1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 */ 374 375 static void hrtick_clear(struct rq *rq) 376 { 377 if (hrtimer_active(&rq->hrtick_timer)) 378 hrtimer_cancel(&rq->hrtick_timer); 379 } 380 381 /* 382 * High-resolution timer tick. 383 * Runs from hardirq context with interrupts disabled. 384 */ 385 static enum hrtimer_restart hrtick(struct hrtimer *timer) 386 { 387 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 388 389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 390 391 raw_spin_lock(&rq->lock); 392 update_rq_clock(rq); 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 394 raw_spin_unlock(&rq->lock); 395 396 return HRTIMER_NORESTART; 397 } 398 399 #ifdef CONFIG_SMP 400 401 static int __hrtick_restart(struct rq *rq) 402 { 403 struct hrtimer *timer = &rq->hrtick_timer; 404 ktime_t time = hrtimer_get_softexpires(timer); 405 406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 407 } 408 409 /* 410 * called from hardirq (IPI) context 411 */ 412 static void __hrtick_start(void *arg) 413 { 414 struct rq *rq = arg; 415 416 raw_spin_lock(&rq->lock); 417 __hrtick_restart(rq); 418 rq->hrtick_csd_pending = 0; 419 raw_spin_unlock(&rq->lock); 420 } 421 422 /* 423 * Called to set the hrtick timer state. 424 * 425 * called with rq->lock held and irqs disabled 426 */ 427 void hrtick_start(struct rq *rq, u64 delay) 428 { 429 struct hrtimer *timer = &rq->hrtick_timer; 430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 431 432 hrtimer_set_expires(timer, time); 433 434 if (rq == this_rq()) { 435 __hrtick_restart(rq); 436 } else if (!rq->hrtick_csd_pending) { 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 438 rq->hrtick_csd_pending = 1; 439 } 440 } 441 442 static int 443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 444 { 445 int cpu = (int)(long)hcpu; 446 447 switch (action) { 448 case CPU_UP_CANCELED: 449 case CPU_UP_CANCELED_FROZEN: 450 case CPU_DOWN_PREPARE: 451 case CPU_DOWN_PREPARE_FROZEN: 452 case CPU_DEAD: 453 case CPU_DEAD_FROZEN: 454 hrtick_clear(cpu_rq(cpu)); 455 return NOTIFY_OK; 456 } 457 458 return NOTIFY_DONE; 459 } 460 461 static __init void init_hrtick(void) 462 { 463 hotcpu_notifier(hotplug_hrtick, 0); 464 } 465 #else 466 /* 467 * Called to set the hrtick timer state. 468 * 469 * called with rq->lock held and irqs disabled 470 */ 471 void hrtick_start(struct rq *rq, u64 delay) 472 { 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 474 HRTIMER_MODE_REL_PINNED, 0); 475 } 476 477 static inline void init_hrtick(void) 478 { 479 } 480 #endif /* CONFIG_SMP */ 481 482 static void init_rq_hrtick(struct rq *rq) 483 { 484 #ifdef CONFIG_SMP 485 rq->hrtick_csd_pending = 0; 486 487 rq->hrtick_csd.flags = 0; 488 rq->hrtick_csd.func = __hrtick_start; 489 rq->hrtick_csd.info = rq; 490 #endif 491 492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 493 rq->hrtick_timer.function = hrtick; 494 } 495 #else /* CONFIG_SCHED_HRTICK */ 496 static inline void hrtick_clear(struct rq *rq) 497 { 498 } 499 500 static inline void init_rq_hrtick(struct rq *rq) 501 { 502 } 503 504 static inline void init_hrtick(void) 505 { 506 } 507 #endif /* CONFIG_SCHED_HRTICK */ 508 509 /* 510 * resched_task - mark a task 'to be rescheduled now'. 511 * 512 * On UP this means the setting of the need_resched flag, on SMP it 513 * might also involve a cross-CPU call to trigger the scheduler on 514 * the target CPU. 515 */ 516 void resched_task(struct task_struct *p) 517 { 518 int cpu; 519 520 lockdep_assert_held(&task_rq(p)->lock); 521 522 if (test_tsk_need_resched(p)) 523 return; 524 525 set_tsk_need_resched(p); 526 527 cpu = task_cpu(p); 528 if (cpu == smp_processor_id()) { 529 set_preempt_need_resched(); 530 return; 531 } 532 533 /* NEED_RESCHED must be visible before we test polling */ 534 smp_mb(); 535 if (!tsk_is_polling(p)) 536 smp_send_reschedule(cpu); 537 } 538 539 void resched_cpu(int cpu) 540 { 541 struct rq *rq = cpu_rq(cpu); 542 unsigned long flags; 543 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 545 return; 546 resched_task(cpu_curr(cpu)); 547 raw_spin_unlock_irqrestore(&rq->lock, flags); 548 } 549 550 #ifdef CONFIG_SMP 551 #ifdef CONFIG_NO_HZ_COMMON 552 /* 553 * In the semi idle case, use the nearest busy cpu for migrating timers 554 * from an idle cpu. This is good for power-savings. 555 * 556 * We don't do similar optimization for completely idle system, as 557 * selecting an idle cpu will add more delays to the timers than intended 558 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 559 */ 560 int get_nohz_timer_target(void) 561 { 562 int cpu = smp_processor_id(); 563 int i; 564 struct sched_domain *sd; 565 566 rcu_read_lock(); 567 for_each_domain(cpu, sd) { 568 for_each_cpu(i, sched_domain_span(sd)) { 569 if (!idle_cpu(i)) { 570 cpu = i; 571 goto unlock; 572 } 573 } 574 } 575 unlock: 576 rcu_read_unlock(); 577 return cpu; 578 } 579 /* 580 * When add_timer_on() enqueues a timer into the timer wheel of an 581 * idle CPU then this timer might expire before the next timer event 582 * which is scheduled to wake up that CPU. In case of a completely 583 * idle system the next event might even be infinite time into the 584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 585 * leaves the inner idle loop so the newly added timer is taken into 586 * account when the CPU goes back to idle and evaluates the timer 587 * wheel for the next timer event. 588 */ 589 static void wake_up_idle_cpu(int cpu) 590 { 591 struct rq *rq = cpu_rq(cpu); 592 593 if (cpu == smp_processor_id()) 594 return; 595 596 /* 597 * This is safe, as this function is called with the timer 598 * wheel base lock of (cpu) held. When the CPU is on the way 599 * to idle and has not yet set rq->curr to idle then it will 600 * be serialized on the timer wheel base lock and take the new 601 * timer into account automatically. 602 */ 603 if (rq->curr != rq->idle) 604 return; 605 606 /* 607 * We can set TIF_RESCHED on the idle task of the other CPU 608 * lockless. The worst case is that the other CPU runs the 609 * idle task through an additional NOOP schedule() 610 */ 611 set_tsk_need_resched(rq->idle); 612 613 /* NEED_RESCHED must be visible before we test polling */ 614 smp_mb(); 615 if (!tsk_is_polling(rq->idle)) 616 smp_send_reschedule(cpu); 617 } 618 619 static bool wake_up_full_nohz_cpu(int cpu) 620 { 621 if (tick_nohz_full_cpu(cpu)) { 622 if (cpu != smp_processor_id() || 623 tick_nohz_tick_stopped()) 624 smp_send_reschedule(cpu); 625 return true; 626 } 627 628 return false; 629 } 630 631 void wake_up_nohz_cpu(int cpu) 632 { 633 if (!wake_up_full_nohz_cpu(cpu)) 634 wake_up_idle_cpu(cpu); 635 } 636 637 static inline bool got_nohz_idle_kick(void) 638 { 639 int cpu = smp_processor_id(); 640 641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 642 return false; 643 644 if (idle_cpu(cpu) && !need_resched()) 645 return true; 646 647 /* 648 * We can't run Idle Load Balance on this CPU for this time so we 649 * cancel it and clear NOHZ_BALANCE_KICK 650 */ 651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 652 return false; 653 } 654 655 #else /* CONFIG_NO_HZ_COMMON */ 656 657 static inline bool got_nohz_idle_kick(void) 658 { 659 return false; 660 } 661 662 #endif /* CONFIG_NO_HZ_COMMON */ 663 664 #ifdef CONFIG_NO_HZ_FULL 665 bool sched_can_stop_tick(void) 666 { 667 struct rq *rq; 668 669 rq = this_rq(); 670 671 /* Make sure rq->nr_running update is visible after the IPI */ 672 smp_rmb(); 673 674 /* More than one running task need preemption */ 675 if (rq->nr_running > 1) 676 return false; 677 678 return true; 679 } 680 #endif /* CONFIG_NO_HZ_FULL */ 681 682 void sched_avg_update(struct rq *rq) 683 { 684 s64 period = sched_avg_period(); 685 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 687 /* 688 * Inline assembly required to prevent the compiler 689 * optimising this loop into a divmod call. 690 * See __iter_div_u64_rem() for another example of this. 691 */ 692 asm("" : "+rm" (rq->age_stamp)); 693 rq->age_stamp += period; 694 rq->rt_avg /= 2; 695 } 696 } 697 698 #endif /* CONFIG_SMP */ 699 700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 702 /* 703 * Iterate task_group tree rooted at *from, calling @down when first entering a 704 * node and @up when leaving it for the final time. 705 * 706 * Caller must hold rcu_lock or sufficient equivalent. 707 */ 708 int walk_tg_tree_from(struct task_group *from, 709 tg_visitor down, tg_visitor up, void *data) 710 { 711 struct task_group *parent, *child; 712 int ret; 713 714 parent = from; 715 716 down: 717 ret = (*down)(parent, data); 718 if (ret) 719 goto out; 720 list_for_each_entry_rcu(child, &parent->children, siblings) { 721 parent = child; 722 goto down; 723 724 up: 725 continue; 726 } 727 ret = (*up)(parent, data); 728 if (ret || parent == from) 729 goto out; 730 731 child = parent; 732 parent = parent->parent; 733 if (parent) 734 goto up; 735 out: 736 return ret; 737 } 738 739 int tg_nop(struct task_group *tg, void *data) 740 { 741 return 0; 742 } 743 #endif 744 745 static void set_load_weight(struct task_struct *p) 746 { 747 int prio = p->static_prio - MAX_RT_PRIO; 748 struct load_weight *load = &p->se.load; 749 750 /* 751 * SCHED_IDLE tasks get minimal weight: 752 */ 753 if (p->policy == SCHED_IDLE) { 754 load->weight = scale_load(WEIGHT_IDLEPRIO); 755 load->inv_weight = WMULT_IDLEPRIO; 756 return; 757 } 758 759 load->weight = scale_load(prio_to_weight[prio]); 760 load->inv_weight = prio_to_wmult[prio]; 761 } 762 763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 update_rq_clock(rq); 766 sched_info_queued(rq, p); 767 p->sched_class->enqueue_task(rq, p, flags); 768 } 769 770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 771 { 772 update_rq_clock(rq); 773 sched_info_dequeued(rq, p); 774 p->sched_class->dequeue_task(rq, p, flags); 775 } 776 777 void activate_task(struct rq *rq, struct task_struct *p, int flags) 778 { 779 if (task_contributes_to_load(p)) 780 rq->nr_uninterruptible--; 781 782 enqueue_task(rq, p, flags); 783 } 784 785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 786 { 787 if (task_contributes_to_load(p)) 788 rq->nr_uninterruptible++; 789 790 dequeue_task(rq, p, flags); 791 } 792 793 static void update_rq_clock_task(struct rq *rq, s64 delta) 794 { 795 /* 796 * In theory, the compile should just see 0 here, and optimize out the call 797 * to sched_rt_avg_update. But I don't trust it... 798 */ 799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 800 s64 steal = 0, irq_delta = 0; 801 #endif 802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 804 805 /* 806 * Since irq_time is only updated on {soft,}irq_exit, we might run into 807 * this case when a previous update_rq_clock() happened inside a 808 * {soft,}irq region. 809 * 810 * When this happens, we stop ->clock_task and only update the 811 * prev_irq_time stamp to account for the part that fit, so that a next 812 * update will consume the rest. This ensures ->clock_task is 813 * monotonic. 814 * 815 * It does however cause some slight miss-attribution of {soft,}irq 816 * time, a more accurate solution would be to update the irq_time using 817 * the current rq->clock timestamp, except that would require using 818 * atomic ops. 819 */ 820 if (irq_delta > delta) 821 irq_delta = delta; 822 823 rq->prev_irq_time += irq_delta; 824 delta -= irq_delta; 825 #endif 826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 827 if (static_key_false((¶virt_steal_rq_enabled))) { 828 u64 st; 829 830 steal = paravirt_steal_clock(cpu_of(rq)); 831 steal -= rq->prev_steal_time_rq; 832 833 if (unlikely(steal > delta)) 834 steal = delta; 835 836 st = steal_ticks(steal); 837 steal = st * TICK_NSEC; 838 839 rq->prev_steal_time_rq += steal; 840 841 delta -= steal; 842 } 843 #endif 844 845 rq->clock_task += delta; 846 847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 849 sched_rt_avg_update(rq, irq_delta + steal); 850 #endif 851 } 852 853 void sched_set_stop_task(int cpu, struct task_struct *stop) 854 { 855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 856 struct task_struct *old_stop = cpu_rq(cpu)->stop; 857 858 if (stop) { 859 /* 860 * Make it appear like a SCHED_FIFO task, its something 861 * userspace knows about and won't get confused about. 862 * 863 * Also, it will make PI more or less work without too 864 * much confusion -- but then, stop work should not 865 * rely on PI working anyway. 866 */ 867 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 868 869 stop->sched_class = &stop_sched_class; 870 } 871 872 cpu_rq(cpu)->stop = stop; 873 874 if (old_stop) { 875 /* 876 * Reset it back to a normal scheduling class so that 877 * it can die in pieces. 878 */ 879 old_stop->sched_class = &rt_sched_class; 880 } 881 } 882 883 /* 884 * __normal_prio - return the priority that is based on the static prio 885 */ 886 static inline int __normal_prio(struct task_struct *p) 887 { 888 return p->static_prio; 889 } 890 891 /* 892 * Calculate the expected normal priority: i.e. priority 893 * without taking RT-inheritance into account. Might be 894 * boosted by interactivity modifiers. Changes upon fork, 895 * setprio syscalls, and whenever the interactivity 896 * estimator recalculates. 897 */ 898 static inline int normal_prio(struct task_struct *p) 899 { 900 int prio; 901 902 if (task_has_rt_policy(p)) 903 prio = MAX_RT_PRIO-1 - p->rt_priority; 904 else 905 prio = __normal_prio(p); 906 return prio; 907 } 908 909 /* 910 * Calculate the current priority, i.e. the priority 911 * taken into account by the scheduler. This value might 912 * be boosted by RT tasks, or might be boosted by 913 * interactivity modifiers. Will be RT if the task got 914 * RT-boosted. If not then it returns p->normal_prio. 915 */ 916 static int effective_prio(struct task_struct *p) 917 { 918 p->normal_prio = normal_prio(p); 919 /* 920 * If we are RT tasks or we were boosted to RT priority, 921 * keep the priority unchanged. Otherwise, update priority 922 * to the normal priority: 923 */ 924 if (!rt_prio(p->prio)) 925 return p->normal_prio; 926 return p->prio; 927 } 928 929 /** 930 * task_curr - is this task currently executing on a CPU? 931 * @p: the task in question. 932 * 933 * Return: 1 if the task is currently executing. 0 otherwise. 934 */ 935 inline int task_curr(const struct task_struct *p) 936 { 937 return cpu_curr(task_cpu(p)) == p; 938 } 939 940 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 941 const struct sched_class *prev_class, 942 int oldprio) 943 { 944 if (prev_class != p->sched_class) { 945 if (prev_class->switched_from) 946 prev_class->switched_from(rq, p); 947 p->sched_class->switched_to(rq, p); 948 } else if (oldprio != p->prio) 949 p->sched_class->prio_changed(rq, p, oldprio); 950 } 951 952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 953 { 954 const struct sched_class *class; 955 956 if (p->sched_class == rq->curr->sched_class) { 957 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 958 } else { 959 for_each_class(class) { 960 if (class == rq->curr->sched_class) 961 break; 962 if (class == p->sched_class) { 963 resched_task(rq->curr); 964 break; 965 } 966 } 967 } 968 969 /* 970 * A queue event has occurred, and we're going to schedule. In 971 * this case, we can save a useless back to back clock update. 972 */ 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 974 rq->skip_clock_update = 1; 975 } 976 977 #ifdef CONFIG_SMP 978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 979 { 980 #ifdef CONFIG_SCHED_DEBUG 981 /* 982 * We should never call set_task_cpu() on a blocked task, 983 * ttwu() will sort out the placement. 984 */ 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 986 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 987 988 #ifdef CONFIG_LOCKDEP 989 /* 990 * The caller should hold either p->pi_lock or rq->lock, when changing 991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 992 * 993 * sched_move_task() holds both and thus holding either pins the cgroup, 994 * see task_group(). 995 * 996 * Furthermore, all task_rq users should acquire both locks, see 997 * task_rq_lock(). 998 */ 999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1000 lockdep_is_held(&task_rq(p)->lock))); 1001 #endif 1002 #endif 1003 1004 trace_sched_migrate_task(p, new_cpu); 1005 1006 if (task_cpu(p) != new_cpu) { 1007 if (p->sched_class->migrate_task_rq) 1008 p->sched_class->migrate_task_rq(p, new_cpu); 1009 p->se.nr_migrations++; 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1011 } 1012 1013 __set_task_cpu(p, new_cpu); 1014 } 1015 1016 static void __migrate_swap_task(struct task_struct *p, int cpu) 1017 { 1018 if (p->on_rq) { 1019 struct rq *src_rq, *dst_rq; 1020 1021 src_rq = task_rq(p); 1022 dst_rq = cpu_rq(cpu); 1023 1024 deactivate_task(src_rq, p, 0); 1025 set_task_cpu(p, cpu); 1026 activate_task(dst_rq, p, 0); 1027 check_preempt_curr(dst_rq, p, 0); 1028 } else { 1029 /* 1030 * Task isn't running anymore; make it appear like we migrated 1031 * it before it went to sleep. This means on wakeup we make the 1032 * previous cpu our targer instead of where it really is. 1033 */ 1034 p->wake_cpu = cpu; 1035 } 1036 } 1037 1038 struct migration_swap_arg { 1039 struct task_struct *src_task, *dst_task; 1040 int src_cpu, dst_cpu; 1041 }; 1042 1043 static int migrate_swap_stop(void *data) 1044 { 1045 struct migration_swap_arg *arg = data; 1046 struct rq *src_rq, *dst_rq; 1047 int ret = -EAGAIN; 1048 1049 src_rq = cpu_rq(arg->src_cpu); 1050 dst_rq = cpu_rq(arg->dst_cpu); 1051 1052 double_raw_lock(&arg->src_task->pi_lock, 1053 &arg->dst_task->pi_lock); 1054 double_rq_lock(src_rq, dst_rq); 1055 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1056 goto unlock; 1057 1058 if (task_cpu(arg->src_task) != arg->src_cpu) 1059 goto unlock; 1060 1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1062 goto unlock; 1063 1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1065 goto unlock; 1066 1067 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1068 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1069 1070 ret = 0; 1071 1072 unlock: 1073 double_rq_unlock(src_rq, dst_rq); 1074 raw_spin_unlock(&arg->dst_task->pi_lock); 1075 raw_spin_unlock(&arg->src_task->pi_lock); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Cross migrate two tasks 1082 */ 1083 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1084 { 1085 struct migration_swap_arg arg; 1086 int ret = -EINVAL; 1087 1088 arg = (struct migration_swap_arg){ 1089 .src_task = cur, 1090 .src_cpu = task_cpu(cur), 1091 .dst_task = p, 1092 .dst_cpu = task_cpu(p), 1093 }; 1094 1095 if (arg.src_cpu == arg.dst_cpu) 1096 goto out; 1097 1098 /* 1099 * These three tests are all lockless; this is OK since all of them 1100 * will be re-checked with proper locks held further down the line. 1101 */ 1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1103 goto out; 1104 1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1106 goto out; 1107 1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1109 goto out; 1110 1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1112 1113 out: 1114 return ret; 1115 } 1116 1117 struct migration_arg { 1118 struct task_struct *task; 1119 int dest_cpu; 1120 }; 1121 1122 static int migration_cpu_stop(void *data); 1123 1124 /* 1125 * wait_task_inactive - wait for a thread to unschedule. 1126 * 1127 * If @match_state is nonzero, it's the @p->state value just checked and 1128 * not expected to change. If it changes, i.e. @p might have woken up, 1129 * then return zero. When we succeed in waiting for @p to be off its CPU, 1130 * we return a positive number (its total switch count). If a second call 1131 * a short while later returns the same number, the caller can be sure that 1132 * @p has remained unscheduled the whole time. 1133 * 1134 * The caller must ensure that the task *will* unschedule sometime soon, 1135 * else this function might spin for a *long* time. This function can't 1136 * be called with interrupts off, or it may introduce deadlock with 1137 * smp_call_function() if an IPI is sent by the same process we are 1138 * waiting to become inactive. 1139 */ 1140 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1141 { 1142 unsigned long flags; 1143 int running, on_rq; 1144 unsigned long ncsw; 1145 struct rq *rq; 1146 1147 for (;;) { 1148 /* 1149 * We do the initial early heuristics without holding 1150 * any task-queue locks at all. We'll only try to get 1151 * the runqueue lock when things look like they will 1152 * work out! 1153 */ 1154 rq = task_rq(p); 1155 1156 /* 1157 * If the task is actively running on another CPU 1158 * still, just relax and busy-wait without holding 1159 * any locks. 1160 * 1161 * NOTE! Since we don't hold any locks, it's not 1162 * even sure that "rq" stays as the right runqueue! 1163 * But we don't care, since "task_running()" will 1164 * return false if the runqueue has changed and p 1165 * is actually now running somewhere else! 1166 */ 1167 while (task_running(rq, p)) { 1168 if (match_state && unlikely(p->state != match_state)) 1169 return 0; 1170 cpu_relax(); 1171 } 1172 1173 /* 1174 * Ok, time to look more closely! We need the rq 1175 * lock now, to be *sure*. If we're wrong, we'll 1176 * just go back and repeat. 1177 */ 1178 rq = task_rq_lock(p, &flags); 1179 trace_sched_wait_task(p); 1180 running = task_running(rq, p); 1181 on_rq = p->on_rq; 1182 ncsw = 0; 1183 if (!match_state || p->state == match_state) 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1185 task_rq_unlock(rq, p, &flags); 1186 1187 /* 1188 * If it changed from the expected state, bail out now. 1189 */ 1190 if (unlikely(!ncsw)) 1191 break; 1192 1193 /* 1194 * Was it really running after all now that we 1195 * checked with the proper locks actually held? 1196 * 1197 * Oops. Go back and try again.. 1198 */ 1199 if (unlikely(running)) { 1200 cpu_relax(); 1201 continue; 1202 } 1203 1204 /* 1205 * It's not enough that it's not actively running, 1206 * it must be off the runqueue _entirely_, and not 1207 * preempted! 1208 * 1209 * So if it was still runnable (but just not actively 1210 * running right now), it's preempted, and we should 1211 * yield - it could be a while. 1212 */ 1213 if (unlikely(on_rq)) { 1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1215 1216 set_current_state(TASK_UNINTERRUPTIBLE); 1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1218 continue; 1219 } 1220 1221 /* 1222 * Ahh, all good. It wasn't running, and it wasn't 1223 * runnable, which means that it will never become 1224 * running in the future either. We're all done! 1225 */ 1226 break; 1227 } 1228 1229 return ncsw; 1230 } 1231 1232 /*** 1233 * kick_process - kick a running thread to enter/exit the kernel 1234 * @p: the to-be-kicked thread 1235 * 1236 * Cause a process which is running on another CPU to enter 1237 * kernel-mode, without any delay. (to get signals handled.) 1238 * 1239 * NOTE: this function doesn't have to take the runqueue lock, 1240 * because all it wants to ensure is that the remote task enters 1241 * the kernel. If the IPI races and the task has been migrated 1242 * to another CPU then no harm is done and the purpose has been 1243 * achieved as well. 1244 */ 1245 void kick_process(struct task_struct *p) 1246 { 1247 int cpu; 1248 1249 preempt_disable(); 1250 cpu = task_cpu(p); 1251 if ((cpu != smp_processor_id()) && task_curr(p)) 1252 smp_send_reschedule(cpu); 1253 preempt_enable(); 1254 } 1255 EXPORT_SYMBOL_GPL(kick_process); 1256 #endif /* CONFIG_SMP */ 1257 1258 #ifdef CONFIG_SMP 1259 /* 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1261 */ 1262 static int select_fallback_rq(int cpu, struct task_struct *p) 1263 { 1264 int nid = cpu_to_node(cpu); 1265 const struct cpumask *nodemask = NULL; 1266 enum { cpuset, possible, fail } state = cpuset; 1267 int dest_cpu; 1268 1269 /* 1270 * If the node that the cpu is on has been offlined, cpu_to_node() 1271 * will return -1. There is no cpu on the node, and we should 1272 * select the cpu on the other node. 1273 */ 1274 if (nid != -1) { 1275 nodemask = cpumask_of_node(nid); 1276 1277 /* Look for allowed, online CPU in same node. */ 1278 for_each_cpu(dest_cpu, nodemask) { 1279 if (!cpu_online(dest_cpu)) 1280 continue; 1281 if (!cpu_active(dest_cpu)) 1282 continue; 1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1284 return dest_cpu; 1285 } 1286 } 1287 1288 for (;;) { 1289 /* Any allowed, online CPU? */ 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1291 if (!cpu_online(dest_cpu)) 1292 continue; 1293 if (!cpu_active(dest_cpu)) 1294 continue; 1295 goto out; 1296 } 1297 1298 switch (state) { 1299 case cpuset: 1300 /* No more Mr. Nice Guy. */ 1301 cpuset_cpus_allowed_fallback(p); 1302 state = possible; 1303 break; 1304 1305 case possible: 1306 do_set_cpus_allowed(p, cpu_possible_mask); 1307 state = fail; 1308 break; 1309 1310 case fail: 1311 BUG(); 1312 break; 1313 } 1314 } 1315 1316 out: 1317 if (state != cpuset) { 1318 /* 1319 * Don't tell them about moving exiting tasks or 1320 * kernel threads (both mm NULL), since they never 1321 * leave kernel. 1322 */ 1323 if (p->mm && printk_ratelimit()) { 1324 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1325 task_pid_nr(p), p->comm, cpu); 1326 } 1327 } 1328 1329 return dest_cpu; 1330 } 1331 1332 /* 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1334 */ 1335 static inline 1336 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1337 { 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1339 1340 /* 1341 * In order not to call set_task_cpu() on a blocking task we need 1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1343 * cpu. 1344 * 1345 * Since this is common to all placement strategies, this lives here. 1346 * 1347 * [ this allows ->select_task() to simply return task_cpu(p) and 1348 * not worry about this generic constraint ] 1349 */ 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1351 !cpu_online(cpu))) 1352 cpu = select_fallback_rq(task_cpu(p), p); 1353 1354 return cpu; 1355 } 1356 1357 static void update_avg(u64 *avg, u64 sample) 1358 { 1359 s64 diff = sample - *avg; 1360 *avg += diff >> 3; 1361 } 1362 #endif 1363 1364 static void 1365 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1366 { 1367 #ifdef CONFIG_SCHEDSTATS 1368 struct rq *rq = this_rq(); 1369 1370 #ifdef CONFIG_SMP 1371 int this_cpu = smp_processor_id(); 1372 1373 if (cpu == this_cpu) { 1374 schedstat_inc(rq, ttwu_local); 1375 schedstat_inc(p, se.statistics.nr_wakeups_local); 1376 } else { 1377 struct sched_domain *sd; 1378 1379 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1380 rcu_read_lock(); 1381 for_each_domain(this_cpu, sd) { 1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1383 schedstat_inc(sd, ttwu_wake_remote); 1384 break; 1385 } 1386 } 1387 rcu_read_unlock(); 1388 } 1389 1390 if (wake_flags & WF_MIGRATED) 1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1392 1393 #endif /* CONFIG_SMP */ 1394 1395 schedstat_inc(rq, ttwu_count); 1396 schedstat_inc(p, se.statistics.nr_wakeups); 1397 1398 if (wake_flags & WF_SYNC) 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1400 1401 #endif /* CONFIG_SCHEDSTATS */ 1402 } 1403 1404 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1405 { 1406 activate_task(rq, p, en_flags); 1407 p->on_rq = 1; 1408 1409 /* if a worker is waking up, notify workqueue */ 1410 if (p->flags & PF_WQ_WORKER) 1411 wq_worker_waking_up(p, cpu_of(rq)); 1412 } 1413 1414 /* 1415 * Mark the task runnable and perform wakeup-preemption. 1416 */ 1417 static void 1418 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1419 { 1420 check_preempt_curr(rq, p, wake_flags); 1421 trace_sched_wakeup(p, true); 1422 1423 p->state = TASK_RUNNING; 1424 #ifdef CONFIG_SMP 1425 if (p->sched_class->task_woken) 1426 p->sched_class->task_woken(rq, p); 1427 1428 if (rq->idle_stamp) { 1429 u64 delta = rq_clock(rq) - rq->idle_stamp; 1430 u64 max = 2*rq->max_idle_balance_cost; 1431 1432 update_avg(&rq->avg_idle, delta); 1433 1434 if (rq->avg_idle > max) 1435 rq->avg_idle = max; 1436 1437 rq->idle_stamp = 0; 1438 } 1439 #endif 1440 } 1441 1442 static void 1443 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1444 { 1445 #ifdef CONFIG_SMP 1446 if (p->sched_contributes_to_load) 1447 rq->nr_uninterruptible--; 1448 #endif 1449 1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1451 ttwu_do_wakeup(rq, p, wake_flags); 1452 } 1453 1454 /* 1455 * Called in case the task @p isn't fully descheduled from its runqueue, 1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1457 * since all we need to do is flip p->state to TASK_RUNNING, since 1458 * the task is still ->on_rq. 1459 */ 1460 static int ttwu_remote(struct task_struct *p, int wake_flags) 1461 { 1462 struct rq *rq; 1463 int ret = 0; 1464 1465 rq = __task_rq_lock(p); 1466 if (p->on_rq) { 1467 /* check_preempt_curr() may use rq clock */ 1468 update_rq_clock(rq); 1469 ttwu_do_wakeup(rq, p, wake_flags); 1470 ret = 1; 1471 } 1472 __task_rq_unlock(rq); 1473 1474 return ret; 1475 } 1476 1477 #ifdef CONFIG_SMP 1478 static void sched_ttwu_pending(void) 1479 { 1480 struct rq *rq = this_rq(); 1481 struct llist_node *llist = llist_del_all(&rq->wake_list); 1482 struct task_struct *p; 1483 1484 raw_spin_lock(&rq->lock); 1485 1486 while (llist) { 1487 p = llist_entry(llist, struct task_struct, wake_entry); 1488 llist = llist_next(llist); 1489 ttwu_do_activate(rq, p, 0); 1490 } 1491 1492 raw_spin_unlock(&rq->lock); 1493 } 1494 1495 void scheduler_ipi(void) 1496 { 1497 /* 1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1499 * TIF_NEED_RESCHED remotely (for the first time) will also send 1500 * this IPI. 1501 */ 1502 if (tif_need_resched()) 1503 set_preempt_need_resched(); 1504 1505 if (llist_empty(&this_rq()->wake_list) 1506 && !tick_nohz_full_cpu(smp_processor_id()) 1507 && !got_nohz_idle_kick()) 1508 return; 1509 1510 /* 1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1512 * traditionally all their work was done from the interrupt return 1513 * path. Now that we actually do some work, we need to make sure 1514 * we do call them. 1515 * 1516 * Some archs already do call them, luckily irq_enter/exit nest 1517 * properly. 1518 * 1519 * Arguably we should visit all archs and update all handlers, 1520 * however a fair share of IPIs are still resched only so this would 1521 * somewhat pessimize the simple resched case. 1522 */ 1523 irq_enter(); 1524 tick_nohz_full_check(); 1525 sched_ttwu_pending(); 1526 1527 /* 1528 * Check if someone kicked us for doing the nohz idle load balance. 1529 */ 1530 if (unlikely(got_nohz_idle_kick())) { 1531 this_rq()->idle_balance = 1; 1532 raise_softirq_irqoff(SCHED_SOFTIRQ); 1533 } 1534 irq_exit(); 1535 } 1536 1537 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1538 { 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1540 smp_send_reschedule(cpu); 1541 } 1542 1543 bool cpus_share_cache(int this_cpu, int that_cpu) 1544 { 1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1546 } 1547 #endif /* CONFIG_SMP */ 1548 1549 static void ttwu_queue(struct task_struct *p, int cpu) 1550 { 1551 struct rq *rq = cpu_rq(cpu); 1552 1553 #if defined(CONFIG_SMP) 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1556 ttwu_queue_remote(p, cpu); 1557 return; 1558 } 1559 #endif 1560 1561 raw_spin_lock(&rq->lock); 1562 ttwu_do_activate(rq, p, 0); 1563 raw_spin_unlock(&rq->lock); 1564 } 1565 1566 /** 1567 * try_to_wake_up - wake up a thread 1568 * @p: the thread to be awakened 1569 * @state: the mask of task states that can be woken 1570 * @wake_flags: wake modifier flags (WF_*) 1571 * 1572 * Put it on the run-queue if it's not already there. The "current" 1573 * thread is always on the run-queue (except when the actual 1574 * re-schedule is in progress), and as such you're allowed to do 1575 * the simpler "current->state = TASK_RUNNING" to mark yourself 1576 * runnable without the overhead of this. 1577 * 1578 * Return: %true if @p was woken up, %false if it was already running. 1579 * or @state didn't match @p's state. 1580 */ 1581 static int 1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1583 { 1584 unsigned long flags; 1585 int cpu, success = 0; 1586 1587 /* 1588 * If we are going to wake up a thread waiting for CONDITION we 1589 * need to ensure that CONDITION=1 done by the caller can not be 1590 * reordered with p->state check below. This pairs with mb() in 1591 * set_current_state() the waiting thread does. 1592 */ 1593 smp_mb__before_spinlock(); 1594 raw_spin_lock_irqsave(&p->pi_lock, flags); 1595 if (!(p->state & state)) 1596 goto out; 1597 1598 success = 1; /* we're going to change ->state */ 1599 cpu = task_cpu(p); 1600 1601 if (p->on_rq && ttwu_remote(p, wake_flags)) 1602 goto stat; 1603 1604 #ifdef CONFIG_SMP 1605 /* 1606 * If the owning (remote) cpu is still in the middle of schedule() with 1607 * this task as prev, wait until its done referencing the task. 1608 */ 1609 while (p->on_cpu) 1610 cpu_relax(); 1611 /* 1612 * Pairs with the smp_wmb() in finish_lock_switch(). 1613 */ 1614 smp_rmb(); 1615 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1617 p->state = TASK_WAKING; 1618 1619 if (p->sched_class->task_waking) 1620 p->sched_class->task_waking(p); 1621 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1623 if (task_cpu(p) != cpu) { 1624 wake_flags |= WF_MIGRATED; 1625 set_task_cpu(p, cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 ttwu_queue(p, cpu); 1630 stat: 1631 ttwu_stat(p, cpu, wake_flags); 1632 out: 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1634 1635 return success; 1636 } 1637 1638 /** 1639 * try_to_wake_up_local - try to wake up a local task with rq lock held 1640 * @p: the thread to be awakened 1641 * 1642 * Put @p on the run-queue if it's not already there. The caller must 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1644 * the current task. 1645 */ 1646 static void try_to_wake_up_local(struct task_struct *p) 1647 { 1648 struct rq *rq = task_rq(p); 1649 1650 if (WARN_ON_ONCE(rq != this_rq()) || 1651 WARN_ON_ONCE(p == current)) 1652 return; 1653 1654 lockdep_assert_held(&rq->lock); 1655 1656 if (!raw_spin_trylock(&p->pi_lock)) { 1657 raw_spin_unlock(&rq->lock); 1658 raw_spin_lock(&p->pi_lock); 1659 raw_spin_lock(&rq->lock); 1660 } 1661 1662 if (!(p->state & TASK_NORMAL)) 1663 goto out; 1664 1665 if (!p->on_rq) 1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1667 1668 ttwu_do_wakeup(rq, p, 0); 1669 ttwu_stat(p, smp_processor_id(), 0); 1670 out: 1671 raw_spin_unlock(&p->pi_lock); 1672 } 1673 1674 /** 1675 * wake_up_process - Wake up a specific process 1676 * @p: The process to be woken up. 1677 * 1678 * Attempt to wake up the nominated process and move it to the set of runnable 1679 * processes. 1680 * 1681 * Return: 1 if the process was woken up, 0 if it was already running. 1682 * 1683 * It may be assumed that this function implies a write memory barrier before 1684 * changing the task state if and only if any tasks are woken up. 1685 */ 1686 int wake_up_process(struct task_struct *p) 1687 { 1688 WARN_ON(task_is_stopped_or_traced(p)); 1689 return try_to_wake_up(p, TASK_NORMAL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 INIT_LIST_HEAD(&p->rt.run_list); 1721 1722 #ifdef CONFIG_PREEMPT_NOTIFIERS 1723 INIT_HLIST_HEAD(&p->preempt_notifiers); 1724 #endif 1725 1726 #ifdef CONFIG_NUMA_BALANCING 1727 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1728 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1729 p->mm->numa_scan_seq = 0; 1730 } 1731 1732 if (clone_flags & CLONE_VM) 1733 p->numa_preferred_nid = current->numa_preferred_nid; 1734 else 1735 p->numa_preferred_nid = -1; 1736 1737 p->node_stamp = 0ULL; 1738 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1739 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1740 p->numa_work.next = &p->numa_work; 1741 p->numa_faults = NULL; 1742 p->numa_faults_buffer = NULL; 1743 1744 INIT_LIST_HEAD(&p->numa_entry); 1745 p->numa_group = NULL; 1746 #endif /* CONFIG_NUMA_BALANCING */ 1747 } 1748 1749 #ifdef CONFIG_NUMA_BALANCING 1750 #ifdef CONFIG_SCHED_DEBUG 1751 void set_numabalancing_state(bool enabled) 1752 { 1753 if (enabled) 1754 sched_feat_set("NUMA"); 1755 else 1756 sched_feat_set("NO_NUMA"); 1757 } 1758 #else 1759 __read_mostly bool numabalancing_enabled; 1760 1761 void set_numabalancing_state(bool enabled) 1762 { 1763 numabalancing_enabled = enabled; 1764 } 1765 #endif /* CONFIG_SCHED_DEBUG */ 1766 #endif /* CONFIG_NUMA_BALANCING */ 1767 1768 /* 1769 * fork()/clone()-time setup: 1770 */ 1771 void sched_fork(unsigned long clone_flags, struct task_struct *p) 1772 { 1773 unsigned long flags; 1774 int cpu = get_cpu(); 1775 1776 __sched_fork(clone_flags, p); 1777 /* 1778 * We mark the process as running here. This guarantees that 1779 * nobody will actually run it, and a signal or other external 1780 * event cannot wake it up and insert it on the runqueue either. 1781 */ 1782 p->state = TASK_RUNNING; 1783 1784 /* 1785 * Make sure we do not leak PI boosting priority to the child. 1786 */ 1787 p->prio = current->normal_prio; 1788 1789 /* 1790 * Revert to default priority/policy on fork if requested. 1791 */ 1792 if (unlikely(p->sched_reset_on_fork)) { 1793 if (task_has_rt_policy(p)) { 1794 p->policy = SCHED_NORMAL; 1795 p->static_prio = NICE_TO_PRIO(0); 1796 p->rt_priority = 0; 1797 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1798 p->static_prio = NICE_TO_PRIO(0); 1799 1800 p->prio = p->normal_prio = __normal_prio(p); 1801 set_load_weight(p); 1802 1803 /* 1804 * We don't need the reset flag anymore after the fork. It has 1805 * fulfilled its duty: 1806 */ 1807 p->sched_reset_on_fork = 0; 1808 } 1809 1810 if (!rt_prio(p->prio)) 1811 p->sched_class = &fair_sched_class; 1812 1813 if (p->sched_class->task_fork) 1814 p->sched_class->task_fork(p); 1815 1816 /* 1817 * The child is not yet in the pid-hash so no cgroup attach races, 1818 * and the cgroup is pinned to this child due to cgroup_fork() 1819 * is ran before sched_fork(). 1820 * 1821 * Silence PROVE_RCU. 1822 */ 1823 raw_spin_lock_irqsave(&p->pi_lock, flags); 1824 set_task_cpu(p, cpu); 1825 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1826 1827 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1828 if (likely(sched_info_on())) 1829 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1830 #endif 1831 #if defined(CONFIG_SMP) 1832 p->on_cpu = 0; 1833 #endif 1834 init_task_preempt_count(p); 1835 #ifdef CONFIG_SMP 1836 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1837 #endif 1838 1839 put_cpu(); 1840 } 1841 1842 /* 1843 * wake_up_new_task - wake up a newly created task for the first time. 1844 * 1845 * This function will do some initial scheduler statistics housekeeping 1846 * that must be done for every newly created context, then puts the task 1847 * on the runqueue and wakes it. 1848 */ 1849 void wake_up_new_task(struct task_struct *p) 1850 { 1851 unsigned long flags; 1852 struct rq *rq; 1853 1854 raw_spin_lock_irqsave(&p->pi_lock, flags); 1855 #ifdef CONFIG_SMP 1856 /* 1857 * Fork balancing, do it here and not earlier because: 1858 * - cpus_allowed can change in the fork path 1859 * - any previously selected cpu might disappear through hotplug 1860 */ 1861 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 1862 #endif 1863 1864 /* Initialize new task's runnable average */ 1865 init_task_runnable_average(p); 1866 rq = __task_rq_lock(p); 1867 activate_task(rq, p, 0); 1868 p->on_rq = 1; 1869 trace_sched_wakeup_new(p, true); 1870 check_preempt_curr(rq, p, WF_FORK); 1871 #ifdef CONFIG_SMP 1872 if (p->sched_class->task_woken) 1873 p->sched_class->task_woken(rq, p); 1874 #endif 1875 task_rq_unlock(rq, p, &flags); 1876 } 1877 1878 #ifdef CONFIG_PREEMPT_NOTIFIERS 1879 1880 /** 1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1882 * @notifier: notifier struct to register 1883 */ 1884 void preempt_notifier_register(struct preempt_notifier *notifier) 1885 { 1886 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1887 } 1888 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1889 1890 /** 1891 * preempt_notifier_unregister - no longer interested in preemption notifications 1892 * @notifier: notifier struct to unregister 1893 * 1894 * This is safe to call from within a preemption notifier. 1895 */ 1896 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1897 { 1898 hlist_del(¬ifier->link); 1899 } 1900 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1901 1902 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1903 { 1904 struct preempt_notifier *notifier; 1905 1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1907 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1908 } 1909 1910 static void 1911 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1912 struct task_struct *next) 1913 { 1914 struct preempt_notifier *notifier; 1915 1916 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1917 notifier->ops->sched_out(notifier, next); 1918 } 1919 1920 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1921 1922 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1923 { 1924 } 1925 1926 static void 1927 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1928 struct task_struct *next) 1929 { 1930 } 1931 1932 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1933 1934 /** 1935 * prepare_task_switch - prepare to switch tasks 1936 * @rq: the runqueue preparing to switch 1937 * @prev: the current task that is being switched out 1938 * @next: the task we are going to switch to. 1939 * 1940 * This is called with the rq lock held and interrupts off. It must 1941 * be paired with a subsequent finish_task_switch after the context 1942 * switch. 1943 * 1944 * prepare_task_switch sets up locking and calls architecture specific 1945 * hooks. 1946 */ 1947 static inline void 1948 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1949 struct task_struct *next) 1950 { 1951 trace_sched_switch(prev, next); 1952 sched_info_switch(rq, prev, next); 1953 perf_event_task_sched_out(prev, next); 1954 fire_sched_out_preempt_notifiers(prev, next); 1955 prepare_lock_switch(rq, next); 1956 prepare_arch_switch(next); 1957 } 1958 1959 /** 1960 * finish_task_switch - clean up after a task-switch 1961 * @rq: runqueue associated with task-switch 1962 * @prev: the thread we just switched away from. 1963 * 1964 * finish_task_switch must be called after the context switch, paired 1965 * with a prepare_task_switch call before the context switch. 1966 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1967 * and do any other architecture-specific cleanup actions. 1968 * 1969 * Note that we may have delayed dropping an mm in context_switch(). If 1970 * so, we finish that here outside of the runqueue lock. (Doing it 1971 * with the lock held can cause deadlocks; see schedule() for 1972 * details.) 1973 */ 1974 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1975 __releases(rq->lock) 1976 { 1977 struct mm_struct *mm = rq->prev_mm; 1978 long prev_state; 1979 1980 rq->prev_mm = NULL; 1981 1982 /* 1983 * A task struct has one reference for the use as "current". 1984 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1985 * schedule one last time. The schedule call will never return, and 1986 * the scheduled task must drop that reference. 1987 * The test for TASK_DEAD must occur while the runqueue locks are 1988 * still held, otherwise prev could be scheduled on another cpu, die 1989 * there before we look at prev->state, and then the reference would 1990 * be dropped twice. 1991 * Manfred Spraul <manfred@colorfullife.com> 1992 */ 1993 prev_state = prev->state; 1994 vtime_task_switch(prev); 1995 finish_arch_switch(prev); 1996 perf_event_task_sched_in(prev, current); 1997 finish_lock_switch(rq, prev); 1998 finish_arch_post_lock_switch(); 1999 2000 fire_sched_in_preempt_notifiers(current); 2001 if (mm) 2002 mmdrop(mm); 2003 if (unlikely(prev_state == TASK_DEAD)) { 2004 task_numa_free(prev); 2005 2006 /* 2007 * Remove function-return probe instances associated with this 2008 * task and put them back on the free list. 2009 */ 2010 kprobe_flush_task(prev); 2011 put_task_struct(prev); 2012 } 2013 2014 tick_nohz_task_switch(current); 2015 } 2016 2017 #ifdef CONFIG_SMP 2018 2019 /* assumes rq->lock is held */ 2020 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 2021 { 2022 if (prev->sched_class->pre_schedule) 2023 prev->sched_class->pre_schedule(rq, prev); 2024 } 2025 2026 /* rq->lock is NOT held, but preemption is disabled */ 2027 static inline void post_schedule(struct rq *rq) 2028 { 2029 if (rq->post_schedule) { 2030 unsigned long flags; 2031 2032 raw_spin_lock_irqsave(&rq->lock, flags); 2033 if (rq->curr->sched_class->post_schedule) 2034 rq->curr->sched_class->post_schedule(rq); 2035 raw_spin_unlock_irqrestore(&rq->lock, flags); 2036 2037 rq->post_schedule = 0; 2038 } 2039 } 2040 2041 #else 2042 2043 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2044 { 2045 } 2046 2047 static inline void post_schedule(struct rq *rq) 2048 { 2049 } 2050 2051 #endif 2052 2053 /** 2054 * schedule_tail - first thing a freshly forked thread must call. 2055 * @prev: the thread we just switched away from. 2056 */ 2057 asmlinkage void schedule_tail(struct task_struct *prev) 2058 __releases(rq->lock) 2059 { 2060 struct rq *rq = this_rq(); 2061 2062 finish_task_switch(rq, prev); 2063 2064 /* 2065 * FIXME: do we need to worry about rq being invalidated by the 2066 * task_switch? 2067 */ 2068 post_schedule(rq); 2069 2070 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2071 /* In this case, finish_task_switch does not reenable preemption */ 2072 preempt_enable(); 2073 #endif 2074 if (current->set_child_tid) 2075 put_user(task_pid_vnr(current), current->set_child_tid); 2076 } 2077 2078 /* 2079 * context_switch - switch to the new MM and the new 2080 * thread's register state. 2081 */ 2082 static inline void 2083 context_switch(struct rq *rq, struct task_struct *prev, 2084 struct task_struct *next) 2085 { 2086 struct mm_struct *mm, *oldmm; 2087 2088 prepare_task_switch(rq, prev, next); 2089 2090 mm = next->mm; 2091 oldmm = prev->active_mm; 2092 /* 2093 * For paravirt, this is coupled with an exit in switch_to to 2094 * combine the page table reload and the switch backend into 2095 * one hypercall. 2096 */ 2097 arch_start_context_switch(prev); 2098 2099 if (!mm) { 2100 next->active_mm = oldmm; 2101 atomic_inc(&oldmm->mm_count); 2102 enter_lazy_tlb(oldmm, next); 2103 } else 2104 switch_mm(oldmm, mm, next); 2105 2106 if (!prev->mm) { 2107 prev->active_mm = NULL; 2108 rq->prev_mm = oldmm; 2109 } 2110 /* 2111 * Since the runqueue lock will be released by the next 2112 * task (which is an invalid locking op but in the case 2113 * of the scheduler it's an obvious special-case), so we 2114 * do an early lockdep release here: 2115 */ 2116 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2117 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2118 #endif 2119 2120 context_tracking_task_switch(prev, next); 2121 /* Here we just switch the register state and the stack. */ 2122 switch_to(prev, next, prev); 2123 2124 barrier(); 2125 /* 2126 * this_rq must be evaluated again because prev may have moved 2127 * CPUs since it called schedule(), thus the 'rq' on its stack 2128 * frame will be invalid. 2129 */ 2130 finish_task_switch(this_rq(), prev); 2131 } 2132 2133 /* 2134 * nr_running and nr_context_switches: 2135 * 2136 * externally visible scheduler statistics: current number of runnable 2137 * threads, total number of context switches performed since bootup. 2138 */ 2139 unsigned long nr_running(void) 2140 { 2141 unsigned long i, sum = 0; 2142 2143 for_each_online_cpu(i) 2144 sum += cpu_rq(i)->nr_running; 2145 2146 return sum; 2147 } 2148 2149 unsigned long long nr_context_switches(void) 2150 { 2151 int i; 2152 unsigned long long sum = 0; 2153 2154 for_each_possible_cpu(i) 2155 sum += cpu_rq(i)->nr_switches; 2156 2157 return sum; 2158 } 2159 2160 unsigned long nr_iowait(void) 2161 { 2162 unsigned long i, sum = 0; 2163 2164 for_each_possible_cpu(i) 2165 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2166 2167 return sum; 2168 } 2169 2170 unsigned long nr_iowait_cpu(int cpu) 2171 { 2172 struct rq *this = cpu_rq(cpu); 2173 return atomic_read(&this->nr_iowait); 2174 } 2175 2176 #ifdef CONFIG_SMP 2177 2178 /* 2179 * sched_exec - execve() is a valuable balancing opportunity, because at 2180 * this point the task has the smallest effective memory and cache footprint. 2181 */ 2182 void sched_exec(void) 2183 { 2184 struct task_struct *p = current; 2185 unsigned long flags; 2186 int dest_cpu; 2187 2188 raw_spin_lock_irqsave(&p->pi_lock, flags); 2189 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2190 if (dest_cpu == smp_processor_id()) 2191 goto unlock; 2192 2193 if (likely(cpu_active(dest_cpu))) { 2194 struct migration_arg arg = { p, dest_cpu }; 2195 2196 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2197 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2198 return; 2199 } 2200 unlock: 2201 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2202 } 2203 2204 #endif 2205 2206 DEFINE_PER_CPU(struct kernel_stat, kstat); 2207 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2208 2209 EXPORT_PER_CPU_SYMBOL(kstat); 2210 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2211 2212 /* 2213 * Return any ns on the sched_clock that have not yet been accounted in 2214 * @p in case that task is currently running. 2215 * 2216 * Called with task_rq_lock() held on @rq. 2217 */ 2218 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2219 { 2220 u64 ns = 0; 2221 2222 if (task_current(rq, p)) { 2223 update_rq_clock(rq); 2224 ns = rq_clock_task(rq) - p->se.exec_start; 2225 if ((s64)ns < 0) 2226 ns = 0; 2227 } 2228 2229 return ns; 2230 } 2231 2232 unsigned long long task_delta_exec(struct task_struct *p) 2233 { 2234 unsigned long flags; 2235 struct rq *rq; 2236 u64 ns = 0; 2237 2238 rq = task_rq_lock(p, &flags); 2239 ns = do_task_delta_exec(p, rq); 2240 task_rq_unlock(rq, p, &flags); 2241 2242 return ns; 2243 } 2244 2245 /* 2246 * Return accounted runtime for the task. 2247 * In case the task is currently running, return the runtime plus current's 2248 * pending runtime that have not been accounted yet. 2249 */ 2250 unsigned long long task_sched_runtime(struct task_struct *p) 2251 { 2252 unsigned long flags; 2253 struct rq *rq; 2254 u64 ns = 0; 2255 2256 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2257 /* 2258 * 64-bit doesn't need locks to atomically read a 64bit value. 2259 * So we have a optimization chance when the task's delta_exec is 0. 2260 * Reading ->on_cpu is racy, but this is ok. 2261 * 2262 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2263 * If we race with it entering cpu, unaccounted time is 0. This is 2264 * indistinguishable from the read occurring a few cycles earlier. 2265 */ 2266 if (!p->on_cpu) 2267 return p->se.sum_exec_runtime; 2268 #endif 2269 2270 rq = task_rq_lock(p, &flags); 2271 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2272 task_rq_unlock(rq, p, &flags); 2273 2274 return ns; 2275 } 2276 2277 /* 2278 * This function gets called by the timer code, with HZ frequency. 2279 * We call it with interrupts disabled. 2280 */ 2281 void scheduler_tick(void) 2282 { 2283 int cpu = smp_processor_id(); 2284 struct rq *rq = cpu_rq(cpu); 2285 struct task_struct *curr = rq->curr; 2286 2287 sched_clock_tick(); 2288 2289 raw_spin_lock(&rq->lock); 2290 update_rq_clock(rq); 2291 curr->sched_class->task_tick(rq, curr, 0); 2292 update_cpu_load_active(rq); 2293 raw_spin_unlock(&rq->lock); 2294 2295 perf_event_task_tick(); 2296 2297 #ifdef CONFIG_SMP 2298 rq->idle_balance = idle_cpu(cpu); 2299 trigger_load_balance(rq, cpu); 2300 #endif 2301 rq_last_tick_reset(rq); 2302 } 2303 2304 #ifdef CONFIG_NO_HZ_FULL 2305 /** 2306 * scheduler_tick_max_deferment 2307 * 2308 * Keep at least one tick per second when a single 2309 * active task is running because the scheduler doesn't 2310 * yet completely support full dynticks environment. 2311 * 2312 * This makes sure that uptime, CFS vruntime, load 2313 * balancing, etc... continue to move forward, even 2314 * with a very low granularity. 2315 * 2316 * Return: Maximum deferment in nanoseconds. 2317 */ 2318 u64 scheduler_tick_max_deferment(void) 2319 { 2320 struct rq *rq = this_rq(); 2321 unsigned long next, now = ACCESS_ONCE(jiffies); 2322 2323 next = rq->last_sched_tick + HZ; 2324 2325 if (time_before_eq(next, now)) 2326 return 0; 2327 2328 return jiffies_to_usecs(next - now) * NSEC_PER_USEC; 2329 } 2330 #endif 2331 2332 notrace unsigned long get_parent_ip(unsigned long addr) 2333 { 2334 if (in_lock_functions(addr)) { 2335 addr = CALLER_ADDR2; 2336 if (in_lock_functions(addr)) 2337 addr = CALLER_ADDR3; 2338 } 2339 return addr; 2340 } 2341 2342 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2343 defined(CONFIG_PREEMPT_TRACER)) 2344 2345 void __kprobes preempt_count_add(int val) 2346 { 2347 #ifdef CONFIG_DEBUG_PREEMPT 2348 /* 2349 * Underflow? 2350 */ 2351 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2352 return; 2353 #endif 2354 __preempt_count_add(val); 2355 #ifdef CONFIG_DEBUG_PREEMPT 2356 /* 2357 * Spinlock count overflowing soon? 2358 */ 2359 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2360 PREEMPT_MASK - 10); 2361 #endif 2362 if (preempt_count() == val) 2363 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2364 } 2365 EXPORT_SYMBOL(preempt_count_add); 2366 2367 void __kprobes preempt_count_sub(int val) 2368 { 2369 #ifdef CONFIG_DEBUG_PREEMPT 2370 /* 2371 * Underflow? 2372 */ 2373 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2374 return; 2375 /* 2376 * Is the spinlock portion underflowing? 2377 */ 2378 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2379 !(preempt_count() & PREEMPT_MASK))) 2380 return; 2381 #endif 2382 2383 if (preempt_count() == val) 2384 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2385 __preempt_count_sub(val); 2386 } 2387 EXPORT_SYMBOL(preempt_count_sub); 2388 2389 #endif 2390 2391 /* 2392 * Print scheduling while atomic bug: 2393 */ 2394 static noinline void __schedule_bug(struct task_struct *prev) 2395 { 2396 if (oops_in_progress) 2397 return; 2398 2399 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2400 prev->comm, prev->pid, preempt_count()); 2401 2402 debug_show_held_locks(prev); 2403 print_modules(); 2404 if (irqs_disabled()) 2405 print_irqtrace_events(prev); 2406 dump_stack(); 2407 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2408 } 2409 2410 /* 2411 * Various schedule()-time debugging checks and statistics: 2412 */ 2413 static inline void schedule_debug(struct task_struct *prev) 2414 { 2415 /* 2416 * Test if we are atomic. Since do_exit() needs to call into 2417 * schedule() atomically, we ignore that path for now. 2418 * Otherwise, whine if we are scheduling when we should not be. 2419 */ 2420 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2421 __schedule_bug(prev); 2422 rcu_sleep_check(); 2423 2424 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2425 2426 schedstat_inc(this_rq(), sched_count); 2427 } 2428 2429 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2430 { 2431 if (prev->on_rq || rq->skip_clock_update < 0) 2432 update_rq_clock(rq); 2433 prev->sched_class->put_prev_task(rq, prev); 2434 } 2435 2436 /* 2437 * Pick up the highest-prio task: 2438 */ 2439 static inline struct task_struct * 2440 pick_next_task(struct rq *rq) 2441 { 2442 const struct sched_class *class; 2443 struct task_struct *p; 2444 2445 /* 2446 * Optimization: we know that if all tasks are in 2447 * the fair class we can call that function directly: 2448 */ 2449 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2450 p = fair_sched_class.pick_next_task(rq); 2451 if (likely(p)) 2452 return p; 2453 } 2454 2455 for_each_class(class) { 2456 p = class->pick_next_task(rq); 2457 if (p) 2458 return p; 2459 } 2460 2461 BUG(); /* the idle class will always have a runnable task */ 2462 } 2463 2464 /* 2465 * __schedule() is the main scheduler function. 2466 * 2467 * The main means of driving the scheduler and thus entering this function are: 2468 * 2469 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2470 * 2471 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2472 * paths. For example, see arch/x86/entry_64.S. 2473 * 2474 * To drive preemption between tasks, the scheduler sets the flag in timer 2475 * interrupt handler scheduler_tick(). 2476 * 2477 * 3. Wakeups don't really cause entry into schedule(). They add a 2478 * task to the run-queue and that's it. 2479 * 2480 * Now, if the new task added to the run-queue preempts the current 2481 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2482 * called on the nearest possible occasion: 2483 * 2484 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2485 * 2486 * - in syscall or exception context, at the next outmost 2487 * preempt_enable(). (this might be as soon as the wake_up()'s 2488 * spin_unlock()!) 2489 * 2490 * - in IRQ context, return from interrupt-handler to 2491 * preemptible context 2492 * 2493 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2494 * then at the next: 2495 * 2496 * - cond_resched() call 2497 * - explicit schedule() call 2498 * - return from syscall or exception to user-space 2499 * - return from interrupt-handler to user-space 2500 */ 2501 static void __sched __schedule(void) 2502 { 2503 struct task_struct *prev, *next; 2504 unsigned long *switch_count; 2505 struct rq *rq; 2506 int cpu; 2507 2508 need_resched: 2509 preempt_disable(); 2510 cpu = smp_processor_id(); 2511 rq = cpu_rq(cpu); 2512 rcu_note_context_switch(cpu); 2513 prev = rq->curr; 2514 2515 schedule_debug(prev); 2516 2517 if (sched_feat(HRTICK)) 2518 hrtick_clear(rq); 2519 2520 /* 2521 * Make sure that signal_pending_state()->signal_pending() below 2522 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2523 * done by the caller to avoid the race with signal_wake_up(). 2524 */ 2525 smp_mb__before_spinlock(); 2526 raw_spin_lock_irq(&rq->lock); 2527 2528 switch_count = &prev->nivcsw; 2529 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2530 if (unlikely(signal_pending_state(prev->state, prev))) { 2531 prev->state = TASK_RUNNING; 2532 } else { 2533 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2534 prev->on_rq = 0; 2535 2536 /* 2537 * If a worker went to sleep, notify and ask workqueue 2538 * whether it wants to wake up a task to maintain 2539 * concurrency. 2540 */ 2541 if (prev->flags & PF_WQ_WORKER) { 2542 struct task_struct *to_wakeup; 2543 2544 to_wakeup = wq_worker_sleeping(prev, cpu); 2545 if (to_wakeup) 2546 try_to_wake_up_local(to_wakeup); 2547 } 2548 } 2549 switch_count = &prev->nvcsw; 2550 } 2551 2552 pre_schedule(rq, prev); 2553 2554 if (unlikely(!rq->nr_running)) 2555 idle_balance(cpu, rq); 2556 2557 put_prev_task(rq, prev); 2558 next = pick_next_task(rq); 2559 clear_tsk_need_resched(prev); 2560 clear_preempt_need_resched(); 2561 rq->skip_clock_update = 0; 2562 2563 if (likely(prev != next)) { 2564 rq->nr_switches++; 2565 rq->curr = next; 2566 ++*switch_count; 2567 2568 context_switch(rq, prev, next); /* unlocks the rq */ 2569 /* 2570 * The context switch have flipped the stack from under us 2571 * and restored the local variables which were saved when 2572 * this task called schedule() in the past. prev == current 2573 * is still correct, but it can be moved to another cpu/rq. 2574 */ 2575 cpu = smp_processor_id(); 2576 rq = cpu_rq(cpu); 2577 } else 2578 raw_spin_unlock_irq(&rq->lock); 2579 2580 post_schedule(rq); 2581 2582 sched_preempt_enable_no_resched(); 2583 if (need_resched()) 2584 goto need_resched; 2585 } 2586 2587 static inline void sched_submit_work(struct task_struct *tsk) 2588 { 2589 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2590 return; 2591 /* 2592 * If we are going to sleep and we have plugged IO queued, 2593 * make sure to submit it to avoid deadlocks. 2594 */ 2595 if (blk_needs_flush_plug(tsk)) 2596 blk_schedule_flush_plug(tsk); 2597 } 2598 2599 asmlinkage void __sched schedule(void) 2600 { 2601 struct task_struct *tsk = current; 2602 2603 sched_submit_work(tsk); 2604 __schedule(); 2605 } 2606 EXPORT_SYMBOL(schedule); 2607 2608 #ifdef CONFIG_CONTEXT_TRACKING 2609 asmlinkage void __sched schedule_user(void) 2610 { 2611 /* 2612 * If we come here after a random call to set_need_resched(), 2613 * or we have been woken up remotely but the IPI has not yet arrived, 2614 * we haven't yet exited the RCU idle mode. Do it here manually until 2615 * we find a better solution. 2616 */ 2617 user_exit(); 2618 schedule(); 2619 user_enter(); 2620 } 2621 #endif 2622 2623 /** 2624 * schedule_preempt_disabled - called with preemption disabled 2625 * 2626 * Returns with preemption disabled. Note: preempt_count must be 1 2627 */ 2628 void __sched schedule_preempt_disabled(void) 2629 { 2630 sched_preempt_enable_no_resched(); 2631 schedule(); 2632 preempt_disable(); 2633 } 2634 2635 #ifdef CONFIG_PREEMPT 2636 /* 2637 * this is the entry point to schedule() from in-kernel preemption 2638 * off of preempt_enable. Kernel preemptions off return from interrupt 2639 * occur there and call schedule directly. 2640 */ 2641 asmlinkage void __sched notrace preempt_schedule(void) 2642 { 2643 /* 2644 * If there is a non-zero preempt_count or interrupts are disabled, 2645 * we do not want to preempt the current task. Just return.. 2646 */ 2647 if (likely(!preemptible())) 2648 return; 2649 2650 do { 2651 __preempt_count_add(PREEMPT_ACTIVE); 2652 __schedule(); 2653 __preempt_count_sub(PREEMPT_ACTIVE); 2654 2655 /* 2656 * Check again in case we missed a preemption opportunity 2657 * between schedule and now. 2658 */ 2659 barrier(); 2660 } while (need_resched()); 2661 } 2662 EXPORT_SYMBOL(preempt_schedule); 2663 2664 /* 2665 * this is the entry point to schedule() from kernel preemption 2666 * off of irq context. 2667 * Note, that this is called and return with irqs disabled. This will 2668 * protect us against recursive calling from irq. 2669 */ 2670 asmlinkage void __sched preempt_schedule_irq(void) 2671 { 2672 enum ctx_state prev_state; 2673 2674 /* Catch callers which need to be fixed */ 2675 BUG_ON(preempt_count() || !irqs_disabled()); 2676 2677 prev_state = exception_enter(); 2678 2679 do { 2680 __preempt_count_add(PREEMPT_ACTIVE); 2681 local_irq_enable(); 2682 __schedule(); 2683 local_irq_disable(); 2684 __preempt_count_sub(PREEMPT_ACTIVE); 2685 2686 /* 2687 * Check again in case we missed a preemption opportunity 2688 * between schedule and now. 2689 */ 2690 barrier(); 2691 } while (need_resched()); 2692 2693 exception_exit(prev_state); 2694 } 2695 2696 #endif /* CONFIG_PREEMPT */ 2697 2698 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2699 void *key) 2700 { 2701 return try_to_wake_up(curr->private, mode, wake_flags); 2702 } 2703 EXPORT_SYMBOL(default_wake_function); 2704 2705 static long __sched 2706 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 2707 { 2708 unsigned long flags; 2709 wait_queue_t wait; 2710 2711 init_waitqueue_entry(&wait, current); 2712 2713 __set_current_state(state); 2714 2715 spin_lock_irqsave(&q->lock, flags); 2716 __add_wait_queue(q, &wait); 2717 spin_unlock(&q->lock); 2718 timeout = schedule_timeout(timeout); 2719 spin_lock_irq(&q->lock); 2720 __remove_wait_queue(q, &wait); 2721 spin_unlock_irqrestore(&q->lock, flags); 2722 2723 return timeout; 2724 } 2725 2726 void __sched interruptible_sleep_on(wait_queue_head_t *q) 2727 { 2728 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2729 } 2730 EXPORT_SYMBOL(interruptible_sleep_on); 2731 2732 long __sched 2733 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 2734 { 2735 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 2736 } 2737 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 2738 2739 void __sched sleep_on(wait_queue_head_t *q) 2740 { 2741 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2742 } 2743 EXPORT_SYMBOL(sleep_on); 2744 2745 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 2746 { 2747 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 2748 } 2749 EXPORT_SYMBOL(sleep_on_timeout); 2750 2751 #ifdef CONFIG_RT_MUTEXES 2752 2753 /* 2754 * rt_mutex_setprio - set the current priority of a task 2755 * @p: task 2756 * @prio: prio value (kernel-internal form) 2757 * 2758 * This function changes the 'effective' priority of a task. It does 2759 * not touch ->normal_prio like __setscheduler(). 2760 * 2761 * Used by the rt_mutex code to implement priority inheritance logic. 2762 */ 2763 void rt_mutex_setprio(struct task_struct *p, int prio) 2764 { 2765 int oldprio, on_rq, running; 2766 struct rq *rq; 2767 const struct sched_class *prev_class; 2768 2769 BUG_ON(prio < 0 || prio > MAX_PRIO); 2770 2771 rq = __task_rq_lock(p); 2772 2773 /* 2774 * Idle task boosting is a nono in general. There is one 2775 * exception, when PREEMPT_RT and NOHZ is active: 2776 * 2777 * The idle task calls get_next_timer_interrupt() and holds 2778 * the timer wheel base->lock on the CPU and another CPU wants 2779 * to access the timer (probably to cancel it). We can safely 2780 * ignore the boosting request, as the idle CPU runs this code 2781 * with interrupts disabled and will complete the lock 2782 * protected section without being interrupted. So there is no 2783 * real need to boost. 2784 */ 2785 if (unlikely(p == rq->idle)) { 2786 WARN_ON(p != rq->curr); 2787 WARN_ON(p->pi_blocked_on); 2788 goto out_unlock; 2789 } 2790 2791 trace_sched_pi_setprio(p, prio); 2792 oldprio = p->prio; 2793 prev_class = p->sched_class; 2794 on_rq = p->on_rq; 2795 running = task_current(rq, p); 2796 if (on_rq) 2797 dequeue_task(rq, p, 0); 2798 if (running) 2799 p->sched_class->put_prev_task(rq, p); 2800 2801 if (rt_prio(prio)) 2802 p->sched_class = &rt_sched_class; 2803 else 2804 p->sched_class = &fair_sched_class; 2805 2806 p->prio = prio; 2807 2808 if (running) 2809 p->sched_class->set_curr_task(rq); 2810 if (on_rq) 2811 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 2812 2813 check_class_changed(rq, p, prev_class, oldprio); 2814 out_unlock: 2815 __task_rq_unlock(rq); 2816 } 2817 #endif 2818 void set_user_nice(struct task_struct *p, long nice) 2819 { 2820 int old_prio, delta, on_rq; 2821 unsigned long flags; 2822 struct rq *rq; 2823 2824 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 2825 return; 2826 /* 2827 * We have to be careful, if called from sys_setpriority(), 2828 * the task might be in the middle of scheduling on another CPU. 2829 */ 2830 rq = task_rq_lock(p, &flags); 2831 /* 2832 * The RT priorities are set via sched_setscheduler(), but we still 2833 * allow the 'normal' nice value to be set - but as expected 2834 * it wont have any effect on scheduling until the task is 2835 * SCHED_FIFO/SCHED_RR: 2836 */ 2837 if (task_has_rt_policy(p)) { 2838 p->static_prio = NICE_TO_PRIO(nice); 2839 goto out_unlock; 2840 } 2841 on_rq = p->on_rq; 2842 if (on_rq) 2843 dequeue_task(rq, p, 0); 2844 2845 p->static_prio = NICE_TO_PRIO(nice); 2846 set_load_weight(p); 2847 old_prio = p->prio; 2848 p->prio = effective_prio(p); 2849 delta = p->prio - old_prio; 2850 2851 if (on_rq) { 2852 enqueue_task(rq, p, 0); 2853 /* 2854 * If the task increased its priority or is running and 2855 * lowered its priority, then reschedule its CPU: 2856 */ 2857 if (delta < 0 || (delta > 0 && task_running(rq, p))) 2858 resched_task(rq->curr); 2859 } 2860 out_unlock: 2861 task_rq_unlock(rq, p, &flags); 2862 } 2863 EXPORT_SYMBOL(set_user_nice); 2864 2865 /* 2866 * can_nice - check if a task can reduce its nice value 2867 * @p: task 2868 * @nice: nice value 2869 */ 2870 int can_nice(const struct task_struct *p, const int nice) 2871 { 2872 /* convert nice value [19,-20] to rlimit style value [1,40] */ 2873 int nice_rlim = 20 - nice; 2874 2875 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 2876 capable(CAP_SYS_NICE)); 2877 } 2878 2879 #ifdef __ARCH_WANT_SYS_NICE 2880 2881 /* 2882 * sys_nice - change the priority of the current process. 2883 * @increment: priority increment 2884 * 2885 * sys_setpriority is a more generic, but much slower function that 2886 * does similar things. 2887 */ 2888 SYSCALL_DEFINE1(nice, int, increment) 2889 { 2890 long nice, retval; 2891 2892 /* 2893 * Setpriority might change our priority at the same moment. 2894 * We don't have to worry. Conceptually one call occurs first 2895 * and we have a single winner. 2896 */ 2897 if (increment < -40) 2898 increment = -40; 2899 if (increment > 40) 2900 increment = 40; 2901 2902 nice = TASK_NICE(current) + increment; 2903 if (nice < -20) 2904 nice = -20; 2905 if (nice > 19) 2906 nice = 19; 2907 2908 if (increment < 0 && !can_nice(current, nice)) 2909 return -EPERM; 2910 2911 retval = security_task_setnice(current, nice); 2912 if (retval) 2913 return retval; 2914 2915 set_user_nice(current, nice); 2916 return 0; 2917 } 2918 2919 #endif 2920 2921 /** 2922 * task_prio - return the priority value of a given task. 2923 * @p: the task in question. 2924 * 2925 * Return: The priority value as seen by users in /proc. 2926 * RT tasks are offset by -200. Normal tasks are centered 2927 * around 0, value goes from -16 to +15. 2928 */ 2929 int task_prio(const struct task_struct *p) 2930 { 2931 return p->prio - MAX_RT_PRIO; 2932 } 2933 2934 /** 2935 * task_nice - return the nice value of a given task. 2936 * @p: the task in question. 2937 * 2938 * Return: The nice value [ -20 ... 0 ... 19 ]. 2939 */ 2940 int task_nice(const struct task_struct *p) 2941 { 2942 return TASK_NICE(p); 2943 } 2944 EXPORT_SYMBOL(task_nice); 2945 2946 /** 2947 * idle_cpu - is a given cpu idle currently? 2948 * @cpu: the processor in question. 2949 * 2950 * Return: 1 if the CPU is currently idle. 0 otherwise. 2951 */ 2952 int idle_cpu(int cpu) 2953 { 2954 struct rq *rq = cpu_rq(cpu); 2955 2956 if (rq->curr != rq->idle) 2957 return 0; 2958 2959 if (rq->nr_running) 2960 return 0; 2961 2962 #ifdef CONFIG_SMP 2963 if (!llist_empty(&rq->wake_list)) 2964 return 0; 2965 #endif 2966 2967 return 1; 2968 } 2969 2970 /** 2971 * idle_task - return the idle task for a given cpu. 2972 * @cpu: the processor in question. 2973 * 2974 * Return: The idle task for the cpu @cpu. 2975 */ 2976 struct task_struct *idle_task(int cpu) 2977 { 2978 return cpu_rq(cpu)->idle; 2979 } 2980 2981 /** 2982 * find_process_by_pid - find a process with a matching PID value. 2983 * @pid: the pid in question. 2984 * 2985 * The task of @pid, if found. %NULL otherwise. 2986 */ 2987 static struct task_struct *find_process_by_pid(pid_t pid) 2988 { 2989 return pid ? find_task_by_vpid(pid) : current; 2990 } 2991 2992 /* Actually do priority change: must hold rq lock. */ 2993 static void 2994 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 2995 { 2996 p->policy = policy; 2997 p->rt_priority = prio; 2998 p->normal_prio = normal_prio(p); 2999 /* we are holding p->pi_lock already */ 3000 p->prio = rt_mutex_getprio(p); 3001 if (rt_prio(p->prio)) 3002 p->sched_class = &rt_sched_class; 3003 else 3004 p->sched_class = &fair_sched_class; 3005 set_load_weight(p); 3006 } 3007 3008 /* 3009 * check the target process has a UID that matches the current process's 3010 */ 3011 static bool check_same_owner(struct task_struct *p) 3012 { 3013 const struct cred *cred = current_cred(), *pcred; 3014 bool match; 3015 3016 rcu_read_lock(); 3017 pcred = __task_cred(p); 3018 match = (uid_eq(cred->euid, pcred->euid) || 3019 uid_eq(cred->euid, pcred->uid)); 3020 rcu_read_unlock(); 3021 return match; 3022 } 3023 3024 static int __sched_setscheduler(struct task_struct *p, int policy, 3025 const struct sched_param *param, bool user) 3026 { 3027 int retval, oldprio, oldpolicy = -1, on_rq, running; 3028 unsigned long flags; 3029 const struct sched_class *prev_class; 3030 struct rq *rq; 3031 int reset_on_fork; 3032 3033 /* may grab non-irq protected spin_locks */ 3034 BUG_ON(in_interrupt()); 3035 recheck: 3036 /* double check policy once rq lock held */ 3037 if (policy < 0) { 3038 reset_on_fork = p->sched_reset_on_fork; 3039 policy = oldpolicy = p->policy; 3040 } else { 3041 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3042 policy &= ~SCHED_RESET_ON_FORK; 3043 3044 if (policy != SCHED_FIFO && policy != SCHED_RR && 3045 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3046 policy != SCHED_IDLE) 3047 return -EINVAL; 3048 } 3049 3050 /* 3051 * Valid priorities for SCHED_FIFO and SCHED_RR are 3052 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3053 * SCHED_BATCH and SCHED_IDLE is 0. 3054 */ 3055 if (param->sched_priority < 0 || 3056 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3057 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3058 return -EINVAL; 3059 if (rt_policy(policy) != (param->sched_priority != 0)) 3060 return -EINVAL; 3061 3062 /* 3063 * Allow unprivileged RT tasks to decrease priority: 3064 */ 3065 if (user && !capable(CAP_SYS_NICE)) { 3066 if (rt_policy(policy)) { 3067 unsigned long rlim_rtprio = 3068 task_rlimit(p, RLIMIT_RTPRIO); 3069 3070 /* can't set/change the rt policy */ 3071 if (policy != p->policy && !rlim_rtprio) 3072 return -EPERM; 3073 3074 /* can't increase priority */ 3075 if (param->sched_priority > p->rt_priority && 3076 param->sched_priority > rlim_rtprio) 3077 return -EPERM; 3078 } 3079 3080 /* 3081 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3082 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3083 */ 3084 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3085 if (!can_nice(p, TASK_NICE(p))) 3086 return -EPERM; 3087 } 3088 3089 /* can't change other user's priorities */ 3090 if (!check_same_owner(p)) 3091 return -EPERM; 3092 3093 /* Normal users shall not reset the sched_reset_on_fork flag */ 3094 if (p->sched_reset_on_fork && !reset_on_fork) 3095 return -EPERM; 3096 } 3097 3098 if (user) { 3099 retval = security_task_setscheduler(p); 3100 if (retval) 3101 return retval; 3102 } 3103 3104 /* 3105 * make sure no PI-waiters arrive (or leave) while we are 3106 * changing the priority of the task: 3107 * 3108 * To be able to change p->policy safely, the appropriate 3109 * runqueue lock must be held. 3110 */ 3111 rq = task_rq_lock(p, &flags); 3112 3113 /* 3114 * Changing the policy of the stop threads its a very bad idea 3115 */ 3116 if (p == rq->stop) { 3117 task_rq_unlock(rq, p, &flags); 3118 return -EINVAL; 3119 } 3120 3121 /* 3122 * If not changing anything there's no need to proceed further: 3123 */ 3124 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3125 param->sched_priority == p->rt_priority))) { 3126 task_rq_unlock(rq, p, &flags); 3127 return 0; 3128 } 3129 3130 #ifdef CONFIG_RT_GROUP_SCHED 3131 if (user) { 3132 /* 3133 * Do not allow realtime tasks into groups that have no runtime 3134 * assigned. 3135 */ 3136 if (rt_bandwidth_enabled() && rt_policy(policy) && 3137 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3138 !task_group_is_autogroup(task_group(p))) { 3139 task_rq_unlock(rq, p, &flags); 3140 return -EPERM; 3141 } 3142 } 3143 #endif 3144 3145 /* recheck policy now with rq lock held */ 3146 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3147 policy = oldpolicy = -1; 3148 task_rq_unlock(rq, p, &flags); 3149 goto recheck; 3150 } 3151 on_rq = p->on_rq; 3152 running = task_current(rq, p); 3153 if (on_rq) 3154 dequeue_task(rq, p, 0); 3155 if (running) 3156 p->sched_class->put_prev_task(rq, p); 3157 3158 p->sched_reset_on_fork = reset_on_fork; 3159 3160 oldprio = p->prio; 3161 prev_class = p->sched_class; 3162 __setscheduler(rq, p, policy, param->sched_priority); 3163 3164 if (running) 3165 p->sched_class->set_curr_task(rq); 3166 if (on_rq) 3167 enqueue_task(rq, p, 0); 3168 3169 check_class_changed(rq, p, prev_class, oldprio); 3170 task_rq_unlock(rq, p, &flags); 3171 3172 rt_mutex_adjust_pi(p); 3173 3174 return 0; 3175 } 3176 3177 /** 3178 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3179 * @p: the task in question. 3180 * @policy: new policy. 3181 * @param: structure containing the new RT priority. 3182 * 3183 * Return: 0 on success. An error code otherwise. 3184 * 3185 * NOTE that the task may be already dead. 3186 */ 3187 int sched_setscheduler(struct task_struct *p, int policy, 3188 const struct sched_param *param) 3189 { 3190 return __sched_setscheduler(p, policy, param, true); 3191 } 3192 EXPORT_SYMBOL_GPL(sched_setscheduler); 3193 3194 /** 3195 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3196 * @p: the task in question. 3197 * @policy: new policy. 3198 * @param: structure containing the new RT priority. 3199 * 3200 * Just like sched_setscheduler, only don't bother checking if the 3201 * current context has permission. For example, this is needed in 3202 * stop_machine(): we create temporary high priority worker threads, 3203 * but our caller might not have that capability. 3204 * 3205 * Return: 0 on success. An error code otherwise. 3206 */ 3207 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3208 const struct sched_param *param) 3209 { 3210 return __sched_setscheduler(p, policy, param, false); 3211 } 3212 3213 static int 3214 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3215 { 3216 struct sched_param lparam; 3217 struct task_struct *p; 3218 int retval; 3219 3220 if (!param || pid < 0) 3221 return -EINVAL; 3222 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3223 return -EFAULT; 3224 3225 rcu_read_lock(); 3226 retval = -ESRCH; 3227 p = find_process_by_pid(pid); 3228 if (p != NULL) 3229 retval = sched_setscheduler(p, policy, &lparam); 3230 rcu_read_unlock(); 3231 3232 return retval; 3233 } 3234 3235 /** 3236 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3237 * @pid: the pid in question. 3238 * @policy: new policy. 3239 * @param: structure containing the new RT priority. 3240 * 3241 * Return: 0 on success. An error code otherwise. 3242 */ 3243 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3244 struct sched_param __user *, param) 3245 { 3246 /* negative values for policy are not valid */ 3247 if (policy < 0) 3248 return -EINVAL; 3249 3250 return do_sched_setscheduler(pid, policy, param); 3251 } 3252 3253 /** 3254 * sys_sched_setparam - set/change the RT priority of a thread 3255 * @pid: the pid in question. 3256 * @param: structure containing the new RT priority. 3257 * 3258 * Return: 0 on success. An error code otherwise. 3259 */ 3260 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3261 { 3262 return do_sched_setscheduler(pid, -1, param); 3263 } 3264 3265 /** 3266 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3267 * @pid: the pid in question. 3268 * 3269 * Return: On success, the policy of the thread. Otherwise, a negative error 3270 * code. 3271 */ 3272 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3273 { 3274 struct task_struct *p; 3275 int retval; 3276 3277 if (pid < 0) 3278 return -EINVAL; 3279 3280 retval = -ESRCH; 3281 rcu_read_lock(); 3282 p = find_process_by_pid(pid); 3283 if (p) { 3284 retval = security_task_getscheduler(p); 3285 if (!retval) 3286 retval = p->policy 3287 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3288 } 3289 rcu_read_unlock(); 3290 return retval; 3291 } 3292 3293 /** 3294 * sys_sched_getparam - get the RT priority of a thread 3295 * @pid: the pid in question. 3296 * @param: structure containing the RT priority. 3297 * 3298 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3299 * code. 3300 */ 3301 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3302 { 3303 struct sched_param lp; 3304 struct task_struct *p; 3305 int retval; 3306 3307 if (!param || pid < 0) 3308 return -EINVAL; 3309 3310 rcu_read_lock(); 3311 p = find_process_by_pid(pid); 3312 retval = -ESRCH; 3313 if (!p) 3314 goto out_unlock; 3315 3316 retval = security_task_getscheduler(p); 3317 if (retval) 3318 goto out_unlock; 3319 3320 lp.sched_priority = p->rt_priority; 3321 rcu_read_unlock(); 3322 3323 /* 3324 * This one might sleep, we cannot do it with a spinlock held ... 3325 */ 3326 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3327 3328 return retval; 3329 3330 out_unlock: 3331 rcu_read_unlock(); 3332 return retval; 3333 } 3334 3335 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3336 { 3337 cpumask_var_t cpus_allowed, new_mask; 3338 struct task_struct *p; 3339 int retval; 3340 3341 rcu_read_lock(); 3342 3343 p = find_process_by_pid(pid); 3344 if (!p) { 3345 rcu_read_unlock(); 3346 return -ESRCH; 3347 } 3348 3349 /* Prevent p going away */ 3350 get_task_struct(p); 3351 rcu_read_unlock(); 3352 3353 if (p->flags & PF_NO_SETAFFINITY) { 3354 retval = -EINVAL; 3355 goto out_put_task; 3356 } 3357 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3358 retval = -ENOMEM; 3359 goto out_put_task; 3360 } 3361 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3362 retval = -ENOMEM; 3363 goto out_free_cpus_allowed; 3364 } 3365 retval = -EPERM; 3366 if (!check_same_owner(p)) { 3367 rcu_read_lock(); 3368 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3369 rcu_read_unlock(); 3370 goto out_unlock; 3371 } 3372 rcu_read_unlock(); 3373 } 3374 3375 retval = security_task_setscheduler(p); 3376 if (retval) 3377 goto out_unlock; 3378 3379 cpuset_cpus_allowed(p, cpus_allowed); 3380 cpumask_and(new_mask, in_mask, cpus_allowed); 3381 again: 3382 retval = set_cpus_allowed_ptr(p, new_mask); 3383 3384 if (!retval) { 3385 cpuset_cpus_allowed(p, cpus_allowed); 3386 if (!cpumask_subset(new_mask, cpus_allowed)) { 3387 /* 3388 * We must have raced with a concurrent cpuset 3389 * update. Just reset the cpus_allowed to the 3390 * cpuset's cpus_allowed 3391 */ 3392 cpumask_copy(new_mask, cpus_allowed); 3393 goto again; 3394 } 3395 } 3396 out_unlock: 3397 free_cpumask_var(new_mask); 3398 out_free_cpus_allowed: 3399 free_cpumask_var(cpus_allowed); 3400 out_put_task: 3401 put_task_struct(p); 3402 return retval; 3403 } 3404 3405 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3406 struct cpumask *new_mask) 3407 { 3408 if (len < cpumask_size()) 3409 cpumask_clear(new_mask); 3410 else if (len > cpumask_size()) 3411 len = cpumask_size(); 3412 3413 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3414 } 3415 3416 /** 3417 * sys_sched_setaffinity - set the cpu affinity of a process 3418 * @pid: pid of the process 3419 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3420 * @user_mask_ptr: user-space pointer to the new cpu mask 3421 * 3422 * Return: 0 on success. An error code otherwise. 3423 */ 3424 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3425 unsigned long __user *, user_mask_ptr) 3426 { 3427 cpumask_var_t new_mask; 3428 int retval; 3429 3430 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3431 return -ENOMEM; 3432 3433 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3434 if (retval == 0) 3435 retval = sched_setaffinity(pid, new_mask); 3436 free_cpumask_var(new_mask); 3437 return retval; 3438 } 3439 3440 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3441 { 3442 struct task_struct *p; 3443 unsigned long flags; 3444 int retval; 3445 3446 rcu_read_lock(); 3447 3448 retval = -ESRCH; 3449 p = find_process_by_pid(pid); 3450 if (!p) 3451 goto out_unlock; 3452 3453 retval = security_task_getscheduler(p); 3454 if (retval) 3455 goto out_unlock; 3456 3457 raw_spin_lock_irqsave(&p->pi_lock, flags); 3458 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 3459 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3460 3461 out_unlock: 3462 rcu_read_unlock(); 3463 3464 return retval; 3465 } 3466 3467 /** 3468 * sys_sched_getaffinity - get the cpu affinity of a process 3469 * @pid: pid of the process 3470 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3471 * @user_mask_ptr: user-space pointer to hold the current cpu mask 3472 * 3473 * Return: 0 on success. An error code otherwise. 3474 */ 3475 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 3476 unsigned long __user *, user_mask_ptr) 3477 { 3478 int ret; 3479 cpumask_var_t mask; 3480 3481 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 3482 return -EINVAL; 3483 if (len & (sizeof(unsigned long)-1)) 3484 return -EINVAL; 3485 3486 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 3487 return -ENOMEM; 3488 3489 ret = sched_getaffinity(pid, mask); 3490 if (ret == 0) { 3491 size_t retlen = min_t(size_t, len, cpumask_size()); 3492 3493 if (copy_to_user(user_mask_ptr, mask, retlen)) 3494 ret = -EFAULT; 3495 else 3496 ret = retlen; 3497 } 3498 free_cpumask_var(mask); 3499 3500 return ret; 3501 } 3502 3503 /** 3504 * sys_sched_yield - yield the current processor to other threads. 3505 * 3506 * This function yields the current CPU to other tasks. If there are no 3507 * other threads running on this CPU then this function will return. 3508 * 3509 * Return: 0. 3510 */ 3511 SYSCALL_DEFINE0(sched_yield) 3512 { 3513 struct rq *rq = this_rq_lock(); 3514 3515 schedstat_inc(rq, yld_count); 3516 current->sched_class->yield_task(rq); 3517 3518 /* 3519 * Since we are going to call schedule() anyway, there's 3520 * no need to preempt or enable interrupts: 3521 */ 3522 __release(rq->lock); 3523 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 3524 do_raw_spin_unlock(&rq->lock); 3525 sched_preempt_enable_no_resched(); 3526 3527 schedule(); 3528 3529 return 0; 3530 } 3531 3532 static void __cond_resched(void) 3533 { 3534 __preempt_count_add(PREEMPT_ACTIVE); 3535 __schedule(); 3536 __preempt_count_sub(PREEMPT_ACTIVE); 3537 } 3538 3539 int __sched _cond_resched(void) 3540 { 3541 if (should_resched()) { 3542 __cond_resched(); 3543 return 1; 3544 } 3545 return 0; 3546 } 3547 EXPORT_SYMBOL(_cond_resched); 3548 3549 /* 3550 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 3551 * call schedule, and on return reacquire the lock. 3552 * 3553 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 3554 * operations here to prevent schedule() from being called twice (once via 3555 * spin_unlock(), once by hand). 3556 */ 3557 int __cond_resched_lock(spinlock_t *lock) 3558 { 3559 int resched = should_resched(); 3560 int ret = 0; 3561 3562 lockdep_assert_held(lock); 3563 3564 if (spin_needbreak(lock) || resched) { 3565 spin_unlock(lock); 3566 if (resched) 3567 __cond_resched(); 3568 else 3569 cpu_relax(); 3570 ret = 1; 3571 spin_lock(lock); 3572 } 3573 return ret; 3574 } 3575 EXPORT_SYMBOL(__cond_resched_lock); 3576 3577 int __sched __cond_resched_softirq(void) 3578 { 3579 BUG_ON(!in_softirq()); 3580 3581 if (should_resched()) { 3582 local_bh_enable(); 3583 __cond_resched(); 3584 local_bh_disable(); 3585 return 1; 3586 } 3587 return 0; 3588 } 3589 EXPORT_SYMBOL(__cond_resched_softirq); 3590 3591 /** 3592 * yield - yield the current processor to other threads. 3593 * 3594 * Do not ever use this function, there's a 99% chance you're doing it wrong. 3595 * 3596 * The scheduler is at all times free to pick the calling task as the most 3597 * eligible task to run, if removing the yield() call from your code breaks 3598 * it, its already broken. 3599 * 3600 * Typical broken usage is: 3601 * 3602 * while (!event) 3603 * yield(); 3604 * 3605 * where one assumes that yield() will let 'the other' process run that will 3606 * make event true. If the current task is a SCHED_FIFO task that will never 3607 * happen. Never use yield() as a progress guarantee!! 3608 * 3609 * If you want to use yield() to wait for something, use wait_event(). 3610 * If you want to use yield() to be 'nice' for others, use cond_resched(). 3611 * If you still want to use yield(), do not! 3612 */ 3613 void __sched yield(void) 3614 { 3615 set_current_state(TASK_RUNNING); 3616 sys_sched_yield(); 3617 } 3618 EXPORT_SYMBOL(yield); 3619 3620 /** 3621 * yield_to - yield the current processor to another thread in 3622 * your thread group, or accelerate that thread toward the 3623 * processor it's on. 3624 * @p: target task 3625 * @preempt: whether task preemption is allowed or not 3626 * 3627 * It's the caller's job to ensure that the target task struct 3628 * can't go away on us before we can do any checks. 3629 * 3630 * Return: 3631 * true (>0) if we indeed boosted the target task. 3632 * false (0) if we failed to boost the target. 3633 * -ESRCH if there's no task to yield to. 3634 */ 3635 bool __sched yield_to(struct task_struct *p, bool preempt) 3636 { 3637 struct task_struct *curr = current; 3638 struct rq *rq, *p_rq; 3639 unsigned long flags; 3640 int yielded = 0; 3641 3642 local_irq_save(flags); 3643 rq = this_rq(); 3644 3645 again: 3646 p_rq = task_rq(p); 3647 /* 3648 * If we're the only runnable task on the rq and target rq also 3649 * has only one task, there's absolutely no point in yielding. 3650 */ 3651 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 3652 yielded = -ESRCH; 3653 goto out_irq; 3654 } 3655 3656 double_rq_lock(rq, p_rq); 3657 while (task_rq(p) != p_rq) { 3658 double_rq_unlock(rq, p_rq); 3659 goto again; 3660 } 3661 3662 if (!curr->sched_class->yield_to_task) 3663 goto out_unlock; 3664 3665 if (curr->sched_class != p->sched_class) 3666 goto out_unlock; 3667 3668 if (task_running(p_rq, p) || p->state) 3669 goto out_unlock; 3670 3671 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 3672 if (yielded) { 3673 schedstat_inc(rq, yld_count); 3674 /* 3675 * Make p's CPU reschedule; pick_next_entity takes care of 3676 * fairness. 3677 */ 3678 if (preempt && rq != p_rq) 3679 resched_task(p_rq->curr); 3680 } 3681 3682 out_unlock: 3683 double_rq_unlock(rq, p_rq); 3684 out_irq: 3685 local_irq_restore(flags); 3686 3687 if (yielded > 0) 3688 schedule(); 3689 3690 return yielded; 3691 } 3692 EXPORT_SYMBOL_GPL(yield_to); 3693 3694 /* 3695 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 3696 * that process accounting knows that this is a task in IO wait state. 3697 */ 3698 void __sched io_schedule(void) 3699 { 3700 struct rq *rq = raw_rq(); 3701 3702 delayacct_blkio_start(); 3703 atomic_inc(&rq->nr_iowait); 3704 blk_flush_plug(current); 3705 current->in_iowait = 1; 3706 schedule(); 3707 current->in_iowait = 0; 3708 atomic_dec(&rq->nr_iowait); 3709 delayacct_blkio_end(); 3710 } 3711 EXPORT_SYMBOL(io_schedule); 3712 3713 long __sched io_schedule_timeout(long timeout) 3714 { 3715 struct rq *rq = raw_rq(); 3716 long ret; 3717 3718 delayacct_blkio_start(); 3719 atomic_inc(&rq->nr_iowait); 3720 blk_flush_plug(current); 3721 current->in_iowait = 1; 3722 ret = schedule_timeout(timeout); 3723 current->in_iowait = 0; 3724 atomic_dec(&rq->nr_iowait); 3725 delayacct_blkio_end(); 3726 return ret; 3727 } 3728 3729 /** 3730 * sys_sched_get_priority_max - return maximum RT priority. 3731 * @policy: scheduling class. 3732 * 3733 * Return: On success, this syscall returns the maximum 3734 * rt_priority that can be used by a given scheduling class. 3735 * On failure, a negative error code is returned. 3736 */ 3737 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 3738 { 3739 int ret = -EINVAL; 3740 3741 switch (policy) { 3742 case SCHED_FIFO: 3743 case SCHED_RR: 3744 ret = MAX_USER_RT_PRIO-1; 3745 break; 3746 case SCHED_NORMAL: 3747 case SCHED_BATCH: 3748 case SCHED_IDLE: 3749 ret = 0; 3750 break; 3751 } 3752 return ret; 3753 } 3754 3755 /** 3756 * sys_sched_get_priority_min - return minimum RT priority. 3757 * @policy: scheduling class. 3758 * 3759 * Return: On success, this syscall returns the minimum 3760 * rt_priority that can be used by a given scheduling class. 3761 * On failure, a negative error code is returned. 3762 */ 3763 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 3764 { 3765 int ret = -EINVAL; 3766 3767 switch (policy) { 3768 case SCHED_FIFO: 3769 case SCHED_RR: 3770 ret = 1; 3771 break; 3772 case SCHED_NORMAL: 3773 case SCHED_BATCH: 3774 case SCHED_IDLE: 3775 ret = 0; 3776 } 3777 return ret; 3778 } 3779 3780 /** 3781 * sys_sched_rr_get_interval - return the default timeslice of a process. 3782 * @pid: pid of the process. 3783 * @interval: userspace pointer to the timeslice value. 3784 * 3785 * this syscall writes the default timeslice value of a given process 3786 * into the user-space timespec buffer. A value of '0' means infinity. 3787 * 3788 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 3789 * an error code. 3790 */ 3791 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 3792 struct timespec __user *, interval) 3793 { 3794 struct task_struct *p; 3795 unsigned int time_slice; 3796 unsigned long flags; 3797 struct rq *rq; 3798 int retval; 3799 struct timespec t; 3800 3801 if (pid < 0) 3802 return -EINVAL; 3803 3804 retval = -ESRCH; 3805 rcu_read_lock(); 3806 p = find_process_by_pid(pid); 3807 if (!p) 3808 goto out_unlock; 3809 3810 retval = security_task_getscheduler(p); 3811 if (retval) 3812 goto out_unlock; 3813 3814 rq = task_rq_lock(p, &flags); 3815 time_slice = p->sched_class->get_rr_interval(rq, p); 3816 task_rq_unlock(rq, p, &flags); 3817 3818 rcu_read_unlock(); 3819 jiffies_to_timespec(time_slice, &t); 3820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 3821 return retval; 3822 3823 out_unlock: 3824 rcu_read_unlock(); 3825 return retval; 3826 } 3827 3828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 3829 3830 void sched_show_task(struct task_struct *p) 3831 { 3832 unsigned long free = 0; 3833 int ppid; 3834 unsigned state; 3835 3836 state = p->state ? __ffs(p->state) + 1 : 0; 3837 printk(KERN_INFO "%-15.15s %c", p->comm, 3838 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 3839 #if BITS_PER_LONG == 32 3840 if (state == TASK_RUNNING) 3841 printk(KERN_CONT " running "); 3842 else 3843 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 3844 #else 3845 if (state == TASK_RUNNING) 3846 printk(KERN_CONT " running task "); 3847 else 3848 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 3849 #endif 3850 #ifdef CONFIG_DEBUG_STACK_USAGE 3851 free = stack_not_used(p); 3852 #endif 3853 rcu_read_lock(); 3854 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 3855 rcu_read_unlock(); 3856 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 3857 task_pid_nr(p), ppid, 3858 (unsigned long)task_thread_info(p)->flags); 3859 3860 print_worker_info(KERN_INFO, p); 3861 show_stack(p, NULL); 3862 } 3863 3864 void show_state_filter(unsigned long state_filter) 3865 { 3866 struct task_struct *g, *p; 3867 3868 #if BITS_PER_LONG == 32 3869 printk(KERN_INFO 3870 " task PC stack pid father\n"); 3871 #else 3872 printk(KERN_INFO 3873 " task PC stack pid father\n"); 3874 #endif 3875 rcu_read_lock(); 3876 do_each_thread(g, p) { 3877 /* 3878 * reset the NMI-timeout, listing all files on a slow 3879 * console might take a lot of time: 3880 */ 3881 touch_nmi_watchdog(); 3882 if (!state_filter || (p->state & state_filter)) 3883 sched_show_task(p); 3884 } while_each_thread(g, p); 3885 3886 touch_all_softlockup_watchdogs(); 3887 3888 #ifdef CONFIG_SCHED_DEBUG 3889 sysrq_sched_debug_show(); 3890 #endif 3891 rcu_read_unlock(); 3892 /* 3893 * Only show locks if all tasks are dumped: 3894 */ 3895 if (!state_filter) 3896 debug_show_all_locks(); 3897 } 3898 3899 void init_idle_bootup_task(struct task_struct *idle) 3900 { 3901 idle->sched_class = &idle_sched_class; 3902 } 3903 3904 /** 3905 * init_idle - set up an idle thread for a given CPU 3906 * @idle: task in question 3907 * @cpu: cpu the idle task belongs to 3908 * 3909 * NOTE: this function does not set the idle thread's NEED_RESCHED 3910 * flag, to make booting more robust. 3911 */ 3912 void init_idle(struct task_struct *idle, int cpu) 3913 { 3914 struct rq *rq = cpu_rq(cpu); 3915 unsigned long flags; 3916 3917 raw_spin_lock_irqsave(&rq->lock, flags); 3918 3919 __sched_fork(0, idle); 3920 idle->state = TASK_RUNNING; 3921 idle->se.exec_start = sched_clock(); 3922 3923 do_set_cpus_allowed(idle, cpumask_of(cpu)); 3924 /* 3925 * We're having a chicken and egg problem, even though we are 3926 * holding rq->lock, the cpu isn't yet set to this cpu so the 3927 * lockdep check in task_group() will fail. 3928 * 3929 * Similar case to sched_fork(). / Alternatively we could 3930 * use task_rq_lock() here and obtain the other rq->lock. 3931 * 3932 * Silence PROVE_RCU 3933 */ 3934 rcu_read_lock(); 3935 __set_task_cpu(idle, cpu); 3936 rcu_read_unlock(); 3937 3938 rq->curr = rq->idle = idle; 3939 #if defined(CONFIG_SMP) 3940 idle->on_cpu = 1; 3941 #endif 3942 raw_spin_unlock_irqrestore(&rq->lock, flags); 3943 3944 /* Set the preempt count _outside_ the spinlocks! */ 3945 init_idle_preempt_count(idle, cpu); 3946 3947 /* 3948 * The idle tasks have their own, simple scheduling class: 3949 */ 3950 idle->sched_class = &idle_sched_class; 3951 ftrace_graph_init_idle_task(idle, cpu); 3952 vtime_init_idle(idle, cpu); 3953 #if defined(CONFIG_SMP) 3954 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 3955 #endif 3956 } 3957 3958 #ifdef CONFIG_SMP 3959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 3960 { 3961 if (p->sched_class && p->sched_class->set_cpus_allowed) 3962 p->sched_class->set_cpus_allowed(p, new_mask); 3963 3964 cpumask_copy(&p->cpus_allowed, new_mask); 3965 p->nr_cpus_allowed = cpumask_weight(new_mask); 3966 } 3967 3968 /* 3969 * This is how migration works: 3970 * 3971 * 1) we invoke migration_cpu_stop() on the target CPU using 3972 * stop_one_cpu(). 3973 * 2) stopper starts to run (implicitly forcing the migrated thread 3974 * off the CPU) 3975 * 3) it checks whether the migrated task is still in the wrong runqueue. 3976 * 4) if it's in the wrong runqueue then the migration thread removes 3977 * it and puts it into the right queue. 3978 * 5) stopper completes and stop_one_cpu() returns and the migration 3979 * is done. 3980 */ 3981 3982 /* 3983 * Change a given task's CPU affinity. Migrate the thread to a 3984 * proper CPU and schedule it away if the CPU it's executing on 3985 * is removed from the allowed bitmask. 3986 * 3987 * NOTE: the caller must have a valid reference to the task, the 3988 * task must not exit() & deallocate itself prematurely. The 3989 * call is not atomic; no spinlocks may be held. 3990 */ 3991 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3992 { 3993 unsigned long flags; 3994 struct rq *rq; 3995 unsigned int dest_cpu; 3996 int ret = 0; 3997 3998 rq = task_rq_lock(p, &flags); 3999 4000 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4001 goto out; 4002 4003 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4004 ret = -EINVAL; 4005 goto out; 4006 } 4007 4008 do_set_cpus_allowed(p, new_mask); 4009 4010 /* Can the task run on the task's current CPU? If so, we're done */ 4011 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4012 goto out; 4013 4014 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4015 if (p->on_rq) { 4016 struct migration_arg arg = { p, dest_cpu }; 4017 /* Need help from migration thread: drop lock and wait. */ 4018 task_rq_unlock(rq, p, &flags); 4019 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4020 tlb_migrate_finish(p->mm); 4021 return 0; 4022 } 4023 out: 4024 task_rq_unlock(rq, p, &flags); 4025 4026 return ret; 4027 } 4028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4029 4030 /* 4031 * Move (not current) task off this cpu, onto dest cpu. We're doing 4032 * this because either it can't run here any more (set_cpus_allowed() 4033 * away from this CPU, or CPU going down), or because we're 4034 * attempting to rebalance this task on exec (sched_exec). 4035 * 4036 * So we race with normal scheduler movements, but that's OK, as long 4037 * as the task is no longer on this CPU. 4038 * 4039 * Returns non-zero if task was successfully migrated. 4040 */ 4041 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4042 { 4043 struct rq *rq_dest, *rq_src; 4044 int ret = 0; 4045 4046 if (unlikely(!cpu_active(dest_cpu))) 4047 return ret; 4048 4049 rq_src = cpu_rq(src_cpu); 4050 rq_dest = cpu_rq(dest_cpu); 4051 4052 raw_spin_lock(&p->pi_lock); 4053 double_rq_lock(rq_src, rq_dest); 4054 /* Already moved. */ 4055 if (task_cpu(p) != src_cpu) 4056 goto done; 4057 /* Affinity changed (again). */ 4058 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4059 goto fail; 4060 4061 /* 4062 * If we're not on a rq, the next wake-up will ensure we're 4063 * placed properly. 4064 */ 4065 if (p->on_rq) { 4066 dequeue_task(rq_src, p, 0); 4067 set_task_cpu(p, dest_cpu); 4068 enqueue_task(rq_dest, p, 0); 4069 check_preempt_curr(rq_dest, p, 0); 4070 } 4071 done: 4072 ret = 1; 4073 fail: 4074 double_rq_unlock(rq_src, rq_dest); 4075 raw_spin_unlock(&p->pi_lock); 4076 return ret; 4077 } 4078 4079 #ifdef CONFIG_NUMA_BALANCING 4080 /* Migrate current task p to target_cpu */ 4081 int migrate_task_to(struct task_struct *p, int target_cpu) 4082 { 4083 struct migration_arg arg = { p, target_cpu }; 4084 int curr_cpu = task_cpu(p); 4085 4086 if (curr_cpu == target_cpu) 4087 return 0; 4088 4089 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4090 return -EINVAL; 4091 4092 /* TODO: This is not properly updating schedstats */ 4093 4094 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4095 } 4096 4097 /* 4098 * Requeue a task on a given node and accurately track the number of NUMA 4099 * tasks on the runqueues 4100 */ 4101 void sched_setnuma(struct task_struct *p, int nid) 4102 { 4103 struct rq *rq; 4104 unsigned long flags; 4105 bool on_rq, running; 4106 4107 rq = task_rq_lock(p, &flags); 4108 on_rq = p->on_rq; 4109 running = task_current(rq, p); 4110 4111 if (on_rq) 4112 dequeue_task(rq, p, 0); 4113 if (running) 4114 p->sched_class->put_prev_task(rq, p); 4115 4116 p->numa_preferred_nid = nid; 4117 4118 if (running) 4119 p->sched_class->set_curr_task(rq); 4120 if (on_rq) 4121 enqueue_task(rq, p, 0); 4122 task_rq_unlock(rq, p, &flags); 4123 } 4124 #endif 4125 4126 /* 4127 * migration_cpu_stop - this will be executed by a highprio stopper thread 4128 * and performs thread migration by bumping thread off CPU then 4129 * 'pushing' onto another runqueue. 4130 */ 4131 static int migration_cpu_stop(void *data) 4132 { 4133 struct migration_arg *arg = data; 4134 4135 /* 4136 * The original target cpu might have gone down and we might 4137 * be on another cpu but it doesn't matter. 4138 */ 4139 local_irq_disable(); 4140 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4141 local_irq_enable(); 4142 return 0; 4143 } 4144 4145 #ifdef CONFIG_HOTPLUG_CPU 4146 4147 /* 4148 * Ensures that the idle task is using init_mm right before its cpu goes 4149 * offline. 4150 */ 4151 void idle_task_exit(void) 4152 { 4153 struct mm_struct *mm = current->active_mm; 4154 4155 BUG_ON(cpu_online(smp_processor_id())); 4156 4157 if (mm != &init_mm) 4158 switch_mm(mm, &init_mm, current); 4159 mmdrop(mm); 4160 } 4161 4162 /* 4163 * Since this CPU is going 'away' for a while, fold any nr_active delta 4164 * we might have. Assumes we're called after migrate_tasks() so that the 4165 * nr_active count is stable. 4166 * 4167 * Also see the comment "Global load-average calculations". 4168 */ 4169 static void calc_load_migrate(struct rq *rq) 4170 { 4171 long delta = calc_load_fold_active(rq); 4172 if (delta) 4173 atomic_long_add(delta, &calc_load_tasks); 4174 } 4175 4176 /* 4177 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4178 * try_to_wake_up()->select_task_rq(). 4179 * 4180 * Called with rq->lock held even though we'er in stop_machine() and 4181 * there's no concurrency possible, we hold the required locks anyway 4182 * because of lock validation efforts. 4183 */ 4184 static void migrate_tasks(unsigned int dead_cpu) 4185 { 4186 struct rq *rq = cpu_rq(dead_cpu); 4187 struct task_struct *next, *stop = rq->stop; 4188 int dest_cpu; 4189 4190 /* 4191 * Fudge the rq selection such that the below task selection loop 4192 * doesn't get stuck on the currently eligible stop task. 4193 * 4194 * We're currently inside stop_machine() and the rq is either stuck 4195 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4196 * either way we should never end up calling schedule() until we're 4197 * done here. 4198 */ 4199 rq->stop = NULL; 4200 4201 /* 4202 * put_prev_task() and pick_next_task() sched 4203 * class method both need to have an up-to-date 4204 * value of rq->clock[_task] 4205 */ 4206 update_rq_clock(rq); 4207 4208 for ( ; ; ) { 4209 /* 4210 * There's this thread running, bail when that's the only 4211 * remaining thread. 4212 */ 4213 if (rq->nr_running == 1) 4214 break; 4215 4216 next = pick_next_task(rq); 4217 BUG_ON(!next); 4218 next->sched_class->put_prev_task(rq, next); 4219 4220 /* Find suitable destination for @next, with force if needed. */ 4221 dest_cpu = select_fallback_rq(dead_cpu, next); 4222 raw_spin_unlock(&rq->lock); 4223 4224 __migrate_task(next, dead_cpu, dest_cpu); 4225 4226 raw_spin_lock(&rq->lock); 4227 } 4228 4229 rq->stop = stop; 4230 } 4231 4232 #endif /* CONFIG_HOTPLUG_CPU */ 4233 4234 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4235 4236 static struct ctl_table sd_ctl_dir[] = { 4237 { 4238 .procname = "sched_domain", 4239 .mode = 0555, 4240 }, 4241 {} 4242 }; 4243 4244 static struct ctl_table sd_ctl_root[] = { 4245 { 4246 .procname = "kernel", 4247 .mode = 0555, 4248 .child = sd_ctl_dir, 4249 }, 4250 {} 4251 }; 4252 4253 static struct ctl_table *sd_alloc_ctl_entry(int n) 4254 { 4255 struct ctl_table *entry = 4256 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4257 4258 return entry; 4259 } 4260 4261 static void sd_free_ctl_entry(struct ctl_table **tablep) 4262 { 4263 struct ctl_table *entry; 4264 4265 /* 4266 * In the intermediate directories, both the child directory and 4267 * procname are dynamically allocated and could fail but the mode 4268 * will always be set. In the lowest directory the names are 4269 * static strings and all have proc handlers. 4270 */ 4271 for (entry = *tablep; entry->mode; entry++) { 4272 if (entry->child) 4273 sd_free_ctl_entry(&entry->child); 4274 if (entry->proc_handler == NULL) 4275 kfree(entry->procname); 4276 } 4277 4278 kfree(*tablep); 4279 *tablep = NULL; 4280 } 4281 4282 static int min_load_idx = 0; 4283 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4284 4285 static void 4286 set_table_entry(struct ctl_table *entry, 4287 const char *procname, void *data, int maxlen, 4288 umode_t mode, proc_handler *proc_handler, 4289 bool load_idx) 4290 { 4291 entry->procname = procname; 4292 entry->data = data; 4293 entry->maxlen = maxlen; 4294 entry->mode = mode; 4295 entry->proc_handler = proc_handler; 4296 4297 if (load_idx) { 4298 entry->extra1 = &min_load_idx; 4299 entry->extra2 = &max_load_idx; 4300 } 4301 } 4302 4303 static struct ctl_table * 4304 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4305 { 4306 struct ctl_table *table = sd_alloc_ctl_entry(13); 4307 4308 if (table == NULL) 4309 return NULL; 4310 4311 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4312 sizeof(long), 0644, proc_doulongvec_minmax, false); 4313 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4314 sizeof(long), 0644, proc_doulongvec_minmax, false); 4315 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4316 sizeof(int), 0644, proc_dointvec_minmax, true); 4317 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4318 sizeof(int), 0644, proc_dointvec_minmax, true); 4319 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4320 sizeof(int), 0644, proc_dointvec_minmax, true); 4321 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4322 sizeof(int), 0644, proc_dointvec_minmax, true); 4323 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4324 sizeof(int), 0644, proc_dointvec_minmax, true); 4325 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4326 sizeof(int), 0644, proc_dointvec_minmax, false); 4327 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4328 sizeof(int), 0644, proc_dointvec_minmax, false); 4329 set_table_entry(&table[9], "cache_nice_tries", 4330 &sd->cache_nice_tries, 4331 sizeof(int), 0644, proc_dointvec_minmax, false); 4332 set_table_entry(&table[10], "flags", &sd->flags, 4333 sizeof(int), 0644, proc_dointvec_minmax, false); 4334 set_table_entry(&table[11], "name", sd->name, 4335 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4336 /* &table[12] is terminator */ 4337 4338 return table; 4339 } 4340 4341 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4342 { 4343 struct ctl_table *entry, *table; 4344 struct sched_domain *sd; 4345 int domain_num = 0, i; 4346 char buf[32]; 4347 4348 for_each_domain(cpu, sd) 4349 domain_num++; 4350 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4351 if (table == NULL) 4352 return NULL; 4353 4354 i = 0; 4355 for_each_domain(cpu, sd) { 4356 snprintf(buf, 32, "domain%d", i); 4357 entry->procname = kstrdup(buf, GFP_KERNEL); 4358 entry->mode = 0555; 4359 entry->child = sd_alloc_ctl_domain_table(sd); 4360 entry++; 4361 i++; 4362 } 4363 return table; 4364 } 4365 4366 static struct ctl_table_header *sd_sysctl_header; 4367 static void register_sched_domain_sysctl(void) 4368 { 4369 int i, cpu_num = num_possible_cpus(); 4370 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4371 char buf[32]; 4372 4373 WARN_ON(sd_ctl_dir[0].child); 4374 sd_ctl_dir[0].child = entry; 4375 4376 if (entry == NULL) 4377 return; 4378 4379 for_each_possible_cpu(i) { 4380 snprintf(buf, 32, "cpu%d", i); 4381 entry->procname = kstrdup(buf, GFP_KERNEL); 4382 entry->mode = 0555; 4383 entry->child = sd_alloc_ctl_cpu_table(i); 4384 entry++; 4385 } 4386 4387 WARN_ON(sd_sysctl_header); 4388 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4389 } 4390 4391 /* may be called multiple times per register */ 4392 static void unregister_sched_domain_sysctl(void) 4393 { 4394 if (sd_sysctl_header) 4395 unregister_sysctl_table(sd_sysctl_header); 4396 sd_sysctl_header = NULL; 4397 if (sd_ctl_dir[0].child) 4398 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4399 } 4400 #else 4401 static void register_sched_domain_sysctl(void) 4402 { 4403 } 4404 static void unregister_sched_domain_sysctl(void) 4405 { 4406 } 4407 #endif 4408 4409 static void set_rq_online(struct rq *rq) 4410 { 4411 if (!rq->online) { 4412 const struct sched_class *class; 4413 4414 cpumask_set_cpu(rq->cpu, rq->rd->online); 4415 rq->online = 1; 4416 4417 for_each_class(class) { 4418 if (class->rq_online) 4419 class->rq_online(rq); 4420 } 4421 } 4422 } 4423 4424 static void set_rq_offline(struct rq *rq) 4425 { 4426 if (rq->online) { 4427 const struct sched_class *class; 4428 4429 for_each_class(class) { 4430 if (class->rq_offline) 4431 class->rq_offline(rq); 4432 } 4433 4434 cpumask_clear_cpu(rq->cpu, rq->rd->online); 4435 rq->online = 0; 4436 } 4437 } 4438 4439 /* 4440 * migration_call - callback that gets triggered when a CPU is added. 4441 * Here we can start up the necessary migration thread for the new CPU. 4442 */ 4443 static int 4444 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 4445 { 4446 int cpu = (long)hcpu; 4447 unsigned long flags; 4448 struct rq *rq = cpu_rq(cpu); 4449 4450 switch (action & ~CPU_TASKS_FROZEN) { 4451 4452 case CPU_UP_PREPARE: 4453 rq->calc_load_update = calc_load_update; 4454 break; 4455 4456 case CPU_ONLINE: 4457 /* Update our root-domain */ 4458 raw_spin_lock_irqsave(&rq->lock, flags); 4459 if (rq->rd) { 4460 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 4461 4462 set_rq_online(rq); 4463 } 4464 raw_spin_unlock_irqrestore(&rq->lock, flags); 4465 break; 4466 4467 #ifdef CONFIG_HOTPLUG_CPU 4468 case CPU_DYING: 4469 sched_ttwu_pending(); 4470 /* Update our root-domain */ 4471 raw_spin_lock_irqsave(&rq->lock, flags); 4472 if (rq->rd) { 4473 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 4474 set_rq_offline(rq); 4475 } 4476 migrate_tasks(cpu); 4477 BUG_ON(rq->nr_running != 1); /* the migration thread */ 4478 raw_spin_unlock_irqrestore(&rq->lock, flags); 4479 break; 4480 4481 case CPU_DEAD: 4482 calc_load_migrate(rq); 4483 break; 4484 #endif 4485 } 4486 4487 update_max_interval(); 4488 4489 return NOTIFY_OK; 4490 } 4491 4492 /* 4493 * Register at high priority so that task migration (migrate_all_tasks) 4494 * happens before everything else. This has to be lower priority than 4495 * the notifier in the perf_event subsystem, though. 4496 */ 4497 static struct notifier_block migration_notifier = { 4498 .notifier_call = migration_call, 4499 .priority = CPU_PRI_MIGRATION, 4500 }; 4501 4502 static int sched_cpu_active(struct notifier_block *nfb, 4503 unsigned long action, void *hcpu) 4504 { 4505 switch (action & ~CPU_TASKS_FROZEN) { 4506 case CPU_STARTING: 4507 case CPU_DOWN_FAILED: 4508 set_cpu_active((long)hcpu, true); 4509 return NOTIFY_OK; 4510 default: 4511 return NOTIFY_DONE; 4512 } 4513 } 4514 4515 static int sched_cpu_inactive(struct notifier_block *nfb, 4516 unsigned long action, void *hcpu) 4517 { 4518 switch (action & ~CPU_TASKS_FROZEN) { 4519 case CPU_DOWN_PREPARE: 4520 set_cpu_active((long)hcpu, false); 4521 return NOTIFY_OK; 4522 default: 4523 return NOTIFY_DONE; 4524 } 4525 } 4526 4527 static int __init migration_init(void) 4528 { 4529 void *cpu = (void *)(long)smp_processor_id(); 4530 int err; 4531 4532 /* Initialize migration for the boot CPU */ 4533 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 4534 BUG_ON(err == NOTIFY_BAD); 4535 migration_call(&migration_notifier, CPU_ONLINE, cpu); 4536 register_cpu_notifier(&migration_notifier); 4537 4538 /* Register cpu active notifiers */ 4539 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 4540 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 4541 4542 return 0; 4543 } 4544 early_initcall(migration_init); 4545 #endif 4546 4547 #ifdef CONFIG_SMP 4548 4549 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 4550 4551 #ifdef CONFIG_SCHED_DEBUG 4552 4553 static __read_mostly int sched_debug_enabled; 4554 4555 static int __init sched_debug_setup(char *str) 4556 { 4557 sched_debug_enabled = 1; 4558 4559 return 0; 4560 } 4561 early_param("sched_debug", sched_debug_setup); 4562 4563 static inline bool sched_debug(void) 4564 { 4565 return sched_debug_enabled; 4566 } 4567 4568 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 4569 struct cpumask *groupmask) 4570 { 4571 struct sched_group *group = sd->groups; 4572 char str[256]; 4573 4574 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 4575 cpumask_clear(groupmask); 4576 4577 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 4578 4579 if (!(sd->flags & SD_LOAD_BALANCE)) { 4580 printk("does not load-balance\n"); 4581 if (sd->parent) 4582 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 4583 " has parent"); 4584 return -1; 4585 } 4586 4587 printk(KERN_CONT "span %s level %s\n", str, sd->name); 4588 4589 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 4590 printk(KERN_ERR "ERROR: domain->span does not contain " 4591 "CPU%d\n", cpu); 4592 } 4593 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 4594 printk(KERN_ERR "ERROR: domain->groups does not contain" 4595 " CPU%d\n", cpu); 4596 } 4597 4598 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 4599 do { 4600 if (!group) { 4601 printk("\n"); 4602 printk(KERN_ERR "ERROR: group is NULL\n"); 4603 break; 4604 } 4605 4606 /* 4607 * Even though we initialize ->power to something semi-sane, 4608 * we leave power_orig unset. This allows us to detect if 4609 * domain iteration is still funny without causing /0 traps. 4610 */ 4611 if (!group->sgp->power_orig) { 4612 printk(KERN_CONT "\n"); 4613 printk(KERN_ERR "ERROR: domain->cpu_power not " 4614 "set\n"); 4615 break; 4616 } 4617 4618 if (!cpumask_weight(sched_group_cpus(group))) { 4619 printk(KERN_CONT "\n"); 4620 printk(KERN_ERR "ERROR: empty group\n"); 4621 break; 4622 } 4623 4624 if (!(sd->flags & SD_OVERLAP) && 4625 cpumask_intersects(groupmask, sched_group_cpus(group))) { 4626 printk(KERN_CONT "\n"); 4627 printk(KERN_ERR "ERROR: repeated CPUs\n"); 4628 break; 4629 } 4630 4631 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 4632 4633 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 4634 4635 printk(KERN_CONT " %s", str); 4636 if (group->sgp->power != SCHED_POWER_SCALE) { 4637 printk(KERN_CONT " (cpu_power = %d)", 4638 group->sgp->power); 4639 } 4640 4641 group = group->next; 4642 } while (group != sd->groups); 4643 printk(KERN_CONT "\n"); 4644 4645 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 4646 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 4647 4648 if (sd->parent && 4649 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 4650 printk(KERN_ERR "ERROR: parent span is not a superset " 4651 "of domain->span\n"); 4652 return 0; 4653 } 4654 4655 static void sched_domain_debug(struct sched_domain *sd, int cpu) 4656 { 4657 int level = 0; 4658 4659 if (!sched_debug_enabled) 4660 return; 4661 4662 if (!sd) { 4663 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 4664 return; 4665 } 4666 4667 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 4668 4669 for (;;) { 4670 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 4671 break; 4672 level++; 4673 sd = sd->parent; 4674 if (!sd) 4675 break; 4676 } 4677 } 4678 #else /* !CONFIG_SCHED_DEBUG */ 4679 # define sched_domain_debug(sd, cpu) do { } while (0) 4680 static inline bool sched_debug(void) 4681 { 4682 return false; 4683 } 4684 #endif /* CONFIG_SCHED_DEBUG */ 4685 4686 static int sd_degenerate(struct sched_domain *sd) 4687 { 4688 if (cpumask_weight(sched_domain_span(sd)) == 1) 4689 return 1; 4690 4691 /* Following flags need at least 2 groups */ 4692 if (sd->flags & (SD_LOAD_BALANCE | 4693 SD_BALANCE_NEWIDLE | 4694 SD_BALANCE_FORK | 4695 SD_BALANCE_EXEC | 4696 SD_SHARE_CPUPOWER | 4697 SD_SHARE_PKG_RESOURCES)) { 4698 if (sd->groups != sd->groups->next) 4699 return 0; 4700 } 4701 4702 /* Following flags don't use groups */ 4703 if (sd->flags & (SD_WAKE_AFFINE)) 4704 return 0; 4705 4706 return 1; 4707 } 4708 4709 static int 4710 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 4711 { 4712 unsigned long cflags = sd->flags, pflags = parent->flags; 4713 4714 if (sd_degenerate(parent)) 4715 return 1; 4716 4717 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 4718 return 0; 4719 4720 /* Flags needing groups don't count if only 1 group in parent */ 4721 if (parent->groups == parent->groups->next) { 4722 pflags &= ~(SD_LOAD_BALANCE | 4723 SD_BALANCE_NEWIDLE | 4724 SD_BALANCE_FORK | 4725 SD_BALANCE_EXEC | 4726 SD_SHARE_CPUPOWER | 4727 SD_SHARE_PKG_RESOURCES | 4728 SD_PREFER_SIBLING); 4729 if (nr_node_ids == 1) 4730 pflags &= ~SD_SERIALIZE; 4731 } 4732 if (~cflags & pflags) 4733 return 0; 4734 4735 return 1; 4736 } 4737 4738 static void free_rootdomain(struct rcu_head *rcu) 4739 { 4740 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 4741 4742 cpupri_cleanup(&rd->cpupri); 4743 free_cpumask_var(rd->rto_mask); 4744 free_cpumask_var(rd->online); 4745 free_cpumask_var(rd->span); 4746 kfree(rd); 4747 } 4748 4749 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 4750 { 4751 struct root_domain *old_rd = NULL; 4752 unsigned long flags; 4753 4754 raw_spin_lock_irqsave(&rq->lock, flags); 4755 4756 if (rq->rd) { 4757 old_rd = rq->rd; 4758 4759 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 4760 set_rq_offline(rq); 4761 4762 cpumask_clear_cpu(rq->cpu, old_rd->span); 4763 4764 /* 4765 * If we dont want to free the old_rt yet then 4766 * set old_rd to NULL to skip the freeing later 4767 * in this function: 4768 */ 4769 if (!atomic_dec_and_test(&old_rd->refcount)) 4770 old_rd = NULL; 4771 } 4772 4773 atomic_inc(&rd->refcount); 4774 rq->rd = rd; 4775 4776 cpumask_set_cpu(rq->cpu, rd->span); 4777 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 4778 set_rq_online(rq); 4779 4780 raw_spin_unlock_irqrestore(&rq->lock, flags); 4781 4782 if (old_rd) 4783 call_rcu_sched(&old_rd->rcu, free_rootdomain); 4784 } 4785 4786 static int init_rootdomain(struct root_domain *rd) 4787 { 4788 memset(rd, 0, sizeof(*rd)); 4789 4790 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 4791 goto out; 4792 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 4793 goto free_span; 4794 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 4795 goto free_online; 4796 4797 if (cpupri_init(&rd->cpupri) != 0) 4798 goto free_rto_mask; 4799 return 0; 4800 4801 free_rto_mask: 4802 free_cpumask_var(rd->rto_mask); 4803 free_online: 4804 free_cpumask_var(rd->online); 4805 free_span: 4806 free_cpumask_var(rd->span); 4807 out: 4808 return -ENOMEM; 4809 } 4810 4811 /* 4812 * By default the system creates a single root-domain with all cpus as 4813 * members (mimicking the global state we have today). 4814 */ 4815 struct root_domain def_root_domain; 4816 4817 static void init_defrootdomain(void) 4818 { 4819 init_rootdomain(&def_root_domain); 4820 4821 atomic_set(&def_root_domain.refcount, 1); 4822 } 4823 4824 static struct root_domain *alloc_rootdomain(void) 4825 { 4826 struct root_domain *rd; 4827 4828 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 4829 if (!rd) 4830 return NULL; 4831 4832 if (init_rootdomain(rd) != 0) { 4833 kfree(rd); 4834 return NULL; 4835 } 4836 4837 return rd; 4838 } 4839 4840 static void free_sched_groups(struct sched_group *sg, int free_sgp) 4841 { 4842 struct sched_group *tmp, *first; 4843 4844 if (!sg) 4845 return; 4846 4847 first = sg; 4848 do { 4849 tmp = sg->next; 4850 4851 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 4852 kfree(sg->sgp); 4853 4854 kfree(sg); 4855 sg = tmp; 4856 } while (sg != first); 4857 } 4858 4859 static void free_sched_domain(struct rcu_head *rcu) 4860 { 4861 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 4862 4863 /* 4864 * If its an overlapping domain it has private groups, iterate and 4865 * nuke them all. 4866 */ 4867 if (sd->flags & SD_OVERLAP) { 4868 free_sched_groups(sd->groups, 1); 4869 } else if (atomic_dec_and_test(&sd->groups->ref)) { 4870 kfree(sd->groups->sgp); 4871 kfree(sd->groups); 4872 } 4873 kfree(sd); 4874 } 4875 4876 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 4877 { 4878 call_rcu(&sd->rcu, free_sched_domain); 4879 } 4880 4881 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 4882 { 4883 for (; sd; sd = sd->parent) 4884 destroy_sched_domain(sd, cpu); 4885 } 4886 4887 /* 4888 * Keep a special pointer to the highest sched_domain that has 4889 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 4890 * allows us to avoid some pointer chasing select_idle_sibling(). 4891 * 4892 * Also keep a unique ID per domain (we use the first cpu number in 4893 * the cpumask of the domain), this allows us to quickly tell if 4894 * two cpus are in the same cache domain, see cpus_share_cache(). 4895 */ 4896 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 4897 DEFINE_PER_CPU(int, sd_llc_size); 4898 DEFINE_PER_CPU(int, sd_llc_id); 4899 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 4900 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 4901 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 4902 4903 static void update_top_cache_domain(int cpu) 4904 { 4905 struct sched_domain *sd; 4906 int id = cpu; 4907 int size = 1; 4908 4909 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 4910 if (sd) { 4911 id = cpumask_first(sched_domain_span(sd)); 4912 size = cpumask_weight(sched_domain_span(sd)); 4913 rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent); 4914 } 4915 4916 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 4917 per_cpu(sd_llc_size, cpu) = size; 4918 per_cpu(sd_llc_id, cpu) = id; 4919 4920 sd = lowest_flag_domain(cpu, SD_NUMA); 4921 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 4922 4923 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 4924 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 4925 } 4926 4927 /* 4928 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 4929 * hold the hotplug lock. 4930 */ 4931 static void 4932 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 4933 { 4934 struct rq *rq = cpu_rq(cpu); 4935 struct sched_domain *tmp; 4936 4937 /* Remove the sched domains which do not contribute to scheduling. */ 4938 for (tmp = sd; tmp; ) { 4939 struct sched_domain *parent = tmp->parent; 4940 if (!parent) 4941 break; 4942 4943 if (sd_parent_degenerate(tmp, parent)) { 4944 tmp->parent = parent->parent; 4945 if (parent->parent) 4946 parent->parent->child = tmp; 4947 /* 4948 * Transfer SD_PREFER_SIBLING down in case of a 4949 * degenerate parent; the spans match for this 4950 * so the property transfers. 4951 */ 4952 if (parent->flags & SD_PREFER_SIBLING) 4953 tmp->flags |= SD_PREFER_SIBLING; 4954 destroy_sched_domain(parent, cpu); 4955 } else 4956 tmp = tmp->parent; 4957 } 4958 4959 if (sd && sd_degenerate(sd)) { 4960 tmp = sd; 4961 sd = sd->parent; 4962 destroy_sched_domain(tmp, cpu); 4963 if (sd) 4964 sd->child = NULL; 4965 } 4966 4967 sched_domain_debug(sd, cpu); 4968 4969 rq_attach_root(rq, rd); 4970 tmp = rq->sd; 4971 rcu_assign_pointer(rq->sd, sd); 4972 destroy_sched_domains(tmp, cpu); 4973 4974 update_top_cache_domain(cpu); 4975 } 4976 4977 /* cpus with isolated domains */ 4978 static cpumask_var_t cpu_isolated_map; 4979 4980 /* Setup the mask of cpus configured for isolated domains */ 4981 static int __init isolated_cpu_setup(char *str) 4982 { 4983 alloc_bootmem_cpumask_var(&cpu_isolated_map); 4984 cpulist_parse(str, cpu_isolated_map); 4985 return 1; 4986 } 4987 4988 __setup("isolcpus=", isolated_cpu_setup); 4989 4990 static const struct cpumask *cpu_cpu_mask(int cpu) 4991 { 4992 return cpumask_of_node(cpu_to_node(cpu)); 4993 } 4994 4995 struct sd_data { 4996 struct sched_domain **__percpu sd; 4997 struct sched_group **__percpu sg; 4998 struct sched_group_power **__percpu sgp; 4999 }; 5000 5001 struct s_data { 5002 struct sched_domain ** __percpu sd; 5003 struct root_domain *rd; 5004 }; 5005 5006 enum s_alloc { 5007 sa_rootdomain, 5008 sa_sd, 5009 sa_sd_storage, 5010 sa_none, 5011 }; 5012 5013 struct sched_domain_topology_level; 5014 5015 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5016 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5017 5018 #define SDTL_OVERLAP 0x01 5019 5020 struct sched_domain_topology_level { 5021 sched_domain_init_f init; 5022 sched_domain_mask_f mask; 5023 int flags; 5024 int numa_level; 5025 struct sd_data data; 5026 }; 5027 5028 /* 5029 * Build an iteration mask that can exclude certain CPUs from the upwards 5030 * domain traversal. 5031 * 5032 * Asymmetric node setups can result in situations where the domain tree is of 5033 * unequal depth, make sure to skip domains that already cover the entire 5034 * range. 5035 * 5036 * In that case build_sched_domains() will have terminated the iteration early 5037 * and our sibling sd spans will be empty. Domains should always include the 5038 * cpu they're built on, so check that. 5039 * 5040 */ 5041 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5042 { 5043 const struct cpumask *span = sched_domain_span(sd); 5044 struct sd_data *sdd = sd->private; 5045 struct sched_domain *sibling; 5046 int i; 5047 5048 for_each_cpu(i, span) { 5049 sibling = *per_cpu_ptr(sdd->sd, i); 5050 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5051 continue; 5052 5053 cpumask_set_cpu(i, sched_group_mask(sg)); 5054 } 5055 } 5056 5057 /* 5058 * Return the canonical balance cpu for this group, this is the first cpu 5059 * of this group that's also in the iteration mask. 5060 */ 5061 int group_balance_cpu(struct sched_group *sg) 5062 { 5063 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5064 } 5065 5066 static int 5067 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5068 { 5069 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5070 const struct cpumask *span = sched_domain_span(sd); 5071 struct cpumask *covered = sched_domains_tmpmask; 5072 struct sd_data *sdd = sd->private; 5073 struct sched_domain *child; 5074 int i; 5075 5076 cpumask_clear(covered); 5077 5078 for_each_cpu(i, span) { 5079 struct cpumask *sg_span; 5080 5081 if (cpumask_test_cpu(i, covered)) 5082 continue; 5083 5084 child = *per_cpu_ptr(sdd->sd, i); 5085 5086 /* See the comment near build_group_mask(). */ 5087 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5088 continue; 5089 5090 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5091 GFP_KERNEL, cpu_to_node(cpu)); 5092 5093 if (!sg) 5094 goto fail; 5095 5096 sg_span = sched_group_cpus(sg); 5097 if (child->child) { 5098 child = child->child; 5099 cpumask_copy(sg_span, sched_domain_span(child)); 5100 } else 5101 cpumask_set_cpu(i, sg_span); 5102 5103 cpumask_or(covered, covered, sg_span); 5104 5105 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5106 if (atomic_inc_return(&sg->sgp->ref) == 1) 5107 build_group_mask(sd, sg); 5108 5109 /* 5110 * Initialize sgp->power such that even if we mess up the 5111 * domains and no possible iteration will get us here, we won't 5112 * die on a /0 trap. 5113 */ 5114 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5115 5116 /* 5117 * Make sure the first group of this domain contains the 5118 * canonical balance cpu. Otherwise the sched_domain iteration 5119 * breaks. See update_sg_lb_stats(). 5120 */ 5121 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5122 group_balance_cpu(sg) == cpu) 5123 groups = sg; 5124 5125 if (!first) 5126 first = sg; 5127 if (last) 5128 last->next = sg; 5129 last = sg; 5130 last->next = first; 5131 } 5132 sd->groups = groups; 5133 5134 return 0; 5135 5136 fail: 5137 free_sched_groups(first, 0); 5138 5139 return -ENOMEM; 5140 } 5141 5142 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5143 { 5144 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5145 struct sched_domain *child = sd->child; 5146 5147 if (child) 5148 cpu = cpumask_first(sched_domain_span(child)); 5149 5150 if (sg) { 5151 *sg = *per_cpu_ptr(sdd->sg, cpu); 5152 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5153 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5154 } 5155 5156 return cpu; 5157 } 5158 5159 /* 5160 * build_sched_groups will build a circular linked list of the groups 5161 * covered by the given span, and will set each group's ->cpumask correctly, 5162 * and ->cpu_power to 0. 5163 * 5164 * Assumes the sched_domain tree is fully constructed 5165 */ 5166 static int 5167 build_sched_groups(struct sched_domain *sd, int cpu) 5168 { 5169 struct sched_group *first = NULL, *last = NULL; 5170 struct sd_data *sdd = sd->private; 5171 const struct cpumask *span = sched_domain_span(sd); 5172 struct cpumask *covered; 5173 int i; 5174 5175 get_group(cpu, sdd, &sd->groups); 5176 atomic_inc(&sd->groups->ref); 5177 5178 if (cpu != cpumask_first(span)) 5179 return 0; 5180 5181 lockdep_assert_held(&sched_domains_mutex); 5182 covered = sched_domains_tmpmask; 5183 5184 cpumask_clear(covered); 5185 5186 for_each_cpu(i, span) { 5187 struct sched_group *sg; 5188 int group, j; 5189 5190 if (cpumask_test_cpu(i, covered)) 5191 continue; 5192 5193 group = get_group(i, sdd, &sg); 5194 cpumask_clear(sched_group_cpus(sg)); 5195 sg->sgp->power = 0; 5196 cpumask_setall(sched_group_mask(sg)); 5197 5198 for_each_cpu(j, span) { 5199 if (get_group(j, sdd, NULL) != group) 5200 continue; 5201 5202 cpumask_set_cpu(j, covered); 5203 cpumask_set_cpu(j, sched_group_cpus(sg)); 5204 } 5205 5206 if (!first) 5207 first = sg; 5208 if (last) 5209 last->next = sg; 5210 last = sg; 5211 } 5212 last->next = first; 5213 5214 return 0; 5215 } 5216 5217 /* 5218 * Initialize sched groups cpu_power. 5219 * 5220 * cpu_power indicates the capacity of sched group, which is used while 5221 * distributing the load between different sched groups in a sched domain. 5222 * Typically cpu_power for all the groups in a sched domain will be same unless 5223 * there are asymmetries in the topology. If there are asymmetries, group 5224 * having more cpu_power will pickup more load compared to the group having 5225 * less cpu_power. 5226 */ 5227 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5228 { 5229 struct sched_group *sg = sd->groups; 5230 5231 WARN_ON(!sg); 5232 5233 do { 5234 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5235 sg = sg->next; 5236 } while (sg != sd->groups); 5237 5238 if (cpu != group_balance_cpu(sg)) 5239 return; 5240 5241 update_group_power(sd, cpu); 5242 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5243 } 5244 5245 int __weak arch_sd_sibling_asym_packing(void) 5246 { 5247 return 0*SD_ASYM_PACKING; 5248 } 5249 5250 /* 5251 * Initializers for schedule domains 5252 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5253 */ 5254 5255 #ifdef CONFIG_SCHED_DEBUG 5256 # define SD_INIT_NAME(sd, type) sd->name = #type 5257 #else 5258 # define SD_INIT_NAME(sd, type) do { } while (0) 5259 #endif 5260 5261 #define SD_INIT_FUNC(type) \ 5262 static noinline struct sched_domain * \ 5263 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5264 { \ 5265 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5266 *sd = SD_##type##_INIT; \ 5267 SD_INIT_NAME(sd, type); \ 5268 sd->private = &tl->data; \ 5269 return sd; \ 5270 } 5271 5272 SD_INIT_FUNC(CPU) 5273 #ifdef CONFIG_SCHED_SMT 5274 SD_INIT_FUNC(SIBLING) 5275 #endif 5276 #ifdef CONFIG_SCHED_MC 5277 SD_INIT_FUNC(MC) 5278 #endif 5279 #ifdef CONFIG_SCHED_BOOK 5280 SD_INIT_FUNC(BOOK) 5281 #endif 5282 5283 static int default_relax_domain_level = -1; 5284 int sched_domain_level_max; 5285 5286 static int __init setup_relax_domain_level(char *str) 5287 { 5288 if (kstrtoint(str, 0, &default_relax_domain_level)) 5289 pr_warn("Unable to set relax_domain_level\n"); 5290 5291 return 1; 5292 } 5293 __setup("relax_domain_level=", setup_relax_domain_level); 5294 5295 static void set_domain_attribute(struct sched_domain *sd, 5296 struct sched_domain_attr *attr) 5297 { 5298 int request; 5299 5300 if (!attr || attr->relax_domain_level < 0) { 5301 if (default_relax_domain_level < 0) 5302 return; 5303 else 5304 request = default_relax_domain_level; 5305 } else 5306 request = attr->relax_domain_level; 5307 if (request < sd->level) { 5308 /* turn off idle balance on this domain */ 5309 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5310 } else { 5311 /* turn on idle balance on this domain */ 5312 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5313 } 5314 } 5315 5316 static void __sdt_free(const struct cpumask *cpu_map); 5317 static int __sdt_alloc(const struct cpumask *cpu_map); 5318 5319 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5320 const struct cpumask *cpu_map) 5321 { 5322 switch (what) { 5323 case sa_rootdomain: 5324 if (!atomic_read(&d->rd->refcount)) 5325 free_rootdomain(&d->rd->rcu); /* fall through */ 5326 case sa_sd: 5327 free_percpu(d->sd); /* fall through */ 5328 case sa_sd_storage: 5329 __sdt_free(cpu_map); /* fall through */ 5330 case sa_none: 5331 break; 5332 } 5333 } 5334 5335 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5336 const struct cpumask *cpu_map) 5337 { 5338 memset(d, 0, sizeof(*d)); 5339 5340 if (__sdt_alloc(cpu_map)) 5341 return sa_sd_storage; 5342 d->sd = alloc_percpu(struct sched_domain *); 5343 if (!d->sd) 5344 return sa_sd_storage; 5345 d->rd = alloc_rootdomain(); 5346 if (!d->rd) 5347 return sa_sd; 5348 return sa_rootdomain; 5349 } 5350 5351 /* 5352 * NULL the sd_data elements we've used to build the sched_domain and 5353 * sched_group structure so that the subsequent __free_domain_allocs() 5354 * will not free the data we're using. 5355 */ 5356 static void claim_allocations(int cpu, struct sched_domain *sd) 5357 { 5358 struct sd_data *sdd = sd->private; 5359 5360 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5361 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5362 5363 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5364 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5365 5366 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5367 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5368 } 5369 5370 #ifdef CONFIG_SCHED_SMT 5371 static const struct cpumask *cpu_smt_mask(int cpu) 5372 { 5373 return topology_thread_cpumask(cpu); 5374 } 5375 #endif 5376 5377 /* 5378 * Topology list, bottom-up. 5379 */ 5380 static struct sched_domain_topology_level default_topology[] = { 5381 #ifdef CONFIG_SCHED_SMT 5382 { sd_init_SIBLING, cpu_smt_mask, }, 5383 #endif 5384 #ifdef CONFIG_SCHED_MC 5385 { sd_init_MC, cpu_coregroup_mask, }, 5386 #endif 5387 #ifdef CONFIG_SCHED_BOOK 5388 { sd_init_BOOK, cpu_book_mask, }, 5389 #endif 5390 { sd_init_CPU, cpu_cpu_mask, }, 5391 { NULL, }, 5392 }; 5393 5394 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5395 5396 #define for_each_sd_topology(tl) \ 5397 for (tl = sched_domain_topology; tl->init; tl++) 5398 5399 #ifdef CONFIG_NUMA 5400 5401 static int sched_domains_numa_levels; 5402 static int *sched_domains_numa_distance; 5403 static struct cpumask ***sched_domains_numa_masks; 5404 static int sched_domains_curr_level; 5405 5406 static inline int sd_local_flags(int level) 5407 { 5408 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 5409 return 0; 5410 5411 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 5412 } 5413 5414 static struct sched_domain * 5415 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 5416 { 5417 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 5418 int level = tl->numa_level; 5419 int sd_weight = cpumask_weight( 5420 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 5421 5422 *sd = (struct sched_domain){ 5423 .min_interval = sd_weight, 5424 .max_interval = 2*sd_weight, 5425 .busy_factor = 32, 5426 .imbalance_pct = 125, 5427 .cache_nice_tries = 2, 5428 .busy_idx = 3, 5429 .idle_idx = 2, 5430 .newidle_idx = 0, 5431 .wake_idx = 0, 5432 .forkexec_idx = 0, 5433 5434 .flags = 1*SD_LOAD_BALANCE 5435 | 1*SD_BALANCE_NEWIDLE 5436 | 0*SD_BALANCE_EXEC 5437 | 0*SD_BALANCE_FORK 5438 | 0*SD_BALANCE_WAKE 5439 | 0*SD_WAKE_AFFINE 5440 | 0*SD_SHARE_CPUPOWER 5441 | 0*SD_SHARE_PKG_RESOURCES 5442 | 1*SD_SERIALIZE 5443 | 0*SD_PREFER_SIBLING 5444 | 1*SD_NUMA 5445 | sd_local_flags(level) 5446 , 5447 .last_balance = jiffies, 5448 .balance_interval = sd_weight, 5449 }; 5450 SD_INIT_NAME(sd, NUMA); 5451 sd->private = &tl->data; 5452 5453 /* 5454 * Ugly hack to pass state to sd_numa_mask()... 5455 */ 5456 sched_domains_curr_level = tl->numa_level; 5457 5458 return sd; 5459 } 5460 5461 static const struct cpumask *sd_numa_mask(int cpu) 5462 { 5463 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 5464 } 5465 5466 static void sched_numa_warn(const char *str) 5467 { 5468 static int done = false; 5469 int i,j; 5470 5471 if (done) 5472 return; 5473 5474 done = true; 5475 5476 printk(KERN_WARNING "ERROR: %s\n\n", str); 5477 5478 for (i = 0; i < nr_node_ids; i++) { 5479 printk(KERN_WARNING " "); 5480 for (j = 0; j < nr_node_ids; j++) 5481 printk(KERN_CONT "%02d ", node_distance(i,j)); 5482 printk(KERN_CONT "\n"); 5483 } 5484 printk(KERN_WARNING "\n"); 5485 } 5486 5487 static bool find_numa_distance(int distance) 5488 { 5489 int i; 5490 5491 if (distance == node_distance(0, 0)) 5492 return true; 5493 5494 for (i = 0; i < sched_domains_numa_levels; i++) { 5495 if (sched_domains_numa_distance[i] == distance) 5496 return true; 5497 } 5498 5499 return false; 5500 } 5501 5502 static void sched_init_numa(void) 5503 { 5504 int next_distance, curr_distance = node_distance(0, 0); 5505 struct sched_domain_topology_level *tl; 5506 int level = 0; 5507 int i, j, k; 5508 5509 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 5510 if (!sched_domains_numa_distance) 5511 return; 5512 5513 /* 5514 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 5515 * unique distances in the node_distance() table. 5516 * 5517 * Assumes node_distance(0,j) includes all distances in 5518 * node_distance(i,j) in order to avoid cubic time. 5519 */ 5520 next_distance = curr_distance; 5521 for (i = 0; i < nr_node_ids; i++) { 5522 for (j = 0; j < nr_node_ids; j++) { 5523 for (k = 0; k < nr_node_ids; k++) { 5524 int distance = node_distance(i, k); 5525 5526 if (distance > curr_distance && 5527 (distance < next_distance || 5528 next_distance == curr_distance)) 5529 next_distance = distance; 5530 5531 /* 5532 * While not a strong assumption it would be nice to know 5533 * about cases where if node A is connected to B, B is not 5534 * equally connected to A. 5535 */ 5536 if (sched_debug() && node_distance(k, i) != distance) 5537 sched_numa_warn("Node-distance not symmetric"); 5538 5539 if (sched_debug() && i && !find_numa_distance(distance)) 5540 sched_numa_warn("Node-0 not representative"); 5541 } 5542 if (next_distance != curr_distance) { 5543 sched_domains_numa_distance[level++] = next_distance; 5544 sched_domains_numa_levels = level; 5545 curr_distance = next_distance; 5546 } else break; 5547 } 5548 5549 /* 5550 * In case of sched_debug() we verify the above assumption. 5551 */ 5552 if (!sched_debug()) 5553 break; 5554 } 5555 /* 5556 * 'level' contains the number of unique distances, excluding the 5557 * identity distance node_distance(i,i). 5558 * 5559 * The sched_domains_numa_distance[] array includes the actual distance 5560 * numbers. 5561 */ 5562 5563 /* 5564 * Here, we should temporarily reset sched_domains_numa_levels to 0. 5565 * If it fails to allocate memory for array sched_domains_numa_masks[][], 5566 * the array will contain less then 'level' members. This could be 5567 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 5568 * in other functions. 5569 * 5570 * We reset it to 'level' at the end of this function. 5571 */ 5572 sched_domains_numa_levels = 0; 5573 5574 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 5575 if (!sched_domains_numa_masks) 5576 return; 5577 5578 /* 5579 * Now for each level, construct a mask per node which contains all 5580 * cpus of nodes that are that many hops away from us. 5581 */ 5582 for (i = 0; i < level; i++) { 5583 sched_domains_numa_masks[i] = 5584 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 5585 if (!sched_domains_numa_masks[i]) 5586 return; 5587 5588 for (j = 0; j < nr_node_ids; j++) { 5589 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 5590 if (!mask) 5591 return; 5592 5593 sched_domains_numa_masks[i][j] = mask; 5594 5595 for (k = 0; k < nr_node_ids; k++) { 5596 if (node_distance(j, k) > sched_domains_numa_distance[i]) 5597 continue; 5598 5599 cpumask_or(mask, mask, cpumask_of_node(k)); 5600 } 5601 } 5602 } 5603 5604 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 5605 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 5606 if (!tl) 5607 return; 5608 5609 /* 5610 * Copy the default topology bits.. 5611 */ 5612 for (i = 0; default_topology[i].init; i++) 5613 tl[i] = default_topology[i]; 5614 5615 /* 5616 * .. and append 'j' levels of NUMA goodness. 5617 */ 5618 for (j = 0; j < level; i++, j++) { 5619 tl[i] = (struct sched_domain_topology_level){ 5620 .init = sd_numa_init, 5621 .mask = sd_numa_mask, 5622 .flags = SDTL_OVERLAP, 5623 .numa_level = j, 5624 }; 5625 } 5626 5627 sched_domain_topology = tl; 5628 5629 sched_domains_numa_levels = level; 5630 } 5631 5632 static void sched_domains_numa_masks_set(int cpu) 5633 { 5634 int i, j; 5635 int node = cpu_to_node(cpu); 5636 5637 for (i = 0; i < sched_domains_numa_levels; i++) { 5638 for (j = 0; j < nr_node_ids; j++) { 5639 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 5640 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 5641 } 5642 } 5643 } 5644 5645 static void sched_domains_numa_masks_clear(int cpu) 5646 { 5647 int i, j; 5648 for (i = 0; i < sched_domains_numa_levels; i++) { 5649 for (j = 0; j < nr_node_ids; j++) 5650 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 5651 } 5652 } 5653 5654 /* 5655 * Update sched_domains_numa_masks[level][node] array when new cpus 5656 * are onlined. 5657 */ 5658 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 5659 unsigned long action, 5660 void *hcpu) 5661 { 5662 int cpu = (long)hcpu; 5663 5664 switch (action & ~CPU_TASKS_FROZEN) { 5665 case CPU_ONLINE: 5666 sched_domains_numa_masks_set(cpu); 5667 break; 5668 5669 case CPU_DEAD: 5670 sched_domains_numa_masks_clear(cpu); 5671 break; 5672 5673 default: 5674 return NOTIFY_DONE; 5675 } 5676 5677 return NOTIFY_OK; 5678 } 5679 #else 5680 static inline void sched_init_numa(void) 5681 { 5682 } 5683 5684 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 5685 unsigned long action, 5686 void *hcpu) 5687 { 5688 return 0; 5689 } 5690 #endif /* CONFIG_NUMA */ 5691 5692 static int __sdt_alloc(const struct cpumask *cpu_map) 5693 { 5694 struct sched_domain_topology_level *tl; 5695 int j; 5696 5697 for_each_sd_topology(tl) { 5698 struct sd_data *sdd = &tl->data; 5699 5700 sdd->sd = alloc_percpu(struct sched_domain *); 5701 if (!sdd->sd) 5702 return -ENOMEM; 5703 5704 sdd->sg = alloc_percpu(struct sched_group *); 5705 if (!sdd->sg) 5706 return -ENOMEM; 5707 5708 sdd->sgp = alloc_percpu(struct sched_group_power *); 5709 if (!sdd->sgp) 5710 return -ENOMEM; 5711 5712 for_each_cpu(j, cpu_map) { 5713 struct sched_domain *sd; 5714 struct sched_group *sg; 5715 struct sched_group_power *sgp; 5716 5717 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 5718 GFP_KERNEL, cpu_to_node(j)); 5719 if (!sd) 5720 return -ENOMEM; 5721 5722 *per_cpu_ptr(sdd->sd, j) = sd; 5723 5724 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5725 GFP_KERNEL, cpu_to_node(j)); 5726 if (!sg) 5727 return -ENOMEM; 5728 5729 sg->next = sg; 5730 5731 *per_cpu_ptr(sdd->sg, j) = sg; 5732 5733 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 5734 GFP_KERNEL, cpu_to_node(j)); 5735 if (!sgp) 5736 return -ENOMEM; 5737 5738 *per_cpu_ptr(sdd->sgp, j) = sgp; 5739 } 5740 } 5741 5742 return 0; 5743 } 5744 5745 static void __sdt_free(const struct cpumask *cpu_map) 5746 { 5747 struct sched_domain_topology_level *tl; 5748 int j; 5749 5750 for_each_sd_topology(tl) { 5751 struct sd_data *sdd = &tl->data; 5752 5753 for_each_cpu(j, cpu_map) { 5754 struct sched_domain *sd; 5755 5756 if (sdd->sd) { 5757 sd = *per_cpu_ptr(sdd->sd, j); 5758 if (sd && (sd->flags & SD_OVERLAP)) 5759 free_sched_groups(sd->groups, 0); 5760 kfree(*per_cpu_ptr(sdd->sd, j)); 5761 } 5762 5763 if (sdd->sg) 5764 kfree(*per_cpu_ptr(sdd->sg, j)); 5765 if (sdd->sgp) 5766 kfree(*per_cpu_ptr(sdd->sgp, j)); 5767 } 5768 free_percpu(sdd->sd); 5769 sdd->sd = NULL; 5770 free_percpu(sdd->sg); 5771 sdd->sg = NULL; 5772 free_percpu(sdd->sgp); 5773 sdd->sgp = NULL; 5774 } 5775 } 5776 5777 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 5778 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 5779 struct sched_domain *child, int cpu) 5780 { 5781 struct sched_domain *sd = tl->init(tl, cpu); 5782 if (!sd) 5783 return child; 5784 5785 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 5786 if (child) { 5787 sd->level = child->level + 1; 5788 sched_domain_level_max = max(sched_domain_level_max, sd->level); 5789 child->parent = sd; 5790 sd->child = child; 5791 } 5792 set_domain_attribute(sd, attr); 5793 5794 return sd; 5795 } 5796 5797 /* 5798 * Build sched domains for a given set of cpus and attach the sched domains 5799 * to the individual cpus 5800 */ 5801 static int build_sched_domains(const struct cpumask *cpu_map, 5802 struct sched_domain_attr *attr) 5803 { 5804 enum s_alloc alloc_state; 5805 struct sched_domain *sd; 5806 struct s_data d; 5807 int i, ret = -ENOMEM; 5808 5809 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 5810 if (alloc_state != sa_rootdomain) 5811 goto error; 5812 5813 /* Set up domains for cpus specified by the cpu_map. */ 5814 for_each_cpu(i, cpu_map) { 5815 struct sched_domain_topology_level *tl; 5816 5817 sd = NULL; 5818 for_each_sd_topology(tl) { 5819 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 5820 if (tl == sched_domain_topology) 5821 *per_cpu_ptr(d.sd, i) = sd; 5822 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 5823 sd->flags |= SD_OVERLAP; 5824 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 5825 break; 5826 } 5827 } 5828 5829 /* Build the groups for the domains */ 5830 for_each_cpu(i, cpu_map) { 5831 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 5832 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 5833 if (sd->flags & SD_OVERLAP) { 5834 if (build_overlap_sched_groups(sd, i)) 5835 goto error; 5836 } else { 5837 if (build_sched_groups(sd, i)) 5838 goto error; 5839 } 5840 } 5841 } 5842 5843 /* Calculate CPU power for physical packages and nodes */ 5844 for (i = nr_cpumask_bits-1; i >= 0; i--) { 5845 if (!cpumask_test_cpu(i, cpu_map)) 5846 continue; 5847 5848 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 5849 claim_allocations(i, sd); 5850 init_sched_groups_power(i, sd); 5851 } 5852 } 5853 5854 /* Attach the domains */ 5855 rcu_read_lock(); 5856 for_each_cpu(i, cpu_map) { 5857 sd = *per_cpu_ptr(d.sd, i); 5858 cpu_attach_domain(sd, d.rd, i); 5859 } 5860 rcu_read_unlock(); 5861 5862 ret = 0; 5863 error: 5864 __free_domain_allocs(&d, alloc_state, cpu_map); 5865 return ret; 5866 } 5867 5868 static cpumask_var_t *doms_cur; /* current sched domains */ 5869 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 5870 static struct sched_domain_attr *dattr_cur; 5871 /* attribues of custom domains in 'doms_cur' */ 5872 5873 /* 5874 * Special case: If a kmalloc of a doms_cur partition (array of 5875 * cpumask) fails, then fallback to a single sched domain, 5876 * as determined by the single cpumask fallback_doms. 5877 */ 5878 static cpumask_var_t fallback_doms; 5879 5880 /* 5881 * arch_update_cpu_topology lets virtualized architectures update the 5882 * cpu core maps. It is supposed to return 1 if the topology changed 5883 * or 0 if it stayed the same. 5884 */ 5885 int __attribute__((weak)) arch_update_cpu_topology(void) 5886 { 5887 return 0; 5888 } 5889 5890 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 5891 { 5892 int i; 5893 cpumask_var_t *doms; 5894 5895 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 5896 if (!doms) 5897 return NULL; 5898 for (i = 0; i < ndoms; i++) { 5899 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 5900 free_sched_domains(doms, i); 5901 return NULL; 5902 } 5903 } 5904 return doms; 5905 } 5906 5907 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 5908 { 5909 unsigned int i; 5910 for (i = 0; i < ndoms; i++) 5911 free_cpumask_var(doms[i]); 5912 kfree(doms); 5913 } 5914 5915 /* 5916 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 5917 * For now this just excludes isolated cpus, but could be used to 5918 * exclude other special cases in the future. 5919 */ 5920 static int init_sched_domains(const struct cpumask *cpu_map) 5921 { 5922 int err; 5923 5924 arch_update_cpu_topology(); 5925 ndoms_cur = 1; 5926 doms_cur = alloc_sched_domains(ndoms_cur); 5927 if (!doms_cur) 5928 doms_cur = &fallback_doms; 5929 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 5930 err = build_sched_domains(doms_cur[0], NULL); 5931 register_sched_domain_sysctl(); 5932 5933 return err; 5934 } 5935 5936 /* 5937 * Detach sched domains from a group of cpus specified in cpu_map 5938 * These cpus will now be attached to the NULL domain 5939 */ 5940 static void detach_destroy_domains(const struct cpumask *cpu_map) 5941 { 5942 int i; 5943 5944 rcu_read_lock(); 5945 for_each_cpu(i, cpu_map) 5946 cpu_attach_domain(NULL, &def_root_domain, i); 5947 rcu_read_unlock(); 5948 } 5949 5950 /* handle null as "default" */ 5951 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 5952 struct sched_domain_attr *new, int idx_new) 5953 { 5954 struct sched_domain_attr tmp; 5955 5956 /* fast path */ 5957 if (!new && !cur) 5958 return 1; 5959 5960 tmp = SD_ATTR_INIT; 5961 return !memcmp(cur ? (cur + idx_cur) : &tmp, 5962 new ? (new + idx_new) : &tmp, 5963 sizeof(struct sched_domain_attr)); 5964 } 5965 5966 /* 5967 * Partition sched domains as specified by the 'ndoms_new' 5968 * cpumasks in the array doms_new[] of cpumasks. This compares 5969 * doms_new[] to the current sched domain partitioning, doms_cur[]. 5970 * It destroys each deleted domain and builds each new domain. 5971 * 5972 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 5973 * The masks don't intersect (don't overlap.) We should setup one 5974 * sched domain for each mask. CPUs not in any of the cpumasks will 5975 * not be load balanced. If the same cpumask appears both in the 5976 * current 'doms_cur' domains and in the new 'doms_new', we can leave 5977 * it as it is. 5978 * 5979 * The passed in 'doms_new' should be allocated using 5980 * alloc_sched_domains. This routine takes ownership of it and will 5981 * free_sched_domains it when done with it. If the caller failed the 5982 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 5983 * and partition_sched_domains() will fallback to the single partition 5984 * 'fallback_doms', it also forces the domains to be rebuilt. 5985 * 5986 * If doms_new == NULL it will be replaced with cpu_online_mask. 5987 * ndoms_new == 0 is a special case for destroying existing domains, 5988 * and it will not create the default domain. 5989 * 5990 * Call with hotplug lock held 5991 */ 5992 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 5993 struct sched_domain_attr *dattr_new) 5994 { 5995 int i, j, n; 5996 int new_topology; 5997 5998 mutex_lock(&sched_domains_mutex); 5999 6000 /* always unregister in case we don't destroy any domains */ 6001 unregister_sched_domain_sysctl(); 6002 6003 /* Let architecture update cpu core mappings. */ 6004 new_topology = arch_update_cpu_topology(); 6005 6006 n = doms_new ? ndoms_new : 0; 6007 6008 /* Destroy deleted domains */ 6009 for (i = 0; i < ndoms_cur; i++) { 6010 for (j = 0; j < n && !new_topology; j++) { 6011 if (cpumask_equal(doms_cur[i], doms_new[j]) 6012 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6013 goto match1; 6014 } 6015 /* no match - a current sched domain not in new doms_new[] */ 6016 detach_destroy_domains(doms_cur[i]); 6017 match1: 6018 ; 6019 } 6020 6021 n = ndoms_cur; 6022 if (doms_new == NULL) { 6023 n = 0; 6024 doms_new = &fallback_doms; 6025 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6026 WARN_ON_ONCE(dattr_new); 6027 } 6028 6029 /* Build new domains */ 6030 for (i = 0; i < ndoms_new; i++) { 6031 for (j = 0; j < n && !new_topology; j++) { 6032 if (cpumask_equal(doms_new[i], doms_cur[j]) 6033 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6034 goto match2; 6035 } 6036 /* no match - add a new doms_new */ 6037 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6038 match2: 6039 ; 6040 } 6041 6042 /* Remember the new sched domains */ 6043 if (doms_cur != &fallback_doms) 6044 free_sched_domains(doms_cur, ndoms_cur); 6045 kfree(dattr_cur); /* kfree(NULL) is safe */ 6046 doms_cur = doms_new; 6047 dattr_cur = dattr_new; 6048 ndoms_cur = ndoms_new; 6049 6050 register_sched_domain_sysctl(); 6051 6052 mutex_unlock(&sched_domains_mutex); 6053 } 6054 6055 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6056 6057 /* 6058 * Update cpusets according to cpu_active mask. If cpusets are 6059 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6060 * around partition_sched_domains(). 6061 * 6062 * If we come here as part of a suspend/resume, don't touch cpusets because we 6063 * want to restore it back to its original state upon resume anyway. 6064 */ 6065 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6066 void *hcpu) 6067 { 6068 switch (action) { 6069 case CPU_ONLINE_FROZEN: 6070 case CPU_DOWN_FAILED_FROZEN: 6071 6072 /* 6073 * num_cpus_frozen tracks how many CPUs are involved in suspend 6074 * resume sequence. As long as this is not the last online 6075 * operation in the resume sequence, just build a single sched 6076 * domain, ignoring cpusets. 6077 */ 6078 num_cpus_frozen--; 6079 if (likely(num_cpus_frozen)) { 6080 partition_sched_domains(1, NULL, NULL); 6081 break; 6082 } 6083 6084 /* 6085 * This is the last CPU online operation. So fall through and 6086 * restore the original sched domains by considering the 6087 * cpuset configurations. 6088 */ 6089 6090 case CPU_ONLINE: 6091 case CPU_DOWN_FAILED: 6092 cpuset_update_active_cpus(true); 6093 break; 6094 default: 6095 return NOTIFY_DONE; 6096 } 6097 return NOTIFY_OK; 6098 } 6099 6100 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6101 void *hcpu) 6102 { 6103 switch (action) { 6104 case CPU_DOWN_PREPARE: 6105 cpuset_update_active_cpus(false); 6106 break; 6107 case CPU_DOWN_PREPARE_FROZEN: 6108 num_cpus_frozen++; 6109 partition_sched_domains(1, NULL, NULL); 6110 break; 6111 default: 6112 return NOTIFY_DONE; 6113 } 6114 return NOTIFY_OK; 6115 } 6116 6117 void __init sched_init_smp(void) 6118 { 6119 cpumask_var_t non_isolated_cpus; 6120 6121 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6122 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6123 6124 sched_init_numa(); 6125 6126 /* 6127 * There's no userspace yet to cause hotplug operations; hence all the 6128 * cpu masks are stable and all blatant races in the below code cannot 6129 * happen. 6130 */ 6131 mutex_lock(&sched_domains_mutex); 6132 init_sched_domains(cpu_active_mask); 6133 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6134 if (cpumask_empty(non_isolated_cpus)) 6135 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6136 mutex_unlock(&sched_domains_mutex); 6137 6138 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6139 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6140 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6141 6142 init_hrtick(); 6143 6144 /* Move init over to a non-isolated CPU */ 6145 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6146 BUG(); 6147 sched_init_granularity(); 6148 free_cpumask_var(non_isolated_cpus); 6149 6150 init_sched_rt_class(); 6151 } 6152 #else 6153 void __init sched_init_smp(void) 6154 { 6155 sched_init_granularity(); 6156 } 6157 #endif /* CONFIG_SMP */ 6158 6159 const_debug unsigned int sysctl_timer_migration = 1; 6160 6161 int in_sched_functions(unsigned long addr) 6162 { 6163 return in_lock_functions(addr) || 6164 (addr >= (unsigned long)__sched_text_start 6165 && addr < (unsigned long)__sched_text_end); 6166 } 6167 6168 #ifdef CONFIG_CGROUP_SCHED 6169 /* 6170 * Default task group. 6171 * Every task in system belongs to this group at bootup. 6172 */ 6173 struct task_group root_task_group; 6174 LIST_HEAD(task_groups); 6175 #endif 6176 6177 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6178 6179 void __init sched_init(void) 6180 { 6181 int i, j; 6182 unsigned long alloc_size = 0, ptr; 6183 6184 #ifdef CONFIG_FAIR_GROUP_SCHED 6185 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6186 #endif 6187 #ifdef CONFIG_RT_GROUP_SCHED 6188 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6189 #endif 6190 #ifdef CONFIG_CPUMASK_OFFSTACK 6191 alloc_size += num_possible_cpus() * cpumask_size(); 6192 #endif 6193 if (alloc_size) { 6194 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6195 6196 #ifdef CONFIG_FAIR_GROUP_SCHED 6197 root_task_group.se = (struct sched_entity **)ptr; 6198 ptr += nr_cpu_ids * sizeof(void **); 6199 6200 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6201 ptr += nr_cpu_ids * sizeof(void **); 6202 6203 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6204 #ifdef CONFIG_RT_GROUP_SCHED 6205 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6206 ptr += nr_cpu_ids * sizeof(void **); 6207 6208 root_task_group.rt_rq = (struct rt_rq **)ptr; 6209 ptr += nr_cpu_ids * sizeof(void **); 6210 6211 #endif /* CONFIG_RT_GROUP_SCHED */ 6212 #ifdef CONFIG_CPUMASK_OFFSTACK 6213 for_each_possible_cpu(i) { 6214 per_cpu(load_balance_mask, i) = (void *)ptr; 6215 ptr += cpumask_size(); 6216 } 6217 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6218 } 6219 6220 #ifdef CONFIG_SMP 6221 init_defrootdomain(); 6222 #endif 6223 6224 init_rt_bandwidth(&def_rt_bandwidth, 6225 global_rt_period(), global_rt_runtime()); 6226 6227 #ifdef CONFIG_RT_GROUP_SCHED 6228 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6229 global_rt_period(), global_rt_runtime()); 6230 #endif /* CONFIG_RT_GROUP_SCHED */ 6231 6232 #ifdef CONFIG_CGROUP_SCHED 6233 list_add(&root_task_group.list, &task_groups); 6234 INIT_LIST_HEAD(&root_task_group.children); 6235 INIT_LIST_HEAD(&root_task_group.siblings); 6236 autogroup_init(&init_task); 6237 6238 #endif /* CONFIG_CGROUP_SCHED */ 6239 6240 for_each_possible_cpu(i) { 6241 struct rq *rq; 6242 6243 rq = cpu_rq(i); 6244 raw_spin_lock_init(&rq->lock); 6245 rq->nr_running = 0; 6246 rq->calc_load_active = 0; 6247 rq->calc_load_update = jiffies + LOAD_FREQ; 6248 init_cfs_rq(&rq->cfs); 6249 init_rt_rq(&rq->rt, rq); 6250 #ifdef CONFIG_FAIR_GROUP_SCHED 6251 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6252 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6253 /* 6254 * How much cpu bandwidth does root_task_group get? 6255 * 6256 * In case of task-groups formed thr' the cgroup filesystem, it 6257 * gets 100% of the cpu resources in the system. This overall 6258 * system cpu resource is divided among the tasks of 6259 * root_task_group and its child task-groups in a fair manner, 6260 * based on each entity's (task or task-group's) weight 6261 * (se->load.weight). 6262 * 6263 * In other words, if root_task_group has 10 tasks of weight 6264 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6265 * then A0's share of the cpu resource is: 6266 * 6267 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6268 * 6269 * We achieve this by letting root_task_group's tasks sit 6270 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6271 */ 6272 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6273 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6274 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6275 6276 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6277 #ifdef CONFIG_RT_GROUP_SCHED 6278 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6279 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6280 #endif 6281 6282 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6283 rq->cpu_load[j] = 0; 6284 6285 rq->last_load_update_tick = jiffies; 6286 6287 #ifdef CONFIG_SMP 6288 rq->sd = NULL; 6289 rq->rd = NULL; 6290 rq->cpu_power = SCHED_POWER_SCALE; 6291 rq->post_schedule = 0; 6292 rq->active_balance = 0; 6293 rq->next_balance = jiffies; 6294 rq->push_cpu = 0; 6295 rq->cpu = i; 6296 rq->online = 0; 6297 rq->idle_stamp = 0; 6298 rq->avg_idle = 2*sysctl_sched_migration_cost; 6299 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6300 6301 INIT_LIST_HEAD(&rq->cfs_tasks); 6302 6303 rq_attach_root(rq, &def_root_domain); 6304 #ifdef CONFIG_NO_HZ_COMMON 6305 rq->nohz_flags = 0; 6306 #endif 6307 #ifdef CONFIG_NO_HZ_FULL 6308 rq->last_sched_tick = 0; 6309 #endif 6310 #endif 6311 init_rq_hrtick(rq); 6312 atomic_set(&rq->nr_iowait, 0); 6313 } 6314 6315 set_load_weight(&init_task); 6316 6317 #ifdef CONFIG_PREEMPT_NOTIFIERS 6318 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6319 #endif 6320 6321 #ifdef CONFIG_RT_MUTEXES 6322 plist_head_init(&init_task.pi_waiters); 6323 #endif 6324 6325 /* 6326 * The boot idle thread does lazy MMU switching as well: 6327 */ 6328 atomic_inc(&init_mm.mm_count); 6329 enter_lazy_tlb(&init_mm, current); 6330 6331 /* 6332 * Make us the idle thread. Technically, schedule() should not be 6333 * called from this thread, however somewhere below it might be, 6334 * but because we are the idle thread, we just pick up running again 6335 * when this runqueue becomes "idle". 6336 */ 6337 init_idle(current, smp_processor_id()); 6338 6339 calc_load_update = jiffies + LOAD_FREQ; 6340 6341 /* 6342 * During early bootup we pretend to be a normal task: 6343 */ 6344 current->sched_class = &fair_sched_class; 6345 6346 #ifdef CONFIG_SMP 6347 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6348 /* May be allocated at isolcpus cmdline parse time */ 6349 if (cpu_isolated_map == NULL) 6350 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6351 idle_thread_set_boot_cpu(); 6352 #endif 6353 init_sched_fair_class(); 6354 6355 scheduler_running = 1; 6356 } 6357 6358 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6359 static inline int preempt_count_equals(int preempt_offset) 6360 { 6361 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6362 6363 return (nested == preempt_offset); 6364 } 6365 6366 void __might_sleep(const char *file, int line, int preempt_offset) 6367 { 6368 static unsigned long prev_jiffy; /* ratelimiting */ 6369 6370 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6371 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 6372 system_state != SYSTEM_RUNNING || oops_in_progress) 6373 return; 6374 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6375 return; 6376 prev_jiffy = jiffies; 6377 6378 printk(KERN_ERR 6379 "BUG: sleeping function called from invalid context at %s:%d\n", 6380 file, line); 6381 printk(KERN_ERR 6382 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6383 in_atomic(), irqs_disabled(), 6384 current->pid, current->comm); 6385 6386 debug_show_held_locks(current); 6387 if (irqs_disabled()) 6388 print_irqtrace_events(current); 6389 dump_stack(); 6390 } 6391 EXPORT_SYMBOL(__might_sleep); 6392 #endif 6393 6394 #ifdef CONFIG_MAGIC_SYSRQ 6395 static void normalize_task(struct rq *rq, struct task_struct *p) 6396 { 6397 const struct sched_class *prev_class = p->sched_class; 6398 int old_prio = p->prio; 6399 int on_rq; 6400 6401 on_rq = p->on_rq; 6402 if (on_rq) 6403 dequeue_task(rq, p, 0); 6404 __setscheduler(rq, p, SCHED_NORMAL, 0); 6405 if (on_rq) { 6406 enqueue_task(rq, p, 0); 6407 resched_task(rq->curr); 6408 } 6409 6410 check_class_changed(rq, p, prev_class, old_prio); 6411 } 6412 6413 void normalize_rt_tasks(void) 6414 { 6415 struct task_struct *g, *p; 6416 unsigned long flags; 6417 struct rq *rq; 6418 6419 read_lock_irqsave(&tasklist_lock, flags); 6420 do_each_thread(g, p) { 6421 /* 6422 * Only normalize user tasks: 6423 */ 6424 if (!p->mm) 6425 continue; 6426 6427 p->se.exec_start = 0; 6428 #ifdef CONFIG_SCHEDSTATS 6429 p->se.statistics.wait_start = 0; 6430 p->se.statistics.sleep_start = 0; 6431 p->se.statistics.block_start = 0; 6432 #endif 6433 6434 if (!rt_task(p)) { 6435 /* 6436 * Renice negative nice level userspace 6437 * tasks back to 0: 6438 */ 6439 if (TASK_NICE(p) < 0 && p->mm) 6440 set_user_nice(p, 0); 6441 continue; 6442 } 6443 6444 raw_spin_lock(&p->pi_lock); 6445 rq = __task_rq_lock(p); 6446 6447 normalize_task(rq, p); 6448 6449 __task_rq_unlock(rq); 6450 raw_spin_unlock(&p->pi_lock); 6451 } while_each_thread(g, p); 6452 6453 read_unlock_irqrestore(&tasklist_lock, flags); 6454 } 6455 6456 #endif /* CONFIG_MAGIC_SYSRQ */ 6457 6458 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6459 /* 6460 * These functions are only useful for the IA64 MCA handling, or kdb. 6461 * 6462 * They can only be called when the whole system has been 6463 * stopped - every CPU needs to be quiescent, and no scheduling 6464 * activity can take place. Using them for anything else would 6465 * be a serious bug, and as a result, they aren't even visible 6466 * under any other configuration. 6467 */ 6468 6469 /** 6470 * curr_task - return the current task for a given cpu. 6471 * @cpu: the processor in question. 6472 * 6473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6474 * 6475 * Return: The current task for @cpu. 6476 */ 6477 struct task_struct *curr_task(int cpu) 6478 { 6479 return cpu_curr(cpu); 6480 } 6481 6482 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6483 6484 #ifdef CONFIG_IA64 6485 /** 6486 * set_curr_task - set the current task for a given cpu. 6487 * @cpu: the processor in question. 6488 * @p: the task pointer to set. 6489 * 6490 * Description: This function must only be used when non-maskable interrupts 6491 * are serviced on a separate stack. It allows the architecture to switch the 6492 * notion of the current task on a cpu in a non-blocking manner. This function 6493 * must be called with all CPU's synchronized, and interrupts disabled, the 6494 * and caller must save the original value of the current task (see 6495 * curr_task() above) and restore that value before reenabling interrupts and 6496 * re-starting the system. 6497 * 6498 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6499 */ 6500 void set_curr_task(int cpu, struct task_struct *p) 6501 { 6502 cpu_curr(cpu) = p; 6503 } 6504 6505 #endif 6506 6507 #ifdef CONFIG_CGROUP_SCHED 6508 /* task_group_lock serializes the addition/removal of task groups */ 6509 static DEFINE_SPINLOCK(task_group_lock); 6510 6511 static void free_sched_group(struct task_group *tg) 6512 { 6513 free_fair_sched_group(tg); 6514 free_rt_sched_group(tg); 6515 autogroup_free(tg); 6516 kfree(tg); 6517 } 6518 6519 /* allocate runqueue etc for a new task group */ 6520 struct task_group *sched_create_group(struct task_group *parent) 6521 { 6522 struct task_group *tg; 6523 6524 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 6525 if (!tg) 6526 return ERR_PTR(-ENOMEM); 6527 6528 if (!alloc_fair_sched_group(tg, parent)) 6529 goto err; 6530 6531 if (!alloc_rt_sched_group(tg, parent)) 6532 goto err; 6533 6534 return tg; 6535 6536 err: 6537 free_sched_group(tg); 6538 return ERR_PTR(-ENOMEM); 6539 } 6540 6541 void sched_online_group(struct task_group *tg, struct task_group *parent) 6542 { 6543 unsigned long flags; 6544 6545 spin_lock_irqsave(&task_group_lock, flags); 6546 list_add_rcu(&tg->list, &task_groups); 6547 6548 WARN_ON(!parent); /* root should already exist */ 6549 6550 tg->parent = parent; 6551 INIT_LIST_HEAD(&tg->children); 6552 list_add_rcu(&tg->siblings, &parent->children); 6553 spin_unlock_irqrestore(&task_group_lock, flags); 6554 } 6555 6556 /* rcu callback to free various structures associated with a task group */ 6557 static void free_sched_group_rcu(struct rcu_head *rhp) 6558 { 6559 /* now it should be safe to free those cfs_rqs */ 6560 free_sched_group(container_of(rhp, struct task_group, rcu)); 6561 } 6562 6563 /* Destroy runqueue etc associated with a task group */ 6564 void sched_destroy_group(struct task_group *tg) 6565 { 6566 /* wait for possible concurrent references to cfs_rqs complete */ 6567 call_rcu(&tg->rcu, free_sched_group_rcu); 6568 } 6569 6570 void sched_offline_group(struct task_group *tg) 6571 { 6572 unsigned long flags; 6573 int i; 6574 6575 /* end participation in shares distribution */ 6576 for_each_possible_cpu(i) 6577 unregister_fair_sched_group(tg, i); 6578 6579 spin_lock_irqsave(&task_group_lock, flags); 6580 list_del_rcu(&tg->list); 6581 list_del_rcu(&tg->siblings); 6582 spin_unlock_irqrestore(&task_group_lock, flags); 6583 } 6584 6585 /* change task's runqueue when it moves between groups. 6586 * The caller of this function should have put the task in its new group 6587 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 6588 * reflect its new group. 6589 */ 6590 void sched_move_task(struct task_struct *tsk) 6591 { 6592 struct task_group *tg; 6593 int on_rq, running; 6594 unsigned long flags; 6595 struct rq *rq; 6596 6597 rq = task_rq_lock(tsk, &flags); 6598 6599 running = task_current(rq, tsk); 6600 on_rq = tsk->on_rq; 6601 6602 if (on_rq) 6603 dequeue_task(rq, tsk, 0); 6604 if (unlikely(running)) 6605 tsk->sched_class->put_prev_task(rq, tsk); 6606 6607 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id, 6608 lockdep_is_held(&tsk->sighand->siglock)), 6609 struct task_group, css); 6610 tg = autogroup_task_group(tsk, tg); 6611 tsk->sched_task_group = tg; 6612 6613 #ifdef CONFIG_FAIR_GROUP_SCHED 6614 if (tsk->sched_class->task_move_group) 6615 tsk->sched_class->task_move_group(tsk, on_rq); 6616 else 6617 #endif 6618 set_task_rq(tsk, task_cpu(tsk)); 6619 6620 if (unlikely(running)) 6621 tsk->sched_class->set_curr_task(rq); 6622 if (on_rq) 6623 enqueue_task(rq, tsk, 0); 6624 6625 task_rq_unlock(rq, tsk, &flags); 6626 } 6627 #endif /* CONFIG_CGROUP_SCHED */ 6628 6629 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 6630 static unsigned long to_ratio(u64 period, u64 runtime) 6631 { 6632 if (runtime == RUNTIME_INF) 6633 return 1ULL << 20; 6634 6635 return div64_u64(runtime << 20, period); 6636 } 6637 #endif 6638 6639 #ifdef CONFIG_RT_GROUP_SCHED 6640 /* 6641 * Ensure that the real time constraints are schedulable. 6642 */ 6643 static DEFINE_MUTEX(rt_constraints_mutex); 6644 6645 /* Must be called with tasklist_lock held */ 6646 static inline int tg_has_rt_tasks(struct task_group *tg) 6647 { 6648 struct task_struct *g, *p; 6649 6650 do_each_thread(g, p) { 6651 if (rt_task(p) && task_rq(p)->rt.tg == tg) 6652 return 1; 6653 } while_each_thread(g, p); 6654 6655 return 0; 6656 } 6657 6658 struct rt_schedulable_data { 6659 struct task_group *tg; 6660 u64 rt_period; 6661 u64 rt_runtime; 6662 }; 6663 6664 static int tg_rt_schedulable(struct task_group *tg, void *data) 6665 { 6666 struct rt_schedulable_data *d = data; 6667 struct task_group *child; 6668 unsigned long total, sum = 0; 6669 u64 period, runtime; 6670 6671 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6672 runtime = tg->rt_bandwidth.rt_runtime; 6673 6674 if (tg == d->tg) { 6675 period = d->rt_period; 6676 runtime = d->rt_runtime; 6677 } 6678 6679 /* 6680 * Cannot have more runtime than the period. 6681 */ 6682 if (runtime > period && runtime != RUNTIME_INF) 6683 return -EINVAL; 6684 6685 /* 6686 * Ensure we don't starve existing RT tasks. 6687 */ 6688 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 6689 return -EBUSY; 6690 6691 total = to_ratio(period, runtime); 6692 6693 /* 6694 * Nobody can have more than the global setting allows. 6695 */ 6696 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 6697 return -EINVAL; 6698 6699 /* 6700 * The sum of our children's runtime should not exceed our own. 6701 */ 6702 list_for_each_entry_rcu(child, &tg->children, siblings) { 6703 period = ktime_to_ns(child->rt_bandwidth.rt_period); 6704 runtime = child->rt_bandwidth.rt_runtime; 6705 6706 if (child == d->tg) { 6707 period = d->rt_period; 6708 runtime = d->rt_runtime; 6709 } 6710 6711 sum += to_ratio(period, runtime); 6712 } 6713 6714 if (sum > total) 6715 return -EINVAL; 6716 6717 return 0; 6718 } 6719 6720 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 6721 { 6722 int ret; 6723 6724 struct rt_schedulable_data data = { 6725 .tg = tg, 6726 .rt_period = period, 6727 .rt_runtime = runtime, 6728 }; 6729 6730 rcu_read_lock(); 6731 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 6732 rcu_read_unlock(); 6733 6734 return ret; 6735 } 6736 6737 static int tg_set_rt_bandwidth(struct task_group *tg, 6738 u64 rt_period, u64 rt_runtime) 6739 { 6740 int i, err = 0; 6741 6742 mutex_lock(&rt_constraints_mutex); 6743 read_lock(&tasklist_lock); 6744 err = __rt_schedulable(tg, rt_period, rt_runtime); 6745 if (err) 6746 goto unlock; 6747 6748 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6749 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 6750 tg->rt_bandwidth.rt_runtime = rt_runtime; 6751 6752 for_each_possible_cpu(i) { 6753 struct rt_rq *rt_rq = tg->rt_rq[i]; 6754 6755 raw_spin_lock(&rt_rq->rt_runtime_lock); 6756 rt_rq->rt_runtime = rt_runtime; 6757 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6758 } 6759 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6760 unlock: 6761 read_unlock(&tasklist_lock); 6762 mutex_unlock(&rt_constraints_mutex); 6763 6764 return err; 6765 } 6766 6767 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 6768 { 6769 u64 rt_runtime, rt_period; 6770 6771 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6772 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 6773 if (rt_runtime_us < 0) 6774 rt_runtime = RUNTIME_INF; 6775 6776 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6777 } 6778 6779 static long sched_group_rt_runtime(struct task_group *tg) 6780 { 6781 u64 rt_runtime_us; 6782 6783 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 6784 return -1; 6785 6786 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 6787 do_div(rt_runtime_us, NSEC_PER_USEC); 6788 return rt_runtime_us; 6789 } 6790 6791 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 6792 { 6793 u64 rt_runtime, rt_period; 6794 6795 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 6796 rt_runtime = tg->rt_bandwidth.rt_runtime; 6797 6798 if (rt_period == 0) 6799 return -EINVAL; 6800 6801 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6802 } 6803 6804 static long sched_group_rt_period(struct task_group *tg) 6805 { 6806 u64 rt_period_us; 6807 6808 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 6809 do_div(rt_period_us, NSEC_PER_USEC); 6810 return rt_period_us; 6811 } 6812 6813 static int sched_rt_global_constraints(void) 6814 { 6815 u64 runtime, period; 6816 int ret = 0; 6817 6818 if (sysctl_sched_rt_period <= 0) 6819 return -EINVAL; 6820 6821 runtime = global_rt_runtime(); 6822 period = global_rt_period(); 6823 6824 /* 6825 * Sanity check on the sysctl variables. 6826 */ 6827 if (runtime > period && runtime != RUNTIME_INF) 6828 return -EINVAL; 6829 6830 mutex_lock(&rt_constraints_mutex); 6831 read_lock(&tasklist_lock); 6832 ret = __rt_schedulable(NULL, 0, 0); 6833 read_unlock(&tasklist_lock); 6834 mutex_unlock(&rt_constraints_mutex); 6835 6836 return ret; 6837 } 6838 6839 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 6840 { 6841 /* Don't accept realtime tasks when there is no way for them to run */ 6842 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 6843 return 0; 6844 6845 return 1; 6846 } 6847 6848 #else /* !CONFIG_RT_GROUP_SCHED */ 6849 static int sched_rt_global_constraints(void) 6850 { 6851 unsigned long flags; 6852 int i; 6853 6854 if (sysctl_sched_rt_period <= 0) 6855 return -EINVAL; 6856 6857 /* 6858 * There's always some RT tasks in the root group 6859 * -- migration, kstopmachine etc.. 6860 */ 6861 if (sysctl_sched_rt_runtime == 0) 6862 return -EBUSY; 6863 6864 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 6865 for_each_possible_cpu(i) { 6866 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 6867 6868 raw_spin_lock(&rt_rq->rt_runtime_lock); 6869 rt_rq->rt_runtime = global_rt_runtime(); 6870 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6871 } 6872 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 6873 6874 return 0; 6875 } 6876 #endif /* CONFIG_RT_GROUP_SCHED */ 6877 6878 int sched_rr_handler(struct ctl_table *table, int write, 6879 void __user *buffer, size_t *lenp, 6880 loff_t *ppos) 6881 { 6882 int ret; 6883 static DEFINE_MUTEX(mutex); 6884 6885 mutex_lock(&mutex); 6886 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6887 /* make sure that internally we keep jiffies */ 6888 /* also, writing zero resets timeslice to default */ 6889 if (!ret && write) { 6890 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 6891 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 6892 } 6893 mutex_unlock(&mutex); 6894 return ret; 6895 } 6896 6897 int sched_rt_handler(struct ctl_table *table, int write, 6898 void __user *buffer, size_t *lenp, 6899 loff_t *ppos) 6900 { 6901 int ret; 6902 int old_period, old_runtime; 6903 static DEFINE_MUTEX(mutex); 6904 6905 mutex_lock(&mutex); 6906 old_period = sysctl_sched_rt_period; 6907 old_runtime = sysctl_sched_rt_runtime; 6908 6909 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6910 6911 if (!ret && write) { 6912 ret = sched_rt_global_constraints(); 6913 if (ret) { 6914 sysctl_sched_rt_period = old_period; 6915 sysctl_sched_rt_runtime = old_runtime; 6916 } else { 6917 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 6918 def_rt_bandwidth.rt_period = 6919 ns_to_ktime(global_rt_period()); 6920 } 6921 } 6922 mutex_unlock(&mutex); 6923 6924 return ret; 6925 } 6926 6927 #ifdef CONFIG_CGROUP_SCHED 6928 6929 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6930 { 6931 return css ? container_of(css, struct task_group, css) : NULL; 6932 } 6933 6934 static struct cgroup_subsys_state * 6935 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6936 { 6937 struct task_group *parent = css_tg(parent_css); 6938 struct task_group *tg; 6939 6940 if (!parent) { 6941 /* This is early initialization for the top cgroup */ 6942 return &root_task_group.css; 6943 } 6944 6945 tg = sched_create_group(parent); 6946 if (IS_ERR(tg)) 6947 return ERR_PTR(-ENOMEM); 6948 6949 return &tg->css; 6950 } 6951 6952 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6953 { 6954 struct task_group *tg = css_tg(css); 6955 struct task_group *parent = css_tg(css_parent(css)); 6956 6957 if (parent) 6958 sched_online_group(tg, parent); 6959 return 0; 6960 } 6961 6962 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6963 { 6964 struct task_group *tg = css_tg(css); 6965 6966 sched_destroy_group(tg); 6967 } 6968 6969 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 6970 { 6971 struct task_group *tg = css_tg(css); 6972 6973 sched_offline_group(tg); 6974 } 6975 6976 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 6977 struct cgroup_taskset *tset) 6978 { 6979 struct task_struct *task; 6980 6981 cgroup_taskset_for_each(task, css, tset) { 6982 #ifdef CONFIG_RT_GROUP_SCHED 6983 if (!sched_rt_can_attach(css_tg(css), task)) 6984 return -EINVAL; 6985 #else 6986 /* We don't support RT-tasks being in separate groups */ 6987 if (task->sched_class != &fair_sched_class) 6988 return -EINVAL; 6989 #endif 6990 } 6991 return 0; 6992 } 6993 6994 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 6995 struct cgroup_taskset *tset) 6996 { 6997 struct task_struct *task; 6998 6999 cgroup_taskset_for_each(task, css, tset) 7000 sched_move_task(task); 7001 } 7002 7003 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7004 struct cgroup_subsys_state *old_css, 7005 struct task_struct *task) 7006 { 7007 /* 7008 * cgroup_exit() is called in the copy_process() failure path. 7009 * Ignore this case since the task hasn't ran yet, this avoids 7010 * trying to poke a half freed task state from generic code. 7011 */ 7012 if (!(task->flags & PF_EXITING)) 7013 return; 7014 7015 sched_move_task(task); 7016 } 7017 7018 #ifdef CONFIG_FAIR_GROUP_SCHED 7019 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7020 struct cftype *cftype, u64 shareval) 7021 { 7022 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7023 } 7024 7025 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7026 struct cftype *cft) 7027 { 7028 struct task_group *tg = css_tg(css); 7029 7030 return (u64) scale_load_down(tg->shares); 7031 } 7032 7033 #ifdef CONFIG_CFS_BANDWIDTH 7034 static DEFINE_MUTEX(cfs_constraints_mutex); 7035 7036 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7037 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7038 7039 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7040 7041 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7042 { 7043 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7044 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7045 7046 if (tg == &root_task_group) 7047 return -EINVAL; 7048 7049 /* 7050 * Ensure we have at some amount of bandwidth every period. This is 7051 * to prevent reaching a state of large arrears when throttled via 7052 * entity_tick() resulting in prolonged exit starvation. 7053 */ 7054 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7055 return -EINVAL; 7056 7057 /* 7058 * Likewise, bound things on the otherside by preventing insane quota 7059 * periods. This also allows us to normalize in computing quota 7060 * feasibility. 7061 */ 7062 if (period > max_cfs_quota_period) 7063 return -EINVAL; 7064 7065 mutex_lock(&cfs_constraints_mutex); 7066 ret = __cfs_schedulable(tg, period, quota); 7067 if (ret) 7068 goto out_unlock; 7069 7070 runtime_enabled = quota != RUNTIME_INF; 7071 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7072 /* 7073 * If we need to toggle cfs_bandwidth_used, off->on must occur 7074 * before making related changes, and on->off must occur afterwards 7075 */ 7076 if (runtime_enabled && !runtime_was_enabled) 7077 cfs_bandwidth_usage_inc(); 7078 raw_spin_lock_irq(&cfs_b->lock); 7079 cfs_b->period = ns_to_ktime(period); 7080 cfs_b->quota = quota; 7081 7082 __refill_cfs_bandwidth_runtime(cfs_b); 7083 /* restart the period timer (if active) to handle new period expiry */ 7084 if (runtime_enabled && cfs_b->timer_active) { 7085 /* force a reprogram */ 7086 cfs_b->timer_active = 0; 7087 __start_cfs_bandwidth(cfs_b); 7088 } 7089 raw_spin_unlock_irq(&cfs_b->lock); 7090 7091 for_each_possible_cpu(i) { 7092 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7093 struct rq *rq = cfs_rq->rq; 7094 7095 raw_spin_lock_irq(&rq->lock); 7096 cfs_rq->runtime_enabled = runtime_enabled; 7097 cfs_rq->runtime_remaining = 0; 7098 7099 if (cfs_rq->throttled) 7100 unthrottle_cfs_rq(cfs_rq); 7101 raw_spin_unlock_irq(&rq->lock); 7102 } 7103 if (runtime_was_enabled && !runtime_enabled) 7104 cfs_bandwidth_usage_dec(); 7105 out_unlock: 7106 mutex_unlock(&cfs_constraints_mutex); 7107 7108 return ret; 7109 } 7110 7111 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7112 { 7113 u64 quota, period; 7114 7115 period = ktime_to_ns(tg->cfs_bandwidth.period); 7116 if (cfs_quota_us < 0) 7117 quota = RUNTIME_INF; 7118 else 7119 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7120 7121 return tg_set_cfs_bandwidth(tg, period, quota); 7122 } 7123 7124 long tg_get_cfs_quota(struct task_group *tg) 7125 { 7126 u64 quota_us; 7127 7128 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7129 return -1; 7130 7131 quota_us = tg->cfs_bandwidth.quota; 7132 do_div(quota_us, NSEC_PER_USEC); 7133 7134 return quota_us; 7135 } 7136 7137 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7138 { 7139 u64 quota, period; 7140 7141 period = (u64)cfs_period_us * NSEC_PER_USEC; 7142 quota = tg->cfs_bandwidth.quota; 7143 7144 return tg_set_cfs_bandwidth(tg, period, quota); 7145 } 7146 7147 long tg_get_cfs_period(struct task_group *tg) 7148 { 7149 u64 cfs_period_us; 7150 7151 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7152 do_div(cfs_period_us, NSEC_PER_USEC); 7153 7154 return cfs_period_us; 7155 } 7156 7157 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7158 struct cftype *cft) 7159 { 7160 return tg_get_cfs_quota(css_tg(css)); 7161 } 7162 7163 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7164 struct cftype *cftype, s64 cfs_quota_us) 7165 { 7166 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7167 } 7168 7169 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7170 struct cftype *cft) 7171 { 7172 return tg_get_cfs_period(css_tg(css)); 7173 } 7174 7175 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7176 struct cftype *cftype, u64 cfs_period_us) 7177 { 7178 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7179 } 7180 7181 struct cfs_schedulable_data { 7182 struct task_group *tg; 7183 u64 period, quota; 7184 }; 7185 7186 /* 7187 * normalize group quota/period to be quota/max_period 7188 * note: units are usecs 7189 */ 7190 static u64 normalize_cfs_quota(struct task_group *tg, 7191 struct cfs_schedulable_data *d) 7192 { 7193 u64 quota, period; 7194 7195 if (tg == d->tg) { 7196 period = d->period; 7197 quota = d->quota; 7198 } else { 7199 period = tg_get_cfs_period(tg); 7200 quota = tg_get_cfs_quota(tg); 7201 } 7202 7203 /* note: these should typically be equivalent */ 7204 if (quota == RUNTIME_INF || quota == -1) 7205 return RUNTIME_INF; 7206 7207 return to_ratio(period, quota); 7208 } 7209 7210 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7211 { 7212 struct cfs_schedulable_data *d = data; 7213 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7214 s64 quota = 0, parent_quota = -1; 7215 7216 if (!tg->parent) { 7217 quota = RUNTIME_INF; 7218 } else { 7219 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7220 7221 quota = normalize_cfs_quota(tg, d); 7222 parent_quota = parent_b->hierarchal_quota; 7223 7224 /* 7225 * ensure max(child_quota) <= parent_quota, inherit when no 7226 * limit is set 7227 */ 7228 if (quota == RUNTIME_INF) 7229 quota = parent_quota; 7230 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7231 return -EINVAL; 7232 } 7233 cfs_b->hierarchal_quota = quota; 7234 7235 return 0; 7236 } 7237 7238 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7239 { 7240 int ret; 7241 struct cfs_schedulable_data data = { 7242 .tg = tg, 7243 .period = period, 7244 .quota = quota, 7245 }; 7246 7247 if (quota != RUNTIME_INF) { 7248 do_div(data.period, NSEC_PER_USEC); 7249 do_div(data.quota, NSEC_PER_USEC); 7250 } 7251 7252 rcu_read_lock(); 7253 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7254 rcu_read_unlock(); 7255 7256 return ret; 7257 } 7258 7259 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft, 7260 struct cgroup_map_cb *cb) 7261 { 7262 struct task_group *tg = css_tg(css); 7263 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7264 7265 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7266 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7267 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7268 7269 return 0; 7270 } 7271 #endif /* CONFIG_CFS_BANDWIDTH */ 7272 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7273 7274 #ifdef CONFIG_RT_GROUP_SCHED 7275 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7276 struct cftype *cft, s64 val) 7277 { 7278 return sched_group_set_rt_runtime(css_tg(css), val); 7279 } 7280 7281 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7282 struct cftype *cft) 7283 { 7284 return sched_group_rt_runtime(css_tg(css)); 7285 } 7286 7287 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7288 struct cftype *cftype, u64 rt_period_us) 7289 { 7290 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7291 } 7292 7293 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7294 struct cftype *cft) 7295 { 7296 return sched_group_rt_period(css_tg(css)); 7297 } 7298 #endif /* CONFIG_RT_GROUP_SCHED */ 7299 7300 static struct cftype cpu_files[] = { 7301 #ifdef CONFIG_FAIR_GROUP_SCHED 7302 { 7303 .name = "shares", 7304 .read_u64 = cpu_shares_read_u64, 7305 .write_u64 = cpu_shares_write_u64, 7306 }, 7307 #endif 7308 #ifdef CONFIG_CFS_BANDWIDTH 7309 { 7310 .name = "cfs_quota_us", 7311 .read_s64 = cpu_cfs_quota_read_s64, 7312 .write_s64 = cpu_cfs_quota_write_s64, 7313 }, 7314 { 7315 .name = "cfs_period_us", 7316 .read_u64 = cpu_cfs_period_read_u64, 7317 .write_u64 = cpu_cfs_period_write_u64, 7318 }, 7319 { 7320 .name = "stat", 7321 .read_map = cpu_stats_show, 7322 }, 7323 #endif 7324 #ifdef CONFIG_RT_GROUP_SCHED 7325 { 7326 .name = "rt_runtime_us", 7327 .read_s64 = cpu_rt_runtime_read, 7328 .write_s64 = cpu_rt_runtime_write, 7329 }, 7330 { 7331 .name = "rt_period_us", 7332 .read_u64 = cpu_rt_period_read_uint, 7333 .write_u64 = cpu_rt_period_write_uint, 7334 }, 7335 #endif 7336 { } /* terminate */ 7337 }; 7338 7339 struct cgroup_subsys cpu_cgroup_subsys = { 7340 .name = "cpu", 7341 .css_alloc = cpu_cgroup_css_alloc, 7342 .css_free = cpu_cgroup_css_free, 7343 .css_online = cpu_cgroup_css_online, 7344 .css_offline = cpu_cgroup_css_offline, 7345 .can_attach = cpu_cgroup_can_attach, 7346 .attach = cpu_cgroup_attach, 7347 .exit = cpu_cgroup_exit, 7348 .subsys_id = cpu_cgroup_subsys_id, 7349 .base_cftypes = cpu_files, 7350 .early_init = 1, 7351 }; 7352 7353 #endif /* CONFIG_CGROUP_SCHED */ 7354 7355 void dump_cpu_task(int cpu) 7356 { 7357 pr_info("Task dump for CPU %d:\n", cpu); 7358 sched_show_task(cpu_curr(cpu)); 7359 } 7360