1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 516 #ifndef tsk_is_polling 517 #define tsk_is_polling(t) 0 518 #endif 519 520 void resched_task(struct task_struct *p) 521 { 522 int cpu; 523 524 assert_raw_spin_locked(&task_rq(p)->lock); 525 526 if (test_tsk_need_resched(p)) 527 return; 528 529 set_tsk_need_resched(p); 530 531 cpu = task_cpu(p); 532 if (cpu == smp_processor_id()) 533 return; 534 535 /* NEED_RESCHED must be visible before we test polling */ 536 smp_mb(); 537 if (!tsk_is_polling(p)) 538 smp_send_reschedule(cpu); 539 } 540 541 void resched_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 unsigned long flags; 545 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 547 return; 548 resched_task(cpu_curr(cpu)); 549 raw_spin_unlock_irqrestore(&rq->lock, flags); 550 } 551 552 #ifdef CONFIG_NO_HZ 553 /* 554 * In the semi idle case, use the nearest busy cpu for migrating timers 555 * from an idle cpu. This is good for power-savings. 556 * 557 * We don't do similar optimization for completely idle system, as 558 * selecting an idle cpu will add more delays to the timers than intended 559 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 560 */ 561 int get_nohz_timer_target(void) 562 { 563 int cpu = smp_processor_id(); 564 int i; 565 struct sched_domain *sd; 566 567 rcu_read_lock(); 568 for_each_domain(cpu, sd) { 569 for_each_cpu(i, sched_domain_span(sd)) { 570 if (!idle_cpu(i)) { 571 cpu = i; 572 goto unlock; 573 } 574 } 575 } 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 /* 598 * This is safe, as this function is called with the timer 599 * wheel base lock of (cpu) held. When the CPU is on the way 600 * to idle and has not yet set rq->curr to idle then it will 601 * be serialized on the timer wheel base lock and take the new 602 * timer into account automatically. 603 */ 604 if (rq->curr != rq->idle) 605 return; 606 607 /* 608 * We can set TIF_RESCHED on the idle task of the other CPU 609 * lockless. The worst case is that the other CPU runs the 610 * idle task through an additional NOOP schedule() 611 */ 612 set_tsk_need_resched(rq->idle); 613 614 /* NEED_RESCHED must be visible before we test polling */ 615 smp_mb(); 616 if (!tsk_is_polling(rq->idle)) 617 smp_send_reschedule(cpu); 618 } 619 620 static inline bool got_nohz_idle_kick(void) 621 { 622 int cpu = smp_processor_id(); 623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 624 } 625 626 #else /* CONFIG_NO_HZ */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ */ 634 635 void sched_avg_update(struct rq *rq) 636 { 637 s64 period = sched_avg_period(); 638 639 while ((s64)(rq->clock - rq->age_stamp) > period) { 640 /* 641 * Inline assembly required to prevent the compiler 642 * optimising this loop into a divmod call. 643 * See __iter_div_u64_rem() for another example of this. 644 */ 645 asm("" : "+rm" (rq->age_stamp)); 646 rq->age_stamp += period; 647 rq->rt_avg /= 2; 648 } 649 } 650 651 #else /* !CONFIG_SMP */ 652 void resched_task(struct task_struct *p) 653 { 654 assert_raw_spin_locked(&task_rq(p)->lock); 655 set_tsk_need_resched(p); 656 } 657 #endif /* CONFIG_SMP */ 658 659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 661 /* 662 * Iterate task_group tree rooted at *from, calling @down when first entering a 663 * node and @up when leaving it for the final time. 664 * 665 * Caller must hold rcu_lock or sufficient equivalent. 666 */ 667 int walk_tg_tree_from(struct task_group *from, 668 tg_visitor down, tg_visitor up, void *data) 669 { 670 struct task_group *parent, *child; 671 int ret; 672 673 parent = from; 674 675 down: 676 ret = (*down)(parent, data); 677 if (ret) 678 goto out; 679 list_for_each_entry_rcu(child, &parent->children, siblings) { 680 parent = child; 681 goto down; 682 683 up: 684 continue; 685 } 686 ret = (*up)(parent, data); 687 if (ret || parent == from) 688 goto out; 689 690 child = parent; 691 parent = parent->parent; 692 if (parent) 693 goto up; 694 out: 695 return ret; 696 } 697 698 int tg_nop(struct task_group *tg, void *data) 699 { 700 return 0; 701 } 702 #endif 703 704 static void set_load_weight(struct task_struct *p) 705 { 706 int prio = p->static_prio - MAX_RT_PRIO; 707 struct load_weight *load = &p->se.load; 708 709 /* 710 * SCHED_IDLE tasks get minimal weight: 711 */ 712 if (p->policy == SCHED_IDLE) { 713 load->weight = scale_load(WEIGHT_IDLEPRIO); 714 load->inv_weight = WMULT_IDLEPRIO; 715 return; 716 } 717 718 load->weight = scale_load(prio_to_weight[prio]); 719 load->inv_weight = prio_to_wmult[prio]; 720 } 721 722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_queued(p); 726 p->sched_class->enqueue_task(rq, p, flags); 727 } 728 729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 update_rq_clock(rq); 732 sched_info_dequeued(p); 733 p->sched_class->dequeue_task(rq, p, flags); 734 } 735 736 void activate_task(struct rq *rq, struct task_struct *p, int flags) 737 { 738 if (task_contributes_to_load(p)) 739 rq->nr_uninterruptible--; 740 741 enqueue_task(rq, p, flags); 742 } 743 744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 745 { 746 if (task_contributes_to_load(p)) 747 rq->nr_uninterruptible++; 748 749 dequeue_task(rq, p, flags); 750 } 751 752 static void update_rq_clock_task(struct rq *rq, s64 delta) 753 { 754 /* 755 * In theory, the compile should just see 0 here, and optimize out the call 756 * to sched_rt_avg_update. But I don't trust it... 757 */ 758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 759 s64 steal = 0, irq_delta = 0; 760 #endif 761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 763 764 /* 765 * Since irq_time is only updated on {soft,}irq_exit, we might run into 766 * this case when a previous update_rq_clock() happened inside a 767 * {soft,}irq region. 768 * 769 * When this happens, we stop ->clock_task and only update the 770 * prev_irq_time stamp to account for the part that fit, so that a next 771 * update will consume the rest. This ensures ->clock_task is 772 * monotonic. 773 * 774 * It does however cause some slight miss-attribution of {soft,}irq 775 * time, a more accurate solution would be to update the irq_time using 776 * the current rq->clock timestamp, except that would require using 777 * atomic ops. 778 */ 779 if (irq_delta > delta) 780 irq_delta = delta; 781 782 rq->prev_irq_time += irq_delta; 783 delta -= irq_delta; 784 #endif 785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 786 if (static_key_false((¶virt_steal_rq_enabled))) { 787 u64 st; 788 789 steal = paravirt_steal_clock(cpu_of(rq)); 790 steal -= rq->prev_steal_time_rq; 791 792 if (unlikely(steal > delta)) 793 steal = delta; 794 795 st = steal_ticks(steal); 796 steal = st * TICK_NSEC; 797 798 rq->prev_steal_time_rq += steal; 799 800 delta -= steal; 801 } 802 #endif 803 804 rq->clock_task += delta; 805 806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 808 sched_rt_avg_update(rq, irq_delta + steal); 809 #endif 810 } 811 812 void sched_set_stop_task(int cpu, struct task_struct *stop) 813 { 814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 815 struct task_struct *old_stop = cpu_rq(cpu)->stop; 816 817 if (stop) { 818 /* 819 * Make it appear like a SCHED_FIFO task, its something 820 * userspace knows about and won't get confused about. 821 * 822 * Also, it will make PI more or less work without too 823 * much confusion -- but then, stop work should not 824 * rely on PI working anyway. 825 */ 826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 827 828 stop->sched_class = &stop_sched_class; 829 } 830 831 cpu_rq(cpu)->stop = stop; 832 833 if (old_stop) { 834 /* 835 * Reset it back to a normal scheduling class so that 836 * it can die in pieces. 837 */ 838 old_stop->sched_class = &rt_sched_class; 839 } 840 } 841 842 /* 843 * __normal_prio - return the priority that is based on the static prio 844 */ 845 static inline int __normal_prio(struct task_struct *p) 846 { 847 return p->static_prio; 848 } 849 850 /* 851 * Calculate the expected normal priority: i.e. priority 852 * without taking RT-inheritance into account. Might be 853 * boosted by interactivity modifiers. Changes upon fork, 854 * setprio syscalls, and whenever the interactivity 855 * estimator recalculates. 856 */ 857 static inline int normal_prio(struct task_struct *p) 858 { 859 int prio; 860 861 if (task_has_rt_policy(p)) 862 prio = MAX_RT_PRIO-1 - p->rt_priority; 863 else 864 prio = __normal_prio(p); 865 return prio; 866 } 867 868 /* 869 * Calculate the current priority, i.e. the priority 870 * taken into account by the scheduler. This value might 871 * be boosted by RT tasks, or might be boosted by 872 * interactivity modifiers. Will be RT if the task got 873 * RT-boosted. If not then it returns p->normal_prio. 874 */ 875 static int effective_prio(struct task_struct *p) 876 { 877 p->normal_prio = normal_prio(p); 878 /* 879 * If we are RT tasks or we were boosted to RT priority, 880 * keep the priority unchanged. Otherwise, update priority 881 * to the normal priority: 882 */ 883 if (!rt_prio(p->prio)) 884 return p->normal_prio; 885 return p->prio; 886 } 887 888 /** 889 * task_curr - is this task currently executing on a CPU? 890 * @p: the task in question. 891 */ 892 inline int task_curr(const struct task_struct *p) 893 { 894 return cpu_curr(task_cpu(p)) == p; 895 } 896 897 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 898 const struct sched_class *prev_class, 899 int oldprio) 900 { 901 if (prev_class != p->sched_class) { 902 if (prev_class->switched_from) 903 prev_class->switched_from(rq, p); 904 p->sched_class->switched_to(rq, p); 905 } else if (oldprio != p->prio) 906 p->sched_class->prio_changed(rq, p, oldprio); 907 } 908 909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 910 { 911 const struct sched_class *class; 912 913 if (p->sched_class == rq->curr->sched_class) { 914 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 915 } else { 916 for_each_class(class) { 917 if (class == rq->curr->sched_class) 918 break; 919 if (class == p->sched_class) { 920 resched_task(rq->curr); 921 break; 922 } 923 } 924 } 925 926 /* 927 * A queue event has occurred, and we're going to schedule. In 928 * this case, we can save a useless back to back clock update. 929 */ 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 931 rq->skip_clock_update = 1; 932 } 933 934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 935 936 void register_task_migration_notifier(struct notifier_block *n) 937 { 938 atomic_notifier_chain_register(&task_migration_notifier, n); 939 } 940 941 #ifdef CONFIG_SMP 942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 943 { 944 #ifdef CONFIG_SCHED_DEBUG 945 /* 946 * We should never call set_task_cpu() on a blocked task, 947 * ttwu() will sort out the placement. 948 */ 949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 951 952 #ifdef CONFIG_LOCKDEP 953 /* 954 * The caller should hold either p->pi_lock or rq->lock, when changing 955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 956 * 957 * sched_move_task() holds both and thus holding either pins the cgroup, 958 * see task_group(). 959 * 960 * Furthermore, all task_rq users should acquire both locks, see 961 * task_rq_lock(). 962 */ 963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 964 lockdep_is_held(&task_rq(p)->lock))); 965 #endif 966 #endif 967 968 trace_sched_migrate_task(p, new_cpu); 969 970 if (task_cpu(p) != new_cpu) { 971 struct task_migration_notifier tmn; 972 973 if (p->sched_class->migrate_task_rq) 974 p->sched_class->migrate_task_rq(p, new_cpu); 975 p->se.nr_migrations++; 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 977 978 tmn.task = p; 979 tmn.from_cpu = task_cpu(p); 980 tmn.to_cpu = new_cpu; 981 982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 983 } 984 985 __set_task_cpu(p, new_cpu); 986 } 987 988 struct migration_arg { 989 struct task_struct *task; 990 int dest_cpu; 991 }; 992 993 static int migration_cpu_stop(void *data); 994 995 /* 996 * wait_task_inactive - wait for a thread to unschedule. 997 * 998 * If @match_state is nonzero, it's the @p->state value just checked and 999 * not expected to change. If it changes, i.e. @p might have woken up, 1000 * then return zero. When we succeed in waiting for @p to be off its CPU, 1001 * we return a positive number (its total switch count). If a second call 1002 * a short while later returns the same number, the caller can be sure that 1003 * @p has remained unscheduled the whole time. 1004 * 1005 * The caller must ensure that the task *will* unschedule sometime soon, 1006 * else this function might spin for a *long* time. This function can't 1007 * be called with interrupts off, or it may introduce deadlock with 1008 * smp_call_function() if an IPI is sent by the same process we are 1009 * waiting to become inactive. 1010 */ 1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1012 { 1013 unsigned long flags; 1014 int running, on_rq; 1015 unsigned long ncsw; 1016 struct rq *rq; 1017 1018 for (;;) { 1019 /* 1020 * We do the initial early heuristics without holding 1021 * any task-queue locks at all. We'll only try to get 1022 * the runqueue lock when things look like they will 1023 * work out! 1024 */ 1025 rq = task_rq(p); 1026 1027 /* 1028 * If the task is actively running on another CPU 1029 * still, just relax and busy-wait without holding 1030 * any locks. 1031 * 1032 * NOTE! Since we don't hold any locks, it's not 1033 * even sure that "rq" stays as the right runqueue! 1034 * But we don't care, since "task_running()" will 1035 * return false if the runqueue has changed and p 1036 * is actually now running somewhere else! 1037 */ 1038 while (task_running(rq, p)) { 1039 if (match_state && unlikely(p->state != match_state)) 1040 return 0; 1041 cpu_relax(); 1042 } 1043 1044 /* 1045 * Ok, time to look more closely! We need the rq 1046 * lock now, to be *sure*. If we're wrong, we'll 1047 * just go back and repeat. 1048 */ 1049 rq = task_rq_lock(p, &flags); 1050 trace_sched_wait_task(p); 1051 running = task_running(rq, p); 1052 on_rq = p->on_rq; 1053 ncsw = 0; 1054 if (!match_state || p->state == match_state) 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1056 task_rq_unlock(rq, p, &flags); 1057 1058 /* 1059 * If it changed from the expected state, bail out now. 1060 */ 1061 if (unlikely(!ncsw)) 1062 break; 1063 1064 /* 1065 * Was it really running after all now that we 1066 * checked with the proper locks actually held? 1067 * 1068 * Oops. Go back and try again.. 1069 */ 1070 if (unlikely(running)) { 1071 cpu_relax(); 1072 continue; 1073 } 1074 1075 /* 1076 * It's not enough that it's not actively running, 1077 * it must be off the runqueue _entirely_, and not 1078 * preempted! 1079 * 1080 * So if it was still runnable (but just not actively 1081 * running right now), it's preempted, and we should 1082 * yield - it could be a while. 1083 */ 1084 if (unlikely(on_rq)) { 1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1086 1087 set_current_state(TASK_UNINTERRUPTIBLE); 1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1089 continue; 1090 } 1091 1092 /* 1093 * Ahh, all good. It wasn't running, and it wasn't 1094 * runnable, which means that it will never become 1095 * running in the future either. We're all done! 1096 */ 1097 break; 1098 } 1099 1100 return ncsw; 1101 } 1102 1103 /*** 1104 * kick_process - kick a running thread to enter/exit the kernel 1105 * @p: the to-be-kicked thread 1106 * 1107 * Cause a process which is running on another CPU to enter 1108 * kernel-mode, without any delay. (to get signals handled.) 1109 * 1110 * NOTE: this function doesn't have to take the runqueue lock, 1111 * because all it wants to ensure is that the remote task enters 1112 * the kernel. If the IPI races and the task has been migrated 1113 * to another CPU then no harm is done and the purpose has been 1114 * achieved as well. 1115 */ 1116 void kick_process(struct task_struct *p) 1117 { 1118 int cpu; 1119 1120 preempt_disable(); 1121 cpu = task_cpu(p); 1122 if ((cpu != smp_processor_id()) && task_curr(p)) 1123 smp_send_reschedule(cpu); 1124 preempt_enable(); 1125 } 1126 EXPORT_SYMBOL_GPL(kick_process); 1127 #endif /* CONFIG_SMP */ 1128 1129 #ifdef CONFIG_SMP 1130 /* 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1132 */ 1133 static int select_fallback_rq(int cpu, struct task_struct *p) 1134 { 1135 int nid = cpu_to_node(cpu); 1136 const struct cpumask *nodemask = NULL; 1137 enum { cpuset, possible, fail } state = cpuset; 1138 int dest_cpu; 1139 1140 /* 1141 * If the node that the cpu is on has been offlined, cpu_to_node() 1142 * will return -1. There is no cpu on the node, and we should 1143 * select the cpu on the other node. 1144 */ 1145 if (nid != -1) { 1146 nodemask = cpumask_of_node(nid); 1147 1148 /* Look for allowed, online CPU in same node. */ 1149 for_each_cpu(dest_cpu, nodemask) { 1150 if (!cpu_online(dest_cpu)) 1151 continue; 1152 if (!cpu_active(dest_cpu)) 1153 continue; 1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1155 return dest_cpu; 1156 } 1157 } 1158 1159 for (;;) { 1160 /* Any allowed, online CPU? */ 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1162 if (!cpu_online(dest_cpu)) 1163 continue; 1164 if (!cpu_active(dest_cpu)) 1165 continue; 1166 goto out; 1167 } 1168 1169 switch (state) { 1170 case cpuset: 1171 /* No more Mr. Nice Guy. */ 1172 cpuset_cpus_allowed_fallback(p); 1173 state = possible; 1174 break; 1175 1176 case possible: 1177 do_set_cpus_allowed(p, cpu_possible_mask); 1178 state = fail; 1179 break; 1180 1181 case fail: 1182 BUG(); 1183 break; 1184 } 1185 } 1186 1187 out: 1188 if (state != cpuset) { 1189 /* 1190 * Don't tell them about moving exiting tasks or 1191 * kernel threads (both mm NULL), since they never 1192 * leave kernel. 1193 */ 1194 if (p->mm && printk_ratelimit()) { 1195 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1196 task_pid_nr(p), p->comm, cpu); 1197 } 1198 } 1199 1200 return dest_cpu; 1201 } 1202 1203 /* 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1205 */ 1206 static inline 1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1208 { 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1210 1211 /* 1212 * In order not to call set_task_cpu() on a blocking task we need 1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1214 * cpu. 1215 * 1216 * Since this is common to all placement strategies, this lives here. 1217 * 1218 * [ this allows ->select_task() to simply return task_cpu(p) and 1219 * not worry about this generic constraint ] 1220 */ 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1222 !cpu_online(cpu))) 1223 cpu = select_fallback_rq(task_cpu(p), p); 1224 1225 return cpu; 1226 } 1227 1228 static void update_avg(u64 *avg, u64 sample) 1229 { 1230 s64 diff = sample - *avg; 1231 *avg += diff >> 3; 1232 } 1233 #endif 1234 1235 static void 1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1237 { 1238 #ifdef CONFIG_SCHEDSTATS 1239 struct rq *rq = this_rq(); 1240 1241 #ifdef CONFIG_SMP 1242 int this_cpu = smp_processor_id(); 1243 1244 if (cpu == this_cpu) { 1245 schedstat_inc(rq, ttwu_local); 1246 schedstat_inc(p, se.statistics.nr_wakeups_local); 1247 } else { 1248 struct sched_domain *sd; 1249 1250 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1251 rcu_read_lock(); 1252 for_each_domain(this_cpu, sd) { 1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1254 schedstat_inc(sd, ttwu_wake_remote); 1255 break; 1256 } 1257 } 1258 rcu_read_unlock(); 1259 } 1260 1261 if (wake_flags & WF_MIGRATED) 1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1263 1264 #endif /* CONFIG_SMP */ 1265 1266 schedstat_inc(rq, ttwu_count); 1267 schedstat_inc(p, se.statistics.nr_wakeups); 1268 1269 if (wake_flags & WF_SYNC) 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1271 1272 #endif /* CONFIG_SCHEDSTATS */ 1273 } 1274 1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1276 { 1277 activate_task(rq, p, en_flags); 1278 p->on_rq = 1; 1279 1280 /* if a worker is waking up, notify workqueue */ 1281 if (p->flags & PF_WQ_WORKER) 1282 wq_worker_waking_up(p, cpu_of(rq)); 1283 } 1284 1285 /* 1286 * Mark the task runnable and perform wakeup-preemption. 1287 */ 1288 static void 1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1290 { 1291 trace_sched_wakeup(p, true); 1292 check_preempt_curr(rq, p, wake_flags); 1293 1294 p->state = TASK_RUNNING; 1295 #ifdef CONFIG_SMP 1296 if (p->sched_class->task_woken) 1297 p->sched_class->task_woken(rq, p); 1298 1299 if (rq->idle_stamp) { 1300 u64 delta = rq->clock - rq->idle_stamp; 1301 u64 max = 2*sysctl_sched_migration_cost; 1302 1303 if (delta > max) 1304 rq->avg_idle = max; 1305 else 1306 update_avg(&rq->avg_idle, delta); 1307 rq->idle_stamp = 0; 1308 } 1309 #endif 1310 } 1311 1312 static void 1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1314 { 1315 #ifdef CONFIG_SMP 1316 if (p->sched_contributes_to_load) 1317 rq->nr_uninterruptible--; 1318 #endif 1319 1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1321 ttwu_do_wakeup(rq, p, wake_flags); 1322 } 1323 1324 /* 1325 * Called in case the task @p isn't fully descheduled from its runqueue, 1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1327 * since all we need to do is flip p->state to TASK_RUNNING, since 1328 * the task is still ->on_rq. 1329 */ 1330 static int ttwu_remote(struct task_struct *p, int wake_flags) 1331 { 1332 struct rq *rq; 1333 int ret = 0; 1334 1335 rq = __task_rq_lock(p); 1336 if (p->on_rq) { 1337 ttwu_do_wakeup(rq, p, wake_flags); 1338 ret = 1; 1339 } 1340 __task_rq_unlock(rq); 1341 1342 return ret; 1343 } 1344 1345 #ifdef CONFIG_SMP 1346 static void sched_ttwu_pending(void) 1347 { 1348 struct rq *rq = this_rq(); 1349 struct llist_node *llist = llist_del_all(&rq->wake_list); 1350 struct task_struct *p; 1351 1352 raw_spin_lock(&rq->lock); 1353 1354 while (llist) { 1355 p = llist_entry(llist, struct task_struct, wake_entry); 1356 llist = llist_next(llist); 1357 ttwu_do_activate(rq, p, 0); 1358 } 1359 1360 raw_spin_unlock(&rq->lock); 1361 } 1362 1363 void scheduler_ipi(void) 1364 { 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1366 return; 1367 1368 /* 1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1370 * traditionally all their work was done from the interrupt return 1371 * path. Now that we actually do some work, we need to make sure 1372 * we do call them. 1373 * 1374 * Some archs already do call them, luckily irq_enter/exit nest 1375 * properly. 1376 * 1377 * Arguably we should visit all archs and update all handlers, 1378 * however a fair share of IPIs are still resched only so this would 1379 * somewhat pessimize the simple resched case. 1380 */ 1381 irq_enter(); 1382 sched_ttwu_pending(); 1383 1384 /* 1385 * Check if someone kicked us for doing the nohz idle load balance. 1386 */ 1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1388 this_rq()->idle_balance = 1; 1389 raise_softirq_irqoff(SCHED_SOFTIRQ); 1390 } 1391 irq_exit(); 1392 } 1393 1394 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1395 { 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1397 smp_send_reschedule(cpu); 1398 } 1399 1400 bool cpus_share_cache(int this_cpu, int that_cpu) 1401 { 1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1403 } 1404 #endif /* CONFIG_SMP */ 1405 1406 static void ttwu_queue(struct task_struct *p, int cpu) 1407 { 1408 struct rq *rq = cpu_rq(cpu); 1409 1410 #if defined(CONFIG_SMP) 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1413 ttwu_queue_remote(p, cpu); 1414 return; 1415 } 1416 #endif 1417 1418 raw_spin_lock(&rq->lock); 1419 ttwu_do_activate(rq, p, 0); 1420 raw_spin_unlock(&rq->lock); 1421 } 1422 1423 /** 1424 * try_to_wake_up - wake up a thread 1425 * @p: the thread to be awakened 1426 * @state: the mask of task states that can be woken 1427 * @wake_flags: wake modifier flags (WF_*) 1428 * 1429 * Put it on the run-queue if it's not already there. The "current" 1430 * thread is always on the run-queue (except when the actual 1431 * re-schedule is in progress), and as such you're allowed to do 1432 * the simpler "current->state = TASK_RUNNING" to mark yourself 1433 * runnable without the overhead of this. 1434 * 1435 * Returns %true if @p was woken up, %false if it was already running 1436 * or @state didn't match @p's state. 1437 */ 1438 static int 1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1440 { 1441 unsigned long flags; 1442 int cpu, success = 0; 1443 1444 smp_wmb(); 1445 raw_spin_lock_irqsave(&p->pi_lock, flags); 1446 if (!(p->state & state)) 1447 goto out; 1448 1449 success = 1; /* we're going to change ->state */ 1450 cpu = task_cpu(p); 1451 1452 if (p->on_rq && ttwu_remote(p, wake_flags)) 1453 goto stat; 1454 1455 #ifdef CONFIG_SMP 1456 /* 1457 * If the owning (remote) cpu is still in the middle of schedule() with 1458 * this task as prev, wait until its done referencing the task. 1459 */ 1460 while (p->on_cpu) 1461 cpu_relax(); 1462 /* 1463 * Pairs with the smp_wmb() in finish_lock_switch(). 1464 */ 1465 smp_rmb(); 1466 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1468 p->state = TASK_WAKING; 1469 1470 if (p->sched_class->task_waking) 1471 p->sched_class->task_waking(p); 1472 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1474 if (task_cpu(p) != cpu) { 1475 wake_flags |= WF_MIGRATED; 1476 set_task_cpu(p, cpu); 1477 } 1478 #endif /* CONFIG_SMP */ 1479 1480 ttwu_queue(p, cpu); 1481 stat: 1482 ttwu_stat(p, cpu, wake_flags); 1483 out: 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1485 1486 return success; 1487 } 1488 1489 /** 1490 * try_to_wake_up_local - try to wake up a local task with rq lock held 1491 * @p: the thread to be awakened 1492 * 1493 * Put @p on the run-queue if it's not already there. The caller must 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1495 * the current task. 1496 */ 1497 static void try_to_wake_up_local(struct task_struct *p) 1498 { 1499 struct rq *rq = task_rq(p); 1500 1501 BUG_ON(rq != this_rq()); 1502 BUG_ON(p == current); 1503 lockdep_assert_held(&rq->lock); 1504 1505 if (!raw_spin_trylock(&p->pi_lock)) { 1506 raw_spin_unlock(&rq->lock); 1507 raw_spin_lock(&p->pi_lock); 1508 raw_spin_lock(&rq->lock); 1509 } 1510 1511 if (!(p->state & TASK_NORMAL)) 1512 goto out; 1513 1514 if (!p->on_rq) 1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1516 1517 ttwu_do_wakeup(rq, p, 0); 1518 ttwu_stat(p, smp_processor_id(), 0); 1519 out: 1520 raw_spin_unlock(&p->pi_lock); 1521 } 1522 1523 /** 1524 * wake_up_process - Wake up a specific process 1525 * @p: The process to be woken up. 1526 * 1527 * Attempt to wake up the nominated process and move it to the set of runnable 1528 * processes. Returns 1 if the process was woken up, 0 if it was already 1529 * running. 1530 * 1531 * It may be assumed that this function implies a write memory barrier before 1532 * changing the task state if and only if any tasks are woken up. 1533 */ 1534 int wake_up_process(struct task_struct *p) 1535 { 1536 WARN_ON(task_is_stopped_or_traced(p)); 1537 return try_to_wake_up(p, TASK_NORMAL, 0); 1538 } 1539 EXPORT_SYMBOL(wake_up_process); 1540 1541 int wake_up_state(struct task_struct *p, unsigned int state) 1542 { 1543 return try_to_wake_up(p, state, 0); 1544 } 1545 1546 /* 1547 * Perform scheduler related setup for a newly forked process p. 1548 * p is forked by current. 1549 * 1550 * __sched_fork() is basic setup used by init_idle() too: 1551 */ 1552 static void __sched_fork(struct task_struct *p) 1553 { 1554 p->on_rq = 0; 1555 1556 p->se.on_rq = 0; 1557 p->se.exec_start = 0; 1558 p->se.sum_exec_runtime = 0; 1559 p->se.prev_sum_exec_runtime = 0; 1560 p->se.nr_migrations = 0; 1561 p->se.vruntime = 0; 1562 INIT_LIST_HEAD(&p->se.group_node); 1563 1564 /* 1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1566 * removed when useful for applications beyond shares distribution (e.g. 1567 * load-balance). 1568 */ 1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1570 p->se.avg.runnable_avg_period = 0; 1571 p->se.avg.runnable_avg_sum = 0; 1572 #endif 1573 #ifdef CONFIG_SCHEDSTATS 1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1575 #endif 1576 1577 INIT_LIST_HEAD(&p->rt.run_list); 1578 1579 #ifdef CONFIG_PREEMPT_NOTIFIERS 1580 INIT_HLIST_HEAD(&p->preempt_notifiers); 1581 #endif 1582 1583 #ifdef CONFIG_NUMA_BALANCING 1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1585 p->mm->numa_next_scan = jiffies; 1586 p->mm->numa_next_reset = jiffies; 1587 p->mm->numa_scan_seq = 0; 1588 } 1589 1590 p->node_stamp = 0ULL; 1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1594 p->numa_work.next = &p->numa_work; 1595 #endif /* CONFIG_NUMA_BALANCING */ 1596 } 1597 1598 #ifdef CONFIG_NUMA_BALANCING 1599 #ifdef CONFIG_SCHED_DEBUG 1600 void set_numabalancing_state(bool enabled) 1601 { 1602 if (enabled) 1603 sched_feat_set("NUMA"); 1604 else 1605 sched_feat_set("NO_NUMA"); 1606 } 1607 #else 1608 __read_mostly bool numabalancing_enabled; 1609 1610 void set_numabalancing_state(bool enabled) 1611 { 1612 numabalancing_enabled = enabled; 1613 } 1614 #endif /* CONFIG_SCHED_DEBUG */ 1615 #endif /* CONFIG_NUMA_BALANCING */ 1616 1617 /* 1618 * fork()/clone()-time setup: 1619 */ 1620 void sched_fork(struct task_struct *p) 1621 { 1622 unsigned long flags; 1623 int cpu = get_cpu(); 1624 1625 __sched_fork(p); 1626 /* 1627 * We mark the process as running here. This guarantees that 1628 * nobody will actually run it, and a signal or other external 1629 * event cannot wake it up and insert it on the runqueue either. 1630 */ 1631 p->state = TASK_RUNNING; 1632 1633 /* 1634 * Make sure we do not leak PI boosting priority to the child. 1635 */ 1636 p->prio = current->normal_prio; 1637 1638 /* 1639 * Revert to default priority/policy on fork if requested. 1640 */ 1641 if (unlikely(p->sched_reset_on_fork)) { 1642 if (task_has_rt_policy(p)) { 1643 p->policy = SCHED_NORMAL; 1644 p->static_prio = NICE_TO_PRIO(0); 1645 p->rt_priority = 0; 1646 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1647 p->static_prio = NICE_TO_PRIO(0); 1648 1649 p->prio = p->normal_prio = __normal_prio(p); 1650 set_load_weight(p); 1651 1652 /* 1653 * We don't need the reset flag anymore after the fork. It has 1654 * fulfilled its duty: 1655 */ 1656 p->sched_reset_on_fork = 0; 1657 } 1658 1659 if (!rt_prio(p->prio)) 1660 p->sched_class = &fair_sched_class; 1661 1662 if (p->sched_class->task_fork) 1663 p->sched_class->task_fork(p); 1664 1665 /* 1666 * The child is not yet in the pid-hash so no cgroup attach races, 1667 * and the cgroup is pinned to this child due to cgroup_fork() 1668 * is ran before sched_fork(). 1669 * 1670 * Silence PROVE_RCU. 1671 */ 1672 raw_spin_lock_irqsave(&p->pi_lock, flags); 1673 set_task_cpu(p, cpu); 1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1675 1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1677 if (likely(sched_info_on())) 1678 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1679 #endif 1680 #if defined(CONFIG_SMP) 1681 p->on_cpu = 0; 1682 #endif 1683 #ifdef CONFIG_PREEMPT_COUNT 1684 /* Want to start with kernel preemption disabled. */ 1685 task_thread_info(p)->preempt_count = 1; 1686 #endif 1687 #ifdef CONFIG_SMP 1688 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1689 #endif 1690 1691 put_cpu(); 1692 } 1693 1694 /* 1695 * wake_up_new_task - wake up a newly created task for the first time. 1696 * 1697 * This function will do some initial scheduler statistics housekeeping 1698 * that must be done for every newly created context, then puts the task 1699 * on the runqueue and wakes it. 1700 */ 1701 void wake_up_new_task(struct task_struct *p) 1702 { 1703 unsigned long flags; 1704 struct rq *rq; 1705 1706 raw_spin_lock_irqsave(&p->pi_lock, flags); 1707 #ifdef CONFIG_SMP 1708 /* 1709 * Fork balancing, do it here and not earlier because: 1710 * - cpus_allowed can change in the fork path 1711 * - any previously selected cpu might disappear through hotplug 1712 */ 1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1714 #endif 1715 1716 rq = __task_rq_lock(p); 1717 activate_task(rq, p, 0); 1718 p->on_rq = 1; 1719 trace_sched_wakeup_new(p, true); 1720 check_preempt_curr(rq, p, WF_FORK); 1721 #ifdef CONFIG_SMP 1722 if (p->sched_class->task_woken) 1723 p->sched_class->task_woken(rq, p); 1724 #endif 1725 task_rq_unlock(rq, p, &flags); 1726 } 1727 1728 #ifdef CONFIG_PREEMPT_NOTIFIERS 1729 1730 /** 1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1732 * @notifier: notifier struct to register 1733 */ 1734 void preempt_notifier_register(struct preempt_notifier *notifier) 1735 { 1736 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1737 } 1738 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1739 1740 /** 1741 * preempt_notifier_unregister - no longer interested in preemption notifications 1742 * @notifier: notifier struct to unregister 1743 * 1744 * This is safe to call from within a preemption notifier. 1745 */ 1746 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1747 { 1748 hlist_del(¬ifier->link); 1749 } 1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1751 1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1753 { 1754 struct preempt_notifier *notifier; 1755 1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1757 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1758 } 1759 1760 static void 1761 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1762 struct task_struct *next) 1763 { 1764 struct preempt_notifier *notifier; 1765 1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1767 notifier->ops->sched_out(notifier, next); 1768 } 1769 1770 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1771 1772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1773 { 1774 } 1775 1776 static void 1777 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1778 struct task_struct *next) 1779 { 1780 } 1781 1782 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1783 1784 /** 1785 * prepare_task_switch - prepare to switch tasks 1786 * @rq: the runqueue preparing to switch 1787 * @prev: the current task that is being switched out 1788 * @next: the task we are going to switch to. 1789 * 1790 * This is called with the rq lock held and interrupts off. It must 1791 * be paired with a subsequent finish_task_switch after the context 1792 * switch. 1793 * 1794 * prepare_task_switch sets up locking and calls architecture specific 1795 * hooks. 1796 */ 1797 static inline void 1798 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1799 struct task_struct *next) 1800 { 1801 trace_sched_switch(prev, next); 1802 sched_info_switch(prev, next); 1803 perf_event_task_sched_out(prev, next); 1804 fire_sched_out_preempt_notifiers(prev, next); 1805 prepare_lock_switch(rq, next); 1806 prepare_arch_switch(next); 1807 } 1808 1809 /** 1810 * finish_task_switch - clean up after a task-switch 1811 * @rq: runqueue associated with task-switch 1812 * @prev: the thread we just switched away from. 1813 * 1814 * finish_task_switch must be called after the context switch, paired 1815 * with a prepare_task_switch call before the context switch. 1816 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1817 * and do any other architecture-specific cleanup actions. 1818 * 1819 * Note that we may have delayed dropping an mm in context_switch(). If 1820 * so, we finish that here outside of the runqueue lock. (Doing it 1821 * with the lock held can cause deadlocks; see schedule() for 1822 * details.) 1823 */ 1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1825 __releases(rq->lock) 1826 { 1827 struct mm_struct *mm = rq->prev_mm; 1828 long prev_state; 1829 1830 rq->prev_mm = NULL; 1831 1832 /* 1833 * A task struct has one reference for the use as "current". 1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1835 * schedule one last time. The schedule call will never return, and 1836 * the scheduled task must drop that reference. 1837 * The test for TASK_DEAD must occur while the runqueue locks are 1838 * still held, otherwise prev could be scheduled on another cpu, die 1839 * there before we look at prev->state, and then the reference would 1840 * be dropped twice. 1841 * Manfred Spraul <manfred@colorfullife.com> 1842 */ 1843 prev_state = prev->state; 1844 vtime_task_switch(prev); 1845 finish_arch_switch(prev); 1846 perf_event_task_sched_in(prev, current); 1847 finish_lock_switch(rq, prev); 1848 finish_arch_post_lock_switch(); 1849 1850 fire_sched_in_preempt_notifiers(current); 1851 if (mm) 1852 mmdrop(mm); 1853 if (unlikely(prev_state == TASK_DEAD)) { 1854 /* 1855 * Remove function-return probe instances associated with this 1856 * task and put them back on the free list. 1857 */ 1858 kprobe_flush_task(prev); 1859 put_task_struct(prev); 1860 } 1861 } 1862 1863 #ifdef CONFIG_SMP 1864 1865 /* assumes rq->lock is held */ 1866 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1867 { 1868 if (prev->sched_class->pre_schedule) 1869 prev->sched_class->pre_schedule(rq, prev); 1870 } 1871 1872 /* rq->lock is NOT held, but preemption is disabled */ 1873 static inline void post_schedule(struct rq *rq) 1874 { 1875 if (rq->post_schedule) { 1876 unsigned long flags; 1877 1878 raw_spin_lock_irqsave(&rq->lock, flags); 1879 if (rq->curr->sched_class->post_schedule) 1880 rq->curr->sched_class->post_schedule(rq); 1881 raw_spin_unlock_irqrestore(&rq->lock, flags); 1882 1883 rq->post_schedule = 0; 1884 } 1885 } 1886 1887 #else 1888 1889 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1890 { 1891 } 1892 1893 static inline void post_schedule(struct rq *rq) 1894 { 1895 } 1896 1897 #endif 1898 1899 /** 1900 * schedule_tail - first thing a freshly forked thread must call. 1901 * @prev: the thread we just switched away from. 1902 */ 1903 asmlinkage void schedule_tail(struct task_struct *prev) 1904 __releases(rq->lock) 1905 { 1906 struct rq *rq = this_rq(); 1907 1908 finish_task_switch(rq, prev); 1909 1910 /* 1911 * FIXME: do we need to worry about rq being invalidated by the 1912 * task_switch? 1913 */ 1914 post_schedule(rq); 1915 1916 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1917 /* In this case, finish_task_switch does not reenable preemption */ 1918 preempt_enable(); 1919 #endif 1920 if (current->set_child_tid) 1921 put_user(task_pid_vnr(current), current->set_child_tid); 1922 } 1923 1924 /* 1925 * context_switch - switch to the new MM and the new 1926 * thread's register state. 1927 */ 1928 static inline void 1929 context_switch(struct rq *rq, struct task_struct *prev, 1930 struct task_struct *next) 1931 { 1932 struct mm_struct *mm, *oldmm; 1933 1934 prepare_task_switch(rq, prev, next); 1935 1936 mm = next->mm; 1937 oldmm = prev->active_mm; 1938 /* 1939 * For paravirt, this is coupled with an exit in switch_to to 1940 * combine the page table reload and the switch backend into 1941 * one hypercall. 1942 */ 1943 arch_start_context_switch(prev); 1944 1945 if (!mm) { 1946 next->active_mm = oldmm; 1947 atomic_inc(&oldmm->mm_count); 1948 enter_lazy_tlb(oldmm, next); 1949 } else 1950 switch_mm(oldmm, mm, next); 1951 1952 if (!prev->mm) { 1953 prev->active_mm = NULL; 1954 rq->prev_mm = oldmm; 1955 } 1956 /* 1957 * Since the runqueue lock will be released by the next 1958 * task (which is an invalid locking op but in the case 1959 * of the scheduler it's an obvious special-case), so we 1960 * do an early lockdep release here: 1961 */ 1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 1964 #endif 1965 1966 context_tracking_task_switch(prev, next); 1967 /* Here we just switch the register state and the stack. */ 1968 switch_to(prev, next, prev); 1969 1970 barrier(); 1971 /* 1972 * this_rq must be evaluated again because prev may have moved 1973 * CPUs since it called schedule(), thus the 'rq' on its stack 1974 * frame will be invalid. 1975 */ 1976 finish_task_switch(this_rq(), prev); 1977 } 1978 1979 /* 1980 * nr_running and nr_context_switches: 1981 * 1982 * externally visible scheduler statistics: current number of runnable 1983 * threads, total number of context switches performed since bootup. 1984 */ 1985 unsigned long nr_running(void) 1986 { 1987 unsigned long i, sum = 0; 1988 1989 for_each_online_cpu(i) 1990 sum += cpu_rq(i)->nr_running; 1991 1992 return sum; 1993 } 1994 1995 unsigned long long nr_context_switches(void) 1996 { 1997 int i; 1998 unsigned long long sum = 0; 1999 2000 for_each_possible_cpu(i) 2001 sum += cpu_rq(i)->nr_switches; 2002 2003 return sum; 2004 } 2005 2006 unsigned long nr_iowait(void) 2007 { 2008 unsigned long i, sum = 0; 2009 2010 for_each_possible_cpu(i) 2011 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2012 2013 return sum; 2014 } 2015 2016 unsigned long nr_iowait_cpu(int cpu) 2017 { 2018 struct rq *this = cpu_rq(cpu); 2019 return atomic_read(&this->nr_iowait); 2020 } 2021 2022 unsigned long this_cpu_load(void) 2023 { 2024 struct rq *this = this_rq(); 2025 return this->cpu_load[0]; 2026 } 2027 2028 2029 /* 2030 * Global load-average calculations 2031 * 2032 * We take a distributed and async approach to calculating the global load-avg 2033 * in order to minimize overhead. 2034 * 2035 * The global load average is an exponentially decaying average of nr_running + 2036 * nr_uninterruptible. 2037 * 2038 * Once every LOAD_FREQ: 2039 * 2040 * nr_active = 0; 2041 * for_each_possible_cpu(cpu) 2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2043 * 2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2045 * 2046 * Due to a number of reasons the above turns in the mess below: 2047 * 2048 * - for_each_possible_cpu() is prohibitively expensive on machines with 2049 * serious number of cpus, therefore we need to take a distributed approach 2050 * to calculating nr_active. 2051 * 2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2054 * 2055 * So assuming nr_active := 0 when we start out -- true per definition, we 2056 * can simply take per-cpu deltas and fold those into a global accumulate 2057 * to obtain the same result. See calc_load_fold_active(). 2058 * 2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2060 * across the machine, we assume 10 ticks is sufficient time for every 2061 * cpu to have completed this task. 2062 * 2063 * This places an upper-bound on the IRQ-off latency of the machine. Then 2064 * again, being late doesn't loose the delta, just wrecks the sample. 2065 * 2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2067 * this would add another cross-cpu cacheline miss and atomic operation 2068 * to the wakeup path. Instead we increment on whatever cpu the task ran 2069 * when it went into uninterruptible state and decrement on whatever cpu 2070 * did the wakeup. This means that only the sum of nr_uninterruptible over 2071 * all cpus yields the correct result. 2072 * 2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2074 */ 2075 2076 /* Variables and functions for calc_load */ 2077 static atomic_long_t calc_load_tasks; 2078 static unsigned long calc_load_update; 2079 unsigned long avenrun[3]; 2080 EXPORT_SYMBOL(avenrun); /* should be removed */ 2081 2082 /** 2083 * get_avenrun - get the load average array 2084 * @loads: pointer to dest load array 2085 * @offset: offset to add 2086 * @shift: shift count to shift the result left 2087 * 2088 * These values are estimates at best, so no need for locking. 2089 */ 2090 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2091 { 2092 loads[0] = (avenrun[0] + offset) << shift; 2093 loads[1] = (avenrun[1] + offset) << shift; 2094 loads[2] = (avenrun[2] + offset) << shift; 2095 } 2096 2097 static long calc_load_fold_active(struct rq *this_rq) 2098 { 2099 long nr_active, delta = 0; 2100 2101 nr_active = this_rq->nr_running; 2102 nr_active += (long) this_rq->nr_uninterruptible; 2103 2104 if (nr_active != this_rq->calc_load_active) { 2105 delta = nr_active - this_rq->calc_load_active; 2106 this_rq->calc_load_active = nr_active; 2107 } 2108 2109 return delta; 2110 } 2111 2112 /* 2113 * a1 = a0 * e + a * (1 - e) 2114 */ 2115 static unsigned long 2116 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2117 { 2118 load *= exp; 2119 load += active * (FIXED_1 - exp); 2120 load += 1UL << (FSHIFT - 1); 2121 return load >> FSHIFT; 2122 } 2123 2124 #ifdef CONFIG_NO_HZ 2125 /* 2126 * Handle NO_HZ for the global load-average. 2127 * 2128 * Since the above described distributed algorithm to compute the global 2129 * load-average relies on per-cpu sampling from the tick, it is affected by 2130 * NO_HZ. 2131 * 2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2134 * when we read the global state. 2135 * 2136 * Obviously reality has to ruin such a delightfully simple scheme: 2137 * 2138 * - When we go NO_HZ idle during the window, we can negate our sample 2139 * contribution, causing under-accounting. 2140 * 2141 * We avoid this by keeping two idle-delta counters and flipping them 2142 * when the window starts, thus separating old and new NO_HZ load. 2143 * 2144 * The only trick is the slight shift in index flip for read vs write. 2145 * 2146 * 0s 5s 10s 15s 2147 * +10 +10 +10 +10 2148 * |-|-----------|-|-----------|-|-----------|-| 2149 * r:0 0 1 1 0 0 1 1 0 2150 * w:0 1 1 0 0 1 1 0 0 2151 * 2152 * This ensures we'll fold the old idle contribution in this window while 2153 * accumlating the new one. 2154 * 2155 * - When we wake up from NO_HZ idle during the window, we push up our 2156 * contribution, since we effectively move our sample point to a known 2157 * busy state. 2158 * 2159 * This is solved by pushing the window forward, and thus skipping the 2160 * sample, for this cpu (effectively using the idle-delta for this cpu which 2161 * was in effect at the time the window opened). This also solves the issue 2162 * of having to deal with a cpu having been in NOHZ idle for multiple 2163 * LOAD_FREQ intervals. 2164 * 2165 * When making the ILB scale, we should try to pull this in as well. 2166 */ 2167 static atomic_long_t calc_load_idle[2]; 2168 static int calc_load_idx; 2169 2170 static inline int calc_load_write_idx(void) 2171 { 2172 int idx = calc_load_idx; 2173 2174 /* 2175 * See calc_global_nohz(), if we observe the new index, we also 2176 * need to observe the new update time. 2177 */ 2178 smp_rmb(); 2179 2180 /* 2181 * If the folding window started, make sure we start writing in the 2182 * next idle-delta. 2183 */ 2184 if (!time_before(jiffies, calc_load_update)) 2185 idx++; 2186 2187 return idx & 1; 2188 } 2189 2190 static inline int calc_load_read_idx(void) 2191 { 2192 return calc_load_idx & 1; 2193 } 2194 2195 void calc_load_enter_idle(void) 2196 { 2197 struct rq *this_rq = this_rq(); 2198 long delta; 2199 2200 /* 2201 * We're going into NOHZ mode, if there's any pending delta, fold it 2202 * into the pending idle delta. 2203 */ 2204 delta = calc_load_fold_active(this_rq); 2205 if (delta) { 2206 int idx = calc_load_write_idx(); 2207 atomic_long_add(delta, &calc_load_idle[idx]); 2208 } 2209 } 2210 2211 void calc_load_exit_idle(void) 2212 { 2213 struct rq *this_rq = this_rq(); 2214 2215 /* 2216 * If we're still before the sample window, we're done. 2217 */ 2218 if (time_before(jiffies, this_rq->calc_load_update)) 2219 return; 2220 2221 /* 2222 * We woke inside or after the sample window, this means we're already 2223 * accounted through the nohz accounting, so skip the entire deal and 2224 * sync up for the next window. 2225 */ 2226 this_rq->calc_load_update = calc_load_update; 2227 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2228 this_rq->calc_load_update += LOAD_FREQ; 2229 } 2230 2231 static long calc_load_fold_idle(void) 2232 { 2233 int idx = calc_load_read_idx(); 2234 long delta = 0; 2235 2236 if (atomic_long_read(&calc_load_idle[idx])) 2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2238 2239 return delta; 2240 } 2241 2242 /** 2243 * fixed_power_int - compute: x^n, in O(log n) time 2244 * 2245 * @x: base of the power 2246 * @frac_bits: fractional bits of @x 2247 * @n: power to raise @x to. 2248 * 2249 * By exploiting the relation between the definition of the natural power 2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2252 * (where: n_i \elem {0, 1}, the binary vector representing n), 2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2254 * of course trivially computable in O(log_2 n), the length of our binary 2255 * vector. 2256 */ 2257 static unsigned long 2258 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2259 { 2260 unsigned long result = 1UL << frac_bits; 2261 2262 if (n) for (;;) { 2263 if (n & 1) { 2264 result *= x; 2265 result += 1UL << (frac_bits - 1); 2266 result >>= frac_bits; 2267 } 2268 n >>= 1; 2269 if (!n) 2270 break; 2271 x *= x; 2272 x += 1UL << (frac_bits - 1); 2273 x >>= frac_bits; 2274 } 2275 2276 return result; 2277 } 2278 2279 /* 2280 * a1 = a0 * e + a * (1 - e) 2281 * 2282 * a2 = a1 * e + a * (1 - e) 2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2284 * = a0 * e^2 + a * (1 - e) * (1 + e) 2285 * 2286 * a3 = a2 * e + a * (1 - e) 2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2289 * 2290 * ... 2291 * 2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2294 * = a0 * e^n + a * (1 - e^n) 2295 * 2296 * [1] application of the geometric series: 2297 * 2298 * n 1 - x^(n+1) 2299 * S_n := \Sum x^i = ------------- 2300 * i=0 1 - x 2301 */ 2302 static unsigned long 2303 calc_load_n(unsigned long load, unsigned long exp, 2304 unsigned long active, unsigned int n) 2305 { 2306 2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2308 } 2309 2310 /* 2311 * NO_HZ can leave us missing all per-cpu ticks calling 2312 * calc_load_account_active(), but since an idle CPU folds its delta into 2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2314 * in the pending idle delta if our idle period crossed a load cycle boundary. 2315 * 2316 * Once we've updated the global active value, we need to apply the exponential 2317 * weights adjusted to the number of cycles missed. 2318 */ 2319 static void calc_global_nohz(void) 2320 { 2321 long delta, active, n; 2322 2323 if (!time_before(jiffies, calc_load_update + 10)) { 2324 /* 2325 * Catch-up, fold however many we are behind still 2326 */ 2327 delta = jiffies - calc_load_update - 10; 2328 n = 1 + (delta / LOAD_FREQ); 2329 2330 active = atomic_long_read(&calc_load_tasks); 2331 active = active > 0 ? active * FIXED_1 : 0; 2332 2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2336 2337 calc_load_update += n * LOAD_FREQ; 2338 } 2339 2340 /* 2341 * Flip the idle index... 2342 * 2343 * Make sure we first write the new time then flip the index, so that 2344 * calc_load_write_idx() will see the new time when it reads the new 2345 * index, this avoids a double flip messing things up. 2346 */ 2347 smp_wmb(); 2348 calc_load_idx++; 2349 } 2350 #else /* !CONFIG_NO_HZ */ 2351 2352 static inline long calc_load_fold_idle(void) { return 0; } 2353 static inline void calc_global_nohz(void) { } 2354 2355 #endif /* CONFIG_NO_HZ */ 2356 2357 /* 2358 * calc_load - update the avenrun load estimates 10 ticks after the 2359 * CPUs have updated calc_load_tasks. 2360 */ 2361 void calc_global_load(unsigned long ticks) 2362 { 2363 long active, delta; 2364 2365 if (time_before(jiffies, calc_load_update + 10)) 2366 return; 2367 2368 /* 2369 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2370 */ 2371 delta = calc_load_fold_idle(); 2372 if (delta) 2373 atomic_long_add(delta, &calc_load_tasks); 2374 2375 active = atomic_long_read(&calc_load_tasks); 2376 active = active > 0 ? active * FIXED_1 : 0; 2377 2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2381 2382 calc_load_update += LOAD_FREQ; 2383 2384 /* 2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2386 */ 2387 calc_global_nohz(); 2388 } 2389 2390 /* 2391 * Called from update_cpu_load() to periodically update this CPU's 2392 * active count. 2393 */ 2394 static void calc_load_account_active(struct rq *this_rq) 2395 { 2396 long delta; 2397 2398 if (time_before(jiffies, this_rq->calc_load_update)) 2399 return; 2400 2401 delta = calc_load_fold_active(this_rq); 2402 if (delta) 2403 atomic_long_add(delta, &calc_load_tasks); 2404 2405 this_rq->calc_load_update += LOAD_FREQ; 2406 } 2407 2408 /* 2409 * End of global load-average stuff 2410 */ 2411 2412 /* 2413 * The exact cpuload at various idx values, calculated at every tick would be 2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2415 * 2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2417 * on nth tick when cpu may be busy, then we have: 2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2420 * 2421 * decay_load_missed() below does efficient calculation of 2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2424 * 2425 * The calculation is approximated on a 128 point scale. 2426 * degrade_zero_ticks is the number of ticks after which load at any 2427 * particular idx is approximated to be zero. 2428 * degrade_factor is a precomputed table, a row for each load idx. 2429 * Each column corresponds to degradation factor for a power of two ticks, 2430 * based on 128 point scale. 2431 * Example: 2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2434 * 2435 * With this power of 2 load factors, we can degrade the load n times 2436 * by looking at 1 bits in n and doing as many mult/shift instead of 2437 * n mult/shifts needed by the exact degradation. 2438 */ 2439 #define DEGRADE_SHIFT 7 2440 static const unsigned char 2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2442 static const unsigned char 2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2444 {0, 0, 0, 0, 0, 0, 0, 0}, 2445 {64, 32, 8, 0, 0, 0, 0, 0}, 2446 {96, 72, 40, 12, 1, 0, 0}, 2447 {112, 98, 75, 43, 15, 1, 0}, 2448 {120, 112, 98, 76, 45, 16, 2} }; 2449 2450 /* 2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2452 * would be when CPU is idle and so we just decay the old load without 2453 * adding any new load. 2454 */ 2455 static unsigned long 2456 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2457 { 2458 int j = 0; 2459 2460 if (!missed_updates) 2461 return load; 2462 2463 if (missed_updates >= degrade_zero_ticks[idx]) 2464 return 0; 2465 2466 if (idx == 1) 2467 return load >> missed_updates; 2468 2469 while (missed_updates) { 2470 if (missed_updates % 2) 2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2472 2473 missed_updates >>= 1; 2474 j++; 2475 } 2476 return load; 2477 } 2478 2479 /* 2480 * Update rq->cpu_load[] statistics. This function is usually called every 2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2482 * every tick. We fix it up based on jiffies. 2483 */ 2484 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2485 unsigned long pending_updates) 2486 { 2487 int i, scale; 2488 2489 this_rq->nr_load_updates++; 2490 2491 /* Update our load: */ 2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2494 unsigned long old_load, new_load; 2495 2496 /* scale is effectively 1 << i now, and >> i divides by scale */ 2497 2498 old_load = this_rq->cpu_load[i]; 2499 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2500 new_load = this_load; 2501 /* 2502 * Round up the averaging division if load is increasing. This 2503 * prevents us from getting stuck on 9 if the load is 10, for 2504 * example. 2505 */ 2506 if (new_load > old_load) 2507 new_load += scale - 1; 2508 2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2510 } 2511 2512 sched_avg_update(this_rq); 2513 } 2514 2515 #ifdef CONFIG_NO_HZ 2516 /* 2517 * There is no sane way to deal with nohz on smp when using jiffies because the 2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2520 * 2521 * Therefore we cannot use the delta approach from the regular tick since that 2522 * would seriously skew the load calculation. However we'll make do for those 2523 * updates happening while idle (nohz_idle_balance) or coming out of idle 2524 * (tick_nohz_idle_exit). 2525 * 2526 * This means we might still be one tick off for nohz periods. 2527 */ 2528 2529 /* 2530 * Called from nohz_idle_balance() to update the load ratings before doing the 2531 * idle balance. 2532 */ 2533 void update_idle_cpu_load(struct rq *this_rq) 2534 { 2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2536 unsigned long load = this_rq->load.weight; 2537 unsigned long pending_updates; 2538 2539 /* 2540 * bail if there's load or we're actually up-to-date. 2541 */ 2542 if (load || curr_jiffies == this_rq->last_load_update_tick) 2543 return; 2544 2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2546 this_rq->last_load_update_tick = curr_jiffies; 2547 2548 __update_cpu_load(this_rq, load, pending_updates); 2549 } 2550 2551 /* 2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2553 */ 2554 void update_cpu_load_nohz(void) 2555 { 2556 struct rq *this_rq = this_rq(); 2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2558 unsigned long pending_updates; 2559 2560 if (curr_jiffies == this_rq->last_load_update_tick) 2561 return; 2562 2563 raw_spin_lock(&this_rq->lock); 2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2565 if (pending_updates) { 2566 this_rq->last_load_update_tick = curr_jiffies; 2567 /* 2568 * We were idle, this means load 0, the current load might be 2569 * !0 due to remote wakeups and the sort. 2570 */ 2571 __update_cpu_load(this_rq, 0, pending_updates); 2572 } 2573 raw_spin_unlock(&this_rq->lock); 2574 } 2575 #endif /* CONFIG_NO_HZ */ 2576 2577 /* 2578 * Called from scheduler_tick() 2579 */ 2580 static void update_cpu_load_active(struct rq *this_rq) 2581 { 2582 /* 2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2584 */ 2585 this_rq->last_load_update_tick = jiffies; 2586 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2587 2588 calc_load_account_active(this_rq); 2589 } 2590 2591 #ifdef CONFIG_SMP 2592 2593 /* 2594 * sched_exec - execve() is a valuable balancing opportunity, because at 2595 * this point the task has the smallest effective memory and cache footprint. 2596 */ 2597 void sched_exec(void) 2598 { 2599 struct task_struct *p = current; 2600 unsigned long flags; 2601 int dest_cpu; 2602 2603 raw_spin_lock_irqsave(&p->pi_lock, flags); 2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2605 if (dest_cpu == smp_processor_id()) 2606 goto unlock; 2607 2608 if (likely(cpu_active(dest_cpu))) { 2609 struct migration_arg arg = { p, dest_cpu }; 2610 2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2613 return; 2614 } 2615 unlock: 2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2617 } 2618 2619 #endif 2620 2621 DEFINE_PER_CPU(struct kernel_stat, kstat); 2622 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2623 2624 EXPORT_PER_CPU_SYMBOL(kstat); 2625 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2626 2627 /* 2628 * Return any ns on the sched_clock that have not yet been accounted in 2629 * @p in case that task is currently running. 2630 * 2631 * Called with task_rq_lock() held on @rq. 2632 */ 2633 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2634 { 2635 u64 ns = 0; 2636 2637 if (task_current(rq, p)) { 2638 update_rq_clock(rq); 2639 ns = rq->clock_task - p->se.exec_start; 2640 if ((s64)ns < 0) 2641 ns = 0; 2642 } 2643 2644 return ns; 2645 } 2646 2647 unsigned long long task_delta_exec(struct task_struct *p) 2648 { 2649 unsigned long flags; 2650 struct rq *rq; 2651 u64 ns = 0; 2652 2653 rq = task_rq_lock(p, &flags); 2654 ns = do_task_delta_exec(p, rq); 2655 task_rq_unlock(rq, p, &flags); 2656 2657 return ns; 2658 } 2659 2660 /* 2661 * Return accounted runtime for the task. 2662 * In case the task is currently running, return the runtime plus current's 2663 * pending runtime that have not been accounted yet. 2664 */ 2665 unsigned long long task_sched_runtime(struct task_struct *p) 2666 { 2667 unsigned long flags; 2668 struct rq *rq; 2669 u64 ns = 0; 2670 2671 rq = task_rq_lock(p, &flags); 2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2673 task_rq_unlock(rq, p, &flags); 2674 2675 return ns; 2676 } 2677 2678 /* 2679 * This function gets called by the timer code, with HZ frequency. 2680 * We call it with interrupts disabled. 2681 */ 2682 void scheduler_tick(void) 2683 { 2684 int cpu = smp_processor_id(); 2685 struct rq *rq = cpu_rq(cpu); 2686 struct task_struct *curr = rq->curr; 2687 2688 sched_clock_tick(); 2689 2690 raw_spin_lock(&rq->lock); 2691 update_rq_clock(rq); 2692 update_cpu_load_active(rq); 2693 curr->sched_class->task_tick(rq, curr, 0); 2694 raw_spin_unlock(&rq->lock); 2695 2696 perf_event_task_tick(); 2697 2698 #ifdef CONFIG_SMP 2699 rq->idle_balance = idle_cpu(cpu); 2700 trigger_load_balance(rq, cpu); 2701 #endif 2702 } 2703 2704 notrace unsigned long get_parent_ip(unsigned long addr) 2705 { 2706 if (in_lock_functions(addr)) { 2707 addr = CALLER_ADDR2; 2708 if (in_lock_functions(addr)) 2709 addr = CALLER_ADDR3; 2710 } 2711 return addr; 2712 } 2713 2714 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2715 defined(CONFIG_PREEMPT_TRACER)) 2716 2717 void __kprobes add_preempt_count(int val) 2718 { 2719 #ifdef CONFIG_DEBUG_PREEMPT 2720 /* 2721 * Underflow? 2722 */ 2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2724 return; 2725 #endif 2726 preempt_count() += val; 2727 #ifdef CONFIG_DEBUG_PREEMPT 2728 /* 2729 * Spinlock count overflowing soon? 2730 */ 2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2732 PREEMPT_MASK - 10); 2733 #endif 2734 if (preempt_count() == val) 2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2736 } 2737 EXPORT_SYMBOL(add_preempt_count); 2738 2739 void __kprobes sub_preempt_count(int val) 2740 { 2741 #ifdef CONFIG_DEBUG_PREEMPT 2742 /* 2743 * Underflow? 2744 */ 2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2746 return; 2747 /* 2748 * Is the spinlock portion underflowing? 2749 */ 2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2751 !(preempt_count() & PREEMPT_MASK))) 2752 return; 2753 #endif 2754 2755 if (preempt_count() == val) 2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2757 preempt_count() -= val; 2758 } 2759 EXPORT_SYMBOL(sub_preempt_count); 2760 2761 #endif 2762 2763 /* 2764 * Print scheduling while atomic bug: 2765 */ 2766 static noinline void __schedule_bug(struct task_struct *prev) 2767 { 2768 if (oops_in_progress) 2769 return; 2770 2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2772 prev->comm, prev->pid, preempt_count()); 2773 2774 debug_show_held_locks(prev); 2775 print_modules(); 2776 if (irqs_disabled()) 2777 print_irqtrace_events(prev); 2778 dump_stack(); 2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2780 } 2781 2782 /* 2783 * Various schedule()-time debugging checks and statistics: 2784 */ 2785 static inline void schedule_debug(struct task_struct *prev) 2786 { 2787 /* 2788 * Test if we are atomic. Since do_exit() needs to call into 2789 * schedule() atomically, we ignore that path for now. 2790 * Otherwise, whine if we are scheduling when we should not be. 2791 */ 2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2793 __schedule_bug(prev); 2794 rcu_sleep_check(); 2795 2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2797 2798 schedstat_inc(this_rq(), sched_count); 2799 } 2800 2801 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2802 { 2803 if (prev->on_rq || rq->skip_clock_update < 0) 2804 update_rq_clock(rq); 2805 prev->sched_class->put_prev_task(rq, prev); 2806 } 2807 2808 /* 2809 * Pick up the highest-prio task: 2810 */ 2811 static inline struct task_struct * 2812 pick_next_task(struct rq *rq) 2813 { 2814 const struct sched_class *class; 2815 struct task_struct *p; 2816 2817 /* 2818 * Optimization: we know that if all tasks are in 2819 * the fair class we can call that function directly: 2820 */ 2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2822 p = fair_sched_class.pick_next_task(rq); 2823 if (likely(p)) 2824 return p; 2825 } 2826 2827 for_each_class(class) { 2828 p = class->pick_next_task(rq); 2829 if (p) 2830 return p; 2831 } 2832 2833 BUG(); /* the idle class will always have a runnable task */ 2834 } 2835 2836 /* 2837 * __schedule() is the main scheduler function. 2838 * 2839 * The main means of driving the scheduler and thus entering this function are: 2840 * 2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2842 * 2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2844 * paths. For example, see arch/x86/entry_64.S. 2845 * 2846 * To drive preemption between tasks, the scheduler sets the flag in timer 2847 * interrupt handler scheduler_tick(). 2848 * 2849 * 3. Wakeups don't really cause entry into schedule(). They add a 2850 * task to the run-queue and that's it. 2851 * 2852 * Now, if the new task added to the run-queue preempts the current 2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2854 * called on the nearest possible occasion: 2855 * 2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2857 * 2858 * - in syscall or exception context, at the next outmost 2859 * preempt_enable(). (this might be as soon as the wake_up()'s 2860 * spin_unlock()!) 2861 * 2862 * - in IRQ context, return from interrupt-handler to 2863 * preemptible context 2864 * 2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2866 * then at the next: 2867 * 2868 * - cond_resched() call 2869 * - explicit schedule() call 2870 * - return from syscall or exception to user-space 2871 * - return from interrupt-handler to user-space 2872 */ 2873 static void __sched __schedule(void) 2874 { 2875 struct task_struct *prev, *next; 2876 unsigned long *switch_count; 2877 struct rq *rq; 2878 int cpu; 2879 2880 need_resched: 2881 preempt_disable(); 2882 cpu = smp_processor_id(); 2883 rq = cpu_rq(cpu); 2884 rcu_note_context_switch(cpu); 2885 prev = rq->curr; 2886 2887 schedule_debug(prev); 2888 2889 if (sched_feat(HRTICK)) 2890 hrtick_clear(rq); 2891 2892 raw_spin_lock_irq(&rq->lock); 2893 2894 switch_count = &prev->nivcsw; 2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2896 if (unlikely(signal_pending_state(prev->state, prev))) { 2897 prev->state = TASK_RUNNING; 2898 } else { 2899 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2900 prev->on_rq = 0; 2901 2902 /* 2903 * If a worker went to sleep, notify and ask workqueue 2904 * whether it wants to wake up a task to maintain 2905 * concurrency. 2906 */ 2907 if (prev->flags & PF_WQ_WORKER) { 2908 struct task_struct *to_wakeup; 2909 2910 to_wakeup = wq_worker_sleeping(prev, cpu); 2911 if (to_wakeup) 2912 try_to_wake_up_local(to_wakeup); 2913 } 2914 } 2915 switch_count = &prev->nvcsw; 2916 } 2917 2918 pre_schedule(rq, prev); 2919 2920 if (unlikely(!rq->nr_running)) 2921 idle_balance(cpu, rq); 2922 2923 put_prev_task(rq, prev); 2924 next = pick_next_task(rq); 2925 clear_tsk_need_resched(prev); 2926 rq->skip_clock_update = 0; 2927 2928 if (likely(prev != next)) { 2929 rq->nr_switches++; 2930 rq->curr = next; 2931 ++*switch_count; 2932 2933 context_switch(rq, prev, next); /* unlocks the rq */ 2934 /* 2935 * The context switch have flipped the stack from under us 2936 * and restored the local variables which were saved when 2937 * this task called schedule() in the past. prev == current 2938 * is still correct, but it can be moved to another cpu/rq. 2939 */ 2940 cpu = smp_processor_id(); 2941 rq = cpu_rq(cpu); 2942 } else 2943 raw_spin_unlock_irq(&rq->lock); 2944 2945 post_schedule(rq); 2946 2947 sched_preempt_enable_no_resched(); 2948 if (need_resched()) 2949 goto need_resched; 2950 } 2951 2952 static inline void sched_submit_work(struct task_struct *tsk) 2953 { 2954 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2955 return; 2956 /* 2957 * If we are going to sleep and we have plugged IO queued, 2958 * make sure to submit it to avoid deadlocks. 2959 */ 2960 if (blk_needs_flush_plug(tsk)) 2961 blk_schedule_flush_plug(tsk); 2962 } 2963 2964 asmlinkage void __sched schedule(void) 2965 { 2966 struct task_struct *tsk = current; 2967 2968 sched_submit_work(tsk); 2969 __schedule(); 2970 } 2971 EXPORT_SYMBOL(schedule); 2972 2973 #ifdef CONFIG_CONTEXT_TRACKING 2974 asmlinkage void __sched schedule_user(void) 2975 { 2976 /* 2977 * If we come here after a random call to set_need_resched(), 2978 * or we have been woken up remotely but the IPI has not yet arrived, 2979 * we haven't yet exited the RCU idle mode. Do it here manually until 2980 * we find a better solution. 2981 */ 2982 user_exit(); 2983 schedule(); 2984 user_enter(); 2985 } 2986 #endif 2987 2988 /** 2989 * schedule_preempt_disabled - called with preemption disabled 2990 * 2991 * Returns with preemption disabled. Note: preempt_count must be 1 2992 */ 2993 void __sched schedule_preempt_disabled(void) 2994 { 2995 sched_preempt_enable_no_resched(); 2996 schedule(); 2997 preempt_disable(); 2998 } 2999 3000 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3001 3002 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3003 { 3004 if (lock->owner != owner) 3005 return false; 3006 3007 /* 3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3009 * lock->owner still matches owner, if that fails, owner might 3010 * point to free()d memory, if it still matches, the rcu_read_lock() 3011 * ensures the memory stays valid. 3012 */ 3013 barrier(); 3014 3015 return owner->on_cpu; 3016 } 3017 3018 /* 3019 * Look out! "owner" is an entirely speculative pointer 3020 * access and not reliable. 3021 */ 3022 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3023 { 3024 if (!sched_feat(OWNER_SPIN)) 3025 return 0; 3026 3027 rcu_read_lock(); 3028 while (owner_running(lock, owner)) { 3029 if (need_resched()) 3030 break; 3031 3032 arch_mutex_cpu_relax(); 3033 } 3034 rcu_read_unlock(); 3035 3036 /* 3037 * We break out the loop above on need_resched() and when the 3038 * owner changed, which is a sign for heavy contention. Return 3039 * success only when lock->owner is NULL. 3040 */ 3041 return lock->owner == NULL; 3042 } 3043 #endif 3044 3045 #ifdef CONFIG_PREEMPT 3046 /* 3047 * this is the entry point to schedule() from in-kernel preemption 3048 * off of preempt_enable. Kernel preemptions off return from interrupt 3049 * occur there and call schedule directly. 3050 */ 3051 asmlinkage void __sched notrace preempt_schedule(void) 3052 { 3053 struct thread_info *ti = current_thread_info(); 3054 3055 /* 3056 * If there is a non-zero preempt_count or interrupts are disabled, 3057 * we do not want to preempt the current task. Just return.. 3058 */ 3059 if (likely(ti->preempt_count || irqs_disabled())) 3060 return; 3061 3062 do { 3063 add_preempt_count_notrace(PREEMPT_ACTIVE); 3064 __schedule(); 3065 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3066 3067 /* 3068 * Check again in case we missed a preemption opportunity 3069 * between schedule and now. 3070 */ 3071 barrier(); 3072 } while (need_resched()); 3073 } 3074 EXPORT_SYMBOL(preempt_schedule); 3075 3076 /* 3077 * this is the entry point to schedule() from kernel preemption 3078 * off of irq context. 3079 * Note, that this is called and return with irqs disabled. This will 3080 * protect us against recursive calling from irq. 3081 */ 3082 asmlinkage void __sched preempt_schedule_irq(void) 3083 { 3084 struct thread_info *ti = current_thread_info(); 3085 3086 /* Catch callers which need to be fixed */ 3087 BUG_ON(ti->preempt_count || !irqs_disabled()); 3088 3089 user_exit(); 3090 do { 3091 add_preempt_count(PREEMPT_ACTIVE); 3092 local_irq_enable(); 3093 __schedule(); 3094 local_irq_disable(); 3095 sub_preempt_count(PREEMPT_ACTIVE); 3096 3097 /* 3098 * Check again in case we missed a preemption opportunity 3099 * between schedule and now. 3100 */ 3101 barrier(); 3102 } while (need_resched()); 3103 } 3104 3105 #endif /* CONFIG_PREEMPT */ 3106 3107 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3108 void *key) 3109 { 3110 return try_to_wake_up(curr->private, mode, wake_flags); 3111 } 3112 EXPORT_SYMBOL(default_wake_function); 3113 3114 /* 3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3117 * number) then we wake all the non-exclusive tasks and one exclusive task. 3118 * 3119 * There are circumstances in which we can try to wake a task which has already 3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3121 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3122 */ 3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3124 int nr_exclusive, int wake_flags, void *key) 3125 { 3126 wait_queue_t *curr, *next; 3127 3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3129 unsigned flags = curr->flags; 3130 3131 if (curr->func(curr, mode, wake_flags, key) && 3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3133 break; 3134 } 3135 } 3136 3137 /** 3138 * __wake_up - wake up threads blocked on a waitqueue. 3139 * @q: the waitqueue 3140 * @mode: which threads 3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3142 * @key: is directly passed to the wakeup function 3143 * 3144 * It may be assumed that this function implies a write memory barrier before 3145 * changing the task state if and only if any tasks are woken up. 3146 */ 3147 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3148 int nr_exclusive, void *key) 3149 { 3150 unsigned long flags; 3151 3152 spin_lock_irqsave(&q->lock, flags); 3153 __wake_up_common(q, mode, nr_exclusive, 0, key); 3154 spin_unlock_irqrestore(&q->lock, flags); 3155 } 3156 EXPORT_SYMBOL(__wake_up); 3157 3158 /* 3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3160 */ 3161 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3162 { 3163 __wake_up_common(q, mode, nr, 0, NULL); 3164 } 3165 EXPORT_SYMBOL_GPL(__wake_up_locked); 3166 3167 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3168 { 3169 __wake_up_common(q, mode, 1, 0, key); 3170 } 3171 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3172 3173 /** 3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3175 * @q: the waitqueue 3176 * @mode: which threads 3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3178 * @key: opaque value to be passed to wakeup targets 3179 * 3180 * The sync wakeup differs that the waker knows that it will schedule 3181 * away soon, so while the target thread will be woken up, it will not 3182 * be migrated to another CPU - ie. the two threads are 'synchronized' 3183 * with each other. This can prevent needless bouncing between CPUs. 3184 * 3185 * On UP it can prevent extra preemption. 3186 * 3187 * It may be assumed that this function implies a write memory barrier before 3188 * changing the task state if and only if any tasks are woken up. 3189 */ 3190 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3191 int nr_exclusive, void *key) 3192 { 3193 unsigned long flags; 3194 int wake_flags = WF_SYNC; 3195 3196 if (unlikely(!q)) 3197 return; 3198 3199 if (unlikely(!nr_exclusive)) 3200 wake_flags = 0; 3201 3202 spin_lock_irqsave(&q->lock, flags); 3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3204 spin_unlock_irqrestore(&q->lock, flags); 3205 } 3206 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3207 3208 /* 3209 * __wake_up_sync - see __wake_up_sync_key() 3210 */ 3211 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3212 { 3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3214 } 3215 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3216 3217 /** 3218 * complete: - signals a single thread waiting on this completion 3219 * @x: holds the state of this particular completion 3220 * 3221 * This will wake up a single thread waiting on this completion. Threads will be 3222 * awakened in the same order in which they were queued. 3223 * 3224 * See also complete_all(), wait_for_completion() and related routines. 3225 * 3226 * It may be assumed that this function implies a write memory barrier before 3227 * changing the task state if and only if any tasks are woken up. 3228 */ 3229 void complete(struct completion *x) 3230 { 3231 unsigned long flags; 3232 3233 spin_lock_irqsave(&x->wait.lock, flags); 3234 x->done++; 3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3236 spin_unlock_irqrestore(&x->wait.lock, flags); 3237 } 3238 EXPORT_SYMBOL(complete); 3239 3240 /** 3241 * complete_all: - signals all threads waiting on this completion 3242 * @x: holds the state of this particular completion 3243 * 3244 * This will wake up all threads waiting on this particular completion event. 3245 * 3246 * It may be assumed that this function implies a write memory barrier before 3247 * changing the task state if and only if any tasks are woken up. 3248 */ 3249 void complete_all(struct completion *x) 3250 { 3251 unsigned long flags; 3252 3253 spin_lock_irqsave(&x->wait.lock, flags); 3254 x->done += UINT_MAX/2; 3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3256 spin_unlock_irqrestore(&x->wait.lock, flags); 3257 } 3258 EXPORT_SYMBOL(complete_all); 3259 3260 static inline long __sched 3261 do_wait_for_common(struct completion *x, 3262 long (*action)(long), long timeout, int state) 3263 { 3264 if (!x->done) { 3265 DECLARE_WAITQUEUE(wait, current); 3266 3267 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3268 do { 3269 if (signal_pending_state(state, current)) { 3270 timeout = -ERESTARTSYS; 3271 break; 3272 } 3273 __set_current_state(state); 3274 spin_unlock_irq(&x->wait.lock); 3275 timeout = action(timeout); 3276 spin_lock_irq(&x->wait.lock); 3277 } while (!x->done && timeout); 3278 __remove_wait_queue(&x->wait, &wait); 3279 if (!x->done) 3280 return timeout; 3281 } 3282 x->done--; 3283 return timeout ?: 1; 3284 } 3285 3286 static inline long __sched 3287 __wait_for_common(struct completion *x, 3288 long (*action)(long), long timeout, int state) 3289 { 3290 might_sleep(); 3291 3292 spin_lock_irq(&x->wait.lock); 3293 timeout = do_wait_for_common(x, action, timeout, state); 3294 spin_unlock_irq(&x->wait.lock); 3295 return timeout; 3296 } 3297 3298 static long __sched 3299 wait_for_common(struct completion *x, long timeout, int state) 3300 { 3301 return __wait_for_common(x, schedule_timeout, timeout, state); 3302 } 3303 3304 static long __sched 3305 wait_for_common_io(struct completion *x, long timeout, int state) 3306 { 3307 return __wait_for_common(x, io_schedule_timeout, timeout, state); 3308 } 3309 3310 /** 3311 * wait_for_completion: - waits for completion of a task 3312 * @x: holds the state of this particular completion 3313 * 3314 * This waits to be signaled for completion of a specific task. It is NOT 3315 * interruptible and there is no timeout. 3316 * 3317 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3318 * and interrupt capability. Also see complete(). 3319 */ 3320 void __sched wait_for_completion(struct completion *x) 3321 { 3322 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3323 } 3324 EXPORT_SYMBOL(wait_for_completion); 3325 3326 /** 3327 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3328 * @x: holds the state of this particular completion 3329 * @timeout: timeout value in jiffies 3330 * 3331 * This waits for either a completion of a specific task to be signaled or for a 3332 * specified timeout to expire. The timeout is in jiffies. It is not 3333 * interruptible. 3334 * 3335 * The return value is 0 if timed out, and positive (at least 1, or number of 3336 * jiffies left till timeout) if completed. 3337 */ 3338 unsigned long __sched 3339 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3340 { 3341 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3342 } 3343 EXPORT_SYMBOL(wait_for_completion_timeout); 3344 3345 /** 3346 * wait_for_completion_io: - waits for completion of a task 3347 * @x: holds the state of this particular completion 3348 * 3349 * This waits to be signaled for completion of a specific task. It is NOT 3350 * interruptible and there is no timeout. The caller is accounted as waiting 3351 * for IO. 3352 */ 3353 void __sched wait_for_completion_io(struct completion *x) 3354 { 3355 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3356 } 3357 EXPORT_SYMBOL(wait_for_completion_io); 3358 3359 /** 3360 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) 3361 * @x: holds the state of this particular completion 3362 * @timeout: timeout value in jiffies 3363 * 3364 * This waits for either a completion of a specific task to be signaled or for a 3365 * specified timeout to expire. The timeout is in jiffies. It is not 3366 * interruptible. The caller is accounted as waiting for IO. 3367 * 3368 * The return value is 0 if timed out, and positive (at least 1, or number of 3369 * jiffies left till timeout) if completed. 3370 */ 3371 unsigned long __sched 3372 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) 3373 { 3374 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); 3375 } 3376 EXPORT_SYMBOL(wait_for_completion_io_timeout); 3377 3378 /** 3379 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3380 * @x: holds the state of this particular completion 3381 * 3382 * This waits for completion of a specific task to be signaled. It is 3383 * interruptible. 3384 * 3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3386 */ 3387 int __sched wait_for_completion_interruptible(struct completion *x) 3388 { 3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3390 if (t == -ERESTARTSYS) 3391 return t; 3392 return 0; 3393 } 3394 EXPORT_SYMBOL(wait_for_completion_interruptible); 3395 3396 /** 3397 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3398 * @x: holds the state of this particular completion 3399 * @timeout: timeout value in jiffies 3400 * 3401 * This waits for either a completion of a specific task to be signaled or for a 3402 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3403 * 3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3405 * positive (at least 1, or number of jiffies left till timeout) if completed. 3406 */ 3407 long __sched 3408 wait_for_completion_interruptible_timeout(struct completion *x, 3409 unsigned long timeout) 3410 { 3411 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3412 } 3413 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3414 3415 /** 3416 * wait_for_completion_killable: - waits for completion of a task (killable) 3417 * @x: holds the state of this particular completion 3418 * 3419 * This waits to be signaled for completion of a specific task. It can be 3420 * interrupted by a kill signal. 3421 * 3422 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3423 */ 3424 int __sched wait_for_completion_killable(struct completion *x) 3425 { 3426 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3427 if (t == -ERESTARTSYS) 3428 return t; 3429 return 0; 3430 } 3431 EXPORT_SYMBOL(wait_for_completion_killable); 3432 3433 /** 3434 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3435 * @x: holds the state of this particular completion 3436 * @timeout: timeout value in jiffies 3437 * 3438 * This waits for either a completion of a specific task to be 3439 * signaled or for a specified timeout to expire. It can be 3440 * interrupted by a kill signal. The timeout is in jiffies. 3441 * 3442 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3443 * positive (at least 1, or number of jiffies left till timeout) if completed. 3444 */ 3445 long __sched 3446 wait_for_completion_killable_timeout(struct completion *x, 3447 unsigned long timeout) 3448 { 3449 return wait_for_common(x, timeout, TASK_KILLABLE); 3450 } 3451 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3452 3453 /** 3454 * try_wait_for_completion - try to decrement a completion without blocking 3455 * @x: completion structure 3456 * 3457 * Returns: 0 if a decrement cannot be done without blocking 3458 * 1 if a decrement succeeded. 3459 * 3460 * If a completion is being used as a counting completion, 3461 * attempt to decrement the counter without blocking. This 3462 * enables us to avoid waiting if the resource the completion 3463 * is protecting is not available. 3464 */ 3465 bool try_wait_for_completion(struct completion *x) 3466 { 3467 unsigned long flags; 3468 int ret = 1; 3469 3470 spin_lock_irqsave(&x->wait.lock, flags); 3471 if (!x->done) 3472 ret = 0; 3473 else 3474 x->done--; 3475 spin_unlock_irqrestore(&x->wait.lock, flags); 3476 return ret; 3477 } 3478 EXPORT_SYMBOL(try_wait_for_completion); 3479 3480 /** 3481 * completion_done - Test to see if a completion has any waiters 3482 * @x: completion structure 3483 * 3484 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3485 * 1 if there are no waiters. 3486 * 3487 */ 3488 bool completion_done(struct completion *x) 3489 { 3490 unsigned long flags; 3491 int ret = 1; 3492 3493 spin_lock_irqsave(&x->wait.lock, flags); 3494 if (!x->done) 3495 ret = 0; 3496 spin_unlock_irqrestore(&x->wait.lock, flags); 3497 return ret; 3498 } 3499 EXPORT_SYMBOL(completion_done); 3500 3501 static long __sched 3502 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3503 { 3504 unsigned long flags; 3505 wait_queue_t wait; 3506 3507 init_waitqueue_entry(&wait, current); 3508 3509 __set_current_state(state); 3510 3511 spin_lock_irqsave(&q->lock, flags); 3512 __add_wait_queue(q, &wait); 3513 spin_unlock(&q->lock); 3514 timeout = schedule_timeout(timeout); 3515 spin_lock_irq(&q->lock); 3516 __remove_wait_queue(q, &wait); 3517 spin_unlock_irqrestore(&q->lock, flags); 3518 3519 return timeout; 3520 } 3521 3522 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3523 { 3524 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3525 } 3526 EXPORT_SYMBOL(interruptible_sleep_on); 3527 3528 long __sched 3529 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3530 { 3531 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3532 } 3533 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3534 3535 void __sched sleep_on(wait_queue_head_t *q) 3536 { 3537 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3538 } 3539 EXPORT_SYMBOL(sleep_on); 3540 3541 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3542 { 3543 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3544 } 3545 EXPORT_SYMBOL(sleep_on_timeout); 3546 3547 #ifdef CONFIG_RT_MUTEXES 3548 3549 /* 3550 * rt_mutex_setprio - set the current priority of a task 3551 * @p: task 3552 * @prio: prio value (kernel-internal form) 3553 * 3554 * This function changes the 'effective' priority of a task. It does 3555 * not touch ->normal_prio like __setscheduler(). 3556 * 3557 * Used by the rt_mutex code to implement priority inheritance logic. 3558 */ 3559 void rt_mutex_setprio(struct task_struct *p, int prio) 3560 { 3561 int oldprio, on_rq, running; 3562 struct rq *rq; 3563 const struct sched_class *prev_class; 3564 3565 BUG_ON(prio < 0 || prio > MAX_PRIO); 3566 3567 rq = __task_rq_lock(p); 3568 3569 /* 3570 * Idle task boosting is a nono in general. There is one 3571 * exception, when PREEMPT_RT and NOHZ is active: 3572 * 3573 * The idle task calls get_next_timer_interrupt() and holds 3574 * the timer wheel base->lock on the CPU and another CPU wants 3575 * to access the timer (probably to cancel it). We can safely 3576 * ignore the boosting request, as the idle CPU runs this code 3577 * with interrupts disabled and will complete the lock 3578 * protected section without being interrupted. So there is no 3579 * real need to boost. 3580 */ 3581 if (unlikely(p == rq->idle)) { 3582 WARN_ON(p != rq->curr); 3583 WARN_ON(p->pi_blocked_on); 3584 goto out_unlock; 3585 } 3586 3587 trace_sched_pi_setprio(p, prio); 3588 oldprio = p->prio; 3589 prev_class = p->sched_class; 3590 on_rq = p->on_rq; 3591 running = task_current(rq, p); 3592 if (on_rq) 3593 dequeue_task(rq, p, 0); 3594 if (running) 3595 p->sched_class->put_prev_task(rq, p); 3596 3597 if (rt_prio(prio)) 3598 p->sched_class = &rt_sched_class; 3599 else 3600 p->sched_class = &fair_sched_class; 3601 3602 p->prio = prio; 3603 3604 if (running) 3605 p->sched_class->set_curr_task(rq); 3606 if (on_rq) 3607 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3608 3609 check_class_changed(rq, p, prev_class, oldprio); 3610 out_unlock: 3611 __task_rq_unlock(rq); 3612 } 3613 #endif 3614 void set_user_nice(struct task_struct *p, long nice) 3615 { 3616 int old_prio, delta, on_rq; 3617 unsigned long flags; 3618 struct rq *rq; 3619 3620 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3621 return; 3622 /* 3623 * We have to be careful, if called from sys_setpriority(), 3624 * the task might be in the middle of scheduling on another CPU. 3625 */ 3626 rq = task_rq_lock(p, &flags); 3627 /* 3628 * The RT priorities are set via sched_setscheduler(), but we still 3629 * allow the 'normal' nice value to be set - but as expected 3630 * it wont have any effect on scheduling until the task is 3631 * SCHED_FIFO/SCHED_RR: 3632 */ 3633 if (task_has_rt_policy(p)) { 3634 p->static_prio = NICE_TO_PRIO(nice); 3635 goto out_unlock; 3636 } 3637 on_rq = p->on_rq; 3638 if (on_rq) 3639 dequeue_task(rq, p, 0); 3640 3641 p->static_prio = NICE_TO_PRIO(nice); 3642 set_load_weight(p); 3643 old_prio = p->prio; 3644 p->prio = effective_prio(p); 3645 delta = p->prio - old_prio; 3646 3647 if (on_rq) { 3648 enqueue_task(rq, p, 0); 3649 /* 3650 * If the task increased its priority or is running and 3651 * lowered its priority, then reschedule its CPU: 3652 */ 3653 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3654 resched_task(rq->curr); 3655 } 3656 out_unlock: 3657 task_rq_unlock(rq, p, &flags); 3658 } 3659 EXPORT_SYMBOL(set_user_nice); 3660 3661 /* 3662 * can_nice - check if a task can reduce its nice value 3663 * @p: task 3664 * @nice: nice value 3665 */ 3666 int can_nice(const struct task_struct *p, const int nice) 3667 { 3668 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3669 int nice_rlim = 20 - nice; 3670 3671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3672 capable(CAP_SYS_NICE)); 3673 } 3674 3675 #ifdef __ARCH_WANT_SYS_NICE 3676 3677 /* 3678 * sys_nice - change the priority of the current process. 3679 * @increment: priority increment 3680 * 3681 * sys_setpriority is a more generic, but much slower function that 3682 * does similar things. 3683 */ 3684 SYSCALL_DEFINE1(nice, int, increment) 3685 { 3686 long nice, retval; 3687 3688 /* 3689 * Setpriority might change our priority at the same moment. 3690 * We don't have to worry. Conceptually one call occurs first 3691 * and we have a single winner. 3692 */ 3693 if (increment < -40) 3694 increment = -40; 3695 if (increment > 40) 3696 increment = 40; 3697 3698 nice = TASK_NICE(current) + increment; 3699 if (nice < -20) 3700 nice = -20; 3701 if (nice > 19) 3702 nice = 19; 3703 3704 if (increment < 0 && !can_nice(current, nice)) 3705 return -EPERM; 3706 3707 retval = security_task_setnice(current, nice); 3708 if (retval) 3709 return retval; 3710 3711 set_user_nice(current, nice); 3712 return 0; 3713 } 3714 3715 #endif 3716 3717 /** 3718 * task_prio - return the priority value of a given task. 3719 * @p: the task in question. 3720 * 3721 * This is the priority value as seen by users in /proc. 3722 * RT tasks are offset by -200. Normal tasks are centered 3723 * around 0, value goes from -16 to +15. 3724 */ 3725 int task_prio(const struct task_struct *p) 3726 { 3727 return p->prio - MAX_RT_PRIO; 3728 } 3729 3730 /** 3731 * task_nice - return the nice value of a given task. 3732 * @p: the task in question. 3733 */ 3734 int task_nice(const struct task_struct *p) 3735 { 3736 return TASK_NICE(p); 3737 } 3738 EXPORT_SYMBOL(task_nice); 3739 3740 /** 3741 * idle_cpu - is a given cpu idle currently? 3742 * @cpu: the processor in question. 3743 */ 3744 int idle_cpu(int cpu) 3745 { 3746 struct rq *rq = cpu_rq(cpu); 3747 3748 if (rq->curr != rq->idle) 3749 return 0; 3750 3751 if (rq->nr_running) 3752 return 0; 3753 3754 #ifdef CONFIG_SMP 3755 if (!llist_empty(&rq->wake_list)) 3756 return 0; 3757 #endif 3758 3759 return 1; 3760 } 3761 3762 /** 3763 * idle_task - return the idle task for a given cpu. 3764 * @cpu: the processor in question. 3765 */ 3766 struct task_struct *idle_task(int cpu) 3767 { 3768 return cpu_rq(cpu)->idle; 3769 } 3770 3771 /** 3772 * find_process_by_pid - find a process with a matching PID value. 3773 * @pid: the pid in question. 3774 */ 3775 static struct task_struct *find_process_by_pid(pid_t pid) 3776 { 3777 return pid ? find_task_by_vpid(pid) : current; 3778 } 3779 3780 /* Actually do priority change: must hold rq lock. */ 3781 static void 3782 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3783 { 3784 p->policy = policy; 3785 p->rt_priority = prio; 3786 p->normal_prio = normal_prio(p); 3787 /* we are holding p->pi_lock already */ 3788 p->prio = rt_mutex_getprio(p); 3789 if (rt_prio(p->prio)) 3790 p->sched_class = &rt_sched_class; 3791 else 3792 p->sched_class = &fair_sched_class; 3793 set_load_weight(p); 3794 } 3795 3796 /* 3797 * check the target process has a UID that matches the current process's 3798 */ 3799 static bool check_same_owner(struct task_struct *p) 3800 { 3801 const struct cred *cred = current_cred(), *pcred; 3802 bool match; 3803 3804 rcu_read_lock(); 3805 pcred = __task_cred(p); 3806 match = (uid_eq(cred->euid, pcred->euid) || 3807 uid_eq(cred->euid, pcred->uid)); 3808 rcu_read_unlock(); 3809 return match; 3810 } 3811 3812 static int __sched_setscheduler(struct task_struct *p, int policy, 3813 const struct sched_param *param, bool user) 3814 { 3815 int retval, oldprio, oldpolicy = -1, on_rq, running; 3816 unsigned long flags; 3817 const struct sched_class *prev_class; 3818 struct rq *rq; 3819 int reset_on_fork; 3820 3821 /* may grab non-irq protected spin_locks */ 3822 BUG_ON(in_interrupt()); 3823 recheck: 3824 /* double check policy once rq lock held */ 3825 if (policy < 0) { 3826 reset_on_fork = p->sched_reset_on_fork; 3827 policy = oldpolicy = p->policy; 3828 } else { 3829 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3830 policy &= ~SCHED_RESET_ON_FORK; 3831 3832 if (policy != SCHED_FIFO && policy != SCHED_RR && 3833 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3834 policy != SCHED_IDLE) 3835 return -EINVAL; 3836 } 3837 3838 /* 3839 * Valid priorities for SCHED_FIFO and SCHED_RR are 3840 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3841 * SCHED_BATCH and SCHED_IDLE is 0. 3842 */ 3843 if (param->sched_priority < 0 || 3844 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3845 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3846 return -EINVAL; 3847 if (rt_policy(policy) != (param->sched_priority != 0)) 3848 return -EINVAL; 3849 3850 /* 3851 * Allow unprivileged RT tasks to decrease priority: 3852 */ 3853 if (user && !capable(CAP_SYS_NICE)) { 3854 if (rt_policy(policy)) { 3855 unsigned long rlim_rtprio = 3856 task_rlimit(p, RLIMIT_RTPRIO); 3857 3858 /* can't set/change the rt policy */ 3859 if (policy != p->policy && !rlim_rtprio) 3860 return -EPERM; 3861 3862 /* can't increase priority */ 3863 if (param->sched_priority > p->rt_priority && 3864 param->sched_priority > rlim_rtprio) 3865 return -EPERM; 3866 } 3867 3868 /* 3869 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3870 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3871 */ 3872 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3873 if (!can_nice(p, TASK_NICE(p))) 3874 return -EPERM; 3875 } 3876 3877 /* can't change other user's priorities */ 3878 if (!check_same_owner(p)) 3879 return -EPERM; 3880 3881 /* Normal users shall not reset the sched_reset_on_fork flag */ 3882 if (p->sched_reset_on_fork && !reset_on_fork) 3883 return -EPERM; 3884 } 3885 3886 if (user) { 3887 retval = security_task_setscheduler(p); 3888 if (retval) 3889 return retval; 3890 } 3891 3892 /* 3893 * make sure no PI-waiters arrive (or leave) while we are 3894 * changing the priority of the task: 3895 * 3896 * To be able to change p->policy safely, the appropriate 3897 * runqueue lock must be held. 3898 */ 3899 rq = task_rq_lock(p, &flags); 3900 3901 /* 3902 * Changing the policy of the stop threads its a very bad idea 3903 */ 3904 if (p == rq->stop) { 3905 task_rq_unlock(rq, p, &flags); 3906 return -EINVAL; 3907 } 3908 3909 /* 3910 * If not changing anything there's no need to proceed further: 3911 */ 3912 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3913 param->sched_priority == p->rt_priority))) { 3914 task_rq_unlock(rq, p, &flags); 3915 return 0; 3916 } 3917 3918 #ifdef CONFIG_RT_GROUP_SCHED 3919 if (user) { 3920 /* 3921 * Do not allow realtime tasks into groups that have no runtime 3922 * assigned. 3923 */ 3924 if (rt_bandwidth_enabled() && rt_policy(policy) && 3925 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3926 !task_group_is_autogroup(task_group(p))) { 3927 task_rq_unlock(rq, p, &flags); 3928 return -EPERM; 3929 } 3930 } 3931 #endif 3932 3933 /* recheck policy now with rq lock held */ 3934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3935 policy = oldpolicy = -1; 3936 task_rq_unlock(rq, p, &flags); 3937 goto recheck; 3938 } 3939 on_rq = p->on_rq; 3940 running = task_current(rq, p); 3941 if (on_rq) 3942 dequeue_task(rq, p, 0); 3943 if (running) 3944 p->sched_class->put_prev_task(rq, p); 3945 3946 p->sched_reset_on_fork = reset_on_fork; 3947 3948 oldprio = p->prio; 3949 prev_class = p->sched_class; 3950 __setscheduler(rq, p, policy, param->sched_priority); 3951 3952 if (running) 3953 p->sched_class->set_curr_task(rq); 3954 if (on_rq) 3955 enqueue_task(rq, p, 0); 3956 3957 check_class_changed(rq, p, prev_class, oldprio); 3958 task_rq_unlock(rq, p, &flags); 3959 3960 rt_mutex_adjust_pi(p); 3961 3962 return 0; 3963 } 3964 3965 /** 3966 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3967 * @p: the task in question. 3968 * @policy: new policy. 3969 * @param: structure containing the new RT priority. 3970 * 3971 * NOTE that the task may be already dead. 3972 */ 3973 int sched_setscheduler(struct task_struct *p, int policy, 3974 const struct sched_param *param) 3975 { 3976 return __sched_setscheduler(p, policy, param, true); 3977 } 3978 EXPORT_SYMBOL_GPL(sched_setscheduler); 3979 3980 /** 3981 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3982 * @p: the task in question. 3983 * @policy: new policy. 3984 * @param: structure containing the new RT priority. 3985 * 3986 * Just like sched_setscheduler, only don't bother checking if the 3987 * current context has permission. For example, this is needed in 3988 * stop_machine(): we create temporary high priority worker threads, 3989 * but our caller might not have that capability. 3990 */ 3991 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3992 const struct sched_param *param) 3993 { 3994 return __sched_setscheduler(p, policy, param, false); 3995 } 3996 3997 static int 3998 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3999 { 4000 struct sched_param lparam; 4001 struct task_struct *p; 4002 int retval; 4003 4004 if (!param || pid < 0) 4005 return -EINVAL; 4006 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4007 return -EFAULT; 4008 4009 rcu_read_lock(); 4010 retval = -ESRCH; 4011 p = find_process_by_pid(pid); 4012 if (p != NULL) 4013 retval = sched_setscheduler(p, policy, &lparam); 4014 rcu_read_unlock(); 4015 4016 return retval; 4017 } 4018 4019 /** 4020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4021 * @pid: the pid in question. 4022 * @policy: new policy. 4023 * @param: structure containing the new RT priority. 4024 */ 4025 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4026 struct sched_param __user *, param) 4027 { 4028 /* negative values for policy are not valid */ 4029 if (policy < 0) 4030 return -EINVAL; 4031 4032 return do_sched_setscheduler(pid, policy, param); 4033 } 4034 4035 /** 4036 * sys_sched_setparam - set/change the RT priority of a thread 4037 * @pid: the pid in question. 4038 * @param: structure containing the new RT priority. 4039 */ 4040 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4041 { 4042 return do_sched_setscheduler(pid, -1, param); 4043 } 4044 4045 /** 4046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4047 * @pid: the pid in question. 4048 */ 4049 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4050 { 4051 struct task_struct *p; 4052 int retval; 4053 4054 if (pid < 0) 4055 return -EINVAL; 4056 4057 retval = -ESRCH; 4058 rcu_read_lock(); 4059 p = find_process_by_pid(pid); 4060 if (p) { 4061 retval = security_task_getscheduler(p); 4062 if (!retval) 4063 retval = p->policy 4064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4065 } 4066 rcu_read_unlock(); 4067 return retval; 4068 } 4069 4070 /** 4071 * sys_sched_getparam - get the RT priority of a thread 4072 * @pid: the pid in question. 4073 * @param: structure containing the RT priority. 4074 */ 4075 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4076 { 4077 struct sched_param lp; 4078 struct task_struct *p; 4079 int retval; 4080 4081 if (!param || pid < 0) 4082 return -EINVAL; 4083 4084 rcu_read_lock(); 4085 p = find_process_by_pid(pid); 4086 retval = -ESRCH; 4087 if (!p) 4088 goto out_unlock; 4089 4090 retval = security_task_getscheduler(p); 4091 if (retval) 4092 goto out_unlock; 4093 4094 lp.sched_priority = p->rt_priority; 4095 rcu_read_unlock(); 4096 4097 /* 4098 * This one might sleep, we cannot do it with a spinlock held ... 4099 */ 4100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4101 4102 return retval; 4103 4104 out_unlock: 4105 rcu_read_unlock(); 4106 return retval; 4107 } 4108 4109 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4110 { 4111 cpumask_var_t cpus_allowed, new_mask; 4112 struct task_struct *p; 4113 int retval; 4114 4115 get_online_cpus(); 4116 rcu_read_lock(); 4117 4118 p = find_process_by_pid(pid); 4119 if (!p) { 4120 rcu_read_unlock(); 4121 put_online_cpus(); 4122 return -ESRCH; 4123 } 4124 4125 /* Prevent p going away */ 4126 get_task_struct(p); 4127 rcu_read_unlock(); 4128 4129 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4130 retval = -ENOMEM; 4131 goto out_put_task; 4132 } 4133 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4134 retval = -ENOMEM; 4135 goto out_free_cpus_allowed; 4136 } 4137 retval = -EPERM; 4138 if (!check_same_owner(p)) { 4139 rcu_read_lock(); 4140 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4141 rcu_read_unlock(); 4142 goto out_unlock; 4143 } 4144 rcu_read_unlock(); 4145 } 4146 4147 retval = security_task_setscheduler(p); 4148 if (retval) 4149 goto out_unlock; 4150 4151 cpuset_cpus_allowed(p, cpus_allowed); 4152 cpumask_and(new_mask, in_mask, cpus_allowed); 4153 again: 4154 retval = set_cpus_allowed_ptr(p, new_mask); 4155 4156 if (!retval) { 4157 cpuset_cpus_allowed(p, cpus_allowed); 4158 if (!cpumask_subset(new_mask, cpus_allowed)) { 4159 /* 4160 * We must have raced with a concurrent cpuset 4161 * update. Just reset the cpus_allowed to the 4162 * cpuset's cpus_allowed 4163 */ 4164 cpumask_copy(new_mask, cpus_allowed); 4165 goto again; 4166 } 4167 } 4168 out_unlock: 4169 free_cpumask_var(new_mask); 4170 out_free_cpus_allowed: 4171 free_cpumask_var(cpus_allowed); 4172 out_put_task: 4173 put_task_struct(p); 4174 put_online_cpus(); 4175 return retval; 4176 } 4177 4178 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4179 struct cpumask *new_mask) 4180 { 4181 if (len < cpumask_size()) 4182 cpumask_clear(new_mask); 4183 else if (len > cpumask_size()) 4184 len = cpumask_size(); 4185 4186 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4187 } 4188 4189 /** 4190 * sys_sched_setaffinity - set the cpu affinity of a process 4191 * @pid: pid of the process 4192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4193 * @user_mask_ptr: user-space pointer to the new cpu mask 4194 */ 4195 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4196 unsigned long __user *, user_mask_ptr) 4197 { 4198 cpumask_var_t new_mask; 4199 int retval; 4200 4201 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4202 return -ENOMEM; 4203 4204 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4205 if (retval == 0) 4206 retval = sched_setaffinity(pid, new_mask); 4207 free_cpumask_var(new_mask); 4208 return retval; 4209 } 4210 4211 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4212 { 4213 struct task_struct *p; 4214 unsigned long flags; 4215 int retval; 4216 4217 get_online_cpus(); 4218 rcu_read_lock(); 4219 4220 retval = -ESRCH; 4221 p = find_process_by_pid(pid); 4222 if (!p) 4223 goto out_unlock; 4224 4225 retval = security_task_getscheduler(p); 4226 if (retval) 4227 goto out_unlock; 4228 4229 raw_spin_lock_irqsave(&p->pi_lock, flags); 4230 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4231 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4232 4233 out_unlock: 4234 rcu_read_unlock(); 4235 put_online_cpus(); 4236 4237 return retval; 4238 } 4239 4240 /** 4241 * sys_sched_getaffinity - get the cpu affinity of a process 4242 * @pid: pid of the process 4243 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4244 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4245 */ 4246 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4247 unsigned long __user *, user_mask_ptr) 4248 { 4249 int ret; 4250 cpumask_var_t mask; 4251 4252 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4253 return -EINVAL; 4254 if (len & (sizeof(unsigned long)-1)) 4255 return -EINVAL; 4256 4257 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4258 return -ENOMEM; 4259 4260 ret = sched_getaffinity(pid, mask); 4261 if (ret == 0) { 4262 size_t retlen = min_t(size_t, len, cpumask_size()); 4263 4264 if (copy_to_user(user_mask_ptr, mask, retlen)) 4265 ret = -EFAULT; 4266 else 4267 ret = retlen; 4268 } 4269 free_cpumask_var(mask); 4270 4271 return ret; 4272 } 4273 4274 /** 4275 * sys_sched_yield - yield the current processor to other threads. 4276 * 4277 * This function yields the current CPU to other tasks. If there are no 4278 * other threads running on this CPU then this function will return. 4279 */ 4280 SYSCALL_DEFINE0(sched_yield) 4281 { 4282 struct rq *rq = this_rq_lock(); 4283 4284 schedstat_inc(rq, yld_count); 4285 current->sched_class->yield_task(rq); 4286 4287 /* 4288 * Since we are going to call schedule() anyway, there's 4289 * no need to preempt or enable interrupts: 4290 */ 4291 __release(rq->lock); 4292 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4293 do_raw_spin_unlock(&rq->lock); 4294 sched_preempt_enable_no_resched(); 4295 4296 schedule(); 4297 4298 return 0; 4299 } 4300 4301 static inline int should_resched(void) 4302 { 4303 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4304 } 4305 4306 static void __cond_resched(void) 4307 { 4308 add_preempt_count(PREEMPT_ACTIVE); 4309 __schedule(); 4310 sub_preempt_count(PREEMPT_ACTIVE); 4311 } 4312 4313 int __sched _cond_resched(void) 4314 { 4315 if (should_resched()) { 4316 __cond_resched(); 4317 return 1; 4318 } 4319 return 0; 4320 } 4321 EXPORT_SYMBOL(_cond_resched); 4322 4323 /* 4324 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4325 * call schedule, and on return reacquire the lock. 4326 * 4327 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4328 * operations here to prevent schedule() from being called twice (once via 4329 * spin_unlock(), once by hand). 4330 */ 4331 int __cond_resched_lock(spinlock_t *lock) 4332 { 4333 int resched = should_resched(); 4334 int ret = 0; 4335 4336 lockdep_assert_held(lock); 4337 4338 if (spin_needbreak(lock) || resched) { 4339 spin_unlock(lock); 4340 if (resched) 4341 __cond_resched(); 4342 else 4343 cpu_relax(); 4344 ret = 1; 4345 spin_lock(lock); 4346 } 4347 return ret; 4348 } 4349 EXPORT_SYMBOL(__cond_resched_lock); 4350 4351 int __sched __cond_resched_softirq(void) 4352 { 4353 BUG_ON(!in_softirq()); 4354 4355 if (should_resched()) { 4356 local_bh_enable(); 4357 __cond_resched(); 4358 local_bh_disable(); 4359 return 1; 4360 } 4361 return 0; 4362 } 4363 EXPORT_SYMBOL(__cond_resched_softirq); 4364 4365 /** 4366 * yield - yield the current processor to other threads. 4367 * 4368 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4369 * 4370 * The scheduler is at all times free to pick the calling task as the most 4371 * eligible task to run, if removing the yield() call from your code breaks 4372 * it, its already broken. 4373 * 4374 * Typical broken usage is: 4375 * 4376 * while (!event) 4377 * yield(); 4378 * 4379 * where one assumes that yield() will let 'the other' process run that will 4380 * make event true. If the current task is a SCHED_FIFO task that will never 4381 * happen. Never use yield() as a progress guarantee!! 4382 * 4383 * If you want to use yield() to wait for something, use wait_event(). 4384 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4385 * If you still want to use yield(), do not! 4386 */ 4387 void __sched yield(void) 4388 { 4389 set_current_state(TASK_RUNNING); 4390 sys_sched_yield(); 4391 } 4392 EXPORT_SYMBOL(yield); 4393 4394 /** 4395 * yield_to - yield the current processor to another thread in 4396 * your thread group, or accelerate that thread toward the 4397 * processor it's on. 4398 * @p: target task 4399 * @preempt: whether task preemption is allowed or not 4400 * 4401 * It's the caller's job to ensure that the target task struct 4402 * can't go away on us before we can do any checks. 4403 * 4404 * Returns: 4405 * true (>0) if we indeed boosted the target task. 4406 * false (0) if we failed to boost the target. 4407 * -ESRCH if there's no task to yield to. 4408 */ 4409 bool __sched yield_to(struct task_struct *p, bool preempt) 4410 { 4411 struct task_struct *curr = current; 4412 struct rq *rq, *p_rq; 4413 unsigned long flags; 4414 int yielded = 0; 4415 4416 local_irq_save(flags); 4417 rq = this_rq(); 4418 4419 again: 4420 p_rq = task_rq(p); 4421 /* 4422 * If we're the only runnable task on the rq and target rq also 4423 * has only one task, there's absolutely no point in yielding. 4424 */ 4425 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4426 yielded = -ESRCH; 4427 goto out_irq; 4428 } 4429 4430 double_rq_lock(rq, p_rq); 4431 while (task_rq(p) != p_rq) { 4432 double_rq_unlock(rq, p_rq); 4433 goto again; 4434 } 4435 4436 if (!curr->sched_class->yield_to_task) 4437 goto out_unlock; 4438 4439 if (curr->sched_class != p->sched_class) 4440 goto out_unlock; 4441 4442 if (task_running(p_rq, p) || p->state) 4443 goto out_unlock; 4444 4445 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4446 if (yielded) { 4447 schedstat_inc(rq, yld_count); 4448 /* 4449 * Make p's CPU reschedule; pick_next_entity takes care of 4450 * fairness. 4451 */ 4452 if (preempt && rq != p_rq) 4453 resched_task(p_rq->curr); 4454 } 4455 4456 out_unlock: 4457 double_rq_unlock(rq, p_rq); 4458 out_irq: 4459 local_irq_restore(flags); 4460 4461 if (yielded > 0) 4462 schedule(); 4463 4464 return yielded; 4465 } 4466 EXPORT_SYMBOL_GPL(yield_to); 4467 4468 /* 4469 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4470 * that process accounting knows that this is a task in IO wait state. 4471 */ 4472 void __sched io_schedule(void) 4473 { 4474 struct rq *rq = raw_rq(); 4475 4476 delayacct_blkio_start(); 4477 atomic_inc(&rq->nr_iowait); 4478 blk_flush_plug(current); 4479 current->in_iowait = 1; 4480 schedule(); 4481 current->in_iowait = 0; 4482 atomic_dec(&rq->nr_iowait); 4483 delayacct_blkio_end(); 4484 } 4485 EXPORT_SYMBOL(io_schedule); 4486 4487 long __sched io_schedule_timeout(long timeout) 4488 { 4489 struct rq *rq = raw_rq(); 4490 long ret; 4491 4492 delayacct_blkio_start(); 4493 atomic_inc(&rq->nr_iowait); 4494 blk_flush_plug(current); 4495 current->in_iowait = 1; 4496 ret = schedule_timeout(timeout); 4497 current->in_iowait = 0; 4498 atomic_dec(&rq->nr_iowait); 4499 delayacct_blkio_end(); 4500 return ret; 4501 } 4502 4503 /** 4504 * sys_sched_get_priority_max - return maximum RT priority. 4505 * @policy: scheduling class. 4506 * 4507 * this syscall returns the maximum rt_priority that can be used 4508 * by a given scheduling class. 4509 */ 4510 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4511 { 4512 int ret = -EINVAL; 4513 4514 switch (policy) { 4515 case SCHED_FIFO: 4516 case SCHED_RR: 4517 ret = MAX_USER_RT_PRIO-1; 4518 break; 4519 case SCHED_NORMAL: 4520 case SCHED_BATCH: 4521 case SCHED_IDLE: 4522 ret = 0; 4523 break; 4524 } 4525 return ret; 4526 } 4527 4528 /** 4529 * sys_sched_get_priority_min - return minimum RT priority. 4530 * @policy: scheduling class. 4531 * 4532 * this syscall returns the minimum rt_priority that can be used 4533 * by a given scheduling class. 4534 */ 4535 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4536 { 4537 int ret = -EINVAL; 4538 4539 switch (policy) { 4540 case SCHED_FIFO: 4541 case SCHED_RR: 4542 ret = 1; 4543 break; 4544 case SCHED_NORMAL: 4545 case SCHED_BATCH: 4546 case SCHED_IDLE: 4547 ret = 0; 4548 } 4549 return ret; 4550 } 4551 4552 /** 4553 * sys_sched_rr_get_interval - return the default timeslice of a process. 4554 * @pid: pid of the process. 4555 * @interval: userspace pointer to the timeslice value. 4556 * 4557 * this syscall writes the default timeslice value of a given process 4558 * into the user-space timespec buffer. A value of '0' means infinity. 4559 */ 4560 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4561 struct timespec __user *, interval) 4562 { 4563 struct task_struct *p; 4564 unsigned int time_slice; 4565 unsigned long flags; 4566 struct rq *rq; 4567 int retval; 4568 struct timespec t; 4569 4570 if (pid < 0) 4571 return -EINVAL; 4572 4573 retval = -ESRCH; 4574 rcu_read_lock(); 4575 p = find_process_by_pid(pid); 4576 if (!p) 4577 goto out_unlock; 4578 4579 retval = security_task_getscheduler(p); 4580 if (retval) 4581 goto out_unlock; 4582 4583 rq = task_rq_lock(p, &flags); 4584 time_slice = p->sched_class->get_rr_interval(rq, p); 4585 task_rq_unlock(rq, p, &flags); 4586 4587 rcu_read_unlock(); 4588 jiffies_to_timespec(time_slice, &t); 4589 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4590 return retval; 4591 4592 out_unlock: 4593 rcu_read_unlock(); 4594 return retval; 4595 } 4596 4597 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4598 4599 void sched_show_task(struct task_struct *p) 4600 { 4601 unsigned long free = 0; 4602 int ppid; 4603 unsigned state; 4604 4605 state = p->state ? __ffs(p->state) + 1 : 0; 4606 printk(KERN_INFO "%-15.15s %c", p->comm, 4607 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4608 #if BITS_PER_LONG == 32 4609 if (state == TASK_RUNNING) 4610 printk(KERN_CONT " running "); 4611 else 4612 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4613 #else 4614 if (state == TASK_RUNNING) 4615 printk(KERN_CONT " running task "); 4616 else 4617 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4618 #endif 4619 #ifdef CONFIG_DEBUG_STACK_USAGE 4620 free = stack_not_used(p); 4621 #endif 4622 rcu_read_lock(); 4623 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4624 rcu_read_unlock(); 4625 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4626 task_pid_nr(p), ppid, 4627 (unsigned long)task_thread_info(p)->flags); 4628 4629 show_stack(p, NULL); 4630 } 4631 4632 void show_state_filter(unsigned long state_filter) 4633 { 4634 struct task_struct *g, *p; 4635 4636 #if BITS_PER_LONG == 32 4637 printk(KERN_INFO 4638 " task PC stack pid father\n"); 4639 #else 4640 printk(KERN_INFO 4641 " task PC stack pid father\n"); 4642 #endif 4643 rcu_read_lock(); 4644 do_each_thread(g, p) { 4645 /* 4646 * reset the NMI-timeout, listing all files on a slow 4647 * console might take a lot of time: 4648 */ 4649 touch_nmi_watchdog(); 4650 if (!state_filter || (p->state & state_filter)) 4651 sched_show_task(p); 4652 } while_each_thread(g, p); 4653 4654 touch_all_softlockup_watchdogs(); 4655 4656 #ifdef CONFIG_SCHED_DEBUG 4657 sysrq_sched_debug_show(); 4658 #endif 4659 rcu_read_unlock(); 4660 /* 4661 * Only show locks if all tasks are dumped: 4662 */ 4663 if (!state_filter) 4664 debug_show_all_locks(); 4665 } 4666 4667 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4668 { 4669 idle->sched_class = &idle_sched_class; 4670 } 4671 4672 /** 4673 * init_idle - set up an idle thread for a given CPU 4674 * @idle: task in question 4675 * @cpu: cpu the idle task belongs to 4676 * 4677 * NOTE: this function does not set the idle thread's NEED_RESCHED 4678 * flag, to make booting more robust. 4679 */ 4680 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4681 { 4682 struct rq *rq = cpu_rq(cpu); 4683 unsigned long flags; 4684 4685 raw_spin_lock_irqsave(&rq->lock, flags); 4686 4687 __sched_fork(idle); 4688 idle->state = TASK_RUNNING; 4689 idle->se.exec_start = sched_clock(); 4690 4691 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4692 /* 4693 * We're having a chicken and egg problem, even though we are 4694 * holding rq->lock, the cpu isn't yet set to this cpu so the 4695 * lockdep check in task_group() will fail. 4696 * 4697 * Similar case to sched_fork(). / Alternatively we could 4698 * use task_rq_lock() here and obtain the other rq->lock. 4699 * 4700 * Silence PROVE_RCU 4701 */ 4702 rcu_read_lock(); 4703 __set_task_cpu(idle, cpu); 4704 rcu_read_unlock(); 4705 4706 rq->curr = rq->idle = idle; 4707 #if defined(CONFIG_SMP) 4708 idle->on_cpu = 1; 4709 #endif 4710 raw_spin_unlock_irqrestore(&rq->lock, flags); 4711 4712 /* Set the preempt count _outside_ the spinlocks! */ 4713 task_thread_info(idle)->preempt_count = 0; 4714 4715 /* 4716 * The idle tasks have their own, simple scheduling class: 4717 */ 4718 idle->sched_class = &idle_sched_class; 4719 ftrace_graph_init_idle_task(idle, cpu); 4720 vtime_init_idle(idle); 4721 #if defined(CONFIG_SMP) 4722 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4723 #endif 4724 } 4725 4726 #ifdef CONFIG_SMP 4727 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4728 { 4729 if (p->sched_class && p->sched_class->set_cpus_allowed) 4730 p->sched_class->set_cpus_allowed(p, new_mask); 4731 4732 cpumask_copy(&p->cpus_allowed, new_mask); 4733 p->nr_cpus_allowed = cpumask_weight(new_mask); 4734 } 4735 4736 /* 4737 * This is how migration works: 4738 * 4739 * 1) we invoke migration_cpu_stop() on the target CPU using 4740 * stop_one_cpu(). 4741 * 2) stopper starts to run (implicitly forcing the migrated thread 4742 * off the CPU) 4743 * 3) it checks whether the migrated task is still in the wrong runqueue. 4744 * 4) if it's in the wrong runqueue then the migration thread removes 4745 * it and puts it into the right queue. 4746 * 5) stopper completes and stop_one_cpu() returns and the migration 4747 * is done. 4748 */ 4749 4750 /* 4751 * Change a given task's CPU affinity. Migrate the thread to a 4752 * proper CPU and schedule it away if the CPU it's executing on 4753 * is removed from the allowed bitmask. 4754 * 4755 * NOTE: the caller must have a valid reference to the task, the 4756 * task must not exit() & deallocate itself prematurely. The 4757 * call is not atomic; no spinlocks may be held. 4758 */ 4759 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4760 { 4761 unsigned long flags; 4762 struct rq *rq; 4763 unsigned int dest_cpu; 4764 int ret = 0; 4765 4766 rq = task_rq_lock(p, &flags); 4767 4768 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4769 goto out; 4770 4771 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4772 ret = -EINVAL; 4773 goto out; 4774 } 4775 4776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4777 ret = -EINVAL; 4778 goto out; 4779 } 4780 4781 do_set_cpus_allowed(p, new_mask); 4782 4783 /* Can the task run on the task's current CPU? If so, we're done */ 4784 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4785 goto out; 4786 4787 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4788 if (p->on_rq) { 4789 struct migration_arg arg = { p, dest_cpu }; 4790 /* Need help from migration thread: drop lock and wait. */ 4791 task_rq_unlock(rq, p, &flags); 4792 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4793 tlb_migrate_finish(p->mm); 4794 return 0; 4795 } 4796 out: 4797 task_rq_unlock(rq, p, &flags); 4798 4799 return ret; 4800 } 4801 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4802 4803 /* 4804 * Move (not current) task off this cpu, onto dest cpu. We're doing 4805 * this because either it can't run here any more (set_cpus_allowed() 4806 * away from this CPU, or CPU going down), or because we're 4807 * attempting to rebalance this task on exec (sched_exec). 4808 * 4809 * So we race with normal scheduler movements, but that's OK, as long 4810 * as the task is no longer on this CPU. 4811 * 4812 * Returns non-zero if task was successfully migrated. 4813 */ 4814 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4815 { 4816 struct rq *rq_dest, *rq_src; 4817 int ret = 0; 4818 4819 if (unlikely(!cpu_active(dest_cpu))) 4820 return ret; 4821 4822 rq_src = cpu_rq(src_cpu); 4823 rq_dest = cpu_rq(dest_cpu); 4824 4825 raw_spin_lock(&p->pi_lock); 4826 double_rq_lock(rq_src, rq_dest); 4827 /* Already moved. */ 4828 if (task_cpu(p) != src_cpu) 4829 goto done; 4830 /* Affinity changed (again). */ 4831 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4832 goto fail; 4833 4834 /* 4835 * If we're not on a rq, the next wake-up will ensure we're 4836 * placed properly. 4837 */ 4838 if (p->on_rq) { 4839 dequeue_task(rq_src, p, 0); 4840 set_task_cpu(p, dest_cpu); 4841 enqueue_task(rq_dest, p, 0); 4842 check_preempt_curr(rq_dest, p, 0); 4843 } 4844 done: 4845 ret = 1; 4846 fail: 4847 double_rq_unlock(rq_src, rq_dest); 4848 raw_spin_unlock(&p->pi_lock); 4849 return ret; 4850 } 4851 4852 /* 4853 * migration_cpu_stop - this will be executed by a highprio stopper thread 4854 * and performs thread migration by bumping thread off CPU then 4855 * 'pushing' onto another runqueue. 4856 */ 4857 static int migration_cpu_stop(void *data) 4858 { 4859 struct migration_arg *arg = data; 4860 4861 /* 4862 * The original target cpu might have gone down and we might 4863 * be on another cpu but it doesn't matter. 4864 */ 4865 local_irq_disable(); 4866 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4867 local_irq_enable(); 4868 return 0; 4869 } 4870 4871 #ifdef CONFIG_HOTPLUG_CPU 4872 4873 /* 4874 * Ensures that the idle task is using init_mm right before its cpu goes 4875 * offline. 4876 */ 4877 void idle_task_exit(void) 4878 { 4879 struct mm_struct *mm = current->active_mm; 4880 4881 BUG_ON(cpu_online(smp_processor_id())); 4882 4883 if (mm != &init_mm) 4884 switch_mm(mm, &init_mm, current); 4885 mmdrop(mm); 4886 } 4887 4888 /* 4889 * Since this CPU is going 'away' for a while, fold any nr_active delta 4890 * we might have. Assumes we're called after migrate_tasks() so that the 4891 * nr_active count is stable. 4892 * 4893 * Also see the comment "Global load-average calculations". 4894 */ 4895 static void calc_load_migrate(struct rq *rq) 4896 { 4897 long delta = calc_load_fold_active(rq); 4898 if (delta) 4899 atomic_long_add(delta, &calc_load_tasks); 4900 } 4901 4902 /* 4903 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4904 * try_to_wake_up()->select_task_rq(). 4905 * 4906 * Called with rq->lock held even though we'er in stop_machine() and 4907 * there's no concurrency possible, we hold the required locks anyway 4908 * because of lock validation efforts. 4909 */ 4910 static void migrate_tasks(unsigned int dead_cpu) 4911 { 4912 struct rq *rq = cpu_rq(dead_cpu); 4913 struct task_struct *next, *stop = rq->stop; 4914 int dest_cpu; 4915 4916 /* 4917 * Fudge the rq selection such that the below task selection loop 4918 * doesn't get stuck on the currently eligible stop task. 4919 * 4920 * We're currently inside stop_machine() and the rq is either stuck 4921 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4922 * either way we should never end up calling schedule() until we're 4923 * done here. 4924 */ 4925 rq->stop = NULL; 4926 4927 for ( ; ; ) { 4928 /* 4929 * There's this thread running, bail when that's the only 4930 * remaining thread. 4931 */ 4932 if (rq->nr_running == 1) 4933 break; 4934 4935 next = pick_next_task(rq); 4936 BUG_ON(!next); 4937 next->sched_class->put_prev_task(rq, next); 4938 4939 /* Find suitable destination for @next, with force if needed. */ 4940 dest_cpu = select_fallback_rq(dead_cpu, next); 4941 raw_spin_unlock(&rq->lock); 4942 4943 __migrate_task(next, dead_cpu, dest_cpu); 4944 4945 raw_spin_lock(&rq->lock); 4946 } 4947 4948 rq->stop = stop; 4949 } 4950 4951 #endif /* CONFIG_HOTPLUG_CPU */ 4952 4953 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4954 4955 static struct ctl_table sd_ctl_dir[] = { 4956 { 4957 .procname = "sched_domain", 4958 .mode = 0555, 4959 }, 4960 {} 4961 }; 4962 4963 static struct ctl_table sd_ctl_root[] = { 4964 { 4965 .procname = "kernel", 4966 .mode = 0555, 4967 .child = sd_ctl_dir, 4968 }, 4969 {} 4970 }; 4971 4972 static struct ctl_table *sd_alloc_ctl_entry(int n) 4973 { 4974 struct ctl_table *entry = 4975 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4976 4977 return entry; 4978 } 4979 4980 static void sd_free_ctl_entry(struct ctl_table **tablep) 4981 { 4982 struct ctl_table *entry; 4983 4984 /* 4985 * In the intermediate directories, both the child directory and 4986 * procname are dynamically allocated and could fail but the mode 4987 * will always be set. In the lowest directory the names are 4988 * static strings and all have proc handlers. 4989 */ 4990 for (entry = *tablep; entry->mode; entry++) { 4991 if (entry->child) 4992 sd_free_ctl_entry(&entry->child); 4993 if (entry->proc_handler == NULL) 4994 kfree(entry->procname); 4995 } 4996 4997 kfree(*tablep); 4998 *tablep = NULL; 4999 } 5000 5001 static int min_load_idx = 0; 5002 static int max_load_idx = CPU_LOAD_IDX_MAX; 5003 5004 static void 5005 set_table_entry(struct ctl_table *entry, 5006 const char *procname, void *data, int maxlen, 5007 umode_t mode, proc_handler *proc_handler, 5008 bool load_idx) 5009 { 5010 entry->procname = procname; 5011 entry->data = data; 5012 entry->maxlen = maxlen; 5013 entry->mode = mode; 5014 entry->proc_handler = proc_handler; 5015 5016 if (load_idx) { 5017 entry->extra1 = &min_load_idx; 5018 entry->extra2 = &max_load_idx; 5019 } 5020 } 5021 5022 static struct ctl_table * 5023 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5024 { 5025 struct ctl_table *table = sd_alloc_ctl_entry(13); 5026 5027 if (table == NULL) 5028 return NULL; 5029 5030 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5031 sizeof(long), 0644, proc_doulongvec_minmax, false); 5032 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5033 sizeof(long), 0644, proc_doulongvec_minmax, false); 5034 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5035 sizeof(int), 0644, proc_dointvec_minmax, true); 5036 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5037 sizeof(int), 0644, proc_dointvec_minmax, true); 5038 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5039 sizeof(int), 0644, proc_dointvec_minmax, true); 5040 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5041 sizeof(int), 0644, proc_dointvec_minmax, true); 5042 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5043 sizeof(int), 0644, proc_dointvec_minmax, true); 5044 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5045 sizeof(int), 0644, proc_dointvec_minmax, false); 5046 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5047 sizeof(int), 0644, proc_dointvec_minmax, false); 5048 set_table_entry(&table[9], "cache_nice_tries", 5049 &sd->cache_nice_tries, 5050 sizeof(int), 0644, proc_dointvec_minmax, false); 5051 set_table_entry(&table[10], "flags", &sd->flags, 5052 sizeof(int), 0644, proc_dointvec_minmax, false); 5053 set_table_entry(&table[11], "name", sd->name, 5054 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5055 /* &table[12] is terminator */ 5056 5057 return table; 5058 } 5059 5060 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5061 { 5062 struct ctl_table *entry, *table; 5063 struct sched_domain *sd; 5064 int domain_num = 0, i; 5065 char buf[32]; 5066 5067 for_each_domain(cpu, sd) 5068 domain_num++; 5069 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5070 if (table == NULL) 5071 return NULL; 5072 5073 i = 0; 5074 for_each_domain(cpu, sd) { 5075 snprintf(buf, 32, "domain%d", i); 5076 entry->procname = kstrdup(buf, GFP_KERNEL); 5077 entry->mode = 0555; 5078 entry->child = sd_alloc_ctl_domain_table(sd); 5079 entry++; 5080 i++; 5081 } 5082 return table; 5083 } 5084 5085 static struct ctl_table_header *sd_sysctl_header; 5086 static void register_sched_domain_sysctl(void) 5087 { 5088 int i, cpu_num = num_possible_cpus(); 5089 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5090 char buf[32]; 5091 5092 WARN_ON(sd_ctl_dir[0].child); 5093 sd_ctl_dir[0].child = entry; 5094 5095 if (entry == NULL) 5096 return; 5097 5098 for_each_possible_cpu(i) { 5099 snprintf(buf, 32, "cpu%d", i); 5100 entry->procname = kstrdup(buf, GFP_KERNEL); 5101 entry->mode = 0555; 5102 entry->child = sd_alloc_ctl_cpu_table(i); 5103 entry++; 5104 } 5105 5106 WARN_ON(sd_sysctl_header); 5107 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5108 } 5109 5110 /* may be called multiple times per register */ 5111 static void unregister_sched_domain_sysctl(void) 5112 { 5113 if (sd_sysctl_header) 5114 unregister_sysctl_table(sd_sysctl_header); 5115 sd_sysctl_header = NULL; 5116 if (sd_ctl_dir[0].child) 5117 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5118 } 5119 #else 5120 static void register_sched_domain_sysctl(void) 5121 { 5122 } 5123 static void unregister_sched_domain_sysctl(void) 5124 { 5125 } 5126 #endif 5127 5128 static void set_rq_online(struct rq *rq) 5129 { 5130 if (!rq->online) { 5131 const struct sched_class *class; 5132 5133 cpumask_set_cpu(rq->cpu, rq->rd->online); 5134 rq->online = 1; 5135 5136 for_each_class(class) { 5137 if (class->rq_online) 5138 class->rq_online(rq); 5139 } 5140 } 5141 } 5142 5143 static void set_rq_offline(struct rq *rq) 5144 { 5145 if (rq->online) { 5146 const struct sched_class *class; 5147 5148 for_each_class(class) { 5149 if (class->rq_offline) 5150 class->rq_offline(rq); 5151 } 5152 5153 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5154 rq->online = 0; 5155 } 5156 } 5157 5158 /* 5159 * migration_call - callback that gets triggered when a CPU is added. 5160 * Here we can start up the necessary migration thread for the new CPU. 5161 */ 5162 static int __cpuinit 5163 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5164 { 5165 int cpu = (long)hcpu; 5166 unsigned long flags; 5167 struct rq *rq = cpu_rq(cpu); 5168 5169 switch (action & ~CPU_TASKS_FROZEN) { 5170 5171 case CPU_UP_PREPARE: 5172 rq->calc_load_update = calc_load_update; 5173 break; 5174 5175 case CPU_ONLINE: 5176 /* Update our root-domain */ 5177 raw_spin_lock_irqsave(&rq->lock, flags); 5178 if (rq->rd) { 5179 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5180 5181 set_rq_online(rq); 5182 } 5183 raw_spin_unlock_irqrestore(&rq->lock, flags); 5184 break; 5185 5186 #ifdef CONFIG_HOTPLUG_CPU 5187 case CPU_DYING: 5188 sched_ttwu_pending(); 5189 /* Update our root-domain */ 5190 raw_spin_lock_irqsave(&rq->lock, flags); 5191 if (rq->rd) { 5192 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5193 set_rq_offline(rq); 5194 } 5195 migrate_tasks(cpu); 5196 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5197 raw_spin_unlock_irqrestore(&rq->lock, flags); 5198 break; 5199 5200 case CPU_DEAD: 5201 calc_load_migrate(rq); 5202 break; 5203 #endif 5204 } 5205 5206 update_max_interval(); 5207 5208 return NOTIFY_OK; 5209 } 5210 5211 /* 5212 * Register at high priority so that task migration (migrate_all_tasks) 5213 * happens before everything else. This has to be lower priority than 5214 * the notifier in the perf_event subsystem, though. 5215 */ 5216 static struct notifier_block __cpuinitdata migration_notifier = { 5217 .notifier_call = migration_call, 5218 .priority = CPU_PRI_MIGRATION, 5219 }; 5220 5221 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5222 unsigned long action, void *hcpu) 5223 { 5224 switch (action & ~CPU_TASKS_FROZEN) { 5225 case CPU_STARTING: 5226 case CPU_DOWN_FAILED: 5227 set_cpu_active((long)hcpu, true); 5228 return NOTIFY_OK; 5229 default: 5230 return NOTIFY_DONE; 5231 } 5232 } 5233 5234 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5235 unsigned long action, void *hcpu) 5236 { 5237 switch (action & ~CPU_TASKS_FROZEN) { 5238 case CPU_DOWN_PREPARE: 5239 set_cpu_active((long)hcpu, false); 5240 return NOTIFY_OK; 5241 default: 5242 return NOTIFY_DONE; 5243 } 5244 } 5245 5246 static int __init migration_init(void) 5247 { 5248 void *cpu = (void *)(long)smp_processor_id(); 5249 int err; 5250 5251 /* Initialize migration for the boot CPU */ 5252 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5253 BUG_ON(err == NOTIFY_BAD); 5254 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5255 register_cpu_notifier(&migration_notifier); 5256 5257 /* Register cpu active notifiers */ 5258 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5259 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5260 5261 return 0; 5262 } 5263 early_initcall(migration_init); 5264 #endif 5265 5266 #ifdef CONFIG_SMP 5267 5268 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5269 5270 #ifdef CONFIG_SCHED_DEBUG 5271 5272 static __read_mostly int sched_debug_enabled; 5273 5274 static int __init sched_debug_setup(char *str) 5275 { 5276 sched_debug_enabled = 1; 5277 5278 return 0; 5279 } 5280 early_param("sched_debug", sched_debug_setup); 5281 5282 static inline bool sched_debug(void) 5283 { 5284 return sched_debug_enabled; 5285 } 5286 5287 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5288 struct cpumask *groupmask) 5289 { 5290 struct sched_group *group = sd->groups; 5291 char str[256]; 5292 5293 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5294 cpumask_clear(groupmask); 5295 5296 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5297 5298 if (!(sd->flags & SD_LOAD_BALANCE)) { 5299 printk("does not load-balance\n"); 5300 if (sd->parent) 5301 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5302 " has parent"); 5303 return -1; 5304 } 5305 5306 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5307 5308 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5309 printk(KERN_ERR "ERROR: domain->span does not contain " 5310 "CPU%d\n", cpu); 5311 } 5312 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5313 printk(KERN_ERR "ERROR: domain->groups does not contain" 5314 " CPU%d\n", cpu); 5315 } 5316 5317 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5318 do { 5319 if (!group) { 5320 printk("\n"); 5321 printk(KERN_ERR "ERROR: group is NULL\n"); 5322 break; 5323 } 5324 5325 /* 5326 * Even though we initialize ->power to something semi-sane, 5327 * we leave power_orig unset. This allows us to detect if 5328 * domain iteration is still funny without causing /0 traps. 5329 */ 5330 if (!group->sgp->power_orig) { 5331 printk(KERN_CONT "\n"); 5332 printk(KERN_ERR "ERROR: domain->cpu_power not " 5333 "set\n"); 5334 break; 5335 } 5336 5337 if (!cpumask_weight(sched_group_cpus(group))) { 5338 printk(KERN_CONT "\n"); 5339 printk(KERN_ERR "ERROR: empty group\n"); 5340 break; 5341 } 5342 5343 if (!(sd->flags & SD_OVERLAP) && 5344 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5345 printk(KERN_CONT "\n"); 5346 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5347 break; 5348 } 5349 5350 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5351 5352 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5353 5354 printk(KERN_CONT " %s", str); 5355 if (group->sgp->power != SCHED_POWER_SCALE) { 5356 printk(KERN_CONT " (cpu_power = %d)", 5357 group->sgp->power); 5358 } 5359 5360 group = group->next; 5361 } while (group != sd->groups); 5362 printk(KERN_CONT "\n"); 5363 5364 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5365 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5366 5367 if (sd->parent && 5368 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5369 printk(KERN_ERR "ERROR: parent span is not a superset " 5370 "of domain->span\n"); 5371 return 0; 5372 } 5373 5374 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5375 { 5376 int level = 0; 5377 5378 if (!sched_debug_enabled) 5379 return; 5380 5381 if (!sd) { 5382 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5383 return; 5384 } 5385 5386 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5387 5388 for (;;) { 5389 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5390 break; 5391 level++; 5392 sd = sd->parent; 5393 if (!sd) 5394 break; 5395 } 5396 } 5397 #else /* !CONFIG_SCHED_DEBUG */ 5398 # define sched_domain_debug(sd, cpu) do { } while (0) 5399 static inline bool sched_debug(void) 5400 { 5401 return false; 5402 } 5403 #endif /* CONFIG_SCHED_DEBUG */ 5404 5405 static int sd_degenerate(struct sched_domain *sd) 5406 { 5407 if (cpumask_weight(sched_domain_span(sd)) == 1) 5408 return 1; 5409 5410 /* Following flags need at least 2 groups */ 5411 if (sd->flags & (SD_LOAD_BALANCE | 5412 SD_BALANCE_NEWIDLE | 5413 SD_BALANCE_FORK | 5414 SD_BALANCE_EXEC | 5415 SD_SHARE_CPUPOWER | 5416 SD_SHARE_PKG_RESOURCES)) { 5417 if (sd->groups != sd->groups->next) 5418 return 0; 5419 } 5420 5421 /* Following flags don't use groups */ 5422 if (sd->flags & (SD_WAKE_AFFINE)) 5423 return 0; 5424 5425 return 1; 5426 } 5427 5428 static int 5429 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5430 { 5431 unsigned long cflags = sd->flags, pflags = parent->flags; 5432 5433 if (sd_degenerate(parent)) 5434 return 1; 5435 5436 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5437 return 0; 5438 5439 /* Flags needing groups don't count if only 1 group in parent */ 5440 if (parent->groups == parent->groups->next) { 5441 pflags &= ~(SD_LOAD_BALANCE | 5442 SD_BALANCE_NEWIDLE | 5443 SD_BALANCE_FORK | 5444 SD_BALANCE_EXEC | 5445 SD_SHARE_CPUPOWER | 5446 SD_SHARE_PKG_RESOURCES); 5447 if (nr_node_ids == 1) 5448 pflags &= ~SD_SERIALIZE; 5449 } 5450 if (~cflags & pflags) 5451 return 0; 5452 5453 return 1; 5454 } 5455 5456 static void free_rootdomain(struct rcu_head *rcu) 5457 { 5458 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5459 5460 cpupri_cleanup(&rd->cpupri); 5461 free_cpumask_var(rd->rto_mask); 5462 free_cpumask_var(rd->online); 5463 free_cpumask_var(rd->span); 5464 kfree(rd); 5465 } 5466 5467 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5468 { 5469 struct root_domain *old_rd = NULL; 5470 unsigned long flags; 5471 5472 raw_spin_lock_irqsave(&rq->lock, flags); 5473 5474 if (rq->rd) { 5475 old_rd = rq->rd; 5476 5477 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5478 set_rq_offline(rq); 5479 5480 cpumask_clear_cpu(rq->cpu, old_rd->span); 5481 5482 /* 5483 * If we dont want to free the old_rt yet then 5484 * set old_rd to NULL to skip the freeing later 5485 * in this function: 5486 */ 5487 if (!atomic_dec_and_test(&old_rd->refcount)) 5488 old_rd = NULL; 5489 } 5490 5491 atomic_inc(&rd->refcount); 5492 rq->rd = rd; 5493 5494 cpumask_set_cpu(rq->cpu, rd->span); 5495 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5496 set_rq_online(rq); 5497 5498 raw_spin_unlock_irqrestore(&rq->lock, flags); 5499 5500 if (old_rd) 5501 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5502 } 5503 5504 static int init_rootdomain(struct root_domain *rd) 5505 { 5506 memset(rd, 0, sizeof(*rd)); 5507 5508 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5509 goto out; 5510 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5511 goto free_span; 5512 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5513 goto free_online; 5514 5515 if (cpupri_init(&rd->cpupri) != 0) 5516 goto free_rto_mask; 5517 return 0; 5518 5519 free_rto_mask: 5520 free_cpumask_var(rd->rto_mask); 5521 free_online: 5522 free_cpumask_var(rd->online); 5523 free_span: 5524 free_cpumask_var(rd->span); 5525 out: 5526 return -ENOMEM; 5527 } 5528 5529 /* 5530 * By default the system creates a single root-domain with all cpus as 5531 * members (mimicking the global state we have today). 5532 */ 5533 struct root_domain def_root_domain; 5534 5535 static void init_defrootdomain(void) 5536 { 5537 init_rootdomain(&def_root_domain); 5538 5539 atomic_set(&def_root_domain.refcount, 1); 5540 } 5541 5542 static struct root_domain *alloc_rootdomain(void) 5543 { 5544 struct root_domain *rd; 5545 5546 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5547 if (!rd) 5548 return NULL; 5549 5550 if (init_rootdomain(rd) != 0) { 5551 kfree(rd); 5552 return NULL; 5553 } 5554 5555 return rd; 5556 } 5557 5558 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5559 { 5560 struct sched_group *tmp, *first; 5561 5562 if (!sg) 5563 return; 5564 5565 first = sg; 5566 do { 5567 tmp = sg->next; 5568 5569 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5570 kfree(sg->sgp); 5571 5572 kfree(sg); 5573 sg = tmp; 5574 } while (sg != first); 5575 } 5576 5577 static void free_sched_domain(struct rcu_head *rcu) 5578 { 5579 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5580 5581 /* 5582 * If its an overlapping domain it has private groups, iterate and 5583 * nuke them all. 5584 */ 5585 if (sd->flags & SD_OVERLAP) { 5586 free_sched_groups(sd->groups, 1); 5587 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5588 kfree(sd->groups->sgp); 5589 kfree(sd->groups); 5590 } 5591 kfree(sd); 5592 } 5593 5594 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5595 { 5596 call_rcu(&sd->rcu, free_sched_domain); 5597 } 5598 5599 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5600 { 5601 for (; sd; sd = sd->parent) 5602 destroy_sched_domain(sd, cpu); 5603 } 5604 5605 /* 5606 * Keep a special pointer to the highest sched_domain that has 5607 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5608 * allows us to avoid some pointer chasing select_idle_sibling(). 5609 * 5610 * Also keep a unique ID per domain (we use the first cpu number in 5611 * the cpumask of the domain), this allows us to quickly tell if 5612 * two cpus are in the same cache domain, see cpus_share_cache(). 5613 */ 5614 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5615 DEFINE_PER_CPU(int, sd_llc_id); 5616 5617 static void update_top_cache_domain(int cpu) 5618 { 5619 struct sched_domain *sd; 5620 int id = cpu; 5621 5622 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5623 if (sd) 5624 id = cpumask_first(sched_domain_span(sd)); 5625 5626 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5627 per_cpu(sd_llc_id, cpu) = id; 5628 } 5629 5630 /* 5631 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5632 * hold the hotplug lock. 5633 */ 5634 static void 5635 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5636 { 5637 struct rq *rq = cpu_rq(cpu); 5638 struct sched_domain *tmp; 5639 5640 /* Remove the sched domains which do not contribute to scheduling. */ 5641 for (tmp = sd; tmp; ) { 5642 struct sched_domain *parent = tmp->parent; 5643 if (!parent) 5644 break; 5645 5646 if (sd_parent_degenerate(tmp, parent)) { 5647 tmp->parent = parent->parent; 5648 if (parent->parent) 5649 parent->parent->child = tmp; 5650 destroy_sched_domain(parent, cpu); 5651 } else 5652 tmp = tmp->parent; 5653 } 5654 5655 if (sd && sd_degenerate(sd)) { 5656 tmp = sd; 5657 sd = sd->parent; 5658 destroy_sched_domain(tmp, cpu); 5659 if (sd) 5660 sd->child = NULL; 5661 } 5662 5663 sched_domain_debug(sd, cpu); 5664 5665 rq_attach_root(rq, rd); 5666 tmp = rq->sd; 5667 rcu_assign_pointer(rq->sd, sd); 5668 destroy_sched_domains(tmp, cpu); 5669 5670 update_top_cache_domain(cpu); 5671 } 5672 5673 /* cpus with isolated domains */ 5674 static cpumask_var_t cpu_isolated_map; 5675 5676 /* Setup the mask of cpus configured for isolated domains */ 5677 static int __init isolated_cpu_setup(char *str) 5678 { 5679 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5680 cpulist_parse(str, cpu_isolated_map); 5681 return 1; 5682 } 5683 5684 __setup("isolcpus=", isolated_cpu_setup); 5685 5686 static const struct cpumask *cpu_cpu_mask(int cpu) 5687 { 5688 return cpumask_of_node(cpu_to_node(cpu)); 5689 } 5690 5691 struct sd_data { 5692 struct sched_domain **__percpu sd; 5693 struct sched_group **__percpu sg; 5694 struct sched_group_power **__percpu sgp; 5695 }; 5696 5697 struct s_data { 5698 struct sched_domain ** __percpu sd; 5699 struct root_domain *rd; 5700 }; 5701 5702 enum s_alloc { 5703 sa_rootdomain, 5704 sa_sd, 5705 sa_sd_storage, 5706 sa_none, 5707 }; 5708 5709 struct sched_domain_topology_level; 5710 5711 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5712 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5713 5714 #define SDTL_OVERLAP 0x01 5715 5716 struct sched_domain_topology_level { 5717 sched_domain_init_f init; 5718 sched_domain_mask_f mask; 5719 int flags; 5720 int numa_level; 5721 struct sd_data data; 5722 }; 5723 5724 /* 5725 * Build an iteration mask that can exclude certain CPUs from the upwards 5726 * domain traversal. 5727 * 5728 * Asymmetric node setups can result in situations where the domain tree is of 5729 * unequal depth, make sure to skip domains that already cover the entire 5730 * range. 5731 * 5732 * In that case build_sched_domains() will have terminated the iteration early 5733 * and our sibling sd spans will be empty. Domains should always include the 5734 * cpu they're built on, so check that. 5735 * 5736 */ 5737 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5738 { 5739 const struct cpumask *span = sched_domain_span(sd); 5740 struct sd_data *sdd = sd->private; 5741 struct sched_domain *sibling; 5742 int i; 5743 5744 for_each_cpu(i, span) { 5745 sibling = *per_cpu_ptr(sdd->sd, i); 5746 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5747 continue; 5748 5749 cpumask_set_cpu(i, sched_group_mask(sg)); 5750 } 5751 } 5752 5753 /* 5754 * Return the canonical balance cpu for this group, this is the first cpu 5755 * of this group that's also in the iteration mask. 5756 */ 5757 int group_balance_cpu(struct sched_group *sg) 5758 { 5759 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5760 } 5761 5762 static int 5763 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5764 { 5765 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5766 const struct cpumask *span = sched_domain_span(sd); 5767 struct cpumask *covered = sched_domains_tmpmask; 5768 struct sd_data *sdd = sd->private; 5769 struct sched_domain *child; 5770 int i; 5771 5772 cpumask_clear(covered); 5773 5774 for_each_cpu(i, span) { 5775 struct cpumask *sg_span; 5776 5777 if (cpumask_test_cpu(i, covered)) 5778 continue; 5779 5780 child = *per_cpu_ptr(sdd->sd, i); 5781 5782 /* See the comment near build_group_mask(). */ 5783 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5784 continue; 5785 5786 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5787 GFP_KERNEL, cpu_to_node(cpu)); 5788 5789 if (!sg) 5790 goto fail; 5791 5792 sg_span = sched_group_cpus(sg); 5793 if (child->child) { 5794 child = child->child; 5795 cpumask_copy(sg_span, sched_domain_span(child)); 5796 } else 5797 cpumask_set_cpu(i, sg_span); 5798 5799 cpumask_or(covered, covered, sg_span); 5800 5801 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5802 if (atomic_inc_return(&sg->sgp->ref) == 1) 5803 build_group_mask(sd, sg); 5804 5805 /* 5806 * Initialize sgp->power such that even if we mess up the 5807 * domains and no possible iteration will get us here, we won't 5808 * die on a /0 trap. 5809 */ 5810 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5811 5812 /* 5813 * Make sure the first group of this domain contains the 5814 * canonical balance cpu. Otherwise the sched_domain iteration 5815 * breaks. See update_sg_lb_stats(). 5816 */ 5817 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5818 group_balance_cpu(sg) == cpu) 5819 groups = sg; 5820 5821 if (!first) 5822 first = sg; 5823 if (last) 5824 last->next = sg; 5825 last = sg; 5826 last->next = first; 5827 } 5828 sd->groups = groups; 5829 5830 return 0; 5831 5832 fail: 5833 free_sched_groups(first, 0); 5834 5835 return -ENOMEM; 5836 } 5837 5838 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5839 { 5840 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5841 struct sched_domain *child = sd->child; 5842 5843 if (child) 5844 cpu = cpumask_first(sched_domain_span(child)); 5845 5846 if (sg) { 5847 *sg = *per_cpu_ptr(sdd->sg, cpu); 5848 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5849 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5850 } 5851 5852 return cpu; 5853 } 5854 5855 /* 5856 * build_sched_groups will build a circular linked list of the groups 5857 * covered by the given span, and will set each group's ->cpumask correctly, 5858 * and ->cpu_power to 0. 5859 * 5860 * Assumes the sched_domain tree is fully constructed 5861 */ 5862 static int 5863 build_sched_groups(struct sched_domain *sd, int cpu) 5864 { 5865 struct sched_group *first = NULL, *last = NULL; 5866 struct sd_data *sdd = sd->private; 5867 const struct cpumask *span = sched_domain_span(sd); 5868 struct cpumask *covered; 5869 int i; 5870 5871 get_group(cpu, sdd, &sd->groups); 5872 atomic_inc(&sd->groups->ref); 5873 5874 if (cpu != cpumask_first(sched_domain_span(sd))) 5875 return 0; 5876 5877 lockdep_assert_held(&sched_domains_mutex); 5878 covered = sched_domains_tmpmask; 5879 5880 cpumask_clear(covered); 5881 5882 for_each_cpu(i, span) { 5883 struct sched_group *sg; 5884 int group = get_group(i, sdd, &sg); 5885 int j; 5886 5887 if (cpumask_test_cpu(i, covered)) 5888 continue; 5889 5890 cpumask_clear(sched_group_cpus(sg)); 5891 sg->sgp->power = 0; 5892 cpumask_setall(sched_group_mask(sg)); 5893 5894 for_each_cpu(j, span) { 5895 if (get_group(j, sdd, NULL) != group) 5896 continue; 5897 5898 cpumask_set_cpu(j, covered); 5899 cpumask_set_cpu(j, sched_group_cpus(sg)); 5900 } 5901 5902 if (!first) 5903 first = sg; 5904 if (last) 5905 last->next = sg; 5906 last = sg; 5907 } 5908 last->next = first; 5909 5910 return 0; 5911 } 5912 5913 /* 5914 * Initialize sched groups cpu_power. 5915 * 5916 * cpu_power indicates the capacity of sched group, which is used while 5917 * distributing the load between different sched groups in a sched domain. 5918 * Typically cpu_power for all the groups in a sched domain will be same unless 5919 * there are asymmetries in the topology. If there are asymmetries, group 5920 * having more cpu_power will pickup more load compared to the group having 5921 * less cpu_power. 5922 */ 5923 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5924 { 5925 struct sched_group *sg = sd->groups; 5926 5927 WARN_ON(!sd || !sg); 5928 5929 do { 5930 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5931 sg = sg->next; 5932 } while (sg != sd->groups); 5933 5934 if (cpu != group_balance_cpu(sg)) 5935 return; 5936 5937 update_group_power(sd, cpu); 5938 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5939 } 5940 5941 int __weak arch_sd_sibling_asym_packing(void) 5942 { 5943 return 0*SD_ASYM_PACKING; 5944 } 5945 5946 /* 5947 * Initializers for schedule domains 5948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5949 */ 5950 5951 #ifdef CONFIG_SCHED_DEBUG 5952 # define SD_INIT_NAME(sd, type) sd->name = #type 5953 #else 5954 # define SD_INIT_NAME(sd, type) do { } while (0) 5955 #endif 5956 5957 #define SD_INIT_FUNC(type) \ 5958 static noinline struct sched_domain * \ 5959 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5960 { \ 5961 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5962 *sd = SD_##type##_INIT; \ 5963 SD_INIT_NAME(sd, type); \ 5964 sd->private = &tl->data; \ 5965 return sd; \ 5966 } 5967 5968 SD_INIT_FUNC(CPU) 5969 #ifdef CONFIG_SCHED_SMT 5970 SD_INIT_FUNC(SIBLING) 5971 #endif 5972 #ifdef CONFIG_SCHED_MC 5973 SD_INIT_FUNC(MC) 5974 #endif 5975 #ifdef CONFIG_SCHED_BOOK 5976 SD_INIT_FUNC(BOOK) 5977 #endif 5978 5979 static int default_relax_domain_level = -1; 5980 int sched_domain_level_max; 5981 5982 static int __init setup_relax_domain_level(char *str) 5983 { 5984 if (kstrtoint(str, 0, &default_relax_domain_level)) 5985 pr_warn("Unable to set relax_domain_level\n"); 5986 5987 return 1; 5988 } 5989 __setup("relax_domain_level=", setup_relax_domain_level); 5990 5991 static void set_domain_attribute(struct sched_domain *sd, 5992 struct sched_domain_attr *attr) 5993 { 5994 int request; 5995 5996 if (!attr || attr->relax_domain_level < 0) { 5997 if (default_relax_domain_level < 0) 5998 return; 5999 else 6000 request = default_relax_domain_level; 6001 } else 6002 request = attr->relax_domain_level; 6003 if (request < sd->level) { 6004 /* turn off idle balance on this domain */ 6005 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6006 } else { 6007 /* turn on idle balance on this domain */ 6008 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6009 } 6010 } 6011 6012 static void __sdt_free(const struct cpumask *cpu_map); 6013 static int __sdt_alloc(const struct cpumask *cpu_map); 6014 6015 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6016 const struct cpumask *cpu_map) 6017 { 6018 switch (what) { 6019 case sa_rootdomain: 6020 if (!atomic_read(&d->rd->refcount)) 6021 free_rootdomain(&d->rd->rcu); /* fall through */ 6022 case sa_sd: 6023 free_percpu(d->sd); /* fall through */ 6024 case sa_sd_storage: 6025 __sdt_free(cpu_map); /* fall through */ 6026 case sa_none: 6027 break; 6028 } 6029 } 6030 6031 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6032 const struct cpumask *cpu_map) 6033 { 6034 memset(d, 0, sizeof(*d)); 6035 6036 if (__sdt_alloc(cpu_map)) 6037 return sa_sd_storage; 6038 d->sd = alloc_percpu(struct sched_domain *); 6039 if (!d->sd) 6040 return sa_sd_storage; 6041 d->rd = alloc_rootdomain(); 6042 if (!d->rd) 6043 return sa_sd; 6044 return sa_rootdomain; 6045 } 6046 6047 /* 6048 * NULL the sd_data elements we've used to build the sched_domain and 6049 * sched_group structure so that the subsequent __free_domain_allocs() 6050 * will not free the data we're using. 6051 */ 6052 static void claim_allocations(int cpu, struct sched_domain *sd) 6053 { 6054 struct sd_data *sdd = sd->private; 6055 6056 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6057 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6058 6059 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6060 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6061 6062 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6063 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6064 } 6065 6066 #ifdef CONFIG_SCHED_SMT 6067 static const struct cpumask *cpu_smt_mask(int cpu) 6068 { 6069 return topology_thread_cpumask(cpu); 6070 } 6071 #endif 6072 6073 /* 6074 * Topology list, bottom-up. 6075 */ 6076 static struct sched_domain_topology_level default_topology[] = { 6077 #ifdef CONFIG_SCHED_SMT 6078 { sd_init_SIBLING, cpu_smt_mask, }, 6079 #endif 6080 #ifdef CONFIG_SCHED_MC 6081 { sd_init_MC, cpu_coregroup_mask, }, 6082 #endif 6083 #ifdef CONFIG_SCHED_BOOK 6084 { sd_init_BOOK, cpu_book_mask, }, 6085 #endif 6086 { sd_init_CPU, cpu_cpu_mask, }, 6087 { NULL, }, 6088 }; 6089 6090 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6091 6092 #ifdef CONFIG_NUMA 6093 6094 static int sched_domains_numa_levels; 6095 static int *sched_domains_numa_distance; 6096 static struct cpumask ***sched_domains_numa_masks; 6097 static int sched_domains_curr_level; 6098 6099 static inline int sd_local_flags(int level) 6100 { 6101 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6102 return 0; 6103 6104 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6105 } 6106 6107 static struct sched_domain * 6108 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6109 { 6110 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6111 int level = tl->numa_level; 6112 int sd_weight = cpumask_weight( 6113 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6114 6115 *sd = (struct sched_domain){ 6116 .min_interval = sd_weight, 6117 .max_interval = 2*sd_weight, 6118 .busy_factor = 32, 6119 .imbalance_pct = 125, 6120 .cache_nice_tries = 2, 6121 .busy_idx = 3, 6122 .idle_idx = 2, 6123 .newidle_idx = 0, 6124 .wake_idx = 0, 6125 .forkexec_idx = 0, 6126 6127 .flags = 1*SD_LOAD_BALANCE 6128 | 1*SD_BALANCE_NEWIDLE 6129 | 0*SD_BALANCE_EXEC 6130 | 0*SD_BALANCE_FORK 6131 | 0*SD_BALANCE_WAKE 6132 | 0*SD_WAKE_AFFINE 6133 | 0*SD_SHARE_CPUPOWER 6134 | 0*SD_SHARE_PKG_RESOURCES 6135 | 1*SD_SERIALIZE 6136 | 0*SD_PREFER_SIBLING 6137 | sd_local_flags(level) 6138 , 6139 .last_balance = jiffies, 6140 .balance_interval = sd_weight, 6141 }; 6142 SD_INIT_NAME(sd, NUMA); 6143 sd->private = &tl->data; 6144 6145 /* 6146 * Ugly hack to pass state to sd_numa_mask()... 6147 */ 6148 sched_domains_curr_level = tl->numa_level; 6149 6150 return sd; 6151 } 6152 6153 static const struct cpumask *sd_numa_mask(int cpu) 6154 { 6155 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6156 } 6157 6158 static void sched_numa_warn(const char *str) 6159 { 6160 static int done = false; 6161 int i,j; 6162 6163 if (done) 6164 return; 6165 6166 done = true; 6167 6168 printk(KERN_WARNING "ERROR: %s\n\n", str); 6169 6170 for (i = 0; i < nr_node_ids; i++) { 6171 printk(KERN_WARNING " "); 6172 for (j = 0; j < nr_node_ids; j++) 6173 printk(KERN_CONT "%02d ", node_distance(i,j)); 6174 printk(KERN_CONT "\n"); 6175 } 6176 printk(KERN_WARNING "\n"); 6177 } 6178 6179 static bool find_numa_distance(int distance) 6180 { 6181 int i; 6182 6183 if (distance == node_distance(0, 0)) 6184 return true; 6185 6186 for (i = 0; i < sched_domains_numa_levels; i++) { 6187 if (sched_domains_numa_distance[i] == distance) 6188 return true; 6189 } 6190 6191 return false; 6192 } 6193 6194 static void sched_init_numa(void) 6195 { 6196 int next_distance, curr_distance = node_distance(0, 0); 6197 struct sched_domain_topology_level *tl; 6198 int level = 0; 6199 int i, j, k; 6200 6201 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6202 if (!sched_domains_numa_distance) 6203 return; 6204 6205 /* 6206 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6207 * unique distances in the node_distance() table. 6208 * 6209 * Assumes node_distance(0,j) includes all distances in 6210 * node_distance(i,j) in order to avoid cubic time. 6211 */ 6212 next_distance = curr_distance; 6213 for (i = 0; i < nr_node_ids; i++) { 6214 for (j = 0; j < nr_node_ids; j++) { 6215 for (k = 0; k < nr_node_ids; k++) { 6216 int distance = node_distance(i, k); 6217 6218 if (distance > curr_distance && 6219 (distance < next_distance || 6220 next_distance == curr_distance)) 6221 next_distance = distance; 6222 6223 /* 6224 * While not a strong assumption it would be nice to know 6225 * about cases where if node A is connected to B, B is not 6226 * equally connected to A. 6227 */ 6228 if (sched_debug() && node_distance(k, i) != distance) 6229 sched_numa_warn("Node-distance not symmetric"); 6230 6231 if (sched_debug() && i && !find_numa_distance(distance)) 6232 sched_numa_warn("Node-0 not representative"); 6233 } 6234 if (next_distance != curr_distance) { 6235 sched_domains_numa_distance[level++] = next_distance; 6236 sched_domains_numa_levels = level; 6237 curr_distance = next_distance; 6238 } else break; 6239 } 6240 6241 /* 6242 * In case of sched_debug() we verify the above assumption. 6243 */ 6244 if (!sched_debug()) 6245 break; 6246 } 6247 /* 6248 * 'level' contains the number of unique distances, excluding the 6249 * identity distance node_distance(i,i). 6250 * 6251 * The sched_domains_nume_distance[] array includes the actual distance 6252 * numbers. 6253 */ 6254 6255 /* 6256 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6257 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6258 * the array will contain less then 'level' members. This could be 6259 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6260 * in other functions. 6261 * 6262 * We reset it to 'level' at the end of this function. 6263 */ 6264 sched_domains_numa_levels = 0; 6265 6266 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6267 if (!sched_domains_numa_masks) 6268 return; 6269 6270 /* 6271 * Now for each level, construct a mask per node which contains all 6272 * cpus of nodes that are that many hops away from us. 6273 */ 6274 for (i = 0; i < level; i++) { 6275 sched_domains_numa_masks[i] = 6276 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6277 if (!sched_domains_numa_masks[i]) 6278 return; 6279 6280 for (j = 0; j < nr_node_ids; j++) { 6281 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6282 if (!mask) 6283 return; 6284 6285 sched_domains_numa_masks[i][j] = mask; 6286 6287 for (k = 0; k < nr_node_ids; k++) { 6288 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6289 continue; 6290 6291 cpumask_or(mask, mask, cpumask_of_node(k)); 6292 } 6293 } 6294 } 6295 6296 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6297 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6298 if (!tl) 6299 return; 6300 6301 /* 6302 * Copy the default topology bits.. 6303 */ 6304 for (i = 0; default_topology[i].init; i++) 6305 tl[i] = default_topology[i]; 6306 6307 /* 6308 * .. and append 'j' levels of NUMA goodness. 6309 */ 6310 for (j = 0; j < level; i++, j++) { 6311 tl[i] = (struct sched_domain_topology_level){ 6312 .init = sd_numa_init, 6313 .mask = sd_numa_mask, 6314 .flags = SDTL_OVERLAP, 6315 .numa_level = j, 6316 }; 6317 } 6318 6319 sched_domain_topology = tl; 6320 6321 sched_domains_numa_levels = level; 6322 } 6323 6324 static void sched_domains_numa_masks_set(int cpu) 6325 { 6326 int i, j; 6327 int node = cpu_to_node(cpu); 6328 6329 for (i = 0; i < sched_domains_numa_levels; i++) { 6330 for (j = 0; j < nr_node_ids; j++) { 6331 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6332 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6333 } 6334 } 6335 } 6336 6337 static void sched_domains_numa_masks_clear(int cpu) 6338 { 6339 int i, j; 6340 for (i = 0; i < sched_domains_numa_levels; i++) { 6341 for (j = 0; j < nr_node_ids; j++) 6342 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6343 } 6344 } 6345 6346 /* 6347 * Update sched_domains_numa_masks[level][node] array when new cpus 6348 * are onlined. 6349 */ 6350 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6351 unsigned long action, 6352 void *hcpu) 6353 { 6354 int cpu = (long)hcpu; 6355 6356 switch (action & ~CPU_TASKS_FROZEN) { 6357 case CPU_ONLINE: 6358 sched_domains_numa_masks_set(cpu); 6359 break; 6360 6361 case CPU_DEAD: 6362 sched_domains_numa_masks_clear(cpu); 6363 break; 6364 6365 default: 6366 return NOTIFY_DONE; 6367 } 6368 6369 return NOTIFY_OK; 6370 } 6371 #else 6372 static inline void sched_init_numa(void) 6373 { 6374 } 6375 6376 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6377 unsigned long action, 6378 void *hcpu) 6379 { 6380 return 0; 6381 } 6382 #endif /* CONFIG_NUMA */ 6383 6384 static int __sdt_alloc(const struct cpumask *cpu_map) 6385 { 6386 struct sched_domain_topology_level *tl; 6387 int j; 6388 6389 for (tl = sched_domain_topology; tl->init; tl++) { 6390 struct sd_data *sdd = &tl->data; 6391 6392 sdd->sd = alloc_percpu(struct sched_domain *); 6393 if (!sdd->sd) 6394 return -ENOMEM; 6395 6396 sdd->sg = alloc_percpu(struct sched_group *); 6397 if (!sdd->sg) 6398 return -ENOMEM; 6399 6400 sdd->sgp = alloc_percpu(struct sched_group_power *); 6401 if (!sdd->sgp) 6402 return -ENOMEM; 6403 6404 for_each_cpu(j, cpu_map) { 6405 struct sched_domain *sd; 6406 struct sched_group *sg; 6407 struct sched_group_power *sgp; 6408 6409 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6410 GFP_KERNEL, cpu_to_node(j)); 6411 if (!sd) 6412 return -ENOMEM; 6413 6414 *per_cpu_ptr(sdd->sd, j) = sd; 6415 6416 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6417 GFP_KERNEL, cpu_to_node(j)); 6418 if (!sg) 6419 return -ENOMEM; 6420 6421 sg->next = sg; 6422 6423 *per_cpu_ptr(sdd->sg, j) = sg; 6424 6425 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6426 GFP_KERNEL, cpu_to_node(j)); 6427 if (!sgp) 6428 return -ENOMEM; 6429 6430 *per_cpu_ptr(sdd->sgp, j) = sgp; 6431 } 6432 } 6433 6434 return 0; 6435 } 6436 6437 static void __sdt_free(const struct cpumask *cpu_map) 6438 { 6439 struct sched_domain_topology_level *tl; 6440 int j; 6441 6442 for (tl = sched_domain_topology; tl->init; tl++) { 6443 struct sd_data *sdd = &tl->data; 6444 6445 for_each_cpu(j, cpu_map) { 6446 struct sched_domain *sd; 6447 6448 if (sdd->sd) { 6449 sd = *per_cpu_ptr(sdd->sd, j); 6450 if (sd && (sd->flags & SD_OVERLAP)) 6451 free_sched_groups(sd->groups, 0); 6452 kfree(*per_cpu_ptr(sdd->sd, j)); 6453 } 6454 6455 if (sdd->sg) 6456 kfree(*per_cpu_ptr(sdd->sg, j)); 6457 if (sdd->sgp) 6458 kfree(*per_cpu_ptr(sdd->sgp, j)); 6459 } 6460 free_percpu(sdd->sd); 6461 sdd->sd = NULL; 6462 free_percpu(sdd->sg); 6463 sdd->sg = NULL; 6464 free_percpu(sdd->sgp); 6465 sdd->sgp = NULL; 6466 } 6467 } 6468 6469 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6470 struct s_data *d, const struct cpumask *cpu_map, 6471 struct sched_domain_attr *attr, struct sched_domain *child, 6472 int cpu) 6473 { 6474 struct sched_domain *sd = tl->init(tl, cpu); 6475 if (!sd) 6476 return child; 6477 6478 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6479 if (child) { 6480 sd->level = child->level + 1; 6481 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6482 child->parent = sd; 6483 } 6484 sd->child = child; 6485 set_domain_attribute(sd, attr); 6486 6487 return sd; 6488 } 6489 6490 /* 6491 * Build sched domains for a given set of cpus and attach the sched domains 6492 * to the individual cpus 6493 */ 6494 static int build_sched_domains(const struct cpumask *cpu_map, 6495 struct sched_domain_attr *attr) 6496 { 6497 enum s_alloc alloc_state = sa_none; 6498 struct sched_domain *sd; 6499 struct s_data d; 6500 int i, ret = -ENOMEM; 6501 6502 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6503 if (alloc_state != sa_rootdomain) 6504 goto error; 6505 6506 /* Set up domains for cpus specified by the cpu_map. */ 6507 for_each_cpu(i, cpu_map) { 6508 struct sched_domain_topology_level *tl; 6509 6510 sd = NULL; 6511 for (tl = sched_domain_topology; tl->init; tl++) { 6512 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6513 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6514 sd->flags |= SD_OVERLAP; 6515 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6516 break; 6517 } 6518 6519 while (sd->child) 6520 sd = sd->child; 6521 6522 *per_cpu_ptr(d.sd, i) = sd; 6523 } 6524 6525 /* Build the groups for the domains */ 6526 for_each_cpu(i, cpu_map) { 6527 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6528 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6529 if (sd->flags & SD_OVERLAP) { 6530 if (build_overlap_sched_groups(sd, i)) 6531 goto error; 6532 } else { 6533 if (build_sched_groups(sd, i)) 6534 goto error; 6535 } 6536 } 6537 } 6538 6539 /* Calculate CPU power for physical packages and nodes */ 6540 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6541 if (!cpumask_test_cpu(i, cpu_map)) 6542 continue; 6543 6544 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6545 claim_allocations(i, sd); 6546 init_sched_groups_power(i, sd); 6547 } 6548 } 6549 6550 /* Attach the domains */ 6551 rcu_read_lock(); 6552 for_each_cpu(i, cpu_map) { 6553 sd = *per_cpu_ptr(d.sd, i); 6554 cpu_attach_domain(sd, d.rd, i); 6555 } 6556 rcu_read_unlock(); 6557 6558 ret = 0; 6559 error: 6560 __free_domain_allocs(&d, alloc_state, cpu_map); 6561 return ret; 6562 } 6563 6564 static cpumask_var_t *doms_cur; /* current sched domains */ 6565 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6566 static struct sched_domain_attr *dattr_cur; 6567 /* attribues of custom domains in 'doms_cur' */ 6568 6569 /* 6570 * Special case: If a kmalloc of a doms_cur partition (array of 6571 * cpumask) fails, then fallback to a single sched domain, 6572 * as determined by the single cpumask fallback_doms. 6573 */ 6574 static cpumask_var_t fallback_doms; 6575 6576 /* 6577 * arch_update_cpu_topology lets virtualized architectures update the 6578 * cpu core maps. It is supposed to return 1 if the topology changed 6579 * or 0 if it stayed the same. 6580 */ 6581 int __attribute__((weak)) arch_update_cpu_topology(void) 6582 { 6583 return 0; 6584 } 6585 6586 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6587 { 6588 int i; 6589 cpumask_var_t *doms; 6590 6591 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6592 if (!doms) 6593 return NULL; 6594 for (i = 0; i < ndoms; i++) { 6595 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6596 free_sched_domains(doms, i); 6597 return NULL; 6598 } 6599 } 6600 return doms; 6601 } 6602 6603 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6604 { 6605 unsigned int i; 6606 for (i = 0; i < ndoms; i++) 6607 free_cpumask_var(doms[i]); 6608 kfree(doms); 6609 } 6610 6611 /* 6612 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6613 * For now this just excludes isolated cpus, but could be used to 6614 * exclude other special cases in the future. 6615 */ 6616 static int init_sched_domains(const struct cpumask *cpu_map) 6617 { 6618 int err; 6619 6620 arch_update_cpu_topology(); 6621 ndoms_cur = 1; 6622 doms_cur = alloc_sched_domains(ndoms_cur); 6623 if (!doms_cur) 6624 doms_cur = &fallback_doms; 6625 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6626 err = build_sched_domains(doms_cur[0], NULL); 6627 register_sched_domain_sysctl(); 6628 6629 return err; 6630 } 6631 6632 /* 6633 * Detach sched domains from a group of cpus specified in cpu_map 6634 * These cpus will now be attached to the NULL domain 6635 */ 6636 static void detach_destroy_domains(const struct cpumask *cpu_map) 6637 { 6638 int i; 6639 6640 rcu_read_lock(); 6641 for_each_cpu(i, cpu_map) 6642 cpu_attach_domain(NULL, &def_root_domain, i); 6643 rcu_read_unlock(); 6644 } 6645 6646 /* handle null as "default" */ 6647 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6648 struct sched_domain_attr *new, int idx_new) 6649 { 6650 struct sched_domain_attr tmp; 6651 6652 /* fast path */ 6653 if (!new && !cur) 6654 return 1; 6655 6656 tmp = SD_ATTR_INIT; 6657 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6658 new ? (new + idx_new) : &tmp, 6659 sizeof(struct sched_domain_attr)); 6660 } 6661 6662 /* 6663 * Partition sched domains as specified by the 'ndoms_new' 6664 * cpumasks in the array doms_new[] of cpumasks. This compares 6665 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6666 * It destroys each deleted domain and builds each new domain. 6667 * 6668 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6669 * The masks don't intersect (don't overlap.) We should setup one 6670 * sched domain for each mask. CPUs not in any of the cpumasks will 6671 * not be load balanced. If the same cpumask appears both in the 6672 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6673 * it as it is. 6674 * 6675 * The passed in 'doms_new' should be allocated using 6676 * alloc_sched_domains. This routine takes ownership of it and will 6677 * free_sched_domains it when done with it. If the caller failed the 6678 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6679 * and partition_sched_domains() will fallback to the single partition 6680 * 'fallback_doms', it also forces the domains to be rebuilt. 6681 * 6682 * If doms_new == NULL it will be replaced with cpu_online_mask. 6683 * ndoms_new == 0 is a special case for destroying existing domains, 6684 * and it will not create the default domain. 6685 * 6686 * Call with hotplug lock held 6687 */ 6688 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6689 struct sched_domain_attr *dattr_new) 6690 { 6691 int i, j, n; 6692 int new_topology; 6693 6694 mutex_lock(&sched_domains_mutex); 6695 6696 /* always unregister in case we don't destroy any domains */ 6697 unregister_sched_domain_sysctl(); 6698 6699 /* Let architecture update cpu core mappings. */ 6700 new_topology = arch_update_cpu_topology(); 6701 6702 n = doms_new ? ndoms_new : 0; 6703 6704 /* Destroy deleted domains */ 6705 for (i = 0; i < ndoms_cur; i++) { 6706 for (j = 0; j < n && !new_topology; j++) { 6707 if (cpumask_equal(doms_cur[i], doms_new[j]) 6708 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6709 goto match1; 6710 } 6711 /* no match - a current sched domain not in new doms_new[] */ 6712 detach_destroy_domains(doms_cur[i]); 6713 match1: 6714 ; 6715 } 6716 6717 if (doms_new == NULL) { 6718 ndoms_cur = 0; 6719 doms_new = &fallback_doms; 6720 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6721 WARN_ON_ONCE(dattr_new); 6722 } 6723 6724 /* Build new domains */ 6725 for (i = 0; i < ndoms_new; i++) { 6726 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6727 if (cpumask_equal(doms_new[i], doms_cur[j]) 6728 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6729 goto match2; 6730 } 6731 /* no match - add a new doms_new */ 6732 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6733 match2: 6734 ; 6735 } 6736 6737 /* Remember the new sched domains */ 6738 if (doms_cur != &fallback_doms) 6739 free_sched_domains(doms_cur, ndoms_cur); 6740 kfree(dattr_cur); /* kfree(NULL) is safe */ 6741 doms_cur = doms_new; 6742 dattr_cur = dattr_new; 6743 ndoms_cur = ndoms_new; 6744 6745 register_sched_domain_sysctl(); 6746 6747 mutex_unlock(&sched_domains_mutex); 6748 } 6749 6750 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6751 6752 /* 6753 * Update cpusets according to cpu_active mask. If cpusets are 6754 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6755 * around partition_sched_domains(). 6756 * 6757 * If we come here as part of a suspend/resume, don't touch cpusets because we 6758 * want to restore it back to its original state upon resume anyway. 6759 */ 6760 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6761 void *hcpu) 6762 { 6763 switch (action) { 6764 case CPU_ONLINE_FROZEN: 6765 case CPU_DOWN_FAILED_FROZEN: 6766 6767 /* 6768 * num_cpus_frozen tracks how many CPUs are involved in suspend 6769 * resume sequence. As long as this is not the last online 6770 * operation in the resume sequence, just build a single sched 6771 * domain, ignoring cpusets. 6772 */ 6773 num_cpus_frozen--; 6774 if (likely(num_cpus_frozen)) { 6775 partition_sched_domains(1, NULL, NULL); 6776 break; 6777 } 6778 6779 /* 6780 * This is the last CPU online operation. So fall through and 6781 * restore the original sched domains by considering the 6782 * cpuset configurations. 6783 */ 6784 6785 case CPU_ONLINE: 6786 case CPU_DOWN_FAILED: 6787 cpuset_update_active_cpus(true); 6788 break; 6789 default: 6790 return NOTIFY_DONE; 6791 } 6792 return NOTIFY_OK; 6793 } 6794 6795 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6796 void *hcpu) 6797 { 6798 switch (action) { 6799 case CPU_DOWN_PREPARE: 6800 cpuset_update_active_cpus(false); 6801 break; 6802 case CPU_DOWN_PREPARE_FROZEN: 6803 num_cpus_frozen++; 6804 partition_sched_domains(1, NULL, NULL); 6805 break; 6806 default: 6807 return NOTIFY_DONE; 6808 } 6809 return NOTIFY_OK; 6810 } 6811 6812 void __init sched_init_smp(void) 6813 { 6814 cpumask_var_t non_isolated_cpus; 6815 6816 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6817 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6818 6819 sched_init_numa(); 6820 6821 get_online_cpus(); 6822 mutex_lock(&sched_domains_mutex); 6823 init_sched_domains(cpu_active_mask); 6824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6825 if (cpumask_empty(non_isolated_cpus)) 6826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6827 mutex_unlock(&sched_domains_mutex); 6828 put_online_cpus(); 6829 6830 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6831 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6832 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6833 6834 /* RT runtime code needs to handle some hotplug events */ 6835 hotcpu_notifier(update_runtime, 0); 6836 6837 init_hrtick(); 6838 6839 /* Move init over to a non-isolated CPU */ 6840 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6841 BUG(); 6842 sched_init_granularity(); 6843 free_cpumask_var(non_isolated_cpus); 6844 6845 init_sched_rt_class(); 6846 } 6847 #else 6848 void __init sched_init_smp(void) 6849 { 6850 sched_init_granularity(); 6851 } 6852 #endif /* CONFIG_SMP */ 6853 6854 const_debug unsigned int sysctl_timer_migration = 1; 6855 6856 int in_sched_functions(unsigned long addr) 6857 { 6858 return in_lock_functions(addr) || 6859 (addr >= (unsigned long)__sched_text_start 6860 && addr < (unsigned long)__sched_text_end); 6861 } 6862 6863 #ifdef CONFIG_CGROUP_SCHED 6864 struct task_group root_task_group; 6865 LIST_HEAD(task_groups); 6866 #endif 6867 6868 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6869 6870 void __init sched_init(void) 6871 { 6872 int i, j; 6873 unsigned long alloc_size = 0, ptr; 6874 6875 #ifdef CONFIG_FAIR_GROUP_SCHED 6876 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6877 #endif 6878 #ifdef CONFIG_RT_GROUP_SCHED 6879 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6880 #endif 6881 #ifdef CONFIG_CPUMASK_OFFSTACK 6882 alloc_size += num_possible_cpus() * cpumask_size(); 6883 #endif 6884 if (alloc_size) { 6885 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6886 6887 #ifdef CONFIG_FAIR_GROUP_SCHED 6888 root_task_group.se = (struct sched_entity **)ptr; 6889 ptr += nr_cpu_ids * sizeof(void **); 6890 6891 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6892 ptr += nr_cpu_ids * sizeof(void **); 6893 6894 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6895 #ifdef CONFIG_RT_GROUP_SCHED 6896 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6897 ptr += nr_cpu_ids * sizeof(void **); 6898 6899 root_task_group.rt_rq = (struct rt_rq **)ptr; 6900 ptr += nr_cpu_ids * sizeof(void **); 6901 6902 #endif /* CONFIG_RT_GROUP_SCHED */ 6903 #ifdef CONFIG_CPUMASK_OFFSTACK 6904 for_each_possible_cpu(i) { 6905 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6906 ptr += cpumask_size(); 6907 } 6908 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6909 } 6910 6911 #ifdef CONFIG_SMP 6912 init_defrootdomain(); 6913 #endif 6914 6915 init_rt_bandwidth(&def_rt_bandwidth, 6916 global_rt_period(), global_rt_runtime()); 6917 6918 #ifdef CONFIG_RT_GROUP_SCHED 6919 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6920 global_rt_period(), global_rt_runtime()); 6921 #endif /* CONFIG_RT_GROUP_SCHED */ 6922 6923 #ifdef CONFIG_CGROUP_SCHED 6924 list_add(&root_task_group.list, &task_groups); 6925 INIT_LIST_HEAD(&root_task_group.children); 6926 INIT_LIST_HEAD(&root_task_group.siblings); 6927 autogroup_init(&init_task); 6928 6929 #endif /* CONFIG_CGROUP_SCHED */ 6930 6931 #ifdef CONFIG_CGROUP_CPUACCT 6932 root_cpuacct.cpustat = &kernel_cpustat; 6933 root_cpuacct.cpuusage = alloc_percpu(u64); 6934 /* Too early, not expected to fail */ 6935 BUG_ON(!root_cpuacct.cpuusage); 6936 #endif 6937 for_each_possible_cpu(i) { 6938 struct rq *rq; 6939 6940 rq = cpu_rq(i); 6941 raw_spin_lock_init(&rq->lock); 6942 rq->nr_running = 0; 6943 rq->calc_load_active = 0; 6944 rq->calc_load_update = jiffies + LOAD_FREQ; 6945 init_cfs_rq(&rq->cfs); 6946 init_rt_rq(&rq->rt, rq); 6947 #ifdef CONFIG_FAIR_GROUP_SCHED 6948 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6949 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6950 /* 6951 * How much cpu bandwidth does root_task_group get? 6952 * 6953 * In case of task-groups formed thr' the cgroup filesystem, it 6954 * gets 100% of the cpu resources in the system. This overall 6955 * system cpu resource is divided among the tasks of 6956 * root_task_group and its child task-groups in a fair manner, 6957 * based on each entity's (task or task-group's) weight 6958 * (se->load.weight). 6959 * 6960 * In other words, if root_task_group has 10 tasks of weight 6961 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6962 * then A0's share of the cpu resource is: 6963 * 6964 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6965 * 6966 * We achieve this by letting root_task_group's tasks sit 6967 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6968 */ 6969 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6970 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6971 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6972 6973 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6974 #ifdef CONFIG_RT_GROUP_SCHED 6975 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6976 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6977 #endif 6978 6979 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6980 rq->cpu_load[j] = 0; 6981 6982 rq->last_load_update_tick = jiffies; 6983 6984 #ifdef CONFIG_SMP 6985 rq->sd = NULL; 6986 rq->rd = NULL; 6987 rq->cpu_power = SCHED_POWER_SCALE; 6988 rq->post_schedule = 0; 6989 rq->active_balance = 0; 6990 rq->next_balance = jiffies; 6991 rq->push_cpu = 0; 6992 rq->cpu = i; 6993 rq->online = 0; 6994 rq->idle_stamp = 0; 6995 rq->avg_idle = 2*sysctl_sched_migration_cost; 6996 6997 INIT_LIST_HEAD(&rq->cfs_tasks); 6998 6999 rq_attach_root(rq, &def_root_domain); 7000 #ifdef CONFIG_NO_HZ 7001 rq->nohz_flags = 0; 7002 #endif 7003 #endif 7004 init_rq_hrtick(rq); 7005 atomic_set(&rq->nr_iowait, 0); 7006 } 7007 7008 set_load_weight(&init_task); 7009 7010 #ifdef CONFIG_PREEMPT_NOTIFIERS 7011 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7012 #endif 7013 7014 #ifdef CONFIG_RT_MUTEXES 7015 plist_head_init(&init_task.pi_waiters); 7016 #endif 7017 7018 /* 7019 * The boot idle thread does lazy MMU switching as well: 7020 */ 7021 atomic_inc(&init_mm.mm_count); 7022 enter_lazy_tlb(&init_mm, current); 7023 7024 /* 7025 * Make us the idle thread. Technically, schedule() should not be 7026 * called from this thread, however somewhere below it might be, 7027 * but because we are the idle thread, we just pick up running again 7028 * when this runqueue becomes "idle". 7029 */ 7030 init_idle(current, smp_processor_id()); 7031 7032 calc_load_update = jiffies + LOAD_FREQ; 7033 7034 /* 7035 * During early bootup we pretend to be a normal task: 7036 */ 7037 current->sched_class = &fair_sched_class; 7038 7039 #ifdef CONFIG_SMP 7040 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7041 /* May be allocated at isolcpus cmdline parse time */ 7042 if (cpu_isolated_map == NULL) 7043 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7044 idle_thread_set_boot_cpu(); 7045 #endif 7046 init_sched_fair_class(); 7047 7048 scheduler_running = 1; 7049 } 7050 7051 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7052 static inline int preempt_count_equals(int preempt_offset) 7053 { 7054 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7055 7056 return (nested == preempt_offset); 7057 } 7058 7059 void __might_sleep(const char *file, int line, int preempt_offset) 7060 { 7061 static unsigned long prev_jiffy; /* ratelimiting */ 7062 7063 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7064 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7065 system_state != SYSTEM_RUNNING || oops_in_progress) 7066 return; 7067 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7068 return; 7069 prev_jiffy = jiffies; 7070 7071 printk(KERN_ERR 7072 "BUG: sleeping function called from invalid context at %s:%d\n", 7073 file, line); 7074 printk(KERN_ERR 7075 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7076 in_atomic(), irqs_disabled(), 7077 current->pid, current->comm); 7078 7079 debug_show_held_locks(current); 7080 if (irqs_disabled()) 7081 print_irqtrace_events(current); 7082 dump_stack(); 7083 } 7084 EXPORT_SYMBOL(__might_sleep); 7085 #endif 7086 7087 #ifdef CONFIG_MAGIC_SYSRQ 7088 static void normalize_task(struct rq *rq, struct task_struct *p) 7089 { 7090 const struct sched_class *prev_class = p->sched_class; 7091 int old_prio = p->prio; 7092 int on_rq; 7093 7094 on_rq = p->on_rq; 7095 if (on_rq) 7096 dequeue_task(rq, p, 0); 7097 __setscheduler(rq, p, SCHED_NORMAL, 0); 7098 if (on_rq) { 7099 enqueue_task(rq, p, 0); 7100 resched_task(rq->curr); 7101 } 7102 7103 check_class_changed(rq, p, prev_class, old_prio); 7104 } 7105 7106 void normalize_rt_tasks(void) 7107 { 7108 struct task_struct *g, *p; 7109 unsigned long flags; 7110 struct rq *rq; 7111 7112 read_lock_irqsave(&tasklist_lock, flags); 7113 do_each_thread(g, p) { 7114 /* 7115 * Only normalize user tasks: 7116 */ 7117 if (!p->mm) 7118 continue; 7119 7120 p->se.exec_start = 0; 7121 #ifdef CONFIG_SCHEDSTATS 7122 p->se.statistics.wait_start = 0; 7123 p->se.statistics.sleep_start = 0; 7124 p->se.statistics.block_start = 0; 7125 #endif 7126 7127 if (!rt_task(p)) { 7128 /* 7129 * Renice negative nice level userspace 7130 * tasks back to 0: 7131 */ 7132 if (TASK_NICE(p) < 0 && p->mm) 7133 set_user_nice(p, 0); 7134 continue; 7135 } 7136 7137 raw_spin_lock(&p->pi_lock); 7138 rq = __task_rq_lock(p); 7139 7140 normalize_task(rq, p); 7141 7142 __task_rq_unlock(rq); 7143 raw_spin_unlock(&p->pi_lock); 7144 } while_each_thread(g, p); 7145 7146 read_unlock_irqrestore(&tasklist_lock, flags); 7147 } 7148 7149 #endif /* CONFIG_MAGIC_SYSRQ */ 7150 7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7152 /* 7153 * These functions are only useful for the IA64 MCA handling, or kdb. 7154 * 7155 * They can only be called when the whole system has been 7156 * stopped - every CPU needs to be quiescent, and no scheduling 7157 * activity can take place. Using them for anything else would 7158 * be a serious bug, and as a result, they aren't even visible 7159 * under any other configuration. 7160 */ 7161 7162 /** 7163 * curr_task - return the current task for a given cpu. 7164 * @cpu: the processor in question. 7165 * 7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7167 */ 7168 struct task_struct *curr_task(int cpu) 7169 { 7170 return cpu_curr(cpu); 7171 } 7172 7173 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7174 7175 #ifdef CONFIG_IA64 7176 /** 7177 * set_curr_task - set the current task for a given cpu. 7178 * @cpu: the processor in question. 7179 * @p: the task pointer to set. 7180 * 7181 * Description: This function must only be used when non-maskable interrupts 7182 * are serviced on a separate stack. It allows the architecture to switch the 7183 * notion of the current task on a cpu in a non-blocking manner. This function 7184 * must be called with all CPU's synchronized, and interrupts disabled, the 7185 * and caller must save the original value of the current task (see 7186 * curr_task() above) and restore that value before reenabling interrupts and 7187 * re-starting the system. 7188 * 7189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7190 */ 7191 void set_curr_task(int cpu, struct task_struct *p) 7192 { 7193 cpu_curr(cpu) = p; 7194 } 7195 7196 #endif 7197 7198 #ifdef CONFIG_CGROUP_SCHED 7199 /* task_group_lock serializes the addition/removal of task groups */ 7200 static DEFINE_SPINLOCK(task_group_lock); 7201 7202 static void free_sched_group(struct task_group *tg) 7203 { 7204 free_fair_sched_group(tg); 7205 free_rt_sched_group(tg); 7206 autogroup_free(tg); 7207 kfree(tg); 7208 } 7209 7210 /* allocate runqueue etc for a new task group */ 7211 struct task_group *sched_create_group(struct task_group *parent) 7212 { 7213 struct task_group *tg; 7214 7215 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7216 if (!tg) 7217 return ERR_PTR(-ENOMEM); 7218 7219 if (!alloc_fair_sched_group(tg, parent)) 7220 goto err; 7221 7222 if (!alloc_rt_sched_group(tg, parent)) 7223 goto err; 7224 7225 return tg; 7226 7227 err: 7228 free_sched_group(tg); 7229 return ERR_PTR(-ENOMEM); 7230 } 7231 7232 void sched_online_group(struct task_group *tg, struct task_group *parent) 7233 { 7234 unsigned long flags; 7235 7236 spin_lock_irqsave(&task_group_lock, flags); 7237 list_add_rcu(&tg->list, &task_groups); 7238 7239 WARN_ON(!parent); /* root should already exist */ 7240 7241 tg->parent = parent; 7242 INIT_LIST_HEAD(&tg->children); 7243 list_add_rcu(&tg->siblings, &parent->children); 7244 spin_unlock_irqrestore(&task_group_lock, flags); 7245 } 7246 7247 /* rcu callback to free various structures associated with a task group */ 7248 static void free_sched_group_rcu(struct rcu_head *rhp) 7249 { 7250 /* now it should be safe to free those cfs_rqs */ 7251 free_sched_group(container_of(rhp, struct task_group, rcu)); 7252 } 7253 7254 /* Destroy runqueue etc associated with a task group */ 7255 void sched_destroy_group(struct task_group *tg) 7256 { 7257 /* wait for possible concurrent references to cfs_rqs complete */ 7258 call_rcu(&tg->rcu, free_sched_group_rcu); 7259 } 7260 7261 void sched_offline_group(struct task_group *tg) 7262 { 7263 unsigned long flags; 7264 int i; 7265 7266 /* end participation in shares distribution */ 7267 for_each_possible_cpu(i) 7268 unregister_fair_sched_group(tg, i); 7269 7270 spin_lock_irqsave(&task_group_lock, flags); 7271 list_del_rcu(&tg->list); 7272 list_del_rcu(&tg->siblings); 7273 spin_unlock_irqrestore(&task_group_lock, flags); 7274 } 7275 7276 /* change task's runqueue when it moves between groups. 7277 * The caller of this function should have put the task in its new group 7278 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7279 * reflect its new group. 7280 */ 7281 void sched_move_task(struct task_struct *tsk) 7282 { 7283 struct task_group *tg; 7284 int on_rq, running; 7285 unsigned long flags; 7286 struct rq *rq; 7287 7288 rq = task_rq_lock(tsk, &flags); 7289 7290 running = task_current(rq, tsk); 7291 on_rq = tsk->on_rq; 7292 7293 if (on_rq) 7294 dequeue_task(rq, tsk, 0); 7295 if (unlikely(running)) 7296 tsk->sched_class->put_prev_task(rq, tsk); 7297 7298 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7299 lockdep_is_held(&tsk->sighand->siglock)), 7300 struct task_group, css); 7301 tg = autogroup_task_group(tsk, tg); 7302 tsk->sched_task_group = tg; 7303 7304 #ifdef CONFIG_FAIR_GROUP_SCHED 7305 if (tsk->sched_class->task_move_group) 7306 tsk->sched_class->task_move_group(tsk, on_rq); 7307 else 7308 #endif 7309 set_task_rq(tsk, task_cpu(tsk)); 7310 7311 if (unlikely(running)) 7312 tsk->sched_class->set_curr_task(rq); 7313 if (on_rq) 7314 enqueue_task(rq, tsk, 0); 7315 7316 task_rq_unlock(rq, tsk, &flags); 7317 } 7318 #endif /* CONFIG_CGROUP_SCHED */ 7319 7320 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7321 static unsigned long to_ratio(u64 period, u64 runtime) 7322 { 7323 if (runtime == RUNTIME_INF) 7324 return 1ULL << 20; 7325 7326 return div64_u64(runtime << 20, period); 7327 } 7328 #endif 7329 7330 #ifdef CONFIG_RT_GROUP_SCHED 7331 /* 7332 * Ensure that the real time constraints are schedulable. 7333 */ 7334 static DEFINE_MUTEX(rt_constraints_mutex); 7335 7336 /* Must be called with tasklist_lock held */ 7337 static inline int tg_has_rt_tasks(struct task_group *tg) 7338 { 7339 struct task_struct *g, *p; 7340 7341 do_each_thread(g, p) { 7342 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7343 return 1; 7344 } while_each_thread(g, p); 7345 7346 return 0; 7347 } 7348 7349 struct rt_schedulable_data { 7350 struct task_group *tg; 7351 u64 rt_period; 7352 u64 rt_runtime; 7353 }; 7354 7355 static int tg_rt_schedulable(struct task_group *tg, void *data) 7356 { 7357 struct rt_schedulable_data *d = data; 7358 struct task_group *child; 7359 unsigned long total, sum = 0; 7360 u64 period, runtime; 7361 7362 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7363 runtime = tg->rt_bandwidth.rt_runtime; 7364 7365 if (tg == d->tg) { 7366 period = d->rt_period; 7367 runtime = d->rt_runtime; 7368 } 7369 7370 /* 7371 * Cannot have more runtime than the period. 7372 */ 7373 if (runtime > period && runtime != RUNTIME_INF) 7374 return -EINVAL; 7375 7376 /* 7377 * Ensure we don't starve existing RT tasks. 7378 */ 7379 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7380 return -EBUSY; 7381 7382 total = to_ratio(period, runtime); 7383 7384 /* 7385 * Nobody can have more than the global setting allows. 7386 */ 7387 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7388 return -EINVAL; 7389 7390 /* 7391 * The sum of our children's runtime should not exceed our own. 7392 */ 7393 list_for_each_entry_rcu(child, &tg->children, siblings) { 7394 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7395 runtime = child->rt_bandwidth.rt_runtime; 7396 7397 if (child == d->tg) { 7398 period = d->rt_period; 7399 runtime = d->rt_runtime; 7400 } 7401 7402 sum += to_ratio(period, runtime); 7403 } 7404 7405 if (sum > total) 7406 return -EINVAL; 7407 7408 return 0; 7409 } 7410 7411 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7412 { 7413 int ret; 7414 7415 struct rt_schedulable_data data = { 7416 .tg = tg, 7417 .rt_period = period, 7418 .rt_runtime = runtime, 7419 }; 7420 7421 rcu_read_lock(); 7422 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7423 rcu_read_unlock(); 7424 7425 return ret; 7426 } 7427 7428 static int tg_set_rt_bandwidth(struct task_group *tg, 7429 u64 rt_period, u64 rt_runtime) 7430 { 7431 int i, err = 0; 7432 7433 mutex_lock(&rt_constraints_mutex); 7434 read_lock(&tasklist_lock); 7435 err = __rt_schedulable(tg, rt_period, rt_runtime); 7436 if (err) 7437 goto unlock; 7438 7439 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7440 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7441 tg->rt_bandwidth.rt_runtime = rt_runtime; 7442 7443 for_each_possible_cpu(i) { 7444 struct rt_rq *rt_rq = tg->rt_rq[i]; 7445 7446 raw_spin_lock(&rt_rq->rt_runtime_lock); 7447 rt_rq->rt_runtime = rt_runtime; 7448 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7449 } 7450 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7451 unlock: 7452 read_unlock(&tasklist_lock); 7453 mutex_unlock(&rt_constraints_mutex); 7454 7455 return err; 7456 } 7457 7458 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7459 { 7460 u64 rt_runtime, rt_period; 7461 7462 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7463 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7464 if (rt_runtime_us < 0) 7465 rt_runtime = RUNTIME_INF; 7466 7467 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7468 } 7469 7470 long sched_group_rt_runtime(struct task_group *tg) 7471 { 7472 u64 rt_runtime_us; 7473 7474 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7475 return -1; 7476 7477 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7478 do_div(rt_runtime_us, NSEC_PER_USEC); 7479 return rt_runtime_us; 7480 } 7481 7482 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7483 { 7484 u64 rt_runtime, rt_period; 7485 7486 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7487 rt_runtime = tg->rt_bandwidth.rt_runtime; 7488 7489 if (rt_period == 0) 7490 return -EINVAL; 7491 7492 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7493 } 7494 7495 long sched_group_rt_period(struct task_group *tg) 7496 { 7497 u64 rt_period_us; 7498 7499 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7500 do_div(rt_period_us, NSEC_PER_USEC); 7501 return rt_period_us; 7502 } 7503 7504 static int sched_rt_global_constraints(void) 7505 { 7506 u64 runtime, period; 7507 int ret = 0; 7508 7509 if (sysctl_sched_rt_period <= 0) 7510 return -EINVAL; 7511 7512 runtime = global_rt_runtime(); 7513 period = global_rt_period(); 7514 7515 /* 7516 * Sanity check on the sysctl variables. 7517 */ 7518 if (runtime > period && runtime != RUNTIME_INF) 7519 return -EINVAL; 7520 7521 mutex_lock(&rt_constraints_mutex); 7522 read_lock(&tasklist_lock); 7523 ret = __rt_schedulable(NULL, 0, 0); 7524 read_unlock(&tasklist_lock); 7525 mutex_unlock(&rt_constraints_mutex); 7526 7527 return ret; 7528 } 7529 7530 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7531 { 7532 /* Don't accept realtime tasks when there is no way for them to run */ 7533 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7534 return 0; 7535 7536 return 1; 7537 } 7538 7539 #else /* !CONFIG_RT_GROUP_SCHED */ 7540 static int sched_rt_global_constraints(void) 7541 { 7542 unsigned long flags; 7543 int i; 7544 7545 if (sysctl_sched_rt_period <= 0) 7546 return -EINVAL; 7547 7548 /* 7549 * There's always some RT tasks in the root group 7550 * -- migration, kstopmachine etc.. 7551 */ 7552 if (sysctl_sched_rt_runtime == 0) 7553 return -EBUSY; 7554 7555 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7556 for_each_possible_cpu(i) { 7557 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7558 7559 raw_spin_lock(&rt_rq->rt_runtime_lock); 7560 rt_rq->rt_runtime = global_rt_runtime(); 7561 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7562 } 7563 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7564 7565 return 0; 7566 } 7567 #endif /* CONFIG_RT_GROUP_SCHED */ 7568 7569 int sched_rr_handler(struct ctl_table *table, int write, 7570 void __user *buffer, size_t *lenp, 7571 loff_t *ppos) 7572 { 7573 int ret; 7574 static DEFINE_MUTEX(mutex); 7575 7576 mutex_lock(&mutex); 7577 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7578 /* make sure that internally we keep jiffies */ 7579 /* also, writing zero resets timeslice to default */ 7580 if (!ret && write) { 7581 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7582 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7583 } 7584 mutex_unlock(&mutex); 7585 return ret; 7586 } 7587 7588 int sched_rt_handler(struct ctl_table *table, int write, 7589 void __user *buffer, size_t *lenp, 7590 loff_t *ppos) 7591 { 7592 int ret; 7593 int old_period, old_runtime; 7594 static DEFINE_MUTEX(mutex); 7595 7596 mutex_lock(&mutex); 7597 old_period = sysctl_sched_rt_period; 7598 old_runtime = sysctl_sched_rt_runtime; 7599 7600 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7601 7602 if (!ret && write) { 7603 ret = sched_rt_global_constraints(); 7604 if (ret) { 7605 sysctl_sched_rt_period = old_period; 7606 sysctl_sched_rt_runtime = old_runtime; 7607 } else { 7608 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7609 def_rt_bandwidth.rt_period = 7610 ns_to_ktime(global_rt_period()); 7611 } 7612 } 7613 mutex_unlock(&mutex); 7614 7615 return ret; 7616 } 7617 7618 #ifdef CONFIG_CGROUP_SCHED 7619 7620 /* return corresponding task_group object of a cgroup */ 7621 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7622 { 7623 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7624 struct task_group, css); 7625 } 7626 7627 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7628 { 7629 struct task_group *tg, *parent; 7630 7631 if (!cgrp->parent) { 7632 /* This is early initialization for the top cgroup */ 7633 return &root_task_group.css; 7634 } 7635 7636 parent = cgroup_tg(cgrp->parent); 7637 tg = sched_create_group(parent); 7638 if (IS_ERR(tg)) 7639 return ERR_PTR(-ENOMEM); 7640 7641 return &tg->css; 7642 } 7643 7644 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7645 { 7646 struct task_group *tg = cgroup_tg(cgrp); 7647 struct task_group *parent; 7648 7649 if (!cgrp->parent) 7650 return 0; 7651 7652 parent = cgroup_tg(cgrp->parent); 7653 sched_online_group(tg, parent); 7654 return 0; 7655 } 7656 7657 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7658 { 7659 struct task_group *tg = cgroup_tg(cgrp); 7660 7661 sched_destroy_group(tg); 7662 } 7663 7664 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7665 { 7666 struct task_group *tg = cgroup_tg(cgrp); 7667 7668 sched_offline_group(tg); 7669 } 7670 7671 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7672 struct cgroup_taskset *tset) 7673 { 7674 struct task_struct *task; 7675 7676 cgroup_taskset_for_each(task, cgrp, tset) { 7677 #ifdef CONFIG_RT_GROUP_SCHED 7678 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7679 return -EINVAL; 7680 #else 7681 /* We don't support RT-tasks being in separate groups */ 7682 if (task->sched_class != &fair_sched_class) 7683 return -EINVAL; 7684 #endif 7685 } 7686 return 0; 7687 } 7688 7689 static void cpu_cgroup_attach(struct cgroup *cgrp, 7690 struct cgroup_taskset *tset) 7691 { 7692 struct task_struct *task; 7693 7694 cgroup_taskset_for_each(task, cgrp, tset) 7695 sched_move_task(task); 7696 } 7697 7698 static void 7699 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7700 struct task_struct *task) 7701 { 7702 /* 7703 * cgroup_exit() is called in the copy_process() failure path. 7704 * Ignore this case since the task hasn't ran yet, this avoids 7705 * trying to poke a half freed task state from generic code. 7706 */ 7707 if (!(task->flags & PF_EXITING)) 7708 return; 7709 7710 sched_move_task(task); 7711 } 7712 7713 #ifdef CONFIG_FAIR_GROUP_SCHED 7714 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7715 u64 shareval) 7716 { 7717 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7718 } 7719 7720 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7721 { 7722 struct task_group *tg = cgroup_tg(cgrp); 7723 7724 return (u64) scale_load_down(tg->shares); 7725 } 7726 7727 #ifdef CONFIG_CFS_BANDWIDTH 7728 static DEFINE_MUTEX(cfs_constraints_mutex); 7729 7730 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7731 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7732 7733 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7734 7735 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7736 { 7737 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7739 7740 if (tg == &root_task_group) 7741 return -EINVAL; 7742 7743 /* 7744 * Ensure we have at some amount of bandwidth every period. This is 7745 * to prevent reaching a state of large arrears when throttled via 7746 * entity_tick() resulting in prolonged exit starvation. 7747 */ 7748 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7749 return -EINVAL; 7750 7751 /* 7752 * Likewise, bound things on the otherside by preventing insane quota 7753 * periods. This also allows us to normalize in computing quota 7754 * feasibility. 7755 */ 7756 if (period > max_cfs_quota_period) 7757 return -EINVAL; 7758 7759 mutex_lock(&cfs_constraints_mutex); 7760 ret = __cfs_schedulable(tg, period, quota); 7761 if (ret) 7762 goto out_unlock; 7763 7764 runtime_enabled = quota != RUNTIME_INF; 7765 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7766 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7767 raw_spin_lock_irq(&cfs_b->lock); 7768 cfs_b->period = ns_to_ktime(period); 7769 cfs_b->quota = quota; 7770 7771 __refill_cfs_bandwidth_runtime(cfs_b); 7772 /* restart the period timer (if active) to handle new period expiry */ 7773 if (runtime_enabled && cfs_b->timer_active) { 7774 /* force a reprogram */ 7775 cfs_b->timer_active = 0; 7776 __start_cfs_bandwidth(cfs_b); 7777 } 7778 raw_spin_unlock_irq(&cfs_b->lock); 7779 7780 for_each_possible_cpu(i) { 7781 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7782 struct rq *rq = cfs_rq->rq; 7783 7784 raw_spin_lock_irq(&rq->lock); 7785 cfs_rq->runtime_enabled = runtime_enabled; 7786 cfs_rq->runtime_remaining = 0; 7787 7788 if (cfs_rq->throttled) 7789 unthrottle_cfs_rq(cfs_rq); 7790 raw_spin_unlock_irq(&rq->lock); 7791 } 7792 out_unlock: 7793 mutex_unlock(&cfs_constraints_mutex); 7794 7795 return ret; 7796 } 7797 7798 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7799 { 7800 u64 quota, period; 7801 7802 period = ktime_to_ns(tg->cfs_bandwidth.period); 7803 if (cfs_quota_us < 0) 7804 quota = RUNTIME_INF; 7805 else 7806 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7807 7808 return tg_set_cfs_bandwidth(tg, period, quota); 7809 } 7810 7811 long tg_get_cfs_quota(struct task_group *tg) 7812 { 7813 u64 quota_us; 7814 7815 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7816 return -1; 7817 7818 quota_us = tg->cfs_bandwidth.quota; 7819 do_div(quota_us, NSEC_PER_USEC); 7820 7821 return quota_us; 7822 } 7823 7824 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7825 { 7826 u64 quota, period; 7827 7828 period = (u64)cfs_period_us * NSEC_PER_USEC; 7829 quota = tg->cfs_bandwidth.quota; 7830 7831 return tg_set_cfs_bandwidth(tg, period, quota); 7832 } 7833 7834 long tg_get_cfs_period(struct task_group *tg) 7835 { 7836 u64 cfs_period_us; 7837 7838 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7839 do_div(cfs_period_us, NSEC_PER_USEC); 7840 7841 return cfs_period_us; 7842 } 7843 7844 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7845 { 7846 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7847 } 7848 7849 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7850 s64 cfs_quota_us) 7851 { 7852 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7853 } 7854 7855 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7856 { 7857 return tg_get_cfs_period(cgroup_tg(cgrp)); 7858 } 7859 7860 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7861 u64 cfs_period_us) 7862 { 7863 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7864 } 7865 7866 struct cfs_schedulable_data { 7867 struct task_group *tg; 7868 u64 period, quota; 7869 }; 7870 7871 /* 7872 * normalize group quota/period to be quota/max_period 7873 * note: units are usecs 7874 */ 7875 static u64 normalize_cfs_quota(struct task_group *tg, 7876 struct cfs_schedulable_data *d) 7877 { 7878 u64 quota, period; 7879 7880 if (tg == d->tg) { 7881 period = d->period; 7882 quota = d->quota; 7883 } else { 7884 period = tg_get_cfs_period(tg); 7885 quota = tg_get_cfs_quota(tg); 7886 } 7887 7888 /* note: these should typically be equivalent */ 7889 if (quota == RUNTIME_INF || quota == -1) 7890 return RUNTIME_INF; 7891 7892 return to_ratio(period, quota); 7893 } 7894 7895 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7896 { 7897 struct cfs_schedulable_data *d = data; 7898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7899 s64 quota = 0, parent_quota = -1; 7900 7901 if (!tg->parent) { 7902 quota = RUNTIME_INF; 7903 } else { 7904 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7905 7906 quota = normalize_cfs_quota(tg, d); 7907 parent_quota = parent_b->hierarchal_quota; 7908 7909 /* 7910 * ensure max(child_quota) <= parent_quota, inherit when no 7911 * limit is set 7912 */ 7913 if (quota == RUNTIME_INF) 7914 quota = parent_quota; 7915 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7916 return -EINVAL; 7917 } 7918 cfs_b->hierarchal_quota = quota; 7919 7920 return 0; 7921 } 7922 7923 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7924 { 7925 int ret; 7926 struct cfs_schedulable_data data = { 7927 .tg = tg, 7928 .period = period, 7929 .quota = quota, 7930 }; 7931 7932 if (quota != RUNTIME_INF) { 7933 do_div(data.period, NSEC_PER_USEC); 7934 do_div(data.quota, NSEC_PER_USEC); 7935 } 7936 7937 rcu_read_lock(); 7938 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7939 rcu_read_unlock(); 7940 7941 return ret; 7942 } 7943 7944 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7945 struct cgroup_map_cb *cb) 7946 { 7947 struct task_group *tg = cgroup_tg(cgrp); 7948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7949 7950 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7951 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7952 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7953 7954 return 0; 7955 } 7956 #endif /* CONFIG_CFS_BANDWIDTH */ 7957 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7958 7959 #ifdef CONFIG_RT_GROUP_SCHED 7960 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7961 s64 val) 7962 { 7963 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7964 } 7965 7966 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7967 { 7968 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7969 } 7970 7971 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7972 u64 rt_period_us) 7973 { 7974 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7975 } 7976 7977 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7978 { 7979 return sched_group_rt_period(cgroup_tg(cgrp)); 7980 } 7981 #endif /* CONFIG_RT_GROUP_SCHED */ 7982 7983 static struct cftype cpu_files[] = { 7984 #ifdef CONFIG_FAIR_GROUP_SCHED 7985 { 7986 .name = "shares", 7987 .read_u64 = cpu_shares_read_u64, 7988 .write_u64 = cpu_shares_write_u64, 7989 }, 7990 #endif 7991 #ifdef CONFIG_CFS_BANDWIDTH 7992 { 7993 .name = "cfs_quota_us", 7994 .read_s64 = cpu_cfs_quota_read_s64, 7995 .write_s64 = cpu_cfs_quota_write_s64, 7996 }, 7997 { 7998 .name = "cfs_period_us", 7999 .read_u64 = cpu_cfs_period_read_u64, 8000 .write_u64 = cpu_cfs_period_write_u64, 8001 }, 8002 { 8003 .name = "stat", 8004 .read_map = cpu_stats_show, 8005 }, 8006 #endif 8007 #ifdef CONFIG_RT_GROUP_SCHED 8008 { 8009 .name = "rt_runtime_us", 8010 .read_s64 = cpu_rt_runtime_read, 8011 .write_s64 = cpu_rt_runtime_write, 8012 }, 8013 { 8014 .name = "rt_period_us", 8015 .read_u64 = cpu_rt_period_read_uint, 8016 .write_u64 = cpu_rt_period_write_uint, 8017 }, 8018 #endif 8019 { } /* terminate */ 8020 }; 8021 8022 struct cgroup_subsys cpu_cgroup_subsys = { 8023 .name = "cpu", 8024 .css_alloc = cpu_cgroup_css_alloc, 8025 .css_free = cpu_cgroup_css_free, 8026 .css_online = cpu_cgroup_css_online, 8027 .css_offline = cpu_cgroup_css_offline, 8028 .can_attach = cpu_cgroup_can_attach, 8029 .attach = cpu_cgroup_attach, 8030 .exit = cpu_cgroup_exit, 8031 .subsys_id = cpu_cgroup_subsys_id, 8032 .base_cftypes = cpu_files, 8033 .early_init = 1, 8034 }; 8035 8036 #endif /* CONFIG_CGROUP_SCHED */ 8037 8038 #ifdef CONFIG_CGROUP_CPUACCT 8039 8040 /* 8041 * CPU accounting code for task groups. 8042 * 8043 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8044 * (balbir@in.ibm.com). 8045 */ 8046 8047 struct cpuacct root_cpuacct; 8048 8049 /* create a new cpu accounting group */ 8050 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp) 8051 { 8052 struct cpuacct *ca; 8053 8054 if (!cgrp->parent) 8055 return &root_cpuacct.css; 8056 8057 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8058 if (!ca) 8059 goto out; 8060 8061 ca->cpuusage = alloc_percpu(u64); 8062 if (!ca->cpuusage) 8063 goto out_free_ca; 8064 8065 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8066 if (!ca->cpustat) 8067 goto out_free_cpuusage; 8068 8069 return &ca->css; 8070 8071 out_free_cpuusage: 8072 free_percpu(ca->cpuusage); 8073 out_free_ca: 8074 kfree(ca); 8075 out: 8076 return ERR_PTR(-ENOMEM); 8077 } 8078 8079 /* destroy an existing cpu accounting group */ 8080 static void cpuacct_css_free(struct cgroup *cgrp) 8081 { 8082 struct cpuacct *ca = cgroup_ca(cgrp); 8083 8084 free_percpu(ca->cpustat); 8085 free_percpu(ca->cpuusage); 8086 kfree(ca); 8087 } 8088 8089 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8090 { 8091 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8092 u64 data; 8093 8094 #ifndef CONFIG_64BIT 8095 /* 8096 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8097 */ 8098 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8099 data = *cpuusage; 8100 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8101 #else 8102 data = *cpuusage; 8103 #endif 8104 8105 return data; 8106 } 8107 8108 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8109 { 8110 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8111 8112 #ifndef CONFIG_64BIT 8113 /* 8114 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8115 */ 8116 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8117 *cpuusage = val; 8118 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8119 #else 8120 *cpuusage = val; 8121 #endif 8122 } 8123 8124 /* return total cpu usage (in nanoseconds) of a group */ 8125 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8126 { 8127 struct cpuacct *ca = cgroup_ca(cgrp); 8128 u64 totalcpuusage = 0; 8129 int i; 8130 8131 for_each_present_cpu(i) 8132 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8133 8134 return totalcpuusage; 8135 } 8136 8137 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8138 u64 reset) 8139 { 8140 struct cpuacct *ca = cgroup_ca(cgrp); 8141 int err = 0; 8142 int i; 8143 8144 if (reset) { 8145 err = -EINVAL; 8146 goto out; 8147 } 8148 8149 for_each_present_cpu(i) 8150 cpuacct_cpuusage_write(ca, i, 0); 8151 8152 out: 8153 return err; 8154 } 8155 8156 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8157 struct seq_file *m) 8158 { 8159 struct cpuacct *ca = cgroup_ca(cgroup); 8160 u64 percpu; 8161 int i; 8162 8163 for_each_present_cpu(i) { 8164 percpu = cpuacct_cpuusage_read(ca, i); 8165 seq_printf(m, "%llu ", (unsigned long long) percpu); 8166 } 8167 seq_printf(m, "\n"); 8168 return 0; 8169 } 8170 8171 static const char *cpuacct_stat_desc[] = { 8172 [CPUACCT_STAT_USER] = "user", 8173 [CPUACCT_STAT_SYSTEM] = "system", 8174 }; 8175 8176 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8177 struct cgroup_map_cb *cb) 8178 { 8179 struct cpuacct *ca = cgroup_ca(cgrp); 8180 int cpu; 8181 s64 val = 0; 8182 8183 for_each_online_cpu(cpu) { 8184 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8185 val += kcpustat->cpustat[CPUTIME_USER]; 8186 val += kcpustat->cpustat[CPUTIME_NICE]; 8187 } 8188 val = cputime64_to_clock_t(val); 8189 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8190 8191 val = 0; 8192 for_each_online_cpu(cpu) { 8193 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8194 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8195 val += kcpustat->cpustat[CPUTIME_IRQ]; 8196 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8197 } 8198 8199 val = cputime64_to_clock_t(val); 8200 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8201 8202 return 0; 8203 } 8204 8205 static struct cftype files[] = { 8206 { 8207 .name = "usage", 8208 .read_u64 = cpuusage_read, 8209 .write_u64 = cpuusage_write, 8210 }, 8211 { 8212 .name = "usage_percpu", 8213 .read_seq_string = cpuacct_percpu_seq_read, 8214 }, 8215 { 8216 .name = "stat", 8217 .read_map = cpuacct_stats_show, 8218 }, 8219 { } /* terminate */ 8220 }; 8221 8222 /* 8223 * charge this task's execution time to its accounting group. 8224 * 8225 * called with rq->lock held. 8226 */ 8227 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8228 { 8229 struct cpuacct *ca; 8230 int cpu; 8231 8232 if (unlikely(!cpuacct_subsys.active)) 8233 return; 8234 8235 cpu = task_cpu(tsk); 8236 8237 rcu_read_lock(); 8238 8239 ca = task_ca(tsk); 8240 8241 for (; ca; ca = parent_ca(ca)) { 8242 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8243 *cpuusage += cputime; 8244 } 8245 8246 rcu_read_unlock(); 8247 } 8248 8249 struct cgroup_subsys cpuacct_subsys = { 8250 .name = "cpuacct", 8251 .css_alloc = cpuacct_css_alloc, 8252 .css_free = cpuacct_css_free, 8253 .subsys_id = cpuacct_subsys_id, 8254 .base_cftypes = files, 8255 }; 8256 #endif /* CONFIG_CGROUP_CPUACCT */ 8257 8258 void dump_cpu_task(int cpu) 8259 { 8260 pr_info("Task dump for CPU %d:\n", cpu); 8261 sched_show_task(cpu_curr(cpu)); 8262 } 8263