xref: /openbmc/linux/kernel/sched/core.c (revision 7caf62de)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 /*
300  * __task_rq_lock - lock the rq @p resides on.
301  */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 	__acquires(rq->lock)
304 {
305 	struct rq *rq;
306 
307 	lockdep_assert_held(&p->pi_lock);
308 
309 	for (;;) {
310 		rq = task_rq(p);
311 		raw_spin_lock(&rq->lock);
312 		if (likely(rq == task_rq(p)))
313 			return rq;
314 		raw_spin_unlock(&rq->lock);
315 	}
316 }
317 
318 /*
319  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320  */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 	__acquires(p->pi_lock)
323 	__acquires(rq->lock)
324 {
325 	struct rq *rq;
326 
327 	for (;;) {
328 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 		rq = task_rq(p);
330 		raw_spin_lock(&rq->lock);
331 		if (likely(rq == task_rq(p)))
332 			return rq;
333 		raw_spin_unlock(&rq->lock);
334 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 	}
336 }
337 
338 static void __task_rq_unlock(struct rq *rq)
339 	__releases(rq->lock)
340 {
341 	raw_spin_unlock(&rq->lock);
342 }
343 
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 	__releases(rq->lock)
347 	__releases(p->pi_lock)
348 {
349 	raw_spin_unlock(&rq->lock);
350 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352 
353 /*
354  * this_rq_lock - lock this runqueue and disable interrupts.
355  */
356 static struct rq *this_rq_lock(void)
357 	__acquires(rq->lock)
358 {
359 	struct rq *rq;
360 
361 	local_irq_disable();
362 	rq = this_rq();
363 	raw_spin_lock(&rq->lock);
364 
365 	return rq;
366 }
367 
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370  * Use HR-timers to deliver accurate preemption points.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 
399 static int __hrtick_restart(struct rq *rq)
400 {
401 	struct hrtimer *timer = &rq->hrtick_timer;
402 	ktime_t time = hrtimer_get_softexpires(timer);
403 
404 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405 }
406 
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	__hrtick_restart(rq);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		__hrtick_restart(rq);
434 	} else if (!rq->hrtick_csd_pending) {
435 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 void resched_task(struct task_struct *p)
515 {
516 	int cpu;
517 
518 	lockdep_assert_held(&task_rq(p)->lock);
519 
520 	if (test_tsk_need_resched(p))
521 		return;
522 
523 	set_tsk_need_resched(p);
524 
525 	cpu = task_cpu(p);
526 	if (cpu == smp_processor_id()) {
527 		set_preempt_need_resched();
528 		return;
529 	}
530 
531 	/* NEED_RESCHED must be visible before we test polling */
532 	smp_mb();
533 	if (!tsk_is_polling(p))
534 		smp_send_reschedule(cpu);
535 }
536 
537 void resched_cpu(int cpu)
538 {
539 	struct rq *rq = cpu_rq(cpu);
540 	unsigned long flags;
541 
542 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 		return;
544 	resched_task(cpu_curr(cpu));
545 	raw_spin_unlock_irqrestore(&rq->lock, flags);
546 }
547 
548 #ifdef CONFIG_SMP
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551  * In the semi idle case, use the nearest busy cpu for migrating timers
552  * from an idle cpu.  This is good for power-savings.
553  *
554  * We don't do similar optimization for completely idle system, as
555  * selecting an idle cpu will add more delays to the timers than intended
556  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557  */
558 int get_nohz_timer_target(int pinned)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct sched_domain *sd;
563 
564 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
565 		return cpu;
566 
567 	rcu_read_lock();
568 	for_each_domain(cpu, sd) {
569 		for_each_cpu(i, sched_domain_span(sd)) {
570 			if (!idle_cpu(i)) {
571 				cpu = i;
572 				goto unlock;
573 			}
574 		}
575 	}
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	/*
598 	 * This is safe, as this function is called with the timer
599 	 * wheel base lock of (cpu) held. When the CPU is on the way
600 	 * to idle and has not yet set rq->curr to idle then it will
601 	 * be serialized on the timer wheel base lock and take the new
602 	 * timer into account automatically.
603 	 */
604 	if (rq->curr != rq->idle)
605 		return;
606 
607 	/*
608 	 * We can set TIF_RESCHED on the idle task of the other CPU
609 	 * lockless. The worst case is that the other CPU runs the
610 	 * idle task through an additional NOOP schedule()
611 	 */
612 	set_tsk_need_resched(rq->idle);
613 
614 	/* NEED_RESCHED must be visible before we test polling */
615 	smp_mb();
616 	if (!tsk_is_polling(rq->idle))
617 		smp_send_reschedule(cpu);
618 }
619 
620 static bool wake_up_full_nohz_cpu(int cpu)
621 {
622 	if (tick_nohz_full_cpu(cpu)) {
623 		if (cpu != smp_processor_id() ||
624 		    tick_nohz_tick_stopped())
625 			smp_send_reschedule(cpu);
626 		return true;
627 	}
628 
629 	return false;
630 }
631 
632 void wake_up_nohz_cpu(int cpu)
633 {
634 	if (!wake_up_full_nohz_cpu(cpu))
635 		wake_up_idle_cpu(cpu);
636 }
637 
638 static inline bool got_nohz_idle_kick(void)
639 {
640 	int cpu = smp_processor_id();
641 
642 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
643 		return false;
644 
645 	if (idle_cpu(cpu) && !need_resched())
646 		return true;
647 
648 	/*
649 	 * We can't run Idle Load Balance on this CPU for this time so we
650 	 * cancel it and clear NOHZ_BALANCE_KICK
651 	 */
652 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
653 	return false;
654 }
655 
656 #else /* CONFIG_NO_HZ_COMMON */
657 
658 static inline bool got_nohz_idle_kick(void)
659 {
660 	return false;
661 }
662 
663 #endif /* CONFIG_NO_HZ_COMMON */
664 
665 #ifdef CONFIG_NO_HZ_FULL
666 bool sched_can_stop_tick(void)
667 {
668        struct rq *rq;
669 
670        rq = this_rq();
671 
672        /* Make sure rq->nr_running update is visible after the IPI */
673        smp_rmb();
674 
675        /* More than one running task need preemption */
676        if (rq->nr_running > 1)
677                return false;
678 
679        return true;
680 }
681 #endif /* CONFIG_NO_HZ_FULL */
682 
683 void sched_avg_update(struct rq *rq)
684 {
685 	s64 period = sched_avg_period();
686 
687 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
688 		/*
689 		 * Inline assembly required to prevent the compiler
690 		 * optimising this loop into a divmod call.
691 		 * See __iter_div_u64_rem() for another example of this.
692 		 */
693 		asm("" : "+rm" (rq->age_stamp));
694 		rq->age_stamp += period;
695 		rq->rt_avg /= 2;
696 	}
697 }
698 
699 #endif /* CONFIG_SMP */
700 
701 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
702 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
703 /*
704  * Iterate task_group tree rooted at *from, calling @down when first entering a
705  * node and @up when leaving it for the final time.
706  *
707  * Caller must hold rcu_lock or sufficient equivalent.
708  */
709 int walk_tg_tree_from(struct task_group *from,
710 			     tg_visitor down, tg_visitor up, void *data)
711 {
712 	struct task_group *parent, *child;
713 	int ret;
714 
715 	parent = from;
716 
717 down:
718 	ret = (*down)(parent, data);
719 	if (ret)
720 		goto out;
721 	list_for_each_entry_rcu(child, &parent->children, siblings) {
722 		parent = child;
723 		goto down;
724 
725 up:
726 		continue;
727 	}
728 	ret = (*up)(parent, data);
729 	if (ret || parent == from)
730 		goto out;
731 
732 	child = parent;
733 	parent = parent->parent;
734 	if (parent)
735 		goto up;
736 out:
737 	return ret;
738 }
739 
740 int tg_nop(struct task_group *tg, void *data)
741 {
742 	return 0;
743 }
744 #endif
745 
746 static void set_load_weight(struct task_struct *p)
747 {
748 	int prio = p->static_prio - MAX_RT_PRIO;
749 	struct load_weight *load = &p->se.load;
750 
751 	/*
752 	 * SCHED_IDLE tasks get minimal weight:
753 	 */
754 	if (p->policy == SCHED_IDLE) {
755 		load->weight = scale_load(WEIGHT_IDLEPRIO);
756 		load->inv_weight = WMULT_IDLEPRIO;
757 		return;
758 	}
759 
760 	load->weight = scale_load(prio_to_weight[prio]);
761 	load->inv_weight = prio_to_wmult[prio];
762 }
763 
764 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	update_rq_clock(rq);
767 	sched_info_queued(rq, p);
768 	p->sched_class->enqueue_task(rq, p, flags);
769 }
770 
771 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	update_rq_clock(rq);
774 	sched_info_dequeued(rq, p);
775 	p->sched_class->dequeue_task(rq, p, flags);
776 }
777 
778 void activate_task(struct rq *rq, struct task_struct *p, int flags)
779 {
780 	if (task_contributes_to_load(p))
781 		rq->nr_uninterruptible--;
782 
783 	enqueue_task(rq, p, flags);
784 }
785 
786 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788 	if (task_contributes_to_load(p))
789 		rq->nr_uninterruptible++;
790 
791 	dequeue_task(rq, p, flags);
792 }
793 
794 static void update_rq_clock_task(struct rq *rq, s64 delta)
795 {
796 /*
797  * In theory, the compile should just see 0 here, and optimize out the call
798  * to sched_rt_avg_update. But I don't trust it...
799  */
800 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
801 	s64 steal = 0, irq_delta = 0;
802 #endif
803 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
804 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
805 
806 	/*
807 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
808 	 * this case when a previous update_rq_clock() happened inside a
809 	 * {soft,}irq region.
810 	 *
811 	 * When this happens, we stop ->clock_task and only update the
812 	 * prev_irq_time stamp to account for the part that fit, so that a next
813 	 * update will consume the rest. This ensures ->clock_task is
814 	 * monotonic.
815 	 *
816 	 * It does however cause some slight miss-attribution of {soft,}irq
817 	 * time, a more accurate solution would be to update the irq_time using
818 	 * the current rq->clock timestamp, except that would require using
819 	 * atomic ops.
820 	 */
821 	if (irq_delta > delta)
822 		irq_delta = delta;
823 
824 	rq->prev_irq_time += irq_delta;
825 	delta -= irq_delta;
826 #endif
827 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
828 	if (static_key_false((&paravirt_steal_rq_enabled))) {
829 		steal = paravirt_steal_clock(cpu_of(rq));
830 		steal -= rq->prev_steal_time_rq;
831 
832 		if (unlikely(steal > delta))
833 			steal = delta;
834 
835 		rq->prev_steal_time_rq += steal;
836 		delta -= steal;
837 	}
838 #endif
839 
840 	rq->clock_task += delta;
841 
842 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
844 		sched_rt_avg_update(rq, irq_delta + steal);
845 #endif
846 }
847 
848 void sched_set_stop_task(int cpu, struct task_struct *stop)
849 {
850 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
851 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
852 
853 	if (stop) {
854 		/*
855 		 * Make it appear like a SCHED_FIFO task, its something
856 		 * userspace knows about and won't get confused about.
857 		 *
858 		 * Also, it will make PI more or less work without too
859 		 * much confusion -- but then, stop work should not
860 		 * rely on PI working anyway.
861 		 */
862 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
863 
864 		stop->sched_class = &stop_sched_class;
865 	}
866 
867 	cpu_rq(cpu)->stop = stop;
868 
869 	if (old_stop) {
870 		/*
871 		 * Reset it back to a normal scheduling class so that
872 		 * it can die in pieces.
873 		 */
874 		old_stop->sched_class = &rt_sched_class;
875 	}
876 }
877 
878 /*
879  * __normal_prio - return the priority that is based on the static prio
880  */
881 static inline int __normal_prio(struct task_struct *p)
882 {
883 	return p->static_prio;
884 }
885 
886 /*
887  * Calculate the expected normal priority: i.e. priority
888  * without taking RT-inheritance into account. Might be
889  * boosted by interactivity modifiers. Changes upon fork,
890  * setprio syscalls, and whenever the interactivity
891  * estimator recalculates.
892  */
893 static inline int normal_prio(struct task_struct *p)
894 {
895 	int prio;
896 
897 	if (task_has_dl_policy(p))
898 		prio = MAX_DL_PRIO-1;
899 	else if (task_has_rt_policy(p))
900 		prio = MAX_RT_PRIO-1 - p->rt_priority;
901 	else
902 		prio = __normal_prio(p);
903 	return prio;
904 }
905 
906 /*
907  * Calculate the current priority, i.e. the priority
908  * taken into account by the scheduler. This value might
909  * be boosted by RT tasks, or might be boosted by
910  * interactivity modifiers. Will be RT if the task got
911  * RT-boosted. If not then it returns p->normal_prio.
912  */
913 static int effective_prio(struct task_struct *p)
914 {
915 	p->normal_prio = normal_prio(p);
916 	/*
917 	 * If we are RT tasks or we were boosted to RT priority,
918 	 * keep the priority unchanged. Otherwise, update priority
919 	 * to the normal priority:
920 	 */
921 	if (!rt_prio(p->prio))
922 		return p->normal_prio;
923 	return p->prio;
924 }
925 
926 /**
927  * task_curr - is this task currently executing on a CPU?
928  * @p: the task in question.
929  *
930  * Return: 1 if the task is currently executing. 0 otherwise.
931  */
932 inline int task_curr(const struct task_struct *p)
933 {
934 	return cpu_curr(task_cpu(p)) == p;
935 }
936 
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 				       const struct sched_class *prev_class,
939 				       int oldprio)
940 {
941 	if (prev_class != p->sched_class) {
942 		if (prev_class->switched_from)
943 			prev_class->switched_from(rq, p);
944 		p->sched_class->switched_to(rq, p);
945 	} else if (oldprio != p->prio || dl_task(p))
946 		p->sched_class->prio_changed(rq, p, oldprio);
947 }
948 
949 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
950 {
951 	const struct sched_class *class;
952 
953 	if (p->sched_class == rq->curr->sched_class) {
954 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
955 	} else {
956 		for_each_class(class) {
957 			if (class == rq->curr->sched_class)
958 				break;
959 			if (class == p->sched_class) {
960 				resched_task(rq->curr);
961 				break;
962 			}
963 		}
964 	}
965 
966 	/*
967 	 * A queue event has occurred, and we're going to schedule.  In
968 	 * this case, we can save a useless back to back clock update.
969 	 */
970 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
971 		rq->skip_clock_update = 1;
972 }
973 
974 #ifdef CONFIG_SMP
975 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
976 {
977 #ifdef CONFIG_SCHED_DEBUG
978 	/*
979 	 * We should never call set_task_cpu() on a blocked task,
980 	 * ttwu() will sort out the placement.
981 	 */
982 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
983 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
984 
985 #ifdef CONFIG_LOCKDEP
986 	/*
987 	 * The caller should hold either p->pi_lock or rq->lock, when changing
988 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
989 	 *
990 	 * sched_move_task() holds both and thus holding either pins the cgroup,
991 	 * see task_group().
992 	 *
993 	 * Furthermore, all task_rq users should acquire both locks, see
994 	 * task_rq_lock().
995 	 */
996 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
997 				      lockdep_is_held(&task_rq(p)->lock)));
998 #endif
999 #endif
1000 
1001 	trace_sched_migrate_task(p, new_cpu);
1002 
1003 	if (task_cpu(p) != new_cpu) {
1004 		if (p->sched_class->migrate_task_rq)
1005 			p->sched_class->migrate_task_rq(p, new_cpu);
1006 		p->se.nr_migrations++;
1007 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008 	}
1009 
1010 	__set_task_cpu(p, new_cpu);
1011 }
1012 
1013 static void __migrate_swap_task(struct task_struct *p, int cpu)
1014 {
1015 	if (p->on_rq) {
1016 		struct rq *src_rq, *dst_rq;
1017 
1018 		src_rq = task_rq(p);
1019 		dst_rq = cpu_rq(cpu);
1020 
1021 		deactivate_task(src_rq, p, 0);
1022 		set_task_cpu(p, cpu);
1023 		activate_task(dst_rq, p, 0);
1024 		check_preempt_curr(dst_rq, p, 0);
1025 	} else {
1026 		/*
1027 		 * Task isn't running anymore; make it appear like we migrated
1028 		 * it before it went to sleep. This means on wakeup we make the
1029 		 * previous cpu our targer instead of where it really is.
1030 		 */
1031 		p->wake_cpu = cpu;
1032 	}
1033 }
1034 
1035 struct migration_swap_arg {
1036 	struct task_struct *src_task, *dst_task;
1037 	int src_cpu, dst_cpu;
1038 };
1039 
1040 static int migrate_swap_stop(void *data)
1041 {
1042 	struct migration_swap_arg *arg = data;
1043 	struct rq *src_rq, *dst_rq;
1044 	int ret = -EAGAIN;
1045 
1046 	src_rq = cpu_rq(arg->src_cpu);
1047 	dst_rq = cpu_rq(arg->dst_cpu);
1048 
1049 	double_raw_lock(&arg->src_task->pi_lock,
1050 			&arg->dst_task->pi_lock);
1051 	double_rq_lock(src_rq, dst_rq);
1052 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1053 		goto unlock;
1054 
1055 	if (task_cpu(arg->src_task) != arg->src_cpu)
1056 		goto unlock;
1057 
1058 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1059 		goto unlock;
1060 
1061 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1062 		goto unlock;
1063 
1064 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1065 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1066 
1067 	ret = 0;
1068 
1069 unlock:
1070 	double_rq_unlock(src_rq, dst_rq);
1071 	raw_spin_unlock(&arg->dst_task->pi_lock);
1072 	raw_spin_unlock(&arg->src_task->pi_lock);
1073 
1074 	return ret;
1075 }
1076 
1077 /*
1078  * Cross migrate two tasks
1079  */
1080 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1081 {
1082 	struct migration_swap_arg arg;
1083 	int ret = -EINVAL;
1084 
1085 	arg = (struct migration_swap_arg){
1086 		.src_task = cur,
1087 		.src_cpu = task_cpu(cur),
1088 		.dst_task = p,
1089 		.dst_cpu = task_cpu(p),
1090 	};
1091 
1092 	if (arg.src_cpu == arg.dst_cpu)
1093 		goto out;
1094 
1095 	/*
1096 	 * These three tests are all lockless; this is OK since all of them
1097 	 * will be re-checked with proper locks held further down the line.
1098 	 */
1099 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1100 		goto out;
1101 
1102 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1103 		goto out;
1104 
1105 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1106 		goto out;
1107 
1108 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1109 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1110 
1111 out:
1112 	return ret;
1113 }
1114 
1115 struct migration_arg {
1116 	struct task_struct *task;
1117 	int dest_cpu;
1118 };
1119 
1120 static int migration_cpu_stop(void *data);
1121 
1122 /*
1123  * wait_task_inactive - wait for a thread to unschedule.
1124  *
1125  * If @match_state is nonzero, it's the @p->state value just checked and
1126  * not expected to change.  If it changes, i.e. @p might have woken up,
1127  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1128  * we return a positive number (its total switch count).  If a second call
1129  * a short while later returns the same number, the caller can be sure that
1130  * @p has remained unscheduled the whole time.
1131  *
1132  * The caller must ensure that the task *will* unschedule sometime soon,
1133  * else this function might spin for a *long* time. This function can't
1134  * be called with interrupts off, or it may introduce deadlock with
1135  * smp_call_function() if an IPI is sent by the same process we are
1136  * waiting to become inactive.
1137  */
1138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1139 {
1140 	unsigned long flags;
1141 	int running, on_rq;
1142 	unsigned long ncsw;
1143 	struct rq *rq;
1144 
1145 	for (;;) {
1146 		/*
1147 		 * We do the initial early heuristics without holding
1148 		 * any task-queue locks at all. We'll only try to get
1149 		 * the runqueue lock when things look like they will
1150 		 * work out!
1151 		 */
1152 		rq = task_rq(p);
1153 
1154 		/*
1155 		 * If the task is actively running on another CPU
1156 		 * still, just relax and busy-wait without holding
1157 		 * any locks.
1158 		 *
1159 		 * NOTE! Since we don't hold any locks, it's not
1160 		 * even sure that "rq" stays as the right runqueue!
1161 		 * But we don't care, since "task_running()" will
1162 		 * return false if the runqueue has changed and p
1163 		 * is actually now running somewhere else!
1164 		 */
1165 		while (task_running(rq, p)) {
1166 			if (match_state && unlikely(p->state != match_state))
1167 				return 0;
1168 			cpu_relax();
1169 		}
1170 
1171 		/*
1172 		 * Ok, time to look more closely! We need the rq
1173 		 * lock now, to be *sure*. If we're wrong, we'll
1174 		 * just go back and repeat.
1175 		 */
1176 		rq = task_rq_lock(p, &flags);
1177 		trace_sched_wait_task(p);
1178 		running = task_running(rq, p);
1179 		on_rq = p->on_rq;
1180 		ncsw = 0;
1181 		if (!match_state || p->state == match_state)
1182 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1183 		task_rq_unlock(rq, p, &flags);
1184 
1185 		/*
1186 		 * If it changed from the expected state, bail out now.
1187 		 */
1188 		if (unlikely(!ncsw))
1189 			break;
1190 
1191 		/*
1192 		 * Was it really running after all now that we
1193 		 * checked with the proper locks actually held?
1194 		 *
1195 		 * Oops. Go back and try again..
1196 		 */
1197 		if (unlikely(running)) {
1198 			cpu_relax();
1199 			continue;
1200 		}
1201 
1202 		/*
1203 		 * It's not enough that it's not actively running,
1204 		 * it must be off the runqueue _entirely_, and not
1205 		 * preempted!
1206 		 *
1207 		 * So if it was still runnable (but just not actively
1208 		 * running right now), it's preempted, and we should
1209 		 * yield - it could be a while.
1210 		 */
1211 		if (unlikely(on_rq)) {
1212 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1213 
1214 			set_current_state(TASK_UNINTERRUPTIBLE);
1215 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1216 			continue;
1217 		}
1218 
1219 		/*
1220 		 * Ahh, all good. It wasn't running, and it wasn't
1221 		 * runnable, which means that it will never become
1222 		 * running in the future either. We're all done!
1223 		 */
1224 		break;
1225 	}
1226 
1227 	return ncsw;
1228 }
1229 
1230 /***
1231  * kick_process - kick a running thread to enter/exit the kernel
1232  * @p: the to-be-kicked thread
1233  *
1234  * Cause a process which is running on another CPU to enter
1235  * kernel-mode, without any delay. (to get signals handled.)
1236  *
1237  * NOTE: this function doesn't have to take the runqueue lock,
1238  * because all it wants to ensure is that the remote task enters
1239  * the kernel. If the IPI races and the task has been migrated
1240  * to another CPU then no harm is done and the purpose has been
1241  * achieved as well.
1242  */
1243 void kick_process(struct task_struct *p)
1244 {
1245 	int cpu;
1246 
1247 	preempt_disable();
1248 	cpu = task_cpu(p);
1249 	if ((cpu != smp_processor_id()) && task_curr(p))
1250 		smp_send_reschedule(cpu);
1251 	preempt_enable();
1252 }
1253 EXPORT_SYMBOL_GPL(kick_process);
1254 #endif /* CONFIG_SMP */
1255 
1256 #ifdef CONFIG_SMP
1257 /*
1258  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1259  */
1260 static int select_fallback_rq(int cpu, struct task_struct *p)
1261 {
1262 	int nid = cpu_to_node(cpu);
1263 	const struct cpumask *nodemask = NULL;
1264 	enum { cpuset, possible, fail } state = cpuset;
1265 	int dest_cpu;
1266 
1267 	/*
1268 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1269 	 * will return -1. There is no cpu on the node, and we should
1270 	 * select the cpu on the other node.
1271 	 */
1272 	if (nid != -1) {
1273 		nodemask = cpumask_of_node(nid);
1274 
1275 		/* Look for allowed, online CPU in same node. */
1276 		for_each_cpu(dest_cpu, nodemask) {
1277 			if (!cpu_online(dest_cpu))
1278 				continue;
1279 			if (!cpu_active(dest_cpu))
1280 				continue;
1281 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1282 				return dest_cpu;
1283 		}
1284 	}
1285 
1286 	for (;;) {
1287 		/* Any allowed, online CPU? */
1288 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1289 			if (!cpu_online(dest_cpu))
1290 				continue;
1291 			if (!cpu_active(dest_cpu))
1292 				continue;
1293 			goto out;
1294 		}
1295 
1296 		switch (state) {
1297 		case cpuset:
1298 			/* No more Mr. Nice Guy. */
1299 			cpuset_cpus_allowed_fallback(p);
1300 			state = possible;
1301 			break;
1302 
1303 		case possible:
1304 			do_set_cpus_allowed(p, cpu_possible_mask);
1305 			state = fail;
1306 			break;
1307 
1308 		case fail:
1309 			BUG();
1310 			break;
1311 		}
1312 	}
1313 
1314 out:
1315 	if (state != cpuset) {
1316 		/*
1317 		 * Don't tell them about moving exiting tasks or
1318 		 * kernel threads (both mm NULL), since they never
1319 		 * leave kernel.
1320 		 */
1321 		if (p->mm && printk_ratelimit()) {
1322 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1323 					task_pid_nr(p), p->comm, cpu);
1324 		}
1325 	}
1326 
1327 	return dest_cpu;
1328 }
1329 
1330 /*
1331  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1332  */
1333 static inline
1334 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1335 {
1336 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1337 
1338 	/*
1339 	 * In order not to call set_task_cpu() on a blocking task we need
1340 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1341 	 * cpu.
1342 	 *
1343 	 * Since this is common to all placement strategies, this lives here.
1344 	 *
1345 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1346 	 *   not worry about this generic constraint ]
1347 	 */
1348 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1349 		     !cpu_online(cpu)))
1350 		cpu = select_fallback_rq(task_cpu(p), p);
1351 
1352 	return cpu;
1353 }
1354 
1355 static void update_avg(u64 *avg, u64 sample)
1356 {
1357 	s64 diff = sample - *avg;
1358 	*avg += diff >> 3;
1359 }
1360 #endif
1361 
1362 static void
1363 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1364 {
1365 #ifdef CONFIG_SCHEDSTATS
1366 	struct rq *rq = this_rq();
1367 
1368 #ifdef CONFIG_SMP
1369 	int this_cpu = smp_processor_id();
1370 
1371 	if (cpu == this_cpu) {
1372 		schedstat_inc(rq, ttwu_local);
1373 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1374 	} else {
1375 		struct sched_domain *sd;
1376 
1377 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1378 		rcu_read_lock();
1379 		for_each_domain(this_cpu, sd) {
1380 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1381 				schedstat_inc(sd, ttwu_wake_remote);
1382 				break;
1383 			}
1384 		}
1385 		rcu_read_unlock();
1386 	}
1387 
1388 	if (wake_flags & WF_MIGRATED)
1389 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1390 
1391 #endif /* CONFIG_SMP */
1392 
1393 	schedstat_inc(rq, ttwu_count);
1394 	schedstat_inc(p, se.statistics.nr_wakeups);
1395 
1396 	if (wake_flags & WF_SYNC)
1397 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1398 
1399 #endif /* CONFIG_SCHEDSTATS */
1400 }
1401 
1402 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1403 {
1404 	activate_task(rq, p, en_flags);
1405 	p->on_rq = 1;
1406 
1407 	/* if a worker is waking up, notify workqueue */
1408 	if (p->flags & PF_WQ_WORKER)
1409 		wq_worker_waking_up(p, cpu_of(rq));
1410 }
1411 
1412 /*
1413  * Mark the task runnable and perform wakeup-preemption.
1414  */
1415 static void
1416 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1417 {
1418 	check_preempt_curr(rq, p, wake_flags);
1419 	trace_sched_wakeup(p, true);
1420 
1421 	p->state = TASK_RUNNING;
1422 #ifdef CONFIG_SMP
1423 	if (p->sched_class->task_woken)
1424 		p->sched_class->task_woken(rq, p);
1425 
1426 	if (rq->idle_stamp) {
1427 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1428 		u64 max = 2*rq->max_idle_balance_cost;
1429 
1430 		update_avg(&rq->avg_idle, delta);
1431 
1432 		if (rq->avg_idle > max)
1433 			rq->avg_idle = max;
1434 
1435 		rq->idle_stamp = 0;
1436 	}
1437 #endif
1438 }
1439 
1440 static void
1441 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1442 {
1443 #ifdef CONFIG_SMP
1444 	if (p->sched_contributes_to_load)
1445 		rq->nr_uninterruptible--;
1446 #endif
1447 
1448 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1449 	ttwu_do_wakeup(rq, p, wake_flags);
1450 }
1451 
1452 /*
1453  * Called in case the task @p isn't fully descheduled from its runqueue,
1454  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1455  * since all we need to do is flip p->state to TASK_RUNNING, since
1456  * the task is still ->on_rq.
1457  */
1458 static int ttwu_remote(struct task_struct *p, int wake_flags)
1459 {
1460 	struct rq *rq;
1461 	int ret = 0;
1462 
1463 	rq = __task_rq_lock(p);
1464 	if (p->on_rq) {
1465 		/* check_preempt_curr() may use rq clock */
1466 		update_rq_clock(rq);
1467 		ttwu_do_wakeup(rq, p, wake_flags);
1468 		ret = 1;
1469 	}
1470 	__task_rq_unlock(rq);
1471 
1472 	return ret;
1473 }
1474 
1475 #ifdef CONFIG_SMP
1476 static void sched_ttwu_pending(void)
1477 {
1478 	struct rq *rq = this_rq();
1479 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1480 	struct task_struct *p;
1481 
1482 	raw_spin_lock(&rq->lock);
1483 
1484 	while (llist) {
1485 		p = llist_entry(llist, struct task_struct, wake_entry);
1486 		llist = llist_next(llist);
1487 		ttwu_do_activate(rq, p, 0);
1488 	}
1489 
1490 	raw_spin_unlock(&rq->lock);
1491 }
1492 
1493 void scheduler_ipi(void)
1494 {
1495 	/*
1496 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1497 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1498 	 * this IPI.
1499 	 */
1500 	preempt_fold_need_resched();
1501 
1502 	if (llist_empty(&this_rq()->wake_list)
1503 			&& !tick_nohz_full_cpu(smp_processor_id())
1504 			&& !got_nohz_idle_kick())
1505 		return;
1506 
1507 	/*
1508 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1509 	 * traditionally all their work was done from the interrupt return
1510 	 * path. Now that we actually do some work, we need to make sure
1511 	 * we do call them.
1512 	 *
1513 	 * Some archs already do call them, luckily irq_enter/exit nest
1514 	 * properly.
1515 	 *
1516 	 * Arguably we should visit all archs and update all handlers,
1517 	 * however a fair share of IPIs are still resched only so this would
1518 	 * somewhat pessimize the simple resched case.
1519 	 */
1520 	irq_enter();
1521 	tick_nohz_full_check();
1522 	sched_ttwu_pending();
1523 
1524 	/*
1525 	 * Check if someone kicked us for doing the nohz idle load balance.
1526 	 */
1527 	if (unlikely(got_nohz_idle_kick())) {
1528 		this_rq()->idle_balance = 1;
1529 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1530 	}
1531 	irq_exit();
1532 }
1533 
1534 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1535 {
1536 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1537 		smp_send_reschedule(cpu);
1538 }
1539 
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545 
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 	struct rq *rq = cpu_rq(cpu);
1549 
1550 #if defined(CONFIG_SMP)
1551 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 		ttwu_queue_remote(p, cpu);
1554 		return;
1555 	}
1556 #endif
1557 
1558 	raw_spin_lock(&rq->lock);
1559 	ttwu_do_activate(rq, p, 0);
1560 	raw_spin_unlock(&rq->lock);
1561 }
1562 
1563 /**
1564  * try_to_wake_up - wake up a thread
1565  * @p: the thread to be awakened
1566  * @state: the mask of task states that can be woken
1567  * @wake_flags: wake modifier flags (WF_*)
1568  *
1569  * Put it on the run-queue if it's not already there. The "current"
1570  * thread is always on the run-queue (except when the actual
1571  * re-schedule is in progress), and as such you're allowed to do
1572  * the simpler "current->state = TASK_RUNNING" to mark yourself
1573  * runnable without the overhead of this.
1574  *
1575  * Return: %true if @p was woken up, %false if it was already running.
1576  * or @state didn't match @p's state.
1577  */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 	unsigned long flags;
1582 	int cpu, success = 0;
1583 
1584 	/*
1585 	 * If we are going to wake up a thread waiting for CONDITION we
1586 	 * need to ensure that CONDITION=1 done by the caller can not be
1587 	 * reordered with p->state check below. This pairs with mb() in
1588 	 * set_current_state() the waiting thread does.
1589 	 */
1590 	smp_mb__before_spinlock();
1591 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1592 	if (!(p->state & state))
1593 		goto out;
1594 
1595 	success = 1; /* we're going to change ->state */
1596 	cpu = task_cpu(p);
1597 
1598 	if (p->on_rq && ttwu_remote(p, wake_flags))
1599 		goto stat;
1600 
1601 #ifdef CONFIG_SMP
1602 	/*
1603 	 * If the owning (remote) cpu is still in the middle of schedule() with
1604 	 * this task as prev, wait until its done referencing the task.
1605 	 */
1606 	while (p->on_cpu)
1607 		cpu_relax();
1608 	/*
1609 	 * Pairs with the smp_wmb() in finish_lock_switch().
1610 	 */
1611 	smp_rmb();
1612 
1613 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1614 	p->state = TASK_WAKING;
1615 
1616 	if (p->sched_class->task_waking)
1617 		p->sched_class->task_waking(p);
1618 
1619 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1620 	if (task_cpu(p) != cpu) {
1621 		wake_flags |= WF_MIGRATED;
1622 		set_task_cpu(p, cpu);
1623 	}
1624 #endif /* CONFIG_SMP */
1625 
1626 	ttwu_queue(p, cpu);
1627 stat:
1628 	ttwu_stat(p, cpu, wake_flags);
1629 out:
1630 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1631 
1632 	return success;
1633 }
1634 
1635 /**
1636  * try_to_wake_up_local - try to wake up a local task with rq lock held
1637  * @p: the thread to be awakened
1638  *
1639  * Put @p on the run-queue if it's not already there. The caller must
1640  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1641  * the current task.
1642  */
1643 static void try_to_wake_up_local(struct task_struct *p)
1644 {
1645 	struct rq *rq = task_rq(p);
1646 
1647 	if (WARN_ON_ONCE(rq != this_rq()) ||
1648 	    WARN_ON_ONCE(p == current))
1649 		return;
1650 
1651 	lockdep_assert_held(&rq->lock);
1652 
1653 	if (!raw_spin_trylock(&p->pi_lock)) {
1654 		raw_spin_unlock(&rq->lock);
1655 		raw_spin_lock(&p->pi_lock);
1656 		raw_spin_lock(&rq->lock);
1657 	}
1658 
1659 	if (!(p->state & TASK_NORMAL))
1660 		goto out;
1661 
1662 	if (!p->on_rq)
1663 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1664 
1665 	ttwu_do_wakeup(rq, p, 0);
1666 	ttwu_stat(p, smp_processor_id(), 0);
1667 out:
1668 	raw_spin_unlock(&p->pi_lock);
1669 }
1670 
1671 /**
1672  * wake_up_process - Wake up a specific process
1673  * @p: The process to be woken up.
1674  *
1675  * Attempt to wake up the nominated process and move it to the set of runnable
1676  * processes.
1677  *
1678  * Return: 1 if the process was woken up, 0 if it was already running.
1679  *
1680  * It may be assumed that this function implies a write memory barrier before
1681  * changing the task state if and only if any tasks are woken up.
1682  */
1683 int wake_up_process(struct task_struct *p)
1684 {
1685 	WARN_ON(task_is_stopped_or_traced(p));
1686 	return try_to_wake_up(p, TASK_NORMAL, 0);
1687 }
1688 EXPORT_SYMBOL(wake_up_process);
1689 
1690 int wake_up_state(struct task_struct *p, unsigned int state)
1691 {
1692 	return try_to_wake_up(p, state, 0);
1693 }
1694 
1695 /*
1696  * Perform scheduler related setup for a newly forked process p.
1697  * p is forked by current.
1698  *
1699  * __sched_fork() is basic setup used by init_idle() too:
1700  */
1701 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1702 {
1703 	p->on_rq			= 0;
1704 
1705 	p->se.on_rq			= 0;
1706 	p->se.exec_start		= 0;
1707 	p->se.sum_exec_runtime		= 0;
1708 	p->se.prev_sum_exec_runtime	= 0;
1709 	p->se.nr_migrations		= 0;
1710 	p->se.vruntime			= 0;
1711 	INIT_LIST_HEAD(&p->se.group_node);
1712 
1713 #ifdef CONFIG_SCHEDSTATS
1714 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1715 #endif
1716 
1717 	RB_CLEAR_NODE(&p->dl.rb_node);
1718 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719 	p->dl.dl_runtime = p->dl.runtime = 0;
1720 	p->dl.dl_deadline = p->dl.deadline = 0;
1721 	p->dl.dl_period = 0;
1722 	p->dl.flags = 0;
1723 
1724 	INIT_LIST_HEAD(&p->rt.run_list);
1725 
1726 #ifdef CONFIG_PREEMPT_NOTIFIERS
1727 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1728 #endif
1729 
1730 #ifdef CONFIG_NUMA_BALANCING
1731 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1732 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1733 		p->mm->numa_scan_seq = 0;
1734 	}
1735 
1736 	if (clone_flags & CLONE_VM)
1737 		p->numa_preferred_nid = current->numa_preferred_nid;
1738 	else
1739 		p->numa_preferred_nid = -1;
1740 
1741 	p->node_stamp = 0ULL;
1742 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1743 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1744 	p->numa_work.next = &p->numa_work;
1745 	p->numa_faults_memory = NULL;
1746 	p->numa_faults_buffer_memory = NULL;
1747 	p->last_task_numa_placement = 0;
1748 	p->last_sum_exec_runtime = 0;
1749 
1750 	INIT_LIST_HEAD(&p->numa_entry);
1751 	p->numa_group = NULL;
1752 #endif /* CONFIG_NUMA_BALANCING */
1753 }
1754 
1755 #ifdef CONFIG_NUMA_BALANCING
1756 #ifdef CONFIG_SCHED_DEBUG
1757 void set_numabalancing_state(bool enabled)
1758 {
1759 	if (enabled)
1760 		sched_feat_set("NUMA");
1761 	else
1762 		sched_feat_set("NO_NUMA");
1763 }
1764 #else
1765 __read_mostly bool numabalancing_enabled;
1766 
1767 void set_numabalancing_state(bool enabled)
1768 {
1769 	numabalancing_enabled = enabled;
1770 }
1771 #endif /* CONFIG_SCHED_DEBUG */
1772 
1773 #ifdef CONFIG_PROC_SYSCTL
1774 int sysctl_numa_balancing(struct ctl_table *table, int write,
1775 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1776 {
1777 	struct ctl_table t;
1778 	int err;
1779 	int state = numabalancing_enabled;
1780 
1781 	if (write && !capable(CAP_SYS_ADMIN))
1782 		return -EPERM;
1783 
1784 	t = *table;
1785 	t.data = &state;
1786 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1787 	if (err < 0)
1788 		return err;
1789 	if (write)
1790 		set_numabalancing_state(state);
1791 	return err;
1792 }
1793 #endif
1794 #endif
1795 
1796 /*
1797  * fork()/clone()-time setup:
1798  */
1799 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1800 {
1801 	unsigned long flags;
1802 	int cpu = get_cpu();
1803 
1804 	__sched_fork(clone_flags, p);
1805 	/*
1806 	 * We mark the process as running here. This guarantees that
1807 	 * nobody will actually run it, and a signal or other external
1808 	 * event cannot wake it up and insert it on the runqueue either.
1809 	 */
1810 	p->state = TASK_RUNNING;
1811 
1812 	/*
1813 	 * Make sure we do not leak PI boosting priority to the child.
1814 	 */
1815 	p->prio = current->normal_prio;
1816 
1817 	/*
1818 	 * Revert to default priority/policy on fork if requested.
1819 	 */
1820 	if (unlikely(p->sched_reset_on_fork)) {
1821 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1822 			p->policy = SCHED_NORMAL;
1823 			p->static_prio = NICE_TO_PRIO(0);
1824 			p->rt_priority = 0;
1825 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1826 			p->static_prio = NICE_TO_PRIO(0);
1827 
1828 		p->prio = p->normal_prio = __normal_prio(p);
1829 		set_load_weight(p);
1830 
1831 		/*
1832 		 * We don't need the reset flag anymore after the fork. It has
1833 		 * fulfilled its duty:
1834 		 */
1835 		p->sched_reset_on_fork = 0;
1836 	}
1837 
1838 	if (dl_prio(p->prio)) {
1839 		put_cpu();
1840 		return -EAGAIN;
1841 	} else if (rt_prio(p->prio)) {
1842 		p->sched_class = &rt_sched_class;
1843 	} else {
1844 		p->sched_class = &fair_sched_class;
1845 	}
1846 
1847 	if (p->sched_class->task_fork)
1848 		p->sched_class->task_fork(p);
1849 
1850 	/*
1851 	 * The child is not yet in the pid-hash so no cgroup attach races,
1852 	 * and the cgroup is pinned to this child due to cgroup_fork()
1853 	 * is ran before sched_fork().
1854 	 *
1855 	 * Silence PROVE_RCU.
1856 	 */
1857 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1858 	set_task_cpu(p, cpu);
1859 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1860 
1861 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1862 	if (likely(sched_info_on()))
1863 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1864 #endif
1865 #if defined(CONFIG_SMP)
1866 	p->on_cpu = 0;
1867 #endif
1868 	init_task_preempt_count(p);
1869 #ifdef CONFIG_SMP
1870 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1871 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1872 #endif
1873 
1874 	put_cpu();
1875 	return 0;
1876 }
1877 
1878 unsigned long to_ratio(u64 period, u64 runtime)
1879 {
1880 	if (runtime == RUNTIME_INF)
1881 		return 1ULL << 20;
1882 
1883 	/*
1884 	 * Doing this here saves a lot of checks in all
1885 	 * the calling paths, and returning zero seems
1886 	 * safe for them anyway.
1887 	 */
1888 	if (period == 0)
1889 		return 0;
1890 
1891 	return div64_u64(runtime << 20, period);
1892 }
1893 
1894 #ifdef CONFIG_SMP
1895 inline struct dl_bw *dl_bw_of(int i)
1896 {
1897 	return &cpu_rq(i)->rd->dl_bw;
1898 }
1899 
1900 static inline int dl_bw_cpus(int i)
1901 {
1902 	struct root_domain *rd = cpu_rq(i)->rd;
1903 	int cpus = 0;
1904 
1905 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1906 		cpus++;
1907 
1908 	return cpus;
1909 }
1910 #else
1911 inline struct dl_bw *dl_bw_of(int i)
1912 {
1913 	return &cpu_rq(i)->dl.dl_bw;
1914 }
1915 
1916 static inline int dl_bw_cpus(int i)
1917 {
1918 	return 1;
1919 }
1920 #endif
1921 
1922 static inline
1923 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1924 {
1925 	dl_b->total_bw -= tsk_bw;
1926 }
1927 
1928 static inline
1929 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1930 {
1931 	dl_b->total_bw += tsk_bw;
1932 }
1933 
1934 static inline
1935 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1936 {
1937 	return dl_b->bw != -1 &&
1938 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1939 }
1940 
1941 /*
1942  * We must be sure that accepting a new task (or allowing changing the
1943  * parameters of an existing one) is consistent with the bandwidth
1944  * constraints. If yes, this function also accordingly updates the currently
1945  * allocated bandwidth to reflect the new situation.
1946  *
1947  * This function is called while holding p's rq->lock.
1948  */
1949 static int dl_overflow(struct task_struct *p, int policy,
1950 		       const struct sched_attr *attr)
1951 {
1952 
1953 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1954 	u64 period = attr->sched_period ?: attr->sched_deadline;
1955 	u64 runtime = attr->sched_runtime;
1956 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1957 	int cpus, err = -1;
1958 
1959 	if (new_bw == p->dl.dl_bw)
1960 		return 0;
1961 
1962 	/*
1963 	 * Either if a task, enters, leave, or stays -deadline but changes
1964 	 * its parameters, we may need to update accordingly the total
1965 	 * allocated bandwidth of the container.
1966 	 */
1967 	raw_spin_lock(&dl_b->lock);
1968 	cpus = dl_bw_cpus(task_cpu(p));
1969 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1970 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1971 		__dl_add(dl_b, new_bw);
1972 		err = 0;
1973 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1974 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1975 		__dl_clear(dl_b, p->dl.dl_bw);
1976 		__dl_add(dl_b, new_bw);
1977 		err = 0;
1978 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1979 		__dl_clear(dl_b, p->dl.dl_bw);
1980 		err = 0;
1981 	}
1982 	raw_spin_unlock(&dl_b->lock);
1983 
1984 	return err;
1985 }
1986 
1987 extern void init_dl_bw(struct dl_bw *dl_b);
1988 
1989 /*
1990  * wake_up_new_task - wake up a newly created task for the first time.
1991  *
1992  * This function will do some initial scheduler statistics housekeeping
1993  * that must be done for every newly created context, then puts the task
1994  * on the runqueue and wakes it.
1995  */
1996 void wake_up_new_task(struct task_struct *p)
1997 {
1998 	unsigned long flags;
1999 	struct rq *rq;
2000 
2001 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2002 #ifdef CONFIG_SMP
2003 	/*
2004 	 * Fork balancing, do it here and not earlier because:
2005 	 *  - cpus_allowed can change in the fork path
2006 	 *  - any previously selected cpu might disappear through hotplug
2007 	 */
2008 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2009 #endif
2010 
2011 	/* Initialize new task's runnable average */
2012 	init_task_runnable_average(p);
2013 	rq = __task_rq_lock(p);
2014 	activate_task(rq, p, 0);
2015 	p->on_rq = 1;
2016 	trace_sched_wakeup_new(p, true);
2017 	check_preempt_curr(rq, p, WF_FORK);
2018 #ifdef CONFIG_SMP
2019 	if (p->sched_class->task_woken)
2020 		p->sched_class->task_woken(rq, p);
2021 #endif
2022 	task_rq_unlock(rq, p, &flags);
2023 }
2024 
2025 #ifdef CONFIG_PREEMPT_NOTIFIERS
2026 
2027 /**
2028  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2029  * @notifier: notifier struct to register
2030  */
2031 void preempt_notifier_register(struct preempt_notifier *notifier)
2032 {
2033 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2034 }
2035 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2036 
2037 /**
2038  * preempt_notifier_unregister - no longer interested in preemption notifications
2039  * @notifier: notifier struct to unregister
2040  *
2041  * This is safe to call from within a preemption notifier.
2042  */
2043 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2044 {
2045 	hlist_del(&notifier->link);
2046 }
2047 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2048 
2049 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2050 {
2051 	struct preempt_notifier *notifier;
2052 
2053 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2054 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2055 }
2056 
2057 static void
2058 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059 				 struct task_struct *next)
2060 {
2061 	struct preempt_notifier *notifier;
2062 
2063 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2064 		notifier->ops->sched_out(notifier, next);
2065 }
2066 
2067 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2068 
2069 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2070 {
2071 }
2072 
2073 static void
2074 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2075 				 struct task_struct *next)
2076 {
2077 }
2078 
2079 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2080 
2081 /**
2082  * prepare_task_switch - prepare to switch tasks
2083  * @rq: the runqueue preparing to switch
2084  * @prev: the current task that is being switched out
2085  * @next: the task we are going to switch to.
2086  *
2087  * This is called with the rq lock held and interrupts off. It must
2088  * be paired with a subsequent finish_task_switch after the context
2089  * switch.
2090  *
2091  * prepare_task_switch sets up locking and calls architecture specific
2092  * hooks.
2093  */
2094 static inline void
2095 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2096 		    struct task_struct *next)
2097 {
2098 	trace_sched_switch(prev, next);
2099 	sched_info_switch(rq, prev, next);
2100 	perf_event_task_sched_out(prev, next);
2101 	fire_sched_out_preempt_notifiers(prev, next);
2102 	prepare_lock_switch(rq, next);
2103 	prepare_arch_switch(next);
2104 }
2105 
2106 /**
2107  * finish_task_switch - clean up after a task-switch
2108  * @rq: runqueue associated with task-switch
2109  * @prev: the thread we just switched away from.
2110  *
2111  * finish_task_switch must be called after the context switch, paired
2112  * with a prepare_task_switch call before the context switch.
2113  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2114  * and do any other architecture-specific cleanup actions.
2115  *
2116  * Note that we may have delayed dropping an mm in context_switch(). If
2117  * so, we finish that here outside of the runqueue lock. (Doing it
2118  * with the lock held can cause deadlocks; see schedule() for
2119  * details.)
2120  */
2121 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2122 	__releases(rq->lock)
2123 {
2124 	struct mm_struct *mm = rq->prev_mm;
2125 	long prev_state;
2126 
2127 	rq->prev_mm = NULL;
2128 
2129 	/*
2130 	 * A task struct has one reference for the use as "current".
2131 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2132 	 * schedule one last time. The schedule call will never return, and
2133 	 * the scheduled task must drop that reference.
2134 	 * The test for TASK_DEAD must occur while the runqueue locks are
2135 	 * still held, otherwise prev could be scheduled on another cpu, die
2136 	 * there before we look at prev->state, and then the reference would
2137 	 * be dropped twice.
2138 	 *		Manfred Spraul <manfred@colorfullife.com>
2139 	 */
2140 	prev_state = prev->state;
2141 	vtime_task_switch(prev);
2142 	finish_arch_switch(prev);
2143 	perf_event_task_sched_in(prev, current);
2144 	finish_lock_switch(rq, prev);
2145 	finish_arch_post_lock_switch();
2146 
2147 	fire_sched_in_preempt_notifiers(current);
2148 	if (mm)
2149 		mmdrop(mm);
2150 	if (unlikely(prev_state == TASK_DEAD)) {
2151 		if (prev->sched_class->task_dead)
2152 			prev->sched_class->task_dead(prev);
2153 
2154 		/*
2155 		 * Remove function-return probe instances associated with this
2156 		 * task and put them back on the free list.
2157 		 */
2158 		kprobe_flush_task(prev);
2159 		put_task_struct(prev);
2160 	}
2161 
2162 	tick_nohz_task_switch(current);
2163 }
2164 
2165 #ifdef CONFIG_SMP
2166 
2167 /* rq->lock is NOT held, but preemption is disabled */
2168 static inline void post_schedule(struct rq *rq)
2169 {
2170 	if (rq->post_schedule) {
2171 		unsigned long flags;
2172 
2173 		raw_spin_lock_irqsave(&rq->lock, flags);
2174 		if (rq->curr->sched_class->post_schedule)
2175 			rq->curr->sched_class->post_schedule(rq);
2176 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2177 
2178 		rq->post_schedule = 0;
2179 	}
2180 }
2181 
2182 #else
2183 
2184 static inline void post_schedule(struct rq *rq)
2185 {
2186 }
2187 
2188 #endif
2189 
2190 /**
2191  * schedule_tail - first thing a freshly forked thread must call.
2192  * @prev: the thread we just switched away from.
2193  */
2194 asmlinkage void schedule_tail(struct task_struct *prev)
2195 	__releases(rq->lock)
2196 {
2197 	struct rq *rq = this_rq();
2198 
2199 	finish_task_switch(rq, prev);
2200 
2201 	/*
2202 	 * FIXME: do we need to worry about rq being invalidated by the
2203 	 * task_switch?
2204 	 */
2205 	post_schedule(rq);
2206 
2207 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2208 	/* In this case, finish_task_switch does not reenable preemption */
2209 	preempt_enable();
2210 #endif
2211 	if (current->set_child_tid)
2212 		put_user(task_pid_vnr(current), current->set_child_tid);
2213 }
2214 
2215 /*
2216  * context_switch - switch to the new MM and the new
2217  * thread's register state.
2218  */
2219 static inline void
2220 context_switch(struct rq *rq, struct task_struct *prev,
2221 	       struct task_struct *next)
2222 {
2223 	struct mm_struct *mm, *oldmm;
2224 
2225 	prepare_task_switch(rq, prev, next);
2226 
2227 	mm = next->mm;
2228 	oldmm = prev->active_mm;
2229 	/*
2230 	 * For paravirt, this is coupled with an exit in switch_to to
2231 	 * combine the page table reload and the switch backend into
2232 	 * one hypercall.
2233 	 */
2234 	arch_start_context_switch(prev);
2235 
2236 	if (!mm) {
2237 		next->active_mm = oldmm;
2238 		atomic_inc(&oldmm->mm_count);
2239 		enter_lazy_tlb(oldmm, next);
2240 	} else
2241 		switch_mm(oldmm, mm, next);
2242 
2243 	if (!prev->mm) {
2244 		prev->active_mm = NULL;
2245 		rq->prev_mm = oldmm;
2246 	}
2247 	/*
2248 	 * Since the runqueue lock will be released by the next
2249 	 * task (which is an invalid locking op but in the case
2250 	 * of the scheduler it's an obvious special-case), so we
2251 	 * do an early lockdep release here:
2252 	 */
2253 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2254 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2255 #endif
2256 
2257 	context_tracking_task_switch(prev, next);
2258 	/* Here we just switch the register state and the stack. */
2259 	switch_to(prev, next, prev);
2260 
2261 	barrier();
2262 	/*
2263 	 * this_rq must be evaluated again because prev may have moved
2264 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2265 	 * frame will be invalid.
2266 	 */
2267 	finish_task_switch(this_rq(), prev);
2268 }
2269 
2270 /*
2271  * nr_running and nr_context_switches:
2272  *
2273  * externally visible scheduler statistics: current number of runnable
2274  * threads, total number of context switches performed since bootup.
2275  */
2276 unsigned long nr_running(void)
2277 {
2278 	unsigned long i, sum = 0;
2279 
2280 	for_each_online_cpu(i)
2281 		sum += cpu_rq(i)->nr_running;
2282 
2283 	return sum;
2284 }
2285 
2286 unsigned long long nr_context_switches(void)
2287 {
2288 	int i;
2289 	unsigned long long sum = 0;
2290 
2291 	for_each_possible_cpu(i)
2292 		sum += cpu_rq(i)->nr_switches;
2293 
2294 	return sum;
2295 }
2296 
2297 unsigned long nr_iowait(void)
2298 {
2299 	unsigned long i, sum = 0;
2300 
2301 	for_each_possible_cpu(i)
2302 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2303 
2304 	return sum;
2305 }
2306 
2307 unsigned long nr_iowait_cpu(int cpu)
2308 {
2309 	struct rq *this = cpu_rq(cpu);
2310 	return atomic_read(&this->nr_iowait);
2311 }
2312 
2313 #ifdef CONFIG_SMP
2314 
2315 /*
2316  * sched_exec - execve() is a valuable balancing opportunity, because at
2317  * this point the task has the smallest effective memory and cache footprint.
2318  */
2319 void sched_exec(void)
2320 {
2321 	struct task_struct *p = current;
2322 	unsigned long flags;
2323 	int dest_cpu;
2324 
2325 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2326 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2327 	if (dest_cpu == smp_processor_id())
2328 		goto unlock;
2329 
2330 	if (likely(cpu_active(dest_cpu))) {
2331 		struct migration_arg arg = { p, dest_cpu };
2332 
2333 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2334 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2335 		return;
2336 	}
2337 unlock:
2338 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339 }
2340 
2341 #endif
2342 
2343 DEFINE_PER_CPU(struct kernel_stat, kstat);
2344 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2345 
2346 EXPORT_PER_CPU_SYMBOL(kstat);
2347 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2348 
2349 /*
2350  * Return any ns on the sched_clock that have not yet been accounted in
2351  * @p in case that task is currently running.
2352  *
2353  * Called with task_rq_lock() held on @rq.
2354  */
2355 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2356 {
2357 	u64 ns = 0;
2358 
2359 	if (task_current(rq, p)) {
2360 		update_rq_clock(rq);
2361 		ns = rq_clock_task(rq) - p->se.exec_start;
2362 		if ((s64)ns < 0)
2363 			ns = 0;
2364 	}
2365 
2366 	return ns;
2367 }
2368 
2369 unsigned long long task_delta_exec(struct task_struct *p)
2370 {
2371 	unsigned long flags;
2372 	struct rq *rq;
2373 	u64 ns = 0;
2374 
2375 	rq = task_rq_lock(p, &flags);
2376 	ns = do_task_delta_exec(p, rq);
2377 	task_rq_unlock(rq, p, &flags);
2378 
2379 	return ns;
2380 }
2381 
2382 /*
2383  * Return accounted runtime for the task.
2384  * In case the task is currently running, return the runtime plus current's
2385  * pending runtime that have not been accounted yet.
2386  */
2387 unsigned long long task_sched_runtime(struct task_struct *p)
2388 {
2389 	unsigned long flags;
2390 	struct rq *rq;
2391 	u64 ns = 0;
2392 
2393 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2394 	/*
2395 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2396 	 * So we have a optimization chance when the task's delta_exec is 0.
2397 	 * Reading ->on_cpu is racy, but this is ok.
2398 	 *
2399 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2400 	 * If we race with it entering cpu, unaccounted time is 0. This is
2401 	 * indistinguishable from the read occurring a few cycles earlier.
2402 	 */
2403 	if (!p->on_cpu)
2404 		return p->se.sum_exec_runtime;
2405 #endif
2406 
2407 	rq = task_rq_lock(p, &flags);
2408 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2409 	task_rq_unlock(rq, p, &flags);
2410 
2411 	return ns;
2412 }
2413 
2414 /*
2415  * This function gets called by the timer code, with HZ frequency.
2416  * We call it with interrupts disabled.
2417  */
2418 void scheduler_tick(void)
2419 {
2420 	int cpu = smp_processor_id();
2421 	struct rq *rq = cpu_rq(cpu);
2422 	struct task_struct *curr = rq->curr;
2423 
2424 	sched_clock_tick();
2425 
2426 	raw_spin_lock(&rq->lock);
2427 	update_rq_clock(rq);
2428 	curr->sched_class->task_tick(rq, curr, 0);
2429 	update_cpu_load_active(rq);
2430 	raw_spin_unlock(&rq->lock);
2431 
2432 	perf_event_task_tick();
2433 
2434 #ifdef CONFIG_SMP
2435 	rq->idle_balance = idle_cpu(cpu);
2436 	trigger_load_balance(rq);
2437 #endif
2438 	rq_last_tick_reset(rq);
2439 }
2440 
2441 #ifdef CONFIG_NO_HZ_FULL
2442 /**
2443  * scheduler_tick_max_deferment
2444  *
2445  * Keep at least one tick per second when a single
2446  * active task is running because the scheduler doesn't
2447  * yet completely support full dynticks environment.
2448  *
2449  * This makes sure that uptime, CFS vruntime, load
2450  * balancing, etc... continue to move forward, even
2451  * with a very low granularity.
2452  *
2453  * Return: Maximum deferment in nanoseconds.
2454  */
2455 u64 scheduler_tick_max_deferment(void)
2456 {
2457 	struct rq *rq = this_rq();
2458 	unsigned long next, now = ACCESS_ONCE(jiffies);
2459 
2460 	next = rq->last_sched_tick + HZ;
2461 
2462 	if (time_before_eq(next, now))
2463 		return 0;
2464 
2465 	return jiffies_to_nsecs(next - now);
2466 }
2467 #endif
2468 
2469 notrace unsigned long get_parent_ip(unsigned long addr)
2470 {
2471 	if (in_lock_functions(addr)) {
2472 		addr = CALLER_ADDR2;
2473 		if (in_lock_functions(addr))
2474 			addr = CALLER_ADDR3;
2475 	}
2476 	return addr;
2477 }
2478 
2479 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2480 				defined(CONFIG_PREEMPT_TRACER))
2481 
2482 void __kprobes preempt_count_add(int val)
2483 {
2484 #ifdef CONFIG_DEBUG_PREEMPT
2485 	/*
2486 	 * Underflow?
2487 	 */
2488 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2489 		return;
2490 #endif
2491 	__preempt_count_add(val);
2492 #ifdef CONFIG_DEBUG_PREEMPT
2493 	/*
2494 	 * Spinlock count overflowing soon?
2495 	 */
2496 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2497 				PREEMPT_MASK - 10);
2498 #endif
2499 	if (preempt_count() == val) {
2500 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2501 #ifdef CONFIG_DEBUG_PREEMPT
2502 		current->preempt_disable_ip = ip;
2503 #endif
2504 		trace_preempt_off(CALLER_ADDR0, ip);
2505 	}
2506 }
2507 EXPORT_SYMBOL(preempt_count_add);
2508 
2509 void __kprobes preempt_count_sub(int val)
2510 {
2511 #ifdef CONFIG_DEBUG_PREEMPT
2512 	/*
2513 	 * Underflow?
2514 	 */
2515 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2516 		return;
2517 	/*
2518 	 * Is the spinlock portion underflowing?
2519 	 */
2520 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521 			!(preempt_count() & PREEMPT_MASK)))
2522 		return;
2523 #endif
2524 
2525 	if (preempt_count() == val)
2526 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2527 	__preempt_count_sub(val);
2528 }
2529 EXPORT_SYMBOL(preempt_count_sub);
2530 
2531 #endif
2532 
2533 /*
2534  * Print scheduling while atomic bug:
2535  */
2536 static noinline void __schedule_bug(struct task_struct *prev)
2537 {
2538 	if (oops_in_progress)
2539 		return;
2540 
2541 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542 		prev->comm, prev->pid, preempt_count());
2543 
2544 	debug_show_held_locks(prev);
2545 	print_modules();
2546 	if (irqs_disabled())
2547 		print_irqtrace_events(prev);
2548 #ifdef CONFIG_DEBUG_PREEMPT
2549 	if (in_atomic_preempt_off()) {
2550 		pr_err("Preemption disabled at:");
2551 		print_ip_sym(current->preempt_disable_ip);
2552 		pr_cont("\n");
2553 	}
2554 #endif
2555 	dump_stack();
2556 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2557 }
2558 
2559 /*
2560  * Various schedule()-time debugging checks and statistics:
2561  */
2562 static inline void schedule_debug(struct task_struct *prev)
2563 {
2564 	/*
2565 	 * Test if we are atomic. Since do_exit() needs to call into
2566 	 * schedule() atomically, we ignore that path. Otherwise whine
2567 	 * if we are scheduling when we should not.
2568 	 */
2569 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2570 		__schedule_bug(prev);
2571 	rcu_sleep_check();
2572 
2573 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2574 
2575 	schedstat_inc(this_rq(), sched_count);
2576 }
2577 
2578 /*
2579  * Pick up the highest-prio task:
2580  */
2581 static inline struct task_struct *
2582 pick_next_task(struct rq *rq, struct task_struct *prev)
2583 {
2584 	const struct sched_class *class = &fair_sched_class;
2585 	struct task_struct *p;
2586 
2587 	/*
2588 	 * Optimization: we know that if all tasks are in
2589 	 * the fair class we can call that function directly:
2590 	 */
2591 	if (likely(prev->sched_class == class &&
2592 		   rq->nr_running == rq->cfs.h_nr_running)) {
2593 		p = fair_sched_class.pick_next_task(rq, prev);
2594 		if (likely(p && p != RETRY_TASK))
2595 			return p;
2596 	}
2597 
2598 again:
2599 	for_each_class(class) {
2600 		p = class->pick_next_task(rq, prev);
2601 		if (p) {
2602 			if (unlikely(p == RETRY_TASK))
2603 				goto again;
2604 			return p;
2605 		}
2606 	}
2607 
2608 	BUG(); /* the idle class will always have a runnable task */
2609 }
2610 
2611 /*
2612  * __schedule() is the main scheduler function.
2613  *
2614  * The main means of driving the scheduler and thus entering this function are:
2615  *
2616  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2617  *
2618  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2619  *      paths. For example, see arch/x86/entry_64.S.
2620  *
2621  *      To drive preemption between tasks, the scheduler sets the flag in timer
2622  *      interrupt handler scheduler_tick().
2623  *
2624  *   3. Wakeups don't really cause entry into schedule(). They add a
2625  *      task to the run-queue and that's it.
2626  *
2627  *      Now, if the new task added to the run-queue preempts the current
2628  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2629  *      called on the nearest possible occasion:
2630  *
2631  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2632  *
2633  *         - in syscall or exception context, at the next outmost
2634  *           preempt_enable(). (this might be as soon as the wake_up()'s
2635  *           spin_unlock()!)
2636  *
2637  *         - in IRQ context, return from interrupt-handler to
2638  *           preemptible context
2639  *
2640  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2641  *         then at the next:
2642  *
2643  *          - cond_resched() call
2644  *          - explicit schedule() call
2645  *          - return from syscall or exception to user-space
2646  *          - return from interrupt-handler to user-space
2647  */
2648 static void __sched __schedule(void)
2649 {
2650 	struct task_struct *prev, *next;
2651 	unsigned long *switch_count;
2652 	struct rq *rq;
2653 	int cpu;
2654 
2655 need_resched:
2656 	preempt_disable();
2657 	cpu = smp_processor_id();
2658 	rq = cpu_rq(cpu);
2659 	rcu_note_context_switch(cpu);
2660 	prev = rq->curr;
2661 
2662 	schedule_debug(prev);
2663 
2664 	if (sched_feat(HRTICK))
2665 		hrtick_clear(rq);
2666 
2667 	/*
2668 	 * Make sure that signal_pending_state()->signal_pending() below
2669 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2670 	 * done by the caller to avoid the race with signal_wake_up().
2671 	 */
2672 	smp_mb__before_spinlock();
2673 	raw_spin_lock_irq(&rq->lock);
2674 
2675 	switch_count = &prev->nivcsw;
2676 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2677 		if (unlikely(signal_pending_state(prev->state, prev))) {
2678 			prev->state = TASK_RUNNING;
2679 		} else {
2680 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2681 			prev->on_rq = 0;
2682 
2683 			/*
2684 			 * If a worker went to sleep, notify and ask workqueue
2685 			 * whether it wants to wake up a task to maintain
2686 			 * concurrency.
2687 			 */
2688 			if (prev->flags & PF_WQ_WORKER) {
2689 				struct task_struct *to_wakeup;
2690 
2691 				to_wakeup = wq_worker_sleeping(prev, cpu);
2692 				if (to_wakeup)
2693 					try_to_wake_up_local(to_wakeup);
2694 			}
2695 		}
2696 		switch_count = &prev->nvcsw;
2697 	}
2698 
2699 	if (prev->on_rq || rq->skip_clock_update < 0)
2700 		update_rq_clock(rq);
2701 
2702 	next = pick_next_task(rq, prev);
2703 	clear_tsk_need_resched(prev);
2704 	clear_preempt_need_resched();
2705 	rq->skip_clock_update = 0;
2706 
2707 	if (likely(prev != next)) {
2708 		rq->nr_switches++;
2709 		rq->curr = next;
2710 		++*switch_count;
2711 
2712 		context_switch(rq, prev, next); /* unlocks the rq */
2713 		/*
2714 		 * The context switch have flipped the stack from under us
2715 		 * and restored the local variables which were saved when
2716 		 * this task called schedule() in the past. prev == current
2717 		 * is still correct, but it can be moved to another cpu/rq.
2718 		 */
2719 		cpu = smp_processor_id();
2720 		rq = cpu_rq(cpu);
2721 	} else
2722 		raw_spin_unlock_irq(&rq->lock);
2723 
2724 	post_schedule(rq);
2725 
2726 	sched_preempt_enable_no_resched();
2727 	if (need_resched())
2728 		goto need_resched;
2729 }
2730 
2731 static inline void sched_submit_work(struct task_struct *tsk)
2732 {
2733 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2734 		return;
2735 	/*
2736 	 * If we are going to sleep and we have plugged IO queued,
2737 	 * make sure to submit it to avoid deadlocks.
2738 	 */
2739 	if (blk_needs_flush_plug(tsk))
2740 		blk_schedule_flush_plug(tsk);
2741 }
2742 
2743 asmlinkage void __sched schedule(void)
2744 {
2745 	struct task_struct *tsk = current;
2746 
2747 	sched_submit_work(tsk);
2748 	__schedule();
2749 }
2750 EXPORT_SYMBOL(schedule);
2751 
2752 #ifdef CONFIG_CONTEXT_TRACKING
2753 asmlinkage void __sched schedule_user(void)
2754 {
2755 	/*
2756 	 * If we come here after a random call to set_need_resched(),
2757 	 * or we have been woken up remotely but the IPI has not yet arrived,
2758 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2759 	 * we find a better solution.
2760 	 */
2761 	user_exit();
2762 	schedule();
2763 	user_enter();
2764 }
2765 #endif
2766 
2767 /**
2768  * schedule_preempt_disabled - called with preemption disabled
2769  *
2770  * Returns with preemption disabled. Note: preempt_count must be 1
2771  */
2772 void __sched schedule_preempt_disabled(void)
2773 {
2774 	sched_preempt_enable_no_resched();
2775 	schedule();
2776 	preempt_disable();
2777 }
2778 
2779 #ifdef CONFIG_PREEMPT
2780 /*
2781  * this is the entry point to schedule() from in-kernel preemption
2782  * off of preempt_enable. Kernel preemptions off return from interrupt
2783  * occur there and call schedule directly.
2784  */
2785 asmlinkage void __sched notrace preempt_schedule(void)
2786 {
2787 	/*
2788 	 * If there is a non-zero preempt_count or interrupts are disabled,
2789 	 * we do not want to preempt the current task. Just return..
2790 	 */
2791 	if (likely(!preemptible()))
2792 		return;
2793 
2794 	do {
2795 		__preempt_count_add(PREEMPT_ACTIVE);
2796 		__schedule();
2797 		__preempt_count_sub(PREEMPT_ACTIVE);
2798 
2799 		/*
2800 		 * Check again in case we missed a preemption opportunity
2801 		 * between schedule and now.
2802 		 */
2803 		barrier();
2804 	} while (need_resched());
2805 }
2806 EXPORT_SYMBOL(preempt_schedule);
2807 #endif /* CONFIG_PREEMPT */
2808 
2809 /*
2810  * this is the entry point to schedule() from kernel preemption
2811  * off of irq context.
2812  * Note, that this is called and return with irqs disabled. This will
2813  * protect us against recursive calling from irq.
2814  */
2815 asmlinkage void __sched preempt_schedule_irq(void)
2816 {
2817 	enum ctx_state prev_state;
2818 
2819 	/* Catch callers which need to be fixed */
2820 	BUG_ON(preempt_count() || !irqs_disabled());
2821 
2822 	prev_state = exception_enter();
2823 
2824 	do {
2825 		__preempt_count_add(PREEMPT_ACTIVE);
2826 		local_irq_enable();
2827 		__schedule();
2828 		local_irq_disable();
2829 		__preempt_count_sub(PREEMPT_ACTIVE);
2830 
2831 		/*
2832 		 * Check again in case we missed a preemption opportunity
2833 		 * between schedule and now.
2834 		 */
2835 		barrier();
2836 	} while (need_resched());
2837 
2838 	exception_exit(prev_state);
2839 }
2840 
2841 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2842 			  void *key)
2843 {
2844 	return try_to_wake_up(curr->private, mode, wake_flags);
2845 }
2846 EXPORT_SYMBOL(default_wake_function);
2847 
2848 static long __sched
2849 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2850 {
2851 	unsigned long flags;
2852 	wait_queue_t wait;
2853 
2854 	init_waitqueue_entry(&wait, current);
2855 
2856 	__set_current_state(state);
2857 
2858 	spin_lock_irqsave(&q->lock, flags);
2859 	__add_wait_queue(q, &wait);
2860 	spin_unlock(&q->lock);
2861 	timeout = schedule_timeout(timeout);
2862 	spin_lock_irq(&q->lock);
2863 	__remove_wait_queue(q, &wait);
2864 	spin_unlock_irqrestore(&q->lock, flags);
2865 
2866 	return timeout;
2867 }
2868 
2869 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2870 {
2871 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2872 }
2873 EXPORT_SYMBOL(interruptible_sleep_on);
2874 
2875 long __sched
2876 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2877 {
2878 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2879 }
2880 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2881 
2882 void __sched sleep_on(wait_queue_head_t *q)
2883 {
2884 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2885 }
2886 EXPORT_SYMBOL(sleep_on);
2887 
2888 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2889 {
2890 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2891 }
2892 EXPORT_SYMBOL(sleep_on_timeout);
2893 
2894 #ifdef CONFIG_RT_MUTEXES
2895 
2896 /*
2897  * rt_mutex_setprio - set the current priority of a task
2898  * @p: task
2899  * @prio: prio value (kernel-internal form)
2900  *
2901  * This function changes the 'effective' priority of a task. It does
2902  * not touch ->normal_prio like __setscheduler().
2903  *
2904  * Used by the rt_mutex code to implement priority inheritance
2905  * logic. Call site only calls if the priority of the task changed.
2906  */
2907 void rt_mutex_setprio(struct task_struct *p, int prio)
2908 {
2909 	int oldprio, on_rq, running, enqueue_flag = 0;
2910 	struct rq *rq;
2911 	const struct sched_class *prev_class;
2912 
2913 	BUG_ON(prio > MAX_PRIO);
2914 
2915 	rq = __task_rq_lock(p);
2916 
2917 	/*
2918 	 * Idle task boosting is a nono in general. There is one
2919 	 * exception, when PREEMPT_RT and NOHZ is active:
2920 	 *
2921 	 * The idle task calls get_next_timer_interrupt() and holds
2922 	 * the timer wheel base->lock on the CPU and another CPU wants
2923 	 * to access the timer (probably to cancel it). We can safely
2924 	 * ignore the boosting request, as the idle CPU runs this code
2925 	 * with interrupts disabled and will complete the lock
2926 	 * protected section without being interrupted. So there is no
2927 	 * real need to boost.
2928 	 */
2929 	if (unlikely(p == rq->idle)) {
2930 		WARN_ON(p != rq->curr);
2931 		WARN_ON(p->pi_blocked_on);
2932 		goto out_unlock;
2933 	}
2934 
2935 	trace_sched_pi_setprio(p, prio);
2936 	p->pi_top_task = rt_mutex_get_top_task(p);
2937 	oldprio = p->prio;
2938 	prev_class = p->sched_class;
2939 	on_rq = p->on_rq;
2940 	running = task_current(rq, p);
2941 	if (on_rq)
2942 		dequeue_task(rq, p, 0);
2943 	if (running)
2944 		p->sched_class->put_prev_task(rq, p);
2945 
2946 	/*
2947 	 * Boosting condition are:
2948 	 * 1. -rt task is running and holds mutex A
2949 	 *      --> -dl task blocks on mutex A
2950 	 *
2951 	 * 2. -dl task is running and holds mutex A
2952 	 *      --> -dl task blocks on mutex A and could preempt the
2953 	 *          running task
2954 	 */
2955 	if (dl_prio(prio)) {
2956 		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957 			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958 			p->dl.dl_boosted = 1;
2959 			p->dl.dl_throttled = 0;
2960 			enqueue_flag = ENQUEUE_REPLENISH;
2961 		} else
2962 			p->dl.dl_boosted = 0;
2963 		p->sched_class = &dl_sched_class;
2964 	} else if (rt_prio(prio)) {
2965 		if (dl_prio(oldprio))
2966 			p->dl.dl_boosted = 0;
2967 		if (oldprio < prio)
2968 			enqueue_flag = ENQUEUE_HEAD;
2969 		p->sched_class = &rt_sched_class;
2970 	} else {
2971 		if (dl_prio(oldprio))
2972 			p->dl.dl_boosted = 0;
2973 		p->sched_class = &fair_sched_class;
2974 	}
2975 
2976 	p->prio = prio;
2977 
2978 	if (running)
2979 		p->sched_class->set_curr_task(rq);
2980 	if (on_rq)
2981 		enqueue_task(rq, p, enqueue_flag);
2982 
2983 	check_class_changed(rq, p, prev_class, oldprio);
2984 out_unlock:
2985 	__task_rq_unlock(rq);
2986 }
2987 #endif
2988 
2989 void set_user_nice(struct task_struct *p, long nice)
2990 {
2991 	int old_prio, delta, on_rq;
2992 	unsigned long flags;
2993 	struct rq *rq;
2994 
2995 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2996 		return;
2997 	/*
2998 	 * We have to be careful, if called from sys_setpriority(),
2999 	 * the task might be in the middle of scheduling on another CPU.
3000 	 */
3001 	rq = task_rq_lock(p, &flags);
3002 	/*
3003 	 * The RT priorities are set via sched_setscheduler(), but we still
3004 	 * allow the 'normal' nice value to be set - but as expected
3005 	 * it wont have any effect on scheduling until the task is
3006 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3007 	 */
3008 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3009 		p->static_prio = NICE_TO_PRIO(nice);
3010 		goto out_unlock;
3011 	}
3012 	on_rq = p->on_rq;
3013 	if (on_rq)
3014 		dequeue_task(rq, p, 0);
3015 
3016 	p->static_prio = NICE_TO_PRIO(nice);
3017 	set_load_weight(p);
3018 	old_prio = p->prio;
3019 	p->prio = effective_prio(p);
3020 	delta = p->prio - old_prio;
3021 
3022 	if (on_rq) {
3023 		enqueue_task(rq, p, 0);
3024 		/*
3025 		 * If the task increased its priority or is running and
3026 		 * lowered its priority, then reschedule its CPU:
3027 		 */
3028 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3029 			resched_task(rq->curr);
3030 	}
3031 out_unlock:
3032 	task_rq_unlock(rq, p, &flags);
3033 }
3034 EXPORT_SYMBOL(set_user_nice);
3035 
3036 /*
3037  * can_nice - check if a task can reduce its nice value
3038  * @p: task
3039  * @nice: nice value
3040  */
3041 int can_nice(const struct task_struct *p, const int nice)
3042 {
3043 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3044 	int nice_rlim = 20 - nice;
3045 
3046 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3047 		capable(CAP_SYS_NICE));
3048 }
3049 
3050 #ifdef __ARCH_WANT_SYS_NICE
3051 
3052 /*
3053  * sys_nice - change the priority of the current process.
3054  * @increment: priority increment
3055  *
3056  * sys_setpriority is a more generic, but much slower function that
3057  * does similar things.
3058  */
3059 SYSCALL_DEFINE1(nice, int, increment)
3060 {
3061 	long nice, retval;
3062 
3063 	/*
3064 	 * Setpriority might change our priority at the same moment.
3065 	 * We don't have to worry. Conceptually one call occurs first
3066 	 * and we have a single winner.
3067 	 */
3068 	if (increment < -40)
3069 		increment = -40;
3070 	if (increment > 40)
3071 		increment = 40;
3072 
3073 	nice = task_nice(current) + increment;
3074 	if (nice < MIN_NICE)
3075 		nice = MIN_NICE;
3076 	if (nice > MAX_NICE)
3077 		nice = MAX_NICE;
3078 
3079 	if (increment < 0 && !can_nice(current, nice))
3080 		return -EPERM;
3081 
3082 	retval = security_task_setnice(current, nice);
3083 	if (retval)
3084 		return retval;
3085 
3086 	set_user_nice(current, nice);
3087 	return 0;
3088 }
3089 
3090 #endif
3091 
3092 /**
3093  * task_prio - return the priority value of a given task.
3094  * @p: the task in question.
3095  *
3096  * Return: The priority value as seen by users in /proc.
3097  * RT tasks are offset by -200. Normal tasks are centered
3098  * around 0, value goes from -16 to +15.
3099  */
3100 int task_prio(const struct task_struct *p)
3101 {
3102 	return p->prio - MAX_RT_PRIO;
3103 }
3104 
3105 /**
3106  * idle_cpu - is a given cpu idle currently?
3107  * @cpu: the processor in question.
3108  *
3109  * Return: 1 if the CPU is currently idle. 0 otherwise.
3110  */
3111 int idle_cpu(int cpu)
3112 {
3113 	struct rq *rq = cpu_rq(cpu);
3114 
3115 	if (rq->curr != rq->idle)
3116 		return 0;
3117 
3118 	if (rq->nr_running)
3119 		return 0;
3120 
3121 #ifdef CONFIG_SMP
3122 	if (!llist_empty(&rq->wake_list))
3123 		return 0;
3124 #endif
3125 
3126 	return 1;
3127 }
3128 
3129 /**
3130  * idle_task - return the idle task for a given cpu.
3131  * @cpu: the processor in question.
3132  *
3133  * Return: The idle task for the cpu @cpu.
3134  */
3135 struct task_struct *idle_task(int cpu)
3136 {
3137 	return cpu_rq(cpu)->idle;
3138 }
3139 
3140 /**
3141  * find_process_by_pid - find a process with a matching PID value.
3142  * @pid: the pid in question.
3143  *
3144  * The task of @pid, if found. %NULL otherwise.
3145  */
3146 static struct task_struct *find_process_by_pid(pid_t pid)
3147 {
3148 	return pid ? find_task_by_vpid(pid) : current;
3149 }
3150 
3151 /*
3152  * This function initializes the sched_dl_entity of a newly becoming
3153  * SCHED_DEADLINE task.
3154  *
3155  * Only the static values are considered here, the actual runtime and the
3156  * absolute deadline will be properly calculated when the task is enqueued
3157  * for the first time with its new policy.
3158  */
3159 static void
3160 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3161 {
3162 	struct sched_dl_entity *dl_se = &p->dl;
3163 
3164 	init_dl_task_timer(dl_se);
3165 	dl_se->dl_runtime = attr->sched_runtime;
3166 	dl_se->dl_deadline = attr->sched_deadline;
3167 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3168 	dl_se->flags = attr->sched_flags;
3169 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3170 	dl_se->dl_throttled = 0;
3171 	dl_se->dl_new = 1;
3172 }
3173 
3174 static void __setscheduler_params(struct task_struct *p,
3175 		const struct sched_attr *attr)
3176 {
3177 	int policy = attr->sched_policy;
3178 
3179 	if (policy == -1) /* setparam */
3180 		policy = p->policy;
3181 
3182 	p->policy = policy;
3183 
3184 	if (dl_policy(policy))
3185 		__setparam_dl(p, attr);
3186 	else if (fair_policy(policy))
3187 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3188 
3189 	/*
3190 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3191 	 * !rt_policy. Always setting this ensures that things like
3192 	 * getparam()/getattr() don't report silly values for !rt tasks.
3193 	 */
3194 	p->rt_priority = attr->sched_priority;
3195 	p->normal_prio = normal_prio(p);
3196 	set_load_weight(p);
3197 }
3198 
3199 /* Actually do priority change: must hold pi & rq lock. */
3200 static void __setscheduler(struct rq *rq, struct task_struct *p,
3201 			   const struct sched_attr *attr)
3202 {
3203 	__setscheduler_params(p, attr);
3204 
3205 	/*
3206 	 * If we get here, there was no pi waiters boosting the
3207 	 * task. It is safe to use the normal prio.
3208 	 */
3209 	p->prio = normal_prio(p);
3210 
3211 	if (dl_prio(p->prio))
3212 		p->sched_class = &dl_sched_class;
3213 	else if (rt_prio(p->prio))
3214 		p->sched_class = &rt_sched_class;
3215 	else
3216 		p->sched_class = &fair_sched_class;
3217 }
3218 
3219 static void
3220 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3221 {
3222 	struct sched_dl_entity *dl_se = &p->dl;
3223 
3224 	attr->sched_priority = p->rt_priority;
3225 	attr->sched_runtime = dl_se->dl_runtime;
3226 	attr->sched_deadline = dl_se->dl_deadline;
3227 	attr->sched_period = dl_se->dl_period;
3228 	attr->sched_flags = dl_se->flags;
3229 }
3230 
3231 /*
3232  * This function validates the new parameters of a -deadline task.
3233  * We ask for the deadline not being zero, and greater or equal
3234  * than the runtime, as well as the period of being zero or
3235  * greater than deadline. Furthermore, we have to be sure that
3236  * user parameters are above the internal resolution (1us); we
3237  * check sched_runtime only since it is always the smaller one.
3238  */
3239 static bool
3240 __checkparam_dl(const struct sched_attr *attr)
3241 {
3242 	return attr && attr->sched_deadline != 0 &&
3243 		(attr->sched_period == 0 ||
3244 		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3245 		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3246 		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3247 }
3248 
3249 /*
3250  * check the target process has a UID that matches the current process's
3251  */
3252 static bool check_same_owner(struct task_struct *p)
3253 {
3254 	const struct cred *cred = current_cred(), *pcred;
3255 	bool match;
3256 
3257 	rcu_read_lock();
3258 	pcred = __task_cred(p);
3259 	match = (uid_eq(cred->euid, pcred->euid) ||
3260 		 uid_eq(cred->euid, pcred->uid));
3261 	rcu_read_unlock();
3262 	return match;
3263 }
3264 
3265 static int __sched_setscheduler(struct task_struct *p,
3266 				const struct sched_attr *attr,
3267 				bool user)
3268 {
3269 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3270 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3271 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3272 	int policy = attr->sched_policy;
3273 	unsigned long flags;
3274 	const struct sched_class *prev_class;
3275 	struct rq *rq;
3276 	int reset_on_fork;
3277 
3278 	/* may grab non-irq protected spin_locks */
3279 	BUG_ON(in_interrupt());
3280 recheck:
3281 	/* double check policy once rq lock held */
3282 	if (policy < 0) {
3283 		reset_on_fork = p->sched_reset_on_fork;
3284 		policy = oldpolicy = p->policy;
3285 	} else {
3286 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3287 
3288 		if (policy != SCHED_DEADLINE &&
3289 				policy != SCHED_FIFO && policy != SCHED_RR &&
3290 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3291 				policy != SCHED_IDLE)
3292 			return -EINVAL;
3293 	}
3294 
3295 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3296 		return -EINVAL;
3297 
3298 	/*
3299 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3300 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3301 	 * SCHED_BATCH and SCHED_IDLE is 0.
3302 	 */
3303 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3304 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3305 		return -EINVAL;
3306 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3307 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3308 		return -EINVAL;
3309 
3310 	/*
3311 	 * Allow unprivileged RT tasks to decrease priority:
3312 	 */
3313 	if (user && !capable(CAP_SYS_NICE)) {
3314 		if (fair_policy(policy)) {
3315 			if (attr->sched_nice < task_nice(p) &&
3316 			    !can_nice(p, attr->sched_nice))
3317 				return -EPERM;
3318 		}
3319 
3320 		if (rt_policy(policy)) {
3321 			unsigned long rlim_rtprio =
3322 					task_rlimit(p, RLIMIT_RTPRIO);
3323 
3324 			/* can't set/change the rt policy */
3325 			if (policy != p->policy && !rlim_rtprio)
3326 				return -EPERM;
3327 
3328 			/* can't increase priority */
3329 			if (attr->sched_priority > p->rt_priority &&
3330 			    attr->sched_priority > rlim_rtprio)
3331 				return -EPERM;
3332 		}
3333 
3334 		 /*
3335 		  * Can't set/change SCHED_DEADLINE policy at all for now
3336 		  * (safest behavior); in the future we would like to allow
3337 		  * unprivileged DL tasks to increase their relative deadline
3338 		  * or reduce their runtime (both ways reducing utilization)
3339 		  */
3340 		if (dl_policy(policy))
3341 			return -EPERM;
3342 
3343 		/*
3344 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3345 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3346 		 */
3347 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3348 			if (!can_nice(p, task_nice(p)))
3349 				return -EPERM;
3350 		}
3351 
3352 		/* can't change other user's priorities */
3353 		if (!check_same_owner(p))
3354 			return -EPERM;
3355 
3356 		/* Normal users shall not reset the sched_reset_on_fork flag */
3357 		if (p->sched_reset_on_fork && !reset_on_fork)
3358 			return -EPERM;
3359 	}
3360 
3361 	if (user) {
3362 		retval = security_task_setscheduler(p);
3363 		if (retval)
3364 			return retval;
3365 	}
3366 
3367 	/*
3368 	 * make sure no PI-waiters arrive (or leave) while we are
3369 	 * changing the priority of the task:
3370 	 *
3371 	 * To be able to change p->policy safely, the appropriate
3372 	 * runqueue lock must be held.
3373 	 */
3374 	rq = task_rq_lock(p, &flags);
3375 
3376 	/*
3377 	 * Changing the policy of the stop threads its a very bad idea
3378 	 */
3379 	if (p == rq->stop) {
3380 		task_rq_unlock(rq, p, &flags);
3381 		return -EINVAL;
3382 	}
3383 
3384 	/*
3385 	 * If not changing anything there's no need to proceed further,
3386 	 * but store a possible modification of reset_on_fork.
3387 	 */
3388 	if (unlikely(policy == p->policy)) {
3389 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3390 			goto change;
3391 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3392 			goto change;
3393 		if (dl_policy(policy))
3394 			goto change;
3395 
3396 		p->sched_reset_on_fork = reset_on_fork;
3397 		task_rq_unlock(rq, p, &flags);
3398 		return 0;
3399 	}
3400 change:
3401 
3402 	if (user) {
3403 #ifdef CONFIG_RT_GROUP_SCHED
3404 		/*
3405 		 * Do not allow realtime tasks into groups that have no runtime
3406 		 * assigned.
3407 		 */
3408 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3409 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3410 				!task_group_is_autogroup(task_group(p))) {
3411 			task_rq_unlock(rq, p, &flags);
3412 			return -EPERM;
3413 		}
3414 #endif
3415 #ifdef CONFIG_SMP
3416 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3417 			cpumask_t *span = rq->rd->span;
3418 
3419 			/*
3420 			 * Don't allow tasks with an affinity mask smaller than
3421 			 * the entire root_domain to become SCHED_DEADLINE. We
3422 			 * will also fail if there's no bandwidth available.
3423 			 */
3424 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3425 			    rq->rd->dl_bw.bw == 0) {
3426 				task_rq_unlock(rq, p, &flags);
3427 				return -EPERM;
3428 			}
3429 		}
3430 #endif
3431 	}
3432 
3433 	/* recheck policy now with rq lock held */
3434 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3435 		policy = oldpolicy = -1;
3436 		task_rq_unlock(rq, p, &flags);
3437 		goto recheck;
3438 	}
3439 
3440 	/*
3441 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3442 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3443 	 * is available.
3444 	 */
3445 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3446 		task_rq_unlock(rq, p, &flags);
3447 		return -EBUSY;
3448 	}
3449 
3450 	p->sched_reset_on_fork = reset_on_fork;
3451 	oldprio = p->prio;
3452 
3453 	/*
3454 	 * Special case for priority boosted tasks.
3455 	 *
3456 	 * If the new priority is lower or equal (user space view)
3457 	 * than the current (boosted) priority, we just store the new
3458 	 * normal parameters and do not touch the scheduler class and
3459 	 * the runqueue. This will be done when the task deboost
3460 	 * itself.
3461 	 */
3462 	if (rt_mutex_check_prio(p, newprio)) {
3463 		__setscheduler_params(p, attr);
3464 		task_rq_unlock(rq, p, &flags);
3465 		return 0;
3466 	}
3467 
3468 	on_rq = p->on_rq;
3469 	running = task_current(rq, p);
3470 	if (on_rq)
3471 		dequeue_task(rq, p, 0);
3472 	if (running)
3473 		p->sched_class->put_prev_task(rq, p);
3474 
3475 	prev_class = p->sched_class;
3476 	__setscheduler(rq, p, attr);
3477 
3478 	if (running)
3479 		p->sched_class->set_curr_task(rq);
3480 	if (on_rq) {
3481 		/*
3482 		 * We enqueue to tail when the priority of a task is
3483 		 * increased (user space view).
3484 		 */
3485 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3486 	}
3487 
3488 	check_class_changed(rq, p, prev_class, oldprio);
3489 	task_rq_unlock(rq, p, &flags);
3490 
3491 	rt_mutex_adjust_pi(p);
3492 
3493 	return 0;
3494 }
3495 
3496 static int _sched_setscheduler(struct task_struct *p, int policy,
3497 			       const struct sched_param *param, bool check)
3498 {
3499 	struct sched_attr attr = {
3500 		.sched_policy   = policy,
3501 		.sched_priority = param->sched_priority,
3502 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3503 	};
3504 
3505 	/*
3506 	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3507 	 */
3508 	if (policy & SCHED_RESET_ON_FORK) {
3509 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3510 		policy &= ~SCHED_RESET_ON_FORK;
3511 		attr.sched_policy = policy;
3512 	}
3513 
3514 	return __sched_setscheduler(p, &attr, check);
3515 }
3516 /**
3517  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3518  * @p: the task in question.
3519  * @policy: new policy.
3520  * @param: structure containing the new RT priority.
3521  *
3522  * Return: 0 on success. An error code otherwise.
3523  *
3524  * NOTE that the task may be already dead.
3525  */
3526 int sched_setscheduler(struct task_struct *p, int policy,
3527 		       const struct sched_param *param)
3528 {
3529 	return _sched_setscheduler(p, policy, param, true);
3530 }
3531 EXPORT_SYMBOL_GPL(sched_setscheduler);
3532 
3533 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3534 {
3535 	return __sched_setscheduler(p, attr, true);
3536 }
3537 EXPORT_SYMBOL_GPL(sched_setattr);
3538 
3539 /**
3540  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3541  * @p: the task in question.
3542  * @policy: new policy.
3543  * @param: structure containing the new RT priority.
3544  *
3545  * Just like sched_setscheduler, only don't bother checking if the
3546  * current context has permission.  For example, this is needed in
3547  * stop_machine(): we create temporary high priority worker threads,
3548  * but our caller might not have that capability.
3549  *
3550  * Return: 0 on success. An error code otherwise.
3551  */
3552 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3553 			       const struct sched_param *param)
3554 {
3555 	return _sched_setscheduler(p, policy, param, false);
3556 }
3557 
3558 static int
3559 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3560 {
3561 	struct sched_param lparam;
3562 	struct task_struct *p;
3563 	int retval;
3564 
3565 	if (!param || pid < 0)
3566 		return -EINVAL;
3567 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3568 		return -EFAULT;
3569 
3570 	rcu_read_lock();
3571 	retval = -ESRCH;
3572 	p = find_process_by_pid(pid);
3573 	if (p != NULL)
3574 		retval = sched_setscheduler(p, policy, &lparam);
3575 	rcu_read_unlock();
3576 
3577 	return retval;
3578 }
3579 
3580 /*
3581  * Mimics kernel/events/core.c perf_copy_attr().
3582  */
3583 static int sched_copy_attr(struct sched_attr __user *uattr,
3584 			   struct sched_attr *attr)
3585 {
3586 	u32 size;
3587 	int ret;
3588 
3589 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3590 		return -EFAULT;
3591 
3592 	/*
3593 	 * zero the full structure, so that a short copy will be nice.
3594 	 */
3595 	memset(attr, 0, sizeof(*attr));
3596 
3597 	ret = get_user(size, &uattr->size);
3598 	if (ret)
3599 		return ret;
3600 
3601 	if (size > PAGE_SIZE)	/* silly large */
3602 		goto err_size;
3603 
3604 	if (!size)		/* abi compat */
3605 		size = SCHED_ATTR_SIZE_VER0;
3606 
3607 	if (size < SCHED_ATTR_SIZE_VER0)
3608 		goto err_size;
3609 
3610 	/*
3611 	 * If we're handed a bigger struct than we know of,
3612 	 * ensure all the unknown bits are 0 - i.e. new
3613 	 * user-space does not rely on any kernel feature
3614 	 * extensions we dont know about yet.
3615 	 */
3616 	if (size > sizeof(*attr)) {
3617 		unsigned char __user *addr;
3618 		unsigned char __user *end;
3619 		unsigned char val;
3620 
3621 		addr = (void __user *)uattr + sizeof(*attr);
3622 		end  = (void __user *)uattr + size;
3623 
3624 		for (; addr < end; addr++) {
3625 			ret = get_user(val, addr);
3626 			if (ret)
3627 				return ret;
3628 			if (val)
3629 				goto err_size;
3630 		}
3631 		size = sizeof(*attr);
3632 	}
3633 
3634 	ret = copy_from_user(attr, uattr, size);
3635 	if (ret)
3636 		return -EFAULT;
3637 
3638 	/*
3639 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3640 	 * to be strict and return an error on out-of-bounds values?
3641 	 */
3642 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3643 
3644 out:
3645 	return ret;
3646 
3647 err_size:
3648 	put_user(sizeof(*attr), &uattr->size);
3649 	ret = -E2BIG;
3650 	goto out;
3651 }
3652 
3653 /**
3654  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3655  * @pid: the pid in question.
3656  * @policy: new policy.
3657  * @param: structure containing the new RT priority.
3658  *
3659  * Return: 0 on success. An error code otherwise.
3660  */
3661 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3662 		struct sched_param __user *, param)
3663 {
3664 	/* negative values for policy are not valid */
3665 	if (policy < 0)
3666 		return -EINVAL;
3667 
3668 	return do_sched_setscheduler(pid, policy, param);
3669 }
3670 
3671 /**
3672  * sys_sched_setparam - set/change the RT priority of a thread
3673  * @pid: the pid in question.
3674  * @param: structure containing the new RT priority.
3675  *
3676  * Return: 0 on success. An error code otherwise.
3677  */
3678 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3679 {
3680 	return do_sched_setscheduler(pid, -1, param);
3681 }
3682 
3683 /**
3684  * sys_sched_setattr - same as above, but with extended sched_attr
3685  * @pid: the pid in question.
3686  * @uattr: structure containing the extended parameters.
3687  */
3688 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3689 			       unsigned int, flags)
3690 {
3691 	struct sched_attr attr;
3692 	struct task_struct *p;
3693 	int retval;
3694 
3695 	if (!uattr || pid < 0 || flags)
3696 		return -EINVAL;
3697 
3698 	if (sched_copy_attr(uattr, &attr))
3699 		return -EFAULT;
3700 
3701 	rcu_read_lock();
3702 	retval = -ESRCH;
3703 	p = find_process_by_pid(pid);
3704 	if (p != NULL)
3705 		retval = sched_setattr(p, &attr);
3706 	rcu_read_unlock();
3707 
3708 	return retval;
3709 }
3710 
3711 /**
3712  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3713  * @pid: the pid in question.
3714  *
3715  * Return: On success, the policy of the thread. Otherwise, a negative error
3716  * code.
3717  */
3718 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3719 {
3720 	struct task_struct *p;
3721 	int retval;
3722 
3723 	if (pid < 0)
3724 		return -EINVAL;
3725 
3726 	retval = -ESRCH;
3727 	rcu_read_lock();
3728 	p = find_process_by_pid(pid);
3729 	if (p) {
3730 		retval = security_task_getscheduler(p);
3731 		if (!retval)
3732 			retval = p->policy
3733 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3734 	}
3735 	rcu_read_unlock();
3736 	return retval;
3737 }
3738 
3739 /**
3740  * sys_sched_getparam - get the RT priority of a thread
3741  * @pid: the pid in question.
3742  * @param: structure containing the RT priority.
3743  *
3744  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3745  * code.
3746  */
3747 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3748 {
3749 	struct sched_param lp;
3750 	struct task_struct *p;
3751 	int retval;
3752 
3753 	if (!param || pid < 0)
3754 		return -EINVAL;
3755 
3756 	rcu_read_lock();
3757 	p = find_process_by_pid(pid);
3758 	retval = -ESRCH;
3759 	if (!p)
3760 		goto out_unlock;
3761 
3762 	retval = security_task_getscheduler(p);
3763 	if (retval)
3764 		goto out_unlock;
3765 
3766 	if (task_has_dl_policy(p)) {
3767 		retval = -EINVAL;
3768 		goto out_unlock;
3769 	}
3770 	lp.sched_priority = p->rt_priority;
3771 	rcu_read_unlock();
3772 
3773 	/*
3774 	 * This one might sleep, we cannot do it with a spinlock held ...
3775 	 */
3776 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3777 
3778 	return retval;
3779 
3780 out_unlock:
3781 	rcu_read_unlock();
3782 	return retval;
3783 }
3784 
3785 static int sched_read_attr(struct sched_attr __user *uattr,
3786 			   struct sched_attr *attr,
3787 			   unsigned int usize)
3788 {
3789 	int ret;
3790 
3791 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3792 		return -EFAULT;
3793 
3794 	/*
3795 	 * If we're handed a smaller struct than we know of,
3796 	 * ensure all the unknown bits are 0 - i.e. old
3797 	 * user-space does not get uncomplete information.
3798 	 */
3799 	if (usize < sizeof(*attr)) {
3800 		unsigned char *addr;
3801 		unsigned char *end;
3802 
3803 		addr = (void *)attr + usize;
3804 		end  = (void *)attr + sizeof(*attr);
3805 
3806 		for (; addr < end; addr++) {
3807 			if (*addr)
3808 				goto err_size;
3809 		}
3810 
3811 		attr->size = usize;
3812 	}
3813 
3814 	ret = copy_to_user(uattr, attr, attr->size);
3815 	if (ret)
3816 		return -EFAULT;
3817 
3818 out:
3819 	return ret;
3820 
3821 err_size:
3822 	ret = -E2BIG;
3823 	goto out;
3824 }
3825 
3826 /**
3827  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3828  * @pid: the pid in question.
3829  * @uattr: structure containing the extended parameters.
3830  * @size: sizeof(attr) for fwd/bwd comp.
3831  */
3832 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3833 		unsigned int, size, unsigned int, flags)
3834 {
3835 	struct sched_attr attr = {
3836 		.size = sizeof(struct sched_attr),
3837 	};
3838 	struct task_struct *p;
3839 	int retval;
3840 
3841 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3842 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3843 		return -EINVAL;
3844 
3845 	rcu_read_lock();
3846 	p = find_process_by_pid(pid);
3847 	retval = -ESRCH;
3848 	if (!p)
3849 		goto out_unlock;
3850 
3851 	retval = security_task_getscheduler(p);
3852 	if (retval)
3853 		goto out_unlock;
3854 
3855 	attr.sched_policy = p->policy;
3856 	if (p->sched_reset_on_fork)
3857 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3858 	if (task_has_dl_policy(p))
3859 		__getparam_dl(p, &attr);
3860 	else if (task_has_rt_policy(p))
3861 		attr.sched_priority = p->rt_priority;
3862 	else
3863 		attr.sched_nice = task_nice(p);
3864 
3865 	rcu_read_unlock();
3866 
3867 	retval = sched_read_attr(uattr, &attr, size);
3868 	return retval;
3869 
3870 out_unlock:
3871 	rcu_read_unlock();
3872 	return retval;
3873 }
3874 
3875 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3876 {
3877 	cpumask_var_t cpus_allowed, new_mask;
3878 	struct task_struct *p;
3879 	int retval;
3880 
3881 	rcu_read_lock();
3882 
3883 	p = find_process_by_pid(pid);
3884 	if (!p) {
3885 		rcu_read_unlock();
3886 		return -ESRCH;
3887 	}
3888 
3889 	/* Prevent p going away */
3890 	get_task_struct(p);
3891 	rcu_read_unlock();
3892 
3893 	if (p->flags & PF_NO_SETAFFINITY) {
3894 		retval = -EINVAL;
3895 		goto out_put_task;
3896 	}
3897 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3898 		retval = -ENOMEM;
3899 		goto out_put_task;
3900 	}
3901 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3902 		retval = -ENOMEM;
3903 		goto out_free_cpus_allowed;
3904 	}
3905 	retval = -EPERM;
3906 	if (!check_same_owner(p)) {
3907 		rcu_read_lock();
3908 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3909 			rcu_read_unlock();
3910 			goto out_unlock;
3911 		}
3912 		rcu_read_unlock();
3913 	}
3914 
3915 	retval = security_task_setscheduler(p);
3916 	if (retval)
3917 		goto out_unlock;
3918 
3919 
3920 	cpuset_cpus_allowed(p, cpus_allowed);
3921 	cpumask_and(new_mask, in_mask, cpus_allowed);
3922 
3923 	/*
3924 	 * Since bandwidth control happens on root_domain basis,
3925 	 * if admission test is enabled, we only admit -deadline
3926 	 * tasks allowed to run on all the CPUs in the task's
3927 	 * root_domain.
3928 	 */
3929 #ifdef CONFIG_SMP
3930 	if (task_has_dl_policy(p)) {
3931 		const struct cpumask *span = task_rq(p)->rd->span;
3932 
3933 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3934 			retval = -EBUSY;
3935 			goto out_unlock;
3936 		}
3937 	}
3938 #endif
3939 again:
3940 	retval = set_cpus_allowed_ptr(p, new_mask);
3941 
3942 	if (!retval) {
3943 		cpuset_cpus_allowed(p, cpus_allowed);
3944 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3945 			/*
3946 			 * We must have raced with a concurrent cpuset
3947 			 * update. Just reset the cpus_allowed to the
3948 			 * cpuset's cpus_allowed
3949 			 */
3950 			cpumask_copy(new_mask, cpus_allowed);
3951 			goto again;
3952 		}
3953 	}
3954 out_unlock:
3955 	free_cpumask_var(new_mask);
3956 out_free_cpus_allowed:
3957 	free_cpumask_var(cpus_allowed);
3958 out_put_task:
3959 	put_task_struct(p);
3960 	return retval;
3961 }
3962 
3963 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3964 			     struct cpumask *new_mask)
3965 {
3966 	if (len < cpumask_size())
3967 		cpumask_clear(new_mask);
3968 	else if (len > cpumask_size())
3969 		len = cpumask_size();
3970 
3971 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3972 }
3973 
3974 /**
3975  * sys_sched_setaffinity - set the cpu affinity of a process
3976  * @pid: pid of the process
3977  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3978  * @user_mask_ptr: user-space pointer to the new cpu mask
3979  *
3980  * Return: 0 on success. An error code otherwise.
3981  */
3982 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3983 		unsigned long __user *, user_mask_ptr)
3984 {
3985 	cpumask_var_t new_mask;
3986 	int retval;
3987 
3988 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3989 		return -ENOMEM;
3990 
3991 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3992 	if (retval == 0)
3993 		retval = sched_setaffinity(pid, new_mask);
3994 	free_cpumask_var(new_mask);
3995 	return retval;
3996 }
3997 
3998 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3999 {
4000 	struct task_struct *p;
4001 	unsigned long flags;
4002 	int retval;
4003 
4004 	rcu_read_lock();
4005 
4006 	retval = -ESRCH;
4007 	p = find_process_by_pid(pid);
4008 	if (!p)
4009 		goto out_unlock;
4010 
4011 	retval = security_task_getscheduler(p);
4012 	if (retval)
4013 		goto out_unlock;
4014 
4015 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4016 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4017 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4018 
4019 out_unlock:
4020 	rcu_read_unlock();
4021 
4022 	return retval;
4023 }
4024 
4025 /**
4026  * sys_sched_getaffinity - get the cpu affinity of a process
4027  * @pid: pid of the process
4028  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4030  *
4031  * Return: 0 on success. An error code otherwise.
4032  */
4033 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4034 		unsigned long __user *, user_mask_ptr)
4035 {
4036 	int ret;
4037 	cpumask_var_t mask;
4038 
4039 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4040 		return -EINVAL;
4041 	if (len & (sizeof(unsigned long)-1))
4042 		return -EINVAL;
4043 
4044 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4045 		return -ENOMEM;
4046 
4047 	ret = sched_getaffinity(pid, mask);
4048 	if (ret == 0) {
4049 		size_t retlen = min_t(size_t, len, cpumask_size());
4050 
4051 		if (copy_to_user(user_mask_ptr, mask, retlen))
4052 			ret = -EFAULT;
4053 		else
4054 			ret = retlen;
4055 	}
4056 	free_cpumask_var(mask);
4057 
4058 	return ret;
4059 }
4060 
4061 /**
4062  * sys_sched_yield - yield the current processor to other threads.
4063  *
4064  * This function yields the current CPU to other tasks. If there are no
4065  * other threads running on this CPU then this function will return.
4066  *
4067  * Return: 0.
4068  */
4069 SYSCALL_DEFINE0(sched_yield)
4070 {
4071 	struct rq *rq = this_rq_lock();
4072 
4073 	schedstat_inc(rq, yld_count);
4074 	current->sched_class->yield_task(rq);
4075 
4076 	/*
4077 	 * Since we are going to call schedule() anyway, there's
4078 	 * no need to preempt or enable interrupts:
4079 	 */
4080 	__release(rq->lock);
4081 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4082 	do_raw_spin_unlock(&rq->lock);
4083 	sched_preempt_enable_no_resched();
4084 
4085 	schedule();
4086 
4087 	return 0;
4088 }
4089 
4090 static void __cond_resched(void)
4091 {
4092 	__preempt_count_add(PREEMPT_ACTIVE);
4093 	__schedule();
4094 	__preempt_count_sub(PREEMPT_ACTIVE);
4095 }
4096 
4097 int __sched _cond_resched(void)
4098 {
4099 	if (should_resched()) {
4100 		__cond_resched();
4101 		return 1;
4102 	}
4103 	return 0;
4104 }
4105 EXPORT_SYMBOL(_cond_resched);
4106 
4107 /*
4108  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4109  * call schedule, and on return reacquire the lock.
4110  *
4111  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4112  * operations here to prevent schedule() from being called twice (once via
4113  * spin_unlock(), once by hand).
4114  */
4115 int __cond_resched_lock(spinlock_t *lock)
4116 {
4117 	int resched = should_resched();
4118 	int ret = 0;
4119 
4120 	lockdep_assert_held(lock);
4121 
4122 	if (spin_needbreak(lock) || resched) {
4123 		spin_unlock(lock);
4124 		if (resched)
4125 			__cond_resched();
4126 		else
4127 			cpu_relax();
4128 		ret = 1;
4129 		spin_lock(lock);
4130 	}
4131 	return ret;
4132 }
4133 EXPORT_SYMBOL(__cond_resched_lock);
4134 
4135 int __sched __cond_resched_softirq(void)
4136 {
4137 	BUG_ON(!in_softirq());
4138 
4139 	if (should_resched()) {
4140 		local_bh_enable();
4141 		__cond_resched();
4142 		local_bh_disable();
4143 		return 1;
4144 	}
4145 	return 0;
4146 }
4147 EXPORT_SYMBOL(__cond_resched_softirq);
4148 
4149 /**
4150  * yield - yield the current processor to other threads.
4151  *
4152  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4153  *
4154  * The scheduler is at all times free to pick the calling task as the most
4155  * eligible task to run, if removing the yield() call from your code breaks
4156  * it, its already broken.
4157  *
4158  * Typical broken usage is:
4159  *
4160  * while (!event)
4161  * 	yield();
4162  *
4163  * where one assumes that yield() will let 'the other' process run that will
4164  * make event true. If the current task is a SCHED_FIFO task that will never
4165  * happen. Never use yield() as a progress guarantee!!
4166  *
4167  * If you want to use yield() to wait for something, use wait_event().
4168  * If you want to use yield() to be 'nice' for others, use cond_resched().
4169  * If you still want to use yield(), do not!
4170  */
4171 void __sched yield(void)
4172 {
4173 	set_current_state(TASK_RUNNING);
4174 	sys_sched_yield();
4175 }
4176 EXPORT_SYMBOL(yield);
4177 
4178 /**
4179  * yield_to - yield the current processor to another thread in
4180  * your thread group, or accelerate that thread toward the
4181  * processor it's on.
4182  * @p: target task
4183  * @preempt: whether task preemption is allowed or not
4184  *
4185  * It's the caller's job to ensure that the target task struct
4186  * can't go away on us before we can do any checks.
4187  *
4188  * Return:
4189  *	true (>0) if we indeed boosted the target task.
4190  *	false (0) if we failed to boost the target.
4191  *	-ESRCH if there's no task to yield to.
4192  */
4193 bool __sched yield_to(struct task_struct *p, bool preempt)
4194 {
4195 	struct task_struct *curr = current;
4196 	struct rq *rq, *p_rq;
4197 	unsigned long flags;
4198 	int yielded = 0;
4199 
4200 	local_irq_save(flags);
4201 	rq = this_rq();
4202 
4203 again:
4204 	p_rq = task_rq(p);
4205 	/*
4206 	 * If we're the only runnable task on the rq and target rq also
4207 	 * has only one task, there's absolutely no point in yielding.
4208 	 */
4209 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4210 		yielded = -ESRCH;
4211 		goto out_irq;
4212 	}
4213 
4214 	double_rq_lock(rq, p_rq);
4215 	if (task_rq(p) != p_rq) {
4216 		double_rq_unlock(rq, p_rq);
4217 		goto again;
4218 	}
4219 
4220 	if (!curr->sched_class->yield_to_task)
4221 		goto out_unlock;
4222 
4223 	if (curr->sched_class != p->sched_class)
4224 		goto out_unlock;
4225 
4226 	if (task_running(p_rq, p) || p->state)
4227 		goto out_unlock;
4228 
4229 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4230 	if (yielded) {
4231 		schedstat_inc(rq, yld_count);
4232 		/*
4233 		 * Make p's CPU reschedule; pick_next_entity takes care of
4234 		 * fairness.
4235 		 */
4236 		if (preempt && rq != p_rq)
4237 			resched_task(p_rq->curr);
4238 	}
4239 
4240 out_unlock:
4241 	double_rq_unlock(rq, p_rq);
4242 out_irq:
4243 	local_irq_restore(flags);
4244 
4245 	if (yielded > 0)
4246 		schedule();
4247 
4248 	return yielded;
4249 }
4250 EXPORT_SYMBOL_GPL(yield_to);
4251 
4252 /*
4253  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4254  * that process accounting knows that this is a task in IO wait state.
4255  */
4256 void __sched io_schedule(void)
4257 {
4258 	struct rq *rq = raw_rq();
4259 
4260 	delayacct_blkio_start();
4261 	atomic_inc(&rq->nr_iowait);
4262 	blk_flush_plug(current);
4263 	current->in_iowait = 1;
4264 	schedule();
4265 	current->in_iowait = 0;
4266 	atomic_dec(&rq->nr_iowait);
4267 	delayacct_blkio_end();
4268 }
4269 EXPORT_SYMBOL(io_schedule);
4270 
4271 long __sched io_schedule_timeout(long timeout)
4272 {
4273 	struct rq *rq = raw_rq();
4274 	long ret;
4275 
4276 	delayacct_blkio_start();
4277 	atomic_inc(&rq->nr_iowait);
4278 	blk_flush_plug(current);
4279 	current->in_iowait = 1;
4280 	ret = schedule_timeout(timeout);
4281 	current->in_iowait = 0;
4282 	atomic_dec(&rq->nr_iowait);
4283 	delayacct_blkio_end();
4284 	return ret;
4285 }
4286 
4287 /**
4288  * sys_sched_get_priority_max - return maximum RT priority.
4289  * @policy: scheduling class.
4290  *
4291  * Return: On success, this syscall returns the maximum
4292  * rt_priority that can be used by a given scheduling class.
4293  * On failure, a negative error code is returned.
4294  */
4295 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4296 {
4297 	int ret = -EINVAL;
4298 
4299 	switch (policy) {
4300 	case SCHED_FIFO:
4301 	case SCHED_RR:
4302 		ret = MAX_USER_RT_PRIO-1;
4303 		break;
4304 	case SCHED_DEADLINE:
4305 	case SCHED_NORMAL:
4306 	case SCHED_BATCH:
4307 	case SCHED_IDLE:
4308 		ret = 0;
4309 		break;
4310 	}
4311 	return ret;
4312 }
4313 
4314 /**
4315  * sys_sched_get_priority_min - return minimum RT priority.
4316  * @policy: scheduling class.
4317  *
4318  * Return: On success, this syscall returns the minimum
4319  * rt_priority that can be used by a given scheduling class.
4320  * On failure, a negative error code is returned.
4321  */
4322 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4323 {
4324 	int ret = -EINVAL;
4325 
4326 	switch (policy) {
4327 	case SCHED_FIFO:
4328 	case SCHED_RR:
4329 		ret = 1;
4330 		break;
4331 	case SCHED_DEADLINE:
4332 	case SCHED_NORMAL:
4333 	case SCHED_BATCH:
4334 	case SCHED_IDLE:
4335 		ret = 0;
4336 	}
4337 	return ret;
4338 }
4339 
4340 /**
4341  * sys_sched_rr_get_interval - return the default timeslice of a process.
4342  * @pid: pid of the process.
4343  * @interval: userspace pointer to the timeslice value.
4344  *
4345  * this syscall writes the default timeslice value of a given process
4346  * into the user-space timespec buffer. A value of '0' means infinity.
4347  *
4348  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4349  * an error code.
4350  */
4351 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4352 		struct timespec __user *, interval)
4353 {
4354 	struct task_struct *p;
4355 	unsigned int time_slice;
4356 	unsigned long flags;
4357 	struct rq *rq;
4358 	int retval;
4359 	struct timespec t;
4360 
4361 	if (pid < 0)
4362 		return -EINVAL;
4363 
4364 	retval = -ESRCH;
4365 	rcu_read_lock();
4366 	p = find_process_by_pid(pid);
4367 	if (!p)
4368 		goto out_unlock;
4369 
4370 	retval = security_task_getscheduler(p);
4371 	if (retval)
4372 		goto out_unlock;
4373 
4374 	rq = task_rq_lock(p, &flags);
4375 	time_slice = 0;
4376 	if (p->sched_class->get_rr_interval)
4377 		time_slice = p->sched_class->get_rr_interval(rq, p);
4378 	task_rq_unlock(rq, p, &flags);
4379 
4380 	rcu_read_unlock();
4381 	jiffies_to_timespec(time_slice, &t);
4382 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4383 	return retval;
4384 
4385 out_unlock:
4386 	rcu_read_unlock();
4387 	return retval;
4388 }
4389 
4390 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4391 
4392 void sched_show_task(struct task_struct *p)
4393 {
4394 	unsigned long free = 0;
4395 	int ppid;
4396 	unsigned state;
4397 
4398 	state = p->state ? __ffs(p->state) + 1 : 0;
4399 	printk(KERN_INFO "%-15.15s %c", p->comm,
4400 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4401 #if BITS_PER_LONG == 32
4402 	if (state == TASK_RUNNING)
4403 		printk(KERN_CONT " running  ");
4404 	else
4405 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4406 #else
4407 	if (state == TASK_RUNNING)
4408 		printk(KERN_CONT "  running task    ");
4409 	else
4410 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4411 #endif
4412 #ifdef CONFIG_DEBUG_STACK_USAGE
4413 	free = stack_not_used(p);
4414 #endif
4415 	rcu_read_lock();
4416 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4417 	rcu_read_unlock();
4418 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4419 		task_pid_nr(p), ppid,
4420 		(unsigned long)task_thread_info(p)->flags);
4421 
4422 	print_worker_info(KERN_INFO, p);
4423 	show_stack(p, NULL);
4424 }
4425 
4426 void show_state_filter(unsigned long state_filter)
4427 {
4428 	struct task_struct *g, *p;
4429 
4430 #if BITS_PER_LONG == 32
4431 	printk(KERN_INFO
4432 		"  task                PC stack   pid father\n");
4433 #else
4434 	printk(KERN_INFO
4435 		"  task                        PC stack   pid father\n");
4436 #endif
4437 	rcu_read_lock();
4438 	do_each_thread(g, p) {
4439 		/*
4440 		 * reset the NMI-timeout, listing all files on a slow
4441 		 * console might take a lot of time:
4442 		 */
4443 		touch_nmi_watchdog();
4444 		if (!state_filter || (p->state & state_filter))
4445 			sched_show_task(p);
4446 	} while_each_thread(g, p);
4447 
4448 	touch_all_softlockup_watchdogs();
4449 
4450 #ifdef CONFIG_SCHED_DEBUG
4451 	sysrq_sched_debug_show();
4452 #endif
4453 	rcu_read_unlock();
4454 	/*
4455 	 * Only show locks if all tasks are dumped:
4456 	 */
4457 	if (!state_filter)
4458 		debug_show_all_locks();
4459 }
4460 
4461 void init_idle_bootup_task(struct task_struct *idle)
4462 {
4463 	idle->sched_class = &idle_sched_class;
4464 }
4465 
4466 /**
4467  * init_idle - set up an idle thread for a given CPU
4468  * @idle: task in question
4469  * @cpu: cpu the idle task belongs to
4470  *
4471  * NOTE: this function does not set the idle thread's NEED_RESCHED
4472  * flag, to make booting more robust.
4473  */
4474 void init_idle(struct task_struct *idle, int cpu)
4475 {
4476 	struct rq *rq = cpu_rq(cpu);
4477 	unsigned long flags;
4478 
4479 	raw_spin_lock_irqsave(&rq->lock, flags);
4480 
4481 	__sched_fork(0, idle);
4482 	idle->state = TASK_RUNNING;
4483 	idle->se.exec_start = sched_clock();
4484 
4485 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4486 	/*
4487 	 * We're having a chicken and egg problem, even though we are
4488 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4489 	 * lockdep check in task_group() will fail.
4490 	 *
4491 	 * Similar case to sched_fork(). / Alternatively we could
4492 	 * use task_rq_lock() here and obtain the other rq->lock.
4493 	 *
4494 	 * Silence PROVE_RCU
4495 	 */
4496 	rcu_read_lock();
4497 	__set_task_cpu(idle, cpu);
4498 	rcu_read_unlock();
4499 
4500 	rq->curr = rq->idle = idle;
4501 	idle->on_rq = 1;
4502 #if defined(CONFIG_SMP)
4503 	idle->on_cpu = 1;
4504 #endif
4505 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4506 
4507 	/* Set the preempt count _outside_ the spinlocks! */
4508 	init_idle_preempt_count(idle, cpu);
4509 
4510 	/*
4511 	 * The idle tasks have their own, simple scheduling class:
4512 	 */
4513 	idle->sched_class = &idle_sched_class;
4514 	ftrace_graph_init_idle_task(idle, cpu);
4515 	vtime_init_idle(idle, cpu);
4516 #if defined(CONFIG_SMP)
4517 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4518 #endif
4519 }
4520 
4521 #ifdef CONFIG_SMP
4522 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4523 {
4524 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4525 		p->sched_class->set_cpus_allowed(p, new_mask);
4526 
4527 	cpumask_copy(&p->cpus_allowed, new_mask);
4528 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4529 }
4530 
4531 /*
4532  * This is how migration works:
4533  *
4534  * 1) we invoke migration_cpu_stop() on the target CPU using
4535  *    stop_one_cpu().
4536  * 2) stopper starts to run (implicitly forcing the migrated thread
4537  *    off the CPU)
4538  * 3) it checks whether the migrated task is still in the wrong runqueue.
4539  * 4) if it's in the wrong runqueue then the migration thread removes
4540  *    it and puts it into the right queue.
4541  * 5) stopper completes and stop_one_cpu() returns and the migration
4542  *    is done.
4543  */
4544 
4545 /*
4546  * Change a given task's CPU affinity. Migrate the thread to a
4547  * proper CPU and schedule it away if the CPU it's executing on
4548  * is removed from the allowed bitmask.
4549  *
4550  * NOTE: the caller must have a valid reference to the task, the
4551  * task must not exit() & deallocate itself prematurely. The
4552  * call is not atomic; no spinlocks may be held.
4553  */
4554 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4555 {
4556 	unsigned long flags;
4557 	struct rq *rq;
4558 	unsigned int dest_cpu;
4559 	int ret = 0;
4560 
4561 	rq = task_rq_lock(p, &flags);
4562 
4563 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4564 		goto out;
4565 
4566 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4567 		ret = -EINVAL;
4568 		goto out;
4569 	}
4570 
4571 	do_set_cpus_allowed(p, new_mask);
4572 
4573 	/* Can the task run on the task's current CPU? If so, we're done */
4574 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4575 		goto out;
4576 
4577 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4578 	if (p->on_rq) {
4579 		struct migration_arg arg = { p, dest_cpu };
4580 		/* Need help from migration thread: drop lock and wait. */
4581 		task_rq_unlock(rq, p, &flags);
4582 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4583 		tlb_migrate_finish(p->mm);
4584 		return 0;
4585 	}
4586 out:
4587 	task_rq_unlock(rq, p, &flags);
4588 
4589 	return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4592 
4593 /*
4594  * Move (not current) task off this cpu, onto dest cpu. We're doing
4595  * this because either it can't run here any more (set_cpus_allowed()
4596  * away from this CPU, or CPU going down), or because we're
4597  * attempting to rebalance this task on exec (sched_exec).
4598  *
4599  * So we race with normal scheduler movements, but that's OK, as long
4600  * as the task is no longer on this CPU.
4601  *
4602  * Returns non-zero if task was successfully migrated.
4603  */
4604 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4605 {
4606 	struct rq *rq_dest, *rq_src;
4607 	int ret = 0;
4608 
4609 	if (unlikely(!cpu_active(dest_cpu)))
4610 		return ret;
4611 
4612 	rq_src = cpu_rq(src_cpu);
4613 	rq_dest = cpu_rq(dest_cpu);
4614 
4615 	raw_spin_lock(&p->pi_lock);
4616 	double_rq_lock(rq_src, rq_dest);
4617 	/* Already moved. */
4618 	if (task_cpu(p) != src_cpu)
4619 		goto done;
4620 	/* Affinity changed (again). */
4621 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4622 		goto fail;
4623 
4624 	/*
4625 	 * If we're not on a rq, the next wake-up will ensure we're
4626 	 * placed properly.
4627 	 */
4628 	if (p->on_rq) {
4629 		dequeue_task(rq_src, p, 0);
4630 		set_task_cpu(p, dest_cpu);
4631 		enqueue_task(rq_dest, p, 0);
4632 		check_preempt_curr(rq_dest, p, 0);
4633 	}
4634 done:
4635 	ret = 1;
4636 fail:
4637 	double_rq_unlock(rq_src, rq_dest);
4638 	raw_spin_unlock(&p->pi_lock);
4639 	return ret;
4640 }
4641 
4642 #ifdef CONFIG_NUMA_BALANCING
4643 /* Migrate current task p to target_cpu */
4644 int migrate_task_to(struct task_struct *p, int target_cpu)
4645 {
4646 	struct migration_arg arg = { p, target_cpu };
4647 	int curr_cpu = task_cpu(p);
4648 
4649 	if (curr_cpu == target_cpu)
4650 		return 0;
4651 
4652 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4653 		return -EINVAL;
4654 
4655 	/* TODO: This is not properly updating schedstats */
4656 
4657 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4658 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4659 }
4660 
4661 /*
4662  * Requeue a task on a given node and accurately track the number of NUMA
4663  * tasks on the runqueues
4664  */
4665 void sched_setnuma(struct task_struct *p, int nid)
4666 {
4667 	struct rq *rq;
4668 	unsigned long flags;
4669 	bool on_rq, running;
4670 
4671 	rq = task_rq_lock(p, &flags);
4672 	on_rq = p->on_rq;
4673 	running = task_current(rq, p);
4674 
4675 	if (on_rq)
4676 		dequeue_task(rq, p, 0);
4677 	if (running)
4678 		p->sched_class->put_prev_task(rq, p);
4679 
4680 	p->numa_preferred_nid = nid;
4681 
4682 	if (running)
4683 		p->sched_class->set_curr_task(rq);
4684 	if (on_rq)
4685 		enqueue_task(rq, p, 0);
4686 	task_rq_unlock(rq, p, &flags);
4687 }
4688 #endif
4689 
4690 /*
4691  * migration_cpu_stop - this will be executed by a highprio stopper thread
4692  * and performs thread migration by bumping thread off CPU then
4693  * 'pushing' onto another runqueue.
4694  */
4695 static int migration_cpu_stop(void *data)
4696 {
4697 	struct migration_arg *arg = data;
4698 
4699 	/*
4700 	 * The original target cpu might have gone down and we might
4701 	 * be on another cpu but it doesn't matter.
4702 	 */
4703 	local_irq_disable();
4704 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4705 	local_irq_enable();
4706 	return 0;
4707 }
4708 
4709 #ifdef CONFIG_HOTPLUG_CPU
4710 
4711 /*
4712  * Ensures that the idle task is using init_mm right before its cpu goes
4713  * offline.
4714  */
4715 void idle_task_exit(void)
4716 {
4717 	struct mm_struct *mm = current->active_mm;
4718 
4719 	BUG_ON(cpu_online(smp_processor_id()));
4720 
4721 	if (mm != &init_mm) {
4722 		switch_mm(mm, &init_mm, current);
4723 		finish_arch_post_lock_switch();
4724 	}
4725 	mmdrop(mm);
4726 }
4727 
4728 /*
4729  * Since this CPU is going 'away' for a while, fold any nr_active delta
4730  * we might have. Assumes we're called after migrate_tasks() so that the
4731  * nr_active count is stable.
4732  *
4733  * Also see the comment "Global load-average calculations".
4734  */
4735 static void calc_load_migrate(struct rq *rq)
4736 {
4737 	long delta = calc_load_fold_active(rq);
4738 	if (delta)
4739 		atomic_long_add(delta, &calc_load_tasks);
4740 }
4741 
4742 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4743 {
4744 }
4745 
4746 static const struct sched_class fake_sched_class = {
4747 	.put_prev_task = put_prev_task_fake,
4748 };
4749 
4750 static struct task_struct fake_task = {
4751 	/*
4752 	 * Avoid pull_{rt,dl}_task()
4753 	 */
4754 	.prio = MAX_PRIO + 1,
4755 	.sched_class = &fake_sched_class,
4756 };
4757 
4758 /*
4759  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4760  * try_to_wake_up()->select_task_rq().
4761  *
4762  * Called with rq->lock held even though we'er in stop_machine() and
4763  * there's no concurrency possible, we hold the required locks anyway
4764  * because of lock validation efforts.
4765  */
4766 static void migrate_tasks(unsigned int dead_cpu)
4767 {
4768 	struct rq *rq = cpu_rq(dead_cpu);
4769 	struct task_struct *next, *stop = rq->stop;
4770 	int dest_cpu;
4771 
4772 	/*
4773 	 * Fudge the rq selection such that the below task selection loop
4774 	 * doesn't get stuck on the currently eligible stop task.
4775 	 *
4776 	 * We're currently inside stop_machine() and the rq is either stuck
4777 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4778 	 * either way we should never end up calling schedule() until we're
4779 	 * done here.
4780 	 */
4781 	rq->stop = NULL;
4782 
4783 	/*
4784 	 * put_prev_task() and pick_next_task() sched
4785 	 * class method both need to have an up-to-date
4786 	 * value of rq->clock[_task]
4787 	 */
4788 	update_rq_clock(rq);
4789 
4790 	for ( ; ; ) {
4791 		/*
4792 		 * There's this thread running, bail when that's the only
4793 		 * remaining thread.
4794 		 */
4795 		if (rq->nr_running == 1)
4796 			break;
4797 
4798 		next = pick_next_task(rq, &fake_task);
4799 		BUG_ON(!next);
4800 		next->sched_class->put_prev_task(rq, next);
4801 
4802 		/* Find suitable destination for @next, with force if needed. */
4803 		dest_cpu = select_fallback_rq(dead_cpu, next);
4804 		raw_spin_unlock(&rq->lock);
4805 
4806 		__migrate_task(next, dead_cpu, dest_cpu);
4807 
4808 		raw_spin_lock(&rq->lock);
4809 	}
4810 
4811 	rq->stop = stop;
4812 }
4813 
4814 #endif /* CONFIG_HOTPLUG_CPU */
4815 
4816 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4817 
4818 static struct ctl_table sd_ctl_dir[] = {
4819 	{
4820 		.procname	= "sched_domain",
4821 		.mode		= 0555,
4822 	},
4823 	{}
4824 };
4825 
4826 static struct ctl_table sd_ctl_root[] = {
4827 	{
4828 		.procname	= "kernel",
4829 		.mode		= 0555,
4830 		.child		= sd_ctl_dir,
4831 	},
4832 	{}
4833 };
4834 
4835 static struct ctl_table *sd_alloc_ctl_entry(int n)
4836 {
4837 	struct ctl_table *entry =
4838 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4839 
4840 	return entry;
4841 }
4842 
4843 static void sd_free_ctl_entry(struct ctl_table **tablep)
4844 {
4845 	struct ctl_table *entry;
4846 
4847 	/*
4848 	 * In the intermediate directories, both the child directory and
4849 	 * procname are dynamically allocated and could fail but the mode
4850 	 * will always be set. In the lowest directory the names are
4851 	 * static strings and all have proc handlers.
4852 	 */
4853 	for (entry = *tablep; entry->mode; entry++) {
4854 		if (entry->child)
4855 			sd_free_ctl_entry(&entry->child);
4856 		if (entry->proc_handler == NULL)
4857 			kfree(entry->procname);
4858 	}
4859 
4860 	kfree(*tablep);
4861 	*tablep = NULL;
4862 }
4863 
4864 static int min_load_idx = 0;
4865 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4866 
4867 static void
4868 set_table_entry(struct ctl_table *entry,
4869 		const char *procname, void *data, int maxlen,
4870 		umode_t mode, proc_handler *proc_handler,
4871 		bool load_idx)
4872 {
4873 	entry->procname = procname;
4874 	entry->data = data;
4875 	entry->maxlen = maxlen;
4876 	entry->mode = mode;
4877 	entry->proc_handler = proc_handler;
4878 
4879 	if (load_idx) {
4880 		entry->extra1 = &min_load_idx;
4881 		entry->extra2 = &max_load_idx;
4882 	}
4883 }
4884 
4885 static struct ctl_table *
4886 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4887 {
4888 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4889 
4890 	if (table == NULL)
4891 		return NULL;
4892 
4893 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4894 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4895 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4896 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4897 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4898 		sizeof(int), 0644, proc_dointvec_minmax, true);
4899 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4900 		sizeof(int), 0644, proc_dointvec_minmax, true);
4901 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4902 		sizeof(int), 0644, proc_dointvec_minmax, true);
4903 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4904 		sizeof(int), 0644, proc_dointvec_minmax, true);
4905 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4906 		sizeof(int), 0644, proc_dointvec_minmax, true);
4907 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4908 		sizeof(int), 0644, proc_dointvec_minmax, false);
4909 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4910 		sizeof(int), 0644, proc_dointvec_minmax, false);
4911 	set_table_entry(&table[9], "cache_nice_tries",
4912 		&sd->cache_nice_tries,
4913 		sizeof(int), 0644, proc_dointvec_minmax, false);
4914 	set_table_entry(&table[10], "flags", &sd->flags,
4915 		sizeof(int), 0644, proc_dointvec_minmax, false);
4916 	set_table_entry(&table[11], "max_newidle_lb_cost",
4917 		&sd->max_newidle_lb_cost,
4918 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4919 	set_table_entry(&table[12], "name", sd->name,
4920 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4921 	/* &table[13] is terminator */
4922 
4923 	return table;
4924 }
4925 
4926 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4927 {
4928 	struct ctl_table *entry, *table;
4929 	struct sched_domain *sd;
4930 	int domain_num = 0, i;
4931 	char buf[32];
4932 
4933 	for_each_domain(cpu, sd)
4934 		domain_num++;
4935 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4936 	if (table == NULL)
4937 		return NULL;
4938 
4939 	i = 0;
4940 	for_each_domain(cpu, sd) {
4941 		snprintf(buf, 32, "domain%d", i);
4942 		entry->procname = kstrdup(buf, GFP_KERNEL);
4943 		entry->mode = 0555;
4944 		entry->child = sd_alloc_ctl_domain_table(sd);
4945 		entry++;
4946 		i++;
4947 	}
4948 	return table;
4949 }
4950 
4951 static struct ctl_table_header *sd_sysctl_header;
4952 static void register_sched_domain_sysctl(void)
4953 {
4954 	int i, cpu_num = num_possible_cpus();
4955 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4956 	char buf[32];
4957 
4958 	WARN_ON(sd_ctl_dir[0].child);
4959 	sd_ctl_dir[0].child = entry;
4960 
4961 	if (entry == NULL)
4962 		return;
4963 
4964 	for_each_possible_cpu(i) {
4965 		snprintf(buf, 32, "cpu%d", i);
4966 		entry->procname = kstrdup(buf, GFP_KERNEL);
4967 		entry->mode = 0555;
4968 		entry->child = sd_alloc_ctl_cpu_table(i);
4969 		entry++;
4970 	}
4971 
4972 	WARN_ON(sd_sysctl_header);
4973 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4974 }
4975 
4976 /* may be called multiple times per register */
4977 static void unregister_sched_domain_sysctl(void)
4978 {
4979 	if (sd_sysctl_header)
4980 		unregister_sysctl_table(sd_sysctl_header);
4981 	sd_sysctl_header = NULL;
4982 	if (sd_ctl_dir[0].child)
4983 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4984 }
4985 #else
4986 static void register_sched_domain_sysctl(void)
4987 {
4988 }
4989 static void unregister_sched_domain_sysctl(void)
4990 {
4991 }
4992 #endif
4993 
4994 static void set_rq_online(struct rq *rq)
4995 {
4996 	if (!rq->online) {
4997 		const struct sched_class *class;
4998 
4999 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5000 		rq->online = 1;
5001 
5002 		for_each_class(class) {
5003 			if (class->rq_online)
5004 				class->rq_online(rq);
5005 		}
5006 	}
5007 }
5008 
5009 static void set_rq_offline(struct rq *rq)
5010 {
5011 	if (rq->online) {
5012 		const struct sched_class *class;
5013 
5014 		for_each_class(class) {
5015 			if (class->rq_offline)
5016 				class->rq_offline(rq);
5017 		}
5018 
5019 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5020 		rq->online = 0;
5021 	}
5022 }
5023 
5024 /*
5025  * migration_call - callback that gets triggered when a CPU is added.
5026  * Here we can start up the necessary migration thread for the new CPU.
5027  */
5028 static int
5029 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5030 {
5031 	int cpu = (long)hcpu;
5032 	unsigned long flags;
5033 	struct rq *rq = cpu_rq(cpu);
5034 
5035 	switch (action & ~CPU_TASKS_FROZEN) {
5036 
5037 	case CPU_UP_PREPARE:
5038 		rq->calc_load_update = calc_load_update;
5039 		break;
5040 
5041 	case CPU_ONLINE:
5042 		/* Update our root-domain */
5043 		raw_spin_lock_irqsave(&rq->lock, flags);
5044 		if (rq->rd) {
5045 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5046 
5047 			set_rq_online(rq);
5048 		}
5049 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5050 		break;
5051 
5052 #ifdef CONFIG_HOTPLUG_CPU
5053 	case CPU_DYING:
5054 		sched_ttwu_pending();
5055 		/* Update our root-domain */
5056 		raw_spin_lock_irqsave(&rq->lock, flags);
5057 		if (rq->rd) {
5058 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5059 			set_rq_offline(rq);
5060 		}
5061 		migrate_tasks(cpu);
5062 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5063 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5064 		break;
5065 
5066 	case CPU_DEAD:
5067 		calc_load_migrate(rq);
5068 		break;
5069 #endif
5070 	}
5071 
5072 	update_max_interval();
5073 
5074 	return NOTIFY_OK;
5075 }
5076 
5077 /*
5078  * Register at high priority so that task migration (migrate_all_tasks)
5079  * happens before everything else.  This has to be lower priority than
5080  * the notifier in the perf_event subsystem, though.
5081  */
5082 static struct notifier_block migration_notifier = {
5083 	.notifier_call = migration_call,
5084 	.priority = CPU_PRI_MIGRATION,
5085 };
5086 
5087 static int sched_cpu_active(struct notifier_block *nfb,
5088 				      unsigned long action, void *hcpu)
5089 {
5090 	switch (action & ~CPU_TASKS_FROZEN) {
5091 	case CPU_STARTING:
5092 	case CPU_DOWN_FAILED:
5093 		set_cpu_active((long)hcpu, true);
5094 		return NOTIFY_OK;
5095 	default:
5096 		return NOTIFY_DONE;
5097 	}
5098 }
5099 
5100 static int sched_cpu_inactive(struct notifier_block *nfb,
5101 					unsigned long action, void *hcpu)
5102 {
5103 	unsigned long flags;
5104 	long cpu = (long)hcpu;
5105 
5106 	switch (action & ~CPU_TASKS_FROZEN) {
5107 	case CPU_DOWN_PREPARE:
5108 		set_cpu_active(cpu, false);
5109 
5110 		/* explicitly allow suspend */
5111 		if (!(action & CPU_TASKS_FROZEN)) {
5112 			struct dl_bw *dl_b = dl_bw_of(cpu);
5113 			bool overflow;
5114 			int cpus;
5115 
5116 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5117 			cpus = dl_bw_cpus(cpu);
5118 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5119 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5120 
5121 			if (overflow)
5122 				return notifier_from_errno(-EBUSY);
5123 		}
5124 		return NOTIFY_OK;
5125 	}
5126 
5127 	return NOTIFY_DONE;
5128 }
5129 
5130 static int __init migration_init(void)
5131 {
5132 	void *cpu = (void *)(long)smp_processor_id();
5133 	int err;
5134 
5135 	/* Initialize migration for the boot CPU */
5136 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5137 	BUG_ON(err == NOTIFY_BAD);
5138 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5139 	register_cpu_notifier(&migration_notifier);
5140 
5141 	/* Register cpu active notifiers */
5142 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5143 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5144 
5145 	return 0;
5146 }
5147 early_initcall(migration_init);
5148 #endif
5149 
5150 #ifdef CONFIG_SMP
5151 
5152 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5153 
5154 #ifdef CONFIG_SCHED_DEBUG
5155 
5156 static __read_mostly int sched_debug_enabled;
5157 
5158 static int __init sched_debug_setup(char *str)
5159 {
5160 	sched_debug_enabled = 1;
5161 
5162 	return 0;
5163 }
5164 early_param("sched_debug", sched_debug_setup);
5165 
5166 static inline bool sched_debug(void)
5167 {
5168 	return sched_debug_enabled;
5169 }
5170 
5171 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5172 				  struct cpumask *groupmask)
5173 {
5174 	struct sched_group *group = sd->groups;
5175 	char str[256];
5176 
5177 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5178 	cpumask_clear(groupmask);
5179 
5180 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5181 
5182 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5183 		printk("does not load-balance\n");
5184 		if (sd->parent)
5185 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5186 					" has parent");
5187 		return -1;
5188 	}
5189 
5190 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5191 
5192 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5193 		printk(KERN_ERR "ERROR: domain->span does not contain "
5194 				"CPU%d\n", cpu);
5195 	}
5196 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5197 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5198 				" CPU%d\n", cpu);
5199 	}
5200 
5201 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5202 	do {
5203 		if (!group) {
5204 			printk("\n");
5205 			printk(KERN_ERR "ERROR: group is NULL\n");
5206 			break;
5207 		}
5208 
5209 		/*
5210 		 * Even though we initialize ->power to something semi-sane,
5211 		 * we leave power_orig unset. This allows us to detect if
5212 		 * domain iteration is still funny without causing /0 traps.
5213 		 */
5214 		if (!group->sgp->power_orig) {
5215 			printk(KERN_CONT "\n");
5216 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5217 					"set\n");
5218 			break;
5219 		}
5220 
5221 		if (!cpumask_weight(sched_group_cpus(group))) {
5222 			printk(KERN_CONT "\n");
5223 			printk(KERN_ERR "ERROR: empty group\n");
5224 			break;
5225 		}
5226 
5227 		if (!(sd->flags & SD_OVERLAP) &&
5228 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5229 			printk(KERN_CONT "\n");
5230 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5231 			break;
5232 		}
5233 
5234 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5235 
5236 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5237 
5238 		printk(KERN_CONT " %s", str);
5239 		if (group->sgp->power != SCHED_POWER_SCALE) {
5240 			printk(KERN_CONT " (cpu_power = %d)",
5241 				group->sgp->power);
5242 		}
5243 
5244 		group = group->next;
5245 	} while (group != sd->groups);
5246 	printk(KERN_CONT "\n");
5247 
5248 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5249 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5250 
5251 	if (sd->parent &&
5252 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5253 		printk(KERN_ERR "ERROR: parent span is not a superset "
5254 			"of domain->span\n");
5255 	return 0;
5256 }
5257 
5258 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5259 {
5260 	int level = 0;
5261 
5262 	if (!sched_debug_enabled)
5263 		return;
5264 
5265 	if (!sd) {
5266 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5267 		return;
5268 	}
5269 
5270 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5271 
5272 	for (;;) {
5273 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5274 			break;
5275 		level++;
5276 		sd = sd->parent;
5277 		if (!sd)
5278 			break;
5279 	}
5280 }
5281 #else /* !CONFIG_SCHED_DEBUG */
5282 # define sched_domain_debug(sd, cpu) do { } while (0)
5283 static inline bool sched_debug(void)
5284 {
5285 	return false;
5286 }
5287 #endif /* CONFIG_SCHED_DEBUG */
5288 
5289 static int sd_degenerate(struct sched_domain *sd)
5290 {
5291 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5292 		return 1;
5293 
5294 	/* Following flags need at least 2 groups */
5295 	if (sd->flags & (SD_LOAD_BALANCE |
5296 			 SD_BALANCE_NEWIDLE |
5297 			 SD_BALANCE_FORK |
5298 			 SD_BALANCE_EXEC |
5299 			 SD_SHARE_CPUPOWER |
5300 			 SD_SHARE_PKG_RESOURCES)) {
5301 		if (sd->groups != sd->groups->next)
5302 			return 0;
5303 	}
5304 
5305 	/* Following flags don't use groups */
5306 	if (sd->flags & (SD_WAKE_AFFINE))
5307 		return 0;
5308 
5309 	return 1;
5310 }
5311 
5312 static int
5313 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5314 {
5315 	unsigned long cflags = sd->flags, pflags = parent->flags;
5316 
5317 	if (sd_degenerate(parent))
5318 		return 1;
5319 
5320 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5321 		return 0;
5322 
5323 	/* Flags needing groups don't count if only 1 group in parent */
5324 	if (parent->groups == parent->groups->next) {
5325 		pflags &= ~(SD_LOAD_BALANCE |
5326 				SD_BALANCE_NEWIDLE |
5327 				SD_BALANCE_FORK |
5328 				SD_BALANCE_EXEC |
5329 				SD_SHARE_CPUPOWER |
5330 				SD_SHARE_PKG_RESOURCES |
5331 				SD_PREFER_SIBLING);
5332 		if (nr_node_ids == 1)
5333 			pflags &= ~SD_SERIALIZE;
5334 	}
5335 	if (~cflags & pflags)
5336 		return 0;
5337 
5338 	return 1;
5339 }
5340 
5341 static void free_rootdomain(struct rcu_head *rcu)
5342 {
5343 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5344 
5345 	cpupri_cleanup(&rd->cpupri);
5346 	cpudl_cleanup(&rd->cpudl);
5347 	free_cpumask_var(rd->dlo_mask);
5348 	free_cpumask_var(rd->rto_mask);
5349 	free_cpumask_var(rd->online);
5350 	free_cpumask_var(rd->span);
5351 	kfree(rd);
5352 }
5353 
5354 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5355 {
5356 	struct root_domain *old_rd = NULL;
5357 	unsigned long flags;
5358 
5359 	raw_spin_lock_irqsave(&rq->lock, flags);
5360 
5361 	if (rq->rd) {
5362 		old_rd = rq->rd;
5363 
5364 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5365 			set_rq_offline(rq);
5366 
5367 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5368 
5369 		/*
5370 		 * If we dont want to free the old_rd yet then
5371 		 * set old_rd to NULL to skip the freeing later
5372 		 * in this function:
5373 		 */
5374 		if (!atomic_dec_and_test(&old_rd->refcount))
5375 			old_rd = NULL;
5376 	}
5377 
5378 	atomic_inc(&rd->refcount);
5379 	rq->rd = rd;
5380 
5381 	cpumask_set_cpu(rq->cpu, rd->span);
5382 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5383 		set_rq_online(rq);
5384 
5385 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5386 
5387 	if (old_rd)
5388 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5389 }
5390 
5391 static int init_rootdomain(struct root_domain *rd)
5392 {
5393 	memset(rd, 0, sizeof(*rd));
5394 
5395 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5396 		goto out;
5397 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5398 		goto free_span;
5399 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5400 		goto free_online;
5401 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5402 		goto free_dlo_mask;
5403 
5404 	init_dl_bw(&rd->dl_bw);
5405 	if (cpudl_init(&rd->cpudl) != 0)
5406 		goto free_dlo_mask;
5407 
5408 	if (cpupri_init(&rd->cpupri) != 0)
5409 		goto free_rto_mask;
5410 	return 0;
5411 
5412 free_rto_mask:
5413 	free_cpumask_var(rd->rto_mask);
5414 free_dlo_mask:
5415 	free_cpumask_var(rd->dlo_mask);
5416 free_online:
5417 	free_cpumask_var(rd->online);
5418 free_span:
5419 	free_cpumask_var(rd->span);
5420 out:
5421 	return -ENOMEM;
5422 }
5423 
5424 /*
5425  * By default the system creates a single root-domain with all cpus as
5426  * members (mimicking the global state we have today).
5427  */
5428 struct root_domain def_root_domain;
5429 
5430 static void init_defrootdomain(void)
5431 {
5432 	init_rootdomain(&def_root_domain);
5433 
5434 	atomic_set(&def_root_domain.refcount, 1);
5435 }
5436 
5437 static struct root_domain *alloc_rootdomain(void)
5438 {
5439 	struct root_domain *rd;
5440 
5441 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5442 	if (!rd)
5443 		return NULL;
5444 
5445 	if (init_rootdomain(rd) != 0) {
5446 		kfree(rd);
5447 		return NULL;
5448 	}
5449 
5450 	return rd;
5451 }
5452 
5453 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5454 {
5455 	struct sched_group *tmp, *first;
5456 
5457 	if (!sg)
5458 		return;
5459 
5460 	first = sg;
5461 	do {
5462 		tmp = sg->next;
5463 
5464 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5465 			kfree(sg->sgp);
5466 
5467 		kfree(sg);
5468 		sg = tmp;
5469 	} while (sg != first);
5470 }
5471 
5472 static void free_sched_domain(struct rcu_head *rcu)
5473 {
5474 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5475 
5476 	/*
5477 	 * If its an overlapping domain it has private groups, iterate and
5478 	 * nuke them all.
5479 	 */
5480 	if (sd->flags & SD_OVERLAP) {
5481 		free_sched_groups(sd->groups, 1);
5482 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5483 		kfree(sd->groups->sgp);
5484 		kfree(sd->groups);
5485 	}
5486 	kfree(sd);
5487 }
5488 
5489 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5490 {
5491 	call_rcu(&sd->rcu, free_sched_domain);
5492 }
5493 
5494 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5495 {
5496 	for (; sd; sd = sd->parent)
5497 		destroy_sched_domain(sd, cpu);
5498 }
5499 
5500 /*
5501  * Keep a special pointer to the highest sched_domain that has
5502  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5503  * allows us to avoid some pointer chasing select_idle_sibling().
5504  *
5505  * Also keep a unique ID per domain (we use the first cpu number in
5506  * the cpumask of the domain), this allows us to quickly tell if
5507  * two cpus are in the same cache domain, see cpus_share_cache().
5508  */
5509 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5510 DEFINE_PER_CPU(int, sd_llc_size);
5511 DEFINE_PER_CPU(int, sd_llc_id);
5512 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5513 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5514 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5515 
5516 static void update_top_cache_domain(int cpu)
5517 {
5518 	struct sched_domain *sd;
5519 	struct sched_domain *busy_sd = NULL;
5520 	int id = cpu;
5521 	int size = 1;
5522 
5523 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5524 	if (sd) {
5525 		id = cpumask_first(sched_domain_span(sd));
5526 		size = cpumask_weight(sched_domain_span(sd));
5527 		busy_sd = sd->parent; /* sd_busy */
5528 	}
5529 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5530 
5531 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5532 	per_cpu(sd_llc_size, cpu) = size;
5533 	per_cpu(sd_llc_id, cpu) = id;
5534 
5535 	sd = lowest_flag_domain(cpu, SD_NUMA);
5536 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5537 
5538 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5539 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5540 }
5541 
5542 /*
5543  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5544  * hold the hotplug lock.
5545  */
5546 static void
5547 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5548 {
5549 	struct rq *rq = cpu_rq(cpu);
5550 	struct sched_domain *tmp;
5551 
5552 	/* Remove the sched domains which do not contribute to scheduling. */
5553 	for (tmp = sd; tmp; ) {
5554 		struct sched_domain *parent = tmp->parent;
5555 		if (!parent)
5556 			break;
5557 
5558 		if (sd_parent_degenerate(tmp, parent)) {
5559 			tmp->parent = parent->parent;
5560 			if (parent->parent)
5561 				parent->parent->child = tmp;
5562 			/*
5563 			 * Transfer SD_PREFER_SIBLING down in case of a
5564 			 * degenerate parent; the spans match for this
5565 			 * so the property transfers.
5566 			 */
5567 			if (parent->flags & SD_PREFER_SIBLING)
5568 				tmp->flags |= SD_PREFER_SIBLING;
5569 			destroy_sched_domain(parent, cpu);
5570 		} else
5571 			tmp = tmp->parent;
5572 	}
5573 
5574 	if (sd && sd_degenerate(sd)) {
5575 		tmp = sd;
5576 		sd = sd->parent;
5577 		destroy_sched_domain(tmp, cpu);
5578 		if (sd)
5579 			sd->child = NULL;
5580 	}
5581 
5582 	sched_domain_debug(sd, cpu);
5583 
5584 	rq_attach_root(rq, rd);
5585 	tmp = rq->sd;
5586 	rcu_assign_pointer(rq->sd, sd);
5587 	destroy_sched_domains(tmp, cpu);
5588 
5589 	update_top_cache_domain(cpu);
5590 }
5591 
5592 /* cpus with isolated domains */
5593 static cpumask_var_t cpu_isolated_map;
5594 
5595 /* Setup the mask of cpus configured for isolated domains */
5596 static int __init isolated_cpu_setup(char *str)
5597 {
5598 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5599 	cpulist_parse(str, cpu_isolated_map);
5600 	return 1;
5601 }
5602 
5603 __setup("isolcpus=", isolated_cpu_setup);
5604 
5605 static const struct cpumask *cpu_cpu_mask(int cpu)
5606 {
5607 	return cpumask_of_node(cpu_to_node(cpu));
5608 }
5609 
5610 struct sd_data {
5611 	struct sched_domain **__percpu sd;
5612 	struct sched_group **__percpu sg;
5613 	struct sched_group_power **__percpu sgp;
5614 };
5615 
5616 struct s_data {
5617 	struct sched_domain ** __percpu sd;
5618 	struct root_domain	*rd;
5619 };
5620 
5621 enum s_alloc {
5622 	sa_rootdomain,
5623 	sa_sd,
5624 	sa_sd_storage,
5625 	sa_none,
5626 };
5627 
5628 struct sched_domain_topology_level;
5629 
5630 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5631 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5632 
5633 #define SDTL_OVERLAP	0x01
5634 
5635 struct sched_domain_topology_level {
5636 	sched_domain_init_f init;
5637 	sched_domain_mask_f mask;
5638 	int		    flags;
5639 	int		    numa_level;
5640 	struct sd_data      data;
5641 };
5642 
5643 /*
5644  * Build an iteration mask that can exclude certain CPUs from the upwards
5645  * domain traversal.
5646  *
5647  * Asymmetric node setups can result in situations where the domain tree is of
5648  * unequal depth, make sure to skip domains that already cover the entire
5649  * range.
5650  *
5651  * In that case build_sched_domains() will have terminated the iteration early
5652  * and our sibling sd spans will be empty. Domains should always include the
5653  * cpu they're built on, so check that.
5654  *
5655  */
5656 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5657 {
5658 	const struct cpumask *span = sched_domain_span(sd);
5659 	struct sd_data *sdd = sd->private;
5660 	struct sched_domain *sibling;
5661 	int i;
5662 
5663 	for_each_cpu(i, span) {
5664 		sibling = *per_cpu_ptr(sdd->sd, i);
5665 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5666 			continue;
5667 
5668 		cpumask_set_cpu(i, sched_group_mask(sg));
5669 	}
5670 }
5671 
5672 /*
5673  * Return the canonical balance cpu for this group, this is the first cpu
5674  * of this group that's also in the iteration mask.
5675  */
5676 int group_balance_cpu(struct sched_group *sg)
5677 {
5678 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5679 }
5680 
5681 static int
5682 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5683 {
5684 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5685 	const struct cpumask *span = sched_domain_span(sd);
5686 	struct cpumask *covered = sched_domains_tmpmask;
5687 	struct sd_data *sdd = sd->private;
5688 	struct sched_domain *child;
5689 	int i;
5690 
5691 	cpumask_clear(covered);
5692 
5693 	for_each_cpu(i, span) {
5694 		struct cpumask *sg_span;
5695 
5696 		if (cpumask_test_cpu(i, covered))
5697 			continue;
5698 
5699 		child = *per_cpu_ptr(sdd->sd, i);
5700 
5701 		/* See the comment near build_group_mask(). */
5702 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5703 			continue;
5704 
5705 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5706 				GFP_KERNEL, cpu_to_node(cpu));
5707 
5708 		if (!sg)
5709 			goto fail;
5710 
5711 		sg_span = sched_group_cpus(sg);
5712 		if (child->child) {
5713 			child = child->child;
5714 			cpumask_copy(sg_span, sched_domain_span(child));
5715 		} else
5716 			cpumask_set_cpu(i, sg_span);
5717 
5718 		cpumask_or(covered, covered, sg_span);
5719 
5720 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5721 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5722 			build_group_mask(sd, sg);
5723 
5724 		/*
5725 		 * Initialize sgp->power such that even if we mess up the
5726 		 * domains and no possible iteration will get us here, we won't
5727 		 * die on a /0 trap.
5728 		 */
5729 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5730 		sg->sgp->power_orig = sg->sgp->power;
5731 
5732 		/*
5733 		 * Make sure the first group of this domain contains the
5734 		 * canonical balance cpu. Otherwise the sched_domain iteration
5735 		 * breaks. See update_sg_lb_stats().
5736 		 */
5737 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5738 		    group_balance_cpu(sg) == cpu)
5739 			groups = sg;
5740 
5741 		if (!first)
5742 			first = sg;
5743 		if (last)
5744 			last->next = sg;
5745 		last = sg;
5746 		last->next = first;
5747 	}
5748 	sd->groups = groups;
5749 
5750 	return 0;
5751 
5752 fail:
5753 	free_sched_groups(first, 0);
5754 
5755 	return -ENOMEM;
5756 }
5757 
5758 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5759 {
5760 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5761 	struct sched_domain *child = sd->child;
5762 
5763 	if (child)
5764 		cpu = cpumask_first(sched_domain_span(child));
5765 
5766 	if (sg) {
5767 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5768 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5769 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5770 	}
5771 
5772 	return cpu;
5773 }
5774 
5775 /*
5776  * build_sched_groups will build a circular linked list of the groups
5777  * covered by the given span, and will set each group's ->cpumask correctly,
5778  * and ->cpu_power to 0.
5779  *
5780  * Assumes the sched_domain tree is fully constructed
5781  */
5782 static int
5783 build_sched_groups(struct sched_domain *sd, int cpu)
5784 {
5785 	struct sched_group *first = NULL, *last = NULL;
5786 	struct sd_data *sdd = sd->private;
5787 	const struct cpumask *span = sched_domain_span(sd);
5788 	struct cpumask *covered;
5789 	int i;
5790 
5791 	get_group(cpu, sdd, &sd->groups);
5792 	atomic_inc(&sd->groups->ref);
5793 
5794 	if (cpu != cpumask_first(span))
5795 		return 0;
5796 
5797 	lockdep_assert_held(&sched_domains_mutex);
5798 	covered = sched_domains_tmpmask;
5799 
5800 	cpumask_clear(covered);
5801 
5802 	for_each_cpu(i, span) {
5803 		struct sched_group *sg;
5804 		int group, j;
5805 
5806 		if (cpumask_test_cpu(i, covered))
5807 			continue;
5808 
5809 		group = get_group(i, sdd, &sg);
5810 		cpumask_clear(sched_group_cpus(sg));
5811 		sg->sgp->power = 0;
5812 		cpumask_setall(sched_group_mask(sg));
5813 
5814 		for_each_cpu(j, span) {
5815 			if (get_group(j, sdd, NULL) != group)
5816 				continue;
5817 
5818 			cpumask_set_cpu(j, covered);
5819 			cpumask_set_cpu(j, sched_group_cpus(sg));
5820 		}
5821 
5822 		if (!first)
5823 			first = sg;
5824 		if (last)
5825 			last->next = sg;
5826 		last = sg;
5827 	}
5828 	last->next = first;
5829 
5830 	return 0;
5831 }
5832 
5833 /*
5834  * Initialize sched groups cpu_power.
5835  *
5836  * cpu_power indicates the capacity of sched group, which is used while
5837  * distributing the load between different sched groups in a sched domain.
5838  * Typically cpu_power for all the groups in a sched domain will be same unless
5839  * there are asymmetries in the topology. If there are asymmetries, group
5840  * having more cpu_power will pickup more load compared to the group having
5841  * less cpu_power.
5842  */
5843 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5844 {
5845 	struct sched_group *sg = sd->groups;
5846 
5847 	WARN_ON(!sg);
5848 
5849 	do {
5850 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5851 		sg = sg->next;
5852 	} while (sg != sd->groups);
5853 
5854 	if (cpu != group_balance_cpu(sg))
5855 		return;
5856 
5857 	update_group_power(sd, cpu);
5858 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5859 }
5860 
5861 int __weak arch_sd_sibling_asym_packing(void)
5862 {
5863        return 0*SD_ASYM_PACKING;
5864 }
5865 
5866 /*
5867  * Initializers for schedule domains
5868  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5869  */
5870 
5871 #ifdef CONFIG_SCHED_DEBUG
5872 # define SD_INIT_NAME(sd, type)		sd->name = #type
5873 #else
5874 # define SD_INIT_NAME(sd, type)		do { } while (0)
5875 #endif
5876 
5877 #define SD_INIT_FUNC(type)						\
5878 static noinline struct sched_domain *					\
5879 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5880 {									\
5881 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5882 	*sd = SD_##type##_INIT;						\
5883 	SD_INIT_NAME(sd, type);						\
5884 	sd->private = &tl->data;					\
5885 	return sd;							\
5886 }
5887 
5888 SD_INIT_FUNC(CPU)
5889 #ifdef CONFIG_SCHED_SMT
5890  SD_INIT_FUNC(SIBLING)
5891 #endif
5892 #ifdef CONFIG_SCHED_MC
5893  SD_INIT_FUNC(MC)
5894 #endif
5895 #ifdef CONFIG_SCHED_BOOK
5896  SD_INIT_FUNC(BOOK)
5897 #endif
5898 
5899 static int default_relax_domain_level = -1;
5900 int sched_domain_level_max;
5901 
5902 static int __init setup_relax_domain_level(char *str)
5903 {
5904 	if (kstrtoint(str, 0, &default_relax_domain_level))
5905 		pr_warn("Unable to set relax_domain_level\n");
5906 
5907 	return 1;
5908 }
5909 __setup("relax_domain_level=", setup_relax_domain_level);
5910 
5911 static void set_domain_attribute(struct sched_domain *sd,
5912 				 struct sched_domain_attr *attr)
5913 {
5914 	int request;
5915 
5916 	if (!attr || attr->relax_domain_level < 0) {
5917 		if (default_relax_domain_level < 0)
5918 			return;
5919 		else
5920 			request = default_relax_domain_level;
5921 	} else
5922 		request = attr->relax_domain_level;
5923 	if (request < sd->level) {
5924 		/* turn off idle balance on this domain */
5925 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5926 	} else {
5927 		/* turn on idle balance on this domain */
5928 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5929 	}
5930 }
5931 
5932 static void __sdt_free(const struct cpumask *cpu_map);
5933 static int __sdt_alloc(const struct cpumask *cpu_map);
5934 
5935 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5936 				 const struct cpumask *cpu_map)
5937 {
5938 	switch (what) {
5939 	case sa_rootdomain:
5940 		if (!atomic_read(&d->rd->refcount))
5941 			free_rootdomain(&d->rd->rcu); /* fall through */
5942 	case sa_sd:
5943 		free_percpu(d->sd); /* fall through */
5944 	case sa_sd_storage:
5945 		__sdt_free(cpu_map); /* fall through */
5946 	case sa_none:
5947 		break;
5948 	}
5949 }
5950 
5951 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5952 						   const struct cpumask *cpu_map)
5953 {
5954 	memset(d, 0, sizeof(*d));
5955 
5956 	if (__sdt_alloc(cpu_map))
5957 		return sa_sd_storage;
5958 	d->sd = alloc_percpu(struct sched_domain *);
5959 	if (!d->sd)
5960 		return sa_sd_storage;
5961 	d->rd = alloc_rootdomain();
5962 	if (!d->rd)
5963 		return sa_sd;
5964 	return sa_rootdomain;
5965 }
5966 
5967 /*
5968  * NULL the sd_data elements we've used to build the sched_domain and
5969  * sched_group structure so that the subsequent __free_domain_allocs()
5970  * will not free the data we're using.
5971  */
5972 static void claim_allocations(int cpu, struct sched_domain *sd)
5973 {
5974 	struct sd_data *sdd = sd->private;
5975 
5976 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5977 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5978 
5979 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5980 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5981 
5982 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5983 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5984 }
5985 
5986 #ifdef CONFIG_SCHED_SMT
5987 static const struct cpumask *cpu_smt_mask(int cpu)
5988 {
5989 	return topology_thread_cpumask(cpu);
5990 }
5991 #endif
5992 
5993 /*
5994  * Topology list, bottom-up.
5995  */
5996 static struct sched_domain_topology_level default_topology[] = {
5997 #ifdef CONFIG_SCHED_SMT
5998 	{ sd_init_SIBLING, cpu_smt_mask, },
5999 #endif
6000 #ifdef CONFIG_SCHED_MC
6001 	{ sd_init_MC, cpu_coregroup_mask, },
6002 #endif
6003 #ifdef CONFIG_SCHED_BOOK
6004 	{ sd_init_BOOK, cpu_book_mask, },
6005 #endif
6006 	{ sd_init_CPU, cpu_cpu_mask, },
6007 	{ NULL, },
6008 };
6009 
6010 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6011 
6012 #define for_each_sd_topology(tl)			\
6013 	for (tl = sched_domain_topology; tl->init; tl++)
6014 
6015 #ifdef CONFIG_NUMA
6016 
6017 static int sched_domains_numa_levels;
6018 static int *sched_domains_numa_distance;
6019 static struct cpumask ***sched_domains_numa_masks;
6020 static int sched_domains_curr_level;
6021 
6022 static inline int sd_local_flags(int level)
6023 {
6024 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6025 		return 0;
6026 
6027 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6028 }
6029 
6030 static struct sched_domain *
6031 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6032 {
6033 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6034 	int level = tl->numa_level;
6035 	int sd_weight = cpumask_weight(
6036 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6037 
6038 	*sd = (struct sched_domain){
6039 		.min_interval		= sd_weight,
6040 		.max_interval		= 2*sd_weight,
6041 		.busy_factor		= 32,
6042 		.imbalance_pct		= 125,
6043 		.cache_nice_tries	= 2,
6044 		.busy_idx		= 3,
6045 		.idle_idx		= 2,
6046 		.newidle_idx		= 0,
6047 		.wake_idx		= 0,
6048 		.forkexec_idx		= 0,
6049 
6050 		.flags			= 1*SD_LOAD_BALANCE
6051 					| 1*SD_BALANCE_NEWIDLE
6052 					| 0*SD_BALANCE_EXEC
6053 					| 0*SD_BALANCE_FORK
6054 					| 0*SD_BALANCE_WAKE
6055 					| 0*SD_WAKE_AFFINE
6056 					| 0*SD_SHARE_CPUPOWER
6057 					| 0*SD_SHARE_PKG_RESOURCES
6058 					| 1*SD_SERIALIZE
6059 					| 0*SD_PREFER_SIBLING
6060 					| 1*SD_NUMA
6061 					| sd_local_flags(level)
6062 					,
6063 		.last_balance		= jiffies,
6064 		.balance_interval	= sd_weight,
6065 	};
6066 	SD_INIT_NAME(sd, NUMA);
6067 	sd->private = &tl->data;
6068 
6069 	/*
6070 	 * Ugly hack to pass state to sd_numa_mask()...
6071 	 */
6072 	sched_domains_curr_level = tl->numa_level;
6073 
6074 	return sd;
6075 }
6076 
6077 static const struct cpumask *sd_numa_mask(int cpu)
6078 {
6079 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6080 }
6081 
6082 static void sched_numa_warn(const char *str)
6083 {
6084 	static int done = false;
6085 	int i,j;
6086 
6087 	if (done)
6088 		return;
6089 
6090 	done = true;
6091 
6092 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6093 
6094 	for (i = 0; i < nr_node_ids; i++) {
6095 		printk(KERN_WARNING "  ");
6096 		for (j = 0; j < nr_node_ids; j++)
6097 			printk(KERN_CONT "%02d ", node_distance(i,j));
6098 		printk(KERN_CONT "\n");
6099 	}
6100 	printk(KERN_WARNING "\n");
6101 }
6102 
6103 static bool find_numa_distance(int distance)
6104 {
6105 	int i;
6106 
6107 	if (distance == node_distance(0, 0))
6108 		return true;
6109 
6110 	for (i = 0; i < sched_domains_numa_levels; i++) {
6111 		if (sched_domains_numa_distance[i] == distance)
6112 			return true;
6113 	}
6114 
6115 	return false;
6116 }
6117 
6118 static void sched_init_numa(void)
6119 {
6120 	int next_distance, curr_distance = node_distance(0, 0);
6121 	struct sched_domain_topology_level *tl;
6122 	int level = 0;
6123 	int i, j, k;
6124 
6125 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6126 	if (!sched_domains_numa_distance)
6127 		return;
6128 
6129 	/*
6130 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6131 	 * unique distances in the node_distance() table.
6132 	 *
6133 	 * Assumes node_distance(0,j) includes all distances in
6134 	 * node_distance(i,j) in order to avoid cubic time.
6135 	 */
6136 	next_distance = curr_distance;
6137 	for (i = 0; i < nr_node_ids; i++) {
6138 		for (j = 0; j < nr_node_ids; j++) {
6139 			for (k = 0; k < nr_node_ids; k++) {
6140 				int distance = node_distance(i, k);
6141 
6142 				if (distance > curr_distance &&
6143 				    (distance < next_distance ||
6144 				     next_distance == curr_distance))
6145 					next_distance = distance;
6146 
6147 				/*
6148 				 * While not a strong assumption it would be nice to know
6149 				 * about cases where if node A is connected to B, B is not
6150 				 * equally connected to A.
6151 				 */
6152 				if (sched_debug() && node_distance(k, i) != distance)
6153 					sched_numa_warn("Node-distance not symmetric");
6154 
6155 				if (sched_debug() && i && !find_numa_distance(distance))
6156 					sched_numa_warn("Node-0 not representative");
6157 			}
6158 			if (next_distance != curr_distance) {
6159 				sched_domains_numa_distance[level++] = next_distance;
6160 				sched_domains_numa_levels = level;
6161 				curr_distance = next_distance;
6162 			} else break;
6163 		}
6164 
6165 		/*
6166 		 * In case of sched_debug() we verify the above assumption.
6167 		 */
6168 		if (!sched_debug())
6169 			break;
6170 	}
6171 	/*
6172 	 * 'level' contains the number of unique distances, excluding the
6173 	 * identity distance node_distance(i,i).
6174 	 *
6175 	 * The sched_domains_numa_distance[] array includes the actual distance
6176 	 * numbers.
6177 	 */
6178 
6179 	/*
6180 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6181 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6182 	 * the array will contain less then 'level' members. This could be
6183 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6184 	 * in other functions.
6185 	 *
6186 	 * We reset it to 'level' at the end of this function.
6187 	 */
6188 	sched_domains_numa_levels = 0;
6189 
6190 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6191 	if (!sched_domains_numa_masks)
6192 		return;
6193 
6194 	/*
6195 	 * Now for each level, construct a mask per node which contains all
6196 	 * cpus of nodes that are that many hops away from us.
6197 	 */
6198 	for (i = 0; i < level; i++) {
6199 		sched_domains_numa_masks[i] =
6200 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6201 		if (!sched_domains_numa_masks[i])
6202 			return;
6203 
6204 		for (j = 0; j < nr_node_ids; j++) {
6205 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6206 			if (!mask)
6207 				return;
6208 
6209 			sched_domains_numa_masks[i][j] = mask;
6210 
6211 			for (k = 0; k < nr_node_ids; k++) {
6212 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6213 					continue;
6214 
6215 				cpumask_or(mask, mask, cpumask_of_node(k));
6216 			}
6217 		}
6218 	}
6219 
6220 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6221 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6222 	if (!tl)
6223 		return;
6224 
6225 	/*
6226 	 * Copy the default topology bits..
6227 	 */
6228 	for (i = 0; default_topology[i].init; i++)
6229 		tl[i] = default_topology[i];
6230 
6231 	/*
6232 	 * .. and append 'j' levels of NUMA goodness.
6233 	 */
6234 	for (j = 0; j < level; i++, j++) {
6235 		tl[i] = (struct sched_domain_topology_level){
6236 			.init = sd_numa_init,
6237 			.mask = sd_numa_mask,
6238 			.flags = SDTL_OVERLAP,
6239 			.numa_level = j,
6240 		};
6241 	}
6242 
6243 	sched_domain_topology = tl;
6244 
6245 	sched_domains_numa_levels = level;
6246 }
6247 
6248 static void sched_domains_numa_masks_set(int cpu)
6249 {
6250 	int i, j;
6251 	int node = cpu_to_node(cpu);
6252 
6253 	for (i = 0; i < sched_domains_numa_levels; i++) {
6254 		for (j = 0; j < nr_node_ids; j++) {
6255 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6256 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6257 		}
6258 	}
6259 }
6260 
6261 static void sched_domains_numa_masks_clear(int cpu)
6262 {
6263 	int i, j;
6264 	for (i = 0; i < sched_domains_numa_levels; i++) {
6265 		for (j = 0; j < nr_node_ids; j++)
6266 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6267 	}
6268 }
6269 
6270 /*
6271  * Update sched_domains_numa_masks[level][node] array when new cpus
6272  * are onlined.
6273  */
6274 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6275 					   unsigned long action,
6276 					   void *hcpu)
6277 {
6278 	int cpu = (long)hcpu;
6279 
6280 	switch (action & ~CPU_TASKS_FROZEN) {
6281 	case CPU_ONLINE:
6282 		sched_domains_numa_masks_set(cpu);
6283 		break;
6284 
6285 	case CPU_DEAD:
6286 		sched_domains_numa_masks_clear(cpu);
6287 		break;
6288 
6289 	default:
6290 		return NOTIFY_DONE;
6291 	}
6292 
6293 	return NOTIFY_OK;
6294 }
6295 #else
6296 static inline void sched_init_numa(void)
6297 {
6298 }
6299 
6300 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6301 					   unsigned long action,
6302 					   void *hcpu)
6303 {
6304 	return 0;
6305 }
6306 #endif /* CONFIG_NUMA */
6307 
6308 static int __sdt_alloc(const struct cpumask *cpu_map)
6309 {
6310 	struct sched_domain_topology_level *tl;
6311 	int j;
6312 
6313 	for_each_sd_topology(tl) {
6314 		struct sd_data *sdd = &tl->data;
6315 
6316 		sdd->sd = alloc_percpu(struct sched_domain *);
6317 		if (!sdd->sd)
6318 			return -ENOMEM;
6319 
6320 		sdd->sg = alloc_percpu(struct sched_group *);
6321 		if (!sdd->sg)
6322 			return -ENOMEM;
6323 
6324 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6325 		if (!sdd->sgp)
6326 			return -ENOMEM;
6327 
6328 		for_each_cpu(j, cpu_map) {
6329 			struct sched_domain *sd;
6330 			struct sched_group *sg;
6331 			struct sched_group_power *sgp;
6332 
6333 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6334 					GFP_KERNEL, cpu_to_node(j));
6335 			if (!sd)
6336 				return -ENOMEM;
6337 
6338 			*per_cpu_ptr(sdd->sd, j) = sd;
6339 
6340 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6341 					GFP_KERNEL, cpu_to_node(j));
6342 			if (!sg)
6343 				return -ENOMEM;
6344 
6345 			sg->next = sg;
6346 
6347 			*per_cpu_ptr(sdd->sg, j) = sg;
6348 
6349 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6350 					GFP_KERNEL, cpu_to_node(j));
6351 			if (!sgp)
6352 				return -ENOMEM;
6353 
6354 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6355 		}
6356 	}
6357 
6358 	return 0;
6359 }
6360 
6361 static void __sdt_free(const struct cpumask *cpu_map)
6362 {
6363 	struct sched_domain_topology_level *tl;
6364 	int j;
6365 
6366 	for_each_sd_topology(tl) {
6367 		struct sd_data *sdd = &tl->data;
6368 
6369 		for_each_cpu(j, cpu_map) {
6370 			struct sched_domain *sd;
6371 
6372 			if (sdd->sd) {
6373 				sd = *per_cpu_ptr(sdd->sd, j);
6374 				if (sd && (sd->flags & SD_OVERLAP))
6375 					free_sched_groups(sd->groups, 0);
6376 				kfree(*per_cpu_ptr(sdd->sd, j));
6377 			}
6378 
6379 			if (sdd->sg)
6380 				kfree(*per_cpu_ptr(sdd->sg, j));
6381 			if (sdd->sgp)
6382 				kfree(*per_cpu_ptr(sdd->sgp, j));
6383 		}
6384 		free_percpu(sdd->sd);
6385 		sdd->sd = NULL;
6386 		free_percpu(sdd->sg);
6387 		sdd->sg = NULL;
6388 		free_percpu(sdd->sgp);
6389 		sdd->sgp = NULL;
6390 	}
6391 }
6392 
6393 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6394 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6395 		struct sched_domain *child, int cpu)
6396 {
6397 	struct sched_domain *sd = tl->init(tl, cpu);
6398 	if (!sd)
6399 		return child;
6400 
6401 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6402 	if (child) {
6403 		sd->level = child->level + 1;
6404 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6405 		child->parent = sd;
6406 		sd->child = child;
6407 	}
6408 	set_domain_attribute(sd, attr);
6409 
6410 	return sd;
6411 }
6412 
6413 /*
6414  * Build sched domains for a given set of cpus and attach the sched domains
6415  * to the individual cpus
6416  */
6417 static int build_sched_domains(const struct cpumask *cpu_map,
6418 			       struct sched_domain_attr *attr)
6419 {
6420 	enum s_alloc alloc_state;
6421 	struct sched_domain *sd;
6422 	struct s_data d;
6423 	int i, ret = -ENOMEM;
6424 
6425 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6426 	if (alloc_state != sa_rootdomain)
6427 		goto error;
6428 
6429 	/* Set up domains for cpus specified by the cpu_map. */
6430 	for_each_cpu(i, cpu_map) {
6431 		struct sched_domain_topology_level *tl;
6432 
6433 		sd = NULL;
6434 		for_each_sd_topology(tl) {
6435 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6436 			if (tl == sched_domain_topology)
6437 				*per_cpu_ptr(d.sd, i) = sd;
6438 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6439 				sd->flags |= SD_OVERLAP;
6440 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6441 				break;
6442 		}
6443 	}
6444 
6445 	/* Build the groups for the domains */
6446 	for_each_cpu(i, cpu_map) {
6447 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6448 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6449 			if (sd->flags & SD_OVERLAP) {
6450 				if (build_overlap_sched_groups(sd, i))
6451 					goto error;
6452 			} else {
6453 				if (build_sched_groups(sd, i))
6454 					goto error;
6455 			}
6456 		}
6457 	}
6458 
6459 	/* Calculate CPU power for physical packages and nodes */
6460 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6461 		if (!cpumask_test_cpu(i, cpu_map))
6462 			continue;
6463 
6464 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6465 			claim_allocations(i, sd);
6466 			init_sched_groups_power(i, sd);
6467 		}
6468 	}
6469 
6470 	/* Attach the domains */
6471 	rcu_read_lock();
6472 	for_each_cpu(i, cpu_map) {
6473 		sd = *per_cpu_ptr(d.sd, i);
6474 		cpu_attach_domain(sd, d.rd, i);
6475 	}
6476 	rcu_read_unlock();
6477 
6478 	ret = 0;
6479 error:
6480 	__free_domain_allocs(&d, alloc_state, cpu_map);
6481 	return ret;
6482 }
6483 
6484 static cpumask_var_t *doms_cur;	/* current sched domains */
6485 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6486 static struct sched_domain_attr *dattr_cur;
6487 				/* attribues of custom domains in 'doms_cur' */
6488 
6489 /*
6490  * Special case: If a kmalloc of a doms_cur partition (array of
6491  * cpumask) fails, then fallback to a single sched domain,
6492  * as determined by the single cpumask fallback_doms.
6493  */
6494 static cpumask_var_t fallback_doms;
6495 
6496 /*
6497  * arch_update_cpu_topology lets virtualized architectures update the
6498  * cpu core maps. It is supposed to return 1 if the topology changed
6499  * or 0 if it stayed the same.
6500  */
6501 int __attribute__((weak)) arch_update_cpu_topology(void)
6502 {
6503 	return 0;
6504 }
6505 
6506 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6507 {
6508 	int i;
6509 	cpumask_var_t *doms;
6510 
6511 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6512 	if (!doms)
6513 		return NULL;
6514 	for (i = 0; i < ndoms; i++) {
6515 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6516 			free_sched_domains(doms, i);
6517 			return NULL;
6518 		}
6519 	}
6520 	return doms;
6521 }
6522 
6523 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6524 {
6525 	unsigned int i;
6526 	for (i = 0; i < ndoms; i++)
6527 		free_cpumask_var(doms[i]);
6528 	kfree(doms);
6529 }
6530 
6531 /*
6532  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6533  * For now this just excludes isolated cpus, but could be used to
6534  * exclude other special cases in the future.
6535  */
6536 static int init_sched_domains(const struct cpumask *cpu_map)
6537 {
6538 	int err;
6539 
6540 	arch_update_cpu_topology();
6541 	ndoms_cur = 1;
6542 	doms_cur = alloc_sched_domains(ndoms_cur);
6543 	if (!doms_cur)
6544 		doms_cur = &fallback_doms;
6545 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6546 	err = build_sched_domains(doms_cur[0], NULL);
6547 	register_sched_domain_sysctl();
6548 
6549 	return err;
6550 }
6551 
6552 /*
6553  * Detach sched domains from a group of cpus specified in cpu_map
6554  * These cpus will now be attached to the NULL domain
6555  */
6556 static void detach_destroy_domains(const struct cpumask *cpu_map)
6557 {
6558 	int i;
6559 
6560 	rcu_read_lock();
6561 	for_each_cpu(i, cpu_map)
6562 		cpu_attach_domain(NULL, &def_root_domain, i);
6563 	rcu_read_unlock();
6564 }
6565 
6566 /* handle null as "default" */
6567 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6568 			struct sched_domain_attr *new, int idx_new)
6569 {
6570 	struct sched_domain_attr tmp;
6571 
6572 	/* fast path */
6573 	if (!new && !cur)
6574 		return 1;
6575 
6576 	tmp = SD_ATTR_INIT;
6577 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6578 			new ? (new + idx_new) : &tmp,
6579 			sizeof(struct sched_domain_attr));
6580 }
6581 
6582 /*
6583  * Partition sched domains as specified by the 'ndoms_new'
6584  * cpumasks in the array doms_new[] of cpumasks. This compares
6585  * doms_new[] to the current sched domain partitioning, doms_cur[].
6586  * It destroys each deleted domain and builds each new domain.
6587  *
6588  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6589  * The masks don't intersect (don't overlap.) We should setup one
6590  * sched domain for each mask. CPUs not in any of the cpumasks will
6591  * not be load balanced. If the same cpumask appears both in the
6592  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6593  * it as it is.
6594  *
6595  * The passed in 'doms_new' should be allocated using
6596  * alloc_sched_domains.  This routine takes ownership of it and will
6597  * free_sched_domains it when done with it. If the caller failed the
6598  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6599  * and partition_sched_domains() will fallback to the single partition
6600  * 'fallback_doms', it also forces the domains to be rebuilt.
6601  *
6602  * If doms_new == NULL it will be replaced with cpu_online_mask.
6603  * ndoms_new == 0 is a special case for destroying existing domains,
6604  * and it will not create the default domain.
6605  *
6606  * Call with hotplug lock held
6607  */
6608 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6609 			     struct sched_domain_attr *dattr_new)
6610 {
6611 	int i, j, n;
6612 	int new_topology;
6613 
6614 	mutex_lock(&sched_domains_mutex);
6615 
6616 	/* always unregister in case we don't destroy any domains */
6617 	unregister_sched_domain_sysctl();
6618 
6619 	/* Let architecture update cpu core mappings. */
6620 	new_topology = arch_update_cpu_topology();
6621 
6622 	n = doms_new ? ndoms_new : 0;
6623 
6624 	/* Destroy deleted domains */
6625 	for (i = 0; i < ndoms_cur; i++) {
6626 		for (j = 0; j < n && !new_topology; j++) {
6627 			if (cpumask_equal(doms_cur[i], doms_new[j])
6628 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6629 				goto match1;
6630 		}
6631 		/* no match - a current sched domain not in new doms_new[] */
6632 		detach_destroy_domains(doms_cur[i]);
6633 match1:
6634 		;
6635 	}
6636 
6637 	n = ndoms_cur;
6638 	if (doms_new == NULL) {
6639 		n = 0;
6640 		doms_new = &fallback_doms;
6641 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6642 		WARN_ON_ONCE(dattr_new);
6643 	}
6644 
6645 	/* Build new domains */
6646 	for (i = 0; i < ndoms_new; i++) {
6647 		for (j = 0; j < n && !new_topology; j++) {
6648 			if (cpumask_equal(doms_new[i], doms_cur[j])
6649 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6650 				goto match2;
6651 		}
6652 		/* no match - add a new doms_new */
6653 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6654 match2:
6655 		;
6656 	}
6657 
6658 	/* Remember the new sched domains */
6659 	if (doms_cur != &fallback_doms)
6660 		free_sched_domains(doms_cur, ndoms_cur);
6661 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6662 	doms_cur = doms_new;
6663 	dattr_cur = dattr_new;
6664 	ndoms_cur = ndoms_new;
6665 
6666 	register_sched_domain_sysctl();
6667 
6668 	mutex_unlock(&sched_domains_mutex);
6669 }
6670 
6671 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6672 
6673 /*
6674  * Update cpusets according to cpu_active mask.  If cpusets are
6675  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6676  * around partition_sched_domains().
6677  *
6678  * If we come here as part of a suspend/resume, don't touch cpusets because we
6679  * want to restore it back to its original state upon resume anyway.
6680  */
6681 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6682 			     void *hcpu)
6683 {
6684 	switch (action) {
6685 	case CPU_ONLINE_FROZEN:
6686 	case CPU_DOWN_FAILED_FROZEN:
6687 
6688 		/*
6689 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6690 		 * resume sequence. As long as this is not the last online
6691 		 * operation in the resume sequence, just build a single sched
6692 		 * domain, ignoring cpusets.
6693 		 */
6694 		num_cpus_frozen--;
6695 		if (likely(num_cpus_frozen)) {
6696 			partition_sched_domains(1, NULL, NULL);
6697 			break;
6698 		}
6699 
6700 		/*
6701 		 * This is the last CPU online operation. So fall through and
6702 		 * restore the original sched domains by considering the
6703 		 * cpuset configurations.
6704 		 */
6705 
6706 	case CPU_ONLINE:
6707 	case CPU_DOWN_FAILED:
6708 		cpuset_update_active_cpus(true);
6709 		break;
6710 	default:
6711 		return NOTIFY_DONE;
6712 	}
6713 	return NOTIFY_OK;
6714 }
6715 
6716 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6717 			       void *hcpu)
6718 {
6719 	switch (action) {
6720 	case CPU_DOWN_PREPARE:
6721 		cpuset_update_active_cpus(false);
6722 		break;
6723 	case CPU_DOWN_PREPARE_FROZEN:
6724 		num_cpus_frozen++;
6725 		partition_sched_domains(1, NULL, NULL);
6726 		break;
6727 	default:
6728 		return NOTIFY_DONE;
6729 	}
6730 	return NOTIFY_OK;
6731 }
6732 
6733 void __init sched_init_smp(void)
6734 {
6735 	cpumask_var_t non_isolated_cpus;
6736 
6737 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6738 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6739 
6740 	sched_init_numa();
6741 
6742 	/*
6743 	 * There's no userspace yet to cause hotplug operations; hence all the
6744 	 * cpu masks are stable and all blatant races in the below code cannot
6745 	 * happen.
6746 	 */
6747 	mutex_lock(&sched_domains_mutex);
6748 	init_sched_domains(cpu_active_mask);
6749 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6750 	if (cpumask_empty(non_isolated_cpus))
6751 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6752 	mutex_unlock(&sched_domains_mutex);
6753 
6754 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6755 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6756 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6757 
6758 	init_hrtick();
6759 
6760 	/* Move init over to a non-isolated CPU */
6761 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6762 		BUG();
6763 	sched_init_granularity();
6764 	free_cpumask_var(non_isolated_cpus);
6765 
6766 	init_sched_rt_class();
6767 	init_sched_dl_class();
6768 }
6769 #else
6770 void __init sched_init_smp(void)
6771 {
6772 	sched_init_granularity();
6773 }
6774 #endif /* CONFIG_SMP */
6775 
6776 const_debug unsigned int sysctl_timer_migration = 1;
6777 
6778 int in_sched_functions(unsigned long addr)
6779 {
6780 	return in_lock_functions(addr) ||
6781 		(addr >= (unsigned long)__sched_text_start
6782 		&& addr < (unsigned long)__sched_text_end);
6783 }
6784 
6785 #ifdef CONFIG_CGROUP_SCHED
6786 /*
6787  * Default task group.
6788  * Every task in system belongs to this group at bootup.
6789  */
6790 struct task_group root_task_group;
6791 LIST_HEAD(task_groups);
6792 #endif
6793 
6794 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6795 
6796 void __init sched_init(void)
6797 {
6798 	int i, j;
6799 	unsigned long alloc_size = 0, ptr;
6800 
6801 #ifdef CONFIG_FAIR_GROUP_SCHED
6802 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6803 #endif
6804 #ifdef CONFIG_RT_GROUP_SCHED
6805 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6806 #endif
6807 #ifdef CONFIG_CPUMASK_OFFSTACK
6808 	alloc_size += num_possible_cpus() * cpumask_size();
6809 #endif
6810 	if (alloc_size) {
6811 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6812 
6813 #ifdef CONFIG_FAIR_GROUP_SCHED
6814 		root_task_group.se = (struct sched_entity **)ptr;
6815 		ptr += nr_cpu_ids * sizeof(void **);
6816 
6817 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6818 		ptr += nr_cpu_ids * sizeof(void **);
6819 
6820 #endif /* CONFIG_FAIR_GROUP_SCHED */
6821 #ifdef CONFIG_RT_GROUP_SCHED
6822 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6823 		ptr += nr_cpu_ids * sizeof(void **);
6824 
6825 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6826 		ptr += nr_cpu_ids * sizeof(void **);
6827 
6828 #endif /* CONFIG_RT_GROUP_SCHED */
6829 #ifdef CONFIG_CPUMASK_OFFSTACK
6830 		for_each_possible_cpu(i) {
6831 			per_cpu(load_balance_mask, i) = (void *)ptr;
6832 			ptr += cpumask_size();
6833 		}
6834 #endif /* CONFIG_CPUMASK_OFFSTACK */
6835 	}
6836 
6837 	init_rt_bandwidth(&def_rt_bandwidth,
6838 			global_rt_period(), global_rt_runtime());
6839 	init_dl_bandwidth(&def_dl_bandwidth,
6840 			global_rt_period(), global_rt_runtime());
6841 
6842 #ifdef CONFIG_SMP
6843 	init_defrootdomain();
6844 #endif
6845 
6846 #ifdef CONFIG_RT_GROUP_SCHED
6847 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6848 			global_rt_period(), global_rt_runtime());
6849 #endif /* CONFIG_RT_GROUP_SCHED */
6850 
6851 #ifdef CONFIG_CGROUP_SCHED
6852 	list_add(&root_task_group.list, &task_groups);
6853 	INIT_LIST_HEAD(&root_task_group.children);
6854 	INIT_LIST_HEAD(&root_task_group.siblings);
6855 	autogroup_init(&init_task);
6856 
6857 #endif /* CONFIG_CGROUP_SCHED */
6858 
6859 	for_each_possible_cpu(i) {
6860 		struct rq *rq;
6861 
6862 		rq = cpu_rq(i);
6863 		raw_spin_lock_init(&rq->lock);
6864 		rq->nr_running = 0;
6865 		rq->calc_load_active = 0;
6866 		rq->calc_load_update = jiffies + LOAD_FREQ;
6867 		init_cfs_rq(&rq->cfs);
6868 		init_rt_rq(&rq->rt, rq);
6869 		init_dl_rq(&rq->dl, rq);
6870 #ifdef CONFIG_FAIR_GROUP_SCHED
6871 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6872 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6873 		/*
6874 		 * How much cpu bandwidth does root_task_group get?
6875 		 *
6876 		 * In case of task-groups formed thr' the cgroup filesystem, it
6877 		 * gets 100% of the cpu resources in the system. This overall
6878 		 * system cpu resource is divided among the tasks of
6879 		 * root_task_group and its child task-groups in a fair manner,
6880 		 * based on each entity's (task or task-group's) weight
6881 		 * (se->load.weight).
6882 		 *
6883 		 * In other words, if root_task_group has 10 tasks of weight
6884 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6885 		 * then A0's share of the cpu resource is:
6886 		 *
6887 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6888 		 *
6889 		 * We achieve this by letting root_task_group's tasks sit
6890 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6891 		 */
6892 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6893 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6894 #endif /* CONFIG_FAIR_GROUP_SCHED */
6895 
6896 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6897 #ifdef CONFIG_RT_GROUP_SCHED
6898 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6899 #endif
6900 
6901 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6902 			rq->cpu_load[j] = 0;
6903 
6904 		rq->last_load_update_tick = jiffies;
6905 
6906 #ifdef CONFIG_SMP
6907 		rq->sd = NULL;
6908 		rq->rd = NULL;
6909 		rq->cpu_power = SCHED_POWER_SCALE;
6910 		rq->post_schedule = 0;
6911 		rq->active_balance = 0;
6912 		rq->next_balance = jiffies;
6913 		rq->push_cpu = 0;
6914 		rq->cpu = i;
6915 		rq->online = 0;
6916 		rq->idle_stamp = 0;
6917 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6918 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6919 
6920 		INIT_LIST_HEAD(&rq->cfs_tasks);
6921 
6922 		rq_attach_root(rq, &def_root_domain);
6923 #ifdef CONFIG_NO_HZ_COMMON
6924 		rq->nohz_flags = 0;
6925 #endif
6926 #ifdef CONFIG_NO_HZ_FULL
6927 		rq->last_sched_tick = 0;
6928 #endif
6929 #endif
6930 		init_rq_hrtick(rq);
6931 		atomic_set(&rq->nr_iowait, 0);
6932 	}
6933 
6934 	set_load_weight(&init_task);
6935 
6936 #ifdef CONFIG_PREEMPT_NOTIFIERS
6937 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6938 #endif
6939 
6940 	/*
6941 	 * The boot idle thread does lazy MMU switching as well:
6942 	 */
6943 	atomic_inc(&init_mm.mm_count);
6944 	enter_lazy_tlb(&init_mm, current);
6945 
6946 	/*
6947 	 * Make us the idle thread. Technically, schedule() should not be
6948 	 * called from this thread, however somewhere below it might be,
6949 	 * but because we are the idle thread, we just pick up running again
6950 	 * when this runqueue becomes "idle".
6951 	 */
6952 	init_idle(current, smp_processor_id());
6953 
6954 	calc_load_update = jiffies + LOAD_FREQ;
6955 
6956 	/*
6957 	 * During early bootup we pretend to be a normal task:
6958 	 */
6959 	current->sched_class = &fair_sched_class;
6960 
6961 #ifdef CONFIG_SMP
6962 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6963 	/* May be allocated at isolcpus cmdline parse time */
6964 	if (cpu_isolated_map == NULL)
6965 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6966 	idle_thread_set_boot_cpu();
6967 #endif
6968 	init_sched_fair_class();
6969 
6970 	scheduler_running = 1;
6971 }
6972 
6973 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6974 static inline int preempt_count_equals(int preempt_offset)
6975 {
6976 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6977 
6978 	return (nested == preempt_offset);
6979 }
6980 
6981 void __might_sleep(const char *file, int line, int preempt_offset)
6982 {
6983 	static unsigned long prev_jiffy;	/* ratelimiting */
6984 
6985 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6986 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6987 	     !is_idle_task(current)) ||
6988 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6989 		return;
6990 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6991 		return;
6992 	prev_jiffy = jiffies;
6993 
6994 	printk(KERN_ERR
6995 		"BUG: sleeping function called from invalid context at %s:%d\n",
6996 			file, line);
6997 	printk(KERN_ERR
6998 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6999 			in_atomic(), irqs_disabled(),
7000 			current->pid, current->comm);
7001 
7002 	debug_show_held_locks(current);
7003 	if (irqs_disabled())
7004 		print_irqtrace_events(current);
7005 #ifdef CONFIG_DEBUG_PREEMPT
7006 	if (!preempt_count_equals(preempt_offset)) {
7007 		pr_err("Preemption disabled at:");
7008 		print_ip_sym(current->preempt_disable_ip);
7009 		pr_cont("\n");
7010 	}
7011 #endif
7012 	dump_stack();
7013 }
7014 EXPORT_SYMBOL(__might_sleep);
7015 #endif
7016 
7017 #ifdef CONFIG_MAGIC_SYSRQ
7018 static void normalize_task(struct rq *rq, struct task_struct *p)
7019 {
7020 	const struct sched_class *prev_class = p->sched_class;
7021 	struct sched_attr attr = {
7022 		.sched_policy = SCHED_NORMAL,
7023 	};
7024 	int old_prio = p->prio;
7025 	int on_rq;
7026 
7027 	on_rq = p->on_rq;
7028 	if (on_rq)
7029 		dequeue_task(rq, p, 0);
7030 	__setscheduler(rq, p, &attr);
7031 	if (on_rq) {
7032 		enqueue_task(rq, p, 0);
7033 		resched_task(rq->curr);
7034 	}
7035 
7036 	check_class_changed(rq, p, prev_class, old_prio);
7037 }
7038 
7039 void normalize_rt_tasks(void)
7040 {
7041 	struct task_struct *g, *p;
7042 	unsigned long flags;
7043 	struct rq *rq;
7044 
7045 	read_lock_irqsave(&tasklist_lock, flags);
7046 	do_each_thread(g, p) {
7047 		/*
7048 		 * Only normalize user tasks:
7049 		 */
7050 		if (!p->mm)
7051 			continue;
7052 
7053 		p->se.exec_start		= 0;
7054 #ifdef CONFIG_SCHEDSTATS
7055 		p->se.statistics.wait_start	= 0;
7056 		p->se.statistics.sleep_start	= 0;
7057 		p->se.statistics.block_start	= 0;
7058 #endif
7059 
7060 		if (!dl_task(p) && !rt_task(p)) {
7061 			/*
7062 			 * Renice negative nice level userspace
7063 			 * tasks back to 0:
7064 			 */
7065 			if (task_nice(p) < 0 && p->mm)
7066 				set_user_nice(p, 0);
7067 			continue;
7068 		}
7069 
7070 		raw_spin_lock(&p->pi_lock);
7071 		rq = __task_rq_lock(p);
7072 
7073 		normalize_task(rq, p);
7074 
7075 		__task_rq_unlock(rq);
7076 		raw_spin_unlock(&p->pi_lock);
7077 	} while_each_thread(g, p);
7078 
7079 	read_unlock_irqrestore(&tasklist_lock, flags);
7080 }
7081 
7082 #endif /* CONFIG_MAGIC_SYSRQ */
7083 
7084 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7085 /*
7086  * These functions are only useful for the IA64 MCA handling, or kdb.
7087  *
7088  * They can only be called when the whole system has been
7089  * stopped - every CPU needs to be quiescent, and no scheduling
7090  * activity can take place. Using them for anything else would
7091  * be a serious bug, and as a result, they aren't even visible
7092  * under any other configuration.
7093  */
7094 
7095 /**
7096  * curr_task - return the current task for a given cpu.
7097  * @cpu: the processor in question.
7098  *
7099  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7100  *
7101  * Return: The current task for @cpu.
7102  */
7103 struct task_struct *curr_task(int cpu)
7104 {
7105 	return cpu_curr(cpu);
7106 }
7107 
7108 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7109 
7110 #ifdef CONFIG_IA64
7111 /**
7112  * set_curr_task - set the current task for a given cpu.
7113  * @cpu: the processor in question.
7114  * @p: the task pointer to set.
7115  *
7116  * Description: This function must only be used when non-maskable interrupts
7117  * are serviced on a separate stack. It allows the architecture to switch the
7118  * notion of the current task on a cpu in a non-blocking manner. This function
7119  * must be called with all CPU's synchronized, and interrupts disabled, the
7120  * and caller must save the original value of the current task (see
7121  * curr_task() above) and restore that value before reenabling interrupts and
7122  * re-starting the system.
7123  *
7124  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7125  */
7126 void set_curr_task(int cpu, struct task_struct *p)
7127 {
7128 	cpu_curr(cpu) = p;
7129 }
7130 
7131 #endif
7132 
7133 #ifdef CONFIG_CGROUP_SCHED
7134 /* task_group_lock serializes the addition/removal of task groups */
7135 static DEFINE_SPINLOCK(task_group_lock);
7136 
7137 static void free_sched_group(struct task_group *tg)
7138 {
7139 	free_fair_sched_group(tg);
7140 	free_rt_sched_group(tg);
7141 	autogroup_free(tg);
7142 	kfree(tg);
7143 }
7144 
7145 /* allocate runqueue etc for a new task group */
7146 struct task_group *sched_create_group(struct task_group *parent)
7147 {
7148 	struct task_group *tg;
7149 
7150 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7151 	if (!tg)
7152 		return ERR_PTR(-ENOMEM);
7153 
7154 	if (!alloc_fair_sched_group(tg, parent))
7155 		goto err;
7156 
7157 	if (!alloc_rt_sched_group(tg, parent))
7158 		goto err;
7159 
7160 	return tg;
7161 
7162 err:
7163 	free_sched_group(tg);
7164 	return ERR_PTR(-ENOMEM);
7165 }
7166 
7167 void sched_online_group(struct task_group *tg, struct task_group *parent)
7168 {
7169 	unsigned long flags;
7170 
7171 	spin_lock_irqsave(&task_group_lock, flags);
7172 	list_add_rcu(&tg->list, &task_groups);
7173 
7174 	WARN_ON(!parent); /* root should already exist */
7175 
7176 	tg->parent = parent;
7177 	INIT_LIST_HEAD(&tg->children);
7178 	list_add_rcu(&tg->siblings, &parent->children);
7179 	spin_unlock_irqrestore(&task_group_lock, flags);
7180 }
7181 
7182 /* rcu callback to free various structures associated with a task group */
7183 static void free_sched_group_rcu(struct rcu_head *rhp)
7184 {
7185 	/* now it should be safe to free those cfs_rqs */
7186 	free_sched_group(container_of(rhp, struct task_group, rcu));
7187 }
7188 
7189 /* Destroy runqueue etc associated with a task group */
7190 void sched_destroy_group(struct task_group *tg)
7191 {
7192 	/* wait for possible concurrent references to cfs_rqs complete */
7193 	call_rcu(&tg->rcu, free_sched_group_rcu);
7194 }
7195 
7196 void sched_offline_group(struct task_group *tg)
7197 {
7198 	unsigned long flags;
7199 	int i;
7200 
7201 	/* end participation in shares distribution */
7202 	for_each_possible_cpu(i)
7203 		unregister_fair_sched_group(tg, i);
7204 
7205 	spin_lock_irqsave(&task_group_lock, flags);
7206 	list_del_rcu(&tg->list);
7207 	list_del_rcu(&tg->siblings);
7208 	spin_unlock_irqrestore(&task_group_lock, flags);
7209 }
7210 
7211 /* change task's runqueue when it moves between groups.
7212  *	The caller of this function should have put the task in its new group
7213  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214  *	reflect its new group.
7215  */
7216 void sched_move_task(struct task_struct *tsk)
7217 {
7218 	struct task_group *tg;
7219 	int on_rq, running;
7220 	unsigned long flags;
7221 	struct rq *rq;
7222 
7223 	rq = task_rq_lock(tsk, &flags);
7224 
7225 	running = task_current(rq, tsk);
7226 	on_rq = tsk->on_rq;
7227 
7228 	if (on_rq)
7229 		dequeue_task(rq, tsk, 0);
7230 	if (unlikely(running))
7231 		tsk->sched_class->put_prev_task(rq, tsk);
7232 
7233 	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7234 				lockdep_is_held(&tsk->sighand->siglock)),
7235 			  struct task_group, css);
7236 	tg = autogroup_task_group(tsk, tg);
7237 	tsk->sched_task_group = tg;
7238 
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 	if (tsk->sched_class->task_move_group)
7241 		tsk->sched_class->task_move_group(tsk, on_rq);
7242 	else
7243 #endif
7244 		set_task_rq(tsk, task_cpu(tsk));
7245 
7246 	if (unlikely(running))
7247 		tsk->sched_class->set_curr_task(rq);
7248 	if (on_rq)
7249 		enqueue_task(rq, tsk, 0);
7250 
7251 	task_rq_unlock(rq, tsk, &flags);
7252 }
7253 #endif /* CONFIG_CGROUP_SCHED */
7254 
7255 #ifdef CONFIG_RT_GROUP_SCHED
7256 /*
7257  * Ensure that the real time constraints are schedulable.
7258  */
7259 static DEFINE_MUTEX(rt_constraints_mutex);
7260 
7261 /* Must be called with tasklist_lock held */
7262 static inline int tg_has_rt_tasks(struct task_group *tg)
7263 {
7264 	struct task_struct *g, *p;
7265 
7266 	do_each_thread(g, p) {
7267 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7268 			return 1;
7269 	} while_each_thread(g, p);
7270 
7271 	return 0;
7272 }
7273 
7274 struct rt_schedulable_data {
7275 	struct task_group *tg;
7276 	u64 rt_period;
7277 	u64 rt_runtime;
7278 };
7279 
7280 static int tg_rt_schedulable(struct task_group *tg, void *data)
7281 {
7282 	struct rt_schedulable_data *d = data;
7283 	struct task_group *child;
7284 	unsigned long total, sum = 0;
7285 	u64 period, runtime;
7286 
7287 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7288 	runtime = tg->rt_bandwidth.rt_runtime;
7289 
7290 	if (tg == d->tg) {
7291 		period = d->rt_period;
7292 		runtime = d->rt_runtime;
7293 	}
7294 
7295 	/*
7296 	 * Cannot have more runtime than the period.
7297 	 */
7298 	if (runtime > period && runtime != RUNTIME_INF)
7299 		return -EINVAL;
7300 
7301 	/*
7302 	 * Ensure we don't starve existing RT tasks.
7303 	 */
7304 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7305 		return -EBUSY;
7306 
7307 	total = to_ratio(period, runtime);
7308 
7309 	/*
7310 	 * Nobody can have more than the global setting allows.
7311 	 */
7312 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7313 		return -EINVAL;
7314 
7315 	/*
7316 	 * The sum of our children's runtime should not exceed our own.
7317 	 */
7318 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7319 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7320 		runtime = child->rt_bandwidth.rt_runtime;
7321 
7322 		if (child == d->tg) {
7323 			period = d->rt_period;
7324 			runtime = d->rt_runtime;
7325 		}
7326 
7327 		sum += to_ratio(period, runtime);
7328 	}
7329 
7330 	if (sum > total)
7331 		return -EINVAL;
7332 
7333 	return 0;
7334 }
7335 
7336 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7337 {
7338 	int ret;
7339 
7340 	struct rt_schedulable_data data = {
7341 		.tg = tg,
7342 		.rt_period = period,
7343 		.rt_runtime = runtime,
7344 	};
7345 
7346 	rcu_read_lock();
7347 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7348 	rcu_read_unlock();
7349 
7350 	return ret;
7351 }
7352 
7353 static int tg_set_rt_bandwidth(struct task_group *tg,
7354 		u64 rt_period, u64 rt_runtime)
7355 {
7356 	int i, err = 0;
7357 
7358 	mutex_lock(&rt_constraints_mutex);
7359 	read_lock(&tasklist_lock);
7360 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7361 	if (err)
7362 		goto unlock;
7363 
7364 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7366 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7367 
7368 	for_each_possible_cpu(i) {
7369 		struct rt_rq *rt_rq = tg->rt_rq[i];
7370 
7371 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7372 		rt_rq->rt_runtime = rt_runtime;
7373 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7374 	}
7375 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7376 unlock:
7377 	read_unlock(&tasklist_lock);
7378 	mutex_unlock(&rt_constraints_mutex);
7379 
7380 	return err;
7381 }
7382 
7383 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7384 {
7385 	u64 rt_runtime, rt_period;
7386 
7387 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7389 	if (rt_runtime_us < 0)
7390 		rt_runtime = RUNTIME_INF;
7391 
7392 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7393 }
7394 
7395 static long sched_group_rt_runtime(struct task_group *tg)
7396 {
7397 	u64 rt_runtime_us;
7398 
7399 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7400 		return -1;
7401 
7402 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7403 	do_div(rt_runtime_us, NSEC_PER_USEC);
7404 	return rt_runtime_us;
7405 }
7406 
7407 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7408 {
7409 	u64 rt_runtime, rt_period;
7410 
7411 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7412 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7413 
7414 	if (rt_period == 0)
7415 		return -EINVAL;
7416 
7417 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7418 }
7419 
7420 static long sched_group_rt_period(struct task_group *tg)
7421 {
7422 	u64 rt_period_us;
7423 
7424 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7425 	do_div(rt_period_us, NSEC_PER_USEC);
7426 	return rt_period_us;
7427 }
7428 #endif /* CONFIG_RT_GROUP_SCHED */
7429 
7430 #ifdef CONFIG_RT_GROUP_SCHED
7431 static int sched_rt_global_constraints(void)
7432 {
7433 	int ret = 0;
7434 
7435 	mutex_lock(&rt_constraints_mutex);
7436 	read_lock(&tasklist_lock);
7437 	ret = __rt_schedulable(NULL, 0, 0);
7438 	read_unlock(&tasklist_lock);
7439 	mutex_unlock(&rt_constraints_mutex);
7440 
7441 	return ret;
7442 }
7443 
7444 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7445 {
7446 	/* Don't accept realtime tasks when there is no way for them to run */
7447 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7448 		return 0;
7449 
7450 	return 1;
7451 }
7452 
7453 #else /* !CONFIG_RT_GROUP_SCHED */
7454 static int sched_rt_global_constraints(void)
7455 {
7456 	unsigned long flags;
7457 	int i, ret = 0;
7458 
7459 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7460 	for_each_possible_cpu(i) {
7461 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7462 
7463 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7464 		rt_rq->rt_runtime = global_rt_runtime();
7465 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7466 	}
7467 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7468 
7469 	return ret;
7470 }
7471 #endif /* CONFIG_RT_GROUP_SCHED */
7472 
7473 static int sched_dl_global_constraints(void)
7474 {
7475 	u64 runtime = global_rt_runtime();
7476 	u64 period = global_rt_period();
7477 	u64 new_bw = to_ratio(period, runtime);
7478 	int cpu, ret = 0;
7479 	unsigned long flags;
7480 
7481 	/*
7482 	 * Here we want to check the bandwidth not being set to some
7483 	 * value smaller than the currently allocated bandwidth in
7484 	 * any of the root_domains.
7485 	 *
7486 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7487 	 * cycling on root_domains... Discussion on different/better
7488 	 * solutions is welcome!
7489 	 */
7490 	for_each_possible_cpu(cpu) {
7491 		struct dl_bw *dl_b = dl_bw_of(cpu);
7492 
7493 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7494 		if (new_bw < dl_b->total_bw)
7495 			ret = -EBUSY;
7496 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7497 
7498 		if (ret)
7499 			break;
7500 	}
7501 
7502 	return ret;
7503 }
7504 
7505 static void sched_dl_do_global(void)
7506 {
7507 	u64 new_bw = -1;
7508 	int cpu;
7509 	unsigned long flags;
7510 
7511 	def_dl_bandwidth.dl_period = global_rt_period();
7512 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7513 
7514 	if (global_rt_runtime() != RUNTIME_INF)
7515 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7516 
7517 	/*
7518 	 * FIXME: As above...
7519 	 */
7520 	for_each_possible_cpu(cpu) {
7521 		struct dl_bw *dl_b = dl_bw_of(cpu);
7522 
7523 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7524 		dl_b->bw = new_bw;
7525 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7526 	}
7527 }
7528 
7529 static int sched_rt_global_validate(void)
7530 {
7531 	if (sysctl_sched_rt_period <= 0)
7532 		return -EINVAL;
7533 
7534 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7535 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7536 		return -EINVAL;
7537 
7538 	return 0;
7539 }
7540 
7541 static void sched_rt_do_global(void)
7542 {
7543 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7544 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7545 }
7546 
7547 int sched_rt_handler(struct ctl_table *table, int write,
7548 		void __user *buffer, size_t *lenp,
7549 		loff_t *ppos)
7550 {
7551 	int old_period, old_runtime;
7552 	static DEFINE_MUTEX(mutex);
7553 	int ret;
7554 
7555 	mutex_lock(&mutex);
7556 	old_period = sysctl_sched_rt_period;
7557 	old_runtime = sysctl_sched_rt_runtime;
7558 
7559 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7560 
7561 	if (!ret && write) {
7562 		ret = sched_rt_global_validate();
7563 		if (ret)
7564 			goto undo;
7565 
7566 		ret = sched_rt_global_constraints();
7567 		if (ret)
7568 			goto undo;
7569 
7570 		ret = sched_dl_global_constraints();
7571 		if (ret)
7572 			goto undo;
7573 
7574 		sched_rt_do_global();
7575 		sched_dl_do_global();
7576 	}
7577 	if (0) {
7578 undo:
7579 		sysctl_sched_rt_period = old_period;
7580 		sysctl_sched_rt_runtime = old_runtime;
7581 	}
7582 	mutex_unlock(&mutex);
7583 
7584 	return ret;
7585 }
7586 
7587 int sched_rr_handler(struct ctl_table *table, int write,
7588 		void __user *buffer, size_t *lenp,
7589 		loff_t *ppos)
7590 {
7591 	int ret;
7592 	static DEFINE_MUTEX(mutex);
7593 
7594 	mutex_lock(&mutex);
7595 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7596 	/* make sure that internally we keep jiffies */
7597 	/* also, writing zero resets timeslice to default */
7598 	if (!ret && write) {
7599 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7600 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7601 	}
7602 	mutex_unlock(&mutex);
7603 	return ret;
7604 }
7605 
7606 #ifdef CONFIG_CGROUP_SCHED
7607 
7608 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7609 {
7610 	return css ? container_of(css, struct task_group, css) : NULL;
7611 }
7612 
7613 static struct cgroup_subsys_state *
7614 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7615 {
7616 	struct task_group *parent = css_tg(parent_css);
7617 	struct task_group *tg;
7618 
7619 	if (!parent) {
7620 		/* This is early initialization for the top cgroup */
7621 		return &root_task_group.css;
7622 	}
7623 
7624 	tg = sched_create_group(parent);
7625 	if (IS_ERR(tg))
7626 		return ERR_PTR(-ENOMEM);
7627 
7628 	return &tg->css;
7629 }
7630 
7631 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7632 {
7633 	struct task_group *tg = css_tg(css);
7634 	struct task_group *parent = css_tg(css_parent(css));
7635 
7636 	if (parent)
7637 		sched_online_group(tg, parent);
7638 	return 0;
7639 }
7640 
7641 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7642 {
7643 	struct task_group *tg = css_tg(css);
7644 
7645 	sched_destroy_group(tg);
7646 }
7647 
7648 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7649 {
7650 	struct task_group *tg = css_tg(css);
7651 
7652 	sched_offline_group(tg);
7653 }
7654 
7655 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7656 				 struct cgroup_taskset *tset)
7657 {
7658 	struct task_struct *task;
7659 
7660 	cgroup_taskset_for_each(task, css, tset) {
7661 #ifdef CONFIG_RT_GROUP_SCHED
7662 		if (!sched_rt_can_attach(css_tg(css), task))
7663 			return -EINVAL;
7664 #else
7665 		/* We don't support RT-tasks being in separate groups */
7666 		if (task->sched_class != &fair_sched_class)
7667 			return -EINVAL;
7668 #endif
7669 	}
7670 	return 0;
7671 }
7672 
7673 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7674 			      struct cgroup_taskset *tset)
7675 {
7676 	struct task_struct *task;
7677 
7678 	cgroup_taskset_for_each(task, css, tset)
7679 		sched_move_task(task);
7680 }
7681 
7682 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7683 			    struct cgroup_subsys_state *old_css,
7684 			    struct task_struct *task)
7685 {
7686 	/*
7687 	 * cgroup_exit() is called in the copy_process() failure path.
7688 	 * Ignore this case since the task hasn't ran yet, this avoids
7689 	 * trying to poke a half freed task state from generic code.
7690 	 */
7691 	if (!(task->flags & PF_EXITING))
7692 		return;
7693 
7694 	sched_move_task(task);
7695 }
7696 
7697 #ifdef CONFIG_FAIR_GROUP_SCHED
7698 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7699 				struct cftype *cftype, u64 shareval)
7700 {
7701 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7702 }
7703 
7704 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7705 			       struct cftype *cft)
7706 {
7707 	struct task_group *tg = css_tg(css);
7708 
7709 	return (u64) scale_load_down(tg->shares);
7710 }
7711 
7712 #ifdef CONFIG_CFS_BANDWIDTH
7713 static DEFINE_MUTEX(cfs_constraints_mutex);
7714 
7715 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7716 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7717 
7718 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7719 
7720 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7721 {
7722 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7723 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7724 
7725 	if (tg == &root_task_group)
7726 		return -EINVAL;
7727 
7728 	/*
7729 	 * Ensure we have at some amount of bandwidth every period.  This is
7730 	 * to prevent reaching a state of large arrears when throttled via
7731 	 * entity_tick() resulting in prolonged exit starvation.
7732 	 */
7733 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7734 		return -EINVAL;
7735 
7736 	/*
7737 	 * Likewise, bound things on the otherside by preventing insane quota
7738 	 * periods.  This also allows us to normalize in computing quota
7739 	 * feasibility.
7740 	 */
7741 	if (period > max_cfs_quota_period)
7742 		return -EINVAL;
7743 
7744 	mutex_lock(&cfs_constraints_mutex);
7745 	ret = __cfs_schedulable(tg, period, quota);
7746 	if (ret)
7747 		goto out_unlock;
7748 
7749 	runtime_enabled = quota != RUNTIME_INF;
7750 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7751 	/*
7752 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7753 	 * before making related changes, and on->off must occur afterwards
7754 	 */
7755 	if (runtime_enabled && !runtime_was_enabled)
7756 		cfs_bandwidth_usage_inc();
7757 	raw_spin_lock_irq(&cfs_b->lock);
7758 	cfs_b->period = ns_to_ktime(period);
7759 	cfs_b->quota = quota;
7760 
7761 	__refill_cfs_bandwidth_runtime(cfs_b);
7762 	/* restart the period timer (if active) to handle new period expiry */
7763 	if (runtime_enabled && cfs_b->timer_active) {
7764 		/* force a reprogram */
7765 		cfs_b->timer_active = 0;
7766 		__start_cfs_bandwidth(cfs_b);
7767 	}
7768 	raw_spin_unlock_irq(&cfs_b->lock);
7769 
7770 	for_each_possible_cpu(i) {
7771 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7772 		struct rq *rq = cfs_rq->rq;
7773 
7774 		raw_spin_lock_irq(&rq->lock);
7775 		cfs_rq->runtime_enabled = runtime_enabled;
7776 		cfs_rq->runtime_remaining = 0;
7777 
7778 		if (cfs_rq->throttled)
7779 			unthrottle_cfs_rq(cfs_rq);
7780 		raw_spin_unlock_irq(&rq->lock);
7781 	}
7782 	if (runtime_was_enabled && !runtime_enabled)
7783 		cfs_bandwidth_usage_dec();
7784 out_unlock:
7785 	mutex_unlock(&cfs_constraints_mutex);
7786 
7787 	return ret;
7788 }
7789 
7790 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7791 {
7792 	u64 quota, period;
7793 
7794 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7795 	if (cfs_quota_us < 0)
7796 		quota = RUNTIME_INF;
7797 	else
7798 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7799 
7800 	return tg_set_cfs_bandwidth(tg, period, quota);
7801 }
7802 
7803 long tg_get_cfs_quota(struct task_group *tg)
7804 {
7805 	u64 quota_us;
7806 
7807 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7808 		return -1;
7809 
7810 	quota_us = tg->cfs_bandwidth.quota;
7811 	do_div(quota_us, NSEC_PER_USEC);
7812 
7813 	return quota_us;
7814 }
7815 
7816 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7817 {
7818 	u64 quota, period;
7819 
7820 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7821 	quota = tg->cfs_bandwidth.quota;
7822 
7823 	return tg_set_cfs_bandwidth(tg, period, quota);
7824 }
7825 
7826 long tg_get_cfs_period(struct task_group *tg)
7827 {
7828 	u64 cfs_period_us;
7829 
7830 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7831 	do_div(cfs_period_us, NSEC_PER_USEC);
7832 
7833 	return cfs_period_us;
7834 }
7835 
7836 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7837 				  struct cftype *cft)
7838 {
7839 	return tg_get_cfs_quota(css_tg(css));
7840 }
7841 
7842 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7843 				   struct cftype *cftype, s64 cfs_quota_us)
7844 {
7845 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7846 }
7847 
7848 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7849 				   struct cftype *cft)
7850 {
7851 	return tg_get_cfs_period(css_tg(css));
7852 }
7853 
7854 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7855 				    struct cftype *cftype, u64 cfs_period_us)
7856 {
7857 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7858 }
7859 
7860 struct cfs_schedulable_data {
7861 	struct task_group *tg;
7862 	u64 period, quota;
7863 };
7864 
7865 /*
7866  * normalize group quota/period to be quota/max_period
7867  * note: units are usecs
7868  */
7869 static u64 normalize_cfs_quota(struct task_group *tg,
7870 			       struct cfs_schedulable_data *d)
7871 {
7872 	u64 quota, period;
7873 
7874 	if (tg == d->tg) {
7875 		period = d->period;
7876 		quota = d->quota;
7877 	} else {
7878 		period = tg_get_cfs_period(tg);
7879 		quota = tg_get_cfs_quota(tg);
7880 	}
7881 
7882 	/* note: these should typically be equivalent */
7883 	if (quota == RUNTIME_INF || quota == -1)
7884 		return RUNTIME_INF;
7885 
7886 	return to_ratio(period, quota);
7887 }
7888 
7889 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7890 {
7891 	struct cfs_schedulable_data *d = data;
7892 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7893 	s64 quota = 0, parent_quota = -1;
7894 
7895 	if (!tg->parent) {
7896 		quota = RUNTIME_INF;
7897 	} else {
7898 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7899 
7900 		quota = normalize_cfs_quota(tg, d);
7901 		parent_quota = parent_b->hierarchal_quota;
7902 
7903 		/*
7904 		 * ensure max(child_quota) <= parent_quota, inherit when no
7905 		 * limit is set
7906 		 */
7907 		if (quota == RUNTIME_INF)
7908 			quota = parent_quota;
7909 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7910 			return -EINVAL;
7911 	}
7912 	cfs_b->hierarchal_quota = quota;
7913 
7914 	return 0;
7915 }
7916 
7917 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7918 {
7919 	int ret;
7920 	struct cfs_schedulable_data data = {
7921 		.tg = tg,
7922 		.period = period,
7923 		.quota = quota,
7924 	};
7925 
7926 	if (quota != RUNTIME_INF) {
7927 		do_div(data.period, NSEC_PER_USEC);
7928 		do_div(data.quota, NSEC_PER_USEC);
7929 	}
7930 
7931 	rcu_read_lock();
7932 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7933 	rcu_read_unlock();
7934 
7935 	return ret;
7936 }
7937 
7938 static int cpu_stats_show(struct seq_file *sf, void *v)
7939 {
7940 	struct task_group *tg = css_tg(seq_css(sf));
7941 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7942 
7943 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7944 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7945 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7946 
7947 	return 0;
7948 }
7949 #endif /* CONFIG_CFS_BANDWIDTH */
7950 #endif /* CONFIG_FAIR_GROUP_SCHED */
7951 
7952 #ifdef CONFIG_RT_GROUP_SCHED
7953 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7954 				struct cftype *cft, s64 val)
7955 {
7956 	return sched_group_set_rt_runtime(css_tg(css), val);
7957 }
7958 
7959 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7960 			       struct cftype *cft)
7961 {
7962 	return sched_group_rt_runtime(css_tg(css));
7963 }
7964 
7965 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7966 				    struct cftype *cftype, u64 rt_period_us)
7967 {
7968 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7969 }
7970 
7971 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7972 				   struct cftype *cft)
7973 {
7974 	return sched_group_rt_period(css_tg(css));
7975 }
7976 #endif /* CONFIG_RT_GROUP_SCHED */
7977 
7978 static struct cftype cpu_files[] = {
7979 #ifdef CONFIG_FAIR_GROUP_SCHED
7980 	{
7981 		.name = "shares",
7982 		.read_u64 = cpu_shares_read_u64,
7983 		.write_u64 = cpu_shares_write_u64,
7984 	},
7985 #endif
7986 #ifdef CONFIG_CFS_BANDWIDTH
7987 	{
7988 		.name = "cfs_quota_us",
7989 		.read_s64 = cpu_cfs_quota_read_s64,
7990 		.write_s64 = cpu_cfs_quota_write_s64,
7991 	},
7992 	{
7993 		.name = "cfs_period_us",
7994 		.read_u64 = cpu_cfs_period_read_u64,
7995 		.write_u64 = cpu_cfs_period_write_u64,
7996 	},
7997 	{
7998 		.name = "stat",
7999 		.seq_show = cpu_stats_show,
8000 	},
8001 #endif
8002 #ifdef CONFIG_RT_GROUP_SCHED
8003 	{
8004 		.name = "rt_runtime_us",
8005 		.read_s64 = cpu_rt_runtime_read,
8006 		.write_s64 = cpu_rt_runtime_write,
8007 	},
8008 	{
8009 		.name = "rt_period_us",
8010 		.read_u64 = cpu_rt_period_read_uint,
8011 		.write_u64 = cpu_rt_period_write_uint,
8012 	},
8013 #endif
8014 	{ }	/* terminate */
8015 };
8016 
8017 struct cgroup_subsys cpu_cgroup_subsys = {
8018 	.name		= "cpu",
8019 	.css_alloc	= cpu_cgroup_css_alloc,
8020 	.css_free	= cpu_cgroup_css_free,
8021 	.css_online	= cpu_cgroup_css_online,
8022 	.css_offline	= cpu_cgroup_css_offline,
8023 	.can_attach	= cpu_cgroup_can_attach,
8024 	.attach		= cpu_cgroup_attach,
8025 	.exit		= cpu_cgroup_exit,
8026 	.subsys_id	= cpu_cgroup_subsys_id,
8027 	.base_cftypes	= cpu_files,
8028 	.early_init	= 1,
8029 };
8030 
8031 #endif	/* CONFIG_CGROUP_SCHED */
8032 
8033 void dump_cpu_task(int cpu)
8034 {
8035 	pr_info("Task dump for CPU %d:\n", cpu);
8036 	sched_show_task(cpu_curr(cpu));
8037 }
8038