xref: /openbmc/linux/kernel/sched/core.c (revision 79f08d9e)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  */
374 
375 static void hrtick_clear(struct rq *rq)
376 {
377 	if (hrtimer_active(&rq->hrtick_timer))
378 		hrtimer_cancel(&rq->hrtick_timer);
379 }
380 
381 /*
382  * High-resolution timer tick.
383  * Runs from hardirq context with interrupts disabled.
384  */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388 
389 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 
391 	raw_spin_lock(&rq->lock);
392 	update_rq_clock(rq);
393 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 	raw_spin_unlock(&rq->lock);
395 
396 	return HRTIMER_NORESTART;
397 }
398 
399 #ifdef CONFIG_SMP
400 
401 static int __hrtick_restart(struct rq *rq)
402 {
403 	struct hrtimer *timer = &rq->hrtick_timer;
404 	ktime_t time = hrtimer_get_softexpires(timer);
405 
406 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408 
409 /*
410  * called from hardirq (IPI) context
411  */
412 static void __hrtick_start(void *arg)
413 {
414 	struct rq *rq = arg;
415 
416 	raw_spin_lock(&rq->lock);
417 	__hrtick_restart(rq);
418 	rq->hrtick_csd_pending = 0;
419 	raw_spin_unlock(&rq->lock);
420 }
421 
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	struct hrtimer *timer = &rq->hrtick_timer;
430 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431 
432 	hrtimer_set_expires(timer, time);
433 
434 	if (rq == this_rq()) {
435 		__hrtick_restart(rq);
436 	} else if (!rq->hrtick_csd_pending) {
437 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 		rq->hrtick_csd_pending = 1;
439 	}
440 }
441 
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 	int cpu = (int)(long)hcpu;
446 
447 	switch (action) {
448 	case CPU_UP_CANCELED:
449 	case CPU_UP_CANCELED_FROZEN:
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 	case CPU_DEAD:
453 	case CPU_DEAD_FROZEN:
454 		hrtick_clear(cpu_rq(cpu));
455 		return NOTIFY_OK;
456 	}
457 
458 	return NOTIFY_DONE;
459 }
460 
461 static __init void init_hrtick(void)
462 {
463 	hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467  * Called to set the hrtick timer state.
468  *
469  * called with rq->lock held and irqs disabled
470  */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 			HRTIMER_MODE_REL_PINNED, 0);
475 }
476 
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 	rq->hrtick_csd_pending = 0;
486 
487 	rq->hrtick_csd.flags = 0;
488 	rq->hrtick_csd.func = __hrtick_start;
489 	rq->hrtick_csd.info = rq;
490 #endif
491 
492 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 	rq->hrtick_timer.function = hrtick;
494 }
495 #else	/* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499 
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif	/* CONFIG_SCHED_HRTICK */
508 
509 /*
510  * resched_task - mark a task 'to be rescheduled now'.
511  *
512  * On UP this means the setting of the need_resched flag, on SMP it
513  * might also involve a cross-CPU call to trigger the scheduler on
514  * the target CPU.
515  */
516 void resched_task(struct task_struct *p)
517 {
518 	int cpu;
519 
520 	lockdep_assert_held(&task_rq(p)->lock);
521 
522 	if (test_tsk_need_resched(p))
523 		return;
524 
525 	set_tsk_need_resched(p);
526 
527 	cpu = task_cpu(p);
528 	if (cpu == smp_processor_id()) {
529 		set_preempt_need_resched();
530 		return;
531 	}
532 
533 	/* NEED_RESCHED must be visible before we test polling */
534 	smp_mb();
535 	if (!tsk_is_polling(p))
536 		smp_send_reschedule(cpu);
537 }
538 
539 void resched_cpu(int cpu)
540 {
541 	struct rq *rq = cpu_rq(cpu);
542 	unsigned long flags;
543 
544 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545 		return;
546 	resched_task(cpu_curr(cpu));
547 	raw_spin_unlock_irqrestore(&rq->lock, flags);
548 }
549 
550 #ifdef CONFIG_SMP
551 #ifdef CONFIG_NO_HZ_COMMON
552 /*
553  * In the semi idle case, use the nearest busy cpu for migrating timers
554  * from an idle cpu.  This is good for power-savings.
555  *
556  * We don't do similar optimization for completely idle system, as
557  * selecting an idle cpu will add more delays to the timers than intended
558  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559  */
560 int get_nohz_timer_target(void)
561 {
562 	int cpu = smp_processor_id();
563 	int i;
564 	struct sched_domain *sd;
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu(i, sched_domain_span(sd)) {
569 			if (!idle_cpu(i)) {
570 				cpu = i;
571 				goto unlock;
572 			}
573 		}
574 	}
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 /*
580  * When add_timer_on() enqueues a timer into the timer wheel of an
581  * idle CPU then this timer might expire before the next timer event
582  * which is scheduled to wake up that CPU. In case of a completely
583  * idle system the next event might even be infinite time into the
584  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585  * leaves the inner idle loop so the newly added timer is taken into
586  * account when the CPU goes back to idle and evaluates the timer
587  * wheel for the next timer event.
588  */
589 static void wake_up_idle_cpu(int cpu)
590 {
591 	struct rq *rq = cpu_rq(cpu);
592 
593 	if (cpu == smp_processor_id())
594 		return;
595 
596 	/*
597 	 * This is safe, as this function is called with the timer
598 	 * wheel base lock of (cpu) held. When the CPU is on the way
599 	 * to idle and has not yet set rq->curr to idle then it will
600 	 * be serialized on the timer wheel base lock and take the new
601 	 * timer into account automatically.
602 	 */
603 	if (rq->curr != rq->idle)
604 		return;
605 
606 	/*
607 	 * We can set TIF_RESCHED on the idle task of the other CPU
608 	 * lockless. The worst case is that the other CPU runs the
609 	 * idle task through an additional NOOP schedule()
610 	 */
611 	set_tsk_need_resched(rq->idle);
612 
613 	/* NEED_RESCHED must be visible before we test polling */
614 	smp_mb();
615 	if (!tsk_is_polling(rq->idle))
616 		smp_send_reschedule(cpu);
617 }
618 
619 static bool wake_up_full_nohz_cpu(int cpu)
620 {
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			smp_send_reschedule(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 void wake_up_nohz_cpu(int cpu)
632 {
633 	if (!wake_up_full_nohz_cpu(cpu))
634 		wake_up_idle_cpu(cpu);
635 }
636 
637 static inline bool got_nohz_idle_kick(void)
638 {
639 	int cpu = smp_processor_id();
640 
641 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 		return false;
643 
644 	if (idle_cpu(cpu) && !need_resched())
645 		return true;
646 
647 	/*
648 	 * We can't run Idle Load Balance on this CPU for this time so we
649 	 * cancel it and clear NOHZ_BALANCE_KICK
650 	 */
651 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 	return false;
653 }
654 
655 #else /* CONFIG_NO_HZ_COMMON */
656 
657 static inline bool got_nohz_idle_kick(void)
658 {
659 	return false;
660 }
661 
662 #endif /* CONFIG_NO_HZ_COMMON */
663 
664 #ifdef CONFIG_NO_HZ_FULL
665 bool sched_can_stop_tick(void)
666 {
667        struct rq *rq;
668 
669        rq = this_rq();
670 
671        /* Make sure rq->nr_running update is visible after the IPI */
672        smp_rmb();
673 
674        /* More than one running task need preemption */
675        if (rq->nr_running > 1)
676                return false;
677 
678        return true;
679 }
680 #endif /* CONFIG_NO_HZ_FULL */
681 
682 void sched_avg_update(struct rq *rq)
683 {
684 	s64 period = sched_avg_period();
685 
686 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 		/*
688 		 * Inline assembly required to prevent the compiler
689 		 * optimising this loop into a divmod call.
690 		 * See __iter_div_u64_rem() for another example of this.
691 		 */
692 		asm("" : "+rm" (rq->age_stamp));
693 		rq->age_stamp += period;
694 		rq->rt_avg /= 2;
695 	}
696 }
697 
698 #endif /* CONFIG_SMP */
699 
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703  * Iterate task_group tree rooted at *from, calling @down when first entering a
704  * node and @up when leaving it for the final time.
705  *
706  * Caller must hold rcu_lock or sufficient equivalent.
707  */
708 int walk_tg_tree_from(struct task_group *from,
709 			     tg_visitor down, tg_visitor up, void *data)
710 {
711 	struct task_group *parent, *child;
712 	int ret;
713 
714 	parent = from;
715 
716 down:
717 	ret = (*down)(parent, data);
718 	if (ret)
719 		goto out;
720 	list_for_each_entry_rcu(child, &parent->children, siblings) {
721 		parent = child;
722 		goto down;
723 
724 up:
725 		continue;
726 	}
727 	ret = (*up)(parent, data);
728 	if (ret || parent == from)
729 		goto out;
730 
731 	child = parent;
732 	parent = parent->parent;
733 	if (parent)
734 		goto up;
735 out:
736 	return ret;
737 }
738 
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 	return 0;
742 }
743 #endif
744 
745 static void set_load_weight(struct task_struct *p)
746 {
747 	int prio = p->static_prio - MAX_RT_PRIO;
748 	struct load_weight *load = &p->se.load;
749 
750 	/*
751 	 * SCHED_IDLE tasks get minimal weight:
752 	 */
753 	if (p->policy == SCHED_IDLE) {
754 		load->weight = scale_load(WEIGHT_IDLEPRIO);
755 		load->inv_weight = WMULT_IDLEPRIO;
756 		return;
757 	}
758 
759 	load->weight = scale_load(prio_to_weight[prio]);
760 	load->inv_weight = prio_to_wmult[prio];
761 }
762 
763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	update_rq_clock(rq);
766 	sched_info_queued(rq, p);
767 	p->sched_class->enqueue_task(rq, p, flags);
768 }
769 
770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 	update_rq_clock(rq);
773 	sched_info_dequeued(rq, p);
774 	p->sched_class->dequeue_task(rq, p, flags);
775 }
776 
777 void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 	if (task_contributes_to_load(p))
780 		rq->nr_uninterruptible--;
781 
782 	enqueue_task(rq, p, flags);
783 }
784 
785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 	if (task_contributes_to_load(p))
788 		rq->nr_uninterruptible++;
789 
790 	dequeue_task(rq, p, flags);
791 }
792 
793 static void update_rq_clock_task(struct rq *rq, s64 delta)
794 {
795 /*
796  * In theory, the compile should just see 0 here, and optimize out the call
797  * to sched_rt_avg_update. But I don't trust it...
798  */
799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 	s64 steal = 0, irq_delta = 0;
801 #endif
802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
803 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804 
805 	/*
806 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 	 * this case when a previous update_rq_clock() happened inside a
808 	 * {soft,}irq region.
809 	 *
810 	 * When this happens, we stop ->clock_task and only update the
811 	 * prev_irq_time stamp to account for the part that fit, so that a next
812 	 * update will consume the rest. This ensures ->clock_task is
813 	 * monotonic.
814 	 *
815 	 * It does however cause some slight miss-attribution of {soft,}irq
816 	 * time, a more accurate solution would be to update the irq_time using
817 	 * the current rq->clock timestamp, except that would require using
818 	 * atomic ops.
819 	 */
820 	if (irq_delta > delta)
821 		irq_delta = delta;
822 
823 	rq->prev_irq_time += irq_delta;
824 	delta -= irq_delta;
825 #endif
826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827 	if (static_key_false((&paravirt_steal_rq_enabled))) {
828 		u64 st;
829 
830 		steal = paravirt_steal_clock(cpu_of(rq));
831 		steal -= rq->prev_steal_time_rq;
832 
833 		if (unlikely(steal > delta))
834 			steal = delta;
835 
836 		st = steal_ticks(steal);
837 		steal = st * TICK_NSEC;
838 
839 		rq->prev_steal_time_rq += steal;
840 
841 		delta -= steal;
842 	}
843 #endif
844 
845 	rq->clock_task += delta;
846 
847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 		sched_rt_avg_update(rq, irq_delta + steal);
850 #endif
851 }
852 
853 void sched_set_stop_task(int cpu, struct task_struct *stop)
854 {
855 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857 
858 	if (stop) {
859 		/*
860 		 * Make it appear like a SCHED_FIFO task, its something
861 		 * userspace knows about and won't get confused about.
862 		 *
863 		 * Also, it will make PI more or less work without too
864 		 * much confusion -- but then, stop work should not
865 		 * rely on PI working anyway.
866 		 */
867 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868 
869 		stop->sched_class = &stop_sched_class;
870 	}
871 
872 	cpu_rq(cpu)->stop = stop;
873 
874 	if (old_stop) {
875 		/*
876 		 * Reset it back to a normal scheduling class so that
877 		 * it can die in pieces.
878 		 */
879 		old_stop->sched_class = &rt_sched_class;
880 	}
881 }
882 
883 /*
884  * __normal_prio - return the priority that is based on the static prio
885  */
886 static inline int __normal_prio(struct task_struct *p)
887 {
888 	return p->static_prio;
889 }
890 
891 /*
892  * Calculate the expected normal priority: i.e. priority
893  * without taking RT-inheritance into account. Might be
894  * boosted by interactivity modifiers. Changes upon fork,
895  * setprio syscalls, and whenever the interactivity
896  * estimator recalculates.
897  */
898 static inline int normal_prio(struct task_struct *p)
899 {
900 	int prio;
901 
902 	if (task_has_rt_policy(p))
903 		prio = MAX_RT_PRIO-1 - p->rt_priority;
904 	else
905 		prio = __normal_prio(p);
906 	return prio;
907 }
908 
909 /*
910  * Calculate the current priority, i.e. the priority
911  * taken into account by the scheduler. This value might
912  * be boosted by RT tasks, or might be boosted by
913  * interactivity modifiers. Will be RT if the task got
914  * RT-boosted. If not then it returns p->normal_prio.
915  */
916 static int effective_prio(struct task_struct *p)
917 {
918 	p->normal_prio = normal_prio(p);
919 	/*
920 	 * If we are RT tasks or we were boosted to RT priority,
921 	 * keep the priority unchanged. Otherwise, update priority
922 	 * to the normal priority:
923 	 */
924 	if (!rt_prio(p->prio))
925 		return p->normal_prio;
926 	return p->prio;
927 }
928 
929 /**
930  * task_curr - is this task currently executing on a CPU?
931  * @p: the task in question.
932  *
933  * Return: 1 if the task is currently executing. 0 otherwise.
934  */
935 inline int task_curr(const struct task_struct *p)
936 {
937 	return cpu_curr(task_cpu(p)) == p;
938 }
939 
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 				       const struct sched_class *prev_class,
942 				       int oldprio)
943 {
944 	if (prev_class != p->sched_class) {
945 		if (prev_class->switched_from)
946 			prev_class->switched_from(rq, p);
947 		p->sched_class->switched_to(rq, p);
948 	} else if (oldprio != p->prio)
949 		p->sched_class->prio_changed(rq, p, oldprio);
950 }
951 
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 	const struct sched_class *class;
955 
956 	if (p->sched_class == rq->curr->sched_class) {
957 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 	} else {
959 		for_each_class(class) {
960 			if (class == rq->curr->sched_class)
961 				break;
962 			if (class == p->sched_class) {
963 				resched_task(rq->curr);
964 				break;
965 			}
966 		}
967 	}
968 
969 	/*
970 	 * A queue event has occurred, and we're going to schedule.  In
971 	 * this case, we can save a useless back to back clock update.
972 	 */
973 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 		rq->skip_clock_update = 1;
975 }
976 
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 	/*
982 	 * We should never call set_task_cpu() on a blocked task,
983 	 * ttwu() will sort out the placement.
984 	 */
985 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 
988 #ifdef CONFIG_LOCKDEP
989 	/*
990 	 * The caller should hold either p->pi_lock or rq->lock, when changing
991 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 	 *
993 	 * sched_move_task() holds both and thus holding either pins the cgroup,
994 	 * see task_group().
995 	 *
996 	 * Furthermore, all task_rq users should acquire both locks, see
997 	 * task_rq_lock().
998 	 */
999 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 				      lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003 
1004 	trace_sched_migrate_task(p, new_cpu);
1005 
1006 	if (task_cpu(p) != new_cpu) {
1007 		if (p->sched_class->migrate_task_rq)
1008 			p->sched_class->migrate_task_rq(p, new_cpu);
1009 		p->se.nr_migrations++;
1010 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 	}
1012 
1013 	__set_task_cpu(p, new_cpu);
1014 }
1015 
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 	if (p->on_rq) {
1019 		struct rq *src_rq, *dst_rq;
1020 
1021 		src_rq = task_rq(p);
1022 		dst_rq = cpu_rq(cpu);
1023 
1024 		deactivate_task(src_rq, p, 0);
1025 		set_task_cpu(p, cpu);
1026 		activate_task(dst_rq, p, 0);
1027 		check_preempt_curr(dst_rq, p, 0);
1028 	} else {
1029 		/*
1030 		 * Task isn't running anymore; make it appear like we migrated
1031 		 * it before it went to sleep. This means on wakeup we make the
1032 		 * previous cpu our targer instead of where it really is.
1033 		 */
1034 		p->wake_cpu = cpu;
1035 	}
1036 }
1037 
1038 struct migration_swap_arg {
1039 	struct task_struct *src_task, *dst_task;
1040 	int src_cpu, dst_cpu;
1041 };
1042 
1043 static int migrate_swap_stop(void *data)
1044 {
1045 	struct migration_swap_arg *arg = data;
1046 	struct rq *src_rq, *dst_rq;
1047 	int ret = -EAGAIN;
1048 
1049 	src_rq = cpu_rq(arg->src_cpu);
1050 	dst_rq = cpu_rq(arg->dst_cpu);
1051 
1052 	double_raw_lock(&arg->src_task->pi_lock,
1053 			&arg->dst_task->pi_lock);
1054 	double_rq_lock(src_rq, dst_rq);
1055 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 		goto unlock;
1057 
1058 	if (task_cpu(arg->src_task) != arg->src_cpu)
1059 		goto unlock;
1060 
1061 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 		goto unlock;
1063 
1064 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 		goto unlock;
1066 
1067 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069 
1070 	ret = 0;
1071 
1072 unlock:
1073 	double_rq_unlock(src_rq, dst_rq);
1074 	raw_spin_unlock(&arg->dst_task->pi_lock);
1075 	raw_spin_unlock(&arg->src_task->pi_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Cross migrate two tasks
1082  */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 	struct migration_swap_arg arg;
1086 	int ret = -EINVAL;
1087 
1088 	arg = (struct migration_swap_arg){
1089 		.src_task = cur,
1090 		.src_cpu = task_cpu(cur),
1091 		.dst_task = p,
1092 		.dst_cpu = task_cpu(p),
1093 	};
1094 
1095 	if (arg.src_cpu == arg.dst_cpu)
1096 		goto out;
1097 
1098 	/*
1099 	 * These three tests are all lockless; this is OK since all of them
1100 	 * will be re-checked with proper locks held further down the line.
1101 	 */
1102 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 		goto out;
1104 
1105 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 		goto out;
1107 
1108 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 		goto out;
1110 
1111 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112 
1113 out:
1114 	return ret;
1115 }
1116 
1117 struct migration_arg {
1118 	struct task_struct *task;
1119 	int dest_cpu;
1120 };
1121 
1122 static int migration_cpu_stop(void *data);
1123 
1124 /*
1125  * wait_task_inactive - wait for a thread to unschedule.
1126  *
1127  * If @match_state is nonzero, it's the @p->state value just checked and
1128  * not expected to change.  If it changes, i.e. @p might have woken up,
1129  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1130  * we return a positive number (its total switch count).  If a second call
1131  * a short while later returns the same number, the caller can be sure that
1132  * @p has remained unscheduled the whole time.
1133  *
1134  * The caller must ensure that the task *will* unschedule sometime soon,
1135  * else this function might spin for a *long* time. This function can't
1136  * be called with interrupts off, or it may introduce deadlock with
1137  * smp_call_function() if an IPI is sent by the same process we are
1138  * waiting to become inactive.
1139  */
1140 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1141 {
1142 	unsigned long flags;
1143 	int running, on_rq;
1144 	unsigned long ncsw;
1145 	struct rq *rq;
1146 
1147 	for (;;) {
1148 		/*
1149 		 * We do the initial early heuristics without holding
1150 		 * any task-queue locks at all. We'll only try to get
1151 		 * the runqueue lock when things look like they will
1152 		 * work out!
1153 		 */
1154 		rq = task_rq(p);
1155 
1156 		/*
1157 		 * If the task is actively running on another CPU
1158 		 * still, just relax and busy-wait without holding
1159 		 * any locks.
1160 		 *
1161 		 * NOTE! Since we don't hold any locks, it's not
1162 		 * even sure that "rq" stays as the right runqueue!
1163 		 * But we don't care, since "task_running()" will
1164 		 * return false if the runqueue has changed and p
1165 		 * is actually now running somewhere else!
1166 		 */
1167 		while (task_running(rq, p)) {
1168 			if (match_state && unlikely(p->state != match_state))
1169 				return 0;
1170 			cpu_relax();
1171 		}
1172 
1173 		/*
1174 		 * Ok, time to look more closely! We need the rq
1175 		 * lock now, to be *sure*. If we're wrong, we'll
1176 		 * just go back and repeat.
1177 		 */
1178 		rq = task_rq_lock(p, &flags);
1179 		trace_sched_wait_task(p);
1180 		running = task_running(rq, p);
1181 		on_rq = p->on_rq;
1182 		ncsw = 0;
1183 		if (!match_state || p->state == match_state)
1184 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1185 		task_rq_unlock(rq, p, &flags);
1186 
1187 		/*
1188 		 * If it changed from the expected state, bail out now.
1189 		 */
1190 		if (unlikely(!ncsw))
1191 			break;
1192 
1193 		/*
1194 		 * Was it really running after all now that we
1195 		 * checked with the proper locks actually held?
1196 		 *
1197 		 * Oops. Go back and try again..
1198 		 */
1199 		if (unlikely(running)) {
1200 			cpu_relax();
1201 			continue;
1202 		}
1203 
1204 		/*
1205 		 * It's not enough that it's not actively running,
1206 		 * it must be off the runqueue _entirely_, and not
1207 		 * preempted!
1208 		 *
1209 		 * So if it was still runnable (but just not actively
1210 		 * running right now), it's preempted, and we should
1211 		 * yield - it could be a while.
1212 		 */
1213 		if (unlikely(on_rq)) {
1214 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215 
1216 			set_current_state(TASK_UNINTERRUPTIBLE);
1217 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1218 			continue;
1219 		}
1220 
1221 		/*
1222 		 * Ahh, all good. It wasn't running, and it wasn't
1223 		 * runnable, which means that it will never become
1224 		 * running in the future either. We're all done!
1225 		 */
1226 		break;
1227 	}
1228 
1229 	return ncsw;
1230 }
1231 
1232 /***
1233  * kick_process - kick a running thread to enter/exit the kernel
1234  * @p: the to-be-kicked thread
1235  *
1236  * Cause a process which is running on another CPU to enter
1237  * kernel-mode, without any delay. (to get signals handled.)
1238  *
1239  * NOTE: this function doesn't have to take the runqueue lock,
1240  * because all it wants to ensure is that the remote task enters
1241  * the kernel. If the IPI races and the task has been migrated
1242  * to another CPU then no harm is done and the purpose has been
1243  * achieved as well.
1244  */
1245 void kick_process(struct task_struct *p)
1246 {
1247 	int cpu;
1248 
1249 	preempt_disable();
1250 	cpu = task_cpu(p);
1251 	if ((cpu != smp_processor_id()) && task_curr(p))
1252 		smp_send_reschedule(cpu);
1253 	preempt_enable();
1254 }
1255 EXPORT_SYMBOL_GPL(kick_process);
1256 #endif /* CONFIG_SMP */
1257 
1258 #ifdef CONFIG_SMP
1259 /*
1260  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1261  */
1262 static int select_fallback_rq(int cpu, struct task_struct *p)
1263 {
1264 	int nid = cpu_to_node(cpu);
1265 	const struct cpumask *nodemask = NULL;
1266 	enum { cpuset, possible, fail } state = cpuset;
1267 	int dest_cpu;
1268 
1269 	/*
1270 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 	 * will return -1. There is no cpu on the node, and we should
1272 	 * select the cpu on the other node.
1273 	 */
1274 	if (nid != -1) {
1275 		nodemask = cpumask_of_node(nid);
1276 
1277 		/* Look for allowed, online CPU in same node. */
1278 		for_each_cpu(dest_cpu, nodemask) {
1279 			if (!cpu_online(dest_cpu))
1280 				continue;
1281 			if (!cpu_active(dest_cpu))
1282 				continue;
1283 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 				return dest_cpu;
1285 		}
1286 	}
1287 
1288 	for (;;) {
1289 		/* Any allowed, online CPU? */
1290 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1291 			if (!cpu_online(dest_cpu))
1292 				continue;
1293 			if (!cpu_active(dest_cpu))
1294 				continue;
1295 			goto out;
1296 		}
1297 
1298 		switch (state) {
1299 		case cpuset:
1300 			/* No more Mr. Nice Guy. */
1301 			cpuset_cpus_allowed_fallback(p);
1302 			state = possible;
1303 			break;
1304 
1305 		case possible:
1306 			do_set_cpus_allowed(p, cpu_possible_mask);
1307 			state = fail;
1308 			break;
1309 
1310 		case fail:
1311 			BUG();
1312 			break;
1313 		}
1314 	}
1315 
1316 out:
1317 	if (state != cpuset) {
1318 		/*
1319 		 * Don't tell them about moving exiting tasks or
1320 		 * kernel threads (both mm NULL), since they never
1321 		 * leave kernel.
1322 		 */
1323 		if (p->mm && printk_ratelimit()) {
1324 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 					task_pid_nr(p), p->comm, cpu);
1326 		}
1327 	}
1328 
1329 	return dest_cpu;
1330 }
1331 
1332 /*
1333  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334  */
1335 static inline
1336 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1337 {
1338 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339 
1340 	/*
1341 	 * In order not to call set_task_cpu() on a blocking task we need
1342 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 	 * cpu.
1344 	 *
1345 	 * Since this is common to all placement strategies, this lives here.
1346 	 *
1347 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 	 *   not worry about this generic constraint ]
1349 	 */
1350 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1351 		     !cpu_online(cpu)))
1352 		cpu = select_fallback_rq(task_cpu(p), p);
1353 
1354 	return cpu;
1355 }
1356 
1357 static void update_avg(u64 *avg, u64 sample)
1358 {
1359 	s64 diff = sample - *avg;
1360 	*avg += diff >> 3;
1361 }
1362 #endif
1363 
1364 static void
1365 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1366 {
1367 #ifdef CONFIG_SCHEDSTATS
1368 	struct rq *rq = this_rq();
1369 
1370 #ifdef CONFIG_SMP
1371 	int this_cpu = smp_processor_id();
1372 
1373 	if (cpu == this_cpu) {
1374 		schedstat_inc(rq, ttwu_local);
1375 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 	} else {
1377 		struct sched_domain *sd;
1378 
1379 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1380 		rcu_read_lock();
1381 		for_each_domain(this_cpu, sd) {
1382 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 				schedstat_inc(sd, ttwu_wake_remote);
1384 				break;
1385 			}
1386 		}
1387 		rcu_read_unlock();
1388 	}
1389 
1390 	if (wake_flags & WF_MIGRATED)
1391 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392 
1393 #endif /* CONFIG_SMP */
1394 
1395 	schedstat_inc(rq, ttwu_count);
1396 	schedstat_inc(p, se.statistics.nr_wakeups);
1397 
1398 	if (wake_flags & WF_SYNC)
1399 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1400 
1401 #endif /* CONFIG_SCHEDSTATS */
1402 }
1403 
1404 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405 {
1406 	activate_task(rq, p, en_flags);
1407 	p->on_rq = 1;
1408 
1409 	/* if a worker is waking up, notify workqueue */
1410 	if (p->flags & PF_WQ_WORKER)
1411 		wq_worker_waking_up(p, cpu_of(rq));
1412 }
1413 
1414 /*
1415  * Mark the task runnable and perform wakeup-preemption.
1416  */
1417 static void
1418 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1419 {
1420 	check_preempt_curr(rq, p, wake_flags);
1421 	trace_sched_wakeup(p, true);
1422 
1423 	p->state = TASK_RUNNING;
1424 #ifdef CONFIG_SMP
1425 	if (p->sched_class->task_woken)
1426 		p->sched_class->task_woken(rq, p);
1427 
1428 	if (rq->idle_stamp) {
1429 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1430 		u64 max = 2*rq->max_idle_balance_cost;
1431 
1432 		update_avg(&rq->avg_idle, delta);
1433 
1434 		if (rq->avg_idle > max)
1435 			rq->avg_idle = max;
1436 
1437 		rq->idle_stamp = 0;
1438 	}
1439 #endif
1440 }
1441 
1442 static void
1443 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444 {
1445 #ifdef CONFIG_SMP
1446 	if (p->sched_contributes_to_load)
1447 		rq->nr_uninterruptible--;
1448 #endif
1449 
1450 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 	ttwu_do_wakeup(rq, p, wake_flags);
1452 }
1453 
1454 /*
1455  * Called in case the task @p isn't fully descheduled from its runqueue,
1456  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457  * since all we need to do is flip p->state to TASK_RUNNING, since
1458  * the task is still ->on_rq.
1459  */
1460 static int ttwu_remote(struct task_struct *p, int wake_flags)
1461 {
1462 	struct rq *rq;
1463 	int ret = 0;
1464 
1465 	rq = __task_rq_lock(p);
1466 	if (p->on_rq) {
1467 		/* check_preempt_curr() may use rq clock */
1468 		update_rq_clock(rq);
1469 		ttwu_do_wakeup(rq, p, wake_flags);
1470 		ret = 1;
1471 	}
1472 	__task_rq_unlock(rq);
1473 
1474 	return ret;
1475 }
1476 
1477 #ifdef CONFIG_SMP
1478 static void sched_ttwu_pending(void)
1479 {
1480 	struct rq *rq = this_rq();
1481 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 	struct task_struct *p;
1483 
1484 	raw_spin_lock(&rq->lock);
1485 
1486 	while (llist) {
1487 		p = llist_entry(llist, struct task_struct, wake_entry);
1488 		llist = llist_next(llist);
1489 		ttwu_do_activate(rq, p, 0);
1490 	}
1491 
1492 	raw_spin_unlock(&rq->lock);
1493 }
1494 
1495 void scheduler_ipi(void)
1496 {
1497 	/*
1498 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 	 * this IPI.
1501 	 */
1502 	if (tif_need_resched())
1503 		set_preempt_need_resched();
1504 
1505 	if (llist_empty(&this_rq()->wake_list)
1506 			&& !tick_nohz_full_cpu(smp_processor_id())
1507 			&& !got_nohz_idle_kick())
1508 		return;
1509 
1510 	/*
1511 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 	 * traditionally all their work was done from the interrupt return
1513 	 * path. Now that we actually do some work, we need to make sure
1514 	 * we do call them.
1515 	 *
1516 	 * Some archs already do call them, luckily irq_enter/exit nest
1517 	 * properly.
1518 	 *
1519 	 * Arguably we should visit all archs and update all handlers,
1520 	 * however a fair share of IPIs are still resched only so this would
1521 	 * somewhat pessimize the simple resched case.
1522 	 */
1523 	irq_enter();
1524 	tick_nohz_full_check();
1525 	sched_ttwu_pending();
1526 
1527 	/*
1528 	 * Check if someone kicked us for doing the nohz idle load balance.
1529 	 */
1530 	if (unlikely(got_nohz_idle_kick())) {
1531 		this_rq()->idle_balance = 1;
1532 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 	}
1534 	irq_exit();
1535 }
1536 
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 		smp_send_reschedule(cpu);
1541 }
1542 
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548 
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 	struct rq *rq = cpu_rq(cpu);
1552 
1553 #if defined(CONFIG_SMP)
1554 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 		ttwu_queue_remote(p, cpu);
1557 		return;
1558 	}
1559 #endif
1560 
1561 	raw_spin_lock(&rq->lock);
1562 	ttwu_do_activate(rq, p, 0);
1563 	raw_spin_unlock(&rq->lock);
1564 }
1565 
1566 /**
1567  * try_to_wake_up - wake up a thread
1568  * @p: the thread to be awakened
1569  * @state: the mask of task states that can be woken
1570  * @wake_flags: wake modifier flags (WF_*)
1571  *
1572  * Put it on the run-queue if it's not already there. The "current"
1573  * thread is always on the run-queue (except when the actual
1574  * re-schedule is in progress), and as such you're allowed to do
1575  * the simpler "current->state = TASK_RUNNING" to mark yourself
1576  * runnable without the overhead of this.
1577  *
1578  * Return: %true if @p was woken up, %false if it was already running.
1579  * or @state didn't match @p's state.
1580  */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 	unsigned long flags;
1585 	int cpu, success = 0;
1586 
1587 	/*
1588 	 * If we are going to wake up a thread waiting for CONDITION we
1589 	 * need to ensure that CONDITION=1 done by the caller can not be
1590 	 * reordered with p->state check below. This pairs with mb() in
1591 	 * set_current_state() the waiting thread does.
1592 	 */
1593 	smp_mb__before_spinlock();
1594 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 	if (!(p->state & state))
1596 		goto out;
1597 
1598 	success = 1; /* we're going to change ->state */
1599 	cpu = task_cpu(p);
1600 
1601 	if (p->on_rq && ttwu_remote(p, wake_flags))
1602 		goto stat;
1603 
1604 #ifdef CONFIG_SMP
1605 	/*
1606 	 * If the owning (remote) cpu is still in the middle of schedule() with
1607 	 * this task as prev, wait until its done referencing the task.
1608 	 */
1609 	while (p->on_cpu)
1610 		cpu_relax();
1611 	/*
1612 	 * Pairs with the smp_wmb() in finish_lock_switch().
1613 	 */
1614 	smp_rmb();
1615 
1616 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 	p->state = TASK_WAKING;
1618 
1619 	if (p->sched_class->task_waking)
1620 		p->sched_class->task_waking(p);
1621 
1622 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 	if (task_cpu(p) != cpu) {
1624 		wake_flags |= WF_MIGRATED;
1625 		set_task_cpu(p, cpu);
1626 	}
1627 #endif /* CONFIG_SMP */
1628 
1629 	ttwu_queue(p, cpu);
1630 stat:
1631 	ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634 
1635 	return success;
1636 }
1637 
1638 /**
1639  * try_to_wake_up_local - try to wake up a local task with rq lock held
1640  * @p: the thread to be awakened
1641  *
1642  * Put @p on the run-queue if it's not already there. The caller must
1643  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644  * the current task.
1645  */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 	struct rq *rq = task_rq(p);
1649 
1650 	if (WARN_ON_ONCE(rq != this_rq()) ||
1651 	    WARN_ON_ONCE(p == current))
1652 		return;
1653 
1654 	lockdep_assert_held(&rq->lock);
1655 
1656 	if (!raw_spin_trylock(&p->pi_lock)) {
1657 		raw_spin_unlock(&rq->lock);
1658 		raw_spin_lock(&p->pi_lock);
1659 		raw_spin_lock(&rq->lock);
1660 	}
1661 
1662 	if (!(p->state & TASK_NORMAL))
1663 		goto out;
1664 
1665 	if (!p->on_rq)
1666 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667 
1668 	ttwu_do_wakeup(rq, p, 0);
1669 	ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 	raw_spin_unlock(&p->pi_lock);
1672 }
1673 
1674 /**
1675  * wake_up_process - Wake up a specific process
1676  * @p: The process to be woken up.
1677  *
1678  * Attempt to wake up the nominated process and move it to the set of runnable
1679  * processes.
1680  *
1681  * Return: 1 if the process was woken up, 0 if it was already running.
1682  *
1683  * It may be assumed that this function implies a write memory barrier before
1684  * changing the task state if and only if any tasks are woken up.
1685  */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 	WARN_ON(task_is_stopped_or_traced(p));
1689 	return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	INIT_LIST_HEAD(&p->rt.run_list);
1721 
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 
1726 #ifdef CONFIG_NUMA_BALANCING
1727 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1728 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1729 		p->mm->numa_scan_seq = 0;
1730 	}
1731 
1732 	if (clone_flags & CLONE_VM)
1733 		p->numa_preferred_nid = current->numa_preferred_nid;
1734 	else
1735 		p->numa_preferred_nid = -1;
1736 
1737 	p->node_stamp = 0ULL;
1738 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1739 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1740 	p->numa_work.next = &p->numa_work;
1741 	p->numa_faults = NULL;
1742 	p->numa_faults_buffer = NULL;
1743 
1744 	INIT_LIST_HEAD(&p->numa_entry);
1745 	p->numa_group = NULL;
1746 #endif /* CONFIG_NUMA_BALANCING */
1747 }
1748 
1749 #ifdef CONFIG_NUMA_BALANCING
1750 #ifdef CONFIG_SCHED_DEBUG
1751 void set_numabalancing_state(bool enabled)
1752 {
1753 	if (enabled)
1754 		sched_feat_set("NUMA");
1755 	else
1756 		sched_feat_set("NO_NUMA");
1757 }
1758 #else
1759 __read_mostly bool numabalancing_enabled;
1760 
1761 void set_numabalancing_state(bool enabled)
1762 {
1763 	numabalancing_enabled = enabled;
1764 }
1765 #endif /* CONFIG_SCHED_DEBUG */
1766 #endif /* CONFIG_NUMA_BALANCING */
1767 
1768 /*
1769  * fork()/clone()-time setup:
1770  */
1771 void sched_fork(unsigned long clone_flags, struct task_struct *p)
1772 {
1773 	unsigned long flags;
1774 	int cpu = get_cpu();
1775 
1776 	__sched_fork(clone_flags, p);
1777 	/*
1778 	 * We mark the process as running here. This guarantees that
1779 	 * nobody will actually run it, and a signal or other external
1780 	 * event cannot wake it up and insert it on the runqueue either.
1781 	 */
1782 	p->state = TASK_RUNNING;
1783 
1784 	/*
1785 	 * Make sure we do not leak PI boosting priority to the child.
1786 	 */
1787 	p->prio = current->normal_prio;
1788 
1789 	/*
1790 	 * Revert to default priority/policy on fork if requested.
1791 	 */
1792 	if (unlikely(p->sched_reset_on_fork)) {
1793 		if (task_has_rt_policy(p)) {
1794 			p->policy = SCHED_NORMAL;
1795 			p->static_prio = NICE_TO_PRIO(0);
1796 			p->rt_priority = 0;
1797 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1798 			p->static_prio = NICE_TO_PRIO(0);
1799 
1800 		p->prio = p->normal_prio = __normal_prio(p);
1801 		set_load_weight(p);
1802 
1803 		/*
1804 		 * We don't need the reset flag anymore after the fork. It has
1805 		 * fulfilled its duty:
1806 		 */
1807 		p->sched_reset_on_fork = 0;
1808 	}
1809 
1810 	if (!rt_prio(p->prio))
1811 		p->sched_class = &fair_sched_class;
1812 
1813 	if (p->sched_class->task_fork)
1814 		p->sched_class->task_fork(p);
1815 
1816 	/*
1817 	 * The child is not yet in the pid-hash so no cgroup attach races,
1818 	 * and the cgroup is pinned to this child due to cgroup_fork()
1819 	 * is ran before sched_fork().
1820 	 *
1821 	 * Silence PROVE_RCU.
1822 	 */
1823 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1824 	set_task_cpu(p, cpu);
1825 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1826 
1827 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1828 	if (likely(sched_info_on()))
1829 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1830 #endif
1831 #if defined(CONFIG_SMP)
1832 	p->on_cpu = 0;
1833 #endif
1834 	init_task_preempt_count(p);
1835 #ifdef CONFIG_SMP
1836 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1837 #endif
1838 
1839 	put_cpu();
1840 }
1841 
1842 /*
1843  * wake_up_new_task - wake up a newly created task for the first time.
1844  *
1845  * This function will do some initial scheduler statistics housekeeping
1846  * that must be done for every newly created context, then puts the task
1847  * on the runqueue and wakes it.
1848  */
1849 void wake_up_new_task(struct task_struct *p)
1850 {
1851 	unsigned long flags;
1852 	struct rq *rq;
1853 
1854 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1855 #ifdef CONFIG_SMP
1856 	/*
1857 	 * Fork balancing, do it here and not earlier because:
1858 	 *  - cpus_allowed can change in the fork path
1859 	 *  - any previously selected cpu might disappear through hotplug
1860 	 */
1861 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1862 #endif
1863 
1864 	/* Initialize new task's runnable average */
1865 	init_task_runnable_average(p);
1866 	rq = __task_rq_lock(p);
1867 	activate_task(rq, p, 0);
1868 	p->on_rq = 1;
1869 	trace_sched_wakeup_new(p, true);
1870 	check_preempt_curr(rq, p, WF_FORK);
1871 #ifdef CONFIG_SMP
1872 	if (p->sched_class->task_woken)
1873 		p->sched_class->task_woken(rq, p);
1874 #endif
1875 	task_rq_unlock(rq, p, &flags);
1876 }
1877 
1878 #ifdef CONFIG_PREEMPT_NOTIFIERS
1879 
1880 /**
1881  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1882  * @notifier: notifier struct to register
1883  */
1884 void preempt_notifier_register(struct preempt_notifier *notifier)
1885 {
1886 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887 }
1888 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889 
1890 /**
1891  * preempt_notifier_unregister - no longer interested in preemption notifications
1892  * @notifier: notifier struct to unregister
1893  *
1894  * This is safe to call from within a preemption notifier.
1895  */
1896 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897 {
1898 	hlist_del(&notifier->link);
1899 }
1900 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901 
1902 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903 {
1904 	struct preempt_notifier *notifier;
1905 
1906 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1907 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908 }
1909 
1910 static void
1911 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912 				 struct task_struct *next)
1913 {
1914 	struct preempt_notifier *notifier;
1915 
1916 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1917 		notifier->ops->sched_out(notifier, next);
1918 }
1919 
1920 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1921 
1922 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923 {
1924 }
1925 
1926 static void
1927 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 				 struct task_struct *next)
1929 {
1930 }
1931 
1932 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1933 
1934 /**
1935  * prepare_task_switch - prepare to switch tasks
1936  * @rq: the runqueue preparing to switch
1937  * @prev: the current task that is being switched out
1938  * @next: the task we are going to switch to.
1939  *
1940  * This is called with the rq lock held and interrupts off. It must
1941  * be paired with a subsequent finish_task_switch after the context
1942  * switch.
1943  *
1944  * prepare_task_switch sets up locking and calls architecture specific
1945  * hooks.
1946  */
1947 static inline void
1948 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949 		    struct task_struct *next)
1950 {
1951 	trace_sched_switch(prev, next);
1952 	sched_info_switch(rq, prev, next);
1953 	perf_event_task_sched_out(prev, next);
1954 	fire_sched_out_preempt_notifiers(prev, next);
1955 	prepare_lock_switch(rq, next);
1956 	prepare_arch_switch(next);
1957 }
1958 
1959 /**
1960  * finish_task_switch - clean up after a task-switch
1961  * @rq: runqueue associated with task-switch
1962  * @prev: the thread we just switched away from.
1963  *
1964  * finish_task_switch must be called after the context switch, paired
1965  * with a prepare_task_switch call before the context switch.
1966  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967  * and do any other architecture-specific cleanup actions.
1968  *
1969  * Note that we may have delayed dropping an mm in context_switch(). If
1970  * so, we finish that here outside of the runqueue lock. (Doing it
1971  * with the lock held can cause deadlocks; see schedule() for
1972  * details.)
1973  */
1974 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1975 	__releases(rq->lock)
1976 {
1977 	struct mm_struct *mm = rq->prev_mm;
1978 	long prev_state;
1979 
1980 	rq->prev_mm = NULL;
1981 
1982 	/*
1983 	 * A task struct has one reference for the use as "current".
1984 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1985 	 * schedule one last time. The schedule call will never return, and
1986 	 * the scheduled task must drop that reference.
1987 	 * The test for TASK_DEAD must occur while the runqueue locks are
1988 	 * still held, otherwise prev could be scheduled on another cpu, die
1989 	 * there before we look at prev->state, and then the reference would
1990 	 * be dropped twice.
1991 	 *		Manfred Spraul <manfred@colorfullife.com>
1992 	 */
1993 	prev_state = prev->state;
1994 	vtime_task_switch(prev);
1995 	finish_arch_switch(prev);
1996 	perf_event_task_sched_in(prev, current);
1997 	finish_lock_switch(rq, prev);
1998 	finish_arch_post_lock_switch();
1999 
2000 	fire_sched_in_preempt_notifiers(current);
2001 	if (mm)
2002 		mmdrop(mm);
2003 	if (unlikely(prev_state == TASK_DEAD)) {
2004 		task_numa_free(prev);
2005 
2006 		/*
2007 		 * Remove function-return probe instances associated with this
2008 		 * task and put them back on the free list.
2009 		 */
2010 		kprobe_flush_task(prev);
2011 		put_task_struct(prev);
2012 	}
2013 
2014 	tick_nohz_task_switch(current);
2015 }
2016 
2017 #ifdef CONFIG_SMP
2018 
2019 /* assumes rq->lock is held */
2020 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021 {
2022 	if (prev->sched_class->pre_schedule)
2023 		prev->sched_class->pre_schedule(rq, prev);
2024 }
2025 
2026 /* rq->lock is NOT held, but preemption is disabled */
2027 static inline void post_schedule(struct rq *rq)
2028 {
2029 	if (rq->post_schedule) {
2030 		unsigned long flags;
2031 
2032 		raw_spin_lock_irqsave(&rq->lock, flags);
2033 		if (rq->curr->sched_class->post_schedule)
2034 			rq->curr->sched_class->post_schedule(rq);
2035 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2036 
2037 		rq->post_schedule = 0;
2038 	}
2039 }
2040 
2041 #else
2042 
2043 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044 {
2045 }
2046 
2047 static inline void post_schedule(struct rq *rq)
2048 {
2049 }
2050 
2051 #endif
2052 
2053 /**
2054  * schedule_tail - first thing a freshly forked thread must call.
2055  * @prev: the thread we just switched away from.
2056  */
2057 asmlinkage void schedule_tail(struct task_struct *prev)
2058 	__releases(rq->lock)
2059 {
2060 	struct rq *rq = this_rq();
2061 
2062 	finish_task_switch(rq, prev);
2063 
2064 	/*
2065 	 * FIXME: do we need to worry about rq being invalidated by the
2066 	 * task_switch?
2067 	 */
2068 	post_schedule(rq);
2069 
2070 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071 	/* In this case, finish_task_switch does not reenable preemption */
2072 	preempt_enable();
2073 #endif
2074 	if (current->set_child_tid)
2075 		put_user(task_pid_vnr(current), current->set_child_tid);
2076 }
2077 
2078 /*
2079  * context_switch - switch to the new MM and the new
2080  * thread's register state.
2081  */
2082 static inline void
2083 context_switch(struct rq *rq, struct task_struct *prev,
2084 	       struct task_struct *next)
2085 {
2086 	struct mm_struct *mm, *oldmm;
2087 
2088 	prepare_task_switch(rq, prev, next);
2089 
2090 	mm = next->mm;
2091 	oldmm = prev->active_mm;
2092 	/*
2093 	 * For paravirt, this is coupled with an exit in switch_to to
2094 	 * combine the page table reload and the switch backend into
2095 	 * one hypercall.
2096 	 */
2097 	arch_start_context_switch(prev);
2098 
2099 	if (!mm) {
2100 		next->active_mm = oldmm;
2101 		atomic_inc(&oldmm->mm_count);
2102 		enter_lazy_tlb(oldmm, next);
2103 	} else
2104 		switch_mm(oldmm, mm, next);
2105 
2106 	if (!prev->mm) {
2107 		prev->active_mm = NULL;
2108 		rq->prev_mm = oldmm;
2109 	}
2110 	/*
2111 	 * Since the runqueue lock will be released by the next
2112 	 * task (which is an invalid locking op but in the case
2113 	 * of the scheduler it's an obvious special-case), so we
2114 	 * do an early lockdep release here:
2115 	 */
2116 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2117 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2118 #endif
2119 
2120 	context_tracking_task_switch(prev, next);
2121 	/* Here we just switch the register state and the stack. */
2122 	switch_to(prev, next, prev);
2123 
2124 	barrier();
2125 	/*
2126 	 * this_rq must be evaluated again because prev may have moved
2127 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2128 	 * frame will be invalid.
2129 	 */
2130 	finish_task_switch(this_rq(), prev);
2131 }
2132 
2133 /*
2134  * nr_running and nr_context_switches:
2135  *
2136  * externally visible scheduler statistics: current number of runnable
2137  * threads, total number of context switches performed since bootup.
2138  */
2139 unsigned long nr_running(void)
2140 {
2141 	unsigned long i, sum = 0;
2142 
2143 	for_each_online_cpu(i)
2144 		sum += cpu_rq(i)->nr_running;
2145 
2146 	return sum;
2147 }
2148 
2149 unsigned long long nr_context_switches(void)
2150 {
2151 	int i;
2152 	unsigned long long sum = 0;
2153 
2154 	for_each_possible_cpu(i)
2155 		sum += cpu_rq(i)->nr_switches;
2156 
2157 	return sum;
2158 }
2159 
2160 unsigned long nr_iowait(void)
2161 {
2162 	unsigned long i, sum = 0;
2163 
2164 	for_each_possible_cpu(i)
2165 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2166 
2167 	return sum;
2168 }
2169 
2170 unsigned long nr_iowait_cpu(int cpu)
2171 {
2172 	struct rq *this = cpu_rq(cpu);
2173 	return atomic_read(&this->nr_iowait);
2174 }
2175 
2176 #ifdef CONFIG_SMP
2177 
2178 /*
2179  * sched_exec - execve() is a valuable balancing opportunity, because at
2180  * this point the task has the smallest effective memory and cache footprint.
2181  */
2182 void sched_exec(void)
2183 {
2184 	struct task_struct *p = current;
2185 	unsigned long flags;
2186 	int dest_cpu;
2187 
2188 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2189 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2190 	if (dest_cpu == smp_processor_id())
2191 		goto unlock;
2192 
2193 	if (likely(cpu_active(dest_cpu))) {
2194 		struct migration_arg arg = { p, dest_cpu };
2195 
2196 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2198 		return;
2199 	}
2200 unlock:
2201 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2202 }
2203 
2204 #endif
2205 
2206 DEFINE_PER_CPU(struct kernel_stat, kstat);
2207 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2208 
2209 EXPORT_PER_CPU_SYMBOL(kstat);
2210 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2211 
2212 /*
2213  * Return any ns on the sched_clock that have not yet been accounted in
2214  * @p in case that task is currently running.
2215  *
2216  * Called with task_rq_lock() held on @rq.
2217  */
2218 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219 {
2220 	u64 ns = 0;
2221 
2222 	if (task_current(rq, p)) {
2223 		update_rq_clock(rq);
2224 		ns = rq_clock_task(rq) - p->se.exec_start;
2225 		if ((s64)ns < 0)
2226 			ns = 0;
2227 	}
2228 
2229 	return ns;
2230 }
2231 
2232 unsigned long long task_delta_exec(struct task_struct *p)
2233 {
2234 	unsigned long flags;
2235 	struct rq *rq;
2236 	u64 ns = 0;
2237 
2238 	rq = task_rq_lock(p, &flags);
2239 	ns = do_task_delta_exec(p, rq);
2240 	task_rq_unlock(rq, p, &flags);
2241 
2242 	return ns;
2243 }
2244 
2245 /*
2246  * Return accounted runtime for the task.
2247  * In case the task is currently running, return the runtime plus current's
2248  * pending runtime that have not been accounted yet.
2249  */
2250 unsigned long long task_sched_runtime(struct task_struct *p)
2251 {
2252 	unsigned long flags;
2253 	struct rq *rq;
2254 	u64 ns = 0;
2255 
2256 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2257 	/*
2258 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2259 	 * So we have a optimization chance when the task's delta_exec is 0.
2260 	 * Reading ->on_cpu is racy, but this is ok.
2261 	 *
2262 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2263 	 * If we race with it entering cpu, unaccounted time is 0. This is
2264 	 * indistinguishable from the read occurring a few cycles earlier.
2265 	 */
2266 	if (!p->on_cpu)
2267 		return p->se.sum_exec_runtime;
2268 #endif
2269 
2270 	rq = task_rq_lock(p, &flags);
2271 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2272 	task_rq_unlock(rq, p, &flags);
2273 
2274 	return ns;
2275 }
2276 
2277 /*
2278  * This function gets called by the timer code, with HZ frequency.
2279  * We call it with interrupts disabled.
2280  */
2281 void scheduler_tick(void)
2282 {
2283 	int cpu = smp_processor_id();
2284 	struct rq *rq = cpu_rq(cpu);
2285 	struct task_struct *curr = rq->curr;
2286 
2287 	sched_clock_tick();
2288 
2289 	raw_spin_lock(&rq->lock);
2290 	update_rq_clock(rq);
2291 	curr->sched_class->task_tick(rq, curr, 0);
2292 	update_cpu_load_active(rq);
2293 	raw_spin_unlock(&rq->lock);
2294 
2295 	perf_event_task_tick();
2296 
2297 #ifdef CONFIG_SMP
2298 	rq->idle_balance = idle_cpu(cpu);
2299 	trigger_load_balance(rq, cpu);
2300 #endif
2301 	rq_last_tick_reset(rq);
2302 }
2303 
2304 #ifdef CONFIG_NO_HZ_FULL
2305 /**
2306  * scheduler_tick_max_deferment
2307  *
2308  * Keep at least one tick per second when a single
2309  * active task is running because the scheduler doesn't
2310  * yet completely support full dynticks environment.
2311  *
2312  * This makes sure that uptime, CFS vruntime, load
2313  * balancing, etc... continue to move forward, even
2314  * with a very low granularity.
2315  *
2316  * Return: Maximum deferment in nanoseconds.
2317  */
2318 u64 scheduler_tick_max_deferment(void)
2319 {
2320 	struct rq *rq = this_rq();
2321 	unsigned long next, now = ACCESS_ONCE(jiffies);
2322 
2323 	next = rq->last_sched_tick + HZ;
2324 
2325 	if (time_before_eq(next, now))
2326 		return 0;
2327 
2328 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2329 }
2330 #endif
2331 
2332 notrace unsigned long get_parent_ip(unsigned long addr)
2333 {
2334 	if (in_lock_functions(addr)) {
2335 		addr = CALLER_ADDR2;
2336 		if (in_lock_functions(addr))
2337 			addr = CALLER_ADDR3;
2338 	}
2339 	return addr;
2340 }
2341 
2342 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2343 				defined(CONFIG_PREEMPT_TRACER))
2344 
2345 void __kprobes preempt_count_add(int val)
2346 {
2347 #ifdef CONFIG_DEBUG_PREEMPT
2348 	/*
2349 	 * Underflow?
2350 	 */
2351 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2352 		return;
2353 #endif
2354 	__preempt_count_add(val);
2355 #ifdef CONFIG_DEBUG_PREEMPT
2356 	/*
2357 	 * Spinlock count overflowing soon?
2358 	 */
2359 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2360 				PREEMPT_MASK - 10);
2361 #endif
2362 	if (preempt_count() == val)
2363 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2364 }
2365 EXPORT_SYMBOL(preempt_count_add);
2366 
2367 void __kprobes preempt_count_sub(int val)
2368 {
2369 #ifdef CONFIG_DEBUG_PREEMPT
2370 	/*
2371 	 * Underflow?
2372 	 */
2373 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2374 		return;
2375 	/*
2376 	 * Is the spinlock portion underflowing?
2377 	 */
2378 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2379 			!(preempt_count() & PREEMPT_MASK)))
2380 		return;
2381 #endif
2382 
2383 	if (preempt_count() == val)
2384 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2385 	__preempt_count_sub(val);
2386 }
2387 EXPORT_SYMBOL(preempt_count_sub);
2388 
2389 #endif
2390 
2391 /*
2392  * Print scheduling while atomic bug:
2393  */
2394 static noinline void __schedule_bug(struct task_struct *prev)
2395 {
2396 	if (oops_in_progress)
2397 		return;
2398 
2399 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2400 		prev->comm, prev->pid, preempt_count());
2401 
2402 	debug_show_held_locks(prev);
2403 	print_modules();
2404 	if (irqs_disabled())
2405 		print_irqtrace_events(prev);
2406 	dump_stack();
2407 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2408 }
2409 
2410 /*
2411  * Various schedule()-time debugging checks and statistics:
2412  */
2413 static inline void schedule_debug(struct task_struct *prev)
2414 {
2415 	/*
2416 	 * Test if we are atomic. Since do_exit() needs to call into
2417 	 * schedule() atomically, we ignore that path for now.
2418 	 * Otherwise, whine if we are scheduling when we should not be.
2419 	 */
2420 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2421 		__schedule_bug(prev);
2422 	rcu_sleep_check();
2423 
2424 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2425 
2426 	schedstat_inc(this_rq(), sched_count);
2427 }
2428 
2429 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2430 {
2431 	if (prev->on_rq || rq->skip_clock_update < 0)
2432 		update_rq_clock(rq);
2433 	prev->sched_class->put_prev_task(rq, prev);
2434 }
2435 
2436 /*
2437  * Pick up the highest-prio task:
2438  */
2439 static inline struct task_struct *
2440 pick_next_task(struct rq *rq)
2441 {
2442 	const struct sched_class *class;
2443 	struct task_struct *p;
2444 
2445 	/*
2446 	 * Optimization: we know that if all tasks are in
2447 	 * the fair class we can call that function directly:
2448 	 */
2449 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2450 		p = fair_sched_class.pick_next_task(rq);
2451 		if (likely(p))
2452 			return p;
2453 	}
2454 
2455 	for_each_class(class) {
2456 		p = class->pick_next_task(rq);
2457 		if (p)
2458 			return p;
2459 	}
2460 
2461 	BUG(); /* the idle class will always have a runnable task */
2462 }
2463 
2464 /*
2465  * __schedule() is the main scheduler function.
2466  *
2467  * The main means of driving the scheduler and thus entering this function are:
2468  *
2469  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2470  *
2471  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2472  *      paths. For example, see arch/x86/entry_64.S.
2473  *
2474  *      To drive preemption between tasks, the scheduler sets the flag in timer
2475  *      interrupt handler scheduler_tick().
2476  *
2477  *   3. Wakeups don't really cause entry into schedule(). They add a
2478  *      task to the run-queue and that's it.
2479  *
2480  *      Now, if the new task added to the run-queue preempts the current
2481  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2482  *      called on the nearest possible occasion:
2483  *
2484  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2485  *
2486  *         - in syscall or exception context, at the next outmost
2487  *           preempt_enable(). (this might be as soon as the wake_up()'s
2488  *           spin_unlock()!)
2489  *
2490  *         - in IRQ context, return from interrupt-handler to
2491  *           preemptible context
2492  *
2493  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2494  *         then at the next:
2495  *
2496  *          - cond_resched() call
2497  *          - explicit schedule() call
2498  *          - return from syscall or exception to user-space
2499  *          - return from interrupt-handler to user-space
2500  */
2501 static void __sched __schedule(void)
2502 {
2503 	struct task_struct *prev, *next;
2504 	unsigned long *switch_count;
2505 	struct rq *rq;
2506 	int cpu;
2507 
2508 need_resched:
2509 	preempt_disable();
2510 	cpu = smp_processor_id();
2511 	rq = cpu_rq(cpu);
2512 	rcu_note_context_switch(cpu);
2513 	prev = rq->curr;
2514 
2515 	schedule_debug(prev);
2516 
2517 	if (sched_feat(HRTICK))
2518 		hrtick_clear(rq);
2519 
2520 	/*
2521 	 * Make sure that signal_pending_state()->signal_pending() below
2522 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2523 	 * done by the caller to avoid the race with signal_wake_up().
2524 	 */
2525 	smp_mb__before_spinlock();
2526 	raw_spin_lock_irq(&rq->lock);
2527 
2528 	switch_count = &prev->nivcsw;
2529 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2530 		if (unlikely(signal_pending_state(prev->state, prev))) {
2531 			prev->state = TASK_RUNNING;
2532 		} else {
2533 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2534 			prev->on_rq = 0;
2535 
2536 			/*
2537 			 * If a worker went to sleep, notify and ask workqueue
2538 			 * whether it wants to wake up a task to maintain
2539 			 * concurrency.
2540 			 */
2541 			if (prev->flags & PF_WQ_WORKER) {
2542 				struct task_struct *to_wakeup;
2543 
2544 				to_wakeup = wq_worker_sleeping(prev, cpu);
2545 				if (to_wakeup)
2546 					try_to_wake_up_local(to_wakeup);
2547 			}
2548 		}
2549 		switch_count = &prev->nvcsw;
2550 	}
2551 
2552 	pre_schedule(rq, prev);
2553 
2554 	if (unlikely(!rq->nr_running))
2555 		idle_balance(cpu, rq);
2556 
2557 	put_prev_task(rq, prev);
2558 	next = pick_next_task(rq);
2559 	clear_tsk_need_resched(prev);
2560 	clear_preempt_need_resched();
2561 	rq->skip_clock_update = 0;
2562 
2563 	if (likely(prev != next)) {
2564 		rq->nr_switches++;
2565 		rq->curr = next;
2566 		++*switch_count;
2567 
2568 		context_switch(rq, prev, next); /* unlocks the rq */
2569 		/*
2570 		 * The context switch have flipped the stack from under us
2571 		 * and restored the local variables which were saved when
2572 		 * this task called schedule() in the past. prev == current
2573 		 * is still correct, but it can be moved to another cpu/rq.
2574 		 */
2575 		cpu = smp_processor_id();
2576 		rq = cpu_rq(cpu);
2577 	} else
2578 		raw_spin_unlock_irq(&rq->lock);
2579 
2580 	post_schedule(rq);
2581 
2582 	sched_preempt_enable_no_resched();
2583 	if (need_resched())
2584 		goto need_resched;
2585 }
2586 
2587 static inline void sched_submit_work(struct task_struct *tsk)
2588 {
2589 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2590 		return;
2591 	/*
2592 	 * If we are going to sleep and we have plugged IO queued,
2593 	 * make sure to submit it to avoid deadlocks.
2594 	 */
2595 	if (blk_needs_flush_plug(tsk))
2596 		blk_schedule_flush_plug(tsk);
2597 }
2598 
2599 asmlinkage void __sched schedule(void)
2600 {
2601 	struct task_struct *tsk = current;
2602 
2603 	sched_submit_work(tsk);
2604 	__schedule();
2605 }
2606 EXPORT_SYMBOL(schedule);
2607 
2608 #ifdef CONFIG_CONTEXT_TRACKING
2609 asmlinkage void __sched schedule_user(void)
2610 {
2611 	/*
2612 	 * If we come here after a random call to set_need_resched(),
2613 	 * or we have been woken up remotely but the IPI has not yet arrived,
2614 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2615 	 * we find a better solution.
2616 	 */
2617 	user_exit();
2618 	schedule();
2619 	user_enter();
2620 }
2621 #endif
2622 
2623 /**
2624  * schedule_preempt_disabled - called with preemption disabled
2625  *
2626  * Returns with preemption disabled. Note: preempt_count must be 1
2627  */
2628 void __sched schedule_preempt_disabled(void)
2629 {
2630 	sched_preempt_enable_no_resched();
2631 	schedule();
2632 	preempt_disable();
2633 }
2634 
2635 #ifdef CONFIG_PREEMPT
2636 /*
2637  * this is the entry point to schedule() from in-kernel preemption
2638  * off of preempt_enable. Kernel preemptions off return from interrupt
2639  * occur there and call schedule directly.
2640  */
2641 asmlinkage void __sched notrace preempt_schedule(void)
2642 {
2643 	/*
2644 	 * If there is a non-zero preempt_count or interrupts are disabled,
2645 	 * we do not want to preempt the current task. Just return..
2646 	 */
2647 	if (likely(!preemptible()))
2648 		return;
2649 
2650 	do {
2651 		__preempt_count_add(PREEMPT_ACTIVE);
2652 		__schedule();
2653 		__preempt_count_sub(PREEMPT_ACTIVE);
2654 
2655 		/*
2656 		 * Check again in case we missed a preemption opportunity
2657 		 * between schedule and now.
2658 		 */
2659 		barrier();
2660 	} while (need_resched());
2661 }
2662 EXPORT_SYMBOL(preempt_schedule);
2663 
2664 /*
2665  * this is the entry point to schedule() from kernel preemption
2666  * off of irq context.
2667  * Note, that this is called and return with irqs disabled. This will
2668  * protect us against recursive calling from irq.
2669  */
2670 asmlinkage void __sched preempt_schedule_irq(void)
2671 {
2672 	enum ctx_state prev_state;
2673 
2674 	/* Catch callers which need to be fixed */
2675 	BUG_ON(preempt_count() || !irqs_disabled());
2676 
2677 	prev_state = exception_enter();
2678 
2679 	do {
2680 		__preempt_count_add(PREEMPT_ACTIVE);
2681 		local_irq_enable();
2682 		__schedule();
2683 		local_irq_disable();
2684 		__preempt_count_sub(PREEMPT_ACTIVE);
2685 
2686 		/*
2687 		 * Check again in case we missed a preemption opportunity
2688 		 * between schedule and now.
2689 		 */
2690 		barrier();
2691 	} while (need_resched());
2692 
2693 	exception_exit(prev_state);
2694 }
2695 
2696 #endif /* CONFIG_PREEMPT */
2697 
2698 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2699 			  void *key)
2700 {
2701 	return try_to_wake_up(curr->private, mode, wake_flags);
2702 }
2703 EXPORT_SYMBOL(default_wake_function);
2704 
2705 static long __sched
2706 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2707 {
2708 	unsigned long flags;
2709 	wait_queue_t wait;
2710 
2711 	init_waitqueue_entry(&wait, current);
2712 
2713 	__set_current_state(state);
2714 
2715 	spin_lock_irqsave(&q->lock, flags);
2716 	__add_wait_queue(q, &wait);
2717 	spin_unlock(&q->lock);
2718 	timeout = schedule_timeout(timeout);
2719 	spin_lock_irq(&q->lock);
2720 	__remove_wait_queue(q, &wait);
2721 	spin_unlock_irqrestore(&q->lock, flags);
2722 
2723 	return timeout;
2724 }
2725 
2726 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2727 {
2728 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2729 }
2730 EXPORT_SYMBOL(interruptible_sleep_on);
2731 
2732 long __sched
2733 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2734 {
2735 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2736 }
2737 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2738 
2739 void __sched sleep_on(wait_queue_head_t *q)
2740 {
2741 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2742 }
2743 EXPORT_SYMBOL(sleep_on);
2744 
2745 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2746 {
2747 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2748 }
2749 EXPORT_SYMBOL(sleep_on_timeout);
2750 
2751 #ifdef CONFIG_RT_MUTEXES
2752 
2753 /*
2754  * rt_mutex_setprio - set the current priority of a task
2755  * @p: task
2756  * @prio: prio value (kernel-internal form)
2757  *
2758  * This function changes the 'effective' priority of a task. It does
2759  * not touch ->normal_prio like __setscheduler().
2760  *
2761  * Used by the rt_mutex code to implement priority inheritance logic.
2762  */
2763 void rt_mutex_setprio(struct task_struct *p, int prio)
2764 {
2765 	int oldprio, on_rq, running;
2766 	struct rq *rq;
2767 	const struct sched_class *prev_class;
2768 
2769 	BUG_ON(prio < 0 || prio > MAX_PRIO);
2770 
2771 	rq = __task_rq_lock(p);
2772 
2773 	/*
2774 	 * Idle task boosting is a nono in general. There is one
2775 	 * exception, when PREEMPT_RT and NOHZ is active:
2776 	 *
2777 	 * The idle task calls get_next_timer_interrupt() and holds
2778 	 * the timer wheel base->lock on the CPU and another CPU wants
2779 	 * to access the timer (probably to cancel it). We can safely
2780 	 * ignore the boosting request, as the idle CPU runs this code
2781 	 * with interrupts disabled and will complete the lock
2782 	 * protected section without being interrupted. So there is no
2783 	 * real need to boost.
2784 	 */
2785 	if (unlikely(p == rq->idle)) {
2786 		WARN_ON(p != rq->curr);
2787 		WARN_ON(p->pi_blocked_on);
2788 		goto out_unlock;
2789 	}
2790 
2791 	trace_sched_pi_setprio(p, prio);
2792 	oldprio = p->prio;
2793 	prev_class = p->sched_class;
2794 	on_rq = p->on_rq;
2795 	running = task_current(rq, p);
2796 	if (on_rq)
2797 		dequeue_task(rq, p, 0);
2798 	if (running)
2799 		p->sched_class->put_prev_task(rq, p);
2800 
2801 	if (rt_prio(prio))
2802 		p->sched_class = &rt_sched_class;
2803 	else
2804 		p->sched_class = &fair_sched_class;
2805 
2806 	p->prio = prio;
2807 
2808 	if (running)
2809 		p->sched_class->set_curr_task(rq);
2810 	if (on_rq)
2811 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
2812 
2813 	check_class_changed(rq, p, prev_class, oldprio);
2814 out_unlock:
2815 	__task_rq_unlock(rq);
2816 }
2817 #endif
2818 void set_user_nice(struct task_struct *p, long nice)
2819 {
2820 	int old_prio, delta, on_rq;
2821 	unsigned long flags;
2822 	struct rq *rq;
2823 
2824 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2825 		return;
2826 	/*
2827 	 * We have to be careful, if called from sys_setpriority(),
2828 	 * the task might be in the middle of scheduling on another CPU.
2829 	 */
2830 	rq = task_rq_lock(p, &flags);
2831 	/*
2832 	 * The RT priorities are set via sched_setscheduler(), but we still
2833 	 * allow the 'normal' nice value to be set - but as expected
2834 	 * it wont have any effect on scheduling until the task is
2835 	 * SCHED_FIFO/SCHED_RR:
2836 	 */
2837 	if (task_has_rt_policy(p)) {
2838 		p->static_prio = NICE_TO_PRIO(nice);
2839 		goto out_unlock;
2840 	}
2841 	on_rq = p->on_rq;
2842 	if (on_rq)
2843 		dequeue_task(rq, p, 0);
2844 
2845 	p->static_prio = NICE_TO_PRIO(nice);
2846 	set_load_weight(p);
2847 	old_prio = p->prio;
2848 	p->prio = effective_prio(p);
2849 	delta = p->prio - old_prio;
2850 
2851 	if (on_rq) {
2852 		enqueue_task(rq, p, 0);
2853 		/*
2854 		 * If the task increased its priority or is running and
2855 		 * lowered its priority, then reschedule its CPU:
2856 		 */
2857 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2858 			resched_task(rq->curr);
2859 	}
2860 out_unlock:
2861 	task_rq_unlock(rq, p, &flags);
2862 }
2863 EXPORT_SYMBOL(set_user_nice);
2864 
2865 /*
2866  * can_nice - check if a task can reduce its nice value
2867  * @p: task
2868  * @nice: nice value
2869  */
2870 int can_nice(const struct task_struct *p, const int nice)
2871 {
2872 	/* convert nice value [19,-20] to rlimit style value [1,40] */
2873 	int nice_rlim = 20 - nice;
2874 
2875 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
2876 		capable(CAP_SYS_NICE));
2877 }
2878 
2879 #ifdef __ARCH_WANT_SYS_NICE
2880 
2881 /*
2882  * sys_nice - change the priority of the current process.
2883  * @increment: priority increment
2884  *
2885  * sys_setpriority is a more generic, but much slower function that
2886  * does similar things.
2887  */
2888 SYSCALL_DEFINE1(nice, int, increment)
2889 {
2890 	long nice, retval;
2891 
2892 	/*
2893 	 * Setpriority might change our priority at the same moment.
2894 	 * We don't have to worry. Conceptually one call occurs first
2895 	 * and we have a single winner.
2896 	 */
2897 	if (increment < -40)
2898 		increment = -40;
2899 	if (increment > 40)
2900 		increment = 40;
2901 
2902 	nice = TASK_NICE(current) + increment;
2903 	if (nice < -20)
2904 		nice = -20;
2905 	if (nice > 19)
2906 		nice = 19;
2907 
2908 	if (increment < 0 && !can_nice(current, nice))
2909 		return -EPERM;
2910 
2911 	retval = security_task_setnice(current, nice);
2912 	if (retval)
2913 		return retval;
2914 
2915 	set_user_nice(current, nice);
2916 	return 0;
2917 }
2918 
2919 #endif
2920 
2921 /**
2922  * task_prio - return the priority value of a given task.
2923  * @p: the task in question.
2924  *
2925  * Return: The priority value as seen by users in /proc.
2926  * RT tasks are offset by -200. Normal tasks are centered
2927  * around 0, value goes from -16 to +15.
2928  */
2929 int task_prio(const struct task_struct *p)
2930 {
2931 	return p->prio - MAX_RT_PRIO;
2932 }
2933 
2934 /**
2935  * task_nice - return the nice value of a given task.
2936  * @p: the task in question.
2937  *
2938  * Return: The nice value [ -20 ... 0 ... 19 ].
2939  */
2940 int task_nice(const struct task_struct *p)
2941 {
2942 	return TASK_NICE(p);
2943 }
2944 EXPORT_SYMBOL(task_nice);
2945 
2946 /**
2947  * idle_cpu - is a given cpu idle currently?
2948  * @cpu: the processor in question.
2949  *
2950  * Return: 1 if the CPU is currently idle. 0 otherwise.
2951  */
2952 int idle_cpu(int cpu)
2953 {
2954 	struct rq *rq = cpu_rq(cpu);
2955 
2956 	if (rq->curr != rq->idle)
2957 		return 0;
2958 
2959 	if (rq->nr_running)
2960 		return 0;
2961 
2962 #ifdef CONFIG_SMP
2963 	if (!llist_empty(&rq->wake_list))
2964 		return 0;
2965 #endif
2966 
2967 	return 1;
2968 }
2969 
2970 /**
2971  * idle_task - return the idle task for a given cpu.
2972  * @cpu: the processor in question.
2973  *
2974  * Return: The idle task for the cpu @cpu.
2975  */
2976 struct task_struct *idle_task(int cpu)
2977 {
2978 	return cpu_rq(cpu)->idle;
2979 }
2980 
2981 /**
2982  * find_process_by_pid - find a process with a matching PID value.
2983  * @pid: the pid in question.
2984  *
2985  * The task of @pid, if found. %NULL otherwise.
2986  */
2987 static struct task_struct *find_process_by_pid(pid_t pid)
2988 {
2989 	return pid ? find_task_by_vpid(pid) : current;
2990 }
2991 
2992 /* Actually do priority change: must hold rq lock. */
2993 static void
2994 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
2995 {
2996 	p->policy = policy;
2997 	p->rt_priority = prio;
2998 	p->normal_prio = normal_prio(p);
2999 	/* we are holding p->pi_lock already */
3000 	p->prio = rt_mutex_getprio(p);
3001 	if (rt_prio(p->prio))
3002 		p->sched_class = &rt_sched_class;
3003 	else
3004 		p->sched_class = &fair_sched_class;
3005 	set_load_weight(p);
3006 }
3007 
3008 /*
3009  * check the target process has a UID that matches the current process's
3010  */
3011 static bool check_same_owner(struct task_struct *p)
3012 {
3013 	const struct cred *cred = current_cred(), *pcred;
3014 	bool match;
3015 
3016 	rcu_read_lock();
3017 	pcred = __task_cred(p);
3018 	match = (uid_eq(cred->euid, pcred->euid) ||
3019 		 uid_eq(cred->euid, pcred->uid));
3020 	rcu_read_unlock();
3021 	return match;
3022 }
3023 
3024 static int __sched_setscheduler(struct task_struct *p, int policy,
3025 				const struct sched_param *param, bool user)
3026 {
3027 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3028 	unsigned long flags;
3029 	const struct sched_class *prev_class;
3030 	struct rq *rq;
3031 	int reset_on_fork;
3032 
3033 	/* may grab non-irq protected spin_locks */
3034 	BUG_ON(in_interrupt());
3035 recheck:
3036 	/* double check policy once rq lock held */
3037 	if (policy < 0) {
3038 		reset_on_fork = p->sched_reset_on_fork;
3039 		policy = oldpolicy = p->policy;
3040 	} else {
3041 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3042 		policy &= ~SCHED_RESET_ON_FORK;
3043 
3044 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3045 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3046 				policy != SCHED_IDLE)
3047 			return -EINVAL;
3048 	}
3049 
3050 	/*
3051 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3052 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3053 	 * SCHED_BATCH and SCHED_IDLE is 0.
3054 	 */
3055 	if (param->sched_priority < 0 ||
3056 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3057 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3058 		return -EINVAL;
3059 	if (rt_policy(policy) != (param->sched_priority != 0))
3060 		return -EINVAL;
3061 
3062 	/*
3063 	 * Allow unprivileged RT tasks to decrease priority:
3064 	 */
3065 	if (user && !capable(CAP_SYS_NICE)) {
3066 		if (rt_policy(policy)) {
3067 			unsigned long rlim_rtprio =
3068 					task_rlimit(p, RLIMIT_RTPRIO);
3069 
3070 			/* can't set/change the rt policy */
3071 			if (policy != p->policy && !rlim_rtprio)
3072 				return -EPERM;
3073 
3074 			/* can't increase priority */
3075 			if (param->sched_priority > p->rt_priority &&
3076 			    param->sched_priority > rlim_rtprio)
3077 				return -EPERM;
3078 		}
3079 
3080 		/*
3081 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3082 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3083 		 */
3084 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3085 			if (!can_nice(p, TASK_NICE(p)))
3086 				return -EPERM;
3087 		}
3088 
3089 		/* can't change other user's priorities */
3090 		if (!check_same_owner(p))
3091 			return -EPERM;
3092 
3093 		/* Normal users shall not reset the sched_reset_on_fork flag */
3094 		if (p->sched_reset_on_fork && !reset_on_fork)
3095 			return -EPERM;
3096 	}
3097 
3098 	if (user) {
3099 		retval = security_task_setscheduler(p);
3100 		if (retval)
3101 			return retval;
3102 	}
3103 
3104 	/*
3105 	 * make sure no PI-waiters arrive (or leave) while we are
3106 	 * changing the priority of the task:
3107 	 *
3108 	 * To be able to change p->policy safely, the appropriate
3109 	 * runqueue lock must be held.
3110 	 */
3111 	rq = task_rq_lock(p, &flags);
3112 
3113 	/*
3114 	 * Changing the policy of the stop threads its a very bad idea
3115 	 */
3116 	if (p == rq->stop) {
3117 		task_rq_unlock(rq, p, &flags);
3118 		return -EINVAL;
3119 	}
3120 
3121 	/*
3122 	 * If not changing anything there's no need to proceed further:
3123 	 */
3124 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3125 			param->sched_priority == p->rt_priority))) {
3126 		task_rq_unlock(rq, p, &flags);
3127 		return 0;
3128 	}
3129 
3130 #ifdef CONFIG_RT_GROUP_SCHED
3131 	if (user) {
3132 		/*
3133 		 * Do not allow realtime tasks into groups that have no runtime
3134 		 * assigned.
3135 		 */
3136 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3137 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3138 				!task_group_is_autogroup(task_group(p))) {
3139 			task_rq_unlock(rq, p, &flags);
3140 			return -EPERM;
3141 		}
3142 	}
3143 #endif
3144 
3145 	/* recheck policy now with rq lock held */
3146 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3147 		policy = oldpolicy = -1;
3148 		task_rq_unlock(rq, p, &flags);
3149 		goto recheck;
3150 	}
3151 	on_rq = p->on_rq;
3152 	running = task_current(rq, p);
3153 	if (on_rq)
3154 		dequeue_task(rq, p, 0);
3155 	if (running)
3156 		p->sched_class->put_prev_task(rq, p);
3157 
3158 	p->sched_reset_on_fork = reset_on_fork;
3159 
3160 	oldprio = p->prio;
3161 	prev_class = p->sched_class;
3162 	__setscheduler(rq, p, policy, param->sched_priority);
3163 
3164 	if (running)
3165 		p->sched_class->set_curr_task(rq);
3166 	if (on_rq)
3167 		enqueue_task(rq, p, 0);
3168 
3169 	check_class_changed(rq, p, prev_class, oldprio);
3170 	task_rq_unlock(rq, p, &flags);
3171 
3172 	rt_mutex_adjust_pi(p);
3173 
3174 	return 0;
3175 }
3176 
3177 /**
3178  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3179  * @p: the task in question.
3180  * @policy: new policy.
3181  * @param: structure containing the new RT priority.
3182  *
3183  * Return: 0 on success. An error code otherwise.
3184  *
3185  * NOTE that the task may be already dead.
3186  */
3187 int sched_setscheduler(struct task_struct *p, int policy,
3188 		       const struct sched_param *param)
3189 {
3190 	return __sched_setscheduler(p, policy, param, true);
3191 }
3192 EXPORT_SYMBOL_GPL(sched_setscheduler);
3193 
3194 /**
3195  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3196  * @p: the task in question.
3197  * @policy: new policy.
3198  * @param: structure containing the new RT priority.
3199  *
3200  * Just like sched_setscheduler, only don't bother checking if the
3201  * current context has permission.  For example, this is needed in
3202  * stop_machine(): we create temporary high priority worker threads,
3203  * but our caller might not have that capability.
3204  *
3205  * Return: 0 on success. An error code otherwise.
3206  */
3207 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3208 			       const struct sched_param *param)
3209 {
3210 	return __sched_setscheduler(p, policy, param, false);
3211 }
3212 
3213 static int
3214 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3215 {
3216 	struct sched_param lparam;
3217 	struct task_struct *p;
3218 	int retval;
3219 
3220 	if (!param || pid < 0)
3221 		return -EINVAL;
3222 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3223 		return -EFAULT;
3224 
3225 	rcu_read_lock();
3226 	retval = -ESRCH;
3227 	p = find_process_by_pid(pid);
3228 	if (p != NULL)
3229 		retval = sched_setscheduler(p, policy, &lparam);
3230 	rcu_read_unlock();
3231 
3232 	return retval;
3233 }
3234 
3235 /**
3236  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3237  * @pid: the pid in question.
3238  * @policy: new policy.
3239  * @param: structure containing the new RT priority.
3240  *
3241  * Return: 0 on success. An error code otherwise.
3242  */
3243 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3244 		struct sched_param __user *, param)
3245 {
3246 	/* negative values for policy are not valid */
3247 	if (policy < 0)
3248 		return -EINVAL;
3249 
3250 	return do_sched_setscheduler(pid, policy, param);
3251 }
3252 
3253 /**
3254  * sys_sched_setparam - set/change the RT priority of a thread
3255  * @pid: the pid in question.
3256  * @param: structure containing the new RT priority.
3257  *
3258  * Return: 0 on success. An error code otherwise.
3259  */
3260 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3261 {
3262 	return do_sched_setscheduler(pid, -1, param);
3263 }
3264 
3265 /**
3266  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3267  * @pid: the pid in question.
3268  *
3269  * Return: On success, the policy of the thread. Otherwise, a negative error
3270  * code.
3271  */
3272 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3273 {
3274 	struct task_struct *p;
3275 	int retval;
3276 
3277 	if (pid < 0)
3278 		return -EINVAL;
3279 
3280 	retval = -ESRCH;
3281 	rcu_read_lock();
3282 	p = find_process_by_pid(pid);
3283 	if (p) {
3284 		retval = security_task_getscheduler(p);
3285 		if (!retval)
3286 			retval = p->policy
3287 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3288 	}
3289 	rcu_read_unlock();
3290 	return retval;
3291 }
3292 
3293 /**
3294  * sys_sched_getparam - get the RT priority of a thread
3295  * @pid: the pid in question.
3296  * @param: structure containing the RT priority.
3297  *
3298  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3299  * code.
3300  */
3301 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3302 {
3303 	struct sched_param lp;
3304 	struct task_struct *p;
3305 	int retval;
3306 
3307 	if (!param || pid < 0)
3308 		return -EINVAL;
3309 
3310 	rcu_read_lock();
3311 	p = find_process_by_pid(pid);
3312 	retval = -ESRCH;
3313 	if (!p)
3314 		goto out_unlock;
3315 
3316 	retval = security_task_getscheduler(p);
3317 	if (retval)
3318 		goto out_unlock;
3319 
3320 	lp.sched_priority = p->rt_priority;
3321 	rcu_read_unlock();
3322 
3323 	/*
3324 	 * This one might sleep, we cannot do it with a spinlock held ...
3325 	 */
3326 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3327 
3328 	return retval;
3329 
3330 out_unlock:
3331 	rcu_read_unlock();
3332 	return retval;
3333 }
3334 
3335 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3336 {
3337 	cpumask_var_t cpus_allowed, new_mask;
3338 	struct task_struct *p;
3339 	int retval;
3340 
3341 	rcu_read_lock();
3342 
3343 	p = find_process_by_pid(pid);
3344 	if (!p) {
3345 		rcu_read_unlock();
3346 		return -ESRCH;
3347 	}
3348 
3349 	/* Prevent p going away */
3350 	get_task_struct(p);
3351 	rcu_read_unlock();
3352 
3353 	if (p->flags & PF_NO_SETAFFINITY) {
3354 		retval = -EINVAL;
3355 		goto out_put_task;
3356 	}
3357 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3358 		retval = -ENOMEM;
3359 		goto out_put_task;
3360 	}
3361 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3362 		retval = -ENOMEM;
3363 		goto out_free_cpus_allowed;
3364 	}
3365 	retval = -EPERM;
3366 	if (!check_same_owner(p)) {
3367 		rcu_read_lock();
3368 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3369 			rcu_read_unlock();
3370 			goto out_unlock;
3371 		}
3372 		rcu_read_unlock();
3373 	}
3374 
3375 	retval = security_task_setscheduler(p);
3376 	if (retval)
3377 		goto out_unlock;
3378 
3379 	cpuset_cpus_allowed(p, cpus_allowed);
3380 	cpumask_and(new_mask, in_mask, cpus_allowed);
3381 again:
3382 	retval = set_cpus_allowed_ptr(p, new_mask);
3383 
3384 	if (!retval) {
3385 		cpuset_cpus_allowed(p, cpus_allowed);
3386 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3387 			/*
3388 			 * We must have raced with a concurrent cpuset
3389 			 * update. Just reset the cpus_allowed to the
3390 			 * cpuset's cpus_allowed
3391 			 */
3392 			cpumask_copy(new_mask, cpus_allowed);
3393 			goto again;
3394 		}
3395 	}
3396 out_unlock:
3397 	free_cpumask_var(new_mask);
3398 out_free_cpus_allowed:
3399 	free_cpumask_var(cpus_allowed);
3400 out_put_task:
3401 	put_task_struct(p);
3402 	return retval;
3403 }
3404 
3405 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3406 			     struct cpumask *new_mask)
3407 {
3408 	if (len < cpumask_size())
3409 		cpumask_clear(new_mask);
3410 	else if (len > cpumask_size())
3411 		len = cpumask_size();
3412 
3413 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3414 }
3415 
3416 /**
3417  * sys_sched_setaffinity - set the cpu affinity of a process
3418  * @pid: pid of the process
3419  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3420  * @user_mask_ptr: user-space pointer to the new cpu mask
3421  *
3422  * Return: 0 on success. An error code otherwise.
3423  */
3424 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3425 		unsigned long __user *, user_mask_ptr)
3426 {
3427 	cpumask_var_t new_mask;
3428 	int retval;
3429 
3430 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3431 		return -ENOMEM;
3432 
3433 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3434 	if (retval == 0)
3435 		retval = sched_setaffinity(pid, new_mask);
3436 	free_cpumask_var(new_mask);
3437 	return retval;
3438 }
3439 
3440 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3441 {
3442 	struct task_struct *p;
3443 	unsigned long flags;
3444 	int retval;
3445 
3446 	rcu_read_lock();
3447 
3448 	retval = -ESRCH;
3449 	p = find_process_by_pid(pid);
3450 	if (!p)
3451 		goto out_unlock;
3452 
3453 	retval = security_task_getscheduler(p);
3454 	if (retval)
3455 		goto out_unlock;
3456 
3457 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3458 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3459 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3460 
3461 out_unlock:
3462 	rcu_read_unlock();
3463 
3464 	return retval;
3465 }
3466 
3467 /**
3468  * sys_sched_getaffinity - get the cpu affinity of a process
3469  * @pid: pid of the process
3470  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3471  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3472  *
3473  * Return: 0 on success. An error code otherwise.
3474  */
3475 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3476 		unsigned long __user *, user_mask_ptr)
3477 {
3478 	int ret;
3479 	cpumask_var_t mask;
3480 
3481 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3482 		return -EINVAL;
3483 	if (len & (sizeof(unsigned long)-1))
3484 		return -EINVAL;
3485 
3486 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3487 		return -ENOMEM;
3488 
3489 	ret = sched_getaffinity(pid, mask);
3490 	if (ret == 0) {
3491 		size_t retlen = min_t(size_t, len, cpumask_size());
3492 
3493 		if (copy_to_user(user_mask_ptr, mask, retlen))
3494 			ret = -EFAULT;
3495 		else
3496 			ret = retlen;
3497 	}
3498 	free_cpumask_var(mask);
3499 
3500 	return ret;
3501 }
3502 
3503 /**
3504  * sys_sched_yield - yield the current processor to other threads.
3505  *
3506  * This function yields the current CPU to other tasks. If there are no
3507  * other threads running on this CPU then this function will return.
3508  *
3509  * Return: 0.
3510  */
3511 SYSCALL_DEFINE0(sched_yield)
3512 {
3513 	struct rq *rq = this_rq_lock();
3514 
3515 	schedstat_inc(rq, yld_count);
3516 	current->sched_class->yield_task(rq);
3517 
3518 	/*
3519 	 * Since we are going to call schedule() anyway, there's
3520 	 * no need to preempt or enable interrupts:
3521 	 */
3522 	__release(rq->lock);
3523 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3524 	do_raw_spin_unlock(&rq->lock);
3525 	sched_preempt_enable_no_resched();
3526 
3527 	schedule();
3528 
3529 	return 0;
3530 }
3531 
3532 static void __cond_resched(void)
3533 {
3534 	__preempt_count_add(PREEMPT_ACTIVE);
3535 	__schedule();
3536 	__preempt_count_sub(PREEMPT_ACTIVE);
3537 }
3538 
3539 int __sched _cond_resched(void)
3540 {
3541 	if (should_resched()) {
3542 		__cond_resched();
3543 		return 1;
3544 	}
3545 	return 0;
3546 }
3547 EXPORT_SYMBOL(_cond_resched);
3548 
3549 /*
3550  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3551  * call schedule, and on return reacquire the lock.
3552  *
3553  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3554  * operations here to prevent schedule() from being called twice (once via
3555  * spin_unlock(), once by hand).
3556  */
3557 int __cond_resched_lock(spinlock_t *lock)
3558 {
3559 	int resched = should_resched();
3560 	int ret = 0;
3561 
3562 	lockdep_assert_held(lock);
3563 
3564 	if (spin_needbreak(lock) || resched) {
3565 		spin_unlock(lock);
3566 		if (resched)
3567 			__cond_resched();
3568 		else
3569 			cpu_relax();
3570 		ret = 1;
3571 		spin_lock(lock);
3572 	}
3573 	return ret;
3574 }
3575 EXPORT_SYMBOL(__cond_resched_lock);
3576 
3577 int __sched __cond_resched_softirq(void)
3578 {
3579 	BUG_ON(!in_softirq());
3580 
3581 	if (should_resched()) {
3582 		local_bh_enable();
3583 		__cond_resched();
3584 		local_bh_disable();
3585 		return 1;
3586 	}
3587 	return 0;
3588 }
3589 EXPORT_SYMBOL(__cond_resched_softirq);
3590 
3591 /**
3592  * yield - yield the current processor to other threads.
3593  *
3594  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3595  *
3596  * The scheduler is at all times free to pick the calling task as the most
3597  * eligible task to run, if removing the yield() call from your code breaks
3598  * it, its already broken.
3599  *
3600  * Typical broken usage is:
3601  *
3602  * while (!event)
3603  * 	yield();
3604  *
3605  * where one assumes that yield() will let 'the other' process run that will
3606  * make event true. If the current task is a SCHED_FIFO task that will never
3607  * happen. Never use yield() as a progress guarantee!!
3608  *
3609  * If you want to use yield() to wait for something, use wait_event().
3610  * If you want to use yield() to be 'nice' for others, use cond_resched().
3611  * If you still want to use yield(), do not!
3612  */
3613 void __sched yield(void)
3614 {
3615 	set_current_state(TASK_RUNNING);
3616 	sys_sched_yield();
3617 }
3618 EXPORT_SYMBOL(yield);
3619 
3620 /**
3621  * yield_to - yield the current processor to another thread in
3622  * your thread group, or accelerate that thread toward the
3623  * processor it's on.
3624  * @p: target task
3625  * @preempt: whether task preemption is allowed or not
3626  *
3627  * It's the caller's job to ensure that the target task struct
3628  * can't go away on us before we can do any checks.
3629  *
3630  * Return:
3631  *	true (>0) if we indeed boosted the target task.
3632  *	false (0) if we failed to boost the target.
3633  *	-ESRCH if there's no task to yield to.
3634  */
3635 bool __sched yield_to(struct task_struct *p, bool preempt)
3636 {
3637 	struct task_struct *curr = current;
3638 	struct rq *rq, *p_rq;
3639 	unsigned long flags;
3640 	int yielded = 0;
3641 
3642 	local_irq_save(flags);
3643 	rq = this_rq();
3644 
3645 again:
3646 	p_rq = task_rq(p);
3647 	/*
3648 	 * If we're the only runnable task on the rq and target rq also
3649 	 * has only one task, there's absolutely no point in yielding.
3650 	 */
3651 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3652 		yielded = -ESRCH;
3653 		goto out_irq;
3654 	}
3655 
3656 	double_rq_lock(rq, p_rq);
3657 	while (task_rq(p) != p_rq) {
3658 		double_rq_unlock(rq, p_rq);
3659 		goto again;
3660 	}
3661 
3662 	if (!curr->sched_class->yield_to_task)
3663 		goto out_unlock;
3664 
3665 	if (curr->sched_class != p->sched_class)
3666 		goto out_unlock;
3667 
3668 	if (task_running(p_rq, p) || p->state)
3669 		goto out_unlock;
3670 
3671 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3672 	if (yielded) {
3673 		schedstat_inc(rq, yld_count);
3674 		/*
3675 		 * Make p's CPU reschedule; pick_next_entity takes care of
3676 		 * fairness.
3677 		 */
3678 		if (preempt && rq != p_rq)
3679 			resched_task(p_rq->curr);
3680 	}
3681 
3682 out_unlock:
3683 	double_rq_unlock(rq, p_rq);
3684 out_irq:
3685 	local_irq_restore(flags);
3686 
3687 	if (yielded > 0)
3688 		schedule();
3689 
3690 	return yielded;
3691 }
3692 EXPORT_SYMBOL_GPL(yield_to);
3693 
3694 /*
3695  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3696  * that process accounting knows that this is a task in IO wait state.
3697  */
3698 void __sched io_schedule(void)
3699 {
3700 	struct rq *rq = raw_rq();
3701 
3702 	delayacct_blkio_start();
3703 	atomic_inc(&rq->nr_iowait);
3704 	blk_flush_plug(current);
3705 	current->in_iowait = 1;
3706 	schedule();
3707 	current->in_iowait = 0;
3708 	atomic_dec(&rq->nr_iowait);
3709 	delayacct_blkio_end();
3710 }
3711 EXPORT_SYMBOL(io_schedule);
3712 
3713 long __sched io_schedule_timeout(long timeout)
3714 {
3715 	struct rq *rq = raw_rq();
3716 	long ret;
3717 
3718 	delayacct_blkio_start();
3719 	atomic_inc(&rq->nr_iowait);
3720 	blk_flush_plug(current);
3721 	current->in_iowait = 1;
3722 	ret = schedule_timeout(timeout);
3723 	current->in_iowait = 0;
3724 	atomic_dec(&rq->nr_iowait);
3725 	delayacct_blkio_end();
3726 	return ret;
3727 }
3728 
3729 /**
3730  * sys_sched_get_priority_max - return maximum RT priority.
3731  * @policy: scheduling class.
3732  *
3733  * Return: On success, this syscall returns the maximum
3734  * rt_priority that can be used by a given scheduling class.
3735  * On failure, a negative error code is returned.
3736  */
3737 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3738 {
3739 	int ret = -EINVAL;
3740 
3741 	switch (policy) {
3742 	case SCHED_FIFO:
3743 	case SCHED_RR:
3744 		ret = MAX_USER_RT_PRIO-1;
3745 		break;
3746 	case SCHED_NORMAL:
3747 	case SCHED_BATCH:
3748 	case SCHED_IDLE:
3749 		ret = 0;
3750 		break;
3751 	}
3752 	return ret;
3753 }
3754 
3755 /**
3756  * sys_sched_get_priority_min - return minimum RT priority.
3757  * @policy: scheduling class.
3758  *
3759  * Return: On success, this syscall returns the minimum
3760  * rt_priority that can be used by a given scheduling class.
3761  * On failure, a negative error code is returned.
3762  */
3763 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3764 {
3765 	int ret = -EINVAL;
3766 
3767 	switch (policy) {
3768 	case SCHED_FIFO:
3769 	case SCHED_RR:
3770 		ret = 1;
3771 		break;
3772 	case SCHED_NORMAL:
3773 	case SCHED_BATCH:
3774 	case SCHED_IDLE:
3775 		ret = 0;
3776 	}
3777 	return ret;
3778 }
3779 
3780 /**
3781  * sys_sched_rr_get_interval - return the default timeslice of a process.
3782  * @pid: pid of the process.
3783  * @interval: userspace pointer to the timeslice value.
3784  *
3785  * this syscall writes the default timeslice value of a given process
3786  * into the user-space timespec buffer. A value of '0' means infinity.
3787  *
3788  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3789  * an error code.
3790  */
3791 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
3792 		struct timespec __user *, interval)
3793 {
3794 	struct task_struct *p;
3795 	unsigned int time_slice;
3796 	unsigned long flags;
3797 	struct rq *rq;
3798 	int retval;
3799 	struct timespec t;
3800 
3801 	if (pid < 0)
3802 		return -EINVAL;
3803 
3804 	retval = -ESRCH;
3805 	rcu_read_lock();
3806 	p = find_process_by_pid(pid);
3807 	if (!p)
3808 		goto out_unlock;
3809 
3810 	retval = security_task_getscheduler(p);
3811 	if (retval)
3812 		goto out_unlock;
3813 
3814 	rq = task_rq_lock(p, &flags);
3815 	time_slice = p->sched_class->get_rr_interval(rq, p);
3816 	task_rq_unlock(rq, p, &flags);
3817 
3818 	rcu_read_unlock();
3819 	jiffies_to_timespec(time_slice, &t);
3820 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3821 	return retval;
3822 
3823 out_unlock:
3824 	rcu_read_unlock();
3825 	return retval;
3826 }
3827 
3828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
3829 
3830 void sched_show_task(struct task_struct *p)
3831 {
3832 	unsigned long free = 0;
3833 	int ppid;
3834 	unsigned state;
3835 
3836 	state = p->state ? __ffs(p->state) + 1 : 0;
3837 	printk(KERN_INFO "%-15.15s %c", p->comm,
3838 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
3839 #if BITS_PER_LONG == 32
3840 	if (state == TASK_RUNNING)
3841 		printk(KERN_CONT " running  ");
3842 	else
3843 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
3844 #else
3845 	if (state == TASK_RUNNING)
3846 		printk(KERN_CONT "  running task    ");
3847 	else
3848 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
3849 #endif
3850 #ifdef CONFIG_DEBUG_STACK_USAGE
3851 	free = stack_not_used(p);
3852 #endif
3853 	rcu_read_lock();
3854 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
3855 	rcu_read_unlock();
3856 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
3857 		task_pid_nr(p), ppid,
3858 		(unsigned long)task_thread_info(p)->flags);
3859 
3860 	print_worker_info(KERN_INFO, p);
3861 	show_stack(p, NULL);
3862 }
3863 
3864 void show_state_filter(unsigned long state_filter)
3865 {
3866 	struct task_struct *g, *p;
3867 
3868 #if BITS_PER_LONG == 32
3869 	printk(KERN_INFO
3870 		"  task                PC stack   pid father\n");
3871 #else
3872 	printk(KERN_INFO
3873 		"  task                        PC stack   pid father\n");
3874 #endif
3875 	rcu_read_lock();
3876 	do_each_thread(g, p) {
3877 		/*
3878 		 * reset the NMI-timeout, listing all files on a slow
3879 		 * console might take a lot of time:
3880 		 */
3881 		touch_nmi_watchdog();
3882 		if (!state_filter || (p->state & state_filter))
3883 			sched_show_task(p);
3884 	} while_each_thread(g, p);
3885 
3886 	touch_all_softlockup_watchdogs();
3887 
3888 #ifdef CONFIG_SCHED_DEBUG
3889 	sysrq_sched_debug_show();
3890 #endif
3891 	rcu_read_unlock();
3892 	/*
3893 	 * Only show locks if all tasks are dumped:
3894 	 */
3895 	if (!state_filter)
3896 		debug_show_all_locks();
3897 }
3898 
3899 void init_idle_bootup_task(struct task_struct *idle)
3900 {
3901 	idle->sched_class = &idle_sched_class;
3902 }
3903 
3904 /**
3905  * init_idle - set up an idle thread for a given CPU
3906  * @idle: task in question
3907  * @cpu: cpu the idle task belongs to
3908  *
3909  * NOTE: this function does not set the idle thread's NEED_RESCHED
3910  * flag, to make booting more robust.
3911  */
3912 void init_idle(struct task_struct *idle, int cpu)
3913 {
3914 	struct rq *rq = cpu_rq(cpu);
3915 	unsigned long flags;
3916 
3917 	raw_spin_lock_irqsave(&rq->lock, flags);
3918 
3919 	__sched_fork(0, idle);
3920 	idle->state = TASK_RUNNING;
3921 	idle->se.exec_start = sched_clock();
3922 
3923 	do_set_cpus_allowed(idle, cpumask_of(cpu));
3924 	/*
3925 	 * We're having a chicken and egg problem, even though we are
3926 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
3927 	 * lockdep check in task_group() will fail.
3928 	 *
3929 	 * Similar case to sched_fork(). / Alternatively we could
3930 	 * use task_rq_lock() here and obtain the other rq->lock.
3931 	 *
3932 	 * Silence PROVE_RCU
3933 	 */
3934 	rcu_read_lock();
3935 	__set_task_cpu(idle, cpu);
3936 	rcu_read_unlock();
3937 
3938 	rq->curr = rq->idle = idle;
3939 #if defined(CONFIG_SMP)
3940 	idle->on_cpu = 1;
3941 #endif
3942 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3943 
3944 	/* Set the preempt count _outside_ the spinlocks! */
3945 	init_idle_preempt_count(idle, cpu);
3946 
3947 	/*
3948 	 * The idle tasks have their own, simple scheduling class:
3949 	 */
3950 	idle->sched_class = &idle_sched_class;
3951 	ftrace_graph_init_idle_task(idle, cpu);
3952 	vtime_init_idle(idle, cpu);
3953 #if defined(CONFIG_SMP)
3954 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3955 #endif
3956 }
3957 
3958 #ifdef CONFIG_SMP
3959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3960 {
3961 	if (p->sched_class && p->sched_class->set_cpus_allowed)
3962 		p->sched_class->set_cpus_allowed(p, new_mask);
3963 
3964 	cpumask_copy(&p->cpus_allowed, new_mask);
3965 	p->nr_cpus_allowed = cpumask_weight(new_mask);
3966 }
3967 
3968 /*
3969  * This is how migration works:
3970  *
3971  * 1) we invoke migration_cpu_stop() on the target CPU using
3972  *    stop_one_cpu().
3973  * 2) stopper starts to run (implicitly forcing the migrated thread
3974  *    off the CPU)
3975  * 3) it checks whether the migrated task is still in the wrong runqueue.
3976  * 4) if it's in the wrong runqueue then the migration thread removes
3977  *    it and puts it into the right queue.
3978  * 5) stopper completes and stop_one_cpu() returns and the migration
3979  *    is done.
3980  */
3981 
3982 /*
3983  * Change a given task's CPU affinity. Migrate the thread to a
3984  * proper CPU and schedule it away if the CPU it's executing on
3985  * is removed from the allowed bitmask.
3986  *
3987  * NOTE: the caller must have a valid reference to the task, the
3988  * task must not exit() & deallocate itself prematurely. The
3989  * call is not atomic; no spinlocks may be held.
3990  */
3991 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3992 {
3993 	unsigned long flags;
3994 	struct rq *rq;
3995 	unsigned int dest_cpu;
3996 	int ret = 0;
3997 
3998 	rq = task_rq_lock(p, &flags);
3999 
4000 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4001 		goto out;
4002 
4003 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4004 		ret = -EINVAL;
4005 		goto out;
4006 	}
4007 
4008 	do_set_cpus_allowed(p, new_mask);
4009 
4010 	/* Can the task run on the task's current CPU? If so, we're done */
4011 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4012 		goto out;
4013 
4014 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4015 	if (p->on_rq) {
4016 		struct migration_arg arg = { p, dest_cpu };
4017 		/* Need help from migration thread: drop lock and wait. */
4018 		task_rq_unlock(rq, p, &flags);
4019 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4020 		tlb_migrate_finish(p->mm);
4021 		return 0;
4022 	}
4023 out:
4024 	task_rq_unlock(rq, p, &flags);
4025 
4026 	return ret;
4027 }
4028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4029 
4030 /*
4031  * Move (not current) task off this cpu, onto dest cpu. We're doing
4032  * this because either it can't run here any more (set_cpus_allowed()
4033  * away from this CPU, or CPU going down), or because we're
4034  * attempting to rebalance this task on exec (sched_exec).
4035  *
4036  * So we race with normal scheduler movements, but that's OK, as long
4037  * as the task is no longer on this CPU.
4038  *
4039  * Returns non-zero if task was successfully migrated.
4040  */
4041 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4042 {
4043 	struct rq *rq_dest, *rq_src;
4044 	int ret = 0;
4045 
4046 	if (unlikely(!cpu_active(dest_cpu)))
4047 		return ret;
4048 
4049 	rq_src = cpu_rq(src_cpu);
4050 	rq_dest = cpu_rq(dest_cpu);
4051 
4052 	raw_spin_lock(&p->pi_lock);
4053 	double_rq_lock(rq_src, rq_dest);
4054 	/* Already moved. */
4055 	if (task_cpu(p) != src_cpu)
4056 		goto done;
4057 	/* Affinity changed (again). */
4058 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4059 		goto fail;
4060 
4061 	/*
4062 	 * If we're not on a rq, the next wake-up will ensure we're
4063 	 * placed properly.
4064 	 */
4065 	if (p->on_rq) {
4066 		dequeue_task(rq_src, p, 0);
4067 		set_task_cpu(p, dest_cpu);
4068 		enqueue_task(rq_dest, p, 0);
4069 		check_preempt_curr(rq_dest, p, 0);
4070 	}
4071 done:
4072 	ret = 1;
4073 fail:
4074 	double_rq_unlock(rq_src, rq_dest);
4075 	raw_spin_unlock(&p->pi_lock);
4076 	return ret;
4077 }
4078 
4079 #ifdef CONFIG_NUMA_BALANCING
4080 /* Migrate current task p to target_cpu */
4081 int migrate_task_to(struct task_struct *p, int target_cpu)
4082 {
4083 	struct migration_arg arg = { p, target_cpu };
4084 	int curr_cpu = task_cpu(p);
4085 
4086 	if (curr_cpu == target_cpu)
4087 		return 0;
4088 
4089 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4090 		return -EINVAL;
4091 
4092 	/* TODO: This is not properly updating schedstats */
4093 
4094 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4095 }
4096 
4097 /*
4098  * Requeue a task on a given node and accurately track the number of NUMA
4099  * tasks on the runqueues
4100  */
4101 void sched_setnuma(struct task_struct *p, int nid)
4102 {
4103 	struct rq *rq;
4104 	unsigned long flags;
4105 	bool on_rq, running;
4106 
4107 	rq = task_rq_lock(p, &flags);
4108 	on_rq = p->on_rq;
4109 	running = task_current(rq, p);
4110 
4111 	if (on_rq)
4112 		dequeue_task(rq, p, 0);
4113 	if (running)
4114 		p->sched_class->put_prev_task(rq, p);
4115 
4116 	p->numa_preferred_nid = nid;
4117 
4118 	if (running)
4119 		p->sched_class->set_curr_task(rq);
4120 	if (on_rq)
4121 		enqueue_task(rq, p, 0);
4122 	task_rq_unlock(rq, p, &flags);
4123 }
4124 #endif
4125 
4126 /*
4127  * migration_cpu_stop - this will be executed by a highprio stopper thread
4128  * and performs thread migration by bumping thread off CPU then
4129  * 'pushing' onto another runqueue.
4130  */
4131 static int migration_cpu_stop(void *data)
4132 {
4133 	struct migration_arg *arg = data;
4134 
4135 	/*
4136 	 * The original target cpu might have gone down and we might
4137 	 * be on another cpu but it doesn't matter.
4138 	 */
4139 	local_irq_disable();
4140 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4141 	local_irq_enable();
4142 	return 0;
4143 }
4144 
4145 #ifdef CONFIG_HOTPLUG_CPU
4146 
4147 /*
4148  * Ensures that the idle task is using init_mm right before its cpu goes
4149  * offline.
4150  */
4151 void idle_task_exit(void)
4152 {
4153 	struct mm_struct *mm = current->active_mm;
4154 
4155 	BUG_ON(cpu_online(smp_processor_id()));
4156 
4157 	if (mm != &init_mm)
4158 		switch_mm(mm, &init_mm, current);
4159 	mmdrop(mm);
4160 }
4161 
4162 /*
4163  * Since this CPU is going 'away' for a while, fold any nr_active delta
4164  * we might have. Assumes we're called after migrate_tasks() so that the
4165  * nr_active count is stable.
4166  *
4167  * Also see the comment "Global load-average calculations".
4168  */
4169 static void calc_load_migrate(struct rq *rq)
4170 {
4171 	long delta = calc_load_fold_active(rq);
4172 	if (delta)
4173 		atomic_long_add(delta, &calc_load_tasks);
4174 }
4175 
4176 /*
4177  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4178  * try_to_wake_up()->select_task_rq().
4179  *
4180  * Called with rq->lock held even though we'er in stop_machine() and
4181  * there's no concurrency possible, we hold the required locks anyway
4182  * because of lock validation efforts.
4183  */
4184 static void migrate_tasks(unsigned int dead_cpu)
4185 {
4186 	struct rq *rq = cpu_rq(dead_cpu);
4187 	struct task_struct *next, *stop = rq->stop;
4188 	int dest_cpu;
4189 
4190 	/*
4191 	 * Fudge the rq selection such that the below task selection loop
4192 	 * doesn't get stuck on the currently eligible stop task.
4193 	 *
4194 	 * We're currently inside stop_machine() and the rq is either stuck
4195 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4196 	 * either way we should never end up calling schedule() until we're
4197 	 * done here.
4198 	 */
4199 	rq->stop = NULL;
4200 
4201 	/*
4202 	 * put_prev_task() and pick_next_task() sched
4203 	 * class method both need to have an up-to-date
4204 	 * value of rq->clock[_task]
4205 	 */
4206 	update_rq_clock(rq);
4207 
4208 	for ( ; ; ) {
4209 		/*
4210 		 * There's this thread running, bail when that's the only
4211 		 * remaining thread.
4212 		 */
4213 		if (rq->nr_running == 1)
4214 			break;
4215 
4216 		next = pick_next_task(rq);
4217 		BUG_ON(!next);
4218 		next->sched_class->put_prev_task(rq, next);
4219 
4220 		/* Find suitable destination for @next, with force if needed. */
4221 		dest_cpu = select_fallback_rq(dead_cpu, next);
4222 		raw_spin_unlock(&rq->lock);
4223 
4224 		__migrate_task(next, dead_cpu, dest_cpu);
4225 
4226 		raw_spin_lock(&rq->lock);
4227 	}
4228 
4229 	rq->stop = stop;
4230 }
4231 
4232 #endif /* CONFIG_HOTPLUG_CPU */
4233 
4234 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4235 
4236 static struct ctl_table sd_ctl_dir[] = {
4237 	{
4238 		.procname	= "sched_domain",
4239 		.mode		= 0555,
4240 	},
4241 	{}
4242 };
4243 
4244 static struct ctl_table sd_ctl_root[] = {
4245 	{
4246 		.procname	= "kernel",
4247 		.mode		= 0555,
4248 		.child		= sd_ctl_dir,
4249 	},
4250 	{}
4251 };
4252 
4253 static struct ctl_table *sd_alloc_ctl_entry(int n)
4254 {
4255 	struct ctl_table *entry =
4256 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4257 
4258 	return entry;
4259 }
4260 
4261 static void sd_free_ctl_entry(struct ctl_table **tablep)
4262 {
4263 	struct ctl_table *entry;
4264 
4265 	/*
4266 	 * In the intermediate directories, both the child directory and
4267 	 * procname are dynamically allocated and could fail but the mode
4268 	 * will always be set. In the lowest directory the names are
4269 	 * static strings and all have proc handlers.
4270 	 */
4271 	for (entry = *tablep; entry->mode; entry++) {
4272 		if (entry->child)
4273 			sd_free_ctl_entry(&entry->child);
4274 		if (entry->proc_handler == NULL)
4275 			kfree(entry->procname);
4276 	}
4277 
4278 	kfree(*tablep);
4279 	*tablep = NULL;
4280 }
4281 
4282 static int min_load_idx = 0;
4283 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4284 
4285 static void
4286 set_table_entry(struct ctl_table *entry,
4287 		const char *procname, void *data, int maxlen,
4288 		umode_t mode, proc_handler *proc_handler,
4289 		bool load_idx)
4290 {
4291 	entry->procname = procname;
4292 	entry->data = data;
4293 	entry->maxlen = maxlen;
4294 	entry->mode = mode;
4295 	entry->proc_handler = proc_handler;
4296 
4297 	if (load_idx) {
4298 		entry->extra1 = &min_load_idx;
4299 		entry->extra2 = &max_load_idx;
4300 	}
4301 }
4302 
4303 static struct ctl_table *
4304 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4305 {
4306 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4307 
4308 	if (table == NULL)
4309 		return NULL;
4310 
4311 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4312 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4313 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4314 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4315 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4316 		sizeof(int), 0644, proc_dointvec_minmax, true);
4317 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4318 		sizeof(int), 0644, proc_dointvec_minmax, true);
4319 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4320 		sizeof(int), 0644, proc_dointvec_minmax, true);
4321 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4322 		sizeof(int), 0644, proc_dointvec_minmax, true);
4323 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4324 		sizeof(int), 0644, proc_dointvec_minmax, true);
4325 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4326 		sizeof(int), 0644, proc_dointvec_minmax, false);
4327 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4328 		sizeof(int), 0644, proc_dointvec_minmax, false);
4329 	set_table_entry(&table[9], "cache_nice_tries",
4330 		&sd->cache_nice_tries,
4331 		sizeof(int), 0644, proc_dointvec_minmax, false);
4332 	set_table_entry(&table[10], "flags", &sd->flags,
4333 		sizeof(int), 0644, proc_dointvec_minmax, false);
4334 	set_table_entry(&table[11], "name", sd->name,
4335 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4336 	/* &table[12] is terminator */
4337 
4338 	return table;
4339 }
4340 
4341 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4342 {
4343 	struct ctl_table *entry, *table;
4344 	struct sched_domain *sd;
4345 	int domain_num = 0, i;
4346 	char buf[32];
4347 
4348 	for_each_domain(cpu, sd)
4349 		domain_num++;
4350 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4351 	if (table == NULL)
4352 		return NULL;
4353 
4354 	i = 0;
4355 	for_each_domain(cpu, sd) {
4356 		snprintf(buf, 32, "domain%d", i);
4357 		entry->procname = kstrdup(buf, GFP_KERNEL);
4358 		entry->mode = 0555;
4359 		entry->child = sd_alloc_ctl_domain_table(sd);
4360 		entry++;
4361 		i++;
4362 	}
4363 	return table;
4364 }
4365 
4366 static struct ctl_table_header *sd_sysctl_header;
4367 static void register_sched_domain_sysctl(void)
4368 {
4369 	int i, cpu_num = num_possible_cpus();
4370 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4371 	char buf[32];
4372 
4373 	WARN_ON(sd_ctl_dir[0].child);
4374 	sd_ctl_dir[0].child = entry;
4375 
4376 	if (entry == NULL)
4377 		return;
4378 
4379 	for_each_possible_cpu(i) {
4380 		snprintf(buf, 32, "cpu%d", i);
4381 		entry->procname = kstrdup(buf, GFP_KERNEL);
4382 		entry->mode = 0555;
4383 		entry->child = sd_alloc_ctl_cpu_table(i);
4384 		entry++;
4385 	}
4386 
4387 	WARN_ON(sd_sysctl_header);
4388 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4389 }
4390 
4391 /* may be called multiple times per register */
4392 static void unregister_sched_domain_sysctl(void)
4393 {
4394 	if (sd_sysctl_header)
4395 		unregister_sysctl_table(sd_sysctl_header);
4396 	sd_sysctl_header = NULL;
4397 	if (sd_ctl_dir[0].child)
4398 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4399 }
4400 #else
4401 static void register_sched_domain_sysctl(void)
4402 {
4403 }
4404 static void unregister_sched_domain_sysctl(void)
4405 {
4406 }
4407 #endif
4408 
4409 static void set_rq_online(struct rq *rq)
4410 {
4411 	if (!rq->online) {
4412 		const struct sched_class *class;
4413 
4414 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4415 		rq->online = 1;
4416 
4417 		for_each_class(class) {
4418 			if (class->rq_online)
4419 				class->rq_online(rq);
4420 		}
4421 	}
4422 }
4423 
4424 static void set_rq_offline(struct rq *rq)
4425 {
4426 	if (rq->online) {
4427 		const struct sched_class *class;
4428 
4429 		for_each_class(class) {
4430 			if (class->rq_offline)
4431 				class->rq_offline(rq);
4432 		}
4433 
4434 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4435 		rq->online = 0;
4436 	}
4437 }
4438 
4439 /*
4440  * migration_call - callback that gets triggered when a CPU is added.
4441  * Here we can start up the necessary migration thread for the new CPU.
4442  */
4443 static int
4444 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4445 {
4446 	int cpu = (long)hcpu;
4447 	unsigned long flags;
4448 	struct rq *rq = cpu_rq(cpu);
4449 
4450 	switch (action & ~CPU_TASKS_FROZEN) {
4451 
4452 	case CPU_UP_PREPARE:
4453 		rq->calc_load_update = calc_load_update;
4454 		break;
4455 
4456 	case CPU_ONLINE:
4457 		/* Update our root-domain */
4458 		raw_spin_lock_irqsave(&rq->lock, flags);
4459 		if (rq->rd) {
4460 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4461 
4462 			set_rq_online(rq);
4463 		}
4464 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4465 		break;
4466 
4467 #ifdef CONFIG_HOTPLUG_CPU
4468 	case CPU_DYING:
4469 		sched_ttwu_pending();
4470 		/* Update our root-domain */
4471 		raw_spin_lock_irqsave(&rq->lock, flags);
4472 		if (rq->rd) {
4473 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4474 			set_rq_offline(rq);
4475 		}
4476 		migrate_tasks(cpu);
4477 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4478 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4479 		break;
4480 
4481 	case CPU_DEAD:
4482 		calc_load_migrate(rq);
4483 		break;
4484 #endif
4485 	}
4486 
4487 	update_max_interval();
4488 
4489 	return NOTIFY_OK;
4490 }
4491 
4492 /*
4493  * Register at high priority so that task migration (migrate_all_tasks)
4494  * happens before everything else.  This has to be lower priority than
4495  * the notifier in the perf_event subsystem, though.
4496  */
4497 static struct notifier_block migration_notifier = {
4498 	.notifier_call = migration_call,
4499 	.priority = CPU_PRI_MIGRATION,
4500 };
4501 
4502 static int sched_cpu_active(struct notifier_block *nfb,
4503 				      unsigned long action, void *hcpu)
4504 {
4505 	switch (action & ~CPU_TASKS_FROZEN) {
4506 	case CPU_STARTING:
4507 	case CPU_DOWN_FAILED:
4508 		set_cpu_active((long)hcpu, true);
4509 		return NOTIFY_OK;
4510 	default:
4511 		return NOTIFY_DONE;
4512 	}
4513 }
4514 
4515 static int sched_cpu_inactive(struct notifier_block *nfb,
4516 					unsigned long action, void *hcpu)
4517 {
4518 	switch (action & ~CPU_TASKS_FROZEN) {
4519 	case CPU_DOWN_PREPARE:
4520 		set_cpu_active((long)hcpu, false);
4521 		return NOTIFY_OK;
4522 	default:
4523 		return NOTIFY_DONE;
4524 	}
4525 }
4526 
4527 static int __init migration_init(void)
4528 {
4529 	void *cpu = (void *)(long)smp_processor_id();
4530 	int err;
4531 
4532 	/* Initialize migration for the boot CPU */
4533 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4534 	BUG_ON(err == NOTIFY_BAD);
4535 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4536 	register_cpu_notifier(&migration_notifier);
4537 
4538 	/* Register cpu active notifiers */
4539 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4540 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4541 
4542 	return 0;
4543 }
4544 early_initcall(migration_init);
4545 #endif
4546 
4547 #ifdef CONFIG_SMP
4548 
4549 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4550 
4551 #ifdef CONFIG_SCHED_DEBUG
4552 
4553 static __read_mostly int sched_debug_enabled;
4554 
4555 static int __init sched_debug_setup(char *str)
4556 {
4557 	sched_debug_enabled = 1;
4558 
4559 	return 0;
4560 }
4561 early_param("sched_debug", sched_debug_setup);
4562 
4563 static inline bool sched_debug(void)
4564 {
4565 	return sched_debug_enabled;
4566 }
4567 
4568 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4569 				  struct cpumask *groupmask)
4570 {
4571 	struct sched_group *group = sd->groups;
4572 	char str[256];
4573 
4574 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4575 	cpumask_clear(groupmask);
4576 
4577 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4578 
4579 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4580 		printk("does not load-balance\n");
4581 		if (sd->parent)
4582 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4583 					" has parent");
4584 		return -1;
4585 	}
4586 
4587 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4588 
4589 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4590 		printk(KERN_ERR "ERROR: domain->span does not contain "
4591 				"CPU%d\n", cpu);
4592 	}
4593 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4594 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4595 				" CPU%d\n", cpu);
4596 	}
4597 
4598 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4599 	do {
4600 		if (!group) {
4601 			printk("\n");
4602 			printk(KERN_ERR "ERROR: group is NULL\n");
4603 			break;
4604 		}
4605 
4606 		/*
4607 		 * Even though we initialize ->power to something semi-sane,
4608 		 * we leave power_orig unset. This allows us to detect if
4609 		 * domain iteration is still funny without causing /0 traps.
4610 		 */
4611 		if (!group->sgp->power_orig) {
4612 			printk(KERN_CONT "\n");
4613 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4614 					"set\n");
4615 			break;
4616 		}
4617 
4618 		if (!cpumask_weight(sched_group_cpus(group))) {
4619 			printk(KERN_CONT "\n");
4620 			printk(KERN_ERR "ERROR: empty group\n");
4621 			break;
4622 		}
4623 
4624 		if (!(sd->flags & SD_OVERLAP) &&
4625 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4626 			printk(KERN_CONT "\n");
4627 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4628 			break;
4629 		}
4630 
4631 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4632 
4633 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4634 
4635 		printk(KERN_CONT " %s", str);
4636 		if (group->sgp->power != SCHED_POWER_SCALE) {
4637 			printk(KERN_CONT " (cpu_power = %d)",
4638 				group->sgp->power);
4639 		}
4640 
4641 		group = group->next;
4642 	} while (group != sd->groups);
4643 	printk(KERN_CONT "\n");
4644 
4645 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4646 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4647 
4648 	if (sd->parent &&
4649 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4650 		printk(KERN_ERR "ERROR: parent span is not a superset "
4651 			"of domain->span\n");
4652 	return 0;
4653 }
4654 
4655 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4656 {
4657 	int level = 0;
4658 
4659 	if (!sched_debug_enabled)
4660 		return;
4661 
4662 	if (!sd) {
4663 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4664 		return;
4665 	}
4666 
4667 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4668 
4669 	for (;;) {
4670 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4671 			break;
4672 		level++;
4673 		sd = sd->parent;
4674 		if (!sd)
4675 			break;
4676 	}
4677 }
4678 #else /* !CONFIG_SCHED_DEBUG */
4679 # define sched_domain_debug(sd, cpu) do { } while (0)
4680 static inline bool sched_debug(void)
4681 {
4682 	return false;
4683 }
4684 #endif /* CONFIG_SCHED_DEBUG */
4685 
4686 static int sd_degenerate(struct sched_domain *sd)
4687 {
4688 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4689 		return 1;
4690 
4691 	/* Following flags need at least 2 groups */
4692 	if (sd->flags & (SD_LOAD_BALANCE |
4693 			 SD_BALANCE_NEWIDLE |
4694 			 SD_BALANCE_FORK |
4695 			 SD_BALANCE_EXEC |
4696 			 SD_SHARE_CPUPOWER |
4697 			 SD_SHARE_PKG_RESOURCES)) {
4698 		if (sd->groups != sd->groups->next)
4699 			return 0;
4700 	}
4701 
4702 	/* Following flags don't use groups */
4703 	if (sd->flags & (SD_WAKE_AFFINE))
4704 		return 0;
4705 
4706 	return 1;
4707 }
4708 
4709 static int
4710 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4711 {
4712 	unsigned long cflags = sd->flags, pflags = parent->flags;
4713 
4714 	if (sd_degenerate(parent))
4715 		return 1;
4716 
4717 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4718 		return 0;
4719 
4720 	/* Flags needing groups don't count if only 1 group in parent */
4721 	if (parent->groups == parent->groups->next) {
4722 		pflags &= ~(SD_LOAD_BALANCE |
4723 				SD_BALANCE_NEWIDLE |
4724 				SD_BALANCE_FORK |
4725 				SD_BALANCE_EXEC |
4726 				SD_SHARE_CPUPOWER |
4727 				SD_SHARE_PKG_RESOURCES |
4728 				SD_PREFER_SIBLING);
4729 		if (nr_node_ids == 1)
4730 			pflags &= ~SD_SERIALIZE;
4731 	}
4732 	if (~cflags & pflags)
4733 		return 0;
4734 
4735 	return 1;
4736 }
4737 
4738 static void free_rootdomain(struct rcu_head *rcu)
4739 {
4740 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4741 
4742 	cpupri_cleanup(&rd->cpupri);
4743 	free_cpumask_var(rd->rto_mask);
4744 	free_cpumask_var(rd->online);
4745 	free_cpumask_var(rd->span);
4746 	kfree(rd);
4747 }
4748 
4749 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4750 {
4751 	struct root_domain *old_rd = NULL;
4752 	unsigned long flags;
4753 
4754 	raw_spin_lock_irqsave(&rq->lock, flags);
4755 
4756 	if (rq->rd) {
4757 		old_rd = rq->rd;
4758 
4759 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4760 			set_rq_offline(rq);
4761 
4762 		cpumask_clear_cpu(rq->cpu, old_rd->span);
4763 
4764 		/*
4765 		 * If we dont want to free the old_rt yet then
4766 		 * set old_rd to NULL to skip the freeing later
4767 		 * in this function:
4768 		 */
4769 		if (!atomic_dec_and_test(&old_rd->refcount))
4770 			old_rd = NULL;
4771 	}
4772 
4773 	atomic_inc(&rd->refcount);
4774 	rq->rd = rd;
4775 
4776 	cpumask_set_cpu(rq->cpu, rd->span);
4777 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4778 		set_rq_online(rq);
4779 
4780 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4781 
4782 	if (old_rd)
4783 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4784 }
4785 
4786 static int init_rootdomain(struct root_domain *rd)
4787 {
4788 	memset(rd, 0, sizeof(*rd));
4789 
4790 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4791 		goto out;
4792 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4793 		goto free_span;
4794 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4795 		goto free_online;
4796 
4797 	if (cpupri_init(&rd->cpupri) != 0)
4798 		goto free_rto_mask;
4799 	return 0;
4800 
4801 free_rto_mask:
4802 	free_cpumask_var(rd->rto_mask);
4803 free_online:
4804 	free_cpumask_var(rd->online);
4805 free_span:
4806 	free_cpumask_var(rd->span);
4807 out:
4808 	return -ENOMEM;
4809 }
4810 
4811 /*
4812  * By default the system creates a single root-domain with all cpus as
4813  * members (mimicking the global state we have today).
4814  */
4815 struct root_domain def_root_domain;
4816 
4817 static void init_defrootdomain(void)
4818 {
4819 	init_rootdomain(&def_root_domain);
4820 
4821 	atomic_set(&def_root_domain.refcount, 1);
4822 }
4823 
4824 static struct root_domain *alloc_rootdomain(void)
4825 {
4826 	struct root_domain *rd;
4827 
4828 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4829 	if (!rd)
4830 		return NULL;
4831 
4832 	if (init_rootdomain(rd) != 0) {
4833 		kfree(rd);
4834 		return NULL;
4835 	}
4836 
4837 	return rd;
4838 }
4839 
4840 static void free_sched_groups(struct sched_group *sg, int free_sgp)
4841 {
4842 	struct sched_group *tmp, *first;
4843 
4844 	if (!sg)
4845 		return;
4846 
4847 	first = sg;
4848 	do {
4849 		tmp = sg->next;
4850 
4851 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4852 			kfree(sg->sgp);
4853 
4854 		kfree(sg);
4855 		sg = tmp;
4856 	} while (sg != first);
4857 }
4858 
4859 static void free_sched_domain(struct rcu_head *rcu)
4860 {
4861 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
4862 
4863 	/*
4864 	 * If its an overlapping domain it has private groups, iterate and
4865 	 * nuke them all.
4866 	 */
4867 	if (sd->flags & SD_OVERLAP) {
4868 		free_sched_groups(sd->groups, 1);
4869 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
4870 		kfree(sd->groups->sgp);
4871 		kfree(sd->groups);
4872 	}
4873 	kfree(sd);
4874 }
4875 
4876 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4877 {
4878 	call_rcu(&sd->rcu, free_sched_domain);
4879 }
4880 
4881 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4882 {
4883 	for (; sd; sd = sd->parent)
4884 		destroy_sched_domain(sd, cpu);
4885 }
4886 
4887 /*
4888  * Keep a special pointer to the highest sched_domain that has
4889  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4890  * allows us to avoid some pointer chasing select_idle_sibling().
4891  *
4892  * Also keep a unique ID per domain (we use the first cpu number in
4893  * the cpumask of the domain), this allows us to quickly tell if
4894  * two cpus are in the same cache domain, see cpus_share_cache().
4895  */
4896 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
4897 DEFINE_PER_CPU(int, sd_llc_size);
4898 DEFINE_PER_CPU(int, sd_llc_id);
4899 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
4900 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4901 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
4902 
4903 static void update_top_cache_domain(int cpu)
4904 {
4905 	struct sched_domain *sd;
4906 	int id = cpu;
4907 	int size = 1;
4908 
4909 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
4910 	if (sd) {
4911 		id = cpumask_first(sched_domain_span(sd));
4912 		size = cpumask_weight(sched_domain_span(sd));
4913 		rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
4914 	}
4915 
4916 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
4917 	per_cpu(sd_llc_size, cpu) = size;
4918 	per_cpu(sd_llc_id, cpu) = id;
4919 
4920 	sd = lowest_flag_domain(cpu, SD_NUMA);
4921 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
4922 
4923 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4924 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
4925 }
4926 
4927 /*
4928  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4929  * hold the hotplug lock.
4930  */
4931 static void
4932 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
4933 {
4934 	struct rq *rq = cpu_rq(cpu);
4935 	struct sched_domain *tmp;
4936 
4937 	/* Remove the sched domains which do not contribute to scheduling. */
4938 	for (tmp = sd; tmp; ) {
4939 		struct sched_domain *parent = tmp->parent;
4940 		if (!parent)
4941 			break;
4942 
4943 		if (sd_parent_degenerate(tmp, parent)) {
4944 			tmp->parent = parent->parent;
4945 			if (parent->parent)
4946 				parent->parent->child = tmp;
4947 			/*
4948 			 * Transfer SD_PREFER_SIBLING down in case of a
4949 			 * degenerate parent; the spans match for this
4950 			 * so the property transfers.
4951 			 */
4952 			if (parent->flags & SD_PREFER_SIBLING)
4953 				tmp->flags |= SD_PREFER_SIBLING;
4954 			destroy_sched_domain(parent, cpu);
4955 		} else
4956 			tmp = tmp->parent;
4957 	}
4958 
4959 	if (sd && sd_degenerate(sd)) {
4960 		tmp = sd;
4961 		sd = sd->parent;
4962 		destroy_sched_domain(tmp, cpu);
4963 		if (sd)
4964 			sd->child = NULL;
4965 	}
4966 
4967 	sched_domain_debug(sd, cpu);
4968 
4969 	rq_attach_root(rq, rd);
4970 	tmp = rq->sd;
4971 	rcu_assign_pointer(rq->sd, sd);
4972 	destroy_sched_domains(tmp, cpu);
4973 
4974 	update_top_cache_domain(cpu);
4975 }
4976 
4977 /* cpus with isolated domains */
4978 static cpumask_var_t cpu_isolated_map;
4979 
4980 /* Setup the mask of cpus configured for isolated domains */
4981 static int __init isolated_cpu_setup(char *str)
4982 {
4983 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
4984 	cpulist_parse(str, cpu_isolated_map);
4985 	return 1;
4986 }
4987 
4988 __setup("isolcpus=", isolated_cpu_setup);
4989 
4990 static const struct cpumask *cpu_cpu_mask(int cpu)
4991 {
4992 	return cpumask_of_node(cpu_to_node(cpu));
4993 }
4994 
4995 struct sd_data {
4996 	struct sched_domain **__percpu sd;
4997 	struct sched_group **__percpu sg;
4998 	struct sched_group_power **__percpu sgp;
4999 };
5000 
5001 struct s_data {
5002 	struct sched_domain ** __percpu sd;
5003 	struct root_domain	*rd;
5004 };
5005 
5006 enum s_alloc {
5007 	sa_rootdomain,
5008 	sa_sd,
5009 	sa_sd_storage,
5010 	sa_none,
5011 };
5012 
5013 struct sched_domain_topology_level;
5014 
5015 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5016 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5017 
5018 #define SDTL_OVERLAP	0x01
5019 
5020 struct sched_domain_topology_level {
5021 	sched_domain_init_f init;
5022 	sched_domain_mask_f mask;
5023 	int		    flags;
5024 	int		    numa_level;
5025 	struct sd_data      data;
5026 };
5027 
5028 /*
5029  * Build an iteration mask that can exclude certain CPUs from the upwards
5030  * domain traversal.
5031  *
5032  * Asymmetric node setups can result in situations where the domain tree is of
5033  * unequal depth, make sure to skip domains that already cover the entire
5034  * range.
5035  *
5036  * In that case build_sched_domains() will have terminated the iteration early
5037  * and our sibling sd spans will be empty. Domains should always include the
5038  * cpu they're built on, so check that.
5039  *
5040  */
5041 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5042 {
5043 	const struct cpumask *span = sched_domain_span(sd);
5044 	struct sd_data *sdd = sd->private;
5045 	struct sched_domain *sibling;
5046 	int i;
5047 
5048 	for_each_cpu(i, span) {
5049 		sibling = *per_cpu_ptr(sdd->sd, i);
5050 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5051 			continue;
5052 
5053 		cpumask_set_cpu(i, sched_group_mask(sg));
5054 	}
5055 }
5056 
5057 /*
5058  * Return the canonical balance cpu for this group, this is the first cpu
5059  * of this group that's also in the iteration mask.
5060  */
5061 int group_balance_cpu(struct sched_group *sg)
5062 {
5063 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5064 }
5065 
5066 static int
5067 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5068 {
5069 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5070 	const struct cpumask *span = sched_domain_span(sd);
5071 	struct cpumask *covered = sched_domains_tmpmask;
5072 	struct sd_data *sdd = sd->private;
5073 	struct sched_domain *child;
5074 	int i;
5075 
5076 	cpumask_clear(covered);
5077 
5078 	for_each_cpu(i, span) {
5079 		struct cpumask *sg_span;
5080 
5081 		if (cpumask_test_cpu(i, covered))
5082 			continue;
5083 
5084 		child = *per_cpu_ptr(sdd->sd, i);
5085 
5086 		/* See the comment near build_group_mask(). */
5087 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5088 			continue;
5089 
5090 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5091 				GFP_KERNEL, cpu_to_node(cpu));
5092 
5093 		if (!sg)
5094 			goto fail;
5095 
5096 		sg_span = sched_group_cpus(sg);
5097 		if (child->child) {
5098 			child = child->child;
5099 			cpumask_copy(sg_span, sched_domain_span(child));
5100 		} else
5101 			cpumask_set_cpu(i, sg_span);
5102 
5103 		cpumask_or(covered, covered, sg_span);
5104 
5105 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5106 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5107 			build_group_mask(sd, sg);
5108 
5109 		/*
5110 		 * Initialize sgp->power such that even if we mess up the
5111 		 * domains and no possible iteration will get us here, we won't
5112 		 * die on a /0 trap.
5113 		 */
5114 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5115 
5116 		/*
5117 		 * Make sure the first group of this domain contains the
5118 		 * canonical balance cpu. Otherwise the sched_domain iteration
5119 		 * breaks. See update_sg_lb_stats().
5120 		 */
5121 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5122 		    group_balance_cpu(sg) == cpu)
5123 			groups = sg;
5124 
5125 		if (!first)
5126 			first = sg;
5127 		if (last)
5128 			last->next = sg;
5129 		last = sg;
5130 		last->next = first;
5131 	}
5132 	sd->groups = groups;
5133 
5134 	return 0;
5135 
5136 fail:
5137 	free_sched_groups(first, 0);
5138 
5139 	return -ENOMEM;
5140 }
5141 
5142 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5143 {
5144 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5145 	struct sched_domain *child = sd->child;
5146 
5147 	if (child)
5148 		cpu = cpumask_first(sched_domain_span(child));
5149 
5150 	if (sg) {
5151 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5152 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5153 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5154 	}
5155 
5156 	return cpu;
5157 }
5158 
5159 /*
5160  * build_sched_groups will build a circular linked list of the groups
5161  * covered by the given span, and will set each group's ->cpumask correctly,
5162  * and ->cpu_power to 0.
5163  *
5164  * Assumes the sched_domain tree is fully constructed
5165  */
5166 static int
5167 build_sched_groups(struct sched_domain *sd, int cpu)
5168 {
5169 	struct sched_group *first = NULL, *last = NULL;
5170 	struct sd_data *sdd = sd->private;
5171 	const struct cpumask *span = sched_domain_span(sd);
5172 	struct cpumask *covered;
5173 	int i;
5174 
5175 	get_group(cpu, sdd, &sd->groups);
5176 	atomic_inc(&sd->groups->ref);
5177 
5178 	if (cpu != cpumask_first(span))
5179 		return 0;
5180 
5181 	lockdep_assert_held(&sched_domains_mutex);
5182 	covered = sched_domains_tmpmask;
5183 
5184 	cpumask_clear(covered);
5185 
5186 	for_each_cpu(i, span) {
5187 		struct sched_group *sg;
5188 		int group, j;
5189 
5190 		if (cpumask_test_cpu(i, covered))
5191 			continue;
5192 
5193 		group = get_group(i, sdd, &sg);
5194 		cpumask_clear(sched_group_cpus(sg));
5195 		sg->sgp->power = 0;
5196 		cpumask_setall(sched_group_mask(sg));
5197 
5198 		for_each_cpu(j, span) {
5199 			if (get_group(j, sdd, NULL) != group)
5200 				continue;
5201 
5202 			cpumask_set_cpu(j, covered);
5203 			cpumask_set_cpu(j, sched_group_cpus(sg));
5204 		}
5205 
5206 		if (!first)
5207 			first = sg;
5208 		if (last)
5209 			last->next = sg;
5210 		last = sg;
5211 	}
5212 	last->next = first;
5213 
5214 	return 0;
5215 }
5216 
5217 /*
5218  * Initialize sched groups cpu_power.
5219  *
5220  * cpu_power indicates the capacity of sched group, which is used while
5221  * distributing the load between different sched groups in a sched domain.
5222  * Typically cpu_power for all the groups in a sched domain will be same unless
5223  * there are asymmetries in the topology. If there are asymmetries, group
5224  * having more cpu_power will pickup more load compared to the group having
5225  * less cpu_power.
5226  */
5227 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5228 {
5229 	struct sched_group *sg = sd->groups;
5230 
5231 	WARN_ON(!sg);
5232 
5233 	do {
5234 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5235 		sg = sg->next;
5236 	} while (sg != sd->groups);
5237 
5238 	if (cpu != group_balance_cpu(sg))
5239 		return;
5240 
5241 	update_group_power(sd, cpu);
5242 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5243 }
5244 
5245 int __weak arch_sd_sibling_asym_packing(void)
5246 {
5247        return 0*SD_ASYM_PACKING;
5248 }
5249 
5250 /*
5251  * Initializers for schedule domains
5252  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5253  */
5254 
5255 #ifdef CONFIG_SCHED_DEBUG
5256 # define SD_INIT_NAME(sd, type)		sd->name = #type
5257 #else
5258 # define SD_INIT_NAME(sd, type)		do { } while (0)
5259 #endif
5260 
5261 #define SD_INIT_FUNC(type)						\
5262 static noinline struct sched_domain *					\
5263 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5264 {									\
5265 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5266 	*sd = SD_##type##_INIT;						\
5267 	SD_INIT_NAME(sd, type);						\
5268 	sd->private = &tl->data;					\
5269 	return sd;							\
5270 }
5271 
5272 SD_INIT_FUNC(CPU)
5273 #ifdef CONFIG_SCHED_SMT
5274  SD_INIT_FUNC(SIBLING)
5275 #endif
5276 #ifdef CONFIG_SCHED_MC
5277  SD_INIT_FUNC(MC)
5278 #endif
5279 #ifdef CONFIG_SCHED_BOOK
5280  SD_INIT_FUNC(BOOK)
5281 #endif
5282 
5283 static int default_relax_domain_level = -1;
5284 int sched_domain_level_max;
5285 
5286 static int __init setup_relax_domain_level(char *str)
5287 {
5288 	if (kstrtoint(str, 0, &default_relax_domain_level))
5289 		pr_warn("Unable to set relax_domain_level\n");
5290 
5291 	return 1;
5292 }
5293 __setup("relax_domain_level=", setup_relax_domain_level);
5294 
5295 static void set_domain_attribute(struct sched_domain *sd,
5296 				 struct sched_domain_attr *attr)
5297 {
5298 	int request;
5299 
5300 	if (!attr || attr->relax_domain_level < 0) {
5301 		if (default_relax_domain_level < 0)
5302 			return;
5303 		else
5304 			request = default_relax_domain_level;
5305 	} else
5306 		request = attr->relax_domain_level;
5307 	if (request < sd->level) {
5308 		/* turn off idle balance on this domain */
5309 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5310 	} else {
5311 		/* turn on idle balance on this domain */
5312 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5313 	}
5314 }
5315 
5316 static void __sdt_free(const struct cpumask *cpu_map);
5317 static int __sdt_alloc(const struct cpumask *cpu_map);
5318 
5319 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5320 				 const struct cpumask *cpu_map)
5321 {
5322 	switch (what) {
5323 	case sa_rootdomain:
5324 		if (!atomic_read(&d->rd->refcount))
5325 			free_rootdomain(&d->rd->rcu); /* fall through */
5326 	case sa_sd:
5327 		free_percpu(d->sd); /* fall through */
5328 	case sa_sd_storage:
5329 		__sdt_free(cpu_map); /* fall through */
5330 	case sa_none:
5331 		break;
5332 	}
5333 }
5334 
5335 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5336 						   const struct cpumask *cpu_map)
5337 {
5338 	memset(d, 0, sizeof(*d));
5339 
5340 	if (__sdt_alloc(cpu_map))
5341 		return sa_sd_storage;
5342 	d->sd = alloc_percpu(struct sched_domain *);
5343 	if (!d->sd)
5344 		return sa_sd_storage;
5345 	d->rd = alloc_rootdomain();
5346 	if (!d->rd)
5347 		return sa_sd;
5348 	return sa_rootdomain;
5349 }
5350 
5351 /*
5352  * NULL the sd_data elements we've used to build the sched_domain and
5353  * sched_group structure so that the subsequent __free_domain_allocs()
5354  * will not free the data we're using.
5355  */
5356 static void claim_allocations(int cpu, struct sched_domain *sd)
5357 {
5358 	struct sd_data *sdd = sd->private;
5359 
5360 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5361 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5362 
5363 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5364 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5365 
5366 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5367 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5368 }
5369 
5370 #ifdef CONFIG_SCHED_SMT
5371 static const struct cpumask *cpu_smt_mask(int cpu)
5372 {
5373 	return topology_thread_cpumask(cpu);
5374 }
5375 #endif
5376 
5377 /*
5378  * Topology list, bottom-up.
5379  */
5380 static struct sched_domain_topology_level default_topology[] = {
5381 #ifdef CONFIG_SCHED_SMT
5382 	{ sd_init_SIBLING, cpu_smt_mask, },
5383 #endif
5384 #ifdef CONFIG_SCHED_MC
5385 	{ sd_init_MC, cpu_coregroup_mask, },
5386 #endif
5387 #ifdef CONFIG_SCHED_BOOK
5388 	{ sd_init_BOOK, cpu_book_mask, },
5389 #endif
5390 	{ sd_init_CPU, cpu_cpu_mask, },
5391 	{ NULL, },
5392 };
5393 
5394 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5395 
5396 #define for_each_sd_topology(tl)			\
5397 	for (tl = sched_domain_topology; tl->init; tl++)
5398 
5399 #ifdef CONFIG_NUMA
5400 
5401 static int sched_domains_numa_levels;
5402 static int *sched_domains_numa_distance;
5403 static struct cpumask ***sched_domains_numa_masks;
5404 static int sched_domains_curr_level;
5405 
5406 static inline int sd_local_flags(int level)
5407 {
5408 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5409 		return 0;
5410 
5411 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5412 }
5413 
5414 static struct sched_domain *
5415 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5416 {
5417 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5418 	int level = tl->numa_level;
5419 	int sd_weight = cpumask_weight(
5420 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5421 
5422 	*sd = (struct sched_domain){
5423 		.min_interval		= sd_weight,
5424 		.max_interval		= 2*sd_weight,
5425 		.busy_factor		= 32,
5426 		.imbalance_pct		= 125,
5427 		.cache_nice_tries	= 2,
5428 		.busy_idx		= 3,
5429 		.idle_idx		= 2,
5430 		.newidle_idx		= 0,
5431 		.wake_idx		= 0,
5432 		.forkexec_idx		= 0,
5433 
5434 		.flags			= 1*SD_LOAD_BALANCE
5435 					| 1*SD_BALANCE_NEWIDLE
5436 					| 0*SD_BALANCE_EXEC
5437 					| 0*SD_BALANCE_FORK
5438 					| 0*SD_BALANCE_WAKE
5439 					| 0*SD_WAKE_AFFINE
5440 					| 0*SD_SHARE_CPUPOWER
5441 					| 0*SD_SHARE_PKG_RESOURCES
5442 					| 1*SD_SERIALIZE
5443 					| 0*SD_PREFER_SIBLING
5444 					| 1*SD_NUMA
5445 					| sd_local_flags(level)
5446 					,
5447 		.last_balance		= jiffies,
5448 		.balance_interval	= sd_weight,
5449 	};
5450 	SD_INIT_NAME(sd, NUMA);
5451 	sd->private = &tl->data;
5452 
5453 	/*
5454 	 * Ugly hack to pass state to sd_numa_mask()...
5455 	 */
5456 	sched_domains_curr_level = tl->numa_level;
5457 
5458 	return sd;
5459 }
5460 
5461 static const struct cpumask *sd_numa_mask(int cpu)
5462 {
5463 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5464 }
5465 
5466 static void sched_numa_warn(const char *str)
5467 {
5468 	static int done = false;
5469 	int i,j;
5470 
5471 	if (done)
5472 		return;
5473 
5474 	done = true;
5475 
5476 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5477 
5478 	for (i = 0; i < nr_node_ids; i++) {
5479 		printk(KERN_WARNING "  ");
5480 		for (j = 0; j < nr_node_ids; j++)
5481 			printk(KERN_CONT "%02d ", node_distance(i,j));
5482 		printk(KERN_CONT "\n");
5483 	}
5484 	printk(KERN_WARNING "\n");
5485 }
5486 
5487 static bool find_numa_distance(int distance)
5488 {
5489 	int i;
5490 
5491 	if (distance == node_distance(0, 0))
5492 		return true;
5493 
5494 	for (i = 0; i < sched_domains_numa_levels; i++) {
5495 		if (sched_domains_numa_distance[i] == distance)
5496 			return true;
5497 	}
5498 
5499 	return false;
5500 }
5501 
5502 static void sched_init_numa(void)
5503 {
5504 	int next_distance, curr_distance = node_distance(0, 0);
5505 	struct sched_domain_topology_level *tl;
5506 	int level = 0;
5507 	int i, j, k;
5508 
5509 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5510 	if (!sched_domains_numa_distance)
5511 		return;
5512 
5513 	/*
5514 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5515 	 * unique distances in the node_distance() table.
5516 	 *
5517 	 * Assumes node_distance(0,j) includes all distances in
5518 	 * node_distance(i,j) in order to avoid cubic time.
5519 	 */
5520 	next_distance = curr_distance;
5521 	for (i = 0; i < nr_node_ids; i++) {
5522 		for (j = 0; j < nr_node_ids; j++) {
5523 			for (k = 0; k < nr_node_ids; k++) {
5524 				int distance = node_distance(i, k);
5525 
5526 				if (distance > curr_distance &&
5527 				    (distance < next_distance ||
5528 				     next_distance == curr_distance))
5529 					next_distance = distance;
5530 
5531 				/*
5532 				 * While not a strong assumption it would be nice to know
5533 				 * about cases where if node A is connected to B, B is not
5534 				 * equally connected to A.
5535 				 */
5536 				if (sched_debug() && node_distance(k, i) != distance)
5537 					sched_numa_warn("Node-distance not symmetric");
5538 
5539 				if (sched_debug() && i && !find_numa_distance(distance))
5540 					sched_numa_warn("Node-0 not representative");
5541 			}
5542 			if (next_distance != curr_distance) {
5543 				sched_domains_numa_distance[level++] = next_distance;
5544 				sched_domains_numa_levels = level;
5545 				curr_distance = next_distance;
5546 			} else break;
5547 		}
5548 
5549 		/*
5550 		 * In case of sched_debug() we verify the above assumption.
5551 		 */
5552 		if (!sched_debug())
5553 			break;
5554 	}
5555 	/*
5556 	 * 'level' contains the number of unique distances, excluding the
5557 	 * identity distance node_distance(i,i).
5558 	 *
5559 	 * The sched_domains_numa_distance[] array includes the actual distance
5560 	 * numbers.
5561 	 */
5562 
5563 	/*
5564 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5565 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5566 	 * the array will contain less then 'level' members. This could be
5567 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5568 	 * in other functions.
5569 	 *
5570 	 * We reset it to 'level' at the end of this function.
5571 	 */
5572 	sched_domains_numa_levels = 0;
5573 
5574 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5575 	if (!sched_domains_numa_masks)
5576 		return;
5577 
5578 	/*
5579 	 * Now for each level, construct a mask per node which contains all
5580 	 * cpus of nodes that are that many hops away from us.
5581 	 */
5582 	for (i = 0; i < level; i++) {
5583 		sched_domains_numa_masks[i] =
5584 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5585 		if (!sched_domains_numa_masks[i])
5586 			return;
5587 
5588 		for (j = 0; j < nr_node_ids; j++) {
5589 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5590 			if (!mask)
5591 				return;
5592 
5593 			sched_domains_numa_masks[i][j] = mask;
5594 
5595 			for (k = 0; k < nr_node_ids; k++) {
5596 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5597 					continue;
5598 
5599 				cpumask_or(mask, mask, cpumask_of_node(k));
5600 			}
5601 		}
5602 	}
5603 
5604 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5605 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5606 	if (!tl)
5607 		return;
5608 
5609 	/*
5610 	 * Copy the default topology bits..
5611 	 */
5612 	for (i = 0; default_topology[i].init; i++)
5613 		tl[i] = default_topology[i];
5614 
5615 	/*
5616 	 * .. and append 'j' levels of NUMA goodness.
5617 	 */
5618 	for (j = 0; j < level; i++, j++) {
5619 		tl[i] = (struct sched_domain_topology_level){
5620 			.init = sd_numa_init,
5621 			.mask = sd_numa_mask,
5622 			.flags = SDTL_OVERLAP,
5623 			.numa_level = j,
5624 		};
5625 	}
5626 
5627 	sched_domain_topology = tl;
5628 
5629 	sched_domains_numa_levels = level;
5630 }
5631 
5632 static void sched_domains_numa_masks_set(int cpu)
5633 {
5634 	int i, j;
5635 	int node = cpu_to_node(cpu);
5636 
5637 	for (i = 0; i < sched_domains_numa_levels; i++) {
5638 		for (j = 0; j < nr_node_ids; j++) {
5639 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5640 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5641 		}
5642 	}
5643 }
5644 
5645 static void sched_domains_numa_masks_clear(int cpu)
5646 {
5647 	int i, j;
5648 	for (i = 0; i < sched_domains_numa_levels; i++) {
5649 		for (j = 0; j < nr_node_ids; j++)
5650 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5651 	}
5652 }
5653 
5654 /*
5655  * Update sched_domains_numa_masks[level][node] array when new cpus
5656  * are onlined.
5657  */
5658 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5659 					   unsigned long action,
5660 					   void *hcpu)
5661 {
5662 	int cpu = (long)hcpu;
5663 
5664 	switch (action & ~CPU_TASKS_FROZEN) {
5665 	case CPU_ONLINE:
5666 		sched_domains_numa_masks_set(cpu);
5667 		break;
5668 
5669 	case CPU_DEAD:
5670 		sched_domains_numa_masks_clear(cpu);
5671 		break;
5672 
5673 	default:
5674 		return NOTIFY_DONE;
5675 	}
5676 
5677 	return NOTIFY_OK;
5678 }
5679 #else
5680 static inline void sched_init_numa(void)
5681 {
5682 }
5683 
5684 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5685 					   unsigned long action,
5686 					   void *hcpu)
5687 {
5688 	return 0;
5689 }
5690 #endif /* CONFIG_NUMA */
5691 
5692 static int __sdt_alloc(const struct cpumask *cpu_map)
5693 {
5694 	struct sched_domain_topology_level *tl;
5695 	int j;
5696 
5697 	for_each_sd_topology(tl) {
5698 		struct sd_data *sdd = &tl->data;
5699 
5700 		sdd->sd = alloc_percpu(struct sched_domain *);
5701 		if (!sdd->sd)
5702 			return -ENOMEM;
5703 
5704 		sdd->sg = alloc_percpu(struct sched_group *);
5705 		if (!sdd->sg)
5706 			return -ENOMEM;
5707 
5708 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5709 		if (!sdd->sgp)
5710 			return -ENOMEM;
5711 
5712 		for_each_cpu(j, cpu_map) {
5713 			struct sched_domain *sd;
5714 			struct sched_group *sg;
5715 			struct sched_group_power *sgp;
5716 
5717 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5718 					GFP_KERNEL, cpu_to_node(j));
5719 			if (!sd)
5720 				return -ENOMEM;
5721 
5722 			*per_cpu_ptr(sdd->sd, j) = sd;
5723 
5724 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5725 					GFP_KERNEL, cpu_to_node(j));
5726 			if (!sg)
5727 				return -ENOMEM;
5728 
5729 			sg->next = sg;
5730 
5731 			*per_cpu_ptr(sdd->sg, j) = sg;
5732 
5733 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5734 					GFP_KERNEL, cpu_to_node(j));
5735 			if (!sgp)
5736 				return -ENOMEM;
5737 
5738 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5739 		}
5740 	}
5741 
5742 	return 0;
5743 }
5744 
5745 static void __sdt_free(const struct cpumask *cpu_map)
5746 {
5747 	struct sched_domain_topology_level *tl;
5748 	int j;
5749 
5750 	for_each_sd_topology(tl) {
5751 		struct sd_data *sdd = &tl->data;
5752 
5753 		for_each_cpu(j, cpu_map) {
5754 			struct sched_domain *sd;
5755 
5756 			if (sdd->sd) {
5757 				sd = *per_cpu_ptr(sdd->sd, j);
5758 				if (sd && (sd->flags & SD_OVERLAP))
5759 					free_sched_groups(sd->groups, 0);
5760 				kfree(*per_cpu_ptr(sdd->sd, j));
5761 			}
5762 
5763 			if (sdd->sg)
5764 				kfree(*per_cpu_ptr(sdd->sg, j));
5765 			if (sdd->sgp)
5766 				kfree(*per_cpu_ptr(sdd->sgp, j));
5767 		}
5768 		free_percpu(sdd->sd);
5769 		sdd->sd = NULL;
5770 		free_percpu(sdd->sg);
5771 		sdd->sg = NULL;
5772 		free_percpu(sdd->sgp);
5773 		sdd->sgp = NULL;
5774 	}
5775 }
5776 
5777 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5778 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5779 		struct sched_domain *child, int cpu)
5780 {
5781 	struct sched_domain *sd = tl->init(tl, cpu);
5782 	if (!sd)
5783 		return child;
5784 
5785 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5786 	if (child) {
5787 		sd->level = child->level + 1;
5788 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5789 		child->parent = sd;
5790 		sd->child = child;
5791 	}
5792 	set_domain_attribute(sd, attr);
5793 
5794 	return sd;
5795 }
5796 
5797 /*
5798  * Build sched domains for a given set of cpus and attach the sched domains
5799  * to the individual cpus
5800  */
5801 static int build_sched_domains(const struct cpumask *cpu_map,
5802 			       struct sched_domain_attr *attr)
5803 {
5804 	enum s_alloc alloc_state;
5805 	struct sched_domain *sd;
5806 	struct s_data d;
5807 	int i, ret = -ENOMEM;
5808 
5809 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5810 	if (alloc_state != sa_rootdomain)
5811 		goto error;
5812 
5813 	/* Set up domains for cpus specified by the cpu_map. */
5814 	for_each_cpu(i, cpu_map) {
5815 		struct sched_domain_topology_level *tl;
5816 
5817 		sd = NULL;
5818 		for_each_sd_topology(tl) {
5819 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5820 			if (tl == sched_domain_topology)
5821 				*per_cpu_ptr(d.sd, i) = sd;
5822 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5823 				sd->flags |= SD_OVERLAP;
5824 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5825 				break;
5826 		}
5827 	}
5828 
5829 	/* Build the groups for the domains */
5830 	for_each_cpu(i, cpu_map) {
5831 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5832 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5833 			if (sd->flags & SD_OVERLAP) {
5834 				if (build_overlap_sched_groups(sd, i))
5835 					goto error;
5836 			} else {
5837 				if (build_sched_groups(sd, i))
5838 					goto error;
5839 			}
5840 		}
5841 	}
5842 
5843 	/* Calculate CPU power for physical packages and nodes */
5844 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
5845 		if (!cpumask_test_cpu(i, cpu_map))
5846 			continue;
5847 
5848 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5849 			claim_allocations(i, sd);
5850 			init_sched_groups_power(i, sd);
5851 		}
5852 	}
5853 
5854 	/* Attach the domains */
5855 	rcu_read_lock();
5856 	for_each_cpu(i, cpu_map) {
5857 		sd = *per_cpu_ptr(d.sd, i);
5858 		cpu_attach_domain(sd, d.rd, i);
5859 	}
5860 	rcu_read_unlock();
5861 
5862 	ret = 0;
5863 error:
5864 	__free_domain_allocs(&d, alloc_state, cpu_map);
5865 	return ret;
5866 }
5867 
5868 static cpumask_var_t *doms_cur;	/* current sched domains */
5869 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
5870 static struct sched_domain_attr *dattr_cur;
5871 				/* attribues of custom domains in 'doms_cur' */
5872 
5873 /*
5874  * Special case: If a kmalloc of a doms_cur partition (array of
5875  * cpumask) fails, then fallback to a single sched domain,
5876  * as determined by the single cpumask fallback_doms.
5877  */
5878 static cpumask_var_t fallback_doms;
5879 
5880 /*
5881  * arch_update_cpu_topology lets virtualized architectures update the
5882  * cpu core maps. It is supposed to return 1 if the topology changed
5883  * or 0 if it stayed the same.
5884  */
5885 int __attribute__((weak)) arch_update_cpu_topology(void)
5886 {
5887 	return 0;
5888 }
5889 
5890 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5891 {
5892 	int i;
5893 	cpumask_var_t *doms;
5894 
5895 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5896 	if (!doms)
5897 		return NULL;
5898 	for (i = 0; i < ndoms; i++) {
5899 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5900 			free_sched_domains(doms, i);
5901 			return NULL;
5902 		}
5903 	}
5904 	return doms;
5905 }
5906 
5907 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5908 {
5909 	unsigned int i;
5910 	for (i = 0; i < ndoms; i++)
5911 		free_cpumask_var(doms[i]);
5912 	kfree(doms);
5913 }
5914 
5915 /*
5916  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5917  * For now this just excludes isolated cpus, but could be used to
5918  * exclude other special cases in the future.
5919  */
5920 static int init_sched_domains(const struct cpumask *cpu_map)
5921 {
5922 	int err;
5923 
5924 	arch_update_cpu_topology();
5925 	ndoms_cur = 1;
5926 	doms_cur = alloc_sched_domains(ndoms_cur);
5927 	if (!doms_cur)
5928 		doms_cur = &fallback_doms;
5929 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
5930 	err = build_sched_domains(doms_cur[0], NULL);
5931 	register_sched_domain_sysctl();
5932 
5933 	return err;
5934 }
5935 
5936 /*
5937  * Detach sched domains from a group of cpus specified in cpu_map
5938  * These cpus will now be attached to the NULL domain
5939  */
5940 static void detach_destroy_domains(const struct cpumask *cpu_map)
5941 {
5942 	int i;
5943 
5944 	rcu_read_lock();
5945 	for_each_cpu(i, cpu_map)
5946 		cpu_attach_domain(NULL, &def_root_domain, i);
5947 	rcu_read_unlock();
5948 }
5949 
5950 /* handle null as "default" */
5951 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5952 			struct sched_domain_attr *new, int idx_new)
5953 {
5954 	struct sched_domain_attr tmp;
5955 
5956 	/* fast path */
5957 	if (!new && !cur)
5958 		return 1;
5959 
5960 	tmp = SD_ATTR_INIT;
5961 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
5962 			new ? (new + idx_new) : &tmp,
5963 			sizeof(struct sched_domain_attr));
5964 }
5965 
5966 /*
5967  * Partition sched domains as specified by the 'ndoms_new'
5968  * cpumasks in the array doms_new[] of cpumasks. This compares
5969  * doms_new[] to the current sched domain partitioning, doms_cur[].
5970  * It destroys each deleted domain and builds each new domain.
5971  *
5972  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
5973  * The masks don't intersect (don't overlap.) We should setup one
5974  * sched domain for each mask. CPUs not in any of the cpumasks will
5975  * not be load balanced. If the same cpumask appears both in the
5976  * current 'doms_cur' domains and in the new 'doms_new', we can leave
5977  * it as it is.
5978  *
5979  * The passed in 'doms_new' should be allocated using
5980  * alloc_sched_domains.  This routine takes ownership of it and will
5981  * free_sched_domains it when done with it. If the caller failed the
5982  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5983  * and partition_sched_domains() will fallback to the single partition
5984  * 'fallback_doms', it also forces the domains to be rebuilt.
5985  *
5986  * If doms_new == NULL it will be replaced with cpu_online_mask.
5987  * ndoms_new == 0 is a special case for destroying existing domains,
5988  * and it will not create the default domain.
5989  *
5990  * Call with hotplug lock held
5991  */
5992 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
5993 			     struct sched_domain_attr *dattr_new)
5994 {
5995 	int i, j, n;
5996 	int new_topology;
5997 
5998 	mutex_lock(&sched_domains_mutex);
5999 
6000 	/* always unregister in case we don't destroy any domains */
6001 	unregister_sched_domain_sysctl();
6002 
6003 	/* Let architecture update cpu core mappings. */
6004 	new_topology = arch_update_cpu_topology();
6005 
6006 	n = doms_new ? ndoms_new : 0;
6007 
6008 	/* Destroy deleted domains */
6009 	for (i = 0; i < ndoms_cur; i++) {
6010 		for (j = 0; j < n && !new_topology; j++) {
6011 			if (cpumask_equal(doms_cur[i], doms_new[j])
6012 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6013 				goto match1;
6014 		}
6015 		/* no match - a current sched domain not in new doms_new[] */
6016 		detach_destroy_domains(doms_cur[i]);
6017 match1:
6018 		;
6019 	}
6020 
6021 	n = ndoms_cur;
6022 	if (doms_new == NULL) {
6023 		n = 0;
6024 		doms_new = &fallback_doms;
6025 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6026 		WARN_ON_ONCE(dattr_new);
6027 	}
6028 
6029 	/* Build new domains */
6030 	for (i = 0; i < ndoms_new; i++) {
6031 		for (j = 0; j < n && !new_topology; j++) {
6032 			if (cpumask_equal(doms_new[i], doms_cur[j])
6033 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6034 				goto match2;
6035 		}
6036 		/* no match - add a new doms_new */
6037 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6038 match2:
6039 		;
6040 	}
6041 
6042 	/* Remember the new sched domains */
6043 	if (doms_cur != &fallback_doms)
6044 		free_sched_domains(doms_cur, ndoms_cur);
6045 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6046 	doms_cur = doms_new;
6047 	dattr_cur = dattr_new;
6048 	ndoms_cur = ndoms_new;
6049 
6050 	register_sched_domain_sysctl();
6051 
6052 	mutex_unlock(&sched_domains_mutex);
6053 }
6054 
6055 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6056 
6057 /*
6058  * Update cpusets according to cpu_active mask.  If cpusets are
6059  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6060  * around partition_sched_domains().
6061  *
6062  * If we come here as part of a suspend/resume, don't touch cpusets because we
6063  * want to restore it back to its original state upon resume anyway.
6064  */
6065 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6066 			     void *hcpu)
6067 {
6068 	switch (action) {
6069 	case CPU_ONLINE_FROZEN:
6070 	case CPU_DOWN_FAILED_FROZEN:
6071 
6072 		/*
6073 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6074 		 * resume sequence. As long as this is not the last online
6075 		 * operation in the resume sequence, just build a single sched
6076 		 * domain, ignoring cpusets.
6077 		 */
6078 		num_cpus_frozen--;
6079 		if (likely(num_cpus_frozen)) {
6080 			partition_sched_domains(1, NULL, NULL);
6081 			break;
6082 		}
6083 
6084 		/*
6085 		 * This is the last CPU online operation. So fall through and
6086 		 * restore the original sched domains by considering the
6087 		 * cpuset configurations.
6088 		 */
6089 
6090 	case CPU_ONLINE:
6091 	case CPU_DOWN_FAILED:
6092 		cpuset_update_active_cpus(true);
6093 		break;
6094 	default:
6095 		return NOTIFY_DONE;
6096 	}
6097 	return NOTIFY_OK;
6098 }
6099 
6100 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6101 			       void *hcpu)
6102 {
6103 	switch (action) {
6104 	case CPU_DOWN_PREPARE:
6105 		cpuset_update_active_cpus(false);
6106 		break;
6107 	case CPU_DOWN_PREPARE_FROZEN:
6108 		num_cpus_frozen++;
6109 		partition_sched_domains(1, NULL, NULL);
6110 		break;
6111 	default:
6112 		return NOTIFY_DONE;
6113 	}
6114 	return NOTIFY_OK;
6115 }
6116 
6117 void __init sched_init_smp(void)
6118 {
6119 	cpumask_var_t non_isolated_cpus;
6120 
6121 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6122 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6123 
6124 	sched_init_numa();
6125 
6126 	/*
6127 	 * There's no userspace yet to cause hotplug operations; hence all the
6128 	 * cpu masks are stable and all blatant races in the below code cannot
6129 	 * happen.
6130 	 */
6131 	mutex_lock(&sched_domains_mutex);
6132 	init_sched_domains(cpu_active_mask);
6133 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6134 	if (cpumask_empty(non_isolated_cpus))
6135 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6136 	mutex_unlock(&sched_domains_mutex);
6137 
6138 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6139 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6140 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6141 
6142 	init_hrtick();
6143 
6144 	/* Move init over to a non-isolated CPU */
6145 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6146 		BUG();
6147 	sched_init_granularity();
6148 	free_cpumask_var(non_isolated_cpus);
6149 
6150 	init_sched_rt_class();
6151 }
6152 #else
6153 void __init sched_init_smp(void)
6154 {
6155 	sched_init_granularity();
6156 }
6157 #endif /* CONFIG_SMP */
6158 
6159 const_debug unsigned int sysctl_timer_migration = 1;
6160 
6161 int in_sched_functions(unsigned long addr)
6162 {
6163 	return in_lock_functions(addr) ||
6164 		(addr >= (unsigned long)__sched_text_start
6165 		&& addr < (unsigned long)__sched_text_end);
6166 }
6167 
6168 #ifdef CONFIG_CGROUP_SCHED
6169 /*
6170  * Default task group.
6171  * Every task in system belongs to this group at bootup.
6172  */
6173 struct task_group root_task_group;
6174 LIST_HEAD(task_groups);
6175 #endif
6176 
6177 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6178 
6179 void __init sched_init(void)
6180 {
6181 	int i, j;
6182 	unsigned long alloc_size = 0, ptr;
6183 
6184 #ifdef CONFIG_FAIR_GROUP_SCHED
6185 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6186 #endif
6187 #ifdef CONFIG_RT_GROUP_SCHED
6188 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6189 #endif
6190 #ifdef CONFIG_CPUMASK_OFFSTACK
6191 	alloc_size += num_possible_cpus() * cpumask_size();
6192 #endif
6193 	if (alloc_size) {
6194 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6195 
6196 #ifdef CONFIG_FAIR_GROUP_SCHED
6197 		root_task_group.se = (struct sched_entity **)ptr;
6198 		ptr += nr_cpu_ids * sizeof(void **);
6199 
6200 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6201 		ptr += nr_cpu_ids * sizeof(void **);
6202 
6203 #endif /* CONFIG_FAIR_GROUP_SCHED */
6204 #ifdef CONFIG_RT_GROUP_SCHED
6205 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6206 		ptr += nr_cpu_ids * sizeof(void **);
6207 
6208 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6209 		ptr += nr_cpu_ids * sizeof(void **);
6210 
6211 #endif /* CONFIG_RT_GROUP_SCHED */
6212 #ifdef CONFIG_CPUMASK_OFFSTACK
6213 		for_each_possible_cpu(i) {
6214 			per_cpu(load_balance_mask, i) = (void *)ptr;
6215 			ptr += cpumask_size();
6216 		}
6217 #endif /* CONFIG_CPUMASK_OFFSTACK */
6218 	}
6219 
6220 #ifdef CONFIG_SMP
6221 	init_defrootdomain();
6222 #endif
6223 
6224 	init_rt_bandwidth(&def_rt_bandwidth,
6225 			global_rt_period(), global_rt_runtime());
6226 
6227 #ifdef CONFIG_RT_GROUP_SCHED
6228 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6229 			global_rt_period(), global_rt_runtime());
6230 #endif /* CONFIG_RT_GROUP_SCHED */
6231 
6232 #ifdef CONFIG_CGROUP_SCHED
6233 	list_add(&root_task_group.list, &task_groups);
6234 	INIT_LIST_HEAD(&root_task_group.children);
6235 	INIT_LIST_HEAD(&root_task_group.siblings);
6236 	autogroup_init(&init_task);
6237 
6238 #endif /* CONFIG_CGROUP_SCHED */
6239 
6240 	for_each_possible_cpu(i) {
6241 		struct rq *rq;
6242 
6243 		rq = cpu_rq(i);
6244 		raw_spin_lock_init(&rq->lock);
6245 		rq->nr_running = 0;
6246 		rq->calc_load_active = 0;
6247 		rq->calc_load_update = jiffies + LOAD_FREQ;
6248 		init_cfs_rq(&rq->cfs);
6249 		init_rt_rq(&rq->rt, rq);
6250 #ifdef CONFIG_FAIR_GROUP_SCHED
6251 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6252 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6253 		/*
6254 		 * How much cpu bandwidth does root_task_group get?
6255 		 *
6256 		 * In case of task-groups formed thr' the cgroup filesystem, it
6257 		 * gets 100% of the cpu resources in the system. This overall
6258 		 * system cpu resource is divided among the tasks of
6259 		 * root_task_group and its child task-groups in a fair manner,
6260 		 * based on each entity's (task or task-group's) weight
6261 		 * (se->load.weight).
6262 		 *
6263 		 * In other words, if root_task_group has 10 tasks of weight
6264 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6265 		 * then A0's share of the cpu resource is:
6266 		 *
6267 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6268 		 *
6269 		 * We achieve this by letting root_task_group's tasks sit
6270 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6271 		 */
6272 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6273 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6274 #endif /* CONFIG_FAIR_GROUP_SCHED */
6275 
6276 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6277 #ifdef CONFIG_RT_GROUP_SCHED
6278 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6279 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6280 #endif
6281 
6282 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6283 			rq->cpu_load[j] = 0;
6284 
6285 		rq->last_load_update_tick = jiffies;
6286 
6287 #ifdef CONFIG_SMP
6288 		rq->sd = NULL;
6289 		rq->rd = NULL;
6290 		rq->cpu_power = SCHED_POWER_SCALE;
6291 		rq->post_schedule = 0;
6292 		rq->active_balance = 0;
6293 		rq->next_balance = jiffies;
6294 		rq->push_cpu = 0;
6295 		rq->cpu = i;
6296 		rq->online = 0;
6297 		rq->idle_stamp = 0;
6298 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6299 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6300 
6301 		INIT_LIST_HEAD(&rq->cfs_tasks);
6302 
6303 		rq_attach_root(rq, &def_root_domain);
6304 #ifdef CONFIG_NO_HZ_COMMON
6305 		rq->nohz_flags = 0;
6306 #endif
6307 #ifdef CONFIG_NO_HZ_FULL
6308 		rq->last_sched_tick = 0;
6309 #endif
6310 #endif
6311 		init_rq_hrtick(rq);
6312 		atomic_set(&rq->nr_iowait, 0);
6313 	}
6314 
6315 	set_load_weight(&init_task);
6316 
6317 #ifdef CONFIG_PREEMPT_NOTIFIERS
6318 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6319 #endif
6320 
6321 #ifdef CONFIG_RT_MUTEXES
6322 	plist_head_init(&init_task.pi_waiters);
6323 #endif
6324 
6325 	/*
6326 	 * The boot idle thread does lazy MMU switching as well:
6327 	 */
6328 	atomic_inc(&init_mm.mm_count);
6329 	enter_lazy_tlb(&init_mm, current);
6330 
6331 	/*
6332 	 * Make us the idle thread. Technically, schedule() should not be
6333 	 * called from this thread, however somewhere below it might be,
6334 	 * but because we are the idle thread, we just pick up running again
6335 	 * when this runqueue becomes "idle".
6336 	 */
6337 	init_idle(current, smp_processor_id());
6338 
6339 	calc_load_update = jiffies + LOAD_FREQ;
6340 
6341 	/*
6342 	 * During early bootup we pretend to be a normal task:
6343 	 */
6344 	current->sched_class = &fair_sched_class;
6345 
6346 #ifdef CONFIG_SMP
6347 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6348 	/* May be allocated at isolcpus cmdline parse time */
6349 	if (cpu_isolated_map == NULL)
6350 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6351 	idle_thread_set_boot_cpu();
6352 #endif
6353 	init_sched_fair_class();
6354 
6355 	scheduler_running = 1;
6356 }
6357 
6358 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6359 static inline int preempt_count_equals(int preempt_offset)
6360 {
6361 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6362 
6363 	return (nested == preempt_offset);
6364 }
6365 
6366 void __might_sleep(const char *file, int line, int preempt_offset)
6367 {
6368 	static unsigned long prev_jiffy;	/* ratelimiting */
6369 
6370 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6371 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6372 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6373 		return;
6374 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6375 		return;
6376 	prev_jiffy = jiffies;
6377 
6378 	printk(KERN_ERR
6379 		"BUG: sleeping function called from invalid context at %s:%d\n",
6380 			file, line);
6381 	printk(KERN_ERR
6382 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6383 			in_atomic(), irqs_disabled(),
6384 			current->pid, current->comm);
6385 
6386 	debug_show_held_locks(current);
6387 	if (irqs_disabled())
6388 		print_irqtrace_events(current);
6389 	dump_stack();
6390 }
6391 EXPORT_SYMBOL(__might_sleep);
6392 #endif
6393 
6394 #ifdef CONFIG_MAGIC_SYSRQ
6395 static void normalize_task(struct rq *rq, struct task_struct *p)
6396 {
6397 	const struct sched_class *prev_class = p->sched_class;
6398 	int old_prio = p->prio;
6399 	int on_rq;
6400 
6401 	on_rq = p->on_rq;
6402 	if (on_rq)
6403 		dequeue_task(rq, p, 0);
6404 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6405 	if (on_rq) {
6406 		enqueue_task(rq, p, 0);
6407 		resched_task(rq->curr);
6408 	}
6409 
6410 	check_class_changed(rq, p, prev_class, old_prio);
6411 }
6412 
6413 void normalize_rt_tasks(void)
6414 {
6415 	struct task_struct *g, *p;
6416 	unsigned long flags;
6417 	struct rq *rq;
6418 
6419 	read_lock_irqsave(&tasklist_lock, flags);
6420 	do_each_thread(g, p) {
6421 		/*
6422 		 * Only normalize user tasks:
6423 		 */
6424 		if (!p->mm)
6425 			continue;
6426 
6427 		p->se.exec_start		= 0;
6428 #ifdef CONFIG_SCHEDSTATS
6429 		p->se.statistics.wait_start	= 0;
6430 		p->se.statistics.sleep_start	= 0;
6431 		p->se.statistics.block_start	= 0;
6432 #endif
6433 
6434 		if (!rt_task(p)) {
6435 			/*
6436 			 * Renice negative nice level userspace
6437 			 * tasks back to 0:
6438 			 */
6439 			if (TASK_NICE(p) < 0 && p->mm)
6440 				set_user_nice(p, 0);
6441 			continue;
6442 		}
6443 
6444 		raw_spin_lock(&p->pi_lock);
6445 		rq = __task_rq_lock(p);
6446 
6447 		normalize_task(rq, p);
6448 
6449 		__task_rq_unlock(rq);
6450 		raw_spin_unlock(&p->pi_lock);
6451 	} while_each_thread(g, p);
6452 
6453 	read_unlock_irqrestore(&tasklist_lock, flags);
6454 }
6455 
6456 #endif /* CONFIG_MAGIC_SYSRQ */
6457 
6458 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6459 /*
6460  * These functions are only useful for the IA64 MCA handling, or kdb.
6461  *
6462  * They can only be called when the whole system has been
6463  * stopped - every CPU needs to be quiescent, and no scheduling
6464  * activity can take place. Using them for anything else would
6465  * be a serious bug, and as a result, they aren't even visible
6466  * under any other configuration.
6467  */
6468 
6469 /**
6470  * curr_task - return the current task for a given cpu.
6471  * @cpu: the processor in question.
6472  *
6473  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6474  *
6475  * Return: The current task for @cpu.
6476  */
6477 struct task_struct *curr_task(int cpu)
6478 {
6479 	return cpu_curr(cpu);
6480 }
6481 
6482 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6483 
6484 #ifdef CONFIG_IA64
6485 /**
6486  * set_curr_task - set the current task for a given cpu.
6487  * @cpu: the processor in question.
6488  * @p: the task pointer to set.
6489  *
6490  * Description: This function must only be used when non-maskable interrupts
6491  * are serviced on a separate stack. It allows the architecture to switch the
6492  * notion of the current task on a cpu in a non-blocking manner. This function
6493  * must be called with all CPU's synchronized, and interrupts disabled, the
6494  * and caller must save the original value of the current task (see
6495  * curr_task() above) and restore that value before reenabling interrupts and
6496  * re-starting the system.
6497  *
6498  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6499  */
6500 void set_curr_task(int cpu, struct task_struct *p)
6501 {
6502 	cpu_curr(cpu) = p;
6503 }
6504 
6505 #endif
6506 
6507 #ifdef CONFIG_CGROUP_SCHED
6508 /* task_group_lock serializes the addition/removal of task groups */
6509 static DEFINE_SPINLOCK(task_group_lock);
6510 
6511 static void free_sched_group(struct task_group *tg)
6512 {
6513 	free_fair_sched_group(tg);
6514 	free_rt_sched_group(tg);
6515 	autogroup_free(tg);
6516 	kfree(tg);
6517 }
6518 
6519 /* allocate runqueue etc for a new task group */
6520 struct task_group *sched_create_group(struct task_group *parent)
6521 {
6522 	struct task_group *tg;
6523 
6524 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6525 	if (!tg)
6526 		return ERR_PTR(-ENOMEM);
6527 
6528 	if (!alloc_fair_sched_group(tg, parent))
6529 		goto err;
6530 
6531 	if (!alloc_rt_sched_group(tg, parent))
6532 		goto err;
6533 
6534 	return tg;
6535 
6536 err:
6537 	free_sched_group(tg);
6538 	return ERR_PTR(-ENOMEM);
6539 }
6540 
6541 void sched_online_group(struct task_group *tg, struct task_group *parent)
6542 {
6543 	unsigned long flags;
6544 
6545 	spin_lock_irqsave(&task_group_lock, flags);
6546 	list_add_rcu(&tg->list, &task_groups);
6547 
6548 	WARN_ON(!parent); /* root should already exist */
6549 
6550 	tg->parent = parent;
6551 	INIT_LIST_HEAD(&tg->children);
6552 	list_add_rcu(&tg->siblings, &parent->children);
6553 	spin_unlock_irqrestore(&task_group_lock, flags);
6554 }
6555 
6556 /* rcu callback to free various structures associated with a task group */
6557 static void free_sched_group_rcu(struct rcu_head *rhp)
6558 {
6559 	/* now it should be safe to free those cfs_rqs */
6560 	free_sched_group(container_of(rhp, struct task_group, rcu));
6561 }
6562 
6563 /* Destroy runqueue etc associated with a task group */
6564 void sched_destroy_group(struct task_group *tg)
6565 {
6566 	/* wait for possible concurrent references to cfs_rqs complete */
6567 	call_rcu(&tg->rcu, free_sched_group_rcu);
6568 }
6569 
6570 void sched_offline_group(struct task_group *tg)
6571 {
6572 	unsigned long flags;
6573 	int i;
6574 
6575 	/* end participation in shares distribution */
6576 	for_each_possible_cpu(i)
6577 		unregister_fair_sched_group(tg, i);
6578 
6579 	spin_lock_irqsave(&task_group_lock, flags);
6580 	list_del_rcu(&tg->list);
6581 	list_del_rcu(&tg->siblings);
6582 	spin_unlock_irqrestore(&task_group_lock, flags);
6583 }
6584 
6585 /* change task's runqueue when it moves between groups.
6586  *	The caller of this function should have put the task in its new group
6587  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6588  *	reflect its new group.
6589  */
6590 void sched_move_task(struct task_struct *tsk)
6591 {
6592 	struct task_group *tg;
6593 	int on_rq, running;
6594 	unsigned long flags;
6595 	struct rq *rq;
6596 
6597 	rq = task_rq_lock(tsk, &flags);
6598 
6599 	running = task_current(rq, tsk);
6600 	on_rq = tsk->on_rq;
6601 
6602 	if (on_rq)
6603 		dequeue_task(rq, tsk, 0);
6604 	if (unlikely(running))
6605 		tsk->sched_class->put_prev_task(rq, tsk);
6606 
6607 	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6608 				lockdep_is_held(&tsk->sighand->siglock)),
6609 			  struct task_group, css);
6610 	tg = autogroup_task_group(tsk, tg);
6611 	tsk->sched_task_group = tg;
6612 
6613 #ifdef CONFIG_FAIR_GROUP_SCHED
6614 	if (tsk->sched_class->task_move_group)
6615 		tsk->sched_class->task_move_group(tsk, on_rq);
6616 	else
6617 #endif
6618 		set_task_rq(tsk, task_cpu(tsk));
6619 
6620 	if (unlikely(running))
6621 		tsk->sched_class->set_curr_task(rq);
6622 	if (on_rq)
6623 		enqueue_task(rq, tsk, 0);
6624 
6625 	task_rq_unlock(rq, tsk, &flags);
6626 }
6627 #endif /* CONFIG_CGROUP_SCHED */
6628 
6629 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6630 static unsigned long to_ratio(u64 period, u64 runtime)
6631 {
6632 	if (runtime == RUNTIME_INF)
6633 		return 1ULL << 20;
6634 
6635 	return div64_u64(runtime << 20, period);
6636 }
6637 #endif
6638 
6639 #ifdef CONFIG_RT_GROUP_SCHED
6640 /*
6641  * Ensure that the real time constraints are schedulable.
6642  */
6643 static DEFINE_MUTEX(rt_constraints_mutex);
6644 
6645 /* Must be called with tasklist_lock held */
6646 static inline int tg_has_rt_tasks(struct task_group *tg)
6647 {
6648 	struct task_struct *g, *p;
6649 
6650 	do_each_thread(g, p) {
6651 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6652 			return 1;
6653 	} while_each_thread(g, p);
6654 
6655 	return 0;
6656 }
6657 
6658 struct rt_schedulable_data {
6659 	struct task_group *tg;
6660 	u64 rt_period;
6661 	u64 rt_runtime;
6662 };
6663 
6664 static int tg_rt_schedulable(struct task_group *tg, void *data)
6665 {
6666 	struct rt_schedulable_data *d = data;
6667 	struct task_group *child;
6668 	unsigned long total, sum = 0;
6669 	u64 period, runtime;
6670 
6671 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6672 	runtime = tg->rt_bandwidth.rt_runtime;
6673 
6674 	if (tg == d->tg) {
6675 		period = d->rt_period;
6676 		runtime = d->rt_runtime;
6677 	}
6678 
6679 	/*
6680 	 * Cannot have more runtime than the period.
6681 	 */
6682 	if (runtime > period && runtime != RUNTIME_INF)
6683 		return -EINVAL;
6684 
6685 	/*
6686 	 * Ensure we don't starve existing RT tasks.
6687 	 */
6688 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6689 		return -EBUSY;
6690 
6691 	total = to_ratio(period, runtime);
6692 
6693 	/*
6694 	 * Nobody can have more than the global setting allows.
6695 	 */
6696 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6697 		return -EINVAL;
6698 
6699 	/*
6700 	 * The sum of our children's runtime should not exceed our own.
6701 	 */
6702 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6703 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6704 		runtime = child->rt_bandwidth.rt_runtime;
6705 
6706 		if (child == d->tg) {
6707 			period = d->rt_period;
6708 			runtime = d->rt_runtime;
6709 		}
6710 
6711 		sum += to_ratio(period, runtime);
6712 	}
6713 
6714 	if (sum > total)
6715 		return -EINVAL;
6716 
6717 	return 0;
6718 }
6719 
6720 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6721 {
6722 	int ret;
6723 
6724 	struct rt_schedulable_data data = {
6725 		.tg = tg,
6726 		.rt_period = period,
6727 		.rt_runtime = runtime,
6728 	};
6729 
6730 	rcu_read_lock();
6731 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6732 	rcu_read_unlock();
6733 
6734 	return ret;
6735 }
6736 
6737 static int tg_set_rt_bandwidth(struct task_group *tg,
6738 		u64 rt_period, u64 rt_runtime)
6739 {
6740 	int i, err = 0;
6741 
6742 	mutex_lock(&rt_constraints_mutex);
6743 	read_lock(&tasklist_lock);
6744 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6745 	if (err)
6746 		goto unlock;
6747 
6748 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6749 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6750 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6751 
6752 	for_each_possible_cpu(i) {
6753 		struct rt_rq *rt_rq = tg->rt_rq[i];
6754 
6755 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6756 		rt_rq->rt_runtime = rt_runtime;
6757 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6758 	}
6759 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6760 unlock:
6761 	read_unlock(&tasklist_lock);
6762 	mutex_unlock(&rt_constraints_mutex);
6763 
6764 	return err;
6765 }
6766 
6767 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6768 {
6769 	u64 rt_runtime, rt_period;
6770 
6771 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6772 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6773 	if (rt_runtime_us < 0)
6774 		rt_runtime = RUNTIME_INF;
6775 
6776 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6777 }
6778 
6779 static long sched_group_rt_runtime(struct task_group *tg)
6780 {
6781 	u64 rt_runtime_us;
6782 
6783 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6784 		return -1;
6785 
6786 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6787 	do_div(rt_runtime_us, NSEC_PER_USEC);
6788 	return rt_runtime_us;
6789 }
6790 
6791 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6792 {
6793 	u64 rt_runtime, rt_period;
6794 
6795 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6796 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6797 
6798 	if (rt_period == 0)
6799 		return -EINVAL;
6800 
6801 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6802 }
6803 
6804 static long sched_group_rt_period(struct task_group *tg)
6805 {
6806 	u64 rt_period_us;
6807 
6808 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6809 	do_div(rt_period_us, NSEC_PER_USEC);
6810 	return rt_period_us;
6811 }
6812 
6813 static int sched_rt_global_constraints(void)
6814 {
6815 	u64 runtime, period;
6816 	int ret = 0;
6817 
6818 	if (sysctl_sched_rt_period <= 0)
6819 		return -EINVAL;
6820 
6821 	runtime = global_rt_runtime();
6822 	period = global_rt_period();
6823 
6824 	/*
6825 	 * Sanity check on the sysctl variables.
6826 	 */
6827 	if (runtime > period && runtime != RUNTIME_INF)
6828 		return -EINVAL;
6829 
6830 	mutex_lock(&rt_constraints_mutex);
6831 	read_lock(&tasklist_lock);
6832 	ret = __rt_schedulable(NULL, 0, 0);
6833 	read_unlock(&tasklist_lock);
6834 	mutex_unlock(&rt_constraints_mutex);
6835 
6836 	return ret;
6837 }
6838 
6839 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6840 {
6841 	/* Don't accept realtime tasks when there is no way for them to run */
6842 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6843 		return 0;
6844 
6845 	return 1;
6846 }
6847 
6848 #else /* !CONFIG_RT_GROUP_SCHED */
6849 static int sched_rt_global_constraints(void)
6850 {
6851 	unsigned long flags;
6852 	int i;
6853 
6854 	if (sysctl_sched_rt_period <= 0)
6855 		return -EINVAL;
6856 
6857 	/*
6858 	 * There's always some RT tasks in the root group
6859 	 * -- migration, kstopmachine etc..
6860 	 */
6861 	if (sysctl_sched_rt_runtime == 0)
6862 		return -EBUSY;
6863 
6864 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6865 	for_each_possible_cpu(i) {
6866 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6867 
6868 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6869 		rt_rq->rt_runtime = global_rt_runtime();
6870 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6871 	}
6872 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6873 
6874 	return 0;
6875 }
6876 #endif /* CONFIG_RT_GROUP_SCHED */
6877 
6878 int sched_rr_handler(struct ctl_table *table, int write,
6879 		void __user *buffer, size_t *lenp,
6880 		loff_t *ppos)
6881 {
6882 	int ret;
6883 	static DEFINE_MUTEX(mutex);
6884 
6885 	mutex_lock(&mutex);
6886 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6887 	/* make sure that internally we keep jiffies */
6888 	/* also, writing zero resets timeslice to default */
6889 	if (!ret && write) {
6890 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6891 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6892 	}
6893 	mutex_unlock(&mutex);
6894 	return ret;
6895 }
6896 
6897 int sched_rt_handler(struct ctl_table *table, int write,
6898 		void __user *buffer, size_t *lenp,
6899 		loff_t *ppos)
6900 {
6901 	int ret;
6902 	int old_period, old_runtime;
6903 	static DEFINE_MUTEX(mutex);
6904 
6905 	mutex_lock(&mutex);
6906 	old_period = sysctl_sched_rt_period;
6907 	old_runtime = sysctl_sched_rt_runtime;
6908 
6909 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6910 
6911 	if (!ret && write) {
6912 		ret = sched_rt_global_constraints();
6913 		if (ret) {
6914 			sysctl_sched_rt_period = old_period;
6915 			sysctl_sched_rt_runtime = old_runtime;
6916 		} else {
6917 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
6918 			def_rt_bandwidth.rt_period =
6919 				ns_to_ktime(global_rt_period());
6920 		}
6921 	}
6922 	mutex_unlock(&mutex);
6923 
6924 	return ret;
6925 }
6926 
6927 #ifdef CONFIG_CGROUP_SCHED
6928 
6929 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6930 {
6931 	return css ? container_of(css, struct task_group, css) : NULL;
6932 }
6933 
6934 static struct cgroup_subsys_state *
6935 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6936 {
6937 	struct task_group *parent = css_tg(parent_css);
6938 	struct task_group *tg;
6939 
6940 	if (!parent) {
6941 		/* This is early initialization for the top cgroup */
6942 		return &root_task_group.css;
6943 	}
6944 
6945 	tg = sched_create_group(parent);
6946 	if (IS_ERR(tg))
6947 		return ERR_PTR(-ENOMEM);
6948 
6949 	return &tg->css;
6950 }
6951 
6952 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6953 {
6954 	struct task_group *tg = css_tg(css);
6955 	struct task_group *parent = css_tg(css_parent(css));
6956 
6957 	if (parent)
6958 		sched_online_group(tg, parent);
6959 	return 0;
6960 }
6961 
6962 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6963 {
6964 	struct task_group *tg = css_tg(css);
6965 
6966 	sched_destroy_group(tg);
6967 }
6968 
6969 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
6970 {
6971 	struct task_group *tg = css_tg(css);
6972 
6973 	sched_offline_group(tg);
6974 }
6975 
6976 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
6977 				 struct cgroup_taskset *tset)
6978 {
6979 	struct task_struct *task;
6980 
6981 	cgroup_taskset_for_each(task, css, tset) {
6982 #ifdef CONFIG_RT_GROUP_SCHED
6983 		if (!sched_rt_can_attach(css_tg(css), task))
6984 			return -EINVAL;
6985 #else
6986 		/* We don't support RT-tasks being in separate groups */
6987 		if (task->sched_class != &fair_sched_class)
6988 			return -EINVAL;
6989 #endif
6990 	}
6991 	return 0;
6992 }
6993 
6994 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
6995 			      struct cgroup_taskset *tset)
6996 {
6997 	struct task_struct *task;
6998 
6999 	cgroup_taskset_for_each(task, css, tset)
7000 		sched_move_task(task);
7001 }
7002 
7003 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7004 			    struct cgroup_subsys_state *old_css,
7005 			    struct task_struct *task)
7006 {
7007 	/*
7008 	 * cgroup_exit() is called in the copy_process() failure path.
7009 	 * Ignore this case since the task hasn't ran yet, this avoids
7010 	 * trying to poke a half freed task state from generic code.
7011 	 */
7012 	if (!(task->flags & PF_EXITING))
7013 		return;
7014 
7015 	sched_move_task(task);
7016 }
7017 
7018 #ifdef CONFIG_FAIR_GROUP_SCHED
7019 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7020 				struct cftype *cftype, u64 shareval)
7021 {
7022 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7023 }
7024 
7025 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7026 			       struct cftype *cft)
7027 {
7028 	struct task_group *tg = css_tg(css);
7029 
7030 	return (u64) scale_load_down(tg->shares);
7031 }
7032 
7033 #ifdef CONFIG_CFS_BANDWIDTH
7034 static DEFINE_MUTEX(cfs_constraints_mutex);
7035 
7036 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7037 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7038 
7039 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7040 
7041 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7042 {
7043 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7044 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7045 
7046 	if (tg == &root_task_group)
7047 		return -EINVAL;
7048 
7049 	/*
7050 	 * Ensure we have at some amount of bandwidth every period.  This is
7051 	 * to prevent reaching a state of large arrears when throttled via
7052 	 * entity_tick() resulting in prolonged exit starvation.
7053 	 */
7054 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7055 		return -EINVAL;
7056 
7057 	/*
7058 	 * Likewise, bound things on the otherside by preventing insane quota
7059 	 * periods.  This also allows us to normalize in computing quota
7060 	 * feasibility.
7061 	 */
7062 	if (period > max_cfs_quota_period)
7063 		return -EINVAL;
7064 
7065 	mutex_lock(&cfs_constraints_mutex);
7066 	ret = __cfs_schedulable(tg, period, quota);
7067 	if (ret)
7068 		goto out_unlock;
7069 
7070 	runtime_enabled = quota != RUNTIME_INF;
7071 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7072 	/*
7073 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7074 	 * before making related changes, and on->off must occur afterwards
7075 	 */
7076 	if (runtime_enabled && !runtime_was_enabled)
7077 		cfs_bandwidth_usage_inc();
7078 	raw_spin_lock_irq(&cfs_b->lock);
7079 	cfs_b->period = ns_to_ktime(period);
7080 	cfs_b->quota = quota;
7081 
7082 	__refill_cfs_bandwidth_runtime(cfs_b);
7083 	/* restart the period timer (if active) to handle new period expiry */
7084 	if (runtime_enabled && cfs_b->timer_active) {
7085 		/* force a reprogram */
7086 		cfs_b->timer_active = 0;
7087 		__start_cfs_bandwidth(cfs_b);
7088 	}
7089 	raw_spin_unlock_irq(&cfs_b->lock);
7090 
7091 	for_each_possible_cpu(i) {
7092 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7093 		struct rq *rq = cfs_rq->rq;
7094 
7095 		raw_spin_lock_irq(&rq->lock);
7096 		cfs_rq->runtime_enabled = runtime_enabled;
7097 		cfs_rq->runtime_remaining = 0;
7098 
7099 		if (cfs_rq->throttled)
7100 			unthrottle_cfs_rq(cfs_rq);
7101 		raw_spin_unlock_irq(&rq->lock);
7102 	}
7103 	if (runtime_was_enabled && !runtime_enabled)
7104 		cfs_bandwidth_usage_dec();
7105 out_unlock:
7106 	mutex_unlock(&cfs_constraints_mutex);
7107 
7108 	return ret;
7109 }
7110 
7111 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7112 {
7113 	u64 quota, period;
7114 
7115 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7116 	if (cfs_quota_us < 0)
7117 		quota = RUNTIME_INF;
7118 	else
7119 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7120 
7121 	return tg_set_cfs_bandwidth(tg, period, quota);
7122 }
7123 
7124 long tg_get_cfs_quota(struct task_group *tg)
7125 {
7126 	u64 quota_us;
7127 
7128 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7129 		return -1;
7130 
7131 	quota_us = tg->cfs_bandwidth.quota;
7132 	do_div(quota_us, NSEC_PER_USEC);
7133 
7134 	return quota_us;
7135 }
7136 
7137 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7138 {
7139 	u64 quota, period;
7140 
7141 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7142 	quota = tg->cfs_bandwidth.quota;
7143 
7144 	return tg_set_cfs_bandwidth(tg, period, quota);
7145 }
7146 
7147 long tg_get_cfs_period(struct task_group *tg)
7148 {
7149 	u64 cfs_period_us;
7150 
7151 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7152 	do_div(cfs_period_us, NSEC_PER_USEC);
7153 
7154 	return cfs_period_us;
7155 }
7156 
7157 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7158 				  struct cftype *cft)
7159 {
7160 	return tg_get_cfs_quota(css_tg(css));
7161 }
7162 
7163 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7164 				   struct cftype *cftype, s64 cfs_quota_us)
7165 {
7166 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7167 }
7168 
7169 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7170 				   struct cftype *cft)
7171 {
7172 	return tg_get_cfs_period(css_tg(css));
7173 }
7174 
7175 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7176 				    struct cftype *cftype, u64 cfs_period_us)
7177 {
7178 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7179 }
7180 
7181 struct cfs_schedulable_data {
7182 	struct task_group *tg;
7183 	u64 period, quota;
7184 };
7185 
7186 /*
7187  * normalize group quota/period to be quota/max_period
7188  * note: units are usecs
7189  */
7190 static u64 normalize_cfs_quota(struct task_group *tg,
7191 			       struct cfs_schedulable_data *d)
7192 {
7193 	u64 quota, period;
7194 
7195 	if (tg == d->tg) {
7196 		period = d->period;
7197 		quota = d->quota;
7198 	} else {
7199 		period = tg_get_cfs_period(tg);
7200 		quota = tg_get_cfs_quota(tg);
7201 	}
7202 
7203 	/* note: these should typically be equivalent */
7204 	if (quota == RUNTIME_INF || quota == -1)
7205 		return RUNTIME_INF;
7206 
7207 	return to_ratio(period, quota);
7208 }
7209 
7210 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7211 {
7212 	struct cfs_schedulable_data *d = data;
7213 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7214 	s64 quota = 0, parent_quota = -1;
7215 
7216 	if (!tg->parent) {
7217 		quota = RUNTIME_INF;
7218 	} else {
7219 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7220 
7221 		quota = normalize_cfs_quota(tg, d);
7222 		parent_quota = parent_b->hierarchal_quota;
7223 
7224 		/*
7225 		 * ensure max(child_quota) <= parent_quota, inherit when no
7226 		 * limit is set
7227 		 */
7228 		if (quota == RUNTIME_INF)
7229 			quota = parent_quota;
7230 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7231 			return -EINVAL;
7232 	}
7233 	cfs_b->hierarchal_quota = quota;
7234 
7235 	return 0;
7236 }
7237 
7238 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7239 {
7240 	int ret;
7241 	struct cfs_schedulable_data data = {
7242 		.tg = tg,
7243 		.period = period,
7244 		.quota = quota,
7245 	};
7246 
7247 	if (quota != RUNTIME_INF) {
7248 		do_div(data.period, NSEC_PER_USEC);
7249 		do_div(data.quota, NSEC_PER_USEC);
7250 	}
7251 
7252 	rcu_read_lock();
7253 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7254 	rcu_read_unlock();
7255 
7256 	return ret;
7257 }
7258 
7259 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7260 		struct cgroup_map_cb *cb)
7261 {
7262 	struct task_group *tg = css_tg(css);
7263 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7264 
7265 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7266 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7267 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7268 
7269 	return 0;
7270 }
7271 #endif /* CONFIG_CFS_BANDWIDTH */
7272 #endif /* CONFIG_FAIR_GROUP_SCHED */
7273 
7274 #ifdef CONFIG_RT_GROUP_SCHED
7275 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7276 				struct cftype *cft, s64 val)
7277 {
7278 	return sched_group_set_rt_runtime(css_tg(css), val);
7279 }
7280 
7281 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7282 			       struct cftype *cft)
7283 {
7284 	return sched_group_rt_runtime(css_tg(css));
7285 }
7286 
7287 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7288 				    struct cftype *cftype, u64 rt_period_us)
7289 {
7290 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7291 }
7292 
7293 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7294 				   struct cftype *cft)
7295 {
7296 	return sched_group_rt_period(css_tg(css));
7297 }
7298 #endif /* CONFIG_RT_GROUP_SCHED */
7299 
7300 static struct cftype cpu_files[] = {
7301 #ifdef CONFIG_FAIR_GROUP_SCHED
7302 	{
7303 		.name = "shares",
7304 		.read_u64 = cpu_shares_read_u64,
7305 		.write_u64 = cpu_shares_write_u64,
7306 	},
7307 #endif
7308 #ifdef CONFIG_CFS_BANDWIDTH
7309 	{
7310 		.name = "cfs_quota_us",
7311 		.read_s64 = cpu_cfs_quota_read_s64,
7312 		.write_s64 = cpu_cfs_quota_write_s64,
7313 	},
7314 	{
7315 		.name = "cfs_period_us",
7316 		.read_u64 = cpu_cfs_period_read_u64,
7317 		.write_u64 = cpu_cfs_period_write_u64,
7318 	},
7319 	{
7320 		.name = "stat",
7321 		.read_map = cpu_stats_show,
7322 	},
7323 #endif
7324 #ifdef CONFIG_RT_GROUP_SCHED
7325 	{
7326 		.name = "rt_runtime_us",
7327 		.read_s64 = cpu_rt_runtime_read,
7328 		.write_s64 = cpu_rt_runtime_write,
7329 	},
7330 	{
7331 		.name = "rt_period_us",
7332 		.read_u64 = cpu_rt_period_read_uint,
7333 		.write_u64 = cpu_rt_period_write_uint,
7334 	},
7335 #endif
7336 	{ }	/* terminate */
7337 };
7338 
7339 struct cgroup_subsys cpu_cgroup_subsys = {
7340 	.name		= "cpu",
7341 	.css_alloc	= cpu_cgroup_css_alloc,
7342 	.css_free	= cpu_cgroup_css_free,
7343 	.css_online	= cpu_cgroup_css_online,
7344 	.css_offline	= cpu_cgroup_css_offline,
7345 	.can_attach	= cpu_cgroup_can_attach,
7346 	.attach		= cpu_cgroup_attach,
7347 	.exit		= cpu_cgroup_exit,
7348 	.subsys_id	= cpu_cgroup_subsys_id,
7349 	.base_cftypes	= cpu_files,
7350 	.early_init	= 1,
7351 };
7352 
7353 #endif	/* CONFIG_CGROUP_SCHED */
7354 
7355 void dump_cpu_task(int cpu)
7356 {
7357 	pr_info("Task dump for CPU %d:\n", cpu);
7358 	sched_show_task(cpu_curr(cpu));
7359 }
7360