1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > READ_ONCE(uc_rq->value)) 1547 WRITE_ONCE(uc_rq->value, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = READ_ONCE(uc_rq->value); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 WRITE_ONCE(uc_rq->value, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 const struct cpumask *new_mask, 2196 u32 flags); 2197 2198 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2199 { 2200 if (likely(!p->migration_disabled)) 2201 return; 2202 2203 if (p->cpus_ptr != &p->cpus_mask) 2204 return; 2205 2206 /* 2207 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2208 */ 2209 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2210 } 2211 2212 void migrate_disable(void) 2213 { 2214 struct task_struct *p = current; 2215 2216 if (p->migration_disabled) { 2217 p->migration_disabled++; 2218 return; 2219 } 2220 2221 preempt_disable(); 2222 this_rq()->nr_pinned++; 2223 p->migration_disabled = 1; 2224 preempt_enable(); 2225 } 2226 EXPORT_SYMBOL_GPL(migrate_disable); 2227 2228 void migrate_enable(void) 2229 { 2230 struct task_struct *p = current; 2231 2232 if (p->migration_disabled > 1) { 2233 p->migration_disabled--; 2234 return; 2235 } 2236 2237 if (WARN_ON_ONCE(!p->migration_disabled)) 2238 return; 2239 2240 /* 2241 * Ensure stop_task runs either before or after this, and that 2242 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2243 */ 2244 preempt_disable(); 2245 if (p->cpus_ptr != &p->cpus_mask) 2246 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2247 /* 2248 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2249 * regular cpus_mask, otherwise things that race (eg. 2250 * select_fallback_rq) get confused. 2251 */ 2252 barrier(); 2253 p->migration_disabled = 0; 2254 this_rq()->nr_pinned--; 2255 preempt_enable(); 2256 } 2257 EXPORT_SYMBOL_GPL(migrate_enable); 2258 2259 static inline bool rq_has_pinned_tasks(struct rq *rq) 2260 { 2261 return rq->nr_pinned; 2262 } 2263 2264 /* 2265 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2266 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2267 */ 2268 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2269 { 2270 /* When not in the task's cpumask, no point in looking further. */ 2271 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2272 return false; 2273 2274 /* migrate_disabled() must be allowed to finish. */ 2275 if (is_migration_disabled(p)) 2276 return cpu_online(cpu); 2277 2278 /* Non kernel threads are not allowed during either online or offline. */ 2279 if (!(p->flags & PF_KTHREAD)) 2280 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2281 2282 /* KTHREAD_IS_PER_CPU is always allowed. */ 2283 if (kthread_is_per_cpu(p)) 2284 return cpu_online(cpu); 2285 2286 /* Regular kernel threads don't get to stay during offline. */ 2287 if (cpu_dying(cpu)) 2288 return false; 2289 2290 /* But are allowed during online. */ 2291 return cpu_online(cpu); 2292 } 2293 2294 /* 2295 * This is how migration works: 2296 * 2297 * 1) we invoke migration_cpu_stop() on the target CPU using 2298 * stop_one_cpu(). 2299 * 2) stopper starts to run (implicitly forcing the migrated thread 2300 * off the CPU) 2301 * 3) it checks whether the migrated task is still in the wrong runqueue. 2302 * 4) if it's in the wrong runqueue then the migration thread removes 2303 * it and puts it into the right queue. 2304 * 5) stopper completes and stop_one_cpu() returns and the migration 2305 * is done. 2306 */ 2307 2308 /* 2309 * move_queued_task - move a queued task to new rq. 2310 * 2311 * Returns (locked) new rq. Old rq's lock is released. 2312 */ 2313 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2314 struct task_struct *p, int new_cpu) 2315 { 2316 lockdep_assert_rq_held(rq); 2317 2318 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2319 set_task_cpu(p, new_cpu); 2320 rq_unlock(rq, rf); 2321 2322 rq = cpu_rq(new_cpu); 2323 2324 rq_lock(rq, rf); 2325 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2326 activate_task(rq, p, 0); 2327 check_preempt_curr(rq, p, 0); 2328 2329 return rq; 2330 } 2331 2332 struct migration_arg { 2333 struct task_struct *task; 2334 int dest_cpu; 2335 struct set_affinity_pending *pending; 2336 }; 2337 2338 /* 2339 * @refs: number of wait_for_completion() 2340 * @stop_pending: is @stop_work in use 2341 */ 2342 struct set_affinity_pending { 2343 refcount_t refs; 2344 unsigned int stop_pending; 2345 struct completion done; 2346 struct cpu_stop_work stop_work; 2347 struct migration_arg arg; 2348 }; 2349 2350 /* 2351 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2352 * this because either it can't run here any more (set_cpus_allowed() 2353 * away from this CPU, or CPU going down), or because we're 2354 * attempting to rebalance this task on exec (sched_exec). 2355 * 2356 * So we race with normal scheduler movements, but that's OK, as long 2357 * as the task is no longer on this CPU. 2358 */ 2359 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2360 struct task_struct *p, int dest_cpu) 2361 { 2362 /* Affinity changed (again). */ 2363 if (!is_cpu_allowed(p, dest_cpu)) 2364 return rq; 2365 2366 update_rq_clock(rq); 2367 rq = move_queued_task(rq, rf, p, dest_cpu); 2368 2369 return rq; 2370 } 2371 2372 /* 2373 * migration_cpu_stop - this will be executed by a highprio stopper thread 2374 * and performs thread migration by bumping thread off CPU then 2375 * 'pushing' onto another runqueue. 2376 */ 2377 static int migration_cpu_stop(void *data) 2378 { 2379 struct migration_arg *arg = data; 2380 struct set_affinity_pending *pending = arg->pending; 2381 struct task_struct *p = arg->task; 2382 struct rq *rq = this_rq(); 2383 bool complete = false; 2384 struct rq_flags rf; 2385 2386 /* 2387 * The original target CPU might have gone down and we might 2388 * be on another CPU but it doesn't matter. 2389 */ 2390 local_irq_save(rf.flags); 2391 /* 2392 * We need to explicitly wake pending tasks before running 2393 * __migrate_task() such that we will not miss enforcing cpus_ptr 2394 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2395 */ 2396 flush_smp_call_function_queue(); 2397 2398 raw_spin_lock(&p->pi_lock); 2399 rq_lock(rq, &rf); 2400 2401 /* 2402 * If we were passed a pending, then ->stop_pending was set, thus 2403 * p->migration_pending must have remained stable. 2404 */ 2405 WARN_ON_ONCE(pending && pending != p->migration_pending); 2406 2407 /* 2408 * If task_rq(p) != rq, it cannot be migrated here, because we're 2409 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2410 * we're holding p->pi_lock. 2411 */ 2412 if (task_rq(p) == rq) { 2413 if (is_migration_disabled(p)) 2414 goto out; 2415 2416 if (pending) { 2417 p->migration_pending = NULL; 2418 complete = true; 2419 2420 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2421 goto out; 2422 } 2423 2424 if (task_on_rq_queued(p)) 2425 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2426 else 2427 p->wake_cpu = arg->dest_cpu; 2428 2429 /* 2430 * XXX __migrate_task() can fail, at which point we might end 2431 * up running on a dodgy CPU, AFAICT this can only happen 2432 * during CPU hotplug, at which point we'll get pushed out 2433 * anyway, so it's probably not a big deal. 2434 */ 2435 2436 } else if (pending) { 2437 /* 2438 * This happens when we get migrated between migrate_enable()'s 2439 * preempt_enable() and scheduling the stopper task. At that 2440 * point we're a regular task again and not current anymore. 2441 * 2442 * A !PREEMPT kernel has a giant hole here, which makes it far 2443 * more likely. 2444 */ 2445 2446 /* 2447 * The task moved before the stopper got to run. We're holding 2448 * ->pi_lock, so the allowed mask is stable - if it got 2449 * somewhere allowed, we're done. 2450 */ 2451 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2452 p->migration_pending = NULL; 2453 complete = true; 2454 goto out; 2455 } 2456 2457 /* 2458 * When migrate_enable() hits a rq mis-match we can't reliably 2459 * determine is_migration_disabled() and so have to chase after 2460 * it. 2461 */ 2462 WARN_ON_ONCE(!pending->stop_pending); 2463 task_rq_unlock(rq, p, &rf); 2464 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2465 &pending->arg, &pending->stop_work); 2466 return 0; 2467 } 2468 out: 2469 if (pending) 2470 pending->stop_pending = false; 2471 task_rq_unlock(rq, p, &rf); 2472 2473 if (complete) 2474 complete_all(&pending->done); 2475 2476 return 0; 2477 } 2478 2479 int push_cpu_stop(void *arg) 2480 { 2481 struct rq *lowest_rq = NULL, *rq = this_rq(); 2482 struct task_struct *p = arg; 2483 2484 raw_spin_lock_irq(&p->pi_lock); 2485 raw_spin_rq_lock(rq); 2486 2487 if (task_rq(p) != rq) 2488 goto out_unlock; 2489 2490 if (is_migration_disabled(p)) { 2491 p->migration_flags |= MDF_PUSH; 2492 goto out_unlock; 2493 } 2494 2495 p->migration_flags &= ~MDF_PUSH; 2496 2497 if (p->sched_class->find_lock_rq) 2498 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2499 2500 if (!lowest_rq) 2501 goto out_unlock; 2502 2503 // XXX validate p is still the highest prio task 2504 if (task_rq(p) == rq) { 2505 deactivate_task(rq, p, 0); 2506 set_task_cpu(p, lowest_rq->cpu); 2507 activate_task(lowest_rq, p, 0); 2508 resched_curr(lowest_rq); 2509 } 2510 2511 double_unlock_balance(rq, lowest_rq); 2512 2513 out_unlock: 2514 rq->push_busy = false; 2515 raw_spin_rq_unlock(rq); 2516 raw_spin_unlock_irq(&p->pi_lock); 2517 2518 put_task_struct(p); 2519 return 0; 2520 } 2521 2522 /* 2523 * sched_class::set_cpus_allowed must do the below, but is not required to 2524 * actually call this function. 2525 */ 2526 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2527 { 2528 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2529 p->cpus_ptr = new_mask; 2530 return; 2531 } 2532 2533 cpumask_copy(&p->cpus_mask, new_mask); 2534 p->nr_cpus_allowed = cpumask_weight(new_mask); 2535 } 2536 2537 static void 2538 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2539 { 2540 struct rq *rq = task_rq(p); 2541 bool queued, running; 2542 2543 /* 2544 * This here violates the locking rules for affinity, since we're only 2545 * supposed to change these variables while holding both rq->lock and 2546 * p->pi_lock. 2547 * 2548 * HOWEVER, it magically works, because ttwu() is the only code that 2549 * accesses these variables under p->pi_lock and only does so after 2550 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2551 * before finish_task(). 2552 * 2553 * XXX do further audits, this smells like something putrid. 2554 */ 2555 if (flags & SCA_MIGRATE_DISABLE) 2556 SCHED_WARN_ON(!p->on_cpu); 2557 else 2558 lockdep_assert_held(&p->pi_lock); 2559 2560 queued = task_on_rq_queued(p); 2561 running = task_current(rq, p); 2562 2563 if (queued) { 2564 /* 2565 * Because __kthread_bind() calls this on blocked tasks without 2566 * holding rq->lock. 2567 */ 2568 lockdep_assert_rq_held(rq); 2569 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2570 } 2571 if (running) 2572 put_prev_task(rq, p); 2573 2574 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2575 2576 if (queued) 2577 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2578 if (running) 2579 set_next_task(rq, p); 2580 } 2581 2582 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2583 { 2584 __do_set_cpus_allowed(p, new_mask, 0); 2585 } 2586 2587 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2588 int node) 2589 { 2590 if (!src->user_cpus_ptr) 2591 return 0; 2592 2593 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2594 if (!dst->user_cpus_ptr) 2595 return -ENOMEM; 2596 2597 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2598 return 0; 2599 } 2600 2601 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2602 { 2603 struct cpumask *user_mask = NULL; 2604 2605 swap(p->user_cpus_ptr, user_mask); 2606 2607 return user_mask; 2608 } 2609 2610 void release_user_cpus_ptr(struct task_struct *p) 2611 { 2612 kfree(clear_user_cpus_ptr(p)); 2613 } 2614 2615 /* 2616 * This function is wildly self concurrent; here be dragons. 2617 * 2618 * 2619 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2620 * designated task is enqueued on an allowed CPU. If that task is currently 2621 * running, we have to kick it out using the CPU stopper. 2622 * 2623 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2624 * Consider: 2625 * 2626 * Initial conditions: P0->cpus_mask = [0, 1] 2627 * 2628 * P0@CPU0 P1 2629 * 2630 * migrate_disable(); 2631 * <preempted> 2632 * set_cpus_allowed_ptr(P0, [1]); 2633 * 2634 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2635 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2636 * This means we need the following scheme: 2637 * 2638 * P0@CPU0 P1 2639 * 2640 * migrate_disable(); 2641 * <preempted> 2642 * set_cpus_allowed_ptr(P0, [1]); 2643 * <blocks> 2644 * <resumes> 2645 * migrate_enable(); 2646 * __set_cpus_allowed_ptr(); 2647 * <wakes local stopper> 2648 * `--> <woken on migration completion> 2649 * 2650 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2651 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2652 * task p are serialized by p->pi_lock, which we can leverage: the one that 2653 * should come into effect at the end of the Migrate-Disable region is the last 2654 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2655 * but we still need to properly signal those waiting tasks at the appropriate 2656 * moment. 2657 * 2658 * This is implemented using struct set_affinity_pending. The first 2659 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2660 * setup an instance of that struct and install it on the targeted task_struct. 2661 * Any and all further callers will reuse that instance. Those then wait for 2662 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2663 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2664 * 2665 * 2666 * (1) In the cases covered above. There is one more where the completion is 2667 * signaled within affine_move_task() itself: when a subsequent affinity request 2668 * occurs after the stopper bailed out due to the targeted task still being 2669 * Migrate-Disable. Consider: 2670 * 2671 * Initial conditions: P0->cpus_mask = [0, 1] 2672 * 2673 * CPU0 P1 P2 2674 * <P0> 2675 * migrate_disable(); 2676 * <preempted> 2677 * set_cpus_allowed_ptr(P0, [1]); 2678 * <blocks> 2679 * <migration/0> 2680 * migration_cpu_stop() 2681 * is_migration_disabled() 2682 * <bails> 2683 * set_cpus_allowed_ptr(P0, [0, 1]); 2684 * <signal completion> 2685 * <awakes> 2686 * 2687 * Note that the above is safe vs a concurrent migrate_enable(), as any 2688 * pending affinity completion is preceded by an uninstallation of 2689 * p->migration_pending done with p->pi_lock held. 2690 */ 2691 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2692 int dest_cpu, unsigned int flags) 2693 { 2694 struct set_affinity_pending my_pending = { }, *pending = NULL; 2695 bool stop_pending, complete = false; 2696 2697 /* Can the task run on the task's current CPU? If so, we're done */ 2698 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2699 struct task_struct *push_task = NULL; 2700 2701 if ((flags & SCA_MIGRATE_ENABLE) && 2702 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2703 rq->push_busy = true; 2704 push_task = get_task_struct(p); 2705 } 2706 2707 /* 2708 * If there are pending waiters, but no pending stop_work, 2709 * then complete now. 2710 */ 2711 pending = p->migration_pending; 2712 if (pending && !pending->stop_pending) { 2713 p->migration_pending = NULL; 2714 complete = true; 2715 } 2716 2717 task_rq_unlock(rq, p, rf); 2718 2719 if (push_task) { 2720 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2721 p, &rq->push_work); 2722 } 2723 2724 if (complete) 2725 complete_all(&pending->done); 2726 2727 return 0; 2728 } 2729 2730 if (!(flags & SCA_MIGRATE_ENABLE)) { 2731 /* serialized by p->pi_lock */ 2732 if (!p->migration_pending) { 2733 /* Install the request */ 2734 refcount_set(&my_pending.refs, 1); 2735 init_completion(&my_pending.done); 2736 my_pending.arg = (struct migration_arg) { 2737 .task = p, 2738 .dest_cpu = dest_cpu, 2739 .pending = &my_pending, 2740 }; 2741 2742 p->migration_pending = &my_pending; 2743 } else { 2744 pending = p->migration_pending; 2745 refcount_inc(&pending->refs); 2746 /* 2747 * Affinity has changed, but we've already installed a 2748 * pending. migration_cpu_stop() *must* see this, else 2749 * we risk a completion of the pending despite having a 2750 * task on a disallowed CPU. 2751 * 2752 * Serialized by p->pi_lock, so this is safe. 2753 */ 2754 pending->arg.dest_cpu = dest_cpu; 2755 } 2756 } 2757 pending = p->migration_pending; 2758 /* 2759 * - !MIGRATE_ENABLE: 2760 * we'll have installed a pending if there wasn't one already. 2761 * 2762 * - MIGRATE_ENABLE: 2763 * we're here because the current CPU isn't matching anymore, 2764 * the only way that can happen is because of a concurrent 2765 * set_cpus_allowed_ptr() call, which should then still be 2766 * pending completion. 2767 * 2768 * Either way, we really should have a @pending here. 2769 */ 2770 if (WARN_ON_ONCE(!pending)) { 2771 task_rq_unlock(rq, p, rf); 2772 return -EINVAL; 2773 } 2774 2775 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2776 /* 2777 * MIGRATE_ENABLE gets here because 'p == current', but for 2778 * anything else we cannot do is_migration_disabled(), punt 2779 * and have the stopper function handle it all race-free. 2780 */ 2781 stop_pending = pending->stop_pending; 2782 if (!stop_pending) 2783 pending->stop_pending = true; 2784 2785 if (flags & SCA_MIGRATE_ENABLE) 2786 p->migration_flags &= ~MDF_PUSH; 2787 2788 task_rq_unlock(rq, p, rf); 2789 2790 if (!stop_pending) { 2791 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2792 &pending->arg, &pending->stop_work); 2793 } 2794 2795 if (flags & SCA_MIGRATE_ENABLE) 2796 return 0; 2797 } else { 2798 2799 if (!is_migration_disabled(p)) { 2800 if (task_on_rq_queued(p)) 2801 rq = move_queued_task(rq, rf, p, dest_cpu); 2802 2803 if (!pending->stop_pending) { 2804 p->migration_pending = NULL; 2805 complete = true; 2806 } 2807 } 2808 task_rq_unlock(rq, p, rf); 2809 2810 if (complete) 2811 complete_all(&pending->done); 2812 } 2813 2814 wait_for_completion(&pending->done); 2815 2816 if (refcount_dec_and_test(&pending->refs)) 2817 wake_up_var(&pending->refs); /* No UaF, just an address */ 2818 2819 /* 2820 * Block the original owner of &pending until all subsequent callers 2821 * have seen the completion and decremented the refcount 2822 */ 2823 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2824 2825 /* ARGH */ 2826 WARN_ON_ONCE(my_pending.stop_pending); 2827 2828 return 0; 2829 } 2830 2831 /* 2832 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2833 */ 2834 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2835 const struct cpumask *new_mask, 2836 u32 flags, 2837 struct rq *rq, 2838 struct rq_flags *rf) 2839 __releases(rq->lock) 2840 __releases(p->pi_lock) 2841 { 2842 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2843 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2844 bool kthread = p->flags & PF_KTHREAD; 2845 struct cpumask *user_mask = NULL; 2846 unsigned int dest_cpu; 2847 int ret = 0; 2848 2849 update_rq_clock(rq); 2850 2851 if (kthread || is_migration_disabled(p)) { 2852 /* 2853 * Kernel threads are allowed on online && !active CPUs, 2854 * however, during cpu-hot-unplug, even these might get pushed 2855 * away if not KTHREAD_IS_PER_CPU. 2856 * 2857 * Specifically, migration_disabled() tasks must not fail the 2858 * cpumask_any_and_distribute() pick below, esp. so on 2859 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2860 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2861 */ 2862 cpu_valid_mask = cpu_online_mask; 2863 } 2864 2865 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2866 ret = -EINVAL; 2867 goto out; 2868 } 2869 2870 /* 2871 * Must re-check here, to close a race against __kthread_bind(), 2872 * sched_setaffinity() is not guaranteed to observe the flag. 2873 */ 2874 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2875 ret = -EINVAL; 2876 goto out; 2877 } 2878 2879 if (!(flags & SCA_MIGRATE_ENABLE)) { 2880 if (cpumask_equal(&p->cpus_mask, new_mask)) 2881 goto out; 2882 2883 if (WARN_ON_ONCE(p == current && 2884 is_migration_disabled(p) && 2885 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2886 ret = -EBUSY; 2887 goto out; 2888 } 2889 } 2890 2891 /* 2892 * Picking a ~random cpu helps in cases where we are changing affinity 2893 * for groups of tasks (ie. cpuset), so that load balancing is not 2894 * immediately required to distribute the tasks within their new mask. 2895 */ 2896 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2897 if (dest_cpu >= nr_cpu_ids) { 2898 ret = -EINVAL; 2899 goto out; 2900 } 2901 2902 __do_set_cpus_allowed(p, new_mask, flags); 2903 2904 if (flags & SCA_USER) 2905 user_mask = clear_user_cpus_ptr(p); 2906 2907 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2908 2909 kfree(user_mask); 2910 2911 return ret; 2912 2913 out: 2914 task_rq_unlock(rq, p, rf); 2915 2916 return ret; 2917 } 2918 2919 /* 2920 * Change a given task's CPU affinity. Migrate the thread to a 2921 * proper CPU and schedule it away if the CPU it's executing on 2922 * is removed from the allowed bitmask. 2923 * 2924 * NOTE: the caller must have a valid reference to the task, the 2925 * task must not exit() & deallocate itself prematurely. The 2926 * call is not atomic; no spinlocks may be held. 2927 */ 2928 static int __set_cpus_allowed_ptr(struct task_struct *p, 2929 const struct cpumask *new_mask, u32 flags) 2930 { 2931 struct rq_flags rf; 2932 struct rq *rq; 2933 2934 rq = task_rq_lock(p, &rf); 2935 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2936 } 2937 2938 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2939 { 2940 return __set_cpus_allowed_ptr(p, new_mask, 0); 2941 } 2942 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2943 2944 /* 2945 * Change a given task's CPU affinity to the intersection of its current 2946 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2947 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2948 * If the resulting mask is empty, leave the affinity unchanged and return 2949 * -EINVAL. 2950 */ 2951 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2952 struct cpumask *new_mask, 2953 const struct cpumask *subset_mask) 2954 { 2955 struct cpumask *user_mask = NULL; 2956 struct rq_flags rf; 2957 struct rq *rq; 2958 int err; 2959 2960 if (!p->user_cpus_ptr) { 2961 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2962 if (!user_mask) 2963 return -ENOMEM; 2964 } 2965 2966 rq = task_rq_lock(p, &rf); 2967 2968 /* 2969 * Forcefully restricting the affinity of a deadline task is 2970 * likely to cause problems, so fail and noisily override the 2971 * mask entirely. 2972 */ 2973 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2974 err = -EPERM; 2975 goto err_unlock; 2976 } 2977 2978 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2979 err = -EINVAL; 2980 goto err_unlock; 2981 } 2982 2983 /* 2984 * We're about to butcher the task affinity, so keep track of what 2985 * the user asked for in case we're able to restore it later on. 2986 */ 2987 if (user_mask) { 2988 cpumask_copy(user_mask, p->cpus_ptr); 2989 p->user_cpus_ptr = user_mask; 2990 } 2991 2992 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2993 2994 err_unlock: 2995 task_rq_unlock(rq, p, &rf); 2996 kfree(user_mask); 2997 return err; 2998 } 2999 3000 /* 3001 * Restrict the CPU affinity of task @p so that it is a subset of 3002 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 3003 * old affinity mask. If the resulting mask is empty, we warn and walk 3004 * up the cpuset hierarchy until we find a suitable mask. 3005 */ 3006 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3007 { 3008 cpumask_var_t new_mask; 3009 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3010 3011 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3012 3013 /* 3014 * __migrate_task() can fail silently in the face of concurrent 3015 * offlining of the chosen destination CPU, so take the hotplug 3016 * lock to ensure that the migration succeeds. 3017 */ 3018 cpus_read_lock(); 3019 if (!cpumask_available(new_mask)) 3020 goto out_set_mask; 3021 3022 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3023 goto out_free_mask; 3024 3025 /* 3026 * We failed to find a valid subset of the affinity mask for the 3027 * task, so override it based on its cpuset hierarchy. 3028 */ 3029 cpuset_cpus_allowed(p, new_mask); 3030 override_mask = new_mask; 3031 3032 out_set_mask: 3033 if (printk_ratelimit()) { 3034 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3035 task_pid_nr(p), p->comm, 3036 cpumask_pr_args(override_mask)); 3037 } 3038 3039 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3040 out_free_mask: 3041 cpus_read_unlock(); 3042 free_cpumask_var(new_mask); 3043 } 3044 3045 static int 3046 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 3047 3048 /* 3049 * Restore the affinity of a task @p which was previously restricted by a 3050 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3051 * @p->user_cpus_ptr. 3052 * 3053 * It is the caller's responsibility to serialise this with any calls to 3054 * force_compatible_cpus_allowed_ptr(@p). 3055 */ 3056 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3057 { 3058 struct cpumask *user_mask = p->user_cpus_ptr; 3059 unsigned long flags; 3060 3061 /* 3062 * Try to restore the old affinity mask. If this fails, then 3063 * we free the mask explicitly to avoid it being inherited across 3064 * a subsequent fork(). 3065 */ 3066 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3067 return; 3068 3069 raw_spin_lock_irqsave(&p->pi_lock, flags); 3070 user_mask = clear_user_cpus_ptr(p); 3071 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3072 3073 kfree(user_mask); 3074 } 3075 3076 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3077 { 3078 #ifdef CONFIG_SCHED_DEBUG 3079 unsigned int state = READ_ONCE(p->__state); 3080 3081 /* 3082 * We should never call set_task_cpu() on a blocked task, 3083 * ttwu() will sort out the placement. 3084 */ 3085 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3086 3087 /* 3088 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3089 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3090 * time relying on p->on_rq. 3091 */ 3092 WARN_ON_ONCE(state == TASK_RUNNING && 3093 p->sched_class == &fair_sched_class && 3094 (p->on_rq && !task_on_rq_migrating(p))); 3095 3096 #ifdef CONFIG_LOCKDEP 3097 /* 3098 * The caller should hold either p->pi_lock or rq->lock, when changing 3099 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3100 * 3101 * sched_move_task() holds both and thus holding either pins the cgroup, 3102 * see task_group(). 3103 * 3104 * Furthermore, all task_rq users should acquire both locks, see 3105 * task_rq_lock(). 3106 */ 3107 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3108 lockdep_is_held(__rq_lockp(task_rq(p))))); 3109 #endif 3110 /* 3111 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3112 */ 3113 WARN_ON_ONCE(!cpu_online(new_cpu)); 3114 3115 WARN_ON_ONCE(is_migration_disabled(p)); 3116 #endif 3117 3118 trace_sched_migrate_task(p, new_cpu); 3119 3120 if (task_cpu(p) != new_cpu) { 3121 if (p->sched_class->migrate_task_rq) 3122 p->sched_class->migrate_task_rq(p, new_cpu); 3123 p->se.nr_migrations++; 3124 rseq_migrate(p); 3125 perf_event_task_migrate(p); 3126 } 3127 3128 __set_task_cpu(p, new_cpu); 3129 } 3130 3131 #ifdef CONFIG_NUMA_BALANCING 3132 static void __migrate_swap_task(struct task_struct *p, int cpu) 3133 { 3134 if (task_on_rq_queued(p)) { 3135 struct rq *src_rq, *dst_rq; 3136 struct rq_flags srf, drf; 3137 3138 src_rq = task_rq(p); 3139 dst_rq = cpu_rq(cpu); 3140 3141 rq_pin_lock(src_rq, &srf); 3142 rq_pin_lock(dst_rq, &drf); 3143 3144 deactivate_task(src_rq, p, 0); 3145 set_task_cpu(p, cpu); 3146 activate_task(dst_rq, p, 0); 3147 check_preempt_curr(dst_rq, p, 0); 3148 3149 rq_unpin_lock(dst_rq, &drf); 3150 rq_unpin_lock(src_rq, &srf); 3151 3152 } else { 3153 /* 3154 * Task isn't running anymore; make it appear like we migrated 3155 * it before it went to sleep. This means on wakeup we make the 3156 * previous CPU our target instead of where it really is. 3157 */ 3158 p->wake_cpu = cpu; 3159 } 3160 } 3161 3162 struct migration_swap_arg { 3163 struct task_struct *src_task, *dst_task; 3164 int src_cpu, dst_cpu; 3165 }; 3166 3167 static int migrate_swap_stop(void *data) 3168 { 3169 struct migration_swap_arg *arg = data; 3170 struct rq *src_rq, *dst_rq; 3171 int ret = -EAGAIN; 3172 3173 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3174 return -EAGAIN; 3175 3176 src_rq = cpu_rq(arg->src_cpu); 3177 dst_rq = cpu_rq(arg->dst_cpu); 3178 3179 double_raw_lock(&arg->src_task->pi_lock, 3180 &arg->dst_task->pi_lock); 3181 double_rq_lock(src_rq, dst_rq); 3182 3183 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3184 goto unlock; 3185 3186 if (task_cpu(arg->src_task) != arg->src_cpu) 3187 goto unlock; 3188 3189 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3190 goto unlock; 3191 3192 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3193 goto unlock; 3194 3195 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3196 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3197 3198 ret = 0; 3199 3200 unlock: 3201 double_rq_unlock(src_rq, dst_rq); 3202 raw_spin_unlock(&arg->dst_task->pi_lock); 3203 raw_spin_unlock(&arg->src_task->pi_lock); 3204 3205 return ret; 3206 } 3207 3208 /* 3209 * Cross migrate two tasks 3210 */ 3211 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3212 int target_cpu, int curr_cpu) 3213 { 3214 struct migration_swap_arg arg; 3215 int ret = -EINVAL; 3216 3217 arg = (struct migration_swap_arg){ 3218 .src_task = cur, 3219 .src_cpu = curr_cpu, 3220 .dst_task = p, 3221 .dst_cpu = target_cpu, 3222 }; 3223 3224 if (arg.src_cpu == arg.dst_cpu) 3225 goto out; 3226 3227 /* 3228 * These three tests are all lockless; this is OK since all of them 3229 * will be re-checked with proper locks held further down the line. 3230 */ 3231 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3232 goto out; 3233 3234 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3235 goto out; 3236 3237 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3238 goto out; 3239 3240 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3241 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3242 3243 out: 3244 return ret; 3245 } 3246 #endif /* CONFIG_NUMA_BALANCING */ 3247 3248 /* 3249 * wait_task_inactive - wait for a thread to unschedule. 3250 * 3251 * Wait for the thread to block in any of the states set in @match_state. 3252 * If it changes, i.e. @p might have woken up, then return zero. When we 3253 * succeed in waiting for @p to be off its CPU, we return a positive number 3254 * (its total switch count). If a second call a short while later returns the 3255 * same number, the caller can be sure that @p has remained unscheduled the 3256 * whole time. 3257 * 3258 * The caller must ensure that the task *will* unschedule sometime soon, 3259 * else this function might spin for a *long* time. This function can't 3260 * be called with interrupts off, or it may introduce deadlock with 3261 * smp_call_function() if an IPI is sent by the same process we are 3262 * waiting to become inactive. 3263 */ 3264 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3265 { 3266 int running, queued; 3267 struct rq_flags rf; 3268 unsigned long ncsw; 3269 struct rq *rq; 3270 3271 for (;;) { 3272 /* 3273 * We do the initial early heuristics without holding 3274 * any task-queue locks at all. We'll only try to get 3275 * the runqueue lock when things look like they will 3276 * work out! 3277 */ 3278 rq = task_rq(p); 3279 3280 /* 3281 * If the task is actively running on another CPU 3282 * still, just relax and busy-wait without holding 3283 * any locks. 3284 * 3285 * NOTE! Since we don't hold any locks, it's not 3286 * even sure that "rq" stays as the right runqueue! 3287 * But we don't care, since "task_on_cpu()" will 3288 * return false if the runqueue has changed and p 3289 * is actually now running somewhere else! 3290 */ 3291 while (task_on_cpu(rq, p)) { 3292 if (!(READ_ONCE(p->__state) & match_state)) 3293 return 0; 3294 cpu_relax(); 3295 } 3296 3297 /* 3298 * Ok, time to look more closely! We need the rq 3299 * lock now, to be *sure*. If we're wrong, we'll 3300 * just go back and repeat. 3301 */ 3302 rq = task_rq_lock(p, &rf); 3303 trace_sched_wait_task(p); 3304 running = task_on_cpu(rq, p); 3305 queued = task_on_rq_queued(p); 3306 ncsw = 0; 3307 if (READ_ONCE(p->__state) & match_state) 3308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3309 task_rq_unlock(rq, p, &rf); 3310 3311 /* 3312 * If it changed from the expected state, bail out now. 3313 */ 3314 if (unlikely(!ncsw)) 3315 break; 3316 3317 /* 3318 * Was it really running after all now that we 3319 * checked with the proper locks actually held? 3320 * 3321 * Oops. Go back and try again.. 3322 */ 3323 if (unlikely(running)) { 3324 cpu_relax(); 3325 continue; 3326 } 3327 3328 /* 3329 * It's not enough that it's not actively running, 3330 * it must be off the runqueue _entirely_, and not 3331 * preempted! 3332 * 3333 * So if it was still runnable (but just not actively 3334 * running right now), it's preempted, and we should 3335 * yield - it could be a while. 3336 */ 3337 if (unlikely(queued)) { 3338 ktime_t to = NSEC_PER_SEC / HZ; 3339 3340 set_current_state(TASK_UNINTERRUPTIBLE); 3341 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3342 continue; 3343 } 3344 3345 /* 3346 * Ahh, all good. It wasn't running, and it wasn't 3347 * runnable, which means that it will never become 3348 * running in the future either. We're all done! 3349 */ 3350 break; 3351 } 3352 3353 return ncsw; 3354 } 3355 3356 /*** 3357 * kick_process - kick a running thread to enter/exit the kernel 3358 * @p: the to-be-kicked thread 3359 * 3360 * Cause a process which is running on another CPU to enter 3361 * kernel-mode, without any delay. (to get signals handled.) 3362 * 3363 * NOTE: this function doesn't have to take the runqueue lock, 3364 * because all it wants to ensure is that the remote task enters 3365 * the kernel. If the IPI races and the task has been migrated 3366 * to another CPU then no harm is done and the purpose has been 3367 * achieved as well. 3368 */ 3369 void kick_process(struct task_struct *p) 3370 { 3371 int cpu; 3372 3373 preempt_disable(); 3374 cpu = task_cpu(p); 3375 if ((cpu != smp_processor_id()) && task_curr(p)) 3376 smp_send_reschedule(cpu); 3377 preempt_enable(); 3378 } 3379 EXPORT_SYMBOL_GPL(kick_process); 3380 3381 /* 3382 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3383 * 3384 * A few notes on cpu_active vs cpu_online: 3385 * 3386 * - cpu_active must be a subset of cpu_online 3387 * 3388 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3389 * see __set_cpus_allowed_ptr(). At this point the newly online 3390 * CPU isn't yet part of the sched domains, and balancing will not 3391 * see it. 3392 * 3393 * - on CPU-down we clear cpu_active() to mask the sched domains and 3394 * avoid the load balancer to place new tasks on the to be removed 3395 * CPU. Existing tasks will remain running there and will be taken 3396 * off. 3397 * 3398 * This means that fallback selection must not select !active CPUs. 3399 * And can assume that any active CPU must be online. Conversely 3400 * select_task_rq() below may allow selection of !active CPUs in order 3401 * to satisfy the above rules. 3402 */ 3403 static int select_fallback_rq(int cpu, struct task_struct *p) 3404 { 3405 int nid = cpu_to_node(cpu); 3406 const struct cpumask *nodemask = NULL; 3407 enum { cpuset, possible, fail } state = cpuset; 3408 int dest_cpu; 3409 3410 /* 3411 * If the node that the CPU is on has been offlined, cpu_to_node() 3412 * will return -1. There is no CPU on the node, and we should 3413 * select the CPU on the other node. 3414 */ 3415 if (nid != -1) { 3416 nodemask = cpumask_of_node(nid); 3417 3418 /* Look for allowed, online CPU in same node. */ 3419 for_each_cpu(dest_cpu, nodemask) { 3420 if (is_cpu_allowed(p, dest_cpu)) 3421 return dest_cpu; 3422 } 3423 } 3424 3425 for (;;) { 3426 /* Any allowed, online CPU? */ 3427 for_each_cpu(dest_cpu, p->cpus_ptr) { 3428 if (!is_cpu_allowed(p, dest_cpu)) 3429 continue; 3430 3431 goto out; 3432 } 3433 3434 /* No more Mr. Nice Guy. */ 3435 switch (state) { 3436 case cpuset: 3437 if (cpuset_cpus_allowed_fallback(p)) { 3438 state = possible; 3439 break; 3440 } 3441 fallthrough; 3442 case possible: 3443 /* 3444 * XXX When called from select_task_rq() we only 3445 * hold p->pi_lock and again violate locking order. 3446 * 3447 * More yuck to audit. 3448 */ 3449 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3450 state = fail; 3451 break; 3452 case fail: 3453 BUG(); 3454 break; 3455 } 3456 } 3457 3458 out: 3459 if (state != cpuset) { 3460 /* 3461 * Don't tell them about moving exiting tasks or 3462 * kernel threads (both mm NULL), since they never 3463 * leave kernel. 3464 */ 3465 if (p->mm && printk_ratelimit()) { 3466 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3467 task_pid_nr(p), p->comm, cpu); 3468 } 3469 } 3470 3471 return dest_cpu; 3472 } 3473 3474 /* 3475 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3476 */ 3477 static inline 3478 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3479 { 3480 lockdep_assert_held(&p->pi_lock); 3481 3482 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3483 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3484 else 3485 cpu = cpumask_any(p->cpus_ptr); 3486 3487 /* 3488 * In order not to call set_task_cpu() on a blocking task we need 3489 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3490 * CPU. 3491 * 3492 * Since this is common to all placement strategies, this lives here. 3493 * 3494 * [ this allows ->select_task() to simply return task_cpu(p) and 3495 * not worry about this generic constraint ] 3496 */ 3497 if (unlikely(!is_cpu_allowed(p, cpu))) 3498 cpu = select_fallback_rq(task_cpu(p), p); 3499 3500 return cpu; 3501 } 3502 3503 void sched_set_stop_task(int cpu, struct task_struct *stop) 3504 { 3505 static struct lock_class_key stop_pi_lock; 3506 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3507 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3508 3509 if (stop) { 3510 /* 3511 * Make it appear like a SCHED_FIFO task, its something 3512 * userspace knows about and won't get confused about. 3513 * 3514 * Also, it will make PI more or less work without too 3515 * much confusion -- but then, stop work should not 3516 * rely on PI working anyway. 3517 */ 3518 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3519 3520 stop->sched_class = &stop_sched_class; 3521 3522 /* 3523 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3524 * adjust the effective priority of a task. As a result, 3525 * rt_mutex_setprio() can trigger (RT) balancing operations, 3526 * which can then trigger wakeups of the stop thread to push 3527 * around the current task. 3528 * 3529 * The stop task itself will never be part of the PI-chain, it 3530 * never blocks, therefore that ->pi_lock recursion is safe. 3531 * Tell lockdep about this by placing the stop->pi_lock in its 3532 * own class. 3533 */ 3534 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3535 } 3536 3537 cpu_rq(cpu)->stop = stop; 3538 3539 if (old_stop) { 3540 /* 3541 * Reset it back to a normal scheduling class so that 3542 * it can die in pieces. 3543 */ 3544 old_stop->sched_class = &rt_sched_class; 3545 } 3546 } 3547 3548 #else /* CONFIG_SMP */ 3549 3550 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3551 const struct cpumask *new_mask, 3552 u32 flags) 3553 { 3554 return set_cpus_allowed_ptr(p, new_mask); 3555 } 3556 3557 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3558 3559 static inline bool rq_has_pinned_tasks(struct rq *rq) 3560 { 3561 return false; 3562 } 3563 3564 #endif /* !CONFIG_SMP */ 3565 3566 static void 3567 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3568 { 3569 struct rq *rq; 3570 3571 if (!schedstat_enabled()) 3572 return; 3573 3574 rq = this_rq(); 3575 3576 #ifdef CONFIG_SMP 3577 if (cpu == rq->cpu) { 3578 __schedstat_inc(rq->ttwu_local); 3579 __schedstat_inc(p->stats.nr_wakeups_local); 3580 } else { 3581 struct sched_domain *sd; 3582 3583 __schedstat_inc(p->stats.nr_wakeups_remote); 3584 rcu_read_lock(); 3585 for_each_domain(rq->cpu, sd) { 3586 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3587 __schedstat_inc(sd->ttwu_wake_remote); 3588 break; 3589 } 3590 } 3591 rcu_read_unlock(); 3592 } 3593 3594 if (wake_flags & WF_MIGRATED) 3595 __schedstat_inc(p->stats.nr_wakeups_migrate); 3596 #endif /* CONFIG_SMP */ 3597 3598 __schedstat_inc(rq->ttwu_count); 3599 __schedstat_inc(p->stats.nr_wakeups); 3600 3601 if (wake_flags & WF_SYNC) 3602 __schedstat_inc(p->stats.nr_wakeups_sync); 3603 } 3604 3605 /* 3606 * Mark the task runnable and perform wakeup-preemption. 3607 */ 3608 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3609 struct rq_flags *rf) 3610 { 3611 check_preempt_curr(rq, p, wake_flags); 3612 WRITE_ONCE(p->__state, TASK_RUNNING); 3613 trace_sched_wakeup(p); 3614 3615 #ifdef CONFIG_SMP 3616 if (p->sched_class->task_woken) { 3617 /* 3618 * Our task @p is fully woken up and running; so it's safe to 3619 * drop the rq->lock, hereafter rq is only used for statistics. 3620 */ 3621 rq_unpin_lock(rq, rf); 3622 p->sched_class->task_woken(rq, p); 3623 rq_repin_lock(rq, rf); 3624 } 3625 3626 if (rq->idle_stamp) { 3627 u64 delta = rq_clock(rq) - rq->idle_stamp; 3628 u64 max = 2*rq->max_idle_balance_cost; 3629 3630 update_avg(&rq->avg_idle, delta); 3631 3632 if (rq->avg_idle > max) 3633 rq->avg_idle = max; 3634 3635 rq->wake_stamp = jiffies; 3636 rq->wake_avg_idle = rq->avg_idle / 2; 3637 3638 rq->idle_stamp = 0; 3639 } 3640 #endif 3641 } 3642 3643 static void 3644 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3645 struct rq_flags *rf) 3646 { 3647 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3648 3649 lockdep_assert_rq_held(rq); 3650 3651 if (p->sched_contributes_to_load) 3652 rq->nr_uninterruptible--; 3653 3654 #ifdef CONFIG_SMP 3655 if (wake_flags & WF_MIGRATED) 3656 en_flags |= ENQUEUE_MIGRATED; 3657 else 3658 #endif 3659 if (p->in_iowait) { 3660 delayacct_blkio_end(p); 3661 atomic_dec(&task_rq(p)->nr_iowait); 3662 } 3663 3664 activate_task(rq, p, en_flags); 3665 ttwu_do_wakeup(rq, p, wake_flags, rf); 3666 } 3667 3668 /* 3669 * Consider @p being inside a wait loop: 3670 * 3671 * for (;;) { 3672 * set_current_state(TASK_UNINTERRUPTIBLE); 3673 * 3674 * if (CONDITION) 3675 * break; 3676 * 3677 * schedule(); 3678 * } 3679 * __set_current_state(TASK_RUNNING); 3680 * 3681 * between set_current_state() and schedule(). In this case @p is still 3682 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3683 * an atomic manner. 3684 * 3685 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3686 * then schedule() must still happen and p->state can be changed to 3687 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3688 * need to do a full wakeup with enqueue. 3689 * 3690 * Returns: %true when the wakeup is done, 3691 * %false otherwise. 3692 */ 3693 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3694 { 3695 struct rq_flags rf; 3696 struct rq *rq; 3697 int ret = 0; 3698 3699 rq = __task_rq_lock(p, &rf); 3700 if (task_on_rq_queued(p)) { 3701 /* check_preempt_curr() may use rq clock */ 3702 update_rq_clock(rq); 3703 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3704 ret = 1; 3705 } 3706 __task_rq_unlock(rq, &rf); 3707 3708 return ret; 3709 } 3710 3711 #ifdef CONFIG_SMP 3712 void sched_ttwu_pending(void *arg) 3713 { 3714 struct llist_node *llist = arg; 3715 struct rq *rq = this_rq(); 3716 struct task_struct *p, *t; 3717 struct rq_flags rf; 3718 3719 if (!llist) 3720 return; 3721 3722 /* 3723 * rq::ttwu_pending racy indication of out-standing wakeups. 3724 * Races such that false-negatives are possible, since they 3725 * are shorter lived that false-positives would be. 3726 */ 3727 WRITE_ONCE(rq->ttwu_pending, 0); 3728 3729 rq_lock_irqsave(rq, &rf); 3730 update_rq_clock(rq); 3731 3732 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3733 if (WARN_ON_ONCE(p->on_cpu)) 3734 smp_cond_load_acquire(&p->on_cpu, !VAL); 3735 3736 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3737 set_task_cpu(p, cpu_of(rq)); 3738 3739 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3740 } 3741 3742 rq_unlock_irqrestore(rq, &rf); 3743 } 3744 3745 void send_call_function_single_ipi(int cpu) 3746 { 3747 struct rq *rq = cpu_rq(cpu); 3748 3749 if (!set_nr_if_polling(rq->idle)) 3750 arch_send_call_function_single_ipi(cpu); 3751 else 3752 trace_sched_wake_idle_without_ipi(cpu); 3753 } 3754 3755 /* 3756 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3757 * necessary. The wakee CPU on receipt of the IPI will queue the task 3758 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3759 * of the wakeup instead of the waker. 3760 */ 3761 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3762 { 3763 struct rq *rq = cpu_rq(cpu); 3764 3765 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3766 3767 WRITE_ONCE(rq->ttwu_pending, 1); 3768 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3769 } 3770 3771 void wake_up_if_idle(int cpu) 3772 { 3773 struct rq *rq = cpu_rq(cpu); 3774 struct rq_flags rf; 3775 3776 rcu_read_lock(); 3777 3778 if (!is_idle_task(rcu_dereference(rq->curr))) 3779 goto out; 3780 3781 rq_lock_irqsave(rq, &rf); 3782 if (is_idle_task(rq->curr)) 3783 resched_curr(rq); 3784 /* Else CPU is not idle, do nothing here: */ 3785 rq_unlock_irqrestore(rq, &rf); 3786 3787 out: 3788 rcu_read_unlock(); 3789 } 3790 3791 bool cpus_share_cache(int this_cpu, int that_cpu) 3792 { 3793 if (this_cpu == that_cpu) 3794 return true; 3795 3796 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3797 } 3798 3799 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3800 { 3801 /* 3802 * Do not complicate things with the async wake_list while the CPU is 3803 * in hotplug state. 3804 */ 3805 if (!cpu_active(cpu)) 3806 return false; 3807 3808 /* Ensure the task will still be allowed to run on the CPU. */ 3809 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3810 return false; 3811 3812 /* 3813 * If the CPU does not share cache, then queue the task on the 3814 * remote rqs wakelist to avoid accessing remote data. 3815 */ 3816 if (!cpus_share_cache(smp_processor_id(), cpu)) 3817 return true; 3818 3819 if (cpu == smp_processor_id()) 3820 return false; 3821 3822 /* 3823 * If the wakee cpu is idle, or the task is descheduling and the 3824 * only running task on the CPU, then use the wakelist to offload 3825 * the task activation to the idle (or soon-to-be-idle) CPU as 3826 * the current CPU is likely busy. nr_running is checked to 3827 * avoid unnecessary task stacking. 3828 * 3829 * Note that we can only get here with (wakee) p->on_rq=0, 3830 * p->on_cpu can be whatever, we've done the dequeue, so 3831 * the wakee has been accounted out of ->nr_running. 3832 */ 3833 if (!cpu_rq(cpu)->nr_running) 3834 return true; 3835 3836 return false; 3837 } 3838 3839 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3840 { 3841 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3842 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3843 __ttwu_queue_wakelist(p, cpu, wake_flags); 3844 return true; 3845 } 3846 3847 return false; 3848 } 3849 3850 #else /* !CONFIG_SMP */ 3851 3852 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3853 { 3854 return false; 3855 } 3856 3857 #endif /* CONFIG_SMP */ 3858 3859 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3860 { 3861 struct rq *rq = cpu_rq(cpu); 3862 struct rq_flags rf; 3863 3864 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3865 return; 3866 3867 rq_lock(rq, &rf); 3868 update_rq_clock(rq); 3869 ttwu_do_activate(rq, p, wake_flags, &rf); 3870 rq_unlock(rq, &rf); 3871 } 3872 3873 /* 3874 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3875 * 3876 * The caller holds p::pi_lock if p != current or has preemption 3877 * disabled when p == current. 3878 * 3879 * The rules of PREEMPT_RT saved_state: 3880 * 3881 * The related locking code always holds p::pi_lock when updating 3882 * p::saved_state, which means the code is fully serialized in both cases. 3883 * 3884 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3885 * bits set. This allows to distinguish all wakeup scenarios. 3886 */ 3887 static __always_inline 3888 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3889 { 3890 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3891 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3892 state != TASK_RTLOCK_WAIT); 3893 } 3894 3895 if (READ_ONCE(p->__state) & state) { 3896 *success = 1; 3897 return true; 3898 } 3899 3900 #ifdef CONFIG_PREEMPT_RT 3901 /* 3902 * Saved state preserves the task state across blocking on 3903 * an RT lock. If the state matches, set p::saved_state to 3904 * TASK_RUNNING, but do not wake the task because it waits 3905 * for a lock wakeup. Also indicate success because from 3906 * the regular waker's point of view this has succeeded. 3907 * 3908 * After acquiring the lock the task will restore p::__state 3909 * from p::saved_state which ensures that the regular 3910 * wakeup is not lost. The restore will also set 3911 * p::saved_state to TASK_RUNNING so any further tests will 3912 * not result in false positives vs. @success 3913 */ 3914 if (p->saved_state & state) { 3915 p->saved_state = TASK_RUNNING; 3916 *success = 1; 3917 } 3918 #endif 3919 return false; 3920 } 3921 3922 /* 3923 * Notes on Program-Order guarantees on SMP systems. 3924 * 3925 * MIGRATION 3926 * 3927 * The basic program-order guarantee on SMP systems is that when a task [t] 3928 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3929 * execution on its new CPU [c1]. 3930 * 3931 * For migration (of runnable tasks) this is provided by the following means: 3932 * 3933 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3934 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3935 * rq(c1)->lock (if not at the same time, then in that order). 3936 * C) LOCK of the rq(c1)->lock scheduling in task 3937 * 3938 * Release/acquire chaining guarantees that B happens after A and C after B. 3939 * Note: the CPU doing B need not be c0 or c1 3940 * 3941 * Example: 3942 * 3943 * CPU0 CPU1 CPU2 3944 * 3945 * LOCK rq(0)->lock 3946 * sched-out X 3947 * sched-in Y 3948 * UNLOCK rq(0)->lock 3949 * 3950 * LOCK rq(0)->lock // orders against CPU0 3951 * dequeue X 3952 * UNLOCK rq(0)->lock 3953 * 3954 * LOCK rq(1)->lock 3955 * enqueue X 3956 * UNLOCK rq(1)->lock 3957 * 3958 * LOCK rq(1)->lock // orders against CPU2 3959 * sched-out Z 3960 * sched-in X 3961 * UNLOCK rq(1)->lock 3962 * 3963 * 3964 * BLOCKING -- aka. SLEEP + WAKEUP 3965 * 3966 * For blocking we (obviously) need to provide the same guarantee as for 3967 * migration. However the means are completely different as there is no lock 3968 * chain to provide order. Instead we do: 3969 * 3970 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3971 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3972 * 3973 * Example: 3974 * 3975 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3976 * 3977 * LOCK rq(0)->lock LOCK X->pi_lock 3978 * dequeue X 3979 * sched-out X 3980 * smp_store_release(X->on_cpu, 0); 3981 * 3982 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3983 * X->state = WAKING 3984 * set_task_cpu(X,2) 3985 * 3986 * LOCK rq(2)->lock 3987 * enqueue X 3988 * X->state = RUNNING 3989 * UNLOCK rq(2)->lock 3990 * 3991 * LOCK rq(2)->lock // orders against CPU1 3992 * sched-out Z 3993 * sched-in X 3994 * UNLOCK rq(2)->lock 3995 * 3996 * UNLOCK X->pi_lock 3997 * UNLOCK rq(0)->lock 3998 * 3999 * 4000 * However, for wakeups there is a second guarantee we must provide, namely we 4001 * must ensure that CONDITION=1 done by the caller can not be reordered with 4002 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4003 */ 4004 4005 /** 4006 * try_to_wake_up - wake up a thread 4007 * @p: the thread to be awakened 4008 * @state: the mask of task states that can be woken 4009 * @wake_flags: wake modifier flags (WF_*) 4010 * 4011 * Conceptually does: 4012 * 4013 * If (@state & @p->state) @p->state = TASK_RUNNING. 4014 * 4015 * If the task was not queued/runnable, also place it back on a runqueue. 4016 * 4017 * This function is atomic against schedule() which would dequeue the task. 4018 * 4019 * It issues a full memory barrier before accessing @p->state, see the comment 4020 * with set_current_state(). 4021 * 4022 * Uses p->pi_lock to serialize against concurrent wake-ups. 4023 * 4024 * Relies on p->pi_lock stabilizing: 4025 * - p->sched_class 4026 * - p->cpus_ptr 4027 * - p->sched_task_group 4028 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4029 * 4030 * Tries really hard to only take one task_rq(p)->lock for performance. 4031 * Takes rq->lock in: 4032 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4033 * - ttwu_queue() -- new rq, for enqueue of the task; 4034 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4035 * 4036 * As a consequence we race really badly with just about everything. See the 4037 * many memory barriers and their comments for details. 4038 * 4039 * Return: %true if @p->state changes (an actual wakeup was done), 4040 * %false otherwise. 4041 */ 4042 static int 4043 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4044 { 4045 unsigned long flags; 4046 int cpu, success = 0; 4047 4048 preempt_disable(); 4049 if (p == current) { 4050 /* 4051 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4052 * == smp_processor_id()'. Together this means we can special 4053 * case the whole 'p->on_rq && ttwu_runnable()' case below 4054 * without taking any locks. 4055 * 4056 * In particular: 4057 * - we rely on Program-Order guarantees for all the ordering, 4058 * - we're serialized against set_special_state() by virtue of 4059 * it disabling IRQs (this allows not taking ->pi_lock). 4060 */ 4061 if (!ttwu_state_match(p, state, &success)) 4062 goto out; 4063 4064 trace_sched_waking(p); 4065 WRITE_ONCE(p->__state, TASK_RUNNING); 4066 trace_sched_wakeup(p); 4067 goto out; 4068 } 4069 4070 /* 4071 * If we are going to wake up a thread waiting for CONDITION we 4072 * need to ensure that CONDITION=1 done by the caller can not be 4073 * reordered with p->state check below. This pairs with smp_store_mb() 4074 * in set_current_state() that the waiting thread does. 4075 */ 4076 raw_spin_lock_irqsave(&p->pi_lock, flags); 4077 smp_mb__after_spinlock(); 4078 if (!ttwu_state_match(p, state, &success)) 4079 goto unlock; 4080 4081 trace_sched_waking(p); 4082 4083 /* 4084 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4085 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4086 * in smp_cond_load_acquire() below. 4087 * 4088 * sched_ttwu_pending() try_to_wake_up() 4089 * STORE p->on_rq = 1 LOAD p->state 4090 * UNLOCK rq->lock 4091 * 4092 * __schedule() (switch to task 'p') 4093 * LOCK rq->lock smp_rmb(); 4094 * smp_mb__after_spinlock(); 4095 * UNLOCK rq->lock 4096 * 4097 * [task p] 4098 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4099 * 4100 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4101 * __schedule(). See the comment for smp_mb__after_spinlock(). 4102 * 4103 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4104 */ 4105 smp_rmb(); 4106 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4107 goto unlock; 4108 4109 #ifdef CONFIG_SMP 4110 /* 4111 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4112 * possible to, falsely, observe p->on_cpu == 0. 4113 * 4114 * One must be running (->on_cpu == 1) in order to remove oneself 4115 * from the runqueue. 4116 * 4117 * __schedule() (switch to task 'p') try_to_wake_up() 4118 * STORE p->on_cpu = 1 LOAD p->on_rq 4119 * UNLOCK rq->lock 4120 * 4121 * __schedule() (put 'p' to sleep) 4122 * LOCK rq->lock smp_rmb(); 4123 * smp_mb__after_spinlock(); 4124 * STORE p->on_rq = 0 LOAD p->on_cpu 4125 * 4126 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4127 * __schedule(). See the comment for smp_mb__after_spinlock(). 4128 * 4129 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4130 * schedule()'s deactivate_task() has 'happened' and p will no longer 4131 * care about it's own p->state. See the comment in __schedule(). 4132 */ 4133 smp_acquire__after_ctrl_dep(); 4134 4135 /* 4136 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4137 * == 0), which means we need to do an enqueue, change p->state to 4138 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4139 * enqueue, such as ttwu_queue_wakelist(). 4140 */ 4141 WRITE_ONCE(p->__state, TASK_WAKING); 4142 4143 /* 4144 * If the owning (remote) CPU is still in the middle of schedule() with 4145 * this task as prev, considering queueing p on the remote CPUs wake_list 4146 * which potentially sends an IPI instead of spinning on p->on_cpu to 4147 * let the waker make forward progress. This is safe because IRQs are 4148 * disabled and the IPI will deliver after on_cpu is cleared. 4149 * 4150 * Ensure we load task_cpu(p) after p->on_cpu: 4151 * 4152 * set_task_cpu(p, cpu); 4153 * STORE p->cpu = @cpu 4154 * __schedule() (switch to task 'p') 4155 * LOCK rq->lock 4156 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4157 * STORE p->on_cpu = 1 LOAD p->cpu 4158 * 4159 * to ensure we observe the correct CPU on which the task is currently 4160 * scheduling. 4161 */ 4162 if (smp_load_acquire(&p->on_cpu) && 4163 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4164 goto unlock; 4165 4166 /* 4167 * If the owning (remote) CPU is still in the middle of schedule() with 4168 * this task as prev, wait until it's done referencing the task. 4169 * 4170 * Pairs with the smp_store_release() in finish_task(). 4171 * 4172 * This ensures that tasks getting woken will be fully ordered against 4173 * their previous state and preserve Program Order. 4174 */ 4175 smp_cond_load_acquire(&p->on_cpu, !VAL); 4176 4177 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4178 if (task_cpu(p) != cpu) { 4179 if (p->in_iowait) { 4180 delayacct_blkio_end(p); 4181 atomic_dec(&task_rq(p)->nr_iowait); 4182 } 4183 4184 wake_flags |= WF_MIGRATED; 4185 psi_ttwu_dequeue(p); 4186 set_task_cpu(p, cpu); 4187 } 4188 #else 4189 cpu = task_cpu(p); 4190 #endif /* CONFIG_SMP */ 4191 4192 ttwu_queue(p, cpu, wake_flags); 4193 unlock: 4194 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4195 out: 4196 if (success) 4197 ttwu_stat(p, task_cpu(p), wake_flags); 4198 preempt_enable(); 4199 4200 return success; 4201 } 4202 4203 /** 4204 * task_call_func - Invoke a function on task in fixed state 4205 * @p: Process for which the function is to be invoked, can be @current. 4206 * @func: Function to invoke. 4207 * @arg: Argument to function. 4208 * 4209 * Fix the task in it's current state by avoiding wakeups and or rq operations 4210 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4211 * to work out what the state is, if required. Given that @func can be invoked 4212 * with a runqueue lock held, it had better be quite lightweight. 4213 * 4214 * Returns: 4215 * Whatever @func returns 4216 */ 4217 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4218 { 4219 struct rq *rq = NULL; 4220 unsigned int state; 4221 struct rq_flags rf; 4222 int ret; 4223 4224 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4225 4226 state = READ_ONCE(p->__state); 4227 4228 /* 4229 * Ensure we load p->on_rq after p->__state, otherwise it would be 4230 * possible to, falsely, observe p->on_rq == 0. 4231 * 4232 * See try_to_wake_up() for a longer comment. 4233 */ 4234 smp_rmb(); 4235 4236 /* 4237 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4238 * the task is blocked. Make sure to check @state since ttwu() can drop 4239 * locks at the end, see ttwu_queue_wakelist(). 4240 */ 4241 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4242 rq = __task_rq_lock(p, &rf); 4243 4244 /* 4245 * At this point the task is pinned; either: 4246 * - blocked and we're holding off wakeups (pi->lock) 4247 * - woken, and we're holding off enqueue (rq->lock) 4248 * - queued, and we're holding off schedule (rq->lock) 4249 * - running, and we're holding off de-schedule (rq->lock) 4250 * 4251 * The called function (@func) can use: task_curr(), p->on_rq and 4252 * p->__state to differentiate between these states. 4253 */ 4254 ret = func(p, arg); 4255 4256 if (rq) 4257 rq_unlock(rq, &rf); 4258 4259 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4260 return ret; 4261 } 4262 4263 /** 4264 * cpu_curr_snapshot - Return a snapshot of the currently running task 4265 * @cpu: The CPU on which to snapshot the task. 4266 * 4267 * Returns the task_struct pointer of the task "currently" running on 4268 * the specified CPU. If the same task is running on that CPU throughout, 4269 * the return value will be a pointer to that task's task_struct structure. 4270 * If the CPU did any context switches even vaguely concurrently with the 4271 * execution of this function, the return value will be a pointer to the 4272 * task_struct structure of a randomly chosen task that was running on 4273 * that CPU somewhere around the time that this function was executing. 4274 * 4275 * If the specified CPU was offline, the return value is whatever it 4276 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4277 * task, but there is no guarantee. Callers wishing a useful return 4278 * value must take some action to ensure that the specified CPU remains 4279 * online throughout. 4280 * 4281 * This function executes full memory barriers before and after fetching 4282 * the pointer, which permits the caller to confine this function's fetch 4283 * with respect to the caller's accesses to other shared variables. 4284 */ 4285 struct task_struct *cpu_curr_snapshot(int cpu) 4286 { 4287 struct task_struct *t; 4288 4289 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4290 t = rcu_dereference(cpu_curr(cpu)); 4291 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4292 return t; 4293 } 4294 4295 /** 4296 * wake_up_process - Wake up a specific process 4297 * @p: The process to be woken up. 4298 * 4299 * Attempt to wake up the nominated process and move it to the set of runnable 4300 * processes. 4301 * 4302 * Return: 1 if the process was woken up, 0 if it was already running. 4303 * 4304 * This function executes a full memory barrier before accessing the task state. 4305 */ 4306 int wake_up_process(struct task_struct *p) 4307 { 4308 return try_to_wake_up(p, TASK_NORMAL, 0); 4309 } 4310 EXPORT_SYMBOL(wake_up_process); 4311 4312 int wake_up_state(struct task_struct *p, unsigned int state) 4313 { 4314 return try_to_wake_up(p, state, 0); 4315 } 4316 4317 /* 4318 * Perform scheduler related setup for a newly forked process p. 4319 * p is forked by current. 4320 * 4321 * __sched_fork() is basic setup used by init_idle() too: 4322 */ 4323 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4324 { 4325 p->on_rq = 0; 4326 4327 p->se.on_rq = 0; 4328 p->se.exec_start = 0; 4329 p->se.sum_exec_runtime = 0; 4330 p->se.prev_sum_exec_runtime = 0; 4331 p->se.nr_migrations = 0; 4332 p->se.vruntime = 0; 4333 INIT_LIST_HEAD(&p->se.group_node); 4334 4335 #ifdef CONFIG_FAIR_GROUP_SCHED 4336 p->se.cfs_rq = NULL; 4337 #endif 4338 4339 #ifdef CONFIG_SCHEDSTATS 4340 /* Even if schedstat is disabled, there should not be garbage */ 4341 memset(&p->stats, 0, sizeof(p->stats)); 4342 #endif 4343 4344 RB_CLEAR_NODE(&p->dl.rb_node); 4345 init_dl_task_timer(&p->dl); 4346 init_dl_inactive_task_timer(&p->dl); 4347 __dl_clear_params(p); 4348 4349 INIT_LIST_HEAD(&p->rt.run_list); 4350 p->rt.timeout = 0; 4351 p->rt.time_slice = sched_rr_timeslice; 4352 p->rt.on_rq = 0; 4353 p->rt.on_list = 0; 4354 4355 #ifdef CONFIG_PREEMPT_NOTIFIERS 4356 INIT_HLIST_HEAD(&p->preempt_notifiers); 4357 #endif 4358 4359 #ifdef CONFIG_COMPACTION 4360 p->capture_control = NULL; 4361 #endif 4362 init_numa_balancing(clone_flags, p); 4363 #ifdef CONFIG_SMP 4364 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4365 p->migration_pending = NULL; 4366 #endif 4367 } 4368 4369 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4370 4371 #ifdef CONFIG_NUMA_BALANCING 4372 4373 int sysctl_numa_balancing_mode; 4374 4375 static void __set_numabalancing_state(bool enabled) 4376 { 4377 if (enabled) 4378 static_branch_enable(&sched_numa_balancing); 4379 else 4380 static_branch_disable(&sched_numa_balancing); 4381 } 4382 4383 void set_numabalancing_state(bool enabled) 4384 { 4385 if (enabled) 4386 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4387 else 4388 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4389 __set_numabalancing_state(enabled); 4390 } 4391 4392 #ifdef CONFIG_PROC_SYSCTL 4393 static void reset_memory_tiering(void) 4394 { 4395 struct pglist_data *pgdat; 4396 4397 for_each_online_pgdat(pgdat) { 4398 pgdat->nbp_threshold = 0; 4399 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4400 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4401 } 4402 } 4403 4404 int sysctl_numa_balancing(struct ctl_table *table, int write, 4405 void *buffer, size_t *lenp, loff_t *ppos) 4406 { 4407 struct ctl_table t; 4408 int err; 4409 int state = sysctl_numa_balancing_mode; 4410 4411 if (write && !capable(CAP_SYS_ADMIN)) 4412 return -EPERM; 4413 4414 t = *table; 4415 t.data = &state; 4416 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4417 if (err < 0) 4418 return err; 4419 if (write) { 4420 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4421 (state & NUMA_BALANCING_MEMORY_TIERING)) 4422 reset_memory_tiering(); 4423 sysctl_numa_balancing_mode = state; 4424 __set_numabalancing_state(state); 4425 } 4426 return err; 4427 } 4428 #endif 4429 #endif 4430 4431 #ifdef CONFIG_SCHEDSTATS 4432 4433 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4434 4435 static void set_schedstats(bool enabled) 4436 { 4437 if (enabled) 4438 static_branch_enable(&sched_schedstats); 4439 else 4440 static_branch_disable(&sched_schedstats); 4441 } 4442 4443 void force_schedstat_enabled(void) 4444 { 4445 if (!schedstat_enabled()) { 4446 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4447 static_branch_enable(&sched_schedstats); 4448 } 4449 } 4450 4451 static int __init setup_schedstats(char *str) 4452 { 4453 int ret = 0; 4454 if (!str) 4455 goto out; 4456 4457 if (!strcmp(str, "enable")) { 4458 set_schedstats(true); 4459 ret = 1; 4460 } else if (!strcmp(str, "disable")) { 4461 set_schedstats(false); 4462 ret = 1; 4463 } 4464 out: 4465 if (!ret) 4466 pr_warn("Unable to parse schedstats=\n"); 4467 4468 return ret; 4469 } 4470 __setup("schedstats=", setup_schedstats); 4471 4472 #ifdef CONFIG_PROC_SYSCTL 4473 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4474 size_t *lenp, loff_t *ppos) 4475 { 4476 struct ctl_table t; 4477 int err; 4478 int state = static_branch_likely(&sched_schedstats); 4479 4480 if (write && !capable(CAP_SYS_ADMIN)) 4481 return -EPERM; 4482 4483 t = *table; 4484 t.data = &state; 4485 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4486 if (err < 0) 4487 return err; 4488 if (write) 4489 set_schedstats(state); 4490 return err; 4491 } 4492 #endif /* CONFIG_PROC_SYSCTL */ 4493 #endif /* CONFIG_SCHEDSTATS */ 4494 4495 #ifdef CONFIG_SYSCTL 4496 static struct ctl_table sched_core_sysctls[] = { 4497 #ifdef CONFIG_SCHEDSTATS 4498 { 4499 .procname = "sched_schedstats", 4500 .data = NULL, 4501 .maxlen = sizeof(unsigned int), 4502 .mode = 0644, 4503 .proc_handler = sysctl_schedstats, 4504 .extra1 = SYSCTL_ZERO, 4505 .extra2 = SYSCTL_ONE, 4506 }, 4507 #endif /* CONFIG_SCHEDSTATS */ 4508 #ifdef CONFIG_UCLAMP_TASK 4509 { 4510 .procname = "sched_util_clamp_min", 4511 .data = &sysctl_sched_uclamp_util_min, 4512 .maxlen = sizeof(unsigned int), 4513 .mode = 0644, 4514 .proc_handler = sysctl_sched_uclamp_handler, 4515 }, 4516 { 4517 .procname = "sched_util_clamp_max", 4518 .data = &sysctl_sched_uclamp_util_max, 4519 .maxlen = sizeof(unsigned int), 4520 .mode = 0644, 4521 .proc_handler = sysctl_sched_uclamp_handler, 4522 }, 4523 { 4524 .procname = "sched_util_clamp_min_rt_default", 4525 .data = &sysctl_sched_uclamp_util_min_rt_default, 4526 .maxlen = sizeof(unsigned int), 4527 .mode = 0644, 4528 .proc_handler = sysctl_sched_uclamp_handler, 4529 }, 4530 #endif /* CONFIG_UCLAMP_TASK */ 4531 {} 4532 }; 4533 static int __init sched_core_sysctl_init(void) 4534 { 4535 register_sysctl_init("kernel", sched_core_sysctls); 4536 return 0; 4537 } 4538 late_initcall(sched_core_sysctl_init); 4539 #endif /* CONFIG_SYSCTL */ 4540 4541 /* 4542 * fork()/clone()-time setup: 4543 */ 4544 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4545 { 4546 __sched_fork(clone_flags, p); 4547 /* 4548 * We mark the process as NEW here. This guarantees that 4549 * nobody will actually run it, and a signal or other external 4550 * event cannot wake it up and insert it on the runqueue either. 4551 */ 4552 p->__state = TASK_NEW; 4553 4554 /* 4555 * Make sure we do not leak PI boosting priority to the child. 4556 */ 4557 p->prio = current->normal_prio; 4558 4559 uclamp_fork(p); 4560 4561 /* 4562 * Revert to default priority/policy on fork if requested. 4563 */ 4564 if (unlikely(p->sched_reset_on_fork)) { 4565 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4566 p->policy = SCHED_NORMAL; 4567 p->static_prio = NICE_TO_PRIO(0); 4568 p->rt_priority = 0; 4569 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4570 p->static_prio = NICE_TO_PRIO(0); 4571 4572 p->prio = p->normal_prio = p->static_prio; 4573 set_load_weight(p, false); 4574 4575 /* 4576 * We don't need the reset flag anymore after the fork. It has 4577 * fulfilled its duty: 4578 */ 4579 p->sched_reset_on_fork = 0; 4580 } 4581 4582 if (dl_prio(p->prio)) 4583 return -EAGAIN; 4584 else if (rt_prio(p->prio)) 4585 p->sched_class = &rt_sched_class; 4586 else 4587 p->sched_class = &fair_sched_class; 4588 4589 init_entity_runnable_average(&p->se); 4590 4591 4592 #ifdef CONFIG_SCHED_INFO 4593 if (likely(sched_info_on())) 4594 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4595 #endif 4596 #if defined(CONFIG_SMP) 4597 p->on_cpu = 0; 4598 #endif 4599 init_task_preempt_count(p); 4600 #ifdef CONFIG_SMP 4601 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4602 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4603 #endif 4604 return 0; 4605 } 4606 4607 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4608 { 4609 unsigned long flags; 4610 4611 /* 4612 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4613 * required yet, but lockdep gets upset if rules are violated. 4614 */ 4615 raw_spin_lock_irqsave(&p->pi_lock, flags); 4616 #ifdef CONFIG_CGROUP_SCHED 4617 if (1) { 4618 struct task_group *tg; 4619 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4620 struct task_group, css); 4621 tg = autogroup_task_group(p, tg); 4622 p->sched_task_group = tg; 4623 } 4624 #endif 4625 rseq_migrate(p); 4626 /* 4627 * We're setting the CPU for the first time, we don't migrate, 4628 * so use __set_task_cpu(). 4629 */ 4630 __set_task_cpu(p, smp_processor_id()); 4631 if (p->sched_class->task_fork) 4632 p->sched_class->task_fork(p); 4633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4634 } 4635 4636 void sched_post_fork(struct task_struct *p) 4637 { 4638 uclamp_post_fork(p); 4639 } 4640 4641 unsigned long to_ratio(u64 period, u64 runtime) 4642 { 4643 if (runtime == RUNTIME_INF) 4644 return BW_UNIT; 4645 4646 /* 4647 * Doing this here saves a lot of checks in all 4648 * the calling paths, and returning zero seems 4649 * safe for them anyway. 4650 */ 4651 if (period == 0) 4652 return 0; 4653 4654 return div64_u64(runtime << BW_SHIFT, period); 4655 } 4656 4657 /* 4658 * wake_up_new_task - wake up a newly created task for the first time. 4659 * 4660 * This function will do some initial scheduler statistics housekeeping 4661 * that must be done for every newly created context, then puts the task 4662 * on the runqueue and wakes it. 4663 */ 4664 void wake_up_new_task(struct task_struct *p) 4665 { 4666 struct rq_flags rf; 4667 struct rq *rq; 4668 4669 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4670 WRITE_ONCE(p->__state, TASK_RUNNING); 4671 #ifdef CONFIG_SMP 4672 /* 4673 * Fork balancing, do it here and not earlier because: 4674 * - cpus_ptr can change in the fork path 4675 * - any previously selected CPU might disappear through hotplug 4676 * 4677 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4678 * as we're not fully set-up yet. 4679 */ 4680 p->recent_used_cpu = task_cpu(p); 4681 rseq_migrate(p); 4682 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4683 #endif 4684 rq = __task_rq_lock(p, &rf); 4685 update_rq_clock(rq); 4686 post_init_entity_util_avg(p); 4687 4688 activate_task(rq, p, ENQUEUE_NOCLOCK); 4689 trace_sched_wakeup_new(p); 4690 check_preempt_curr(rq, p, WF_FORK); 4691 #ifdef CONFIG_SMP 4692 if (p->sched_class->task_woken) { 4693 /* 4694 * Nothing relies on rq->lock after this, so it's fine to 4695 * drop it. 4696 */ 4697 rq_unpin_lock(rq, &rf); 4698 p->sched_class->task_woken(rq, p); 4699 rq_repin_lock(rq, &rf); 4700 } 4701 #endif 4702 task_rq_unlock(rq, p, &rf); 4703 } 4704 4705 #ifdef CONFIG_PREEMPT_NOTIFIERS 4706 4707 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4708 4709 void preempt_notifier_inc(void) 4710 { 4711 static_branch_inc(&preempt_notifier_key); 4712 } 4713 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4714 4715 void preempt_notifier_dec(void) 4716 { 4717 static_branch_dec(&preempt_notifier_key); 4718 } 4719 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4720 4721 /** 4722 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4723 * @notifier: notifier struct to register 4724 */ 4725 void preempt_notifier_register(struct preempt_notifier *notifier) 4726 { 4727 if (!static_branch_unlikely(&preempt_notifier_key)) 4728 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4729 4730 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4731 } 4732 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4733 4734 /** 4735 * preempt_notifier_unregister - no longer interested in preemption notifications 4736 * @notifier: notifier struct to unregister 4737 * 4738 * This is *not* safe to call from within a preemption notifier. 4739 */ 4740 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4741 { 4742 hlist_del(¬ifier->link); 4743 } 4744 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4745 4746 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4747 { 4748 struct preempt_notifier *notifier; 4749 4750 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4751 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4752 } 4753 4754 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4755 { 4756 if (static_branch_unlikely(&preempt_notifier_key)) 4757 __fire_sched_in_preempt_notifiers(curr); 4758 } 4759 4760 static void 4761 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4762 struct task_struct *next) 4763 { 4764 struct preempt_notifier *notifier; 4765 4766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4767 notifier->ops->sched_out(notifier, next); 4768 } 4769 4770 static __always_inline void 4771 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4772 struct task_struct *next) 4773 { 4774 if (static_branch_unlikely(&preempt_notifier_key)) 4775 __fire_sched_out_preempt_notifiers(curr, next); 4776 } 4777 4778 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4779 4780 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4781 { 4782 } 4783 4784 static inline void 4785 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4786 struct task_struct *next) 4787 { 4788 } 4789 4790 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4791 4792 static inline void prepare_task(struct task_struct *next) 4793 { 4794 #ifdef CONFIG_SMP 4795 /* 4796 * Claim the task as running, we do this before switching to it 4797 * such that any running task will have this set. 4798 * 4799 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4800 * its ordering comment. 4801 */ 4802 WRITE_ONCE(next->on_cpu, 1); 4803 #endif 4804 } 4805 4806 static inline void finish_task(struct task_struct *prev) 4807 { 4808 #ifdef CONFIG_SMP 4809 /* 4810 * This must be the very last reference to @prev from this CPU. After 4811 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4812 * must ensure this doesn't happen until the switch is completely 4813 * finished. 4814 * 4815 * In particular, the load of prev->state in finish_task_switch() must 4816 * happen before this. 4817 * 4818 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4819 */ 4820 smp_store_release(&prev->on_cpu, 0); 4821 #endif 4822 } 4823 4824 #ifdef CONFIG_SMP 4825 4826 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4827 { 4828 void (*func)(struct rq *rq); 4829 struct balance_callback *next; 4830 4831 lockdep_assert_rq_held(rq); 4832 4833 while (head) { 4834 func = (void (*)(struct rq *))head->func; 4835 next = head->next; 4836 head->next = NULL; 4837 head = next; 4838 4839 func(rq); 4840 } 4841 } 4842 4843 static void balance_push(struct rq *rq); 4844 4845 /* 4846 * balance_push_callback is a right abuse of the callback interface and plays 4847 * by significantly different rules. 4848 * 4849 * Where the normal balance_callback's purpose is to be ran in the same context 4850 * that queued it (only later, when it's safe to drop rq->lock again), 4851 * balance_push_callback is specifically targeted at __schedule(). 4852 * 4853 * This abuse is tolerated because it places all the unlikely/odd cases behind 4854 * a single test, namely: rq->balance_callback == NULL. 4855 */ 4856 struct balance_callback balance_push_callback = { 4857 .next = NULL, 4858 .func = balance_push, 4859 }; 4860 4861 static inline struct balance_callback * 4862 __splice_balance_callbacks(struct rq *rq, bool split) 4863 { 4864 struct balance_callback *head = rq->balance_callback; 4865 4866 if (likely(!head)) 4867 return NULL; 4868 4869 lockdep_assert_rq_held(rq); 4870 /* 4871 * Must not take balance_push_callback off the list when 4872 * splice_balance_callbacks() and balance_callbacks() are not 4873 * in the same rq->lock section. 4874 * 4875 * In that case it would be possible for __schedule() to interleave 4876 * and observe the list empty. 4877 */ 4878 if (split && head == &balance_push_callback) 4879 head = NULL; 4880 else 4881 rq->balance_callback = NULL; 4882 4883 return head; 4884 } 4885 4886 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4887 { 4888 return __splice_balance_callbacks(rq, true); 4889 } 4890 4891 static void __balance_callbacks(struct rq *rq) 4892 { 4893 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4894 } 4895 4896 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4897 { 4898 unsigned long flags; 4899 4900 if (unlikely(head)) { 4901 raw_spin_rq_lock_irqsave(rq, flags); 4902 do_balance_callbacks(rq, head); 4903 raw_spin_rq_unlock_irqrestore(rq, flags); 4904 } 4905 } 4906 4907 #else 4908 4909 static inline void __balance_callbacks(struct rq *rq) 4910 { 4911 } 4912 4913 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4914 { 4915 return NULL; 4916 } 4917 4918 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4919 { 4920 } 4921 4922 #endif 4923 4924 static inline void 4925 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4926 { 4927 /* 4928 * Since the runqueue lock will be released by the next 4929 * task (which is an invalid locking op but in the case 4930 * of the scheduler it's an obvious special-case), so we 4931 * do an early lockdep release here: 4932 */ 4933 rq_unpin_lock(rq, rf); 4934 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4935 #ifdef CONFIG_DEBUG_SPINLOCK 4936 /* this is a valid case when another task releases the spinlock */ 4937 rq_lockp(rq)->owner = next; 4938 #endif 4939 } 4940 4941 static inline void finish_lock_switch(struct rq *rq) 4942 { 4943 /* 4944 * If we are tracking spinlock dependencies then we have to 4945 * fix up the runqueue lock - which gets 'carried over' from 4946 * prev into current: 4947 */ 4948 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4949 __balance_callbacks(rq); 4950 raw_spin_rq_unlock_irq(rq); 4951 } 4952 4953 /* 4954 * NOP if the arch has not defined these: 4955 */ 4956 4957 #ifndef prepare_arch_switch 4958 # define prepare_arch_switch(next) do { } while (0) 4959 #endif 4960 4961 #ifndef finish_arch_post_lock_switch 4962 # define finish_arch_post_lock_switch() do { } while (0) 4963 #endif 4964 4965 static inline void kmap_local_sched_out(void) 4966 { 4967 #ifdef CONFIG_KMAP_LOCAL 4968 if (unlikely(current->kmap_ctrl.idx)) 4969 __kmap_local_sched_out(); 4970 #endif 4971 } 4972 4973 static inline void kmap_local_sched_in(void) 4974 { 4975 #ifdef CONFIG_KMAP_LOCAL 4976 if (unlikely(current->kmap_ctrl.idx)) 4977 __kmap_local_sched_in(); 4978 #endif 4979 } 4980 4981 /** 4982 * prepare_task_switch - prepare to switch tasks 4983 * @rq: the runqueue preparing to switch 4984 * @prev: the current task that is being switched out 4985 * @next: the task we are going to switch to. 4986 * 4987 * This is called with the rq lock held and interrupts off. It must 4988 * be paired with a subsequent finish_task_switch after the context 4989 * switch. 4990 * 4991 * prepare_task_switch sets up locking and calls architecture specific 4992 * hooks. 4993 */ 4994 static inline void 4995 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4996 struct task_struct *next) 4997 { 4998 kcov_prepare_switch(prev); 4999 sched_info_switch(rq, prev, next); 5000 perf_event_task_sched_out(prev, next); 5001 rseq_preempt(prev); 5002 fire_sched_out_preempt_notifiers(prev, next); 5003 kmap_local_sched_out(); 5004 prepare_task(next); 5005 prepare_arch_switch(next); 5006 } 5007 5008 /** 5009 * finish_task_switch - clean up after a task-switch 5010 * @prev: the thread we just switched away from. 5011 * 5012 * finish_task_switch must be called after the context switch, paired 5013 * with a prepare_task_switch call before the context switch. 5014 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5015 * and do any other architecture-specific cleanup actions. 5016 * 5017 * Note that we may have delayed dropping an mm in context_switch(). If 5018 * so, we finish that here outside of the runqueue lock. (Doing it 5019 * with the lock held can cause deadlocks; see schedule() for 5020 * details.) 5021 * 5022 * The context switch have flipped the stack from under us and restored the 5023 * local variables which were saved when this task called schedule() in the 5024 * past. prev == current is still correct but we need to recalculate this_rq 5025 * because prev may have moved to another CPU. 5026 */ 5027 static struct rq *finish_task_switch(struct task_struct *prev) 5028 __releases(rq->lock) 5029 { 5030 struct rq *rq = this_rq(); 5031 struct mm_struct *mm = rq->prev_mm; 5032 unsigned int prev_state; 5033 5034 /* 5035 * The previous task will have left us with a preempt_count of 2 5036 * because it left us after: 5037 * 5038 * schedule() 5039 * preempt_disable(); // 1 5040 * __schedule() 5041 * raw_spin_lock_irq(&rq->lock) // 2 5042 * 5043 * Also, see FORK_PREEMPT_COUNT. 5044 */ 5045 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5046 "corrupted preempt_count: %s/%d/0x%x\n", 5047 current->comm, current->pid, preempt_count())) 5048 preempt_count_set(FORK_PREEMPT_COUNT); 5049 5050 rq->prev_mm = NULL; 5051 5052 /* 5053 * A task struct has one reference for the use as "current". 5054 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5055 * schedule one last time. The schedule call will never return, and 5056 * the scheduled task must drop that reference. 5057 * 5058 * We must observe prev->state before clearing prev->on_cpu (in 5059 * finish_task), otherwise a concurrent wakeup can get prev 5060 * running on another CPU and we could rave with its RUNNING -> DEAD 5061 * transition, resulting in a double drop. 5062 */ 5063 prev_state = READ_ONCE(prev->__state); 5064 vtime_task_switch(prev); 5065 perf_event_task_sched_in(prev, current); 5066 finish_task(prev); 5067 tick_nohz_task_switch(); 5068 finish_lock_switch(rq); 5069 finish_arch_post_lock_switch(); 5070 kcov_finish_switch(current); 5071 /* 5072 * kmap_local_sched_out() is invoked with rq::lock held and 5073 * interrupts disabled. There is no requirement for that, but the 5074 * sched out code does not have an interrupt enabled section. 5075 * Restoring the maps on sched in does not require interrupts being 5076 * disabled either. 5077 */ 5078 kmap_local_sched_in(); 5079 5080 fire_sched_in_preempt_notifiers(current); 5081 /* 5082 * When switching through a kernel thread, the loop in 5083 * membarrier_{private,global}_expedited() may have observed that 5084 * kernel thread and not issued an IPI. It is therefore possible to 5085 * schedule between user->kernel->user threads without passing though 5086 * switch_mm(). Membarrier requires a barrier after storing to 5087 * rq->curr, before returning to userspace, so provide them here: 5088 * 5089 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5090 * provided by mmdrop(), 5091 * - a sync_core for SYNC_CORE. 5092 */ 5093 if (mm) { 5094 membarrier_mm_sync_core_before_usermode(mm); 5095 mmdrop_sched(mm); 5096 } 5097 if (unlikely(prev_state == TASK_DEAD)) { 5098 if (prev->sched_class->task_dead) 5099 prev->sched_class->task_dead(prev); 5100 5101 /* Task is done with its stack. */ 5102 put_task_stack(prev); 5103 5104 put_task_struct_rcu_user(prev); 5105 } 5106 5107 return rq; 5108 } 5109 5110 /** 5111 * schedule_tail - first thing a freshly forked thread must call. 5112 * @prev: the thread we just switched away from. 5113 */ 5114 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5115 __releases(rq->lock) 5116 { 5117 /* 5118 * New tasks start with FORK_PREEMPT_COUNT, see there and 5119 * finish_task_switch() for details. 5120 * 5121 * finish_task_switch() will drop rq->lock() and lower preempt_count 5122 * and the preempt_enable() will end up enabling preemption (on 5123 * PREEMPT_COUNT kernels). 5124 */ 5125 5126 finish_task_switch(prev); 5127 preempt_enable(); 5128 5129 if (current->set_child_tid) 5130 put_user(task_pid_vnr(current), current->set_child_tid); 5131 5132 calculate_sigpending(); 5133 } 5134 5135 /* 5136 * context_switch - switch to the new MM and the new thread's register state. 5137 */ 5138 static __always_inline struct rq * 5139 context_switch(struct rq *rq, struct task_struct *prev, 5140 struct task_struct *next, struct rq_flags *rf) 5141 { 5142 prepare_task_switch(rq, prev, next); 5143 5144 /* 5145 * For paravirt, this is coupled with an exit in switch_to to 5146 * combine the page table reload and the switch backend into 5147 * one hypercall. 5148 */ 5149 arch_start_context_switch(prev); 5150 5151 /* 5152 * kernel -> kernel lazy + transfer active 5153 * user -> kernel lazy + mmgrab() active 5154 * 5155 * kernel -> user switch + mmdrop() active 5156 * user -> user switch 5157 */ 5158 if (!next->mm) { // to kernel 5159 enter_lazy_tlb(prev->active_mm, next); 5160 5161 next->active_mm = prev->active_mm; 5162 if (prev->mm) // from user 5163 mmgrab(prev->active_mm); 5164 else 5165 prev->active_mm = NULL; 5166 } else { // to user 5167 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5168 /* 5169 * sys_membarrier() requires an smp_mb() between setting 5170 * rq->curr / membarrier_switch_mm() and returning to userspace. 5171 * 5172 * The below provides this either through switch_mm(), or in 5173 * case 'prev->active_mm == next->mm' through 5174 * finish_task_switch()'s mmdrop(). 5175 */ 5176 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5177 lru_gen_use_mm(next->mm); 5178 5179 if (!prev->mm) { // from kernel 5180 /* will mmdrop() in finish_task_switch(). */ 5181 rq->prev_mm = prev->active_mm; 5182 prev->active_mm = NULL; 5183 } 5184 } 5185 5186 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5187 5188 prepare_lock_switch(rq, next, rf); 5189 5190 /* Here we just switch the register state and the stack. */ 5191 switch_to(prev, next, prev); 5192 barrier(); 5193 5194 return finish_task_switch(prev); 5195 } 5196 5197 /* 5198 * nr_running and nr_context_switches: 5199 * 5200 * externally visible scheduler statistics: current number of runnable 5201 * threads, total number of context switches performed since bootup. 5202 */ 5203 unsigned int nr_running(void) 5204 { 5205 unsigned int i, sum = 0; 5206 5207 for_each_online_cpu(i) 5208 sum += cpu_rq(i)->nr_running; 5209 5210 return sum; 5211 } 5212 5213 /* 5214 * Check if only the current task is running on the CPU. 5215 * 5216 * Caution: this function does not check that the caller has disabled 5217 * preemption, thus the result might have a time-of-check-to-time-of-use 5218 * race. The caller is responsible to use it correctly, for example: 5219 * 5220 * - from a non-preemptible section (of course) 5221 * 5222 * - from a thread that is bound to a single CPU 5223 * 5224 * - in a loop with very short iterations (e.g. a polling loop) 5225 */ 5226 bool single_task_running(void) 5227 { 5228 return raw_rq()->nr_running == 1; 5229 } 5230 EXPORT_SYMBOL(single_task_running); 5231 5232 unsigned long long nr_context_switches(void) 5233 { 5234 int i; 5235 unsigned long long sum = 0; 5236 5237 for_each_possible_cpu(i) 5238 sum += cpu_rq(i)->nr_switches; 5239 5240 return sum; 5241 } 5242 5243 /* 5244 * Consumers of these two interfaces, like for example the cpuidle menu 5245 * governor, are using nonsensical data. Preferring shallow idle state selection 5246 * for a CPU that has IO-wait which might not even end up running the task when 5247 * it does become runnable. 5248 */ 5249 5250 unsigned int nr_iowait_cpu(int cpu) 5251 { 5252 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5253 } 5254 5255 /* 5256 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5257 * 5258 * The idea behind IO-wait account is to account the idle time that we could 5259 * have spend running if it were not for IO. That is, if we were to improve the 5260 * storage performance, we'd have a proportional reduction in IO-wait time. 5261 * 5262 * This all works nicely on UP, where, when a task blocks on IO, we account 5263 * idle time as IO-wait, because if the storage were faster, it could've been 5264 * running and we'd not be idle. 5265 * 5266 * This has been extended to SMP, by doing the same for each CPU. This however 5267 * is broken. 5268 * 5269 * Imagine for instance the case where two tasks block on one CPU, only the one 5270 * CPU will have IO-wait accounted, while the other has regular idle. Even 5271 * though, if the storage were faster, both could've ran at the same time, 5272 * utilising both CPUs. 5273 * 5274 * This means, that when looking globally, the current IO-wait accounting on 5275 * SMP is a lower bound, by reason of under accounting. 5276 * 5277 * Worse, since the numbers are provided per CPU, they are sometimes 5278 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5279 * associated with any one particular CPU, it can wake to another CPU than it 5280 * blocked on. This means the per CPU IO-wait number is meaningless. 5281 * 5282 * Task CPU affinities can make all that even more 'interesting'. 5283 */ 5284 5285 unsigned int nr_iowait(void) 5286 { 5287 unsigned int i, sum = 0; 5288 5289 for_each_possible_cpu(i) 5290 sum += nr_iowait_cpu(i); 5291 5292 return sum; 5293 } 5294 5295 #ifdef CONFIG_SMP 5296 5297 /* 5298 * sched_exec - execve() is a valuable balancing opportunity, because at 5299 * this point the task has the smallest effective memory and cache footprint. 5300 */ 5301 void sched_exec(void) 5302 { 5303 struct task_struct *p = current; 5304 unsigned long flags; 5305 int dest_cpu; 5306 5307 raw_spin_lock_irqsave(&p->pi_lock, flags); 5308 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5309 if (dest_cpu == smp_processor_id()) 5310 goto unlock; 5311 5312 if (likely(cpu_active(dest_cpu))) { 5313 struct migration_arg arg = { p, dest_cpu }; 5314 5315 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5316 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5317 return; 5318 } 5319 unlock: 5320 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5321 } 5322 5323 #endif 5324 5325 DEFINE_PER_CPU(struct kernel_stat, kstat); 5326 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5327 5328 EXPORT_PER_CPU_SYMBOL(kstat); 5329 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5330 5331 /* 5332 * The function fair_sched_class.update_curr accesses the struct curr 5333 * and its field curr->exec_start; when called from task_sched_runtime(), 5334 * we observe a high rate of cache misses in practice. 5335 * Prefetching this data results in improved performance. 5336 */ 5337 static inline void prefetch_curr_exec_start(struct task_struct *p) 5338 { 5339 #ifdef CONFIG_FAIR_GROUP_SCHED 5340 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5341 #else 5342 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5343 #endif 5344 prefetch(curr); 5345 prefetch(&curr->exec_start); 5346 } 5347 5348 /* 5349 * Return accounted runtime for the task. 5350 * In case the task is currently running, return the runtime plus current's 5351 * pending runtime that have not been accounted yet. 5352 */ 5353 unsigned long long task_sched_runtime(struct task_struct *p) 5354 { 5355 struct rq_flags rf; 5356 struct rq *rq; 5357 u64 ns; 5358 5359 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5360 /* 5361 * 64-bit doesn't need locks to atomically read a 64-bit value. 5362 * So we have a optimization chance when the task's delta_exec is 0. 5363 * Reading ->on_cpu is racy, but this is ok. 5364 * 5365 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5366 * If we race with it entering CPU, unaccounted time is 0. This is 5367 * indistinguishable from the read occurring a few cycles earlier. 5368 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5369 * been accounted, so we're correct here as well. 5370 */ 5371 if (!p->on_cpu || !task_on_rq_queued(p)) 5372 return p->se.sum_exec_runtime; 5373 #endif 5374 5375 rq = task_rq_lock(p, &rf); 5376 /* 5377 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5378 * project cycles that may never be accounted to this 5379 * thread, breaking clock_gettime(). 5380 */ 5381 if (task_current(rq, p) && task_on_rq_queued(p)) { 5382 prefetch_curr_exec_start(p); 5383 update_rq_clock(rq); 5384 p->sched_class->update_curr(rq); 5385 } 5386 ns = p->se.sum_exec_runtime; 5387 task_rq_unlock(rq, p, &rf); 5388 5389 return ns; 5390 } 5391 5392 #ifdef CONFIG_SCHED_DEBUG 5393 static u64 cpu_resched_latency(struct rq *rq) 5394 { 5395 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5396 u64 resched_latency, now = rq_clock(rq); 5397 static bool warned_once; 5398 5399 if (sysctl_resched_latency_warn_once && warned_once) 5400 return 0; 5401 5402 if (!need_resched() || !latency_warn_ms) 5403 return 0; 5404 5405 if (system_state == SYSTEM_BOOTING) 5406 return 0; 5407 5408 if (!rq->last_seen_need_resched_ns) { 5409 rq->last_seen_need_resched_ns = now; 5410 rq->ticks_without_resched = 0; 5411 return 0; 5412 } 5413 5414 rq->ticks_without_resched++; 5415 resched_latency = now - rq->last_seen_need_resched_ns; 5416 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5417 return 0; 5418 5419 warned_once = true; 5420 5421 return resched_latency; 5422 } 5423 5424 static int __init setup_resched_latency_warn_ms(char *str) 5425 { 5426 long val; 5427 5428 if ((kstrtol(str, 0, &val))) { 5429 pr_warn("Unable to set resched_latency_warn_ms\n"); 5430 return 1; 5431 } 5432 5433 sysctl_resched_latency_warn_ms = val; 5434 return 1; 5435 } 5436 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5437 #else 5438 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5439 #endif /* CONFIG_SCHED_DEBUG */ 5440 5441 /* 5442 * This function gets called by the timer code, with HZ frequency. 5443 * We call it with interrupts disabled. 5444 */ 5445 void scheduler_tick(void) 5446 { 5447 int cpu = smp_processor_id(); 5448 struct rq *rq = cpu_rq(cpu); 5449 struct task_struct *curr = rq->curr; 5450 struct rq_flags rf; 5451 unsigned long thermal_pressure; 5452 u64 resched_latency; 5453 5454 arch_scale_freq_tick(); 5455 sched_clock_tick(); 5456 5457 rq_lock(rq, &rf); 5458 5459 update_rq_clock(rq); 5460 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5461 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5462 curr->sched_class->task_tick(rq, curr, 0); 5463 if (sched_feat(LATENCY_WARN)) 5464 resched_latency = cpu_resched_latency(rq); 5465 calc_global_load_tick(rq); 5466 sched_core_tick(rq); 5467 5468 rq_unlock(rq, &rf); 5469 5470 if (sched_feat(LATENCY_WARN) && resched_latency) 5471 resched_latency_warn(cpu, resched_latency); 5472 5473 perf_event_task_tick(); 5474 5475 #ifdef CONFIG_SMP 5476 rq->idle_balance = idle_cpu(cpu); 5477 trigger_load_balance(rq); 5478 #endif 5479 } 5480 5481 #ifdef CONFIG_NO_HZ_FULL 5482 5483 struct tick_work { 5484 int cpu; 5485 atomic_t state; 5486 struct delayed_work work; 5487 }; 5488 /* Values for ->state, see diagram below. */ 5489 #define TICK_SCHED_REMOTE_OFFLINE 0 5490 #define TICK_SCHED_REMOTE_OFFLINING 1 5491 #define TICK_SCHED_REMOTE_RUNNING 2 5492 5493 /* 5494 * State diagram for ->state: 5495 * 5496 * 5497 * TICK_SCHED_REMOTE_OFFLINE 5498 * | ^ 5499 * | | 5500 * | | sched_tick_remote() 5501 * | | 5502 * | | 5503 * +--TICK_SCHED_REMOTE_OFFLINING 5504 * | ^ 5505 * | | 5506 * sched_tick_start() | | sched_tick_stop() 5507 * | | 5508 * V | 5509 * TICK_SCHED_REMOTE_RUNNING 5510 * 5511 * 5512 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5513 * and sched_tick_start() are happy to leave the state in RUNNING. 5514 */ 5515 5516 static struct tick_work __percpu *tick_work_cpu; 5517 5518 static void sched_tick_remote(struct work_struct *work) 5519 { 5520 struct delayed_work *dwork = to_delayed_work(work); 5521 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5522 int cpu = twork->cpu; 5523 struct rq *rq = cpu_rq(cpu); 5524 struct task_struct *curr; 5525 struct rq_flags rf; 5526 u64 delta; 5527 int os; 5528 5529 /* 5530 * Handle the tick only if it appears the remote CPU is running in full 5531 * dynticks mode. The check is racy by nature, but missing a tick or 5532 * having one too much is no big deal because the scheduler tick updates 5533 * statistics and checks timeslices in a time-independent way, regardless 5534 * of when exactly it is running. 5535 */ 5536 if (!tick_nohz_tick_stopped_cpu(cpu)) 5537 goto out_requeue; 5538 5539 rq_lock_irq(rq, &rf); 5540 curr = rq->curr; 5541 if (cpu_is_offline(cpu)) 5542 goto out_unlock; 5543 5544 update_rq_clock(rq); 5545 5546 if (!is_idle_task(curr)) { 5547 /* 5548 * Make sure the next tick runs within a reasonable 5549 * amount of time. 5550 */ 5551 delta = rq_clock_task(rq) - curr->se.exec_start; 5552 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5553 } 5554 curr->sched_class->task_tick(rq, curr, 0); 5555 5556 calc_load_nohz_remote(rq); 5557 out_unlock: 5558 rq_unlock_irq(rq, &rf); 5559 out_requeue: 5560 5561 /* 5562 * Run the remote tick once per second (1Hz). This arbitrary 5563 * frequency is large enough to avoid overload but short enough 5564 * to keep scheduler internal stats reasonably up to date. But 5565 * first update state to reflect hotplug activity if required. 5566 */ 5567 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5568 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5569 if (os == TICK_SCHED_REMOTE_RUNNING) 5570 queue_delayed_work(system_unbound_wq, dwork, HZ); 5571 } 5572 5573 static void sched_tick_start(int cpu) 5574 { 5575 int os; 5576 struct tick_work *twork; 5577 5578 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5579 return; 5580 5581 WARN_ON_ONCE(!tick_work_cpu); 5582 5583 twork = per_cpu_ptr(tick_work_cpu, cpu); 5584 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5585 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5586 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5587 twork->cpu = cpu; 5588 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5589 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5590 } 5591 } 5592 5593 #ifdef CONFIG_HOTPLUG_CPU 5594 static void sched_tick_stop(int cpu) 5595 { 5596 struct tick_work *twork; 5597 int os; 5598 5599 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5600 return; 5601 5602 WARN_ON_ONCE(!tick_work_cpu); 5603 5604 twork = per_cpu_ptr(tick_work_cpu, cpu); 5605 /* There cannot be competing actions, but don't rely on stop-machine. */ 5606 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5607 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5608 /* Don't cancel, as this would mess up the state machine. */ 5609 } 5610 #endif /* CONFIG_HOTPLUG_CPU */ 5611 5612 int __init sched_tick_offload_init(void) 5613 { 5614 tick_work_cpu = alloc_percpu(struct tick_work); 5615 BUG_ON(!tick_work_cpu); 5616 return 0; 5617 } 5618 5619 #else /* !CONFIG_NO_HZ_FULL */ 5620 static inline void sched_tick_start(int cpu) { } 5621 static inline void sched_tick_stop(int cpu) { } 5622 #endif 5623 5624 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5625 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5626 /* 5627 * If the value passed in is equal to the current preempt count 5628 * then we just disabled preemption. Start timing the latency. 5629 */ 5630 static inline void preempt_latency_start(int val) 5631 { 5632 if (preempt_count() == val) { 5633 unsigned long ip = get_lock_parent_ip(); 5634 #ifdef CONFIG_DEBUG_PREEMPT 5635 current->preempt_disable_ip = ip; 5636 #endif 5637 trace_preempt_off(CALLER_ADDR0, ip); 5638 } 5639 } 5640 5641 void preempt_count_add(int val) 5642 { 5643 #ifdef CONFIG_DEBUG_PREEMPT 5644 /* 5645 * Underflow? 5646 */ 5647 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5648 return; 5649 #endif 5650 __preempt_count_add(val); 5651 #ifdef CONFIG_DEBUG_PREEMPT 5652 /* 5653 * Spinlock count overflowing soon? 5654 */ 5655 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5656 PREEMPT_MASK - 10); 5657 #endif 5658 preempt_latency_start(val); 5659 } 5660 EXPORT_SYMBOL(preempt_count_add); 5661 NOKPROBE_SYMBOL(preempt_count_add); 5662 5663 /* 5664 * If the value passed in equals to the current preempt count 5665 * then we just enabled preemption. Stop timing the latency. 5666 */ 5667 static inline void preempt_latency_stop(int val) 5668 { 5669 if (preempt_count() == val) 5670 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5671 } 5672 5673 void preempt_count_sub(int val) 5674 { 5675 #ifdef CONFIG_DEBUG_PREEMPT 5676 /* 5677 * Underflow? 5678 */ 5679 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5680 return; 5681 /* 5682 * Is the spinlock portion underflowing? 5683 */ 5684 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5685 !(preempt_count() & PREEMPT_MASK))) 5686 return; 5687 #endif 5688 5689 preempt_latency_stop(val); 5690 __preempt_count_sub(val); 5691 } 5692 EXPORT_SYMBOL(preempt_count_sub); 5693 NOKPROBE_SYMBOL(preempt_count_sub); 5694 5695 #else 5696 static inline void preempt_latency_start(int val) { } 5697 static inline void preempt_latency_stop(int val) { } 5698 #endif 5699 5700 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5701 { 5702 #ifdef CONFIG_DEBUG_PREEMPT 5703 return p->preempt_disable_ip; 5704 #else 5705 return 0; 5706 #endif 5707 } 5708 5709 /* 5710 * Print scheduling while atomic bug: 5711 */ 5712 static noinline void __schedule_bug(struct task_struct *prev) 5713 { 5714 /* Save this before calling printk(), since that will clobber it */ 5715 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5716 5717 if (oops_in_progress) 5718 return; 5719 5720 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5721 prev->comm, prev->pid, preempt_count()); 5722 5723 debug_show_held_locks(prev); 5724 print_modules(); 5725 if (irqs_disabled()) 5726 print_irqtrace_events(prev); 5727 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5728 && in_atomic_preempt_off()) { 5729 pr_err("Preemption disabled at:"); 5730 print_ip_sym(KERN_ERR, preempt_disable_ip); 5731 } 5732 if (panic_on_warn) 5733 panic("scheduling while atomic\n"); 5734 5735 dump_stack(); 5736 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5737 } 5738 5739 /* 5740 * Various schedule()-time debugging checks and statistics: 5741 */ 5742 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5743 { 5744 #ifdef CONFIG_SCHED_STACK_END_CHECK 5745 if (task_stack_end_corrupted(prev)) 5746 panic("corrupted stack end detected inside scheduler\n"); 5747 5748 if (task_scs_end_corrupted(prev)) 5749 panic("corrupted shadow stack detected inside scheduler\n"); 5750 #endif 5751 5752 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5753 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5754 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5755 prev->comm, prev->pid, prev->non_block_count); 5756 dump_stack(); 5757 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5758 } 5759 #endif 5760 5761 if (unlikely(in_atomic_preempt_off())) { 5762 __schedule_bug(prev); 5763 preempt_count_set(PREEMPT_DISABLED); 5764 } 5765 rcu_sleep_check(); 5766 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5767 5768 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5769 5770 schedstat_inc(this_rq()->sched_count); 5771 } 5772 5773 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5774 struct rq_flags *rf) 5775 { 5776 #ifdef CONFIG_SMP 5777 const struct sched_class *class; 5778 /* 5779 * We must do the balancing pass before put_prev_task(), such 5780 * that when we release the rq->lock the task is in the same 5781 * state as before we took rq->lock. 5782 * 5783 * We can terminate the balance pass as soon as we know there is 5784 * a runnable task of @class priority or higher. 5785 */ 5786 for_class_range(class, prev->sched_class, &idle_sched_class) { 5787 if (class->balance(rq, prev, rf)) 5788 break; 5789 } 5790 #endif 5791 5792 put_prev_task(rq, prev); 5793 } 5794 5795 /* 5796 * Pick up the highest-prio task: 5797 */ 5798 static inline struct task_struct * 5799 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5800 { 5801 const struct sched_class *class; 5802 struct task_struct *p; 5803 5804 /* 5805 * Optimization: we know that if all tasks are in the fair class we can 5806 * call that function directly, but only if the @prev task wasn't of a 5807 * higher scheduling class, because otherwise those lose the 5808 * opportunity to pull in more work from other CPUs. 5809 */ 5810 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5811 rq->nr_running == rq->cfs.h_nr_running)) { 5812 5813 p = pick_next_task_fair(rq, prev, rf); 5814 if (unlikely(p == RETRY_TASK)) 5815 goto restart; 5816 5817 /* Assume the next prioritized class is idle_sched_class */ 5818 if (!p) { 5819 put_prev_task(rq, prev); 5820 p = pick_next_task_idle(rq); 5821 } 5822 5823 return p; 5824 } 5825 5826 restart: 5827 put_prev_task_balance(rq, prev, rf); 5828 5829 for_each_class(class) { 5830 p = class->pick_next_task(rq); 5831 if (p) 5832 return p; 5833 } 5834 5835 BUG(); /* The idle class should always have a runnable task. */ 5836 } 5837 5838 #ifdef CONFIG_SCHED_CORE 5839 static inline bool is_task_rq_idle(struct task_struct *t) 5840 { 5841 return (task_rq(t)->idle == t); 5842 } 5843 5844 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5845 { 5846 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5847 } 5848 5849 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5850 { 5851 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5852 return true; 5853 5854 return a->core_cookie == b->core_cookie; 5855 } 5856 5857 static inline struct task_struct *pick_task(struct rq *rq) 5858 { 5859 const struct sched_class *class; 5860 struct task_struct *p; 5861 5862 for_each_class(class) { 5863 p = class->pick_task(rq); 5864 if (p) 5865 return p; 5866 } 5867 5868 BUG(); /* The idle class should always have a runnable task. */ 5869 } 5870 5871 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5872 5873 static void queue_core_balance(struct rq *rq); 5874 5875 static struct task_struct * 5876 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5877 { 5878 struct task_struct *next, *p, *max = NULL; 5879 const struct cpumask *smt_mask; 5880 bool fi_before = false; 5881 bool core_clock_updated = (rq == rq->core); 5882 unsigned long cookie; 5883 int i, cpu, occ = 0; 5884 struct rq *rq_i; 5885 bool need_sync; 5886 5887 if (!sched_core_enabled(rq)) 5888 return __pick_next_task(rq, prev, rf); 5889 5890 cpu = cpu_of(rq); 5891 5892 /* Stopper task is switching into idle, no need core-wide selection. */ 5893 if (cpu_is_offline(cpu)) { 5894 /* 5895 * Reset core_pick so that we don't enter the fastpath when 5896 * coming online. core_pick would already be migrated to 5897 * another cpu during offline. 5898 */ 5899 rq->core_pick = NULL; 5900 return __pick_next_task(rq, prev, rf); 5901 } 5902 5903 /* 5904 * If there were no {en,de}queues since we picked (IOW, the task 5905 * pointers are all still valid), and we haven't scheduled the last 5906 * pick yet, do so now. 5907 * 5908 * rq->core_pick can be NULL if no selection was made for a CPU because 5909 * it was either offline or went offline during a sibling's core-wide 5910 * selection. In this case, do a core-wide selection. 5911 */ 5912 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5913 rq->core->core_pick_seq != rq->core_sched_seq && 5914 rq->core_pick) { 5915 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5916 5917 next = rq->core_pick; 5918 if (next != prev) { 5919 put_prev_task(rq, prev); 5920 set_next_task(rq, next); 5921 } 5922 5923 rq->core_pick = NULL; 5924 goto out; 5925 } 5926 5927 put_prev_task_balance(rq, prev, rf); 5928 5929 smt_mask = cpu_smt_mask(cpu); 5930 need_sync = !!rq->core->core_cookie; 5931 5932 /* reset state */ 5933 rq->core->core_cookie = 0UL; 5934 if (rq->core->core_forceidle_count) { 5935 if (!core_clock_updated) { 5936 update_rq_clock(rq->core); 5937 core_clock_updated = true; 5938 } 5939 sched_core_account_forceidle(rq); 5940 /* reset after accounting force idle */ 5941 rq->core->core_forceidle_start = 0; 5942 rq->core->core_forceidle_count = 0; 5943 rq->core->core_forceidle_occupation = 0; 5944 need_sync = true; 5945 fi_before = true; 5946 } 5947 5948 /* 5949 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5950 * 5951 * @task_seq guards the task state ({en,de}queues) 5952 * @pick_seq is the @task_seq we did a selection on 5953 * @sched_seq is the @pick_seq we scheduled 5954 * 5955 * However, preemptions can cause multiple picks on the same task set. 5956 * 'Fix' this by also increasing @task_seq for every pick. 5957 */ 5958 rq->core->core_task_seq++; 5959 5960 /* 5961 * Optimize for common case where this CPU has no cookies 5962 * and there are no cookied tasks running on siblings. 5963 */ 5964 if (!need_sync) { 5965 next = pick_task(rq); 5966 if (!next->core_cookie) { 5967 rq->core_pick = NULL; 5968 /* 5969 * For robustness, update the min_vruntime_fi for 5970 * unconstrained picks as well. 5971 */ 5972 WARN_ON_ONCE(fi_before); 5973 task_vruntime_update(rq, next, false); 5974 goto out_set_next; 5975 } 5976 } 5977 5978 /* 5979 * For each thread: do the regular task pick and find the max prio task 5980 * amongst them. 5981 * 5982 * Tie-break prio towards the current CPU 5983 */ 5984 for_each_cpu_wrap(i, smt_mask, cpu) { 5985 rq_i = cpu_rq(i); 5986 5987 /* 5988 * Current cpu always has its clock updated on entrance to 5989 * pick_next_task(). If the current cpu is not the core, 5990 * the core may also have been updated above. 5991 */ 5992 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5993 update_rq_clock(rq_i); 5994 5995 p = rq_i->core_pick = pick_task(rq_i); 5996 if (!max || prio_less(max, p, fi_before)) 5997 max = p; 5998 } 5999 6000 cookie = rq->core->core_cookie = max->core_cookie; 6001 6002 /* 6003 * For each thread: try and find a runnable task that matches @max or 6004 * force idle. 6005 */ 6006 for_each_cpu(i, smt_mask) { 6007 rq_i = cpu_rq(i); 6008 p = rq_i->core_pick; 6009 6010 if (!cookie_equals(p, cookie)) { 6011 p = NULL; 6012 if (cookie) 6013 p = sched_core_find(rq_i, cookie); 6014 if (!p) 6015 p = idle_sched_class.pick_task(rq_i); 6016 } 6017 6018 rq_i->core_pick = p; 6019 6020 if (p == rq_i->idle) { 6021 if (rq_i->nr_running) { 6022 rq->core->core_forceidle_count++; 6023 if (!fi_before) 6024 rq->core->core_forceidle_seq++; 6025 } 6026 } else { 6027 occ++; 6028 } 6029 } 6030 6031 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6032 rq->core->core_forceidle_start = rq_clock(rq->core); 6033 rq->core->core_forceidle_occupation = occ; 6034 } 6035 6036 rq->core->core_pick_seq = rq->core->core_task_seq; 6037 next = rq->core_pick; 6038 rq->core_sched_seq = rq->core->core_pick_seq; 6039 6040 /* Something should have been selected for current CPU */ 6041 WARN_ON_ONCE(!next); 6042 6043 /* 6044 * Reschedule siblings 6045 * 6046 * NOTE: L1TF -- at this point we're no longer running the old task and 6047 * sending an IPI (below) ensures the sibling will no longer be running 6048 * their task. This ensures there is no inter-sibling overlap between 6049 * non-matching user state. 6050 */ 6051 for_each_cpu(i, smt_mask) { 6052 rq_i = cpu_rq(i); 6053 6054 /* 6055 * An online sibling might have gone offline before a task 6056 * could be picked for it, or it might be offline but later 6057 * happen to come online, but its too late and nothing was 6058 * picked for it. That's Ok - it will pick tasks for itself, 6059 * so ignore it. 6060 */ 6061 if (!rq_i->core_pick) 6062 continue; 6063 6064 /* 6065 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6066 * fi_before fi update? 6067 * 0 0 1 6068 * 0 1 1 6069 * 1 0 1 6070 * 1 1 0 6071 */ 6072 if (!(fi_before && rq->core->core_forceidle_count)) 6073 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6074 6075 rq_i->core_pick->core_occupation = occ; 6076 6077 if (i == cpu) { 6078 rq_i->core_pick = NULL; 6079 continue; 6080 } 6081 6082 /* Did we break L1TF mitigation requirements? */ 6083 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6084 6085 if (rq_i->curr == rq_i->core_pick) { 6086 rq_i->core_pick = NULL; 6087 continue; 6088 } 6089 6090 resched_curr(rq_i); 6091 } 6092 6093 out_set_next: 6094 set_next_task(rq, next); 6095 out: 6096 if (rq->core->core_forceidle_count && next == rq->idle) 6097 queue_core_balance(rq); 6098 6099 return next; 6100 } 6101 6102 static bool try_steal_cookie(int this, int that) 6103 { 6104 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6105 struct task_struct *p; 6106 unsigned long cookie; 6107 bool success = false; 6108 6109 local_irq_disable(); 6110 double_rq_lock(dst, src); 6111 6112 cookie = dst->core->core_cookie; 6113 if (!cookie) 6114 goto unlock; 6115 6116 if (dst->curr != dst->idle) 6117 goto unlock; 6118 6119 p = sched_core_find(src, cookie); 6120 if (p == src->idle) 6121 goto unlock; 6122 6123 do { 6124 if (p == src->core_pick || p == src->curr) 6125 goto next; 6126 6127 if (!is_cpu_allowed(p, this)) 6128 goto next; 6129 6130 if (p->core_occupation > dst->idle->core_occupation) 6131 goto next; 6132 6133 deactivate_task(src, p, 0); 6134 set_task_cpu(p, this); 6135 activate_task(dst, p, 0); 6136 6137 resched_curr(dst); 6138 6139 success = true; 6140 break; 6141 6142 next: 6143 p = sched_core_next(p, cookie); 6144 } while (p); 6145 6146 unlock: 6147 double_rq_unlock(dst, src); 6148 local_irq_enable(); 6149 6150 return success; 6151 } 6152 6153 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6154 { 6155 int i; 6156 6157 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6158 if (i == cpu) 6159 continue; 6160 6161 if (need_resched()) 6162 break; 6163 6164 if (try_steal_cookie(cpu, i)) 6165 return true; 6166 } 6167 6168 return false; 6169 } 6170 6171 static void sched_core_balance(struct rq *rq) 6172 { 6173 struct sched_domain *sd; 6174 int cpu = cpu_of(rq); 6175 6176 preempt_disable(); 6177 rcu_read_lock(); 6178 raw_spin_rq_unlock_irq(rq); 6179 for_each_domain(cpu, sd) { 6180 if (need_resched()) 6181 break; 6182 6183 if (steal_cookie_task(cpu, sd)) 6184 break; 6185 } 6186 raw_spin_rq_lock_irq(rq); 6187 rcu_read_unlock(); 6188 preempt_enable(); 6189 } 6190 6191 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6192 6193 static void queue_core_balance(struct rq *rq) 6194 { 6195 if (!sched_core_enabled(rq)) 6196 return; 6197 6198 if (!rq->core->core_cookie) 6199 return; 6200 6201 if (!rq->nr_running) /* not forced idle */ 6202 return; 6203 6204 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6205 } 6206 6207 static void sched_core_cpu_starting(unsigned int cpu) 6208 { 6209 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6210 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6211 unsigned long flags; 6212 int t; 6213 6214 sched_core_lock(cpu, &flags); 6215 6216 WARN_ON_ONCE(rq->core != rq); 6217 6218 /* if we're the first, we'll be our own leader */ 6219 if (cpumask_weight(smt_mask) == 1) 6220 goto unlock; 6221 6222 /* find the leader */ 6223 for_each_cpu(t, smt_mask) { 6224 if (t == cpu) 6225 continue; 6226 rq = cpu_rq(t); 6227 if (rq->core == rq) { 6228 core_rq = rq; 6229 break; 6230 } 6231 } 6232 6233 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6234 goto unlock; 6235 6236 /* install and validate core_rq */ 6237 for_each_cpu(t, smt_mask) { 6238 rq = cpu_rq(t); 6239 6240 if (t == cpu) 6241 rq->core = core_rq; 6242 6243 WARN_ON_ONCE(rq->core != core_rq); 6244 } 6245 6246 unlock: 6247 sched_core_unlock(cpu, &flags); 6248 } 6249 6250 static void sched_core_cpu_deactivate(unsigned int cpu) 6251 { 6252 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6253 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6254 unsigned long flags; 6255 int t; 6256 6257 sched_core_lock(cpu, &flags); 6258 6259 /* if we're the last man standing, nothing to do */ 6260 if (cpumask_weight(smt_mask) == 1) { 6261 WARN_ON_ONCE(rq->core != rq); 6262 goto unlock; 6263 } 6264 6265 /* if we're not the leader, nothing to do */ 6266 if (rq->core != rq) 6267 goto unlock; 6268 6269 /* find a new leader */ 6270 for_each_cpu(t, smt_mask) { 6271 if (t == cpu) 6272 continue; 6273 core_rq = cpu_rq(t); 6274 break; 6275 } 6276 6277 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6278 goto unlock; 6279 6280 /* copy the shared state to the new leader */ 6281 core_rq->core_task_seq = rq->core_task_seq; 6282 core_rq->core_pick_seq = rq->core_pick_seq; 6283 core_rq->core_cookie = rq->core_cookie; 6284 core_rq->core_forceidle_count = rq->core_forceidle_count; 6285 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6286 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6287 6288 /* 6289 * Accounting edge for forced idle is handled in pick_next_task(). 6290 * Don't need another one here, since the hotplug thread shouldn't 6291 * have a cookie. 6292 */ 6293 core_rq->core_forceidle_start = 0; 6294 6295 /* install new leader */ 6296 for_each_cpu(t, smt_mask) { 6297 rq = cpu_rq(t); 6298 rq->core = core_rq; 6299 } 6300 6301 unlock: 6302 sched_core_unlock(cpu, &flags); 6303 } 6304 6305 static inline void sched_core_cpu_dying(unsigned int cpu) 6306 { 6307 struct rq *rq = cpu_rq(cpu); 6308 6309 if (rq->core != rq) 6310 rq->core = rq; 6311 } 6312 6313 #else /* !CONFIG_SCHED_CORE */ 6314 6315 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6316 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6317 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6318 6319 static struct task_struct * 6320 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6321 { 6322 return __pick_next_task(rq, prev, rf); 6323 } 6324 6325 #endif /* CONFIG_SCHED_CORE */ 6326 6327 /* 6328 * Constants for the sched_mode argument of __schedule(). 6329 * 6330 * The mode argument allows RT enabled kernels to differentiate a 6331 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6332 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6333 * optimize the AND operation out and just check for zero. 6334 */ 6335 #define SM_NONE 0x0 6336 #define SM_PREEMPT 0x1 6337 #define SM_RTLOCK_WAIT 0x2 6338 6339 #ifndef CONFIG_PREEMPT_RT 6340 # define SM_MASK_PREEMPT (~0U) 6341 #else 6342 # define SM_MASK_PREEMPT SM_PREEMPT 6343 #endif 6344 6345 /* 6346 * __schedule() is the main scheduler function. 6347 * 6348 * The main means of driving the scheduler and thus entering this function are: 6349 * 6350 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6351 * 6352 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6353 * paths. For example, see arch/x86/entry_64.S. 6354 * 6355 * To drive preemption between tasks, the scheduler sets the flag in timer 6356 * interrupt handler scheduler_tick(). 6357 * 6358 * 3. Wakeups don't really cause entry into schedule(). They add a 6359 * task to the run-queue and that's it. 6360 * 6361 * Now, if the new task added to the run-queue preempts the current 6362 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6363 * called on the nearest possible occasion: 6364 * 6365 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6366 * 6367 * - in syscall or exception context, at the next outmost 6368 * preempt_enable(). (this might be as soon as the wake_up()'s 6369 * spin_unlock()!) 6370 * 6371 * - in IRQ context, return from interrupt-handler to 6372 * preemptible context 6373 * 6374 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6375 * then at the next: 6376 * 6377 * - cond_resched() call 6378 * - explicit schedule() call 6379 * - return from syscall or exception to user-space 6380 * - return from interrupt-handler to user-space 6381 * 6382 * WARNING: must be called with preemption disabled! 6383 */ 6384 static void __sched notrace __schedule(unsigned int sched_mode) 6385 { 6386 struct task_struct *prev, *next; 6387 unsigned long *switch_count; 6388 unsigned long prev_state; 6389 struct rq_flags rf; 6390 struct rq *rq; 6391 int cpu; 6392 6393 cpu = smp_processor_id(); 6394 rq = cpu_rq(cpu); 6395 prev = rq->curr; 6396 6397 schedule_debug(prev, !!sched_mode); 6398 6399 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6400 hrtick_clear(rq); 6401 6402 local_irq_disable(); 6403 rcu_note_context_switch(!!sched_mode); 6404 6405 /* 6406 * Make sure that signal_pending_state()->signal_pending() below 6407 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6408 * done by the caller to avoid the race with signal_wake_up(): 6409 * 6410 * __set_current_state(@state) signal_wake_up() 6411 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6412 * wake_up_state(p, state) 6413 * LOCK rq->lock LOCK p->pi_state 6414 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6415 * if (signal_pending_state()) if (p->state & @state) 6416 * 6417 * Also, the membarrier system call requires a full memory barrier 6418 * after coming from user-space, before storing to rq->curr. 6419 */ 6420 rq_lock(rq, &rf); 6421 smp_mb__after_spinlock(); 6422 6423 /* Promote REQ to ACT */ 6424 rq->clock_update_flags <<= 1; 6425 update_rq_clock(rq); 6426 6427 switch_count = &prev->nivcsw; 6428 6429 /* 6430 * We must load prev->state once (task_struct::state is volatile), such 6431 * that we form a control dependency vs deactivate_task() below. 6432 */ 6433 prev_state = READ_ONCE(prev->__state); 6434 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6435 if (signal_pending_state(prev_state, prev)) { 6436 WRITE_ONCE(prev->__state, TASK_RUNNING); 6437 } else { 6438 prev->sched_contributes_to_load = 6439 (prev_state & TASK_UNINTERRUPTIBLE) && 6440 !(prev_state & TASK_NOLOAD) && 6441 !(prev_state & TASK_FROZEN); 6442 6443 if (prev->sched_contributes_to_load) 6444 rq->nr_uninterruptible++; 6445 6446 /* 6447 * __schedule() ttwu() 6448 * prev_state = prev->state; if (p->on_rq && ...) 6449 * if (prev_state) goto out; 6450 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6451 * p->state = TASK_WAKING 6452 * 6453 * Where __schedule() and ttwu() have matching control dependencies. 6454 * 6455 * After this, schedule() must not care about p->state any more. 6456 */ 6457 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6458 6459 if (prev->in_iowait) { 6460 atomic_inc(&rq->nr_iowait); 6461 delayacct_blkio_start(); 6462 } 6463 } 6464 switch_count = &prev->nvcsw; 6465 } 6466 6467 next = pick_next_task(rq, prev, &rf); 6468 clear_tsk_need_resched(prev); 6469 clear_preempt_need_resched(); 6470 #ifdef CONFIG_SCHED_DEBUG 6471 rq->last_seen_need_resched_ns = 0; 6472 #endif 6473 6474 if (likely(prev != next)) { 6475 rq->nr_switches++; 6476 /* 6477 * RCU users of rcu_dereference(rq->curr) may not see 6478 * changes to task_struct made by pick_next_task(). 6479 */ 6480 RCU_INIT_POINTER(rq->curr, next); 6481 /* 6482 * The membarrier system call requires each architecture 6483 * to have a full memory barrier after updating 6484 * rq->curr, before returning to user-space. 6485 * 6486 * Here are the schemes providing that barrier on the 6487 * various architectures: 6488 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6489 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6490 * - finish_lock_switch() for weakly-ordered 6491 * architectures where spin_unlock is a full barrier, 6492 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6493 * is a RELEASE barrier), 6494 */ 6495 ++*switch_count; 6496 6497 migrate_disable_switch(rq, prev); 6498 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6499 6500 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6501 6502 /* Also unlocks the rq: */ 6503 rq = context_switch(rq, prev, next, &rf); 6504 } else { 6505 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6506 6507 rq_unpin_lock(rq, &rf); 6508 __balance_callbacks(rq); 6509 raw_spin_rq_unlock_irq(rq); 6510 } 6511 } 6512 6513 void __noreturn do_task_dead(void) 6514 { 6515 /* Causes final put_task_struct in finish_task_switch(): */ 6516 set_special_state(TASK_DEAD); 6517 6518 /* Tell freezer to ignore us: */ 6519 current->flags |= PF_NOFREEZE; 6520 6521 __schedule(SM_NONE); 6522 BUG(); 6523 6524 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6525 for (;;) 6526 cpu_relax(); 6527 } 6528 6529 static inline void sched_submit_work(struct task_struct *tsk) 6530 { 6531 unsigned int task_flags; 6532 6533 if (task_is_running(tsk)) 6534 return; 6535 6536 task_flags = tsk->flags; 6537 /* 6538 * If a worker goes to sleep, notify and ask workqueue whether it 6539 * wants to wake up a task to maintain concurrency. 6540 */ 6541 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6542 if (task_flags & PF_WQ_WORKER) 6543 wq_worker_sleeping(tsk); 6544 else 6545 io_wq_worker_sleeping(tsk); 6546 } 6547 6548 /* 6549 * spinlock and rwlock must not flush block requests. This will 6550 * deadlock if the callback attempts to acquire a lock which is 6551 * already acquired. 6552 */ 6553 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6554 6555 /* 6556 * If we are going to sleep and we have plugged IO queued, 6557 * make sure to submit it to avoid deadlocks. 6558 */ 6559 blk_flush_plug(tsk->plug, true); 6560 } 6561 6562 static void sched_update_worker(struct task_struct *tsk) 6563 { 6564 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6565 if (tsk->flags & PF_WQ_WORKER) 6566 wq_worker_running(tsk); 6567 else 6568 io_wq_worker_running(tsk); 6569 } 6570 } 6571 6572 asmlinkage __visible void __sched schedule(void) 6573 { 6574 struct task_struct *tsk = current; 6575 6576 sched_submit_work(tsk); 6577 do { 6578 preempt_disable(); 6579 __schedule(SM_NONE); 6580 sched_preempt_enable_no_resched(); 6581 } while (need_resched()); 6582 sched_update_worker(tsk); 6583 } 6584 EXPORT_SYMBOL(schedule); 6585 6586 /* 6587 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6588 * state (have scheduled out non-voluntarily) by making sure that all 6589 * tasks have either left the run queue or have gone into user space. 6590 * As idle tasks do not do either, they must not ever be preempted 6591 * (schedule out non-voluntarily). 6592 * 6593 * schedule_idle() is similar to schedule_preempt_disable() except that it 6594 * never enables preemption because it does not call sched_submit_work(). 6595 */ 6596 void __sched schedule_idle(void) 6597 { 6598 /* 6599 * As this skips calling sched_submit_work(), which the idle task does 6600 * regardless because that function is a nop when the task is in a 6601 * TASK_RUNNING state, make sure this isn't used someplace that the 6602 * current task can be in any other state. Note, idle is always in the 6603 * TASK_RUNNING state. 6604 */ 6605 WARN_ON_ONCE(current->__state); 6606 do { 6607 __schedule(SM_NONE); 6608 } while (need_resched()); 6609 } 6610 6611 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6612 asmlinkage __visible void __sched schedule_user(void) 6613 { 6614 /* 6615 * If we come here after a random call to set_need_resched(), 6616 * or we have been woken up remotely but the IPI has not yet arrived, 6617 * we haven't yet exited the RCU idle mode. Do it here manually until 6618 * we find a better solution. 6619 * 6620 * NB: There are buggy callers of this function. Ideally we 6621 * should warn if prev_state != CONTEXT_USER, but that will trigger 6622 * too frequently to make sense yet. 6623 */ 6624 enum ctx_state prev_state = exception_enter(); 6625 schedule(); 6626 exception_exit(prev_state); 6627 } 6628 #endif 6629 6630 /** 6631 * schedule_preempt_disabled - called with preemption disabled 6632 * 6633 * Returns with preemption disabled. Note: preempt_count must be 1 6634 */ 6635 void __sched schedule_preempt_disabled(void) 6636 { 6637 sched_preempt_enable_no_resched(); 6638 schedule(); 6639 preempt_disable(); 6640 } 6641 6642 #ifdef CONFIG_PREEMPT_RT 6643 void __sched notrace schedule_rtlock(void) 6644 { 6645 do { 6646 preempt_disable(); 6647 __schedule(SM_RTLOCK_WAIT); 6648 sched_preempt_enable_no_resched(); 6649 } while (need_resched()); 6650 } 6651 NOKPROBE_SYMBOL(schedule_rtlock); 6652 #endif 6653 6654 static void __sched notrace preempt_schedule_common(void) 6655 { 6656 do { 6657 /* 6658 * Because the function tracer can trace preempt_count_sub() 6659 * and it also uses preempt_enable/disable_notrace(), if 6660 * NEED_RESCHED is set, the preempt_enable_notrace() called 6661 * by the function tracer will call this function again and 6662 * cause infinite recursion. 6663 * 6664 * Preemption must be disabled here before the function 6665 * tracer can trace. Break up preempt_disable() into two 6666 * calls. One to disable preemption without fear of being 6667 * traced. The other to still record the preemption latency, 6668 * which can also be traced by the function tracer. 6669 */ 6670 preempt_disable_notrace(); 6671 preempt_latency_start(1); 6672 __schedule(SM_PREEMPT); 6673 preempt_latency_stop(1); 6674 preempt_enable_no_resched_notrace(); 6675 6676 /* 6677 * Check again in case we missed a preemption opportunity 6678 * between schedule and now. 6679 */ 6680 } while (need_resched()); 6681 } 6682 6683 #ifdef CONFIG_PREEMPTION 6684 /* 6685 * This is the entry point to schedule() from in-kernel preemption 6686 * off of preempt_enable. 6687 */ 6688 asmlinkage __visible void __sched notrace preempt_schedule(void) 6689 { 6690 /* 6691 * If there is a non-zero preempt_count or interrupts are disabled, 6692 * we do not want to preempt the current task. Just return.. 6693 */ 6694 if (likely(!preemptible())) 6695 return; 6696 preempt_schedule_common(); 6697 } 6698 NOKPROBE_SYMBOL(preempt_schedule); 6699 EXPORT_SYMBOL(preempt_schedule); 6700 6701 #ifdef CONFIG_PREEMPT_DYNAMIC 6702 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6703 #ifndef preempt_schedule_dynamic_enabled 6704 #define preempt_schedule_dynamic_enabled preempt_schedule 6705 #define preempt_schedule_dynamic_disabled NULL 6706 #endif 6707 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6708 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6709 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6710 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6711 void __sched notrace dynamic_preempt_schedule(void) 6712 { 6713 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6714 return; 6715 preempt_schedule(); 6716 } 6717 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6718 EXPORT_SYMBOL(dynamic_preempt_schedule); 6719 #endif 6720 #endif 6721 6722 /** 6723 * preempt_schedule_notrace - preempt_schedule called by tracing 6724 * 6725 * The tracing infrastructure uses preempt_enable_notrace to prevent 6726 * recursion and tracing preempt enabling caused by the tracing 6727 * infrastructure itself. But as tracing can happen in areas coming 6728 * from userspace or just about to enter userspace, a preempt enable 6729 * can occur before user_exit() is called. This will cause the scheduler 6730 * to be called when the system is still in usermode. 6731 * 6732 * To prevent this, the preempt_enable_notrace will use this function 6733 * instead of preempt_schedule() to exit user context if needed before 6734 * calling the scheduler. 6735 */ 6736 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6737 { 6738 enum ctx_state prev_ctx; 6739 6740 if (likely(!preemptible())) 6741 return; 6742 6743 do { 6744 /* 6745 * Because the function tracer can trace preempt_count_sub() 6746 * and it also uses preempt_enable/disable_notrace(), if 6747 * NEED_RESCHED is set, the preempt_enable_notrace() called 6748 * by the function tracer will call this function again and 6749 * cause infinite recursion. 6750 * 6751 * Preemption must be disabled here before the function 6752 * tracer can trace. Break up preempt_disable() into two 6753 * calls. One to disable preemption without fear of being 6754 * traced. The other to still record the preemption latency, 6755 * which can also be traced by the function tracer. 6756 */ 6757 preempt_disable_notrace(); 6758 preempt_latency_start(1); 6759 /* 6760 * Needs preempt disabled in case user_exit() is traced 6761 * and the tracer calls preempt_enable_notrace() causing 6762 * an infinite recursion. 6763 */ 6764 prev_ctx = exception_enter(); 6765 __schedule(SM_PREEMPT); 6766 exception_exit(prev_ctx); 6767 6768 preempt_latency_stop(1); 6769 preempt_enable_no_resched_notrace(); 6770 } while (need_resched()); 6771 } 6772 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6773 6774 #ifdef CONFIG_PREEMPT_DYNAMIC 6775 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6776 #ifndef preempt_schedule_notrace_dynamic_enabled 6777 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6778 #define preempt_schedule_notrace_dynamic_disabled NULL 6779 #endif 6780 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6781 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6782 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6783 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6784 void __sched notrace dynamic_preempt_schedule_notrace(void) 6785 { 6786 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6787 return; 6788 preempt_schedule_notrace(); 6789 } 6790 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6791 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6792 #endif 6793 #endif 6794 6795 #endif /* CONFIG_PREEMPTION */ 6796 6797 /* 6798 * This is the entry point to schedule() from kernel preemption 6799 * off of irq context. 6800 * Note, that this is called and return with irqs disabled. This will 6801 * protect us against recursive calling from irq. 6802 */ 6803 asmlinkage __visible void __sched preempt_schedule_irq(void) 6804 { 6805 enum ctx_state prev_state; 6806 6807 /* Catch callers which need to be fixed */ 6808 BUG_ON(preempt_count() || !irqs_disabled()); 6809 6810 prev_state = exception_enter(); 6811 6812 do { 6813 preempt_disable(); 6814 local_irq_enable(); 6815 __schedule(SM_PREEMPT); 6816 local_irq_disable(); 6817 sched_preempt_enable_no_resched(); 6818 } while (need_resched()); 6819 6820 exception_exit(prev_state); 6821 } 6822 6823 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6824 void *key) 6825 { 6826 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6827 return try_to_wake_up(curr->private, mode, wake_flags); 6828 } 6829 EXPORT_SYMBOL(default_wake_function); 6830 6831 static void __setscheduler_prio(struct task_struct *p, int prio) 6832 { 6833 if (dl_prio(prio)) 6834 p->sched_class = &dl_sched_class; 6835 else if (rt_prio(prio)) 6836 p->sched_class = &rt_sched_class; 6837 else 6838 p->sched_class = &fair_sched_class; 6839 6840 p->prio = prio; 6841 } 6842 6843 #ifdef CONFIG_RT_MUTEXES 6844 6845 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6846 { 6847 if (pi_task) 6848 prio = min(prio, pi_task->prio); 6849 6850 return prio; 6851 } 6852 6853 static inline int rt_effective_prio(struct task_struct *p, int prio) 6854 { 6855 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6856 6857 return __rt_effective_prio(pi_task, prio); 6858 } 6859 6860 /* 6861 * rt_mutex_setprio - set the current priority of a task 6862 * @p: task to boost 6863 * @pi_task: donor task 6864 * 6865 * This function changes the 'effective' priority of a task. It does 6866 * not touch ->normal_prio like __setscheduler(). 6867 * 6868 * Used by the rt_mutex code to implement priority inheritance 6869 * logic. Call site only calls if the priority of the task changed. 6870 */ 6871 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6872 { 6873 int prio, oldprio, queued, running, queue_flag = 6874 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6875 const struct sched_class *prev_class; 6876 struct rq_flags rf; 6877 struct rq *rq; 6878 6879 /* XXX used to be waiter->prio, not waiter->task->prio */ 6880 prio = __rt_effective_prio(pi_task, p->normal_prio); 6881 6882 /* 6883 * If nothing changed; bail early. 6884 */ 6885 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6886 return; 6887 6888 rq = __task_rq_lock(p, &rf); 6889 update_rq_clock(rq); 6890 /* 6891 * Set under pi_lock && rq->lock, such that the value can be used under 6892 * either lock. 6893 * 6894 * Note that there is loads of tricky to make this pointer cache work 6895 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6896 * ensure a task is de-boosted (pi_task is set to NULL) before the 6897 * task is allowed to run again (and can exit). This ensures the pointer 6898 * points to a blocked task -- which guarantees the task is present. 6899 */ 6900 p->pi_top_task = pi_task; 6901 6902 /* 6903 * For FIFO/RR we only need to set prio, if that matches we're done. 6904 */ 6905 if (prio == p->prio && !dl_prio(prio)) 6906 goto out_unlock; 6907 6908 /* 6909 * Idle task boosting is a nono in general. There is one 6910 * exception, when PREEMPT_RT and NOHZ is active: 6911 * 6912 * The idle task calls get_next_timer_interrupt() and holds 6913 * the timer wheel base->lock on the CPU and another CPU wants 6914 * to access the timer (probably to cancel it). We can safely 6915 * ignore the boosting request, as the idle CPU runs this code 6916 * with interrupts disabled and will complete the lock 6917 * protected section without being interrupted. So there is no 6918 * real need to boost. 6919 */ 6920 if (unlikely(p == rq->idle)) { 6921 WARN_ON(p != rq->curr); 6922 WARN_ON(p->pi_blocked_on); 6923 goto out_unlock; 6924 } 6925 6926 trace_sched_pi_setprio(p, pi_task); 6927 oldprio = p->prio; 6928 6929 if (oldprio == prio) 6930 queue_flag &= ~DEQUEUE_MOVE; 6931 6932 prev_class = p->sched_class; 6933 queued = task_on_rq_queued(p); 6934 running = task_current(rq, p); 6935 if (queued) 6936 dequeue_task(rq, p, queue_flag); 6937 if (running) 6938 put_prev_task(rq, p); 6939 6940 /* 6941 * Boosting condition are: 6942 * 1. -rt task is running and holds mutex A 6943 * --> -dl task blocks on mutex A 6944 * 6945 * 2. -dl task is running and holds mutex A 6946 * --> -dl task blocks on mutex A and could preempt the 6947 * running task 6948 */ 6949 if (dl_prio(prio)) { 6950 if (!dl_prio(p->normal_prio) || 6951 (pi_task && dl_prio(pi_task->prio) && 6952 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6953 p->dl.pi_se = pi_task->dl.pi_se; 6954 queue_flag |= ENQUEUE_REPLENISH; 6955 } else { 6956 p->dl.pi_se = &p->dl; 6957 } 6958 } else if (rt_prio(prio)) { 6959 if (dl_prio(oldprio)) 6960 p->dl.pi_se = &p->dl; 6961 if (oldprio < prio) 6962 queue_flag |= ENQUEUE_HEAD; 6963 } else { 6964 if (dl_prio(oldprio)) 6965 p->dl.pi_se = &p->dl; 6966 if (rt_prio(oldprio)) 6967 p->rt.timeout = 0; 6968 } 6969 6970 __setscheduler_prio(p, prio); 6971 6972 if (queued) 6973 enqueue_task(rq, p, queue_flag); 6974 if (running) 6975 set_next_task(rq, p); 6976 6977 check_class_changed(rq, p, prev_class, oldprio); 6978 out_unlock: 6979 /* Avoid rq from going away on us: */ 6980 preempt_disable(); 6981 6982 rq_unpin_lock(rq, &rf); 6983 __balance_callbacks(rq); 6984 raw_spin_rq_unlock(rq); 6985 6986 preempt_enable(); 6987 } 6988 #else 6989 static inline int rt_effective_prio(struct task_struct *p, int prio) 6990 { 6991 return prio; 6992 } 6993 #endif 6994 6995 void set_user_nice(struct task_struct *p, long nice) 6996 { 6997 bool queued, running; 6998 int old_prio; 6999 struct rq_flags rf; 7000 struct rq *rq; 7001 7002 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7003 return; 7004 /* 7005 * We have to be careful, if called from sys_setpriority(), 7006 * the task might be in the middle of scheduling on another CPU. 7007 */ 7008 rq = task_rq_lock(p, &rf); 7009 update_rq_clock(rq); 7010 7011 /* 7012 * The RT priorities are set via sched_setscheduler(), but we still 7013 * allow the 'normal' nice value to be set - but as expected 7014 * it won't have any effect on scheduling until the task is 7015 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7016 */ 7017 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7018 p->static_prio = NICE_TO_PRIO(nice); 7019 goto out_unlock; 7020 } 7021 queued = task_on_rq_queued(p); 7022 running = task_current(rq, p); 7023 if (queued) 7024 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7025 if (running) 7026 put_prev_task(rq, p); 7027 7028 p->static_prio = NICE_TO_PRIO(nice); 7029 set_load_weight(p, true); 7030 old_prio = p->prio; 7031 p->prio = effective_prio(p); 7032 7033 if (queued) 7034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7035 if (running) 7036 set_next_task(rq, p); 7037 7038 /* 7039 * If the task increased its priority or is running and 7040 * lowered its priority, then reschedule its CPU: 7041 */ 7042 p->sched_class->prio_changed(rq, p, old_prio); 7043 7044 out_unlock: 7045 task_rq_unlock(rq, p, &rf); 7046 } 7047 EXPORT_SYMBOL(set_user_nice); 7048 7049 /* 7050 * is_nice_reduction - check if nice value is an actual reduction 7051 * 7052 * Similar to can_nice() but does not perform a capability check. 7053 * 7054 * @p: task 7055 * @nice: nice value 7056 */ 7057 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7058 { 7059 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7060 int nice_rlim = nice_to_rlimit(nice); 7061 7062 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7063 } 7064 7065 /* 7066 * can_nice - check if a task can reduce its nice value 7067 * @p: task 7068 * @nice: nice value 7069 */ 7070 int can_nice(const struct task_struct *p, const int nice) 7071 { 7072 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7073 } 7074 7075 #ifdef __ARCH_WANT_SYS_NICE 7076 7077 /* 7078 * sys_nice - change the priority of the current process. 7079 * @increment: priority increment 7080 * 7081 * sys_setpriority is a more generic, but much slower function that 7082 * does similar things. 7083 */ 7084 SYSCALL_DEFINE1(nice, int, increment) 7085 { 7086 long nice, retval; 7087 7088 /* 7089 * Setpriority might change our priority at the same moment. 7090 * We don't have to worry. Conceptually one call occurs first 7091 * and we have a single winner. 7092 */ 7093 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7094 nice = task_nice(current) + increment; 7095 7096 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7097 if (increment < 0 && !can_nice(current, nice)) 7098 return -EPERM; 7099 7100 retval = security_task_setnice(current, nice); 7101 if (retval) 7102 return retval; 7103 7104 set_user_nice(current, nice); 7105 return 0; 7106 } 7107 7108 #endif 7109 7110 /** 7111 * task_prio - return the priority value of a given task. 7112 * @p: the task in question. 7113 * 7114 * Return: The priority value as seen by users in /proc. 7115 * 7116 * sched policy return value kernel prio user prio/nice 7117 * 7118 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7119 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7120 * deadline -101 -1 0 7121 */ 7122 int task_prio(const struct task_struct *p) 7123 { 7124 return p->prio - MAX_RT_PRIO; 7125 } 7126 7127 /** 7128 * idle_cpu - is a given CPU idle currently? 7129 * @cpu: the processor in question. 7130 * 7131 * Return: 1 if the CPU is currently idle. 0 otherwise. 7132 */ 7133 int idle_cpu(int cpu) 7134 { 7135 struct rq *rq = cpu_rq(cpu); 7136 7137 if (rq->curr != rq->idle) 7138 return 0; 7139 7140 if (rq->nr_running) 7141 return 0; 7142 7143 #ifdef CONFIG_SMP 7144 if (rq->ttwu_pending) 7145 return 0; 7146 #endif 7147 7148 return 1; 7149 } 7150 7151 /** 7152 * available_idle_cpu - is a given CPU idle for enqueuing work. 7153 * @cpu: the CPU in question. 7154 * 7155 * Return: 1 if the CPU is currently idle. 0 otherwise. 7156 */ 7157 int available_idle_cpu(int cpu) 7158 { 7159 if (!idle_cpu(cpu)) 7160 return 0; 7161 7162 if (vcpu_is_preempted(cpu)) 7163 return 0; 7164 7165 return 1; 7166 } 7167 7168 /** 7169 * idle_task - return the idle task for a given CPU. 7170 * @cpu: the processor in question. 7171 * 7172 * Return: The idle task for the CPU @cpu. 7173 */ 7174 struct task_struct *idle_task(int cpu) 7175 { 7176 return cpu_rq(cpu)->idle; 7177 } 7178 7179 #ifdef CONFIG_SMP 7180 /* 7181 * This function computes an effective utilization for the given CPU, to be 7182 * used for frequency selection given the linear relation: f = u * f_max. 7183 * 7184 * The scheduler tracks the following metrics: 7185 * 7186 * cpu_util_{cfs,rt,dl,irq}() 7187 * cpu_bw_dl() 7188 * 7189 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7190 * synchronized windows and are thus directly comparable. 7191 * 7192 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7193 * which excludes things like IRQ and steal-time. These latter are then accrued 7194 * in the irq utilization. 7195 * 7196 * The DL bandwidth number otoh is not a measured metric but a value computed 7197 * based on the task model parameters and gives the minimal utilization 7198 * required to meet deadlines. 7199 */ 7200 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7201 enum cpu_util_type type, 7202 struct task_struct *p) 7203 { 7204 unsigned long dl_util, util, irq, max; 7205 struct rq *rq = cpu_rq(cpu); 7206 7207 max = arch_scale_cpu_capacity(cpu); 7208 7209 if (!uclamp_is_used() && 7210 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7211 return max; 7212 } 7213 7214 /* 7215 * Early check to see if IRQ/steal time saturates the CPU, can be 7216 * because of inaccuracies in how we track these -- see 7217 * update_irq_load_avg(). 7218 */ 7219 irq = cpu_util_irq(rq); 7220 if (unlikely(irq >= max)) 7221 return max; 7222 7223 /* 7224 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7225 * CFS tasks and we use the same metric to track the effective 7226 * utilization (PELT windows are synchronized) we can directly add them 7227 * to obtain the CPU's actual utilization. 7228 * 7229 * CFS and RT utilization can be boosted or capped, depending on 7230 * utilization clamp constraints requested by currently RUNNABLE 7231 * tasks. 7232 * When there are no CFS RUNNABLE tasks, clamps are released and 7233 * frequency will be gracefully reduced with the utilization decay. 7234 */ 7235 util = util_cfs + cpu_util_rt(rq); 7236 if (type == FREQUENCY_UTIL) 7237 util = uclamp_rq_util_with(rq, util, p); 7238 7239 dl_util = cpu_util_dl(rq); 7240 7241 /* 7242 * For frequency selection we do not make cpu_util_dl() a permanent part 7243 * of this sum because we want to use cpu_bw_dl() later on, but we need 7244 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7245 * that we select f_max when there is no idle time. 7246 * 7247 * NOTE: numerical errors or stop class might cause us to not quite hit 7248 * saturation when we should -- something for later. 7249 */ 7250 if (util + dl_util >= max) 7251 return max; 7252 7253 /* 7254 * OTOH, for energy computation we need the estimated running time, so 7255 * include util_dl and ignore dl_bw. 7256 */ 7257 if (type == ENERGY_UTIL) 7258 util += dl_util; 7259 7260 /* 7261 * There is still idle time; further improve the number by using the 7262 * irq metric. Because IRQ/steal time is hidden from the task clock we 7263 * need to scale the task numbers: 7264 * 7265 * max - irq 7266 * U' = irq + --------- * U 7267 * max 7268 */ 7269 util = scale_irq_capacity(util, irq, max); 7270 util += irq; 7271 7272 /* 7273 * Bandwidth required by DEADLINE must always be granted while, for 7274 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7275 * to gracefully reduce the frequency when no tasks show up for longer 7276 * periods of time. 7277 * 7278 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7279 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7280 * an interface. So, we only do the latter for now. 7281 */ 7282 if (type == FREQUENCY_UTIL) 7283 util += cpu_bw_dl(rq); 7284 7285 return min(max, util); 7286 } 7287 7288 unsigned long sched_cpu_util(int cpu) 7289 { 7290 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7291 } 7292 #endif /* CONFIG_SMP */ 7293 7294 /** 7295 * find_process_by_pid - find a process with a matching PID value. 7296 * @pid: the pid in question. 7297 * 7298 * The task of @pid, if found. %NULL otherwise. 7299 */ 7300 static struct task_struct *find_process_by_pid(pid_t pid) 7301 { 7302 return pid ? find_task_by_vpid(pid) : current; 7303 } 7304 7305 /* 7306 * sched_setparam() passes in -1 for its policy, to let the functions 7307 * it calls know not to change it. 7308 */ 7309 #define SETPARAM_POLICY -1 7310 7311 static void __setscheduler_params(struct task_struct *p, 7312 const struct sched_attr *attr) 7313 { 7314 int policy = attr->sched_policy; 7315 7316 if (policy == SETPARAM_POLICY) 7317 policy = p->policy; 7318 7319 p->policy = policy; 7320 7321 if (dl_policy(policy)) 7322 __setparam_dl(p, attr); 7323 else if (fair_policy(policy)) 7324 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7325 7326 /* 7327 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7328 * !rt_policy. Always setting this ensures that things like 7329 * getparam()/getattr() don't report silly values for !rt tasks. 7330 */ 7331 p->rt_priority = attr->sched_priority; 7332 p->normal_prio = normal_prio(p); 7333 set_load_weight(p, true); 7334 } 7335 7336 /* 7337 * Check the target process has a UID that matches the current process's: 7338 */ 7339 static bool check_same_owner(struct task_struct *p) 7340 { 7341 const struct cred *cred = current_cred(), *pcred; 7342 bool match; 7343 7344 rcu_read_lock(); 7345 pcred = __task_cred(p); 7346 match = (uid_eq(cred->euid, pcred->euid) || 7347 uid_eq(cred->euid, pcred->uid)); 7348 rcu_read_unlock(); 7349 return match; 7350 } 7351 7352 /* 7353 * Allow unprivileged RT tasks to decrease priority. 7354 * Only issue a capable test if needed and only once to avoid an audit 7355 * event on permitted non-privileged operations: 7356 */ 7357 static int user_check_sched_setscheduler(struct task_struct *p, 7358 const struct sched_attr *attr, 7359 int policy, int reset_on_fork) 7360 { 7361 if (fair_policy(policy)) { 7362 if (attr->sched_nice < task_nice(p) && 7363 !is_nice_reduction(p, attr->sched_nice)) 7364 goto req_priv; 7365 } 7366 7367 if (rt_policy(policy)) { 7368 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7369 7370 /* Can't set/change the rt policy: */ 7371 if (policy != p->policy && !rlim_rtprio) 7372 goto req_priv; 7373 7374 /* Can't increase priority: */ 7375 if (attr->sched_priority > p->rt_priority && 7376 attr->sched_priority > rlim_rtprio) 7377 goto req_priv; 7378 } 7379 7380 /* 7381 * Can't set/change SCHED_DEADLINE policy at all for now 7382 * (safest behavior); in the future we would like to allow 7383 * unprivileged DL tasks to increase their relative deadline 7384 * or reduce their runtime (both ways reducing utilization) 7385 */ 7386 if (dl_policy(policy)) 7387 goto req_priv; 7388 7389 /* 7390 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7391 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7392 */ 7393 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7394 if (!is_nice_reduction(p, task_nice(p))) 7395 goto req_priv; 7396 } 7397 7398 /* Can't change other user's priorities: */ 7399 if (!check_same_owner(p)) 7400 goto req_priv; 7401 7402 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7403 if (p->sched_reset_on_fork && !reset_on_fork) 7404 goto req_priv; 7405 7406 return 0; 7407 7408 req_priv: 7409 if (!capable(CAP_SYS_NICE)) 7410 return -EPERM; 7411 7412 return 0; 7413 } 7414 7415 static int __sched_setscheduler(struct task_struct *p, 7416 const struct sched_attr *attr, 7417 bool user, bool pi) 7418 { 7419 int oldpolicy = -1, policy = attr->sched_policy; 7420 int retval, oldprio, newprio, queued, running; 7421 const struct sched_class *prev_class; 7422 struct balance_callback *head; 7423 struct rq_flags rf; 7424 int reset_on_fork; 7425 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7426 struct rq *rq; 7427 7428 /* The pi code expects interrupts enabled */ 7429 BUG_ON(pi && in_interrupt()); 7430 recheck: 7431 /* Double check policy once rq lock held: */ 7432 if (policy < 0) { 7433 reset_on_fork = p->sched_reset_on_fork; 7434 policy = oldpolicy = p->policy; 7435 } else { 7436 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7437 7438 if (!valid_policy(policy)) 7439 return -EINVAL; 7440 } 7441 7442 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7443 return -EINVAL; 7444 7445 /* 7446 * Valid priorities for SCHED_FIFO and SCHED_RR are 7447 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7448 * SCHED_BATCH and SCHED_IDLE is 0. 7449 */ 7450 if (attr->sched_priority > MAX_RT_PRIO-1) 7451 return -EINVAL; 7452 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7453 (rt_policy(policy) != (attr->sched_priority != 0))) 7454 return -EINVAL; 7455 7456 if (user) { 7457 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7458 if (retval) 7459 return retval; 7460 7461 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7462 return -EINVAL; 7463 7464 retval = security_task_setscheduler(p); 7465 if (retval) 7466 return retval; 7467 } 7468 7469 /* Update task specific "requested" clamps */ 7470 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7471 retval = uclamp_validate(p, attr); 7472 if (retval) 7473 return retval; 7474 } 7475 7476 if (pi) 7477 cpuset_read_lock(); 7478 7479 /* 7480 * Make sure no PI-waiters arrive (or leave) while we are 7481 * changing the priority of the task: 7482 * 7483 * To be able to change p->policy safely, the appropriate 7484 * runqueue lock must be held. 7485 */ 7486 rq = task_rq_lock(p, &rf); 7487 update_rq_clock(rq); 7488 7489 /* 7490 * Changing the policy of the stop threads its a very bad idea: 7491 */ 7492 if (p == rq->stop) { 7493 retval = -EINVAL; 7494 goto unlock; 7495 } 7496 7497 /* 7498 * If not changing anything there's no need to proceed further, 7499 * but store a possible modification of reset_on_fork. 7500 */ 7501 if (unlikely(policy == p->policy)) { 7502 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7503 goto change; 7504 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7505 goto change; 7506 if (dl_policy(policy) && dl_param_changed(p, attr)) 7507 goto change; 7508 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7509 goto change; 7510 7511 p->sched_reset_on_fork = reset_on_fork; 7512 retval = 0; 7513 goto unlock; 7514 } 7515 change: 7516 7517 if (user) { 7518 #ifdef CONFIG_RT_GROUP_SCHED 7519 /* 7520 * Do not allow realtime tasks into groups that have no runtime 7521 * assigned. 7522 */ 7523 if (rt_bandwidth_enabled() && rt_policy(policy) && 7524 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7525 !task_group_is_autogroup(task_group(p))) { 7526 retval = -EPERM; 7527 goto unlock; 7528 } 7529 #endif 7530 #ifdef CONFIG_SMP 7531 if (dl_bandwidth_enabled() && dl_policy(policy) && 7532 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7533 cpumask_t *span = rq->rd->span; 7534 7535 /* 7536 * Don't allow tasks with an affinity mask smaller than 7537 * the entire root_domain to become SCHED_DEADLINE. We 7538 * will also fail if there's no bandwidth available. 7539 */ 7540 if (!cpumask_subset(span, p->cpus_ptr) || 7541 rq->rd->dl_bw.bw == 0) { 7542 retval = -EPERM; 7543 goto unlock; 7544 } 7545 } 7546 #endif 7547 } 7548 7549 /* Re-check policy now with rq lock held: */ 7550 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7551 policy = oldpolicy = -1; 7552 task_rq_unlock(rq, p, &rf); 7553 if (pi) 7554 cpuset_read_unlock(); 7555 goto recheck; 7556 } 7557 7558 /* 7559 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7560 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7561 * is available. 7562 */ 7563 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7564 retval = -EBUSY; 7565 goto unlock; 7566 } 7567 7568 p->sched_reset_on_fork = reset_on_fork; 7569 oldprio = p->prio; 7570 7571 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7572 if (pi) { 7573 /* 7574 * Take priority boosted tasks into account. If the new 7575 * effective priority is unchanged, we just store the new 7576 * normal parameters and do not touch the scheduler class and 7577 * the runqueue. This will be done when the task deboost 7578 * itself. 7579 */ 7580 newprio = rt_effective_prio(p, newprio); 7581 if (newprio == oldprio) 7582 queue_flags &= ~DEQUEUE_MOVE; 7583 } 7584 7585 queued = task_on_rq_queued(p); 7586 running = task_current(rq, p); 7587 if (queued) 7588 dequeue_task(rq, p, queue_flags); 7589 if (running) 7590 put_prev_task(rq, p); 7591 7592 prev_class = p->sched_class; 7593 7594 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7595 __setscheduler_params(p, attr); 7596 __setscheduler_prio(p, newprio); 7597 } 7598 __setscheduler_uclamp(p, attr); 7599 7600 if (queued) { 7601 /* 7602 * We enqueue to tail when the priority of a task is 7603 * increased (user space view). 7604 */ 7605 if (oldprio < p->prio) 7606 queue_flags |= ENQUEUE_HEAD; 7607 7608 enqueue_task(rq, p, queue_flags); 7609 } 7610 if (running) 7611 set_next_task(rq, p); 7612 7613 check_class_changed(rq, p, prev_class, oldprio); 7614 7615 /* Avoid rq from going away on us: */ 7616 preempt_disable(); 7617 head = splice_balance_callbacks(rq); 7618 task_rq_unlock(rq, p, &rf); 7619 7620 if (pi) { 7621 cpuset_read_unlock(); 7622 rt_mutex_adjust_pi(p); 7623 } 7624 7625 /* Run balance callbacks after we've adjusted the PI chain: */ 7626 balance_callbacks(rq, head); 7627 preempt_enable(); 7628 7629 return 0; 7630 7631 unlock: 7632 task_rq_unlock(rq, p, &rf); 7633 if (pi) 7634 cpuset_read_unlock(); 7635 return retval; 7636 } 7637 7638 static int _sched_setscheduler(struct task_struct *p, int policy, 7639 const struct sched_param *param, bool check) 7640 { 7641 struct sched_attr attr = { 7642 .sched_policy = policy, 7643 .sched_priority = param->sched_priority, 7644 .sched_nice = PRIO_TO_NICE(p->static_prio), 7645 }; 7646 7647 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7648 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7649 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7650 policy &= ~SCHED_RESET_ON_FORK; 7651 attr.sched_policy = policy; 7652 } 7653 7654 return __sched_setscheduler(p, &attr, check, true); 7655 } 7656 /** 7657 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7658 * @p: the task in question. 7659 * @policy: new policy. 7660 * @param: structure containing the new RT priority. 7661 * 7662 * Use sched_set_fifo(), read its comment. 7663 * 7664 * Return: 0 on success. An error code otherwise. 7665 * 7666 * NOTE that the task may be already dead. 7667 */ 7668 int sched_setscheduler(struct task_struct *p, int policy, 7669 const struct sched_param *param) 7670 { 7671 return _sched_setscheduler(p, policy, param, true); 7672 } 7673 7674 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7675 { 7676 return __sched_setscheduler(p, attr, true, true); 7677 } 7678 7679 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7680 { 7681 return __sched_setscheduler(p, attr, false, true); 7682 } 7683 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7684 7685 /** 7686 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7687 * @p: the task in question. 7688 * @policy: new policy. 7689 * @param: structure containing the new RT priority. 7690 * 7691 * Just like sched_setscheduler, only don't bother checking if the 7692 * current context has permission. For example, this is needed in 7693 * stop_machine(): we create temporary high priority worker threads, 7694 * but our caller might not have that capability. 7695 * 7696 * Return: 0 on success. An error code otherwise. 7697 */ 7698 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7699 const struct sched_param *param) 7700 { 7701 return _sched_setscheduler(p, policy, param, false); 7702 } 7703 7704 /* 7705 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7706 * incapable of resource management, which is the one thing an OS really should 7707 * be doing. 7708 * 7709 * This is of course the reason it is limited to privileged users only. 7710 * 7711 * Worse still; it is fundamentally impossible to compose static priority 7712 * workloads. You cannot take two correctly working static prio workloads 7713 * and smash them together and still expect them to work. 7714 * 7715 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7716 * 7717 * MAX_RT_PRIO / 2 7718 * 7719 * The administrator _MUST_ configure the system, the kernel simply doesn't 7720 * know enough information to make a sensible choice. 7721 */ 7722 void sched_set_fifo(struct task_struct *p) 7723 { 7724 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7725 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7726 } 7727 EXPORT_SYMBOL_GPL(sched_set_fifo); 7728 7729 /* 7730 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7731 */ 7732 void sched_set_fifo_low(struct task_struct *p) 7733 { 7734 struct sched_param sp = { .sched_priority = 1 }; 7735 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7736 } 7737 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7738 7739 void sched_set_normal(struct task_struct *p, int nice) 7740 { 7741 struct sched_attr attr = { 7742 .sched_policy = SCHED_NORMAL, 7743 .sched_nice = nice, 7744 }; 7745 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7746 } 7747 EXPORT_SYMBOL_GPL(sched_set_normal); 7748 7749 static int 7750 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7751 { 7752 struct sched_param lparam; 7753 struct task_struct *p; 7754 int retval; 7755 7756 if (!param || pid < 0) 7757 return -EINVAL; 7758 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7759 return -EFAULT; 7760 7761 rcu_read_lock(); 7762 retval = -ESRCH; 7763 p = find_process_by_pid(pid); 7764 if (likely(p)) 7765 get_task_struct(p); 7766 rcu_read_unlock(); 7767 7768 if (likely(p)) { 7769 retval = sched_setscheduler(p, policy, &lparam); 7770 put_task_struct(p); 7771 } 7772 7773 return retval; 7774 } 7775 7776 /* 7777 * Mimics kernel/events/core.c perf_copy_attr(). 7778 */ 7779 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7780 { 7781 u32 size; 7782 int ret; 7783 7784 /* Zero the full structure, so that a short copy will be nice: */ 7785 memset(attr, 0, sizeof(*attr)); 7786 7787 ret = get_user(size, &uattr->size); 7788 if (ret) 7789 return ret; 7790 7791 /* ABI compatibility quirk: */ 7792 if (!size) 7793 size = SCHED_ATTR_SIZE_VER0; 7794 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7795 goto err_size; 7796 7797 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7798 if (ret) { 7799 if (ret == -E2BIG) 7800 goto err_size; 7801 return ret; 7802 } 7803 7804 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7805 size < SCHED_ATTR_SIZE_VER1) 7806 return -EINVAL; 7807 7808 /* 7809 * XXX: Do we want to be lenient like existing syscalls; or do we want 7810 * to be strict and return an error on out-of-bounds values? 7811 */ 7812 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7813 7814 return 0; 7815 7816 err_size: 7817 put_user(sizeof(*attr), &uattr->size); 7818 return -E2BIG; 7819 } 7820 7821 static void get_params(struct task_struct *p, struct sched_attr *attr) 7822 { 7823 if (task_has_dl_policy(p)) 7824 __getparam_dl(p, attr); 7825 else if (task_has_rt_policy(p)) 7826 attr->sched_priority = p->rt_priority; 7827 else 7828 attr->sched_nice = task_nice(p); 7829 } 7830 7831 /** 7832 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7833 * @pid: the pid in question. 7834 * @policy: new policy. 7835 * @param: structure containing the new RT priority. 7836 * 7837 * Return: 0 on success. An error code otherwise. 7838 */ 7839 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7840 { 7841 if (policy < 0) 7842 return -EINVAL; 7843 7844 return do_sched_setscheduler(pid, policy, param); 7845 } 7846 7847 /** 7848 * sys_sched_setparam - set/change the RT priority of a thread 7849 * @pid: the pid in question. 7850 * @param: structure containing the new RT priority. 7851 * 7852 * Return: 0 on success. An error code otherwise. 7853 */ 7854 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7855 { 7856 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7857 } 7858 7859 /** 7860 * sys_sched_setattr - same as above, but with extended sched_attr 7861 * @pid: the pid in question. 7862 * @uattr: structure containing the extended parameters. 7863 * @flags: for future extension. 7864 */ 7865 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7866 unsigned int, flags) 7867 { 7868 struct sched_attr attr; 7869 struct task_struct *p; 7870 int retval; 7871 7872 if (!uattr || pid < 0 || flags) 7873 return -EINVAL; 7874 7875 retval = sched_copy_attr(uattr, &attr); 7876 if (retval) 7877 return retval; 7878 7879 if ((int)attr.sched_policy < 0) 7880 return -EINVAL; 7881 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7882 attr.sched_policy = SETPARAM_POLICY; 7883 7884 rcu_read_lock(); 7885 retval = -ESRCH; 7886 p = find_process_by_pid(pid); 7887 if (likely(p)) 7888 get_task_struct(p); 7889 rcu_read_unlock(); 7890 7891 if (likely(p)) { 7892 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7893 get_params(p, &attr); 7894 retval = sched_setattr(p, &attr); 7895 put_task_struct(p); 7896 } 7897 7898 return retval; 7899 } 7900 7901 /** 7902 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7903 * @pid: the pid in question. 7904 * 7905 * Return: On success, the policy of the thread. Otherwise, a negative error 7906 * code. 7907 */ 7908 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7909 { 7910 struct task_struct *p; 7911 int retval; 7912 7913 if (pid < 0) 7914 return -EINVAL; 7915 7916 retval = -ESRCH; 7917 rcu_read_lock(); 7918 p = find_process_by_pid(pid); 7919 if (p) { 7920 retval = security_task_getscheduler(p); 7921 if (!retval) 7922 retval = p->policy 7923 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7924 } 7925 rcu_read_unlock(); 7926 return retval; 7927 } 7928 7929 /** 7930 * sys_sched_getparam - get the RT priority of a thread 7931 * @pid: the pid in question. 7932 * @param: structure containing the RT priority. 7933 * 7934 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7935 * code. 7936 */ 7937 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7938 { 7939 struct sched_param lp = { .sched_priority = 0 }; 7940 struct task_struct *p; 7941 int retval; 7942 7943 if (!param || pid < 0) 7944 return -EINVAL; 7945 7946 rcu_read_lock(); 7947 p = find_process_by_pid(pid); 7948 retval = -ESRCH; 7949 if (!p) 7950 goto out_unlock; 7951 7952 retval = security_task_getscheduler(p); 7953 if (retval) 7954 goto out_unlock; 7955 7956 if (task_has_rt_policy(p)) 7957 lp.sched_priority = p->rt_priority; 7958 rcu_read_unlock(); 7959 7960 /* 7961 * This one might sleep, we cannot do it with a spinlock held ... 7962 */ 7963 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7964 7965 return retval; 7966 7967 out_unlock: 7968 rcu_read_unlock(); 7969 return retval; 7970 } 7971 7972 /* 7973 * Copy the kernel size attribute structure (which might be larger 7974 * than what user-space knows about) to user-space. 7975 * 7976 * Note that all cases are valid: user-space buffer can be larger or 7977 * smaller than the kernel-space buffer. The usual case is that both 7978 * have the same size. 7979 */ 7980 static int 7981 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7982 struct sched_attr *kattr, 7983 unsigned int usize) 7984 { 7985 unsigned int ksize = sizeof(*kattr); 7986 7987 if (!access_ok(uattr, usize)) 7988 return -EFAULT; 7989 7990 /* 7991 * sched_getattr() ABI forwards and backwards compatibility: 7992 * 7993 * If usize == ksize then we just copy everything to user-space and all is good. 7994 * 7995 * If usize < ksize then we only copy as much as user-space has space for, 7996 * this keeps ABI compatibility as well. We skip the rest. 7997 * 7998 * If usize > ksize then user-space is using a newer version of the ABI, 7999 * which part the kernel doesn't know about. Just ignore it - tooling can 8000 * detect the kernel's knowledge of attributes from the attr->size value 8001 * which is set to ksize in this case. 8002 */ 8003 kattr->size = min(usize, ksize); 8004 8005 if (copy_to_user(uattr, kattr, kattr->size)) 8006 return -EFAULT; 8007 8008 return 0; 8009 } 8010 8011 /** 8012 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8013 * @pid: the pid in question. 8014 * @uattr: structure containing the extended parameters. 8015 * @usize: sizeof(attr) for fwd/bwd comp. 8016 * @flags: for future extension. 8017 */ 8018 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8019 unsigned int, usize, unsigned int, flags) 8020 { 8021 struct sched_attr kattr = { }; 8022 struct task_struct *p; 8023 int retval; 8024 8025 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8026 usize < SCHED_ATTR_SIZE_VER0 || flags) 8027 return -EINVAL; 8028 8029 rcu_read_lock(); 8030 p = find_process_by_pid(pid); 8031 retval = -ESRCH; 8032 if (!p) 8033 goto out_unlock; 8034 8035 retval = security_task_getscheduler(p); 8036 if (retval) 8037 goto out_unlock; 8038 8039 kattr.sched_policy = p->policy; 8040 if (p->sched_reset_on_fork) 8041 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8042 get_params(p, &kattr); 8043 kattr.sched_flags &= SCHED_FLAG_ALL; 8044 8045 #ifdef CONFIG_UCLAMP_TASK 8046 /* 8047 * This could race with another potential updater, but this is fine 8048 * because it'll correctly read the old or the new value. We don't need 8049 * to guarantee who wins the race as long as it doesn't return garbage. 8050 */ 8051 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8052 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8053 #endif 8054 8055 rcu_read_unlock(); 8056 8057 return sched_attr_copy_to_user(uattr, &kattr, usize); 8058 8059 out_unlock: 8060 rcu_read_unlock(); 8061 return retval; 8062 } 8063 8064 #ifdef CONFIG_SMP 8065 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8066 { 8067 int ret = 0; 8068 8069 /* 8070 * If the task isn't a deadline task or admission control is 8071 * disabled then we don't care about affinity changes. 8072 */ 8073 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8074 return 0; 8075 8076 /* 8077 * Since bandwidth control happens on root_domain basis, 8078 * if admission test is enabled, we only admit -deadline 8079 * tasks allowed to run on all the CPUs in the task's 8080 * root_domain. 8081 */ 8082 rcu_read_lock(); 8083 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8084 ret = -EBUSY; 8085 rcu_read_unlock(); 8086 return ret; 8087 } 8088 #endif 8089 8090 static int 8091 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 8092 { 8093 int retval; 8094 cpumask_var_t cpus_allowed, new_mask; 8095 8096 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8097 return -ENOMEM; 8098 8099 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8100 retval = -ENOMEM; 8101 goto out_free_cpus_allowed; 8102 } 8103 8104 cpuset_cpus_allowed(p, cpus_allowed); 8105 cpumask_and(new_mask, mask, cpus_allowed); 8106 8107 retval = dl_task_check_affinity(p, new_mask); 8108 if (retval) 8109 goto out_free_new_mask; 8110 again: 8111 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 8112 if (retval) 8113 goto out_free_new_mask; 8114 8115 cpuset_cpus_allowed(p, cpus_allowed); 8116 if (!cpumask_subset(new_mask, cpus_allowed)) { 8117 /* 8118 * We must have raced with a concurrent cpuset update. 8119 * Just reset the cpumask to the cpuset's cpus_allowed. 8120 */ 8121 cpumask_copy(new_mask, cpus_allowed); 8122 goto again; 8123 } 8124 8125 out_free_new_mask: 8126 free_cpumask_var(new_mask); 8127 out_free_cpus_allowed: 8128 free_cpumask_var(cpus_allowed); 8129 return retval; 8130 } 8131 8132 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8133 { 8134 struct task_struct *p; 8135 int retval; 8136 8137 rcu_read_lock(); 8138 8139 p = find_process_by_pid(pid); 8140 if (!p) { 8141 rcu_read_unlock(); 8142 return -ESRCH; 8143 } 8144 8145 /* Prevent p going away */ 8146 get_task_struct(p); 8147 rcu_read_unlock(); 8148 8149 if (p->flags & PF_NO_SETAFFINITY) { 8150 retval = -EINVAL; 8151 goto out_put_task; 8152 } 8153 8154 if (!check_same_owner(p)) { 8155 rcu_read_lock(); 8156 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8157 rcu_read_unlock(); 8158 retval = -EPERM; 8159 goto out_put_task; 8160 } 8161 rcu_read_unlock(); 8162 } 8163 8164 retval = security_task_setscheduler(p); 8165 if (retval) 8166 goto out_put_task; 8167 8168 retval = __sched_setaffinity(p, in_mask); 8169 out_put_task: 8170 put_task_struct(p); 8171 return retval; 8172 } 8173 8174 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8175 struct cpumask *new_mask) 8176 { 8177 if (len < cpumask_size()) 8178 cpumask_clear(new_mask); 8179 else if (len > cpumask_size()) 8180 len = cpumask_size(); 8181 8182 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8183 } 8184 8185 /** 8186 * sys_sched_setaffinity - set the CPU affinity of a process 8187 * @pid: pid of the process 8188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8189 * @user_mask_ptr: user-space pointer to the new CPU mask 8190 * 8191 * Return: 0 on success. An error code otherwise. 8192 */ 8193 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8194 unsigned long __user *, user_mask_ptr) 8195 { 8196 cpumask_var_t new_mask; 8197 int retval; 8198 8199 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8200 return -ENOMEM; 8201 8202 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8203 if (retval == 0) 8204 retval = sched_setaffinity(pid, new_mask); 8205 free_cpumask_var(new_mask); 8206 return retval; 8207 } 8208 8209 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8210 { 8211 struct task_struct *p; 8212 unsigned long flags; 8213 int retval; 8214 8215 rcu_read_lock(); 8216 8217 retval = -ESRCH; 8218 p = find_process_by_pid(pid); 8219 if (!p) 8220 goto out_unlock; 8221 8222 retval = security_task_getscheduler(p); 8223 if (retval) 8224 goto out_unlock; 8225 8226 raw_spin_lock_irqsave(&p->pi_lock, flags); 8227 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8228 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8229 8230 out_unlock: 8231 rcu_read_unlock(); 8232 8233 return retval; 8234 } 8235 8236 /** 8237 * sys_sched_getaffinity - get the CPU affinity of a process 8238 * @pid: pid of the process 8239 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8240 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8241 * 8242 * Return: size of CPU mask copied to user_mask_ptr on success. An 8243 * error code otherwise. 8244 */ 8245 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8246 unsigned long __user *, user_mask_ptr) 8247 { 8248 int ret; 8249 cpumask_var_t mask; 8250 8251 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8252 return -EINVAL; 8253 if (len & (sizeof(unsigned long)-1)) 8254 return -EINVAL; 8255 8256 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8257 return -ENOMEM; 8258 8259 ret = sched_getaffinity(pid, mask); 8260 if (ret == 0) { 8261 unsigned int retlen = min(len, cpumask_size()); 8262 8263 if (copy_to_user(user_mask_ptr, mask, retlen)) 8264 ret = -EFAULT; 8265 else 8266 ret = retlen; 8267 } 8268 free_cpumask_var(mask); 8269 8270 return ret; 8271 } 8272 8273 static void do_sched_yield(void) 8274 { 8275 struct rq_flags rf; 8276 struct rq *rq; 8277 8278 rq = this_rq_lock_irq(&rf); 8279 8280 schedstat_inc(rq->yld_count); 8281 current->sched_class->yield_task(rq); 8282 8283 preempt_disable(); 8284 rq_unlock_irq(rq, &rf); 8285 sched_preempt_enable_no_resched(); 8286 8287 schedule(); 8288 } 8289 8290 /** 8291 * sys_sched_yield - yield the current processor to other threads. 8292 * 8293 * This function yields the current CPU to other tasks. If there are no 8294 * other threads running on this CPU then this function will return. 8295 * 8296 * Return: 0. 8297 */ 8298 SYSCALL_DEFINE0(sched_yield) 8299 { 8300 do_sched_yield(); 8301 return 0; 8302 } 8303 8304 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8305 int __sched __cond_resched(void) 8306 { 8307 if (should_resched(0)) { 8308 preempt_schedule_common(); 8309 return 1; 8310 } 8311 /* 8312 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8313 * whether the current CPU is in an RCU read-side critical section, 8314 * so the tick can report quiescent states even for CPUs looping 8315 * in kernel context. In contrast, in non-preemptible kernels, 8316 * RCU readers leave no in-memory hints, which means that CPU-bound 8317 * processes executing in kernel context might never report an 8318 * RCU quiescent state. Therefore, the following code causes 8319 * cond_resched() to report a quiescent state, but only when RCU 8320 * is in urgent need of one. 8321 */ 8322 #ifndef CONFIG_PREEMPT_RCU 8323 rcu_all_qs(); 8324 #endif 8325 return 0; 8326 } 8327 EXPORT_SYMBOL(__cond_resched); 8328 #endif 8329 8330 #ifdef CONFIG_PREEMPT_DYNAMIC 8331 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8332 #define cond_resched_dynamic_enabled __cond_resched 8333 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8334 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8335 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8336 8337 #define might_resched_dynamic_enabled __cond_resched 8338 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8339 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8340 EXPORT_STATIC_CALL_TRAMP(might_resched); 8341 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8342 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8343 int __sched dynamic_cond_resched(void) 8344 { 8345 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8346 return 0; 8347 return __cond_resched(); 8348 } 8349 EXPORT_SYMBOL(dynamic_cond_resched); 8350 8351 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8352 int __sched dynamic_might_resched(void) 8353 { 8354 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8355 return 0; 8356 return __cond_resched(); 8357 } 8358 EXPORT_SYMBOL(dynamic_might_resched); 8359 #endif 8360 #endif 8361 8362 /* 8363 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8364 * call schedule, and on return reacquire the lock. 8365 * 8366 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8367 * operations here to prevent schedule() from being called twice (once via 8368 * spin_unlock(), once by hand). 8369 */ 8370 int __cond_resched_lock(spinlock_t *lock) 8371 { 8372 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8373 int ret = 0; 8374 8375 lockdep_assert_held(lock); 8376 8377 if (spin_needbreak(lock) || resched) { 8378 spin_unlock(lock); 8379 if (!_cond_resched()) 8380 cpu_relax(); 8381 ret = 1; 8382 spin_lock(lock); 8383 } 8384 return ret; 8385 } 8386 EXPORT_SYMBOL(__cond_resched_lock); 8387 8388 int __cond_resched_rwlock_read(rwlock_t *lock) 8389 { 8390 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8391 int ret = 0; 8392 8393 lockdep_assert_held_read(lock); 8394 8395 if (rwlock_needbreak(lock) || resched) { 8396 read_unlock(lock); 8397 if (!_cond_resched()) 8398 cpu_relax(); 8399 ret = 1; 8400 read_lock(lock); 8401 } 8402 return ret; 8403 } 8404 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8405 8406 int __cond_resched_rwlock_write(rwlock_t *lock) 8407 { 8408 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8409 int ret = 0; 8410 8411 lockdep_assert_held_write(lock); 8412 8413 if (rwlock_needbreak(lock) || resched) { 8414 write_unlock(lock); 8415 if (!_cond_resched()) 8416 cpu_relax(); 8417 ret = 1; 8418 write_lock(lock); 8419 } 8420 return ret; 8421 } 8422 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8423 8424 #ifdef CONFIG_PREEMPT_DYNAMIC 8425 8426 #ifdef CONFIG_GENERIC_ENTRY 8427 #include <linux/entry-common.h> 8428 #endif 8429 8430 /* 8431 * SC:cond_resched 8432 * SC:might_resched 8433 * SC:preempt_schedule 8434 * SC:preempt_schedule_notrace 8435 * SC:irqentry_exit_cond_resched 8436 * 8437 * 8438 * NONE: 8439 * cond_resched <- __cond_resched 8440 * might_resched <- RET0 8441 * preempt_schedule <- NOP 8442 * preempt_schedule_notrace <- NOP 8443 * irqentry_exit_cond_resched <- NOP 8444 * 8445 * VOLUNTARY: 8446 * cond_resched <- __cond_resched 8447 * might_resched <- __cond_resched 8448 * preempt_schedule <- NOP 8449 * preempt_schedule_notrace <- NOP 8450 * irqentry_exit_cond_resched <- NOP 8451 * 8452 * FULL: 8453 * cond_resched <- RET0 8454 * might_resched <- RET0 8455 * preempt_schedule <- preempt_schedule 8456 * preempt_schedule_notrace <- preempt_schedule_notrace 8457 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8458 */ 8459 8460 enum { 8461 preempt_dynamic_undefined = -1, 8462 preempt_dynamic_none, 8463 preempt_dynamic_voluntary, 8464 preempt_dynamic_full, 8465 }; 8466 8467 int preempt_dynamic_mode = preempt_dynamic_undefined; 8468 8469 int sched_dynamic_mode(const char *str) 8470 { 8471 if (!strcmp(str, "none")) 8472 return preempt_dynamic_none; 8473 8474 if (!strcmp(str, "voluntary")) 8475 return preempt_dynamic_voluntary; 8476 8477 if (!strcmp(str, "full")) 8478 return preempt_dynamic_full; 8479 8480 return -EINVAL; 8481 } 8482 8483 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8484 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8485 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8486 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8487 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8488 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8489 #else 8490 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8491 #endif 8492 8493 void sched_dynamic_update(int mode) 8494 { 8495 /* 8496 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8497 * the ZERO state, which is invalid. 8498 */ 8499 preempt_dynamic_enable(cond_resched); 8500 preempt_dynamic_enable(might_resched); 8501 preempt_dynamic_enable(preempt_schedule); 8502 preempt_dynamic_enable(preempt_schedule_notrace); 8503 preempt_dynamic_enable(irqentry_exit_cond_resched); 8504 8505 switch (mode) { 8506 case preempt_dynamic_none: 8507 preempt_dynamic_enable(cond_resched); 8508 preempt_dynamic_disable(might_resched); 8509 preempt_dynamic_disable(preempt_schedule); 8510 preempt_dynamic_disable(preempt_schedule_notrace); 8511 preempt_dynamic_disable(irqentry_exit_cond_resched); 8512 pr_info("Dynamic Preempt: none\n"); 8513 break; 8514 8515 case preempt_dynamic_voluntary: 8516 preempt_dynamic_enable(cond_resched); 8517 preempt_dynamic_enable(might_resched); 8518 preempt_dynamic_disable(preempt_schedule); 8519 preempt_dynamic_disable(preempt_schedule_notrace); 8520 preempt_dynamic_disable(irqentry_exit_cond_resched); 8521 pr_info("Dynamic Preempt: voluntary\n"); 8522 break; 8523 8524 case preempt_dynamic_full: 8525 preempt_dynamic_disable(cond_resched); 8526 preempt_dynamic_disable(might_resched); 8527 preempt_dynamic_enable(preempt_schedule); 8528 preempt_dynamic_enable(preempt_schedule_notrace); 8529 preempt_dynamic_enable(irqentry_exit_cond_resched); 8530 pr_info("Dynamic Preempt: full\n"); 8531 break; 8532 } 8533 8534 preempt_dynamic_mode = mode; 8535 } 8536 8537 static int __init setup_preempt_mode(char *str) 8538 { 8539 int mode = sched_dynamic_mode(str); 8540 if (mode < 0) { 8541 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8542 return 0; 8543 } 8544 8545 sched_dynamic_update(mode); 8546 return 1; 8547 } 8548 __setup("preempt=", setup_preempt_mode); 8549 8550 static void __init preempt_dynamic_init(void) 8551 { 8552 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8553 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8554 sched_dynamic_update(preempt_dynamic_none); 8555 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8556 sched_dynamic_update(preempt_dynamic_voluntary); 8557 } else { 8558 /* Default static call setting, nothing to do */ 8559 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8560 preempt_dynamic_mode = preempt_dynamic_full; 8561 pr_info("Dynamic Preempt: full\n"); 8562 } 8563 } 8564 } 8565 8566 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8567 bool preempt_model_##mode(void) \ 8568 { \ 8569 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8570 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8571 } \ 8572 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8573 8574 PREEMPT_MODEL_ACCESSOR(none); 8575 PREEMPT_MODEL_ACCESSOR(voluntary); 8576 PREEMPT_MODEL_ACCESSOR(full); 8577 8578 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8579 8580 static inline void preempt_dynamic_init(void) { } 8581 8582 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8583 8584 /** 8585 * yield - yield the current processor to other threads. 8586 * 8587 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8588 * 8589 * The scheduler is at all times free to pick the calling task as the most 8590 * eligible task to run, if removing the yield() call from your code breaks 8591 * it, it's already broken. 8592 * 8593 * Typical broken usage is: 8594 * 8595 * while (!event) 8596 * yield(); 8597 * 8598 * where one assumes that yield() will let 'the other' process run that will 8599 * make event true. If the current task is a SCHED_FIFO task that will never 8600 * happen. Never use yield() as a progress guarantee!! 8601 * 8602 * If you want to use yield() to wait for something, use wait_event(). 8603 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8604 * If you still want to use yield(), do not! 8605 */ 8606 void __sched yield(void) 8607 { 8608 set_current_state(TASK_RUNNING); 8609 do_sched_yield(); 8610 } 8611 EXPORT_SYMBOL(yield); 8612 8613 /** 8614 * yield_to - yield the current processor to another thread in 8615 * your thread group, or accelerate that thread toward the 8616 * processor it's on. 8617 * @p: target task 8618 * @preempt: whether task preemption is allowed or not 8619 * 8620 * It's the caller's job to ensure that the target task struct 8621 * can't go away on us before we can do any checks. 8622 * 8623 * Return: 8624 * true (>0) if we indeed boosted the target task. 8625 * false (0) if we failed to boost the target. 8626 * -ESRCH if there's no task to yield to. 8627 */ 8628 int __sched yield_to(struct task_struct *p, bool preempt) 8629 { 8630 struct task_struct *curr = current; 8631 struct rq *rq, *p_rq; 8632 unsigned long flags; 8633 int yielded = 0; 8634 8635 local_irq_save(flags); 8636 rq = this_rq(); 8637 8638 again: 8639 p_rq = task_rq(p); 8640 /* 8641 * If we're the only runnable task on the rq and target rq also 8642 * has only one task, there's absolutely no point in yielding. 8643 */ 8644 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8645 yielded = -ESRCH; 8646 goto out_irq; 8647 } 8648 8649 double_rq_lock(rq, p_rq); 8650 if (task_rq(p) != p_rq) { 8651 double_rq_unlock(rq, p_rq); 8652 goto again; 8653 } 8654 8655 if (!curr->sched_class->yield_to_task) 8656 goto out_unlock; 8657 8658 if (curr->sched_class != p->sched_class) 8659 goto out_unlock; 8660 8661 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8662 goto out_unlock; 8663 8664 yielded = curr->sched_class->yield_to_task(rq, p); 8665 if (yielded) { 8666 schedstat_inc(rq->yld_count); 8667 /* 8668 * Make p's CPU reschedule; pick_next_entity takes care of 8669 * fairness. 8670 */ 8671 if (preempt && rq != p_rq) 8672 resched_curr(p_rq); 8673 } 8674 8675 out_unlock: 8676 double_rq_unlock(rq, p_rq); 8677 out_irq: 8678 local_irq_restore(flags); 8679 8680 if (yielded > 0) 8681 schedule(); 8682 8683 return yielded; 8684 } 8685 EXPORT_SYMBOL_GPL(yield_to); 8686 8687 int io_schedule_prepare(void) 8688 { 8689 int old_iowait = current->in_iowait; 8690 8691 current->in_iowait = 1; 8692 blk_flush_plug(current->plug, true); 8693 return old_iowait; 8694 } 8695 8696 void io_schedule_finish(int token) 8697 { 8698 current->in_iowait = token; 8699 } 8700 8701 /* 8702 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8703 * that process accounting knows that this is a task in IO wait state. 8704 */ 8705 long __sched io_schedule_timeout(long timeout) 8706 { 8707 int token; 8708 long ret; 8709 8710 token = io_schedule_prepare(); 8711 ret = schedule_timeout(timeout); 8712 io_schedule_finish(token); 8713 8714 return ret; 8715 } 8716 EXPORT_SYMBOL(io_schedule_timeout); 8717 8718 void __sched io_schedule(void) 8719 { 8720 int token; 8721 8722 token = io_schedule_prepare(); 8723 schedule(); 8724 io_schedule_finish(token); 8725 } 8726 EXPORT_SYMBOL(io_schedule); 8727 8728 /** 8729 * sys_sched_get_priority_max - return maximum RT priority. 8730 * @policy: scheduling class. 8731 * 8732 * Return: On success, this syscall returns the maximum 8733 * rt_priority that can be used by a given scheduling class. 8734 * On failure, a negative error code is returned. 8735 */ 8736 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8737 { 8738 int ret = -EINVAL; 8739 8740 switch (policy) { 8741 case SCHED_FIFO: 8742 case SCHED_RR: 8743 ret = MAX_RT_PRIO-1; 8744 break; 8745 case SCHED_DEADLINE: 8746 case SCHED_NORMAL: 8747 case SCHED_BATCH: 8748 case SCHED_IDLE: 8749 ret = 0; 8750 break; 8751 } 8752 return ret; 8753 } 8754 8755 /** 8756 * sys_sched_get_priority_min - return minimum RT priority. 8757 * @policy: scheduling class. 8758 * 8759 * Return: On success, this syscall returns the minimum 8760 * rt_priority that can be used by a given scheduling class. 8761 * On failure, a negative error code is returned. 8762 */ 8763 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8764 { 8765 int ret = -EINVAL; 8766 8767 switch (policy) { 8768 case SCHED_FIFO: 8769 case SCHED_RR: 8770 ret = 1; 8771 break; 8772 case SCHED_DEADLINE: 8773 case SCHED_NORMAL: 8774 case SCHED_BATCH: 8775 case SCHED_IDLE: 8776 ret = 0; 8777 } 8778 return ret; 8779 } 8780 8781 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8782 { 8783 struct task_struct *p; 8784 unsigned int time_slice; 8785 struct rq_flags rf; 8786 struct rq *rq; 8787 int retval; 8788 8789 if (pid < 0) 8790 return -EINVAL; 8791 8792 retval = -ESRCH; 8793 rcu_read_lock(); 8794 p = find_process_by_pid(pid); 8795 if (!p) 8796 goto out_unlock; 8797 8798 retval = security_task_getscheduler(p); 8799 if (retval) 8800 goto out_unlock; 8801 8802 rq = task_rq_lock(p, &rf); 8803 time_slice = 0; 8804 if (p->sched_class->get_rr_interval) 8805 time_slice = p->sched_class->get_rr_interval(rq, p); 8806 task_rq_unlock(rq, p, &rf); 8807 8808 rcu_read_unlock(); 8809 jiffies_to_timespec64(time_slice, t); 8810 return 0; 8811 8812 out_unlock: 8813 rcu_read_unlock(); 8814 return retval; 8815 } 8816 8817 /** 8818 * sys_sched_rr_get_interval - return the default timeslice of a process. 8819 * @pid: pid of the process. 8820 * @interval: userspace pointer to the timeslice value. 8821 * 8822 * this syscall writes the default timeslice value of a given process 8823 * into the user-space timespec buffer. A value of '0' means infinity. 8824 * 8825 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8826 * an error code. 8827 */ 8828 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8829 struct __kernel_timespec __user *, interval) 8830 { 8831 struct timespec64 t; 8832 int retval = sched_rr_get_interval(pid, &t); 8833 8834 if (retval == 0) 8835 retval = put_timespec64(&t, interval); 8836 8837 return retval; 8838 } 8839 8840 #ifdef CONFIG_COMPAT_32BIT_TIME 8841 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8842 struct old_timespec32 __user *, interval) 8843 { 8844 struct timespec64 t; 8845 int retval = sched_rr_get_interval(pid, &t); 8846 8847 if (retval == 0) 8848 retval = put_old_timespec32(&t, interval); 8849 return retval; 8850 } 8851 #endif 8852 8853 void sched_show_task(struct task_struct *p) 8854 { 8855 unsigned long free = 0; 8856 int ppid; 8857 8858 if (!try_get_task_stack(p)) 8859 return; 8860 8861 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8862 8863 if (task_is_running(p)) 8864 pr_cont(" running task "); 8865 #ifdef CONFIG_DEBUG_STACK_USAGE 8866 free = stack_not_used(p); 8867 #endif 8868 ppid = 0; 8869 rcu_read_lock(); 8870 if (pid_alive(p)) 8871 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8872 rcu_read_unlock(); 8873 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8874 free, task_pid_nr(p), ppid, 8875 read_task_thread_flags(p)); 8876 8877 print_worker_info(KERN_INFO, p); 8878 print_stop_info(KERN_INFO, p); 8879 show_stack(p, NULL, KERN_INFO); 8880 put_task_stack(p); 8881 } 8882 EXPORT_SYMBOL_GPL(sched_show_task); 8883 8884 static inline bool 8885 state_filter_match(unsigned long state_filter, struct task_struct *p) 8886 { 8887 unsigned int state = READ_ONCE(p->__state); 8888 8889 /* no filter, everything matches */ 8890 if (!state_filter) 8891 return true; 8892 8893 /* filter, but doesn't match */ 8894 if (!(state & state_filter)) 8895 return false; 8896 8897 /* 8898 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8899 * TASK_KILLABLE). 8900 */ 8901 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8902 return false; 8903 8904 return true; 8905 } 8906 8907 8908 void show_state_filter(unsigned int state_filter) 8909 { 8910 struct task_struct *g, *p; 8911 8912 rcu_read_lock(); 8913 for_each_process_thread(g, p) { 8914 /* 8915 * reset the NMI-timeout, listing all files on a slow 8916 * console might take a lot of time: 8917 * Also, reset softlockup watchdogs on all CPUs, because 8918 * another CPU might be blocked waiting for us to process 8919 * an IPI. 8920 */ 8921 touch_nmi_watchdog(); 8922 touch_all_softlockup_watchdogs(); 8923 if (state_filter_match(state_filter, p)) 8924 sched_show_task(p); 8925 } 8926 8927 #ifdef CONFIG_SCHED_DEBUG 8928 if (!state_filter) 8929 sysrq_sched_debug_show(); 8930 #endif 8931 rcu_read_unlock(); 8932 /* 8933 * Only show locks if all tasks are dumped: 8934 */ 8935 if (!state_filter) 8936 debug_show_all_locks(); 8937 } 8938 8939 /** 8940 * init_idle - set up an idle thread for a given CPU 8941 * @idle: task in question 8942 * @cpu: CPU the idle task belongs to 8943 * 8944 * NOTE: this function does not set the idle thread's NEED_RESCHED 8945 * flag, to make booting more robust. 8946 */ 8947 void __init init_idle(struct task_struct *idle, int cpu) 8948 { 8949 struct rq *rq = cpu_rq(cpu); 8950 unsigned long flags; 8951 8952 __sched_fork(0, idle); 8953 8954 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8955 raw_spin_rq_lock(rq); 8956 8957 idle->__state = TASK_RUNNING; 8958 idle->se.exec_start = sched_clock(); 8959 /* 8960 * PF_KTHREAD should already be set at this point; regardless, make it 8961 * look like a proper per-CPU kthread. 8962 */ 8963 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8964 kthread_set_per_cpu(idle, cpu); 8965 8966 #ifdef CONFIG_SMP 8967 /* 8968 * It's possible that init_idle() gets called multiple times on a task, 8969 * in that case do_set_cpus_allowed() will not do the right thing. 8970 * 8971 * And since this is boot we can forgo the serialization. 8972 */ 8973 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8974 #endif 8975 /* 8976 * We're having a chicken and egg problem, even though we are 8977 * holding rq->lock, the CPU isn't yet set to this CPU so the 8978 * lockdep check in task_group() will fail. 8979 * 8980 * Similar case to sched_fork(). / Alternatively we could 8981 * use task_rq_lock() here and obtain the other rq->lock. 8982 * 8983 * Silence PROVE_RCU 8984 */ 8985 rcu_read_lock(); 8986 __set_task_cpu(idle, cpu); 8987 rcu_read_unlock(); 8988 8989 rq->idle = idle; 8990 rcu_assign_pointer(rq->curr, idle); 8991 idle->on_rq = TASK_ON_RQ_QUEUED; 8992 #ifdef CONFIG_SMP 8993 idle->on_cpu = 1; 8994 #endif 8995 raw_spin_rq_unlock(rq); 8996 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8997 8998 /* Set the preempt count _outside_ the spinlocks! */ 8999 init_idle_preempt_count(idle, cpu); 9000 9001 /* 9002 * The idle tasks have their own, simple scheduling class: 9003 */ 9004 idle->sched_class = &idle_sched_class; 9005 ftrace_graph_init_idle_task(idle, cpu); 9006 vtime_init_idle(idle, cpu); 9007 #ifdef CONFIG_SMP 9008 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9009 #endif 9010 } 9011 9012 #ifdef CONFIG_SMP 9013 9014 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9015 const struct cpumask *trial) 9016 { 9017 int ret = 1; 9018 9019 if (cpumask_empty(cur)) 9020 return ret; 9021 9022 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9023 9024 return ret; 9025 } 9026 9027 int task_can_attach(struct task_struct *p, 9028 const struct cpumask *cs_effective_cpus) 9029 { 9030 int ret = 0; 9031 9032 /* 9033 * Kthreads which disallow setaffinity shouldn't be moved 9034 * to a new cpuset; we don't want to change their CPU 9035 * affinity and isolating such threads by their set of 9036 * allowed nodes is unnecessary. Thus, cpusets are not 9037 * applicable for such threads. This prevents checking for 9038 * success of set_cpus_allowed_ptr() on all attached tasks 9039 * before cpus_mask may be changed. 9040 */ 9041 if (p->flags & PF_NO_SETAFFINITY) { 9042 ret = -EINVAL; 9043 goto out; 9044 } 9045 9046 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9047 cs_effective_cpus)) { 9048 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9049 9050 if (unlikely(cpu >= nr_cpu_ids)) 9051 return -EINVAL; 9052 ret = dl_cpu_busy(cpu, p); 9053 } 9054 9055 out: 9056 return ret; 9057 } 9058 9059 bool sched_smp_initialized __read_mostly; 9060 9061 #ifdef CONFIG_NUMA_BALANCING 9062 /* Migrate current task p to target_cpu */ 9063 int migrate_task_to(struct task_struct *p, int target_cpu) 9064 { 9065 struct migration_arg arg = { p, target_cpu }; 9066 int curr_cpu = task_cpu(p); 9067 9068 if (curr_cpu == target_cpu) 9069 return 0; 9070 9071 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9072 return -EINVAL; 9073 9074 /* TODO: This is not properly updating schedstats */ 9075 9076 trace_sched_move_numa(p, curr_cpu, target_cpu); 9077 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9078 } 9079 9080 /* 9081 * Requeue a task on a given node and accurately track the number of NUMA 9082 * tasks on the runqueues 9083 */ 9084 void sched_setnuma(struct task_struct *p, int nid) 9085 { 9086 bool queued, running; 9087 struct rq_flags rf; 9088 struct rq *rq; 9089 9090 rq = task_rq_lock(p, &rf); 9091 queued = task_on_rq_queued(p); 9092 running = task_current(rq, p); 9093 9094 if (queued) 9095 dequeue_task(rq, p, DEQUEUE_SAVE); 9096 if (running) 9097 put_prev_task(rq, p); 9098 9099 p->numa_preferred_nid = nid; 9100 9101 if (queued) 9102 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9103 if (running) 9104 set_next_task(rq, p); 9105 task_rq_unlock(rq, p, &rf); 9106 } 9107 #endif /* CONFIG_NUMA_BALANCING */ 9108 9109 #ifdef CONFIG_HOTPLUG_CPU 9110 /* 9111 * Ensure that the idle task is using init_mm right before its CPU goes 9112 * offline. 9113 */ 9114 void idle_task_exit(void) 9115 { 9116 struct mm_struct *mm = current->active_mm; 9117 9118 BUG_ON(cpu_online(smp_processor_id())); 9119 BUG_ON(current != this_rq()->idle); 9120 9121 if (mm != &init_mm) { 9122 switch_mm(mm, &init_mm, current); 9123 finish_arch_post_lock_switch(); 9124 } 9125 9126 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9127 } 9128 9129 static int __balance_push_cpu_stop(void *arg) 9130 { 9131 struct task_struct *p = arg; 9132 struct rq *rq = this_rq(); 9133 struct rq_flags rf; 9134 int cpu; 9135 9136 raw_spin_lock_irq(&p->pi_lock); 9137 rq_lock(rq, &rf); 9138 9139 update_rq_clock(rq); 9140 9141 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9142 cpu = select_fallback_rq(rq->cpu, p); 9143 rq = __migrate_task(rq, &rf, p, cpu); 9144 } 9145 9146 rq_unlock(rq, &rf); 9147 raw_spin_unlock_irq(&p->pi_lock); 9148 9149 put_task_struct(p); 9150 9151 return 0; 9152 } 9153 9154 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9155 9156 /* 9157 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9158 * 9159 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9160 * effective when the hotplug motion is down. 9161 */ 9162 static void balance_push(struct rq *rq) 9163 { 9164 struct task_struct *push_task = rq->curr; 9165 9166 lockdep_assert_rq_held(rq); 9167 9168 /* 9169 * Ensure the thing is persistent until balance_push_set(.on = false); 9170 */ 9171 rq->balance_callback = &balance_push_callback; 9172 9173 /* 9174 * Only active while going offline and when invoked on the outgoing 9175 * CPU. 9176 */ 9177 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9178 return; 9179 9180 /* 9181 * Both the cpu-hotplug and stop task are in this case and are 9182 * required to complete the hotplug process. 9183 */ 9184 if (kthread_is_per_cpu(push_task) || 9185 is_migration_disabled(push_task)) { 9186 9187 /* 9188 * If this is the idle task on the outgoing CPU try to wake 9189 * up the hotplug control thread which might wait for the 9190 * last task to vanish. The rcuwait_active() check is 9191 * accurate here because the waiter is pinned on this CPU 9192 * and can't obviously be running in parallel. 9193 * 9194 * On RT kernels this also has to check whether there are 9195 * pinned and scheduled out tasks on the runqueue. They 9196 * need to leave the migrate disabled section first. 9197 */ 9198 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9199 rcuwait_active(&rq->hotplug_wait)) { 9200 raw_spin_rq_unlock(rq); 9201 rcuwait_wake_up(&rq->hotplug_wait); 9202 raw_spin_rq_lock(rq); 9203 } 9204 return; 9205 } 9206 9207 get_task_struct(push_task); 9208 /* 9209 * Temporarily drop rq->lock such that we can wake-up the stop task. 9210 * Both preemption and IRQs are still disabled. 9211 */ 9212 raw_spin_rq_unlock(rq); 9213 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9214 this_cpu_ptr(&push_work)); 9215 /* 9216 * At this point need_resched() is true and we'll take the loop in 9217 * schedule(). The next pick is obviously going to be the stop task 9218 * which kthread_is_per_cpu() and will push this task away. 9219 */ 9220 raw_spin_rq_lock(rq); 9221 } 9222 9223 static void balance_push_set(int cpu, bool on) 9224 { 9225 struct rq *rq = cpu_rq(cpu); 9226 struct rq_flags rf; 9227 9228 rq_lock_irqsave(rq, &rf); 9229 if (on) { 9230 WARN_ON_ONCE(rq->balance_callback); 9231 rq->balance_callback = &balance_push_callback; 9232 } else if (rq->balance_callback == &balance_push_callback) { 9233 rq->balance_callback = NULL; 9234 } 9235 rq_unlock_irqrestore(rq, &rf); 9236 } 9237 9238 /* 9239 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9240 * inactive. All tasks which are not per CPU kernel threads are either 9241 * pushed off this CPU now via balance_push() or placed on a different CPU 9242 * during wakeup. Wait until the CPU is quiescent. 9243 */ 9244 static void balance_hotplug_wait(void) 9245 { 9246 struct rq *rq = this_rq(); 9247 9248 rcuwait_wait_event(&rq->hotplug_wait, 9249 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9250 TASK_UNINTERRUPTIBLE); 9251 } 9252 9253 #else 9254 9255 static inline void balance_push(struct rq *rq) 9256 { 9257 } 9258 9259 static inline void balance_push_set(int cpu, bool on) 9260 { 9261 } 9262 9263 static inline void balance_hotplug_wait(void) 9264 { 9265 } 9266 9267 #endif /* CONFIG_HOTPLUG_CPU */ 9268 9269 void set_rq_online(struct rq *rq) 9270 { 9271 if (!rq->online) { 9272 const struct sched_class *class; 9273 9274 cpumask_set_cpu(rq->cpu, rq->rd->online); 9275 rq->online = 1; 9276 9277 for_each_class(class) { 9278 if (class->rq_online) 9279 class->rq_online(rq); 9280 } 9281 } 9282 } 9283 9284 void set_rq_offline(struct rq *rq) 9285 { 9286 if (rq->online) { 9287 const struct sched_class *class; 9288 9289 for_each_class(class) { 9290 if (class->rq_offline) 9291 class->rq_offline(rq); 9292 } 9293 9294 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9295 rq->online = 0; 9296 } 9297 } 9298 9299 /* 9300 * used to mark begin/end of suspend/resume: 9301 */ 9302 static int num_cpus_frozen; 9303 9304 /* 9305 * Update cpusets according to cpu_active mask. If cpusets are 9306 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9307 * around partition_sched_domains(). 9308 * 9309 * If we come here as part of a suspend/resume, don't touch cpusets because we 9310 * want to restore it back to its original state upon resume anyway. 9311 */ 9312 static void cpuset_cpu_active(void) 9313 { 9314 if (cpuhp_tasks_frozen) { 9315 /* 9316 * num_cpus_frozen tracks how many CPUs are involved in suspend 9317 * resume sequence. As long as this is not the last online 9318 * operation in the resume sequence, just build a single sched 9319 * domain, ignoring cpusets. 9320 */ 9321 partition_sched_domains(1, NULL, NULL); 9322 if (--num_cpus_frozen) 9323 return; 9324 /* 9325 * This is the last CPU online operation. So fall through and 9326 * restore the original sched domains by considering the 9327 * cpuset configurations. 9328 */ 9329 cpuset_force_rebuild(); 9330 } 9331 cpuset_update_active_cpus(); 9332 } 9333 9334 static int cpuset_cpu_inactive(unsigned int cpu) 9335 { 9336 if (!cpuhp_tasks_frozen) { 9337 int ret = dl_cpu_busy(cpu, NULL); 9338 9339 if (ret) 9340 return ret; 9341 cpuset_update_active_cpus(); 9342 } else { 9343 num_cpus_frozen++; 9344 partition_sched_domains(1, NULL, NULL); 9345 } 9346 return 0; 9347 } 9348 9349 int sched_cpu_activate(unsigned int cpu) 9350 { 9351 struct rq *rq = cpu_rq(cpu); 9352 struct rq_flags rf; 9353 9354 /* 9355 * Clear the balance_push callback and prepare to schedule 9356 * regular tasks. 9357 */ 9358 balance_push_set(cpu, false); 9359 9360 #ifdef CONFIG_SCHED_SMT 9361 /* 9362 * When going up, increment the number of cores with SMT present. 9363 */ 9364 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9365 static_branch_inc_cpuslocked(&sched_smt_present); 9366 #endif 9367 set_cpu_active(cpu, true); 9368 9369 if (sched_smp_initialized) { 9370 sched_update_numa(cpu, true); 9371 sched_domains_numa_masks_set(cpu); 9372 cpuset_cpu_active(); 9373 } 9374 9375 /* 9376 * Put the rq online, if not already. This happens: 9377 * 9378 * 1) In the early boot process, because we build the real domains 9379 * after all CPUs have been brought up. 9380 * 9381 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9382 * domains. 9383 */ 9384 rq_lock_irqsave(rq, &rf); 9385 if (rq->rd) { 9386 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9387 set_rq_online(rq); 9388 } 9389 rq_unlock_irqrestore(rq, &rf); 9390 9391 return 0; 9392 } 9393 9394 int sched_cpu_deactivate(unsigned int cpu) 9395 { 9396 struct rq *rq = cpu_rq(cpu); 9397 struct rq_flags rf; 9398 int ret; 9399 9400 /* 9401 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9402 * load balancing when not active 9403 */ 9404 nohz_balance_exit_idle(rq); 9405 9406 set_cpu_active(cpu, false); 9407 9408 /* 9409 * From this point forward, this CPU will refuse to run any task that 9410 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9411 * push those tasks away until this gets cleared, see 9412 * sched_cpu_dying(). 9413 */ 9414 balance_push_set(cpu, true); 9415 9416 /* 9417 * We've cleared cpu_active_mask / set balance_push, wait for all 9418 * preempt-disabled and RCU users of this state to go away such that 9419 * all new such users will observe it. 9420 * 9421 * Specifically, we rely on ttwu to no longer target this CPU, see 9422 * ttwu_queue_cond() and is_cpu_allowed(). 9423 * 9424 * Do sync before park smpboot threads to take care the rcu boost case. 9425 */ 9426 synchronize_rcu(); 9427 9428 rq_lock_irqsave(rq, &rf); 9429 if (rq->rd) { 9430 update_rq_clock(rq); 9431 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9432 set_rq_offline(rq); 9433 } 9434 rq_unlock_irqrestore(rq, &rf); 9435 9436 #ifdef CONFIG_SCHED_SMT 9437 /* 9438 * When going down, decrement the number of cores with SMT present. 9439 */ 9440 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9441 static_branch_dec_cpuslocked(&sched_smt_present); 9442 9443 sched_core_cpu_deactivate(cpu); 9444 #endif 9445 9446 if (!sched_smp_initialized) 9447 return 0; 9448 9449 sched_update_numa(cpu, false); 9450 ret = cpuset_cpu_inactive(cpu); 9451 if (ret) { 9452 balance_push_set(cpu, false); 9453 set_cpu_active(cpu, true); 9454 sched_update_numa(cpu, true); 9455 return ret; 9456 } 9457 sched_domains_numa_masks_clear(cpu); 9458 return 0; 9459 } 9460 9461 static void sched_rq_cpu_starting(unsigned int cpu) 9462 { 9463 struct rq *rq = cpu_rq(cpu); 9464 9465 rq->calc_load_update = calc_load_update; 9466 update_max_interval(); 9467 } 9468 9469 int sched_cpu_starting(unsigned int cpu) 9470 { 9471 sched_core_cpu_starting(cpu); 9472 sched_rq_cpu_starting(cpu); 9473 sched_tick_start(cpu); 9474 return 0; 9475 } 9476 9477 #ifdef CONFIG_HOTPLUG_CPU 9478 9479 /* 9480 * Invoked immediately before the stopper thread is invoked to bring the 9481 * CPU down completely. At this point all per CPU kthreads except the 9482 * hotplug thread (current) and the stopper thread (inactive) have been 9483 * either parked or have been unbound from the outgoing CPU. Ensure that 9484 * any of those which might be on the way out are gone. 9485 * 9486 * If after this point a bound task is being woken on this CPU then the 9487 * responsible hotplug callback has failed to do it's job. 9488 * sched_cpu_dying() will catch it with the appropriate fireworks. 9489 */ 9490 int sched_cpu_wait_empty(unsigned int cpu) 9491 { 9492 balance_hotplug_wait(); 9493 return 0; 9494 } 9495 9496 /* 9497 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9498 * might have. Called from the CPU stopper task after ensuring that the 9499 * stopper is the last running task on the CPU, so nr_active count is 9500 * stable. We need to take the teardown thread which is calling this into 9501 * account, so we hand in adjust = 1 to the load calculation. 9502 * 9503 * Also see the comment "Global load-average calculations". 9504 */ 9505 static void calc_load_migrate(struct rq *rq) 9506 { 9507 long delta = calc_load_fold_active(rq, 1); 9508 9509 if (delta) 9510 atomic_long_add(delta, &calc_load_tasks); 9511 } 9512 9513 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9514 { 9515 struct task_struct *g, *p; 9516 int cpu = cpu_of(rq); 9517 9518 lockdep_assert_rq_held(rq); 9519 9520 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9521 for_each_process_thread(g, p) { 9522 if (task_cpu(p) != cpu) 9523 continue; 9524 9525 if (!task_on_rq_queued(p)) 9526 continue; 9527 9528 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9529 } 9530 } 9531 9532 int sched_cpu_dying(unsigned int cpu) 9533 { 9534 struct rq *rq = cpu_rq(cpu); 9535 struct rq_flags rf; 9536 9537 /* Handle pending wakeups and then migrate everything off */ 9538 sched_tick_stop(cpu); 9539 9540 rq_lock_irqsave(rq, &rf); 9541 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9542 WARN(true, "Dying CPU not properly vacated!"); 9543 dump_rq_tasks(rq, KERN_WARNING); 9544 } 9545 rq_unlock_irqrestore(rq, &rf); 9546 9547 calc_load_migrate(rq); 9548 update_max_interval(); 9549 hrtick_clear(rq); 9550 sched_core_cpu_dying(cpu); 9551 return 0; 9552 } 9553 #endif 9554 9555 void __init sched_init_smp(void) 9556 { 9557 sched_init_numa(NUMA_NO_NODE); 9558 9559 /* 9560 * There's no userspace yet to cause hotplug operations; hence all the 9561 * CPU masks are stable and all blatant races in the below code cannot 9562 * happen. 9563 */ 9564 mutex_lock(&sched_domains_mutex); 9565 sched_init_domains(cpu_active_mask); 9566 mutex_unlock(&sched_domains_mutex); 9567 9568 /* Move init over to a non-isolated CPU */ 9569 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9570 BUG(); 9571 current->flags &= ~PF_NO_SETAFFINITY; 9572 sched_init_granularity(); 9573 9574 init_sched_rt_class(); 9575 init_sched_dl_class(); 9576 9577 sched_smp_initialized = true; 9578 } 9579 9580 static int __init migration_init(void) 9581 { 9582 sched_cpu_starting(smp_processor_id()); 9583 return 0; 9584 } 9585 early_initcall(migration_init); 9586 9587 #else 9588 void __init sched_init_smp(void) 9589 { 9590 sched_init_granularity(); 9591 } 9592 #endif /* CONFIG_SMP */ 9593 9594 int in_sched_functions(unsigned long addr) 9595 { 9596 return in_lock_functions(addr) || 9597 (addr >= (unsigned long)__sched_text_start 9598 && addr < (unsigned long)__sched_text_end); 9599 } 9600 9601 #ifdef CONFIG_CGROUP_SCHED 9602 /* 9603 * Default task group. 9604 * Every task in system belongs to this group at bootup. 9605 */ 9606 struct task_group root_task_group; 9607 LIST_HEAD(task_groups); 9608 9609 /* Cacheline aligned slab cache for task_group */ 9610 static struct kmem_cache *task_group_cache __read_mostly; 9611 #endif 9612 9613 void __init sched_init(void) 9614 { 9615 unsigned long ptr = 0; 9616 int i; 9617 9618 /* Make sure the linker didn't screw up */ 9619 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9620 &fair_sched_class != &rt_sched_class + 1 || 9621 &rt_sched_class != &dl_sched_class + 1); 9622 #ifdef CONFIG_SMP 9623 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9624 #endif 9625 9626 wait_bit_init(); 9627 9628 #ifdef CONFIG_FAIR_GROUP_SCHED 9629 ptr += 2 * nr_cpu_ids * sizeof(void **); 9630 #endif 9631 #ifdef CONFIG_RT_GROUP_SCHED 9632 ptr += 2 * nr_cpu_ids * sizeof(void **); 9633 #endif 9634 if (ptr) { 9635 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9636 9637 #ifdef CONFIG_FAIR_GROUP_SCHED 9638 root_task_group.se = (struct sched_entity **)ptr; 9639 ptr += nr_cpu_ids * sizeof(void **); 9640 9641 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9642 ptr += nr_cpu_ids * sizeof(void **); 9643 9644 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9645 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9646 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9647 #ifdef CONFIG_RT_GROUP_SCHED 9648 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9649 ptr += nr_cpu_ids * sizeof(void **); 9650 9651 root_task_group.rt_rq = (struct rt_rq **)ptr; 9652 ptr += nr_cpu_ids * sizeof(void **); 9653 9654 #endif /* CONFIG_RT_GROUP_SCHED */ 9655 } 9656 9657 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9658 9659 #ifdef CONFIG_SMP 9660 init_defrootdomain(); 9661 #endif 9662 9663 #ifdef CONFIG_RT_GROUP_SCHED 9664 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9665 global_rt_period(), global_rt_runtime()); 9666 #endif /* CONFIG_RT_GROUP_SCHED */ 9667 9668 #ifdef CONFIG_CGROUP_SCHED 9669 task_group_cache = KMEM_CACHE(task_group, 0); 9670 9671 list_add(&root_task_group.list, &task_groups); 9672 INIT_LIST_HEAD(&root_task_group.children); 9673 INIT_LIST_HEAD(&root_task_group.siblings); 9674 autogroup_init(&init_task); 9675 #endif /* CONFIG_CGROUP_SCHED */ 9676 9677 for_each_possible_cpu(i) { 9678 struct rq *rq; 9679 9680 rq = cpu_rq(i); 9681 raw_spin_lock_init(&rq->__lock); 9682 rq->nr_running = 0; 9683 rq->calc_load_active = 0; 9684 rq->calc_load_update = jiffies + LOAD_FREQ; 9685 init_cfs_rq(&rq->cfs); 9686 init_rt_rq(&rq->rt); 9687 init_dl_rq(&rq->dl); 9688 #ifdef CONFIG_FAIR_GROUP_SCHED 9689 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9690 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9691 /* 9692 * How much CPU bandwidth does root_task_group get? 9693 * 9694 * In case of task-groups formed thr' the cgroup filesystem, it 9695 * gets 100% of the CPU resources in the system. This overall 9696 * system CPU resource is divided among the tasks of 9697 * root_task_group and its child task-groups in a fair manner, 9698 * based on each entity's (task or task-group's) weight 9699 * (se->load.weight). 9700 * 9701 * In other words, if root_task_group has 10 tasks of weight 9702 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9703 * then A0's share of the CPU resource is: 9704 * 9705 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9706 * 9707 * We achieve this by letting root_task_group's tasks sit 9708 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9709 */ 9710 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9711 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9712 9713 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9714 #ifdef CONFIG_RT_GROUP_SCHED 9715 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9716 #endif 9717 #ifdef CONFIG_SMP 9718 rq->sd = NULL; 9719 rq->rd = NULL; 9720 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9721 rq->balance_callback = &balance_push_callback; 9722 rq->active_balance = 0; 9723 rq->next_balance = jiffies; 9724 rq->push_cpu = 0; 9725 rq->cpu = i; 9726 rq->online = 0; 9727 rq->idle_stamp = 0; 9728 rq->avg_idle = 2*sysctl_sched_migration_cost; 9729 rq->wake_stamp = jiffies; 9730 rq->wake_avg_idle = rq->avg_idle; 9731 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9732 9733 INIT_LIST_HEAD(&rq->cfs_tasks); 9734 9735 rq_attach_root(rq, &def_root_domain); 9736 #ifdef CONFIG_NO_HZ_COMMON 9737 rq->last_blocked_load_update_tick = jiffies; 9738 atomic_set(&rq->nohz_flags, 0); 9739 9740 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9741 #endif 9742 #ifdef CONFIG_HOTPLUG_CPU 9743 rcuwait_init(&rq->hotplug_wait); 9744 #endif 9745 #endif /* CONFIG_SMP */ 9746 hrtick_rq_init(rq); 9747 atomic_set(&rq->nr_iowait, 0); 9748 9749 #ifdef CONFIG_SCHED_CORE 9750 rq->core = rq; 9751 rq->core_pick = NULL; 9752 rq->core_enabled = 0; 9753 rq->core_tree = RB_ROOT; 9754 rq->core_forceidle_count = 0; 9755 rq->core_forceidle_occupation = 0; 9756 rq->core_forceidle_start = 0; 9757 9758 rq->core_cookie = 0UL; 9759 #endif 9760 } 9761 9762 set_load_weight(&init_task, false); 9763 9764 /* 9765 * The boot idle thread does lazy MMU switching as well: 9766 */ 9767 mmgrab(&init_mm); 9768 enter_lazy_tlb(&init_mm, current); 9769 9770 /* 9771 * The idle task doesn't need the kthread struct to function, but it 9772 * is dressed up as a per-CPU kthread and thus needs to play the part 9773 * if we want to avoid special-casing it in code that deals with per-CPU 9774 * kthreads. 9775 */ 9776 WARN_ON(!set_kthread_struct(current)); 9777 9778 /* 9779 * Make us the idle thread. Technically, schedule() should not be 9780 * called from this thread, however somewhere below it might be, 9781 * but because we are the idle thread, we just pick up running again 9782 * when this runqueue becomes "idle". 9783 */ 9784 init_idle(current, smp_processor_id()); 9785 9786 calc_load_update = jiffies + LOAD_FREQ; 9787 9788 #ifdef CONFIG_SMP 9789 idle_thread_set_boot_cpu(); 9790 balance_push_set(smp_processor_id(), false); 9791 #endif 9792 init_sched_fair_class(); 9793 9794 psi_init(); 9795 9796 init_uclamp(); 9797 9798 preempt_dynamic_init(); 9799 9800 scheduler_running = 1; 9801 } 9802 9803 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9804 9805 void __might_sleep(const char *file, int line) 9806 { 9807 unsigned int state = get_current_state(); 9808 /* 9809 * Blocking primitives will set (and therefore destroy) current->state, 9810 * since we will exit with TASK_RUNNING make sure we enter with it, 9811 * otherwise we will destroy state. 9812 */ 9813 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9814 "do not call blocking ops when !TASK_RUNNING; " 9815 "state=%x set at [<%p>] %pS\n", state, 9816 (void *)current->task_state_change, 9817 (void *)current->task_state_change); 9818 9819 __might_resched(file, line, 0); 9820 } 9821 EXPORT_SYMBOL(__might_sleep); 9822 9823 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9824 { 9825 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9826 return; 9827 9828 if (preempt_count() == preempt_offset) 9829 return; 9830 9831 pr_err("Preemption disabled at:"); 9832 print_ip_sym(KERN_ERR, ip); 9833 } 9834 9835 static inline bool resched_offsets_ok(unsigned int offsets) 9836 { 9837 unsigned int nested = preempt_count(); 9838 9839 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9840 9841 return nested == offsets; 9842 } 9843 9844 void __might_resched(const char *file, int line, unsigned int offsets) 9845 { 9846 /* Ratelimiting timestamp: */ 9847 static unsigned long prev_jiffy; 9848 9849 unsigned long preempt_disable_ip; 9850 9851 /* WARN_ON_ONCE() by default, no rate limit required: */ 9852 rcu_sleep_check(); 9853 9854 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9855 !is_idle_task(current) && !current->non_block_count) || 9856 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9857 oops_in_progress) 9858 return; 9859 9860 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9861 return; 9862 prev_jiffy = jiffies; 9863 9864 /* Save this before calling printk(), since that will clobber it: */ 9865 preempt_disable_ip = get_preempt_disable_ip(current); 9866 9867 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9868 file, line); 9869 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9870 in_atomic(), irqs_disabled(), current->non_block_count, 9871 current->pid, current->comm); 9872 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9873 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9874 9875 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9876 pr_err("RCU nest depth: %d, expected: %u\n", 9877 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9878 } 9879 9880 if (task_stack_end_corrupted(current)) 9881 pr_emerg("Thread overran stack, or stack corrupted\n"); 9882 9883 debug_show_held_locks(current); 9884 if (irqs_disabled()) 9885 print_irqtrace_events(current); 9886 9887 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9888 preempt_disable_ip); 9889 9890 dump_stack(); 9891 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9892 } 9893 EXPORT_SYMBOL(__might_resched); 9894 9895 void __cant_sleep(const char *file, int line, int preempt_offset) 9896 { 9897 static unsigned long prev_jiffy; 9898 9899 if (irqs_disabled()) 9900 return; 9901 9902 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9903 return; 9904 9905 if (preempt_count() > preempt_offset) 9906 return; 9907 9908 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9909 return; 9910 prev_jiffy = jiffies; 9911 9912 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9913 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9914 in_atomic(), irqs_disabled(), 9915 current->pid, current->comm); 9916 9917 debug_show_held_locks(current); 9918 dump_stack(); 9919 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9920 } 9921 EXPORT_SYMBOL_GPL(__cant_sleep); 9922 9923 #ifdef CONFIG_SMP 9924 void __cant_migrate(const char *file, int line) 9925 { 9926 static unsigned long prev_jiffy; 9927 9928 if (irqs_disabled()) 9929 return; 9930 9931 if (is_migration_disabled(current)) 9932 return; 9933 9934 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9935 return; 9936 9937 if (preempt_count() > 0) 9938 return; 9939 9940 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9941 return; 9942 prev_jiffy = jiffies; 9943 9944 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9945 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9946 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9947 current->pid, current->comm); 9948 9949 debug_show_held_locks(current); 9950 dump_stack(); 9951 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9952 } 9953 EXPORT_SYMBOL_GPL(__cant_migrate); 9954 #endif 9955 #endif 9956 9957 #ifdef CONFIG_MAGIC_SYSRQ 9958 void normalize_rt_tasks(void) 9959 { 9960 struct task_struct *g, *p; 9961 struct sched_attr attr = { 9962 .sched_policy = SCHED_NORMAL, 9963 }; 9964 9965 read_lock(&tasklist_lock); 9966 for_each_process_thread(g, p) { 9967 /* 9968 * Only normalize user tasks: 9969 */ 9970 if (p->flags & PF_KTHREAD) 9971 continue; 9972 9973 p->se.exec_start = 0; 9974 schedstat_set(p->stats.wait_start, 0); 9975 schedstat_set(p->stats.sleep_start, 0); 9976 schedstat_set(p->stats.block_start, 0); 9977 9978 if (!dl_task(p) && !rt_task(p)) { 9979 /* 9980 * Renice negative nice level userspace 9981 * tasks back to 0: 9982 */ 9983 if (task_nice(p) < 0) 9984 set_user_nice(p, 0); 9985 continue; 9986 } 9987 9988 __sched_setscheduler(p, &attr, false, false); 9989 } 9990 read_unlock(&tasklist_lock); 9991 } 9992 9993 #endif /* CONFIG_MAGIC_SYSRQ */ 9994 9995 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9996 /* 9997 * These functions are only useful for the IA64 MCA handling, or kdb. 9998 * 9999 * They can only be called when the whole system has been 10000 * stopped - every CPU needs to be quiescent, and no scheduling 10001 * activity can take place. Using them for anything else would 10002 * be a serious bug, and as a result, they aren't even visible 10003 * under any other configuration. 10004 */ 10005 10006 /** 10007 * curr_task - return the current task for a given CPU. 10008 * @cpu: the processor in question. 10009 * 10010 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10011 * 10012 * Return: The current task for @cpu. 10013 */ 10014 struct task_struct *curr_task(int cpu) 10015 { 10016 return cpu_curr(cpu); 10017 } 10018 10019 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10020 10021 #ifdef CONFIG_IA64 10022 /** 10023 * ia64_set_curr_task - set the current task for a given CPU. 10024 * @cpu: the processor in question. 10025 * @p: the task pointer to set. 10026 * 10027 * Description: This function must only be used when non-maskable interrupts 10028 * are serviced on a separate stack. It allows the architecture to switch the 10029 * notion of the current task on a CPU in a non-blocking manner. This function 10030 * must be called with all CPU's synchronized, and interrupts disabled, the 10031 * and caller must save the original value of the current task (see 10032 * curr_task() above) and restore that value before reenabling interrupts and 10033 * re-starting the system. 10034 * 10035 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10036 */ 10037 void ia64_set_curr_task(int cpu, struct task_struct *p) 10038 { 10039 cpu_curr(cpu) = p; 10040 } 10041 10042 #endif 10043 10044 #ifdef CONFIG_CGROUP_SCHED 10045 /* task_group_lock serializes the addition/removal of task groups */ 10046 static DEFINE_SPINLOCK(task_group_lock); 10047 10048 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10049 struct task_group *parent) 10050 { 10051 #ifdef CONFIG_UCLAMP_TASK_GROUP 10052 enum uclamp_id clamp_id; 10053 10054 for_each_clamp_id(clamp_id) { 10055 uclamp_se_set(&tg->uclamp_req[clamp_id], 10056 uclamp_none(clamp_id), false); 10057 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10058 } 10059 #endif 10060 } 10061 10062 static void sched_free_group(struct task_group *tg) 10063 { 10064 free_fair_sched_group(tg); 10065 free_rt_sched_group(tg); 10066 autogroup_free(tg); 10067 kmem_cache_free(task_group_cache, tg); 10068 } 10069 10070 static void sched_free_group_rcu(struct rcu_head *rcu) 10071 { 10072 sched_free_group(container_of(rcu, struct task_group, rcu)); 10073 } 10074 10075 static void sched_unregister_group(struct task_group *tg) 10076 { 10077 unregister_fair_sched_group(tg); 10078 unregister_rt_sched_group(tg); 10079 /* 10080 * We have to wait for yet another RCU grace period to expire, as 10081 * print_cfs_stats() might run concurrently. 10082 */ 10083 call_rcu(&tg->rcu, sched_free_group_rcu); 10084 } 10085 10086 /* allocate runqueue etc for a new task group */ 10087 struct task_group *sched_create_group(struct task_group *parent) 10088 { 10089 struct task_group *tg; 10090 10091 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10092 if (!tg) 10093 return ERR_PTR(-ENOMEM); 10094 10095 if (!alloc_fair_sched_group(tg, parent)) 10096 goto err; 10097 10098 if (!alloc_rt_sched_group(tg, parent)) 10099 goto err; 10100 10101 alloc_uclamp_sched_group(tg, parent); 10102 10103 return tg; 10104 10105 err: 10106 sched_free_group(tg); 10107 return ERR_PTR(-ENOMEM); 10108 } 10109 10110 void sched_online_group(struct task_group *tg, struct task_group *parent) 10111 { 10112 unsigned long flags; 10113 10114 spin_lock_irqsave(&task_group_lock, flags); 10115 list_add_rcu(&tg->list, &task_groups); 10116 10117 /* Root should already exist: */ 10118 WARN_ON(!parent); 10119 10120 tg->parent = parent; 10121 INIT_LIST_HEAD(&tg->children); 10122 list_add_rcu(&tg->siblings, &parent->children); 10123 spin_unlock_irqrestore(&task_group_lock, flags); 10124 10125 online_fair_sched_group(tg); 10126 } 10127 10128 /* rcu callback to free various structures associated with a task group */ 10129 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10130 { 10131 /* Now it should be safe to free those cfs_rqs: */ 10132 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10133 } 10134 10135 void sched_destroy_group(struct task_group *tg) 10136 { 10137 /* Wait for possible concurrent references to cfs_rqs complete: */ 10138 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10139 } 10140 10141 void sched_release_group(struct task_group *tg) 10142 { 10143 unsigned long flags; 10144 10145 /* 10146 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10147 * sched_cfs_period_timer()). 10148 * 10149 * For this to be effective, we have to wait for all pending users of 10150 * this task group to leave their RCU critical section to ensure no new 10151 * user will see our dying task group any more. Specifically ensure 10152 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10153 * 10154 * We therefore defer calling unregister_fair_sched_group() to 10155 * sched_unregister_group() which is guarantied to get called only after the 10156 * current RCU grace period has expired. 10157 */ 10158 spin_lock_irqsave(&task_group_lock, flags); 10159 list_del_rcu(&tg->list); 10160 list_del_rcu(&tg->siblings); 10161 spin_unlock_irqrestore(&task_group_lock, flags); 10162 } 10163 10164 static void sched_change_group(struct task_struct *tsk) 10165 { 10166 struct task_group *tg; 10167 10168 /* 10169 * All callers are synchronized by task_rq_lock(); we do not use RCU 10170 * which is pointless here. Thus, we pass "true" to task_css_check() 10171 * to prevent lockdep warnings. 10172 */ 10173 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10174 struct task_group, css); 10175 tg = autogroup_task_group(tsk, tg); 10176 tsk->sched_task_group = tg; 10177 10178 #ifdef CONFIG_FAIR_GROUP_SCHED 10179 if (tsk->sched_class->task_change_group) 10180 tsk->sched_class->task_change_group(tsk); 10181 else 10182 #endif 10183 set_task_rq(tsk, task_cpu(tsk)); 10184 } 10185 10186 /* 10187 * Change task's runqueue when it moves between groups. 10188 * 10189 * The caller of this function should have put the task in its new group by 10190 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10191 * its new group. 10192 */ 10193 void sched_move_task(struct task_struct *tsk) 10194 { 10195 int queued, running, queue_flags = 10196 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10197 struct rq_flags rf; 10198 struct rq *rq; 10199 10200 rq = task_rq_lock(tsk, &rf); 10201 update_rq_clock(rq); 10202 10203 running = task_current(rq, tsk); 10204 queued = task_on_rq_queued(tsk); 10205 10206 if (queued) 10207 dequeue_task(rq, tsk, queue_flags); 10208 if (running) 10209 put_prev_task(rq, tsk); 10210 10211 sched_change_group(tsk); 10212 10213 if (queued) 10214 enqueue_task(rq, tsk, queue_flags); 10215 if (running) { 10216 set_next_task(rq, tsk); 10217 /* 10218 * After changing group, the running task may have joined a 10219 * throttled one but it's still the running task. Trigger a 10220 * resched to make sure that task can still run. 10221 */ 10222 resched_curr(rq); 10223 } 10224 10225 task_rq_unlock(rq, tsk, &rf); 10226 } 10227 10228 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10229 { 10230 return css ? container_of(css, struct task_group, css) : NULL; 10231 } 10232 10233 static struct cgroup_subsys_state * 10234 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10235 { 10236 struct task_group *parent = css_tg(parent_css); 10237 struct task_group *tg; 10238 10239 if (!parent) { 10240 /* This is early initialization for the top cgroup */ 10241 return &root_task_group.css; 10242 } 10243 10244 tg = sched_create_group(parent); 10245 if (IS_ERR(tg)) 10246 return ERR_PTR(-ENOMEM); 10247 10248 return &tg->css; 10249 } 10250 10251 /* Expose task group only after completing cgroup initialization */ 10252 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10253 { 10254 struct task_group *tg = css_tg(css); 10255 struct task_group *parent = css_tg(css->parent); 10256 10257 if (parent) 10258 sched_online_group(tg, parent); 10259 10260 #ifdef CONFIG_UCLAMP_TASK_GROUP 10261 /* Propagate the effective uclamp value for the new group */ 10262 mutex_lock(&uclamp_mutex); 10263 rcu_read_lock(); 10264 cpu_util_update_eff(css); 10265 rcu_read_unlock(); 10266 mutex_unlock(&uclamp_mutex); 10267 #endif 10268 10269 return 0; 10270 } 10271 10272 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10273 { 10274 struct task_group *tg = css_tg(css); 10275 10276 sched_release_group(tg); 10277 } 10278 10279 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10280 { 10281 struct task_group *tg = css_tg(css); 10282 10283 /* 10284 * Relies on the RCU grace period between css_released() and this. 10285 */ 10286 sched_unregister_group(tg); 10287 } 10288 10289 #ifdef CONFIG_RT_GROUP_SCHED 10290 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10291 { 10292 struct task_struct *task; 10293 struct cgroup_subsys_state *css; 10294 10295 cgroup_taskset_for_each(task, css, tset) { 10296 if (!sched_rt_can_attach(css_tg(css), task)) 10297 return -EINVAL; 10298 } 10299 return 0; 10300 } 10301 #endif 10302 10303 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10304 { 10305 struct task_struct *task; 10306 struct cgroup_subsys_state *css; 10307 10308 cgroup_taskset_for_each(task, css, tset) 10309 sched_move_task(task); 10310 } 10311 10312 #ifdef CONFIG_UCLAMP_TASK_GROUP 10313 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10314 { 10315 struct cgroup_subsys_state *top_css = css; 10316 struct uclamp_se *uc_parent = NULL; 10317 struct uclamp_se *uc_se = NULL; 10318 unsigned int eff[UCLAMP_CNT]; 10319 enum uclamp_id clamp_id; 10320 unsigned int clamps; 10321 10322 lockdep_assert_held(&uclamp_mutex); 10323 SCHED_WARN_ON(!rcu_read_lock_held()); 10324 10325 css_for_each_descendant_pre(css, top_css) { 10326 uc_parent = css_tg(css)->parent 10327 ? css_tg(css)->parent->uclamp : NULL; 10328 10329 for_each_clamp_id(clamp_id) { 10330 /* Assume effective clamps matches requested clamps */ 10331 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10332 /* Cap effective clamps with parent's effective clamps */ 10333 if (uc_parent && 10334 eff[clamp_id] > uc_parent[clamp_id].value) { 10335 eff[clamp_id] = uc_parent[clamp_id].value; 10336 } 10337 } 10338 /* Ensure protection is always capped by limit */ 10339 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10340 10341 /* Propagate most restrictive effective clamps */ 10342 clamps = 0x0; 10343 uc_se = css_tg(css)->uclamp; 10344 for_each_clamp_id(clamp_id) { 10345 if (eff[clamp_id] == uc_se[clamp_id].value) 10346 continue; 10347 uc_se[clamp_id].value = eff[clamp_id]; 10348 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10349 clamps |= (0x1 << clamp_id); 10350 } 10351 if (!clamps) { 10352 css = css_rightmost_descendant(css); 10353 continue; 10354 } 10355 10356 /* Immediately update descendants RUNNABLE tasks */ 10357 uclamp_update_active_tasks(css); 10358 } 10359 } 10360 10361 /* 10362 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10363 * C expression. Since there is no way to convert a macro argument (N) into a 10364 * character constant, use two levels of macros. 10365 */ 10366 #define _POW10(exp) ((unsigned int)1e##exp) 10367 #define POW10(exp) _POW10(exp) 10368 10369 struct uclamp_request { 10370 #define UCLAMP_PERCENT_SHIFT 2 10371 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10372 s64 percent; 10373 u64 util; 10374 int ret; 10375 }; 10376 10377 static inline struct uclamp_request 10378 capacity_from_percent(char *buf) 10379 { 10380 struct uclamp_request req = { 10381 .percent = UCLAMP_PERCENT_SCALE, 10382 .util = SCHED_CAPACITY_SCALE, 10383 .ret = 0, 10384 }; 10385 10386 buf = strim(buf); 10387 if (strcmp(buf, "max")) { 10388 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10389 &req.percent); 10390 if (req.ret) 10391 return req; 10392 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10393 req.ret = -ERANGE; 10394 return req; 10395 } 10396 10397 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10398 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10399 } 10400 10401 return req; 10402 } 10403 10404 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10405 size_t nbytes, loff_t off, 10406 enum uclamp_id clamp_id) 10407 { 10408 struct uclamp_request req; 10409 struct task_group *tg; 10410 10411 req = capacity_from_percent(buf); 10412 if (req.ret) 10413 return req.ret; 10414 10415 static_branch_enable(&sched_uclamp_used); 10416 10417 mutex_lock(&uclamp_mutex); 10418 rcu_read_lock(); 10419 10420 tg = css_tg(of_css(of)); 10421 if (tg->uclamp_req[clamp_id].value != req.util) 10422 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10423 10424 /* 10425 * Because of not recoverable conversion rounding we keep track of the 10426 * exact requested value 10427 */ 10428 tg->uclamp_pct[clamp_id] = req.percent; 10429 10430 /* Update effective clamps to track the most restrictive value */ 10431 cpu_util_update_eff(of_css(of)); 10432 10433 rcu_read_unlock(); 10434 mutex_unlock(&uclamp_mutex); 10435 10436 return nbytes; 10437 } 10438 10439 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10440 char *buf, size_t nbytes, 10441 loff_t off) 10442 { 10443 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10444 } 10445 10446 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10447 char *buf, size_t nbytes, 10448 loff_t off) 10449 { 10450 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10451 } 10452 10453 static inline void cpu_uclamp_print(struct seq_file *sf, 10454 enum uclamp_id clamp_id) 10455 { 10456 struct task_group *tg; 10457 u64 util_clamp; 10458 u64 percent; 10459 u32 rem; 10460 10461 rcu_read_lock(); 10462 tg = css_tg(seq_css(sf)); 10463 util_clamp = tg->uclamp_req[clamp_id].value; 10464 rcu_read_unlock(); 10465 10466 if (util_clamp == SCHED_CAPACITY_SCALE) { 10467 seq_puts(sf, "max\n"); 10468 return; 10469 } 10470 10471 percent = tg->uclamp_pct[clamp_id]; 10472 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10473 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10474 } 10475 10476 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10477 { 10478 cpu_uclamp_print(sf, UCLAMP_MIN); 10479 return 0; 10480 } 10481 10482 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10483 { 10484 cpu_uclamp_print(sf, UCLAMP_MAX); 10485 return 0; 10486 } 10487 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10488 10489 #ifdef CONFIG_FAIR_GROUP_SCHED 10490 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10491 struct cftype *cftype, u64 shareval) 10492 { 10493 if (shareval > scale_load_down(ULONG_MAX)) 10494 shareval = MAX_SHARES; 10495 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10496 } 10497 10498 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10499 struct cftype *cft) 10500 { 10501 struct task_group *tg = css_tg(css); 10502 10503 return (u64) scale_load_down(tg->shares); 10504 } 10505 10506 #ifdef CONFIG_CFS_BANDWIDTH 10507 static DEFINE_MUTEX(cfs_constraints_mutex); 10508 10509 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10510 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10511 /* More than 203 days if BW_SHIFT equals 20. */ 10512 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10513 10514 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10515 10516 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10517 u64 burst) 10518 { 10519 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10520 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10521 10522 if (tg == &root_task_group) 10523 return -EINVAL; 10524 10525 /* 10526 * Ensure we have at some amount of bandwidth every period. This is 10527 * to prevent reaching a state of large arrears when throttled via 10528 * entity_tick() resulting in prolonged exit starvation. 10529 */ 10530 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10531 return -EINVAL; 10532 10533 /* 10534 * Likewise, bound things on the other side by preventing insane quota 10535 * periods. This also allows us to normalize in computing quota 10536 * feasibility. 10537 */ 10538 if (period > max_cfs_quota_period) 10539 return -EINVAL; 10540 10541 /* 10542 * Bound quota to defend quota against overflow during bandwidth shift. 10543 */ 10544 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10545 return -EINVAL; 10546 10547 if (quota != RUNTIME_INF && (burst > quota || 10548 burst + quota > max_cfs_runtime)) 10549 return -EINVAL; 10550 10551 /* 10552 * Prevent race between setting of cfs_rq->runtime_enabled and 10553 * unthrottle_offline_cfs_rqs(). 10554 */ 10555 cpus_read_lock(); 10556 mutex_lock(&cfs_constraints_mutex); 10557 ret = __cfs_schedulable(tg, period, quota); 10558 if (ret) 10559 goto out_unlock; 10560 10561 runtime_enabled = quota != RUNTIME_INF; 10562 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10563 /* 10564 * If we need to toggle cfs_bandwidth_used, off->on must occur 10565 * before making related changes, and on->off must occur afterwards 10566 */ 10567 if (runtime_enabled && !runtime_was_enabled) 10568 cfs_bandwidth_usage_inc(); 10569 raw_spin_lock_irq(&cfs_b->lock); 10570 cfs_b->period = ns_to_ktime(period); 10571 cfs_b->quota = quota; 10572 cfs_b->burst = burst; 10573 10574 __refill_cfs_bandwidth_runtime(cfs_b); 10575 10576 /* Restart the period timer (if active) to handle new period expiry: */ 10577 if (runtime_enabled) 10578 start_cfs_bandwidth(cfs_b); 10579 10580 raw_spin_unlock_irq(&cfs_b->lock); 10581 10582 for_each_online_cpu(i) { 10583 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10584 struct rq *rq = cfs_rq->rq; 10585 struct rq_flags rf; 10586 10587 rq_lock_irq(rq, &rf); 10588 cfs_rq->runtime_enabled = runtime_enabled; 10589 cfs_rq->runtime_remaining = 0; 10590 10591 if (cfs_rq->throttled) 10592 unthrottle_cfs_rq(cfs_rq); 10593 rq_unlock_irq(rq, &rf); 10594 } 10595 if (runtime_was_enabled && !runtime_enabled) 10596 cfs_bandwidth_usage_dec(); 10597 out_unlock: 10598 mutex_unlock(&cfs_constraints_mutex); 10599 cpus_read_unlock(); 10600 10601 return ret; 10602 } 10603 10604 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10605 { 10606 u64 quota, period, burst; 10607 10608 period = ktime_to_ns(tg->cfs_bandwidth.period); 10609 burst = tg->cfs_bandwidth.burst; 10610 if (cfs_quota_us < 0) 10611 quota = RUNTIME_INF; 10612 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10613 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10614 else 10615 return -EINVAL; 10616 10617 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10618 } 10619 10620 static long tg_get_cfs_quota(struct task_group *tg) 10621 { 10622 u64 quota_us; 10623 10624 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10625 return -1; 10626 10627 quota_us = tg->cfs_bandwidth.quota; 10628 do_div(quota_us, NSEC_PER_USEC); 10629 10630 return quota_us; 10631 } 10632 10633 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10634 { 10635 u64 quota, period, burst; 10636 10637 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10638 return -EINVAL; 10639 10640 period = (u64)cfs_period_us * NSEC_PER_USEC; 10641 quota = tg->cfs_bandwidth.quota; 10642 burst = tg->cfs_bandwidth.burst; 10643 10644 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10645 } 10646 10647 static long tg_get_cfs_period(struct task_group *tg) 10648 { 10649 u64 cfs_period_us; 10650 10651 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10652 do_div(cfs_period_us, NSEC_PER_USEC); 10653 10654 return cfs_period_us; 10655 } 10656 10657 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10658 { 10659 u64 quota, period, burst; 10660 10661 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10662 return -EINVAL; 10663 10664 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10665 period = ktime_to_ns(tg->cfs_bandwidth.period); 10666 quota = tg->cfs_bandwidth.quota; 10667 10668 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10669 } 10670 10671 static long tg_get_cfs_burst(struct task_group *tg) 10672 { 10673 u64 burst_us; 10674 10675 burst_us = tg->cfs_bandwidth.burst; 10676 do_div(burst_us, NSEC_PER_USEC); 10677 10678 return burst_us; 10679 } 10680 10681 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10682 struct cftype *cft) 10683 { 10684 return tg_get_cfs_quota(css_tg(css)); 10685 } 10686 10687 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10688 struct cftype *cftype, s64 cfs_quota_us) 10689 { 10690 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10691 } 10692 10693 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10694 struct cftype *cft) 10695 { 10696 return tg_get_cfs_period(css_tg(css)); 10697 } 10698 10699 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10700 struct cftype *cftype, u64 cfs_period_us) 10701 { 10702 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10703 } 10704 10705 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10706 struct cftype *cft) 10707 { 10708 return tg_get_cfs_burst(css_tg(css)); 10709 } 10710 10711 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10712 struct cftype *cftype, u64 cfs_burst_us) 10713 { 10714 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10715 } 10716 10717 struct cfs_schedulable_data { 10718 struct task_group *tg; 10719 u64 period, quota; 10720 }; 10721 10722 /* 10723 * normalize group quota/period to be quota/max_period 10724 * note: units are usecs 10725 */ 10726 static u64 normalize_cfs_quota(struct task_group *tg, 10727 struct cfs_schedulable_data *d) 10728 { 10729 u64 quota, period; 10730 10731 if (tg == d->tg) { 10732 period = d->period; 10733 quota = d->quota; 10734 } else { 10735 period = tg_get_cfs_period(tg); 10736 quota = tg_get_cfs_quota(tg); 10737 } 10738 10739 /* note: these should typically be equivalent */ 10740 if (quota == RUNTIME_INF || quota == -1) 10741 return RUNTIME_INF; 10742 10743 return to_ratio(period, quota); 10744 } 10745 10746 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10747 { 10748 struct cfs_schedulable_data *d = data; 10749 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10750 s64 quota = 0, parent_quota = -1; 10751 10752 if (!tg->parent) { 10753 quota = RUNTIME_INF; 10754 } else { 10755 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10756 10757 quota = normalize_cfs_quota(tg, d); 10758 parent_quota = parent_b->hierarchical_quota; 10759 10760 /* 10761 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10762 * always take the min. On cgroup1, only inherit when no 10763 * limit is set: 10764 */ 10765 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10766 quota = min(quota, parent_quota); 10767 } else { 10768 if (quota == RUNTIME_INF) 10769 quota = parent_quota; 10770 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10771 return -EINVAL; 10772 } 10773 } 10774 cfs_b->hierarchical_quota = quota; 10775 10776 return 0; 10777 } 10778 10779 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10780 { 10781 int ret; 10782 struct cfs_schedulable_data data = { 10783 .tg = tg, 10784 .period = period, 10785 .quota = quota, 10786 }; 10787 10788 if (quota != RUNTIME_INF) { 10789 do_div(data.period, NSEC_PER_USEC); 10790 do_div(data.quota, NSEC_PER_USEC); 10791 } 10792 10793 rcu_read_lock(); 10794 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10795 rcu_read_unlock(); 10796 10797 return ret; 10798 } 10799 10800 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10801 { 10802 struct task_group *tg = css_tg(seq_css(sf)); 10803 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10804 10805 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10806 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10807 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10808 10809 if (schedstat_enabled() && tg != &root_task_group) { 10810 struct sched_statistics *stats; 10811 u64 ws = 0; 10812 int i; 10813 10814 for_each_possible_cpu(i) { 10815 stats = __schedstats_from_se(tg->se[i]); 10816 ws += schedstat_val(stats->wait_sum); 10817 } 10818 10819 seq_printf(sf, "wait_sum %llu\n", ws); 10820 } 10821 10822 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10823 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10824 10825 return 0; 10826 } 10827 #endif /* CONFIG_CFS_BANDWIDTH */ 10828 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10829 10830 #ifdef CONFIG_RT_GROUP_SCHED 10831 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10832 struct cftype *cft, s64 val) 10833 { 10834 return sched_group_set_rt_runtime(css_tg(css), val); 10835 } 10836 10837 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10838 struct cftype *cft) 10839 { 10840 return sched_group_rt_runtime(css_tg(css)); 10841 } 10842 10843 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10844 struct cftype *cftype, u64 rt_period_us) 10845 { 10846 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10847 } 10848 10849 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10850 struct cftype *cft) 10851 { 10852 return sched_group_rt_period(css_tg(css)); 10853 } 10854 #endif /* CONFIG_RT_GROUP_SCHED */ 10855 10856 #ifdef CONFIG_FAIR_GROUP_SCHED 10857 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10858 struct cftype *cft) 10859 { 10860 return css_tg(css)->idle; 10861 } 10862 10863 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10864 struct cftype *cft, s64 idle) 10865 { 10866 return sched_group_set_idle(css_tg(css), idle); 10867 } 10868 #endif 10869 10870 static struct cftype cpu_legacy_files[] = { 10871 #ifdef CONFIG_FAIR_GROUP_SCHED 10872 { 10873 .name = "shares", 10874 .read_u64 = cpu_shares_read_u64, 10875 .write_u64 = cpu_shares_write_u64, 10876 }, 10877 { 10878 .name = "idle", 10879 .read_s64 = cpu_idle_read_s64, 10880 .write_s64 = cpu_idle_write_s64, 10881 }, 10882 #endif 10883 #ifdef CONFIG_CFS_BANDWIDTH 10884 { 10885 .name = "cfs_quota_us", 10886 .read_s64 = cpu_cfs_quota_read_s64, 10887 .write_s64 = cpu_cfs_quota_write_s64, 10888 }, 10889 { 10890 .name = "cfs_period_us", 10891 .read_u64 = cpu_cfs_period_read_u64, 10892 .write_u64 = cpu_cfs_period_write_u64, 10893 }, 10894 { 10895 .name = "cfs_burst_us", 10896 .read_u64 = cpu_cfs_burst_read_u64, 10897 .write_u64 = cpu_cfs_burst_write_u64, 10898 }, 10899 { 10900 .name = "stat", 10901 .seq_show = cpu_cfs_stat_show, 10902 }, 10903 #endif 10904 #ifdef CONFIG_RT_GROUP_SCHED 10905 { 10906 .name = "rt_runtime_us", 10907 .read_s64 = cpu_rt_runtime_read, 10908 .write_s64 = cpu_rt_runtime_write, 10909 }, 10910 { 10911 .name = "rt_period_us", 10912 .read_u64 = cpu_rt_period_read_uint, 10913 .write_u64 = cpu_rt_period_write_uint, 10914 }, 10915 #endif 10916 #ifdef CONFIG_UCLAMP_TASK_GROUP 10917 { 10918 .name = "uclamp.min", 10919 .flags = CFTYPE_NOT_ON_ROOT, 10920 .seq_show = cpu_uclamp_min_show, 10921 .write = cpu_uclamp_min_write, 10922 }, 10923 { 10924 .name = "uclamp.max", 10925 .flags = CFTYPE_NOT_ON_ROOT, 10926 .seq_show = cpu_uclamp_max_show, 10927 .write = cpu_uclamp_max_write, 10928 }, 10929 #endif 10930 { } /* Terminate */ 10931 }; 10932 10933 static int cpu_extra_stat_show(struct seq_file *sf, 10934 struct cgroup_subsys_state *css) 10935 { 10936 #ifdef CONFIG_CFS_BANDWIDTH 10937 { 10938 struct task_group *tg = css_tg(css); 10939 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10940 u64 throttled_usec, burst_usec; 10941 10942 throttled_usec = cfs_b->throttled_time; 10943 do_div(throttled_usec, NSEC_PER_USEC); 10944 burst_usec = cfs_b->burst_time; 10945 do_div(burst_usec, NSEC_PER_USEC); 10946 10947 seq_printf(sf, "nr_periods %d\n" 10948 "nr_throttled %d\n" 10949 "throttled_usec %llu\n" 10950 "nr_bursts %d\n" 10951 "burst_usec %llu\n", 10952 cfs_b->nr_periods, cfs_b->nr_throttled, 10953 throttled_usec, cfs_b->nr_burst, burst_usec); 10954 } 10955 #endif 10956 return 0; 10957 } 10958 10959 #ifdef CONFIG_FAIR_GROUP_SCHED 10960 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10961 struct cftype *cft) 10962 { 10963 struct task_group *tg = css_tg(css); 10964 u64 weight = scale_load_down(tg->shares); 10965 10966 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10967 } 10968 10969 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10970 struct cftype *cft, u64 weight) 10971 { 10972 /* 10973 * cgroup weight knobs should use the common MIN, DFL and MAX 10974 * values which are 1, 100 and 10000 respectively. While it loses 10975 * a bit of range on both ends, it maps pretty well onto the shares 10976 * value used by scheduler and the round-trip conversions preserve 10977 * the original value over the entire range. 10978 */ 10979 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10980 return -ERANGE; 10981 10982 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10983 10984 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10985 } 10986 10987 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10988 struct cftype *cft) 10989 { 10990 unsigned long weight = scale_load_down(css_tg(css)->shares); 10991 int last_delta = INT_MAX; 10992 int prio, delta; 10993 10994 /* find the closest nice value to the current weight */ 10995 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10996 delta = abs(sched_prio_to_weight[prio] - weight); 10997 if (delta >= last_delta) 10998 break; 10999 last_delta = delta; 11000 } 11001 11002 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11003 } 11004 11005 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11006 struct cftype *cft, s64 nice) 11007 { 11008 unsigned long weight; 11009 int idx; 11010 11011 if (nice < MIN_NICE || nice > MAX_NICE) 11012 return -ERANGE; 11013 11014 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11015 idx = array_index_nospec(idx, 40); 11016 weight = sched_prio_to_weight[idx]; 11017 11018 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11019 } 11020 #endif 11021 11022 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11023 long period, long quota) 11024 { 11025 if (quota < 0) 11026 seq_puts(sf, "max"); 11027 else 11028 seq_printf(sf, "%ld", quota); 11029 11030 seq_printf(sf, " %ld\n", period); 11031 } 11032 11033 /* caller should put the current value in *@periodp before calling */ 11034 static int __maybe_unused cpu_period_quota_parse(char *buf, 11035 u64 *periodp, u64 *quotap) 11036 { 11037 char tok[21]; /* U64_MAX */ 11038 11039 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11040 return -EINVAL; 11041 11042 *periodp *= NSEC_PER_USEC; 11043 11044 if (sscanf(tok, "%llu", quotap)) 11045 *quotap *= NSEC_PER_USEC; 11046 else if (!strcmp(tok, "max")) 11047 *quotap = RUNTIME_INF; 11048 else 11049 return -EINVAL; 11050 11051 return 0; 11052 } 11053 11054 #ifdef CONFIG_CFS_BANDWIDTH 11055 static int cpu_max_show(struct seq_file *sf, void *v) 11056 { 11057 struct task_group *tg = css_tg(seq_css(sf)); 11058 11059 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11060 return 0; 11061 } 11062 11063 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11064 char *buf, size_t nbytes, loff_t off) 11065 { 11066 struct task_group *tg = css_tg(of_css(of)); 11067 u64 period = tg_get_cfs_period(tg); 11068 u64 burst = tg_get_cfs_burst(tg); 11069 u64 quota; 11070 int ret; 11071 11072 ret = cpu_period_quota_parse(buf, &period, "a); 11073 if (!ret) 11074 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11075 return ret ?: nbytes; 11076 } 11077 #endif 11078 11079 static struct cftype cpu_files[] = { 11080 #ifdef CONFIG_FAIR_GROUP_SCHED 11081 { 11082 .name = "weight", 11083 .flags = CFTYPE_NOT_ON_ROOT, 11084 .read_u64 = cpu_weight_read_u64, 11085 .write_u64 = cpu_weight_write_u64, 11086 }, 11087 { 11088 .name = "weight.nice", 11089 .flags = CFTYPE_NOT_ON_ROOT, 11090 .read_s64 = cpu_weight_nice_read_s64, 11091 .write_s64 = cpu_weight_nice_write_s64, 11092 }, 11093 { 11094 .name = "idle", 11095 .flags = CFTYPE_NOT_ON_ROOT, 11096 .read_s64 = cpu_idle_read_s64, 11097 .write_s64 = cpu_idle_write_s64, 11098 }, 11099 #endif 11100 #ifdef CONFIG_CFS_BANDWIDTH 11101 { 11102 .name = "max", 11103 .flags = CFTYPE_NOT_ON_ROOT, 11104 .seq_show = cpu_max_show, 11105 .write = cpu_max_write, 11106 }, 11107 { 11108 .name = "max.burst", 11109 .flags = CFTYPE_NOT_ON_ROOT, 11110 .read_u64 = cpu_cfs_burst_read_u64, 11111 .write_u64 = cpu_cfs_burst_write_u64, 11112 }, 11113 #endif 11114 #ifdef CONFIG_UCLAMP_TASK_GROUP 11115 { 11116 .name = "uclamp.min", 11117 .flags = CFTYPE_NOT_ON_ROOT, 11118 .seq_show = cpu_uclamp_min_show, 11119 .write = cpu_uclamp_min_write, 11120 }, 11121 { 11122 .name = "uclamp.max", 11123 .flags = CFTYPE_NOT_ON_ROOT, 11124 .seq_show = cpu_uclamp_max_show, 11125 .write = cpu_uclamp_max_write, 11126 }, 11127 #endif 11128 { } /* terminate */ 11129 }; 11130 11131 struct cgroup_subsys cpu_cgrp_subsys = { 11132 .css_alloc = cpu_cgroup_css_alloc, 11133 .css_online = cpu_cgroup_css_online, 11134 .css_released = cpu_cgroup_css_released, 11135 .css_free = cpu_cgroup_css_free, 11136 .css_extra_stat_show = cpu_extra_stat_show, 11137 #ifdef CONFIG_RT_GROUP_SCHED 11138 .can_attach = cpu_cgroup_can_attach, 11139 #endif 11140 .attach = cpu_cgroup_attach, 11141 .legacy_cftypes = cpu_legacy_files, 11142 .dfl_cftypes = cpu_files, 11143 .early_init = true, 11144 .threaded = true, 11145 }; 11146 11147 #endif /* CONFIG_CGROUP_SCHED */ 11148 11149 void dump_cpu_task(int cpu) 11150 { 11151 if (cpu == smp_processor_id() && in_hardirq()) { 11152 struct pt_regs *regs; 11153 11154 regs = get_irq_regs(); 11155 if (regs) { 11156 show_regs(regs); 11157 return; 11158 } 11159 } 11160 11161 if (trigger_single_cpu_backtrace(cpu)) 11162 return; 11163 11164 pr_info("Task dump for CPU %d:\n", cpu); 11165 sched_show_task(cpu_curr(cpu)); 11166 } 11167 11168 /* 11169 * Nice levels are multiplicative, with a gentle 10% change for every 11170 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11171 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11172 * that remained on nice 0. 11173 * 11174 * The "10% effect" is relative and cumulative: from _any_ nice level, 11175 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11176 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11177 * If a task goes up by ~10% and another task goes down by ~10% then 11178 * the relative distance between them is ~25%.) 11179 */ 11180 const int sched_prio_to_weight[40] = { 11181 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11182 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11183 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11184 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11185 /* 0 */ 1024, 820, 655, 526, 423, 11186 /* 5 */ 335, 272, 215, 172, 137, 11187 /* 10 */ 110, 87, 70, 56, 45, 11188 /* 15 */ 36, 29, 23, 18, 15, 11189 }; 11190 11191 /* 11192 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11193 * 11194 * In cases where the weight does not change often, we can use the 11195 * precalculated inverse to speed up arithmetics by turning divisions 11196 * into multiplications: 11197 */ 11198 const u32 sched_prio_to_wmult[40] = { 11199 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11200 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11201 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11202 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11203 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11204 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11205 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11206 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11207 }; 11208 11209 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11210 { 11211 trace_sched_update_nr_running_tp(rq, count); 11212 } 11213