1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 /* 174 * __task_rq_lock - lock the rq @p resides on. 175 */ 176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 177 __acquires(rq->lock) 178 { 179 struct rq *rq; 180 181 lockdep_assert_held(&p->pi_lock); 182 183 for (;;) { 184 rq = task_rq(p); 185 raw_spin_lock(&rq->lock); 186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 187 rf->cookie = lockdep_pin_lock(&rq->lock); 188 return rq; 189 } 190 raw_spin_unlock(&rq->lock); 191 192 while (unlikely(task_on_rq_migrating(p))) 193 cpu_relax(); 194 } 195 } 196 197 /* 198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 199 */ 200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 201 __acquires(p->pi_lock) 202 __acquires(rq->lock) 203 { 204 struct rq *rq; 205 206 for (;;) { 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 208 rq = task_rq(p); 209 raw_spin_lock(&rq->lock); 210 /* 211 * move_queued_task() task_rq_lock() 212 * 213 * ACQUIRE (rq->lock) 214 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 216 * [S] ->cpu = new_cpu [L] task_rq() 217 * [L] ->on_rq 218 * RELEASE (rq->lock) 219 * 220 * If we observe the old cpu in task_rq_lock, the acquire of 221 * the old rq->lock will fully serialize against the stores. 222 * 223 * If we observe the new cpu in task_rq_lock, the acquire will 224 * pair with the WMB to ensure we must then also see migrating. 225 */ 226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 227 rf->cookie = lockdep_pin_lock(&rq->lock); 228 return rq; 229 } 230 raw_spin_unlock(&rq->lock); 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 232 233 while (unlikely(task_on_rq_migrating(p))) 234 cpu_relax(); 235 } 236 } 237 238 #ifdef CONFIG_SCHED_HRTICK 239 /* 240 * Use HR-timers to deliver accurate preemption points. 241 */ 242 243 static void hrtick_clear(struct rq *rq) 244 { 245 if (hrtimer_active(&rq->hrtick_timer)) 246 hrtimer_cancel(&rq->hrtick_timer); 247 } 248 249 /* 250 * High-resolution timer tick. 251 * Runs from hardirq context with interrupts disabled. 252 */ 253 static enum hrtimer_restart hrtick(struct hrtimer *timer) 254 { 255 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 raw_spin_lock(&rq->lock); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 raw_spin_unlock(&rq->lock); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 283 raw_spin_lock(&rq->lock); 284 __hrtick_restart(rq); 285 rq->hrtick_csd_pending = 0; 286 raw_spin_unlock(&rq->lock); 287 } 288 289 /* 290 * Called to set the hrtick timer state. 291 * 292 * called with rq->lock held and irqs disabled 293 */ 294 void hrtick_start(struct rq *rq, u64 delay) 295 { 296 struct hrtimer *timer = &rq->hrtick_timer; 297 ktime_t time; 298 s64 delta; 299 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense and can cause timer DoS. 303 */ 304 delta = max_t(s64, delay, 10000LL); 305 time = ktime_add_ns(timer->base->get_time(), delta); 306 307 hrtimer_set_expires(timer, time); 308 309 if (rq == this_rq()) { 310 __hrtick_restart(rq); 311 } else if (!rq->hrtick_csd_pending) { 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 313 rq->hrtick_csd_pending = 1; 314 } 315 } 316 317 #else 318 /* 319 * Called to set the hrtick timer state. 320 * 321 * called with rq->lock held and irqs disabled 322 */ 323 void hrtick_start(struct rq *rq, u64 delay) 324 { 325 /* 326 * Don't schedule slices shorter than 10000ns, that just 327 * doesn't make sense. Rely on vruntime for fairness. 328 */ 329 delay = max_t(u64, delay, 10000LL); 330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 331 HRTIMER_MODE_REL_PINNED); 332 } 333 #endif /* CONFIG_SMP */ 334 335 static void init_rq_hrtick(struct rq *rq) 336 { 337 #ifdef CONFIG_SMP 338 rq->hrtick_csd_pending = 0; 339 340 rq->hrtick_csd.flags = 0; 341 rq->hrtick_csd.func = __hrtick_start; 342 rq->hrtick_csd.info = rq; 343 #endif 344 345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 346 rq->hrtick_timer.function = hrtick; 347 } 348 #else /* CONFIG_SCHED_HRTICK */ 349 static inline void hrtick_clear(struct rq *rq) 350 { 351 } 352 353 static inline void init_rq_hrtick(struct rq *rq) 354 { 355 } 356 #endif /* CONFIG_SCHED_HRTICK */ 357 358 /* 359 * cmpxchg based fetch_or, macro so it works for different integer types 360 */ 361 #define fetch_or(ptr, mask) \ 362 ({ \ 363 typeof(ptr) _ptr = (ptr); \ 364 typeof(mask) _mask = (mask); \ 365 typeof(*_ptr) _old, _val = *_ptr; \ 366 \ 367 for (;;) { \ 368 _old = cmpxchg(_ptr, _val, _val | _mask); \ 369 if (_old == _val) \ 370 break; \ 371 _val = _old; \ 372 } \ 373 _old; \ 374 }) 375 376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 377 /* 378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 379 * this avoids any races wrt polling state changes and thereby avoids 380 * spurious IPIs. 381 */ 382 static bool set_nr_and_not_polling(struct task_struct *p) 383 { 384 struct thread_info *ti = task_thread_info(p); 385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 386 } 387 388 /* 389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 390 * 391 * If this returns true, then the idle task promises to call 392 * sched_ttwu_pending() and reschedule soon. 393 */ 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 struct thread_info *ti = task_thread_info(p); 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 398 399 for (;;) { 400 if (!(val & _TIF_POLLING_NRFLAG)) 401 return false; 402 if (val & _TIF_NEED_RESCHED) 403 return true; 404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 405 if (old == val) 406 break; 407 val = old; 408 } 409 return true; 410 } 411 412 #else 413 static bool set_nr_and_not_polling(struct task_struct *p) 414 { 415 set_tsk_need_resched(p); 416 return true; 417 } 418 419 #ifdef CONFIG_SMP 420 static bool set_nr_if_polling(struct task_struct *p) 421 { 422 return false; 423 } 424 #endif 425 #endif 426 427 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 428 { 429 struct wake_q_node *node = &task->wake_q; 430 431 /* 432 * Atomically grab the task, if ->wake_q is !nil already it means 433 * its already queued (either by us or someone else) and will get the 434 * wakeup due to that. 435 * 436 * This cmpxchg() implies a full barrier, which pairs with the write 437 * barrier implied by the wakeup in wake_up_q(). 438 */ 439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 440 return; 441 442 get_task_struct(task); 443 444 /* 445 * The head is context local, there can be no concurrency. 446 */ 447 *head->lastp = node; 448 head->lastp = &node->next; 449 } 450 451 void wake_up_q(struct wake_q_head *head) 452 { 453 struct wake_q_node *node = head->first; 454 455 while (node != WAKE_Q_TAIL) { 456 struct task_struct *task; 457 458 task = container_of(node, struct task_struct, wake_q); 459 BUG_ON(!task); 460 /* task can safely be re-inserted now */ 461 node = node->next; 462 task->wake_q.next = NULL; 463 464 /* 465 * wake_up_process() implies a wmb() to pair with the queueing 466 * in wake_q_add() so as not to miss wakeups. 467 */ 468 wake_up_process(task); 469 put_task_struct(task); 470 } 471 } 472 473 /* 474 * resched_curr - mark rq's current task 'to be rescheduled now'. 475 * 476 * On UP this means the setting of the need_resched flag, on SMP it 477 * might also involve a cross-CPU call to trigger the scheduler on 478 * the target CPU. 479 */ 480 void resched_curr(struct rq *rq) 481 { 482 struct task_struct *curr = rq->curr; 483 int cpu; 484 485 lockdep_assert_held(&rq->lock); 486 487 if (test_tsk_need_resched(curr)) 488 return; 489 490 cpu = cpu_of(rq); 491 492 if (cpu == smp_processor_id()) { 493 set_tsk_need_resched(curr); 494 set_preempt_need_resched(); 495 return; 496 } 497 498 if (set_nr_and_not_polling(curr)) 499 smp_send_reschedule(cpu); 500 else 501 trace_sched_wake_idle_without_ipi(cpu); 502 } 503 504 void resched_cpu(int cpu) 505 { 506 struct rq *rq = cpu_rq(cpu); 507 unsigned long flags; 508 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 510 return; 511 resched_curr(rq); 512 raw_spin_unlock_irqrestore(&rq->lock, flags); 513 } 514 515 #ifdef CONFIG_SMP 516 #ifdef CONFIG_NO_HZ_COMMON 517 /* 518 * In the semi idle case, use the nearest busy cpu for migrating timers 519 * from an idle cpu. This is good for power-savings. 520 * 521 * We don't do similar optimization for completely idle system, as 522 * selecting an idle cpu will add more delays to the timers than intended 523 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 524 */ 525 int get_nohz_timer_target(void) 526 { 527 int i, cpu = smp_processor_id(); 528 struct sched_domain *sd; 529 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 531 return cpu; 532 533 rcu_read_lock(); 534 for_each_domain(cpu, sd) { 535 for_each_cpu(i, sched_domain_span(sd)) { 536 if (cpu == i) 537 continue; 538 539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 540 cpu = i; 541 goto unlock; 542 } 543 } 544 } 545 546 if (!is_housekeeping_cpu(cpu)) 547 cpu = housekeeping_any_cpu(); 548 unlock: 549 rcu_read_unlock(); 550 return cpu; 551 } 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (tick_nohz_full_cpu(cpu)) { 584 if (cpu != smp_processor_id() || 585 tick_nohz_tick_stopped()) 586 tick_nohz_full_kick_cpu(cpu); 587 return true; 588 } 589 590 return false; 591 } 592 593 void wake_up_nohz_cpu(int cpu) 594 { 595 if (!wake_up_full_nohz_cpu(cpu)) 596 wake_up_idle_cpu(cpu); 597 } 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 int cpu = smp_processor_id(); 602 603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 604 return false; 605 606 if (idle_cpu(cpu) && !need_resched()) 607 return true; 608 609 /* 610 * We can't run Idle Load Balance on this CPU for this time so we 611 * cancel it and clear NOHZ_BALANCE_KICK 612 */ 613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 614 return false; 615 } 616 617 #else /* CONFIG_NO_HZ_COMMON */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ_COMMON */ 625 626 #ifdef CONFIG_NO_HZ_FULL 627 bool sched_can_stop_tick(struct rq *rq) 628 { 629 int fifo_nr_running; 630 631 /* Deadline tasks, even if single, need the tick */ 632 if (rq->dl.dl_nr_running) 633 return false; 634 635 /* 636 * If there are more than one RR tasks, we need the tick to effect the 637 * actual RR behaviour. 638 */ 639 if (rq->rt.rr_nr_running) { 640 if (rq->rt.rr_nr_running == 1) 641 return true; 642 else 643 return false; 644 } 645 646 /* 647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 648 * forced preemption between FIFO tasks. 649 */ 650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 651 if (fifo_nr_running) 652 return true; 653 654 /* 655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 656 * if there's more than one we need the tick for involuntary 657 * preemption. 658 */ 659 if (rq->nr_running > 1) 660 return false; 661 662 return true; 663 } 664 #endif /* CONFIG_NO_HZ_FULL */ 665 666 void sched_avg_update(struct rq *rq) 667 { 668 s64 period = sched_avg_period(); 669 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 671 /* 672 * Inline assembly required to prevent the compiler 673 * optimising this loop into a divmod call. 674 * See __iter_div_u64_rem() for another example of this. 675 */ 676 asm("" : "+rm" (rq->age_stamp)); 677 rq->age_stamp += period; 678 rq->rt_avg /= 2; 679 } 680 } 681 682 #endif /* CONFIG_SMP */ 683 684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 686 /* 687 * Iterate task_group tree rooted at *from, calling @down when first entering a 688 * node and @up when leaving it for the final time. 689 * 690 * Caller must hold rcu_lock or sufficient equivalent. 691 */ 692 int walk_tg_tree_from(struct task_group *from, 693 tg_visitor down, tg_visitor up, void *data) 694 { 695 struct task_group *parent, *child; 696 int ret; 697 698 parent = from; 699 700 down: 701 ret = (*down)(parent, data); 702 if (ret) 703 goto out; 704 list_for_each_entry_rcu(child, &parent->children, siblings) { 705 parent = child; 706 goto down; 707 708 up: 709 continue; 710 } 711 ret = (*up)(parent, data); 712 if (ret || parent == from) 713 goto out; 714 715 child = parent; 716 parent = parent->parent; 717 if (parent) 718 goto up; 719 out: 720 return ret; 721 } 722 723 int tg_nop(struct task_group *tg, void *data) 724 { 725 return 0; 726 } 727 #endif 728 729 static void set_load_weight(struct task_struct *p) 730 { 731 int prio = p->static_prio - MAX_RT_PRIO; 732 struct load_weight *load = &p->se.load; 733 734 /* 735 * SCHED_IDLE tasks get minimal weight: 736 */ 737 if (idle_policy(p->policy)) { 738 load->weight = scale_load(WEIGHT_IDLEPRIO); 739 load->inv_weight = WMULT_IDLEPRIO; 740 return; 741 } 742 743 load->weight = scale_load(sched_prio_to_weight[prio]); 744 load->inv_weight = sched_prio_to_wmult[prio]; 745 } 746 747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 748 { 749 update_rq_clock(rq); 750 if (!(flags & ENQUEUE_RESTORE)) 751 sched_info_queued(rq, p); 752 p->sched_class->enqueue_task(rq, p, flags); 753 } 754 755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & DEQUEUE_SAVE)) 759 sched_info_dequeued(rq, p); 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 static void update_rq_clock_task(struct rq *rq, s64 delta) 780 { 781 /* 782 * In theory, the compile should just see 0 here, and optimize out the call 783 * to sched_rt_avg_update. But I don't trust it... 784 */ 785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 786 s64 steal = 0, irq_delta = 0; 787 #endif 788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 790 791 /* 792 * Since irq_time is only updated on {soft,}irq_exit, we might run into 793 * this case when a previous update_rq_clock() happened inside a 794 * {soft,}irq region. 795 * 796 * When this happens, we stop ->clock_task and only update the 797 * prev_irq_time stamp to account for the part that fit, so that a next 798 * update will consume the rest. This ensures ->clock_task is 799 * monotonic. 800 * 801 * It does however cause some slight miss-attribution of {soft,}irq 802 * time, a more accurate solution would be to update the irq_time using 803 * the current rq->clock timestamp, except that would require using 804 * atomic ops. 805 */ 806 if (irq_delta > delta) 807 irq_delta = delta; 808 809 rq->prev_irq_time += irq_delta; 810 delta -= irq_delta; 811 #endif 812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 813 if (static_key_false((¶virt_steal_rq_enabled))) { 814 steal = paravirt_steal_clock(cpu_of(rq)); 815 steal -= rq->prev_steal_time_rq; 816 817 if (unlikely(steal > delta)) 818 steal = delta; 819 820 rq->prev_steal_time_rq += steal; 821 delta -= steal; 822 } 823 #endif 824 825 rq->clock_task += delta; 826 827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 829 sched_rt_avg_update(rq, irq_delta + steal); 830 #endif 831 } 832 833 void sched_set_stop_task(int cpu, struct task_struct *stop) 834 { 835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 836 struct task_struct *old_stop = cpu_rq(cpu)->stop; 837 838 if (stop) { 839 /* 840 * Make it appear like a SCHED_FIFO task, its something 841 * userspace knows about and won't get confused about. 842 * 843 * Also, it will make PI more or less work without too 844 * much confusion -- but then, stop work should not 845 * rely on PI working anyway. 846 */ 847 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 848 849 stop->sched_class = &stop_sched_class; 850 } 851 852 cpu_rq(cpu)->stop = stop; 853 854 if (old_stop) { 855 /* 856 * Reset it back to a normal scheduling class so that 857 * it can die in pieces. 858 */ 859 old_stop->sched_class = &rt_sched_class; 860 } 861 } 862 863 /* 864 * __normal_prio - return the priority that is based on the static prio 865 */ 866 static inline int __normal_prio(struct task_struct *p) 867 { 868 return p->static_prio; 869 } 870 871 /* 872 * Calculate the expected normal priority: i.e. priority 873 * without taking RT-inheritance into account. Might be 874 * boosted by interactivity modifiers. Changes upon fork, 875 * setprio syscalls, and whenever the interactivity 876 * estimator recalculates. 877 */ 878 static inline int normal_prio(struct task_struct *p) 879 { 880 int prio; 881 882 if (task_has_dl_policy(p)) 883 prio = MAX_DL_PRIO-1; 884 else if (task_has_rt_policy(p)) 885 prio = MAX_RT_PRIO-1 - p->rt_priority; 886 else 887 prio = __normal_prio(p); 888 return prio; 889 } 890 891 /* 892 * Calculate the current priority, i.e. the priority 893 * taken into account by the scheduler. This value might 894 * be boosted by RT tasks, or might be boosted by 895 * interactivity modifiers. Will be RT if the task got 896 * RT-boosted. If not then it returns p->normal_prio. 897 */ 898 static int effective_prio(struct task_struct *p) 899 { 900 p->normal_prio = normal_prio(p); 901 /* 902 * If we are RT tasks or we were boosted to RT priority, 903 * keep the priority unchanged. Otherwise, update priority 904 * to the normal priority: 905 */ 906 if (!rt_prio(p->prio)) 907 return p->normal_prio; 908 return p->prio; 909 } 910 911 /** 912 * task_curr - is this task currently executing on a CPU? 913 * @p: the task in question. 914 * 915 * Return: 1 if the task is currently executing. 0 otherwise. 916 */ 917 inline int task_curr(const struct task_struct *p) 918 { 919 return cpu_curr(task_cpu(p)) == p; 920 } 921 922 /* 923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 924 * use the balance_callback list if you want balancing. 925 * 926 * this means any call to check_class_changed() must be followed by a call to 927 * balance_callback(). 928 */ 929 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 930 const struct sched_class *prev_class, 931 int oldprio) 932 { 933 if (prev_class != p->sched_class) { 934 if (prev_class->switched_from) 935 prev_class->switched_from(rq, p); 936 937 p->sched_class->switched_to(rq, p); 938 } else if (oldprio != p->prio || dl_task(p)) 939 p->sched_class->prio_changed(rq, p, oldprio); 940 } 941 942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 943 { 944 const struct sched_class *class; 945 946 if (p->sched_class == rq->curr->sched_class) { 947 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 948 } else { 949 for_each_class(class) { 950 if (class == rq->curr->sched_class) 951 break; 952 if (class == p->sched_class) { 953 resched_curr(rq); 954 break; 955 } 956 } 957 } 958 959 /* 960 * A queue event has occurred, and we're going to schedule. In 961 * this case, we can save a useless back to back clock update. 962 */ 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 964 rq_clock_skip_update(rq, true); 965 } 966 967 #ifdef CONFIG_SMP 968 /* 969 * This is how migration works: 970 * 971 * 1) we invoke migration_cpu_stop() on the target CPU using 972 * stop_one_cpu(). 973 * 2) stopper starts to run (implicitly forcing the migrated thread 974 * off the CPU) 975 * 3) it checks whether the migrated task is still in the wrong runqueue. 976 * 4) if it's in the wrong runqueue then the migration thread removes 977 * it and puts it into the right queue. 978 * 5) stopper completes and stop_one_cpu() returns and the migration 979 * is done. 980 */ 981 982 /* 983 * move_queued_task - move a queued task to new rq. 984 * 985 * Returns (locked) new rq. Old rq's lock is released. 986 */ 987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 988 { 989 lockdep_assert_held(&rq->lock); 990 991 p->on_rq = TASK_ON_RQ_MIGRATING; 992 dequeue_task(rq, p, 0); 993 set_task_cpu(p, new_cpu); 994 raw_spin_unlock(&rq->lock); 995 996 rq = cpu_rq(new_cpu); 997 998 raw_spin_lock(&rq->lock); 999 BUG_ON(task_cpu(p) != new_cpu); 1000 enqueue_task(rq, p, 0); 1001 p->on_rq = TASK_ON_RQ_QUEUED; 1002 check_preempt_curr(rq, p, 0); 1003 1004 return rq; 1005 } 1006 1007 struct migration_arg { 1008 struct task_struct *task; 1009 int dest_cpu; 1010 }; 1011 1012 /* 1013 * Move (not current) task off this cpu, onto dest cpu. We're doing 1014 * this because either it can't run here any more (set_cpus_allowed() 1015 * away from this CPU, or CPU going down), or because we're 1016 * attempting to rebalance this task on exec (sched_exec). 1017 * 1018 * So we race with normal scheduler movements, but that's OK, as long 1019 * as the task is no longer on this CPU. 1020 */ 1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1022 { 1023 if (unlikely(!cpu_active(dest_cpu))) 1024 return rq; 1025 1026 /* Affinity changed (again). */ 1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1028 return rq; 1029 1030 rq = move_queued_task(rq, p, dest_cpu); 1031 1032 return rq; 1033 } 1034 1035 /* 1036 * migration_cpu_stop - this will be executed by a highprio stopper thread 1037 * and performs thread migration by bumping thread off CPU then 1038 * 'pushing' onto another runqueue. 1039 */ 1040 static int migration_cpu_stop(void *data) 1041 { 1042 struct migration_arg *arg = data; 1043 struct task_struct *p = arg->task; 1044 struct rq *rq = this_rq(); 1045 1046 /* 1047 * The original target cpu might have gone down and we might 1048 * be on another cpu but it doesn't matter. 1049 */ 1050 local_irq_disable(); 1051 /* 1052 * We need to explicitly wake pending tasks before running 1053 * __migrate_task() such that we will not miss enforcing cpus_allowed 1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1055 */ 1056 sched_ttwu_pending(); 1057 1058 raw_spin_lock(&p->pi_lock); 1059 raw_spin_lock(&rq->lock); 1060 /* 1061 * If task_rq(p) != rq, it cannot be migrated here, because we're 1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1063 * we're holding p->pi_lock. 1064 */ 1065 if (task_rq(p) == rq && task_on_rq_queued(p)) 1066 rq = __migrate_task(rq, p, arg->dest_cpu); 1067 raw_spin_unlock(&rq->lock); 1068 raw_spin_unlock(&p->pi_lock); 1069 1070 local_irq_enable(); 1071 return 0; 1072 } 1073 1074 /* 1075 * sched_class::set_cpus_allowed must do the below, but is not required to 1076 * actually call this function. 1077 */ 1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1079 { 1080 cpumask_copy(&p->cpus_allowed, new_mask); 1081 p->nr_cpus_allowed = cpumask_weight(new_mask); 1082 } 1083 1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1085 { 1086 struct rq *rq = task_rq(p); 1087 bool queued, running; 1088 1089 lockdep_assert_held(&p->pi_lock); 1090 1091 queued = task_on_rq_queued(p); 1092 running = task_current(rq, p); 1093 1094 if (queued) { 1095 /* 1096 * Because __kthread_bind() calls this on blocked tasks without 1097 * holding rq->lock. 1098 */ 1099 lockdep_assert_held(&rq->lock); 1100 dequeue_task(rq, p, DEQUEUE_SAVE); 1101 } 1102 if (running) 1103 put_prev_task(rq, p); 1104 1105 p->sched_class->set_cpus_allowed(p, new_mask); 1106 1107 if (running) 1108 p->sched_class->set_curr_task(rq); 1109 if (queued) 1110 enqueue_task(rq, p, ENQUEUE_RESTORE); 1111 } 1112 1113 /* 1114 * Change a given task's CPU affinity. Migrate the thread to a 1115 * proper CPU and schedule it away if the CPU it's executing on 1116 * is removed from the allowed bitmask. 1117 * 1118 * NOTE: the caller must have a valid reference to the task, the 1119 * task must not exit() & deallocate itself prematurely. The 1120 * call is not atomic; no spinlocks may be held. 1121 */ 1122 static int __set_cpus_allowed_ptr(struct task_struct *p, 1123 const struct cpumask *new_mask, bool check) 1124 { 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1126 unsigned int dest_cpu; 1127 struct rq_flags rf; 1128 struct rq *rq; 1129 int ret = 0; 1130 1131 rq = task_rq_lock(p, &rf); 1132 1133 if (p->flags & PF_KTHREAD) { 1134 /* 1135 * Kernel threads are allowed on online && !active CPUs 1136 */ 1137 cpu_valid_mask = cpu_online_mask; 1138 } 1139 1140 /* 1141 * Must re-check here, to close a race against __kthread_bind(), 1142 * sched_setaffinity() is not guaranteed to observe the flag. 1143 */ 1144 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1145 ret = -EINVAL; 1146 goto out; 1147 } 1148 1149 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1150 goto out; 1151 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1153 ret = -EINVAL; 1154 goto out; 1155 } 1156 1157 do_set_cpus_allowed(p, new_mask); 1158 1159 if (p->flags & PF_KTHREAD) { 1160 /* 1161 * For kernel threads that do indeed end up on online && 1162 * !active we want to ensure they are strict per-cpu threads. 1163 */ 1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1165 !cpumask_intersects(new_mask, cpu_active_mask) && 1166 p->nr_cpus_allowed != 1); 1167 } 1168 1169 /* Can the task run on the task's current CPU? If so, we're done */ 1170 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1171 goto out; 1172 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1174 if (task_running(rq, p) || p->state == TASK_WAKING) { 1175 struct migration_arg arg = { p, dest_cpu }; 1176 /* Need help from migration thread: drop lock and wait. */ 1177 task_rq_unlock(rq, p, &rf); 1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1179 tlb_migrate_finish(p->mm); 1180 return 0; 1181 } else if (task_on_rq_queued(p)) { 1182 /* 1183 * OK, since we're going to drop the lock immediately 1184 * afterwards anyway. 1185 */ 1186 lockdep_unpin_lock(&rq->lock, rf.cookie); 1187 rq = move_queued_task(rq, p, dest_cpu); 1188 lockdep_repin_lock(&rq->lock, rf.cookie); 1189 } 1190 out: 1191 task_rq_unlock(rq, p, &rf); 1192 1193 return ret; 1194 } 1195 1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1197 { 1198 return __set_cpus_allowed_ptr(p, new_mask, false); 1199 } 1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1201 1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1203 { 1204 #ifdef CONFIG_SCHED_DEBUG 1205 /* 1206 * We should never call set_task_cpu() on a blocked task, 1207 * ttwu() will sort out the placement. 1208 */ 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1210 !p->on_rq); 1211 1212 /* 1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1215 * time relying on p->on_rq. 1216 */ 1217 WARN_ON_ONCE(p->state == TASK_RUNNING && 1218 p->sched_class == &fair_sched_class && 1219 (p->on_rq && !task_on_rq_migrating(p))); 1220 1221 #ifdef CONFIG_LOCKDEP 1222 /* 1223 * The caller should hold either p->pi_lock or rq->lock, when changing 1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1225 * 1226 * sched_move_task() holds both and thus holding either pins the cgroup, 1227 * see task_group(). 1228 * 1229 * Furthermore, all task_rq users should acquire both locks, see 1230 * task_rq_lock(). 1231 */ 1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1233 lockdep_is_held(&task_rq(p)->lock))); 1234 #endif 1235 #endif 1236 1237 trace_sched_migrate_task(p, new_cpu); 1238 1239 if (task_cpu(p) != new_cpu) { 1240 if (p->sched_class->migrate_task_rq) 1241 p->sched_class->migrate_task_rq(p); 1242 p->se.nr_migrations++; 1243 perf_event_task_migrate(p); 1244 } 1245 1246 __set_task_cpu(p, new_cpu); 1247 } 1248 1249 static void __migrate_swap_task(struct task_struct *p, int cpu) 1250 { 1251 if (task_on_rq_queued(p)) { 1252 struct rq *src_rq, *dst_rq; 1253 1254 src_rq = task_rq(p); 1255 dst_rq = cpu_rq(cpu); 1256 1257 p->on_rq = TASK_ON_RQ_MIGRATING; 1258 deactivate_task(src_rq, p, 0); 1259 set_task_cpu(p, cpu); 1260 activate_task(dst_rq, p, 0); 1261 p->on_rq = TASK_ON_RQ_QUEUED; 1262 check_preempt_curr(dst_rq, p, 0); 1263 } else { 1264 /* 1265 * Task isn't running anymore; make it appear like we migrated 1266 * it before it went to sleep. This means on wakeup we make the 1267 * previous cpu our targer instead of where it really is. 1268 */ 1269 p->wake_cpu = cpu; 1270 } 1271 } 1272 1273 struct migration_swap_arg { 1274 struct task_struct *src_task, *dst_task; 1275 int src_cpu, dst_cpu; 1276 }; 1277 1278 static int migrate_swap_stop(void *data) 1279 { 1280 struct migration_swap_arg *arg = data; 1281 struct rq *src_rq, *dst_rq; 1282 int ret = -EAGAIN; 1283 1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1285 return -EAGAIN; 1286 1287 src_rq = cpu_rq(arg->src_cpu); 1288 dst_rq = cpu_rq(arg->dst_cpu); 1289 1290 double_raw_lock(&arg->src_task->pi_lock, 1291 &arg->dst_task->pi_lock); 1292 double_rq_lock(src_rq, dst_rq); 1293 1294 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1295 goto unlock; 1296 1297 if (task_cpu(arg->src_task) != arg->src_cpu) 1298 goto unlock; 1299 1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1301 goto unlock; 1302 1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1304 goto unlock; 1305 1306 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1307 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1308 1309 ret = 0; 1310 1311 unlock: 1312 double_rq_unlock(src_rq, dst_rq); 1313 raw_spin_unlock(&arg->dst_task->pi_lock); 1314 raw_spin_unlock(&arg->src_task->pi_lock); 1315 1316 return ret; 1317 } 1318 1319 /* 1320 * Cross migrate two tasks 1321 */ 1322 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1323 { 1324 struct migration_swap_arg arg; 1325 int ret = -EINVAL; 1326 1327 arg = (struct migration_swap_arg){ 1328 .src_task = cur, 1329 .src_cpu = task_cpu(cur), 1330 .dst_task = p, 1331 .dst_cpu = task_cpu(p), 1332 }; 1333 1334 if (arg.src_cpu == arg.dst_cpu) 1335 goto out; 1336 1337 /* 1338 * These three tests are all lockless; this is OK since all of them 1339 * will be re-checked with proper locks held further down the line. 1340 */ 1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1342 goto out; 1343 1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1345 goto out; 1346 1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1348 goto out; 1349 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1352 1353 out: 1354 return ret; 1355 } 1356 1357 /* 1358 * wait_task_inactive - wait for a thread to unschedule. 1359 * 1360 * If @match_state is nonzero, it's the @p->state value just checked and 1361 * not expected to change. If it changes, i.e. @p might have woken up, 1362 * then return zero. When we succeed in waiting for @p to be off its CPU, 1363 * we return a positive number (its total switch count). If a second call 1364 * a short while later returns the same number, the caller can be sure that 1365 * @p has remained unscheduled the whole time. 1366 * 1367 * The caller must ensure that the task *will* unschedule sometime soon, 1368 * else this function might spin for a *long* time. This function can't 1369 * be called with interrupts off, or it may introduce deadlock with 1370 * smp_call_function() if an IPI is sent by the same process we are 1371 * waiting to become inactive. 1372 */ 1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1374 { 1375 int running, queued; 1376 struct rq_flags rf; 1377 unsigned long ncsw; 1378 struct rq *rq; 1379 1380 for (;;) { 1381 /* 1382 * We do the initial early heuristics without holding 1383 * any task-queue locks at all. We'll only try to get 1384 * the runqueue lock when things look like they will 1385 * work out! 1386 */ 1387 rq = task_rq(p); 1388 1389 /* 1390 * If the task is actively running on another CPU 1391 * still, just relax and busy-wait without holding 1392 * any locks. 1393 * 1394 * NOTE! Since we don't hold any locks, it's not 1395 * even sure that "rq" stays as the right runqueue! 1396 * But we don't care, since "task_running()" will 1397 * return false if the runqueue has changed and p 1398 * is actually now running somewhere else! 1399 */ 1400 while (task_running(rq, p)) { 1401 if (match_state && unlikely(p->state != match_state)) 1402 return 0; 1403 cpu_relax(); 1404 } 1405 1406 /* 1407 * Ok, time to look more closely! We need the rq 1408 * lock now, to be *sure*. If we're wrong, we'll 1409 * just go back and repeat. 1410 */ 1411 rq = task_rq_lock(p, &rf); 1412 trace_sched_wait_task(p); 1413 running = task_running(rq, p); 1414 queued = task_on_rq_queued(p); 1415 ncsw = 0; 1416 if (!match_state || p->state == match_state) 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1418 task_rq_unlock(rq, p, &rf); 1419 1420 /* 1421 * If it changed from the expected state, bail out now. 1422 */ 1423 if (unlikely(!ncsw)) 1424 break; 1425 1426 /* 1427 * Was it really running after all now that we 1428 * checked with the proper locks actually held? 1429 * 1430 * Oops. Go back and try again.. 1431 */ 1432 if (unlikely(running)) { 1433 cpu_relax(); 1434 continue; 1435 } 1436 1437 /* 1438 * It's not enough that it's not actively running, 1439 * it must be off the runqueue _entirely_, and not 1440 * preempted! 1441 * 1442 * So if it was still runnable (but just not actively 1443 * running right now), it's preempted, and we should 1444 * yield - it could be a while. 1445 */ 1446 if (unlikely(queued)) { 1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1448 1449 set_current_state(TASK_UNINTERRUPTIBLE); 1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1451 continue; 1452 } 1453 1454 /* 1455 * Ahh, all good. It wasn't running, and it wasn't 1456 * runnable, which means that it will never become 1457 * running in the future either. We're all done! 1458 */ 1459 break; 1460 } 1461 1462 return ncsw; 1463 } 1464 1465 /*** 1466 * kick_process - kick a running thread to enter/exit the kernel 1467 * @p: the to-be-kicked thread 1468 * 1469 * Cause a process which is running on another CPU to enter 1470 * kernel-mode, without any delay. (to get signals handled.) 1471 * 1472 * NOTE: this function doesn't have to take the runqueue lock, 1473 * because all it wants to ensure is that the remote task enters 1474 * the kernel. If the IPI races and the task has been migrated 1475 * to another CPU then no harm is done and the purpose has been 1476 * achieved as well. 1477 */ 1478 void kick_process(struct task_struct *p) 1479 { 1480 int cpu; 1481 1482 preempt_disable(); 1483 cpu = task_cpu(p); 1484 if ((cpu != smp_processor_id()) && task_curr(p)) 1485 smp_send_reschedule(cpu); 1486 preempt_enable(); 1487 } 1488 EXPORT_SYMBOL_GPL(kick_process); 1489 1490 /* 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1492 * 1493 * A few notes on cpu_active vs cpu_online: 1494 * 1495 * - cpu_active must be a subset of cpu_online 1496 * 1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1498 * see __set_cpus_allowed_ptr(). At this point the newly online 1499 * cpu isn't yet part of the sched domains, and balancing will not 1500 * see it. 1501 * 1502 * - on cpu-down we clear cpu_active() to mask the sched domains and 1503 * avoid the load balancer to place new tasks on the to be removed 1504 * cpu. Existing tasks will remain running there and will be taken 1505 * off. 1506 * 1507 * This means that fallback selection must not select !active CPUs. 1508 * And can assume that any active CPU must be online. Conversely 1509 * select_task_rq() below may allow selection of !active CPUs in order 1510 * to satisfy the above rules. 1511 */ 1512 static int select_fallback_rq(int cpu, struct task_struct *p) 1513 { 1514 int nid = cpu_to_node(cpu); 1515 const struct cpumask *nodemask = NULL; 1516 enum { cpuset, possible, fail } state = cpuset; 1517 int dest_cpu; 1518 1519 /* 1520 * If the node that the cpu is on has been offlined, cpu_to_node() 1521 * will return -1. There is no cpu on the node, and we should 1522 * select the cpu on the other node. 1523 */ 1524 if (nid != -1) { 1525 nodemask = cpumask_of_node(nid); 1526 1527 /* Look for allowed, online CPU in same node. */ 1528 for_each_cpu(dest_cpu, nodemask) { 1529 if (!cpu_active(dest_cpu)) 1530 continue; 1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1532 return dest_cpu; 1533 } 1534 } 1535 1536 for (;;) { 1537 /* Any allowed, online CPU? */ 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1539 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1540 continue; 1541 if (!cpu_online(dest_cpu)) 1542 continue; 1543 goto out; 1544 } 1545 1546 /* No more Mr. Nice Guy. */ 1547 switch (state) { 1548 case cpuset: 1549 if (IS_ENABLED(CONFIG_CPUSETS)) { 1550 cpuset_cpus_allowed_fallback(p); 1551 state = possible; 1552 break; 1553 } 1554 /* fall-through */ 1555 case possible: 1556 do_set_cpus_allowed(p, cpu_possible_mask); 1557 state = fail; 1558 break; 1559 1560 case fail: 1561 BUG(); 1562 break; 1563 } 1564 } 1565 1566 out: 1567 if (state != cpuset) { 1568 /* 1569 * Don't tell them about moving exiting tasks or 1570 * kernel threads (both mm NULL), since they never 1571 * leave kernel. 1572 */ 1573 if (p->mm && printk_ratelimit()) { 1574 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1575 task_pid_nr(p), p->comm, cpu); 1576 } 1577 } 1578 1579 return dest_cpu; 1580 } 1581 1582 /* 1583 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1584 */ 1585 static inline 1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1587 { 1588 lockdep_assert_held(&p->pi_lock); 1589 1590 if (tsk_nr_cpus_allowed(p) > 1) 1591 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1592 else 1593 cpu = cpumask_any(tsk_cpus_allowed(p)); 1594 1595 /* 1596 * In order not to call set_task_cpu() on a blocking task we need 1597 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1598 * cpu. 1599 * 1600 * Since this is common to all placement strategies, this lives here. 1601 * 1602 * [ this allows ->select_task() to simply return task_cpu(p) and 1603 * not worry about this generic constraint ] 1604 */ 1605 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1606 !cpu_online(cpu))) 1607 cpu = select_fallback_rq(task_cpu(p), p); 1608 1609 return cpu; 1610 } 1611 1612 static void update_avg(u64 *avg, u64 sample) 1613 { 1614 s64 diff = sample - *avg; 1615 *avg += diff >> 3; 1616 } 1617 1618 #else 1619 1620 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1621 const struct cpumask *new_mask, bool check) 1622 { 1623 return set_cpus_allowed_ptr(p, new_mask); 1624 } 1625 1626 #endif /* CONFIG_SMP */ 1627 1628 static void 1629 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1630 { 1631 #ifdef CONFIG_SCHEDSTATS 1632 struct rq *rq = this_rq(); 1633 1634 #ifdef CONFIG_SMP 1635 int this_cpu = smp_processor_id(); 1636 1637 if (cpu == this_cpu) { 1638 schedstat_inc(rq, ttwu_local); 1639 schedstat_inc(p, se.statistics.nr_wakeups_local); 1640 } else { 1641 struct sched_domain *sd; 1642 1643 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1644 rcu_read_lock(); 1645 for_each_domain(this_cpu, sd) { 1646 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1647 schedstat_inc(sd, ttwu_wake_remote); 1648 break; 1649 } 1650 } 1651 rcu_read_unlock(); 1652 } 1653 1654 if (wake_flags & WF_MIGRATED) 1655 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1656 1657 #endif /* CONFIG_SMP */ 1658 1659 schedstat_inc(rq, ttwu_count); 1660 schedstat_inc(p, se.statistics.nr_wakeups); 1661 1662 if (wake_flags & WF_SYNC) 1663 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1664 1665 #endif /* CONFIG_SCHEDSTATS */ 1666 } 1667 1668 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1669 { 1670 activate_task(rq, p, en_flags); 1671 p->on_rq = TASK_ON_RQ_QUEUED; 1672 1673 /* if a worker is waking up, notify workqueue */ 1674 if (p->flags & PF_WQ_WORKER) 1675 wq_worker_waking_up(p, cpu_of(rq)); 1676 } 1677 1678 /* 1679 * Mark the task runnable and perform wakeup-preemption. 1680 */ 1681 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1682 struct pin_cookie cookie) 1683 { 1684 check_preempt_curr(rq, p, wake_flags); 1685 p->state = TASK_RUNNING; 1686 trace_sched_wakeup(p); 1687 1688 #ifdef CONFIG_SMP 1689 if (p->sched_class->task_woken) { 1690 /* 1691 * Our task @p is fully woken up and running; so its safe to 1692 * drop the rq->lock, hereafter rq is only used for statistics. 1693 */ 1694 lockdep_unpin_lock(&rq->lock, cookie); 1695 p->sched_class->task_woken(rq, p); 1696 lockdep_repin_lock(&rq->lock, cookie); 1697 } 1698 1699 if (rq->idle_stamp) { 1700 u64 delta = rq_clock(rq) - rq->idle_stamp; 1701 u64 max = 2*rq->max_idle_balance_cost; 1702 1703 update_avg(&rq->avg_idle, delta); 1704 1705 if (rq->avg_idle > max) 1706 rq->avg_idle = max; 1707 1708 rq->idle_stamp = 0; 1709 } 1710 #endif 1711 } 1712 1713 static void 1714 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1715 struct pin_cookie cookie) 1716 { 1717 int en_flags = ENQUEUE_WAKEUP; 1718 1719 lockdep_assert_held(&rq->lock); 1720 1721 #ifdef CONFIG_SMP 1722 if (p->sched_contributes_to_load) 1723 rq->nr_uninterruptible--; 1724 1725 if (wake_flags & WF_MIGRATED) 1726 en_flags |= ENQUEUE_MIGRATED; 1727 #endif 1728 1729 ttwu_activate(rq, p, en_flags); 1730 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1731 } 1732 1733 /* 1734 * Called in case the task @p isn't fully descheduled from its runqueue, 1735 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1736 * since all we need to do is flip p->state to TASK_RUNNING, since 1737 * the task is still ->on_rq. 1738 */ 1739 static int ttwu_remote(struct task_struct *p, int wake_flags) 1740 { 1741 struct rq_flags rf; 1742 struct rq *rq; 1743 int ret = 0; 1744 1745 rq = __task_rq_lock(p, &rf); 1746 if (task_on_rq_queued(p)) { 1747 /* check_preempt_curr() may use rq clock */ 1748 update_rq_clock(rq); 1749 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1750 ret = 1; 1751 } 1752 __task_rq_unlock(rq, &rf); 1753 1754 return ret; 1755 } 1756 1757 #ifdef CONFIG_SMP 1758 void sched_ttwu_pending(void) 1759 { 1760 struct rq *rq = this_rq(); 1761 struct llist_node *llist = llist_del_all(&rq->wake_list); 1762 struct pin_cookie cookie; 1763 struct task_struct *p; 1764 unsigned long flags; 1765 1766 if (!llist) 1767 return; 1768 1769 raw_spin_lock_irqsave(&rq->lock, flags); 1770 cookie = lockdep_pin_lock(&rq->lock); 1771 1772 while (llist) { 1773 int wake_flags = 0; 1774 1775 p = llist_entry(llist, struct task_struct, wake_entry); 1776 llist = llist_next(llist); 1777 1778 if (p->sched_remote_wakeup) 1779 wake_flags = WF_MIGRATED; 1780 1781 ttwu_do_activate(rq, p, wake_flags, cookie); 1782 } 1783 1784 lockdep_unpin_lock(&rq->lock, cookie); 1785 raw_spin_unlock_irqrestore(&rq->lock, flags); 1786 } 1787 1788 void scheduler_ipi(void) 1789 { 1790 /* 1791 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1792 * TIF_NEED_RESCHED remotely (for the first time) will also send 1793 * this IPI. 1794 */ 1795 preempt_fold_need_resched(); 1796 1797 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1798 return; 1799 1800 /* 1801 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1802 * traditionally all their work was done from the interrupt return 1803 * path. Now that we actually do some work, we need to make sure 1804 * we do call them. 1805 * 1806 * Some archs already do call them, luckily irq_enter/exit nest 1807 * properly. 1808 * 1809 * Arguably we should visit all archs and update all handlers, 1810 * however a fair share of IPIs are still resched only so this would 1811 * somewhat pessimize the simple resched case. 1812 */ 1813 irq_enter(); 1814 sched_ttwu_pending(); 1815 1816 /* 1817 * Check if someone kicked us for doing the nohz idle load balance. 1818 */ 1819 if (unlikely(got_nohz_idle_kick())) { 1820 this_rq()->idle_balance = 1; 1821 raise_softirq_irqoff(SCHED_SOFTIRQ); 1822 } 1823 irq_exit(); 1824 } 1825 1826 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1827 { 1828 struct rq *rq = cpu_rq(cpu); 1829 1830 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1831 1832 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1833 if (!set_nr_if_polling(rq->idle)) 1834 smp_send_reschedule(cpu); 1835 else 1836 trace_sched_wake_idle_without_ipi(cpu); 1837 } 1838 } 1839 1840 void wake_up_if_idle(int cpu) 1841 { 1842 struct rq *rq = cpu_rq(cpu); 1843 unsigned long flags; 1844 1845 rcu_read_lock(); 1846 1847 if (!is_idle_task(rcu_dereference(rq->curr))) 1848 goto out; 1849 1850 if (set_nr_if_polling(rq->idle)) { 1851 trace_sched_wake_idle_without_ipi(cpu); 1852 } else { 1853 raw_spin_lock_irqsave(&rq->lock, flags); 1854 if (is_idle_task(rq->curr)) 1855 smp_send_reschedule(cpu); 1856 /* Else cpu is not in idle, do nothing here */ 1857 raw_spin_unlock_irqrestore(&rq->lock, flags); 1858 } 1859 1860 out: 1861 rcu_read_unlock(); 1862 } 1863 1864 bool cpus_share_cache(int this_cpu, int that_cpu) 1865 { 1866 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1867 } 1868 #endif /* CONFIG_SMP */ 1869 1870 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1871 { 1872 struct rq *rq = cpu_rq(cpu); 1873 struct pin_cookie cookie; 1874 1875 #if defined(CONFIG_SMP) 1876 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1877 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1878 ttwu_queue_remote(p, cpu, wake_flags); 1879 return; 1880 } 1881 #endif 1882 1883 raw_spin_lock(&rq->lock); 1884 cookie = lockdep_pin_lock(&rq->lock); 1885 ttwu_do_activate(rq, p, wake_flags, cookie); 1886 lockdep_unpin_lock(&rq->lock, cookie); 1887 raw_spin_unlock(&rq->lock); 1888 } 1889 1890 /* 1891 * Notes on Program-Order guarantees on SMP systems. 1892 * 1893 * MIGRATION 1894 * 1895 * The basic program-order guarantee on SMP systems is that when a task [t] 1896 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1897 * execution on its new cpu [c1]. 1898 * 1899 * For migration (of runnable tasks) this is provided by the following means: 1900 * 1901 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1902 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1903 * rq(c1)->lock (if not at the same time, then in that order). 1904 * C) LOCK of the rq(c1)->lock scheduling in task 1905 * 1906 * Transitivity guarantees that B happens after A and C after B. 1907 * Note: we only require RCpc transitivity. 1908 * Note: the cpu doing B need not be c0 or c1 1909 * 1910 * Example: 1911 * 1912 * CPU0 CPU1 CPU2 1913 * 1914 * LOCK rq(0)->lock 1915 * sched-out X 1916 * sched-in Y 1917 * UNLOCK rq(0)->lock 1918 * 1919 * LOCK rq(0)->lock // orders against CPU0 1920 * dequeue X 1921 * UNLOCK rq(0)->lock 1922 * 1923 * LOCK rq(1)->lock 1924 * enqueue X 1925 * UNLOCK rq(1)->lock 1926 * 1927 * LOCK rq(1)->lock // orders against CPU2 1928 * sched-out Z 1929 * sched-in X 1930 * UNLOCK rq(1)->lock 1931 * 1932 * 1933 * BLOCKING -- aka. SLEEP + WAKEUP 1934 * 1935 * For blocking we (obviously) need to provide the same guarantee as for 1936 * migration. However the means are completely different as there is no lock 1937 * chain to provide order. Instead we do: 1938 * 1939 * 1) smp_store_release(X->on_cpu, 0) 1940 * 2) smp_cond_load_acquire(!X->on_cpu) 1941 * 1942 * Example: 1943 * 1944 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1945 * 1946 * LOCK rq(0)->lock LOCK X->pi_lock 1947 * dequeue X 1948 * sched-out X 1949 * smp_store_release(X->on_cpu, 0); 1950 * 1951 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1952 * X->state = WAKING 1953 * set_task_cpu(X,2) 1954 * 1955 * LOCK rq(2)->lock 1956 * enqueue X 1957 * X->state = RUNNING 1958 * UNLOCK rq(2)->lock 1959 * 1960 * LOCK rq(2)->lock // orders against CPU1 1961 * sched-out Z 1962 * sched-in X 1963 * UNLOCK rq(2)->lock 1964 * 1965 * UNLOCK X->pi_lock 1966 * UNLOCK rq(0)->lock 1967 * 1968 * 1969 * However; for wakeups there is a second guarantee we must provide, namely we 1970 * must observe the state that lead to our wakeup. That is, not only must our 1971 * task observe its own prior state, it must also observe the stores prior to 1972 * its wakeup. 1973 * 1974 * This means that any means of doing remote wakeups must order the CPU doing 1975 * the wakeup against the CPU the task is going to end up running on. This, 1976 * however, is already required for the regular Program-Order guarantee above, 1977 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1978 * 1979 */ 1980 1981 /** 1982 * try_to_wake_up - wake up a thread 1983 * @p: the thread to be awakened 1984 * @state: the mask of task states that can be woken 1985 * @wake_flags: wake modifier flags (WF_*) 1986 * 1987 * Put it on the run-queue if it's not already there. The "current" 1988 * thread is always on the run-queue (except when the actual 1989 * re-schedule is in progress), and as such you're allowed to do 1990 * the simpler "current->state = TASK_RUNNING" to mark yourself 1991 * runnable without the overhead of this. 1992 * 1993 * Return: %true if @p was woken up, %false if it was already running. 1994 * or @state didn't match @p's state. 1995 */ 1996 static int 1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1998 { 1999 unsigned long flags; 2000 int cpu, success = 0; 2001 2002 /* 2003 * If we are going to wake up a thread waiting for CONDITION we 2004 * need to ensure that CONDITION=1 done by the caller can not be 2005 * reordered with p->state check below. This pairs with mb() in 2006 * set_current_state() the waiting thread does. 2007 */ 2008 smp_mb__before_spinlock(); 2009 raw_spin_lock_irqsave(&p->pi_lock, flags); 2010 if (!(p->state & state)) 2011 goto out; 2012 2013 trace_sched_waking(p); 2014 2015 success = 1; /* we're going to change ->state */ 2016 cpu = task_cpu(p); 2017 2018 if (p->on_rq && ttwu_remote(p, wake_flags)) 2019 goto stat; 2020 2021 #ifdef CONFIG_SMP 2022 /* 2023 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2024 * possible to, falsely, observe p->on_cpu == 0. 2025 * 2026 * One must be running (->on_cpu == 1) in order to remove oneself 2027 * from the runqueue. 2028 * 2029 * [S] ->on_cpu = 1; [L] ->on_rq 2030 * UNLOCK rq->lock 2031 * RMB 2032 * LOCK rq->lock 2033 * [S] ->on_rq = 0; [L] ->on_cpu 2034 * 2035 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2036 * from the consecutive calls to schedule(); the first switching to our 2037 * task, the second putting it to sleep. 2038 */ 2039 smp_rmb(); 2040 2041 /* 2042 * If the owning (remote) cpu is still in the middle of schedule() with 2043 * this task as prev, wait until its done referencing the task. 2044 * 2045 * Pairs with the smp_store_release() in finish_lock_switch(). 2046 * 2047 * This ensures that tasks getting woken will be fully ordered against 2048 * their previous state and preserve Program Order. 2049 */ 2050 smp_cond_load_acquire(&p->on_cpu, !VAL); 2051 2052 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2053 p->state = TASK_WAKING; 2054 2055 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2056 if (task_cpu(p) != cpu) { 2057 wake_flags |= WF_MIGRATED; 2058 set_task_cpu(p, cpu); 2059 } 2060 #endif /* CONFIG_SMP */ 2061 2062 ttwu_queue(p, cpu, wake_flags); 2063 stat: 2064 if (schedstat_enabled()) 2065 ttwu_stat(p, cpu, wake_flags); 2066 out: 2067 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2068 2069 return success; 2070 } 2071 2072 /** 2073 * try_to_wake_up_local - try to wake up a local task with rq lock held 2074 * @p: the thread to be awakened 2075 * 2076 * Put @p on the run-queue if it's not already there. The caller must 2077 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2078 * the current task. 2079 */ 2080 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2081 { 2082 struct rq *rq = task_rq(p); 2083 2084 if (WARN_ON_ONCE(rq != this_rq()) || 2085 WARN_ON_ONCE(p == current)) 2086 return; 2087 2088 lockdep_assert_held(&rq->lock); 2089 2090 if (!raw_spin_trylock(&p->pi_lock)) { 2091 /* 2092 * This is OK, because current is on_cpu, which avoids it being 2093 * picked for load-balance and preemption/IRQs are still 2094 * disabled avoiding further scheduler activity on it and we've 2095 * not yet picked a replacement task. 2096 */ 2097 lockdep_unpin_lock(&rq->lock, cookie); 2098 raw_spin_unlock(&rq->lock); 2099 raw_spin_lock(&p->pi_lock); 2100 raw_spin_lock(&rq->lock); 2101 lockdep_repin_lock(&rq->lock, cookie); 2102 } 2103 2104 if (!(p->state & TASK_NORMAL)) 2105 goto out; 2106 2107 trace_sched_waking(p); 2108 2109 if (!task_on_rq_queued(p)) 2110 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2111 2112 ttwu_do_wakeup(rq, p, 0, cookie); 2113 if (schedstat_enabled()) 2114 ttwu_stat(p, smp_processor_id(), 0); 2115 out: 2116 raw_spin_unlock(&p->pi_lock); 2117 } 2118 2119 /** 2120 * wake_up_process - Wake up a specific process 2121 * @p: The process to be woken up. 2122 * 2123 * Attempt to wake up the nominated process and move it to the set of runnable 2124 * processes. 2125 * 2126 * Return: 1 if the process was woken up, 0 if it was already running. 2127 * 2128 * It may be assumed that this function implies a write memory barrier before 2129 * changing the task state if and only if any tasks are woken up. 2130 */ 2131 int wake_up_process(struct task_struct *p) 2132 { 2133 return try_to_wake_up(p, TASK_NORMAL, 0); 2134 } 2135 EXPORT_SYMBOL(wake_up_process); 2136 2137 int wake_up_state(struct task_struct *p, unsigned int state) 2138 { 2139 return try_to_wake_up(p, state, 0); 2140 } 2141 2142 /* 2143 * This function clears the sched_dl_entity static params. 2144 */ 2145 void __dl_clear_params(struct task_struct *p) 2146 { 2147 struct sched_dl_entity *dl_se = &p->dl; 2148 2149 dl_se->dl_runtime = 0; 2150 dl_se->dl_deadline = 0; 2151 dl_se->dl_period = 0; 2152 dl_se->flags = 0; 2153 dl_se->dl_bw = 0; 2154 2155 dl_se->dl_throttled = 0; 2156 dl_se->dl_yielded = 0; 2157 } 2158 2159 /* 2160 * Perform scheduler related setup for a newly forked process p. 2161 * p is forked by current. 2162 * 2163 * __sched_fork() is basic setup used by init_idle() too: 2164 */ 2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2166 { 2167 p->on_rq = 0; 2168 2169 p->se.on_rq = 0; 2170 p->se.exec_start = 0; 2171 p->se.sum_exec_runtime = 0; 2172 p->se.prev_sum_exec_runtime = 0; 2173 p->se.nr_migrations = 0; 2174 p->se.vruntime = 0; 2175 INIT_LIST_HEAD(&p->se.group_node); 2176 2177 #ifdef CONFIG_FAIR_GROUP_SCHED 2178 p->se.cfs_rq = NULL; 2179 #endif 2180 2181 #ifdef CONFIG_SCHEDSTATS 2182 /* Even if schedstat is disabled, there should not be garbage */ 2183 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2184 #endif 2185 2186 RB_CLEAR_NODE(&p->dl.rb_node); 2187 init_dl_task_timer(&p->dl); 2188 __dl_clear_params(p); 2189 2190 INIT_LIST_HEAD(&p->rt.run_list); 2191 p->rt.timeout = 0; 2192 p->rt.time_slice = sched_rr_timeslice; 2193 p->rt.on_rq = 0; 2194 p->rt.on_list = 0; 2195 2196 #ifdef CONFIG_PREEMPT_NOTIFIERS 2197 INIT_HLIST_HEAD(&p->preempt_notifiers); 2198 #endif 2199 2200 #ifdef CONFIG_NUMA_BALANCING 2201 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2202 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2203 p->mm->numa_scan_seq = 0; 2204 } 2205 2206 if (clone_flags & CLONE_VM) 2207 p->numa_preferred_nid = current->numa_preferred_nid; 2208 else 2209 p->numa_preferred_nid = -1; 2210 2211 p->node_stamp = 0ULL; 2212 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2213 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2214 p->numa_work.next = &p->numa_work; 2215 p->numa_faults = NULL; 2216 p->last_task_numa_placement = 0; 2217 p->last_sum_exec_runtime = 0; 2218 2219 p->numa_group = NULL; 2220 #endif /* CONFIG_NUMA_BALANCING */ 2221 } 2222 2223 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2224 2225 #ifdef CONFIG_NUMA_BALANCING 2226 2227 void set_numabalancing_state(bool enabled) 2228 { 2229 if (enabled) 2230 static_branch_enable(&sched_numa_balancing); 2231 else 2232 static_branch_disable(&sched_numa_balancing); 2233 } 2234 2235 #ifdef CONFIG_PROC_SYSCTL 2236 int sysctl_numa_balancing(struct ctl_table *table, int write, 2237 void __user *buffer, size_t *lenp, loff_t *ppos) 2238 { 2239 struct ctl_table t; 2240 int err; 2241 int state = static_branch_likely(&sched_numa_balancing); 2242 2243 if (write && !capable(CAP_SYS_ADMIN)) 2244 return -EPERM; 2245 2246 t = *table; 2247 t.data = &state; 2248 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2249 if (err < 0) 2250 return err; 2251 if (write) 2252 set_numabalancing_state(state); 2253 return err; 2254 } 2255 #endif 2256 #endif 2257 2258 #ifdef CONFIG_SCHEDSTATS 2259 2260 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2261 static bool __initdata __sched_schedstats = false; 2262 2263 static void set_schedstats(bool enabled) 2264 { 2265 if (enabled) 2266 static_branch_enable(&sched_schedstats); 2267 else 2268 static_branch_disable(&sched_schedstats); 2269 } 2270 2271 void force_schedstat_enabled(void) 2272 { 2273 if (!schedstat_enabled()) { 2274 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2275 static_branch_enable(&sched_schedstats); 2276 } 2277 } 2278 2279 static int __init setup_schedstats(char *str) 2280 { 2281 int ret = 0; 2282 if (!str) 2283 goto out; 2284 2285 /* 2286 * This code is called before jump labels have been set up, so we can't 2287 * change the static branch directly just yet. Instead set a temporary 2288 * variable so init_schedstats() can do it later. 2289 */ 2290 if (!strcmp(str, "enable")) { 2291 __sched_schedstats = true; 2292 ret = 1; 2293 } else if (!strcmp(str, "disable")) { 2294 __sched_schedstats = false; 2295 ret = 1; 2296 } 2297 out: 2298 if (!ret) 2299 pr_warn("Unable to parse schedstats=\n"); 2300 2301 return ret; 2302 } 2303 __setup("schedstats=", setup_schedstats); 2304 2305 static void __init init_schedstats(void) 2306 { 2307 set_schedstats(__sched_schedstats); 2308 } 2309 2310 #ifdef CONFIG_PROC_SYSCTL 2311 int sysctl_schedstats(struct ctl_table *table, int write, 2312 void __user *buffer, size_t *lenp, loff_t *ppos) 2313 { 2314 struct ctl_table t; 2315 int err; 2316 int state = static_branch_likely(&sched_schedstats); 2317 2318 if (write && !capable(CAP_SYS_ADMIN)) 2319 return -EPERM; 2320 2321 t = *table; 2322 t.data = &state; 2323 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2324 if (err < 0) 2325 return err; 2326 if (write) 2327 set_schedstats(state); 2328 return err; 2329 } 2330 #endif /* CONFIG_PROC_SYSCTL */ 2331 #else /* !CONFIG_SCHEDSTATS */ 2332 static inline void init_schedstats(void) {} 2333 #endif /* CONFIG_SCHEDSTATS */ 2334 2335 /* 2336 * fork()/clone()-time setup: 2337 */ 2338 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2339 { 2340 unsigned long flags; 2341 int cpu = get_cpu(); 2342 2343 __sched_fork(clone_flags, p); 2344 /* 2345 * We mark the process as NEW here. This guarantees that 2346 * nobody will actually run it, and a signal or other external 2347 * event cannot wake it up and insert it on the runqueue either. 2348 */ 2349 p->state = TASK_NEW; 2350 2351 /* 2352 * Make sure we do not leak PI boosting priority to the child. 2353 */ 2354 p->prio = current->normal_prio; 2355 2356 /* 2357 * Revert to default priority/policy on fork if requested. 2358 */ 2359 if (unlikely(p->sched_reset_on_fork)) { 2360 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2361 p->policy = SCHED_NORMAL; 2362 p->static_prio = NICE_TO_PRIO(0); 2363 p->rt_priority = 0; 2364 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2365 p->static_prio = NICE_TO_PRIO(0); 2366 2367 p->prio = p->normal_prio = __normal_prio(p); 2368 set_load_weight(p); 2369 2370 /* 2371 * We don't need the reset flag anymore after the fork. It has 2372 * fulfilled its duty: 2373 */ 2374 p->sched_reset_on_fork = 0; 2375 } 2376 2377 if (dl_prio(p->prio)) { 2378 put_cpu(); 2379 return -EAGAIN; 2380 } else if (rt_prio(p->prio)) { 2381 p->sched_class = &rt_sched_class; 2382 } else { 2383 p->sched_class = &fair_sched_class; 2384 } 2385 2386 init_entity_runnable_average(&p->se); 2387 2388 /* 2389 * The child is not yet in the pid-hash so no cgroup attach races, 2390 * and the cgroup is pinned to this child due to cgroup_fork() 2391 * is ran before sched_fork(). 2392 * 2393 * Silence PROVE_RCU. 2394 */ 2395 raw_spin_lock_irqsave(&p->pi_lock, flags); 2396 /* 2397 * We're setting the cpu for the first time, we don't migrate, 2398 * so use __set_task_cpu(). 2399 */ 2400 __set_task_cpu(p, cpu); 2401 if (p->sched_class->task_fork) 2402 p->sched_class->task_fork(p); 2403 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2404 2405 #ifdef CONFIG_SCHED_INFO 2406 if (likely(sched_info_on())) 2407 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2408 #endif 2409 #if defined(CONFIG_SMP) 2410 p->on_cpu = 0; 2411 #endif 2412 init_task_preempt_count(p); 2413 #ifdef CONFIG_SMP 2414 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2415 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2416 #endif 2417 2418 put_cpu(); 2419 return 0; 2420 } 2421 2422 unsigned long to_ratio(u64 period, u64 runtime) 2423 { 2424 if (runtime == RUNTIME_INF) 2425 return 1ULL << 20; 2426 2427 /* 2428 * Doing this here saves a lot of checks in all 2429 * the calling paths, and returning zero seems 2430 * safe for them anyway. 2431 */ 2432 if (period == 0) 2433 return 0; 2434 2435 return div64_u64(runtime << 20, period); 2436 } 2437 2438 #ifdef CONFIG_SMP 2439 inline struct dl_bw *dl_bw_of(int i) 2440 { 2441 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2442 "sched RCU must be held"); 2443 return &cpu_rq(i)->rd->dl_bw; 2444 } 2445 2446 static inline int dl_bw_cpus(int i) 2447 { 2448 struct root_domain *rd = cpu_rq(i)->rd; 2449 int cpus = 0; 2450 2451 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2452 "sched RCU must be held"); 2453 for_each_cpu_and(i, rd->span, cpu_active_mask) 2454 cpus++; 2455 2456 return cpus; 2457 } 2458 #else 2459 inline struct dl_bw *dl_bw_of(int i) 2460 { 2461 return &cpu_rq(i)->dl.dl_bw; 2462 } 2463 2464 static inline int dl_bw_cpus(int i) 2465 { 2466 return 1; 2467 } 2468 #endif 2469 2470 /* 2471 * We must be sure that accepting a new task (or allowing changing the 2472 * parameters of an existing one) is consistent with the bandwidth 2473 * constraints. If yes, this function also accordingly updates the currently 2474 * allocated bandwidth to reflect the new situation. 2475 * 2476 * This function is called while holding p's rq->lock. 2477 * 2478 * XXX we should delay bw change until the task's 0-lag point, see 2479 * __setparam_dl(). 2480 */ 2481 static int dl_overflow(struct task_struct *p, int policy, 2482 const struct sched_attr *attr) 2483 { 2484 2485 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2486 u64 period = attr->sched_period ?: attr->sched_deadline; 2487 u64 runtime = attr->sched_runtime; 2488 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2489 int cpus, err = -1; 2490 2491 /* !deadline task may carry old deadline bandwidth */ 2492 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2493 return 0; 2494 2495 /* 2496 * Either if a task, enters, leave, or stays -deadline but changes 2497 * its parameters, we may need to update accordingly the total 2498 * allocated bandwidth of the container. 2499 */ 2500 raw_spin_lock(&dl_b->lock); 2501 cpus = dl_bw_cpus(task_cpu(p)); 2502 if (dl_policy(policy) && !task_has_dl_policy(p) && 2503 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2504 __dl_add(dl_b, new_bw); 2505 err = 0; 2506 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2507 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2508 __dl_clear(dl_b, p->dl.dl_bw); 2509 __dl_add(dl_b, new_bw); 2510 err = 0; 2511 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2512 __dl_clear(dl_b, p->dl.dl_bw); 2513 err = 0; 2514 } 2515 raw_spin_unlock(&dl_b->lock); 2516 2517 return err; 2518 } 2519 2520 extern void init_dl_bw(struct dl_bw *dl_b); 2521 2522 /* 2523 * wake_up_new_task - wake up a newly created task for the first time. 2524 * 2525 * This function will do some initial scheduler statistics housekeeping 2526 * that must be done for every newly created context, then puts the task 2527 * on the runqueue and wakes it. 2528 */ 2529 void wake_up_new_task(struct task_struct *p) 2530 { 2531 struct rq_flags rf; 2532 struct rq *rq; 2533 2534 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2535 p->state = TASK_RUNNING; 2536 #ifdef CONFIG_SMP 2537 /* 2538 * Fork balancing, do it here and not earlier because: 2539 * - cpus_allowed can change in the fork path 2540 * - any previously selected cpu might disappear through hotplug 2541 * 2542 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2543 * as we're not fully set-up yet. 2544 */ 2545 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2546 #endif 2547 rq = __task_rq_lock(p, &rf); 2548 post_init_entity_util_avg(&p->se); 2549 2550 activate_task(rq, p, 0); 2551 p->on_rq = TASK_ON_RQ_QUEUED; 2552 trace_sched_wakeup_new(p); 2553 check_preempt_curr(rq, p, WF_FORK); 2554 #ifdef CONFIG_SMP 2555 if (p->sched_class->task_woken) { 2556 /* 2557 * Nothing relies on rq->lock after this, so its fine to 2558 * drop it. 2559 */ 2560 lockdep_unpin_lock(&rq->lock, rf.cookie); 2561 p->sched_class->task_woken(rq, p); 2562 lockdep_repin_lock(&rq->lock, rf.cookie); 2563 } 2564 #endif 2565 task_rq_unlock(rq, p, &rf); 2566 } 2567 2568 #ifdef CONFIG_PREEMPT_NOTIFIERS 2569 2570 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2571 2572 void preempt_notifier_inc(void) 2573 { 2574 static_key_slow_inc(&preempt_notifier_key); 2575 } 2576 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2577 2578 void preempt_notifier_dec(void) 2579 { 2580 static_key_slow_dec(&preempt_notifier_key); 2581 } 2582 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2583 2584 /** 2585 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2586 * @notifier: notifier struct to register 2587 */ 2588 void preempt_notifier_register(struct preempt_notifier *notifier) 2589 { 2590 if (!static_key_false(&preempt_notifier_key)) 2591 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2592 2593 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2594 } 2595 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2596 2597 /** 2598 * preempt_notifier_unregister - no longer interested in preemption notifications 2599 * @notifier: notifier struct to unregister 2600 * 2601 * This is *not* safe to call from within a preemption notifier. 2602 */ 2603 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2604 { 2605 hlist_del(¬ifier->link); 2606 } 2607 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2608 2609 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2610 { 2611 struct preempt_notifier *notifier; 2612 2613 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2614 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2615 } 2616 2617 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2618 { 2619 if (static_key_false(&preempt_notifier_key)) 2620 __fire_sched_in_preempt_notifiers(curr); 2621 } 2622 2623 static void 2624 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2625 struct task_struct *next) 2626 { 2627 struct preempt_notifier *notifier; 2628 2629 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2630 notifier->ops->sched_out(notifier, next); 2631 } 2632 2633 static __always_inline void 2634 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2635 struct task_struct *next) 2636 { 2637 if (static_key_false(&preempt_notifier_key)) 2638 __fire_sched_out_preempt_notifiers(curr, next); 2639 } 2640 2641 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2642 2643 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2644 { 2645 } 2646 2647 static inline void 2648 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2649 struct task_struct *next) 2650 { 2651 } 2652 2653 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2654 2655 /** 2656 * prepare_task_switch - prepare to switch tasks 2657 * @rq: the runqueue preparing to switch 2658 * @prev: the current task that is being switched out 2659 * @next: the task we are going to switch to. 2660 * 2661 * This is called with the rq lock held and interrupts off. It must 2662 * be paired with a subsequent finish_task_switch after the context 2663 * switch. 2664 * 2665 * prepare_task_switch sets up locking and calls architecture specific 2666 * hooks. 2667 */ 2668 static inline void 2669 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2670 struct task_struct *next) 2671 { 2672 sched_info_switch(rq, prev, next); 2673 perf_event_task_sched_out(prev, next); 2674 fire_sched_out_preempt_notifiers(prev, next); 2675 prepare_lock_switch(rq, next); 2676 prepare_arch_switch(next); 2677 } 2678 2679 /** 2680 * finish_task_switch - clean up after a task-switch 2681 * @prev: the thread we just switched away from. 2682 * 2683 * finish_task_switch must be called after the context switch, paired 2684 * with a prepare_task_switch call before the context switch. 2685 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2686 * and do any other architecture-specific cleanup actions. 2687 * 2688 * Note that we may have delayed dropping an mm in context_switch(). If 2689 * so, we finish that here outside of the runqueue lock. (Doing it 2690 * with the lock held can cause deadlocks; see schedule() for 2691 * details.) 2692 * 2693 * The context switch have flipped the stack from under us and restored the 2694 * local variables which were saved when this task called schedule() in the 2695 * past. prev == current is still correct but we need to recalculate this_rq 2696 * because prev may have moved to another CPU. 2697 */ 2698 static struct rq *finish_task_switch(struct task_struct *prev) 2699 __releases(rq->lock) 2700 { 2701 struct rq *rq = this_rq(); 2702 struct mm_struct *mm = rq->prev_mm; 2703 long prev_state; 2704 2705 /* 2706 * The previous task will have left us with a preempt_count of 2 2707 * because it left us after: 2708 * 2709 * schedule() 2710 * preempt_disable(); // 1 2711 * __schedule() 2712 * raw_spin_lock_irq(&rq->lock) // 2 2713 * 2714 * Also, see FORK_PREEMPT_COUNT. 2715 */ 2716 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2717 "corrupted preempt_count: %s/%d/0x%x\n", 2718 current->comm, current->pid, preempt_count())) 2719 preempt_count_set(FORK_PREEMPT_COUNT); 2720 2721 rq->prev_mm = NULL; 2722 2723 /* 2724 * A task struct has one reference for the use as "current". 2725 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2726 * schedule one last time. The schedule call will never return, and 2727 * the scheduled task must drop that reference. 2728 * 2729 * We must observe prev->state before clearing prev->on_cpu (in 2730 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2731 * running on another CPU and we could rave with its RUNNING -> DEAD 2732 * transition, resulting in a double drop. 2733 */ 2734 prev_state = prev->state; 2735 vtime_task_switch(prev); 2736 perf_event_task_sched_in(prev, current); 2737 finish_lock_switch(rq, prev); 2738 finish_arch_post_lock_switch(); 2739 2740 fire_sched_in_preempt_notifiers(current); 2741 if (mm) 2742 mmdrop(mm); 2743 if (unlikely(prev_state == TASK_DEAD)) { 2744 if (prev->sched_class->task_dead) 2745 prev->sched_class->task_dead(prev); 2746 2747 /* 2748 * Remove function-return probe instances associated with this 2749 * task and put them back on the free list. 2750 */ 2751 kprobe_flush_task(prev); 2752 put_task_struct(prev); 2753 } 2754 2755 tick_nohz_task_switch(); 2756 return rq; 2757 } 2758 2759 #ifdef CONFIG_SMP 2760 2761 /* rq->lock is NOT held, but preemption is disabled */ 2762 static void __balance_callback(struct rq *rq) 2763 { 2764 struct callback_head *head, *next; 2765 void (*func)(struct rq *rq); 2766 unsigned long flags; 2767 2768 raw_spin_lock_irqsave(&rq->lock, flags); 2769 head = rq->balance_callback; 2770 rq->balance_callback = NULL; 2771 while (head) { 2772 func = (void (*)(struct rq *))head->func; 2773 next = head->next; 2774 head->next = NULL; 2775 head = next; 2776 2777 func(rq); 2778 } 2779 raw_spin_unlock_irqrestore(&rq->lock, flags); 2780 } 2781 2782 static inline void balance_callback(struct rq *rq) 2783 { 2784 if (unlikely(rq->balance_callback)) 2785 __balance_callback(rq); 2786 } 2787 2788 #else 2789 2790 static inline void balance_callback(struct rq *rq) 2791 { 2792 } 2793 2794 #endif 2795 2796 /** 2797 * schedule_tail - first thing a freshly forked thread must call. 2798 * @prev: the thread we just switched away from. 2799 */ 2800 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2801 __releases(rq->lock) 2802 { 2803 struct rq *rq; 2804 2805 /* 2806 * New tasks start with FORK_PREEMPT_COUNT, see there and 2807 * finish_task_switch() for details. 2808 * 2809 * finish_task_switch() will drop rq->lock() and lower preempt_count 2810 * and the preempt_enable() will end up enabling preemption (on 2811 * PREEMPT_COUNT kernels). 2812 */ 2813 2814 rq = finish_task_switch(prev); 2815 balance_callback(rq); 2816 preempt_enable(); 2817 2818 if (current->set_child_tid) 2819 put_user(task_pid_vnr(current), current->set_child_tid); 2820 } 2821 2822 /* 2823 * context_switch - switch to the new MM and the new thread's register state. 2824 */ 2825 static __always_inline struct rq * 2826 context_switch(struct rq *rq, struct task_struct *prev, 2827 struct task_struct *next, struct pin_cookie cookie) 2828 { 2829 struct mm_struct *mm, *oldmm; 2830 2831 prepare_task_switch(rq, prev, next); 2832 2833 mm = next->mm; 2834 oldmm = prev->active_mm; 2835 /* 2836 * For paravirt, this is coupled with an exit in switch_to to 2837 * combine the page table reload and the switch backend into 2838 * one hypercall. 2839 */ 2840 arch_start_context_switch(prev); 2841 2842 if (!mm) { 2843 next->active_mm = oldmm; 2844 atomic_inc(&oldmm->mm_count); 2845 enter_lazy_tlb(oldmm, next); 2846 } else 2847 switch_mm_irqs_off(oldmm, mm, next); 2848 2849 if (!prev->mm) { 2850 prev->active_mm = NULL; 2851 rq->prev_mm = oldmm; 2852 } 2853 /* 2854 * Since the runqueue lock will be released by the next 2855 * task (which is an invalid locking op but in the case 2856 * of the scheduler it's an obvious special-case), so we 2857 * do an early lockdep release here: 2858 */ 2859 lockdep_unpin_lock(&rq->lock, cookie); 2860 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2861 2862 /* Here we just switch the register state and the stack. */ 2863 switch_to(prev, next, prev); 2864 barrier(); 2865 2866 return finish_task_switch(prev); 2867 } 2868 2869 /* 2870 * nr_running and nr_context_switches: 2871 * 2872 * externally visible scheduler statistics: current number of runnable 2873 * threads, total number of context switches performed since bootup. 2874 */ 2875 unsigned long nr_running(void) 2876 { 2877 unsigned long i, sum = 0; 2878 2879 for_each_online_cpu(i) 2880 sum += cpu_rq(i)->nr_running; 2881 2882 return sum; 2883 } 2884 2885 /* 2886 * Check if only the current task is running on the cpu. 2887 * 2888 * Caution: this function does not check that the caller has disabled 2889 * preemption, thus the result might have a time-of-check-to-time-of-use 2890 * race. The caller is responsible to use it correctly, for example: 2891 * 2892 * - from a non-preemptable section (of course) 2893 * 2894 * - from a thread that is bound to a single CPU 2895 * 2896 * - in a loop with very short iterations (e.g. a polling loop) 2897 */ 2898 bool single_task_running(void) 2899 { 2900 return raw_rq()->nr_running == 1; 2901 } 2902 EXPORT_SYMBOL(single_task_running); 2903 2904 unsigned long long nr_context_switches(void) 2905 { 2906 int i; 2907 unsigned long long sum = 0; 2908 2909 for_each_possible_cpu(i) 2910 sum += cpu_rq(i)->nr_switches; 2911 2912 return sum; 2913 } 2914 2915 unsigned long nr_iowait(void) 2916 { 2917 unsigned long i, sum = 0; 2918 2919 for_each_possible_cpu(i) 2920 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2921 2922 return sum; 2923 } 2924 2925 unsigned long nr_iowait_cpu(int cpu) 2926 { 2927 struct rq *this = cpu_rq(cpu); 2928 return atomic_read(&this->nr_iowait); 2929 } 2930 2931 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2932 { 2933 struct rq *rq = this_rq(); 2934 *nr_waiters = atomic_read(&rq->nr_iowait); 2935 *load = rq->load.weight; 2936 } 2937 2938 #ifdef CONFIG_SMP 2939 2940 /* 2941 * sched_exec - execve() is a valuable balancing opportunity, because at 2942 * this point the task has the smallest effective memory and cache footprint. 2943 */ 2944 void sched_exec(void) 2945 { 2946 struct task_struct *p = current; 2947 unsigned long flags; 2948 int dest_cpu; 2949 2950 raw_spin_lock_irqsave(&p->pi_lock, flags); 2951 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2952 if (dest_cpu == smp_processor_id()) 2953 goto unlock; 2954 2955 if (likely(cpu_active(dest_cpu))) { 2956 struct migration_arg arg = { p, dest_cpu }; 2957 2958 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2959 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2960 return; 2961 } 2962 unlock: 2963 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2964 } 2965 2966 #endif 2967 2968 DEFINE_PER_CPU(struct kernel_stat, kstat); 2969 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2970 2971 EXPORT_PER_CPU_SYMBOL(kstat); 2972 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2973 2974 /* 2975 * Return accounted runtime for the task. 2976 * In case the task is currently running, return the runtime plus current's 2977 * pending runtime that have not been accounted yet. 2978 */ 2979 unsigned long long task_sched_runtime(struct task_struct *p) 2980 { 2981 struct rq_flags rf; 2982 struct rq *rq; 2983 u64 ns; 2984 2985 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2986 /* 2987 * 64-bit doesn't need locks to atomically read a 64bit value. 2988 * So we have a optimization chance when the task's delta_exec is 0. 2989 * Reading ->on_cpu is racy, but this is ok. 2990 * 2991 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2992 * If we race with it entering cpu, unaccounted time is 0. This is 2993 * indistinguishable from the read occurring a few cycles earlier. 2994 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2995 * been accounted, so we're correct here as well. 2996 */ 2997 if (!p->on_cpu || !task_on_rq_queued(p)) 2998 return p->se.sum_exec_runtime; 2999 #endif 3000 3001 rq = task_rq_lock(p, &rf); 3002 /* 3003 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3004 * project cycles that may never be accounted to this 3005 * thread, breaking clock_gettime(). 3006 */ 3007 if (task_current(rq, p) && task_on_rq_queued(p)) { 3008 update_rq_clock(rq); 3009 p->sched_class->update_curr(rq); 3010 } 3011 ns = p->se.sum_exec_runtime; 3012 task_rq_unlock(rq, p, &rf); 3013 3014 return ns; 3015 } 3016 3017 /* 3018 * This function gets called by the timer code, with HZ frequency. 3019 * We call it with interrupts disabled. 3020 */ 3021 void scheduler_tick(void) 3022 { 3023 int cpu = smp_processor_id(); 3024 struct rq *rq = cpu_rq(cpu); 3025 struct task_struct *curr = rq->curr; 3026 3027 sched_clock_tick(); 3028 3029 raw_spin_lock(&rq->lock); 3030 update_rq_clock(rq); 3031 curr->sched_class->task_tick(rq, curr, 0); 3032 cpu_load_update_active(rq); 3033 calc_global_load_tick(rq); 3034 raw_spin_unlock(&rq->lock); 3035 3036 perf_event_task_tick(); 3037 3038 #ifdef CONFIG_SMP 3039 rq->idle_balance = idle_cpu(cpu); 3040 trigger_load_balance(rq); 3041 #endif 3042 rq_last_tick_reset(rq); 3043 } 3044 3045 #ifdef CONFIG_NO_HZ_FULL 3046 /** 3047 * scheduler_tick_max_deferment 3048 * 3049 * Keep at least one tick per second when a single 3050 * active task is running because the scheduler doesn't 3051 * yet completely support full dynticks environment. 3052 * 3053 * This makes sure that uptime, CFS vruntime, load 3054 * balancing, etc... continue to move forward, even 3055 * with a very low granularity. 3056 * 3057 * Return: Maximum deferment in nanoseconds. 3058 */ 3059 u64 scheduler_tick_max_deferment(void) 3060 { 3061 struct rq *rq = this_rq(); 3062 unsigned long next, now = READ_ONCE(jiffies); 3063 3064 next = rq->last_sched_tick + HZ; 3065 3066 if (time_before_eq(next, now)) 3067 return 0; 3068 3069 return jiffies_to_nsecs(next - now); 3070 } 3071 #endif 3072 3073 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3074 defined(CONFIG_PREEMPT_TRACER)) 3075 /* 3076 * If the value passed in is equal to the current preempt count 3077 * then we just disabled preemption. Start timing the latency. 3078 */ 3079 static inline void preempt_latency_start(int val) 3080 { 3081 if (preempt_count() == val) { 3082 unsigned long ip = get_lock_parent_ip(); 3083 #ifdef CONFIG_DEBUG_PREEMPT 3084 current->preempt_disable_ip = ip; 3085 #endif 3086 trace_preempt_off(CALLER_ADDR0, ip); 3087 } 3088 } 3089 3090 void preempt_count_add(int val) 3091 { 3092 #ifdef CONFIG_DEBUG_PREEMPT 3093 /* 3094 * Underflow? 3095 */ 3096 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3097 return; 3098 #endif 3099 __preempt_count_add(val); 3100 #ifdef CONFIG_DEBUG_PREEMPT 3101 /* 3102 * Spinlock count overflowing soon? 3103 */ 3104 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3105 PREEMPT_MASK - 10); 3106 #endif 3107 preempt_latency_start(val); 3108 } 3109 EXPORT_SYMBOL(preempt_count_add); 3110 NOKPROBE_SYMBOL(preempt_count_add); 3111 3112 /* 3113 * If the value passed in equals to the current preempt count 3114 * then we just enabled preemption. Stop timing the latency. 3115 */ 3116 static inline void preempt_latency_stop(int val) 3117 { 3118 if (preempt_count() == val) 3119 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3120 } 3121 3122 void preempt_count_sub(int val) 3123 { 3124 #ifdef CONFIG_DEBUG_PREEMPT 3125 /* 3126 * Underflow? 3127 */ 3128 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3129 return; 3130 /* 3131 * Is the spinlock portion underflowing? 3132 */ 3133 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3134 !(preempt_count() & PREEMPT_MASK))) 3135 return; 3136 #endif 3137 3138 preempt_latency_stop(val); 3139 __preempt_count_sub(val); 3140 } 3141 EXPORT_SYMBOL(preempt_count_sub); 3142 NOKPROBE_SYMBOL(preempt_count_sub); 3143 3144 #else 3145 static inline void preempt_latency_start(int val) { } 3146 static inline void preempt_latency_stop(int val) { } 3147 #endif 3148 3149 /* 3150 * Print scheduling while atomic bug: 3151 */ 3152 static noinline void __schedule_bug(struct task_struct *prev) 3153 { 3154 if (oops_in_progress) 3155 return; 3156 3157 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3158 prev->comm, prev->pid, preempt_count()); 3159 3160 debug_show_held_locks(prev); 3161 print_modules(); 3162 if (irqs_disabled()) 3163 print_irqtrace_events(prev); 3164 #ifdef CONFIG_DEBUG_PREEMPT 3165 if (in_atomic_preempt_off()) { 3166 pr_err("Preemption disabled at:"); 3167 print_ip_sym(current->preempt_disable_ip); 3168 pr_cont("\n"); 3169 } 3170 #endif 3171 if (panic_on_warn) 3172 panic("scheduling while atomic\n"); 3173 3174 dump_stack(); 3175 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3176 } 3177 3178 /* 3179 * Various schedule()-time debugging checks and statistics: 3180 */ 3181 static inline void schedule_debug(struct task_struct *prev) 3182 { 3183 #ifdef CONFIG_SCHED_STACK_END_CHECK 3184 if (task_stack_end_corrupted(prev)) 3185 panic("corrupted stack end detected inside scheduler\n"); 3186 #endif 3187 3188 if (unlikely(in_atomic_preempt_off())) { 3189 __schedule_bug(prev); 3190 preempt_count_set(PREEMPT_DISABLED); 3191 } 3192 rcu_sleep_check(); 3193 3194 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3195 3196 schedstat_inc(this_rq(), sched_count); 3197 } 3198 3199 /* 3200 * Pick up the highest-prio task: 3201 */ 3202 static inline struct task_struct * 3203 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3204 { 3205 const struct sched_class *class = &fair_sched_class; 3206 struct task_struct *p; 3207 3208 /* 3209 * Optimization: we know that if all tasks are in 3210 * the fair class we can call that function directly: 3211 */ 3212 if (likely(prev->sched_class == class && 3213 rq->nr_running == rq->cfs.h_nr_running)) { 3214 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3215 if (unlikely(p == RETRY_TASK)) 3216 goto again; 3217 3218 /* assumes fair_sched_class->next == idle_sched_class */ 3219 if (unlikely(!p)) 3220 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3221 3222 return p; 3223 } 3224 3225 again: 3226 for_each_class(class) { 3227 p = class->pick_next_task(rq, prev, cookie); 3228 if (p) { 3229 if (unlikely(p == RETRY_TASK)) 3230 goto again; 3231 return p; 3232 } 3233 } 3234 3235 BUG(); /* the idle class will always have a runnable task */ 3236 } 3237 3238 /* 3239 * __schedule() is the main scheduler function. 3240 * 3241 * The main means of driving the scheduler and thus entering this function are: 3242 * 3243 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3244 * 3245 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3246 * paths. For example, see arch/x86/entry_64.S. 3247 * 3248 * To drive preemption between tasks, the scheduler sets the flag in timer 3249 * interrupt handler scheduler_tick(). 3250 * 3251 * 3. Wakeups don't really cause entry into schedule(). They add a 3252 * task to the run-queue and that's it. 3253 * 3254 * Now, if the new task added to the run-queue preempts the current 3255 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3256 * called on the nearest possible occasion: 3257 * 3258 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3259 * 3260 * - in syscall or exception context, at the next outmost 3261 * preempt_enable(). (this might be as soon as the wake_up()'s 3262 * spin_unlock()!) 3263 * 3264 * - in IRQ context, return from interrupt-handler to 3265 * preemptible context 3266 * 3267 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3268 * then at the next: 3269 * 3270 * - cond_resched() call 3271 * - explicit schedule() call 3272 * - return from syscall or exception to user-space 3273 * - return from interrupt-handler to user-space 3274 * 3275 * WARNING: must be called with preemption disabled! 3276 */ 3277 static void __sched notrace __schedule(bool preempt) 3278 { 3279 struct task_struct *prev, *next; 3280 unsigned long *switch_count; 3281 struct pin_cookie cookie; 3282 struct rq *rq; 3283 int cpu; 3284 3285 cpu = smp_processor_id(); 3286 rq = cpu_rq(cpu); 3287 prev = rq->curr; 3288 3289 /* 3290 * do_exit() calls schedule() with preemption disabled as an exception; 3291 * however we must fix that up, otherwise the next task will see an 3292 * inconsistent (higher) preempt count. 3293 * 3294 * It also avoids the below schedule_debug() test from complaining 3295 * about this. 3296 */ 3297 if (unlikely(prev->state == TASK_DEAD)) 3298 preempt_enable_no_resched_notrace(); 3299 3300 schedule_debug(prev); 3301 3302 if (sched_feat(HRTICK)) 3303 hrtick_clear(rq); 3304 3305 local_irq_disable(); 3306 rcu_note_context_switch(); 3307 3308 /* 3309 * Make sure that signal_pending_state()->signal_pending() below 3310 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3311 * done by the caller to avoid the race with signal_wake_up(). 3312 */ 3313 smp_mb__before_spinlock(); 3314 raw_spin_lock(&rq->lock); 3315 cookie = lockdep_pin_lock(&rq->lock); 3316 3317 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3318 3319 switch_count = &prev->nivcsw; 3320 if (!preempt && prev->state) { 3321 if (unlikely(signal_pending_state(prev->state, prev))) { 3322 prev->state = TASK_RUNNING; 3323 } else { 3324 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3325 prev->on_rq = 0; 3326 3327 /* 3328 * If a worker went to sleep, notify and ask workqueue 3329 * whether it wants to wake up a task to maintain 3330 * concurrency. 3331 */ 3332 if (prev->flags & PF_WQ_WORKER) { 3333 struct task_struct *to_wakeup; 3334 3335 to_wakeup = wq_worker_sleeping(prev); 3336 if (to_wakeup) 3337 try_to_wake_up_local(to_wakeup, cookie); 3338 } 3339 } 3340 switch_count = &prev->nvcsw; 3341 } 3342 3343 if (task_on_rq_queued(prev)) 3344 update_rq_clock(rq); 3345 3346 next = pick_next_task(rq, prev, cookie); 3347 clear_tsk_need_resched(prev); 3348 clear_preempt_need_resched(); 3349 rq->clock_skip_update = 0; 3350 3351 if (likely(prev != next)) { 3352 rq->nr_switches++; 3353 rq->curr = next; 3354 ++*switch_count; 3355 3356 trace_sched_switch(preempt, prev, next); 3357 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3358 } else { 3359 lockdep_unpin_lock(&rq->lock, cookie); 3360 raw_spin_unlock_irq(&rq->lock); 3361 } 3362 3363 balance_callback(rq); 3364 } 3365 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3366 3367 static inline void sched_submit_work(struct task_struct *tsk) 3368 { 3369 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3370 return; 3371 /* 3372 * If we are going to sleep and we have plugged IO queued, 3373 * make sure to submit it to avoid deadlocks. 3374 */ 3375 if (blk_needs_flush_plug(tsk)) 3376 blk_schedule_flush_plug(tsk); 3377 } 3378 3379 asmlinkage __visible void __sched schedule(void) 3380 { 3381 struct task_struct *tsk = current; 3382 3383 sched_submit_work(tsk); 3384 do { 3385 preempt_disable(); 3386 __schedule(false); 3387 sched_preempt_enable_no_resched(); 3388 } while (need_resched()); 3389 } 3390 EXPORT_SYMBOL(schedule); 3391 3392 #ifdef CONFIG_CONTEXT_TRACKING 3393 asmlinkage __visible void __sched schedule_user(void) 3394 { 3395 /* 3396 * If we come here after a random call to set_need_resched(), 3397 * or we have been woken up remotely but the IPI has not yet arrived, 3398 * we haven't yet exited the RCU idle mode. Do it here manually until 3399 * we find a better solution. 3400 * 3401 * NB: There are buggy callers of this function. Ideally we 3402 * should warn if prev_state != CONTEXT_USER, but that will trigger 3403 * too frequently to make sense yet. 3404 */ 3405 enum ctx_state prev_state = exception_enter(); 3406 schedule(); 3407 exception_exit(prev_state); 3408 } 3409 #endif 3410 3411 /** 3412 * schedule_preempt_disabled - called with preemption disabled 3413 * 3414 * Returns with preemption disabled. Note: preempt_count must be 1 3415 */ 3416 void __sched schedule_preempt_disabled(void) 3417 { 3418 sched_preempt_enable_no_resched(); 3419 schedule(); 3420 preempt_disable(); 3421 } 3422 3423 static void __sched notrace preempt_schedule_common(void) 3424 { 3425 do { 3426 /* 3427 * Because the function tracer can trace preempt_count_sub() 3428 * and it also uses preempt_enable/disable_notrace(), if 3429 * NEED_RESCHED is set, the preempt_enable_notrace() called 3430 * by the function tracer will call this function again and 3431 * cause infinite recursion. 3432 * 3433 * Preemption must be disabled here before the function 3434 * tracer can trace. Break up preempt_disable() into two 3435 * calls. One to disable preemption without fear of being 3436 * traced. The other to still record the preemption latency, 3437 * which can also be traced by the function tracer. 3438 */ 3439 preempt_disable_notrace(); 3440 preempt_latency_start(1); 3441 __schedule(true); 3442 preempt_latency_stop(1); 3443 preempt_enable_no_resched_notrace(); 3444 3445 /* 3446 * Check again in case we missed a preemption opportunity 3447 * between schedule and now. 3448 */ 3449 } while (need_resched()); 3450 } 3451 3452 #ifdef CONFIG_PREEMPT 3453 /* 3454 * this is the entry point to schedule() from in-kernel preemption 3455 * off of preempt_enable. Kernel preemptions off return from interrupt 3456 * occur there and call schedule directly. 3457 */ 3458 asmlinkage __visible void __sched notrace preempt_schedule(void) 3459 { 3460 /* 3461 * If there is a non-zero preempt_count or interrupts are disabled, 3462 * we do not want to preempt the current task. Just return.. 3463 */ 3464 if (likely(!preemptible())) 3465 return; 3466 3467 preempt_schedule_common(); 3468 } 3469 NOKPROBE_SYMBOL(preempt_schedule); 3470 EXPORT_SYMBOL(preempt_schedule); 3471 3472 /** 3473 * preempt_schedule_notrace - preempt_schedule called by tracing 3474 * 3475 * The tracing infrastructure uses preempt_enable_notrace to prevent 3476 * recursion and tracing preempt enabling caused by the tracing 3477 * infrastructure itself. But as tracing can happen in areas coming 3478 * from userspace or just about to enter userspace, a preempt enable 3479 * can occur before user_exit() is called. This will cause the scheduler 3480 * to be called when the system is still in usermode. 3481 * 3482 * To prevent this, the preempt_enable_notrace will use this function 3483 * instead of preempt_schedule() to exit user context if needed before 3484 * calling the scheduler. 3485 */ 3486 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3487 { 3488 enum ctx_state prev_ctx; 3489 3490 if (likely(!preemptible())) 3491 return; 3492 3493 do { 3494 /* 3495 * Because the function tracer can trace preempt_count_sub() 3496 * and it also uses preempt_enable/disable_notrace(), if 3497 * NEED_RESCHED is set, the preempt_enable_notrace() called 3498 * by the function tracer will call this function again and 3499 * cause infinite recursion. 3500 * 3501 * Preemption must be disabled here before the function 3502 * tracer can trace. Break up preempt_disable() into two 3503 * calls. One to disable preemption without fear of being 3504 * traced. The other to still record the preemption latency, 3505 * which can also be traced by the function tracer. 3506 */ 3507 preempt_disable_notrace(); 3508 preempt_latency_start(1); 3509 /* 3510 * Needs preempt disabled in case user_exit() is traced 3511 * and the tracer calls preempt_enable_notrace() causing 3512 * an infinite recursion. 3513 */ 3514 prev_ctx = exception_enter(); 3515 __schedule(true); 3516 exception_exit(prev_ctx); 3517 3518 preempt_latency_stop(1); 3519 preempt_enable_no_resched_notrace(); 3520 } while (need_resched()); 3521 } 3522 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3523 3524 #endif /* CONFIG_PREEMPT */ 3525 3526 /* 3527 * this is the entry point to schedule() from kernel preemption 3528 * off of irq context. 3529 * Note, that this is called and return with irqs disabled. This will 3530 * protect us against recursive calling from irq. 3531 */ 3532 asmlinkage __visible void __sched preempt_schedule_irq(void) 3533 { 3534 enum ctx_state prev_state; 3535 3536 /* Catch callers which need to be fixed */ 3537 BUG_ON(preempt_count() || !irqs_disabled()); 3538 3539 prev_state = exception_enter(); 3540 3541 do { 3542 preempt_disable(); 3543 local_irq_enable(); 3544 __schedule(true); 3545 local_irq_disable(); 3546 sched_preempt_enable_no_resched(); 3547 } while (need_resched()); 3548 3549 exception_exit(prev_state); 3550 } 3551 3552 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3553 void *key) 3554 { 3555 return try_to_wake_up(curr->private, mode, wake_flags); 3556 } 3557 EXPORT_SYMBOL(default_wake_function); 3558 3559 #ifdef CONFIG_RT_MUTEXES 3560 3561 /* 3562 * rt_mutex_setprio - set the current priority of a task 3563 * @p: task 3564 * @prio: prio value (kernel-internal form) 3565 * 3566 * This function changes the 'effective' priority of a task. It does 3567 * not touch ->normal_prio like __setscheduler(). 3568 * 3569 * Used by the rt_mutex code to implement priority inheritance 3570 * logic. Call site only calls if the priority of the task changed. 3571 */ 3572 void rt_mutex_setprio(struct task_struct *p, int prio) 3573 { 3574 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3575 const struct sched_class *prev_class; 3576 struct rq_flags rf; 3577 struct rq *rq; 3578 3579 BUG_ON(prio > MAX_PRIO); 3580 3581 rq = __task_rq_lock(p, &rf); 3582 3583 /* 3584 * Idle task boosting is a nono in general. There is one 3585 * exception, when PREEMPT_RT and NOHZ is active: 3586 * 3587 * The idle task calls get_next_timer_interrupt() and holds 3588 * the timer wheel base->lock on the CPU and another CPU wants 3589 * to access the timer (probably to cancel it). We can safely 3590 * ignore the boosting request, as the idle CPU runs this code 3591 * with interrupts disabled and will complete the lock 3592 * protected section without being interrupted. So there is no 3593 * real need to boost. 3594 */ 3595 if (unlikely(p == rq->idle)) { 3596 WARN_ON(p != rq->curr); 3597 WARN_ON(p->pi_blocked_on); 3598 goto out_unlock; 3599 } 3600 3601 trace_sched_pi_setprio(p, prio); 3602 oldprio = p->prio; 3603 3604 if (oldprio == prio) 3605 queue_flag &= ~DEQUEUE_MOVE; 3606 3607 prev_class = p->sched_class; 3608 queued = task_on_rq_queued(p); 3609 running = task_current(rq, p); 3610 if (queued) 3611 dequeue_task(rq, p, queue_flag); 3612 if (running) 3613 put_prev_task(rq, p); 3614 3615 /* 3616 * Boosting condition are: 3617 * 1. -rt task is running and holds mutex A 3618 * --> -dl task blocks on mutex A 3619 * 3620 * 2. -dl task is running and holds mutex A 3621 * --> -dl task blocks on mutex A and could preempt the 3622 * running task 3623 */ 3624 if (dl_prio(prio)) { 3625 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3626 if (!dl_prio(p->normal_prio) || 3627 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3628 p->dl.dl_boosted = 1; 3629 queue_flag |= ENQUEUE_REPLENISH; 3630 } else 3631 p->dl.dl_boosted = 0; 3632 p->sched_class = &dl_sched_class; 3633 } else if (rt_prio(prio)) { 3634 if (dl_prio(oldprio)) 3635 p->dl.dl_boosted = 0; 3636 if (oldprio < prio) 3637 queue_flag |= ENQUEUE_HEAD; 3638 p->sched_class = &rt_sched_class; 3639 } else { 3640 if (dl_prio(oldprio)) 3641 p->dl.dl_boosted = 0; 3642 if (rt_prio(oldprio)) 3643 p->rt.timeout = 0; 3644 p->sched_class = &fair_sched_class; 3645 } 3646 3647 p->prio = prio; 3648 3649 if (running) 3650 p->sched_class->set_curr_task(rq); 3651 if (queued) 3652 enqueue_task(rq, p, queue_flag); 3653 3654 check_class_changed(rq, p, prev_class, oldprio); 3655 out_unlock: 3656 preempt_disable(); /* avoid rq from going away on us */ 3657 __task_rq_unlock(rq, &rf); 3658 3659 balance_callback(rq); 3660 preempt_enable(); 3661 } 3662 #endif 3663 3664 void set_user_nice(struct task_struct *p, long nice) 3665 { 3666 int old_prio, delta, queued; 3667 struct rq_flags rf; 3668 struct rq *rq; 3669 3670 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3671 return; 3672 /* 3673 * We have to be careful, if called from sys_setpriority(), 3674 * the task might be in the middle of scheduling on another CPU. 3675 */ 3676 rq = task_rq_lock(p, &rf); 3677 /* 3678 * The RT priorities are set via sched_setscheduler(), but we still 3679 * allow the 'normal' nice value to be set - but as expected 3680 * it wont have any effect on scheduling until the task is 3681 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3682 */ 3683 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3684 p->static_prio = NICE_TO_PRIO(nice); 3685 goto out_unlock; 3686 } 3687 queued = task_on_rq_queued(p); 3688 if (queued) 3689 dequeue_task(rq, p, DEQUEUE_SAVE); 3690 3691 p->static_prio = NICE_TO_PRIO(nice); 3692 set_load_weight(p); 3693 old_prio = p->prio; 3694 p->prio = effective_prio(p); 3695 delta = p->prio - old_prio; 3696 3697 if (queued) { 3698 enqueue_task(rq, p, ENQUEUE_RESTORE); 3699 /* 3700 * If the task increased its priority or is running and 3701 * lowered its priority, then reschedule its CPU: 3702 */ 3703 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3704 resched_curr(rq); 3705 } 3706 out_unlock: 3707 task_rq_unlock(rq, p, &rf); 3708 } 3709 EXPORT_SYMBOL(set_user_nice); 3710 3711 /* 3712 * can_nice - check if a task can reduce its nice value 3713 * @p: task 3714 * @nice: nice value 3715 */ 3716 int can_nice(const struct task_struct *p, const int nice) 3717 { 3718 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3719 int nice_rlim = nice_to_rlimit(nice); 3720 3721 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3722 capable(CAP_SYS_NICE)); 3723 } 3724 3725 #ifdef __ARCH_WANT_SYS_NICE 3726 3727 /* 3728 * sys_nice - change the priority of the current process. 3729 * @increment: priority increment 3730 * 3731 * sys_setpriority is a more generic, but much slower function that 3732 * does similar things. 3733 */ 3734 SYSCALL_DEFINE1(nice, int, increment) 3735 { 3736 long nice, retval; 3737 3738 /* 3739 * Setpriority might change our priority at the same moment. 3740 * We don't have to worry. Conceptually one call occurs first 3741 * and we have a single winner. 3742 */ 3743 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3744 nice = task_nice(current) + increment; 3745 3746 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3747 if (increment < 0 && !can_nice(current, nice)) 3748 return -EPERM; 3749 3750 retval = security_task_setnice(current, nice); 3751 if (retval) 3752 return retval; 3753 3754 set_user_nice(current, nice); 3755 return 0; 3756 } 3757 3758 #endif 3759 3760 /** 3761 * task_prio - return the priority value of a given task. 3762 * @p: the task in question. 3763 * 3764 * Return: The priority value as seen by users in /proc. 3765 * RT tasks are offset by -200. Normal tasks are centered 3766 * around 0, value goes from -16 to +15. 3767 */ 3768 int task_prio(const struct task_struct *p) 3769 { 3770 return p->prio - MAX_RT_PRIO; 3771 } 3772 3773 /** 3774 * idle_cpu - is a given cpu idle currently? 3775 * @cpu: the processor in question. 3776 * 3777 * Return: 1 if the CPU is currently idle. 0 otherwise. 3778 */ 3779 int idle_cpu(int cpu) 3780 { 3781 struct rq *rq = cpu_rq(cpu); 3782 3783 if (rq->curr != rq->idle) 3784 return 0; 3785 3786 if (rq->nr_running) 3787 return 0; 3788 3789 #ifdef CONFIG_SMP 3790 if (!llist_empty(&rq->wake_list)) 3791 return 0; 3792 #endif 3793 3794 return 1; 3795 } 3796 3797 /** 3798 * idle_task - return the idle task for a given cpu. 3799 * @cpu: the processor in question. 3800 * 3801 * Return: The idle task for the cpu @cpu. 3802 */ 3803 struct task_struct *idle_task(int cpu) 3804 { 3805 return cpu_rq(cpu)->idle; 3806 } 3807 3808 /** 3809 * find_process_by_pid - find a process with a matching PID value. 3810 * @pid: the pid in question. 3811 * 3812 * The task of @pid, if found. %NULL otherwise. 3813 */ 3814 static struct task_struct *find_process_by_pid(pid_t pid) 3815 { 3816 return pid ? find_task_by_vpid(pid) : current; 3817 } 3818 3819 /* 3820 * This function initializes the sched_dl_entity of a newly becoming 3821 * SCHED_DEADLINE task. 3822 * 3823 * Only the static values are considered here, the actual runtime and the 3824 * absolute deadline will be properly calculated when the task is enqueued 3825 * for the first time with its new policy. 3826 */ 3827 static void 3828 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3829 { 3830 struct sched_dl_entity *dl_se = &p->dl; 3831 3832 dl_se->dl_runtime = attr->sched_runtime; 3833 dl_se->dl_deadline = attr->sched_deadline; 3834 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3835 dl_se->flags = attr->sched_flags; 3836 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3837 3838 /* 3839 * Changing the parameters of a task is 'tricky' and we're not doing 3840 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3841 * 3842 * What we SHOULD do is delay the bandwidth release until the 0-lag 3843 * point. This would include retaining the task_struct until that time 3844 * and change dl_overflow() to not immediately decrement the current 3845 * amount. 3846 * 3847 * Instead we retain the current runtime/deadline and let the new 3848 * parameters take effect after the current reservation period lapses. 3849 * This is safe (albeit pessimistic) because the 0-lag point is always 3850 * before the current scheduling deadline. 3851 * 3852 * We can still have temporary overloads because we do not delay the 3853 * change in bandwidth until that time; so admission control is 3854 * not on the safe side. It does however guarantee tasks will never 3855 * consume more than promised. 3856 */ 3857 } 3858 3859 /* 3860 * sched_setparam() passes in -1 for its policy, to let the functions 3861 * it calls know not to change it. 3862 */ 3863 #define SETPARAM_POLICY -1 3864 3865 static void __setscheduler_params(struct task_struct *p, 3866 const struct sched_attr *attr) 3867 { 3868 int policy = attr->sched_policy; 3869 3870 if (policy == SETPARAM_POLICY) 3871 policy = p->policy; 3872 3873 p->policy = policy; 3874 3875 if (dl_policy(policy)) 3876 __setparam_dl(p, attr); 3877 else if (fair_policy(policy)) 3878 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3879 3880 /* 3881 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3882 * !rt_policy. Always setting this ensures that things like 3883 * getparam()/getattr() don't report silly values for !rt tasks. 3884 */ 3885 p->rt_priority = attr->sched_priority; 3886 p->normal_prio = normal_prio(p); 3887 set_load_weight(p); 3888 } 3889 3890 /* Actually do priority change: must hold pi & rq lock. */ 3891 static void __setscheduler(struct rq *rq, struct task_struct *p, 3892 const struct sched_attr *attr, bool keep_boost) 3893 { 3894 __setscheduler_params(p, attr); 3895 3896 /* 3897 * Keep a potential priority boosting if called from 3898 * sched_setscheduler(). 3899 */ 3900 if (keep_boost) 3901 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3902 else 3903 p->prio = normal_prio(p); 3904 3905 if (dl_prio(p->prio)) 3906 p->sched_class = &dl_sched_class; 3907 else if (rt_prio(p->prio)) 3908 p->sched_class = &rt_sched_class; 3909 else 3910 p->sched_class = &fair_sched_class; 3911 } 3912 3913 static void 3914 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3915 { 3916 struct sched_dl_entity *dl_se = &p->dl; 3917 3918 attr->sched_priority = p->rt_priority; 3919 attr->sched_runtime = dl_se->dl_runtime; 3920 attr->sched_deadline = dl_se->dl_deadline; 3921 attr->sched_period = dl_se->dl_period; 3922 attr->sched_flags = dl_se->flags; 3923 } 3924 3925 /* 3926 * This function validates the new parameters of a -deadline task. 3927 * We ask for the deadline not being zero, and greater or equal 3928 * than the runtime, as well as the period of being zero or 3929 * greater than deadline. Furthermore, we have to be sure that 3930 * user parameters are above the internal resolution of 1us (we 3931 * check sched_runtime only since it is always the smaller one) and 3932 * below 2^63 ns (we have to check both sched_deadline and 3933 * sched_period, as the latter can be zero). 3934 */ 3935 static bool 3936 __checkparam_dl(const struct sched_attr *attr) 3937 { 3938 /* deadline != 0 */ 3939 if (attr->sched_deadline == 0) 3940 return false; 3941 3942 /* 3943 * Since we truncate DL_SCALE bits, make sure we're at least 3944 * that big. 3945 */ 3946 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3947 return false; 3948 3949 /* 3950 * Since we use the MSB for wrap-around and sign issues, make 3951 * sure it's not set (mind that period can be equal to zero). 3952 */ 3953 if (attr->sched_deadline & (1ULL << 63) || 3954 attr->sched_period & (1ULL << 63)) 3955 return false; 3956 3957 /* runtime <= deadline <= period (if period != 0) */ 3958 if ((attr->sched_period != 0 && 3959 attr->sched_period < attr->sched_deadline) || 3960 attr->sched_deadline < attr->sched_runtime) 3961 return false; 3962 3963 return true; 3964 } 3965 3966 /* 3967 * check the target process has a UID that matches the current process's 3968 */ 3969 static bool check_same_owner(struct task_struct *p) 3970 { 3971 const struct cred *cred = current_cred(), *pcred; 3972 bool match; 3973 3974 rcu_read_lock(); 3975 pcred = __task_cred(p); 3976 match = (uid_eq(cred->euid, pcred->euid) || 3977 uid_eq(cred->euid, pcred->uid)); 3978 rcu_read_unlock(); 3979 return match; 3980 } 3981 3982 static bool dl_param_changed(struct task_struct *p, 3983 const struct sched_attr *attr) 3984 { 3985 struct sched_dl_entity *dl_se = &p->dl; 3986 3987 if (dl_se->dl_runtime != attr->sched_runtime || 3988 dl_se->dl_deadline != attr->sched_deadline || 3989 dl_se->dl_period != attr->sched_period || 3990 dl_se->flags != attr->sched_flags) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 static int __sched_setscheduler(struct task_struct *p, 3997 const struct sched_attr *attr, 3998 bool user, bool pi) 3999 { 4000 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4001 MAX_RT_PRIO - 1 - attr->sched_priority; 4002 int retval, oldprio, oldpolicy = -1, queued, running; 4003 int new_effective_prio, policy = attr->sched_policy; 4004 const struct sched_class *prev_class; 4005 struct rq_flags rf; 4006 int reset_on_fork; 4007 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4008 struct rq *rq; 4009 4010 /* may grab non-irq protected spin_locks */ 4011 BUG_ON(in_interrupt()); 4012 recheck: 4013 /* double check policy once rq lock held */ 4014 if (policy < 0) { 4015 reset_on_fork = p->sched_reset_on_fork; 4016 policy = oldpolicy = p->policy; 4017 } else { 4018 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4019 4020 if (!valid_policy(policy)) 4021 return -EINVAL; 4022 } 4023 4024 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4025 return -EINVAL; 4026 4027 /* 4028 * Valid priorities for SCHED_FIFO and SCHED_RR are 4029 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4030 * SCHED_BATCH and SCHED_IDLE is 0. 4031 */ 4032 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4033 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4034 return -EINVAL; 4035 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4036 (rt_policy(policy) != (attr->sched_priority != 0))) 4037 return -EINVAL; 4038 4039 /* 4040 * Allow unprivileged RT tasks to decrease priority: 4041 */ 4042 if (user && !capable(CAP_SYS_NICE)) { 4043 if (fair_policy(policy)) { 4044 if (attr->sched_nice < task_nice(p) && 4045 !can_nice(p, attr->sched_nice)) 4046 return -EPERM; 4047 } 4048 4049 if (rt_policy(policy)) { 4050 unsigned long rlim_rtprio = 4051 task_rlimit(p, RLIMIT_RTPRIO); 4052 4053 /* can't set/change the rt policy */ 4054 if (policy != p->policy && !rlim_rtprio) 4055 return -EPERM; 4056 4057 /* can't increase priority */ 4058 if (attr->sched_priority > p->rt_priority && 4059 attr->sched_priority > rlim_rtprio) 4060 return -EPERM; 4061 } 4062 4063 /* 4064 * Can't set/change SCHED_DEADLINE policy at all for now 4065 * (safest behavior); in the future we would like to allow 4066 * unprivileged DL tasks to increase their relative deadline 4067 * or reduce their runtime (both ways reducing utilization) 4068 */ 4069 if (dl_policy(policy)) 4070 return -EPERM; 4071 4072 /* 4073 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4074 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4075 */ 4076 if (idle_policy(p->policy) && !idle_policy(policy)) { 4077 if (!can_nice(p, task_nice(p))) 4078 return -EPERM; 4079 } 4080 4081 /* can't change other user's priorities */ 4082 if (!check_same_owner(p)) 4083 return -EPERM; 4084 4085 /* Normal users shall not reset the sched_reset_on_fork flag */ 4086 if (p->sched_reset_on_fork && !reset_on_fork) 4087 return -EPERM; 4088 } 4089 4090 if (user) { 4091 retval = security_task_setscheduler(p); 4092 if (retval) 4093 return retval; 4094 } 4095 4096 /* 4097 * make sure no PI-waiters arrive (or leave) while we are 4098 * changing the priority of the task: 4099 * 4100 * To be able to change p->policy safely, the appropriate 4101 * runqueue lock must be held. 4102 */ 4103 rq = task_rq_lock(p, &rf); 4104 4105 /* 4106 * Changing the policy of the stop threads its a very bad idea 4107 */ 4108 if (p == rq->stop) { 4109 task_rq_unlock(rq, p, &rf); 4110 return -EINVAL; 4111 } 4112 4113 /* 4114 * If not changing anything there's no need to proceed further, 4115 * but store a possible modification of reset_on_fork. 4116 */ 4117 if (unlikely(policy == p->policy)) { 4118 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4119 goto change; 4120 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4121 goto change; 4122 if (dl_policy(policy) && dl_param_changed(p, attr)) 4123 goto change; 4124 4125 p->sched_reset_on_fork = reset_on_fork; 4126 task_rq_unlock(rq, p, &rf); 4127 return 0; 4128 } 4129 change: 4130 4131 if (user) { 4132 #ifdef CONFIG_RT_GROUP_SCHED 4133 /* 4134 * Do not allow realtime tasks into groups that have no runtime 4135 * assigned. 4136 */ 4137 if (rt_bandwidth_enabled() && rt_policy(policy) && 4138 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4139 !task_group_is_autogroup(task_group(p))) { 4140 task_rq_unlock(rq, p, &rf); 4141 return -EPERM; 4142 } 4143 #endif 4144 #ifdef CONFIG_SMP 4145 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4146 cpumask_t *span = rq->rd->span; 4147 4148 /* 4149 * Don't allow tasks with an affinity mask smaller than 4150 * the entire root_domain to become SCHED_DEADLINE. We 4151 * will also fail if there's no bandwidth available. 4152 */ 4153 if (!cpumask_subset(span, &p->cpus_allowed) || 4154 rq->rd->dl_bw.bw == 0) { 4155 task_rq_unlock(rq, p, &rf); 4156 return -EPERM; 4157 } 4158 } 4159 #endif 4160 } 4161 4162 /* recheck policy now with rq lock held */ 4163 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4164 policy = oldpolicy = -1; 4165 task_rq_unlock(rq, p, &rf); 4166 goto recheck; 4167 } 4168 4169 /* 4170 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4171 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4172 * is available. 4173 */ 4174 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4175 task_rq_unlock(rq, p, &rf); 4176 return -EBUSY; 4177 } 4178 4179 p->sched_reset_on_fork = reset_on_fork; 4180 oldprio = p->prio; 4181 4182 if (pi) { 4183 /* 4184 * Take priority boosted tasks into account. If the new 4185 * effective priority is unchanged, we just store the new 4186 * normal parameters and do not touch the scheduler class and 4187 * the runqueue. This will be done when the task deboost 4188 * itself. 4189 */ 4190 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4191 if (new_effective_prio == oldprio) 4192 queue_flags &= ~DEQUEUE_MOVE; 4193 } 4194 4195 queued = task_on_rq_queued(p); 4196 running = task_current(rq, p); 4197 if (queued) 4198 dequeue_task(rq, p, queue_flags); 4199 if (running) 4200 put_prev_task(rq, p); 4201 4202 prev_class = p->sched_class; 4203 __setscheduler(rq, p, attr, pi); 4204 4205 if (running) 4206 p->sched_class->set_curr_task(rq); 4207 if (queued) { 4208 /* 4209 * We enqueue to tail when the priority of a task is 4210 * increased (user space view). 4211 */ 4212 if (oldprio < p->prio) 4213 queue_flags |= ENQUEUE_HEAD; 4214 4215 enqueue_task(rq, p, queue_flags); 4216 } 4217 4218 check_class_changed(rq, p, prev_class, oldprio); 4219 preempt_disable(); /* avoid rq from going away on us */ 4220 task_rq_unlock(rq, p, &rf); 4221 4222 if (pi) 4223 rt_mutex_adjust_pi(p); 4224 4225 /* 4226 * Run balance callbacks after we've adjusted the PI chain. 4227 */ 4228 balance_callback(rq); 4229 preempt_enable(); 4230 4231 return 0; 4232 } 4233 4234 static int _sched_setscheduler(struct task_struct *p, int policy, 4235 const struct sched_param *param, bool check) 4236 { 4237 struct sched_attr attr = { 4238 .sched_policy = policy, 4239 .sched_priority = param->sched_priority, 4240 .sched_nice = PRIO_TO_NICE(p->static_prio), 4241 }; 4242 4243 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4244 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4245 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4246 policy &= ~SCHED_RESET_ON_FORK; 4247 attr.sched_policy = policy; 4248 } 4249 4250 return __sched_setscheduler(p, &attr, check, true); 4251 } 4252 /** 4253 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4254 * @p: the task in question. 4255 * @policy: new policy. 4256 * @param: structure containing the new RT priority. 4257 * 4258 * Return: 0 on success. An error code otherwise. 4259 * 4260 * NOTE that the task may be already dead. 4261 */ 4262 int sched_setscheduler(struct task_struct *p, int policy, 4263 const struct sched_param *param) 4264 { 4265 return _sched_setscheduler(p, policy, param, true); 4266 } 4267 EXPORT_SYMBOL_GPL(sched_setscheduler); 4268 4269 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4270 { 4271 return __sched_setscheduler(p, attr, true, true); 4272 } 4273 EXPORT_SYMBOL_GPL(sched_setattr); 4274 4275 /** 4276 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4277 * @p: the task in question. 4278 * @policy: new policy. 4279 * @param: structure containing the new RT priority. 4280 * 4281 * Just like sched_setscheduler, only don't bother checking if the 4282 * current context has permission. For example, this is needed in 4283 * stop_machine(): we create temporary high priority worker threads, 4284 * but our caller might not have that capability. 4285 * 4286 * Return: 0 on success. An error code otherwise. 4287 */ 4288 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4289 const struct sched_param *param) 4290 { 4291 return _sched_setscheduler(p, policy, param, false); 4292 } 4293 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4294 4295 static int 4296 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4297 { 4298 struct sched_param lparam; 4299 struct task_struct *p; 4300 int retval; 4301 4302 if (!param || pid < 0) 4303 return -EINVAL; 4304 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4305 return -EFAULT; 4306 4307 rcu_read_lock(); 4308 retval = -ESRCH; 4309 p = find_process_by_pid(pid); 4310 if (p != NULL) 4311 retval = sched_setscheduler(p, policy, &lparam); 4312 rcu_read_unlock(); 4313 4314 return retval; 4315 } 4316 4317 /* 4318 * Mimics kernel/events/core.c perf_copy_attr(). 4319 */ 4320 static int sched_copy_attr(struct sched_attr __user *uattr, 4321 struct sched_attr *attr) 4322 { 4323 u32 size; 4324 int ret; 4325 4326 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4327 return -EFAULT; 4328 4329 /* 4330 * zero the full structure, so that a short copy will be nice. 4331 */ 4332 memset(attr, 0, sizeof(*attr)); 4333 4334 ret = get_user(size, &uattr->size); 4335 if (ret) 4336 return ret; 4337 4338 if (size > PAGE_SIZE) /* silly large */ 4339 goto err_size; 4340 4341 if (!size) /* abi compat */ 4342 size = SCHED_ATTR_SIZE_VER0; 4343 4344 if (size < SCHED_ATTR_SIZE_VER0) 4345 goto err_size; 4346 4347 /* 4348 * If we're handed a bigger struct than we know of, 4349 * ensure all the unknown bits are 0 - i.e. new 4350 * user-space does not rely on any kernel feature 4351 * extensions we dont know about yet. 4352 */ 4353 if (size > sizeof(*attr)) { 4354 unsigned char __user *addr; 4355 unsigned char __user *end; 4356 unsigned char val; 4357 4358 addr = (void __user *)uattr + sizeof(*attr); 4359 end = (void __user *)uattr + size; 4360 4361 for (; addr < end; addr++) { 4362 ret = get_user(val, addr); 4363 if (ret) 4364 return ret; 4365 if (val) 4366 goto err_size; 4367 } 4368 size = sizeof(*attr); 4369 } 4370 4371 ret = copy_from_user(attr, uattr, size); 4372 if (ret) 4373 return -EFAULT; 4374 4375 /* 4376 * XXX: do we want to be lenient like existing syscalls; or do we want 4377 * to be strict and return an error on out-of-bounds values? 4378 */ 4379 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4380 4381 return 0; 4382 4383 err_size: 4384 put_user(sizeof(*attr), &uattr->size); 4385 return -E2BIG; 4386 } 4387 4388 /** 4389 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4390 * @pid: the pid in question. 4391 * @policy: new policy. 4392 * @param: structure containing the new RT priority. 4393 * 4394 * Return: 0 on success. An error code otherwise. 4395 */ 4396 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4397 struct sched_param __user *, param) 4398 { 4399 /* negative values for policy are not valid */ 4400 if (policy < 0) 4401 return -EINVAL; 4402 4403 return do_sched_setscheduler(pid, policy, param); 4404 } 4405 4406 /** 4407 * sys_sched_setparam - set/change the RT priority of a thread 4408 * @pid: the pid in question. 4409 * @param: structure containing the new RT priority. 4410 * 4411 * Return: 0 on success. An error code otherwise. 4412 */ 4413 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4414 { 4415 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4416 } 4417 4418 /** 4419 * sys_sched_setattr - same as above, but with extended sched_attr 4420 * @pid: the pid in question. 4421 * @uattr: structure containing the extended parameters. 4422 * @flags: for future extension. 4423 */ 4424 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4425 unsigned int, flags) 4426 { 4427 struct sched_attr attr; 4428 struct task_struct *p; 4429 int retval; 4430 4431 if (!uattr || pid < 0 || flags) 4432 return -EINVAL; 4433 4434 retval = sched_copy_attr(uattr, &attr); 4435 if (retval) 4436 return retval; 4437 4438 if ((int)attr.sched_policy < 0) 4439 return -EINVAL; 4440 4441 rcu_read_lock(); 4442 retval = -ESRCH; 4443 p = find_process_by_pid(pid); 4444 if (p != NULL) 4445 retval = sched_setattr(p, &attr); 4446 rcu_read_unlock(); 4447 4448 return retval; 4449 } 4450 4451 /** 4452 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4453 * @pid: the pid in question. 4454 * 4455 * Return: On success, the policy of the thread. Otherwise, a negative error 4456 * code. 4457 */ 4458 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4459 { 4460 struct task_struct *p; 4461 int retval; 4462 4463 if (pid < 0) 4464 return -EINVAL; 4465 4466 retval = -ESRCH; 4467 rcu_read_lock(); 4468 p = find_process_by_pid(pid); 4469 if (p) { 4470 retval = security_task_getscheduler(p); 4471 if (!retval) 4472 retval = p->policy 4473 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4474 } 4475 rcu_read_unlock(); 4476 return retval; 4477 } 4478 4479 /** 4480 * sys_sched_getparam - get the RT priority of a thread 4481 * @pid: the pid in question. 4482 * @param: structure containing the RT priority. 4483 * 4484 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4485 * code. 4486 */ 4487 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4488 { 4489 struct sched_param lp = { .sched_priority = 0 }; 4490 struct task_struct *p; 4491 int retval; 4492 4493 if (!param || pid < 0) 4494 return -EINVAL; 4495 4496 rcu_read_lock(); 4497 p = find_process_by_pid(pid); 4498 retval = -ESRCH; 4499 if (!p) 4500 goto out_unlock; 4501 4502 retval = security_task_getscheduler(p); 4503 if (retval) 4504 goto out_unlock; 4505 4506 if (task_has_rt_policy(p)) 4507 lp.sched_priority = p->rt_priority; 4508 rcu_read_unlock(); 4509 4510 /* 4511 * This one might sleep, we cannot do it with a spinlock held ... 4512 */ 4513 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4514 4515 return retval; 4516 4517 out_unlock: 4518 rcu_read_unlock(); 4519 return retval; 4520 } 4521 4522 static int sched_read_attr(struct sched_attr __user *uattr, 4523 struct sched_attr *attr, 4524 unsigned int usize) 4525 { 4526 int ret; 4527 4528 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4529 return -EFAULT; 4530 4531 /* 4532 * If we're handed a smaller struct than we know of, 4533 * ensure all the unknown bits are 0 - i.e. old 4534 * user-space does not get uncomplete information. 4535 */ 4536 if (usize < sizeof(*attr)) { 4537 unsigned char *addr; 4538 unsigned char *end; 4539 4540 addr = (void *)attr + usize; 4541 end = (void *)attr + sizeof(*attr); 4542 4543 for (; addr < end; addr++) { 4544 if (*addr) 4545 return -EFBIG; 4546 } 4547 4548 attr->size = usize; 4549 } 4550 4551 ret = copy_to_user(uattr, attr, attr->size); 4552 if (ret) 4553 return -EFAULT; 4554 4555 return 0; 4556 } 4557 4558 /** 4559 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4560 * @pid: the pid in question. 4561 * @uattr: structure containing the extended parameters. 4562 * @size: sizeof(attr) for fwd/bwd comp. 4563 * @flags: for future extension. 4564 */ 4565 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4566 unsigned int, size, unsigned int, flags) 4567 { 4568 struct sched_attr attr = { 4569 .size = sizeof(struct sched_attr), 4570 }; 4571 struct task_struct *p; 4572 int retval; 4573 4574 if (!uattr || pid < 0 || size > PAGE_SIZE || 4575 size < SCHED_ATTR_SIZE_VER0 || flags) 4576 return -EINVAL; 4577 4578 rcu_read_lock(); 4579 p = find_process_by_pid(pid); 4580 retval = -ESRCH; 4581 if (!p) 4582 goto out_unlock; 4583 4584 retval = security_task_getscheduler(p); 4585 if (retval) 4586 goto out_unlock; 4587 4588 attr.sched_policy = p->policy; 4589 if (p->sched_reset_on_fork) 4590 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4591 if (task_has_dl_policy(p)) 4592 __getparam_dl(p, &attr); 4593 else if (task_has_rt_policy(p)) 4594 attr.sched_priority = p->rt_priority; 4595 else 4596 attr.sched_nice = task_nice(p); 4597 4598 rcu_read_unlock(); 4599 4600 retval = sched_read_attr(uattr, &attr, size); 4601 return retval; 4602 4603 out_unlock: 4604 rcu_read_unlock(); 4605 return retval; 4606 } 4607 4608 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4609 { 4610 cpumask_var_t cpus_allowed, new_mask; 4611 struct task_struct *p; 4612 int retval; 4613 4614 rcu_read_lock(); 4615 4616 p = find_process_by_pid(pid); 4617 if (!p) { 4618 rcu_read_unlock(); 4619 return -ESRCH; 4620 } 4621 4622 /* Prevent p going away */ 4623 get_task_struct(p); 4624 rcu_read_unlock(); 4625 4626 if (p->flags & PF_NO_SETAFFINITY) { 4627 retval = -EINVAL; 4628 goto out_put_task; 4629 } 4630 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4631 retval = -ENOMEM; 4632 goto out_put_task; 4633 } 4634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4635 retval = -ENOMEM; 4636 goto out_free_cpus_allowed; 4637 } 4638 retval = -EPERM; 4639 if (!check_same_owner(p)) { 4640 rcu_read_lock(); 4641 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4642 rcu_read_unlock(); 4643 goto out_free_new_mask; 4644 } 4645 rcu_read_unlock(); 4646 } 4647 4648 retval = security_task_setscheduler(p); 4649 if (retval) 4650 goto out_free_new_mask; 4651 4652 4653 cpuset_cpus_allowed(p, cpus_allowed); 4654 cpumask_and(new_mask, in_mask, cpus_allowed); 4655 4656 /* 4657 * Since bandwidth control happens on root_domain basis, 4658 * if admission test is enabled, we only admit -deadline 4659 * tasks allowed to run on all the CPUs in the task's 4660 * root_domain. 4661 */ 4662 #ifdef CONFIG_SMP 4663 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4664 rcu_read_lock(); 4665 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4666 retval = -EBUSY; 4667 rcu_read_unlock(); 4668 goto out_free_new_mask; 4669 } 4670 rcu_read_unlock(); 4671 } 4672 #endif 4673 again: 4674 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4675 4676 if (!retval) { 4677 cpuset_cpus_allowed(p, cpus_allowed); 4678 if (!cpumask_subset(new_mask, cpus_allowed)) { 4679 /* 4680 * We must have raced with a concurrent cpuset 4681 * update. Just reset the cpus_allowed to the 4682 * cpuset's cpus_allowed 4683 */ 4684 cpumask_copy(new_mask, cpus_allowed); 4685 goto again; 4686 } 4687 } 4688 out_free_new_mask: 4689 free_cpumask_var(new_mask); 4690 out_free_cpus_allowed: 4691 free_cpumask_var(cpus_allowed); 4692 out_put_task: 4693 put_task_struct(p); 4694 return retval; 4695 } 4696 4697 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4698 struct cpumask *new_mask) 4699 { 4700 if (len < cpumask_size()) 4701 cpumask_clear(new_mask); 4702 else if (len > cpumask_size()) 4703 len = cpumask_size(); 4704 4705 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4706 } 4707 4708 /** 4709 * sys_sched_setaffinity - set the cpu affinity of a process 4710 * @pid: pid of the process 4711 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4712 * @user_mask_ptr: user-space pointer to the new cpu mask 4713 * 4714 * Return: 0 on success. An error code otherwise. 4715 */ 4716 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4717 unsigned long __user *, user_mask_ptr) 4718 { 4719 cpumask_var_t new_mask; 4720 int retval; 4721 4722 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4723 return -ENOMEM; 4724 4725 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4726 if (retval == 0) 4727 retval = sched_setaffinity(pid, new_mask); 4728 free_cpumask_var(new_mask); 4729 return retval; 4730 } 4731 4732 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4733 { 4734 struct task_struct *p; 4735 unsigned long flags; 4736 int retval; 4737 4738 rcu_read_lock(); 4739 4740 retval = -ESRCH; 4741 p = find_process_by_pid(pid); 4742 if (!p) 4743 goto out_unlock; 4744 4745 retval = security_task_getscheduler(p); 4746 if (retval) 4747 goto out_unlock; 4748 4749 raw_spin_lock_irqsave(&p->pi_lock, flags); 4750 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4751 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4752 4753 out_unlock: 4754 rcu_read_unlock(); 4755 4756 return retval; 4757 } 4758 4759 /** 4760 * sys_sched_getaffinity - get the cpu affinity of a process 4761 * @pid: pid of the process 4762 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4763 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4764 * 4765 * Return: size of CPU mask copied to user_mask_ptr on success. An 4766 * error code otherwise. 4767 */ 4768 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4769 unsigned long __user *, user_mask_ptr) 4770 { 4771 int ret; 4772 cpumask_var_t mask; 4773 4774 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4775 return -EINVAL; 4776 if (len & (sizeof(unsigned long)-1)) 4777 return -EINVAL; 4778 4779 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4780 return -ENOMEM; 4781 4782 ret = sched_getaffinity(pid, mask); 4783 if (ret == 0) { 4784 size_t retlen = min_t(size_t, len, cpumask_size()); 4785 4786 if (copy_to_user(user_mask_ptr, mask, retlen)) 4787 ret = -EFAULT; 4788 else 4789 ret = retlen; 4790 } 4791 free_cpumask_var(mask); 4792 4793 return ret; 4794 } 4795 4796 /** 4797 * sys_sched_yield - yield the current processor to other threads. 4798 * 4799 * This function yields the current CPU to other tasks. If there are no 4800 * other threads running on this CPU then this function will return. 4801 * 4802 * Return: 0. 4803 */ 4804 SYSCALL_DEFINE0(sched_yield) 4805 { 4806 struct rq *rq = this_rq_lock(); 4807 4808 schedstat_inc(rq, yld_count); 4809 current->sched_class->yield_task(rq); 4810 4811 /* 4812 * Since we are going to call schedule() anyway, there's 4813 * no need to preempt or enable interrupts: 4814 */ 4815 __release(rq->lock); 4816 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4817 do_raw_spin_unlock(&rq->lock); 4818 sched_preempt_enable_no_resched(); 4819 4820 schedule(); 4821 4822 return 0; 4823 } 4824 4825 int __sched _cond_resched(void) 4826 { 4827 if (should_resched(0)) { 4828 preempt_schedule_common(); 4829 return 1; 4830 } 4831 return 0; 4832 } 4833 EXPORT_SYMBOL(_cond_resched); 4834 4835 /* 4836 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4837 * call schedule, and on return reacquire the lock. 4838 * 4839 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4840 * operations here to prevent schedule() from being called twice (once via 4841 * spin_unlock(), once by hand). 4842 */ 4843 int __cond_resched_lock(spinlock_t *lock) 4844 { 4845 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4846 int ret = 0; 4847 4848 lockdep_assert_held(lock); 4849 4850 if (spin_needbreak(lock) || resched) { 4851 spin_unlock(lock); 4852 if (resched) 4853 preempt_schedule_common(); 4854 else 4855 cpu_relax(); 4856 ret = 1; 4857 spin_lock(lock); 4858 } 4859 return ret; 4860 } 4861 EXPORT_SYMBOL(__cond_resched_lock); 4862 4863 int __sched __cond_resched_softirq(void) 4864 { 4865 BUG_ON(!in_softirq()); 4866 4867 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4868 local_bh_enable(); 4869 preempt_schedule_common(); 4870 local_bh_disable(); 4871 return 1; 4872 } 4873 return 0; 4874 } 4875 EXPORT_SYMBOL(__cond_resched_softirq); 4876 4877 /** 4878 * yield - yield the current processor to other threads. 4879 * 4880 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4881 * 4882 * The scheduler is at all times free to pick the calling task as the most 4883 * eligible task to run, if removing the yield() call from your code breaks 4884 * it, its already broken. 4885 * 4886 * Typical broken usage is: 4887 * 4888 * while (!event) 4889 * yield(); 4890 * 4891 * where one assumes that yield() will let 'the other' process run that will 4892 * make event true. If the current task is a SCHED_FIFO task that will never 4893 * happen. Never use yield() as a progress guarantee!! 4894 * 4895 * If you want to use yield() to wait for something, use wait_event(). 4896 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4897 * If you still want to use yield(), do not! 4898 */ 4899 void __sched yield(void) 4900 { 4901 set_current_state(TASK_RUNNING); 4902 sys_sched_yield(); 4903 } 4904 EXPORT_SYMBOL(yield); 4905 4906 /** 4907 * yield_to - yield the current processor to another thread in 4908 * your thread group, or accelerate that thread toward the 4909 * processor it's on. 4910 * @p: target task 4911 * @preempt: whether task preemption is allowed or not 4912 * 4913 * It's the caller's job to ensure that the target task struct 4914 * can't go away on us before we can do any checks. 4915 * 4916 * Return: 4917 * true (>0) if we indeed boosted the target task. 4918 * false (0) if we failed to boost the target. 4919 * -ESRCH if there's no task to yield to. 4920 */ 4921 int __sched yield_to(struct task_struct *p, bool preempt) 4922 { 4923 struct task_struct *curr = current; 4924 struct rq *rq, *p_rq; 4925 unsigned long flags; 4926 int yielded = 0; 4927 4928 local_irq_save(flags); 4929 rq = this_rq(); 4930 4931 again: 4932 p_rq = task_rq(p); 4933 /* 4934 * If we're the only runnable task on the rq and target rq also 4935 * has only one task, there's absolutely no point in yielding. 4936 */ 4937 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4938 yielded = -ESRCH; 4939 goto out_irq; 4940 } 4941 4942 double_rq_lock(rq, p_rq); 4943 if (task_rq(p) != p_rq) { 4944 double_rq_unlock(rq, p_rq); 4945 goto again; 4946 } 4947 4948 if (!curr->sched_class->yield_to_task) 4949 goto out_unlock; 4950 4951 if (curr->sched_class != p->sched_class) 4952 goto out_unlock; 4953 4954 if (task_running(p_rq, p) || p->state) 4955 goto out_unlock; 4956 4957 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4958 if (yielded) { 4959 schedstat_inc(rq, yld_count); 4960 /* 4961 * Make p's CPU reschedule; pick_next_entity takes care of 4962 * fairness. 4963 */ 4964 if (preempt && rq != p_rq) 4965 resched_curr(p_rq); 4966 } 4967 4968 out_unlock: 4969 double_rq_unlock(rq, p_rq); 4970 out_irq: 4971 local_irq_restore(flags); 4972 4973 if (yielded > 0) 4974 schedule(); 4975 4976 return yielded; 4977 } 4978 EXPORT_SYMBOL_GPL(yield_to); 4979 4980 /* 4981 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4982 * that process accounting knows that this is a task in IO wait state. 4983 */ 4984 long __sched io_schedule_timeout(long timeout) 4985 { 4986 int old_iowait = current->in_iowait; 4987 struct rq *rq; 4988 long ret; 4989 4990 current->in_iowait = 1; 4991 blk_schedule_flush_plug(current); 4992 4993 delayacct_blkio_start(); 4994 rq = raw_rq(); 4995 atomic_inc(&rq->nr_iowait); 4996 ret = schedule_timeout(timeout); 4997 current->in_iowait = old_iowait; 4998 atomic_dec(&rq->nr_iowait); 4999 delayacct_blkio_end(); 5000 5001 return ret; 5002 } 5003 EXPORT_SYMBOL(io_schedule_timeout); 5004 5005 /** 5006 * sys_sched_get_priority_max - return maximum RT priority. 5007 * @policy: scheduling class. 5008 * 5009 * Return: On success, this syscall returns the maximum 5010 * rt_priority that can be used by a given scheduling class. 5011 * On failure, a negative error code is returned. 5012 */ 5013 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5014 { 5015 int ret = -EINVAL; 5016 5017 switch (policy) { 5018 case SCHED_FIFO: 5019 case SCHED_RR: 5020 ret = MAX_USER_RT_PRIO-1; 5021 break; 5022 case SCHED_DEADLINE: 5023 case SCHED_NORMAL: 5024 case SCHED_BATCH: 5025 case SCHED_IDLE: 5026 ret = 0; 5027 break; 5028 } 5029 return ret; 5030 } 5031 5032 /** 5033 * sys_sched_get_priority_min - return minimum RT priority. 5034 * @policy: scheduling class. 5035 * 5036 * Return: On success, this syscall returns the minimum 5037 * rt_priority that can be used by a given scheduling class. 5038 * On failure, a negative error code is returned. 5039 */ 5040 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5041 { 5042 int ret = -EINVAL; 5043 5044 switch (policy) { 5045 case SCHED_FIFO: 5046 case SCHED_RR: 5047 ret = 1; 5048 break; 5049 case SCHED_DEADLINE: 5050 case SCHED_NORMAL: 5051 case SCHED_BATCH: 5052 case SCHED_IDLE: 5053 ret = 0; 5054 } 5055 return ret; 5056 } 5057 5058 /** 5059 * sys_sched_rr_get_interval - return the default timeslice of a process. 5060 * @pid: pid of the process. 5061 * @interval: userspace pointer to the timeslice value. 5062 * 5063 * this syscall writes the default timeslice value of a given process 5064 * into the user-space timespec buffer. A value of '0' means infinity. 5065 * 5066 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5067 * an error code. 5068 */ 5069 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5070 struct timespec __user *, interval) 5071 { 5072 struct task_struct *p; 5073 unsigned int time_slice; 5074 struct rq_flags rf; 5075 struct timespec t; 5076 struct rq *rq; 5077 int retval; 5078 5079 if (pid < 0) 5080 return -EINVAL; 5081 5082 retval = -ESRCH; 5083 rcu_read_lock(); 5084 p = find_process_by_pid(pid); 5085 if (!p) 5086 goto out_unlock; 5087 5088 retval = security_task_getscheduler(p); 5089 if (retval) 5090 goto out_unlock; 5091 5092 rq = task_rq_lock(p, &rf); 5093 time_slice = 0; 5094 if (p->sched_class->get_rr_interval) 5095 time_slice = p->sched_class->get_rr_interval(rq, p); 5096 task_rq_unlock(rq, p, &rf); 5097 5098 rcu_read_unlock(); 5099 jiffies_to_timespec(time_slice, &t); 5100 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5101 return retval; 5102 5103 out_unlock: 5104 rcu_read_unlock(); 5105 return retval; 5106 } 5107 5108 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5109 5110 void sched_show_task(struct task_struct *p) 5111 { 5112 unsigned long free = 0; 5113 int ppid; 5114 unsigned long state = p->state; 5115 5116 if (state) 5117 state = __ffs(state) + 1; 5118 printk(KERN_INFO "%-15.15s %c", p->comm, 5119 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5120 #if BITS_PER_LONG == 32 5121 if (state == TASK_RUNNING) 5122 printk(KERN_CONT " running "); 5123 else 5124 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5125 #else 5126 if (state == TASK_RUNNING) 5127 printk(KERN_CONT " running task "); 5128 else 5129 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5130 #endif 5131 #ifdef CONFIG_DEBUG_STACK_USAGE 5132 free = stack_not_used(p); 5133 #endif 5134 ppid = 0; 5135 rcu_read_lock(); 5136 if (pid_alive(p)) 5137 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5138 rcu_read_unlock(); 5139 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5140 task_pid_nr(p), ppid, 5141 (unsigned long)task_thread_info(p)->flags); 5142 5143 print_worker_info(KERN_INFO, p); 5144 show_stack(p, NULL); 5145 } 5146 5147 void show_state_filter(unsigned long state_filter) 5148 { 5149 struct task_struct *g, *p; 5150 5151 #if BITS_PER_LONG == 32 5152 printk(KERN_INFO 5153 " task PC stack pid father\n"); 5154 #else 5155 printk(KERN_INFO 5156 " task PC stack pid father\n"); 5157 #endif 5158 rcu_read_lock(); 5159 for_each_process_thread(g, p) { 5160 /* 5161 * reset the NMI-timeout, listing all files on a slow 5162 * console might take a lot of time: 5163 * Also, reset softlockup watchdogs on all CPUs, because 5164 * another CPU might be blocked waiting for us to process 5165 * an IPI. 5166 */ 5167 touch_nmi_watchdog(); 5168 touch_all_softlockup_watchdogs(); 5169 if (!state_filter || (p->state & state_filter)) 5170 sched_show_task(p); 5171 } 5172 5173 #ifdef CONFIG_SCHED_DEBUG 5174 if (!state_filter) 5175 sysrq_sched_debug_show(); 5176 #endif 5177 rcu_read_unlock(); 5178 /* 5179 * Only show locks if all tasks are dumped: 5180 */ 5181 if (!state_filter) 5182 debug_show_all_locks(); 5183 } 5184 5185 void init_idle_bootup_task(struct task_struct *idle) 5186 { 5187 idle->sched_class = &idle_sched_class; 5188 } 5189 5190 /** 5191 * init_idle - set up an idle thread for a given CPU 5192 * @idle: task in question 5193 * @cpu: cpu the idle task belongs to 5194 * 5195 * NOTE: this function does not set the idle thread's NEED_RESCHED 5196 * flag, to make booting more robust. 5197 */ 5198 void init_idle(struct task_struct *idle, int cpu) 5199 { 5200 struct rq *rq = cpu_rq(cpu); 5201 unsigned long flags; 5202 5203 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5204 raw_spin_lock(&rq->lock); 5205 5206 __sched_fork(0, idle); 5207 idle->state = TASK_RUNNING; 5208 idle->se.exec_start = sched_clock(); 5209 5210 kasan_unpoison_task_stack(idle); 5211 5212 #ifdef CONFIG_SMP 5213 /* 5214 * Its possible that init_idle() gets called multiple times on a task, 5215 * in that case do_set_cpus_allowed() will not do the right thing. 5216 * 5217 * And since this is boot we can forgo the serialization. 5218 */ 5219 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5220 #endif 5221 /* 5222 * We're having a chicken and egg problem, even though we are 5223 * holding rq->lock, the cpu isn't yet set to this cpu so the 5224 * lockdep check in task_group() will fail. 5225 * 5226 * Similar case to sched_fork(). / Alternatively we could 5227 * use task_rq_lock() here and obtain the other rq->lock. 5228 * 5229 * Silence PROVE_RCU 5230 */ 5231 rcu_read_lock(); 5232 __set_task_cpu(idle, cpu); 5233 rcu_read_unlock(); 5234 5235 rq->curr = rq->idle = idle; 5236 idle->on_rq = TASK_ON_RQ_QUEUED; 5237 #ifdef CONFIG_SMP 5238 idle->on_cpu = 1; 5239 #endif 5240 raw_spin_unlock(&rq->lock); 5241 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5242 5243 /* Set the preempt count _outside_ the spinlocks! */ 5244 init_idle_preempt_count(idle, cpu); 5245 5246 /* 5247 * The idle tasks have their own, simple scheduling class: 5248 */ 5249 idle->sched_class = &idle_sched_class; 5250 ftrace_graph_init_idle_task(idle, cpu); 5251 vtime_init_idle(idle, cpu); 5252 #ifdef CONFIG_SMP 5253 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5254 #endif 5255 } 5256 5257 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5258 const struct cpumask *trial) 5259 { 5260 int ret = 1, trial_cpus; 5261 struct dl_bw *cur_dl_b; 5262 unsigned long flags; 5263 5264 if (!cpumask_weight(cur)) 5265 return ret; 5266 5267 rcu_read_lock_sched(); 5268 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5269 trial_cpus = cpumask_weight(trial); 5270 5271 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5272 if (cur_dl_b->bw != -1 && 5273 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5274 ret = 0; 5275 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5276 rcu_read_unlock_sched(); 5277 5278 return ret; 5279 } 5280 5281 int task_can_attach(struct task_struct *p, 5282 const struct cpumask *cs_cpus_allowed) 5283 { 5284 int ret = 0; 5285 5286 /* 5287 * Kthreads which disallow setaffinity shouldn't be moved 5288 * to a new cpuset; we don't want to change their cpu 5289 * affinity and isolating such threads by their set of 5290 * allowed nodes is unnecessary. Thus, cpusets are not 5291 * applicable for such threads. This prevents checking for 5292 * success of set_cpus_allowed_ptr() on all attached tasks 5293 * before cpus_allowed may be changed. 5294 */ 5295 if (p->flags & PF_NO_SETAFFINITY) { 5296 ret = -EINVAL; 5297 goto out; 5298 } 5299 5300 #ifdef CONFIG_SMP 5301 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5302 cs_cpus_allowed)) { 5303 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5304 cs_cpus_allowed); 5305 struct dl_bw *dl_b; 5306 bool overflow; 5307 int cpus; 5308 unsigned long flags; 5309 5310 rcu_read_lock_sched(); 5311 dl_b = dl_bw_of(dest_cpu); 5312 raw_spin_lock_irqsave(&dl_b->lock, flags); 5313 cpus = dl_bw_cpus(dest_cpu); 5314 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5315 if (overflow) 5316 ret = -EBUSY; 5317 else { 5318 /* 5319 * We reserve space for this task in the destination 5320 * root_domain, as we can't fail after this point. 5321 * We will free resources in the source root_domain 5322 * later on (see set_cpus_allowed_dl()). 5323 */ 5324 __dl_add(dl_b, p->dl.dl_bw); 5325 } 5326 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5327 rcu_read_unlock_sched(); 5328 5329 } 5330 #endif 5331 out: 5332 return ret; 5333 } 5334 5335 #ifdef CONFIG_SMP 5336 5337 static bool sched_smp_initialized __read_mostly; 5338 5339 #ifdef CONFIG_NUMA_BALANCING 5340 /* Migrate current task p to target_cpu */ 5341 int migrate_task_to(struct task_struct *p, int target_cpu) 5342 { 5343 struct migration_arg arg = { p, target_cpu }; 5344 int curr_cpu = task_cpu(p); 5345 5346 if (curr_cpu == target_cpu) 5347 return 0; 5348 5349 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5350 return -EINVAL; 5351 5352 /* TODO: This is not properly updating schedstats */ 5353 5354 trace_sched_move_numa(p, curr_cpu, target_cpu); 5355 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5356 } 5357 5358 /* 5359 * Requeue a task on a given node and accurately track the number of NUMA 5360 * tasks on the runqueues 5361 */ 5362 void sched_setnuma(struct task_struct *p, int nid) 5363 { 5364 bool queued, running; 5365 struct rq_flags rf; 5366 struct rq *rq; 5367 5368 rq = task_rq_lock(p, &rf); 5369 queued = task_on_rq_queued(p); 5370 running = task_current(rq, p); 5371 5372 if (queued) 5373 dequeue_task(rq, p, DEQUEUE_SAVE); 5374 if (running) 5375 put_prev_task(rq, p); 5376 5377 p->numa_preferred_nid = nid; 5378 5379 if (running) 5380 p->sched_class->set_curr_task(rq); 5381 if (queued) 5382 enqueue_task(rq, p, ENQUEUE_RESTORE); 5383 task_rq_unlock(rq, p, &rf); 5384 } 5385 #endif /* CONFIG_NUMA_BALANCING */ 5386 5387 #ifdef CONFIG_HOTPLUG_CPU 5388 /* 5389 * Ensures that the idle task is using init_mm right before its cpu goes 5390 * offline. 5391 */ 5392 void idle_task_exit(void) 5393 { 5394 struct mm_struct *mm = current->active_mm; 5395 5396 BUG_ON(cpu_online(smp_processor_id())); 5397 5398 if (mm != &init_mm) { 5399 switch_mm_irqs_off(mm, &init_mm, current); 5400 finish_arch_post_lock_switch(); 5401 } 5402 mmdrop(mm); 5403 } 5404 5405 /* 5406 * Since this CPU is going 'away' for a while, fold any nr_active delta 5407 * we might have. Assumes we're called after migrate_tasks() so that the 5408 * nr_active count is stable. We need to take the teardown thread which 5409 * is calling this into account, so we hand in adjust = 1 to the load 5410 * calculation. 5411 * 5412 * Also see the comment "Global load-average calculations". 5413 */ 5414 static void calc_load_migrate(struct rq *rq) 5415 { 5416 long delta = calc_load_fold_active(rq, 1); 5417 if (delta) 5418 atomic_long_add(delta, &calc_load_tasks); 5419 } 5420 5421 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5422 { 5423 } 5424 5425 static const struct sched_class fake_sched_class = { 5426 .put_prev_task = put_prev_task_fake, 5427 }; 5428 5429 static struct task_struct fake_task = { 5430 /* 5431 * Avoid pull_{rt,dl}_task() 5432 */ 5433 .prio = MAX_PRIO + 1, 5434 .sched_class = &fake_sched_class, 5435 }; 5436 5437 /* 5438 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5439 * try_to_wake_up()->select_task_rq(). 5440 * 5441 * Called with rq->lock held even though we'er in stop_machine() and 5442 * there's no concurrency possible, we hold the required locks anyway 5443 * because of lock validation efforts. 5444 */ 5445 static void migrate_tasks(struct rq *dead_rq) 5446 { 5447 struct rq *rq = dead_rq; 5448 struct task_struct *next, *stop = rq->stop; 5449 struct pin_cookie cookie; 5450 int dest_cpu; 5451 5452 /* 5453 * Fudge the rq selection such that the below task selection loop 5454 * doesn't get stuck on the currently eligible stop task. 5455 * 5456 * We're currently inside stop_machine() and the rq is either stuck 5457 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5458 * either way we should never end up calling schedule() until we're 5459 * done here. 5460 */ 5461 rq->stop = NULL; 5462 5463 /* 5464 * put_prev_task() and pick_next_task() sched 5465 * class method both need to have an up-to-date 5466 * value of rq->clock[_task] 5467 */ 5468 update_rq_clock(rq); 5469 5470 for (;;) { 5471 /* 5472 * There's this thread running, bail when that's the only 5473 * remaining thread. 5474 */ 5475 if (rq->nr_running == 1) 5476 break; 5477 5478 /* 5479 * pick_next_task assumes pinned rq->lock. 5480 */ 5481 cookie = lockdep_pin_lock(&rq->lock); 5482 next = pick_next_task(rq, &fake_task, cookie); 5483 BUG_ON(!next); 5484 next->sched_class->put_prev_task(rq, next); 5485 5486 /* 5487 * Rules for changing task_struct::cpus_allowed are holding 5488 * both pi_lock and rq->lock, such that holding either 5489 * stabilizes the mask. 5490 * 5491 * Drop rq->lock is not quite as disastrous as it usually is 5492 * because !cpu_active at this point, which means load-balance 5493 * will not interfere. Also, stop-machine. 5494 */ 5495 lockdep_unpin_lock(&rq->lock, cookie); 5496 raw_spin_unlock(&rq->lock); 5497 raw_spin_lock(&next->pi_lock); 5498 raw_spin_lock(&rq->lock); 5499 5500 /* 5501 * Since we're inside stop-machine, _nothing_ should have 5502 * changed the task, WARN if weird stuff happened, because in 5503 * that case the above rq->lock drop is a fail too. 5504 */ 5505 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5506 raw_spin_unlock(&next->pi_lock); 5507 continue; 5508 } 5509 5510 /* Find suitable destination for @next, with force if needed. */ 5511 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5512 5513 rq = __migrate_task(rq, next, dest_cpu); 5514 if (rq != dead_rq) { 5515 raw_spin_unlock(&rq->lock); 5516 rq = dead_rq; 5517 raw_spin_lock(&rq->lock); 5518 } 5519 raw_spin_unlock(&next->pi_lock); 5520 } 5521 5522 rq->stop = stop; 5523 } 5524 #endif /* CONFIG_HOTPLUG_CPU */ 5525 5526 static void set_rq_online(struct rq *rq) 5527 { 5528 if (!rq->online) { 5529 const struct sched_class *class; 5530 5531 cpumask_set_cpu(rq->cpu, rq->rd->online); 5532 rq->online = 1; 5533 5534 for_each_class(class) { 5535 if (class->rq_online) 5536 class->rq_online(rq); 5537 } 5538 } 5539 } 5540 5541 static void set_rq_offline(struct rq *rq) 5542 { 5543 if (rq->online) { 5544 const struct sched_class *class; 5545 5546 for_each_class(class) { 5547 if (class->rq_offline) 5548 class->rq_offline(rq); 5549 } 5550 5551 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5552 rq->online = 0; 5553 } 5554 } 5555 5556 static void set_cpu_rq_start_time(unsigned int cpu) 5557 { 5558 struct rq *rq = cpu_rq(cpu); 5559 5560 rq->age_stamp = sched_clock_cpu(cpu); 5561 } 5562 5563 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5564 5565 #ifdef CONFIG_SCHED_DEBUG 5566 5567 static __read_mostly int sched_debug_enabled; 5568 5569 static int __init sched_debug_setup(char *str) 5570 { 5571 sched_debug_enabled = 1; 5572 5573 return 0; 5574 } 5575 early_param("sched_debug", sched_debug_setup); 5576 5577 static inline bool sched_debug(void) 5578 { 5579 return sched_debug_enabled; 5580 } 5581 5582 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5583 struct cpumask *groupmask) 5584 { 5585 struct sched_group *group = sd->groups; 5586 5587 cpumask_clear(groupmask); 5588 5589 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5590 5591 if (!(sd->flags & SD_LOAD_BALANCE)) { 5592 printk("does not load-balance\n"); 5593 if (sd->parent) 5594 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5595 " has parent"); 5596 return -1; 5597 } 5598 5599 printk(KERN_CONT "span %*pbl level %s\n", 5600 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5601 5602 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5603 printk(KERN_ERR "ERROR: domain->span does not contain " 5604 "CPU%d\n", cpu); 5605 } 5606 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5607 printk(KERN_ERR "ERROR: domain->groups does not contain" 5608 " CPU%d\n", cpu); 5609 } 5610 5611 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5612 do { 5613 if (!group) { 5614 printk("\n"); 5615 printk(KERN_ERR "ERROR: group is NULL\n"); 5616 break; 5617 } 5618 5619 if (!cpumask_weight(sched_group_cpus(group))) { 5620 printk(KERN_CONT "\n"); 5621 printk(KERN_ERR "ERROR: empty group\n"); 5622 break; 5623 } 5624 5625 if (!(sd->flags & SD_OVERLAP) && 5626 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5627 printk(KERN_CONT "\n"); 5628 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5629 break; 5630 } 5631 5632 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5633 5634 printk(KERN_CONT " %*pbl", 5635 cpumask_pr_args(sched_group_cpus(group))); 5636 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5637 printk(KERN_CONT " (cpu_capacity = %d)", 5638 group->sgc->capacity); 5639 } 5640 5641 group = group->next; 5642 } while (group != sd->groups); 5643 printk(KERN_CONT "\n"); 5644 5645 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5646 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5647 5648 if (sd->parent && 5649 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5650 printk(KERN_ERR "ERROR: parent span is not a superset " 5651 "of domain->span\n"); 5652 return 0; 5653 } 5654 5655 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5656 { 5657 int level = 0; 5658 5659 if (!sched_debug_enabled) 5660 return; 5661 5662 if (!sd) { 5663 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5664 return; 5665 } 5666 5667 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5668 5669 for (;;) { 5670 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5671 break; 5672 level++; 5673 sd = sd->parent; 5674 if (!sd) 5675 break; 5676 } 5677 } 5678 #else /* !CONFIG_SCHED_DEBUG */ 5679 # define sched_domain_debug(sd, cpu) do { } while (0) 5680 static inline bool sched_debug(void) 5681 { 5682 return false; 5683 } 5684 #endif /* CONFIG_SCHED_DEBUG */ 5685 5686 static int sd_degenerate(struct sched_domain *sd) 5687 { 5688 if (cpumask_weight(sched_domain_span(sd)) == 1) 5689 return 1; 5690 5691 /* Following flags need at least 2 groups */ 5692 if (sd->flags & (SD_LOAD_BALANCE | 5693 SD_BALANCE_NEWIDLE | 5694 SD_BALANCE_FORK | 5695 SD_BALANCE_EXEC | 5696 SD_SHARE_CPUCAPACITY | 5697 SD_SHARE_PKG_RESOURCES | 5698 SD_SHARE_POWERDOMAIN)) { 5699 if (sd->groups != sd->groups->next) 5700 return 0; 5701 } 5702 5703 /* Following flags don't use groups */ 5704 if (sd->flags & (SD_WAKE_AFFINE)) 5705 return 0; 5706 5707 return 1; 5708 } 5709 5710 static int 5711 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5712 { 5713 unsigned long cflags = sd->flags, pflags = parent->flags; 5714 5715 if (sd_degenerate(parent)) 5716 return 1; 5717 5718 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5719 return 0; 5720 5721 /* Flags needing groups don't count if only 1 group in parent */ 5722 if (parent->groups == parent->groups->next) { 5723 pflags &= ~(SD_LOAD_BALANCE | 5724 SD_BALANCE_NEWIDLE | 5725 SD_BALANCE_FORK | 5726 SD_BALANCE_EXEC | 5727 SD_SHARE_CPUCAPACITY | 5728 SD_SHARE_PKG_RESOURCES | 5729 SD_PREFER_SIBLING | 5730 SD_SHARE_POWERDOMAIN); 5731 if (nr_node_ids == 1) 5732 pflags &= ~SD_SERIALIZE; 5733 } 5734 if (~cflags & pflags) 5735 return 0; 5736 5737 return 1; 5738 } 5739 5740 static void free_rootdomain(struct rcu_head *rcu) 5741 { 5742 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5743 5744 cpupri_cleanup(&rd->cpupri); 5745 cpudl_cleanup(&rd->cpudl); 5746 free_cpumask_var(rd->dlo_mask); 5747 free_cpumask_var(rd->rto_mask); 5748 free_cpumask_var(rd->online); 5749 free_cpumask_var(rd->span); 5750 kfree(rd); 5751 } 5752 5753 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5754 { 5755 struct root_domain *old_rd = NULL; 5756 unsigned long flags; 5757 5758 raw_spin_lock_irqsave(&rq->lock, flags); 5759 5760 if (rq->rd) { 5761 old_rd = rq->rd; 5762 5763 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5764 set_rq_offline(rq); 5765 5766 cpumask_clear_cpu(rq->cpu, old_rd->span); 5767 5768 /* 5769 * If we dont want to free the old_rd yet then 5770 * set old_rd to NULL to skip the freeing later 5771 * in this function: 5772 */ 5773 if (!atomic_dec_and_test(&old_rd->refcount)) 5774 old_rd = NULL; 5775 } 5776 5777 atomic_inc(&rd->refcount); 5778 rq->rd = rd; 5779 5780 cpumask_set_cpu(rq->cpu, rd->span); 5781 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5782 set_rq_online(rq); 5783 5784 raw_spin_unlock_irqrestore(&rq->lock, flags); 5785 5786 if (old_rd) 5787 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5788 } 5789 5790 static int init_rootdomain(struct root_domain *rd) 5791 { 5792 memset(rd, 0, sizeof(*rd)); 5793 5794 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5795 goto out; 5796 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5797 goto free_span; 5798 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5799 goto free_online; 5800 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5801 goto free_dlo_mask; 5802 5803 init_dl_bw(&rd->dl_bw); 5804 if (cpudl_init(&rd->cpudl) != 0) 5805 goto free_dlo_mask; 5806 5807 if (cpupri_init(&rd->cpupri) != 0) 5808 goto free_rto_mask; 5809 return 0; 5810 5811 free_rto_mask: 5812 free_cpumask_var(rd->rto_mask); 5813 free_dlo_mask: 5814 free_cpumask_var(rd->dlo_mask); 5815 free_online: 5816 free_cpumask_var(rd->online); 5817 free_span: 5818 free_cpumask_var(rd->span); 5819 out: 5820 return -ENOMEM; 5821 } 5822 5823 /* 5824 * By default the system creates a single root-domain with all cpus as 5825 * members (mimicking the global state we have today). 5826 */ 5827 struct root_domain def_root_domain; 5828 5829 static void init_defrootdomain(void) 5830 { 5831 init_rootdomain(&def_root_domain); 5832 5833 atomic_set(&def_root_domain.refcount, 1); 5834 } 5835 5836 static struct root_domain *alloc_rootdomain(void) 5837 { 5838 struct root_domain *rd; 5839 5840 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5841 if (!rd) 5842 return NULL; 5843 5844 if (init_rootdomain(rd) != 0) { 5845 kfree(rd); 5846 return NULL; 5847 } 5848 5849 return rd; 5850 } 5851 5852 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5853 { 5854 struct sched_group *tmp, *first; 5855 5856 if (!sg) 5857 return; 5858 5859 first = sg; 5860 do { 5861 tmp = sg->next; 5862 5863 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5864 kfree(sg->sgc); 5865 5866 kfree(sg); 5867 sg = tmp; 5868 } while (sg != first); 5869 } 5870 5871 static void free_sched_domain(struct rcu_head *rcu) 5872 { 5873 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5874 5875 /* 5876 * If its an overlapping domain it has private groups, iterate and 5877 * nuke them all. 5878 */ 5879 if (sd->flags & SD_OVERLAP) { 5880 free_sched_groups(sd->groups, 1); 5881 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5882 kfree(sd->groups->sgc); 5883 kfree(sd->groups); 5884 } 5885 kfree(sd); 5886 } 5887 5888 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5889 { 5890 call_rcu(&sd->rcu, free_sched_domain); 5891 } 5892 5893 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5894 { 5895 for (; sd; sd = sd->parent) 5896 destroy_sched_domain(sd, cpu); 5897 } 5898 5899 /* 5900 * Keep a special pointer to the highest sched_domain that has 5901 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5902 * allows us to avoid some pointer chasing select_idle_sibling(). 5903 * 5904 * Also keep a unique ID per domain (we use the first cpu number in 5905 * the cpumask of the domain), this allows us to quickly tell if 5906 * two cpus are in the same cache domain, see cpus_share_cache(). 5907 */ 5908 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5909 DEFINE_PER_CPU(int, sd_llc_size); 5910 DEFINE_PER_CPU(int, sd_llc_id); 5911 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5912 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5913 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5914 5915 static void update_top_cache_domain(int cpu) 5916 { 5917 struct sched_domain *sd; 5918 struct sched_domain *busy_sd = NULL; 5919 int id = cpu; 5920 int size = 1; 5921 5922 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5923 if (sd) { 5924 id = cpumask_first(sched_domain_span(sd)); 5925 size = cpumask_weight(sched_domain_span(sd)); 5926 busy_sd = sd->parent; /* sd_busy */ 5927 } 5928 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5929 5930 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5931 per_cpu(sd_llc_size, cpu) = size; 5932 per_cpu(sd_llc_id, cpu) = id; 5933 5934 sd = lowest_flag_domain(cpu, SD_NUMA); 5935 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5936 5937 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5938 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5939 } 5940 5941 /* 5942 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5943 * hold the hotplug lock. 5944 */ 5945 static void 5946 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5947 { 5948 struct rq *rq = cpu_rq(cpu); 5949 struct sched_domain *tmp; 5950 5951 /* Remove the sched domains which do not contribute to scheduling. */ 5952 for (tmp = sd; tmp; ) { 5953 struct sched_domain *parent = tmp->parent; 5954 if (!parent) 5955 break; 5956 5957 if (sd_parent_degenerate(tmp, parent)) { 5958 tmp->parent = parent->parent; 5959 if (parent->parent) 5960 parent->parent->child = tmp; 5961 /* 5962 * Transfer SD_PREFER_SIBLING down in case of a 5963 * degenerate parent; the spans match for this 5964 * so the property transfers. 5965 */ 5966 if (parent->flags & SD_PREFER_SIBLING) 5967 tmp->flags |= SD_PREFER_SIBLING; 5968 destroy_sched_domain(parent, cpu); 5969 } else 5970 tmp = tmp->parent; 5971 } 5972 5973 if (sd && sd_degenerate(sd)) { 5974 tmp = sd; 5975 sd = sd->parent; 5976 destroy_sched_domain(tmp, cpu); 5977 if (sd) 5978 sd->child = NULL; 5979 } 5980 5981 sched_domain_debug(sd, cpu); 5982 5983 rq_attach_root(rq, rd); 5984 tmp = rq->sd; 5985 rcu_assign_pointer(rq->sd, sd); 5986 destroy_sched_domains(tmp, cpu); 5987 5988 update_top_cache_domain(cpu); 5989 } 5990 5991 /* Setup the mask of cpus configured for isolated domains */ 5992 static int __init isolated_cpu_setup(char *str) 5993 { 5994 int ret; 5995 5996 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5997 ret = cpulist_parse(str, cpu_isolated_map); 5998 if (ret) { 5999 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 6000 return 0; 6001 } 6002 return 1; 6003 } 6004 __setup("isolcpus=", isolated_cpu_setup); 6005 6006 struct s_data { 6007 struct sched_domain ** __percpu sd; 6008 struct root_domain *rd; 6009 }; 6010 6011 enum s_alloc { 6012 sa_rootdomain, 6013 sa_sd, 6014 sa_sd_storage, 6015 sa_none, 6016 }; 6017 6018 /* 6019 * Build an iteration mask that can exclude certain CPUs from the upwards 6020 * domain traversal. 6021 * 6022 * Asymmetric node setups can result in situations where the domain tree is of 6023 * unequal depth, make sure to skip domains that already cover the entire 6024 * range. 6025 * 6026 * In that case build_sched_domains() will have terminated the iteration early 6027 * and our sibling sd spans will be empty. Domains should always include the 6028 * cpu they're built on, so check that. 6029 * 6030 */ 6031 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6032 { 6033 const struct cpumask *span = sched_domain_span(sd); 6034 struct sd_data *sdd = sd->private; 6035 struct sched_domain *sibling; 6036 int i; 6037 6038 for_each_cpu(i, span) { 6039 sibling = *per_cpu_ptr(sdd->sd, i); 6040 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6041 continue; 6042 6043 cpumask_set_cpu(i, sched_group_mask(sg)); 6044 } 6045 } 6046 6047 /* 6048 * Return the canonical balance cpu for this group, this is the first cpu 6049 * of this group that's also in the iteration mask. 6050 */ 6051 int group_balance_cpu(struct sched_group *sg) 6052 { 6053 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6054 } 6055 6056 static int 6057 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6058 { 6059 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6060 const struct cpumask *span = sched_domain_span(sd); 6061 struct cpumask *covered = sched_domains_tmpmask; 6062 struct sd_data *sdd = sd->private; 6063 struct sched_domain *sibling; 6064 int i; 6065 6066 cpumask_clear(covered); 6067 6068 for_each_cpu(i, span) { 6069 struct cpumask *sg_span; 6070 6071 if (cpumask_test_cpu(i, covered)) 6072 continue; 6073 6074 sibling = *per_cpu_ptr(sdd->sd, i); 6075 6076 /* See the comment near build_group_mask(). */ 6077 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6078 continue; 6079 6080 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6081 GFP_KERNEL, cpu_to_node(cpu)); 6082 6083 if (!sg) 6084 goto fail; 6085 6086 sg_span = sched_group_cpus(sg); 6087 if (sibling->child) 6088 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6089 else 6090 cpumask_set_cpu(i, sg_span); 6091 6092 cpumask_or(covered, covered, sg_span); 6093 6094 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6095 if (atomic_inc_return(&sg->sgc->ref) == 1) 6096 build_group_mask(sd, sg); 6097 6098 /* 6099 * Initialize sgc->capacity such that even if we mess up the 6100 * domains and no possible iteration will get us here, we won't 6101 * die on a /0 trap. 6102 */ 6103 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6104 6105 /* 6106 * Make sure the first group of this domain contains the 6107 * canonical balance cpu. Otherwise the sched_domain iteration 6108 * breaks. See update_sg_lb_stats(). 6109 */ 6110 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6111 group_balance_cpu(sg) == cpu) 6112 groups = sg; 6113 6114 if (!first) 6115 first = sg; 6116 if (last) 6117 last->next = sg; 6118 last = sg; 6119 last->next = first; 6120 } 6121 sd->groups = groups; 6122 6123 return 0; 6124 6125 fail: 6126 free_sched_groups(first, 0); 6127 6128 return -ENOMEM; 6129 } 6130 6131 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6132 { 6133 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6134 struct sched_domain *child = sd->child; 6135 6136 if (child) 6137 cpu = cpumask_first(sched_domain_span(child)); 6138 6139 if (sg) { 6140 *sg = *per_cpu_ptr(sdd->sg, cpu); 6141 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6142 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6143 } 6144 6145 return cpu; 6146 } 6147 6148 /* 6149 * build_sched_groups will build a circular linked list of the groups 6150 * covered by the given span, and will set each group's ->cpumask correctly, 6151 * and ->cpu_capacity to 0. 6152 * 6153 * Assumes the sched_domain tree is fully constructed 6154 */ 6155 static int 6156 build_sched_groups(struct sched_domain *sd, int cpu) 6157 { 6158 struct sched_group *first = NULL, *last = NULL; 6159 struct sd_data *sdd = sd->private; 6160 const struct cpumask *span = sched_domain_span(sd); 6161 struct cpumask *covered; 6162 int i; 6163 6164 get_group(cpu, sdd, &sd->groups); 6165 atomic_inc(&sd->groups->ref); 6166 6167 if (cpu != cpumask_first(span)) 6168 return 0; 6169 6170 lockdep_assert_held(&sched_domains_mutex); 6171 covered = sched_domains_tmpmask; 6172 6173 cpumask_clear(covered); 6174 6175 for_each_cpu(i, span) { 6176 struct sched_group *sg; 6177 int group, j; 6178 6179 if (cpumask_test_cpu(i, covered)) 6180 continue; 6181 6182 group = get_group(i, sdd, &sg); 6183 cpumask_setall(sched_group_mask(sg)); 6184 6185 for_each_cpu(j, span) { 6186 if (get_group(j, sdd, NULL) != group) 6187 continue; 6188 6189 cpumask_set_cpu(j, covered); 6190 cpumask_set_cpu(j, sched_group_cpus(sg)); 6191 } 6192 6193 if (!first) 6194 first = sg; 6195 if (last) 6196 last->next = sg; 6197 last = sg; 6198 } 6199 last->next = first; 6200 6201 return 0; 6202 } 6203 6204 /* 6205 * Initialize sched groups cpu_capacity. 6206 * 6207 * cpu_capacity indicates the capacity of sched group, which is used while 6208 * distributing the load between different sched groups in a sched domain. 6209 * Typically cpu_capacity for all the groups in a sched domain will be same 6210 * unless there are asymmetries in the topology. If there are asymmetries, 6211 * group having more cpu_capacity will pickup more load compared to the 6212 * group having less cpu_capacity. 6213 */ 6214 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6215 { 6216 struct sched_group *sg = sd->groups; 6217 6218 WARN_ON(!sg); 6219 6220 do { 6221 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6222 sg = sg->next; 6223 } while (sg != sd->groups); 6224 6225 if (cpu != group_balance_cpu(sg)) 6226 return; 6227 6228 update_group_capacity(sd, cpu); 6229 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6230 } 6231 6232 /* 6233 * Initializers for schedule domains 6234 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6235 */ 6236 6237 static int default_relax_domain_level = -1; 6238 int sched_domain_level_max; 6239 6240 static int __init setup_relax_domain_level(char *str) 6241 { 6242 if (kstrtoint(str, 0, &default_relax_domain_level)) 6243 pr_warn("Unable to set relax_domain_level\n"); 6244 6245 return 1; 6246 } 6247 __setup("relax_domain_level=", setup_relax_domain_level); 6248 6249 static void set_domain_attribute(struct sched_domain *sd, 6250 struct sched_domain_attr *attr) 6251 { 6252 int request; 6253 6254 if (!attr || attr->relax_domain_level < 0) { 6255 if (default_relax_domain_level < 0) 6256 return; 6257 else 6258 request = default_relax_domain_level; 6259 } else 6260 request = attr->relax_domain_level; 6261 if (request < sd->level) { 6262 /* turn off idle balance on this domain */ 6263 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6264 } else { 6265 /* turn on idle balance on this domain */ 6266 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6267 } 6268 } 6269 6270 static void __sdt_free(const struct cpumask *cpu_map); 6271 static int __sdt_alloc(const struct cpumask *cpu_map); 6272 6273 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6274 const struct cpumask *cpu_map) 6275 { 6276 switch (what) { 6277 case sa_rootdomain: 6278 if (!atomic_read(&d->rd->refcount)) 6279 free_rootdomain(&d->rd->rcu); /* fall through */ 6280 case sa_sd: 6281 free_percpu(d->sd); /* fall through */ 6282 case sa_sd_storage: 6283 __sdt_free(cpu_map); /* fall through */ 6284 case sa_none: 6285 break; 6286 } 6287 } 6288 6289 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6290 const struct cpumask *cpu_map) 6291 { 6292 memset(d, 0, sizeof(*d)); 6293 6294 if (__sdt_alloc(cpu_map)) 6295 return sa_sd_storage; 6296 d->sd = alloc_percpu(struct sched_domain *); 6297 if (!d->sd) 6298 return sa_sd_storage; 6299 d->rd = alloc_rootdomain(); 6300 if (!d->rd) 6301 return sa_sd; 6302 return sa_rootdomain; 6303 } 6304 6305 /* 6306 * NULL the sd_data elements we've used to build the sched_domain and 6307 * sched_group structure so that the subsequent __free_domain_allocs() 6308 * will not free the data we're using. 6309 */ 6310 static void claim_allocations(int cpu, struct sched_domain *sd) 6311 { 6312 struct sd_data *sdd = sd->private; 6313 6314 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6315 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6316 6317 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6318 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6319 6320 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6321 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6322 } 6323 6324 #ifdef CONFIG_NUMA 6325 static int sched_domains_numa_levels; 6326 enum numa_topology_type sched_numa_topology_type; 6327 static int *sched_domains_numa_distance; 6328 int sched_max_numa_distance; 6329 static struct cpumask ***sched_domains_numa_masks; 6330 static int sched_domains_curr_level; 6331 #endif 6332 6333 /* 6334 * SD_flags allowed in topology descriptions. 6335 * 6336 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6337 * SD_SHARE_PKG_RESOURCES - describes shared caches 6338 * SD_NUMA - describes NUMA topologies 6339 * SD_SHARE_POWERDOMAIN - describes shared power domain 6340 * 6341 * Odd one out: 6342 * SD_ASYM_PACKING - describes SMT quirks 6343 */ 6344 #define TOPOLOGY_SD_FLAGS \ 6345 (SD_SHARE_CPUCAPACITY | \ 6346 SD_SHARE_PKG_RESOURCES | \ 6347 SD_NUMA | \ 6348 SD_ASYM_PACKING | \ 6349 SD_SHARE_POWERDOMAIN) 6350 6351 static struct sched_domain * 6352 sd_init(struct sched_domain_topology_level *tl, int cpu) 6353 { 6354 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6355 int sd_weight, sd_flags = 0; 6356 6357 #ifdef CONFIG_NUMA 6358 /* 6359 * Ugly hack to pass state to sd_numa_mask()... 6360 */ 6361 sched_domains_curr_level = tl->numa_level; 6362 #endif 6363 6364 sd_weight = cpumask_weight(tl->mask(cpu)); 6365 6366 if (tl->sd_flags) 6367 sd_flags = (*tl->sd_flags)(); 6368 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6369 "wrong sd_flags in topology description\n")) 6370 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6371 6372 *sd = (struct sched_domain){ 6373 .min_interval = sd_weight, 6374 .max_interval = 2*sd_weight, 6375 .busy_factor = 32, 6376 .imbalance_pct = 125, 6377 6378 .cache_nice_tries = 0, 6379 .busy_idx = 0, 6380 .idle_idx = 0, 6381 .newidle_idx = 0, 6382 .wake_idx = 0, 6383 .forkexec_idx = 0, 6384 6385 .flags = 1*SD_LOAD_BALANCE 6386 | 1*SD_BALANCE_NEWIDLE 6387 | 1*SD_BALANCE_EXEC 6388 | 1*SD_BALANCE_FORK 6389 | 0*SD_BALANCE_WAKE 6390 | 1*SD_WAKE_AFFINE 6391 | 0*SD_SHARE_CPUCAPACITY 6392 | 0*SD_SHARE_PKG_RESOURCES 6393 | 0*SD_SERIALIZE 6394 | 0*SD_PREFER_SIBLING 6395 | 0*SD_NUMA 6396 | sd_flags 6397 , 6398 6399 .last_balance = jiffies, 6400 .balance_interval = sd_weight, 6401 .smt_gain = 0, 6402 .max_newidle_lb_cost = 0, 6403 .next_decay_max_lb_cost = jiffies, 6404 #ifdef CONFIG_SCHED_DEBUG 6405 .name = tl->name, 6406 #endif 6407 }; 6408 6409 /* 6410 * Convert topological properties into behaviour. 6411 */ 6412 6413 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6414 sd->flags |= SD_PREFER_SIBLING; 6415 sd->imbalance_pct = 110; 6416 sd->smt_gain = 1178; /* ~15% */ 6417 6418 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6419 sd->imbalance_pct = 117; 6420 sd->cache_nice_tries = 1; 6421 sd->busy_idx = 2; 6422 6423 #ifdef CONFIG_NUMA 6424 } else if (sd->flags & SD_NUMA) { 6425 sd->cache_nice_tries = 2; 6426 sd->busy_idx = 3; 6427 sd->idle_idx = 2; 6428 6429 sd->flags |= SD_SERIALIZE; 6430 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6431 sd->flags &= ~(SD_BALANCE_EXEC | 6432 SD_BALANCE_FORK | 6433 SD_WAKE_AFFINE); 6434 } 6435 6436 #endif 6437 } else { 6438 sd->flags |= SD_PREFER_SIBLING; 6439 sd->cache_nice_tries = 1; 6440 sd->busy_idx = 2; 6441 sd->idle_idx = 1; 6442 } 6443 6444 sd->private = &tl->data; 6445 6446 return sd; 6447 } 6448 6449 /* 6450 * Topology list, bottom-up. 6451 */ 6452 static struct sched_domain_topology_level default_topology[] = { 6453 #ifdef CONFIG_SCHED_SMT 6454 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6455 #endif 6456 #ifdef CONFIG_SCHED_MC 6457 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6458 #endif 6459 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6460 { NULL, }, 6461 }; 6462 6463 static struct sched_domain_topology_level *sched_domain_topology = 6464 default_topology; 6465 6466 #define for_each_sd_topology(tl) \ 6467 for (tl = sched_domain_topology; tl->mask; tl++) 6468 6469 void set_sched_topology(struct sched_domain_topology_level *tl) 6470 { 6471 sched_domain_topology = tl; 6472 } 6473 6474 #ifdef CONFIG_NUMA 6475 6476 static const struct cpumask *sd_numa_mask(int cpu) 6477 { 6478 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6479 } 6480 6481 static void sched_numa_warn(const char *str) 6482 { 6483 static int done = false; 6484 int i,j; 6485 6486 if (done) 6487 return; 6488 6489 done = true; 6490 6491 printk(KERN_WARNING "ERROR: %s\n\n", str); 6492 6493 for (i = 0; i < nr_node_ids; i++) { 6494 printk(KERN_WARNING " "); 6495 for (j = 0; j < nr_node_ids; j++) 6496 printk(KERN_CONT "%02d ", node_distance(i,j)); 6497 printk(KERN_CONT "\n"); 6498 } 6499 printk(KERN_WARNING "\n"); 6500 } 6501 6502 bool find_numa_distance(int distance) 6503 { 6504 int i; 6505 6506 if (distance == node_distance(0, 0)) 6507 return true; 6508 6509 for (i = 0; i < sched_domains_numa_levels; i++) { 6510 if (sched_domains_numa_distance[i] == distance) 6511 return true; 6512 } 6513 6514 return false; 6515 } 6516 6517 /* 6518 * A system can have three types of NUMA topology: 6519 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6520 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6521 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6522 * 6523 * The difference between a glueless mesh topology and a backplane 6524 * topology lies in whether communication between not directly 6525 * connected nodes goes through intermediary nodes (where programs 6526 * could run), or through backplane controllers. This affects 6527 * placement of programs. 6528 * 6529 * The type of topology can be discerned with the following tests: 6530 * - If the maximum distance between any nodes is 1 hop, the system 6531 * is directly connected. 6532 * - If for two nodes A and B, located N > 1 hops away from each other, 6533 * there is an intermediary node C, which is < N hops away from both 6534 * nodes A and B, the system is a glueless mesh. 6535 */ 6536 static void init_numa_topology_type(void) 6537 { 6538 int a, b, c, n; 6539 6540 n = sched_max_numa_distance; 6541 6542 if (sched_domains_numa_levels <= 1) { 6543 sched_numa_topology_type = NUMA_DIRECT; 6544 return; 6545 } 6546 6547 for_each_online_node(a) { 6548 for_each_online_node(b) { 6549 /* Find two nodes furthest removed from each other. */ 6550 if (node_distance(a, b) < n) 6551 continue; 6552 6553 /* Is there an intermediary node between a and b? */ 6554 for_each_online_node(c) { 6555 if (node_distance(a, c) < n && 6556 node_distance(b, c) < n) { 6557 sched_numa_topology_type = 6558 NUMA_GLUELESS_MESH; 6559 return; 6560 } 6561 } 6562 6563 sched_numa_topology_type = NUMA_BACKPLANE; 6564 return; 6565 } 6566 } 6567 } 6568 6569 static void sched_init_numa(void) 6570 { 6571 int next_distance, curr_distance = node_distance(0, 0); 6572 struct sched_domain_topology_level *tl; 6573 int level = 0; 6574 int i, j, k; 6575 6576 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6577 if (!sched_domains_numa_distance) 6578 return; 6579 6580 /* 6581 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6582 * unique distances in the node_distance() table. 6583 * 6584 * Assumes node_distance(0,j) includes all distances in 6585 * node_distance(i,j) in order to avoid cubic time. 6586 */ 6587 next_distance = curr_distance; 6588 for (i = 0; i < nr_node_ids; i++) { 6589 for (j = 0; j < nr_node_ids; j++) { 6590 for (k = 0; k < nr_node_ids; k++) { 6591 int distance = node_distance(i, k); 6592 6593 if (distance > curr_distance && 6594 (distance < next_distance || 6595 next_distance == curr_distance)) 6596 next_distance = distance; 6597 6598 /* 6599 * While not a strong assumption it would be nice to know 6600 * about cases where if node A is connected to B, B is not 6601 * equally connected to A. 6602 */ 6603 if (sched_debug() && node_distance(k, i) != distance) 6604 sched_numa_warn("Node-distance not symmetric"); 6605 6606 if (sched_debug() && i && !find_numa_distance(distance)) 6607 sched_numa_warn("Node-0 not representative"); 6608 } 6609 if (next_distance != curr_distance) { 6610 sched_domains_numa_distance[level++] = next_distance; 6611 sched_domains_numa_levels = level; 6612 curr_distance = next_distance; 6613 } else break; 6614 } 6615 6616 /* 6617 * In case of sched_debug() we verify the above assumption. 6618 */ 6619 if (!sched_debug()) 6620 break; 6621 } 6622 6623 if (!level) 6624 return; 6625 6626 /* 6627 * 'level' contains the number of unique distances, excluding the 6628 * identity distance node_distance(i,i). 6629 * 6630 * The sched_domains_numa_distance[] array includes the actual distance 6631 * numbers. 6632 */ 6633 6634 /* 6635 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6636 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6637 * the array will contain less then 'level' members. This could be 6638 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6639 * in other functions. 6640 * 6641 * We reset it to 'level' at the end of this function. 6642 */ 6643 sched_domains_numa_levels = 0; 6644 6645 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6646 if (!sched_domains_numa_masks) 6647 return; 6648 6649 /* 6650 * Now for each level, construct a mask per node which contains all 6651 * cpus of nodes that are that many hops away from us. 6652 */ 6653 for (i = 0; i < level; i++) { 6654 sched_domains_numa_masks[i] = 6655 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6656 if (!sched_domains_numa_masks[i]) 6657 return; 6658 6659 for (j = 0; j < nr_node_ids; j++) { 6660 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6661 if (!mask) 6662 return; 6663 6664 sched_domains_numa_masks[i][j] = mask; 6665 6666 for_each_node(k) { 6667 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6668 continue; 6669 6670 cpumask_or(mask, mask, cpumask_of_node(k)); 6671 } 6672 } 6673 } 6674 6675 /* Compute default topology size */ 6676 for (i = 0; sched_domain_topology[i].mask; i++); 6677 6678 tl = kzalloc((i + level + 1) * 6679 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6680 if (!tl) 6681 return; 6682 6683 /* 6684 * Copy the default topology bits.. 6685 */ 6686 for (i = 0; sched_domain_topology[i].mask; i++) 6687 tl[i] = sched_domain_topology[i]; 6688 6689 /* 6690 * .. and append 'j' levels of NUMA goodness. 6691 */ 6692 for (j = 0; j < level; i++, j++) { 6693 tl[i] = (struct sched_domain_topology_level){ 6694 .mask = sd_numa_mask, 6695 .sd_flags = cpu_numa_flags, 6696 .flags = SDTL_OVERLAP, 6697 .numa_level = j, 6698 SD_INIT_NAME(NUMA) 6699 }; 6700 } 6701 6702 sched_domain_topology = tl; 6703 6704 sched_domains_numa_levels = level; 6705 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6706 6707 init_numa_topology_type(); 6708 } 6709 6710 static void sched_domains_numa_masks_set(unsigned int cpu) 6711 { 6712 int node = cpu_to_node(cpu); 6713 int i, j; 6714 6715 for (i = 0; i < sched_domains_numa_levels; i++) { 6716 for (j = 0; j < nr_node_ids; j++) { 6717 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6718 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6719 } 6720 } 6721 } 6722 6723 static void sched_domains_numa_masks_clear(unsigned int cpu) 6724 { 6725 int i, j; 6726 6727 for (i = 0; i < sched_domains_numa_levels; i++) { 6728 for (j = 0; j < nr_node_ids; j++) 6729 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6730 } 6731 } 6732 6733 #else 6734 static inline void sched_init_numa(void) { } 6735 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6736 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6737 #endif /* CONFIG_NUMA */ 6738 6739 static int __sdt_alloc(const struct cpumask *cpu_map) 6740 { 6741 struct sched_domain_topology_level *tl; 6742 int j; 6743 6744 for_each_sd_topology(tl) { 6745 struct sd_data *sdd = &tl->data; 6746 6747 sdd->sd = alloc_percpu(struct sched_domain *); 6748 if (!sdd->sd) 6749 return -ENOMEM; 6750 6751 sdd->sg = alloc_percpu(struct sched_group *); 6752 if (!sdd->sg) 6753 return -ENOMEM; 6754 6755 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6756 if (!sdd->sgc) 6757 return -ENOMEM; 6758 6759 for_each_cpu(j, cpu_map) { 6760 struct sched_domain *sd; 6761 struct sched_group *sg; 6762 struct sched_group_capacity *sgc; 6763 6764 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6765 GFP_KERNEL, cpu_to_node(j)); 6766 if (!sd) 6767 return -ENOMEM; 6768 6769 *per_cpu_ptr(sdd->sd, j) = sd; 6770 6771 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6772 GFP_KERNEL, cpu_to_node(j)); 6773 if (!sg) 6774 return -ENOMEM; 6775 6776 sg->next = sg; 6777 6778 *per_cpu_ptr(sdd->sg, j) = sg; 6779 6780 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6781 GFP_KERNEL, cpu_to_node(j)); 6782 if (!sgc) 6783 return -ENOMEM; 6784 6785 *per_cpu_ptr(sdd->sgc, j) = sgc; 6786 } 6787 } 6788 6789 return 0; 6790 } 6791 6792 static void __sdt_free(const struct cpumask *cpu_map) 6793 { 6794 struct sched_domain_topology_level *tl; 6795 int j; 6796 6797 for_each_sd_topology(tl) { 6798 struct sd_data *sdd = &tl->data; 6799 6800 for_each_cpu(j, cpu_map) { 6801 struct sched_domain *sd; 6802 6803 if (sdd->sd) { 6804 sd = *per_cpu_ptr(sdd->sd, j); 6805 if (sd && (sd->flags & SD_OVERLAP)) 6806 free_sched_groups(sd->groups, 0); 6807 kfree(*per_cpu_ptr(sdd->sd, j)); 6808 } 6809 6810 if (sdd->sg) 6811 kfree(*per_cpu_ptr(sdd->sg, j)); 6812 if (sdd->sgc) 6813 kfree(*per_cpu_ptr(sdd->sgc, j)); 6814 } 6815 free_percpu(sdd->sd); 6816 sdd->sd = NULL; 6817 free_percpu(sdd->sg); 6818 sdd->sg = NULL; 6819 free_percpu(sdd->sgc); 6820 sdd->sgc = NULL; 6821 } 6822 } 6823 6824 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6825 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6826 struct sched_domain *child, int cpu) 6827 { 6828 struct sched_domain *sd = sd_init(tl, cpu); 6829 if (!sd) 6830 return child; 6831 6832 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6833 if (child) { 6834 sd->level = child->level + 1; 6835 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6836 child->parent = sd; 6837 sd->child = child; 6838 6839 if (!cpumask_subset(sched_domain_span(child), 6840 sched_domain_span(sd))) { 6841 pr_err("BUG: arch topology borken\n"); 6842 #ifdef CONFIG_SCHED_DEBUG 6843 pr_err(" the %s domain not a subset of the %s domain\n", 6844 child->name, sd->name); 6845 #endif 6846 /* Fixup, ensure @sd has at least @child cpus. */ 6847 cpumask_or(sched_domain_span(sd), 6848 sched_domain_span(sd), 6849 sched_domain_span(child)); 6850 } 6851 6852 } 6853 set_domain_attribute(sd, attr); 6854 6855 return sd; 6856 } 6857 6858 /* 6859 * Build sched domains for a given set of cpus and attach the sched domains 6860 * to the individual cpus 6861 */ 6862 static int build_sched_domains(const struct cpumask *cpu_map, 6863 struct sched_domain_attr *attr) 6864 { 6865 enum s_alloc alloc_state; 6866 struct sched_domain *sd; 6867 struct s_data d; 6868 int i, ret = -ENOMEM; 6869 6870 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6871 if (alloc_state != sa_rootdomain) 6872 goto error; 6873 6874 /* Set up domains for cpus specified by the cpu_map. */ 6875 for_each_cpu(i, cpu_map) { 6876 struct sched_domain_topology_level *tl; 6877 6878 sd = NULL; 6879 for_each_sd_topology(tl) { 6880 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6881 if (tl == sched_domain_topology) 6882 *per_cpu_ptr(d.sd, i) = sd; 6883 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6884 sd->flags |= SD_OVERLAP; 6885 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6886 break; 6887 } 6888 } 6889 6890 /* Build the groups for the domains */ 6891 for_each_cpu(i, cpu_map) { 6892 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6893 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6894 if (sd->flags & SD_OVERLAP) { 6895 if (build_overlap_sched_groups(sd, i)) 6896 goto error; 6897 } else { 6898 if (build_sched_groups(sd, i)) 6899 goto error; 6900 } 6901 } 6902 } 6903 6904 /* Calculate CPU capacity for physical packages and nodes */ 6905 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6906 if (!cpumask_test_cpu(i, cpu_map)) 6907 continue; 6908 6909 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6910 claim_allocations(i, sd); 6911 init_sched_groups_capacity(i, sd); 6912 } 6913 } 6914 6915 /* Attach the domains */ 6916 rcu_read_lock(); 6917 for_each_cpu(i, cpu_map) { 6918 sd = *per_cpu_ptr(d.sd, i); 6919 cpu_attach_domain(sd, d.rd, i); 6920 } 6921 rcu_read_unlock(); 6922 6923 ret = 0; 6924 error: 6925 __free_domain_allocs(&d, alloc_state, cpu_map); 6926 return ret; 6927 } 6928 6929 static cpumask_var_t *doms_cur; /* current sched domains */ 6930 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6931 static struct sched_domain_attr *dattr_cur; 6932 /* attribues of custom domains in 'doms_cur' */ 6933 6934 /* 6935 * Special case: If a kmalloc of a doms_cur partition (array of 6936 * cpumask) fails, then fallback to a single sched domain, 6937 * as determined by the single cpumask fallback_doms. 6938 */ 6939 static cpumask_var_t fallback_doms; 6940 6941 /* 6942 * arch_update_cpu_topology lets virtualized architectures update the 6943 * cpu core maps. It is supposed to return 1 if the topology changed 6944 * or 0 if it stayed the same. 6945 */ 6946 int __weak arch_update_cpu_topology(void) 6947 { 6948 return 0; 6949 } 6950 6951 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6952 { 6953 int i; 6954 cpumask_var_t *doms; 6955 6956 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6957 if (!doms) 6958 return NULL; 6959 for (i = 0; i < ndoms; i++) { 6960 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6961 free_sched_domains(doms, i); 6962 return NULL; 6963 } 6964 } 6965 return doms; 6966 } 6967 6968 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6969 { 6970 unsigned int i; 6971 for (i = 0; i < ndoms; i++) 6972 free_cpumask_var(doms[i]); 6973 kfree(doms); 6974 } 6975 6976 /* 6977 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6978 * For now this just excludes isolated cpus, but could be used to 6979 * exclude other special cases in the future. 6980 */ 6981 static int init_sched_domains(const struct cpumask *cpu_map) 6982 { 6983 int err; 6984 6985 arch_update_cpu_topology(); 6986 ndoms_cur = 1; 6987 doms_cur = alloc_sched_domains(ndoms_cur); 6988 if (!doms_cur) 6989 doms_cur = &fallback_doms; 6990 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6991 err = build_sched_domains(doms_cur[0], NULL); 6992 register_sched_domain_sysctl(); 6993 6994 return err; 6995 } 6996 6997 /* 6998 * Detach sched domains from a group of cpus specified in cpu_map 6999 * These cpus will now be attached to the NULL domain 7000 */ 7001 static void detach_destroy_domains(const struct cpumask *cpu_map) 7002 { 7003 int i; 7004 7005 rcu_read_lock(); 7006 for_each_cpu(i, cpu_map) 7007 cpu_attach_domain(NULL, &def_root_domain, i); 7008 rcu_read_unlock(); 7009 } 7010 7011 /* handle null as "default" */ 7012 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7013 struct sched_domain_attr *new, int idx_new) 7014 { 7015 struct sched_domain_attr tmp; 7016 7017 /* fast path */ 7018 if (!new && !cur) 7019 return 1; 7020 7021 tmp = SD_ATTR_INIT; 7022 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7023 new ? (new + idx_new) : &tmp, 7024 sizeof(struct sched_domain_attr)); 7025 } 7026 7027 /* 7028 * Partition sched domains as specified by the 'ndoms_new' 7029 * cpumasks in the array doms_new[] of cpumasks. This compares 7030 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7031 * It destroys each deleted domain and builds each new domain. 7032 * 7033 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7034 * The masks don't intersect (don't overlap.) We should setup one 7035 * sched domain for each mask. CPUs not in any of the cpumasks will 7036 * not be load balanced. If the same cpumask appears both in the 7037 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7038 * it as it is. 7039 * 7040 * The passed in 'doms_new' should be allocated using 7041 * alloc_sched_domains. This routine takes ownership of it and will 7042 * free_sched_domains it when done with it. If the caller failed the 7043 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7044 * and partition_sched_domains() will fallback to the single partition 7045 * 'fallback_doms', it also forces the domains to be rebuilt. 7046 * 7047 * If doms_new == NULL it will be replaced with cpu_online_mask. 7048 * ndoms_new == 0 is a special case for destroying existing domains, 7049 * and it will not create the default domain. 7050 * 7051 * Call with hotplug lock held 7052 */ 7053 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7054 struct sched_domain_attr *dattr_new) 7055 { 7056 int i, j, n; 7057 int new_topology; 7058 7059 mutex_lock(&sched_domains_mutex); 7060 7061 /* always unregister in case we don't destroy any domains */ 7062 unregister_sched_domain_sysctl(); 7063 7064 /* Let architecture update cpu core mappings. */ 7065 new_topology = arch_update_cpu_topology(); 7066 7067 n = doms_new ? ndoms_new : 0; 7068 7069 /* Destroy deleted domains */ 7070 for (i = 0; i < ndoms_cur; i++) { 7071 for (j = 0; j < n && !new_topology; j++) { 7072 if (cpumask_equal(doms_cur[i], doms_new[j]) 7073 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7074 goto match1; 7075 } 7076 /* no match - a current sched domain not in new doms_new[] */ 7077 detach_destroy_domains(doms_cur[i]); 7078 match1: 7079 ; 7080 } 7081 7082 n = ndoms_cur; 7083 if (doms_new == NULL) { 7084 n = 0; 7085 doms_new = &fallback_doms; 7086 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7087 WARN_ON_ONCE(dattr_new); 7088 } 7089 7090 /* Build new domains */ 7091 for (i = 0; i < ndoms_new; i++) { 7092 for (j = 0; j < n && !new_topology; j++) { 7093 if (cpumask_equal(doms_new[i], doms_cur[j]) 7094 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7095 goto match2; 7096 } 7097 /* no match - add a new doms_new */ 7098 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7099 match2: 7100 ; 7101 } 7102 7103 /* Remember the new sched domains */ 7104 if (doms_cur != &fallback_doms) 7105 free_sched_domains(doms_cur, ndoms_cur); 7106 kfree(dattr_cur); /* kfree(NULL) is safe */ 7107 doms_cur = doms_new; 7108 dattr_cur = dattr_new; 7109 ndoms_cur = ndoms_new; 7110 7111 register_sched_domain_sysctl(); 7112 7113 mutex_unlock(&sched_domains_mutex); 7114 } 7115 7116 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7117 7118 /* 7119 * Update cpusets according to cpu_active mask. If cpusets are 7120 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7121 * around partition_sched_domains(). 7122 * 7123 * If we come here as part of a suspend/resume, don't touch cpusets because we 7124 * want to restore it back to its original state upon resume anyway. 7125 */ 7126 static void cpuset_cpu_active(void) 7127 { 7128 if (cpuhp_tasks_frozen) { 7129 /* 7130 * num_cpus_frozen tracks how many CPUs are involved in suspend 7131 * resume sequence. As long as this is not the last online 7132 * operation in the resume sequence, just build a single sched 7133 * domain, ignoring cpusets. 7134 */ 7135 num_cpus_frozen--; 7136 if (likely(num_cpus_frozen)) { 7137 partition_sched_domains(1, NULL, NULL); 7138 return; 7139 } 7140 /* 7141 * This is the last CPU online operation. So fall through and 7142 * restore the original sched domains by considering the 7143 * cpuset configurations. 7144 */ 7145 } 7146 cpuset_update_active_cpus(true); 7147 } 7148 7149 static int cpuset_cpu_inactive(unsigned int cpu) 7150 { 7151 unsigned long flags; 7152 struct dl_bw *dl_b; 7153 bool overflow; 7154 int cpus; 7155 7156 if (!cpuhp_tasks_frozen) { 7157 rcu_read_lock_sched(); 7158 dl_b = dl_bw_of(cpu); 7159 7160 raw_spin_lock_irqsave(&dl_b->lock, flags); 7161 cpus = dl_bw_cpus(cpu); 7162 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7163 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7164 7165 rcu_read_unlock_sched(); 7166 7167 if (overflow) 7168 return -EBUSY; 7169 cpuset_update_active_cpus(false); 7170 } else { 7171 num_cpus_frozen++; 7172 partition_sched_domains(1, NULL, NULL); 7173 } 7174 return 0; 7175 } 7176 7177 int sched_cpu_activate(unsigned int cpu) 7178 { 7179 struct rq *rq = cpu_rq(cpu); 7180 unsigned long flags; 7181 7182 set_cpu_active(cpu, true); 7183 7184 if (sched_smp_initialized) { 7185 sched_domains_numa_masks_set(cpu); 7186 cpuset_cpu_active(); 7187 } 7188 7189 /* 7190 * Put the rq online, if not already. This happens: 7191 * 7192 * 1) In the early boot process, because we build the real domains 7193 * after all cpus have been brought up. 7194 * 7195 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7196 * domains. 7197 */ 7198 raw_spin_lock_irqsave(&rq->lock, flags); 7199 if (rq->rd) { 7200 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7201 set_rq_online(rq); 7202 } 7203 raw_spin_unlock_irqrestore(&rq->lock, flags); 7204 7205 update_max_interval(); 7206 7207 return 0; 7208 } 7209 7210 int sched_cpu_deactivate(unsigned int cpu) 7211 { 7212 int ret; 7213 7214 set_cpu_active(cpu, false); 7215 /* 7216 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7217 * users of this state to go away such that all new such users will 7218 * observe it. 7219 * 7220 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7221 * not imply sync_sched(), so wait for both. 7222 * 7223 * Do sync before park smpboot threads to take care the rcu boost case. 7224 */ 7225 if (IS_ENABLED(CONFIG_PREEMPT)) 7226 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7227 else 7228 synchronize_rcu(); 7229 7230 if (!sched_smp_initialized) 7231 return 0; 7232 7233 ret = cpuset_cpu_inactive(cpu); 7234 if (ret) { 7235 set_cpu_active(cpu, true); 7236 return ret; 7237 } 7238 sched_domains_numa_masks_clear(cpu); 7239 return 0; 7240 } 7241 7242 static void sched_rq_cpu_starting(unsigned int cpu) 7243 { 7244 struct rq *rq = cpu_rq(cpu); 7245 7246 rq->calc_load_update = calc_load_update; 7247 update_max_interval(); 7248 } 7249 7250 int sched_cpu_starting(unsigned int cpu) 7251 { 7252 set_cpu_rq_start_time(cpu); 7253 sched_rq_cpu_starting(cpu); 7254 return 0; 7255 } 7256 7257 #ifdef CONFIG_HOTPLUG_CPU 7258 int sched_cpu_dying(unsigned int cpu) 7259 { 7260 struct rq *rq = cpu_rq(cpu); 7261 unsigned long flags; 7262 7263 /* Handle pending wakeups and then migrate everything off */ 7264 sched_ttwu_pending(); 7265 raw_spin_lock_irqsave(&rq->lock, flags); 7266 if (rq->rd) { 7267 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7268 set_rq_offline(rq); 7269 } 7270 migrate_tasks(rq); 7271 BUG_ON(rq->nr_running != 1); 7272 raw_spin_unlock_irqrestore(&rq->lock, flags); 7273 calc_load_migrate(rq); 7274 update_max_interval(); 7275 nohz_balance_exit_idle(cpu); 7276 hrtick_clear(rq); 7277 return 0; 7278 } 7279 #endif 7280 7281 void __init sched_init_smp(void) 7282 { 7283 cpumask_var_t non_isolated_cpus; 7284 7285 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7286 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7287 7288 sched_init_numa(); 7289 7290 /* 7291 * There's no userspace yet to cause hotplug operations; hence all the 7292 * cpu masks are stable and all blatant races in the below code cannot 7293 * happen. 7294 */ 7295 mutex_lock(&sched_domains_mutex); 7296 init_sched_domains(cpu_active_mask); 7297 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7298 if (cpumask_empty(non_isolated_cpus)) 7299 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7300 mutex_unlock(&sched_domains_mutex); 7301 7302 /* Move init over to a non-isolated CPU */ 7303 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7304 BUG(); 7305 sched_init_granularity(); 7306 free_cpumask_var(non_isolated_cpus); 7307 7308 init_sched_rt_class(); 7309 init_sched_dl_class(); 7310 sched_smp_initialized = true; 7311 } 7312 7313 static int __init migration_init(void) 7314 { 7315 sched_rq_cpu_starting(smp_processor_id()); 7316 return 0; 7317 } 7318 early_initcall(migration_init); 7319 7320 #else 7321 void __init sched_init_smp(void) 7322 { 7323 sched_init_granularity(); 7324 } 7325 #endif /* CONFIG_SMP */ 7326 7327 int in_sched_functions(unsigned long addr) 7328 { 7329 return in_lock_functions(addr) || 7330 (addr >= (unsigned long)__sched_text_start 7331 && addr < (unsigned long)__sched_text_end); 7332 } 7333 7334 #ifdef CONFIG_CGROUP_SCHED 7335 /* 7336 * Default task group. 7337 * Every task in system belongs to this group at bootup. 7338 */ 7339 struct task_group root_task_group; 7340 LIST_HEAD(task_groups); 7341 7342 /* Cacheline aligned slab cache for task_group */ 7343 static struct kmem_cache *task_group_cache __read_mostly; 7344 #endif 7345 7346 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7347 7348 void __init sched_init(void) 7349 { 7350 int i, j; 7351 unsigned long alloc_size = 0, ptr; 7352 7353 #ifdef CONFIG_FAIR_GROUP_SCHED 7354 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7355 #endif 7356 #ifdef CONFIG_RT_GROUP_SCHED 7357 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7358 #endif 7359 if (alloc_size) { 7360 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7361 7362 #ifdef CONFIG_FAIR_GROUP_SCHED 7363 root_task_group.se = (struct sched_entity **)ptr; 7364 ptr += nr_cpu_ids * sizeof(void **); 7365 7366 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7367 ptr += nr_cpu_ids * sizeof(void **); 7368 7369 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7370 #ifdef CONFIG_RT_GROUP_SCHED 7371 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7372 ptr += nr_cpu_ids * sizeof(void **); 7373 7374 root_task_group.rt_rq = (struct rt_rq **)ptr; 7375 ptr += nr_cpu_ids * sizeof(void **); 7376 7377 #endif /* CONFIG_RT_GROUP_SCHED */ 7378 } 7379 #ifdef CONFIG_CPUMASK_OFFSTACK 7380 for_each_possible_cpu(i) { 7381 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7382 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7383 } 7384 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7385 7386 init_rt_bandwidth(&def_rt_bandwidth, 7387 global_rt_period(), global_rt_runtime()); 7388 init_dl_bandwidth(&def_dl_bandwidth, 7389 global_rt_period(), global_rt_runtime()); 7390 7391 #ifdef CONFIG_SMP 7392 init_defrootdomain(); 7393 #endif 7394 7395 #ifdef CONFIG_RT_GROUP_SCHED 7396 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7397 global_rt_period(), global_rt_runtime()); 7398 #endif /* CONFIG_RT_GROUP_SCHED */ 7399 7400 #ifdef CONFIG_CGROUP_SCHED 7401 task_group_cache = KMEM_CACHE(task_group, 0); 7402 7403 list_add(&root_task_group.list, &task_groups); 7404 INIT_LIST_HEAD(&root_task_group.children); 7405 INIT_LIST_HEAD(&root_task_group.siblings); 7406 autogroup_init(&init_task); 7407 #endif /* CONFIG_CGROUP_SCHED */ 7408 7409 for_each_possible_cpu(i) { 7410 struct rq *rq; 7411 7412 rq = cpu_rq(i); 7413 raw_spin_lock_init(&rq->lock); 7414 rq->nr_running = 0; 7415 rq->calc_load_active = 0; 7416 rq->calc_load_update = jiffies + LOAD_FREQ; 7417 init_cfs_rq(&rq->cfs); 7418 init_rt_rq(&rq->rt); 7419 init_dl_rq(&rq->dl); 7420 #ifdef CONFIG_FAIR_GROUP_SCHED 7421 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7422 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7423 /* 7424 * How much cpu bandwidth does root_task_group get? 7425 * 7426 * In case of task-groups formed thr' the cgroup filesystem, it 7427 * gets 100% of the cpu resources in the system. This overall 7428 * system cpu resource is divided among the tasks of 7429 * root_task_group and its child task-groups in a fair manner, 7430 * based on each entity's (task or task-group's) weight 7431 * (se->load.weight). 7432 * 7433 * In other words, if root_task_group has 10 tasks of weight 7434 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7435 * then A0's share of the cpu resource is: 7436 * 7437 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7438 * 7439 * We achieve this by letting root_task_group's tasks sit 7440 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7441 */ 7442 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7443 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7444 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7445 7446 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7447 #ifdef CONFIG_RT_GROUP_SCHED 7448 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7449 #endif 7450 7451 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7452 rq->cpu_load[j] = 0; 7453 7454 #ifdef CONFIG_SMP 7455 rq->sd = NULL; 7456 rq->rd = NULL; 7457 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7458 rq->balance_callback = NULL; 7459 rq->active_balance = 0; 7460 rq->next_balance = jiffies; 7461 rq->push_cpu = 0; 7462 rq->cpu = i; 7463 rq->online = 0; 7464 rq->idle_stamp = 0; 7465 rq->avg_idle = 2*sysctl_sched_migration_cost; 7466 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7467 7468 INIT_LIST_HEAD(&rq->cfs_tasks); 7469 7470 rq_attach_root(rq, &def_root_domain); 7471 #ifdef CONFIG_NO_HZ_COMMON 7472 rq->last_load_update_tick = jiffies; 7473 rq->nohz_flags = 0; 7474 #endif 7475 #ifdef CONFIG_NO_HZ_FULL 7476 rq->last_sched_tick = 0; 7477 #endif 7478 #endif /* CONFIG_SMP */ 7479 init_rq_hrtick(rq); 7480 atomic_set(&rq->nr_iowait, 0); 7481 } 7482 7483 set_load_weight(&init_task); 7484 7485 #ifdef CONFIG_PREEMPT_NOTIFIERS 7486 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7487 #endif 7488 7489 /* 7490 * The boot idle thread does lazy MMU switching as well: 7491 */ 7492 atomic_inc(&init_mm.mm_count); 7493 enter_lazy_tlb(&init_mm, current); 7494 7495 /* 7496 * During early bootup we pretend to be a normal task: 7497 */ 7498 current->sched_class = &fair_sched_class; 7499 7500 /* 7501 * Make us the idle thread. Technically, schedule() should not be 7502 * called from this thread, however somewhere below it might be, 7503 * but because we are the idle thread, we just pick up running again 7504 * when this runqueue becomes "idle". 7505 */ 7506 init_idle(current, smp_processor_id()); 7507 7508 calc_load_update = jiffies + LOAD_FREQ; 7509 7510 #ifdef CONFIG_SMP 7511 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7512 /* May be allocated at isolcpus cmdline parse time */ 7513 if (cpu_isolated_map == NULL) 7514 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7515 idle_thread_set_boot_cpu(); 7516 set_cpu_rq_start_time(smp_processor_id()); 7517 #endif 7518 init_sched_fair_class(); 7519 7520 init_schedstats(); 7521 7522 scheduler_running = 1; 7523 } 7524 7525 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7526 static inline int preempt_count_equals(int preempt_offset) 7527 { 7528 int nested = preempt_count() + rcu_preempt_depth(); 7529 7530 return (nested == preempt_offset); 7531 } 7532 7533 void __might_sleep(const char *file, int line, int preempt_offset) 7534 { 7535 /* 7536 * Blocking primitives will set (and therefore destroy) current->state, 7537 * since we will exit with TASK_RUNNING make sure we enter with it, 7538 * otherwise we will destroy state. 7539 */ 7540 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7541 "do not call blocking ops when !TASK_RUNNING; " 7542 "state=%lx set at [<%p>] %pS\n", 7543 current->state, 7544 (void *)current->task_state_change, 7545 (void *)current->task_state_change); 7546 7547 ___might_sleep(file, line, preempt_offset); 7548 } 7549 EXPORT_SYMBOL(__might_sleep); 7550 7551 void ___might_sleep(const char *file, int line, int preempt_offset) 7552 { 7553 static unsigned long prev_jiffy; /* ratelimiting */ 7554 7555 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7556 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7557 !is_idle_task(current)) || 7558 system_state != SYSTEM_RUNNING || oops_in_progress) 7559 return; 7560 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7561 return; 7562 prev_jiffy = jiffies; 7563 7564 printk(KERN_ERR 7565 "BUG: sleeping function called from invalid context at %s:%d\n", 7566 file, line); 7567 printk(KERN_ERR 7568 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7569 in_atomic(), irqs_disabled(), 7570 current->pid, current->comm); 7571 7572 if (task_stack_end_corrupted(current)) 7573 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7574 7575 debug_show_held_locks(current); 7576 if (irqs_disabled()) 7577 print_irqtrace_events(current); 7578 #ifdef CONFIG_DEBUG_PREEMPT 7579 if (!preempt_count_equals(preempt_offset)) { 7580 pr_err("Preemption disabled at:"); 7581 print_ip_sym(current->preempt_disable_ip); 7582 pr_cont("\n"); 7583 } 7584 #endif 7585 dump_stack(); 7586 } 7587 EXPORT_SYMBOL(___might_sleep); 7588 #endif 7589 7590 #ifdef CONFIG_MAGIC_SYSRQ 7591 void normalize_rt_tasks(void) 7592 { 7593 struct task_struct *g, *p; 7594 struct sched_attr attr = { 7595 .sched_policy = SCHED_NORMAL, 7596 }; 7597 7598 read_lock(&tasklist_lock); 7599 for_each_process_thread(g, p) { 7600 /* 7601 * Only normalize user tasks: 7602 */ 7603 if (p->flags & PF_KTHREAD) 7604 continue; 7605 7606 p->se.exec_start = 0; 7607 #ifdef CONFIG_SCHEDSTATS 7608 p->se.statistics.wait_start = 0; 7609 p->se.statistics.sleep_start = 0; 7610 p->se.statistics.block_start = 0; 7611 #endif 7612 7613 if (!dl_task(p) && !rt_task(p)) { 7614 /* 7615 * Renice negative nice level userspace 7616 * tasks back to 0: 7617 */ 7618 if (task_nice(p) < 0) 7619 set_user_nice(p, 0); 7620 continue; 7621 } 7622 7623 __sched_setscheduler(p, &attr, false, false); 7624 } 7625 read_unlock(&tasklist_lock); 7626 } 7627 7628 #endif /* CONFIG_MAGIC_SYSRQ */ 7629 7630 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7631 /* 7632 * These functions are only useful for the IA64 MCA handling, or kdb. 7633 * 7634 * They can only be called when the whole system has been 7635 * stopped - every CPU needs to be quiescent, and no scheduling 7636 * activity can take place. Using them for anything else would 7637 * be a serious bug, and as a result, they aren't even visible 7638 * under any other configuration. 7639 */ 7640 7641 /** 7642 * curr_task - return the current task for a given cpu. 7643 * @cpu: the processor in question. 7644 * 7645 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7646 * 7647 * Return: The current task for @cpu. 7648 */ 7649 struct task_struct *curr_task(int cpu) 7650 { 7651 return cpu_curr(cpu); 7652 } 7653 7654 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7655 7656 #ifdef CONFIG_IA64 7657 /** 7658 * set_curr_task - set the current task for a given cpu. 7659 * @cpu: the processor in question. 7660 * @p: the task pointer to set. 7661 * 7662 * Description: This function must only be used when non-maskable interrupts 7663 * are serviced on a separate stack. It allows the architecture to switch the 7664 * notion of the current task on a cpu in a non-blocking manner. This function 7665 * must be called with all CPU's synchronized, and interrupts disabled, the 7666 * and caller must save the original value of the current task (see 7667 * curr_task() above) and restore that value before reenabling interrupts and 7668 * re-starting the system. 7669 * 7670 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7671 */ 7672 void set_curr_task(int cpu, struct task_struct *p) 7673 { 7674 cpu_curr(cpu) = p; 7675 } 7676 7677 #endif 7678 7679 #ifdef CONFIG_CGROUP_SCHED 7680 /* task_group_lock serializes the addition/removal of task groups */ 7681 static DEFINE_SPINLOCK(task_group_lock); 7682 7683 static void sched_free_group(struct task_group *tg) 7684 { 7685 free_fair_sched_group(tg); 7686 free_rt_sched_group(tg); 7687 autogroup_free(tg); 7688 kmem_cache_free(task_group_cache, tg); 7689 } 7690 7691 /* allocate runqueue etc for a new task group */ 7692 struct task_group *sched_create_group(struct task_group *parent) 7693 { 7694 struct task_group *tg; 7695 7696 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7697 if (!tg) 7698 return ERR_PTR(-ENOMEM); 7699 7700 if (!alloc_fair_sched_group(tg, parent)) 7701 goto err; 7702 7703 if (!alloc_rt_sched_group(tg, parent)) 7704 goto err; 7705 7706 return tg; 7707 7708 err: 7709 sched_free_group(tg); 7710 return ERR_PTR(-ENOMEM); 7711 } 7712 7713 void sched_online_group(struct task_group *tg, struct task_group *parent) 7714 { 7715 unsigned long flags; 7716 7717 spin_lock_irqsave(&task_group_lock, flags); 7718 list_add_rcu(&tg->list, &task_groups); 7719 7720 WARN_ON(!parent); /* root should already exist */ 7721 7722 tg->parent = parent; 7723 INIT_LIST_HEAD(&tg->children); 7724 list_add_rcu(&tg->siblings, &parent->children); 7725 spin_unlock_irqrestore(&task_group_lock, flags); 7726 7727 online_fair_sched_group(tg); 7728 } 7729 7730 /* rcu callback to free various structures associated with a task group */ 7731 static void sched_free_group_rcu(struct rcu_head *rhp) 7732 { 7733 /* now it should be safe to free those cfs_rqs */ 7734 sched_free_group(container_of(rhp, struct task_group, rcu)); 7735 } 7736 7737 void sched_destroy_group(struct task_group *tg) 7738 { 7739 /* wait for possible concurrent references to cfs_rqs complete */ 7740 call_rcu(&tg->rcu, sched_free_group_rcu); 7741 } 7742 7743 void sched_offline_group(struct task_group *tg) 7744 { 7745 unsigned long flags; 7746 7747 /* end participation in shares distribution */ 7748 unregister_fair_sched_group(tg); 7749 7750 spin_lock_irqsave(&task_group_lock, flags); 7751 list_del_rcu(&tg->list); 7752 list_del_rcu(&tg->siblings); 7753 spin_unlock_irqrestore(&task_group_lock, flags); 7754 } 7755 7756 static void sched_change_group(struct task_struct *tsk, int type) 7757 { 7758 struct task_group *tg; 7759 7760 /* 7761 * All callers are synchronized by task_rq_lock(); we do not use RCU 7762 * which is pointless here. Thus, we pass "true" to task_css_check() 7763 * to prevent lockdep warnings. 7764 */ 7765 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7766 struct task_group, css); 7767 tg = autogroup_task_group(tsk, tg); 7768 tsk->sched_task_group = tg; 7769 7770 #ifdef CONFIG_FAIR_GROUP_SCHED 7771 if (tsk->sched_class->task_change_group) 7772 tsk->sched_class->task_change_group(tsk, type); 7773 else 7774 #endif 7775 set_task_rq(tsk, task_cpu(tsk)); 7776 } 7777 7778 /* 7779 * Change task's runqueue when it moves between groups. 7780 * 7781 * The caller of this function should have put the task in its new group by 7782 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7783 * its new group. 7784 */ 7785 void sched_move_task(struct task_struct *tsk) 7786 { 7787 int queued, running; 7788 struct rq_flags rf; 7789 struct rq *rq; 7790 7791 rq = task_rq_lock(tsk, &rf); 7792 7793 running = task_current(rq, tsk); 7794 queued = task_on_rq_queued(tsk); 7795 7796 if (queued) 7797 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7798 if (unlikely(running)) 7799 put_prev_task(rq, tsk); 7800 7801 sched_change_group(tsk, TASK_MOVE_GROUP); 7802 7803 if (unlikely(running)) 7804 tsk->sched_class->set_curr_task(rq); 7805 if (queued) 7806 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7807 7808 task_rq_unlock(rq, tsk, &rf); 7809 } 7810 #endif /* CONFIG_CGROUP_SCHED */ 7811 7812 #ifdef CONFIG_RT_GROUP_SCHED 7813 /* 7814 * Ensure that the real time constraints are schedulable. 7815 */ 7816 static DEFINE_MUTEX(rt_constraints_mutex); 7817 7818 /* Must be called with tasklist_lock held */ 7819 static inline int tg_has_rt_tasks(struct task_group *tg) 7820 { 7821 struct task_struct *g, *p; 7822 7823 /* 7824 * Autogroups do not have RT tasks; see autogroup_create(). 7825 */ 7826 if (task_group_is_autogroup(tg)) 7827 return 0; 7828 7829 for_each_process_thread(g, p) { 7830 if (rt_task(p) && task_group(p) == tg) 7831 return 1; 7832 } 7833 7834 return 0; 7835 } 7836 7837 struct rt_schedulable_data { 7838 struct task_group *tg; 7839 u64 rt_period; 7840 u64 rt_runtime; 7841 }; 7842 7843 static int tg_rt_schedulable(struct task_group *tg, void *data) 7844 { 7845 struct rt_schedulable_data *d = data; 7846 struct task_group *child; 7847 unsigned long total, sum = 0; 7848 u64 period, runtime; 7849 7850 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7851 runtime = tg->rt_bandwidth.rt_runtime; 7852 7853 if (tg == d->tg) { 7854 period = d->rt_period; 7855 runtime = d->rt_runtime; 7856 } 7857 7858 /* 7859 * Cannot have more runtime than the period. 7860 */ 7861 if (runtime > period && runtime != RUNTIME_INF) 7862 return -EINVAL; 7863 7864 /* 7865 * Ensure we don't starve existing RT tasks. 7866 */ 7867 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7868 return -EBUSY; 7869 7870 total = to_ratio(period, runtime); 7871 7872 /* 7873 * Nobody can have more than the global setting allows. 7874 */ 7875 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7876 return -EINVAL; 7877 7878 /* 7879 * The sum of our children's runtime should not exceed our own. 7880 */ 7881 list_for_each_entry_rcu(child, &tg->children, siblings) { 7882 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7883 runtime = child->rt_bandwidth.rt_runtime; 7884 7885 if (child == d->tg) { 7886 period = d->rt_period; 7887 runtime = d->rt_runtime; 7888 } 7889 7890 sum += to_ratio(period, runtime); 7891 } 7892 7893 if (sum > total) 7894 return -EINVAL; 7895 7896 return 0; 7897 } 7898 7899 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7900 { 7901 int ret; 7902 7903 struct rt_schedulable_data data = { 7904 .tg = tg, 7905 .rt_period = period, 7906 .rt_runtime = runtime, 7907 }; 7908 7909 rcu_read_lock(); 7910 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7911 rcu_read_unlock(); 7912 7913 return ret; 7914 } 7915 7916 static int tg_set_rt_bandwidth(struct task_group *tg, 7917 u64 rt_period, u64 rt_runtime) 7918 { 7919 int i, err = 0; 7920 7921 /* 7922 * Disallowing the root group RT runtime is BAD, it would disallow the 7923 * kernel creating (and or operating) RT threads. 7924 */ 7925 if (tg == &root_task_group && rt_runtime == 0) 7926 return -EINVAL; 7927 7928 /* No period doesn't make any sense. */ 7929 if (rt_period == 0) 7930 return -EINVAL; 7931 7932 mutex_lock(&rt_constraints_mutex); 7933 read_lock(&tasklist_lock); 7934 err = __rt_schedulable(tg, rt_period, rt_runtime); 7935 if (err) 7936 goto unlock; 7937 7938 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7939 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7940 tg->rt_bandwidth.rt_runtime = rt_runtime; 7941 7942 for_each_possible_cpu(i) { 7943 struct rt_rq *rt_rq = tg->rt_rq[i]; 7944 7945 raw_spin_lock(&rt_rq->rt_runtime_lock); 7946 rt_rq->rt_runtime = rt_runtime; 7947 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7948 } 7949 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7950 unlock: 7951 read_unlock(&tasklist_lock); 7952 mutex_unlock(&rt_constraints_mutex); 7953 7954 return err; 7955 } 7956 7957 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7958 { 7959 u64 rt_runtime, rt_period; 7960 7961 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7962 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7963 if (rt_runtime_us < 0) 7964 rt_runtime = RUNTIME_INF; 7965 7966 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7967 } 7968 7969 static long sched_group_rt_runtime(struct task_group *tg) 7970 { 7971 u64 rt_runtime_us; 7972 7973 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7974 return -1; 7975 7976 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7977 do_div(rt_runtime_us, NSEC_PER_USEC); 7978 return rt_runtime_us; 7979 } 7980 7981 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7982 { 7983 u64 rt_runtime, rt_period; 7984 7985 rt_period = rt_period_us * NSEC_PER_USEC; 7986 rt_runtime = tg->rt_bandwidth.rt_runtime; 7987 7988 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7989 } 7990 7991 static long sched_group_rt_period(struct task_group *tg) 7992 { 7993 u64 rt_period_us; 7994 7995 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7996 do_div(rt_period_us, NSEC_PER_USEC); 7997 return rt_period_us; 7998 } 7999 #endif /* CONFIG_RT_GROUP_SCHED */ 8000 8001 #ifdef CONFIG_RT_GROUP_SCHED 8002 static int sched_rt_global_constraints(void) 8003 { 8004 int ret = 0; 8005 8006 mutex_lock(&rt_constraints_mutex); 8007 read_lock(&tasklist_lock); 8008 ret = __rt_schedulable(NULL, 0, 0); 8009 read_unlock(&tasklist_lock); 8010 mutex_unlock(&rt_constraints_mutex); 8011 8012 return ret; 8013 } 8014 8015 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 8016 { 8017 /* Don't accept realtime tasks when there is no way for them to run */ 8018 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8019 return 0; 8020 8021 return 1; 8022 } 8023 8024 #else /* !CONFIG_RT_GROUP_SCHED */ 8025 static int sched_rt_global_constraints(void) 8026 { 8027 unsigned long flags; 8028 int i; 8029 8030 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8031 for_each_possible_cpu(i) { 8032 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8033 8034 raw_spin_lock(&rt_rq->rt_runtime_lock); 8035 rt_rq->rt_runtime = global_rt_runtime(); 8036 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8037 } 8038 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8039 8040 return 0; 8041 } 8042 #endif /* CONFIG_RT_GROUP_SCHED */ 8043 8044 static int sched_dl_global_validate(void) 8045 { 8046 u64 runtime = global_rt_runtime(); 8047 u64 period = global_rt_period(); 8048 u64 new_bw = to_ratio(period, runtime); 8049 struct dl_bw *dl_b; 8050 int cpu, ret = 0; 8051 unsigned long flags; 8052 8053 /* 8054 * Here we want to check the bandwidth not being set to some 8055 * value smaller than the currently allocated bandwidth in 8056 * any of the root_domains. 8057 * 8058 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8059 * cycling on root_domains... Discussion on different/better 8060 * solutions is welcome! 8061 */ 8062 for_each_possible_cpu(cpu) { 8063 rcu_read_lock_sched(); 8064 dl_b = dl_bw_of(cpu); 8065 8066 raw_spin_lock_irqsave(&dl_b->lock, flags); 8067 if (new_bw < dl_b->total_bw) 8068 ret = -EBUSY; 8069 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8070 8071 rcu_read_unlock_sched(); 8072 8073 if (ret) 8074 break; 8075 } 8076 8077 return ret; 8078 } 8079 8080 static void sched_dl_do_global(void) 8081 { 8082 u64 new_bw = -1; 8083 struct dl_bw *dl_b; 8084 int cpu; 8085 unsigned long flags; 8086 8087 def_dl_bandwidth.dl_period = global_rt_period(); 8088 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8089 8090 if (global_rt_runtime() != RUNTIME_INF) 8091 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8092 8093 /* 8094 * FIXME: As above... 8095 */ 8096 for_each_possible_cpu(cpu) { 8097 rcu_read_lock_sched(); 8098 dl_b = dl_bw_of(cpu); 8099 8100 raw_spin_lock_irqsave(&dl_b->lock, flags); 8101 dl_b->bw = new_bw; 8102 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8103 8104 rcu_read_unlock_sched(); 8105 } 8106 } 8107 8108 static int sched_rt_global_validate(void) 8109 { 8110 if (sysctl_sched_rt_period <= 0) 8111 return -EINVAL; 8112 8113 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8114 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8115 return -EINVAL; 8116 8117 return 0; 8118 } 8119 8120 static void sched_rt_do_global(void) 8121 { 8122 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8123 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8124 } 8125 8126 int sched_rt_handler(struct ctl_table *table, int write, 8127 void __user *buffer, size_t *lenp, 8128 loff_t *ppos) 8129 { 8130 int old_period, old_runtime; 8131 static DEFINE_MUTEX(mutex); 8132 int ret; 8133 8134 mutex_lock(&mutex); 8135 old_period = sysctl_sched_rt_period; 8136 old_runtime = sysctl_sched_rt_runtime; 8137 8138 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8139 8140 if (!ret && write) { 8141 ret = sched_rt_global_validate(); 8142 if (ret) 8143 goto undo; 8144 8145 ret = sched_dl_global_validate(); 8146 if (ret) 8147 goto undo; 8148 8149 ret = sched_rt_global_constraints(); 8150 if (ret) 8151 goto undo; 8152 8153 sched_rt_do_global(); 8154 sched_dl_do_global(); 8155 } 8156 if (0) { 8157 undo: 8158 sysctl_sched_rt_period = old_period; 8159 sysctl_sched_rt_runtime = old_runtime; 8160 } 8161 mutex_unlock(&mutex); 8162 8163 return ret; 8164 } 8165 8166 int sched_rr_handler(struct ctl_table *table, int write, 8167 void __user *buffer, size_t *lenp, 8168 loff_t *ppos) 8169 { 8170 int ret; 8171 static DEFINE_MUTEX(mutex); 8172 8173 mutex_lock(&mutex); 8174 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8175 /* make sure that internally we keep jiffies */ 8176 /* also, writing zero resets timeslice to default */ 8177 if (!ret && write) { 8178 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8179 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8180 } 8181 mutex_unlock(&mutex); 8182 return ret; 8183 } 8184 8185 #ifdef CONFIG_CGROUP_SCHED 8186 8187 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8188 { 8189 return css ? container_of(css, struct task_group, css) : NULL; 8190 } 8191 8192 static struct cgroup_subsys_state * 8193 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8194 { 8195 struct task_group *parent = css_tg(parent_css); 8196 struct task_group *tg; 8197 8198 if (!parent) { 8199 /* This is early initialization for the top cgroup */ 8200 return &root_task_group.css; 8201 } 8202 8203 tg = sched_create_group(parent); 8204 if (IS_ERR(tg)) 8205 return ERR_PTR(-ENOMEM); 8206 8207 sched_online_group(tg, parent); 8208 8209 return &tg->css; 8210 } 8211 8212 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8213 { 8214 struct task_group *tg = css_tg(css); 8215 8216 sched_offline_group(tg); 8217 } 8218 8219 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8220 { 8221 struct task_group *tg = css_tg(css); 8222 8223 /* 8224 * Relies on the RCU grace period between css_released() and this. 8225 */ 8226 sched_free_group(tg); 8227 } 8228 8229 /* 8230 * This is called before wake_up_new_task(), therefore we really only 8231 * have to set its group bits, all the other stuff does not apply. 8232 */ 8233 static void cpu_cgroup_fork(struct task_struct *task) 8234 { 8235 struct rq_flags rf; 8236 struct rq *rq; 8237 8238 rq = task_rq_lock(task, &rf); 8239 8240 sched_change_group(task, TASK_SET_GROUP); 8241 8242 task_rq_unlock(rq, task, &rf); 8243 } 8244 8245 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8246 { 8247 struct task_struct *task; 8248 struct cgroup_subsys_state *css; 8249 int ret = 0; 8250 8251 cgroup_taskset_for_each(task, css, tset) { 8252 #ifdef CONFIG_RT_GROUP_SCHED 8253 if (!sched_rt_can_attach(css_tg(css), task)) 8254 return -EINVAL; 8255 #else 8256 /* We don't support RT-tasks being in separate groups */ 8257 if (task->sched_class != &fair_sched_class) 8258 return -EINVAL; 8259 #endif 8260 /* 8261 * Serialize against wake_up_new_task() such that if its 8262 * running, we're sure to observe its full state. 8263 */ 8264 raw_spin_lock_irq(&task->pi_lock); 8265 /* 8266 * Avoid calling sched_move_task() before wake_up_new_task() 8267 * has happened. This would lead to problems with PELT, due to 8268 * move wanting to detach+attach while we're not attached yet. 8269 */ 8270 if (task->state == TASK_NEW) 8271 ret = -EINVAL; 8272 raw_spin_unlock_irq(&task->pi_lock); 8273 8274 if (ret) 8275 break; 8276 } 8277 return ret; 8278 } 8279 8280 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8281 { 8282 struct task_struct *task; 8283 struct cgroup_subsys_state *css; 8284 8285 cgroup_taskset_for_each(task, css, tset) 8286 sched_move_task(task); 8287 } 8288 8289 #ifdef CONFIG_FAIR_GROUP_SCHED 8290 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8291 struct cftype *cftype, u64 shareval) 8292 { 8293 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8294 } 8295 8296 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8297 struct cftype *cft) 8298 { 8299 struct task_group *tg = css_tg(css); 8300 8301 return (u64) scale_load_down(tg->shares); 8302 } 8303 8304 #ifdef CONFIG_CFS_BANDWIDTH 8305 static DEFINE_MUTEX(cfs_constraints_mutex); 8306 8307 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8308 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8309 8310 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8311 8312 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8313 { 8314 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8315 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8316 8317 if (tg == &root_task_group) 8318 return -EINVAL; 8319 8320 /* 8321 * Ensure we have at some amount of bandwidth every period. This is 8322 * to prevent reaching a state of large arrears when throttled via 8323 * entity_tick() resulting in prolonged exit starvation. 8324 */ 8325 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8326 return -EINVAL; 8327 8328 /* 8329 * Likewise, bound things on the otherside by preventing insane quota 8330 * periods. This also allows us to normalize in computing quota 8331 * feasibility. 8332 */ 8333 if (period > max_cfs_quota_period) 8334 return -EINVAL; 8335 8336 /* 8337 * Prevent race between setting of cfs_rq->runtime_enabled and 8338 * unthrottle_offline_cfs_rqs(). 8339 */ 8340 get_online_cpus(); 8341 mutex_lock(&cfs_constraints_mutex); 8342 ret = __cfs_schedulable(tg, period, quota); 8343 if (ret) 8344 goto out_unlock; 8345 8346 runtime_enabled = quota != RUNTIME_INF; 8347 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8348 /* 8349 * If we need to toggle cfs_bandwidth_used, off->on must occur 8350 * before making related changes, and on->off must occur afterwards 8351 */ 8352 if (runtime_enabled && !runtime_was_enabled) 8353 cfs_bandwidth_usage_inc(); 8354 raw_spin_lock_irq(&cfs_b->lock); 8355 cfs_b->period = ns_to_ktime(period); 8356 cfs_b->quota = quota; 8357 8358 __refill_cfs_bandwidth_runtime(cfs_b); 8359 /* restart the period timer (if active) to handle new period expiry */ 8360 if (runtime_enabled) 8361 start_cfs_bandwidth(cfs_b); 8362 raw_spin_unlock_irq(&cfs_b->lock); 8363 8364 for_each_online_cpu(i) { 8365 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8366 struct rq *rq = cfs_rq->rq; 8367 8368 raw_spin_lock_irq(&rq->lock); 8369 cfs_rq->runtime_enabled = runtime_enabled; 8370 cfs_rq->runtime_remaining = 0; 8371 8372 if (cfs_rq->throttled) 8373 unthrottle_cfs_rq(cfs_rq); 8374 raw_spin_unlock_irq(&rq->lock); 8375 } 8376 if (runtime_was_enabled && !runtime_enabled) 8377 cfs_bandwidth_usage_dec(); 8378 out_unlock: 8379 mutex_unlock(&cfs_constraints_mutex); 8380 put_online_cpus(); 8381 8382 return ret; 8383 } 8384 8385 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8386 { 8387 u64 quota, period; 8388 8389 period = ktime_to_ns(tg->cfs_bandwidth.period); 8390 if (cfs_quota_us < 0) 8391 quota = RUNTIME_INF; 8392 else 8393 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8394 8395 return tg_set_cfs_bandwidth(tg, period, quota); 8396 } 8397 8398 long tg_get_cfs_quota(struct task_group *tg) 8399 { 8400 u64 quota_us; 8401 8402 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8403 return -1; 8404 8405 quota_us = tg->cfs_bandwidth.quota; 8406 do_div(quota_us, NSEC_PER_USEC); 8407 8408 return quota_us; 8409 } 8410 8411 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8412 { 8413 u64 quota, period; 8414 8415 period = (u64)cfs_period_us * NSEC_PER_USEC; 8416 quota = tg->cfs_bandwidth.quota; 8417 8418 return tg_set_cfs_bandwidth(tg, period, quota); 8419 } 8420 8421 long tg_get_cfs_period(struct task_group *tg) 8422 { 8423 u64 cfs_period_us; 8424 8425 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8426 do_div(cfs_period_us, NSEC_PER_USEC); 8427 8428 return cfs_period_us; 8429 } 8430 8431 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8432 struct cftype *cft) 8433 { 8434 return tg_get_cfs_quota(css_tg(css)); 8435 } 8436 8437 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8438 struct cftype *cftype, s64 cfs_quota_us) 8439 { 8440 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8441 } 8442 8443 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8444 struct cftype *cft) 8445 { 8446 return tg_get_cfs_period(css_tg(css)); 8447 } 8448 8449 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8450 struct cftype *cftype, u64 cfs_period_us) 8451 { 8452 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8453 } 8454 8455 struct cfs_schedulable_data { 8456 struct task_group *tg; 8457 u64 period, quota; 8458 }; 8459 8460 /* 8461 * normalize group quota/period to be quota/max_period 8462 * note: units are usecs 8463 */ 8464 static u64 normalize_cfs_quota(struct task_group *tg, 8465 struct cfs_schedulable_data *d) 8466 { 8467 u64 quota, period; 8468 8469 if (tg == d->tg) { 8470 period = d->period; 8471 quota = d->quota; 8472 } else { 8473 period = tg_get_cfs_period(tg); 8474 quota = tg_get_cfs_quota(tg); 8475 } 8476 8477 /* note: these should typically be equivalent */ 8478 if (quota == RUNTIME_INF || quota == -1) 8479 return RUNTIME_INF; 8480 8481 return to_ratio(period, quota); 8482 } 8483 8484 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8485 { 8486 struct cfs_schedulable_data *d = data; 8487 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8488 s64 quota = 0, parent_quota = -1; 8489 8490 if (!tg->parent) { 8491 quota = RUNTIME_INF; 8492 } else { 8493 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8494 8495 quota = normalize_cfs_quota(tg, d); 8496 parent_quota = parent_b->hierarchical_quota; 8497 8498 /* 8499 * ensure max(child_quota) <= parent_quota, inherit when no 8500 * limit is set 8501 */ 8502 if (quota == RUNTIME_INF) 8503 quota = parent_quota; 8504 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8505 return -EINVAL; 8506 } 8507 cfs_b->hierarchical_quota = quota; 8508 8509 return 0; 8510 } 8511 8512 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8513 { 8514 int ret; 8515 struct cfs_schedulable_data data = { 8516 .tg = tg, 8517 .period = period, 8518 .quota = quota, 8519 }; 8520 8521 if (quota != RUNTIME_INF) { 8522 do_div(data.period, NSEC_PER_USEC); 8523 do_div(data.quota, NSEC_PER_USEC); 8524 } 8525 8526 rcu_read_lock(); 8527 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8528 rcu_read_unlock(); 8529 8530 return ret; 8531 } 8532 8533 static int cpu_stats_show(struct seq_file *sf, void *v) 8534 { 8535 struct task_group *tg = css_tg(seq_css(sf)); 8536 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8537 8538 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8539 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8540 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8541 8542 return 0; 8543 } 8544 #endif /* CONFIG_CFS_BANDWIDTH */ 8545 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8546 8547 #ifdef CONFIG_RT_GROUP_SCHED 8548 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8549 struct cftype *cft, s64 val) 8550 { 8551 return sched_group_set_rt_runtime(css_tg(css), val); 8552 } 8553 8554 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8555 struct cftype *cft) 8556 { 8557 return sched_group_rt_runtime(css_tg(css)); 8558 } 8559 8560 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8561 struct cftype *cftype, u64 rt_period_us) 8562 { 8563 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8564 } 8565 8566 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8567 struct cftype *cft) 8568 { 8569 return sched_group_rt_period(css_tg(css)); 8570 } 8571 #endif /* CONFIG_RT_GROUP_SCHED */ 8572 8573 static struct cftype cpu_files[] = { 8574 #ifdef CONFIG_FAIR_GROUP_SCHED 8575 { 8576 .name = "shares", 8577 .read_u64 = cpu_shares_read_u64, 8578 .write_u64 = cpu_shares_write_u64, 8579 }, 8580 #endif 8581 #ifdef CONFIG_CFS_BANDWIDTH 8582 { 8583 .name = "cfs_quota_us", 8584 .read_s64 = cpu_cfs_quota_read_s64, 8585 .write_s64 = cpu_cfs_quota_write_s64, 8586 }, 8587 { 8588 .name = "cfs_period_us", 8589 .read_u64 = cpu_cfs_period_read_u64, 8590 .write_u64 = cpu_cfs_period_write_u64, 8591 }, 8592 { 8593 .name = "stat", 8594 .seq_show = cpu_stats_show, 8595 }, 8596 #endif 8597 #ifdef CONFIG_RT_GROUP_SCHED 8598 { 8599 .name = "rt_runtime_us", 8600 .read_s64 = cpu_rt_runtime_read, 8601 .write_s64 = cpu_rt_runtime_write, 8602 }, 8603 { 8604 .name = "rt_period_us", 8605 .read_u64 = cpu_rt_period_read_uint, 8606 .write_u64 = cpu_rt_period_write_uint, 8607 }, 8608 #endif 8609 { } /* terminate */ 8610 }; 8611 8612 struct cgroup_subsys cpu_cgrp_subsys = { 8613 .css_alloc = cpu_cgroup_css_alloc, 8614 .css_released = cpu_cgroup_css_released, 8615 .css_free = cpu_cgroup_css_free, 8616 .fork = cpu_cgroup_fork, 8617 .can_attach = cpu_cgroup_can_attach, 8618 .attach = cpu_cgroup_attach, 8619 .legacy_cftypes = cpu_files, 8620 .early_init = true, 8621 }; 8622 8623 #endif /* CONFIG_CGROUP_SCHED */ 8624 8625 void dump_cpu_task(int cpu) 8626 { 8627 pr_info("Task dump for CPU %d:\n", cpu); 8628 sched_show_task(cpu_curr(cpu)); 8629 } 8630 8631 /* 8632 * Nice levels are multiplicative, with a gentle 10% change for every 8633 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8634 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8635 * that remained on nice 0. 8636 * 8637 * The "10% effect" is relative and cumulative: from _any_ nice level, 8638 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8639 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8640 * If a task goes up by ~10% and another task goes down by ~10% then 8641 * the relative distance between them is ~25%.) 8642 */ 8643 const int sched_prio_to_weight[40] = { 8644 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8645 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8646 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8647 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8648 /* 0 */ 1024, 820, 655, 526, 423, 8649 /* 5 */ 335, 272, 215, 172, 137, 8650 /* 10 */ 110, 87, 70, 56, 45, 8651 /* 15 */ 36, 29, 23, 18, 15, 8652 }; 8653 8654 /* 8655 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8656 * 8657 * In cases where the weight does not change often, we can use the 8658 * precalculated inverse to speed up arithmetics by turning divisions 8659 * into multiplications: 8660 */ 8661 const u32 sched_prio_to_wmult[40] = { 8662 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8663 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8664 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8665 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8666 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8667 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8668 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8669 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8670 }; 8671