xref: /openbmc/linux/kernel/sched/core.c (revision 7d6a905f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 
359 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
360 }
361 
362 /*
363  * called from hardirq (IPI) context
364  */
365 static void __hrtick_start(void *arg)
366 {
367 	struct rq *rq = arg;
368 	struct rq_flags rf;
369 
370 	rq_lock(rq, &rf);
371 	__hrtick_restart(rq);
372 	rq_unlock(rq, &rf);
373 }
374 
375 /*
376  * Called to set the hrtick timer state.
377  *
378  * called with rq->lock held and irqs disabled
379  */
380 void hrtick_start(struct rq *rq, u64 delay)
381 {
382 	struct hrtimer *timer = &rq->hrtick_timer;
383 	ktime_t time;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	hrtimer_set_expires(timer, time);
394 
395 	if (rq == this_rq())
396 		__hrtick_restart(rq);
397 	else
398 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
399 }
400 
401 #else
402 /*
403  * Called to set the hrtick timer state.
404  *
405  * called with rq->lock held and irqs disabled
406  */
407 void hrtick_start(struct rq *rq, u64 delay)
408 {
409 	/*
410 	 * Don't schedule slices shorter than 10000ns, that just
411 	 * doesn't make sense. Rely on vruntime for fairness.
412 	 */
413 	delay = max_t(u64, delay, 10000LL);
414 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 		      HRTIMER_MODE_REL_PINNED_HARD);
416 }
417 
418 #endif /* CONFIG_SMP */
419 
420 static void hrtick_rq_init(struct rq *rq)
421 {
422 #ifdef CONFIG_SMP
423 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 	rq->hrtick_timer.function = hrtick;
427 }
428 #else	/* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
430 {
431 }
432 
433 static inline void hrtick_rq_init(struct rq *rq)
434 {
435 }
436 #endif	/* CONFIG_SCHED_HRTICK */
437 
438 /*
439  * cmpxchg based fetch_or, macro so it works for different integer types
440  */
441 #define fetch_or(ptr, mask)						\
442 	({								\
443 		typeof(ptr) _ptr = (ptr);				\
444 		typeof(mask) _mask = (mask);				\
445 		typeof(*_ptr) _old, _val = *_ptr;			\
446 									\
447 		for (;;) {						\
448 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
449 			if (_old == _val)				\
450 				break;					\
451 			_val = _old;					\
452 		}							\
453 	_old;								\
454 })
455 
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
457 /*
458  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459  * this avoids any races wrt polling state changes and thereby avoids
460  * spurious IPIs.
461  */
462 static bool set_nr_and_not_polling(struct task_struct *p)
463 {
464 	struct thread_info *ti = task_thread_info(p);
465 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466 }
467 
468 /*
469  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470  *
471  * If this returns true, then the idle task promises to call
472  * sched_ttwu_pending() and reschedule soon.
473  */
474 static bool set_nr_if_polling(struct task_struct *p)
475 {
476 	struct thread_info *ti = task_thread_info(p);
477 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
478 
479 	for (;;) {
480 		if (!(val & _TIF_POLLING_NRFLAG))
481 			return false;
482 		if (val & _TIF_NEED_RESCHED)
483 			return true;
484 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 		if (old == val)
486 			break;
487 		val = old;
488 	}
489 	return true;
490 }
491 
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
494 {
495 	set_tsk_need_resched(p);
496 	return true;
497 }
498 
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
501 {
502 	return false;
503 }
504 #endif
505 #endif
506 
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
508 {
509 	struct wake_q_node *node = &task->wake_q;
510 
511 	/*
512 	 * Atomically grab the task, if ->wake_q is !nil already it means
513 	 * it's already queued (either by us or someone else) and will get the
514 	 * wakeup due to that.
515 	 *
516 	 * In order to ensure that a pending wakeup will observe our pending
517 	 * state, even in the failed case, an explicit smp_mb() must be used.
518 	 */
519 	smp_mb__before_atomic();
520 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 		return false;
522 
523 	/*
524 	 * The head is context local, there can be no concurrency.
525 	 */
526 	*head->lastp = node;
527 	head->lastp = &node->next;
528 	return true;
529 }
530 
531 /**
532  * wake_q_add() - queue a wakeup for 'later' waking.
533  * @head: the wake_q_head to add @task to
534  * @task: the task to queue for 'later' wakeup
535  *
536  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538  * instantly.
539  *
540  * This function must be used as-if it were wake_up_process(); IOW the task
541  * must be ready to be woken at this location.
542  */
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544 {
545 	if (__wake_q_add(head, task))
546 		get_task_struct(task);
547 }
548 
549 /**
550  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551  * @head: the wake_q_head to add @task to
552  * @task: the task to queue for 'later' wakeup
553  *
554  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556  * instantly.
557  *
558  * This function must be used as-if it were wake_up_process(); IOW the task
559  * must be ready to be woken at this location.
560  *
561  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562  * that already hold reference to @task can call the 'safe' version and trust
563  * wake_q to do the right thing depending whether or not the @task is already
564  * queued for wakeup.
565  */
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567 {
568 	if (!__wake_q_add(head, task))
569 		put_task_struct(task);
570 }
571 
572 void wake_up_q(struct wake_q_head *head)
573 {
574 	struct wake_q_node *node = head->first;
575 
576 	while (node != WAKE_Q_TAIL) {
577 		struct task_struct *task;
578 
579 		task = container_of(node, struct task_struct, wake_q);
580 		BUG_ON(!task);
581 		/* Task can safely be re-inserted now: */
582 		node = node->next;
583 		task->wake_q.next = NULL;
584 
585 		/*
586 		 * wake_up_process() executes a full barrier, which pairs with
587 		 * the queueing in wake_q_add() so as not to miss wakeups.
588 		 */
589 		wake_up_process(task);
590 		put_task_struct(task);
591 	}
592 }
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	raw_spin_lock_irqsave(&rq->lock, flags);
631 	if (cpu_online(cpu) || cpu == smp_processor_id())
632 		resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy CPU for migrating timers
640  * from an idle CPU.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle CPU will add more delays to the timers than intended
644  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(void)
647 {
648 	int i, cpu = smp_processor_id(), default_cpu = -1;
649 	struct sched_domain *sd;
650 
651 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 		if (!idle_cpu(cpu))
653 			return cpu;
654 		default_cpu = cpu;
655 	}
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu_and(i, sched_domain_span(sd),
660 			housekeeping_cpumask(HK_FLAG_TIMER)) {
661 			if (cpu == i)
662 				continue;
663 
664 			if (!idle_cpu(i)) {
665 				cpu = i;
666 				goto unlock;
667 			}
668 		}
669 	}
670 
671 	if (default_cpu == -1)
672 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 	cpu = default_cpu;
674 unlock:
675 	rcu_read_unlock();
676 	return cpu;
677 }
678 
679 /*
680  * When add_timer_on() enqueues a timer into the timer wheel of an
681  * idle CPU then this timer might expire before the next timer event
682  * which is scheduled to wake up that CPU. In case of a completely
683  * idle system the next event might even be infinite time into the
684  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685  * leaves the inner idle loop so the newly added timer is taken into
686  * account when the CPU goes back to idle and evaluates the timer
687  * wheel for the next timer event.
688  */
689 static void wake_up_idle_cpu(int cpu)
690 {
691 	struct rq *rq = cpu_rq(cpu);
692 
693 	if (cpu == smp_processor_id())
694 		return;
695 
696 	if (set_nr_and_not_polling(rq->idle))
697 		smp_send_reschedule(cpu);
698 	else
699 		trace_sched_wake_idle_without_ipi(cpu);
700 }
701 
702 static bool wake_up_full_nohz_cpu(int cpu)
703 {
704 	/*
705 	 * We just need the target to call irq_exit() and re-evaluate
706 	 * the next tick. The nohz full kick at least implies that.
707 	 * If needed we can still optimize that later with an
708 	 * empty IRQ.
709 	 */
710 	if (cpu_is_offline(cpu))
711 		return true;  /* Don't try to wake offline CPUs. */
712 	if (tick_nohz_full_cpu(cpu)) {
713 		if (cpu != smp_processor_id() ||
714 		    tick_nohz_tick_stopped())
715 			tick_nohz_full_kick_cpu(cpu);
716 		return true;
717 	}
718 
719 	return false;
720 }
721 
722 /*
723  * Wake up the specified CPU.  If the CPU is going offline, it is the
724  * caller's responsibility to deal with the lost wakeup, for example,
725  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726  */
727 void wake_up_nohz_cpu(int cpu)
728 {
729 	if (!wake_up_full_nohz_cpu(cpu))
730 		wake_up_idle_cpu(cpu);
731 }
732 
733 static void nohz_csd_func(void *info)
734 {
735 	struct rq *rq = info;
736 	int cpu = cpu_of(rq);
737 	unsigned int flags;
738 
739 	/*
740 	 * Release the rq::nohz_csd.
741 	 */
742 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 	WARN_ON(!(flags & NOHZ_KICK_MASK));
744 
745 	rq->idle_balance = idle_cpu(cpu);
746 	if (rq->idle_balance && !need_resched()) {
747 		rq->nohz_idle_balance = flags;
748 		raise_softirq_irqoff(SCHED_SOFTIRQ);
749 	}
750 }
751 
752 #endif /* CONFIG_NO_HZ_COMMON */
753 
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
756 {
757 	int fifo_nr_running;
758 
759 	/* Deadline tasks, even if single, need the tick */
760 	if (rq->dl.dl_nr_running)
761 		return false;
762 
763 	/*
764 	 * If there are more than one RR tasks, we need the tick to affect the
765 	 * actual RR behaviour.
766 	 */
767 	if (rq->rt.rr_nr_running) {
768 		if (rq->rt.rr_nr_running == 1)
769 			return true;
770 		else
771 			return false;
772 	}
773 
774 	/*
775 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 	 * forced preemption between FIFO tasks.
777 	 */
778 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 	if (fifo_nr_running)
780 		return true;
781 
782 	/*
783 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 	 * if there's more than one we need the tick for involuntary
785 	 * preemption.
786 	 */
787 	if (rq->nr_running > 1)
788 		return false;
789 
790 	return true;
791 }
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
794 
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
797 /*
798  * Iterate task_group tree rooted at *from, calling @down when first entering a
799  * node and @up when leaving it for the final time.
800  *
801  * Caller must hold rcu_lock or sufficient equivalent.
802  */
803 int walk_tg_tree_from(struct task_group *from,
804 			     tg_visitor down, tg_visitor up, void *data)
805 {
806 	struct task_group *parent, *child;
807 	int ret;
808 
809 	parent = from;
810 
811 down:
812 	ret = (*down)(parent, data);
813 	if (ret)
814 		goto out;
815 	list_for_each_entry_rcu(child, &parent->children, siblings) {
816 		parent = child;
817 		goto down;
818 
819 up:
820 		continue;
821 	}
822 	ret = (*up)(parent, data);
823 	if (ret || parent == from)
824 		goto out;
825 
826 	child = parent;
827 	parent = parent->parent;
828 	if (parent)
829 		goto up;
830 out:
831 	return ret;
832 }
833 
834 int tg_nop(struct task_group *tg, void *data)
835 {
836 	return 0;
837 }
838 #endif
839 
840 static void set_load_weight(struct task_struct *p, bool update_load)
841 {
842 	int prio = p->static_prio - MAX_RT_PRIO;
843 	struct load_weight *load = &p->se.load;
844 
845 	/*
846 	 * SCHED_IDLE tasks get minimal weight:
847 	 */
848 	if (task_has_idle_policy(p)) {
849 		load->weight = scale_load(WEIGHT_IDLEPRIO);
850 		load->inv_weight = WMULT_IDLEPRIO;
851 		return;
852 	}
853 
854 	/*
855 	 * SCHED_OTHER tasks have to update their load when changing their
856 	 * weight
857 	 */
858 	if (update_load && p->sched_class == &fair_sched_class) {
859 		reweight_task(p, prio);
860 	} else {
861 		load->weight = scale_load(sched_prio_to_weight[prio]);
862 		load->inv_weight = sched_prio_to_wmult[prio];
863 	}
864 }
865 
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868  * Serializes updates of utilization clamp values
869  *
870  * The (slow-path) user-space triggers utilization clamp value updates which
871  * can require updates on (fast-path) scheduler's data structures used to
872  * support enqueue/dequeue operations.
873  * While the per-CPU rq lock protects fast-path update operations, user-space
874  * requests are serialized using a mutex to reduce the risk of conflicting
875  * updates or API abuses.
876  */
877 static DEFINE_MUTEX(uclamp_mutex);
878 
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881 
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884 
885 /*
886  * By default RT tasks run at the maximum performance point/capacity of the
887  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888  * SCHED_CAPACITY_SCALE.
889  *
890  * This knob allows admins to change the default behavior when uclamp is being
891  * used. In battery powered devices, particularly, running at the maximum
892  * capacity and frequency will increase energy consumption and shorten the
893  * battery life.
894  *
895  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896  *
897  * This knob will not override the system default sched_util_clamp_min defined
898  * above.
899  */
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901 
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
904 
905 /*
906  * This static key is used to reduce the uclamp overhead in the fast path. It
907  * primarily disables the call to uclamp_rq_{inc, dec}() in
908  * enqueue/dequeue_task().
909  *
910  * This allows users to continue to enable uclamp in their kernel config with
911  * minimum uclamp overhead in the fast path.
912  *
913  * As soon as userspace modifies any of the uclamp knobs, the static key is
914  * enabled, since we have an actual users that make use of uclamp
915  * functionality.
916  *
917  * The knobs that would enable this static key are:
918  *
919  *   * A task modifying its uclamp value with sched_setattr().
920  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
922  */
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924 
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927 
928 #define for_each_clamp_id(clamp_id) \
929 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930 
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932 {
933 	return clamp_value / UCLAMP_BUCKET_DELTA;
934 }
935 
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
937 {
938 	if (clamp_id == UCLAMP_MIN)
939 		return 0;
940 	return SCHED_CAPACITY_SCALE;
941 }
942 
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 				 unsigned int value, bool user_defined)
945 {
946 	uc_se->value = value;
947 	uc_se->bucket_id = uclamp_bucket_id(value);
948 	uc_se->user_defined = user_defined;
949 }
950 
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 		  unsigned int clamp_value)
954 {
955 	/*
956 	 * Avoid blocked utilization pushing up the frequency when we go
957 	 * idle (which drops the max-clamp) by retaining the last known
958 	 * max-clamp.
959 	 */
960 	if (clamp_id == UCLAMP_MAX) {
961 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 		return clamp_value;
963 	}
964 
965 	return uclamp_none(UCLAMP_MIN);
966 }
967 
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 				     unsigned int clamp_value)
970 {
971 	/* Reset max-clamp retention only on idle exit */
972 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 		return;
974 
975 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976 }
977 
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 				   unsigned int clamp_value)
981 {
982 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 	int bucket_id = UCLAMP_BUCKETS - 1;
984 
985 	/*
986 	 * Since both min and max clamps are max aggregated, find the
987 	 * top most bucket with tasks in.
988 	 */
989 	for ( ; bucket_id >= 0; bucket_id--) {
990 		if (!bucket[bucket_id].tasks)
991 			continue;
992 		return bucket[bucket_id].value;
993 	}
994 
995 	/* No tasks -- default clamp values */
996 	return uclamp_idle_value(rq, clamp_id, clamp_value);
997 }
998 
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000 {
1001 	unsigned int default_util_min;
1002 	struct uclamp_se *uc_se;
1003 
1004 	lockdep_assert_held(&p->pi_lock);
1005 
1006 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1007 
1008 	/* Only sync if user didn't override the default */
1009 	if (uc_se->user_defined)
1010 		return;
1011 
1012 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 	uclamp_se_set(uc_se, default_util_min, false);
1014 }
1015 
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017 {
1018 	struct rq_flags rf;
1019 	struct rq *rq;
1020 
1021 	if (!rt_task(p))
1022 		return;
1023 
1024 	/* Protect updates to p->uclamp_* */
1025 	rq = task_rq_lock(p, &rf);
1026 	__uclamp_update_util_min_rt_default(p);
1027 	task_rq_unlock(rq, p, &rf);
1028 }
1029 
1030 static void uclamp_sync_util_min_rt_default(void)
1031 {
1032 	struct task_struct *g, *p;
1033 
1034 	/*
1035 	 * copy_process()			sysctl_uclamp
1036 	 *					  uclamp_min_rt = X;
1037 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1038 	 *   // link thread			  smp_mb__after_spinlock()
1039 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1040 	 *   sched_post_fork()			  for_each_process_thread()
1041 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1042 	 *
1043 	 * Ensures that either sched_post_fork() will observe the new
1044 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 	 * task.
1046 	 */
1047 	read_lock(&tasklist_lock);
1048 	smp_mb__after_spinlock();
1049 	read_unlock(&tasklist_lock);
1050 
1051 	rcu_read_lock();
1052 	for_each_process_thread(g, p)
1053 		uclamp_update_util_min_rt_default(p);
1054 	rcu_read_unlock();
1055 }
1056 
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1059 {
1060 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 	struct uclamp_se uc_max;
1063 
1064 	/*
1065 	 * Tasks in autogroups or root task group will be
1066 	 * restricted by system defaults.
1067 	 */
1068 	if (task_group_is_autogroup(task_group(p)))
1069 		return uc_req;
1070 	if (task_group(p) == &root_task_group)
1071 		return uc_req;
1072 
1073 	uc_max = task_group(p)->uclamp[clamp_id];
1074 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 		return uc_max;
1076 #endif
1077 
1078 	return uc_req;
1079 }
1080 
1081 /*
1082  * The effective clamp bucket index of a task depends on, by increasing
1083  * priority:
1084  * - the task specific clamp value, when explicitly requested from userspace
1085  * - the task group effective clamp value, for tasks not either in the root
1086  *   group or in an autogroup
1087  * - the system default clamp value, defined by the sysadmin
1088  */
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1091 {
1092 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1094 
1095 	/* System default restrictions always apply */
1096 	if (unlikely(uc_req.value > uc_max.value))
1097 		return uc_max;
1098 
1099 	return uc_req;
1100 }
1101 
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 	struct uclamp_se uc_eff;
1105 
1106 	/* Task currently refcounted: use back-annotated (effective) value */
1107 	if (p->uclamp[clamp_id].active)
1108 		return (unsigned long)p->uclamp[clamp_id].value;
1109 
1110 	uc_eff = uclamp_eff_get(p, clamp_id);
1111 
1112 	return (unsigned long)uc_eff.value;
1113 }
1114 
1115 /*
1116  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118  * updates the rq's clamp value if required.
1119  *
1120  * Tasks can have a task-specific value requested from user-space, track
1121  * within each bucket the maximum value for tasks refcounted in it.
1122  * This "local max aggregation" allows to track the exact "requested" value
1123  * for each bucket when all its RUNNABLE tasks require the same clamp.
1124  */
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 				    enum uclamp_id clamp_id)
1127 {
1128 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 	struct uclamp_bucket *bucket;
1131 
1132 	lockdep_assert_held(&rq->lock);
1133 
1134 	/* Update task effective clamp */
1135 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136 
1137 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 	bucket->tasks++;
1139 	uc_se->active = true;
1140 
1141 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142 
1143 	/*
1144 	 * Local max aggregation: rq buckets always track the max
1145 	 * "requested" clamp value of its RUNNABLE tasks.
1146 	 */
1147 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 		bucket->value = uc_se->value;
1149 
1150 	if (uc_se->value > READ_ONCE(uc_rq->value))
1151 		WRITE_ONCE(uc_rq->value, uc_se->value);
1152 }
1153 
1154 /*
1155  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156  * is released. If this is the last task reference counting the rq's max
1157  * active clamp value, then the rq's clamp value is updated.
1158  *
1159  * Both refcounted tasks and rq's cached clamp values are expected to be
1160  * always valid. If it's detected they are not, as defensive programming,
1161  * enforce the expected state and warn.
1162  */
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 				    enum uclamp_id clamp_id)
1165 {
1166 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 	struct uclamp_bucket *bucket;
1169 	unsigned int bkt_clamp;
1170 	unsigned int rq_clamp;
1171 
1172 	lockdep_assert_held(&rq->lock);
1173 
1174 	/*
1175 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 	 *
1178 	 * In this case the uc_se->active flag should be false since no uclamp
1179 	 * accounting was performed at enqueue time and we can just return
1180 	 * here.
1181 	 *
1182 	 * Need to be careful of the following enqueue/dequeue ordering
1183 	 * problem too
1184 	 *
1185 	 *	enqueue(taskA)
1186 	 *	// sched_uclamp_used gets enabled
1187 	 *	enqueue(taskB)
1188 	 *	dequeue(taskA)
1189 	 *	// Must not decrement bucket->tasks here
1190 	 *	dequeue(taskB)
1191 	 *
1192 	 * where we could end up with stale data in uc_se and
1193 	 * bucket[uc_se->bucket_id].
1194 	 *
1195 	 * The following check here eliminates the possibility of such race.
1196 	 */
1197 	if (unlikely(!uc_se->active))
1198 		return;
1199 
1200 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1201 
1202 	SCHED_WARN_ON(!bucket->tasks);
1203 	if (likely(bucket->tasks))
1204 		bucket->tasks--;
1205 
1206 	uc_se->active = false;
1207 
1208 	/*
1209 	 * Keep "local max aggregation" simple and accept to (possibly)
1210 	 * overboost some RUNNABLE tasks in the same bucket.
1211 	 * The rq clamp bucket value is reset to its base value whenever
1212 	 * there are no more RUNNABLE tasks refcounting it.
1213 	 */
1214 	if (likely(bucket->tasks))
1215 		return;
1216 
1217 	rq_clamp = READ_ONCE(uc_rq->value);
1218 	/*
1219 	 * Defensive programming: this should never happen. If it happens,
1220 	 * e.g. due to future modification, warn and fixup the expected value.
1221 	 */
1222 	SCHED_WARN_ON(bucket->value > rq_clamp);
1223 	if (bucket->value >= rq_clamp) {
1224 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 	}
1227 }
1228 
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230 {
1231 	enum uclamp_id clamp_id;
1232 
1233 	/*
1234 	 * Avoid any overhead until uclamp is actually used by the userspace.
1235 	 *
1236 	 * The condition is constructed such that a NOP is generated when
1237 	 * sched_uclamp_used is disabled.
1238 	 */
1239 	if (!static_branch_unlikely(&sched_uclamp_used))
1240 		return;
1241 
1242 	if (unlikely(!p->sched_class->uclamp_enabled))
1243 		return;
1244 
1245 	for_each_clamp_id(clamp_id)
1246 		uclamp_rq_inc_id(rq, p, clamp_id);
1247 
1248 	/* Reset clamp idle holding when there is one RUNNABLE task */
1249 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1251 }
1252 
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254 {
1255 	enum uclamp_id clamp_id;
1256 
1257 	/*
1258 	 * Avoid any overhead until uclamp is actually used by the userspace.
1259 	 *
1260 	 * The condition is constructed such that a NOP is generated when
1261 	 * sched_uclamp_used is disabled.
1262 	 */
1263 	if (!static_branch_unlikely(&sched_uclamp_used))
1264 		return;
1265 
1266 	if (unlikely(!p->sched_class->uclamp_enabled))
1267 		return;
1268 
1269 	for_each_clamp_id(clamp_id)
1270 		uclamp_rq_dec_id(rq, p, clamp_id);
1271 }
1272 
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1275 {
1276 	struct rq_flags rf;
1277 	struct rq *rq;
1278 
1279 	/*
1280 	 * Lock the task and the rq where the task is (or was) queued.
1281 	 *
1282 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 	 * price to pay to safely serialize util_{min,max} updates with
1284 	 * enqueues, dequeues and migration operations.
1285 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 	 */
1287 	rq = task_rq_lock(p, &rf);
1288 
1289 	/*
1290 	 * Setting the clamp bucket is serialized by task_rq_lock().
1291 	 * If the task is not yet RUNNABLE and its task_struct is not
1292 	 * affecting a valid clamp bucket, the next time it's enqueued,
1293 	 * it will already see the updated clamp bucket value.
1294 	 */
1295 	if (p->uclamp[clamp_id].active) {
1296 		uclamp_rq_dec_id(rq, p, clamp_id);
1297 		uclamp_rq_inc_id(rq, p, clamp_id);
1298 	}
1299 
1300 	task_rq_unlock(rq, p, &rf);
1301 }
1302 
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 			   unsigned int clamps)
1307 {
1308 	enum uclamp_id clamp_id;
1309 	struct css_task_iter it;
1310 	struct task_struct *p;
1311 
1312 	css_task_iter_start(css, 0, &it);
1313 	while ((p = css_task_iter_next(&it))) {
1314 		for_each_clamp_id(clamp_id) {
1315 			if ((0x1 << clamp_id) & clamps)
1316 				uclamp_update_active(p, clamp_id);
1317 		}
1318 	}
1319 	css_task_iter_end(&it);
1320 }
1321 
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1324 {
1325 	struct task_group *tg = &root_task_group;
1326 
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 		      sysctl_sched_uclamp_util_min, false);
1329 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 		      sysctl_sched_uclamp_util_max, false);
1331 
1332 	rcu_read_lock();
1333 	cpu_util_update_eff(&root_task_group.css);
1334 	rcu_read_unlock();
1335 }
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1339 
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 				void *buffer, size_t *lenp, loff_t *ppos)
1342 {
1343 	bool update_root_tg = false;
1344 	int old_min, old_max, old_min_rt;
1345 	int result;
1346 
1347 	mutex_lock(&uclamp_mutex);
1348 	old_min = sysctl_sched_uclamp_util_min;
1349 	old_max = sysctl_sched_uclamp_util_max;
1350 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1351 
1352 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 	if (result)
1354 		goto undo;
1355 	if (!write)
1356 		goto done;
1357 
1358 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1360 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361 
1362 		result = -EINVAL;
1363 		goto undo;
1364 	}
1365 
1366 	if (old_min != sysctl_sched_uclamp_util_min) {
1367 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 			      sysctl_sched_uclamp_util_min, false);
1369 		update_root_tg = true;
1370 	}
1371 	if (old_max != sysctl_sched_uclamp_util_max) {
1372 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 			      sysctl_sched_uclamp_util_max, false);
1374 		update_root_tg = true;
1375 	}
1376 
1377 	if (update_root_tg) {
1378 		static_branch_enable(&sched_uclamp_used);
1379 		uclamp_update_root_tg();
1380 	}
1381 
1382 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 		static_branch_enable(&sched_uclamp_used);
1384 		uclamp_sync_util_min_rt_default();
1385 	}
1386 
1387 	/*
1388 	 * We update all RUNNABLE tasks only when task groups are in use.
1389 	 * Otherwise, keep it simple and do just a lazy update at each next
1390 	 * task enqueue time.
1391 	 */
1392 
1393 	goto done;
1394 
1395 undo:
1396 	sysctl_sched_uclamp_util_min = old_min;
1397 	sysctl_sched_uclamp_util_max = old_max;
1398 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 	mutex_unlock(&uclamp_mutex);
1401 
1402 	return result;
1403 }
1404 
1405 static int uclamp_validate(struct task_struct *p,
1406 			   const struct sched_attr *attr)
1407 {
1408 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1410 
1411 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 		util_min = attr->sched_util_min;
1413 
1414 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 			return -EINVAL;
1416 	}
1417 
1418 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 		util_max = attr->sched_util_max;
1420 
1421 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 			return -EINVAL;
1423 	}
1424 
1425 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 		return -EINVAL;
1427 
1428 	/*
1429 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 	 *
1431 	 * We need to do that here, because enabling static branches is a
1432 	 * blocking operation which obviously cannot be done while holding
1433 	 * scheduler locks.
1434 	 */
1435 	static_branch_enable(&sched_uclamp_used);
1436 
1437 	return 0;
1438 }
1439 
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 			 enum uclamp_id clamp_id,
1442 			 struct uclamp_se *uc_se)
1443 {
1444 	/* Reset on sched class change for a non user-defined clamp value. */
1445 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 	    !uc_se->user_defined)
1447 		return true;
1448 
1449 	/* Reset on sched_util_{min,max} == -1. */
1450 	if (clamp_id == UCLAMP_MIN &&
1451 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 	    attr->sched_util_min == -1) {
1453 		return true;
1454 	}
1455 
1456 	if (clamp_id == UCLAMP_MAX &&
1457 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 	    attr->sched_util_max == -1) {
1459 		return true;
1460 	}
1461 
1462 	return false;
1463 }
1464 
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 				  const struct sched_attr *attr)
1467 {
1468 	enum uclamp_id clamp_id;
1469 
1470 	for_each_clamp_id(clamp_id) {
1471 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 		unsigned int value;
1473 
1474 		if (!uclamp_reset(attr, clamp_id, uc_se))
1475 			continue;
1476 
1477 		/*
1478 		 * RT by default have a 100% boost value that could be modified
1479 		 * at runtime.
1480 		 */
1481 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 			value = sysctl_sched_uclamp_util_min_rt_default;
1483 		else
1484 			value = uclamp_none(clamp_id);
1485 
1486 		uclamp_se_set(uc_se, value, false);
1487 
1488 	}
1489 
1490 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 		return;
1492 
1493 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 	    attr->sched_util_min != -1) {
1495 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 			      attr->sched_util_min, true);
1497 	}
1498 
1499 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 	    attr->sched_util_max != -1) {
1501 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 			      attr->sched_util_max, true);
1503 	}
1504 }
1505 
1506 static void uclamp_fork(struct task_struct *p)
1507 {
1508 	enum uclamp_id clamp_id;
1509 
1510 	/*
1511 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 	 * as the task is still at its early fork stages.
1513 	 */
1514 	for_each_clamp_id(clamp_id)
1515 		p->uclamp[clamp_id].active = false;
1516 
1517 	if (likely(!p->sched_reset_on_fork))
1518 		return;
1519 
1520 	for_each_clamp_id(clamp_id) {
1521 		uclamp_se_set(&p->uclamp_req[clamp_id],
1522 			      uclamp_none(clamp_id), false);
1523 	}
1524 }
1525 
1526 static void uclamp_post_fork(struct task_struct *p)
1527 {
1528 	uclamp_update_util_min_rt_default(p);
1529 }
1530 
1531 static void __init init_uclamp_rq(struct rq *rq)
1532 {
1533 	enum uclamp_id clamp_id;
1534 	struct uclamp_rq *uc_rq = rq->uclamp;
1535 
1536 	for_each_clamp_id(clamp_id) {
1537 		uc_rq[clamp_id] = (struct uclamp_rq) {
1538 			.value = uclamp_none(clamp_id)
1539 		};
1540 	}
1541 
1542 	rq->uclamp_flags = 0;
1543 }
1544 
1545 static void __init init_uclamp(void)
1546 {
1547 	struct uclamp_se uc_max = {};
1548 	enum uclamp_id clamp_id;
1549 	int cpu;
1550 
1551 	for_each_possible_cpu(cpu)
1552 		init_uclamp_rq(cpu_rq(cpu));
1553 
1554 	for_each_clamp_id(clamp_id) {
1555 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 			      uclamp_none(clamp_id), false);
1557 	}
1558 
1559 	/* System defaults allow max clamp values for both indexes */
1560 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 	for_each_clamp_id(clamp_id) {
1562 		uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 		root_task_group.uclamp_req[clamp_id] = uc_max;
1565 		root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1567 	}
1568 }
1569 
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 				  const struct sched_attr *attr)
1575 {
1576 	return -EOPNOTSUPP;
1577 }
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 				  const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1584 
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1586 {
1587 	if (!(flags & ENQUEUE_NOCLOCK))
1588 		update_rq_clock(rq);
1589 
1590 	if (!(flags & ENQUEUE_RESTORE)) {
1591 		sched_info_queued(rq, p);
1592 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 	}
1594 
1595 	uclamp_rq_inc(rq, p);
1596 	p->sched_class->enqueue_task(rq, p, flags);
1597 }
1598 
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1600 {
1601 	if (!(flags & DEQUEUE_NOCLOCK))
1602 		update_rq_clock(rq);
1603 
1604 	if (!(flags & DEQUEUE_SAVE)) {
1605 		sched_info_dequeued(rq, p);
1606 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 	}
1608 
1609 	uclamp_rq_dec(rq, p);
1610 	p->sched_class->dequeue_task(rq, p, flags);
1611 }
1612 
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1614 {
1615 	enqueue_task(rq, p, flags);
1616 
1617 	p->on_rq = TASK_ON_RQ_QUEUED;
1618 }
1619 
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1621 {
1622 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623 
1624 	dequeue_task(rq, p, flags);
1625 }
1626 
1627 /*
1628  * __normal_prio - return the priority that is based on the static prio
1629  */
1630 static inline int __normal_prio(struct task_struct *p)
1631 {
1632 	return p->static_prio;
1633 }
1634 
1635 /*
1636  * Calculate the expected normal priority: i.e. priority
1637  * without taking RT-inheritance into account. Might be
1638  * boosted by interactivity modifiers. Changes upon fork,
1639  * setprio syscalls, and whenever the interactivity
1640  * estimator recalculates.
1641  */
1642 static inline int normal_prio(struct task_struct *p)
1643 {
1644 	int prio;
1645 
1646 	if (task_has_dl_policy(p))
1647 		prio = MAX_DL_PRIO-1;
1648 	else if (task_has_rt_policy(p))
1649 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 	else
1651 		prio = __normal_prio(p);
1652 	return prio;
1653 }
1654 
1655 /*
1656  * Calculate the current priority, i.e. the priority
1657  * taken into account by the scheduler. This value might
1658  * be boosted by RT tasks, or might be boosted by
1659  * interactivity modifiers. Will be RT if the task got
1660  * RT-boosted. If not then it returns p->normal_prio.
1661  */
1662 static int effective_prio(struct task_struct *p)
1663 {
1664 	p->normal_prio = normal_prio(p);
1665 	/*
1666 	 * If we are RT tasks or we were boosted to RT priority,
1667 	 * keep the priority unchanged. Otherwise, update priority
1668 	 * to the normal priority:
1669 	 */
1670 	if (!rt_prio(p->prio))
1671 		return p->normal_prio;
1672 	return p->prio;
1673 }
1674 
1675 /**
1676  * task_curr - is this task currently executing on a CPU?
1677  * @p: the task in question.
1678  *
1679  * Return: 1 if the task is currently executing. 0 otherwise.
1680  */
1681 inline int task_curr(const struct task_struct *p)
1682 {
1683 	return cpu_curr(task_cpu(p)) == p;
1684 }
1685 
1686 /*
1687  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688  * use the balance_callback list if you want balancing.
1689  *
1690  * this means any call to check_class_changed() must be followed by a call to
1691  * balance_callback().
1692  */
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 				       const struct sched_class *prev_class,
1695 				       int oldprio)
1696 {
1697 	if (prev_class != p->sched_class) {
1698 		if (prev_class->switched_from)
1699 			prev_class->switched_from(rq, p);
1700 
1701 		p->sched_class->switched_to(rq, p);
1702 	} else if (oldprio != p->prio || dl_task(p))
1703 		p->sched_class->prio_changed(rq, p, oldprio);
1704 }
1705 
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1707 {
1708 	if (p->sched_class == rq->curr->sched_class)
1709 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 	else if (p->sched_class > rq->curr->sched_class)
1711 		resched_curr(rq);
1712 
1713 	/*
1714 	 * A queue event has occurred, and we're going to schedule.  In
1715 	 * this case, we can save a useless back to back clock update.
1716 	 */
1717 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 		rq_clock_skip_update(rq);
1719 }
1720 
1721 #ifdef CONFIG_SMP
1722 
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725 
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 				  const struct cpumask *new_mask,
1728 				  u32 flags);
1729 
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731 {
1732 	if (likely(!p->migration_disabled))
1733 		return;
1734 
1735 	if (p->cpus_ptr != &p->cpus_mask)
1736 		return;
1737 
1738 	/*
1739 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 	 */
1741 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742 }
1743 
1744 void migrate_disable(void)
1745 {
1746 	struct task_struct *p = current;
1747 
1748 	if (p->migration_disabled) {
1749 		p->migration_disabled++;
1750 		return;
1751 	}
1752 
1753 	preempt_disable();
1754 	this_rq()->nr_pinned++;
1755 	p->migration_disabled = 1;
1756 	preempt_enable();
1757 }
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1759 
1760 void migrate_enable(void)
1761 {
1762 	struct task_struct *p = current;
1763 
1764 	if (p->migration_disabled > 1) {
1765 		p->migration_disabled--;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Ensure stop_task runs either before or after this, and that
1771 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 	 */
1773 	preempt_disable();
1774 	if (p->cpus_ptr != &p->cpus_mask)
1775 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 	/*
1777 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 	 * regular cpus_mask, otherwise things that race (eg.
1779 	 * select_fallback_rq) get confused.
1780 	 */
1781 	barrier();
1782 	p->migration_disabled = 0;
1783 	this_rq()->nr_pinned--;
1784 	preempt_enable();
1785 }
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1787 
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1789 {
1790 	return rq->nr_pinned;
1791 }
1792 
1793 /*
1794  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795  * __set_cpus_allowed_ptr() and select_fallback_rq().
1796  */
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798 {
1799 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1800 		return false;
1801 
1802 	if (is_per_cpu_kthread(p) || is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	return cpu_active(cpu);
1806 }
1807 
1808 /*
1809  * This is how migration works:
1810  *
1811  * 1) we invoke migration_cpu_stop() on the target CPU using
1812  *    stop_one_cpu().
1813  * 2) stopper starts to run (implicitly forcing the migrated thread
1814  *    off the CPU)
1815  * 3) it checks whether the migrated task is still in the wrong runqueue.
1816  * 4) if it's in the wrong runqueue then the migration thread removes
1817  *    it and puts it into the right queue.
1818  * 5) stopper completes and stop_one_cpu() returns and the migration
1819  *    is done.
1820  */
1821 
1822 /*
1823  * move_queued_task - move a queued task to new rq.
1824  *
1825  * Returns (locked) new rq. Old rq's lock is released.
1826  */
1827 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1828 				   struct task_struct *p, int new_cpu)
1829 {
1830 	lockdep_assert_held(&rq->lock);
1831 
1832 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1833 	set_task_cpu(p, new_cpu);
1834 	rq_unlock(rq, rf);
1835 
1836 	rq = cpu_rq(new_cpu);
1837 
1838 	rq_lock(rq, rf);
1839 	BUG_ON(task_cpu(p) != new_cpu);
1840 	activate_task(rq, p, 0);
1841 	check_preempt_curr(rq, p, 0);
1842 
1843 	return rq;
1844 }
1845 
1846 struct migration_arg {
1847 	struct task_struct		*task;
1848 	int				dest_cpu;
1849 	struct set_affinity_pending	*pending;
1850 };
1851 
1852 struct set_affinity_pending {
1853 	refcount_t		refs;
1854 	struct completion	done;
1855 	struct cpu_stop_work	stop_work;
1856 	struct migration_arg	arg;
1857 };
1858 
1859 /*
1860  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1861  * this because either it can't run here any more (set_cpus_allowed()
1862  * away from this CPU, or CPU going down), or because we're
1863  * attempting to rebalance this task on exec (sched_exec).
1864  *
1865  * So we race with normal scheduler movements, but that's OK, as long
1866  * as the task is no longer on this CPU.
1867  */
1868 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1869 				 struct task_struct *p, int dest_cpu)
1870 {
1871 	/* Affinity changed (again). */
1872 	if (!is_cpu_allowed(p, dest_cpu))
1873 		return rq;
1874 
1875 	update_rq_clock(rq);
1876 	rq = move_queued_task(rq, rf, p, dest_cpu);
1877 
1878 	return rq;
1879 }
1880 
1881 /*
1882  * migration_cpu_stop - this will be executed by a highprio stopper thread
1883  * and performs thread migration by bumping thread off CPU then
1884  * 'pushing' onto another runqueue.
1885  */
1886 static int migration_cpu_stop(void *data)
1887 {
1888 	struct set_affinity_pending *pending;
1889 	struct migration_arg *arg = data;
1890 	struct task_struct *p = arg->task;
1891 	int dest_cpu = arg->dest_cpu;
1892 	struct rq *rq = this_rq();
1893 	bool complete = false;
1894 	struct rq_flags rf;
1895 
1896 	/*
1897 	 * The original target CPU might have gone down and we might
1898 	 * be on another CPU but it doesn't matter.
1899 	 */
1900 	local_irq_save(rf.flags);
1901 	/*
1902 	 * We need to explicitly wake pending tasks before running
1903 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1904 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1905 	 */
1906 	flush_smp_call_function_from_idle();
1907 
1908 	raw_spin_lock(&p->pi_lock);
1909 	rq_lock(rq, &rf);
1910 
1911 	pending = p->migration_pending;
1912 	/*
1913 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1914 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1915 	 * we're holding p->pi_lock.
1916 	 */
1917 	if (task_rq(p) == rq) {
1918 		if (is_migration_disabled(p))
1919 			goto out;
1920 
1921 		if (pending) {
1922 			p->migration_pending = NULL;
1923 			complete = true;
1924 		}
1925 
1926 		/* migrate_enable() --  we must not race against SCA */
1927 		if (dest_cpu < 0) {
1928 			/*
1929 			 * When this was migrate_enable() but we no longer
1930 			 * have a @pending, a concurrent SCA 'fixed' things
1931 			 * and we should be valid again. Nothing to do.
1932 			 */
1933 			if (!pending) {
1934 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1935 				goto out;
1936 			}
1937 
1938 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1939 		}
1940 
1941 		if (task_on_rq_queued(p))
1942 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1943 		else
1944 			p->wake_cpu = dest_cpu;
1945 
1946 	} else if (dest_cpu < 0 || pending) {
1947 		/*
1948 		 * This happens when we get migrated between migrate_enable()'s
1949 		 * preempt_enable() and scheduling the stopper task. At that
1950 		 * point we're a regular task again and not current anymore.
1951 		 *
1952 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1953 		 * more likely.
1954 		 */
1955 
1956 		/*
1957 		 * The task moved before the stopper got to run. We're holding
1958 		 * ->pi_lock, so the allowed mask is stable - if it got
1959 		 * somewhere allowed, we're done.
1960 		 */
1961 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1962 			p->migration_pending = NULL;
1963 			complete = true;
1964 			goto out;
1965 		}
1966 
1967 		/*
1968 		 * When this was migrate_enable() but we no longer have an
1969 		 * @pending, a concurrent SCA 'fixed' things and we should be
1970 		 * valid again. Nothing to do.
1971 		 */
1972 		if (!pending) {
1973 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1974 			goto out;
1975 		}
1976 
1977 		/*
1978 		 * When migrate_enable() hits a rq mis-match we can't reliably
1979 		 * determine is_migration_disabled() and so have to chase after
1980 		 * it.
1981 		 */
1982 		task_rq_unlock(rq, p, &rf);
1983 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1984 				    &pending->arg, &pending->stop_work);
1985 		return 0;
1986 	}
1987 out:
1988 	task_rq_unlock(rq, p, &rf);
1989 
1990 	if (complete)
1991 		complete_all(&pending->done);
1992 
1993 	/* For pending->{arg,stop_work} */
1994 	pending = arg->pending;
1995 	if (pending && refcount_dec_and_test(&pending->refs))
1996 		wake_up_var(&pending->refs);
1997 
1998 	return 0;
1999 }
2000 
2001 int push_cpu_stop(void *arg)
2002 {
2003 	struct rq *lowest_rq = NULL, *rq = this_rq();
2004 	struct task_struct *p = arg;
2005 
2006 	raw_spin_lock_irq(&p->pi_lock);
2007 	raw_spin_lock(&rq->lock);
2008 
2009 	if (task_rq(p) != rq)
2010 		goto out_unlock;
2011 
2012 	if (is_migration_disabled(p)) {
2013 		p->migration_flags |= MDF_PUSH;
2014 		goto out_unlock;
2015 	}
2016 
2017 	p->migration_flags &= ~MDF_PUSH;
2018 
2019 	if (p->sched_class->find_lock_rq)
2020 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2021 
2022 	if (!lowest_rq)
2023 		goto out_unlock;
2024 
2025 	// XXX validate p is still the highest prio task
2026 	if (task_rq(p) == rq) {
2027 		deactivate_task(rq, p, 0);
2028 		set_task_cpu(p, lowest_rq->cpu);
2029 		activate_task(lowest_rq, p, 0);
2030 		resched_curr(lowest_rq);
2031 	}
2032 
2033 	double_unlock_balance(rq, lowest_rq);
2034 
2035 out_unlock:
2036 	rq->push_busy = false;
2037 	raw_spin_unlock(&rq->lock);
2038 	raw_spin_unlock_irq(&p->pi_lock);
2039 
2040 	put_task_struct(p);
2041 	return 0;
2042 }
2043 
2044 /*
2045  * sched_class::set_cpus_allowed must do the below, but is not required to
2046  * actually call this function.
2047  */
2048 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2049 {
2050 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2051 		p->cpus_ptr = new_mask;
2052 		return;
2053 	}
2054 
2055 	cpumask_copy(&p->cpus_mask, new_mask);
2056 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2057 }
2058 
2059 static void
2060 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2061 {
2062 	struct rq *rq = task_rq(p);
2063 	bool queued, running;
2064 
2065 	/*
2066 	 * This here violates the locking rules for affinity, since we're only
2067 	 * supposed to change these variables while holding both rq->lock and
2068 	 * p->pi_lock.
2069 	 *
2070 	 * HOWEVER, it magically works, because ttwu() is the only code that
2071 	 * accesses these variables under p->pi_lock and only does so after
2072 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2073 	 * before finish_task().
2074 	 *
2075 	 * XXX do further audits, this smells like something putrid.
2076 	 */
2077 	if (flags & SCA_MIGRATE_DISABLE)
2078 		SCHED_WARN_ON(!p->on_cpu);
2079 	else
2080 		lockdep_assert_held(&p->pi_lock);
2081 
2082 	queued = task_on_rq_queued(p);
2083 	running = task_current(rq, p);
2084 
2085 	if (queued) {
2086 		/*
2087 		 * Because __kthread_bind() calls this on blocked tasks without
2088 		 * holding rq->lock.
2089 		 */
2090 		lockdep_assert_held(&rq->lock);
2091 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2092 	}
2093 	if (running)
2094 		put_prev_task(rq, p);
2095 
2096 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2097 
2098 	if (queued)
2099 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2100 	if (running)
2101 		set_next_task(rq, p);
2102 }
2103 
2104 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2105 {
2106 	__do_set_cpus_allowed(p, new_mask, 0);
2107 }
2108 
2109 /*
2110  * This function is wildly self concurrent; here be dragons.
2111  *
2112  *
2113  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2114  * designated task is enqueued on an allowed CPU. If that task is currently
2115  * running, we have to kick it out using the CPU stopper.
2116  *
2117  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2118  * Consider:
2119  *
2120  *     Initial conditions: P0->cpus_mask = [0, 1]
2121  *
2122  *     P0@CPU0                  P1
2123  *
2124  *     migrate_disable();
2125  *     <preempted>
2126  *                              set_cpus_allowed_ptr(P0, [1]);
2127  *
2128  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2129  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2130  * This means we need the following scheme:
2131  *
2132  *     P0@CPU0                  P1
2133  *
2134  *     migrate_disable();
2135  *     <preempted>
2136  *                              set_cpus_allowed_ptr(P0, [1]);
2137  *                                <blocks>
2138  *     <resumes>
2139  *     migrate_enable();
2140  *       __set_cpus_allowed_ptr();
2141  *       <wakes local stopper>
2142  *                         `--> <woken on migration completion>
2143  *
2144  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2145  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2146  * task p are serialized by p->pi_lock, which we can leverage: the one that
2147  * should come into effect at the end of the Migrate-Disable region is the last
2148  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2149  * but we still need to properly signal those waiting tasks at the appropriate
2150  * moment.
2151  *
2152  * This is implemented using struct set_affinity_pending. The first
2153  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2154  * setup an instance of that struct and install it on the targeted task_struct.
2155  * Any and all further callers will reuse that instance. Those then wait for
2156  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2157  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2158  *
2159  *
2160  * (1) In the cases covered above. There is one more where the completion is
2161  * signaled within affine_move_task() itself: when a subsequent affinity request
2162  * cancels the need for an active migration. Consider:
2163  *
2164  *     Initial conditions: P0->cpus_mask = [0, 1]
2165  *
2166  *     P0@CPU0            P1                             P2
2167  *
2168  *     migrate_disable();
2169  *     <preempted>
2170  *                        set_cpus_allowed_ptr(P0, [1]);
2171  *                          <blocks>
2172  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2173  *                                                         <signal completion>
2174  *                          <awakes>
2175  *
2176  * Note that the above is safe vs a concurrent migrate_enable(), as any
2177  * pending affinity completion is preceded by an uninstallation of
2178  * p->migration_pending done with p->pi_lock held.
2179  */
2180 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2181 			    int dest_cpu, unsigned int flags)
2182 {
2183 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2184 	struct migration_arg arg = {
2185 		.task = p,
2186 		.dest_cpu = dest_cpu,
2187 	};
2188 	bool complete = false;
2189 
2190 	/* Can the task run on the task's current CPU? If so, we're done */
2191 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2192 		struct task_struct *push_task = NULL;
2193 
2194 		if ((flags & SCA_MIGRATE_ENABLE) &&
2195 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2196 			rq->push_busy = true;
2197 			push_task = get_task_struct(p);
2198 		}
2199 
2200 		pending = p->migration_pending;
2201 		if (pending) {
2202 			refcount_inc(&pending->refs);
2203 			p->migration_pending = NULL;
2204 			complete = true;
2205 		}
2206 		task_rq_unlock(rq, p, rf);
2207 
2208 		if (push_task) {
2209 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2210 					    p, &rq->push_work);
2211 		}
2212 
2213 		if (complete)
2214 			goto do_complete;
2215 
2216 		return 0;
2217 	}
2218 
2219 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2220 		/* serialized by p->pi_lock */
2221 		if (!p->migration_pending) {
2222 			/* Install the request */
2223 			refcount_set(&my_pending.refs, 1);
2224 			init_completion(&my_pending.done);
2225 			p->migration_pending = &my_pending;
2226 		} else {
2227 			pending = p->migration_pending;
2228 			refcount_inc(&pending->refs);
2229 		}
2230 	}
2231 	pending = p->migration_pending;
2232 	/*
2233 	 * - !MIGRATE_ENABLE:
2234 	 *   we'll have installed a pending if there wasn't one already.
2235 	 *
2236 	 * - MIGRATE_ENABLE:
2237 	 *   we're here because the current CPU isn't matching anymore,
2238 	 *   the only way that can happen is because of a concurrent
2239 	 *   set_cpus_allowed_ptr() call, which should then still be
2240 	 *   pending completion.
2241 	 *
2242 	 * Either way, we really should have a @pending here.
2243 	 */
2244 	if (WARN_ON_ONCE(!pending)) {
2245 		task_rq_unlock(rq, p, rf);
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (flags & SCA_MIGRATE_ENABLE) {
2250 
2251 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2252 		p->migration_flags &= ~MDF_PUSH;
2253 		task_rq_unlock(rq, p, rf);
2254 
2255 		pending->arg = (struct migration_arg) {
2256 			.task = p,
2257 			.dest_cpu = -1,
2258 			.pending = pending,
2259 		};
2260 
2261 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2262 				    &pending->arg, &pending->stop_work);
2263 
2264 		return 0;
2265 	}
2266 
2267 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2268 		/*
2269 		 * Lessen races (and headaches) by delegating
2270 		 * is_migration_disabled(p) checks to the stopper, which will
2271 		 * run on the same CPU as said p.
2272 		 */
2273 		task_rq_unlock(rq, p, rf);
2274 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2275 
2276 	} else {
2277 
2278 		if (!is_migration_disabled(p)) {
2279 			if (task_on_rq_queued(p))
2280 				rq = move_queued_task(rq, rf, p, dest_cpu);
2281 
2282 			p->migration_pending = NULL;
2283 			complete = true;
2284 		}
2285 		task_rq_unlock(rq, p, rf);
2286 
2287 do_complete:
2288 		if (complete)
2289 			complete_all(&pending->done);
2290 	}
2291 
2292 	wait_for_completion(&pending->done);
2293 
2294 	if (refcount_dec_and_test(&pending->refs))
2295 		wake_up_var(&pending->refs);
2296 
2297 	/*
2298 	 * Block the original owner of &pending until all subsequent callers
2299 	 * have seen the completion and decremented the refcount
2300 	 */
2301 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Change a given task's CPU affinity. Migrate the thread to a
2308  * proper CPU and schedule it away if the CPU it's executing on
2309  * is removed from the allowed bitmask.
2310  *
2311  * NOTE: the caller must have a valid reference to the task, the
2312  * task must not exit() & deallocate itself prematurely. The
2313  * call is not atomic; no spinlocks may be held.
2314  */
2315 static int __set_cpus_allowed_ptr(struct task_struct *p,
2316 				  const struct cpumask *new_mask,
2317 				  u32 flags)
2318 {
2319 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2320 	unsigned int dest_cpu;
2321 	struct rq_flags rf;
2322 	struct rq *rq;
2323 	int ret = 0;
2324 
2325 	rq = task_rq_lock(p, &rf);
2326 	update_rq_clock(rq);
2327 
2328 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2329 		/*
2330 		 * Kernel threads are allowed on online && !active CPUs.
2331 		 *
2332 		 * Specifically, migration_disabled() tasks must not fail the
2333 		 * cpumask_any_and_distribute() pick below, esp. so on
2334 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2335 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2336 		 */
2337 		cpu_valid_mask = cpu_online_mask;
2338 	}
2339 
2340 	/*
2341 	 * Must re-check here, to close a race against __kthread_bind(),
2342 	 * sched_setaffinity() is not guaranteed to observe the flag.
2343 	 */
2344 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2345 		ret = -EINVAL;
2346 		goto out;
2347 	}
2348 
2349 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2350 		if (cpumask_equal(&p->cpus_mask, new_mask))
2351 			goto out;
2352 
2353 		if (WARN_ON_ONCE(p == current &&
2354 				 is_migration_disabled(p) &&
2355 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2356 			ret = -EBUSY;
2357 			goto out;
2358 		}
2359 	}
2360 
2361 	/*
2362 	 * Picking a ~random cpu helps in cases where we are changing affinity
2363 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2364 	 * immediately required to distribute the tasks within their new mask.
2365 	 */
2366 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2367 	if (dest_cpu >= nr_cpu_ids) {
2368 		ret = -EINVAL;
2369 		goto out;
2370 	}
2371 
2372 	__do_set_cpus_allowed(p, new_mask, flags);
2373 
2374 	if (p->flags & PF_KTHREAD) {
2375 		/*
2376 		 * For kernel threads that do indeed end up on online &&
2377 		 * !active we want to ensure they are strict per-CPU threads.
2378 		 */
2379 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2380 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2381 			p->nr_cpus_allowed != 1);
2382 	}
2383 
2384 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2385 
2386 out:
2387 	task_rq_unlock(rq, p, &rf);
2388 
2389 	return ret;
2390 }
2391 
2392 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2393 {
2394 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2395 }
2396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2397 
2398 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2399 {
2400 #ifdef CONFIG_SCHED_DEBUG
2401 	/*
2402 	 * We should never call set_task_cpu() on a blocked task,
2403 	 * ttwu() will sort out the placement.
2404 	 */
2405 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2406 			!p->on_rq);
2407 
2408 	/*
2409 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2410 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2411 	 * time relying on p->on_rq.
2412 	 */
2413 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2414 		     p->sched_class == &fair_sched_class &&
2415 		     (p->on_rq && !task_on_rq_migrating(p)));
2416 
2417 #ifdef CONFIG_LOCKDEP
2418 	/*
2419 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2420 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2421 	 *
2422 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2423 	 * see task_group().
2424 	 *
2425 	 * Furthermore, all task_rq users should acquire both locks, see
2426 	 * task_rq_lock().
2427 	 */
2428 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2429 				      lockdep_is_held(&task_rq(p)->lock)));
2430 #endif
2431 	/*
2432 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2433 	 */
2434 	WARN_ON_ONCE(!cpu_online(new_cpu));
2435 
2436 	WARN_ON_ONCE(is_migration_disabled(p));
2437 #endif
2438 
2439 	trace_sched_migrate_task(p, new_cpu);
2440 
2441 	if (task_cpu(p) != new_cpu) {
2442 		if (p->sched_class->migrate_task_rq)
2443 			p->sched_class->migrate_task_rq(p, new_cpu);
2444 		p->se.nr_migrations++;
2445 		rseq_migrate(p);
2446 		perf_event_task_migrate(p);
2447 	}
2448 
2449 	__set_task_cpu(p, new_cpu);
2450 }
2451 
2452 #ifdef CONFIG_NUMA_BALANCING
2453 static void __migrate_swap_task(struct task_struct *p, int cpu)
2454 {
2455 	if (task_on_rq_queued(p)) {
2456 		struct rq *src_rq, *dst_rq;
2457 		struct rq_flags srf, drf;
2458 
2459 		src_rq = task_rq(p);
2460 		dst_rq = cpu_rq(cpu);
2461 
2462 		rq_pin_lock(src_rq, &srf);
2463 		rq_pin_lock(dst_rq, &drf);
2464 
2465 		deactivate_task(src_rq, p, 0);
2466 		set_task_cpu(p, cpu);
2467 		activate_task(dst_rq, p, 0);
2468 		check_preempt_curr(dst_rq, p, 0);
2469 
2470 		rq_unpin_lock(dst_rq, &drf);
2471 		rq_unpin_lock(src_rq, &srf);
2472 
2473 	} else {
2474 		/*
2475 		 * Task isn't running anymore; make it appear like we migrated
2476 		 * it before it went to sleep. This means on wakeup we make the
2477 		 * previous CPU our target instead of where it really is.
2478 		 */
2479 		p->wake_cpu = cpu;
2480 	}
2481 }
2482 
2483 struct migration_swap_arg {
2484 	struct task_struct *src_task, *dst_task;
2485 	int src_cpu, dst_cpu;
2486 };
2487 
2488 static int migrate_swap_stop(void *data)
2489 {
2490 	struct migration_swap_arg *arg = data;
2491 	struct rq *src_rq, *dst_rq;
2492 	int ret = -EAGAIN;
2493 
2494 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2495 		return -EAGAIN;
2496 
2497 	src_rq = cpu_rq(arg->src_cpu);
2498 	dst_rq = cpu_rq(arg->dst_cpu);
2499 
2500 	double_raw_lock(&arg->src_task->pi_lock,
2501 			&arg->dst_task->pi_lock);
2502 	double_rq_lock(src_rq, dst_rq);
2503 
2504 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2505 		goto unlock;
2506 
2507 	if (task_cpu(arg->src_task) != arg->src_cpu)
2508 		goto unlock;
2509 
2510 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2511 		goto unlock;
2512 
2513 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2514 		goto unlock;
2515 
2516 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2517 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2518 
2519 	ret = 0;
2520 
2521 unlock:
2522 	double_rq_unlock(src_rq, dst_rq);
2523 	raw_spin_unlock(&arg->dst_task->pi_lock);
2524 	raw_spin_unlock(&arg->src_task->pi_lock);
2525 
2526 	return ret;
2527 }
2528 
2529 /*
2530  * Cross migrate two tasks
2531  */
2532 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2533 		int target_cpu, int curr_cpu)
2534 {
2535 	struct migration_swap_arg arg;
2536 	int ret = -EINVAL;
2537 
2538 	arg = (struct migration_swap_arg){
2539 		.src_task = cur,
2540 		.src_cpu = curr_cpu,
2541 		.dst_task = p,
2542 		.dst_cpu = target_cpu,
2543 	};
2544 
2545 	if (arg.src_cpu == arg.dst_cpu)
2546 		goto out;
2547 
2548 	/*
2549 	 * These three tests are all lockless; this is OK since all of them
2550 	 * will be re-checked with proper locks held further down the line.
2551 	 */
2552 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2553 		goto out;
2554 
2555 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2556 		goto out;
2557 
2558 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2559 		goto out;
2560 
2561 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2562 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2563 
2564 out:
2565 	return ret;
2566 }
2567 #endif /* CONFIG_NUMA_BALANCING */
2568 
2569 /*
2570  * wait_task_inactive - wait for a thread to unschedule.
2571  *
2572  * If @match_state is nonzero, it's the @p->state value just checked and
2573  * not expected to change.  If it changes, i.e. @p might have woken up,
2574  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2575  * we return a positive number (its total switch count).  If a second call
2576  * a short while later returns the same number, the caller can be sure that
2577  * @p has remained unscheduled the whole time.
2578  *
2579  * The caller must ensure that the task *will* unschedule sometime soon,
2580  * else this function might spin for a *long* time. This function can't
2581  * be called with interrupts off, or it may introduce deadlock with
2582  * smp_call_function() if an IPI is sent by the same process we are
2583  * waiting to become inactive.
2584  */
2585 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2586 {
2587 	int running, queued;
2588 	struct rq_flags rf;
2589 	unsigned long ncsw;
2590 	struct rq *rq;
2591 
2592 	for (;;) {
2593 		/*
2594 		 * We do the initial early heuristics without holding
2595 		 * any task-queue locks at all. We'll only try to get
2596 		 * the runqueue lock when things look like they will
2597 		 * work out!
2598 		 */
2599 		rq = task_rq(p);
2600 
2601 		/*
2602 		 * If the task is actively running on another CPU
2603 		 * still, just relax and busy-wait without holding
2604 		 * any locks.
2605 		 *
2606 		 * NOTE! Since we don't hold any locks, it's not
2607 		 * even sure that "rq" stays as the right runqueue!
2608 		 * But we don't care, since "task_running()" will
2609 		 * return false if the runqueue has changed and p
2610 		 * is actually now running somewhere else!
2611 		 */
2612 		while (task_running(rq, p)) {
2613 			if (match_state && unlikely(p->state != match_state))
2614 				return 0;
2615 			cpu_relax();
2616 		}
2617 
2618 		/*
2619 		 * Ok, time to look more closely! We need the rq
2620 		 * lock now, to be *sure*. If we're wrong, we'll
2621 		 * just go back and repeat.
2622 		 */
2623 		rq = task_rq_lock(p, &rf);
2624 		trace_sched_wait_task(p);
2625 		running = task_running(rq, p);
2626 		queued = task_on_rq_queued(p);
2627 		ncsw = 0;
2628 		if (!match_state || p->state == match_state)
2629 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2630 		task_rq_unlock(rq, p, &rf);
2631 
2632 		/*
2633 		 * If it changed from the expected state, bail out now.
2634 		 */
2635 		if (unlikely(!ncsw))
2636 			break;
2637 
2638 		/*
2639 		 * Was it really running after all now that we
2640 		 * checked with the proper locks actually held?
2641 		 *
2642 		 * Oops. Go back and try again..
2643 		 */
2644 		if (unlikely(running)) {
2645 			cpu_relax();
2646 			continue;
2647 		}
2648 
2649 		/*
2650 		 * It's not enough that it's not actively running,
2651 		 * it must be off the runqueue _entirely_, and not
2652 		 * preempted!
2653 		 *
2654 		 * So if it was still runnable (but just not actively
2655 		 * running right now), it's preempted, and we should
2656 		 * yield - it could be a while.
2657 		 */
2658 		if (unlikely(queued)) {
2659 			ktime_t to = NSEC_PER_SEC / HZ;
2660 
2661 			set_current_state(TASK_UNINTERRUPTIBLE);
2662 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2663 			continue;
2664 		}
2665 
2666 		/*
2667 		 * Ahh, all good. It wasn't running, and it wasn't
2668 		 * runnable, which means that it will never become
2669 		 * running in the future either. We're all done!
2670 		 */
2671 		break;
2672 	}
2673 
2674 	return ncsw;
2675 }
2676 
2677 /***
2678  * kick_process - kick a running thread to enter/exit the kernel
2679  * @p: the to-be-kicked thread
2680  *
2681  * Cause a process which is running on another CPU to enter
2682  * kernel-mode, without any delay. (to get signals handled.)
2683  *
2684  * NOTE: this function doesn't have to take the runqueue lock,
2685  * because all it wants to ensure is that the remote task enters
2686  * the kernel. If the IPI races and the task has been migrated
2687  * to another CPU then no harm is done and the purpose has been
2688  * achieved as well.
2689  */
2690 void kick_process(struct task_struct *p)
2691 {
2692 	int cpu;
2693 
2694 	preempt_disable();
2695 	cpu = task_cpu(p);
2696 	if ((cpu != smp_processor_id()) && task_curr(p))
2697 		smp_send_reschedule(cpu);
2698 	preempt_enable();
2699 }
2700 EXPORT_SYMBOL_GPL(kick_process);
2701 
2702 /*
2703  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2704  *
2705  * A few notes on cpu_active vs cpu_online:
2706  *
2707  *  - cpu_active must be a subset of cpu_online
2708  *
2709  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2710  *    see __set_cpus_allowed_ptr(). At this point the newly online
2711  *    CPU isn't yet part of the sched domains, and balancing will not
2712  *    see it.
2713  *
2714  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2715  *    avoid the load balancer to place new tasks on the to be removed
2716  *    CPU. Existing tasks will remain running there and will be taken
2717  *    off.
2718  *
2719  * This means that fallback selection must not select !active CPUs.
2720  * And can assume that any active CPU must be online. Conversely
2721  * select_task_rq() below may allow selection of !active CPUs in order
2722  * to satisfy the above rules.
2723  */
2724 static int select_fallback_rq(int cpu, struct task_struct *p)
2725 {
2726 	int nid = cpu_to_node(cpu);
2727 	const struct cpumask *nodemask = NULL;
2728 	enum { cpuset, possible, fail } state = cpuset;
2729 	int dest_cpu;
2730 
2731 	/*
2732 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2733 	 * will return -1. There is no CPU on the node, and we should
2734 	 * select the CPU on the other node.
2735 	 */
2736 	if (nid != -1) {
2737 		nodemask = cpumask_of_node(nid);
2738 
2739 		/* Look for allowed, online CPU in same node. */
2740 		for_each_cpu(dest_cpu, nodemask) {
2741 			if (!cpu_active(dest_cpu))
2742 				continue;
2743 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2744 				return dest_cpu;
2745 		}
2746 	}
2747 
2748 	for (;;) {
2749 		/* Any allowed, online CPU? */
2750 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2751 			if (!is_cpu_allowed(p, dest_cpu))
2752 				continue;
2753 
2754 			goto out;
2755 		}
2756 
2757 		/* No more Mr. Nice Guy. */
2758 		switch (state) {
2759 		case cpuset:
2760 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2761 				cpuset_cpus_allowed_fallback(p);
2762 				state = possible;
2763 				break;
2764 			}
2765 			fallthrough;
2766 		case possible:
2767 			/*
2768 			 * XXX When called from select_task_rq() we only
2769 			 * hold p->pi_lock and again violate locking order.
2770 			 *
2771 			 * More yuck to audit.
2772 			 */
2773 			do_set_cpus_allowed(p, cpu_possible_mask);
2774 			state = fail;
2775 			break;
2776 
2777 		case fail:
2778 			BUG();
2779 			break;
2780 		}
2781 	}
2782 
2783 out:
2784 	if (state != cpuset) {
2785 		/*
2786 		 * Don't tell them about moving exiting tasks or
2787 		 * kernel threads (both mm NULL), since they never
2788 		 * leave kernel.
2789 		 */
2790 		if (p->mm && printk_ratelimit()) {
2791 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2792 					task_pid_nr(p), p->comm, cpu);
2793 		}
2794 	}
2795 
2796 	return dest_cpu;
2797 }
2798 
2799 /*
2800  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2801  */
2802 static inline
2803 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2804 {
2805 	lockdep_assert_held(&p->pi_lock);
2806 
2807 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2808 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2809 	else
2810 		cpu = cpumask_any(p->cpus_ptr);
2811 
2812 	/*
2813 	 * In order not to call set_task_cpu() on a blocking task we need
2814 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2815 	 * CPU.
2816 	 *
2817 	 * Since this is common to all placement strategies, this lives here.
2818 	 *
2819 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2820 	 *   not worry about this generic constraint ]
2821 	 */
2822 	if (unlikely(!is_cpu_allowed(p, cpu)))
2823 		cpu = select_fallback_rq(task_cpu(p), p);
2824 
2825 	return cpu;
2826 }
2827 
2828 void sched_set_stop_task(int cpu, struct task_struct *stop)
2829 {
2830 	static struct lock_class_key stop_pi_lock;
2831 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2832 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2833 
2834 	if (stop) {
2835 		/*
2836 		 * Make it appear like a SCHED_FIFO task, its something
2837 		 * userspace knows about and won't get confused about.
2838 		 *
2839 		 * Also, it will make PI more or less work without too
2840 		 * much confusion -- but then, stop work should not
2841 		 * rely on PI working anyway.
2842 		 */
2843 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2844 
2845 		stop->sched_class = &stop_sched_class;
2846 
2847 		/*
2848 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2849 		 * adjust the effective priority of a task. As a result,
2850 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2851 		 * which can then trigger wakeups of the stop thread to push
2852 		 * around the current task.
2853 		 *
2854 		 * The stop task itself will never be part of the PI-chain, it
2855 		 * never blocks, therefore that ->pi_lock recursion is safe.
2856 		 * Tell lockdep about this by placing the stop->pi_lock in its
2857 		 * own class.
2858 		 */
2859 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2860 	}
2861 
2862 	cpu_rq(cpu)->stop = stop;
2863 
2864 	if (old_stop) {
2865 		/*
2866 		 * Reset it back to a normal scheduling class so that
2867 		 * it can die in pieces.
2868 		 */
2869 		old_stop->sched_class = &rt_sched_class;
2870 	}
2871 }
2872 
2873 #else /* CONFIG_SMP */
2874 
2875 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2876 					 const struct cpumask *new_mask,
2877 					 u32 flags)
2878 {
2879 	return set_cpus_allowed_ptr(p, new_mask);
2880 }
2881 
2882 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2883 
2884 static inline bool rq_has_pinned_tasks(struct rq *rq)
2885 {
2886 	return false;
2887 }
2888 
2889 #endif /* !CONFIG_SMP */
2890 
2891 static void
2892 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2893 {
2894 	struct rq *rq;
2895 
2896 	if (!schedstat_enabled())
2897 		return;
2898 
2899 	rq = this_rq();
2900 
2901 #ifdef CONFIG_SMP
2902 	if (cpu == rq->cpu) {
2903 		__schedstat_inc(rq->ttwu_local);
2904 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2905 	} else {
2906 		struct sched_domain *sd;
2907 
2908 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2909 		rcu_read_lock();
2910 		for_each_domain(rq->cpu, sd) {
2911 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2912 				__schedstat_inc(sd->ttwu_wake_remote);
2913 				break;
2914 			}
2915 		}
2916 		rcu_read_unlock();
2917 	}
2918 
2919 	if (wake_flags & WF_MIGRATED)
2920 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2921 #endif /* CONFIG_SMP */
2922 
2923 	__schedstat_inc(rq->ttwu_count);
2924 	__schedstat_inc(p->se.statistics.nr_wakeups);
2925 
2926 	if (wake_flags & WF_SYNC)
2927 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2928 }
2929 
2930 /*
2931  * Mark the task runnable and perform wakeup-preemption.
2932  */
2933 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2934 			   struct rq_flags *rf)
2935 {
2936 	check_preempt_curr(rq, p, wake_flags);
2937 	p->state = TASK_RUNNING;
2938 	trace_sched_wakeup(p);
2939 
2940 #ifdef CONFIG_SMP
2941 	if (p->sched_class->task_woken) {
2942 		/*
2943 		 * Our task @p is fully woken up and running; so it's safe to
2944 		 * drop the rq->lock, hereafter rq is only used for statistics.
2945 		 */
2946 		rq_unpin_lock(rq, rf);
2947 		p->sched_class->task_woken(rq, p);
2948 		rq_repin_lock(rq, rf);
2949 	}
2950 
2951 	if (rq->idle_stamp) {
2952 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2953 		u64 max = 2*rq->max_idle_balance_cost;
2954 
2955 		update_avg(&rq->avg_idle, delta);
2956 
2957 		if (rq->avg_idle > max)
2958 			rq->avg_idle = max;
2959 
2960 		rq->idle_stamp = 0;
2961 	}
2962 #endif
2963 }
2964 
2965 static void
2966 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2967 		 struct rq_flags *rf)
2968 {
2969 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2970 
2971 	lockdep_assert_held(&rq->lock);
2972 
2973 	if (p->sched_contributes_to_load)
2974 		rq->nr_uninterruptible--;
2975 
2976 #ifdef CONFIG_SMP
2977 	if (wake_flags & WF_MIGRATED)
2978 		en_flags |= ENQUEUE_MIGRATED;
2979 	else
2980 #endif
2981 	if (p->in_iowait) {
2982 		delayacct_blkio_end(p);
2983 		atomic_dec(&task_rq(p)->nr_iowait);
2984 	}
2985 
2986 	activate_task(rq, p, en_flags);
2987 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2988 }
2989 
2990 /*
2991  * Consider @p being inside a wait loop:
2992  *
2993  *   for (;;) {
2994  *      set_current_state(TASK_UNINTERRUPTIBLE);
2995  *
2996  *      if (CONDITION)
2997  *         break;
2998  *
2999  *      schedule();
3000  *   }
3001  *   __set_current_state(TASK_RUNNING);
3002  *
3003  * between set_current_state() and schedule(). In this case @p is still
3004  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3005  * an atomic manner.
3006  *
3007  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3008  * then schedule() must still happen and p->state can be changed to
3009  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3010  * need to do a full wakeup with enqueue.
3011  *
3012  * Returns: %true when the wakeup is done,
3013  *          %false otherwise.
3014  */
3015 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3016 {
3017 	struct rq_flags rf;
3018 	struct rq *rq;
3019 	int ret = 0;
3020 
3021 	rq = __task_rq_lock(p, &rf);
3022 	if (task_on_rq_queued(p)) {
3023 		/* check_preempt_curr() may use rq clock */
3024 		update_rq_clock(rq);
3025 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3026 		ret = 1;
3027 	}
3028 	__task_rq_unlock(rq, &rf);
3029 
3030 	return ret;
3031 }
3032 
3033 #ifdef CONFIG_SMP
3034 void sched_ttwu_pending(void *arg)
3035 {
3036 	struct llist_node *llist = arg;
3037 	struct rq *rq = this_rq();
3038 	struct task_struct *p, *t;
3039 	struct rq_flags rf;
3040 
3041 	if (!llist)
3042 		return;
3043 
3044 	/*
3045 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3046 	 * Races such that false-negatives are possible, since they
3047 	 * are shorter lived that false-positives would be.
3048 	 */
3049 	WRITE_ONCE(rq->ttwu_pending, 0);
3050 
3051 	rq_lock_irqsave(rq, &rf);
3052 	update_rq_clock(rq);
3053 
3054 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3055 		if (WARN_ON_ONCE(p->on_cpu))
3056 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3057 
3058 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3059 			set_task_cpu(p, cpu_of(rq));
3060 
3061 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3062 	}
3063 
3064 	rq_unlock_irqrestore(rq, &rf);
3065 }
3066 
3067 void send_call_function_single_ipi(int cpu)
3068 {
3069 	struct rq *rq = cpu_rq(cpu);
3070 
3071 	if (!set_nr_if_polling(rq->idle))
3072 		arch_send_call_function_single_ipi(cpu);
3073 	else
3074 		trace_sched_wake_idle_without_ipi(cpu);
3075 }
3076 
3077 /*
3078  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3079  * necessary. The wakee CPU on receipt of the IPI will queue the task
3080  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3081  * of the wakeup instead of the waker.
3082  */
3083 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3084 {
3085 	struct rq *rq = cpu_rq(cpu);
3086 
3087 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3088 
3089 	WRITE_ONCE(rq->ttwu_pending, 1);
3090 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3091 }
3092 
3093 void wake_up_if_idle(int cpu)
3094 {
3095 	struct rq *rq = cpu_rq(cpu);
3096 	struct rq_flags rf;
3097 
3098 	rcu_read_lock();
3099 
3100 	if (!is_idle_task(rcu_dereference(rq->curr)))
3101 		goto out;
3102 
3103 	if (set_nr_if_polling(rq->idle)) {
3104 		trace_sched_wake_idle_without_ipi(cpu);
3105 	} else {
3106 		rq_lock_irqsave(rq, &rf);
3107 		if (is_idle_task(rq->curr))
3108 			smp_send_reschedule(cpu);
3109 		/* Else CPU is not idle, do nothing here: */
3110 		rq_unlock_irqrestore(rq, &rf);
3111 	}
3112 
3113 out:
3114 	rcu_read_unlock();
3115 }
3116 
3117 bool cpus_share_cache(int this_cpu, int that_cpu)
3118 {
3119 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3120 }
3121 
3122 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3123 {
3124 	/*
3125 	 * If the CPU does not share cache, then queue the task on the
3126 	 * remote rqs wakelist to avoid accessing remote data.
3127 	 */
3128 	if (!cpus_share_cache(smp_processor_id(), cpu))
3129 		return true;
3130 
3131 	/*
3132 	 * If the task is descheduling and the only running task on the
3133 	 * CPU then use the wakelist to offload the task activation to
3134 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3135 	 * nr_running is checked to avoid unnecessary task stacking.
3136 	 */
3137 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3138 		return true;
3139 
3140 	return false;
3141 }
3142 
3143 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3144 {
3145 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3146 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3147 			return false;
3148 
3149 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3150 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3151 		return true;
3152 	}
3153 
3154 	return false;
3155 }
3156 
3157 #else /* !CONFIG_SMP */
3158 
3159 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3160 {
3161 	return false;
3162 }
3163 
3164 #endif /* CONFIG_SMP */
3165 
3166 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3167 {
3168 	struct rq *rq = cpu_rq(cpu);
3169 	struct rq_flags rf;
3170 
3171 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3172 		return;
3173 
3174 	rq_lock(rq, &rf);
3175 	update_rq_clock(rq);
3176 	ttwu_do_activate(rq, p, wake_flags, &rf);
3177 	rq_unlock(rq, &rf);
3178 }
3179 
3180 /*
3181  * Notes on Program-Order guarantees on SMP systems.
3182  *
3183  *  MIGRATION
3184  *
3185  * The basic program-order guarantee on SMP systems is that when a task [t]
3186  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3187  * execution on its new CPU [c1].
3188  *
3189  * For migration (of runnable tasks) this is provided by the following means:
3190  *
3191  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3192  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3193  *     rq(c1)->lock (if not at the same time, then in that order).
3194  *  C) LOCK of the rq(c1)->lock scheduling in task
3195  *
3196  * Release/acquire chaining guarantees that B happens after A and C after B.
3197  * Note: the CPU doing B need not be c0 or c1
3198  *
3199  * Example:
3200  *
3201  *   CPU0            CPU1            CPU2
3202  *
3203  *   LOCK rq(0)->lock
3204  *   sched-out X
3205  *   sched-in Y
3206  *   UNLOCK rq(0)->lock
3207  *
3208  *                                   LOCK rq(0)->lock // orders against CPU0
3209  *                                   dequeue X
3210  *                                   UNLOCK rq(0)->lock
3211  *
3212  *                                   LOCK rq(1)->lock
3213  *                                   enqueue X
3214  *                                   UNLOCK rq(1)->lock
3215  *
3216  *                   LOCK rq(1)->lock // orders against CPU2
3217  *                   sched-out Z
3218  *                   sched-in X
3219  *                   UNLOCK rq(1)->lock
3220  *
3221  *
3222  *  BLOCKING -- aka. SLEEP + WAKEUP
3223  *
3224  * For blocking we (obviously) need to provide the same guarantee as for
3225  * migration. However the means are completely different as there is no lock
3226  * chain to provide order. Instead we do:
3227  *
3228  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3229  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3230  *
3231  * Example:
3232  *
3233  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3234  *
3235  *   LOCK rq(0)->lock LOCK X->pi_lock
3236  *   dequeue X
3237  *   sched-out X
3238  *   smp_store_release(X->on_cpu, 0);
3239  *
3240  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3241  *                    X->state = WAKING
3242  *                    set_task_cpu(X,2)
3243  *
3244  *                    LOCK rq(2)->lock
3245  *                    enqueue X
3246  *                    X->state = RUNNING
3247  *                    UNLOCK rq(2)->lock
3248  *
3249  *                                          LOCK rq(2)->lock // orders against CPU1
3250  *                                          sched-out Z
3251  *                                          sched-in X
3252  *                                          UNLOCK rq(2)->lock
3253  *
3254  *                    UNLOCK X->pi_lock
3255  *   UNLOCK rq(0)->lock
3256  *
3257  *
3258  * However, for wakeups there is a second guarantee we must provide, namely we
3259  * must ensure that CONDITION=1 done by the caller can not be reordered with
3260  * accesses to the task state; see try_to_wake_up() and set_current_state().
3261  */
3262 
3263 /**
3264  * try_to_wake_up - wake up a thread
3265  * @p: the thread to be awakened
3266  * @state: the mask of task states that can be woken
3267  * @wake_flags: wake modifier flags (WF_*)
3268  *
3269  * Conceptually does:
3270  *
3271  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3272  *
3273  * If the task was not queued/runnable, also place it back on a runqueue.
3274  *
3275  * This function is atomic against schedule() which would dequeue the task.
3276  *
3277  * It issues a full memory barrier before accessing @p->state, see the comment
3278  * with set_current_state().
3279  *
3280  * Uses p->pi_lock to serialize against concurrent wake-ups.
3281  *
3282  * Relies on p->pi_lock stabilizing:
3283  *  - p->sched_class
3284  *  - p->cpus_ptr
3285  *  - p->sched_task_group
3286  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3287  *
3288  * Tries really hard to only take one task_rq(p)->lock for performance.
3289  * Takes rq->lock in:
3290  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3291  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3292  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3293  *
3294  * As a consequence we race really badly with just about everything. See the
3295  * many memory barriers and their comments for details.
3296  *
3297  * Return: %true if @p->state changes (an actual wakeup was done),
3298  *	   %false otherwise.
3299  */
3300 static int
3301 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3302 {
3303 	unsigned long flags;
3304 	int cpu, success = 0;
3305 
3306 	preempt_disable();
3307 	if (p == current) {
3308 		/*
3309 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3310 		 * == smp_processor_id()'. Together this means we can special
3311 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3312 		 * without taking any locks.
3313 		 *
3314 		 * In particular:
3315 		 *  - we rely on Program-Order guarantees for all the ordering,
3316 		 *  - we're serialized against set_special_state() by virtue of
3317 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3318 		 */
3319 		if (!(p->state & state))
3320 			goto out;
3321 
3322 		success = 1;
3323 		trace_sched_waking(p);
3324 		p->state = TASK_RUNNING;
3325 		trace_sched_wakeup(p);
3326 		goto out;
3327 	}
3328 
3329 	/*
3330 	 * If we are going to wake up a thread waiting for CONDITION we
3331 	 * need to ensure that CONDITION=1 done by the caller can not be
3332 	 * reordered with p->state check below. This pairs with smp_store_mb()
3333 	 * in set_current_state() that the waiting thread does.
3334 	 */
3335 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3336 	smp_mb__after_spinlock();
3337 	if (!(p->state & state))
3338 		goto unlock;
3339 
3340 	trace_sched_waking(p);
3341 
3342 	/* We're going to change ->state: */
3343 	success = 1;
3344 
3345 	/*
3346 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3347 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3348 	 * in smp_cond_load_acquire() below.
3349 	 *
3350 	 * sched_ttwu_pending()			try_to_wake_up()
3351 	 *   STORE p->on_rq = 1			  LOAD p->state
3352 	 *   UNLOCK rq->lock
3353 	 *
3354 	 * __schedule() (switch to task 'p')
3355 	 *   LOCK rq->lock			  smp_rmb();
3356 	 *   smp_mb__after_spinlock();
3357 	 *   UNLOCK rq->lock
3358 	 *
3359 	 * [task p]
3360 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3361 	 *
3362 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3363 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3364 	 *
3365 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3366 	 */
3367 	smp_rmb();
3368 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3369 		goto unlock;
3370 
3371 #ifdef CONFIG_SMP
3372 	/*
3373 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3374 	 * possible to, falsely, observe p->on_cpu == 0.
3375 	 *
3376 	 * One must be running (->on_cpu == 1) in order to remove oneself
3377 	 * from the runqueue.
3378 	 *
3379 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3380 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3381 	 *   UNLOCK rq->lock
3382 	 *
3383 	 * __schedule() (put 'p' to sleep)
3384 	 *   LOCK rq->lock			  smp_rmb();
3385 	 *   smp_mb__after_spinlock();
3386 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3387 	 *
3388 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3389 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3390 	 *
3391 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3392 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3393 	 * care about it's own p->state. See the comment in __schedule().
3394 	 */
3395 	smp_acquire__after_ctrl_dep();
3396 
3397 	/*
3398 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3399 	 * == 0), which means we need to do an enqueue, change p->state to
3400 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3401 	 * enqueue, such as ttwu_queue_wakelist().
3402 	 */
3403 	p->state = TASK_WAKING;
3404 
3405 	/*
3406 	 * If the owning (remote) CPU is still in the middle of schedule() with
3407 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3408 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3409 	 * let the waker make forward progress. This is safe because IRQs are
3410 	 * disabled and the IPI will deliver after on_cpu is cleared.
3411 	 *
3412 	 * Ensure we load task_cpu(p) after p->on_cpu:
3413 	 *
3414 	 * set_task_cpu(p, cpu);
3415 	 *   STORE p->cpu = @cpu
3416 	 * __schedule() (switch to task 'p')
3417 	 *   LOCK rq->lock
3418 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3419 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3420 	 *
3421 	 * to ensure we observe the correct CPU on which the task is currently
3422 	 * scheduling.
3423 	 */
3424 	if (smp_load_acquire(&p->on_cpu) &&
3425 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3426 		goto unlock;
3427 
3428 	/*
3429 	 * If the owning (remote) CPU is still in the middle of schedule() with
3430 	 * this task as prev, wait until it's done referencing the task.
3431 	 *
3432 	 * Pairs with the smp_store_release() in finish_task().
3433 	 *
3434 	 * This ensures that tasks getting woken will be fully ordered against
3435 	 * their previous state and preserve Program Order.
3436 	 */
3437 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3438 
3439 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3440 	if (task_cpu(p) != cpu) {
3441 		if (p->in_iowait) {
3442 			delayacct_blkio_end(p);
3443 			atomic_dec(&task_rq(p)->nr_iowait);
3444 		}
3445 
3446 		wake_flags |= WF_MIGRATED;
3447 		psi_ttwu_dequeue(p);
3448 		set_task_cpu(p, cpu);
3449 	}
3450 #else
3451 	cpu = task_cpu(p);
3452 #endif /* CONFIG_SMP */
3453 
3454 	ttwu_queue(p, cpu, wake_flags);
3455 unlock:
3456 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3457 out:
3458 	if (success)
3459 		ttwu_stat(p, task_cpu(p), wake_flags);
3460 	preempt_enable();
3461 
3462 	return success;
3463 }
3464 
3465 /**
3466  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3467  * @p: Process for which the function is to be invoked.
3468  * @func: Function to invoke.
3469  * @arg: Argument to function.
3470  *
3471  * If the specified task can be quickly locked into a definite state
3472  * (either sleeping or on a given runqueue), arrange to keep it in that
3473  * state while invoking @func(@arg).  This function can use ->on_rq and
3474  * task_curr() to work out what the state is, if required.  Given that
3475  * @func can be invoked with a runqueue lock held, it had better be quite
3476  * lightweight.
3477  *
3478  * Returns:
3479  *	@false if the task slipped out from under the locks.
3480  *	@true if the task was locked onto a runqueue or is sleeping.
3481  *		However, @func can override this by returning @false.
3482  */
3483 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3484 {
3485 	bool ret = false;
3486 	struct rq_flags rf;
3487 	struct rq *rq;
3488 
3489 	lockdep_assert_irqs_enabled();
3490 	raw_spin_lock_irq(&p->pi_lock);
3491 	if (p->on_rq) {
3492 		rq = __task_rq_lock(p, &rf);
3493 		if (task_rq(p) == rq)
3494 			ret = func(p, arg);
3495 		rq_unlock(rq, &rf);
3496 	} else {
3497 		switch (p->state) {
3498 		case TASK_RUNNING:
3499 		case TASK_WAKING:
3500 			break;
3501 		default:
3502 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3503 			if (!p->on_rq)
3504 				ret = func(p, arg);
3505 		}
3506 	}
3507 	raw_spin_unlock_irq(&p->pi_lock);
3508 	return ret;
3509 }
3510 
3511 /**
3512  * wake_up_process - Wake up a specific process
3513  * @p: The process to be woken up.
3514  *
3515  * Attempt to wake up the nominated process and move it to the set of runnable
3516  * processes.
3517  *
3518  * Return: 1 if the process was woken up, 0 if it was already running.
3519  *
3520  * This function executes a full memory barrier before accessing the task state.
3521  */
3522 int wake_up_process(struct task_struct *p)
3523 {
3524 	return try_to_wake_up(p, TASK_NORMAL, 0);
3525 }
3526 EXPORT_SYMBOL(wake_up_process);
3527 
3528 int wake_up_state(struct task_struct *p, unsigned int state)
3529 {
3530 	return try_to_wake_up(p, state, 0);
3531 }
3532 
3533 /*
3534  * Perform scheduler related setup for a newly forked process p.
3535  * p is forked by current.
3536  *
3537  * __sched_fork() is basic setup used by init_idle() too:
3538  */
3539 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3540 {
3541 	p->on_rq			= 0;
3542 
3543 	p->se.on_rq			= 0;
3544 	p->se.exec_start		= 0;
3545 	p->se.sum_exec_runtime		= 0;
3546 	p->se.prev_sum_exec_runtime	= 0;
3547 	p->se.nr_migrations		= 0;
3548 	p->se.vruntime			= 0;
3549 	INIT_LIST_HEAD(&p->se.group_node);
3550 
3551 #ifdef CONFIG_FAIR_GROUP_SCHED
3552 	p->se.cfs_rq			= NULL;
3553 #endif
3554 
3555 #ifdef CONFIG_SCHEDSTATS
3556 	/* Even if schedstat is disabled, there should not be garbage */
3557 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3558 #endif
3559 
3560 	RB_CLEAR_NODE(&p->dl.rb_node);
3561 	init_dl_task_timer(&p->dl);
3562 	init_dl_inactive_task_timer(&p->dl);
3563 	__dl_clear_params(p);
3564 
3565 	INIT_LIST_HEAD(&p->rt.run_list);
3566 	p->rt.timeout		= 0;
3567 	p->rt.time_slice	= sched_rr_timeslice;
3568 	p->rt.on_rq		= 0;
3569 	p->rt.on_list		= 0;
3570 
3571 #ifdef CONFIG_PREEMPT_NOTIFIERS
3572 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3573 #endif
3574 
3575 #ifdef CONFIG_COMPACTION
3576 	p->capture_control = NULL;
3577 #endif
3578 	init_numa_balancing(clone_flags, p);
3579 #ifdef CONFIG_SMP
3580 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3581 	p->migration_pending = NULL;
3582 #endif
3583 }
3584 
3585 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3586 
3587 #ifdef CONFIG_NUMA_BALANCING
3588 
3589 void set_numabalancing_state(bool enabled)
3590 {
3591 	if (enabled)
3592 		static_branch_enable(&sched_numa_balancing);
3593 	else
3594 		static_branch_disable(&sched_numa_balancing);
3595 }
3596 
3597 #ifdef CONFIG_PROC_SYSCTL
3598 int sysctl_numa_balancing(struct ctl_table *table, int write,
3599 			  void *buffer, size_t *lenp, loff_t *ppos)
3600 {
3601 	struct ctl_table t;
3602 	int err;
3603 	int state = static_branch_likely(&sched_numa_balancing);
3604 
3605 	if (write && !capable(CAP_SYS_ADMIN))
3606 		return -EPERM;
3607 
3608 	t = *table;
3609 	t.data = &state;
3610 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3611 	if (err < 0)
3612 		return err;
3613 	if (write)
3614 		set_numabalancing_state(state);
3615 	return err;
3616 }
3617 #endif
3618 #endif
3619 
3620 #ifdef CONFIG_SCHEDSTATS
3621 
3622 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3623 static bool __initdata __sched_schedstats = false;
3624 
3625 static void set_schedstats(bool enabled)
3626 {
3627 	if (enabled)
3628 		static_branch_enable(&sched_schedstats);
3629 	else
3630 		static_branch_disable(&sched_schedstats);
3631 }
3632 
3633 void force_schedstat_enabled(void)
3634 {
3635 	if (!schedstat_enabled()) {
3636 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3637 		static_branch_enable(&sched_schedstats);
3638 	}
3639 }
3640 
3641 static int __init setup_schedstats(char *str)
3642 {
3643 	int ret = 0;
3644 	if (!str)
3645 		goto out;
3646 
3647 	/*
3648 	 * This code is called before jump labels have been set up, so we can't
3649 	 * change the static branch directly just yet.  Instead set a temporary
3650 	 * variable so init_schedstats() can do it later.
3651 	 */
3652 	if (!strcmp(str, "enable")) {
3653 		__sched_schedstats = true;
3654 		ret = 1;
3655 	} else if (!strcmp(str, "disable")) {
3656 		__sched_schedstats = false;
3657 		ret = 1;
3658 	}
3659 out:
3660 	if (!ret)
3661 		pr_warn("Unable to parse schedstats=\n");
3662 
3663 	return ret;
3664 }
3665 __setup("schedstats=", setup_schedstats);
3666 
3667 static void __init init_schedstats(void)
3668 {
3669 	set_schedstats(__sched_schedstats);
3670 }
3671 
3672 #ifdef CONFIG_PROC_SYSCTL
3673 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3674 		size_t *lenp, loff_t *ppos)
3675 {
3676 	struct ctl_table t;
3677 	int err;
3678 	int state = static_branch_likely(&sched_schedstats);
3679 
3680 	if (write && !capable(CAP_SYS_ADMIN))
3681 		return -EPERM;
3682 
3683 	t = *table;
3684 	t.data = &state;
3685 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3686 	if (err < 0)
3687 		return err;
3688 	if (write)
3689 		set_schedstats(state);
3690 	return err;
3691 }
3692 #endif /* CONFIG_PROC_SYSCTL */
3693 #else  /* !CONFIG_SCHEDSTATS */
3694 static inline void init_schedstats(void) {}
3695 #endif /* CONFIG_SCHEDSTATS */
3696 
3697 /*
3698  * fork()/clone()-time setup:
3699  */
3700 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3701 {
3702 	unsigned long flags;
3703 
3704 	__sched_fork(clone_flags, p);
3705 	/*
3706 	 * We mark the process as NEW here. This guarantees that
3707 	 * nobody will actually run it, and a signal or other external
3708 	 * event cannot wake it up and insert it on the runqueue either.
3709 	 */
3710 	p->state = TASK_NEW;
3711 
3712 	/*
3713 	 * Make sure we do not leak PI boosting priority to the child.
3714 	 */
3715 	p->prio = current->normal_prio;
3716 
3717 	uclamp_fork(p);
3718 
3719 	/*
3720 	 * Revert to default priority/policy on fork if requested.
3721 	 */
3722 	if (unlikely(p->sched_reset_on_fork)) {
3723 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3724 			p->policy = SCHED_NORMAL;
3725 			p->static_prio = NICE_TO_PRIO(0);
3726 			p->rt_priority = 0;
3727 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3728 			p->static_prio = NICE_TO_PRIO(0);
3729 
3730 		p->prio = p->normal_prio = __normal_prio(p);
3731 		set_load_weight(p, false);
3732 
3733 		/*
3734 		 * We don't need the reset flag anymore after the fork. It has
3735 		 * fulfilled its duty:
3736 		 */
3737 		p->sched_reset_on_fork = 0;
3738 	}
3739 
3740 	if (dl_prio(p->prio))
3741 		return -EAGAIN;
3742 	else if (rt_prio(p->prio))
3743 		p->sched_class = &rt_sched_class;
3744 	else
3745 		p->sched_class = &fair_sched_class;
3746 
3747 	init_entity_runnable_average(&p->se);
3748 
3749 	/*
3750 	 * The child is not yet in the pid-hash so no cgroup attach races,
3751 	 * and the cgroup is pinned to this child due to cgroup_fork()
3752 	 * is ran before sched_fork().
3753 	 *
3754 	 * Silence PROVE_RCU.
3755 	 */
3756 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3757 	rseq_migrate(p);
3758 	/*
3759 	 * We're setting the CPU for the first time, we don't migrate,
3760 	 * so use __set_task_cpu().
3761 	 */
3762 	__set_task_cpu(p, smp_processor_id());
3763 	if (p->sched_class->task_fork)
3764 		p->sched_class->task_fork(p);
3765 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3766 
3767 #ifdef CONFIG_SCHED_INFO
3768 	if (likely(sched_info_on()))
3769 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3770 #endif
3771 #if defined(CONFIG_SMP)
3772 	p->on_cpu = 0;
3773 #endif
3774 	init_task_preempt_count(p);
3775 #ifdef CONFIG_SMP
3776 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3777 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3778 #endif
3779 	return 0;
3780 }
3781 
3782 void sched_post_fork(struct task_struct *p)
3783 {
3784 	uclamp_post_fork(p);
3785 }
3786 
3787 unsigned long to_ratio(u64 period, u64 runtime)
3788 {
3789 	if (runtime == RUNTIME_INF)
3790 		return BW_UNIT;
3791 
3792 	/*
3793 	 * Doing this here saves a lot of checks in all
3794 	 * the calling paths, and returning zero seems
3795 	 * safe for them anyway.
3796 	 */
3797 	if (period == 0)
3798 		return 0;
3799 
3800 	return div64_u64(runtime << BW_SHIFT, period);
3801 }
3802 
3803 /*
3804  * wake_up_new_task - wake up a newly created task for the first time.
3805  *
3806  * This function will do some initial scheduler statistics housekeeping
3807  * that must be done for every newly created context, then puts the task
3808  * on the runqueue and wakes it.
3809  */
3810 void wake_up_new_task(struct task_struct *p)
3811 {
3812 	struct rq_flags rf;
3813 	struct rq *rq;
3814 
3815 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3816 	p->state = TASK_RUNNING;
3817 #ifdef CONFIG_SMP
3818 	/*
3819 	 * Fork balancing, do it here and not earlier because:
3820 	 *  - cpus_ptr can change in the fork path
3821 	 *  - any previously selected CPU might disappear through hotplug
3822 	 *
3823 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3824 	 * as we're not fully set-up yet.
3825 	 */
3826 	p->recent_used_cpu = task_cpu(p);
3827 	rseq_migrate(p);
3828 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3829 #endif
3830 	rq = __task_rq_lock(p, &rf);
3831 	update_rq_clock(rq);
3832 	post_init_entity_util_avg(p);
3833 
3834 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3835 	trace_sched_wakeup_new(p);
3836 	check_preempt_curr(rq, p, WF_FORK);
3837 #ifdef CONFIG_SMP
3838 	if (p->sched_class->task_woken) {
3839 		/*
3840 		 * Nothing relies on rq->lock after this, so it's fine to
3841 		 * drop it.
3842 		 */
3843 		rq_unpin_lock(rq, &rf);
3844 		p->sched_class->task_woken(rq, p);
3845 		rq_repin_lock(rq, &rf);
3846 	}
3847 #endif
3848 	task_rq_unlock(rq, p, &rf);
3849 }
3850 
3851 #ifdef CONFIG_PREEMPT_NOTIFIERS
3852 
3853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3854 
3855 void preempt_notifier_inc(void)
3856 {
3857 	static_branch_inc(&preempt_notifier_key);
3858 }
3859 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3860 
3861 void preempt_notifier_dec(void)
3862 {
3863 	static_branch_dec(&preempt_notifier_key);
3864 }
3865 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3866 
3867 /**
3868  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3869  * @notifier: notifier struct to register
3870  */
3871 void preempt_notifier_register(struct preempt_notifier *notifier)
3872 {
3873 	if (!static_branch_unlikely(&preempt_notifier_key))
3874 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3875 
3876 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3877 }
3878 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3879 
3880 /**
3881  * preempt_notifier_unregister - no longer interested in preemption notifications
3882  * @notifier: notifier struct to unregister
3883  *
3884  * This is *not* safe to call from within a preemption notifier.
3885  */
3886 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3887 {
3888 	hlist_del(&notifier->link);
3889 }
3890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3891 
3892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3893 {
3894 	struct preempt_notifier *notifier;
3895 
3896 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3897 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3898 }
3899 
3900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3901 {
3902 	if (static_branch_unlikely(&preempt_notifier_key))
3903 		__fire_sched_in_preempt_notifiers(curr);
3904 }
3905 
3906 static void
3907 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3908 				   struct task_struct *next)
3909 {
3910 	struct preempt_notifier *notifier;
3911 
3912 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3913 		notifier->ops->sched_out(notifier, next);
3914 }
3915 
3916 static __always_inline void
3917 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3918 				 struct task_struct *next)
3919 {
3920 	if (static_branch_unlikely(&preempt_notifier_key))
3921 		__fire_sched_out_preempt_notifiers(curr, next);
3922 }
3923 
3924 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3925 
3926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3927 {
3928 }
3929 
3930 static inline void
3931 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3932 				 struct task_struct *next)
3933 {
3934 }
3935 
3936 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3937 
3938 static inline void prepare_task(struct task_struct *next)
3939 {
3940 #ifdef CONFIG_SMP
3941 	/*
3942 	 * Claim the task as running, we do this before switching to it
3943 	 * such that any running task will have this set.
3944 	 *
3945 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3946 	 */
3947 	WRITE_ONCE(next->on_cpu, 1);
3948 #endif
3949 }
3950 
3951 static inline void finish_task(struct task_struct *prev)
3952 {
3953 #ifdef CONFIG_SMP
3954 	/*
3955 	 * This must be the very last reference to @prev from this CPU. After
3956 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3957 	 * must ensure this doesn't happen until the switch is completely
3958 	 * finished.
3959 	 *
3960 	 * In particular, the load of prev->state in finish_task_switch() must
3961 	 * happen before this.
3962 	 *
3963 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3964 	 */
3965 	smp_store_release(&prev->on_cpu, 0);
3966 #endif
3967 }
3968 
3969 #ifdef CONFIG_SMP
3970 
3971 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3972 {
3973 	void (*func)(struct rq *rq);
3974 	struct callback_head *next;
3975 
3976 	lockdep_assert_held(&rq->lock);
3977 
3978 	while (head) {
3979 		func = (void (*)(struct rq *))head->func;
3980 		next = head->next;
3981 		head->next = NULL;
3982 		head = next;
3983 
3984 		func(rq);
3985 	}
3986 }
3987 
3988 static void balance_push(struct rq *rq);
3989 
3990 struct callback_head balance_push_callback = {
3991 	.next = NULL,
3992 	.func = (void (*)(struct callback_head *))balance_push,
3993 };
3994 
3995 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3996 {
3997 	struct callback_head *head = rq->balance_callback;
3998 
3999 	lockdep_assert_held(&rq->lock);
4000 	if (head)
4001 		rq->balance_callback = NULL;
4002 
4003 	return head;
4004 }
4005 
4006 static void __balance_callbacks(struct rq *rq)
4007 {
4008 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4009 }
4010 
4011 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4012 {
4013 	unsigned long flags;
4014 
4015 	if (unlikely(head)) {
4016 		raw_spin_lock_irqsave(&rq->lock, flags);
4017 		do_balance_callbacks(rq, head);
4018 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4019 	}
4020 }
4021 
4022 #else
4023 
4024 static inline void __balance_callbacks(struct rq *rq)
4025 {
4026 }
4027 
4028 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4029 {
4030 	return NULL;
4031 }
4032 
4033 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4034 {
4035 }
4036 
4037 #endif
4038 
4039 static inline void
4040 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4041 {
4042 	/*
4043 	 * Since the runqueue lock will be released by the next
4044 	 * task (which is an invalid locking op but in the case
4045 	 * of the scheduler it's an obvious special-case), so we
4046 	 * do an early lockdep release here:
4047 	 */
4048 	rq_unpin_lock(rq, rf);
4049 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4050 #ifdef CONFIG_DEBUG_SPINLOCK
4051 	/* this is a valid case when another task releases the spinlock */
4052 	rq->lock.owner = next;
4053 #endif
4054 }
4055 
4056 static inline void finish_lock_switch(struct rq *rq)
4057 {
4058 	/*
4059 	 * If we are tracking spinlock dependencies then we have to
4060 	 * fix up the runqueue lock - which gets 'carried over' from
4061 	 * prev into current:
4062 	 */
4063 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4064 	__balance_callbacks(rq);
4065 	raw_spin_unlock_irq(&rq->lock);
4066 }
4067 
4068 /*
4069  * NOP if the arch has not defined these:
4070  */
4071 
4072 #ifndef prepare_arch_switch
4073 # define prepare_arch_switch(next)	do { } while (0)
4074 #endif
4075 
4076 #ifndef finish_arch_post_lock_switch
4077 # define finish_arch_post_lock_switch()	do { } while (0)
4078 #endif
4079 
4080 static inline void kmap_local_sched_out(void)
4081 {
4082 #ifdef CONFIG_KMAP_LOCAL
4083 	if (unlikely(current->kmap_ctrl.idx))
4084 		__kmap_local_sched_out();
4085 #endif
4086 }
4087 
4088 static inline void kmap_local_sched_in(void)
4089 {
4090 #ifdef CONFIG_KMAP_LOCAL
4091 	if (unlikely(current->kmap_ctrl.idx))
4092 		__kmap_local_sched_in();
4093 #endif
4094 }
4095 
4096 /**
4097  * prepare_task_switch - prepare to switch tasks
4098  * @rq: the runqueue preparing to switch
4099  * @prev: the current task that is being switched out
4100  * @next: the task we are going to switch to.
4101  *
4102  * This is called with the rq lock held and interrupts off. It must
4103  * be paired with a subsequent finish_task_switch after the context
4104  * switch.
4105  *
4106  * prepare_task_switch sets up locking and calls architecture specific
4107  * hooks.
4108  */
4109 static inline void
4110 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4111 		    struct task_struct *next)
4112 {
4113 	kcov_prepare_switch(prev);
4114 	sched_info_switch(rq, prev, next);
4115 	perf_event_task_sched_out(prev, next);
4116 	rseq_preempt(prev);
4117 	fire_sched_out_preempt_notifiers(prev, next);
4118 	kmap_local_sched_out();
4119 	prepare_task(next);
4120 	prepare_arch_switch(next);
4121 }
4122 
4123 /**
4124  * finish_task_switch - clean up after a task-switch
4125  * @prev: the thread we just switched away from.
4126  *
4127  * finish_task_switch must be called after the context switch, paired
4128  * with a prepare_task_switch call before the context switch.
4129  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4130  * and do any other architecture-specific cleanup actions.
4131  *
4132  * Note that we may have delayed dropping an mm in context_switch(). If
4133  * so, we finish that here outside of the runqueue lock. (Doing it
4134  * with the lock held can cause deadlocks; see schedule() for
4135  * details.)
4136  *
4137  * The context switch have flipped the stack from under us and restored the
4138  * local variables which were saved when this task called schedule() in the
4139  * past. prev == current is still correct but we need to recalculate this_rq
4140  * because prev may have moved to another CPU.
4141  */
4142 static struct rq *finish_task_switch(struct task_struct *prev)
4143 	__releases(rq->lock)
4144 {
4145 	struct rq *rq = this_rq();
4146 	struct mm_struct *mm = rq->prev_mm;
4147 	long prev_state;
4148 
4149 	/*
4150 	 * The previous task will have left us with a preempt_count of 2
4151 	 * because it left us after:
4152 	 *
4153 	 *	schedule()
4154 	 *	  preempt_disable();			// 1
4155 	 *	  __schedule()
4156 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4157 	 *
4158 	 * Also, see FORK_PREEMPT_COUNT.
4159 	 */
4160 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4161 		      "corrupted preempt_count: %s/%d/0x%x\n",
4162 		      current->comm, current->pid, preempt_count()))
4163 		preempt_count_set(FORK_PREEMPT_COUNT);
4164 
4165 	rq->prev_mm = NULL;
4166 
4167 	/*
4168 	 * A task struct has one reference for the use as "current".
4169 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4170 	 * schedule one last time. The schedule call will never return, and
4171 	 * the scheduled task must drop that reference.
4172 	 *
4173 	 * We must observe prev->state before clearing prev->on_cpu (in
4174 	 * finish_task), otherwise a concurrent wakeup can get prev
4175 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4176 	 * transition, resulting in a double drop.
4177 	 */
4178 	prev_state = prev->state;
4179 	vtime_task_switch(prev);
4180 	perf_event_task_sched_in(prev, current);
4181 	finish_task(prev);
4182 	finish_lock_switch(rq);
4183 	finish_arch_post_lock_switch();
4184 	kcov_finish_switch(current);
4185 	/*
4186 	 * kmap_local_sched_out() is invoked with rq::lock held and
4187 	 * interrupts disabled. There is no requirement for that, but the
4188 	 * sched out code does not have an interrupt enabled section.
4189 	 * Restoring the maps on sched in does not require interrupts being
4190 	 * disabled either.
4191 	 */
4192 	kmap_local_sched_in();
4193 
4194 	fire_sched_in_preempt_notifiers(current);
4195 	/*
4196 	 * When switching through a kernel thread, the loop in
4197 	 * membarrier_{private,global}_expedited() may have observed that
4198 	 * kernel thread and not issued an IPI. It is therefore possible to
4199 	 * schedule between user->kernel->user threads without passing though
4200 	 * switch_mm(). Membarrier requires a barrier after storing to
4201 	 * rq->curr, before returning to userspace, so provide them here:
4202 	 *
4203 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4204 	 *   provided by mmdrop(),
4205 	 * - a sync_core for SYNC_CORE.
4206 	 */
4207 	if (mm) {
4208 		membarrier_mm_sync_core_before_usermode(mm);
4209 		mmdrop(mm);
4210 	}
4211 	if (unlikely(prev_state == TASK_DEAD)) {
4212 		if (prev->sched_class->task_dead)
4213 			prev->sched_class->task_dead(prev);
4214 
4215 		/*
4216 		 * Remove function-return probe instances associated with this
4217 		 * task and put them back on the free list.
4218 		 */
4219 		kprobe_flush_task(prev);
4220 
4221 		/* Task is done with its stack. */
4222 		put_task_stack(prev);
4223 
4224 		put_task_struct_rcu_user(prev);
4225 	}
4226 
4227 	tick_nohz_task_switch();
4228 	return rq;
4229 }
4230 
4231 /**
4232  * schedule_tail - first thing a freshly forked thread must call.
4233  * @prev: the thread we just switched away from.
4234  */
4235 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4236 	__releases(rq->lock)
4237 {
4238 	struct rq *rq;
4239 
4240 	/*
4241 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4242 	 * finish_task_switch() for details.
4243 	 *
4244 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4245 	 * and the preempt_enable() will end up enabling preemption (on
4246 	 * PREEMPT_COUNT kernels).
4247 	 */
4248 
4249 	rq = finish_task_switch(prev);
4250 	preempt_enable();
4251 
4252 	if (current->set_child_tid)
4253 		put_user(task_pid_vnr(current), current->set_child_tid);
4254 
4255 	calculate_sigpending();
4256 }
4257 
4258 /*
4259  * context_switch - switch to the new MM and the new thread's register state.
4260  */
4261 static __always_inline struct rq *
4262 context_switch(struct rq *rq, struct task_struct *prev,
4263 	       struct task_struct *next, struct rq_flags *rf)
4264 {
4265 	prepare_task_switch(rq, prev, next);
4266 
4267 	/*
4268 	 * For paravirt, this is coupled with an exit in switch_to to
4269 	 * combine the page table reload and the switch backend into
4270 	 * one hypercall.
4271 	 */
4272 	arch_start_context_switch(prev);
4273 
4274 	/*
4275 	 * kernel -> kernel   lazy + transfer active
4276 	 *   user -> kernel   lazy + mmgrab() active
4277 	 *
4278 	 * kernel ->   user   switch + mmdrop() active
4279 	 *   user ->   user   switch
4280 	 */
4281 	if (!next->mm) {                                // to kernel
4282 		enter_lazy_tlb(prev->active_mm, next);
4283 
4284 		next->active_mm = prev->active_mm;
4285 		if (prev->mm)                           // from user
4286 			mmgrab(prev->active_mm);
4287 		else
4288 			prev->active_mm = NULL;
4289 	} else {                                        // to user
4290 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4291 		/*
4292 		 * sys_membarrier() requires an smp_mb() between setting
4293 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4294 		 *
4295 		 * The below provides this either through switch_mm(), or in
4296 		 * case 'prev->active_mm == next->mm' through
4297 		 * finish_task_switch()'s mmdrop().
4298 		 */
4299 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4300 
4301 		if (!prev->mm) {                        // from kernel
4302 			/* will mmdrop() in finish_task_switch(). */
4303 			rq->prev_mm = prev->active_mm;
4304 			prev->active_mm = NULL;
4305 		}
4306 	}
4307 
4308 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4309 
4310 	prepare_lock_switch(rq, next, rf);
4311 
4312 	/* Here we just switch the register state and the stack. */
4313 	switch_to(prev, next, prev);
4314 	barrier();
4315 
4316 	return finish_task_switch(prev);
4317 }
4318 
4319 /*
4320  * nr_running and nr_context_switches:
4321  *
4322  * externally visible scheduler statistics: current number of runnable
4323  * threads, total number of context switches performed since bootup.
4324  */
4325 unsigned long nr_running(void)
4326 {
4327 	unsigned long i, sum = 0;
4328 
4329 	for_each_online_cpu(i)
4330 		sum += cpu_rq(i)->nr_running;
4331 
4332 	return sum;
4333 }
4334 
4335 /*
4336  * Check if only the current task is running on the CPU.
4337  *
4338  * Caution: this function does not check that the caller has disabled
4339  * preemption, thus the result might have a time-of-check-to-time-of-use
4340  * race.  The caller is responsible to use it correctly, for example:
4341  *
4342  * - from a non-preemptible section (of course)
4343  *
4344  * - from a thread that is bound to a single CPU
4345  *
4346  * - in a loop with very short iterations (e.g. a polling loop)
4347  */
4348 bool single_task_running(void)
4349 {
4350 	return raw_rq()->nr_running == 1;
4351 }
4352 EXPORT_SYMBOL(single_task_running);
4353 
4354 unsigned long long nr_context_switches(void)
4355 {
4356 	int i;
4357 	unsigned long long sum = 0;
4358 
4359 	for_each_possible_cpu(i)
4360 		sum += cpu_rq(i)->nr_switches;
4361 
4362 	return sum;
4363 }
4364 
4365 /*
4366  * Consumers of these two interfaces, like for example the cpuidle menu
4367  * governor, are using nonsensical data. Preferring shallow idle state selection
4368  * for a CPU that has IO-wait which might not even end up running the task when
4369  * it does become runnable.
4370  */
4371 
4372 unsigned long nr_iowait_cpu(int cpu)
4373 {
4374 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4375 }
4376 
4377 /*
4378  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4379  *
4380  * The idea behind IO-wait account is to account the idle time that we could
4381  * have spend running if it were not for IO. That is, if we were to improve the
4382  * storage performance, we'd have a proportional reduction in IO-wait time.
4383  *
4384  * This all works nicely on UP, where, when a task blocks on IO, we account
4385  * idle time as IO-wait, because if the storage were faster, it could've been
4386  * running and we'd not be idle.
4387  *
4388  * This has been extended to SMP, by doing the same for each CPU. This however
4389  * is broken.
4390  *
4391  * Imagine for instance the case where two tasks block on one CPU, only the one
4392  * CPU will have IO-wait accounted, while the other has regular idle. Even
4393  * though, if the storage were faster, both could've ran at the same time,
4394  * utilising both CPUs.
4395  *
4396  * This means, that when looking globally, the current IO-wait accounting on
4397  * SMP is a lower bound, by reason of under accounting.
4398  *
4399  * Worse, since the numbers are provided per CPU, they are sometimes
4400  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4401  * associated with any one particular CPU, it can wake to another CPU than it
4402  * blocked on. This means the per CPU IO-wait number is meaningless.
4403  *
4404  * Task CPU affinities can make all that even more 'interesting'.
4405  */
4406 
4407 unsigned long nr_iowait(void)
4408 {
4409 	unsigned long i, sum = 0;
4410 
4411 	for_each_possible_cpu(i)
4412 		sum += nr_iowait_cpu(i);
4413 
4414 	return sum;
4415 }
4416 
4417 #ifdef CONFIG_SMP
4418 
4419 /*
4420  * sched_exec - execve() is a valuable balancing opportunity, because at
4421  * this point the task has the smallest effective memory and cache footprint.
4422  */
4423 void sched_exec(void)
4424 {
4425 	struct task_struct *p = current;
4426 	unsigned long flags;
4427 	int dest_cpu;
4428 
4429 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4430 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4431 	if (dest_cpu == smp_processor_id())
4432 		goto unlock;
4433 
4434 	if (likely(cpu_active(dest_cpu))) {
4435 		struct migration_arg arg = { p, dest_cpu };
4436 
4437 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4438 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4439 		return;
4440 	}
4441 unlock:
4442 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4443 }
4444 
4445 #endif
4446 
4447 DEFINE_PER_CPU(struct kernel_stat, kstat);
4448 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4449 
4450 EXPORT_PER_CPU_SYMBOL(kstat);
4451 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4452 
4453 /*
4454  * The function fair_sched_class.update_curr accesses the struct curr
4455  * and its field curr->exec_start; when called from task_sched_runtime(),
4456  * we observe a high rate of cache misses in practice.
4457  * Prefetching this data results in improved performance.
4458  */
4459 static inline void prefetch_curr_exec_start(struct task_struct *p)
4460 {
4461 #ifdef CONFIG_FAIR_GROUP_SCHED
4462 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4463 #else
4464 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4465 #endif
4466 	prefetch(curr);
4467 	prefetch(&curr->exec_start);
4468 }
4469 
4470 /*
4471  * Return accounted runtime for the task.
4472  * In case the task is currently running, return the runtime plus current's
4473  * pending runtime that have not been accounted yet.
4474  */
4475 unsigned long long task_sched_runtime(struct task_struct *p)
4476 {
4477 	struct rq_flags rf;
4478 	struct rq *rq;
4479 	u64 ns;
4480 
4481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4482 	/*
4483 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4484 	 * So we have a optimization chance when the task's delta_exec is 0.
4485 	 * Reading ->on_cpu is racy, but this is ok.
4486 	 *
4487 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4488 	 * If we race with it entering CPU, unaccounted time is 0. This is
4489 	 * indistinguishable from the read occurring a few cycles earlier.
4490 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4491 	 * been accounted, so we're correct here as well.
4492 	 */
4493 	if (!p->on_cpu || !task_on_rq_queued(p))
4494 		return p->se.sum_exec_runtime;
4495 #endif
4496 
4497 	rq = task_rq_lock(p, &rf);
4498 	/*
4499 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4500 	 * project cycles that may never be accounted to this
4501 	 * thread, breaking clock_gettime().
4502 	 */
4503 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4504 		prefetch_curr_exec_start(p);
4505 		update_rq_clock(rq);
4506 		p->sched_class->update_curr(rq);
4507 	}
4508 	ns = p->se.sum_exec_runtime;
4509 	task_rq_unlock(rq, p, &rf);
4510 
4511 	return ns;
4512 }
4513 
4514 /*
4515  * This function gets called by the timer code, with HZ frequency.
4516  * We call it with interrupts disabled.
4517  */
4518 void scheduler_tick(void)
4519 {
4520 	int cpu = smp_processor_id();
4521 	struct rq *rq = cpu_rq(cpu);
4522 	struct task_struct *curr = rq->curr;
4523 	struct rq_flags rf;
4524 	unsigned long thermal_pressure;
4525 
4526 	arch_scale_freq_tick();
4527 	sched_clock_tick();
4528 
4529 	rq_lock(rq, &rf);
4530 
4531 	update_rq_clock(rq);
4532 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4533 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4534 	curr->sched_class->task_tick(rq, curr, 0);
4535 	calc_global_load_tick(rq);
4536 	psi_task_tick(rq);
4537 
4538 	rq_unlock(rq, &rf);
4539 
4540 	perf_event_task_tick();
4541 
4542 #ifdef CONFIG_SMP
4543 	rq->idle_balance = idle_cpu(cpu);
4544 	trigger_load_balance(rq);
4545 #endif
4546 }
4547 
4548 #ifdef CONFIG_NO_HZ_FULL
4549 
4550 struct tick_work {
4551 	int			cpu;
4552 	atomic_t		state;
4553 	struct delayed_work	work;
4554 };
4555 /* Values for ->state, see diagram below. */
4556 #define TICK_SCHED_REMOTE_OFFLINE	0
4557 #define TICK_SCHED_REMOTE_OFFLINING	1
4558 #define TICK_SCHED_REMOTE_RUNNING	2
4559 
4560 /*
4561  * State diagram for ->state:
4562  *
4563  *
4564  *          TICK_SCHED_REMOTE_OFFLINE
4565  *                    |   ^
4566  *                    |   |
4567  *                    |   | sched_tick_remote()
4568  *                    |   |
4569  *                    |   |
4570  *                    +--TICK_SCHED_REMOTE_OFFLINING
4571  *                    |   ^
4572  *                    |   |
4573  * sched_tick_start() |   | sched_tick_stop()
4574  *                    |   |
4575  *                    V   |
4576  *          TICK_SCHED_REMOTE_RUNNING
4577  *
4578  *
4579  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4580  * and sched_tick_start() are happy to leave the state in RUNNING.
4581  */
4582 
4583 static struct tick_work __percpu *tick_work_cpu;
4584 
4585 static void sched_tick_remote(struct work_struct *work)
4586 {
4587 	struct delayed_work *dwork = to_delayed_work(work);
4588 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4589 	int cpu = twork->cpu;
4590 	struct rq *rq = cpu_rq(cpu);
4591 	struct task_struct *curr;
4592 	struct rq_flags rf;
4593 	u64 delta;
4594 	int os;
4595 
4596 	/*
4597 	 * Handle the tick only if it appears the remote CPU is running in full
4598 	 * dynticks mode. The check is racy by nature, but missing a tick or
4599 	 * having one too much is no big deal because the scheduler tick updates
4600 	 * statistics and checks timeslices in a time-independent way, regardless
4601 	 * of when exactly it is running.
4602 	 */
4603 	if (!tick_nohz_tick_stopped_cpu(cpu))
4604 		goto out_requeue;
4605 
4606 	rq_lock_irq(rq, &rf);
4607 	curr = rq->curr;
4608 	if (cpu_is_offline(cpu))
4609 		goto out_unlock;
4610 
4611 	update_rq_clock(rq);
4612 
4613 	if (!is_idle_task(curr)) {
4614 		/*
4615 		 * Make sure the next tick runs within a reasonable
4616 		 * amount of time.
4617 		 */
4618 		delta = rq_clock_task(rq) - curr->se.exec_start;
4619 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4620 	}
4621 	curr->sched_class->task_tick(rq, curr, 0);
4622 
4623 	calc_load_nohz_remote(rq);
4624 out_unlock:
4625 	rq_unlock_irq(rq, &rf);
4626 out_requeue:
4627 
4628 	/*
4629 	 * Run the remote tick once per second (1Hz). This arbitrary
4630 	 * frequency is large enough to avoid overload but short enough
4631 	 * to keep scheduler internal stats reasonably up to date.  But
4632 	 * first update state to reflect hotplug activity if required.
4633 	 */
4634 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4635 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4636 	if (os == TICK_SCHED_REMOTE_RUNNING)
4637 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4638 }
4639 
4640 static void sched_tick_start(int cpu)
4641 {
4642 	int os;
4643 	struct tick_work *twork;
4644 
4645 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4646 		return;
4647 
4648 	WARN_ON_ONCE(!tick_work_cpu);
4649 
4650 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4651 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4652 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4653 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4654 		twork->cpu = cpu;
4655 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4656 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4657 	}
4658 }
4659 
4660 #ifdef CONFIG_HOTPLUG_CPU
4661 static void sched_tick_stop(int cpu)
4662 {
4663 	struct tick_work *twork;
4664 	int os;
4665 
4666 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4667 		return;
4668 
4669 	WARN_ON_ONCE(!tick_work_cpu);
4670 
4671 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4672 	/* There cannot be competing actions, but don't rely on stop-machine. */
4673 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4674 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4675 	/* Don't cancel, as this would mess up the state machine. */
4676 }
4677 #endif /* CONFIG_HOTPLUG_CPU */
4678 
4679 int __init sched_tick_offload_init(void)
4680 {
4681 	tick_work_cpu = alloc_percpu(struct tick_work);
4682 	BUG_ON(!tick_work_cpu);
4683 	return 0;
4684 }
4685 
4686 #else /* !CONFIG_NO_HZ_FULL */
4687 static inline void sched_tick_start(int cpu) { }
4688 static inline void sched_tick_stop(int cpu) { }
4689 #endif
4690 
4691 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4692 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4693 /*
4694  * If the value passed in is equal to the current preempt count
4695  * then we just disabled preemption. Start timing the latency.
4696  */
4697 static inline void preempt_latency_start(int val)
4698 {
4699 	if (preempt_count() == val) {
4700 		unsigned long ip = get_lock_parent_ip();
4701 #ifdef CONFIG_DEBUG_PREEMPT
4702 		current->preempt_disable_ip = ip;
4703 #endif
4704 		trace_preempt_off(CALLER_ADDR0, ip);
4705 	}
4706 }
4707 
4708 void preempt_count_add(int val)
4709 {
4710 #ifdef CONFIG_DEBUG_PREEMPT
4711 	/*
4712 	 * Underflow?
4713 	 */
4714 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4715 		return;
4716 #endif
4717 	__preempt_count_add(val);
4718 #ifdef CONFIG_DEBUG_PREEMPT
4719 	/*
4720 	 * Spinlock count overflowing soon?
4721 	 */
4722 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4723 				PREEMPT_MASK - 10);
4724 #endif
4725 	preempt_latency_start(val);
4726 }
4727 EXPORT_SYMBOL(preempt_count_add);
4728 NOKPROBE_SYMBOL(preempt_count_add);
4729 
4730 /*
4731  * If the value passed in equals to the current preempt count
4732  * then we just enabled preemption. Stop timing the latency.
4733  */
4734 static inline void preempt_latency_stop(int val)
4735 {
4736 	if (preempt_count() == val)
4737 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4738 }
4739 
4740 void preempt_count_sub(int val)
4741 {
4742 #ifdef CONFIG_DEBUG_PREEMPT
4743 	/*
4744 	 * Underflow?
4745 	 */
4746 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4747 		return;
4748 	/*
4749 	 * Is the spinlock portion underflowing?
4750 	 */
4751 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4752 			!(preempt_count() & PREEMPT_MASK)))
4753 		return;
4754 #endif
4755 
4756 	preempt_latency_stop(val);
4757 	__preempt_count_sub(val);
4758 }
4759 EXPORT_SYMBOL(preempt_count_sub);
4760 NOKPROBE_SYMBOL(preempt_count_sub);
4761 
4762 #else
4763 static inline void preempt_latency_start(int val) { }
4764 static inline void preempt_latency_stop(int val) { }
4765 #endif
4766 
4767 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4768 {
4769 #ifdef CONFIG_DEBUG_PREEMPT
4770 	return p->preempt_disable_ip;
4771 #else
4772 	return 0;
4773 #endif
4774 }
4775 
4776 /*
4777  * Print scheduling while atomic bug:
4778  */
4779 static noinline void __schedule_bug(struct task_struct *prev)
4780 {
4781 	/* Save this before calling printk(), since that will clobber it */
4782 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4783 
4784 	if (oops_in_progress)
4785 		return;
4786 
4787 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4788 		prev->comm, prev->pid, preempt_count());
4789 
4790 	debug_show_held_locks(prev);
4791 	print_modules();
4792 	if (irqs_disabled())
4793 		print_irqtrace_events(prev);
4794 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4795 	    && in_atomic_preempt_off()) {
4796 		pr_err("Preemption disabled at:");
4797 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4798 	}
4799 	if (panic_on_warn)
4800 		panic("scheduling while atomic\n");
4801 
4802 	dump_stack();
4803 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4804 }
4805 
4806 /*
4807  * Various schedule()-time debugging checks and statistics:
4808  */
4809 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4810 {
4811 #ifdef CONFIG_SCHED_STACK_END_CHECK
4812 	if (task_stack_end_corrupted(prev))
4813 		panic("corrupted stack end detected inside scheduler\n");
4814 
4815 	if (task_scs_end_corrupted(prev))
4816 		panic("corrupted shadow stack detected inside scheduler\n");
4817 #endif
4818 
4819 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4820 	if (!preempt && prev->state && prev->non_block_count) {
4821 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4822 			prev->comm, prev->pid, prev->non_block_count);
4823 		dump_stack();
4824 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4825 	}
4826 #endif
4827 
4828 	if (unlikely(in_atomic_preempt_off())) {
4829 		__schedule_bug(prev);
4830 		preempt_count_set(PREEMPT_DISABLED);
4831 	}
4832 	rcu_sleep_check();
4833 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4834 
4835 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4836 
4837 	schedstat_inc(this_rq()->sched_count);
4838 }
4839 
4840 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4841 				  struct rq_flags *rf)
4842 {
4843 #ifdef CONFIG_SMP
4844 	const struct sched_class *class;
4845 	/*
4846 	 * We must do the balancing pass before put_prev_task(), such
4847 	 * that when we release the rq->lock the task is in the same
4848 	 * state as before we took rq->lock.
4849 	 *
4850 	 * We can terminate the balance pass as soon as we know there is
4851 	 * a runnable task of @class priority or higher.
4852 	 */
4853 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4854 		if (class->balance(rq, prev, rf))
4855 			break;
4856 	}
4857 #endif
4858 
4859 	put_prev_task(rq, prev);
4860 }
4861 
4862 /*
4863  * Pick up the highest-prio task:
4864  */
4865 static inline struct task_struct *
4866 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4867 {
4868 	const struct sched_class *class;
4869 	struct task_struct *p;
4870 
4871 	/*
4872 	 * Optimization: we know that if all tasks are in the fair class we can
4873 	 * call that function directly, but only if the @prev task wasn't of a
4874 	 * higher scheduling class, because otherwise those lose the
4875 	 * opportunity to pull in more work from other CPUs.
4876 	 */
4877 	if (likely(prev->sched_class <= &fair_sched_class &&
4878 		   rq->nr_running == rq->cfs.h_nr_running)) {
4879 
4880 		p = pick_next_task_fair(rq, prev, rf);
4881 		if (unlikely(p == RETRY_TASK))
4882 			goto restart;
4883 
4884 		/* Assumes fair_sched_class->next == idle_sched_class */
4885 		if (!p) {
4886 			put_prev_task(rq, prev);
4887 			p = pick_next_task_idle(rq);
4888 		}
4889 
4890 		return p;
4891 	}
4892 
4893 restart:
4894 	put_prev_task_balance(rq, prev, rf);
4895 
4896 	for_each_class(class) {
4897 		p = class->pick_next_task(rq);
4898 		if (p)
4899 			return p;
4900 	}
4901 
4902 	/* The idle class should always have a runnable task: */
4903 	BUG();
4904 }
4905 
4906 /*
4907  * __schedule() is the main scheduler function.
4908  *
4909  * The main means of driving the scheduler and thus entering this function are:
4910  *
4911  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4912  *
4913  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4914  *      paths. For example, see arch/x86/entry_64.S.
4915  *
4916  *      To drive preemption between tasks, the scheduler sets the flag in timer
4917  *      interrupt handler scheduler_tick().
4918  *
4919  *   3. Wakeups don't really cause entry into schedule(). They add a
4920  *      task to the run-queue and that's it.
4921  *
4922  *      Now, if the new task added to the run-queue preempts the current
4923  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4924  *      called on the nearest possible occasion:
4925  *
4926  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4927  *
4928  *         - in syscall or exception context, at the next outmost
4929  *           preempt_enable(). (this might be as soon as the wake_up()'s
4930  *           spin_unlock()!)
4931  *
4932  *         - in IRQ context, return from interrupt-handler to
4933  *           preemptible context
4934  *
4935  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4936  *         then at the next:
4937  *
4938  *          - cond_resched() call
4939  *          - explicit schedule() call
4940  *          - return from syscall or exception to user-space
4941  *          - return from interrupt-handler to user-space
4942  *
4943  * WARNING: must be called with preemption disabled!
4944  */
4945 static void __sched notrace __schedule(bool preempt)
4946 {
4947 	struct task_struct *prev, *next;
4948 	unsigned long *switch_count;
4949 	unsigned long prev_state;
4950 	struct rq_flags rf;
4951 	struct rq *rq;
4952 	int cpu;
4953 
4954 	cpu = smp_processor_id();
4955 	rq = cpu_rq(cpu);
4956 	prev = rq->curr;
4957 
4958 	schedule_debug(prev, preempt);
4959 
4960 	if (sched_feat(HRTICK))
4961 		hrtick_clear(rq);
4962 
4963 	local_irq_disable();
4964 	rcu_note_context_switch(preempt);
4965 
4966 	/*
4967 	 * Make sure that signal_pending_state()->signal_pending() below
4968 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4969 	 * done by the caller to avoid the race with signal_wake_up():
4970 	 *
4971 	 * __set_current_state(@state)		signal_wake_up()
4972 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4973 	 *					  wake_up_state(p, state)
4974 	 *   LOCK rq->lock			    LOCK p->pi_state
4975 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4976 	 *     if (signal_pending_state())	    if (p->state & @state)
4977 	 *
4978 	 * Also, the membarrier system call requires a full memory barrier
4979 	 * after coming from user-space, before storing to rq->curr.
4980 	 */
4981 	rq_lock(rq, &rf);
4982 	smp_mb__after_spinlock();
4983 
4984 	/* Promote REQ to ACT */
4985 	rq->clock_update_flags <<= 1;
4986 	update_rq_clock(rq);
4987 
4988 	switch_count = &prev->nivcsw;
4989 
4990 	/*
4991 	 * We must load prev->state once (task_struct::state is volatile), such
4992 	 * that:
4993 	 *
4994 	 *  - we form a control dependency vs deactivate_task() below.
4995 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4996 	 */
4997 	prev_state = prev->state;
4998 	if (!preempt && prev_state) {
4999 		if (signal_pending_state(prev_state, prev)) {
5000 			prev->state = TASK_RUNNING;
5001 		} else {
5002 			prev->sched_contributes_to_load =
5003 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5004 				!(prev_state & TASK_NOLOAD) &&
5005 				!(prev->flags & PF_FROZEN);
5006 
5007 			if (prev->sched_contributes_to_load)
5008 				rq->nr_uninterruptible++;
5009 
5010 			/*
5011 			 * __schedule()			ttwu()
5012 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5013 			 *   if (prev_state)		    goto out;
5014 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5015 			 *				  p->state = TASK_WAKING
5016 			 *
5017 			 * Where __schedule() and ttwu() have matching control dependencies.
5018 			 *
5019 			 * After this, schedule() must not care about p->state any more.
5020 			 */
5021 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5022 
5023 			if (prev->in_iowait) {
5024 				atomic_inc(&rq->nr_iowait);
5025 				delayacct_blkio_start();
5026 			}
5027 		}
5028 		switch_count = &prev->nvcsw;
5029 	}
5030 
5031 	next = pick_next_task(rq, prev, &rf);
5032 	clear_tsk_need_resched(prev);
5033 	clear_preempt_need_resched();
5034 
5035 	if (likely(prev != next)) {
5036 		rq->nr_switches++;
5037 		/*
5038 		 * RCU users of rcu_dereference(rq->curr) may not see
5039 		 * changes to task_struct made by pick_next_task().
5040 		 */
5041 		RCU_INIT_POINTER(rq->curr, next);
5042 		/*
5043 		 * The membarrier system call requires each architecture
5044 		 * to have a full memory barrier after updating
5045 		 * rq->curr, before returning to user-space.
5046 		 *
5047 		 * Here are the schemes providing that barrier on the
5048 		 * various architectures:
5049 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5050 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5051 		 * - finish_lock_switch() for weakly-ordered
5052 		 *   architectures where spin_unlock is a full barrier,
5053 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5054 		 *   is a RELEASE barrier),
5055 		 */
5056 		++*switch_count;
5057 
5058 		migrate_disable_switch(rq, prev);
5059 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5060 
5061 		trace_sched_switch(preempt, prev, next);
5062 
5063 		/* Also unlocks the rq: */
5064 		rq = context_switch(rq, prev, next, &rf);
5065 	} else {
5066 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5067 
5068 		rq_unpin_lock(rq, &rf);
5069 		__balance_callbacks(rq);
5070 		raw_spin_unlock_irq(&rq->lock);
5071 	}
5072 }
5073 
5074 void __noreturn do_task_dead(void)
5075 {
5076 	/* Causes final put_task_struct in finish_task_switch(): */
5077 	set_special_state(TASK_DEAD);
5078 
5079 	/* Tell freezer to ignore us: */
5080 	current->flags |= PF_NOFREEZE;
5081 
5082 	__schedule(false);
5083 	BUG();
5084 
5085 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5086 	for (;;)
5087 		cpu_relax();
5088 }
5089 
5090 static inline void sched_submit_work(struct task_struct *tsk)
5091 {
5092 	unsigned int task_flags;
5093 
5094 	if (!tsk->state)
5095 		return;
5096 
5097 	task_flags = tsk->flags;
5098 	/*
5099 	 * If a worker went to sleep, notify and ask workqueue whether
5100 	 * it wants to wake up a task to maintain concurrency.
5101 	 * As this function is called inside the schedule() context,
5102 	 * we disable preemption to avoid it calling schedule() again
5103 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5104 	 * requires it.
5105 	 */
5106 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5107 		preempt_disable();
5108 		if (task_flags & PF_WQ_WORKER)
5109 			wq_worker_sleeping(tsk);
5110 		else
5111 			io_wq_worker_sleeping(tsk);
5112 		preempt_enable_no_resched();
5113 	}
5114 
5115 	if (tsk_is_pi_blocked(tsk))
5116 		return;
5117 
5118 	/*
5119 	 * If we are going to sleep and we have plugged IO queued,
5120 	 * make sure to submit it to avoid deadlocks.
5121 	 */
5122 	if (blk_needs_flush_plug(tsk))
5123 		blk_schedule_flush_plug(tsk);
5124 }
5125 
5126 static void sched_update_worker(struct task_struct *tsk)
5127 {
5128 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5129 		if (tsk->flags & PF_WQ_WORKER)
5130 			wq_worker_running(tsk);
5131 		else
5132 			io_wq_worker_running(tsk);
5133 	}
5134 }
5135 
5136 asmlinkage __visible void __sched schedule(void)
5137 {
5138 	struct task_struct *tsk = current;
5139 
5140 	sched_submit_work(tsk);
5141 	do {
5142 		preempt_disable();
5143 		__schedule(false);
5144 		sched_preempt_enable_no_resched();
5145 	} while (need_resched());
5146 	sched_update_worker(tsk);
5147 }
5148 EXPORT_SYMBOL(schedule);
5149 
5150 /*
5151  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5152  * state (have scheduled out non-voluntarily) by making sure that all
5153  * tasks have either left the run queue or have gone into user space.
5154  * As idle tasks do not do either, they must not ever be preempted
5155  * (schedule out non-voluntarily).
5156  *
5157  * schedule_idle() is similar to schedule_preempt_disable() except that it
5158  * never enables preemption because it does not call sched_submit_work().
5159  */
5160 void __sched schedule_idle(void)
5161 {
5162 	/*
5163 	 * As this skips calling sched_submit_work(), which the idle task does
5164 	 * regardless because that function is a nop when the task is in a
5165 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5166 	 * current task can be in any other state. Note, idle is always in the
5167 	 * TASK_RUNNING state.
5168 	 */
5169 	WARN_ON_ONCE(current->state);
5170 	do {
5171 		__schedule(false);
5172 	} while (need_resched());
5173 }
5174 
5175 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5176 asmlinkage __visible void __sched schedule_user(void)
5177 {
5178 	/*
5179 	 * If we come here after a random call to set_need_resched(),
5180 	 * or we have been woken up remotely but the IPI has not yet arrived,
5181 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5182 	 * we find a better solution.
5183 	 *
5184 	 * NB: There are buggy callers of this function.  Ideally we
5185 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5186 	 * too frequently to make sense yet.
5187 	 */
5188 	enum ctx_state prev_state = exception_enter();
5189 	schedule();
5190 	exception_exit(prev_state);
5191 }
5192 #endif
5193 
5194 /**
5195  * schedule_preempt_disabled - called with preemption disabled
5196  *
5197  * Returns with preemption disabled. Note: preempt_count must be 1
5198  */
5199 void __sched schedule_preempt_disabled(void)
5200 {
5201 	sched_preempt_enable_no_resched();
5202 	schedule();
5203 	preempt_disable();
5204 }
5205 
5206 static void __sched notrace preempt_schedule_common(void)
5207 {
5208 	do {
5209 		/*
5210 		 * Because the function tracer can trace preempt_count_sub()
5211 		 * and it also uses preempt_enable/disable_notrace(), if
5212 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5213 		 * by the function tracer will call this function again and
5214 		 * cause infinite recursion.
5215 		 *
5216 		 * Preemption must be disabled here before the function
5217 		 * tracer can trace. Break up preempt_disable() into two
5218 		 * calls. One to disable preemption without fear of being
5219 		 * traced. The other to still record the preemption latency,
5220 		 * which can also be traced by the function tracer.
5221 		 */
5222 		preempt_disable_notrace();
5223 		preempt_latency_start(1);
5224 		__schedule(true);
5225 		preempt_latency_stop(1);
5226 		preempt_enable_no_resched_notrace();
5227 
5228 		/*
5229 		 * Check again in case we missed a preemption opportunity
5230 		 * between schedule and now.
5231 		 */
5232 	} while (need_resched());
5233 }
5234 
5235 #ifdef CONFIG_PREEMPTION
5236 /*
5237  * This is the entry point to schedule() from in-kernel preemption
5238  * off of preempt_enable.
5239  */
5240 asmlinkage __visible void __sched notrace preempt_schedule(void)
5241 {
5242 	/*
5243 	 * If there is a non-zero preempt_count or interrupts are disabled,
5244 	 * we do not want to preempt the current task. Just return..
5245 	 */
5246 	if (likely(!preemptible()))
5247 		return;
5248 
5249 	preempt_schedule_common();
5250 }
5251 NOKPROBE_SYMBOL(preempt_schedule);
5252 EXPORT_SYMBOL(preempt_schedule);
5253 
5254 /**
5255  * preempt_schedule_notrace - preempt_schedule called by tracing
5256  *
5257  * The tracing infrastructure uses preempt_enable_notrace to prevent
5258  * recursion and tracing preempt enabling caused by the tracing
5259  * infrastructure itself. But as tracing can happen in areas coming
5260  * from userspace or just about to enter userspace, a preempt enable
5261  * can occur before user_exit() is called. This will cause the scheduler
5262  * to be called when the system is still in usermode.
5263  *
5264  * To prevent this, the preempt_enable_notrace will use this function
5265  * instead of preempt_schedule() to exit user context if needed before
5266  * calling the scheduler.
5267  */
5268 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5269 {
5270 	enum ctx_state prev_ctx;
5271 
5272 	if (likely(!preemptible()))
5273 		return;
5274 
5275 	do {
5276 		/*
5277 		 * Because the function tracer can trace preempt_count_sub()
5278 		 * and it also uses preempt_enable/disable_notrace(), if
5279 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5280 		 * by the function tracer will call this function again and
5281 		 * cause infinite recursion.
5282 		 *
5283 		 * Preemption must be disabled here before the function
5284 		 * tracer can trace. Break up preempt_disable() into two
5285 		 * calls. One to disable preemption without fear of being
5286 		 * traced. The other to still record the preemption latency,
5287 		 * which can also be traced by the function tracer.
5288 		 */
5289 		preempt_disable_notrace();
5290 		preempt_latency_start(1);
5291 		/*
5292 		 * Needs preempt disabled in case user_exit() is traced
5293 		 * and the tracer calls preempt_enable_notrace() causing
5294 		 * an infinite recursion.
5295 		 */
5296 		prev_ctx = exception_enter();
5297 		__schedule(true);
5298 		exception_exit(prev_ctx);
5299 
5300 		preempt_latency_stop(1);
5301 		preempt_enable_no_resched_notrace();
5302 	} while (need_resched());
5303 }
5304 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5305 
5306 #endif /* CONFIG_PREEMPTION */
5307 
5308 /*
5309  * This is the entry point to schedule() from kernel preemption
5310  * off of irq context.
5311  * Note, that this is called and return with irqs disabled. This will
5312  * protect us against recursive calling from irq.
5313  */
5314 asmlinkage __visible void __sched preempt_schedule_irq(void)
5315 {
5316 	enum ctx_state prev_state;
5317 
5318 	/* Catch callers which need to be fixed */
5319 	BUG_ON(preempt_count() || !irqs_disabled());
5320 
5321 	prev_state = exception_enter();
5322 
5323 	do {
5324 		preempt_disable();
5325 		local_irq_enable();
5326 		__schedule(true);
5327 		local_irq_disable();
5328 		sched_preempt_enable_no_resched();
5329 	} while (need_resched());
5330 
5331 	exception_exit(prev_state);
5332 }
5333 
5334 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5335 			  void *key)
5336 {
5337 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5338 	return try_to_wake_up(curr->private, mode, wake_flags);
5339 }
5340 EXPORT_SYMBOL(default_wake_function);
5341 
5342 #ifdef CONFIG_RT_MUTEXES
5343 
5344 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5345 {
5346 	if (pi_task)
5347 		prio = min(prio, pi_task->prio);
5348 
5349 	return prio;
5350 }
5351 
5352 static inline int rt_effective_prio(struct task_struct *p, int prio)
5353 {
5354 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5355 
5356 	return __rt_effective_prio(pi_task, prio);
5357 }
5358 
5359 /*
5360  * rt_mutex_setprio - set the current priority of a task
5361  * @p: task to boost
5362  * @pi_task: donor task
5363  *
5364  * This function changes the 'effective' priority of a task. It does
5365  * not touch ->normal_prio like __setscheduler().
5366  *
5367  * Used by the rt_mutex code to implement priority inheritance
5368  * logic. Call site only calls if the priority of the task changed.
5369  */
5370 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5371 {
5372 	int prio, oldprio, queued, running, queue_flag =
5373 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5374 	const struct sched_class *prev_class;
5375 	struct rq_flags rf;
5376 	struct rq *rq;
5377 
5378 	/* XXX used to be waiter->prio, not waiter->task->prio */
5379 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5380 
5381 	/*
5382 	 * If nothing changed; bail early.
5383 	 */
5384 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5385 		return;
5386 
5387 	rq = __task_rq_lock(p, &rf);
5388 	update_rq_clock(rq);
5389 	/*
5390 	 * Set under pi_lock && rq->lock, such that the value can be used under
5391 	 * either lock.
5392 	 *
5393 	 * Note that there is loads of tricky to make this pointer cache work
5394 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5395 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5396 	 * task is allowed to run again (and can exit). This ensures the pointer
5397 	 * points to a blocked task -- which guarantees the task is present.
5398 	 */
5399 	p->pi_top_task = pi_task;
5400 
5401 	/*
5402 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5403 	 */
5404 	if (prio == p->prio && !dl_prio(prio))
5405 		goto out_unlock;
5406 
5407 	/*
5408 	 * Idle task boosting is a nono in general. There is one
5409 	 * exception, when PREEMPT_RT and NOHZ is active:
5410 	 *
5411 	 * The idle task calls get_next_timer_interrupt() and holds
5412 	 * the timer wheel base->lock on the CPU and another CPU wants
5413 	 * to access the timer (probably to cancel it). We can safely
5414 	 * ignore the boosting request, as the idle CPU runs this code
5415 	 * with interrupts disabled and will complete the lock
5416 	 * protected section without being interrupted. So there is no
5417 	 * real need to boost.
5418 	 */
5419 	if (unlikely(p == rq->idle)) {
5420 		WARN_ON(p != rq->curr);
5421 		WARN_ON(p->pi_blocked_on);
5422 		goto out_unlock;
5423 	}
5424 
5425 	trace_sched_pi_setprio(p, pi_task);
5426 	oldprio = p->prio;
5427 
5428 	if (oldprio == prio)
5429 		queue_flag &= ~DEQUEUE_MOVE;
5430 
5431 	prev_class = p->sched_class;
5432 	queued = task_on_rq_queued(p);
5433 	running = task_current(rq, p);
5434 	if (queued)
5435 		dequeue_task(rq, p, queue_flag);
5436 	if (running)
5437 		put_prev_task(rq, p);
5438 
5439 	/*
5440 	 * Boosting condition are:
5441 	 * 1. -rt task is running and holds mutex A
5442 	 *      --> -dl task blocks on mutex A
5443 	 *
5444 	 * 2. -dl task is running and holds mutex A
5445 	 *      --> -dl task blocks on mutex A and could preempt the
5446 	 *          running task
5447 	 */
5448 	if (dl_prio(prio)) {
5449 		if (!dl_prio(p->normal_prio) ||
5450 		    (pi_task && dl_prio(pi_task->prio) &&
5451 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5452 			p->dl.pi_se = pi_task->dl.pi_se;
5453 			queue_flag |= ENQUEUE_REPLENISH;
5454 		} else {
5455 			p->dl.pi_se = &p->dl;
5456 		}
5457 		p->sched_class = &dl_sched_class;
5458 	} else if (rt_prio(prio)) {
5459 		if (dl_prio(oldprio))
5460 			p->dl.pi_se = &p->dl;
5461 		if (oldprio < prio)
5462 			queue_flag |= ENQUEUE_HEAD;
5463 		p->sched_class = &rt_sched_class;
5464 	} else {
5465 		if (dl_prio(oldprio))
5466 			p->dl.pi_se = &p->dl;
5467 		if (rt_prio(oldprio))
5468 			p->rt.timeout = 0;
5469 		p->sched_class = &fair_sched_class;
5470 	}
5471 
5472 	p->prio = prio;
5473 
5474 	if (queued)
5475 		enqueue_task(rq, p, queue_flag);
5476 	if (running)
5477 		set_next_task(rq, p);
5478 
5479 	check_class_changed(rq, p, prev_class, oldprio);
5480 out_unlock:
5481 	/* Avoid rq from going away on us: */
5482 	preempt_disable();
5483 
5484 	rq_unpin_lock(rq, &rf);
5485 	__balance_callbacks(rq);
5486 	raw_spin_unlock(&rq->lock);
5487 
5488 	preempt_enable();
5489 }
5490 #else
5491 static inline int rt_effective_prio(struct task_struct *p, int prio)
5492 {
5493 	return prio;
5494 }
5495 #endif
5496 
5497 void set_user_nice(struct task_struct *p, long nice)
5498 {
5499 	bool queued, running;
5500 	int old_prio;
5501 	struct rq_flags rf;
5502 	struct rq *rq;
5503 
5504 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5505 		return;
5506 	/*
5507 	 * We have to be careful, if called from sys_setpriority(),
5508 	 * the task might be in the middle of scheduling on another CPU.
5509 	 */
5510 	rq = task_rq_lock(p, &rf);
5511 	update_rq_clock(rq);
5512 
5513 	/*
5514 	 * The RT priorities are set via sched_setscheduler(), but we still
5515 	 * allow the 'normal' nice value to be set - but as expected
5516 	 * it won't have any effect on scheduling until the task is
5517 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5518 	 */
5519 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5520 		p->static_prio = NICE_TO_PRIO(nice);
5521 		goto out_unlock;
5522 	}
5523 	queued = task_on_rq_queued(p);
5524 	running = task_current(rq, p);
5525 	if (queued)
5526 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5527 	if (running)
5528 		put_prev_task(rq, p);
5529 
5530 	p->static_prio = NICE_TO_PRIO(nice);
5531 	set_load_weight(p, true);
5532 	old_prio = p->prio;
5533 	p->prio = effective_prio(p);
5534 
5535 	if (queued)
5536 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5537 	if (running)
5538 		set_next_task(rq, p);
5539 
5540 	/*
5541 	 * If the task increased its priority or is running and
5542 	 * lowered its priority, then reschedule its CPU:
5543 	 */
5544 	p->sched_class->prio_changed(rq, p, old_prio);
5545 
5546 out_unlock:
5547 	task_rq_unlock(rq, p, &rf);
5548 }
5549 EXPORT_SYMBOL(set_user_nice);
5550 
5551 /*
5552  * can_nice - check if a task can reduce its nice value
5553  * @p: task
5554  * @nice: nice value
5555  */
5556 int can_nice(const struct task_struct *p, const int nice)
5557 {
5558 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5559 	int nice_rlim = nice_to_rlimit(nice);
5560 
5561 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5562 		capable(CAP_SYS_NICE));
5563 }
5564 
5565 #ifdef __ARCH_WANT_SYS_NICE
5566 
5567 /*
5568  * sys_nice - change the priority of the current process.
5569  * @increment: priority increment
5570  *
5571  * sys_setpriority is a more generic, but much slower function that
5572  * does similar things.
5573  */
5574 SYSCALL_DEFINE1(nice, int, increment)
5575 {
5576 	long nice, retval;
5577 
5578 	/*
5579 	 * Setpriority might change our priority at the same moment.
5580 	 * We don't have to worry. Conceptually one call occurs first
5581 	 * and we have a single winner.
5582 	 */
5583 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5584 	nice = task_nice(current) + increment;
5585 
5586 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5587 	if (increment < 0 && !can_nice(current, nice))
5588 		return -EPERM;
5589 
5590 	retval = security_task_setnice(current, nice);
5591 	if (retval)
5592 		return retval;
5593 
5594 	set_user_nice(current, nice);
5595 	return 0;
5596 }
5597 
5598 #endif
5599 
5600 /**
5601  * task_prio - return the priority value of a given task.
5602  * @p: the task in question.
5603  *
5604  * Return: The priority value as seen by users in /proc.
5605  * RT tasks are offset by -200. Normal tasks are centered
5606  * around 0, value goes from -16 to +15.
5607  */
5608 int task_prio(const struct task_struct *p)
5609 {
5610 	return p->prio - MAX_RT_PRIO;
5611 }
5612 
5613 /**
5614  * idle_cpu - is a given CPU idle currently?
5615  * @cpu: the processor in question.
5616  *
5617  * Return: 1 if the CPU is currently idle. 0 otherwise.
5618  */
5619 int idle_cpu(int cpu)
5620 {
5621 	struct rq *rq = cpu_rq(cpu);
5622 
5623 	if (rq->curr != rq->idle)
5624 		return 0;
5625 
5626 	if (rq->nr_running)
5627 		return 0;
5628 
5629 #ifdef CONFIG_SMP
5630 	if (rq->ttwu_pending)
5631 		return 0;
5632 #endif
5633 
5634 	return 1;
5635 }
5636 
5637 /**
5638  * available_idle_cpu - is a given CPU idle for enqueuing work.
5639  * @cpu: the CPU in question.
5640  *
5641  * Return: 1 if the CPU is currently idle. 0 otherwise.
5642  */
5643 int available_idle_cpu(int cpu)
5644 {
5645 	if (!idle_cpu(cpu))
5646 		return 0;
5647 
5648 	if (vcpu_is_preempted(cpu))
5649 		return 0;
5650 
5651 	return 1;
5652 }
5653 
5654 /**
5655  * idle_task - return the idle task for a given CPU.
5656  * @cpu: the processor in question.
5657  *
5658  * Return: The idle task for the CPU @cpu.
5659  */
5660 struct task_struct *idle_task(int cpu)
5661 {
5662 	return cpu_rq(cpu)->idle;
5663 }
5664 
5665 #ifdef CONFIG_SMP
5666 /*
5667  * This function computes an effective utilization for the given CPU, to be
5668  * used for frequency selection given the linear relation: f = u * f_max.
5669  *
5670  * The scheduler tracks the following metrics:
5671  *
5672  *   cpu_util_{cfs,rt,dl,irq}()
5673  *   cpu_bw_dl()
5674  *
5675  * Where the cfs,rt and dl util numbers are tracked with the same metric and
5676  * synchronized windows and are thus directly comparable.
5677  *
5678  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5679  * which excludes things like IRQ and steal-time. These latter are then accrued
5680  * in the irq utilization.
5681  *
5682  * The DL bandwidth number otoh is not a measured metric but a value computed
5683  * based on the task model parameters and gives the minimal utilization
5684  * required to meet deadlines.
5685  */
5686 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
5687 				 unsigned long max, enum schedutil_type type,
5688 				 struct task_struct *p)
5689 {
5690 	unsigned long dl_util, util, irq;
5691 	struct rq *rq = cpu_rq(cpu);
5692 
5693 	if (!uclamp_is_used() &&
5694 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5695 		return max;
5696 	}
5697 
5698 	/*
5699 	 * Early check to see if IRQ/steal time saturates the CPU, can be
5700 	 * because of inaccuracies in how we track these -- see
5701 	 * update_irq_load_avg().
5702 	 */
5703 	irq = cpu_util_irq(rq);
5704 	if (unlikely(irq >= max))
5705 		return max;
5706 
5707 	/*
5708 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5709 	 * CFS tasks and we use the same metric to track the effective
5710 	 * utilization (PELT windows are synchronized) we can directly add them
5711 	 * to obtain the CPU's actual utilization.
5712 	 *
5713 	 * CFS and RT utilization can be boosted or capped, depending on
5714 	 * utilization clamp constraints requested by currently RUNNABLE
5715 	 * tasks.
5716 	 * When there are no CFS RUNNABLE tasks, clamps are released and
5717 	 * frequency will be gracefully reduced with the utilization decay.
5718 	 */
5719 	util = util_cfs + cpu_util_rt(rq);
5720 	if (type == FREQUENCY_UTIL)
5721 		util = uclamp_rq_util_with(rq, util, p);
5722 
5723 	dl_util = cpu_util_dl(rq);
5724 
5725 	/*
5726 	 * For frequency selection we do not make cpu_util_dl() a permanent part
5727 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
5728 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5729 	 * that we select f_max when there is no idle time.
5730 	 *
5731 	 * NOTE: numerical errors or stop class might cause us to not quite hit
5732 	 * saturation when we should -- something for later.
5733 	 */
5734 	if (util + dl_util >= max)
5735 		return max;
5736 
5737 	/*
5738 	 * OTOH, for energy computation we need the estimated running time, so
5739 	 * include util_dl and ignore dl_bw.
5740 	 */
5741 	if (type == ENERGY_UTIL)
5742 		util += dl_util;
5743 
5744 	/*
5745 	 * There is still idle time; further improve the number by using the
5746 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
5747 	 * need to scale the task numbers:
5748 	 *
5749 	 *              max - irq
5750 	 *   U' = irq + --------- * U
5751 	 *                 max
5752 	 */
5753 	util = scale_irq_capacity(util, irq, max);
5754 	util += irq;
5755 
5756 	/*
5757 	 * Bandwidth required by DEADLINE must always be granted while, for
5758 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5759 	 * to gracefully reduce the frequency when no tasks show up for longer
5760 	 * periods of time.
5761 	 *
5762 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5763 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5764 	 * an interface. So, we only do the latter for now.
5765 	 */
5766 	if (type == FREQUENCY_UTIL)
5767 		util += cpu_bw_dl(rq);
5768 
5769 	return min(max, util);
5770 }
5771 #endif /* CONFIG_SMP */
5772 
5773 /**
5774  * find_process_by_pid - find a process with a matching PID value.
5775  * @pid: the pid in question.
5776  *
5777  * The task of @pid, if found. %NULL otherwise.
5778  */
5779 static struct task_struct *find_process_by_pid(pid_t pid)
5780 {
5781 	return pid ? find_task_by_vpid(pid) : current;
5782 }
5783 
5784 /*
5785  * sched_setparam() passes in -1 for its policy, to let the functions
5786  * it calls know not to change it.
5787  */
5788 #define SETPARAM_POLICY	-1
5789 
5790 static void __setscheduler_params(struct task_struct *p,
5791 		const struct sched_attr *attr)
5792 {
5793 	int policy = attr->sched_policy;
5794 
5795 	if (policy == SETPARAM_POLICY)
5796 		policy = p->policy;
5797 
5798 	p->policy = policy;
5799 
5800 	if (dl_policy(policy))
5801 		__setparam_dl(p, attr);
5802 	else if (fair_policy(policy))
5803 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5804 
5805 	/*
5806 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5807 	 * !rt_policy. Always setting this ensures that things like
5808 	 * getparam()/getattr() don't report silly values for !rt tasks.
5809 	 */
5810 	p->rt_priority = attr->sched_priority;
5811 	p->normal_prio = normal_prio(p);
5812 	set_load_weight(p, true);
5813 }
5814 
5815 /* Actually do priority change: must hold pi & rq lock. */
5816 static void __setscheduler(struct rq *rq, struct task_struct *p,
5817 			   const struct sched_attr *attr, bool keep_boost)
5818 {
5819 	/*
5820 	 * If params can't change scheduling class changes aren't allowed
5821 	 * either.
5822 	 */
5823 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5824 		return;
5825 
5826 	__setscheduler_params(p, attr);
5827 
5828 	/*
5829 	 * Keep a potential priority boosting if called from
5830 	 * sched_setscheduler().
5831 	 */
5832 	p->prio = normal_prio(p);
5833 	if (keep_boost)
5834 		p->prio = rt_effective_prio(p, p->prio);
5835 
5836 	if (dl_prio(p->prio))
5837 		p->sched_class = &dl_sched_class;
5838 	else if (rt_prio(p->prio))
5839 		p->sched_class = &rt_sched_class;
5840 	else
5841 		p->sched_class = &fair_sched_class;
5842 }
5843 
5844 /*
5845  * Check the target process has a UID that matches the current process's:
5846  */
5847 static bool check_same_owner(struct task_struct *p)
5848 {
5849 	const struct cred *cred = current_cred(), *pcred;
5850 	bool match;
5851 
5852 	rcu_read_lock();
5853 	pcred = __task_cred(p);
5854 	match = (uid_eq(cred->euid, pcred->euid) ||
5855 		 uid_eq(cred->euid, pcred->uid));
5856 	rcu_read_unlock();
5857 	return match;
5858 }
5859 
5860 static int __sched_setscheduler(struct task_struct *p,
5861 				const struct sched_attr *attr,
5862 				bool user, bool pi)
5863 {
5864 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5865 		      MAX_RT_PRIO - 1 - attr->sched_priority;
5866 	int retval, oldprio, oldpolicy = -1, queued, running;
5867 	int new_effective_prio, policy = attr->sched_policy;
5868 	const struct sched_class *prev_class;
5869 	struct callback_head *head;
5870 	struct rq_flags rf;
5871 	int reset_on_fork;
5872 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5873 	struct rq *rq;
5874 
5875 	/* The pi code expects interrupts enabled */
5876 	BUG_ON(pi && in_interrupt());
5877 recheck:
5878 	/* Double check policy once rq lock held: */
5879 	if (policy < 0) {
5880 		reset_on_fork = p->sched_reset_on_fork;
5881 		policy = oldpolicy = p->policy;
5882 	} else {
5883 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5884 
5885 		if (!valid_policy(policy))
5886 			return -EINVAL;
5887 	}
5888 
5889 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5890 		return -EINVAL;
5891 
5892 	/*
5893 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5894 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5895 	 * SCHED_BATCH and SCHED_IDLE is 0.
5896 	 */
5897 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5898 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5899 		return -EINVAL;
5900 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5901 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5902 		return -EINVAL;
5903 
5904 	/*
5905 	 * Allow unprivileged RT tasks to decrease priority:
5906 	 */
5907 	if (user && !capable(CAP_SYS_NICE)) {
5908 		if (fair_policy(policy)) {
5909 			if (attr->sched_nice < task_nice(p) &&
5910 			    !can_nice(p, attr->sched_nice))
5911 				return -EPERM;
5912 		}
5913 
5914 		if (rt_policy(policy)) {
5915 			unsigned long rlim_rtprio =
5916 					task_rlimit(p, RLIMIT_RTPRIO);
5917 
5918 			/* Can't set/change the rt policy: */
5919 			if (policy != p->policy && !rlim_rtprio)
5920 				return -EPERM;
5921 
5922 			/* Can't increase priority: */
5923 			if (attr->sched_priority > p->rt_priority &&
5924 			    attr->sched_priority > rlim_rtprio)
5925 				return -EPERM;
5926 		}
5927 
5928 		 /*
5929 		  * Can't set/change SCHED_DEADLINE policy at all for now
5930 		  * (safest behavior); in the future we would like to allow
5931 		  * unprivileged DL tasks to increase their relative deadline
5932 		  * or reduce their runtime (both ways reducing utilization)
5933 		  */
5934 		if (dl_policy(policy))
5935 			return -EPERM;
5936 
5937 		/*
5938 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5939 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5940 		 */
5941 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5942 			if (!can_nice(p, task_nice(p)))
5943 				return -EPERM;
5944 		}
5945 
5946 		/* Can't change other user's priorities: */
5947 		if (!check_same_owner(p))
5948 			return -EPERM;
5949 
5950 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5951 		if (p->sched_reset_on_fork && !reset_on_fork)
5952 			return -EPERM;
5953 	}
5954 
5955 	if (user) {
5956 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5957 			return -EINVAL;
5958 
5959 		retval = security_task_setscheduler(p);
5960 		if (retval)
5961 			return retval;
5962 	}
5963 
5964 	/* Update task specific "requested" clamps */
5965 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5966 		retval = uclamp_validate(p, attr);
5967 		if (retval)
5968 			return retval;
5969 	}
5970 
5971 	if (pi)
5972 		cpuset_read_lock();
5973 
5974 	/*
5975 	 * Make sure no PI-waiters arrive (or leave) while we are
5976 	 * changing the priority of the task:
5977 	 *
5978 	 * To be able to change p->policy safely, the appropriate
5979 	 * runqueue lock must be held.
5980 	 */
5981 	rq = task_rq_lock(p, &rf);
5982 	update_rq_clock(rq);
5983 
5984 	/*
5985 	 * Changing the policy of the stop threads its a very bad idea:
5986 	 */
5987 	if (p == rq->stop) {
5988 		retval = -EINVAL;
5989 		goto unlock;
5990 	}
5991 
5992 	/*
5993 	 * If not changing anything there's no need to proceed further,
5994 	 * but store a possible modification of reset_on_fork.
5995 	 */
5996 	if (unlikely(policy == p->policy)) {
5997 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5998 			goto change;
5999 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6000 			goto change;
6001 		if (dl_policy(policy) && dl_param_changed(p, attr))
6002 			goto change;
6003 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6004 			goto change;
6005 
6006 		p->sched_reset_on_fork = reset_on_fork;
6007 		retval = 0;
6008 		goto unlock;
6009 	}
6010 change:
6011 
6012 	if (user) {
6013 #ifdef CONFIG_RT_GROUP_SCHED
6014 		/*
6015 		 * Do not allow realtime tasks into groups that have no runtime
6016 		 * assigned.
6017 		 */
6018 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
6019 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6020 				!task_group_is_autogroup(task_group(p))) {
6021 			retval = -EPERM;
6022 			goto unlock;
6023 		}
6024 #endif
6025 #ifdef CONFIG_SMP
6026 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
6027 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6028 			cpumask_t *span = rq->rd->span;
6029 
6030 			/*
6031 			 * Don't allow tasks with an affinity mask smaller than
6032 			 * the entire root_domain to become SCHED_DEADLINE. We
6033 			 * will also fail if there's no bandwidth available.
6034 			 */
6035 			if (!cpumask_subset(span, p->cpus_ptr) ||
6036 			    rq->rd->dl_bw.bw == 0) {
6037 				retval = -EPERM;
6038 				goto unlock;
6039 			}
6040 		}
6041 #endif
6042 	}
6043 
6044 	/* Re-check policy now with rq lock held: */
6045 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6046 		policy = oldpolicy = -1;
6047 		task_rq_unlock(rq, p, &rf);
6048 		if (pi)
6049 			cpuset_read_unlock();
6050 		goto recheck;
6051 	}
6052 
6053 	/*
6054 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6055 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6056 	 * is available.
6057 	 */
6058 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6059 		retval = -EBUSY;
6060 		goto unlock;
6061 	}
6062 
6063 	p->sched_reset_on_fork = reset_on_fork;
6064 	oldprio = p->prio;
6065 
6066 	if (pi) {
6067 		/*
6068 		 * Take priority boosted tasks into account. If the new
6069 		 * effective priority is unchanged, we just store the new
6070 		 * normal parameters and do not touch the scheduler class and
6071 		 * the runqueue. This will be done when the task deboost
6072 		 * itself.
6073 		 */
6074 		new_effective_prio = rt_effective_prio(p, newprio);
6075 		if (new_effective_prio == oldprio)
6076 			queue_flags &= ~DEQUEUE_MOVE;
6077 	}
6078 
6079 	queued = task_on_rq_queued(p);
6080 	running = task_current(rq, p);
6081 	if (queued)
6082 		dequeue_task(rq, p, queue_flags);
6083 	if (running)
6084 		put_prev_task(rq, p);
6085 
6086 	prev_class = p->sched_class;
6087 
6088 	__setscheduler(rq, p, attr, pi);
6089 	__setscheduler_uclamp(p, attr);
6090 
6091 	if (queued) {
6092 		/*
6093 		 * We enqueue to tail when the priority of a task is
6094 		 * increased (user space view).
6095 		 */
6096 		if (oldprio < p->prio)
6097 			queue_flags |= ENQUEUE_HEAD;
6098 
6099 		enqueue_task(rq, p, queue_flags);
6100 	}
6101 	if (running)
6102 		set_next_task(rq, p);
6103 
6104 	check_class_changed(rq, p, prev_class, oldprio);
6105 
6106 	/* Avoid rq from going away on us: */
6107 	preempt_disable();
6108 	head = splice_balance_callbacks(rq);
6109 	task_rq_unlock(rq, p, &rf);
6110 
6111 	if (pi) {
6112 		cpuset_read_unlock();
6113 		rt_mutex_adjust_pi(p);
6114 	}
6115 
6116 	/* Run balance callbacks after we've adjusted the PI chain: */
6117 	balance_callbacks(rq, head);
6118 	preempt_enable();
6119 
6120 	return 0;
6121 
6122 unlock:
6123 	task_rq_unlock(rq, p, &rf);
6124 	if (pi)
6125 		cpuset_read_unlock();
6126 	return retval;
6127 }
6128 
6129 static int _sched_setscheduler(struct task_struct *p, int policy,
6130 			       const struct sched_param *param, bool check)
6131 {
6132 	struct sched_attr attr = {
6133 		.sched_policy   = policy,
6134 		.sched_priority = param->sched_priority,
6135 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6136 	};
6137 
6138 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6139 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6140 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6141 		policy &= ~SCHED_RESET_ON_FORK;
6142 		attr.sched_policy = policy;
6143 	}
6144 
6145 	return __sched_setscheduler(p, &attr, check, true);
6146 }
6147 /**
6148  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6149  * @p: the task in question.
6150  * @policy: new policy.
6151  * @param: structure containing the new RT priority.
6152  *
6153  * Use sched_set_fifo(), read its comment.
6154  *
6155  * Return: 0 on success. An error code otherwise.
6156  *
6157  * NOTE that the task may be already dead.
6158  */
6159 int sched_setscheduler(struct task_struct *p, int policy,
6160 		       const struct sched_param *param)
6161 {
6162 	return _sched_setscheduler(p, policy, param, true);
6163 }
6164 
6165 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6166 {
6167 	return __sched_setscheduler(p, attr, true, true);
6168 }
6169 
6170 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6171 {
6172 	return __sched_setscheduler(p, attr, false, true);
6173 }
6174 
6175 /**
6176  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6177  * @p: the task in question.
6178  * @policy: new policy.
6179  * @param: structure containing the new RT priority.
6180  *
6181  * Just like sched_setscheduler, only don't bother checking if the
6182  * current context has permission.  For example, this is needed in
6183  * stop_machine(): we create temporary high priority worker threads,
6184  * but our caller might not have that capability.
6185  *
6186  * Return: 0 on success. An error code otherwise.
6187  */
6188 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6189 			       const struct sched_param *param)
6190 {
6191 	return _sched_setscheduler(p, policy, param, false);
6192 }
6193 
6194 /*
6195  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6196  * incapable of resource management, which is the one thing an OS really should
6197  * be doing.
6198  *
6199  * This is of course the reason it is limited to privileged users only.
6200  *
6201  * Worse still; it is fundamentally impossible to compose static priority
6202  * workloads. You cannot take two correctly working static prio workloads
6203  * and smash them together and still expect them to work.
6204  *
6205  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6206  *
6207  *   MAX_RT_PRIO / 2
6208  *
6209  * The administrator _MUST_ configure the system, the kernel simply doesn't
6210  * know enough information to make a sensible choice.
6211  */
6212 void sched_set_fifo(struct task_struct *p)
6213 {
6214 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6215 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6216 }
6217 EXPORT_SYMBOL_GPL(sched_set_fifo);
6218 
6219 /*
6220  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6221  */
6222 void sched_set_fifo_low(struct task_struct *p)
6223 {
6224 	struct sched_param sp = { .sched_priority = 1 };
6225 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6226 }
6227 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6228 
6229 void sched_set_normal(struct task_struct *p, int nice)
6230 {
6231 	struct sched_attr attr = {
6232 		.sched_policy = SCHED_NORMAL,
6233 		.sched_nice = nice,
6234 	};
6235 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6236 }
6237 EXPORT_SYMBOL_GPL(sched_set_normal);
6238 
6239 static int
6240 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6241 {
6242 	struct sched_param lparam;
6243 	struct task_struct *p;
6244 	int retval;
6245 
6246 	if (!param || pid < 0)
6247 		return -EINVAL;
6248 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6249 		return -EFAULT;
6250 
6251 	rcu_read_lock();
6252 	retval = -ESRCH;
6253 	p = find_process_by_pid(pid);
6254 	if (likely(p))
6255 		get_task_struct(p);
6256 	rcu_read_unlock();
6257 
6258 	if (likely(p)) {
6259 		retval = sched_setscheduler(p, policy, &lparam);
6260 		put_task_struct(p);
6261 	}
6262 
6263 	return retval;
6264 }
6265 
6266 /*
6267  * Mimics kernel/events/core.c perf_copy_attr().
6268  */
6269 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6270 {
6271 	u32 size;
6272 	int ret;
6273 
6274 	/* Zero the full structure, so that a short copy will be nice: */
6275 	memset(attr, 0, sizeof(*attr));
6276 
6277 	ret = get_user(size, &uattr->size);
6278 	if (ret)
6279 		return ret;
6280 
6281 	/* ABI compatibility quirk: */
6282 	if (!size)
6283 		size = SCHED_ATTR_SIZE_VER0;
6284 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6285 		goto err_size;
6286 
6287 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6288 	if (ret) {
6289 		if (ret == -E2BIG)
6290 			goto err_size;
6291 		return ret;
6292 	}
6293 
6294 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6295 	    size < SCHED_ATTR_SIZE_VER1)
6296 		return -EINVAL;
6297 
6298 	/*
6299 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6300 	 * to be strict and return an error on out-of-bounds values?
6301 	 */
6302 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6303 
6304 	return 0;
6305 
6306 err_size:
6307 	put_user(sizeof(*attr), &uattr->size);
6308 	return -E2BIG;
6309 }
6310 
6311 /**
6312  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6313  * @pid: the pid in question.
6314  * @policy: new policy.
6315  * @param: structure containing the new RT priority.
6316  *
6317  * Return: 0 on success. An error code otherwise.
6318  */
6319 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6320 {
6321 	if (policy < 0)
6322 		return -EINVAL;
6323 
6324 	return do_sched_setscheduler(pid, policy, param);
6325 }
6326 
6327 /**
6328  * sys_sched_setparam - set/change the RT priority of a thread
6329  * @pid: the pid in question.
6330  * @param: structure containing the new RT priority.
6331  *
6332  * Return: 0 on success. An error code otherwise.
6333  */
6334 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6335 {
6336 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6337 }
6338 
6339 /**
6340  * sys_sched_setattr - same as above, but with extended sched_attr
6341  * @pid: the pid in question.
6342  * @uattr: structure containing the extended parameters.
6343  * @flags: for future extension.
6344  */
6345 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6346 			       unsigned int, flags)
6347 {
6348 	struct sched_attr attr;
6349 	struct task_struct *p;
6350 	int retval;
6351 
6352 	if (!uattr || pid < 0 || flags)
6353 		return -EINVAL;
6354 
6355 	retval = sched_copy_attr(uattr, &attr);
6356 	if (retval)
6357 		return retval;
6358 
6359 	if ((int)attr.sched_policy < 0)
6360 		return -EINVAL;
6361 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6362 		attr.sched_policy = SETPARAM_POLICY;
6363 
6364 	rcu_read_lock();
6365 	retval = -ESRCH;
6366 	p = find_process_by_pid(pid);
6367 	if (likely(p))
6368 		get_task_struct(p);
6369 	rcu_read_unlock();
6370 
6371 	if (likely(p)) {
6372 		retval = sched_setattr(p, &attr);
6373 		put_task_struct(p);
6374 	}
6375 
6376 	return retval;
6377 }
6378 
6379 /**
6380  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6381  * @pid: the pid in question.
6382  *
6383  * Return: On success, the policy of the thread. Otherwise, a negative error
6384  * code.
6385  */
6386 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6387 {
6388 	struct task_struct *p;
6389 	int retval;
6390 
6391 	if (pid < 0)
6392 		return -EINVAL;
6393 
6394 	retval = -ESRCH;
6395 	rcu_read_lock();
6396 	p = find_process_by_pid(pid);
6397 	if (p) {
6398 		retval = security_task_getscheduler(p);
6399 		if (!retval)
6400 			retval = p->policy
6401 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6402 	}
6403 	rcu_read_unlock();
6404 	return retval;
6405 }
6406 
6407 /**
6408  * sys_sched_getparam - get the RT priority of a thread
6409  * @pid: the pid in question.
6410  * @param: structure containing the RT priority.
6411  *
6412  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6413  * code.
6414  */
6415 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6416 {
6417 	struct sched_param lp = { .sched_priority = 0 };
6418 	struct task_struct *p;
6419 	int retval;
6420 
6421 	if (!param || pid < 0)
6422 		return -EINVAL;
6423 
6424 	rcu_read_lock();
6425 	p = find_process_by_pid(pid);
6426 	retval = -ESRCH;
6427 	if (!p)
6428 		goto out_unlock;
6429 
6430 	retval = security_task_getscheduler(p);
6431 	if (retval)
6432 		goto out_unlock;
6433 
6434 	if (task_has_rt_policy(p))
6435 		lp.sched_priority = p->rt_priority;
6436 	rcu_read_unlock();
6437 
6438 	/*
6439 	 * This one might sleep, we cannot do it with a spinlock held ...
6440 	 */
6441 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6442 
6443 	return retval;
6444 
6445 out_unlock:
6446 	rcu_read_unlock();
6447 	return retval;
6448 }
6449 
6450 /*
6451  * Copy the kernel size attribute structure (which might be larger
6452  * than what user-space knows about) to user-space.
6453  *
6454  * Note that all cases are valid: user-space buffer can be larger or
6455  * smaller than the kernel-space buffer. The usual case is that both
6456  * have the same size.
6457  */
6458 static int
6459 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6460 			struct sched_attr *kattr,
6461 			unsigned int usize)
6462 {
6463 	unsigned int ksize = sizeof(*kattr);
6464 
6465 	if (!access_ok(uattr, usize))
6466 		return -EFAULT;
6467 
6468 	/*
6469 	 * sched_getattr() ABI forwards and backwards compatibility:
6470 	 *
6471 	 * If usize == ksize then we just copy everything to user-space and all is good.
6472 	 *
6473 	 * If usize < ksize then we only copy as much as user-space has space for,
6474 	 * this keeps ABI compatibility as well. We skip the rest.
6475 	 *
6476 	 * If usize > ksize then user-space is using a newer version of the ABI,
6477 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6478 	 * detect the kernel's knowledge of attributes from the attr->size value
6479 	 * which is set to ksize in this case.
6480 	 */
6481 	kattr->size = min(usize, ksize);
6482 
6483 	if (copy_to_user(uattr, kattr, kattr->size))
6484 		return -EFAULT;
6485 
6486 	return 0;
6487 }
6488 
6489 /**
6490  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6491  * @pid: the pid in question.
6492  * @uattr: structure containing the extended parameters.
6493  * @usize: sizeof(attr) for fwd/bwd comp.
6494  * @flags: for future extension.
6495  */
6496 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6497 		unsigned int, usize, unsigned int, flags)
6498 {
6499 	struct sched_attr kattr = { };
6500 	struct task_struct *p;
6501 	int retval;
6502 
6503 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6504 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6505 		return -EINVAL;
6506 
6507 	rcu_read_lock();
6508 	p = find_process_by_pid(pid);
6509 	retval = -ESRCH;
6510 	if (!p)
6511 		goto out_unlock;
6512 
6513 	retval = security_task_getscheduler(p);
6514 	if (retval)
6515 		goto out_unlock;
6516 
6517 	kattr.sched_policy = p->policy;
6518 	if (p->sched_reset_on_fork)
6519 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6520 	if (task_has_dl_policy(p))
6521 		__getparam_dl(p, &kattr);
6522 	else if (task_has_rt_policy(p))
6523 		kattr.sched_priority = p->rt_priority;
6524 	else
6525 		kattr.sched_nice = task_nice(p);
6526 
6527 #ifdef CONFIG_UCLAMP_TASK
6528 	/*
6529 	 * This could race with another potential updater, but this is fine
6530 	 * because it'll correctly read the old or the new value. We don't need
6531 	 * to guarantee who wins the race as long as it doesn't return garbage.
6532 	 */
6533 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6534 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6535 #endif
6536 
6537 	rcu_read_unlock();
6538 
6539 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6540 
6541 out_unlock:
6542 	rcu_read_unlock();
6543 	return retval;
6544 }
6545 
6546 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6547 {
6548 	cpumask_var_t cpus_allowed, new_mask;
6549 	struct task_struct *p;
6550 	int retval;
6551 
6552 	rcu_read_lock();
6553 
6554 	p = find_process_by_pid(pid);
6555 	if (!p) {
6556 		rcu_read_unlock();
6557 		return -ESRCH;
6558 	}
6559 
6560 	/* Prevent p going away */
6561 	get_task_struct(p);
6562 	rcu_read_unlock();
6563 
6564 	if (p->flags & PF_NO_SETAFFINITY) {
6565 		retval = -EINVAL;
6566 		goto out_put_task;
6567 	}
6568 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6569 		retval = -ENOMEM;
6570 		goto out_put_task;
6571 	}
6572 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6573 		retval = -ENOMEM;
6574 		goto out_free_cpus_allowed;
6575 	}
6576 	retval = -EPERM;
6577 	if (!check_same_owner(p)) {
6578 		rcu_read_lock();
6579 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6580 			rcu_read_unlock();
6581 			goto out_free_new_mask;
6582 		}
6583 		rcu_read_unlock();
6584 	}
6585 
6586 	retval = security_task_setscheduler(p);
6587 	if (retval)
6588 		goto out_free_new_mask;
6589 
6590 
6591 	cpuset_cpus_allowed(p, cpus_allowed);
6592 	cpumask_and(new_mask, in_mask, cpus_allowed);
6593 
6594 	/*
6595 	 * Since bandwidth control happens on root_domain basis,
6596 	 * if admission test is enabled, we only admit -deadline
6597 	 * tasks allowed to run on all the CPUs in the task's
6598 	 * root_domain.
6599 	 */
6600 #ifdef CONFIG_SMP
6601 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6602 		rcu_read_lock();
6603 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6604 			retval = -EBUSY;
6605 			rcu_read_unlock();
6606 			goto out_free_new_mask;
6607 		}
6608 		rcu_read_unlock();
6609 	}
6610 #endif
6611 again:
6612 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6613 
6614 	if (!retval) {
6615 		cpuset_cpus_allowed(p, cpus_allowed);
6616 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6617 			/*
6618 			 * We must have raced with a concurrent cpuset
6619 			 * update. Just reset the cpus_allowed to the
6620 			 * cpuset's cpus_allowed
6621 			 */
6622 			cpumask_copy(new_mask, cpus_allowed);
6623 			goto again;
6624 		}
6625 	}
6626 out_free_new_mask:
6627 	free_cpumask_var(new_mask);
6628 out_free_cpus_allowed:
6629 	free_cpumask_var(cpus_allowed);
6630 out_put_task:
6631 	put_task_struct(p);
6632 	return retval;
6633 }
6634 
6635 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6636 			     struct cpumask *new_mask)
6637 {
6638 	if (len < cpumask_size())
6639 		cpumask_clear(new_mask);
6640 	else if (len > cpumask_size())
6641 		len = cpumask_size();
6642 
6643 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6644 }
6645 
6646 /**
6647  * sys_sched_setaffinity - set the CPU affinity of a process
6648  * @pid: pid of the process
6649  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6650  * @user_mask_ptr: user-space pointer to the new CPU mask
6651  *
6652  * Return: 0 on success. An error code otherwise.
6653  */
6654 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6655 		unsigned long __user *, user_mask_ptr)
6656 {
6657 	cpumask_var_t new_mask;
6658 	int retval;
6659 
6660 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6661 		return -ENOMEM;
6662 
6663 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6664 	if (retval == 0)
6665 		retval = sched_setaffinity(pid, new_mask);
6666 	free_cpumask_var(new_mask);
6667 	return retval;
6668 }
6669 
6670 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6671 {
6672 	struct task_struct *p;
6673 	unsigned long flags;
6674 	int retval;
6675 
6676 	rcu_read_lock();
6677 
6678 	retval = -ESRCH;
6679 	p = find_process_by_pid(pid);
6680 	if (!p)
6681 		goto out_unlock;
6682 
6683 	retval = security_task_getscheduler(p);
6684 	if (retval)
6685 		goto out_unlock;
6686 
6687 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6688 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6689 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6690 
6691 out_unlock:
6692 	rcu_read_unlock();
6693 
6694 	return retval;
6695 }
6696 
6697 /**
6698  * sys_sched_getaffinity - get the CPU affinity of a process
6699  * @pid: pid of the process
6700  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6701  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6702  *
6703  * Return: size of CPU mask copied to user_mask_ptr on success. An
6704  * error code otherwise.
6705  */
6706 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6707 		unsigned long __user *, user_mask_ptr)
6708 {
6709 	int ret;
6710 	cpumask_var_t mask;
6711 
6712 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6713 		return -EINVAL;
6714 	if (len & (sizeof(unsigned long)-1))
6715 		return -EINVAL;
6716 
6717 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6718 		return -ENOMEM;
6719 
6720 	ret = sched_getaffinity(pid, mask);
6721 	if (ret == 0) {
6722 		unsigned int retlen = min(len, cpumask_size());
6723 
6724 		if (copy_to_user(user_mask_ptr, mask, retlen))
6725 			ret = -EFAULT;
6726 		else
6727 			ret = retlen;
6728 	}
6729 	free_cpumask_var(mask);
6730 
6731 	return ret;
6732 }
6733 
6734 static void do_sched_yield(void)
6735 {
6736 	struct rq_flags rf;
6737 	struct rq *rq;
6738 
6739 	rq = this_rq_lock_irq(&rf);
6740 
6741 	schedstat_inc(rq->yld_count);
6742 	current->sched_class->yield_task(rq);
6743 
6744 	preempt_disable();
6745 	rq_unlock_irq(rq, &rf);
6746 	sched_preempt_enable_no_resched();
6747 
6748 	schedule();
6749 }
6750 
6751 /**
6752  * sys_sched_yield - yield the current processor to other threads.
6753  *
6754  * This function yields the current CPU to other tasks. If there are no
6755  * other threads running on this CPU then this function will return.
6756  *
6757  * Return: 0.
6758  */
6759 SYSCALL_DEFINE0(sched_yield)
6760 {
6761 	do_sched_yield();
6762 	return 0;
6763 }
6764 
6765 #ifndef CONFIG_PREEMPTION
6766 int __sched _cond_resched(void)
6767 {
6768 	if (should_resched(0)) {
6769 		preempt_schedule_common();
6770 		return 1;
6771 	}
6772 	rcu_all_qs();
6773 	return 0;
6774 }
6775 EXPORT_SYMBOL(_cond_resched);
6776 #endif
6777 
6778 /*
6779  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6780  * call schedule, and on return reacquire the lock.
6781  *
6782  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6783  * operations here to prevent schedule() from being called twice (once via
6784  * spin_unlock(), once by hand).
6785  */
6786 int __cond_resched_lock(spinlock_t *lock)
6787 {
6788 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6789 	int ret = 0;
6790 
6791 	lockdep_assert_held(lock);
6792 
6793 	if (spin_needbreak(lock) || resched) {
6794 		spin_unlock(lock);
6795 		if (resched)
6796 			preempt_schedule_common();
6797 		else
6798 			cpu_relax();
6799 		ret = 1;
6800 		spin_lock(lock);
6801 	}
6802 	return ret;
6803 }
6804 EXPORT_SYMBOL(__cond_resched_lock);
6805 
6806 /**
6807  * yield - yield the current processor to other threads.
6808  *
6809  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6810  *
6811  * The scheduler is at all times free to pick the calling task as the most
6812  * eligible task to run, if removing the yield() call from your code breaks
6813  * it, it's already broken.
6814  *
6815  * Typical broken usage is:
6816  *
6817  * while (!event)
6818  *	yield();
6819  *
6820  * where one assumes that yield() will let 'the other' process run that will
6821  * make event true. If the current task is a SCHED_FIFO task that will never
6822  * happen. Never use yield() as a progress guarantee!!
6823  *
6824  * If you want to use yield() to wait for something, use wait_event().
6825  * If you want to use yield() to be 'nice' for others, use cond_resched().
6826  * If you still want to use yield(), do not!
6827  */
6828 void __sched yield(void)
6829 {
6830 	set_current_state(TASK_RUNNING);
6831 	do_sched_yield();
6832 }
6833 EXPORT_SYMBOL(yield);
6834 
6835 /**
6836  * yield_to - yield the current processor to another thread in
6837  * your thread group, or accelerate that thread toward the
6838  * processor it's on.
6839  * @p: target task
6840  * @preempt: whether task preemption is allowed or not
6841  *
6842  * It's the caller's job to ensure that the target task struct
6843  * can't go away on us before we can do any checks.
6844  *
6845  * Return:
6846  *	true (>0) if we indeed boosted the target task.
6847  *	false (0) if we failed to boost the target.
6848  *	-ESRCH if there's no task to yield to.
6849  */
6850 int __sched yield_to(struct task_struct *p, bool preempt)
6851 {
6852 	struct task_struct *curr = current;
6853 	struct rq *rq, *p_rq;
6854 	unsigned long flags;
6855 	int yielded = 0;
6856 
6857 	local_irq_save(flags);
6858 	rq = this_rq();
6859 
6860 again:
6861 	p_rq = task_rq(p);
6862 	/*
6863 	 * If we're the only runnable task on the rq and target rq also
6864 	 * has only one task, there's absolutely no point in yielding.
6865 	 */
6866 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6867 		yielded = -ESRCH;
6868 		goto out_irq;
6869 	}
6870 
6871 	double_rq_lock(rq, p_rq);
6872 	if (task_rq(p) != p_rq) {
6873 		double_rq_unlock(rq, p_rq);
6874 		goto again;
6875 	}
6876 
6877 	if (!curr->sched_class->yield_to_task)
6878 		goto out_unlock;
6879 
6880 	if (curr->sched_class != p->sched_class)
6881 		goto out_unlock;
6882 
6883 	if (task_running(p_rq, p) || p->state)
6884 		goto out_unlock;
6885 
6886 	yielded = curr->sched_class->yield_to_task(rq, p);
6887 	if (yielded) {
6888 		schedstat_inc(rq->yld_count);
6889 		/*
6890 		 * Make p's CPU reschedule; pick_next_entity takes care of
6891 		 * fairness.
6892 		 */
6893 		if (preempt && rq != p_rq)
6894 			resched_curr(p_rq);
6895 	}
6896 
6897 out_unlock:
6898 	double_rq_unlock(rq, p_rq);
6899 out_irq:
6900 	local_irq_restore(flags);
6901 
6902 	if (yielded > 0)
6903 		schedule();
6904 
6905 	return yielded;
6906 }
6907 EXPORT_SYMBOL_GPL(yield_to);
6908 
6909 int io_schedule_prepare(void)
6910 {
6911 	int old_iowait = current->in_iowait;
6912 
6913 	current->in_iowait = 1;
6914 	blk_schedule_flush_plug(current);
6915 
6916 	return old_iowait;
6917 }
6918 
6919 void io_schedule_finish(int token)
6920 {
6921 	current->in_iowait = token;
6922 }
6923 
6924 /*
6925  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6926  * that process accounting knows that this is a task in IO wait state.
6927  */
6928 long __sched io_schedule_timeout(long timeout)
6929 {
6930 	int token;
6931 	long ret;
6932 
6933 	token = io_schedule_prepare();
6934 	ret = schedule_timeout(timeout);
6935 	io_schedule_finish(token);
6936 
6937 	return ret;
6938 }
6939 EXPORT_SYMBOL(io_schedule_timeout);
6940 
6941 void __sched io_schedule(void)
6942 {
6943 	int token;
6944 
6945 	token = io_schedule_prepare();
6946 	schedule();
6947 	io_schedule_finish(token);
6948 }
6949 EXPORT_SYMBOL(io_schedule);
6950 
6951 /**
6952  * sys_sched_get_priority_max - return maximum RT priority.
6953  * @policy: scheduling class.
6954  *
6955  * Return: On success, this syscall returns the maximum
6956  * rt_priority that can be used by a given scheduling class.
6957  * On failure, a negative error code is returned.
6958  */
6959 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6960 {
6961 	int ret = -EINVAL;
6962 
6963 	switch (policy) {
6964 	case SCHED_FIFO:
6965 	case SCHED_RR:
6966 		ret = MAX_USER_RT_PRIO-1;
6967 		break;
6968 	case SCHED_DEADLINE:
6969 	case SCHED_NORMAL:
6970 	case SCHED_BATCH:
6971 	case SCHED_IDLE:
6972 		ret = 0;
6973 		break;
6974 	}
6975 	return ret;
6976 }
6977 
6978 /**
6979  * sys_sched_get_priority_min - return minimum RT priority.
6980  * @policy: scheduling class.
6981  *
6982  * Return: On success, this syscall returns the minimum
6983  * rt_priority that can be used by a given scheduling class.
6984  * On failure, a negative error code is returned.
6985  */
6986 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6987 {
6988 	int ret = -EINVAL;
6989 
6990 	switch (policy) {
6991 	case SCHED_FIFO:
6992 	case SCHED_RR:
6993 		ret = 1;
6994 		break;
6995 	case SCHED_DEADLINE:
6996 	case SCHED_NORMAL:
6997 	case SCHED_BATCH:
6998 	case SCHED_IDLE:
6999 		ret = 0;
7000 	}
7001 	return ret;
7002 }
7003 
7004 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7005 {
7006 	struct task_struct *p;
7007 	unsigned int time_slice;
7008 	struct rq_flags rf;
7009 	struct rq *rq;
7010 	int retval;
7011 
7012 	if (pid < 0)
7013 		return -EINVAL;
7014 
7015 	retval = -ESRCH;
7016 	rcu_read_lock();
7017 	p = find_process_by_pid(pid);
7018 	if (!p)
7019 		goto out_unlock;
7020 
7021 	retval = security_task_getscheduler(p);
7022 	if (retval)
7023 		goto out_unlock;
7024 
7025 	rq = task_rq_lock(p, &rf);
7026 	time_slice = 0;
7027 	if (p->sched_class->get_rr_interval)
7028 		time_slice = p->sched_class->get_rr_interval(rq, p);
7029 	task_rq_unlock(rq, p, &rf);
7030 
7031 	rcu_read_unlock();
7032 	jiffies_to_timespec64(time_slice, t);
7033 	return 0;
7034 
7035 out_unlock:
7036 	rcu_read_unlock();
7037 	return retval;
7038 }
7039 
7040 /**
7041  * sys_sched_rr_get_interval - return the default timeslice of a process.
7042  * @pid: pid of the process.
7043  * @interval: userspace pointer to the timeslice value.
7044  *
7045  * this syscall writes the default timeslice value of a given process
7046  * into the user-space timespec buffer. A value of '0' means infinity.
7047  *
7048  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7049  * an error code.
7050  */
7051 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7052 		struct __kernel_timespec __user *, interval)
7053 {
7054 	struct timespec64 t;
7055 	int retval = sched_rr_get_interval(pid, &t);
7056 
7057 	if (retval == 0)
7058 		retval = put_timespec64(&t, interval);
7059 
7060 	return retval;
7061 }
7062 
7063 #ifdef CONFIG_COMPAT_32BIT_TIME
7064 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7065 		struct old_timespec32 __user *, interval)
7066 {
7067 	struct timespec64 t;
7068 	int retval = sched_rr_get_interval(pid, &t);
7069 
7070 	if (retval == 0)
7071 		retval = put_old_timespec32(&t, interval);
7072 	return retval;
7073 }
7074 #endif
7075 
7076 void sched_show_task(struct task_struct *p)
7077 {
7078 	unsigned long free = 0;
7079 	int ppid;
7080 
7081 	if (!try_get_task_stack(p))
7082 		return;
7083 
7084 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7085 
7086 	if (p->state == TASK_RUNNING)
7087 		pr_cont("  running task    ");
7088 #ifdef CONFIG_DEBUG_STACK_USAGE
7089 	free = stack_not_used(p);
7090 #endif
7091 	ppid = 0;
7092 	rcu_read_lock();
7093 	if (pid_alive(p))
7094 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7095 	rcu_read_unlock();
7096 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7097 		free, task_pid_nr(p), ppid,
7098 		(unsigned long)task_thread_info(p)->flags);
7099 
7100 	print_worker_info(KERN_INFO, p);
7101 	print_stop_info(KERN_INFO, p);
7102 	show_stack(p, NULL, KERN_INFO);
7103 	put_task_stack(p);
7104 }
7105 EXPORT_SYMBOL_GPL(sched_show_task);
7106 
7107 static inline bool
7108 state_filter_match(unsigned long state_filter, struct task_struct *p)
7109 {
7110 	/* no filter, everything matches */
7111 	if (!state_filter)
7112 		return true;
7113 
7114 	/* filter, but doesn't match */
7115 	if (!(p->state & state_filter))
7116 		return false;
7117 
7118 	/*
7119 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7120 	 * TASK_KILLABLE).
7121 	 */
7122 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7123 		return false;
7124 
7125 	return true;
7126 }
7127 
7128 
7129 void show_state_filter(unsigned long state_filter)
7130 {
7131 	struct task_struct *g, *p;
7132 
7133 	rcu_read_lock();
7134 	for_each_process_thread(g, p) {
7135 		/*
7136 		 * reset the NMI-timeout, listing all files on a slow
7137 		 * console might take a lot of time:
7138 		 * Also, reset softlockup watchdogs on all CPUs, because
7139 		 * another CPU might be blocked waiting for us to process
7140 		 * an IPI.
7141 		 */
7142 		touch_nmi_watchdog();
7143 		touch_all_softlockup_watchdogs();
7144 		if (state_filter_match(state_filter, p))
7145 			sched_show_task(p);
7146 	}
7147 
7148 #ifdef CONFIG_SCHED_DEBUG
7149 	if (!state_filter)
7150 		sysrq_sched_debug_show();
7151 #endif
7152 	rcu_read_unlock();
7153 	/*
7154 	 * Only show locks if all tasks are dumped:
7155 	 */
7156 	if (!state_filter)
7157 		debug_show_all_locks();
7158 }
7159 
7160 /**
7161  * init_idle - set up an idle thread for a given CPU
7162  * @idle: task in question
7163  * @cpu: CPU the idle task belongs to
7164  *
7165  * NOTE: this function does not set the idle thread's NEED_RESCHED
7166  * flag, to make booting more robust.
7167  */
7168 void init_idle(struct task_struct *idle, int cpu)
7169 {
7170 	struct rq *rq = cpu_rq(cpu);
7171 	unsigned long flags;
7172 
7173 	__sched_fork(0, idle);
7174 
7175 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7176 	raw_spin_lock(&rq->lock);
7177 
7178 	idle->state = TASK_RUNNING;
7179 	idle->se.exec_start = sched_clock();
7180 	idle->flags |= PF_IDLE;
7181 
7182 	scs_task_reset(idle);
7183 	kasan_unpoison_task_stack(idle);
7184 
7185 #ifdef CONFIG_SMP
7186 	/*
7187 	 * It's possible that init_idle() gets called multiple times on a task,
7188 	 * in that case do_set_cpus_allowed() will not do the right thing.
7189 	 *
7190 	 * And since this is boot we can forgo the serialization.
7191 	 */
7192 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7193 #endif
7194 	/*
7195 	 * We're having a chicken and egg problem, even though we are
7196 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7197 	 * lockdep check in task_group() will fail.
7198 	 *
7199 	 * Similar case to sched_fork(). / Alternatively we could
7200 	 * use task_rq_lock() here and obtain the other rq->lock.
7201 	 *
7202 	 * Silence PROVE_RCU
7203 	 */
7204 	rcu_read_lock();
7205 	__set_task_cpu(idle, cpu);
7206 	rcu_read_unlock();
7207 
7208 	rq->idle = idle;
7209 	rcu_assign_pointer(rq->curr, idle);
7210 	idle->on_rq = TASK_ON_RQ_QUEUED;
7211 #ifdef CONFIG_SMP
7212 	idle->on_cpu = 1;
7213 #endif
7214 	raw_spin_unlock(&rq->lock);
7215 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7216 
7217 	/* Set the preempt count _outside_ the spinlocks! */
7218 	init_idle_preempt_count(idle, cpu);
7219 
7220 	/*
7221 	 * The idle tasks have their own, simple scheduling class:
7222 	 */
7223 	idle->sched_class = &idle_sched_class;
7224 	ftrace_graph_init_idle_task(idle, cpu);
7225 	vtime_init_idle(idle, cpu);
7226 #ifdef CONFIG_SMP
7227 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7228 #endif
7229 }
7230 
7231 #ifdef CONFIG_SMP
7232 
7233 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7234 			      const struct cpumask *trial)
7235 {
7236 	int ret = 1;
7237 
7238 	if (!cpumask_weight(cur))
7239 		return ret;
7240 
7241 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7242 
7243 	return ret;
7244 }
7245 
7246 int task_can_attach(struct task_struct *p,
7247 		    const struct cpumask *cs_cpus_allowed)
7248 {
7249 	int ret = 0;
7250 
7251 	/*
7252 	 * Kthreads which disallow setaffinity shouldn't be moved
7253 	 * to a new cpuset; we don't want to change their CPU
7254 	 * affinity and isolating such threads by their set of
7255 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7256 	 * applicable for such threads.  This prevents checking for
7257 	 * success of set_cpus_allowed_ptr() on all attached tasks
7258 	 * before cpus_mask may be changed.
7259 	 */
7260 	if (p->flags & PF_NO_SETAFFINITY) {
7261 		ret = -EINVAL;
7262 		goto out;
7263 	}
7264 
7265 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7266 					      cs_cpus_allowed))
7267 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7268 
7269 out:
7270 	return ret;
7271 }
7272 
7273 bool sched_smp_initialized __read_mostly;
7274 
7275 #ifdef CONFIG_NUMA_BALANCING
7276 /* Migrate current task p to target_cpu */
7277 int migrate_task_to(struct task_struct *p, int target_cpu)
7278 {
7279 	struct migration_arg arg = { p, target_cpu };
7280 	int curr_cpu = task_cpu(p);
7281 
7282 	if (curr_cpu == target_cpu)
7283 		return 0;
7284 
7285 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7286 		return -EINVAL;
7287 
7288 	/* TODO: This is not properly updating schedstats */
7289 
7290 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7291 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7292 }
7293 
7294 /*
7295  * Requeue a task on a given node and accurately track the number of NUMA
7296  * tasks on the runqueues
7297  */
7298 void sched_setnuma(struct task_struct *p, int nid)
7299 {
7300 	bool queued, running;
7301 	struct rq_flags rf;
7302 	struct rq *rq;
7303 
7304 	rq = task_rq_lock(p, &rf);
7305 	queued = task_on_rq_queued(p);
7306 	running = task_current(rq, p);
7307 
7308 	if (queued)
7309 		dequeue_task(rq, p, DEQUEUE_SAVE);
7310 	if (running)
7311 		put_prev_task(rq, p);
7312 
7313 	p->numa_preferred_nid = nid;
7314 
7315 	if (queued)
7316 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7317 	if (running)
7318 		set_next_task(rq, p);
7319 	task_rq_unlock(rq, p, &rf);
7320 }
7321 #endif /* CONFIG_NUMA_BALANCING */
7322 
7323 #ifdef CONFIG_HOTPLUG_CPU
7324 /*
7325  * Ensure that the idle task is using init_mm right before its CPU goes
7326  * offline.
7327  */
7328 void idle_task_exit(void)
7329 {
7330 	struct mm_struct *mm = current->active_mm;
7331 
7332 	BUG_ON(cpu_online(smp_processor_id()));
7333 	BUG_ON(current != this_rq()->idle);
7334 
7335 	if (mm != &init_mm) {
7336 		switch_mm(mm, &init_mm, current);
7337 		finish_arch_post_lock_switch();
7338 	}
7339 
7340 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7341 }
7342 
7343 static int __balance_push_cpu_stop(void *arg)
7344 {
7345 	struct task_struct *p = arg;
7346 	struct rq *rq = this_rq();
7347 	struct rq_flags rf;
7348 	int cpu;
7349 
7350 	raw_spin_lock_irq(&p->pi_lock);
7351 	rq_lock(rq, &rf);
7352 
7353 	update_rq_clock(rq);
7354 
7355 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7356 		cpu = select_fallback_rq(rq->cpu, p);
7357 		rq = __migrate_task(rq, &rf, p, cpu);
7358 	}
7359 
7360 	rq_unlock(rq, &rf);
7361 	raw_spin_unlock_irq(&p->pi_lock);
7362 
7363 	put_task_struct(p);
7364 
7365 	return 0;
7366 }
7367 
7368 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7369 
7370 /*
7371  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7372  */
7373 static void balance_push(struct rq *rq)
7374 {
7375 	struct task_struct *push_task = rq->curr;
7376 
7377 	lockdep_assert_held(&rq->lock);
7378 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7379 	/*
7380 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7381 	 */
7382 	rq->balance_callback = &balance_push_callback;
7383 
7384 	/*
7385 	 * Both the cpu-hotplug and stop task are in this case and are
7386 	 * required to complete the hotplug process.
7387 	 */
7388 	if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
7389 		/*
7390 		 * If this is the idle task on the outgoing CPU try to wake
7391 		 * up the hotplug control thread which might wait for the
7392 		 * last task to vanish. The rcuwait_active() check is
7393 		 * accurate here because the waiter is pinned on this CPU
7394 		 * and can't obviously be running in parallel.
7395 		 *
7396 		 * On RT kernels this also has to check whether there are
7397 		 * pinned and scheduled out tasks on the runqueue. They
7398 		 * need to leave the migrate disabled section first.
7399 		 */
7400 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7401 		    rcuwait_active(&rq->hotplug_wait)) {
7402 			raw_spin_unlock(&rq->lock);
7403 			rcuwait_wake_up(&rq->hotplug_wait);
7404 			raw_spin_lock(&rq->lock);
7405 		}
7406 		return;
7407 	}
7408 
7409 	get_task_struct(push_task);
7410 	/*
7411 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7412 	 * Both preemption and IRQs are still disabled.
7413 	 */
7414 	raw_spin_unlock(&rq->lock);
7415 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7416 			    this_cpu_ptr(&push_work));
7417 	/*
7418 	 * At this point need_resched() is true and we'll take the loop in
7419 	 * schedule(). The next pick is obviously going to be the stop task
7420 	 * which is_per_cpu_kthread() and will push this task away.
7421 	 */
7422 	raw_spin_lock(&rq->lock);
7423 }
7424 
7425 static void balance_push_set(int cpu, bool on)
7426 {
7427 	struct rq *rq = cpu_rq(cpu);
7428 	struct rq_flags rf;
7429 
7430 	rq_lock_irqsave(rq, &rf);
7431 	if (on)
7432 		rq->balance_callback = &balance_push_callback;
7433 	else
7434 		rq->balance_callback = NULL;
7435 	rq_unlock_irqrestore(rq, &rf);
7436 }
7437 
7438 /*
7439  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7440  * inactive. All tasks which are not per CPU kernel threads are either
7441  * pushed off this CPU now via balance_push() or placed on a different CPU
7442  * during wakeup. Wait until the CPU is quiescent.
7443  */
7444 static void balance_hotplug_wait(void)
7445 {
7446 	struct rq *rq = this_rq();
7447 
7448 	rcuwait_wait_event(&rq->hotplug_wait,
7449 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7450 			   TASK_UNINTERRUPTIBLE);
7451 }
7452 
7453 #else
7454 
7455 static inline void balance_push(struct rq *rq)
7456 {
7457 }
7458 
7459 static inline void balance_push_set(int cpu, bool on)
7460 {
7461 }
7462 
7463 static inline void balance_hotplug_wait(void)
7464 {
7465 }
7466 
7467 #endif /* CONFIG_HOTPLUG_CPU */
7468 
7469 void set_rq_online(struct rq *rq)
7470 {
7471 	if (!rq->online) {
7472 		const struct sched_class *class;
7473 
7474 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7475 		rq->online = 1;
7476 
7477 		for_each_class(class) {
7478 			if (class->rq_online)
7479 				class->rq_online(rq);
7480 		}
7481 	}
7482 }
7483 
7484 void set_rq_offline(struct rq *rq)
7485 {
7486 	if (rq->online) {
7487 		const struct sched_class *class;
7488 
7489 		for_each_class(class) {
7490 			if (class->rq_offline)
7491 				class->rq_offline(rq);
7492 		}
7493 
7494 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7495 		rq->online = 0;
7496 	}
7497 }
7498 
7499 /*
7500  * used to mark begin/end of suspend/resume:
7501  */
7502 static int num_cpus_frozen;
7503 
7504 /*
7505  * Update cpusets according to cpu_active mask.  If cpusets are
7506  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7507  * around partition_sched_domains().
7508  *
7509  * If we come here as part of a suspend/resume, don't touch cpusets because we
7510  * want to restore it back to its original state upon resume anyway.
7511  */
7512 static void cpuset_cpu_active(void)
7513 {
7514 	if (cpuhp_tasks_frozen) {
7515 		/*
7516 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7517 		 * resume sequence. As long as this is not the last online
7518 		 * operation in the resume sequence, just build a single sched
7519 		 * domain, ignoring cpusets.
7520 		 */
7521 		partition_sched_domains(1, NULL, NULL);
7522 		if (--num_cpus_frozen)
7523 			return;
7524 		/*
7525 		 * This is the last CPU online operation. So fall through and
7526 		 * restore the original sched domains by considering the
7527 		 * cpuset configurations.
7528 		 */
7529 		cpuset_force_rebuild();
7530 	}
7531 	cpuset_update_active_cpus();
7532 }
7533 
7534 static int cpuset_cpu_inactive(unsigned int cpu)
7535 {
7536 	if (!cpuhp_tasks_frozen) {
7537 		if (dl_cpu_busy(cpu))
7538 			return -EBUSY;
7539 		cpuset_update_active_cpus();
7540 	} else {
7541 		num_cpus_frozen++;
7542 		partition_sched_domains(1, NULL, NULL);
7543 	}
7544 	return 0;
7545 }
7546 
7547 int sched_cpu_activate(unsigned int cpu)
7548 {
7549 	struct rq *rq = cpu_rq(cpu);
7550 	struct rq_flags rf;
7551 
7552 	balance_push_set(cpu, false);
7553 
7554 #ifdef CONFIG_SCHED_SMT
7555 	/*
7556 	 * When going up, increment the number of cores with SMT present.
7557 	 */
7558 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7559 		static_branch_inc_cpuslocked(&sched_smt_present);
7560 #endif
7561 	set_cpu_active(cpu, true);
7562 
7563 	if (sched_smp_initialized) {
7564 		sched_domains_numa_masks_set(cpu);
7565 		cpuset_cpu_active();
7566 	}
7567 
7568 	/*
7569 	 * Put the rq online, if not already. This happens:
7570 	 *
7571 	 * 1) In the early boot process, because we build the real domains
7572 	 *    after all CPUs have been brought up.
7573 	 *
7574 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7575 	 *    domains.
7576 	 */
7577 	rq_lock_irqsave(rq, &rf);
7578 	if (rq->rd) {
7579 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7580 		set_rq_online(rq);
7581 	}
7582 	rq_unlock_irqrestore(rq, &rf);
7583 
7584 	return 0;
7585 }
7586 
7587 int sched_cpu_deactivate(unsigned int cpu)
7588 {
7589 	struct rq *rq = cpu_rq(cpu);
7590 	struct rq_flags rf;
7591 	int ret;
7592 
7593 	set_cpu_active(cpu, false);
7594 	/*
7595 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7596 	 * users of this state to go away such that all new such users will
7597 	 * observe it.
7598 	 *
7599 	 * Do sync before park smpboot threads to take care the rcu boost case.
7600 	 */
7601 	synchronize_rcu();
7602 
7603 	balance_push_set(cpu, true);
7604 
7605 	rq_lock_irqsave(rq, &rf);
7606 	if (rq->rd) {
7607 		update_rq_clock(rq);
7608 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7609 		set_rq_offline(rq);
7610 	}
7611 	rq_unlock_irqrestore(rq, &rf);
7612 
7613 #ifdef CONFIG_SCHED_SMT
7614 	/*
7615 	 * When going down, decrement the number of cores with SMT present.
7616 	 */
7617 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7618 		static_branch_dec_cpuslocked(&sched_smt_present);
7619 #endif
7620 
7621 	if (!sched_smp_initialized)
7622 		return 0;
7623 
7624 	ret = cpuset_cpu_inactive(cpu);
7625 	if (ret) {
7626 		balance_push_set(cpu, false);
7627 		set_cpu_active(cpu, true);
7628 		return ret;
7629 	}
7630 	sched_domains_numa_masks_clear(cpu);
7631 	return 0;
7632 }
7633 
7634 static void sched_rq_cpu_starting(unsigned int cpu)
7635 {
7636 	struct rq *rq = cpu_rq(cpu);
7637 
7638 	rq->calc_load_update = calc_load_update;
7639 	update_max_interval();
7640 }
7641 
7642 int sched_cpu_starting(unsigned int cpu)
7643 {
7644 	sched_rq_cpu_starting(cpu);
7645 	sched_tick_start(cpu);
7646 	return 0;
7647 }
7648 
7649 #ifdef CONFIG_HOTPLUG_CPU
7650 
7651 /*
7652  * Invoked immediately before the stopper thread is invoked to bring the
7653  * CPU down completely. At this point all per CPU kthreads except the
7654  * hotplug thread (current) and the stopper thread (inactive) have been
7655  * either parked or have been unbound from the outgoing CPU. Ensure that
7656  * any of those which might be on the way out are gone.
7657  *
7658  * If after this point a bound task is being woken on this CPU then the
7659  * responsible hotplug callback has failed to do it's job.
7660  * sched_cpu_dying() will catch it with the appropriate fireworks.
7661  */
7662 int sched_cpu_wait_empty(unsigned int cpu)
7663 {
7664 	balance_hotplug_wait();
7665 	return 0;
7666 }
7667 
7668 /*
7669  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7670  * might have. Called from the CPU stopper task after ensuring that the
7671  * stopper is the last running task on the CPU, so nr_active count is
7672  * stable. We need to take the teardown thread which is calling this into
7673  * account, so we hand in adjust = 1 to the load calculation.
7674  *
7675  * Also see the comment "Global load-average calculations".
7676  */
7677 static void calc_load_migrate(struct rq *rq)
7678 {
7679 	long delta = calc_load_fold_active(rq, 1);
7680 
7681 	if (delta)
7682 		atomic_long_add(delta, &calc_load_tasks);
7683 }
7684 
7685 int sched_cpu_dying(unsigned int cpu)
7686 {
7687 	struct rq *rq = cpu_rq(cpu);
7688 	struct rq_flags rf;
7689 
7690 	/* Handle pending wakeups and then migrate everything off */
7691 	sched_tick_stop(cpu);
7692 
7693 	rq_lock_irqsave(rq, &rf);
7694 	BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
7695 	rq_unlock_irqrestore(rq, &rf);
7696 
7697 	calc_load_migrate(rq);
7698 	update_max_interval();
7699 	nohz_balance_exit_idle(rq);
7700 	hrtick_clear(rq);
7701 	return 0;
7702 }
7703 #endif
7704 
7705 void __init sched_init_smp(void)
7706 {
7707 	sched_init_numa();
7708 
7709 	/*
7710 	 * There's no userspace yet to cause hotplug operations; hence all the
7711 	 * CPU masks are stable and all blatant races in the below code cannot
7712 	 * happen.
7713 	 */
7714 	mutex_lock(&sched_domains_mutex);
7715 	sched_init_domains(cpu_active_mask);
7716 	mutex_unlock(&sched_domains_mutex);
7717 
7718 	/* Move init over to a non-isolated CPU */
7719 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7720 		BUG();
7721 	sched_init_granularity();
7722 
7723 	init_sched_rt_class();
7724 	init_sched_dl_class();
7725 
7726 	sched_smp_initialized = true;
7727 }
7728 
7729 static int __init migration_init(void)
7730 {
7731 	sched_cpu_starting(smp_processor_id());
7732 	return 0;
7733 }
7734 early_initcall(migration_init);
7735 
7736 #else
7737 void __init sched_init_smp(void)
7738 {
7739 	sched_init_granularity();
7740 }
7741 #endif /* CONFIG_SMP */
7742 
7743 int in_sched_functions(unsigned long addr)
7744 {
7745 	return in_lock_functions(addr) ||
7746 		(addr >= (unsigned long)__sched_text_start
7747 		&& addr < (unsigned long)__sched_text_end);
7748 }
7749 
7750 #ifdef CONFIG_CGROUP_SCHED
7751 /*
7752  * Default task group.
7753  * Every task in system belongs to this group at bootup.
7754  */
7755 struct task_group root_task_group;
7756 LIST_HEAD(task_groups);
7757 
7758 /* Cacheline aligned slab cache for task_group */
7759 static struct kmem_cache *task_group_cache __read_mostly;
7760 #endif
7761 
7762 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7763 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7764 
7765 void __init sched_init(void)
7766 {
7767 	unsigned long ptr = 0;
7768 	int i;
7769 
7770 	/* Make sure the linker didn't screw up */
7771 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7772 	       &fair_sched_class + 1 != &rt_sched_class ||
7773 	       &rt_sched_class + 1   != &dl_sched_class);
7774 #ifdef CONFIG_SMP
7775 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7776 #endif
7777 
7778 	wait_bit_init();
7779 
7780 #ifdef CONFIG_FAIR_GROUP_SCHED
7781 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7782 #endif
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7785 #endif
7786 	if (ptr) {
7787 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7788 
7789 #ifdef CONFIG_FAIR_GROUP_SCHED
7790 		root_task_group.se = (struct sched_entity **)ptr;
7791 		ptr += nr_cpu_ids * sizeof(void **);
7792 
7793 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7794 		ptr += nr_cpu_ids * sizeof(void **);
7795 
7796 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7797 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7798 #endif /* CONFIG_FAIR_GROUP_SCHED */
7799 #ifdef CONFIG_RT_GROUP_SCHED
7800 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7801 		ptr += nr_cpu_ids * sizeof(void **);
7802 
7803 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7804 		ptr += nr_cpu_ids * sizeof(void **);
7805 
7806 #endif /* CONFIG_RT_GROUP_SCHED */
7807 	}
7808 #ifdef CONFIG_CPUMASK_OFFSTACK
7809 	for_each_possible_cpu(i) {
7810 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7811 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7812 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7813 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7814 	}
7815 #endif /* CONFIG_CPUMASK_OFFSTACK */
7816 
7817 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7818 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7819 
7820 #ifdef CONFIG_SMP
7821 	init_defrootdomain();
7822 #endif
7823 
7824 #ifdef CONFIG_RT_GROUP_SCHED
7825 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7826 			global_rt_period(), global_rt_runtime());
7827 #endif /* CONFIG_RT_GROUP_SCHED */
7828 
7829 #ifdef CONFIG_CGROUP_SCHED
7830 	task_group_cache = KMEM_CACHE(task_group, 0);
7831 
7832 	list_add(&root_task_group.list, &task_groups);
7833 	INIT_LIST_HEAD(&root_task_group.children);
7834 	INIT_LIST_HEAD(&root_task_group.siblings);
7835 	autogroup_init(&init_task);
7836 #endif /* CONFIG_CGROUP_SCHED */
7837 
7838 	for_each_possible_cpu(i) {
7839 		struct rq *rq;
7840 
7841 		rq = cpu_rq(i);
7842 		raw_spin_lock_init(&rq->lock);
7843 		rq->nr_running = 0;
7844 		rq->calc_load_active = 0;
7845 		rq->calc_load_update = jiffies + LOAD_FREQ;
7846 		init_cfs_rq(&rq->cfs);
7847 		init_rt_rq(&rq->rt);
7848 		init_dl_rq(&rq->dl);
7849 #ifdef CONFIG_FAIR_GROUP_SCHED
7850 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7851 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7852 		/*
7853 		 * How much CPU bandwidth does root_task_group get?
7854 		 *
7855 		 * In case of task-groups formed thr' the cgroup filesystem, it
7856 		 * gets 100% of the CPU resources in the system. This overall
7857 		 * system CPU resource is divided among the tasks of
7858 		 * root_task_group and its child task-groups in a fair manner,
7859 		 * based on each entity's (task or task-group's) weight
7860 		 * (se->load.weight).
7861 		 *
7862 		 * In other words, if root_task_group has 10 tasks of weight
7863 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7864 		 * then A0's share of the CPU resource is:
7865 		 *
7866 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7867 		 *
7868 		 * We achieve this by letting root_task_group's tasks sit
7869 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7870 		 */
7871 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7872 #endif /* CONFIG_FAIR_GROUP_SCHED */
7873 
7874 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7875 #ifdef CONFIG_RT_GROUP_SCHED
7876 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7877 #endif
7878 #ifdef CONFIG_SMP
7879 		rq->sd = NULL;
7880 		rq->rd = NULL;
7881 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7882 		rq->balance_callback = NULL;
7883 		rq->active_balance = 0;
7884 		rq->next_balance = jiffies;
7885 		rq->push_cpu = 0;
7886 		rq->cpu = i;
7887 		rq->online = 0;
7888 		rq->idle_stamp = 0;
7889 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7890 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7891 
7892 		INIT_LIST_HEAD(&rq->cfs_tasks);
7893 
7894 		rq_attach_root(rq, &def_root_domain);
7895 #ifdef CONFIG_NO_HZ_COMMON
7896 		rq->last_blocked_load_update_tick = jiffies;
7897 		atomic_set(&rq->nohz_flags, 0);
7898 
7899 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7900 #endif
7901 #ifdef CONFIG_HOTPLUG_CPU
7902 		rcuwait_init(&rq->hotplug_wait);
7903 #endif
7904 #endif /* CONFIG_SMP */
7905 		hrtick_rq_init(rq);
7906 		atomic_set(&rq->nr_iowait, 0);
7907 	}
7908 
7909 	set_load_weight(&init_task, false);
7910 
7911 	/*
7912 	 * The boot idle thread does lazy MMU switching as well:
7913 	 */
7914 	mmgrab(&init_mm);
7915 	enter_lazy_tlb(&init_mm, current);
7916 
7917 	/*
7918 	 * Make us the idle thread. Technically, schedule() should not be
7919 	 * called from this thread, however somewhere below it might be,
7920 	 * but because we are the idle thread, we just pick up running again
7921 	 * when this runqueue becomes "idle".
7922 	 */
7923 	init_idle(current, smp_processor_id());
7924 
7925 	calc_load_update = jiffies + LOAD_FREQ;
7926 
7927 #ifdef CONFIG_SMP
7928 	idle_thread_set_boot_cpu();
7929 #endif
7930 	init_sched_fair_class();
7931 
7932 	init_schedstats();
7933 
7934 	psi_init();
7935 
7936 	init_uclamp();
7937 
7938 	scheduler_running = 1;
7939 }
7940 
7941 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7942 static inline int preempt_count_equals(int preempt_offset)
7943 {
7944 	int nested = preempt_count() + rcu_preempt_depth();
7945 
7946 	return (nested == preempt_offset);
7947 }
7948 
7949 void __might_sleep(const char *file, int line, int preempt_offset)
7950 {
7951 	/*
7952 	 * Blocking primitives will set (and therefore destroy) current->state,
7953 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7954 	 * otherwise we will destroy state.
7955 	 */
7956 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7957 			"do not call blocking ops when !TASK_RUNNING; "
7958 			"state=%lx set at [<%p>] %pS\n",
7959 			current->state,
7960 			(void *)current->task_state_change,
7961 			(void *)current->task_state_change);
7962 
7963 	___might_sleep(file, line, preempt_offset);
7964 }
7965 EXPORT_SYMBOL(__might_sleep);
7966 
7967 void ___might_sleep(const char *file, int line, int preempt_offset)
7968 {
7969 	/* Ratelimiting timestamp: */
7970 	static unsigned long prev_jiffy;
7971 
7972 	unsigned long preempt_disable_ip;
7973 
7974 	/* WARN_ON_ONCE() by default, no rate limit required: */
7975 	rcu_sleep_check();
7976 
7977 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7978 	     !is_idle_task(current) && !current->non_block_count) ||
7979 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7980 	    oops_in_progress)
7981 		return;
7982 
7983 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7984 		return;
7985 	prev_jiffy = jiffies;
7986 
7987 	/* Save this before calling printk(), since that will clobber it: */
7988 	preempt_disable_ip = get_preempt_disable_ip(current);
7989 
7990 	printk(KERN_ERR
7991 		"BUG: sleeping function called from invalid context at %s:%d\n",
7992 			file, line);
7993 	printk(KERN_ERR
7994 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7995 			in_atomic(), irqs_disabled(), current->non_block_count,
7996 			current->pid, current->comm);
7997 
7998 	if (task_stack_end_corrupted(current))
7999 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8000 
8001 	debug_show_held_locks(current);
8002 	if (irqs_disabled())
8003 		print_irqtrace_events(current);
8004 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8005 	    && !preempt_count_equals(preempt_offset)) {
8006 		pr_err("Preemption disabled at:");
8007 		print_ip_sym(KERN_ERR, preempt_disable_ip);
8008 	}
8009 	dump_stack();
8010 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8011 }
8012 EXPORT_SYMBOL(___might_sleep);
8013 
8014 void __cant_sleep(const char *file, int line, int preempt_offset)
8015 {
8016 	static unsigned long prev_jiffy;
8017 
8018 	if (irqs_disabled())
8019 		return;
8020 
8021 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8022 		return;
8023 
8024 	if (preempt_count() > preempt_offset)
8025 		return;
8026 
8027 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8028 		return;
8029 	prev_jiffy = jiffies;
8030 
8031 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8032 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8033 			in_atomic(), irqs_disabled(),
8034 			current->pid, current->comm);
8035 
8036 	debug_show_held_locks(current);
8037 	dump_stack();
8038 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8039 }
8040 EXPORT_SYMBOL_GPL(__cant_sleep);
8041 
8042 #ifdef CONFIG_SMP
8043 void __cant_migrate(const char *file, int line)
8044 {
8045 	static unsigned long prev_jiffy;
8046 
8047 	if (irqs_disabled())
8048 		return;
8049 
8050 	if (is_migration_disabled(current))
8051 		return;
8052 
8053 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8054 		return;
8055 
8056 	if (preempt_count() > 0)
8057 		return;
8058 
8059 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8060 		return;
8061 	prev_jiffy = jiffies;
8062 
8063 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8064 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8065 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8066 	       current->pid, current->comm);
8067 
8068 	debug_show_held_locks(current);
8069 	dump_stack();
8070 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8071 }
8072 EXPORT_SYMBOL_GPL(__cant_migrate);
8073 #endif
8074 #endif
8075 
8076 #ifdef CONFIG_MAGIC_SYSRQ
8077 void normalize_rt_tasks(void)
8078 {
8079 	struct task_struct *g, *p;
8080 	struct sched_attr attr = {
8081 		.sched_policy = SCHED_NORMAL,
8082 	};
8083 
8084 	read_lock(&tasklist_lock);
8085 	for_each_process_thread(g, p) {
8086 		/*
8087 		 * Only normalize user tasks:
8088 		 */
8089 		if (p->flags & PF_KTHREAD)
8090 			continue;
8091 
8092 		p->se.exec_start = 0;
8093 		schedstat_set(p->se.statistics.wait_start,  0);
8094 		schedstat_set(p->se.statistics.sleep_start, 0);
8095 		schedstat_set(p->se.statistics.block_start, 0);
8096 
8097 		if (!dl_task(p) && !rt_task(p)) {
8098 			/*
8099 			 * Renice negative nice level userspace
8100 			 * tasks back to 0:
8101 			 */
8102 			if (task_nice(p) < 0)
8103 				set_user_nice(p, 0);
8104 			continue;
8105 		}
8106 
8107 		__sched_setscheduler(p, &attr, false, false);
8108 	}
8109 	read_unlock(&tasklist_lock);
8110 }
8111 
8112 #endif /* CONFIG_MAGIC_SYSRQ */
8113 
8114 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8115 /*
8116  * These functions are only useful for the IA64 MCA handling, or kdb.
8117  *
8118  * They can only be called when the whole system has been
8119  * stopped - every CPU needs to be quiescent, and no scheduling
8120  * activity can take place. Using them for anything else would
8121  * be a serious bug, and as a result, they aren't even visible
8122  * under any other configuration.
8123  */
8124 
8125 /**
8126  * curr_task - return the current task for a given CPU.
8127  * @cpu: the processor in question.
8128  *
8129  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8130  *
8131  * Return: The current task for @cpu.
8132  */
8133 struct task_struct *curr_task(int cpu)
8134 {
8135 	return cpu_curr(cpu);
8136 }
8137 
8138 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8139 
8140 #ifdef CONFIG_IA64
8141 /**
8142  * ia64_set_curr_task - set the current task for a given CPU.
8143  * @cpu: the processor in question.
8144  * @p: the task pointer to set.
8145  *
8146  * Description: This function must only be used when non-maskable interrupts
8147  * are serviced on a separate stack. It allows the architecture to switch the
8148  * notion of the current task on a CPU in a non-blocking manner. This function
8149  * must be called with all CPU's synchronized, and interrupts disabled, the
8150  * and caller must save the original value of the current task (see
8151  * curr_task() above) and restore that value before reenabling interrupts and
8152  * re-starting the system.
8153  *
8154  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8155  */
8156 void ia64_set_curr_task(int cpu, struct task_struct *p)
8157 {
8158 	cpu_curr(cpu) = p;
8159 }
8160 
8161 #endif
8162 
8163 #ifdef CONFIG_CGROUP_SCHED
8164 /* task_group_lock serializes the addition/removal of task groups */
8165 static DEFINE_SPINLOCK(task_group_lock);
8166 
8167 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8168 					    struct task_group *parent)
8169 {
8170 #ifdef CONFIG_UCLAMP_TASK_GROUP
8171 	enum uclamp_id clamp_id;
8172 
8173 	for_each_clamp_id(clamp_id) {
8174 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8175 			      uclamp_none(clamp_id), false);
8176 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8177 	}
8178 #endif
8179 }
8180 
8181 static void sched_free_group(struct task_group *tg)
8182 {
8183 	free_fair_sched_group(tg);
8184 	free_rt_sched_group(tg);
8185 	autogroup_free(tg);
8186 	kmem_cache_free(task_group_cache, tg);
8187 }
8188 
8189 /* allocate runqueue etc for a new task group */
8190 struct task_group *sched_create_group(struct task_group *parent)
8191 {
8192 	struct task_group *tg;
8193 
8194 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8195 	if (!tg)
8196 		return ERR_PTR(-ENOMEM);
8197 
8198 	if (!alloc_fair_sched_group(tg, parent))
8199 		goto err;
8200 
8201 	if (!alloc_rt_sched_group(tg, parent))
8202 		goto err;
8203 
8204 	alloc_uclamp_sched_group(tg, parent);
8205 
8206 	return tg;
8207 
8208 err:
8209 	sched_free_group(tg);
8210 	return ERR_PTR(-ENOMEM);
8211 }
8212 
8213 void sched_online_group(struct task_group *tg, struct task_group *parent)
8214 {
8215 	unsigned long flags;
8216 
8217 	spin_lock_irqsave(&task_group_lock, flags);
8218 	list_add_rcu(&tg->list, &task_groups);
8219 
8220 	/* Root should already exist: */
8221 	WARN_ON(!parent);
8222 
8223 	tg->parent = parent;
8224 	INIT_LIST_HEAD(&tg->children);
8225 	list_add_rcu(&tg->siblings, &parent->children);
8226 	spin_unlock_irqrestore(&task_group_lock, flags);
8227 
8228 	online_fair_sched_group(tg);
8229 }
8230 
8231 /* rcu callback to free various structures associated with a task group */
8232 static void sched_free_group_rcu(struct rcu_head *rhp)
8233 {
8234 	/* Now it should be safe to free those cfs_rqs: */
8235 	sched_free_group(container_of(rhp, struct task_group, rcu));
8236 }
8237 
8238 void sched_destroy_group(struct task_group *tg)
8239 {
8240 	/* Wait for possible concurrent references to cfs_rqs complete: */
8241 	call_rcu(&tg->rcu, sched_free_group_rcu);
8242 }
8243 
8244 void sched_offline_group(struct task_group *tg)
8245 {
8246 	unsigned long flags;
8247 
8248 	/* End participation in shares distribution: */
8249 	unregister_fair_sched_group(tg);
8250 
8251 	spin_lock_irqsave(&task_group_lock, flags);
8252 	list_del_rcu(&tg->list);
8253 	list_del_rcu(&tg->siblings);
8254 	spin_unlock_irqrestore(&task_group_lock, flags);
8255 }
8256 
8257 static void sched_change_group(struct task_struct *tsk, int type)
8258 {
8259 	struct task_group *tg;
8260 
8261 	/*
8262 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8263 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8264 	 * to prevent lockdep warnings.
8265 	 */
8266 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8267 			  struct task_group, css);
8268 	tg = autogroup_task_group(tsk, tg);
8269 	tsk->sched_task_group = tg;
8270 
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 	if (tsk->sched_class->task_change_group)
8273 		tsk->sched_class->task_change_group(tsk, type);
8274 	else
8275 #endif
8276 		set_task_rq(tsk, task_cpu(tsk));
8277 }
8278 
8279 /*
8280  * Change task's runqueue when it moves between groups.
8281  *
8282  * The caller of this function should have put the task in its new group by
8283  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8284  * its new group.
8285  */
8286 void sched_move_task(struct task_struct *tsk)
8287 {
8288 	int queued, running, queue_flags =
8289 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8290 	struct rq_flags rf;
8291 	struct rq *rq;
8292 
8293 	rq = task_rq_lock(tsk, &rf);
8294 	update_rq_clock(rq);
8295 
8296 	running = task_current(rq, tsk);
8297 	queued = task_on_rq_queued(tsk);
8298 
8299 	if (queued)
8300 		dequeue_task(rq, tsk, queue_flags);
8301 	if (running)
8302 		put_prev_task(rq, tsk);
8303 
8304 	sched_change_group(tsk, TASK_MOVE_GROUP);
8305 
8306 	if (queued)
8307 		enqueue_task(rq, tsk, queue_flags);
8308 	if (running) {
8309 		set_next_task(rq, tsk);
8310 		/*
8311 		 * After changing group, the running task may have joined a
8312 		 * throttled one but it's still the running task. Trigger a
8313 		 * resched to make sure that task can still run.
8314 		 */
8315 		resched_curr(rq);
8316 	}
8317 
8318 	task_rq_unlock(rq, tsk, &rf);
8319 }
8320 
8321 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8322 {
8323 	return css ? container_of(css, struct task_group, css) : NULL;
8324 }
8325 
8326 static struct cgroup_subsys_state *
8327 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8328 {
8329 	struct task_group *parent = css_tg(parent_css);
8330 	struct task_group *tg;
8331 
8332 	if (!parent) {
8333 		/* This is early initialization for the top cgroup */
8334 		return &root_task_group.css;
8335 	}
8336 
8337 	tg = sched_create_group(parent);
8338 	if (IS_ERR(tg))
8339 		return ERR_PTR(-ENOMEM);
8340 
8341 	return &tg->css;
8342 }
8343 
8344 /* Expose task group only after completing cgroup initialization */
8345 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8346 {
8347 	struct task_group *tg = css_tg(css);
8348 	struct task_group *parent = css_tg(css->parent);
8349 
8350 	if (parent)
8351 		sched_online_group(tg, parent);
8352 
8353 #ifdef CONFIG_UCLAMP_TASK_GROUP
8354 	/* Propagate the effective uclamp value for the new group */
8355 	cpu_util_update_eff(css);
8356 #endif
8357 
8358 	return 0;
8359 }
8360 
8361 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8362 {
8363 	struct task_group *tg = css_tg(css);
8364 
8365 	sched_offline_group(tg);
8366 }
8367 
8368 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8369 {
8370 	struct task_group *tg = css_tg(css);
8371 
8372 	/*
8373 	 * Relies on the RCU grace period between css_released() and this.
8374 	 */
8375 	sched_free_group(tg);
8376 }
8377 
8378 /*
8379  * This is called before wake_up_new_task(), therefore we really only
8380  * have to set its group bits, all the other stuff does not apply.
8381  */
8382 static void cpu_cgroup_fork(struct task_struct *task)
8383 {
8384 	struct rq_flags rf;
8385 	struct rq *rq;
8386 
8387 	rq = task_rq_lock(task, &rf);
8388 
8389 	update_rq_clock(rq);
8390 	sched_change_group(task, TASK_SET_GROUP);
8391 
8392 	task_rq_unlock(rq, task, &rf);
8393 }
8394 
8395 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8396 {
8397 	struct task_struct *task;
8398 	struct cgroup_subsys_state *css;
8399 	int ret = 0;
8400 
8401 	cgroup_taskset_for_each(task, css, tset) {
8402 #ifdef CONFIG_RT_GROUP_SCHED
8403 		if (!sched_rt_can_attach(css_tg(css), task))
8404 			return -EINVAL;
8405 #endif
8406 		/*
8407 		 * Serialize against wake_up_new_task() such that if it's
8408 		 * running, we're sure to observe its full state.
8409 		 */
8410 		raw_spin_lock_irq(&task->pi_lock);
8411 		/*
8412 		 * Avoid calling sched_move_task() before wake_up_new_task()
8413 		 * has happened. This would lead to problems with PELT, due to
8414 		 * move wanting to detach+attach while we're not attached yet.
8415 		 */
8416 		if (task->state == TASK_NEW)
8417 			ret = -EINVAL;
8418 		raw_spin_unlock_irq(&task->pi_lock);
8419 
8420 		if (ret)
8421 			break;
8422 	}
8423 	return ret;
8424 }
8425 
8426 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8427 {
8428 	struct task_struct *task;
8429 	struct cgroup_subsys_state *css;
8430 
8431 	cgroup_taskset_for_each(task, css, tset)
8432 		sched_move_task(task);
8433 }
8434 
8435 #ifdef CONFIG_UCLAMP_TASK_GROUP
8436 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8437 {
8438 	struct cgroup_subsys_state *top_css = css;
8439 	struct uclamp_se *uc_parent = NULL;
8440 	struct uclamp_se *uc_se = NULL;
8441 	unsigned int eff[UCLAMP_CNT];
8442 	enum uclamp_id clamp_id;
8443 	unsigned int clamps;
8444 
8445 	css_for_each_descendant_pre(css, top_css) {
8446 		uc_parent = css_tg(css)->parent
8447 			? css_tg(css)->parent->uclamp : NULL;
8448 
8449 		for_each_clamp_id(clamp_id) {
8450 			/* Assume effective clamps matches requested clamps */
8451 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8452 			/* Cap effective clamps with parent's effective clamps */
8453 			if (uc_parent &&
8454 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8455 				eff[clamp_id] = uc_parent[clamp_id].value;
8456 			}
8457 		}
8458 		/* Ensure protection is always capped by limit */
8459 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8460 
8461 		/* Propagate most restrictive effective clamps */
8462 		clamps = 0x0;
8463 		uc_se = css_tg(css)->uclamp;
8464 		for_each_clamp_id(clamp_id) {
8465 			if (eff[clamp_id] == uc_se[clamp_id].value)
8466 				continue;
8467 			uc_se[clamp_id].value = eff[clamp_id];
8468 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8469 			clamps |= (0x1 << clamp_id);
8470 		}
8471 		if (!clamps) {
8472 			css = css_rightmost_descendant(css);
8473 			continue;
8474 		}
8475 
8476 		/* Immediately update descendants RUNNABLE tasks */
8477 		uclamp_update_active_tasks(css, clamps);
8478 	}
8479 }
8480 
8481 /*
8482  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8483  * C expression. Since there is no way to convert a macro argument (N) into a
8484  * character constant, use two levels of macros.
8485  */
8486 #define _POW10(exp) ((unsigned int)1e##exp)
8487 #define POW10(exp) _POW10(exp)
8488 
8489 struct uclamp_request {
8490 #define UCLAMP_PERCENT_SHIFT	2
8491 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8492 	s64 percent;
8493 	u64 util;
8494 	int ret;
8495 };
8496 
8497 static inline struct uclamp_request
8498 capacity_from_percent(char *buf)
8499 {
8500 	struct uclamp_request req = {
8501 		.percent = UCLAMP_PERCENT_SCALE,
8502 		.util = SCHED_CAPACITY_SCALE,
8503 		.ret = 0,
8504 	};
8505 
8506 	buf = strim(buf);
8507 	if (strcmp(buf, "max")) {
8508 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8509 					     &req.percent);
8510 		if (req.ret)
8511 			return req;
8512 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8513 			req.ret = -ERANGE;
8514 			return req;
8515 		}
8516 
8517 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8518 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8519 	}
8520 
8521 	return req;
8522 }
8523 
8524 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8525 				size_t nbytes, loff_t off,
8526 				enum uclamp_id clamp_id)
8527 {
8528 	struct uclamp_request req;
8529 	struct task_group *tg;
8530 
8531 	req = capacity_from_percent(buf);
8532 	if (req.ret)
8533 		return req.ret;
8534 
8535 	static_branch_enable(&sched_uclamp_used);
8536 
8537 	mutex_lock(&uclamp_mutex);
8538 	rcu_read_lock();
8539 
8540 	tg = css_tg(of_css(of));
8541 	if (tg->uclamp_req[clamp_id].value != req.util)
8542 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8543 
8544 	/*
8545 	 * Because of not recoverable conversion rounding we keep track of the
8546 	 * exact requested value
8547 	 */
8548 	tg->uclamp_pct[clamp_id] = req.percent;
8549 
8550 	/* Update effective clamps to track the most restrictive value */
8551 	cpu_util_update_eff(of_css(of));
8552 
8553 	rcu_read_unlock();
8554 	mutex_unlock(&uclamp_mutex);
8555 
8556 	return nbytes;
8557 }
8558 
8559 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8560 				    char *buf, size_t nbytes,
8561 				    loff_t off)
8562 {
8563 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8564 }
8565 
8566 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8567 				    char *buf, size_t nbytes,
8568 				    loff_t off)
8569 {
8570 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8571 }
8572 
8573 static inline void cpu_uclamp_print(struct seq_file *sf,
8574 				    enum uclamp_id clamp_id)
8575 {
8576 	struct task_group *tg;
8577 	u64 util_clamp;
8578 	u64 percent;
8579 	u32 rem;
8580 
8581 	rcu_read_lock();
8582 	tg = css_tg(seq_css(sf));
8583 	util_clamp = tg->uclamp_req[clamp_id].value;
8584 	rcu_read_unlock();
8585 
8586 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8587 		seq_puts(sf, "max\n");
8588 		return;
8589 	}
8590 
8591 	percent = tg->uclamp_pct[clamp_id];
8592 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8593 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8594 }
8595 
8596 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8597 {
8598 	cpu_uclamp_print(sf, UCLAMP_MIN);
8599 	return 0;
8600 }
8601 
8602 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8603 {
8604 	cpu_uclamp_print(sf, UCLAMP_MAX);
8605 	return 0;
8606 }
8607 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8608 
8609 #ifdef CONFIG_FAIR_GROUP_SCHED
8610 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8611 				struct cftype *cftype, u64 shareval)
8612 {
8613 	if (shareval > scale_load_down(ULONG_MAX))
8614 		shareval = MAX_SHARES;
8615 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8616 }
8617 
8618 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8619 			       struct cftype *cft)
8620 {
8621 	struct task_group *tg = css_tg(css);
8622 
8623 	return (u64) scale_load_down(tg->shares);
8624 }
8625 
8626 #ifdef CONFIG_CFS_BANDWIDTH
8627 static DEFINE_MUTEX(cfs_constraints_mutex);
8628 
8629 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8630 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8631 /* More than 203 days if BW_SHIFT equals 20. */
8632 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8633 
8634 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8635 
8636 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8637 {
8638 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8639 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8640 
8641 	if (tg == &root_task_group)
8642 		return -EINVAL;
8643 
8644 	/*
8645 	 * Ensure we have at some amount of bandwidth every period.  This is
8646 	 * to prevent reaching a state of large arrears when throttled via
8647 	 * entity_tick() resulting in prolonged exit starvation.
8648 	 */
8649 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8650 		return -EINVAL;
8651 
8652 	/*
8653 	 * Likewise, bound things on the otherside by preventing insane quota
8654 	 * periods.  This also allows us to normalize in computing quota
8655 	 * feasibility.
8656 	 */
8657 	if (period > max_cfs_quota_period)
8658 		return -EINVAL;
8659 
8660 	/*
8661 	 * Bound quota to defend quota against overflow during bandwidth shift.
8662 	 */
8663 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8664 		return -EINVAL;
8665 
8666 	/*
8667 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8668 	 * unthrottle_offline_cfs_rqs().
8669 	 */
8670 	get_online_cpus();
8671 	mutex_lock(&cfs_constraints_mutex);
8672 	ret = __cfs_schedulable(tg, period, quota);
8673 	if (ret)
8674 		goto out_unlock;
8675 
8676 	runtime_enabled = quota != RUNTIME_INF;
8677 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8678 	/*
8679 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8680 	 * before making related changes, and on->off must occur afterwards
8681 	 */
8682 	if (runtime_enabled && !runtime_was_enabled)
8683 		cfs_bandwidth_usage_inc();
8684 	raw_spin_lock_irq(&cfs_b->lock);
8685 	cfs_b->period = ns_to_ktime(period);
8686 	cfs_b->quota = quota;
8687 
8688 	__refill_cfs_bandwidth_runtime(cfs_b);
8689 
8690 	/* Restart the period timer (if active) to handle new period expiry: */
8691 	if (runtime_enabled)
8692 		start_cfs_bandwidth(cfs_b);
8693 
8694 	raw_spin_unlock_irq(&cfs_b->lock);
8695 
8696 	for_each_online_cpu(i) {
8697 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8698 		struct rq *rq = cfs_rq->rq;
8699 		struct rq_flags rf;
8700 
8701 		rq_lock_irq(rq, &rf);
8702 		cfs_rq->runtime_enabled = runtime_enabled;
8703 		cfs_rq->runtime_remaining = 0;
8704 
8705 		if (cfs_rq->throttled)
8706 			unthrottle_cfs_rq(cfs_rq);
8707 		rq_unlock_irq(rq, &rf);
8708 	}
8709 	if (runtime_was_enabled && !runtime_enabled)
8710 		cfs_bandwidth_usage_dec();
8711 out_unlock:
8712 	mutex_unlock(&cfs_constraints_mutex);
8713 	put_online_cpus();
8714 
8715 	return ret;
8716 }
8717 
8718 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8719 {
8720 	u64 quota, period;
8721 
8722 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8723 	if (cfs_quota_us < 0)
8724 		quota = RUNTIME_INF;
8725 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8726 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8727 	else
8728 		return -EINVAL;
8729 
8730 	return tg_set_cfs_bandwidth(tg, period, quota);
8731 }
8732 
8733 static long tg_get_cfs_quota(struct task_group *tg)
8734 {
8735 	u64 quota_us;
8736 
8737 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8738 		return -1;
8739 
8740 	quota_us = tg->cfs_bandwidth.quota;
8741 	do_div(quota_us, NSEC_PER_USEC);
8742 
8743 	return quota_us;
8744 }
8745 
8746 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8747 {
8748 	u64 quota, period;
8749 
8750 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8751 		return -EINVAL;
8752 
8753 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8754 	quota = tg->cfs_bandwidth.quota;
8755 
8756 	return tg_set_cfs_bandwidth(tg, period, quota);
8757 }
8758 
8759 static long tg_get_cfs_period(struct task_group *tg)
8760 {
8761 	u64 cfs_period_us;
8762 
8763 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8764 	do_div(cfs_period_us, NSEC_PER_USEC);
8765 
8766 	return cfs_period_us;
8767 }
8768 
8769 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8770 				  struct cftype *cft)
8771 {
8772 	return tg_get_cfs_quota(css_tg(css));
8773 }
8774 
8775 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8776 				   struct cftype *cftype, s64 cfs_quota_us)
8777 {
8778 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8779 }
8780 
8781 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8782 				   struct cftype *cft)
8783 {
8784 	return tg_get_cfs_period(css_tg(css));
8785 }
8786 
8787 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8788 				    struct cftype *cftype, u64 cfs_period_us)
8789 {
8790 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8791 }
8792 
8793 struct cfs_schedulable_data {
8794 	struct task_group *tg;
8795 	u64 period, quota;
8796 };
8797 
8798 /*
8799  * normalize group quota/period to be quota/max_period
8800  * note: units are usecs
8801  */
8802 static u64 normalize_cfs_quota(struct task_group *tg,
8803 			       struct cfs_schedulable_data *d)
8804 {
8805 	u64 quota, period;
8806 
8807 	if (tg == d->tg) {
8808 		period = d->period;
8809 		quota = d->quota;
8810 	} else {
8811 		period = tg_get_cfs_period(tg);
8812 		quota = tg_get_cfs_quota(tg);
8813 	}
8814 
8815 	/* note: these should typically be equivalent */
8816 	if (quota == RUNTIME_INF || quota == -1)
8817 		return RUNTIME_INF;
8818 
8819 	return to_ratio(period, quota);
8820 }
8821 
8822 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8823 {
8824 	struct cfs_schedulable_data *d = data;
8825 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8826 	s64 quota = 0, parent_quota = -1;
8827 
8828 	if (!tg->parent) {
8829 		quota = RUNTIME_INF;
8830 	} else {
8831 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8832 
8833 		quota = normalize_cfs_quota(tg, d);
8834 		parent_quota = parent_b->hierarchical_quota;
8835 
8836 		/*
8837 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8838 		 * always take the min.  On cgroup1, only inherit when no
8839 		 * limit is set:
8840 		 */
8841 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8842 			quota = min(quota, parent_quota);
8843 		} else {
8844 			if (quota == RUNTIME_INF)
8845 				quota = parent_quota;
8846 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8847 				return -EINVAL;
8848 		}
8849 	}
8850 	cfs_b->hierarchical_quota = quota;
8851 
8852 	return 0;
8853 }
8854 
8855 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8856 {
8857 	int ret;
8858 	struct cfs_schedulable_data data = {
8859 		.tg = tg,
8860 		.period = period,
8861 		.quota = quota,
8862 	};
8863 
8864 	if (quota != RUNTIME_INF) {
8865 		do_div(data.period, NSEC_PER_USEC);
8866 		do_div(data.quota, NSEC_PER_USEC);
8867 	}
8868 
8869 	rcu_read_lock();
8870 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8871 	rcu_read_unlock();
8872 
8873 	return ret;
8874 }
8875 
8876 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8877 {
8878 	struct task_group *tg = css_tg(seq_css(sf));
8879 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8880 
8881 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8882 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8883 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8884 
8885 	if (schedstat_enabled() && tg != &root_task_group) {
8886 		u64 ws = 0;
8887 		int i;
8888 
8889 		for_each_possible_cpu(i)
8890 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8891 
8892 		seq_printf(sf, "wait_sum %llu\n", ws);
8893 	}
8894 
8895 	return 0;
8896 }
8897 #endif /* CONFIG_CFS_BANDWIDTH */
8898 #endif /* CONFIG_FAIR_GROUP_SCHED */
8899 
8900 #ifdef CONFIG_RT_GROUP_SCHED
8901 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8902 				struct cftype *cft, s64 val)
8903 {
8904 	return sched_group_set_rt_runtime(css_tg(css), val);
8905 }
8906 
8907 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8908 			       struct cftype *cft)
8909 {
8910 	return sched_group_rt_runtime(css_tg(css));
8911 }
8912 
8913 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8914 				    struct cftype *cftype, u64 rt_period_us)
8915 {
8916 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8917 }
8918 
8919 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8920 				   struct cftype *cft)
8921 {
8922 	return sched_group_rt_period(css_tg(css));
8923 }
8924 #endif /* CONFIG_RT_GROUP_SCHED */
8925 
8926 static struct cftype cpu_legacy_files[] = {
8927 #ifdef CONFIG_FAIR_GROUP_SCHED
8928 	{
8929 		.name = "shares",
8930 		.read_u64 = cpu_shares_read_u64,
8931 		.write_u64 = cpu_shares_write_u64,
8932 	},
8933 #endif
8934 #ifdef CONFIG_CFS_BANDWIDTH
8935 	{
8936 		.name = "cfs_quota_us",
8937 		.read_s64 = cpu_cfs_quota_read_s64,
8938 		.write_s64 = cpu_cfs_quota_write_s64,
8939 	},
8940 	{
8941 		.name = "cfs_period_us",
8942 		.read_u64 = cpu_cfs_period_read_u64,
8943 		.write_u64 = cpu_cfs_period_write_u64,
8944 	},
8945 	{
8946 		.name = "stat",
8947 		.seq_show = cpu_cfs_stat_show,
8948 	},
8949 #endif
8950 #ifdef CONFIG_RT_GROUP_SCHED
8951 	{
8952 		.name = "rt_runtime_us",
8953 		.read_s64 = cpu_rt_runtime_read,
8954 		.write_s64 = cpu_rt_runtime_write,
8955 	},
8956 	{
8957 		.name = "rt_period_us",
8958 		.read_u64 = cpu_rt_period_read_uint,
8959 		.write_u64 = cpu_rt_period_write_uint,
8960 	},
8961 #endif
8962 #ifdef CONFIG_UCLAMP_TASK_GROUP
8963 	{
8964 		.name = "uclamp.min",
8965 		.flags = CFTYPE_NOT_ON_ROOT,
8966 		.seq_show = cpu_uclamp_min_show,
8967 		.write = cpu_uclamp_min_write,
8968 	},
8969 	{
8970 		.name = "uclamp.max",
8971 		.flags = CFTYPE_NOT_ON_ROOT,
8972 		.seq_show = cpu_uclamp_max_show,
8973 		.write = cpu_uclamp_max_write,
8974 	},
8975 #endif
8976 	{ }	/* Terminate */
8977 };
8978 
8979 static int cpu_extra_stat_show(struct seq_file *sf,
8980 			       struct cgroup_subsys_state *css)
8981 {
8982 #ifdef CONFIG_CFS_BANDWIDTH
8983 	{
8984 		struct task_group *tg = css_tg(css);
8985 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8986 		u64 throttled_usec;
8987 
8988 		throttled_usec = cfs_b->throttled_time;
8989 		do_div(throttled_usec, NSEC_PER_USEC);
8990 
8991 		seq_printf(sf, "nr_periods %d\n"
8992 			   "nr_throttled %d\n"
8993 			   "throttled_usec %llu\n",
8994 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8995 			   throttled_usec);
8996 	}
8997 #endif
8998 	return 0;
8999 }
9000 
9001 #ifdef CONFIG_FAIR_GROUP_SCHED
9002 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9003 			       struct cftype *cft)
9004 {
9005 	struct task_group *tg = css_tg(css);
9006 	u64 weight = scale_load_down(tg->shares);
9007 
9008 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9009 }
9010 
9011 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9012 				struct cftype *cft, u64 weight)
9013 {
9014 	/*
9015 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9016 	 * values which are 1, 100 and 10000 respectively.  While it loses
9017 	 * a bit of range on both ends, it maps pretty well onto the shares
9018 	 * value used by scheduler and the round-trip conversions preserve
9019 	 * the original value over the entire range.
9020 	 */
9021 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9022 		return -ERANGE;
9023 
9024 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9025 
9026 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9027 }
9028 
9029 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9030 				    struct cftype *cft)
9031 {
9032 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9033 	int last_delta = INT_MAX;
9034 	int prio, delta;
9035 
9036 	/* find the closest nice value to the current weight */
9037 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9038 		delta = abs(sched_prio_to_weight[prio] - weight);
9039 		if (delta >= last_delta)
9040 			break;
9041 		last_delta = delta;
9042 	}
9043 
9044 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9045 }
9046 
9047 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9048 				     struct cftype *cft, s64 nice)
9049 {
9050 	unsigned long weight;
9051 	int idx;
9052 
9053 	if (nice < MIN_NICE || nice > MAX_NICE)
9054 		return -ERANGE;
9055 
9056 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9057 	idx = array_index_nospec(idx, 40);
9058 	weight = sched_prio_to_weight[idx];
9059 
9060 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9061 }
9062 #endif
9063 
9064 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9065 						  long period, long quota)
9066 {
9067 	if (quota < 0)
9068 		seq_puts(sf, "max");
9069 	else
9070 		seq_printf(sf, "%ld", quota);
9071 
9072 	seq_printf(sf, " %ld\n", period);
9073 }
9074 
9075 /* caller should put the current value in *@periodp before calling */
9076 static int __maybe_unused cpu_period_quota_parse(char *buf,
9077 						 u64 *periodp, u64 *quotap)
9078 {
9079 	char tok[21];	/* U64_MAX */
9080 
9081 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9082 		return -EINVAL;
9083 
9084 	*periodp *= NSEC_PER_USEC;
9085 
9086 	if (sscanf(tok, "%llu", quotap))
9087 		*quotap *= NSEC_PER_USEC;
9088 	else if (!strcmp(tok, "max"))
9089 		*quotap = RUNTIME_INF;
9090 	else
9091 		return -EINVAL;
9092 
9093 	return 0;
9094 }
9095 
9096 #ifdef CONFIG_CFS_BANDWIDTH
9097 static int cpu_max_show(struct seq_file *sf, void *v)
9098 {
9099 	struct task_group *tg = css_tg(seq_css(sf));
9100 
9101 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9102 	return 0;
9103 }
9104 
9105 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9106 			     char *buf, size_t nbytes, loff_t off)
9107 {
9108 	struct task_group *tg = css_tg(of_css(of));
9109 	u64 period = tg_get_cfs_period(tg);
9110 	u64 quota;
9111 	int ret;
9112 
9113 	ret = cpu_period_quota_parse(buf, &period, &quota);
9114 	if (!ret)
9115 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9116 	return ret ?: nbytes;
9117 }
9118 #endif
9119 
9120 static struct cftype cpu_files[] = {
9121 #ifdef CONFIG_FAIR_GROUP_SCHED
9122 	{
9123 		.name = "weight",
9124 		.flags = CFTYPE_NOT_ON_ROOT,
9125 		.read_u64 = cpu_weight_read_u64,
9126 		.write_u64 = cpu_weight_write_u64,
9127 	},
9128 	{
9129 		.name = "weight.nice",
9130 		.flags = CFTYPE_NOT_ON_ROOT,
9131 		.read_s64 = cpu_weight_nice_read_s64,
9132 		.write_s64 = cpu_weight_nice_write_s64,
9133 	},
9134 #endif
9135 #ifdef CONFIG_CFS_BANDWIDTH
9136 	{
9137 		.name = "max",
9138 		.flags = CFTYPE_NOT_ON_ROOT,
9139 		.seq_show = cpu_max_show,
9140 		.write = cpu_max_write,
9141 	},
9142 #endif
9143 #ifdef CONFIG_UCLAMP_TASK_GROUP
9144 	{
9145 		.name = "uclamp.min",
9146 		.flags = CFTYPE_NOT_ON_ROOT,
9147 		.seq_show = cpu_uclamp_min_show,
9148 		.write = cpu_uclamp_min_write,
9149 	},
9150 	{
9151 		.name = "uclamp.max",
9152 		.flags = CFTYPE_NOT_ON_ROOT,
9153 		.seq_show = cpu_uclamp_max_show,
9154 		.write = cpu_uclamp_max_write,
9155 	},
9156 #endif
9157 	{ }	/* terminate */
9158 };
9159 
9160 struct cgroup_subsys cpu_cgrp_subsys = {
9161 	.css_alloc	= cpu_cgroup_css_alloc,
9162 	.css_online	= cpu_cgroup_css_online,
9163 	.css_released	= cpu_cgroup_css_released,
9164 	.css_free	= cpu_cgroup_css_free,
9165 	.css_extra_stat_show = cpu_extra_stat_show,
9166 	.fork		= cpu_cgroup_fork,
9167 	.can_attach	= cpu_cgroup_can_attach,
9168 	.attach		= cpu_cgroup_attach,
9169 	.legacy_cftypes	= cpu_legacy_files,
9170 	.dfl_cftypes	= cpu_files,
9171 	.early_init	= true,
9172 	.threaded	= true,
9173 };
9174 
9175 #endif	/* CONFIG_CGROUP_SCHED */
9176 
9177 void dump_cpu_task(int cpu)
9178 {
9179 	pr_info("Task dump for CPU %d:\n", cpu);
9180 	sched_show_task(cpu_curr(cpu));
9181 }
9182 
9183 /*
9184  * Nice levels are multiplicative, with a gentle 10% change for every
9185  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9186  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9187  * that remained on nice 0.
9188  *
9189  * The "10% effect" is relative and cumulative: from _any_ nice level,
9190  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9191  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9192  * If a task goes up by ~10% and another task goes down by ~10% then
9193  * the relative distance between them is ~25%.)
9194  */
9195 const int sched_prio_to_weight[40] = {
9196  /* -20 */     88761,     71755,     56483,     46273,     36291,
9197  /* -15 */     29154,     23254,     18705,     14949,     11916,
9198  /* -10 */      9548,      7620,      6100,      4904,      3906,
9199  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9200  /*   0 */      1024,       820,       655,       526,       423,
9201  /*   5 */       335,       272,       215,       172,       137,
9202  /*  10 */       110,        87,        70,        56,        45,
9203  /*  15 */        36,        29,        23,        18,        15,
9204 };
9205 
9206 /*
9207  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9208  *
9209  * In cases where the weight does not change often, we can use the
9210  * precalculated inverse to speed up arithmetics by turning divisions
9211  * into multiplications:
9212  */
9213 const u32 sched_prio_to_wmult[40] = {
9214  /* -20 */     48388,     59856,     76040,     92818,    118348,
9215  /* -15 */    147320,    184698,    229616,    287308,    360437,
9216  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9217  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9218  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9219  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9220  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9221  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9222 };
9223 
9224 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9225 {
9226         trace_sched_update_nr_running_tp(rq, count);
9227 }
9228