xref: /openbmc/linux/kernel/sched/core.c (revision 80483c3a)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	lockdep_assert_held(&p->pi_lock);
182 
183 	for (;;) {
184 		rq = task_rq(p);
185 		raw_spin_lock(&rq->lock);
186 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 			rf->cookie = lockdep_pin_lock(&rq->lock);
188 			return rq;
189 		}
190 		raw_spin_unlock(&rq->lock);
191 
192 		while (unlikely(task_on_rq_migrating(p)))
193 			cpu_relax();
194 	}
195 }
196 
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 	__acquires(p->pi_lock)
202 	__acquires(rq->lock)
203 {
204 	struct rq *rq;
205 
206 	for (;;) {
207 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 		rq = task_rq(p);
209 		raw_spin_lock(&rq->lock);
210 		/*
211 		 *	move_queued_task()		task_rq_lock()
212 		 *
213 		 *	ACQUIRE (rq->lock)
214 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
215 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
216 		 *	[S] ->cpu = new_cpu		[L] task_rq()
217 		 *					[L] ->on_rq
218 		 *	RELEASE (rq->lock)
219 		 *
220 		 * If we observe the old cpu in task_rq_lock, the acquire of
221 		 * the old rq->lock will fully serialize against the stores.
222 		 *
223 		 * If we observe the new cpu in task_rq_lock, the acquire will
224 		 * pair with the WMB to ensure we must then also see migrating.
225 		 */
226 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 			rf->cookie = lockdep_pin_lock(&rq->lock);
228 			return rq;
229 		}
230 		raw_spin_unlock(&rq->lock);
231 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 
233 		while (unlikely(task_on_rq_migrating(p)))
234 			cpu_relax();
235 	}
236 }
237 
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242 
243 static void hrtick_clear(struct rq *rq)
244 {
245 	if (hrtimer_active(&rq->hrtick_timer))
246 		hrtimer_cancel(&rq->hrtick_timer);
247 }
248 
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	raw_spin_lock(&rq->lock);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	raw_spin_unlock(&rq->lock);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 
283 	raw_spin_lock(&rq->lock);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	raw_spin_unlock(&rq->lock);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* task can safely be re-inserted now */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 		return;
511 	resched_curr(rq);
512 	raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514 
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527 	int i, cpu = smp_processor_id();
528 	struct sched_domain *sd;
529 
530 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 		return cpu;
532 
533 	rcu_read_lock();
534 	for_each_domain(cpu, sd) {
535 		for_each_cpu(i, sched_domain_span(sd)) {
536 			if (cpu == i)
537 				continue;
538 
539 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 				cpu = i;
541 				goto unlock;
542 			}
543 		}
544 	}
545 
546 	if (!is_housekeeping_cpu(cpu))
547 		cpu = housekeeping_any_cpu();
548 unlock:
549 	rcu_read_unlock();
550 	return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (tick_nohz_full_cpu(cpu)) {
584 		if (cpu != smp_processor_id() ||
585 		    tick_nohz_tick_stopped())
586 			tick_nohz_full_kick_cpu(cpu);
587 		return true;
588 	}
589 
590 	return false;
591 }
592 
593 void wake_up_nohz_cpu(int cpu)
594 {
595 	if (!wake_up_full_nohz_cpu(cpu))
596 		wake_up_idle_cpu(cpu);
597 }
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	int cpu = smp_processor_id();
602 
603 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 		return false;
605 
606 	if (idle_cpu(cpu) && !need_resched())
607 		return true;
608 
609 	/*
610 	 * We can't run Idle Load Balance on this CPU for this time so we
611 	 * cancel it and clear NOHZ_BALANCE_KICK
612 	 */
613 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 	return false;
615 }
616 
617 #else /* CONFIG_NO_HZ_COMMON */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ_COMMON */
625 
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 	int fifo_nr_running;
630 
631 	/* Deadline tasks, even if single, need the tick */
632 	if (rq->dl.dl_nr_running)
633 		return false;
634 
635 	/*
636 	 * If there are more than one RR tasks, we need the tick to effect the
637 	 * actual RR behaviour.
638 	 */
639 	if (rq->rt.rr_nr_running) {
640 		if (rq->rt.rr_nr_running == 1)
641 			return true;
642 		else
643 			return false;
644 	}
645 
646 	/*
647 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 	 * forced preemption between FIFO tasks.
649 	 */
650 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 	if (fifo_nr_running)
652 		return true;
653 
654 	/*
655 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 	 * if there's more than one we need the tick for involuntary
657 	 * preemption.
658 	 */
659 	if (rq->nr_running > 1)
660 		return false;
661 
662 	return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #endif /* CONFIG_SMP */
683 
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693 			     tg_visitor down, tg_visitor up, void *data)
694 {
695 	struct task_group *parent, *child;
696 	int ret;
697 
698 	parent = from;
699 
700 down:
701 	ret = (*down)(parent, data);
702 	if (ret)
703 		goto out;
704 	list_for_each_entry_rcu(child, &parent->children, siblings) {
705 		parent = child;
706 		goto down;
707 
708 up:
709 		continue;
710 	}
711 	ret = (*up)(parent, data);
712 	if (ret || parent == from)
713 		goto out;
714 
715 	child = parent;
716 	parent = parent->parent;
717 	if (parent)
718 		goto up;
719 out:
720 	return ret;
721 }
722 
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 	return 0;
726 }
727 #endif
728 
729 static void set_load_weight(struct task_struct *p)
730 {
731 	int prio = p->static_prio - MAX_RT_PRIO;
732 	struct load_weight *load = &p->se.load;
733 
734 	/*
735 	 * SCHED_IDLE tasks get minimal weight:
736 	 */
737 	if (idle_policy(p->policy)) {
738 		load->weight = scale_load(WEIGHT_IDLEPRIO);
739 		load->inv_weight = WMULT_IDLEPRIO;
740 		return;
741 	}
742 
743 	load->weight = scale_load(sched_prio_to_weight[prio]);
744 	load->inv_weight = sched_prio_to_wmult[prio];
745 }
746 
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 	update_rq_clock(rq);
750 	if (!(flags & ENQUEUE_RESTORE))
751 		sched_info_queued(rq, p);
752 	p->sched_class->enqueue_task(rq, p, flags);
753 }
754 
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & DEQUEUE_SAVE))
759 		sched_info_dequeued(rq, p);
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 	s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 
791 	/*
792 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 	 * this case when a previous update_rq_clock() happened inside a
794 	 * {soft,}irq region.
795 	 *
796 	 * When this happens, we stop ->clock_task and only update the
797 	 * prev_irq_time stamp to account for the part that fit, so that a next
798 	 * update will consume the rest. This ensures ->clock_task is
799 	 * monotonic.
800 	 *
801 	 * It does however cause some slight miss-attribution of {soft,}irq
802 	 * time, a more accurate solution would be to update the irq_time using
803 	 * the current rq->clock timestamp, except that would require using
804 	 * atomic ops.
805 	 */
806 	if (irq_delta > delta)
807 		irq_delta = delta;
808 
809 	rq->prev_irq_time += irq_delta;
810 	delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 		steal = paravirt_steal_clock(cpu_of(rq));
815 		steal -= rq->prev_steal_time_rq;
816 
817 		if (unlikely(steal > delta))
818 			steal = delta;
819 
820 		rq->prev_steal_time_rq += steal;
821 		delta -= steal;
822 	}
823 #endif
824 
825 	rq->clock_task += delta;
826 
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 		sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832 
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
837 
838 	if (stop) {
839 		/*
840 		 * Make it appear like a SCHED_FIFO task, its something
841 		 * userspace knows about and won't get confused about.
842 		 *
843 		 * Also, it will make PI more or less work without too
844 		 * much confusion -- but then, stop work should not
845 		 * rely on PI working anyway.
846 		 */
847 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848 
849 		stop->sched_class = &stop_sched_class;
850 	}
851 
852 	cpu_rq(cpu)->stop = stop;
853 
854 	if (old_stop) {
855 		/*
856 		 * Reset it back to a normal scheduling class so that
857 		 * it can die in pieces.
858 		 */
859 		old_stop->sched_class = &rt_sched_class;
860 	}
861 }
862 
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 	return p->static_prio;
869 }
870 
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 	int prio;
881 
882 	if (task_has_dl_policy(p))
883 		prio = MAX_DL_PRIO-1;
884 	else if (task_has_rt_policy(p))
885 		prio = MAX_RT_PRIO-1 - p->rt_priority;
886 	else
887 		prio = __normal_prio(p);
888 	return prio;
889 }
890 
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900 	p->normal_prio = normal_prio(p);
901 	/*
902 	 * If we are RT tasks or we were boosted to RT priority,
903 	 * keep the priority unchanged. Otherwise, update priority
904 	 * to the normal priority:
905 	 */
906 	if (!rt_prio(p->prio))
907 		return p->normal_prio;
908 	return p->prio;
909 }
910 
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919 	return cpu_curr(task_cpu(p)) == p;
920 }
921 
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 				       const struct sched_class *prev_class,
931 				       int oldprio)
932 {
933 	if (prev_class != p->sched_class) {
934 		if (prev_class->switched_from)
935 			prev_class->switched_from(rq, p);
936 
937 		p->sched_class->switched_to(rq, p);
938 	} else if (oldprio != p->prio || dl_task(p))
939 		p->sched_class->prio_changed(rq, p, oldprio);
940 }
941 
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	const struct sched_class *class;
945 
946 	if (p->sched_class == rq->curr->sched_class) {
947 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 	} else {
949 		for_each_class(class) {
950 			if (class == rq->curr->sched_class)
951 				break;
952 			if (class == p->sched_class) {
953 				resched_curr(rq);
954 				break;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * A queue event has occurred, and we're going to schedule.  In
961 	 * this case, we can save a useless back to back clock update.
962 	 */
963 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 		rq_clock_skip_update(rq, true);
965 }
966 
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981 
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	p->on_rq = TASK_ON_RQ_MIGRATING;
992 	dequeue_task(rq, p, 0);
993 	set_task_cpu(p, new_cpu);
994 	raw_spin_unlock(&rq->lock);
995 
996 	rq = cpu_rq(new_cpu);
997 
998 	raw_spin_lock(&rq->lock);
999 	BUG_ON(task_cpu(p) != new_cpu);
1000 	enqueue_task(rq, p, 0);
1001 	p->on_rq = TASK_ON_RQ_QUEUED;
1002 	check_preempt_curr(rq, p, 0);
1003 
1004 	return rq;
1005 }
1006 
1007 struct migration_arg {
1008 	struct task_struct *task;
1009 	int dest_cpu;
1010 };
1011 
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 	if (unlikely(!cpu_active(dest_cpu)))
1024 		return rq;
1025 
1026 	/* Affinity changed (again). */
1027 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 		return rq;
1029 
1030 	rq = move_queued_task(rq, p, dest_cpu);
1031 
1032 	return rq;
1033 }
1034 
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 	struct migration_arg *arg = data;
1043 	struct task_struct *p = arg->task;
1044 	struct rq *rq = this_rq();
1045 
1046 	/*
1047 	 * The original target cpu might have gone down and we might
1048 	 * be on another cpu but it doesn't matter.
1049 	 */
1050 	local_irq_disable();
1051 	/*
1052 	 * We need to explicitly wake pending tasks before running
1053 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 	 */
1056 	sched_ttwu_pending();
1057 
1058 	raw_spin_lock(&p->pi_lock);
1059 	raw_spin_lock(&rq->lock);
1060 	/*
1061 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 	 * we're holding p->pi_lock.
1064 	 */
1065 	if (task_rq(p) == rq && task_on_rq_queued(p))
1066 		rq = __migrate_task(rq, p, arg->dest_cpu);
1067 	raw_spin_unlock(&rq->lock);
1068 	raw_spin_unlock(&p->pi_lock);
1069 
1070 	local_irq_enable();
1071 	return 0;
1072 }
1073 
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 	cpumask_copy(&p->cpus_allowed, new_mask);
1081 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083 
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 	struct rq *rq = task_rq(p);
1087 	bool queued, running;
1088 
1089 	lockdep_assert_held(&p->pi_lock);
1090 
1091 	queued = task_on_rq_queued(p);
1092 	running = task_current(rq, p);
1093 
1094 	if (queued) {
1095 		/*
1096 		 * Because __kthread_bind() calls this on blocked tasks without
1097 		 * holding rq->lock.
1098 		 */
1099 		lockdep_assert_held(&rq->lock);
1100 		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 	}
1102 	if (running)
1103 		put_prev_task(rq, p);
1104 
1105 	p->sched_class->set_cpus_allowed(p, new_mask);
1106 
1107 	if (running)
1108 		p->sched_class->set_curr_task(rq);
1109 	if (queued)
1110 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112 
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 				  const struct cpumask *new_mask, bool check)
1124 {
1125 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 	unsigned int dest_cpu;
1127 	struct rq_flags rf;
1128 	struct rq *rq;
1129 	int ret = 0;
1130 
1131 	rq = task_rq_lock(p, &rf);
1132 
1133 	if (p->flags & PF_KTHREAD) {
1134 		/*
1135 		 * Kernel threads are allowed on online && !active CPUs
1136 		 */
1137 		cpu_valid_mask = cpu_online_mask;
1138 	}
1139 
1140 	/*
1141 	 * Must re-check here, to close a race against __kthread_bind(),
1142 	 * sched_setaffinity() is not guaranteed to observe the flag.
1143 	 */
1144 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 		goto out;
1151 
1152 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 		ret = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	do_set_cpus_allowed(p, new_mask);
1158 
1159 	if (p->flags & PF_KTHREAD) {
1160 		/*
1161 		 * For kernel threads that do indeed end up on online &&
1162 		 * !active we want to ensure they are strict per-cpu threads.
1163 		 */
1164 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1166 			p->nr_cpus_allowed != 1);
1167 	}
1168 
1169 	/* Can the task run on the task's current CPU? If so, we're done */
1170 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 		goto out;
1172 
1173 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 		struct migration_arg arg = { p, dest_cpu };
1176 		/* Need help from migration thread: drop lock and wait. */
1177 		task_rq_unlock(rq, p, &rf);
1178 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 		tlb_migrate_finish(p->mm);
1180 		return 0;
1181 	} else if (task_on_rq_queued(p)) {
1182 		/*
1183 		 * OK, since we're going to drop the lock immediately
1184 		 * afterwards anyway.
1185 		 */
1186 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 		rq = move_queued_task(rq, p, dest_cpu);
1188 		lockdep_repin_lock(&rq->lock, rf.cookie);
1189 	}
1190 out:
1191 	task_rq_unlock(rq, p, &rf);
1192 
1193 	return ret;
1194 }
1195 
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 	return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201 
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 	/*
1206 	 * We should never call set_task_cpu() on a blocked task,
1207 	 * ttwu() will sort out the placement.
1208 	 */
1209 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 			!p->on_rq);
1211 
1212 	/*
1213 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 	 * time relying on p->on_rq.
1216 	 */
1217 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 		     p->sched_class == &fair_sched_class &&
1219 		     (p->on_rq && !task_on_rq_migrating(p)));
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	/*
1223 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 	 *
1226 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 	 * see task_group().
1228 	 *
1229 	 * Furthermore, all task_rq users should acquire both locks, see
1230 	 * task_rq_lock().
1231 	 */
1232 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 				      lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236 
1237 	trace_sched_migrate_task(p, new_cpu);
1238 
1239 	if (task_cpu(p) != new_cpu) {
1240 		if (p->sched_class->migrate_task_rq)
1241 			p->sched_class->migrate_task_rq(p);
1242 		p->se.nr_migrations++;
1243 		perf_event_task_migrate(p);
1244 	}
1245 
1246 	__set_task_cpu(p, new_cpu);
1247 }
1248 
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 	if (task_on_rq_queued(p)) {
1252 		struct rq *src_rq, *dst_rq;
1253 
1254 		src_rq = task_rq(p);
1255 		dst_rq = cpu_rq(cpu);
1256 
1257 		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 		deactivate_task(src_rq, p, 0);
1259 		set_task_cpu(p, cpu);
1260 		activate_task(dst_rq, p, 0);
1261 		p->on_rq = TASK_ON_RQ_QUEUED;
1262 		check_preempt_curr(dst_rq, p, 0);
1263 	} else {
1264 		/*
1265 		 * Task isn't running anymore; make it appear like we migrated
1266 		 * it before it went to sleep. This means on wakeup we make the
1267 		 * previous cpu our targer instead of where it really is.
1268 		 */
1269 		p->wake_cpu = cpu;
1270 	}
1271 }
1272 
1273 struct migration_swap_arg {
1274 	struct task_struct *src_task, *dst_task;
1275 	int src_cpu, dst_cpu;
1276 };
1277 
1278 static int migrate_swap_stop(void *data)
1279 {
1280 	struct migration_swap_arg *arg = data;
1281 	struct rq *src_rq, *dst_rq;
1282 	int ret = -EAGAIN;
1283 
1284 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 		return -EAGAIN;
1286 
1287 	src_rq = cpu_rq(arg->src_cpu);
1288 	dst_rq = cpu_rq(arg->dst_cpu);
1289 
1290 	double_raw_lock(&arg->src_task->pi_lock,
1291 			&arg->dst_task->pi_lock);
1292 	double_rq_lock(src_rq, dst_rq);
1293 
1294 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 		goto unlock;
1296 
1297 	if (task_cpu(arg->src_task) != arg->src_cpu)
1298 		goto unlock;
1299 
1300 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 		goto unlock;
1302 
1303 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 		goto unlock;
1305 
1306 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1308 
1309 	ret = 0;
1310 
1311 unlock:
1312 	double_rq_unlock(src_rq, dst_rq);
1313 	raw_spin_unlock(&arg->dst_task->pi_lock);
1314 	raw_spin_unlock(&arg->src_task->pi_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 	struct migration_swap_arg arg;
1325 	int ret = -EINVAL;
1326 
1327 	arg = (struct migration_swap_arg){
1328 		.src_task = cur,
1329 		.src_cpu = task_cpu(cur),
1330 		.dst_task = p,
1331 		.dst_cpu = task_cpu(p),
1332 	};
1333 
1334 	if (arg.src_cpu == arg.dst_cpu)
1335 		goto out;
1336 
1337 	/*
1338 	 * These three tests are all lockless; this is OK since all of them
1339 	 * will be re-checked with proper locks held further down the line.
1340 	 */
1341 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 		goto out;
1343 
1344 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 		goto out;
1346 
1347 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 		goto out;
1349 
1350 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 	int running, queued;
1376 	struct rq_flags rf;
1377 	unsigned long ncsw;
1378 	struct rq *rq;
1379 
1380 	for (;;) {
1381 		/*
1382 		 * We do the initial early heuristics without holding
1383 		 * any task-queue locks at all. We'll only try to get
1384 		 * the runqueue lock when things look like they will
1385 		 * work out!
1386 		 */
1387 		rq = task_rq(p);
1388 
1389 		/*
1390 		 * If the task is actively running on another CPU
1391 		 * still, just relax and busy-wait without holding
1392 		 * any locks.
1393 		 *
1394 		 * NOTE! Since we don't hold any locks, it's not
1395 		 * even sure that "rq" stays as the right runqueue!
1396 		 * But we don't care, since "task_running()" will
1397 		 * return false if the runqueue has changed and p
1398 		 * is actually now running somewhere else!
1399 		 */
1400 		while (task_running(rq, p)) {
1401 			if (match_state && unlikely(p->state != match_state))
1402 				return 0;
1403 			cpu_relax();
1404 		}
1405 
1406 		/*
1407 		 * Ok, time to look more closely! We need the rq
1408 		 * lock now, to be *sure*. If we're wrong, we'll
1409 		 * just go back and repeat.
1410 		 */
1411 		rq = task_rq_lock(p, &rf);
1412 		trace_sched_wait_task(p);
1413 		running = task_running(rq, p);
1414 		queued = task_on_rq_queued(p);
1415 		ncsw = 0;
1416 		if (!match_state || p->state == match_state)
1417 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 		task_rq_unlock(rq, p, &rf);
1419 
1420 		/*
1421 		 * If it changed from the expected state, bail out now.
1422 		 */
1423 		if (unlikely(!ncsw))
1424 			break;
1425 
1426 		/*
1427 		 * Was it really running after all now that we
1428 		 * checked with the proper locks actually held?
1429 		 *
1430 		 * Oops. Go back and try again..
1431 		 */
1432 		if (unlikely(running)) {
1433 			cpu_relax();
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * It's not enough that it's not actively running,
1439 		 * it must be off the runqueue _entirely_, and not
1440 		 * preempted!
1441 		 *
1442 		 * So if it was still runnable (but just not actively
1443 		 * running right now), it's preempted, and we should
1444 		 * yield - it could be a while.
1445 		 */
1446 		if (unlikely(queued)) {
1447 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * Ahh, all good. It wasn't running, and it wasn't
1456 		 * runnable, which means that it will never become
1457 		 * running in the future either. We're all done!
1458 		 */
1459 		break;
1460 	}
1461 
1462 	return ncsw;
1463 }
1464 
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480 	int cpu;
1481 
1482 	preempt_disable();
1483 	cpu = task_cpu(p);
1484 	if ((cpu != smp_processor_id()) && task_curr(p))
1485 		smp_send_reschedule(cpu);
1486 	preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489 
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 	int nid = cpu_to_node(cpu);
1515 	const struct cpumask *nodemask = NULL;
1516 	enum { cpuset, possible, fail } state = cpuset;
1517 	int dest_cpu;
1518 
1519 	/*
1520 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 	 * will return -1. There is no cpu on the node, and we should
1522 	 * select the cpu on the other node.
1523 	 */
1524 	if (nid != -1) {
1525 		nodemask = cpumask_of_node(nid);
1526 
1527 		/* Look for allowed, online CPU in same node. */
1528 		for_each_cpu(dest_cpu, nodemask) {
1529 			if (!cpu_active(dest_cpu))
1530 				continue;
1531 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 				return dest_cpu;
1533 		}
1534 	}
1535 
1536 	for (;;) {
1537 		/* Any allowed, online CPU? */
1538 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540 				continue;
1541 			if (!cpu_online(dest_cpu))
1542 				continue;
1543 			goto out;
1544 		}
1545 
1546 		/* No more Mr. Nice Guy. */
1547 		switch (state) {
1548 		case cpuset:
1549 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1550 				cpuset_cpus_allowed_fallback(p);
1551 				state = possible;
1552 				break;
1553 			}
1554 			/* fall-through */
1555 		case possible:
1556 			do_set_cpus_allowed(p, cpu_possible_mask);
1557 			state = fail;
1558 			break;
1559 
1560 		case fail:
1561 			BUG();
1562 			break;
1563 		}
1564 	}
1565 
1566 out:
1567 	if (state != cpuset) {
1568 		/*
1569 		 * Don't tell them about moving exiting tasks or
1570 		 * kernel threads (both mm NULL), since they never
1571 		 * leave kernel.
1572 		 */
1573 		if (p->mm && printk_ratelimit()) {
1574 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 					task_pid_nr(p), p->comm, cpu);
1576 		}
1577 	}
1578 
1579 	return dest_cpu;
1580 }
1581 
1582 /*
1583  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584  */
1585 static inline
1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587 {
1588 	lockdep_assert_held(&p->pi_lock);
1589 
1590 	if (tsk_nr_cpus_allowed(p) > 1)
1591 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592 	else
1593 		cpu = cpumask_any(tsk_cpus_allowed(p));
1594 
1595 	/*
1596 	 * In order not to call set_task_cpu() on a blocking task we need
1597 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598 	 * cpu.
1599 	 *
1600 	 * Since this is common to all placement strategies, this lives here.
1601 	 *
1602 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1603 	 *   not worry about this generic constraint ]
1604 	 */
1605 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1606 		     !cpu_online(cpu)))
1607 		cpu = select_fallback_rq(task_cpu(p), p);
1608 
1609 	return cpu;
1610 }
1611 
1612 static void update_avg(u64 *avg, u64 sample)
1613 {
1614 	s64 diff = sample - *avg;
1615 	*avg += diff >> 3;
1616 }
1617 
1618 #else
1619 
1620 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621 					 const struct cpumask *new_mask, bool check)
1622 {
1623 	return set_cpus_allowed_ptr(p, new_mask);
1624 }
1625 
1626 #endif /* CONFIG_SMP */
1627 
1628 static void
1629 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1630 {
1631 #ifdef CONFIG_SCHEDSTATS
1632 	struct rq *rq = this_rq();
1633 
1634 #ifdef CONFIG_SMP
1635 	int this_cpu = smp_processor_id();
1636 
1637 	if (cpu == this_cpu) {
1638 		schedstat_inc(rq, ttwu_local);
1639 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1640 	} else {
1641 		struct sched_domain *sd;
1642 
1643 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644 		rcu_read_lock();
1645 		for_each_domain(this_cpu, sd) {
1646 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647 				schedstat_inc(sd, ttwu_wake_remote);
1648 				break;
1649 			}
1650 		}
1651 		rcu_read_unlock();
1652 	}
1653 
1654 	if (wake_flags & WF_MIGRATED)
1655 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656 
1657 #endif /* CONFIG_SMP */
1658 
1659 	schedstat_inc(rq, ttwu_count);
1660 	schedstat_inc(p, se.statistics.nr_wakeups);
1661 
1662 	if (wake_flags & WF_SYNC)
1663 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1664 
1665 #endif /* CONFIG_SCHEDSTATS */
1666 }
1667 
1668 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1669 {
1670 	activate_task(rq, p, en_flags);
1671 	p->on_rq = TASK_ON_RQ_QUEUED;
1672 
1673 	/* if a worker is waking up, notify workqueue */
1674 	if (p->flags & PF_WQ_WORKER)
1675 		wq_worker_waking_up(p, cpu_of(rq));
1676 }
1677 
1678 /*
1679  * Mark the task runnable and perform wakeup-preemption.
1680  */
1681 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682 			   struct pin_cookie cookie)
1683 {
1684 	check_preempt_curr(rq, p, wake_flags);
1685 	p->state = TASK_RUNNING;
1686 	trace_sched_wakeup(p);
1687 
1688 #ifdef CONFIG_SMP
1689 	if (p->sched_class->task_woken) {
1690 		/*
1691 		 * Our task @p is fully woken up and running; so its safe to
1692 		 * drop the rq->lock, hereafter rq is only used for statistics.
1693 		 */
1694 		lockdep_unpin_lock(&rq->lock, cookie);
1695 		p->sched_class->task_woken(rq, p);
1696 		lockdep_repin_lock(&rq->lock, cookie);
1697 	}
1698 
1699 	if (rq->idle_stamp) {
1700 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1701 		u64 max = 2*rq->max_idle_balance_cost;
1702 
1703 		update_avg(&rq->avg_idle, delta);
1704 
1705 		if (rq->avg_idle > max)
1706 			rq->avg_idle = max;
1707 
1708 		rq->idle_stamp = 0;
1709 	}
1710 #endif
1711 }
1712 
1713 static void
1714 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715 		 struct pin_cookie cookie)
1716 {
1717 	int en_flags = ENQUEUE_WAKEUP;
1718 
1719 	lockdep_assert_held(&rq->lock);
1720 
1721 #ifdef CONFIG_SMP
1722 	if (p->sched_contributes_to_load)
1723 		rq->nr_uninterruptible--;
1724 
1725 	if (wake_flags & WF_MIGRATED)
1726 		en_flags |= ENQUEUE_MIGRATED;
1727 #endif
1728 
1729 	ttwu_activate(rq, p, en_flags);
1730 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 }
1732 
1733 /*
1734  * Called in case the task @p isn't fully descheduled from its runqueue,
1735  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736  * since all we need to do is flip p->state to TASK_RUNNING, since
1737  * the task is still ->on_rq.
1738  */
1739 static int ttwu_remote(struct task_struct *p, int wake_flags)
1740 {
1741 	struct rq_flags rf;
1742 	struct rq *rq;
1743 	int ret = 0;
1744 
1745 	rq = __task_rq_lock(p, &rf);
1746 	if (task_on_rq_queued(p)) {
1747 		/* check_preempt_curr() may use rq clock */
1748 		update_rq_clock(rq);
1749 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750 		ret = 1;
1751 	}
1752 	__task_rq_unlock(rq, &rf);
1753 
1754 	return ret;
1755 }
1756 
1757 #ifdef CONFIG_SMP
1758 void sched_ttwu_pending(void)
1759 {
1760 	struct rq *rq = this_rq();
1761 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1762 	struct pin_cookie cookie;
1763 	struct task_struct *p;
1764 	unsigned long flags;
1765 
1766 	if (!llist)
1767 		return;
1768 
1769 	raw_spin_lock_irqsave(&rq->lock, flags);
1770 	cookie = lockdep_pin_lock(&rq->lock);
1771 
1772 	while (llist) {
1773 		int wake_flags = 0;
1774 
1775 		p = llist_entry(llist, struct task_struct, wake_entry);
1776 		llist = llist_next(llist);
1777 
1778 		if (p->sched_remote_wakeup)
1779 			wake_flags = WF_MIGRATED;
1780 
1781 		ttwu_do_activate(rq, p, wake_flags, cookie);
1782 	}
1783 
1784 	lockdep_unpin_lock(&rq->lock, cookie);
1785 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 }
1787 
1788 void scheduler_ipi(void)
1789 {
1790 	/*
1791 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1793 	 * this IPI.
1794 	 */
1795 	preempt_fold_need_resched();
1796 
1797 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798 		return;
1799 
1800 	/*
1801 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802 	 * traditionally all their work was done from the interrupt return
1803 	 * path. Now that we actually do some work, we need to make sure
1804 	 * we do call them.
1805 	 *
1806 	 * Some archs already do call them, luckily irq_enter/exit nest
1807 	 * properly.
1808 	 *
1809 	 * Arguably we should visit all archs and update all handlers,
1810 	 * however a fair share of IPIs are still resched only so this would
1811 	 * somewhat pessimize the simple resched case.
1812 	 */
1813 	irq_enter();
1814 	sched_ttwu_pending();
1815 
1816 	/*
1817 	 * Check if someone kicked us for doing the nohz idle load balance.
1818 	 */
1819 	if (unlikely(got_nohz_idle_kick())) {
1820 		this_rq()->idle_balance = 1;
1821 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1822 	}
1823 	irq_exit();
1824 }
1825 
1826 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827 {
1828 	struct rq *rq = cpu_rq(cpu);
1829 
1830 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831 
1832 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833 		if (!set_nr_if_polling(rq->idle))
1834 			smp_send_reschedule(cpu);
1835 		else
1836 			trace_sched_wake_idle_without_ipi(cpu);
1837 	}
1838 }
1839 
1840 void wake_up_if_idle(int cpu)
1841 {
1842 	struct rq *rq = cpu_rq(cpu);
1843 	unsigned long flags;
1844 
1845 	rcu_read_lock();
1846 
1847 	if (!is_idle_task(rcu_dereference(rq->curr)))
1848 		goto out;
1849 
1850 	if (set_nr_if_polling(rq->idle)) {
1851 		trace_sched_wake_idle_without_ipi(cpu);
1852 	} else {
1853 		raw_spin_lock_irqsave(&rq->lock, flags);
1854 		if (is_idle_task(rq->curr))
1855 			smp_send_reschedule(cpu);
1856 		/* Else cpu is not in idle, do nothing here */
1857 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1858 	}
1859 
1860 out:
1861 	rcu_read_unlock();
1862 }
1863 
1864 bool cpus_share_cache(int this_cpu, int that_cpu)
1865 {
1866 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867 }
1868 #endif /* CONFIG_SMP */
1869 
1870 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 {
1872 	struct rq *rq = cpu_rq(cpu);
1873 	struct pin_cookie cookie;
1874 
1875 #if defined(CONFIG_SMP)
1876 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1878 		ttwu_queue_remote(p, cpu, wake_flags);
1879 		return;
1880 	}
1881 #endif
1882 
1883 	raw_spin_lock(&rq->lock);
1884 	cookie = lockdep_pin_lock(&rq->lock);
1885 	ttwu_do_activate(rq, p, wake_flags, cookie);
1886 	lockdep_unpin_lock(&rq->lock, cookie);
1887 	raw_spin_unlock(&rq->lock);
1888 }
1889 
1890 /*
1891  * Notes on Program-Order guarantees on SMP systems.
1892  *
1893  *  MIGRATION
1894  *
1895  * The basic program-order guarantee on SMP systems is that when a task [t]
1896  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897  * execution on its new cpu [c1].
1898  *
1899  * For migration (of runnable tasks) this is provided by the following means:
1900  *
1901  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1902  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1903  *     rq(c1)->lock (if not at the same time, then in that order).
1904  *  C) LOCK of the rq(c1)->lock scheduling in task
1905  *
1906  * Transitivity guarantees that B happens after A and C after B.
1907  * Note: we only require RCpc transitivity.
1908  * Note: the cpu doing B need not be c0 or c1
1909  *
1910  * Example:
1911  *
1912  *   CPU0            CPU1            CPU2
1913  *
1914  *   LOCK rq(0)->lock
1915  *   sched-out X
1916  *   sched-in Y
1917  *   UNLOCK rq(0)->lock
1918  *
1919  *                                   LOCK rq(0)->lock // orders against CPU0
1920  *                                   dequeue X
1921  *                                   UNLOCK rq(0)->lock
1922  *
1923  *                                   LOCK rq(1)->lock
1924  *                                   enqueue X
1925  *                                   UNLOCK rq(1)->lock
1926  *
1927  *                   LOCK rq(1)->lock // orders against CPU2
1928  *                   sched-out Z
1929  *                   sched-in X
1930  *                   UNLOCK rq(1)->lock
1931  *
1932  *
1933  *  BLOCKING -- aka. SLEEP + WAKEUP
1934  *
1935  * For blocking we (obviously) need to provide the same guarantee as for
1936  * migration. However the means are completely different as there is no lock
1937  * chain to provide order. Instead we do:
1938  *
1939  *   1) smp_store_release(X->on_cpu, 0)
1940  *   2) smp_cond_load_acquire(!X->on_cpu)
1941  *
1942  * Example:
1943  *
1944  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1945  *
1946  *   LOCK rq(0)->lock LOCK X->pi_lock
1947  *   dequeue X
1948  *   sched-out X
1949  *   smp_store_release(X->on_cpu, 0);
1950  *
1951  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1952  *                    X->state = WAKING
1953  *                    set_task_cpu(X,2)
1954  *
1955  *                    LOCK rq(2)->lock
1956  *                    enqueue X
1957  *                    X->state = RUNNING
1958  *                    UNLOCK rq(2)->lock
1959  *
1960  *                                          LOCK rq(2)->lock // orders against CPU1
1961  *                                          sched-out Z
1962  *                                          sched-in X
1963  *                                          UNLOCK rq(2)->lock
1964  *
1965  *                    UNLOCK X->pi_lock
1966  *   UNLOCK rq(0)->lock
1967  *
1968  *
1969  * However; for wakeups there is a second guarantee we must provide, namely we
1970  * must observe the state that lead to our wakeup. That is, not only must our
1971  * task observe its own prior state, it must also observe the stores prior to
1972  * its wakeup.
1973  *
1974  * This means that any means of doing remote wakeups must order the CPU doing
1975  * the wakeup against the CPU the task is going to end up running on. This,
1976  * however, is already required for the regular Program-Order guarantee above,
1977  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1978  *
1979  */
1980 
1981 /**
1982  * try_to_wake_up - wake up a thread
1983  * @p: the thread to be awakened
1984  * @state: the mask of task states that can be woken
1985  * @wake_flags: wake modifier flags (WF_*)
1986  *
1987  * Put it on the run-queue if it's not already there. The "current"
1988  * thread is always on the run-queue (except when the actual
1989  * re-schedule is in progress), and as such you're allowed to do
1990  * the simpler "current->state = TASK_RUNNING" to mark yourself
1991  * runnable without the overhead of this.
1992  *
1993  * Return: %true if @p was woken up, %false if it was already running.
1994  * or @state didn't match @p's state.
1995  */
1996 static int
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998 {
1999 	unsigned long flags;
2000 	int cpu, success = 0;
2001 
2002 	/*
2003 	 * If we are going to wake up a thread waiting for CONDITION we
2004 	 * need to ensure that CONDITION=1 done by the caller can not be
2005 	 * reordered with p->state check below. This pairs with mb() in
2006 	 * set_current_state() the waiting thread does.
2007 	 */
2008 	smp_mb__before_spinlock();
2009 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2010 	if (!(p->state & state))
2011 		goto out;
2012 
2013 	trace_sched_waking(p);
2014 
2015 	success = 1; /* we're going to change ->state */
2016 	cpu = task_cpu(p);
2017 
2018 	if (p->on_rq && ttwu_remote(p, wake_flags))
2019 		goto stat;
2020 
2021 #ifdef CONFIG_SMP
2022 	/*
2023 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024 	 * possible to, falsely, observe p->on_cpu == 0.
2025 	 *
2026 	 * One must be running (->on_cpu == 1) in order to remove oneself
2027 	 * from the runqueue.
2028 	 *
2029 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2030 	 *      UNLOCK rq->lock
2031 	 *			RMB
2032 	 *      LOCK   rq->lock
2033 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2034 	 *
2035 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036 	 * from the consecutive calls to schedule(); the first switching to our
2037 	 * task, the second putting it to sleep.
2038 	 */
2039 	smp_rmb();
2040 
2041 	/*
2042 	 * If the owning (remote) cpu is still in the middle of schedule() with
2043 	 * this task as prev, wait until its done referencing the task.
2044 	 *
2045 	 * Pairs with the smp_store_release() in finish_lock_switch().
2046 	 *
2047 	 * This ensures that tasks getting woken will be fully ordered against
2048 	 * their previous state and preserve Program Order.
2049 	 */
2050 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2051 
2052 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2053 	p->state = TASK_WAKING;
2054 
2055 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056 	if (task_cpu(p) != cpu) {
2057 		wake_flags |= WF_MIGRATED;
2058 		set_task_cpu(p, cpu);
2059 	}
2060 #endif /* CONFIG_SMP */
2061 
2062 	ttwu_queue(p, cpu, wake_flags);
2063 stat:
2064 	if (schedstat_enabled())
2065 		ttwu_stat(p, cpu, wake_flags);
2066 out:
2067 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2068 
2069 	return success;
2070 }
2071 
2072 /**
2073  * try_to_wake_up_local - try to wake up a local task with rq lock held
2074  * @p: the thread to be awakened
2075  *
2076  * Put @p on the run-queue if it's not already there. The caller must
2077  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078  * the current task.
2079  */
2080 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2081 {
2082 	struct rq *rq = task_rq(p);
2083 
2084 	if (WARN_ON_ONCE(rq != this_rq()) ||
2085 	    WARN_ON_ONCE(p == current))
2086 		return;
2087 
2088 	lockdep_assert_held(&rq->lock);
2089 
2090 	if (!raw_spin_trylock(&p->pi_lock)) {
2091 		/*
2092 		 * This is OK, because current is on_cpu, which avoids it being
2093 		 * picked for load-balance and preemption/IRQs are still
2094 		 * disabled avoiding further scheduler activity on it and we've
2095 		 * not yet picked a replacement task.
2096 		 */
2097 		lockdep_unpin_lock(&rq->lock, cookie);
2098 		raw_spin_unlock(&rq->lock);
2099 		raw_spin_lock(&p->pi_lock);
2100 		raw_spin_lock(&rq->lock);
2101 		lockdep_repin_lock(&rq->lock, cookie);
2102 	}
2103 
2104 	if (!(p->state & TASK_NORMAL))
2105 		goto out;
2106 
2107 	trace_sched_waking(p);
2108 
2109 	if (!task_on_rq_queued(p))
2110 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111 
2112 	ttwu_do_wakeup(rq, p, 0, cookie);
2113 	if (schedstat_enabled())
2114 		ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116 	raw_spin_unlock(&p->pi_lock);
2117 }
2118 
2119 /**
2120  * wake_up_process - Wake up a specific process
2121  * @p: The process to be woken up.
2122  *
2123  * Attempt to wake up the nominated process and move it to the set of runnable
2124  * processes.
2125  *
2126  * Return: 1 if the process was woken up, 0 if it was already running.
2127  *
2128  * It may be assumed that this function implies a write memory barrier before
2129  * changing the task state if and only if any tasks are woken up.
2130  */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133 	return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136 
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139 	return try_to_wake_up(p, state, 0);
2140 }
2141 
2142 /*
2143  * This function clears the sched_dl_entity static params.
2144  */
2145 void __dl_clear_params(struct task_struct *p)
2146 {
2147 	struct sched_dl_entity *dl_se = &p->dl;
2148 
2149 	dl_se->dl_runtime = 0;
2150 	dl_se->dl_deadline = 0;
2151 	dl_se->dl_period = 0;
2152 	dl_se->flags = 0;
2153 	dl_se->dl_bw = 0;
2154 
2155 	dl_se->dl_throttled = 0;
2156 	dl_se->dl_yielded = 0;
2157 }
2158 
2159 /*
2160  * Perform scheduler related setup for a newly forked process p.
2161  * p is forked by current.
2162  *
2163  * __sched_fork() is basic setup used by init_idle() too:
2164  */
2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 {
2167 	p->on_rq			= 0;
2168 
2169 	p->se.on_rq			= 0;
2170 	p->se.exec_start		= 0;
2171 	p->se.sum_exec_runtime		= 0;
2172 	p->se.prev_sum_exec_runtime	= 0;
2173 	p->se.nr_migrations		= 0;
2174 	p->se.vruntime			= 0;
2175 	INIT_LIST_HEAD(&p->se.group_node);
2176 
2177 #ifdef CONFIG_FAIR_GROUP_SCHED
2178 	p->se.cfs_rq			= NULL;
2179 #endif
2180 
2181 #ifdef CONFIG_SCHEDSTATS
2182 	/* Even if schedstat is disabled, there should not be garbage */
2183 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184 #endif
2185 
2186 	RB_CLEAR_NODE(&p->dl.rb_node);
2187 	init_dl_task_timer(&p->dl);
2188 	__dl_clear_params(p);
2189 
2190 	INIT_LIST_HEAD(&p->rt.run_list);
2191 	p->rt.timeout		= 0;
2192 	p->rt.time_slice	= sched_rr_timeslice;
2193 	p->rt.on_rq		= 0;
2194 	p->rt.on_list		= 0;
2195 
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2199 
2200 #ifdef CONFIG_NUMA_BALANCING
2201 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203 		p->mm->numa_scan_seq = 0;
2204 	}
2205 
2206 	if (clone_flags & CLONE_VM)
2207 		p->numa_preferred_nid = current->numa_preferred_nid;
2208 	else
2209 		p->numa_preferred_nid = -1;
2210 
2211 	p->node_stamp = 0ULL;
2212 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214 	p->numa_work.next = &p->numa_work;
2215 	p->numa_faults = NULL;
2216 	p->last_task_numa_placement = 0;
2217 	p->last_sum_exec_runtime = 0;
2218 
2219 	p->numa_group = NULL;
2220 #endif /* CONFIG_NUMA_BALANCING */
2221 }
2222 
2223 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224 
2225 #ifdef CONFIG_NUMA_BALANCING
2226 
2227 void set_numabalancing_state(bool enabled)
2228 {
2229 	if (enabled)
2230 		static_branch_enable(&sched_numa_balancing);
2231 	else
2232 		static_branch_disable(&sched_numa_balancing);
2233 }
2234 
2235 #ifdef CONFIG_PROC_SYSCTL
2236 int sysctl_numa_balancing(struct ctl_table *table, int write,
2237 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2238 {
2239 	struct ctl_table t;
2240 	int err;
2241 	int state = static_branch_likely(&sched_numa_balancing);
2242 
2243 	if (write && !capable(CAP_SYS_ADMIN))
2244 		return -EPERM;
2245 
2246 	t = *table;
2247 	t.data = &state;
2248 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249 	if (err < 0)
2250 		return err;
2251 	if (write)
2252 		set_numabalancing_state(state);
2253 	return err;
2254 }
2255 #endif
2256 #endif
2257 
2258 #ifdef CONFIG_SCHEDSTATS
2259 
2260 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261 static bool __initdata __sched_schedstats = false;
2262 
2263 static void set_schedstats(bool enabled)
2264 {
2265 	if (enabled)
2266 		static_branch_enable(&sched_schedstats);
2267 	else
2268 		static_branch_disable(&sched_schedstats);
2269 }
2270 
2271 void force_schedstat_enabled(void)
2272 {
2273 	if (!schedstat_enabled()) {
2274 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275 		static_branch_enable(&sched_schedstats);
2276 	}
2277 }
2278 
2279 static int __init setup_schedstats(char *str)
2280 {
2281 	int ret = 0;
2282 	if (!str)
2283 		goto out;
2284 
2285 	/*
2286 	 * This code is called before jump labels have been set up, so we can't
2287 	 * change the static branch directly just yet.  Instead set a temporary
2288 	 * variable so init_schedstats() can do it later.
2289 	 */
2290 	if (!strcmp(str, "enable")) {
2291 		__sched_schedstats = true;
2292 		ret = 1;
2293 	} else if (!strcmp(str, "disable")) {
2294 		__sched_schedstats = false;
2295 		ret = 1;
2296 	}
2297 out:
2298 	if (!ret)
2299 		pr_warn("Unable to parse schedstats=\n");
2300 
2301 	return ret;
2302 }
2303 __setup("schedstats=", setup_schedstats);
2304 
2305 static void __init init_schedstats(void)
2306 {
2307 	set_schedstats(__sched_schedstats);
2308 }
2309 
2310 #ifdef CONFIG_PROC_SYSCTL
2311 int sysctl_schedstats(struct ctl_table *table, int write,
2312 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2313 {
2314 	struct ctl_table t;
2315 	int err;
2316 	int state = static_branch_likely(&sched_schedstats);
2317 
2318 	if (write && !capable(CAP_SYS_ADMIN))
2319 		return -EPERM;
2320 
2321 	t = *table;
2322 	t.data = &state;
2323 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324 	if (err < 0)
2325 		return err;
2326 	if (write)
2327 		set_schedstats(state);
2328 	return err;
2329 }
2330 #endif /* CONFIG_PROC_SYSCTL */
2331 #else  /* !CONFIG_SCHEDSTATS */
2332 static inline void init_schedstats(void) {}
2333 #endif /* CONFIG_SCHEDSTATS */
2334 
2335 /*
2336  * fork()/clone()-time setup:
2337  */
2338 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2339 {
2340 	unsigned long flags;
2341 	int cpu = get_cpu();
2342 
2343 	__sched_fork(clone_flags, p);
2344 	/*
2345 	 * We mark the process as NEW here. This guarantees that
2346 	 * nobody will actually run it, and a signal or other external
2347 	 * event cannot wake it up and insert it on the runqueue either.
2348 	 */
2349 	p->state = TASK_NEW;
2350 
2351 	/*
2352 	 * Make sure we do not leak PI boosting priority to the child.
2353 	 */
2354 	p->prio = current->normal_prio;
2355 
2356 	/*
2357 	 * Revert to default priority/policy on fork if requested.
2358 	 */
2359 	if (unlikely(p->sched_reset_on_fork)) {
2360 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361 			p->policy = SCHED_NORMAL;
2362 			p->static_prio = NICE_TO_PRIO(0);
2363 			p->rt_priority = 0;
2364 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2365 			p->static_prio = NICE_TO_PRIO(0);
2366 
2367 		p->prio = p->normal_prio = __normal_prio(p);
2368 		set_load_weight(p);
2369 
2370 		/*
2371 		 * We don't need the reset flag anymore after the fork. It has
2372 		 * fulfilled its duty:
2373 		 */
2374 		p->sched_reset_on_fork = 0;
2375 	}
2376 
2377 	if (dl_prio(p->prio)) {
2378 		put_cpu();
2379 		return -EAGAIN;
2380 	} else if (rt_prio(p->prio)) {
2381 		p->sched_class = &rt_sched_class;
2382 	} else {
2383 		p->sched_class = &fair_sched_class;
2384 	}
2385 
2386 	init_entity_runnable_average(&p->se);
2387 
2388 	/*
2389 	 * The child is not yet in the pid-hash so no cgroup attach races,
2390 	 * and the cgroup is pinned to this child due to cgroup_fork()
2391 	 * is ran before sched_fork().
2392 	 *
2393 	 * Silence PROVE_RCU.
2394 	 */
2395 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2396 	/*
2397 	 * We're setting the cpu for the first time, we don't migrate,
2398 	 * so use __set_task_cpu().
2399 	 */
2400 	__set_task_cpu(p, cpu);
2401 	if (p->sched_class->task_fork)
2402 		p->sched_class->task_fork(p);
2403 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2404 
2405 #ifdef CONFIG_SCHED_INFO
2406 	if (likely(sched_info_on()))
2407 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2408 #endif
2409 #if defined(CONFIG_SMP)
2410 	p->on_cpu = 0;
2411 #endif
2412 	init_task_preempt_count(p);
2413 #ifdef CONFIG_SMP
2414 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2415 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2416 #endif
2417 
2418 	put_cpu();
2419 	return 0;
2420 }
2421 
2422 unsigned long to_ratio(u64 period, u64 runtime)
2423 {
2424 	if (runtime == RUNTIME_INF)
2425 		return 1ULL << 20;
2426 
2427 	/*
2428 	 * Doing this here saves a lot of checks in all
2429 	 * the calling paths, and returning zero seems
2430 	 * safe for them anyway.
2431 	 */
2432 	if (period == 0)
2433 		return 0;
2434 
2435 	return div64_u64(runtime << 20, period);
2436 }
2437 
2438 #ifdef CONFIG_SMP
2439 inline struct dl_bw *dl_bw_of(int i)
2440 {
2441 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2442 			 "sched RCU must be held");
2443 	return &cpu_rq(i)->rd->dl_bw;
2444 }
2445 
2446 static inline int dl_bw_cpus(int i)
2447 {
2448 	struct root_domain *rd = cpu_rq(i)->rd;
2449 	int cpus = 0;
2450 
2451 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2452 			 "sched RCU must be held");
2453 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2454 		cpus++;
2455 
2456 	return cpus;
2457 }
2458 #else
2459 inline struct dl_bw *dl_bw_of(int i)
2460 {
2461 	return &cpu_rq(i)->dl.dl_bw;
2462 }
2463 
2464 static inline int dl_bw_cpus(int i)
2465 {
2466 	return 1;
2467 }
2468 #endif
2469 
2470 /*
2471  * We must be sure that accepting a new task (or allowing changing the
2472  * parameters of an existing one) is consistent with the bandwidth
2473  * constraints. If yes, this function also accordingly updates the currently
2474  * allocated bandwidth to reflect the new situation.
2475  *
2476  * This function is called while holding p's rq->lock.
2477  *
2478  * XXX we should delay bw change until the task's 0-lag point, see
2479  * __setparam_dl().
2480  */
2481 static int dl_overflow(struct task_struct *p, int policy,
2482 		       const struct sched_attr *attr)
2483 {
2484 
2485 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2486 	u64 period = attr->sched_period ?: attr->sched_deadline;
2487 	u64 runtime = attr->sched_runtime;
2488 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2489 	int cpus, err = -1;
2490 
2491 	/* !deadline task may carry old deadline bandwidth */
2492 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2493 		return 0;
2494 
2495 	/*
2496 	 * Either if a task, enters, leave, or stays -deadline but changes
2497 	 * its parameters, we may need to update accordingly the total
2498 	 * allocated bandwidth of the container.
2499 	 */
2500 	raw_spin_lock(&dl_b->lock);
2501 	cpus = dl_bw_cpus(task_cpu(p));
2502 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2503 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2504 		__dl_add(dl_b, new_bw);
2505 		err = 0;
2506 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2507 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2508 		__dl_clear(dl_b, p->dl.dl_bw);
2509 		__dl_add(dl_b, new_bw);
2510 		err = 0;
2511 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2512 		__dl_clear(dl_b, p->dl.dl_bw);
2513 		err = 0;
2514 	}
2515 	raw_spin_unlock(&dl_b->lock);
2516 
2517 	return err;
2518 }
2519 
2520 extern void init_dl_bw(struct dl_bw *dl_b);
2521 
2522 /*
2523  * wake_up_new_task - wake up a newly created task for the first time.
2524  *
2525  * This function will do some initial scheduler statistics housekeeping
2526  * that must be done for every newly created context, then puts the task
2527  * on the runqueue and wakes it.
2528  */
2529 void wake_up_new_task(struct task_struct *p)
2530 {
2531 	struct rq_flags rf;
2532 	struct rq *rq;
2533 
2534 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2535 	p->state = TASK_RUNNING;
2536 #ifdef CONFIG_SMP
2537 	/*
2538 	 * Fork balancing, do it here and not earlier because:
2539 	 *  - cpus_allowed can change in the fork path
2540 	 *  - any previously selected cpu might disappear through hotplug
2541 	 *
2542 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2543 	 * as we're not fully set-up yet.
2544 	 */
2545 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2546 #endif
2547 	rq = __task_rq_lock(p, &rf);
2548 	post_init_entity_util_avg(&p->se);
2549 
2550 	activate_task(rq, p, 0);
2551 	p->on_rq = TASK_ON_RQ_QUEUED;
2552 	trace_sched_wakeup_new(p);
2553 	check_preempt_curr(rq, p, WF_FORK);
2554 #ifdef CONFIG_SMP
2555 	if (p->sched_class->task_woken) {
2556 		/*
2557 		 * Nothing relies on rq->lock after this, so its fine to
2558 		 * drop it.
2559 		 */
2560 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2561 		p->sched_class->task_woken(rq, p);
2562 		lockdep_repin_lock(&rq->lock, rf.cookie);
2563 	}
2564 #endif
2565 	task_rq_unlock(rq, p, &rf);
2566 }
2567 
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2569 
2570 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2571 
2572 void preempt_notifier_inc(void)
2573 {
2574 	static_key_slow_inc(&preempt_notifier_key);
2575 }
2576 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2577 
2578 void preempt_notifier_dec(void)
2579 {
2580 	static_key_slow_dec(&preempt_notifier_key);
2581 }
2582 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2583 
2584 /**
2585  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2586  * @notifier: notifier struct to register
2587  */
2588 void preempt_notifier_register(struct preempt_notifier *notifier)
2589 {
2590 	if (!static_key_false(&preempt_notifier_key))
2591 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2592 
2593 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2594 }
2595 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2596 
2597 /**
2598  * preempt_notifier_unregister - no longer interested in preemption notifications
2599  * @notifier: notifier struct to unregister
2600  *
2601  * This is *not* safe to call from within a preemption notifier.
2602  */
2603 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2604 {
2605 	hlist_del(&notifier->link);
2606 }
2607 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2608 
2609 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 {
2611 	struct preempt_notifier *notifier;
2612 
2613 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2614 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2615 }
2616 
2617 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 {
2619 	if (static_key_false(&preempt_notifier_key))
2620 		__fire_sched_in_preempt_notifiers(curr);
2621 }
2622 
2623 static void
2624 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2625 				   struct task_struct *next)
2626 {
2627 	struct preempt_notifier *notifier;
2628 
2629 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2630 		notifier->ops->sched_out(notifier, next);
2631 }
2632 
2633 static __always_inline void
2634 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2635 				 struct task_struct *next)
2636 {
2637 	if (static_key_false(&preempt_notifier_key))
2638 		__fire_sched_out_preempt_notifiers(curr, next);
2639 }
2640 
2641 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2642 
2643 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 {
2645 }
2646 
2647 static inline void
2648 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 				 struct task_struct *next)
2650 {
2651 }
2652 
2653 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2654 
2655 /**
2656  * prepare_task_switch - prepare to switch tasks
2657  * @rq: the runqueue preparing to switch
2658  * @prev: the current task that is being switched out
2659  * @next: the task we are going to switch to.
2660  *
2661  * This is called with the rq lock held and interrupts off. It must
2662  * be paired with a subsequent finish_task_switch after the context
2663  * switch.
2664  *
2665  * prepare_task_switch sets up locking and calls architecture specific
2666  * hooks.
2667  */
2668 static inline void
2669 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 		    struct task_struct *next)
2671 {
2672 	sched_info_switch(rq, prev, next);
2673 	perf_event_task_sched_out(prev, next);
2674 	fire_sched_out_preempt_notifiers(prev, next);
2675 	prepare_lock_switch(rq, next);
2676 	prepare_arch_switch(next);
2677 }
2678 
2679 /**
2680  * finish_task_switch - clean up after a task-switch
2681  * @prev: the thread we just switched away from.
2682  *
2683  * finish_task_switch must be called after the context switch, paired
2684  * with a prepare_task_switch call before the context switch.
2685  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2686  * and do any other architecture-specific cleanup actions.
2687  *
2688  * Note that we may have delayed dropping an mm in context_switch(). If
2689  * so, we finish that here outside of the runqueue lock. (Doing it
2690  * with the lock held can cause deadlocks; see schedule() for
2691  * details.)
2692  *
2693  * The context switch have flipped the stack from under us and restored the
2694  * local variables which were saved when this task called schedule() in the
2695  * past. prev == current is still correct but we need to recalculate this_rq
2696  * because prev may have moved to another CPU.
2697  */
2698 static struct rq *finish_task_switch(struct task_struct *prev)
2699 	__releases(rq->lock)
2700 {
2701 	struct rq *rq = this_rq();
2702 	struct mm_struct *mm = rq->prev_mm;
2703 	long prev_state;
2704 
2705 	/*
2706 	 * The previous task will have left us with a preempt_count of 2
2707 	 * because it left us after:
2708 	 *
2709 	 *	schedule()
2710 	 *	  preempt_disable();			// 1
2711 	 *	  __schedule()
2712 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2713 	 *
2714 	 * Also, see FORK_PREEMPT_COUNT.
2715 	 */
2716 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2717 		      "corrupted preempt_count: %s/%d/0x%x\n",
2718 		      current->comm, current->pid, preempt_count()))
2719 		preempt_count_set(FORK_PREEMPT_COUNT);
2720 
2721 	rq->prev_mm = NULL;
2722 
2723 	/*
2724 	 * A task struct has one reference for the use as "current".
2725 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2726 	 * schedule one last time. The schedule call will never return, and
2727 	 * the scheduled task must drop that reference.
2728 	 *
2729 	 * We must observe prev->state before clearing prev->on_cpu (in
2730 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2731 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2732 	 * transition, resulting in a double drop.
2733 	 */
2734 	prev_state = prev->state;
2735 	vtime_task_switch(prev);
2736 	perf_event_task_sched_in(prev, current);
2737 	finish_lock_switch(rq, prev);
2738 	finish_arch_post_lock_switch();
2739 
2740 	fire_sched_in_preempt_notifiers(current);
2741 	if (mm)
2742 		mmdrop(mm);
2743 	if (unlikely(prev_state == TASK_DEAD)) {
2744 		if (prev->sched_class->task_dead)
2745 			prev->sched_class->task_dead(prev);
2746 
2747 		/*
2748 		 * Remove function-return probe instances associated with this
2749 		 * task and put them back on the free list.
2750 		 */
2751 		kprobe_flush_task(prev);
2752 		put_task_struct(prev);
2753 	}
2754 
2755 	tick_nohz_task_switch();
2756 	return rq;
2757 }
2758 
2759 #ifdef CONFIG_SMP
2760 
2761 /* rq->lock is NOT held, but preemption is disabled */
2762 static void __balance_callback(struct rq *rq)
2763 {
2764 	struct callback_head *head, *next;
2765 	void (*func)(struct rq *rq);
2766 	unsigned long flags;
2767 
2768 	raw_spin_lock_irqsave(&rq->lock, flags);
2769 	head = rq->balance_callback;
2770 	rq->balance_callback = NULL;
2771 	while (head) {
2772 		func = (void (*)(struct rq *))head->func;
2773 		next = head->next;
2774 		head->next = NULL;
2775 		head = next;
2776 
2777 		func(rq);
2778 	}
2779 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2780 }
2781 
2782 static inline void balance_callback(struct rq *rq)
2783 {
2784 	if (unlikely(rq->balance_callback))
2785 		__balance_callback(rq);
2786 }
2787 
2788 #else
2789 
2790 static inline void balance_callback(struct rq *rq)
2791 {
2792 }
2793 
2794 #endif
2795 
2796 /**
2797  * schedule_tail - first thing a freshly forked thread must call.
2798  * @prev: the thread we just switched away from.
2799  */
2800 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2801 	__releases(rq->lock)
2802 {
2803 	struct rq *rq;
2804 
2805 	/*
2806 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2807 	 * finish_task_switch() for details.
2808 	 *
2809 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2810 	 * and the preempt_enable() will end up enabling preemption (on
2811 	 * PREEMPT_COUNT kernels).
2812 	 */
2813 
2814 	rq = finish_task_switch(prev);
2815 	balance_callback(rq);
2816 	preempt_enable();
2817 
2818 	if (current->set_child_tid)
2819 		put_user(task_pid_vnr(current), current->set_child_tid);
2820 }
2821 
2822 /*
2823  * context_switch - switch to the new MM and the new thread's register state.
2824  */
2825 static __always_inline struct rq *
2826 context_switch(struct rq *rq, struct task_struct *prev,
2827 	       struct task_struct *next, struct pin_cookie cookie)
2828 {
2829 	struct mm_struct *mm, *oldmm;
2830 
2831 	prepare_task_switch(rq, prev, next);
2832 
2833 	mm = next->mm;
2834 	oldmm = prev->active_mm;
2835 	/*
2836 	 * For paravirt, this is coupled with an exit in switch_to to
2837 	 * combine the page table reload and the switch backend into
2838 	 * one hypercall.
2839 	 */
2840 	arch_start_context_switch(prev);
2841 
2842 	if (!mm) {
2843 		next->active_mm = oldmm;
2844 		atomic_inc(&oldmm->mm_count);
2845 		enter_lazy_tlb(oldmm, next);
2846 	} else
2847 		switch_mm_irqs_off(oldmm, mm, next);
2848 
2849 	if (!prev->mm) {
2850 		prev->active_mm = NULL;
2851 		rq->prev_mm = oldmm;
2852 	}
2853 	/*
2854 	 * Since the runqueue lock will be released by the next
2855 	 * task (which is an invalid locking op but in the case
2856 	 * of the scheduler it's an obvious special-case), so we
2857 	 * do an early lockdep release here:
2858 	 */
2859 	lockdep_unpin_lock(&rq->lock, cookie);
2860 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2861 
2862 	/* Here we just switch the register state and the stack. */
2863 	switch_to(prev, next, prev);
2864 	barrier();
2865 
2866 	return finish_task_switch(prev);
2867 }
2868 
2869 /*
2870  * nr_running and nr_context_switches:
2871  *
2872  * externally visible scheduler statistics: current number of runnable
2873  * threads, total number of context switches performed since bootup.
2874  */
2875 unsigned long nr_running(void)
2876 {
2877 	unsigned long i, sum = 0;
2878 
2879 	for_each_online_cpu(i)
2880 		sum += cpu_rq(i)->nr_running;
2881 
2882 	return sum;
2883 }
2884 
2885 /*
2886  * Check if only the current task is running on the cpu.
2887  *
2888  * Caution: this function does not check that the caller has disabled
2889  * preemption, thus the result might have a time-of-check-to-time-of-use
2890  * race.  The caller is responsible to use it correctly, for example:
2891  *
2892  * - from a non-preemptable section (of course)
2893  *
2894  * - from a thread that is bound to a single CPU
2895  *
2896  * - in a loop with very short iterations (e.g. a polling loop)
2897  */
2898 bool single_task_running(void)
2899 {
2900 	return raw_rq()->nr_running == 1;
2901 }
2902 EXPORT_SYMBOL(single_task_running);
2903 
2904 unsigned long long nr_context_switches(void)
2905 {
2906 	int i;
2907 	unsigned long long sum = 0;
2908 
2909 	for_each_possible_cpu(i)
2910 		sum += cpu_rq(i)->nr_switches;
2911 
2912 	return sum;
2913 }
2914 
2915 unsigned long nr_iowait(void)
2916 {
2917 	unsigned long i, sum = 0;
2918 
2919 	for_each_possible_cpu(i)
2920 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2921 
2922 	return sum;
2923 }
2924 
2925 unsigned long nr_iowait_cpu(int cpu)
2926 {
2927 	struct rq *this = cpu_rq(cpu);
2928 	return atomic_read(&this->nr_iowait);
2929 }
2930 
2931 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2932 {
2933 	struct rq *rq = this_rq();
2934 	*nr_waiters = atomic_read(&rq->nr_iowait);
2935 	*load = rq->load.weight;
2936 }
2937 
2938 #ifdef CONFIG_SMP
2939 
2940 /*
2941  * sched_exec - execve() is a valuable balancing opportunity, because at
2942  * this point the task has the smallest effective memory and cache footprint.
2943  */
2944 void sched_exec(void)
2945 {
2946 	struct task_struct *p = current;
2947 	unsigned long flags;
2948 	int dest_cpu;
2949 
2950 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2951 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2952 	if (dest_cpu == smp_processor_id())
2953 		goto unlock;
2954 
2955 	if (likely(cpu_active(dest_cpu))) {
2956 		struct migration_arg arg = { p, dest_cpu };
2957 
2958 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2959 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2960 		return;
2961 	}
2962 unlock:
2963 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 }
2965 
2966 #endif
2967 
2968 DEFINE_PER_CPU(struct kernel_stat, kstat);
2969 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2970 
2971 EXPORT_PER_CPU_SYMBOL(kstat);
2972 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2973 
2974 /*
2975  * Return accounted runtime for the task.
2976  * In case the task is currently running, return the runtime plus current's
2977  * pending runtime that have not been accounted yet.
2978  */
2979 unsigned long long task_sched_runtime(struct task_struct *p)
2980 {
2981 	struct rq_flags rf;
2982 	struct rq *rq;
2983 	u64 ns;
2984 
2985 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2986 	/*
2987 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2988 	 * So we have a optimization chance when the task's delta_exec is 0.
2989 	 * Reading ->on_cpu is racy, but this is ok.
2990 	 *
2991 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2992 	 * If we race with it entering cpu, unaccounted time is 0. This is
2993 	 * indistinguishable from the read occurring a few cycles earlier.
2994 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2995 	 * been accounted, so we're correct here as well.
2996 	 */
2997 	if (!p->on_cpu || !task_on_rq_queued(p))
2998 		return p->se.sum_exec_runtime;
2999 #endif
3000 
3001 	rq = task_rq_lock(p, &rf);
3002 	/*
3003 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3004 	 * project cycles that may never be accounted to this
3005 	 * thread, breaking clock_gettime().
3006 	 */
3007 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3008 		update_rq_clock(rq);
3009 		p->sched_class->update_curr(rq);
3010 	}
3011 	ns = p->se.sum_exec_runtime;
3012 	task_rq_unlock(rq, p, &rf);
3013 
3014 	return ns;
3015 }
3016 
3017 /*
3018  * This function gets called by the timer code, with HZ frequency.
3019  * We call it with interrupts disabled.
3020  */
3021 void scheduler_tick(void)
3022 {
3023 	int cpu = smp_processor_id();
3024 	struct rq *rq = cpu_rq(cpu);
3025 	struct task_struct *curr = rq->curr;
3026 
3027 	sched_clock_tick();
3028 
3029 	raw_spin_lock(&rq->lock);
3030 	update_rq_clock(rq);
3031 	curr->sched_class->task_tick(rq, curr, 0);
3032 	cpu_load_update_active(rq);
3033 	calc_global_load_tick(rq);
3034 	raw_spin_unlock(&rq->lock);
3035 
3036 	perf_event_task_tick();
3037 
3038 #ifdef CONFIG_SMP
3039 	rq->idle_balance = idle_cpu(cpu);
3040 	trigger_load_balance(rq);
3041 #endif
3042 	rq_last_tick_reset(rq);
3043 }
3044 
3045 #ifdef CONFIG_NO_HZ_FULL
3046 /**
3047  * scheduler_tick_max_deferment
3048  *
3049  * Keep at least one tick per second when a single
3050  * active task is running because the scheduler doesn't
3051  * yet completely support full dynticks environment.
3052  *
3053  * This makes sure that uptime, CFS vruntime, load
3054  * balancing, etc... continue to move forward, even
3055  * with a very low granularity.
3056  *
3057  * Return: Maximum deferment in nanoseconds.
3058  */
3059 u64 scheduler_tick_max_deferment(void)
3060 {
3061 	struct rq *rq = this_rq();
3062 	unsigned long next, now = READ_ONCE(jiffies);
3063 
3064 	next = rq->last_sched_tick + HZ;
3065 
3066 	if (time_before_eq(next, now))
3067 		return 0;
3068 
3069 	return jiffies_to_nsecs(next - now);
3070 }
3071 #endif
3072 
3073 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3074 				defined(CONFIG_PREEMPT_TRACER))
3075 /*
3076  * If the value passed in is equal to the current preempt count
3077  * then we just disabled preemption. Start timing the latency.
3078  */
3079 static inline void preempt_latency_start(int val)
3080 {
3081 	if (preempt_count() == val) {
3082 		unsigned long ip = get_lock_parent_ip();
3083 #ifdef CONFIG_DEBUG_PREEMPT
3084 		current->preempt_disable_ip = ip;
3085 #endif
3086 		trace_preempt_off(CALLER_ADDR0, ip);
3087 	}
3088 }
3089 
3090 void preempt_count_add(int val)
3091 {
3092 #ifdef CONFIG_DEBUG_PREEMPT
3093 	/*
3094 	 * Underflow?
3095 	 */
3096 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3097 		return;
3098 #endif
3099 	__preempt_count_add(val);
3100 #ifdef CONFIG_DEBUG_PREEMPT
3101 	/*
3102 	 * Spinlock count overflowing soon?
3103 	 */
3104 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3105 				PREEMPT_MASK - 10);
3106 #endif
3107 	preempt_latency_start(val);
3108 }
3109 EXPORT_SYMBOL(preempt_count_add);
3110 NOKPROBE_SYMBOL(preempt_count_add);
3111 
3112 /*
3113  * If the value passed in equals to the current preempt count
3114  * then we just enabled preemption. Stop timing the latency.
3115  */
3116 static inline void preempt_latency_stop(int val)
3117 {
3118 	if (preempt_count() == val)
3119 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3120 }
3121 
3122 void preempt_count_sub(int val)
3123 {
3124 #ifdef CONFIG_DEBUG_PREEMPT
3125 	/*
3126 	 * Underflow?
3127 	 */
3128 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3129 		return;
3130 	/*
3131 	 * Is the spinlock portion underflowing?
3132 	 */
3133 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3134 			!(preempt_count() & PREEMPT_MASK)))
3135 		return;
3136 #endif
3137 
3138 	preempt_latency_stop(val);
3139 	__preempt_count_sub(val);
3140 }
3141 EXPORT_SYMBOL(preempt_count_sub);
3142 NOKPROBE_SYMBOL(preempt_count_sub);
3143 
3144 #else
3145 static inline void preempt_latency_start(int val) { }
3146 static inline void preempt_latency_stop(int val) { }
3147 #endif
3148 
3149 /*
3150  * Print scheduling while atomic bug:
3151  */
3152 static noinline void __schedule_bug(struct task_struct *prev)
3153 {
3154 	if (oops_in_progress)
3155 		return;
3156 
3157 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3158 		prev->comm, prev->pid, preempt_count());
3159 
3160 	debug_show_held_locks(prev);
3161 	print_modules();
3162 	if (irqs_disabled())
3163 		print_irqtrace_events(prev);
3164 #ifdef CONFIG_DEBUG_PREEMPT
3165 	if (in_atomic_preempt_off()) {
3166 		pr_err("Preemption disabled at:");
3167 		print_ip_sym(current->preempt_disable_ip);
3168 		pr_cont("\n");
3169 	}
3170 #endif
3171 	if (panic_on_warn)
3172 		panic("scheduling while atomic\n");
3173 
3174 	dump_stack();
3175 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3176 }
3177 
3178 /*
3179  * Various schedule()-time debugging checks and statistics:
3180  */
3181 static inline void schedule_debug(struct task_struct *prev)
3182 {
3183 #ifdef CONFIG_SCHED_STACK_END_CHECK
3184 	if (task_stack_end_corrupted(prev))
3185 		panic("corrupted stack end detected inside scheduler\n");
3186 #endif
3187 
3188 	if (unlikely(in_atomic_preempt_off())) {
3189 		__schedule_bug(prev);
3190 		preempt_count_set(PREEMPT_DISABLED);
3191 	}
3192 	rcu_sleep_check();
3193 
3194 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3195 
3196 	schedstat_inc(this_rq(), sched_count);
3197 }
3198 
3199 /*
3200  * Pick up the highest-prio task:
3201  */
3202 static inline struct task_struct *
3203 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3204 {
3205 	const struct sched_class *class = &fair_sched_class;
3206 	struct task_struct *p;
3207 
3208 	/*
3209 	 * Optimization: we know that if all tasks are in
3210 	 * the fair class we can call that function directly:
3211 	 */
3212 	if (likely(prev->sched_class == class &&
3213 		   rq->nr_running == rq->cfs.h_nr_running)) {
3214 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3215 		if (unlikely(p == RETRY_TASK))
3216 			goto again;
3217 
3218 		/* assumes fair_sched_class->next == idle_sched_class */
3219 		if (unlikely(!p))
3220 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3221 
3222 		return p;
3223 	}
3224 
3225 again:
3226 	for_each_class(class) {
3227 		p = class->pick_next_task(rq, prev, cookie);
3228 		if (p) {
3229 			if (unlikely(p == RETRY_TASK))
3230 				goto again;
3231 			return p;
3232 		}
3233 	}
3234 
3235 	BUG(); /* the idle class will always have a runnable task */
3236 }
3237 
3238 /*
3239  * __schedule() is the main scheduler function.
3240  *
3241  * The main means of driving the scheduler and thus entering this function are:
3242  *
3243  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3244  *
3245  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3246  *      paths. For example, see arch/x86/entry_64.S.
3247  *
3248  *      To drive preemption between tasks, the scheduler sets the flag in timer
3249  *      interrupt handler scheduler_tick().
3250  *
3251  *   3. Wakeups don't really cause entry into schedule(). They add a
3252  *      task to the run-queue and that's it.
3253  *
3254  *      Now, if the new task added to the run-queue preempts the current
3255  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3256  *      called on the nearest possible occasion:
3257  *
3258  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3259  *
3260  *         - in syscall or exception context, at the next outmost
3261  *           preempt_enable(). (this might be as soon as the wake_up()'s
3262  *           spin_unlock()!)
3263  *
3264  *         - in IRQ context, return from interrupt-handler to
3265  *           preemptible context
3266  *
3267  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3268  *         then at the next:
3269  *
3270  *          - cond_resched() call
3271  *          - explicit schedule() call
3272  *          - return from syscall or exception to user-space
3273  *          - return from interrupt-handler to user-space
3274  *
3275  * WARNING: must be called with preemption disabled!
3276  */
3277 static void __sched notrace __schedule(bool preempt)
3278 {
3279 	struct task_struct *prev, *next;
3280 	unsigned long *switch_count;
3281 	struct pin_cookie cookie;
3282 	struct rq *rq;
3283 	int cpu;
3284 
3285 	cpu = smp_processor_id();
3286 	rq = cpu_rq(cpu);
3287 	prev = rq->curr;
3288 
3289 	/*
3290 	 * do_exit() calls schedule() with preemption disabled as an exception;
3291 	 * however we must fix that up, otherwise the next task will see an
3292 	 * inconsistent (higher) preempt count.
3293 	 *
3294 	 * It also avoids the below schedule_debug() test from complaining
3295 	 * about this.
3296 	 */
3297 	if (unlikely(prev->state == TASK_DEAD))
3298 		preempt_enable_no_resched_notrace();
3299 
3300 	schedule_debug(prev);
3301 
3302 	if (sched_feat(HRTICK))
3303 		hrtick_clear(rq);
3304 
3305 	local_irq_disable();
3306 	rcu_note_context_switch();
3307 
3308 	/*
3309 	 * Make sure that signal_pending_state()->signal_pending() below
3310 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3311 	 * done by the caller to avoid the race with signal_wake_up().
3312 	 */
3313 	smp_mb__before_spinlock();
3314 	raw_spin_lock(&rq->lock);
3315 	cookie = lockdep_pin_lock(&rq->lock);
3316 
3317 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3318 
3319 	switch_count = &prev->nivcsw;
3320 	if (!preempt && prev->state) {
3321 		if (unlikely(signal_pending_state(prev->state, prev))) {
3322 			prev->state = TASK_RUNNING;
3323 		} else {
3324 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3325 			prev->on_rq = 0;
3326 
3327 			/*
3328 			 * If a worker went to sleep, notify and ask workqueue
3329 			 * whether it wants to wake up a task to maintain
3330 			 * concurrency.
3331 			 */
3332 			if (prev->flags & PF_WQ_WORKER) {
3333 				struct task_struct *to_wakeup;
3334 
3335 				to_wakeup = wq_worker_sleeping(prev);
3336 				if (to_wakeup)
3337 					try_to_wake_up_local(to_wakeup, cookie);
3338 			}
3339 		}
3340 		switch_count = &prev->nvcsw;
3341 	}
3342 
3343 	if (task_on_rq_queued(prev))
3344 		update_rq_clock(rq);
3345 
3346 	next = pick_next_task(rq, prev, cookie);
3347 	clear_tsk_need_resched(prev);
3348 	clear_preempt_need_resched();
3349 	rq->clock_skip_update = 0;
3350 
3351 	if (likely(prev != next)) {
3352 		rq->nr_switches++;
3353 		rq->curr = next;
3354 		++*switch_count;
3355 
3356 		trace_sched_switch(preempt, prev, next);
3357 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3358 	} else {
3359 		lockdep_unpin_lock(&rq->lock, cookie);
3360 		raw_spin_unlock_irq(&rq->lock);
3361 	}
3362 
3363 	balance_callback(rq);
3364 }
3365 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3366 
3367 static inline void sched_submit_work(struct task_struct *tsk)
3368 {
3369 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3370 		return;
3371 	/*
3372 	 * If we are going to sleep and we have plugged IO queued,
3373 	 * make sure to submit it to avoid deadlocks.
3374 	 */
3375 	if (blk_needs_flush_plug(tsk))
3376 		blk_schedule_flush_plug(tsk);
3377 }
3378 
3379 asmlinkage __visible void __sched schedule(void)
3380 {
3381 	struct task_struct *tsk = current;
3382 
3383 	sched_submit_work(tsk);
3384 	do {
3385 		preempt_disable();
3386 		__schedule(false);
3387 		sched_preempt_enable_no_resched();
3388 	} while (need_resched());
3389 }
3390 EXPORT_SYMBOL(schedule);
3391 
3392 #ifdef CONFIG_CONTEXT_TRACKING
3393 asmlinkage __visible void __sched schedule_user(void)
3394 {
3395 	/*
3396 	 * If we come here after a random call to set_need_resched(),
3397 	 * or we have been woken up remotely but the IPI has not yet arrived,
3398 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3399 	 * we find a better solution.
3400 	 *
3401 	 * NB: There are buggy callers of this function.  Ideally we
3402 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3403 	 * too frequently to make sense yet.
3404 	 */
3405 	enum ctx_state prev_state = exception_enter();
3406 	schedule();
3407 	exception_exit(prev_state);
3408 }
3409 #endif
3410 
3411 /**
3412  * schedule_preempt_disabled - called with preemption disabled
3413  *
3414  * Returns with preemption disabled. Note: preempt_count must be 1
3415  */
3416 void __sched schedule_preempt_disabled(void)
3417 {
3418 	sched_preempt_enable_no_resched();
3419 	schedule();
3420 	preempt_disable();
3421 }
3422 
3423 static void __sched notrace preempt_schedule_common(void)
3424 {
3425 	do {
3426 		/*
3427 		 * Because the function tracer can trace preempt_count_sub()
3428 		 * and it also uses preempt_enable/disable_notrace(), if
3429 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3430 		 * by the function tracer will call this function again and
3431 		 * cause infinite recursion.
3432 		 *
3433 		 * Preemption must be disabled here before the function
3434 		 * tracer can trace. Break up preempt_disable() into two
3435 		 * calls. One to disable preemption without fear of being
3436 		 * traced. The other to still record the preemption latency,
3437 		 * which can also be traced by the function tracer.
3438 		 */
3439 		preempt_disable_notrace();
3440 		preempt_latency_start(1);
3441 		__schedule(true);
3442 		preempt_latency_stop(1);
3443 		preempt_enable_no_resched_notrace();
3444 
3445 		/*
3446 		 * Check again in case we missed a preemption opportunity
3447 		 * between schedule and now.
3448 		 */
3449 	} while (need_resched());
3450 }
3451 
3452 #ifdef CONFIG_PREEMPT
3453 /*
3454  * this is the entry point to schedule() from in-kernel preemption
3455  * off of preempt_enable. Kernel preemptions off return from interrupt
3456  * occur there and call schedule directly.
3457  */
3458 asmlinkage __visible void __sched notrace preempt_schedule(void)
3459 {
3460 	/*
3461 	 * If there is a non-zero preempt_count or interrupts are disabled,
3462 	 * we do not want to preempt the current task. Just return..
3463 	 */
3464 	if (likely(!preemptible()))
3465 		return;
3466 
3467 	preempt_schedule_common();
3468 }
3469 NOKPROBE_SYMBOL(preempt_schedule);
3470 EXPORT_SYMBOL(preempt_schedule);
3471 
3472 /**
3473  * preempt_schedule_notrace - preempt_schedule called by tracing
3474  *
3475  * The tracing infrastructure uses preempt_enable_notrace to prevent
3476  * recursion and tracing preempt enabling caused by the tracing
3477  * infrastructure itself. But as tracing can happen in areas coming
3478  * from userspace or just about to enter userspace, a preempt enable
3479  * can occur before user_exit() is called. This will cause the scheduler
3480  * to be called when the system is still in usermode.
3481  *
3482  * To prevent this, the preempt_enable_notrace will use this function
3483  * instead of preempt_schedule() to exit user context if needed before
3484  * calling the scheduler.
3485  */
3486 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3487 {
3488 	enum ctx_state prev_ctx;
3489 
3490 	if (likely(!preemptible()))
3491 		return;
3492 
3493 	do {
3494 		/*
3495 		 * Because the function tracer can trace preempt_count_sub()
3496 		 * and it also uses preempt_enable/disable_notrace(), if
3497 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3498 		 * by the function tracer will call this function again and
3499 		 * cause infinite recursion.
3500 		 *
3501 		 * Preemption must be disabled here before the function
3502 		 * tracer can trace. Break up preempt_disable() into two
3503 		 * calls. One to disable preemption without fear of being
3504 		 * traced. The other to still record the preemption latency,
3505 		 * which can also be traced by the function tracer.
3506 		 */
3507 		preempt_disable_notrace();
3508 		preempt_latency_start(1);
3509 		/*
3510 		 * Needs preempt disabled in case user_exit() is traced
3511 		 * and the tracer calls preempt_enable_notrace() causing
3512 		 * an infinite recursion.
3513 		 */
3514 		prev_ctx = exception_enter();
3515 		__schedule(true);
3516 		exception_exit(prev_ctx);
3517 
3518 		preempt_latency_stop(1);
3519 		preempt_enable_no_resched_notrace();
3520 	} while (need_resched());
3521 }
3522 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3523 
3524 #endif /* CONFIG_PREEMPT */
3525 
3526 /*
3527  * this is the entry point to schedule() from kernel preemption
3528  * off of irq context.
3529  * Note, that this is called and return with irqs disabled. This will
3530  * protect us against recursive calling from irq.
3531  */
3532 asmlinkage __visible void __sched preempt_schedule_irq(void)
3533 {
3534 	enum ctx_state prev_state;
3535 
3536 	/* Catch callers which need to be fixed */
3537 	BUG_ON(preempt_count() || !irqs_disabled());
3538 
3539 	prev_state = exception_enter();
3540 
3541 	do {
3542 		preempt_disable();
3543 		local_irq_enable();
3544 		__schedule(true);
3545 		local_irq_disable();
3546 		sched_preempt_enable_no_resched();
3547 	} while (need_resched());
3548 
3549 	exception_exit(prev_state);
3550 }
3551 
3552 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3553 			  void *key)
3554 {
3555 	return try_to_wake_up(curr->private, mode, wake_flags);
3556 }
3557 EXPORT_SYMBOL(default_wake_function);
3558 
3559 #ifdef CONFIG_RT_MUTEXES
3560 
3561 /*
3562  * rt_mutex_setprio - set the current priority of a task
3563  * @p: task
3564  * @prio: prio value (kernel-internal form)
3565  *
3566  * This function changes the 'effective' priority of a task. It does
3567  * not touch ->normal_prio like __setscheduler().
3568  *
3569  * Used by the rt_mutex code to implement priority inheritance
3570  * logic. Call site only calls if the priority of the task changed.
3571  */
3572 void rt_mutex_setprio(struct task_struct *p, int prio)
3573 {
3574 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3575 	const struct sched_class *prev_class;
3576 	struct rq_flags rf;
3577 	struct rq *rq;
3578 
3579 	BUG_ON(prio > MAX_PRIO);
3580 
3581 	rq = __task_rq_lock(p, &rf);
3582 
3583 	/*
3584 	 * Idle task boosting is a nono in general. There is one
3585 	 * exception, when PREEMPT_RT and NOHZ is active:
3586 	 *
3587 	 * The idle task calls get_next_timer_interrupt() and holds
3588 	 * the timer wheel base->lock on the CPU and another CPU wants
3589 	 * to access the timer (probably to cancel it). We can safely
3590 	 * ignore the boosting request, as the idle CPU runs this code
3591 	 * with interrupts disabled and will complete the lock
3592 	 * protected section without being interrupted. So there is no
3593 	 * real need to boost.
3594 	 */
3595 	if (unlikely(p == rq->idle)) {
3596 		WARN_ON(p != rq->curr);
3597 		WARN_ON(p->pi_blocked_on);
3598 		goto out_unlock;
3599 	}
3600 
3601 	trace_sched_pi_setprio(p, prio);
3602 	oldprio = p->prio;
3603 
3604 	if (oldprio == prio)
3605 		queue_flag &= ~DEQUEUE_MOVE;
3606 
3607 	prev_class = p->sched_class;
3608 	queued = task_on_rq_queued(p);
3609 	running = task_current(rq, p);
3610 	if (queued)
3611 		dequeue_task(rq, p, queue_flag);
3612 	if (running)
3613 		put_prev_task(rq, p);
3614 
3615 	/*
3616 	 * Boosting condition are:
3617 	 * 1. -rt task is running and holds mutex A
3618 	 *      --> -dl task blocks on mutex A
3619 	 *
3620 	 * 2. -dl task is running and holds mutex A
3621 	 *      --> -dl task blocks on mutex A and could preempt the
3622 	 *          running task
3623 	 */
3624 	if (dl_prio(prio)) {
3625 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3626 		if (!dl_prio(p->normal_prio) ||
3627 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3628 			p->dl.dl_boosted = 1;
3629 			queue_flag |= ENQUEUE_REPLENISH;
3630 		} else
3631 			p->dl.dl_boosted = 0;
3632 		p->sched_class = &dl_sched_class;
3633 	} else if (rt_prio(prio)) {
3634 		if (dl_prio(oldprio))
3635 			p->dl.dl_boosted = 0;
3636 		if (oldprio < prio)
3637 			queue_flag |= ENQUEUE_HEAD;
3638 		p->sched_class = &rt_sched_class;
3639 	} else {
3640 		if (dl_prio(oldprio))
3641 			p->dl.dl_boosted = 0;
3642 		if (rt_prio(oldprio))
3643 			p->rt.timeout = 0;
3644 		p->sched_class = &fair_sched_class;
3645 	}
3646 
3647 	p->prio = prio;
3648 
3649 	if (running)
3650 		p->sched_class->set_curr_task(rq);
3651 	if (queued)
3652 		enqueue_task(rq, p, queue_flag);
3653 
3654 	check_class_changed(rq, p, prev_class, oldprio);
3655 out_unlock:
3656 	preempt_disable(); /* avoid rq from going away on us */
3657 	__task_rq_unlock(rq, &rf);
3658 
3659 	balance_callback(rq);
3660 	preempt_enable();
3661 }
3662 #endif
3663 
3664 void set_user_nice(struct task_struct *p, long nice)
3665 {
3666 	int old_prio, delta, queued;
3667 	struct rq_flags rf;
3668 	struct rq *rq;
3669 
3670 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3671 		return;
3672 	/*
3673 	 * We have to be careful, if called from sys_setpriority(),
3674 	 * the task might be in the middle of scheduling on another CPU.
3675 	 */
3676 	rq = task_rq_lock(p, &rf);
3677 	/*
3678 	 * The RT priorities are set via sched_setscheduler(), but we still
3679 	 * allow the 'normal' nice value to be set - but as expected
3680 	 * it wont have any effect on scheduling until the task is
3681 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3682 	 */
3683 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3684 		p->static_prio = NICE_TO_PRIO(nice);
3685 		goto out_unlock;
3686 	}
3687 	queued = task_on_rq_queued(p);
3688 	if (queued)
3689 		dequeue_task(rq, p, DEQUEUE_SAVE);
3690 
3691 	p->static_prio = NICE_TO_PRIO(nice);
3692 	set_load_weight(p);
3693 	old_prio = p->prio;
3694 	p->prio = effective_prio(p);
3695 	delta = p->prio - old_prio;
3696 
3697 	if (queued) {
3698 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3699 		/*
3700 		 * If the task increased its priority or is running and
3701 		 * lowered its priority, then reschedule its CPU:
3702 		 */
3703 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3704 			resched_curr(rq);
3705 	}
3706 out_unlock:
3707 	task_rq_unlock(rq, p, &rf);
3708 }
3709 EXPORT_SYMBOL(set_user_nice);
3710 
3711 /*
3712  * can_nice - check if a task can reduce its nice value
3713  * @p: task
3714  * @nice: nice value
3715  */
3716 int can_nice(const struct task_struct *p, const int nice)
3717 {
3718 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3719 	int nice_rlim = nice_to_rlimit(nice);
3720 
3721 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3722 		capable(CAP_SYS_NICE));
3723 }
3724 
3725 #ifdef __ARCH_WANT_SYS_NICE
3726 
3727 /*
3728  * sys_nice - change the priority of the current process.
3729  * @increment: priority increment
3730  *
3731  * sys_setpriority is a more generic, but much slower function that
3732  * does similar things.
3733  */
3734 SYSCALL_DEFINE1(nice, int, increment)
3735 {
3736 	long nice, retval;
3737 
3738 	/*
3739 	 * Setpriority might change our priority at the same moment.
3740 	 * We don't have to worry. Conceptually one call occurs first
3741 	 * and we have a single winner.
3742 	 */
3743 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3744 	nice = task_nice(current) + increment;
3745 
3746 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3747 	if (increment < 0 && !can_nice(current, nice))
3748 		return -EPERM;
3749 
3750 	retval = security_task_setnice(current, nice);
3751 	if (retval)
3752 		return retval;
3753 
3754 	set_user_nice(current, nice);
3755 	return 0;
3756 }
3757 
3758 #endif
3759 
3760 /**
3761  * task_prio - return the priority value of a given task.
3762  * @p: the task in question.
3763  *
3764  * Return: The priority value as seen by users in /proc.
3765  * RT tasks are offset by -200. Normal tasks are centered
3766  * around 0, value goes from -16 to +15.
3767  */
3768 int task_prio(const struct task_struct *p)
3769 {
3770 	return p->prio - MAX_RT_PRIO;
3771 }
3772 
3773 /**
3774  * idle_cpu - is a given cpu idle currently?
3775  * @cpu: the processor in question.
3776  *
3777  * Return: 1 if the CPU is currently idle. 0 otherwise.
3778  */
3779 int idle_cpu(int cpu)
3780 {
3781 	struct rq *rq = cpu_rq(cpu);
3782 
3783 	if (rq->curr != rq->idle)
3784 		return 0;
3785 
3786 	if (rq->nr_running)
3787 		return 0;
3788 
3789 #ifdef CONFIG_SMP
3790 	if (!llist_empty(&rq->wake_list))
3791 		return 0;
3792 #endif
3793 
3794 	return 1;
3795 }
3796 
3797 /**
3798  * idle_task - return the idle task for a given cpu.
3799  * @cpu: the processor in question.
3800  *
3801  * Return: The idle task for the cpu @cpu.
3802  */
3803 struct task_struct *idle_task(int cpu)
3804 {
3805 	return cpu_rq(cpu)->idle;
3806 }
3807 
3808 /**
3809  * find_process_by_pid - find a process with a matching PID value.
3810  * @pid: the pid in question.
3811  *
3812  * The task of @pid, if found. %NULL otherwise.
3813  */
3814 static struct task_struct *find_process_by_pid(pid_t pid)
3815 {
3816 	return pid ? find_task_by_vpid(pid) : current;
3817 }
3818 
3819 /*
3820  * This function initializes the sched_dl_entity of a newly becoming
3821  * SCHED_DEADLINE task.
3822  *
3823  * Only the static values are considered here, the actual runtime and the
3824  * absolute deadline will be properly calculated when the task is enqueued
3825  * for the first time with its new policy.
3826  */
3827 static void
3828 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3829 {
3830 	struct sched_dl_entity *dl_se = &p->dl;
3831 
3832 	dl_se->dl_runtime = attr->sched_runtime;
3833 	dl_se->dl_deadline = attr->sched_deadline;
3834 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3835 	dl_se->flags = attr->sched_flags;
3836 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3837 
3838 	/*
3839 	 * Changing the parameters of a task is 'tricky' and we're not doing
3840 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3841 	 *
3842 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3843 	 * point. This would include retaining the task_struct until that time
3844 	 * and change dl_overflow() to not immediately decrement the current
3845 	 * amount.
3846 	 *
3847 	 * Instead we retain the current runtime/deadline and let the new
3848 	 * parameters take effect after the current reservation period lapses.
3849 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3850 	 * before the current scheduling deadline.
3851 	 *
3852 	 * We can still have temporary overloads because we do not delay the
3853 	 * change in bandwidth until that time; so admission control is
3854 	 * not on the safe side. It does however guarantee tasks will never
3855 	 * consume more than promised.
3856 	 */
3857 }
3858 
3859 /*
3860  * sched_setparam() passes in -1 for its policy, to let the functions
3861  * it calls know not to change it.
3862  */
3863 #define SETPARAM_POLICY	-1
3864 
3865 static void __setscheduler_params(struct task_struct *p,
3866 		const struct sched_attr *attr)
3867 {
3868 	int policy = attr->sched_policy;
3869 
3870 	if (policy == SETPARAM_POLICY)
3871 		policy = p->policy;
3872 
3873 	p->policy = policy;
3874 
3875 	if (dl_policy(policy))
3876 		__setparam_dl(p, attr);
3877 	else if (fair_policy(policy))
3878 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3879 
3880 	/*
3881 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3882 	 * !rt_policy. Always setting this ensures that things like
3883 	 * getparam()/getattr() don't report silly values for !rt tasks.
3884 	 */
3885 	p->rt_priority = attr->sched_priority;
3886 	p->normal_prio = normal_prio(p);
3887 	set_load_weight(p);
3888 }
3889 
3890 /* Actually do priority change: must hold pi & rq lock. */
3891 static void __setscheduler(struct rq *rq, struct task_struct *p,
3892 			   const struct sched_attr *attr, bool keep_boost)
3893 {
3894 	__setscheduler_params(p, attr);
3895 
3896 	/*
3897 	 * Keep a potential priority boosting if called from
3898 	 * sched_setscheduler().
3899 	 */
3900 	if (keep_boost)
3901 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3902 	else
3903 		p->prio = normal_prio(p);
3904 
3905 	if (dl_prio(p->prio))
3906 		p->sched_class = &dl_sched_class;
3907 	else if (rt_prio(p->prio))
3908 		p->sched_class = &rt_sched_class;
3909 	else
3910 		p->sched_class = &fair_sched_class;
3911 }
3912 
3913 static void
3914 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3915 {
3916 	struct sched_dl_entity *dl_se = &p->dl;
3917 
3918 	attr->sched_priority = p->rt_priority;
3919 	attr->sched_runtime = dl_se->dl_runtime;
3920 	attr->sched_deadline = dl_se->dl_deadline;
3921 	attr->sched_period = dl_se->dl_period;
3922 	attr->sched_flags = dl_se->flags;
3923 }
3924 
3925 /*
3926  * This function validates the new parameters of a -deadline task.
3927  * We ask for the deadline not being zero, and greater or equal
3928  * than the runtime, as well as the period of being zero or
3929  * greater than deadline. Furthermore, we have to be sure that
3930  * user parameters are above the internal resolution of 1us (we
3931  * check sched_runtime only since it is always the smaller one) and
3932  * below 2^63 ns (we have to check both sched_deadline and
3933  * sched_period, as the latter can be zero).
3934  */
3935 static bool
3936 __checkparam_dl(const struct sched_attr *attr)
3937 {
3938 	/* deadline != 0 */
3939 	if (attr->sched_deadline == 0)
3940 		return false;
3941 
3942 	/*
3943 	 * Since we truncate DL_SCALE bits, make sure we're at least
3944 	 * that big.
3945 	 */
3946 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3947 		return false;
3948 
3949 	/*
3950 	 * Since we use the MSB for wrap-around and sign issues, make
3951 	 * sure it's not set (mind that period can be equal to zero).
3952 	 */
3953 	if (attr->sched_deadline & (1ULL << 63) ||
3954 	    attr->sched_period & (1ULL << 63))
3955 		return false;
3956 
3957 	/* runtime <= deadline <= period (if period != 0) */
3958 	if ((attr->sched_period != 0 &&
3959 	     attr->sched_period < attr->sched_deadline) ||
3960 	    attr->sched_deadline < attr->sched_runtime)
3961 		return false;
3962 
3963 	return true;
3964 }
3965 
3966 /*
3967  * check the target process has a UID that matches the current process's
3968  */
3969 static bool check_same_owner(struct task_struct *p)
3970 {
3971 	const struct cred *cred = current_cred(), *pcred;
3972 	bool match;
3973 
3974 	rcu_read_lock();
3975 	pcred = __task_cred(p);
3976 	match = (uid_eq(cred->euid, pcred->euid) ||
3977 		 uid_eq(cred->euid, pcred->uid));
3978 	rcu_read_unlock();
3979 	return match;
3980 }
3981 
3982 static bool dl_param_changed(struct task_struct *p,
3983 		const struct sched_attr *attr)
3984 {
3985 	struct sched_dl_entity *dl_se = &p->dl;
3986 
3987 	if (dl_se->dl_runtime != attr->sched_runtime ||
3988 		dl_se->dl_deadline != attr->sched_deadline ||
3989 		dl_se->dl_period != attr->sched_period ||
3990 		dl_se->flags != attr->sched_flags)
3991 		return true;
3992 
3993 	return false;
3994 }
3995 
3996 static int __sched_setscheduler(struct task_struct *p,
3997 				const struct sched_attr *attr,
3998 				bool user, bool pi)
3999 {
4000 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4001 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4002 	int retval, oldprio, oldpolicy = -1, queued, running;
4003 	int new_effective_prio, policy = attr->sched_policy;
4004 	const struct sched_class *prev_class;
4005 	struct rq_flags rf;
4006 	int reset_on_fork;
4007 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4008 	struct rq *rq;
4009 
4010 	/* may grab non-irq protected spin_locks */
4011 	BUG_ON(in_interrupt());
4012 recheck:
4013 	/* double check policy once rq lock held */
4014 	if (policy < 0) {
4015 		reset_on_fork = p->sched_reset_on_fork;
4016 		policy = oldpolicy = p->policy;
4017 	} else {
4018 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4019 
4020 		if (!valid_policy(policy))
4021 			return -EINVAL;
4022 	}
4023 
4024 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4025 		return -EINVAL;
4026 
4027 	/*
4028 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4029 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4030 	 * SCHED_BATCH and SCHED_IDLE is 0.
4031 	 */
4032 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4033 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4034 		return -EINVAL;
4035 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4036 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4037 		return -EINVAL;
4038 
4039 	/*
4040 	 * Allow unprivileged RT tasks to decrease priority:
4041 	 */
4042 	if (user && !capable(CAP_SYS_NICE)) {
4043 		if (fair_policy(policy)) {
4044 			if (attr->sched_nice < task_nice(p) &&
4045 			    !can_nice(p, attr->sched_nice))
4046 				return -EPERM;
4047 		}
4048 
4049 		if (rt_policy(policy)) {
4050 			unsigned long rlim_rtprio =
4051 					task_rlimit(p, RLIMIT_RTPRIO);
4052 
4053 			/* can't set/change the rt policy */
4054 			if (policy != p->policy && !rlim_rtprio)
4055 				return -EPERM;
4056 
4057 			/* can't increase priority */
4058 			if (attr->sched_priority > p->rt_priority &&
4059 			    attr->sched_priority > rlim_rtprio)
4060 				return -EPERM;
4061 		}
4062 
4063 		 /*
4064 		  * Can't set/change SCHED_DEADLINE policy at all for now
4065 		  * (safest behavior); in the future we would like to allow
4066 		  * unprivileged DL tasks to increase their relative deadline
4067 		  * or reduce their runtime (both ways reducing utilization)
4068 		  */
4069 		if (dl_policy(policy))
4070 			return -EPERM;
4071 
4072 		/*
4073 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4074 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4075 		 */
4076 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4077 			if (!can_nice(p, task_nice(p)))
4078 				return -EPERM;
4079 		}
4080 
4081 		/* can't change other user's priorities */
4082 		if (!check_same_owner(p))
4083 			return -EPERM;
4084 
4085 		/* Normal users shall not reset the sched_reset_on_fork flag */
4086 		if (p->sched_reset_on_fork && !reset_on_fork)
4087 			return -EPERM;
4088 	}
4089 
4090 	if (user) {
4091 		retval = security_task_setscheduler(p);
4092 		if (retval)
4093 			return retval;
4094 	}
4095 
4096 	/*
4097 	 * make sure no PI-waiters arrive (or leave) while we are
4098 	 * changing the priority of the task:
4099 	 *
4100 	 * To be able to change p->policy safely, the appropriate
4101 	 * runqueue lock must be held.
4102 	 */
4103 	rq = task_rq_lock(p, &rf);
4104 
4105 	/*
4106 	 * Changing the policy of the stop threads its a very bad idea
4107 	 */
4108 	if (p == rq->stop) {
4109 		task_rq_unlock(rq, p, &rf);
4110 		return -EINVAL;
4111 	}
4112 
4113 	/*
4114 	 * If not changing anything there's no need to proceed further,
4115 	 * but store a possible modification of reset_on_fork.
4116 	 */
4117 	if (unlikely(policy == p->policy)) {
4118 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4119 			goto change;
4120 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4121 			goto change;
4122 		if (dl_policy(policy) && dl_param_changed(p, attr))
4123 			goto change;
4124 
4125 		p->sched_reset_on_fork = reset_on_fork;
4126 		task_rq_unlock(rq, p, &rf);
4127 		return 0;
4128 	}
4129 change:
4130 
4131 	if (user) {
4132 #ifdef CONFIG_RT_GROUP_SCHED
4133 		/*
4134 		 * Do not allow realtime tasks into groups that have no runtime
4135 		 * assigned.
4136 		 */
4137 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4138 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4139 				!task_group_is_autogroup(task_group(p))) {
4140 			task_rq_unlock(rq, p, &rf);
4141 			return -EPERM;
4142 		}
4143 #endif
4144 #ifdef CONFIG_SMP
4145 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4146 			cpumask_t *span = rq->rd->span;
4147 
4148 			/*
4149 			 * Don't allow tasks with an affinity mask smaller than
4150 			 * the entire root_domain to become SCHED_DEADLINE. We
4151 			 * will also fail if there's no bandwidth available.
4152 			 */
4153 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4154 			    rq->rd->dl_bw.bw == 0) {
4155 				task_rq_unlock(rq, p, &rf);
4156 				return -EPERM;
4157 			}
4158 		}
4159 #endif
4160 	}
4161 
4162 	/* recheck policy now with rq lock held */
4163 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4164 		policy = oldpolicy = -1;
4165 		task_rq_unlock(rq, p, &rf);
4166 		goto recheck;
4167 	}
4168 
4169 	/*
4170 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4171 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4172 	 * is available.
4173 	 */
4174 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4175 		task_rq_unlock(rq, p, &rf);
4176 		return -EBUSY;
4177 	}
4178 
4179 	p->sched_reset_on_fork = reset_on_fork;
4180 	oldprio = p->prio;
4181 
4182 	if (pi) {
4183 		/*
4184 		 * Take priority boosted tasks into account. If the new
4185 		 * effective priority is unchanged, we just store the new
4186 		 * normal parameters and do not touch the scheduler class and
4187 		 * the runqueue. This will be done when the task deboost
4188 		 * itself.
4189 		 */
4190 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4191 		if (new_effective_prio == oldprio)
4192 			queue_flags &= ~DEQUEUE_MOVE;
4193 	}
4194 
4195 	queued = task_on_rq_queued(p);
4196 	running = task_current(rq, p);
4197 	if (queued)
4198 		dequeue_task(rq, p, queue_flags);
4199 	if (running)
4200 		put_prev_task(rq, p);
4201 
4202 	prev_class = p->sched_class;
4203 	__setscheduler(rq, p, attr, pi);
4204 
4205 	if (running)
4206 		p->sched_class->set_curr_task(rq);
4207 	if (queued) {
4208 		/*
4209 		 * We enqueue to tail when the priority of a task is
4210 		 * increased (user space view).
4211 		 */
4212 		if (oldprio < p->prio)
4213 			queue_flags |= ENQUEUE_HEAD;
4214 
4215 		enqueue_task(rq, p, queue_flags);
4216 	}
4217 
4218 	check_class_changed(rq, p, prev_class, oldprio);
4219 	preempt_disable(); /* avoid rq from going away on us */
4220 	task_rq_unlock(rq, p, &rf);
4221 
4222 	if (pi)
4223 		rt_mutex_adjust_pi(p);
4224 
4225 	/*
4226 	 * Run balance callbacks after we've adjusted the PI chain.
4227 	 */
4228 	balance_callback(rq);
4229 	preempt_enable();
4230 
4231 	return 0;
4232 }
4233 
4234 static int _sched_setscheduler(struct task_struct *p, int policy,
4235 			       const struct sched_param *param, bool check)
4236 {
4237 	struct sched_attr attr = {
4238 		.sched_policy   = policy,
4239 		.sched_priority = param->sched_priority,
4240 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4241 	};
4242 
4243 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4244 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4245 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4246 		policy &= ~SCHED_RESET_ON_FORK;
4247 		attr.sched_policy = policy;
4248 	}
4249 
4250 	return __sched_setscheduler(p, &attr, check, true);
4251 }
4252 /**
4253  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4254  * @p: the task in question.
4255  * @policy: new policy.
4256  * @param: structure containing the new RT priority.
4257  *
4258  * Return: 0 on success. An error code otherwise.
4259  *
4260  * NOTE that the task may be already dead.
4261  */
4262 int sched_setscheduler(struct task_struct *p, int policy,
4263 		       const struct sched_param *param)
4264 {
4265 	return _sched_setscheduler(p, policy, param, true);
4266 }
4267 EXPORT_SYMBOL_GPL(sched_setscheduler);
4268 
4269 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4270 {
4271 	return __sched_setscheduler(p, attr, true, true);
4272 }
4273 EXPORT_SYMBOL_GPL(sched_setattr);
4274 
4275 /**
4276  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4277  * @p: the task in question.
4278  * @policy: new policy.
4279  * @param: structure containing the new RT priority.
4280  *
4281  * Just like sched_setscheduler, only don't bother checking if the
4282  * current context has permission.  For example, this is needed in
4283  * stop_machine(): we create temporary high priority worker threads,
4284  * but our caller might not have that capability.
4285  *
4286  * Return: 0 on success. An error code otherwise.
4287  */
4288 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4289 			       const struct sched_param *param)
4290 {
4291 	return _sched_setscheduler(p, policy, param, false);
4292 }
4293 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4294 
4295 static int
4296 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4297 {
4298 	struct sched_param lparam;
4299 	struct task_struct *p;
4300 	int retval;
4301 
4302 	if (!param || pid < 0)
4303 		return -EINVAL;
4304 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4305 		return -EFAULT;
4306 
4307 	rcu_read_lock();
4308 	retval = -ESRCH;
4309 	p = find_process_by_pid(pid);
4310 	if (p != NULL)
4311 		retval = sched_setscheduler(p, policy, &lparam);
4312 	rcu_read_unlock();
4313 
4314 	return retval;
4315 }
4316 
4317 /*
4318  * Mimics kernel/events/core.c perf_copy_attr().
4319  */
4320 static int sched_copy_attr(struct sched_attr __user *uattr,
4321 			   struct sched_attr *attr)
4322 {
4323 	u32 size;
4324 	int ret;
4325 
4326 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4327 		return -EFAULT;
4328 
4329 	/*
4330 	 * zero the full structure, so that a short copy will be nice.
4331 	 */
4332 	memset(attr, 0, sizeof(*attr));
4333 
4334 	ret = get_user(size, &uattr->size);
4335 	if (ret)
4336 		return ret;
4337 
4338 	if (size > PAGE_SIZE)	/* silly large */
4339 		goto err_size;
4340 
4341 	if (!size)		/* abi compat */
4342 		size = SCHED_ATTR_SIZE_VER0;
4343 
4344 	if (size < SCHED_ATTR_SIZE_VER0)
4345 		goto err_size;
4346 
4347 	/*
4348 	 * If we're handed a bigger struct than we know of,
4349 	 * ensure all the unknown bits are 0 - i.e. new
4350 	 * user-space does not rely on any kernel feature
4351 	 * extensions we dont know about yet.
4352 	 */
4353 	if (size > sizeof(*attr)) {
4354 		unsigned char __user *addr;
4355 		unsigned char __user *end;
4356 		unsigned char val;
4357 
4358 		addr = (void __user *)uattr + sizeof(*attr);
4359 		end  = (void __user *)uattr + size;
4360 
4361 		for (; addr < end; addr++) {
4362 			ret = get_user(val, addr);
4363 			if (ret)
4364 				return ret;
4365 			if (val)
4366 				goto err_size;
4367 		}
4368 		size = sizeof(*attr);
4369 	}
4370 
4371 	ret = copy_from_user(attr, uattr, size);
4372 	if (ret)
4373 		return -EFAULT;
4374 
4375 	/*
4376 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4377 	 * to be strict and return an error on out-of-bounds values?
4378 	 */
4379 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4380 
4381 	return 0;
4382 
4383 err_size:
4384 	put_user(sizeof(*attr), &uattr->size);
4385 	return -E2BIG;
4386 }
4387 
4388 /**
4389  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4390  * @pid: the pid in question.
4391  * @policy: new policy.
4392  * @param: structure containing the new RT priority.
4393  *
4394  * Return: 0 on success. An error code otherwise.
4395  */
4396 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4397 		struct sched_param __user *, param)
4398 {
4399 	/* negative values for policy are not valid */
4400 	if (policy < 0)
4401 		return -EINVAL;
4402 
4403 	return do_sched_setscheduler(pid, policy, param);
4404 }
4405 
4406 /**
4407  * sys_sched_setparam - set/change the RT priority of a thread
4408  * @pid: the pid in question.
4409  * @param: structure containing the new RT priority.
4410  *
4411  * Return: 0 on success. An error code otherwise.
4412  */
4413 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4414 {
4415 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4416 }
4417 
4418 /**
4419  * sys_sched_setattr - same as above, but with extended sched_attr
4420  * @pid: the pid in question.
4421  * @uattr: structure containing the extended parameters.
4422  * @flags: for future extension.
4423  */
4424 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4425 			       unsigned int, flags)
4426 {
4427 	struct sched_attr attr;
4428 	struct task_struct *p;
4429 	int retval;
4430 
4431 	if (!uattr || pid < 0 || flags)
4432 		return -EINVAL;
4433 
4434 	retval = sched_copy_attr(uattr, &attr);
4435 	if (retval)
4436 		return retval;
4437 
4438 	if ((int)attr.sched_policy < 0)
4439 		return -EINVAL;
4440 
4441 	rcu_read_lock();
4442 	retval = -ESRCH;
4443 	p = find_process_by_pid(pid);
4444 	if (p != NULL)
4445 		retval = sched_setattr(p, &attr);
4446 	rcu_read_unlock();
4447 
4448 	return retval;
4449 }
4450 
4451 /**
4452  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4453  * @pid: the pid in question.
4454  *
4455  * Return: On success, the policy of the thread. Otherwise, a negative error
4456  * code.
4457  */
4458 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4459 {
4460 	struct task_struct *p;
4461 	int retval;
4462 
4463 	if (pid < 0)
4464 		return -EINVAL;
4465 
4466 	retval = -ESRCH;
4467 	rcu_read_lock();
4468 	p = find_process_by_pid(pid);
4469 	if (p) {
4470 		retval = security_task_getscheduler(p);
4471 		if (!retval)
4472 			retval = p->policy
4473 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4474 	}
4475 	rcu_read_unlock();
4476 	return retval;
4477 }
4478 
4479 /**
4480  * sys_sched_getparam - get the RT priority of a thread
4481  * @pid: the pid in question.
4482  * @param: structure containing the RT priority.
4483  *
4484  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4485  * code.
4486  */
4487 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4488 {
4489 	struct sched_param lp = { .sched_priority = 0 };
4490 	struct task_struct *p;
4491 	int retval;
4492 
4493 	if (!param || pid < 0)
4494 		return -EINVAL;
4495 
4496 	rcu_read_lock();
4497 	p = find_process_by_pid(pid);
4498 	retval = -ESRCH;
4499 	if (!p)
4500 		goto out_unlock;
4501 
4502 	retval = security_task_getscheduler(p);
4503 	if (retval)
4504 		goto out_unlock;
4505 
4506 	if (task_has_rt_policy(p))
4507 		lp.sched_priority = p->rt_priority;
4508 	rcu_read_unlock();
4509 
4510 	/*
4511 	 * This one might sleep, we cannot do it with a spinlock held ...
4512 	 */
4513 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4514 
4515 	return retval;
4516 
4517 out_unlock:
4518 	rcu_read_unlock();
4519 	return retval;
4520 }
4521 
4522 static int sched_read_attr(struct sched_attr __user *uattr,
4523 			   struct sched_attr *attr,
4524 			   unsigned int usize)
4525 {
4526 	int ret;
4527 
4528 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4529 		return -EFAULT;
4530 
4531 	/*
4532 	 * If we're handed a smaller struct than we know of,
4533 	 * ensure all the unknown bits are 0 - i.e. old
4534 	 * user-space does not get uncomplete information.
4535 	 */
4536 	if (usize < sizeof(*attr)) {
4537 		unsigned char *addr;
4538 		unsigned char *end;
4539 
4540 		addr = (void *)attr + usize;
4541 		end  = (void *)attr + sizeof(*attr);
4542 
4543 		for (; addr < end; addr++) {
4544 			if (*addr)
4545 				return -EFBIG;
4546 		}
4547 
4548 		attr->size = usize;
4549 	}
4550 
4551 	ret = copy_to_user(uattr, attr, attr->size);
4552 	if (ret)
4553 		return -EFAULT;
4554 
4555 	return 0;
4556 }
4557 
4558 /**
4559  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4560  * @pid: the pid in question.
4561  * @uattr: structure containing the extended parameters.
4562  * @size: sizeof(attr) for fwd/bwd comp.
4563  * @flags: for future extension.
4564  */
4565 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4566 		unsigned int, size, unsigned int, flags)
4567 {
4568 	struct sched_attr attr = {
4569 		.size = sizeof(struct sched_attr),
4570 	};
4571 	struct task_struct *p;
4572 	int retval;
4573 
4574 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4575 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4576 		return -EINVAL;
4577 
4578 	rcu_read_lock();
4579 	p = find_process_by_pid(pid);
4580 	retval = -ESRCH;
4581 	if (!p)
4582 		goto out_unlock;
4583 
4584 	retval = security_task_getscheduler(p);
4585 	if (retval)
4586 		goto out_unlock;
4587 
4588 	attr.sched_policy = p->policy;
4589 	if (p->sched_reset_on_fork)
4590 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4591 	if (task_has_dl_policy(p))
4592 		__getparam_dl(p, &attr);
4593 	else if (task_has_rt_policy(p))
4594 		attr.sched_priority = p->rt_priority;
4595 	else
4596 		attr.sched_nice = task_nice(p);
4597 
4598 	rcu_read_unlock();
4599 
4600 	retval = sched_read_attr(uattr, &attr, size);
4601 	return retval;
4602 
4603 out_unlock:
4604 	rcu_read_unlock();
4605 	return retval;
4606 }
4607 
4608 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4609 {
4610 	cpumask_var_t cpus_allowed, new_mask;
4611 	struct task_struct *p;
4612 	int retval;
4613 
4614 	rcu_read_lock();
4615 
4616 	p = find_process_by_pid(pid);
4617 	if (!p) {
4618 		rcu_read_unlock();
4619 		return -ESRCH;
4620 	}
4621 
4622 	/* Prevent p going away */
4623 	get_task_struct(p);
4624 	rcu_read_unlock();
4625 
4626 	if (p->flags & PF_NO_SETAFFINITY) {
4627 		retval = -EINVAL;
4628 		goto out_put_task;
4629 	}
4630 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4631 		retval = -ENOMEM;
4632 		goto out_put_task;
4633 	}
4634 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4635 		retval = -ENOMEM;
4636 		goto out_free_cpus_allowed;
4637 	}
4638 	retval = -EPERM;
4639 	if (!check_same_owner(p)) {
4640 		rcu_read_lock();
4641 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4642 			rcu_read_unlock();
4643 			goto out_free_new_mask;
4644 		}
4645 		rcu_read_unlock();
4646 	}
4647 
4648 	retval = security_task_setscheduler(p);
4649 	if (retval)
4650 		goto out_free_new_mask;
4651 
4652 
4653 	cpuset_cpus_allowed(p, cpus_allowed);
4654 	cpumask_and(new_mask, in_mask, cpus_allowed);
4655 
4656 	/*
4657 	 * Since bandwidth control happens on root_domain basis,
4658 	 * if admission test is enabled, we only admit -deadline
4659 	 * tasks allowed to run on all the CPUs in the task's
4660 	 * root_domain.
4661 	 */
4662 #ifdef CONFIG_SMP
4663 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4664 		rcu_read_lock();
4665 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4666 			retval = -EBUSY;
4667 			rcu_read_unlock();
4668 			goto out_free_new_mask;
4669 		}
4670 		rcu_read_unlock();
4671 	}
4672 #endif
4673 again:
4674 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4675 
4676 	if (!retval) {
4677 		cpuset_cpus_allowed(p, cpus_allowed);
4678 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4679 			/*
4680 			 * We must have raced with a concurrent cpuset
4681 			 * update. Just reset the cpus_allowed to the
4682 			 * cpuset's cpus_allowed
4683 			 */
4684 			cpumask_copy(new_mask, cpus_allowed);
4685 			goto again;
4686 		}
4687 	}
4688 out_free_new_mask:
4689 	free_cpumask_var(new_mask);
4690 out_free_cpus_allowed:
4691 	free_cpumask_var(cpus_allowed);
4692 out_put_task:
4693 	put_task_struct(p);
4694 	return retval;
4695 }
4696 
4697 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4698 			     struct cpumask *new_mask)
4699 {
4700 	if (len < cpumask_size())
4701 		cpumask_clear(new_mask);
4702 	else if (len > cpumask_size())
4703 		len = cpumask_size();
4704 
4705 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4706 }
4707 
4708 /**
4709  * sys_sched_setaffinity - set the cpu affinity of a process
4710  * @pid: pid of the process
4711  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4712  * @user_mask_ptr: user-space pointer to the new cpu mask
4713  *
4714  * Return: 0 on success. An error code otherwise.
4715  */
4716 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4717 		unsigned long __user *, user_mask_ptr)
4718 {
4719 	cpumask_var_t new_mask;
4720 	int retval;
4721 
4722 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4723 		return -ENOMEM;
4724 
4725 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4726 	if (retval == 0)
4727 		retval = sched_setaffinity(pid, new_mask);
4728 	free_cpumask_var(new_mask);
4729 	return retval;
4730 }
4731 
4732 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4733 {
4734 	struct task_struct *p;
4735 	unsigned long flags;
4736 	int retval;
4737 
4738 	rcu_read_lock();
4739 
4740 	retval = -ESRCH;
4741 	p = find_process_by_pid(pid);
4742 	if (!p)
4743 		goto out_unlock;
4744 
4745 	retval = security_task_getscheduler(p);
4746 	if (retval)
4747 		goto out_unlock;
4748 
4749 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4750 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4751 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4752 
4753 out_unlock:
4754 	rcu_read_unlock();
4755 
4756 	return retval;
4757 }
4758 
4759 /**
4760  * sys_sched_getaffinity - get the cpu affinity of a process
4761  * @pid: pid of the process
4762  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4763  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4764  *
4765  * Return: size of CPU mask copied to user_mask_ptr on success. An
4766  * error code otherwise.
4767  */
4768 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4769 		unsigned long __user *, user_mask_ptr)
4770 {
4771 	int ret;
4772 	cpumask_var_t mask;
4773 
4774 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4775 		return -EINVAL;
4776 	if (len & (sizeof(unsigned long)-1))
4777 		return -EINVAL;
4778 
4779 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4780 		return -ENOMEM;
4781 
4782 	ret = sched_getaffinity(pid, mask);
4783 	if (ret == 0) {
4784 		size_t retlen = min_t(size_t, len, cpumask_size());
4785 
4786 		if (copy_to_user(user_mask_ptr, mask, retlen))
4787 			ret = -EFAULT;
4788 		else
4789 			ret = retlen;
4790 	}
4791 	free_cpumask_var(mask);
4792 
4793 	return ret;
4794 }
4795 
4796 /**
4797  * sys_sched_yield - yield the current processor to other threads.
4798  *
4799  * This function yields the current CPU to other tasks. If there are no
4800  * other threads running on this CPU then this function will return.
4801  *
4802  * Return: 0.
4803  */
4804 SYSCALL_DEFINE0(sched_yield)
4805 {
4806 	struct rq *rq = this_rq_lock();
4807 
4808 	schedstat_inc(rq, yld_count);
4809 	current->sched_class->yield_task(rq);
4810 
4811 	/*
4812 	 * Since we are going to call schedule() anyway, there's
4813 	 * no need to preempt or enable interrupts:
4814 	 */
4815 	__release(rq->lock);
4816 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4817 	do_raw_spin_unlock(&rq->lock);
4818 	sched_preempt_enable_no_resched();
4819 
4820 	schedule();
4821 
4822 	return 0;
4823 }
4824 
4825 int __sched _cond_resched(void)
4826 {
4827 	if (should_resched(0)) {
4828 		preempt_schedule_common();
4829 		return 1;
4830 	}
4831 	return 0;
4832 }
4833 EXPORT_SYMBOL(_cond_resched);
4834 
4835 /*
4836  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4837  * call schedule, and on return reacquire the lock.
4838  *
4839  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4840  * operations here to prevent schedule() from being called twice (once via
4841  * spin_unlock(), once by hand).
4842  */
4843 int __cond_resched_lock(spinlock_t *lock)
4844 {
4845 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4846 	int ret = 0;
4847 
4848 	lockdep_assert_held(lock);
4849 
4850 	if (spin_needbreak(lock) || resched) {
4851 		spin_unlock(lock);
4852 		if (resched)
4853 			preempt_schedule_common();
4854 		else
4855 			cpu_relax();
4856 		ret = 1;
4857 		spin_lock(lock);
4858 	}
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL(__cond_resched_lock);
4862 
4863 int __sched __cond_resched_softirq(void)
4864 {
4865 	BUG_ON(!in_softirq());
4866 
4867 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4868 		local_bh_enable();
4869 		preempt_schedule_common();
4870 		local_bh_disable();
4871 		return 1;
4872 	}
4873 	return 0;
4874 }
4875 EXPORT_SYMBOL(__cond_resched_softirq);
4876 
4877 /**
4878  * yield - yield the current processor to other threads.
4879  *
4880  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4881  *
4882  * The scheduler is at all times free to pick the calling task as the most
4883  * eligible task to run, if removing the yield() call from your code breaks
4884  * it, its already broken.
4885  *
4886  * Typical broken usage is:
4887  *
4888  * while (!event)
4889  * 	yield();
4890  *
4891  * where one assumes that yield() will let 'the other' process run that will
4892  * make event true. If the current task is a SCHED_FIFO task that will never
4893  * happen. Never use yield() as a progress guarantee!!
4894  *
4895  * If you want to use yield() to wait for something, use wait_event().
4896  * If you want to use yield() to be 'nice' for others, use cond_resched().
4897  * If you still want to use yield(), do not!
4898  */
4899 void __sched yield(void)
4900 {
4901 	set_current_state(TASK_RUNNING);
4902 	sys_sched_yield();
4903 }
4904 EXPORT_SYMBOL(yield);
4905 
4906 /**
4907  * yield_to - yield the current processor to another thread in
4908  * your thread group, or accelerate that thread toward the
4909  * processor it's on.
4910  * @p: target task
4911  * @preempt: whether task preemption is allowed or not
4912  *
4913  * It's the caller's job to ensure that the target task struct
4914  * can't go away on us before we can do any checks.
4915  *
4916  * Return:
4917  *	true (>0) if we indeed boosted the target task.
4918  *	false (0) if we failed to boost the target.
4919  *	-ESRCH if there's no task to yield to.
4920  */
4921 int __sched yield_to(struct task_struct *p, bool preempt)
4922 {
4923 	struct task_struct *curr = current;
4924 	struct rq *rq, *p_rq;
4925 	unsigned long flags;
4926 	int yielded = 0;
4927 
4928 	local_irq_save(flags);
4929 	rq = this_rq();
4930 
4931 again:
4932 	p_rq = task_rq(p);
4933 	/*
4934 	 * If we're the only runnable task on the rq and target rq also
4935 	 * has only one task, there's absolutely no point in yielding.
4936 	 */
4937 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4938 		yielded = -ESRCH;
4939 		goto out_irq;
4940 	}
4941 
4942 	double_rq_lock(rq, p_rq);
4943 	if (task_rq(p) != p_rq) {
4944 		double_rq_unlock(rq, p_rq);
4945 		goto again;
4946 	}
4947 
4948 	if (!curr->sched_class->yield_to_task)
4949 		goto out_unlock;
4950 
4951 	if (curr->sched_class != p->sched_class)
4952 		goto out_unlock;
4953 
4954 	if (task_running(p_rq, p) || p->state)
4955 		goto out_unlock;
4956 
4957 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4958 	if (yielded) {
4959 		schedstat_inc(rq, yld_count);
4960 		/*
4961 		 * Make p's CPU reschedule; pick_next_entity takes care of
4962 		 * fairness.
4963 		 */
4964 		if (preempt && rq != p_rq)
4965 			resched_curr(p_rq);
4966 	}
4967 
4968 out_unlock:
4969 	double_rq_unlock(rq, p_rq);
4970 out_irq:
4971 	local_irq_restore(flags);
4972 
4973 	if (yielded > 0)
4974 		schedule();
4975 
4976 	return yielded;
4977 }
4978 EXPORT_SYMBOL_GPL(yield_to);
4979 
4980 /*
4981  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4982  * that process accounting knows that this is a task in IO wait state.
4983  */
4984 long __sched io_schedule_timeout(long timeout)
4985 {
4986 	int old_iowait = current->in_iowait;
4987 	struct rq *rq;
4988 	long ret;
4989 
4990 	current->in_iowait = 1;
4991 	blk_schedule_flush_plug(current);
4992 
4993 	delayacct_blkio_start();
4994 	rq = raw_rq();
4995 	atomic_inc(&rq->nr_iowait);
4996 	ret = schedule_timeout(timeout);
4997 	current->in_iowait = old_iowait;
4998 	atomic_dec(&rq->nr_iowait);
4999 	delayacct_blkio_end();
5000 
5001 	return ret;
5002 }
5003 EXPORT_SYMBOL(io_schedule_timeout);
5004 
5005 /**
5006  * sys_sched_get_priority_max - return maximum RT priority.
5007  * @policy: scheduling class.
5008  *
5009  * Return: On success, this syscall returns the maximum
5010  * rt_priority that can be used by a given scheduling class.
5011  * On failure, a negative error code is returned.
5012  */
5013 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5014 {
5015 	int ret = -EINVAL;
5016 
5017 	switch (policy) {
5018 	case SCHED_FIFO:
5019 	case SCHED_RR:
5020 		ret = MAX_USER_RT_PRIO-1;
5021 		break;
5022 	case SCHED_DEADLINE:
5023 	case SCHED_NORMAL:
5024 	case SCHED_BATCH:
5025 	case SCHED_IDLE:
5026 		ret = 0;
5027 		break;
5028 	}
5029 	return ret;
5030 }
5031 
5032 /**
5033  * sys_sched_get_priority_min - return minimum RT priority.
5034  * @policy: scheduling class.
5035  *
5036  * Return: On success, this syscall returns the minimum
5037  * rt_priority that can be used by a given scheduling class.
5038  * On failure, a negative error code is returned.
5039  */
5040 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5041 {
5042 	int ret = -EINVAL;
5043 
5044 	switch (policy) {
5045 	case SCHED_FIFO:
5046 	case SCHED_RR:
5047 		ret = 1;
5048 		break;
5049 	case SCHED_DEADLINE:
5050 	case SCHED_NORMAL:
5051 	case SCHED_BATCH:
5052 	case SCHED_IDLE:
5053 		ret = 0;
5054 	}
5055 	return ret;
5056 }
5057 
5058 /**
5059  * sys_sched_rr_get_interval - return the default timeslice of a process.
5060  * @pid: pid of the process.
5061  * @interval: userspace pointer to the timeslice value.
5062  *
5063  * this syscall writes the default timeslice value of a given process
5064  * into the user-space timespec buffer. A value of '0' means infinity.
5065  *
5066  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5067  * an error code.
5068  */
5069 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5070 		struct timespec __user *, interval)
5071 {
5072 	struct task_struct *p;
5073 	unsigned int time_slice;
5074 	struct rq_flags rf;
5075 	struct timespec t;
5076 	struct rq *rq;
5077 	int retval;
5078 
5079 	if (pid < 0)
5080 		return -EINVAL;
5081 
5082 	retval = -ESRCH;
5083 	rcu_read_lock();
5084 	p = find_process_by_pid(pid);
5085 	if (!p)
5086 		goto out_unlock;
5087 
5088 	retval = security_task_getscheduler(p);
5089 	if (retval)
5090 		goto out_unlock;
5091 
5092 	rq = task_rq_lock(p, &rf);
5093 	time_slice = 0;
5094 	if (p->sched_class->get_rr_interval)
5095 		time_slice = p->sched_class->get_rr_interval(rq, p);
5096 	task_rq_unlock(rq, p, &rf);
5097 
5098 	rcu_read_unlock();
5099 	jiffies_to_timespec(time_slice, &t);
5100 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5101 	return retval;
5102 
5103 out_unlock:
5104 	rcu_read_unlock();
5105 	return retval;
5106 }
5107 
5108 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5109 
5110 void sched_show_task(struct task_struct *p)
5111 {
5112 	unsigned long free = 0;
5113 	int ppid;
5114 	unsigned long state = p->state;
5115 
5116 	if (state)
5117 		state = __ffs(state) + 1;
5118 	printk(KERN_INFO "%-15.15s %c", p->comm,
5119 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5120 #if BITS_PER_LONG == 32
5121 	if (state == TASK_RUNNING)
5122 		printk(KERN_CONT " running  ");
5123 	else
5124 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5125 #else
5126 	if (state == TASK_RUNNING)
5127 		printk(KERN_CONT "  running task    ");
5128 	else
5129 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5130 #endif
5131 #ifdef CONFIG_DEBUG_STACK_USAGE
5132 	free = stack_not_used(p);
5133 #endif
5134 	ppid = 0;
5135 	rcu_read_lock();
5136 	if (pid_alive(p))
5137 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5138 	rcu_read_unlock();
5139 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5140 		task_pid_nr(p), ppid,
5141 		(unsigned long)task_thread_info(p)->flags);
5142 
5143 	print_worker_info(KERN_INFO, p);
5144 	show_stack(p, NULL);
5145 }
5146 
5147 void show_state_filter(unsigned long state_filter)
5148 {
5149 	struct task_struct *g, *p;
5150 
5151 #if BITS_PER_LONG == 32
5152 	printk(KERN_INFO
5153 		"  task                PC stack   pid father\n");
5154 #else
5155 	printk(KERN_INFO
5156 		"  task                        PC stack   pid father\n");
5157 #endif
5158 	rcu_read_lock();
5159 	for_each_process_thread(g, p) {
5160 		/*
5161 		 * reset the NMI-timeout, listing all files on a slow
5162 		 * console might take a lot of time:
5163 		 * Also, reset softlockup watchdogs on all CPUs, because
5164 		 * another CPU might be blocked waiting for us to process
5165 		 * an IPI.
5166 		 */
5167 		touch_nmi_watchdog();
5168 		touch_all_softlockup_watchdogs();
5169 		if (!state_filter || (p->state & state_filter))
5170 			sched_show_task(p);
5171 	}
5172 
5173 #ifdef CONFIG_SCHED_DEBUG
5174 	if (!state_filter)
5175 		sysrq_sched_debug_show();
5176 #endif
5177 	rcu_read_unlock();
5178 	/*
5179 	 * Only show locks if all tasks are dumped:
5180 	 */
5181 	if (!state_filter)
5182 		debug_show_all_locks();
5183 }
5184 
5185 void init_idle_bootup_task(struct task_struct *idle)
5186 {
5187 	idle->sched_class = &idle_sched_class;
5188 }
5189 
5190 /**
5191  * init_idle - set up an idle thread for a given CPU
5192  * @idle: task in question
5193  * @cpu: cpu the idle task belongs to
5194  *
5195  * NOTE: this function does not set the idle thread's NEED_RESCHED
5196  * flag, to make booting more robust.
5197  */
5198 void init_idle(struct task_struct *idle, int cpu)
5199 {
5200 	struct rq *rq = cpu_rq(cpu);
5201 	unsigned long flags;
5202 
5203 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5204 	raw_spin_lock(&rq->lock);
5205 
5206 	__sched_fork(0, idle);
5207 	idle->state = TASK_RUNNING;
5208 	idle->se.exec_start = sched_clock();
5209 
5210 	kasan_unpoison_task_stack(idle);
5211 
5212 #ifdef CONFIG_SMP
5213 	/*
5214 	 * Its possible that init_idle() gets called multiple times on a task,
5215 	 * in that case do_set_cpus_allowed() will not do the right thing.
5216 	 *
5217 	 * And since this is boot we can forgo the serialization.
5218 	 */
5219 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5220 #endif
5221 	/*
5222 	 * We're having a chicken and egg problem, even though we are
5223 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5224 	 * lockdep check in task_group() will fail.
5225 	 *
5226 	 * Similar case to sched_fork(). / Alternatively we could
5227 	 * use task_rq_lock() here and obtain the other rq->lock.
5228 	 *
5229 	 * Silence PROVE_RCU
5230 	 */
5231 	rcu_read_lock();
5232 	__set_task_cpu(idle, cpu);
5233 	rcu_read_unlock();
5234 
5235 	rq->curr = rq->idle = idle;
5236 	idle->on_rq = TASK_ON_RQ_QUEUED;
5237 #ifdef CONFIG_SMP
5238 	idle->on_cpu = 1;
5239 #endif
5240 	raw_spin_unlock(&rq->lock);
5241 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5242 
5243 	/* Set the preempt count _outside_ the spinlocks! */
5244 	init_idle_preempt_count(idle, cpu);
5245 
5246 	/*
5247 	 * The idle tasks have their own, simple scheduling class:
5248 	 */
5249 	idle->sched_class = &idle_sched_class;
5250 	ftrace_graph_init_idle_task(idle, cpu);
5251 	vtime_init_idle(idle, cpu);
5252 #ifdef CONFIG_SMP
5253 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5254 #endif
5255 }
5256 
5257 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5258 			      const struct cpumask *trial)
5259 {
5260 	int ret = 1, trial_cpus;
5261 	struct dl_bw *cur_dl_b;
5262 	unsigned long flags;
5263 
5264 	if (!cpumask_weight(cur))
5265 		return ret;
5266 
5267 	rcu_read_lock_sched();
5268 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5269 	trial_cpus = cpumask_weight(trial);
5270 
5271 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5272 	if (cur_dl_b->bw != -1 &&
5273 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5274 		ret = 0;
5275 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5276 	rcu_read_unlock_sched();
5277 
5278 	return ret;
5279 }
5280 
5281 int task_can_attach(struct task_struct *p,
5282 		    const struct cpumask *cs_cpus_allowed)
5283 {
5284 	int ret = 0;
5285 
5286 	/*
5287 	 * Kthreads which disallow setaffinity shouldn't be moved
5288 	 * to a new cpuset; we don't want to change their cpu
5289 	 * affinity and isolating such threads by their set of
5290 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5291 	 * applicable for such threads.  This prevents checking for
5292 	 * success of set_cpus_allowed_ptr() on all attached tasks
5293 	 * before cpus_allowed may be changed.
5294 	 */
5295 	if (p->flags & PF_NO_SETAFFINITY) {
5296 		ret = -EINVAL;
5297 		goto out;
5298 	}
5299 
5300 #ifdef CONFIG_SMP
5301 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5302 					      cs_cpus_allowed)) {
5303 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5304 							cs_cpus_allowed);
5305 		struct dl_bw *dl_b;
5306 		bool overflow;
5307 		int cpus;
5308 		unsigned long flags;
5309 
5310 		rcu_read_lock_sched();
5311 		dl_b = dl_bw_of(dest_cpu);
5312 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5313 		cpus = dl_bw_cpus(dest_cpu);
5314 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5315 		if (overflow)
5316 			ret = -EBUSY;
5317 		else {
5318 			/*
5319 			 * We reserve space for this task in the destination
5320 			 * root_domain, as we can't fail after this point.
5321 			 * We will free resources in the source root_domain
5322 			 * later on (see set_cpus_allowed_dl()).
5323 			 */
5324 			__dl_add(dl_b, p->dl.dl_bw);
5325 		}
5326 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5327 		rcu_read_unlock_sched();
5328 
5329 	}
5330 #endif
5331 out:
5332 	return ret;
5333 }
5334 
5335 #ifdef CONFIG_SMP
5336 
5337 static bool sched_smp_initialized __read_mostly;
5338 
5339 #ifdef CONFIG_NUMA_BALANCING
5340 /* Migrate current task p to target_cpu */
5341 int migrate_task_to(struct task_struct *p, int target_cpu)
5342 {
5343 	struct migration_arg arg = { p, target_cpu };
5344 	int curr_cpu = task_cpu(p);
5345 
5346 	if (curr_cpu == target_cpu)
5347 		return 0;
5348 
5349 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5350 		return -EINVAL;
5351 
5352 	/* TODO: This is not properly updating schedstats */
5353 
5354 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5355 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5356 }
5357 
5358 /*
5359  * Requeue a task on a given node and accurately track the number of NUMA
5360  * tasks on the runqueues
5361  */
5362 void sched_setnuma(struct task_struct *p, int nid)
5363 {
5364 	bool queued, running;
5365 	struct rq_flags rf;
5366 	struct rq *rq;
5367 
5368 	rq = task_rq_lock(p, &rf);
5369 	queued = task_on_rq_queued(p);
5370 	running = task_current(rq, p);
5371 
5372 	if (queued)
5373 		dequeue_task(rq, p, DEQUEUE_SAVE);
5374 	if (running)
5375 		put_prev_task(rq, p);
5376 
5377 	p->numa_preferred_nid = nid;
5378 
5379 	if (running)
5380 		p->sched_class->set_curr_task(rq);
5381 	if (queued)
5382 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5383 	task_rq_unlock(rq, p, &rf);
5384 }
5385 #endif /* CONFIG_NUMA_BALANCING */
5386 
5387 #ifdef CONFIG_HOTPLUG_CPU
5388 /*
5389  * Ensures that the idle task is using init_mm right before its cpu goes
5390  * offline.
5391  */
5392 void idle_task_exit(void)
5393 {
5394 	struct mm_struct *mm = current->active_mm;
5395 
5396 	BUG_ON(cpu_online(smp_processor_id()));
5397 
5398 	if (mm != &init_mm) {
5399 		switch_mm_irqs_off(mm, &init_mm, current);
5400 		finish_arch_post_lock_switch();
5401 	}
5402 	mmdrop(mm);
5403 }
5404 
5405 /*
5406  * Since this CPU is going 'away' for a while, fold any nr_active delta
5407  * we might have. Assumes we're called after migrate_tasks() so that the
5408  * nr_active count is stable. We need to take the teardown thread which
5409  * is calling this into account, so we hand in adjust = 1 to the load
5410  * calculation.
5411  *
5412  * Also see the comment "Global load-average calculations".
5413  */
5414 static void calc_load_migrate(struct rq *rq)
5415 {
5416 	long delta = calc_load_fold_active(rq, 1);
5417 	if (delta)
5418 		atomic_long_add(delta, &calc_load_tasks);
5419 }
5420 
5421 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5422 {
5423 }
5424 
5425 static const struct sched_class fake_sched_class = {
5426 	.put_prev_task = put_prev_task_fake,
5427 };
5428 
5429 static struct task_struct fake_task = {
5430 	/*
5431 	 * Avoid pull_{rt,dl}_task()
5432 	 */
5433 	.prio = MAX_PRIO + 1,
5434 	.sched_class = &fake_sched_class,
5435 };
5436 
5437 /*
5438  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5439  * try_to_wake_up()->select_task_rq().
5440  *
5441  * Called with rq->lock held even though we'er in stop_machine() and
5442  * there's no concurrency possible, we hold the required locks anyway
5443  * because of lock validation efforts.
5444  */
5445 static void migrate_tasks(struct rq *dead_rq)
5446 {
5447 	struct rq *rq = dead_rq;
5448 	struct task_struct *next, *stop = rq->stop;
5449 	struct pin_cookie cookie;
5450 	int dest_cpu;
5451 
5452 	/*
5453 	 * Fudge the rq selection such that the below task selection loop
5454 	 * doesn't get stuck on the currently eligible stop task.
5455 	 *
5456 	 * We're currently inside stop_machine() and the rq is either stuck
5457 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5458 	 * either way we should never end up calling schedule() until we're
5459 	 * done here.
5460 	 */
5461 	rq->stop = NULL;
5462 
5463 	/*
5464 	 * put_prev_task() and pick_next_task() sched
5465 	 * class method both need to have an up-to-date
5466 	 * value of rq->clock[_task]
5467 	 */
5468 	update_rq_clock(rq);
5469 
5470 	for (;;) {
5471 		/*
5472 		 * There's this thread running, bail when that's the only
5473 		 * remaining thread.
5474 		 */
5475 		if (rq->nr_running == 1)
5476 			break;
5477 
5478 		/*
5479 		 * pick_next_task assumes pinned rq->lock.
5480 		 */
5481 		cookie = lockdep_pin_lock(&rq->lock);
5482 		next = pick_next_task(rq, &fake_task, cookie);
5483 		BUG_ON(!next);
5484 		next->sched_class->put_prev_task(rq, next);
5485 
5486 		/*
5487 		 * Rules for changing task_struct::cpus_allowed are holding
5488 		 * both pi_lock and rq->lock, such that holding either
5489 		 * stabilizes the mask.
5490 		 *
5491 		 * Drop rq->lock is not quite as disastrous as it usually is
5492 		 * because !cpu_active at this point, which means load-balance
5493 		 * will not interfere. Also, stop-machine.
5494 		 */
5495 		lockdep_unpin_lock(&rq->lock, cookie);
5496 		raw_spin_unlock(&rq->lock);
5497 		raw_spin_lock(&next->pi_lock);
5498 		raw_spin_lock(&rq->lock);
5499 
5500 		/*
5501 		 * Since we're inside stop-machine, _nothing_ should have
5502 		 * changed the task, WARN if weird stuff happened, because in
5503 		 * that case the above rq->lock drop is a fail too.
5504 		 */
5505 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5506 			raw_spin_unlock(&next->pi_lock);
5507 			continue;
5508 		}
5509 
5510 		/* Find suitable destination for @next, with force if needed. */
5511 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5512 
5513 		rq = __migrate_task(rq, next, dest_cpu);
5514 		if (rq != dead_rq) {
5515 			raw_spin_unlock(&rq->lock);
5516 			rq = dead_rq;
5517 			raw_spin_lock(&rq->lock);
5518 		}
5519 		raw_spin_unlock(&next->pi_lock);
5520 	}
5521 
5522 	rq->stop = stop;
5523 }
5524 #endif /* CONFIG_HOTPLUG_CPU */
5525 
5526 static void set_rq_online(struct rq *rq)
5527 {
5528 	if (!rq->online) {
5529 		const struct sched_class *class;
5530 
5531 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5532 		rq->online = 1;
5533 
5534 		for_each_class(class) {
5535 			if (class->rq_online)
5536 				class->rq_online(rq);
5537 		}
5538 	}
5539 }
5540 
5541 static void set_rq_offline(struct rq *rq)
5542 {
5543 	if (rq->online) {
5544 		const struct sched_class *class;
5545 
5546 		for_each_class(class) {
5547 			if (class->rq_offline)
5548 				class->rq_offline(rq);
5549 		}
5550 
5551 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5552 		rq->online = 0;
5553 	}
5554 }
5555 
5556 static void set_cpu_rq_start_time(unsigned int cpu)
5557 {
5558 	struct rq *rq = cpu_rq(cpu);
5559 
5560 	rq->age_stamp = sched_clock_cpu(cpu);
5561 }
5562 
5563 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5564 
5565 #ifdef CONFIG_SCHED_DEBUG
5566 
5567 static __read_mostly int sched_debug_enabled;
5568 
5569 static int __init sched_debug_setup(char *str)
5570 {
5571 	sched_debug_enabled = 1;
5572 
5573 	return 0;
5574 }
5575 early_param("sched_debug", sched_debug_setup);
5576 
5577 static inline bool sched_debug(void)
5578 {
5579 	return sched_debug_enabled;
5580 }
5581 
5582 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5583 				  struct cpumask *groupmask)
5584 {
5585 	struct sched_group *group = sd->groups;
5586 
5587 	cpumask_clear(groupmask);
5588 
5589 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5590 
5591 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5592 		printk("does not load-balance\n");
5593 		if (sd->parent)
5594 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5595 					" has parent");
5596 		return -1;
5597 	}
5598 
5599 	printk(KERN_CONT "span %*pbl level %s\n",
5600 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5601 
5602 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5603 		printk(KERN_ERR "ERROR: domain->span does not contain "
5604 				"CPU%d\n", cpu);
5605 	}
5606 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5607 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5608 				" CPU%d\n", cpu);
5609 	}
5610 
5611 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5612 	do {
5613 		if (!group) {
5614 			printk("\n");
5615 			printk(KERN_ERR "ERROR: group is NULL\n");
5616 			break;
5617 		}
5618 
5619 		if (!cpumask_weight(sched_group_cpus(group))) {
5620 			printk(KERN_CONT "\n");
5621 			printk(KERN_ERR "ERROR: empty group\n");
5622 			break;
5623 		}
5624 
5625 		if (!(sd->flags & SD_OVERLAP) &&
5626 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5627 			printk(KERN_CONT "\n");
5628 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5629 			break;
5630 		}
5631 
5632 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5633 
5634 		printk(KERN_CONT " %*pbl",
5635 		       cpumask_pr_args(sched_group_cpus(group)));
5636 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5637 			printk(KERN_CONT " (cpu_capacity = %d)",
5638 				group->sgc->capacity);
5639 		}
5640 
5641 		group = group->next;
5642 	} while (group != sd->groups);
5643 	printk(KERN_CONT "\n");
5644 
5645 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5646 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5647 
5648 	if (sd->parent &&
5649 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5650 		printk(KERN_ERR "ERROR: parent span is not a superset "
5651 			"of domain->span\n");
5652 	return 0;
5653 }
5654 
5655 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5656 {
5657 	int level = 0;
5658 
5659 	if (!sched_debug_enabled)
5660 		return;
5661 
5662 	if (!sd) {
5663 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5664 		return;
5665 	}
5666 
5667 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5668 
5669 	for (;;) {
5670 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5671 			break;
5672 		level++;
5673 		sd = sd->parent;
5674 		if (!sd)
5675 			break;
5676 	}
5677 }
5678 #else /* !CONFIG_SCHED_DEBUG */
5679 # define sched_domain_debug(sd, cpu) do { } while (0)
5680 static inline bool sched_debug(void)
5681 {
5682 	return false;
5683 }
5684 #endif /* CONFIG_SCHED_DEBUG */
5685 
5686 static int sd_degenerate(struct sched_domain *sd)
5687 {
5688 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5689 		return 1;
5690 
5691 	/* Following flags need at least 2 groups */
5692 	if (sd->flags & (SD_LOAD_BALANCE |
5693 			 SD_BALANCE_NEWIDLE |
5694 			 SD_BALANCE_FORK |
5695 			 SD_BALANCE_EXEC |
5696 			 SD_SHARE_CPUCAPACITY |
5697 			 SD_SHARE_PKG_RESOURCES |
5698 			 SD_SHARE_POWERDOMAIN)) {
5699 		if (sd->groups != sd->groups->next)
5700 			return 0;
5701 	}
5702 
5703 	/* Following flags don't use groups */
5704 	if (sd->flags & (SD_WAKE_AFFINE))
5705 		return 0;
5706 
5707 	return 1;
5708 }
5709 
5710 static int
5711 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5712 {
5713 	unsigned long cflags = sd->flags, pflags = parent->flags;
5714 
5715 	if (sd_degenerate(parent))
5716 		return 1;
5717 
5718 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5719 		return 0;
5720 
5721 	/* Flags needing groups don't count if only 1 group in parent */
5722 	if (parent->groups == parent->groups->next) {
5723 		pflags &= ~(SD_LOAD_BALANCE |
5724 				SD_BALANCE_NEWIDLE |
5725 				SD_BALANCE_FORK |
5726 				SD_BALANCE_EXEC |
5727 				SD_SHARE_CPUCAPACITY |
5728 				SD_SHARE_PKG_RESOURCES |
5729 				SD_PREFER_SIBLING |
5730 				SD_SHARE_POWERDOMAIN);
5731 		if (nr_node_ids == 1)
5732 			pflags &= ~SD_SERIALIZE;
5733 	}
5734 	if (~cflags & pflags)
5735 		return 0;
5736 
5737 	return 1;
5738 }
5739 
5740 static void free_rootdomain(struct rcu_head *rcu)
5741 {
5742 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5743 
5744 	cpupri_cleanup(&rd->cpupri);
5745 	cpudl_cleanup(&rd->cpudl);
5746 	free_cpumask_var(rd->dlo_mask);
5747 	free_cpumask_var(rd->rto_mask);
5748 	free_cpumask_var(rd->online);
5749 	free_cpumask_var(rd->span);
5750 	kfree(rd);
5751 }
5752 
5753 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5754 {
5755 	struct root_domain *old_rd = NULL;
5756 	unsigned long flags;
5757 
5758 	raw_spin_lock_irqsave(&rq->lock, flags);
5759 
5760 	if (rq->rd) {
5761 		old_rd = rq->rd;
5762 
5763 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5764 			set_rq_offline(rq);
5765 
5766 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5767 
5768 		/*
5769 		 * If we dont want to free the old_rd yet then
5770 		 * set old_rd to NULL to skip the freeing later
5771 		 * in this function:
5772 		 */
5773 		if (!atomic_dec_and_test(&old_rd->refcount))
5774 			old_rd = NULL;
5775 	}
5776 
5777 	atomic_inc(&rd->refcount);
5778 	rq->rd = rd;
5779 
5780 	cpumask_set_cpu(rq->cpu, rd->span);
5781 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5782 		set_rq_online(rq);
5783 
5784 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5785 
5786 	if (old_rd)
5787 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5788 }
5789 
5790 static int init_rootdomain(struct root_domain *rd)
5791 {
5792 	memset(rd, 0, sizeof(*rd));
5793 
5794 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5795 		goto out;
5796 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5797 		goto free_span;
5798 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5799 		goto free_online;
5800 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5801 		goto free_dlo_mask;
5802 
5803 	init_dl_bw(&rd->dl_bw);
5804 	if (cpudl_init(&rd->cpudl) != 0)
5805 		goto free_dlo_mask;
5806 
5807 	if (cpupri_init(&rd->cpupri) != 0)
5808 		goto free_rto_mask;
5809 	return 0;
5810 
5811 free_rto_mask:
5812 	free_cpumask_var(rd->rto_mask);
5813 free_dlo_mask:
5814 	free_cpumask_var(rd->dlo_mask);
5815 free_online:
5816 	free_cpumask_var(rd->online);
5817 free_span:
5818 	free_cpumask_var(rd->span);
5819 out:
5820 	return -ENOMEM;
5821 }
5822 
5823 /*
5824  * By default the system creates a single root-domain with all cpus as
5825  * members (mimicking the global state we have today).
5826  */
5827 struct root_domain def_root_domain;
5828 
5829 static void init_defrootdomain(void)
5830 {
5831 	init_rootdomain(&def_root_domain);
5832 
5833 	atomic_set(&def_root_domain.refcount, 1);
5834 }
5835 
5836 static struct root_domain *alloc_rootdomain(void)
5837 {
5838 	struct root_domain *rd;
5839 
5840 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5841 	if (!rd)
5842 		return NULL;
5843 
5844 	if (init_rootdomain(rd) != 0) {
5845 		kfree(rd);
5846 		return NULL;
5847 	}
5848 
5849 	return rd;
5850 }
5851 
5852 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5853 {
5854 	struct sched_group *tmp, *first;
5855 
5856 	if (!sg)
5857 		return;
5858 
5859 	first = sg;
5860 	do {
5861 		tmp = sg->next;
5862 
5863 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5864 			kfree(sg->sgc);
5865 
5866 		kfree(sg);
5867 		sg = tmp;
5868 	} while (sg != first);
5869 }
5870 
5871 static void free_sched_domain(struct rcu_head *rcu)
5872 {
5873 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5874 
5875 	/*
5876 	 * If its an overlapping domain it has private groups, iterate and
5877 	 * nuke them all.
5878 	 */
5879 	if (sd->flags & SD_OVERLAP) {
5880 		free_sched_groups(sd->groups, 1);
5881 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5882 		kfree(sd->groups->sgc);
5883 		kfree(sd->groups);
5884 	}
5885 	kfree(sd);
5886 }
5887 
5888 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5889 {
5890 	call_rcu(&sd->rcu, free_sched_domain);
5891 }
5892 
5893 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5894 {
5895 	for (; sd; sd = sd->parent)
5896 		destroy_sched_domain(sd, cpu);
5897 }
5898 
5899 /*
5900  * Keep a special pointer to the highest sched_domain that has
5901  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5902  * allows us to avoid some pointer chasing select_idle_sibling().
5903  *
5904  * Also keep a unique ID per domain (we use the first cpu number in
5905  * the cpumask of the domain), this allows us to quickly tell if
5906  * two cpus are in the same cache domain, see cpus_share_cache().
5907  */
5908 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5909 DEFINE_PER_CPU(int, sd_llc_size);
5910 DEFINE_PER_CPU(int, sd_llc_id);
5911 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5912 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5913 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5914 
5915 static void update_top_cache_domain(int cpu)
5916 {
5917 	struct sched_domain *sd;
5918 	struct sched_domain *busy_sd = NULL;
5919 	int id = cpu;
5920 	int size = 1;
5921 
5922 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5923 	if (sd) {
5924 		id = cpumask_first(sched_domain_span(sd));
5925 		size = cpumask_weight(sched_domain_span(sd));
5926 		busy_sd = sd->parent; /* sd_busy */
5927 	}
5928 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5929 
5930 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5931 	per_cpu(sd_llc_size, cpu) = size;
5932 	per_cpu(sd_llc_id, cpu) = id;
5933 
5934 	sd = lowest_flag_domain(cpu, SD_NUMA);
5935 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5936 
5937 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5938 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5939 }
5940 
5941 /*
5942  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5943  * hold the hotplug lock.
5944  */
5945 static void
5946 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5947 {
5948 	struct rq *rq = cpu_rq(cpu);
5949 	struct sched_domain *tmp;
5950 
5951 	/* Remove the sched domains which do not contribute to scheduling. */
5952 	for (tmp = sd; tmp; ) {
5953 		struct sched_domain *parent = tmp->parent;
5954 		if (!parent)
5955 			break;
5956 
5957 		if (sd_parent_degenerate(tmp, parent)) {
5958 			tmp->parent = parent->parent;
5959 			if (parent->parent)
5960 				parent->parent->child = tmp;
5961 			/*
5962 			 * Transfer SD_PREFER_SIBLING down in case of a
5963 			 * degenerate parent; the spans match for this
5964 			 * so the property transfers.
5965 			 */
5966 			if (parent->flags & SD_PREFER_SIBLING)
5967 				tmp->flags |= SD_PREFER_SIBLING;
5968 			destroy_sched_domain(parent, cpu);
5969 		} else
5970 			tmp = tmp->parent;
5971 	}
5972 
5973 	if (sd && sd_degenerate(sd)) {
5974 		tmp = sd;
5975 		sd = sd->parent;
5976 		destroy_sched_domain(tmp, cpu);
5977 		if (sd)
5978 			sd->child = NULL;
5979 	}
5980 
5981 	sched_domain_debug(sd, cpu);
5982 
5983 	rq_attach_root(rq, rd);
5984 	tmp = rq->sd;
5985 	rcu_assign_pointer(rq->sd, sd);
5986 	destroy_sched_domains(tmp, cpu);
5987 
5988 	update_top_cache_domain(cpu);
5989 }
5990 
5991 /* Setup the mask of cpus configured for isolated domains */
5992 static int __init isolated_cpu_setup(char *str)
5993 {
5994 	int ret;
5995 
5996 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5997 	ret = cpulist_parse(str, cpu_isolated_map);
5998 	if (ret) {
5999 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6000 		return 0;
6001 	}
6002 	return 1;
6003 }
6004 __setup("isolcpus=", isolated_cpu_setup);
6005 
6006 struct s_data {
6007 	struct sched_domain ** __percpu sd;
6008 	struct root_domain	*rd;
6009 };
6010 
6011 enum s_alloc {
6012 	sa_rootdomain,
6013 	sa_sd,
6014 	sa_sd_storage,
6015 	sa_none,
6016 };
6017 
6018 /*
6019  * Build an iteration mask that can exclude certain CPUs from the upwards
6020  * domain traversal.
6021  *
6022  * Asymmetric node setups can result in situations where the domain tree is of
6023  * unequal depth, make sure to skip domains that already cover the entire
6024  * range.
6025  *
6026  * In that case build_sched_domains() will have terminated the iteration early
6027  * and our sibling sd spans will be empty. Domains should always include the
6028  * cpu they're built on, so check that.
6029  *
6030  */
6031 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6032 {
6033 	const struct cpumask *span = sched_domain_span(sd);
6034 	struct sd_data *sdd = sd->private;
6035 	struct sched_domain *sibling;
6036 	int i;
6037 
6038 	for_each_cpu(i, span) {
6039 		sibling = *per_cpu_ptr(sdd->sd, i);
6040 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6041 			continue;
6042 
6043 		cpumask_set_cpu(i, sched_group_mask(sg));
6044 	}
6045 }
6046 
6047 /*
6048  * Return the canonical balance cpu for this group, this is the first cpu
6049  * of this group that's also in the iteration mask.
6050  */
6051 int group_balance_cpu(struct sched_group *sg)
6052 {
6053 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6054 }
6055 
6056 static int
6057 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6058 {
6059 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6060 	const struct cpumask *span = sched_domain_span(sd);
6061 	struct cpumask *covered = sched_domains_tmpmask;
6062 	struct sd_data *sdd = sd->private;
6063 	struct sched_domain *sibling;
6064 	int i;
6065 
6066 	cpumask_clear(covered);
6067 
6068 	for_each_cpu(i, span) {
6069 		struct cpumask *sg_span;
6070 
6071 		if (cpumask_test_cpu(i, covered))
6072 			continue;
6073 
6074 		sibling = *per_cpu_ptr(sdd->sd, i);
6075 
6076 		/* See the comment near build_group_mask(). */
6077 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6078 			continue;
6079 
6080 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6081 				GFP_KERNEL, cpu_to_node(cpu));
6082 
6083 		if (!sg)
6084 			goto fail;
6085 
6086 		sg_span = sched_group_cpus(sg);
6087 		if (sibling->child)
6088 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6089 		else
6090 			cpumask_set_cpu(i, sg_span);
6091 
6092 		cpumask_or(covered, covered, sg_span);
6093 
6094 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6095 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6096 			build_group_mask(sd, sg);
6097 
6098 		/*
6099 		 * Initialize sgc->capacity such that even if we mess up the
6100 		 * domains and no possible iteration will get us here, we won't
6101 		 * die on a /0 trap.
6102 		 */
6103 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6104 
6105 		/*
6106 		 * Make sure the first group of this domain contains the
6107 		 * canonical balance cpu. Otherwise the sched_domain iteration
6108 		 * breaks. See update_sg_lb_stats().
6109 		 */
6110 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6111 		    group_balance_cpu(sg) == cpu)
6112 			groups = sg;
6113 
6114 		if (!first)
6115 			first = sg;
6116 		if (last)
6117 			last->next = sg;
6118 		last = sg;
6119 		last->next = first;
6120 	}
6121 	sd->groups = groups;
6122 
6123 	return 0;
6124 
6125 fail:
6126 	free_sched_groups(first, 0);
6127 
6128 	return -ENOMEM;
6129 }
6130 
6131 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6132 {
6133 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6134 	struct sched_domain *child = sd->child;
6135 
6136 	if (child)
6137 		cpu = cpumask_first(sched_domain_span(child));
6138 
6139 	if (sg) {
6140 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6141 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6142 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6143 	}
6144 
6145 	return cpu;
6146 }
6147 
6148 /*
6149  * build_sched_groups will build a circular linked list of the groups
6150  * covered by the given span, and will set each group's ->cpumask correctly,
6151  * and ->cpu_capacity to 0.
6152  *
6153  * Assumes the sched_domain tree is fully constructed
6154  */
6155 static int
6156 build_sched_groups(struct sched_domain *sd, int cpu)
6157 {
6158 	struct sched_group *first = NULL, *last = NULL;
6159 	struct sd_data *sdd = sd->private;
6160 	const struct cpumask *span = sched_domain_span(sd);
6161 	struct cpumask *covered;
6162 	int i;
6163 
6164 	get_group(cpu, sdd, &sd->groups);
6165 	atomic_inc(&sd->groups->ref);
6166 
6167 	if (cpu != cpumask_first(span))
6168 		return 0;
6169 
6170 	lockdep_assert_held(&sched_domains_mutex);
6171 	covered = sched_domains_tmpmask;
6172 
6173 	cpumask_clear(covered);
6174 
6175 	for_each_cpu(i, span) {
6176 		struct sched_group *sg;
6177 		int group, j;
6178 
6179 		if (cpumask_test_cpu(i, covered))
6180 			continue;
6181 
6182 		group = get_group(i, sdd, &sg);
6183 		cpumask_setall(sched_group_mask(sg));
6184 
6185 		for_each_cpu(j, span) {
6186 			if (get_group(j, sdd, NULL) != group)
6187 				continue;
6188 
6189 			cpumask_set_cpu(j, covered);
6190 			cpumask_set_cpu(j, sched_group_cpus(sg));
6191 		}
6192 
6193 		if (!first)
6194 			first = sg;
6195 		if (last)
6196 			last->next = sg;
6197 		last = sg;
6198 	}
6199 	last->next = first;
6200 
6201 	return 0;
6202 }
6203 
6204 /*
6205  * Initialize sched groups cpu_capacity.
6206  *
6207  * cpu_capacity indicates the capacity of sched group, which is used while
6208  * distributing the load between different sched groups in a sched domain.
6209  * Typically cpu_capacity for all the groups in a sched domain will be same
6210  * unless there are asymmetries in the topology. If there are asymmetries,
6211  * group having more cpu_capacity will pickup more load compared to the
6212  * group having less cpu_capacity.
6213  */
6214 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6215 {
6216 	struct sched_group *sg = sd->groups;
6217 
6218 	WARN_ON(!sg);
6219 
6220 	do {
6221 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6222 		sg = sg->next;
6223 	} while (sg != sd->groups);
6224 
6225 	if (cpu != group_balance_cpu(sg))
6226 		return;
6227 
6228 	update_group_capacity(sd, cpu);
6229 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6230 }
6231 
6232 /*
6233  * Initializers for schedule domains
6234  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6235  */
6236 
6237 static int default_relax_domain_level = -1;
6238 int sched_domain_level_max;
6239 
6240 static int __init setup_relax_domain_level(char *str)
6241 {
6242 	if (kstrtoint(str, 0, &default_relax_domain_level))
6243 		pr_warn("Unable to set relax_domain_level\n");
6244 
6245 	return 1;
6246 }
6247 __setup("relax_domain_level=", setup_relax_domain_level);
6248 
6249 static void set_domain_attribute(struct sched_domain *sd,
6250 				 struct sched_domain_attr *attr)
6251 {
6252 	int request;
6253 
6254 	if (!attr || attr->relax_domain_level < 0) {
6255 		if (default_relax_domain_level < 0)
6256 			return;
6257 		else
6258 			request = default_relax_domain_level;
6259 	} else
6260 		request = attr->relax_domain_level;
6261 	if (request < sd->level) {
6262 		/* turn off idle balance on this domain */
6263 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6264 	} else {
6265 		/* turn on idle balance on this domain */
6266 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6267 	}
6268 }
6269 
6270 static void __sdt_free(const struct cpumask *cpu_map);
6271 static int __sdt_alloc(const struct cpumask *cpu_map);
6272 
6273 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6274 				 const struct cpumask *cpu_map)
6275 {
6276 	switch (what) {
6277 	case sa_rootdomain:
6278 		if (!atomic_read(&d->rd->refcount))
6279 			free_rootdomain(&d->rd->rcu); /* fall through */
6280 	case sa_sd:
6281 		free_percpu(d->sd); /* fall through */
6282 	case sa_sd_storage:
6283 		__sdt_free(cpu_map); /* fall through */
6284 	case sa_none:
6285 		break;
6286 	}
6287 }
6288 
6289 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6290 						   const struct cpumask *cpu_map)
6291 {
6292 	memset(d, 0, sizeof(*d));
6293 
6294 	if (__sdt_alloc(cpu_map))
6295 		return sa_sd_storage;
6296 	d->sd = alloc_percpu(struct sched_domain *);
6297 	if (!d->sd)
6298 		return sa_sd_storage;
6299 	d->rd = alloc_rootdomain();
6300 	if (!d->rd)
6301 		return sa_sd;
6302 	return sa_rootdomain;
6303 }
6304 
6305 /*
6306  * NULL the sd_data elements we've used to build the sched_domain and
6307  * sched_group structure so that the subsequent __free_domain_allocs()
6308  * will not free the data we're using.
6309  */
6310 static void claim_allocations(int cpu, struct sched_domain *sd)
6311 {
6312 	struct sd_data *sdd = sd->private;
6313 
6314 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6315 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6316 
6317 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6318 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6319 
6320 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6321 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6322 }
6323 
6324 #ifdef CONFIG_NUMA
6325 static int sched_domains_numa_levels;
6326 enum numa_topology_type sched_numa_topology_type;
6327 static int *sched_domains_numa_distance;
6328 int sched_max_numa_distance;
6329 static struct cpumask ***sched_domains_numa_masks;
6330 static int sched_domains_curr_level;
6331 #endif
6332 
6333 /*
6334  * SD_flags allowed in topology descriptions.
6335  *
6336  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6337  * SD_SHARE_PKG_RESOURCES - describes shared caches
6338  * SD_NUMA                - describes NUMA topologies
6339  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6340  *
6341  * Odd one out:
6342  * SD_ASYM_PACKING        - describes SMT quirks
6343  */
6344 #define TOPOLOGY_SD_FLAGS		\
6345 	(SD_SHARE_CPUCAPACITY |		\
6346 	 SD_SHARE_PKG_RESOURCES |	\
6347 	 SD_NUMA |			\
6348 	 SD_ASYM_PACKING |		\
6349 	 SD_SHARE_POWERDOMAIN)
6350 
6351 static struct sched_domain *
6352 sd_init(struct sched_domain_topology_level *tl, int cpu)
6353 {
6354 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6355 	int sd_weight, sd_flags = 0;
6356 
6357 #ifdef CONFIG_NUMA
6358 	/*
6359 	 * Ugly hack to pass state to sd_numa_mask()...
6360 	 */
6361 	sched_domains_curr_level = tl->numa_level;
6362 #endif
6363 
6364 	sd_weight = cpumask_weight(tl->mask(cpu));
6365 
6366 	if (tl->sd_flags)
6367 		sd_flags = (*tl->sd_flags)();
6368 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6369 			"wrong sd_flags in topology description\n"))
6370 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6371 
6372 	*sd = (struct sched_domain){
6373 		.min_interval		= sd_weight,
6374 		.max_interval		= 2*sd_weight,
6375 		.busy_factor		= 32,
6376 		.imbalance_pct		= 125,
6377 
6378 		.cache_nice_tries	= 0,
6379 		.busy_idx		= 0,
6380 		.idle_idx		= 0,
6381 		.newidle_idx		= 0,
6382 		.wake_idx		= 0,
6383 		.forkexec_idx		= 0,
6384 
6385 		.flags			= 1*SD_LOAD_BALANCE
6386 					| 1*SD_BALANCE_NEWIDLE
6387 					| 1*SD_BALANCE_EXEC
6388 					| 1*SD_BALANCE_FORK
6389 					| 0*SD_BALANCE_WAKE
6390 					| 1*SD_WAKE_AFFINE
6391 					| 0*SD_SHARE_CPUCAPACITY
6392 					| 0*SD_SHARE_PKG_RESOURCES
6393 					| 0*SD_SERIALIZE
6394 					| 0*SD_PREFER_SIBLING
6395 					| 0*SD_NUMA
6396 					| sd_flags
6397 					,
6398 
6399 		.last_balance		= jiffies,
6400 		.balance_interval	= sd_weight,
6401 		.smt_gain		= 0,
6402 		.max_newidle_lb_cost	= 0,
6403 		.next_decay_max_lb_cost	= jiffies,
6404 #ifdef CONFIG_SCHED_DEBUG
6405 		.name			= tl->name,
6406 #endif
6407 	};
6408 
6409 	/*
6410 	 * Convert topological properties into behaviour.
6411 	 */
6412 
6413 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6414 		sd->flags |= SD_PREFER_SIBLING;
6415 		sd->imbalance_pct = 110;
6416 		sd->smt_gain = 1178; /* ~15% */
6417 
6418 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6419 		sd->imbalance_pct = 117;
6420 		sd->cache_nice_tries = 1;
6421 		sd->busy_idx = 2;
6422 
6423 #ifdef CONFIG_NUMA
6424 	} else if (sd->flags & SD_NUMA) {
6425 		sd->cache_nice_tries = 2;
6426 		sd->busy_idx = 3;
6427 		sd->idle_idx = 2;
6428 
6429 		sd->flags |= SD_SERIALIZE;
6430 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6431 			sd->flags &= ~(SD_BALANCE_EXEC |
6432 				       SD_BALANCE_FORK |
6433 				       SD_WAKE_AFFINE);
6434 		}
6435 
6436 #endif
6437 	} else {
6438 		sd->flags |= SD_PREFER_SIBLING;
6439 		sd->cache_nice_tries = 1;
6440 		sd->busy_idx = 2;
6441 		sd->idle_idx = 1;
6442 	}
6443 
6444 	sd->private = &tl->data;
6445 
6446 	return sd;
6447 }
6448 
6449 /*
6450  * Topology list, bottom-up.
6451  */
6452 static struct sched_domain_topology_level default_topology[] = {
6453 #ifdef CONFIG_SCHED_SMT
6454 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6455 #endif
6456 #ifdef CONFIG_SCHED_MC
6457 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6458 #endif
6459 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6460 	{ NULL, },
6461 };
6462 
6463 static struct sched_domain_topology_level *sched_domain_topology =
6464 	default_topology;
6465 
6466 #define for_each_sd_topology(tl)			\
6467 	for (tl = sched_domain_topology; tl->mask; tl++)
6468 
6469 void set_sched_topology(struct sched_domain_topology_level *tl)
6470 {
6471 	sched_domain_topology = tl;
6472 }
6473 
6474 #ifdef CONFIG_NUMA
6475 
6476 static const struct cpumask *sd_numa_mask(int cpu)
6477 {
6478 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6479 }
6480 
6481 static void sched_numa_warn(const char *str)
6482 {
6483 	static int done = false;
6484 	int i,j;
6485 
6486 	if (done)
6487 		return;
6488 
6489 	done = true;
6490 
6491 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6492 
6493 	for (i = 0; i < nr_node_ids; i++) {
6494 		printk(KERN_WARNING "  ");
6495 		for (j = 0; j < nr_node_ids; j++)
6496 			printk(KERN_CONT "%02d ", node_distance(i,j));
6497 		printk(KERN_CONT "\n");
6498 	}
6499 	printk(KERN_WARNING "\n");
6500 }
6501 
6502 bool find_numa_distance(int distance)
6503 {
6504 	int i;
6505 
6506 	if (distance == node_distance(0, 0))
6507 		return true;
6508 
6509 	for (i = 0; i < sched_domains_numa_levels; i++) {
6510 		if (sched_domains_numa_distance[i] == distance)
6511 			return true;
6512 	}
6513 
6514 	return false;
6515 }
6516 
6517 /*
6518  * A system can have three types of NUMA topology:
6519  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6520  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6521  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6522  *
6523  * The difference between a glueless mesh topology and a backplane
6524  * topology lies in whether communication between not directly
6525  * connected nodes goes through intermediary nodes (where programs
6526  * could run), or through backplane controllers. This affects
6527  * placement of programs.
6528  *
6529  * The type of topology can be discerned with the following tests:
6530  * - If the maximum distance between any nodes is 1 hop, the system
6531  *   is directly connected.
6532  * - If for two nodes A and B, located N > 1 hops away from each other,
6533  *   there is an intermediary node C, which is < N hops away from both
6534  *   nodes A and B, the system is a glueless mesh.
6535  */
6536 static void init_numa_topology_type(void)
6537 {
6538 	int a, b, c, n;
6539 
6540 	n = sched_max_numa_distance;
6541 
6542 	if (sched_domains_numa_levels <= 1) {
6543 		sched_numa_topology_type = NUMA_DIRECT;
6544 		return;
6545 	}
6546 
6547 	for_each_online_node(a) {
6548 		for_each_online_node(b) {
6549 			/* Find two nodes furthest removed from each other. */
6550 			if (node_distance(a, b) < n)
6551 				continue;
6552 
6553 			/* Is there an intermediary node between a and b? */
6554 			for_each_online_node(c) {
6555 				if (node_distance(a, c) < n &&
6556 				    node_distance(b, c) < n) {
6557 					sched_numa_topology_type =
6558 							NUMA_GLUELESS_MESH;
6559 					return;
6560 				}
6561 			}
6562 
6563 			sched_numa_topology_type = NUMA_BACKPLANE;
6564 			return;
6565 		}
6566 	}
6567 }
6568 
6569 static void sched_init_numa(void)
6570 {
6571 	int next_distance, curr_distance = node_distance(0, 0);
6572 	struct sched_domain_topology_level *tl;
6573 	int level = 0;
6574 	int i, j, k;
6575 
6576 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6577 	if (!sched_domains_numa_distance)
6578 		return;
6579 
6580 	/*
6581 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6582 	 * unique distances in the node_distance() table.
6583 	 *
6584 	 * Assumes node_distance(0,j) includes all distances in
6585 	 * node_distance(i,j) in order to avoid cubic time.
6586 	 */
6587 	next_distance = curr_distance;
6588 	for (i = 0; i < nr_node_ids; i++) {
6589 		for (j = 0; j < nr_node_ids; j++) {
6590 			for (k = 0; k < nr_node_ids; k++) {
6591 				int distance = node_distance(i, k);
6592 
6593 				if (distance > curr_distance &&
6594 				    (distance < next_distance ||
6595 				     next_distance == curr_distance))
6596 					next_distance = distance;
6597 
6598 				/*
6599 				 * While not a strong assumption it would be nice to know
6600 				 * about cases where if node A is connected to B, B is not
6601 				 * equally connected to A.
6602 				 */
6603 				if (sched_debug() && node_distance(k, i) != distance)
6604 					sched_numa_warn("Node-distance not symmetric");
6605 
6606 				if (sched_debug() && i && !find_numa_distance(distance))
6607 					sched_numa_warn("Node-0 not representative");
6608 			}
6609 			if (next_distance != curr_distance) {
6610 				sched_domains_numa_distance[level++] = next_distance;
6611 				sched_domains_numa_levels = level;
6612 				curr_distance = next_distance;
6613 			} else break;
6614 		}
6615 
6616 		/*
6617 		 * In case of sched_debug() we verify the above assumption.
6618 		 */
6619 		if (!sched_debug())
6620 			break;
6621 	}
6622 
6623 	if (!level)
6624 		return;
6625 
6626 	/*
6627 	 * 'level' contains the number of unique distances, excluding the
6628 	 * identity distance node_distance(i,i).
6629 	 *
6630 	 * The sched_domains_numa_distance[] array includes the actual distance
6631 	 * numbers.
6632 	 */
6633 
6634 	/*
6635 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6636 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6637 	 * the array will contain less then 'level' members. This could be
6638 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6639 	 * in other functions.
6640 	 *
6641 	 * We reset it to 'level' at the end of this function.
6642 	 */
6643 	sched_domains_numa_levels = 0;
6644 
6645 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6646 	if (!sched_domains_numa_masks)
6647 		return;
6648 
6649 	/*
6650 	 * Now for each level, construct a mask per node which contains all
6651 	 * cpus of nodes that are that many hops away from us.
6652 	 */
6653 	for (i = 0; i < level; i++) {
6654 		sched_domains_numa_masks[i] =
6655 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6656 		if (!sched_domains_numa_masks[i])
6657 			return;
6658 
6659 		for (j = 0; j < nr_node_ids; j++) {
6660 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6661 			if (!mask)
6662 				return;
6663 
6664 			sched_domains_numa_masks[i][j] = mask;
6665 
6666 			for_each_node(k) {
6667 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6668 					continue;
6669 
6670 				cpumask_or(mask, mask, cpumask_of_node(k));
6671 			}
6672 		}
6673 	}
6674 
6675 	/* Compute default topology size */
6676 	for (i = 0; sched_domain_topology[i].mask; i++);
6677 
6678 	tl = kzalloc((i + level + 1) *
6679 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6680 	if (!tl)
6681 		return;
6682 
6683 	/*
6684 	 * Copy the default topology bits..
6685 	 */
6686 	for (i = 0; sched_domain_topology[i].mask; i++)
6687 		tl[i] = sched_domain_topology[i];
6688 
6689 	/*
6690 	 * .. and append 'j' levels of NUMA goodness.
6691 	 */
6692 	for (j = 0; j < level; i++, j++) {
6693 		tl[i] = (struct sched_domain_topology_level){
6694 			.mask = sd_numa_mask,
6695 			.sd_flags = cpu_numa_flags,
6696 			.flags = SDTL_OVERLAP,
6697 			.numa_level = j,
6698 			SD_INIT_NAME(NUMA)
6699 		};
6700 	}
6701 
6702 	sched_domain_topology = tl;
6703 
6704 	sched_domains_numa_levels = level;
6705 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6706 
6707 	init_numa_topology_type();
6708 }
6709 
6710 static void sched_domains_numa_masks_set(unsigned int cpu)
6711 {
6712 	int node = cpu_to_node(cpu);
6713 	int i, j;
6714 
6715 	for (i = 0; i < sched_domains_numa_levels; i++) {
6716 		for (j = 0; j < nr_node_ids; j++) {
6717 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6718 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6719 		}
6720 	}
6721 }
6722 
6723 static void sched_domains_numa_masks_clear(unsigned int cpu)
6724 {
6725 	int i, j;
6726 
6727 	for (i = 0; i < sched_domains_numa_levels; i++) {
6728 		for (j = 0; j < nr_node_ids; j++)
6729 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6730 	}
6731 }
6732 
6733 #else
6734 static inline void sched_init_numa(void) { }
6735 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6736 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6737 #endif /* CONFIG_NUMA */
6738 
6739 static int __sdt_alloc(const struct cpumask *cpu_map)
6740 {
6741 	struct sched_domain_topology_level *tl;
6742 	int j;
6743 
6744 	for_each_sd_topology(tl) {
6745 		struct sd_data *sdd = &tl->data;
6746 
6747 		sdd->sd = alloc_percpu(struct sched_domain *);
6748 		if (!sdd->sd)
6749 			return -ENOMEM;
6750 
6751 		sdd->sg = alloc_percpu(struct sched_group *);
6752 		if (!sdd->sg)
6753 			return -ENOMEM;
6754 
6755 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6756 		if (!sdd->sgc)
6757 			return -ENOMEM;
6758 
6759 		for_each_cpu(j, cpu_map) {
6760 			struct sched_domain *sd;
6761 			struct sched_group *sg;
6762 			struct sched_group_capacity *sgc;
6763 
6764 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6765 					GFP_KERNEL, cpu_to_node(j));
6766 			if (!sd)
6767 				return -ENOMEM;
6768 
6769 			*per_cpu_ptr(sdd->sd, j) = sd;
6770 
6771 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6772 					GFP_KERNEL, cpu_to_node(j));
6773 			if (!sg)
6774 				return -ENOMEM;
6775 
6776 			sg->next = sg;
6777 
6778 			*per_cpu_ptr(sdd->sg, j) = sg;
6779 
6780 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6781 					GFP_KERNEL, cpu_to_node(j));
6782 			if (!sgc)
6783 				return -ENOMEM;
6784 
6785 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6786 		}
6787 	}
6788 
6789 	return 0;
6790 }
6791 
6792 static void __sdt_free(const struct cpumask *cpu_map)
6793 {
6794 	struct sched_domain_topology_level *tl;
6795 	int j;
6796 
6797 	for_each_sd_topology(tl) {
6798 		struct sd_data *sdd = &tl->data;
6799 
6800 		for_each_cpu(j, cpu_map) {
6801 			struct sched_domain *sd;
6802 
6803 			if (sdd->sd) {
6804 				sd = *per_cpu_ptr(sdd->sd, j);
6805 				if (sd && (sd->flags & SD_OVERLAP))
6806 					free_sched_groups(sd->groups, 0);
6807 				kfree(*per_cpu_ptr(sdd->sd, j));
6808 			}
6809 
6810 			if (sdd->sg)
6811 				kfree(*per_cpu_ptr(sdd->sg, j));
6812 			if (sdd->sgc)
6813 				kfree(*per_cpu_ptr(sdd->sgc, j));
6814 		}
6815 		free_percpu(sdd->sd);
6816 		sdd->sd = NULL;
6817 		free_percpu(sdd->sg);
6818 		sdd->sg = NULL;
6819 		free_percpu(sdd->sgc);
6820 		sdd->sgc = NULL;
6821 	}
6822 }
6823 
6824 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6825 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6826 		struct sched_domain *child, int cpu)
6827 {
6828 	struct sched_domain *sd = sd_init(tl, cpu);
6829 	if (!sd)
6830 		return child;
6831 
6832 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6833 	if (child) {
6834 		sd->level = child->level + 1;
6835 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6836 		child->parent = sd;
6837 		sd->child = child;
6838 
6839 		if (!cpumask_subset(sched_domain_span(child),
6840 				    sched_domain_span(sd))) {
6841 			pr_err("BUG: arch topology borken\n");
6842 #ifdef CONFIG_SCHED_DEBUG
6843 			pr_err("     the %s domain not a subset of the %s domain\n",
6844 					child->name, sd->name);
6845 #endif
6846 			/* Fixup, ensure @sd has at least @child cpus. */
6847 			cpumask_or(sched_domain_span(sd),
6848 				   sched_domain_span(sd),
6849 				   sched_domain_span(child));
6850 		}
6851 
6852 	}
6853 	set_domain_attribute(sd, attr);
6854 
6855 	return sd;
6856 }
6857 
6858 /*
6859  * Build sched domains for a given set of cpus and attach the sched domains
6860  * to the individual cpus
6861  */
6862 static int build_sched_domains(const struct cpumask *cpu_map,
6863 			       struct sched_domain_attr *attr)
6864 {
6865 	enum s_alloc alloc_state;
6866 	struct sched_domain *sd;
6867 	struct s_data d;
6868 	int i, ret = -ENOMEM;
6869 
6870 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6871 	if (alloc_state != sa_rootdomain)
6872 		goto error;
6873 
6874 	/* Set up domains for cpus specified by the cpu_map. */
6875 	for_each_cpu(i, cpu_map) {
6876 		struct sched_domain_topology_level *tl;
6877 
6878 		sd = NULL;
6879 		for_each_sd_topology(tl) {
6880 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6881 			if (tl == sched_domain_topology)
6882 				*per_cpu_ptr(d.sd, i) = sd;
6883 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6884 				sd->flags |= SD_OVERLAP;
6885 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6886 				break;
6887 		}
6888 	}
6889 
6890 	/* Build the groups for the domains */
6891 	for_each_cpu(i, cpu_map) {
6892 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6893 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6894 			if (sd->flags & SD_OVERLAP) {
6895 				if (build_overlap_sched_groups(sd, i))
6896 					goto error;
6897 			} else {
6898 				if (build_sched_groups(sd, i))
6899 					goto error;
6900 			}
6901 		}
6902 	}
6903 
6904 	/* Calculate CPU capacity for physical packages and nodes */
6905 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6906 		if (!cpumask_test_cpu(i, cpu_map))
6907 			continue;
6908 
6909 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6910 			claim_allocations(i, sd);
6911 			init_sched_groups_capacity(i, sd);
6912 		}
6913 	}
6914 
6915 	/* Attach the domains */
6916 	rcu_read_lock();
6917 	for_each_cpu(i, cpu_map) {
6918 		sd = *per_cpu_ptr(d.sd, i);
6919 		cpu_attach_domain(sd, d.rd, i);
6920 	}
6921 	rcu_read_unlock();
6922 
6923 	ret = 0;
6924 error:
6925 	__free_domain_allocs(&d, alloc_state, cpu_map);
6926 	return ret;
6927 }
6928 
6929 static cpumask_var_t *doms_cur;	/* current sched domains */
6930 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6931 static struct sched_domain_attr *dattr_cur;
6932 				/* attribues of custom domains in 'doms_cur' */
6933 
6934 /*
6935  * Special case: If a kmalloc of a doms_cur partition (array of
6936  * cpumask) fails, then fallback to a single sched domain,
6937  * as determined by the single cpumask fallback_doms.
6938  */
6939 static cpumask_var_t fallback_doms;
6940 
6941 /*
6942  * arch_update_cpu_topology lets virtualized architectures update the
6943  * cpu core maps. It is supposed to return 1 if the topology changed
6944  * or 0 if it stayed the same.
6945  */
6946 int __weak arch_update_cpu_topology(void)
6947 {
6948 	return 0;
6949 }
6950 
6951 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6952 {
6953 	int i;
6954 	cpumask_var_t *doms;
6955 
6956 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6957 	if (!doms)
6958 		return NULL;
6959 	for (i = 0; i < ndoms; i++) {
6960 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6961 			free_sched_domains(doms, i);
6962 			return NULL;
6963 		}
6964 	}
6965 	return doms;
6966 }
6967 
6968 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6969 {
6970 	unsigned int i;
6971 	for (i = 0; i < ndoms; i++)
6972 		free_cpumask_var(doms[i]);
6973 	kfree(doms);
6974 }
6975 
6976 /*
6977  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6978  * For now this just excludes isolated cpus, but could be used to
6979  * exclude other special cases in the future.
6980  */
6981 static int init_sched_domains(const struct cpumask *cpu_map)
6982 {
6983 	int err;
6984 
6985 	arch_update_cpu_topology();
6986 	ndoms_cur = 1;
6987 	doms_cur = alloc_sched_domains(ndoms_cur);
6988 	if (!doms_cur)
6989 		doms_cur = &fallback_doms;
6990 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6991 	err = build_sched_domains(doms_cur[0], NULL);
6992 	register_sched_domain_sysctl();
6993 
6994 	return err;
6995 }
6996 
6997 /*
6998  * Detach sched domains from a group of cpus specified in cpu_map
6999  * These cpus will now be attached to the NULL domain
7000  */
7001 static void detach_destroy_domains(const struct cpumask *cpu_map)
7002 {
7003 	int i;
7004 
7005 	rcu_read_lock();
7006 	for_each_cpu(i, cpu_map)
7007 		cpu_attach_domain(NULL, &def_root_domain, i);
7008 	rcu_read_unlock();
7009 }
7010 
7011 /* handle null as "default" */
7012 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7013 			struct sched_domain_attr *new, int idx_new)
7014 {
7015 	struct sched_domain_attr tmp;
7016 
7017 	/* fast path */
7018 	if (!new && !cur)
7019 		return 1;
7020 
7021 	tmp = SD_ATTR_INIT;
7022 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7023 			new ? (new + idx_new) : &tmp,
7024 			sizeof(struct sched_domain_attr));
7025 }
7026 
7027 /*
7028  * Partition sched domains as specified by the 'ndoms_new'
7029  * cpumasks in the array doms_new[] of cpumasks. This compares
7030  * doms_new[] to the current sched domain partitioning, doms_cur[].
7031  * It destroys each deleted domain and builds each new domain.
7032  *
7033  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7034  * The masks don't intersect (don't overlap.) We should setup one
7035  * sched domain for each mask. CPUs not in any of the cpumasks will
7036  * not be load balanced. If the same cpumask appears both in the
7037  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7038  * it as it is.
7039  *
7040  * The passed in 'doms_new' should be allocated using
7041  * alloc_sched_domains.  This routine takes ownership of it and will
7042  * free_sched_domains it when done with it. If the caller failed the
7043  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7044  * and partition_sched_domains() will fallback to the single partition
7045  * 'fallback_doms', it also forces the domains to be rebuilt.
7046  *
7047  * If doms_new == NULL it will be replaced with cpu_online_mask.
7048  * ndoms_new == 0 is a special case for destroying existing domains,
7049  * and it will not create the default domain.
7050  *
7051  * Call with hotplug lock held
7052  */
7053 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7054 			     struct sched_domain_attr *dattr_new)
7055 {
7056 	int i, j, n;
7057 	int new_topology;
7058 
7059 	mutex_lock(&sched_domains_mutex);
7060 
7061 	/* always unregister in case we don't destroy any domains */
7062 	unregister_sched_domain_sysctl();
7063 
7064 	/* Let architecture update cpu core mappings. */
7065 	new_topology = arch_update_cpu_topology();
7066 
7067 	n = doms_new ? ndoms_new : 0;
7068 
7069 	/* Destroy deleted domains */
7070 	for (i = 0; i < ndoms_cur; i++) {
7071 		for (j = 0; j < n && !new_topology; j++) {
7072 			if (cpumask_equal(doms_cur[i], doms_new[j])
7073 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7074 				goto match1;
7075 		}
7076 		/* no match - a current sched domain not in new doms_new[] */
7077 		detach_destroy_domains(doms_cur[i]);
7078 match1:
7079 		;
7080 	}
7081 
7082 	n = ndoms_cur;
7083 	if (doms_new == NULL) {
7084 		n = 0;
7085 		doms_new = &fallback_doms;
7086 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7087 		WARN_ON_ONCE(dattr_new);
7088 	}
7089 
7090 	/* Build new domains */
7091 	for (i = 0; i < ndoms_new; i++) {
7092 		for (j = 0; j < n && !new_topology; j++) {
7093 			if (cpumask_equal(doms_new[i], doms_cur[j])
7094 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7095 				goto match2;
7096 		}
7097 		/* no match - add a new doms_new */
7098 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7099 match2:
7100 		;
7101 	}
7102 
7103 	/* Remember the new sched domains */
7104 	if (doms_cur != &fallback_doms)
7105 		free_sched_domains(doms_cur, ndoms_cur);
7106 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7107 	doms_cur = doms_new;
7108 	dattr_cur = dattr_new;
7109 	ndoms_cur = ndoms_new;
7110 
7111 	register_sched_domain_sysctl();
7112 
7113 	mutex_unlock(&sched_domains_mutex);
7114 }
7115 
7116 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7117 
7118 /*
7119  * Update cpusets according to cpu_active mask.  If cpusets are
7120  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7121  * around partition_sched_domains().
7122  *
7123  * If we come here as part of a suspend/resume, don't touch cpusets because we
7124  * want to restore it back to its original state upon resume anyway.
7125  */
7126 static void cpuset_cpu_active(void)
7127 {
7128 	if (cpuhp_tasks_frozen) {
7129 		/*
7130 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7131 		 * resume sequence. As long as this is not the last online
7132 		 * operation in the resume sequence, just build a single sched
7133 		 * domain, ignoring cpusets.
7134 		 */
7135 		num_cpus_frozen--;
7136 		if (likely(num_cpus_frozen)) {
7137 			partition_sched_domains(1, NULL, NULL);
7138 			return;
7139 		}
7140 		/*
7141 		 * This is the last CPU online operation. So fall through and
7142 		 * restore the original sched domains by considering the
7143 		 * cpuset configurations.
7144 		 */
7145 	}
7146 	cpuset_update_active_cpus(true);
7147 }
7148 
7149 static int cpuset_cpu_inactive(unsigned int cpu)
7150 {
7151 	unsigned long flags;
7152 	struct dl_bw *dl_b;
7153 	bool overflow;
7154 	int cpus;
7155 
7156 	if (!cpuhp_tasks_frozen) {
7157 		rcu_read_lock_sched();
7158 		dl_b = dl_bw_of(cpu);
7159 
7160 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7161 		cpus = dl_bw_cpus(cpu);
7162 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7163 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7164 
7165 		rcu_read_unlock_sched();
7166 
7167 		if (overflow)
7168 			return -EBUSY;
7169 		cpuset_update_active_cpus(false);
7170 	} else {
7171 		num_cpus_frozen++;
7172 		partition_sched_domains(1, NULL, NULL);
7173 	}
7174 	return 0;
7175 }
7176 
7177 int sched_cpu_activate(unsigned int cpu)
7178 {
7179 	struct rq *rq = cpu_rq(cpu);
7180 	unsigned long flags;
7181 
7182 	set_cpu_active(cpu, true);
7183 
7184 	if (sched_smp_initialized) {
7185 		sched_domains_numa_masks_set(cpu);
7186 		cpuset_cpu_active();
7187 	}
7188 
7189 	/*
7190 	 * Put the rq online, if not already. This happens:
7191 	 *
7192 	 * 1) In the early boot process, because we build the real domains
7193 	 *    after all cpus have been brought up.
7194 	 *
7195 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7196 	 *    domains.
7197 	 */
7198 	raw_spin_lock_irqsave(&rq->lock, flags);
7199 	if (rq->rd) {
7200 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7201 		set_rq_online(rq);
7202 	}
7203 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7204 
7205 	update_max_interval();
7206 
7207 	return 0;
7208 }
7209 
7210 int sched_cpu_deactivate(unsigned int cpu)
7211 {
7212 	int ret;
7213 
7214 	set_cpu_active(cpu, false);
7215 	/*
7216 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7217 	 * users of this state to go away such that all new such users will
7218 	 * observe it.
7219 	 *
7220 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7221 	 * not imply sync_sched(), so wait for both.
7222 	 *
7223 	 * Do sync before park smpboot threads to take care the rcu boost case.
7224 	 */
7225 	if (IS_ENABLED(CONFIG_PREEMPT))
7226 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7227 	else
7228 		synchronize_rcu();
7229 
7230 	if (!sched_smp_initialized)
7231 		return 0;
7232 
7233 	ret = cpuset_cpu_inactive(cpu);
7234 	if (ret) {
7235 		set_cpu_active(cpu, true);
7236 		return ret;
7237 	}
7238 	sched_domains_numa_masks_clear(cpu);
7239 	return 0;
7240 }
7241 
7242 static void sched_rq_cpu_starting(unsigned int cpu)
7243 {
7244 	struct rq *rq = cpu_rq(cpu);
7245 
7246 	rq->calc_load_update = calc_load_update;
7247 	update_max_interval();
7248 }
7249 
7250 int sched_cpu_starting(unsigned int cpu)
7251 {
7252 	set_cpu_rq_start_time(cpu);
7253 	sched_rq_cpu_starting(cpu);
7254 	return 0;
7255 }
7256 
7257 #ifdef CONFIG_HOTPLUG_CPU
7258 int sched_cpu_dying(unsigned int cpu)
7259 {
7260 	struct rq *rq = cpu_rq(cpu);
7261 	unsigned long flags;
7262 
7263 	/* Handle pending wakeups and then migrate everything off */
7264 	sched_ttwu_pending();
7265 	raw_spin_lock_irqsave(&rq->lock, flags);
7266 	if (rq->rd) {
7267 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7268 		set_rq_offline(rq);
7269 	}
7270 	migrate_tasks(rq);
7271 	BUG_ON(rq->nr_running != 1);
7272 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7273 	calc_load_migrate(rq);
7274 	update_max_interval();
7275 	nohz_balance_exit_idle(cpu);
7276 	hrtick_clear(rq);
7277 	return 0;
7278 }
7279 #endif
7280 
7281 void __init sched_init_smp(void)
7282 {
7283 	cpumask_var_t non_isolated_cpus;
7284 
7285 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7286 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7287 
7288 	sched_init_numa();
7289 
7290 	/*
7291 	 * There's no userspace yet to cause hotplug operations; hence all the
7292 	 * cpu masks are stable and all blatant races in the below code cannot
7293 	 * happen.
7294 	 */
7295 	mutex_lock(&sched_domains_mutex);
7296 	init_sched_domains(cpu_active_mask);
7297 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7298 	if (cpumask_empty(non_isolated_cpus))
7299 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7300 	mutex_unlock(&sched_domains_mutex);
7301 
7302 	/* Move init over to a non-isolated CPU */
7303 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7304 		BUG();
7305 	sched_init_granularity();
7306 	free_cpumask_var(non_isolated_cpus);
7307 
7308 	init_sched_rt_class();
7309 	init_sched_dl_class();
7310 	sched_smp_initialized = true;
7311 }
7312 
7313 static int __init migration_init(void)
7314 {
7315 	sched_rq_cpu_starting(smp_processor_id());
7316 	return 0;
7317 }
7318 early_initcall(migration_init);
7319 
7320 #else
7321 void __init sched_init_smp(void)
7322 {
7323 	sched_init_granularity();
7324 }
7325 #endif /* CONFIG_SMP */
7326 
7327 int in_sched_functions(unsigned long addr)
7328 {
7329 	return in_lock_functions(addr) ||
7330 		(addr >= (unsigned long)__sched_text_start
7331 		&& addr < (unsigned long)__sched_text_end);
7332 }
7333 
7334 #ifdef CONFIG_CGROUP_SCHED
7335 /*
7336  * Default task group.
7337  * Every task in system belongs to this group at bootup.
7338  */
7339 struct task_group root_task_group;
7340 LIST_HEAD(task_groups);
7341 
7342 /* Cacheline aligned slab cache for task_group */
7343 static struct kmem_cache *task_group_cache __read_mostly;
7344 #endif
7345 
7346 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7347 
7348 void __init sched_init(void)
7349 {
7350 	int i, j;
7351 	unsigned long alloc_size = 0, ptr;
7352 
7353 #ifdef CONFIG_FAIR_GROUP_SCHED
7354 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7355 #endif
7356 #ifdef CONFIG_RT_GROUP_SCHED
7357 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7358 #endif
7359 	if (alloc_size) {
7360 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7361 
7362 #ifdef CONFIG_FAIR_GROUP_SCHED
7363 		root_task_group.se = (struct sched_entity **)ptr;
7364 		ptr += nr_cpu_ids * sizeof(void **);
7365 
7366 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7367 		ptr += nr_cpu_ids * sizeof(void **);
7368 
7369 #endif /* CONFIG_FAIR_GROUP_SCHED */
7370 #ifdef CONFIG_RT_GROUP_SCHED
7371 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7372 		ptr += nr_cpu_ids * sizeof(void **);
7373 
7374 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7375 		ptr += nr_cpu_ids * sizeof(void **);
7376 
7377 #endif /* CONFIG_RT_GROUP_SCHED */
7378 	}
7379 #ifdef CONFIG_CPUMASK_OFFSTACK
7380 	for_each_possible_cpu(i) {
7381 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7382 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7383 	}
7384 #endif /* CONFIG_CPUMASK_OFFSTACK */
7385 
7386 	init_rt_bandwidth(&def_rt_bandwidth,
7387 			global_rt_period(), global_rt_runtime());
7388 	init_dl_bandwidth(&def_dl_bandwidth,
7389 			global_rt_period(), global_rt_runtime());
7390 
7391 #ifdef CONFIG_SMP
7392 	init_defrootdomain();
7393 #endif
7394 
7395 #ifdef CONFIG_RT_GROUP_SCHED
7396 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7397 			global_rt_period(), global_rt_runtime());
7398 #endif /* CONFIG_RT_GROUP_SCHED */
7399 
7400 #ifdef CONFIG_CGROUP_SCHED
7401 	task_group_cache = KMEM_CACHE(task_group, 0);
7402 
7403 	list_add(&root_task_group.list, &task_groups);
7404 	INIT_LIST_HEAD(&root_task_group.children);
7405 	INIT_LIST_HEAD(&root_task_group.siblings);
7406 	autogroup_init(&init_task);
7407 #endif /* CONFIG_CGROUP_SCHED */
7408 
7409 	for_each_possible_cpu(i) {
7410 		struct rq *rq;
7411 
7412 		rq = cpu_rq(i);
7413 		raw_spin_lock_init(&rq->lock);
7414 		rq->nr_running = 0;
7415 		rq->calc_load_active = 0;
7416 		rq->calc_load_update = jiffies + LOAD_FREQ;
7417 		init_cfs_rq(&rq->cfs);
7418 		init_rt_rq(&rq->rt);
7419 		init_dl_rq(&rq->dl);
7420 #ifdef CONFIG_FAIR_GROUP_SCHED
7421 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7422 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7423 		/*
7424 		 * How much cpu bandwidth does root_task_group get?
7425 		 *
7426 		 * In case of task-groups formed thr' the cgroup filesystem, it
7427 		 * gets 100% of the cpu resources in the system. This overall
7428 		 * system cpu resource is divided among the tasks of
7429 		 * root_task_group and its child task-groups in a fair manner,
7430 		 * based on each entity's (task or task-group's) weight
7431 		 * (se->load.weight).
7432 		 *
7433 		 * In other words, if root_task_group has 10 tasks of weight
7434 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7435 		 * then A0's share of the cpu resource is:
7436 		 *
7437 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7438 		 *
7439 		 * We achieve this by letting root_task_group's tasks sit
7440 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7441 		 */
7442 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7443 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7444 #endif /* CONFIG_FAIR_GROUP_SCHED */
7445 
7446 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7447 #ifdef CONFIG_RT_GROUP_SCHED
7448 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7449 #endif
7450 
7451 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7452 			rq->cpu_load[j] = 0;
7453 
7454 #ifdef CONFIG_SMP
7455 		rq->sd = NULL;
7456 		rq->rd = NULL;
7457 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7458 		rq->balance_callback = NULL;
7459 		rq->active_balance = 0;
7460 		rq->next_balance = jiffies;
7461 		rq->push_cpu = 0;
7462 		rq->cpu = i;
7463 		rq->online = 0;
7464 		rq->idle_stamp = 0;
7465 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7466 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7467 
7468 		INIT_LIST_HEAD(&rq->cfs_tasks);
7469 
7470 		rq_attach_root(rq, &def_root_domain);
7471 #ifdef CONFIG_NO_HZ_COMMON
7472 		rq->last_load_update_tick = jiffies;
7473 		rq->nohz_flags = 0;
7474 #endif
7475 #ifdef CONFIG_NO_HZ_FULL
7476 		rq->last_sched_tick = 0;
7477 #endif
7478 #endif /* CONFIG_SMP */
7479 		init_rq_hrtick(rq);
7480 		atomic_set(&rq->nr_iowait, 0);
7481 	}
7482 
7483 	set_load_weight(&init_task);
7484 
7485 #ifdef CONFIG_PREEMPT_NOTIFIERS
7486 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7487 #endif
7488 
7489 	/*
7490 	 * The boot idle thread does lazy MMU switching as well:
7491 	 */
7492 	atomic_inc(&init_mm.mm_count);
7493 	enter_lazy_tlb(&init_mm, current);
7494 
7495 	/*
7496 	 * During early bootup we pretend to be a normal task:
7497 	 */
7498 	current->sched_class = &fair_sched_class;
7499 
7500 	/*
7501 	 * Make us the idle thread. Technically, schedule() should not be
7502 	 * called from this thread, however somewhere below it might be,
7503 	 * but because we are the idle thread, we just pick up running again
7504 	 * when this runqueue becomes "idle".
7505 	 */
7506 	init_idle(current, smp_processor_id());
7507 
7508 	calc_load_update = jiffies + LOAD_FREQ;
7509 
7510 #ifdef CONFIG_SMP
7511 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7512 	/* May be allocated at isolcpus cmdline parse time */
7513 	if (cpu_isolated_map == NULL)
7514 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7515 	idle_thread_set_boot_cpu();
7516 	set_cpu_rq_start_time(smp_processor_id());
7517 #endif
7518 	init_sched_fair_class();
7519 
7520 	init_schedstats();
7521 
7522 	scheduler_running = 1;
7523 }
7524 
7525 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7526 static inline int preempt_count_equals(int preempt_offset)
7527 {
7528 	int nested = preempt_count() + rcu_preempt_depth();
7529 
7530 	return (nested == preempt_offset);
7531 }
7532 
7533 void __might_sleep(const char *file, int line, int preempt_offset)
7534 {
7535 	/*
7536 	 * Blocking primitives will set (and therefore destroy) current->state,
7537 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7538 	 * otherwise we will destroy state.
7539 	 */
7540 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7541 			"do not call blocking ops when !TASK_RUNNING; "
7542 			"state=%lx set at [<%p>] %pS\n",
7543 			current->state,
7544 			(void *)current->task_state_change,
7545 			(void *)current->task_state_change);
7546 
7547 	___might_sleep(file, line, preempt_offset);
7548 }
7549 EXPORT_SYMBOL(__might_sleep);
7550 
7551 void ___might_sleep(const char *file, int line, int preempt_offset)
7552 {
7553 	static unsigned long prev_jiffy;	/* ratelimiting */
7554 
7555 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7556 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7557 	     !is_idle_task(current)) ||
7558 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7559 		return;
7560 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7561 		return;
7562 	prev_jiffy = jiffies;
7563 
7564 	printk(KERN_ERR
7565 		"BUG: sleeping function called from invalid context at %s:%d\n",
7566 			file, line);
7567 	printk(KERN_ERR
7568 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7569 			in_atomic(), irqs_disabled(),
7570 			current->pid, current->comm);
7571 
7572 	if (task_stack_end_corrupted(current))
7573 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7574 
7575 	debug_show_held_locks(current);
7576 	if (irqs_disabled())
7577 		print_irqtrace_events(current);
7578 #ifdef CONFIG_DEBUG_PREEMPT
7579 	if (!preempt_count_equals(preempt_offset)) {
7580 		pr_err("Preemption disabled at:");
7581 		print_ip_sym(current->preempt_disable_ip);
7582 		pr_cont("\n");
7583 	}
7584 #endif
7585 	dump_stack();
7586 }
7587 EXPORT_SYMBOL(___might_sleep);
7588 #endif
7589 
7590 #ifdef CONFIG_MAGIC_SYSRQ
7591 void normalize_rt_tasks(void)
7592 {
7593 	struct task_struct *g, *p;
7594 	struct sched_attr attr = {
7595 		.sched_policy = SCHED_NORMAL,
7596 	};
7597 
7598 	read_lock(&tasklist_lock);
7599 	for_each_process_thread(g, p) {
7600 		/*
7601 		 * Only normalize user tasks:
7602 		 */
7603 		if (p->flags & PF_KTHREAD)
7604 			continue;
7605 
7606 		p->se.exec_start		= 0;
7607 #ifdef CONFIG_SCHEDSTATS
7608 		p->se.statistics.wait_start	= 0;
7609 		p->se.statistics.sleep_start	= 0;
7610 		p->se.statistics.block_start	= 0;
7611 #endif
7612 
7613 		if (!dl_task(p) && !rt_task(p)) {
7614 			/*
7615 			 * Renice negative nice level userspace
7616 			 * tasks back to 0:
7617 			 */
7618 			if (task_nice(p) < 0)
7619 				set_user_nice(p, 0);
7620 			continue;
7621 		}
7622 
7623 		__sched_setscheduler(p, &attr, false, false);
7624 	}
7625 	read_unlock(&tasklist_lock);
7626 }
7627 
7628 #endif /* CONFIG_MAGIC_SYSRQ */
7629 
7630 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7631 /*
7632  * These functions are only useful for the IA64 MCA handling, or kdb.
7633  *
7634  * They can only be called when the whole system has been
7635  * stopped - every CPU needs to be quiescent, and no scheduling
7636  * activity can take place. Using them for anything else would
7637  * be a serious bug, and as a result, they aren't even visible
7638  * under any other configuration.
7639  */
7640 
7641 /**
7642  * curr_task - return the current task for a given cpu.
7643  * @cpu: the processor in question.
7644  *
7645  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7646  *
7647  * Return: The current task for @cpu.
7648  */
7649 struct task_struct *curr_task(int cpu)
7650 {
7651 	return cpu_curr(cpu);
7652 }
7653 
7654 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7655 
7656 #ifdef CONFIG_IA64
7657 /**
7658  * set_curr_task - set the current task for a given cpu.
7659  * @cpu: the processor in question.
7660  * @p: the task pointer to set.
7661  *
7662  * Description: This function must only be used when non-maskable interrupts
7663  * are serviced on a separate stack. It allows the architecture to switch the
7664  * notion of the current task on a cpu in a non-blocking manner. This function
7665  * must be called with all CPU's synchronized, and interrupts disabled, the
7666  * and caller must save the original value of the current task (see
7667  * curr_task() above) and restore that value before reenabling interrupts and
7668  * re-starting the system.
7669  *
7670  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7671  */
7672 void set_curr_task(int cpu, struct task_struct *p)
7673 {
7674 	cpu_curr(cpu) = p;
7675 }
7676 
7677 #endif
7678 
7679 #ifdef CONFIG_CGROUP_SCHED
7680 /* task_group_lock serializes the addition/removal of task groups */
7681 static DEFINE_SPINLOCK(task_group_lock);
7682 
7683 static void sched_free_group(struct task_group *tg)
7684 {
7685 	free_fair_sched_group(tg);
7686 	free_rt_sched_group(tg);
7687 	autogroup_free(tg);
7688 	kmem_cache_free(task_group_cache, tg);
7689 }
7690 
7691 /* allocate runqueue etc for a new task group */
7692 struct task_group *sched_create_group(struct task_group *parent)
7693 {
7694 	struct task_group *tg;
7695 
7696 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7697 	if (!tg)
7698 		return ERR_PTR(-ENOMEM);
7699 
7700 	if (!alloc_fair_sched_group(tg, parent))
7701 		goto err;
7702 
7703 	if (!alloc_rt_sched_group(tg, parent))
7704 		goto err;
7705 
7706 	return tg;
7707 
7708 err:
7709 	sched_free_group(tg);
7710 	return ERR_PTR(-ENOMEM);
7711 }
7712 
7713 void sched_online_group(struct task_group *tg, struct task_group *parent)
7714 {
7715 	unsigned long flags;
7716 
7717 	spin_lock_irqsave(&task_group_lock, flags);
7718 	list_add_rcu(&tg->list, &task_groups);
7719 
7720 	WARN_ON(!parent); /* root should already exist */
7721 
7722 	tg->parent = parent;
7723 	INIT_LIST_HEAD(&tg->children);
7724 	list_add_rcu(&tg->siblings, &parent->children);
7725 	spin_unlock_irqrestore(&task_group_lock, flags);
7726 
7727 	online_fair_sched_group(tg);
7728 }
7729 
7730 /* rcu callback to free various structures associated with a task group */
7731 static void sched_free_group_rcu(struct rcu_head *rhp)
7732 {
7733 	/* now it should be safe to free those cfs_rqs */
7734 	sched_free_group(container_of(rhp, struct task_group, rcu));
7735 }
7736 
7737 void sched_destroy_group(struct task_group *tg)
7738 {
7739 	/* wait for possible concurrent references to cfs_rqs complete */
7740 	call_rcu(&tg->rcu, sched_free_group_rcu);
7741 }
7742 
7743 void sched_offline_group(struct task_group *tg)
7744 {
7745 	unsigned long flags;
7746 
7747 	/* end participation in shares distribution */
7748 	unregister_fair_sched_group(tg);
7749 
7750 	spin_lock_irqsave(&task_group_lock, flags);
7751 	list_del_rcu(&tg->list);
7752 	list_del_rcu(&tg->siblings);
7753 	spin_unlock_irqrestore(&task_group_lock, flags);
7754 }
7755 
7756 static void sched_change_group(struct task_struct *tsk, int type)
7757 {
7758 	struct task_group *tg;
7759 
7760 	/*
7761 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7762 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7763 	 * to prevent lockdep warnings.
7764 	 */
7765 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7766 			  struct task_group, css);
7767 	tg = autogroup_task_group(tsk, tg);
7768 	tsk->sched_task_group = tg;
7769 
7770 #ifdef CONFIG_FAIR_GROUP_SCHED
7771 	if (tsk->sched_class->task_change_group)
7772 		tsk->sched_class->task_change_group(tsk, type);
7773 	else
7774 #endif
7775 		set_task_rq(tsk, task_cpu(tsk));
7776 }
7777 
7778 /*
7779  * Change task's runqueue when it moves between groups.
7780  *
7781  * The caller of this function should have put the task in its new group by
7782  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7783  * its new group.
7784  */
7785 void sched_move_task(struct task_struct *tsk)
7786 {
7787 	int queued, running;
7788 	struct rq_flags rf;
7789 	struct rq *rq;
7790 
7791 	rq = task_rq_lock(tsk, &rf);
7792 
7793 	running = task_current(rq, tsk);
7794 	queued = task_on_rq_queued(tsk);
7795 
7796 	if (queued)
7797 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7798 	if (unlikely(running))
7799 		put_prev_task(rq, tsk);
7800 
7801 	sched_change_group(tsk, TASK_MOVE_GROUP);
7802 
7803 	if (unlikely(running))
7804 		tsk->sched_class->set_curr_task(rq);
7805 	if (queued)
7806 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7807 
7808 	task_rq_unlock(rq, tsk, &rf);
7809 }
7810 #endif /* CONFIG_CGROUP_SCHED */
7811 
7812 #ifdef CONFIG_RT_GROUP_SCHED
7813 /*
7814  * Ensure that the real time constraints are schedulable.
7815  */
7816 static DEFINE_MUTEX(rt_constraints_mutex);
7817 
7818 /* Must be called with tasklist_lock held */
7819 static inline int tg_has_rt_tasks(struct task_group *tg)
7820 {
7821 	struct task_struct *g, *p;
7822 
7823 	/*
7824 	 * Autogroups do not have RT tasks; see autogroup_create().
7825 	 */
7826 	if (task_group_is_autogroup(tg))
7827 		return 0;
7828 
7829 	for_each_process_thread(g, p) {
7830 		if (rt_task(p) && task_group(p) == tg)
7831 			return 1;
7832 	}
7833 
7834 	return 0;
7835 }
7836 
7837 struct rt_schedulable_data {
7838 	struct task_group *tg;
7839 	u64 rt_period;
7840 	u64 rt_runtime;
7841 };
7842 
7843 static int tg_rt_schedulable(struct task_group *tg, void *data)
7844 {
7845 	struct rt_schedulable_data *d = data;
7846 	struct task_group *child;
7847 	unsigned long total, sum = 0;
7848 	u64 period, runtime;
7849 
7850 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7851 	runtime = tg->rt_bandwidth.rt_runtime;
7852 
7853 	if (tg == d->tg) {
7854 		period = d->rt_period;
7855 		runtime = d->rt_runtime;
7856 	}
7857 
7858 	/*
7859 	 * Cannot have more runtime than the period.
7860 	 */
7861 	if (runtime > period && runtime != RUNTIME_INF)
7862 		return -EINVAL;
7863 
7864 	/*
7865 	 * Ensure we don't starve existing RT tasks.
7866 	 */
7867 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7868 		return -EBUSY;
7869 
7870 	total = to_ratio(period, runtime);
7871 
7872 	/*
7873 	 * Nobody can have more than the global setting allows.
7874 	 */
7875 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7876 		return -EINVAL;
7877 
7878 	/*
7879 	 * The sum of our children's runtime should not exceed our own.
7880 	 */
7881 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7882 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7883 		runtime = child->rt_bandwidth.rt_runtime;
7884 
7885 		if (child == d->tg) {
7886 			period = d->rt_period;
7887 			runtime = d->rt_runtime;
7888 		}
7889 
7890 		sum += to_ratio(period, runtime);
7891 	}
7892 
7893 	if (sum > total)
7894 		return -EINVAL;
7895 
7896 	return 0;
7897 }
7898 
7899 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7900 {
7901 	int ret;
7902 
7903 	struct rt_schedulable_data data = {
7904 		.tg = tg,
7905 		.rt_period = period,
7906 		.rt_runtime = runtime,
7907 	};
7908 
7909 	rcu_read_lock();
7910 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7911 	rcu_read_unlock();
7912 
7913 	return ret;
7914 }
7915 
7916 static int tg_set_rt_bandwidth(struct task_group *tg,
7917 		u64 rt_period, u64 rt_runtime)
7918 {
7919 	int i, err = 0;
7920 
7921 	/*
7922 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7923 	 * kernel creating (and or operating) RT threads.
7924 	 */
7925 	if (tg == &root_task_group && rt_runtime == 0)
7926 		return -EINVAL;
7927 
7928 	/* No period doesn't make any sense. */
7929 	if (rt_period == 0)
7930 		return -EINVAL;
7931 
7932 	mutex_lock(&rt_constraints_mutex);
7933 	read_lock(&tasklist_lock);
7934 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7935 	if (err)
7936 		goto unlock;
7937 
7938 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7939 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7940 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7941 
7942 	for_each_possible_cpu(i) {
7943 		struct rt_rq *rt_rq = tg->rt_rq[i];
7944 
7945 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7946 		rt_rq->rt_runtime = rt_runtime;
7947 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7948 	}
7949 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7950 unlock:
7951 	read_unlock(&tasklist_lock);
7952 	mutex_unlock(&rt_constraints_mutex);
7953 
7954 	return err;
7955 }
7956 
7957 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7958 {
7959 	u64 rt_runtime, rt_period;
7960 
7961 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7962 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7963 	if (rt_runtime_us < 0)
7964 		rt_runtime = RUNTIME_INF;
7965 
7966 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7967 }
7968 
7969 static long sched_group_rt_runtime(struct task_group *tg)
7970 {
7971 	u64 rt_runtime_us;
7972 
7973 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7974 		return -1;
7975 
7976 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7977 	do_div(rt_runtime_us, NSEC_PER_USEC);
7978 	return rt_runtime_us;
7979 }
7980 
7981 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7982 {
7983 	u64 rt_runtime, rt_period;
7984 
7985 	rt_period = rt_period_us * NSEC_PER_USEC;
7986 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7987 
7988 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7989 }
7990 
7991 static long sched_group_rt_period(struct task_group *tg)
7992 {
7993 	u64 rt_period_us;
7994 
7995 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7996 	do_div(rt_period_us, NSEC_PER_USEC);
7997 	return rt_period_us;
7998 }
7999 #endif /* CONFIG_RT_GROUP_SCHED */
8000 
8001 #ifdef CONFIG_RT_GROUP_SCHED
8002 static int sched_rt_global_constraints(void)
8003 {
8004 	int ret = 0;
8005 
8006 	mutex_lock(&rt_constraints_mutex);
8007 	read_lock(&tasklist_lock);
8008 	ret = __rt_schedulable(NULL, 0, 0);
8009 	read_unlock(&tasklist_lock);
8010 	mutex_unlock(&rt_constraints_mutex);
8011 
8012 	return ret;
8013 }
8014 
8015 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8016 {
8017 	/* Don't accept realtime tasks when there is no way for them to run */
8018 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8019 		return 0;
8020 
8021 	return 1;
8022 }
8023 
8024 #else /* !CONFIG_RT_GROUP_SCHED */
8025 static int sched_rt_global_constraints(void)
8026 {
8027 	unsigned long flags;
8028 	int i;
8029 
8030 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8031 	for_each_possible_cpu(i) {
8032 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8033 
8034 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8035 		rt_rq->rt_runtime = global_rt_runtime();
8036 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8037 	}
8038 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8039 
8040 	return 0;
8041 }
8042 #endif /* CONFIG_RT_GROUP_SCHED */
8043 
8044 static int sched_dl_global_validate(void)
8045 {
8046 	u64 runtime = global_rt_runtime();
8047 	u64 period = global_rt_period();
8048 	u64 new_bw = to_ratio(period, runtime);
8049 	struct dl_bw *dl_b;
8050 	int cpu, ret = 0;
8051 	unsigned long flags;
8052 
8053 	/*
8054 	 * Here we want to check the bandwidth not being set to some
8055 	 * value smaller than the currently allocated bandwidth in
8056 	 * any of the root_domains.
8057 	 *
8058 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8059 	 * cycling on root_domains... Discussion on different/better
8060 	 * solutions is welcome!
8061 	 */
8062 	for_each_possible_cpu(cpu) {
8063 		rcu_read_lock_sched();
8064 		dl_b = dl_bw_of(cpu);
8065 
8066 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8067 		if (new_bw < dl_b->total_bw)
8068 			ret = -EBUSY;
8069 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8070 
8071 		rcu_read_unlock_sched();
8072 
8073 		if (ret)
8074 			break;
8075 	}
8076 
8077 	return ret;
8078 }
8079 
8080 static void sched_dl_do_global(void)
8081 {
8082 	u64 new_bw = -1;
8083 	struct dl_bw *dl_b;
8084 	int cpu;
8085 	unsigned long flags;
8086 
8087 	def_dl_bandwidth.dl_period = global_rt_period();
8088 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8089 
8090 	if (global_rt_runtime() != RUNTIME_INF)
8091 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8092 
8093 	/*
8094 	 * FIXME: As above...
8095 	 */
8096 	for_each_possible_cpu(cpu) {
8097 		rcu_read_lock_sched();
8098 		dl_b = dl_bw_of(cpu);
8099 
8100 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8101 		dl_b->bw = new_bw;
8102 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8103 
8104 		rcu_read_unlock_sched();
8105 	}
8106 }
8107 
8108 static int sched_rt_global_validate(void)
8109 {
8110 	if (sysctl_sched_rt_period <= 0)
8111 		return -EINVAL;
8112 
8113 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8114 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8115 		return -EINVAL;
8116 
8117 	return 0;
8118 }
8119 
8120 static void sched_rt_do_global(void)
8121 {
8122 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8123 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8124 }
8125 
8126 int sched_rt_handler(struct ctl_table *table, int write,
8127 		void __user *buffer, size_t *lenp,
8128 		loff_t *ppos)
8129 {
8130 	int old_period, old_runtime;
8131 	static DEFINE_MUTEX(mutex);
8132 	int ret;
8133 
8134 	mutex_lock(&mutex);
8135 	old_period = sysctl_sched_rt_period;
8136 	old_runtime = sysctl_sched_rt_runtime;
8137 
8138 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8139 
8140 	if (!ret && write) {
8141 		ret = sched_rt_global_validate();
8142 		if (ret)
8143 			goto undo;
8144 
8145 		ret = sched_dl_global_validate();
8146 		if (ret)
8147 			goto undo;
8148 
8149 		ret = sched_rt_global_constraints();
8150 		if (ret)
8151 			goto undo;
8152 
8153 		sched_rt_do_global();
8154 		sched_dl_do_global();
8155 	}
8156 	if (0) {
8157 undo:
8158 		sysctl_sched_rt_period = old_period;
8159 		sysctl_sched_rt_runtime = old_runtime;
8160 	}
8161 	mutex_unlock(&mutex);
8162 
8163 	return ret;
8164 }
8165 
8166 int sched_rr_handler(struct ctl_table *table, int write,
8167 		void __user *buffer, size_t *lenp,
8168 		loff_t *ppos)
8169 {
8170 	int ret;
8171 	static DEFINE_MUTEX(mutex);
8172 
8173 	mutex_lock(&mutex);
8174 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8175 	/* make sure that internally we keep jiffies */
8176 	/* also, writing zero resets timeslice to default */
8177 	if (!ret && write) {
8178 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8179 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8180 	}
8181 	mutex_unlock(&mutex);
8182 	return ret;
8183 }
8184 
8185 #ifdef CONFIG_CGROUP_SCHED
8186 
8187 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8188 {
8189 	return css ? container_of(css, struct task_group, css) : NULL;
8190 }
8191 
8192 static struct cgroup_subsys_state *
8193 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8194 {
8195 	struct task_group *parent = css_tg(parent_css);
8196 	struct task_group *tg;
8197 
8198 	if (!parent) {
8199 		/* This is early initialization for the top cgroup */
8200 		return &root_task_group.css;
8201 	}
8202 
8203 	tg = sched_create_group(parent);
8204 	if (IS_ERR(tg))
8205 		return ERR_PTR(-ENOMEM);
8206 
8207 	sched_online_group(tg, parent);
8208 
8209 	return &tg->css;
8210 }
8211 
8212 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8213 {
8214 	struct task_group *tg = css_tg(css);
8215 
8216 	sched_offline_group(tg);
8217 }
8218 
8219 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8220 {
8221 	struct task_group *tg = css_tg(css);
8222 
8223 	/*
8224 	 * Relies on the RCU grace period between css_released() and this.
8225 	 */
8226 	sched_free_group(tg);
8227 }
8228 
8229 /*
8230  * This is called before wake_up_new_task(), therefore we really only
8231  * have to set its group bits, all the other stuff does not apply.
8232  */
8233 static void cpu_cgroup_fork(struct task_struct *task)
8234 {
8235 	struct rq_flags rf;
8236 	struct rq *rq;
8237 
8238 	rq = task_rq_lock(task, &rf);
8239 
8240 	sched_change_group(task, TASK_SET_GROUP);
8241 
8242 	task_rq_unlock(rq, task, &rf);
8243 }
8244 
8245 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8246 {
8247 	struct task_struct *task;
8248 	struct cgroup_subsys_state *css;
8249 	int ret = 0;
8250 
8251 	cgroup_taskset_for_each(task, css, tset) {
8252 #ifdef CONFIG_RT_GROUP_SCHED
8253 		if (!sched_rt_can_attach(css_tg(css), task))
8254 			return -EINVAL;
8255 #else
8256 		/* We don't support RT-tasks being in separate groups */
8257 		if (task->sched_class != &fair_sched_class)
8258 			return -EINVAL;
8259 #endif
8260 		/*
8261 		 * Serialize against wake_up_new_task() such that if its
8262 		 * running, we're sure to observe its full state.
8263 		 */
8264 		raw_spin_lock_irq(&task->pi_lock);
8265 		/*
8266 		 * Avoid calling sched_move_task() before wake_up_new_task()
8267 		 * has happened. This would lead to problems with PELT, due to
8268 		 * move wanting to detach+attach while we're not attached yet.
8269 		 */
8270 		if (task->state == TASK_NEW)
8271 			ret = -EINVAL;
8272 		raw_spin_unlock_irq(&task->pi_lock);
8273 
8274 		if (ret)
8275 			break;
8276 	}
8277 	return ret;
8278 }
8279 
8280 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8281 {
8282 	struct task_struct *task;
8283 	struct cgroup_subsys_state *css;
8284 
8285 	cgroup_taskset_for_each(task, css, tset)
8286 		sched_move_task(task);
8287 }
8288 
8289 #ifdef CONFIG_FAIR_GROUP_SCHED
8290 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8291 				struct cftype *cftype, u64 shareval)
8292 {
8293 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8294 }
8295 
8296 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8297 			       struct cftype *cft)
8298 {
8299 	struct task_group *tg = css_tg(css);
8300 
8301 	return (u64) scale_load_down(tg->shares);
8302 }
8303 
8304 #ifdef CONFIG_CFS_BANDWIDTH
8305 static DEFINE_MUTEX(cfs_constraints_mutex);
8306 
8307 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8308 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8309 
8310 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8311 
8312 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8313 {
8314 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8315 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8316 
8317 	if (tg == &root_task_group)
8318 		return -EINVAL;
8319 
8320 	/*
8321 	 * Ensure we have at some amount of bandwidth every period.  This is
8322 	 * to prevent reaching a state of large arrears when throttled via
8323 	 * entity_tick() resulting in prolonged exit starvation.
8324 	 */
8325 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8326 		return -EINVAL;
8327 
8328 	/*
8329 	 * Likewise, bound things on the otherside by preventing insane quota
8330 	 * periods.  This also allows us to normalize in computing quota
8331 	 * feasibility.
8332 	 */
8333 	if (period > max_cfs_quota_period)
8334 		return -EINVAL;
8335 
8336 	/*
8337 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8338 	 * unthrottle_offline_cfs_rqs().
8339 	 */
8340 	get_online_cpus();
8341 	mutex_lock(&cfs_constraints_mutex);
8342 	ret = __cfs_schedulable(tg, period, quota);
8343 	if (ret)
8344 		goto out_unlock;
8345 
8346 	runtime_enabled = quota != RUNTIME_INF;
8347 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8348 	/*
8349 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8350 	 * before making related changes, and on->off must occur afterwards
8351 	 */
8352 	if (runtime_enabled && !runtime_was_enabled)
8353 		cfs_bandwidth_usage_inc();
8354 	raw_spin_lock_irq(&cfs_b->lock);
8355 	cfs_b->period = ns_to_ktime(period);
8356 	cfs_b->quota = quota;
8357 
8358 	__refill_cfs_bandwidth_runtime(cfs_b);
8359 	/* restart the period timer (if active) to handle new period expiry */
8360 	if (runtime_enabled)
8361 		start_cfs_bandwidth(cfs_b);
8362 	raw_spin_unlock_irq(&cfs_b->lock);
8363 
8364 	for_each_online_cpu(i) {
8365 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8366 		struct rq *rq = cfs_rq->rq;
8367 
8368 		raw_spin_lock_irq(&rq->lock);
8369 		cfs_rq->runtime_enabled = runtime_enabled;
8370 		cfs_rq->runtime_remaining = 0;
8371 
8372 		if (cfs_rq->throttled)
8373 			unthrottle_cfs_rq(cfs_rq);
8374 		raw_spin_unlock_irq(&rq->lock);
8375 	}
8376 	if (runtime_was_enabled && !runtime_enabled)
8377 		cfs_bandwidth_usage_dec();
8378 out_unlock:
8379 	mutex_unlock(&cfs_constraints_mutex);
8380 	put_online_cpus();
8381 
8382 	return ret;
8383 }
8384 
8385 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8386 {
8387 	u64 quota, period;
8388 
8389 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8390 	if (cfs_quota_us < 0)
8391 		quota = RUNTIME_INF;
8392 	else
8393 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8394 
8395 	return tg_set_cfs_bandwidth(tg, period, quota);
8396 }
8397 
8398 long tg_get_cfs_quota(struct task_group *tg)
8399 {
8400 	u64 quota_us;
8401 
8402 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8403 		return -1;
8404 
8405 	quota_us = tg->cfs_bandwidth.quota;
8406 	do_div(quota_us, NSEC_PER_USEC);
8407 
8408 	return quota_us;
8409 }
8410 
8411 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8412 {
8413 	u64 quota, period;
8414 
8415 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8416 	quota = tg->cfs_bandwidth.quota;
8417 
8418 	return tg_set_cfs_bandwidth(tg, period, quota);
8419 }
8420 
8421 long tg_get_cfs_period(struct task_group *tg)
8422 {
8423 	u64 cfs_period_us;
8424 
8425 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8426 	do_div(cfs_period_us, NSEC_PER_USEC);
8427 
8428 	return cfs_period_us;
8429 }
8430 
8431 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8432 				  struct cftype *cft)
8433 {
8434 	return tg_get_cfs_quota(css_tg(css));
8435 }
8436 
8437 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8438 				   struct cftype *cftype, s64 cfs_quota_us)
8439 {
8440 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8441 }
8442 
8443 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8444 				   struct cftype *cft)
8445 {
8446 	return tg_get_cfs_period(css_tg(css));
8447 }
8448 
8449 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8450 				    struct cftype *cftype, u64 cfs_period_us)
8451 {
8452 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8453 }
8454 
8455 struct cfs_schedulable_data {
8456 	struct task_group *tg;
8457 	u64 period, quota;
8458 };
8459 
8460 /*
8461  * normalize group quota/period to be quota/max_period
8462  * note: units are usecs
8463  */
8464 static u64 normalize_cfs_quota(struct task_group *tg,
8465 			       struct cfs_schedulable_data *d)
8466 {
8467 	u64 quota, period;
8468 
8469 	if (tg == d->tg) {
8470 		period = d->period;
8471 		quota = d->quota;
8472 	} else {
8473 		period = tg_get_cfs_period(tg);
8474 		quota = tg_get_cfs_quota(tg);
8475 	}
8476 
8477 	/* note: these should typically be equivalent */
8478 	if (quota == RUNTIME_INF || quota == -1)
8479 		return RUNTIME_INF;
8480 
8481 	return to_ratio(period, quota);
8482 }
8483 
8484 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8485 {
8486 	struct cfs_schedulable_data *d = data;
8487 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8488 	s64 quota = 0, parent_quota = -1;
8489 
8490 	if (!tg->parent) {
8491 		quota = RUNTIME_INF;
8492 	} else {
8493 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8494 
8495 		quota = normalize_cfs_quota(tg, d);
8496 		parent_quota = parent_b->hierarchical_quota;
8497 
8498 		/*
8499 		 * ensure max(child_quota) <= parent_quota, inherit when no
8500 		 * limit is set
8501 		 */
8502 		if (quota == RUNTIME_INF)
8503 			quota = parent_quota;
8504 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8505 			return -EINVAL;
8506 	}
8507 	cfs_b->hierarchical_quota = quota;
8508 
8509 	return 0;
8510 }
8511 
8512 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8513 {
8514 	int ret;
8515 	struct cfs_schedulable_data data = {
8516 		.tg = tg,
8517 		.period = period,
8518 		.quota = quota,
8519 	};
8520 
8521 	if (quota != RUNTIME_INF) {
8522 		do_div(data.period, NSEC_PER_USEC);
8523 		do_div(data.quota, NSEC_PER_USEC);
8524 	}
8525 
8526 	rcu_read_lock();
8527 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8528 	rcu_read_unlock();
8529 
8530 	return ret;
8531 }
8532 
8533 static int cpu_stats_show(struct seq_file *sf, void *v)
8534 {
8535 	struct task_group *tg = css_tg(seq_css(sf));
8536 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8537 
8538 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8539 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8540 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8541 
8542 	return 0;
8543 }
8544 #endif /* CONFIG_CFS_BANDWIDTH */
8545 #endif /* CONFIG_FAIR_GROUP_SCHED */
8546 
8547 #ifdef CONFIG_RT_GROUP_SCHED
8548 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8549 				struct cftype *cft, s64 val)
8550 {
8551 	return sched_group_set_rt_runtime(css_tg(css), val);
8552 }
8553 
8554 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8555 			       struct cftype *cft)
8556 {
8557 	return sched_group_rt_runtime(css_tg(css));
8558 }
8559 
8560 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8561 				    struct cftype *cftype, u64 rt_period_us)
8562 {
8563 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8564 }
8565 
8566 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8567 				   struct cftype *cft)
8568 {
8569 	return sched_group_rt_period(css_tg(css));
8570 }
8571 #endif /* CONFIG_RT_GROUP_SCHED */
8572 
8573 static struct cftype cpu_files[] = {
8574 #ifdef CONFIG_FAIR_GROUP_SCHED
8575 	{
8576 		.name = "shares",
8577 		.read_u64 = cpu_shares_read_u64,
8578 		.write_u64 = cpu_shares_write_u64,
8579 	},
8580 #endif
8581 #ifdef CONFIG_CFS_BANDWIDTH
8582 	{
8583 		.name = "cfs_quota_us",
8584 		.read_s64 = cpu_cfs_quota_read_s64,
8585 		.write_s64 = cpu_cfs_quota_write_s64,
8586 	},
8587 	{
8588 		.name = "cfs_period_us",
8589 		.read_u64 = cpu_cfs_period_read_u64,
8590 		.write_u64 = cpu_cfs_period_write_u64,
8591 	},
8592 	{
8593 		.name = "stat",
8594 		.seq_show = cpu_stats_show,
8595 	},
8596 #endif
8597 #ifdef CONFIG_RT_GROUP_SCHED
8598 	{
8599 		.name = "rt_runtime_us",
8600 		.read_s64 = cpu_rt_runtime_read,
8601 		.write_s64 = cpu_rt_runtime_write,
8602 	},
8603 	{
8604 		.name = "rt_period_us",
8605 		.read_u64 = cpu_rt_period_read_uint,
8606 		.write_u64 = cpu_rt_period_write_uint,
8607 	},
8608 #endif
8609 	{ }	/* terminate */
8610 };
8611 
8612 struct cgroup_subsys cpu_cgrp_subsys = {
8613 	.css_alloc	= cpu_cgroup_css_alloc,
8614 	.css_released	= cpu_cgroup_css_released,
8615 	.css_free	= cpu_cgroup_css_free,
8616 	.fork		= cpu_cgroup_fork,
8617 	.can_attach	= cpu_cgroup_can_attach,
8618 	.attach		= cpu_cgroup_attach,
8619 	.legacy_cftypes	= cpu_files,
8620 	.early_init	= true,
8621 };
8622 
8623 #endif	/* CONFIG_CGROUP_SCHED */
8624 
8625 void dump_cpu_task(int cpu)
8626 {
8627 	pr_info("Task dump for CPU %d:\n", cpu);
8628 	sched_show_task(cpu_curr(cpu));
8629 }
8630 
8631 /*
8632  * Nice levels are multiplicative, with a gentle 10% change for every
8633  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8634  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8635  * that remained on nice 0.
8636  *
8637  * The "10% effect" is relative and cumulative: from _any_ nice level,
8638  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8639  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8640  * If a task goes up by ~10% and another task goes down by ~10% then
8641  * the relative distance between them is ~25%.)
8642  */
8643 const int sched_prio_to_weight[40] = {
8644  /* -20 */     88761,     71755,     56483,     46273,     36291,
8645  /* -15 */     29154,     23254,     18705,     14949,     11916,
8646  /* -10 */      9548,      7620,      6100,      4904,      3906,
8647  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8648  /*   0 */      1024,       820,       655,       526,       423,
8649  /*   5 */       335,       272,       215,       172,       137,
8650  /*  10 */       110,        87,        70,        56,        45,
8651  /*  15 */        36,        29,        23,        18,        15,
8652 };
8653 
8654 /*
8655  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8656  *
8657  * In cases where the weight does not change often, we can use the
8658  * precalculated inverse to speed up arithmetics by turning divisions
8659  * into multiplications:
8660  */
8661 const u32 sched_prio_to_wmult[40] = {
8662  /* -20 */     48388,     59856,     76040,     92818,    118348,
8663  /* -15 */    147320,    184698,    229616,    287308,    360437,
8664  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8665  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8666  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8667  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8668  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8669  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8670 };
8671