xref: /openbmc/linux/kernel/sched/core.c (revision 80ecbd24)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  */
374 
375 static void hrtick_clear(struct rq *rq)
376 {
377 	if (hrtimer_active(&rq->hrtick_timer))
378 		hrtimer_cancel(&rq->hrtick_timer);
379 }
380 
381 /*
382  * High-resolution timer tick.
383  * Runs from hardirq context with interrupts disabled.
384  */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388 
389 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 
391 	raw_spin_lock(&rq->lock);
392 	update_rq_clock(rq);
393 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 	raw_spin_unlock(&rq->lock);
395 
396 	return HRTIMER_NORESTART;
397 }
398 
399 #ifdef CONFIG_SMP
400 
401 static int __hrtick_restart(struct rq *rq)
402 {
403 	struct hrtimer *timer = &rq->hrtick_timer;
404 	ktime_t time = hrtimer_get_softexpires(timer);
405 
406 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408 
409 /*
410  * called from hardirq (IPI) context
411  */
412 static void __hrtick_start(void *arg)
413 {
414 	struct rq *rq = arg;
415 
416 	raw_spin_lock(&rq->lock);
417 	__hrtick_restart(rq);
418 	rq->hrtick_csd_pending = 0;
419 	raw_spin_unlock(&rq->lock);
420 }
421 
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	struct hrtimer *timer = &rq->hrtick_timer;
430 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431 
432 	hrtimer_set_expires(timer, time);
433 
434 	if (rq == this_rq()) {
435 		__hrtick_restart(rq);
436 	} else if (!rq->hrtick_csd_pending) {
437 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 		rq->hrtick_csd_pending = 1;
439 	}
440 }
441 
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 	int cpu = (int)(long)hcpu;
446 
447 	switch (action) {
448 	case CPU_UP_CANCELED:
449 	case CPU_UP_CANCELED_FROZEN:
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 	case CPU_DEAD:
453 	case CPU_DEAD_FROZEN:
454 		hrtick_clear(cpu_rq(cpu));
455 		return NOTIFY_OK;
456 	}
457 
458 	return NOTIFY_DONE;
459 }
460 
461 static __init void init_hrtick(void)
462 {
463 	hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467  * Called to set the hrtick timer state.
468  *
469  * called with rq->lock held and irqs disabled
470  */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 			HRTIMER_MODE_REL_PINNED, 0);
475 }
476 
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 	rq->hrtick_csd_pending = 0;
486 
487 	rq->hrtick_csd.flags = 0;
488 	rq->hrtick_csd.func = __hrtick_start;
489 	rq->hrtick_csd.info = rq;
490 #endif
491 
492 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 	rq->hrtick_timer.function = hrtick;
494 }
495 #else	/* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499 
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif	/* CONFIG_SCHED_HRTICK */
508 
509 /*
510  * resched_task - mark a task 'to be rescheduled now'.
511  *
512  * On UP this means the setting of the need_resched flag, on SMP it
513  * might also involve a cross-CPU call to trigger the scheduler on
514  * the target CPU.
515  */
516 #ifdef CONFIG_SMP
517 void resched_task(struct task_struct *p)
518 {
519 	int cpu;
520 
521 	assert_raw_spin_locked(&task_rq(p)->lock);
522 
523 	if (test_tsk_need_resched(p))
524 		return;
525 
526 	set_tsk_need_resched(p);
527 
528 	cpu = task_cpu(p);
529 	if (cpu == smp_processor_id())
530 		return;
531 
532 	/* NEED_RESCHED must be visible before we test polling */
533 	smp_mb();
534 	if (!tsk_is_polling(p))
535 		smp_send_reschedule(cpu);
536 }
537 
538 void resched_cpu(int cpu)
539 {
540 	struct rq *rq = cpu_rq(cpu);
541 	unsigned long flags;
542 
543 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 		return;
545 	resched_task(cpu_curr(cpu));
546 	raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548 
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551  * In the semi idle case, use the nearest busy cpu for migrating timers
552  * from an idle cpu.  This is good for power-savings.
553  *
554  * We don't do similar optimization for completely idle system, as
555  * selecting an idle cpu will add more delays to the timers than intended
556  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557  */
558 int get_nohz_timer_target(void)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct sched_domain *sd;
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu(i, sched_domain_span(sd)) {
567 			if (!idle_cpu(i)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 unlock:
574 	rcu_read_unlock();
575 	return cpu;
576 }
577 /*
578  * When add_timer_on() enqueues a timer into the timer wheel of an
579  * idle CPU then this timer might expire before the next timer event
580  * which is scheduled to wake up that CPU. In case of a completely
581  * idle system the next event might even be infinite time into the
582  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583  * leaves the inner idle loop so the newly added timer is taken into
584  * account when the CPU goes back to idle and evaluates the timer
585  * wheel for the next timer event.
586  */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 	struct rq *rq = cpu_rq(cpu);
590 
591 	if (cpu == smp_processor_id())
592 		return;
593 
594 	/*
595 	 * This is safe, as this function is called with the timer
596 	 * wheel base lock of (cpu) held. When the CPU is on the way
597 	 * to idle and has not yet set rq->curr to idle then it will
598 	 * be serialized on the timer wheel base lock and take the new
599 	 * timer into account automatically.
600 	 */
601 	if (rq->curr != rq->idle)
602 		return;
603 
604 	/*
605 	 * We can set TIF_RESCHED on the idle task of the other CPU
606 	 * lockless. The worst case is that the other CPU runs the
607 	 * idle task through an additional NOOP schedule()
608 	 */
609 	set_tsk_need_resched(rq->idle);
610 
611 	/* NEED_RESCHED must be visible before we test polling */
612 	smp_mb();
613 	if (!tsk_is_polling(rq->idle))
614 		smp_send_reschedule(cpu);
615 }
616 
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			smp_send_reschedule(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665        struct rq *rq;
666 
667        rq = this_rq();
668 
669        /* Make sure rq->nr_running update is visible after the IPI */
670        smp_rmb();
671 
672        /* More than one running task need preemption */
673        if (rq->nr_running > 1)
674                return false;
675 
676        return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679 
680 void sched_avg_update(struct rq *rq)
681 {
682 	s64 period = sched_avg_period();
683 
684 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 		/*
686 		 * Inline assembly required to prevent the compiler
687 		 * optimising this loop into a divmod call.
688 		 * See __iter_div_u64_rem() for another example of this.
689 		 */
690 		asm("" : "+rm" (rq->age_stamp));
691 		rq->age_stamp += period;
692 		rq->rt_avg /= 2;
693 	}
694 }
695 
696 #else /* !CONFIG_SMP */
697 void resched_task(struct task_struct *p)
698 {
699 	assert_raw_spin_locked(&task_rq(p)->lock);
700 	set_tsk_need_resched(p);
701 }
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (p->policy == SCHED_IDLE) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	load->weight = scale_load(prio_to_weight[prio]);
764 	load->inv_weight = prio_to_wmult[prio];
765 }
766 
767 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 	update_rq_clock(rq);
770 	sched_info_queued(p);
771 	p->sched_class->enqueue_task(rq, p, flags);
772 }
773 
774 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 	update_rq_clock(rq);
777 	sched_info_dequeued(p);
778 	p->sched_class->dequeue_task(rq, p, flags);
779 }
780 
781 void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 {
783 	if (task_contributes_to_load(p))
784 		rq->nr_uninterruptible--;
785 
786 	enqueue_task(rq, p, flags);
787 }
788 
789 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 	if (task_contributes_to_load(p))
792 		rq->nr_uninterruptible++;
793 
794 	dequeue_task(rq, p, flags);
795 }
796 
797 static void update_rq_clock_task(struct rq *rq, s64 delta)
798 {
799 /*
800  * In theory, the compile should just see 0 here, and optimize out the call
801  * to sched_rt_avg_update. But I don't trust it...
802  */
803 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804 	s64 steal = 0, irq_delta = 0;
805 #endif
806 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
807 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 
809 	/*
810 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811 	 * this case when a previous update_rq_clock() happened inside a
812 	 * {soft,}irq region.
813 	 *
814 	 * When this happens, we stop ->clock_task and only update the
815 	 * prev_irq_time stamp to account for the part that fit, so that a next
816 	 * update will consume the rest. This ensures ->clock_task is
817 	 * monotonic.
818 	 *
819 	 * It does however cause some slight miss-attribution of {soft,}irq
820 	 * time, a more accurate solution would be to update the irq_time using
821 	 * the current rq->clock timestamp, except that would require using
822 	 * atomic ops.
823 	 */
824 	if (irq_delta > delta)
825 		irq_delta = delta;
826 
827 	rq->prev_irq_time += irq_delta;
828 	delta -= irq_delta;
829 #endif
830 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831 	if (static_key_false((&paravirt_steal_rq_enabled))) {
832 		u64 st;
833 
834 		steal = paravirt_steal_clock(cpu_of(rq));
835 		steal -= rq->prev_steal_time_rq;
836 
837 		if (unlikely(steal > delta))
838 			steal = delta;
839 
840 		st = steal_ticks(steal);
841 		steal = st * TICK_NSEC;
842 
843 		rq->prev_steal_time_rq += steal;
844 
845 		delta -= steal;
846 	}
847 #endif
848 
849 	rq->clock_task += delta;
850 
851 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853 		sched_rt_avg_update(rq, irq_delta + steal);
854 #endif
855 }
856 
857 void sched_set_stop_task(int cpu, struct task_struct *stop)
858 {
859 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
861 
862 	if (stop) {
863 		/*
864 		 * Make it appear like a SCHED_FIFO task, its something
865 		 * userspace knows about and won't get confused about.
866 		 *
867 		 * Also, it will make PI more or less work without too
868 		 * much confusion -- but then, stop work should not
869 		 * rely on PI working anyway.
870 		 */
871 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872 
873 		stop->sched_class = &stop_sched_class;
874 	}
875 
876 	cpu_rq(cpu)->stop = stop;
877 
878 	if (old_stop) {
879 		/*
880 		 * Reset it back to a normal scheduling class so that
881 		 * it can die in pieces.
882 		 */
883 		old_stop->sched_class = &rt_sched_class;
884 	}
885 }
886 
887 /*
888  * __normal_prio - return the priority that is based on the static prio
889  */
890 static inline int __normal_prio(struct task_struct *p)
891 {
892 	return p->static_prio;
893 }
894 
895 /*
896  * Calculate the expected normal priority: i.e. priority
897  * without taking RT-inheritance into account. Might be
898  * boosted by interactivity modifiers. Changes upon fork,
899  * setprio syscalls, and whenever the interactivity
900  * estimator recalculates.
901  */
902 static inline int normal_prio(struct task_struct *p)
903 {
904 	int prio;
905 
906 	if (task_has_rt_policy(p))
907 		prio = MAX_RT_PRIO-1 - p->rt_priority;
908 	else
909 		prio = __normal_prio(p);
910 	return prio;
911 }
912 
913 /*
914  * Calculate the current priority, i.e. the priority
915  * taken into account by the scheduler. This value might
916  * be boosted by RT tasks, or might be boosted by
917  * interactivity modifiers. Will be RT if the task got
918  * RT-boosted. If not then it returns p->normal_prio.
919  */
920 static int effective_prio(struct task_struct *p)
921 {
922 	p->normal_prio = normal_prio(p);
923 	/*
924 	 * If we are RT tasks or we were boosted to RT priority,
925 	 * keep the priority unchanged. Otherwise, update priority
926 	 * to the normal priority:
927 	 */
928 	if (!rt_prio(p->prio))
929 		return p->normal_prio;
930 	return p->prio;
931 }
932 
933 /**
934  * task_curr - is this task currently executing on a CPU?
935  * @p: the task in question.
936  *
937  * Return: 1 if the task is currently executing. 0 otherwise.
938  */
939 inline int task_curr(const struct task_struct *p)
940 {
941 	return cpu_curr(task_cpu(p)) == p;
942 }
943 
944 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
945 				       const struct sched_class *prev_class,
946 				       int oldprio)
947 {
948 	if (prev_class != p->sched_class) {
949 		if (prev_class->switched_from)
950 			prev_class->switched_from(rq, p);
951 		p->sched_class->switched_to(rq, p);
952 	} else if (oldprio != p->prio)
953 		p->sched_class->prio_changed(rq, p, oldprio);
954 }
955 
956 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
957 {
958 	const struct sched_class *class;
959 
960 	if (p->sched_class == rq->curr->sched_class) {
961 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
962 	} else {
963 		for_each_class(class) {
964 			if (class == rq->curr->sched_class)
965 				break;
966 			if (class == p->sched_class) {
967 				resched_task(rq->curr);
968 				break;
969 			}
970 		}
971 	}
972 
973 	/*
974 	 * A queue event has occurred, and we're going to schedule.  In
975 	 * this case, we can save a useless back to back clock update.
976 	 */
977 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
978 		rq->skip_clock_update = 1;
979 }
980 
981 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
982 
983 void register_task_migration_notifier(struct notifier_block *n)
984 {
985 	atomic_notifier_chain_register(&task_migration_notifier, n);
986 }
987 
988 #ifdef CONFIG_SMP
989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
990 {
991 #ifdef CONFIG_SCHED_DEBUG
992 	/*
993 	 * We should never call set_task_cpu() on a blocked task,
994 	 * ttwu() will sort out the placement.
995 	 */
996 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
998 
999 #ifdef CONFIG_LOCKDEP
1000 	/*
1001 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1002 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003 	 *
1004 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1005 	 * see task_group().
1006 	 *
1007 	 * Furthermore, all task_rq users should acquire both locks, see
1008 	 * task_rq_lock().
1009 	 */
1010 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011 				      lockdep_is_held(&task_rq(p)->lock)));
1012 #endif
1013 #endif
1014 
1015 	trace_sched_migrate_task(p, new_cpu);
1016 
1017 	if (task_cpu(p) != new_cpu) {
1018 		struct task_migration_notifier tmn;
1019 
1020 		if (p->sched_class->migrate_task_rq)
1021 			p->sched_class->migrate_task_rq(p, new_cpu);
1022 		p->se.nr_migrations++;
1023 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1024 
1025 		tmn.task = p;
1026 		tmn.from_cpu = task_cpu(p);
1027 		tmn.to_cpu = new_cpu;
1028 
1029 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1030 	}
1031 
1032 	__set_task_cpu(p, new_cpu);
1033 }
1034 
1035 struct migration_arg {
1036 	struct task_struct *task;
1037 	int dest_cpu;
1038 };
1039 
1040 static int migration_cpu_stop(void *data);
1041 
1042 /*
1043  * wait_task_inactive - wait for a thread to unschedule.
1044  *
1045  * If @match_state is nonzero, it's the @p->state value just checked and
1046  * not expected to change.  If it changes, i.e. @p might have woken up,
1047  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1048  * we return a positive number (its total switch count).  If a second call
1049  * a short while later returns the same number, the caller can be sure that
1050  * @p has remained unscheduled the whole time.
1051  *
1052  * The caller must ensure that the task *will* unschedule sometime soon,
1053  * else this function might spin for a *long* time. This function can't
1054  * be called with interrupts off, or it may introduce deadlock with
1055  * smp_call_function() if an IPI is sent by the same process we are
1056  * waiting to become inactive.
1057  */
1058 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1059 {
1060 	unsigned long flags;
1061 	int running, on_rq;
1062 	unsigned long ncsw;
1063 	struct rq *rq;
1064 
1065 	for (;;) {
1066 		/*
1067 		 * We do the initial early heuristics without holding
1068 		 * any task-queue locks at all. We'll only try to get
1069 		 * the runqueue lock when things look like they will
1070 		 * work out!
1071 		 */
1072 		rq = task_rq(p);
1073 
1074 		/*
1075 		 * If the task is actively running on another CPU
1076 		 * still, just relax and busy-wait without holding
1077 		 * any locks.
1078 		 *
1079 		 * NOTE! Since we don't hold any locks, it's not
1080 		 * even sure that "rq" stays as the right runqueue!
1081 		 * But we don't care, since "task_running()" will
1082 		 * return false if the runqueue has changed and p
1083 		 * is actually now running somewhere else!
1084 		 */
1085 		while (task_running(rq, p)) {
1086 			if (match_state && unlikely(p->state != match_state))
1087 				return 0;
1088 			cpu_relax();
1089 		}
1090 
1091 		/*
1092 		 * Ok, time to look more closely! We need the rq
1093 		 * lock now, to be *sure*. If we're wrong, we'll
1094 		 * just go back and repeat.
1095 		 */
1096 		rq = task_rq_lock(p, &flags);
1097 		trace_sched_wait_task(p);
1098 		running = task_running(rq, p);
1099 		on_rq = p->on_rq;
1100 		ncsw = 0;
1101 		if (!match_state || p->state == match_state)
1102 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1103 		task_rq_unlock(rq, p, &flags);
1104 
1105 		/*
1106 		 * If it changed from the expected state, bail out now.
1107 		 */
1108 		if (unlikely(!ncsw))
1109 			break;
1110 
1111 		/*
1112 		 * Was it really running after all now that we
1113 		 * checked with the proper locks actually held?
1114 		 *
1115 		 * Oops. Go back and try again..
1116 		 */
1117 		if (unlikely(running)) {
1118 			cpu_relax();
1119 			continue;
1120 		}
1121 
1122 		/*
1123 		 * It's not enough that it's not actively running,
1124 		 * it must be off the runqueue _entirely_, and not
1125 		 * preempted!
1126 		 *
1127 		 * So if it was still runnable (but just not actively
1128 		 * running right now), it's preempted, and we should
1129 		 * yield - it could be a while.
1130 		 */
1131 		if (unlikely(on_rq)) {
1132 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1133 
1134 			set_current_state(TASK_UNINTERRUPTIBLE);
1135 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136 			continue;
1137 		}
1138 
1139 		/*
1140 		 * Ahh, all good. It wasn't running, and it wasn't
1141 		 * runnable, which means that it will never become
1142 		 * running in the future either. We're all done!
1143 		 */
1144 		break;
1145 	}
1146 
1147 	return ncsw;
1148 }
1149 
1150 /***
1151  * kick_process - kick a running thread to enter/exit the kernel
1152  * @p: the to-be-kicked thread
1153  *
1154  * Cause a process which is running on another CPU to enter
1155  * kernel-mode, without any delay. (to get signals handled.)
1156  *
1157  * NOTE: this function doesn't have to take the runqueue lock,
1158  * because all it wants to ensure is that the remote task enters
1159  * the kernel. If the IPI races and the task has been migrated
1160  * to another CPU then no harm is done and the purpose has been
1161  * achieved as well.
1162  */
1163 void kick_process(struct task_struct *p)
1164 {
1165 	int cpu;
1166 
1167 	preempt_disable();
1168 	cpu = task_cpu(p);
1169 	if ((cpu != smp_processor_id()) && task_curr(p))
1170 		smp_send_reschedule(cpu);
1171 	preempt_enable();
1172 }
1173 EXPORT_SYMBOL_GPL(kick_process);
1174 #endif /* CONFIG_SMP */
1175 
1176 #ifdef CONFIG_SMP
1177 /*
1178  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1179  */
1180 static int select_fallback_rq(int cpu, struct task_struct *p)
1181 {
1182 	int nid = cpu_to_node(cpu);
1183 	const struct cpumask *nodemask = NULL;
1184 	enum { cpuset, possible, fail } state = cpuset;
1185 	int dest_cpu;
1186 
1187 	/*
1188 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1189 	 * will return -1. There is no cpu on the node, and we should
1190 	 * select the cpu on the other node.
1191 	 */
1192 	if (nid != -1) {
1193 		nodemask = cpumask_of_node(nid);
1194 
1195 		/* Look for allowed, online CPU in same node. */
1196 		for_each_cpu(dest_cpu, nodemask) {
1197 			if (!cpu_online(dest_cpu))
1198 				continue;
1199 			if (!cpu_active(dest_cpu))
1200 				continue;
1201 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1202 				return dest_cpu;
1203 		}
1204 	}
1205 
1206 	for (;;) {
1207 		/* Any allowed, online CPU? */
1208 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1209 			if (!cpu_online(dest_cpu))
1210 				continue;
1211 			if (!cpu_active(dest_cpu))
1212 				continue;
1213 			goto out;
1214 		}
1215 
1216 		switch (state) {
1217 		case cpuset:
1218 			/* No more Mr. Nice Guy. */
1219 			cpuset_cpus_allowed_fallback(p);
1220 			state = possible;
1221 			break;
1222 
1223 		case possible:
1224 			do_set_cpus_allowed(p, cpu_possible_mask);
1225 			state = fail;
1226 			break;
1227 
1228 		case fail:
1229 			BUG();
1230 			break;
1231 		}
1232 	}
1233 
1234 out:
1235 	if (state != cpuset) {
1236 		/*
1237 		 * Don't tell them about moving exiting tasks or
1238 		 * kernel threads (both mm NULL), since they never
1239 		 * leave kernel.
1240 		 */
1241 		if (p->mm && printk_ratelimit()) {
1242 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1243 					task_pid_nr(p), p->comm, cpu);
1244 		}
1245 	}
1246 
1247 	return dest_cpu;
1248 }
1249 
1250 /*
1251  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1252  */
1253 static inline
1254 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1255 {
1256 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1257 
1258 	/*
1259 	 * In order not to call set_task_cpu() on a blocking task we need
1260 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1261 	 * cpu.
1262 	 *
1263 	 * Since this is common to all placement strategies, this lives here.
1264 	 *
1265 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1266 	 *   not worry about this generic constraint ]
1267 	 */
1268 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1269 		     !cpu_online(cpu)))
1270 		cpu = select_fallback_rq(task_cpu(p), p);
1271 
1272 	return cpu;
1273 }
1274 
1275 static void update_avg(u64 *avg, u64 sample)
1276 {
1277 	s64 diff = sample - *avg;
1278 	*avg += diff >> 3;
1279 }
1280 #endif
1281 
1282 static void
1283 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1284 {
1285 #ifdef CONFIG_SCHEDSTATS
1286 	struct rq *rq = this_rq();
1287 
1288 #ifdef CONFIG_SMP
1289 	int this_cpu = smp_processor_id();
1290 
1291 	if (cpu == this_cpu) {
1292 		schedstat_inc(rq, ttwu_local);
1293 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1294 	} else {
1295 		struct sched_domain *sd;
1296 
1297 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1298 		rcu_read_lock();
1299 		for_each_domain(this_cpu, sd) {
1300 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1301 				schedstat_inc(sd, ttwu_wake_remote);
1302 				break;
1303 			}
1304 		}
1305 		rcu_read_unlock();
1306 	}
1307 
1308 	if (wake_flags & WF_MIGRATED)
1309 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1310 
1311 #endif /* CONFIG_SMP */
1312 
1313 	schedstat_inc(rq, ttwu_count);
1314 	schedstat_inc(p, se.statistics.nr_wakeups);
1315 
1316 	if (wake_flags & WF_SYNC)
1317 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1318 
1319 #endif /* CONFIG_SCHEDSTATS */
1320 }
1321 
1322 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1323 {
1324 	activate_task(rq, p, en_flags);
1325 	p->on_rq = 1;
1326 
1327 	/* if a worker is waking up, notify workqueue */
1328 	if (p->flags & PF_WQ_WORKER)
1329 		wq_worker_waking_up(p, cpu_of(rq));
1330 }
1331 
1332 /*
1333  * Mark the task runnable and perform wakeup-preemption.
1334  */
1335 static void
1336 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1337 {
1338 	check_preempt_curr(rq, p, wake_flags);
1339 	trace_sched_wakeup(p, true);
1340 
1341 	p->state = TASK_RUNNING;
1342 #ifdef CONFIG_SMP
1343 	if (p->sched_class->task_woken)
1344 		p->sched_class->task_woken(rq, p);
1345 
1346 	if (rq->idle_stamp) {
1347 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1348 		u64 max = 2*sysctl_sched_migration_cost;
1349 
1350 		if (delta > max)
1351 			rq->avg_idle = max;
1352 		else
1353 			update_avg(&rq->avg_idle, delta);
1354 		rq->idle_stamp = 0;
1355 	}
1356 #endif
1357 }
1358 
1359 static void
1360 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1361 {
1362 #ifdef CONFIG_SMP
1363 	if (p->sched_contributes_to_load)
1364 		rq->nr_uninterruptible--;
1365 #endif
1366 
1367 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1368 	ttwu_do_wakeup(rq, p, wake_flags);
1369 }
1370 
1371 /*
1372  * Called in case the task @p isn't fully descheduled from its runqueue,
1373  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1374  * since all we need to do is flip p->state to TASK_RUNNING, since
1375  * the task is still ->on_rq.
1376  */
1377 static int ttwu_remote(struct task_struct *p, int wake_flags)
1378 {
1379 	struct rq *rq;
1380 	int ret = 0;
1381 
1382 	rq = __task_rq_lock(p);
1383 	if (p->on_rq) {
1384 		/* check_preempt_curr() may use rq clock */
1385 		update_rq_clock(rq);
1386 		ttwu_do_wakeup(rq, p, wake_flags);
1387 		ret = 1;
1388 	}
1389 	__task_rq_unlock(rq);
1390 
1391 	return ret;
1392 }
1393 
1394 #ifdef CONFIG_SMP
1395 static void sched_ttwu_pending(void)
1396 {
1397 	struct rq *rq = this_rq();
1398 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1399 	struct task_struct *p;
1400 
1401 	raw_spin_lock(&rq->lock);
1402 
1403 	while (llist) {
1404 		p = llist_entry(llist, struct task_struct, wake_entry);
1405 		llist = llist_next(llist);
1406 		ttwu_do_activate(rq, p, 0);
1407 	}
1408 
1409 	raw_spin_unlock(&rq->lock);
1410 }
1411 
1412 void scheduler_ipi(void)
1413 {
1414 	if (llist_empty(&this_rq()->wake_list)
1415 			&& !tick_nohz_full_cpu(smp_processor_id())
1416 			&& !got_nohz_idle_kick())
1417 		return;
1418 
1419 	/*
1420 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1421 	 * traditionally all their work was done from the interrupt return
1422 	 * path. Now that we actually do some work, we need to make sure
1423 	 * we do call them.
1424 	 *
1425 	 * Some archs already do call them, luckily irq_enter/exit nest
1426 	 * properly.
1427 	 *
1428 	 * Arguably we should visit all archs and update all handlers,
1429 	 * however a fair share of IPIs are still resched only so this would
1430 	 * somewhat pessimize the simple resched case.
1431 	 */
1432 	irq_enter();
1433 	tick_nohz_full_check();
1434 	sched_ttwu_pending();
1435 
1436 	/*
1437 	 * Check if someone kicked us for doing the nohz idle load balance.
1438 	 */
1439 	if (unlikely(got_nohz_idle_kick())) {
1440 		this_rq()->idle_balance = 1;
1441 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1442 	}
1443 	irq_exit();
1444 }
1445 
1446 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1447 {
1448 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1449 		smp_send_reschedule(cpu);
1450 }
1451 
1452 bool cpus_share_cache(int this_cpu, int that_cpu)
1453 {
1454 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1455 }
1456 #endif /* CONFIG_SMP */
1457 
1458 static void ttwu_queue(struct task_struct *p, int cpu)
1459 {
1460 	struct rq *rq = cpu_rq(cpu);
1461 
1462 #if defined(CONFIG_SMP)
1463 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1464 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1465 		ttwu_queue_remote(p, cpu);
1466 		return;
1467 	}
1468 #endif
1469 
1470 	raw_spin_lock(&rq->lock);
1471 	ttwu_do_activate(rq, p, 0);
1472 	raw_spin_unlock(&rq->lock);
1473 }
1474 
1475 /**
1476  * try_to_wake_up - wake up a thread
1477  * @p: the thread to be awakened
1478  * @state: the mask of task states that can be woken
1479  * @wake_flags: wake modifier flags (WF_*)
1480  *
1481  * Put it on the run-queue if it's not already there. The "current"
1482  * thread is always on the run-queue (except when the actual
1483  * re-schedule is in progress), and as such you're allowed to do
1484  * the simpler "current->state = TASK_RUNNING" to mark yourself
1485  * runnable without the overhead of this.
1486  *
1487  * Return: %true if @p was woken up, %false if it was already running.
1488  * or @state didn't match @p's state.
1489  */
1490 static int
1491 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1492 {
1493 	unsigned long flags;
1494 	int cpu, success = 0;
1495 
1496 	/*
1497 	 * If we are going to wake up a thread waiting for CONDITION we
1498 	 * need to ensure that CONDITION=1 done by the caller can not be
1499 	 * reordered with p->state check below. This pairs with mb() in
1500 	 * set_current_state() the waiting thread does.
1501 	 */
1502 	smp_mb__before_spinlock();
1503 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1504 	if (!(p->state & state))
1505 		goto out;
1506 
1507 	success = 1; /* we're going to change ->state */
1508 	cpu = task_cpu(p);
1509 
1510 	if (p->on_rq && ttwu_remote(p, wake_flags))
1511 		goto stat;
1512 
1513 #ifdef CONFIG_SMP
1514 	/*
1515 	 * If the owning (remote) cpu is still in the middle of schedule() with
1516 	 * this task as prev, wait until its done referencing the task.
1517 	 */
1518 	while (p->on_cpu)
1519 		cpu_relax();
1520 	/*
1521 	 * Pairs with the smp_wmb() in finish_lock_switch().
1522 	 */
1523 	smp_rmb();
1524 
1525 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1526 	p->state = TASK_WAKING;
1527 
1528 	if (p->sched_class->task_waking)
1529 		p->sched_class->task_waking(p);
1530 
1531 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1532 	if (task_cpu(p) != cpu) {
1533 		wake_flags |= WF_MIGRATED;
1534 		set_task_cpu(p, cpu);
1535 	}
1536 #endif /* CONFIG_SMP */
1537 
1538 	ttwu_queue(p, cpu);
1539 stat:
1540 	ttwu_stat(p, cpu, wake_flags);
1541 out:
1542 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1543 
1544 	return success;
1545 }
1546 
1547 /**
1548  * try_to_wake_up_local - try to wake up a local task with rq lock held
1549  * @p: the thread to be awakened
1550  *
1551  * Put @p on the run-queue if it's not already there. The caller must
1552  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1553  * the current task.
1554  */
1555 static void try_to_wake_up_local(struct task_struct *p)
1556 {
1557 	struct rq *rq = task_rq(p);
1558 
1559 	if (WARN_ON_ONCE(rq != this_rq()) ||
1560 	    WARN_ON_ONCE(p == current))
1561 		return;
1562 
1563 	lockdep_assert_held(&rq->lock);
1564 
1565 	if (!raw_spin_trylock(&p->pi_lock)) {
1566 		raw_spin_unlock(&rq->lock);
1567 		raw_spin_lock(&p->pi_lock);
1568 		raw_spin_lock(&rq->lock);
1569 	}
1570 
1571 	if (!(p->state & TASK_NORMAL))
1572 		goto out;
1573 
1574 	if (!p->on_rq)
1575 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1576 
1577 	ttwu_do_wakeup(rq, p, 0);
1578 	ttwu_stat(p, smp_processor_id(), 0);
1579 out:
1580 	raw_spin_unlock(&p->pi_lock);
1581 }
1582 
1583 /**
1584  * wake_up_process - Wake up a specific process
1585  * @p: The process to be woken up.
1586  *
1587  * Attempt to wake up the nominated process and move it to the set of runnable
1588  * processes.
1589  *
1590  * Return: 1 if the process was woken up, 0 if it was already running.
1591  *
1592  * It may be assumed that this function implies a write memory barrier before
1593  * changing the task state if and only if any tasks are woken up.
1594  */
1595 int wake_up_process(struct task_struct *p)
1596 {
1597 	WARN_ON(task_is_stopped_or_traced(p));
1598 	return try_to_wake_up(p, TASK_NORMAL, 0);
1599 }
1600 EXPORT_SYMBOL(wake_up_process);
1601 
1602 int wake_up_state(struct task_struct *p, unsigned int state)
1603 {
1604 	return try_to_wake_up(p, state, 0);
1605 }
1606 
1607 /*
1608  * Perform scheduler related setup for a newly forked process p.
1609  * p is forked by current.
1610  *
1611  * __sched_fork() is basic setup used by init_idle() too:
1612  */
1613 static void __sched_fork(struct task_struct *p)
1614 {
1615 	p->on_rq			= 0;
1616 
1617 	p->se.on_rq			= 0;
1618 	p->se.exec_start		= 0;
1619 	p->se.sum_exec_runtime		= 0;
1620 	p->se.prev_sum_exec_runtime	= 0;
1621 	p->se.nr_migrations		= 0;
1622 	p->se.vruntime			= 0;
1623 	INIT_LIST_HEAD(&p->se.group_node);
1624 
1625 #ifdef CONFIG_SCHEDSTATS
1626 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1627 #endif
1628 
1629 	INIT_LIST_HEAD(&p->rt.run_list);
1630 
1631 #ifdef CONFIG_PREEMPT_NOTIFIERS
1632 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1633 #endif
1634 
1635 #ifdef CONFIG_NUMA_BALANCING
1636 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1637 		p->mm->numa_next_scan = jiffies;
1638 		p->mm->numa_next_reset = jiffies;
1639 		p->mm->numa_scan_seq = 0;
1640 	}
1641 
1642 	p->node_stamp = 0ULL;
1643 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1644 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1645 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1646 	p->numa_work.next = &p->numa_work;
1647 #endif /* CONFIG_NUMA_BALANCING */
1648 }
1649 
1650 #ifdef CONFIG_NUMA_BALANCING
1651 #ifdef CONFIG_SCHED_DEBUG
1652 void set_numabalancing_state(bool enabled)
1653 {
1654 	if (enabled)
1655 		sched_feat_set("NUMA");
1656 	else
1657 		sched_feat_set("NO_NUMA");
1658 }
1659 #else
1660 __read_mostly bool numabalancing_enabled;
1661 
1662 void set_numabalancing_state(bool enabled)
1663 {
1664 	numabalancing_enabled = enabled;
1665 }
1666 #endif /* CONFIG_SCHED_DEBUG */
1667 #endif /* CONFIG_NUMA_BALANCING */
1668 
1669 /*
1670  * fork()/clone()-time setup:
1671  */
1672 void sched_fork(struct task_struct *p)
1673 {
1674 	unsigned long flags;
1675 	int cpu = get_cpu();
1676 
1677 	__sched_fork(p);
1678 	/*
1679 	 * We mark the process as running here. This guarantees that
1680 	 * nobody will actually run it, and a signal or other external
1681 	 * event cannot wake it up and insert it on the runqueue either.
1682 	 */
1683 	p->state = TASK_RUNNING;
1684 
1685 	/*
1686 	 * Make sure we do not leak PI boosting priority to the child.
1687 	 */
1688 	p->prio = current->normal_prio;
1689 
1690 	/*
1691 	 * Revert to default priority/policy on fork if requested.
1692 	 */
1693 	if (unlikely(p->sched_reset_on_fork)) {
1694 		if (task_has_rt_policy(p)) {
1695 			p->policy = SCHED_NORMAL;
1696 			p->static_prio = NICE_TO_PRIO(0);
1697 			p->rt_priority = 0;
1698 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1699 			p->static_prio = NICE_TO_PRIO(0);
1700 
1701 		p->prio = p->normal_prio = __normal_prio(p);
1702 		set_load_weight(p);
1703 
1704 		/*
1705 		 * We don't need the reset flag anymore after the fork. It has
1706 		 * fulfilled its duty:
1707 		 */
1708 		p->sched_reset_on_fork = 0;
1709 	}
1710 
1711 	if (!rt_prio(p->prio))
1712 		p->sched_class = &fair_sched_class;
1713 
1714 	if (p->sched_class->task_fork)
1715 		p->sched_class->task_fork(p);
1716 
1717 	/*
1718 	 * The child is not yet in the pid-hash so no cgroup attach races,
1719 	 * and the cgroup is pinned to this child due to cgroup_fork()
1720 	 * is ran before sched_fork().
1721 	 *
1722 	 * Silence PROVE_RCU.
1723 	 */
1724 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1725 	set_task_cpu(p, cpu);
1726 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1727 
1728 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1729 	if (likely(sched_info_on()))
1730 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1731 #endif
1732 #if defined(CONFIG_SMP)
1733 	p->on_cpu = 0;
1734 #endif
1735 #ifdef CONFIG_PREEMPT_COUNT
1736 	/* Want to start with kernel preemption disabled. */
1737 	task_thread_info(p)->preempt_count = 1;
1738 #endif
1739 #ifdef CONFIG_SMP
1740 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1741 #endif
1742 
1743 	put_cpu();
1744 }
1745 
1746 /*
1747  * wake_up_new_task - wake up a newly created task for the first time.
1748  *
1749  * This function will do some initial scheduler statistics housekeeping
1750  * that must be done for every newly created context, then puts the task
1751  * on the runqueue and wakes it.
1752  */
1753 void wake_up_new_task(struct task_struct *p)
1754 {
1755 	unsigned long flags;
1756 	struct rq *rq;
1757 
1758 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1759 #ifdef CONFIG_SMP
1760 	/*
1761 	 * Fork balancing, do it here and not earlier because:
1762 	 *  - cpus_allowed can change in the fork path
1763 	 *  - any previously selected cpu might disappear through hotplug
1764 	 */
1765 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1766 #endif
1767 
1768 	/* Initialize new task's runnable average */
1769 	init_task_runnable_average(p);
1770 	rq = __task_rq_lock(p);
1771 	activate_task(rq, p, 0);
1772 	p->on_rq = 1;
1773 	trace_sched_wakeup_new(p, true);
1774 	check_preempt_curr(rq, p, WF_FORK);
1775 #ifdef CONFIG_SMP
1776 	if (p->sched_class->task_woken)
1777 		p->sched_class->task_woken(rq, p);
1778 #endif
1779 	task_rq_unlock(rq, p, &flags);
1780 }
1781 
1782 #ifdef CONFIG_PREEMPT_NOTIFIERS
1783 
1784 /**
1785  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1786  * @notifier: notifier struct to register
1787  */
1788 void preempt_notifier_register(struct preempt_notifier *notifier)
1789 {
1790 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1791 }
1792 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1793 
1794 /**
1795  * preempt_notifier_unregister - no longer interested in preemption notifications
1796  * @notifier: notifier struct to unregister
1797  *
1798  * This is safe to call from within a preemption notifier.
1799  */
1800 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1801 {
1802 	hlist_del(&notifier->link);
1803 }
1804 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1805 
1806 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807 {
1808 	struct preempt_notifier *notifier;
1809 
1810 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1811 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1812 }
1813 
1814 static void
1815 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1816 				 struct task_struct *next)
1817 {
1818 	struct preempt_notifier *notifier;
1819 
1820 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1821 		notifier->ops->sched_out(notifier, next);
1822 }
1823 
1824 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1825 
1826 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1827 {
1828 }
1829 
1830 static void
1831 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1832 				 struct task_struct *next)
1833 {
1834 }
1835 
1836 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1837 
1838 /**
1839  * prepare_task_switch - prepare to switch tasks
1840  * @rq: the runqueue preparing to switch
1841  * @prev: the current task that is being switched out
1842  * @next: the task we are going to switch to.
1843  *
1844  * This is called with the rq lock held and interrupts off. It must
1845  * be paired with a subsequent finish_task_switch after the context
1846  * switch.
1847  *
1848  * prepare_task_switch sets up locking and calls architecture specific
1849  * hooks.
1850  */
1851 static inline void
1852 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1853 		    struct task_struct *next)
1854 {
1855 	trace_sched_switch(prev, next);
1856 	sched_info_switch(prev, next);
1857 	perf_event_task_sched_out(prev, next);
1858 	fire_sched_out_preempt_notifiers(prev, next);
1859 	prepare_lock_switch(rq, next);
1860 	prepare_arch_switch(next);
1861 }
1862 
1863 /**
1864  * finish_task_switch - clean up after a task-switch
1865  * @rq: runqueue associated with task-switch
1866  * @prev: the thread we just switched away from.
1867  *
1868  * finish_task_switch must be called after the context switch, paired
1869  * with a prepare_task_switch call before the context switch.
1870  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1871  * and do any other architecture-specific cleanup actions.
1872  *
1873  * Note that we may have delayed dropping an mm in context_switch(). If
1874  * so, we finish that here outside of the runqueue lock. (Doing it
1875  * with the lock held can cause deadlocks; see schedule() for
1876  * details.)
1877  */
1878 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1879 	__releases(rq->lock)
1880 {
1881 	struct mm_struct *mm = rq->prev_mm;
1882 	long prev_state;
1883 
1884 	rq->prev_mm = NULL;
1885 
1886 	/*
1887 	 * A task struct has one reference for the use as "current".
1888 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1889 	 * schedule one last time. The schedule call will never return, and
1890 	 * the scheduled task must drop that reference.
1891 	 * The test for TASK_DEAD must occur while the runqueue locks are
1892 	 * still held, otherwise prev could be scheduled on another cpu, die
1893 	 * there before we look at prev->state, and then the reference would
1894 	 * be dropped twice.
1895 	 *		Manfred Spraul <manfred@colorfullife.com>
1896 	 */
1897 	prev_state = prev->state;
1898 	vtime_task_switch(prev);
1899 	finish_arch_switch(prev);
1900 	perf_event_task_sched_in(prev, current);
1901 	finish_lock_switch(rq, prev);
1902 	finish_arch_post_lock_switch();
1903 
1904 	fire_sched_in_preempt_notifiers(current);
1905 	if (mm)
1906 		mmdrop(mm);
1907 	if (unlikely(prev_state == TASK_DEAD)) {
1908 		/*
1909 		 * Remove function-return probe instances associated with this
1910 		 * task and put them back on the free list.
1911 		 */
1912 		kprobe_flush_task(prev);
1913 		put_task_struct(prev);
1914 	}
1915 
1916 	tick_nohz_task_switch(current);
1917 }
1918 
1919 #ifdef CONFIG_SMP
1920 
1921 /* assumes rq->lock is held */
1922 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1923 {
1924 	if (prev->sched_class->pre_schedule)
1925 		prev->sched_class->pre_schedule(rq, prev);
1926 }
1927 
1928 /* rq->lock is NOT held, but preemption is disabled */
1929 static inline void post_schedule(struct rq *rq)
1930 {
1931 	if (rq->post_schedule) {
1932 		unsigned long flags;
1933 
1934 		raw_spin_lock_irqsave(&rq->lock, flags);
1935 		if (rq->curr->sched_class->post_schedule)
1936 			rq->curr->sched_class->post_schedule(rq);
1937 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1938 
1939 		rq->post_schedule = 0;
1940 	}
1941 }
1942 
1943 #else
1944 
1945 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1946 {
1947 }
1948 
1949 static inline void post_schedule(struct rq *rq)
1950 {
1951 }
1952 
1953 #endif
1954 
1955 /**
1956  * schedule_tail - first thing a freshly forked thread must call.
1957  * @prev: the thread we just switched away from.
1958  */
1959 asmlinkage void schedule_tail(struct task_struct *prev)
1960 	__releases(rq->lock)
1961 {
1962 	struct rq *rq = this_rq();
1963 
1964 	finish_task_switch(rq, prev);
1965 
1966 	/*
1967 	 * FIXME: do we need to worry about rq being invalidated by the
1968 	 * task_switch?
1969 	 */
1970 	post_schedule(rq);
1971 
1972 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1973 	/* In this case, finish_task_switch does not reenable preemption */
1974 	preempt_enable();
1975 #endif
1976 	if (current->set_child_tid)
1977 		put_user(task_pid_vnr(current), current->set_child_tid);
1978 }
1979 
1980 /*
1981  * context_switch - switch to the new MM and the new
1982  * thread's register state.
1983  */
1984 static inline void
1985 context_switch(struct rq *rq, struct task_struct *prev,
1986 	       struct task_struct *next)
1987 {
1988 	struct mm_struct *mm, *oldmm;
1989 
1990 	prepare_task_switch(rq, prev, next);
1991 
1992 	mm = next->mm;
1993 	oldmm = prev->active_mm;
1994 	/*
1995 	 * For paravirt, this is coupled with an exit in switch_to to
1996 	 * combine the page table reload and the switch backend into
1997 	 * one hypercall.
1998 	 */
1999 	arch_start_context_switch(prev);
2000 
2001 	if (!mm) {
2002 		next->active_mm = oldmm;
2003 		atomic_inc(&oldmm->mm_count);
2004 		enter_lazy_tlb(oldmm, next);
2005 	} else
2006 		switch_mm(oldmm, mm, next);
2007 
2008 	if (!prev->mm) {
2009 		prev->active_mm = NULL;
2010 		rq->prev_mm = oldmm;
2011 	}
2012 	/*
2013 	 * Since the runqueue lock will be released by the next
2014 	 * task (which is an invalid locking op but in the case
2015 	 * of the scheduler it's an obvious special-case), so we
2016 	 * do an early lockdep release here:
2017 	 */
2018 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2019 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2020 #endif
2021 
2022 	context_tracking_task_switch(prev, next);
2023 	/* Here we just switch the register state and the stack. */
2024 	switch_to(prev, next, prev);
2025 
2026 	barrier();
2027 	/*
2028 	 * this_rq must be evaluated again because prev may have moved
2029 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2030 	 * frame will be invalid.
2031 	 */
2032 	finish_task_switch(this_rq(), prev);
2033 }
2034 
2035 /*
2036  * nr_running and nr_context_switches:
2037  *
2038  * externally visible scheduler statistics: current number of runnable
2039  * threads, total number of context switches performed since bootup.
2040  */
2041 unsigned long nr_running(void)
2042 {
2043 	unsigned long i, sum = 0;
2044 
2045 	for_each_online_cpu(i)
2046 		sum += cpu_rq(i)->nr_running;
2047 
2048 	return sum;
2049 }
2050 
2051 unsigned long long nr_context_switches(void)
2052 {
2053 	int i;
2054 	unsigned long long sum = 0;
2055 
2056 	for_each_possible_cpu(i)
2057 		sum += cpu_rq(i)->nr_switches;
2058 
2059 	return sum;
2060 }
2061 
2062 unsigned long nr_iowait(void)
2063 {
2064 	unsigned long i, sum = 0;
2065 
2066 	for_each_possible_cpu(i)
2067 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2068 
2069 	return sum;
2070 }
2071 
2072 unsigned long nr_iowait_cpu(int cpu)
2073 {
2074 	struct rq *this = cpu_rq(cpu);
2075 	return atomic_read(&this->nr_iowait);
2076 }
2077 
2078 #ifdef CONFIG_SMP
2079 
2080 /*
2081  * sched_exec - execve() is a valuable balancing opportunity, because at
2082  * this point the task has the smallest effective memory and cache footprint.
2083  */
2084 void sched_exec(void)
2085 {
2086 	struct task_struct *p = current;
2087 	unsigned long flags;
2088 	int dest_cpu;
2089 
2090 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2091 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2092 	if (dest_cpu == smp_processor_id())
2093 		goto unlock;
2094 
2095 	if (likely(cpu_active(dest_cpu))) {
2096 		struct migration_arg arg = { p, dest_cpu };
2097 
2098 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2099 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2100 		return;
2101 	}
2102 unlock:
2103 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2104 }
2105 
2106 #endif
2107 
2108 DEFINE_PER_CPU(struct kernel_stat, kstat);
2109 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2110 
2111 EXPORT_PER_CPU_SYMBOL(kstat);
2112 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2113 
2114 /*
2115  * Return any ns on the sched_clock that have not yet been accounted in
2116  * @p in case that task is currently running.
2117  *
2118  * Called with task_rq_lock() held on @rq.
2119  */
2120 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2121 {
2122 	u64 ns = 0;
2123 
2124 	if (task_current(rq, p)) {
2125 		update_rq_clock(rq);
2126 		ns = rq_clock_task(rq) - p->se.exec_start;
2127 		if ((s64)ns < 0)
2128 			ns = 0;
2129 	}
2130 
2131 	return ns;
2132 }
2133 
2134 unsigned long long task_delta_exec(struct task_struct *p)
2135 {
2136 	unsigned long flags;
2137 	struct rq *rq;
2138 	u64 ns = 0;
2139 
2140 	rq = task_rq_lock(p, &flags);
2141 	ns = do_task_delta_exec(p, rq);
2142 	task_rq_unlock(rq, p, &flags);
2143 
2144 	return ns;
2145 }
2146 
2147 /*
2148  * Return accounted runtime for the task.
2149  * In case the task is currently running, return the runtime plus current's
2150  * pending runtime that have not been accounted yet.
2151  */
2152 unsigned long long task_sched_runtime(struct task_struct *p)
2153 {
2154 	unsigned long flags;
2155 	struct rq *rq;
2156 	u64 ns = 0;
2157 
2158 	rq = task_rq_lock(p, &flags);
2159 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2160 	task_rq_unlock(rq, p, &flags);
2161 
2162 	return ns;
2163 }
2164 
2165 /*
2166  * This function gets called by the timer code, with HZ frequency.
2167  * We call it with interrupts disabled.
2168  */
2169 void scheduler_tick(void)
2170 {
2171 	int cpu = smp_processor_id();
2172 	struct rq *rq = cpu_rq(cpu);
2173 	struct task_struct *curr = rq->curr;
2174 
2175 	sched_clock_tick();
2176 
2177 	raw_spin_lock(&rq->lock);
2178 	update_rq_clock(rq);
2179 	curr->sched_class->task_tick(rq, curr, 0);
2180 	update_cpu_load_active(rq);
2181 	raw_spin_unlock(&rq->lock);
2182 
2183 	perf_event_task_tick();
2184 
2185 #ifdef CONFIG_SMP
2186 	rq->idle_balance = idle_cpu(cpu);
2187 	trigger_load_balance(rq, cpu);
2188 #endif
2189 	rq_last_tick_reset(rq);
2190 }
2191 
2192 #ifdef CONFIG_NO_HZ_FULL
2193 /**
2194  * scheduler_tick_max_deferment
2195  *
2196  * Keep at least one tick per second when a single
2197  * active task is running because the scheduler doesn't
2198  * yet completely support full dynticks environment.
2199  *
2200  * This makes sure that uptime, CFS vruntime, load
2201  * balancing, etc... continue to move forward, even
2202  * with a very low granularity.
2203  *
2204  * Return: Maximum deferment in nanoseconds.
2205  */
2206 u64 scheduler_tick_max_deferment(void)
2207 {
2208 	struct rq *rq = this_rq();
2209 	unsigned long next, now = ACCESS_ONCE(jiffies);
2210 
2211 	next = rq->last_sched_tick + HZ;
2212 
2213 	if (time_before_eq(next, now))
2214 		return 0;
2215 
2216 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2217 }
2218 #endif
2219 
2220 notrace unsigned long get_parent_ip(unsigned long addr)
2221 {
2222 	if (in_lock_functions(addr)) {
2223 		addr = CALLER_ADDR2;
2224 		if (in_lock_functions(addr))
2225 			addr = CALLER_ADDR3;
2226 	}
2227 	return addr;
2228 }
2229 
2230 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2231 				defined(CONFIG_PREEMPT_TRACER))
2232 
2233 void __kprobes add_preempt_count(int val)
2234 {
2235 #ifdef CONFIG_DEBUG_PREEMPT
2236 	/*
2237 	 * Underflow?
2238 	 */
2239 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2240 		return;
2241 #endif
2242 	preempt_count() += val;
2243 #ifdef CONFIG_DEBUG_PREEMPT
2244 	/*
2245 	 * Spinlock count overflowing soon?
2246 	 */
2247 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2248 				PREEMPT_MASK - 10);
2249 #endif
2250 	if (preempt_count() == val)
2251 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2252 }
2253 EXPORT_SYMBOL(add_preempt_count);
2254 
2255 void __kprobes sub_preempt_count(int val)
2256 {
2257 #ifdef CONFIG_DEBUG_PREEMPT
2258 	/*
2259 	 * Underflow?
2260 	 */
2261 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2262 		return;
2263 	/*
2264 	 * Is the spinlock portion underflowing?
2265 	 */
2266 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2267 			!(preempt_count() & PREEMPT_MASK)))
2268 		return;
2269 #endif
2270 
2271 	if (preempt_count() == val)
2272 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2273 	preempt_count() -= val;
2274 }
2275 EXPORT_SYMBOL(sub_preempt_count);
2276 
2277 #endif
2278 
2279 /*
2280  * Print scheduling while atomic bug:
2281  */
2282 static noinline void __schedule_bug(struct task_struct *prev)
2283 {
2284 	if (oops_in_progress)
2285 		return;
2286 
2287 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2288 		prev->comm, prev->pid, preempt_count());
2289 
2290 	debug_show_held_locks(prev);
2291 	print_modules();
2292 	if (irqs_disabled())
2293 		print_irqtrace_events(prev);
2294 	dump_stack();
2295 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2296 }
2297 
2298 /*
2299  * Various schedule()-time debugging checks and statistics:
2300  */
2301 static inline void schedule_debug(struct task_struct *prev)
2302 {
2303 	/*
2304 	 * Test if we are atomic. Since do_exit() needs to call into
2305 	 * schedule() atomically, we ignore that path for now.
2306 	 * Otherwise, whine if we are scheduling when we should not be.
2307 	 */
2308 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2309 		__schedule_bug(prev);
2310 	rcu_sleep_check();
2311 
2312 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2313 
2314 	schedstat_inc(this_rq(), sched_count);
2315 }
2316 
2317 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2318 {
2319 	if (prev->on_rq || rq->skip_clock_update < 0)
2320 		update_rq_clock(rq);
2321 	prev->sched_class->put_prev_task(rq, prev);
2322 }
2323 
2324 /*
2325  * Pick up the highest-prio task:
2326  */
2327 static inline struct task_struct *
2328 pick_next_task(struct rq *rq)
2329 {
2330 	const struct sched_class *class;
2331 	struct task_struct *p;
2332 
2333 	/*
2334 	 * Optimization: we know that if all tasks are in
2335 	 * the fair class we can call that function directly:
2336 	 */
2337 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2338 		p = fair_sched_class.pick_next_task(rq);
2339 		if (likely(p))
2340 			return p;
2341 	}
2342 
2343 	for_each_class(class) {
2344 		p = class->pick_next_task(rq);
2345 		if (p)
2346 			return p;
2347 	}
2348 
2349 	BUG(); /* the idle class will always have a runnable task */
2350 }
2351 
2352 /*
2353  * __schedule() is the main scheduler function.
2354  *
2355  * The main means of driving the scheduler and thus entering this function are:
2356  *
2357  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2358  *
2359  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2360  *      paths. For example, see arch/x86/entry_64.S.
2361  *
2362  *      To drive preemption between tasks, the scheduler sets the flag in timer
2363  *      interrupt handler scheduler_tick().
2364  *
2365  *   3. Wakeups don't really cause entry into schedule(). They add a
2366  *      task to the run-queue and that's it.
2367  *
2368  *      Now, if the new task added to the run-queue preempts the current
2369  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2370  *      called on the nearest possible occasion:
2371  *
2372  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2373  *
2374  *         - in syscall or exception context, at the next outmost
2375  *           preempt_enable(). (this might be as soon as the wake_up()'s
2376  *           spin_unlock()!)
2377  *
2378  *         - in IRQ context, return from interrupt-handler to
2379  *           preemptible context
2380  *
2381  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2382  *         then at the next:
2383  *
2384  *          - cond_resched() call
2385  *          - explicit schedule() call
2386  *          - return from syscall or exception to user-space
2387  *          - return from interrupt-handler to user-space
2388  */
2389 static void __sched __schedule(void)
2390 {
2391 	struct task_struct *prev, *next;
2392 	unsigned long *switch_count;
2393 	struct rq *rq;
2394 	int cpu;
2395 
2396 need_resched:
2397 	preempt_disable();
2398 	cpu = smp_processor_id();
2399 	rq = cpu_rq(cpu);
2400 	rcu_note_context_switch(cpu);
2401 	prev = rq->curr;
2402 
2403 	schedule_debug(prev);
2404 
2405 	if (sched_feat(HRTICK))
2406 		hrtick_clear(rq);
2407 
2408 	/*
2409 	 * Make sure that signal_pending_state()->signal_pending() below
2410 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2411 	 * done by the caller to avoid the race with signal_wake_up().
2412 	 */
2413 	smp_mb__before_spinlock();
2414 	raw_spin_lock_irq(&rq->lock);
2415 
2416 	switch_count = &prev->nivcsw;
2417 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2418 		if (unlikely(signal_pending_state(prev->state, prev))) {
2419 			prev->state = TASK_RUNNING;
2420 		} else {
2421 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2422 			prev->on_rq = 0;
2423 
2424 			/*
2425 			 * If a worker went to sleep, notify and ask workqueue
2426 			 * whether it wants to wake up a task to maintain
2427 			 * concurrency.
2428 			 */
2429 			if (prev->flags & PF_WQ_WORKER) {
2430 				struct task_struct *to_wakeup;
2431 
2432 				to_wakeup = wq_worker_sleeping(prev, cpu);
2433 				if (to_wakeup)
2434 					try_to_wake_up_local(to_wakeup);
2435 			}
2436 		}
2437 		switch_count = &prev->nvcsw;
2438 	}
2439 
2440 	pre_schedule(rq, prev);
2441 
2442 	if (unlikely(!rq->nr_running))
2443 		idle_balance(cpu, rq);
2444 
2445 	put_prev_task(rq, prev);
2446 	next = pick_next_task(rq);
2447 	clear_tsk_need_resched(prev);
2448 	rq->skip_clock_update = 0;
2449 
2450 	if (likely(prev != next)) {
2451 		rq->nr_switches++;
2452 		rq->curr = next;
2453 		++*switch_count;
2454 
2455 		context_switch(rq, prev, next); /* unlocks the rq */
2456 		/*
2457 		 * The context switch have flipped the stack from under us
2458 		 * and restored the local variables which were saved when
2459 		 * this task called schedule() in the past. prev == current
2460 		 * is still correct, but it can be moved to another cpu/rq.
2461 		 */
2462 		cpu = smp_processor_id();
2463 		rq = cpu_rq(cpu);
2464 	} else
2465 		raw_spin_unlock_irq(&rq->lock);
2466 
2467 	post_schedule(rq);
2468 
2469 	sched_preempt_enable_no_resched();
2470 	if (need_resched())
2471 		goto need_resched;
2472 }
2473 
2474 static inline void sched_submit_work(struct task_struct *tsk)
2475 {
2476 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2477 		return;
2478 	/*
2479 	 * If we are going to sleep and we have plugged IO queued,
2480 	 * make sure to submit it to avoid deadlocks.
2481 	 */
2482 	if (blk_needs_flush_plug(tsk))
2483 		blk_schedule_flush_plug(tsk);
2484 }
2485 
2486 asmlinkage void __sched schedule(void)
2487 {
2488 	struct task_struct *tsk = current;
2489 
2490 	sched_submit_work(tsk);
2491 	__schedule();
2492 }
2493 EXPORT_SYMBOL(schedule);
2494 
2495 #ifdef CONFIG_CONTEXT_TRACKING
2496 asmlinkage void __sched schedule_user(void)
2497 {
2498 	/*
2499 	 * If we come here after a random call to set_need_resched(),
2500 	 * or we have been woken up remotely but the IPI has not yet arrived,
2501 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2502 	 * we find a better solution.
2503 	 */
2504 	user_exit();
2505 	schedule();
2506 	user_enter();
2507 }
2508 #endif
2509 
2510 /**
2511  * schedule_preempt_disabled - called with preemption disabled
2512  *
2513  * Returns with preemption disabled. Note: preempt_count must be 1
2514  */
2515 void __sched schedule_preempt_disabled(void)
2516 {
2517 	sched_preempt_enable_no_resched();
2518 	schedule();
2519 	preempt_disable();
2520 }
2521 
2522 #ifdef CONFIG_PREEMPT
2523 /*
2524  * this is the entry point to schedule() from in-kernel preemption
2525  * off of preempt_enable. Kernel preemptions off return from interrupt
2526  * occur there and call schedule directly.
2527  */
2528 asmlinkage void __sched notrace preempt_schedule(void)
2529 {
2530 	struct thread_info *ti = current_thread_info();
2531 
2532 	/*
2533 	 * If there is a non-zero preempt_count or interrupts are disabled,
2534 	 * we do not want to preempt the current task. Just return..
2535 	 */
2536 	if (likely(ti->preempt_count || irqs_disabled()))
2537 		return;
2538 
2539 	do {
2540 		add_preempt_count_notrace(PREEMPT_ACTIVE);
2541 		__schedule();
2542 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2543 
2544 		/*
2545 		 * Check again in case we missed a preemption opportunity
2546 		 * between schedule and now.
2547 		 */
2548 		barrier();
2549 	} while (need_resched());
2550 }
2551 EXPORT_SYMBOL(preempt_schedule);
2552 
2553 /*
2554  * this is the entry point to schedule() from kernel preemption
2555  * off of irq context.
2556  * Note, that this is called and return with irqs disabled. This will
2557  * protect us against recursive calling from irq.
2558  */
2559 asmlinkage void __sched preempt_schedule_irq(void)
2560 {
2561 	struct thread_info *ti = current_thread_info();
2562 	enum ctx_state prev_state;
2563 
2564 	/* Catch callers which need to be fixed */
2565 	BUG_ON(ti->preempt_count || !irqs_disabled());
2566 
2567 	prev_state = exception_enter();
2568 
2569 	do {
2570 		add_preempt_count(PREEMPT_ACTIVE);
2571 		local_irq_enable();
2572 		__schedule();
2573 		local_irq_disable();
2574 		sub_preempt_count(PREEMPT_ACTIVE);
2575 
2576 		/*
2577 		 * Check again in case we missed a preemption opportunity
2578 		 * between schedule and now.
2579 		 */
2580 		barrier();
2581 	} while (need_resched());
2582 
2583 	exception_exit(prev_state);
2584 }
2585 
2586 #endif /* CONFIG_PREEMPT */
2587 
2588 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2589 			  void *key)
2590 {
2591 	return try_to_wake_up(curr->private, mode, wake_flags);
2592 }
2593 EXPORT_SYMBOL(default_wake_function);
2594 
2595 /*
2596  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2597  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2598  * number) then we wake all the non-exclusive tasks and one exclusive task.
2599  *
2600  * There are circumstances in which we can try to wake a task which has already
2601  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2602  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2603  */
2604 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2605 			int nr_exclusive, int wake_flags, void *key)
2606 {
2607 	wait_queue_t *curr, *next;
2608 
2609 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2610 		unsigned flags = curr->flags;
2611 
2612 		if (curr->func(curr, mode, wake_flags, key) &&
2613 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2614 			break;
2615 	}
2616 }
2617 
2618 /**
2619  * __wake_up - wake up threads blocked on a waitqueue.
2620  * @q: the waitqueue
2621  * @mode: which threads
2622  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2623  * @key: is directly passed to the wakeup function
2624  *
2625  * It may be assumed that this function implies a write memory barrier before
2626  * changing the task state if and only if any tasks are woken up.
2627  */
2628 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2629 			int nr_exclusive, void *key)
2630 {
2631 	unsigned long flags;
2632 
2633 	spin_lock_irqsave(&q->lock, flags);
2634 	__wake_up_common(q, mode, nr_exclusive, 0, key);
2635 	spin_unlock_irqrestore(&q->lock, flags);
2636 }
2637 EXPORT_SYMBOL(__wake_up);
2638 
2639 /*
2640  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2641  */
2642 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2643 {
2644 	__wake_up_common(q, mode, nr, 0, NULL);
2645 }
2646 EXPORT_SYMBOL_GPL(__wake_up_locked);
2647 
2648 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2649 {
2650 	__wake_up_common(q, mode, 1, 0, key);
2651 }
2652 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2653 
2654 /**
2655  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2656  * @q: the waitqueue
2657  * @mode: which threads
2658  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2659  * @key: opaque value to be passed to wakeup targets
2660  *
2661  * The sync wakeup differs that the waker knows that it will schedule
2662  * away soon, so while the target thread will be woken up, it will not
2663  * be migrated to another CPU - ie. the two threads are 'synchronized'
2664  * with each other. This can prevent needless bouncing between CPUs.
2665  *
2666  * On UP it can prevent extra preemption.
2667  *
2668  * It may be assumed that this function implies a write memory barrier before
2669  * changing the task state if and only if any tasks are woken up.
2670  */
2671 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2672 			int nr_exclusive, void *key)
2673 {
2674 	unsigned long flags;
2675 	int wake_flags = WF_SYNC;
2676 
2677 	if (unlikely(!q))
2678 		return;
2679 
2680 	if (unlikely(!nr_exclusive))
2681 		wake_flags = 0;
2682 
2683 	spin_lock_irqsave(&q->lock, flags);
2684 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2685 	spin_unlock_irqrestore(&q->lock, flags);
2686 }
2687 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2688 
2689 /*
2690  * __wake_up_sync - see __wake_up_sync_key()
2691  */
2692 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2693 {
2694 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2695 }
2696 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2697 
2698 /**
2699  * complete: - signals a single thread waiting on this completion
2700  * @x:  holds the state of this particular completion
2701  *
2702  * This will wake up a single thread waiting on this completion. Threads will be
2703  * awakened in the same order in which they were queued.
2704  *
2705  * See also complete_all(), wait_for_completion() and related routines.
2706  *
2707  * It may be assumed that this function implies a write memory barrier before
2708  * changing the task state if and only if any tasks are woken up.
2709  */
2710 void complete(struct completion *x)
2711 {
2712 	unsigned long flags;
2713 
2714 	spin_lock_irqsave(&x->wait.lock, flags);
2715 	x->done++;
2716 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2717 	spin_unlock_irqrestore(&x->wait.lock, flags);
2718 }
2719 EXPORT_SYMBOL(complete);
2720 
2721 /**
2722  * complete_all: - signals all threads waiting on this completion
2723  * @x:  holds the state of this particular completion
2724  *
2725  * This will wake up all threads waiting on this particular completion event.
2726  *
2727  * It may be assumed that this function implies a write memory barrier before
2728  * changing the task state if and only if any tasks are woken up.
2729  */
2730 void complete_all(struct completion *x)
2731 {
2732 	unsigned long flags;
2733 
2734 	spin_lock_irqsave(&x->wait.lock, flags);
2735 	x->done += UINT_MAX/2;
2736 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2737 	spin_unlock_irqrestore(&x->wait.lock, flags);
2738 }
2739 EXPORT_SYMBOL(complete_all);
2740 
2741 static inline long __sched
2742 do_wait_for_common(struct completion *x,
2743 		   long (*action)(long), long timeout, int state)
2744 {
2745 	if (!x->done) {
2746 		DECLARE_WAITQUEUE(wait, current);
2747 
2748 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2749 		do {
2750 			if (signal_pending_state(state, current)) {
2751 				timeout = -ERESTARTSYS;
2752 				break;
2753 			}
2754 			__set_current_state(state);
2755 			spin_unlock_irq(&x->wait.lock);
2756 			timeout = action(timeout);
2757 			spin_lock_irq(&x->wait.lock);
2758 		} while (!x->done && timeout);
2759 		__remove_wait_queue(&x->wait, &wait);
2760 		if (!x->done)
2761 			return timeout;
2762 	}
2763 	x->done--;
2764 	return timeout ?: 1;
2765 }
2766 
2767 static inline long __sched
2768 __wait_for_common(struct completion *x,
2769 		  long (*action)(long), long timeout, int state)
2770 {
2771 	might_sleep();
2772 
2773 	spin_lock_irq(&x->wait.lock);
2774 	timeout = do_wait_for_common(x, action, timeout, state);
2775 	spin_unlock_irq(&x->wait.lock);
2776 	return timeout;
2777 }
2778 
2779 static long __sched
2780 wait_for_common(struct completion *x, long timeout, int state)
2781 {
2782 	return __wait_for_common(x, schedule_timeout, timeout, state);
2783 }
2784 
2785 static long __sched
2786 wait_for_common_io(struct completion *x, long timeout, int state)
2787 {
2788 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2789 }
2790 
2791 /**
2792  * wait_for_completion: - waits for completion of a task
2793  * @x:  holds the state of this particular completion
2794  *
2795  * This waits to be signaled for completion of a specific task. It is NOT
2796  * interruptible and there is no timeout.
2797  *
2798  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2799  * and interrupt capability. Also see complete().
2800  */
2801 void __sched wait_for_completion(struct completion *x)
2802 {
2803 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2804 }
2805 EXPORT_SYMBOL(wait_for_completion);
2806 
2807 /**
2808  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2809  * @x:  holds the state of this particular completion
2810  * @timeout:  timeout value in jiffies
2811  *
2812  * This waits for either a completion of a specific task to be signaled or for a
2813  * specified timeout to expire. The timeout is in jiffies. It is not
2814  * interruptible.
2815  *
2816  * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2817  * till timeout) if completed.
2818  */
2819 unsigned long __sched
2820 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2821 {
2822 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2823 }
2824 EXPORT_SYMBOL(wait_for_completion_timeout);
2825 
2826 /**
2827  * wait_for_completion_io: - waits for completion of a task
2828  * @x:  holds the state of this particular completion
2829  *
2830  * This waits to be signaled for completion of a specific task. It is NOT
2831  * interruptible and there is no timeout. The caller is accounted as waiting
2832  * for IO.
2833  */
2834 void __sched wait_for_completion_io(struct completion *x)
2835 {
2836 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2837 }
2838 EXPORT_SYMBOL(wait_for_completion_io);
2839 
2840 /**
2841  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2842  * @x:  holds the state of this particular completion
2843  * @timeout:  timeout value in jiffies
2844  *
2845  * This waits for either a completion of a specific task to be signaled or for a
2846  * specified timeout to expire. The timeout is in jiffies. It is not
2847  * interruptible. The caller is accounted as waiting for IO.
2848  *
2849  * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2850  * till timeout) if completed.
2851  */
2852 unsigned long __sched
2853 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2854 {
2855 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2856 }
2857 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2858 
2859 /**
2860  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2861  * @x:  holds the state of this particular completion
2862  *
2863  * This waits for completion of a specific task to be signaled. It is
2864  * interruptible.
2865  *
2866  * Return: -ERESTARTSYS if interrupted, 0 if completed.
2867  */
2868 int __sched wait_for_completion_interruptible(struct completion *x)
2869 {
2870 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2871 	if (t == -ERESTARTSYS)
2872 		return t;
2873 	return 0;
2874 }
2875 EXPORT_SYMBOL(wait_for_completion_interruptible);
2876 
2877 /**
2878  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2879  * @x:  holds the state of this particular completion
2880  * @timeout:  timeout value in jiffies
2881  *
2882  * This waits for either a completion of a specific task to be signaled or for a
2883  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2884  *
2885  * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2886  * or number of jiffies left till timeout) if completed.
2887  */
2888 long __sched
2889 wait_for_completion_interruptible_timeout(struct completion *x,
2890 					  unsigned long timeout)
2891 {
2892 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2893 }
2894 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2895 
2896 /**
2897  * wait_for_completion_killable: - waits for completion of a task (killable)
2898  * @x:  holds the state of this particular completion
2899  *
2900  * This waits to be signaled for completion of a specific task. It can be
2901  * interrupted by a kill signal.
2902  *
2903  * Return: -ERESTARTSYS if interrupted, 0 if completed.
2904  */
2905 int __sched wait_for_completion_killable(struct completion *x)
2906 {
2907 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2908 	if (t == -ERESTARTSYS)
2909 		return t;
2910 	return 0;
2911 }
2912 EXPORT_SYMBOL(wait_for_completion_killable);
2913 
2914 /**
2915  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2916  * @x:  holds the state of this particular completion
2917  * @timeout:  timeout value in jiffies
2918  *
2919  * This waits for either a completion of a specific task to be
2920  * signaled or for a specified timeout to expire. It can be
2921  * interrupted by a kill signal. The timeout is in jiffies.
2922  *
2923  * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2924  * or number of jiffies left till timeout) if completed.
2925  */
2926 long __sched
2927 wait_for_completion_killable_timeout(struct completion *x,
2928 				     unsigned long timeout)
2929 {
2930 	return wait_for_common(x, timeout, TASK_KILLABLE);
2931 }
2932 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2933 
2934 /**
2935  *	try_wait_for_completion - try to decrement a completion without blocking
2936  *	@x:	completion structure
2937  *
2938  *	Return: 0 if a decrement cannot be done without blocking
2939  *		 1 if a decrement succeeded.
2940  *
2941  *	If a completion is being used as a counting completion,
2942  *	attempt to decrement the counter without blocking. This
2943  *	enables us to avoid waiting if the resource the completion
2944  *	is protecting is not available.
2945  */
2946 bool try_wait_for_completion(struct completion *x)
2947 {
2948 	unsigned long flags;
2949 	int ret = 1;
2950 
2951 	spin_lock_irqsave(&x->wait.lock, flags);
2952 	if (!x->done)
2953 		ret = 0;
2954 	else
2955 		x->done--;
2956 	spin_unlock_irqrestore(&x->wait.lock, flags);
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL(try_wait_for_completion);
2960 
2961 /**
2962  *	completion_done - Test to see if a completion has any waiters
2963  *	@x:	completion structure
2964  *
2965  *	Return: 0 if there are waiters (wait_for_completion() in progress)
2966  *		 1 if there are no waiters.
2967  *
2968  */
2969 bool completion_done(struct completion *x)
2970 {
2971 	unsigned long flags;
2972 	int ret = 1;
2973 
2974 	spin_lock_irqsave(&x->wait.lock, flags);
2975 	if (!x->done)
2976 		ret = 0;
2977 	spin_unlock_irqrestore(&x->wait.lock, flags);
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL(completion_done);
2981 
2982 static long __sched
2983 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2984 {
2985 	unsigned long flags;
2986 	wait_queue_t wait;
2987 
2988 	init_waitqueue_entry(&wait, current);
2989 
2990 	__set_current_state(state);
2991 
2992 	spin_lock_irqsave(&q->lock, flags);
2993 	__add_wait_queue(q, &wait);
2994 	spin_unlock(&q->lock);
2995 	timeout = schedule_timeout(timeout);
2996 	spin_lock_irq(&q->lock);
2997 	__remove_wait_queue(q, &wait);
2998 	spin_unlock_irqrestore(&q->lock, flags);
2999 
3000 	return timeout;
3001 }
3002 
3003 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3004 {
3005 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3006 }
3007 EXPORT_SYMBOL(interruptible_sleep_on);
3008 
3009 long __sched
3010 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3011 {
3012 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3013 }
3014 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3015 
3016 void __sched sleep_on(wait_queue_head_t *q)
3017 {
3018 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3019 }
3020 EXPORT_SYMBOL(sleep_on);
3021 
3022 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3023 {
3024 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3025 }
3026 EXPORT_SYMBOL(sleep_on_timeout);
3027 
3028 #ifdef CONFIG_RT_MUTEXES
3029 
3030 /*
3031  * rt_mutex_setprio - set the current priority of a task
3032  * @p: task
3033  * @prio: prio value (kernel-internal form)
3034  *
3035  * This function changes the 'effective' priority of a task. It does
3036  * not touch ->normal_prio like __setscheduler().
3037  *
3038  * Used by the rt_mutex code to implement priority inheritance logic.
3039  */
3040 void rt_mutex_setprio(struct task_struct *p, int prio)
3041 {
3042 	int oldprio, on_rq, running;
3043 	struct rq *rq;
3044 	const struct sched_class *prev_class;
3045 
3046 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3047 
3048 	rq = __task_rq_lock(p);
3049 
3050 	/*
3051 	 * Idle task boosting is a nono in general. There is one
3052 	 * exception, when PREEMPT_RT and NOHZ is active:
3053 	 *
3054 	 * The idle task calls get_next_timer_interrupt() and holds
3055 	 * the timer wheel base->lock on the CPU and another CPU wants
3056 	 * to access the timer (probably to cancel it). We can safely
3057 	 * ignore the boosting request, as the idle CPU runs this code
3058 	 * with interrupts disabled and will complete the lock
3059 	 * protected section without being interrupted. So there is no
3060 	 * real need to boost.
3061 	 */
3062 	if (unlikely(p == rq->idle)) {
3063 		WARN_ON(p != rq->curr);
3064 		WARN_ON(p->pi_blocked_on);
3065 		goto out_unlock;
3066 	}
3067 
3068 	trace_sched_pi_setprio(p, prio);
3069 	oldprio = p->prio;
3070 	prev_class = p->sched_class;
3071 	on_rq = p->on_rq;
3072 	running = task_current(rq, p);
3073 	if (on_rq)
3074 		dequeue_task(rq, p, 0);
3075 	if (running)
3076 		p->sched_class->put_prev_task(rq, p);
3077 
3078 	if (rt_prio(prio))
3079 		p->sched_class = &rt_sched_class;
3080 	else
3081 		p->sched_class = &fair_sched_class;
3082 
3083 	p->prio = prio;
3084 
3085 	if (running)
3086 		p->sched_class->set_curr_task(rq);
3087 	if (on_rq)
3088 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3089 
3090 	check_class_changed(rq, p, prev_class, oldprio);
3091 out_unlock:
3092 	__task_rq_unlock(rq);
3093 }
3094 #endif
3095 void set_user_nice(struct task_struct *p, long nice)
3096 {
3097 	int old_prio, delta, on_rq;
3098 	unsigned long flags;
3099 	struct rq *rq;
3100 
3101 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3102 		return;
3103 	/*
3104 	 * We have to be careful, if called from sys_setpriority(),
3105 	 * the task might be in the middle of scheduling on another CPU.
3106 	 */
3107 	rq = task_rq_lock(p, &flags);
3108 	/*
3109 	 * The RT priorities are set via sched_setscheduler(), but we still
3110 	 * allow the 'normal' nice value to be set - but as expected
3111 	 * it wont have any effect on scheduling until the task is
3112 	 * SCHED_FIFO/SCHED_RR:
3113 	 */
3114 	if (task_has_rt_policy(p)) {
3115 		p->static_prio = NICE_TO_PRIO(nice);
3116 		goto out_unlock;
3117 	}
3118 	on_rq = p->on_rq;
3119 	if (on_rq)
3120 		dequeue_task(rq, p, 0);
3121 
3122 	p->static_prio = NICE_TO_PRIO(nice);
3123 	set_load_weight(p);
3124 	old_prio = p->prio;
3125 	p->prio = effective_prio(p);
3126 	delta = p->prio - old_prio;
3127 
3128 	if (on_rq) {
3129 		enqueue_task(rq, p, 0);
3130 		/*
3131 		 * If the task increased its priority or is running and
3132 		 * lowered its priority, then reschedule its CPU:
3133 		 */
3134 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3135 			resched_task(rq->curr);
3136 	}
3137 out_unlock:
3138 	task_rq_unlock(rq, p, &flags);
3139 }
3140 EXPORT_SYMBOL(set_user_nice);
3141 
3142 /*
3143  * can_nice - check if a task can reduce its nice value
3144  * @p: task
3145  * @nice: nice value
3146  */
3147 int can_nice(const struct task_struct *p, const int nice)
3148 {
3149 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3150 	int nice_rlim = 20 - nice;
3151 
3152 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3153 		capable(CAP_SYS_NICE));
3154 }
3155 
3156 #ifdef __ARCH_WANT_SYS_NICE
3157 
3158 /*
3159  * sys_nice - change the priority of the current process.
3160  * @increment: priority increment
3161  *
3162  * sys_setpriority is a more generic, but much slower function that
3163  * does similar things.
3164  */
3165 SYSCALL_DEFINE1(nice, int, increment)
3166 {
3167 	long nice, retval;
3168 
3169 	/*
3170 	 * Setpriority might change our priority at the same moment.
3171 	 * We don't have to worry. Conceptually one call occurs first
3172 	 * and we have a single winner.
3173 	 */
3174 	if (increment < -40)
3175 		increment = -40;
3176 	if (increment > 40)
3177 		increment = 40;
3178 
3179 	nice = TASK_NICE(current) + increment;
3180 	if (nice < -20)
3181 		nice = -20;
3182 	if (nice > 19)
3183 		nice = 19;
3184 
3185 	if (increment < 0 && !can_nice(current, nice))
3186 		return -EPERM;
3187 
3188 	retval = security_task_setnice(current, nice);
3189 	if (retval)
3190 		return retval;
3191 
3192 	set_user_nice(current, nice);
3193 	return 0;
3194 }
3195 
3196 #endif
3197 
3198 /**
3199  * task_prio - return the priority value of a given task.
3200  * @p: the task in question.
3201  *
3202  * Return: The priority value as seen by users in /proc.
3203  * RT tasks are offset by -200. Normal tasks are centered
3204  * around 0, value goes from -16 to +15.
3205  */
3206 int task_prio(const struct task_struct *p)
3207 {
3208 	return p->prio - MAX_RT_PRIO;
3209 }
3210 
3211 /**
3212  * task_nice - return the nice value of a given task.
3213  * @p: the task in question.
3214  *
3215  * Return: The nice value [ -20 ... 0 ... 19 ].
3216  */
3217 int task_nice(const struct task_struct *p)
3218 {
3219 	return TASK_NICE(p);
3220 }
3221 EXPORT_SYMBOL(task_nice);
3222 
3223 /**
3224  * idle_cpu - is a given cpu idle currently?
3225  * @cpu: the processor in question.
3226  *
3227  * Return: 1 if the CPU is currently idle. 0 otherwise.
3228  */
3229 int idle_cpu(int cpu)
3230 {
3231 	struct rq *rq = cpu_rq(cpu);
3232 
3233 	if (rq->curr != rq->idle)
3234 		return 0;
3235 
3236 	if (rq->nr_running)
3237 		return 0;
3238 
3239 #ifdef CONFIG_SMP
3240 	if (!llist_empty(&rq->wake_list))
3241 		return 0;
3242 #endif
3243 
3244 	return 1;
3245 }
3246 
3247 /**
3248  * idle_task - return the idle task for a given cpu.
3249  * @cpu: the processor in question.
3250  *
3251  * Return: The idle task for the cpu @cpu.
3252  */
3253 struct task_struct *idle_task(int cpu)
3254 {
3255 	return cpu_rq(cpu)->idle;
3256 }
3257 
3258 /**
3259  * find_process_by_pid - find a process with a matching PID value.
3260  * @pid: the pid in question.
3261  *
3262  * The task of @pid, if found. %NULL otherwise.
3263  */
3264 static struct task_struct *find_process_by_pid(pid_t pid)
3265 {
3266 	return pid ? find_task_by_vpid(pid) : current;
3267 }
3268 
3269 /* Actually do priority change: must hold rq lock. */
3270 static void
3271 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3272 {
3273 	p->policy = policy;
3274 	p->rt_priority = prio;
3275 	p->normal_prio = normal_prio(p);
3276 	/* we are holding p->pi_lock already */
3277 	p->prio = rt_mutex_getprio(p);
3278 	if (rt_prio(p->prio))
3279 		p->sched_class = &rt_sched_class;
3280 	else
3281 		p->sched_class = &fair_sched_class;
3282 	set_load_weight(p);
3283 }
3284 
3285 /*
3286  * check the target process has a UID that matches the current process's
3287  */
3288 static bool check_same_owner(struct task_struct *p)
3289 {
3290 	const struct cred *cred = current_cred(), *pcred;
3291 	bool match;
3292 
3293 	rcu_read_lock();
3294 	pcred = __task_cred(p);
3295 	match = (uid_eq(cred->euid, pcred->euid) ||
3296 		 uid_eq(cred->euid, pcred->uid));
3297 	rcu_read_unlock();
3298 	return match;
3299 }
3300 
3301 static int __sched_setscheduler(struct task_struct *p, int policy,
3302 				const struct sched_param *param, bool user)
3303 {
3304 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3305 	unsigned long flags;
3306 	const struct sched_class *prev_class;
3307 	struct rq *rq;
3308 	int reset_on_fork;
3309 
3310 	/* may grab non-irq protected spin_locks */
3311 	BUG_ON(in_interrupt());
3312 recheck:
3313 	/* double check policy once rq lock held */
3314 	if (policy < 0) {
3315 		reset_on_fork = p->sched_reset_on_fork;
3316 		policy = oldpolicy = p->policy;
3317 	} else {
3318 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3319 		policy &= ~SCHED_RESET_ON_FORK;
3320 
3321 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3322 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3323 				policy != SCHED_IDLE)
3324 			return -EINVAL;
3325 	}
3326 
3327 	/*
3328 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3329 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3330 	 * SCHED_BATCH and SCHED_IDLE is 0.
3331 	 */
3332 	if (param->sched_priority < 0 ||
3333 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3334 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3335 		return -EINVAL;
3336 	if (rt_policy(policy) != (param->sched_priority != 0))
3337 		return -EINVAL;
3338 
3339 	/*
3340 	 * Allow unprivileged RT tasks to decrease priority:
3341 	 */
3342 	if (user && !capable(CAP_SYS_NICE)) {
3343 		if (rt_policy(policy)) {
3344 			unsigned long rlim_rtprio =
3345 					task_rlimit(p, RLIMIT_RTPRIO);
3346 
3347 			/* can't set/change the rt policy */
3348 			if (policy != p->policy && !rlim_rtprio)
3349 				return -EPERM;
3350 
3351 			/* can't increase priority */
3352 			if (param->sched_priority > p->rt_priority &&
3353 			    param->sched_priority > rlim_rtprio)
3354 				return -EPERM;
3355 		}
3356 
3357 		/*
3358 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3359 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3360 		 */
3361 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3362 			if (!can_nice(p, TASK_NICE(p)))
3363 				return -EPERM;
3364 		}
3365 
3366 		/* can't change other user's priorities */
3367 		if (!check_same_owner(p))
3368 			return -EPERM;
3369 
3370 		/* Normal users shall not reset the sched_reset_on_fork flag */
3371 		if (p->sched_reset_on_fork && !reset_on_fork)
3372 			return -EPERM;
3373 	}
3374 
3375 	if (user) {
3376 		retval = security_task_setscheduler(p);
3377 		if (retval)
3378 			return retval;
3379 	}
3380 
3381 	/*
3382 	 * make sure no PI-waiters arrive (or leave) while we are
3383 	 * changing the priority of the task:
3384 	 *
3385 	 * To be able to change p->policy safely, the appropriate
3386 	 * runqueue lock must be held.
3387 	 */
3388 	rq = task_rq_lock(p, &flags);
3389 
3390 	/*
3391 	 * Changing the policy of the stop threads its a very bad idea
3392 	 */
3393 	if (p == rq->stop) {
3394 		task_rq_unlock(rq, p, &flags);
3395 		return -EINVAL;
3396 	}
3397 
3398 	/*
3399 	 * If not changing anything there's no need to proceed further:
3400 	 */
3401 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3402 			param->sched_priority == p->rt_priority))) {
3403 		task_rq_unlock(rq, p, &flags);
3404 		return 0;
3405 	}
3406 
3407 #ifdef CONFIG_RT_GROUP_SCHED
3408 	if (user) {
3409 		/*
3410 		 * Do not allow realtime tasks into groups that have no runtime
3411 		 * assigned.
3412 		 */
3413 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3414 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3415 				!task_group_is_autogroup(task_group(p))) {
3416 			task_rq_unlock(rq, p, &flags);
3417 			return -EPERM;
3418 		}
3419 	}
3420 #endif
3421 
3422 	/* recheck policy now with rq lock held */
3423 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3424 		policy = oldpolicy = -1;
3425 		task_rq_unlock(rq, p, &flags);
3426 		goto recheck;
3427 	}
3428 	on_rq = p->on_rq;
3429 	running = task_current(rq, p);
3430 	if (on_rq)
3431 		dequeue_task(rq, p, 0);
3432 	if (running)
3433 		p->sched_class->put_prev_task(rq, p);
3434 
3435 	p->sched_reset_on_fork = reset_on_fork;
3436 
3437 	oldprio = p->prio;
3438 	prev_class = p->sched_class;
3439 	__setscheduler(rq, p, policy, param->sched_priority);
3440 
3441 	if (running)
3442 		p->sched_class->set_curr_task(rq);
3443 	if (on_rq)
3444 		enqueue_task(rq, p, 0);
3445 
3446 	check_class_changed(rq, p, prev_class, oldprio);
3447 	task_rq_unlock(rq, p, &flags);
3448 
3449 	rt_mutex_adjust_pi(p);
3450 
3451 	return 0;
3452 }
3453 
3454 /**
3455  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3456  * @p: the task in question.
3457  * @policy: new policy.
3458  * @param: structure containing the new RT priority.
3459  *
3460  * Return: 0 on success. An error code otherwise.
3461  *
3462  * NOTE that the task may be already dead.
3463  */
3464 int sched_setscheduler(struct task_struct *p, int policy,
3465 		       const struct sched_param *param)
3466 {
3467 	return __sched_setscheduler(p, policy, param, true);
3468 }
3469 EXPORT_SYMBOL_GPL(sched_setscheduler);
3470 
3471 /**
3472  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3473  * @p: the task in question.
3474  * @policy: new policy.
3475  * @param: structure containing the new RT priority.
3476  *
3477  * Just like sched_setscheduler, only don't bother checking if the
3478  * current context has permission.  For example, this is needed in
3479  * stop_machine(): we create temporary high priority worker threads,
3480  * but our caller might not have that capability.
3481  *
3482  * Return: 0 on success. An error code otherwise.
3483  */
3484 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3485 			       const struct sched_param *param)
3486 {
3487 	return __sched_setscheduler(p, policy, param, false);
3488 }
3489 
3490 static int
3491 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3492 {
3493 	struct sched_param lparam;
3494 	struct task_struct *p;
3495 	int retval;
3496 
3497 	if (!param || pid < 0)
3498 		return -EINVAL;
3499 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3500 		return -EFAULT;
3501 
3502 	rcu_read_lock();
3503 	retval = -ESRCH;
3504 	p = find_process_by_pid(pid);
3505 	if (p != NULL)
3506 		retval = sched_setscheduler(p, policy, &lparam);
3507 	rcu_read_unlock();
3508 
3509 	return retval;
3510 }
3511 
3512 /**
3513  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3514  * @pid: the pid in question.
3515  * @policy: new policy.
3516  * @param: structure containing the new RT priority.
3517  *
3518  * Return: 0 on success. An error code otherwise.
3519  */
3520 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3521 		struct sched_param __user *, param)
3522 {
3523 	/* negative values for policy are not valid */
3524 	if (policy < 0)
3525 		return -EINVAL;
3526 
3527 	return do_sched_setscheduler(pid, policy, param);
3528 }
3529 
3530 /**
3531  * sys_sched_setparam - set/change the RT priority of a thread
3532  * @pid: the pid in question.
3533  * @param: structure containing the new RT priority.
3534  *
3535  * Return: 0 on success. An error code otherwise.
3536  */
3537 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3538 {
3539 	return do_sched_setscheduler(pid, -1, param);
3540 }
3541 
3542 /**
3543  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3544  * @pid: the pid in question.
3545  *
3546  * Return: On success, the policy of the thread. Otherwise, a negative error
3547  * code.
3548  */
3549 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3550 {
3551 	struct task_struct *p;
3552 	int retval;
3553 
3554 	if (pid < 0)
3555 		return -EINVAL;
3556 
3557 	retval = -ESRCH;
3558 	rcu_read_lock();
3559 	p = find_process_by_pid(pid);
3560 	if (p) {
3561 		retval = security_task_getscheduler(p);
3562 		if (!retval)
3563 			retval = p->policy
3564 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3565 	}
3566 	rcu_read_unlock();
3567 	return retval;
3568 }
3569 
3570 /**
3571  * sys_sched_getparam - get the RT priority of a thread
3572  * @pid: the pid in question.
3573  * @param: structure containing the RT priority.
3574  *
3575  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3576  * code.
3577  */
3578 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3579 {
3580 	struct sched_param lp;
3581 	struct task_struct *p;
3582 	int retval;
3583 
3584 	if (!param || pid < 0)
3585 		return -EINVAL;
3586 
3587 	rcu_read_lock();
3588 	p = find_process_by_pid(pid);
3589 	retval = -ESRCH;
3590 	if (!p)
3591 		goto out_unlock;
3592 
3593 	retval = security_task_getscheduler(p);
3594 	if (retval)
3595 		goto out_unlock;
3596 
3597 	lp.sched_priority = p->rt_priority;
3598 	rcu_read_unlock();
3599 
3600 	/*
3601 	 * This one might sleep, we cannot do it with a spinlock held ...
3602 	 */
3603 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3604 
3605 	return retval;
3606 
3607 out_unlock:
3608 	rcu_read_unlock();
3609 	return retval;
3610 }
3611 
3612 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3613 {
3614 	cpumask_var_t cpus_allowed, new_mask;
3615 	struct task_struct *p;
3616 	int retval;
3617 
3618 	get_online_cpus();
3619 	rcu_read_lock();
3620 
3621 	p = find_process_by_pid(pid);
3622 	if (!p) {
3623 		rcu_read_unlock();
3624 		put_online_cpus();
3625 		return -ESRCH;
3626 	}
3627 
3628 	/* Prevent p going away */
3629 	get_task_struct(p);
3630 	rcu_read_unlock();
3631 
3632 	if (p->flags & PF_NO_SETAFFINITY) {
3633 		retval = -EINVAL;
3634 		goto out_put_task;
3635 	}
3636 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3637 		retval = -ENOMEM;
3638 		goto out_put_task;
3639 	}
3640 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3641 		retval = -ENOMEM;
3642 		goto out_free_cpus_allowed;
3643 	}
3644 	retval = -EPERM;
3645 	if (!check_same_owner(p)) {
3646 		rcu_read_lock();
3647 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3648 			rcu_read_unlock();
3649 			goto out_unlock;
3650 		}
3651 		rcu_read_unlock();
3652 	}
3653 
3654 	retval = security_task_setscheduler(p);
3655 	if (retval)
3656 		goto out_unlock;
3657 
3658 	cpuset_cpus_allowed(p, cpus_allowed);
3659 	cpumask_and(new_mask, in_mask, cpus_allowed);
3660 again:
3661 	retval = set_cpus_allowed_ptr(p, new_mask);
3662 
3663 	if (!retval) {
3664 		cpuset_cpus_allowed(p, cpus_allowed);
3665 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3666 			/*
3667 			 * We must have raced with a concurrent cpuset
3668 			 * update. Just reset the cpus_allowed to the
3669 			 * cpuset's cpus_allowed
3670 			 */
3671 			cpumask_copy(new_mask, cpus_allowed);
3672 			goto again;
3673 		}
3674 	}
3675 out_unlock:
3676 	free_cpumask_var(new_mask);
3677 out_free_cpus_allowed:
3678 	free_cpumask_var(cpus_allowed);
3679 out_put_task:
3680 	put_task_struct(p);
3681 	put_online_cpus();
3682 	return retval;
3683 }
3684 
3685 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3686 			     struct cpumask *new_mask)
3687 {
3688 	if (len < cpumask_size())
3689 		cpumask_clear(new_mask);
3690 	else if (len > cpumask_size())
3691 		len = cpumask_size();
3692 
3693 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3694 }
3695 
3696 /**
3697  * sys_sched_setaffinity - set the cpu affinity of a process
3698  * @pid: pid of the process
3699  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3700  * @user_mask_ptr: user-space pointer to the new cpu mask
3701  *
3702  * Return: 0 on success. An error code otherwise.
3703  */
3704 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3705 		unsigned long __user *, user_mask_ptr)
3706 {
3707 	cpumask_var_t new_mask;
3708 	int retval;
3709 
3710 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3711 		return -ENOMEM;
3712 
3713 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3714 	if (retval == 0)
3715 		retval = sched_setaffinity(pid, new_mask);
3716 	free_cpumask_var(new_mask);
3717 	return retval;
3718 }
3719 
3720 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3721 {
3722 	struct task_struct *p;
3723 	unsigned long flags;
3724 	int retval;
3725 
3726 	get_online_cpus();
3727 	rcu_read_lock();
3728 
3729 	retval = -ESRCH;
3730 	p = find_process_by_pid(pid);
3731 	if (!p)
3732 		goto out_unlock;
3733 
3734 	retval = security_task_getscheduler(p);
3735 	if (retval)
3736 		goto out_unlock;
3737 
3738 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3739 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3740 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3741 
3742 out_unlock:
3743 	rcu_read_unlock();
3744 	put_online_cpus();
3745 
3746 	return retval;
3747 }
3748 
3749 /**
3750  * sys_sched_getaffinity - get the cpu affinity of a process
3751  * @pid: pid of the process
3752  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3753  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3754  *
3755  * Return: 0 on success. An error code otherwise.
3756  */
3757 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3758 		unsigned long __user *, user_mask_ptr)
3759 {
3760 	int ret;
3761 	cpumask_var_t mask;
3762 
3763 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3764 		return -EINVAL;
3765 	if (len & (sizeof(unsigned long)-1))
3766 		return -EINVAL;
3767 
3768 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3769 		return -ENOMEM;
3770 
3771 	ret = sched_getaffinity(pid, mask);
3772 	if (ret == 0) {
3773 		size_t retlen = min_t(size_t, len, cpumask_size());
3774 
3775 		if (copy_to_user(user_mask_ptr, mask, retlen))
3776 			ret = -EFAULT;
3777 		else
3778 			ret = retlen;
3779 	}
3780 	free_cpumask_var(mask);
3781 
3782 	return ret;
3783 }
3784 
3785 /**
3786  * sys_sched_yield - yield the current processor to other threads.
3787  *
3788  * This function yields the current CPU to other tasks. If there are no
3789  * other threads running on this CPU then this function will return.
3790  *
3791  * Return: 0.
3792  */
3793 SYSCALL_DEFINE0(sched_yield)
3794 {
3795 	struct rq *rq = this_rq_lock();
3796 
3797 	schedstat_inc(rq, yld_count);
3798 	current->sched_class->yield_task(rq);
3799 
3800 	/*
3801 	 * Since we are going to call schedule() anyway, there's
3802 	 * no need to preempt or enable interrupts:
3803 	 */
3804 	__release(rq->lock);
3805 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3806 	do_raw_spin_unlock(&rq->lock);
3807 	sched_preempt_enable_no_resched();
3808 
3809 	schedule();
3810 
3811 	return 0;
3812 }
3813 
3814 static inline int should_resched(void)
3815 {
3816 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3817 }
3818 
3819 static void __cond_resched(void)
3820 {
3821 	add_preempt_count(PREEMPT_ACTIVE);
3822 	__schedule();
3823 	sub_preempt_count(PREEMPT_ACTIVE);
3824 }
3825 
3826 int __sched _cond_resched(void)
3827 {
3828 	if (should_resched()) {
3829 		__cond_resched();
3830 		return 1;
3831 	}
3832 	return 0;
3833 }
3834 EXPORT_SYMBOL(_cond_resched);
3835 
3836 /*
3837  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3838  * call schedule, and on return reacquire the lock.
3839  *
3840  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3841  * operations here to prevent schedule() from being called twice (once via
3842  * spin_unlock(), once by hand).
3843  */
3844 int __cond_resched_lock(spinlock_t *lock)
3845 {
3846 	int resched = should_resched();
3847 	int ret = 0;
3848 
3849 	lockdep_assert_held(lock);
3850 
3851 	if (spin_needbreak(lock) || resched) {
3852 		spin_unlock(lock);
3853 		if (resched)
3854 			__cond_resched();
3855 		else
3856 			cpu_relax();
3857 		ret = 1;
3858 		spin_lock(lock);
3859 	}
3860 	return ret;
3861 }
3862 EXPORT_SYMBOL(__cond_resched_lock);
3863 
3864 int __sched __cond_resched_softirq(void)
3865 {
3866 	BUG_ON(!in_softirq());
3867 
3868 	if (should_resched()) {
3869 		local_bh_enable();
3870 		__cond_resched();
3871 		local_bh_disable();
3872 		return 1;
3873 	}
3874 	return 0;
3875 }
3876 EXPORT_SYMBOL(__cond_resched_softirq);
3877 
3878 /**
3879  * yield - yield the current processor to other threads.
3880  *
3881  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3882  *
3883  * The scheduler is at all times free to pick the calling task as the most
3884  * eligible task to run, if removing the yield() call from your code breaks
3885  * it, its already broken.
3886  *
3887  * Typical broken usage is:
3888  *
3889  * while (!event)
3890  * 	yield();
3891  *
3892  * where one assumes that yield() will let 'the other' process run that will
3893  * make event true. If the current task is a SCHED_FIFO task that will never
3894  * happen. Never use yield() as a progress guarantee!!
3895  *
3896  * If you want to use yield() to wait for something, use wait_event().
3897  * If you want to use yield() to be 'nice' for others, use cond_resched().
3898  * If you still want to use yield(), do not!
3899  */
3900 void __sched yield(void)
3901 {
3902 	set_current_state(TASK_RUNNING);
3903 	sys_sched_yield();
3904 }
3905 EXPORT_SYMBOL(yield);
3906 
3907 /**
3908  * yield_to - yield the current processor to another thread in
3909  * your thread group, or accelerate that thread toward the
3910  * processor it's on.
3911  * @p: target task
3912  * @preempt: whether task preemption is allowed or not
3913  *
3914  * It's the caller's job to ensure that the target task struct
3915  * can't go away on us before we can do any checks.
3916  *
3917  * Return:
3918  *	true (>0) if we indeed boosted the target task.
3919  *	false (0) if we failed to boost the target.
3920  *	-ESRCH if there's no task to yield to.
3921  */
3922 bool __sched yield_to(struct task_struct *p, bool preempt)
3923 {
3924 	struct task_struct *curr = current;
3925 	struct rq *rq, *p_rq;
3926 	unsigned long flags;
3927 	int yielded = 0;
3928 
3929 	local_irq_save(flags);
3930 	rq = this_rq();
3931 
3932 again:
3933 	p_rq = task_rq(p);
3934 	/*
3935 	 * If we're the only runnable task on the rq and target rq also
3936 	 * has only one task, there's absolutely no point in yielding.
3937 	 */
3938 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3939 		yielded = -ESRCH;
3940 		goto out_irq;
3941 	}
3942 
3943 	double_rq_lock(rq, p_rq);
3944 	while (task_rq(p) != p_rq) {
3945 		double_rq_unlock(rq, p_rq);
3946 		goto again;
3947 	}
3948 
3949 	if (!curr->sched_class->yield_to_task)
3950 		goto out_unlock;
3951 
3952 	if (curr->sched_class != p->sched_class)
3953 		goto out_unlock;
3954 
3955 	if (task_running(p_rq, p) || p->state)
3956 		goto out_unlock;
3957 
3958 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3959 	if (yielded) {
3960 		schedstat_inc(rq, yld_count);
3961 		/*
3962 		 * Make p's CPU reschedule; pick_next_entity takes care of
3963 		 * fairness.
3964 		 */
3965 		if (preempt && rq != p_rq)
3966 			resched_task(p_rq->curr);
3967 	}
3968 
3969 out_unlock:
3970 	double_rq_unlock(rq, p_rq);
3971 out_irq:
3972 	local_irq_restore(flags);
3973 
3974 	if (yielded > 0)
3975 		schedule();
3976 
3977 	return yielded;
3978 }
3979 EXPORT_SYMBOL_GPL(yield_to);
3980 
3981 /*
3982  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3983  * that process accounting knows that this is a task in IO wait state.
3984  */
3985 void __sched io_schedule(void)
3986 {
3987 	struct rq *rq = raw_rq();
3988 
3989 	delayacct_blkio_start();
3990 	atomic_inc(&rq->nr_iowait);
3991 	blk_flush_plug(current);
3992 	current->in_iowait = 1;
3993 	schedule();
3994 	current->in_iowait = 0;
3995 	atomic_dec(&rq->nr_iowait);
3996 	delayacct_blkio_end();
3997 }
3998 EXPORT_SYMBOL(io_schedule);
3999 
4000 long __sched io_schedule_timeout(long timeout)
4001 {
4002 	struct rq *rq = raw_rq();
4003 	long ret;
4004 
4005 	delayacct_blkio_start();
4006 	atomic_inc(&rq->nr_iowait);
4007 	blk_flush_plug(current);
4008 	current->in_iowait = 1;
4009 	ret = schedule_timeout(timeout);
4010 	current->in_iowait = 0;
4011 	atomic_dec(&rq->nr_iowait);
4012 	delayacct_blkio_end();
4013 	return ret;
4014 }
4015 
4016 /**
4017  * sys_sched_get_priority_max - return maximum RT priority.
4018  * @policy: scheduling class.
4019  *
4020  * Return: On success, this syscall returns the maximum
4021  * rt_priority that can be used by a given scheduling class.
4022  * On failure, a negative error code is returned.
4023  */
4024 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4025 {
4026 	int ret = -EINVAL;
4027 
4028 	switch (policy) {
4029 	case SCHED_FIFO:
4030 	case SCHED_RR:
4031 		ret = MAX_USER_RT_PRIO-1;
4032 		break;
4033 	case SCHED_NORMAL:
4034 	case SCHED_BATCH:
4035 	case SCHED_IDLE:
4036 		ret = 0;
4037 		break;
4038 	}
4039 	return ret;
4040 }
4041 
4042 /**
4043  * sys_sched_get_priority_min - return minimum RT priority.
4044  * @policy: scheduling class.
4045  *
4046  * Return: On success, this syscall returns the minimum
4047  * rt_priority that can be used by a given scheduling class.
4048  * On failure, a negative error code is returned.
4049  */
4050 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4051 {
4052 	int ret = -EINVAL;
4053 
4054 	switch (policy) {
4055 	case SCHED_FIFO:
4056 	case SCHED_RR:
4057 		ret = 1;
4058 		break;
4059 	case SCHED_NORMAL:
4060 	case SCHED_BATCH:
4061 	case SCHED_IDLE:
4062 		ret = 0;
4063 	}
4064 	return ret;
4065 }
4066 
4067 /**
4068  * sys_sched_rr_get_interval - return the default timeslice of a process.
4069  * @pid: pid of the process.
4070  * @interval: userspace pointer to the timeslice value.
4071  *
4072  * this syscall writes the default timeslice value of a given process
4073  * into the user-space timespec buffer. A value of '0' means infinity.
4074  *
4075  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4076  * an error code.
4077  */
4078 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4079 		struct timespec __user *, interval)
4080 {
4081 	struct task_struct *p;
4082 	unsigned int time_slice;
4083 	unsigned long flags;
4084 	struct rq *rq;
4085 	int retval;
4086 	struct timespec t;
4087 
4088 	if (pid < 0)
4089 		return -EINVAL;
4090 
4091 	retval = -ESRCH;
4092 	rcu_read_lock();
4093 	p = find_process_by_pid(pid);
4094 	if (!p)
4095 		goto out_unlock;
4096 
4097 	retval = security_task_getscheduler(p);
4098 	if (retval)
4099 		goto out_unlock;
4100 
4101 	rq = task_rq_lock(p, &flags);
4102 	time_slice = p->sched_class->get_rr_interval(rq, p);
4103 	task_rq_unlock(rq, p, &flags);
4104 
4105 	rcu_read_unlock();
4106 	jiffies_to_timespec(time_slice, &t);
4107 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4108 	return retval;
4109 
4110 out_unlock:
4111 	rcu_read_unlock();
4112 	return retval;
4113 }
4114 
4115 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4116 
4117 void sched_show_task(struct task_struct *p)
4118 {
4119 	unsigned long free = 0;
4120 	int ppid;
4121 	unsigned state;
4122 
4123 	state = p->state ? __ffs(p->state) + 1 : 0;
4124 	printk(KERN_INFO "%-15.15s %c", p->comm,
4125 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4126 #if BITS_PER_LONG == 32
4127 	if (state == TASK_RUNNING)
4128 		printk(KERN_CONT " running  ");
4129 	else
4130 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4131 #else
4132 	if (state == TASK_RUNNING)
4133 		printk(KERN_CONT "  running task    ");
4134 	else
4135 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4136 #endif
4137 #ifdef CONFIG_DEBUG_STACK_USAGE
4138 	free = stack_not_used(p);
4139 #endif
4140 	rcu_read_lock();
4141 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4142 	rcu_read_unlock();
4143 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4144 		task_pid_nr(p), ppid,
4145 		(unsigned long)task_thread_info(p)->flags);
4146 
4147 	print_worker_info(KERN_INFO, p);
4148 	show_stack(p, NULL);
4149 }
4150 
4151 void show_state_filter(unsigned long state_filter)
4152 {
4153 	struct task_struct *g, *p;
4154 
4155 #if BITS_PER_LONG == 32
4156 	printk(KERN_INFO
4157 		"  task                PC stack   pid father\n");
4158 #else
4159 	printk(KERN_INFO
4160 		"  task                        PC stack   pid father\n");
4161 #endif
4162 	rcu_read_lock();
4163 	do_each_thread(g, p) {
4164 		/*
4165 		 * reset the NMI-timeout, listing all files on a slow
4166 		 * console might take a lot of time:
4167 		 */
4168 		touch_nmi_watchdog();
4169 		if (!state_filter || (p->state & state_filter))
4170 			sched_show_task(p);
4171 	} while_each_thread(g, p);
4172 
4173 	touch_all_softlockup_watchdogs();
4174 
4175 #ifdef CONFIG_SCHED_DEBUG
4176 	sysrq_sched_debug_show();
4177 #endif
4178 	rcu_read_unlock();
4179 	/*
4180 	 * Only show locks if all tasks are dumped:
4181 	 */
4182 	if (!state_filter)
4183 		debug_show_all_locks();
4184 }
4185 
4186 void init_idle_bootup_task(struct task_struct *idle)
4187 {
4188 	idle->sched_class = &idle_sched_class;
4189 }
4190 
4191 /**
4192  * init_idle - set up an idle thread for a given CPU
4193  * @idle: task in question
4194  * @cpu: cpu the idle task belongs to
4195  *
4196  * NOTE: this function does not set the idle thread's NEED_RESCHED
4197  * flag, to make booting more robust.
4198  */
4199 void init_idle(struct task_struct *idle, int cpu)
4200 {
4201 	struct rq *rq = cpu_rq(cpu);
4202 	unsigned long flags;
4203 
4204 	raw_spin_lock_irqsave(&rq->lock, flags);
4205 
4206 	__sched_fork(idle);
4207 	idle->state = TASK_RUNNING;
4208 	idle->se.exec_start = sched_clock();
4209 
4210 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4211 	/*
4212 	 * We're having a chicken and egg problem, even though we are
4213 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4214 	 * lockdep check in task_group() will fail.
4215 	 *
4216 	 * Similar case to sched_fork(). / Alternatively we could
4217 	 * use task_rq_lock() here and obtain the other rq->lock.
4218 	 *
4219 	 * Silence PROVE_RCU
4220 	 */
4221 	rcu_read_lock();
4222 	__set_task_cpu(idle, cpu);
4223 	rcu_read_unlock();
4224 
4225 	rq->curr = rq->idle = idle;
4226 #if defined(CONFIG_SMP)
4227 	idle->on_cpu = 1;
4228 #endif
4229 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4230 
4231 	/* Set the preempt count _outside_ the spinlocks! */
4232 	task_thread_info(idle)->preempt_count = 0;
4233 
4234 	/*
4235 	 * The idle tasks have their own, simple scheduling class:
4236 	 */
4237 	idle->sched_class = &idle_sched_class;
4238 	ftrace_graph_init_idle_task(idle, cpu);
4239 	vtime_init_idle(idle, cpu);
4240 #if defined(CONFIG_SMP)
4241 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4242 #endif
4243 }
4244 
4245 #ifdef CONFIG_SMP
4246 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4247 {
4248 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4249 		p->sched_class->set_cpus_allowed(p, new_mask);
4250 
4251 	cpumask_copy(&p->cpus_allowed, new_mask);
4252 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4253 }
4254 
4255 /*
4256  * This is how migration works:
4257  *
4258  * 1) we invoke migration_cpu_stop() on the target CPU using
4259  *    stop_one_cpu().
4260  * 2) stopper starts to run (implicitly forcing the migrated thread
4261  *    off the CPU)
4262  * 3) it checks whether the migrated task is still in the wrong runqueue.
4263  * 4) if it's in the wrong runqueue then the migration thread removes
4264  *    it and puts it into the right queue.
4265  * 5) stopper completes and stop_one_cpu() returns and the migration
4266  *    is done.
4267  */
4268 
4269 /*
4270  * Change a given task's CPU affinity. Migrate the thread to a
4271  * proper CPU and schedule it away if the CPU it's executing on
4272  * is removed from the allowed bitmask.
4273  *
4274  * NOTE: the caller must have a valid reference to the task, the
4275  * task must not exit() & deallocate itself prematurely. The
4276  * call is not atomic; no spinlocks may be held.
4277  */
4278 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4279 {
4280 	unsigned long flags;
4281 	struct rq *rq;
4282 	unsigned int dest_cpu;
4283 	int ret = 0;
4284 
4285 	rq = task_rq_lock(p, &flags);
4286 
4287 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4288 		goto out;
4289 
4290 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4291 		ret = -EINVAL;
4292 		goto out;
4293 	}
4294 
4295 	do_set_cpus_allowed(p, new_mask);
4296 
4297 	/* Can the task run on the task's current CPU? If so, we're done */
4298 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4299 		goto out;
4300 
4301 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4302 	if (p->on_rq) {
4303 		struct migration_arg arg = { p, dest_cpu };
4304 		/* Need help from migration thread: drop lock and wait. */
4305 		task_rq_unlock(rq, p, &flags);
4306 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4307 		tlb_migrate_finish(p->mm);
4308 		return 0;
4309 	}
4310 out:
4311 	task_rq_unlock(rq, p, &flags);
4312 
4313 	return ret;
4314 }
4315 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4316 
4317 /*
4318  * Move (not current) task off this cpu, onto dest cpu. We're doing
4319  * this because either it can't run here any more (set_cpus_allowed()
4320  * away from this CPU, or CPU going down), or because we're
4321  * attempting to rebalance this task on exec (sched_exec).
4322  *
4323  * So we race with normal scheduler movements, but that's OK, as long
4324  * as the task is no longer on this CPU.
4325  *
4326  * Returns non-zero if task was successfully migrated.
4327  */
4328 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4329 {
4330 	struct rq *rq_dest, *rq_src;
4331 	int ret = 0;
4332 
4333 	if (unlikely(!cpu_active(dest_cpu)))
4334 		return ret;
4335 
4336 	rq_src = cpu_rq(src_cpu);
4337 	rq_dest = cpu_rq(dest_cpu);
4338 
4339 	raw_spin_lock(&p->pi_lock);
4340 	double_rq_lock(rq_src, rq_dest);
4341 	/* Already moved. */
4342 	if (task_cpu(p) != src_cpu)
4343 		goto done;
4344 	/* Affinity changed (again). */
4345 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4346 		goto fail;
4347 
4348 	/*
4349 	 * If we're not on a rq, the next wake-up will ensure we're
4350 	 * placed properly.
4351 	 */
4352 	if (p->on_rq) {
4353 		dequeue_task(rq_src, p, 0);
4354 		set_task_cpu(p, dest_cpu);
4355 		enqueue_task(rq_dest, p, 0);
4356 		check_preempt_curr(rq_dest, p, 0);
4357 	}
4358 done:
4359 	ret = 1;
4360 fail:
4361 	double_rq_unlock(rq_src, rq_dest);
4362 	raw_spin_unlock(&p->pi_lock);
4363 	return ret;
4364 }
4365 
4366 /*
4367  * migration_cpu_stop - this will be executed by a highprio stopper thread
4368  * and performs thread migration by bumping thread off CPU then
4369  * 'pushing' onto another runqueue.
4370  */
4371 static int migration_cpu_stop(void *data)
4372 {
4373 	struct migration_arg *arg = data;
4374 
4375 	/*
4376 	 * The original target cpu might have gone down and we might
4377 	 * be on another cpu but it doesn't matter.
4378 	 */
4379 	local_irq_disable();
4380 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4381 	local_irq_enable();
4382 	return 0;
4383 }
4384 
4385 #ifdef CONFIG_HOTPLUG_CPU
4386 
4387 /*
4388  * Ensures that the idle task is using init_mm right before its cpu goes
4389  * offline.
4390  */
4391 void idle_task_exit(void)
4392 {
4393 	struct mm_struct *mm = current->active_mm;
4394 
4395 	BUG_ON(cpu_online(smp_processor_id()));
4396 
4397 	if (mm != &init_mm)
4398 		switch_mm(mm, &init_mm, current);
4399 	mmdrop(mm);
4400 }
4401 
4402 /*
4403  * Since this CPU is going 'away' for a while, fold any nr_active delta
4404  * we might have. Assumes we're called after migrate_tasks() so that the
4405  * nr_active count is stable.
4406  *
4407  * Also see the comment "Global load-average calculations".
4408  */
4409 static void calc_load_migrate(struct rq *rq)
4410 {
4411 	long delta = calc_load_fold_active(rq);
4412 	if (delta)
4413 		atomic_long_add(delta, &calc_load_tasks);
4414 }
4415 
4416 /*
4417  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4418  * try_to_wake_up()->select_task_rq().
4419  *
4420  * Called with rq->lock held even though we'er in stop_machine() and
4421  * there's no concurrency possible, we hold the required locks anyway
4422  * because of lock validation efforts.
4423  */
4424 static void migrate_tasks(unsigned int dead_cpu)
4425 {
4426 	struct rq *rq = cpu_rq(dead_cpu);
4427 	struct task_struct *next, *stop = rq->stop;
4428 	int dest_cpu;
4429 
4430 	/*
4431 	 * Fudge the rq selection such that the below task selection loop
4432 	 * doesn't get stuck on the currently eligible stop task.
4433 	 *
4434 	 * We're currently inside stop_machine() and the rq is either stuck
4435 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4436 	 * either way we should never end up calling schedule() until we're
4437 	 * done here.
4438 	 */
4439 	rq->stop = NULL;
4440 
4441 	/*
4442 	 * put_prev_task() and pick_next_task() sched
4443 	 * class method both need to have an up-to-date
4444 	 * value of rq->clock[_task]
4445 	 */
4446 	update_rq_clock(rq);
4447 
4448 	for ( ; ; ) {
4449 		/*
4450 		 * There's this thread running, bail when that's the only
4451 		 * remaining thread.
4452 		 */
4453 		if (rq->nr_running == 1)
4454 			break;
4455 
4456 		next = pick_next_task(rq);
4457 		BUG_ON(!next);
4458 		next->sched_class->put_prev_task(rq, next);
4459 
4460 		/* Find suitable destination for @next, with force if needed. */
4461 		dest_cpu = select_fallback_rq(dead_cpu, next);
4462 		raw_spin_unlock(&rq->lock);
4463 
4464 		__migrate_task(next, dead_cpu, dest_cpu);
4465 
4466 		raw_spin_lock(&rq->lock);
4467 	}
4468 
4469 	rq->stop = stop;
4470 }
4471 
4472 #endif /* CONFIG_HOTPLUG_CPU */
4473 
4474 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4475 
4476 static struct ctl_table sd_ctl_dir[] = {
4477 	{
4478 		.procname	= "sched_domain",
4479 		.mode		= 0555,
4480 	},
4481 	{}
4482 };
4483 
4484 static struct ctl_table sd_ctl_root[] = {
4485 	{
4486 		.procname	= "kernel",
4487 		.mode		= 0555,
4488 		.child		= sd_ctl_dir,
4489 	},
4490 	{}
4491 };
4492 
4493 static struct ctl_table *sd_alloc_ctl_entry(int n)
4494 {
4495 	struct ctl_table *entry =
4496 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4497 
4498 	return entry;
4499 }
4500 
4501 static void sd_free_ctl_entry(struct ctl_table **tablep)
4502 {
4503 	struct ctl_table *entry;
4504 
4505 	/*
4506 	 * In the intermediate directories, both the child directory and
4507 	 * procname are dynamically allocated and could fail but the mode
4508 	 * will always be set. In the lowest directory the names are
4509 	 * static strings and all have proc handlers.
4510 	 */
4511 	for (entry = *tablep; entry->mode; entry++) {
4512 		if (entry->child)
4513 			sd_free_ctl_entry(&entry->child);
4514 		if (entry->proc_handler == NULL)
4515 			kfree(entry->procname);
4516 	}
4517 
4518 	kfree(*tablep);
4519 	*tablep = NULL;
4520 }
4521 
4522 static int min_load_idx = 0;
4523 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4524 
4525 static void
4526 set_table_entry(struct ctl_table *entry,
4527 		const char *procname, void *data, int maxlen,
4528 		umode_t mode, proc_handler *proc_handler,
4529 		bool load_idx)
4530 {
4531 	entry->procname = procname;
4532 	entry->data = data;
4533 	entry->maxlen = maxlen;
4534 	entry->mode = mode;
4535 	entry->proc_handler = proc_handler;
4536 
4537 	if (load_idx) {
4538 		entry->extra1 = &min_load_idx;
4539 		entry->extra2 = &max_load_idx;
4540 	}
4541 }
4542 
4543 static struct ctl_table *
4544 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4545 {
4546 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4547 
4548 	if (table == NULL)
4549 		return NULL;
4550 
4551 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4552 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4553 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4554 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4555 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4556 		sizeof(int), 0644, proc_dointvec_minmax, true);
4557 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4558 		sizeof(int), 0644, proc_dointvec_minmax, true);
4559 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4560 		sizeof(int), 0644, proc_dointvec_minmax, true);
4561 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4562 		sizeof(int), 0644, proc_dointvec_minmax, true);
4563 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4564 		sizeof(int), 0644, proc_dointvec_minmax, true);
4565 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4566 		sizeof(int), 0644, proc_dointvec_minmax, false);
4567 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4568 		sizeof(int), 0644, proc_dointvec_minmax, false);
4569 	set_table_entry(&table[9], "cache_nice_tries",
4570 		&sd->cache_nice_tries,
4571 		sizeof(int), 0644, proc_dointvec_minmax, false);
4572 	set_table_entry(&table[10], "flags", &sd->flags,
4573 		sizeof(int), 0644, proc_dointvec_minmax, false);
4574 	set_table_entry(&table[11], "name", sd->name,
4575 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4576 	/* &table[12] is terminator */
4577 
4578 	return table;
4579 }
4580 
4581 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4582 {
4583 	struct ctl_table *entry, *table;
4584 	struct sched_domain *sd;
4585 	int domain_num = 0, i;
4586 	char buf[32];
4587 
4588 	for_each_domain(cpu, sd)
4589 		domain_num++;
4590 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4591 	if (table == NULL)
4592 		return NULL;
4593 
4594 	i = 0;
4595 	for_each_domain(cpu, sd) {
4596 		snprintf(buf, 32, "domain%d", i);
4597 		entry->procname = kstrdup(buf, GFP_KERNEL);
4598 		entry->mode = 0555;
4599 		entry->child = sd_alloc_ctl_domain_table(sd);
4600 		entry++;
4601 		i++;
4602 	}
4603 	return table;
4604 }
4605 
4606 static struct ctl_table_header *sd_sysctl_header;
4607 static void register_sched_domain_sysctl(void)
4608 {
4609 	int i, cpu_num = num_possible_cpus();
4610 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4611 	char buf[32];
4612 
4613 	WARN_ON(sd_ctl_dir[0].child);
4614 	sd_ctl_dir[0].child = entry;
4615 
4616 	if (entry == NULL)
4617 		return;
4618 
4619 	for_each_possible_cpu(i) {
4620 		snprintf(buf, 32, "cpu%d", i);
4621 		entry->procname = kstrdup(buf, GFP_KERNEL);
4622 		entry->mode = 0555;
4623 		entry->child = sd_alloc_ctl_cpu_table(i);
4624 		entry++;
4625 	}
4626 
4627 	WARN_ON(sd_sysctl_header);
4628 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4629 }
4630 
4631 /* may be called multiple times per register */
4632 static void unregister_sched_domain_sysctl(void)
4633 {
4634 	if (sd_sysctl_header)
4635 		unregister_sysctl_table(sd_sysctl_header);
4636 	sd_sysctl_header = NULL;
4637 	if (sd_ctl_dir[0].child)
4638 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4639 }
4640 #else
4641 static void register_sched_domain_sysctl(void)
4642 {
4643 }
4644 static void unregister_sched_domain_sysctl(void)
4645 {
4646 }
4647 #endif
4648 
4649 static void set_rq_online(struct rq *rq)
4650 {
4651 	if (!rq->online) {
4652 		const struct sched_class *class;
4653 
4654 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4655 		rq->online = 1;
4656 
4657 		for_each_class(class) {
4658 			if (class->rq_online)
4659 				class->rq_online(rq);
4660 		}
4661 	}
4662 }
4663 
4664 static void set_rq_offline(struct rq *rq)
4665 {
4666 	if (rq->online) {
4667 		const struct sched_class *class;
4668 
4669 		for_each_class(class) {
4670 			if (class->rq_offline)
4671 				class->rq_offline(rq);
4672 		}
4673 
4674 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4675 		rq->online = 0;
4676 	}
4677 }
4678 
4679 /*
4680  * migration_call - callback that gets triggered when a CPU is added.
4681  * Here we can start up the necessary migration thread for the new CPU.
4682  */
4683 static int
4684 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4685 {
4686 	int cpu = (long)hcpu;
4687 	unsigned long flags;
4688 	struct rq *rq = cpu_rq(cpu);
4689 
4690 	switch (action & ~CPU_TASKS_FROZEN) {
4691 
4692 	case CPU_UP_PREPARE:
4693 		rq->calc_load_update = calc_load_update;
4694 		break;
4695 
4696 	case CPU_ONLINE:
4697 		/* Update our root-domain */
4698 		raw_spin_lock_irqsave(&rq->lock, flags);
4699 		if (rq->rd) {
4700 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4701 
4702 			set_rq_online(rq);
4703 		}
4704 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4705 		break;
4706 
4707 #ifdef CONFIG_HOTPLUG_CPU
4708 	case CPU_DYING:
4709 		sched_ttwu_pending();
4710 		/* Update our root-domain */
4711 		raw_spin_lock_irqsave(&rq->lock, flags);
4712 		if (rq->rd) {
4713 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4714 			set_rq_offline(rq);
4715 		}
4716 		migrate_tasks(cpu);
4717 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4718 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4719 		break;
4720 
4721 	case CPU_DEAD:
4722 		calc_load_migrate(rq);
4723 		break;
4724 #endif
4725 	}
4726 
4727 	update_max_interval();
4728 
4729 	return NOTIFY_OK;
4730 }
4731 
4732 /*
4733  * Register at high priority so that task migration (migrate_all_tasks)
4734  * happens before everything else.  This has to be lower priority than
4735  * the notifier in the perf_event subsystem, though.
4736  */
4737 static struct notifier_block migration_notifier = {
4738 	.notifier_call = migration_call,
4739 	.priority = CPU_PRI_MIGRATION,
4740 };
4741 
4742 static int sched_cpu_active(struct notifier_block *nfb,
4743 				      unsigned long action, void *hcpu)
4744 {
4745 	switch (action & ~CPU_TASKS_FROZEN) {
4746 	case CPU_STARTING:
4747 	case CPU_DOWN_FAILED:
4748 		set_cpu_active((long)hcpu, true);
4749 		return NOTIFY_OK;
4750 	default:
4751 		return NOTIFY_DONE;
4752 	}
4753 }
4754 
4755 static int sched_cpu_inactive(struct notifier_block *nfb,
4756 					unsigned long action, void *hcpu)
4757 {
4758 	switch (action & ~CPU_TASKS_FROZEN) {
4759 	case CPU_DOWN_PREPARE:
4760 		set_cpu_active((long)hcpu, false);
4761 		return NOTIFY_OK;
4762 	default:
4763 		return NOTIFY_DONE;
4764 	}
4765 }
4766 
4767 static int __init migration_init(void)
4768 {
4769 	void *cpu = (void *)(long)smp_processor_id();
4770 	int err;
4771 
4772 	/* Initialize migration for the boot CPU */
4773 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4774 	BUG_ON(err == NOTIFY_BAD);
4775 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4776 	register_cpu_notifier(&migration_notifier);
4777 
4778 	/* Register cpu active notifiers */
4779 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4780 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4781 
4782 	return 0;
4783 }
4784 early_initcall(migration_init);
4785 #endif
4786 
4787 #ifdef CONFIG_SMP
4788 
4789 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4790 
4791 #ifdef CONFIG_SCHED_DEBUG
4792 
4793 static __read_mostly int sched_debug_enabled;
4794 
4795 static int __init sched_debug_setup(char *str)
4796 {
4797 	sched_debug_enabled = 1;
4798 
4799 	return 0;
4800 }
4801 early_param("sched_debug", sched_debug_setup);
4802 
4803 static inline bool sched_debug(void)
4804 {
4805 	return sched_debug_enabled;
4806 }
4807 
4808 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4809 				  struct cpumask *groupmask)
4810 {
4811 	struct sched_group *group = sd->groups;
4812 	char str[256];
4813 
4814 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4815 	cpumask_clear(groupmask);
4816 
4817 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4818 
4819 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4820 		printk("does not load-balance\n");
4821 		if (sd->parent)
4822 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4823 					" has parent");
4824 		return -1;
4825 	}
4826 
4827 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4828 
4829 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4830 		printk(KERN_ERR "ERROR: domain->span does not contain "
4831 				"CPU%d\n", cpu);
4832 	}
4833 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4834 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4835 				" CPU%d\n", cpu);
4836 	}
4837 
4838 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4839 	do {
4840 		if (!group) {
4841 			printk("\n");
4842 			printk(KERN_ERR "ERROR: group is NULL\n");
4843 			break;
4844 		}
4845 
4846 		/*
4847 		 * Even though we initialize ->power to something semi-sane,
4848 		 * we leave power_orig unset. This allows us to detect if
4849 		 * domain iteration is still funny without causing /0 traps.
4850 		 */
4851 		if (!group->sgp->power_orig) {
4852 			printk(KERN_CONT "\n");
4853 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4854 					"set\n");
4855 			break;
4856 		}
4857 
4858 		if (!cpumask_weight(sched_group_cpus(group))) {
4859 			printk(KERN_CONT "\n");
4860 			printk(KERN_ERR "ERROR: empty group\n");
4861 			break;
4862 		}
4863 
4864 		if (!(sd->flags & SD_OVERLAP) &&
4865 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4866 			printk(KERN_CONT "\n");
4867 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4868 			break;
4869 		}
4870 
4871 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4872 
4873 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4874 
4875 		printk(KERN_CONT " %s", str);
4876 		if (group->sgp->power != SCHED_POWER_SCALE) {
4877 			printk(KERN_CONT " (cpu_power = %d)",
4878 				group->sgp->power);
4879 		}
4880 
4881 		group = group->next;
4882 	} while (group != sd->groups);
4883 	printk(KERN_CONT "\n");
4884 
4885 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4886 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4887 
4888 	if (sd->parent &&
4889 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4890 		printk(KERN_ERR "ERROR: parent span is not a superset "
4891 			"of domain->span\n");
4892 	return 0;
4893 }
4894 
4895 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4896 {
4897 	int level = 0;
4898 
4899 	if (!sched_debug_enabled)
4900 		return;
4901 
4902 	if (!sd) {
4903 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4904 		return;
4905 	}
4906 
4907 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4908 
4909 	for (;;) {
4910 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4911 			break;
4912 		level++;
4913 		sd = sd->parent;
4914 		if (!sd)
4915 			break;
4916 	}
4917 }
4918 #else /* !CONFIG_SCHED_DEBUG */
4919 # define sched_domain_debug(sd, cpu) do { } while (0)
4920 static inline bool sched_debug(void)
4921 {
4922 	return false;
4923 }
4924 #endif /* CONFIG_SCHED_DEBUG */
4925 
4926 static int sd_degenerate(struct sched_domain *sd)
4927 {
4928 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4929 		return 1;
4930 
4931 	/* Following flags need at least 2 groups */
4932 	if (sd->flags & (SD_LOAD_BALANCE |
4933 			 SD_BALANCE_NEWIDLE |
4934 			 SD_BALANCE_FORK |
4935 			 SD_BALANCE_EXEC |
4936 			 SD_SHARE_CPUPOWER |
4937 			 SD_SHARE_PKG_RESOURCES)) {
4938 		if (sd->groups != sd->groups->next)
4939 			return 0;
4940 	}
4941 
4942 	/* Following flags don't use groups */
4943 	if (sd->flags & (SD_WAKE_AFFINE))
4944 		return 0;
4945 
4946 	return 1;
4947 }
4948 
4949 static int
4950 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4951 {
4952 	unsigned long cflags = sd->flags, pflags = parent->flags;
4953 
4954 	if (sd_degenerate(parent))
4955 		return 1;
4956 
4957 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4958 		return 0;
4959 
4960 	/* Flags needing groups don't count if only 1 group in parent */
4961 	if (parent->groups == parent->groups->next) {
4962 		pflags &= ~(SD_LOAD_BALANCE |
4963 				SD_BALANCE_NEWIDLE |
4964 				SD_BALANCE_FORK |
4965 				SD_BALANCE_EXEC |
4966 				SD_SHARE_CPUPOWER |
4967 				SD_SHARE_PKG_RESOURCES);
4968 		if (nr_node_ids == 1)
4969 			pflags &= ~SD_SERIALIZE;
4970 	}
4971 	if (~cflags & pflags)
4972 		return 0;
4973 
4974 	return 1;
4975 }
4976 
4977 static void free_rootdomain(struct rcu_head *rcu)
4978 {
4979 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4980 
4981 	cpupri_cleanup(&rd->cpupri);
4982 	free_cpumask_var(rd->rto_mask);
4983 	free_cpumask_var(rd->online);
4984 	free_cpumask_var(rd->span);
4985 	kfree(rd);
4986 }
4987 
4988 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4989 {
4990 	struct root_domain *old_rd = NULL;
4991 	unsigned long flags;
4992 
4993 	raw_spin_lock_irqsave(&rq->lock, flags);
4994 
4995 	if (rq->rd) {
4996 		old_rd = rq->rd;
4997 
4998 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4999 			set_rq_offline(rq);
5000 
5001 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5002 
5003 		/*
5004 		 * If we dont want to free the old_rt yet then
5005 		 * set old_rd to NULL to skip the freeing later
5006 		 * in this function:
5007 		 */
5008 		if (!atomic_dec_and_test(&old_rd->refcount))
5009 			old_rd = NULL;
5010 	}
5011 
5012 	atomic_inc(&rd->refcount);
5013 	rq->rd = rd;
5014 
5015 	cpumask_set_cpu(rq->cpu, rd->span);
5016 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5017 		set_rq_online(rq);
5018 
5019 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5020 
5021 	if (old_rd)
5022 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5023 }
5024 
5025 static int init_rootdomain(struct root_domain *rd)
5026 {
5027 	memset(rd, 0, sizeof(*rd));
5028 
5029 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5030 		goto out;
5031 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5032 		goto free_span;
5033 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5034 		goto free_online;
5035 
5036 	if (cpupri_init(&rd->cpupri) != 0)
5037 		goto free_rto_mask;
5038 	return 0;
5039 
5040 free_rto_mask:
5041 	free_cpumask_var(rd->rto_mask);
5042 free_online:
5043 	free_cpumask_var(rd->online);
5044 free_span:
5045 	free_cpumask_var(rd->span);
5046 out:
5047 	return -ENOMEM;
5048 }
5049 
5050 /*
5051  * By default the system creates a single root-domain with all cpus as
5052  * members (mimicking the global state we have today).
5053  */
5054 struct root_domain def_root_domain;
5055 
5056 static void init_defrootdomain(void)
5057 {
5058 	init_rootdomain(&def_root_domain);
5059 
5060 	atomic_set(&def_root_domain.refcount, 1);
5061 }
5062 
5063 static struct root_domain *alloc_rootdomain(void)
5064 {
5065 	struct root_domain *rd;
5066 
5067 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5068 	if (!rd)
5069 		return NULL;
5070 
5071 	if (init_rootdomain(rd) != 0) {
5072 		kfree(rd);
5073 		return NULL;
5074 	}
5075 
5076 	return rd;
5077 }
5078 
5079 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5080 {
5081 	struct sched_group *tmp, *first;
5082 
5083 	if (!sg)
5084 		return;
5085 
5086 	first = sg;
5087 	do {
5088 		tmp = sg->next;
5089 
5090 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5091 			kfree(sg->sgp);
5092 
5093 		kfree(sg);
5094 		sg = tmp;
5095 	} while (sg != first);
5096 }
5097 
5098 static void free_sched_domain(struct rcu_head *rcu)
5099 {
5100 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5101 
5102 	/*
5103 	 * If its an overlapping domain it has private groups, iterate and
5104 	 * nuke them all.
5105 	 */
5106 	if (sd->flags & SD_OVERLAP) {
5107 		free_sched_groups(sd->groups, 1);
5108 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5109 		kfree(sd->groups->sgp);
5110 		kfree(sd->groups);
5111 	}
5112 	kfree(sd);
5113 }
5114 
5115 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5116 {
5117 	call_rcu(&sd->rcu, free_sched_domain);
5118 }
5119 
5120 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5121 {
5122 	for (; sd; sd = sd->parent)
5123 		destroy_sched_domain(sd, cpu);
5124 }
5125 
5126 /*
5127  * Keep a special pointer to the highest sched_domain that has
5128  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5129  * allows us to avoid some pointer chasing select_idle_sibling().
5130  *
5131  * Also keep a unique ID per domain (we use the first cpu number in
5132  * the cpumask of the domain), this allows us to quickly tell if
5133  * two cpus are in the same cache domain, see cpus_share_cache().
5134  */
5135 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5136 DEFINE_PER_CPU(int, sd_llc_id);
5137 
5138 static void update_top_cache_domain(int cpu)
5139 {
5140 	struct sched_domain *sd;
5141 	int id = cpu;
5142 
5143 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5144 	if (sd)
5145 		id = cpumask_first(sched_domain_span(sd));
5146 
5147 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5148 	per_cpu(sd_llc_id, cpu) = id;
5149 }
5150 
5151 /*
5152  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5153  * hold the hotplug lock.
5154  */
5155 static void
5156 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5157 {
5158 	struct rq *rq = cpu_rq(cpu);
5159 	struct sched_domain *tmp;
5160 
5161 	/* Remove the sched domains which do not contribute to scheduling. */
5162 	for (tmp = sd; tmp; ) {
5163 		struct sched_domain *parent = tmp->parent;
5164 		if (!parent)
5165 			break;
5166 
5167 		if (sd_parent_degenerate(tmp, parent)) {
5168 			tmp->parent = parent->parent;
5169 			if (parent->parent)
5170 				parent->parent->child = tmp;
5171 			destroy_sched_domain(parent, cpu);
5172 		} else
5173 			tmp = tmp->parent;
5174 	}
5175 
5176 	if (sd && sd_degenerate(sd)) {
5177 		tmp = sd;
5178 		sd = sd->parent;
5179 		destroy_sched_domain(tmp, cpu);
5180 		if (sd)
5181 			sd->child = NULL;
5182 	}
5183 
5184 	sched_domain_debug(sd, cpu);
5185 
5186 	rq_attach_root(rq, rd);
5187 	tmp = rq->sd;
5188 	rcu_assign_pointer(rq->sd, sd);
5189 	destroy_sched_domains(tmp, cpu);
5190 
5191 	update_top_cache_domain(cpu);
5192 }
5193 
5194 /* cpus with isolated domains */
5195 static cpumask_var_t cpu_isolated_map;
5196 
5197 /* Setup the mask of cpus configured for isolated domains */
5198 static int __init isolated_cpu_setup(char *str)
5199 {
5200 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5201 	cpulist_parse(str, cpu_isolated_map);
5202 	return 1;
5203 }
5204 
5205 __setup("isolcpus=", isolated_cpu_setup);
5206 
5207 static const struct cpumask *cpu_cpu_mask(int cpu)
5208 {
5209 	return cpumask_of_node(cpu_to_node(cpu));
5210 }
5211 
5212 struct sd_data {
5213 	struct sched_domain **__percpu sd;
5214 	struct sched_group **__percpu sg;
5215 	struct sched_group_power **__percpu sgp;
5216 };
5217 
5218 struct s_data {
5219 	struct sched_domain ** __percpu sd;
5220 	struct root_domain	*rd;
5221 };
5222 
5223 enum s_alloc {
5224 	sa_rootdomain,
5225 	sa_sd,
5226 	sa_sd_storage,
5227 	sa_none,
5228 };
5229 
5230 struct sched_domain_topology_level;
5231 
5232 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5233 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5234 
5235 #define SDTL_OVERLAP	0x01
5236 
5237 struct sched_domain_topology_level {
5238 	sched_domain_init_f init;
5239 	sched_domain_mask_f mask;
5240 	int		    flags;
5241 	int		    numa_level;
5242 	struct sd_data      data;
5243 };
5244 
5245 /*
5246  * Build an iteration mask that can exclude certain CPUs from the upwards
5247  * domain traversal.
5248  *
5249  * Asymmetric node setups can result in situations where the domain tree is of
5250  * unequal depth, make sure to skip domains that already cover the entire
5251  * range.
5252  *
5253  * In that case build_sched_domains() will have terminated the iteration early
5254  * and our sibling sd spans will be empty. Domains should always include the
5255  * cpu they're built on, so check that.
5256  *
5257  */
5258 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5259 {
5260 	const struct cpumask *span = sched_domain_span(sd);
5261 	struct sd_data *sdd = sd->private;
5262 	struct sched_domain *sibling;
5263 	int i;
5264 
5265 	for_each_cpu(i, span) {
5266 		sibling = *per_cpu_ptr(sdd->sd, i);
5267 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5268 			continue;
5269 
5270 		cpumask_set_cpu(i, sched_group_mask(sg));
5271 	}
5272 }
5273 
5274 /*
5275  * Return the canonical balance cpu for this group, this is the first cpu
5276  * of this group that's also in the iteration mask.
5277  */
5278 int group_balance_cpu(struct sched_group *sg)
5279 {
5280 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5281 }
5282 
5283 static int
5284 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5285 {
5286 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5287 	const struct cpumask *span = sched_domain_span(sd);
5288 	struct cpumask *covered = sched_domains_tmpmask;
5289 	struct sd_data *sdd = sd->private;
5290 	struct sched_domain *child;
5291 	int i;
5292 
5293 	cpumask_clear(covered);
5294 
5295 	for_each_cpu(i, span) {
5296 		struct cpumask *sg_span;
5297 
5298 		if (cpumask_test_cpu(i, covered))
5299 			continue;
5300 
5301 		child = *per_cpu_ptr(sdd->sd, i);
5302 
5303 		/* See the comment near build_group_mask(). */
5304 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5305 			continue;
5306 
5307 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5308 				GFP_KERNEL, cpu_to_node(cpu));
5309 
5310 		if (!sg)
5311 			goto fail;
5312 
5313 		sg_span = sched_group_cpus(sg);
5314 		if (child->child) {
5315 			child = child->child;
5316 			cpumask_copy(sg_span, sched_domain_span(child));
5317 		} else
5318 			cpumask_set_cpu(i, sg_span);
5319 
5320 		cpumask_or(covered, covered, sg_span);
5321 
5322 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5323 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5324 			build_group_mask(sd, sg);
5325 
5326 		/*
5327 		 * Initialize sgp->power such that even if we mess up the
5328 		 * domains and no possible iteration will get us here, we won't
5329 		 * die on a /0 trap.
5330 		 */
5331 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5332 
5333 		/*
5334 		 * Make sure the first group of this domain contains the
5335 		 * canonical balance cpu. Otherwise the sched_domain iteration
5336 		 * breaks. See update_sg_lb_stats().
5337 		 */
5338 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5339 		    group_balance_cpu(sg) == cpu)
5340 			groups = sg;
5341 
5342 		if (!first)
5343 			first = sg;
5344 		if (last)
5345 			last->next = sg;
5346 		last = sg;
5347 		last->next = first;
5348 	}
5349 	sd->groups = groups;
5350 
5351 	return 0;
5352 
5353 fail:
5354 	free_sched_groups(first, 0);
5355 
5356 	return -ENOMEM;
5357 }
5358 
5359 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5360 {
5361 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5362 	struct sched_domain *child = sd->child;
5363 
5364 	if (child)
5365 		cpu = cpumask_first(sched_domain_span(child));
5366 
5367 	if (sg) {
5368 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5369 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5370 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5371 	}
5372 
5373 	return cpu;
5374 }
5375 
5376 /*
5377  * build_sched_groups will build a circular linked list of the groups
5378  * covered by the given span, and will set each group's ->cpumask correctly,
5379  * and ->cpu_power to 0.
5380  *
5381  * Assumes the sched_domain tree is fully constructed
5382  */
5383 static int
5384 build_sched_groups(struct sched_domain *sd, int cpu)
5385 {
5386 	struct sched_group *first = NULL, *last = NULL;
5387 	struct sd_data *sdd = sd->private;
5388 	const struct cpumask *span = sched_domain_span(sd);
5389 	struct cpumask *covered;
5390 	int i;
5391 
5392 	get_group(cpu, sdd, &sd->groups);
5393 	atomic_inc(&sd->groups->ref);
5394 
5395 	if (cpu != cpumask_first(span))
5396 		return 0;
5397 
5398 	lockdep_assert_held(&sched_domains_mutex);
5399 	covered = sched_domains_tmpmask;
5400 
5401 	cpumask_clear(covered);
5402 
5403 	for_each_cpu(i, span) {
5404 		struct sched_group *sg;
5405 		int group, j;
5406 
5407 		if (cpumask_test_cpu(i, covered))
5408 			continue;
5409 
5410 		group = get_group(i, sdd, &sg);
5411 		cpumask_clear(sched_group_cpus(sg));
5412 		sg->sgp->power = 0;
5413 		cpumask_setall(sched_group_mask(sg));
5414 
5415 		for_each_cpu(j, span) {
5416 			if (get_group(j, sdd, NULL) != group)
5417 				continue;
5418 
5419 			cpumask_set_cpu(j, covered);
5420 			cpumask_set_cpu(j, sched_group_cpus(sg));
5421 		}
5422 
5423 		if (!first)
5424 			first = sg;
5425 		if (last)
5426 			last->next = sg;
5427 		last = sg;
5428 	}
5429 	last->next = first;
5430 
5431 	return 0;
5432 }
5433 
5434 /*
5435  * Initialize sched groups cpu_power.
5436  *
5437  * cpu_power indicates the capacity of sched group, which is used while
5438  * distributing the load between different sched groups in a sched domain.
5439  * Typically cpu_power for all the groups in a sched domain will be same unless
5440  * there are asymmetries in the topology. If there are asymmetries, group
5441  * having more cpu_power will pickup more load compared to the group having
5442  * less cpu_power.
5443  */
5444 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5445 {
5446 	struct sched_group *sg = sd->groups;
5447 
5448 	WARN_ON(!sg);
5449 
5450 	do {
5451 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5452 		sg = sg->next;
5453 	} while (sg != sd->groups);
5454 
5455 	if (cpu != group_balance_cpu(sg))
5456 		return;
5457 
5458 	update_group_power(sd, cpu);
5459 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5460 }
5461 
5462 int __weak arch_sd_sibling_asym_packing(void)
5463 {
5464        return 0*SD_ASYM_PACKING;
5465 }
5466 
5467 /*
5468  * Initializers for schedule domains
5469  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5470  */
5471 
5472 #ifdef CONFIG_SCHED_DEBUG
5473 # define SD_INIT_NAME(sd, type)		sd->name = #type
5474 #else
5475 # define SD_INIT_NAME(sd, type)		do { } while (0)
5476 #endif
5477 
5478 #define SD_INIT_FUNC(type)						\
5479 static noinline struct sched_domain *					\
5480 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5481 {									\
5482 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5483 	*sd = SD_##type##_INIT;						\
5484 	SD_INIT_NAME(sd, type);						\
5485 	sd->private = &tl->data;					\
5486 	return sd;							\
5487 }
5488 
5489 SD_INIT_FUNC(CPU)
5490 #ifdef CONFIG_SCHED_SMT
5491  SD_INIT_FUNC(SIBLING)
5492 #endif
5493 #ifdef CONFIG_SCHED_MC
5494  SD_INIT_FUNC(MC)
5495 #endif
5496 #ifdef CONFIG_SCHED_BOOK
5497  SD_INIT_FUNC(BOOK)
5498 #endif
5499 
5500 static int default_relax_domain_level = -1;
5501 int sched_domain_level_max;
5502 
5503 static int __init setup_relax_domain_level(char *str)
5504 {
5505 	if (kstrtoint(str, 0, &default_relax_domain_level))
5506 		pr_warn("Unable to set relax_domain_level\n");
5507 
5508 	return 1;
5509 }
5510 __setup("relax_domain_level=", setup_relax_domain_level);
5511 
5512 static void set_domain_attribute(struct sched_domain *sd,
5513 				 struct sched_domain_attr *attr)
5514 {
5515 	int request;
5516 
5517 	if (!attr || attr->relax_domain_level < 0) {
5518 		if (default_relax_domain_level < 0)
5519 			return;
5520 		else
5521 			request = default_relax_domain_level;
5522 	} else
5523 		request = attr->relax_domain_level;
5524 	if (request < sd->level) {
5525 		/* turn off idle balance on this domain */
5526 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5527 	} else {
5528 		/* turn on idle balance on this domain */
5529 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5530 	}
5531 }
5532 
5533 static void __sdt_free(const struct cpumask *cpu_map);
5534 static int __sdt_alloc(const struct cpumask *cpu_map);
5535 
5536 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5537 				 const struct cpumask *cpu_map)
5538 {
5539 	switch (what) {
5540 	case sa_rootdomain:
5541 		if (!atomic_read(&d->rd->refcount))
5542 			free_rootdomain(&d->rd->rcu); /* fall through */
5543 	case sa_sd:
5544 		free_percpu(d->sd); /* fall through */
5545 	case sa_sd_storage:
5546 		__sdt_free(cpu_map); /* fall through */
5547 	case sa_none:
5548 		break;
5549 	}
5550 }
5551 
5552 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5553 						   const struct cpumask *cpu_map)
5554 {
5555 	memset(d, 0, sizeof(*d));
5556 
5557 	if (__sdt_alloc(cpu_map))
5558 		return sa_sd_storage;
5559 	d->sd = alloc_percpu(struct sched_domain *);
5560 	if (!d->sd)
5561 		return sa_sd_storage;
5562 	d->rd = alloc_rootdomain();
5563 	if (!d->rd)
5564 		return sa_sd;
5565 	return sa_rootdomain;
5566 }
5567 
5568 /*
5569  * NULL the sd_data elements we've used to build the sched_domain and
5570  * sched_group structure so that the subsequent __free_domain_allocs()
5571  * will not free the data we're using.
5572  */
5573 static void claim_allocations(int cpu, struct sched_domain *sd)
5574 {
5575 	struct sd_data *sdd = sd->private;
5576 
5577 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5578 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5579 
5580 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5581 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5582 
5583 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5584 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5585 }
5586 
5587 #ifdef CONFIG_SCHED_SMT
5588 static const struct cpumask *cpu_smt_mask(int cpu)
5589 {
5590 	return topology_thread_cpumask(cpu);
5591 }
5592 #endif
5593 
5594 /*
5595  * Topology list, bottom-up.
5596  */
5597 static struct sched_domain_topology_level default_topology[] = {
5598 #ifdef CONFIG_SCHED_SMT
5599 	{ sd_init_SIBLING, cpu_smt_mask, },
5600 #endif
5601 #ifdef CONFIG_SCHED_MC
5602 	{ sd_init_MC, cpu_coregroup_mask, },
5603 #endif
5604 #ifdef CONFIG_SCHED_BOOK
5605 	{ sd_init_BOOK, cpu_book_mask, },
5606 #endif
5607 	{ sd_init_CPU, cpu_cpu_mask, },
5608 	{ NULL, },
5609 };
5610 
5611 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5612 
5613 #define for_each_sd_topology(tl)			\
5614 	for (tl = sched_domain_topology; tl->init; tl++)
5615 
5616 #ifdef CONFIG_NUMA
5617 
5618 static int sched_domains_numa_levels;
5619 static int *sched_domains_numa_distance;
5620 static struct cpumask ***sched_domains_numa_masks;
5621 static int sched_domains_curr_level;
5622 
5623 static inline int sd_local_flags(int level)
5624 {
5625 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5626 		return 0;
5627 
5628 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5629 }
5630 
5631 static struct sched_domain *
5632 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5633 {
5634 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5635 	int level = tl->numa_level;
5636 	int sd_weight = cpumask_weight(
5637 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5638 
5639 	*sd = (struct sched_domain){
5640 		.min_interval		= sd_weight,
5641 		.max_interval		= 2*sd_weight,
5642 		.busy_factor		= 32,
5643 		.imbalance_pct		= 125,
5644 		.cache_nice_tries	= 2,
5645 		.busy_idx		= 3,
5646 		.idle_idx		= 2,
5647 		.newidle_idx		= 0,
5648 		.wake_idx		= 0,
5649 		.forkexec_idx		= 0,
5650 
5651 		.flags			= 1*SD_LOAD_BALANCE
5652 					| 1*SD_BALANCE_NEWIDLE
5653 					| 0*SD_BALANCE_EXEC
5654 					| 0*SD_BALANCE_FORK
5655 					| 0*SD_BALANCE_WAKE
5656 					| 0*SD_WAKE_AFFINE
5657 					| 0*SD_SHARE_CPUPOWER
5658 					| 0*SD_SHARE_PKG_RESOURCES
5659 					| 1*SD_SERIALIZE
5660 					| 0*SD_PREFER_SIBLING
5661 					| sd_local_flags(level)
5662 					,
5663 		.last_balance		= jiffies,
5664 		.balance_interval	= sd_weight,
5665 	};
5666 	SD_INIT_NAME(sd, NUMA);
5667 	sd->private = &tl->data;
5668 
5669 	/*
5670 	 * Ugly hack to pass state to sd_numa_mask()...
5671 	 */
5672 	sched_domains_curr_level = tl->numa_level;
5673 
5674 	return sd;
5675 }
5676 
5677 static const struct cpumask *sd_numa_mask(int cpu)
5678 {
5679 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5680 }
5681 
5682 static void sched_numa_warn(const char *str)
5683 {
5684 	static int done = false;
5685 	int i,j;
5686 
5687 	if (done)
5688 		return;
5689 
5690 	done = true;
5691 
5692 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5693 
5694 	for (i = 0; i < nr_node_ids; i++) {
5695 		printk(KERN_WARNING "  ");
5696 		for (j = 0; j < nr_node_ids; j++)
5697 			printk(KERN_CONT "%02d ", node_distance(i,j));
5698 		printk(KERN_CONT "\n");
5699 	}
5700 	printk(KERN_WARNING "\n");
5701 }
5702 
5703 static bool find_numa_distance(int distance)
5704 {
5705 	int i;
5706 
5707 	if (distance == node_distance(0, 0))
5708 		return true;
5709 
5710 	for (i = 0; i < sched_domains_numa_levels; i++) {
5711 		if (sched_domains_numa_distance[i] == distance)
5712 			return true;
5713 	}
5714 
5715 	return false;
5716 }
5717 
5718 static void sched_init_numa(void)
5719 {
5720 	int next_distance, curr_distance = node_distance(0, 0);
5721 	struct sched_domain_topology_level *tl;
5722 	int level = 0;
5723 	int i, j, k;
5724 
5725 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5726 	if (!sched_domains_numa_distance)
5727 		return;
5728 
5729 	/*
5730 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5731 	 * unique distances in the node_distance() table.
5732 	 *
5733 	 * Assumes node_distance(0,j) includes all distances in
5734 	 * node_distance(i,j) in order to avoid cubic time.
5735 	 */
5736 	next_distance = curr_distance;
5737 	for (i = 0; i < nr_node_ids; i++) {
5738 		for (j = 0; j < nr_node_ids; j++) {
5739 			for (k = 0; k < nr_node_ids; k++) {
5740 				int distance = node_distance(i, k);
5741 
5742 				if (distance > curr_distance &&
5743 				    (distance < next_distance ||
5744 				     next_distance == curr_distance))
5745 					next_distance = distance;
5746 
5747 				/*
5748 				 * While not a strong assumption it would be nice to know
5749 				 * about cases where if node A is connected to B, B is not
5750 				 * equally connected to A.
5751 				 */
5752 				if (sched_debug() && node_distance(k, i) != distance)
5753 					sched_numa_warn("Node-distance not symmetric");
5754 
5755 				if (sched_debug() && i && !find_numa_distance(distance))
5756 					sched_numa_warn("Node-0 not representative");
5757 			}
5758 			if (next_distance != curr_distance) {
5759 				sched_domains_numa_distance[level++] = next_distance;
5760 				sched_domains_numa_levels = level;
5761 				curr_distance = next_distance;
5762 			} else break;
5763 		}
5764 
5765 		/*
5766 		 * In case of sched_debug() we verify the above assumption.
5767 		 */
5768 		if (!sched_debug())
5769 			break;
5770 	}
5771 	/*
5772 	 * 'level' contains the number of unique distances, excluding the
5773 	 * identity distance node_distance(i,i).
5774 	 *
5775 	 * The sched_domains_numa_distance[] array includes the actual distance
5776 	 * numbers.
5777 	 */
5778 
5779 	/*
5780 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5781 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5782 	 * the array will contain less then 'level' members. This could be
5783 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5784 	 * in other functions.
5785 	 *
5786 	 * We reset it to 'level' at the end of this function.
5787 	 */
5788 	sched_domains_numa_levels = 0;
5789 
5790 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5791 	if (!sched_domains_numa_masks)
5792 		return;
5793 
5794 	/*
5795 	 * Now for each level, construct a mask per node which contains all
5796 	 * cpus of nodes that are that many hops away from us.
5797 	 */
5798 	for (i = 0; i < level; i++) {
5799 		sched_domains_numa_masks[i] =
5800 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5801 		if (!sched_domains_numa_masks[i])
5802 			return;
5803 
5804 		for (j = 0; j < nr_node_ids; j++) {
5805 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5806 			if (!mask)
5807 				return;
5808 
5809 			sched_domains_numa_masks[i][j] = mask;
5810 
5811 			for (k = 0; k < nr_node_ids; k++) {
5812 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5813 					continue;
5814 
5815 				cpumask_or(mask, mask, cpumask_of_node(k));
5816 			}
5817 		}
5818 	}
5819 
5820 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5821 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5822 	if (!tl)
5823 		return;
5824 
5825 	/*
5826 	 * Copy the default topology bits..
5827 	 */
5828 	for (i = 0; default_topology[i].init; i++)
5829 		tl[i] = default_topology[i];
5830 
5831 	/*
5832 	 * .. and append 'j' levels of NUMA goodness.
5833 	 */
5834 	for (j = 0; j < level; i++, j++) {
5835 		tl[i] = (struct sched_domain_topology_level){
5836 			.init = sd_numa_init,
5837 			.mask = sd_numa_mask,
5838 			.flags = SDTL_OVERLAP,
5839 			.numa_level = j,
5840 		};
5841 	}
5842 
5843 	sched_domain_topology = tl;
5844 
5845 	sched_domains_numa_levels = level;
5846 }
5847 
5848 static void sched_domains_numa_masks_set(int cpu)
5849 {
5850 	int i, j;
5851 	int node = cpu_to_node(cpu);
5852 
5853 	for (i = 0; i < sched_domains_numa_levels; i++) {
5854 		for (j = 0; j < nr_node_ids; j++) {
5855 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5856 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5857 		}
5858 	}
5859 }
5860 
5861 static void sched_domains_numa_masks_clear(int cpu)
5862 {
5863 	int i, j;
5864 	for (i = 0; i < sched_domains_numa_levels; i++) {
5865 		for (j = 0; j < nr_node_ids; j++)
5866 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5867 	}
5868 }
5869 
5870 /*
5871  * Update sched_domains_numa_masks[level][node] array when new cpus
5872  * are onlined.
5873  */
5874 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5875 					   unsigned long action,
5876 					   void *hcpu)
5877 {
5878 	int cpu = (long)hcpu;
5879 
5880 	switch (action & ~CPU_TASKS_FROZEN) {
5881 	case CPU_ONLINE:
5882 		sched_domains_numa_masks_set(cpu);
5883 		break;
5884 
5885 	case CPU_DEAD:
5886 		sched_domains_numa_masks_clear(cpu);
5887 		break;
5888 
5889 	default:
5890 		return NOTIFY_DONE;
5891 	}
5892 
5893 	return NOTIFY_OK;
5894 }
5895 #else
5896 static inline void sched_init_numa(void)
5897 {
5898 }
5899 
5900 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5901 					   unsigned long action,
5902 					   void *hcpu)
5903 {
5904 	return 0;
5905 }
5906 #endif /* CONFIG_NUMA */
5907 
5908 static int __sdt_alloc(const struct cpumask *cpu_map)
5909 {
5910 	struct sched_domain_topology_level *tl;
5911 	int j;
5912 
5913 	for_each_sd_topology(tl) {
5914 		struct sd_data *sdd = &tl->data;
5915 
5916 		sdd->sd = alloc_percpu(struct sched_domain *);
5917 		if (!sdd->sd)
5918 			return -ENOMEM;
5919 
5920 		sdd->sg = alloc_percpu(struct sched_group *);
5921 		if (!sdd->sg)
5922 			return -ENOMEM;
5923 
5924 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5925 		if (!sdd->sgp)
5926 			return -ENOMEM;
5927 
5928 		for_each_cpu(j, cpu_map) {
5929 			struct sched_domain *sd;
5930 			struct sched_group *sg;
5931 			struct sched_group_power *sgp;
5932 
5933 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5934 					GFP_KERNEL, cpu_to_node(j));
5935 			if (!sd)
5936 				return -ENOMEM;
5937 
5938 			*per_cpu_ptr(sdd->sd, j) = sd;
5939 
5940 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5941 					GFP_KERNEL, cpu_to_node(j));
5942 			if (!sg)
5943 				return -ENOMEM;
5944 
5945 			sg->next = sg;
5946 
5947 			*per_cpu_ptr(sdd->sg, j) = sg;
5948 
5949 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5950 					GFP_KERNEL, cpu_to_node(j));
5951 			if (!sgp)
5952 				return -ENOMEM;
5953 
5954 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5955 		}
5956 	}
5957 
5958 	return 0;
5959 }
5960 
5961 static void __sdt_free(const struct cpumask *cpu_map)
5962 {
5963 	struct sched_domain_topology_level *tl;
5964 	int j;
5965 
5966 	for_each_sd_topology(tl) {
5967 		struct sd_data *sdd = &tl->data;
5968 
5969 		for_each_cpu(j, cpu_map) {
5970 			struct sched_domain *sd;
5971 
5972 			if (sdd->sd) {
5973 				sd = *per_cpu_ptr(sdd->sd, j);
5974 				if (sd && (sd->flags & SD_OVERLAP))
5975 					free_sched_groups(sd->groups, 0);
5976 				kfree(*per_cpu_ptr(sdd->sd, j));
5977 			}
5978 
5979 			if (sdd->sg)
5980 				kfree(*per_cpu_ptr(sdd->sg, j));
5981 			if (sdd->sgp)
5982 				kfree(*per_cpu_ptr(sdd->sgp, j));
5983 		}
5984 		free_percpu(sdd->sd);
5985 		sdd->sd = NULL;
5986 		free_percpu(sdd->sg);
5987 		sdd->sg = NULL;
5988 		free_percpu(sdd->sgp);
5989 		sdd->sgp = NULL;
5990 	}
5991 }
5992 
5993 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5994 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5995 		struct sched_domain *child, int cpu)
5996 {
5997 	struct sched_domain *sd = tl->init(tl, cpu);
5998 	if (!sd)
5999 		return child;
6000 
6001 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6002 	if (child) {
6003 		sd->level = child->level + 1;
6004 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6005 		child->parent = sd;
6006 		sd->child = child;
6007 	}
6008 	set_domain_attribute(sd, attr);
6009 
6010 	return sd;
6011 }
6012 
6013 /*
6014  * Build sched domains for a given set of cpus and attach the sched domains
6015  * to the individual cpus
6016  */
6017 static int build_sched_domains(const struct cpumask *cpu_map,
6018 			       struct sched_domain_attr *attr)
6019 {
6020 	enum s_alloc alloc_state;
6021 	struct sched_domain *sd;
6022 	struct s_data d;
6023 	int i, ret = -ENOMEM;
6024 
6025 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6026 	if (alloc_state != sa_rootdomain)
6027 		goto error;
6028 
6029 	/* Set up domains for cpus specified by the cpu_map. */
6030 	for_each_cpu(i, cpu_map) {
6031 		struct sched_domain_topology_level *tl;
6032 
6033 		sd = NULL;
6034 		for_each_sd_topology(tl) {
6035 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6036 			if (tl == sched_domain_topology)
6037 				*per_cpu_ptr(d.sd, i) = sd;
6038 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6039 				sd->flags |= SD_OVERLAP;
6040 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6041 				break;
6042 		}
6043 	}
6044 
6045 	/* Build the groups for the domains */
6046 	for_each_cpu(i, cpu_map) {
6047 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6048 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6049 			if (sd->flags & SD_OVERLAP) {
6050 				if (build_overlap_sched_groups(sd, i))
6051 					goto error;
6052 			} else {
6053 				if (build_sched_groups(sd, i))
6054 					goto error;
6055 			}
6056 		}
6057 	}
6058 
6059 	/* Calculate CPU power for physical packages and nodes */
6060 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6061 		if (!cpumask_test_cpu(i, cpu_map))
6062 			continue;
6063 
6064 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6065 			claim_allocations(i, sd);
6066 			init_sched_groups_power(i, sd);
6067 		}
6068 	}
6069 
6070 	/* Attach the domains */
6071 	rcu_read_lock();
6072 	for_each_cpu(i, cpu_map) {
6073 		sd = *per_cpu_ptr(d.sd, i);
6074 		cpu_attach_domain(sd, d.rd, i);
6075 	}
6076 	rcu_read_unlock();
6077 
6078 	ret = 0;
6079 error:
6080 	__free_domain_allocs(&d, alloc_state, cpu_map);
6081 	return ret;
6082 }
6083 
6084 static cpumask_var_t *doms_cur;	/* current sched domains */
6085 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6086 static struct sched_domain_attr *dattr_cur;
6087 				/* attribues of custom domains in 'doms_cur' */
6088 
6089 /*
6090  * Special case: If a kmalloc of a doms_cur partition (array of
6091  * cpumask) fails, then fallback to a single sched domain,
6092  * as determined by the single cpumask fallback_doms.
6093  */
6094 static cpumask_var_t fallback_doms;
6095 
6096 /*
6097  * arch_update_cpu_topology lets virtualized architectures update the
6098  * cpu core maps. It is supposed to return 1 if the topology changed
6099  * or 0 if it stayed the same.
6100  */
6101 int __attribute__((weak)) arch_update_cpu_topology(void)
6102 {
6103 	return 0;
6104 }
6105 
6106 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6107 {
6108 	int i;
6109 	cpumask_var_t *doms;
6110 
6111 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6112 	if (!doms)
6113 		return NULL;
6114 	for (i = 0; i < ndoms; i++) {
6115 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6116 			free_sched_domains(doms, i);
6117 			return NULL;
6118 		}
6119 	}
6120 	return doms;
6121 }
6122 
6123 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6124 {
6125 	unsigned int i;
6126 	for (i = 0; i < ndoms; i++)
6127 		free_cpumask_var(doms[i]);
6128 	kfree(doms);
6129 }
6130 
6131 /*
6132  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6133  * For now this just excludes isolated cpus, but could be used to
6134  * exclude other special cases in the future.
6135  */
6136 static int init_sched_domains(const struct cpumask *cpu_map)
6137 {
6138 	int err;
6139 
6140 	arch_update_cpu_topology();
6141 	ndoms_cur = 1;
6142 	doms_cur = alloc_sched_domains(ndoms_cur);
6143 	if (!doms_cur)
6144 		doms_cur = &fallback_doms;
6145 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6146 	err = build_sched_domains(doms_cur[0], NULL);
6147 	register_sched_domain_sysctl();
6148 
6149 	return err;
6150 }
6151 
6152 /*
6153  * Detach sched domains from a group of cpus specified in cpu_map
6154  * These cpus will now be attached to the NULL domain
6155  */
6156 static void detach_destroy_domains(const struct cpumask *cpu_map)
6157 {
6158 	int i;
6159 
6160 	rcu_read_lock();
6161 	for_each_cpu(i, cpu_map)
6162 		cpu_attach_domain(NULL, &def_root_domain, i);
6163 	rcu_read_unlock();
6164 }
6165 
6166 /* handle null as "default" */
6167 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6168 			struct sched_domain_attr *new, int idx_new)
6169 {
6170 	struct sched_domain_attr tmp;
6171 
6172 	/* fast path */
6173 	if (!new && !cur)
6174 		return 1;
6175 
6176 	tmp = SD_ATTR_INIT;
6177 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6178 			new ? (new + idx_new) : &tmp,
6179 			sizeof(struct sched_domain_attr));
6180 }
6181 
6182 /*
6183  * Partition sched domains as specified by the 'ndoms_new'
6184  * cpumasks in the array doms_new[] of cpumasks. This compares
6185  * doms_new[] to the current sched domain partitioning, doms_cur[].
6186  * It destroys each deleted domain and builds each new domain.
6187  *
6188  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6189  * The masks don't intersect (don't overlap.) We should setup one
6190  * sched domain for each mask. CPUs not in any of the cpumasks will
6191  * not be load balanced. If the same cpumask appears both in the
6192  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6193  * it as it is.
6194  *
6195  * The passed in 'doms_new' should be allocated using
6196  * alloc_sched_domains.  This routine takes ownership of it and will
6197  * free_sched_domains it when done with it. If the caller failed the
6198  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6199  * and partition_sched_domains() will fallback to the single partition
6200  * 'fallback_doms', it also forces the domains to be rebuilt.
6201  *
6202  * If doms_new == NULL it will be replaced with cpu_online_mask.
6203  * ndoms_new == 0 is a special case for destroying existing domains,
6204  * and it will not create the default domain.
6205  *
6206  * Call with hotplug lock held
6207  */
6208 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6209 			     struct sched_domain_attr *dattr_new)
6210 {
6211 	int i, j, n;
6212 	int new_topology;
6213 
6214 	mutex_lock(&sched_domains_mutex);
6215 
6216 	/* always unregister in case we don't destroy any domains */
6217 	unregister_sched_domain_sysctl();
6218 
6219 	/* Let architecture update cpu core mappings. */
6220 	new_topology = arch_update_cpu_topology();
6221 
6222 	n = doms_new ? ndoms_new : 0;
6223 
6224 	/* Destroy deleted domains */
6225 	for (i = 0; i < ndoms_cur; i++) {
6226 		for (j = 0; j < n && !new_topology; j++) {
6227 			if (cpumask_equal(doms_cur[i], doms_new[j])
6228 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6229 				goto match1;
6230 		}
6231 		/* no match - a current sched domain not in new doms_new[] */
6232 		detach_destroy_domains(doms_cur[i]);
6233 match1:
6234 		;
6235 	}
6236 
6237 	if (doms_new == NULL) {
6238 		ndoms_cur = 0;
6239 		doms_new = &fallback_doms;
6240 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6241 		WARN_ON_ONCE(dattr_new);
6242 	}
6243 
6244 	/* Build new domains */
6245 	for (i = 0; i < ndoms_new; i++) {
6246 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6247 			if (cpumask_equal(doms_new[i], doms_cur[j])
6248 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6249 				goto match2;
6250 		}
6251 		/* no match - add a new doms_new */
6252 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6253 match2:
6254 		;
6255 	}
6256 
6257 	/* Remember the new sched domains */
6258 	if (doms_cur != &fallback_doms)
6259 		free_sched_domains(doms_cur, ndoms_cur);
6260 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6261 	doms_cur = doms_new;
6262 	dattr_cur = dattr_new;
6263 	ndoms_cur = ndoms_new;
6264 
6265 	register_sched_domain_sysctl();
6266 
6267 	mutex_unlock(&sched_domains_mutex);
6268 }
6269 
6270 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6271 
6272 /*
6273  * Update cpusets according to cpu_active mask.  If cpusets are
6274  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6275  * around partition_sched_domains().
6276  *
6277  * If we come here as part of a suspend/resume, don't touch cpusets because we
6278  * want to restore it back to its original state upon resume anyway.
6279  */
6280 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6281 			     void *hcpu)
6282 {
6283 	switch (action) {
6284 	case CPU_ONLINE_FROZEN:
6285 	case CPU_DOWN_FAILED_FROZEN:
6286 
6287 		/*
6288 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6289 		 * resume sequence. As long as this is not the last online
6290 		 * operation in the resume sequence, just build a single sched
6291 		 * domain, ignoring cpusets.
6292 		 */
6293 		num_cpus_frozen--;
6294 		if (likely(num_cpus_frozen)) {
6295 			partition_sched_domains(1, NULL, NULL);
6296 			break;
6297 		}
6298 
6299 		/*
6300 		 * This is the last CPU online operation. So fall through and
6301 		 * restore the original sched domains by considering the
6302 		 * cpuset configurations.
6303 		 */
6304 
6305 	case CPU_ONLINE:
6306 	case CPU_DOWN_FAILED:
6307 		cpuset_update_active_cpus(true);
6308 		break;
6309 	default:
6310 		return NOTIFY_DONE;
6311 	}
6312 	return NOTIFY_OK;
6313 }
6314 
6315 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6316 			       void *hcpu)
6317 {
6318 	switch (action) {
6319 	case CPU_DOWN_PREPARE:
6320 		cpuset_update_active_cpus(false);
6321 		break;
6322 	case CPU_DOWN_PREPARE_FROZEN:
6323 		num_cpus_frozen++;
6324 		partition_sched_domains(1, NULL, NULL);
6325 		break;
6326 	default:
6327 		return NOTIFY_DONE;
6328 	}
6329 	return NOTIFY_OK;
6330 }
6331 
6332 void __init sched_init_smp(void)
6333 {
6334 	cpumask_var_t non_isolated_cpus;
6335 
6336 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6337 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6338 
6339 	sched_init_numa();
6340 
6341 	get_online_cpus();
6342 	mutex_lock(&sched_domains_mutex);
6343 	init_sched_domains(cpu_active_mask);
6344 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6345 	if (cpumask_empty(non_isolated_cpus))
6346 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6347 	mutex_unlock(&sched_domains_mutex);
6348 	put_online_cpus();
6349 
6350 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6351 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6352 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6353 
6354 	init_hrtick();
6355 
6356 	/* Move init over to a non-isolated CPU */
6357 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6358 		BUG();
6359 	sched_init_granularity();
6360 	free_cpumask_var(non_isolated_cpus);
6361 
6362 	init_sched_rt_class();
6363 }
6364 #else
6365 void __init sched_init_smp(void)
6366 {
6367 	sched_init_granularity();
6368 }
6369 #endif /* CONFIG_SMP */
6370 
6371 const_debug unsigned int sysctl_timer_migration = 1;
6372 
6373 int in_sched_functions(unsigned long addr)
6374 {
6375 	return in_lock_functions(addr) ||
6376 		(addr >= (unsigned long)__sched_text_start
6377 		&& addr < (unsigned long)__sched_text_end);
6378 }
6379 
6380 #ifdef CONFIG_CGROUP_SCHED
6381 /*
6382  * Default task group.
6383  * Every task in system belongs to this group at bootup.
6384  */
6385 struct task_group root_task_group;
6386 LIST_HEAD(task_groups);
6387 #endif
6388 
6389 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6390 
6391 void __init sched_init(void)
6392 {
6393 	int i, j;
6394 	unsigned long alloc_size = 0, ptr;
6395 
6396 #ifdef CONFIG_FAIR_GROUP_SCHED
6397 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6398 #endif
6399 #ifdef CONFIG_RT_GROUP_SCHED
6400 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6401 #endif
6402 #ifdef CONFIG_CPUMASK_OFFSTACK
6403 	alloc_size += num_possible_cpus() * cpumask_size();
6404 #endif
6405 	if (alloc_size) {
6406 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6407 
6408 #ifdef CONFIG_FAIR_GROUP_SCHED
6409 		root_task_group.se = (struct sched_entity **)ptr;
6410 		ptr += nr_cpu_ids * sizeof(void **);
6411 
6412 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6413 		ptr += nr_cpu_ids * sizeof(void **);
6414 
6415 #endif /* CONFIG_FAIR_GROUP_SCHED */
6416 #ifdef CONFIG_RT_GROUP_SCHED
6417 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6418 		ptr += nr_cpu_ids * sizeof(void **);
6419 
6420 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6421 		ptr += nr_cpu_ids * sizeof(void **);
6422 
6423 #endif /* CONFIG_RT_GROUP_SCHED */
6424 #ifdef CONFIG_CPUMASK_OFFSTACK
6425 		for_each_possible_cpu(i) {
6426 			per_cpu(load_balance_mask, i) = (void *)ptr;
6427 			ptr += cpumask_size();
6428 		}
6429 #endif /* CONFIG_CPUMASK_OFFSTACK */
6430 	}
6431 
6432 #ifdef CONFIG_SMP
6433 	init_defrootdomain();
6434 #endif
6435 
6436 	init_rt_bandwidth(&def_rt_bandwidth,
6437 			global_rt_period(), global_rt_runtime());
6438 
6439 #ifdef CONFIG_RT_GROUP_SCHED
6440 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6441 			global_rt_period(), global_rt_runtime());
6442 #endif /* CONFIG_RT_GROUP_SCHED */
6443 
6444 #ifdef CONFIG_CGROUP_SCHED
6445 	list_add(&root_task_group.list, &task_groups);
6446 	INIT_LIST_HEAD(&root_task_group.children);
6447 	INIT_LIST_HEAD(&root_task_group.siblings);
6448 	autogroup_init(&init_task);
6449 
6450 #endif /* CONFIG_CGROUP_SCHED */
6451 
6452 	for_each_possible_cpu(i) {
6453 		struct rq *rq;
6454 
6455 		rq = cpu_rq(i);
6456 		raw_spin_lock_init(&rq->lock);
6457 		rq->nr_running = 0;
6458 		rq->calc_load_active = 0;
6459 		rq->calc_load_update = jiffies + LOAD_FREQ;
6460 		init_cfs_rq(&rq->cfs);
6461 		init_rt_rq(&rq->rt, rq);
6462 #ifdef CONFIG_FAIR_GROUP_SCHED
6463 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6464 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6465 		/*
6466 		 * How much cpu bandwidth does root_task_group get?
6467 		 *
6468 		 * In case of task-groups formed thr' the cgroup filesystem, it
6469 		 * gets 100% of the cpu resources in the system. This overall
6470 		 * system cpu resource is divided among the tasks of
6471 		 * root_task_group and its child task-groups in a fair manner,
6472 		 * based on each entity's (task or task-group's) weight
6473 		 * (se->load.weight).
6474 		 *
6475 		 * In other words, if root_task_group has 10 tasks of weight
6476 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6477 		 * then A0's share of the cpu resource is:
6478 		 *
6479 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6480 		 *
6481 		 * We achieve this by letting root_task_group's tasks sit
6482 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6483 		 */
6484 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6485 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6486 #endif /* CONFIG_FAIR_GROUP_SCHED */
6487 
6488 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6489 #ifdef CONFIG_RT_GROUP_SCHED
6490 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6491 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6492 #endif
6493 
6494 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6495 			rq->cpu_load[j] = 0;
6496 
6497 		rq->last_load_update_tick = jiffies;
6498 
6499 #ifdef CONFIG_SMP
6500 		rq->sd = NULL;
6501 		rq->rd = NULL;
6502 		rq->cpu_power = SCHED_POWER_SCALE;
6503 		rq->post_schedule = 0;
6504 		rq->active_balance = 0;
6505 		rq->next_balance = jiffies;
6506 		rq->push_cpu = 0;
6507 		rq->cpu = i;
6508 		rq->online = 0;
6509 		rq->idle_stamp = 0;
6510 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6511 
6512 		INIT_LIST_HEAD(&rq->cfs_tasks);
6513 
6514 		rq_attach_root(rq, &def_root_domain);
6515 #ifdef CONFIG_NO_HZ_COMMON
6516 		rq->nohz_flags = 0;
6517 #endif
6518 #ifdef CONFIG_NO_HZ_FULL
6519 		rq->last_sched_tick = 0;
6520 #endif
6521 #endif
6522 		init_rq_hrtick(rq);
6523 		atomic_set(&rq->nr_iowait, 0);
6524 	}
6525 
6526 	set_load_weight(&init_task);
6527 
6528 #ifdef CONFIG_PREEMPT_NOTIFIERS
6529 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6530 #endif
6531 
6532 #ifdef CONFIG_RT_MUTEXES
6533 	plist_head_init(&init_task.pi_waiters);
6534 #endif
6535 
6536 	/*
6537 	 * The boot idle thread does lazy MMU switching as well:
6538 	 */
6539 	atomic_inc(&init_mm.mm_count);
6540 	enter_lazy_tlb(&init_mm, current);
6541 
6542 	/*
6543 	 * Make us the idle thread. Technically, schedule() should not be
6544 	 * called from this thread, however somewhere below it might be,
6545 	 * but because we are the idle thread, we just pick up running again
6546 	 * when this runqueue becomes "idle".
6547 	 */
6548 	init_idle(current, smp_processor_id());
6549 
6550 	calc_load_update = jiffies + LOAD_FREQ;
6551 
6552 	/*
6553 	 * During early bootup we pretend to be a normal task:
6554 	 */
6555 	current->sched_class = &fair_sched_class;
6556 
6557 #ifdef CONFIG_SMP
6558 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6559 	/* May be allocated at isolcpus cmdline parse time */
6560 	if (cpu_isolated_map == NULL)
6561 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6562 	idle_thread_set_boot_cpu();
6563 #endif
6564 	init_sched_fair_class();
6565 
6566 	scheduler_running = 1;
6567 }
6568 
6569 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6570 static inline int preempt_count_equals(int preempt_offset)
6571 {
6572 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6573 
6574 	return (nested == preempt_offset);
6575 }
6576 
6577 void __might_sleep(const char *file, int line, int preempt_offset)
6578 {
6579 	static unsigned long prev_jiffy;	/* ratelimiting */
6580 
6581 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6582 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6583 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6584 		return;
6585 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6586 		return;
6587 	prev_jiffy = jiffies;
6588 
6589 	printk(KERN_ERR
6590 		"BUG: sleeping function called from invalid context at %s:%d\n",
6591 			file, line);
6592 	printk(KERN_ERR
6593 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6594 			in_atomic(), irqs_disabled(),
6595 			current->pid, current->comm);
6596 
6597 	debug_show_held_locks(current);
6598 	if (irqs_disabled())
6599 		print_irqtrace_events(current);
6600 	dump_stack();
6601 }
6602 EXPORT_SYMBOL(__might_sleep);
6603 #endif
6604 
6605 #ifdef CONFIG_MAGIC_SYSRQ
6606 static void normalize_task(struct rq *rq, struct task_struct *p)
6607 {
6608 	const struct sched_class *prev_class = p->sched_class;
6609 	int old_prio = p->prio;
6610 	int on_rq;
6611 
6612 	on_rq = p->on_rq;
6613 	if (on_rq)
6614 		dequeue_task(rq, p, 0);
6615 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6616 	if (on_rq) {
6617 		enqueue_task(rq, p, 0);
6618 		resched_task(rq->curr);
6619 	}
6620 
6621 	check_class_changed(rq, p, prev_class, old_prio);
6622 }
6623 
6624 void normalize_rt_tasks(void)
6625 {
6626 	struct task_struct *g, *p;
6627 	unsigned long flags;
6628 	struct rq *rq;
6629 
6630 	read_lock_irqsave(&tasklist_lock, flags);
6631 	do_each_thread(g, p) {
6632 		/*
6633 		 * Only normalize user tasks:
6634 		 */
6635 		if (!p->mm)
6636 			continue;
6637 
6638 		p->se.exec_start		= 0;
6639 #ifdef CONFIG_SCHEDSTATS
6640 		p->se.statistics.wait_start	= 0;
6641 		p->se.statistics.sleep_start	= 0;
6642 		p->se.statistics.block_start	= 0;
6643 #endif
6644 
6645 		if (!rt_task(p)) {
6646 			/*
6647 			 * Renice negative nice level userspace
6648 			 * tasks back to 0:
6649 			 */
6650 			if (TASK_NICE(p) < 0 && p->mm)
6651 				set_user_nice(p, 0);
6652 			continue;
6653 		}
6654 
6655 		raw_spin_lock(&p->pi_lock);
6656 		rq = __task_rq_lock(p);
6657 
6658 		normalize_task(rq, p);
6659 
6660 		__task_rq_unlock(rq);
6661 		raw_spin_unlock(&p->pi_lock);
6662 	} while_each_thread(g, p);
6663 
6664 	read_unlock_irqrestore(&tasklist_lock, flags);
6665 }
6666 
6667 #endif /* CONFIG_MAGIC_SYSRQ */
6668 
6669 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6670 /*
6671  * These functions are only useful for the IA64 MCA handling, or kdb.
6672  *
6673  * They can only be called when the whole system has been
6674  * stopped - every CPU needs to be quiescent, and no scheduling
6675  * activity can take place. Using them for anything else would
6676  * be a serious bug, and as a result, they aren't even visible
6677  * under any other configuration.
6678  */
6679 
6680 /**
6681  * curr_task - return the current task for a given cpu.
6682  * @cpu: the processor in question.
6683  *
6684  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685  *
6686  * Return: The current task for @cpu.
6687  */
6688 struct task_struct *curr_task(int cpu)
6689 {
6690 	return cpu_curr(cpu);
6691 }
6692 
6693 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6694 
6695 #ifdef CONFIG_IA64
6696 /**
6697  * set_curr_task - set the current task for a given cpu.
6698  * @cpu: the processor in question.
6699  * @p: the task pointer to set.
6700  *
6701  * Description: This function must only be used when non-maskable interrupts
6702  * are serviced on a separate stack. It allows the architecture to switch the
6703  * notion of the current task on a cpu in a non-blocking manner. This function
6704  * must be called with all CPU's synchronized, and interrupts disabled, the
6705  * and caller must save the original value of the current task (see
6706  * curr_task() above) and restore that value before reenabling interrupts and
6707  * re-starting the system.
6708  *
6709  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6710  */
6711 void set_curr_task(int cpu, struct task_struct *p)
6712 {
6713 	cpu_curr(cpu) = p;
6714 }
6715 
6716 #endif
6717 
6718 #ifdef CONFIG_CGROUP_SCHED
6719 /* task_group_lock serializes the addition/removal of task groups */
6720 static DEFINE_SPINLOCK(task_group_lock);
6721 
6722 static void free_sched_group(struct task_group *tg)
6723 {
6724 	free_fair_sched_group(tg);
6725 	free_rt_sched_group(tg);
6726 	autogroup_free(tg);
6727 	kfree(tg);
6728 }
6729 
6730 /* allocate runqueue etc for a new task group */
6731 struct task_group *sched_create_group(struct task_group *parent)
6732 {
6733 	struct task_group *tg;
6734 
6735 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6736 	if (!tg)
6737 		return ERR_PTR(-ENOMEM);
6738 
6739 	if (!alloc_fair_sched_group(tg, parent))
6740 		goto err;
6741 
6742 	if (!alloc_rt_sched_group(tg, parent))
6743 		goto err;
6744 
6745 	return tg;
6746 
6747 err:
6748 	free_sched_group(tg);
6749 	return ERR_PTR(-ENOMEM);
6750 }
6751 
6752 void sched_online_group(struct task_group *tg, struct task_group *parent)
6753 {
6754 	unsigned long flags;
6755 
6756 	spin_lock_irqsave(&task_group_lock, flags);
6757 	list_add_rcu(&tg->list, &task_groups);
6758 
6759 	WARN_ON(!parent); /* root should already exist */
6760 
6761 	tg->parent = parent;
6762 	INIT_LIST_HEAD(&tg->children);
6763 	list_add_rcu(&tg->siblings, &parent->children);
6764 	spin_unlock_irqrestore(&task_group_lock, flags);
6765 }
6766 
6767 /* rcu callback to free various structures associated with a task group */
6768 static void free_sched_group_rcu(struct rcu_head *rhp)
6769 {
6770 	/* now it should be safe to free those cfs_rqs */
6771 	free_sched_group(container_of(rhp, struct task_group, rcu));
6772 }
6773 
6774 /* Destroy runqueue etc associated with a task group */
6775 void sched_destroy_group(struct task_group *tg)
6776 {
6777 	/* wait for possible concurrent references to cfs_rqs complete */
6778 	call_rcu(&tg->rcu, free_sched_group_rcu);
6779 }
6780 
6781 void sched_offline_group(struct task_group *tg)
6782 {
6783 	unsigned long flags;
6784 	int i;
6785 
6786 	/* end participation in shares distribution */
6787 	for_each_possible_cpu(i)
6788 		unregister_fair_sched_group(tg, i);
6789 
6790 	spin_lock_irqsave(&task_group_lock, flags);
6791 	list_del_rcu(&tg->list);
6792 	list_del_rcu(&tg->siblings);
6793 	spin_unlock_irqrestore(&task_group_lock, flags);
6794 }
6795 
6796 /* change task's runqueue when it moves between groups.
6797  *	The caller of this function should have put the task in its new group
6798  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6799  *	reflect its new group.
6800  */
6801 void sched_move_task(struct task_struct *tsk)
6802 {
6803 	struct task_group *tg;
6804 	int on_rq, running;
6805 	unsigned long flags;
6806 	struct rq *rq;
6807 
6808 	rq = task_rq_lock(tsk, &flags);
6809 
6810 	running = task_current(rq, tsk);
6811 	on_rq = tsk->on_rq;
6812 
6813 	if (on_rq)
6814 		dequeue_task(rq, tsk, 0);
6815 	if (unlikely(running))
6816 		tsk->sched_class->put_prev_task(rq, tsk);
6817 
6818 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6819 				lockdep_is_held(&tsk->sighand->siglock)),
6820 			  struct task_group, css);
6821 	tg = autogroup_task_group(tsk, tg);
6822 	tsk->sched_task_group = tg;
6823 
6824 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 	if (tsk->sched_class->task_move_group)
6826 		tsk->sched_class->task_move_group(tsk, on_rq);
6827 	else
6828 #endif
6829 		set_task_rq(tsk, task_cpu(tsk));
6830 
6831 	if (unlikely(running))
6832 		tsk->sched_class->set_curr_task(rq);
6833 	if (on_rq)
6834 		enqueue_task(rq, tsk, 0);
6835 
6836 	task_rq_unlock(rq, tsk, &flags);
6837 }
6838 #endif /* CONFIG_CGROUP_SCHED */
6839 
6840 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6841 static unsigned long to_ratio(u64 period, u64 runtime)
6842 {
6843 	if (runtime == RUNTIME_INF)
6844 		return 1ULL << 20;
6845 
6846 	return div64_u64(runtime << 20, period);
6847 }
6848 #endif
6849 
6850 #ifdef CONFIG_RT_GROUP_SCHED
6851 /*
6852  * Ensure that the real time constraints are schedulable.
6853  */
6854 static DEFINE_MUTEX(rt_constraints_mutex);
6855 
6856 /* Must be called with tasklist_lock held */
6857 static inline int tg_has_rt_tasks(struct task_group *tg)
6858 {
6859 	struct task_struct *g, *p;
6860 
6861 	do_each_thread(g, p) {
6862 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6863 			return 1;
6864 	} while_each_thread(g, p);
6865 
6866 	return 0;
6867 }
6868 
6869 struct rt_schedulable_data {
6870 	struct task_group *tg;
6871 	u64 rt_period;
6872 	u64 rt_runtime;
6873 };
6874 
6875 static int tg_rt_schedulable(struct task_group *tg, void *data)
6876 {
6877 	struct rt_schedulable_data *d = data;
6878 	struct task_group *child;
6879 	unsigned long total, sum = 0;
6880 	u64 period, runtime;
6881 
6882 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6883 	runtime = tg->rt_bandwidth.rt_runtime;
6884 
6885 	if (tg == d->tg) {
6886 		period = d->rt_period;
6887 		runtime = d->rt_runtime;
6888 	}
6889 
6890 	/*
6891 	 * Cannot have more runtime than the period.
6892 	 */
6893 	if (runtime > period && runtime != RUNTIME_INF)
6894 		return -EINVAL;
6895 
6896 	/*
6897 	 * Ensure we don't starve existing RT tasks.
6898 	 */
6899 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6900 		return -EBUSY;
6901 
6902 	total = to_ratio(period, runtime);
6903 
6904 	/*
6905 	 * Nobody can have more than the global setting allows.
6906 	 */
6907 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6908 		return -EINVAL;
6909 
6910 	/*
6911 	 * The sum of our children's runtime should not exceed our own.
6912 	 */
6913 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6914 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6915 		runtime = child->rt_bandwidth.rt_runtime;
6916 
6917 		if (child == d->tg) {
6918 			period = d->rt_period;
6919 			runtime = d->rt_runtime;
6920 		}
6921 
6922 		sum += to_ratio(period, runtime);
6923 	}
6924 
6925 	if (sum > total)
6926 		return -EINVAL;
6927 
6928 	return 0;
6929 }
6930 
6931 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6932 {
6933 	int ret;
6934 
6935 	struct rt_schedulable_data data = {
6936 		.tg = tg,
6937 		.rt_period = period,
6938 		.rt_runtime = runtime,
6939 	};
6940 
6941 	rcu_read_lock();
6942 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6943 	rcu_read_unlock();
6944 
6945 	return ret;
6946 }
6947 
6948 static int tg_set_rt_bandwidth(struct task_group *tg,
6949 		u64 rt_period, u64 rt_runtime)
6950 {
6951 	int i, err = 0;
6952 
6953 	mutex_lock(&rt_constraints_mutex);
6954 	read_lock(&tasklist_lock);
6955 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6956 	if (err)
6957 		goto unlock;
6958 
6959 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6960 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6961 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6962 
6963 	for_each_possible_cpu(i) {
6964 		struct rt_rq *rt_rq = tg->rt_rq[i];
6965 
6966 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6967 		rt_rq->rt_runtime = rt_runtime;
6968 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6969 	}
6970 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6971 unlock:
6972 	read_unlock(&tasklist_lock);
6973 	mutex_unlock(&rt_constraints_mutex);
6974 
6975 	return err;
6976 }
6977 
6978 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6979 {
6980 	u64 rt_runtime, rt_period;
6981 
6982 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6983 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6984 	if (rt_runtime_us < 0)
6985 		rt_runtime = RUNTIME_INF;
6986 
6987 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6988 }
6989 
6990 static long sched_group_rt_runtime(struct task_group *tg)
6991 {
6992 	u64 rt_runtime_us;
6993 
6994 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6995 		return -1;
6996 
6997 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6998 	do_div(rt_runtime_us, NSEC_PER_USEC);
6999 	return rt_runtime_us;
7000 }
7001 
7002 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7003 {
7004 	u64 rt_runtime, rt_period;
7005 
7006 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7007 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7008 
7009 	if (rt_period == 0)
7010 		return -EINVAL;
7011 
7012 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7013 }
7014 
7015 static long sched_group_rt_period(struct task_group *tg)
7016 {
7017 	u64 rt_period_us;
7018 
7019 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7020 	do_div(rt_period_us, NSEC_PER_USEC);
7021 	return rt_period_us;
7022 }
7023 
7024 static int sched_rt_global_constraints(void)
7025 {
7026 	u64 runtime, period;
7027 	int ret = 0;
7028 
7029 	if (sysctl_sched_rt_period <= 0)
7030 		return -EINVAL;
7031 
7032 	runtime = global_rt_runtime();
7033 	period = global_rt_period();
7034 
7035 	/*
7036 	 * Sanity check on the sysctl variables.
7037 	 */
7038 	if (runtime > period && runtime != RUNTIME_INF)
7039 		return -EINVAL;
7040 
7041 	mutex_lock(&rt_constraints_mutex);
7042 	read_lock(&tasklist_lock);
7043 	ret = __rt_schedulable(NULL, 0, 0);
7044 	read_unlock(&tasklist_lock);
7045 	mutex_unlock(&rt_constraints_mutex);
7046 
7047 	return ret;
7048 }
7049 
7050 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7051 {
7052 	/* Don't accept realtime tasks when there is no way for them to run */
7053 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7054 		return 0;
7055 
7056 	return 1;
7057 }
7058 
7059 #else /* !CONFIG_RT_GROUP_SCHED */
7060 static int sched_rt_global_constraints(void)
7061 {
7062 	unsigned long flags;
7063 	int i;
7064 
7065 	if (sysctl_sched_rt_period <= 0)
7066 		return -EINVAL;
7067 
7068 	/*
7069 	 * There's always some RT tasks in the root group
7070 	 * -- migration, kstopmachine etc..
7071 	 */
7072 	if (sysctl_sched_rt_runtime == 0)
7073 		return -EBUSY;
7074 
7075 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7076 	for_each_possible_cpu(i) {
7077 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7078 
7079 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7080 		rt_rq->rt_runtime = global_rt_runtime();
7081 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7082 	}
7083 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7084 
7085 	return 0;
7086 }
7087 #endif /* CONFIG_RT_GROUP_SCHED */
7088 
7089 int sched_rr_handler(struct ctl_table *table, int write,
7090 		void __user *buffer, size_t *lenp,
7091 		loff_t *ppos)
7092 {
7093 	int ret;
7094 	static DEFINE_MUTEX(mutex);
7095 
7096 	mutex_lock(&mutex);
7097 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7098 	/* make sure that internally we keep jiffies */
7099 	/* also, writing zero resets timeslice to default */
7100 	if (!ret && write) {
7101 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7102 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7103 	}
7104 	mutex_unlock(&mutex);
7105 	return ret;
7106 }
7107 
7108 int sched_rt_handler(struct ctl_table *table, int write,
7109 		void __user *buffer, size_t *lenp,
7110 		loff_t *ppos)
7111 {
7112 	int ret;
7113 	int old_period, old_runtime;
7114 	static DEFINE_MUTEX(mutex);
7115 
7116 	mutex_lock(&mutex);
7117 	old_period = sysctl_sched_rt_period;
7118 	old_runtime = sysctl_sched_rt_runtime;
7119 
7120 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7121 
7122 	if (!ret && write) {
7123 		ret = sched_rt_global_constraints();
7124 		if (ret) {
7125 			sysctl_sched_rt_period = old_period;
7126 			sysctl_sched_rt_runtime = old_runtime;
7127 		} else {
7128 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7129 			def_rt_bandwidth.rt_period =
7130 				ns_to_ktime(global_rt_period());
7131 		}
7132 	}
7133 	mutex_unlock(&mutex);
7134 
7135 	return ret;
7136 }
7137 
7138 #ifdef CONFIG_CGROUP_SCHED
7139 
7140 /* return corresponding task_group object of a cgroup */
7141 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7142 {
7143 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7144 			    struct task_group, css);
7145 }
7146 
7147 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7148 {
7149 	struct task_group *tg, *parent;
7150 
7151 	if (!cgrp->parent) {
7152 		/* This is early initialization for the top cgroup */
7153 		return &root_task_group.css;
7154 	}
7155 
7156 	parent = cgroup_tg(cgrp->parent);
7157 	tg = sched_create_group(parent);
7158 	if (IS_ERR(tg))
7159 		return ERR_PTR(-ENOMEM);
7160 
7161 	return &tg->css;
7162 }
7163 
7164 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7165 {
7166 	struct task_group *tg = cgroup_tg(cgrp);
7167 	struct task_group *parent;
7168 
7169 	if (!cgrp->parent)
7170 		return 0;
7171 
7172 	parent = cgroup_tg(cgrp->parent);
7173 	sched_online_group(tg, parent);
7174 	return 0;
7175 }
7176 
7177 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7178 {
7179 	struct task_group *tg = cgroup_tg(cgrp);
7180 
7181 	sched_destroy_group(tg);
7182 }
7183 
7184 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7185 {
7186 	struct task_group *tg = cgroup_tg(cgrp);
7187 
7188 	sched_offline_group(tg);
7189 }
7190 
7191 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7192 				 struct cgroup_taskset *tset)
7193 {
7194 	struct task_struct *task;
7195 
7196 	cgroup_taskset_for_each(task, cgrp, tset) {
7197 #ifdef CONFIG_RT_GROUP_SCHED
7198 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7199 			return -EINVAL;
7200 #else
7201 		/* We don't support RT-tasks being in separate groups */
7202 		if (task->sched_class != &fair_sched_class)
7203 			return -EINVAL;
7204 #endif
7205 	}
7206 	return 0;
7207 }
7208 
7209 static void cpu_cgroup_attach(struct cgroup *cgrp,
7210 			      struct cgroup_taskset *tset)
7211 {
7212 	struct task_struct *task;
7213 
7214 	cgroup_taskset_for_each(task, cgrp, tset)
7215 		sched_move_task(task);
7216 }
7217 
7218 static void
7219 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7220 		struct task_struct *task)
7221 {
7222 	/*
7223 	 * cgroup_exit() is called in the copy_process() failure path.
7224 	 * Ignore this case since the task hasn't ran yet, this avoids
7225 	 * trying to poke a half freed task state from generic code.
7226 	 */
7227 	if (!(task->flags & PF_EXITING))
7228 		return;
7229 
7230 	sched_move_task(task);
7231 }
7232 
7233 #ifdef CONFIG_FAIR_GROUP_SCHED
7234 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7235 				u64 shareval)
7236 {
7237 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7238 }
7239 
7240 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7241 {
7242 	struct task_group *tg = cgroup_tg(cgrp);
7243 
7244 	return (u64) scale_load_down(tg->shares);
7245 }
7246 
7247 #ifdef CONFIG_CFS_BANDWIDTH
7248 static DEFINE_MUTEX(cfs_constraints_mutex);
7249 
7250 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7251 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7252 
7253 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7254 
7255 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7256 {
7257 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7258 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7259 
7260 	if (tg == &root_task_group)
7261 		return -EINVAL;
7262 
7263 	/*
7264 	 * Ensure we have at some amount of bandwidth every period.  This is
7265 	 * to prevent reaching a state of large arrears when throttled via
7266 	 * entity_tick() resulting in prolonged exit starvation.
7267 	 */
7268 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7269 		return -EINVAL;
7270 
7271 	/*
7272 	 * Likewise, bound things on the otherside by preventing insane quota
7273 	 * periods.  This also allows us to normalize in computing quota
7274 	 * feasibility.
7275 	 */
7276 	if (period > max_cfs_quota_period)
7277 		return -EINVAL;
7278 
7279 	mutex_lock(&cfs_constraints_mutex);
7280 	ret = __cfs_schedulable(tg, period, quota);
7281 	if (ret)
7282 		goto out_unlock;
7283 
7284 	runtime_enabled = quota != RUNTIME_INF;
7285 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7286 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7287 	raw_spin_lock_irq(&cfs_b->lock);
7288 	cfs_b->period = ns_to_ktime(period);
7289 	cfs_b->quota = quota;
7290 
7291 	__refill_cfs_bandwidth_runtime(cfs_b);
7292 	/* restart the period timer (if active) to handle new period expiry */
7293 	if (runtime_enabled && cfs_b->timer_active) {
7294 		/* force a reprogram */
7295 		cfs_b->timer_active = 0;
7296 		__start_cfs_bandwidth(cfs_b);
7297 	}
7298 	raw_spin_unlock_irq(&cfs_b->lock);
7299 
7300 	for_each_possible_cpu(i) {
7301 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7302 		struct rq *rq = cfs_rq->rq;
7303 
7304 		raw_spin_lock_irq(&rq->lock);
7305 		cfs_rq->runtime_enabled = runtime_enabled;
7306 		cfs_rq->runtime_remaining = 0;
7307 
7308 		if (cfs_rq->throttled)
7309 			unthrottle_cfs_rq(cfs_rq);
7310 		raw_spin_unlock_irq(&rq->lock);
7311 	}
7312 out_unlock:
7313 	mutex_unlock(&cfs_constraints_mutex);
7314 
7315 	return ret;
7316 }
7317 
7318 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7319 {
7320 	u64 quota, period;
7321 
7322 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7323 	if (cfs_quota_us < 0)
7324 		quota = RUNTIME_INF;
7325 	else
7326 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7327 
7328 	return tg_set_cfs_bandwidth(tg, period, quota);
7329 }
7330 
7331 long tg_get_cfs_quota(struct task_group *tg)
7332 {
7333 	u64 quota_us;
7334 
7335 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7336 		return -1;
7337 
7338 	quota_us = tg->cfs_bandwidth.quota;
7339 	do_div(quota_us, NSEC_PER_USEC);
7340 
7341 	return quota_us;
7342 }
7343 
7344 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7345 {
7346 	u64 quota, period;
7347 
7348 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7349 	quota = tg->cfs_bandwidth.quota;
7350 
7351 	return tg_set_cfs_bandwidth(tg, period, quota);
7352 }
7353 
7354 long tg_get_cfs_period(struct task_group *tg)
7355 {
7356 	u64 cfs_period_us;
7357 
7358 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7359 	do_div(cfs_period_us, NSEC_PER_USEC);
7360 
7361 	return cfs_period_us;
7362 }
7363 
7364 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7365 {
7366 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7367 }
7368 
7369 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7370 				s64 cfs_quota_us)
7371 {
7372 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7373 }
7374 
7375 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7376 {
7377 	return tg_get_cfs_period(cgroup_tg(cgrp));
7378 }
7379 
7380 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7381 				u64 cfs_period_us)
7382 {
7383 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7384 }
7385 
7386 struct cfs_schedulable_data {
7387 	struct task_group *tg;
7388 	u64 period, quota;
7389 };
7390 
7391 /*
7392  * normalize group quota/period to be quota/max_period
7393  * note: units are usecs
7394  */
7395 static u64 normalize_cfs_quota(struct task_group *tg,
7396 			       struct cfs_schedulable_data *d)
7397 {
7398 	u64 quota, period;
7399 
7400 	if (tg == d->tg) {
7401 		period = d->period;
7402 		quota = d->quota;
7403 	} else {
7404 		period = tg_get_cfs_period(tg);
7405 		quota = tg_get_cfs_quota(tg);
7406 	}
7407 
7408 	/* note: these should typically be equivalent */
7409 	if (quota == RUNTIME_INF || quota == -1)
7410 		return RUNTIME_INF;
7411 
7412 	return to_ratio(period, quota);
7413 }
7414 
7415 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7416 {
7417 	struct cfs_schedulable_data *d = data;
7418 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7419 	s64 quota = 0, parent_quota = -1;
7420 
7421 	if (!tg->parent) {
7422 		quota = RUNTIME_INF;
7423 	} else {
7424 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7425 
7426 		quota = normalize_cfs_quota(tg, d);
7427 		parent_quota = parent_b->hierarchal_quota;
7428 
7429 		/*
7430 		 * ensure max(child_quota) <= parent_quota, inherit when no
7431 		 * limit is set
7432 		 */
7433 		if (quota == RUNTIME_INF)
7434 			quota = parent_quota;
7435 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7436 			return -EINVAL;
7437 	}
7438 	cfs_b->hierarchal_quota = quota;
7439 
7440 	return 0;
7441 }
7442 
7443 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7444 {
7445 	int ret;
7446 	struct cfs_schedulable_data data = {
7447 		.tg = tg,
7448 		.period = period,
7449 		.quota = quota,
7450 	};
7451 
7452 	if (quota != RUNTIME_INF) {
7453 		do_div(data.period, NSEC_PER_USEC);
7454 		do_div(data.quota, NSEC_PER_USEC);
7455 	}
7456 
7457 	rcu_read_lock();
7458 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7459 	rcu_read_unlock();
7460 
7461 	return ret;
7462 }
7463 
7464 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7465 		struct cgroup_map_cb *cb)
7466 {
7467 	struct task_group *tg = cgroup_tg(cgrp);
7468 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7469 
7470 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7471 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7472 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7473 
7474 	return 0;
7475 }
7476 #endif /* CONFIG_CFS_BANDWIDTH */
7477 #endif /* CONFIG_FAIR_GROUP_SCHED */
7478 
7479 #ifdef CONFIG_RT_GROUP_SCHED
7480 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7481 				s64 val)
7482 {
7483 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7484 }
7485 
7486 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7487 {
7488 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7489 }
7490 
7491 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7492 		u64 rt_period_us)
7493 {
7494 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7495 }
7496 
7497 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7498 {
7499 	return sched_group_rt_period(cgroup_tg(cgrp));
7500 }
7501 #endif /* CONFIG_RT_GROUP_SCHED */
7502 
7503 static struct cftype cpu_files[] = {
7504 #ifdef CONFIG_FAIR_GROUP_SCHED
7505 	{
7506 		.name = "shares",
7507 		.read_u64 = cpu_shares_read_u64,
7508 		.write_u64 = cpu_shares_write_u64,
7509 	},
7510 #endif
7511 #ifdef CONFIG_CFS_BANDWIDTH
7512 	{
7513 		.name = "cfs_quota_us",
7514 		.read_s64 = cpu_cfs_quota_read_s64,
7515 		.write_s64 = cpu_cfs_quota_write_s64,
7516 	},
7517 	{
7518 		.name = "cfs_period_us",
7519 		.read_u64 = cpu_cfs_period_read_u64,
7520 		.write_u64 = cpu_cfs_period_write_u64,
7521 	},
7522 	{
7523 		.name = "stat",
7524 		.read_map = cpu_stats_show,
7525 	},
7526 #endif
7527 #ifdef CONFIG_RT_GROUP_SCHED
7528 	{
7529 		.name = "rt_runtime_us",
7530 		.read_s64 = cpu_rt_runtime_read,
7531 		.write_s64 = cpu_rt_runtime_write,
7532 	},
7533 	{
7534 		.name = "rt_period_us",
7535 		.read_u64 = cpu_rt_period_read_uint,
7536 		.write_u64 = cpu_rt_period_write_uint,
7537 	},
7538 #endif
7539 	{ }	/* terminate */
7540 };
7541 
7542 struct cgroup_subsys cpu_cgroup_subsys = {
7543 	.name		= "cpu",
7544 	.css_alloc	= cpu_cgroup_css_alloc,
7545 	.css_free	= cpu_cgroup_css_free,
7546 	.css_online	= cpu_cgroup_css_online,
7547 	.css_offline	= cpu_cgroup_css_offline,
7548 	.can_attach	= cpu_cgroup_can_attach,
7549 	.attach		= cpu_cgroup_attach,
7550 	.exit		= cpu_cgroup_exit,
7551 	.subsys_id	= cpu_cgroup_subsys_id,
7552 	.base_cftypes	= cpu_files,
7553 	.early_init	= 1,
7554 };
7555 
7556 #endif	/* CONFIG_CGROUP_SCHED */
7557 
7558 void dump_cpu_task(int cpu)
7559 {
7560 	pr_info("Task dump for CPU %d:\n", cpu);
7561 	sched_show_task(cpu_curr(cpu));
7562 }
7563