1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/wait_bit.h> 14 #include <linux/cpuset.h> 15 #include <linux/delayacct.h> 16 #include <linux/init_task.h> 17 #include <linux/context_tracking.h> 18 #include <linux/rcupdate_wait.h> 19 20 #include <linux/blkdev.h> 21 #include <linux/kprobes.h> 22 #include <linux/mmu_context.h> 23 #include <linux/module.h> 24 #include <linux/nmi.h> 25 #include <linux/prefetch.h> 26 #include <linux/profile.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/switch_to.h> 31 #include <asm/tlb.h> 32 #ifdef CONFIG_PARAVIRT 33 #include <asm/paravirt.h> 34 #endif 35 36 #include "sched.h" 37 #include "../workqueue_internal.h" 38 #include "../smpboot.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/sched.h> 42 43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 44 45 /* 46 * Debugging: various feature bits 47 */ 48 49 #define SCHED_FEAT(name, enabled) \ 50 (1UL << __SCHED_FEAT_##name) * enabled | 51 52 const_debug unsigned int sysctl_sched_features = 53 #include "features.h" 54 0; 55 56 #undef SCHED_FEAT 57 58 /* 59 * Number of tasks to iterate in a single balance run. 60 * Limited because this is done with IRQs disabled. 61 */ 62 const_debug unsigned int sysctl_sched_nr_migrate = 32; 63 64 /* 65 * period over which we average the RT time consumption, measured 66 * in ms. 67 * 68 * default: 1s 69 */ 70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 71 72 /* 73 * period over which we measure -rt task CPU usage in us. 74 * default: 1s 75 */ 76 unsigned int sysctl_sched_rt_period = 1000000; 77 78 __read_mostly int scheduler_running; 79 80 /* 81 * part of the period that we allow rt tasks to run in us. 82 * default: 0.95s 83 */ 84 int sysctl_sched_rt_runtime = 950000; 85 86 /* CPUs with isolated domains */ 87 cpumask_var_t cpu_isolated_map; 88 89 /* 90 * __task_rq_lock - lock the rq @p resides on. 91 */ 92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 93 __acquires(rq->lock) 94 { 95 struct rq *rq; 96 97 lockdep_assert_held(&p->pi_lock); 98 99 for (;;) { 100 rq = task_rq(p); 101 raw_spin_lock(&rq->lock); 102 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 103 rq_pin_lock(rq, rf); 104 return rq; 105 } 106 raw_spin_unlock(&rq->lock); 107 108 while (unlikely(task_on_rq_migrating(p))) 109 cpu_relax(); 110 } 111 } 112 113 /* 114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 115 */ 116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 117 __acquires(p->pi_lock) 118 __acquires(rq->lock) 119 { 120 struct rq *rq; 121 122 for (;;) { 123 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 124 rq = task_rq(p); 125 raw_spin_lock(&rq->lock); 126 /* 127 * move_queued_task() task_rq_lock() 128 * 129 * ACQUIRE (rq->lock) 130 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 132 * [S] ->cpu = new_cpu [L] task_rq() 133 * [L] ->on_rq 134 * RELEASE (rq->lock) 135 * 136 * If we observe the old cpu in task_rq_lock, the acquire of 137 * the old rq->lock will fully serialize against the stores. 138 * 139 * If we observe the new CPU in task_rq_lock, the acquire will 140 * pair with the WMB to ensure we must then also see migrating. 141 */ 142 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 143 rq_pin_lock(rq, rf); 144 return rq; 145 } 146 raw_spin_unlock(&rq->lock); 147 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 148 149 while (unlikely(task_on_rq_migrating(p))) 150 cpu_relax(); 151 } 152 } 153 154 /* 155 * RQ-clock updating methods: 156 */ 157 158 static void update_rq_clock_task(struct rq *rq, s64 delta) 159 { 160 /* 161 * In theory, the compile should just see 0 here, and optimize out the call 162 * to sched_rt_avg_update. But I don't trust it... 163 */ 164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 165 s64 steal = 0, irq_delta = 0; 166 #endif 167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 168 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 169 170 /* 171 * Since irq_time is only updated on {soft,}irq_exit, we might run into 172 * this case when a previous update_rq_clock() happened inside a 173 * {soft,}irq region. 174 * 175 * When this happens, we stop ->clock_task and only update the 176 * prev_irq_time stamp to account for the part that fit, so that a next 177 * update will consume the rest. This ensures ->clock_task is 178 * monotonic. 179 * 180 * It does however cause some slight miss-attribution of {soft,}irq 181 * time, a more accurate solution would be to update the irq_time using 182 * the current rq->clock timestamp, except that would require using 183 * atomic ops. 184 */ 185 if (irq_delta > delta) 186 irq_delta = delta; 187 188 rq->prev_irq_time += irq_delta; 189 delta -= irq_delta; 190 #endif 191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 192 if (static_key_false((¶virt_steal_rq_enabled))) { 193 steal = paravirt_steal_clock(cpu_of(rq)); 194 steal -= rq->prev_steal_time_rq; 195 196 if (unlikely(steal > delta)) 197 steal = delta; 198 199 rq->prev_steal_time_rq += steal; 200 delta -= steal; 201 } 202 #endif 203 204 rq->clock_task += delta; 205 206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 207 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 208 sched_rt_avg_update(rq, irq_delta + steal); 209 #endif 210 } 211 212 void update_rq_clock(struct rq *rq) 213 { 214 s64 delta; 215 216 lockdep_assert_held(&rq->lock); 217 218 if (rq->clock_update_flags & RQCF_ACT_SKIP) 219 return; 220 221 #ifdef CONFIG_SCHED_DEBUG 222 if (sched_feat(WARN_DOUBLE_CLOCK)) 223 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 224 rq->clock_update_flags |= RQCF_UPDATED; 225 #endif 226 227 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 228 if (delta < 0) 229 return; 230 rq->clock += delta; 231 update_rq_clock_task(rq, delta); 232 } 233 234 235 #ifdef CONFIG_SCHED_HRTICK 236 /* 237 * Use HR-timers to deliver accurate preemption points. 238 */ 239 240 static void hrtick_clear(struct rq *rq) 241 { 242 if (hrtimer_active(&rq->hrtick_timer)) 243 hrtimer_cancel(&rq->hrtick_timer); 244 } 245 246 /* 247 * High-resolution timer tick. 248 * Runs from hardirq context with interrupts disabled. 249 */ 250 static enum hrtimer_restart hrtick(struct hrtimer *timer) 251 { 252 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 253 struct rq_flags rf; 254 255 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 256 257 rq_lock(rq, &rf); 258 update_rq_clock(rq); 259 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 260 rq_unlock(rq, &rf); 261 262 return HRTIMER_NORESTART; 263 } 264 265 #ifdef CONFIG_SMP 266 267 static void __hrtick_restart(struct rq *rq) 268 { 269 struct hrtimer *timer = &rq->hrtick_timer; 270 271 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 272 } 273 274 /* 275 * called from hardirq (IPI) context 276 */ 277 static void __hrtick_start(void *arg) 278 { 279 struct rq *rq = arg; 280 struct rq_flags rf; 281 282 rq_lock(rq, &rf); 283 __hrtick_restart(rq); 284 rq->hrtick_csd_pending = 0; 285 rq_unlock(rq, &rf); 286 } 287 288 /* 289 * Called to set the hrtick timer state. 290 * 291 * called with rq->lock held and irqs disabled 292 */ 293 void hrtick_start(struct rq *rq, u64 delay) 294 { 295 struct hrtimer *timer = &rq->hrtick_timer; 296 ktime_t time; 297 s64 delta; 298 299 /* 300 * Don't schedule slices shorter than 10000ns, that just 301 * doesn't make sense and can cause timer DoS. 302 */ 303 delta = max_t(s64, delay, 10000LL); 304 time = ktime_add_ns(timer->base->get_time(), delta); 305 306 hrtimer_set_expires(timer, time); 307 308 if (rq == this_rq()) { 309 __hrtick_restart(rq); 310 } else if (!rq->hrtick_csd_pending) { 311 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 312 rq->hrtick_csd_pending = 1; 313 } 314 } 315 316 #else 317 /* 318 * Called to set the hrtick timer state. 319 * 320 * called with rq->lock held and irqs disabled 321 */ 322 void hrtick_start(struct rq *rq, u64 delay) 323 { 324 /* 325 * Don't schedule slices shorter than 10000ns, that just 326 * doesn't make sense. Rely on vruntime for fairness. 327 */ 328 delay = max_t(u64, delay, 10000LL); 329 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 330 HRTIMER_MODE_REL_PINNED); 331 } 332 #endif /* CONFIG_SMP */ 333 334 static void init_rq_hrtick(struct rq *rq) 335 { 336 #ifdef CONFIG_SMP 337 rq->hrtick_csd_pending = 0; 338 339 rq->hrtick_csd.flags = 0; 340 rq->hrtick_csd.func = __hrtick_start; 341 rq->hrtick_csd.info = rq; 342 #endif 343 344 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 345 rq->hrtick_timer.function = hrtick; 346 } 347 #else /* CONFIG_SCHED_HRTICK */ 348 static inline void hrtick_clear(struct rq *rq) 349 { 350 } 351 352 static inline void init_rq_hrtick(struct rq *rq) 353 { 354 } 355 #endif /* CONFIG_SCHED_HRTICK */ 356 357 /* 358 * cmpxchg based fetch_or, macro so it works for different integer types 359 */ 360 #define fetch_or(ptr, mask) \ 361 ({ \ 362 typeof(ptr) _ptr = (ptr); \ 363 typeof(mask) _mask = (mask); \ 364 typeof(*_ptr) _old, _val = *_ptr; \ 365 \ 366 for (;;) { \ 367 _old = cmpxchg(_ptr, _val, _val | _mask); \ 368 if (_old == _val) \ 369 break; \ 370 _val = _old; \ 371 } \ 372 _old; \ 373 }) 374 375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 376 /* 377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 378 * this avoids any races wrt polling state changes and thereby avoids 379 * spurious IPIs. 380 */ 381 static bool set_nr_and_not_polling(struct task_struct *p) 382 { 383 struct thread_info *ti = task_thread_info(p); 384 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 385 } 386 387 /* 388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 389 * 390 * If this returns true, then the idle task promises to call 391 * sched_ttwu_pending() and reschedule soon. 392 */ 393 static bool set_nr_if_polling(struct task_struct *p) 394 { 395 struct thread_info *ti = task_thread_info(p); 396 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 397 398 for (;;) { 399 if (!(val & _TIF_POLLING_NRFLAG)) 400 return false; 401 if (val & _TIF_NEED_RESCHED) 402 return true; 403 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 404 if (old == val) 405 break; 406 val = old; 407 } 408 return true; 409 } 410 411 #else 412 static bool set_nr_and_not_polling(struct task_struct *p) 413 { 414 set_tsk_need_resched(p); 415 return true; 416 } 417 418 #ifdef CONFIG_SMP 419 static bool set_nr_if_polling(struct task_struct *p) 420 { 421 return false; 422 } 423 #endif 424 #endif 425 426 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 427 { 428 struct wake_q_node *node = &task->wake_q; 429 430 /* 431 * Atomically grab the task, if ->wake_q is !nil already it means 432 * its already queued (either by us or someone else) and will get the 433 * wakeup due to that. 434 * 435 * This cmpxchg() implies a full barrier, which pairs with the write 436 * barrier implied by the wakeup in wake_up_q(). 437 */ 438 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 439 return; 440 441 get_task_struct(task); 442 443 /* 444 * The head is context local, there can be no concurrency. 445 */ 446 *head->lastp = node; 447 head->lastp = &node->next; 448 } 449 450 void wake_up_q(struct wake_q_head *head) 451 { 452 struct wake_q_node *node = head->first; 453 454 while (node != WAKE_Q_TAIL) { 455 struct task_struct *task; 456 457 task = container_of(node, struct task_struct, wake_q); 458 BUG_ON(!task); 459 /* Task can safely be re-inserted now: */ 460 node = node->next; 461 task->wake_q.next = NULL; 462 463 /* 464 * wake_up_process() implies a wmb() to pair with the queueing 465 * in wake_q_add() so as not to miss wakeups. 466 */ 467 wake_up_process(task); 468 put_task_struct(task); 469 } 470 } 471 472 /* 473 * resched_curr - mark rq's current task 'to be rescheduled now'. 474 * 475 * On UP this means the setting of the need_resched flag, on SMP it 476 * might also involve a cross-CPU call to trigger the scheduler on 477 * the target CPU. 478 */ 479 void resched_curr(struct rq *rq) 480 { 481 struct task_struct *curr = rq->curr; 482 int cpu; 483 484 lockdep_assert_held(&rq->lock); 485 486 if (test_tsk_need_resched(curr)) 487 return; 488 489 cpu = cpu_of(rq); 490 491 if (cpu == smp_processor_id()) { 492 set_tsk_need_resched(curr); 493 set_preempt_need_resched(); 494 return; 495 } 496 497 if (set_nr_and_not_polling(curr)) 498 smp_send_reschedule(cpu); 499 else 500 trace_sched_wake_idle_without_ipi(cpu); 501 } 502 503 void resched_cpu(int cpu) 504 { 505 struct rq *rq = cpu_rq(cpu); 506 unsigned long flags; 507 508 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 509 return; 510 resched_curr(rq); 511 raw_spin_unlock_irqrestore(&rq->lock, flags); 512 } 513 514 #ifdef CONFIG_SMP 515 #ifdef CONFIG_NO_HZ_COMMON 516 /* 517 * In the semi idle case, use the nearest busy CPU for migrating timers 518 * from an idle CPU. This is good for power-savings. 519 * 520 * We don't do similar optimization for completely idle system, as 521 * selecting an idle CPU will add more delays to the timers than intended 522 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 523 */ 524 int get_nohz_timer_target(void) 525 { 526 int i, cpu = smp_processor_id(); 527 struct sched_domain *sd; 528 529 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 530 return cpu; 531 532 rcu_read_lock(); 533 for_each_domain(cpu, sd) { 534 for_each_cpu(i, sched_domain_span(sd)) { 535 if (cpu == i) 536 continue; 537 538 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 539 cpu = i; 540 goto unlock; 541 } 542 } 543 } 544 545 if (!is_housekeeping_cpu(cpu)) 546 cpu = housekeeping_any_cpu(); 547 unlock: 548 rcu_read_unlock(); 549 return cpu; 550 } 551 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (cpu_is_offline(cpu)) 584 return true; /* Don't try to wake offline CPUs. */ 585 if (tick_nohz_full_cpu(cpu)) { 586 if (cpu != smp_processor_id() || 587 tick_nohz_tick_stopped()) 588 tick_nohz_full_kick_cpu(cpu); 589 return true; 590 } 591 592 return false; 593 } 594 595 /* 596 * Wake up the specified CPU. If the CPU is going offline, it is the 597 * caller's responsibility to deal with the lost wakeup, for example, 598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 599 */ 600 void wake_up_nohz_cpu(int cpu) 601 { 602 if (!wake_up_full_nohz_cpu(cpu)) 603 wake_up_idle_cpu(cpu); 604 } 605 606 static inline bool got_nohz_idle_kick(void) 607 { 608 int cpu = smp_processor_id(); 609 610 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 611 return false; 612 613 if (idle_cpu(cpu) && !need_resched()) 614 return true; 615 616 /* 617 * We can't run Idle Load Balance on this CPU for this time so we 618 * cancel it and clear NOHZ_BALANCE_KICK 619 */ 620 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 621 return false; 622 } 623 624 #else /* CONFIG_NO_HZ_COMMON */ 625 626 static inline bool got_nohz_idle_kick(void) 627 { 628 return false; 629 } 630 631 #endif /* CONFIG_NO_HZ_COMMON */ 632 633 #ifdef CONFIG_NO_HZ_FULL 634 bool sched_can_stop_tick(struct rq *rq) 635 { 636 int fifo_nr_running; 637 638 /* Deadline tasks, even if single, need the tick */ 639 if (rq->dl.dl_nr_running) 640 return false; 641 642 /* 643 * If there are more than one RR tasks, we need the tick to effect the 644 * actual RR behaviour. 645 */ 646 if (rq->rt.rr_nr_running) { 647 if (rq->rt.rr_nr_running == 1) 648 return true; 649 else 650 return false; 651 } 652 653 /* 654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 655 * forced preemption between FIFO tasks. 656 */ 657 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 658 if (fifo_nr_running) 659 return true; 660 661 /* 662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 663 * if there's more than one we need the tick for involuntary 664 * preemption. 665 */ 666 if (rq->nr_running > 1) 667 return false; 668 669 return true; 670 } 671 #endif /* CONFIG_NO_HZ_FULL */ 672 673 void sched_avg_update(struct rq *rq) 674 { 675 s64 period = sched_avg_period(); 676 677 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 678 /* 679 * Inline assembly required to prevent the compiler 680 * optimising this loop into a divmod call. 681 * See __iter_div_u64_rem() for another example of this. 682 */ 683 asm("" : "+rm" (rq->age_stamp)); 684 rq->age_stamp += period; 685 rq->rt_avg /= 2; 686 } 687 } 688 689 #endif /* CONFIG_SMP */ 690 691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 693 /* 694 * Iterate task_group tree rooted at *from, calling @down when first entering a 695 * node and @up when leaving it for the final time. 696 * 697 * Caller must hold rcu_lock or sufficient equivalent. 698 */ 699 int walk_tg_tree_from(struct task_group *from, 700 tg_visitor down, tg_visitor up, void *data) 701 { 702 struct task_group *parent, *child; 703 int ret; 704 705 parent = from; 706 707 down: 708 ret = (*down)(parent, data); 709 if (ret) 710 goto out; 711 list_for_each_entry_rcu(child, &parent->children, siblings) { 712 parent = child; 713 goto down; 714 715 up: 716 continue; 717 } 718 ret = (*up)(parent, data); 719 if (ret || parent == from) 720 goto out; 721 722 child = parent; 723 parent = parent->parent; 724 if (parent) 725 goto up; 726 out: 727 return ret; 728 } 729 730 int tg_nop(struct task_group *tg, void *data) 731 { 732 return 0; 733 } 734 #endif 735 736 static void set_load_weight(struct task_struct *p) 737 { 738 int prio = p->static_prio - MAX_RT_PRIO; 739 struct load_weight *load = &p->se.load; 740 741 /* 742 * SCHED_IDLE tasks get minimal weight: 743 */ 744 if (idle_policy(p->policy)) { 745 load->weight = scale_load(WEIGHT_IDLEPRIO); 746 load->inv_weight = WMULT_IDLEPRIO; 747 return; 748 } 749 750 load->weight = scale_load(sched_prio_to_weight[prio]); 751 load->inv_weight = sched_prio_to_wmult[prio]; 752 } 753 754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 755 { 756 if (!(flags & ENQUEUE_NOCLOCK)) 757 update_rq_clock(rq); 758 759 if (!(flags & ENQUEUE_RESTORE)) 760 sched_info_queued(rq, p); 761 762 p->sched_class->enqueue_task(rq, p, flags); 763 } 764 765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 766 { 767 if (!(flags & DEQUEUE_NOCLOCK)) 768 update_rq_clock(rq); 769 770 if (!(flags & DEQUEUE_SAVE)) 771 sched_info_dequeued(rq, p); 772 773 p->sched_class->dequeue_task(rq, p, flags); 774 } 775 776 void activate_task(struct rq *rq, struct task_struct *p, int flags) 777 { 778 if (task_contributes_to_load(p)) 779 rq->nr_uninterruptible--; 780 781 enqueue_task(rq, p, flags); 782 } 783 784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 785 { 786 if (task_contributes_to_load(p)) 787 rq->nr_uninterruptible++; 788 789 dequeue_task(rq, p, flags); 790 } 791 792 /* 793 * __normal_prio - return the priority that is based on the static prio 794 */ 795 static inline int __normal_prio(struct task_struct *p) 796 { 797 return p->static_prio; 798 } 799 800 /* 801 * Calculate the expected normal priority: i.e. priority 802 * without taking RT-inheritance into account. Might be 803 * boosted by interactivity modifiers. Changes upon fork, 804 * setprio syscalls, and whenever the interactivity 805 * estimator recalculates. 806 */ 807 static inline int normal_prio(struct task_struct *p) 808 { 809 int prio; 810 811 if (task_has_dl_policy(p)) 812 prio = MAX_DL_PRIO-1; 813 else if (task_has_rt_policy(p)) 814 prio = MAX_RT_PRIO-1 - p->rt_priority; 815 else 816 prio = __normal_prio(p); 817 return prio; 818 } 819 820 /* 821 * Calculate the current priority, i.e. the priority 822 * taken into account by the scheduler. This value might 823 * be boosted by RT tasks, or might be boosted by 824 * interactivity modifiers. Will be RT if the task got 825 * RT-boosted. If not then it returns p->normal_prio. 826 */ 827 static int effective_prio(struct task_struct *p) 828 { 829 p->normal_prio = normal_prio(p); 830 /* 831 * If we are RT tasks or we were boosted to RT priority, 832 * keep the priority unchanged. Otherwise, update priority 833 * to the normal priority: 834 */ 835 if (!rt_prio(p->prio)) 836 return p->normal_prio; 837 return p->prio; 838 } 839 840 /** 841 * task_curr - is this task currently executing on a CPU? 842 * @p: the task in question. 843 * 844 * Return: 1 if the task is currently executing. 0 otherwise. 845 */ 846 inline int task_curr(const struct task_struct *p) 847 { 848 return cpu_curr(task_cpu(p)) == p; 849 } 850 851 /* 852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 853 * use the balance_callback list if you want balancing. 854 * 855 * this means any call to check_class_changed() must be followed by a call to 856 * balance_callback(). 857 */ 858 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 859 const struct sched_class *prev_class, 860 int oldprio) 861 { 862 if (prev_class != p->sched_class) { 863 if (prev_class->switched_from) 864 prev_class->switched_from(rq, p); 865 866 p->sched_class->switched_to(rq, p); 867 } else if (oldprio != p->prio || dl_task(p)) 868 p->sched_class->prio_changed(rq, p, oldprio); 869 } 870 871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 872 { 873 const struct sched_class *class; 874 875 if (p->sched_class == rq->curr->sched_class) { 876 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 877 } else { 878 for_each_class(class) { 879 if (class == rq->curr->sched_class) 880 break; 881 if (class == p->sched_class) { 882 resched_curr(rq); 883 break; 884 } 885 } 886 } 887 888 /* 889 * A queue event has occurred, and we're going to schedule. In 890 * this case, we can save a useless back to back clock update. 891 */ 892 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 893 rq_clock_skip_update(rq, true); 894 } 895 896 #ifdef CONFIG_SMP 897 /* 898 * This is how migration works: 899 * 900 * 1) we invoke migration_cpu_stop() on the target CPU using 901 * stop_one_cpu(). 902 * 2) stopper starts to run (implicitly forcing the migrated thread 903 * off the CPU) 904 * 3) it checks whether the migrated task is still in the wrong runqueue. 905 * 4) if it's in the wrong runqueue then the migration thread removes 906 * it and puts it into the right queue. 907 * 5) stopper completes and stop_one_cpu() returns and the migration 908 * is done. 909 */ 910 911 /* 912 * move_queued_task - move a queued task to new rq. 913 * 914 * Returns (locked) new rq. Old rq's lock is released. 915 */ 916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 917 struct task_struct *p, int new_cpu) 918 { 919 lockdep_assert_held(&rq->lock); 920 921 p->on_rq = TASK_ON_RQ_MIGRATING; 922 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 923 set_task_cpu(p, new_cpu); 924 rq_unlock(rq, rf); 925 926 rq = cpu_rq(new_cpu); 927 928 rq_lock(rq, rf); 929 BUG_ON(task_cpu(p) != new_cpu); 930 enqueue_task(rq, p, 0); 931 p->on_rq = TASK_ON_RQ_QUEUED; 932 check_preempt_curr(rq, p, 0); 933 934 return rq; 935 } 936 937 struct migration_arg { 938 struct task_struct *task; 939 int dest_cpu; 940 }; 941 942 /* 943 * Move (not current) task off this CPU, onto the destination CPU. We're doing 944 * this because either it can't run here any more (set_cpus_allowed() 945 * away from this CPU, or CPU going down), or because we're 946 * attempting to rebalance this task on exec (sched_exec). 947 * 948 * So we race with normal scheduler movements, but that's OK, as long 949 * as the task is no longer on this CPU. 950 */ 951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 952 struct task_struct *p, int dest_cpu) 953 { 954 if (p->flags & PF_KTHREAD) { 955 if (unlikely(!cpu_online(dest_cpu))) 956 return rq; 957 } else { 958 if (unlikely(!cpu_active(dest_cpu))) 959 return rq; 960 } 961 962 /* Affinity changed (again). */ 963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 964 return rq; 965 966 update_rq_clock(rq); 967 rq = move_queued_task(rq, rf, p, dest_cpu); 968 969 return rq; 970 } 971 972 /* 973 * migration_cpu_stop - this will be executed by a highprio stopper thread 974 * and performs thread migration by bumping thread off CPU then 975 * 'pushing' onto another runqueue. 976 */ 977 static int migration_cpu_stop(void *data) 978 { 979 struct migration_arg *arg = data; 980 struct task_struct *p = arg->task; 981 struct rq *rq = this_rq(); 982 struct rq_flags rf; 983 984 /* 985 * The original target CPU might have gone down and we might 986 * be on another CPU but it doesn't matter. 987 */ 988 local_irq_disable(); 989 /* 990 * We need to explicitly wake pending tasks before running 991 * __migrate_task() such that we will not miss enforcing cpus_allowed 992 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 993 */ 994 sched_ttwu_pending(); 995 996 raw_spin_lock(&p->pi_lock); 997 rq_lock(rq, &rf); 998 /* 999 * If task_rq(p) != rq, it cannot be migrated here, because we're 1000 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1001 * we're holding p->pi_lock. 1002 */ 1003 if (task_rq(p) == rq) { 1004 if (task_on_rq_queued(p)) 1005 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1006 else 1007 p->wake_cpu = arg->dest_cpu; 1008 } 1009 rq_unlock(rq, &rf); 1010 raw_spin_unlock(&p->pi_lock); 1011 1012 local_irq_enable(); 1013 return 0; 1014 } 1015 1016 /* 1017 * sched_class::set_cpus_allowed must do the below, but is not required to 1018 * actually call this function. 1019 */ 1020 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1021 { 1022 cpumask_copy(&p->cpus_allowed, new_mask); 1023 p->nr_cpus_allowed = cpumask_weight(new_mask); 1024 } 1025 1026 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1027 { 1028 struct rq *rq = task_rq(p); 1029 bool queued, running; 1030 1031 lockdep_assert_held(&p->pi_lock); 1032 1033 queued = task_on_rq_queued(p); 1034 running = task_current(rq, p); 1035 1036 if (queued) { 1037 /* 1038 * Because __kthread_bind() calls this on blocked tasks without 1039 * holding rq->lock. 1040 */ 1041 lockdep_assert_held(&rq->lock); 1042 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1043 } 1044 if (running) 1045 put_prev_task(rq, p); 1046 1047 p->sched_class->set_cpus_allowed(p, new_mask); 1048 1049 if (queued) 1050 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1051 if (running) 1052 set_curr_task(rq, p); 1053 } 1054 1055 /* 1056 * Change a given task's CPU affinity. Migrate the thread to a 1057 * proper CPU and schedule it away if the CPU it's executing on 1058 * is removed from the allowed bitmask. 1059 * 1060 * NOTE: the caller must have a valid reference to the task, the 1061 * task must not exit() & deallocate itself prematurely. The 1062 * call is not atomic; no spinlocks may be held. 1063 */ 1064 static int __set_cpus_allowed_ptr(struct task_struct *p, 1065 const struct cpumask *new_mask, bool check) 1066 { 1067 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1068 unsigned int dest_cpu; 1069 struct rq_flags rf; 1070 struct rq *rq; 1071 int ret = 0; 1072 1073 rq = task_rq_lock(p, &rf); 1074 update_rq_clock(rq); 1075 1076 if (p->flags & PF_KTHREAD) { 1077 /* 1078 * Kernel threads are allowed on online && !active CPUs 1079 */ 1080 cpu_valid_mask = cpu_online_mask; 1081 } 1082 1083 /* 1084 * Must re-check here, to close a race against __kthread_bind(), 1085 * sched_setaffinity() is not guaranteed to observe the flag. 1086 */ 1087 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1088 ret = -EINVAL; 1089 goto out; 1090 } 1091 1092 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1093 goto out; 1094 1095 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1096 ret = -EINVAL; 1097 goto out; 1098 } 1099 1100 do_set_cpus_allowed(p, new_mask); 1101 1102 if (p->flags & PF_KTHREAD) { 1103 /* 1104 * For kernel threads that do indeed end up on online && 1105 * !active we want to ensure they are strict per-CPU threads. 1106 */ 1107 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1108 !cpumask_intersects(new_mask, cpu_active_mask) && 1109 p->nr_cpus_allowed != 1); 1110 } 1111 1112 /* Can the task run on the task's current CPU? If so, we're done */ 1113 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1114 goto out; 1115 1116 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1117 if (task_running(rq, p) || p->state == TASK_WAKING) { 1118 struct migration_arg arg = { p, dest_cpu }; 1119 /* Need help from migration thread: drop lock and wait. */ 1120 task_rq_unlock(rq, p, &rf); 1121 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1122 tlb_migrate_finish(p->mm); 1123 return 0; 1124 } else if (task_on_rq_queued(p)) { 1125 /* 1126 * OK, since we're going to drop the lock immediately 1127 * afterwards anyway. 1128 */ 1129 rq = move_queued_task(rq, &rf, p, dest_cpu); 1130 } 1131 out: 1132 task_rq_unlock(rq, p, &rf); 1133 1134 return ret; 1135 } 1136 1137 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1138 { 1139 return __set_cpus_allowed_ptr(p, new_mask, false); 1140 } 1141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1142 1143 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1144 { 1145 #ifdef CONFIG_SCHED_DEBUG 1146 /* 1147 * We should never call set_task_cpu() on a blocked task, 1148 * ttwu() will sort out the placement. 1149 */ 1150 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1151 !p->on_rq); 1152 1153 /* 1154 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1155 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1156 * time relying on p->on_rq. 1157 */ 1158 WARN_ON_ONCE(p->state == TASK_RUNNING && 1159 p->sched_class == &fair_sched_class && 1160 (p->on_rq && !task_on_rq_migrating(p))); 1161 1162 #ifdef CONFIG_LOCKDEP 1163 /* 1164 * The caller should hold either p->pi_lock or rq->lock, when changing 1165 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1166 * 1167 * sched_move_task() holds both and thus holding either pins the cgroup, 1168 * see task_group(). 1169 * 1170 * Furthermore, all task_rq users should acquire both locks, see 1171 * task_rq_lock(). 1172 */ 1173 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1174 lockdep_is_held(&task_rq(p)->lock))); 1175 #endif 1176 /* 1177 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1178 */ 1179 WARN_ON_ONCE(!cpu_online(new_cpu)); 1180 #endif 1181 1182 trace_sched_migrate_task(p, new_cpu); 1183 1184 if (task_cpu(p) != new_cpu) { 1185 if (p->sched_class->migrate_task_rq) 1186 p->sched_class->migrate_task_rq(p); 1187 p->se.nr_migrations++; 1188 perf_event_task_migrate(p); 1189 } 1190 1191 __set_task_cpu(p, new_cpu); 1192 } 1193 1194 static void __migrate_swap_task(struct task_struct *p, int cpu) 1195 { 1196 if (task_on_rq_queued(p)) { 1197 struct rq *src_rq, *dst_rq; 1198 struct rq_flags srf, drf; 1199 1200 src_rq = task_rq(p); 1201 dst_rq = cpu_rq(cpu); 1202 1203 rq_pin_lock(src_rq, &srf); 1204 rq_pin_lock(dst_rq, &drf); 1205 1206 p->on_rq = TASK_ON_RQ_MIGRATING; 1207 deactivate_task(src_rq, p, 0); 1208 set_task_cpu(p, cpu); 1209 activate_task(dst_rq, p, 0); 1210 p->on_rq = TASK_ON_RQ_QUEUED; 1211 check_preempt_curr(dst_rq, p, 0); 1212 1213 rq_unpin_lock(dst_rq, &drf); 1214 rq_unpin_lock(src_rq, &srf); 1215 1216 } else { 1217 /* 1218 * Task isn't running anymore; make it appear like we migrated 1219 * it before it went to sleep. This means on wakeup we make the 1220 * previous CPU our target instead of where it really is. 1221 */ 1222 p->wake_cpu = cpu; 1223 } 1224 } 1225 1226 struct migration_swap_arg { 1227 struct task_struct *src_task, *dst_task; 1228 int src_cpu, dst_cpu; 1229 }; 1230 1231 static int migrate_swap_stop(void *data) 1232 { 1233 struct migration_swap_arg *arg = data; 1234 struct rq *src_rq, *dst_rq; 1235 int ret = -EAGAIN; 1236 1237 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1238 return -EAGAIN; 1239 1240 src_rq = cpu_rq(arg->src_cpu); 1241 dst_rq = cpu_rq(arg->dst_cpu); 1242 1243 double_raw_lock(&arg->src_task->pi_lock, 1244 &arg->dst_task->pi_lock); 1245 double_rq_lock(src_rq, dst_rq); 1246 1247 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1248 goto unlock; 1249 1250 if (task_cpu(arg->src_task) != arg->src_cpu) 1251 goto unlock; 1252 1253 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1254 goto unlock; 1255 1256 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1257 goto unlock; 1258 1259 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1260 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1261 1262 ret = 0; 1263 1264 unlock: 1265 double_rq_unlock(src_rq, dst_rq); 1266 raw_spin_unlock(&arg->dst_task->pi_lock); 1267 raw_spin_unlock(&arg->src_task->pi_lock); 1268 1269 return ret; 1270 } 1271 1272 /* 1273 * Cross migrate two tasks 1274 */ 1275 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1276 { 1277 struct migration_swap_arg arg; 1278 int ret = -EINVAL; 1279 1280 arg = (struct migration_swap_arg){ 1281 .src_task = cur, 1282 .src_cpu = task_cpu(cur), 1283 .dst_task = p, 1284 .dst_cpu = task_cpu(p), 1285 }; 1286 1287 if (arg.src_cpu == arg.dst_cpu) 1288 goto out; 1289 1290 /* 1291 * These three tests are all lockless; this is OK since all of them 1292 * will be re-checked with proper locks held further down the line. 1293 */ 1294 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1295 goto out; 1296 1297 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1298 goto out; 1299 1300 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1301 goto out; 1302 1303 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1304 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1305 1306 out: 1307 return ret; 1308 } 1309 1310 /* 1311 * wait_task_inactive - wait for a thread to unschedule. 1312 * 1313 * If @match_state is nonzero, it's the @p->state value just checked and 1314 * not expected to change. If it changes, i.e. @p might have woken up, 1315 * then return zero. When we succeed in waiting for @p to be off its CPU, 1316 * we return a positive number (its total switch count). If a second call 1317 * a short while later returns the same number, the caller can be sure that 1318 * @p has remained unscheduled the whole time. 1319 * 1320 * The caller must ensure that the task *will* unschedule sometime soon, 1321 * else this function might spin for a *long* time. This function can't 1322 * be called with interrupts off, or it may introduce deadlock with 1323 * smp_call_function() if an IPI is sent by the same process we are 1324 * waiting to become inactive. 1325 */ 1326 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1327 { 1328 int running, queued; 1329 struct rq_flags rf; 1330 unsigned long ncsw; 1331 struct rq *rq; 1332 1333 for (;;) { 1334 /* 1335 * We do the initial early heuristics without holding 1336 * any task-queue locks at all. We'll only try to get 1337 * the runqueue lock when things look like they will 1338 * work out! 1339 */ 1340 rq = task_rq(p); 1341 1342 /* 1343 * If the task is actively running on another CPU 1344 * still, just relax and busy-wait without holding 1345 * any locks. 1346 * 1347 * NOTE! Since we don't hold any locks, it's not 1348 * even sure that "rq" stays as the right runqueue! 1349 * But we don't care, since "task_running()" will 1350 * return false if the runqueue has changed and p 1351 * is actually now running somewhere else! 1352 */ 1353 while (task_running(rq, p)) { 1354 if (match_state && unlikely(p->state != match_state)) 1355 return 0; 1356 cpu_relax(); 1357 } 1358 1359 /* 1360 * Ok, time to look more closely! We need the rq 1361 * lock now, to be *sure*. If we're wrong, we'll 1362 * just go back and repeat. 1363 */ 1364 rq = task_rq_lock(p, &rf); 1365 trace_sched_wait_task(p); 1366 running = task_running(rq, p); 1367 queued = task_on_rq_queued(p); 1368 ncsw = 0; 1369 if (!match_state || p->state == match_state) 1370 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1371 task_rq_unlock(rq, p, &rf); 1372 1373 /* 1374 * If it changed from the expected state, bail out now. 1375 */ 1376 if (unlikely(!ncsw)) 1377 break; 1378 1379 /* 1380 * Was it really running after all now that we 1381 * checked with the proper locks actually held? 1382 * 1383 * Oops. Go back and try again.. 1384 */ 1385 if (unlikely(running)) { 1386 cpu_relax(); 1387 continue; 1388 } 1389 1390 /* 1391 * It's not enough that it's not actively running, 1392 * it must be off the runqueue _entirely_, and not 1393 * preempted! 1394 * 1395 * So if it was still runnable (but just not actively 1396 * running right now), it's preempted, and we should 1397 * yield - it could be a while. 1398 */ 1399 if (unlikely(queued)) { 1400 ktime_t to = NSEC_PER_SEC / HZ; 1401 1402 set_current_state(TASK_UNINTERRUPTIBLE); 1403 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1404 continue; 1405 } 1406 1407 /* 1408 * Ahh, all good. It wasn't running, and it wasn't 1409 * runnable, which means that it will never become 1410 * running in the future either. We're all done! 1411 */ 1412 break; 1413 } 1414 1415 return ncsw; 1416 } 1417 1418 /*** 1419 * kick_process - kick a running thread to enter/exit the kernel 1420 * @p: the to-be-kicked thread 1421 * 1422 * Cause a process which is running on another CPU to enter 1423 * kernel-mode, without any delay. (to get signals handled.) 1424 * 1425 * NOTE: this function doesn't have to take the runqueue lock, 1426 * because all it wants to ensure is that the remote task enters 1427 * the kernel. If the IPI races and the task has been migrated 1428 * to another CPU then no harm is done and the purpose has been 1429 * achieved as well. 1430 */ 1431 void kick_process(struct task_struct *p) 1432 { 1433 int cpu; 1434 1435 preempt_disable(); 1436 cpu = task_cpu(p); 1437 if ((cpu != smp_processor_id()) && task_curr(p)) 1438 smp_send_reschedule(cpu); 1439 preempt_enable(); 1440 } 1441 EXPORT_SYMBOL_GPL(kick_process); 1442 1443 /* 1444 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1445 * 1446 * A few notes on cpu_active vs cpu_online: 1447 * 1448 * - cpu_active must be a subset of cpu_online 1449 * 1450 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1451 * see __set_cpus_allowed_ptr(). At this point the newly online 1452 * CPU isn't yet part of the sched domains, and balancing will not 1453 * see it. 1454 * 1455 * - on CPU-down we clear cpu_active() to mask the sched domains and 1456 * avoid the load balancer to place new tasks on the to be removed 1457 * CPU. Existing tasks will remain running there and will be taken 1458 * off. 1459 * 1460 * This means that fallback selection must not select !active CPUs. 1461 * And can assume that any active CPU must be online. Conversely 1462 * select_task_rq() below may allow selection of !active CPUs in order 1463 * to satisfy the above rules. 1464 */ 1465 static int select_fallback_rq(int cpu, struct task_struct *p) 1466 { 1467 int nid = cpu_to_node(cpu); 1468 const struct cpumask *nodemask = NULL; 1469 enum { cpuset, possible, fail } state = cpuset; 1470 int dest_cpu; 1471 1472 /* 1473 * If the node that the CPU is on has been offlined, cpu_to_node() 1474 * will return -1. There is no CPU on the node, and we should 1475 * select the CPU on the other node. 1476 */ 1477 if (nid != -1) { 1478 nodemask = cpumask_of_node(nid); 1479 1480 /* Look for allowed, online CPU in same node. */ 1481 for_each_cpu(dest_cpu, nodemask) { 1482 if (!cpu_active(dest_cpu)) 1483 continue; 1484 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1485 return dest_cpu; 1486 } 1487 } 1488 1489 for (;;) { 1490 /* Any allowed, online CPU? */ 1491 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1492 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1493 continue; 1494 if (!cpu_online(dest_cpu)) 1495 continue; 1496 goto out; 1497 } 1498 1499 /* No more Mr. Nice Guy. */ 1500 switch (state) { 1501 case cpuset: 1502 if (IS_ENABLED(CONFIG_CPUSETS)) { 1503 cpuset_cpus_allowed_fallback(p); 1504 state = possible; 1505 break; 1506 } 1507 /* Fall-through */ 1508 case possible: 1509 do_set_cpus_allowed(p, cpu_possible_mask); 1510 state = fail; 1511 break; 1512 1513 case fail: 1514 BUG(); 1515 break; 1516 } 1517 } 1518 1519 out: 1520 if (state != cpuset) { 1521 /* 1522 * Don't tell them about moving exiting tasks or 1523 * kernel threads (both mm NULL), since they never 1524 * leave kernel. 1525 */ 1526 if (p->mm && printk_ratelimit()) { 1527 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1528 task_pid_nr(p), p->comm, cpu); 1529 } 1530 } 1531 1532 return dest_cpu; 1533 } 1534 1535 /* 1536 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1537 */ 1538 static inline 1539 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1540 { 1541 lockdep_assert_held(&p->pi_lock); 1542 1543 if (p->nr_cpus_allowed > 1) 1544 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1545 else 1546 cpu = cpumask_any(&p->cpus_allowed); 1547 1548 /* 1549 * In order not to call set_task_cpu() on a blocking task we need 1550 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1551 * CPU. 1552 * 1553 * Since this is common to all placement strategies, this lives here. 1554 * 1555 * [ this allows ->select_task() to simply return task_cpu(p) and 1556 * not worry about this generic constraint ] 1557 */ 1558 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1559 !cpu_online(cpu))) 1560 cpu = select_fallback_rq(task_cpu(p), p); 1561 1562 return cpu; 1563 } 1564 1565 static void update_avg(u64 *avg, u64 sample) 1566 { 1567 s64 diff = sample - *avg; 1568 *avg += diff >> 3; 1569 } 1570 1571 void sched_set_stop_task(int cpu, struct task_struct *stop) 1572 { 1573 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1574 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1575 1576 if (stop) { 1577 /* 1578 * Make it appear like a SCHED_FIFO task, its something 1579 * userspace knows about and won't get confused about. 1580 * 1581 * Also, it will make PI more or less work without too 1582 * much confusion -- but then, stop work should not 1583 * rely on PI working anyway. 1584 */ 1585 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1586 1587 stop->sched_class = &stop_sched_class; 1588 } 1589 1590 cpu_rq(cpu)->stop = stop; 1591 1592 if (old_stop) { 1593 /* 1594 * Reset it back to a normal scheduling class so that 1595 * it can die in pieces. 1596 */ 1597 old_stop->sched_class = &rt_sched_class; 1598 } 1599 } 1600 1601 #else 1602 1603 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1604 const struct cpumask *new_mask, bool check) 1605 { 1606 return set_cpus_allowed_ptr(p, new_mask); 1607 } 1608 1609 #endif /* CONFIG_SMP */ 1610 1611 static void 1612 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1613 { 1614 struct rq *rq; 1615 1616 if (!schedstat_enabled()) 1617 return; 1618 1619 rq = this_rq(); 1620 1621 #ifdef CONFIG_SMP 1622 if (cpu == rq->cpu) { 1623 schedstat_inc(rq->ttwu_local); 1624 schedstat_inc(p->se.statistics.nr_wakeups_local); 1625 } else { 1626 struct sched_domain *sd; 1627 1628 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1629 rcu_read_lock(); 1630 for_each_domain(rq->cpu, sd) { 1631 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1632 schedstat_inc(sd->ttwu_wake_remote); 1633 break; 1634 } 1635 } 1636 rcu_read_unlock(); 1637 } 1638 1639 if (wake_flags & WF_MIGRATED) 1640 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1641 #endif /* CONFIG_SMP */ 1642 1643 schedstat_inc(rq->ttwu_count); 1644 schedstat_inc(p->se.statistics.nr_wakeups); 1645 1646 if (wake_flags & WF_SYNC) 1647 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1648 } 1649 1650 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1651 { 1652 activate_task(rq, p, en_flags); 1653 p->on_rq = TASK_ON_RQ_QUEUED; 1654 1655 /* If a worker is waking up, notify the workqueue: */ 1656 if (p->flags & PF_WQ_WORKER) 1657 wq_worker_waking_up(p, cpu_of(rq)); 1658 } 1659 1660 /* 1661 * Mark the task runnable and perform wakeup-preemption. 1662 */ 1663 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1664 struct rq_flags *rf) 1665 { 1666 check_preempt_curr(rq, p, wake_flags); 1667 p->state = TASK_RUNNING; 1668 trace_sched_wakeup(p); 1669 1670 #ifdef CONFIG_SMP 1671 if (p->sched_class->task_woken) { 1672 /* 1673 * Our task @p is fully woken up and running; so its safe to 1674 * drop the rq->lock, hereafter rq is only used for statistics. 1675 */ 1676 rq_unpin_lock(rq, rf); 1677 p->sched_class->task_woken(rq, p); 1678 rq_repin_lock(rq, rf); 1679 } 1680 1681 if (rq->idle_stamp) { 1682 u64 delta = rq_clock(rq) - rq->idle_stamp; 1683 u64 max = 2*rq->max_idle_balance_cost; 1684 1685 update_avg(&rq->avg_idle, delta); 1686 1687 if (rq->avg_idle > max) 1688 rq->avg_idle = max; 1689 1690 rq->idle_stamp = 0; 1691 } 1692 #endif 1693 } 1694 1695 static void 1696 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1697 struct rq_flags *rf) 1698 { 1699 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1700 1701 lockdep_assert_held(&rq->lock); 1702 1703 #ifdef CONFIG_SMP 1704 if (p->sched_contributes_to_load) 1705 rq->nr_uninterruptible--; 1706 1707 if (wake_flags & WF_MIGRATED) 1708 en_flags |= ENQUEUE_MIGRATED; 1709 #endif 1710 1711 ttwu_activate(rq, p, en_flags); 1712 ttwu_do_wakeup(rq, p, wake_flags, rf); 1713 } 1714 1715 /* 1716 * Called in case the task @p isn't fully descheduled from its runqueue, 1717 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1718 * since all we need to do is flip p->state to TASK_RUNNING, since 1719 * the task is still ->on_rq. 1720 */ 1721 static int ttwu_remote(struct task_struct *p, int wake_flags) 1722 { 1723 struct rq_flags rf; 1724 struct rq *rq; 1725 int ret = 0; 1726 1727 rq = __task_rq_lock(p, &rf); 1728 if (task_on_rq_queued(p)) { 1729 /* check_preempt_curr() may use rq clock */ 1730 update_rq_clock(rq); 1731 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1732 ret = 1; 1733 } 1734 __task_rq_unlock(rq, &rf); 1735 1736 return ret; 1737 } 1738 1739 #ifdef CONFIG_SMP 1740 void sched_ttwu_pending(void) 1741 { 1742 struct rq *rq = this_rq(); 1743 struct llist_node *llist = llist_del_all(&rq->wake_list); 1744 struct task_struct *p, *t; 1745 struct rq_flags rf; 1746 1747 if (!llist) 1748 return; 1749 1750 rq_lock_irqsave(rq, &rf); 1751 update_rq_clock(rq); 1752 1753 llist_for_each_entry_safe(p, t, llist, wake_entry) 1754 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1755 1756 rq_unlock_irqrestore(rq, &rf); 1757 } 1758 1759 void scheduler_ipi(void) 1760 { 1761 /* 1762 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1763 * TIF_NEED_RESCHED remotely (for the first time) will also send 1764 * this IPI. 1765 */ 1766 preempt_fold_need_resched(); 1767 1768 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1769 return; 1770 1771 /* 1772 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1773 * traditionally all their work was done from the interrupt return 1774 * path. Now that we actually do some work, we need to make sure 1775 * we do call them. 1776 * 1777 * Some archs already do call them, luckily irq_enter/exit nest 1778 * properly. 1779 * 1780 * Arguably we should visit all archs and update all handlers, 1781 * however a fair share of IPIs are still resched only so this would 1782 * somewhat pessimize the simple resched case. 1783 */ 1784 irq_enter(); 1785 sched_ttwu_pending(); 1786 1787 /* 1788 * Check if someone kicked us for doing the nohz idle load balance. 1789 */ 1790 if (unlikely(got_nohz_idle_kick())) { 1791 this_rq()->idle_balance = 1; 1792 raise_softirq_irqoff(SCHED_SOFTIRQ); 1793 } 1794 irq_exit(); 1795 } 1796 1797 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1798 { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1802 1803 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1804 if (!set_nr_if_polling(rq->idle)) 1805 smp_send_reschedule(cpu); 1806 else 1807 trace_sched_wake_idle_without_ipi(cpu); 1808 } 1809 } 1810 1811 void wake_up_if_idle(int cpu) 1812 { 1813 struct rq *rq = cpu_rq(cpu); 1814 struct rq_flags rf; 1815 1816 rcu_read_lock(); 1817 1818 if (!is_idle_task(rcu_dereference(rq->curr))) 1819 goto out; 1820 1821 if (set_nr_if_polling(rq->idle)) { 1822 trace_sched_wake_idle_without_ipi(cpu); 1823 } else { 1824 rq_lock_irqsave(rq, &rf); 1825 if (is_idle_task(rq->curr)) 1826 smp_send_reschedule(cpu); 1827 /* Else CPU is not idle, do nothing here: */ 1828 rq_unlock_irqrestore(rq, &rf); 1829 } 1830 1831 out: 1832 rcu_read_unlock(); 1833 } 1834 1835 bool cpus_share_cache(int this_cpu, int that_cpu) 1836 { 1837 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1838 } 1839 #endif /* CONFIG_SMP */ 1840 1841 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1842 { 1843 struct rq *rq = cpu_rq(cpu); 1844 struct rq_flags rf; 1845 1846 #if defined(CONFIG_SMP) 1847 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1848 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1849 ttwu_queue_remote(p, cpu, wake_flags); 1850 return; 1851 } 1852 #endif 1853 1854 rq_lock(rq, &rf); 1855 update_rq_clock(rq); 1856 ttwu_do_activate(rq, p, wake_flags, &rf); 1857 rq_unlock(rq, &rf); 1858 } 1859 1860 /* 1861 * Notes on Program-Order guarantees on SMP systems. 1862 * 1863 * MIGRATION 1864 * 1865 * The basic program-order guarantee on SMP systems is that when a task [t] 1866 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1867 * execution on its new CPU [c1]. 1868 * 1869 * For migration (of runnable tasks) this is provided by the following means: 1870 * 1871 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1872 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1873 * rq(c1)->lock (if not at the same time, then in that order). 1874 * C) LOCK of the rq(c1)->lock scheduling in task 1875 * 1876 * Transitivity guarantees that B happens after A and C after B. 1877 * Note: we only require RCpc transitivity. 1878 * Note: the CPU doing B need not be c0 or c1 1879 * 1880 * Example: 1881 * 1882 * CPU0 CPU1 CPU2 1883 * 1884 * LOCK rq(0)->lock 1885 * sched-out X 1886 * sched-in Y 1887 * UNLOCK rq(0)->lock 1888 * 1889 * LOCK rq(0)->lock // orders against CPU0 1890 * dequeue X 1891 * UNLOCK rq(0)->lock 1892 * 1893 * LOCK rq(1)->lock 1894 * enqueue X 1895 * UNLOCK rq(1)->lock 1896 * 1897 * LOCK rq(1)->lock // orders against CPU2 1898 * sched-out Z 1899 * sched-in X 1900 * UNLOCK rq(1)->lock 1901 * 1902 * 1903 * BLOCKING -- aka. SLEEP + WAKEUP 1904 * 1905 * For blocking we (obviously) need to provide the same guarantee as for 1906 * migration. However the means are completely different as there is no lock 1907 * chain to provide order. Instead we do: 1908 * 1909 * 1) smp_store_release(X->on_cpu, 0) 1910 * 2) smp_cond_load_acquire(!X->on_cpu) 1911 * 1912 * Example: 1913 * 1914 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1915 * 1916 * LOCK rq(0)->lock LOCK X->pi_lock 1917 * dequeue X 1918 * sched-out X 1919 * smp_store_release(X->on_cpu, 0); 1920 * 1921 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1922 * X->state = WAKING 1923 * set_task_cpu(X,2) 1924 * 1925 * LOCK rq(2)->lock 1926 * enqueue X 1927 * X->state = RUNNING 1928 * UNLOCK rq(2)->lock 1929 * 1930 * LOCK rq(2)->lock // orders against CPU1 1931 * sched-out Z 1932 * sched-in X 1933 * UNLOCK rq(2)->lock 1934 * 1935 * UNLOCK X->pi_lock 1936 * UNLOCK rq(0)->lock 1937 * 1938 * 1939 * However; for wakeups there is a second guarantee we must provide, namely we 1940 * must observe the state that lead to our wakeup. That is, not only must our 1941 * task observe its own prior state, it must also observe the stores prior to 1942 * its wakeup. 1943 * 1944 * This means that any means of doing remote wakeups must order the CPU doing 1945 * the wakeup against the CPU the task is going to end up running on. This, 1946 * however, is already required for the regular Program-Order guarantee above, 1947 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1948 * 1949 */ 1950 1951 /** 1952 * try_to_wake_up - wake up a thread 1953 * @p: the thread to be awakened 1954 * @state: the mask of task states that can be woken 1955 * @wake_flags: wake modifier flags (WF_*) 1956 * 1957 * If (@state & @p->state) @p->state = TASK_RUNNING. 1958 * 1959 * If the task was not queued/runnable, also place it back on a runqueue. 1960 * 1961 * Atomic against schedule() which would dequeue a task, also see 1962 * set_current_state(). 1963 * 1964 * Return: %true if @p->state changes (an actual wakeup was done), 1965 * %false otherwise. 1966 */ 1967 static int 1968 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1969 { 1970 unsigned long flags; 1971 int cpu, success = 0; 1972 1973 /* 1974 * If we are going to wake up a thread waiting for CONDITION we 1975 * need to ensure that CONDITION=1 done by the caller can not be 1976 * reordered with p->state check below. This pairs with mb() in 1977 * set_current_state() the waiting thread does. 1978 */ 1979 raw_spin_lock_irqsave(&p->pi_lock, flags); 1980 smp_mb__after_spinlock(); 1981 if (!(p->state & state)) 1982 goto out; 1983 1984 trace_sched_waking(p); 1985 1986 /* We're going to change ->state: */ 1987 success = 1; 1988 cpu = task_cpu(p); 1989 1990 /* 1991 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1992 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1993 * in smp_cond_load_acquire() below. 1994 * 1995 * sched_ttwu_pending() try_to_wake_up() 1996 * [S] p->on_rq = 1; [L] P->state 1997 * UNLOCK rq->lock -----. 1998 * \ 1999 * +--- RMB 2000 * schedule() / 2001 * LOCK rq->lock -----' 2002 * UNLOCK rq->lock 2003 * 2004 * [task p] 2005 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2006 * 2007 * Pairs with the UNLOCK+LOCK on rq->lock from the 2008 * last wakeup of our task and the schedule that got our task 2009 * current. 2010 */ 2011 smp_rmb(); 2012 if (p->on_rq && ttwu_remote(p, wake_flags)) 2013 goto stat; 2014 2015 #ifdef CONFIG_SMP 2016 /* 2017 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2018 * possible to, falsely, observe p->on_cpu == 0. 2019 * 2020 * One must be running (->on_cpu == 1) in order to remove oneself 2021 * from the runqueue. 2022 * 2023 * [S] ->on_cpu = 1; [L] ->on_rq 2024 * UNLOCK rq->lock 2025 * RMB 2026 * LOCK rq->lock 2027 * [S] ->on_rq = 0; [L] ->on_cpu 2028 * 2029 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2030 * from the consecutive calls to schedule(); the first switching to our 2031 * task, the second putting it to sleep. 2032 */ 2033 smp_rmb(); 2034 2035 /* 2036 * If the owning (remote) CPU is still in the middle of schedule() with 2037 * this task as prev, wait until its done referencing the task. 2038 * 2039 * Pairs with the smp_store_release() in finish_lock_switch(). 2040 * 2041 * This ensures that tasks getting woken will be fully ordered against 2042 * their previous state and preserve Program Order. 2043 */ 2044 smp_cond_load_acquire(&p->on_cpu, !VAL); 2045 2046 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2047 p->state = TASK_WAKING; 2048 2049 if (p->in_iowait) { 2050 delayacct_blkio_end(); 2051 atomic_dec(&task_rq(p)->nr_iowait); 2052 } 2053 2054 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2055 if (task_cpu(p) != cpu) { 2056 wake_flags |= WF_MIGRATED; 2057 set_task_cpu(p, cpu); 2058 } 2059 2060 #else /* CONFIG_SMP */ 2061 2062 if (p->in_iowait) { 2063 delayacct_blkio_end(); 2064 atomic_dec(&task_rq(p)->nr_iowait); 2065 } 2066 2067 #endif /* CONFIG_SMP */ 2068 2069 ttwu_queue(p, cpu, wake_flags); 2070 stat: 2071 ttwu_stat(p, cpu, wake_flags); 2072 out: 2073 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2074 2075 return success; 2076 } 2077 2078 /** 2079 * try_to_wake_up_local - try to wake up a local task with rq lock held 2080 * @p: the thread to be awakened 2081 * @rf: request-queue flags for pinning 2082 * 2083 * Put @p on the run-queue if it's not already there. The caller must 2084 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2085 * the current task. 2086 */ 2087 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2088 { 2089 struct rq *rq = task_rq(p); 2090 2091 if (WARN_ON_ONCE(rq != this_rq()) || 2092 WARN_ON_ONCE(p == current)) 2093 return; 2094 2095 lockdep_assert_held(&rq->lock); 2096 2097 if (!raw_spin_trylock(&p->pi_lock)) { 2098 /* 2099 * This is OK, because current is on_cpu, which avoids it being 2100 * picked for load-balance and preemption/IRQs are still 2101 * disabled avoiding further scheduler activity on it and we've 2102 * not yet picked a replacement task. 2103 */ 2104 rq_unlock(rq, rf); 2105 raw_spin_lock(&p->pi_lock); 2106 rq_relock(rq, rf); 2107 } 2108 2109 if (!(p->state & TASK_NORMAL)) 2110 goto out; 2111 2112 trace_sched_waking(p); 2113 2114 if (!task_on_rq_queued(p)) { 2115 if (p->in_iowait) { 2116 delayacct_blkio_end(); 2117 atomic_dec(&rq->nr_iowait); 2118 } 2119 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2120 } 2121 2122 ttwu_do_wakeup(rq, p, 0, rf); 2123 ttwu_stat(p, smp_processor_id(), 0); 2124 out: 2125 raw_spin_unlock(&p->pi_lock); 2126 } 2127 2128 /** 2129 * wake_up_process - Wake up a specific process 2130 * @p: The process to be woken up. 2131 * 2132 * Attempt to wake up the nominated process and move it to the set of runnable 2133 * processes. 2134 * 2135 * Return: 1 if the process was woken up, 0 if it was already running. 2136 * 2137 * It may be assumed that this function implies a write memory barrier before 2138 * changing the task state if and only if any tasks are woken up. 2139 */ 2140 int wake_up_process(struct task_struct *p) 2141 { 2142 return try_to_wake_up(p, TASK_NORMAL, 0); 2143 } 2144 EXPORT_SYMBOL(wake_up_process); 2145 2146 int wake_up_state(struct task_struct *p, unsigned int state) 2147 { 2148 return try_to_wake_up(p, state, 0); 2149 } 2150 2151 /* 2152 * Perform scheduler related setup for a newly forked process p. 2153 * p is forked by current. 2154 * 2155 * __sched_fork() is basic setup used by init_idle() too: 2156 */ 2157 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2158 { 2159 p->on_rq = 0; 2160 2161 p->se.on_rq = 0; 2162 p->se.exec_start = 0; 2163 p->se.sum_exec_runtime = 0; 2164 p->se.prev_sum_exec_runtime = 0; 2165 p->se.nr_migrations = 0; 2166 p->se.vruntime = 0; 2167 INIT_LIST_HEAD(&p->se.group_node); 2168 2169 #ifdef CONFIG_FAIR_GROUP_SCHED 2170 p->se.cfs_rq = NULL; 2171 #endif 2172 2173 #ifdef CONFIG_SCHEDSTATS 2174 /* Even if schedstat is disabled, there should not be garbage */ 2175 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2176 #endif 2177 2178 RB_CLEAR_NODE(&p->dl.rb_node); 2179 init_dl_task_timer(&p->dl); 2180 init_dl_inactive_task_timer(&p->dl); 2181 __dl_clear_params(p); 2182 2183 INIT_LIST_HEAD(&p->rt.run_list); 2184 p->rt.timeout = 0; 2185 p->rt.time_slice = sched_rr_timeslice; 2186 p->rt.on_rq = 0; 2187 p->rt.on_list = 0; 2188 2189 #ifdef CONFIG_PREEMPT_NOTIFIERS 2190 INIT_HLIST_HEAD(&p->preempt_notifiers); 2191 #endif 2192 2193 #ifdef CONFIG_NUMA_BALANCING 2194 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2195 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2196 p->mm->numa_scan_seq = 0; 2197 } 2198 2199 if (clone_flags & CLONE_VM) 2200 p->numa_preferred_nid = current->numa_preferred_nid; 2201 else 2202 p->numa_preferred_nid = -1; 2203 2204 p->node_stamp = 0ULL; 2205 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2206 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2207 p->numa_work.next = &p->numa_work; 2208 p->numa_faults = NULL; 2209 p->last_task_numa_placement = 0; 2210 p->last_sum_exec_runtime = 0; 2211 2212 p->numa_group = NULL; 2213 #endif /* CONFIG_NUMA_BALANCING */ 2214 } 2215 2216 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2217 2218 #ifdef CONFIG_NUMA_BALANCING 2219 2220 void set_numabalancing_state(bool enabled) 2221 { 2222 if (enabled) 2223 static_branch_enable(&sched_numa_balancing); 2224 else 2225 static_branch_disable(&sched_numa_balancing); 2226 } 2227 2228 #ifdef CONFIG_PROC_SYSCTL 2229 int sysctl_numa_balancing(struct ctl_table *table, int write, 2230 void __user *buffer, size_t *lenp, loff_t *ppos) 2231 { 2232 struct ctl_table t; 2233 int err; 2234 int state = static_branch_likely(&sched_numa_balancing); 2235 2236 if (write && !capable(CAP_SYS_ADMIN)) 2237 return -EPERM; 2238 2239 t = *table; 2240 t.data = &state; 2241 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2242 if (err < 0) 2243 return err; 2244 if (write) 2245 set_numabalancing_state(state); 2246 return err; 2247 } 2248 #endif 2249 #endif 2250 2251 #ifdef CONFIG_SCHEDSTATS 2252 2253 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2254 static bool __initdata __sched_schedstats = false; 2255 2256 static void set_schedstats(bool enabled) 2257 { 2258 if (enabled) 2259 static_branch_enable(&sched_schedstats); 2260 else 2261 static_branch_disable(&sched_schedstats); 2262 } 2263 2264 void force_schedstat_enabled(void) 2265 { 2266 if (!schedstat_enabled()) { 2267 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2268 static_branch_enable(&sched_schedstats); 2269 } 2270 } 2271 2272 static int __init setup_schedstats(char *str) 2273 { 2274 int ret = 0; 2275 if (!str) 2276 goto out; 2277 2278 /* 2279 * This code is called before jump labels have been set up, so we can't 2280 * change the static branch directly just yet. Instead set a temporary 2281 * variable so init_schedstats() can do it later. 2282 */ 2283 if (!strcmp(str, "enable")) { 2284 __sched_schedstats = true; 2285 ret = 1; 2286 } else if (!strcmp(str, "disable")) { 2287 __sched_schedstats = false; 2288 ret = 1; 2289 } 2290 out: 2291 if (!ret) 2292 pr_warn("Unable to parse schedstats=\n"); 2293 2294 return ret; 2295 } 2296 __setup("schedstats=", setup_schedstats); 2297 2298 static void __init init_schedstats(void) 2299 { 2300 set_schedstats(__sched_schedstats); 2301 } 2302 2303 #ifdef CONFIG_PROC_SYSCTL 2304 int sysctl_schedstats(struct ctl_table *table, int write, 2305 void __user *buffer, size_t *lenp, loff_t *ppos) 2306 { 2307 struct ctl_table t; 2308 int err; 2309 int state = static_branch_likely(&sched_schedstats); 2310 2311 if (write && !capable(CAP_SYS_ADMIN)) 2312 return -EPERM; 2313 2314 t = *table; 2315 t.data = &state; 2316 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2317 if (err < 0) 2318 return err; 2319 if (write) 2320 set_schedstats(state); 2321 return err; 2322 } 2323 #endif /* CONFIG_PROC_SYSCTL */ 2324 #else /* !CONFIG_SCHEDSTATS */ 2325 static inline void init_schedstats(void) {} 2326 #endif /* CONFIG_SCHEDSTATS */ 2327 2328 /* 2329 * fork()/clone()-time setup: 2330 */ 2331 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2332 { 2333 unsigned long flags; 2334 int cpu = get_cpu(); 2335 2336 __sched_fork(clone_flags, p); 2337 /* 2338 * We mark the process as NEW here. This guarantees that 2339 * nobody will actually run it, and a signal or other external 2340 * event cannot wake it up and insert it on the runqueue either. 2341 */ 2342 p->state = TASK_NEW; 2343 2344 /* 2345 * Make sure we do not leak PI boosting priority to the child. 2346 */ 2347 p->prio = current->normal_prio; 2348 2349 /* 2350 * Revert to default priority/policy on fork if requested. 2351 */ 2352 if (unlikely(p->sched_reset_on_fork)) { 2353 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2354 p->policy = SCHED_NORMAL; 2355 p->static_prio = NICE_TO_PRIO(0); 2356 p->rt_priority = 0; 2357 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2358 p->static_prio = NICE_TO_PRIO(0); 2359 2360 p->prio = p->normal_prio = __normal_prio(p); 2361 set_load_weight(p); 2362 2363 /* 2364 * We don't need the reset flag anymore after the fork. It has 2365 * fulfilled its duty: 2366 */ 2367 p->sched_reset_on_fork = 0; 2368 } 2369 2370 if (dl_prio(p->prio)) { 2371 put_cpu(); 2372 return -EAGAIN; 2373 } else if (rt_prio(p->prio)) { 2374 p->sched_class = &rt_sched_class; 2375 } else { 2376 p->sched_class = &fair_sched_class; 2377 } 2378 2379 init_entity_runnable_average(&p->se); 2380 2381 /* 2382 * The child is not yet in the pid-hash so no cgroup attach races, 2383 * and the cgroup is pinned to this child due to cgroup_fork() 2384 * is ran before sched_fork(). 2385 * 2386 * Silence PROVE_RCU. 2387 */ 2388 raw_spin_lock_irqsave(&p->pi_lock, flags); 2389 /* 2390 * We're setting the CPU for the first time, we don't migrate, 2391 * so use __set_task_cpu(). 2392 */ 2393 __set_task_cpu(p, cpu); 2394 if (p->sched_class->task_fork) 2395 p->sched_class->task_fork(p); 2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2397 2398 #ifdef CONFIG_SCHED_INFO 2399 if (likely(sched_info_on())) 2400 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2401 #endif 2402 #if defined(CONFIG_SMP) 2403 p->on_cpu = 0; 2404 #endif 2405 init_task_preempt_count(p); 2406 #ifdef CONFIG_SMP 2407 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2408 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2409 #endif 2410 2411 put_cpu(); 2412 return 0; 2413 } 2414 2415 unsigned long to_ratio(u64 period, u64 runtime) 2416 { 2417 if (runtime == RUNTIME_INF) 2418 return BW_UNIT; 2419 2420 /* 2421 * Doing this here saves a lot of checks in all 2422 * the calling paths, and returning zero seems 2423 * safe for them anyway. 2424 */ 2425 if (period == 0) 2426 return 0; 2427 2428 return div64_u64(runtime << BW_SHIFT, period); 2429 } 2430 2431 /* 2432 * wake_up_new_task - wake up a newly created task for the first time. 2433 * 2434 * This function will do some initial scheduler statistics housekeeping 2435 * that must be done for every newly created context, then puts the task 2436 * on the runqueue and wakes it. 2437 */ 2438 void wake_up_new_task(struct task_struct *p) 2439 { 2440 struct rq_flags rf; 2441 struct rq *rq; 2442 2443 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2444 p->state = TASK_RUNNING; 2445 #ifdef CONFIG_SMP 2446 /* 2447 * Fork balancing, do it here and not earlier because: 2448 * - cpus_allowed can change in the fork path 2449 * - any previously selected CPU might disappear through hotplug 2450 * 2451 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2452 * as we're not fully set-up yet. 2453 */ 2454 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2455 #endif 2456 rq = __task_rq_lock(p, &rf); 2457 update_rq_clock(rq); 2458 post_init_entity_util_avg(&p->se); 2459 2460 activate_task(rq, p, ENQUEUE_NOCLOCK); 2461 p->on_rq = TASK_ON_RQ_QUEUED; 2462 trace_sched_wakeup_new(p); 2463 check_preempt_curr(rq, p, WF_FORK); 2464 #ifdef CONFIG_SMP 2465 if (p->sched_class->task_woken) { 2466 /* 2467 * Nothing relies on rq->lock after this, so its fine to 2468 * drop it. 2469 */ 2470 rq_unpin_lock(rq, &rf); 2471 p->sched_class->task_woken(rq, p); 2472 rq_repin_lock(rq, &rf); 2473 } 2474 #endif 2475 task_rq_unlock(rq, p, &rf); 2476 } 2477 2478 #ifdef CONFIG_PREEMPT_NOTIFIERS 2479 2480 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2481 2482 void preempt_notifier_inc(void) 2483 { 2484 static_key_slow_inc(&preempt_notifier_key); 2485 } 2486 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2487 2488 void preempt_notifier_dec(void) 2489 { 2490 static_key_slow_dec(&preempt_notifier_key); 2491 } 2492 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2493 2494 /** 2495 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2496 * @notifier: notifier struct to register 2497 */ 2498 void preempt_notifier_register(struct preempt_notifier *notifier) 2499 { 2500 if (!static_key_false(&preempt_notifier_key)) 2501 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2502 2503 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2504 } 2505 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2506 2507 /** 2508 * preempt_notifier_unregister - no longer interested in preemption notifications 2509 * @notifier: notifier struct to unregister 2510 * 2511 * This is *not* safe to call from within a preemption notifier. 2512 */ 2513 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2514 { 2515 hlist_del(¬ifier->link); 2516 } 2517 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2518 2519 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2520 { 2521 struct preempt_notifier *notifier; 2522 2523 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2524 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2525 } 2526 2527 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2528 { 2529 if (static_key_false(&preempt_notifier_key)) 2530 __fire_sched_in_preempt_notifiers(curr); 2531 } 2532 2533 static void 2534 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2535 struct task_struct *next) 2536 { 2537 struct preempt_notifier *notifier; 2538 2539 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2540 notifier->ops->sched_out(notifier, next); 2541 } 2542 2543 static __always_inline void 2544 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2545 struct task_struct *next) 2546 { 2547 if (static_key_false(&preempt_notifier_key)) 2548 __fire_sched_out_preempt_notifiers(curr, next); 2549 } 2550 2551 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2552 2553 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2554 { 2555 } 2556 2557 static inline void 2558 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2559 struct task_struct *next) 2560 { 2561 } 2562 2563 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2564 2565 /** 2566 * prepare_task_switch - prepare to switch tasks 2567 * @rq: the runqueue preparing to switch 2568 * @prev: the current task that is being switched out 2569 * @next: the task we are going to switch to. 2570 * 2571 * This is called with the rq lock held and interrupts off. It must 2572 * be paired with a subsequent finish_task_switch after the context 2573 * switch. 2574 * 2575 * prepare_task_switch sets up locking and calls architecture specific 2576 * hooks. 2577 */ 2578 static inline void 2579 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2580 struct task_struct *next) 2581 { 2582 sched_info_switch(rq, prev, next); 2583 perf_event_task_sched_out(prev, next); 2584 fire_sched_out_preempt_notifiers(prev, next); 2585 prepare_lock_switch(rq, next); 2586 prepare_arch_switch(next); 2587 } 2588 2589 /** 2590 * finish_task_switch - clean up after a task-switch 2591 * @prev: the thread we just switched away from. 2592 * 2593 * finish_task_switch must be called after the context switch, paired 2594 * with a prepare_task_switch call before the context switch. 2595 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2596 * and do any other architecture-specific cleanup actions. 2597 * 2598 * Note that we may have delayed dropping an mm in context_switch(). If 2599 * so, we finish that here outside of the runqueue lock. (Doing it 2600 * with the lock held can cause deadlocks; see schedule() for 2601 * details.) 2602 * 2603 * The context switch have flipped the stack from under us and restored the 2604 * local variables which were saved when this task called schedule() in the 2605 * past. prev == current is still correct but we need to recalculate this_rq 2606 * because prev may have moved to another CPU. 2607 */ 2608 static struct rq *finish_task_switch(struct task_struct *prev) 2609 __releases(rq->lock) 2610 { 2611 struct rq *rq = this_rq(); 2612 struct mm_struct *mm = rq->prev_mm; 2613 long prev_state; 2614 2615 /* 2616 * The previous task will have left us with a preempt_count of 2 2617 * because it left us after: 2618 * 2619 * schedule() 2620 * preempt_disable(); // 1 2621 * __schedule() 2622 * raw_spin_lock_irq(&rq->lock) // 2 2623 * 2624 * Also, see FORK_PREEMPT_COUNT. 2625 */ 2626 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2627 "corrupted preempt_count: %s/%d/0x%x\n", 2628 current->comm, current->pid, preempt_count())) 2629 preempt_count_set(FORK_PREEMPT_COUNT); 2630 2631 rq->prev_mm = NULL; 2632 2633 /* 2634 * A task struct has one reference for the use as "current". 2635 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2636 * schedule one last time. The schedule call will never return, and 2637 * the scheduled task must drop that reference. 2638 * 2639 * We must observe prev->state before clearing prev->on_cpu (in 2640 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2641 * running on another CPU and we could rave with its RUNNING -> DEAD 2642 * transition, resulting in a double drop. 2643 */ 2644 prev_state = prev->state; 2645 vtime_task_switch(prev); 2646 perf_event_task_sched_in(prev, current); 2647 /* 2648 * The membarrier system call requires a full memory barrier 2649 * after storing to rq->curr, before going back to user-space. 2650 * 2651 * TODO: This smp_mb__after_unlock_lock can go away if PPC end 2652 * up adding a full barrier to switch_mm(), or we should figure 2653 * out if a smp_mb__after_unlock_lock is really the proper API 2654 * to use. 2655 */ 2656 smp_mb__after_unlock_lock(); 2657 finish_lock_switch(rq, prev); 2658 finish_arch_post_lock_switch(); 2659 2660 fire_sched_in_preempt_notifiers(current); 2661 if (mm) 2662 mmdrop(mm); 2663 if (unlikely(prev_state == TASK_DEAD)) { 2664 if (prev->sched_class->task_dead) 2665 prev->sched_class->task_dead(prev); 2666 2667 /* 2668 * Remove function-return probe instances associated with this 2669 * task and put them back on the free list. 2670 */ 2671 kprobe_flush_task(prev); 2672 2673 /* Task is done with its stack. */ 2674 put_task_stack(prev); 2675 2676 put_task_struct(prev); 2677 } 2678 2679 tick_nohz_task_switch(); 2680 return rq; 2681 } 2682 2683 #ifdef CONFIG_SMP 2684 2685 /* rq->lock is NOT held, but preemption is disabled */ 2686 static void __balance_callback(struct rq *rq) 2687 { 2688 struct callback_head *head, *next; 2689 void (*func)(struct rq *rq); 2690 unsigned long flags; 2691 2692 raw_spin_lock_irqsave(&rq->lock, flags); 2693 head = rq->balance_callback; 2694 rq->balance_callback = NULL; 2695 while (head) { 2696 func = (void (*)(struct rq *))head->func; 2697 next = head->next; 2698 head->next = NULL; 2699 head = next; 2700 2701 func(rq); 2702 } 2703 raw_spin_unlock_irqrestore(&rq->lock, flags); 2704 } 2705 2706 static inline void balance_callback(struct rq *rq) 2707 { 2708 if (unlikely(rq->balance_callback)) 2709 __balance_callback(rq); 2710 } 2711 2712 #else 2713 2714 static inline void balance_callback(struct rq *rq) 2715 { 2716 } 2717 2718 #endif 2719 2720 /** 2721 * schedule_tail - first thing a freshly forked thread must call. 2722 * @prev: the thread we just switched away from. 2723 */ 2724 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2725 __releases(rq->lock) 2726 { 2727 struct rq *rq; 2728 2729 /* 2730 * New tasks start with FORK_PREEMPT_COUNT, see there and 2731 * finish_task_switch() for details. 2732 * 2733 * finish_task_switch() will drop rq->lock() and lower preempt_count 2734 * and the preempt_enable() will end up enabling preemption (on 2735 * PREEMPT_COUNT kernels). 2736 */ 2737 2738 rq = finish_task_switch(prev); 2739 balance_callback(rq); 2740 preempt_enable(); 2741 2742 if (current->set_child_tid) 2743 put_user(task_pid_vnr(current), current->set_child_tid); 2744 } 2745 2746 /* 2747 * context_switch - switch to the new MM and the new thread's register state. 2748 */ 2749 static __always_inline struct rq * 2750 context_switch(struct rq *rq, struct task_struct *prev, 2751 struct task_struct *next, struct rq_flags *rf) 2752 { 2753 struct mm_struct *mm, *oldmm; 2754 2755 prepare_task_switch(rq, prev, next); 2756 2757 mm = next->mm; 2758 oldmm = prev->active_mm; 2759 /* 2760 * For paravirt, this is coupled with an exit in switch_to to 2761 * combine the page table reload and the switch backend into 2762 * one hypercall. 2763 */ 2764 arch_start_context_switch(prev); 2765 2766 if (!mm) { 2767 next->active_mm = oldmm; 2768 mmgrab(oldmm); 2769 enter_lazy_tlb(oldmm, next); 2770 } else 2771 switch_mm_irqs_off(oldmm, mm, next); 2772 2773 if (!prev->mm) { 2774 prev->active_mm = NULL; 2775 rq->prev_mm = oldmm; 2776 } 2777 2778 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2779 2780 /* 2781 * Since the runqueue lock will be released by the next 2782 * task (which is an invalid locking op but in the case 2783 * of the scheduler it's an obvious special-case), so we 2784 * do an early lockdep release here: 2785 */ 2786 rq_unpin_lock(rq, rf); 2787 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2788 2789 /* Here we just switch the register state and the stack. */ 2790 switch_to(prev, next, prev); 2791 barrier(); 2792 2793 return finish_task_switch(prev); 2794 } 2795 2796 /* 2797 * nr_running and nr_context_switches: 2798 * 2799 * externally visible scheduler statistics: current number of runnable 2800 * threads, total number of context switches performed since bootup. 2801 */ 2802 unsigned long nr_running(void) 2803 { 2804 unsigned long i, sum = 0; 2805 2806 for_each_online_cpu(i) 2807 sum += cpu_rq(i)->nr_running; 2808 2809 return sum; 2810 } 2811 2812 /* 2813 * Check if only the current task is running on the CPU. 2814 * 2815 * Caution: this function does not check that the caller has disabled 2816 * preemption, thus the result might have a time-of-check-to-time-of-use 2817 * race. The caller is responsible to use it correctly, for example: 2818 * 2819 * - from a non-preemptable section (of course) 2820 * 2821 * - from a thread that is bound to a single CPU 2822 * 2823 * - in a loop with very short iterations (e.g. a polling loop) 2824 */ 2825 bool single_task_running(void) 2826 { 2827 return raw_rq()->nr_running == 1; 2828 } 2829 EXPORT_SYMBOL(single_task_running); 2830 2831 unsigned long long nr_context_switches(void) 2832 { 2833 int i; 2834 unsigned long long sum = 0; 2835 2836 for_each_possible_cpu(i) 2837 sum += cpu_rq(i)->nr_switches; 2838 2839 return sum; 2840 } 2841 2842 /* 2843 * IO-wait accounting, and how its mostly bollocks (on SMP). 2844 * 2845 * The idea behind IO-wait account is to account the idle time that we could 2846 * have spend running if it were not for IO. That is, if we were to improve the 2847 * storage performance, we'd have a proportional reduction in IO-wait time. 2848 * 2849 * This all works nicely on UP, where, when a task blocks on IO, we account 2850 * idle time as IO-wait, because if the storage were faster, it could've been 2851 * running and we'd not be idle. 2852 * 2853 * This has been extended to SMP, by doing the same for each CPU. This however 2854 * is broken. 2855 * 2856 * Imagine for instance the case where two tasks block on one CPU, only the one 2857 * CPU will have IO-wait accounted, while the other has regular idle. Even 2858 * though, if the storage were faster, both could've ran at the same time, 2859 * utilising both CPUs. 2860 * 2861 * This means, that when looking globally, the current IO-wait accounting on 2862 * SMP is a lower bound, by reason of under accounting. 2863 * 2864 * Worse, since the numbers are provided per CPU, they are sometimes 2865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2866 * associated with any one particular CPU, it can wake to another CPU than it 2867 * blocked on. This means the per CPU IO-wait number is meaningless. 2868 * 2869 * Task CPU affinities can make all that even more 'interesting'. 2870 */ 2871 2872 unsigned long nr_iowait(void) 2873 { 2874 unsigned long i, sum = 0; 2875 2876 for_each_possible_cpu(i) 2877 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2878 2879 return sum; 2880 } 2881 2882 /* 2883 * Consumers of these two interfaces, like for example the cpufreq menu 2884 * governor are using nonsensical data. Boosting frequency for a CPU that has 2885 * IO-wait which might not even end up running the task when it does become 2886 * runnable. 2887 */ 2888 2889 unsigned long nr_iowait_cpu(int cpu) 2890 { 2891 struct rq *this = cpu_rq(cpu); 2892 return atomic_read(&this->nr_iowait); 2893 } 2894 2895 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2896 { 2897 struct rq *rq = this_rq(); 2898 *nr_waiters = atomic_read(&rq->nr_iowait); 2899 *load = rq->load.weight; 2900 } 2901 2902 #ifdef CONFIG_SMP 2903 2904 /* 2905 * sched_exec - execve() is a valuable balancing opportunity, because at 2906 * this point the task has the smallest effective memory and cache footprint. 2907 */ 2908 void sched_exec(void) 2909 { 2910 struct task_struct *p = current; 2911 unsigned long flags; 2912 int dest_cpu; 2913 2914 raw_spin_lock_irqsave(&p->pi_lock, flags); 2915 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2916 if (dest_cpu == smp_processor_id()) 2917 goto unlock; 2918 2919 if (likely(cpu_active(dest_cpu))) { 2920 struct migration_arg arg = { p, dest_cpu }; 2921 2922 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2923 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2924 return; 2925 } 2926 unlock: 2927 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2928 } 2929 2930 #endif 2931 2932 DEFINE_PER_CPU(struct kernel_stat, kstat); 2933 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2934 2935 EXPORT_PER_CPU_SYMBOL(kstat); 2936 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2937 2938 /* 2939 * The function fair_sched_class.update_curr accesses the struct curr 2940 * and its field curr->exec_start; when called from task_sched_runtime(), 2941 * we observe a high rate of cache misses in practice. 2942 * Prefetching this data results in improved performance. 2943 */ 2944 static inline void prefetch_curr_exec_start(struct task_struct *p) 2945 { 2946 #ifdef CONFIG_FAIR_GROUP_SCHED 2947 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2948 #else 2949 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2950 #endif 2951 prefetch(curr); 2952 prefetch(&curr->exec_start); 2953 } 2954 2955 /* 2956 * Return accounted runtime for the task. 2957 * In case the task is currently running, return the runtime plus current's 2958 * pending runtime that have not been accounted yet. 2959 */ 2960 unsigned long long task_sched_runtime(struct task_struct *p) 2961 { 2962 struct rq_flags rf; 2963 struct rq *rq; 2964 u64 ns; 2965 2966 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2967 /* 2968 * 64-bit doesn't need locks to atomically read a 64bit value. 2969 * So we have a optimization chance when the task's delta_exec is 0. 2970 * Reading ->on_cpu is racy, but this is ok. 2971 * 2972 * If we race with it leaving CPU, we'll take a lock. So we're correct. 2973 * If we race with it entering CPU, unaccounted time is 0. This is 2974 * indistinguishable from the read occurring a few cycles earlier. 2975 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2976 * been accounted, so we're correct here as well. 2977 */ 2978 if (!p->on_cpu || !task_on_rq_queued(p)) 2979 return p->se.sum_exec_runtime; 2980 #endif 2981 2982 rq = task_rq_lock(p, &rf); 2983 /* 2984 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2985 * project cycles that may never be accounted to this 2986 * thread, breaking clock_gettime(). 2987 */ 2988 if (task_current(rq, p) && task_on_rq_queued(p)) { 2989 prefetch_curr_exec_start(p); 2990 update_rq_clock(rq); 2991 p->sched_class->update_curr(rq); 2992 } 2993 ns = p->se.sum_exec_runtime; 2994 task_rq_unlock(rq, p, &rf); 2995 2996 return ns; 2997 } 2998 2999 /* 3000 * This function gets called by the timer code, with HZ frequency. 3001 * We call it with interrupts disabled. 3002 */ 3003 void scheduler_tick(void) 3004 { 3005 int cpu = smp_processor_id(); 3006 struct rq *rq = cpu_rq(cpu); 3007 struct task_struct *curr = rq->curr; 3008 struct rq_flags rf; 3009 3010 sched_clock_tick(); 3011 3012 rq_lock(rq, &rf); 3013 3014 update_rq_clock(rq); 3015 curr->sched_class->task_tick(rq, curr, 0); 3016 cpu_load_update_active(rq); 3017 calc_global_load_tick(rq); 3018 3019 rq_unlock(rq, &rf); 3020 3021 perf_event_task_tick(); 3022 3023 #ifdef CONFIG_SMP 3024 rq->idle_balance = idle_cpu(cpu); 3025 trigger_load_balance(rq); 3026 #endif 3027 rq_last_tick_reset(rq); 3028 } 3029 3030 #ifdef CONFIG_NO_HZ_FULL 3031 /** 3032 * scheduler_tick_max_deferment 3033 * 3034 * Keep at least one tick per second when a single 3035 * active task is running because the scheduler doesn't 3036 * yet completely support full dynticks environment. 3037 * 3038 * This makes sure that uptime, CFS vruntime, load 3039 * balancing, etc... continue to move forward, even 3040 * with a very low granularity. 3041 * 3042 * Return: Maximum deferment in nanoseconds. 3043 */ 3044 u64 scheduler_tick_max_deferment(void) 3045 { 3046 struct rq *rq = this_rq(); 3047 unsigned long next, now = READ_ONCE(jiffies); 3048 3049 next = rq->last_sched_tick + HZ; 3050 3051 if (time_before_eq(next, now)) 3052 return 0; 3053 3054 return jiffies_to_nsecs(next - now); 3055 } 3056 #endif 3057 3058 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3059 defined(CONFIG_PREEMPT_TRACER)) 3060 /* 3061 * If the value passed in is equal to the current preempt count 3062 * then we just disabled preemption. Start timing the latency. 3063 */ 3064 static inline void preempt_latency_start(int val) 3065 { 3066 if (preempt_count() == val) { 3067 unsigned long ip = get_lock_parent_ip(); 3068 #ifdef CONFIG_DEBUG_PREEMPT 3069 current->preempt_disable_ip = ip; 3070 #endif 3071 trace_preempt_off(CALLER_ADDR0, ip); 3072 } 3073 } 3074 3075 void preempt_count_add(int val) 3076 { 3077 #ifdef CONFIG_DEBUG_PREEMPT 3078 /* 3079 * Underflow? 3080 */ 3081 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3082 return; 3083 #endif 3084 __preempt_count_add(val); 3085 #ifdef CONFIG_DEBUG_PREEMPT 3086 /* 3087 * Spinlock count overflowing soon? 3088 */ 3089 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3090 PREEMPT_MASK - 10); 3091 #endif 3092 preempt_latency_start(val); 3093 } 3094 EXPORT_SYMBOL(preempt_count_add); 3095 NOKPROBE_SYMBOL(preempt_count_add); 3096 3097 /* 3098 * If the value passed in equals to the current preempt count 3099 * then we just enabled preemption. Stop timing the latency. 3100 */ 3101 static inline void preempt_latency_stop(int val) 3102 { 3103 if (preempt_count() == val) 3104 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3105 } 3106 3107 void preempt_count_sub(int val) 3108 { 3109 #ifdef CONFIG_DEBUG_PREEMPT 3110 /* 3111 * Underflow? 3112 */ 3113 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3114 return; 3115 /* 3116 * Is the spinlock portion underflowing? 3117 */ 3118 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3119 !(preempt_count() & PREEMPT_MASK))) 3120 return; 3121 #endif 3122 3123 preempt_latency_stop(val); 3124 __preempt_count_sub(val); 3125 } 3126 EXPORT_SYMBOL(preempt_count_sub); 3127 NOKPROBE_SYMBOL(preempt_count_sub); 3128 3129 #else 3130 static inline void preempt_latency_start(int val) { } 3131 static inline void preempt_latency_stop(int val) { } 3132 #endif 3133 3134 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3135 { 3136 #ifdef CONFIG_DEBUG_PREEMPT 3137 return p->preempt_disable_ip; 3138 #else 3139 return 0; 3140 #endif 3141 } 3142 3143 /* 3144 * Print scheduling while atomic bug: 3145 */ 3146 static noinline void __schedule_bug(struct task_struct *prev) 3147 { 3148 /* Save this before calling printk(), since that will clobber it */ 3149 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3150 3151 if (oops_in_progress) 3152 return; 3153 3154 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3155 prev->comm, prev->pid, preempt_count()); 3156 3157 debug_show_held_locks(prev); 3158 print_modules(); 3159 if (irqs_disabled()) 3160 print_irqtrace_events(prev); 3161 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3162 && in_atomic_preempt_off()) { 3163 pr_err("Preemption disabled at:"); 3164 print_ip_sym(preempt_disable_ip); 3165 pr_cont("\n"); 3166 } 3167 if (panic_on_warn) 3168 panic("scheduling while atomic\n"); 3169 3170 dump_stack(); 3171 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3172 } 3173 3174 /* 3175 * Various schedule()-time debugging checks and statistics: 3176 */ 3177 static inline void schedule_debug(struct task_struct *prev) 3178 { 3179 #ifdef CONFIG_SCHED_STACK_END_CHECK 3180 if (task_stack_end_corrupted(prev)) 3181 panic("corrupted stack end detected inside scheduler\n"); 3182 #endif 3183 3184 if (unlikely(in_atomic_preempt_off())) { 3185 __schedule_bug(prev); 3186 preempt_count_set(PREEMPT_DISABLED); 3187 } 3188 rcu_sleep_check(); 3189 3190 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3191 3192 schedstat_inc(this_rq()->sched_count); 3193 } 3194 3195 /* 3196 * Pick up the highest-prio task: 3197 */ 3198 static inline struct task_struct * 3199 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3200 { 3201 const struct sched_class *class; 3202 struct task_struct *p; 3203 3204 /* 3205 * Optimization: we know that if all tasks are in the fair class we can 3206 * call that function directly, but only if the @prev task wasn't of a 3207 * higher scheduling class, because otherwise those loose the 3208 * opportunity to pull in more work from other CPUs. 3209 */ 3210 if (likely((prev->sched_class == &idle_sched_class || 3211 prev->sched_class == &fair_sched_class) && 3212 rq->nr_running == rq->cfs.h_nr_running)) { 3213 3214 p = fair_sched_class.pick_next_task(rq, prev, rf); 3215 if (unlikely(p == RETRY_TASK)) 3216 goto again; 3217 3218 /* Assumes fair_sched_class->next == idle_sched_class */ 3219 if (unlikely(!p)) 3220 p = idle_sched_class.pick_next_task(rq, prev, rf); 3221 3222 return p; 3223 } 3224 3225 again: 3226 for_each_class(class) { 3227 p = class->pick_next_task(rq, prev, rf); 3228 if (p) { 3229 if (unlikely(p == RETRY_TASK)) 3230 goto again; 3231 return p; 3232 } 3233 } 3234 3235 /* The idle class should always have a runnable task: */ 3236 BUG(); 3237 } 3238 3239 /* 3240 * __schedule() is the main scheduler function. 3241 * 3242 * The main means of driving the scheduler and thus entering this function are: 3243 * 3244 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3245 * 3246 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3247 * paths. For example, see arch/x86/entry_64.S. 3248 * 3249 * To drive preemption between tasks, the scheduler sets the flag in timer 3250 * interrupt handler scheduler_tick(). 3251 * 3252 * 3. Wakeups don't really cause entry into schedule(). They add a 3253 * task to the run-queue and that's it. 3254 * 3255 * Now, if the new task added to the run-queue preempts the current 3256 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3257 * called on the nearest possible occasion: 3258 * 3259 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3260 * 3261 * - in syscall or exception context, at the next outmost 3262 * preempt_enable(). (this might be as soon as the wake_up()'s 3263 * spin_unlock()!) 3264 * 3265 * - in IRQ context, return from interrupt-handler to 3266 * preemptible context 3267 * 3268 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3269 * then at the next: 3270 * 3271 * - cond_resched() call 3272 * - explicit schedule() call 3273 * - return from syscall or exception to user-space 3274 * - return from interrupt-handler to user-space 3275 * 3276 * WARNING: must be called with preemption disabled! 3277 */ 3278 static void __sched notrace __schedule(bool preempt) 3279 { 3280 struct task_struct *prev, *next; 3281 unsigned long *switch_count; 3282 struct rq_flags rf; 3283 struct rq *rq; 3284 int cpu; 3285 3286 cpu = smp_processor_id(); 3287 rq = cpu_rq(cpu); 3288 prev = rq->curr; 3289 3290 schedule_debug(prev); 3291 3292 if (sched_feat(HRTICK)) 3293 hrtick_clear(rq); 3294 3295 local_irq_disable(); 3296 rcu_note_context_switch(preempt); 3297 3298 /* 3299 * Make sure that signal_pending_state()->signal_pending() below 3300 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3301 * done by the caller to avoid the race with signal_wake_up(). 3302 */ 3303 rq_lock(rq, &rf); 3304 smp_mb__after_spinlock(); 3305 3306 /* Promote REQ to ACT */ 3307 rq->clock_update_flags <<= 1; 3308 update_rq_clock(rq); 3309 3310 switch_count = &prev->nivcsw; 3311 if (!preempt && prev->state) { 3312 if (unlikely(signal_pending_state(prev->state, prev))) { 3313 prev->state = TASK_RUNNING; 3314 } else { 3315 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3316 prev->on_rq = 0; 3317 3318 if (prev->in_iowait) { 3319 atomic_inc(&rq->nr_iowait); 3320 delayacct_blkio_start(); 3321 } 3322 3323 /* 3324 * If a worker went to sleep, notify and ask workqueue 3325 * whether it wants to wake up a task to maintain 3326 * concurrency. 3327 */ 3328 if (prev->flags & PF_WQ_WORKER) { 3329 struct task_struct *to_wakeup; 3330 3331 to_wakeup = wq_worker_sleeping(prev); 3332 if (to_wakeup) 3333 try_to_wake_up_local(to_wakeup, &rf); 3334 } 3335 } 3336 switch_count = &prev->nvcsw; 3337 } 3338 3339 next = pick_next_task(rq, prev, &rf); 3340 clear_tsk_need_resched(prev); 3341 clear_preempt_need_resched(); 3342 3343 if (likely(prev != next)) { 3344 rq->nr_switches++; 3345 rq->curr = next; 3346 /* 3347 * The membarrier system call requires each architecture 3348 * to have a full memory barrier after updating 3349 * rq->curr, before returning to user-space. For TSO 3350 * (e.g. x86), the architecture must provide its own 3351 * barrier in switch_mm(). For weakly ordered machines 3352 * for which spin_unlock() acts as a full memory 3353 * barrier, finish_lock_switch() in common code takes 3354 * care of this barrier. For weakly ordered machines for 3355 * which spin_unlock() acts as a RELEASE barrier (only 3356 * arm64 and PowerPC), arm64 has a full barrier in 3357 * switch_to(), and PowerPC has 3358 * smp_mb__after_unlock_lock() before 3359 * finish_lock_switch(). 3360 */ 3361 ++*switch_count; 3362 3363 trace_sched_switch(preempt, prev, next); 3364 3365 /* Also unlocks the rq: */ 3366 rq = context_switch(rq, prev, next, &rf); 3367 } else { 3368 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3369 rq_unlock_irq(rq, &rf); 3370 } 3371 3372 balance_callback(rq); 3373 } 3374 3375 void __noreturn do_task_dead(void) 3376 { 3377 /* 3378 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3379 * when the following two conditions become true. 3380 * - There is race condition of mmap_sem (It is acquired by 3381 * exit_mm()), and 3382 * - SMI occurs before setting TASK_RUNINNG. 3383 * (or hypervisor of virtual machine switches to other guest) 3384 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3385 * 3386 * To avoid it, we have to wait for releasing tsk->pi_lock which 3387 * is held by try_to_wake_up() 3388 */ 3389 raw_spin_lock_irq(¤t->pi_lock); 3390 raw_spin_unlock_irq(¤t->pi_lock); 3391 3392 /* Causes final put_task_struct in finish_task_switch(): */ 3393 __set_current_state(TASK_DEAD); 3394 3395 /* Tell freezer to ignore us: */ 3396 current->flags |= PF_NOFREEZE; 3397 3398 __schedule(false); 3399 BUG(); 3400 3401 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3402 for (;;) 3403 cpu_relax(); 3404 } 3405 3406 static inline void sched_submit_work(struct task_struct *tsk) 3407 { 3408 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3409 return; 3410 /* 3411 * If we are going to sleep and we have plugged IO queued, 3412 * make sure to submit it to avoid deadlocks. 3413 */ 3414 if (blk_needs_flush_plug(tsk)) 3415 blk_schedule_flush_plug(tsk); 3416 } 3417 3418 asmlinkage __visible void __sched schedule(void) 3419 { 3420 struct task_struct *tsk = current; 3421 3422 sched_submit_work(tsk); 3423 do { 3424 preempt_disable(); 3425 __schedule(false); 3426 sched_preempt_enable_no_resched(); 3427 } while (need_resched()); 3428 } 3429 EXPORT_SYMBOL(schedule); 3430 3431 /* 3432 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3433 * state (have scheduled out non-voluntarily) by making sure that all 3434 * tasks have either left the run queue or have gone into user space. 3435 * As idle tasks do not do either, they must not ever be preempted 3436 * (schedule out non-voluntarily). 3437 * 3438 * schedule_idle() is similar to schedule_preempt_disable() except that it 3439 * never enables preemption because it does not call sched_submit_work(). 3440 */ 3441 void __sched schedule_idle(void) 3442 { 3443 /* 3444 * As this skips calling sched_submit_work(), which the idle task does 3445 * regardless because that function is a nop when the task is in a 3446 * TASK_RUNNING state, make sure this isn't used someplace that the 3447 * current task can be in any other state. Note, idle is always in the 3448 * TASK_RUNNING state. 3449 */ 3450 WARN_ON_ONCE(current->state); 3451 do { 3452 __schedule(false); 3453 } while (need_resched()); 3454 } 3455 3456 #ifdef CONFIG_CONTEXT_TRACKING 3457 asmlinkage __visible void __sched schedule_user(void) 3458 { 3459 /* 3460 * If we come here after a random call to set_need_resched(), 3461 * or we have been woken up remotely but the IPI has not yet arrived, 3462 * we haven't yet exited the RCU idle mode. Do it here manually until 3463 * we find a better solution. 3464 * 3465 * NB: There are buggy callers of this function. Ideally we 3466 * should warn if prev_state != CONTEXT_USER, but that will trigger 3467 * too frequently to make sense yet. 3468 */ 3469 enum ctx_state prev_state = exception_enter(); 3470 schedule(); 3471 exception_exit(prev_state); 3472 } 3473 #endif 3474 3475 /** 3476 * schedule_preempt_disabled - called with preemption disabled 3477 * 3478 * Returns with preemption disabled. Note: preempt_count must be 1 3479 */ 3480 void __sched schedule_preempt_disabled(void) 3481 { 3482 sched_preempt_enable_no_resched(); 3483 schedule(); 3484 preempt_disable(); 3485 } 3486 3487 static void __sched notrace preempt_schedule_common(void) 3488 { 3489 do { 3490 /* 3491 * Because the function tracer can trace preempt_count_sub() 3492 * and it also uses preempt_enable/disable_notrace(), if 3493 * NEED_RESCHED is set, the preempt_enable_notrace() called 3494 * by the function tracer will call this function again and 3495 * cause infinite recursion. 3496 * 3497 * Preemption must be disabled here before the function 3498 * tracer can trace. Break up preempt_disable() into two 3499 * calls. One to disable preemption without fear of being 3500 * traced. The other to still record the preemption latency, 3501 * which can also be traced by the function tracer. 3502 */ 3503 preempt_disable_notrace(); 3504 preempt_latency_start(1); 3505 __schedule(true); 3506 preempt_latency_stop(1); 3507 preempt_enable_no_resched_notrace(); 3508 3509 /* 3510 * Check again in case we missed a preemption opportunity 3511 * between schedule and now. 3512 */ 3513 } while (need_resched()); 3514 } 3515 3516 #ifdef CONFIG_PREEMPT 3517 /* 3518 * this is the entry point to schedule() from in-kernel preemption 3519 * off of preempt_enable. Kernel preemptions off return from interrupt 3520 * occur there and call schedule directly. 3521 */ 3522 asmlinkage __visible void __sched notrace preempt_schedule(void) 3523 { 3524 /* 3525 * If there is a non-zero preempt_count or interrupts are disabled, 3526 * we do not want to preempt the current task. Just return.. 3527 */ 3528 if (likely(!preemptible())) 3529 return; 3530 3531 preempt_schedule_common(); 3532 } 3533 NOKPROBE_SYMBOL(preempt_schedule); 3534 EXPORT_SYMBOL(preempt_schedule); 3535 3536 /** 3537 * preempt_schedule_notrace - preempt_schedule called by tracing 3538 * 3539 * The tracing infrastructure uses preempt_enable_notrace to prevent 3540 * recursion and tracing preempt enabling caused by the tracing 3541 * infrastructure itself. But as tracing can happen in areas coming 3542 * from userspace or just about to enter userspace, a preempt enable 3543 * can occur before user_exit() is called. This will cause the scheduler 3544 * to be called when the system is still in usermode. 3545 * 3546 * To prevent this, the preempt_enable_notrace will use this function 3547 * instead of preempt_schedule() to exit user context if needed before 3548 * calling the scheduler. 3549 */ 3550 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3551 { 3552 enum ctx_state prev_ctx; 3553 3554 if (likely(!preemptible())) 3555 return; 3556 3557 do { 3558 /* 3559 * Because the function tracer can trace preempt_count_sub() 3560 * and it also uses preempt_enable/disable_notrace(), if 3561 * NEED_RESCHED is set, the preempt_enable_notrace() called 3562 * by the function tracer will call this function again and 3563 * cause infinite recursion. 3564 * 3565 * Preemption must be disabled here before the function 3566 * tracer can trace. Break up preempt_disable() into two 3567 * calls. One to disable preemption without fear of being 3568 * traced. The other to still record the preemption latency, 3569 * which can also be traced by the function tracer. 3570 */ 3571 preempt_disable_notrace(); 3572 preempt_latency_start(1); 3573 /* 3574 * Needs preempt disabled in case user_exit() is traced 3575 * and the tracer calls preempt_enable_notrace() causing 3576 * an infinite recursion. 3577 */ 3578 prev_ctx = exception_enter(); 3579 __schedule(true); 3580 exception_exit(prev_ctx); 3581 3582 preempt_latency_stop(1); 3583 preempt_enable_no_resched_notrace(); 3584 } while (need_resched()); 3585 } 3586 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3587 3588 #endif /* CONFIG_PREEMPT */ 3589 3590 /* 3591 * this is the entry point to schedule() from kernel preemption 3592 * off of irq context. 3593 * Note, that this is called and return with irqs disabled. This will 3594 * protect us against recursive calling from irq. 3595 */ 3596 asmlinkage __visible void __sched preempt_schedule_irq(void) 3597 { 3598 enum ctx_state prev_state; 3599 3600 /* Catch callers which need to be fixed */ 3601 BUG_ON(preempt_count() || !irqs_disabled()); 3602 3603 prev_state = exception_enter(); 3604 3605 do { 3606 preempt_disable(); 3607 local_irq_enable(); 3608 __schedule(true); 3609 local_irq_disable(); 3610 sched_preempt_enable_no_resched(); 3611 } while (need_resched()); 3612 3613 exception_exit(prev_state); 3614 } 3615 3616 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3617 void *key) 3618 { 3619 return try_to_wake_up(curr->private, mode, wake_flags); 3620 } 3621 EXPORT_SYMBOL(default_wake_function); 3622 3623 #ifdef CONFIG_RT_MUTEXES 3624 3625 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3626 { 3627 if (pi_task) 3628 prio = min(prio, pi_task->prio); 3629 3630 return prio; 3631 } 3632 3633 static inline int rt_effective_prio(struct task_struct *p, int prio) 3634 { 3635 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3636 3637 return __rt_effective_prio(pi_task, prio); 3638 } 3639 3640 /* 3641 * rt_mutex_setprio - set the current priority of a task 3642 * @p: task to boost 3643 * @pi_task: donor task 3644 * 3645 * This function changes the 'effective' priority of a task. It does 3646 * not touch ->normal_prio like __setscheduler(). 3647 * 3648 * Used by the rt_mutex code to implement priority inheritance 3649 * logic. Call site only calls if the priority of the task changed. 3650 */ 3651 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3652 { 3653 int prio, oldprio, queued, running, queue_flag = 3654 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3655 const struct sched_class *prev_class; 3656 struct rq_flags rf; 3657 struct rq *rq; 3658 3659 /* XXX used to be waiter->prio, not waiter->task->prio */ 3660 prio = __rt_effective_prio(pi_task, p->normal_prio); 3661 3662 /* 3663 * If nothing changed; bail early. 3664 */ 3665 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3666 return; 3667 3668 rq = __task_rq_lock(p, &rf); 3669 update_rq_clock(rq); 3670 /* 3671 * Set under pi_lock && rq->lock, such that the value can be used under 3672 * either lock. 3673 * 3674 * Note that there is loads of tricky to make this pointer cache work 3675 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3676 * ensure a task is de-boosted (pi_task is set to NULL) before the 3677 * task is allowed to run again (and can exit). This ensures the pointer 3678 * points to a blocked task -- which guaratees the task is present. 3679 */ 3680 p->pi_top_task = pi_task; 3681 3682 /* 3683 * For FIFO/RR we only need to set prio, if that matches we're done. 3684 */ 3685 if (prio == p->prio && !dl_prio(prio)) 3686 goto out_unlock; 3687 3688 /* 3689 * Idle task boosting is a nono in general. There is one 3690 * exception, when PREEMPT_RT and NOHZ is active: 3691 * 3692 * The idle task calls get_next_timer_interrupt() and holds 3693 * the timer wheel base->lock on the CPU and another CPU wants 3694 * to access the timer (probably to cancel it). We can safely 3695 * ignore the boosting request, as the idle CPU runs this code 3696 * with interrupts disabled and will complete the lock 3697 * protected section without being interrupted. So there is no 3698 * real need to boost. 3699 */ 3700 if (unlikely(p == rq->idle)) { 3701 WARN_ON(p != rq->curr); 3702 WARN_ON(p->pi_blocked_on); 3703 goto out_unlock; 3704 } 3705 3706 trace_sched_pi_setprio(p, pi_task); 3707 oldprio = p->prio; 3708 3709 if (oldprio == prio) 3710 queue_flag &= ~DEQUEUE_MOVE; 3711 3712 prev_class = p->sched_class; 3713 queued = task_on_rq_queued(p); 3714 running = task_current(rq, p); 3715 if (queued) 3716 dequeue_task(rq, p, queue_flag); 3717 if (running) 3718 put_prev_task(rq, p); 3719 3720 /* 3721 * Boosting condition are: 3722 * 1. -rt task is running and holds mutex A 3723 * --> -dl task blocks on mutex A 3724 * 3725 * 2. -dl task is running and holds mutex A 3726 * --> -dl task blocks on mutex A and could preempt the 3727 * running task 3728 */ 3729 if (dl_prio(prio)) { 3730 if (!dl_prio(p->normal_prio) || 3731 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3732 p->dl.dl_boosted = 1; 3733 queue_flag |= ENQUEUE_REPLENISH; 3734 } else 3735 p->dl.dl_boosted = 0; 3736 p->sched_class = &dl_sched_class; 3737 } else if (rt_prio(prio)) { 3738 if (dl_prio(oldprio)) 3739 p->dl.dl_boosted = 0; 3740 if (oldprio < prio) 3741 queue_flag |= ENQUEUE_HEAD; 3742 p->sched_class = &rt_sched_class; 3743 } else { 3744 if (dl_prio(oldprio)) 3745 p->dl.dl_boosted = 0; 3746 if (rt_prio(oldprio)) 3747 p->rt.timeout = 0; 3748 p->sched_class = &fair_sched_class; 3749 } 3750 3751 p->prio = prio; 3752 3753 if (queued) 3754 enqueue_task(rq, p, queue_flag); 3755 if (running) 3756 set_curr_task(rq, p); 3757 3758 check_class_changed(rq, p, prev_class, oldprio); 3759 out_unlock: 3760 /* Avoid rq from going away on us: */ 3761 preempt_disable(); 3762 __task_rq_unlock(rq, &rf); 3763 3764 balance_callback(rq); 3765 preempt_enable(); 3766 } 3767 #else 3768 static inline int rt_effective_prio(struct task_struct *p, int prio) 3769 { 3770 return prio; 3771 } 3772 #endif 3773 3774 void set_user_nice(struct task_struct *p, long nice) 3775 { 3776 bool queued, running; 3777 int old_prio, delta; 3778 struct rq_flags rf; 3779 struct rq *rq; 3780 3781 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3782 return; 3783 /* 3784 * We have to be careful, if called from sys_setpriority(), 3785 * the task might be in the middle of scheduling on another CPU. 3786 */ 3787 rq = task_rq_lock(p, &rf); 3788 update_rq_clock(rq); 3789 3790 /* 3791 * The RT priorities are set via sched_setscheduler(), but we still 3792 * allow the 'normal' nice value to be set - but as expected 3793 * it wont have any effect on scheduling until the task is 3794 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3795 */ 3796 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3797 p->static_prio = NICE_TO_PRIO(nice); 3798 goto out_unlock; 3799 } 3800 queued = task_on_rq_queued(p); 3801 running = task_current(rq, p); 3802 if (queued) 3803 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3804 if (running) 3805 put_prev_task(rq, p); 3806 3807 p->static_prio = NICE_TO_PRIO(nice); 3808 set_load_weight(p); 3809 old_prio = p->prio; 3810 p->prio = effective_prio(p); 3811 delta = p->prio - old_prio; 3812 3813 if (queued) { 3814 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3815 /* 3816 * If the task increased its priority or is running and 3817 * lowered its priority, then reschedule its CPU: 3818 */ 3819 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3820 resched_curr(rq); 3821 } 3822 if (running) 3823 set_curr_task(rq, p); 3824 out_unlock: 3825 task_rq_unlock(rq, p, &rf); 3826 } 3827 EXPORT_SYMBOL(set_user_nice); 3828 3829 /* 3830 * can_nice - check if a task can reduce its nice value 3831 * @p: task 3832 * @nice: nice value 3833 */ 3834 int can_nice(const struct task_struct *p, const int nice) 3835 { 3836 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3837 int nice_rlim = nice_to_rlimit(nice); 3838 3839 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3840 capable(CAP_SYS_NICE)); 3841 } 3842 3843 #ifdef __ARCH_WANT_SYS_NICE 3844 3845 /* 3846 * sys_nice - change the priority of the current process. 3847 * @increment: priority increment 3848 * 3849 * sys_setpriority is a more generic, but much slower function that 3850 * does similar things. 3851 */ 3852 SYSCALL_DEFINE1(nice, int, increment) 3853 { 3854 long nice, retval; 3855 3856 /* 3857 * Setpriority might change our priority at the same moment. 3858 * We don't have to worry. Conceptually one call occurs first 3859 * and we have a single winner. 3860 */ 3861 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3862 nice = task_nice(current) + increment; 3863 3864 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3865 if (increment < 0 && !can_nice(current, nice)) 3866 return -EPERM; 3867 3868 retval = security_task_setnice(current, nice); 3869 if (retval) 3870 return retval; 3871 3872 set_user_nice(current, nice); 3873 return 0; 3874 } 3875 3876 #endif 3877 3878 /** 3879 * task_prio - return the priority value of a given task. 3880 * @p: the task in question. 3881 * 3882 * Return: The priority value as seen by users in /proc. 3883 * RT tasks are offset by -200. Normal tasks are centered 3884 * around 0, value goes from -16 to +15. 3885 */ 3886 int task_prio(const struct task_struct *p) 3887 { 3888 return p->prio - MAX_RT_PRIO; 3889 } 3890 3891 /** 3892 * idle_cpu - is a given CPU idle currently? 3893 * @cpu: the processor in question. 3894 * 3895 * Return: 1 if the CPU is currently idle. 0 otherwise. 3896 */ 3897 int idle_cpu(int cpu) 3898 { 3899 struct rq *rq = cpu_rq(cpu); 3900 3901 if (rq->curr != rq->idle) 3902 return 0; 3903 3904 if (rq->nr_running) 3905 return 0; 3906 3907 #ifdef CONFIG_SMP 3908 if (!llist_empty(&rq->wake_list)) 3909 return 0; 3910 #endif 3911 3912 return 1; 3913 } 3914 3915 /** 3916 * idle_task - return the idle task for a given CPU. 3917 * @cpu: the processor in question. 3918 * 3919 * Return: The idle task for the CPU @cpu. 3920 */ 3921 struct task_struct *idle_task(int cpu) 3922 { 3923 return cpu_rq(cpu)->idle; 3924 } 3925 3926 /** 3927 * find_process_by_pid - find a process with a matching PID value. 3928 * @pid: the pid in question. 3929 * 3930 * The task of @pid, if found. %NULL otherwise. 3931 */ 3932 static struct task_struct *find_process_by_pid(pid_t pid) 3933 { 3934 return pid ? find_task_by_vpid(pid) : current; 3935 } 3936 3937 /* 3938 * sched_setparam() passes in -1 for its policy, to let the functions 3939 * it calls know not to change it. 3940 */ 3941 #define SETPARAM_POLICY -1 3942 3943 static void __setscheduler_params(struct task_struct *p, 3944 const struct sched_attr *attr) 3945 { 3946 int policy = attr->sched_policy; 3947 3948 if (policy == SETPARAM_POLICY) 3949 policy = p->policy; 3950 3951 p->policy = policy; 3952 3953 if (dl_policy(policy)) 3954 __setparam_dl(p, attr); 3955 else if (fair_policy(policy)) 3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3957 3958 /* 3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3960 * !rt_policy. Always setting this ensures that things like 3961 * getparam()/getattr() don't report silly values for !rt tasks. 3962 */ 3963 p->rt_priority = attr->sched_priority; 3964 p->normal_prio = normal_prio(p); 3965 set_load_weight(p); 3966 } 3967 3968 /* Actually do priority change: must hold pi & rq lock. */ 3969 static void __setscheduler(struct rq *rq, struct task_struct *p, 3970 const struct sched_attr *attr, bool keep_boost) 3971 { 3972 __setscheduler_params(p, attr); 3973 3974 /* 3975 * Keep a potential priority boosting if called from 3976 * sched_setscheduler(). 3977 */ 3978 p->prio = normal_prio(p); 3979 if (keep_boost) 3980 p->prio = rt_effective_prio(p, p->prio); 3981 3982 if (dl_prio(p->prio)) 3983 p->sched_class = &dl_sched_class; 3984 else if (rt_prio(p->prio)) 3985 p->sched_class = &rt_sched_class; 3986 else 3987 p->sched_class = &fair_sched_class; 3988 } 3989 3990 /* 3991 * Check the target process has a UID that matches the current process's: 3992 */ 3993 static bool check_same_owner(struct task_struct *p) 3994 { 3995 const struct cred *cred = current_cred(), *pcred; 3996 bool match; 3997 3998 rcu_read_lock(); 3999 pcred = __task_cred(p); 4000 match = (uid_eq(cred->euid, pcred->euid) || 4001 uid_eq(cred->euid, pcred->uid)); 4002 rcu_read_unlock(); 4003 return match; 4004 } 4005 4006 static int __sched_setscheduler(struct task_struct *p, 4007 const struct sched_attr *attr, 4008 bool user, bool pi) 4009 { 4010 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4011 MAX_RT_PRIO - 1 - attr->sched_priority; 4012 int retval, oldprio, oldpolicy = -1, queued, running; 4013 int new_effective_prio, policy = attr->sched_policy; 4014 const struct sched_class *prev_class; 4015 struct rq_flags rf; 4016 int reset_on_fork; 4017 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4018 struct rq *rq; 4019 4020 /* The pi code expects interrupts enabled */ 4021 BUG_ON(pi && in_interrupt()); 4022 recheck: 4023 /* Double check policy once rq lock held: */ 4024 if (policy < 0) { 4025 reset_on_fork = p->sched_reset_on_fork; 4026 policy = oldpolicy = p->policy; 4027 } else { 4028 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4029 4030 if (!valid_policy(policy)) 4031 return -EINVAL; 4032 } 4033 4034 if (attr->sched_flags & 4035 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM)) 4036 return -EINVAL; 4037 4038 /* 4039 * Valid priorities for SCHED_FIFO and SCHED_RR are 4040 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4041 * SCHED_BATCH and SCHED_IDLE is 0. 4042 */ 4043 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4044 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4045 return -EINVAL; 4046 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4047 (rt_policy(policy) != (attr->sched_priority != 0))) 4048 return -EINVAL; 4049 4050 /* 4051 * Allow unprivileged RT tasks to decrease priority: 4052 */ 4053 if (user && !capable(CAP_SYS_NICE)) { 4054 if (fair_policy(policy)) { 4055 if (attr->sched_nice < task_nice(p) && 4056 !can_nice(p, attr->sched_nice)) 4057 return -EPERM; 4058 } 4059 4060 if (rt_policy(policy)) { 4061 unsigned long rlim_rtprio = 4062 task_rlimit(p, RLIMIT_RTPRIO); 4063 4064 /* Can't set/change the rt policy: */ 4065 if (policy != p->policy && !rlim_rtprio) 4066 return -EPERM; 4067 4068 /* Can't increase priority: */ 4069 if (attr->sched_priority > p->rt_priority && 4070 attr->sched_priority > rlim_rtprio) 4071 return -EPERM; 4072 } 4073 4074 /* 4075 * Can't set/change SCHED_DEADLINE policy at all for now 4076 * (safest behavior); in the future we would like to allow 4077 * unprivileged DL tasks to increase their relative deadline 4078 * or reduce their runtime (both ways reducing utilization) 4079 */ 4080 if (dl_policy(policy)) 4081 return -EPERM; 4082 4083 /* 4084 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4085 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4086 */ 4087 if (idle_policy(p->policy) && !idle_policy(policy)) { 4088 if (!can_nice(p, task_nice(p))) 4089 return -EPERM; 4090 } 4091 4092 /* Can't change other user's priorities: */ 4093 if (!check_same_owner(p)) 4094 return -EPERM; 4095 4096 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4097 if (p->sched_reset_on_fork && !reset_on_fork) 4098 return -EPERM; 4099 } 4100 4101 if (user) { 4102 retval = security_task_setscheduler(p); 4103 if (retval) 4104 return retval; 4105 } 4106 4107 /* 4108 * Make sure no PI-waiters arrive (or leave) while we are 4109 * changing the priority of the task: 4110 * 4111 * To be able to change p->policy safely, the appropriate 4112 * runqueue lock must be held. 4113 */ 4114 rq = task_rq_lock(p, &rf); 4115 update_rq_clock(rq); 4116 4117 /* 4118 * Changing the policy of the stop threads its a very bad idea: 4119 */ 4120 if (p == rq->stop) { 4121 task_rq_unlock(rq, p, &rf); 4122 return -EINVAL; 4123 } 4124 4125 /* 4126 * If not changing anything there's no need to proceed further, 4127 * but store a possible modification of reset_on_fork. 4128 */ 4129 if (unlikely(policy == p->policy)) { 4130 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4131 goto change; 4132 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4133 goto change; 4134 if (dl_policy(policy) && dl_param_changed(p, attr)) 4135 goto change; 4136 4137 p->sched_reset_on_fork = reset_on_fork; 4138 task_rq_unlock(rq, p, &rf); 4139 return 0; 4140 } 4141 change: 4142 4143 if (user) { 4144 #ifdef CONFIG_RT_GROUP_SCHED 4145 /* 4146 * Do not allow realtime tasks into groups that have no runtime 4147 * assigned. 4148 */ 4149 if (rt_bandwidth_enabled() && rt_policy(policy) && 4150 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4151 !task_group_is_autogroup(task_group(p))) { 4152 task_rq_unlock(rq, p, &rf); 4153 return -EPERM; 4154 } 4155 #endif 4156 #ifdef CONFIG_SMP 4157 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4158 cpumask_t *span = rq->rd->span; 4159 4160 /* 4161 * Don't allow tasks with an affinity mask smaller than 4162 * the entire root_domain to become SCHED_DEADLINE. We 4163 * will also fail if there's no bandwidth available. 4164 */ 4165 if (!cpumask_subset(span, &p->cpus_allowed) || 4166 rq->rd->dl_bw.bw == 0) { 4167 task_rq_unlock(rq, p, &rf); 4168 return -EPERM; 4169 } 4170 } 4171 #endif 4172 } 4173 4174 /* Re-check policy now with rq lock held: */ 4175 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4176 policy = oldpolicy = -1; 4177 task_rq_unlock(rq, p, &rf); 4178 goto recheck; 4179 } 4180 4181 /* 4182 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4183 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4184 * is available. 4185 */ 4186 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4187 task_rq_unlock(rq, p, &rf); 4188 return -EBUSY; 4189 } 4190 4191 p->sched_reset_on_fork = reset_on_fork; 4192 oldprio = p->prio; 4193 4194 if (pi) { 4195 /* 4196 * Take priority boosted tasks into account. If the new 4197 * effective priority is unchanged, we just store the new 4198 * normal parameters and do not touch the scheduler class and 4199 * the runqueue. This will be done when the task deboost 4200 * itself. 4201 */ 4202 new_effective_prio = rt_effective_prio(p, newprio); 4203 if (new_effective_prio == oldprio) 4204 queue_flags &= ~DEQUEUE_MOVE; 4205 } 4206 4207 queued = task_on_rq_queued(p); 4208 running = task_current(rq, p); 4209 if (queued) 4210 dequeue_task(rq, p, queue_flags); 4211 if (running) 4212 put_prev_task(rq, p); 4213 4214 prev_class = p->sched_class; 4215 __setscheduler(rq, p, attr, pi); 4216 4217 if (queued) { 4218 /* 4219 * We enqueue to tail when the priority of a task is 4220 * increased (user space view). 4221 */ 4222 if (oldprio < p->prio) 4223 queue_flags |= ENQUEUE_HEAD; 4224 4225 enqueue_task(rq, p, queue_flags); 4226 } 4227 if (running) 4228 set_curr_task(rq, p); 4229 4230 check_class_changed(rq, p, prev_class, oldprio); 4231 4232 /* Avoid rq from going away on us: */ 4233 preempt_disable(); 4234 task_rq_unlock(rq, p, &rf); 4235 4236 if (pi) 4237 rt_mutex_adjust_pi(p); 4238 4239 /* Run balance callbacks after we've adjusted the PI chain: */ 4240 balance_callback(rq); 4241 preempt_enable(); 4242 4243 return 0; 4244 } 4245 4246 static int _sched_setscheduler(struct task_struct *p, int policy, 4247 const struct sched_param *param, bool check) 4248 { 4249 struct sched_attr attr = { 4250 .sched_policy = policy, 4251 .sched_priority = param->sched_priority, 4252 .sched_nice = PRIO_TO_NICE(p->static_prio), 4253 }; 4254 4255 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4256 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4257 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4258 policy &= ~SCHED_RESET_ON_FORK; 4259 attr.sched_policy = policy; 4260 } 4261 4262 return __sched_setscheduler(p, &attr, check, true); 4263 } 4264 /** 4265 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4266 * @p: the task in question. 4267 * @policy: new policy. 4268 * @param: structure containing the new RT priority. 4269 * 4270 * Return: 0 on success. An error code otherwise. 4271 * 4272 * NOTE that the task may be already dead. 4273 */ 4274 int sched_setscheduler(struct task_struct *p, int policy, 4275 const struct sched_param *param) 4276 { 4277 return _sched_setscheduler(p, policy, param, true); 4278 } 4279 EXPORT_SYMBOL_GPL(sched_setscheduler); 4280 4281 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4282 { 4283 return __sched_setscheduler(p, attr, true, true); 4284 } 4285 EXPORT_SYMBOL_GPL(sched_setattr); 4286 4287 /** 4288 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4289 * @p: the task in question. 4290 * @policy: new policy. 4291 * @param: structure containing the new RT priority. 4292 * 4293 * Just like sched_setscheduler, only don't bother checking if the 4294 * current context has permission. For example, this is needed in 4295 * stop_machine(): we create temporary high priority worker threads, 4296 * but our caller might not have that capability. 4297 * 4298 * Return: 0 on success. An error code otherwise. 4299 */ 4300 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4301 const struct sched_param *param) 4302 { 4303 return _sched_setscheduler(p, policy, param, false); 4304 } 4305 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4306 4307 static int 4308 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4309 { 4310 struct sched_param lparam; 4311 struct task_struct *p; 4312 int retval; 4313 4314 if (!param || pid < 0) 4315 return -EINVAL; 4316 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4317 return -EFAULT; 4318 4319 rcu_read_lock(); 4320 retval = -ESRCH; 4321 p = find_process_by_pid(pid); 4322 if (p != NULL) 4323 retval = sched_setscheduler(p, policy, &lparam); 4324 rcu_read_unlock(); 4325 4326 return retval; 4327 } 4328 4329 /* 4330 * Mimics kernel/events/core.c perf_copy_attr(). 4331 */ 4332 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4333 { 4334 u32 size; 4335 int ret; 4336 4337 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4338 return -EFAULT; 4339 4340 /* Zero the full structure, so that a short copy will be nice: */ 4341 memset(attr, 0, sizeof(*attr)); 4342 4343 ret = get_user(size, &uattr->size); 4344 if (ret) 4345 return ret; 4346 4347 /* Bail out on silly large: */ 4348 if (size > PAGE_SIZE) 4349 goto err_size; 4350 4351 /* ABI compatibility quirk: */ 4352 if (!size) 4353 size = SCHED_ATTR_SIZE_VER0; 4354 4355 if (size < SCHED_ATTR_SIZE_VER0) 4356 goto err_size; 4357 4358 /* 4359 * If we're handed a bigger struct than we know of, 4360 * ensure all the unknown bits are 0 - i.e. new 4361 * user-space does not rely on any kernel feature 4362 * extensions we dont know about yet. 4363 */ 4364 if (size > sizeof(*attr)) { 4365 unsigned char __user *addr; 4366 unsigned char __user *end; 4367 unsigned char val; 4368 4369 addr = (void __user *)uattr + sizeof(*attr); 4370 end = (void __user *)uattr + size; 4371 4372 for (; addr < end; addr++) { 4373 ret = get_user(val, addr); 4374 if (ret) 4375 return ret; 4376 if (val) 4377 goto err_size; 4378 } 4379 size = sizeof(*attr); 4380 } 4381 4382 ret = copy_from_user(attr, uattr, size); 4383 if (ret) 4384 return -EFAULT; 4385 4386 /* 4387 * XXX: Do we want to be lenient like existing syscalls; or do we want 4388 * to be strict and return an error on out-of-bounds values? 4389 */ 4390 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4391 4392 return 0; 4393 4394 err_size: 4395 put_user(sizeof(*attr), &uattr->size); 4396 return -E2BIG; 4397 } 4398 4399 /** 4400 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4401 * @pid: the pid in question. 4402 * @policy: new policy. 4403 * @param: structure containing the new RT priority. 4404 * 4405 * Return: 0 on success. An error code otherwise. 4406 */ 4407 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4408 { 4409 if (policy < 0) 4410 return -EINVAL; 4411 4412 return do_sched_setscheduler(pid, policy, param); 4413 } 4414 4415 /** 4416 * sys_sched_setparam - set/change the RT priority of a thread 4417 * @pid: the pid in question. 4418 * @param: structure containing the new RT priority. 4419 * 4420 * Return: 0 on success. An error code otherwise. 4421 */ 4422 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4423 { 4424 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4425 } 4426 4427 /** 4428 * sys_sched_setattr - same as above, but with extended sched_attr 4429 * @pid: the pid in question. 4430 * @uattr: structure containing the extended parameters. 4431 * @flags: for future extension. 4432 */ 4433 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4434 unsigned int, flags) 4435 { 4436 struct sched_attr attr; 4437 struct task_struct *p; 4438 int retval; 4439 4440 if (!uattr || pid < 0 || flags) 4441 return -EINVAL; 4442 4443 retval = sched_copy_attr(uattr, &attr); 4444 if (retval) 4445 return retval; 4446 4447 if ((int)attr.sched_policy < 0) 4448 return -EINVAL; 4449 4450 rcu_read_lock(); 4451 retval = -ESRCH; 4452 p = find_process_by_pid(pid); 4453 if (p != NULL) 4454 retval = sched_setattr(p, &attr); 4455 rcu_read_unlock(); 4456 4457 return retval; 4458 } 4459 4460 /** 4461 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4462 * @pid: the pid in question. 4463 * 4464 * Return: On success, the policy of the thread. Otherwise, a negative error 4465 * code. 4466 */ 4467 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4468 { 4469 struct task_struct *p; 4470 int retval; 4471 4472 if (pid < 0) 4473 return -EINVAL; 4474 4475 retval = -ESRCH; 4476 rcu_read_lock(); 4477 p = find_process_by_pid(pid); 4478 if (p) { 4479 retval = security_task_getscheduler(p); 4480 if (!retval) 4481 retval = p->policy 4482 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4483 } 4484 rcu_read_unlock(); 4485 return retval; 4486 } 4487 4488 /** 4489 * sys_sched_getparam - get the RT priority of a thread 4490 * @pid: the pid in question. 4491 * @param: structure containing the RT priority. 4492 * 4493 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4494 * code. 4495 */ 4496 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4497 { 4498 struct sched_param lp = { .sched_priority = 0 }; 4499 struct task_struct *p; 4500 int retval; 4501 4502 if (!param || pid < 0) 4503 return -EINVAL; 4504 4505 rcu_read_lock(); 4506 p = find_process_by_pid(pid); 4507 retval = -ESRCH; 4508 if (!p) 4509 goto out_unlock; 4510 4511 retval = security_task_getscheduler(p); 4512 if (retval) 4513 goto out_unlock; 4514 4515 if (task_has_rt_policy(p)) 4516 lp.sched_priority = p->rt_priority; 4517 rcu_read_unlock(); 4518 4519 /* 4520 * This one might sleep, we cannot do it with a spinlock held ... 4521 */ 4522 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4523 4524 return retval; 4525 4526 out_unlock: 4527 rcu_read_unlock(); 4528 return retval; 4529 } 4530 4531 static int sched_read_attr(struct sched_attr __user *uattr, 4532 struct sched_attr *attr, 4533 unsigned int usize) 4534 { 4535 int ret; 4536 4537 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4538 return -EFAULT; 4539 4540 /* 4541 * If we're handed a smaller struct than we know of, 4542 * ensure all the unknown bits are 0 - i.e. old 4543 * user-space does not get uncomplete information. 4544 */ 4545 if (usize < sizeof(*attr)) { 4546 unsigned char *addr; 4547 unsigned char *end; 4548 4549 addr = (void *)attr + usize; 4550 end = (void *)attr + sizeof(*attr); 4551 4552 for (; addr < end; addr++) { 4553 if (*addr) 4554 return -EFBIG; 4555 } 4556 4557 attr->size = usize; 4558 } 4559 4560 ret = copy_to_user(uattr, attr, attr->size); 4561 if (ret) 4562 return -EFAULT; 4563 4564 return 0; 4565 } 4566 4567 /** 4568 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4569 * @pid: the pid in question. 4570 * @uattr: structure containing the extended parameters. 4571 * @size: sizeof(attr) for fwd/bwd comp. 4572 * @flags: for future extension. 4573 */ 4574 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4575 unsigned int, size, unsigned int, flags) 4576 { 4577 struct sched_attr attr = { 4578 .size = sizeof(struct sched_attr), 4579 }; 4580 struct task_struct *p; 4581 int retval; 4582 4583 if (!uattr || pid < 0 || size > PAGE_SIZE || 4584 size < SCHED_ATTR_SIZE_VER0 || flags) 4585 return -EINVAL; 4586 4587 rcu_read_lock(); 4588 p = find_process_by_pid(pid); 4589 retval = -ESRCH; 4590 if (!p) 4591 goto out_unlock; 4592 4593 retval = security_task_getscheduler(p); 4594 if (retval) 4595 goto out_unlock; 4596 4597 attr.sched_policy = p->policy; 4598 if (p->sched_reset_on_fork) 4599 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4600 if (task_has_dl_policy(p)) 4601 __getparam_dl(p, &attr); 4602 else if (task_has_rt_policy(p)) 4603 attr.sched_priority = p->rt_priority; 4604 else 4605 attr.sched_nice = task_nice(p); 4606 4607 rcu_read_unlock(); 4608 4609 retval = sched_read_attr(uattr, &attr, size); 4610 return retval; 4611 4612 out_unlock: 4613 rcu_read_unlock(); 4614 return retval; 4615 } 4616 4617 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4618 { 4619 cpumask_var_t cpus_allowed, new_mask; 4620 struct task_struct *p; 4621 int retval; 4622 4623 rcu_read_lock(); 4624 4625 p = find_process_by_pid(pid); 4626 if (!p) { 4627 rcu_read_unlock(); 4628 return -ESRCH; 4629 } 4630 4631 /* Prevent p going away */ 4632 get_task_struct(p); 4633 rcu_read_unlock(); 4634 4635 if (p->flags & PF_NO_SETAFFINITY) { 4636 retval = -EINVAL; 4637 goto out_put_task; 4638 } 4639 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4640 retval = -ENOMEM; 4641 goto out_put_task; 4642 } 4643 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4644 retval = -ENOMEM; 4645 goto out_free_cpus_allowed; 4646 } 4647 retval = -EPERM; 4648 if (!check_same_owner(p)) { 4649 rcu_read_lock(); 4650 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4651 rcu_read_unlock(); 4652 goto out_free_new_mask; 4653 } 4654 rcu_read_unlock(); 4655 } 4656 4657 retval = security_task_setscheduler(p); 4658 if (retval) 4659 goto out_free_new_mask; 4660 4661 4662 cpuset_cpus_allowed(p, cpus_allowed); 4663 cpumask_and(new_mask, in_mask, cpus_allowed); 4664 4665 /* 4666 * Since bandwidth control happens on root_domain basis, 4667 * if admission test is enabled, we only admit -deadline 4668 * tasks allowed to run on all the CPUs in the task's 4669 * root_domain. 4670 */ 4671 #ifdef CONFIG_SMP 4672 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4673 rcu_read_lock(); 4674 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4675 retval = -EBUSY; 4676 rcu_read_unlock(); 4677 goto out_free_new_mask; 4678 } 4679 rcu_read_unlock(); 4680 } 4681 #endif 4682 again: 4683 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4684 4685 if (!retval) { 4686 cpuset_cpus_allowed(p, cpus_allowed); 4687 if (!cpumask_subset(new_mask, cpus_allowed)) { 4688 /* 4689 * We must have raced with a concurrent cpuset 4690 * update. Just reset the cpus_allowed to the 4691 * cpuset's cpus_allowed 4692 */ 4693 cpumask_copy(new_mask, cpus_allowed); 4694 goto again; 4695 } 4696 } 4697 out_free_new_mask: 4698 free_cpumask_var(new_mask); 4699 out_free_cpus_allowed: 4700 free_cpumask_var(cpus_allowed); 4701 out_put_task: 4702 put_task_struct(p); 4703 return retval; 4704 } 4705 4706 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4707 struct cpumask *new_mask) 4708 { 4709 if (len < cpumask_size()) 4710 cpumask_clear(new_mask); 4711 else if (len > cpumask_size()) 4712 len = cpumask_size(); 4713 4714 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4715 } 4716 4717 /** 4718 * sys_sched_setaffinity - set the CPU affinity of a process 4719 * @pid: pid of the process 4720 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4721 * @user_mask_ptr: user-space pointer to the new CPU mask 4722 * 4723 * Return: 0 on success. An error code otherwise. 4724 */ 4725 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4726 unsigned long __user *, user_mask_ptr) 4727 { 4728 cpumask_var_t new_mask; 4729 int retval; 4730 4731 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4732 return -ENOMEM; 4733 4734 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4735 if (retval == 0) 4736 retval = sched_setaffinity(pid, new_mask); 4737 free_cpumask_var(new_mask); 4738 return retval; 4739 } 4740 4741 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4742 { 4743 struct task_struct *p; 4744 unsigned long flags; 4745 int retval; 4746 4747 rcu_read_lock(); 4748 4749 retval = -ESRCH; 4750 p = find_process_by_pid(pid); 4751 if (!p) 4752 goto out_unlock; 4753 4754 retval = security_task_getscheduler(p); 4755 if (retval) 4756 goto out_unlock; 4757 4758 raw_spin_lock_irqsave(&p->pi_lock, flags); 4759 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4760 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4761 4762 out_unlock: 4763 rcu_read_unlock(); 4764 4765 return retval; 4766 } 4767 4768 /** 4769 * sys_sched_getaffinity - get the CPU affinity of a process 4770 * @pid: pid of the process 4771 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4772 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4773 * 4774 * Return: size of CPU mask copied to user_mask_ptr on success. An 4775 * error code otherwise. 4776 */ 4777 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4778 unsigned long __user *, user_mask_ptr) 4779 { 4780 int ret; 4781 cpumask_var_t mask; 4782 4783 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4784 return -EINVAL; 4785 if (len & (sizeof(unsigned long)-1)) 4786 return -EINVAL; 4787 4788 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4789 return -ENOMEM; 4790 4791 ret = sched_getaffinity(pid, mask); 4792 if (ret == 0) { 4793 size_t retlen = min_t(size_t, len, cpumask_size()); 4794 4795 if (copy_to_user(user_mask_ptr, mask, retlen)) 4796 ret = -EFAULT; 4797 else 4798 ret = retlen; 4799 } 4800 free_cpumask_var(mask); 4801 4802 return ret; 4803 } 4804 4805 /** 4806 * sys_sched_yield - yield the current processor to other threads. 4807 * 4808 * This function yields the current CPU to other tasks. If there are no 4809 * other threads running on this CPU then this function will return. 4810 * 4811 * Return: 0. 4812 */ 4813 SYSCALL_DEFINE0(sched_yield) 4814 { 4815 struct rq_flags rf; 4816 struct rq *rq; 4817 4818 local_irq_disable(); 4819 rq = this_rq(); 4820 rq_lock(rq, &rf); 4821 4822 schedstat_inc(rq->yld_count); 4823 current->sched_class->yield_task(rq); 4824 4825 /* 4826 * Since we are going to call schedule() anyway, there's 4827 * no need to preempt or enable interrupts: 4828 */ 4829 preempt_disable(); 4830 rq_unlock(rq, &rf); 4831 sched_preempt_enable_no_resched(); 4832 4833 schedule(); 4834 4835 return 0; 4836 } 4837 4838 #ifndef CONFIG_PREEMPT 4839 int __sched _cond_resched(void) 4840 { 4841 if (should_resched(0)) { 4842 preempt_schedule_common(); 4843 return 1; 4844 } 4845 return 0; 4846 } 4847 EXPORT_SYMBOL(_cond_resched); 4848 #endif 4849 4850 /* 4851 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4852 * call schedule, and on return reacquire the lock. 4853 * 4854 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4855 * operations here to prevent schedule() from being called twice (once via 4856 * spin_unlock(), once by hand). 4857 */ 4858 int __cond_resched_lock(spinlock_t *lock) 4859 { 4860 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4861 int ret = 0; 4862 4863 lockdep_assert_held(lock); 4864 4865 if (spin_needbreak(lock) || resched) { 4866 spin_unlock(lock); 4867 if (resched) 4868 preempt_schedule_common(); 4869 else 4870 cpu_relax(); 4871 ret = 1; 4872 spin_lock(lock); 4873 } 4874 return ret; 4875 } 4876 EXPORT_SYMBOL(__cond_resched_lock); 4877 4878 int __sched __cond_resched_softirq(void) 4879 { 4880 BUG_ON(!in_softirq()); 4881 4882 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4883 local_bh_enable(); 4884 preempt_schedule_common(); 4885 local_bh_disable(); 4886 return 1; 4887 } 4888 return 0; 4889 } 4890 EXPORT_SYMBOL(__cond_resched_softirq); 4891 4892 /** 4893 * yield - yield the current processor to other threads. 4894 * 4895 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4896 * 4897 * The scheduler is at all times free to pick the calling task as the most 4898 * eligible task to run, if removing the yield() call from your code breaks 4899 * it, its already broken. 4900 * 4901 * Typical broken usage is: 4902 * 4903 * while (!event) 4904 * yield(); 4905 * 4906 * where one assumes that yield() will let 'the other' process run that will 4907 * make event true. If the current task is a SCHED_FIFO task that will never 4908 * happen. Never use yield() as a progress guarantee!! 4909 * 4910 * If you want to use yield() to wait for something, use wait_event(). 4911 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4912 * If you still want to use yield(), do not! 4913 */ 4914 void __sched yield(void) 4915 { 4916 set_current_state(TASK_RUNNING); 4917 sys_sched_yield(); 4918 } 4919 EXPORT_SYMBOL(yield); 4920 4921 /** 4922 * yield_to - yield the current processor to another thread in 4923 * your thread group, or accelerate that thread toward the 4924 * processor it's on. 4925 * @p: target task 4926 * @preempt: whether task preemption is allowed or not 4927 * 4928 * It's the caller's job to ensure that the target task struct 4929 * can't go away on us before we can do any checks. 4930 * 4931 * Return: 4932 * true (>0) if we indeed boosted the target task. 4933 * false (0) if we failed to boost the target. 4934 * -ESRCH if there's no task to yield to. 4935 */ 4936 int __sched yield_to(struct task_struct *p, bool preempt) 4937 { 4938 struct task_struct *curr = current; 4939 struct rq *rq, *p_rq; 4940 unsigned long flags; 4941 int yielded = 0; 4942 4943 local_irq_save(flags); 4944 rq = this_rq(); 4945 4946 again: 4947 p_rq = task_rq(p); 4948 /* 4949 * If we're the only runnable task on the rq and target rq also 4950 * has only one task, there's absolutely no point in yielding. 4951 */ 4952 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4953 yielded = -ESRCH; 4954 goto out_irq; 4955 } 4956 4957 double_rq_lock(rq, p_rq); 4958 if (task_rq(p) != p_rq) { 4959 double_rq_unlock(rq, p_rq); 4960 goto again; 4961 } 4962 4963 if (!curr->sched_class->yield_to_task) 4964 goto out_unlock; 4965 4966 if (curr->sched_class != p->sched_class) 4967 goto out_unlock; 4968 4969 if (task_running(p_rq, p) || p->state) 4970 goto out_unlock; 4971 4972 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4973 if (yielded) { 4974 schedstat_inc(rq->yld_count); 4975 /* 4976 * Make p's CPU reschedule; pick_next_entity takes care of 4977 * fairness. 4978 */ 4979 if (preempt && rq != p_rq) 4980 resched_curr(p_rq); 4981 } 4982 4983 out_unlock: 4984 double_rq_unlock(rq, p_rq); 4985 out_irq: 4986 local_irq_restore(flags); 4987 4988 if (yielded > 0) 4989 schedule(); 4990 4991 return yielded; 4992 } 4993 EXPORT_SYMBOL_GPL(yield_to); 4994 4995 int io_schedule_prepare(void) 4996 { 4997 int old_iowait = current->in_iowait; 4998 4999 current->in_iowait = 1; 5000 blk_schedule_flush_plug(current); 5001 5002 return old_iowait; 5003 } 5004 5005 void io_schedule_finish(int token) 5006 { 5007 current->in_iowait = token; 5008 } 5009 5010 /* 5011 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5012 * that process accounting knows that this is a task in IO wait state. 5013 */ 5014 long __sched io_schedule_timeout(long timeout) 5015 { 5016 int token; 5017 long ret; 5018 5019 token = io_schedule_prepare(); 5020 ret = schedule_timeout(timeout); 5021 io_schedule_finish(token); 5022 5023 return ret; 5024 } 5025 EXPORT_SYMBOL(io_schedule_timeout); 5026 5027 void io_schedule(void) 5028 { 5029 int token; 5030 5031 token = io_schedule_prepare(); 5032 schedule(); 5033 io_schedule_finish(token); 5034 } 5035 EXPORT_SYMBOL(io_schedule); 5036 5037 /** 5038 * sys_sched_get_priority_max - return maximum RT priority. 5039 * @policy: scheduling class. 5040 * 5041 * Return: On success, this syscall returns the maximum 5042 * rt_priority that can be used by a given scheduling class. 5043 * On failure, a negative error code is returned. 5044 */ 5045 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5046 { 5047 int ret = -EINVAL; 5048 5049 switch (policy) { 5050 case SCHED_FIFO: 5051 case SCHED_RR: 5052 ret = MAX_USER_RT_PRIO-1; 5053 break; 5054 case SCHED_DEADLINE: 5055 case SCHED_NORMAL: 5056 case SCHED_BATCH: 5057 case SCHED_IDLE: 5058 ret = 0; 5059 break; 5060 } 5061 return ret; 5062 } 5063 5064 /** 5065 * sys_sched_get_priority_min - return minimum RT priority. 5066 * @policy: scheduling class. 5067 * 5068 * Return: On success, this syscall returns the minimum 5069 * rt_priority that can be used by a given scheduling class. 5070 * On failure, a negative error code is returned. 5071 */ 5072 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5073 { 5074 int ret = -EINVAL; 5075 5076 switch (policy) { 5077 case SCHED_FIFO: 5078 case SCHED_RR: 5079 ret = 1; 5080 break; 5081 case SCHED_DEADLINE: 5082 case SCHED_NORMAL: 5083 case SCHED_BATCH: 5084 case SCHED_IDLE: 5085 ret = 0; 5086 } 5087 return ret; 5088 } 5089 5090 /** 5091 * sys_sched_rr_get_interval - return the default timeslice of a process. 5092 * @pid: pid of the process. 5093 * @interval: userspace pointer to the timeslice value. 5094 * 5095 * this syscall writes the default timeslice value of a given process 5096 * into the user-space timespec buffer. A value of '0' means infinity. 5097 * 5098 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5099 * an error code. 5100 */ 5101 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5102 struct timespec __user *, interval) 5103 { 5104 struct task_struct *p; 5105 unsigned int time_slice; 5106 struct rq_flags rf; 5107 struct timespec t; 5108 struct rq *rq; 5109 int retval; 5110 5111 if (pid < 0) 5112 return -EINVAL; 5113 5114 retval = -ESRCH; 5115 rcu_read_lock(); 5116 p = find_process_by_pid(pid); 5117 if (!p) 5118 goto out_unlock; 5119 5120 retval = security_task_getscheduler(p); 5121 if (retval) 5122 goto out_unlock; 5123 5124 rq = task_rq_lock(p, &rf); 5125 time_slice = 0; 5126 if (p->sched_class->get_rr_interval) 5127 time_slice = p->sched_class->get_rr_interval(rq, p); 5128 task_rq_unlock(rq, p, &rf); 5129 5130 rcu_read_unlock(); 5131 jiffies_to_timespec(time_slice, &t); 5132 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5133 return retval; 5134 5135 out_unlock: 5136 rcu_read_unlock(); 5137 return retval; 5138 } 5139 5140 void sched_show_task(struct task_struct *p) 5141 { 5142 unsigned long free = 0; 5143 int ppid; 5144 5145 if (!try_get_task_stack(p)) 5146 return; 5147 5148 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5149 5150 if (p->state == TASK_RUNNING) 5151 printk(KERN_CONT " running task "); 5152 #ifdef CONFIG_DEBUG_STACK_USAGE 5153 free = stack_not_used(p); 5154 #endif 5155 ppid = 0; 5156 rcu_read_lock(); 5157 if (pid_alive(p)) 5158 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5159 rcu_read_unlock(); 5160 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5161 task_pid_nr(p), ppid, 5162 (unsigned long)task_thread_info(p)->flags); 5163 5164 print_worker_info(KERN_INFO, p); 5165 show_stack(p, NULL); 5166 put_task_stack(p); 5167 } 5168 5169 static inline bool 5170 state_filter_match(unsigned long state_filter, struct task_struct *p) 5171 { 5172 /* no filter, everything matches */ 5173 if (!state_filter) 5174 return true; 5175 5176 /* filter, but doesn't match */ 5177 if (!(p->state & state_filter)) 5178 return false; 5179 5180 /* 5181 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5182 * TASK_KILLABLE). 5183 */ 5184 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5185 return false; 5186 5187 return true; 5188 } 5189 5190 5191 void show_state_filter(unsigned long state_filter) 5192 { 5193 struct task_struct *g, *p; 5194 5195 #if BITS_PER_LONG == 32 5196 printk(KERN_INFO 5197 " task PC stack pid father\n"); 5198 #else 5199 printk(KERN_INFO 5200 " task PC stack pid father\n"); 5201 #endif 5202 rcu_read_lock(); 5203 for_each_process_thread(g, p) { 5204 /* 5205 * reset the NMI-timeout, listing all files on a slow 5206 * console might take a lot of time: 5207 * Also, reset softlockup watchdogs on all CPUs, because 5208 * another CPU might be blocked waiting for us to process 5209 * an IPI. 5210 */ 5211 touch_nmi_watchdog(); 5212 touch_all_softlockup_watchdogs(); 5213 if (state_filter_match(state_filter, p)) 5214 sched_show_task(p); 5215 } 5216 5217 #ifdef CONFIG_SCHED_DEBUG 5218 if (!state_filter) 5219 sysrq_sched_debug_show(); 5220 #endif 5221 rcu_read_unlock(); 5222 /* 5223 * Only show locks if all tasks are dumped: 5224 */ 5225 if (!state_filter) 5226 debug_show_all_locks(); 5227 } 5228 5229 /** 5230 * init_idle - set up an idle thread for a given CPU 5231 * @idle: task in question 5232 * @cpu: CPU the idle task belongs to 5233 * 5234 * NOTE: this function does not set the idle thread's NEED_RESCHED 5235 * flag, to make booting more robust. 5236 */ 5237 void init_idle(struct task_struct *idle, int cpu) 5238 { 5239 struct rq *rq = cpu_rq(cpu); 5240 unsigned long flags; 5241 5242 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5243 raw_spin_lock(&rq->lock); 5244 5245 __sched_fork(0, idle); 5246 idle->state = TASK_RUNNING; 5247 idle->se.exec_start = sched_clock(); 5248 idle->flags |= PF_IDLE; 5249 5250 kasan_unpoison_task_stack(idle); 5251 5252 #ifdef CONFIG_SMP 5253 /* 5254 * Its possible that init_idle() gets called multiple times on a task, 5255 * in that case do_set_cpus_allowed() will not do the right thing. 5256 * 5257 * And since this is boot we can forgo the serialization. 5258 */ 5259 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5260 #endif 5261 /* 5262 * We're having a chicken and egg problem, even though we are 5263 * holding rq->lock, the CPU isn't yet set to this CPU so the 5264 * lockdep check in task_group() will fail. 5265 * 5266 * Similar case to sched_fork(). / Alternatively we could 5267 * use task_rq_lock() here and obtain the other rq->lock. 5268 * 5269 * Silence PROVE_RCU 5270 */ 5271 rcu_read_lock(); 5272 __set_task_cpu(idle, cpu); 5273 rcu_read_unlock(); 5274 5275 rq->curr = rq->idle = idle; 5276 idle->on_rq = TASK_ON_RQ_QUEUED; 5277 #ifdef CONFIG_SMP 5278 idle->on_cpu = 1; 5279 #endif 5280 raw_spin_unlock(&rq->lock); 5281 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5282 5283 /* Set the preempt count _outside_ the spinlocks! */ 5284 init_idle_preempt_count(idle, cpu); 5285 5286 /* 5287 * The idle tasks have their own, simple scheduling class: 5288 */ 5289 idle->sched_class = &idle_sched_class; 5290 ftrace_graph_init_idle_task(idle, cpu); 5291 vtime_init_idle(idle, cpu); 5292 #ifdef CONFIG_SMP 5293 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5294 #endif 5295 } 5296 5297 #ifdef CONFIG_SMP 5298 5299 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5300 const struct cpumask *trial) 5301 { 5302 int ret = 1; 5303 5304 if (!cpumask_weight(cur)) 5305 return ret; 5306 5307 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5308 5309 return ret; 5310 } 5311 5312 int task_can_attach(struct task_struct *p, 5313 const struct cpumask *cs_cpus_allowed) 5314 { 5315 int ret = 0; 5316 5317 /* 5318 * Kthreads which disallow setaffinity shouldn't be moved 5319 * to a new cpuset; we don't want to change their CPU 5320 * affinity and isolating such threads by their set of 5321 * allowed nodes is unnecessary. Thus, cpusets are not 5322 * applicable for such threads. This prevents checking for 5323 * success of set_cpus_allowed_ptr() on all attached tasks 5324 * before cpus_allowed may be changed. 5325 */ 5326 if (p->flags & PF_NO_SETAFFINITY) { 5327 ret = -EINVAL; 5328 goto out; 5329 } 5330 5331 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5332 cs_cpus_allowed)) 5333 ret = dl_task_can_attach(p, cs_cpus_allowed); 5334 5335 out: 5336 return ret; 5337 } 5338 5339 bool sched_smp_initialized __read_mostly; 5340 5341 #ifdef CONFIG_NUMA_BALANCING 5342 /* Migrate current task p to target_cpu */ 5343 int migrate_task_to(struct task_struct *p, int target_cpu) 5344 { 5345 struct migration_arg arg = { p, target_cpu }; 5346 int curr_cpu = task_cpu(p); 5347 5348 if (curr_cpu == target_cpu) 5349 return 0; 5350 5351 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5352 return -EINVAL; 5353 5354 /* TODO: This is not properly updating schedstats */ 5355 5356 trace_sched_move_numa(p, curr_cpu, target_cpu); 5357 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5358 } 5359 5360 /* 5361 * Requeue a task on a given node and accurately track the number of NUMA 5362 * tasks on the runqueues 5363 */ 5364 void sched_setnuma(struct task_struct *p, int nid) 5365 { 5366 bool queued, running; 5367 struct rq_flags rf; 5368 struct rq *rq; 5369 5370 rq = task_rq_lock(p, &rf); 5371 queued = task_on_rq_queued(p); 5372 running = task_current(rq, p); 5373 5374 if (queued) 5375 dequeue_task(rq, p, DEQUEUE_SAVE); 5376 if (running) 5377 put_prev_task(rq, p); 5378 5379 p->numa_preferred_nid = nid; 5380 5381 if (queued) 5382 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5383 if (running) 5384 set_curr_task(rq, p); 5385 task_rq_unlock(rq, p, &rf); 5386 } 5387 #endif /* CONFIG_NUMA_BALANCING */ 5388 5389 #ifdef CONFIG_HOTPLUG_CPU 5390 /* 5391 * Ensure that the idle task is using init_mm right before its CPU goes 5392 * offline. 5393 */ 5394 void idle_task_exit(void) 5395 { 5396 struct mm_struct *mm = current->active_mm; 5397 5398 BUG_ON(cpu_online(smp_processor_id())); 5399 5400 if (mm != &init_mm) { 5401 switch_mm(mm, &init_mm, current); 5402 finish_arch_post_lock_switch(); 5403 } 5404 mmdrop(mm); 5405 } 5406 5407 /* 5408 * Since this CPU is going 'away' for a while, fold any nr_active delta 5409 * we might have. Assumes we're called after migrate_tasks() so that the 5410 * nr_active count is stable. We need to take the teardown thread which 5411 * is calling this into account, so we hand in adjust = 1 to the load 5412 * calculation. 5413 * 5414 * Also see the comment "Global load-average calculations". 5415 */ 5416 static void calc_load_migrate(struct rq *rq) 5417 { 5418 long delta = calc_load_fold_active(rq, 1); 5419 if (delta) 5420 atomic_long_add(delta, &calc_load_tasks); 5421 } 5422 5423 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5424 { 5425 } 5426 5427 static const struct sched_class fake_sched_class = { 5428 .put_prev_task = put_prev_task_fake, 5429 }; 5430 5431 static struct task_struct fake_task = { 5432 /* 5433 * Avoid pull_{rt,dl}_task() 5434 */ 5435 .prio = MAX_PRIO + 1, 5436 .sched_class = &fake_sched_class, 5437 }; 5438 5439 /* 5440 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5441 * try_to_wake_up()->select_task_rq(). 5442 * 5443 * Called with rq->lock held even though we'er in stop_machine() and 5444 * there's no concurrency possible, we hold the required locks anyway 5445 * because of lock validation efforts. 5446 */ 5447 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5448 { 5449 struct rq *rq = dead_rq; 5450 struct task_struct *next, *stop = rq->stop; 5451 struct rq_flags orf = *rf; 5452 int dest_cpu; 5453 5454 /* 5455 * Fudge the rq selection such that the below task selection loop 5456 * doesn't get stuck on the currently eligible stop task. 5457 * 5458 * We're currently inside stop_machine() and the rq is either stuck 5459 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5460 * either way we should never end up calling schedule() until we're 5461 * done here. 5462 */ 5463 rq->stop = NULL; 5464 5465 /* 5466 * put_prev_task() and pick_next_task() sched 5467 * class method both need to have an up-to-date 5468 * value of rq->clock[_task] 5469 */ 5470 update_rq_clock(rq); 5471 5472 for (;;) { 5473 /* 5474 * There's this thread running, bail when that's the only 5475 * remaining thread: 5476 */ 5477 if (rq->nr_running == 1) 5478 break; 5479 5480 /* 5481 * pick_next_task() assumes pinned rq->lock: 5482 */ 5483 next = pick_next_task(rq, &fake_task, rf); 5484 BUG_ON(!next); 5485 put_prev_task(rq, next); 5486 5487 /* 5488 * Rules for changing task_struct::cpus_allowed are holding 5489 * both pi_lock and rq->lock, such that holding either 5490 * stabilizes the mask. 5491 * 5492 * Drop rq->lock is not quite as disastrous as it usually is 5493 * because !cpu_active at this point, which means load-balance 5494 * will not interfere. Also, stop-machine. 5495 */ 5496 rq_unlock(rq, rf); 5497 raw_spin_lock(&next->pi_lock); 5498 rq_relock(rq, rf); 5499 5500 /* 5501 * Since we're inside stop-machine, _nothing_ should have 5502 * changed the task, WARN if weird stuff happened, because in 5503 * that case the above rq->lock drop is a fail too. 5504 */ 5505 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5506 raw_spin_unlock(&next->pi_lock); 5507 continue; 5508 } 5509 5510 /* Find suitable destination for @next, with force if needed. */ 5511 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5512 rq = __migrate_task(rq, rf, next, dest_cpu); 5513 if (rq != dead_rq) { 5514 rq_unlock(rq, rf); 5515 rq = dead_rq; 5516 *rf = orf; 5517 rq_relock(rq, rf); 5518 } 5519 raw_spin_unlock(&next->pi_lock); 5520 } 5521 5522 rq->stop = stop; 5523 } 5524 #endif /* CONFIG_HOTPLUG_CPU */ 5525 5526 void set_rq_online(struct rq *rq) 5527 { 5528 if (!rq->online) { 5529 const struct sched_class *class; 5530 5531 cpumask_set_cpu(rq->cpu, rq->rd->online); 5532 rq->online = 1; 5533 5534 for_each_class(class) { 5535 if (class->rq_online) 5536 class->rq_online(rq); 5537 } 5538 } 5539 } 5540 5541 void set_rq_offline(struct rq *rq) 5542 { 5543 if (rq->online) { 5544 const struct sched_class *class; 5545 5546 for_each_class(class) { 5547 if (class->rq_offline) 5548 class->rq_offline(rq); 5549 } 5550 5551 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5552 rq->online = 0; 5553 } 5554 } 5555 5556 static void set_cpu_rq_start_time(unsigned int cpu) 5557 { 5558 struct rq *rq = cpu_rq(cpu); 5559 5560 rq->age_stamp = sched_clock_cpu(cpu); 5561 } 5562 5563 /* 5564 * used to mark begin/end of suspend/resume: 5565 */ 5566 static int num_cpus_frozen; 5567 5568 /* 5569 * Update cpusets according to cpu_active mask. If cpusets are 5570 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5571 * around partition_sched_domains(). 5572 * 5573 * If we come here as part of a suspend/resume, don't touch cpusets because we 5574 * want to restore it back to its original state upon resume anyway. 5575 */ 5576 static void cpuset_cpu_active(void) 5577 { 5578 if (cpuhp_tasks_frozen) { 5579 /* 5580 * num_cpus_frozen tracks how many CPUs are involved in suspend 5581 * resume sequence. As long as this is not the last online 5582 * operation in the resume sequence, just build a single sched 5583 * domain, ignoring cpusets. 5584 */ 5585 partition_sched_domains(1, NULL, NULL); 5586 if (--num_cpus_frozen) 5587 return; 5588 /* 5589 * This is the last CPU online operation. So fall through and 5590 * restore the original sched domains by considering the 5591 * cpuset configurations. 5592 */ 5593 cpuset_force_rebuild(); 5594 } 5595 cpuset_update_active_cpus(); 5596 } 5597 5598 static int cpuset_cpu_inactive(unsigned int cpu) 5599 { 5600 if (!cpuhp_tasks_frozen) { 5601 if (dl_cpu_busy(cpu)) 5602 return -EBUSY; 5603 cpuset_update_active_cpus(); 5604 } else { 5605 num_cpus_frozen++; 5606 partition_sched_domains(1, NULL, NULL); 5607 } 5608 return 0; 5609 } 5610 5611 int sched_cpu_activate(unsigned int cpu) 5612 { 5613 struct rq *rq = cpu_rq(cpu); 5614 struct rq_flags rf; 5615 5616 set_cpu_active(cpu, true); 5617 5618 if (sched_smp_initialized) { 5619 sched_domains_numa_masks_set(cpu); 5620 cpuset_cpu_active(); 5621 } 5622 5623 /* 5624 * Put the rq online, if not already. This happens: 5625 * 5626 * 1) In the early boot process, because we build the real domains 5627 * after all CPUs have been brought up. 5628 * 5629 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5630 * domains. 5631 */ 5632 rq_lock_irqsave(rq, &rf); 5633 if (rq->rd) { 5634 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5635 set_rq_online(rq); 5636 } 5637 rq_unlock_irqrestore(rq, &rf); 5638 5639 update_max_interval(); 5640 5641 return 0; 5642 } 5643 5644 int sched_cpu_deactivate(unsigned int cpu) 5645 { 5646 int ret; 5647 5648 set_cpu_active(cpu, false); 5649 /* 5650 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5651 * users of this state to go away such that all new such users will 5652 * observe it. 5653 * 5654 * Do sync before park smpboot threads to take care the rcu boost case. 5655 */ 5656 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5657 5658 if (!sched_smp_initialized) 5659 return 0; 5660 5661 ret = cpuset_cpu_inactive(cpu); 5662 if (ret) { 5663 set_cpu_active(cpu, true); 5664 return ret; 5665 } 5666 sched_domains_numa_masks_clear(cpu); 5667 return 0; 5668 } 5669 5670 static void sched_rq_cpu_starting(unsigned int cpu) 5671 { 5672 struct rq *rq = cpu_rq(cpu); 5673 5674 rq->calc_load_update = calc_load_update; 5675 update_max_interval(); 5676 } 5677 5678 int sched_cpu_starting(unsigned int cpu) 5679 { 5680 set_cpu_rq_start_time(cpu); 5681 sched_rq_cpu_starting(cpu); 5682 return 0; 5683 } 5684 5685 #ifdef CONFIG_HOTPLUG_CPU 5686 int sched_cpu_dying(unsigned int cpu) 5687 { 5688 struct rq *rq = cpu_rq(cpu); 5689 struct rq_flags rf; 5690 5691 /* Handle pending wakeups and then migrate everything off */ 5692 sched_ttwu_pending(); 5693 5694 rq_lock_irqsave(rq, &rf); 5695 if (rq->rd) { 5696 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5697 set_rq_offline(rq); 5698 } 5699 migrate_tasks(rq, &rf); 5700 BUG_ON(rq->nr_running != 1); 5701 rq_unlock_irqrestore(rq, &rf); 5702 5703 calc_load_migrate(rq); 5704 update_max_interval(); 5705 nohz_balance_exit_idle(cpu); 5706 hrtick_clear(rq); 5707 return 0; 5708 } 5709 #endif 5710 5711 #ifdef CONFIG_SCHED_SMT 5712 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5713 5714 static void sched_init_smt(void) 5715 { 5716 /* 5717 * We've enumerated all CPUs and will assume that if any CPU 5718 * has SMT siblings, CPU0 will too. 5719 */ 5720 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5721 static_branch_enable(&sched_smt_present); 5722 } 5723 #else 5724 static inline void sched_init_smt(void) { } 5725 #endif 5726 5727 void __init sched_init_smp(void) 5728 { 5729 cpumask_var_t non_isolated_cpus; 5730 5731 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 5732 5733 sched_init_numa(); 5734 5735 /* 5736 * There's no userspace yet to cause hotplug operations; hence all the 5737 * CPU masks are stable and all blatant races in the below code cannot 5738 * happen. 5739 */ 5740 mutex_lock(&sched_domains_mutex); 5741 sched_init_domains(cpu_active_mask); 5742 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 5743 if (cpumask_empty(non_isolated_cpus)) 5744 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 5745 mutex_unlock(&sched_domains_mutex); 5746 5747 /* Move init over to a non-isolated CPU */ 5748 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 5749 BUG(); 5750 sched_init_granularity(); 5751 free_cpumask_var(non_isolated_cpus); 5752 5753 init_sched_rt_class(); 5754 init_sched_dl_class(); 5755 5756 sched_init_smt(); 5757 5758 sched_smp_initialized = true; 5759 } 5760 5761 static int __init migration_init(void) 5762 { 5763 sched_rq_cpu_starting(smp_processor_id()); 5764 return 0; 5765 } 5766 early_initcall(migration_init); 5767 5768 #else 5769 void __init sched_init_smp(void) 5770 { 5771 sched_init_granularity(); 5772 } 5773 #endif /* CONFIG_SMP */ 5774 5775 int in_sched_functions(unsigned long addr) 5776 { 5777 return in_lock_functions(addr) || 5778 (addr >= (unsigned long)__sched_text_start 5779 && addr < (unsigned long)__sched_text_end); 5780 } 5781 5782 #ifdef CONFIG_CGROUP_SCHED 5783 /* 5784 * Default task group. 5785 * Every task in system belongs to this group at bootup. 5786 */ 5787 struct task_group root_task_group; 5788 LIST_HEAD(task_groups); 5789 5790 /* Cacheline aligned slab cache for task_group */ 5791 static struct kmem_cache *task_group_cache __read_mostly; 5792 #endif 5793 5794 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5795 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5796 5797 void __init sched_init(void) 5798 { 5799 int i, j; 5800 unsigned long alloc_size = 0, ptr; 5801 5802 sched_clock_init(); 5803 wait_bit_init(); 5804 5805 #ifdef CONFIG_FAIR_GROUP_SCHED 5806 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5807 #endif 5808 #ifdef CONFIG_RT_GROUP_SCHED 5809 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5810 #endif 5811 if (alloc_size) { 5812 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5813 5814 #ifdef CONFIG_FAIR_GROUP_SCHED 5815 root_task_group.se = (struct sched_entity **)ptr; 5816 ptr += nr_cpu_ids * sizeof(void **); 5817 5818 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5819 ptr += nr_cpu_ids * sizeof(void **); 5820 5821 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5822 #ifdef CONFIG_RT_GROUP_SCHED 5823 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5824 ptr += nr_cpu_ids * sizeof(void **); 5825 5826 root_task_group.rt_rq = (struct rt_rq **)ptr; 5827 ptr += nr_cpu_ids * sizeof(void **); 5828 5829 #endif /* CONFIG_RT_GROUP_SCHED */ 5830 } 5831 #ifdef CONFIG_CPUMASK_OFFSTACK 5832 for_each_possible_cpu(i) { 5833 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5834 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5835 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5836 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5837 } 5838 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5839 5840 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5841 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5842 5843 #ifdef CONFIG_SMP 5844 init_defrootdomain(); 5845 #endif 5846 5847 #ifdef CONFIG_RT_GROUP_SCHED 5848 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5849 global_rt_period(), global_rt_runtime()); 5850 #endif /* CONFIG_RT_GROUP_SCHED */ 5851 5852 #ifdef CONFIG_CGROUP_SCHED 5853 task_group_cache = KMEM_CACHE(task_group, 0); 5854 5855 list_add(&root_task_group.list, &task_groups); 5856 INIT_LIST_HEAD(&root_task_group.children); 5857 INIT_LIST_HEAD(&root_task_group.siblings); 5858 autogroup_init(&init_task); 5859 #endif /* CONFIG_CGROUP_SCHED */ 5860 5861 for_each_possible_cpu(i) { 5862 struct rq *rq; 5863 5864 rq = cpu_rq(i); 5865 raw_spin_lock_init(&rq->lock); 5866 rq->nr_running = 0; 5867 rq->calc_load_active = 0; 5868 rq->calc_load_update = jiffies + LOAD_FREQ; 5869 init_cfs_rq(&rq->cfs); 5870 init_rt_rq(&rq->rt); 5871 init_dl_rq(&rq->dl); 5872 #ifdef CONFIG_FAIR_GROUP_SCHED 5873 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5874 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5875 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5876 /* 5877 * How much CPU bandwidth does root_task_group get? 5878 * 5879 * In case of task-groups formed thr' the cgroup filesystem, it 5880 * gets 100% of the CPU resources in the system. This overall 5881 * system CPU resource is divided among the tasks of 5882 * root_task_group and its child task-groups in a fair manner, 5883 * based on each entity's (task or task-group's) weight 5884 * (se->load.weight). 5885 * 5886 * In other words, if root_task_group has 10 tasks of weight 5887 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5888 * then A0's share of the CPU resource is: 5889 * 5890 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5891 * 5892 * We achieve this by letting root_task_group's tasks sit 5893 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5894 */ 5895 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 5896 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 5897 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5898 5899 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 5900 #ifdef CONFIG_RT_GROUP_SCHED 5901 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 5902 #endif 5903 5904 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 5905 rq->cpu_load[j] = 0; 5906 5907 #ifdef CONFIG_SMP 5908 rq->sd = NULL; 5909 rq->rd = NULL; 5910 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 5911 rq->balance_callback = NULL; 5912 rq->active_balance = 0; 5913 rq->next_balance = jiffies; 5914 rq->push_cpu = 0; 5915 rq->cpu = i; 5916 rq->online = 0; 5917 rq->idle_stamp = 0; 5918 rq->avg_idle = 2*sysctl_sched_migration_cost; 5919 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 5920 5921 INIT_LIST_HEAD(&rq->cfs_tasks); 5922 5923 rq_attach_root(rq, &def_root_domain); 5924 #ifdef CONFIG_NO_HZ_COMMON 5925 rq->last_load_update_tick = jiffies; 5926 rq->nohz_flags = 0; 5927 #endif 5928 #ifdef CONFIG_NO_HZ_FULL 5929 rq->last_sched_tick = 0; 5930 #endif 5931 #endif /* CONFIG_SMP */ 5932 init_rq_hrtick(rq); 5933 atomic_set(&rq->nr_iowait, 0); 5934 } 5935 5936 set_load_weight(&init_task); 5937 5938 /* 5939 * The boot idle thread does lazy MMU switching as well: 5940 */ 5941 mmgrab(&init_mm); 5942 enter_lazy_tlb(&init_mm, current); 5943 5944 /* 5945 * Make us the idle thread. Technically, schedule() should not be 5946 * called from this thread, however somewhere below it might be, 5947 * but because we are the idle thread, we just pick up running again 5948 * when this runqueue becomes "idle". 5949 */ 5950 init_idle(current, smp_processor_id()); 5951 5952 calc_load_update = jiffies + LOAD_FREQ; 5953 5954 #ifdef CONFIG_SMP 5955 /* May be allocated at isolcpus cmdline parse time */ 5956 if (cpu_isolated_map == NULL) 5957 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 5958 idle_thread_set_boot_cpu(); 5959 set_cpu_rq_start_time(smp_processor_id()); 5960 #endif 5961 init_sched_fair_class(); 5962 5963 init_schedstats(); 5964 5965 scheduler_running = 1; 5966 } 5967 5968 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5969 static inline int preempt_count_equals(int preempt_offset) 5970 { 5971 int nested = preempt_count() + rcu_preempt_depth(); 5972 5973 return (nested == preempt_offset); 5974 } 5975 5976 void __might_sleep(const char *file, int line, int preempt_offset) 5977 { 5978 /* 5979 * Blocking primitives will set (and therefore destroy) current->state, 5980 * since we will exit with TASK_RUNNING make sure we enter with it, 5981 * otherwise we will destroy state. 5982 */ 5983 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 5984 "do not call blocking ops when !TASK_RUNNING; " 5985 "state=%lx set at [<%p>] %pS\n", 5986 current->state, 5987 (void *)current->task_state_change, 5988 (void *)current->task_state_change); 5989 5990 ___might_sleep(file, line, preempt_offset); 5991 } 5992 EXPORT_SYMBOL(__might_sleep); 5993 5994 void ___might_sleep(const char *file, int line, int preempt_offset) 5995 { 5996 /* Ratelimiting timestamp: */ 5997 static unsigned long prev_jiffy; 5998 5999 unsigned long preempt_disable_ip; 6000 6001 /* WARN_ON_ONCE() by default, no rate limit required: */ 6002 rcu_sleep_check(); 6003 6004 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6005 !is_idle_task(current)) || 6006 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6007 oops_in_progress) 6008 return; 6009 6010 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6011 return; 6012 prev_jiffy = jiffies; 6013 6014 /* Save this before calling printk(), since that will clobber it: */ 6015 preempt_disable_ip = get_preempt_disable_ip(current); 6016 6017 printk(KERN_ERR 6018 "BUG: sleeping function called from invalid context at %s:%d\n", 6019 file, line); 6020 printk(KERN_ERR 6021 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6022 in_atomic(), irqs_disabled(), 6023 current->pid, current->comm); 6024 6025 if (task_stack_end_corrupted(current)) 6026 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6027 6028 debug_show_held_locks(current); 6029 if (irqs_disabled()) 6030 print_irqtrace_events(current); 6031 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6032 && !preempt_count_equals(preempt_offset)) { 6033 pr_err("Preemption disabled at:"); 6034 print_ip_sym(preempt_disable_ip); 6035 pr_cont("\n"); 6036 } 6037 dump_stack(); 6038 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6039 } 6040 EXPORT_SYMBOL(___might_sleep); 6041 #endif 6042 6043 #ifdef CONFIG_MAGIC_SYSRQ 6044 void normalize_rt_tasks(void) 6045 { 6046 struct task_struct *g, *p; 6047 struct sched_attr attr = { 6048 .sched_policy = SCHED_NORMAL, 6049 }; 6050 6051 read_lock(&tasklist_lock); 6052 for_each_process_thread(g, p) { 6053 /* 6054 * Only normalize user tasks: 6055 */ 6056 if (p->flags & PF_KTHREAD) 6057 continue; 6058 6059 p->se.exec_start = 0; 6060 schedstat_set(p->se.statistics.wait_start, 0); 6061 schedstat_set(p->se.statistics.sleep_start, 0); 6062 schedstat_set(p->se.statistics.block_start, 0); 6063 6064 if (!dl_task(p) && !rt_task(p)) { 6065 /* 6066 * Renice negative nice level userspace 6067 * tasks back to 0: 6068 */ 6069 if (task_nice(p) < 0) 6070 set_user_nice(p, 0); 6071 continue; 6072 } 6073 6074 __sched_setscheduler(p, &attr, false, false); 6075 } 6076 read_unlock(&tasklist_lock); 6077 } 6078 6079 #endif /* CONFIG_MAGIC_SYSRQ */ 6080 6081 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6082 /* 6083 * These functions are only useful for the IA64 MCA handling, or kdb. 6084 * 6085 * They can only be called when the whole system has been 6086 * stopped - every CPU needs to be quiescent, and no scheduling 6087 * activity can take place. Using them for anything else would 6088 * be a serious bug, and as a result, they aren't even visible 6089 * under any other configuration. 6090 */ 6091 6092 /** 6093 * curr_task - return the current task for a given CPU. 6094 * @cpu: the processor in question. 6095 * 6096 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6097 * 6098 * Return: The current task for @cpu. 6099 */ 6100 struct task_struct *curr_task(int cpu) 6101 { 6102 return cpu_curr(cpu); 6103 } 6104 6105 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6106 6107 #ifdef CONFIG_IA64 6108 /** 6109 * set_curr_task - set the current task for a given CPU. 6110 * @cpu: the processor in question. 6111 * @p: the task pointer to set. 6112 * 6113 * Description: This function must only be used when non-maskable interrupts 6114 * are serviced on a separate stack. It allows the architecture to switch the 6115 * notion of the current task on a CPU in a non-blocking manner. This function 6116 * must be called with all CPU's synchronized, and interrupts disabled, the 6117 * and caller must save the original value of the current task (see 6118 * curr_task() above) and restore that value before reenabling interrupts and 6119 * re-starting the system. 6120 * 6121 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6122 */ 6123 void ia64_set_curr_task(int cpu, struct task_struct *p) 6124 { 6125 cpu_curr(cpu) = p; 6126 } 6127 6128 #endif 6129 6130 #ifdef CONFIG_CGROUP_SCHED 6131 /* task_group_lock serializes the addition/removal of task groups */ 6132 static DEFINE_SPINLOCK(task_group_lock); 6133 6134 static void sched_free_group(struct task_group *tg) 6135 { 6136 free_fair_sched_group(tg); 6137 free_rt_sched_group(tg); 6138 autogroup_free(tg); 6139 kmem_cache_free(task_group_cache, tg); 6140 } 6141 6142 /* allocate runqueue etc for a new task group */ 6143 struct task_group *sched_create_group(struct task_group *parent) 6144 { 6145 struct task_group *tg; 6146 6147 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6148 if (!tg) 6149 return ERR_PTR(-ENOMEM); 6150 6151 if (!alloc_fair_sched_group(tg, parent)) 6152 goto err; 6153 6154 if (!alloc_rt_sched_group(tg, parent)) 6155 goto err; 6156 6157 return tg; 6158 6159 err: 6160 sched_free_group(tg); 6161 return ERR_PTR(-ENOMEM); 6162 } 6163 6164 void sched_online_group(struct task_group *tg, struct task_group *parent) 6165 { 6166 unsigned long flags; 6167 6168 spin_lock_irqsave(&task_group_lock, flags); 6169 list_add_rcu(&tg->list, &task_groups); 6170 6171 /* Root should already exist: */ 6172 WARN_ON(!parent); 6173 6174 tg->parent = parent; 6175 INIT_LIST_HEAD(&tg->children); 6176 list_add_rcu(&tg->siblings, &parent->children); 6177 spin_unlock_irqrestore(&task_group_lock, flags); 6178 6179 online_fair_sched_group(tg); 6180 } 6181 6182 /* rcu callback to free various structures associated with a task group */ 6183 static void sched_free_group_rcu(struct rcu_head *rhp) 6184 { 6185 /* Now it should be safe to free those cfs_rqs: */ 6186 sched_free_group(container_of(rhp, struct task_group, rcu)); 6187 } 6188 6189 void sched_destroy_group(struct task_group *tg) 6190 { 6191 /* Wait for possible concurrent references to cfs_rqs complete: */ 6192 call_rcu(&tg->rcu, sched_free_group_rcu); 6193 } 6194 6195 void sched_offline_group(struct task_group *tg) 6196 { 6197 unsigned long flags; 6198 6199 /* End participation in shares distribution: */ 6200 unregister_fair_sched_group(tg); 6201 6202 spin_lock_irqsave(&task_group_lock, flags); 6203 list_del_rcu(&tg->list); 6204 list_del_rcu(&tg->siblings); 6205 spin_unlock_irqrestore(&task_group_lock, flags); 6206 } 6207 6208 static void sched_change_group(struct task_struct *tsk, int type) 6209 { 6210 struct task_group *tg; 6211 6212 /* 6213 * All callers are synchronized by task_rq_lock(); we do not use RCU 6214 * which is pointless here. Thus, we pass "true" to task_css_check() 6215 * to prevent lockdep warnings. 6216 */ 6217 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6218 struct task_group, css); 6219 tg = autogroup_task_group(tsk, tg); 6220 tsk->sched_task_group = tg; 6221 6222 #ifdef CONFIG_FAIR_GROUP_SCHED 6223 if (tsk->sched_class->task_change_group) 6224 tsk->sched_class->task_change_group(tsk, type); 6225 else 6226 #endif 6227 set_task_rq(tsk, task_cpu(tsk)); 6228 } 6229 6230 /* 6231 * Change task's runqueue when it moves between groups. 6232 * 6233 * The caller of this function should have put the task in its new group by 6234 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6235 * its new group. 6236 */ 6237 void sched_move_task(struct task_struct *tsk) 6238 { 6239 int queued, running, queue_flags = 6240 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6241 struct rq_flags rf; 6242 struct rq *rq; 6243 6244 rq = task_rq_lock(tsk, &rf); 6245 update_rq_clock(rq); 6246 6247 running = task_current(rq, tsk); 6248 queued = task_on_rq_queued(tsk); 6249 6250 if (queued) 6251 dequeue_task(rq, tsk, queue_flags); 6252 if (running) 6253 put_prev_task(rq, tsk); 6254 6255 sched_change_group(tsk, TASK_MOVE_GROUP); 6256 6257 if (queued) 6258 enqueue_task(rq, tsk, queue_flags); 6259 if (running) 6260 set_curr_task(rq, tsk); 6261 6262 task_rq_unlock(rq, tsk, &rf); 6263 } 6264 6265 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6266 { 6267 return css ? container_of(css, struct task_group, css) : NULL; 6268 } 6269 6270 static struct cgroup_subsys_state * 6271 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6272 { 6273 struct task_group *parent = css_tg(parent_css); 6274 struct task_group *tg; 6275 6276 if (!parent) { 6277 /* This is early initialization for the top cgroup */ 6278 return &root_task_group.css; 6279 } 6280 6281 tg = sched_create_group(parent); 6282 if (IS_ERR(tg)) 6283 return ERR_PTR(-ENOMEM); 6284 6285 return &tg->css; 6286 } 6287 6288 /* Expose task group only after completing cgroup initialization */ 6289 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6290 { 6291 struct task_group *tg = css_tg(css); 6292 struct task_group *parent = css_tg(css->parent); 6293 6294 if (parent) 6295 sched_online_group(tg, parent); 6296 return 0; 6297 } 6298 6299 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6300 { 6301 struct task_group *tg = css_tg(css); 6302 6303 sched_offline_group(tg); 6304 } 6305 6306 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6307 { 6308 struct task_group *tg = css_tg(css); 6309 6310 /* 6311 * Relies on the RCU grace period between css_released() and this. 6312 */ 6313 sched_free_group(tg); 6314 } 6315 6316 /* 6317 * This is called before wake_up_new_task(), therefore we really only 6318 * have to set its group bits, all the other stuff does not apply. 6319 */ 6320 static void cpu_cgroup_fork(struct task_struct *task) 6321 { 6322 struct rq_flags rf; 6323 struct rq *rq; 6324 6325 rq = task_rq_lock(task, &rf); 6326 6327 update_rq_clock(rq); 6328 sched_change_group(task, TASK_SET_GROUP); 6329 6330 task_rq_unlock(rq, task, &rf); 6331 } 6332 6333 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6334 { 6335 struct task_struct *task; 6336 struct cgroup_subsys_state *css; 6337 int ret = 0; 6338 6339 cgroup_taskset_for_each(task, css, tset) { 6340 #ifdef CONFIG_RT_GROUP_SCHED 6341 if (!sched_rt_can_attach(css_tg(css), task)) 6342 return -EINVAL; 6343 #else 6344 /* We don't support RT-tasks being in separate groups */ 6345 if (task->sched_class != &fair_sched_class) 6346 return -EINVAL; 6347 #endif 6348 /* 6349 * Serialize against wake_up_new_task() such that if its 6350 * running, we're sure to observe its full state. 6351 */ 6352 raw_spin_lock_irq(&task->pi_lock); 6353 /* 6354 * Avoid calling sched_move_task() before wake_up_new_task() 6355 * has happened. This would lead to problems with PELT, due to 6356 * move wanting to detach+attach while we're not attached yet. 6357 */ 6358 if (task->state == TASK_NEW) 6359 ret = -EINVAL; 6360 raw_spin_unlock_irq(&task->pi_lock); 6361 6362 if (ret) 6363 break; 6364 } 6365 return ret; 6366 } 6367 6368 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6369 { 6370 struct task_struct *task; 6371 struct cgroup_subsys_state *css; 6372 6373 cgroup_taskset_for_each(task, css, tset) 6374 sched_move_task(task); 6375 } 6376 6377 #ifdef CONFIG_FAIR_GROUP_SCHED 6378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6379 struct cftype *cftype, u64 shareval) 6380 { 6381 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6382 } 6383 6384 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6385 struct cftype *cft) 6386 { 6387 struct task_group *tg = css_tg(css); 6388 6389 return (u64) scale_load_down(tg->shares); 6390 } 6391 6392 #ifdef CONFIG_CFS_BANDWIDTH 6393 static DEFINE_MUTEX(cfs_constraints_mutex); 6394 6395 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6396 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6397 6398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6399 6400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6401 { 6402 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6403 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6404 6405 if (tg == &root_task_group) 6406 return -EINVAL; 6407 6408 /* 6409 * Ensure we have at some amount of bandwidth every period. This is 6410 * to prevent reaching a state of large arrears when throttled via 6411 * entity_tick() resulting in prolonged exit starvation. 6412 */ 6413 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6414 return -EINVAL; 6415 6416 /* 6417 * Likewise, bound things on the otherside by preventing insane quota 6418 * periods. This also allows us to normalize in computing quota 6419 * feasibility. 6420 */ 6421 if (period > max_cfs_quota_period) 6422 return -EINVAL; 6423 6424 /* 6425 * Prevent race between setting of cfs_rq->runtime_enabled and 6426 * unthrottle_offline_cfs_rqs(). 6427 */ 6428 get_online_cpus(); 6429 mutex_lock(&cfs_constraints_mutex); 6430 ret = __cfs_schedulable(tg, period, quota); 6431 if (ret) 6432 goto out_unlock; 6433 6434 runtime_enabled = quota != RUNTIME_INF; 6435 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6436 /* 6437 * If we need to toggle cfs_bandwidth_used, off->on must occur 6438 * before making related changes, and on->off must occur afterwards 6439 */ 6440 if (runtime_enabled && !runtime_was_enabled) 6441 cfs_bandwidth_usage_inc(); 6442 raw_spin_lock_irq(&cfs_b->lock); 6443 cfs_b->period = ns_to_ktime(period); 6444 cfs_b->quota = quota; 6445 6446 __refill_cfs_bandwidth_runtime(cfs_b); 6447 6448 /* Restart the period timer (if active) to handle new period expiry: */ 6449 if (runtime_enabled) 6450 start_cfs_bandwidth(cfs_b); 6451 6452 raw_spin_unlock_irq(&cfs_b->lock); 6453 6454 for_each_online_cpu(i) { 6455 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6456 struct rq *rq = cfs_rq->rq; 6457 struct rq_flags rf; 6458 6459 rq_lock_irq(rq, &rf); 6460 cfs_rq->runtime_enabled = runtime_enabled; 6461 cfs_rq->runtime_remaining = 0; 6462 6463 if (cfs_rq->throttled) 6464 unthrottle_cfs_rq(cfs_rq); 6465 rq_unlock_irq(rq, &rf); 6466 } 6467 if (runtime_was_enabled && !runtime_enabled) 6468 cfs_bandwidth_usage_dec(); 6469 out_unlock: 6470 mutex_unlock(&cfs_constraints_mutex); 6471 put_online_cpus(); 6472 6473 return ret; 6474 } 6475 6476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6477 { 6478 u64 quota, period; 6479 6480 period = ktime_to_ns(tg->cfs_bandwidth.period); 6481 if (cfs_quota_us < 0) 6482 quota = RUNTIME_INF; 6483 else 6484 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6485 6486 return tg_set_cfs_bandwidth(tg, period, quota); 6487 } 6488 6489 long tg_get_cfs_quota(struct task_group *tg) 6490 { 6491 u64 quota_us; 6492 6493 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6494 return -1; 6495 6496 quota_us = tg->cfs_bandwidth.quota; 6497 do_div(quota_us, NSEC_PER_USEC); 6498 6499 return quota_us; 6500 } 6501 6502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6503 { 6504 u64 quota, period; 6505 6506 period = (u64)cfs_period_us * NSEC_PER_USEC; 6507 quota = tg->cfs_bandwidth.quota; 6508 6509 return tg_set_cfs_bandwidth(tg, period, quota); 6510 } 6511 6512 long tg_get_cfs_period(struct task_group *tg) 6513 { 6514 u64 cfs_period_us; 6515 6516 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6517 do_div(cfs_period_us, NSEC_PER_USEC); 6518 6519 return cfs_period_us; 6520 } 6521 6522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6523 struct cftype *cft) 6524 { 6525 return tg_get_cfs_quota(css_tg(css)); 6526 } 6527 6528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6529 struct cftype *cftype, s64 cfs_quota_us) 6530 { 6531 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6532 } 6533 6534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6535 struct cftype *cft) 6536 { 6537 return tg_get_cfs_period(css_tg(css)); 6538 } 6539 6540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6541 struct cftype *cftype, u64 cfs_period_us) 6542 { 6543 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6544 } 6545 6546 struct cfs_schedulable_data { 6547 struct task_group *tg; 6548 u64 period, quota; 6549 }; 6550 6551 /* 6552 * normalize group quota/period to be quota/max_period 6553 * note: units are usecs 6554 */ 6555 static u64 normalize_cfs_quota(struct task_group *tg, 6556 struct cfs_schedulable_data *d) 6557 { 6558 u64 quota, period; 6559 6560 if (tg == d->tg) { 6561 period = d->period; 6562 quota = d->quota; 6563 } else { 6564 period = tg_get_cfs_period(tg); 6565 quota = tg_get_cfs_quota(tg); 6566 } 6567 6568 /* note: these should typically be equivalent */ 6569 if (quota == RUNTIME_INF || quota == -1) 6570 return RUNTIME_INF; 6571 6572 return to_ratio(period, quota); 6573 } 6574 6575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6576 { 6577 struct cfs_schedulable_data *d = data; 6578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6579 s64 quota = 0, parent_quota = -1; 6580 6581 if (!tg->parent) { 6582 quota = RUNTIME_INF; 6583 } else { 6584 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6585 6586 quota = normalize_cfs_quota(tg, d); 6587 parent_quota = parent_b->hierarchical_quota; 6588 6589 /* 6590 * Ensure max(child_quota) <= parent_quota, inherit when no 6591 * limit is set: 6592 */ 6593 if (quota == RUNTIME_INF) 6594 quota = parent_quota; 6595 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6596 return -EINVAL; 6597 } 6598 cfs_b->hierarchical_quota = quota; 6599 6600 return 0; 6601 } 6602 6603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6604 { 6605 int ret; 6606 struct cfs_schedulable_data data = { 6607 .tg = tg, 6608 .period = period, 6609 .quota = quota, 6610 }; 6611 6612 if (quota != RUNTIME_INF) { 6613 do_div(data.period, NSEC_PER_USEC); 6614 do_div(data.quota, NSEC_PER_USEC); 6615 } 6616 6617 rcu_read_lock(); 6618 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6619 rcu_read_unlock(); 6620 6621 return ret; 6622 } 6623 6624 static int cpu_stats_show(struct seq_file *sf, void *v) 6625 { 6626 struct task_group *tg = css_tg(seq_css(sf)); 6627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6628 6629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6632 6633 return 0; 6634 } 6635 #endif /* CONFIG_CFS_BANDWIDTH */ 6636 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6637 6638 #ifdef CONFIG_RT_GROUP_SCHED 6639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6640 struct cftype *cft, s64 val) 6641 { 6642 return sched_group_set_rt_runtime(css_tg(css), val); 6643 } 6644 6645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6646 struct cftype *cft) 6647 { 6648 return sched_group_rt_runtime(css_tg(css)); 6649 } 6650 6651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6652 struct cftype *cftype, u64 rt_period_us) 6653 { 6654 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6655 } 6656 6657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6658 struct cftype *cft) 6659 { 6660 return sched_group_rt_period(css_tg(css)); 6661 } 6662 #endif /* CONFIG_RT_GROUP_SCHED */ 6663 6664 static struct cftype cpu_files[] = { 6665 #ifdef CONFIG_FAIR_GROUP_SCHED 6666 { 6667 .name = "shares", 6668 .read_u64 = cpu_shares_read_u64, 6669 .write_u64 = cpu_shares_write_u64, 6670 }, 6671 #endif 6672 #ifdef CONFIG_CFS_BANDWIDTH 6673 { 6674 .name = "cfs_quota_us", 6675 .read_s64 = cpu_cfs_quota_read_s64, 6676 .write_s64 = cpu_cfs_quota_write_s64, 6677 }, 6678 { 6679 .name = "cfs_period_us", 6680 .read_u64 = cpu_cfs_period_read_u64, 6681 .write_u64 = cpu_cfs_period_write_u64, 6682 }, 6683 { 6684 .name = "stat", 6685 .seq_show = cpu_stats_show, 6686 }, 6687 #endif 6688 #ifdef CONFIG_RT_GROUP_SCHED 6689 { 6690 .name = "rt_runtime_us", 6691 .read_s64 = cpu_rt_runtime_read, 6692 .write_s64 = cpu_rt_runtime_write, 6693 }, 6694 { 6695 .name = "rt_period_us", 6696 .read_u64 = cpu_rt_period_read_uint, 6697 .write_u64 = cpu_rt_period_write_uint, 6698 }, 6699 #endif 6700 { } /* Terminate */ 6701 }; 6702 6703 struct cgroup_subsys cpu_cgrp_subsys = { 6704 .css_alloc = cpu_cgroup_css_alloc, 6705 .css_online = cpu_cgroup_css_online, 6706 .css_released = cpu_cgroup_css_released, 6707 .css_free = cpu_cgroup_css_free, 6708 .fork = cpu_cgroup_fork, 6709 .can_attach = cpu_cgroup_can_attach, 6710 .attach = cpu_cgroup_attach, 6711 .legacy_cftypes = cpu_files, 6712 .early_init = true, 6713 }; 6714 6715 #endif /* CONFIG_CGROUP_SCHED */ 6716 6717 void dump_cpu_task(int cpu) 6718 { 6719 pr_info("Task dump for CPU %d:\n", cpu); 6720 sched_show_task(cpu_curr(cpu)); 6721 } 6722 6723 /* 6724 * Nice levels are multiplicative, with a gentle 10% change for every 6725 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 6726 * nice 1, it will get ~10% less CPU time than another CPU-bound task 6727 * that remained on nice 0. 6728 * 6729 * The "10% effect" is relative and cumulative: from _any_ nice level, 6730 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 6731 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 6732 * If a task goes up by ~10% and another task goes down by ~10% then 6733 * the relative distance between them is ~25%.) 6734 */ 6735 const int sched_prio_to_weight[40] = { 6736 /* -20 */ 88761, 71755, 56483, 46273, 36291, 6737 /* -15 */ 29154, 23254, 18705, 14949, 11916, 6738 /* -10 */ 9548, 7620, 6100, 4904, 3906, 6739 /* -5 */ 3121, 2501, 1991, 1586, 1277, 6740 /* 0 */ 1024, 820, 655, 526, 423, 6741 /* 5 */ 335, 272, 215, 172, 137, 6742 /* 10 */ 110, 87, 70, 56, 45, 6743 /* 15 */ 36, 29, 23, 18, 15, 6744 }; 6745 6746 /* 6747 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 6748 * 6749 * In cases where the weight does not change often, we can use the 6750 * precalculated inverse to speed up arithmetics by turning divisions 6751 * into multiplications: 6752 */ 6753 const u32 sched_prio_to_wmult[40] = { 6754 /* -20 */ 48388, 59856, 76040, 92818, 118348, 6755 /* -15 */ 147320, 184698, 229616, 287308, 360437, 6756 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 6757 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 6758 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 6759 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 6760 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 6761 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 6762 }; 6763