xref: /openbmc/linux/kernel/sched/core.c (revision 7b6d864b)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 void resched_task(struct task_struct *p)
516 {
517 	int cpu;
518 
519 	assert_raw_spin_locked(&task_rq(p)->lock);
520 
521 	if (test_tsk_need_resched(p))
522 		return;
523 
524 	set_tsk_need_resched(p);
525 
526 	cpu = task_cpu(p);
527 	if (cpu == smp_processor_id())
528 		return;
529 
530 	/* NEED_RESCHED must be visible before we test polling */
531 	smp_mb();
532 	if (!tsk_is_polling(p))
533 		smp_send_reschedule(cpu);
534 }
535 
536 void resched_cpu(int cpu)
537 {
538 	struct rq *rq = cpu_rq(cpu);
539 	unsigned long flags;
540 
541 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542 		return;
543 	resched_task(cpu_curr(cpu));
544 	raw_spin_unlock_irqrestore(&rq->lock, flags);
545 }
546 
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549  * In the semi idle case, use the nearest busy cpu for migrating timers
550  * from an idle cpu.  This is good for power-savings.
551  *
552  * We don't do similar optimization for completely idle system, as
553  * selecting an idle cpu will add more delays to the timers than intended
554  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555  */
556 int get_nohz_timer_target(void)
557 {
558 	int cpu = smp_processor_id();
559 	int i;
560 	struct sched_domain *sd;
561 
562 	rcu_read_lock();
563 	for_each_domain(cpu, sd) {
564 		for_each_cpu(i, sched_domain_span(sd)) {
565 			if (!idle_cpu(i)) {
566 				cpu = i;
567 				goto unlock;
568 			}
569 		}
570 	}
571 unlock:
572 	rcu_read_unlock();
573 	return cpu;
574 }
575 /*
576  * When add_timer_on() enqueues a timer into the timer wheel of an
577  * idle CPU then this timer might expire before the next timer event
578  * which is scheduled to wake up that CPU. In case of a completely
579  * idle system the next event might even be infinite time into the
580  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581  * leaves the inner idle loop so the newly added timer is taken into
582  * account when the CPU goes back to idle and evaluates the timer
583  * wheel for the next timer event.
584  */
585 static void wake_up_idle_cpu(int cpu)
586 {
587 	struct rq *rq = cpu_rq(cpu);
588 
589 	if (cpu == smp_processor_id())
590 		return;
591 
592 	/*
593 	 * This is safe, as this function is called with the timer
594 	 * wheel base lock of (cpu) held. When the CPU is on the way
595 	 * to idle and has not yet set rq->curr to idle then it will
596 	 * be serialized on the timer wheel base lock and take the new
597 	 * timer into account automatically.
598 	 */
599 	if (rq->curr != rq->idle)
600 		return;
601 
602 	/*
603 	 * We can set TIF_RESCHED on the idle task of the other CPU
604 	 * lockless. The worst case is that the other CPU runs the
605 	 * idle task through an additional NOOP schedule()
606 	 */
607 	set_tsk_need_resched(rq->idle);
608 
609 	/* NEED_RESCHED must be visible before we test polling */
610 	smp_mb();
611 	if (!tsk_is_polling(rq->idle))
612 		smp_send_reschedule(cpu);
613 }
614 
615 static bool wake_up_full_nohz_cpu(int cpu)
616 {
617 	if (tick_nohz_full_cpu(cpu)) {
618 		if (cpu != smp_processor_id() ||
619 		    tick_nohz_tick_stopped())
620 			smp_send_reschedule(cpu);
621 		return true;
622 	}
623 
624 	return false;
625 }
626 
627 void wake_up_nohz_cpu(int cpu)
628 {
629 	if (!wake_up_full_nohz_cpu(cpu))
630 		wake_up_idle_cpu(cpu);
631 }
632 
633 static inline bool got_nohz_idle_kick(void)
634 {
635 	int cpu = smp_processor_id();
636 
637 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 		return false;
639 
640 	if (idle_cpu(cpu) && !need_resched())
641 		return true;
642 
643 	/*
644 	 * We can't run Idle Load Balance on this CPU for this time so we
645 	 * cancel it and clear NOHZ_BALANCE_KICK
646 	 */
647 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 	return false;
649 }
650 
651 #else /* CONFIG_NO_HZ_COMMON */
652 
653 static inline bool got_nohz_idle_kick(void)
654 {
655 	return false;
656 }
657 
658 #endif /* CONFIG_NO_HZ_COMMON */
659 
660 #ifdef CONFIG_NO_HZ_FULL
661 bool sched_can_stop_tick(void)
662 {
663        struct rq *rq;
664 
665        rq = this_rq();
666 
667        /* Make sure rq->nr_running update is visible after the IPI */
668        smp_rmb();
669 
670        /* More than one running task need preemption */
671        if (rq->nr_running > 1)
672                return false;
673 
674        return true;
675 }
676 #endif /* CONFIG_NO_HZ_FULL */
677 
678 void sched_avg_update(struct rq *rq)
679 {
680 	s64 period = sched_avg_period();
681 
682 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683 		/*
684 		 * Inline assembly required to prevent the compiler
685 		 * optimising this loop into a divmod call.
686 		 * See __iter_div_u64_rem() for another example of this.
687 		 */
688 		asm("" : "+rm" (rq->age_stamp));
689 		rq->age_stamp += period;
690 		rq->rt_avg /= 2;
691 	}
692 }
693 
694 #else /* !CONFIG_SMP */
695 void resched_task(struct task_struct *p)
696 {
697 	assert_raw_spin_locked(&task_rq(p)->lock);
698 	set_tsk_need_resched(p);
699 }
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (p->policy == SCHED_IDLE) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		return;
759 	}
760 
761 	load->weight = scale_load(prio_to_weight[prio]);
762 	load->inv_weight = prio_to_wmult[prio];
763 }
764 
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	update_rq_clock(rq);
768 	sched_info_queued(p);
769 	p->sched_class->enqueue_task(rq, p, flags);
770 }
771 
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 	update_rq_clock(rq);
775 	sched_info_dequeued(p);
776 	p->sched_class->dequeue_task(rq, p, flags);
777 }
778 
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 	if (task_contributes_to_load(p))
782 		rq->nr_uninterruptible--;
783 
784 	enqueue_task(rq, p, flags);
785 }
786 
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 	if (task_contributes_to_load(p))
790 		rq->nr_uninterruptible++;
791 
792 	dequeue_task(rq, p, flags);
793 }
794 
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798  * In theory, the compile should just see 0 here, and optimize out the call
799  * to sched_rt_avg_update. But I don't trust it...
800  */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 	s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 
807 	/*
808 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 	 * this case when a previous update_rq_clock() happened inside a
810 	 * {soft,}irq region.
811 	 *
812 	 * When this happens, we stop ->clock_task and only update the
813 	 * prev_irq_time stamp to account for the part that fit, so that a next
814 	 * update will consume the rest. This ensures ->clock_task is
815 	 * monotonic.
816 	 *
817 	 * It does however cause some slight miss-attribution of {soft,}irq
818 	 * time, a more accurate solution would be to update the irq_time using
819 	 * the current rq->clock timestamp, except that would require using
820 	 * atomic ops.
821 	 */
822 	if (irq_delta > delta)
823 		irq_delta = delta;
824 
825 	rq->prev_irq_time += irq_delta;
826 	delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 		u64 st;
831 
832 		steal = paravirt_steal_clock(cpu_of(rq));
833 		steal -= rq->prev_steal_time_rq;
834 
835 		if (unlikely(steal > delta))
836 			steal = delta;
837 
838 		st = steal_ticks(steal);
839 		steal = st * TICK_NSEC;
840 
841 		rq->prev_steal_time_rq += steal;
842 
843 		delta -= steal;
844 	}
845 #endif
846 
847 	rq->clock_task += delta;
848 
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 		sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854 
855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859 
860 	if (stop) {
861 		/*
862 		 * Make it appear like a SCHED_FIFO task, its something
863 		 * userspace knows about and won't get confused about.
864 		 *
865 		 * Also, it will make PI more or less work without too
866 		 * much confusion -- but then, stop work should not
867 		 * rely on PI working anyway.
868 		 */
869 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870 
871 		stop->sched_class = &stop_sched_class;
872 	}
873 
874 	cpu_rq(cpu)->stop = stop;
875 
876 	if (old_stop) {
877 		/*
878 		 * Reset it back to a normal scheduling class so that
879 		 * it can die in pieces.
880 		 */
881 		old_stop->sched_class = &rt_sched_class;
882 	}
883 }
884 
885 /*
886  * __normal_prio - return the priority that is based on the static prio
887  */
888 static inline int __normal_prio(struct task_struct *p)
889 {
890 	return p->static_prio;
891 }
892 
893 /*
894  * Calculate the expected normal priority: i.e. priority
895  * without taking RT-inheritance into account. Might be
896  * boosted by interactivity modifiers. Changes upon fork,
897  * setprio syscalls, and whenever the interactivity
898  * estimator recalculates.
899  */
900 static inline int normal_prio(struct task_struct *p)
901 {
902 	int prio;
903 
904 	if (task_has_rt_policy(p))
905 		prio = MAX_RT_PRIO-1 - p->rt_priority;
906 	else
907 		prio = __normal_prio(p);
908 	return prio;
909 }
910 
911 /*
912  * Calculate the current priority, i.e. the priority
913  * taken into account by the scheduler. This value might
914  * be boosted by RT tasks, or might be boosted by
915  * interactivity modifiers. Will be RT if the task got
916  * RT-boosted. If not then it returns p->normal_prio.
917  */
918 static int effective_prio(struct task_struct *p)
919 {
920 	p->normal_prio = normal_prio(p);
921 	/*
922 	 * If we are RT tasks or we were boosted to RT priority,
923 	 * keep the priority unchanged. Otherwise, update priority
924 	 * to the normal priority:
925 	 */
926 	if (!rt_prio(p->prio))
927 		return p->normal_prio;
928 	return p->prio;
929 }
930 
931 /**
932  * task_curr - is this task currently executing on a CPU?
933  * @p: the task in question.
934  */
935 inline int task_curr(const struct task_struct *p)
936 {
937 	return cpu_curr(task_cpu(p)) == p;
938 }
939 
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 				       const struct sched_class *prev_class,
942 				       int oldprio)
943 {
944 	if (prev_class != p->sched_class) {
945 		if (prev_class->switched_from)
946 			prev_class->switched_from(rq, p);
947 		p->sched_class->switched_to(rq, p);
948 	} else if (oldprio != p->prio)
949 		p->sched_class->prio_changed(rq, p, oldprio);
950 }
951 
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 	const struct sched_class *class;
955 
956 	if (p->sched_class == rq->curr->sched_class) {
957 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 	} else {
959 		for_each_class(class) {
960 			if (class == rq->curr->sched_class)
961 				break;
962 			if (class == p->sched_class) {
963 				resched_task(rq->curr);
964 				break;
965 			}
966 		}
967 	}
968 
969 	/*
970 	 * A queue event has occurred, and we're going to schedule.  In
971 	 * this case, we can save a useless back to back clock update.
972 	 */
973 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 		rq->skip_clock_update = 1;
975 }
976 
977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978 
979 void register_task_migration_notifier(struct notifier_block *n)
980 {
981 	atomic_notifier_chain_register(&task_migration_notifier, n);
982 }
983 
984 #ifdef CONFIG_SMP
985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986 {
987 #ifdef CONFIG_SCHED_DEBUG
988 	/*
989 	 * We should never call set_task_cpu() on a blocked task,
990 	 * ttwu() will sort out the placement.
991 	 */
992 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994 
995 #ifdef CONFIG_LOCKDEP
996 	/*
997 	 * The caller should hold either p->pi_lock or rq->lock, when changing
998 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 	 *
1000 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1001 	 * see task_group().
1002 	 *
1003 	 * Furthermore, all task_rq users should acquire both locks, see
1004 	 * task_rq_lock().
1005 	 */
1006 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 				      lockdep_is_held(&task_rq(p)->lock)));
1008 #endif
1009 #endif
1010 
1011 	trace_sched_migrate_task(p, new_cpu);
1012 
1013 	if (task_cpu(p) != new_cpu) {
1014 		struct task_migration_notifier tmn;
1015 
1016 		if (p->sched_class->migrate_task_rq)
1017 			p->sched_class->migrate_task_rq(p, new_cpu);
1018 		p->se.nr_migrations++;
1019 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020 
1021 		tmn.task = p;
1022 		tmn.from_cpu = task_cpu(p);
1023 		tmn.to_cpu = new_cpu;
1024 
1025 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026 	}
1027 
1028 	__set_task_cpu(p, new_cpu);
1029 }
1030 
1031 struct migration_arg {
1032 	struct task_struct *task;
1033 	int dest_cpu;
1034 };
1035 
1036 static int migration_cpu_stop(void *data);
1037 
1038 /*
1039  * wait_task_inactive - wait for a thread to unschedule.
1040  *
1041  * If @match_state is nonzero, it's the @p->state value just checked and
1042  * not expected to change.  If it changes, i.e. @p might have woken up,
1043  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044  * we return a positive number (its total switch count).  If a second call
1045  * a short while later returns the same number, the caller can be sure that
1046  * @p has remained unscheduled the whole time.
1047  *
1048  * The caller must ensure that the task *will* unschedule sometime soon,
1049  * else this function might spin for a *long* time. This function can't
1050  * be called with interrupts off, or it may introduce deadlock with
1051  * smp_call_function() if an IPI is sent by the same process we are
1052  * waiting to become inactive.
1053  */
1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055 {
1056 	unsigned long flags;
1057 	int running, on_rq;
1058 	unsigned long ncsw;
1059 	struct rq *rq;
1060 
1061 	for (;;) {
1062 		/*
1063 		 * We do the initial early heuristics without holding
1064 		 * any task-queue locks at all. We'll only try to get
1065 		 * the runqueue lock when things look like they will
1066 		 * work out!
1067 		 */
1068 		rq = task_rq(p);
1069 
1070 		/*
1071 		 * If the task is actively running on another CPU
1072 		 * still, just relax and busy-wait without holding
1073 		 * any locks.
1074 		 *
1075 		 * NOTE! Since we don't hold any locks, it's not
1076 		 * even sure that "rq" stays as the right runqueue!
1077 		 * But we don't care, since "task_running()" will
1078 		 * return false if the runqueue has changed and p
1079 		 * is actually now running somewhere else!
1080 		 */
1081 		while (task_running(rq, p)) {
1082 			if (match_state && unlikely(p->state != match_state))
1083 				return 0;
1084 			cpu_relax();
1085 		}
1086 
1087 		/*
1088 		 * Ok, time to look more closely! We need the rq
1089 		 * lock now, to be *sure*. If we're wrong, we'll
1090 		 * just go back and repeat.
1091 		 */
1092 		rq = task_rq_lock(p, &flags);
1093 		trace_sched_wait_task(p);
1094 		running = task_running(rq, p);
1095 		on_rq = p->on_rq;
1096 		ncsw = 0;
1097 		if (!match_state || p->state == match_state)
1098 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099 		task_rq_unlock(rq, p, &flags);
1100 
1101 		/*
1102 		 * If it changed from the expected state, bail out now.
1103 		 */
1104 		if (unlikely(!ncsw))
1105 			break;
1106 
1107 		/*
1108 		 * Was it really running after all now that we
1109 		 * checked with the proper locks actually held?
1110 		 *
1111 		 * Oops. Go back and try again..
1112 		 */
1113 		if (unlikely(running)) {
1114 			cpu_relax();
1115 			continue;
1116 		}
1117 
1118 		/*
1119 		 * It's not enough that it's not actively running,
1120 		 * it must be off the runqueue _entirely_, and not
1121 		 * preempted!
1122 		 *
1123 		 * So if it was still runnable (but just not actively
1124 		 * running right now), it's preempted, and we should
1125 		 * yield - it could be a while.
1126 		 */
1127 		if (unlikely(on_rq)) {
1128 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129 
1130 			set_current_state(TASK_UNINTERRUPTIBLE);
1131 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132 			continue;
1133 		}
1134 
1135 		/*
1136 		 * Ahh, all good. It wasn't running, and it wasn't
1137 		 * runnable, which means that it will never become
1138 		 * running in the future either. We're all done!
1139 		 */
1140 		break;
1141 	}
1142 
1143 	return ncsw;
1144 }
1145 
1146 /***
1147  * kick_process - kick a running thread to enter/exit the kernel
1148  * @p: the to-be-kicked thread
1149  *
1150  * Cause a process which is running on another CPU to enter
1151  * kernel-mode, without any delay. (to get signals handled.)
1152  *
1153  * NOTE: this function doesn't have to take the runqueue lock,
1154  * because all it wants to ensure is that the remote task enters
1155  * the kernel. If the IPI races and the task has been migrated
1156  * to another CPU then no harm is done and the purpose has been
1157  * achieved as well.
1158  */
1159 void kick_process(struct task_struct *p)
1160 {
1161 	int cpu;
1162 
1163 	preempt_disable();
1164 	cpu = task_cpu(p);
1165 	if ((cpu != smp_processor_id()) && task_curr(p))
1166 		smp_send_reschedule(cpu);
1167 	preempt_enable();
1168 }
1169 EXPORT_SYMBOL_GPL(kick_process);
1170 #endif /* CONFIG_SMP */
1171 
1172 #ifdef CONFIG_SMP
1173 /*
1174  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175  */
1176 static int select_fallback_rq(int cpu, struct task_struct *p)
1177 {
1178 	int nid = cpu_to_node(cpu);
1179 	const struct cpumask *nodemask = NULL;
1180 	enum { cpuset, possible, fail } state = cpuset;
1181 	int dest_cpu;
1182 
1183 	/*
1184 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 	 * will return -1. There is no cpu on the node, and we should
1186 	 * select the cpu on the other node.
1187 	 */
1188 	if (nid != -1) {
1189 		nodemask = cpumask_of_node(nid);
1190 
1191 		/* Look for allowed, online CPU in same node. */
1192 		for_each_cpu(dest_cpu, nodemask) {
1193 			if (!cpu_online(dest_cpu))
1194 				continue;
1195 			if (!cpu_active(dest_cpu))
1196 				continue;
1197 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 				return dest_cpu;
1199 		}
1200 	}
1201 
1202 	for (;;) {
1203 		/* Any allowed, online CPU? */
1204 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 			if (!cpu_online(dest_cpu))
1206 				continue;
1207 			if (!cpu_active(dest_cpu))
1208 				continue;
1209 			goto out;
1210 		}
1211 
1212 		switch (state) {
1213 		case cpuset:
1214 			/* No more Mr. Nice Guy. */
1215 			cpuset_cpus_allowed_fallback(p);
1216 			state = possible;
1217 			break;
1218 
1219 		case possible:
1220 			do_set_cpus_allowed(p, cpu_possible_mask);
1221 			state = fail;
1222 			break;
1223 
1224 		case fail:
1225 			BUG();
1226 			break;
1227 		}
1228 	}
1229 
1230 out:
1231 	if (state != cpuset) {
1232 		/*
1233 		 * Don't tell them about moving exiting tasks or
1234 		 * kernel threads (both mm NULL), since they never
1235 		 * leave kernel.
1236 		 */
1237 		if (p->mm && printk_ratelimit()) {
1238 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 					task_pid_nr(p), p->comm, cpu);
1240 		}
1241 	}
1242 
1243 	return dest_cpu;
1244 }
1245 
1246 /*
1247  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248  */
1249 static inline
1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251 {
1252 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253 
1254 	/*
1255 	 * In order not to call set_task_cpu() on a blocking task we need
1256 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 	 * cpu.
1258 	 *
1259 	 * Since this is common to all placement strategies, this lives here.
1260 	 *
1261 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 	 *   not worry about this generic constraint ]
1263 	 */
1264 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265 		     !cpu_online(cpu)))
1266 		cpu = select_fallback_rq(task_cpu(p), p);
1267 
1268 	return cpu;
1269 }
1270 
1271 static void update_avg(u64 *avg, u64 sample)
1272 {
1273 	s64 diff = sample - *avg;
1274 	*avg += diff >> 3;
1275 }
1276 #endif
1277 
1278 static void
1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280 {
1281 #ifdef CONFIG_SCHEDSTATS
1282 	struct rq *rq = this_rq();
1283 
1284 #ifdef CONFIG_SMP
1285 	int this_cpu = smp_processor_id();
1286 
1287 	if (cpu == this_cpu) {
1288 		schedstat_inc(rq, ttwu_local);
1289 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 	} else {
1291 		struct sched_domain *sd;
1292 
1293 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294 		rcu_read_lock();
1295 		for_each_domain(this_cpu, sd) {
1296 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 				schedstat_inc(sd, ttwu_wake_remote);
1298 				break;
1299 			}
1300 		}
1301 		rcu_read_unlock();
1302 	}
1303 
1304 	if (wake_flags & WF_MIGRATED)
1305 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306 
1307 #endif /* CONFIG_SMP */
1308 
1309 	schedstat_inc(rq, ttwu_count);
1310 	schedstat_inc(p, se.statistics.nr_wakeups);
1311 
1312 	if (wake_flags & WF_SYNC)
1313 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314 
1315 #endif /* CONFIG_SCHEDSTATS */
1316 }
1317 
1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319 {
1320 	activate_task(rq, p, en_flags);
1321 	p->on_rq = 1;
1322 
1323 	/* if a worker is waking up, notify workqueue */
1324 	if (p->flags & PF_WQ_WORKER)
1325 		wq_worker_waking_up(p, cpu_of(rq));
1326 }
1327 
1328 /*
1329  * Mark the task runnable and perform wakeup-preemption.
1330  */
1331 static void
1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333 {
1334 	check_preempt_curr(rq, p, wake_flags);
1335 	trace_sched_wakeup(p, true);
1336 
1337 	p->state = TASK_RUNNING;
1338 #ifdef CONFIG_SMP
1339 	if (p->sched_class->task_woken)
1340 		p->sched_class->task_woken(rq, p);
1341 
1342 	if (rq->idle_stamp) {
1343 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1344 		u64 max = 2*sysctl_sched_migration_cost;
1345 
1346 		if (delta > max)
1347 			rq->avg_idle = max;
1348 		else
1349 			update_avg(&rq->avg_idle, delta);
1350 		rq->idle_stamp = 0;
1351 	}
1352 #endif
1353 }
1354 
1355 static void
1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357 {
1358 #ifdef CONFIG_SMP
1359 	if (p->sched_contributes_to_load)
1360 		rq->nr_uninterruptible--;
1361 #endif
1362 
1363 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 	ttwu_do_wakeup(rq, p, wake_flags);
1365 }
1366 
1367 /*
1368  * Called in case the task @p isn't fully descheduled from its runqueue,
1369  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370  * since all we need to do is flip p->state to TASK_RUNNING, since
1371  * the task is still ->on_rq.
1372  */
1373 static int ttwu_remote(struct task_struct *p, int wake_flags)
1374 {
1375 	struct rq *rq;
1376 	int ret = 0;
1377 
1378 	rq = __task_rq_lock(p);
1379 	if (p->on_rq) {
1380 		/* check_preempt_curr() may use rq clock */
1381 		update_rq_clock(rq);
1382 		ttwu_do_wakeup(rq, p, wake_flags);
1383 		ret = 1;
1384 	}
1385 	__task_rq_unlock(rq);
1386 
1387 	return ret;
1388 }
1389 
1390 #ifdef CONFIG_SMP
1391 static void sched_ttwu_pending(void)
1392 {
1393 	struct rq *rq = this_rq();
1394 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 	struct task_struct *p;
1396 
1397 	raw_spin_lock(&rq->lock);
1398 
1399 	while (llist) {
1400 		p = llist_entry(llist, struct task_struct, wake_entry);
1401 		llist = llist_next(llist);
1402 		ttwu_do_activate(rq, p, 0);
1403 	}
1404 
1405 	raw_spin_unlock(&rq->lock);
1406 }
1407 
1408 void scheduler_ipi(void)
1409 {
1410 	if (llist_empty(&this_rq()->wake_list)
1411 			&& !tick_nohz_full_cpu(smp_processor_id())
1412 			&& !got_nohz_idle_kick())
1413 		return;
1414 
1415 	/*
1416 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 	 * traditionally all their work was done from the interrupt return
1418 	 * path. Now that we actually do some work, we need to make sure
1419 	 * we do call them.
1420 	 *
1421 	 * Some archs already do call them, luckily irq_enter/exit nest
1422 	 * properly.
1423 	 *
1424 	 * Arguably we should visit all archs and update all handlers,
1425 	 * however a fair share of IPIs are still resched only so this would
1426 	 * somewhat pessimize the simple resched case.
1427 	 */
1428 	irq_enter();
1429 	tick_nohz_full_check();
1430 	sched_ttwu_pending();
1431 
1432 	/*
1433 	 * Check if someone kicked us for doing the nohz idle load balance.
1434 	 */
1435 	if (unlikely(got_nohz_idle_kick())) {
1436 		this_rq()->idle_balance = 1;
1437 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1438 	}
1439 	irq_exit();
1440 }
1441 
1442 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443 {
1444 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445 		smp_send_reschedule(cpu);
1446 }
1447 
1448 bool cpus_share_cache(int this_cpu, int that_cpu)
1449 {
1450 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451 }
1452 #endif /* CONFIG_SMP */
1453 
1454 static void ttwu_queue(struct task_struct *p, int cpu)
1455 {
1456 	struct rq *rq = cpu_rq(cpu);
1457 
1458 #if defined(CONFIG_SMP)
1459 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461 		ttwu_queue_remote(p, cpu);
1462 		return;
1463 	}
1464 #endif
1465 
1466 	raw_spin_lock(&rq->lock);
1467 	ttwu_do_activate(rq, p, 0);
1468 	raw_spin_unlock(&rq->lock);
1469 }
1470 
1471 /**
1472  * try_to_wake_up - wake up a thread
1473  * @p: the thread to be awakened
1474  * @state: the mask of task states that can be woken
1475  * @wake_flags: wake modifier flags (WF_*)
1476  *
1477  * Put it on the run-queue if it's not already there. The "current"
1478  * thread is always on the run-queue (except when the actual
1479  * re-schedule is in progress), and as such you're allowed to do
1480  * the simpler "current->state = TASK_RUNNING" to mark yourself
1481  * runnable without the overhead of this.
1482  *
1483  * Returns %true if @p was woken up, %false if it was already running
1484  * or @state didn't match @p's state.
1485  */
1486 static int
1487 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1488 {
1489 	unsigned long flags;
1490 	int cpu, success = 0;
1491 
1492 	smp_wmb();
1493 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494 	if (!(p->state & state))
1495 		goto out;
1496 
1497 	success = 1; /* we're going to change ->state */
1498 	cpu = task_cpu(p);
1499 
1500 	if (p->on_rq && ttwu_remote(p, wake_flags))
1501 		goto stat;
1502 
1503 #ifdef CONFIG_SMP
1504 	/*
1505 	 * If the owning (remote) cpu is still in the middle of schedule() with
1506 	 * this task as prev, wait until its done referencing the task.
1507 	 */
1508 	while (p->on_cpu)
1509 		cpu_relax();
1510 	/*
1511 	 * Pairs with the smp_wmb() in finish_lock_switch().
1512 	 */
1513 	smp_rmb();
1514 
1515 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516 	p->state = TASK_WAKING;
1517 
1518 	if (p->sched_class->task_waking)
1519 		p->sched_class->task_waking(p);
1520 
1521 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 	if (task_cpu(p) != cpu) {
1523 		wake_flags |= WF_MIGRATED;
1524 		set_task_cpu(p, cpu);
1525 	}
1526 #endif /* CONFIG_SMP */
1527 
1528 	ttwu_queue(p, cpu);
1529 stat:
1530 	ttwu_stat(p, cpu, wake_flags);
1531 out:
1532 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533 
1534 	return success;
1535 }
1536 
1537 /**
1538  * try_to_wake_up_local - try to wake up a local task with rq lock held
1539  * @p: the thread to be awakened
1540  *
1541  * Put @p on the run-queue if it's not already there. The caller must
1542  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543  * the current task.
1544  */
1545 static void try_to_wake_up_local(struct task_struct *p)
1546 {
1547 	struct rq *rq = task_rq(p);
1548 
1549 	if (WARN_ON_ONCE(rq != this_rq()) ||
1550 	    WARN_ON_ONCE(p == current))
1551 		return;
1552 
1553 	lockdep_assert_held(&rq->lock);
1554 
1555 	if (!raw_spin_trylock(&p->pi_lock)) {
1556 		raw_spin_unlock(&rq->lock);
1557 		raw_spin_lock(&p->pi_lock);
1558 		raw_spin_lock(&rq->lock);
1559 	}
1560 
1561 	if (!(p->state & TASK_NORMAL))
1562 		goto out;
1563 
1564 	if (!p->on_rq)
1565 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566 
1567 	ttwu_do_wakeup(rq, p, 0);
1568 	ttwu_stat(p, smp_processor_id(), 0);
1569 out:
1570 	raw_spin_unlock(&p->pi_lock);
1571 }
1572 
1573 /**
1574  * wake_up_process - Wake up a specific process
1575  * @p: The process to be woken up.
1576  *
1577  * Attempt to wake up the nominated process and move it to the set of runnable
1578  * processes.  Returns 1 if the process was woken up, 0 if it was already
1579  * running.
1580  *
1581  * It may be assumed that this function implies a write memory barrier before
1582  * changing the task state if and only if any tasks are woken up.
1583  */
1584 int wake_up_process(struct task_struct *p)
1585 {
1586 	WARN_ON(task_is_stopped_or_traced(p));
1587 	return try_to_wake_up(p, TASK_NORMAL, 0);
1588 }
1589 EXPORT_SYMBOL(wake_up_process);
1590 
1591 int wake_up_state(struct task_struct *p, unsigned int state)
1592 {
1593 	return try_to_wake_up(p, state, 0);
1594 }
1595 
1596 /*
1597  * Perform scheduler related setup for a newly forked process p.
1598  * p is forked by current.
1599  *
1600  * __sched_fork() is basic setup used by init_idle() too:
1601  */
1602 static void __sched_fork(struct task_struct *p)
1603 {
1604 	p->on_rq			= 0;
1605 
1606 	p->se.on_rq			= 0;
1607 	p->se.exec_start		= 0;
1608 	p->se.sum_exec_runtime		= 0;
1609 	p->se.prev_sum_exec_runtime	= 0;
1610 	p->se.nr_migrations		= 0;
1611 	p->se.vruntime			= 0;
1612 	INIT_LIST_HEAD(&p->se.group_node);
1613 
1614 #ifdef CONFIG_SCHEDSTATS
1615 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1616 #endif
1617 
1618 	INIT_LIST_HEAD(&p->rt.run_list);
1619 
1620 #ifdef CONFIG_PREEMPT_NOTIFIERS
1621 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1622 #endif
1623 
1624 #ifdef CONFIG_NUMA_BALANCING
1625 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1626 		p->mm->numa_next_scan = jiffies;
1627 		p->mm->numa_next_reset = jiffies;
1628 		p->mm->numa_scan_seq = 0;
1629 	}
1630 
1631 	p->node_stamp = 0ULL;
1632 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1633 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1634 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1635 	p->numa_work.next = &p->numa_work;
1636 #endif /* CONFIG_NUMA_BALANCING */
1637 }
1638 
1639 #ifdef CONFIG_NUMA_BALANCING
1640 #ifdef CONFIG_SCHED_DEBUG
1641 void set_numabalancing_state(bool enabled)
1642 {
1643 	if (enabled)
1644 		sched_feat_set("NUMA");
1645 	else
1646 		sched_feat_set("NO_NUMA");
1647 }
1648 #else
1649 __read_mostly bool numabalancing_enabled;
1650 
1651 void set_numabalancing_state(bool enabled)
1652 {
1653 	numabalancing_enabled = enabled;
1654 }
1655 #endif /* CONFIG_SCHED_DEBUG */
1656 #endif /* CONFIG_NUMA_BALANCING */
1657 
1658 /*
1659  * fork()/clone()-time setup:
1660  */
1661 void sched_fork(struct task_struct *p)
1662 {
1663 	unsigned long flags;
1664 	int cpu = get_cpu();
1665 
1666 	__sched_fork(p);
1667 	/*
1668 	 * We mark the process as running here. This guarantees that
1669 	 * nobody will actually run it, and a signal or other external
1670 	 * event cannot wake it up and insert it on the runqueue either.
1671 	 */
1672 	p->state = TASK_RUNNING;
1673 
1674 	/*
1675 	 * Make sure we do not leak PI boosting priority to the child.
1676 	 */
1677 	p->prio = current->normal_prio;
1678 
1679 	/*
1680 	 * Revert to default priority/policy on fork if requested.
1681 	 */
1682 	if (unlikely(p->sched_reset_on_fork)) {
1683 		if (task_has_rt_policy(p)) {
1684 			p->policy = SCHED_NORMAL;
1685 			p->static_prio = NICE_TO_PRIO(0);
1686 			p->rt_priority = 0;
1687 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1688 			p->static_prio = NICE_TO_PRIO(0);
1689 
1690 		p->prio = p->normal_prio = __normal_prio(p);
1691 		set_load_weight(p);
1692 
1693 		/*
1694 		 * We don't need the reset flag anymore after the fork. It has
1695 		 * fulfilled its duty:
1696 		 */
1697 		p->sched_reset_on_fork = 0;
1698 	}
1699 
1700 	if (!rt_prio(p->prio))
1701 		p->sched_class = &fair_sched_class;
1702 
1703 	if (p->sched_class->task_fork)
1704 		p->sched_class->task_fork(p);
1705 
1706 	/*
1707 	 * The child is not yet in the pid-hash so no cgroup attach races,
1708 	 * and the cgroup is pinned to this child due to cgroup_fork()
1709 	 * is ran before sched_fork().
1710 	 *
1711 	 * Silence PROVE_RCU.
1712 	 */
1713 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1714 	set_task_cpu(p, cpu);
1715 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1716 
1717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1718 	if (likely(sched_info_on()))
1719 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1720 #endif
1721 #if defined(CONFIG_SMP)
1722 	p->on_cpu = 0;
1723 #endif
1724 #ifdef CONFIG_PREEMPT_COUNT
1725 	/* Want to start with kernel preemption disabled. */
1726 	task_thread_info(p)->preempt_count = 1;
1727 #endif
1728 #ifdef CONFIG_SMP
1729 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1730 #endif
1731 
1732 	put_cpu();
1733 }
1734 
1735 /*
1736  * wake_up_new_task - wake up a newly created task for the first time.
1737  *
1738  * This function will do some initial scheduler statistics housekeeping
1739  * that must be done for every newly created context, then puts the task
1740  * on the runqueue and wakes it.
1741  */
1742 void wake_up_new_task(struct task_struct *p)
1743 {
1744 	unsigned long flags;
1745 	struct rq *rq;
1746 
1747 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1748 #ifdef CONFIG_SMP
1749 	/*
1750 	 * Fork balancing, do it here and not earlier because:
1751 	 *  - cpus_allowed can change in the fork path
1752 	 *  - any previously selected cpu might disappear through hotplug
1753 	 */
1754 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1755 #endif
1756 
1757 	/* Initialize new task's runnable average */
1758 	init_task_runnable_average(p);
1759 	rq = __task_rq_lock(p);
1760 	activate_task(rq, p, 0);
1761 	p->on_rq = 1;
1762 	trace_sched_wakeup_new(p, true);
1763 	check_preempt_curr(rq, p, WF_FORK);
1764 #ifdef CONFIG_SMP
1765 	if (p->sched_class->task_woken)
1766 		p->sched_class->task_woken(rq, p);
1767 #endif
1768 	task_rq_unlock(rq, p, &flags);
1769 }
1770 
1771 #ifdef CONFIG_PREEMPT_NOTIFIERS
1772 
1773 /**
1774  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1775  * @notifier: notifier struct to register
1776  */
1777 void preempt_notifier_register(struct preempt_notifier *notifier)
1778 {
1779 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780 }
1781 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782 
1783 /**
1784  * preempt_notifier_unregister - no longer interested in preemption notifications
1785  * @notifier: notifier struct to unregister
1786  *
1787  * This is safe to call from within a preemption notifier.
1788  */
1789 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790 {
1791 	hlist_del(&notifier->link);
1792 }
1793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794 
1795 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796 {
1797 	struct preempt_notifier *notifier;
1798 
1799 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801 }
1802 
1803 static void
1804 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 				 struct task_struct *next)
1806 {
1807 	struct preempt_notifier *notifier;
1808 
1809 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810 		notifier->ops->sched_out(notifier, next);
1811 }
1812 
1813 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1814 
1815 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816 {
1817 }
1818 
1819 static void
1820 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821 				 struct task_struct *next)
1822 {
1823 }
1824 
1825 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1826 
1827 /**
1828  * prepare_task_switch - prepare to switch tasks
1829  * @rq: the runqueue preparing to switch
1830  * @prev: the current task that is being switched out
1831  * @next: the task we are going to switch to.
1832  *
1833  * This is called with the rq lock held and interrupts off. It must
1834  * be paired with a subsequent finish_task_switch after the context
1835  * switch.
1836  *
1837  * prepare_task_switch sets up locking and calls architecture specific
1838  * hooks.
1839  */
1840 static inline void
1841 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842 		    struct task_struct *next)
1843 {
1844 	trace_sched_switch(prev, next);
1845 	sched_info_switch(prev, next);
1846 	perf_event_task_sched_out(prev, next);
1847 	fire_sched_out_preempt_notifiers(prev, next);
1848 	prepare_lock_switch(rq, next);
1849 	prepare_arch_switch(next);
1850 }
1851 
1852 /**
1853  * finish_task_switch - clean up after a task-switch
1854  * @rq: runqueue associated with task-switch
1855  * @prev: the thread we just switched away from.
1856  *
1857  * finish_task_switch must be called after the context switch, paired
1858  * with a prepare_task_switch call before the context switch.
1859  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860  * and do any other architecture-specific cleanup actions.
1861  *
1862  * Note that we may have delayed dropping an mm in context_switch(). If
1863  * so, we finish that here outside of the runqueue lock. (Doing it
1864  * with the lock held can cause deadlocks; see schedule() for
1865  * details.)
1866  */
1867 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1868 	__releases(rq->lock)
1869 {
1870 	struct mm_struct *mm = rq->prev_mm;
1871 	long prev_state;
1872 
1873 	rq->prev_mm = NULL;
1874 
1875 	/*
1876 	 * A task struct has one reference for the use as "current".
1877 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1878 	 * schedule one last time. The schedule call will never return, and
1879 	 * the scheduled task must drop that reference.
1880 	 * The test for TASK_DEAD must occur while the runqueue locks are
1881 	 * still held, otherwise prev could be scheduled on another cpu, die
1882 	 * there before we look at prev->state, and then the reference would
1883 	 * be dropped twice.
1884 	 *		Manfred Spraul <manfred@colorfullife.com>
1885 	 */
1886 	prev_state = prev->state;
1887 	vtime_task_switch(prev);
1888 	finish_arch_switch(prev);
1889 	perf_event_task_sched_in(prev, current);
1890 	finish_lock_switch(rq, prev);
1891 	finish_arch_post_lock_switch();
1892 
1893 	fire_sched_in_preempt_notifiers(current);
1894 	if (mm)
1895 		mmdrop(mm);
1896 	if (unlikely(prev_state == TASK_DEAD)) {
1897 		/*
1898 		 * Remove function-return probe instances associated with this
1899 		 * task and put them back on the free list.
1900 		 */
1901 		kprobe_flush_task(prev);
1902 		put_task_struct(prev);
1903 	}
1904 
1905 	tick_nohz_task_switch(current);
1906 }
1907 
1908 #ifdef CONFIG_SMP
1909 
1910 /* assumes rq->lock is held */
1911 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912 {
1913 	if (prev->sched_class->pre_schedule)
1914 		prev->sched_class->pre_schedule(rq, prev);
1915 }
1916 
1917 /* rq->lock is NOT held, but preemption is disabled */
1918 static inline void post_schedule(struct rq *rq)
1919 {
1920 	if (rq->post_schedule) {
1921 		unsigned long flags;
1922 
1923 		raw_spin_lock_irqsave(&rq->lock, flags);
1924 		if (rq->curr->sched_class->post_schedule)
1925 			rq->curr->sched_class->post_schedule(rq);
1926 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1927 
1928 		rq->post_schedule = 0;
1929 	}
1930 }
1931 
1932 #else
1933 
1934 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935 {
1936 }
1937 
1938 static inline void post_schedule(struct rq *rq)
1939 {
1940 }
1941 
1942 #endif
1943 
1944 /**
1945  * schedule_tail - first thing a freshly forked thread must call.
1946  * @prev: the thread we just switched away from.
1947  */
1948 asmlinkage void schedule_tail(struct task_struct *prev)
1949 	__releases(rq->lock)
1950 {
1951 	struct rq *rq = this_rq();
1952 
1953 	finish_task_switch(rq, prev);
1954 
1955 	/*
1956 	 * FIXME: do we need to worry about rq being invalidated by the
1957 	 * task_switch?
1958 	 */
1959 	post_schedule(rq);
1960 
1961 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962 	/* In this case, finish_task_switch does not reenable preemption */
1963 	preempt_enable();
1964 #endif
1965 	if (current->set_child_tid)
1966 		put_user(task_pid_vnr(current), current->set_child_tid);
1967 }
1968 
1969 /*
1970  * context_switch - switch to the new MM and the new
1971  * thread's register state.
1972  */
1973 static inline void
1974 context_switch(struct rq *rq, struct task_struct *prev,
1975 	       struct task_struct *next)
1976 {
1977 	struct mm_struct *mm, *oldmm;
1978 
1979 	prepare_task_switch(rq, prev, next);
1980 
1981 	mm = next->mm;
1982 	oldmm = prev->active_mm;
1983 	/*
1984 	 * For paravirt, this is coupled with an exit in switch_to to
1985 	 * combine the page table reload and the switch backend into
1986 	 * one hypercall.
1987 	 */
1988 	arch_start_context_switch(prev);
1989 
1990 	if (!mm) {
1991 		next->active_mm = oldmm;
1992 		atomic_inc(&oldmm->mm_count);
1993 		enter_lazy_tlb(oldmm, next);
1994 	} else
1995 		switch_mm(oldmm, mm, next);
1996 
1997 	if (!prev->mm) {
1998 		prev->active_mm = NULL;
1999 		rq->prev_mm = oldmm;
2000 	}
2001 	/*
2002 	 * Since the runqueue lock will be released by the next
2003 	 * task (which is an invalid locking op but in the case
2004 	 * of the scheduler it's an obvious special-case), so we
2005 	 * do an early lockdep release here:
2006 	 */
2007 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2009 #endif
2010 
2011 	context_tracking_task_switch(prev, next);
2012 	/* Here we just switch the register state and the stack. */
2013 	switch_to(prev, next, prev);
2014 
2015 	barrier();
2016 	/*
2017 	 * this_rq must be evaluated again because prev may have moved
2018 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2019 	 * frame will be invalid.
2020 	 */
2021 	finish_task_switch(this_rq(), prev);
2022 }
2023 
2024 /*
2025  * nr_running and nr_context_switches:
2026  *
2027  * externally visible scheduler statistics: current number of runnable
2028  * threads, total number of context switches performed since bootup.
2029  */
2030 unsigned long nr_running(void)
2031 {
2032 	unsigned long i, sum = 0;
2033 
2034 	for_each_online_cpu(i)
2035 		sum += cpu_rq(i)->nr_running;
2036 
2037 	return sum;
2038 }
2039 
2040 unsigned long long nr_context_switches(void)
2041 {
2042 	int i;
2043 	unsigned long long sum = 0;
2044 
2045 	for_each_possible_cpu(i)
2046 		sum += cpu_rq(i)->nr_switches;
2047 
2048 	return sum;
2049 }
2050 
2051 unsigned long nr_iowait(void)
2052 {
2053 	unsigned long i, sum = 0;
2054 
2055 	for_each_possible_cpu(i)
2056 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2057 
2058 	return sum;
2059 }
2060 
2061 unsigned long nr_iowait_cpu(int cpu)
2062 {
2063 	struct rq *this = cpu_rq(cpu);
2064 	return atomic_read(&this->nr_iowait);
2065 }
2066 
2067 #ifdef CONFIG_SMP
2068 
2069 /*
2070  * sched_exec - execve() is a valuable balancing opportunity, because at
2071  * this point the task has the smallest effective memory and cache footprint.
2072  */
2073 void sched_exec(void)
2074 {
2075 	struct task_struct *p = current;
2076 	unsigned long flags;
2077 	int dest_cpu;
2078 
2079 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081 	if (dest_cpu == smp_processor_id())
2082 		goto unlock;
2083 
2084 	if (likely(cpu_active(dest_cpu))) {
2085 		struct migration_arg arg = { p, dest_cpu };
2086 
2087 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2089 		return;
2090 	}
2091 unlock:
2092 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2093 }
2094 
2095 #endif
2096 
2097 DEFINE_PER_CPU(struct kernel_stat, kstat);
2098 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2099 
2100 EXPORT_PER_CPU_SYMBOL(kstat);
2101 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2102 
2103 /*
2104  * Return any ns on the sched_clock that have not yet been accounted in
2105  * @p in case that task is currently running.
2106  *
2107  * Called with task_rq_lock() held on @rq.
2108  */
2109 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110 {
2111 	u64 ns = 0;
2112 
2113 	if (task_current(rq, p)) {
2114 		update_rq_clock(rq);
2115 		ns = rq_clock_task(rq) - p->se.exec_start;
2116 		if ((s64)ns < 0)
2117 			ns = 0;
2118 	}
2119 
2120 	return ns;
2121 }
2122 
2123 unsigned long long task_delta_exec(struct task_struct *p)
2124 {
2125 	unsigned long flags;
2126 	struct rq *rq;
2127 	u64 ns = 0;
2128 
2129 	rq = task_rq_lock(p, &flags);
2130 	ns = do_task_delta_exec(p, rq);
2131 	task_rq_unlock(rq, p, &flags);
2132 
2133 	return ns;
2134 }
2135 
2136 /*
2137  * Return accounted runtime for the task.
2138  * In case the task is currently running, return the runtime plus current's
2139  * pending runtime that have not been accounted yet.
2140  */
2141 unsigned long long task_sched_runtime(struct task_struct *p)
2142 {
2143 	unsigned long flags;
2144 	struct rq *rq;
2145 	u64 ns = 0;
2146 
2147 	rq = task_rq_lock(p, &flags);
2148 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149 	task_rq_unlock(rq, p, &flags);
2150 
2151 	return ns;
2152 }
2153 
2154 /*
2155  * This function gets called by the timer code, with HZ frequency.
2156  * We call it with interrupts disabled.
2157  */
2158 void scheduler_tick(void)
2159 {
2160 	int cpu = smp_processor_id();
2161 	struct rq *rq = cpu_rq(cpu);
2162 	struct task_struct *curr = rq->curr;
2163 
2164 	sched_clock_tick();
2165 
2166 	raw_spin_lock(&rq->lock);
2167 	update_rq_clock(rq);
2168 	curr->sched_class->task_tick(rq, curr, 0);
2169 	update_cpu_load_active(rq);
2170 	raw_spin_unlock(&rq->lock);
2171 
2172 	perf_event_task_tick();
2173 
2174 #ifdef CONFIG_SMP
2175 	rq->idle_balance = idle_cpu(cpu);
2176 	trigger_load_balance(rq, cpu);
2177 #endif
2178 	rq_last_tick_reset(rq);
2179 }
2180 
2181 #ifdef CONFIG_NO_HZ_FULL
2182 /**
2183  * scheduler_tick_max_deferment
2184  *
2185  * Keep at least one tick per second when a single
2186  * active task is running because the scheduler doesn't
2187  * yet completely support full dynticks environment.
2188  *
2189  * This makes sure that uptime, CFS vruntime, load
2190  * balancing, etc... continue to move forward, even
2191  * with a very low granularity.
2192  */
2193 u64 scheduler_tick_max_deferment(void)
2194 {
2195 	struct rq *rq = this_rq();
2196 	unsigned long next, now = ACCESS_ONCE(jiffies);
2197 
2198 	next = rq->last_sched_tick + HZ;
2199 
2200 	if (time_before_eq(next, now))
2201 		return 0;
2202 
2203 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2204 }
2205 #endif
2206 
2207 notrace unsigned long get_parent_ip(unsigned long addr)
2208 {
2209 	if (in_lock_functions(addr)) {
2210 		addr = CALLER_ADDR2;
2211 		if (in_lock_functions(addr))
2212 			addr = CALLER_ADDR3;
2213 	}
2214 	return addr;
2215 }
2216 
2217 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218 				defined(CONFIG_PREEMPT_TRACER))
2219 
2220 void __kprobes add_preempt_count(int val)
2221 {
2222 #ifdef CONFIG_DEBUG_PREEMPT
2223 	/*
2224 	 * Underflow?
2225 	 */
2226 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227 		return;
2228 #endif
2229 	preempt_count() += val;
2230 #ifdef CONFIG_DEBUG_PREEMPT
2231 	/*
2232 	 * Spinlock count overflowing soon?
2233 	 */
2234 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235 				PREEMPT_MASK - 10);
2236 #endif
2237 	if (preempt_count() == val)
2238 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2239 }
2240 EXPORT_SYMBOL(add_preempt_count);
2241 
2242 void __kprobes sub_preempt_count(int val)
2243 {
2244 #ifdef CONFIG_DEBUG_PREEMPT
2245 	/*
2246 	 * Underflow?
2247 	 */
2248 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2249 		return;
2250 	/*
2251 	 * Is the spinlock portion underflowing?
2252 	 */
2253 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254 			!(preempt_count() & PREEMPT_MASK)))
2255 		return;
2256 #endif
2257 
2258 	if (preempt_count() == val)
2259 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260 	preempt_count() -= val;
2261 }
2262 EXPORT_SYMBOL(sub_preempt_count);
2263 
2264 #endif
2265 
2266 /*
2267  * Print scheduling while atomic bug:
2268  */
2269 static noinline void __schedule_bug(struct task_struct *prev)
2270 {
2271 	if (oops_in_progress)
2272 		return;
2273 
2274 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275 		prev->comm, prev->pid, preempt_count());
2276 
2277 	debug_show_held_locks(prev);
2278 	print_modules();
2279 	if (irqs_disabled())
2280 		print_irqtrace_events(prev);
2281 	dump_stack();
2282 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2283 }
2284 
2285 /*
2286  * Various schedule()-time debugging checks and statistics:
2287  */
2288 static inline void schedule_debug(struct task_struct *prev)
2289 {
2290 	/*
2291 	 * Test if we are atomic. Since do_exit() needs to call into
2292 	 * schedule() atomically, we ignore that path for now.
2293 	 * Otherwise, whine if we are scheduling when we should not be.
2294 	 */
2295 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2296 		__schedule_bug(prev);
2297 	rcu_sleep_check();
2298 
2299 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300 
2301 	schedstat_inc(this_rq(), sched_count);
2302 }
2303 
2304 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2305 {
2306 	if (prev->on_rq || rq->skip_clock_update < 0)
2307 		update_rq_clock(rq);
2308 	prev->sched_class->put_prev_task(rq, prev);
2309 }
2310 
2311 /*
2312  * Pick up the highest-prio task:
2313  */
2314 static inline struct task_struct *
2315 pick_next_task(struct rq *rq)
2316 {
2317 	const struct sched_class *class;
2318 	struct task_struct *p;
2319 
2320 	/*
2321 	 * Optimization: we know that if all tasks are in
2322 	 * the fair class we can call that function directly:
2323 	 */
2324 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325 		p = fair_sched_class.pick_next_task(rq);
2326 		if (likely(p))
2327 			return p;
2328 	}
2329 
2330 	for_each_class(class) {
2331 		p = class->pick_next_task(rq);
2332 		if (p)
2333 			return p;
2334 	}
2335 
2336 	BUG(); /* the idle class will always have a runnable task */
2337 }
2338 
2339 /*
2340  * __schedule() is the main scheduler function.
2341  *
2342  * The main means of driving the scheduler and thus entering this function are:
2343  *
2344  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345  *
2346  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347  *      paths. For example, see arch/x86/entry_64.S.
2348  *
2349  *      To drive preemption between tasks, the scheduler sets the flag in timer
2350  *      interrupt handler scheduler_tick().
2351  *
2352  *   3. Wakeups don't really cause entry into schedule(). They add a
2353  *      task to the run-queue and that's it.
2354  *
2355  *      Now, if the new task added to the run-queue preempts the current
2356  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357  *      called on the nearest possible occasion:
2358  *
2359  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360  *
2361  *         - in syscall or exception context, at the next outmost
2362  *           preempt_enable(). (this might be as soon as the wake_up()'s
2363  *           spin_unlock()!)
2364  *
2365  *         - in IRQ context, return from interrupt-handler to
2366  *           preemptible context
2367  *
2368  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369  *         then at the next:
2370  *
2371  *          - cond_resched() call
2372  *          - explicit schedule() call
2373  *          - return from syscall or exception to user-space
2374  *          - return from interrupt-handler to user-space
2375  */
2376 static void __sched __schedule(void)
2377 {
2378 	struct task_struct *prev, *next;
2379 	unsigned long *switch_count;
2380 	struct rq *rq;
2381 	int cpu;
2382 
2383 need_resched:
2384 	preempt_disable();
2385 	cpu = smp_processor_id();
2386 	rq = cpu_rq(cpu);
2387 	rcu_note_context_switch(cpu);
2388 	prev = rq->curr;
2389 
2390 	schedule_debug(prev);
2391 
2392 	if (sched_feat(HRTICK))
2393 		hrtick_clear(rq);
2394 
2395 	raw_spin_lock_irq(&rq->lock);
2396 
2397 	switch_count = &prev->nivcsw;
2398 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2399 		if (unlikely(signal_pending_state(prev->state, prev))) {
2400 			prev->state = TASK_RUNNING;
2401 		} else {
2402 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2403 			prev->on_rq = 0;
2404 
2405 			/*
2406 			 * If a worker went to sleep, notify and ask workqueue
2407 			 * whether it wants to wake up a task to maintain
2408 			 * concurrency.
2409 			 */
2410 			if (prev->flags & PF_WQ_WORKER) {
2411 				struct task_struct *to_wakeup;
2412 
2413 				to_wakeup = wq_worker_sleeping(prev, cpu);
2414 				if (to_wakeup)
2415 					try_to_wake_up_local(to_wakeup);
2416 			}
2417 		}
2418 		switch_count = &prev->nvcsw;
2419 	}
2420 
2421 	pre_schedule(rq, prev);
2422 
2423 	if (unlikely(!rq->nr_running))
2424 		idle_balance(cpu, rq);
2425 
2426 	put_prev_task(rq, prev);
2427 	next = pick_next_task(rq);
2428 	clear_tsk_need_resched(prev);
2429 	rq->skip_clock_update = 0;
2430 
2431 	if (likely(prev != next)) {
2432 		rq->nr_switches++;
2433 		rq->curr = next;
2434 		++*switch_count;
2435 
2436 		context_switch(rq, prev, next); /* unlocks the rq */
2437 		/*
2438 		 * The context switch have flipped the stack from under us
2439 		 * and restored the local variables which were saved when
2440 		 * this task called schedule() in the past. prev == current
2441 		 * is still correct, but it can be moved to another cpu/rq.
2442 		 */
2443 		cpu = smp_processor_id();
2444 		rq = cpu_rq(cpu);
2445 	} else
2446 		raw_spin_unlock_irq(&rq->lock);
2447 
2448 	post_schedule(rq);
2449 
2450 	sched_preempt_enable_no_resched();
2451 	if (need_resched())
2452 		goto need_resched;
2453 }
2454 
2455 static inline void sched_submit_work(struct task_struct *tsk)
2456 {
2457 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2458 		return;
2459 	/*
2460 	 * If we are going to sleep and we have plugged IO queued,
2461 	 * make sure to submit it to avoid deadlocks.
2462 	 */
2463 	if (blk_needs_flush_plug(tsk))
2464 		blk_schedule_flush_plug(tsk);
2465 }
2466 
2467 asmlinkage void __sched schedule(void)
2468 {
2469 	struct task_struct *tsk = current;
2470 
2471 	sched_submit_work(tsk);
2472 	__schedule();
2473 }
2474 EXPORT_SYMBOL(schedule);
2475 
2476 #ifdef CONFIG_CONTEXT_TRACKING
2477 asmlinkage void __sched schedule_user(void)
2478 {
2479 	/*
2480 	 * If we come here after a random call to set_need_resched(),
2481 	 * or we have been woken up remotely but the IPI has not yet arrived,
2482 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2483 	 * we find a better solution.
2484 	 */
2485 	user_exit();
2486 	schedule();
2487 	user_enter();
2488 }
2489 #endif
2490 
2491 /**
2492  * schedule_preempt_disabled - called with preemption disabled
2493  *
2494  * Returns with preemption disabled. Note: preempt_count must be 1
2495  */
2496 void __sched schedule_preempt_disabled(void)
2497 {
2498 	sched_preempt_enable_no_resched();
2499 	schedule();
2500 	preempt_disable();
2501 }
2502 
2503 #ifdef CONFIG_PREEMPT
2504 /*
2505  * this is the entry point to schedule() from in-kernel preemption
2506  * off of preempt_enable. Kernel preemptions off return from interrupt
2507  * occur there and call schedule directly.
2508  */
2509 asmlinkage void __sched notrace preempt_schedule(void)
2510 {
2511 	struct thread_info *ti = current_thread_info();
2512 
2513 	/*
2514 	 * If there is a non-zero preempt_count or interrupts are disabled,
2515 	 * we do not want to preempt the current task. Just return..
2516 	 */
2517 	if (likely(ti->preempt_count || irqs_disabled()))
2518 		return;
2519 
2520 	do {
2521 		add_preempt_count_notrace(PREEMPT_ACTIVE);
2522 		__schedule();
2523 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2524 
2525 		/*
2526 		 * Check again in case we missed a preemption opportunity
2527 		 * between schedule and now.
2528 		 */
2529 		barrier();
2530 	} while (need_resched());
2531 }
2532 EXPORT_SYMBOL(preempt_schedule);
2533 
2534 /*
2535  * this is the entry point to schedule() from kernel preemption
2536  * off of irq context.
2537  * Note, that this is called and return with irqs disabled. This will
2538  * protect us against recursive calling from irq.
2539  */
2540 asmlinkage void __sched preempt_schedule_irq(void)
2541 {
2542 	struct thread_info *ti = current_thread_info();
2543 	enum ctx_state prev_state;
2544 
2545 	/* Catch callers which need to be fixed */
2546 	BUG_ON(ti->preempt_count || !irqs_disabled());
2547 
2548 	prev_state = exception_enter();
2549 
2550 	do {
2551 		add_preempt_count(PREEMPT_ACTIVE);
2552 		local_irq_enable();
2553 		__schedule();
2554 		local_irq_disable();
2555 		sub_preempt_count(PREEMPT_ACTIVE);
2556 
2557 		/*
2558 		 * Check again in case we missed a preemption opportunity
2559 		 * between schedule and now.
2560 		 */
2561 		barrier();
2562 	} while (need_resched());
2563 
2564 	exception_exit(prev_state);
2565 }
2566 
2567 #endif /* CONFIG_PREEMPT */
2568 
2569 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2570 			  void *key)
2571 {
2572 	return try_to_wake_up(curr->private, mode, wake_flags);
2573 }
2574 EXPORT_SYMBOL(default_wake_function);
2575 
2576 /*
2577  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2578  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2579  * number) then we wake all the non-exclusive tasks and one exclusive task.
2580  *
2581  * There are circumstances in which we can try to wake a task which has already
2582  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2583  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2584  */
2585 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2586 			int nr_exclusive, int wake_flags, void *key)
2587 {
2588 	wait_queue_t *curr, *next;
2589 
2590 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2591 		unsigned flags = curr->flags;
2592 
2593 		if (curr->func(curr, mode, wake_flags, key) &&
2594 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2595 			break;
2596 	}
2597 }
2598 
2599 /**
2600  * __wake_up - wake up threads blocked on a waitqueue.
2601  * @q: the waitqueue
2602  * @mode: which threads
2603  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2604  * @key: is directly passed to the wakeup function
2605  *
2606  * It may be assumed that this function implies a write memory barrier before
2607  * changing the task state if and only if any tasks are woken up.
2608  */
2609 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2610 			int nr_exclusive, void *key)
2611 {
2612 	unsigned long flags;
2613 
2614 	spin_lock_irqsave(&q->lock, flags);
2615 	__wake_up_common(q, mode, nr_exclusive, 0, key);
2616 	spin_unlock_irqrestore(&q->lock, flags);
2617 }
2618 EXPORT_SYMBOL(__wake_up);
2619 
2620 /*
2621  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2622  */
2623 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2624 {
2625 	__wake_up_common(q, mode, nr, 0, NULL);
2626 }
2627 EXPORT_SYMBOL_GPL(__wake_up_locked);
2628 
2629 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2630 {
2631 	__wake_up_common(q, mode, 1, 0, key);
2632 }
2633 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2634 
2635 /**
2636  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2637  * @q: the waitqueue
2638  * @mode: which threads
2639  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2640  * @key: opaque value to be passed to wakeup targets
2641  *
2642  * The sync wakeup differs that the waker knows that it will schedule
2643  * away soon, so while the target thread will be woken up, it will not
2644  * be migrated to another CPU - ie. the two threads are 'synchronized'
2645  * with each other. This can prevent needless bouncing between CPUs.
2646  *
2647  * On UP it can prevent extra preemption.
2648  *
2649  * It may be assumed that this function implies a write memory barrier before
2650  * changing the task state if and only if any tasks are woken up.
2651  */
2652 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2653 			int nr_exclusive, void *key)
2654 {
2655 	unsigned long flags;
2656 	int wake_flags = WF_SYNC;
2657 
2658 	if (unlikely(!q))
2659 		return;
2660 
2661 	if (unlikely(!nr_exclusive))
2662 		wake_flags = 0;
2663 
2664 	spin_lock_irqsave(&q->lock, flags);
2665 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2666 	spin_unlock_irqrestore(&q->lock, flags);
2667 }
2668 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2669 
2670 /*
2671  * __wake_up_sync - see __wake_up_sync_key()
2672  */
2673 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2674 {
2675 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2678 
2679 /**
2680  * complete: - signals a single thread waiting on this completion
2681  * @x:  holds the state of this particular completion
2682  *
2683  * This will wake up a single thread waiting on this completion. Threads will be
2684  * awakened in the same order in which they were queued.
2685  *
2686  * See also complete_all(), wait_for_completion() and related routines.
2687  *
2688  * It may be assumed that this function implies a write memory barrier before
2689  * changing the task state if and only if any tasks are woken up.
2690  */
2691 void complete(struct completion *x)
2692 {
2693 	unsigned long flags;
2694 
2695 	spin_lock_irqsave(&x->wait.lock, flags);
2696 	x->done++;
2697 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2698 	spin_unlock_irqrestore(&x->wait.lock, flags);
2699 }
2700 EXPORT_SYMBOL(complete);
2701 
2702 /**
2703  * complete_all: - signals all threads waiting on this completion
2704  * @x:  holds the state of this particular completion
2705  *
2706  * This will wake up all threads waiting on this particular completion event.
2707  *
2708  * It may be assumed that this function implies a write memory barrier before
2709  * changing the task state if and only if any tasks are woken up.
2710  */
2711 void complete_all(struct completion *x)
2712 {
2713 	unsigned long flags;
2714 
2715 	spin_lock_irqsave(&x->wait.lock, flags);
2716 	x->done += UINT_MAX/2;
2717 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2718 	spin_unlock_irqrestore(&x->wait.lock, flags);
2719 }
2720 EXPORT_SYMBOL(complete_all);
2721 
2722 static inline long __sched
2723 do_wait_for_common(struct completion *x,
2724 		   long (*action)(long), long timeout, int state)
2725 {
2726 	if (!x->done) {
2727 		DECLARE_WAITQUEUE(wait, current);
2728 
2729 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2730 		do {
2731 			if (signal_pending_state(state, current)) {
2732 				timeout = -ERESTARTSYS;
2733 				break;
2734 			}
2735 			__set_current_state(state);
2736 			spin_unlock_irq(&x->wait.lock);
2737 			timeout = action(timeout);
2738 			spin_lock_irq(&x->wait.lock);
2739 		} while (!x->done && timeout);
2740 		__remove_wait_queue(&x->wait, &wait);
2741 		if (!x->done)
2742 			return timeout;
2743 	}
2744 	x->done--;
2745 	return timeout ?: 1;
2746 }
2747 
2748 static inline long __sched
2749 __wait_for_common(struct completion *x,
2750 		  long (*action)(long), long timeout, int state)
2751 {
2752 	might_sleep();
2753 
2754 	spin_lock_irq(&x->wait.lock);
2755 	timeout = do_wait_for_common(x, action, timeout, state);
2756 	spin_unlock_irq(&x->wait.lock);
2757 	return timeout;
2758 }
2759 
2760 static long __sched
2761 wait_for_common(struct completion *x, long timeout, int state)
2762 {
2763 	return __wait_for_common(x, schedule_timeout, timeout, state);
2764 }
2765 
2766 static long __sched
2767 wait_for_common_io(struct completion *x, long timeout, int state)
2768 {
2769 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2770 }
2771 
2772 /**
2773  * wait_for_completion: - waits for completion of a task
2774  * @x:  holds the state of this particular completion
2775  *
2776  * This waits to be signaled for completion of a specific task. It is NOT
2777  * interruptible and there is no timeout.
2778  *
2779  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2780  * and interrupt capability. Also see complete().
2781  */
2782 void __sched wait_for_completion(struct completion *x)
2783 {
2784 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2785 }
2786 EXPORT_SYMBOL(wait_for_completion);
2787 
2788 /**
2789  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2790  * @x:  holds the state of this particular completion
2791  * @timeout:  timeout value in jiffies
2792  *
2793  * This waits for either a completion of a specific task to be signaled or for a
2794  * specified timeout to expire. The timeout is in jiffies. It is not
2795  * interruptible.
2796  *
2797  * The return value is 0 if timed out, and positive (at least 1, or number of
2798  * jiffies left till timeout) if completed.
2799  */
2800 unsigned long __sched
2801 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2802 {
2803 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2804 }
2805 EXPORT_SYMBOL(wait_for_completion_timeout);
2806 
2807 /**
2808  * wait_for_completion_io: - waits for completion of a task
2809  * @x:  holds the state of this particular completion
2810  *
2811  * This waits to be signaled for completion of a specific task. It is NOT
2812  * interruptible and there is no timeout. The caller is accounted as waiting
2813  * for IO.
2814  */
2815 void __sched wait_for_completion_io(struct completion *x)
2816 {
2817 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2818 }
2819 EXPORT_SYMBOL(wait_for_completion_io);
2820 
2821 /**
2822  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2823  * @x:  holds the state of this particular completion
2824  * @timeout:  timeout value in jiffies
2825  *
2826  * This waits for either a completion of a specific task to be signaled or for a
2827  * specified timeout to expire. The timeout is in jiffies. It is not
2828  * interruptible. The caller is accounted as waiting for IO.
2829  *
2830  * The return value is 0 if timed out, and positive (at least 1, or number of
2831  * jiffies left till timeout) if completed.
2832  */
2833 unsigned long __sched
2834 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2835 {
2836 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2837 }
2838 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2839 
2840 /**
2841  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2842  * @x:  holds the state of this particular completion
2843  *
2844  * This waits for completion of a specific task to be signaled. It is
2845  * interruptible.
2846  *
2847  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2848  */
2849 int __sched wait_for_completion_interruptible(struct completion *x)
2850 {
2851 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2852 	if (t == -ERESTARTSYS)
2853 		return t;
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(wait_for_completion_interruptible);
2857 
2858 /**
2859  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2860  * @x:  holds the state of this particular completion
2861  * @timeout:  timeout value in jiffies
2862  *
2863  * This waits for either a completion of a specific task to be signaled or for a
2864  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2865  *
2866  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2867  * positive (at least 1, or number of jiffies left till timeout) if completed.
2868  */
2869 long __sched
2870 wait_for_completion_interruptible_timeout(struct completion *x,
2871 					  unsigned long timeout)
2872 {
2873 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2874 }
2875 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2876 
2877 /**
2878  * wait_for_completion_killable: - waits for completion of a task (killable)
2879  * @x:  holds the state of this particular completion
2880  *
2881  * This waits to be signaled for completion of a specific task. It can be
2882  * interrupted by a kill signal.
2883  *
2884  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2885  */
2886 int __sched wait_for_completion_killable(struct completion *x)
2887 {
2888 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2889 	if (t == -ERESTARTSYS)
2890 		return t;
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL(wait_for_completion_killable);
2894 
2895 /**
2896  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2897  * @x:  holds the state of this particular completion
2898  * @timeout:  timeout value in jiffies
2899  *
2900  * This waits for either a completion of a specific task to be
2901  * signaled or for a specified timeout to expire. It can be
2902  * interrupted by a kill signal. The timeout is in jiffies.
2903  *
2904  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2905  * positive (at least 1, or number of jiffies left till timeout) if completed.
2906  */
2907 long __sched
2908 wait_for_completion_killable_timeout(struct completion *x,
2909 				     unsigned long timeout)
2910 {
2911 	return wait_for_common(x, timeout, TASK_KILLABLE);
2912 }
2913 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2914 
2915 /**
2916  *	try_wait_for_completion - try to decrement a completion without blocking
2917  *	@x:	completion structure
2918  *
2919  *	Returns: 0 if a decrement cannot be done without blocking
2920  *		 1 if a decrement succeeded.
2921  *
2922  *	If a completion is being used as a counting completion,
2923  *	attempt to decrement the counter without blocking. This
2924  *	enables us to avoid waiting if the resource the completion
2925  *	is protecting is not available.
2926  */
2927 bool try_wait_for_completion(struct completion *x)
2928 {
2929 	unsigned long flags;
2930 	int ret = 1;
2931 
2932 	spin_lock_irqsave(&x->wait.lock, flags);
2933 	if (!x->done)
2934 		ret = 0;
2935 	else
2936 		x->done--;
2937 	spin_unlock_irqrestore(&x->wait.lock, flags);
2938 	return ret;
2939 }
2940 EXPORT_SYMBOL(try_wait_for_completion);
2941 
2942 /**
2943  *	completion_done - Test to see if a completion has any waiters
2944  *	@x:	completion structure
2945  *
2946  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2947  *		 1 if there are no waiters.
2948  *
2949  */
2950 bool completion_done(struct completion *x)
2951 {
2952 	unsigned long flags;
2953 	int ret = 1;
2954 
2955 	spin_lock_irqsave(&x->wait.lock, flags);
2956 	if (!x->done)
2957 		ret = 0;
2958 	spin_unlock_irqrestore(&x->wait.lock, flags);
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL(completion_done);
2962 
2963 static long __sched
2964 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2965 {
2966 	unsigned long flags;
2967 	wait_queue_t wait;
2968 
2969 	init_waitqueue_entry(&wait, current);
2970 
2971 	__set_current_state(state);
2972 
2973 	spin_lock_irqsave(&q->lock, flags);
2974 	__add_wait_queue(q, &wait);
2975 	spin_unlock(&q->lock);
2976 	timeout = schedule_timeout(timeout);
2977 	spin_lock_irq(&q->lock);
2978 	__remove_wait_queue(q, &wait);
2979 	spin_unlock_irqrestore(&q->lock, flags);
2980 
2981 	return timeout;
2982 }
2983 
2984 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2985 {
2986 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2987 }
2988 EXPORT_SYMBOL(interruptible_sleep_on);
2989 
2990 long __sched
2991 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2992 {
2993 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2994 }
2995 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2996 
2997 void __sched sleep_on(wait_queue_head_t *q)
2998 {
2999 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3000 }
3001 EXPORT_SYMBOL(sleep_on);
3002 
3003 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3004 {
3005 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3006 }
3007 EXPORT_SYMBOL(sleep_on_timeout);
3008 
3009 #ifdef CONFIG_RT_MUTEXES
3010 
3011 /*
3012  * rt_mutex_setprio - set the current priority of a task
3013  * @p: task
3014  * @prio: prio value (kernel-internal form)
3015  *
3016  * This function changes the 'effective' priority of a task. It does
3017  * not touch ->normal_prio like __setscheduler().
3018  *
3019  * Used by the rt_mutex code to implement priority inheritance logic.
3020  */
3021 void rt_mutex_setprio(struct task_struct *p, int prio)
3022 {
3023 	int oldprio, on_rq, running;
3024 	struct rq *rq;
3025 	const struct sched_class *prev_class;
3026 
3027 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3028 
3029 	rq = __task_rq_lock(p);
3030 
3031 	/*
3032 	 * Idle task boosting is a nono in general. There is one
3033 	 * exception, when PREEMPT_RT and NOHZ is active:
3034 	 *
3035 	 * The idle task calls get_next_timer_interrupt() and holds
3036 	 * the timer wheel base->lock on the CPU and another CPU wants
3037 	 * to access the timer (probably to cancel it). We can safely
3038 	 * ignore the boosting request, as the idle CPU runs this code
3039 	 * with interrupts disabled and will complete the lock
3040 	 * protected section without being interrupted. So there is no
3041 	 * real need to boost.
3042 	 */
3043 	if (unlikely(p == rq->idle)) {
3044 		WARN_ON(p != rq->curr);
3045 		WARN_ON(p->pi_blocked_on);
3046 		goto out_unlock;
3047 	}
3048 
3049 	trace_sched_pi_setprio(p, prio);
3050 	oldprio = p->prio;
3051 	prev_class = p->sched_class;
3052 	on_rq = p->on_rq;
3053 	running = task_current(rq, p);
3054 	if (on_rq)
3055 		dequeue_task(rq, p, 0);
3056 	if (running)
3057 		p->sched_class->put_prev_task(rq, p);
3058 
3059 	if (rt_prio(prio))
3060 		p->sched_class = &rt_sched_class;
3061 	else
3062 		p->sched_class = &fair_sched_class;
3063 
3064 	p->prio = prio;
3065 
3066 	if (running)
3067 		p->sched_class->set_curr_task(rq);
3068 	if (on_rq)
3069 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3070 
3071 	check_class_changed(rq, p, prev_class, oldprio);
3072 out_unlock:
3073 	__task_rq_unlock(rq);
3074 }
3075 #endif
3076 void set_user_nice(struct task_struct *p, long nice)
3077 {
3078 	int old_prio, delta, on_rq;
3079 	unsigned long flags;
3080 	struct rq *rq;
3081 
3082 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3083 		return;
3084 	/*
3085 	 * We have to be careful, if called from sys_setpriority(),
3086 	 * the task might be in the middle of scheduling on another CPU.
3087 	 */
3088 	rq = task_rq_lock(p, &flags);
3089 	/*
3090 	 * The RT priorities are set via sched_setscheduler(), but we still
3091 	 * allow the 'normal' nice value to be set - but as expected
3092 	 * it wont have any effect on scheduling until the task is
3093 	 * SCHED_FIFO/SCHED_RR:
3094 	 */
3095 	if (task_has_rt_policy(p)) {
3096 		p->static_prio = NICE_TO_PRIO(nice);
3097 		goto out_unlock;
3098 	}
3099 	on_rq = p->on_rq;
3100 	if (on_rq)
3101 		dequeue_task(rq, p, 0);
3102 
3103 	p->static_prio = NICE_TO_PRIO(nice);
3104 	set_load_weight(p);
3105 	old_prio = p->prio;
3106 	p->prio = effective_prio(p);
3107 	delta = p->prio - old_prio;
3108 
3109 	if (on_rq) {
3110 		enqueue_task(rq, p, 0);
3111 		/*
3112 		 * If the task increased its priority or is running and
3113 		 * lowered its priority, then reschedule its CPU:
3114 		 */
3115 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3116 			resched_task(rq->curr);
3117 	}
3118 out_unlock:
3119 	task_rq_unlock(rq, p, &flags);
3120 }
3121 EXPORT_SYMBOL(set_user_nice);
3122 
3123 /*
3124  * can_nice - check if a task can reduce its nice value
3125  * @p: task
3126  * @nice: nice value
3127  */
3128 int can_nice(const struct task_struct *p, const int nice)
3129 {
3130 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3131 	int nice_rlim = 20 - nice;
3132 
3133 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3134 		capable(CAP_SYS_NICE));
3135 }
3136 
3137 #ifdef __ARCH_WANT_SYS_NICE
3138 
3139 /*
3140  * sys_nice - change the priority of the current process.
3141  * @increment: priority increment
3142  *
3143  * sys_setpriority is a more generic, but much slower function that
3144  * does similar things.
3145  */
3146 SYSCALL_DEFINE1(nice, int, increment)
3147 {
3148 	long nice, retval;
3149 
3150 	/*
3151 	 * Setpriority might change our priority at the same moment.
3152 	 * We don't have to worry. Conceptually one call occurs first
3153 	 * and we have a single winner.
3154 	 */
3155 	if (increment < -40)
3156 		increment = -40;
3157 	if (increment > 40)
3158 		increment = 40;
3159 
3160 	nice = TASK_NICE(current) + increment;
3161 	if (nice < -20)
3162 		nice = -20;
3163 	if (nice > 19)
3164 		nice = 19;
3165 
3166 	if (increment < 0 && !can_nice(current, nice))
3167 		return -EPERM;
3168 
3169 	retval = security_task_setnice(current, nice);
3170 	if (retval)
3171 		return retval;
3172 
3173 	set_user_nice(current, nice);
3174 	return 0;
3175 }
3176 
3177 #endif
3178 
3179 /**
3180  * task_prio - return the priority value of a given task.
3181  * @p: the task in question.
3182  *
3183  * This is the priority value as seen by users in /proc.
3184  * RT tasks are offset by -200. Normal tasks are centered
3185  * around 0, value goes from -16 to +15.
3186  */
3187 int task_prio(const struct task_struct *p)
3188 {
3189 	return p->prio - MAX_RT_PRIO;
3190 }
3191 
3192 /**
3193  * task_nice - return the nice value of a given task.
3194  * @p: the task in question.
3195  */
3196 int task_nice(const struct task_struct *p)
3197 {
3198 	return TASK_NICE(p);
3199 }
3200 EXPORT_SYMBOL(task_nice);
3201 
3202 /**
3203  * idle_cpu - is a given cpu idle currently?
3204  * @cpu: the processor in question.
3205  */
3206 int idle_cpu(int cpu)
3207 {
3208 	struct rq *rq = cpu_rq(cpu);
3209 
3210 	if (rq->curr != rq->idle)
3211 		return 0;
3212 
3213 	if (rq->nr_running)
3214 		return 0;
3215 
3216 #ifdef CONFIG_SMP
3217 	if (!llist_empty(&rq->wake_list))
3218 		return 0;
3219 #endif
3220 
3221 	return 1;
3222 }
3223 
3224 /**
3225  * idle_task - return the idle task for a given cpu.
3226  * @cpu: the processor in question.
3227  */
3228 struct task_struct *idle_task(int cpu)
3229 {
3230 	return cpu_rq(cpu)->idle;
3231 }
3232 
3233 /**
3234  * find_process_by_pid - find a process with a matching PID value.
3235  * @pid: the pid in question.
3236  */
3237 static struct task_struct *find_process_by_pid(pid_t pid)
3238 {
3239 	return pid ? find_task_by_vpid(pid) : current;
3240 }
3241 
3242 /* Actually do priority change: must hold rq lock. */
3243 static void
3244 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3245 {
3246 	p->policy = policy;
3247 	p->rt_priority = prio;
3248 	p->normal_prio = normal_prio(p);
3249 	/* we are holding p->pi_lock already */
3250 	p->prio = rt_mutex_getprio(p);
3251 	if (rt_prio(p->prio))
3252 		p->sched_class = &rt_sched_class;
3253 	else
3254 		p->sched_class = &fair_sched_class;
3255 	set_load_weight(p);
3256 }
3257 
3258 /*
3259  * check the target process has a UID that matches the current process's
3260  */
3261 static bool check_same_owner(struct task_struct *p)
3262 {
3263 	const struct cred *cred = current_cred(), *pcred;
3264 	bool match;
3265 
3266 	rcu_read_lock();
3267 	pcred = __task_cred(p);
3268 	match = (uid_eq(cred->euid, pcred->euid) ||
3269 		 uid_eq(cred->euid, pcred->uid));
3270 	rcu_read_unlock();
3271 	return match;
3272 }
3273 
3274 static int __sched_setscheduler(struct task_struct *p, int policy,
3275 				const struct sched_param *param, bool user)
3276 {
3277 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3278 	unsigned long flags;
3279 	const struct sched_class *prev_class;
3280 	struct rq *rq;
3281 	int reset_on_fork;
3282 
3283 	/* may grab non-irq protected spin_locks */
3284 	BUG_ON(in_interrupt());
3285 recheck:
3286 	/* double check policy once rq lock held */
3287 	if (policy < 0) {
3288 		reset_on_fork = p->sched_reset_on_fork;
3289 		policy = oldpolicy = p->policy;
3290 	} else {
3291 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3292 		policy &= ~SCHED_RESET_ON_FORK;
3293 
3294 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3295 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3296 				policy != SCHED_IDLE)
3297 			return -EINVAL;
3298 	}
3299 
3300 	/*
3301 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3302 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3303 	 * SCHED_BATCH and SCHED_IDLE is 0.
3304 	 */
3305 	if (param->sched_priority < 0 ||
3306 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3307 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3308 		return -EINVAL;
3309 	if (rt_policy(policy) != (param->sched_priority != 0))
3310 		return -EINVAL;
3311 
3312 	/*
3313 	 * Allow unprivileged RT tasks to decrease priority:
3314 	 */
3315 	if (user && !capable(CAP_SYS_NICE)) {
3316 		if (rt_policy(policy)) {
3317 			unsigned long rlim_rtprio =
3318 					task_rlimit(p, RLIMIT_RTPRIO);
3319 
3320 			/* can't set/change the rt policy */
3321 			if (policy != p->policy && !rlim_rtprio)
3322 				return -EPERM;
3323 
3324 			/* can't increase priority */
3325 			if (param->sched_priority > p->rt_priority &&
3326 			    param->sched_priority > rlim_rtprio)
3327 				return -EPERM;
3328 		}
3329 
3330 		/*
3331 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3332 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3333 		 */
3334 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3335 			if (!can_nice(p, TASK_NICE(p)))
3336 				return -EPERM;
3337 		}
3338 
3339 		/* can't change other user's priorities */
3340 		if (!check_same_owner(p))
3341 			return -EPERM;
3342 
3343 		/* Normal users shall not reset the sched_reset_on_fork flag */
3344 		if (p->sched_reset_on_fork && !reset_on_fork)
3345 			return -EPERM;
3346 	}
3347 
3348 	if (user) {
3349 		retval = security_task_setscheduler(p);
3350 		if (retval)
3351 			return retval;
3352 	}
3353 
3354 	/*
3355 	 * make sure no PI-waiters arrive (or leave) while we are
3356 	 * changing the priority of the task:
3357 	 *
3358 	 * To be able to change p->policy safely, the appropriate
3359 	 * runqueue lock must be held.
3360 	 */
3361 	rq = task_rq_lock(p, &flags);
3362 
3363 	/*
3364 	 * Changing the policy of the stop threads its a very bad idea
3365 	 */
3366 	if (p == rq->stop) {
3367 		task_rq_unlock(rq, p, &flags);
3368 		return -EINVAL;
3369 	}
3370 
3371 	/*
3372 	 * If not changing anything there's no need to proceed further:
3373 	 */
3374 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3375 			param->sched_priority == p->rt_priority))) {
3376 		task_rq_unlock(rq, p, &flags);
3377 		return 0;
3378 	}
3379 
3380 #ifdef CONFIG_RT_GROUP_SCHED
3381 	if (user) {
3382 		/*
3383 		 * Do not allow realtime tasks into groups that have no runtime
3384 		 * assigned.
3385 		 */
3386 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3387 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388 				!task_group_is_autogroup(task_group(p))) {
3389 			task_rq_unlock(rq, p, &flags);
3390 			return -EPERM;
3391 		}
3392 	}
3393 #endif
3394 
3395 	/* recheck policy now with rq lock held */
3396 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 		policy = oldpolicy = -1;
3398 		task_rq_unlock(rq, p, &flags);
3399 		goto recheck;
3400 	}
3401 	on_rq = p->on_rq;
3402 	running = task_current(rq, p);
3403 	if (on_rq)
3404 		dequeue_task(rq, p, 0);
3405 	if (running)
3406 		p->sched_class->put_prev_task(rq, p);
3407 
3408 	p->sched_reset_on_fork = reset_on_fork;
3409 
3410 	oldprio = p->prio;
3411 	prev_class = p->sched_class;
3412 	__setscheduler(rq, p, policy, param->sched_priority);
3413 
3414 	if (running)
3415 		p->sched_class->set_curr_task(rq);
3416 	if (on_rq)
3417 		enqueue_task(rq, p, 0);
3418 
3419 	check_class_changed(rq, p, prev_class, oldprio);
3420 	task_rq_unlock(rq, p, &flags);
3421 
3422 	rt_mutex_adjust_pi(p);
3423 
3424 	return 0;
3425 }
3426 
3427 /**
3428  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3429  * @p: the task in question.
3430  * @policy: new policy.
3431  * @param: structure containing the new RT priority.
3432  *
3433  * NOTE that the task may be already dead.
3434  */
3435 int sched_setscheduler(struct task_struct *p, int policy,
3436 		       const struct sched_param *param)
3437 {
3438 	return __sched_setscheduler(p, policy, param, true);
3439 }
3440 EXPORT_SYMBOL_GPL(sched_setscheduler);
3441 
3442 /**
3443  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3444  * @p: the task in question.
3445  * @policy: new policy.
3446  * @param: structure containing the new RT priority.
3447  *
3448  * Just like sched_setscheduler, only don't bother checking if the
3449  * current context has permission.  For example, this is needed in
3450  * stop_machine(): we create temporary high priority worker threads,
3451  * but our caller might not have that capability.
3452  */
3453 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3454 			       const struct sched_param *param)
3455 {
3456 	return __sched_setscheduler(p, policy, param, false);
3457 }
3458 
3459 static int
3460 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3461 {
3462 	struct sched_param lparam;
3463 	struct task_struct *p;
3464 	int retval;
3465 
3466 	if (!param || pid < 0)
3467 		return -EINVAL;
3468 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3469 		return -EFAULT;
3470 
3471 	rcu_read_lock();
3472 	retval = -ESRCH;
3473 	p = find_process_by_pid(pid);
3474 	if (p != NULL)
3475 		retval = sched_setscheduler(p, policy, &lparam);
3476 	rcu_read_unlock();
3477 
3478 	return retval;
3479 }
3480 
3481 /**
3482  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3483  * @pid: the pid in question.
3484  * @policy: new policy.
3485  * @param: structure containing the new RT priority.
3486  */
3487 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3488 		struct sched_param __user *, param)
3489 {
3490 	/* negative values for policy are not valid */
3491 	if (policy < 0)
3492 		return -EINVAL;
3493 
3494 	return do_sched_setscheduler(pid, policy, param);
3495 }
3496 
3497 /**
3498  * sys_sched_setparam - set/change the RT priority of a thread
3499  * @pid: the pid in question.
3500  * @param: structure containing the new RT priority.
3501  */
3502 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3503 {
3504 	return do_sched_setscheduler(pid, -1, param);
3505 }
3506 
3507 /**
3508  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3509  * @pid: the pid in question.
3510  */
3511 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3512 {
3513 	struct task_struct *p;
3514 	int retval;
3515 
3516 	if (pid < 0)
3517 		return -EINVAL;
3518 
3519 	retval = -ESRCH;
3520 	rcu_read_lock();
3521 	p = find_process_by_pid(pid);
3522 	if (p) {
3523 		retval = security_task_getscheduler(p);
3524 		if (!retval)
3525 			retval = p->policy
3526 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3527 	}
3528 	rcu_read_unlock();
3529 	return retval;
3530 }
3531 
3532 /**
3533  * sys_sched_getparam - get the RT priority of a thread
3534  * @pid: the pid in question.
3535  * @param: structure containing the RT priority.
3536  */
3537 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3538 {
3539 	struct sched_param lp;
3540 	struct task_struct *p;
3541 	int retval;
3542 
3543 	if (!param || pid < 0)
3544 		return -EINVAL;
3545 
3546 	rcu_read_lock();
3547 	p = find_process_by_pid(pid);
3548 	retval = -ESRCH;
3549 	if (!p)
3550 		goto out_unlock;
3551 
3552 	retval = security_task_getscheduler(p);
3553 	if (retval)
3554 		goto out_unlock;
3555 
3556 	lp.sched_priority = p->rt_priority;
3557 	rcu_read_unlock();
3558 
3559 	/*
3560 	 * This one might sleep, we cannot do it with a spinlock held ...
3561 	 */
3562 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3563 
3564 	return retval;
3565 
3566 out_unlock:
3567 	rcu_read_unlock();
3568 	return retval;
3569 }
3570 
3571 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3572 {
3573 	cpumask_var_t cpus_allowed, new_mask;
3574 	struct task_struct *p;
3575 	int retval;
3576 
3577 	get_online_cpus();
3578 	rcu_read_lock();
3579 
3580 	p = find_process_by_pid(pid);
3581 	if (!p) {
3582 		rcu_read_unlock();
3583 		put_online_cpus();
3584 		return -ESRCH;
3585 	}
3586 
3587 	/* Prevent p going away */
3588 	get_task_struct(p);
3589 	rcu_read_unlock();
3590 
3591 	if (p->flags & PF_NO_SETAFFINITY) {
3592 		retval = -EINVAL;
3593 		goto out_put_task;
3594 	}
3595 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3596 		retval = -ENOMEM;
3597 		goto out_put_task;
3598 	}
3599 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3600 		retval = -ENOMEM;
3601 		goto out_free_cpus_allowed;
3602 	}
3603 	retval = -EPERM;
3604 	if (!check_same_owner(p)) {
3605 		rcu_read_lock();
3606 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3607 			rcu_read_unlock();
3608 			goto out_unlock;
3609 		}
3610 		rcu_read_unlock();
3611 	}
3612 
3613 	retval = security_task_setscheduler(p);
3614 	if (retval)
3615 		goto out_unlock;
3616 
3617 	cpuset_cpus_allowed(p, cpus_allowed);
3618 	cpumask_and(new_mask, in_mask, cpus_allowed);
3619 again:
3620 	retval = set_cpus_allowed_ptr(p, new_mask);
3621 
3622 	if (!retval) {
3623 		cpuset_cpus_allowed(p, cpus_allowed);
3624 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3625 			/*
3626 			 * We must have raced with a concurrent cpuset
3627 			 * update. Just reset the cpus_allowed to the
3628 			 * cpuset's cpus_allowed
3629 			 */
3630 			cpumask_copy(new_mask, cpus_allowed);
3631 			goto again;
3632 		}
3633 	}
3634 out_unlock:
3635 	free_cpumask_var(new_mask);
3636 out_free_cpus_allowed:
3637 	free_cpumask_var(cpus_allowed);
3638 out_put_task:
3639 	put_task_struct(p);
3640 	put_online_cpus();
3641 	return retval;
3642 }
3643 
3644 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3645 			     struct cpumask *new_mask)
3646 {
3647 	if (len < cpumask_size())
3648 		cpumask_clear(new_mask);
3649 	else if (len > cpumask_size())
3650 		len = cpumask_size();
3651 
3652 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3653 }
3654 
3655 /**
3656  * sys_sched_setaffinity - set the cpu affinity of a process
3657  * @pid: pid of the process
3658  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3659  * @user_mask_ptr: user-space pointer to the new cpu mask
3660  */
3661 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3662 		unsigned long __user *, user_mask_ptr)
3663 {
3664 	cpumask_var_t new_mask;
3665 	int retval;
3666 
3667 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3668 		return -ENOMEM;
3669 
3670 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3671 	if (retval == 0)
3672 		retval = sched_setaffinity(pid, new_mask);
3673 	free_cpumask_var(new_mask);
3674 	return retval;
3675 }
3676 
3677 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3678 {
3679 	struct task_struct *p;
3680 	unsigned long flags;
3681 	int retval;
3682 
3683 	get_online_cpus();
3684 	rcu_read_lock();
3685 
3686 	retval = -ESRCH;
3687 	p = find_process_by_pid(pid);
3688 	if (!p)
3689 		goto out_unlock;
3690 
3691 	retval = security_task_getscheduler(p);
3692 	if (retval)
3693 		goto out_unlock;
3694 
3695 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3696 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3697 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3698 
3699 out_unlock:
3700 	rcu_read_unlock();
3701 	put_online_cpus();
3702 
3703 	return retval;
3704 }
3705 
3706 /**
3707  * sys_sched_getaffinity - get the cpu affinity of a process
3708  * @pid: pid of the process
3709  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3710  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3711  */
3712 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3713 		unsigned long __user *, user_mask_ptr)
3714 {
3715 	int ret;
3716 	cpumask_var_t mask;
3717 
3718 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3719 		return -EINVAL;
3720 	if (len & (sizeof(unsigned long)-1))
3721 		return -EINVAL;
3722 
3723 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3724 		return -ENOMEM;
3725 
3726 	ret = sched_getaffinity(pid, mask);
3727 	if (ret == 0) {
3728 		size_t retlen = min_t(size_t, len, cpumask_size());
3729 
3730 		if (copy_to_user(user_mask_ptr, mask, retlen))
3731 			ret = -EFAULT;
3732 		else
3733 			ret = retlen;
3734 	}
3735 	free_cpumask_var(mask);
3736 
3737 	return ret;
3738 }
3739 
3740 /**
3741  * sys_sched_yield - yield the current processor to other threads.
3742  *
3743  * This function yields the current CPU to other tasks. If there are no
3744  * other threads running on this CPU then this function will return.
3745  */
3746 SYSCALL_DEFINE0(sched_yield)
3747 {
3748 	struct rq *rq = this_rq_lock();
3749 
3750 	schedstat_inc(rq, yld_count);
3751 	current->sched_class->yield_task(rq);
3752 
3753 	/*
3754 	 * Since we are going to call schedule() anyway, there's
3755 	 * no need to preempt or enable interrupts:
3756 	 */
3757 	__release(rq->lock);
3758 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3759 	do_raw_spin_unlock(&rq->lock);
3760 	sched_preempt_enable_no_resched();
3761 
3762 	schedule();
3763 
3764 	return 0;
3765 }
3766 
3767 static inline int should_resched(void)
3768 {
3769 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3770 }
3771 
3772 static void __cond_resched(void)
3773 {
3774 	add_preempt_count(PREEMPT_ACTIVE);
3775 	__schedule();
3776 	sub_preempt_count(PREEMPT_ACTIVE);
3777 }
3778 
3779 int __sched _cond_resched(void)
3780 {
3781 	if (should_resched()) {
3782 		__cond_resched();
3783 		return 1;
3784 	}
3785 	return 0;
3786 }
3787 EXPORT_SYMBOL(_cond_resched);
3788 
3789 /*
3790  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3791  * call schedule, and on return reacquire the lock.
3792  *
3793  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3794  * operations here to prevent schedule() from being called twice (once via
3795  * spin_unlock(), once by hand).
3796  */
3797 int __cond_resched_lock(spinlock_t *lock)
3798 {
3799 	int resched = should_resched();
3800 	int ret = 0;
3801 
3802 	lockdep_assert_held(lock);
3803 
3804 	if (spin_needbreak(lock) || resched) {
3805 		spin_unlock(lock);
3806 		if (resched)
3807 			__cond_resched();
3808 		else
3809 			cpu_relax();
3810 		ret = 1;
3811 		spin_lock(lock);
3812 	}
3813 	return ret;
3814 }
3815 EXPORT_SYMBOL(__cond_resched_lock);
3816 
3817 int __sched __cond_resched_softirq(void)
3818 {
3819 	BUG_ON(!in_softirq());
3820 
3821 	if (should_resched()) {
3822 		local_bh_enable();
3823 		__cond_resched();
3824 		local_bh_disable();
3825 		return 1;
3826 	}
3827 	return 0;
3828 }
3829 EXPORT_SYMBOL(__cond_resched_softirq);
3830 
3831 /**
3832  * yield - yield the current processor to other threads.
3833  *
3834  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3835  *
3836  * The scheduler is at all times free to pick the calling task as the most
3837  * eligible task to run, if removing the yield() call from your code breaks
3838  * it, its already broken.
3839  *
3840  * Typical broken usage is:
3841  *
3842  * while (!event)
3843  * 	yield();
3844  *
3845  * where one assumes that yield() will let 'the other' process run that will
3846  * make event true. If the current task is a SCHED_FIFO task that will never
3847  * happen. Never use yield() as a progress guarantee!!
3848  *
3849  * If you want to use yield() to wait for something, use wait_event().
3850  * If you want to use yield() to be 'nice' for others, use cond_resched().
3851  * If you still want to use yield(), do not!
3852  */
3853 void __sched yield(void)
3854 {
3855 	set_current_state(TASK_RUNNING);
3856 	sys_sched_yield();
3857 }
3858 EXPORT_SYMBOL(yield);
3859 
3860 /**
3861  * yield_to - yield the current processor to another thread in
3862  * your thread group, or accelerate that thread toward the
3863  * processor it's on.
3864  * @p: target task
3865  * @preempt: whether task preemption is allowed or not
3866  *
3867  * It's the caller's job to ensure that the target task struct
3868  * can't go away on us before we can do any checks.
3869  *
3870  * Returns:
3871  *	true (>0) if we indeed boosted the target task.
3872  *	false (0) if we failed to boost the target.
3873  *	-ESRCH if there's no task to yield to.
3874  */
3875 bool __sched yield_to(struct task_struct *p, bool preempt)
3876 {
3877 	struct task_struct *curr = current;
3878 	struct rq *rq, *p_rq;
3879 	unsigned long flags;
3880 	int yielded = 0;
3881 
3882 	local_irq_save(flags);
3883 	rq = this_rq();
3884 
3885 again:
3886 	p_rq = task_rq(p);
3887 	/*
3888 	 * If we're the only runnable task on the rq and target rq also
3889 	 * has only one task, there's absolutely no point in yielding.
3890 	 */
3891 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3892 		yielded = -ESRCH;
3893 		goto out_irq;
3894 	}
3895 
3896 	double_rq_lock(rq, p_rq);
3897 	while (task_rq(p) != p_rq) {
3898 		double_rq_unlock(rq, p_rq);
3899 		goto again;
3900 	}
3901 
3902 	if (!curr->sched_class->yield_to_task)
3903 		goto out_unlock;
3904 
3905 	if (curr->sched_class != p->sched_class)
3906 		goto out_unlock;
3907 
3908 	if (task_running(p_rq, p) || p->state)
3909 		goto out_unlock;
3910 
3911 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3912 	if (yielded) {
3913 		schedstat_inc(rq, yld_count);
3914 		/*
3915 		 * Make p's CPU reschedule; pick_next_entity takes care of
3916 		 * fairness.
3917 		 */
3918 		if (preempt && rq != p_rq)
3919 			resched_task(p_rq->curr);
3920 	}
3921 
3922 out_unlock:
3923 	double_rq_unlock(rq, p_rq);
3924 out_irq:
3925 	local_irq_restore(flags);
3926 
3927 	if (yielded > 0)
3928 		schedule();
3929 
3930 	return yielded;
3931 }
3932 EXPORT_SYMBOL_GPL(yield_to);
3933 
3934 /*
3935  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3936  * that process accounting knows that this is a task in IO wait state.
3937  */
3938 void __sched io_schedule(void)
3939 {
3940 	struct rq *rq = raw_rq();
3941 
3942 	delayacct_blkio_start();
3943 	atomic_inc(&rq->nr_iowait);
3944 	blk_flush_plug(current);
3945 	current->in_iowait = 1;
3946 	schedule();
3947 	current->in_iowait = 0;
3948 	atomic_dec(&rq->nr_iowait);
3949 	delayacct_blkio_end();
3950 }
3951 EXPORT_SYMBOL(io_schedule);
3952 
3953 long __sched io_schedule_timeout(long timeout)
3954 {
3955 	struct rq *rq = raw_rq();
3956 	long ret;
3957 
3958 	delayacct_blkio_start();
3959 	atomic_inc(&rq->nr_iowait);
3960 	blk_flush_plug(current);
3961 	current->in_iowait = 1;
3962 	ret = schedule_timeout(timeout);
3963 	current->in_iowait = 0;
3964 	atomic_dec(&rq->nr_iowait);
3965 	delayacct_blkio_end();
3966 	return ret;
3967 }
3968 
3969 /**
3970  * sys_sched_get_priority_max - return maximum RT priority.
3971  * @policy: scheduling class.
3972  *
3973  * this syscall returns the maximum rt_priority that can be used
3974  * by a given scheduling class.
3975  */
3976 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3977 {
3978 	int ret = -EINVAL;
3979 
3980 	switch (policy) {
3981 	case SCHED_FIFO:
3982 	case SCHED_RR:
3983 		ret = MAX_USER_RT_PRIO-1;
3984 		break;
3985 	case SCHED_NORMAL:
3986 	case SCHED_BATCH:
3987 	case SCHED_IDLE:
3988 		ret = 0;
3989 		break;
3990 	}
3991 	return ret;
3992 }
3993 
3994 /**
3995  * sys_sched_get_priority_min - return minimum RT priority.
3996  * @policy: scheduling class.
3997  *
3998  * this syscall returns the minimum rt_priority that can be used
3999  * by a given scheduling class.
4000  */
4001 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4002 {
4003 	int ret = -EINVAL;
4004 
4005 	switch (policy) {
4006 	case SCHED_FIFO:
4007 	case SCHED_RR:
4008 		ret = 1;
4009 		break;
4010 	case SCHED_NORMAL:
4011 	case SCHED_BATCH:
4012 	case SCHED_IDLE:
4013 		ret = 0;
4014 	}
4015 	return ret;
4016 }
4017 
4018 /**
4019  * sys_sched_rr_get_interval - return the default timeslice of a process.
4020  * @pid: pid of the process.
4021  * @interval: userspace pointer to the timeslice value.
4022  *
4023  * this syscall writes the default timeslice value of a given process
4024  * into the user-space timespec buffer. A value of '0' means infinity.
4025  */
4026 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4027 		struct timespec __user *, interval)
4028 {
4029 	struct task_struct *p;
4030 	unsigned int time_slice;
4031 	unsigned long flags;
4032 	struct rq *rq;
4033 	int retval;
4034 	struct timespec t;
4035 
4036 	if (pid < 0)
4037 		return -EINVAL;
4038 
4039 	retval = -ESRCH;
4040 	rcu_read_lock();
4041 	p = find_process_by_pid(pid);
4042 	if (!p)
4043 		goto out_unlock;
4044 
4045 	retval = security_task_getscheduler(p);
4046 	if (retval)
4047 		goto out_unlock;
4048 
4049 	rq = task_rq_lock(p, &flags);
4050 	time_slice = p->sched_class->get_rr_interval(rq, p);
4051 	task_rq_unlock(rq, p, &flags);
4052 
4053 	rcu_read_unlock();
4054 	jiffies_to_timespec(time_slice, &t);
4055 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4056 	return retval;
4057 
4058 out_unlock:
4059 	rcu_read_unlock();
4060 	return retval;
4061 }
4062 
4063 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4064 
4065 void sched_show_task(struct task_struct *p)
4066 {
4067 	unsigned long free = 0;
4068 	int ppid;
4069 	unsigned state;
4070 
4071 	state = p->state ? __ffs(p->state) + 1 : 0;
4072 	printk(KERN_INFO "%-15.15s %c", p->comm,
4073 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4074 #if BITS_PER_LONG == 32
4075 	if (state == TASK_RUNNING)
4076 		printk(KERN_CONT " running  ");
4077 	else
4078 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4079 #else
4080 	if (state == TASK_RUNNING)
4081 		printk(KERN_CONT "  running task    ");
4082 	else
4083 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4084 #endif
4085 #ifdef CONFIG_DEBUG_STACK_USAGE
4086 	free = stack_not_used(p);
4087 #endif
4088 	rcu_read_lock();
4089 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4090 	rcu_read_unlock();
4091 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4092 		task_pid_nr(p), ppid,
4093 		(unsigned long)task_thread_info(p)->flags);
4094 
4095 	print_worker_info(KERN_INFO, p);
4096 	show_stack(p, NULL);
4097 }
4098 
4099 void show_state_filter(unsigned long state_filter)
4100 {
4101 	struct task_struct *g, *p;
4102 
4103 #if BITS_PER_LONG == 32
4104 	printk(KERN_INFO
4105 		"  task                PC stack   pid father\n");
4106 #else
4107 	printk(KERN_INFO
4108 		"  task                        PC stack   pid father\n");
4109 #endif
4110 	rcu_read_lock();
4111 	do_each_thread(g, p) {
4112 		/*
4113 		 * reset the NMI-timeout, listing all files on a slow
4114 		 * console might take a lot of time:
4115 		 */
4116 		touch_nmi_watchdog();
4117 		if (!state_filter || (p->state & state_filter))
4118 			sched_show_task(p);
4119 	} while_each_thread(g, p);
4120 
4121 	touch_all_softlockup_watchdogs();
4122 
4123 #ifdef CONFIG_SCHED_DEBUG
4124 	sysrq_sched_debug_show();
4125 #endif
4126 	rcu_read_unlock();
4127 	/*
4128 	 * Only show locks if all tasks are dumped:
4129 	 */
4130 	if (!state_filter)
4131 		debug_show_all_locks();
4132 }
4133 
4134 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4135 {
4136 	idle->sched_class = &idle_sched_class;
4137 }
4138 
4139 /**
4140  * init_idle - set up an idle thread for a given CPU
4141  * @idle: task in question
4142  * @cpu: cpu the idle task belongs to
4143  *
4144  * NOTE: this function does not set the idle thread's NEED_RESCHED
4145  * flag, to make booting more robust.
4146  */
4147 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4148 {
4149 	struct rq *rq = cpu_rq(cpu);
4150 	unsigned long flags;
4151 
4152 	raw_spin_lock_irqsave(&rq->lock, flags);
4153 
4154 	__sched_fork(idle);
4155 	idle->state = TASK_RUNNING;
4156 	idle->se.exec_start = sched_clock();
4157 
4158 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4159 	/*
4160 	 * We're having a chicken and egg problem, even though we are
4161 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4162 	 * lockdep check in task_group() will fail.
4163 	 *
4164 	 * Similar case to sched_fork(). / Alternatively we could
4165 	 * use task_rq_lock() here and obtain the other rq->lock.
4166 	 *
4167 	 * Silence PROVE_RCU
4168 	 */
4169 	rcu_read_lock();
4170 	__set_task_cpu(idle, cpu);
4171 	rcu_read_unlock();
4172 
4173 	rq->curr = rq->idle = idle;
4174 #if defined(CONFIG_SMP)
4175 	idle->on_cpu = 1;
4176 #endif
4177 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4178 
4179 	/* Set the preempt count _outside_ the spinlocks! */
4180 	task_thread_info(idle)->preempt_count = 0;
4181 
4182 	/*
4183 	 * The idle tasks have their own, simple scheduling class:
4184 	 */
4185 	idle->sched_class = &idle_sched_class;
4186 	ftrace_graph_init_idle_task(idle, cpu);
4187 	vtime_init_idle(idle, cpu);
4188 #if defined(CONFIG_SMP)
4189 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4190 #endif
4191 }
4192 
4193 #ifdef CONFIG_SMP
4194 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4195 {
4196 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4197 		p->sched_class->set_cpus_allowed(p, new_mask);
4198 
4199 	cpumask_copy(&p->cpus_allowed, new_mask);
4200 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4201 }
4202 
4203 /*
4204  * This is how migration works:
4205  *
4206  * 1) we invoke migration_cpu_stop() on the target CPU using
4207  *    stop_one_cpu().
4208  * 2) stopper starts to run (implicitly forcing the migrated thread
4209  *    off the CPU)
4210  * 3) it checks whether the migrated task is still in the wrong runqueue.
4211  * 4) if it's in the wrong runqueue then the migration thread removes
4212  *    it and puts it into the right queue.
4213  * 5) stopper completes and stop_one_cpu() returns and the migration
4214  *    is done.
4215  */
4216 
4217 /*
4218  * Change a given task's CPU affinity. Migrate the thread to a
4219  * proper CPU and schedule it away if the CPU it's executing on
4220  * is removed from the allowed bitmask.
4221  *
4222  * NOTE: the caller must have a valid reference to the task, the
4223  * task must not exit() & deallocate itself prematurely. The
4224  * call is not atomic; no spinlocks may be held.
4225  */
4226 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4227 {
4228 	unsigned long flags;
4229 	struct rq *rq;
4230 	unsigned int dest_cpu;
4231 	int ret = 0;
4232 
4233 	rq = task_rq_lock(p, &flags);
4234 
4235 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4236 		goto out;
4237 
4238 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4239 		ret = -EINVAL;
4240 		goto out;
4241 	}
4242 
4243 	do_set_cpus_allowed(p, new_mask);
4244 
4245 	/* Can the task run on the task's current CPU? If so, we're done */
4246 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4247 		goto out;
4248 
4249 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4250 	if (p->on_rq) {
4251 		struct migration_arg arg = { p, dest_cpu };
4252 		/* Need help from migration thread: drop lock and wait. */
4253 		task_rq_unlock(rq, p, &flags);
4254 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4255 		tlb_migrate_finish(p->mm);
4256 		return 0;
4257 	}
4258 out:
4259 	task_rq_unlock(rq, p, &flags);
4260 
4261 	return ret;
4262 }
4263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4264 
4265 /*
4266  * Move (not current) task off this cpu, onto dest cpu. We're doing
4267  * this because either it can't run here any more (set_cpus_allowed()
4268  * away from this CPU, or CPU going down), or because we're
4269  * attempting to rebalance this task on exec (sched_exec).
4270  *
4271  * So we race with normal scheduler movements, but that's OK, as long
4272  * as the task is no longer on this CPU.
4273  *
4274  * Returns non-zero if task was successfully migrated.
4275  */
4276 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4277 {
4278 	struct rq *rq_dest, *rq_src;
4279 	int ret = 0;
4280 
4281 	if (unlikely(!cpu_active(dest_cpu)))
4282 		return ret;
4283 
4284 	rq_src = cpu_rq(src_cpu);
4285 	rq_dest = cpu_rq(dest_cpu);
4286 
4287 	raw_spin_lock(&p->pi_lock);
4288 	double_rq_lock(rq_src, rq_dest);
4289 	/* Already moved. */
4290 	if (task_cpu(p) != src_cpu)
4291 		goto done;
4292 	/* Affinity changed (again). */
4293 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4294 		goto fail;
4295 
4296 	/*
4297 	 * If we're not on a rq, the next wake-up will ensure we're
4298 	 * placed properly.
4299 	 */
4300 	if (p->on_rq) {
4301 		dequeue_task(rq_src, p, 0);
4302 		set_task_cpu(p, dest_cpu);
4303 		enqueue_task(rq_dest, p, 0);
4304 		check_preempt_curr(rq_dest, p, 0);
4305 	}
4306 done:
4307 	ret = 1;
4308 fail:
4309 	double_rq_unlock(rq_src, rq_dest);
4310 	raw_spin_unlock(&p->pi_lock);
4311 	return ret;
4312 }
4313 
4314 /*
4315  * migration_cpu_stop - this will be executed by a highprio stopper thread
4316  * and performs thread migration by bumping thread off CPU then
4317  * 'pushing' onto another runqueue.
4318  */
4319 static int migration_cpu_stop(void *data)
4320 {
4321 	struct migration_arg *arg = data;
4322 
4323 	/*
4324 	 * The original target cpu might have gone down and we might
4325 	 * be on another cpu but it doesn't matter.
4326 	 */
4327 	local_irq_disable();
4328 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4329 	local_irq_enable();
4330 	return 0;
4331 }
4332 
4333 #ifdef CONFIG_HOTPLUG_CPU
4334 
4335 /*
4336  * Ensures that the idle task is using init_mm right before its cpu goes
4337  * offline.
4338  */
4339 void idle_task_exit(void)
4340 {
4341 	struct mm_struct *mm = current->active_mm;
4342 
4343 	BUG_ON(cpu_online(smp_processor_id()));
4344 
4345 	if (mm != &init_mm)
4346 		switch_mm(mm, &init_mm, current);
4347 	mmdrop(mm);
4348 }
4349 
4350 /*
4351  * Since this CPU is going 'away' for a while, fold any nr_active delta
4352  * we might have. Assumes we're called after migrate_tasks() so that the
4353  * nr_active count is stable.
4354  *
4355  * Also see the comment "Global load-average calculations".
4356  */
4357 static void calc_load_migrate(struct rq *rq)
4358 {
4359 	long delta = calc_load_fold_active(rq);
4360 	if (delta)
4361 		atomic_long_add(delta, &calc_load_tasks);
4362 }
4363 
4364 /*
4365  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4366  * try_to_wake_up()->select_task_rq().
4367  *
4368  * Called with rq->lock held even though we'er in stop_machine() and
4369  * there's no concurrency possible, we hold the required locks anyway
4370  * because of lock validation efforts.
4371  */
4372 static void migrate_tasks(unsigned int dead_cpu)
4373 {
4374 	struct rq *rq = cpu_rq(dead_cpu);
4375 	struct task_struct *next, *stop = rq->stop;
4376 	int dest_cpu;
4377 
4378 	/*
4379 	 * Fudge the rq selection such that the below task selection loop
4380 	 * doesn't get stuck on the currently eligible stop task.
4381 	 *
4382 	 * We're currently inside stop_machine() and the rq is either stuck
4383 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4384 	 * either way we should never end up calling schedule() until we're
4385 	 * done here.
4386 	 */
4387 	rq->stop = NULL;
4388 
4389 	/*
4390 	 * put_prev_task() and pick_next_task() sched
4391 	 * class method both need to have an up-to-date
4392 	 * value of rq->clock[_task]
4393 	 */
4394 	update_rq_clock(rq);
4395 
4396 	for ( ; ; ) {
4397 		/*
4398 		 * There's this thread running, bail when that's the only
4399 		 * remaining thread.
4400 		 */
4401 		if (rq->nr_running == 1)
4402 			break;
4403 
4404 		next = pick_next_task(rq);
4405 		BUG_ON(!next);
4406 		next->sched_class->put_prev_task(rq, next);
4407 
4408 		/* Find suitable destination for @next, with force if needed. */
4409 		dest_cpu = select_fallback_rq(dead_cpu, next);
4410 		raw_spin_unlock(&rq->lock);
4411 
4412 		__migrate_task(next, dead_cpu, dest_cpu);
4413 
4414 		raw_spin_lock(&rq->lock);
4415 	}
4416 
4417 	rq->stop = stop;
4418 }
4419 
4420 #endif /* CONFIG_HOTPLUG_CPU */
4421 
4422 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4423 
4424 static struct ctl_table sd_ctl_dir[] = {
4425 	{
4426 		.procname	= "sched_domain",
4427 		.mode		= 0555,
4428 	},
4429 	{}
4430 };
4431 
4432 static struct ctl_table sd_ctl_root[] = {
4433 	{
4434 		.procname	= "kernel",
4435 		.mode		= 0555,
4436 		.child		= sd_ctl_dir,
4437 	},
4438 	{}
4439 };
4440 
4441 static struct ctl_table *sd_alloc_ctl_entry(int n)
4442 {
4443 	struct ctl_table *entry =
4444 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4445 
4446 	return entry;
4447 }
4448 
4449 static void sd_free_ctl_entry(struct ctl_table **tablep)
4450 {
4451 	struct ctl_table *entry;
4452 
4453 	/*
4454 	 * In the intermediate directories, both the child directory and
4455 	 * procname are dynamically allocated and could fail but the mode
4456 	 * will always be set. In the lowest directory the names are
4457 	 * static strings and all have proc handlers.
4458 	 */
4459 	for (entry = *tablep; entry->mode; entry++) {
4460 		if (entry->child)
4461 			sd_free_ctl_entry(&entry->child);
4462 		if (entry->proc_handler == NULL)
4463 			kfree(entry->procname);
4464 	}
4465 
4466 	kfree(*tablep);
4467 	*tablep = NULL;
4468 }
4469 
4470 static int min_load_idx = 0;
4471 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4472 
4473 static void
4474 set_table_entry(struct ctl_table *entry,
4475 		const char *procname, void *data, int maxlen,
4476 		umode_t mode, proc_handler *proc_handler,
4477 		bool load_idx)
4478 {
4479 	entry->procname = procname;
4480 	entry->data = data;
4481 	entry->maxlen = maxlen;
4482 	entry->mode = mode;
4483 	entry->proc_handler = proc_handler;
4484 
4485 	if (load_idx) {
4486 		entry->extra1 = &min_load_idx;
4487 		entry->extra2 = &max_load_idx;
4488 	}
4489 }
4490 
4491 static struct ctl_table *
4492 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4493 {
4494 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4495 
4496 	if (table == NULL)
4497 		return NULL;
4498 
4499 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4500 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4501 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4502 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4503 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4504 		sizeof(int), 0644, proc_dointvec_minmax, true);
4505 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4506 		sizeof(int), 0644, proc_dointvec_minmax, true);
4507 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4508 		sizeof(int), 0644, proc_dointvec_minmax, true);
4509 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4510 		sizeof(int), 0644, proc_dointvec_minmax, true);
4511 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4512 		sizeof(int), 0644, proc_dointvec_minmax, true);
4513 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4514 		sizeof(int), 0644, proc_dointvec_minmax, false);
4515 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4516 		sizeof(int), 0644, proc_dointvec_minmax, false);
4517 	set_table_entry(&table[9], "cache_nice_tries",
4518 		&sd->cache_nice_tries,
4519 		sizeof(int), 0644, proc_dointvec_minmax, false);
4520 	set_table_entry(&table[10], "flags", &sd->flags,
4521 		sizeof(int), 0644, proc_dointvec_minmax, false);
4522 	set_table_entry(&table[11], "name", sd->name,
4523 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4524 	/* &table[12] is terminator */
4525 
4526 	return table;
4527 }
4528 
4529 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4530 {
4531 	struct ctl_table *entry, *table;
4532 	struct sched_domain *sd;
4533 	int domain_num = 0, i;
4534 	char buf[32];
4535 
4536 	for_each_domain(cpu, sd)
4537 		domain_num++;
4538 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4539 	if (table == NULL)
4540 		return NULL;
4541 
4542 	i = 0;
4543 	for_each_domain(cpu, sd) {
4544 		snprintf(buf, 32, "domain%d", i);
4545 		entry->procname = kstrdup(buf, GFP_KERNEL);
4546 		entry->mode = 0555;
4547 		entry->child = sd_alloc_ctl_domain_table(sd);
4548 		entry++;
4549 		i++;
4550 	}
4551 	return table;
4552 }
4553 
4554 static struct ctl_table_header *sd_sysctl_header;
4555 static void register_sched_domain_sysctl(void)
4556 {
4557 	int i, cpu_num = num_possible_cpus();
4558 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4559 	char buf[32];
4560 
4561 	WARN_ON(sd_ctl_dir[0].child);
4562 	sd_ctl_dir[0].child = entry;
4563 
4564 	if (entry == NULL)
4565 		return;
4566 
4567 	for_each_possible_cpu(i) {
4568 		snprintf(buf, 32, "cpu%d", i);
4569 		entry->procname = kstrdup(buf, GFP_KERNEL);
4570 		entry->mode = 0555;
4571 		entry->child = sd_alloc_ctl_cpu_table(i);
4572 		entry++;
4573 	}
4574 
4575 	WARN_ON(sd_sysctl_header);
4576 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4577 }
4578 
4579 /* may be called multiple times per register */
4580 static void unregister_sched_domain_sysctl(void)
4581 {
4582 	if (sd_sysctl_header)
4583 		unregister_sysctl_table(sd_sysctl_header);
4584 	sd_sysctl_header = NULL;
4585 	if (sd_ctl_dir[0].child)
4586 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4587 }
4588 #else
4589 static void register_sched_domain_sysctl(void)
4590 {
4591 }
4592 static void unregister_sched_domain_sysctl(void)
4593 {
4594 }
4595 #endif
4596 
4597 static void set_rq_online(struct rq *rq)
4598 {
4599 	if (!rq->online) {
4600 		const struct sched_class *class;
4601 
4602 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4603 		rq->online = 1;
4604 
4605 		for_each_class(class) {
4606 			if (class->rq_online)
4607 				class->rq_online(rq);
4608 		}
4609 	}
4610 }
4611 
4612 static void set_rq_offline(struct rq *rq)
4613 {
4614 	if (rq->online) {
4615 		const struct sched_class *class;
4616 
4617 		for_each_class(class) {
4618 			if (class->rq_offline)
4619 				class->rq_offline(rq);
4620 		}
4621 
4622 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4623 		rq->online = 0;
4624 	}
4625 }
4626 
4627 /*
4628  * migration_call - callback that gets triggered when a CPU is added.
4629  * Here we can start up the necessary migration thread for the new CPU.
4630  */
4631 static int __cpuinit
4632 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4633 {
4634 	int cpu = (long)hcpu;
4635 	unsigned long flags;
4636 	struct rq *rq = cpu_rq(cpu);
4637 
4638 	switch (action & ~CPU_TASKS_FROZEN) {
4639 
4640 	case CPU_UP_PREPARE:
4641 		rq->calc_load_update = calc_load_update;
4642 		break;
4643 
4644 	case CPU_ONLINE:
4645 		/* Update our root-domain */
4646 		raw_spin_lock_irqsave(&rq->lock, flags);
4647 		if (rq->rd) {
4648 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4649 
4650 			set_rq_online(rq);
4651 		}
4652 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4653 		break;
4654 
4655 #ifdef CONFIG_HOTPLUG_CPU
4656 	case CPU_DYING:
4657 		sched_ttwu_pending();
4658 		/* Update our root-domain */
4659 		raw_spin_lock_irqsave(&rq->lock, flags);
4660 		if (rq->rd) {
4661 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4662 			set_rq_offline(rq);
4663 		}
4664 		migrate_tasks(cpu);
4665 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4666 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4667 		break;
4668 
4669 	case CPU_DEAD:
4670 		calc_load_migrate(rq);
4671 		break;
4672 #endif
4673 	}
4674 
4675 	update_max_interval();
4676 
4677 	return NOTIFY_OK;
4678 }
4679 
4680 /*
4681  * Register at high priority so that task migration (migrate_all_tasks)
4682  * happens before everything else.  This has to be lower priority than
4683  * the notifier in the perf_event subsystem, though.
4684  */
4685 static struct notifier_block __cpuinitdata migration_notifier = {
4686 	.notifier_call = migration_call,
4687 	.priority = CPU_PRI_MIGRATION,
4688 };
4689 
4690 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4691 				      unsigned long action, void *hcpu)
4692 {
4693 	switch (action & ~CPU_TASKS_FROZEN) {
4694 	case CPU_STARTING:
4695 	case CPU_DOWN_FAILED:
4696 		set_cpu_active((long)hcpu, true);
4697 		return NOTIFY_OK;
4698 	default:
4699 		return NOTIFY_DONE;
4700 	}
4701 }
4702 
4703 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4704 					unsigned long action, void *hcpu)
4705 {
4706 	switch (action & ~CPU_TASKS_FROZEN) {
4707 	case CPU_DOWN_PREPARE:
4708 		set_cpu_active((long)hcpu, false);
4709 		return NOTIFY_OK;
4710 	default:
4711 		return NOTIFY_DONE;
4712 	}
4713 }
4714 
4715 static int __init migration_init(void)
4716 {
4717 	void *cpu = (void *)(long)smp_processor_id();
4718 	int err;
4719 
4720 	/* Initialize migration for the boot CPU */
4721 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4722 	BUG_ON(err == NOTIFY_BAD);
4723 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4724 	register_cpu_notifier(&migration_notifier);
4725 
4726 	/* Register cpu active notifiers */
4727 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4728 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4729 
4730 	return 0;
4731 }
4732 early_initcall(migration_init);
4733 #endif
4734 
4735 #ifdef CONFIG_SMP
4736 
4737 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4738 
4739 #ifdef CONFIG_SCHED_DEBUG
4740 
4741 static __read_mostly int sched_debug_enabled;
4742 
4743 static int __init sched_debug_setup(char *str)
4744 {
4745 	sched_debug_enabled = 1;
4746 
4747 	return 0;
4748 }
4749 early_param("sched_debug", sched_debug_setup);
4750 
4751 static inline bool sched_debug(void)
4752 {
4753 	return sched_debug_enabled;
4754 }
4755 
4756 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4757 				  struct cpumask *groupmask)
4758 {
4759 	struct sched_group *group = sd->groups;
4760 	char str[256];
4761 
4762 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4763 	cpumask_clear(groupmask);
4764 
4765 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4766 
4767 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4768 		printk("does not load-balance\n");
4769 		if (sd->parent)
4770 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4771 					" has parent");
4772 		return -1;
4773 	}
4774 
4775 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4776 
4777 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4778 		printk(KERN_ERR "ERROR: domain->span does not contain "
4779 				"CPU%d\n", cpu);
4780 	}
4781 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4782 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4783 				" CPU%d\n", cpu);
4784 	}
4785 
4786 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4787 	do {
4788 		if (!group) {
4789 			printk("\n");
4790 			printk(KERN_ERR "ERROR: group is NULL\n");
4791 			break;
4792 		}
4793 
4794 		/*
4795 		 * Even though we initialize ->power to something semi-sane,
4796 		 * we leave power_orig unset. This allows us to detect if
4797 		 * domain iteration is still funny without causing /0 traps.
4798 		 */
4799 		if (!group->sgp->power_orig) {
4800 			printk(KERN_CONT "\n");
4801 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4802 					"set\n");
4803 			break;
4804 		}
4805 
4806 		if (!cpumask_weight(sched_group_cpus(group))) {
4807 			printk(KERN_CONT "\n");
4808 			printk(KERN_ERR "ERROR: empty group\n");
4809 			break;
4810 		}
4811 
4812 		if (!(sd->flags & SD_OVERLAP) &&
4813 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4814 			printk(KERN_CONT "\n");
4815 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4816 			break;
4817 		}
4818 
4819 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4820 
4821 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4822 
4823 		printk(KERN_CONT " %s", str);
4824 		if (group->sgp->power != SCHED_POWER_SCALE) {
4825 			printk(KERN_CONT " (cpu_power = %d)",
4826 				group->sgp->power);
4827 		}
4828 
4829 		group = group->next;
4830 	} while (group != sd->groups);
4831 	printk(KERN_CONT "\n");
4832 
4833 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4834 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4835 
4836 	if (sd->parent &&
4837 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4838 		printk(KERN_ERR "ERROR: parent span is not a superset "
4839 			"of domain->span\n");
4840 	return 0;
4841 }
4842 
4843 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4844 {
4845 	int level = 0;
4846 
4847 	if (!sched_debug_enabled)
4848 		return;
4849 
4850 	if (!sd) {
4851 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4852 		return;
4853 	}
4854 
4855 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4856 
4857 	for (;;) {
4858 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4859 			break;
4860 		level++;
4861 		sd = sd->parent;
4862 		if (!sd)
4863 			break;
4864 	}
4865 }
4866 #else /* !CONFIG_SCHED_DEBUG */
4867 # define sched_domain_debug(sd, cpu) do { } while (0)
4868 static inline bool sched_debug(void)
4869 {
4870 	return false;
4871 }
4872 #endif /* CONFIG_SCHED_DEBUG */
4873 
4874 static int sd_degenerate(struct sched_domain *sd)
4875 {
4876 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4877 		return 1;
4878 
4879 	/* Following flags need at least 2 groups */
4880 	if (sd->flags & (SD_LOAD_BALANCE |
4881 			 SD_BALANCE_NEWIDLE |
4882 			 SD_BALANCE_FORK |
4883 			 SD_BALANCE_EXEC |
4884 			 SD_SHARE_CPUPOWER |
4885 			 SD_SHARE_PKG_RESOURCES)) {
4886 		if (sd->groups != sd->groups->next)
4887 			return 0;
4888 	}
4889 
4890 	/* Following flags don't use groups */
4891 	if (sd->flags & (SD_WAKE_AFFINE))
4892 		return 0;
4893 
4894 	return 1;
4895 }
4896 
4897 static int
4898 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4899 {
4900 	unsigned long cflags = sd->flags, pflags = parent->flags;
4901 
4902 	if (sd_degenerate(parent))
4903 		return 1;
4904 
4905 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4906 		return 0;
4907 
4908 	/* Flags needing groups don't count if only 1 group in parent */
4909 	if (parent->groups == parent->groups->next) {
4910 		pflags &= ~(SD_LOAD_BALANCE |
4911 				SD_BALANCE_NEWIDLE |
4912 				SD_BALANCE_FORK |
4913 				SD_BALANCE_EXEC |
4914 				SD_SHARE_CPUPOWER |
4915 				SD_SHARE_PKG_RESOURCES);
4916 		if (nr_node_ids == 1)
4917 			pflags &= ~SD_SERIALIZE;
4918 	}
4919 	if (~cflags & pflags)
4920 		return 0;
4921 
4922 	return 1;
4923 }
4924 
4925 static void free_rootdomain(struct rcu_head *rcu)
4926 {
4927 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4928 
4929 	cpupri_cleanup(&rd->cpupri);
4930 	free_cpumask_var(rd->rto_mask);
4931 	free_cpumask_var(rd->online);
4932 	free_cpumask_var(rd->span);
4933 	kfree(rd);
4934 }
4935 
4936 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4937 {
4938 	struct root_domain *old_rd = NULL;
4939 	unsigned long flags;
4940 
4941 	raw_spin_lock_irqsave(&rq->lock, flags);
4942 
4943 	if (rq->rd) {
4944 		old_rd = rq->rd;
4945 
4946 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4947 			set_rq_offline(rq);
4948 
4949 		cpumask_clear_cpu(rq->cpu, old_rd->span);
4950 
4951 		/*
4952 		 * If we dont want to free the old_rt yet then
4953 		 * set old_rd to NULL to skip the freeing later
4954 		 * in this function:
4955 		 */
4956 		if (!atomic_dec_and_test(&old_rd->refcount))
4957 			old_rd = NULL;
4958 	}
4959 
4960 	atomic_inc(&rd->refcount);
4961 	rq->rd = rd;
4962 
4963 	cpumask_set_cpu(rq->cpu, rd->span);
4964 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4965 		set_rq_online(rq);
4966 
4967 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4968 
4969 	if (old_rd)
4970 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4971 }
4972 
4973 static int init_rootdomain(struct root_domain *rd)
4974 {
4975 	memset(rd, 0, sizeof(*rd));
4976 
4977 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4978 		goto out;
4979 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4980 		goto free_span;
4981 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4982 		goto free_online;
4983 
4984 	if (cpupri_init(&rd->cpupri) != 0)
4985 		goto free_rto_mask;
4986 	return 0;
4987 
4988 free_rto_mask:
4989 	free_cpumask_var(rd->rto_mask);
4990 free_online:
4991 	free_cpumask_var(rd->online);
4992 free_span:
4993 	free_cpumask_var(rd->span);
4994 out:
4995 	return -ENOMEM;
4996 }
4997 
4998 /*
4999  * By default the system creates a single root-domain with all cpus as
5000  * members (mimicking the global state we have today).
5001  */
5002 struct root_domain def_root_domain;
5003 
5004 static void init_defrootdomain(void)
5005 {
5006 	init_rootdomain(&def_root_domain);
5007 
5008 	atomic_set(&def_root_domain.refcount, 1);
5009 }
5010 
5011 static struct root_domain *alloc_rootdomain(void)
5012 {
5013 	struct root_domain *rd;
5014 
5015 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5016 	if (!rd)
5017 		return NULL;
5018 
5019 	if (init_rootdomain(rd) != 0) {
5020 		kfree(rd);
5021 		return NULL;
5022 	}
5023 
5024 	return rd;
5025 }
5026 
5027 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5028 {
5029 	struct sched_group *tmp, *first;
5030 
5031 	if (!sg)
5032 		return;
5033 
5034 	first = sg;
5035 	do {
5036 		tmp = sg->next;
5037 
5038 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5039 			kfree(sg->sgp);
5040 
5041 		kfree(sg);
5042 		sg = tmp;
5043 	} while (sg != first);
5044 }
5045 
5046 static void free_sched_domain(struct rcu_head *rcu)
5047 {
5048 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5049 
5050 	/*
5051 	 * If its an overlapping domain it has private groups, iterate and
5052 	 * nuke them all.
5053 	 */
5054 	if (sd->flags & SD_OVERLAP) {
5055 		free_sched_groups(sd->groups, 1);
5056 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5057 		kfree(sd->groups->sgp);
5058 		kfree(sd->groups);
5059 	}
5060 	kfree(sd);
5061 }
5062 
5063 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5064 {
5065 	call_rcu(&sd->rcu, free_sched_domain);
5066 }
5067 
5068 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5069 {
5070 	for (; sd; sd = sd->parent)
5071 		destroy_sched_domain(sd, cpu);
5072 }
5073 
5074 /*
5075  * Keep a special pointer to the highest sched_domain that has
5076  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5077  * allows us to avoid some pointer chasing select_idle_sibling().
5078  *
5079  * Also keep a unique ID per domain (we use the first cpu number in
5080  * the cpumask of the domain), this allows us to quickly tell if
5081  * two cpus are in the same cache domain, see cpus_share_cache().
5082  */
5083 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5084 DEFINE_PER_CPU(int, sd_llc_id);
5085 
5086 static void update_top_cache_domain(int cpu)
5087 {
5088 	struct sched_domain *sd;
5089 	int id = cpu;
5090 
5091 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5092 	if (sd)
5093 		id = cpumask_first(sched_domain_span(sd));
5094 
5095 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5096 	per_cpu(sd_llc_id, cpu) = id;
5097 }
5098 
5099 /*
5100  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5101  * hold the hotplug lock.
5102  */
5103 static void
5104 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5105 {
5106 	struct rq *rq = cpu_rq(cpu);
5107 	struct sched_domain *tmp;
5108 
5109 	/* Remove the sched domains which do not contribute to scheduling. */
5110 	for (tmp = sd; tmp; ) {
5111 		struct sched_domain *parent = tmp->parent;
5112 		if (!parent)
5113 			break;
5114 
5115 		if (sd_parent_degenerate(tmp, parent)) {
5116 			tmp->parent = parent->parent;
5117 			if (parent->parent)
5118 				parent->parent->child = tmp;
5119 			destroy_sched_domain(parent, cpu);
5120 		} else
5121 			tmp = tmp->parent;
5122 	}
5123 
5124 	if (sd && sd_degenerate(sd)) {
5125 		tmp = sd;
5126 		sd = sd->parent;
5127 		destroy_sched_domain(tmp, cpu);
5128 		if (sd)
5129 			sd->child = NULL;
5130 	}
5131 
5132 	sched_domain_debug(sd, cpu);
5133 
5134 	rq_attach_root(rq, rd);
5135 	tmp = rq->sd;
5136 	rcu_assign_pointer(rq->sd, sd);
5137 	destroy_sched_domains(tmp, cpu);
5138 
5139 	update_top_cache_domain(cpu);
5140 }
5141 
5142 /* cpus with isolated domains */
5143 static cpumask_var_t cpu_isolated_map;
5144 
5145 /* Setup the mask of cpus configured for isolated domains */
5146 static int __init isolated_cpu_setup(char *str)
5147 {
5148 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5149 	cpulist_parse(str, cpu_isolated_map);
5150 	return 1;
5151 }
5152 
5153 __setup("isolcpus=", isolated_cpu_setup);
5154 
5155 static const struct cpumask *cpu_cpu_mask(int cpu)
5156 {
5157 	return cpumask_of_node(cpu_to_node(cpu));
5158 }
5159 
5160 struct sd_data {
5161 	struct sched_domain **__percpu sd;
5162 	struct sched_group **__percpu sg;
5163 	struct sched_group_power **__percpu sgp;
5164 };
5165 
5166 struct s_data {
5167 	struct sched_domain ** __percpu sd;
5168 	struct root_domain	*rd;
5169 };
5170 
5171 enum s_alloc {
5172 	sa_rootdomain,
5173 	sa_sd,
5174 	sa_sd_storage,
5175 	sa_none,
5176 };
5177 
5178 struct sched_domain_topology_level;
5179 
5180 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5181 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5182 
5183 #define SDTL_OVERLAP	0x01
5184 
5185 struct sched_domain_topology_level {
5186 	sched_domain_init_f init;
5187 	sched_domain_mask_f mask;
5188 	int		    flags;
5189 	int		    numa_level;
5190 	struct sd_data      data;
5191 };
5192 
5193 /*
5194  * Build an iteration mask that can exclude certain CPUs from the upwards
5195  * domain traversal.
5196  *
5197  * Asymmetric node setups can result in situations where the domain tree is of
5198  * unequal depth, make sure to skip domains that already cover the entire
5199  * range.
5200  *
5201  * In that case build_sched_domains() will have terminated the iteration early
5202  * and our sibling sd spans will be empty. Domains should always include the
5203  * cpu they're built on, so check that.
5204  *
5205  */
5206 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5207 {
5208 	const struct cpumask *span = sched_domain_span(sd);
5209 	struct sd_data *sdd = sd->private;
5210 	struct sched_domain *sibling;
5211 	int i;
5212 
5213 	for_each_cpu(i, span) {
5214 		sibling = *per_cpu_ptr(sdd->sd, i);
5215 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5216 			continue;
5217 
5218 		cpumask_set_cpu(i, sched_group_mask(sg));
5219 	}
5220 }
5221 
5222 /*
5223  * Return the canonical balance cpu for this group, this is the first cpu
5224  * of this group that's also in the iteration mask.
5225  */
5226 int group_balance_cpu(struct sched_group *sg)
5227 {
5228 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5229 }
5230 
5231 static int
5232 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5233 {
5234 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5235 	const struct cpumask *span = sched_domain_span(sd);
5236 	struct cpumask *covered = sched_domains_tmpmask;
5237 	struct sd_data *sdd = sd->private;
5238 	struct sched_domain *child;
5239 	int i;
5240 
5241 	cpumask_clear(covered);
5242 
5243 	for_each_cpu(i, span) {
5244 		struct cpumask *sg_span;
5245 
5246 		if (cpumask_test_cpu(i, covered))
5247 			continue;
5248 
5249 		child = *per_cpu_ptr(sdd->sd, i);
5250 
5251 		/* See the comment near build_group_mask(). */
5252 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5253 			continue;
5254 
5255 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5256 				GFP_KERNEL, cpu_to_node(cpu));
5257 
5258 		if (!sg)
5259 			goto fail;
5260 
5261 		sg_span = sched_group_cpus(sg);
5262 		if (child->child) {
5263 			child = child->child;
5264 			cpumask_copy(sg_span, sched_domain_span(child));
5265 		} else
5266 			cpumask_set_cpu(i, sg_span);
5267 
5268 		cpumask_or(covered, covered, sg_span);
5269 
5270 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5271 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5272 			build_group_mask(sd, sg);
5273 
5274 		/*
5275 		 * Initialize sgp->power such that even if we mess up the
5276 		 * domains and no possible iteration will get us here, we won't
5277 		 * die on a /0 trap.
5278 		 */
5279 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5280 
5281 		/*
5282 		 * Make sure the first group of this domain contains the
5283 		 * canonical balance cpu. Otherwise the sched_domain iteration
5284 		 * breaks. See update_sg_lb_stats().
5285 		 */
5286 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5287 		    group_balance_cpu(sg) == cpu)
5288 			groups = sg;
5289 
5290 		if (!first)
5291 			first = sg;
5292 		if (last)
5293 			last->next = sg;
5294 		last = sg;
5295 		last->next = first;
5296 	}
5297 	sd->groups = groups;
5298 
5299 	return 0;
5300 
5301 fail:
5302 	free_sched_groups(first, 0);
5303 
5304 	return -ENOMEM;
5305 }
5306 
5307 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5308 {
5309 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5310 	struct sched_domain *child = sd->child;
5311 
5312 	if (child)
5313 		cpu = cpumask_first(sched_domain_span(child));
5314 
5315 	if (sg) {
5316 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5317 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5318 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5319 	}
5320 
5321 	return cpu;
5322 }
5323 
5324 /*
5325  * build_sched_groups will build a circular linked list of the groups
5326  * covered by the given span, and will set each group's ->cpumask correctly,
5327  * and ->cpu_power to 0.
5328  *
5329  * Assumes the sched_domain tree is fully constructed
5330  */
5331 static int
5332 build_sched_groups(struct sched_domain *sd, int cpu)
5333 {
5334 	struct sched_group *first = NULL, *last = NULL;
5335 	struct sd_data *sdd = sd->private;
5336 	const struct cpumask *span = sched_domain_span(sd);
5337 	struct cpumask *covered;
5338 	int i;
5339 
5340 	get_group(cpu, sdd, &sd->groups);
5341 	atomic_inc(&sd->groups->ref);
5342 
5343 	if (cpu != cpumask_first(span))
5344 		return 0;
5345 
5346 	lockdep_assert_held(&sched_domains_mutex);
5347 	covered = sched_domains_tmpmask;
5348 
5349 	cpumask_clear(covered);
5350 
5351 	for_each_cpu(i, span) {
5352 		struct sched_group *sg;
5353 		int group, j;
5354 
5355 		if (cpumask_test_cpu(i, covered))
5356 			continue;
5357 
5358 		group = get_group(i, sdd, &sg);
5359 		cpumask_clear(sched_group_cpus(sg));
5360 		sg->sgp->power = 0;
5361 		cpumask_setall(sched_group_mask(sg));
5362 
5363 		for_each_cpu(j, span) {
5364 			if (get_group(j, sdd, NULL) != group)
5365 				continue;
5366 
5367 			cpumask_set_cpu(j, covered);
5368 			cpumask_set_cpu(j, sched_group_cpus(sg));
5369 		}
5370 
5371 		if (!first)
5372 			first = sg;
5373 		if (last)
5374 			last->next = sg;
5375 		last = sg;
5376 	}
5377 	last->next = first;
5378 
5379 	return 0;
5380 }
5381 
5382 /*
5383  * Initialize sched groups cpu_power.
5384  *
5385  * cpu_power indicates the capacity of sched group, which is used while
5386  * distributing the load between different sched groups in a sched domain.
5387  * Typically cpu_power for all the groups in a sched domain will be same unless
5388  * there are asymmetries in the topology. If there are asymmetries, group
5389  * having more cpu_power will pickup more load compared to the group having
5390  * less cpu_power.
5391  */
5392 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5393 {
5394 	struct sched_group *sg = sd->groups;
5395 
5396 	WARN_ON(!sg);
5397 
5398 	do {
5399 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5400 		sg = sg->next;
5401 	} while (sg != sd->groups);
5402 
5403 	if (cpu != group_balance_cpu(sg))
5404 		return;
5405 
5406 	update_group_power(sd, cpu);
5407 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5408 }
5409 
5410 int __weak arch_sd_sibling_asym_packing(void)
5411 {
5412        return 0*SD_ASYM_PACKING;
5413 }
5414 
5415 /*
5416  * Initializers for schedule domains
5417  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5418  */
5419 
5420 #ifdef CONFIG_SCHED_DEBUG
5421 # define SD_INIT_NAME(sd, type)		sd->name = #type
5422 #else
5423 # define SD_INIT_NAME(sd, type)		do { } while (0)
5424 #endif
5425 
5426 #define SD_INIT_FUNC(type)						\
5427 static noinline struct sched_domain *					\
5428 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5429 {									\
5430 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5431 	*sd = SD_##type##_INIT;						\
5432 	SD_INIT_NAME(sd, type);						\
5433 	sd->private = &tl->data;					\
5434 	return sd;							\
5435 }
5436 
5437 SD_INIT_FUNC(CPU)
5438 #ifdef CONFIG_SCHED_SMT
5439  SD_INIT_FUNC(SIBLING)
5440 #endif
5441 #ifdef CONFIG_SCHED_MC
5442  SD_INIT_FUNC(MC)
5443 #endif
5444 #ifdef CONFIG_SCHED_BOOK
5445  SD_INIT_FUNC(BOOK)
5446 #endif
5447 
5448 static int default_relax_domain_level = -1;
5449 int sched_domain_level_max;
5450 
5451 static int __init setup_relax_domain_level(char *str)
5452 {
5453 	if (kstrtoint(str, 0, &default_relax_domain_level))
5454 		pr_warn("Unable to set relax_domain_level\n");
5455 
5456 	return 1;
5457 }
5458 __setup("relax_domain_level=", setup_relax_domain_level);
5459 
5460 static void set_domain_attribute(struct sched_domain *sd,
5461 				 struct sched_domain_attr *attr)
5462 {
5463 	int request;
5464 
5465 	if (!attr || attr->relax_domain_level < 0) {
5466 		if (default_relax_domain_level < 0)
5467 			return;
5468 		else
5469 			request = default_relax_domain_level;
5470 	} else
5471 		request = attr->relax_domain_level;
5472 	if (request < sd->level) {
5473 		/* turn off idle balance on this domain */
5474 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5475 	} else {
5476 		/* turn on idle balance on this domain */
5477 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5478 	}
5479 }
5480 
5481 static void __sdt_free(const struct cpumask *cpu_map);
5482 static int __sdt_alloc(const struct cpumask *cpu_map);
5483 
5484 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5485 				 const struct cpumask *cpu_map)
5486 {
5487 	switch (what) {
5488 	case sa_rootdomain:
5489 		if (!atomic_read(&d->rd->refcount))
5490 			free_rootdomain(&d->rd->rcu); /* fall through */
5491 	case sa_sd:
5492 		free_percpu(d->sd); /* fall through */
5493 	case sa_sd_storage:
5494 		__sdt_free(cpu_map); /* fall through */
5495 	case sa_none:
5496 		break;
5497 	}
5498 }
5499 
5500 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5501 						   const struct cpumask *cpu_map)
5502 {
5503 	memset(d, 0, sizeof(*d));
5504 
5505 	if (__sdt_alloc(cpu_map))
5506 		return sa_sd_storage;
5507 	d->sd = alloc_percpu(struct sched_domain *);
5508 	if (!d->sd)
5509 		return sa_sd_storage;
5510 	d->rd = alloc_rootdomain();
5511 	if (!d->rd)
5512 		return sa_sd;
5513 	return sa_rootdomain;
5514 }
5515 
5516 /*
5517  * NULL the sd_data elements we've used to build the sched_domain and
5518  * sched_group structure so that the subsequent __free_domain_allocs()
5519  * will not free the data we're using.
5520  */
5521 static void claim_allocations(int cpu, struct sched_domain *sd)
5522 {
5523 	struct sd_data *sdd = sd->private;
5524 
5525 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5526 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5527 
5528 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5529 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5530 
5531 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5532 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5533 }
5534 
5535 #ifdef CONFIG_SCHED_SMT
5536 static const struct cpumask *cpu_smt_mask(int cpu)
5537 {
5538 	return topology_thread_cpumask(cpu);
5539 }
5540 #endif
5541 
5542 /*
5543  * Topology list, bottom-up.
5544  */
5545 static struct sched_domain_topology_level default_topology[] = {
5546 #ifdef CONFIG_SCHED_SMT
5547 	{ sd_init_SIBLING, cpu_smt_mask, },
5548 #endif
5549 #ifdef CONFIG_SCHED_MC
5550 	{ sd_init_MC, cpu_coregroup_mask, },
5551 #endif
5552 #ifdef CONFIG_SCHED_BOOK
5553 	{ sd_init_BOOK, cpu_book_mask, },
5554 #endif
5555 	{ sd_init_CPU, cpu_cpu_mask, },
5556 	{ NULL, },
5557 };
5558 
5559 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5560 
5561 #define for_each_sd_topology(tl)			\
5562 	for (tl = sched_domain_topology; tl->init; tl++)
5563 
5564 #ifdef CONFIG_NUMA
5565 
5566 static int sched_domains_numa_levels;
5567 static int *sched_domains_numa_distance;
5568 static struct cpumask ***sched_domains_numa_masks;
5569 static int sched_domains_curr_level;
5570 
5571 static inline int sd_local_flags(int level)
5572 {
5573 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5574 		return 0;
5575 
5576 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5577 }
5578 
5579 static struct sched_domain *
5580 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5581 {
5582 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5583 	int level = tl->numa_level;
5584 	int sd_weight = cpumask_weight(
5585 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5586 
5587 	*sd = (struct sched_domain){
5588 		.min_interval		= sd_weight,
5589 		.max_interval		= 2*sd_weight,
5590 		.busy_factor		= 32,
5591 		.imbalance_pct		= 125,
5592 		.cache_nice_tries	= 2,
5593 		.busy_idx		= 3,
5594 		.idle_idx		= 2,
5595 		.newidle_idx		= 0,
5596 		.wake_idx		= 0,
5597 		.forkexec_idx		= 0,
5598 
5599 		.flags			= 1*SD_LOAD_BALANCE
5600 					| 1*SD_BALANCE_NEWIDLE
5601 					| 0*SD_BALANCE_EXEC
5602 					| 0*SD_BALANCE_FORK
5603 					| 0*SD_BALANCE_WAKE
5604 					| 0*SD_WAKE_AFFINE
5605 					| 0*SD_SHARE_CPUPOWER
5606 					| 0*SD_SHARE_PKG_RESOURCES
5607 					| 1*SD_SERIALIZE
5608 					| 0*SD_PREFER_SIBLING
5609 					| sd_local_flags(level)
5610 					,
5611 		.last_balance		= jiffies,
5612 		.balance_interval	= sd_weight,
5613 	};
5614 	SD_INIT_NAME(sd, NUMA);
5615 	sd->private = &tl->data;
5616 
5617 	/*
5618 	 * Ugly hack to pass state to sd_numa_mask()...
5619 	 */
5620 	sched_domains_curr_level = tl->numa_level;
5621 
5622 	return sd;
5623 }
5624 
5625 static const struct cpumask *sd_numa_mask(int cpu)
5626 {
5627 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5628 }
5629 
5630 static void sched_numa_warn(const char *str)
5631 {
5632 	static int done = false;
5633 	int i,j;
5634 
5635 	if (done)
5636 		return;
5637 
5638 	done = true;
5639 
5640 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5641 
5642 	for (i = 0; i < nr_node_ids; i++) {
5643 		printk(KERN_WARNING "  ");
5644 		for (j = 0; j < nr_node_ids; j++)
5645 			printk(KERN_CONT "%02d ", node_distance(i,j));
5646 		printk(KERN_CONT "\n");
5647 	}
5648 	printk(KERN_WARNING "\n");
5649 }
5650 
5651 static bool find_numa_distance(int distance)
5652 {
5653 	int i;
5654 
5655 	if (distance == node_distance(0, 0))
5656 		return true;
5657 
5658 	for (i = 0; i < sched_domains_numa_levels; i++) {
5659 		if (sched_domains_numa_distance[i] == distance)
5660 			return true;
5661 	}
5662 
5663 	return false;
5664 }
5665 
5666 static void sched_init_numa(void)
5667 {
5668 	int next_distance, curr_distance = node_distance(0, 0);
5669 	struct sched_domain_topology_level *tl;
5670 	int level = 0;
5671 	int i, j, k;
5672 
5673 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5674 	if (!sched_domains_numa_distance)
5675 		return;
5676 
5677 	/*
5678 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5679 	 * unique distances in the node_distance() table.
5680 	 *
5681 	 * Assumes node_distance(0,j) includes all distances in
5682 	 * node_distance(i,j) in order to avoid cubic time.
5683 	 */
5684 	next_distance = curr_distance;
5685 	for (i = 0; i < nr_node_ids; i++) {
5686 		for (j = 0; j < nr_node_ids; j++) {
5687 			for (k = 0; k < nr_node_ids; k++) {
5688 				int distance = node_distance(i, k);
5689 
5690 				if (distance > curr_distance &&
5691 				    (distance < next_distance ||
5692 				     next_distance == curr_distance))
5693 					next_distance = distance;
5694 
5695 				/*
5696 				 * While not a strong assumption it would be nice to know
5697 				 * about cases where if node A is connected to B, B is not
5698 				 * equally connected to A.
5699 				 */
5700 				if (sched_debug() && node_distance(k, i) != distance)
5701 					sched_numa_warn("Node-distance not symmetric");
5702 
5703 				if (sched_debug() && i && !find_numa_distance(distance))
5704 					sched_numa_warn("Node-0 not representative");
5705 			}
5706 			if (next_distance != curr_distance) {
5707 				sched_domains_numa_distance[level++] = next_distance;
5708 				sched_domains_numa_levels = level;
5709 				curr_distance = next_distance;
5710 			} else break;
5711 		}
5712 
5713 		/*
5714 		 * In case of sched_debug() we verify the above assumption.
5715 		 */
5716 		if (!sched_debug())
5717 			break;
5718 	}
5719 	/*
5720 	 * 'level' contains the number of unique distances, excluding the
5721 	 * identity distance node_distance(i,i).
5722 	 *
5723 	 * The sched_domains_numa_distance[] array includes the actual distance
5724 	 * numbers.
5725 	 */
5726 
5727 	/*
5728 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5729 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5730 	 * the array will contain less then 'level' members. This could be
5731 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5732 	 * in other functions.
5733 	 *
5734 	 * We reset it to 'level' at the end of this function.
5735 	 */
5736 	sched_domains_numa_levels = 0;
5737 
5738 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5739 	if (!sched_domains_numa_masks)
5740 		return;
5741 
5742 	/*
5743 	 * Now for each level, construct a mask per node which contains all
5744 	 * cpus of nodes that are that many hops away from us.
5745 	 */
5746 	for (i = 0; i < level; i++) {
5747 		sched_domains_numa_masks[i] =
5748 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5749 		if (!sched_domains_numa_masks[i])
5750 			return;
5751 
5752 		for (j = 0; j < nr_node_ids; j++) {
5753 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5754 			if (!mask)
5755 				return;
5756 
5757 			sched_domains_numa_masks[i][j] = mask;
5758 
5759 			for (k = 0; k < nr_node_ids; k++) {
5760 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5761 					continue;
5762 
5763 				cpumask_or(mask, mask, cpumask_of_node(k));
5764 			}
5765 		}
5766 	}
5767 
5768 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5769 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5770 	if (!tl)
5771 		return;
5772 
5773 	/*
5774 	 * Copy the default topology bits..
5775 	 */
5776 	for (i = 0; default_topology[i].init; i++)
5777 		tl[i] = default_topology[i];
5778 
5779 	/*
5780 	 * .. and append 'j' levels of NUMA goodness.
5781 	 */
5782 	for (j = 0; j < level; i++, j++) {
5783 		tl[i] = (struct sched_domain_topology_level){
5784 			.init = sd_numa_init,
5785 			.mask = sd_numa_mask,
5786 			.flags = SDTL_OVERLAP,
5787 			.numa_level = j,
5788 		};
5789 	}
5790 
5791 	sched_domain_topology = tl;
5792 
5793 	sched_domains_numa_levels = level;
5794 }
5795 
5796 static void sched_domains_numa_masks_set(int cpu)
5797 {
5798 	int i, j;
5799 	int node = cpu_to_node(cpu);
5800 
5801 	for (i = 0; i < sched_domains_numa_levels; i++) {
5802 		for (j = 0; j < nr_node_ids; j++) {
5803 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5804 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5805 		}
5806 	}
5807 }
5808 
5809 static void sched_domains_numa_masks_clear(int cpu)
5810 {
5811 	int i, j;
5812 	for (i = 0; i < sched_domains_numa_levels; i++) {
5813 		for (j = 0; j < nr_node_ids; j++)
5814 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5815 	}
5816 }
5817 
5818 /*
5819  * Update sched_domains_numa_masks[level][node] array when new cpus
5820  * are onlined.
5821  */
5822 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5823 					   unsigned long action,
5824 					   void *hcpu)
5825 {
5826 	int cpu = (long)hcpu;
5827 
5828 	switch (action & ~CPU_TASKS_FROZEN) {
5829 	case CPU_ONLINE:
5830 		sched_domains_numa_masks_set(cpu);
5831 		break;
5832 
5833 	case CPU_DEAD:
5834 		sched_domains_numa_masks_clear(cpu);
5835 		break;
5836 
5837 	default:
5838 		return NOTIFY_DONE;
5839 	}
5840 
5841 	return NOTIFY_OK;
5842 }
5843 #else
5844 static inline void sched_init_numa(void)
5845 {
5846 }
5847 
5848 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5849 					   unsigned long action,
5850 					   void *hcpu)
5851 {
5852 	return 0;
5853 }
5854 #endif /* CONFIG_NUMA */
5855 
5856 static int __sdt_alloc(const struct cpumask *cpu_map)
5857 {
5858 	struct sched_domain_topology_level *tl;
5859 	int j;
5860 
5861 	for_each_sd_topology(tl) {
5862 		struct sd_data *sdd = &tl->data;
5863 
5864 		sdd->sd = alloc_percpu(struct sched_domain *);
5865 		if (!sdd->sd)
5866 			return -ENOMEM;
5867 
5868 		sdd->sg = alloc_percpu(struct sched_group *);
5869 		if (!sdd->sg)
5870 			return -ENOMEM;
5871 
5872 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5873 		if (!sdd->sgp)
5874 			return -ENOMEM;
5875 
5876 		for_each_cpu(j, cpu_map) {
5877 			struct sched_domain *sd;
5878 			struct sched_group *sg;
5879 			struct sched_group_power *sgp;
5880 
5881 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5882 					GFP_KERNEL, cpu_to_node(j));
5883 			if (!sd)
5884 				return -ENOMEM;
5885 
5886 			*per_cpu_ptr(sdd->sd, j) = sd;
5887 
5888 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889 					GFP_KERNEL, cpu_to_node(j));
5890 			if (!sg)
5891 				return -ENOMEM;
5892 
5893 			sg->next = sg;
5894 
5895 			*per_cpu_ptr(sdd->sg, j) = sg;
5896 
5897 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5898 					GFP_KERNEL, cpu_to_node(j));
5899 			if (!sgp)
5900 				return -ENOMEM;
5901 
5902 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5903 		}
5904 	}
5905 
5906 	return 0;
5907 }
5908 
5909 static void __sdt_free(const struct cpumask *cpu_map)
5910 {
5911 	struct sched_domain_topology_level *tl;
5912 	int j;
5913 
5914 	for_each_sd_topology(tl) {
5915 		struct sd_data *sdd = &tl->data;
5916 
5917 		for_each_cpu(j, cpu_map) {
5918 			struct sched_domain *sd;
5919 
5920 			if (sdd->sd) {
5921 				sd = *per_cpu_ptr(sdd->sd, j);
5922 				if (sd && (sd->flags & SD_OVERLAP))
5923 					free_sched_groups(sd->groups, 0);
5924 				kfree(*per_cpu_ptr(sdd->sd, j));
5925 			}
5926 
5927 			if (sdd->sg)
5928 				kfree(*per_cpu_ptr(sdd->sg, j));
5929 			if (sdd->sgp)
5930 				kfree(*per_cpu_ptr(sdd->sgp, j));
5931 		}
5932 		free_percpu(sdd->sd);
5933 		sdd->sd = NULL;
5934 		free_percpu(sdd->sg);
5935 		sdd->sg = NULL;
5936 		free_percpu(sdd->sgp);
5937 		sdd->sgp = NULL;
5938 	}
5939 }
5940 
5941 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5942 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5943 		struct sched_domain *child, int cpu)
5944 {
5945 	struct sched_domain *sd = tl->init(tl, cpu);
5946 	if (!sd)
5947 		return child;
5948 
5949 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5950 	if (child) {
5951 		sd->level = child->level + 1;
5952 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5953 		child->parent = sd;
5954 		sd->child = child;
5955 	}
5956 	set_domain_attribute(sd, attr);
5957 
5958 	return sd;
5959 }
5960 
5961 /*
5962  * Build sched domains for a given set of cpus and attach the sched domains
5963  * to the individual cpus
5964  */
5965 static int build_sched_domains(const struct cpumask *cpu_map,
5966 			       struct sched_domain_attr *attr)
5967 {
5968 	enum s_alloc alloc_state;
5969 	struct sched_domain *sd;
5970 	struct s_data d;
5971 	int i, ret = -ENOMEM;
5972 
5973 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5974 	if (alloc_state != sa_rootdomain)
5975 		goto error;
5976 
5977 	/* Set up domains for cpus specified by the cpu_map. */
5978 	for_each_cpu(i, cpu_map) {
5979 		struct sched_domain_topology_level *tl;
5980 
5981 		sd = NULL;
5982 		for_each_sd_topology(tl) {
5983 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5984 			if (tl == sched_domain_topology)
5985 				*per_cpu_ptr(d.sd, i) = sd;
5986 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5987 				sd->flags |= SD_OVERLAP;
5988 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5989 				break;
5990 		}
5991 	}
5992 
5993 	/* Build the groups for the domains */
5994 	for_each_cpu(i, cpu_map) {
5995 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5996 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5997 			if (sd->flags & SD_OVERLAP) {
5998 				if (build_overlap_sched_groups(sd, i))
5999 					goto error;
6000 			} else {
6001 				if (build_sched_groups(sd, i))
6002 					goto error;
6003 			}
6004 		}
6005 	}
6006 
6007 	/* Calculate CPU power for physical packages and nodes */
6008 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6009 		if (!cpumask_test_cpu(i, cpu_map))
6010 			continue;
6011 
6012 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6013 			claim_allocations(i, sd);
6014 			init_sched_groups_power(i, sd);
6015 		}
6016 	}
6017 
6018 	/* Attach the domains */
6019 	rcu_read_lock();
6020 	for_each_cpu(i, cpu_map) {
6021 		sd = *per_cpu_ptr(d.sd, i);
6022 		cpu_attach_domain(sd, d.rd, i);
6023 	}
6024 	rcu_read_unlock();
6025 
6026 	ret = 0;
6027 error:
6028 	__free_domain_allocs(&d, alloc_state, cpu_map);
6029 	return ret;
6030 }
6031 
6032 static cpumask_var_t *doms_cur;	/* current sched domains */
6033 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6034 static struct sched_domain_attr *dattr_cur;
6035 				/* attribues of custom domains in 'doms_cur' */
6036 
6037 /*
6038  * Special case: If a kmalloc of a doms_cur partition (array of
6039  * cpumask) fails, then fallback to a single sched domain,
6040  * as determined by the single cpumask fallback_doms.
6041  */
6042 static cpumask_var_t fallback_doms;
6043 
6044 /*
6045  * arch_update_cpu_topology lets virtualized architectures update the
6046  * cpu core maps. It is supposed to return 1 if the topology changed
6047  * or 0 if it stayed the same.
6048  */
6049 int __attribute__((weak)) arch_update_cpu_topology(void)
6050 {
6051 	return 0;
6052 }
6053 
6054 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6055 {
6056 	int i;
6057 	cpumask_var_t *doms;
6058 
6059 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6060 	if (!doms)
6061 		return NULL;
6062 	for (i = 0; i < ndoms; i++) {
6063 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6064 			free_sched_domains(doms, i);
6065 			return NULL;
6066 		}
6067 	}
6068 	return doms;
6069 }
6070 
6071 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6072 {
6073 	unsigned int i;
6074 	for (i = 0; i < ndoms; i++)
6075 		free_cpumask_var(doms[i]);
6076 	kfree(doms);
6077 }
6078 
6079 /*
6080  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6081  * For now this just excludes isolated cpus, but could be used to
6082  * exclude other special cases in the future.
6083  */
6084 static int init_sched_domains(const struct cpumask *cpu_map)
6085 {
6086 	int err;
6087 
6088 	arch_update_cpu_topology();
6089 	ndoms_cur = 1;
6090 	doms_cur = alloc_sched_domains(ndoms_cur);
6091 	if (!doms_cur)
6092 		doms_cur = &fallback_doms;
6093 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6094 	err = build_sched_domains(doms_cur[0], NULL);
6095 	register_sched_domain_sysctl();
6096 
6097 	return err;
6098 }
6099 
6100 /*
6101  * Detach sched domains from a group of cpus specified in cpu_map
6102  * These cpus will now be attached to the NULL domain
6103  */
6104 static void detach_destroy_domains(const struct cpumask *cpu_map)
6105 {
6106 	int i;
6107 
6108 	rcu_read_lock();
6109 	for_each_cpu(i, cpu_map)
6110 		cpu_attach_domain(NULL, &def_root_domain, i);
6111 	rcu_read_unlock();
6112 }
6113 
6114 /* handle null as "default" */
6115 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6116 			struct sched_domain_attr *new, int idx_new)
6117 {
6118 	struct sched_domain_attr tmp;
6119 
6120 	/* fast path */
6121 	if (!new && !cur)
6122 		return 1;
6123 
6124 	tmp = SD_ATTR_INIT;
6125 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6126 			new ? (new + idx_new) : &tmp,
6127 			sizeof(struct sched_domain_attr));
6128 }
6129 
6130 /*
6131  * Partition sched domains as specified by the 'ndoms_new'
6132  * cpumasks in the array doms_new[] of cpumasks. This compares
6133  * doms_new[] to the current sched domain partitioning, doms_cur[].
6134  * It destroys each deleted domain and builds each new domain.
6135  *
6136  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6137  * The masks don't intersect (don't overlap.) We should setup one
6138  * sched domain for each mask. CPUs not in any of the cpumasks will
6139  * not be load balanced. If the same cpumask appears both in the
6140  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6141  * it as it is.
6142  *
6143  * The passed in 'doms_new' should be allocated using
6144  * alloc_sched_domains.  This routine takes ownership of it and will
6145  * free_sched_domains it when done with it. If the caller failed the
6146  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6147  * and partition_sched_domains() will fallback to the single partition
6148  * 'fallback_doms', it also forces the domains to be rebuilt.
6149  *
6150  * If doms_new == NULL it will be replaced with cpu_online_mask.
6151  * ndoms_new == 0 is a special case for destroying existing domains,
6152  * and it will not create the default domain.
6153  *
6154  * Call with hotplug lock held
6155  */
6156 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6157 			     struct sched_domain_attr *dattr_new)
6158 {
6159 	int i, j, n;
6160 	int new_topology;
6161 
6162 	mutex_lock(&sched_domains_mutex);
6163 
6164 	/* always unregister in case we don't destroy any domains */
6165 	unregister_sched_domain_sysctl();
6166 
6167 	/* Let architecture update cpu core mappings. */
6168 	new_topology = arch_update_cpu_topology();
6169 
6170 	n = doms_new ? ndoms_new : 0;
6171 
6172 	/* Destroy deleted domains */
6173 	for (i = 0; i < ndoms_cur; i++) {
6174 		for (j = 0; j < n && !new_topology; j++) {
6175 			if (cpumask_equal(doms_cur[i], doms_new[j])
6176 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6177 				goto match1;
6178 		}
6179 		/* no match - a current sched domain not in new doms_new[] */
6180 		detach_destroy_domains(doms_cur[i]);
6181 match1:
6182 		;
6183 	}
6184 
6185 	if (doms_new == NULL) {
6186 		ndoms_cur = 0;
6187 		doms_new = &fallback_doms;
6188 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6189 		WARN_ON_ONCE(dattr_new);
6190 	}
6191 
6192 	/* Build new domains */
6193 	for (i = 0; i < ndoms_new; i++) {
6194 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6195 			if (cpumask_equal(doms_new[i], doms_cur[j])
6196 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6197 				goto match2;
6198 		}
6199 		/* no match - add a new doms_new */
6200 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6201 match2:
6202 		;
6203 	}
6204 
6205 	/* Remember the new sched domains */
6206 	if (doms_cur != &fallback_doms)
6207 		free_sched_domains(doms_cur, ndoms_cur);
6208 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6209 	doms_cur = doms_new;
6210 	dattr_cur = dattr_new;
6211 	ndoms_cur = ndoms_new;
6212 
6213 	register_sched_domain_sysctl();
6214 
6215 	mutex_unlock(&sched_domains_mutex);
6216 }
6217 
6218 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6219 
6220 /*
6221  * Update cpusets according to cpu_active mask.  If cpusets are
6222  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6223  * around partition_sched_domains().
6224  *
6225  * If we come here as part of a suspend/resume, don't touch cpusets because we
6226  * want to restore it back to its original state upon resume anyway.
6227  */
6228 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6229 			     void *hcpu)
6230 {
6231 	switch (action) {
6232 	case CPU_ONLINE_FROZEN:
6233 	case CPU_DOWN_FAILED_FROZEN:
6234 
6235 		/*
6236 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6237 		 * resume sequence. As long as this is not the last online
6238 		 * operation in the resume sequence, just build a single sched
6239 		 * domain, ignoring cpusets.
6240 		 */
6241 		num_cpus_frozen--;
6242 		if (likely(num_cpus_frozen)) {
6243 			partition_sched_domains(1, NULL, NULL);
6244 			break;
6245 		}
6246 
6247 		/*
6248 		 * This is the last CPU online operation. So fall through and
6249 		 * restore the original sched domains by considering the
6250 		 * cpuset configurations.
6251 		 */
6252 
6253 	case CPU_ONLINE:
6254 	case CPU_DOWN_FAILED:
6255 		cpuset_update_active_cpus(true);
6256 		break;
6257 	default:
6258 		return NOTIFY_DONE;
6259 	}
6260 	return NOTIFY_OK;
6261 }
6262 
6263 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6264 			       void *hcpu)
6265 {
6266 	switch (action) {
6267 	case CPU_DOWN_PREPARE:
6268 		cpuset_update_active_cpus(false);
6269 		break;
6270 	case CPU_DOWN_PREPARE_FROZEN:
6271 		num_cpus_frozen++;
6272 		partition_sched_domains(1, NULL, NULL);
6273 		break;
6274 	default:
6275 		return NOTIFY_DONE;
6276 	}
6277 	return NOTIFY_OK;
6278 }
6279 
6280 void __init sched_init_smp(void)
6281 {
6282 	cpumask_var_t non_isolated_cpus;
6283 
6284 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6285 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6286 
6287 	sched_init_numa();
6288 
6289 	get_online_cpus();
6290 	mutex_lock(&sched_domains_mutex);
6291 	init_sched_domains(cpu_active_mask);
6292 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6293 	if (cpumask_empty(non_isolated_cpus))
6294 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6295 	mutex_unlock(&sched_domains_mutex);
6296 	put_online_cpus();
6297 
6298 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6299 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6300 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6301 
6302 	init_hrtick();
6303 
6304 	/* Move init over to a non-isolated CPU */
6305 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6306 		BUG();
6307 	sched_init_granularity();
6308 	free_cpumask_var(non_isolated_cpus);
6309 
6310 	init_sched_rt_class();
6311 }
6312 #else
6313 void __init sched_init_smp(void)
6314 {
6315 	sched_init_granularity();
6316 }
6317 #endif /* CONFIG_SMP */
6318 
6319 const_debug unsigned int sysctl_timer_migration = 1;
6320 
6321 int in_sched_functions(unsigned long addr)
6322 {
6323 	return in_lock_functions(addr) ||
6324 		(addr >= (unsigned long)__sched_text_start
6325 		&& addr < (unsigned long)__sched_text_end);
6326 }
6327 
6328 #ifdef CONFIG_CGROUP_SCHED
6329 /*
6330  * Default task group.
6331  * Every task in system belongs to this group at bootup.
6332  */
6333 struct task_group root_task_group;
6334 LIST_HEAD(task_groups);
6335 #endif
6336 
6337 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6338 
6339 void __init sched_init(void)
6340 {
6341 	int i, j;
6342 	unsigned long alloc_size = 0, ptr;
6343 
6344 #ifdef CONFIG_FAIR_GROUP_SCHED
6345 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6346 #endif
6347 #ifdef CONFIG_RT_GROUP_SCHED
6348 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6349 #endif
6350 #ifdef CONFIG_CPUMASK_OFFSTACK
6351 	alloc_size += num_possible_cpus() * cpumask_size();
6352 #endif
6353 	if (alloc_size) {
6354 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6355 
6356 #ifdef CONFIG_FAIR_GROUP_SCHED
6357 		root_task_group.se = (struct sched_entity **)ptr;
6358 		ptr += nr_cpu_ids * sizeof(void **);
6359 
6360 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6361 		ptr += nr_cpu_ids * sizeof(void **);
6362 
6363 #endif /* CONFIG_FAIR_GROUP_SCHED */
6364 #ifdef CONFIG_RT_GROUP_SCHED
6365 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6366 		ptr += nr_cpu_ids * sizeof(void **);
6367 
6368 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6369 		ptr += nr_cpu_ids * sizeof(void **);
6370 
6371 #endif /* CONFIG_RT_GROUP_SCHED */
6372 #ifdef CONFIG_CPUMASK_OFFSTACK
6373 		for_each_possible_cpu(i) {
6374 			per_cpu(load_balance_mask, i) = (void *)ptr;
6375 			ptr += cpumask_size();
6376 		}
6377 #endif /* CONFIG_CPUMASK_OFFSTACK */
6378 	}
6379 
6380 #ifdef CONFIG_SMP
6381 	init_defrootdomain();
6382 #endif
6383 
6384 	init_rt_bandwidth(&def_rt_bandwidth,
6385 			global_rt_period(), global_rt_runtime());
6386 
6387 #ifdef CONFIG_RT_GROUP_SCHED
6388 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6389 			global_rt_period(), global_rt_runtime());
6390 #endif /* CONFIG_RT_GROUP_SCHED */
6391 
6392 #ifdef CONFIG_CGROUP_SCHED
6393 	list_add(&root_task_group.list, &task_groups);
6394 	INIT_LIST_HEAD(&root_task_group.children);
6395 	INIT_LIST_HEAD(&root_task_group.siblings);
6396 	autogroup_init(&init_task);
6397 
6398 #endif /* CONFIG_CGROUP_SCHED */
6399 
6400 	for_each_possible_cpu(i) {
6401 		struct rq *rq;
6402 
6403 		rq = cpu_rq(i);
6404 		raw_spin_lock_init(&rq->lock);
6405 		rq->nr_running = 0;
6406 		rq->calc_load_active = 0;
6407 		rq->calc_load_update = jiffies + LOAD_FREQ;
6408 		init_cfs_rq(&rq->cfs);
6409 		init_rt_rq(&rq->rt, rq);
6410 #ifdef CONFIG_FAIR_GROUP_SCHED
6411 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6412 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6413 		/*
6414 		 * How much cpu bandwidth does root_task_group get?
6415 		 *
6416 		 * In case of task-groups formed thr' the cgroup filesystem, it
6417 		 * gets 100% of the cpu resources in the system. This overall
6418 		 * system cpu resource is divided among the tasks of
6419 		 * root_task_group and its child task-groups in a fair manner,
6420 		 * based on each entity's (task or task-group's) weight
6421 		 * (se->load.weight).
6422 		 *
6423 		 * In other words, if root_task_group has 10 tasks of weight
6424 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6425 		 * then A0's share of the cpu resource is:
6426 		 *
6427 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6428 		 *
6429 		 * We achieve this by letting root_task_group's tasks sit
6430 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6431 		 */
6432 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6433 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6434 #endif /* CONFIG_FAIR_GROUP_SCHED */
6435 
6436 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6437 #ifdef CONFIG_RT_GROUP_SCHED
6438 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6439 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6440 #endif
6441 
6442 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6443 			rq->cpu_load[j] = 0;
6444 
6445 		rq->last_load_update_tick = jiffies;
6446 
6447 #ifdef CONFIG_SMP
6448 		rq->sd = NULL;
6449 		rq->rd = NULL;
6450 		rq->cpu_power = SCHED_POWER_SCALE;
6451 		rq->post_schedule = 0;
6452 		rq->active_balance = 0;
6453 		rq->next_balance = jiffies;
6454 		rq->push_cpu = 0;
6455 		rq->cpu = i;
6456 		rq->online = 0;
6457 		rq->idle_stamp = 0;
6458 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6459 
6460 		INIT_LIST_HEAD(&rq->cfs_tasks);
6461 
6462 		rq_attach_root(rq, &def_root_domain);
6463 #ifdef CONFIG_NO_HZ_COMMON
6464 		rq->nohz_flags = 0;
6465 #endif
6466 #ifdef CONFIG_NO_HZ_FULL
6467 		rq->last_sched_tick = 0;
6468 #endif
6469 #endif
6470 		init_rq_hrtick(rq);
6471 		atomic_set(&rq->nr_iowait, 0);
6472 	}
6473 
6474 	set_load_weight(&init_task);
6475 
6476 #ifdef CONFIG_PREEMPT_NOTIFIERS
6477 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6478 #endif
6479 
6480 #ifdef CONFIG_RT_MUTEXES
6481 	plist_head_init(&init_task.pi_waiters);
6482 #endif
6483 
6484 	/*
6485 	 * The boot idle thread does lazy MMU switching as well:
6486 	 */
6487 	atomic_inc(&init_mm.mm_count);
6488 	enter_lazy_tlb(&init_mm, current);
6489 
6490 	/*
6491 	 * Make us the idle thread. Technically, schedule() should not be
6492 	 * called from this thread, however somewhere below it might be,
6493 	 * but because we are the idle thread, we just pick up running again
6494 	 * when this runqueue becomes "idle".
6495 	 */
6496 	init_idle(current, smp_processor_id());
6497 
6498 	calc_load_update = jiffies + LOAD_FREQ;
6499 
6500 	/*
6501 	 * During early bootup we pretend to be a normal task:
6502 	 */
6503 	current->sched_class = &fair_sched_class;
6504 
6505 #ifdef CONFIG_SMP
6506 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6507 	/* May be allocated at isolcpus cmdline parse time */
6508 	if (cpu_isolated_map == NULL)
6509 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6510 	idle_thread_set_boot_cpu();
6511 #endif
6512 	init_sched_fair_class();
6513 
6514 	scheduler_running = 1;
6515 }
6516 
6517 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6518 static inline int preempt_count_equals(int preempt_offset)
6519 {
6520 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6521 
6522 	return (nested == preempt_offset);
6523 }
6524 
6525 void __might_sleep(const char *file, int line, int preempt_offset)
6526 {
6527 	static unsigned long prev_jiffy;	/* ratelimiting */
6528 
6529 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6530 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6531 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6532 		return;
6533 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6534 		return;
6535 	prev_jiffy = jiffies;
6536 
6537 	printk(KERN_ERR
6538 		"BUG: sleeping function called from invalid context at %s:%d\n",
6539 			file, line);
6540 	printk(KERN_ERR
6541 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6542 			in_atomic(), irqs_disabled(),
6543 			current->pid, current->comm);
6544 
6545 	debug_show_held_locks(current);
6546 	if (irqs_disabled())
6547 		print_irqtrace_events(current);
6548 	dump_stack();
6549 }
6550 EXPORT_SYMBOL(__might_sleep);
6551 #endif
6552 
6553 #ifdef CONFIG_MAGIC_SYSRQ
6554 static void normalize_task(struct rq *rq, struct task_struct *p)
6555 {
6556 	const struct sched_class *prev_class = p->sched_class;
6557 	int old_prio = p->prio;
6558 	int on_rq;
6559 
6560 	on_rq = p->on_rq;
6561 	if (on_rq)
6562 		dequeue_task(rq, p, 0);
6563 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6564 	if (on_rq) {
6565 		enqueue_task(rq, p, 0);
6566 		resched_task(rq->curr);
6567 	}
6568 
6569 	check_class_changed(rq, p, prev_class, old_prio);
6570 }
6571 
6572 void normalize_rt_tasks(void)
6573 {
6574 	struct task_struct *g, *p;
6575 	unsigned long flags;
6576 	struct rq *rq;
6577 
6578 	read_lock_irqsave(&tasklist_lock, flags);
6579 	do_each_thread(g, p) {
6580 		/*
6581 		 * Only normalize user tasks:
6582 		 */
6583 		if (!p->mm)
6584 			continue;
6585 
6586 		p->se.exec_start		= 0;
6587 #ifdef CONFIG_SCHEDSTATS
6588 		p->se.statistics.wait_start	= 0;
6589 		p->se.statistics.sleep_start	= 0;
6590 		p->se.statistics.block_start	= 0;
6591 #endif
6592 
6593 		if (!rt_task(p)) {
6594 			/*
6595 			 * Renice negative nice level userspace
6596 			 * tasks back to 0:
6597 			 */
6598 			if (TASK_NICE(p) < 0 && p->mm)
6599 				set_user_nice(p, 0);
6600 			continue;
6601 		}
6602 
6603 		raw_spin_lock(&p->pi_lock);
6604 		rq = __task_rq_lock(p);
6605 
6606 		normalize_task(rq, p);
6607 
6608 		__task_rq_unlock(rq);
6609 		raw_spin_unlock(&p->pi_lock);
6610 	} while_each_thread(g, p);
6611 
6612 	read_unlock_irqrestore(&tasklist_lock, flags);
6613 }
6614 
6615 #endif /* CONFIG_MAGIC_SYSRQ */
6616 
6617 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6618 /*
6619  * These functions are only useful for the IA64 MCA handling, or kdb.
6620  *
6621  * They can only be called when the whole system has been
6622  * stopped - every CPU needs to be quiescent, and no scheduling
6623  * activity can take place. Using them for anything else would
6624  * be a serious bug, and as a result, they aren't even visible
6625  * under any other configuration.
6626  */
6627 
6628 /**
6629  * curr_task - return the current task for a given cpu.
6630  * @cpu: the processor in question.
6631  *
6632  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6633  */
6634 struct task_struct *curr_task(int cpu)
6635 {
6636 	return cpu_curr(cpu);
6637 }
6638 
6639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6640 
6641 #ifdef CONFIG_IA64
6642 /**
6643  * set_curr_task - set the current task for a given cpu.
6644  * @cpu: the processor in question.
6645  * @p: the task pointer to set.
6646  *
6647  * Description: This function must only be used when non-maskable interrupts
6648  * are serviced on a separate stack. It allows the architecture to switch the
6649  * notion of the current task on a cpu in a non-blocking manner. This function
6650  * must be called with all CPU's synchronized, and interrupts disabled, the
6651  * and caller must save the original value of the current task (see
6652  * curr_task() above) and restore that value before reenabling interrupts and
6653  * re-starting the system.
6654  *
6655  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6656  */
6657 void set_curr_task(int cpu, struct task_struct *p)
6658 {
6659 	cpu_curr(cpu) = p;
6660 }
6661 
6662 #endif
6663 
6664 #ifdef CONFIG_CGROUP_SCHED
6665 /* task_group_lock serializes the addition/removal of task groups */
6666 static DEFINE_SPINLOCK(task_group_lock);
6667 
6668 static void free_sched_group(struct task_group *tg)
6669 {
6670 	free_fair_sched_group(tg);
6671 	free_rt_sched_group(tg);
6672 	autogroup_free(tg);
6673 	kfree(tg);
6674 }
6675 
6676 /* allocate runqueue etc for a new task group */
6677 struct task_group *sched_create_group(struct task_group *parent)
6678 {
6679 	struct task_group *tg;
6680 
6681 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6682 	if (!tg)
6683 		return ERR_PTR(-ENOMEM);
6684 
6685 	if (!alloc_fair_sched_group(tg, parent))
6686 		goto err;
6687 
6688 	if (!alloc_rt_sched_group(tg, parent))
6689 		goto err;
6690 
6691 	return tg;
6692 
6693 err:
6694 	free_sched_group(tg);
6695 	return ERR_PTR(-ENOMEM);
6696 }
6697 
6698 void sched_online_group(struct task_group *tg, struct task_group *parent)
6699 {
6700 	unsigned long flags;
6701 
6702 	spin_lock_irqsave(&task_group_lock, flags);
6703 	list_add_rcu(&tg->list, &task_groups);
6704 
6705 	WARN_ON(!parent); /* root should already exist */
6706 
6707 	tg->parent = parent;
6708 	INIT_LIST_HEAD(&tg->children);
6709 	list_add_rcu(&tg->siblings, &parent->children);
6710 	spin_unlock_irqrestore(&task_group_lock, flags);
6711 }
6712 
6713 /* rcu callback to free various structures associated with a task group */
6714 static void free_sched_group_rcu(struct rcu_head *rhp)
6715 {
6716 	/* now it should be safe to free those cfs_rqs */
6717 	free_sched_group(container_of(rhp, struct task_group, rcu));
6718 }
6719 
6720 /* Destroy runqueue etc associated with a task group */
6721 void sched_destroy_group(struct task_group *tg)
6722 {
6723 	/* wait for possible concurrent references to cfs_rqs complete */
6724 	call_rcu(&tg->rcu, free_sched_group_rcu);
6725 }
6726 
6727 void sched_offline_group(struct task_group *tg)
6728 {
6729 	unsigned long flags;
6730 	int i;
6731 
6732 	/* end participation in shares distribution */
6733 	for_each_possible_cpu(i)
6734 		unregister_fair_sched_group(tg, i);
6735 
6736 	spin_lock_irqsave(&task_group_lock, flags);
6737 	list_del_rcu(&tg->list);
6738 	list_del_rcu(&tg->siblings);
6739 	spin_unlock_irqrestore(&task_group_lock, flags);
6740 }
6741 
6742 /* change task's runqueue when it moves between groups.
6743  *	The caller of this function should have put the task in its new group
6744  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6745  *	reflect its new group.
6746  */
6747 void sched_move_task(struct task_struct *tsk)
6748 {
6749 	struct task_group *tg;
6750 	int on_rq, running;
6751 	unsigned long flags;
6752 	struct rq *rq;
6753 
6754 	rq = task_rq_lock(tsk, &flags);
6755 
6756 	running = task_current(rq, tsk);
6757 	on_rq = tsk->on_rq;
6758 
6759 	if (on_rq)
6760 		dequeue_task(rq, tsk, 0);
6761 	if (unlikely(running))
6762 		tsk->sched_class->put_prev_task(rq, tsk);
6763 
6764 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6765 				lockdep_is_held(&tsk->sighand->siglock)),
6766 			  struct task_group, css);
6767 	tg = autogroup_task_group(tsk, tg);
6768 	tsk->sched_task_group = tg;
6769 
6770 #ifdef CONFIG_FAIR_GROUP_SCHED
6771 	if (tsk->sched_class->task_move_group)
6772 		tsk->sched_class->task_move_group(tsk, on_rq);
6773 	else
6774 #endif
6775 		set_task_rq(tsk, task_cpu(tsk));
6776 
6777 	if (unlikely(running))
6778 		tsk->sched_class->set_curr_task(rq);
6779 	if (on_rq)
6780 		enqueue_task(rq, tsk, 0);
6781 
6782 	task_rq_unlock(rq, tsk, &flags);
6783 }
6784 #endif /* CONFIG_CGROUP_SCHED */
6785 
6786 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6787 static unsigned long to_ratio(u64 period, u64 runtime)
6788 {
6789 	if (runtime == RUNTIME_INF)
6790 		return 1ULL << 20;
6791 
6792 	return div64_u64(runtime << 20, period);
6793 }
6794 #endif
6795 
6796 #ifdef CONFIG_RT_GROUP_SCHED
6797 /*
6798  * Ensure that the real time constraints are schedulable.
6799  */
6800 static DEFINE_MUTEX(rt_constraints_mutex);
6801 
6802 /* Must be called with tasklist_lock held */
6803 static inline int tg_has_rt_tasks(struct task_group *tg)
6804 {
6805 	struct task_struct *g, *p;
6806 
6807 	do_each_thread(g, p) {
6808 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6809 			return 1;
6810 	} while_each_thread(g, p);
6811 
6812 	return 0;
6813 }
6814 
6815 struct rt_schedulable_data {
6816 	struct task_group *tg;
6817 	u64 rt_period;
6818 	u64 rt_runtime;
6819 };
6820 
6821 static int tg_rt_schedulable(struct task_group *tg, void *data)
6822 {
6823 	struct rt_schedulable_data *d = data;
6824 	struct task_group *child;
6825 	unsigned long total, sum = 0;
6826 	u64 period, runtime;
6827 
6828 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6829 	runtime = tg->rt_bandwidth.rt_runtime;
6830 
6831 	if (tg == d->tg) {
6832 		period = d->rt_period;
6833 		runtime = d->rt_runtime;
6834 	}
6835 
6836 	/*
6837 	 * Cannot have more runtime than the period.
6838 	 */
6839 	if (runtime > period && runtime != RUNTIME_INF)
6840 		return -EINVAL;
6841 
6842 	/*
6843 	 * Ensure we don't starve existing RT tasks.
6844 	 */
6845 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6846 		return -EBUSY;
6847 
6848 	total = to_ratio(period, runtime);
6849 
6850 	/*
6851 	 * Nobody can have more than the global setting allows.
6852 	 */
6853 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6854 		return -EINVAL;
6855 
6856 	/*
6857 	 * The sum of our children's runtime should not exceed our own.
6858 	 */
6859 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6860 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6861 		runtime = child->rt_bandwidth.rt_runtime;
6862 
6863 		if (child == d->tg) {
6864 			period = d->rt_period;
6865 			runtime = d->rt_runtime;
6866 		}
6867 
6868 		sum += to_ratio(period, runtime);
6869 	}
6870 
6871 	if (sum > total)
6872 		return -EINVAL;
6873 
6874 	return 0;
6875 }
6876 
6877 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6878 {
6879 	int ret;
6880 
6881 	struct rt_schedulable_data data = {
6882 		.tg = tg,
6883 		.rt_period = period,
6884 		.rt_runtime = runtime,
6885 	};
6886 
6887 	rcu_read_lock();
6888 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6889 	rcu_read_unlock();
6890 
6891 	return ret;
6892 }
6893 
6894 static int tg_set_rt_bandwidth(struct task_group *tg,
6895 		u64 rt_period, u64 rt_runtime)
6896 {
6897 	int i, err = 0;
6898 
6899 	mutex_lock(&rt_constraints_mutex);
6900 	read_lock(&tasklist_lock);
6901 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6902 	if (err)
6903 		goto unlock;
6904 
6905 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6906 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6907 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6908 
6909 	for_each_possible_cpu(i) {
6910 		struct rt_rq *rt_rq = tg->rt_rq[i];
6911 
6912 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6913 		rt_rq->rt_runtime = rt_runtime;
6914 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6915 	}
6916 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6917 unlock:
6918 	read_unlock(&tasklist_lock);
6919 	mutex_unlock(&rt_constraints_mutex);
6920 
6921 	return err;
6922 }
6923 
6924 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6925 {
6926 	u64 rt_runtime, rt_period;
6927 
6928 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6929 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6930 	if (rt_runtime_us < 0)
6931 		rt_runtime = RUNTIME_INF;
6932 
6933 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6934 }
6935 
6936 static long sched_group_rt_runtime(struct task_group *tg)
6937 {
6938 	u64 rt_runtime_us;
6939 
6940 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6941 		return -1;
6942 
6943 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6944 	do_div(rt_runtime_us, NSEC_PER_USEC);
6945 	return rt_runtime_us;
6946 }
6947 
6948 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6949 {
6950 	u64 rt_runtime, rt_period;
6951 
6952 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6953 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6954 
6955 	if (rt_period == 0)
6956 		return -EINVAL;
6957 
6958 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6959 }
6960 
6961 static long sched_group_rt_period(struct task_group *tg)
6962 {
6963 	u64 rt_period_us;
6964 
6965 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6966 	do_div(rt_period_us, NSEC_PER_USEC);
6967 	return rt_period_us;
6968 }
6969 
6970 static int sched_rt_global_constraints(void)
6971 {
6972 	u64 runtime, period;
6973 	int ret = 0;
6974 
6975 	if (sysctl_sched_rt_period <= 0)
6976 		return -EINVAL;
6977 
6978 	runtime = global_rt_runtime();
6979 	period = global_rt_period();
6980 
6981 	/*
6982 	 * Sanity check on the sysctl variables.
6983 	 */
6984 	if (runtime > period && runtime != RUNTIME_INF)
6985 		return -EINVAL;
6986 
6987 	mutex_lock(&rt_constraints_mutex);
6988 	read_lock(&tasklist_lock);
6989 	ret = __rt_schedulable(NULL, 0, 0);
6990 	read_unlock(&tasklist_lock);
6991 	mutex_unlock(&rt_constraints_mutex);
6992 
6993 	return ret;
6994 }
6995 
6996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6997 {
6998 	/* Don't accept realtime tasks when there is no way for them to run */
6999 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7000 		return 0;
7001 
7002 	return 1;
7003 }
7004 
7005 #else /* !CONFIG_RT_GROUP_SCHED */
7006 static int sched_rt_global_constraints(void)
7007 {
7008 	unsigned long flags;
7009 	int i;
7010 
7011 	if (sysctl_sched_rt_period <= 0)
7012 		return -EINVAL;
7013 
7014 	/*
7015 	 * There's always some RT tasks in the root group
7016 	 * -- migration, kstopmachine etc..
7017 	 */
7018 	if (sysctl_sched_rt_runtime == 0)
7019 		return -EBUSY;
7020 
7021 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7022 	for_each_possible_cpu(i) {
7023 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7024 
7025 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7026 		rt_rq->rt_runtime = global_rt_runtime();
7027 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7028 	}
7029 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7030 
7031 	return 0;
7032 }
7033 #endif /* CONFIG_RT_GROUP_SCHED */
7034 
7035 int sched_rr_handler(struct ctl_table *table, int write,
7036 		void __user *buffer, size_t *lenp,
7037 		loff_t *ppos)
7038 {
7039 	int ret;
7040 	static DEFINE_MUTEX(mutex);
7041 
7042 	mutex_lock(&mutex);
7043 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7044 	/* make sure that internally we keep jiffies */
7045 	/* also, writing zero resets timeslice to default */
7046 	if (!ret && write) {
7047 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7048 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7049 	}
7050 	mutex_unlock(&mutex);
7051 	return ret;
7052 }
7053 
7054 int sched_rt_handler(struct ctl_table *table, int write,
7055 		void __user *buffer, size_t *lenp,
7056 		loff_t *ppos)
7057 {
7058 	int ret;
7059 	int old_period, old_runtime;
7060 	static DEFINE_MUTEX(mutex);
7061 
7062 	mutex_lock(&mutex);
7063 	old_period = sysctl_sched_rt_period;
7064 	old_runtime = sysctl_sched_rt_runtime;
7065 
7066 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7067 
7068 	if (!ret && write) {
7069 		ret = sched_rt_global_constraints();
7070 		if (ret) {
7071 			sysctl_sched_rt_period = old_period;
7072 			sysctl_sched_rt_runtime = old_runtime;
7073 		} else {
7074 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7075 			def_rt_bandwidth.rt_period =
7076 				ns_to_ktime(global_rt_period());
7077 		}
7078 	}
7079 	mutex_unlock(&mutex);
7080 
7081 	return ret;
7082 }
7083 
7084 #ifdef CONFIG_CGROUP_SCHED
7085 
7086 /* return corresponding task_group object of a cgroup */
7087 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7088 {
7089 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7090 			    struct task_group, css);
7091 }
7092 
7093 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7094 {
7095 	struct task_group *tg, *parent;
7096 
7097 	if (!cgrp->parent) {
7098 		/* This is early initialization for the top cgroup */
7099 		return &root_task_group.css;
7100 	}
7101 
7102 	parent = cgroup_tg(cgrp->parent);
7103 	tg = sched_create_group(parent);
7104 	if (IS_ERR(tg))
7105 		return ERR_PTR(-ENOMEM);
7106 
7107 	return &tg->css;
7108 }
7109 
7110 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7111 {
7112 	struct task_group *tg = cgroup_tg(cgrp);
7113 	struct task_group *parent;
7114 
7115 	if (!cgrp->parent)
7116 		return 0;
7117 
7118 	parent = cgroup_tg(cgrp->parent);
7119 	sched_online_group(tg, parent);
7120 	return 0;
7121 }
7122 
7123 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7124 {
7125 	struct task_group *tg = cgroup_tg(cgrp);
7126 
7127 	sched_destroy_group(tg);
7128 }
7129 
7130 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7131 {
7132 	struct task_group *tg = cgroup_tg(cgrp);
7133 
7134 	sched_offline_group(tg);
7135 }
7136 
7137 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7138 				 struct cgroup_taskset *tset)
7139 {
7140 	struct task_struct *task;
7141 
7142 	cgroup_taskset_for_each(task, cgrp, tset) {
7143 #ifdef CONFIG_RT_GROUP_SCHED
7144 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7145 			return -EINVAL;
7146 #else
7147 		/* We don't support RT-tasks being in separate groups */
7148 		if (task->sched_class != &fair_sched_class)
7149 			return -EINVAL;
7150 #endif
7151 	}
7152 	return 0;
7153 }
7154 
7155 static void cpu_cgroup_attach(struct cgroup *cgrp,
7156 			      struct cgroup_taskset *tset)
7157 {
7158 	struct task_struct *task;
7159 
7160 	cgroup_taskset_for_each(task, cgrp, tset)
7161 		sched_move_task(task);
7162 }
7163 
7164 static void
7165 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7166 		struct task_struct *task)
7167 {
7168 	/*
7169 	 * cgroup_exit() is called in the copy_process() failure path.
7170 	 * Ignore this case since the task hasn't ran yet, this avoids
7171 	 * trying to poke a half freed task state from generic code.
7172 	 */
7173 	if (!(task->flags & PF_EXITING))
7174 		return;
7175 
7176 	sched_move_task(task);
7177 }
7178 
7179 #ifdef CONFIG_FAIR_GROUP_SCHED
7180 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7181 				u64 shareval)
7182 {
7183 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7184 }
7185 
7186 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7187 {
7188 	struct task_group *tg = cgroup_tg(cgrp);
7189 
7190 	return (u64) scale_load_down(tg->shares);
7191 }
7192 
7193 #ifdef CONFIG_CFS_BANDWIDTH
7194 static DEFINE_MUTEX(cfs_constraints_mutex);
7195 
7196 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7197 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7198 
7199 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7200 
7201 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7202 {
7203 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7204 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7205 
7206 	if (tg == &root_task_group)
7207 		return -EINVAL;
7208 
7209 	/*
7210 	 * Ensure we have at some amount of bandwidth every period.  This is
7211 	 * to prevent reaching a state of large arrears when throttled via
7212 	 * entity_tick() resulting in prolonged exit starvation.
7213 	 */
7214 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7215 		return -EINVAL;
7216 
7217 	/*
7218 	 * Likewise, bound things on the otherside by preventing insane quota
7219 	 * periods.  This also allows us to normalize in computing quota
7220 	 * feasibility.
7221 	 */
7222 	if (period > max_cfs_quota_period)
7223 		return -EINVAL;
7224 
7225 	mutex_lock(&cfs_constraints_mutex);
7226 	ret = __cfs_schedulable(tg, period, quota);
7227 	if (ret)
7228 		goto out_unlock;
7229 
7230 	runtime_enabled = quota != RUNTIME_INF;
7231 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7232 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7233 	raw_spin_lock_irq(&cfs_b->lock);
7234 	cfs_b->period = ns_to_ktime(period);
7235 	cfs_b->quota = quota;
7236 
7237 	__refill_cfs_bandwidth_runtime(cfs_b);
7238 	/* restart the period timer (if active) to handle new period expiry */
7239 	if (runtime_enabled && cfs_b->timer_active) {
7240 		/* force a reprogram */
7241 		cfs_b->timer_active = 0;
7242 		__start_cfs_bandwidth(cfs_b);
7243 	}
7244 	raw_spin_unlock_irq(&cfs_b->lock);
7245 
7246 	for_each_possible_cpu(i) {
7247 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7248 		struct rq *rq = cfs_rq->rq;
7249 
7250 		raw_spin_lock_irq(&rq->lock);
7251 		cfs_rq->runtime_enabled = runtime_enabled;
7252 		cfs_rq->runtime_remaining = 0;
7253 
7254 		if (cfs_rq->throttled)
7255 			unthrottle_cfs_rq(cfs_rq);
7256 		raw_spin_unlock_irq(&rq->lock);
7257 	}
7258 out_unlock:
7259 	mutex_unlock(&cfs_constraints_mutex);
7260 
7261 	return ret;
7262 }
7263 
7264 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7265 {
7266 	u64 quota, period;
7267 
7268 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7269 	if (cfs_quota_us < 0)
7270 		quota = RUNTIME_INF;
7271 	else
7272 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7273 
7274 	return tg_set_cfs_bandwidth(tg, period, quota);
7275 }
7276 
7277 long tg_get_cfs_quota(struct task_group *tg)
7278 {
7279 	u64 quota_us;
7280 
7281 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7282 		return -1;
7283 
7284 	quota_us = tg->cfs_bandwidth.quota;
7285 	do_div(quota_us, NSEC_PER_USEC);
7286 
7287 	return quota_us;
7288 }
7289 
7290 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7291 {
7292 	u64 quota, period;
7293 
7294 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7295 	quota = tg->cfs_bandwidth.quota;
7296 
7297 	return tg_set_cfs_bandwidth(tg, period, quota);
7298 }
7299 
7300 long tg_get_cfs_period(struct task_group *tg)
7301 {
7302 	u64 cfs_period_us;
7303 
7304 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7305 	do_div(cfs_period_us, NSEC_PER_USEC);
7306 
7307 	return cfs_period_us;
7308 }
7309 
7310 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7311 {
7312 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7313 }
7314 
7315 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7316 				s64 cfs_quota_us)
7317 {
7318 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7319 }
7320 
7321 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7322 {
7323 	return tg_get_cfs_period(cgroup_tg(cgrp));
7324 }
7325 
7326 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7327 				u64 cfs_period_us)
7328 {
7329 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7330 }
7331 
7332 struct cfs_schedulable_data {
7333 	struct task_group *tg;
7334 	u64 period, quota;
7335 };
7336 
7337 /*
7338  * normalize group quota/period to be quota/max_period
7339  * note: units are usecs
7340  */
7341 static u64 normalize_cfs_quota(struct task_group *tg,
7342 			       struct cfs_schedulable_data *d)
7343 {
7344 	u64 quota, period;
7345 
7346 	if (tg == d->tg) {
7347 		period = d->period;
7348 		quota = d->quota;
7349 	} else {
7350 		period = tg_get_cfs_period(tg);
7351 		quota = tg_get_cfs_quota(tg);
7352 	}
7353 
7354 	/* note: these should typically be equivalent */
7355 	if (quota == RUNTIME_INF || quota == -1)
7356 		return RUNTIME_INF;
7357 
7358 	return to_ratio(period, quota);
7359 }
7360 
7361 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7362 {
7363 	struct cfs_schedulable_data *d = data;
7364 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7365 	s64 quota = 0, parent_quota = -1;
7366 
7367 	if (!tg->parent) {
7368 		quota = RUNTIME_INF;
7369 	} else {
7370 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7371 
7372 		quota = normalize_cfs_quota(tg, d);
7373 		parent_quota = parent_b->hierarchal_quota;
7374 
7375 		/*
7376 		 * ensure max(child_quota) <= parent_quota, inherit when no
7377 		 * limit is set
7378 		 */
7379 		if (quota == RUNTIME_INF)
7380 			quota = parent_quota;
7381 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7382 			return -EINVAL;
7383 	}
7384 	cfs_b->hierarchal_quota = quota;
7385 
7386 	return 0;
7387 }
7388 
7389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7390 {
7391 	int ret;
7392 	struct cfs_schedulable_data data = {
7393 		.tg = tg,
7394 		.period = period,
7395 		.quota = quota,
7396 	};
7397 
7398 	if (quota != RUNTIME_INF) {
7399 		do_div(data.period, NSEC_PER_USEC);
7400 		do_div(data.quota, NSEC_PER_USEC);
7401 	}
7402 
7403 	rcu_read_lock();
7404 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7405 	rcu_read_unlock();
7406 
7407 	return ret;
7408 }
7409 
7410 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7411 		struct cgroup_map_cb *cb)
7412 {
7413 	struct task_group *tg = cgroup_tg(cgrp);
7414 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7415 
7416 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7417 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7418 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7419 
7420 	return 0;
7421 }
7422 #endif /* CONFIG_CFS_BANDWIDTH */
7423 #endif /* CONFIG_FAIR_GROUP_SCHED */
7424 
7425 #ifdef CONFIG_RT_GROUP_SCHED
7426 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7427 				s64 val)
7428 {
7429 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7430 }
7431 
7432 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7433 {
7434 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7435 }
7436 
7437 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7438 		u64 rt_period_us)
7439 {
7440 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7441 }
7442 
7443 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7444 {
7445 	return sched_group_rt_period(cgroup_tg(cgrp));
7446 }
7447 #endif /* CONFIG_RT_GROUP_SCHED */
7448 
7449 static struct cftype cpu_files[] = {
7450 #ifdef CONFIG_FAIR_GROUP_SCHED
7451 	{
7452 		.name = "shares",
7453 		.read_u64 = cpu_shares_read_u64,
7454 		.write_u64 = cpu_shares_write_u64,
7455 	},
7456 #endif
7457 #ifdef CONFIG_CFS_BANDWIDTH
7458 	{
7459 		.name = "cfs_quota_us",
7460 		.read_s64 = cpu_cfs_quota_read_s64,
7461 		.write_s64 = cpu_cfs_quota_write_s64,
7462 	},
7463 	{
7464 		.name = "cfs_period_us",
7465 		.read_u64 = cpu_cfs_period_read_u64,
7466 		.write_u64 = cpu_cfs_period_write_u64,
7467 	},
7468 	{
7469 		.name = "stat",
7470 		.read_map = cpu_stats_show,
7471 	},
7472 #endif
7473 #ifdef CONFIG_RT_GROUP_SCHED
7474 	{
7475 		.name = "rt_runtime_us",
7476 		.read_s64 = cpu_rt_runtime_read,
7477 		.write_s64 = cpu_rt_runtime_write,
7478 	},
7479 	{
7480 		.name = "rt_period_us",
7481 		.read_u64 = cpu_rt_period_read_uint,
7482 		.write_u64 = cpu_rt_period_write_uint,
7483 	},
7484 #endif
7485 	{ }	/* terminate */
7486 };
7487 
7488 struct cgroup_subsys cpu_cgroup_subsys = {
7489 	.name		= "cpu",
7490 	.css_alloc	= cpu_cgroup_css_alloc,
7491 	.css_free	= cpu_cgroup_css_free,
7492 	.css_online	= cpu_cgroup_css_online,
7493 	.css_offline	= cpu_cgroup_css_offline,
7494 	.can_attach	= cpu_cgroup_can_attach,
7495 	.attach		= cpu_cgroup_attach,
7496 	.exit		= cpu_cgroup_exit,
7497 	.subsys_id	= cpu_cgroup_subsys_id,
7498 	.base_cftypes	= cpu_files,
7499 	.early_init	= 1,
7500 };
7501 
7502 #endif	/* CONFIG_CGROUP_SCHED */
7503 
7504 void dump_cpu_task(int cpu)
7505 {
7506 	pr_info("Task dump for CPU %d:\n", cpu);
7507 	sched_show_task(cpu_curr(cpu));
7508 }
7509