled for completion of a specific task. It is NOT
3315  * interruptible and there is no timeout.
3316  *
3317  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3318  * and interrupt capability. Also see complete().
3319  */
3320 void __sched wait_for_completion(struct completion *x)
3321 {
3322 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3323 }
3324 EXPORT_SYMBOL(wait_for_completion);
3325 
3326 /**
3327  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3328  * @x:  holds the state of this particular completion
3329  * @timeout:  timeout value in jiffies
3330  *
3331  * This waits for either a completion of a specific task to be signaled or for a
3332  * specified timeout to expire. The timeout is in jiffies. It is not
3333  * interruptible.
3334  *
3335  * The return value is 0 if timed out, and positive (at least 1, or number of
3336  * jiffies left till timeout) if completed.
3337  */
3338 unsigned long __sched
3339 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3340 {
3341 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3342 }
3343 EXPORT_SYMBOL(wait_for_completion_timeout);
3344 
3345 /**
3346  * wait_for_completion_io: - waits for completion of a task
3347  * @x:  holds the state of this particular completion
3348  *
3349  * This waits to be signaled for completion of a specific task. It is NOT
3350  * interruptible and there is no timeout. The caller is accounted as waiting
3351  * for IO.
3352  */
3353 void __sched wait_for_completion_io(struct completion *x)
3354 {
3355 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3356 }
3357 EXPORT_SYMBOL(wait_for_completion_io);
3358 
3359 /**
3360  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3361  * @x:  holds the state of this particular completion
3362  * @timeout:  timeout value in jiffies
3363  *
3364  * This waits for either a completion of a specific task to be signaled or for a
3365  * specified timeout to expire. The timeout is in jiffies. It is not
3366  * interruptible. The caller is accounted as waiting for IO.
3367  *
3368  * The return value is 0 if timed out, and positive (at least 1, or number of
3369  * jiffies left till timeout) if completed.
3370  */
3371 unsigned long __sched
3372 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3373 {
3374 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3375 }
3376 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3377 
3378 /**
3379  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3380  * @x:  holds the state of this particular completion
3381  *
3382  * This waits for completion of a specific task to be signaled. It is
3383  * interruptible.
3384  *
3385  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386  */
3387 int __sched wait_for_completion_interruptible(struct completion *x)
3388 {
3389 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3390 	if (t == -ERESTARTSYS)
3391 		return t;
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL(wait_for_completion_interruptible);
3395 
3396 /**
3397  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3398  * @x:  holds the state of this particular completion
3399  * @timeout:  timeout value in jiffies
3400  *
3401  * This waits for either a completion of a specific task to be signaled or for a
3402  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3403  *
3404  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405  * positive (at least 1, or number of jiffies left till timeout) if completed.
3406  */
3407 long __sched
3408 wait_for_completion_interruptible_timeout(struct completion *x,
3409 					  unsigned long timeout)
3410 {
3411 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3412 }
3413 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3414 
3415 /**
3416  * wait_for_completion_killable: - waits for completion of a task (killable)
3417  * @x:  holds the state of this particular completion
3418  *
3419  * This waits to be signaled for completion of a specific task. It can be
3420  * interrupted by a kill signal.
3421  *
3422  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3423  */
3424 int __sched wait_for_completion_killable(struct completion *x)
3425 {
3426 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3427 	if (t == -ERESTARTSYS)
3428 		return t;
3429 	return 0;
3430 }
3431 EXPORT_SYMBOL(wait_for_completion_killable);
3432 
3433 /**
3434  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3435  * @x:  holds the state of this particular completion
3436  * @timeout:  timeout value in jiffies
3437  *
3438  * This waits for either a completion of a specific task to be
3439  * signaled or for a specified timeout to expire. It can be
3440  * interrupted by a kill signal. The timeout is in jiffies.
3441  *
3442  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3443  * positive (at least 1, or number of jiffies left till timeout) if completed.
3444  */
3445 long __sched
3446 wait_for_completion_killable_timeout(struct completion *x,
3447 				     unsigned long timeout)
3448 {
3449 	return wait_for_common(x, timeout, TASK_KILLABLE);
3450 }
3451 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3452 
3453 /**
3454  *	try_wait_for_completion - try to decrement a completion without blocking
3455  *	@x:	completion structure
3456  *
3457  *	Returns: 0 if a decrement cannot be done without blocking
3458  *		 1 if a decrement succeeded.
3459  *
3460  *	If a completion is being used as a counting completion,
3461  *	attempt to decrement the counter without blocking. This
3462  *	enables us to avoid waiting if the resource the completion
3463  *	is protecting is not available.
3464  */
3465 bool try_wait_for_completion(struct completion *x)
3466 {
3467 	unsigned long flags;
3468 	int ret = 1;
3469 
3470 	spin_lock_irqsave(&x->wait.lock, flags);
3471 	if (!x->done)
3472 		ret = 0;
3473 	else
3474 		x->done--;
3475 	spin_unlock_irqrestore(&x->wait.lock, flags);
3476 	return ret;
3477 }
3478 EXPORT_SYMBOL(try_wait_for_completion);
3479 
3480 /**
3481  *	completion_done - Test to see if a completion has any waiters
3482  *	@x:	completion structure
3483  *
3484  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3485  *		 1 if there are no waiters.
3486  *
3487  */
3488 bool completion_done(struct completion *x)
3489 {
3490 	unsigned long flags;
3491 	int ret = 1;
3492 
3493 	spin_lock_irqsave(&x->wait.lock, flags);
3494 	if (!x->done)
3495 		ret = 0;
3496 	spin_unlock_irqrestore(&x->wait.lock, flags);
3497 	return ret;
3498 }
3499 EXPORT_SYMBOL(completion_done);
3500 
3501 static long __sched
3502 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3503 {
3504 	unsigned long flags;
3505 	wait_queue_t wait;
3506 
3507 	init_waitqueue_entry(&wait, current);
3508 
3509 	__set_current_state(state);
3510 
3511 	spin_lock_irqsave(&q->lock, flags);
3512 	__add_wait_queue(q, &wait);
3513 	spin_unlock(&q->lock);
3514 	timeout = schedule_timeout(timeout);
3515 	spin_lock_irq(&q->lock);
3516 	__remove_wait_queue(q, &wait);
3517 	spin_unlock_irqrestore(&q->lock, flags);
3518 
3519 	return timeout;
3520 }
3521 
3522 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3523 {
3524 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3525 }
3526 EXPORT_SYMBOL(interruptible_sleep_on);
3527 
3528 long __sched
3529 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3530 {
3531 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3532 }
3533 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3534 
3535 void __sched sleep_on(wait_queue_head_t *q)
3536 {
3537 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3538 }
3539 EXPORT_SYMBOL(sleep_on);
3540 
3541 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3542 {
3543 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3544 }
3545 EXPORT_SYMBOL(sleep_on_timeout);
3546 
3547 #ifdef CONFIG_RT_MUTEXES
3548 
3549 /*
3550  * rt_mutex_setprio - set the current priority of a task
3551  * @p: task
3552  * @prio: prio value (kernel-internal form)
3553  *
3554  * This function changes the 'effective' priority of a task. It does
3555  * not touch ->normal_prio like __setscheduler().
3556  *
3557  * Used by the rt_mutex code to implement priority inheritance logic.
3558  */
3559 void rt_mutex_setprio(struct task_struct *p, int prio)
3560 {
3561 	int oldprio, on_rq, running;
3562 	struct rq *rq;
3563 	const struct sched_class *prev_class;
3564 
3565 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3566 
3567 	rq = __task_rq_lock(p);
3568 
3569 	/*
3570 	 * Idle task boosting is a nono in general. There is one
3571 	 * exception, when PREEMPT_RT and NOHZ is active:
3572 	 *
3573 	 * The idle task calls get_next_timer_interrupt() and holds
3574 	 * the timer wheel base->lock on the CPU and another CPU wants
3575 	 * to access the timer (probably to cancel it). We can safely
3576 	 * ignore the boosting request, as the idle CPU runs this code
3577 	 * with interrupts disabled and will complete the lock
3578 	 * protected section without being interrupted. So there is no
3579 	 * real need to boost.
3580 	 */
3581 	if (unlikely(p == rq->idle)) {
3582 		WARN_ON(p != rq->curr);
3583 		WARN_ON(p->pi_blocked_on);
3584 		goto out_unlock;
3585 	}
3586 
3587 	trace_sched_pi_setprio(p, prio);
3588 	oldprio = p->prio;
3589 	prev_class = p->sched_class;
3590 	on_rq = p->on_rq;
3591 	running = task_current(rq, p);
3592 	if (on_rq)
3593 		dequeue_task(rq, p, 0);
3594 	if (running)
3595 		p->sched_class->put_prev_task(rq, p);
3596 
3597 	if (rt_prio(prio))
3598 		p->sched_class = &rt_sched_class;
3599 	else
3600 		p->sched_class = &fair_sched_class;
3601 
3602 	p->prio = prio;
3603 
3604 	if (running)
3605 		p->sched_class->set_curr_task(rq);
3606 	if (on_rq)
3607 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3608 
3609 	check_class_changed(rq, p, prev_class, oldprio);
3610 out_unlock:
3611 	__task_rq_unlock(rq);
3612 }
3613 #endif
3614 void set_user_nice(struct task_struct *p, long nice)
3615 {
3616 	int old_prio, delta, on_rq;
3617 	unsigned long flags;
3618 	struct rq *rq;
3619 
3620 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3621 		return;
3622 	/*
3623 	 * We have to be careful, if called from sys_setpriority(),
3624 	 * the task might be in the middle of scheduling on another CPU.
3625 	 */
3626 	rq = task_rq_lock(p, &flags);
3627 	/*
3628 	 * The RT priorities are set via sched_setscheduler(), but we still
3629 	 * allow the 'normal' nice value to be set - but as expected
3630 	 * it wont have any effect on scheduling until the task is
3631 	 * SCHED_FIFO/SCHED_RR:
3632 	 */
3633 	if (task_has_rt_policy(p)) {
3634 		p->static_prio = NICE_TO_PRIO(nice);
3635 		goto out_unlock;
3636 	}
3637 	on_rq = p->on_rq;
3638 	if (on_rq)
3639 		dequeue_task(rq, p, 0);
3640 
3641 	p->static_prio = NICE_TO_PRIO(nice);
3642 	set_load_weight(p);
3643 	old_prio = p->prio;
3644 	p->prio = effective_prio(p);
3645 	delta = p->prio - old_prio;
3646 
3647 	if (on_rq) {
3648 		enqueue_task(rq, p, 0);
3649 		/*
3650 		 * If the task increased its priority or is running and
3651 		 * lowered its priority, then reschedule its CPU:
3652 		 */
3653 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3654 			resched_task(rq->curr);
3655 	}
3656 out_unlock:
3657 	task_rq_unlock(rq, p, &flags);
3658 }
3659 EXPORT_SYMBOL(set_user_nice);
3660 
3661 /*
3662  * can_nice - check if a task can reduce its nice value
3663  * @p: task
3664  * @nice: nice value
3665  */
3666 int can_nice(const struct task_struct *p, const int nice)
3667 {
3668 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3669 	int nice_rlim = 20 - nice;
3670 
3671 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3672 		capable(CAP_SYS_NICE));
3673 }
3674 
3675 #ifdef __ARCH_WANT_SYS_NICE
3676 
3677 /*
3678  * sys_nice - change the priority of the current process.
3679  * @increment: priority increment
3680  *
3681  * sys_setpriority is a more generic, but much slower function that
3682  * does similar things.
3683  */
3684 SYSCALL_DEFINE1(nice, int, increment)
3685 {
3686 	long nice, retval;
3687 
3688 	/*
3689 	 * Setpriority might change our priority at the same moment.
3690 	 * We don't have to worry. Conceptually one call occurs first
3691 	 * and we have a single winner.
3692 	 */
3693 	if (increment < -40)
3694 		increment = -40;
3695 	if (increment > 40)
3696 		increment = 40;
3697 
3698 	nice = TASK_NICE(current) + increment;
3699 	if (nice < -20)
3700 		nice = -20;
3701 	if (nice > 19)
3702 		nice = 19;
3703 
3704 	if (increment < 0 && !can_nice(current, nice))
3705 		return -EPERM;
3706 
3707 	retval = security_task_setnice(current, nice);
3708 	if (retval)
3709 		return retval;
3710 
3711 	set_user_nice(current, nice);
3712 	return 0;
3713 }
3714 
3715 #endif
3716 
3717 /**
3718  * task_prio - return the priority value of a given task.
3719  * @p: the task in question.
3720  *
3721  * This is the priority value as seen by users in /proc.
3722  * RT tasks are offset by -200. Normal tasks are centered
3723  * around 0, value goes from -16 to +15.
3724  */
3725 int task_prio(const struct task_struct *p)
3726 {
3727 	return p->prio - MAX_RT_PRIO;
3728 }
3729 
3730 /**
3731  * task_nice - return the nice value of a given task.
3732  * @p: the task in question.
3733  */
3734 int task_nice(const struct task_struct *p)
3735 {
3736 	return TASK_NICE(p);
3737 }
3738 EXPORT_SYMBOL(task_nice);
3739 
3740 /**
3741  * idle_cpu - is a given cpu idle currently?
3742  * @cpu: the processor in question.
3743  */
3744 int idle_cpu(int cpu)
3745 {
3746 	struct rq *rq = cpu_rq(cpu);
3747 
3748 	if (rq->curr != rq->idle)
3749 		return 0;
3750 
3751 	if (rq->nr_running)
3752 		return 0;
3753 
3754 #ifdef CONFIG_SMP
3755 	if (!llist_empty(&rq->wake_list))
3756 		return 0;
3757 #endif
3758 
3759 	return 1;
3760 }
3761 
3762 /**
3763  * idle_task - return the idle task for a given cpu.
3764  * @cpu: the processor in question.
3765  */
3766 struct task_struct *idle_task(int cpu)
3767 {
3768 	return cpu_rq(cpu)->idle;
3769 }
3770 
3771 /**
3772  * find_process_by_pid - find a process with a matching PID value.
3773  * @pid: the pid in question.
3774  */
3775 static struct task_struct *find_process_by_pid(pid_t pid)
3776 {
3777 	return pid ? find_task_by_vpid(pid) : current;
3778 }
3779 
3780 /* Actually do priority change: must hold rq lock. */
3781 static void
3782 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3783 {
3784 	p->policy = policy;
3785 	p->rt_priority = prio;
3786 	p->normal_prio = normal_prio(p);
3787 	/* we are holding p->pi_lock already */
3788 	p->prio = rt_mutex_getprio(p);
3789 	if (rt_prio(p->prio))
3790 		p->sched_class = &rt_sched_class;
3791 	else
3792 		p->sched_class = &fair_sched_class;
3793 	set_load_weight(p);
3794 }
3795 
3796 /*
3797  * check the target process has a UID that matches the current process's
3798  */
3799 static bool check_same_owner(struct task_struct *p)
3800 {
3801 	const struct cred *cred = current_cred(), *pcred;
3802 	bool match;
3803 
3804 	rcu_read_lock();
3805 	pcred = __task_cred(p);
3806 	match = (uid_eq(cred->euid, pcred->euid) ||
3807 		 uid_eq(cred->euid, pcred->uid));
3808 	rcu_read_unlock();
3809 	return match;
3810 }
3811 
3812 static int __sched_setscheduler(struct task_struct *p, int policy,
3813 				const struct sched_param *param, bool user)
3814 {
3815 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3816 	unsigned long flags;
3817 	const struct sched_class *prev_class;
3818 	struct rq *rq;
3819 	int reset_on_fork;
3820 
3821 	/* may grab non-irq protected spin_locks */
3822 	BUG_ON(in_interrupt());
3823 recheck:
3824 	/* double check policy once rq lock held */
3825 	if (policy < 0) {
3826 		reset_on_fork = p->sched_reset_on_fork;
3827 		policy = oldpolicy = p->policy;
3828 	} else {
3829 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3830 		policy &= ~SCHED_RESET_ON_FORK;
3831 
3832 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3833 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3834 				policy != SCHED_IDLE)
3835 			return -EINVAL;
3836 	}
3837 
3838 	/*
3839 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3840 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3841 	 * SCHED_BATCH and SCHED_IDLE is 0.
3842 	 */
3843 	if (param->sched_priority < 0 ||
3844 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3845 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3846 		return -EINVAL;
3847 	if (rt_policy(policy) != (param->sched_priority != 0))
3848 		return -EINVAL;
3849 
3850 	/*
3851 	 * Allow unprivileged RT tasks to decrease priority:
3852 	 */
3853 	if (user && !capable(CAP_SYS_NICE)) {
3854 		if (rt_policy(policy)) {
3855 			unsigned long rlim_rtprio =
3856 					task_rlimit(p, RLIMIT_RTPRIO);
3857 
3858 			/* can't set/change the rt policy */
3859 			if (policy != p->policy && !rlim_rtprio)
3860 				return -EPERM;
3861 
3862 			/* can't increase priority */
3863 			if (param->sched_priority > p->rt_priority &&
3864 			    param->sched_priority > rlim_rtprio)
3865 				return -EPERM;
3866 		}
3867 
3868 		/*
3869 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3870 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3871 		 */
3872 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3873 			if (!can_nice(p, TASK_NICE(p)))
3874 				return -EPERM;
3875 		}
3876 
3877 		/* can't change other user's priorities */
3878 		if (!check_same_owner(p))
3879 			return -EPERM;
3880 
3881 		/* Normal users shall not reset the sched_reset_on_fork flag */
3882 		if (p->sched_reset_on_fork && !reset_on_fork)
3883 			return -EPERM;
3884 	}
3885 
3886 	if (user) {
3887 		retval = security_task_setscheduler(p);
3888 		if (retval)
3889 			return retval;
3890 	}
3891 
3892 	/*
3893 	 * make sure no PI-waiters arrive (or leave) while we are
3894 	 * changing the priority of the task:
3895 	 *
3896 	 * To be able to change p->policy safely, the appropriate
3897 	 * runqueue lock must be held.
3898 	 */
3899 	rq = task_rq_lock(p, &flags);
3900 
3901 	/*
3902 	 * Changing the policy of the stop threads its a very bad idea
3903 	 */
3904 	if (p == rq->stop) {
3905 		task_rq_unlock(rq, p, &flags);
3906 		return -EINVAL;
3907 	}
3908 
3909 	/*
3910 	 * If not changing anything there's no need to proceed further:
3911 	 */
3912 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3913 			param->sched_priority == p->rt_priority))) {
3914 		task_rq_unlock(rq, p, &flags);
3915 		return 0;
3916 	}
3917 
3918 #ifdef CONFIG_RT_GROUP_SCHED
3919 	if (user) {
3920 		/*
3921 		 * Do not allow realtime tasks into groups that have no runtime
3922 		 * assigned.
3923 		 */
3924 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3925 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3926 				!task_group_is_autogroup(task_group(p))) {
3927 			task_rq_unlock(rq, p, &flags);
3928 			return -EPERM;
3929 		}
3930 	}
3931 #endif
3932 
3933 	/* recheck policy now with rq lock held */
3934 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3935 		policy = oldpolicy = -1;
3936 		task_rq_unlock(rq, p, &flags);
3937 		goto recheck;
3938 	}
3939 	on_rq = p->on_rq;
3940 	running = task_current(rq, p);
3941 	if (on_rq)
3942 		dequeue_task(rq, p, 0);
3943 	if (running)
3944 		p->sched_class->put_prev_task(rq, p);
3945 
3946 	p->sched_reset_on_fork = reset_on_fork;
3947 
3948 	oldprio = p->prio;
3949 	prev_class = p->sched_class;
3950 	__setscheduler(rq, p, policy, param->sched_priority);
3951 
3952 	if (running)
3953 		p->sched_class->set_curr_task(rq);
3954 	if (on_rq)
3955 		enqueue_task(rq, p, 0);
3956 
3957 	check_class_changed(rq, p, prev_class, oldprio);
3958 	task_rq_unlock(rq, p, &flags);
3959 
3960 	rt_mutex_adjust_pi(p);
3961 
3962 	return 0;
3963 }
3964 
3965 /**
3966  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3967  * @p: the task in question.
3968  * @policy: new policy.
3969  * @param: structure containing the new RT priority.
3970  *
3971  * NOTE that the task may be already dead.
3972  */
3973 int sched_setscheduler(struct task_struct *p, int policy,
3974 		       const struct sched_param *param)
3975 {
3976 	return __sched_setscheduler(p, policy, param, true);
3977 }
3978 EXPORT_SYMBOL_GPL(sched_setscheduler);
3979 
3980 /**
3981  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3982  * @p: the task in question.
3983  * @policy: new policy.
3984  * @param: structure containing the new RT priority.
3985  *
3986  * Just like sched_setscheduler, only don't bother checking if the
3987  * current context has permission.  For example, this is needed in
3988  * stop_machine(): we create temporary high priority worker threads,
3989  * but our caller might not have that capability.
3990  */
3991 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3992 			       const struct sched_param *param)
3993 {
3994 	return __sched_setscheduler(p, policy, param, false);
3995 }
3996 
3997 static int
3998 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3999 {
4000 	struct sched_param lparam;
4001 	struct task_struct *p;
4002 	int retval;
4003 
4004 	if (!param || pid < 0)
4005 		return -EINVAL;
4006 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4007 		return -EFAULT;
4008 
4009 	rcu_read_lock();
4010 	retval = -ESRCH;
4011 	p = find_process_by_pid(pid);
4012 	if (p != NULL)
4013 		retval = sched_setscheduler(p, policy, &lparam);
4014 	rcu_read_unlock();
4015 
4016 	return retval;
4017 }
4018 
4019 /**
4020  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4021  * @pid: the pid in question.
4022  * @policy: new policy.
4023  * @param: structure containing the new RT priority.
4024  */
4025 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4026 		struct sched_param __user *, param)
4027 {
4028 	/* negative values for policy are not valid */
4029 	if (policy < 0)
4030 		return -EINVAL;
4031 
4032 	return do_sched_setscheduler(pid, policy, param);
4033 }
4034 
4035 /**
4036  * sys_sched_setparam - set/change the RT priority of a thread
4037  * @pid: the pid in question.
4038  * @param: structure containing the new RT priority.
4039  */
4040 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4041 {
4042 	return do_sched_setscheduler(pid, -1, param);
4043 }
4044 
4045 /**
4046  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4047  * @pid: the pid in question.
4048  */
4049 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4050 {
4051 	struct task_struct *p;
4052 	int retval;
4053 
4054 	if (pid < 0)
4055 		return -EINVAL;
4056 
4057 	retval = -ESRCH;
4058 	rcu_read_lock();
4059 	p = find_process_by_pid(pid);
4060 	if (p) {
4061 		retval = security_task_getscheduler(p);
4062 		if (!retval)
4063 			retval = p->policy
4064 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4065 	}
4066 	rcu_read_unlock();
4067 	return retval;
4068 }
4069 
4070 /**
4071  * sys_sched_getparam - get the RT priority of a thread
4072  * @pid: the pid in question.
4073  * @param: structure containing the RT priority.
4074  */
4075 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4076 {
4077 	struct sched_param lp;
4078 	struct task_struct *p;
4079 	int retval;
4080 
4081 	if (!param || pid < 0)
4082 		return -EINVAL;
4083 
4084 	rcu_read_lock();
4085 	p = find_process_by_pid(pid);
4086 	retval = -ESRCH;
4087 	if (!p)
4088 		goto out_unlock;
4089 
4090 	retval = security_task_getscheduler(p);
4091 	if (retval)
4092 		goto out_unlock;
4093 
4094 	lp.sched_priority = p->rt_priority;
4095 	rcu_read_unlock();
4096 
4097 	/*
4098 	 * This one might sleep, we cannot do it with a spinlock held ...
4099 	 */
4100 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4101 
4102 	return retval;
4103 
4104 out_unlock:
4105 	rcu_read_unlock();
4106 	return retval;
4107 }
4108 
4109 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4110 {
4111 	cpumask_var_t cpus_allowed, new_mask;
4112 	struct task_struct *p;
4113 	int retval;
4114 
4115 	get_online_cpus();
4116 	rcu_read_lock();
4117 
4118 	p = find_process_by_pid(pid);
4119 	if (!p) {
4120 		rcu_read_unlock();
4121 		put_online_cpus();
4122 		return -ESRCH;
4123 	}
4124 
4125 	/* Prevent p going away */
4126 	get_task_struct(p);
4127 	rcu_read_unlock();
4128 
4129 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4130 		retval = -ENOMEM;
4131 		goto out_put_task;
4132 	}
4133 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4134 		retval = -ENOMEM;
4135 		goto out_free_cpus_allowed;
4136 	}
4137 	retval = -EPERM;
4138 	if (!check_same_owner(p)) {
4139 		rcu_read_lock();
4140 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4141 			rcu_read_unlock();
4142 			goto out_unlock;
4143 		}
4144 		rcu_read_unlock();
4145 	}
4146 
4147 	retval = security_task_setscheduler(p);
4148 	if (retval)
4149 		goto out_unlock;
4150 
4151 	cpuset_cpus_allowed(p, cpus_allowed);
4152 	cpumask_and(new_mask, in_mask, cpus_allowed);
4153 again:
4154 	retval = set_cpus_allowed_ptr(p, new_mask);
4155 
4156 	if (!retval) {
4157 		cpuset_cpus_allowed(p, cpus_allowed);
4158 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4159 			/*
4160 			 * We must have raced with a concurrent cpuset
4161 			 * update. Just reset the cpus_allowed to the
4162 			 * cpuset's cpus_allowed
4163 			 */
4164 			cpumask_copy(new_mask, cpus_allowed);
4165 			goto again;
4166 		}
4167 	}
4168 out_unlock:
4169 	free_cpumask_var(new_mask);
4170 out_free_cpus_allowed:
4171 	free_cpumask_var(cpus_allowed);
4172 out_put_task:
4173 	put_task_struct(p);
4174 	put_online_cpus();
4175 	return retval;
4176 }
4177 
4178 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4179 			     struct cpumask *new_mask)
4180 {
4181 	if (len < cpumask_size())
4182 		cpumask_clear(new_mask);
4183 	else if (len > cpumask_size())
4184 		len = cpumask_size();
4185 
4186 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4187 }
4188 
4189 /**
4190  * sys_sched_setaffinity - set the cpu affinity of a process
4191  * @pid: pid of the process
4192  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4193  * @user_mask_ptr: user-space pointer to the new cpu mask
4194  */
4195 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4196 		unsigned long __user *, user_mask_ptr)
4197 {
4198 	cpumask_var_t new_mask;
4199 	int retval;
4200 
4201 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4202 		return -ENOMEM;
4203 
4204 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4205 	if (retval == 0)
4206 		retval = sched_setaffinity(pid, new_mask);
4207 	free_cpumask_var(new_mask);
4208 	return retval;
4209 }
4210 
4211 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4212 {
4213 	struct task_struct *p;
4214 	unsigned long flags;
4215 	int retval;
4216 
4217 	get_online_cpus();
4218 	rcu_read_lock();
4219 
4220 	retval = -ESRCH;
4221 	p = find_process_by_pid(pid);
4222 	if (!p)
4223 		goto out_unlock;
4224 
4225 	retval = security_task_getscheduler(p);
4226 	if (retval)
4227 		goto out_unlock;
4228 
4229 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4230 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4231 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4232 
4233 out_unlock:
4234 	rcu_read_unlock();
4235 	put_online_cpus();
4236 
4237 	return retval;
4238 }
4239 
4240 /**
4241  * sys_sched_getaffinity - get the cpu affinity of a process
4242  * @pid: pid of the process
4243  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4244  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4245  */
4246 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4247 		unsigned long __user *, user_mask_ptr)
4248 {
4249 	int ret;
4250 	cpumask_var_t mask;
4251 
4252 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4253 		return -EINVAL;
4254 	if (len & (sizeof(unsigned long)-1))
4255 		return -EINVAL;
4256 
4257 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4258 		return -ENOMEM;
4259 
4260 	ret = sched_getaffinity(pid, mask);
4261 	if (ret == 0) {
4262 		size_t retlen = min_t(size_t, len, cpumask_size());
4263 
4264 		if (copy_to_user(user_mask_ptr, mask, retlen))
4265 			ret = -EFAULT;
4266 		else
4267 			ret = retlen;
4268 	}
4269 	free_cpumask_var(mask);
4270 
4271 	return ret;
4272 }
4273 
4274 /**
4275  * sys_sched_yield - yield the current processor to other threads.
4276  *
4277  * This function yields the current CPU to other tasks. If there are no
4278  * other threads running on this CPU then this function will return.
4279  */
4280 SYSCALL_DEFINE0(sched_yield)
4281 {
4282 	struct rq *rq = this_rq_lock();
4283 
4284 	schedstat_inc(rq, yld_count);
4285 	current->sched_class->yield_task(rq);
4286 
4287 	/*
4288 	 * Since we are going to call schedule() anyway, there's
4289 	 * no need to preempt or enable interrupts:
4290 	 */
4291 	__release(rq->lock);
4292 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4293 	do_raw_spin_unlock(&rq->lock);
4294 	sched_preempt_enable_no_resched();
4295 
4296 	schedule();
4297 
4298 	return 0;
4299 }
4300 
4301 static inline int should_resched(void)
4302 {
4303 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4304 }
4305 
4306 static void __cond_resched(void)
4307 {
4308 	add_preempt_count(PREEMPT_ACTIVE);
4309 	__schedule();
4310 	sub_preempt_count(PREEMPT_ACTIVE);
4311 }
4312 
4313 int __sched _cond_resched(void)
4314 {
4315 	if (should_resched()) {
4316 		__cond_resched();
4317 		return 1;
4318 	}
4319 	return 0;
4320 }
4321 EXPORT_SYMBOL(_cond_resched);
4322 
4323 /*
4324  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4325  * call schedule, and on return reacquire the lock.
4326  *
4327  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4328  * operations here to prevent schedule() from being called twice (once via
4329  * spin_unlock(), once by hand).
4330  */
4331 int __cond_resched_lock(spinlock_t *lock)
4332 {
4333 	int resched = should_resched();
4334 	int ret = 0;
4335 
4336 	lockdep_assert_held(lock);
4337 
4338 	if (spin_needbreak(lock) || resched) {
4339 		spin_unlock(lock);
4340 		if (resched)
4341 			__cond_resched();
4342 		else
4343 			cpu_relax();
4344 		ret = 1;
4345 		spin_lock(lock);
4346 	}
4347 	return ret;
4348 }
4349 EXPORT_SYMBOL(__cond_resched_lock);
4350 
4351 int __sched __cond_resched_softirq(void)
4352 {
4353 	BUG_ON(!in_softirq());
4354 
4355 	if (should_resched()) {
4356 		local_bh_enable();
4357 		__cond_resched();
4358 		local_bh_disable();
4359 		return 1;
4360 	}
4361 	return 0;
4362 }
4363 EXPORT_SYMBOL(__cond_resched_softirq);
4364 
4365 /**
4366  * yield - yield the current processor to other threads.
4367  *
4368  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4369  *
4370  * The scheduler is at all times free to pick the calling task as the most
4371  * eligible task to run, if removing the yield() call from your code breaks
4372  * it, its already broken.
4373  *
4374  * Typical broken usage is:
4375  *
4376  * while (!event)
4377  * 	yield();
4378  *
4379  * where one assumes that yield() will let 'the other' process run that will
4380  * make event true. If the current task is a SCHED_FIFO task that will never
4381  * happen. Never use yield() as a progress guarantee!!
4382  *
4383  * If you want to use yield() to wait for something, use wait_event().
4384  * If you want to use yield() to be 'nice' for others, use cond_resched().
4385  * If you still want to use yield(), do not!
4386  */
4387 void __sched yield(void)
4388 {
4389 	set_current_state(TASK_RUNNING);
4390 	sys_sched_yield();
4391 }
4392 EXPORT_SYMBOL(yield);
4393 
4394 /**
4395  * yield_to - yield the current processor to another thread in
4396  * your thread group, or accelerate that thread toward the
4397  * processor it's on.
4398  * @p: target task
4399  * @preempt: whether task preemption is allowed or not
4400  *
4401  * It's the caller's job to ensure that the target task struct
4402  * can't go away on us before we can do any checks.
4403  *
4404  * Returns:
4405  *	true (>0) if we indeed boosted the target task.
4406  *	false (0) if we failed to boost the target.
4407  *	-ESRCH if there's no task to yield to.
4408  */
4409 bool __sched yield_to(struct task_struct *p, bool preempt)
4410 {
4411 	struct task_struct *curr = current;
4412 	struct rq *rq, *p_rq;
4413 	unsigned long flags;
4414 	int yielded = 0;
4415 
4416 	local_irq_save(flags);
4417 	rq = this_rq();
4418 
4419 again:
4420 	p_rq = task_rq(p);
4421 	/*
4422 	 * If we're the only runnable task on the rq and target rq also
4423 	 * has only one task, there's absolutely no point in yielding.
4424 	 */
4425 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4426 		yielded = -ESRCH;
4427 		goto out_irq;
4428 	}
4429 
4430 	double_rq_lock(rq, p_rq);
4431 	while (task_rq(p) != p_rq) {
4432 		double_rq_unlock(rq, p_rq);
4433 		goto again;
4434 	}
4435 
4436 	if (!curr->sched_class->yield_to_task)
4437 		goto out_unlock;
4438 
4439 	if (curr->sched_class != p->sched_class)
4440 		goto out_unlock;
4441 
4442 	if (task_running(p_rq, p) || p->state)
4443 		goto out_unlock;
4444 
4445 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4446 	if (yielded) {
4447 		schedstat_inc(rq, yld_count);
4448 		/*
4449 		 * Make p's CPU reschedule; pick_next_entity takes care of
4450 		 * fairness.
4451 		 */
4452 		if (preempt && rq != p_rq)
4453 			resched_task(p_rq->curr);
4454 	}
4455 
4456 out_unlock:
4457 	double_rq_unlock(rq, p_rq);
4458 out_irq:
4459 	local_irq_restore(flags);
4460 
4461 	if (yielded > 0)
4462 		schedule();
4463 
4464 	return yielded;
4465 }
4466 EXPORT_SYMBOL_GPL(yield_to);
4467 
4468 /*
4469  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4470  * that process accounting knows that this is a task in IO wait state.
4471  */
4472 void __sched io_schedule(void)
4473 {
4474 	struct rq *rq = raw_rq();
4475 
4476 	delayacct_blkio_start();
4477 	atomic_inc(&rq->nr_iowait);
4478 	blk_flush_plug(current);
4479 	current->in_iowait = 1;
4480 	schedule();
4481 	current->in_iowait = 0;
4482 	atomic_dec(&rq->nr_iowait);
4483 	delayacct_blkio_end();
4484 }
4485 EXPORT_SYMBOL(io_schedule);
4486 
4487 long __sched io_schedule_timeout(long timeout)
4488 {
4489 	struct rq *rq = raw_rq();
4490 	long ret;
4491 
4492 	delayacct_blkio_start();
4493 	atomic_inc(&rq->nr_iowait);
4494 	blk_flush_plug(current);
4495 	current->in_iowait = 1;
4496 	ret = schedule_timeout(timeout);
4497 	current->in_iowait = 0;
4498 	atomic_dec(&rq->nr_iowait);
4499 	delayacct_blkio_end();
4500 	return ret;
4501 }
4502 
4503 /**
4504  * sys_sched_get_priority_max - return maximum RT priority.
4505  * @policy: scheduling class.
4506  *
4507  * this syscall returns the maximum rt_priority that can be used
4508  * by a given scheduling class.
4509  */
4510 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4511 {
4512 	int ret = -EINVAL;
4513 
4514 	switch (policy) {
4515 	case SCHED_FIFO:
4516 	case SCHED_RR:
4517 		ret = MAX_USER_RT_PRIO-1;
4518 		break;
4519 	case SCHED_NORMAL:
4520 	case SCHED_BATCH:
4521 	case SCHED_IDLE:
4522 		ret = 0;
4523 		break;
4524 	}
4525 	return ret;
4526 }
4527 
4528 /**
4529  * sys_sched_get_priority_min - return minimum RT priority.
4530  * @policy: scheduling class.
4531  *
4532  * this syscall returns the minimum rt_priority that can be used
4533  * by a given scheduling class.
4534  */
4535 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4536 {
4537 	int ret = -EINVAL;
4538 
4539 	switch (policy) {
4540 	case SCHED_FIFO:
4541 	case SCHED_RR:
4542 		ret = 1;
4543 		break;
4544 	case SCHED_NORMAL:
4545 	case SCHED_BATCH:
4546 	case SCHED_IDLE:
4547 		ret = 0;
4548 	}
4549 	return ret;
4550 }
4551 
4552 /**
4553  * sys_sched_rr_get_interval - return the default timeslice of a process.
4554  * @pid: pid of the process.
4555  * @interval: userspace pointer to the timeslice value.
4556  *
4557  * this syscall writes the default timeslice value of a given process
4558  * into the user-space timespec buffer. A value of '0' means infinity.
4559  */
4560 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4561 		struct timespec __user *, interval)
4562 {
4563 	struct task_struct *p;
4564 	unsigned int time_slice;
4565 	unsigned long flags;
4566 	struct rq *rq;
4567 	int retval;
4568 	struct timespec t;
4569 
4570 	if (pid < 0)
4571 		return -EINVAL;
4572 
4573 	retval = -ESRCH;
4574 	rcu_read_lock();
4575 	p = find_process_by_pid(pid);
4576 	if (!p)
4577 		goto out_unlock;
4578 
4579 	retval = security_task_getscheduler(p);
4580 	if (retval)
4581 		goto out_unlock;
4582 
4583 	rq = task_rq_lock(p, &flags);
4584 	time_slice = p->sched_class->get_rr_interval(rq, p);
4585 	task_rq_unlock(rq, p, &flags);
4586 
4587 	rcu_read_unlock();
4588 	jiffies_to_timespec(time_slice, &t);
4589 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4590 	return retval;
4591 
4592 out_unlock:
4593 	rcu_read_unlock();
4594 	return retval;
4595 }
4596 
4597 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4598 
4599 void sched_show_task(struct task_struct *p)
4600 {
4601 	unsigned long free = 0;
4602 	int ppid;
4603 	unsigned state;
4604 
4605 	state = p->state ? __ffs(p->state) + 1 : 0;
4606 	printk(KERN_INFO "%-15.15s %c", p->comm,
4607 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4608 #if BITS_PER_LONG == 32
4609 	if (state == TASK_RUNNING)
4610 		printk(KERN_CONT " running  ");
4611 	else
4612 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4613 #else
4614 	if (state == TASK_RUNNING)
4615 		printk(KERN_CONT "  running task    ");
4616 	else
4617 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4618 #endif
4619 #ifdef CONFIG_DEBUG_STACK_USAGE
4620 	free = stack_not_used(p);
4621 #endif
4622 	rcu_read_lock();
4623 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4624 	rcu_read_unlock();
4625 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4626 		task_pid_nr(p), ppid,
4627 		(unsigned long)task_thread_info(p)->flags);
4628 
4629 	show_stack(p, NULL);
4630 }
4631 
4632 void show_state_filter(unsigned long state_filter)
4633 {
4634 	struct task_struct *g, *p;
4635 
4636 #if BITS_PER_LONG == 32
4637 	printk(KERN_INFO
4638 		"  task                PC stack   pid father\n");
4639 #else
4640 	printk(KERN_INFO
4641 		"  task                        PC stack   pid father\n");
4642 #endif
4643 	rcu_read_lock();
4644 	do_each_thread(g, p) {
4645 		/*
4646 		 * reset the NMI-timeout, listing all files on a slow
4647 		 * console might take a lot of time:
4648 		 */
4649 		touch_nmi_watchdog();
4650 		if (!state_filter || (p->state & state_filter))
4651 			sched_show_task(p);
4652 	} while_each_thread(g, p);
4653 
4654 	touch_all_softlockup_watchdogs();
4655 
4656 #ifdef CONFIG_SCHED_DEBUG
4657 	sysrq_sched_debug_show();
4658 #endif
4659 	rcu_read_unlock();
4660 	/*
4661 	 * Only show locks if all tasks are dumped:
4662 	 */
4663 	if (!state_filter)
4664 		debug_show_all_locks();
4665 }
4666 
4667 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4668 {
4669 	idle->sched_class = &idle_sched_class;
4670 }
4671 
4672 /**
4673  * init_idle - set up an idle thread for a given CPU
4674  * @idle: task in question
4675  * @cpu: cpu the idle task belongs to
4676  *
4677  * NOTE: this function does not set the idle thread's NEED_RESCHED
4678  * flag, to make booting more robust.
4679  */
4680 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4681 {
4682 	struct rq *rq = cpu_rq(cpu);
4683 	unsigned long flags;
4684 
4685 	raw_spin_lock_irqsave(&rq->lock, flags);
4686 
4687 	__sched_fork(idle);
4688 	idle->state = TASK_RUNNING;
4689 	idle->se.exec_start = sched_clock();
4690 
4691 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4692 	/*
4693 	 * We're having a chicken and egg problem, even though we are
4694 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4695 	 * lockdep check in task_group() will fail.
4696 	 *
4697 	 * Similar case to sched_fork(). / Alternatively we could
4698 	 * use task_rq_lock() here and obtain the other rq->lock.
4699 	 *
4700 	 * Silence PROVE_RCU
4701 	 */
4702 	rcu_read_lock();
4703 	__set_task_cpu(idle, cpu);
4704 	rcu_read_unlock();
4705 
4706 	rq->curr = rq->idle = idle;
4707 #if defined(CONFIG_SMP)
4708 	idle->on_cpu = 1;
4709 #endif
4710 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4711 
4712 	/* Set the preempt count _outside_ the spinlocks! */
4713 	task_thread_info(idle)->preempt_count = 0;
4714 
4715 	/*
4716 	 * The idle tasks have their own, simple scheduling class:
4717 	 */
4718 	idle->sched_class = &idle_sched_class;
4719 	ftrace_graph_init_idle_task(idle, cpu);
4720 	vtime_init_idle(idle);
4721 #if defined(CONFIG_SMP)
4722 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4723 #endif
4724 }
4725 
4726 #ifdef CONFIG_SMP
4727 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4728 {
4729 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4730 		p->sched_class->set_cpus_allowed(p, new_mask);
4731 
4732 	cpumask_copy(&p->cpus_allowed, new_mask);
4733 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4734 }
4735 
4736 /*
4737  * This is how migration works:
4738  *
4739  * 1) we invoke migration_cpu_stop() on the target CPU using
4740  *    stop_one_cpu().
4741  * 2) stopper starts to run (implicitly forcing the migrated thread
4742  *    off the CPU)
4743  * 3) it checks whether the migrated task is still in the wrong runqueue.
4744  * 4) if it's in the wrong runqueue then the migration thread removes
4745  *    it and puts it into the right queue.
4746  * 5) stopper completes and stop_one_cpu() returns and the migration
4747  *    is done.
4748  */
4749 
4750 /*
4751  * Change a given task's CPU affinity. Migrate the thread to a
4752  * proper CPU and schedule it away if the CPU it's executing on
4753  * is removed from the allowed bitmask.
4754  *
4755  * NOTE: the caller must have a valid reference to the task, the
4756  * task must not exit() & deallocate itself prematurely. The
4757  * call is not atomic; no spinlocks may be held.
4758  */
4759 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4760 {
4761 	unsigned long flags;
4762 	struct rq *rq;
4763 	unsigned int dest_cpu;
4764 	int ret = 0;
4765 
4766 	rq = task_rq_lock(p, &flags);
4767 
4768 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4769 		goto out;
4770 
4771 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4772 		ret = -EINVAL;
4773 		goto out;
4774 	}
4775 
4776 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4777 		ret = -EINVAL;
4778 		goto out;
4779 	}
4780 
4781 	do_set_cpus_allowed(p, new_mask);
4782 
4783 	/* Can the task run on the task's current CPU? If so, we're done */
4784 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4785 		goto out;
4786 
4787 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4788 	if (p->on_rq) {
4789 		struct migration_arg arg = { p, dest_cpu };
4790 		/* Need help from migration thread: drop lock and wait. */
4791 		task_rq_unlock(rq, p, &flags);
4792 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4793 		tlb_migrate_finish(p->mm);
4794 		return 0;
4795 	}
4796 out:
4797 	task_rq_unlock(rq, p, &flags);
4798 
4799 	return ret;
4800 }
4801 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4802 
4803 /*
4804  * Move (not current) task off this cpu, onto dest cpu. We're doing
4805  * this because either it can't run here any more (set_cpus_allowed()
4806  * away from this CPU, or CPU going down), or because we're
4807  * attempting to rebalance this task on exec (sched_exec).
4808  *
4809  * So we race with normal scheduler movements, but that's OK, as long
4810  * as the task is no longer on this CPU.
4811  *
4812  * Returns non-zero if task was successfully migrated.
4813  */
4814 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4815 {
4816 	struct rq *rq_dest, *rq_src;
4817 	int ret = 0;
4818 
4819 	if (unlikely(!cpu_active(dest_cpu)))
4820 		return ret;
4821 
4822 	rq_src = cpu_rq(src_cpu);
4823 	rq_dest = cpu_rq(dest_cpu);
4824 
4825 	raw_spin_lock(&p->pi_lock);
4826 	double_rq_lock(rq_src, rq_dest);
4827 	/* Already moved. */
4828 	if (task_cpu(p) != src_cpu)
4829 		goto done;
4830 	/* Affinity changed (again). */
4831 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4832 		goto fail;
4833 
4834 	/*
4835 	 * If we're not on a rq, the next wake-up will ensure we're
4836 	 * placed properly.
4837 	 */
4838 	if (p->on_rq) {
4839 		dequeue_task(rq_src, p, 0);
4840 		set_task_cpu(p, dest_cpu);
4841 		enqueue_task(rq_dest, p, 0);
4842 		check_preempt_curr(rq_dest, p, 0);
4843 	}
4844 done:
4845 	ret = 1;
4846 fail:
4847 	double_rq_unlock(rq_src, rq_dest);
4848 	raw_spin_unlock(&p->pi_lock);
4849 	return ret;
4850 }
4851 
4852 /*
4853  * migration_cpu_stop - this will be executed by a highprio stopper thread
4854  * and performs thread migration by bumping thread off CPU then
4855  * 'pushing' onto another runqueue.
4856  */
4857 static int migration_cpu_stop(void *data)
4858 {
4859 	struct migration_arg *arg = data;
4860 
4861 	/*
4862 	 * The original target cpu might have gone down and we might
4863 	 * be on another cpu but it doesn't matter.
4864 	 */
4865 	local_irq_disable();
4866 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4867 	local_irq_enable();
4868 	return 0;
4869 }
4870 
4871 #ifdef CONFIG_HOTPLUG_CPU
4872 
4873 /*
4874  * Ensures that the idle task is using init_mm right before its cpu goes
4875  * offline.
4876  */
4877 void idle_task_exit(void)
4878 {
4879 	struct mm_struct *mm = current->active_mm;
4880 
4881 	BUG_ON(cpu_online(smp_processor_id()));
4882 
4883 	if (mm != &init_mm)
4884 		switch_mm(mm, &init_mm, current);
4885 	mmdrop(mm);
4886 }
4887 
4888 /*
4889  * Since this CPU is going 'away' for a while, fold any nr_active delta
4890  * we might have. Assumes we're called after migrate_tasks() so that the
4891  * nr_active count is stable.
4892  *
4893  * Also see the comment "Global load-average calculations".
4894  */
4895 static void calc_load_migrate(struct rq *rq)
4896 {
4897 	long delta = calc_load_fold_active(rq);
4898 	if (delta)
4899 		atomic_long_add(delta, &calc_load_tasks);
4900 }
4901 
4902 /*
4903  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4904  * try_to_wake_up()->select_task_rq().
4905  *
4906  * Called with rq->lock held even though we'er in stop_machine() and
4907  * there's no concurrency possible, we hold the required locks anyway
4908  * because of lock validation efforts.
4909  */
4910 static void migrate_tasks(unsigned int dead_cpu)
4911 {
4912 	struct rq *rq = cpu_rq(dead_cpu);
4913 	struct task_struct *next, *stop = rq->stop;
4914 	int dest_cpu;
4915 
4916 	/*
4917 	 * Fudge the rq selection such that the below task selection loop
4918 	 * doesn't get stuck on the currently eligible stop task.
4919 	 *
4920 	 * We're currently inside stop_machine() and the rq is either stuck
4921 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4922 	 * either way we should never end up calling schedule() until we're
4923 	 * done here.
4924 	 */
4925 	rq->stop = NULL;
4926 
4927 	for ( ; ; ) {
4928 		/*
4929 		 * There's this thread running, bail when that's the only
4930 		 * remaining thread.
4931 		 */
4932 		if (rq->nr_running == 1)
4933 			break;
4934 
4935 		next = pick_next_task(rq);
4936 		BUG_ON(!next);
4937 		next->sched_class->put_prev_task(rq, next);
4938 
4939 		/* Find suitable destination for @next, with force if needed. */
4940 		dest_cpu = select_fallback_rq(dead_cpu, next);
4941 		raw_spin_unlock(&rq->lock);
4942 
4943 		__migrate_task(next, dead_cpu, dest_cpu);
4944 
4945 		raw_spin_lock(&rq->lock);
4946 	}
4947 
4948 	rq->stop = stop;
4949 }
4950 
4951 #endif /* CONFIG_HOTPLUG_CPU */
4952 
4953 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4954 
4955 static struct ctl_table sd_ctl_dir[] = {
4956 	{
4957 		.procname	= "sched_domain",
4958 		.mode		= 0555,
4959 	},
4960 	{}
4961 };
4962 
4963 static struct ctl_table sd_ctl_root[] = {
4964 	{
4965 		.procname	= "kernel",
4966 		.mode		= 0555,
4967 		.child		= sd_ctl_dir,
4968 	},
4969 	{}
4970 };
4971 
4972 static struct ctl_table *sd_alloc_ctl_entry(int n)
4973 {
4974 	struct ctl_table *entry =
4975 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4976 
4977 	return entry;
4978 }
4979 
4980 static void sd_free_ctl_entry(struct ctl_table **tablep)
4981 {
4982 	struct ctl_table *entry;
4983 
4984 	/*
4985 	 * In the intermediate directories, both the child directory and
4986 	 * procname are dynamically allocated and could fail but the mode
4987 	 * will always be set. In the lowest directory the names are
4988 	 * static strings and all have proc handlers.
4989 	 */
4990 	for (entry = *tablep; entry->mode; entry++) {
4991 		if (entry->child)
4992 			sd_free_ctl_entry(&entry->child);
4993 		if (entry->proc_handler == NULL)
4994 			kfree(entry->procname);
4995 	}
4996 
4997 	kfree(*tablep);
4998 	*tablep = NULL;
4999 }
5000 
5001 static int min_load_idx = 0;
5002 static int max_load_idx = CPU_LOAD_IDX_MAX;
5003 
5004 static void
5005 set_table_entry(struct ctl_table *entry,
5006 		const char *procname, void *data, int maxlen,
5007 		umode_t mode, proc_handler *proc_handler,
5008 		bool load_idx)
5009 {
5010 	entry->procname = procname;
5011 	entry->data = data;
5012 	entry->maxlen = maxlen;
5013 	entry->mode = mode;
5014 	entry->proc_handler = proc_handler;
5015 
5016 	if (load_idx) {
5017 		entry->extra1 = &min_load_idx;
5018 		entry->extra2 = &max_load_idx;
5019 	}
5020 }
5021 
5022 static struct ctl_table *
5023 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5024 {
5025 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5026 
5027 	if (table == NULL)
5028 		return NULL;
5029 
5030 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5031 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5032 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5033 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5034 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5035 		sizeof(int), 0644, proc_dointvec_minmax, true);
5036 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5037 		sizeof(int), 0644, proc_dointvec_minmax, true);
5038 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5039 		sizeof(int), 0644, proc_dointvec_minmax, true);
5040 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5041 		sizeof(int), 0644, proc_dointvec_minmax, true);
5042 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5043 		sizeof(int), 0644, proc_dointvec_minmax, true);
5044 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5045 		sizeof(int), 0644, proc_dointvec_minmax, false);
5046 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5047 		sizeof(int), 0644, proc_dointvec_minmax, false);
5048 	set_table_entry(&table[9], "cache_nice_tries",
5049 		&sd->cache_nice_tries,
5050 		sizeof(int), 0644, proc_dointvec_minmax, false);
5051 	set_table_entry(&table[10], "flags", &sd->flags,
5052 		sizeof(int), 0644, proc_dointvec_minmax, false);
5053 	set_table_entry(&table[11], "name", sd->name,
5054 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5055 	/* &table[12] is terminator */
5056 
5057 	return table;
5058 }
5059 
5060 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5061 {
5062 	struct ctl_table *entry, *table;
5063 	struct sched_domain *sd;
5064 	int domain_num = 0, i;
5065 	char buf[32];
5066 
5067 	for_each_domain(cpu, sd)
5068 		domain_num++;
5069 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5070 	if (table == NULL)
5071 		return NULL;
5072 
5073 	i = 0;
5074 	for_each_domain(cpu, sd) {
5075 		snprintf(buf, 32, "domain%d", i);
5076 		entry->procname = kstrdup(buf, GFP_KERNEL);
5077 		entry->mode = 0555;
5078 		entry->child = sd_alloc_ctl_domain_table(sd);
5079 		entry++;
5080 		i++;
5081 	}
5082 	return table;
5083 }
5084 
5085 static struct ctl_table_header *sd_sysctl_header;
5086 static void register_sched_domain_sysctl(void)
5087 {
5088 	int i, cpu_num = num_possible_cpus();
5089 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5090 	char buf[32];
5091 
5092 	WARN_ON(sd_ctl_dir[0].child);
5093 	sd_ctl_dir[0].child = entry;
5094 
5095 	if (entry == NULL)
5096 		return;
5097 
5098 	for_each_possible_cpu(i) {
5099 		snprintf(buf, 32, "cpu%d", i);
5100 		entry->procname = kstrdup(buf, GFP_KERNEL);
5101 		entry->mode = 0555;
5102 		entry->child = sd_alloc_ctl_cpu_table(i);
5103 		entry++;
5104 	}
5105 
5106 	WARN_ON(sd_sysctl_header);
5107 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5108 }
5109 
5110 /* may be called multiple times per register */
5111 static void unregister_sched_domain_sysctl(void)
5112 {
5113 	if (sd_sysctl_header)
5114 		unregister_sysctl_table(sd_sysctl_header);
5115 	sd_sysctl_header = NULL;
5116 	if (sd_ctl_dir[0].child)
5117 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5118 }
5119 #else
5120 static void register_sched_domain_sysctl(void)
5121 {
5122 }
5123 static void unregister_sched_domain_sysctl(void)
5124 {
5125 }
5126 #endif
5127 
5128 static void set_rq_online(struct rq *rq)
5129 {
5130 	if (!rq->online) {
5131 		const struct sched_class *class;
5132 
5133 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5134 		rq->online = 1;
5135 
5136 		for_each_class(class) {
5137 			if (class->rq_online)
5138 				class->rq_online(rq);
5139 		}
5140 	}
5141 }
5142 
5143 static void set_rq_offline(struct rq *rq)
5144 {
5145 	if (rq->online) {
5146 		const struct sched_class *class;
5147 
5148 		for_each_class(class) {
5149 			if (class->rq_offline)
5150 				class->rq_offline(rq);
5151 		}
5152 
5153 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5154 		rq->online = 0;
5155 	}
5156 }
5157 
5158 /*
5159  * migration_call - callback that gets triggered when a CPU is added.
5160  * Here we can start up the necessary migration thread for the new CPU.
5161  */
5162 static int __cpuinit
5163 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5164 {
5165 	int cpu = (long)hcpu;
5166 	unsigned long flags;
5167 	struct rq *rq = cpu_rq(cpu);
5168 
5169 	switch (action & ~CPU_TASKS_FROZEN) {
5170 
5171 	case CPU_UP_PREPARE:
5172 		rq->calc_load_update = calc_load_update;
5173 		break;
5174 
5175 	case CPU_ONLINE:
5176 		/* Update our root-domain */
5177 		raw_spin_lock_irqsave(&rq->lock, flags);
5178 		if (rq->rd) {
5179 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5180 
5181 			set_rq_online(rq);
5182 		}
5183 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5184 		break;
5185 
5186 #ifdef CONFIG_HOTPLUG_CPU
5187 	case CPU_DYING:
5188 		sched_ttwu_pending();
5189 		/* Update our root-domain */
5190 		raw_spin_lock_irqsave(&rq->lock, flags);
5191 		if (rq->rd) {
5192 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5193 			set_rq_offline(rq);
5194 		}
5195 		migrate_tasks(cpu);
5196 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5197 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5198 		break;
5199 
5200 	case CPU_DEAD:
5201 		calc_load_migrate(rq);
5202 		break;
5203 #endif
5204 	}
5205 
5206 	update_max_interval();
5207 
5208 	return NOTIFY_OK;
5209 }
5210 
5211 /*
5212  * Register at high priority so that task migration (migrate_all_tasks)
5213  * happens before everything else.  This has to be lower priority than
5214  * the notifier in the perf_event subsystem, though.
5215  */
5216 static struct notifier_block __cpuinitdata migration_notifier = {
5217 	.notifier_call = migration_call,
5218 	.priority = CPU_PRI_MIGRATION,
5219 };
5220 
5221 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5222 				      unsigned long action, void *hcpu)
5223 {
5224 	switch (action & ~CPU_TASKS_FROZEN) {
5225 	case CPU_STARTING:
5226 	case CPU_DOWN_FAILED:
5227 		set_cpu_active((long)hcpu, true);
5228 		return NOTIFY_OK;
5229 	default:
5230 		return NOTIFY_DONE;
5231 	}
5232 }
5233 
5234 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5235 					unsigned long action, void *hcpu)
5236 {
5237 	switch (action & ~CPU_TASKS_FROZEN) {
5238 	case CPU_DOWN_PREPARE:
5239 		set_cpu_active((long)hcpu, false);
5240 		return NOTIFY_OK;
5241 	default:
5242 		return NOTIFY_DONE;
5243 	}
5244 }
5245 
5246 static int __init migration_init(void)
5247 {
5248 	void *cpu = (void *)(long)smp_processor_id();
5249 	int err;
5250 
5251 	/* Initialize migration for the boot CPU */
5252 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5253 	BUG_ON(err == NOTIFY_BAD);
5254 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5255 	register_cpu_notifier(&migration_notifier);
5256 
5257 	/* Register cpu active notifiers */
5258 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5259 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5260 
5261 	return 0;
5262 }
5263 early_initcall(migration_init);
5264 #endif
5265 
5266 #ifdef CONFIG_SMP
5267 
5268 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5269 
5270 #ifdef CONFIG_SCHED_DEBUG
5271 
5272 static __read_mostly int sched_debug_enabled;
5273 
5274 static int __init sched_debug_setup(char *str)
5275 {
5276 	sched_debug_enabled = 1;
5277 
5278 	return 0;
5279 }
5280 early_param("sched_debug", sched_debug_setup);
5281 
5282 static inline bool sched_debug(void)
5283 {
5284 	return sched_debug_enabled;
5285 }
5286 
5287 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5288 				  struct cpumask *groupmask)
5289 {
5290 	struct sched_group *group = sd->groups;
5291 	char str[256];
5292 
5293 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5294 	cpumask_clear(groupmask);
5295 
5296 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5297 
5298 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5299 		printk("does not load-balance\n");
5300 		if (sd->parent)
5301 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5302 					" has parent");
5303 		return -1;
5304 	}
5305 
5306 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5307 
5308 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5309 		printk(KERN_ERR "ERROR: domain->span does not contain "
5310 				"CPU%d\n", cpu);
5311 	}
5312 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5313 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5314 				" CPU%d\n", cpu);
5315 	}
5316 
5317 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5318 	do {
5319 		if (!group) {
5320 			printk("\n");
5321 			printk(KERN_ERR "ERROR: group is NULL\n");
5322 			break;
5323 		}
5324 
5325 		/*
5326 		 * Even though we initialize ->power to something semi-sane,
5327 		 * we leave power_orig unset. This allows us to detect if
5328 		 * domain iteration is still funny without causing /0 traps.
5329 		 */
5330 		if (!group->sgp->power_orig) {
5331 			printk(KERN_CONT "\n");
5332 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5333 					"set\n");
5334 			break;
5335 		}
5336 
5337 		if (!cpumask_weight(sched_group_cpus(group))) {
5338 			printk(KERN_CONT "\n");
5339 			printk(KERN_ERR "ERROR: empty group\n");
5340 			break;
5341 		}
5342 
5343 		if (!(sd->flags & SD_OVERLAP) &&
5344 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5345 			printk(KERN_CONT "\n");
5346 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5347 			break;
5348 		}
5349 
5350 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5351 
5352 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5353 
5354 		printk(KERN_CONT " %s", str);
5355 		if (group->sgp->power != SCHED_POWER_SCALE) {
5356 			printk(KERN_CONT " (cpu_power = %d)",
5357 				group->sgp->power);
5358 		}
5359 
5360 		group = group->next;
5361 	} while (group != sd->groups);
5362 	printk(KERN_CONT "\n");
5363 
5364 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5365 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5366 
5367 	if (sd->parent &&
5368 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5369 		printk(KERN_ERR "ERROR: parent span is not a superset "
5370 			"of domain->span\n");
5371 	return 0;
5372 }
5373 
5374 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5375 {
5376 	int level = 0;
5377 
5378 	if (!sched_debug_enabled)
5379 		return;
5380 
5381 	if (!sd) {
5382 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5383 		return;
5384 	}
5385 
5386 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5387 
5388 	for (;;) {
5389 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5390 			break;
5391 		level++;
5392 		sd = sd->parent;
5393 		if (!sd)
5394 			break;
5395 	}
5396 }
5397 #else /* !CONFIG_SCHED_DEBUG */
5398 # define sched_domain_debug(sd, cpu) do { } while (0)
5399 static inline bool sched_debug(void)
5400 {
5401 	return false;
5402 }
5403 #endif /* CONFIG_SCHED_DEBUG */
5404 
5405 static int sd_degenerate(struct sched_domain *sd)
5406 {
5407 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5408 		return 1;
5409 
5410 	/* Following flags need at least 2 groups */
5411 	if (sd->flags & (SD_LOAD_BALANCE |
5412 			 SD_BALANCE_NEWIDLE |
5413 			 SD_BALANCE_FORK |
5414 			 SD_BALANCE_EXEC |
5415 			 SD_SHARE_CPUPOWER |
5416 			 SD_SHARE_PKG_RESOURCES)) {
5417 		if (sd->groups != sd->groups->next)
5418 			return 0;
5419 	}
5420 
5421 	/* Following flags don't use groups */
5422 	if (sd->flags & (SD_WAKE_AFFINE))
5423 		return 0;
5424 
5425 	return 1;
5426 }
5427 
5428 static int
5429 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5430 {
5431 	unsigned long cflags = sd->flags, pflags = parent->flags;
5432 
5433 	if (sd_degenerate(parent))
5434 		return 1;
5435 
5436 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5437 		return 0;
5438 
5439 	/* Flags needing groups don't count if only 1 group in parent */
5440 	if (parent->groups == parent->groups->next) {
5441 		pflags &= ~(SD_LOAD_BALANCE |
5442 				SD_BALANCE_NEWIDLE |
5443 				SD_BALANCE_FORK |
5444 				SD_BALANCE_EXEC |
5445 				SD_SHARE_CPUPOWER |
5446 				SD_SHARE_PKG_RESOURCES);
5447 		if (nr_node_ids == 1)
5448 			pflags &= ~SD_SERIALIZE;
5449 	}
5450 	if (~cflags & pflags)
5451 		return 0;
5452 
5453 	return 1;
5454 }
5455 
5456 static void free_rootdomain(struct rcu_head *rcu)
5457 {
5458 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5459 
5460 	cpupri_cleanup(&rd->cpupri);
5461 	free_cpumask_var(rd->rto_mask);
5462 	free_cpumask_var(rd->online);
5463 	free_cpumask_var(rd->span);
5464 	kfree(rd);
5465 }
5466 
5467 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5468 {
5469 	struct root_domain *old_rd = NULL;
5470 	unsigned long flags;
5471 
5472 	raw_spin_lock_irqsave(&rq->lock, flags);
5473 
5474 	if (rq->rd) {
5475 		old_rd = rq->rd;
5476 
5477 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5478 			set_rq_offline(rq);
5479 
5480 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5481 
5482 		/*
5483 		 * If we dont want to free the old_rt yet then
5484 		 * set old_rd to NULL to skip the freeing later
5485 		 * in this function:
5486 		 */
5487 		if (!atomic_dec_and_test(&old_rd->refcount))
5488 			old_rd = NULL;
5489 	}
5490 
5491 	atomic_inc(&rd->refcount);
5492 	rq->rd = rd;
5493 
5494 	cpumask_set_cpu(rq->cpu, rd->span);
5495 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5496 		set_rq_online(rq);
5497 
5498 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5499 
5500 	if (old_rd)
5501 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5502 }
5503 
5504 static int init_rootdomain(struct root_domain *rd)
5505 {
5506 	memset(rd, 0, sizeof(*rd));
5507 
5508 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5509 		goto out;
5510 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5511 		goto free_span;
5512 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5513 		goto free_online;
5514 
5515 	if (cpupri_init(&rd->cpupri) != 0)
5516 		goto free_rto_mask;
5517 	return 0;
5518 
5519 free_rto_mask:
5520 	free_cpumask_var(rd->rto_mask);
5521 free_online:
5522 	free_cpumask_var(rd->online);
5523 free_span:
5524 	free_cpumask_var(rd->span);
5525 out:
5526 	return -ENOMEM;
5527 }
5528 
5529 /*
5530  * By default the system creates a single root-domain with all cpus as
5531  * members (mimicking the global state we have today).
5532  */
5533 struct root_domain def_root_domain;
5534 
5535 static void init_defrootdomain(void)
5536 {
5537 	init_rootdomain(&def_root_domain);
5538 
5539 	atomic_set(&def_root_domain.refcount, 1);
5540 }
5541 
5542 static struct root_domain *alloc_rootdomain(void)
5543 {
5544 	struct root_domain *rd;
5545 
5546 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5547 	if (!rd)
5548 		return NULL;
5549 
5550 	if (init_rootdomain(rd) != 0) {
5551 		kfree(rd);
5552 		return NULL;
5553 	}
5554 
5555 	return rd;
5556 }
5557 
5558 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5559 {
5560 	struct sched_group *tmp, *first;
5561 
5562 	if (!sg)
5563 		return;
5564 
5565 	first = sg;
5566 	do {
5567 		tmp = sg->next;
5568 
5569 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5570 			kfree(sg->sgp);
5571 
5572 		kfree(sg);
5573 		sg = tmp;
5574 	} while (sg != first);
5575 }
5576 
5577 static void free_sched_domain(struct rcu_head *rcu)
5578 {
5579 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5580 
5581 	/*
5582 	 * If its an overlapping domain it has private groups, iterate and
5583 	 * nuke them all.
5584 	 */
5585 	if (sd->flags & SD_OVERLAP) {
5586 		free_sched_groups(sd->groups, 1);
5587 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5588 		kfree(sd->groups->sgp);
5589 		kfree(sd->groups);
5590 	}
5591 	kfree(sd);
5592 }
5593 
5594 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5595 {
5596 	call_rcu(&sd->rcu, free_sched_domain);
5597 }
5598 
5599 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5600 {
5601 	for (; sd; sd = sd->parent)
5602 		destroy_sched_domain(sd, cpu);
5603 }
5604 
5605 /*
5606  * Keep a special pointer to the highest sched_domain that has
5607  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5608  * allows us to avoid some pointer chasing select_idle_sibling().
5609  *
5610  * Also keep a unique ID per domain (we use the first cpu number in
5611  * the cpumask of the domain), this allows us to quickly tell if
5612  * two cpus are in the same cache domain, see cpus_share_cache().
5613  */
5614 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5615 DEFINE_PER_CPU(int, sd_llc_id);
5616 
5617 static void update_top_cache_domain(int cpu)
5618 {
5619 	struct sched_domain *sd;
5620 	int id = cpu;
5621 
5622 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5623 	if (sd)
5624 		id = cpumask_first(sched_domain_span(sd));
5625 
5626 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5627 	per_cpu(sd_llc_id, cpu) = id;
5628 }
5629 
5630 /*
5631  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5632  * hold the hotplug lock.
5633  */
5634 static void
5635 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5636 {
5637 	struct rq *rq = cpu_rq(cpu);
5638 	struct sched_domain *tmp;
5639 
5640 	/* Remove the sched domains which do not contribute to scheduling. */
5641 	for (tmp = sd; tmp; ) {
5642 		struct sched_domain *parent = tmp->parent;
5643 		if (!parent)
5644 			break;
5645 
5646 		if (sd_parent_degenerate(tmp, parent)) {
5647 			tmp->parent = parent->parent;
5648 			if (parent->parent)
5649 				parent->parent->child = tmp;
5650 			destroy_sched_domain(parent, cpu);
5651 		} else
5652 			tmp = tmp->parent;
5653 	}
5654 
5655 	if (sd && sd_degenerate(sd)) {
5656 		tmp = sd;
5657 		sd = sd->parent;
5658 		destroy_sched_domain(tmp, cpu);
5659 		if (sd)
5660 			sd->child = NULL;
5661 	}
5662 
5663 	sched_domain_debug(sd, cpu);
5664 
5665 	rq_attach_root(rq, rd);
5666 	tmp = rq->sd;
5667 	rcu_assign_pointer(rq->sd, sd);
5668 	destroy_sched_domains(tmp, cpu);
5669 
5670 	update_top_cache_domain(cpu);
5671 }
5672 
5673 /* cpus with isolated domains */
5674 static cpumask_var_t cpu_isolated_map;
5675 
5676 /* Setup the mask of cpus configured for isolated domains */
5677 static int __init isolated_cpu_setup(char *str)
5678 {
5679 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5680 	cpulist_parse(str, cpu_isolated_map);
5681 	return 1;
5682 }
5683 
5684 __setup("isolcpus=", isolated_cpu_setup);
5685 
5686 static const struct cpumask *cpu_cpu_mask(int cpu)
5687 {
5688 	return cpumask_of_node(cpu_to_node(cpu));
5689 }
5690 
5691 struct sd_data {
5692 	struct sched_domain **__percpu sd;
5693 	struct sched_group **__percpu sg;
5694 	struct sched_group_power **__percpu sgp;
5695 };
5696 
5697 struct s_data {
5698 	struct sched_domain ** __percpu sd;
5699 	struct root_domain	*rd;
5700 };
5701 
5702 enum s_alloc {
5703 	sa_rootdomain,
5704 	sa_sd,
5705 	sa_sd_storage,
5706 	sa_none,
5707 };
5708 
5709 struct sched_domain_topology_level;
5710 
5711 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5712 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5713 
5714 #define SDTL_OVERLAP	0x01
5715 
5716 struct sched_domain_topology_level {
5717 	sched_domain_init_f init;
5718 	sched_domain_mask_f mask;
5719 	int		    flags;
5720 	int		    numa_level;
5721 	struct sd_data      data;
5722 };
5723 
5724 /*
5725  * Build an iteration mask that can exclude certain CPUs from the upwards
5726  * domain traversal.
5727  *
5728  * Asymmetric node setups can result in situations where the domain tree is of
5729  * unequal depth, make sure to skip domains that already cover the entire
5730  * range.
5731  *
5732  * In that case build_sched_domains() will have terminated the iteration early
5733  * and our sibling sd spans will be empty. Domains should always include the
5734  * cpu they're built on, so check that.
5735  *
5736  */
5737 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5738 {
5739 	const struct cpumask *span = sched_domain_span(sd);
5740 	struct sd_data *sdd = sd->private;
5741 	struct sched_domain *sibling;
5742 	int i;
5743 
5744 	for_each_cpu(i, span) {
5745 		sibling = *per_cpu_ptr(sdd->sd, i);
5746 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5747 			continue;
5748 
5749 		cpumask_set_cpu(i, sched_group_mask(sg));
5750 	}
5751 }
5752 
5753 /*
5754  * Return the canonical balance cpu for this group, this is the first cpu
5755  * of this group that's also in the iteration mask.
5756  */
5757 int group_balance_cpu(struct sched_group *sg)
5758 {
5759 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5760 }
5761 
5762 static int
5763 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5764 {
5765 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5766 	const struct cpumask *span = sched_domain_span(sd);
5767 	struct cpumask *covered = sched_domains_tmpmask;
5768 	struct sd_data *sdd = sd->private;
5769 	struct sched_domain *child;
5770 	int i;
5771 
5772 	cpumask_clear(covered);
5773 
5774 	for_each_cpu(i, span) {
5775 		struct cpumask *sg_span;
5776 
5777 		if (cpumask_test_cpu(i, covered))
5778 			continue;
5779 
5780 		child = *per_cpu_ptr(sdd->sd, i);
5781 
5782 		/* See the comment near build_group_mask(). */
5783 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5784 			continue;
5785 
5786 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5787 				GFP_KERNEL, cpu_to_node(cpu));
5788 
5789 		if (!sg)
5790 			goto fail;
5791 
5792 		sg_span = sched_group_cpus(sg);
5793 		if (child->child) {
5794 			child = child->child;
5795 			cpumask_copy(sg_span, sched_domain_span(child));
5796 		} else
5797 			cpumask_set_cpu(i, sg_span);
5798 
5799 		cpumask_or(covered, covered, sg_span);
5800 
5801 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5802 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5803 			build_group_mask(sd, sg);
5804 
5805 		/*
5806 		 * Initialize sgp->power such that even if we mess up the
5807 		 * domains and no possible iteration will get us here, we won't
5808 		 * die on a /0 trap.
5809 		 */
5810 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5811 
5812 		/*
5813 		 * Make sure the first group of this domain contains the
5814 		 * canonical balance cpu. Otherwise the sched_domain iteration
5815 		 * breaks. See update_sg_lb_stats().
5816 		 */
5817 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5818 		    group_balance_cpu(sg) == cpu)
5819 			groups = sg;
5820 
5821 		if (!first)
5822 			first = sg;
5823 		if (last)
5824 			last->next = sg;
5825 		last = sg;
5826 		last->next = first;
5827 	}
5828 	sd->groups = groups;
5829 
5830 	return 0;
5831 
5832 fail:
5833 	free_sched_groups(first, 0);
5834 
5835 	return -ENOMEM;
5836 }
5837 
5838 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5839 {
5840 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5841 	struct sched_domain *child = sd->child;
5842 
5843 	if (child)
5844 		cpu = cpumask_first(sched_domain_span(child));
5845 
5846 	if (sg) {
5847 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5848 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5849 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5850 	}
5851 
5852 	return cpu;
5853 }
5854 
5855 /*
5856  * build_sched_groups will build a circular linked list of the groups
5857  * covered by the given span, and will set each group's ->cpumask correctly,
5858  * and ->cpu_power to 0.
5859  *
5860  * Assumes the sched_domain tree is fully constructed
5861  */
5862 static int
5863 build_sched_groups(struct sched_domain *sd, int cpu)
5864 {
5865 	struct sched_group *first = NULL, *last = NULL;
5866 	struct sd_data *sdd = sd->private;
5867 	const struct cpumask *span = sched_domain_span(sd);
5868 	struct cpumask *covered;
5869 	int i;
5870 
5871 	get_group(cpu, sdd, &sd->groups);
5872 	atomic_inc(&sd->groups->ref);
5873 
5874 	if (cpu != cpumask_first(sched_domain_span(sd)))
5875 		return 0;
5876 
5877 	lockdep_assert_held(&sched_domains_mutex);
5878 	covered = sched_domains_tmpmask;
5879 
5880 	cpumask_clear(covered);
5881 
5882 	for_each_cpu(i, span) {
5883 		struct sched_group *sg;
5884 		int group = get_group(i, sdd, &sg);
5885 		int j;
5886 
5887 		if (cpumask_test_cpu(i, covered))
5888 			continue;
5889 
5890 		cpumask_clear(sched_group_cpus(sg));
5891 		sg->sgp->power = 0;
5892 		cpumask_setall(sched_group_mask(sg));
5893 
5894 		for_each_cpu(j, span) {
5895 			if (get_group(j, sdd, NULL) != group)
5896 				continue;
5897 
5898 			cpumask_set_cpu(j, covered);
5899 			cpumask_set_cpu(j, sched_group_cpus(sg));
5900 		}
5901 
5902 		if (!first)
5903 			first = sg;
5904 		if (last)
5905 			last->next = sg;
5906 		last = sg;
5907 	}
5908 	last->next = first;
5909 
5910 	return 0;
5911 }
5912 
5913 /*
5914  * Initialize sched groups cpu_power.
5915  *
5916  * cpu_power indicates the capacity of sched group, which is used while
5917  * distributing the load between different sched groups in a sched domain.
5918  * Typically cpu_power for all the groups in a sched domain will be same unless
5919  * there are asymmetries in the topology. If there are asymmetries, group
5920  * having more cpu_power will pickup more load compared to the group having
5921  * less cpu_power.
5922  */
5923 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5924 {
5925 	struct sched_group *sg = sd->groups;
5926 
5927 	WARN_ON(!sd || !sg);
5928 
5929 	do {
5930 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5931 		sg = sg->next;
5932 	} while (sg != sd->groups);
5933 
5934 	if (cpu != group_balance_cpu(sg))
5935 		return;
5936 
5937 	update_group_power(sd, cpu);
5938 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5939 }
5940 
5941 int __weak arch_sd_sibling_asym_packing(void)
5942 {
5943        return 0*SD_ASYM_PACKING;
5944 }
5945 
5946 /*
5947  * Initializers for schedule domains
5948  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5949  */
5950 
5951 #ifdef CONFIG_SCHED_DEBUG
5952 # define SD_INIT_NAME(sd, type)		sd->name = #type
5953 #else
5954 # define SD_INIT_NAME(sd, type)		do { } while (0)
5955 #endif
5956 
5957 #define SD_INIT_FUNC(type)						\
5958 static noinline struct sched_domain *					\
5959 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5960 {									\
5961 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5962 	*sd = SD_##type##_INIT;						\
5963 	SD_INIT_NAME(sd, type);						\
5964 	sd->private = &tl->data;					\
5965 	return sd;							\
5966 }
5967 
5968 SD_INIT_FUNC(CPU)
5969 #ifdef CONFIG_SCHED_SMT
5970  SD_INIT_FUNC(SIBLING)
5971 #endif
5972 #ifdef CONFIG_SCHED_MC
5973  SD_INIT_FUNC(MC)
5974 #endif
5975 #ifdef CONFIG_SCHED_BOOK
5976  SD_INIT_FUNC(BOOK)
5977 #endif
5978 
5979 static int default_relax_domain_level = -1;
5980 int sched_domain_level_max;
5981 
5982 static int __init setup_relax_domain_level(char *str)
5983 {
5984 	if (kstrtoint(str, 0, &default_relax_domain_level))
5985 		pr_warn("Unable to set relax_domain_level\n");
5986 
5987 	return 1;
5988 }
5989 __setup("relax_domain_level=", setup_relax_domain_level);
5990 
5991 static void set_domain_attribute(struct sched_domain *sd,
5992 				 struct sched_domain_attr *attr)
5993 {
5994 	int request;
5995 
5996 	if (!attr || attr->relax_domain_level < 0) {
5997 		if (default_relax_domain_level < 0)
5998 			return;
5999 		else
6000 			request = default_relax_domain_level;
6001 	} else
6002 		request = attr->relax_domain_level;
6003 	if (request < sd->level) {
6004 		/* turn off idle balance on this domain */
6005 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6006 	} else {
6007 		/* turn on idle balance on this domain */
6008 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6009 	}
6010 }
6011 
6012 static void __sdt_free(const struct cpumask *cpu_map);
6013 static int __sdt_alloc(const struct cpumask *cpu_map);
6014 
6015 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6016 				 const struct cpumask *cpu_map)
6017 {
6018 	switch (what) {
6019 	case sa_rootdomain:
6020 		if (!atomic_read(&d->rd->refcount))
6021 			free_rootdomain(&d->rd->rcu); /* fall through */
6022 	case sa_sd:
6023 		free_percpu(d->sd); /* fall through */
6024 	case sa_sd_storage:
6025 		__sdt_free(cpu_map); /* fall through */
6026 	case sa_none:
6027 		break;
6028 	}
6029 }
6030 
6031 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6032 						   const struct cpumask *cpu_map)
6033 {
6034 	memset(d, 0, sizeof(*d));
6035 
6036 	if (__sdt_alloc(cpu_map))
6037 		return sa_sd_storage;
6038 	d->sd = alloc_percpu(struct sched_domain *);
6039 	if (!d->sd)
6040 		return sa_sd_storage;
6041 	d->rd = alloc_rootdomain();
6042 	if (!d->rd)
6043 		return sa_sd;
6044 	return sa_rootdomain;
6045 }
6046 
6047 /*
6048  * NULL the sd_data elements we've used to build the sched_domain and
6049  * sched_group structure so that the subsequent __free_domain_allocs()
6050  * will not free the data we're using.
6051  */
6052 static void claim_allocations(int cpu, struct sched_domain *sd)
6053 {
6054 	struct sd_data *sdd = sd->private;
6055 
6056 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6057 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6058 
6059 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6060 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6061 
6062 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6063 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6064 }
6065 
6066 #ifdef CONFIG_SCHED_SMT
6067 static const struct cpumask *cpu_smt_mask(int cpu)
6068 {
6069 	return topology_thread_cpumask(cpu);
6070 }
6071 #endif
6072 
6073 /*
6074  * Topology list, bottom-up.
6075  */
6076 static struct sched_domain_topology_level default_topology[] = {
6077 #ifdef CONFIG_SCHED_SMT
6078 	{ sd_init_SIBLING, cpu_smt_mask, },
6079 #endif
6080 #ifdef CONFIG_SCHED_MC
6081 	{ sd_init_MC, cpu_coregroup_mask, },
6082 #endif
6083 #ifdef CONFIG_SCHED_BOOK
6084 	{ sd_init_BOOK, cpu_book_mask, },
6085 #endif
6086 	{ sd_init_CPU, cpu_cpu_mask, },
6087 	{ NULL, },
6088 };
6089 
6090 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6091 
6092 #ifdef CONFIG_NUMA
6093 
6094 static int sched_domains_numa_levels;
6095 static int *sched_domains_numa_distance;
6096 static struct cpumask ***sched_domains_numa_masks;
6097 static int sched_domains_curr_level;
6098 
6099 static inline int sd_local_flags(int level)
6100 {
6101 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6102 		return 0;
6103 
6104 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6105 }
6106 
6107 static struct sched_domain *
6108 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6109 {
6110 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6111 	int level = tl->numa_level;
6112 	int sd_weight = cpumask_weight(
6113 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6114 
6115 	*sd = (struct sched_domain){
6116 		.min_interval		= sd_weight,
6117 		.max_interval		= 2*sd_weight,
6118 		.busy_factor		= 32,
6119 		.imbalance_pct		= 125,
6120 		.cache_nice_tries	= 2,
6121 		.busy_idx		= 3,
6122 		.idle_idx		= 2,
6123 		.newidle_idx		= 0,
6124 		.wake_idx		= 0,
6125 		.forkexec_idx		= 0,
6126 
6127 		.flags			= 1*SD_LOAD_BALANCE
6128 					| 1*SD_BALANCE_NEWIDLE
6129 					| 0*SD_BALANCE_EXEC
6130 					| 0*SD_BALANCE_FORK
6131 					| 0*SD_BALANCE_WAKE
6132 					| 0*SD_WAKE_AFFINE
6133 					| 0*SD_SHARE_CPUPOWER
6134 					| 0*SD_SHARE_PKG_RESOURCES
6135 					| 1*SD_SERIALIZE
6136 					| 0*SD_PREFER_SIBLING
6137 					| sd_local_flags(level)
6138 					,
6139 		.last_balance		= jiffies,
6140 		.balance_interval	= sd_weight,
6141 	};
6142 	SD_INIT_NAME(sd, NUMA);
6143 	sd->private = &tl->data;
6144 
6145 	/*
6146 	 * Ugly hack to pass state to sd_numa_mask()...
6147 	 */
6148 	sched_domains_curr_level = tl->numa_level;
6149 
6150 	return sd;
6151 }
6152 
6153 static const struct cpumask *sd_numa_mask(int cpu)
6154 {
6155 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6156 }
6157 
6158 static void sched_numa_warn(const char *str)
6159 {
6160 	static int done = false;
6161 	int i,j;
6162 
6163 	if (done)
6164 		return;
6165 
6166 	done = true;
6167 
6168 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6169 
6170 	for (i = 0; i < nr_node_ids; i++) {
6171 		printk(KERN_WARNING "  ");
6172 		for (j = 0; j < nr_node_ids; j++)
6173 			printk(KERN_CONT "%02d ", node_distance(i,j));
6174 		printk(KERN_CONT "\n");
6175 	}
6176 	printk(KERN_WARNING "\n");
6177 }
6178 
6179 static bool find_numa_distance(int distance)
6180 {
6181 	int i;
6182 
6183 	if (distance == node_distance(0, 0))
6184 		return true;
6185 
6186 	for (i = 0; i < sched_domains_numa_levels; i++) {
6187 		if (sched_domains_numa_distance[i] == distance)
6188 			return true;
6189 	}
6190 
6191 	return false;
6192 }
6193 
6194 static void sched_init_numa(void)
6195 {
6196 	int next_distance, curr_distance = node_distance(0, 0);
6197 	struct sched_domain_topology_level *tl;
6198 	int level = 0;
6199 	int i, j, k;
6200 
6201 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6202 	if (!sched_domains_numa_distance)
6203 		return;
6204 
6205 	/*
6206 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6207 	 * unique distances in the node_distance() table.
6208 	 *
6209 	 * Assumes node_distance(0,j) includes all distances in
6210 	 * node_distance(i,j) in order to avoid cubic time.
6211 	 */
6212 	next_distance = curr_distance;
6213 	for (i = 0; i < nr_node_ids; i++) {
6214 		for (j = 0; j < nr_node_ids; j++) {
6215 			for (k = 0; k < nr_node_ids; k++) {
6216 				int distance = node_distance(i, k);
6217 
6218 				if (distance > curr_distance &&
6219 				    (distance < next_distance ||
6220 				     next_distance == curr_distance))
6221 					next_distance = distance;
6222 
6223 				/*
6224 				 * While not a strong assumption it would be nice to know
6225 				 * about cases where if node A is connected to B, B is not
6226 				 * equally connected to A.
6227 				 */
6228 				if (sched_debug() && node_distance(k, i) != distance)
6229 					sched_numa_warn("Node-distance not symmetric");
6230 
6231 				if (sched_debug() && i && !find_numa_distance(distance))
6232 					sched_numa_warn("Node-0 not representative");
6233 			}
6234 			if (next_distance != curr_distance) {
6235 				sched_domains_numa_distance[level++] = next_distance;
6236 				sched_domains_numa_levels = level;
6237 				curr_distance = next_distance;
6238 			} else break;
6239 		}
6240 
6241 		/*
6242 		 * In case of sched_debug() we verify the above assumption.
6243 		 */
6244 		if (!sched_debug())
6245 			break;
6246 	}
6247 	/*
6248 	 * 'level' contains the number of unique distances, excluding the
6249 	 * identity distance node_distance(i,i).
6250 	 *
6251 	 * The sched_domains_nume_distance[] array includes the actual distance
6252 	 * numbers.
6253 	 */
6254 
6255 	/*
6256 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6257 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6258 	 * the array will contain less then 'level' members. This could be
6259 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6260 	 * in other functions.
6261 	 *
6262 	 * We reset it to 'level' at the end of this function.
6263 	 */
6264 	sched_domains_numa_levels = 0;
6265 
6266 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6267 	if (!sched_domains_numa_masks)
6268 		return;
6269 
6270 	/*
6271 	 * Now for each level, construct a mask per node which contains all
6272 	 * cpus of nodes that are that many hops away from us.
6273 	 */
6274 	for (i = 0; i < level; i++) {
6275 		sched_domains_numa_masks[i] =
6276 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6277 		if (!sched_domains_numa_masks[i])
6278 			return;
6279 
6280 		for (j = 0; j < nr_node_ids; j++) {
6281 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6282 			if (!mask)
6283 				return;
6284 
6285 			sched_domains_numa_masks[i][j] = mask;
6286 
6287 			for (k = 0; k < nr_node_ids; k++) {
6288 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6289 					continue;
6290 
6291 				cpumask_or(mask, mask, cpumask_of_node(k));
6292 			}
6293 		}
6294 	}
6295 
6296 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6297 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6298 	if (!tl)
6299 		return;
6300 
6301 	/*
6302 	 * Copy the default topology bits..
6303 	 */
6304 	for (i = 0; default_topology[i].init; i++)
6305 		tl[i] = default_topology[i];
6306 
6307 	/*
6308 	 * .. and append 'j' levels of NUMA goodness.
6309 	 */
6310 	for (j = 0; j < level; i++, j++) {
6311 		tl[i] = (struct sched_domain_topology_level){
6312 			.init = sd_numa_init,
6313 			.mask = sd_numa_mask,
6314 			.flags = SDTL_OVERLAP,
6315 			.numa_level = j,
6316 		};
6317 	}
6318 
6319 	sched_domain_topology = tl;
6320 
6321 	sched_domains_numa_levels = level;
6322 }
6323 
6324 static void sched_domains_numa_masks_set(int cpu)
6325 {
6326 	int i, j;
6327 	int node = cpu_to_node(cpu);
6328 
6329 	for (i = 0; i < sched_domains_numa_levels; i++) {
6330 		for (j = 0; j < nr_node_ids; j++) {
6331 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6332 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6333 		}
6334 	}
6335 }
6336 
6337 static void sched_domains_numa_masks_clear(int cpu)
6338 {
6339 	int i, j;
6340 	for (i = 0; i < sched_domains_numa_levels; i++) {
6341 		for (j = 0; j < nr_node_ids; j++)
6342 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6343 	}
6344 }
6345 
6346 /*
6347  * Update sched_domains_numa_masks[level][node] array when new cpus
6348  * are onlined.
6349  */
6350 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6351 					   unsigned long action,
6352 					   void *hcpu)
6353 {
6354 	int cpu = (long)hcpu;
6355 
6356 	switch (action & ~CPU_TASKS_FROZEN) {
6357 	case CPU_ONLINE:
6358 		sched_domains_numa_masks_set(cpu);
6359 		break;
6360 
6361 	case CPU_DEAD:
6362 		sched_domains_numa_masks_clear(cpu);
6363 		break;
6364 
6365 	default:
6366 		return NOTIFY_DONE;
6367 	}
6368 
6369 	return NOTIFY_OK;
6370 }
6371 #else
6372 static inline void sched_init_numa(void)
6373 {
6374 }
6375 
6376 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6377 					   unsigned long action,
6378 					   void *hcpu)
6379 {
6380 	return 0;
6381 }
6382 #endif /* CONFIG_NUMA */
6383 
6384 static int __sdt_alloc(const struct cpumask *cpu_map)
6385 {
6386 	struct sched_domain_topology_level *tl;
6387 	int j;
6388 
6389 	for (tl = sched_domain_topology; tl->init; tl++) {
6390 		struct sd_data *sdd = &tl->data;
6391 
6392 		sdd->sd = alloc_percpu(struct sched_domain *);
6393 		if (!sdd->sd)
6394 			return -ENOMEM;
6395 
6396 		sdd->sg = alloc_percpu(struct sched_group *);
6397 		if (!sdd->sg)
6398 			return -ENOMEM;
6399 
6400 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6401 		if (!sdd->sgp)
6402 			return -ENOMEM;
6403 
6404 		for_each_cpu(j, cpu_map) {
6405 			struct sched_domain *sd;
6406 			struct sched_group *sg;
6407 			struct sched_group_power *sgp;
6408 
6409 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6410 					GFP_KERNEL, cpu_to_node(j));
6411 			if (!sd)
6412 				return -ENOMEM;
6413 
6414 			*per_cpu_ptr(sdd->sd, j) = sd;
6415 
6416 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6417 					GFP_KERNEL, cpu_to_node(j));
6418 			if (!sg)
6419 				return -ENOMEM;
6420 
6421 			sg->next = sg;
6422 
6423 			*per_cpu_ptr(sdd->sg, j) = sg;
6424 
6425 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6426 					GFP_KERNEL, cpu_to_node(j));
6427 			if (!sgp)
6428 				return -ENOMEM;
6429 
6430 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6431 		}
6432 	}
6433 
6434 	return 0;
6435 }
6436 
6437 static void __sdt_free(const struct cpumask *cpu_map)
6438 {
6439 	struct sched_domain_topology_level *tl;
6440 	int j;
6441 
6442 	for (tl = sched_domain_topology; tl->init; tl++) {
6443 		struct sd_data *sdd = &tl->data;
6444 
6445 		for_each_cpu(j, cpu_map) {
6446 			struct sched_domain *sd;
6447 
6448 			if (sdd->sd) {
6449 				sd = *per_cpu_ptr(sdd->sd, j);
6450 				if (sd && (sd->flags & SD_OVERLAP))
6451 					free_sched_groups(sd->groups, 0);
6452 				kfree(*per_cpu_ptr(sdd->sd, j));
6453 			}
6454 
6455 			if (sdd->sg)
6456 				kfree(*per_cpu_ptr(sdd->sg, j));
6457 			if (sdd->sgp)
6458 				kfree(*per_cpu_ptr(sdd->sgp, j));
6459 		}
6460 		free_percpu(sdd->sd);
6461 		sdd->sd = NULL;
6462 		free_percpu(sdd->sg);
6463 		sdd->sg = NULL;
6464 		free_percpu(sdd->sgp);
6465 		sdd->sgp = NULL;
6466 	}
6467 }
6468 
6469 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6470 		struct s_data *d, const struct cpumask *cpu_map,
6471 		struct sched_domain_attr *attr, struct sched_domain *child,
6472 		int cpu)
6473 {
6474 	struct sched_domain *sd = tl->init(tl, cpu);
6475 	if (!sd)
6476 		return child;
6477 
6478 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6479 	if (child) {
6480 		sd->level = child->level + 1;
6481 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6482 		child->parent = sd;
6483 	}
6484 	sd->child = child;
6485 	set_domain_attribute(sd, attr);
6486 
6487 	return sd;
6488 }
6489 
6490 /*
6491  * Build sched domains for a given set of cpus and attach the sched domains
6492  * to the individual cpus
6493  */
6494 static int build_sched_domains(const struct cpumask *cpu_map,
6495 			       struct sched_domain_attr *attr)
6496 {
6497 	enum s_alloc alloc_state = sa_none;
6498 	struct sched_domain *sd;
6499 	struct s_data d;
6500 	int i, ret = -ENOMEM;
6501 
6502 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6503 	if (alloc_state != sa_rootdomain)
6504 		goto error;
6505 
6506 	/* Set up domains for cpus specified by the cpu_map. */
6507 	for_each_cpu(i, cpu_map) {
6508 		struct sched_domain_topology_level *tl;
6509 
6510 		sd = NULL;
6511 		for (tl = sched_domain_topology; tl->init; tl++) {
6512 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6513 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6514 				sd->flags |= SD_OVERLAP;
6515 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6516 				break;
6517 		}
6518 
6519 		while (sd->child)
6520 			sd = sd->child;
6521 
6522 		*per_cpu_ptr(d.sd, i) = sd;
6523 	}
6524 
6525 	/* Build the groups for the domains */
6526 	for_each_cpu(i, cpu_map) {
6527 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6528 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6529 			if (sd->flags & SD_OVERLAP) {
6530 				if (build_overlap_sched_groups(sd, i))
6531 					goto error;
6532 			} else {
6533 				if (build_sched_groups(sd, i))
6534 					goto error;
6535 			}
6536 		}
6537 	}
6538 
6539 	/* Calculate CPU power for physical packages and nodes */
6540 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6541 		if (!cpumask_test_cpu(i, cpu_map))
6542 			continue;
6543 
6544 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6545 			claim_allocations(i, sd);
6546 			init_sched_groups_power(i, sd);
6547 		}
6548 	}
6549 
6550 	/* Attach the domains */
6551 	rcu_read_lock();
6552 	for_each_cpu(i, cpu_map) {
6553 		sd = *per_cpu_ptr(d.sd, i);
6554 		cpu_attach_domain(sd, d.rd, i);
6555 	}
6556 	rcu_read_unlock();
6557 
6558 	ret = 0;
6559 error:
6560 	__free_domain_allocs(&d, alloc_state, cpu_map);
6561 	return ret;
6562 }
6563 
6564 static cpumask_var_t *doms_cur;	/* current sched domains */
6565 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6566 static struct sched_domain_attr *dattr_cur;
6567 				/* attribues of custom domains in 'doms_cur' */
6568 
6569 /*
6570  * Special case: If a kmalloc of a doms_cur partition (array of
6571  * cpumask) fails, then fallback to a single sched domain,
6572  * as determined by the single cpumask fallback_doms.
6573  */
6574 static cpumask_var_t fallback_doms;
6575 
6576 /*
6577  * arch_update_cpu_topology lets virtualized architectures update the
6578  * cpu core maps. It is supposed to return 1 if the topology changed
6579  * or 0 if it stayed the same.
6580  */
6581 int __attribute__((weak)) arch_update_cpu_topology(void)
6582 {
6583 	return 0;
6584 }
6585 
6586 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6587 {
6588 	int i;
6589 	cpumask_var_t *doms;
6590 
6591 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6592 	if (!doms)
6593 		return NULL;
6594 	for (i = 0; i < ndoms; i++) {
6595 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6596 			free_sched_domains(doms, i);
6597 			return NULL;
6598 		}
6599 	}
6600 	return doms;
6601 }
6602 
6603 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6604 {
6605 	unsigned int i;
6606 	for (i = 0; i < ndoms; i++)
6607 		free_cpumask_var(doms[i]);
6608 	kfree(doms);
6609 }
6610 
6611 /*
6612  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6613  * For now this just excludes isolated cpus, but could be used to
6614  * exclude other special cases in the future.
6615  */
6616 static int init_sched_domains(const struct cpumask *cpu_map)
6617 {
6618 	int err;
6619 
6620 	arch_update_cpu_topology();
6621 	ndoms_cur = 1;
6622 	doms_cur = alloc_sched_domains(ndoms_cur);
6623 	if (!doms_cur)
6624 		doms_cur = &fallback_doms;
6625 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6626 	err = build_sched_domains(doms_cur[0], NULL);
6627 	register_sched_domain_sysctl();
6628 
6629 	return err;
6630 }
6631 
6632 /*
6633  * Detach sched domains from a group of cpus specified in cpu_map
6634  * These cpus will now be attached to the NULL domain
6635  */
6636 static void detach_destroy_domains(const struct cpumask *cpu_map)
6637 {
6638 	int i;
6639 
6640 	rcu_read_lock();
6641 	for_each_cpu(i, cpu_map)
6642 		cpu_attach_domain(NULL, &def_root_domain, i);
6643 	rcu_read_unlock();
6644 }
6645 
6646 /* handle null as "default" */
6647 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6648 			struct sched_domain_attr *new, int idx_new)
6649 {
6650 	struct sched_domain_attr tmp;
6651 
6652 	/* fast path */
6653 	if (!new && !cur)
6654 		return 1;
6655 
6656 	tmp = SD_ATTR_INIT;
6657 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6658 			new ? (new + idx_new) : &tmp,
6659 			sizeof(struct sched_domain_attr));
6660 }
6661 
6662 /*
6663  * Partition sched domains as specified by the 'ndoms_new'
6664  * cpumasks in the array doms_new[] of cpumasks. This compares
6665  * doms_new[] to the current sched domain partitioning, doms_cur[].
6666  * It destroys each deleted domain and builds each new domain.
6667  *
6668  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6669  * The masks don't intersect (don't overlap.) We should setup one
6670  * sched domain for each mask. CPUs not in any of the cpumasks will
6671  * not be load balanced. If the same cpumask appears both in the
6672  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6673  * it as it is.
6674  *
6675  * The passed in 'doms_new' should be allocated using
6676  * alloc_sched_domains.  This routine takes ownership of it and will
6677  * free_sched_domains it when done with it. If the caller failed the
6678  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6679  * and partition_sched_domains() will fallback to the single partition
6680  * 'fallback_doms', it also forces the domains to be rebuilt.
6681  *
6682  * If doms_new == NULL it will be replaced with cpu_online_mask.
6683  * ndoms_new == 0 is a special case for destroying existing domains,
6684  * and it will not create the default domain.
6685  *
6686  * Call with hotplug lock held
6687  */
6688 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6689 			     struct sched_domain_attr *dattr_new)
6690 {
6691 	int i, j, n;
6692 	int new_topology;
6693 
6694 	mutex_lock(&sched_domains_mutex);
6695 
6696 	/* always unregister in case we don't destroy any domains */
6697 	unregister_sched_domain_sysctl();
6698 
6699 	/* Let architecture update cpu core mappings. */
6700 	new_topology = arch_update_cpu_topology();
6701 
6702 	n = doms_new ? ndoms_new : 0;
6703 
6704 	/* Destroy deleted domains */
6705 	for (i = 0; i < ndoms_cur; i++) {
6706 		for (j = 0; j < n && !new_topology; j++) {
6707 			if (cpumask_equal(doms_cur[i], doms_new[j])
6708 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6709 				goto match1;
6710 		}
6711 		/* no match - a current sched domain not in new doms_new[] */
6712 		detach_destroy_domains(doms_cur[i]);
6713 match1:
6714 		;
6715 	}
6716 
6717 	if (doms_new == NULL) {
6718 		ndoms_cur = 0;
6719 		doms_new = &fallback_doms;
6720 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6721 		WARN_ON_ONCE(dattr_new);
6722 	}
6723 
6724 	/* Build new domains */
6725 	for (i = 0; i < ndoms_new; i++) {
6726 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6727 			if (cpumask_equal(doms_new[i], doms_cur[j])
6728 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6729 				goto match2;
6730 		}
6731 		/* no match - add a new doms_new */
6732 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6733 match2:
6734 		;
6735 	}
6736 
6737 	/* Remember the new sched domains */
6738 	if (doms_cur != &fallback_doms)
6739 		free_sched_domains(doms_cur, ndoms_cur);
6740 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6741 	doms_cur = doms_new;
6742 	dattr_cur = dattr_new;
6743 	ndoms_cur = ndoms_new;
6744 
6745 	register_sched_domain_sysctl();
6746 
6747 	mutex_unlock(&sched_domains_mutex);
6748 }
6749 
6750 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6751 
6752 /*
6753  * Update cpusets according to cpu_active mask.  If cpusets are
6754  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6755  * around partition_sched_domains().
6756  *
6757  * If we come here as part of a suspend/resume, don't touch cpusets because we
6758  * want to restore it back to its original state upon resume anyway.
6759  */
6760 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6761 			     void *hcpu)
6762 {
6763 	switch (action) {
6764 	case CPU_ONLINE_FROZEN:
6765 	case CPU_DOWN_FAILED_FROZEN:
6766 
6767 		/*
6768 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6769 		 * resume sequence. As long as this is not the last online
6770 		 * operation in the resume sequence, just build a single sched
6771 		 * domain, ignoring cpusets.
6772 		 */
6773 		num_cpus_frozen--;
6774 		if (likely(num_cpus_frozen)) {
6775 			partition_sched_domains(1, NULL, NULL);
6776 			break;
6777 		}
6778 
6779 		/*
6780 		 * This is the last CPU online operation. So fall through and
6781 		 * restore the original sched domains by considering the
6782 		 * cpuset configurations.
6783 		 */
6784 
6785 	case CPU_ONLINE:
6786 	case CPU_DOWN_FAILED:
6787 		cpuset_update_active_cpus(true);
6788 		break;
6789 	default:
6790 		return NOTIFY_DONE;
6791 	}
6792 	return NOTIFY_OK;
6793 }
6794 
6795 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6796 			       void *hcpu)
6797 {
6798 	switch (action) {
6799 	case CPU_DOWN_PREPARE:
6800 		cpuset_update_active_cpus(false);
6801 		break;
6802 	case CPU_DOWN_PREPARE_FROZEN:
6803 		num_cpus_frozen++;
6804 		partition_sched_domains(1, NULL, NULL);
6805 		break;
6806 	default:
6807 		return NOTIFY_DONE;
6808 	}
6809 	return NOTIFY_OK;
6810 }
6811 
6812 void __init sched_init_smp(void)
6813 {
6814 	cpumask_var_t non_isolated_cpus;
6815 
6816 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6817 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6818 
6819 	sched_init_numa();
6820 
6821 	get_online_cpus();
6822 	mutex_lock(&sched_domains_mutex);
6823 	init_sched_domains(cpu_active_mask);
6824 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6825 	if (cpumask_empty(non_isolated_cpus))
6826 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6827 	mutex_unlock(&sched_domains_mutex);
6828 	put_online_cpus();
6829 
6830 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6831 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6832 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6833 
6834 	/* RT runtime code needs to handle some hotplug events */
6835 	hotcpu_notifier(update_runtime, 0);
6836 
6837 	init_hrtick();
6838 
6839 	/* Move init over to a non-isolated CPU */
6840 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6841 		BUG();
6842 	sched_init_granularity();
6843 	free_cpumask_var(non_isolated_cpus);
6844 
6845 	init_sched_rt_class();
6846 }
6847 #else
6848 void __init sched_init_smp(void)
6849 {
6850 	sched_init_granularity();
6851 }
6852 #endif /* CONFIG_SMP */
6853 
6854 const_debug unsigned int sysctl_timer_migration = 1;
6855 
6856 int in_sched_functions(unsigned long addr)
6857 {
6858 	return in_lock_functions(addr) ||
6859 		(addr >= (unsigned long)__sched_text_start
6860 		&& addr < (unsigned long)__sched_text_end);
6861 }
6862 
6863 #ifdef CONFIG_CGROUP_SCHED
6864 struct task_group root_task_group;
6865 LIST_HEAD(task_groups);
6866 #endif
6867 
6868 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6869 
6870 void __init sched_init(void)
6871 {
6872 	int i, j;
6873 	unsigned long alloc_size = 0, ptr;
6874 
6875 #ifdef CONFIG_FAIR_GROUP_SCHED
6876 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6877 #endif
6878 #ifdef CONFIG_RT_GROUP_SCHED
6879 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6880 #endif
6881 #ifdef CONFIG_CPUMASK_OFFSTACK
6882 	alloc_size += num_possible_cpus() * cpumask_size();
6883 #endif
6884 	if (alloc_size) {
6885 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6886 
6887 #ifdef CONFIG_FAIR_GROUP_SCHED
6888 		root_task_group.se = (struct sched_entity **)ptr;
6889 		ptr += nr_cpu_ids * sizeof(void **);
6890 
6891 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6892 		ptr += nr_cpu_ids * sizeof(void **);
6893 
6894 #endif /* CONFIG_FAIR_GROUP_SCHED */
6895 #ifdef CONFIG_RT_GROUP_SCHED
6896 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6897 		ptr += nr_cpu_ids * sizeof(void **);
6898 
6899 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6900 		ptr += nr_cpu_ids * sizeof(void **);
6901 
6902 #endif /* CONFIG_RT_GROUP_SCHED */
6903 #ifdef CONFIG_CPUMASK_OFFSTACK
6904 		for_each_possible_cpu(i) {
6905 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6906 			ptr += cpumask_size();
6907 		}
6908 #endif /* CONFIG_CPUMASK_OFFSTACK */
6909 	}
6910 
6911 #ifdef CONFIG_SMP
6912 	init_defrootdomain();
6913 #endif
6914 
6915 	init_rt_bandwidth(&def_rt_bandwidth,
6916 			global_rt_period(), global_rt_runtime());
6917 
6918 #ifdef CONFIG_RT_GROUP_SCHED
6919 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6920 			global_rt_period(), global_rt_runtime());
6921 #endif /* CONFIG_RT_GROUP_SCHED */
6922 
6923 #ifdef CONFIG_CGROUP_SCHED
6924 	list_add(&root_task_group.list, &task_groups);
6925 	INIT_LIST_HEAD(&root_task_group.children);
6926 	INIT_LIST_HEAD(&root_task_group.siblings);
6927 	autogroup_init(&init_task);
6928 
6929 #endif /* CONFIG_CGROUP_SCHED */
6930 
6931 #ifdef CONFIG_CGROUP_CPUACCT
6932 	root_cpuacct.cpustat = &kernel_cpustat;
6933 	root_cpuacct.cpuusage = alloc_percpu(u64);
6934 	/* Too early, not expected to fail */
6935 	BUG_ON(!root_cpuacct.cpuusage);
6936 #endif
6937 	for_each_possible_cpu(i) {
6938 		struct rq *rq;
6939 
6940 		rq = cpu_rq(i);
6941 		raw_spin_lock_init(&rq->lock);
6942 		rq->nr_running = 0;
6943 		rq->calc_load_active = 0;
6944 		rq->calc_load_update = jiffies + LOAD_FREQ;
6945 		init_cfs_rq(&rq->cfs);
6946 		init_rt_rq(&rq->rt, rq);
6947 #ifdef CONFIG_FAIR_GROUP_SCHED
6948 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6949 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6950 		/*
6951 		 * How much cpu bandwidth does root_task_group get?
6952 		 *
6953 		 * In case of task-groups formed thr' the cgroup filesystem, it
6954 		 * gets 100% of the cpu resources in the system. This overall
6955 		 * system cpu resource is divided among the tasks of
6956 		 * root_task_group and its child task-groups in a fair manner,
6957 		 * based on each entity's (task or task-group's) weight
6958 		 * (se->load.weight).
6959 		 *
6960 		 * In other words, if root_task_group has 10 tasks of weight
6961 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6962 		 * then A0's share of the cpu resource is:
6963 		 *
6964 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6965 		 *
6966 		 * We achieve this by letting root_task_group's tasks sit
6967 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6968 		 */
6969 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6970 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6971 #endif /* CONFIG_FAIR_GROUP_SCHED */
6972 
6973 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6974 #ifdef CONFIG_RT_GROUP_SCHED
6975 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6976 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6977 #endif
6978 
6979 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6980 			rq->cpu_load[j] = 0;
6981 
6982 		rq->last_load_update_tick = jiffies;
6983 
6984 #ifdef CONFIG_SMP
6985 		rq->sd = NULL;
6986 		rq->rd = NULL;
6987 		rq->cpu_power = SCHED_POWER_SCALE;
6988 		rq->post_schedule = 0;
6989 		rq->active_balance = 0;
6990 		rq->next_balance = jiffies;
6991 		rq->push_cpu = 0;
6992 		rq->cpu = i;
6993 		rq->online = 0;
6994 		rq->idle_stamp = 0;
6995 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6996 
6997 		INIT_LIST_HEAD(&rq->cfs_tasks);
6998 
6999 		rq_attach_root(rq, &def_root_domain);
7000 #ifdef CONFIG_NO_HZ
7001 		rq->nohz_flags = 0;
7002 #endif
7003 #endif
7004 		init_rq_hrtick(rq);
7005 		atomic_set(&rq->nr_iowait, 0);
7006 	}
7007 
7008 	set_load_weight(&init_task);
7009 
7010 #ifdef CONFIG_PREEMPT_NOTIFIERS
7011 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7012 #endif
7013 
7014 #ifdef CONFIG_RT_MUTEXES
7015 	plist_head_init(&init_task.pi_waiters);
7016 #endif
7017 
7018 	/*
7019 	 * The boot idle thread does lazy MMU switching as well:
7020 	 */
7021 	atomic_inc(&init_mm.mm_count);
7022 	enter_lazy_tlb(&init_mm, current);
7023 
7024 	/*
7025 	 * Make us the idle thread. Technically, schedule() should not be
7026 	 * called from this thread, however somewhere below it might be,
7027 	 * but because we are the idle thread, we just pick up running again
7028 	 * when this runqueue becomes "idle".
7029 	 */
7030 	init_idle(current, smp_processor_id());
7031 
7032 	calc_load_update = jiffies + LOAD_FREQ;
7033 
7034 	/*
7035 	 * During early bootup we pretend to be a normal task:
7036 	 */
7037 	current->sched_class = &fair_sched_class;
7038 
7039 #ifdef CONFIG_SMP
7040 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7041 	/* May be allocated at isolcpus cmdline parse time */
7042 	if (cpu_isolated_map == NULL)
7043 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7044 	idle_thread_set_boot_cpu();
7045 #endif
7046 	init_sched_fair_class();
7047 
7048 	scheduler_running = 1;
7049 }
7050 
7051 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7052 static inline int preempt_count_equals(int preempt_offset)
7053 {
7054 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7055 
7056 	return (nested == preempt_offset);
7057 }
7058 
7059 void __might_sleep(const char *file, int line, int preempt_offset)
7060 {
7061 	static unsigned long prev_jiffy;	/* ratelimiting */
7062 
7063 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7064 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7065 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7066 		return;
7067 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7068 		return;
7069 	prev_jiffy = jiffies;
7070 
7071 	printk(KERN_ERR
7072 		"BUG: sleeping function called from invalid context at %s:%d\n",
7073 			file, line);
7074 	printk(KERN_ERR
7075 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7076 			in_atomic(), irqs_disabled(),
7077 			current->pid, current->comm);
7078 
7079 	debug_show_held_locks(current);
7080 	if (irqs_disabled())
7081 		print_irqtrace_events(current);
7082 	dump_stack();
7083 }
7084 EXPORT_SYMBOL(__might_sleep);
7085 #endif
7086 
7087 #ifdef CONFIG_MAGIC_SYSRQ
7088 static void normalize_task(struct rq *rq, struct task_struct *p)
7089 {
7090 	const struct sched_class *prev_class = p->sched_class;
7091 	int old_prio = p->prio;
7092 	int on_rq;
7093 
7094 	on_rq = p->on_rq;
7095 	if (on_rq)
7096 		dequeue_task(rq, p, 0);
7097 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7098 	if (on_rq) {
7099 		enqueue_task(rq, p, 0);
7100 		resched_task(rq->curr);
7101 	}
7102 
7103 	check_class_changed(rq, p, prev_class, old_prio);
7104 }
7105 
7106 void normalize_rt_tasks(void)
7107 {
7108 	struct task_struct *g, *p;
7109 	unsigned long flags;
7110 	struct rq *rq;
7111 
7112 	read_lock_irqsave(&tasklist_lock, flags);
7113 	do_each_thread(g, p) {
7114 		/*
7115 		 * Only normalize user tasks:
7116 		 */
7117 		if (!p->mm)
7118 			continue;
7119 
7120 		p->se.exec_start		= 0;
7121 #ifdef CONFIG_SCHEDSTATS
7122 		p->se.statistics.wait_start	= 0;
7123 		p->se.statistics.sleep_start	= 0;
7124 		p->se.statistics.block_start	= 0;
7125 #endif
7126 
7127 		if (!rt_task(p)) {
7128 			/*
7129 			 * Renice negative nice level userspace
7130 			 * tasks back to 0:
7131 			 */
7132 			if (TASK_NICE(p) < 0 && p->mm)
7133 				set_user_nice(p, 0);
7134 			continue;
7135 		}
7136 
7137 		raw_spin_lock(&p->pi_lock);
7138 		rq = __task_rq_lock(p);
7139 
7140 		normalize_task(rq, p);
7141 
7142 		__task_rq_unlock(rq);
7143 		raw_spin_unlock(&p->pi_lock);
7144 	} while_each_thread(g, p);
7145 
7146 	read_unlock_irqrestore(&tasklist_lock, flags);
7147 }
7148 
7149 #endif /* CONFIG_MAGIC_SYSRQ */
7150 
7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7152 /*
7153  * These functions are only useful for the IA64 MCA handling, or kdb.
7154  *
7155  * They can only be called when the whole system has been
7156  * stopped - every CPU needs to be quiescent, and no scheduling
7157  * activity can take place. Using them for anything else would
7158  * be a serious bug, and as a result, they aren't even visible
7159  * under any other configuration.
7160  */
7161 
7162 /**
7163  * curr_task - return the current task for a given cpu.
7164  * @cpu: the processor in question.
7165  *
7166  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7167  */
7168 struct task_struct *curr_task(int cpu)
7169 {
7170 	return cpu_curr(cpu);
7171 }
7172 
7173 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7174 
7175 #ifdef CONFIG_IA64
7176 /**
7177  * set_curr_task - set the current task for a given cpu.
7178  * @cpu: the processor in question.
7179  * @p: the task pointer to set.
7180  *
7181  * Description: This function must only be used when non-maskable interrupts
7182  * are serviced on a separate stack. It allows the architecture to switch the
7183  * notion of the current task on a cpu in a non-blocking manner. This function
7184  * must be called with all CPU's synchronized, and interrupts disabled, the
7185  * and caller must save the original value of the current task (see
7186  * curr_task() above) and restore that value before reenabling interrupts and
7187  * re-starting the system.
7188  *
7189  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7190  */
7191 void set_curr_task(int cpu, struct task_struct *p)
7192 {
7193 	cpu_curr(cpu) = p;
7194 }
7195 
7196 #endif
7197 
7198 #ifdef CONFIG_CGROUP_SCHED
7199 /* task_group_lock serializes the addition/removal of task groups */
7200 static DEFINE_SPINLOCK(task_group_lock);
7201 
7202 static void free_sched_group(struct task_group *tg)
7203 {
7204 	free_fair_sched_group(tg);
7205 	free_rt_sched_group(tg);
7206 	autogroup_free(tg);
7207 	kfree(tg);
7208 }
7209 
7210 /* allocate runqueue etc for a new task group */
7211 struct task_group *sched_create_group(struct task_group *parent)
7212 {
7213 	struct task_group *tg;
7214 
7215 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7216 	if (!tg)
7217 		return ERR_PTR(-ENOMEM);
7218 
7219 	if (!alloc_fair_sched_group(tg, parent))
7220 		goto err;
7221 
7222 	if (!alloc_rt_sched_group(tg, parent))
7223 		goto err;
7224 
7225 	return tg;
7226 
7227 err:
7228 	free_sched_group(tg);
7229 	return ERR_PTR(-ENOMEM);
7230 }
7231 
7232 void sched_online_group(struct task_group *tg, struct task_group *parent)
7233 {
7234 	unsigned long flags;
7235 
7236 	spin_lock_irqsave(&task_group_lock, flags);
7237 	list_add_rcu(&tg->list, &task_groups);
7238 
7239 	WARN_ON(!parent); /* root should already exist */
7240 
7241 	tg->parent = parent;
7242 	INIT_LIST_HEAD(&tg->children);
7243 	list_add_rcu(&tg->siblings, &parent->children);
7244 	spin_unlock_irqrestore(&task_group_lock, flags);
7245 }
7246 
7247 /* rcu callback to free various structures associated with a task group */
7248 static void free_sched_group_rcu(struct rcu_head *rhp)
7249 {
7250 	/* now it should be safe to free those cfs_rqs */
7251 	free_sched_group(container_of(rhp, struct task_group, rcu));
7252 }
7253 
7254 /* Destroy runqueue etc associated with a task group */
7255 void sched_destroy_group(struct task_group *tg)
7256 {
7257 	/* wait for possible concurrent references to cfs_rqs complete */
7258 	call_rcu(&tg->rcu, free_sched_group_rcu);
7259 }
7260 
7261 void sched_offline_group(struct task_group *tg)
7262 {
7263 	unsigned long flags;
7264 	int i;
7265 
7266 	/* end participation in shares distribution */
7267 	for_each_possible_cpu(i)
7268 		unregister_fair_sched_group(tg, i);
7269 
7270 	spin_lock_irqsave(&task_group_lock, flags);
7271 	list_del_rcu(&tg->list);
7272 	list_del_rcu(&tg->siblings);
7273 	spin_unlock_irqrestore(&task_group_lock, flags);
7274 }
7275 
7276 /* change task's runqueue when it moves between groups.
7277  *	The caller of this function should have put the task in its new group
7278  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7279  *	reflect its new group.
7280  */
7281 void sched_move_task(struct task_struct *tsk)
7282 {
7283 	struct task_group *tg;
7284 	int on_rq, running;
7285 	unsigned long flags;
7286 	struct rq *rq;
7287 
7288 	rq = task_rq_lock(tsk, &flags);
7289 
7290 	running = task_current(rq, tsk);
7291 	on_rq = tsk->on_rq;
7292 
7293 	if (on_rq)
7294 		dequeue_task(rq, tsk, 0);
7295 	if (unlikely(running))
7296 		tsk->sched_class->put_prev_task(rq, tsk);
7297 
7298 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7299 				lockdep_is_held(&tsk->sighand->siglock)),
7300 			  struct task_group, css);
7301 	tg = autogroup_task_group(tsk, tg);
7302 	tsk->sched_task_group = tg;
7303 
7304 #ifdef CONFIG_FAIR_GROUP_SCHED
7305 	if (tsk->sched_class->task_move_group)
7306 		tsk->sched_class->task_move_group(tsk, on_rq);
7307 	else
7308 #endif
7309 		set_task_rq(tsk, task_cpu(tsk));
7310 
7311 	if (unlikely(running))
7312 		tsk->sched_class->set_curr_task(rq);
7313 	if (on_rq)
7314 		enqueue_task(rq, tsk, 0);
7315 
7316 	task_rq_unlock(rq, tsk, &flags);
7317 }
7318 #endif /* CONFIG_CGROUP_SCHED */
7319 
7320 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7321 static unsigned long to_ratio(u64 period, u64 runtime)
7322 {
7323 	if (runtime == RUNTIME_INF)
7324 		return 1ULL << 20;
7325 
7326 	return div64_u64(runtime << 20, period);
7327 }
7328 #endif
7329 
7330 #ifdef CONFIG_RT_GROUP_SCHED
7331 /*
7332  * Ensure that the real time constraints are schedulable.
7333  */
7334 static DEFINE_MUTEX(rt_constraints_mutex);
7335 
7336 /* Must be called with tasklist_lock held */
7337 static inline int tg_has_rt_tasks(struct task_group *tg)
7338 {
7339 	struct task_struct *g, *p;
7340 
7341 	do_each_thread(g, p) {
7342 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7343 			return 1;
7344 	} while_each_thread(g, p);
7345 
7346 	return 0;
7347 }
7348 
7349 struct rt_schedulable_data {
7350 	struct task_group *tg;
7351 	u64 rt_period;
7352 	u64 rt_runtime;
7353 };
7354 
7355 static int tg_rt_schedulable(struct task_group *tg, void *data)
7356 {
7357 	struct rt_schedulable_data *d = data;
7358 	struct task_group *child;
7359 	unsigned long total, sum = 0;
7360 	u64 period, runtime;
7361 
7362 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7363 	runtime = tg->rt_bandwidth.rt_runtime;
7364 
7365 	if (tg == d->tg) {
7366 		period = d->rt_period;
7367 		runtime = d->rt_runtime;
7368 	}
7369 
7370 	/*
7371 	 * Cannot have more runtime than the period.
7372 	 */
7373 	if (runtime > period && runtime != RUNTIME_INF)
7374 		return -EINVAL;
7375 
7376 	/*
7377 	 * Ensure we don't starve existing RT tasks.
7378 	 */
7379 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7380 		return -EBUSY;
7381 
7382 	total = to_ratio(period, runtime);
7383 
7384 	/*
7385 	 * Nobody can have more than the global setting allows.
7386 	 */
7387 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7388 		return -EINVAL;
7389 
7390 	/*
7391 	 * The sum of our children's runtime should not exceed our own.
7392 	 */
7393 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7394 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7395 		runtime = child->rt_bandwidth.rt_runtime;
7396 
7397 		if (child == d->tg) {
7398 			period = d->rt_period;
7399 			runtime = d->rt_runtime;
7400 		}
7401 
7402 		sum += to_ratio(period, runtime);
7403 	}
7404 
7405 	if (sum > total)
7406 		return -EINVAL;
7407 
7408 	return 0;
7409 }
7410 
7411 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7412 {
7413 	int ret;
7414 
7415 	struct rt_schedulable_data data = {
7416 		.tg = tg,
7417 		.rt_period = period,
7418 		.rt_runtime = runtime,
7419 	};
7420 
7421 	rcu_read_lock();
7422 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7423 	rcu_read_unlock();
7424 
7425 	return ret;
7426 }
7427 
7428 static int tg_set_rt_bandwidth(struct task_group *tg,
7429 		u64 rt_period, u64 rt_runtime)
7430 {
7431 	int i, err = 0;
7432 
7433 	mutex_lock(&rt_constraints_mutex);
7434 	read_lock(&tasklist_lock);
7435 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7436 	if (err)
7437 		goto unlock;
7438 
7439 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7440 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7441 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7442 
7443 	for_each_possible_cpu(i) {
7444 		struct rt_rq *rt_rq = tg->rt_rq[i];
7445 
7446 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7447 		rt_rq->rt_runtime = rt_runtime;
7448 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7449 	}
7450 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7451 unlock:
7452 	read_unlock(&tasklist_lock);
7453 	mutex_unlock(&rt_constraints_mutex);
7454 
7455 	return err;
7456 }
7457 
7458 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7459 {
7460 	u64 rt_runtime, rt_period;
7461 
7462 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7463 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7464 	if (rt_runtime_us < 0)
7465 		rt_runtime = RUNTIME_INF;
7466 
7467 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7468 }
7469 
7470 long sched_group_rt_runtime(struct task_group *tg)
7471 {
7472 	u64 rt_runtime_us;
7473 
7474 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7475 		return -1;
7476 
7477 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7478 	do_div(rt_runtime_us, NSEC_PER_USEC);
7479 	return rt_runtime_us;
7480 }
7481 
7482 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7483 {
7484 	u64 rt_runtime, rt_period;
7485 
7486 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7487 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7488 
7489 	if (rt_period == 0)
7490 		return -EINVAL;
7491 
7492 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7493 }
7494 
7495 long sched_group_rt_period(struct task_group *tg)
7496 {
7497 	u64 rt_period_us;
7498 
7499 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7500 	do_div(rt_period_us, NSEC_PER_USEC);
7501 	return rt_period_us;
7502 }
7503 
7504 static int sched_rt_global_constraints(void)
7505 {
7506 	u64 runtime, period;
7507 	int ret = 0;
7508 
7509 	if (sysctl_sched_rt_period <= 0)
7510 		return -EINVAL;
7511 
7512 	runtime = global_rt_runtime();
7513 	period = global_rt_period();
7514 
7515 	/*
7516 	 * Sanity check on the sysctl variables.
7517 	 */
7518 	if (runtime > period && runtime != RUNTIME_INF)
7519 		return -EINVAL;
7520 
7521 	mutex_lock(&rt_constraints_mutex);
7522 	read_lock(&tasklist_lock);
7523 	ret = __rt_schedulable(NULL, 0, 0);
7524 	read_unlock(&tasklist_lock);
7525 	mutex_unlock(&rt_constraints_mutex);
7526 
7527 	return ret;
7528 }
7529 
7530 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7531 {
7532 	/* Don't accept realtime tasks when there is no way for them to run */
7533 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7534 		return 0;
7535 
7536 	return 1;
7537 }
7538 
7539 #else /* !CONFIG_RT_GROUP_SCHED */
7540 static int sched_rt_global_constraints(void)
7541 {
7542 	unsigned long flags;
7543 	int i;
7544 
7545 	if (sysctl_sched_rt_period <= 0)
7546 		return -EINVAL;
7547 
7548 	/*
7549 	 * There's always some RT tasks in the root group
7550 	 * -- migration, kstopmachine etc..
7551 	 */
7552 	if (sysctl_sched_rt_runtime == 0)
7553 		return -EBUSY;
7554 
7555 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7556 	for_each_possible_cpu(i) {
7557 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7558 
7559 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7560 		rt_rq->rt_runtime = global_rt_runtime();
7561 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7562 	}
7563 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7564 
7565 	return 0;
7566 }
7567 #endif /* CONFIG_RT_GROUP_SCHED */
7568 
7569 int sched_rr_handler(struct ctl_table *table, int write,
7570 		void __user *buffer, size_t *lenp,
7571 		loff_t *ppos)
7572 {
7573 	int ret;
7574 	static DEFINE_MUTEX(mutex);
7575 
7576 	mutex_lock(&mutex);
7577 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7578 	/* make sure that internally we keep jiffies */
7579 	/* also, writing zero resets timeslice to default */
7580 	if (!ret && write) {
7581 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7582 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7583 	}
7584 	mutex_unlock(&mutex);
7585 	return ret;
7586 }
7587 
7588 int sched_rt_handler(struct ctl_table *table, int write,
7589 		void __user *buffer, size_t *lenp,
7590 		loff_t *ppos)
7591 {
7592 	int ret;
7593 	int old_period, old_runtime;
7594 	static DEFINE_MUTEX(mutex);
7595 
7596 	mutex_lock(&mutex);
7597 	old_period = sysctl_sched_rt_period;
7598 	old_runtime = sysctl_sched_rt_runtime;
7599 
7600 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7601 
7602 	if (!ret && write) {
7603 		ret = sched_rt_global_constraints();
7604 		if (ret) {
7605 			sysctl_sched_rt_period = old_period;
7606 			sysctl_sched_rt_runtime = old_runtime;
7607 		} else {
7608 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7609 			def_rt_bandwidth.rt_period =
7610 				ns_to_ktime(global_rt_period());
7611 		}
7612 	}
7613 	mutex_unlock(&mutex);
7614 
7615 	return ret;
7616 }
7617 
7618 #ifdef CONFIG_CGROUP_SCHED
7619 
7620 /* return corresponding task_group object of a cgroup */
7621 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7622 {
7623 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7624 			    struct task_group, css);
7625 }
7626 
7627 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7628 {
7629 	struct task_group *tg, *parent;
7630 
7631 	if (!cgrp->parent) {
7632 		/* This is early initialization for the top cgroup */
7633 		return &root_task_group.css;
7634 	}
7635 
7636 	parent = cgroup_tg(cgrp->parent);
7637 	tg = sched_create_group(parent);
7638 	if (IS_ERR(tg))
7639 		return ERR_PTR(-ENOMEM);
7640 
7641 	return &tg->css;
7642 }
7643 
7644 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7645 {
7646 	struct task_group *tg = cgroup_tg(cgrp);
7647 	struct task_group *parent;
7648 
7649 	if (!cgrp->parent)
7650 		return 0;
7651 
7652 	parent = cgroup_tg(cgrp->parent);
7653 	sched_online_group(tg, parent);
7654 	return 0;
7655 }
7656 
7657 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7658 {
7659 	struct task_group *tg = cgroup_tg(cgrp);
7660 
7661 	sched_destroy_group(tg);
7662 }
7663 
7664 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7665 {
7666 	struct task_group *tg = cgroup_tg(cgrp);
7667 
7668 	sched_offline_group(tg);
7669 }
7670 
7671 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7672 				 struct cgroup_taskset *tset)
7673 {
7674 	struct task_struct *task;
7675 
7676 	cgroup_taskset_for_each(task, cgrp, tset) {
7677 #ifdef CONFIG_RT_GROUP_SCHED
7678 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7679 			return -EINVAL;
7680 #else
7681 		/* We don't support RT-tasks being in separate groups */
7682 		if (task->sched_class != &fair_sched_class)
7683 			return -EINVAL;
7684 #endif
7685 	}
7686 	return 0;
7687 }
7688 
7689 static void cpu_cgroup_attach(struct cgroup *cgrp,
7690 			      struct cgroup_taskset *tset)
7691 {
7692 	struct task_struct *task;
7693 
7694 	cgroup_taskset_for_each(task, cgrp, tset)
7695 		sched_move_task(task);
7696 }
7697 
7698 static void
7699 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7700 		struct task_struct *task)
7701 {
7702 	/*
7703 	 * cgroup_exit() is called in the copy_process() failure path.
7704 	 * Ignore this case since the task hasn't ran yet, this avoids
7705 	 * trying to poke a half freed task state from generic code.
7706 	 */
7707 	if (!(task->flags & PF_EXITING))
7708 		return;
7709 
7710 	sched_move_task(task);
7711 }
7712 
7713 #ifdef CONFIG_FAIR_GROUP_SCHED
7714 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7715 				u64 shareval)
7716 {
7717 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7718 }
7719 
7720 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7721 {
7722 	struct task_group *tg = cgroup_tg(cgrp);
7723 
7724 	return (u64) scale_load_down(tg->shares);
7725 }
7726 
7727 #ifdef CONFIG_CFS_BANDWIDTH
7728 static DEFINE_MUTEX(cfs_constraints_mutex);
7729 
7730 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7731 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7732 
7733 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7734 
7735 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7736 {
7737 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7738 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7739 
7740 	if (tg == &root_task_group)
7741 		return -EINVAL;
7742 
7743 	/*
7744 	 * Ensure we have at some amount of bandwidth every period.  This is
7745 	 * to prevent reaching a state of large arrears when throttled via
7746 	 * entity_tick() resulting in prolonged exit starvation.
7747 	 */
7748 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7749 		return -EINVAL;
7750 
7751 	/*
7752 	 * Likewise, bound things on the otherside by preventing insane quota
7753 	 * periods.  This also allows us to normalize in computing quota
7754 	 * feasibility.
7755 	 */
7756 	if (period > max_cfs_quota_period)
7757 		return -EINVAL;
7758 
7759 	mutex_lock(&cfs_constraints_mutex);
7760 	ret = __cfs_schedulable(tg, period, quota);
7761 	if (ret)
7762 		goto out_unlock;
7763 
7764 	runtime_enabled = quota != RUNTIME_INF;
7765 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7766 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7767 	raw_spin_lock_irq(&cfs_b->lock);
7768 	cfs_b->period = ns_to_ktime(period);
7769 	cfs_b->quota = quota;
7770 
7771 	__refill_cfs_bandwidth_runtime(cfs_b);
7772 	/* restart the period timer (if active) to handle new period expiry */
7773 	if (runtime_enabled && cfs_b->timer_active) {
7774 		/* force a reprogram */
7775 		cfs_b->timer_active = 0;
7776 		__start_cfs_bandwidth(cfs_b);
7777 	}
7778 	raw_spin_unlock_irq(&cfs_b->lock);
7779 
7780 	for_each_possible_cpu(i) {
7781 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7782 		struct rq *rq = cfs_rq->rq;
7783 
7784 		raw_spin_lock_irq(&rq->lock);
7785 		cfs_rq->runtime_enabled = runtime_enabled;
7786 		cfs_rq->runtime_remaining = 0;
7787 
7788 		if (cfs_rq->throttled)
7789 			unthrottle_cfs_rq(cfs_rq);
7790 		raw_spin_unlock_irq(&rq->lock);
7791 	}
7792 out_unlock:
7793 	mutex_unlock(&cfs_constraints_mutex);
7794 
7795 	return ret;
7796 }
7797 
7798 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7799 {
7800 	u64 quota, period;
7801 
7802 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7803 	if (cfs_quota_us < 0)
7804 		quota = RUNTIME_INF;
7805 	else
7806 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7807 
7808 	return tg_set_cfs_bandwidth(tg, period, quota);
7809 }
7810 
7811 long tg_get_cfs_quota(struct task_group *tg)
7812 {
7813 	u64 quota_us;
7814 
7815 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7816 		return -1;
7817 
7818 	quota_us = tg->cfs_bandwidth.quota;
7819 	do_div(quota_us, NSEC_PER_USEC);
7820 
7821 	return quota_us;
7822 }
7823 
7824 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7825 {
7826 	u64 quota, period;
7827 
7828 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7829 	quota = tg->cfs_bandwidth.quota;
7830 
7831 	return tg_set_cfs_bandwidth(tg, period, quota);
7832 }
7833 
7834 long tg_get_cfs_period(struct task_group *tg)
7835 {
7836 	u64 cfs_period_us;
7837 
7838 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7839 	do_div(cfs_period_us, NSEC_PER_USEC);
7840 
7841 	return cfs_period_us;
7842 }
7843 
7844 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7845 {
7846 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7847 }
7848 
7849 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7850 				s64 cfs_quota_us)
7851 {
7852 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7853 }
7854 
7855 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7856 {
7857 	return tg_get_cfs_period(cgroup_tg(cgrp));
7858 }
7859 
7860 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7861 				u64 cfs_period_us)
7862 {
7863 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7864 }
7865 
7866 struct cfs_schedulable_data {
7867 	struct task_group *tg;
7868 	u64 period, quota;
7869 };
7870 
7871 /*
7872  * normalize group quota/period to be quota/max_period
7873  * note: units are usecs
7874  */
7875 static u64 normalize_cfs_quota(struct task_group *tg,
7876 			       struct cfs_schedulable_data *d)
7877 {
7878 	u64 quota, period;
7879 
7880 	if (tg == d->tg) {
7881 		period = d->period;
7882 		quota = d->quota;
7883 	} else {
7884 		period = tg_get_cfs_period(tg);
7885 		quota = tg_get_cfs_quota(tg);
7886 	}
7887 
7888 	/* note: these should typically be equivalent */
7889 	if (quota == RUNTIME_INF || quota == -1)
7890 		return RUNTIME_INF;
7891 
7892 	return to_ratio(period, quota);
7893 }
7894 
7895 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7896 {
7897 	struct cfs_schedulable_data *d = data;
7898 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7899 	s64 quota = 0, parent_quota = -1;
7900 
7901 	if (!tg->parent) {
7902 		quota = RUNTIME_INF;
7903 	} else {
7904 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7905 
7906 		quota = normalize_cfs_quota(tg, d);
7907 		parent_quota = parent_b->hierarchal_quota;
7908 
7909 		/*
7910 		 * ensure max(child_quota) <= parent_quota, inherit when no
7911 		 * limit is set
7912 		 */
7913 		if (quota == RUNTIME_INF)
7914 			quota = parent_quota;
7915 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7916 			return -EINVAL;
7917 	}
7918 	cfs_b->hierarchal_quota = quota;
7919 
7920 	return 0;
7921 }
7922 
7923 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7924 {
7925 	int ret;
7926 	struct cfs_schedulable_data data = {
7927 		.tg = tg,
7928 		.period = period,
7929 		.quota = quota,
7930 	};
7931 
7932 	if (quota != RUNTIME_INF) {
7933 		do_div(data.period, NSEC_PER_USEC);
7934 		do_div(data.quota, NSEC_PER_USEC);
7935 	}
7936 
7937 	rcu_read_lock();
7938 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7939 	rcu_read_unlock();
7940 
7941 	return ret;
7942 }
7943 
7944 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7945 		struct cgroup_map_cb *cb)
7946 {
7947 	struct task_group *tg = cgroup_tg(cgrp);
7948 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7949 
7950 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7951 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7952 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7953 
7954 	return 0;
7955 }
7956 #endif /* CONFIG_CFS_BANDWIDTH */
7957 #endif /* CONFIG_FAIR_GROUP_SCHED */
7958 
7959 #ifdef CONFIG_RT_GROUP_SCHED
7960 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7961 				s64 val)
7962 {
7963 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7964 }
7965 
7966 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7967 {
7968 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7969 }
7970 
7971 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7972 		u64 rt_period_us)
7973 {
7974 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7975 }
7976 
7977 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7978 {
7979 	return sched_group_rt_period(cgroup_tg(cgrp));
7980 }
7981 #endif /* CONFIG_RT_GROUP_SCHED */
7982 
7983 static struct cftype cpu_files[] = {
7984 #ifdef CONFIG_FAIR_GROUP_SCHED
7985 	{
7986 		.name = "shares",
7987 		.read_u64 = cpu_shares_read_u64,
7988 		.write_u64 = cpu_shares_write_u64,
7989 	},
7990 #endif
7991 #ifdef CONFIG_CFS_BANDWIDTH
7992 	{
7993 		.name = "cfs_quota_us",
7994 		.read_s64 = cpu_cfs_quota_read_s64,
7995 		.write_s64 = cpu_cfs_quota_write_s64,
7996 	},
7997 	{
7998 		.name = "cfs_period_us",
7999 		.read_u64 = cpu_cfs_period_read_u64,
8000 		.write_u64 = cpu_cfs_period_write_u64,
8001 	},
8002 	{
8003 		.name = "stat",
8004 		.read_map = cpu_stats_show,
8005 	},
8006 #endif
8007 #ifdef CONFIG_RT_GROUP_SCHED
8008 	{
8009 		.name = "rt_runtime_us",
8010 		.read_s64 = cpu_rt_runtime_read,
8011 		.write_s64 = cpu_rt_runtime_write,
8012 	},
8013 	{
8014 		.name = "rt_period_us",
8015 		.read_u64 = cpu_rt_period_read_uint,
8016 		.write_u64 = cpu_rt_period_write_uint,
8017 	},
8018 #endif
8019 	{ }	/* terminate */
8020 };
8021 
8022 struct cgroup_subsys cpu_cgroup_subsys = {
8023 	.name		= "cpu",
8024 	.css_alloc	= cpu_cgroup_css_alloc,
8025 	.css_free	= cpu_cgroup_css_free,
8026 	.css_online	= cpu_cgroup_css_online,
8027 	.css_offline	= cpu_cgroup_css_offline,
8028 	.can_attach	= cpu_cgroup_can_attach,
8029 	.attach		= cpu_cgroup_attach,
8030 	.exit		= cpu_cgroup_exit,
8031 	.subsys_id	= cpu_cgroup_subsys_id,
8032 	.base_cftypes	= cpu_files,
8033 	.early_init	= 1,
8034 };
8035 
8036 #endif	/* CONFIG_CGROUP_SCHED */
8037 
8038 #ifdef CONFIG_CGROUP_CPUACCT
8039 
8040 /*
8041  * CPU accounting code for task groups.
8042  *
8043  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8044  * (balbir@in.ibm.com).
8045  */
8046 
8047 struct cpuacct root_cpuacct;
8048 
8049 /* create a new cpu accounting group */
8050 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8051 {
8052 	struct cpuacct *ca;
8053 
8054 	if (!cgrp->parent)
8055 		return &root_cpuacct.css;
8056 
8057 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8058 	if (!ca)
8059 		goto out;
8060 
8061 	ca->cpuusage = alloc_percpu(u64);
8062 	if (!ca->cpuusage)
8063 		goto out_free_ca;
8064 
8065 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8066 	if (!ca->cpustat)
8067 		goto out_free_cpuusage;
8068 
8069 	return &ca->css;
8070 
8071 out_free_cpuusage:
8072 	free_percpu(ca->cpuusage);
8073 out_free_ca:
8074 	kfree(ca);
8075 out:
8076 	return ERR_PTR(-ENOMEM);
8077 }
8078 
8079 /* destroy an existing cpu accounting group */
8080 static void cpuacct_css_free(struct cgroup *cgrp)
8081 {
8082 	struct cpuacct *ca = cgroup_ca(cgrp);
8083 
8084 	free_percpu(ca->cpustat);
8085 	free_percpu(ca->cpuusage);
8086 	kfree(ca);
8087 }
8088 
8089 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8090 {
8091 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8092 	u64 data;
8093 
8094 #ifndef CONFIG_64BIT
8095 	/*
8096 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8097 	 */
8098 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8099 	data = *cpuusage;
8100 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8101 #else
8102 	data = *cpuusage;
8103 #endif
8104 
8105 	return data;
8106 }
8107 
8108 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8109 {
8110 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8111 
8112 #ifndef CONFIG_64BIT
8113 	/*
8114 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8115 	 */
8116 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8117 	*cpuusage = val;
8118 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8119 #else
8120 	*cpuusage = val;
8121 #endif
8122 }
8123 
8124 /* return total cpu usage (in nanoseconds) of a group */
8125 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8126 {
8127 	struct cpuacct *ca = cgroup_ca(cgrp);
8128 	u64 totalcpuusage = 0;
8129 	int i;
8130 
8131 	for_each_present_cpu(i)
8132 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8133 
8134 	return totalcpuusage;
8135 }
8136 
8137 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8138 								u64 reset)
8139 {
8140 	struct cpuacct *ca = cgroup_ca(cgrp);
8141 	int err = 0;
8142 	int i;
8143 
8144 	if (reset) {
8145 		err = -EINVAL;
8146 		goto out;
8147 	}
8148 
8149 	for_each_present_cpu(i)
8150 		cpuacct_cpuusage_write(ca, i, 0);
8151 
8152 out:
8153 	return err;
8154 }
8155 
8156 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8157 				   struct seq_file *m)
8158 {
8159 	struct cpuacct *ca = cgroup_ca(cgroup);
8160 	u64 percpu;
8161 	int i;
8162 
8163 	for_each_present_cpu(i) {
8164 		percpu = cpuacct_cpuusage_read(ca, i);
8165 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8166 	}
8167 	seq_printf(m, "\n");
8168 	return 0;
8169 }
8170 
8171 static const char *cpuacct_stat_desc[] = {
8172 	[CPUACCT_STAT_USER] = "user",
8173 	[CPUACCT_STAT_SYSTEM] = "system",
8174 };
8175 
8176 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8177 			      struct cgroup_map_cb *cb)
8178 {
8179 	struct cpuacct *ca = cgroup_ca(cgrp);
8180 	int cpu;
8181 	s64 val = 0;
8182 
8183 	for_each_online_cpu(cpu) {
8184 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8185 		val += kcpustat->cpustat[CPUTIME_USER];
8186 		val += kcpustat->cpustat[CPUTIME_NICE];
8187 	}
8188 	val = cputime64_to_clock_t(val);
8189 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8190 
8191 	val = 0;
8192 	for_each_online_cpu(cpu) {
8193 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8194 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8195 		val += kcpustat->cpustat[CPUTIME_IRQ];
8196 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8197 	}
8198 
8199 	val = cputime64_to_clock_t(val);
8200 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8201 
8202 	return 0;
8203 }
8204 
8205 static struct cftype files[] = {
8206 	{
8207 		.name = "usage",
8208 		.read_u64 = cpuusage_read,
8209 		.write_u64 = cpuusage_write,
8210 	},
8211 	{
8212 		.name = "usage_percpu",
8213 		.read_seq_string = cpuacct_percpu_seq_read,
8214 	},
8215 	{
8216 		.name = "stat",
8217 		.read_map = cpuacct_stats_show,
8218 	},
8219 	{ }	/* terminate */
8220 };
8221 
8222 /*
8223  * charge this task's execution time to its accounting group.
8224  *
8225  * called with rq->lock held.
8226  */
8227 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8228 {
8229 	struct cpuacct *ca;
8230 	int cpu;
8231 
8232 	if (unlikely(!cpuacct_subsys.active))
8233 		return;
8234 
8235 	cpu = task_cpu(tsk);
8236 
8237 	rcu_read_lock();
8238 
8239 	ca = task_ca(tsk);
8240 
8241 	for (; ca; ca = parent_ca(ca)) {
8242 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8243 		*cpuusage += cputime;
8244 	}
8245 
8246 	rcu_read_unlock();
8247 }
8248 
8249 struct cgroup_subsys cpuacct_subsys = {
8250 	.name = "cpuacct",
8251 	.css_alloc = cpuacct_css_alloc,
8252 	.css_free = cpuacct_css_free,
8253 	.subsys_id = cpuacct_subsys_id,
8254 	.base_cftypes = files,
8255 };
8256 #endif	/* CONFIG_CGROUP_CPUACCT */
8257 
8258 void dump_cpu_task(int cpu)
8259 {
8260 	pr_info("Task dump for CPU %d:\n", cpu);
8261 	sched_show_task(cpu_curr(cpu));
8262 }
8263