1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most elegible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 static inline void 324 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func) 325 { 326 csd->flags = 0; 327 csd->func = func; 328 csd->info = rq; 329 } 330 331 #ifdef CONFIG_SCHED_HRTICK 332 /* 333 * Use HR-timers to deliver accurate preemption points. 334 */ 335 336 static void hrtick_clear(struct rq *rq) 337 { 338 if (hrtimer_active(&rq->hrtick_timer)) 339 hrtimer_cancel(&rq->hrtick_timer); 340 } 341 342 /* 343 * High-resolution timer tick. 344 * Runs from hardirq context with interrupts disabled. 345 */ 346 static enum hrtimer_restart hrtick(struct hrtimer *timer) 347 { 348 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 349 struct rq_flags rf; 350 351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 352 353 rq_lock(rq, &rf); 354 update_rq_clock(rq); 355 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 356 rq_unlock(rq, &rf); 357 358 return HRTIMER_NORESTART; 359 } 360 361 #ifdef CONFIG_SMP 362 363 static void __hrtick_restart(struct rq *rq) 364 { 365 struct hrtimer *timer = &rq->hrtick_timer; 366 367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 368 } 369 370 /* 371 * called from hardirq (IPI) context 372 */ 373 static void __hrtick_start(void *arg) 374 { 375 struct rq *rq = arg; 376 struct rq_flags rf; 377 378 rq_lock(rq, &rf); 379 __hrtick_restart(rq); 380 rq_unlock(rq, &rf); 381 } 382 383 /* 384 * Called to set the hrtick timer state. 385 * 386 * called with rq->lock held and irqs disabled 387 */ 388 void hrtick_start(struct rq *rq, u64 delay) 389 { 390 struct hrtimer *timer = &rq->hrtick_timer; 391 ktime_t time; 392 s64 delta; 393 394 /* 395 * Don't schedule slices shorter than 10000ns, that just 396 * doesn't make sense and can cause timer DoS. 397 */ 398 delta = max_t(s64, delay, 10000LL); 399 time = ktime_add_ns(timer->base->get_time(), delta); 400 401 hrtimer_set_expires(timer, time); 402 403 if (rq == this_rq()) 404 __hrtick_restart(rq); 405 else 406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 407 } 408 409 #else 410 /* 411 * Called to set the hrtick timer state. 412 * 413 * called with rq->lock held and irqs disabled 414 */ 415 void hrtick_start(struct rq *rq, u64 delay) 416 { 417 /* 418 * Don't schedule slices shorter than 10000ns, that just 419 * doesn't make sense. Rely on vruntime for fairness. 420 */ 421 delay = max_t(u64, delay, 10000LL); 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 423 HRTIMER_MODE_REL_PINNED_HARD); 424 } 425 426 #endif /* CONFIG_SMP */ 427 428 static void hrtick_rq_init(struct rq *rq) 429 { 430 #ifdef CONFIG_SMP 431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start); 432 #endif 433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 434 rq->hrtick_timer.function = hrtick; 435 } 436 #else /* CONFIG_SCHED_HRTICK */ 437 static inline void hrtick_clear(struct rq *rq) 438 { 439 } 440 441 static inline void hrtick_rq_init(struct rq *rq) 442 { 443 } 444 #endif /* CONFIG_SCHED_HRTICK */ 445 446 /* 447 * cmpxchg based fetch_or, macro so it works for different integer types 448 */ 449 #define fetch_or(ptr, mask) \ 450 ({ \ 451 typeof(ptr) _ptr = (ptr); \ 452 typeof(mask) _mask = (mask); \ 453 typeof(*_ptr) _old, _val = *_ptr; \ 454 \ 455 for (;;) { \ 456 _old = cmpxchg(_ptr, _val, _val | _mask); \ 457 if (_old == _val) \ 458 break; \ 459 _val = _old; \ 460 } \ 461 _old; \ 462 }) 463 464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 465 /* 466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 467 * this avoids any races wrt polling state changes and thereby avoids 468 * spurious IPIs. 469 */ 470 static bool set_nr_and_not_polling(struct task_struct *p) 471 { 472 struct thread_info *ti = task_thread_info(p); 473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 474 } 475 476 /* 477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 478 * 479 * If this returns true, then the idle task promises to call 480 * sched_ttwu_pending() and reschedule soon. 481 */ 482 static bool set_nr_if_polling(struct task_struct *p) 483 { 484 struct thread_info *ti = task_thread_info(p); 485 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 486 487 for (;;) { 488 if (!(val & _TIF_POLLING_NRFLAG)) 489 return false; 490 if (val & _TIF_NEED_RESCHED) 491 return true; 492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 493 if (old == val) 494 break; 495 val = old; 496 } 497 return true; 498 } 499 500 #else 501 static bool set_nr_and_not_polling(struct task_struct *p) 502 { 503 set_tsk_need_resched(p); 504 return true; 505 } 506 507 #ifdef CONFIG_SMP 508 static bool set_nr_if_polling(struct task_struct *p) 509 { 510 return false; 511 } 512 #endif 513 #endif 514 515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 516 { 517 struct wake_q_node *node = &task->wake_q; 518 519 /* 520 * Atomically grab the task, if ->wake_q is !nil already it means 521 * its already queued (either by us or someone else) and will get the 522 * wakeup due to that. 523 * 524 * In order to ensure that a pending wakeup will observe our pending 525 * state, even in the failed case, an explicit smp_mb() must be used. 526 */ 527 smp_mb__before_atomic(); 528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 529 return false; 530 531 /* 532 * The head is context local, there can be no concurrency. 533 */ 534 *head->lastp = node; 535 head->lastp = &node->next; 536 return true; 537 } 538 539 /** 540 * wake_q_add() - queue a wakeup for 'later' waking. 541 * @head: the wake_q_head to add @task to 542 * @task: the task to queue for 'later' wakeup 543 * 544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 546 * instantly. 547 * 548 * This function must be used as-if it were wake_up_process(); IOW the task 549 * must be ready to be woken at this location. 550 */ 551 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 552 { 553 if (__wake_q_add(head, task)) 554 get_task_struct(task); 555 } 556 557 /** 558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 559 * @head: the wake_q_head to add @task to 560 * @task: the task to queue for 'later' wakeup 561 * 562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 564 * instantly. 565 * 566 * This function must be used as-if it were wake_up_process(); IOW the task 567 * must be ready to be woken at this location. 568 * 569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 570 * that already hold reference to @task can call the 'safe' version and trust 571 * wake_q to do the right thing depending whether or not the @task is already 572 * queued for wakeup. 573 */ 574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 575 { 576 if (!__wake_q_add(head, task)) 577 put_task_struct(task); 578 } 579 580 void wake_up_q(struct wake_q_head *head) 581 { 582 struct wake_q_node *node = head->first; 583 584 while (node != WAKE_Q_TAIL) { 585 struct task_struct *task; 586 587 task = container_of(node, struct task_struct, wake_q); 588 BUG_ON(!task); 589 /* Task can safely be re-inserted now: */ 590 node = node->next; 591 task->wake_q.next = NULL; 592 593 /* 594 * wake_up_process() executes a full barrier, which pairs with 595 * the queueing in wake_q_add() so as not to miss wakeups. 596 */ 597 wake_up_process(task); 598 put_task_struct(task); 599 } 600 } 601 602 /* 603 * resched_curr - mark rq's current task 'to be rescheduled now'. 604 * 605 * On UP this means the setting of the need_resched flag, on SMP it 606 * might also involve a cross-CPU call to trigger the scheduler on 607 * the target CPU. 608 */ 609 void resched_curr(struct rq *rq) 610 { 611 struct task_struct *curr = rq->curr; 612 int cpu; 613 614 lockdep_assert_held(&rq->lock); 615 616 if (test_tsk_need_resched(curr)) 617 return; 618 619 cpu = cpu_of(rq); 620 621 if (cpu == smp_processor_id()) { 622 set_tsk_need_resched(curr); 623 set_preempt_need_resched(); 624 return; 625 } 626 627 if (set_nr_and_not_polling(curr)) 628 smp_send_reschedule(cpu); 629 else 630 trace_sched_wake_idle_without_ipi(cpu); 631 } 632 633 void resched_cpu(int cpu) 634 { 635 struct rq *rq = cpu_rq(cpu); 636 unsigned long flags; 637 638 raw_spin_lock_irqsave(&rq->lock, flags); 639 if (cpu_online(cpu) || cpu == smp_processor_id()) 640 resched_curr(rq); 641 raw_spin_unlock_irqrestore(&rq->lock, flags); 642 } 643 644 #ifdef CONFIG_SMP 645 #ifdef CONFIG_NO_HZ_COMMON 646 /* 647 * In the semi idle case, use the nearest busy CPU for migrating timers 648 * from an idle CPU. This is good for power-savings. 649 * 650 * We don't do similar optimization for completely idle system, as 651 * selecting an idle CPU will add more delays to the timers than intended 652 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 653 */ 654 int get_nohz_timer_target(void) 655 { 656 int i, cpu = smp_processor_id(), default_cpu = -1; 657 struct sched_domain *sd; 658 659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 660 if (!idle_cpu(cpu)) 661 return cpu; 662 default_cpu = cpu; 663 } 664 665 rcu_read_lock(); 666 for_each_domain(cpu, sd) { 667 for_each_cpu_and(i, sched_domain_span(sd), 668 housekeeping_cpumask(HK_FLAG_TIMER)) { 669 if (cpu == i) 670 continue; 671 672 if (!idle_cpu(i)) { 673 cpu = i; 674 goto unlock; 675 } 676 } 677 } 678 679 if (default_cpu == -1) 680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 681 cpu = default_cpu; 682 unlock: 683 rcu_read_unlock(); 684 return cpu; 685 } 686 687 /* 688 * When add_timer_on() enqueues a timer into the timer wheel of an 689 * idle CPU then this timer might expire before the next timer event 690 * which is scheduled to wake up that CPU. In case of a completely 691 * idle system the next event might even be infinite time into the 692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 693 * leaves the inner idle loop so the newly added timer is taken into 694 * account when the CPU goes back to idle and evaluates the timer 695 * wheel for the next timer event. 696 */ 697 static void wake_up_idle_cpu(int cpu) 698 { 699 struct rq *rq = cpu_rq(cpu); 700 701 if (cpu == smp_processor_id()) 702 return; 703 704 if (set_nr_and_not_polling(rq->idle)) 705 smp_send_reschedule(cpu); 706 else 707 trace_sched_wake_idle_without_ipi(cpu); 708 } 709 710 static bool wake_up_full_nohz_cpu(int cpu) 711 { 712 /* 713 * We just need the target to call irq_exit() and re-evaluate 714 * the next tick. The nohz full kick at least implies that. 715 * If needed we can still optimize that later with an 716 * empty IRQ. 717 */ 718 if (cpu_is_offline(cpu)) 719 return true; /* Don't try to wake offline CPUs. */ 720 if (tick_nohz_full_cpu(cpu)) { 721 if (cpu != smp_processor_id() || 722 tick_nohz_tick_stopped()) 723 tick_nohz_full_kick_cpu(cpu); 724 return true; 725 } 726 727 return false; 728 } 729 730 /* 731 * Wake up the specified CPU. If the CPU is going offline, it is the 732 * caller's responsibility to deal with the lost wakeup, for example, 733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 734 */ 735 void wake_up_nohz_cpu(int cpu) 736 { 737 if (!wake_up_full_nohz_cpu(cpu)) 738 wake_up_idle_cpu(cpu); 739 } 740 741 static void nohz_csd_func(void *info) 742 { 743 struct rq *rq = info; 744 int cpu = cpu_of(rq); 745 unsigned int flags; 746 747 /* 748 * Release the rq::nohz_csd. 749 */ 750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 751 WARN_ON(!(flags & NOHZ_KICK_MASK)); 752 753 rq->idle_balance = idle_cpu(cpu); 754 if (rq->idle_balance && !need_resched()) { 755 rq->nohz_idle_balance = flags; 756 raise_softirq_irqoff(SCHED_SOFTIRQ); 757 } 758 } 759 760 #endif /* CONFIG_NO_HZ_COMMON */ 761 762 #ifdef CONFIG_NO_HZ_FULL 763 bool sched_can_stop_tick(struct rq *rq) 764 { 765 int fifo_nr_running; 766 767 /* Deadline tasks, even if single, need the tick */ 768 if (rq->dl.dl_nr_running) 769 return false; 770 771 /* 772 * If there are more than one RR tasks, we need the tick to effect the 773 * actual RR behaviour. 774 */ 775 if (rq->rt.rr_nr_running) { 776 if (rq->rt.rr_nr_running == 1) 777 return true; 778 else 779 return false; 780 } 781 782 /* 783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 784 * forced preemption between FIFO tasks. 785 */ 786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 787 if (fifo_nr_running) 788 return true; 789 790 /* 791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 792 * if there's more than one we need the tick for involuntary 793 * preemption. 794 */ 795 if (rq->nr_running > 1) 796 return false; 797 798 return true; 799 } 800 #endif /* CONFIG_NO_HZ_FULL */ 801 #endif /* CONFIG_SMP */ 802 803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 805 /* 806 * Iterate task_group tree rooted at *from, calling @down when first entering a 807 * node and @up when leaving it for the final time. 808 * 809 * Caller must hold rcu_lock or sufficient equivalent. 810 */ 811 int walk_tg_tree_from(struct task_group *from, 812 tg_visitor down, tg_visitor up, void *data) 813 { 814 struct task_group *parent, *child; 815 int ret; 816 817 parent = from; 818 819 down: 820 ret = (*down)(parent, data); 821 if (ret) 822 goto out; 823 list_for_each_entry_rcu(child, &parent->children, siblings) { 824 parent = child; 825 goto down; 826 827 up: 828 continue; 829 } 830 ret = (*up)(parent, data); 831 if (ret || parent == from) 832 goto out; 833 834 child = parent; 835 parent = parent->parent; 836 if (parent) 837 goto up; 838 out: 839 return ret; 840 } 841 842 int tg_nop(struct task_group *tg, void *data) 843 { 844 return 0; 845 } 846 #endif 847 848 static void set_load_weight(struct task_struct *p, bool update_load) 849 { 850 int prio = p->static_prio - MAX_RT_PRIO; 851 struct load_weight *load = &p->se.load; 852 853 /* 854 * SCHED_IDLE tasks get minimal weight: 855 */ 856 if (task_has_idle_policy(p)) { 857 load->weight = scale_load(WEIGHT_IDLEPRIO); 858 load->inv_weight = WMULT_IDLEPRIO; 859 return; 860 } 861 862 /* 863 * SCHED_OTHER tasks have to update their load when changing their 864 * weight 865 */ 866 if (update_load && p->sched_class == &fair_sched_class) { 867 reweight_task(p, prio); 868 } else { 869 load->weight = scale_load(sched_prio_to_weight[prio]); 870 load->inv_weight = sched_prio_to_wmult[prio]; 871 } 872 } 873 874 #ifdef CONFIG_UCLAMP_TASK 875 /* 876 * Serializes updates of utilization clamp values 877 * 878 * The (slow-path) user-space triggers utilization clamp value updates which 879 * can require updates on (fast-path) scheduler's data structures used to 880 * support enqueue/dequeue operations. 881 * While the per-CPU rq lock protects fast-path update operations, user-space 882 * requests are serialized using a mutex to reduce the risk of conflicting 883 * updates or API abuses. 884 */ 885 static DEFINE_MUTEX(uclamp_mutex); 886 887 /* Max allowed minimum utilization */ 888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 889 890 /* Max allowed maximum utilization */ 891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 892 893 /* 894 * By default RT tasks run at the maximum performance point/capacity of the 895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 896 * SCHED_CAPACITY_SCALE. 897 * 898 * This knob allows admins to change the default behavior when uclamp is being 899 * used. In battery powered devices, particularly, running at the maximum 900 * capacity and frequency will increase energy consumption and shorten the 901 * battery life. 902 * 903 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 904 * 905 * This knob will not override the system default sched_util_clamp_min defined 906 * above. 907 */ 908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 909 910 /* All clamps are required to be less or equal than these values */ 911 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 912 913 /* 914 * This static key is used to reduce the uclamp overhead in the fast path. It 915 * primarily disables the call to uclamp_rq_{inc, dec}() in 916 * enqueue/dequeue_task(). 917 * 918 * This allows users to continue to enable uclamp in their kernel config with 919 * minimum uclamp overhead in the fast path. 920 * 921 * As soon as userspace modifies any of the uclamp knobs, the static key is 922 * enabled, since we have an actual users that make use of uclamp 923 * functionality. 924 * 925 * The knobs that would enable this static key are: 926 * 927 * * A task modifying its uclamp value with sched_setattr(). 928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 929 * * An admin modifying the cgroup cpu.uclamp.{min, max} 930 */ 931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 932 933 /* Integer rounded range for each bucket */ 934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 935 936 #define for_each_clamp_id(clamp_id) \ 937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 938 939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 940 { 941 return clamp_value / UCLAMP_BUCKET_DELTA; 942 } 943 944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 945 { 946 if (clamp_id == UCLAMP_MIN) 947 return 0; 948 return SCHED_CAPACITY_SCALE; 949 } 950 951 static inline void uclamp_se_set(struct uclamp_se *uc_se, 952 unsigned int value, bool user_defined) 953 { 954 uc_se->value = value; 955 uc_se->bucket_id = uclamp_bucket_id(value); 956 uc_se->user_defined = user_defined; 957 } 958 959 static inline unsigned int 960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 961 unsigned int clamp_value) 962 { 963 /* 964 * Avoid blocked utilization pushing up the frequency when we go 965 * idle (which drops the max-clamp) by retaining the last known 966 * max-clamp. 967 */ 968 if (clamp_id == UCLAMP_MAX) { 969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 970 return clamp_value; 971 } 972 973 return uclamp_none(UCLAMP_MIN); 974 } 975 976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 977 unsigned int clamp_value) 978 { 979 /* Reset max-clamp retention only on idle exit */ 980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 981 return; 982 983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 984 } 985 986 static inline 987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 988 unsigned int clamp_value) 989 { 990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 991 int bucket_id = UCLAMP_BUCKETS - 1; 992 993 /* 994 * Since both min and max clamps are max aggregated, find the 995 * top most bucket with tasks in. 996 */ 997 for ( ; bucket_id >= 0; bucket_id--) { 998 if (!bucket[bucket_id].tasks) 999 continue; 1000 return bucket[bucket_id].value; 1001 } 1002 1003 /* No tasks -- default clamp values */ 1004 return uclamp_idle_value(rq, clamp_id, clamp_value); 1005 } 1006 1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1008 { 1009 unsigned int default_util_min; 1010 struct uclamp_se *uc_se; 1011 1012 lockdep_assert_held(&p->pi_lock); 1013 1014 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1015 1016 /* Only sync if user didn't override the default */ 1017 if (uc_se->user_defined) 1018 return; 1019 1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1021 uclamp_se_set(uc_se, default_util_min, false); 1022 } 1023 1024 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1025 { 1026 struct rq_flags rf; 1027 struct rq *rq; 1028 1029 if (!rt_task(p)) 1030 return; 1031 1032 /* Protect updates to p->uclamp_* */ 1033 rq = task_rq_lock(p, &rf); 1034 __uclamp_update_util_min_rt_default(p); 1035 task_rq_unlock(rq, p, &rf); 1036 } 1037 1038 static void uclamp_sync_util_min_rt_default(void) 1039 { 1040 struct task_struct *g, *p; 1041 1042 /* 1043 * copy_process() sysctl_uclamp 1044 * uclamp_min_rt = X; 1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1046 * // link thread smp_mb__after_spinlock() 1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1048 * sched_post_fork() for_each_process_thread() 1049 * __uclamp_sync_rt() __uclamp_sync_rt() 1050 * 1051 * Ensures that either sched_post_fork() will observe the new 1052 * uclamp_min_rt or for_each_process_thread() will observe the new 1053 * task. 1054 */ 1055 read_lock(&tasklist_lock); 1056 smp_mb__after_spinlock(); 1057 read_unlock(&tasklist_lock); 1058 1059 rcu_read_lock(); 1060 for_each_process_thread(g, p) 1061 uclamp_update_util_min_rt_default(p); 1062 rcu_read_unlock(); 1063 } 1064 1065 static inline struct uclamp_se 1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1067 { 1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1069 #ifdef CONFIG_UCLAMP_TASK_GROUP 1070 struct uclamp_se uc_max; 1071 1072 /* 1073 * Tasks in autogroups or root task group will be 1074 * restricted by system defaults. 1075 */ 1076 if (task_group_is_autogroup(task_group(p))) 1077 return uc_req; 1078 if (task_group(p) == &root_task_group) 1079 return uc_req; 1080 1081 uc_max = task_group(p)->uclamp[clamp_id]; 1082 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1083 return uc_max; 1084 #endif 1085 1086 return uc_req; 1087 } 1088 1089 /* 1090 * The effective clamp bucket index of a task depends on, by increasing 1091 * priority: 1092 * - the task specific clamp value, when explicitly requested from userspace 1093 * - the task group effective clamp value, for tasks not either in the root 1094 * group or in an autogroup 1095 * - the system default clamp value, defined by the sysadmin 1096 */ 1097 static inline struct uclamp_se 1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1099 { 1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1101 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1102 1103 /* System default restrictions always apply */ 1104 if (unlikely(uc_req.value > uc_max.value)) 1105 return uc_max; 1106 1107 return uc_req; 1108 } 1109 1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1111 { 1112 struct uclamp_se uc_eff; 1113 1114 /* Task currently refcounted: use back-annotated (effective) value */ 1115 if (p->uclamp[clamp_id].active) 1116 return (unsigned long)p->uclamp[clamp_id].value; 1117 1118 uc_eff = uclamp_eff_get(p, clamp_id); 1119 1120 return (unsigned long)uc_eff.value; 1121 } 1122 1123 /* 1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1126 * updates the rq's clamp value if required. 1127 * 1128 * Tasks can have a task-specific value requested from user-space, track 1129 * within each bucket the maximum value for tasks refcounted in it. 1130 * This "local max aggregation" allows to track the exact "requested" value 1131 * for each bucket when all its RUNNABLE tasks require the same clamp. 1132 */ 1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1134 enum uclamp_id clamp_id) 1135 { 1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1138 struct uclamp_bucket *bucket; 1139 1140 lockdep_assert_held(&rq->lock); 1141 1142 /* Update task effective clamp */ 1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1144 1145 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1146 bucket->tasks++; 1147 uc_se->active = true; 1148 1149 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1150 1151 /* 1152 * Local max aggregation: rq buckets always track the max 1153 * "requested" clamp value of its RUNNABLE tasks. 1154 */ 1155 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1156 bucket->value = uc_se->value; 1157 1158 if (uc_se->value > READ_ONCE(uc_rq->value)) 1159 WRITE_ONCE(uc_rq->value, uc_se->value); 1160 } 1161 1162 /* 1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1164 * is released. If this is the last task reference counting the rq's max 1165 * active clamp value, then the rq's clamp value is updated. 1166 * 1167 * Both refcounted tasks and rq's cached clamp values are expected to be 1168 * always valid. If it's detected they are not, as defensive programming, 1169 * enforce the expected state and warn. 1170 */ 1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1172 enum uclamp_id clamp_id) 1173 { 1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1176 struct uclamp_bucket *bucket; 1177 unsigned int bkt_clamp; 1178 unsigned int rq_clamp; 1179 1180 lockdep_assert_held(&rq->lock); 1181 1182 /* 1183 * If sched_uclamp_used was enabled after task @p was enqueued, 1184 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1185 * 1186 * In this case the uc_se->active flag should be false since no uclamp 1187 * accounting was performed at enqueue time and we can just return 1188 * here. 1189 * 1190 * Need to be careful of the following enqeueue/dequeue ordering 1191 * problem too 1192 * 1193 * enqueue(taskA) 1194 * // sched_uclamp_used gets enabled 1195 * enqueue(taskB) 1196 * dequeue(taskA) 1197 * // Must not decrement bukcet->tasks here 1198 * dequeue(taskB) 1199 * 1200 * where we could end up with stale data in uc_se and 1201 * bucket[uc_se->bucket_id]. 1202 * 1203 * The following check here eliminates the possibility of such race. 1204 */ 1205 if (unlikely(!uc_se->active)) 1206 return; 1207 1208 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1209 1210 SCHED_WARN_ON(!bucket->tasks); 1211 if (likely(bucket->tasks)) 1212 bucket->tasks--; 1213 1214 uc_se->active = false; 1215 1216 /* 1217 * Keep "local max aggregation" simple and accept to (possibly) 1218 * overboost some RUNNABLE tasks in the same bucket. 1219 * The rq clamp bucket value is reset to its base value whenever 1220 * there are no more RUNNABLE tasks refcounting it. 1221 */ 1222 if (likely(bucket->tasks)) 1223 return; 1224 1225 rq_clamp = READ_ONCE(uc_rq->value); 1226 /* 1227 * Defensive programming: this should never happen. If it happens, 1228 * e.g. due to future modification, warn and fixup the expected value. 1229 */ 1230 SCHED_WARN_ON(bucket->value > rq_clamp); 1231 if (bucket->value >= rq_clamp) { 1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1233 WRITE_ONCE(uc_rq->value, bkt_clamp); 1234 } 1235 } 1236 1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1238 { 1239 enum uclamp_id clamp_id; 1240 1241 /* 1242 * Avoid any overhead until uclamp is actually used by the userspace. 1243 * 1244 * The condition is constructed such that a NOP is generated when 1245 * sched_uclamp_used is disabled. 1246 */ 1247 if (!static_branch_unlikely(&sched_uclamp_used)) 1248 return; 1249 1250 if (unlikely(!p->sched_class->uclamp_enabled)) 1251 return; 1252 1253 for_each_clamp_id(clamp_id) 1254 uclamp_rq_inc_id(rq, p, clamp_id); 1255 1256 /* Reset clamp idle holding when there is one RUNNABLE task */ 1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1259 } 1260 1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1262 { 1263 enum uclamp_id clamp_id; 1264 1265 /* 1266 * Avoid any overhead until uclamp is actually used by the userspace. 1267 * 1268 * The condition is constructed such that a NOP is generated when 1269 * sched_uclamp_used is disabled. 1270 */ 1271 if (!static_branch_unlikely(&sched_uclamp_used)) 1272 return; 1273 1274 if (unlikely(!p->sched_class->uclamp_enabled)) 1275 return; 1276 1277 for_each_clamp_id(clamp_id) 1278 uclamp_rq_dec_id(rq, p, clamp_id); 1279 } 1280 1281 static inline void 1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1283 { 1284 struct rq_flags rf; 1285 struct rq *rq; 1286 1287 /* 1288 * Lock the task and the rq where the task is (or was) queued. 1289 * 1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1291 * price to pay to safely serialize util_{min,max} updates with 1292 * enqueues, dequeues and migration operations. 1293 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1294 */ 1295 rq = task_rq_lock(p, &rf); 1296 1297 /* 1298 * Setting the clamp bucket is serialized by task_rq_lock(). 1299 * If the task is not yet RUNNABLE and its task_struct is not 1300 * affecting a valid clamp bucket, the next time it's enqueued, 1301 * it will already see the updated clamp bucket value. 1302 */ 1303 if (p->uclamp[clamp_id].active) { 1304 uclamp_rq_dec_id(rq, p, clamp_id); 1305 uclamp_rq_inc_id(rq, p, clamp_id); 1306 } 1307 1308 task_rq_unlock(rq, p, &rf); 1309 } 1310 1311 #ifdef CONFIG_UCLAMP_TASK_GROUP 1312 static inline void 1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1314 unsigned int clamps) 1315 { 1316 enum uclamp_id clamp_id; 1317 struct css_task_iter it; 1318 struct task_struct *p; 1319 1320 css_task_iter_start(css, 0, &it); 1321 while ((p = css_task_iter_next(&it))) { 1322 for_each_clamp_id(clamp_id) { 1323 if ((0x1 << clamp_id) & clamps) 1324 uclamp_update_active(p, clamp_id); 1325 } 1326 } 1327 css_task_iter_end(&it); 1328 } 1329 1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1331 static void uclamp_update_root_tg(void) 1332 { 1333 struct task_group *tg = &root_task_group; 1334 1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1336 sysctl_sched_uclamp_util_min, false); 1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1338 sysctl_sched_uclamp_util_max, false); 1339 1340 rcu_read_lock(); 1341 cpu_util_update_eff(&root_task_group.css); 1342 rcu_read_unlock(); 1343 } 1344 #else 1345 static void uclamp_update_root_tg(void) { } 1346 #endif 1347 1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1349 void *buffer, size_t *lenp, loff_t *ppos) 1350 { 1351 bool update_root_tg = false; 1352 int old_min, old_max, old_min_rt; 1353 int result; 1354 1355 mutex_lock(&uclamp_mutex); 1356 old_min = sysctl_sched_uclamp_util_min; 1357 old_max = sysctl_sched_uclamp_util_max; 1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1359 1360 result = proc_dointvec(table, write, buffer, lenp, ppos); 1361 if (result) 1362 goto undo; 1363 if (!write) 1364 goto done; 1365 1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1369 1370 result = -EINVAL; 1371 goto undo; 1372 } 1373 1374 if (old_min != sysctl_sched_uclamp_util_min) { 1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1376 sysctl_sched_uclamp_util_min, false); 1377 update_root_tg = true; 1378 } 1379 if (old_max != sysctl_sched_uclamp_util_max) { 1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1381 sysctl_sched_uclamp_util_max, false); 1382 update_root_tg = true; 1383 } 1384 1385 if (update_root_tg) { 1386 static_branch_enable(&sched_uclamp_used); 1387 uclamp_update_root_tg(); 1388 } 1389 1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1391 static_branch_enable(&sched_uclamp_used); 1392 uclamp_sync_util_min_rt_default(); 1393 } 1394 1395 /* 1396 * We update all RUNNABLE tasks only when task groups are in use. 1397 * Otherwise, keep it simple and do just a lazy update at each next 1398 * task enqueue time. 1399 */ 1400 1401 goto done; 1402 1403 undo: 1404 sysctl_sched_uclamp_util_min = old_min; 1405 sysctl_sched_uclamp_util_max = old_max; 1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1407 done: 1408 mutex_unlock(&uclamp_mutex); 1409 1410 return result; 1411 } 1412 1413 static int uclamp_validate(struct task_struct *p, 1414 const struct sched_attr *attr) 1415 { 1416 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1417 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1418 1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1420 lower_bound = attr->sched_util_min; 1421 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1422 upper_bound = attr->sched_util_max; 1423 1424 if (lower_bound > upper_bound) 1425 return -EINVAL; 1426 if (upper_bound > SCHED_CAPACITY_SCALE) 1427 return -EINVAL; 1428 1429 /* 1430 * We have valid uclamp attributes; make sure uclamp is enabled. 1431 * 1432 * We need to do that here, because enabling static branches is a 1433 * blocking operation which obviously cannot be done while holding 1434 * scheduler locks. 1435 */ 1436 static_branch_enable(&sched_uclamp_used); 1437 1438 return 0; 1439 } 1440 1441 static void __setscheduler_uclamp(struct task_struct *p, 1442 const struct sched_attr *attr) 1443 { 1444 enum uclamp_id clamp_id; 1445 1446 /* 1447 * On scheduling class change, reset to default clamps for tasks 1448 * without a task-specific value. 1449 */ 1450 for_each_clamp_id(clamp_id) { 1451 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1452 1453 /* Keep using defined clamps across class changes */ 1454 if (uc_se->user_defined) 1455 continue; 1456 1457 /* 1458 * RT by default have a 100% boost value that could be modified 1459 * at runtime. 1460 */ 1461 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1462 __uclamp_update_util_min_rt_default(p); 1463 else 1464 uclamp_se_set(uc_se, uclamp_none(clamp_id), false); 1465 1466 } 1467 1468 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1469 return; 1470 1471 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1472 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1473 attr->sched_util_min, true); 1474 } 1475 1476 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1477 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1478 attr->sched_util_max, true); 1479 } 1480 } 1481 1482 static void uclamp_fork(struct task_struct *p) 1483 { 1484 enum uclamp_id clamp_id; 1485 1486 /* 1487 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1488 * as the task is still at its early fork stages. 1489 */ 1490 for_each_clamp_id(clamp_id) 1491 p->uclamp[clamp_id].active = false; 1492 1493 if (likely(!p->sched_reset_on_fork)) 1494 return; 1495 1496 for_each_clamp_id(clamp_id) { 1497 uclamp_se_set(&p->uclamp_req[clamp_id], 1498 uclamp_none(clamp_id), false); 1499 } 1500 } 1501 1502 static void uclamp_post_fork(struct task_struct *p) 1503 { 1504 uclamp_update_util_min_rt_default(p); 1505 } 1506 1507 static void __init init_uclamp_rq(struct rq *rq) 1508 { 1509 enum uclamp_id clamp_id; 1510 struct uclamp_rq *uc_rq = rq->uclamp; 1511 1512 for_each_clamp_id(clamp_id) { 1513 uc_rq[clamp_id] = (struct uclamp_rq) { 1514 .value = uclamp_none(clamp_id) 1515 }; 1516 } 1517 1518 rq->uclamp_flags = 0; 1519 } 1520 1521 static void __init init_uclamp(void) 1522 { 1523 struct uclamp_se uc_max = {}; 1524 enum uclamp_id clamp_id; 1525 int cpu; 1526 1527 for_each_possible_cpu(cpu) 1528 init_uclamp_rq(cpu_rq(cpu)); 1529 1530 for_each_clamp_id(clamp_id) { 1531 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1532 uclamp_none(clamp_id), false); 1533 } 1534 1535 /* System defaults allow max clamp values for both indexes */ 1536 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1537 for_each_clamp_id(clamp_id) { 1538 uclamp_default[clamp_id] = uc_max; 1539 #ifdef CONFIG_UCLAMP_TASK_GROUP 1540 root_task_group.uclamp_req[clamp_id] = uc_max; 1541 root_task_group.uclamp[clamp_id] = uc_max; 1542 #endif 1543 } 1544 } 1545 1546 #else /* CONFIG_UCLAMP_TASK */ 1547 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1548 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1549 static inline int uclamp_validate(struct task_struct *p, 1550 const struct sched_attr *attr) 1551 { 1552 return -EOPNOTSUPP; 1553 } 1554 static void __setscheduler_uclamp(struct task_struct *p, 1555 const struct sched_attr *attr) { } 1556 static inline void uclamp_fork(struct task_struct *p) { } 1557 static inline void uclamp_post_fork(struct task_struct *p) { } 1558 static inline void init_uclamp(void) { } 1559 #endif /* CONFIG_UCLAMP_TASK */ 1560 1561 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1562 { 1563 if (!(flags & ENQUEUE_NOCLOCK)) 1564 update_rq_clock(rq); 1565 1566 if (!(flags & ENQUEUE_RESTORE)) { 1567 sched_info_queued(rq, p); 1568 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1569 } 1570 1571 uclamp_rq_inc(rq, p); 1572 p->sched_class->enqueue_task(rq, p, flags); 1573 } 1574 1575 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1576 { 1577 if (!(flags & DEQUEUE_NOCLOCK)) 1578 update_rq_clock(rq); 1579 1580 if (!(flags & DEQUEUE_SAVE)) { 1581 sched_info_dequeued(rq, p); 1582 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1583 } 1584 1585 uclamp_rq_dec(rq, p); 1586 p->sched_class->dequeue_task(rq, p, flags); 1587 } 1588 1589 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1590 { 1591 enqueue_task(rq, p, flags); 1592 1593 p->on_rq = TASK_ON_RQ_QUEUED; 1594 } 1595 1596 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1597 { 1598 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1599 1600 dequeue_task(rq, p, flags); 1601 } 1602 1603 /* 1604 * __normal_prio - return the priority that is based on the static prio 1605 */ 1606 static inline int __normal_prio(struct task_struct *p) 1607 { 1608 return p->static_prio; 1609 } 1610 1611 /* 1612 * Calculate the expected normal priority: i.e. priority 1613 * without taking RT-inheritance into account. Might be 1614 * boosted by interactivity modifiers. Changes upon fork, 1615 * setprio syscalls, and whenever the interactivity 1616 * estimator recalculates. 1617 */ 1618 static inline int normal_prio(struct task_struct *p) 1619 { 1620 int prio; 1621 1622 if (task_has_dl_policy(p)) 1623 prio = MAX_DL_PRIO-1; 1624 else if (task_has_rt_policy(p)) 1625 prio = MAX_RT_PRIO-1 - p->rt_priority; 1626 else 1627 prio = __normal_prio(p); 1628 return prio; 1629 } 1630 1631 /* 1632 * Calculate the current priority, i.e. the priority 1633 * taken into account by the scheduler. This value might 1634 * be boosted by RT tasks, or might be boosted by 1635 * interactivity modifiers. Will be RT if the task got 1636 * RT-boosted. If not then it returns p->normal_prio. 1637 */ 1638 static int effective_prio(struct task_struct *p) 1639 { 1640 p->normal_prio = normal_prio(p); 1641 /* 1642 * If we are RT tasks or we were boosted to RT priority, 1643 * keep the priority unchanged. Otherwise, update priority 1644 * to the normal priority: 1645 */ 1646 if (!rt_prio(p->prio)) 1647 return p->normal_prio; 1648 return p->prio; 1649 } 1650 1651 /** 1652 * task_curr - is this task currently executing on a CPU? 1653 * @p: the task in question. 1654 * 1655 * Return: 1 if the task is currently executing. 0 otherwise. 1656 */ 1657 inline int task_curr(const struct task_struct *p) 1658 { 1659 return cpu_curr(task_cpu(p)) == p; 1660 } 1661 1662 /* 1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1664 * use the balance_callback list if you want balancing. 1665 * 1666 * this means any call to check_class_changed() must be followed by a call to 1667 * balance_callback(). 1668 */ 1669 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1670 const struct sched_class *prev_class, 1671 int oldprio) 1672 { 1673 if (prev_class != p->sched_class) { 1674 if (prev_class->switched_from) 1675 prev_class->switched_from(rq, p); 1676 1677 p->sched_class->switched_to(rq, p); 1678 } else if (oldprio != p->prio || dl_task(p)) 1679 p->sched_class->prio_changed(rq, p, oldprio); 1680 } 1681 1682 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1683 { 1684 if (p->sched_class == rq->curr->sched_class) 1685 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1686 else if (p->sched_class > rq->curr->sched_class) 1687 resched_curr(rq); 1688 1689 /* 1690 * A queue event has occurred, and we're going to schedule. In 1691 * this case, we can save a useless back to back clock update. 1692 */ 1693 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1694 rq_clock_skip_update(rq); 1695 } 1696 1697 #ifdef CONFIG_SMP 1698 1699 /* 1700 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1701 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1702 */ 1703 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1704 { 1705 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1706 return false; 1707 1708 if (is_per_cpu_kthread(p)) 1709 return cpu_online(cpu); 1710 1711 return cpu_active(cpu); 1712 } 1713 1714 /* 1715 * This is how migration works: 1716 * 1717 * 1) we invoke migration_cpu_stop() on the target CPU using 1718 * stop_one_cpu(). 1719 * 2) stopper starts to run (implicitly forcing the migrated thread 1720 * off the CPU) 1721 * 3) it checks whether the migrated task is still in the wrong runqueue. 1722 * 4) if it's in the wrong runqueue then the migration thread removes 1723 * it and puts it into the right queue. 1724 * 5) stopper completes and stop_one_cpu() returns and the migration 1725 * is done. 1726 */ 1727 1728 /* 1729 * move_queued_task - move a queued task to new rq. 1730 * 1731 * Returns (locked) new rq. Old rq's lock is released. 1732 */ 1733 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1734 struct task_struct *p, int new_cpu) 1735 { 1736 lockdep_assert_held(&rq->lock); 1737 1738 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1739 set_task_cpu(p, new_cpu); 1740 rq_unlock(rq, rf); 1741 1742 rq = cpu_rq(new_cpu); 1743 1744 rq_lock(rq, rf); 1745 BUG_ON(task_cpu(p) != new_cpu); 1746 activate_task(rq, p, 0); 1747 check_preempt_curr(rq, p, 0); 1748 1749 return rq; 1750 } 1751 1752 struct migration_arg { 1753 struct task_struct *task; 1754 int dest_cpu; 1755 }; 1756 1757 /* 1758 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1759 * this because either it can't run here any more (set_cpus_allowed() 1760 * away from this CPU, or CPU going down), or because we're 1761 * attempting to rebalance this task on exec (sched_exec). 1762 * 1763 * So we race with normal scheduler movements, but that's OK, as long 1764 * as the task is no longer on this CPU. 1765 */ 1766 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1767 struct task_struct *p, int dest_cpu) 1768 { 1769 /* Affinity changed (again). */ 1770 if (!is_cpu_allowed(p, dest_cpu)) 1771 return rq; 1772 1773 update_rq_clock(rq); 1774 rq = move_queued_task(rq, rf, p, dest_cpu); 1775 1776 return rq; 1777 } 1778 1779 /* 1780 * migration_cpu_stop - this will be executed by a highprio stopper thread 1781 * and performs thread migration by bumping thread off CPU then 1782 * 'pushing' onto another runqueue. 1783 */ 1784 static int migration_cpu_stop(void *data) 1785 { 1786 struct migration_arg *arg = data; 1787 struct task_struct *p = arg->task; 1788 struct rq *rq = this_rq(); 1789 struct rq_flags rf; 1790 1791 /* 1792 * The original target CPU might have gone down and we might 1793 * be on another CPU but it doesn't matter. 1794 */ 1795 local_irq_disable(); 1796 /* 1797 * We need to explicitly wake pending tasks before running 1798 * __migrate_task() such that we will not miss enforcing cpus_ptr 1799 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1800 */ 1801 flush_smp_call_function_from_idle(); 1802 1803 raw_spin_lock(&p->pi_lock); 1804 rq_lock(rq, &rf); 1805 /* 1806 * If task_rq(p) != rq, it cannot be migrated here, because we're 1807 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1808 * we're holding p->pi_lock. 1809 */ 1810 if (task_rq(p) == rq) { 1811 if (task_on_rq_queued(p)) 1812 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1813 else 1814 p->wake_cpu = arg->dest_cpu; 1815 } 1816 rq_unlock(rq, &rf); 1817 raw_spin_unlock(&p->pi_lock); 1818 1819 local_irq_enable(); 1820 return 0; 1821 } 1822 1823 /* 1824 * sched_class::set_cpus_allowed must do the below, but is not required to 1825 * actually call this function. 1826 */ 1827 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1828 { 1829 cpumask_copy(&p->cpus_mask, new_mask); 1830 p->nr_cpus_allowed = cpumask_weight(new_mask); 1831 } 1832 1833 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1834 { 1835 struct rq *rq = task_rq(p); 1836 bool queued, running; 1837 1838 lockdep_assert_held(&p->pi_lock); 1839 1840 queued = task_on_rq_queued(p); 1841 running = task_current(rq, p); 1842 1843 if (queued) { 1844 /* 1845 * Because __kthread_bind() calls this on blocked tasks without 1846 * holding rq->lock. 1847 */ 1848 lockdep_assert_held(&rq->lock); 1849 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1850 } 1851 if (running) 1852 put_prev_task(rq, p); 1853 1854 p->sched_class->set_cpus_allowed(p, new_mask); 1855 1856 if (queued) 1857 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1858 if (running) 1859 set_next_task(rq, p); 1860 } 1861 1862 /* 1863 * Change a given task's CPU affinity. Migrate the thread to a 1864 * proper CPU and schedule it away if the CPU it's executing on 1865 * is removed from the allowed bitmask. 1866 * 1867 * NOTE: the caller must have a valid reference to the task, the 1868 * task must not exit() & deallocate itself prematurely. The 1869 * call is not atomic; no spinlocks may be held. 1870 */ 1871 static int __set_cpus_allowed_ptr(struct task_struct *p, 1872 const struct cpumask *new_mask, bool check) 1873 { 1874 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1875 unsigned int dest_cpu; 1876 struct rq_flags rf; 1877 struct rq *rq; 1878 int ret = 0; 1879 1880 rq = task_rq_lock(p, &rf); 1881 update_rq_clock(rq); 1882 1883 if (p->flags & PF_KTHREAD) { 1884 /* 1885 * Kernel threads are allowed on online && !active CPUs 1886 */ 1887 cpu_valid_mask = cpu_online_mask; 1888 } 1889 1890 /* 1891 * Must re-check here, to close a race against __kthread_bind(), 1892 * sched_setaffinity() is not guaranteed to observe the flag. 1893 */ 1894 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1895 ret = -EINVAL; 1896 goto out; 1897 } 1898 1899 if (cpumask_equal(&p->cpus_mask, new_mask)) 1900 goto out; 1901 1902 /* 1903 * Picking a ~random cpu helps in cases where we are changing affinity 1904 * for groups of tasks (ie. cpuset), so that load balancing is not 1905 * immediately required to distribute the tasks within their new mask. 1906 */ 1907 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1908 if (dest_cpu >= nr_cpu_ids) { 1909 ret = -EINVAL; 1910 goto out; 1911 } 1912 1913 do_set_cpus_allowed(p, new_mask); 1914 1915 if (p->flags & PF_KTHREAD) { 1916 /* 1917 * For kernel threads that do indeed end up on online && 1918 * !active we want to ensure they are strict per-CPU threads. 1919 */ 1920 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1921 !cpumask_intersects(new_mask, cpu_active_mask) && 1922 p->nr_cpus_allowed != 1); 1923 } 1924 1925 /* Can the task run on the task's current CPU? If so, we're done */ 1926 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1927 goto out; 1928 1929 if (task_running(rq, p) || p->state == TASK_WAKING) { 1930 struct migration_arg arg = { p, dest_cpu }; 1931 /* Need help from migration thread: drop lock and wait. */ 1932 task_rq_unlock(rq, p, &rf); 1933 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1934 return 0; 1935 } else if (task_on_rq_queued(p)) { 1936 /* 1937 * OK, since we're going to drop the lock immediately 1938 * afterwards anyway. 1939 */ 1940 rq = move_queued_task(rq, &rf, p, dest_cpu); 1941 } 1942 out: 1943 task_rq_unlock(rq, p, &rf); 1944 1945 return ret; 1946 } 1947 1948 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1949 { 1950 return __set_cpus_allowed_ptr(p, new_mask, false); 1951 } 1952 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1953 1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1955 { 1956 #ifdef CONFIG_SCHED_DEBUG 1957 /* 1958 * We should never call set_task_cpu() on a blocked task, 1959 * ttwu() will sort out the placement. 1960 */ 1961 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1962 !p->on_rq); 1963 1964 /* 1965 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1966 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1967 * time relying on p->on_rq. 1968 */ 1969 WARN_ON_ONCE(p->state == TASK_RUNNING && 1970 p->sched_class == &fair_sched_class && 1971 (p->on_rq && !task_on_rq_migrating(p))); 1972 1973 #ifdef CONFIG_LOCKDEP 1974 /* 1975 * The caller should hold either p->pi_lock or rq->lock, when changing 1976 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1977 * 1978 * sched_move_task() holds both and thus holding either pins the cgroup, 1979 * see task_group(). 1980 * 1981 * Furthermore, all task_rq users should acquire both locks, see 1982 * task_rq_lock(). 1983 */ 1984 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1985 lockdep_is_held(&task_rq(p)->lock))); 1986 #endif 1987 /* 1988 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1989 */ 1990 WARN_ON_ONCE(!cpu_online(new_cpu)); 1991 #endif 1992 1993 trace_sched_migrate_task(p, new_cpu); 1994 1995 if (task_cpu(p) != new_cpu) { 1996 if (p->sched_class->migrate_task_rq) 1997 p->sched_class->migrate_task_rq(p, new_cpu); 1998 p->se.nr_migrations++; 1999 rseq_migrate(p); 2000 perf_event_task_migrate(p); 2001 } 2002 2003 __set_task_cpu(p, new_cpu); 2004 } 2005 2006 #ifdef CONFIG_NUMA_BALANCING 2007 static void __migrate_swap_task(struct task_struct *p, int cpu) 2008 { 2009 if (task_on_rq_queued(p)) { 2010 struct rq *src_rq, *dst_rq; 2011 struct rq_flags srf, drf; 2012 2013 src_rq = task_rq(p); 2014 dst_rq = cpu_rq(cpu); 2015 2016 rq_pin_lock(src_rq, &srf); 2017 rq_pin_lock(dst_rq, &drf); 2018 2019 deactivate_task(src_rq, p, 0); 2020 set_task_cpu(p, cpu); 2021 activate_task(dst_rq, p, 0); 2022 check_preempt_curr(dst_rq, p, 0); 2023 2024 rq_unpin_lock(dst_rq, &drf); 2025 rq_unpin_lock(src_rq, &srf); 2026 2027 } else { 2028 /* 2029 * Task isn't running anymore; make it appear like we migrated 2030 * it before it went to sleep. This means on wakeup we make the 2031 * previous CPU our target instead of where it really is. 2032 */ 2033 p->wake_cpu = cpu; 2034 } 2035 } 2036 2037 struct migration_swap_arg { 2038 struct task_struct *src_task, *dst_task; 2039 int src_cpu, dst_cpu; 2040 }; 2041 2042 static int migrate_swap_stop(void *data) 2043 { 2044 struct migration_swap_arg *arg = data; 2045 struct rq *src_rq, *dst_rq; 2046 int ret = -EAGAIN; 2047 2048 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2049 return -EAGAIN; 2050 2051 src_rq = cpu_rq(arg->src_cpu); 2052 dst_rq = cpu_rq(arg->dst_cpu); 2053 2054 double_raw_lock(&arg->src_task->pi_lock, 2055 &arg->dst_task->pi_lock); 2056 double_rq_lock(src_rq, dst_rq); 2057 2058 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2059 goto unlock; 2060 2061 if (task_cpu(arg->src_task) != arg->src_cpu) 2062 goto unlock; 2063 2064 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2065 goto unlock; 2066 2067 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2068 goto unlock; 2069 2070 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2071 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2072 2073 ret = 0; 2074 2075 unlock: 2076 double_rq_unlock(src_rq, dst_rq); 2077 raw_spin_unlock(&arg->dst_task->pi_lock); 2078 raw_spin_unlock(&arg->src_task->pi_lock); 2079 2080 return ret; 2081 } 2082 2083 /* 2084 * Cross migrate two tasks 2085 */ 2086 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2087 int target_cpu, int curr_cpu) 2088 { 2089 struct migration_swap_arg arg; 2090 int ret = -EINVAL; 2091 2092 arg = (struct migration_swap_arg){ 2093 .src_task = cur, 2094 .src_cpu = curr_cpu, 2095 .dst_task = p, 2096 .dst_cpu = target_cpu, 2097 }; 2098 2099 if (arg.src_cpu == arg.dst_cpu) 2100 goto out; 2101 2102 /* 2103 * These three tests are all lockless; this is OK since all of them 2104 * will be re-checked with proper locks held further down the line. 2105 */ 2106 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2107 goto out; 2108 2109 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2110 goto out; 2111 2112 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2113 goto out; 2114 2115 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2116 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2117 2118 out: 2119 return ret; 2120 } 2121 #endif /* CONFIG_NUMA_BALANCING */ 2122 2123 /* 2124 * wait_task_inactive - wait for a thread to unschedule. 2125 * 2126 * If @match_state is nonzero, it's the @p->state value just checked and 2127 * not expected to change. If it changes, i.e. @p might have woken up, 2128 * then return zero. When we succeed in waiting for @p to be off its CPU, 2129 * we return a positive number (its total switch count). If a second call 2130 * a short while later returns the same number, the caller can be sure that 2131 * @p has remained unscheduled the whole time. 2132 * 2133 * The caller must ensure that the task *will* unschedule sometime soon, 2134 * else this function might spin for a *long* time. This function can't 2135 * be called with interrupts off, or it may introduce deadlock with 2136 * smp_call_function() if an IPI is sent by the same process we are 2137 * waiting to become inactive. 2138 */ 2139 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2140 { 2141 int running, queued; 2142 struct rq_flags rf; 2143 unsigned long ncsw; 2144 struct rq *rq; 2145 2146 for (;;) { 2147 /* 2148 * We do the initial early heuristics without holding 2149 * any task-queue locks at all. We'll only try to get 2150 * the runqueue lock when things look like they will 2151 * work out! 2152 */ 2153 rq = task_rq(p); 2154 2155 /* 2156 * If the task is actively running on another CPU 2157 * still, just relax and busy-wait without holding 2158 * any locks. 2159 * 2160 * NOTE! Since we don't hold any locks, it's not 2161 * even sure that "rq" stays as the right runqueue! 2162 * But we don't care, since "task_running()" will 2163 * return false if the runqueue has changed and p 2164 * is actually now running somewhere else! 2165 */ 2166 while (task_running(rq, p)) { 2167 if (match_state && unlikely(p->state != match_state)) 2168 return 0; 2169 cpu_relax(); 2170 } 2171 2172 /* 2173 * Ok, time to look more closely! We need the rq 2174 * lock now, to be *sure*. If we're wrong, we'll 2175 * just go back and repeat. 2176 */ 2177 rq = task_rq_lock(p, &rf); 2178 trace_sched_wait_task(p); 2179 running = task_running(rq, p); 2180 queued = task_on_rq_queued(p); 2181 ncsw = 0; 2182 if (!match_state || p->state == match_state) 2183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2184 task_rq_unlock(rq, p, &rf); 2185 2186 /* 2187 * If it changed from the expected state, bail out now. 2188 */ 2189 if (unlikely(!ncsw)) 2190 break; 2191 2192 /* 2193 * Was it really running after all now that we 2194 * checked with the proper locks actually held? 2195 * 2196 * Oops. Go back and try again.. 2197 */ 2198 if (unlikely(running)) { 2199 cpu_relax(); 2200 continue; 2201 } 2202 2203 /* 2204 * It's not enough that it's not actively running, 2205 * it must be off the runqueue _entirely_, and not 2206 * preempted! 2207 * 2208 * So if it was still runnable (but just not actively 2209 * running right now), it's preempted, and we should 2210 * yield - it could be a while. 2211 */ 2212 if (unlikely(queued)) { 2213 ktime_t to = NSEC_PER_SEC / HZ; 2214 2215 set_current_state(TASK_UNINTERRUPTIBLE); 2216 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2217 continue; 2218 } 2219 2220 /* 2221 * Ahh, all good. It wasn't running, and it wasn't 2222 * runnable, which means that it will never become 2223 * running in the future either. We're all done! 2224 */ 2225 break; 2226 } 2227 2228 return ncsw; 2229 } 2230 2231 /*** 2232 * kick_process - kick a running thread to enter/exit the kernel 2233 * @p: the to-be-kicked thread 2234 * 2235 * Cause a process which is running on another CPU to enter 2236 * kernel-mode, without any delay. (to get signals handled.) 2237 * 2238 * NOTE: this function doesn't have to take the runqueue lock, 2239 * because all it wants to ensure is that the remote task enters 2240 * the kernel. If the IPI races and the task has been migrated 2241 * to another CPU then no harm is done and the purpose has been 2242 * achieved as well. 2243 */ 2244 void kick_process(struct task_struct *p) 2245 { 2246 int cpu; 2247 2248 preempt_disable(); 2249 cpu = task_cpu(p); 2250 if ((cpu != smp_processor_id()) && task_curr(p)) 2251 smp_send_reschedule(cpu); 2252 preempt_enable(); 2253 } 2254 EXPORT_SYMBOL_GPL(kick_process); 2255 2256 /* 2257 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2258 * 2259 * A few notes on cpu_active vs cpu_online: 2260 * 2261 * - cpu_active must be a subset of cpu_online 2262 * 2263 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2264 * see __set_cpus_allowed_ptr(). At this point the newly online 2265 * CPU isn't yet part of the sched domains, and balancing will not 2266 * see it. 2267 * 2268 * - on CPU-down we clear cpu_active() to mask the sched domains and 2269 * avoid the load balancer to place new tasks on the to be removed 2270 * CPU. Existing tasks will remain running there and will be taken 2271 * off. 2272 * 2273 * This means that fallback selection must not select !active CPUs. 2274 * And can assume that any active CPU must be online. Conversely 2275 * select_task_rq() below may allow selection of !active CPUs in order 2276 * to satisfy the above rules. 2277 */ 2278 static int select_fallback_rq(int cpu, struct task_struct *p) 2279 { 2280 int nid = cpu_to_node(cpu); 2281 const struct cpumask *nodemask = NULL; 2282 enum { cpuset, possible, fail } state = cpuset; 2283 int dest_cpu; 2284 2285 /* 2286 * If the node that the CPU is on has been offlined, cpu_to_node() 2287 * will return -1. There is no CPU on the node, and we should 2288 * select the CPU on the other node. 2289 */ 2290 if (nid != -1) { 2291 nodemask = cpumask_of_node(nid); 2292 2293 /* Look for allowed, online CPU in same node. */ 2294 for_each_cpu(dest_cpu, nodemask) { 2295 if (!cpu_active(dest_cpu)) 2296 continue; 2297 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2298 return dest_cpu; 2299 } 2300 } 2301 2302 for (;;) { 2303 /* Any allowed, online CPU? */ 2304 for_each_cpu(dest_cpu, p->cpus_ptr) { 2305 if (!is_cpu_allowed(p, dest_cpu)) 2306 continue; 2307 2308 goto out; 2309 } 2310 2311 /* No more Mr. Nice Guy. */ 2312 switch (state) { 2313 case cpuset: 2314 if (IS_ENABLED(CONFIG_CPUSETS)) { 2315 cpuset_cpus_allowed_fallback(p); 2316 state = possible; 2317 break; 2318 } 2319 fallthrough; 2320 case possible: 2321 do_set_cpus_allowed(p, cpu_possible_mask); 2322 state = fail; 2323 break; 2324 2325 case fail: 2326 BUG(); 2327 break; 2328 } 2329 } 2330 2331 out: 2332 if (state != cpuset) { 2333 /* 2334 * Don't tell them about moving exiting tasks or 2335 * kernel threads (both mm NULL), since they never 2336 * leave kernel. 2337 */ 2338 if (p->mm && printk_ratelimit()) { 2339 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2340 task_pid_nr(p), p->comm, cpu); 2341 } 2342 } 2343 2344 return dest_cpu; 2345 } 2346 2347 /* 2348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2349 */ 2350 static inline 2351 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2352 { 2353 lockdep_assert_held(&p->pi_lock); 2354 2355 if (p->nr_cpus_allowed > 1) 2356 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2357 else 2358 cpu = cpumask_any(p->cpus_ptr); 2359 2360 /* 2361 * In order not to call set_task_cpu() on a blocking task we need 2362 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2363 * CPU. 2364 * 2365 * Since this is common to all placement strategies, this lives here. 2366 * 2367 * [ this allows ->select_task() to simply return task_cpu(p) and 2368 * not worry about this generic constraint ] 2369 */ 2370 if (unlikely(!is_cpu_allowed(p, cpu))) 2371 cpu = select_fallback_rq(task_cpu(p), p); 2372 2373 return cpu; 2374 } 2375 2376 void sched_set_stop_task(int cpu, struct task_struct *stop) 2377 { 2378 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2379 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2380 2381 if (stop) { 2382 /* 2383 * Make it appear like a SCHED_FIFO task, its something 2384 * userspace knows about and won't get confused about. 2385 * 2386 * Also, it will make PI more or less work without too 2387 * much confusion -- but then, stop work should not 2388 * rely on PI working anyway. 2389 */ 2390 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2391 2392 stop->sched_class = &stop_sched_class; 2393 } 2394 2395 cpu_rq(cpu)->stop = stop; 2396 2397 if (old_stop) { 2398 /* 2399 * Reset it back to a normal scheduling class so that 2400 * it can die in pieces. 2401 */ 2402 old_stop->sched_class = &rt_sched_class; 2403 } 2404 } 2405 2406 #else 2407 2408 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2409 const struct cpumask *new_mask, bool check) 2410 { 2411 return set_cpus_allowed_ptr(p, new_mask); 2412 } 2413 2414 #endif /* CONFIG_SMP */ 2415 2416 static void 2417 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2418 { 2419 struct rq *rq; 2420 2421 if (!schedstat_enabled()) 2422 return; 2423 2424 rq = this_rq(); 2425 2426 #ifdef CONFIG_SMP 2427 if (cpu == rq->cpu) { 2428 __schedstat_inc(rq->ttwu_local); 2429 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2430 } else { 2431 struct sched_domain *sd; 2432 2433 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2434 rcu_read_lock(); 2435 for_each_domain(rq->cpu, sd) { 2436 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2437 __schedstat_inc(sd->ttwu_wake_remote); 2438 break; 2439 } 2440 } 2441 rcu_read_unlock(); 2442 } 2443 2444 if (wake_flags & WF_MIGRATED) 2445 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2446 #endif /* CONFIG_SMP */ 2447 2448 __schedstat_inc(rq->ttwu_count); 2449 __schedstat_inc(p->se.statistics.nr_wakeups); 2450 2451 if (wake_flags & WF_SYNC) 2452 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2453 } 2454 2455 /* 2456 * Mark the task runnable and perform wakeup-preemption. 2457 */ 2458 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2459 struct rq_flags *rf) 2460 { 2461 check_preempt_curr(rq, p, wake_flags); 2462 p->state = TASK_RUNNING; 2463 trace_sched_wakeup(p); 2464 2465 #ifdef CONFIG_SMP 2466 if (p->sched_class->task_woken) { 2467 /* 2468 * Our task @p is fully woken up and running; so its safe to 2469 * drop the rq->lock, hereafter rq is only used for statistics. 2470 */ 2471 rq_unpin_lock(rq, rf); 2472 p->sched_class->task_woken(rq, p); 2473 rq_repin_lock(rq, rf); 2474 } 2475 2476 if (rq->idle_stamp) { 2477 u64 delta = rq_clock(rq) - rq->idle_stamp; 2478 u64 max = 2*rq->max_idle_balance_cost; 2479 2480 update_avg(&rq->avg_idle, delta); 2481 2482 if (rq->avg_idle > max) 2483 rq->avg_idle = max; 2484 2485 rq->idle_stamp = 0; 2486 } 2487 #endif 2488 } 2489 2490 static void 2491 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2492 struct rq_flags *rf) 2493 { 2494 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2495 2496 lockdep_assert_held(&rq->lock); 2497 2498 if (p->sched_contributes_to_load) 2499 rq->nr_uninterruptible--; 2500 2501 #ifdef CONFIG_SMP 2502 if (wake_flags & WF_MIGRATED) 2503 en_flags |= ENQUEUE_MIGRATED; 2504 else 2505 #endif 2506 if (p->in_iowait) { 2507 delayacct_blkio_end(p); 2508 atomic_dec(&task_rq(p)->nr_iowait); 2509 } 2510 2511 activate_task(rq, p, en_flags); 2512 ttwu_do_wakeup(rq, p, wake_flags, rf); 2513 } 2514 2515 /* 2516 * Consider @p being inside a wait loop: 2517 * 2518 * for (;;) { 2519 * set_current_state(TASK_UNINTERRUPTIBLE); 2520 * 2521 * if (CONDITION) 2522 * break; 2523 * 2524 * schedule(); 2525 * } 2526 * __set_current_state(TASK_RUNNING); 2527 * 2528 * between set_current_state() and schedule(). In this case @p is still 2529 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 2530 * an atomic manner. 2531 * 2532 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 2533 * then schedule() must still happen and p->state can be changed to 2534 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 2535 * need to do a full wakeup with enqueue. 2536 * 2537 * Returns: %true when the wakeup is done, 2538 * %false otherwise. 2539 */ 2540 static int ttwu_runnable(struct task_struct *p, int wake_flags) 2541 { 2542 struct rq_flags rf; 2543 struct rq *rq; 2544 int ret = 0; 2545 2546 rq = __task_rq_lock(p, &rf); 2547 if (task_on_rq_queued(p)) { 2548 /* check_preempt_curr() may use rq clock */ 2549 update_rq_clock(rq); 2550 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2551 ret = 1; 2552 } 2553 __task_rq_unlock(rq, &rf); 2554 2555 return ret; 2556 } 2557 2558 #ifdef CONFIG_SMP 2559 void sched_ttwu_pending(void *arg) 2560 { 2561 struct llist_node *llist = arg; 2562 struct rq *rq = this_rq(); 2563 struct task_struct *p, *t; 2564 struct rq_flags rf; 2565 2566 if (!llist) 2567 return; 2568 2569 /* 2570 * rq::ttwu_pending racy indication of out-standing wakeups. 2571 * Races such that false-negatives are possible, since they 2572 * are shorter lived that false-positives would be. 2573 */ 2574 WRITE_ONCE(rq->ttwu_pending, 0); 2575 2576 rq_lock_irqsave(rq, &rf); 2577 update_rq_clock(rq); 2578 2579 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 2580 if (WARN_ON_ONCE(p->on_cpu)) 2581 smp_cond_load_acquire(&p->on_cpu, !VAL); 2582 2583 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 2584 set_task_cpu(p, cpu_of(rq)); 2585 2586 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2587 } 2588 2589 rq_unlock_irqrestore(rq, &rf); 2590 } 2591 2592 void send_call_function_single_ipi(int cpu) 2593 { 2594 struct rq *rq = cpu_rq(cpu); 2595 2596 if (!set_nr_if_polling(rq->idle)) 2597 arch_send_call_function_single_ipi(cpu); 2598 else 2599 trace_sched_wake_idle_without_ipi(cpu); 2600 } 2601 2602 /* 2603 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 2604 * necessary. The wakee CPU on receipt of the IPI will queue the task 2605 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 2606 * of the wakeup instead of the waker. 2607 */ 2608 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2609 { 2610 struct rq *rq = cpu_rq(cpu); 2611 2612 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2613 2614 WRITE_ONCE(rq->ttwu_pending, 1); 2615 __smp_call_single_queue(cpu, &p->wake_entry.llist); 2616 } 2617 2618 void wake_up_if_idle(int cpu) 2619 { 2620 struct rq *rq = cpu_rq(cpu); 2621 struct rq_flags rf; 2622 2623 rcu_read_lock(); 2624 2625 if (!is_idle_task(rcu_dereference(rq->curr))) 2626 goto out; 2627 2628 if (set_nr_if_polling(rq->idle)) { 2629 trace_sched_wake_idle_without_ipi(cpu); 2630 } else { 2631 rq_lock_irqsave(rq, &rf); 2632 if (is_idle_task(rq->curr)) 2633 smp_send_reschedule(cpu); 2634 /* Else CPU is not idle, do nothing here: */ 2635 rq_unlock_irqrestore(rq, &rf); 2636 } 2637 2638 out: 2639 rcu_read_unlock(); 2640 } 2641 2642 bool cpus_share_cache(int this_cpu, int that_cpu) 2643 { 2644 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2645 } 2646 2647 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 2648 { 2649 /* 2650 * If the CPU does not share cache, then queue the task on the 2651 * remote rqs wakelist to avoid accessing remote data. 2652 */ 2653 if (!cpus_share_cache(smp_processor_id(), cpu)) 2654 return true; 2655 2656 /* 2657 * If the task is descheduling and the only running task on the 2658 * CPU then use the wakelist to offload the task activation to 2659 * the soon-to-be-idle CPU as the current CPU is likely busy. 2660 * nr_running is checked to avoid unnecessary task stacking. 2661 */ 2662 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 2663 return true; 2664 2665 return false; 2666 } 2667 2668 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2669 { 2670 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 2671 if (WARN_ON_ONCE(cpu == smp_processor_id())) 2672 return false; 2673 2674 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2675 __ttwu_queue_wakelist(p, cpu, wake_flags); 2676 return true; 2677 } 2678 2679 return false; 2680 } 2681 2682 #else /* !CONFIG_SMP */ 2683 2684 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2685 { 2686 return false; 2687 } 2688 2689 #endif /* CONFIG_SMP */ 2690 2691 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2692 { 2693 struct rq *rq = cpu_rq(cpu); 2694 struct rq_flags rf; 2695 2696 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 2697 return; 2698 2699 rq_lock(rq, &rf); 2700 update_rq_clock(rq); 2701 ttwu_do_activate(rq, p, wake_flags, &rf); 2702 rq_unlock(rq, &rf); 2703 } 2704 2705 /* 2706 * Notes on Program-Order guarantees on SMP systems. 2707 * 2708 * MIGRATION 2709 * 2710 * The basic program-order guarantee on SMP systems is that when a task [t] 2711 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2712 * execution on its new CPU [c1]. 2713 * 2714 * For migration (of runnable tasks) this is provided by the following means: 2715 * 2716 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2717 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2718 * rq(c1)->lock (if not at the same time, then in that order). 2719 * C) LOCK of the rq(c1)->lock scheduling in task 2720 * 2721 * Release/acquire chaining guarantees that B happens after A and C after B. 2722 * Note: the CPU doing B need not be c0 or c1 2723 * 2724 * Example: 2725 * 2726 * CPU0 CPU1 CPU2 2727 * 2728 * LOCK rq(0)->lock 2729 * sched-out X 2730 * sched-in Y 2731 * UNLOCK rq(0)->lock 2732 * 2733 * LOCK rq(0)->lock // orders against CPU0 2734 * dequeue X 2735 * UNLOCK rq(0)->lock 2736 * 2737 * LOCK rq(1)->lock 2738 * enqueue X 2739 * UNLOCK rq(1)->lock 2740 * 2741 * LOCK rq(1)->lock // orders against CPU2 2742 * sched-out Z 2743 * sched-in X 2744 * UNLOCK rq(1)->lock 2745 * 2746 * 2747 * BLOCKING -- aka. SLEEP + WAKEUP 2748 * 2749 * For blocking we (obviously) need to provide the same guarantee as for 2750 * migration. However the means are completely different as there is no lock 2751 * chain to provide order. Instead we do: 2752 * 2753 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 2754 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 2755 * 2756 * Example: 2757 * 2758 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2759 * 2760 * LOCK rq(0)->lock LOCK X->pi_lock 2761 * dequeue X 2762 * sched-out X 2763 * smp_store_release(X->on_cpu, 0); 2764 * 2765 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2766 * X->state = WAKING 2767 * set_task_cpu(X,2) 2768 * 2769 * LOCK rq(2)->lock 2770 * enqueue X 2771 * X->state = RUNNING 2772 * UNLOCK rq(2)->lock 2773 * 2774 * LOCK rq(2)->lock // orders against CPU1 2775 * sched-out Z 2776 * sched-in X 2777 * UNLOCK rq(2)->lock 2778 * 2779 * UNLOCK X->pi_lock 2780 * UNLOCK rq(0)->lock 2781 * 2782 * 2783 * However, for wakeups there is a second guarantee we must provide, namely we 2784 * must ensure that CONDITION=1 done by the caller can not be reordered with 2785 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2786 */ 2787 2788 /** 2789 * try_to_wake_up - wake up a thread 2790 * @p: the thread to be awakened 2791 * @state: the mask of task states that can be woken 2792 * @wake_flags: wake modifier flags (WF_*) 2793 * 2794 * Conceptually does: 2795 * 2796 * If (@state & @p->state) @p->state = TASK_RUNNING. 2797 * 2798 * If the task was not queued/runnable, also place it back on a runqueue. 2799 * 2800 * This function is atomic against schedule() which would dequeue the task. 2801 * 2802 * It issues a full memory barrier before accessing @p->state, see the comment 2803 * with set_current_state(). 2804 * 2805 * Uses p->pi_lock to serialize against concurrent wake-ups. 2806 * 2807 * Relies on p->pi_lock stabilizing: 2808 * - p->sched_class 2809 * - p->cpus_ptr 2810 * - p->sched_task_group 2811 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 2812 * 2813 * Tries really hard to only take one task_rq(p)->lock for performance. 2814 * Takes rq->lock in: 2815 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 2816 * - ttwu_queue() -- new rq, for enqueue of the task; 2817 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 2818 * 2819 * As a consequence we race really badly with just about everything. See the 2820 * many memory barriers and their comments for details. 2821 * 2822 * Return: %true if @p->state changes (an actual wakeup was done), 2823 * %false otherwise. 2824 */ 2825 static int 2826 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2827 { 2828 unsigned long flags; 2829 int cpu, success = 0; 2830 2831 preempt_disable(); 2832 if (p == current) { 2833 /* 2834 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2835 * == smp_processor_id()'. Together this means we can special 2836 * case the whole 'p->on_rq && ttwu_runnable()' case below 2837 * without taking any locks. 2838 * 2839 * In particular: 2840 * - we rely on Program-Order guarantees for all the ordering, 2841 * - we're serialized against set_special_state() by virtue of 2842 * it disabling IRQs (this allows not taking ->pi_lock). 2843 */ 2844 if (!(p->state & state)) 2845 goto out; 2846 2847 success = 1; 2848 trace_sched_waking(p); 2849 p->state = TASK_RUNNING; 2850 trace_sched_wakeup(p); 2851 goto out; 2852 } 2853 2854 /* 2855 * If we are going to wake up a thread waiting for CONDITION we 2856 * need to ensure that CONDITION=1 done by the caller can not be 2857 * reordered with p->state check below. This pairs with smp_store_mb() 2858 * in set_current_state() that the waiting thread does. 2859 */ 2860 raw_spin_lock_irqsave(&p->pi_lock, flags); 2861 smp_mb__after_spinlock(); 2862 if (!(p->state & state)) 2863 goto unlock; 2864 2865 trace_sched_waking(p); 2866 2867 /* We're going to change ->state: */ 2868 success = 1; 2869 2870 /* 2871 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2872 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2873 * in smp_cond_load_acquire() below. 2874 * 2875 * sched_ttwu_pending() try_to_wake_up() 2876 * STORE p->on_rq = 1 LOAD p->state 2877 * UNLOCK rq->lock 2878 * 2879 * __schedule() (switch to task 'p') 2880 * LOCK rq->lock smp_rmb(); 2881 * smp_mb__after_spinlock(); 2882 * UNLOCK rq->lock 2883 * 2884 * [task p] 2885 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2886 * 2887 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2888 * __schedule(). See the comment for smp_mb__after_spinlock(). 2889 * 2890 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 2891 */ 2892 smp_rmb(); 2893 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 2894 goto unlock; 2895 2896 #ifdef CONFIG_SMP 2897 /* 2898 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2899 * possible to, falsely, observe p->on_cpu == 0. 2900 * 2901 * One must be running (->on_cpu == 1) in order to remove oneself 2902 * from the runqueue. 2903 * 2904 * __schedule() (switch to task 'p') try_to_wake_up() 2905 * STORE p->on_cpu = 1 LOAD p->on_rq 2906 * UNLOCK rq->lock 2907 * 2908 * __schedule() (put 'p' to sleep) 2909 * LOCK rq->lock smp_rmb(); 2910 * smp_mb__after_spinlock(); 2911 * STORE p->on_rq = 0 LOAD p->on_cpu 2912 * 2913 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2914 * __schedule(). See the comment for smp_mb__after_spinlock(). 2915 * 2916 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 2917 * schedule()'s deactivate_task() has 'happened' and p will no longer 2918 * care about it's own p->state. See the comment in __schedule(). 2919 */ 2920 smp_acquire__after_ctrl_dep(); 2921 2922 /* 2923 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 2924 * == 0), which means we need to do an enqueue, change p->state to 2925 * TASK_WAKING such that we can unlock p->pi_lock before doing the 2926 * enqueue, such as ttwu_queue_wakelist(). 2927 */ 2928 p->state = TASK_WAKING; 2929 2930 /* 2931 * If the owning (remote) CPU is still in the middle of schedule() with 2932 * this task as prev, considering queueing p on the remote CPUs wake_list 2933 * which potentially sends an IPI instead of spinning on p->on_cpu to 2934 * let the waker make forward progress. This is safe because IRQs are 2935 * disabled and the IPI will deliver after on_cpu is cleared. 2936 * 2937 * Ensure we load task_cpu(p) after p->on_cpu: 2938 * 2939 * set_task_cpu(p, cpu); 2940 * STORE p->cpu = @cpu 2941 * __schedule() (switch to task 'p') 2942 * LOCK rq->lock 2943 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 2944 * STORE p->on_cpu = 1 LOAD p->cpu 2945 * 2946 * to ensure we observe the correct CPU on which the task is currently 2947 * scheduling. 2948 */ 2949 if (smp_load_acquire(&p->on_cpu) && 2950 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 2951 goto unlock; 2952 2953 /* 2954 * If the owning (remote) CPU is still in the middle of schedule() with 2955 * this task as prev, wait until its done referencing the task. 2956 * 2957 * Pairs with the smp_store_release() in finish_task(). 2958 * 2959 * This ensures that tasks getting woken will be fully ordered against 2960 * their previous state and preserve Program Order. 2961 */ 2962 smp_cond_load_acquire(&p->on_cpu, !VAL); 2963 2964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2965 if (task_cpu(p) != cpu) { 2966 if (p->in_iowait) { 2967 delayacct_blkio_end(p); 2968 atomic_dec(&task_rq(p)->nr_iowait); 2969 } 2970 2971 wake_flags |= WF_MIGRATED; 2972 psi_ttwu_dequeue(p); 2973 set_task_cpu(p, cpu); 2974 } 2975 #else 2976 cpu = task_cpu(p); 2977 #endif /* CONFIG_SMP */ 2978 2979 ttwu_queue(p, cpu, wake_flags); 2980 unlock: 2981 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2982 out: 2983 if (success) 2984 ttwu_stat(p, task_cpu(p), wake_flags); 2985 preempt_enable(); 2986 2987 return success; 2988 } 2989 2990 /** 2991 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 2992 * @p: Process for which the function is to be invoked. 2993 * @func: Function to invoke. 2994 * @arg: Argument to function. 2995 * 2996 * If the specified task can be quickly locked into a definite state 2997 * (either sleeping or on a given runqueue), arrange to keep it in that 2998 * state while invoking @func(@arg). This function can use ->on_rq and 2999 * task_curr() to work out what the state is, if required. Given that 3000 * @func can be invoked with a runqueue lock held, it had better be quite 3001 * lightweight. 3002 * 3003 * Returns: 3004 * @false if the task slipped out from under the locks. 3005 * @true if the task was locked onto a runqueue or is sleeping. 3006 * However, @func can override this by returning @false. 3007 */ 3008 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3009 { 3010 bool ret = false; 3011 struct rq_flags rf; 3012 struct rq *rq; 3013 3014 lockdep_assert_irqs_enabled(); 3015 raw_spin_lock_irq(&p->pi_lock); 3016 if (p->on_rq) { 3017 rq = __task_rq_lock(p, &rf); 3018 if (task_rq(p) == rq) 3019 ret = func(p, arg); 3020 rq_unlock(rq, &rf); 3021 } else { 3022 switch (p->state) { 3023 case TASK_RUNNING: 3024 case TASK_WAKING: 3025 break; 3026 default: 3027 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3028 if (!p->on_rq) 3029 ret = func(p, arg); 3030 } 3031 } 3032 raw_spin_unlock_irq(&p->pi_lock); 3033 return ret; 3034 } 3035 3036 /** 3037 * wake_up_process - Wake up a specific process 3038 * @p: The process to be woken up. 3039 * 3040 * Attempt to wake up the nominated process and move it to the set of runnable 3041 * processes. 3042 * 3043 * Return: 1 if the process was woken up, 0 if it was already running. 3044 * 3045 * This function executes a full memory barrier before accessing the task state. 3046 */ 3047 int wake_up_process(struct task_struct *p) 3048 { 3049 return try_to_wake_up(p, TASK_NORMAL, 0); 3050 } 3051 EXPORT_SYMBOL(wake_up_process); 3052 3053 int wake_up_state(struct task_struct *p, unsigned int state) 3054 { 3055 return try_to_wake_up(p, state, 0); 3056 } 3057 3058 /* 3059 * Perform scheduler related setup for a newly forked process p. 3060 * p is forked by current. 3061 * 3062 * __sched_fork() is basic setup used by init_idle() too: 3063 */ 3064 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3065 { 3066 p->on_rq = 0; 3067 3068 p->se.on_rq = 0; 3069 p->se.exec_start = 0; 3070 p->se.sum_exec_runtime = 0; 3071 p->se.prev_sum_exec_runtime = 0; 3072 p->se.nr_migrations = 0; 3073 p->se.vruntime = 0; 3074 INIT_LIST_HEAD(&p->se.group_node); 3075 3076 #ifdef CONFIG_FAIR_GROUP_SCHED 3077 p->se.cfs_rq = NULL; 3078 #endif 3079 3080 #ifdef CONFIG_SCHEDSTATS 3081 /* Even if schedstat is disabled, there should not be garbage */ 3082 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3083 #endif 3084 3085 RB_CLEAR_NODE(&p->dl.rb_node); 3086 init_dl_task_timer(&p->dl); 3087 init_dl_inactive_task_timer(&p->dl); 3088 __dl_clear_params(p); 3089 3090 INIT_LIST_HEAD(&p->rt.run_list); 3091 p->rt.timeout = 0; 3092 p->rt.time_slice = sched_rr_timeslice; 3093 p->rt.on_rq = 0; 3094 p->rt.on_list = 0; 3095 3096 #ifdef CONFIG_PREEMPT_NOTIFIERS 3097 INIT_HLIST_HEAD(&p->preempt_notifiers); 3098 #endif 3099 3100 #ifdef CONFIG_COMPACTION 3101 p->capture_control = NULL; 3102 #endif 3103 init_numa_balancing(clone_flags, p); 3104 #ifdef CONFIG_SMP 3105 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3106 #endif 3107 } 3108 3109 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3110 3111 #ifdef CONFIG_NUMA_BALANCING 3112 3113 void set_numabalancing_state(bool enabled) 3114 { 3115 if (enabled) 3116 static_branch_enable(&sched_numa_balancing); 3117 else 3118 static_branch_disable(&sched_numa_balancing); 3119 } 3120 3121 #ifdef CONFIG_PROC_SYSCTL 3122 int sysctl_numa_balancing(struct ctl_table *table, int write, 3123 void *buffer, size_t *lenp, loff_t *ppos) 3124 { 3125 struct ctl_table t; 3126 int err; 3127 int state = static_branch_likely(&sched_numa_balancing); 3128 3129 if (write && !capable(CAP_SYS_ADMIN)) 3130 return -EPERM; 3131 3132 t = *table; 3133 t.data = &state; 3134 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3135 if (err < 0) 3136 return err; 3137 if (write) 3138 set_numabalancing_state(state); 3139 return err; 3140 } 3141 #endif 3142 #endif 3143 3144 #ifdef CONFIG_SCHEDSTATS 3145 3146 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3147 static bool __initdata __sched_schedstats = false; 3148 3149 static void set_schedstats(bool enabled) 3150 { 3151 if (enabled) 3152 static_branch_enable(&sched_schedstats); 3153 else 3154 static_branch_disable(&sched_schedstats); 3155 } 3156 3157 void force_schedstat_enabled(void) 3158 { 3159 if (!schedstat_enabled()) { 3160 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3161 static_branch_enable(&sched_schedstats); 3162 } 3163 } 3164 3165 static int __init setup_schedstats(char *str) 3166 { 3167 int ret = 0; 3168 if (!str) 3169 goto out; 3170 3171 /* 3172 * This code is called before jump labels have been set up, so we can't 3173 * change the static branch directly just yet. Instead set a temporary 3174 * variable so init_schedstats() can do it later. 3175 */ 3176 if (!strcmp(str, "enable")) { 3177 __sched_schedstats = true; 3178 ret = 1; 3179 } else if (!strcmp(str, "disable")) { 3180 __sched_schedstats = false; 3181 ret = 1; 3182 } 3183 out: 3184 if (!ret) 3185 pr_warn("Unable to parse schedstats=\n"); 3186 3187 return ret; 3188 } 3189 __setup("schedstats=", setup_schedstats); 3190 3191 static void __init init_schedstats(void) 3192 { 3193 set_schedstats(__sched_schedstats); 3194 } 3195 3196 #ifdef CONFIG_PROC_SYSCTL 3197 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3198 size_t *lenp, loff_t *ppos) 3199 { 3200 struct ctl_table t; 3201 int err; 3202 int state = static_branch_likely(&sched_schedstats); 3203 3204 if (write && !capable(CAP_SYS_ADMIN)) 3205 return -EPERM; 3206 3207 t = *table; 3208 t.data = &state; 3209 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3210 if (err < 0) 3211 return err; 3212 if (write) 3213 set_schedstats(state); 3214 return err; 3215 } 3216 #endif /* CONFIG_PROC_SYSCTL */ 3217 #else /* !CONFIG_SCHEDSTATS */ 3218 static inline void init_schedstats(void) {} 3219 #endif /* CONFIG_SCHEDSTATS */ 3220 3221 /* 3222 * fork()/clone()-time setup: 3223 */ 3224 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3225 { 3226 unsigned long flags; 3227 3228 __sched_fork(clone_flags, p); 3229 /* 3230 * We mark the process as NEW here. This guarantees that 3231 * nobody will actually run it, and a signal or other external 3232 * event cannot wake it up and insert it on the runqueue either. 3233 */ 3234 p->state = TASK_NEW; 3235 3236 /* 3237 * Make sure we do not leak PI boosting priority to the child. 3238 */ 3239 p->prio = current->normal_prio; 3240 3241 uclamp_fork(p); 3242 3243 /* 3244 * Revert to default priority/policy on fork if requested. 3245 */ 3246 if (unlikely(p->sched_reset_on_fork)) { 3247 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3248 p->policy = SCHED_NORMAL; 3249 p->static_prio = NICE_TO_PRIO(0); 3250 p->rt_priority = 0; 3251 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3252 p->static_prio = NICE_TO_PRIO(0); 3253 3254 p->prio = p->normal_prio = __normal_prio(p); 3255 set_load_weight(p, false); 3256 3257 /* 3258 * We don't need the reset flag anymore after the fork. It has 3259 * fulfilled its duty: 3260 */ 3261 p->sched_reset_on_fork = 0; 3262 } 3263 3264 if (dl_prio(p->prio)) 3265 return -EAGAIN; 3266 else if (rt_prio(p->prio)) 3267 p->sched_class = &rt_sched_class; 3268 else 3269 p->sched_class = &fair_sched_class; 3270 3271 init_entity_runnable_average(&p->se); 3272 3273 /* 3274 * The child is not yet in the pid-hash so no cgroup attach races, 3275 * and the cgroup is pinned to this child due to cgroup_fork() 3276 * is ran before sched_fork(). 3277 * 3278 * Silence PROVE_RCU. 3279 */ 3280 raw_spin_lock_irqsave(&p->pi_lock, flags); 3281 rseq_migrate(p); 3282 /* 3283 * We're setting the CPU for the first time, we don't migrate, 3284 * so use __set_task_cpu(). 3285 */ 3286 __set_task_cpu(p, smp_processor_id()); 3287 if (p->sched_class->task_fork) 3288 p->sched_class->task_fork(p); 3289 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3290 3291 #ifdef CONFIG_SCHED_INFO 3292 if (likely(sched_info_on())) 3293 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3294 #endif 3295 #if defined(CONFIG_SMP) 3296 p->on_cpu = 0; 3297 #endif 3298 init_task_preempt_count(p); 3299 #ifdef CONFIG_SMP 3300 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3301 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3302 #endif 3303 return 0; 3304 } 3305 3306 void sched_post_fork(struct task_struct *p) 3307 { 3308 uclamp_post_fork(p); 3309 } 3310 3311 unsigned long to_ratio(u64 period, u64 runtime) 3312 { 3313 if (runtime == RUNTIME_INF) 3314 return BW_UNIT; 3315 3316 /* 3317 * Doing this here saves a lot of checks in all 3318 * the calling paths, and returning zero seems 3319 * safe for them anyway. 3320 */ 3321 if (period == 0) 3322 return 0; 3323 3324 return div64_u64(runtime << BW_SHIFT, period); 3325 } 3326 3327 /* 3328 * wake_up_new_task - wake up a newly created task for the first time. 3329 * 3330 * This function will do some initial scheduler statistics housekeeping 3331 * that must be done for every newly created context, then puts the task 3332 * on the runqueue and wakes it. 3333 */ 3334 void wake_up_new_task(struct task_struct *p) 3335 { 3336 struct rq_flags rf; 3337 struct rq *rq; 3338 3339 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3340 p->state = TASK_RUNNING; 3341 #ifdef CONFIG_SMP 3342 /* 3343 * Fork balancing, do it here and not earlier because: 3344 * - cpus_ptr can change in the fork path 3345 * - any previously selected CPU might disappear through hotplug 3346 * 3347 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3348 * as we're not fully set-up yet. 3349 */ 3350 p->recent_used_cpu = task_cpu(p); 3351 rseq_migrate(p); 3352 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 3353 #endif 3354 rq = __task_rq_lock(p, &rf); 3355 update_rq_clock(rq); 3356 post_init_entity_util_avg(p); 3357 3358 activate_task(rq, p, ENQUEUE_NOCLOCK); 3359 trace_sched_wakeup_new(p); 3360 check_preempt_curr(rq, p, WF_FORK); 3361 #ifdef CONFIG_SMP 3362 if (p->sched_class->task_woken) { 3363 /* 3364 * Nothing relies on rq->lock after this, so its fine to 3365 * drop it. 3366 */ 3367 rq_unpin_lock(rq, &rf); 3368 p->sched_class->task_woken(rq, p); 3369 rq_repin_lock(rq, &rf); 3370 } 3371 #endif 3372 task_rq_unlock(rq, p, &rf); 3373 } 3374 3375 #ifdef CONFIG_PREEMPT_NOTIFIERS 3376 3377 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3378 3379 void preempt_notifier_inc(void) 3380 { 3381 static_branch_inc(&preempt_notifier_key); 3382 } 3383 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3384 3385 void preempt_notifier_dec(void) 3386 { 3387 static_branch_dec(&preempt_notifier_key); 3388 } 3389 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3390 3391 /** 3392 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3393 * @notifier: notifier struct to register 3394 */ 3395 void preempt_notifier_register(struct preempt_notifier *notifier) 3396 { 3397 if (!static_branch_unlikely(&preempt_notifier_key)) 3398 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3399 3400 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3401 } 3402 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3403 3404 /** 3405 * preempt_notifier_unregister - no longer interested in preemption notifications 3406 * @notifier: notifier struct to unregister 3407 * 3408 * This is *not* safe to call from within a preemption notifier. 3409 */ 3410 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3411 { 3412 hlist_del(¬ifier->link); 3413 } 3414 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3415 3416 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3417 { 3418 struct preempt_notifier *notifier; 3419 3420 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3421 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3422 } 3423 3424 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3425 { 3426 if (static_branch_unlikely(&preempt_notifier_key)) 3427 __fire_sched_in_preempt_notifiers(curr); 3428 } 3429 3430 static void 3431 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3432 struct task_struct *next) 3433 { 3434 struct preempt_notifier *notifier; 3435 3436 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3437 notifier->ops->sched_out(notifier, next); 3438 } 3439 3440 static __always_inline void 3441 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3442 struct task_struct *next) 3443 { 3444 if (static_branch_unlikely(&preempt_notifier_key)) 3445 __fire_sched_out_preempt_notifiers(curr, next); 3446 } 3447 3448 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3449 3450 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3451 { 3452 } 3453 3454 static inline void 3455 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3456 struct task_struct *next) 3457 { 3458 } 3459 3460 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3461 3462 static inline void prepare_task(struct task_struct *next) 3463 { 3464 #ifdef CONFIG_SMP 3465 /* 3466 * Claim the task as running, we do this before switching to it 3467 * such that any running task will have this set. 3468 * 3469 * See the ttwu() WF_ON_CPU case and its ordering comment. 3470 */ 3471 WRITE_ONCE(next->on_cpu, 1); 3472 #endif 3473 } 3474 3475 static inline void finish_task(struct task_struct *prev) 3476 { 3477 #ifdef CONFIG_SMP 3478 /* 3479 * This must be the very last reference to @prev from this CPU. After 3480 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3481 * must ensure this doesn't happen until the switch is completely 3482 * finished. 3483 * 3484 * In particular, the load of prev->state in finish_task_switch() must 3485 * happen before this. 3486 * 3487 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3488 */ 3489 smp_store_release(&prev->on_cpu, 0); 3490 #endif 3491 } 3492 3493 static inline void 3494 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3495 { 3496 /* 3497 * Since the runqueue lock will be released by the next 3498 * task (which is an invalid locking op but in the case 3499 * of the scheduler it's an obvious special-case), so we 3500 * do an early lockdep release here: 3501 */ 3502 rq_unpin_lock(rq, rf); 3503 spin_release(&rq->lock.dep_map, _THIS_IP_); 3504 #ifdef CONFIG_DEBUG_SPINLOCK 3505 /* this is a valid case when another task releases the spinlock */ 3506 rq->lock.owner = next; 3507 #endif 3508 } 3509 3510 static inline void finish_lock_switch(struct rq *rq) 3511 { 3512 /* 3513 * If we are tracking spinlock dependencies then we have to 3514 * fix up the runqueue lock - which gets 'carried over' from 3515 * prev into current: 3516 */ 3517 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3518 raw_spin_unlock_irq(&rq->lock); 3519 } 3520 3521 /* 3522 * NOP if the arch has not defined these: 3523 */ 3524 3525 #ifndef prepare_arch_switch 3526 # define prepare_arch_switch(next) do { } while (0) 3527 #endif 3528 3529 #ifndef finish_arch_post_lock_switch 3530 # define finish_arch_post_lock_switch() do { } while (0) 3531 #endif 3532 3533 /** 3534 * prepare_task_switch - prepare to switch tasks 3535 * @rq: the runqueue preparing to switch 3536 * @prev: the current task that is being switched out 3537 * @next: the task we are going to switch to. 3538 * 3539 * This is called with the rq lock held and interrupts off. It must 3540 * be paired with a subsequent finish_task_switch after the context 3541 * switch. 3542 * 3543 * prepare_task_switch sets up locking and calls architecture specific 3544 * hooks. 3545 */ 3546 static inline void 3547 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3548 struct task_struct *next) 3549 { 3550 kcov_prepare_switch(prev); 3551 sched_info_switch(rq, prev, next); 3552 perf_event_task_sched_out(prev, next); 3553 rseq_preempt(prev); 3554 fire_sched_out_preempt_notifiers(prev, next); 3555 prepare_task(next); 3556 prepare_arch_switch(next); 3557 } 3558 3559 /** 3560 * finish_task_switch - clean up after a task-switch 3561 * @prev: the thread we just switched away from. 3562 * 3563 * finish_task_switch must be called after the context switch, paired 3564 * with a prepare_task_switch call before the context switch. 3565 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3566 * and do any other architecture-specific cleanup actions. 3567 * 3568 * Note that we may have delayed dropping an mm in context_switch(). If 3569 * so, we finish that here outside of the runqueue lock. (Doing it 3570 * with the lock held can cause deadlocks; see schedule() for 3571 * details.) 3572 * 3573 * The context switch have flipped the stack from under us and restored the 3574 * local variables which were saved when this task called schedule() in the 3575 * past. prev == current is still correct but we need to recalculate this_rq 3576 * because prev may have moved to another CPU. 3577 */ 3578 static struct rq *finish_task_switch(struct task_struct *prev) 3579 __releases(rq->lock) 3580 { 3581 struct rq *rq = this_rq(); 3582 struct mm_struct *mm = rq->prev_mm; 3583 long prev_state; 3584 3585 /* 3586 * The previous task will have left us with a preempt_count of 2 3587 * because it left us after: 3588 * 3589 * schedule() 3590 * preempt_disable(); // 1 3591 * __schedule() 3592 * raw_spin_lock_irq(&rq->lock) // 2 3593 * 3594 * Also, see FORK_PREEMPT_COUNT. 3595 */ 3596 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3597 "corrupted preempt_count: %s/%d/0x%x\n", 3598 current->comm, current->pid, preempt_count())) 3599 preempt_count_set(FORK_PREEMPT_COUNT); 3600 3601 rq->prev_mm = NULL; 3602 3603 /* 3604 * A task struct has one reference for the use as "current". 3605 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3606 * schedule one last time. The schedule call will never return, and 3607 * the scheduled task must drop that reference. 3608 * 3609 * We must observe prev->state before clearing prev->on_cpu (in 3610 * finish_task), otherwise a concurrent wakeup can get prev 3611 * running on another CPU and we could rave with its RUNNING -> DEAD 3612 * transition, resulting in a double drop. 3613 */ 3614 prev_state = prev->state; 3615 vtime_task_switch(prev); 3616 perf_event_task_sched_in(prev, current); 3617 finish_task(prev); 3618 finish_lock_switch(rq); 3619 finish_arch_post_lock_switch(); 3620 kcov_finish_switch(current); 3621 3622 fire_sched_in_preempt_notifiers(current); 3623 /* 3624 * When switching through a kernel thread, the loop in 3625 * membarrier_{private,global}_expedited() may have observed that 3626 * kernel thread and not issued an IPI. It is therefore possible to 3627 * schedule between user->kernel->user threads without passing though 3628 * switch_mm(). Membarrier requires a barrier after storing to 3629 * rq->curr, before returning to userspace, so provide them here: 3630 * 3631 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3632 * provided by mmdrop(), 3633 * - a sync_core for SYNC_CORE. 3634 */ 3635 if (mm) { 3636 membarrier_mm_sync_core_before_usermode(mm); 3637 mmdrop(mm); 3638 } 3639 if (unlikely(prev_state == TASK_DEAD)) { 3640 if (prev->sched_class->task_dead) 3641 prev->sched_class->task_dead(prev); 3642 3643 /* 3644 * Remove function-return probe instances associated with this 3645 * task and put them back on the free list. 3646 */ 3647 kprobe_flush_task(prev); 3648 3649 /* Task is done with its stack. */ 3650 put_task_stack(prev); 3651 3652 put_task_struct_rcu_user(prev); 3653 } 3654 3655 tick_nohz_task_switch(); 3656 return rq; 3657 } 3658 3659 #ifdef CONFIG_SMP 3660 3661 /* rq->lock is NOT held, but preemption is disabled */ 3662 static void __balance_callback(struct rq *rq) 3663 { 3664 struct callback_head *head, *next; 3665 void (*func)(struct rq *rq); 3666 unsigned long flags; 3667 3668 raw_spin_lock_irqsave(&rq->lock, flags); 3669 head = rq->balance_callback; 3670 rq->balance_callback = NULL; 3671 while (head) { 3672 func = (void (*)(struct rq *))head->func; 3673 next = head->next; 3674 head->next = NULL; 3675 head = next; 3676 3677 func(rq); 3678 } 3679 raw_spin_unlock_irqrestore(&rq->lock, flags); 3680 } 3681 3682 static inline void balance_callback(struct rq *rq) 3683 { 3684 if (unlikely(rq->balance_callback)) 3685 __balance_callback(rq); 3686 } 3687 3688 #else 3689 3690 static inline void balance_callback(struct rq *rq) 3691 { 3692 } 3693 3694 #endif 3695 3696 /** 3697 * schedule_tail - first thing a freshly forked thread must call. 3698 * @prev: the thread we just switched away from. 3699 */ 3700 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3701 __releases(rq->lock) 3702 { 3703 struct rq *rq; 3704 3705 /* 3706 * New tasks start with FORK_PREEMPT_COUNT, see there and 3707 * finish_task_switch() for details. 3708 * 3709 * finish_task_switch() will drop rq->lock() and lower preempt_count 3710 * and the preempt_enable() will end up enabling preemption (on 3711 * PREEMPT_COUNT kernels). 3712 */ 3713 3714 rq = finish_task_switch(prev); 3715 balance_callback(rq); 3716 preempt_enable(); 3717 3718 if (current->set_child_tid) 3719 put_user(task_pid_vnr(current), current->set_child_tid); 3720 3721 calculate_sigpending(); 3722 } 3723 3724 /* 3725 * context_switch - switch to the new MM and the new thread's register state. 3726 */ 3727 static __always_inline struct rq * 3728 context_switch(struct rq *rq, struct task_struct *prev, 3729 struct task_struct *next, struct rq_flags *rf) 3730 { 3731 prepare_task_switch(rq, prev, next); 3732 3733 /* 3734 * For paravirt, this is coupled with an exit in switch_to to 3735 * combine the page table reload and the switch backend into 3736 * one hypercall. 3737 */ 3738 arch_start_context_switch(prev); 3739 3740 /* 3741 * kernel -> kernel lazy + transfer active 3742 * user -> kernel lazy + mmgrab() active 3743 * 3744 * kernel -> user switch + mmdrop() active 3745 * user -> user switch 3746 */ 3747 if (!next->mm) { // to kernel 3748 enter_lazy_tlb(prev->active_mm, next); 3749 3750 next->active_mm = prev->active_mm; 3751 if (prev->mm) // from user 3752 mmgrab(prev->active_mm); 3753 else 3754 prev->active_mm = NULL; 3755 } else { // to user 3756 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3757 /* 3758 * sys_membarrier() requires an smp_mb() between setting 3759 * rq->curr / membarrier_switch_mm() and returning to userspace. 3760 * 3761 * The below provides this either through switch_mm(), or in 3762 * case 'prev->active_mm == next->mm' through 3763 * finish_task_switch()'s mmdrop(). 3764 */ 3765 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3766 3767 if (!prev->mm) { // from kernel 3768 /* will mmdrop() in finish_task_switch(). */ 3769 rq->prev_mm = prev->active_mm; 3770 prev->active_mm = NULL; 3771 } 3772 } 3773 3774 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3775 3776 prepare_lock_switch(rq, next, rf); 3777 3778 /* Here we just switch the register state and the stack. */ 3779 switch_to(prev, next, prev); 3780 barrier(); 3781 3782 return finish_task_switch(prev); 3783 } 3784 3785 /* 3786 * nr_running and nr_context_switches: 3787 * 3788 * externally visible scheduler statistics: current number of runnable 3789 * threads, total number of context switches performed since bootup. 3790 */ 3791 unsigned long nr_running(void) 3792 { 3793 unsigned long i, sum = 0; 3794 3795 for_each_online_cpu(i) 3796 sum += cpu_rq(i)->nr_running; 3797 3798 return sum; 3799 } 3800 3801 /* 3802 * Check if only the current task is running on the CPU. 3803 * 3804 * Caution: this function does not check that the caller has disabled 3805 * preemption, thus the result might have a time-of-check-to-time-of-use 3806 * race. The caller is responsible to use it correctly, for example: 3807 * 3808 * - from a non-preemptible section (of course) 3809 * 3810 * - from a thread that is bound to a single CPU 3811 * 3812 * - in a loop with very short iterations (e.g. a polling loop) 3813 */ 3814 bool single_task_running(void) 3815 { 3816 return raw_rq()->nr_running == 1; 3817 } 3818 EXPORT_SYMBOL(single_task_running); 3819 3820 unsigned long long nr_context_switches(void) 3821 { 3822 int i; 3823 unsigned long long sum = 0; 3824 3825 for_each_possible_cpu(i) 3826 sum += cpu_rq(i)->nr_switches; 3827 3828 return sum; 3829 } 3830 3831 /* 3832 * Consumers of these two interfaces, like for example the cpuidle menu 3833 * governor, are using nonsensical data. Preferring shallow idle state selection 3834 * for a CPU that has IO-wait which might not even end up running the task when 3835 * it does become runnable. 3836 */ 3837 3838 unsigned long nr_iowait_cpu(int cpu) 3839 { 3840 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3841 } 3842 3843 /* 3844 * IO-wait accounting, and how its mostly bollocks (on SMP). 3845 * 3846 * The idea behind IO-wait account is to account the idle time that we could 3847 * have spend running if it were not for IO. That is, if we were to improve the 3848 * storage performance, we'd have a proportional reduction in IO-wait time. 3849 * 3850 * This all works nicely on UP, where, when a task blocks on IO, we account 3851 * idle time as IO-wait, because if the storage were faster, it could've been 3852 * running and we'd not be idle. 3853 * 3854 * This has been extended to SMP, by doing the same for each CPU. This however 3855 * is broken. 3856 * 3857 * Imagine for instance the case where two tasks block on one CPU, only the one 3858 * CPU will have IO-wait accounted, while the other has regular idle. Even 3859 * though, if the storage were faster, both could've ran at the same time, 3860 * utilising both CPUs. 3861 * 3862 * This means, that when looking globally, the current IO-wait accounting on 3863 * SMP is a lower bound, by reason of under accounting. 3864 * 3865 * Worse, since the numbers are provided per CPU, they are sometimes 3866 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3867 * associated with any one particular CPU, it can wake to another CPU than it 3868 * blocked on. This means the per CPU IO-wait number is meaningless. 3869 * 3870 * Task CPU affinities can make all that even more 'interesting'. 3871 */ 3872 3873 unsigned long nr_iowait(void) 3874 { 3875 unsigned long i, sum = 0; 3876 3877 for_each_possible_cpu(i) 3878 sum += nr_iowait_cpu(i); 3879 3880 return sum; 3881 } 3882 3883 #ifdef CONFIG_SMP 3884 3885 /* 3886 * sched_exec - execve() is a valuable balancing opportunity, because at 3887 * this point the task has the smallest effective memory and cache footprint. 3888 */ 3889 void sched_exec(void) 3890 { 3891 struct task_struct *p = current; 3892 unsigned long flags; 3893 int dest_cpu; 3894 3895 raw_spin_lock_irqsave(&p->pi_lock, flags); 3896 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3897 if (dest_cpu == smp_processor_id()) 3898 goto unlock; 3899 3900 if (likely(cpu_active(dest_cpu))) { 3901 struct migration_arg arg = { p, dest_cpu }; 3902 3903 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3904 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3905 return; 3906 } 3907 unlock: 3908 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3909 } 3910 3911 #endif 3912 3913 DEFINE_PER_CPU(struct kernel_stat, kstat); 3914 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3915 3916 EXPORT_PER_CPU_SYMBOL(kstat); 3917 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3918 3919 /* 3920 * The function fair_sched_class.update_curr accesses the struct curr 3921 * and its field curr->exec_start; when called from task_sched_runtime(), 3922 * we observe a high rate of cache misses in practice. 3923 * Prefetching this data results in improved performance. 3924 */ 3925 static inline void prefetch_curr_exec_start(struct task_struct *p) 3926 { 3927 #ifdef CONFIG_FAIR_GROUP_SCHED 3928 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3929 #else 3930 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3931 #endif 3932 prefetch(curr); 3933 prefetch(&curr->exec_start); 3934 } 3935 3936 /* 3937 * Return accounted runtime for the task. 3938 * In case the task is currently running, return the runtime plus current's 3939 * pending runtime that have not been accounted yet. 3940 */ 3941 unsigned long long task_sched_runtime(struct task_struct *p) 3942 { 3943 struct rq_flags rf; 3944 struct rq *rq; 3945 u64 ns; 3946 3947 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3948 /* 3949 * 64-bit doesn't need locks to atomically read a 64-bit value. 3950 * So we have a optimization chance when the task's delta_exec is 0. 3951 * Reading ->on_cpu is racy, but this is ok. 3952 * 3953 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3954 * If we race with it entering CPU, unaccounted time is 0. This is 3955 * indistinguishable from the read occurring a few cycles earlier. 3956 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3957 * been accounted, so we're correct here as well. 3958 */ 3959 if (!p->on_cpu || !task_on_rq_queued(p)) 3960 return p->se.sum_exec_runtime; 3961 #endif 3962 3963 rq = task_rq_lock(p, &rf); 3964 /* 3965 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3966 * project cycles that may never be accounted to this 3967 * thread, breaking clock_gettime(). 3968 */ 3969 if (task_current(rq, p) && task_on_rq_queued(p)) { 3970 prefetch_curr_exec_start(p); 3971 update_rq_clock(rq); 3972 p->sched_class->update_curr(rq); 3973 } 3974 ns = p->se.sum_exec_runtime; 3975 task_rq_unlock(rq, p, &rf); 3976 3977 return ns; 3978 } 3979 3980 /* 3981 * This function gets called by the timer code, with HZ frequency. 3982 * We call it with interrupts disabled. 3983 */ 3984 void scheduler_tick(void) 3985 { 3986 int cpu = smp_processor_id(); 3987 struct rq *rq = cpu_rq(cpu); 3988 struct task_struct *curr = rq->curr; 3989 struct rq_flags rf; 3990 unsigned long thermal_pressure; 3991 3992 arch_scale_freq_tick(); 3993 sched_clock_tick(); 3994 3995 rq_lock(rq, &rf); 3996 3997 update_rq_clock(rq); 3998 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3999 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4000 curr->sched_class->task_tick(rq, curr, 0); 4001 calc_global_load_tick(rq); 4002 psi_task_tick(rq); 4003 4004 rq_unlock(rq, &rf); 4005 4006 perf_event_task_tick(); 4007 4008 #ifdef CONFIG_SMP 4009 rq->idle_balance = idle_cpu(cpu); 4010 trigger_load_balance(rq); 4011 #endif 4012 } 4013 4014 #ifdef CONFIG_NO_HZ_FULL 4015 4016 struct tick_work { 4017 int cpu; 4018 atomic_t state; 4019 struct delayed_work work; 4020 }; 4021 /* Values for ->state, see diagram below. */ 4022 #define TICK_SCHED_REMOTE_OFFLINE 0 4023 #define TICK_SCHED_REMOTE_OFFLINING 1 4024 #define TICK_SCHED_REMOTE_RUNNING 2 4025 4026 /* 4027 * State diagram for ->state: 4028 * 4029 * 4030 * TICK_SCHED_REMOTE_OFFLINE 4031 * | ^ 4032 * | | 4033 * | | sched_tick_remote() 4034 * | | 4035 * | | 4036 * +--TICK_SCHED_REMOTE_OFFLINING 4037 * | ^ 4038 * | | 4039 * sched_tick_start() | | sched_tick_stop() 4040 * | | 4041 * V | 4042 * TICK_SCHED_REMOTE_RUNNING 4043 * 4044 * 4045 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4046 * and sched_tick_start() are happy to leave the state in RUNNING. 4047 */ 4048 4049 static struct tick_work __percpu *tick_work_cpu; 4050 4051 static void sched_tick_remote(struct work_struct *work) 4052 { 4053 struct delayed_work *dwork = to_delayed_work(work); 4054 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4055 int cpu = twork->cpu; 4056 struct rq *rq = cpu_rq(cpu); 4057 struct task_struct *curr; 4058 struct rq_flags rf; 4059 u64 delta; 4060 int os; 4061 4062 /* 4063 * Handle the tick only if it appears the remote CPU is running in full 4064 * dynticks mode. The check is racy by nature, but missing a tick or 4065 * having one too much is no big deal because the scheduler tick updates 4066 * statistics and checks timeslices in a time-independent way, regardless 4067 * of when exactly it is running. 4068 */ 4069 if (!tick_nohz_tick_stopped_cpu(cpu)) 4070 goto out_requeue; 4071 4072 rq_lock_irq(rq, &rf); 4073 curr = rq->curr; 4074 if (cpu_is_offline(cpu)) 4075 goto out_unlock; 4076 4077 update_rq_clock(rq); 4078 4079 if (!is_idle_task(curr)) { 4080 /* 4081 * Make sure the next tick runs within a reasonable 4082 * amount of time. 4083 */ 4084 delta = rq_clock_task(rq) - curr->se.exec_start; 4085 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4086 } 4087 curr->sched_class->task_tick(rq, curr, 0); 4088 4089 calc_load_nohz_remote(rq); 4090 out_unlock: 4091 rq_unlock_irq(rq, &rf); 4092 out_requeue: 4093 4094 /* 4095 * Run the remote tick once per second (1Hz). This arbitrary 4096 * frequency is large enough to avoid overload but short enough 4097 * to keep scheduler internal stats reasonably up to date. But 4098 * first update state to reflect hotplug activity if required. 4099 */ 4100 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4101 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4102 if (os == TICK_SCHED_REMOTE_RUNNING) 4103 queue_delayed_work(system_unbound_wq, dwork, HZ); 4104 } 4105 4106 static void sched_tick_start(int cpu) 4107 { 4108 int os; 4109 struct tick_work *twork; 4110 4111 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4112 return; 4113 4114 WARN_ON_ONCE(!tick_work_cpu); 4115 4116 twork = per_cpu_ptr(tick_work_cpu, cpu); 4117 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4118 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4119 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4120 twork->cpu = cpu; 4121 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4122 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4123 } 4124 } 4125 4126 #ifdef CONFIG_HOTPLUG_CPU 4127 static void sched_tick_stop(int cpu) 4128 { 4129 struct tick_work *twork; 4130 int os; 4131 4132 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4133 return; 4134 4135 WARN_ON_ONCE(!tick_work_cpu); 4136 4137 twork = per_cpu_ptr(tick_work_cpu, cpu); 4138 /* There cannot be competing actions, but don't rely on stop-machine. */ 4139 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4140 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4141 /* Don't cancel, as this would mess up the state machine. */ 4142 } 4143 #endif /* CONFIG_HOTPLUG_CPU */ 4144 4145 int __init sched_tick_offload_init(void) 4146 { 4147 tick_work_cpu = alloc_percpu(struct tick_work); 4148 BUG_ON(!tick_work_cpu); 4149 return 0; 4150 } 4151 4152 #else /* !CONFIG_NO_HZ_FULL */ 4153 static inline void sched_tick_start(int cpu) { } 4154 static inline void sched_tick_stop(int cpu) { } 4155 #endif 4156 4157 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4158 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4159 /* 4160 * If the value passed in is equal to the current preempt count 4161 * then we just disabled preemption. Start timing the latency. 4162 */ 4163 static inline void preempt_latency_start(int val) 4164 { 4165 if (preempt_count() == val) { 4166 unsigned long ip = get_lock_parent_ip(); 4167 #ifdef CONFIG_DEBUG_PREEMPT 4168 current->preempt_disable_ip = ip; 4169 #endif 4170 trace_preempt_off(CALLER_ADDR0, ip); 4171 } 4172 } 4173 4174 void preempt_count_add(int val) 4175 { 4176 #ifdef CONFIG_DEBUG_PREEMPT 4177 /* 4178 * Underflow? 4179 */ 4180 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4181 return; 4182 #endif 4183 __preempt_count_add(val); 4184 #ifdef CONFIG_DEBUG_PREEMPT 4185 /* 4186 * Spinlock count overflowing soon? 4187 */ 4188 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4189 PREEMPT_MASK - 10); 4190 #endif 4191 preempt_latency_start(val); 4192 } 4193 EXPORT_SYMBOL(preempt_count_add); 4194 NOKPROBE_SYMBOL(preempt_count_add); 4195 4196 /* 4197 * If the value passed in equals to the current preempt count 4198 * then we just enabled preemption. Stop timing the latency. 4199 */ 4200 static inline void preempt_latency_stop(int val) 4201 { 4202 if (preempt_count() == val) 4203 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4204 } 4205 4206 void preempt_count_sub(int val) 4207 { 4208 #ifdef CONFIG_DEBUG_PREEMPT 4209 /* 4210 * Underflow? 4211 */ 4212 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4213 return; 4214 /* 4215 * Is the spinlock portion underflowing? 4216 */ 4217 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4218 !(preempt_count() & PREEMPT_MASK))) 4219 return; 4220 #endif 4221 4222 preempt_latency_stop(val); 4223 __preempt_count_sub(val); 4224 } 4225 EXPORT_SYMBOL(preempt_count_sub); 4226 NOKPROBE_SYMBOL(preempt_count_sub); 4227 4228 #else 4229 static inline void preempt_latency_start(int val) { } 4230 static inline void preempt_latency_stop(int val) { } 4231 #endif 4232 4233 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4234 { 4235 #ifdef CONFIG_DEBUG_PREEMPT 4236 return p->preempt_disable_ip; 4237 #else 4238 return 0; 4239 #endif 4240 } 4241 4242 /* 4243 * Print scheduling while atomic bug: 4244 */ 4245 static noinline void __schedule_bug(struct task_struct *prev) 4246 { 4247 /* Save this before calling printk(), since that will clobber it */ 4248 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4249 4250 if (oops_in_progress) 4251 return; 4252 4253 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4254 prev->comm, prev->pid, preempt_count()); 4255 4256 debug_show_held_locks(prev); 4257 print_modules(); 4258 if (irqs_disabled()) 4259 print_irqtrace_events(prev); 4260 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4261 && in_atomic_preempt_off()) { 4262 pr_err("Preemption disabled at:"); 4263 print_ip_sym(KERN_ERR, preempt_disable_ip); 4264 } 4265 if (panic_on_warn) 4266 panic("scheduling while atomic\n"); 4267 4268 dump_stack(); 4269 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4270 } 4271 4272 /* 4273 * Various schedule()-time debugging checks and statistics: 4274 */ 4275 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4276 { 4277 #ifdef CONFIG_SCHED_STACK_END_CHECK 4278 if (task_stack_end_corrupted(prev)) 4279 panic("corrupted stack end detected inside scheduler\n"); 4280 4281 if (task_scs_end_corrupted(prev)) 4282 panic("corrupted shadow stack detected inside scheduler\n"); 4283 #endif 4284 4285 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4286 if (!preempt && prev->state && prev->non_block_count) { 4287 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4288 prev->comm, prev->pid, prev->non_block_count); 4289 dump_stack(); 4290 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4291 } 4292 #endif 4293 4294 if (unlikely(in_atomic_preempt_off())) { 4295 __schedule_bug(prev); 4296 preempt_count_set(PREEMPT_DISABLED); 4297 } 4298 rcu_sleep_check(); 4299 4300 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4301 4302 schedstat_inc(this_rq()->sched_count); 4303 } 4304 4305 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4306 struct rq_flags *rf) 4307 { 4308 #ifdef CONFIG_SMP 4309 const struct sched_class *class; 4310 /* 4311 * We must do the balancing pass before put_prev_task(), such 4312 * that when we release the rq->lock the task is in the same 4313 * state as before we took rq->lock. 4314 * 4315 * We can terminate the balance pass as soon as we know there is 4316 * a runnable task of @class priority or higher. 4317 */ 4318 for_class_range(class, prev->sched_class, &idle_sched_class) { 4319 if (class->balance(rq, prev, rf)) 4320 break; 4321 } 4322 #endif 4323 4324 put_prev_task(rq, prev); 4325 } 4326 4327 /* 4328 * Pick up the highest-prio task: 4329 */ 4330 static inline struct task_struct * 4331 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4332 { 4333 const struct sched_class *class; 4334 struct task_struct *p; 4335 4336 /* 4337 * Optimization: we know that if all tasks are in the fair class we can 4338 * call that function directly, but only if the @prev task wasn't of a 4339 * higher scheduling class, because otherwise those loose the 4340 * opportunity to pull in more work from other CPUs. 4341 */ 4342 if (likely(prev->sched_class <= &fair_sched_class && 4343 rq->nr_running == rq->cfs.h_nr_running)) { 4344 4345 p = pick_next_task_fair(rq, prev, rf); 4346 if (unlikely(p == RETRY_TASK)) 4347 goto restart; 4348 4349 /* Assumes fair_sched_class->next == idle_sched_class */ 4350 if (!p) { 4351 put_prev_task(rq, prev); 4352 p = pick_next_task_idle(rq); 4353 } 4354 4355 return p; 4356 } 4357 4358 restart: 4359 put_prev_task_balance(rq, prev, rf); 4360 4361 for_each_class(class) { 4362 p = class->pick_next_task(rq); 4363 if (p) 4364 return p; 4365 } 4366 4367 /* The idle class should always have a runnable task: */ 4368 BUG(); 4369 } 4370 4371 /* 4372 * __schedule() is the main scheduler function. 4373 * 4374 * The main means of driving the scheduler and thus entering this function are: 4375 * 4376 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4377 * 4378 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4379 * paths. For example, see arch/x86/entry_64.S. 4380 * 4381 * To drive preemption between tasks, the scheduler sets the flag in timer 4382 * interrupt handler scheduler_tick(). 4383 * 4384 * 3. Wakeups don't really cause entry into schedule(). They add a 4385 * task to the run-queue and that's it. 4386 * 4387 * Now, if the new task added to the run-queue preempts the current 4388 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4389 * called on the nearest possible occasion: 4390 * 4391 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4392 * 4393 * - in syscall or exception context, at the next outmost 4394 * preempt_enable(). (this might be as soon as the wake_up()'s 4395 * spin_unlock()!) 4396 * 4397 * - in IRQ context, return from interrupt-handler to 4398 * preemptible context 4399 * 4400 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4401 * then at the next: 4402 * 4403 * - cond_resched() call 4404 * - explicit schedule() call 4405 * - return from syscall or exception to user-space 4406 * - return from interrupt-handler to user-space 4407 * 4408 * WARNING: must be called with preemption disabled! 4409 */ 4410 static void __sched notrace __schedule(bool preempt) 4411 { 4412 struct task_struct *prev, *next; 4413 unsigned long *switch_count; 4414 unsigned long prev_state; 4415 struct rq_flags rf; 4416 struct rq *rq; 4417 int cpu; 4418 4419 cpu = smp_processor_id(); 4420 rq = cpu_rq(cpu); 4421 prev = rq->curr; 4422 4423 schedule_debug(prev, preempt); 4424 4425 if (sched_feat(HRTICK)) 4426 hrtick_clear(rq); 4427 4428 local_irq_disable(); 4429 rcu_note_context_switch(preempt); 4430 4431 /* 4432 * Make sure that signal_pending_state()->signal_pending() below 4433 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4434 * done by the caller to avoid the race with signal_wake_up(): 4435 * 4436 * __set_current_state(@state) signal_wake_up() 4437 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4438 * wake_up_state(p, state) 4439 * LOCK rq->lock LOCK p->pi_state 4440 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4441 * if (signal_pending_state()) if (p->state & @state) 4442 * 4443 * Also, the membarrier system call requires a full memory barrier 4444 * after coming from user-space, before storing to rq->curr. 4445 */ 4446 rq_lock(rq, &rf); 4447 smp_mb__after_spinlock(); 4448 4449 /* Promote REQ to ACT */ 4450 rq->clock_update_flags <<= 1; 4451 update_rq_clock(rq); 4452 4453 switch_count = &prev->nivcsw; 4454 4455 /* 4456 * We must load prev->state once (task_struct::state is volatile), such 4457 * that: 4458 * 4459 * - we form a control dependency vs deactivate_task() below. 4460 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 4461 */ 4462 prev_state = prev->state; 4463 if (!preempt && prev_state) { 4464 if (signal_pending_state(prev_state, prev)) { 4465 prev->state = TASK_RUNNING; 4466 } else { 4467 prev->sched_contributes_to_load = 4468 (prev_state & TASK_UNINTERRUPTIBLE) && 4469 !(prev_state & TASK_NOLOAD) && 4470 !(prev->flags & PF_FROZEN); 4471 4472 if (prev->sched_contributes_to_load) 4473 rq->nr_uninterruptible++; 4474 4475 /* 4476 * __schedule() ttwu() 4477 * prev_state = prev->state; if (p->on_rq && ...) 4478 * if (prev_state) goto out; 4479 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 4480 * p->state = TASK_WAKING 4481 * 4482 * Where __schedule() and ttwu() have matching control dependencies. 4483 * 4484 * After this, schedule() must not care about p->state any more. 4485 */ 4486 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4487 4488 if (prev->in_iowait) { 4489 atomic_inc(&rq->nr_iowait); 4490 delayacct_blkio_start(); 4491 } 4492 } 4493 switch_count = &prev->nvcsw; 4494 } 4495 4496 next = pick_next_task(rq, prev, &rf); 4497 clear_tsk_need_resched(prev); 4498 clear_preempt_need_resched(); 4499 4500 if (likely(prev != next)) { 4501 rq->nr_switches++; 4502 /* 4503 * RCU users of rcu_dereference(rq->curr) may not see 4504 * changes to task_struct made by pick_next_task(). 4505 */ 4506 RCU_INIT_POINTER(rq->curr, next); 4507 /* 4508 * The membarrier system call requires each architecture 4509 * to have a full memory barrier after updating 4510 * rq->curr, before returning to user-space. 4511 * 4512 * Here are the schemes providing that barrier on the 4513 * various architectures: 4514 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4515 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4516 * - finish_lock_switch() for weakly-ordered 4517 * architectures where spin_unlock is a full barrier, 4518 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4519 * is a RELEASE barrier), 4520 */ 4521 ++*switch_count; 4522 4523 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4524 4525 trace_sched_switch(preempt, prev, next); 4526 4527 /* Also unlocks the rq: */ 4528 rq = context_switch(rq, prev, next, &rf); 4529 } else { 4530 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4531 rq_unlock_irq(rq, &rf); 4532 } 4533 4534 balance_callback(rq); 4535 } 4536 4537 void __noreturn do_task_dead(void) 4538 { 4539 /* Causes final put_task_struct in finish_task_switch(): */ 4540 set_special_state(TASK_DEAD); 4541 4542 /* Tell freezer to ignore us: */ 4543 current->flags |= PF_NOFREEZE; 4544 4545 __schedule(false); 4546 BUG(); 4547 4548 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4549 for (;;) 4550 cpu_relax(); 4551 } 4552 4553 static inline void sched_submit_work(struct task_struct *tsk) 4554 { 4555 unsigned int task_flags; 4556 4557 if (!tsk->state) 4558 return; 4559 4560 task_flags = tsk->flags; 4561 /* 4562 * If a worker went to sleep, notify and ask workqueue whether 4563 * it wants to wake up a task to maintain concurrency. 4564 * As this function is called inside the schedule() context, 4565 * we disable preemption to avoid it calling schedule() again 4566 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4567 * requires it. 4568 */ 4569 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4570 preempt_disable(); 4571 if (task_flags & PF_WQ_WORKER) 4572 wq_worker_sleeping(tsk); 4573 else 4574 io_wq_worker_sleeping(tsk); 4575 preempt_enable_no_resched(); 4576 } 4577 4578 if (tsk_is_pi_blocked(tsk)) 4579 return; 4580 4581 /* 4582 * If we are going to sleep and we have plugged IO queued, 4583 * make sure to submit it to avoid deadlocks. 4584 */ 4585 if (blk_needs_flush_plug(tsk)) 4586 blk_schedule_flush_plug(tsk); 4587 } 4588 4589 static void sched_update_worker(struct task_struct *tsk) 4590 { 4591 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4592 if (tsk->flags & PF_WQ_WORKER) 4593 wq_worker_running(tsk); 4594 else 4595 io_wq_worker_running(tsk); 4596 } 4597 } 4598 4599 asmlinkage __visible void __sched schedule(void) 4600 { 4601 struct task_struct *tsk = current; 4602 4603 sched_submit_work(tsk); 4604 do { 4605 preempt_disable(); 4606 __schedule(false); 4607 sched_preempt_enable_no_resched(); 4608 } while (need_resched()); 4609 sched_update_worker(tsk); 4610 } 4611 EXPORT_SYMBOL(schedule); 4612 4613 /* 4614 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4615 * state (have scheduled out non-voluntarily) by making sure that all 4616 * tasks have either left the run queue or have gone into user space. 4617 * As idle tasks do not do either, they must not ever be preempted 4618 * (schedule out non-voluntarily). 4619 * 4620 * schedule_idle() is similar to schedule_preempt_disable() except that it 4621 * never enables preemption because it does not call sched_submit_work(). 4622 */ 4623 void __sched schedule_idle(void) 4624 { 4625 /* 4626 * As this skips calling sched_submit_work(), which the idle task does 4627 * regardless because that function is a nop when the task is in a 4628 * TASK_RUNNING state, make sure this isn't used someplace that the 4629 * current task can be in any other state. Note, idle is always in the 4630 * TASK_RUNNING state. 4631 */ 4632 WARN_ON_ONCE(current->state); 4633 do { 4634 __schedule(false); 4635 } while (need_resched()); 4636 } 4637 4638 #ifdef CONFIG_CONTEXT_TRACKING 4639 asmlinkage __visible void __sched schedule_user(void) 4640 { 4641 /* 4642 * If we come here after a random call to set_need_resched(), 4643 * or we have been woken up remotely but the IPI has not yet arrived, 4644 * we haven't yet exited the RCU idle mode. Do it here manually until 4645 * we find a better solution. 4646 * 4647 * NB: There are buggy callers of this function. Ideally we 4648 * should warn if prev_state != CONTEXT_USER, but that will trigger 4649 * too frequently to make sense yet. 4650 */ 4651 enum ctx_state prev_state = exception_enter(); 4652 schedule(); 4653 exception_exit(prev_state); 4654 } 4655 #endif 4656 4657 /** 4658 * schedule_preempt_disabled - called with preemption disabled 4659 * 4660 * Returns with preemption disabled. Note: preempt_count must be 1 4661 */ 4662 void __sched schedule_preempt_disabled(void) 4663 { 4664 sched_preempt_enable_no_resched(); 4665 schedule(); 4666 preempt_disable(); 4667 } 4668 4669 static void __sched notrace preempt_schedule_common(void) 4670 { 4671 do { 4672 /* 4673 * Because the function tracer can trace preempt_count_sub() 4674 * and it also uses preempt_enable/disable_notrace(), if 4675 * NEED_RESCHED is set, the preempt_enable_notrace() called 4676 * by the function tracer will call this function again and 4677 * cause infinite recursion. 4678 * 4679 * Preemption must be disabled here before the function 4680 * tracer can trace. Break up preempt_disable() into two 4681 * calls. One to disable preemption without fear of being 4682 * traced. The other to still record the preemption latency, 4683 * which can also be traced by the function tracer. 4684 */ 4685 preempt_disable_notrace(); 4686 preempt_latency_start(1); 4687 __schedule(true); 4688 preempt_latency_stop(1); 4689 preempt_enable_no_resched_notrace(); 4690 4691 /* 4692 * Check again in case we missed a preemption opportunity 4693 * between schedule and now. 4694 */ 4695 } while (need_resched()); 4696 } 4697 4698 #ifdef CONFIG_PREEMPTION 4699 /* 4700 * This is the entry point to schedule() from in-kernel preemption 4701 * off of preempt_enable. 4702 */ 4703 asmlinkage __visible void __sched notrace preempt_schedule(void) 4704 { 4705 /* 4706 * If there is a non-zero preempt_count or interrupts are disabled, 4707 * we do not want to preempt the current task. Just return.. 4708 */ 4709 if (likely(!preemptible())) 4710 return; 4711 4712 preempt_schedule_common(); 4713 } 4714 NOKPROBE_SYMBOL(preempt_schedule); 4715 EXPORT_SYMBOL(preempt_schedule); 4716 4717 /** 4718 * preempt_schedule_notrace - preempt_schedule called by tracing 4719 * 4720 * The tracing infrastructure uses preempt_enable_notrace to prevent 4721 * recursion and tracing preempt enabling caused by the tracing 4722 * infrastructure itself. But as tracing can happen in areas coming 4723 * from userspace or just about to enter userspace, a preempt enable 4724 * can occur before user_exit() is called. This will cause the scheduler 4725 * to be called when the system is still in usermode. 4726 * 4727 * To prevent this, the preempt_enable_notrace will use this function 4728 * instead of preempt_schedule() to exit user context if needed before 4729 * calling the scheduler. 4730 */ 4731 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4732 { 4733 enum ctx_state prev_ctx; 4734 4735 if (likely(!preemptible())) 4736 return; 4737 4738 do { 4739 /* 4740 * Because the function tracer can trace preempt_count_sub() 4741 * and it also uses preempt_enable/disable_notrace(), if 4742 * NEED_RESCHED is set, the preempt_enable_notrace() called 4743 * by the function tracer will call this function again and 4744 * cause infinite recursion. 4745 * 4746 * Preemption must be disabled here before the function 4747 * tracer can trace. Break up preempt_disable() into two 4748 * calls. One to disable preemption without fear of being 4749 * traced. The other to still record the preemption latency, 4750 * which can also be traced by the function tracer. 4751 */ 4752 preempt_disable_notrace(); 4753 preempt_latency_start(1); 4754 /* 4755 * Needs preempt disabled in case user_exit() is traced 4756 * and the tracer calls preempt_enable_notrace() causing 4757 * an infinite recursion. 4758 */ 4759 prev_ctx = exception_enter(); 4760 __schedule(true); 4761 exception_exit(prev_ctx); 4762 4763 preempt_latency_stop(1); 4764 preempt_enable_no_resched_notrace(); 4765 } while (need_resched()); 4766 } 4767 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4768 4769 #endif /* CONFIG_PREEMPTION */ 4770 4771 /* 4772 * This is the entry point to schedule() from kernel preemption 4773 * off of irq context. 4774 * Note, that this is called and return with irqs disabled. This will 4775 * protect us against recursive calling from irq. 4776 */ 4777 asmlinkage __visible void __sched preempt_schedule_irq(void) 4778 { 4779 enum ctx_state prev_state; 4780 4781 /* Catch callers which need to be fixed */ 4782 BUG_ON(preempt_count() || !irqs_disabled()); 4783 4784 prev_state = exception_enter(); 4785 4786 do { 4787 preempt_disable(); 4788 local_irq_enable(); 4789 __schedule(true); 4790 local_irq_disable(); 4791 sched_preempt_enable_no_resched(); 4792 } while (need_resched()); 4793 4794 exception_exit(prev_state); 4795 } 4796 4797 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4798 void *key) 4799 { 4800 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 4801 return try_to_wake_up(curr->private, mode, wake_flags); 4802 } 4803 EXPORT_SYMBOL(default_wake_function); 4804 4805 #ifdef CONFIG_RT_MUTEXES 4806 4807 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4808 { 4809 if (pi_task) 4810 prio = min(prio, pi_task->prio); 4811 4812 return prio; 4813 } 4814 4815 static inline int rt_effective_prio(struct task_struct *p, int prio) 4816 { 4817 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4818 4819 return __rt_effective_prio(pi_task, prio); 4820 } 4821 4822 /* 4823 * rt_mutex_setprio - set the current priority of a task 4824 * @p: task to boost 4825 * @pi_task: donor task 4826 * 4827 * This function changes the 'effective' priority of a task. It does 4828 * not touch ->normal_prio like __setscheduler(). 4829 * 4830 * Used by the rt_mutex code to implement priority inheritance 4831 * logic. Call site only calls if the priority of the task changed. 4832 */ 4833 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4834 { 4835 int prio, oldprio, queued, running, queue_flag = 4836 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4837 const struct sched_class *prev_class; 4838 struct rq_flags rf; 4839 struct rq *rq; 4840 4841 /* XXX used to be waiter->prio, not waiter->task->prio */ 4842 prio = __rt_effective_prio(pi_task, p->normal_prio); 4843 4844 /* 4845 * If nothing changed; bail early. 4846 */ 4847 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4848 return; 4849 4850 rq = __task_rq_lock(p, &rf); 4851 update_rq_clock(rq); 4852 /* 4853 * Set under pi_lock && rq->lock, such that the value can be used under 4854 * either lock. 4855 * 4856 * Note that there is loads of tricky to make this pointer cache work 4857 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4858 * ensure a task is de-boosted (pi_task is set to NULL) before the 4859 * task is allowed to run again (and can exit). This ensures the pointer 4860 * points to a blocked task -- which guaratees the task is present. 4861 */ 4862 p->pi_top_task = pi_task; 4863 4864 /* 4865 * For FIFO/RR we only need to set prio, if that matches we're done. 4866 */ 4867 if (prio == p->prio && !dl_prio(prio)) 4868 goto out_unlock; 4869 4870 /* 4871 * Idle task boosting is a nono in general. There is one 4872 * exception, when PREEMPT_RT and NOHZ is active: 4873 * 4874 * The idle task calls get_next_timer_interrupt() and holds 4875 * the timer wheel base->lock on the CPU and another CPU wants 4876 * to access the timer (probably to cancel it). We can safely 4877 * ignore the boosting request, as the idle CPU runs this code 4878 * with interrupts disabled and will complete the lock 4879 * protected section without being interrupted. So there is no 4880 * real need to boost. 4881 */ 4882 if (unlikely(p == rq->idle)) { 4883 WARN_ON(p != rq->curr); 4884 WARN_ON(p->pi_blocked_on); 4885 goto out_unlock; 4886 } 4887 4888 trace_sched_pi_setprio(p, pi_task); 4889 oldprio = p->prio; 4890 4891 if (oldprio == prio) 4892 queue_flag &= ~DEQUEUE_MOVE; 4893 4894 prev_class = p->sched_class; 4895 queued = task_on_rq_queued(p); 4896 running = task_current(rq, p); 4897 if (queued) 4898 dequeue_task(rq, p, queue_flag); 4899 if (running) 4900 put_prev_task(rq, p); 4901 4902 /* 4903 * Boosting condition are: 4904 * 1. -rt task is running and holds mutex A 4905 * --> -dl task blocks on mutex A 4906 * 4907 * 2. -dl task is running and holds mutex A 4908 * --> -dl task blocks on mutex A and could preempt the 4909 * running task 4910 */ 4911 if (dl_prio(prio)) { 4912 if (!dl_prio(p->normal_prio) || 4913 (pi_task && dl_prio(pi_task->prio) && 4914 dl_entity_preempt(&pi_task->dl, &p->dl))) { 4915 p->dl.pi_se = pi_task->dl.pi_se; 4916 queue_flag |= ENQUEUE_REPLENISH; 4917 } else { 4918 p->dl.pi_se = &p->dl; 4919 } 4920 p->sched_class = &dl_sched_class; 4921 } else if (rt_prio(prio)) { 4922 if (dl_prio(oldprio)) 4923 p->dl.pi_se = &p->dl; 4924 if (oldprio < prio) 4925 queue_flag |= ENQUEUE_HEAD; 4926 p->sched_class = &rt_sched_class; 4927 } else { 4928 if (dl_prio(oldprio)) 4929 p->dl.pi_se = &p->dl; 4930 if (rt_prio(oldprio)) 4931 p->rt.timeout = 0; 4932 p->sched_class = &fair_sched_class; 4933 } 4934 4935 p->prio = prio; 4936 4937 if (queued) 4938 enqueue_task(rq, p, queue_flag); 4939 if (running) 4940 set_next_task(rq, p); 4941 4942 check_class_changed(rq, p, prev_class, oldprio); 4943 out_unlock: 4944 /* Avoid rq from going away on us: */ 4945 preempt_disable(); 4946 __task_rq_unlock(rq, &rf); 4947 4948 balance_callback(rq); 4949 preempt_enable(); 4950 } 4951 #else 4952 static inline int rt_effective_prio(struct task_struct *p, int prio) 4953 { 4954 return prio; 4955 } 4956 #endif 4957 4958 void set_user_nice(struct task_struct *p, long nice) 4959 { 4960 bool queued, running; 4961 int old_prio; 4962 struct rq_flags rf; 4963 struct rq *rq; 4964 4965 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4966 return; 4967 /* 4968 * We have to be careful, if called from sys_setpriority(), 4969 * the task might be in the middle of scheduling on another CPU. 4970 */ 4971 rq = task_rq_lock(p, &rf); 4972 update_rq_clock(rq); 4973 4974 /* 4975 * The RT priorities are set via sched_setscheduler(), but we still 4976 * allow the 'normal' nice value to be set - but as expected 4977 * it wont have any effect on scheduling until the task is 4978 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4979 */ 4980 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4981 p->static_prio = NICE_TO_PRIO(nice); 4982 goto out_unlock; 4983 } 4984 queued = task_on_rq_queued(p); 4985 running = task_current(rq, p); 4986 if (queued) 4987 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4988 if (running) 4989 put_prev_task(rq, p); 4990 4991 p->static_prio = NICE_TO_PRIO(nice); 4992 set_load_weight(p, true); 4993 old_prio = p->prio; 4994 p->prio = effective_prio(p); 4995 4996 if (queued) 4997 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4998 if (running) 4999 set_next_task(rq, p); 5000 5001 /* 5002 * If the task increased its priority or is running and 5003 * lowered its priority, then reschedule its CPU: 5004 */ 5005 p->sched_class->prio_changed(rq, p, old_prio); 5006 5007 out_unlock: 5008 task_rq_unlock(rq, p, &rf); 5009 } 5010 EXPORT_SYMBOL(set_user_nice); 5011 5012 /* 5013 * can_nice - check if a task can reduce its nice value 5014 * @p: task 5015 * @nice: nice value 5016 */ 5017 int can_nice(const struct task_struct *p, const int nice) 5018 { 5019 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5020 int nice_rlim = nice_to_rlimit(nice); 5021 5022 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5023 capable(CAP_SYS_NICE)); 5024 } 5025 5026 #ifdef __ARCH_WANT_SYS_NICE 5027 5028 /* 5029 * sys_nice - change the priority of the current process. 5030 * @increment: priority increment 5031 * 5032 * sys_setpriority is a more generic, but much slower function that 5033 * does similar things. 5034 */ 5035 SYSCALL_DEFINE1(nice, int, increment) 5036 { 5037 long nice, retval; 5038 5039 /* 5040 * Setpriority might change our priority at the same moment. 5041 * We don't have to worry. Conceptually one call occurs first 5042 * and we have a single winner. 5043 */ 5044 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5045 nice = task_nice(current) + increment; 5046 5047 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5048 if (increment < 0 && !can_nice(current, nice)) 5049 return -EPERM; 5050 5051 retval = security_task_setnice(current, nice); 5052 if (retval) 5053 return retval; 5054 5055 set_user_nice(current, nice); 5056 return 0; 5057 } 5058 5059 #endif 5060 5061 /** 5062 * task_prio - return the priority value of a given task. 5063 * @p: the task in question. 5064 * 5065 * Return: The priority value as seen by users in /proc. 5066 * RT tasks are offset by -200. Normal tasks are centered 5067 * around 0, value goes from -16 to +15. 5068 */ 5069 int task_prio(const struct task_struct *p) 5070 { 5071 return p->prio - MAX_RT_PRIO; 5072 } 5073 5074 /** 5075 * idle_cpu - is a given CPU idle currently? 5076 * @cpu: the processor in question. 5077 * 5078 * Return: 1 if the CPU is currently idle. 0 otherwise. 5079 */ 5080 int idle_cpu(int cpu) 5081 { 5082 struct rq *rq = cpu_rq(cpu); 5083 5084 if (rq->curr != rq->idle) 5085 return 0; 5086 5087 if (rq->nr_running) 5088 return 0; 5089 5090 #ifdef CONFIG_SMP 5091 if (rq->ttwu_pending) 5092 return 0; 5093 #endif 5094 5095 return 1; 5096 } 5097 5098 /** 5099 * available_idle_cpu - is a given CPU idle for enqueuing work. 5100 * @cpu: the CPU in question. 5101 * 5102 * Return: 1 if the CPU is currently idle. 0 otherwise. 5103 */ 5104 int available_idle_cpu(int cpu) 5105 { 5106 if (!idle_cpu(cpu)) 5107 return 0; 5108 5109 if (vcpu_is_preempted(cpu)) 5110 return 0; 5111 5112 return 1; 5113 } 5114 5115 /** 5116 * idle_task - return the idle task for a given CPU. 5117 * @cpu: the processor in question. 5118 * 5119 * Return: The idle task for the CPU @cpu. 5120 */ 5121 struct task_struct *idle_task(int cpu) 5122 { 5123 return cpu_rq(cpu)->idle; 5124 } 5125 5126 /** 5127 * find_process_by_pid - find a process with a matching PID value. 5128 * @pid: the pid in question. 5129 * 5130 * The task of @pid, if found. %NULL otherwise. 5131 */ 5132 static struct task_struct *find_process_by_pid(pid_t pid) 5133 { 5134 return pid ? find_task_by_vpid(pid) : current; 5135 } 5136 5137 /* 5138 * sched_setparam() passes in -1 for its policy, to let the functions 5139 * it calls know not to change it. 5140 */ 5141 #define SETPARAM_POLICY -1 5142 5143 static void __setscheduler_params(struct task_struct *p, 5144 const struct sched_attr *attr) 5145 { 5146 int policy = attr->sched_policy; 5147 5148 if (policy == SETPARAM_POLICY) 5149 policy = p->policy; 5150 5151 p->policy = policy; 5152 5153 if (dl_policy(policy)) 5154 __setparam_dl(p, attr); 5155 else if (fair_policy(policy)) 5156 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5157 5158 /* 5159 * __sched_setscheduler() ensures attr->sched_priority == 0 when 5160 * !rt_policy. Always setting this ensures that things like 5161 * getparam()/getattr() don't report silly values for !rt tasks. 5162 */ 5163 p->rt_priority = attr->sched_priority; 5164 p->normal_prio = normal_prio(p); 5165 set_load_weight(p, true); 5166 } 5167 5168 /* Actually do priority change: must hold pi & rq lock. */ 5169 static void __setscheduler(struct rq *rq, struct task_struct *p, 5170 const struct sched_attr *attr, bool keep_boost) 5171 { 5172 /* 5173 * If params can't change scheduling class changes aren't allowed 5174 * either. 5175 */ 5176 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 5177 return; 5178 5179 __setscheduler_params(p, attr); 5180 5181 /* 5182 * Keep a potential priority boosting if called from 5183 * sched_setscheduler(). 5184 */ 5185 p->prio = normal_prio(p); 5186 if (keep_boost) 5187 p->prio = rt_effective_prio(p, p->prio); 5188 5189 if (dl_prio(p->prio)) 5190 p->sched_class = &dl_sched_class; 5191 else if (rt_prio(p->prio)) 5192 p->sched_class = &rt_sched_class; 5193 else 5194 p->sched_class = &fair_sched_class; 5195 } 5196 5197 /* 5198 * Check the target process has a UID that matches the current process's: 5199 */ 5200 static bool check_same_owner(struct task_struct *p) 5201 { 5202 const struct cred *cred = current_cred(), *pcred; 5203 bool match; 5204 5205 rcu_read_lock(); 5206 pcred = __task_cred(p); 5207 match = (uid_eq(cred->euid, pcred->euid) || 5208 uid_eq(cred->euid, pcred->uid)); 5209 rcu_read_unlock(); 5210 return match; 5211 } 5212 5213 static int __sched_setscheduler(struct task_struct *p, 5214 const struct sched_attr *attr, 5215 bool user, bool pi) 5216 { 5217 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 5218 MAX_RT_PRIO - 1 - attr->sched_priority; 5219 int retval, oldprio, oldpolicy = -1, queued, running; 5220 int new_effective_prio, policy = attr->sched_policy; 5221 const struct sched_class *prev_class; 5222 struct rq_flags rf; 5223 int reset_on_fork; 5224 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5225 struct rq *rq; 5226 5227 /* The pi code expects interrupts enabled */ 5228 BUG_ON(pi && in_interrupt()); 5229 recheck: 5230 /* Double check policy once rq lock held: */ 5231 if (policy < 0) { 5232 reset_on_fork = p->sched_reset_on_fork; 5233 policy = oldpolicy = p->policy; 5234 } else { 5235 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 5236 5237 if (!valid_policy(policy)) 5238 return -EINVAL; 5239 } 5240 5241 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 5242 return -EINVAL; 5243 5244 /* 5245 * Valid priorities for SCHED_FIFO and SCHED_RR are 5246 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 5247 * SCHED_BATCH and SCHED_IDLE is 0. 5248 */ 5249 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 5250 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 5251 return -EINVAL; 5252 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 5253 (rt_policy(policy) != (attr->sched_priority != 0))) 5254 return -EINVAL; 5255 5256 /* 5257 * Allow unprivileged RT tasks to decrease priority: 5258 */ 5259 if (user && !capable(CAP_SYS_NICE)) { 5260 if (fair_policy(policy)) { 5261 if (attr->sched_nice < task_nice(p) && 5262 !can_nice(p, attr->sched_nice)) 5263 return -EPERM; 5264 } 5265 5266 if (rt_policy(policy)) { 5267 unsigned long rlim_rtprio = 5268 task_rlimit(p, RLIMIT_RTPRIO); 5269 5270 /* Can't set/change the rt policy: */ 5271 if (policy != p->policy && !rlim_rtprio) 5272 return -EPERM; 5273 5274 /* Can't increase priority: */ 5275 if (attr->sched_priority > p->rt_priority && 5276 attr->sched_priority > rlim_rtprio) 5277 return -EPERM; 5278 } 5279 5280 /* 5281 * Can't set/change SCHED_DEADLINE policy at all for now 5282 * (safest behavior); in the future we would like to allow 5283 * unprivileged DL tasks to increase their relative deadline 5284 * or reduce their runtime (both ways reducing utilization) 5285 */ 5286 if (dl_policy(policy)) 5287 return -EPERM; 5288 5289 /* 5290 * Treat SCHED_IDLE as nice 20. Only allow a switch to 5291 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 5292 */ 5293 if (task_has_idle_policy(p) && !idle_policy(policy)) { 5294 if (!can_nice(p, task_nice(p))) 5295 return -EPERM; 5296 } 5297 5298 /* Can't change other user's priorities: */ 5299 if (!check_same_owner(p)) 5300 return -EPERM; 5301 5302 /* Normal users shall not reset the sched_reset_on_fork flag: */ 5303 if (p->sched_reset_on_fork && !reset_on_fork) 5304 return -EPERM; 5305 } 5306 5307 if (user) { 5308 if (attr->sched_flags & SCHED_FLAG_SUGOV) 5309 return -EINVAL; 5310 5311 retval = security_task_setscheduler(p); 5312 if (retval) 5313 return retval; 5314 } 5315 5316 /* Update task specific "requested" clamps */ 5317 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 5318 retval = uclamp_validate(p, attr); 5319 if (retval) 5320 return retval; 5321 } 5322 5323 if (pi) 5324 cpuset_read_lock(); 5325 5326 /* 5327 * Make sure no PI-waiters arrive (or leave) while we are 5328 * changing the priority of the task: 5329 * 5330 * To be able to change p->policy safely, the appropriate 5331 * runqueue lock must be held. 5332 */ 5333 rq = task_rq_lock(p, &rf); 5334 update_rq_clock(rq); 5335 5336 /* 5337 * Changing the policy of the stop threads its a very bad idea: 5338 */ 5339 if (p == rq->stop) { 5340 retval = -EINVAL; 5341 goto unlock; 5342 } 5343 5344 /* 5345 * If not changing anything there's no need to proceed further, 5346 * but store a possible modification of reset_on_fork. 5347 */ 5348 if (unlikely(policy == p->policy)) { 5349 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 5350 goto change; 5351 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 5352 goto change; 5353 if (dl_policy(policy) && dl_param_changed(p, attr)) 5354 goto change; 5355 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 5356 goto change; 5357 5358 p->sched_reset_on_fork = reset_on_fork; 5359 retval = 0; 5360 goto unlock; 5361 } 5362 change: 5363 5364 if (user) { 5365 #ifdef CONFIG_RT_GROUP_SCHED 5366 /* 5367 * Do not allow realtime tasks into groups that have no runtime 5368 * assigned. 5369 */ 5370 if (rt_bandwidth_enabled() && rt_policy(policy) && 5371 task_group(p)->rt_bandwidth.rt_runtime == 0 && 5372 !task_group_is_autogroup(task_group(p))) { 5373 retval = -EPERM; 5374 goto unlock; 5375 } 5376 #endif 5377 #ifdef CONFIG_SMP 5378 if (dl_bandwidth_enabled() && dl_policy(policy) && 5379 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 5380 cpumask_t *span = rq->rd->span; 5381 5382 /* 5383 * Don't allow tasks with an affinity mask smaller than 5384 * the entire root_domain to become SCHED_DEADLINE. We 5385 * will also fail if there's no bandwidth available. 5386 */ 5387 if (!cpumask_subset(span, p->cpus_ptr) || 5388 rq->rd->dl_bw.bw == 0) { 5389 retval = -EPERM; 5390 goto unlock; 5391 } 5392 } 5393 #endif 5394 } 5395 5396 /* Re-check policy now with rq lock held: */ 5397 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 5398 policy = oldpolicy = -1; 5399 task_rq_unlock(rq, p, &rf); 5400 if (pi) 5401 cpuset_read_unlock(); 5402 goto recheck; 5403 } 5404 5405 /* 5406 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5407 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5408 * is available. 5409 */ 5410 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5411 retval = -EBUSY; 5412 goto unlock; 5413 } 5414 5415 p->sched_reset_on_fork = reset_on_fork; 5416 oldprio = p->prio; 5417 5418 if (pi) { 5419 /* 5420 * Take priority boosted tasks into account. If the new 5421 * effective priority is unchanged, we just store the new 5422 * normal parameters and do not touch the scheduler class and 5423 * the runqueue. This will be done when the task deboost 5424 * itself. 5425 */ 5426 new_effective_prio = rt_effective_prio(p, newprio); 5427 if (new_effective_prio == oldprio) 5428 queue_flags &= ~DEQUEUE_MOVE; 5429 } 5430 5431 queued = task_on_rq_queued(p); 5432 running = task_current(rq, p); 5433 if (queued) 5434 dequeue_task(rq, p, queue_flags); 5435 if (running) 5436 put_prev_task(rq, p); 5437 5438 prev_class = p->sched_class; 5439 5440 __setscheduler(rq, p, attr, pi); 5441 __setscheduler_uclamp(p, attr); 5442 5443 if (queued) { 5444 /* 5445 * We enqueue to tail when the priority of a task is 5446 * increased (user space view). 5447 */ 5448 if (oldprio < p->prio) 5449 queue_flags |= ENQUEUE_HEAD; 5450 5451 enqueue_task(rq, p, queue_flags); 5452 } 5453 if (running) 5454 set_next_task(rq, p); 5455 5456 check_class_changed(rq, p, prev_class, oldprio); 5457 5458 /* Avoid rq from going away on us: */ 5459 preempt_disable(); 5460 task_rq_unlock(rq, p, &rf); 5461 5462 if (pi) { 5463 cpuset_read_unlock(); 5464 rt_mutex_adjust_pi(p); 5465 } 5466 5467 /* Run balance callbacks after we've adjusted the PI chain: */ 5468 balance_callback(rq); 5469 preempt_enable(); 5470 5471 return 0; 5472 5473 unlock: 5474 task_rq_unlock(rq, p, &rf); 5475 if (pi) 5476 cpuset_read_unlock(); 5477 return retval; 5478 } 5479 5480 static int _sched_setscheduler(struct task_struct *p, int policy, 5481 const struct sched_param *param, bool check) 5482 { 5483 struct sched_attr attr = { 5484 .sched_policy = policy, 5485 .sched_priority = param->sched_priority, 5486 .sched_nice = PRIO_TO_NICE(p->static_prio), 5487 }; 5488 5489 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5490 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5491 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5492 policy &= ~SCHED_RESET_ON_FORK; 5493 attr.sched_policy = policy; 5494 } 5495 5496 return __sched_setscheduler(p, &attr, check, true); 5497 } 5498 /** 5499 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5500 * @p: the task in question. 5501 * @policy: new policy. 5502 * @param: structure containing the new RT priority. 5503 * 5504 * Use sched_set_fifo(), read its comment. 5505 * 5506 * Return: 0 on success. An error code otherwise. 5507 * 5508 * NOTE that the task may be already dead. 5509 */ 5510 int sched_setscheduler(struct task_struct *p, int policy, 5511 const struct sched_param *param) 5512 { 5513 return _sched_setscheduler(p, policy, param, true); 5514 } 5515 5516 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5517 { 5518 return __sched_setscheduler(p, attr, true, true); 5519 } 5520 5521 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5522 { 5523 return __sched_setscheduler(p, attr, false, true); 5524 } 5525 5526 /** 5527 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5528 * @p: the task in question. 5529 * @policy: new policy. 5530 * @param: structure containing the new RT priority. 5531 * 5532 * Just like sched_setscheduler, only don't bother checking if the 5533 * current context has permission. For example, this is needed in 5534 * stop_machine(): we create temporary high priority worker threads, 5535 * but our caller might not have that capability. 5536 * 5537 * Return: 0 on success. An error code otherwise. 5538 */ 5539 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5540 const struct sched_param *param) 5541 { 5542 return _sched_setscheduler(p, policy, param, false); 5543 } 5544 5545 /* 5546 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 5547 * incapable of resource management, which is the one thing an OS really should 5548 * be doing. 5549 * 5550 * This is of course the reason it is limited to privileged users only. 5551 * 5552 * Worse still; it is fundamentally impossible to compose static priority 5553 * workloads. You cannot take two correctly working static prio workloads 5554 * and smash them together and still expect them to work. 5555 * 5556 * For this reason 'all' FIFO tasks the kernel creates are basically at: 5557 * 5558 * MAX_RT_PRIO / 2 5559 * 5560 * The administrator _MUST_ configure the system, the kernel simply doesn't 5561 * know enough information to make a sensible choice. 5562 */ 5563 void sched_set_fifo(struct task_struct *p) 5564 { 5565 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 5566 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 5567 } 5568 EXPORT_SYMBOL_GPL(sched_set_fifo); 5569 5570 /* 5571 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 5572 */ 5573 void sched_set_fifo_low(struct task_struct *p) 5574 { 5575 struct sched_param sp = { .sched_priority = 1 }; 5576 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 5577 } 5578 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 5579 5580 void sched_set_normal(struct task_struct *p, int nice) 5581 { 5582 struct sched_attr attr = { 5583 .sched_policy = SCHED_NORMAL, 5584 .sched_nice = nice, 5585 }; 5586 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 5587 } 5588 EXPORT_SYMBOL_GPL(sched_set_normal); 5589 5590 static int 5591 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5592 { 5593 struct sched_param lparam; 5594 struct task_struct *p; 5595 int retval; 5596 5597 if (!param || pid < 0) 5598 return -EINVAL; 5599 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5600 return -EFAULT; 5601 5602 rcu_read_lock(); 5603 retval = -ESRCH; 5604 p = find_process_by_pid(pid); 5605 if (likely(p)) 5606 get_task_struct(p); 5607 rcu_read_unlock(); 5608 5609 if (likely(p)) { 5610 retval = sched_setscheduler(p, policy, &lparam); 5611 put_task_struct(p); 5612 } 5613 5614 return retval; 5615 } 5616 5617 /* 5618 * Mimics kernel/events/core.c perf_copy_attr(). 5619 */ 5620 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5621 { 5622 u32 size; 5623 int ret; 5624 5625 /* Zero the full structure, so that a short copy will be nice: */ 5626 memset(attr, 0, sizeof(*attr)); 5627 5628 ret = get_user(size, &uattr->size); 5629 if (ret) 5630 return ret; 5631 5632 /* ABI compatibility quirk: */ 5633 if (!size) 5634 size = SCHED_ATTR_SIZE_VER0; 5635 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5636 goto err_size; 5637 5638 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5639 if (ret) { 5640 if (ret == -E2BIG) 5641 goto err_size; 5642 return ret; 5643 } 5644 5645 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5646 size < SCHED_ATTR_SIZE_VER1) 5647 return -EINVAL; 5648 5649 /* 5650 * XXX: Do we want to be lenient like existing syscalls; or do we want 5651 * to be strict and return an error on out-of-bounds values? 5652 */ 5653 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5654 5655 return 0; 5656 5657 err_size: 5658 put_user(sizeof(*attr), &uattr->size); 5659 return -E2BIG; 5660 } 5661 5662 /** 5663 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5664 * @pid: the pid in question. 5665 * @policy: new policy. 5666 * @param: structure containing the new RT priority. 5667 * 5668 * Return: 0 on success. An error code otherwise. 5669 */ 5670 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5671 { 5672 if (policy < 0) 5673 return -EINVAL; 5674 5675 return do_sched_setscheduler(pid, policy, param); 5676 } 5677 5678 /** 5679 * sys_sched_setparam - set/change the RT priority of a thread 5680 * @pid: the pid in question. 5681 * @param: structure containing the new RT priority. 5682 * 5683 * Return: 0 on success. An error code otherwise. 5684 */ 5685 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5686 { 5687 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5688 } 5689 5690 /** 5691 * sys_sched_setattr - same as above, but with extended sched_attr 5692 * @pid: the pid in question. 5693 * @uattr: structure containing the extended parameters. 5694 * @flags: for future extension. 5695 */ 5696 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5697 unsigned int, flags) 5698 { 5699 struct sched_attr attr; 5700 struct task_struct *p; 5701 int retval; 5702 5703 if (!uattr || pid < 0 || flags) 5704 return -EINVAL; 5705 5706 retval = sched_copy_attr(uattr, &attr); 5707 if (retval) 5708 return retval; 5709 5710 if ((int)attr.sched_policy < 0) 5711 return -EINVAL; 5712 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5713 attr.sched_policy = SETPARAM_POLICY; 5714 5715 rcu_read_lock(); 5716 retval = -ESRCH; 5717 p = find_process_by_pid(pid); 5718 if (likely(p)) 5719 get_task_struct(p); 5720 rcu_read_unlock(); 5721 5722 if (likely(p)) { 5723 retval = sched_setattr(p, &attr); 5724 put_task_struct(p); 5725 } 5726 5727 return retval; 5728 } 5729 5730 /** 5731 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5732 * @pid: the pid in question. 5733 * 5734 * Return: On success, the policy of the thread. Otherwise, a negative error 5735 * code. 5736 */ 5737 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5738 { 5739 struct task_struct *p; 5740 int retval; 5741 5742 if (pid < 0) 5743 return -EINVAL; 5744 5745 retval = -ESRCH; 5746 rcu_read_lock(); 5747 p = find_process_by_pid(pid); 5748 if (p) { 5749 retval = security_task_getscheduler(p); 5750 if (!retval) 5751 retval = p->policy 5752 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5753 } 5754 rcu_read_unlock(); 5755 return retval; 5756 } 5757 5758 /** 5759 * sys_sched_getparam - get the RT priority of a thread 5760 * @pid: the pid in question. 5761 * @param: structure containing the RT priority. 5762 * 5763 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5764 * code. 5765 */ 5766 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5767 { 5768 struct sched_param lp = { .sched_priority = 0 }; 5769 struct task_struct *p; 5770 int retval; 5771 5772 if (!param || pid < 0) 5773 return -EINVAL; 5774 5775 rcu_read_lock(); 5776 p = find_process_by_pid(pid); 5777 retval = -ESRCH; 5778 if (!p) 5779 goto out_unlock; 5780 5781 retval = security_task_getscheduler(p); 5782 if (retval) 5783 goto out_unlock; 5784 5785 if (task_has_rt_policy(p)) 5786 lp.sched_priority = p->rt_priority; 5787 rcu_read_unlock(); 5788 5789 /* 5790 * This one might sleep, we cannot do it with a spinlock held ... 5791 */ 5792 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5793 5794 return retval; 5795 5796 out_unlock: 5797 rcu_read_unlock(); 5798 return retval; 5799 } 5800 5801 /* 5802 * Copy the kernel size attribute structure (which might be larger 5803 * than what user-space knows about) to user-space. 5804 * 5805 * Note that all cases are valid: user-space buffer can be larger or 5806 * smaller than the kernel-space buffer. The usual case is that both 5807 * have the same size. 5808 */ 5809 static int 5810 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5811 struct sched_attr *kattr, 5812 unsigned int usize) 5813 { 5814 unsigned int ksize = sizeof(*kattr); 5815 5816 if (!access_ok(uattr, usize)) 5817 return -EFAULT; 5818 5819 /* 5820 * sched_getattr() ABI forwards and backwards compatibility: 5821 * 5822 * If usize == ksize then we just copy everything to user-space and all is good. 5823 * 5824 * If usize < ksize then we only copy as much as user-space has space for, 5825 * this keeps ABI compatibility as well. We skip the rest. 5826 * 5827 * If usize > ksize then user-space is using a newer version of the ABI, 5828 * which part the kernel doesn't know about. Just ignore it - tooling can 5829 * detect the kernel's knowledge of attributes from the attr->size value 5830 * which is set to ksize in this case. 5831 */ 5832 kattr->size = min(usize, ksize); 5833 5834 if (copy_to_user(uattr, kattr, kattr->size)) 5835 return -EFAULT; 5836 5837 return 0; 5838 } 5839 5840 /** 5841 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5842 * @pid: the pid in question. 5843 * @uattr: structure containing the extended parameters. 5844 * @usize: sizeof(attr) for fwd/bwd comp. 5845 * @flags: for future extension. 5846 */ 5847 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5848 unsigned int, usize, unsigned int, flags) 5849 { 5850 struct sched_attr kattr = { }; 5851 struct task_struct *p; 5852 int retval; 5853 5854 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5855 usize < SCHED_ATTR_SIZE_VER0 || flags) 5856 return -EINVAL; 5857 5858 rcu_read_lock(); 5859 p = find_process_by_pid(pid); 5860 retval = -ESRCH; 5861 if (!p) 5862 goto out_unlock; 5863 5864 retval = security_task_getscheduler(p); 5865 if (retval) 5866 goto out_unlock; 5867 5868 kattr.sched_policy = p->policy; 5869 if (p->sched_reset_on_fork) 5870 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5871 if (task_has_dl_policy(p)) 5872 __getparam_dl(p, &kattr); 5873 else if (task_has_rt_policy(p)) 5874 kattr.sched_priority = p->rt_priority; 5875 else 5876 kattr.sched_nice = task_nice(p); 5877 5878 #ifdef CONFIG_UCLAMP_TASK 5879 /* 5880 * This could race with another potential updater, but this is fine 5881 * because it'll correctly read the old or the new value. We don't need 5882 * to guarantee who wins the race as long as it doesn't return garbage. 5883 */ 5884 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5885 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5886 #endif 5887 5888 rcu_read_unlock(); 5889 5890 return sched_attr_copy_to_user(uattr, &kattr, usize); 5891 5892 out_unlock: 5893 rcu_read_unlock(); 5894 return retval; 5895 } 5896 5897 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5898 { 5899 cpumask_var_t cpus_allowed, new_mask; 5900 struct task_struct *p; 5901 int retval; 5902 5903 rcu_read_lock(); 5904 5905 p = find_process_by_pid(pid); 5906 if (!p) { 5907 rcu_read_unlock(); 5908 return -ESRCH; 5909 } 5910 5911 /* Prevent p going away */ 5912 get_task_struct(p); 5913 rcu_read_unlock(); 5914 5915 if (p->flags & PF_NO_SETAFFINITY) { 5916 retval = -EINVAL; 5917 goto out_put_task; 5918 } 5919 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5920 retval = -ENOMEM; 5921 goto out_put_task; 5922 } 5923 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5924 retval = -ENOMEM; 5925 goto out_free_cpus_allowed; 5926 } 5927 retval = -EPERM; 5928 if (!check_same_owner(p)) { 5929 rcu_read_lock(); 5930 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5931 rcu_read_unlock(); 5932 goto out_free_new_mask; 5933 } 5934 rcu_read_unlock(); 5935 } 5936 5937 retval = security_task_setscheduler(p); 5938 if (retval) 5939 goto out_free_new_mask; 5940 5941 5942 cpuset_cpus_allowed(p, cpus_allowed); 5943 cpumask_and(new_mask, in_mask, cpus_allowed); 5944 5945 /* 5946 * Since bandwidth control happens on root_domain basis, 5947 * if admission test is enabled, we only admit -deadline 5948 * tasks allowed to run on all the CPUs in the task's 5949 * root_domain. 5950 */ 5951 #ifdef CONFIG_SMP 5952 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5953 rcu_read_lock(); 5954 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5955 retval = -EBUSY; 5956 rcu_read_unlock(); 5957 goto out_free_new_mask; 5958 } 5959 rcu_read_unlock(); 5960 } 5961 #endif 5962 again: 5963 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5964 5965 if (!retval) { 5966 cpuset_cpus_allowed(p, cpus_allowed); 5967 if (!cpumask_subset(new_mask, cpus_allowed)) { 5968 /* 5969 * We must have raced with a concurrent cpuset 5970 * update. Just reset the cpus_allowed to the 5971 * cpuset's cpus_allowed 5972 */ 5973 cpumask_copy(new_mask, cpus_allowed); 5974 goto again; 5975 } 5976 } 5977 out_free_new_mask: 5978 free_cpumask_var(new_mask); 5979 out_free_cpus_allowed: 5980 free_cpumask_var(cpus_allowed); 5981 out_put_task: 5982 put_task_struct(p); 5983 return retval; 5984 } 5985 5986 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5987 struct cpumask *new_mask) 5988 { 5989 if (len < cpumask_size()) 5990 cpumask_clear(new_mask); 5991 else if (len > cpumask_size()) 5992 len = cpumask_size(); 5993 5994 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5995 } 5996 5997 /** 5998 * sys_sched_setaffinity - set the CPU affinity of a process 5999 * @pid: pid of the process 6000 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6001 * @user_mask_ptr: user-space pointer to the new CPU mask 6002 * 6003 * Return: 0 on success. An error code otherwise. 6004 */ 6005 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6006 unsigned long __user *, user_mask_ptr) 6007 { 6008 cpumask_var_t new_mask; 6009 int retval; 6010 6011 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6012 return -ENOMEM; 6013 6014 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6015 if (retval == 0) 6016 retval = sched_setaffinity(pid, new_mask); 6017 free_cpumask_var(new_mask); 6018 return retval; 6019 } 6020 6021 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6022 { 6023 struct task_struct *p; 6024 unsigned long flags; 6025 int retval; 6026 6027 rcu_read_lock(); 6028 6029 retval = -ESRCH; 6030 p = find_process_by_pid(pid); 6031 if (!p) 6032 goto out_unlock; 6033 6034 retval = security_task_getscheduler(p); 6035 if (retval) 6036 goto out_unlock; 6037 6038 raw_spin_lock_irqsave(&p->pi_lock, flags); 6039 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6040 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6041 6042 out_unlock: 6043 rcu_read_unlock(); 6044 6045 return retval; 6046 } 6047 6048 /** 6049 * sys_sched_getaffinity - get the CPU affinity of a process 6050 * @pid: pid of the process 6051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6052 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6053 * 6054 * Return: size of CPU mask copied to user_mask_ptr on success. An 6055 * error code otherwise. 6056 */ 6057 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6058 unsigned long __user *, user_mask_ptr) 6059 { 6060 int ret; 6061 cpumask_var_t mask; 6062 6063 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6064 return -EINVAL; 6065 if (len & (sizeof(unsigned long)-1)) 6066 return -EINVAL; 6067 6068 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6069 return -ENOMEM; 6070 6071 ret = sched_getaffinity(pid, mask); 6072 if (ret == 0) { 6073 unsigned int retlen = min(len, cpumask_size()); 6074 6075 if (copy_to_user(user_mask_ptr, mask, retlen)) 6076 ret = -EFAULT; 6077 else 6078 ret = retlen; 6079 } 6080 free_cpumask_var(mask); 6081 6082 return ret; 6083 } 6084 6085 /** 6086 * sys_sched_yield - yield the current processor to other threads. 6087 * 6088 * This function yields the current CPU to other tasks. If there are no 6089 * other threads running on this CPU then this function will return. 6090 * 6091 * Return: 0. 6092 */ 6093 static void do_sched_yield(void) 6094 { 6095 struct rq_flags rf; 6096 struct rq *rq; 6097 6098 rq = this_rq_lock_irq(&rf); 6099 6100 schedstat_inc(rq->yld_count); 6101 current->sched_class->yield_task(rq); 6102 6103 /* 6104 * Since we are going to call schedule() anyway, there's 6105 * no need to preempt or enable interrupts: 6106 */ 6107 preempt_disable(); 6108 rq_unlock(rq, &rf); 6109 sched_preempt_enable_no_resched(); 6110 6111 schedule(); 6112 } 6113 6114 SYSCALL_DEFINE0(sched_yield) 6115 { 6116 do_sched_yield(); 6117 return 0; 6118 } 6119 6120 #ifndef CONFIG_PREEMPTION 6121 int __sched _cond_resched(void) 6122 { 6123 if (should_resched(0)) { 6124 preempt_schedule_common(); 6125 return 1; 6126 } 6127 rcu_all_qs(); 6128 return 0; 6129 } 6130 EXPORT_SYMBOL(_cond_resched); 6131 #endif 6132 6133 /* 6134 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 6135 * call schedule, and on return reacquire the lock. 6136 * 6137 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 6138 * operations here to prevent schedule() from being called twice (once via 6139 * spin_unlock(), once by hand). 6140 */ 6141 int __cond_resched_lock(spinlock_t *lock) 6142 { 6143 int resched = should_resched(PREEMPT_LOCK_OFFSET); 6144 int ret = 0; 6145 6146 lockdep_assert_held(lock); 6147 6148 if (spin_needbreak(lock) || resched) { 6149 spin_unlock(lock); 6150 if (resched) 6151 preempt_schedule_common(); 6152 else 6153 cpu_relax(); 6154 ret = 1; 6155 spin_lock(lock); 6156 } 6157 return ret; 6158 } 6159 EXPORT_SYMBOL(__cond_resched_lock); 6160 6161 /** 6162 * yield - yield the current processor to other threads. 6163 * 6164 * Do not ever use this function, there's a 99% chance you're doing it wrong. 6165 * 6166 * The scheduler is at all times free to pick the calling task as the most 6167 * eligible task to run, if removing the yield() call from your code breaks 6168 * it, its already broken. 6169 * 6170 * Typical broken usage is: 6171 * 6172 * while (!event) 6173 * yield(); 6174 * 6175 * where one assumes that yield() will let 'the other' process run that will 6176 * make event true. If the current task is a SCHED_FIFO task that will never 6177 * happen. Never use yield() as a progress guarantee!! 6178 * 6179 * If you want to use yield() to wait for something, use wait_event(). 6180 * If you want to use yield() to be 'nice' for others, use cond_resched(). 6181 * If you still want to use yield(), do not! 6182 */ 6183 void __sched yield(void) 6184 { 6185 set_current_state(TASK_RUNNING); 6186 do_sched_yield(); 6187 } 6188 EXPORT_SYMBOL(yield); 6189 6190 /** 6191 * yield_to - yield the current processor to another thread in 6192 * your thread group, or accelerate that thread toward the 6193 * processor it's on. 6194 * @p: target task 6195 * @preempt: whether task preemption is allowed or not 6196 * 6197 * It's the caller's job to ensure that the target task struct 6198 * can't go away on us before we can do any checks. 6199 * 6200 * Return: 6201 * true (>0) if we indeed boosted the target task. 6202 * false (0) if we failed to boost the target. 6203 * -ESRCH if there's no task to yield to. 6204 */ 6205 int __sched yield_to(struct task_struct *p, bool preempt) 6206 { 6207 struct task_struct *curr = current; 6208 struct rq *rq, *p_rq; 6209 unsigned long flags; 6210 int yielded = 0; 6211 6212 local_irq_save(flags); 6213 rq = this_rq(); 6214 6215 again: 6216 p_rq = task_rq(p); 6217 /* 6218 * If we're the only runnable task on the rq and target rq also 6219 * has only one task, there's absolutely no point in yielding. 6220 */ 6221 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 6222 yielded = -ESRCH; 6223 goto out_irq; 6224 } 6225 6226 double_rq_lock(rq, p_rq); 6227 if (task_rq(p) != p_rq) { 6228 double_rq_unlock(rq, p_rq); 6229 goto again; 6230 } 6231 6232 if (!curr->sched_class->yield_to_task) 6233 goto out_unlock; 6234 6235 if (curr->sched_class != p->sched_class) 6236 goto out_unlock; 6237 6238 if (task_running(p_rq, p) || p->state) 6239 goto out_unlock; 6240 6241 yielded = curr->sched_class->yield_to_task(rq, p); 6242 if (yielded) { 6243 schedstat_inc(rq->yld_count); 6244 /* 6245 * Make p's CPU reschedule; pick_next_entity takes care of 6246 * fairness. 6247 */ 6248 if (preempt && rq != p_rq) 6249 resched_curr(p_rq); 6250 } 6251 6252 out_unlock: 6253 double_rq_unlock(rq, p_rq); 6254 out_irq: 6255 local_irq_restore(flags); 6256 6257 if (yielded > 0) 6258 schedule(); 6259 6260 return yielded; 6261 } 6262 EXPORT_SYMBOL_GPL(yield_to); 6263 6264 int io_schedule_prepare(void) 6265 { 6266 int old_iowait = current->in_iowait; 6267 6268 current->in_iowait = 1; 6269 blk_schedule_flush_plug(current); 6270 6271 return old_iowait; 6272 } 6273 6274 void io_schedule_finish(int token) 6275 { 6276 current->in_iowait = token; 6277 } 6278 6279 /* 6280 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 6281 * that process accounting knows that this is a task in IO wait state. 6282 */ 6283 long __sched io_schedule_timeout(long timeout) 6284 { 6285 int token; 6286 long ret; 6287 6288 token = io_schedule_prepare(); 6289 ret = schedule_timeout(timeout); 6290 io_schedule_finish(token); 6291 6292 return ret; 6293 } 6294 EXPORT_SYMBOL(io_schedule_timeout); 6295 6296 void __sched io_schedule(void) 6297 { 6298 int token; 6299 6300 token = io_schedule_prepare(); 6301 schedule(); 6302 io_schedule_finish(token); 6303 } 6304 EXPORT_SYMBOL(io_schedule); 6305 6306 /** 6307 * sys_sched_get_priority_max - return maximum RT priority. 6308 * @policy: scheduling class. 6309 * 6310 * Return: On success, this syscall returns the maximum 6311 * rt_priority that can be used by a given scheduling class. 6312 * On failure, a negative error code is returned. 6313 */ 6314 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 6315 { 6316 int ret = -EINVAL; 6317 6318 switch (policy) { 6319 case SCHED_FIFO: 6320 case SCHED_RR: 6321 ret = MAX_USER_RT_PRIO-1; 6322 break; 6323 case SCHED_DEADLINE: 6324 case SCHED_NORMAL: 6325 case SCHED_BATCH: 6326 case SCHED_IDLE: 6327 ret = 0; 6328 break; 6329 } 6330 return ret; 6331 } 6332 6333 /** 6334 * sys_sched_get_priority_min - return minimum RT priority. 6335 * @policy: scheduling class. 6336 * 6337 * Return: On success, this syscall returns the minimum 6338 * rt_priority that can be used by a given scheduling class. 6339 * On failure, a negative error code is returned. 6340 */ 6341 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 6342 { 6343 int ret = -EINVAL; 6344 6345 switch (policy) { 6346 case SCHED_FIFO: 6347 case SCHED_RR: 6348 ret = 1; 6349 break; 6350 case SCHED_DEADLINE: 6351 case SCHED_NORMAL: 6352 case SCHED_BATCH: 6353 case SCHED_IDLE: 6354 ret = 0; 6355 } 6356 return ret; 6357 } 6358 6359 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 6360 { 6361 struct task_struct *p; 6362 unsigned int time_slice; 6363 struct rq_flags rf; 6364 struct rq *rq; 6365 int retval; 6366 6367 if (pid < 0) 6368 return -EINVAL; 6369 6370 retval = -ESRCH; 6371 rcu_read_lock(); 6372 p = find_process_by_pid(pid); 6373 if (!p) 6374 goto out_unlock; 6375 6376 retval = security_task_getscheduler(p); 6377 if (retval) 6378 goto out_unlock; 6379 6380 rq = task_rq_lock(p, &rf); 6381 time_slice = 0; 6382 if (p->sched_class->get_rr_interval) 6383 time_slice = p->sched_class->get_rr_interval(rq, p); 6384 task_rq_unlock(rq, p, &rf); 6385 6386 rcu_read_unlock(); 6387 jiffies_to_timespec64(time_slice, t); 6388 return 0; 6389 6390 out_unlock: 6391 rcu_read_unlock(); 6392 return retval; 6393 } 6394 6395 /** 6396 * sys_sched_rr_get_interval - return the default timeslice of a process. 6397 * @pid: pid of the process. 6398 * @interval: userspace pointer to the timeslice value. 6399 * 6400 * this syscall writes the default timeslice value of a given process 6401 * into the user-space timespec buffer. A value of '0' means infinity. 6402 * 6403 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 6404 * an error code. 6405 */ 6406 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6407 struct __kernel_timespec __user *, interval) 6408 { 6409 struct timespec64 t; 6410 int retval = sched_rr_get_interval(pid, &t); 6411 6412 if (retval == 0) 6413 retval = put_timespec64(&t, interval); 6414 6415 return retval; 6416 } 6417 6418 #ifdef CONFIG_COMPAT_32BIT_TIME 6419 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 6420 struct old_timespec32 __user *, interval) 6421 { 6422 struct timespec64 t; 6423 int retval = sched_rr_get_interval(pid, &t); 6424 6425 if (retval == 0) 6426 retval = put_old_timespec32(&t, interval); 6427 return retval; 6428 } 6429 #endif 6430 6431 void sched_show_task(struct task_struct *p) 6432 { 6433 unsigned long free = 0; 6434 int ppid; 6435 6436 if (!try_get_task_stack(p)) 6437 return; 6438 6439 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 6440 6441 if (p->state == TASK_RUNNING) 6442 pr_cont(" running task "); 6443 #ifdef CONFIG_DEBUG_STACK_USAGE 6444 free = stack_not_used(p); 6445 #endif 6446 ppid = 0; 6447 rcu_read_lock(); 6448 if (pid_alive(p)) 6449 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6450 rcu_read_unlock(); 6451 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 6452 free, task_pid_nr(p), ppid, 6453 (unsigned long)task_thread_info(p)->flags); 6454 6455 print_worker_info(KERN_INFO, p); 6456 show_stack(p, NULL, KERN_INFO); 6457 put_task_stack(p); 6458 } 6459 EXPORT_SYMBOL_GPL(sched_show_task); 6460 6461 static inline bool 6462 state_filter_match(unsigned long state_filter, struct task_struct *p) 6463 { 6464 /* no filter, everything matches */ 6465 if (!state_filter) 6466 return true; 6467 6468 /* filter, but doesn't match */ 6469 if (!(p->state & state_filter)) 6470 return false; 6471 6472 /* 6473 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 6474 * TASK_KILLABLE). 6475 */ 6476 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 6477 return false; 6478 6479 return true; 6480 } 6481 6482 6483 void show_state_filter(unsigned long state_filter) 6484 { 6485 struct task_struct *g, *p; 6486 6487 rcu_read_lock(); 6488 for_each_process_thread(g, p) { 6489 /* 6490 * reset the NMI-timeout, listing all files on a slow 6491 * console might take a lot of time: 6492 * Also, reset softlockup watchdogs on all CPUs, because 6493 * another CPU might be blocked waiting for us to process 6494 * an IPI. 6495 */ 6496 touch_nmi_watchdog(); 6497 touch_all_softlockup_watchdogs(); 6498 if (state_filter_match(state_filter, p)) 6499 sched_show_task(p); 6500 } 6501 6502 #ifdef CONFIG_SCHED_DEBUG 6503 if (!state_filter) 6504 sysrq_sched_debug_show(); 6505 #endif 6506 rcu_read_unlock(); 6507 /* 6508 * Only show locks if all tasks are dumped: 6509 */ 6510 if (!state_filter) 6511 debug_show_all_locks(); 6512 } 6513 6514 /** 6515 * init_idle - set up an idle thread for a given CPU 6516 * @idle: task in question 6517 * @cpu: CPU the idle task belongs to 6518 * 6519 * NOTE: this function does not set the idle thread's NEED_RESCHED 6520 * flag, to make booting more robust. 6521 */ 6522 void init_idle(struct task_struct *idle, int cpu) 6523 { 6524 struct rq *rq = cpu_rq(cpu); 6525 unsigned long flags; 6526 6527 __sched_fork(0, idle); 6528 6529 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6530 raw_spin_lock(&rq->lock); 6531 6532 idle->state = TASK_RUNNING; 6533 idle->se.exec_start = sched_clock(); 6534 idle->flags |= PF_IDLE; 6535 6536 scs_task_reset(idle); 6537 kasan_unpoison_task_stack(idle); 6538 6539 #ifdef CONFIG_SMP 6540 /* 6541 * Its possible that init_idle() gets called multiple times on a task, 6542 * in that case do_set_cpus_allowed() will not do the right thing. 6543 * 6544 * And since this is boot we can forgo the serialization. 6545 */ 6546 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6547 #endif 6548 /* 6549 * We're having a chicken and egg problem, even though we are 6550 * holding rq->lock, the CPU isn't yet set to this CPU so the 6551 * lockdep check in task_group() will fail. 6552 * 6553 * Similar case to sched_fork(). / Alternatively we could 6554 * use task_rq_lock() here and obtain the other rq->lock. 6555 * 6556 * Silence PROVE_RCU 6557 */ 6558 rcu_read_lock(); 6559 __set_task_cpu(idle, cpu); 6560 rcu_read_unlock(); 6561 6562 rq->idle = idle; 6563 rcu_assign_pointer(rq->curr, idle); 6564 idle->on_rq = TASK_ON_RQ_QUEUED; 6565 #ifdef CONFIG_SMP 6566 idle->on_cpu = 1; 6567 #endif 6568 raw_spin_unlock(&rq->lock); 6569 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6570 6571 /* Set the preempt count _outside_ the spinlocks! */ 6572 init_idle_preempt_count(idle, cpu); 6573 6574 /* 6575 * The idle tasks have their own, simple scheduling class: 6576 */ 6577 idle->sched_class = &idle_sched_class; 6578 ftrace_graph_init_idle_task(idle, cpu); 6579 vtime_init_idle(idle, cpu); 6580 #ifdef CONFIG_SMP 6581 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6582 #endif 6583 } 6584 6585 #ifdef CONFIG_SMP 6586 6587 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6588 const struct cpumask *trial) 6589 { 6590 int ret = 1; 6591 6592 if (!cpumask_weight(cur)) 6593 return ret; 6594 6595 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6596 6597 return ret; 6598 } 6599 6600 int task_can_attach(struct task_struct *p, 6601 const struct cpumask *cs_cpus_allowed) 6602 { 6603 int ret = 0; 6604 6605 /* 6606 * Kthreads which disallow setaffinity shouldn't be moved 6607 * to a new cpuset; we don't want to change their CPU 6608 * affinity and isolating such threads by their set of 6609 * allowed nodes is unnecessary. Thus, cpusets are not 6610 * applicable for such threads. This prevents checking for 6611 * success of set_cpus_allowed_ptr() on all attached tasks 6612 * before cpus_mask may be changed. 6613 */ 6614 if (p->flags & PF_NO_SETAFFINITY) { 6615 ret = -EINVAL; 6616 goto out; 6617 } 6618 6619 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6620 cs_cpus_allowed)) 6621 ret = dl_task_can_attach(p, cs_cpus_allowed); 6622 6623 out: 6624 return ret; 6625 } 6626 6627 bool sched_smp_initialized __read_mostly; 6628 6629 #ifdef CONFIG_NUMA_BALANCING 6630 /* Migrate current task p to target_cpu */ 6631 int migrate_task_to(struct task_struct *p, int target_cpu) 6632 { 6633 struct migration_arg arg = { p, target_cpu }; 6634 int curr_cpu = task_cpu(p); 6635 6636 if (curr_cpu == target_cpu) 6637 return 0; 6638 6639 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6640 return -EINVAL; 6641 6642 /* TODO: This is not properly updating schedstats */ 6643 6644 trace_sched_move_numa(p, curr_cpu, target_cpu); 6645 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6646 } 6647 6648 /* 6649 * Requeue a task on a given node and accurately track the number of NUMA 6650 * tasks on the runqueues 6651 */ 6652 void sched_setnuma(struct task_struct *p, int nid) 6653 { 6654 bool queued, running; 6655 struct rq_flags rf; 6656 struct rq *rq; 6657 6658 rq = task_rq_lock(p, &rf); 6659 queued = task_on_rq_queued(p); 6660 running = task_current(rq, p); 6661 6662 if (queued) 6663 dequeue_task(rq, p, DEQUEUE_SAVE); 6664 if (running) 6665 put_prev_task(rq, p); 6666 6667 p->numa_preferred_nid = nid; 6668 6669 if (queued) 6670 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6671 if (running) 6672 set_next_task(rq, p); 6673 task_rq_unlock(rq, p, &rf); 6674 } 6675 #endif /* CONFIG_NUMA_BALANCING */ 6676 6677 #ifdef CONFIG_HOTPLUG_CPU 6678 /* 6679 * Ensure that the idle task is using init_mm right before its CPU goes 6680 * offline. 6681 */ 6682 void idle_task_exit(void) 6683 { 6684 struct mm_struct *mm = current->active_mm; 6685 6686 BUG_ON(cpu_online(smp_processor_id())); 6687 BUG_ON(current != this_rq()->idle); 6688 6689 if (mm != &init_mm) { 6690 switch_mm(mm, &init_mm, current); 6691 finish_arch_post_lock_switch(); 6692 } 6693 6694 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 6695 } 6696 6697 /* 6698 * Since this CPU is going 'away' for a while, fold any nr_active delta 6699 * we might have. Assumes we're called after migrate_tasks() so that the 6700 * nr_active count is stable. We need to take the teardown thread which 6701 * is calling this into account, so we hand in adjust = 1 to the load 6702 * calculation. 6703 * 6704 * Also see the comment "Global load-average calculations". 6705 */ 6706 static void calc_load_migrate(struct rq *rq) 6707 { 6708 long delta = calc_load_fold_active(rq, 1); 6709 if (delta) 6710 atomic_long_add(delta, &calc_load_tasks); 6711 } 6712 6713 static struct task_struct *__pick_migrate_task(struct rq *rq) 6714 { 6715 const struct sched_class *class; 6716 struct task_struct *next; 6717 6718 for_each_class(class) { 6719 next = class->pick_next_task(rq); 6720 if (next) { 6721 next->sched_class->put_prev_task(rq, next); 6722 return next; 6723 } 6724 } 6725 6726 /* The idle class should always have a runnable task */ 6727 BUG(); 6728 } 6729 6730 /* 6731 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6732 * try_to_wake_up()->select_task_rq(). 6733 * 6734 * Called with rq->lock held even though we'er in stop_machine() and 6735 * there's no concurrency possible, we hold the required locks anyway 6736 * because of lock validation efforts. 6737 */ 6738 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6739 { 6740 struct rq *rq = dead_rq; 6741 struct task_struct *next, *stop = rq->stop; 6742 struct rq_flags orf = *rf; 6743 int dest_cpu; 6744 6745 /* 6746 * Fudge the rq selection such that the below task selection loop 6747 * doesn't get stuck on the currently eligible stop task. 6748 * 6749 * We're currently inside stop_machine() and the rq is either stuck 6750 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6751 * either way we should never end up calling schedule() until we're 6752 * done here. 6753 */ 6754 rq->stop = NULL; 6755 6756 /* 6757 * put_prev_task() and pick_next_task() sched 6758 * class method both need to have an up-to-date 6759 * value of rq->clock[_task] 6760 */ 6761 update_rq_clock(rq); 6762 6763 for (;;) { 6764 /* 6765 * There's this thread running, bail when that's the only 6766 * remaining thread: 6767 */ 6768 if (rq->nr_running == 1) 6769 break; 6770 6771 next = __pick_migrate_task(rq); 6772 6773 /* 6774 * Rules for changing task_struct::cpus_mask are holding 6775 * both pi_lock and rq->lock, such that holding either 6776 * stabilizes the mask. 6777 * 6778 * Drop rq->lock is not quite as disastrous as it usually is 6779 * because !cpu_active at this point, which means load-balance 6780 * will not interfere. Also, stop-machine. 6781 */ 6782 rq_unlock(rq, rf); 6783 raw_spin_lock(&next->pi_lock); 6784 rq_relock(rq, rf); 6785 6786 /* 6787 * Since we're inside stop-machine, _nothing_ should have 6788 * changed the task, WARN if weird stuff happened, because in 6789 * that case the above rq->lock drop is a fail too. 6790 */ 6791 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6792 raw_spin_unlock(&next->pi_lock); 6793 continue; 6794 } 6795 6796 /* Find suitable destination for @next, with force if needed. */ 6797 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6798 rq = __migrate_task(rq, rf, next, dest_cpu); 6799 if (rq != dead_rq) { 6800 rq_unlock(rq, rf); 6801 rq = dead_rq; 6802 *rf = orf; 6803 rq_relock(rq, rf); 6804 } 6805 raw_spin_unlock(&next->pi_lock); 6806 } 6807 6808 rq->stop = stop; 6809 } 6810 #endif /* CONFIG_HOTPLUG_CPU */ 6811 6812 void set_rq_online(struct rq *rq) 6813 { 6814 if (!rq->online) { 6815 const struct sched_class *class; 6816 6817 cpumask_set_cpu(rq->cpu, rq->rd->online); 6818 rq->online = 1; 6819 6820 for_each_class(class) { 6821 if (class->rq_online) 6822 class->rq_online(rq); 6823 } 6824 } 6825 } 6826 6827 void set_rq_offline(struct rq *rq) 6828 { 6829 if (rq->online) { 6830 const struct sched_class *class; 6831 6832 for_each_class(class) { 6833 if (class->rq_offline) 6834 class->rq_offline(rq); 6835 } 6836 6837 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6838 rq->online = 0; 6839 } 6840 } 6841 6842 /* 6843 * used to mark begin/end of suspend/resume: 6844 */ 6845 static int num_cpus_frozen; 6846 6847 /* 6848 * Update cpusets according to cpu_active mask. If cpusets are 6849 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6850 * around partition_sched_domains(). 6851 * 6852 * If we come here as part of a suspend/resume, don't touch cpusets because we 6853 * want to restore it back to its original state upon resume anyway. 6854 */ 6855 static void cpuset_cpu_active(void) 6856 { 6857 if (cpuhp_tasks_frozen) { 6858 /* 6859 * num_cpus_frozen tracks how many CPUs are involved in suspend 6860 * resume sequence. As long as this is not the last online 6861 * operation in the resume sequence, just build a single sched 6862 * domain, ignoring cpusets. 6863 */ 6864 partition_sched_domains(1, NULL, NULL); 6865 if (--num_cpus_frozen) 6866 return; 6867 /* 6868 * This is the last CPU online operation. So fall through and 6869 * restore the original sched domains by considering the 6870 * cpuset configurations. 6871 */ 6872 cpuset_force_rebuild(); 6873 } 6874 cpuset_update_active_cpus(); 6875 } 6876 6877 static int cpuset_cpu_inactive(unsigned int cpu) 6878 { 6879 if (!cpuhp_tasks_frozen) { 6880 if (dl_cpu_busy(cpu)) 6881 return -EBUSY; 6882 cpuset_update_active_cpus(); 6883 } else { 6884 num_cpus_frozen++; 6885 partition_sched_domains(1, NULL, NULL); 6886 } 6887 return 0; 6888 } 6889 6890 int sched_cpu_activate(unsigned int cpu) 6891 { 6892 struct rq *rq = cpu_rq(cpu); 6893 struct rq_flags rf; 6894 6895 #ifdef CONFIG_SCHED_SMT 6896 /* 6897 * When going up, increment the number of cores with SMT present. 6898 */ 6899 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6900 static_branch_inc_cpuslocked(&sched_smt_present); 6901 #endif 6902 set_cpu_active(cpu, true); 6903 6904 if (sched_smp_initialized) { 6905 sched_domains_numa_masks_set(cpu); 6906 cpuset_cpu_active(); 6907 } 6908 6909 /* 6910 * Put the rq online, if not already. This happens: 6911 * 6912 * 1) In the early boot process, because we build the real domains 6913 * after all CPUs have been brought up. 6914 * 6915 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6916 * domains. 6917 */ 6918 rq_lock_irqsave(rq, &rf); 6919 if (rq->rd) { 6920 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6921 set_rq_online(rq); 6922 } 6923 rq_unlock_irqrestore(rq, &rf); 6924 6925 return 0; 6926 } 6927 6928 int sched_cpu_deactivate(unsigned int cpu) 6929 { 6930 int ret; 6931 6932 set_cpu_active(cpu, false); 6933 /* 6934 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6935 * users of this state to go away such that all new such users will 6936 * observe it. 6937 * 6938 * Do sync before park smpboot threads to take care the rcu boost case. 6939 */ 6940 synchronize_rcu(); 6941 6942 #ifdef CONFIG_SCHED_SMT 6943 /* 6944 * When going down, decrement the number of cores with SMT present. 6945 */ 6946 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6947 static_branch_dec_cpuslocked(&sched_smt_present); 6948 #endif 6949 6950 if (!sched_smp_initialized) 6951 return 0; 6952 6953 ret = cpuset_cpu_inactive(cpu); 6954 if (ret) { 6955 set_cpu_active(cpu, true); 6956 return ret; 6957 } 6958 sched_domains_numa_masks_clear(cpu); 6959 return 0; 6960 } 6961 6962 static void sched_rq_cpu_starting(unsigned int cpu) 6963 { 6964 struct rq *rq = cpu_rq(cpu); 6965 6966 rq->calc_load_update = calc_load_update; 6967 update_max_interval(); 6968 } 6969 6970 int sched_cpu_starting(unsigned int cpu) 6971 { 6972 sched_rq_cpu_starting(cpu); 6973 sched_tick_start(cpu); 6974 return 0; 6975 } 6976 6977 #ifdef CONFIG_HOTPLUG_CPU 6978 int sched_cpu_dying(unsigned int cpu) 6979 { 6980 struct rq *rq = cpu_rq(cpu); 6981 struct rq_flags rf; 6982 6983 /* Handle pending wakeups and then migrate everything off */ 6984 sched_tick_stop(cpu); 6985 6986 rq_lock_irqsave(rq, &rf); 6987 if (rq->rd) { 6988 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6989 set_rq_offline(rq); 6990 } 6991 migrate_tasks(rq, &rf); 6992 BUG_ON(rq->nr_running != 1); 6993 rq_unlock_irqrestore(rq, &rf); 6994 6995 calc_load_migrate(rq); 6996 update_max_interval(); 6997 nohz_balance_exit_idle(rq); 6998 hrtick_clear(rq); 6999 return 0; 7000 } 7001 #endif 7002 7003 void __init sched_init_smp(void) 7004 { 7005 sched_init_numa(); 7006 7007 /* 7008 * There's no userspace yet to cause hotplug operations; hence all the 7009 * CPU masks are stable and all blatant races in the below code cannot 7010 * happen. 7011 */ 7012 mutex_lock(&sched_domains_mutex); 7013 sched_init_domains(cpu_active_mask); 7014 mutex_unlock(&sched_domains_mutex); 7015 7016 /* Move init over to a non-isolated CPU */ 7017 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 7018 BUG(); 7019 sched_init_granularity(); 7020 7021 init_sched_rt_class(); 7022 init_sched_dl_class(); 7023 7024 sched_smp_initialized = true; 7025 } 7026 7027 static int __init migration_init(void) 7028 { 7029 sched_cpu_starting(smp_processor_id()); 7030 return 0; 7031 } 7032 early_initcall(migration_init); 7033 7034 #else 7035 void __init sched_init_smp(void) 7036 { 7037 sched_init_granularity(); 7038 } 7039 #endif /* CONFIG_SMP */ 7040 7041 int in_sched_functions(unsigned long addr) 7042 { 7043 return in_lock_functions(addr) || 7044 (addr >= (unsigned long)__sched_text_start 7045 && addr < (unsigned long)__sched_text_end); 7046 } 7047 7048 #ifdef CONFIG_CGROUP_SCHED 7049 /* 7050 * Default task group. 7051 * Every task in system belongs to this group at bootup. 7052 */ 7053 struct task_group root_task_group; 7054 LIST_HEAD(task_groups); 7055 7056 /* Cacheline aligned slab cache for task_group */ 7057 static struct kmem_cache *task_group_cache __read_mostly; 7058 #endif 7059 7060 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7061 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 7062 7063 void __init sched_init(void) 7064 { 7065 unsigned long ptr = 0; 7066 int i; 7067 7068 /* Make sure the linker didn't screw up */ 7069 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 7070 &fair_sched_class + 1 != &rt_sched_class || 7071 &rt_sched_class + 1 != &dl_sched_class); 7072 #ifdef CONFIG_SMP 7073 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 7074 #endif 7075 7076 wait_bit_init(); 7077 7078 #ifdef CONFIG_FAIR_GROUP_SCHED 7079 ptr += 2 * nr_cpu_ids * sizeof(void **); 7080 #endif 7081 #ifdef CONFIG_RT_GROUP_SCHED 7082 ptr += 2 * nr_cpu_ids * sizeof(void **); 7083 #endif 7084 if (ptr) { 7085 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 7086 7087 #ifdef CONFIG_FAIR_GROUP_SCHED 7088 root_task_group.se = (struct sched_entity **)ptr; 7089 ptr += nr_cpu_ids * sizeof(void **); 7090 7091 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7092 ptr += nr_cpu_ids * sizeof(void **); 7093 7094 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7095 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7096 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7097 #ifdef CONFIG_RT_GROUP_SCHED 7098 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7099 ptr += nr_cpu_ids * sizeof(void **); 7100 7101 root_task_group.rt_rq = (struct rt_rq **)ptr; 7102 ptr += nr_cpu_ids * sizeof(void **); 7103 7104 #endif /* CONFIG_RT_GROUP_SCHED */ 7105 } 7106 #ifdef CONFIG_CPUMASK_OFFSTACK 7107 for_each_possible_cpu(i) { 7108 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7109 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7110 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 7111 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7112 } 7113 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7114 7115 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 7116 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 7117 7118 #ifdef CONFIG_SMP 7119 init_defrootdomain(); 7120 #endif 7121 7122 #ifdef CONFIG_RT_GROUP_SCHED 7123 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7124 global_rt_period(), global_rt_runtime()); 7125 #endif /* CONFIG_RT_GROUP_SCHED */ 7126 7127 #ifdef CONFIG_CGROUP_SCHED 7128 task_group_cache = KMEM_CACHE(task_group, 0); 7129 7130 list_add(&root_task_group.list, &task_groups); 7131 INIT_LIST_HEAD(&root_task_group.children); 7132 INIT_LIST_HEAD(&root_task_group.siblings); 7133 autogroup_init(&init_task); 7134 #endif /* CONFIG_CGROUP_SCHED */ 7135 7136 for_each_possible_cpu(i) { 7137 struct rq *rq; 7138 7139 rq = cpu_rq(i); 7140 raw_spin_lock_init(&rq->lock); 7141 rq->nr_running = 0; 7142 rq->calc_load_active = 0; 7143 rq->calc_load_update = jiffies + LOAD_FREQ; 7144 init_cfs_rq(&rq->cfs); 7145 init_rt_rq(&rq->rt); 7146 init_dl_rq(&rq->dl); 7147 #ifdef CONFIG_FAIR_GROUP_SCHED 7148 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7149 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 7150 /* 7151 * How much CPU bandwidth does root_task_group get? 7152 * 7153 * In case of task-groups formed thr' the cgroup filesystem, it 7154 * gets 100% of the CPU resources in the system. This overall 7155 * system CPU resource is divided among the tasks of 7156 * root_task_group and its child task-groups in a fair manner, 7157 * based on each entity's (task or task-group's) weight 7158 * (se->load.weight). 7159 * 7160 * In other words, if root_task_group has 10 tasks of weight 7161 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7162 * then A0's share of the CPU resource is: 7163 * 7164 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7165 * 7166 * We achieve this by letting root_task_group's tasks sit 7167 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7168 */ 7169 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7170 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7171 7172 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7173 #ifdef CONFIG_RT_GROUP_SCHED 7174 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7175 #endif 7176 #ifdef CONFIG_SMP 7177 rq->sd = NULL; 7178 rq->rd = NULL; 7179 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7180 rq->balance_callback = NULL; 7181 rq->active_balance = 0; 7182 rq->next_balance = jiffies; 7183 rq->push_cpu = 0; 7184 rq->cpu = i; 7185 rq->online = 0; 7186 rq->idle_stamp = 0; 7187 rq->avg_idle = 2*sysctl_sched_migration_cost; 7188 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7189 7190 INIT_LIST_HEAD(&rq->cfs_tasks); 7191 7192 rq_attach_root(rq, &def_root_domain); 7193 #ifdef CONFIG_NO_HZ_COMMON 7194 rq->last_blocked_load_update_tick = jiffies; 7195 atomic_set(&rq->nohz_flags, 0); 7196 7197 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func); 7198 #endif 7199 #endif /* CONFIG_SMP */ 7200 hrtick_rq_init(rq); 7201 atomic_set(&rq->nr_iowait, 0); 7202 } 7203 7204 set_load_weight(&init_task, false); 7205 7206 /* 7207 * The boot idle thread does lazy MMU switching as well: 7208 */ 7209 mmgrab(&init_mm); 7210 enter_lazy_tlb(&init_mm, current); 7211 7212 /* 7213 * Make us the idle thread. Technically, schedule() should not be 7214 * called from this thread, however somewhere below it might be, 7215 * but because we are the idle thread, we just pick up running again 7216 * when this runqueue becomes "idle". 7217 */ 7218 init_idle(current, smp_processor_id()); 7219 7220 calc_load_update = jiffies + LOAD_FREQ; 7221 7222 #ifdef CONFIG_SMP 7223 idle_thread_set_boot_cpu(); 7224 #endif 7225 init_sched_fair_class(); 7226 7227 init_schedstats(); 7228 7229 psi_init(); 7230 7231 init_uclamp(); 7232 7233 scheduler_running = 1; 7234 } 7235 7236 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7237 static inline int preempt_count_equals(int preempt_offset) 7238 { 7239 int nested = preempt_count() + rcu_preempt_depth(); 7240 7241 return (nested == preempt_offset); 7242 } 7243 7244 void __might_sleep(const char *file, int line, int preempt_offset) 7245 { 7246 /* 7247 * Blocking primitives will set (and therefore destroy) current->state, 7248 * since we will exit with TASK_RUNNING make sure we enter with it, 7249 * otherwise we will destroy state. 7250 */ 7251 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7252 "do not call blocking ops when !TASK_RUNNING; " 7253 "state=%lx set at [<%p>] %pS\n", 7254 current->state, 7255 (void *)current->task_state_change, 7256 (void *)current->task_state_change); 7257 7258 ___might_sleep(file, line, preempt_offset); 7259 } 7260 EXPORT_SYMBOL(__might_sleep); 7261 7262 void ___might_sleep(const char *file, int line, int preempt_offset) 7263 { 7264 /* Ratelimiting timestamp: */ 7265 static unsigned long prev_jiffy; 7266 7267 unsigned long preempt_disable_ip; 7268 7269 /* WARN_ON_ONCE() by default, no rate limit required: */ 7270 rcu_sleep_check(); 7271 7272 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7273 !is_idle_task(current) && !current->non_block_count) || 7274 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 7275 oops_in_progress) 7276 return; 7277 7278 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7279 return; 7280 prev_jiffy = jiffies; 7281 7282 /* Save this before calling printk(), since that will clobber it: */ 7283 preempt_disable_ip = get_preempt_disable_ip(current); 7284 7285 printk(KERN_ERR 7286 "BUG: sleeping function called from invalid context at %s:%d\n", 7287 file, line); 7288 printk(KERN_ERR 7289 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 7290 in_atomic(), irqs_disabled(), current->non_block_count, 7291 current->pid, current->comm); 7292 7293 if (task_stack_end_corrupted(current)) 7294 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7295 7296 debug_show_held_locks(current); 7297 if (irqs_disabled()) 7298 print_irqtrace_events(current); 7299 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 7300 && !preempt_count_equals(preempt_offset)) { 7301 pr_err("Preemption disabled at:"); 7302 print_ip_sym(KERN_ERR, preempt_disable_ip); 7303 } 7304 dump_stack(); 7305 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7306 } 7307 EXPORT_SYMBOL(___might_sleep); 7308 7309 void __cant_sleep(const char *file, int line, int preempt_offset) 7310 { 7311 static unsigned long prev_jiffy; 7312 7313 if (irqs_disabled()) 7314 return; 7315 7316 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 7317 return; 7318 7319 if (preempt_count() > preempt_offset) 7320 return; 7321 7322 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7323 return; 7324 prev_jiffy = jiffies; 7325 7326 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 7327 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7328 in_atomic(), irqs_disabled(), 7329 current->pid, current->comm); 7330 7331 debug_show_held_locks(current); 7332 dump_stack(); 7333 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7334 } 7335 EXPORT_SYMBOL_GPL(__cant_sleep); 7336 #endif 7337 7338 #ifdef CONFIG_MAGIC_SYSRQ 7339 void normalize_rt_tasks(void) 7340 { 7341 struct task_struct *g, *p; 7342 struct sched_attr attr = { 7343 .sched_policy = SCHED_NORMAL, 7344 }; 7345 7346 read_lock(&tasklist_lock); 7347 for_each_process_thread(g, p) { 7348 /* 7349 * Only normalize user tasks: 7350 */ 7351 if (p->flags & PF_KTHREAD) 7352 continue; 7353 7354 p->se.exec_start = 0; 7355 schedstat_set(p->se.statistics.wait_start, 0); 7356 schedstat_set(p->se.statistics.sleep_start, 0); 7357 schedstat_set(p->se.statistics.block_start, 0); 7358 7359 if (!dl_task(p) && !rt_task(p)) { 7360 /* 7361 * Renice negative nice level userspace 7362 * tasks back to 0: 7363 */ 7364 if (task_nice(p) < 0) 7365 set_user_nice(p, 0); 7366 continue; 7367 } 7368 7369 __sched_setscheduler(p, &attr, false, false); 7370 } 7371 read_unlock(&tasklist_lock); 7372 } 7373 7374 #endif /* CONFIG_MAGIC_SYSRQ */ 7375 7376 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7377 /* 7378 * These functions are only useful for the IA64 MCA handling, or kdb. 7379 * 7380 * They can only be called when the whole system has been 7381 * stopped - every CPU needs to be quiescent, and no scheduling 7382 * activity can take place. Using them for anything else would 7383 * be a serious bug, and as a result, they aren't even visible 7384 * under any other configuration. 7385 */ 7386 7387 /** 7388 * curr_task - return the current task for a given CPU. 7389 * @cpu: the processor in question. 7390 * 7391 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7392 * 7393 * Return: The current task for @cpu. 7394 */ 7395 struct task_struct *curr_task(int cpu) 7396 { 7397 return cpu_curr(cpu); 7398 } 7399 7400 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7401 7402 #ifdef CONFIG_IA64 7403 /** 7404 * ia64_set_curr_task - set the current task for a given CPU. 7405 * @cpu: the processor in question. 7406 * @p: the task pointer to set. 7407 * 7408 * Description: This function must only be used when non-maskable interrupts 7409 * are serviced on a separate stack. It allows the architecture to switch the 7410 * notion of the current task on a CPU in a non-blocking manner. This function 7411 * must be called with all CPU's synchronized, and interrupts disabled, the 7412 * and caller must save the original value of the current task (see 7413 * curr_task() above) and restore that value before reenabling interrupts and 7414 * re-starting the system. 7415 * 7416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7417 */ 7418 void ia64_set_curr_task(int cpu, struct task_struct *p) 7419 { 7420 cpu_curr(cpu) = p; 7421 } 7422 7423 #endif 7424 7425 #ifdef CONFIG_CGROUP_SCHED 7426 /* task_group_lock serializes the addition/removal of task groups */ 7427 static DEFINE_SPINLOCK(task_group_lock); 7428 7429 static inline void alloc_uclamp_sched_group(struct task_group *tg, 7430 struct task_group *parent) 7431 { 7432 #ifdef CONFIG_UCLAMP_TASK_GROUP 7433 enum uclamp_id clamp_id; 7434 7435 for_each_clamp_id(clamp_id) { 7436 uclamp_se_set(&tg->uclamp_req[clamp_id], 7437 uclamp_none(clamp_id), false); 7438 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 7439 } 7440 #endif 7441 } 7442 7443 static void sched_free_group(struct task_group *tg) 7444 { 7445 free_fair_sched_group(tg); 7446 free_rt_sched_group(tg); 7447 autogroup_free(tg); 7448 kmem_cache_free(task_group_cache, tg); 7449 } 7450 7451 /* allocate runqueue etc for a new task group */ 7452 struct task_group *sched_create_group(struct task_group *parent) 7453 { 7454 struct task_group *tg; 7455 7456 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7457 if (!tg) 7458 return ERR_PTR(-ENOMEM); 7459 7460 if (!alloc_fair_sched_group(tg, parent)) 7461 goto err; 7462 7463 if (!alloc_rt_sched_group(tg, parent)) 7464 goto err; 7465 7466 alloc_uclamp_sched_group(tg, parent); 7467 7468 return tg; 7469 7470 err: 7471 sched_free_group(tg); 7472 return ERR_PTR(-ENOMEM); 7473 } 7474 7475 void sched_online_group(struct task_group *tg, struct task_group *parent) 7476 { 7477 unsigned long flags; 7478 7479 spin_lock_irqsave(&task_group_lock, flags); 7480 list_add_rcu(&tg->list, &task_groups); 7481 7482 /* Root should already exist: */ 7483 WARN_ON(!parent); 7484 7485 tg->parent = parent; 7486 INIT_LIST_HEAD(&tg->children); 7487 list_add_rcu(&tg->siblings, &parent->children); 7488 spin_unlock_irqrestore(&task_group_lock, flags); 7489 7490 online_fair_sched_group(tg); 7491 } 7492 7493 /* rcu callback to free various structures associated with a task group */ 7494 static void sched_free_group_rcu(struct rcu_head *rhp) 7495 { 7496 /* Now it should be safe to free those cfs_rqs: */ 7497 sched_free_group(container_of(rhp, struct task_group, rcu)); 7498 } 7499 7500 void sched_destroy_group(struct task_group *tg) 7501 { 7502 /* Wait for possible concurrent references to cfs_rqs complete: */ 7503 call_rcu(&tg->rcu, sched_free_group_rcu); 7504 } 7505 7506 void sched_offline_group(struct task_group *tg) 7507 { 7508 unsigned long flags; 7509 7510 /* End participation in shares distribution: */ 7511 unregister_fair_sched_group(tg); 7512 7513 spin_lock_irqsave(&task_group_lock, flags); 7514 list_del_rcu(&tg->list); 7515 list_del_rcu(&tg->siblings); 7516 spin_unlock_irqrestore(&task_group_lock, flags); 7517 } 7518 7519 static void sched_change_group(struct task_struct *tsk, int type) 7520 { 7521 struct task_group *tg; 7522 7523 /* 7524 * All callers are synchronized by task_rq_lock(); we do not use RCU 7525 * which is pointless here. Thus, we pass "true" to task_css_check() 7526 * to prevent lockdep warnings. 7527 */ 7528 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7529 struct task_group, css); 7530 tg = autogroup_task_group(tsk, tg); 7531 tsk->sched_task_group = tg; 7532 7533 #ifdef CONFIG_FAIR_GROUP_SCHED 7534 if (tsk->sched_class->task_change_group) 7535 tsk->sched_class->task_change_group(tsk, type); 7536 else 7537 #endif 7538 set_task_rq(tsk, task_cpu(tsk)); 7539 } 7540 7541 /* 7542 * Change task's runqueue when it moves between groups. 7543 * 7544 * The caller of this function should have put the task in its new group by 7545 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7546 * its new group. 7547 */ 7548 void sched_move_task(struct task_struct *tsk) 7549 { 7550 int queued, running, queue_flags = 7551 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7552 struct rq_flags rf; 7553 struct rq *rq; 7554 7555 rq = task_rq_lock(tsk, &rf); 7556 update_rq_clock(rq); 7557 7558 running = task_current(rq, tsk); 7559 queued = task_on_rq_queued(tsk); 7560 7561 if (queued) 7562 dequeue_task(rq, tsk, queue_flags); 7563 if (running) 7564 put_prev_task(rq, tsk); 7565 7566 sched_change_group(tsk, TASK_MOVE_GROUP); 7567 7568 if (queued) 7569 enqueue_task(rq, tsk, queue_flags); 7570 if (running) { 7571 set_next_task(rq, tsk); 7572 /* 7573 * After changing group, the running task may have joined a 7574 * throttled one but it's still the running task. Trigger a 7575 * resched to make sure that task can still run. 7576 */ 7577 resched_curr(rq); 7578 } 7579 7580 task_rq_unlock(rq, tsk, &rf); 7581 } 7582 7583 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7584 { 7585 return css ? container_of(css, struct task_group, css) : NULL; 7586 } 7587 7588 static struct cgroup_subsys_state * 7589 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7590 { 7591 struct task_group *parent = css_tg(parent_css); 7592 struct task_group *tg; 7593 7594 if (!parent) { 7595 /* This is early initialization for the top cgroup */ 7596 return &root_task_group.css; 7597 } 7598 7599 tg = sched_create_group(parent); 7600 if (IS_ERR(tg)) 7601 return ERR_PTR(-ENOMEM); 7602 7603 return &tg->css; 7604 } 7605 7606 /* Expose task group only after completing cgroup initialization */ 7607 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7608 { 7609 struct task_group *tg = css_tg(css); 7610 struct task_group *parent = css_tg(css->parent); 7611 7612 if (parent) 7613 sched_online_group(tg, parent); 7614 7615 #ifdef CONFIG_UCLAMP_TASK_GROUP 7616 /* Propagate the effective uclamp value for the new group */ 7617 cpu_util_update_eff(css); 7618 #endif 7619 7620 return 0; 7621 } 7622 7623 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7624 { 7625 struct task_group *tg = css_tg(css); 7626 7627 sched_offline_group(tg); 7628 } 7629 7630 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7631 { 7632 struct task_group *tg = css_tg(css); 7633 7634 /* 7635 * Relies on the RCU grace period between css_released() and this. 7636 */ 7637 sched_free_group(tg); 7638 } 7639 7640 /* 7641 * This is called before wake_up_new_task(), therefore we really only 7642 * have to set its group bits, all the other stuff does not apply. 7643 */ 7644 static void cpu_cgroup_fork(struct task_struct *task) 7645 { 7646 struct rq_flags rf; 7647 struct rq *rq; 7648 7649 rq = task_rq_lock(task, &rf); 7650 7651 update_rq_clock(rq); 7652 sched_change_group(task, TASK_SET_GROUP); 7653 7654 task_rq_unlock(rq, task, &rf); 7655 } 7656 7657 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7658 { 7659 struct task_struct *task; 7660 struct cgroup_subsys_state *css; 7661 int ret = 0; 7662 7663 cgroup_taskset_for_each(task, css, tset) { 7664 #ifdef CONFIG_RT_GROUP_SCHED 7665 if (!sched_rt_can_attach(css_tg(css), task)) 7666 return -EINVAL; 7667 #endif 7668 /* 7669 * Serialize against wake_up_new_task() such that if its 7670 * running, we're sure to observe its full state. 7671 */ 7672 raw_spin_lock_irq(&task->pi_lock); 7673 /* 7674 * Avoid calling sched_move_task() before wake_up_new_task() 7675 * has happened. This would lead to problems with PELT, due to 7676 * move wanting to detach+attach while we're not attached yet. 7677 */ 7678 if (task->state == TASK_NEW) 7679 ret = -EINVAL; 7680 raw_spin_unlock_irq(&task->pi_lock); 7681 7682 if (ret) 7683 break; 7684 } 7685 return ret; 7686 } 7687 7688 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7689 { 7690 struct task_struct *task; 7691 struct cgroup_subsys_state *css; 7692 7693 cgroup_taskset_for_each(task, css, tset) 7694 sched_move_task(task); 7695 } 7696 7697 #ifdef CONFIG_UCLAMP_TASK_GROUP 7698 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7699 { 7700 struct cgroup_subsys_state *top_css = css; 7701 struct uclamp_se *uc_parent = NULL; 7702 struct uclamp_se *uc_se = NULL; 7703 unsigned int eff[UCLAMP_CNT]; 7704 enum uclamp_id clamp_id; 7705 unsigned int clamps; 7706 7707 css_for_each_descendant_pre(css, top_css) { 7708 uc_parent = css_tg(css)->parent 7709 ? css_tg(css)->parent->uclamp : NULL; 7710 7711 for_each_clamp_id(clamp_id) { 7712 /* Assume effective clamps matches requested clamps */ 7713 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7714 /* Cap effective clamps with parent's effective clamps */ 7715 if (uc_parent && 7716 eff[clamp_id] > uc_parent[clamp_id].value) { 7717 eff[clamp_id] = uc_parent[clamp_id].value; 7718 } 7719 } 7720 /* Ensure protection is always capped by limit */ 7721 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7722 7723 /* Propagate most restrictive effective clamps */ 7724 clamps = 0x0; 7725 uc_se = css_tg(css)->uclamp; 7726 for_each_clamp_id(clamp_id) { 7727 if (eff[clamp_id] == uc_se[clamp_id].value) 7728 continue; 7729 uc_se[clamp_id].value = eff[clamp_id]; 7730 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7731 clamps |= (0x1 << clamp_id); 7732 } 7733 if (!clamps) { 7734 css = css_rightmost_descendant(css); 7735 continue; 7736 } 7737 7738 /* Immediately update descendants RUNNABLE tasks */ 7739 uclamp_update_active_tasks(css, clamps); 7740 } 7741 } 7742 7743 /* 7744 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7745 * C expression. Since there is no way to convert a macro argument (N) into a 7746 * character constant, use two levels of macros. 7747 */ 7748 #define _POW10(exp) ((unsigned int)1e##exp) 7749 #define POW10(exp) _POW10(exp) 7750 7751 struct uclamp_request { 7752 #define UCLAMP_PERCENT_SHIFT 2 7753 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7754 s64 percent; 7755 u64 util; 7756 int ret; 7757 }; 7758 7759 static inline struct uclamp_request 7760 capacity_from_percent(char *buf) 7761 { 7762 struct uclamp_request req = { 7763 .percent = UCLAMP_PERCENT_SCALE, 7764 .util = SCHED_CAPACITY_SCALE, 7765 .ret = 0, 7766 }; 7767 7768 buf = strim(buf); 7769 if (strcmp(buf, "max")) { 7770 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7771 &req.percent); 7772 if (req.ret) 7773 return req; 7774 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7775 req.ret = -ERANGE; 7776 return req; 7777 } 7778 7779 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7780 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7781 } 7782 7783 return req; 7784 } 7785 7786 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7787 size_t nbytes, loff_t off, 7788 enum uclamp_id clamp_id) 7789 { 7790 struct uclamp_request req; 7791 struct task_group *tg; 7792 7793 req = capacity_from_percent(buf); 7794 if (req.ret) 7795 return req.ret; 7796 7797 static_branch_enable(&sched_uclamp_used); 7798 7799 mutex_lock(&uclamp_mutex); 7800 rcu_read_lock(); 7801 7802 tg = css_tg(of_css(of)); 7803 if (tg->uclamp_req[clamp_id].value != req.util) 7804 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7805 7806 /* 7807 * Because of not recoverable conversion rounding we keep track of the 7808 * exact requested value 7809 */ 7810 tg->uclamp_pct[clamp_id] = req.percent; 7811 7812 /* Update effective clamps to track the most restrictive value */ 7813 cpu_util_update_eff(of_css(of)); 7814 7815 rcu_read_unlock(); 7816 mutex_unlock(&uclamp_mutex); 7817 7818 return nbytes; 7819 } 7820 7821 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7822 char *buf, size_t nbytes, 7823 loff_t off) 7824 { 7825 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7826 } 7827 7828 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7829 char *buf, size_t nbytes, 7830 loff_t off) 7831 { 7832 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7833 } 7834 7835 static inline void cpu_uclamp_print(struct seq_file *sf, 7836 enum uclamp_id clamp_id) 7837 { 7838 struct task_group *tg; 7839 u64 util_clamp; 7840 u64 percent; 7841 u32 rem; 7842 7843 rcu_read_lock(); 7844 tg = css_tg(seq_css(sf)); 7845 util_clamp = tg->uclamp_req[clamp_id].value; 7846 rcu_read_unlock(); 7847 7848 if (util_clamp == SCHED_CAPACITY_SCALE) { 7849 seq_puts(sf, "max\n"); 7850 return; 7851 } 7852 7853 percent = tg->uclamp_pct[clamp_id]; 7854 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7855 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7856 } 7857 7858 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7859 { 7860 cpu_uclamp_print(sf, UCLAMP_MIN); 7861 return 0; 7862 } 7863 7864 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7865 { 7866 cpu_uclamp_print(sf, UCLAMP_MAX); 7867 return 0; 7868 } 7869 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7870 7871 #ifdef CONFIG_FAIR_GROUP_SCHED 7872 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7873 struct cftype *cftype, u64 shareval) 7874 { 7875 if (shareval > scale_load_down(ULONG_MAX)) 7876 shareval = MAX_SHARES; 7877 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7878 } 7879 7880 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7881 struct cftype *cft) 7882 { 7883 struct task_group *tg = css_tg(css); 7884 7885 return (u64) scale_load_down(tg->shares); 7886 } 7887 7888 #ifdef CONFIG_CFS_BANDWIDTH 7889 static DEFINE_MUTEX(cfs_constraints_mutex); 7890 7891 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7892 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7893 /* More than 203 days if BW_SHIFT equals 20. */ 7894 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 7895 7896 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7897 7898 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7899 { 7900 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7902 7903 if (tg == &root_task_group) 7904 return -EINVAL; 7905 7906 /* 7907 * Ensure we have at some amount of bandwidth every period. This is 7908 * to prevent reaching a state of large arrears when throttled via 7909 * entity_tick() resulting in prolonged exit starvation. 7910 */ 7911 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7912 return -EINVAL; 7913 7914 /* 7915 * Likewise, bound things on the otherside by preventing insane quota 7916 * periods. This also allows us to normalize in computing quota 7917 * feasibility. 7918 */ 7919 if (period > max_cfs_quota_period) 7920 return -EINVAL; 7921 7922 /* 7923 * Bound quota to defend quota against overflow during bandwidth shift. 7924 */ 7925 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 7926 return -EINVAL; 7927 7928 /* 7929 * Prevent race between setting of cfs_rq->runtime_enabled and 7930 * unthrottle_offline_cfs_rqs(). 7931 */ 7932 get_online_cpus(); 7933 mutex_lock(&cfs_constraints_mutex); 7934 ret = __cfs_schedulable(tg, period, quota); 7935 if (ret) 7936 goto out_unlock; 7937 7938 runtime_enabled = quota != RUNTIME_INF; 7939 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7940 /* 7941 * If we need to toggle cfs_bandwidth_used, off->on must occur 7942 * before making related changes, and on->off must occur afterwards 7943 */ 7944 if (runtime_enabled && !runtime_was_enabled) 7945 cfs_bandwidth_usage_inc(); 7946 raw_spin_lock_irq(&cfs_b->lock); 7947 cfs_b->period = ns_to_ktime(period); 7948 cfs_b->quota = quota; 7949 7950 __refill_cfs_bandwidth_runtime(cfs_b); 7951 7952 /* Restart the period timer (if active) to handle new period expiry: */ 7953 if (runtime_enabled) 7954 start_cfs_bandwidth(cfs_b); 7955 7956 raw_spin_unlock_irq(&cfs_b->lock); 7957 7958 for_each_online_cpu(i) { 7959 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7960 struct rq *rq = cfs_rq->rq; 7961 struct rq_flags rf; 7962 7963 rq_lock_irq(rq, &rf); 7964 cfs_rq->runtime_enabled = runtime_enabled; 7965 cfs_rq->runtime_remaining = 0; 7966 7967 if (cfs_rq->throttled) 7968 unthrottle_cfs_rq(cfs_rq); 7969 rq_unlock_irq(rq, &rf); 7970 } 7971 if (runtime_was_enabled && !runtime_enabled) 7972 cfs_bandwidth_usage_dec(); 7973 out_unlock: 7974 mutex_unlock(&cfs_constraints_mutex); 7975 put_online_cpus(); 7976 7977 return ret; 7978 } 7979 7980 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7981 { 7982 u64 quota, period; 7983 7984 period = ktime_to_ns(tg->cfs_bandwidth.period); 7985 if (cfs_quota_us < 0) 7986 quota = RUNTIME_INF; 7987 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7988 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7989 else 7990 return -EINVAL; 7991 7992 return tg_set_cfs_bandwidth(tg, period, quota); 7993 } 7994 7995 static long tg_get_cfs_quota(struct task_group *tg) 7996 { 7997 u64 quota_us; 7998 7999 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8000 return -1; 8001 8002 quota_us = tg->cfs_bandwidth.quota; 8003 do_div(quota_us, NSEC_PER_USEC); 8004 8005 return quota_us; 8006 } 8007 8008 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8009 { 8010 u64 quota, period; 8011 8012 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 8013 return -EINVAL; 8014 8015 period = (u64)cfs_period_us * NSEC_PER_USEC; 8016 quota = tg->cfs_bandwidth.quota; 8017 8018 return tg_set_cfs_bandwidth(tg, period, quota); 8019 } 8020 8021 static long tg_get_cfs_period(struct task_group *tg) 8022 { 8023 u64 cfs_period_us; 8024 8025 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8026 do_div(cfs_period_us, NSEC_PER_USEC); 8027 8028 return cfs_period_us; 8029 } 8030 8031 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8032 struct cftype *cft) 8033 { 8034 return tg_get_cfs_quota(css_tg(css)); 8035 } 8036 8037 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8038 struct cftype *cftype, s64 cfs_quota_us) 8039 { 8040 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8041 } 8042 8043 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8044 struct cftype *cft) 8045 { 8046 return tg_get_cfs_period(css_tg(css)); 8047 } 8048 8049 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8050 struct cftype *cftype, u64 cfs_period_us) 8051 { 8052 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8053 } 8054 8055 struct cfs_schedulable_data { 8056 struct task_group *tg; 8057 u64 period, quota; 8058 }; 8059 8060 /* 8061 * normalize group quota/period to be quota/max_period 8062 * note: units are usecs 8063 */ 8064 static u64 normalize_cfs_quota(struct task_group *tg, 8065 struct cfs_schedulable_data *d) 8066 { 8067 u64 quota, period; 8068 8069 if (tg == d->tg) { 8070 period = d->period; 8071 quota = d->quota; 8072 } else { 8073 period = tg_get_cfs_period(tg); 8074 quota = tg_get_cfs_quota(tg); 8075 } 8076 8077 /* note: these should typically be equivalent */ 8078 if (quota == RUNTIME_INF || quota == -1) 8079 return RUNTIME_INF; 8080 8081 return to_ratio(period, quota); 8082 } 8083 8084 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8085 { 8086 struct cfs_schedulable_data *d = data; 8087 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8088 s64 quota = 0, parent_quota = -1; 8089 8090 if (!tg->parent) { 8091 quota = RUNTIME_INF; 8092 } else { 8093 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8094 8095 quota = normalize_cfs_quota(tg, d); 8096 parent_quota = parent_b->hierarchical_quota; 8097 8098 /* 8099 * Ensure max(child_quota) <= parent_quota. On cgroup2, 8100 * always take the min. On cgroup1, only inherit when no 8101 * limit is set: 8102 */ 8103 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 8104 quota = min(quota, parent_quota); 8105 } else { 8106 if (quota == RUNTIME_INF) 8107 quota = parent_quota; 8108 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8109 return -EINVAL; 8110 } 8111 } 8112 cfs_b->hierarchical_quota = quota; 8113 8114 return 0; 8115 } 8116 8117 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8118 { 8119 int ret; 8120 struct cfs_schedulable_data data = { 8121 .tg = tg, 8122 .period = period, 8123 .quota = quota, 8124 }; 8125 8126 if (quota != RUNTIME_INF) { 8127 do_div(data.period, NSEC_PER_USEC); 8128 do_div(data.quota, NSEC_PER_USEC); 8129 } 8130 8131 rcu_read_lock(); 8132 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8133 rcu_read_unlock(); 8134 8135 return ret; 8136 } 8137 8138 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 8139 { 8140 struct task_group *tg = css_tg(seq_css(sf)); 8141 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8142 8143 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8144 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8145 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8146 8147 if (schedstat_enabled() && tg != &root_task_group) { 8148 u64 ws = 0; 8149 int i; 8150 8151 for_each_possible_cpu(i) 8152 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 8153 8154 seq_printf(sf, "wait_sum %llu\n", ws); 8155 } 8156 8157 return 0; 8158 } 8159 #endif /* CONFIG_CFS_BANDWIDTH */ 8160 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8161 8162 #ifdef CONFIG_RT_GROUP_SCHED 8163 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8164 struct cftype *cft, s64 val) 8165 { 8166 return sched_group_set_rt_runtime(css_tg(css), val); 8167 } 8168 8169 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8170 struct cftype *cft) 8171 { 8172 return sched_group_rt_runtime(css_tg(css)); 8173 } 8174 8175 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8176 struct cftype *cftype, u64 rt_period_us) 8177 { 8178 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8179 } 8180 8181 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8182 struct cftype *cft) 8183 { 8184 return sched_group_rt_period(css_tg(css)); 8185 } 8186 #endif /* CONFIG_RT_GROUP_SCHED */ 8187 8188 static struct cftype cpu_legacy_files[] = { 8189 #ifdef CONFIG_FAIR_GROUP_SCHED 8190 { 8191 .name = "shares", 8192 .read_u64 = cpu_shares_read_u64, 8193 .write_u64 = cpu_shares_write_u64, 8194 }, 8195 #endif 8196 #ifdef CONFIG_CFS_BANDWIDTH 8197 { 8198 .name = "cfs_quota_us", 8199 .read_s64 = cpu_cfs_quota_read_s64, 8200 .write_s64 = cpu_cfs_quota_write_s64, 8201 }, 8202 { 8203 .name = "cfs_period_us", 8204 .read_u64 = cpu_cfs_period_read_u64, 8205 .write_u64 = cpu_cfs_period_write_u64, 8206 }, 8207 { 8208 .name = "stat", 8209 .seq_show = cpu_cfs_stat_show, 8210 }, 8211 #endif 8212 #ifdef CONFIG_RT_GROUP_SCHED 8213 { 8214 .name = "rt_runtime_us", 8215 .read_s64 = cpu_rt_runtime_read, 8216 .write_s64 = cpu_rt_runtime_write, 8217 }, 8218 { 8219 .name = "rt_period_us", 8220 .read_u64 = cpu_rt_period_read_uint, 8221 .write_u64 = cpu_rt_period_write_uint, 8222 }, 8223 #endif 8224 #ifdef CONFIG_UCLAMP_TASK_GROUP 8225 { 8226 .name = "uclamp.min", 8227 .flags = CFTYPE_NOT_ON_ROOT, 8228 .seq_show = cpu_uclamp_min_show, 8229 .write = cpu_uclamp_min_write, 8230 }, 8231 { 8232 .name = "uclamp.max", 8233 .flags = CFTYPE_NOT_ON_ROOT, 8234 .seq_show = cpu_uclamp_max_show, 8235 .write = cpu_uclamp_max_write, 8236 }, 8237 #endif 8238 { } /* Terminate */ 8239 }; 8240 8241 static int cpu_extra_stat_show(struct seq_file *sf, 8242 struct cgroup_subsys_state *css) 8243 { 8244 #ifdef CONFIG_CFS_BANDWIDTH 8245 { 8246 struct task_group *tg = css_tg(css); 8247 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8248 u64 throttled_usec; 8249 8250 throttled_usec = cfs_b->throttled_time; 8251 do_div(throttled_usec, NSEC_PER_USEC); 8252 8253 seq_printf(sf, "nr_periods %d\n" 8254 "nr_throttled %d\n" 8255 "throttled_usec %llu\n", 8256 cfs_b->nr_periods, cfs_b->nr_throttled, 8257 throttled_usec); 8258 } 8259 #endif 8260 return 0; 8261 } 8262 8263 #ifdef CONFIG_FAIR_GROUP_SCHED 8264 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 8265 struct cftype *cft) 8266 { 8267 struct task_group *tg = css_tg(css); 8268 u64 weight = scale_load_down(tg->shares); 8269 8270 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 8271 } 8272 8273 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 8274 struct cftype *cft, u64 weight) 8275 { 8276 /* 8277 * cgroup weight knobs should use the common MIN, DFL and MAX 8278 * values which are 1, 100 and 10000 respectively. While it loses 8279 * a bit of range on both ends, it maps pretty well onto the shares 8280 * value used by scheduler and the round-trip conversions preserve 8281 * the original value over the entire range. 8282 */ 8283 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 8284 return -ERANGE; 8285 8286 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 8287 8288 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8289 } 8290 8291 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 8292 struct cftype *cft) 8293 { 8294 unsigned long weight = scale_load_down(css_tg(css)->shares); 8295 int last_delta = INT_MAX; 8296 int prio, delta; 8297 8298 /* find the closest nice value to the current weight */ 8299 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 8300 delta = abs(sched_prio_to_weight[prio] - weight); 8301 if (delta >= last_delta) 8302 break; 8303 last_delta = delta; 8304 } 8305 8306 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 8307 } 8308 8309 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 8310 struct cftype *cft, s64 nice) 8311 { 8312 unsigned long weight; 8313 int idx; 8314 8315 if (nice < MIN_NICE || nice > MAX_NICE) 8316 return -ERANGE; 8317 8318 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 8319 idx = array_index_nospec(idx, 40); 8320 weight = sched_prio_to_weight[idx]; 8321 8322 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8323 } 8324 #endif 8325 8326 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 8327 long period, long quota) 8328 { 8329 if (quota < 0) 8330 seq_puts(sf, "max"); 8331 else 8332 seq_printf(sf, "%ld", quota); 8333 8334 seq_printf(sf, " %ld\n", period); 8335 } 8336 8337 /* caller should put the current value in *@periodp before calling */ 8338 static int __maybe_unused cpu_period_quota_parse(char *buf, 8339 u64 *periodp, u64 *quotap) 8340 { 8341 char tok[21]; /* U64_MAX */ 8342 8343 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 8344 return -EINVAL; 8345 8346 *periodp *= NSEC_PER_USEC; 8347 8348 if (sscanf(tok, "%llu", quotap)) 8349 *quotap *= NSEC_PER_USEC; 8350 else if (!strcmp(tok, "max")) 8351 *quotap = RUNTIME_INF; 8352 else 8353 return -EINVAL; 8354 8355 return 0; 8356 } 8357 8358 #ifdef CONFIG_CFS_BANDWIDTH 8359 static int cpu_max_show(struct seq_file *sf, void *v) 8360 { 8361 struct task_group *tg = css_tg(seq_css(sf)); 8362 8363 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 8364 return 0; 8365 } 8366 8367 static ssize_t cpu_max_write(struct kernfs_open_file *of, 8368 char *buf, size_t nbytes, loff_t off) 8369 { 8370 struct task_group *tg = css_tg(of_css(of)); 8371 u64 period = tg_get_cfs_period(tg); 8372 u64 quota; 8373 int ret; 8374 8375 ret = cpu_period_quota_parse(buf, &period, "a); 8376 if (!ret) 8377 ret = tg_set_cfs_bandwidth(tg, period, quota); 8378 return ret ?: nbytes; 8379 } 8380 #endif 8381 8382 static struct cftype cpu_files[] = { 8383 #ifdef CONFIG_FAIR_GROUP_SCHED 8384 { 8385 .name = "weight", 8386 .flags = CFTYPE_NOT_ON_ROOT, 8387 .read_u64 = cpu_weight_read_u64, 8388 .write_u64 = cpu_weight_write_u64, 8389 }, 8390 { 8391 .name = "weight.nice", 8392 .flags = CFTYPE_NOT_ON_ROOT, 8393 .read_s64 = cpu_weight_nice_read_s64, 8394 .write_s64 = cpu_weight_nice_write_s64, 8395 }, 8396 #endif 8397 #ifdef CONFIG_CFS_BANDWIDTH 8398 { 8399 .name = "max", 8400 .flags = CFTYPE_NOT_ON_ROOT, 8401 .seq_show = cpu_max_show, 8402 .write = cpu_max_write, 8403 }, 8404 #endif 8405 #ifdef CONFIG_UCLAMP_TASK_GROUP 8406 { 8407 .name = "uclamp.min", 8408 .flags = CFTYPE_NOT_ON_ROOT, 8409 .seq_show = cpu_uclamp_min_show, 8410 .write = cpu_uclamp_min_write, 8411 }, 8412 { 8413 .name = "uclamp.max", 8414 .flags = CFTYPE_NOT_ON_ROOT, 8415 .seq_show = cpu_uclamp_max_show, 8416 .write = cpu_uclamp_max_write, 8417 }, 8418 #endif 8419 { } /* terminate */ 8420 }; 8421 8422 struct cgroup_subsys cpu_cgrp_subsys = { 8423 .css_alloc = cpu_cgroup_css_alloc, 8424 .css_online = cpu_cgroup_css_online, 8425 .css_released = cpu_cgroup_css_released, 8426 .css_free = cpu_cgroup_css_free, 8427 .css_extra_stat_show = cpu_extra_stat_show, 8428 .fork = cpu_cgroup_fork, 8429 .can_attach = cpu_cgroup_can_attach, 8430 .attach = cpu_cgroup_attach, 8431 .legacy_cftypes = cpu_legacy_files, 8432 .dfl_cftypes = cpu_files, 8433 .early_init = true, 8434 .threaded = true, 8435 }; 8436 8437 #endif /* CONFIG_CGROUP_SCHED */ 8438 8439 void dump_cpu_task(int cpu) 8440 { 8441 pr_info("Task dump for CPU %d:\n", cpu); 8442 sched_show_task(cpu_curr(cpu)); 8443 } 8444 8445 /* 8446 * Nice levels are multiplicative, with a gentle 10% change for every 8447 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8448 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8449 * that remained on nice 0. 8450 * 8451 * The "10% effect" is relative and cumulative: from _any_ nice level, 8452 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8453 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8454 * If a task goes up by ~10% and another task goes down by ~10% then 8455 * the relative distance between them is ~25%.) 8456 */ 8457 const int sched_prio_to_weight[40] = { 8458 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8459 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8460 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8461 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8462 /* 0 */ 1024, 820, 655, 526, 423, 8463 /* 5 */ 335, 272, 215, 172, 137, 8464 /* 10 */ 110, 87, 70, 56, 45, 8465 /* 15 */ 36, 29, 23, 18, 15, 8466 }; 8467 8468 /* 8469 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8470 * 8471 * In cases where the weight does not change often, we can use the 8472 * precalculated inverse to speed up arithmetics by turning divisions 8473 * into multiplications: 8474 */ 8475 const u32 sched_prio_to_wmult[40] = { 8476 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8477 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8478 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8479 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8480 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8481 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8482 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8483 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8484 }; 8485 8486 void call_trace_sched_update_nr_running(struct rq *rq, int count) 8487 { 8488 trace_sched_update_nr_running_tp(rq, count); 8489 } 8490