xref: /openbmc/linux/kernel/sched/core.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15 
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18 
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22 
23 #include "pelt.h"
24 #include "smp.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
28 
29 /*
30  * Export tracepoints that act as a bare tracehook (ie: have no trace event
31  * associated with them) to allow external modules to probe them.
32  */
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
39 
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
41 
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
43 /*
44  * Debugging: various feature bits
45  *
46  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47  * sysctl_sched_features, defined in sched.h, to allow constants propagation
48  * at compile time and compiler optimization based on features default.
49  */
50 #define SCHED_FEAT(name, enabled)	\
51 	(1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 #undef SCHED_FEAT
56 #endif
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we measure -rt task CPU usage in us.
66  * default: 1s
67  */
68 unsigned int sysctl_sched_rt_period = 1000000;
69 
70 __read_mostly int scheduler_running;
71 
72 /*
73  * part of the period that we allow rt tasks to run in us.
74  * default: 0.95s
75  */
76 int sysctl_sched_rt_runtime = 950000;
77 
78 /*
79  * __task_rq_lock - lock the rq @p resides on.
80  */
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 	__acquires(rq->lock)
83 {
84 	struct rq *rq;
85 
86 	lockdep_assert_held(&p->pi_lock);
87 
88 	for (;;) {
89 		rq = task_rq(p);
90 		raw_spin_lock(&rq->lock);
91 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 			rq_pin_lock(rq, rf);
93 			return rq;
94 		}
95 		raw_spin_unlock(&rq->lock);
96 
97 		while (unlikely(task_on_rq_migrating(p)))
98 			cpu_relax();
99 	}
100 }
101 
102 /*
103  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
104  */
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 	__acquires(p->pi_lock)
107 	__acquires(rq->lock)
108 {
109 	struct rq *rq;
110 
111 	for (;;) {
112 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 		rq = task_rq(p);
114 		raw_spin_lock(&rq->lock);
115 		/*
116 		 *	move_queued_task()		task_rq_lock()
117 		 *
118 		 *	ACQUIRE (rq->lock)
119 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
120 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
121 		 *	[S] ->cpu = new_cpu		[L] task_rq()
122 		 *					[L] ->on_rq
123 		 *	RELEASE (rq->lock)
124 		 *
125 		 * If we observe the old CPU in task_rq_lock(), the acquire of
126 		 * the old rq->lock will fully serialize against the stores.
127 		 *
128 		 * If we observe the new CPU in task_rq_lock(), the address
129 		 * dependency headed by '[L] rq = task_rq()' and the acquire
130 		 * will pair with the WMB to ensure we then also see migrating.
131 		 */
132 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 			rq_pin_lock(rq, rf);
134 			return rq;
135 		}
136 		raw_spin_unlock(&rq->lock);
137 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
138 
139 		while (unlikely(task_on_rq_migrating(p)))
140 			cpu_relax();
141 	}
142 }
143 
144 /*
145  * RQ-clock updating methods:
146  */
147 
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 {
150 /*
151  * In theory, the compile should just see 0 here, and optimize out the call
152  * to sched_rt_avg_update. But I don't trust it...
153  */
154 	s64 __maybe_unused steal = 0, irq_delta = 0;
155 
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158 
159 	/*
160 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 	 * this case when a previous update_rq_clock() happened inside a
162 	 * {soft,}irq region.
163 	 *
164 	 * When this happens, we stop ->clock_task and only update the
165 	 * prev_irq_time stamp to account for the part that fit, so that a next
166 	 * update will consume the rest. This ensures ->clock_task is
167 	 * monotonic.
168 	 *
169 	 * It does however cause some slight miss-attribution of {soft,}irq
170 	 * time, a more accurate solution would be to update the irq_time using
171 	 * the current rq->clock timestamp, except that would require using
172 	 * atomic ops.
173 	 */
174 	if (irq_delta > delta)
175 		irq_delta = delta;
176 
177 	rq->prev_irq_time += irq_delta;
178 	delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 	if (static_key_false((&paravirt_steal_rq_enabled))) {
182 		steal = paravirt_steal_clock(cpu_of(rq));
183 		steal -= rq->prev_steal_time_rq;
184 
185 		if (unlikely(steal > delta))
186 			steal = delta;
187 
188 		rq->prev_steal_time_rq += steal;
189 		delta -= steal;
190 	}
191 #endif
192 
193 	rq->clock_task += delta;
194 
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 		update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 	update_rq_clock_pelt(rq, delta);
200 }
201 
202 void update_rq_clock(struct rq *rq)
203 {
204 	s64 delta;
205 
206 	lockdep_assert_held(&rq->lock);
207 
208 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 		return;
210 
211 #ifdef CONFIG_SCHED_DEBUG
212 	if (sched_feat(WARN_DOUBLE_CLOCK))
213 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 	rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
216 
217 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 	if (delta < 0)
219 		return;
220 	rq->clock += delta;
221 	update_rq_clock_task(rq, delta);
222 }
223 
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
226 {
227 	csd->flags = 0;
228 	csd->func = func;
229 	csd->info = rq;
230 }
231 
232 #ifdef CONFIG_SCHED_HRTICK
233 /*
234  * Use HR-timers to deliver accurate preemption points.
235  */
236 
237 static void hrtick_clear(struct rq *rq)
238 {
239 	if (hrtimer_active(&rq->hrtick_timer))
240 		hrtimer_cancel(&rq->hrtick_timer);
241 }
242 
243 /*
244  * High-resolution timer tick.
245  * Runs from hardirq context with interrupts disabled.
246  */
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
248 {
249 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 	struct rq_flags rf;
251 
252 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
253 
254 	rq_lock(rq, &rf);
255 	update_rq_clock(rq);
256 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 	rq_unlock(rq, &rf);
258 
259 	return HRTIMER_NORESTART;
260 }
261 
262 #ifdef CONFIG_SMP
263 
264 static void __hrtick_restart(struct rq *rq)
265 {
266 	struct hrtimer *timer = &rq->hrtick_timer;
267 
268 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
269 }
270 
271 /*
272  * called from hardirq (IPI) context
273  */
274 static void __hrtick_start(void *arg)
275 {
276 	struct rq *rq = arg;
277 	struct rq_flags rf;
278 
279 	rq_lock(rq, &rf);
280 	__hrtick_restart(rq);
281 	rq_unlock(rq, &rf);
282 }
283 
284 /*
285  * Called to set the hrtick timer state.
286  *
287  * called with rq->lock held and irqs disabled
288  */
289 void hrtick_start(struct rq *rq, u64 delay)
290 {
291 	struct hrtimer *timer = &rq->hrtick_timer;
292 	ktime_t time;
293 	s64 delta;
294 
295 	/*
296 	 * Don't schedule slices shorter than 10000ns, that just
297 	 * doesn't make sense and can cause timer DoS.
298 	 */
299 	delta = max_t(s64, delay, 10000LL);
300 	time = ktime_add_ns(timer->base->get_time(), delta);
301 
302 	hrtimer_set_expires(timer, time);
303 
304 	if (rq == this_rq())
305 		__hrtick_restart(rq);
306 	else
307 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
308 }
309 
310 #else
311 /*
312  * Called to set the hrtick timer state.
313  *
314  * called with rq->lock held and irqs disabled
315  */
316 void hrtick_start(struct rq *rq, u64 delay)
317 {
318 	/*
319 	 * Don't schedule slices shorter than 10000ns, that just
320 	 * doesn't make sense. Rely on vruntime for fairness.
321 	 */
322 	delay = max_t(u64, delay, 10000LL);
323 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 		      HRTIMER_MODE_REL_PINNED_HARD);
325 }
326 
327 #endif /* CONFIG_SMP */
328 
329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 	rq->hrtick_timer.function = hrtick;
336 }
337 #else	/* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
339 {
340 }
341 
342 static inline void hrtick_rq_init(struct rq *rq)
343 {
344 }
345 #endif	/* CONFIG_SCHED_HRTICK */
346 
347 /*
348  * cmpxchg based fetch_or, macro so it works for different integer types
349  */
350 #define fetch_or(ptr, mask)						\
351 	({								\
352 		typeof(ptr) _ptr = (ptr);				\
353 		typeof(mask) _mask = (mask);				\
354 		typeof(*_ptr) _old, _val = *_ptr;			\
355 									\
356 		for (;;) {						\
357 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
358 			if (_old == _val)				\
359 				break;					\
360 			_val = _old;					\
361 		}							\
362 	_old;								\
363 })
364 
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
366 /*
367  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368  * this avoids any races wrt polling state changes and thereby avoids
369  * spurious IPIs.
370  */
371 static bool set_nr_and_not_polling(struct task_struct *p)
372 {
373 	struct thread_info *ti = task_thread_info(p);
374 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 }
376 
377 /*
378  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
379  *
380  * If this returns true, then the idle task promises to call
381  * sched_ttwu_pending() and reschedule soon.
382  */
383 static bool set_nr_if_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
387 
388 	for (;;) {
389 		if (!(val & _TIF_POLLING_NRFLAG))
390 			return false;
391 		if (val & _TIF_NEED_RESCHED)
392 			return true;
393 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 		if (old == val)
395 			break;
396 		val = old;
397 	}
398 	return true;
399 }
400 
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
403 {
404 	set_tsk_need_resched(p);
405 	return true;
406 }
407 
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 	return false;
412 }
413 #endif
414 #endif
415 
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
417 {
418 	struct wake_q_node *node = &task->wake_q;
419 
420 	/*
421 	 * Atomically grab the task, if ->wake_q is !nil already it means
422 	 * its already queued (either by us or someone else) and will get the
423 	 * wakeup due to that.
424 	 *
425 	 * In order to ensure that a pending wakeup will observe our pending
426 	 * state, even in the failed case, an explicit smp_mb() must be used.
427 	 */
428 	smp_mb__before_atomic();
429 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 		return false;
431 
432 	/*
433 	 * The head is context local, there can be no concurrency.
434 	 */
435 	*head->lastp = node;
436 	head->lastp = &node->next;
437 	return true;
438 }
439 
440 /**
441  * wake_q_add() - queue a wakeup for 'later' waking.
442  * @head: the wake_q_head to add @task to
443  * @task: the task to queue for 'later' wakeup
444  *
445  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447  * instantly.
448  *
449  * This function must be used as-if it were wake_up_process(); IOW the task
450  * must be ready to be woken at this location.
451  */
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
453 {
454 	if (__wake_q_add(head, task))
455 		get_task_struct(task);
456 }
457 
458 /**
459  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460  * @head: the wake_q_head to add @task to
461  * @task: the task to queue for 'later' wakeup
462  *
463  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465  * instantly.
466  *
467  * This function must be used as-if it were wake_up_process(); IOW the task
468  * must be ready to be woken at this location.
469  *
470  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471  * that already hold reference to @task can call the 'safe' version and trust
472  * wake_q to do the right thing depending whether or not the @task is already
473  * queued for wakeup.
474  */
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
476 {
477 	if (!__wake_q_add(head, task))
478 		put_task_struct(task);
479 }
480 
481 void wake_up_q(struct wake_q_head *head)
482 {
483 	struct wake_q_node *node = head->first;
484 
485 	while (node != WAKE_Q_TAIL) {
486 		struct task_struct *task;
487 
488 		task = container_of(node, struct task_struct, wake_q);
489 		BUG_ON(!task);
490 		/* Task can safely be re-inserted now: */
491 		node = node->next;
492 		task->wake_q.next = NULL;
493 
494 		/*
495 		 * wake_up_process() executes a full barrier, which pairs with
496 		 * the queueing in wake_q_add() so as not to miss wakeups.
497 		 */
498 		wake_up_process(task);
499 		put_task_struct(task);
500 	}
501 }
502 
503 /*
504  * resched_curr - mark rq's current task 'to be rescheduled now'.
505  *
506  * On UP this means the setting of the need_resched flag, on SMP it
507  * might also involve a cross-CPU call to trigger the scheduler on
508  * the target CPU.
509  */
510 void resched_curr(struct rq *rq)
511 {
512 	struct task_struct *curr = rq->curr;
513 	int cpu;
514 
515 	lockdep_assert_held(&rq->lock);
516 
517 	if (test_tsk_need_resched(curr))
518 		return;
519 
520 	cpu = cpu_of(rq);
521 
522 	if (cpu == smp_processor_id()) {
523 		set_tsk_need_resched(curr);
524 		set_preempt_need_resched();
525 		return;
526 	}
527 
528 	if (set_nr_and_not_polling(curr))
529 		smp_send_reschedule(cpu);
530 	else
531 		trace_sched_wake_idle_without_ipi(cpu);
532 }
533 
534 void resched_cpu(int cpu)
535 {
536 	struct rq *rq = cpu_rq(cpu);
537 	unsigned long flags;
538 
539 	raw_spin_lock_irqsave(&rq->lock, flags);
540 	if (cpu_online(cpu) || cpu == smp_processor_id())
541 		resched_curr(rq);
542 	raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544 
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
547 /*
548  * In the semi idle case, use the nearest busy CPU for migrating timers
549  * from an idle CPU.  This is good for power-savings.
550  *
551  * We don't do similar optimization for completely idle system, as
552  * selecting an idle CPU will add more delays to the timers than intended
553  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
554  */
555 int get_nohz_timer_target(void)
556 {
557 	int i, cpu = smp_processor_id(), default_cpu = -1;
558 	struct sched_domain *sd;
559 
560 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 		if (!idle_cpu(cpu))
562 			return cpu;
563 		default_cpu = cpu;
564 	}
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu_and(i, sched_domain_span(sd),
569 			housekeeping_cpumask(HK_FLAG_TIMER)) {
570 			if (cpu == i)
571 				continue;
572 
573 			if (!idle_cpu(i)) {
574 				cpu = i;
575 				goto unlock;
576 			}
577 		}
578 	}
579 
580 	if (default_cpu == -1)
581 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 	cpu = default_cpu;
583 unlock:
584 	rcu_read_unlock();
585 	return cpu;
586 }
587 
588 /*
589  * When add_timer_on() enqueues a timer into the timer wheel of an
590  * idle CPU then this timer might expire before the next timer event
591  * which is scheduled to wake up that CPU. In case of a completely
592  * idle system the next event might even be infinite time into the
593  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594  * leaves the inner idle loop so the newly added timer is taken into
595  * account when the CPU goes back to idle and evaluates the timer
596  * wheel for the next timer event.
597  */
598 static void wake_up_idle_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 
602 	if (cpu == smp_processor_id())
603 		return;
604 
605 	if (set_nr_and_not_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 	else
608 		trace_sched_wake_idle_without_ipi(cpu);
609 }
610 
611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 	/*
614 	 * We just need the target to call irq_exit() and re-evaluate
615 	 * the next tick. The nohz full kick at least implies that.
616 	 * If needed we can still optimize that later with an
617 	 * empty IRQ.
618 	 */
619 	if (cpu_is_offline(cpu))
620 		return true;  /* Don't try to wake offline CPUs. */
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			tick_nohz_full_kick_cpu(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 /*
632  * Wake up the specified CPU.  If the CPU is going offline, it is the
633  * caller's responsibility to deal with the lost wakeup, for example,
634  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635  */
636 void wake_up_nohz_cpu(int cpu)
637 {
638 	if (!wake_up_full_nohz_cpu(cpu))
639 		wake_up_idle_cpu(cpu);
640 }
641 
642 static void nohz_csd_func(void *info)
643 {
644 	struct rq *rq = info;
645 	int cpu = cpu_of(rq);
646 	unsigned int flags;
647 
648 	/*
649 	 * Release the rq::nohz_csd.
650 	 */
651 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 	WARN_ON(!(flags & NOHZ_KICK_MASK));
653 
654 	rq->idle_balance = idle_cpu(cpu);
655 	if (rq->idle_balance && !need_resched()) {
656 		rq->nohz_idle_balance = flags;
657 		raise_softirq_irqoff(SCHED_SOFTIRQ);
658 	}
659 }
660 
661 #endif /* CONFIG_NO_HZ_COMMON */
662 
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 	int fifo_nr_running;
667 
668 	/* Deadline tasks, even if single, need the tick */
669 	if (rq->dl.dl_nr_running)
670 		return false;
671 
672 	/*
673 	 * If there are more than one RR tasks, we need the tick to effect the
674 	 * actual RR behaviour.
675 	 */
676 	if (rq->rt.rr_nr_running) {
677 		if (rq->rt.rr_nr_running == 1)
678 			return true;
679 		else
680 			return false;
681 	}
682 
683 	/*
684 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 	 * forced preemption between FIFO tasks.
686 	 */
687 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 	if (fifo_nr_running)
689 		return true;
690 
691 	/*
692 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 	 * if there's more than one we need the tick for involuntary
694 	 * preemption.
695 	 */
696 	if (rq->nr_running > 1)
697 		return false;
698 
699 	return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (task_has_idle_policy(p)) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return (unsigned long)p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return (unsigned long)uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 			   unsigned int clamps)
1080 {
1081 	enum uclamp_id clamp_id;
1082 	struct css_task_iter it;
1083 	struct task_struct *p;
1084 
1085 	css_task_iter_start(css, 0, &it);
1086 	while ((p = css_task_iter_next(&it))) {
1087 		for_each_clamp_id(clamp_id) {
1088 			if ((0x1 << clamp_id) & clamps)
1089 				uclamp_update_active(p, clamp_id);
1090 		}
1091 	}
1092 	css_task_iter_end(&it);
1093 }
1094 
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void *buffer, size_t *lenp, loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		uclamp_se_set(&p->uclamp_req[clamp_id],
1236 			      uclamp_none(clamp_id), false);
1237 	}
1238 }
1239 
1240 static void __init init_uclamp(void)
1241 {
1242 	struct uclamp_se uc_max = {};
1243 	enum uclamp_id clamp_id;
1244 	int cpu;
1245 
1246 	mutex_init(&uclamp_mutex);
1247 
1248 	for_each_possible_cpu(cpu) {
1249 		memset(&cpu_rq(cpu)->uclamp, 0,
1250 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 		cpu_rq(cpu)->uclamp_flags = 0;
1252 	}
1253 
1254 	for_each_clamp_id(clamp_id) {
1255 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 			      uclamp_none(clamp_id), false);
1257 	}
1258 
1259 	/* System defaults allow max clamp values for both indexes */
1260 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 		root_task_group.uclamp_req[clamp_id] = uc_max;
1265 		root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 	}
1268 }
1269 
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 				  const struct sched_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 				  const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283 
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 	if (!(flags & ENQUEUE_NOCLOCK))
1287 		update_rq_clock(rq);
1288 
1289 	if (!(flags & ENQUEUE_RESTORE)) {
1290 		sched_info_queued(rq, p);
1291 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 	}
1293 
1294 	uclamp_rq_inc(rq, p);
1295 	p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297 
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 	if (!(flags & DEQUEUE_NOCLOCK))
1301 		update_rq_clock(rq);
1302 
1303 	if (!(flags & DEQUEUE_SAVE)) {
1304 		sched_info_dequeued(rq, p);
1305 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 	}
1307 
1308 	uclamp_rq_dec(rq, p);
1309 	p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311 
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 	if (task_contributes_to_load(p))
1315 		rq->nr_uninterruptible--;
1316 
1317 	enqueue_task(rq, p, flags);
1318 
1319 	p->on_rq = TASK_ON_RQ_QUEUED;
1320 }
1321 
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1325 
1326 	if (task_contributes_to_load(p))
1327 		rq->nr_uninterruptible++;
1328 
1329 	dequeue_task(rq, p, flags);
1330 }
1331 
1332 /*
1333  * __normal_prio - return the priority that is based on the static prio
1334  */
1335 static inline int __normal_prio(struct task_struct *p)
1336 {
1337 	return p->static_prio;
1338 }
1339 
1340 /*
1341  * Calculate the expected normal priority: i.e. priority
1342  * without taking RT-inheritance into account. Might be
1343  * boosted by interactivity modifiers. Changes upon fork,
1344  * setprio syscalls, and whenever the interactivity
1345  * estimator recalculates.
1346  */
1347 static inline int normal_prio(struct task_struct *p)
1348 {
1349 	int prio;
1350 
1351 	if (task_has_dl_policy(p))
1352 		prio = MAX_DL_PRIO-1;
1353 	else if (task_has_rt_policy(p))
1354 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 	else
1356 		prio = __normal_prio(p);
1357 	return prio;
1358 }
1359 
1360 /*
1361  * Calculate the current priority, i.e. the priority
1362  * taken into account by the scheduler. This value might
1363  * be boosted by RT tasks, or might be boosted by
1364  * interactivity modifiers. Will be RT if the task got
1365  * RT-boosted. If not then it returns p->normal_prio.
1366  */
1367 static int effective_prio(struct task_struct *p)
1368 {
1369 	p->normal_prio = normal_prio(p);
1370 	/*
1371 	 * If we are RT tasks or we were boosted to RT priority,
1372 	 * keep the priority unchanged. Otherwise, update priority
1373 	 * to the normal priority:
1374 	 */
1375 	if (!rt_prio(p->prio))
1376 		return p->normal_prio;
1377 	return p->prio;
1378 }
1379 
1380 /**
1381  * task_curr - is this task currently executing on a CPU?
1382  * @p: the task in question.
1383  *
1384  * Return: 1 if the task is currently executing. 0 otherwise.
1385  */
1386 inline int task_curr(const struct task_struct *p)
1387 {
1388 	return cpu_curr(task_cpu(p)) == p;
1389 }
1390 
1391 /*
1392  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393  * use the balance_callback list if you want balancing.
1394  *
1395  * this means any call to check_class_changed() must be followed by a call to
1396  * balance_callback().
1397  */
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 				       const struct sched_class *prev_class,
1400 				       int oldprio)
1401 {
1402 	if (prev_class != p->sched_class) {
1403 		if (prev_class->switched_from)
1404 			prev_class->switched_from(rq, p);
1405 
1406 		p->sched_class->switched_to(rq, p);
1407 	} else if (oldprio != p->prio || dl_task(p))
1408 		p->sched_class->prio_changed(rq, p, oldprio);
1409 }
1410 
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 	const struct sched_class *class;
1414 
1415 	if (p->sched_class == rq->curr->sched_class) {
1416 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 	} else {
1418 		for_each_class(class) {
1419 			if (class == rq->curr->sched_class)
1420 				break;
1421 			if (class == p->sched_class) {
1422 				resched_curr(rq);
1423 				break;
1424 			}
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * A queue event has occurred, and we're going to schedule.  In
1430 	 * this case, we can save a useless back to back clock update.
1431 	 */
1432 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 		rq_clock_skip_update(rq);
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 
1438 /*
1439  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440  * __set_cpus_allowed_ptr() and select_fallback_rq().
1441  */
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1443 {
1444 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 		return false;
1446 
1447 	if (is_per_cpu_kthread(p))
1448 		return cpu_online(cpu);
1449 
1450 	return cpu_active(cpu);
1451 }
1452 
1453 /*
1454  * This is how migration works:
1455  *
1456  * 1) we invoke migration_cpu_stop() on the target CPU using
1457  *    stop_one_cpu().
1458  * 2) stopper starts to run (implicitly forcing the migrated thread
1459  *    off the CPU)
1460  * 3) it checks whether the migrated task is still in the wrong runqueue.
1461  * 4) if it's in the wrong runqueue then the migration thread removes
1462  *    it and puts it into the right queue.
1463  * 5) stopper completes and stop_one_cpu() returns and the migration
1464  *    is done.
1465  */
1466 
1467 /*
1468  * move_queued_task - move a queued task to new rq.
1469  *
1470  * Returns (locked) new rq. Old rq's lock is released.
1471  */
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 				   struct task_struct *p, int new_cpu)
1474 {
1475 	lockdep_assert_held(&rq->lock);
1476 
1477 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 	set_task_cpu(p, new_cpu);
1480 	rq_unlock(rq, rf);
1481 
1482 	rq = cpu_rq(new_cpu);
1483 
1484 	rq_lock(rq, rf);
1485 	BUG_ON(task_cpu(p) != new_cpu);
1486 	enqueue_task(rq, p, 0);
1487 	p->on_rq = TASK_ON_RQ_QUEUED;
1488 	check_preempt_curr(rq, p, 0);
1489 
1490 	return rq;
1491 }
1492 
1493 struct migration_arg {
1494 	struct task_struct *task;
1495 	int dest_cpu;
1496 };
1497 
1498 /*
1499  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500  * this because either it can't run here any more (set_cpus_allowed()
1501  * away from this CPU, or CPU going down), or because we're
1502  * attempting to rebalance this task on exec (sched_exec).
1503  *
1504  * So we race with normal scheduler movements, but that's OK, as long
1505  * as the task is no longer on this CPU.
1506  */
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 				 struct task_struct *p, int dest_cpu)
1509 {
1510 	/* Affinity changed (again). */
1511 	if (!is_cpu_allowed(p, dest_cpu))
1512 		return rq;
1513 
1514 	update_rq_clock(rq);
1515 	rq = move_queued_task(rq, rf, p, dest_cpu);
1516 
1517 	return rq;
1518 }
1519 
1520 /*
1521  * migration_cpu_stop - this will be executed by a highprio stopper thread
1522  * and performs thread migration by bumping thread off CPU then
1523  * 'pushing' onto another runqueue.
1524  */
1525 static int migration_cpu_stop(void *data)
1526 {
1527 	struct migration_arg *arg = data;
1528 	struct task_struct *p = arg->task;
1529 	struct rq *rq = this_rq();
1530 	struct rq_flags rf;
1531 
1532 	/*
1533 	 * The original target CPU might have gone down and we might
1534 	 * be on another CPU but it doesn't matter.
1535 	 */
1536 	local_irq_disable();
1537 	/*
1538 	 * We need to explicitly wake pending tasks before running
1539 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1541 	 */
1542 	flush_smp_call_function_from_idle();
1543 
1544 	raw_spin_lock(&p->pi_lock);
1545 	rq_lock(rq, &rf);
1546 	/*
1547 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 	 * we're holding p->pi_lock.
1550 	 */
1551 	if (task_rq(p) == rq) {
1552 		if (task_on_rq_queued(p))
1553 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 		else
1555 			p->wake_cpu = arg->dest_cpu;
1556 	}
1557 	rq_unlock(rq, &rf);
1558 	raw_spin_unlock(&p->pi_lock);
1559 
1560 	local_irq_enable();
1561 	return 0;
1562 }
1563 
1564 /*
1565  * sched_class::set_cpus_allowed must do the below, but is not required to
1566  * actually call this function.
1567  */
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 	cpumask_copy(&p->cpus_mask, new_mask);
1571 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1572 }
1573 
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1575 {
1576 	struct rq *rq = task_rq(p);
1577 	bool queued, running;
1578 
1579 	lockdep_assert_held(&p->pi_lock);
1580 
1581 	queued = task_on_rq_queued(p);
1582 	running = task_current(rq, p);
1583 
1584 	if (queued) {
1585 		/*
1586 		 * Because __kthread_bind() calls this on blocked tasks without
1587 		 * holding rq->lock.
1588 		 */
1589 		lockdep_assert_held(&rq->lock);
1590 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1591 	}
1592 	if (running)
1593 		put_prev_task(rq, p);
1594 
1595 	p->sched_class->set_cpus_allowed(p, new_mask);
1596 
1597 	if (queued)
1598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 	if (running)
1600 		set_next_task(rq, p);
1601 }
1602 
1603 /*
1604  * Change a given task's CPU affinity. Migrate the thread to a
1605  * proper CPU and schedule it away if the CPU it's executing on
1606  * is removed from the allowed bitmask.
1607  *
1608  * NOTE: the caller must have a valid reference to the task, the
1609  * task must not exit() & deallocate itself prematurely. The
1610  * call is not atomic; no spinlocks may be held.
1611  */
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 				  const struct cpumask *new_mask, bool check)
1614 {
1615 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 	unsigned int dest_cpu;
1617 	struct rq_flags rf;
1618 	struct rq *rq;
1619 	int ret = 0;
1620 
1621 	rq = task_rq_lock(p, &rf);
1622 	update_rq_clock(rq);
1623 
1624 	if (p->flags & PF_KTHREAD) {
1625 		/*
1626 		 * Kernel threads are allowed on online && !active CPUs
1627 		 */
1628 		cpu_valid_mask = cpu_online_mask;
1629 	}
1630 
1631 	/*
1632 	 * Must re-check here, to close a race against __kthread_bind(),
1633 	 * sched_setaffinity() is not guaranteed to observe the flag.
1634 	 */
1635 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 		ret = -EINVAL;
1637 		goto out;
1638 	}
1639 
1640 	if (cpumask_equal(p->cpus_ptr, new_mask))
1641 		goto out;
1642 
1643 	/*
1644 	 * Picking a ~random cpu helps in cases where we are changing affinity
1645 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 	 * immediately required to distribute the tasks within their new mask.
1647 	 */
1648 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 	if (dest_cpu >= nr_cpu_ids) {
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	do_set_cpus_allowed(p, new_mask);
1655 
1656 	if (p->flags & PF_KTHREAD) {
1657 		/*
1658 		 * For kernel threads that do indeed end up on online &&
1659 		 * !active we want to ensure they are strict per-CPU threads.
1660 		 */
1661 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1663 			p->nr_cpus_allowed != 1);
1664 	}
1665 
1666 	/* Can the task run on the task's current CPU? If so, we're done */
1667 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 		goto out;
1669 
1670 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 		struct migration_arg arg = { p, dest_cpu };
1672 		/* Need help from migration thread: drop lock and wait. */
1673 		task_rq_unlock(rq, p, &rf);
1674 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 		return 0;
1676 	} else if (task_on_rq_queued(p)) {
1677 		/*
1678 		 * OK, since we're going to drop the lock immediately
1679 		 * afterwards anyway.
1680 		 */
1681 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1682 	}
1683 out:
1684 	task_rq_unlock(rq, p, &rf);
1685 
1686 	return ret;
1687 }
1688 
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1690 {
1691 	return __set_cpus_allowed_ptr(p, new_mask, false);
1692 }
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1694 
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1696 {
1697 #ifdef CONFIG_SCHED_DEBUG
1698 	/*
1699 	 * We should never call set_task_cpu() on a blocked task,
1700 	 * ttwu() will sort out the placement.
1701 	 */
1702 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 			!p->on_rq);
1704 
1705 	/*
1706 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 	 * time relying on p->on_rq.
1709 	 */
1710 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 		     p->sched_class == &fair_sched_class &&
1712 		     (p->on_rq && !task_on_rq_migrating(p)));
1713 
1714 #ifdef CONFIG_LOCKDEP
1715 	/*
1716 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1718 	 *
1719 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 	 * see task_group().
1721 	 *
1722 	 * Furthermore, all task_rq users should acquire both locks, see
1723 	 * task_rq_lock().
1724 	 */
1725 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 				      lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1728 	/*
1729 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1730 	 */
1731 	WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1733 
1734 	trace_sched_migrate_task(p, new_cpu);
1735 
1736 	if (task_cpu(p) != new_cpu) {
1737 		if (p->sched_class->migrate_task_rq)
1738 			p->sched_class->migrate_task_rq(p, new_cpu);
1739 		p->se.nr_migrations++;
1740 		rseq_migrate(p);
1741 		perf_event_task_migrate(p);
1742 	}
1743 
1744 	__set_task_cpu(p, new_cpu);
1745 }
1746 
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1749 {
1750 	if (task_on_rq_queued(p)) {
1751 		struct rq *src_rq, *dst_rq;
1752 		struct rq_flags srf, drf;
1753 
1754 		src_rq = task_rq(p);
1755 		dst_rq = cpu_rq(cpu);
1756 
1757 		rq_pin_lock(src_rq, &srf);
1758 		rq_pin_lock(dst_rq, &drf);
1759 
1760 		deactivate_task(src_rq, p, 0);
1761 		set_task_cpu(p, cpu);
1762 		activate_task(dst_rq, p, 0);
1763 		check_preempt_curr(dst_rq, p, 0);
1764 
1765 		rq_unpin_lock(dst_rq, &drf);
1766 		rq_unpin_lock(src_rq, &srf);
1767 
1768 	} else {
1769 		/*
1770 		 * Task isn't running anymore; make it appear like we migrated
1771 		 * it before it went to sleep. This means on wakeup we make the
1772 		 * previous CPU our target instead of where it really is.
1773 		 */
1774 		p->wake_cpu = cpu;
1775 	}
1776 }
1777 
1778 struct migration_swap_arg {
1779 	struct task_struct *src_task, *dst_task;
1780 	int src_cpu, dst_cpu;
1781 };
1782 
1783 static int migrate_swap_stop(void *data)
1784 {
1785 	struct migration_swap_arg *arg = data;
1786 	struct rq *src_rq, *dst_rq;
1787 	int ret = -EAGAIN;
1788 
1789 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 		return -EAGAIN;
1791 
1792 	src_rq = cpu_rq(arg->src_cpu);
1793 	dst_rq = cpu_rq(arg->dst_cpu);
1794 
1795 	double_raw_lock(&arg->src_task->pi_lock,
1796 			&arg->dst_task->pi_lock);
1797 	double_rq_lock(src_rq, dst_rq);
1798 
1799 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 		goto unlock;
1801 
1802 	if (task_cpu(arg->src_task) != arg->src_cpu)
1803 		goto unlock;
1804 
1805 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 		goto unlock;
1807 
1808 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 		goto unlock;
1810 
1811 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1813 
1814 	ret = 0;
1815 
1816 unlock:
1817 	double_rq_unlock(src_rq, dst_rq);
1818 	raw_spin_unlock(&arg->dst_task->pi_lock);
1819 	raw_spin_unlock(&arg->src_task->pi_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Cross migrate two tasks
1826  */
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 		int target_cpu, int curr_cpu)
1829 {
1830 	struct migration_swap_arg arg;
1831 	int ret = -EINVAL;
1832 
1833 	arg = (struct migration_swap_arg){
1834 		.src_task = cur,
1835 		.src_cpu = curr_cpu,
1836 		.dst_task = p,
1837 		.dst_cpu = target_cpu,
1838 	};
1839 
1840 	if (arg.src_cpu == arg.dst_cpu)
1841 		goto out;
1842 
1843 	/*
1844 	 * These three tests are all lockless; this is OK since all of them
1845 	 * will be re-checked with proper locks held further down the line.
1846 	 */
1847 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 		goto out;
1849 
1850 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 		goto out;
1852 
1853 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 		goto out;
1855 
1856 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1858 
1859 out:
1860 	return ret;
1861 }
1862 #endif /* CONFIG_NUMA_BALANCING */
1863 
1864 /*
1865  * wait_task_inactive - wait for a thread to unschedule.
1866  *
1867  * If @match_state is nonzero, it's the @p->state value just checked and
1868  * not expected to change.  If it changes, i.e. @p might have woken up,
1869  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1870  * we return a positive number (its total switch count).  If a second call
1871  * a short while later returns the same number, the caller can be sure that
1872  * @p has remained unscheduled the whole time.
1873  *
1874  * The caller must ensure that the task *will* unschedule sometime soon,
1875  * else this function might spin for a *long* time. This function can't
1876  * be called with interrupts off, or it may introduce deadlock with
1877  * smp_call_function() if an IPI is sent by the same process we are
1878  * waiting to become inactive.
1879  */
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1881 {
1882 	int running, queued;
1883 	struct rq_flags rf;
1884 	unsigned long ncsw;
1885 	struct rq *rq;
1886 
1887 	for (;;) {
1888 		/*
1889 		 * We do the initial early heuristics without holding
1890 		 * any task-queue locks at all. We'll only try to get
1891 		 * the runqueue lock when things look like they will
1892 		 * work out!
1893 		 */
1894 		rq = task_rq(p);
1895 
1896 		/*
1897 		 * If the task is actively running on another CPU
1898 		 * still, just relax and busy-wait without holding
1899 		 * any locks.
1900 		 *
1901 		 * NOTE! Since we don't hold any locks, it's not
1902 		 * even sure that "rq" stays as the right runqueue!
1903 		 * But we don't care, since "task_running()" will
1904 		 * return false if the runqueue has changed and p
1905 		 * is actually now running somewhere else!
1906 		 */
1907 		while (task_running(rq, p)) {
1908 			if (match_state && unlikely(p->state != match_state))
1909 				return 0;
1910 			cpu_relax();
1911 		}
1912 
1913 		/*
1914 		 * Ok, time to look more closely! We need the rq
1915 		 * lock now, to be *sure*. If we're wrong, we'll
1916 		 * just go back and repeat.
1917 		 */
1918 		rq = task_rq_lock(p, &rf);
1919 		trace_sched_wait_task(p);
1920 		running = task_running(rq, p);
1921 		queued = task_on_rq_queued(p);
1922 		ncsw = 0;
1923 		if (!match_state || p->state == match_state)
1924 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 		task_rq_unlock(rq, p, &rf);
1926 
1927 		/*
1928 		 * If it changed from the expected state, bail out now.
1929 		 */
1930 		if (unlikely(!ncsw))
1931 			break;
1932 
1933 		/*
1934 		 * Was it really running after all now that we
1935 		 * checked with the proper locks actually held?
1936 		 *
1937 		 * Oops. Go back and try again..
1938 		 */
1939 		if (unlikely(running)) {
1940 			cpu_relax();
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * It's not enough that it's not actively running,
1946 		 * it must be off the runqueue _entirely_, and not
1947 		 * preempted!
1948 		 *
1949 		 * So if it was still runnable (but just not actively
1950 		 * running right now), it's preempted, and we should
1951 		 * yield - it could be a while.
1952 		 */
1953 		if (unlikely(queued)) {
1954 			ktime_t to = NSEC_PER_SEC / HZ;
1955 
1956 			set_current_state(TASK_UNINTERRUPTIBLE);
1957 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 			continue;
1959 		}
1960 
1961 		/*
1962 		 * Ahh, all good. It wasn't running, and it wasn't
1963 		 * runnable, which means that it will never become
1964 		 * running in the future either. We're all done!
1965 		 */
1966 		break;
1967 	}
1968 
1969 	return ncsw;
1970 }
1971 
1972 /***
1973  * kick_process - kick a running thread to enter/exit the kernel
1974  * @p: the to-be-kicked thread
1975  *
1976  * Cause a process which is running on another CPU to enter
1977  * kernel-mode, without any delay. (to get signals handled.)
1978  *
1979  * NOTE: this function doesn't have to take the runqueue lock,
1980  * because all it wants to ensure is that the remote task enters
1981  * the kernel. If the IPI races and the task has been migrated
1982  * to another CPU then no harm is done and the purpose has been
1983  * achieved as well.
1984  */
1985 void kick_process(struct task_struct *p)
1986 {
1987 	int cpu;
1988 
1989 	preempt_disable();
1990 	cpu = task_cpu(p);
1991 	if ((cpu != smp_processor_id()) && task_curr(p))
1992 		smp_send_reschedule(cpu);
1993 	preempt_enable();
1994 }
1995 EXPORT_SYMBOL_GPL(kick_process);
1996 
1997 /*
1998  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1999  *
2000  * A few notes on cpu_active vs cpu_online:
2001  *
2002  *  - cpu_active must be a subset of cpu_online
2003  *
2004  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005  *    see __set_cpus_allowed_ptr(). At this point the newly online
2006  *    CPU isn't yet part of the sched domains, and balancing will not
2007  *    see it.
2008  *
2009  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2010  *    avoid the load balancer to place new tasks on the to be removed
2011  *    CPU. Existing tasks will remain running there and will be taken
2012  *    off.
2013  *
2014  * This means that fallback selection must not select !active CPUs.
2015  * And can assume that any active CPU must be online. Conversely
2016  * select_task_rq() below may allow selection of !active CPUs in order
2017  * to satisfy the above rules.
2018  */
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2020 {
2021 	int nid = cpu_to_node(cpu);
2022 	const struct cpumask *nodemask = NULL;
2023 	enum { cpuset, possible, fail } state = cpuset;
2024 	int dest_cpu;
2025 
2026 	/*
2027 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 	 * will return -1. There is no CPU on the node, and we should
2029 	 * select the CPU on the other node.
2030 	 */
2031 	if (nid != -1) {
2032 		nodemask = cpumask_of_node(nid);
2033 
2034 		/* Look for allowed, online CPU in same node. */
2035 		for_each_cpu(dest_cpu, nodemask) {
2036 			if (!cpu_active(dest_cpu))
2037 				continue;
2038 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 				return dest_cpu;
2040 		}
2041 	}
2042 
2043 	for (;;) {
2044 		/* Any allowed, online CPU? */
2045 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 			if (!is_cpu_allowed(p, dest_cpu))
2047 				continue;
2048 
2049 			goto out;
2050 		}
2051 
2052 		/* No more Mr. Nice Guy. */
2053 		switch (state) {
2054 		case cpuset:
2055 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 				cpuset_cpus_allowed_fallback(p);
2057 				state = possible;
2058 				break;
2059 			}
2060 			/* Fall-through */
2061 		case possible:
2062 			do_set_cpus_allowed(p, cpu_possible_mask);
2063 			state = fail;
2064 			break;
2065 
2066 		case fail:
2067 			BUG();
2068 			break;
2069 		}
2070 	}
2071 
2072 out:
2073 	if (state != cpuset) {
2074 		/*
2075 		 * Don't tell them about moving exiting tasks or
2076 		 * kernel threads (both mm NULL), since they never
2077 		 * leave kernel.
2078 		 */
2079 		if (p->mm && printk_ratelimit()) {
2080 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 					task_pid_nr(p), p->comm, cpu);
2082 		}
2083 	}
2084 
2085 	return dest_cpu;
2086 }
2087 
2088 /*
2089  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2090  */
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2093 {
2094 	lockdep_assert_held(&p->pi_lock);
2095 
2096 	if (p->nr_cpus_allowed > 1)
2097 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 	else
2099 		cpu = cpumask_any(p->cpus_ptr);
2100 
2101 	/*
2102 	 * In order not to call set_task_cpu() on a blocking task we need
2103 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 	 * CPU.
2105 	 *
2106 	 * Since this is common to all placement strategies, this lives here.
2107 	 *
2108 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 	 *   not worry about this generic constraint ]
2110 	 */
2111 	if (unlikely(!is_cpu_allowed(p, cpu)))
2112 		cpu = select_fallback_rq(task_cpu(p), p);
2113 
2114 	return cpu;
2115 }
2116 
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2118 {
2119 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2121 
2122 	if (stop) {
2123 		/*
2124 		 * Make it appear like a SCHED_FIFO task, its something
2125 		 * userspace knows about and won't get confused about.
2126 		 *
2127 		 * Also, it will make PI more or less work without too
2128 		 * much confusion -- but then, stop work should not
2129 		 * rely on PI working anyway.
2130 		 */
2131 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2132 
2133 		stop->sched_class = &stop_sched_class;
2134 	}
2135 
2136 	cpu_rq(cpu)->stop = stop;
2137 
2138 	if (old_stop) {
2139 		/*
2140 		 * Reset it back to a normal scheduling class so that
2141 		 * it can die in pieces.
2142 		 */
2143 		old_stop->sched_class = &rt_sched_class;
2144 	}
2145 }
2146 
2147 #else
2148 
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 					 const struct cpumask *new_mask, bool check)
2151 {
2152 	return set_cpus_allowed_ptr(p, new_mask);
2153 }
2154 
2155 #endif /* CONFIG_SMP */
2156 
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2159 {
2160 	struct rq *rq;
2161 
2162 	if (!schedstat_enabled())
2163 		return;
2164 
2165 	rq = this_rq();
2166 
2167 #ifdef CONFIG_SMP
2168 	if (cpu == rq->cpu) {
2169 		__schedstat_inc(rq->ttwu_local);
2170 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 	} else {
2172 		struct sched_domain *sd;
2173 
2174 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 		rcu_read_lock();
2176 		for_each_domain(rq->cpu, sd) {
2177 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 				__schedstat_inc(sd->ttwu_wake_remote);
2179 				break;
2180 			}
2181 		}
2182 		rcu_read_unlock();
2183 	}
2184 
2185 	if (wake_flags & WF_MIGRATED)
2186 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2188 
2189 	__schedstat_inc(rq->ttwu_count);
2190 	__schedstat_inc(p->se.statistics.nr_wakeups);
2191 
2192 	if (wake_flags & WF_SYNC)
2193 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2194 }
2195 
2196 /*
2197  * Mark the task runnable and perform wakeup-preemption.
2198  */
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 			   struct rq_flags *rf)
2201 {
2202 	check_preempt_curr(rq, p, wake_flags);
2203 	p->state = TASK_RUNNING;
2204 	trace_sched_wakeup(p);
2205 
2206 #ifdef CONFIG_SMP
2207 	if (p->sched_class->task_woken) {
2208 		/*
2209 		 * Our task @p is fully woken up and running; so its safe to
2210 		 * drop the rq->lock, hereafter rq is only used for statistics.
2211 		 */
2212 		rq_unpin_lock(rq, rf);
2213 		p->sched_class->task_woken(rq, p);
2214 		rq_repin_lock(rq, rf);
2215 	}
2216 
2217 	if (rq->idle_stamp) {
2218 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 		u64 max = 2*rq->max_idle_balance_cost;
2220 
2221 		update_avg(&rq->avg_idle, delta);
2222 
2223 		if (rq->avg_idle > max)
2224 			rq->avg_idle = max;
2225 
2226 		rq->idle_stamp = 0;
2227 	}
2228 #endif
2229 }
2230 
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 		 struct rq_flags *rf)
2234 {
2235 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2236 
2237 	lockdep_assert_held(&rq->lock);
2238 
2239 #ifdef CONFIG_SMP
2240 	if (p->sched_contributes_to_load)
2241 		rq->nr_uninterruptible--;
2242 
2243 	if (wake_flags & WF_MIGRATED)
2244 		en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2246 
2247 	activate_task(rq, p, en_flags);
2248 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2249 }
2250 
2251 /*
2252  * Called in case the task @p isn't fully descheduled from its runqueue,
2253  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254  * since all we need to do is flip p->state to TASK_RUNNING, since
2255  * the task is still ->on_rq.
2256  */
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2258 {
2259 	struct rq_flags rf;
2260 	struct rq *rq;
2261 	int ret = 0;
2262 
2263 	rq = __task_rq_lock(p, &rf);
2264 	if (task_on_rq_queued(p)) {
2265 		/* check_preempt_curr() may use rq clock */
2266 		update_rq_clock(rq);
2267 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 		ret = 1;
2269 	}
2270 	__task_rq_unlock(rq, &rf);
2271 
2272 	return ret;
2273 }
2274 
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void *arg)
2277 {
2278 	struct llist_node *llist = arg;
2279 	struct rq *rq = this_rq();
2280 	struct task_struct *p, *t;
2281 	struct rq_flags rf;
2282 
2283 	if (!llist)
2284 		return;
2285 
2286 	/*
2287 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2288 	 * Races such that false-negatives are possible, since they
2289 	 * are shorter lived that false-positives would be.
2290 	 */
2291 	WRITE_ONCE(rq->ttwu_pending, 0);
2292 
2293 	rq_lock_irqsave(rq, &rf);
2294 	update_rq_clock(rq);
2295 
2296 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2297 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2298 
2299 	rq_unlock_irqrestore(rq, &rf);
2300 }
2301 
2302 void send_call_function_single_ipi(int cpu)
2303 {
2304 	struct rq *rq = cpu_rq(cpu);
2305 
2306 	if (!set_nr_if_polling(rq->idle))
2307 		arch_send_call_function_single_ipi(cpu);
2308 	else
2309 		trace_sched_wake_idle_without_ipi(cpu);
2310 }
2311 
2312 /*
2313  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2314  * necessary. The wakee CPU on receipt of the IPI will queue the task
2315  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2316  * of the wakeup instead of the waker.
2317  */
2318 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2319 {
2320 	struct rq *rq = cpu_rq(cpu);
2321 
2322 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2323 
2324 	WRITE_ONCE(rq->ttwu_pending, 1);
2325 	__smp_call_single_queue(cpu, &p->wake_entry);
2326 }
2327 
2328 void wake_up_if_idle(int cpu)
2329 {
2330 	struct rq *rq = cpu_rq(cpu);
2331 	struct rq_flags rf;
2332 
2333 	rcu_read_lock();
2334 
2335 	if (!is_idle_task(rcu_dereference(rq->curr)))
2336 		goto out;
2337 
2338 	if (set_nr_if_polling(rq->idle)) {
2339 		trace_sched_wake_idle_without_ipi(cpu);
2340 	} else {
2341 		rq_lock_irqsave(rq, &rf);
2342 		if (is_idle_task(rq->curr))
2343 			smp_send_reschedule(cpu);
2344 		/* Else CPU is not idle, do nothing here: */
2345 		rq_unlock_irqrestore(rq, &rf);
2346 	}
2347 
2348 out:
2349 	rcu_read_unlock();
2350 }
2351 
2352 bool cpus_share_cache(int this_cpu, int that_cpu)
2353 {
2354 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2355 }
2356 
2357 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2358 {
2359 	/*
2360 	 * If the CPU does not share cache, then queue the task on the
2361 	 * remote rqs wakelist to avoid accessing remote data.
2362 	 */
2363 	if (!cpus_share_cache(smp_processor_id(), cpu))
2364 		return true;
2365 
2366 	/*
2367 	 * If the task is descheduling and the only running task on the
2368 	 * CPU then use the wakelist to offload the task activation to
2369 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2370 	 * nr_running is checked to avoid unnecessary task stacking.
2371 	 */
2372 	if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2373 		return true;
2374 
2375 	return false;
2376 }
2377 
2378 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2379 {
2380 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2381 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2382 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2383 		return true;
2384 	}
2385 
2386 	return false;
2387 }
2388 #endif /* CONFIG_SMP */
2389 
2390 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2391 {
2392 	struct rq *rq = cpu_rq(cpu);
2393 	struct rq_flags rf;
2394 
2395 #if defined(CONFIG_SMP)
2396 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2397 		return;
2398 #endif
2399 
2400 	rq_lock(rq, &rf);
2401 	update_rq_clock(rq);
2402 	ttwu_do_activate(rq, p, wake_flags, &rf);
2403 	rq_unlock(rq, &rf);
2404 }
2405 
2406 /*
2407  * Notes on Program-Order guarantees on SMP systems.
2408  *
2409  *  MIGRATION
2410  *
2411  * The basic program-order guarantee on SMP systems is that when a task [t]
2412  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2413  * execution on its new CPU [c1].
2414  *
2415  * For migration (of runnable tasks) this is provided by the following means:
2416  *
2417  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2418  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2419  *     rq(c1)->lock (if not at the same time, then in that order).
2420  *  C) LOCK of the rq(c1)->lock scheduling in task
2421  *
2422  * Release/acquire chaining guarantees that B happens after A and C after B.
2423  * Note: the CPU doing B need not be c0 or c1
2424  *
2425  * Example:
2426  *
2427  *   CPU0            CPU1            CPU2
2428  *
2429  *   LOCK rq(0)->lock
2430  *   sched-out X
2431  *   sched-in Y
2432  *   UNLOCK rq(0)->lock
2433  *
2434  *                                   LOCK rq(0)->lock // orders against CPU0
2435  *                                   dequeue X
2436  *                                   UNLOCK rq(0)->lock
2437  *
2438  *                                   LOCK rq(1)->lock
2439  *                                   enqueue X
2440  *                                   UNLOCK rq(1)->lock
2441  *
2442  *                   LOCK rq(1)->lock // orders against CPU2
2443  *                   sched-out Z
2444  *                   sched-in X
2445  *                   UNLOCK rq(1)->lock
2446  *
2447  *
2448  *  BLOCKING -- aka. SLEEP + WAKEUP
2449  *
2450  * For blocking we (obviously) need to provide the same guarantee as for
2451  * migration. However the means are completely different as there is no lock
2452  * chain to provide order. Instead we do:
2453  *
2454  *   1) smp_store_release(X->on_cpu, 0)
2455  *   2) smp_cond_load_acquire(!X->on_cpu)
2456  *
2457  * Example:
2458  *
2459  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2460  *
2461  *   LOCK rq(0)->lock LOCK X->pi_lock
2462  *   dequeue X
2463  *   sched-out X
2464  *   smp_store_release(X->on_cpu, 0);
2465  *
2466  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2467  *                    X->state = WAKING
2468  *                    set_task_cpu(X,2)
2469  *
2470  *                    LOCK rq(2)->lock
2471  *                    enqueue X
2472  *                    X->state = RUNNING
2473  *                    UNLOCK rq(2)->lock
2474  *
2475  *                                          LOCK rq(2)->lock // orders against CPU1
2476  *                                          sched-out Z
2477  *                                          sched-in X
2478  *                                          UNLOCK rq(2)->lock
2479  *
2480  *                    UNLOCK X->pi_lock
2481  *   UNLOCK rq(0)->lock
2482  *
2483  *
2484  * However, for wakeups there is a second guarantee we must provide, namely we
2485  * must ensure that CONDITION=1 done by the caller can not be reordered with
2486  * accesses to the task state; see try_to_wake_up() and set_current_state().
2487  */
2488 
2489 /**
2490  * try_to_wake_up - wake up a thread
2491  * @p: the thread to be awakened
2492  * @state: the mask of task states that can be woken
2493  * @wake_flags: wake modifier flags (WF_*)
2494  *
2495  * If (@state & @p->state) @p->state = TASK_RUNNING.
2496  *
2497  * If the task was not queued/runnable, also place it back on a runqueue.
2498  *
2499  * Atomic against schedule() which would dequeue a task, also see
2500  * set_current_state().
2501  *
2502  * This function executes a full memory barrier before accessing the task
2503  * state; see set_current_state().
2504  *
2505  * Return: %true if @p->state changes (an actual wakeup was done),
2506  *	   %false otherwise.
2507  */
2508 static int
2509 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2510 {
2511 	unsigned long flags;
2512 	int cpu, success = 0;
2513 
2514 	preempt_disable();
2515 	if (p == current) {
2516 		/*
2517 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2518 		 * == smp_processor_id()'. Together this means we can special
2519 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2520 		 * without taking any locks.
2521 		 *
2522 		 * In particular:
2523 		 *  - we rely on Program-Order guarantees for all the ordering,
2524 		 *  - we're serialized against set_special_state() by virtue of
2525 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2526 		 */
2527 		if (!(p->state & state))
2528 			goto out;
2529 
2530 		success = 1;
2531 		cpu = task_cpu(p);
2532 		trace_sched_waking(p);
2533 		p->state = TASK_RUNNING;
2534 		trace_sched_wakeup(p);
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * If we are going to wake up a thread waiting for CONDITION we
2540 	 * need to ensure that CONDITION=1 done by the caller can not be
2541 	 * reordered with p->state check below. This pairs with mb() in
2542 	 * set_current_state() the waiting thread does.
2543 	 */
2544 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2545 	smp_mb__after_spinlock();
2546 	if (!(p->state & state))
2547 		goto unlock;
2548 
2549 	trace_sched_waking(p);
2550 
2551 	/* We're going to change ->state: */
2552 	success = 1;
2553 	cpu = task_cpu(p);
2554 
2555 	/*
2556 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2557 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2558 	 * in smp_cond_load_acquire() below.
2559 	 *
2560 	 * sched_ttwu_pending()			try_to_wake_up()
2561 	 *   STORE p->on_rq = 1			  LOAD p->state
2562 	 *   UNLOCK rq->lock
2563 	 *
2564 	 * __schedule() (switch to task 'p')
2565 	 *   LOCK rq->lock			  smp_rmb();
2566 	 *   smp_mb__after_spinlock();
2567 	 *   UNLOCK rq->lock
2568 	 *
2569 	 * [task p]
2570 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2571 	 *
2572 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2573 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2574 	 *
2575 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2576 	 */
2577 	smp_rmb();
2578 	if (p->on_rq && ttwu_remote(p, wake_flags))
2579 		goto unlock;
2580 
2581 	if (p->in_iowait) {
2582 		delayacct_blkio_end(p);
2583 		atomic_dec(&task_rq(p)->nr_iowait);
2584 	}
2585 
2586 #ifdef CONFIG_SMP
2587 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2588 	p->state = TASK_WAKING;
2589 
2590 	/*
2591 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2592 	 * possible to, falsely, observe p->on_cpu == 0.
2593 	 *
2594 	 * One must be running (->on_cpu == 1) in order to remove oneself
2595 	 * from the runqueue.
2596 	 *
2597 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2598 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2599 	 *   UNLOCK rq->lock
2600 	 *
2601 	 * __schedule() (put 'p' to sleep)
2602 	 *   LOCK rq->lock			  smp_rmb();
2603 	 *   smp_mb__after_spinlock();
2604 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2605 	 *
2606 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2607 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2608 	 */
2609 	smp_rmb();
2610 
2611 	/*
2612 	 * If the owning (remote) CPU is still in the middle of schedule() with
2613 	 * this task as prev, considering queueing p on the remote CPUs wake_list
2614 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2615 	 * let the waker make forward progress. This is safe because IRQs are
2616 	 * disabled and the IPI will deliver after on_cpu is cleared.
2617 	 */
2618 	if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2619 		goto unlock;
2620 
2621 	/*
2622 	 * If the owning (remote) CPU is still in the middle of schedule() with
2623 	 * this task as prev, wait until its done referencing the task.
2624 	 *
2625 	 * Pairs with the smp_store_release() in finish_task().
2626 	 *
2627 	 * This ensures that tasks getting woken will be fully ordered against
2628 	 * their previous state and preserve Program Order.
2629 	 */
2630 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2631 
2632 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2633 	if (task_cpu(p) != cpu) {
2634 		wake_flags |= WF_MIGRATED;
2635 		psi_ttwu_dequeue(p);
2636 		set_task_cpu(p, cpu);
2637 	}
2638 #endif /* CONFIG_SMP */
2639 
2640 	ttwu_queue(p, cpu, wake_flags);
2641 unlock:
2642 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2643 out:
2644 	if (success)
2645 		ttwu_stat(p, cpu, wake_flags);
2646 	preempt_enable();
2647 
2648 	return success;
2649 }
2650 
2651 /**
2652  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2653  * @p: Process for which the function is to be invoked.
2654  * @func: Function to invoke.
2655  * @arg: Argument to function.
2656  *
2657  * If the specified task can be quickly locked into a definite state
2658  * (either sleeping or on a given runqueue), arrange to keep it in that
2659  * state while invoking @func(@arg).  This function can use ->on_rq and
2660  * task_curr() to work out what the state is, if required.  Given that
2661  * @func can be invoked with a runqueue lock held, it had better be quite
2662  * lightweight.
2663  *
2664  * Returns:
2665  *	@false if the task slipped out from under the locks.
2666  *	@true if the task was locked onto a runqueue or is sleeping.
2667  *		However, @func can override this by returning @false.
2668  */
2669 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2670 {
2671 	bool ret = false;
2672 	struct rq_flags rf;
2673 	struct rq *rq;
2674 
2675 	lockdep_assert_irqs_enabled();
2676 	raw_spin_lock_irq(&p->pi_lock);
2677 	if (p->on_rq) {
2678 		rq = __task_rq_lock(p, &rf);
2679 		if (task_rq(p) == rq)
2680 			ret = func(p, arg);
2681 		rq_unlock(rq, &rf);
2682 	} else {
2683 		switch (p->state) {
2684 		case TASK_RUNNING:
2685 		case TASK_WAKING:
2686 			break;
2687 		default:
2688 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2689 			if (!p->on_rq)
2690 				ret = func(p, arg);
2691 		}
2692 	}
2693 	raw_spin_unlock_irq(&p->pi_lock);
2694 	return ret;
2695 }
2696 
2697 /**
2698  * wake_up_process - Wake up a specific process
2699  * @p: The process to be woken up.
2700  *
2701  * Attempt to wake up the nominated process and move it to the set of runnable
2702  * processes.
2703  *
2704  * Return: 1 if the process was woken up, 0 if it was already running.
2705  *
2706  * This function executes a full memory barrier before accessing the task state.
2707  */
2708 int wake_up_process(struct task_struct *p)
2709 {
2710 	return try_to_wake_up(p, TASK_NORMAL, 0);
2711 }
2712 EXPORT_SYMBOL(wake_up_process);
2713 
2714 int wake_up_state(struct task_struct *p, unsigned int state)
2715 {
2716 	return try_to_wake_up(p, state, 0);
2717 }
2718 
2719 /*
2720  * Perform scheduler related setup for a newly forked process p.
2721  * p is forked by current.
2722  *
2723  * __sched_fork() is basic setup used by init_idle() too:
2724  */
2725 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2726 {
2727 	p->on_rq			= 0;
2728 
2729 	p->se.on_rq			= 0;
2730 	p->se.exec_start		= 0;
2731 	p->se.sum_exec_runtime		= 0;
2732 	p->se.prev_sum_exec_runtime	= 0;
2733 	p->se.nr_migrations		= 0;
2734 	p->se.vruntime			= 0;
2735 	INIT_LIST_HEAD(&p->se.group_node);
2736 
2737 #ifdef CONFIG_FAIR_GROUP_SCHED
2738 	p->se.cfs_rq			= NULL;
2739 #endif
2740 
2741 #ifdef CONFIG_SCHEDSTATS
2742 	/* Even if schedstat is disabled, there should not be garbage */
2743 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2744 #endif
2745 
2746 	RB_CLEAR_NODE(&p->dl.rb_node);
2747 	init_dl_task_timer(&p->dl);
2748 	init_dl_inactive_task_timer(&p->dl);
2749 	__dl_clear_params(p);
2750 
2751 	INIT_LIST_HEAD(&p->rt.run_list);
2752 	p->rt.timeout		= 0;
2753 	p->rt.time_slice	= sched_rr_timeslice;
2754 	p->rt.on_rq		= 0;
2755 	p->rt.on_list		= 0;
2756 
2757 #ifdef CONFIG_PREEMPT_NOTIFIERS
2758 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2759 #endif
2760 
2761 #ifdef CONFIG_COMPACTION
2762 	p->capture_control = NULL;
2763 #endif
2764 	init_numa_balancing(clone_flags, p);
2765 #ifdef CONFIG_SMP
2766 	p->wake_entry_type = CSD_TYPE_TTWU;
2767 #endif
2768 }
2769 
2770 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2771 
2772 #ifdef CONFIG_NUMA_BALANCING
2773 
2774 void set_numabalancing_state(bool enabled)
2775 {
2776 	if (enabled)
2777 		static_branch_enable(&sched_numa_balancing);
2778 	else
2779 		static_branch_disable(&sched_numa_balancing);
2780 }
2781 
2782 #ifdef CONFIG_PROC_SYSCTL
2783 int sysctl_numa_balancing(struct ctl_table *table, int write,
2784 			  void *buffer, size_t *lenp, loff_t *ppos)
2785 {
2786 	struct ctl_table t;
2787 	int err;
2788 	int state = static_branch_likely(&sched_numa_balancing);
2789 
2790 	if (write && !capable(CAP_SYS_ADMIN))
2791 		return -EPERM;
2792 
2793 	t = *table;
2794 	t.data = &state;
2795 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2796 	if (err < 0)
2797 		return err;
2798 	if (write)
2799 		set_numabalancing_state(state);
2800 	return err;
2801 }
2802 #endif
2803 #endif
2804 
2805 #ifdef CONFIG_SCHEDSTATS
2806 
2807 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2808 static bool __initdata __sched_schedstats = false;
2809 
2810 static void set_schedstats(bool enabled)
2811 {
2812 	if (enabled)
2813 		static_branch_enable(&sched_schedstats);
2814 	else
2815 		static_branch_disable(&sched_schedstats);
2816 }
2817 
2818 void force_schedstat_enabled(void)
2819 {
2820 	if (!schedstat_enabled()) {
2821 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2822 		static_branch_enable(&sched_schedstats);
2823 	}
2824 }
2825 
2826 static int __init setup_schedstats(char *str)
2827 {
2828 	int ret = 0;
2829 	if (!str)
2830 		goto out;
2831 
2832 	/*
2833 	 * This code is called before jump labels have been set up, so we can't
2834 	 * change the static branch directly just yet.  Instead set a temporary
2835 	 * variable so init_schedstats() can do it later.
2836 	 */
2837 	if (!strcmp(str, "enable")) {
2838 		__sched_schedstats = true;
2839 		ret = 1;
2840 	} else if (!strcmp(str, "disable")) {
2841 		__sched_schedstats = false;
2842 		ret = 1;
2843 	}
2844 out:
2845 	if (!ret)
2846 		pr_warn("Unable to parse schedstats=\n");
2847 
2848 	return ret;
2849 }
2850 __setup("schedstats=", setup_schedstats);
2851 
2852 static void __init init_schedstats(void)
2853 {
2854 	set_schedstats(__sched_schedstats);
2855 }
2856 
2857 #ifdef CONFIG_PROC_SYSCTL
2858 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2859 		size_t *lenp, loff_t *ppos)
2860 {
2861 	struct ctl_table t;
2862 	int err;
2863 	int state = static_branch_likely(&sched_schedstats);
2864 
2865 	if (write && !capable(CAP_SYS_ADMIN))
2866 		return -EPERM;
2867 
2868 	t = *table;
2869 	t.data = &state;
2870 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2871 	if (err < 0)
2872 		return err;
2873 	if (write)
2874 		set_schedstats(state);
2875 	return err;
2876 }
2877 #endif /* CONFIG_PROC_SYSCTL */
2878 #else  /* !CONFIG_SCHEDSTATS */
2879 static inline void init_schedstats(void) {}
2880 #endif /* CONFIG_SCHEDSTATS */
2881 
2882 /*
2883  * fork()/clone()-time setup:
2884  */
2885 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2886 {
2887 	unsigned long flags;
2888 
2889 	__sched_fork(clone_flags, p);
2890 	/*
2891 	 * We mark the process as NEW here. This guarantees that
2892 	 * nobody will actually run it, and a signal or other external
2893 	 * event cannot wake it up and insert it on the runqueue either.
2894 	 */
2895 	p->state = TASK_NEW;
2896 
2897 	/*
2898 	 * Make sure we do not leak PI boosting priority to the child.
2899 	 */
2900 	p->prio = current->normal_prio;
2901 
2902 	uclamp_fork(p);
2903 
2904 	/*
2905 	 * Revert to default priority/policy on fork if requested.
2906 	 */
2907 	if (unlikely(p->sched_reset_on_fork)) {
2908 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2909 			p->policy = SCHED_NORMAL;
2910 			p->static_prio = NICE_TO_PRIO(0);
2911 			p->rt_priority = 0;
2912 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2913 			p->static_prio = NICE_TO_PRIO(0);
2914 
2915 		p->prio = p->normal_prio = __normal_prio(p);
2916 		set_load_weight(p, false);
2917 
2918 		/*
2919 		 * We don't need the reset flag anymore after the fork. It has
2920 		 * fulfilled its duty:
2921 		 */
2922 		p->sched_reset_on_fork = 0;
2923 	}
2924 
2925 	if (dl_prio(p->prio))
2926 		return -EAGAIN;
2927 	else if (rt_prio(p->prio))
2928 		p->sched_class = &rt_sched_class;
2929 	else
2930 		p->sched_class = &fair_sched_class;
2931 
2932 	init_entity_runnable_average(&p->se);
2933 
2934 	/*
2935 	 * The child is not yet in the pid-hash so no cgroup attach races,
2936 	 * and the cgroup is pinned to this child due to cgroup_fork()
2937 	 * is ran before sched_fork().
2938 	 *
2939 	 * Silence PROVE_RCU.
2940 	 */
2941 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2942 	/*
2943 	 * We're setting the CPU for the first time, we don't migrate,
2944 	 * so use __set_task_cpu().
2945 	 */
2946 	__set_task_cpu(p, smp_processor_id());
2947 	if (p->sched_class->task_fork)
2948 		p->sched_class->task_fork(p);
2949 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2950 
2951 #ifdef CONFIG_SCHED_INFO
2952 	if (likely(sched_info_on()))
2953 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2954 #endif
2955 #if defined(CONFIG_SMP)
2956 	p->on_cpu = 0;
2957 #endif
2958 	init_task_preempt_count(p);
2959 #ifdef CONFIG_SMP
2960 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2961 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2962 #endif
2963 	return 0;
2964 }
2965 
2966 unsigned long to_ratio(u64 period, u64 runtime)
2967 {
2968 	if (runtime == RUNTIME_INF)
2969 		return BW_UNIT;
2970 
2971 	/*
2972 	 * Doing this here saves a lot of checks in all
2973 	 * the calling paths, and returning zero seems
2974 	 * safe for them anyway.
2975 	 */
2976 	if (period == 0)
2977 		return 0;
2978 
2979 	return div64_u64(runtime << BW_SHIFT, period);
2980 }
2981 
2982 /*
2983  * wake_up_new_task - wake up a newly created task for the first time.
2984  *
2985  * This function will do some initial scheduler statistics housekeeping
2986  * that must be done for every newly created context, then puts the task
2987  * on the runqueue and wakes it.
2988  */
2989 void wake_up_new_task(struct task_struct *p)
2990 {
2991 	struct rq_flags rf;
2992 	struct rq *rq;
2993 
2994 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2995 	p->state = TASK_RUNNING;
2996 #ifdef CONFIG_SMP
2997 	/*
2998 	 * Fork balancing, do it here and not earlier because:
2999 	 *  - cpus_ptr can change in the fork path
3000 	 *  - any previously selected CPU might disappear through hotplug
3001 	 *
3002 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3003 	 * as we're not fully set-up yet.
3004 	 */
3005 	p->recent_used_cpu = task_cpu(p);
3006 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3007 #endif
3008 	rq = __task_rq_lock(p, &rf);
3009 	update_rq_clock(rq);
3010 	post_init_entity_util_avg(p);
3011 
3012 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3013 	trace_sched_wakeup_new(p);
3014 	check_preempt_curr(rq, p, WF_FORK);
3015 #ifdef CONFIG_SMP
3016 	if (p->sched_class->task_woken) {
3017 		/*
3018 		 * Nothing relies on rq->lock after this, so its fine to
3019 		 * drop it.
3020 		 */
3021 		rq_unpin_lock(rq, &rf);
3022 		p->sched_class->task_woken(rq, p);
3023 		rq_repin_lock(rq, &rf);
3024 	}
3025 #endif
3026 	task_rq_unlock(rq, p, &rf);
3027 }
3028 
3029 #ifdef CONFIG_PREEMPT_NOTIFIERS
3030 
3031 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3032 
3033 void preempt_notifier_inc(void)
3034 {
3035 	static_branch_inc(&preempt_notifier_key);
3036 }
3037 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3038 
3039 void preempt_notifier_dec(void)
3040 {
3041 	static_branch_dec(&preempt_notifier_key);
3042 }
3043 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3044 
3045 /**
3046  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3047  * @notifier: notifier struct to register
3048  */
3049 void preempt_notifier_register(struct preempt_notifier *notifier)
3050 {
3051 	if (!static_branch_unlikely(&preempt_notifier_key))
3052 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3053 
3054 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3055 }
3056 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3057 
3058 /**
3059  * preempt_notifier_unregister - no longer interested in preemption notifications
3060  * @notifier: notifier struct to unregister
3061  *
3062  * This is *not* safe to call from within a preemption notifier.
3063  */
3064 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3065 {
3066 	hlist_del(&notifier->link);
3067 }
3068 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3069 
3070 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3071 {
3072 	struct preempt_notifier *notifier;
3073 
3074 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3075 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3076 }
3077 
3078 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3079 {
3080 	if (static_branch_unlikely(&preempt_notifier_key))
3081 		__fire_sched_in_preempt_notifiers(curr);
3082 }
3083 
3084 static void
3085 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3086 				   struct task_struct *next)
3087 {
3088 	struct preempt_notifier *notifier;
3089 
3090 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3091 		notifier->ops->sched_out(notifier, next);
3092 }
3093 
3094 static __always_inline void
3095 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3096 				 struct task_struct *next)
3097 {
3098 	if (static_branch_unlikely(&preempt_notifier_key))
3099 		__fire_sched_out_preempt_notifiers(curr, next);
3100 }
3101 
3102 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3103 
3104 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3105 {
3106 }
3107 
3108 static inline void
3109 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3110 				 struct task_struct *next)
3111 {
3112 }
3113 
3114 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3115 
3116 static inline void prepare_task(struct task_struct *next)
3117 {
3118 #ifdef CONFIG_SMP
3119 	/*
3120 	 * Claim the task as running, we do this before switching to it
3121 	 * such that any running task will have this set.
3122 	 */
3123 	next->on_cpu = 1;
3124 #endif
3125 }
3126 
3127 static inline void finish_task(struct task_struct *prev)
3128 {
3129 #ifdef CONFIG_SMP
3130 	/*
3131 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3132 	 * We must ensure this doesn't happen until the switch is completely
3133 	 * finished.
3134 	 *
3135 	 * In particular, the load of prev->state in finish_task_switch() must
3136 	 * happen before this.
3137 	 *
3138 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3139 	 */
3140 	smp_store_release(&prev->on_cpu, 0);
3141 #endif
3142 }
3143 
3144 static inline void
3145 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3146 {
3147 	/*
3148 	 * Since the runqueue lock will be released by the next
3149 	 * task (which is an invalid locking op but in the case
3150 	 * of the scheduler it's an obvious special-case), so we
3151 	 * do an early lockdep release here:
3152 	 */
3153 	rq_unpin_lock(rq, rf);
3154 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3155 #ifdef CONFIG_DEBUG_SPINLOCK
3156 	/* this is a valid case when another task releases the spinlock */
3157 	rq->lock.owner = next;
3158 #endif
3159 }
3160 
3161 static inline void finish_lock_switch(struct rq *rq)
3162 {
3163 	/*
3164 	 * If we are tracking spinlock dependencies then we have to
3165 	 * fix up the runqueue lock - which gets 'carried over' from
3166 	 * prev into current:
3167 	 */
3168 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3169 	raw_spin_unlock_irq(&rq->lock);
3170 }
3171 
3172 /*
3173  * NOP if the arch has not defined these:
3174  */
3175 
3176 #ifndef prepare_arch_switch
3177 # define prepare_arch_switch(next)	do { } while (0)
3178 #endif
3179 
3180 #ifndef finish_arch_post_lock_switch
3181 # define finish_arch_post_lock_switch()	do { } while (0)
3182 #endif
3183 
3184 /**
3185  * prepare_task_switch - prepare to switch tasks
3186  * @rq: the runqueue preparing to switch
3187  * @prev: the current task that is being switched out
3188  * @next: the task we are going to switch to.
3189  *
3190  * This is called with the rq lock held and interrupts off. It must
3191  * be paired with a subsequent finish_task_switch after the context
3192  * switch.
3193  *
3194  * prepare_task_switch sets up locking and calls architecture specific
3195  * hooks.
3196  */
3197 static inline void
3198 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3199 		    struct task_struct *next)
3200 {
3201 	kcov_prepare_switch(prev);
3202 	sched_info_switch(rq, prev, next);
3203 	perf_event_task_sched_out(prev, next);
3204 	rseq_preempt(prev);
3205 	fire_sched_out_preempt_notifiers(prev, next);
3206 	prepare_task(next);
3207 	prepare_arch_switch(next);
3208 }
3209 
3210 /**
3211  * finish_task_switch - clean up after a task-switch
3212  * @prev: the thread we just switched away from.
3213  *
3214  * finish_task_switch must be called after the context switch, paired
3215  * with a prepare_task_switch call before the context switch.
3216  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3217  * and do any other architecture-specific cleanup actions.
3218  *
3219  * Note that we may have delayed dropping an mm in context_switch(). If
3220  * so, we finish that here outside of the runqueue lock. (Doing it
3221  * with the lock held can cause deadlocks; see schedule() for
3222  * details.)
3223  *
3224  * The context switch have flipped the stack from under us and restored the
3225  * local variables which were saved when this task called schedule() in the
3226  * past. prev == current is still correct but we need to recalculate this_rq
3227  * because prev may have moved to another CPU.
3228  */
3229 static struct rq *finish_task_switch(struct task_struct *prev)
3230 	__releases(rq->lock)
3231 {
3232 	struct rq *rq = this_rq();
3233 	struct mm_struct *mm = rq->prev_mm;
3234 	long prev_state;
3235 
3236 	/*
3237 	 * The previous task will have left us with a preempt_count of 2
3238 	 * because it left us after:
3239 	 *
3240 	 *	schedule()
3241 	 *	  preempt_disable();			// 1
3242 	 *	  __schedule()
3243 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3244 	 *
3245 	 * Also, see FORK_PREEMPT_COUNT.
3246 	 */
3247 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3248 		      "corrupted preempt_count: %s/%d/0x%x\n",
3249 		      current->comm, current->pid, preempt_count()))
3250 		preempt_count_set(FORK_PREEMPT_COUNT);
3251 
3252 	rq->prev_mm = NULL;
3253 
3254 	/*
3255 	 * A task struct has one reference for the use as "current".
3256 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3257 	 * schedule one last time. The schedule call will never return, and
3258 	 * the scheduled task must drop that reference.
3259 	 *
3260 	 * We must observe prev->state before clearing prev->on_cpu (in
3261 	 * finish_task), otherwise a concurrent wakeup can get prev
3262 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3263 	 * transition, resulting in a double drop.
3264 	 */
3265 	prev_state = prev->state;
3266 	vtime_task_switch(prev);
3267 	perf_event_task_sched_in(prev, current);
3268 	finish_task(prev);
3269 	finish_lock_switch(rq);
3270 	finish_arch_post_lock_switch();
3271 	kcov_finish_switch(current);
3272 
3273 	fire_sched_in_preempt_notifiers(current);
3274 	/*
3275 	 * When switching through a kernel thread, the loop in
3276 	 * membarrier_{private,global}_expedited() may have observed that
3277 	 * kernel thread and not issued an IPI. It is therefore possible to
3278 	 * schedule between user->kernel->user threads without passing though
3279 	 * switch_mm(). Membarrier requires a barrier after storing to
3280 	 * rq->curr, before returning to userspace, so provide them here:
3281 	 *
3282 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3283 	 *   provided by mmdrop(),
3284 	 * - a sync_core for SYNC_CORE.
3285 	 */
3286 	if (mm) {
3287 		membarrier_mm_sync_core_before_usermode(mm);
3288 		mmdrop(mm);
3289 	}
3290 	if (unlikely(prev_state == TASK_DEAD)) {
3291 		if (prev->sched_class->task_dead)
3292 			prev->sched_class->task_dead(prev);
3293 
3294 		/*
3295 		 * Remove function-return probe instances associated with this
3296 		 * task and put them back on the free list.
3297 		 */
3298 		kprobe_flush_task(prev);
3299 
3300 		/* Task is done with its stack. */
3301 		put_task_stack(prev);
3302 
3303 		put_task_struct_rcu_user(prev);
3304 	}
3305 
3306 	tick_nohz_task_switch();
3307 	return rq;
3308 }
3309 
3310 #ifdef CONFIG_SMP
3311 
3312 /* rq->lock is NOT held, but preemption is disabled */
3313 static void __balance_callback(struct rq *rq)
3314 {
3315 	struct callback_head *head, *next;
3316 	void (*func)(struct rq *rq);
3317 	unsigned long flags;
3318 
3319 	raw_spin_lock_irqsave(&rq->lock, flags);
3320 	head = rq->balance_callback;
3321 	rq->balance_callback = NULL;
3322 	while (head) {
3323 		func = (void (*)(struct rq *))head->func;
3324 		next = head->next;
3325 		head->next = NULL;
3326 		head = next;
3327 
3328 		func(rq);
3329 	}
3330 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3331 }
3332 
3333 static inline void balance_callback(struct rq *rq)
3334 {
3335 	if (unlikely(rq->balance_callback))
3336 		__balance_callback(rq);
3337 }
3338 
3339 #else
3340 
3341 static inline void balance_callback(struct rq *rq)
3342 {
3343 }
3344 
3345 #endif
3346 
3347 /**
3348  * schedule_tail - first thing a freshly forked thread must call.
3349  * @prev: the thread we just switched away from.
3350  */
3351 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3352 	__releases(rq->lock)
3353 {
3354 	struct rq *rq;
3355 
3356 	/*
3357 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3358 	 * finish_task_switch() for details.
3359 	 *
3360 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3361 	 * and the preempt_enable() will end up enabling preemption (on
3362 	 * PREEMPT_COUNT kernels).
3363 	 */
3364 
3365 	rq = finish_task_switch(prev);
3366 	balance_callback(rq);
3367 	preempt_enable();
3368 
3369 	if (current->set_child_tid)
3370 		put_user(task_pid_vnr(current), current->set_child_tid);
3371 
3372 	calculate_sigpending();
3373 }
3374 
3375 /*
3376  * context_switch - switch to the new MM and the new thread's register state.
3377  */
3378 static __always_inline struct rq *
3379 context_switch(struct rq *rq, struct task_struct *prev,
3380 	       struct task_struct *next, struct rq_flags *rf)
3381 {
3382 	prepare_task_switch(rq, prev, next);
3383 
3384 	/*
3385 	 * For paravirt, this is coupled with an exit in switch_to to
3386 	 * combine the page table reload and the switch backend into
3387 	 * one hypercall.
3388 	 */
3389 	arch_start_context_switch(prev);
3390 
3391 	/*
3392 	 * kernel -> kernel   lazy + transfer active
3393 	 *   user -> kernel   lazy + mmgrab() active
3394 	 *
3395 	 * kernel ->   user   switch + mmdrop() active
3396 	 *   user ->   user   switch
3397 	 */
3398 	if (!next->mm) {                                // to kernel
3399 		enter_lazy_tlb(prev->active_mm, next);
3400 
3401 		next->active_mm = prev->active_mm;
3402 		if (prev->mm)                           // from user
3403 			mmgrab(prev->active_mm);
3404 		else
3405 			prev->active_mm = NULL;
3406 	} else {                                        // to user
3407 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3408 		/*
3409 		 * sys_membarrier() requires an smp_mb() between setting
3410 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3411 		 *
3412 		 * The below provides this either through switch_mm(), or in
3413 		 * case 'prev->active_mm == next->mm' through
3414 		 * finish_task_switch()'s mmdrop().
3415 		 */
3416 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3417 
3418 		if (!prev->mm) {                        // from kernel
3419 			/* will mmdrop() in finish_task_switch(). */
3420 			rq->prev_mm = prev->active_mm;
3421 			prev->active_mm = NULL;
3422 		}
3423 	}
3424 
3425 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3426 
3427 	prepare_lock_switch(rq, next, rf);
3428 
3429 	/* Here we just switch the register state and the stack. */
3430 	switch_to(prev, next, prev);
3431 	barrier();
3432 
3433 	return finish_task_switch(prev);
3434 }
3435 
3436 /*
3437  * nr_running and nr_context_switches:
3438  *
3439  * externally visible scheduler statistics: current number of runnable
3440  * threads, total number of context switches performed since bootup.
3441  */
3442 unsigned long nr_running(void)
3443 {
3444 	unsigned long i, sum = 0;
3445 
3446 	for_each_online_cpu(i)
3447 		sum += cpu_rq(i)->nr_running;
3448 
3449 	return sum;
3450 }
3451 
3452 /*
3453  * Check if only the current task is running on the CPU.
3454  *
3455  * Caution: this function does not check that the caller has disabled
3456  * preemption, thus the result might have a time-of-check-to-time-of-use
3457  * race.  The caller is responsible to use it correctly, for example:
3458  *
3459  * - from a non-preemptible section (of course)
3460  *
3461  * - from a thread that is bound to a single CPU
3462  *
3463  * - in a loop with very short iterations (e.g. a polling loop)
3464  */
3465 bool single_task_running(void)
3466 {
3467 	return raw_rq()->nr_running == 1;
3468 }
3469 EXPORT_SYMBOL(single_task_running);
3470 
3471 unsigned long long nr_context_switches(void)
3472 {
3473 	int i;
3474 	unsigned long long sum = 0;
3475 
3476 	for_each_possible_cpu(i)
3477 		sum += cpu_rq(i)->nr_switches;
3478 
3479 	return sum;
3480 }
3481 
3482 /*
3483  * Consumers of these two interfaces, like for example the cpuidle menu
3484  * governor, are using nonsensical data. Preferring shallow idle state selection
3485  * for a CPU that has IO-wait which might not even end up running the task when
3486  * it does become runnable.
3487  */
3488 
3489 unsigned long nr_iowait_cpu(int cpu)
3490 {
3491 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3492 }
3493 
3494 /*
3495  * IO-wait accounting, and how its mostly bollocks (on SMP).
3496  *
3497  * The idea behind IO-wait account is to account the idle time that we could
3498  * have spend running if it were not for IO. That is, if we were to improve the
3499  * storage performance, we'd have a proportional reduction in IO-wait time.
3500  *
3501  * This all works nicely on UP, where, when a task blocks on IO, we account
3502  * idle time as IO-wait, because if the storage were faster, it could've been
3503  * running and we'd not be idle.
3504  *
3505  * This has been extended to SMP, by doing the same for each CPU. This however
3506  * is broken.
3507  *
3508  * Imagine for instance the case where two tasks block on one CPU, only the one
3509  * CPU will have IO-wait accounted, while the other has regular idle. Even
3510  * though, if the storage were faster, both could've ran at the same time,
3511  * utilising both CPUs.
3512  *
3513  * This means, that when looking globally, the current IO-wait accounting on
3514  * SMP is a lower bound, by reason of under accounting.
3515  *
3516  * Worse, since the numbers are provided per CPU, they are sometimes
3517  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3518  * associated with any one particular CPU, it can wake to another CPU than it
3519  * blocked on. This means the per CPU IO-wait number is meaningless.
3520  *
3521  * Task CPU affinities can make all that even more 'interesting'.
3522  */
3523 
3524 unsigned long nr_iowait(void)
3525 {
3526 	unsigned long i, sum = 0;
3527 
3528 	for_each_possible_cpu(i)
3529 		sum += nr_iowait_cpu(i);
3530 
3531 	return sum;
3532 }
3533 
3534 #ifdef CONFIG_SMP
3535 
3536 /*
3537  * sched_exec - execve() is a valuable balancing opportunity, because at
3538  * this point the task has the smallest effective memory and cache footprint.
3539  */
3540 void sched_exec(void)
3541 {
3542 	struct task_struct *p = current;
3543 	unsigned long flags;
3544 	int dest_cpu;
3545 
3546 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3547 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3548 	if (dest_cpu == smp_processor_id())
3549 		goto unlock;
3550 
3551 	if (likely(cpu_active(dest_cpu))) {
3552 		struct migration_arg arg = { p, dest_cpu };
3553 
3554 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3555 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3556 		return;
3557 	}
3558 unlock:
3559 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3560 }
3561 
3562 #endif
3563 
3564 DEFINE_PER_CPU(struct kernel_stat, kstat);
3565 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3566 
3567 EXPORT_PER_CPU_SYMBOL(kstat);
3568 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3569 
3570 /*
3571  * The function fair_sched_class.update_curr accesses the struct curr
3572  * and its field curr->exec_start; when called from task_sched_runtime(),
3573  * we observe a high rate of cache misses in practice.
3574  * Prefetching this data results in improved performance.
3575  */
3576 static inline void prefetch_curr_exec_start(struct task_struct *p)
3577 {
3578 #ifdef CONFIG_FAIR_GROUP_SCHED
3579 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3580 #else
3581 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3582 #endif
3583 	prefetch(curr);
3584 	prefetch(&curr->exec_start);
3585 }
3586 
3587 /*
3588  * Return accounted runtime for the task.
3589  * In case the task is currently running, return the runtime plus current's
3590  * pending runtime that have not been accounted yet.
3591  */
3592 unsigned long long task_sched_runtime(struct task_struct *p)
3593 {
3594 	struct rq_flags rf;
3595 	struct rq *rq;
3596 	u64 ns;
3597 
3598 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3599 	/*
3600 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3601 	 * So we have a optimization chance when the task's delta_exec is 0.
3602 	 * Reading ->on_cpu is racy, but this is ok.
3603 	 *
3604 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3605 	 * If we race with it entering CPU, unaccounted time is 0. This is
3606 	 * indistinguishable from the read occurring a few cycles earlier.
3607 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3608 	 * been accounted, so we're correct here as well.
3609 	 */
3610 	if (!p->on_cpu || !task_on_rq_queued(p))
3611 		return p->se.sum_exec_runtime;
3612 #endif
3613 
3614 	rq = task_rq_lock(p, &rf);
3615 	/*
3616 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3617 	 * project cycles that may never be accounted to this
3618 	 * thread, breaking clock_gettime().
3619 	 */
3620 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3621 		prefetch_curr_exec_start(p);
3622 		update_rq_clock(rq);
3623 		p->sched_class->update_curr(rq);
3624 	}
3625 	ns = p->se.sum_exec_runtime;
3626 	task_rq_unlock(rq, p, &rf);
3627 
3628 	return ns;
3629 }
3630 
3631 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3632 
3633 void arch_set_thermal_pressure(struct cpumask *cpus,
3634 			       unsigned long th_pressure)
3635 {
3636 	int cpu;
3637 
3638 	for_each_cpu(cpu, cpus)
3639 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3640 }
3641 
3642 /*
3643  * This function gets called by the timer code, with HZ frequency.
3644  * We call it with interrupts disabled.
3645  */
3646 void scheduler_tick(void)
3647 {
3648 	int cpu = smp_processor_id();
3649 	struct rq *rq = cpu_rq(cpu);
3650 	struct task_struct *curr = rq->curr;
3651 	struct rq_flags rf;
3652 	unsigned long thermal_pressure;
3653 
3654 	arch_scale_freq_tick();
3655 	sched_clock_tick();
3656 
3657 	rq_lock(rq, &rf);
3658 
3659 	update_rq_clock(rq);
3660 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3661 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3662 	curr->sched_class->task_tick(rq, curr, 0);
3663 	calc_global_load_tick(rq);
3664 	psi_task_tick(rq);
3665 
3666 	rq_unlock(rq, &rf);
3667 
3668 	perf_event_task_tick();
3669 
3670 #ifdef CONFIG_SMP
3671 	rq->idle_balance = idle_cpu(cpu);
3672 	trigger_load_balance(rq);
3673 #endif
3674 }
3675 
3676 #ifdef CONFIG_NO_HZ_FULL
3677 
3678 struct tick_work {
3679 	int			cpu;
3680 	atomic_t		state;
3681 	struct delayed_work	work;
3682 };
3683 /* Values for ->state, see diagram below. */
3684 #define TICK_SCHED_REMOTE_OFFLINE	0
3685 #define TICK_SCHED_REMOTE_OFFLINING	1
3686 #define TICK_SCHED_REMOTE_RUNNING	2
3687 
3688 /*
3689  * State diagram for ->state:
3690  *
3691  *
3692  *          TICK_SCHED_REMOTE_OFFLINE
3693  *                    |   ^
3694  *                    |   |
3695  *                    |   | sched_tick_remote()
3696  *                    |   |
3697  *                    |   |
3698  *                    +--TICK_SCHED_REMOTE_OFFLINING
3699  *                    |   ^
3700  *                    |   |
3701  * sched_tick_start() |   | sched_tick_stop()
3702  *                    |   |
3703  *                    V   |
3704  *          TICK_SCHED_REMOTE_RUNNING
3705  *
3706  *
3707  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3708  * and sched_tick_start() are happy to leave the state in RUNNING.
3709  */
3710 
3711 static struct tick_work __percpu *tick_work_cpu;
3712 
3713 static void sched_tick_remote(struct work_struct *work)
3714 {
3715 	struct delayed_work *dwork = to_delayed_work(work);
3716 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3717 	int cpu = twork->cpu;
3718 	struct rq *rq = cpu_rq(cpu);
3719 	struct task_struct *curr;
3720 	struct rq_flags rf;
3721 	u64 delta;
3722 	int os;
3723 
3724 	/*
3725 	 * Handle the tick only if it appears the remote CPU is running in full
3726 	 * dynticks mode. The check is racy by nature, but missing a tick or
3727 	 * having one too much is no big deal because the scheduler tick updates
3728 	 * statistics and checks timeslices in a time-independent way, regardless
3729 	 * of when exactly it is running.
3730 	 */
3731 	if (!tick_nohz_tick_stopped_cpu(cpu))
3732 		goto out_requeue;
3733 
3734 	rq_lock_irq(rq, &rf);
3735 	curr = rq->curr;
3736 	if (cpu_is_offline(cpu))
3737 		goto out_unlock;
3738 
3739 	update_rq_clock(rq);
3740 
3741 	if (!is_idle_task(curr)) {
3742 		/*
3743 		 * Make sure the next tick runs within a reasonable
3744 		 * amount of time.
3745 		 */
3746 		delta = rq_clock_task(rq) - curr->se.exec_start;
3747 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3748 	}
3749 	curr->sched_class->task_tick(rq, curr, 0);
3750 
3751 	calc_load_nohz_remote(rq);
3752 out_unlock:
3753 	rq_unlock_irq(rq, &rf);
3754 out_requeue:
3755 
3756 	/*
3757 	 * Run the remote tick once per second (1Hz). This arbitrary
3758 	 * frequency is large enough to avoid overload but short enough
3759 	 * to keep scheduler internal stats reasonably up to date.  But
3760 	 * first update state to reflect hotplug activity if required.
3761 	 */
3762 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3763 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3764 	if (os == TICK_SCHED_REMOTE_RUNNING)
3765 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3766 }
3767 
3768 static void sched_tick_start(int cpu)
3769 {
3770 	int os;
3771 	struct tick_work *twork;
3772 
3773 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3774 		return;
3775 
3776 	WARN_ON_ONCE(!tick_work_cpu);
3777 
3778 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3779 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3780 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3781 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3782 		twork->cpu = cpu;
3783 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3784 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3785 	}
3786 }
3787 
3788 #ifdef CONFIG_HOTPLUG_CPU
3789 static void sched_tick_stop(int cpu)
3790 {
3791 	struct tick_work *twork;
3792 	int os;
3793 
3794 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3795 		return;
3796 
3797 	WARN_ON_ONCE(!tick_work_cpu);
3798 
3799 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3800 	/* There cannot be competing actions, but don't rely on stop-machine. */
3801 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3802 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3803 	/* Don't cancel, as this would mess up the state machine. */
3804 }
3805 #endif /* CONFIG_HOTPLUG_CPU */
3806 
3807 int __init sched_tick_offload_init(void)
3808 {
3809 	tick_work_cpu = alloc_percpu(struct tick_work);
3810 	BUG_ON(!tick_work_cpu);
3811 	return 0;
3812 }
3813 
3814 #else /* !CONFIG_NO_HZ_FULL */
3815 static inline void sched_tick_start(int cpu) { }
3816 static inline void sched_tick_stop(int cpu) { }
3817 #endif
3818 
3819 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3820 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3821 /*
3822  * If the value passed in is equal to the current preempt count
3823  * then we just disabled preemption. Start timing the latency.
3824  */
3825 static inline void preempt_latency_start(int val)
3826 {
3827 	if (preempt_count() == val) {
3828 		unsigned long ip = get_lock_parent_ip();
3829 #ifdef CONFIG_DEBUG_PREEMPT
3830 		current->preempt_disable_ip = ip;
3831 #endif
3832 		trace_preempt_off(CALLER_ADDR0, ip);
3833 	}
3834 }
3835 
3836 void preempt_count_add(int val)
3837 {
3838 #ifdef CONFIG_DEBUG_PREEMPT
3839 	/*
3840 	 * Underflow?
3841 	 */
3842 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3843 		return;
3844 #endif
3845 	__preempt_count_add(val);
3846 #ifdef CONFIG_DEBUG_PREEMPT
3847 	/*
3848 	 * Spinlock count overflowing soon?
3849 	 */
3850 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3851 				PREEMPT_MASK - 10);
3852 #endif
3853 	preempt_latency_start(val);
3854 }
3855 EXPORT_SYMBOL(preempt_count_add);
3856 NOKPROBE_SYMBOL(preempt_count_add);
3857 
3858 /*
3859  * If the value passed in equals to the current preempt count
3860  * then we just enabled preemption. Stop timing the latency.
3861  */
3862 static inline void preempt_latency_stop(int val)
3863 {
3864 	if (preempt_count() == val)
3865 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3866 }
3867 
3868 void preempt_count_sub(int val)
3869 {
3870 #ifdef CONFIG_DEBUG_PREEMPT
3871 	/*
3872 	 * Underflow?
3873 	 */
3874 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3875 		return;
3876 	/*
3877 	 * Is the spinlock portion underflowing?
3878 	 */
3879 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3880 			!(preempt_count() & PREEMPT_MASK)))
3881 		return;
3882 #endif
3883 
3884 	preempt_latency_stop(val);
3885 	__preempt_count_sub(val);
3886 }
3887 EXPORT_SYMBOL(preempt_count_sub);
3888 NOKPROBE_SYMBOL(preempt_count_sub);
3889 
3890 #else
3891 static inline void preempt_latency_start(int val) { }
3892 static inline void preempt_latency_stop(int val) { }
3893 #endif
3894 
3895 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3896 {
3897 #ifdef CONFIG_DEBUG_PREEMPT
3898 	return p->preempt_disable_ip;
3899 #else
3900 	return 0;
3901 #endif
3902 }
3903 
3904 /*
3905  * Print scheduling while atomic bug:
3906  */
3907 static noinline void __schedule_bug(struct task_struct *prev)
3908 {
3909 	/* Save this before calling printk(), since that will clobber it */
3910 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3911 
3912 	if (oops_in_progress)
3913 		return;
3914 
3915 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3916 		prev->comm, prev->pid, preempt_count());
3917 
3918 	debug_show_held_locks(prev);
3919 	print_modules();
3920 	if (irqs_disabled())
3921 		print_irqtrace_events(prev);
3922 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3923 	    && in_atomic_preempt_off()) {
3924 		pr_err("Preemption disabled at:");
3925 		print_ip_sym(KERN_ERR, preempt_disable_ip);
3926 	}
3927 	if (panic_on_warn)
3928 		panic("scheduling while atomic\n");
3929 
3930 	dump_stack();
3931 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3932 }
3933 
3934 /*
3935  * Various schedule()-time debugging checks and statistics:
3936  */
3937 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3938 {
3939 #ifdef CONFIG_SCHED_STACK_END_CHECK
3940 	if (task_stack_end_corrupted(prev))
3941 		panic("corrupted stack end detected inside scheduler\n");
3942 
3943 	if (task_scs_end_corrupted(prev))
3944 		panic("corrupted shadow stack detected inside scheduler\n");
3945 #endif
3946 
3947 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3948 	if (!preempt && prev->state && prev->non_block_count) {
3949 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3950 			prev->comm, prev->pid, prev->non_block_count);
3951 		dump_stack();
3952 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3953 	}
3954 #endif
3955 
3956 	if (unlikely(in_atomic_preempt_off())) {
3957 		__schedule_bug(prev);
3958 		preempt_count_set(PREEMPT_DISABLED);
3959 	}
3960 	rcu_sleep_check();
3961 
3962 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3963 
3964 	schedstat_inc(this_rq()->sched_count);
3965 }
3966 
3967 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3968 				  struct rq_flags *rf)
3969 {
3970 #ifdef CONFIG_SMP
3971 	const struct sched_class *class;
3972 	/*
3973 	 * We must do the balancing pass before put_prev_task(), such
3974 	 * that when we release the rq->lock the task is in the same
3975 	 * state as before we took rq->lock.
3976 	 *
3977 	 * We can terminate the balance pass as soon as we know there is
3978 	 * a runnable task of @class priority or higher.
3979 	 */
3980 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3981 		if (class->balance(rq, prev, rf))
3982 			break;
3983 	}
3984 #endif
3985 
3986 	put_prev_task(rq, prev);
3987 }
3988 
3989 /*
3990  * Pick up the highest-prio task:
3991  */
3992 static inline struct task_struct *
3993 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3994 {
3995 	const struct sched_class *class;
3996 	struct task_struct *p;
3997 
3998 	/*
3999 	 * Optimization: we know that if all tasks are in the fair class we can
4000 	 * call that function directly, but only if the @prev task wasn't of a
4001 	 * higher scheduling class, because otherwise those loose the
4002 	 * opportunity to pull in more work from other CPUs.
4003 	 */
4004 	if (likely((prev->sched_class == &idle_sched_class ||
4005 		    prev->sched_class == &fair_sched_class) &&
4006 		   rq->nr_running == rq->cfs.h_nr_running)) {
4007 
4008 		p = pick_next_task_fair(rq, prev, rf);
4009 		if (unlikely(p == RETRY_TASK))
4010 			goto restart;
4011 
4012 		/* Assumes fair_sched_class->next == idle_sched_class */
4013 		if (!p) {
4014 			put_prev_task(rq, prev);
4015 			p = pick_next_task_idle(rq);
4016 		}
4017 
4018 		return p;
4019 	}
4020 
4021 restart:
4022 	put_prev_task_balance(rq, prev, rf);
4023 
4024 	for_each_class(class) {
4025 		p = class->pick_next_task(rq);
4026 		if (p)
4027 			return p;
4028 	}
4029 
4030 	/* The idle class should always have a runnable task: */
4031 	BUG();
4032 }
4033 
4034 /*
4035  * __schedule() is the main scheduler function.
4036  *
4037  * The main means of driving the scheduler and thus entering this function are:
4038  *
4039  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4040  *
4041  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4042  *      paths. For example, see arch/x86/entry_64.S.
4043  *
4044  *      To drive preemption between tasks, the scheduler sets the flag in timer
4045  *      interrupt handler scheduler_tick().
4046  *
4047  *   3. Wakeups don't really cause entry into schedule(). They add a
4048  *      task to the run-queue and that's it.
4049  *
4050  *      Now, if the new task added to the run-queue preempts the current
4051  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4052  *      called on the nearest possible occasion:
4053  *
4054  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4055  *
4056  *         - in syscall or exception context, at the next outmost
4057  *           preempt_enable(). (this might be as soon as the wake_up()'s
4058  *           spin_unlock()!)
4059  *
4060  *         - in IRQ context, return from interrupt-handler to
4061  *           preemptible context
4062  *
4063  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4064  *         then at the next:
4065  *
4066  *          - cond_resched() call
4067  *          - explicit schedule() call
4068  *          - return from syscall or exception to user-space
4069  *          - return from interrupt-handler to user-space
4070  *
4071  * WARNING: must be called with preemption disabled!
4072  */
4073 static void __sched notrace __schedule(bool preempt)
4074 {
4075 	struct task_struct *prev, *next;
4076 	unsigned long *switch_count;
4077 	struct rq_flags rf;
4078 	struct rq *rq;
4079 	int cpu;
4080 
4081 	cpu = smp_processor_id();
4082 	rq = cpu_rq(cpu);
4083 	prev = rq->curr;
4084 
4085 	schedule_debug(prev, preempt);
4086 
4087 	if (sched_feat(HRTICK))
4088 		hrtick_clear(rq);
4089 
4090 	local_irq_disable();
4091 	rcu_note_context_switch(preempt);
4092 
4093 	/*
4094 	 * Make sure that signal_pending_state()->signal_pending() below
4095 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4096 	 * done by the caller to avoid the race with signal_wake_up().
4097 	 *
4098 	 * The membarrier system call requires a full memory barrier
4099 	 * after coming from user-space, before storing to rq->curr.
4100 	 */
4101 	rq_lock(rq, &rf);
4102 	smp_mb__after_spinlock();
4103 
4104 	/* Promote REQ to ACT */
4105 	rq->clock_update_flags <<= 1;
4106 	update_rq_clock(rq);
4107 
4108 	switch_count = &prev->nivcsw;
4109 	if (!preempt && prev->state) {
4110 		if (signal_pending_state(prev->state, prev)) {
4111 			prev->state = TASK_RUNNING;
4112 		} else {
4113 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4114 
4115 			if (prev->in_iowait) {
4116 				atomic_inc(&rq->nr_iowait);
4117 				delayacct_blkio_start();
4118 			}
4119 		}
4120 		switch_count = &prev->nvcsw;
4121 	}
4122 
4123 	next = pick_next_task(rq, prev, &rf);
4124 	clear_tsk_need_resched(prev);
4125 	clear_preempt_need_resched();
4126 
4127 	if (likely(prev != next)) {
4128 		rq->nr_switches++;
4129 		/*
4130 		 * RCU users of rcu_dereference(rq->curr) may not see
4131 		 * changes to task_struct made by pick_next_task().
4132 		 */
4133 		RCU_INIT_POINTER(rq->curr, next);
4134 		/*
4135 		 * The membarrier system call requires each architecture
4136 		 * to have a full memory barrier after updating
4137 		 * rq->curr, before returning to user-space.
4138 		 *
4139 		 * Here are the schemes providing that barrier on the
4140 		 * various architectures:
4141 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4142 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4143 		 * - finish_lock_switch() for weakly-ordered
4144 		 *   architectures where spin_unlock is a full barrier,
4145 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4146 		 *   is a RELEASE barrier),
4147 		 */
4148 		++*switch_count;
4149 
4150 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4151 
4152 		trace_sched_switch(preempt, prev, next);
4153 
4154 		/* Also unlocks the rq: */
4155 		rq = context_switch(rq, prev, next, &rf);
4156 	} else {
4157 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4158 		rq_unlock_irq(rq, &rf);
4159 	}
4160 
4161 	balance_callback(rq);
4162 }
4163 
4164 void __noreturn do_task_dead(void)
4165 {
4166 	/* Causes final put_task_struct in finish_task_switch(): */
4167 	set_special_state(TASK_DEAD);
4168 
4169 	/* Tell freezer to ignore us: */
4170 	current->flags |= PF_NOFREEZE;
4171 
4172 	__schedule(false);
4173 	BUG();
4174 
4175 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4176 	for (;;)
4177 		cpu_relax();
4178 }
4179 
4180 static inline void sched_submit_work(struct task_struct *tsk)
4181 {
4182 	if (!tsk->state)
4183 		return;
4184 
4185 	/*
4186 	 * If a worker went to sleep, notify and ask workqueue whether
4187 	 * it wants to wake up a task to maintain concurrency.
4188 	 * As this function is called inside the schedule() context,
4189 	 * we disable preemption to avoid it calling schedule() again
4190 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4191 	 * requires it.
4192 	 */
4193 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4194 		preempt_disable();
4195 		if (tsk->flags & PF_WQ_WORKER)
4196 			wq_worker_sleeping(tsk);
4197 		else
4198 			io_wq_worker_sleeping(tsk);
4199 		preempt_enable_no_resched();
4200 	}
4201 
4202 	if (tsk_is_pi_blocked(tsk))
4203 		return;
4204 
4205 	/*
4206 	 * If we are going to sleep and we have plugged IO queued,
4207 	 * make sure to submit it to avoid deadlocks.
4208 	 */
4209 	if (blk_needs_flush_plug(tsk))
4210 		blk_schedule_flush_plug(tsk);
4211 }
4212 
4213 static void sched_update_worker(struct task_struct *tsk)
4214 {
4215 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4216 		if (tsk->flags & PF_WQ_WORKER)
4217 			wq_worker_running(tsk);
4218 		else
4219 			io_wq_worker_running(tsk);
4220 	}
4221 }
4222 
4223 asmlinkage __visible void __sched schedule(void)
4224 {
4225 	struct task_struct *tsk = current;
4226 
4227 	sched_submit_work(tsk);
4228 	do {
4229 		preempt_disable();
4230 		__schedule(false);
4231 		sched_preempt_enable_no_resched();
4232 	} while (need_resched());
4233 	sched_update_worker(tsk);
4234 }
4235 EXPORT_SYMBOL(schedule);
4236 
4237 /*
4238  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4239  * state (have scheduled out non-voluntarily) by making sure that all
4240  * tasks have either left the run queue or have gone into user space.
4241  * As idle tasks do not do either, they must not ever be preempted
4242  * (schedule out non-voluntarily).
4243  *
4244  * schedule_idle() is similar to schedule_preempt_disable() except that it
4245  * never enables preemption because it does not call sched_submit_work().
4246  */
4247 void __sched schedule_idle(void)
4248 {
4249 	/*
4250 	 * As this skips calling sched_submit_work(), which the idle task does
4251 	 * regardless because that function is a nop when the task is in a
4252 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4253 	 * current task can be in any other state. Note, idle is always in the
4254 	 * TASK_RUNNING state.
4255 	 */
4256 	WARN_ON_ONCE(current->state);
4257 	do {
4258 		__schedule(false);
4259 	} while (need_resched());
4260 }
4261 
4262 #ifdef CONFIG_CONTEXT_TRACKING
4263 asmlinkage __visible void __sched schedule_user(void)
4264 {
4265 	/*
4266 	 * If we come here after a random call to set_need_resched(),
4267 	 * or we have been woken up remotely but the IPI has not yet arrived,
4268 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4269 	 * we find a better solution.
4270 	 *
4271 	 * NB: There are buggy callers of this function.  Ideally we
4272 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4273 	 * too frequently to make sense yet.
4274 	 */
4275 	enum ctx_state prev_state = exception_enter();
4276 	schedule();
4277 	exception_exit(prev_state);
4278 }
4279 #endif
4280 
4281 /**
4282  * schedule_preempt_disabled - called with preemption disabled
4283  *
4284  * Returns with preemption disabled. Note: preempt_count must be 1
4285  */
4286 void __sched schedule_preempt_disabled(void)
4287 {
4288 	sched_preempt_enable_no_resched();
4289 	schedule();
4290 	preempt_disable();
4291 }
4292 
4293 static void __sched notrace preempt_schedule_common(void)
4294 {
4295 	do {
4296 		/*
4297 		 * Because the function tracer can trace preempt_count_sub()
4298 		 * and it also uses preempt_enable/disable_notrace(), if
4299 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4300 		 * by the function tracer will call this function again and
4301 		 * cause infinite recursion.
4302 		 *
4303 		 * Preemption must be disabled here before the function
4304 		 * tracer can trace. Break up preempt_disable() into two
4305 		 * calls. One to disable preemption without fear of being
4306 		 * traced. The other to still record the preemption latency,
4307 		 * which can also be traced by the function tracer.
4308 		 */
4309 		preempt_disable_notrace();
4310 		preempt_latency_start(1);
4311 		__schedule(true);
4312 		preempt_latency_stop(1);
4313 		preempt_enable_no_resched_notrace();
4314 
4315 		/*
4316 		 * Check again in case we missed a preemption opportunity
4317 		 * between schedule and now.
4318 		 */
4319 	} while (need_resched());
4320 }
4321 
4322 #ifdef CONFIG_PREEMPTION
4323 /*
4324  * This is the entry point to schedule() from in-kernel preemption
4325  * off of preempt_enable.
4326  */
4327 asmlinkage __visible void __sched notrace preempt_schedule(void)
4328 {
4329 	/*
4330 	 * If there is a non-zero preempt_count or interrupts are disabled,
4331 	 * we do not want to preempt the current task. Just return..
4332 	 */
4333 	if (likely(!preemptible()))
4334 		return;
4335 
4336 	preempt_schedule_common();
4337 }
4338 NOKPROBE_SYMBOL(preempt_schedule);
4339 EXPORT_SYMBOL(preempt_schedule);
4340 
4341 /**
4342  * preempt_schedule_notrace - preempt_schedule called by tracing
4343  *
4344  * The tracing infrastructure uses preempt_enable_notrace to prevent
4345  * recursion and tracing preempt enabling caused by the tracing
4346  * infrastructure itself. But as tracing can happen in areas coming
4347  * from userspace or just about to enter userspace, a preempt enable
4348  * can occur before user_exit() is called. This will cause the scheduler
4349  * to be called when the system is still in usermode.
4350  *
4351  * To prevent this, the preempt_enable_notrace will use this function
4352  * instead of preempt_schedule() to exit user context if needed before
4353  * calling the scheduler.
4354  */
4355 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4356 {
4357 	enum ctx_state prev_ctx;
4358 
4359 	if (likely(!preemptible()))
4360 		return;
4361 
4362 	do {
4363 		/*
4364 		 * Because the function tracer can trace preempt_count_sub()
4365 		 * and it also uses preempt_enable/disable_notrace(), if
4366 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4367 		 * by the function tracer will call this function again and
4368 		 * cause infinite recursion.
4369 		 *
4370 		 * Preemption must be disabled here before the function
4371 		 * tracer can trace. Break up preempt_disable() into two
4372 		 * calls. One to disable preemption without fear of being
4373 		 * traced. The other to still record the preemption latency,
4374 		 * which can also be traced by the function tracer.
4375 		 */
4376 		preempt_disable_notrace();
4377 		preempt_latency_start(1);
4378 		/*
4379 		 * Needs preempt disabled in case user_exit() is traced
4380 		 * and the tracer calls preempt_enable_notrace() causing
4381 		 * an infinite recursion.
4382 		 */
4383 		prev_ctx = exception_enter();
4384 		__schedule(true);
4385 		exception_exit(prev_ctx);
4386 
4387 		preempt_latency_stop(1);
4388 		preempt_enable_no_resched_notrace();
4389 	} while (need_resched());
4390 }
4391 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4392 
4393 #endif /* CONFIG_PREEMPTION */
4394 
4395 /*
4396  * This is the entry point to schedule() from kernel preemption
4397  * off of irq context.
4398  * Note, that this is called and return with irqs disabled. This will
4399  * protect us against recursive calling from irq.
4400  */
4401 asmlinkage __visible void __sched preempt_schedule_irq(void)
4402 {
4403 	enum ctx_state prev_state;
4404 
4405 	/* Catch callers which need to be fixed */
4406 	BUG_ON(preempt_count() || !irqs_disabled());
4407 
4408 	prev_state = exception_enter();
4409 
4410 	do {
4411 		preempt_disable();
4412 		local_irq_enable();
4413 		__schedule(true);
4414 		local_irq_disable();
4415 		sched_preempt_enable_no_resched();
4416 	} while (need_resched());
4417 
4418 	exception_exit(prev_state);
4419 }
4420 
4421 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4422 			  void *key)
4423 {
4424 	return try_to_wake_up(curr->private, mode, wake_flags);
4425 }
4426 EXPORT_SYMBOL(default_wake_function);
4427 
4428 #ifdef CONFIG_RT_MUTEXES
4429 
4430 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4431 {
4432 	if (pi_task)
4433 		prio = min(prio, pi_task->prio);
4434 
4435 	return prio;
4436 }
4437 
4438 static inline int rt_effective_prio(struct task_struct *p, int prio)
4439 {
4440 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4441 
4442 	return __rt_effective_prio(pi_task, prio);
4443 }
4444 
4445 /*
4446  * rt_mutex_setprio - set the current priority of a task
4447  * @p: task to boost
4448  * @pi_task: donor task
4449  *
4450  * This function changes the 'effective' priority of a task. It does
4451  * not touch ->normal_prio like __setscheduler().
4452  *
4453  * Used by the rt_mutex code to implement priority inheritance
4454  * logic. Call site only calls if the priority of the task changed.
4455  */
4456 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4457 {
4458 	int prio, oldprio, queued, running, queue_flag =
4459 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4460 	const struct sched_class *prev_class;
4461 	struct rq_flags rf;
4462 	struct rq *rq;
4463 
4464 	/* XXX used to be waiter->prio, not waiter->task->prio */
4465 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4466 
4467 	/*
4468 	 * If nothing changed; bail early.
4469 	 */
4470 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4471 		return;
4472 
4473 	rq = __task_rq_lock(p, &rf);
4474 	update_rq_clock(rq);
4475 	/*
4476 	 * Set under pi_lock && rq->lock, such that the value can be used under
4477 	 * either lock.
4478 	 *
4479 	 * Note that there is loads of tricky to make this pointer cache work
4480 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4481 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4482 	 * task is allowed to run again (and can exit). This ensures the pointer
4483 	 * points to a blocked task -- which guaratees the task is present.
4484 	 */
4485 	p->pi_top_task = pi_task;
4486 
4487 	/*
4488 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4489 	 */
4490 	if (prio == p->prio && !dl_prio(prio))
4491 		goto out_unlock;
4492 
4493 	/*
4494 	 * Idle task boosting is a nono in general. There is one
4495 	 * exception, when PREEMPT_RT and NOHZ is active:
4496 	 *
4497 	 * The idle task calls get_next_timer_interrupt() and holds
4498 	 * the timer wheel base->lock on the CPU and another CPU wants
4499 	 * to access the timer (probably to cancel it). We can safely
4500 	 * ignore the boosting request, as the idle CPU runs this code
4501 	 * with interrupts disabled and will complete the lock
4502 	 * protected section without being interrupted. So there is no
4503 	 * real need to boost.
4504 	 */
4505 	if (unlikely(p == rq->idle)) {
4506 		WARN_ON(p != rq->curr);
4507 		WARN_ON(p->pi_blocked_on);
4508 		goto out_unlock;
4509 	}
4510 
4511 	trace_sched_pi_setprio(p, pi_task);
4512 	oldprio = p->prio;
4513 
4514 	if (oldprio == prio)
4515 		queue_flag &= ~DEQUEUE_MOVE;
4516 
4517 	prev_class = p->sched_class;
4518 	queued = task_on_rq_queued(p);
4519 	running = task_current(rq, p);
4520 	if (queued)
4521 		dequeue_task(rq, p, queue_flag);
4522 	if (running)
4523 		put_prev_task(rq, p);
4524 
4525 	/*
4526 	 * Boosting condition are:
4527 	 * 1. -rt task is running and holds mutex A
4528 	 *      --> -dl task blocks on mutex A
4529 	 *
4530 	 * 2. -dl task is running and holds mutex A
4531 	 *      --> -dl task blocks on mutex A and could preempt the
4532 	 *          running task
4533 	 */
4534 	if (dl_prio(prio)) {
4535 		if (!dl_prio(p->normal_prio) ||
4536 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4537 			p->dl.dl_boosted = 1;
4538 			queue_flag |= ENQUEUE_REPLENISH;
4539 		} else
4540 			p->dl.dl_boosted = 0;
4541 		p->sched_class = &dl_sched_class;
4542 	} else if (rt_prio(prio)) {
4543 		if (dl_prio(oldprio))
4544 			p->dl.dl_boosted = 0;
4545 		if (oldprio < prio)
4546 			queue_flag |= ENQUEUE_HEAD;
4547 		p->sched_class = &rt_sched_class;
4548 	} else {
4549 		if (dl_prio(oldprio))
4550 			p->dl.dl_boosted = 0;
4551 		if (rt_prio(oldprio))
4552 			p->rt.timeout = 0;
4553 		p->sched_class = &fair_sched_class;
4554 	}
4555 
4556 	p->prio = prio;
4557 
4558 	if (queued)
4559 		enqueue_task(rq, p, queue_flag);
4560 	if (running)
4561 		set_next_task(rq, p);
4562 
4563 	check_class_changed(rq, p, prev_class, oldprio);
4564 out_unlock:
4565 	/* Avoid rq from going away on us: */
4566 	preempt_disable();
4567 	__task_rq_unlock(rq, &rf);
4568 
4569 	balance_callback(rq);
4570 	preempt_enable();
4571 }
4572 #else
4573 static inline int rt_effective_prio(struct task_struct *p, int prio)
4574 {
4575 	return prio;
4576 }
4577 #endif
4578 
4579 void set_user_nice(struct task_struct *p, long nice)
4580 {
4581 	bool queued, running;
4582 	int old_prio;
4583 	struct rq_flags rf;
4584 	struct rq *rq;
4585 
4586 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4587 		return;
4588 	/*
4589 	 * We have to be careful, if called from sys_setpriority(),
4590 	 * the task might be in the middle of scheduling on another CPU.
4591 	 */
4592 	rq = task_rq_lock(p, &rf);
4593 	update_rq_clock(rq);
4594 
4595 	/*
4596 	 * The RT priorities are set via sched_setscheduler(), but we still
4597 	 * allow the 'normal' nice value to be set - but as expected
4598 	 * it wont have any effect on scheduling until the task is
4599 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4600 	 */
4601 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4602 		p->static_prio = NICE_TO_PRIO(nice);
4603 		goto out_unlock;
4604 	}
4605 	queued = task_on_rq_queued(p);
4606 	running = task_current(rq, p);
4607 	if (queued)
4608 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4609 	if (running)
4610 		put_prev_task(rq, p);
4611 
4612 	p->static_prio = NICE_TO_PRIO(nice);
4613 	set_load_weight(p, true);
4614 	old_prio = p->prio;
4615 	p->prio = effective_prio(p);
4616 
4617 	if (queued)
4618 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4619 	if (running)
4620 		set_next_task(rq, p);
4621 
4622 	/*
4623 	 * If the task increased its priority or is running and
4624 	 * lowered its priority, then reschedule its CPU:
4625 	 */
4626 	p->sched_class->prio_changed(rq, p, old_prio);
4627 
4628 out_unlock:
4629 	task_rq_unlock(rq, p, &rf);
4630 }
4631 EXPORT_SYMBOL(set_user_nice);
4632 
4633 /*
4634  * can_nice - check if a task can reduce its nice value
4635  * @p: task
4636  * @nice: nice value
4637  */
4638 int can_nice(const struct task_struct *p, const int nice)
4639 {
4640 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4641 	int nice_rlim = nice_to_rlimit(nice);
4642 
4643 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4644 		capable(CAP_SYS_NICE));
4645 }
4646 
4647 #ifdef __ARCH_WANT_SYS_NICE
4648 
4649 /*
4650  * sys_nice - change the priority of the current process.
4651  * @increment: priority increment
4652  *
4653  * sys_setpriority is a more generic, but much slower function that
4654  * does similar things.
4655  */
4656 SYSCALL_DEFINE1(nice, int, increment)
4657 {
4658 	long nice, retval;
4659 
4660 	/*
4661 	 * Setpriority might change our priority at the same moment.
4662 	 * We don't have to worry. Conceptually one call occurs first
4663 	 * and we have a single winner.
4664 	 */
4665 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4666 	nice = task_nice(current) + increment;
4667 
4668 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4669 	if (increment < 0 && !can_nice(current, nice))
4670 		return -EPERM;
4671 
4672 	retval = security_task_setnice(current, nice);
4673 	if (retval)
4674 		return retval;
4675 
4676 	set_user_nice(current, nice);
4677 	return 0;
4678 }
4679 
4680 #endif
4681 
4682 /**
4683  * task_prio - return the priority value of a given task.
4684  * @p: the task in question.
4685  *
4686  * Return: The priority value as seen by users in /proc.
4687  * RT tasks are offset by -200. Normal tasks are centered
4688  * around 0, value goes from -16 to +15.
4689  */
4690 int task_prio(const struct task_struct *p)
4691 {
4692 	return p->prio - MAX_RT_PRIO;
4693 }
4694 
4695 /**
4696  * idle_cpu - is a given CPU idle currently?
4697  * @cpu: the processor in question.
4698  *
4699  * Return: 1 if the CPU is currently idle. 0 otherwise.
4700  */
4701 int idle_cpu(int cpu)
4702 {
4703 	struct rq *rq = cpu_rq(cpu);
4704 
4705 	if (rq->curr != rq->idle)
4706 		return 0;
4707 
4708 	if (rq->nr_running)
4709 		return 0;
4710 
4711 #ifdef CONFIG_SMP
4712 	if (rq->ttwu_pending)
4713 		return 0;
4714 #endif
4715 
4716 	return 1;
4717 }
4718 
4719 /**
4720  * available_idle_cpu - is a given CPU idle for enqueuing work.
4721  * @cpu: the CPU in question.
4722  *
4723  * Return: 1 if the CPU is currently idle. 0 otherwise.
4724  */
4725 int available_idle_cpu(int cpu)
4726 {
4727 	if (!idle_cpu(cpu))
4728 		return 0;
4729 
4730 	if (vcpu_is_preempted(cpu))
4731 		return 0;
4732 
4733 	return 1;
4734 }
4735 
4736 /**
4737  * idle_task - return the idle task for a given CPU.
4738  * @cpu: the processor in question.
4739  *
4740  * Return: The idle task for the CPU @cpu.
4741  */
4742 struct task_struct *idle_task(int cpu)
4743 {
4744 	return cpu_rq(cpu)->idle;
4745 }
4746 
4747 /**
4748  * find_process_by_pid - find a process with a matching PID value.
4749  * @pid: the pid in question.
4750  *
4751  * The task of @pid, if found. %NULL otherwise.
4752  */
4753 static struct task_struct *find_process_by_pid(pid_t pid)
4754 {
4755 	return pid ? find_task_by_vpid(pid) : current;
4756 }
4757 
4758 /*
4759  * sched_setparam() passes in -1 for its policy, to let the functions
4760  * it calls know not to change it.
4761  */
4762 #define SETPARAM_POLICY	-1
4763 
4764 static void __setscheduler_params(struct task_struct *p,
4765 		const struct sched_attr *attr)
4766 {
4767 	int policy = attr->sched_policy;
4768 
4769 	if (policy == SETPARAM_POLICY)
4770 		policy = p->policy;
4771 
4772 	p->policy = policy;
4773 
4774 	if (dl_policy(policy))
4775 		__setparam_dl(p, attr);
4776 	else if (fair_policy(policy))
4777 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4778 
4779 	/*
4780 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4781 	 * !rt_policy. Always setting this ensures that things like
4782 	 * getparam()/getattr() don't report silly values for !rt tasks.
4783 	 */
4784 	p->rt_priority = attr->sched_priority;
4785 	p->normal_prio = normal_prio(p);
4786 	set_load_weight(p, true);
4787 }
4788 
4789 /* Actually do priority change: must hold pi & rq lock. */
4790 static void __setscheduler(struct rq *rq, struct task_struct *p,
4791 			   const struct sched_attr *attr, bool keep_boost)
4792 {
4793 	/*
4794 	 * If params can't change scheduling class changes aren't allowed
4795 	 * either.
4796 	 */
4797 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4798 		return;
4799 
4800 	__setscheduler_params(p, attr);
4801 
4802 	/*
4803 	 * Keep a potential priority boosting if called from
4804 	 * sched_setscheduler().
4805 	 */
4806 	p->prio = normal_prio(p);
4807 	if (keep_boost)
4808 		p->prio = rt_effective_prio(p, p->prio);
4809 
4810 	if (dl_prio(p->prio))
4811 		p->sched_class = &dl_sched_class;
4812 	else if (rt_prio(p->prio))
4813 		p->sched_class = &rt_sched_class;
4814 	else
4815 		p->sched_class = &fair_sched_class;
4816 }
4817 
4818 /*
4819  * Check the target process has a UID that matches the current process's:
4820  */
4821 static bool check_same_owner(struct task_struct *p)
4822 {
4823 	const struct cred *cred = current_cred(), *pcred;
4824 	bool match;
4825 
4826 	rcu_read_lock();
4827 	pcred = __task_cred(p);
4828 	match = (uid_eq(cred->euid, pcred->euid) ||
4829 		 uid_eq(cred->euid, pcred->uid));
4830 	rcu_read_unlock();
4831 	return match;
4832 }
4833 
4834 static int __sched_setscheduler(struct task_struct *p,
4835 				const struct sched_attr *attr,
4836 				bool user, bool pi)
4837 {
4838 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4839 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4840 	int retval, oldprio, oldpolicy = -1, queued, running;
4841 	int new_effective_prio, policy = attr->sched_policy;
4842 	const struct sched_class *prev_class;
4843 	struct rq_flags rf;
4844 	int reset_on_fork;
4845 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4846 	struct rq *rq;
4847 
4848 	/* The pi code expects interrupts enabled */
4849 	BUG_ON(pi && in_interrupt());
4850 recheck:
4851 	/* Double check policy once rq lock held: */
4852 	if (policy < 0) {
4853 		reset_on_fork = p->sched_reset_on_fork;
4854 		policy = oldpolicy = p->policy;
4855 	} else {
4856 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4857 
4858 		if (!valid_policy(policy))
4859 			return -EINVAL;
4860 	}
4861 
4862 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4863 		return -EINVAL;
4864 
4865 	/*
4866 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4867 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4868 	 * SCHED_BATCH and SCHED_IDLE is 0.
4869 	 */
4870 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4871 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4872 		return -EINVAL;
4873 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4874 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4875 		return -EINVAL;
4876 
4877 	/*
4878 	 * Allow unprivileged RT tasks to decrease priority:
4879 	 */
4880 	if (user && !capable(CAP_SYS_NICE)) {
4881 		if (fair_policy(policy)) {
4882 			if (attr->sched_nice < task_nice(p) &&
4883 			    !can_nice(p, attr->sched_nice))
4884 				return -EPERM;
4885 		}
4886 
4887 		if (rt_policy(policy)) {
4888 			unsigned long rlim_rtprio =
4889 					task_rlimit(p, RLIMIT_RTPRIO);
4890 
4891 			/* Can't set/change the rt policy: */
4892 			if (policy != p->policy && !rlim_rtprio)
4893 				return -EPERM;
4894 
4895 			/* Can't increase priority: */
4896 			if (attr->sched_priority > p->rt_priority &&
4897 			    attr->sched_priority > rlim_rtprio)
4898 				return -EPERM;
4899 		}
4900 
4901 		 /*
4902 		  * Can't set/change SCHED_DEADLINE policy at all for now
4903 		  * (safest behavior); in the future we would like to allow
4904 		  * unprivileged DL tasks to increase their relative deadline
4905 		  * or reduce their runtime (both ways reducing utilization)
4906 		  */
4907 		if (dl_policy(policy))
4908 			return -EPERM;
4909 
4910 		/*
4911 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4912 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4913 		 */
4914 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4915 			if (!can_nice(p, task_nice(p)))
4916 				return -EPERM;
4917 		}
4918 
4919 		/* Can't change other user's priorities: */
4920 		if (!check_same_owner(p))
4921 			return -EPERM;
4922 
4923 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4924 		if (p->sched_reset_on_fork && !reset_on_fork)
4925 			return -EPERM;
4926 	}
4927 
4928 	if (user) {
4929 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4930 			return -EINVAL;
4931 
4932 		retval = security_task_setscheduler(p);
4933 		if (retval)
4934 			return retval;
4935 	}
4936 
4937 	/* Update task specific "requested" clamps */
4938 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4939 		retval = uclamp_validate(p, attr);
4940 		if (retval)
4941 			return retval;
4942 	}
4943 
4944 	if (pi)
4945 		cpuset_read_lock();
4946 
4947 	/*
4948 	 * Make sure no PI-waiters arrive (or leave) while we are
4949 	 * changing the priority of the task:
4950 	 *
4951 	 * To be able to change p->policy safely, the appropriate
4952 	 * runqueue lock must be held.
4953 	 */
4954 	rq = task_rq_lock(p, &rf);
4955 	update_rq_clock(rq);
4956 
4957 	/*
4958 	 * Changing the policy of the stop threads its a very bad idea:
4959 	 */
4960 	if (p == rq->stop) {
4961 		retval = -EINVAL;
4962 		goto unlock;
4963 	}
4964 
4965 	/*
4966 	 * If not changing anything there's no need to proceed further,
4967 	 * but store a possible modification of reset_on_fork.
4968 	 */
4969 	if (unlikely(policy == p->policy)) {
4970 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4971 			goto change;
4972 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4973 			goto change;
4974 		if (dl_policy(policy) && dl_param_changed(p, attr))
4975 			goto change;
4976 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4977 			goto change;
4978 
4979 		p->sched_reset_on_fork = reset_on_fork;
4980 		retval = 0;
4981 		goto unlock;
4982 	}
4983 change:
4984 
4985 	if (user) {
4986 #ifdef CONFIG_RT_GROUP_SCHED
4987 		/*
4988 		 * Do not allow realtime tasks into groups that have no runtime
4989 		 * assigned.
4990 		 */
4991 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4992 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4993 				!task_group_is_autogroup(task_group(p))) {
4994 			retval = -EPERM;
4995 			goto unlock;
4996 		}
4997 #endif
4998 #ifdef CONFIG_SMP
4999 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5000 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5001 			cpumask_t *span = rq->rd->span;
5002 
5003 			/*
5004 			 * Don't allow tasks with an affinity mask smaller than
5005 			 * the entire root_domain to become SCHED_DEADLINE. We
5006 			 * will also fail if there's no bandwidth available.
5007 			 */
5008 			if (!cpumask_subset(span, p->cpus_ptr) ||
5009 			    rq->rd->dl_bw.bw == 0) {
5010 				retval = -EPERM;
5011 				goto unlock;
5012 			}
5013 		}
5014 #endif
5015 	}
5016 
5017 	/* Re-check policy now with rq lock held: */
5018 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5019 		policy = oldpolicy = -1;
5020 		task_rq_unlock(rq, p, &rf);
5021 		if (pi)
5022 			cpuset_read_unlock();
5023 		goto recheck;
5024 	}
5025 
5026 	/*
5027 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5028 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5029 	 * is available.
5030 	 */
5031 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5032 		retval = -EBUSY;
5033 		goto unlock;
5034 	}
5035 
5036 	p->sched_reset_on_fork = reset_on_fork;
5037 	oldprio = p->prio;
5038 
5039 	if (pi) {
5040 		/*
5041 		 * Take priority boosted tasks into account. If the new
5042 		 * effective priority is unchanged, we just store the new
5043 		 * normal parameters and do not touch the scheduler class and
5044 		 * the runqueue. This will be done when the task deboost
5045 		 * itself.
5046 		 */
5047 		new_effective_prio = rt_effective_prio(p, newprio);
5048 		if (new_effective_prio == oldprio)
5049 			queue_flags &= ~DEQUEUE_MOVE;
5050 	}
5051 
5052 	queued = task_on_rq_queued(p);
5053 	running = task_current(rq, p);
5054 	if (queued)
5055 		dequeue_task(rq, p, queue_flags);
5056 	if (running)
5057 		put_prev_task(rq, p);
5058 
5059 	prev_class = p->sched_class;
5060 
5061 	__setscheduler(rq, p, attr, pi);
5062 	__setscheduler_uclamp(p, attr);
5063 
5064 	if (queued) {
5065 		/*
5066 		 * We enqueue to tail when the priority of a task is
5067 		 * increased (user space view).
5068 		 */
5069 		if (oldprio < p->prio)
5070 			queue_flags |= ENQUEUE_HEAD;
5071 
5072 		enqueue_task(rq, p, queue_flags);
5073 	}
5074 	if (running)
5075 		set_next_task(rq, p);
5076 
5077 	check_class_changed(rq, p, prev_class, oldprio);
5078 
5079 	/* Avoid rq from going away on us: */
5080 	preempt_disable();
5081 	task_rq_unlock(rq, p, &rf);
5082 
5083 	if (pi) {
5084 		cpuset_read_unlock();
5085 		rt_mutex_adjust_pi(p);
5086 	}
5087 
5088 	/* Run balance callbacks after we've adjusted the PI chain: */
5089 	balance_callback(rq);
5090 	preempt_enable();
5091 
5092 	return 0;
5093 
5094 unlock:
5095 	task_rq_unlock(rq, p, &rf);
5096 	if (pi)
5097 		cpuset_read_unlock();
5098 	return retval;
5099 }
5100 
5101 static int _sched_setscheduler(struct task_struct *p, int policy,
5102 			       const struct sched_param *param, bool check)
5103 {
5104 	struct sched_attr attr = {
5105 		.sched_policy   = policy,
5106 		.sched_priority = param->sched_priority,
5107 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5108 	};
5109 
5110 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5111 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5112 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5113 		policy &= ~SCHED_RESET_ON_FORK;
5114 		attr.sched_policy = policy;
5115 	}
5116 
5117 	return __sched_setscheduler(p, &attr, check, true);
5118 }
5119 /**
5120  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5121  * @p: the task in question.
5122  * @policy: new policy.
5123  * @param: structure containing the new RT priority.
5124  *
5125  * Return: 0 on success. An error code otherwise.
5126  *
5127  * NOTE that the task may be already dead.
5128  */
5129 int sched_setscheduler(struct task_struct *p, int policy,
5130 		       const struct sched_param *param)
5131 {
5132 	return _sched_setscheduler(p, policy, param, true);
5133 }
5134 EXPORT_SYMBOL_GPL(sched_setscheduler);
5135 
5136 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5137 {
5138 	return __sched_setscheduler(p, attr, true, true);
5139 }
5140 EXPORT_SYMBOL_GPL(sched_setattr);
5141 
5142 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5143 {
5144 	return __sched_setscheduler(p, attr, false, true);
5145 }
5146 
5147 /**
5148  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5149  * @p: the task in question.
5150  * @policy: new policy.
5151  * @param: structure containing the new RT priority.
5152  *
5153  * Just like sched_setscheduler, only don't bother checking if the
5154  * current context has permission.  For example, this is needed in
5155  * stop_machine(): we create temporary high priority worker threads,
5156  * but our caller might not have that capability.
5157  *
5158  * Return: 0 on success. An error code otherwise.
5159  */
5160 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5161 			       const struct sched_param *param)
5162 {
5163 	return _sched_setscheduler(p, policy, param, false);
5164 }
5165 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5166 
5167 static int
5168 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5169 {
5170 	struct sched_param lparam;
5171 	struct task_struct *p;
5172 	int retval;
5173 
5174 	if (!param || pid < 0)
5175 		return -EINVAL;
5176 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5177 		return -EFAULT;
5178 
5179 	rcu_read_lock();
5180 	retval = -ESRCH;
5181 	p = find_process_by_pid(pid);
5182 	if (likely(p))
5183 		get_task_struct(p);
5184 	rcu_read_unlock();
5185 
5186 	if (likely(p)) {
5187 		retval = sched_setscheduler(p, policy, &lparam);
5188 		put_task_struct(p);
5189 	}
5190 
5191 	return retval;
5192 }
5193 
5194 /*
5195  * Mimics kernel/events/core.c perf_copy_attr().
5196  */
5197 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5198 {
5199 	u32 size;
5200 	int ret;
5201 
5202 	/* Zero the full structure, so that a short copy will be nice: */
5203 	memset(attr, 0, sizeof(*attr));
5204 
5205 	ret = get_user(size, &uattr->size);
5206 	if (ret)
5207 		return ret;
5208 
5209 	/* ABI compatibility quirk: */
5210 	if (!size)
5211 		size = SCHED_ATTR_SIZE_VER0;
5212 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5213 		goto err_size;
5214 
5215 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5216 	if (ret) {
5217 		if (ret == -E2BIG)
5218 			goto err_size;
5219 		return ret;
5220 	}
5221 
5222 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5223 	    size < SCHED_ATTR_SIZE_VER1)
5224 		return -EINVAL;
5225 
5226 	/*
5227 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5228 	 * to be strict and return an error on out-of-bounds values?
5229 	 */
5230 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5231 
5232 	return 0;
5233 
5234 err_size:
5235 	put_user(sizeof(*attr), &uattr->size);
5236 	return -E2BIG;
5237 }
5238 
5239 /**
5240  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5241  * @pid: the pid in question.
5242  * @policy: new policy.
5243  * @param: structure containing the new RT priority.
5244  *
5245  * Return: 0 on success. An error code otherwise.
5246  */
5247 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5248 {
5249 	if (policy < 0)
5250 		return -EINVAL;
5251 
5252 	return do_sched_setscheduler(pid, policy, param);
5253 }
5254 
5255 /**
5256  * sys_sched_setparam - set/change the RT priority of a thread
5257  * @pid: the pid in question.
5258  * @param: structure containing the new RT priority.
5259  *
5260  * Return: 0 on success. An error code otherwise.
5261  */
5262 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5263 {
5264 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5265 }
5266 
5267 /**
5268  * sys_sched_setattr - same as above, but with extended sched_attr
5269  * @pid: the pid in question.
5270  * @uattr: structure containing the extended parameters.
5271  * @flags: for future extension.
5272  */
5273 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5274 			       unsigned int, flags)
5275 {
5276 	struct sched_attr attr;
5277 	struct task_struct *p;
5278 	int retval;
5279 
5280 	if (!uattr || pid < 0 || flags)
5281 		return -EINVAL;
5282 
5283 	retval = sched_copy_attr(uattr, &attr);
5284 	if (retval)
5285 		return retval;
5286 
5287 	if ((int)attr.sched_policy < 0)
5288 		return -EINVAL;
5289 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5290 		attr.sched_policy = SETPARAM_POLICY;
5291 
5292 	rcu_read_lock();
5293 	retval = -ESRCH;
5294 	p = find_process_by_pid(pid);
5295 	if (likely(p))
5296 		get_task_struct(p);
5297 	rcu_read_unlock();
5298 
5299 	if (likely(p)) {
5300 		retval = sched_setattr(p, &attr);
5301 		put_task_struct(p);
5302 	}
5303 
5304 	return retval;
5305 }
5306 
5307 /**
5308  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5309  * @pid: the pid in question.
5310  *
5311  * Return: On success, the policy of the thread. Otherwise, a negative error
5312  * code.
5313  */
5314 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5315 {
5316 	struct task_struct *p;
5317 	int retval;
5318 
5319 	if (pid < 0)
5320 		return -EINVAL;
5321 
5322 	retval = -ESRCH;
5323 	rcu_read_lock();
5324 	p = find_process_by_pid(pid);
5325 	if (p) {
5326 		retval = security_task_getscheduler(p);
5327 		if (!retval)
5328 			retval = p->policy
5329 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5330 	}
5331 	rcu_read_unlock();
5332 	return retval;
5333 }
5334 
5335 /**
5336  * sys_sched_getparam - get the RT priority of a thread
5337  * @pid: the pid in question.
5338  * @param: structure containing the RT priority.
5339  *
5340  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5341  * code.
5342  */
5343 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5344 {
5345 	struct sched_param lp = { .sched_priority = 0 };
5346 	struct task_struct *p;
5347 	int retval;
5348 
5349 	if (!param || pid < 0)
5350 		return -EINVAL;
5351 
5352 	rcu_read_lock();
5353 	p = find_process_by_pid(pid);
5354 	retval = -ESRCH;
5355 	if (!p)
5356 		goto out_unlock;
5357 
5358 	retval = security_task_getscheduler(p);
5359 	if (retval)
5360 		goto out_unlock;
5361 
5362 	if (task_has_rt_policy(p))
5363 		lp.sched_priority = p->rt_priority;
5364 	rcu_read_unlock();
5365 
5366 	/*
5367 	 * This one might sleep, we cannot do it with a spinlock held ...
5368 	 */
5369 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5370 
5371 	return retval;
5372 
5373 out_unlock:
5374 	rcu_read_unlock();
5375 	return retval;
5376 }
5377 
5378 /*
5379  * Copy the kernel size attribute structure (which might be larger
5380  * than what user-space knows about) to user-space.
5381  *
5382  * Note that all cases are valid: user-space buffer can be larger or
5383  * smaller than the kernel-space buffer. The usual case is that both
5384  * have the same size.
5385  */
5386 static int
5387 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5388 			struct sched_attr *kattr,
5389 			unsigned int usize)
5390 {
5391 	unsigned int ksize = sizeof(*kattr);
5392 
5393 	if (!access_ok(uattr, usize))
5394 		return -EFAULT;
5395 
5396 	/*
5397 	 * sched_getattr() ABI forwards and backwards compatibility:
5398 	 *
5399 	 * If usize == ksize then we just copy everything to user-space and all is good.
5400 	 *
5401 	 * If usize < ksize then we only copy as much as user-space has space for,
5402 	 * this keeps ABI compatibility as well. We skip the rest.
5403 	 *
5404 	 * If usize > ksize then user-space is using a newer version of the ABI,
5405 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5406 	 * detect the kernel's knowledge of attributes from the attr->size value
5407 	 * which is set to ksize in this case.
5408 	 */
5409 	kattr->size = min(usize, ksize);
5410 
5411 	if (copy_to_user(uattr, kattr, kattr->size))
5412 		return -EFAULT;
5413 
5414 	return 0;
5415 }
5416 
5417 /**
5418  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5419  * @pid: the pid in question.
5420  * @uattr: structure containing the extended parameters.
5421  * @usize: sizeof(attr) for fwd/bwd comp.
5422  * @flags: for future extension.
5423  */
5424 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5425 		unsigned int, usize, unsigned int, flags)
5426 {
5427 	struct sched_attr kattr = { };
5428 	struct task_struct *p;
5429 	int retval;
5430 
5431 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5432 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5433 		return -EINVAL;
5434 
5435 	rcu_read_lock();
5436 	p = find_process_by_pid(pid);
5437 	retval = -ESRCH;
5438 	if (!p)
5439 		goto out_unlock;
5440 
5441 	retval = security_task_getscheduler(p);
5442 	if (retval)
5443 		goto out_unlock;
5444 
5445 	kattr.sched_policy = p->policy;
5446 	if (p->sched_reset_on_fork)
5447 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5448 	if (task_has_dl_policy(p))
5449 		__getparam_dl(p, &kattr);
5450 	else if (task_has_rt_policy(p))
5451 		kattr.sched_priority = p->rt_priority;
5452 	else
5453 		kattr.sched_nice = task_nice(p);
5454 
5455 #ifdef CONFIG_UCLAMP_TASK
5456 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5457 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5458 #endif
5459 
5460 	rcu_read_unlock();
5461 
5462 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5463 
5464 out_unlock:
5465 	rcu_read_unlock();
5466 	return retval;
5467 }
5468 
5469 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5470 {
5471 	cpumask_var_t cpus_allowed, new_mask;
5472 	struct task_struct *p;
5473 	int retval;
5474 
5475 	rcu_read_lock();
5476 
5477 	p = find_process_by_pid(pid);
5478 	if (!p) {
5479 		rcu_read_unlock();
5480 		return -ESRCH;
5481 	}
5482 
5483 	/* Prevent p going away */
5484 	get_task_struct(p);
5485 	rcu_read_unlock();
5486 
5487 	if (p->flags & PF_NO_SETAFFINITY) {
5488 		retval = -EINVAL;
5489 		goto out_put_task;
5490 	}
5491 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5492 		retval = -ENOMEM;
5493 		goto out_put_task;
5494 	}
5495 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5496 		retval = -ENOMEM;
5497 		goto out_free_cpus_allowed;
5498 	}
5499 	retval = -EPERM;
5500 	if (!check_same_owner(p)) {
5501 		rcu_read_lock();
5502 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5503 			rcu_read_unlock();
5504 			goto out_free_new_mask;
5505 		}
5506 		rcu_read_unlock();
5507 	}
5508 
5509 	retval = security_task_setscheduler(p);
5510 	if (retval)
5511 		goto out_free_new_mask;
5512 
5513 
5514 	cpuset_cpus_allowed(p, cpus_allowed);
5515 	cpumask_and(new_mask, in_mask, cpus_allowed);
5516 
5517 	/*
5518 	 * Since bandwidth control happens on root_domain basis,
5519 	 * if admission test is enabled, we only admit -deadline
5520 	 * tasks allowed to run on all the CPUs in the task's
5521 	 * root_domain.
5522 	 */
5523 #ifdef CONFIG_SMP
5524 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5525 		rcu_read_lock();
5526 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5527 			retval = -EBUSY;
5528 			rcu_read_unlock();
5529 			goto out_free_new_mask;
5530 		}
5531 		rcu_read_unlock();
5532 	}
5533 #endif
5534 again:
5535 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5536 
5537 	if (!retval) {
5538 		cpuset_cpus_allowed(p, cpus_allowed);
5539 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5540 			/*
5541 			 * We must have raced with a concurrent cpuset
5542 			 * update. Just reset the cpus_allowed to the
5543 			 * cpuset's cpus_allowed
5544 			 */
5545 			cpumask_copy(new_mask, cpus_allowed);
5546 			goto again;
5547 		}
5548 	}
5549 out_free_new_mask:
5550 	free_cpumask_var(new_mask);
5551 out_free_cpus_allowed:
5552 	free_cpumask_var(cpus_allowed);
5553 out_put_task:
5554 	put_task_struct(p);
5555 	return retval;
5556 }
5557 
5558 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5559 			     struct cpumask *new_mask)
5560 {
5561 	if (len < cpumask_size())
5562 		cpumask_clear(new_mask);
5563 	else if (len > cpumask_size())
5564 		len = cpumask_size();
5565 
5566 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5567 }
5568 
5569 /**
5570  * sys_sched_setaffinity - set the CPU affinity of a process
5571  * @pid: pid of the process
5572  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5573  * @user_mask_ptr: user-space pointer to the new CPU mask
5574  *
5575  * Return: 0 on success. An error code otherwise.
5576  */
5577 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5578 		unsigned long __user *, user_mask_ptr)
5579 {
5580 	cpumask_var_t new_mask;
5581 	int retval;
5582 
5583 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5584 		return -ENOMEM;
5585 
5586 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5587 	if (retval == 0)
5588 		retval = sched_setaffinity(pid, new_mask);
5589 	free_cpumask_var(new_mask);
5590 	return retval;
5591 }
5592 
5593 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5594 {
5595 	struct task_struct *p;
5596 	unsigned long flags;
5597 	int retval;
5598 
5599 	rcu_read_lock();
5600 
5601 	retval = -ESRCH;
5602 	p = find_process_by_pid(pid);
5603 	if (!p)
5604 		goto out_unlock;
5605 
5606 	retval = security_task_getscheduler(p);
5607 	if (retval)
5608 		goto out_unlock;
5609 
5610 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5611 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5612 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5613 
5614 out_unlock:
5615 	rcu_read_unlock();
5616 
5617 	return retval;
5618 }
5619 
5620 /**
5621  * sys_sched_getaffinity - get the CPU affinity of a process
5622  * @pid: pid of the process
5623  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5624  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5625  *
5626  * Return: size of CPU mask copied to user_mask_ptr on success. An
5627  * error code otherwise.
5628  */
5629 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5630 		unsigned long __user *, user_mask_ptr)
5631 {
5632 	int ret;
5633 	cpumask_var_t mask;
5634 
5635 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5636 		return -EINVAL;
5637 	if (len & (sizeof(unsigned long)-1))
5638 		return -EINVAL;
5639 
5640 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5641 		return -ENOMEM;
5642 
5643 	ret = sched_getaffinity(pid, mask);
5644 	if (ret == 0) {
5645 		unsigned int retlen = min(len, cpumask_size());
5646 
5647 		if (copy_to_user(user_mask_ptr, mask, retlen))
5648 			ret = -EFAULT;
5649 		else
5650 			ret = retlen;
5651 	}
5652 	free_cpumask_var(mask);
5653 
5654 	return ret;
5655 }
5656 
5657 /**
5658  * sys_sched_yield - yield the current processor to other threads.
5659  *
5660  * This function yields the current CPU to other tasks. If there are no
5661  * other threads running on this CPU then this function will return.
5662  *
5663  * Return: 0.
5664  */
5665 static void do_sched_yield(void)
5666 {
5667 	struct rq_flags rf;
5668 	struct rq *rq;
5669 
5670 	rq = this_rq_lock_irq(&rf);
5671 
5672 	schedstat_inc(rq->yld_count);
5673 	current->sched_class->yield_task(rq);
5674 
5675 	/*
5676 	 * Since we are going to call schedule() anyway, there's
5677 	 * no need to preempt or enable interrupts:
5678 	 */
5679 	preempt_disable();
5680 	rq_unlock(rq, &rf);
5681 	sched_preempt_enable_no_resched();
5682 
5683 	schedule();
5684 }
5685 
5686 SYSCALL_DEFINE0(sched_yield)
5687 {
5688 	do_sched_yield();
5689 	return 0;
5690 }
5691 
5692 #ifndef CONFIG_PREEMPTION
5693 int __sched _cond_resched(void)
5694 {
5695 	if (should_resched(0)) {
5696 		preempt_schedule_common();
5697 		return 1;
5698 	}
5699 	rcu_all_qs();
5700 	return 0;
5701 }
5702 EXPORT_SYMBOL(_cond_resched);
5703 #endif
5704 
5705 /*
5706  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5707  * call schedule, and on return reacquire the lock.
5708  *
5709  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5710  * operations here to prevent schedule() from being called twice (once via
5711  * spin_unlock(), once by hand).
5712  */
5713 int __cond_resched_lock(spinlock_t *lock)
5714 {
5715 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5716 	int ret = 0;
5717 
5718 	lockdep_assert_held(lock);
5719 
5720 	if (spin_needbreak(lock) || resched) {
5721 		spin_unlock(lock);
5722 		if (resched)
5723 			preempt_schedule_common();
5724 		else
5725 			cpu_relax();
5726 		ret = 1;
5727 		spin_lock(lock);
5728 	}
5729 	return ret;
5730 }
5731 EXPORT_SYMBOL(__cond_resched_lock);
5732 
5733 /**
5734  * yield - yield the current processor to other threads.
5735  *
5736  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5737  *
5738  * The scheduler is at all times free to pick the calling task as the most
5739  * eligible task to run, if removing the yield() call from your code breaks
5740  * it, its already broken.
5741  *
5742  * Typical broken usage is:
5743  *
5744  * while (!event)
5745  *	yield();
5746  *
5747  * where one assumes that yield() will let 'the other' process run that will
5748  * make event true. If the current task is a SCHED_FIFO task that will never
5749  * happen. Never use yield() as a progress guarantee!!
5750  *
5751  * If you want to use yield() to wait for something, use wait_event().
5752  * If you want to use yield() to be 'nice' for others, use cond_resched().
5753  * If you still want to use yield(), do not!
5754  */
5755 void __sched yield(void)
5756 {
5757 	set_current_state(TASK_RUNNING);
5758 	do_sched_yield();
5759 }
5760 EXPORT_SYMBOL(yield);
5761 
5762 /**
5763  * yield_to - yield the current processor to another thread in
5764  * your thread group, or accelerate that thread toward the
5765  * processor it's on.
5766  * @p: target task
5767  * @preempt: whether task preemption is allowed or not
5768  *
5769  * It's the caller's job to ensure that the target task struct
5770  * can't go away on us before we can do any checks.
5771  *
5772  * Return:
5773  *	true (>0) if we indeed boosted the target task.
5774  *	false (0) if we failed to boost the target.
5775  *	-ESRCH if there's no task to yield to.
5776  */
5777 int __sched yield_to(struct task_struct *p, bool preempt)
5778 {
5779 	struct task_struct *curr = current;
5780 	struct rq *rq, *p_rq;
5781 	unsigned long flags;
5782 	int yielded = 0;
5783 
5784 	local_irq_save(flags);
5785 	rq = this_rq();
5786 
5787 again:
5788 	p_rq = task_rq(p);
5789 	/*
5790 	 * If we're the only runnable task on the rq and target rq also
5791 	 * has only one task, there's absolutely no point in yielding.
5792 	 */
5793 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5794 		yielded = -ESRCH;
5795 		goto out_irq;
5796 	}
5797 
5798 	double_rq_lock(rq, p_rq);
5799 	if (task_rq(p) != p_rq) {
5800 		double_rq_unlock(rq, p_rq);
5801 		goto again;
5802 	}
5803 
5804 	if (!curr->sched_class->yield_to_task)
5805 		goto out_unlock;
5806 
5807 	if (curr->sched_class != p->sched_class)
5808 		goto out_unlock;
5809 
5810 	if (task_running(p_rq, p) || p->state)
5811 		goto out_unlock;
5812 
5813 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5814 	if (yielded) {
5815 		schedstat_inc(rq->yld_count);
5816 		/*
5817 		 * Make p's CPU reschedule; pick_next_entity takes care of
5818 		 * fairness.
5819 		 */
5820 		if (preempt && rq != p_rq)
5821 			resched_curr(p_rq);
5822 	}
5823 
5824 out_unlock:
5825 	double_rq_unlock(rq, p_rq);
5826 out_irq:
5827 	local_irq_restore(flags);
5828 
5829 	if (yielded > 0)
5830 		schedule();
5831 
5832 	return yielded;
5833 }
5834 EXPORT_SYMBOL_GPL(yield_to);
5835 
5836 int io_schedule_prepare(void)
5837 {
5838 	int old_iowait = current->in_iowait;
5839 
5840 	current->in_iowait = 1;
5841 	blk_schedule_flush_plug(current);
5842 
5843 	return old_iowait;
5844 }
5845 
5846 void io_schedule_finish(int token)
5847 {
5848 	current->in_iowait = token;
5849 }
5850 
5851 /*
5852  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5853  * that process accounting knows that this is a task in IO wait state.
5854  */
5855 long __sched io_schedule_timeout(long timeout)
5856 {
5857 	int token;
5858 	long ret;
5859 
5860 	token = io_schedule_prepare();
5861 	ret = schedule_timeout(timeout);
5862 	io_schedule_finish(token);
5863 
5864 	return ret;
5865 }
5866 EXPORT_SYMBOL(io_schedule_timeout);
5867 
5868 void __sched io_schedule(void)
5869 {
5870 	int token;
5871 
5872 	token = io_schedule_prepare();
5873 	schedule();
5874 	io_schedule_finish(token);
5875 }
5876 EXPORT_SYMBOL(io_schedule);
5877 
5878 /**
5879  * sys_sched_get_priority_max - return maximum RT priority.
5880  * @policy: scheduling class.
5881  *
5882  * Return: On success, this syscall returns the maximum
5883  * rt_priority that can be used by a given scheduling class.
5884  * On failure, a negative error code is returned.
5885  */
5886 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5887 {
5888 	int ret = -EINVAL;
5889 
5890 	switch (policy) {
5891 	case SCHED_FIFO:
5892 	case SCHED_RR:
5893 		ret = MAX_USER_RT_PRIO-1;
5894 		break;
5895 	case SCHED_DEADLINE:
5896 	case SCHED_NORMAL:
5897 	case SCHED_BATCH:
5898 	case SCHED_IDLE:
5899 		ret = 0;
5900 		break;
5901 	}
5902 	return ret;
5903 }
5904 
5905 /**
5906  * sys_sched_get_priority_min - return minimum RT priority.
5907  * @policy: scheduling class.
5908  *
5909  * Return: On success, this syscall returns the minimum
5910  * rt_priority that can be used by a given scheduling class.
5911  * On failure, a negative error code is returned.
5912  */
5913 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5914 {
5915 	int ret = -EINVAL;
5916 
5917 	switch (policy) {
5918 	case SCHED_FIFO:
5919 	case SCHED_RR:
5920 		ret = 1;
5921 		break;
5922 	case SCHED_DEADLINE:
5923 	case SCHED_NORMAL:
5924 	case SCHED_BATCH:
5925 	case SCHED_IDLE:
5926 		ret = 0;
5927 	}
5928 	return ret;
5929 }
5930 
5931 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5932 {
5933 	struct task_struct *p;
5934 	unsigned int time_slice;
5935 	struct rq_flags rf;
5936 	struct rq *rq;
5937 	int retval;
5938 
5939 	if (pid < 0)
5940 		return -EINVAL;
5941 
5942 	retval = -ESRCH;
5943 	rcu_read_lock();
5944 	p = find_process_by_pid(pid);
5945 	if (!p)
5946 		goto out_unlock;
5947 
5948 	retval = security_task_getscheduler(p);
5949 	if (retval)
5950 		goto out_unlock;
5951 
5952 	rq = task_rq_lock(p, &rf);
5953 	time_slice = 0;
5954 	if (p->sched_class->get_rr_interval)
5955 		time_slice = p->sched_class->get_rr_interval(rq, p);
5956 	task_rq_unlock(rq, p, &rf);
5957 
5958 	rcu_read_unlock();
5959 	jiffies_to_timespec64(time_slice, t);
5960 	return 0;
5961 
5962 out_unlock:
5963 	rcu_read_unlock();
5964 	return retval;
5965 }
5966 
5967 /**
5968  * sys_sched_rr_get_interval - return the default timeslice of a process.
5969  * @pid: pid of the process.
5970  * @interval: userspace pointer to the timeslice value.
5971  *
5972  * this syscall writes the default timeslice value of a given process
5973  * into the user-space timespec buffer. A value of '0' means infinity.
5974  *
5975  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5976  * an error code.
5977  */
5978 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5979 		struct __kernel_timespec __user *, interval)
5980 {
5981 	struct timespec64 t;
5982 	int retval = sched_rr_get_interval(pid, &t);
5983 
5984 	if (retval == 0)
5985 		retval = put_timespec64(&t, interval);
5986 
5987 	return retval;
5988 }
5989 
5990 #ifdef CONFIG_COMPAT_32BIT_TIME
5991 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5992 		struct old_timespec32 __user *, interval)
5993 {
5994 	struct timespec64 t;
5995 	int retval = sched_rr_get_interval(pid, &t);
5996 
5997 	if (retval == 0)
5998 		retval = put_old_timespec32(&t, interval);
5999 	return retval;
6000 }
6001 #endif
6002 
6003 void sched_show_task(struct task_struct *p)
6004 {
6005 	unsigned long free = 0;
6006 	int ppid;
6007 
6008 	if (!try_get_task_stack(p))
6009 		return;
6010 
6011 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6012 
6013 	if (p->state == TASK_RUNNING)
6014 		printk(KERN_CONT "  running task    ");
6015 #ifdef CONFIG_DEBUG_STACK_USAGE
6016 	free = stack_not_used(p);
6017 #endif
6018 	ppid = 0;
6019 	rcu_read_lock();
6020 	if (pid_alive(p))
6021 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6022 	rcu_read_unlock();
6023 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6024 		task_pid_nr(p), ppid,
6025 		(unsigned long)task_thread_info(p)->flags);
6026 
6027 	print_worker_info(KERN_INFO, p);
6028 	show_stack(p, NULL, KERN_INFO);
6029 	put_task_stack(p);
6030 }
6031 EXPORT_SYMBOL_GPL(sched_show_task);
6032 
6033 static inline bool
6034 state_filter_match(unsigned long state_filter, struct task_struct *p)
6035 {
6036 	/* no filter, everything matches */
6037 	if (!state_filter)
6038 		return true;
6039 
6040 	/* filter, but doesn't match */
6041 	if (!(p->state & state_filter))
6042 		return false;
6043 
6044 	/*
6045 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6046 	 * TASK_KILLABLE).
6047 	 */
6048 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6049 		return false;
6050 
6051 	return true;
6052 }
6053 
6054 
6055 void show_state_filter(unsigned long state_filter)
6056 {
6057 	struct task_struct *g, *p;
6058 
6059 #if BITS_PER_LONG == 32
6060 	printk(KERN_INFO
6061 		"  task                PC stack   pid father\n");
6062 #else
6063 	printk(KERN_INFO
6064 		"  task                        PC stack   pid father\n");
6065 #endif
6066 	rcu_read_lock();
6067 	for_each_process_thread(g, p) {
6068 		/*
6069 		 * reset the NMI-timeout, listing all files on a slow
6070 		 * console might take a lot of time:
6071 		 * Also, reset softlockup watchdogs on all CPUs, because
6072 		 * another CPU might be blocked waiting for us to process
6073 		 * an IPI.
6074 		 */
6075 		touch_nmi_watchdog();
6076 		touch_all_softlockup_watchdogs();
6077 		if (state_filter_match(state_filter, p))
6078 			sched_show_task(p);
6079 	}
6080 
6081 #ifdef CONFIG_SCHED_DEBUG
6082 	if (!state_filter)
6083 		sysrq_sched_debug_show();
6084 #endif
6085 	rcu_read_unlock();
6086 	/*
6087 	 * Only show locks if all tasks are dumped:
6088 	 */
6089 	if (!state_filter)
6090 		debug_show_all_locks();
6091 }
6092 
6093 /**
6094  * init_idle - set up an idle thread for a given CPU
6095  * @idle: task in question
6096  * @cpu: CPU the idle task belongs to
6097  *
6098  * NOTE: this function does not set the idle thread's NEED_RESCHED
6099  * flag, to make booting more robust.
6100  */
6101 void init_idle(struct task_struct *idle, int cpu)
6102 {
6103 	struct rq *rq = cpu_rq(cpu);
6104 	unsigned long flags;
6105 
6106 	__sched_fork(0, idle);
6107 
6108 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6109 	raw_spin_lock(&rq->lock);
6110 
6111 	idle->state = TASK_RUNNING;
6112 	idle->se.exec_start = sched_clock();
6113 	idle->flags |= PF_IDLE;
6114 
6115 	scs_task_reset(idle);
6116 	kasan_unpoison_task_stack(idle);
6117 
6118 #ifdef CONFIG_SMP
6119 	/*
6120 	 * Its possible that init_idle() gets called multiple times on a task,
6121 	 * in that case do_set_cpus_allowed() will not do the right thing.
6122 	 *
6123 	 * And since this is boot we can forgo the serialization.
6124 	 */
6125 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6126 #endif
6127 	/*
6128 	 * We're having a chicken and egg problem, even though we are
6129 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6130 	 * lockdep check in task_group() will fail.
6131 	 *
6132 	 * Similar case to sched_fork(). / Alternatively we could
6133 	 * use task_rq_lock() here and obtain the other rq->lock.
6134 	 *
6135 	 * Silence PROVE_RCU
6136 	 */
6137 	rcu_read_lock();
6138 	__set_task_cpu(idle, cpu);
6139 	rcu_read_unlock();
6140 
6141 	rq->idle = idle;
6142 	rcu_assign_pointer(rq->curr, idle);
6143 	idle->on_rq = TASK_ON_RQ_QUEUED;
6144 #ifdef CONFIG_SMP
6145 	idle->on_cpu = 1;
6146 #endif
6147 	raw_spin_unlock(&rq->lock);
6148 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6149 
6150 	/* Set the preempt count _outside_ the spinlocks! */
6151 	init_idle_preempt_count(idle, cpu);
6152 
6153 	/*
6154 	 * The idle tasks have their own, simple scheduling class:
6155 	 */
6156 	idle->sched_class = &idle_sched_class;
6157 	ftrace_graph_init_idle_task(idle, cpu);
6158 	vtime_init_idle(idle, cpu);
6159 #ifdef CONFIG_SMP
6160 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6161 #endif
6162 }
6163 
6164 #ifdef CONFIG_SMP
6165 
6166 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6167 			      const struct cpumask *trial)
6168 {
6169 	int ret = 1;
6170 
6171 	if (!cpumask_weight(cur))
6172 		return ret;
6173 
6174 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6175 
6176 	return ret;
6177 }
6178 
6179 int task_can_attach(struct task_struct *p,
6180 		    const struct cpumask *cs_cpus_allowed)
6181 {
6182 	int ret = 0;
6183 
6184 	/*
6185 	 * Kthreads which disallow setaffinity shouldn't be moved
6186 	 * to a new cpuset; we don't want to change their CPU
6187 	 * affinity and isolating such threads by their set of
6188 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6189 	 * applicable for such threads.  This prevents checking for
6190 	 * success of set_cpus_allowed_ptr() on all attached tasks
6191 	 * before cpus_mask may be changed.
6192 	 */
6193 	if (p->flags & PF_NO_SETAFFINITY) {
6194 		ret = -EINVAL;
6195 		goto out;
6196 	}
6197 
6198 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6199 					      cs_cpus_allowed))
6200 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6201 
6202 out:
6203 	return ret;
6204 }
6205 
6206 bool sched_smp_initialized __read_mostly;
6207 
6208 #ifdef CONFIG_NUMA_BALANCING
6209 /* Migrate current task p to target_cpu */
6210 int migrate_task_to(struct task_struct *p, int target_cpu)
6211 {
6212 	struct migration_arg arg = { p, target_cpu };
6213 	int curr_cpu = task_cpu(p);
6214 
6215 	if (curr_cpu == target_cpu)
6216 		return 0;
6217 
6218 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6219 		return -EINVAL;
6220 
6221 	/* TODO: This is not properly updating schedstats */
6222 
6223 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6224 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6225 }
6226 
6227 /*
6228  * Requeue a task on a given node and accurately track the number of NUMA
6229  * tasks on the runqueues
6230  */
6231 void sched_setnuma(struct task_struct *p, int nid)
6232 {
6233 	bool queued, running;
6234 	struct rq_flags rf;
6235 	struct rq *rq;
6236 
6237 	rq = task_rq_lock(p, &rf);
6238 	queued = task_on_rq_queued(p);
6239 	running = task_current(rq, p);
6240 
6241 	if (queued)
6242 		dequeue_task(rq, p, DEQUEUE_SAVE);
6243 	if (running)
6244 		put_prev_task(rq, p);
6245 
6246 	p->numa_preferred_nid = nid;
6247 
6248 	if (queued)
6249 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6250 	if (running)
6251 		set_next_task(rq, p);
6252 	task_rq_unlock(rq, p, &rf);
6253 }
6254 #endif /* CONFIG_NUMA_BALANCING */
6255 
6256 #ifdef CONFIG_HOTPLUG_CPU
6257 /*
6258  * Ensure that the idle task is using init_mm right before its CPU goes
6259  * offline.
6260  */
6261 void idle_task_exit(void)
6262 {
6263 	struct mm_struct *mm = current->active_mm;
6264 
6265 	BUG_ON(cpu_online(smp_processor_id()));
6266 	BUG_ON(current != this_rq()->idle);
6267 
6268 	if (mm != &init_mm) {
6269 		switch_mm(mm, &init_mm, current);
6270 		finish_arch_post_lock_switch();
6271 	}
6272 
6273 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6274 }
6275 
6276 /*
6277  * Since this CPU is going 'away' for a while, fold any nr_active delta
6278  * we might have. Assumes we're called after migrate_tasks() so that the
6279  * nr_active count is stable. We need to take the teardown thread which
6280  * is calling this into account, so we hand in adjust = 1 to the load
6281  * calculation.
6282  *
6283  * Also see the comment "Global load-average calculations".
6284  */
6285 static void calc_load_migrate(struct rq *rq)
6286 {
6287 	long delta = calc_load_fold_active(rq, 1);
6288 	if (delta)
6289 		atomic_long_add(delta, &calc_load_tasks);
6290 }
6291 
6292 static struct task_struct *__pick_migrate_task(struct rq *rq)
6293 {
6294 	const struct sched_class *class;
6295 	struct task_struct *next;
6296 
6297 	for_each_class(class) {
6298 		next = class->pick_next_task(rq);
6299 		if (next) {
6300 			next->sched_class->put_prev_task(rq, next);
6301 			return next;
6302 		}
6303 	}
6304 
6305 	/* The idle class should always have a runnable task */
6306 	BUG();
6307 }
6308 
6309 /*
6310  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6311  * try_to_wake_up()->select_task_rq().
6312  *
6313  * Called with rq->lock held even though we'er in stop_machine() and
6314  * there's no concurrency possible, we hold the required locks anyway
6315  * because of lock validation efforts.
6316  */
6317 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6318 {
6319 	struct rq *rq = dead_rq;
6320 	struct task_struct *next, *stop = rq->stop;
6321 	struct rq_flags orf = *rf;
6322 	int dest_cpu;
6323 
6324 	/*
6325 	 * Fudge the rq selection such that the below task selection loop
6326 	 * doesn't get stuck on the currently eligible stop task.
6327 	 *
6328 	 * We're currently inside stop_machine() and the rq is either stuck
6329 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6330 	 * either way we should never end up calling schedule() until we're
6331 	 * done here.
6332 	 */
6333 	rq->stop = NULL;
6334 
6335 	/*
6336 	 * put_prev_task() and pick_next_task() sched
6337 	 * class method both need to have an up-to-date
6338 	 * value of rq->clock[_task]
6339 	 */
6340 	update_rq_clock(rq);
6341 
6342 	for (;;) {
6343 		/*
6344 		 * There's this thread running, bail when that's the only
6345 		 * remaining thread:
6346 		 */
6347 		if (rq->nr_running == 1)
6348 			break;
6349 
6350 		next = __pick_migrate_task(rq);
6351 
6352 		/*
6353 		 * Rules for changing task_struct::cpus_mask are holding
6354 		 * both pi_lock and rq->lock, such that holding either
6355 		 * stabilizes the mask.
6356 		 *
6357 		 * Drop rq->lock is not quite as disastrous as it usually is
6358 		 * because !cpu_active at this point, which means load-balance
6359 		 * will not interfere. Also, stop-machine.
6360 		 */
6361 		rq_unlock(rq, rf);
6362 		raw_spin_lock(&next->pi_lock);
6363 		rq_relock(rq, rf);
6364 
6365 		/*
6366 		 * Since we're inside stop-machine, _nothing_ should have
6367 		 * changed the task, WARN if weird stuff happened, because in
6368 		 * that case the above rq->lock drop is a fail too.
6369 		 */
6370 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6371 			raw_spin_unlock(&next->pi_lock);
6372 			continue;
6373 		}
6374 
6375 		/* Find suitable destination for @next, with force if needed. */
6376 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6377 		rq = __migrate_task(rq, rf, next, dest_cpu);
6378 		if (rq != dead_rq) {
6379 			rq_unlock(rq, rf);
6380 			rq = dead_rq;
6381 			*rf = orf;
6382 			rq_relock(rq, rf);
6383 		}
6384 		raw_spin_unlock(&next->pi_lock);
6385 	}
6386 
6387 	rq->stop = stop;
6388 }
6389 #endif /* CONFIG_HOTPLUG_CPU */
6390 
6391 void set_rq_online(struct rq *rq)
6392 {
6393 	if (!rq->online) {
6394 		const struct sched_class *class;
6395 
6396 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6397 		rq->online = 1;
6398 
6399 		for_each_class(class) {
6400 			if (class->rq_online)
6401 				class->rq_online(rq);
6402 		}
6403 	}
6404 }
6405 
6406 void set_rq_offline(struct rq *rq)
6407 {
6408 	if (rq->online) {
6409 		const struct sched_class *class;
6410 
6411 		for_each_class(class) {
6412 			if (class->rq_offline)
6413 				class->rq_offline(rq);
6414 		}
6415 
6416 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6417 		rq->online = 0;
6418 	}
6419 }
6420 
6421 /*
6422  * used to mark begin/end of suspend/resume:
6423  */
6424 static int num_cpus_frozen;
6425 
6426 /*
6427  * Update cpusets according to cpu_active mask.  If cpusets are
6428  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6429  * around partition_sched_domains().
6430  *
6431  * If we come here as part of a suspend/resume, don't touch cpusets because we
6432  * want to restore it back to its original state upon resume anyway.
6433  */
6434 static void cpuset_cpu_active(void)
6435 {
6436 	if (cpuhp_tasks_frozen) {
6437 		/*
6438 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6439 		 * resume sequence. As long as this is not the last online
6440 		 * operation in the resume sequence, just build a single sched
6441 		 * domain, ignoring cpusets.
6442 		 */
6443 		partition_sched_domains(1, NULL, NULL);
6444 		if (--num_cpus_frozen)
6445 			return;
6446 		/*
6447 		 * This is the last CPU online operation. So fall through and
6448 		 * restore the original sched domains by considering the
6449 		 * cpuset configurations.
6450 		 */
6451 		cpuset_force_rebuild();
6452 	}
6453 	cpuset_update_active_cpus();
6454 }
6455 
6456 static int cpuset_cpu_inactive(unsigned int cpu)
6457 {
6458 	if (!cpuhp_tasks_frozen) {
6459 		if (dl_cpu_busy(cpu))
6460 			return -EBUSY;
6461 		cpuset_update_active_cpus();
6462 	} else {
6463 		num_cpus_frozen++;
6464 		partition_sched_domains(1, NULL, NULL);
6465 	}
6466 	return 0;
6467 }
6468 
6469 int sched_cpu_activate(unsigned int cpu)
6470 {
6471 	struct rq *rq = cpu_rq(cpu);
6472 	struct rq_flags rf;
6473 
6474 #ifdef CONFIG_SCHED_SMT
6475 	/*
6476 	 * When going up, increment the number of cores with SMT present.
6477 	 */
6478 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6479 		static_branch_inc_cpuslocked(&sched_smt_present);
6480 #endif
6481 	set_cpu_active(cpu, true);
6482 
6483 	if (sched_smp_initialized) {
6484 		sched_domains_numa_masks_set(cpu);
6485 		cpuset_cpu_active();
6486 	}
6487 
6488 	/*
6489 	 * Put the rq online, if not already. This happens:
6490 	 *
6491 	 * 1) In the early boot process, because we build the real domains
6492 	 *    after all CPUs have been brought up.
6493 	 *
6494 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6495 	 *    domains.
6496 	 */
6497 	rq_lock_irqsave(rq, &rf);
6498 	if (rq->rd) {
6499 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6500 		set_rq_online(rq);
6501 	}
6502 	rq_unlock_irqrestore(rq, &rf);
6503 
6504 	return 0;
6505 }
6506 
6507 int sched_cpu_deactivate(unsigned int cpu)
6508 {
6509 	int ret;
6510 
6511 	set_cpu_active(cpu, false);
6512 	/*
6513 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6514 	 * users of this state to go away such that all new such users will
6515 	 * observe it.
6516 	 *
6517 	 * Do sync before park smpboot threads to take care the rcu boost case.
6518 	 */
6519 	synchronize_rcu();
6520 
6521 #ifdef CONFIG_SCHED_SMT
6522 	/*
6523 	 * When going down, decrement the number of cores with SMT present.
6524 	 */
6525 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6526 		static_branch_dec_cpuslocked(&sched_smt_present);
6527 #endif
6528 
6529 	if (!sched_smp_initialized)
6530 		return 0;
6531 
6532 	ret = cpuset_cpu_inactive(cpu);
6533 	if (ret) {
6534 		set_cpu_active(cpu, true);
6535 		return ret;
6536 	}
6537 	sched_domains_numa_masks_clear(cpu);
6538 	return 0;
6539 }
6540 
6541 static void sched_rq_cpu_starting(unsigned int cpu)
6542 {
6543 	struct rq *rq = cpu_rq(cpu);
6544 
6545 	rq->calc_load_update = calc_load_update;
6546 	update_max_interval();
6547 }
6548 
6549 int sched_cpu_starting(unsigned int cpu)
6550 {
6551 	sched_rq_cpu_starting(cpu);
6552 	sched_tick_start(cpu);
6553 	return 0;
6554 }
6555 
6556 #ifdef CONFIG_HOTPLUG_CPU
6557 int sched_cpu_dying(unsigned int cpu)
6558 {
6559 	struct rq *rq = cpu_rq(cpu);
6560 	struct rq_flags rf;
6561 
6562 	/* Handle pending wakeups and then migrate everything off */
6563 	sched_tick_stop(cpu);
6564 
6565 	rq_lock_irqsave(rq, &rf);
6566 	if (rq->rd) {
6567 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6568 		set_rq_offline(rq);
6569 	}
6570 	migrate_tasks(rq, &rf);
6571 	BUG_ON(rq->nr_running != 1);
6572 	rq_unlock_irqrestore(rq, &rf);
6573 
6574 	calc_load_migrate(rq);
6575 	update_max_interval();
6576 	nohz_balance_exit_idle(rq);
6577 	hrtick_clear(rq);
6578 	return 0;
6579 }
6580 #endif
6581 
6582 void __init sched_init_smp(void)
6583 {
6584 	sched_init_numa();
6585 
6586 	/*
6587 	 * There's no userspace yet to cause hotplug operations; hence all the
6588 	 * CPU masks are stable and all blatant races in the below code cannot
6589 	 * happen.
6590 	 */
6591 	mutex_lock(&sched_domains_mutex);
6592 	sched_init_domains(cpu_active_mask);
6593 	mutex_unlock(&sched_domains_mutex);
6594 
6595 	/* Move init over to a non-isolated CPU */
6596 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6597 		BUG();
6598 	sched_init_granularity();
6599 
6600 	init_sched_rt_class();
6601 	init_sched_dl_class();
6602 
6603 	sched_smp_initialized = true;
6604 }
6605 
6606 static int __init migration_init(void)
6607 {
6608 	sched_cpu_starting(smp_processor_id());
6609 	return 0;
6610 }
6611 early_initcall(migration_init);
6612 
6613 #else
6614 void __init sched_init_smp(void)
6615 {
6616 	sched_init_granularity();
6617 }
6618 #endif /* CONFIG_SMP */
6619 
6620 int in_sched_functions(unsigned long addr)
6621 {
6622 	return in_lock_functions(addr) ||
6623 		(addr >= (unsigned long)__sched_text_start
6624 		&& addr < (unsigned long)__sched_text_end);
6625 }
6626 
6627 #ifdef CONFIG_CGROUP_SCHED
6628 /*
6629  * Default task group.
6630  * Every task in system belongs to this group at bootup.
6631  */
6632 struct task_group root_task_group;
6633 LIST_HEAD(task_groups);
6634 
6635 /* Cacheline aligned slab cache for task_group */
6636 static struct kmem_cache *task_group_cache __read_mostly;
6637 #endif
6638 
6639 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6640 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6641 
6642 void __init sched_init(void)
6643 {
6644 	unsigned long ptr = 0;
6645 	int i;
6646 
6647 	wait_bit_init();
6648 
6649 #ifdef CONFIG_FAIR_GROUP_SCHED
6650 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6651 #endif
6652 #ifdef CONFIG_RT_GROUP_SCHED
6653 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6654 #endif
6655 	if (ptr) {
6656 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6657 
6658 #ifdef CONFIG_FAIR_GROUP_SCHED
6659 		root_task_group.se = (struct sched_entity **)ptr;
6660 		ptr += nr_cpu_ids * sizeof(void **);
6661 
6662 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6663 		ptr += nr_cpu_ids * sizeof(void **);
6664 
6665 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6666 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6667 #endif /* CONFIG_FAIR_GROUP_SCHED */
6668 #ifdef CONFIG_RT_GROUP_SCHED
6669 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6670 		ptr += nr_cpu_ids * sizeof(void **);
6671 
6672 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6673 		ptr += nr_cpu_ids * sizeof(void **);
6674 
6675 #endif /* CONFIG_RT_GROUP_SCHED */
6676 	}
6677 #ifdef CONFIG_CPUMASK_OFFSTACK
6678 	for_each_possible_cpu(i) {
6679 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6680 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6681 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6682 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6683 	}
6684 #endif /* CONFIG_CPUMASK_OFFSTACK */
6685 
6686 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6687 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6688 
6689 #ifdef CONFIG_SMP
6690 	init_defrootdomain();
6691 #endif
6692 
6693 #ifdef CONFIG_RT_GROUP_SCHED
6694 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6695 			global_rt_period(), global_rt_runtime());
6696 #endif /* CONFIG_RT_GROUP_SCHED */
6697 
6698 #ifdef CONFIG_CGROUP_SCHED
6699 	task_group_cache = KMEM_CACHE(task_group, 0);
6700 
6701 	list_add(&root_task_group.list, &task_groups);
6702 	INIT_LIST_HEAD(&root_task_group.children);
6703 	INIT_LIST_HEAD(&root_task_group.siblings);
6704 	autogroup_init(&init_task);
6705 #endif /* CONFIG_CGROUP_SCHED */
6706 
6707 	for_each_possible_cpu(i) {
6708 		struct rq *rq;
6709 
6710 		rq = cpu_rq(i);
6711 		raw_spin_lock_init(&rq->lock);
6712 		rq->nr_running = 0;
6713 		rq->calc_load_active = 0;
6714 		rq->calc_load_update = jiffies + LOAD_FREQ;
6715 		init_cfs_rq(&rq->cfs);
6716 		init_rt_rq(&rq->rt);
6717 		init_dl_rq(&rq->dl);
6718 #ifdef CONFIG_FAIR_GROUP_SCHED
6719 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6720 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6721 		/*
6722 		 * How much CPU bandwidth does root_task_group get?
6723 		 *
6724 		 * In case of task-groups formed thr' the cgroup filesystem, it
6725 		 * gets 100% of the CPU resources in the system. This overall
6726 		 * system CPU resource is divided among the tasks of
6727 		 * root_task_group and its child task-groups in a fair manner,
6728 		 * based on each entity's (task or task-group's) weight
6729 		 * (se->load.weight).
6730 		 *
6731 		 * In other words, if root_task_group has 10 tasks of weight
6732 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6733 		 * then A0's share of the CPU resource is:
6734 		 *
6735 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6736 		 *
6737 		 * We achieve this by letting root_task_group's tasks sit
6738 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6739 		 */
6740 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6741 #endif /* CONFIG_FAIR_GROUP_SCHED */
6742 
6743 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6744 #ifdef CONFIG_RT_GROUP_SCHED
6745 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6746 #endif
6747 #ifdef CONFIG_SMP
6748 		rq->sd = NULL;
6749 		rq->rd = NULL;
6750 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6751 		rq->balance_callback = NULL;
6752 		rq->active_balance = 0;
6753 		rq->next_balance = jiffies;
6754 		rq->push_cpu = 0;
6755 		rq->cpu = i;
6756 		rq->online = 0;
6757 		rq->idle_stamp = 0;
6758 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6759 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6760 
6761 		INIT_LIST_HEAD(&rq->cfs_tasks);
6762 
6763 		rq_attach_root(rq, &def_root_domain);
6764 #ifdef CONFIG_NO_HZ_COMMON
6765 		rq->last_blocked_load_update_tick = jiffies;
6766 		atomic_set(&rq->nohz_flags, 0);
6767 
6768 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6769 #endif
6770 #endif /* CONFIG_SMP */
6771 		hrtick_rq_init(rq);
6772 		atomic_set(&rq->nr_iowait, 0);
6773 	}
6774 
6775 	set_load_weight(&init_task, false);
6776 
6777 	/*
6778 	 * The boot idle thread does lazy MMU switching as well:
6779 	 */
6780 	mmgrab(&init_mm);
6781 	enter_lazy_tlb(&init_mm, current);
6782 
6783 	/*
6784 	 * Make us the idle thread. Technically, schedule() should not be
6785 	 * called from this thread, however somewhere below it might be,
6786 	 * but because we are the idle thread, we just pick up running again
6787 	 * when this runqueue becomes "idle".
6788 	 */
6789 	init_idle(current, smp_processor_id());
6790 
6791 	calc_load_update = jiffies + LOAD_FREQ;
6792 
6793 #ifdef CONFIG_SMP
6794 	idle_thread_set_boot_cpu();
6795 #endif
6796 	init_sched_fair_class();
6797 
6798 	init_schedstats();
6799 
6800 	psi_init();
6801 
6802 	init_uclamp();
6803 
6804 	scheduler_running = 1;
6805 }
6806 
6807 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6808 static inline int preempt_count_equals(int preempt_offset)
6809 {
6810 	int nested = preempt_count() + rcu_preempt_depth();
6811 
6812 	return (nested == preempt_offset);
6813 }
6814 
6815 void __might_sleep(const char *file, int line, int preempt_offset)
6816 {
6817 	/*
6818 	 * Blocking primitives will set (and therefore destroy) current->state,
6819 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6820 	 * otherwise we will destroy state.
6821 	 */
6822 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6823 			"do not call blocking ops when !TASK_RUNNING; "
6824 			"state=%lx set at [<%p>] %pS\n",
6825 			current->state,
6826 			(void *)current->task_state_change,
6827 			(void *)current->task_state_change);
6828 
6829 	___might_sleep(file, line, preempt_offset);
6830 }
6831 EXPORT_SYMBOL(__might_sleep);
6832 
6833 void ___might_sleep(const char *file, int line, int preempt_offset)
6834 {
6835 	/* Ratelimiting timestamp: */
6836 	static unsigned long prev_jiffy;
6837 
6838 	unsigned long preempt_disable_ip;
6839 
6840 	/* WARN_ON_ONCE() by default, no rate limit required: */
6841 	rcu_sleep_check();
6842 
6843 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6844 	     !is_idle_task(current) && !current->non_block_count) ||
6845 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6846 	    oops_in_progress)
6847 		return;
6848 
6849 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6850 		return;
6851 	prev_jiffy = jiffies;
6852 
6853 	/* Save this before calling printk(), since that will clobber it: */
6854 	preempt_disable_ip = get_preempt_disable_ip(current);
6855 
6856 	printk(KERN_ERR
6857 		"BUG: sleeping function called from invalid context at %s:%d\n",
6858 			file, line);
6859 	printk(KERN_ERR
6860 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6861 			in_atomic(), irqs_disabled(), current->non_block_count,
6862 			current->pid, current->comm);
6863 
6864 	if (task_stack_end_corrupted(current))
6865 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6866 
6867 	debug_show_held_locks(current);
6868 	if (irqs_disabled())
6869 		print_irqtrace_events(current);
6870 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6871 	    && !preempt_count_equals(preempt_offset)) {
6872 		pr_err("Preemption disabled at:");
6873 		print_ip_sym(KERN_ERR, preempt_disable_ip);
6874 	}
6875 	dump_stack();
6876 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6877 }
6878 EXPORT_SYMBOL(___might_sleep);
6879 
6880 void __cant_sleep(const char *file, int line, int preempt_offset)
6881 {
6882 	static unsigned long prev_jiffy;
6883 
6884 	if (irqs_disabled())
6885 		return;
6886 
6887 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6888 		return;
6889 
6890 	if (preempt_count() > preempt_offset)
6891 		return;
6892 
6893 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6894 		return;
6895 	prev_jiffy = jiffies;
6896 
6897 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6898 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6899 			in_atomic(), irqs_disabled(),
6900 			current->pid, current->comm);
6901 
6902 	debug_show_held_locks(current);
6903 	dump_stack();
6904 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6905 }
6906 EXPORT_SYMBOL_GPL(__cant_sleep);
6907 #endif
6908 
6909 #ifdef CONFIG_MAGIC_SYSRQ
6910 void normalize_rt_tasks(void)
6911 {
6912 	struct task_struct *g, *p;
6913 	struct sched_attr attr = {
6914 		.sched_policy = SCHED_NORMAL,
6915 	};
6916 
6917 	read_lock(&tasklist_lock);
6918 	for_each_process_thread(g, p) {
6919 		/*
6920 		 * Only normalize user tasks:
6921 		 */
6922 		if (p->flags & PF_KTHREAD)
6923 			continue;
6924 
6925 		p->se.exec_start = 0;
6926 		schedstat_set(p->se.statistics.wait_start,  0);
6927 		schedstat_set(p->se.statistics.sleep_start, 0);
6928 		schedstat_set(p->se.statistics.block_start, 0);
6929 
6930 		if (!dl_task(p) && !rt_task(p)) {
6931 			/*
6932 			 * Renice negative nice level userspace
6933 			 * tasks back to 0:
6934 			 */
6935 			if (task_nice(p) < 0)
6936 				set_user_nice(p, 0);
6937 			continue;
6938 		}
6939 
6940 		__sched_setscheduler(p, &attr, false, false);
6941 	}
6942 	read_unlock(&tasklist_lock);
6943 }
6944 
6945 #endif /* CONFIG_MAGIC_SYSRQ */
6946 
6947 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6948 /*
6949  * These functions are only useful for the IA64 MCA handling, or kdb.
6950  *
6951  * They can only be called when the whole system has been
6952  * stopped - every CPU needs to be quiescent, and no scheduling
6953  * activity can take place. Using them for anything else would
6954  * be a serious bug, and as a result, they aren't even visible
6955  * under any other configuration.
6956  */
6957 
6958 /**
6959  * curr_task - return the current task for a given CPU.
6960  * @cpu: the processor in question.
6961  *
6962  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6963  *
6964  * Return: The current task for @cpu.
6965  */
6966 struct task_struct *curr_task(int cpu)
6967 {
6968 	return cpu_curr(cpu);
6969 }
6970 
6971 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6972 
6973 #ifdef CONFIG_IA64
6974 /**
6975  * ia64_set_curr_task - set the current task for a given CPU.
6976  * @cpu: the processor in question.
6977  * @p: the task pointer to set.
6978  *
6979  * Description: This function must only be used when non-maskable interrupts
6980  * are serviced on a separate stack. It allows the architecture to switch the
6981  * notion of the current task on a CPU in a non-blocking manner. This function
6982  * must be called with all CPU's synchronized, and interrupts disabled, the
6983  * and caller must save the original value of the current task (see
6984  * curr_task() above) and restore that value before reenabling interrupts and
6985  * re-starting the system.
6986  *
6987  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6988  */
6989 void ia64_set_curr_task(int cpu, struct task_struct *p)
6990 {
6991 	cpu_curr(cpu) = p;
6992 }
6993 
6994 #endif
6995 
6996 #ifdef CONFIG_CGROUP_SCHED
6997 /* task_group_lock serializes the addition/removal of task groups */
6998 static DEFINE_SPINLOCK(task_group_lock);
6999 
7000 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7001 					    struct task_group *parent)
7002 {
7003 #ifdef CONFIG_UCLAMP_TASK_GROUP
7004 	enum uclamp_id clamp_id;
7005 
7006 	for_each_clamp_id(clamp_id) {
7007 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7008 			      uclamp_none(clamp_id), false);
7009 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7010 	}
7011 #endif
7012 }
7013 
7014 static void sched_free_group(struct task_group *tg)
7015 {
7016 	free_fair_sched_group(tg);
7017 	free_rt_sched_group(tg);
7018 	autogroup_free(tg);
7019 	kmem_cache_free(task_group_cache, tg);
7020 }
7021 
7022 /* allocate runqueue etc for a new task group */
7023 struct task_group *sched_create_group(struct task_group *parent)
7024 {
7025 	struct task_group *tg;
7026 
7027 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7028 	if (!tg)
7029 		return ERR_PTR(-ENOMEM);
7030 
7031 	if (!alloc_fair_sched_group(tg, parent))
7032 		goto err;
7033 
7034 	if (!alloc_rt_sched_group(tg, parent))
7035 		goto err;
7036 
7037 	alloc_uclamp_sched_group(tg, parent);
7038 
7039 	return tg;
7040 
7041 err:
7042 	sched_free_group(tg);
7043 	return ERR_PTR(-ENOMEM);
7044 }
7045 
7046 void sched_online_group(struct task_group *tg, struct task_group *parent)
7047 {
7048 	unsigned long flags;
7049 
7050 	spin_lock_irqsave(&task_group_lock, flags);
7051 	list_add_rcu(&tg->list, &task_groups);
7052 
7053 	/* Root should already exist: */
7054 	WARN_ON(!parent);
7055 
7056 	tg->parent = parent;
7057 	INIT_LIST_HEAD(&tg->children);
7058 	list_add_rcu(&tg->siblings, &parent->children);
7059 	spin_unlock_irqrestore(&task_group_lock, flags);
7060 
7061 	online_fair_sched_group(tg);
7062 }
7063 
7064 /* rcu callback to free various structures associated with a task group */
7065 static void sched_free_group_rcu(struct rcu_head *rhp)
7066 {
7067 	/* Now it should be safe to free those cfs_rqs: */
7068 	sched_free_group(container_of(rhp, struct task_group, rcu));
7069 }
7070 
7071 void sched_destroy_group(struct task_group *tg)
7072 {
7073 	/* Wait for possible concurrent references to cfs_rqs complete: */
7074 	call_rcu(&tg->rcu, sched_free_group_rcu);
7075 }
7076 
7077 void sched_offline_group(struct task_group *tg)
7078 {
7079 	unsigned long flags;
7080 
7081 	/* End participation in shares distribution: */
7082 	unregister_fair_sched_group(tg);
7083 
7084 	spin_lock_irqsave(&task_group_lock, flags);
7085 	list_del_rcu(&tg->list);
7086 	list_del_rcu(&tg->siblings);
7087 	spin_unlock_irqrestore(&task_group_lock, flags);
7088 }
7089 
7090 static void sched_change_group(struct task_struct *tsk, int type)
7091 {
7092 	struct task_group *tg;
7093 
7094 	/*
7095 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7096 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7097 	 * to prevent lockdep warnings.
7098 	 */
7099 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7100 			  struct task_group, css);
7101 	tg = autogroup_task_group(tsk, tg);
7102 	tsk->sched_task_group = tg;
7103 
7104 #ifdef CONFIG_FAIR_GROUP_SCHED
7105 	if (tsk->sched_class->task_change_group)
7106 		tsk->sched_class->task_change_group(tsk, type);
7107 	else
7108 #endif
7109 		set_task_rq(tsk, task_cpu(tsk));
7110 }
7111 
7112 /*
7113  * Change task's runqueue when it moves between groups.
7114  *
7115  * The caller of this function should have put the task in its new group by
7116  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7117  * its new group.
7118  */
7119 void sched_move_task(struct task_struct *tsk)
7120 {
7121 	int queued, running, queue_flags =
7122 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7123 	struct rq_flags rf;
7124 	struct rq *rq;
7125 
7126 	rq = task_rq_lock(tsk, &rf);
7127 	update_rq_clock(rq);
7128 
7129 	running = task_current(rq, tsk);
7130 	queued = task_on_rq_queued(tsk);
7131 
7132 	if (queued)
7133 		dequeue_task(rq, tsk, queue_flags);
7134 	if (running)
7135 		put_prev_task(rq, tsk);
7136 
7137 	sched_change_group(tsk, TASK_MOVE_GROUP);
7138 
7139 	if (queued)
7140 		enqueue_task(rq, tsk, queue_flags);
7141 	if (running) {
7142 		set_next_task(rq, tsk);
7143 		/*
7144 		 * After changing group, the running task may have joined a
7145 		 * throttled one but it's still the running task. Trigger a
7146 		 * resched to make sure that task can still run.
7147 		 */
7148 		resched_curr(rq);
7149 	}
7150 
7151 	task_rq_unlock(rq, tsk, &rf);
7152 }
7153 
7154 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7155 {
7156 	return css ? container_of(css, struct task_group, css) : NULL;
7157 }
7158 
7159 static struct cgroup_subsys_state *
7160 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7161 {
7162 	struct task_group *parent = css_tg(parent_css);
7163 	struct task_group *tg;
7164 
7165 	if (!parent) {
7166 		/* This is early initialization for the top cgroup */
7167 		return &root_task_group.css;
7168 	}
7169 
7170 	tg = sched_create_group(parent);
7171 	if (IS_ERR(tg))
7172 		return ERR_PTR(-ENOMEM);
7173 
7174 	return &tg->css;
7175 }
7176 
7177 /* Expose task group only after completing cgroup initialization */
7178 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7179 {
7180 	struct task_group *tg = css_tg(css);
7181 	struct task_group *parent = css_tg(css->parent);
7182 
7183 	if (parent)
7184 		sched_online_group(tg, parent);
7185 
7186 #ifdef CONFIG_UCLAMP_TASK_GROUP
7187 	/* Propagate the effective uclamp value for the new group */
7188 	cpu_util_update_eff(css);
7189 #endif
7190 
7191 	return 0;
7192 }
7193 
7194 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7195 {
7196 	struct task_group *tg = css_tg(css);
7197 
7198 	sched_offline_group(tg);
7199 }
7200 
7201 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7202 {
7203 	struct task_group *tg = css_tg(css);
7204 
7205 	/*
7206 	 * Relies on the RCU grace period between css_released() and this.
7207 	 */
7208 	sched_free_group(tg);
7209 }
7210 
7211 /*
7212  * This is called before wake_up_new_task(), therefore we really only
7213  * have to set its group bits, all the other stuff does not apply.
7214  */
7215 static void cpu_cgroup_fork(struct task_struct *task)
7216 {
7217 	struct rq_flags rf;
7218 	struct rq *rq;
7219 
7220 	rq = task_rq_lock(task, &rf);
7221 
7222 	update_rq_clock(rq);
7223 	sched_change_group(task, TASK_SET_GROUP);
7224 
7225 	task_rq_unlock(rq, task, &rf);
7226 }
7227 
7228 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7229 {
7230 	struct task_struct *task;
7231 	struct cgroup_subsys_state *css;
7232 	int ret = 0;
7233 
7234 	cgroup_taskset_for_each(task, css, tset) {
7235 #ifdef CONFIG_RT_GROUP_SCHED
7236 		if (!sched_rt_can_attach(css_tg(css), task))
7237 			return -EINVAL;
7238 #endif
7239 		/*
7240 		 * Serialize against wake_up_new_task() such that if its
7241 		 * running, we're sure to observe its full state.
7242 		 */
7243 		raw_spin_lock_irq(&task->pi_lock);
7244 		/*
7245 		 * Avoid calling sched_move_task() before wake_up_new_task()
7246 		 * has happened. This would lead to problems with PELT, due to
7247 		 * move wanting to detach+attach while we're not attached yet.
7248 		 */
7249 		if (task->state == TASK_NEW)
7250 			ret = -EINVAL;
7251 		raw_spin_unlock_irq(&task->pi_lock);
7252 
7253 		if (ret)
7254 			break;
7255 	}
7256 	return ret;
7257 }
7258 
7259 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7260 {
7261 	struct task_struct *task;
7262 	struct cgroup_subsys_state *css;
7263 
7264 	cgroup_taskset_for_each(task, css, tset)
7265 		sched_move_task(task);
7266 }
7267 
7268 #ifdef CONFIG_UCLAMP_TASK_GROUP
7269 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7270 {
7271 	struct cgroup_subsys_state *top_css = css;
7272 	struct uclamp_se *uc_parent = NULL;
7273 	struct uclamp_se *uc_se = NULL;
7274 	unsigned int eff[UCLAMP_CNT];
7275 	enum uclamp_id clamp_id;
7276 	unsigned int clamps;
7277 
7278 	css_for_each_descendant_pre(css, top_css) {
7279 		uc_parent = css_tg(css)->parent
7280 			? css_tg(css)->parent->uclamp : NULL;
7281 
7282 		for_each_clamp_id(clamp_id) {
7283 			/* Assume effective clamps matches requested clamps */
7284 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7285 			/* Cap effective clamps with parent's effective clamps */
7286 			if (uc_parent &&
7287 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7288 				eff[clamp_id] = uc_parent[clamp_id].value;
7289 			}
7290 		}
7291 		/* Ensure protection is always capped by limit */
7292 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7293 
7294 		/* Propagate most restrictive effective clamps */
7295 		clamps = 0x0;
7296 		uc_se = css_tg(css)->uclamp;
7297 		for_each_clamp_id(clamp_id) {
7298 			if (eff[clamp_id] == uc_se[clamp_id].value)
7299 				continue;
7300 			uc_se[clamp_id].value = eff[clamp_id];
7301 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7302 			clamps |= (0x1 << clamp_id);
7303 		}
7304 		if (!clamps) {
7305 			css = css_rightmost_descendant(css);
7306 			continue;
7307 		}
7308 
7309 		/* Immediately update descendants RUNNABLE tasks */
7310 		uclamp_update_active_tasks(css, clamps);
7311 	}
7312 }
7313 
7314 /*
7315  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7316  * C expression. Since there is no way to convert a macro argument (N) into a
7317  * character constant, use two levels of macros.
7318  */
7319 #define _POW10(exp) ((unsigned int)1e##exp)
7320 #define POW10(exp) _POW10(exp)
7321 
7322 struct uclamp_request {
7323 #define UCLAMP_PERCENT_SHIFT	2
7324 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7325 	s64 percent;
7326 	u64 util;
7327 	int ret;
7328 };
7329 
7330 static inline struct uclamp_request
7331 capacity_from_percent(char *buf)
7332 {
7333 	struct uclamp_request req = {
7334 		.percent = UCLAMP_PERCENT_SCALE,
7335 		.util = SCHED_CAPACITY_SCALE,
7336 		.ret = 0,
7337 	};
7338 
7339 	buf = strim(buf);
7340 	if (strcmp(buf, "max")) {
7341 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7342 					     &req.percent);
7343 		if (req.ret)
7344 			return req;
7345 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7346 			req.ret = -ERANGE;
7347 			return req;
7348 		}
7349 
7350 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7351 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7352 	}
7353 
7354 	return req;
7355 }
7356 
7357 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7358 				size_t nbytes, loff_t off,
7359 				enum uclamp_id clamp_id)
7360 {
7361 	struct uclamp_request req;
7362 	struct task_group *tg;
7363 
7364 	req = capacity_from_percent(buf);
7365 	if (req.ret)
7366 		return req.ret;
7367 
7368 	mutex_lock(&uclamp_mutex);
7369 	rcu_read_lock();
7370 
7371 	tg = css_tg(of_css(of));
7372 	if (tg->uclamp_req[clamp_id].value != req.util)
7373 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7374 
7375 	/*
7376 	 * Because of not recoverable conversion rounding we keep track of the
7377 	 * exact requested value
7378 	 */
7379 	tg->uclamp_pct[clamp_id] = req.percent;
7380 
7381 	/* Update effective clamps to track the most restrictive value */
7382 	cpu_util_update_eff(of_css(of));
7383 
7384 	rcu_read_unlock();
7385 	mutex_unlock(&uclamp_mutex);
7386 
7387 	return nbytes;
7388 }
7389 
7390 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7391 				    char *buf, size_t nbytes,
7392 				    loff_t off)
7393 {
7394 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7395 }
7396 
7397 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7398 				    char *buf, size_t nbytes,
7399 				    loff_t off)
7400 {
7401 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7402 }
7403 
7404 static inline void cpu_uclamp_print(struct seq_file *sf,
7405 				    enum uclamp_id clamp_id)
7406 {
7407 	struct task_group *tg;
7408 	u64 util_clamp;
7409 	u64 percent;
7410 	u32 rem;
7411 
7412 	rcu_read_lock();
7413 	tg = css_tg(seq_css(sf));
7414 	util_clamp = tg->uclamp_req[clamp_id].value;
7415 	rcu_read_unlock();
7416 
7417 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7418 		seq_puts(sf, "max\n");
7419 		return;
7420 	}
7421 
7422 	percent = tg->uclamp_pct[clamp_id];
7423 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7424 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7425 }
7426 
7427 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7428 {
7429 	cpu_uclamp_print(sf, UCLAMP_MIN);
7430 	return 0;
7431 }
7432 
7433 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7434 {
7435 	cpu_uclamp_print(sf, UCLAMP_MAX);
7436 	return 0;
7437 }
7438 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7439 
7440 #ifdef CONFIG_FAIR_GROUP_SCHED
7441 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7442 				struct cftype *cftype, u64 shareval)
7443 {
7444 	if (shareval > scale_load_down(ULONG_MAX))
7445 		shareval = MAX_SHARES;
7446 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7447 }
7448 
7449 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7450 			       struct cftype *cft)
7451 {
7452 	struct task_group *tg = css_tg(css);
7453 
7454 	return (u64) scale_load_down(tg->shares);
7455 }
7456 
7457 #ifdef CONFIG_CFS_BANDWIDTH
7458 static DEFINE_MUTEX(cfs_constraints_mutex);
7459 
7460 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7461 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7462 /* More than 203 days if BW_SHIFT equals 20. */
7463 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7464 
7465 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7466 
7467 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7468 {
7469 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7470 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7471 
7472 	if (tg == &root_task_group)
7473 		return -EINVAL;
7474 
7475 	/*
7476 	 * Ensure we have at some amount of bandwidth every period.  This is
7477 	 * to prevent reaching a state of large arrears when throttled via
7478 	 * entity_tick() resulting in prolonged exit starvation.
7479 	 */
7480 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7481 		return -EINVAL;
7482 
7483 	/*
7484 	 * Likewise, bound things on the otherside by preventing insane quota
7485 	 * periods.  This also allows us to normalize in computing quota
7486 	 * feasibility.
7487 	 */
7488 	if (period > max_cfs_quota_period)
7489 		return -EINVAL;
7490 
7491 	/*
7492 	 * Bound quota to defend quota against overflow during bandwidth shift.
7493 	 */
7494 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7495 		return -EINVAL;
7496 
7497 	/*
7498 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7499 	 * unthrottle_offline_cfs_rqs().
7500 	 */
7501 	get_online_cpus();
7502 	mutex_lock(&cfs_constraints_mutex);
7503 	ret = __cfs_schedulable(tg, period, quota);
7504 	if (ret)
7505 		goto out_unlock;
7506 
7507 	runtime_enabled = quota != RUNTIME_INF;
7508 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7509 	/*
7510 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7511 	 * before making related changes, and on->off must occur afterwards
7512 	 */
7513 	if (runtime_enabled && !runtime_was_enabled)
7514 		cfs_bandwidth_usage_inc();
7515 	raw_spin_lock_irq(&cfs_b->lock);
7516 	cfs_b->period = ns_to_ktime(period);
7517 	cfs_b->quota = quota;
7518 
7519 	__refill_cfs_bandwidth_runtime(cfs_b);
7520 
7521 	/* Restart the period timer (if active) to handle new period expiry: */
7522 	if (runtime_enabled)
7523 		start_cfs_bandwidth(cfs_b);
7524 
7525 	raw_spin_unlock_irq(&cfs_b->lock);
7526 
7527 	for_each_online_cpu(i) {
7528 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7529 		struct rq *rq = cfs_rq->rq;
7530 		struct rq_flags rf;
7531 
7532 		rq_lock_irq(rq, &rf);
7533 		cfs_rq->runtime_enabled = runtime_enabled;
7534 		cfs_rq->runtime_remaining = 0;
7535 
7536 		if (cfs_rq->throttled)
7537 			unthrottle_cfs_rq(cfs_rq);
7538 		rq_unlock_irq(rq, &rf);
7539 	}
7540 	if (runtime_was_enabled && !runtime_enabled)
7541 		cfs_bandwidth_usage_dec();
7542 out_unlock:
7543 	mutex_unlock(&cfs_constraints_mutex);
7544 	put_online_cpus();
7545 
7546 	return ret;
7547 }
7548 
7549 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7550 {
7551 	u64 quota, period;
7552 
7553 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7554 	if (cfs_quota_us < 0)
7555 		quota = RUNTIME_INF;
7556 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7557 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7558 	else
7559 		return -EINVAL;
7560 
7561 	return tg_set_cfs_bandwidth(tg, period, quota);
7562 }
7563 
7564 static long tg_get_cfs_quota(struct task_group *tg)
7565 {
7566 	u64 quota_us;
7567 
7568 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7569 		return -1;
7570 
7571 	quota_us = tg->cfs_bandwidth.quota;
7572 	do_div(quota_us, NSEC_PER_USEC);
7573 
7574 	return quota_us;
7575 }
7576 
7577 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7578 {
7579 	u64 quota, period;
7580 
7581 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7582 		return -EINVAL;
7583 
7584 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7585 	quota = tg->cfs_bandwidth.quota;
7586 
7587 	return tg_set_cfs_bandwidth(tg, period, quota);
7588 }
7589 
7590 static long tg_get_cfs_period(struct task_group *tg)
7591 {
7592 	u64 cfs_period_us;
7593 
7594 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7595 	do_div(cfs_period_us, NSEC_PER_USEC);
7596 
7597 	return cfs_period_us;
7598 }
7599 
7600 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7601 				  struct cftype *cft)
7602 {
7603 	return tg_get_cfs_quota(css_tg(css));
7604 }
7605 
7606 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7607 				   struct cftype *cftype, s64 cfs_quota_us)
7608 {
7609 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7610 }
7611 
7612 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7613 				   struct cftype *cft)
7614 {
7615 	return tg_get_cfs_period(css_tg(css));
7616 }
7617 
7618 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7619 				    struct cftype *cftype, u64 cfs_period_us)
7620 {
7621 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7622 }
7623 
7624 struct cfs_schedulable_data {
7625 	struct task_group *tg;
7626 	u64 period, quota;
7627 };
7628 
7629 /*
7630  * normalize group quota/period to be quota/max_period
7631  * note: units are usecs
7632  */
7633 static u64 normalize_cfs_quota(struct task_group *tg,
7634 			       struct cfs_schedulable_data *d)
7635 {
7636 	u64 quota, period;
7637 
7638 	if (tg == d->tg) {
7639 		period = d->period;
7640 		quota = d->quota;
7641 	} else {
7642 		period = tg_get_cfs_period(tg);
7643 		quota = tg_get_cfs_quota(tg);
7644 	}
7645 
7646 	/* note: these should typically be equivalent */
7647 	if (quota == RUNTIME_INF || quota == -1)
7648 		return RUNTIME_INF;
7649 
7650 	return to_ratio(period, quota);
7651 }
7652 
7653 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7654 {
7655 	struct cfs_schedulable_data *d = data;
7656 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7657 	s64 quota = 0, parent_quota = -1;
7658 
7659 	if (!tg->parent) {
7660 		quota = RUNTIME_INF;
7661 	} else {
7662 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7663 
7664 		quota = normalize_cfs_quota(tg, d);
7665 		parent_quota = parent_b->hierarchical_quota;
7666 
7667 		/*
7668 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7669 		 * always take the min.  On cgroup1, only inherit when no
7670 		 * limit is set:
7671 		 */
7672 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7673 			quota = min(quota, parent_quota);
7674 		} else {
7675 			if (quota == RUNTIME_INF)
7676 				quota = parent_quota;
7677 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7678 				return -EINVAL;
7679 		}
7680 	}
7681 	cfs_b->hierarchical_quota = quota;
7682 
7683 	return 0;
7684 }
7685 
7686 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7687 {
7688 	int ret;
7689 	struct cfs_schedulable_data data = {
7690 		.tg = tg,
7691 		.period = period,
7692 		.quota = quota,
7693 	};
7694 
7695 	if (quota != RUNTIME_INF) {
7696 		do_div(data.period, NSEC_PER_USEC);
7697 		do_div(data.quota, NSEC_PER_USEC);
7698 	}
7699 
7700 	rcu_read_lock();
7701 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7702 	rcu_read_unlock();
7703 
7704 	return ret;
7705 }
7706 
7707 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7708 {
7709 	struct task_group *tg = css_tg(seq_css(sf));
7710 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7711 
7712 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7713 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7714 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7715 
7716 	if (schedstat_enabled() && tg != &root_task_group) {
7717 		u64 ws = 0;
7718 		int i;
7719 
7720 		for_each_possible_cpu(i)
7721 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7722 
7723 		seq_printf(sf, "wait_sum %llu\n", ws);
7724 	}
7725 
7726 	return 0;
7727 }
7728 #endif /* CONFIG_CFS_BANDWIDTH */
7729 #endif /* CONFIG_FAIR_GROUP_SCHED */
7730 
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7733 				struct cftype *cft, s64 val)
7734 {
7735 	return sched_group_set_rt_runtime(css_tg(css), val);
7736 }
7737 
7738 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7739 			       struct cftype *cft)
7740 {
7741 	return sched_group_rt_runtime(css_tg(css));
7742 }
7743 
7744 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7745 				    struct cftype *cftype, u64 rt_period_us)
7746 {
7747 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7748 }
7749 
7750 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7751 				   struct cftype *cft)
7752 {
7753 	return sched_group_rt_period(css_tg(css));
7754 }
7755 #endif /* CONFIG_RT_GROUP_SCHED */
7756 
7757 static struct cftype cpu_legacy_files[] = {
7758 #ifdef CONFIG_FAIR_GROUP_SCHED
7759 	{
7760 		.name = "shares",
7761 		.read_u64 = cpu_shares_read_u64,
7762 		.write_u64 = cpu_shares_write_u64,
7763 	},
7764 #endif
7765 #ifdef CONFIG_CFS_BANDWIDTH
7766 	{
7767 		.name = "cfs_quota_us",
7768 		.read_s64 = cpu_cfs_quota_read_s64,
7769 		.write_s64 = cpu_cfs_quota_write_s64,
7770 	},
7771 	{
7772 		.name = "cfs_period_us",
7773 		.read_u64 = cpu_cfs_period_read_u64,
7774 		.write_u64 = cpu_cfs_period_write_u64,
7775 	},
7776 	{
7777 		.name = "stat",
7778 		.seq_show = cpu_cfs_stat_show,
7779 	},
7780 #endif
7781 #ifdef CONFIG_RT_GROUP_SCHED
7782 	{
7783 		.name = "rt_runtime_us",
7784 		.read_s64 = cpu_rt_runtime_read,
7785 		.write_s64 = cpu_rt_runtime_write,
7786 	},
7787 	{
7788 		.name = "rt_period_us",
7789 		.read_u64 = cpu_rt_period_read_uint,
7790 		.write_u64 = cpu_rt_period_write_uint,
7791 	},
7792 #endif
7793 #ifdef CONFIG_UCLAMP_TASK_GROUP
7794 	{
7795 		.name = "uclamp.min",
7796 		.flags = CFTYPE_NOT_ON_ROOT,
7797 		.seq_show = cpu_uclamp_min_show,
7798 		.write = cpu_uclamp_min_write,
7799 	},
7800 	{
7801 		.name = "uclamp.max",
7802 		.flags = CFTYPE_NOT_ON_ROOT,
7803 		.seq_show = cpu_uclamp_max_show,
7804 		.write = cpu_uclamp_max_write,
7805 	},
7806 #endif
7807 	{ }	/* Terminate */
7808 };
7809 
7810 static int cpu_extra_stat_show(struct seq_file *sf,
7811 			       struct cgroup_subsys_state *css)
7812 {
7813 #ifdef CONFIG_CFS_BANDWIDTH
7814 	{
7815 		struct task_group *tg = css_tg(css);
7816 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7817 		u64 throttled_usec;
7818 
7819 		throttled_usec = cfs_b->throttled_time;
7820 		do_div(throttled_usec, NSEC_PER_USEC);
7821 
7822 		seq_printf(sf, "nr_periods %d\n"
7823 			   "nr_throttled %d\n"
7824 			   "throttled_usec %llu\n",
7825 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7826 			   throttled_usec);
7827 	}
7828 #endif
7829 	return 0;
7830 }
7831 
7832 #ifdef CONFIG_FAIR_GROUP_SCHED
7833 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7834 			       struct cftype *cft)
7835 {
7836 	struct task_group *tg = css_tg(css);
7837 	u64 weight = scale_load_down(tg->shares);
7838 
7839 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7840 }
7841 
7842 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7843 				struct cftype *cft, u64 weight)
7844 {
7845 	/*
7846 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7847 	 * values which are 1, 100 and 10000 respectively.  While it loses
7848 	 * a bit of range on both ends, it maps pretty well onto the shares
7849 	 * value used by scheduler and the round-trip conversions preserve
7850 	 * the original value over the entire range.
7851 	 */
7852 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7853 		return -ERANGE;
7854 
7855 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7856 
7857 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7858 }
7859 
7860 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7861 				    struct cftype *cft)
7862 {
7863 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7864 	int last_delta = INT_MAX;
7865 	int prio, delta;
7866 
7867 	/* find the closest nice value to the current weight */
7868 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7869 		delta = abs(sched_prio_to_weight[prio] - weight);
7870 		if (delta >= last_delta)
7871 			break;
7872 		last_delta = delta;
7873 	}
7874 
7875 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7876 }
7877 
7878 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7879 				     struct cftype *cft, s64 nice)
7880 {
7881 	unsigned long weight;
7882 	int idx;
7883 
7884 	if (nice < MIN_NICE || nice > MAX_NICE)
7885 		return -ERANGE;
7886 
7887 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7888 	idx = array_index_nospec(idx, 40);
7889 	weight = sched_prio_to_weight[idx];
7890 
7891 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7892 }
7893 #endif
7894 
7895 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7896 						  long period, long quota)
7897 {
7898 	if (quota < 0)
7899 		seq_puts(sf, "max");
7900 	else
7901 		seq_printf(sf, "%ld", quota);
7902 
7903 	seq_printf(sf, " %ld\n", period);
7904 }
7905 
7906 /* caller should put the current value in *@periodp before calling */
7907 static int __maybe_unused cpu_period_quota_parse(char *buf,
7908 						 u64 *periodp, u64 *quotap)
7909 {
7910 	char tok[21];	/* U64_MAX */
7911 
7912 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7913 		return -EINVAL;
7914 
7915 	*periodp *= NSEC_PER_USEC;
7916 
7917 	if (sscanf(tok, "%llu", quotap))
7918 		*quotap *= NSEC_PER_USEC;
7919 	else if (!strcmp(tok, "max"))
7920 		*quotap = RUNTIME_INF;
7921 	else
7922 		return -EINVAL;
7923 
7924 	return 0;
7925 }
7926 
7927 #ifdef CONFIG_CFS_BANDWIDTH
7928 static int cpu_max_show(struct seq_file *sf, void *v)
7929 {
7930 	struct task_group *tg = css_tg(seq_css(sf));
7931 
7932 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7933 	return 0;
7934 }
7935 
7936 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7937 			     char *buf, size_t nbytes, loff_t off)
7938 {
7939 	struct task_group *tg = css_tg(of_css(of));
7940 	u64 period = tg_get_cfs_period(tg);
7941 	u64 quota;
7942 	int ret;
7943 
7944 	ret = cpu_period_quota_parse(buf, &period, &quota);
7945 	if (!ret)
7946 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7947 	return ret ?: nbytes;
7948 }
7949 #endif
7950 
7951 static struct cftype cpu_files[] = {
7952 #ifdef CONFIG_FAIR_GROUP_SCHED
7953 	{
7954 		.name = "weight",
7955 		.flags = CFTYPE_NOT_ON_ROOT,
7956 		.read_u64 = cpu_weight_read_u64,
7957 		.write_u64 = cpu_weight_write_u64,
7958 	},
7959 	{
7960 		.name = "weight.nice",
7961 		.flags = CFTYPE_NOT_ON_ROOT,
7962 		.read_s64 = cpu_weight_nice_read_s64,
7963 		.write_s64 = cpu_weight_nice_write_s64,
7964 	},
7965 #endif
7966 #ifdef CONFIG_CFS_BANDWIDTH
7967 	{
7968 		.name = "max",
7969 		.flags = CFTYPE_NOT_ON_ROOT,
7970 		.seq_show = cpu_max_show,
7971 		.write = cpu_max_write,
7972 	},
7973 #endif
7974 #ifdef CONFIG_UCLAMP_TASK_GROUP
7975 	{
7976 		.name = "uclamp.min",
7977 		.flags = CFTYPE_NOT_ON_ROOT,
7978 		.seq_show = cpu_uclamp_min_show,
7979 		.write = cpu_uclamp_min_write,
7980 	},
7981 	{
7982 		.name = "uclamp.max",
7983 		.flags = CFTYPE_NOT_ON_ROOT,
7984 		.seq_show = cpu_uclamp_max_show,
7985 		.write = cpu_uclamp_max_write,
7986 	},
7987 #endif
7988 	{ }	/* terminate */
7989 };
7990 
7991 struct cgroup_subsys cpu_cgrp_subsys = {
7992 	.css_alloc	= cpu_cgroup_css_alloc,
7993 	.css_online	= cpu_cgroup_css_online,
7994 	.css_released	= cpu_cgroup_css_released,
7995 	.css_free	= cpu_cgroup_css_free,
7996 	.css_extra_stat_show = cpu_extra_stat_show,
7997 	.fork		= cpu_cgroup_fork,
7998 	.can_attach	= cpu_cgroup_can_attach,
7999 	.attach		= cpu_cgroup_attach,
8000 	.legacy_cftypes	= cpu_legacy_files,
8001 	.dfl_cftypes	= cpu_files,
8002 	.early_init	= true,
8003 	.threaded	= true,
8004 };
8005 
8006 #endif	/* CONFIG_CGROUP_SCHED */
8007 
8008 void dump_cpu_task(int cpu)
8009 {
8010 	pr_info("Task dump for CPU %d:\n", cpu);
8011 	sched_show_task(cpu_curr(cpu));
8012 }
8013 
8014 /*
8015  * Nice levels are multiplicative, with a gentle 10% change for every
8016  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8017  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8018  * that remained on nice 0.
8019  *
8020  * The "10% effect" is relative and cumulative: from _any_ nice level,
8021  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8022  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8023  * If a task goes up by ~10% and another task goes down by ~10% then
8024  * the relative distance between them is ~25%.)
8025  */
8026 const int sched_prio_to_weight[40] = {
8027  /* -20 */     88761,     71755,     56483,     46273,     36291,
8028  /* -15 */     29154,     23254,     18705,     14949,     11916,
8029  /* -10 */      9548,      7620,      6100,      4904,      3906,
8030  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8031  /*   0 */      1024,       820,       655,       526,       423,
8032  /*   5 */       335,       272,       215,       172,       137,
8033  /*  10 */       110,        87,        70,        56,        45,
8034  /*  15 */        36,        29,        23,        18,        15,
8035 };
8036 
8037 /*
8038  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8039  *
8040  * In cases where the weight does not change often, we can use the
8041  * precalculated inverse to speed up arithmetics by turning divisions
8042  * into multiplications:
8043  */
8044 const u32 sched_prio_to_wmult[40] = {
8045  /* -20 */     48388,     59856,     76040,     92818,    118348,
8046  /* -15 */    147320,    184698,    229616,    287308,    360437,
8047  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8048  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8049  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8050  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8051  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8052  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8053 };
8054 
8055 #undef CREATE_TRACE_POINTS
8056