xref: /openbmc/linux/kernel/sched/core.c (revision 6d8e62c3)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	if (delta < 0)
127 		return;
128 	rq->clock += delta;
129 	update_rq_clock_task(rq, delta);
130 }
131 
132 /*
133  * Debugging: various feature bits
134  */
135 
136 #define SCHED_FEAT(name, enabled)	\
137 	(1UL << __SCHED_FEAT_##name) * enabled |
138 
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 	0;
142 
143 #undef SCHED_FEAT
144 
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled)	\
147 	#name ,
148 
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152 
153 #undef SCHED_FEAT
154 
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 
159 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 		if (!(sysctl_sched_features & (1UL << i)))
161 			seq_puts(m, "NO_");
162 		seq_printf(m, "%s ", sched_feat_names[i]);
163 	}
164 	seq_puts(m, "\n");
165 
166 	return 0;
167 }
168 
169 #ifdef HAVE_JUMP_LABEL
170 
171 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173 
174 #define SCHED_FEAT(name, enabled)	\
175 	jump_label_key__##enabled ,
176 
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180 
181 #undef SCHED_FEAT
182 
183 static void sched_feat_disable(int i)
184 {
185 	if (static_key_enabled(&sched_feat_keys[i]))
186 		static_key_slow_dec(&sched_feat_keys[i]);
187 }
188 
189 static void sched_feat_enable(int i)
190 {
191 	if (!static_key_enabled(&sched_feat_keys[i]))
192 		static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198 
199 static int sched_feat_set(char *cmp)
200 {
201 	int i;
202 	int neg = 0;
203 
204 	if (strncmp(cmp, "NO_", 3) == 0) {
205 		neg = 1;
206 		cmp += 3;
207 	}
208 
209 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 			if (neg) {
212 				sysctl_sched_features &= ~(1UL << i);
213 				sched_feat_disable(i);
214 			} else {
215 				sysctl_sched_features |= (1UL << i);
216 				sched_feat_enable(i);
217 			}
218 			break;
219 		}
220 	}
221 
222 	return i;
223 }
224 
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 		size_t cnt, loff_t *ppos)
228 {
229 	char buf[64];
230 	char *cmp;
231 	int i;
232 	struct inode *inode;
233 
234 	if (cnt > 63)
235 		cnt = 63;
236 
237 	if (copy_from_user(&buf, ubuf, cnt))
238 		return -EFAULT;
239 
240 	buf[cnt] = 0;
241 	cmp = strstrip(buf);
242 
243 	/* Ensure the static_key remains in a consistent state */
244 	inode = file_inode(filp);
245 	mutex_lock(&inode->i_mutex);
246 	i = sched_feat_set(cmp);
247 	mutex_unlock(&inode->i_mutex);
248 	if (i == __SCHED_FEAT_NR)
249 		return -EINVAL;
250 
251 	*ppos += cnt;
252 
253 	return cnt;
254 }
255 
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 	return single_open(filp, sched_feat_show, NULL);
259 }
260 
261 static const struct file_operations sched_feat_fops = {
262 	.open		= sched_feat_open,
263 	.write		= sched_feat_write,
264 	.read		= seq_read,
265 	.llseek		= seq_lseek,
266 	.release	= single_release,
267 };
268 
269 static __init int sched_init_debug(void)
270 {
271 	debugfs_create_file("sched_features", 0644, NULL, NULL,
272 			&sched_feat_fops);
273 
274 	return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278 
279 /*
280  * Number of tasks to iterate in a single balance run.
281  * Limited because this is done with IRQs disabled.
282  */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284 
285 /*
286  * period over which we average the RT time consumption, measured
287  * in ms.
288  *
289  * default: 1s
290  */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292 
293 /*
294  * period over which we measure -rt task cpu usage in us.
295  * default: 1s
296  */
297 unsigned int sysctl_sched_rt_period = 1000000;
298 
299 __read_mostly int scheduler_running;
300 
301 /*
302  * part of the period that we allow rt tasks to run in us.
303  * default: 0.95s
304  */
305 int sysctl_sched_rt_runtime = 950000;
306 
307 /*
308  * __task_rq_lock - lock the rq @p resides on.
309  */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 	__acquires(rq->lock)
312 {
313 	struct rq *rq;
314 
315 	lockdep_assert_held(&p->pi_lock);
316 
317 	for (;;) {
318 		rq = task_rq(p);
319 		raw_spin_lock(&rq->lock);
320 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 			return rq;
322 		raw_spin_unlock(&rq->lock);
323 
324 		while (unlikely(task_on_rq_migrating(p)))
325 			cpu_relax();
326 	}
327 }
328 
329 /*
330  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331  */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 	__acquires(p->pi_lock)
334 	__acquires(rq->lock)
335 {
336 	struct rq *rq;
337 
338 	for (;;) {
339 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 		rq = task_rq(p);
341 		raw_spin_lock(&rq->lock);
342 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 			return rq;
344 		raw_spin_unlock(&rq->lock);
345 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 
347 		while (unlikely(task_on_rq_migrating(p)))
348 			cpu_relax();
349 	}
350 }
351 
352 static void __task_rq_unlock(struct rq *rq)
353 	__releases(rq->lock)
354 {
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 	__releases(rq->lock)
361 	__releases(p->pi_lock)
362 {
363 	raw_spin_unlock(&rq->lock);
364 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366 
367 /*
368  * this_rq_lock - lock this runqueue and disable interrupts.
369  */
370 static struct rq *this_rq_lock(void)
371 	__acquires(rq->lock)
372 {
373 	struct rq *rq;
374 
375 	local_irq_disable();
376 	rq = this_rq();
377 	raw_spin_lock(&rq->lock);
378 
379 	return rq;
380 }
381 
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384  * Use HR-timers to deliver accurate preemption points.
385  */
386 
387 static void hrtick_clear(struct rq *rq)
388 {
389 	if (hrtimer_active(&rq->hrtick_timer))
390 		hrtimer_cancel(&rq->hrtick_timer);
391 }
392 
393 /*
394  * High-resolution timer tick.
395  * Runs from hardirq context with interrupts disabled.
396  */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400 
401 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402 
403 	raw_spin_lock(&rq->lock);
404 	update_rq_clock(rq);
405 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 	raw_spin_unlock(&rq->lock);
407 
408 	return HRTIMER_NORESTART;
409 }
410 
411 #ifdef CONFIG_SMP
412 
413 static int __hrtick_restart(struct rq *rq)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = hrtimer_get_softexpires(timer);
417 
418 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420 
421 /*
422  * called from hardirq (IPI) context
423  */
424 static void __hrtick_start(void *arg)
425 {
426 	struct rq *rq = arg;
427 
428 	raw_spin_lock(&rq->lock);
429 	__hrtick_restart(rq);
430 	rq->hrtick_csd_pending = 0;
431 	raw_spin_unlock(&rq->lock);
432 }
433 
434 /*
435  * Called to set the hrtick timer state.
436  *
437  * called with rq->lock held and irqs disabled
438  */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 	struct hrtimer *timer = &rq->hrtick_timer;
442 	ktime_t time;
443 	s64 delta;
444 
445 	/*
446 	 * Don't schedule slices shorter than 10000ns, that just
447 	 * doesn't make sense and can cause timer DoS.
448 	 */
449 	delta = max_t(s64, delay, 10000LL);
450 	time = ktime_add_ns(timer->base->get_time(), delta);
451 
452 	hrtimer_set_expires(timer, time);
453 
454 	if (rq == this_rq()) {
455 		__hrtick_restart(rq);
456 	} else if (!rq->hrtick_csd_pending) {
457 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 		rq->hrtick_csd_pending = 1;
459 	}
460 }
461 
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 	int cpu = (int)(long)hcpu;
466 
467 	switch (action) {
468 	case CPU_UP_CANCELED:
469 	case CPU_UP_CANCELED_FROZEN:
470 	case CPU_DOWN_PREPARE:
471 	case CPU_DOWN_PREPARE_FROZEN:
472 	case CPU_DEAD:
473 	case CPU_DEAD_FROZEN:
474 		hrtick_clear(cpu_rq(cpu));
475 		return NOTIFY_OK;
476 	}
477 
478 	return NOTIFY_DONE;
479 }
480 
481 static __init void init_hrtick(void)
482 {
483 	hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487  * Called to set the hrtick timer state.
488  *
489  * called with rq->lock held and irqs disabled
490  */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 			HRTIMER_MODE_REL_PINNED, 0);
495 }
496 
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501 
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 	rq->hrtick_csd_pending = 0;
506 
507 	rq->hrtick_csd.flags = 0;
508 	rq->hrtick_csd.func = __hrtick_start;
509 	rq->hrtick_csd.info = rq;
510 #endif
511 
512 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 	rq->hrtick_timer.function = hrtick;
514 }
515 #else	/* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519 
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523 
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif	/* CONFIG_SCHED_HRTICK */
528 
529 /*
530  * cmpxchg based fetch_or, macro so it works for different integer types
531  */
532 #define fetch_or(ptr, val)						\
533 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
534  	for (;;) {							\
535  		__old = cmpxchg((ptr), __val, __val | (val));		\
536  		if (__old == __val)					\
537  			break;						\
538  		__val = __old;						\
539  	}								\
540  	__old;								\
541 })
542 
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546  * this avoids any races wrt polling state changes and thereby avoids
547  * spurious IPIs.
548  */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 	struct thread_info *ti = task_thread_info(p);
552 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554 
555 /*
556  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557  *
558  * If this returns true, then the idle task promises to call
559  * sched_ttwu_pending() and reschedule soon.
560  */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 	struct thread_info *ti = task_thread_info(p);
564 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565 
566 	for (;;) {
567 		if (!(val & _TIF_POLLING_NRFLAG))
568 			return false;
569 		if (val & _TIF_NEED_RESCHED)
570 			return true;
571 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 		if (old == val)
573 			break;
574 		val = old;
575 	}
576 	return true;
577 }
578 
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 	set_tsk_need_resched(p);
583 	return true;
584 }
585 
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 	return false;
590 }
591 #endif
592 #endif
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 		return;
632 	resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy cpu for migrating timers
640  * from an idle cpu.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle cpu will add more delays to the timers than intended
644  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(int pinned)
647 {
648 	int cpu = smp_processor_id();
649 	int i;
650 	struct sched_domain *sd;
651 
652 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 		return cpu;
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu(i, sched_domain_span(sd)) {
658 			if (!idle_cpu(i)) {
659 				cpu = i;
660 				goto unlock;
661 			}
662 		}
663 	}
664 unlock:
665 	rcu_read_unlock();
666 	return cpu;
667 }
668 /*
669  * When add_timer_on() enqueues a timer into the timer wheel of an
670  * idle CPU then this timer might expire before the next timer event
671  * which is scheduled to wake up that CPU. In case of a completely
672  * idle system the next event might even be infinite time into the
673  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674  * leaves the inner idle loop so the newly added timer is taken into
675  * account when the CPU goes back to idle and evaluates the timer
676  * wheel for the next timer event.
677  */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 	struct rq *rq = cpu_rq(cpu);
681 
682 	if (cpu == smp_processor_id())
683 		return;
684 
685 	if (set_nr_and_not_polling(rq->idle))
686 		smp_send_reschedule(cpu);
687 	else
688 		trace_sched_wake_idle_without_ipi(cpu);
689 }
690 
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 	/*
694 	 * We just need the target to call irq_exit() and re-evaluate
695 	 * the next tick. The nohz full kick at least implies that.
696 	 * If needed we can still optimize that later with an
697 	 * empty IRQ.
698 	 */
699 	if (tick_nohz_full_cpu(cpu)) {
700 		if (cpu != smp_processor_id() ||
701 		    tick_nohz_tick_stopped())
702 			tick_nohz_full_kick_cpu(cpu);
703 		return true;
704 	}
705 
706 	return false;
707 }
708 
709 void wake_up_nohz_cpu(int cpu)
710 {
711 	if (!wake_up_full_nohz_cpu(cpu))
712 		wake_up_idle_cpu(cpu);
713 }
714 
715 static inline bool got_nohz_idle_kick(void)
716 {
717 	int cpu = smp_processor_id();
718 
719 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 		return false;
721 
722 	if (idle_cpu(cpu) && !need_resched())
723 		return true;
724 
725 	/*
726 	 * We can't run Idle Load Balance on this CPU for this time so we
727 	 * cancel it and clear NOHZ_BALANCE_KICK
728 	 */
729 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 	return false;
731 }
732 
733 #else /* CONFIG_NO_HZ_COMMON */
734 
735 static inline bool got_nohz_idle_kick(void)
736 {
737 	return false;
738 }
739 
740 #endif /* CONFIG_NO_HZ_COMMON */
741 
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 	/*
746 	 * More than one running task need preemption.
747 	 * nr_running update is assumed to be visible
748 	 * after IPI is sent from wakers.
749 	 */
750 	if (this_rq()->nr_running > 1)
751 		return false;
752 
753 	return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756 
757 void sched_avg_update(struct rq *rq)
758 {
759 	s64 period = sched_avg_period();
760 
761 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 		/*
763 		 * Inline assembly required to prevent the compiler
764 		 * optimising this loop into a divmod call.
765 		 * See __iter_div_u64_rem() for another example of this.
766 		 */
767 		asm("" : "+rm" (rq->age_stamp));
768 		rq->age_stamp += period;
769 		rq->rt_avg /= 2;
770 	}
771 }
772 
773 #endif /* CONFIG_SMP */
774 
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778  * Iterate task_group tree rooted at *from, calling @down when first entering a
779  * node and @up when leaving it for the final time.
780  *
781  * Caller must hold rcu_lock or sufficient equivalent.
782  */
783 int walk_tg_tree_from(struct task_group *from,
784 			     tg_visitor down, tg_visitor up, void *data)
785 {
786 	struct task_group *parent, *child;
787 	int ret;
788 
789 	parent = from;
790 
791 down:
792 	ret = (*down)(parent, data);
793 	if (ret)
794 		goto out;
795 	list_for_each_entry_rcu(child, &parent->children, siblings) {
796 		parent = child;
797 		goto down;
798 
799 up:
800 		continue;
801 	}
802 	ret = (*up)(parent, data);
803 	if (ret || parent == from)
804 		goto out;
805 
806 	child = parent;
807 	parent = parent->parent;
808 	if (parent)
809 		goto up;
810 out:
811 	return ret;
812 }
813 
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 	return 0;
817 }
818 #endif
819 
820 static void set_load_weight(struct task_struct *p)
821 {
822 	int prio = p->static_prio - MAX_RT_PRIO;
823 	struct load_weight *load = &p->se.load;
824 
825 	/*
826 	 * SCHED_IDLE tasks get minimal weight:
827 	 */
828 	if (p->policy == SCHED_IDLE) {
829 		load->weight = scale_load(WEIGHT_IDLEPRIO);
830 		load->inv_weight = WMULT_IDLEPRIO;
831 		return;
832 	}
833 
834 	load->weight = scale_load(prio_to_weight[prio]);
835 	load->inv_weight = prio_to_wmult[prio];
836 }
837 
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	sched_info_queued(rq, p);
842 	p->sched_class->enqueue_task(rq, p, flags);
843 }
844 
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_dequeued(rq, p);
849 	p->sched_class->dequeue_task(rq, p, flags);
850 }
851 
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible--;
856 
857 	enqueue_task(rq, p, flags);
858 }
859 
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	if (task_contributes_to_load(p))
863 		rq->nr_uninterruptible++;
864 
865 	dequeue_task(rq, p, flags);
866 }
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 		steal = paravirt_steal_clock(cpu_of(rq));
904 		steal -= rq->prev_steal_time_rq;
905 
906 		if (unlikely(steal > delta))
907 			steal = delta;
908 
909 		rq->prev_steal_time_rq += steal;
910 		delta -= steal;
911 	}
912 #endif
913 
914 	rq->clock_task += delta;
915 
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 		sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921 
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926 
927 	if (stop) {
928 		/*
929 		 * Make it appear like a SCHED_FIFO task, its something
930 		 * userspace knows about and won't get confused about.
931 		 *
932 		 * Also, it will make PI more or less work without too
933 		 * much confusion -- but then, stop work should not
934 		 * rely on PI working anyway.
935 		 */
936 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937 
938 		stop->sched_class = &stop_sched_class;
939 	}
940 
941 	cpu_rq(cpu)->stop = stop;
942 
943 	if (old_stop) {
944 		/*
945 		 * Reset it back to a normal scheduling class so that
946 		 * it can die in pieces.
947 		 */
948 		old_stop->sched_class = &rt_sched_class;
949 	}
950 }
951 
952 /*
953  * __normal_prio - return the priority that is based on the static prio
954  */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 	return p->static_prio;
958 }
959 
960 /*
961  * Calculate the expected normal priority: i.e. priority
962  * without taking RT-inheritance into account. Might be
963  * boosted by interactivity modifiers. Changes upon fork,
964  * setprio syscalls, and whenever the interactivity
965  * estimator recalculates.
966  */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 	int prio;
970 
971 	if (task_has_dl_policy(p))
972 		prio = MAX_DL_PRIO-1;
973 	else if (task_has_rt_policy(p))
974 		prio = MAX_RT_PRIO-1 - p->rt_priority;
975 	else
976 		prio = __normal_prio(p);
977 	return prio;
978 }
979 
980 /*
981  * Calculate the current priority, i.e. the priority
982  * taken into account by the scheduler. This value might
983  * be boosted by RT tasks, or might be boosted by
984  * interactivity modifiers. Will be RT if the task got
985  * RT-boosted. If not then it returns p->normal_prio.
986  */
987 static int effective_prio(struct task_struct *p)
988 {
989 	p->normal_prio = normal_prio(p);
990 	/*
991 	 * If we are RT tasks or we were boosted to RT priority,
992 	 * keep the priority unchanged. Otherwise, update priority
993 	 * to the normal priority:
994 	 */
995 	if (!rt_prio(p->prio))
996 		return p->normal_prio;
997 	return p->prio;
998 }
999 
1000 /**
1001  * task_curr - is this task currently executing on a CPU?
1002  * @p: the task in question.
1003  *
1004  * Return: 1 if the task is currently executing. 0 otherwise.
1005  */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 	return cpu_curr(task_cpu(p)) == p;
1009 }
1010 
1011 /*
1012  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1013  */
1014 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1015 				       const struct sched_class *prev_class,
1016 				       int oldprio)
1017 {
1018 	if (prev_class != p->sched_class) {
1019 		if (prev_class->switched_from)
1020 			prev_class->switched_from(rq, p);
1021 		/* Possble rq->lock 'hole'.  */
1022 		p->sched_class->switched_to(rq, p);
1023 	} else if (oldprio != p->prio || dl_task(p))
1024 		p->sched_class->prio_changed(rq, p, oldprio);
1025 }
1026 
1027 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1028 {
1029 	const struct sched_class *class;
1030 
1031 	if (p->sched_class == rq->curr->sched_class) {
1032 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1033 	} else {
1034 		for_each_class(class) {
1035 			if (class == rq->curr->sched_class)
1036 				break;
1037 			if (class == p->sched_class) {
1038 				resched_curr(rq);
1039 				break;
1040 			}
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * A queue event has occurred, and we're going to schedule.  In
1046 	 * this case, we can save a useless back to back clock update.
1047 	 */
1048 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1049 		rq->skip_clock_update = 1;
1050 }
1051 
1052 #ifdef CONFIG_SMP
1053 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1054 {
1055 #ifdef CONFIG_SCHED_DEBUG
1056 	/*
1057 	 * We should never call set_task_cpu() on a blocked task,
1058 	 * ttwu() will sort out the placement.
1059 	 */
1060 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1061 			!p->on_rq);
1062 
1063 #ifdef CONFIG_LOCKDEP
1064 	/*
1065 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1066 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1067 	 *
1068 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1069 	 * see task_group().
1070 	 *
1071 	 * Furthermore, all task_rq users should acquire both locks, see
1072 	 * task_rq_lock().
1073 	 */
1074 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1075 				      lockdep_is_held(&task_rq(p)->lock)));
1076 #endif
1077 #endif
1078 
1079 	trace_sched_migrate_task(p, new_cpu);
1080 
1081 	if (task_cpu(p) != new_cpu) {
1082 		if (p->sched_class->migrate_task_rq)
1083 			p->sched_class->migrate_task_rq(p, new_cpu);
1084 		p->se.nr_migrations++;
1085 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1086 	}
1087 
1088 	__set_task_cpu(p, new_cpu);
1089 }
1090 
1091 static void __migrate_swap_task(struct task_struct *p, int cpu)
1092 {
1093 	if (task_on_rq_queued(p)) {
1094 		struct rq *src_rq, *dst_rq;
1095 
1096 		src_rq = task_rq(p);
1097 		dst_rq = cpu_rq(cpu);
1098 
1099 		deactivate_task(src_rq, p, 0);
1100 		set_task_cpu(p, cpu);
1101 		activate_task(dst_rq, p, 0);
1102 		check_preempt_curr(dst_rq, p, 0);
1103 	} else {
1104 		/*
1105 		 * Task isn't running anymore; make it appear like we migrated
1106 		 * it before it went to sleep. This means on wakeup we make the
1107 		 * previous cpu our targer instead of where it really is.
1108 		 */
1109 		p->wake_cpu = cpu;
1110 	}
1111 }
1112 
1113 struct migration_swap_arg {
1114 	struct task_struct *src_task, *dst_task;
1115 	int src_cpu, dst_cpu;
1116 };
1117 
1118 static int migrate_swap_stop(void *data)
1119 {
1120 	struct migration_swap_arg *arg = data;
1121 	struct rq *src_rq, *dst_rq;
1122 	int ret = -EAGAIN;
1123 
1124 	src_rq = cpu_rq(arg->src_cpu);
1125 	dst_rq = cpu_rq(arg->dst_cpu);
1126 
1127 	double_raw_lock(&arg->src_task->pi_lock,
1128 			&arg->dst_task->pi_lock);
1129 	double_rq_lock(src_rq, dst_rq);
1130 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1131 		goto unlock;
1132 
1133 	if (task_cpu(arg->src_task) != arg->src_cpu)
1134 		goto unlock;
1135 
1136 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1137 		goto unlock;
1138 
1139 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1140 		goto unlock;
1141 
1142 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1143 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1144 
1145 	ret = 0;
1146 
1147 unlock:
1148 	double_rq_unlock(src_rq, dst_rq);
1149 	raw_spin_unlock(&arg->dst_task->pi_lock);
1150 	raw_spin_unlock(&arg->src_task->pi_lock);
1151 
1152 	return ret;
1153 }
1154 
1155 /*
1156  * Cross migrate two tasks
1157  */
1158 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1159 {
1160 	struct migration_swap_arg arg;
1161 	int ret = -EINVAL;
1162 
1163 	arg = (struct migration_swap_arg){
1164 		.src_task = cur,
1165 		.src_cpu = task_cpu(cur),
1166 		.dst_task = p,
1167 		.dst_cpu = task_cpu(p),
1168 	};
1169 
1170 	if (arg.src_cpu == arg.dst_cpu)
1171 		goto out;
1172 
1173 	/*
1174 	 * These three tests are all lockless; this is OK since all of them
1175 	 * will be re-checked with proper locks held further down the line.
1176 	 */
1177 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1178 		goto out;
1179 
1180 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1181 		goto out;
1182 
1183 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1184 		goto out;
1185 
1186 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1187 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1188 
1189 out:
1190 	return ret;
1191 }
1192 
1193 struct migration_arg {
1194 	struct task_struct *task;
1195 	int dest_cpu;
1196 };
1197 
1198 static int migration_cpu_stop(void *data);
1199 
1200 /*
1201  * wait_task_inactive - wait for a thread to unschedule.
1202  *
1203  * If @match_state is nonzero, it's the @p->state value just checked and
1204  * not expected to change.  If it changes, i.e. @p might have woken up,
1205  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1206  * we return a positive number (its total switch count).  If a second call
1207  * a short while later returns the same number, the caller can be sure that
1208  * @p has remained unscheduled the whole time.
1209  *
1210  * The caller must ensure that the task *will* unschedule sometime soon,
1211  * else this function might spin for a *long* time. This function can't
1212  * be called with interrupts off, or it may introduce deadlock with
1213  * smp_call_function() if an IPI is sent by the same process we are
1214  * waiting to become inactive.
1215  */
1216 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1217 {
1218 	unsigned long flags;
1219 	int running, queued;
1220 	unsigned long ncsw;
1221 	struct rq *rq;
1222 
1223 	for (;;) {
1224 		/*
1225 		 * We do the initial early heuristics without holding
1226 		 * any task-queue locks at all. We'll only try to get
1227 		 * the runqueue lock when things look like they will
1228 		 * work out!
1229 		 */
1230 		rq = task_rq(p);
1231 
1232 		/*
1233 		 * If the task is actively running on another CPU
1234 		 * still, just relax and busy-wait without holding
1235 		 * any locks.
1236 		 *
1237 		 * NOTE! Since we don't hold any locks, it's not
1238 		 * even sure that "rq" stays as the right runqueue!
1239 		 * But we don't care, since "task_running()" will
1240 		 * return false if the runqueue has changed and p
1241 		 * is actually now running somewhere else!
1242 		 */
1243 		while (task_running(rq, p)) {
1244 			if (match_state && unlikely(p->state != match_state))
1245 				return 0;
1246 			cpu_relax();
1247 		}
1248 
1249 		/*
1250 		 * Ok, time to look more closely! We need the rq
1251 		 * lock now, to be *sure*. If we're wrong, we'll
1252 		 * just go back and repeat.
1253 		 */
1254 		rq = task_rq_lock(p, &flags);
1255 		trace_sched_wait_task(p);
1256 		running = task_running(rq, p);
1257 		queued = task_on_rq_queued(p);
1258 		ncsw = 0;
1259 		if (!match_state || p->state == match_state)
1260 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1261 		task_rq_unlock(rq, p, &flags);
1262 
1263 		/*
1264 		 * If it changed from the expected state, bail out now.
1265 		 */
1266 		if (unlikely(!ncsw))
1267 			break;
1268 
1269 		/*
1270 		 * Was it really running after all now that we
1271 		 * checked with the proper locks actually held?
1272 		 *
1273 		 * Oops. Go back and try again..
1274 		 */
1275 		if (unlikely(running)) {
1276 			cpu_relax();
1277 			continue;
1278 		}
1279 
1280 		/*
1281 		 * It's not enough that it's not actively running,
1282 		 * it must be off the runqueue _entirely_, and not
1283 		 * preempted!
1284 		 *
1285 		 * So if it was still runnable (but just not actively
1286 		 * running right now), it's preempted, and we should
1287 		 * yield - it could be a while.
1288 		 */
1289 		if (unlikely(queued)) {
1290 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1291 
1292 			set_current_state(TASK_UNINTERRUPTIBLE);
1293 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1294 			continue;
1295 		}
1296 
1297 		/*
1298 		 * Ahh, all good. It wasn't running, and it wasn't
1299 		 * runnable, which means that it will never become
1300 		 * running in the future either. We're all done!
1301 		 */
1302 		break;
1303 	}
1304 
1305 	return ncsw;
1306 }
1307 
1308 /***
1309  * kick_process - kick a running thread to enter/exit the kernel
1310  * @p: the to-be-kicked thread
1311  *
1312  * Cause a process which is running on another CPU to enter
1313  * kernel-mode, without any delay. (to get signals handled.)
1314  *
1315  * NOTE: this function doesn't have to take the runqueue lock,
1316  * because all it wants to ensure is that the remote task enters
1317  * the kernel. If the IPI races and the task has been migrated
1318  * to another CPU then no harm is done and the purpose has been
1319  * achieved as well.
1320  */
1321 void kick_process(struct task_struct *p)
1322 {
1323 	int cpu;
1324 
1325 	preempt_disable();
1326 	cpu = task_cpu(p);
1327 	if ((cpu != smp_processor_id()) && task_curr(p))
1328 		smp_send_reschedule(cpu);
1329 	preempt_enable();
1330 }
1331 EXPORT_SYMBOL_GPL(kick_process);
1332 #endif /* CONFIG_SMP */
1333 
1334 #ifdef CONFIG_SMP
1335 /*
1336  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1337  */
1338 static int select_fallback_rq(int cpu, struct task_struct *p)
1339 {
1340 	int nid = cpu_to_node(cpu);
1341 	const struct cpumask *nodemask = NULL;
1342 	enum { cpuset, possible, fail } state = cpuset;
1343 	int dest_cpu;
1344 
1345 	/*
1346 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1347 	 * will return -1. There is no cpu on the node, and we should
1348 	 * select the cpu on the other node.
1349 	 */
1350 	if (nid != -1) {
1351 		nodemask = cpumask_of_node(nid);
1352 
1353 		/* Look for allowed, online CPU in same node. */
1354 		for_each_cpu(dest_cpu, nodemask) {
1355 			if (!cpu_online(dest_cpu))
1356 				continue;
1357 			if (!cpu_active(dest_cpu))
1358 				continue;
1359 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1360 				return dest_cpu;
1361 		}
1362 	}
1363 
1364 	for (;;) {
1365 		/* Any allowed, online CPU? */
1366 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1367 			if (!cpu_online(dest_cpu))
1368 				continue;
1369 			if (!cpu_active(dest_cpu))
1370 				continue;
1371 			goto out;
1372 		}
1373 
1374 		switch (state) {
1375 		case cpuset:
1376 			/* No more Mr. Nice Guy. */
1377 			cpuset_cpus_allowed_fallback(p);
1378 			state = possible;
1379 			break;
1380 
1381 		case possible:
1382 			do_set_cpus_allowed(p, cpu_possible_mask);
1383 			state = fail;
1384 			break;
1385 
1386 		case fail:
1387 			BUG();
1388 			break;
1389 		}
1390 	}
1391 
1392 out:
1393 	if (state != cpuset) {
1394 		/*
1395 		 * Don't tell them about moving exiting tasks or
1396 		 * kernel threads (both mm NULL), since they never
1397 		 * leave kernel.
1398 		 */
1399 		if (p->mm && printk_ratelimit()) {
1400 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1401 					task_pid_nr(p), p->comm, cpu);
1402 		}
1403 	}
1404 
1405 	return dest_cpu;
1406 }
1407 
1408 /*
1409  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1410  */
1411 static inline
1412 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1413 {
1414 	if (p->nr_cpus_allowed > 1)
1415 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1416 
1417 	/*
1418 	 * In order not to call set_task_cpu() on a blocking task we need
1419 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1420 	 * cpu.
1421 	 *
1422 	 * Since this is common to all placement strategies, this lives here.
1423 	 *
1424 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1425 	 *   not worry about this generic constraint ]
1426 	 */
1427 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1428 		     !cpu_online(cpu)))
1429 		cpu = select_fallback_rq(task_cpu(p), p);
1430 
1431 	return cpu;
1432 }
1433 
1434 static void update_avg(u64 *avg, u64 sample)
1435 {
1436 	s64 diff = sample - *avg;
1437 	*avg += diff >> 3;
1438 }
1439 #endif
1440 
1441 static void
1442 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1443 {
1444 #ifdef CONFIG_SCHEDSTATS
1445 	struct rq *rq = this_rq();
1446 
1447 #ifdef CONFIG_SMP
1448 	int this_cpu = smp_processor_id();
1449 
1450 	if (cpu == this_cpu) {
1451 		schedstat_inc(rq, ttwu_local);
1452 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1453 	} else {
1454 		struct sched_domain *sd;
1455 
1456 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1457 		rcu_read_lock();
1458 		for_each_domain(this_cpu, sd) {
1459 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1460 				schedstat_inc(sd, ttwu_wake_remote);
1461 				break;
1462 			}
1463 		}
1464 		rcu_read_unlock();
1465 	}
1466 
1467 	if (wake_flags & WF_MIGRATED)
1468 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1469 
1470 #endif /* CONFIG_SMP */
1471 
1472 	schedstat_inc(rq, ttwu_count);
1473 	schedstat_inc(p, se.statistics.nr_wakeups);
1474 
1475 	if (wake_flags & WF_SYNC)
1476 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1477 
1478 #endif /* CONFIG_SCHEDSTATS */
1479 }
1480 
1481 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1482 {
1483 	activate_task(rq, p, en_flags);
1484 	p->on_rq = TASK_ON_RQ_QUEUED;
1485 
1486 	/* if a worker is waking up, notify workqueue */
1487 	if (p->flags & PF_WQ_WORKER)
1488 		wq_worker_waking_up(p, cpu_of(rq));
1489 }
1490 
1491 /*
1492  * Mark the task runnable and perform wakeup-preemption.
1493  */
1494 static void
1495 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1496 {
1497 	check_preempt_curr(rq, p, wake_flags);
1498 	trace_sched_wakeup(p, true);
1499 
1500 	p->state = TASK_RUNNING;
1501 #ifdef CONFIG_SMP
1502 	if (p->sched_class->task_woken)
1503 		p->sched_class->task_woken(rq, p);
1504 
1505 	if (rq->idle_stamp) {
1506 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1507 		u64 max = 2*rq->max_idle_balance_cost;
1508 
1509 		update_avg(&rq->avg_idle, delta);
1510 
1511 		if (rq->avg_idle > max)
1512 			rq->avg_idle = max;
1513 
1514 		rq->idle_stamp = 0;
1515 	}
1516 #endif
1517 }
1518 
1519 static void
1520 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1521 {
1522 #ifdef CONFIG_SMP
1523 	if (p->sched_contributes_to_load)
1524 		rq->nr_uninterruptible--;
1525 #endif
1526 
1527 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1528 	ttwu_do_wakeup(rq, p, wake_flags);
1529 }
1530 
1531 /*
1532  * Called in case the task @p isn't fully descheduled from its runqueue,
1533  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1534  * since all we need to do is flip p->state to TASK_RUNNING, since
1535  * the task is still ->on_rq.
1536  */
1537 static int ttwu_remote(struct task_struct *p, int wake_flags)
1538 {
1539 	struct rq *rq;
1540 	int ret = 0;
1541 
1542 	rq = __task_rq_lock(p);
1543 	if (task_on_rq_queued(p)) {
1544 		/* check_preempt_curr() may use rq clock */
1545 		update_rq_clock(rq);
1546 		ttwu_do_wakeup(rq, p, wake_flags);
1547 		ret = 1;
1548 	}
1549 	__task_rq_unlock(rq);
1550 
1551 	return ret;
1552 }
1553 
1554 #ifdef CONFIG_SMP
1555 void sched_ttwu_pending(void)
1556 {
1557 	struct rq *rq = this_rq();
1558 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1559 	struct task_struct *p;
1560 	unsigned long flags;
1561 
1562 	if (!llist)
1563 		return;
1564 
1565 	raw_spin_lock_irqsave(&rq->lock, flags);
1566 
1567 	while (llist) {
1568 		p = llist_entry(llist, struct task_struct, wake_entry);
1569 		llist = llist_next(llist);
1570 		ttwu_do_activate(rq, p, 0);
1571 	}
1572 
1573 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1574 }
1575 
1576 void scheduler_ipi(void)
1577 {
1578 	/*
1579 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1580 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1581 	 * this IPI.
1582 	 */
1583 	preempt_fold_need_resched();
1584 
1585 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1586 		return;
1587 
1588 	/*
1589 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1590 	 * traditionally all their work was done from the interrupt return
1591 	 * path. Now that we actually do some work, we need to make sure
1592 	 * we do call them.
1593 	 *
1594 	 * Some archs already do call them, luckily irq_enter/exit nest
1595 	 * properly.
1596 	 *
1597 	 * Arguably we should visit all archs and update all handlers,
1598 	 * however a fair share of IPIs are still resched only so this would
1599 	 * somewhat pessimize the simple resched case.
1600 	 */
1601 	irq_enter();
1602 	sched_ttwu_pending();
1603 
1604 	/*
1605 	 * Check if someone kicked us for doing the nohz idle load balance.
1606 	 */
1607 	if (unlikely(got_nohz_idle_kick())) {
1608 		this_rq()->idle_balance = 1;
1609 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1610 	}
1611 	irq_exit();
1612 }
1613 
1614 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1615 {
1616 	struct rq *rq = cpu_rq(cpu);
1617 
1618 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1619 		if (!set_nr_if_polling(rq->idle))
1620 			smp_send_reschedule(cpu);
1621 		else
1622 			trace_sched_wake_idle_without_ipi(cpu);
1623 	}
1624 }
1625 
1626 void wake_up_if_idle(int cpu)
1627 {
1628 	struct rq *rq = cpu_rq(cpu);
1629 	unsigned long flags;
1630 
1631 	rcu_read_lock();
1632 
1633 	if (!is_idle_task(rcu_dereference(rq->curr)))
1634 		goto out;
1635 
1636 	if (set_nr_if_polling(rq->idle)) {
1637 		trace_sched_wake_idle_without_ipi(cpu);
1638 	} else {
1639 		raw_spin_lock_irqsave(&rq->lock, flags);
1640 		if (is_idle_task(rq->curr))
1641 			smp_send_reschedule(cpu);
1642 		/* Else cpu is not in idle, do nothing here */
1643 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1644 	}
1645 
1646 out:
1647 	rcu_read_unlock();
1648 }
1649 
1650 bool cpus_share_cache(int this_cpu, int that_cpu)
1651 {
1652 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1653 }
1654 #endif /* CONFIG_SMP */
1655 
1656 static void ttwu_queue(struct task_struct *p, int cpu)
1657 {
1658 	struct rq *rq = cpu_rq(cpu);
1659 
1660 #if defined(CONFIG_SMP)
1661 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1662 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1663 		ttwu_queue_remote(p, cpu);
1664 		return;
1665 	}
1666 #endif
1667 
1668 	raw_spin_lock(&rq->lock);
1669 	ttwu_do_activate(rq, p, 0);
1670 	raw_spin_unlock(&rq->lock);
1671 }
1672 
1673 /**
1674  * try_to_wake_up - wake up a thread
1675  * @p: the thread to be awakened
1676  * @state: the mask of task states that can be woken
1677  * @wake_flags: wake modifier flags (WF_*)
1678  *
1679  * Put it on the run-queue if it's not already there. The "current"
1680  * thread is always on the run-queue (except when the actual
1681  * re-schedule is in progress), and as such you're allowed to do
1682  * the simpler "current->state = TASK_RUNNING" to mark yourself
1683  * runnable without the overhead of this.
1684  *
1685  * Return: %true if @p was woken up, %false if it was already running.
1686  * or @state didn't match @p's state.
1687  */
1688 static int
1689 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1690 {
1691 	unsigned long flags;
1692 	int cpu, success = 0;
1693 
1694 	/*
1695 	 * If we are going to wake up a thread waiting for CONDITION we
1696 	 * need to ensure that CONDITION=1 done by the caller can not be
1697 	 * reordered with p->state check below. This pairs with mb() in
1698 	 * set_current_state() the waiting thread does.
1699 	 */
1700 	smp_mb__before_spinlock();
1701 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1702 	if (!(p->state & state))
1703 		goto out;
1704 
1705 	success = 1; /* we're going to change ->state */
1706 	cpu = task_cpu(p);
1707 
1708 	if (p->on_rq && ttwu_remote(p, wake_flags))
1709 		goto stat;
1710 
1711 #ifdef CONFIG_SMP
1712 	/*
1713 	 * If the owning (remote) cpu is still in the middle of schedule() with
1714 	 * this task as prev, wait until its done referencing the task.
1715 	 */
1716 	while (p->on_cpu)
1717 		cpu_relax();
1718 	/*
1719 	 * Pairs with the smp_wmb() in finish_lock_switch().
1720 	 */
1721 	smp_rmb();
1722 
1723 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1724 	p->state = TASK_WAKING;
1725 
1726 	if (p->sched_class->task_waking)
1727 		p->sched_class->task_waking(p);
1728 
1729 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1730 	if (task_cpu(p) != cpu) {
1731 		wake_flags |= WF_MIGRATED;
1732 		set_task_cpu(p, cpu);
1733 	}
1734 #endif /* CONFIG_SMP */
1735 
1736 	ttwu_queue(p, cpu);
1737 stat:
1738 	ttwu_stat(p, cpu, wake_flags);
1739 out:
1740 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1741 
1742 	return success;
1743 }
1744 
1745 /**
1746  * try_to_wake_up_local - try to wake up a local task with rq lock held
1747  * @p: the thread to be awakened
1748  *
1749  * Put @p on the run-queue if it's not already there. The caller must
1750  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1751  * the current task.
1752  */
1753 static void try_to_wake_up_local(struct task_struct *p)
1754 {
1755 	struct rq *rq = task_rq(p);
1756 
1757 	if (WARN_ON_ONCE(rq != this_rq()) ||
1758 	    WARN_ON_ONCE(p == current))
1759 		return;
1760 
1761 	lockdep_assert_held(&rq->lock);
1762 
1763 	if (!raw_spin_trylock(&p->pi_lock)) {
1764 		raw_spin_unlock(&rq->lock);
1765 		raw_spin_lock(&p->pi_lock);
1766 		raw_spin_lock(&rq->lock);
1767 	}
1768 
1769 	if (!(p->state & TASK_NORMAL))
1770 		goto out;
1771 
1772 	if (!task_on_rq_queued(p))
1773 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1774 
1775 	ttwu_do_wakeup(rq, p, 0);
1776 	ttwu_stat(p, smp_processor_id(), 0);
1777 out:
1778 	raw_spin_unlock(&p->pi_lock);
1779 }
1780 
1781 /**
1782  * wake_up_process - Wake up a specific process
1783  * @p: The process to be woken up.
1784  *
1785  * Attempt to wake up the nominated process and move it to the set of runnable
1786  * processes.
1787  *
1788  * Return: 1 if the process was woken up, 0 if it was already running.
1789  *
1790  * It may be assumed that this function implies a write memory barrier before
1791  * changing the task state if and only if any tasks are woken up.
1792  */
1793 int wake_up_process(struct task_struct *p)
1794 {
1795 	WARN_ON(task_is_stopped_or_traced(p));
1796 	return try_to_wake_up(p, TASK_NORMAL, 0);
1797 }
1798 EXPORT_SYMBOL(wake_up_process);
1799 
1800 int wake_up_state(struct task_struct *p, unsigned int state)
1801 {
1802 	return try_to_wake_up(p, state, 0);
1803 }
1804 
1805 /*
1806  * This function clears the sched_dl_entity static params.
1807  */
1808 void __dl_clear_params(struct task_struct *p)
1809 {
1810 	struct sched_dl_entity *dl_se = &p->dl;
1811 
1812 	dl_se->dl_runtime = 0;
1813 	dl_se->dl_deadline = 0;
1814 	dl_se->dl_period = 0;
1815 	dl_se->flags = 0;
1816 	dl_se->dl_bw = 0;
1817 }
1818 
1819 /*
1820  * Perform scheduler related setup for a newly forked process p.
1821  * p is forked by current.
1822  *
1823  * __sched_fork() is basic setup used by init_idle() too:
1824  */
1825 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1826 {
1827 	p->on_rq			= 0;
1828 
1829 	p->se.on_rq			= 0;
1830 	p->se.exec_start		= 0;
1831 	p->se.sum_exec_runtime		= 0;
1832 	p->se.prev_sum_exec_runtime	= 0;
1833 	p->se.nr_migrations		= 0;
1834 	p->se.vruntime			= 0;
1835 	INIT_LIST_HEAD(&p->se.group_node);
1836 
1837 #ifdef CONFIG_SCHEDSTATS
1838 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1839 #endif
1840 
1841 	RB_CLEAR_NODE(&p->dl.rb_node);
1842 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1843 	__dl_clear_params(p);
1844 
1845 	INIT_LIST_HEAD(&p->rt.run_list);
1846 
1847 #ifdef CONFIG_PREEMPT_NOTIFIERS
1848 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1849 #endif
1850 
1851 #ifdef CONFIG_NUMA_BALANCING
1852 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1853 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1854 		p->mm->numa_scan_seq = 0;
1855 	}
1856 
1857 	if (clone_flags & CLONE_VM)
1858 		p->numa_preferred_nid = current->numa_preferred_nid;
1859 	else
1860 		p->numa_preferred_nid = -1;
1861 
1862 	p->node_stamp = 0ULL;
1863 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1864 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1865 	p->numa_work.next = &p->numa_work;
1866 	p->numa_faults = NULL;
1867 	p->last_task_numa_placement = 0;
1868 	p->last_sum_exec_runtime = 0;
1869 
1870 	p->numa_group = NULL;
1871 #endif /* CONFIG_NUMA_BALANCING */
1872 }
1873 
1874 #ifdef CONFIG_NUMA_BALANCING
1875 #ifdef CONFIG_SCHED_DEBUG
1876 void set_numabalancing_state(bool enabled)
1877 {
1878 	if (enabled)
1879 		sched_feat_set("NUMA");
1880 	else
1881 		sched_feat_set("NO_NUMA");
1882 }
1883 #else
1884 __read_mostly bool numabalancing_enabled;
1885 
1886 void set_numabalancing_state(bool enabled)
1887 {
1888 	numabalancing_enabled = enabled;
1889 }
1890 #endif /* CONFIG_SCHED_DEBUG */
1891 
1892 #ifdef CONFIG_PROC_SYSCTL
1893 int sysctl_numa_balancing(struct ctl_table *table, int write,
1894 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1895 {
1896 	struct ctl_table t;
1897 	int err;
1898 	int state = numabalancing_enabled;
1899 
1900 	if (write && !capable(CAP_SYS_ADMIN))
1901 		return -EPERM;
1902 
1903 	t = *table;
1904 	t.data = &state;
1905 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1906 	if (err < 0)
1907 		return err;
1908 	if (write)
1909 		set_numabalancing_state(state);
1910 	return err;
1911 }
1912 #endif
1913 #endif
1914 
1915 /*
1916  * fork()/clone()-time setup:
1917  */
1918 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1919 {
1920 	unsigned long flags;
1921 	int cpu = get_cpu();
1922 
1923 	__sched_fork(clone_flags, p);
1924 	/*
1925 	 * We mark the process as running here. This guarantees that
1926 	 * nobody will actually run it, and a signal or other external
1927 	 * event cannot wake it up and insert it on the runqueue either.
1928 	 */
1929 	p->state = TASK_RUNNING;
1930 
1931 	/*
1932 	 * Make sure we do not leak PI boosting priority to the child.
1933 	 */
1934 	p->prio = current->normal_prio;
1935 
1936 	/*
1937 	 * Revert to default priority/policy on fork if requested.
1938 	 */
1939 	if (unlikely(p->sched_reset_on_fork)) {
1940 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1941 			p->policy = SCHED_NORMAL;
1942 			p->static_prio = NICE_TO_PRIO(0);
1943 			p->rt_priority = 0;
1944 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1945 			p->static_prio = NICE_TO_PRIO(0);
1946 
1947 		p->prio = p->normal_prio = __normal_prio(p);
1948 		set_load_weight(p);
1949 
1950 		/*
1951 		 * We don't need the reset flag anymore after the fork. It has
1952 		 * fulfilled its duty:
1953 		 */
1954 		p->sched_reset_on_fork = 0;
1955 	}
1956 
1957 	if (dl_prio(p->prio)) {
1958 		put_cpu();
1959 		return -EAGAIN;
1960 	} else if (rt_prio(p->prio)) {
1961 		p->sched_class = &rt_sched_class;
1962 	} else {
1963 		p->sched_class = &fair_sched_class;
1964 	}
1965 
1966 	if (p->sched_class->task_fork)
1967 		p->sched_class->task_fork(p);
1968 
1969 	/*
1970 	 * The child is not yet in the pid-hash so no cgroup attach races,
1971 	 * and the cgroup is pinned to this child due to cgroup_fork()
1972 	 * is ran before sched_fork().
1973 	 *
1974 	 * Silence PROVE_RCU.
1975 	 */
1976 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1977 	set_task_cpu(p, cpu);
1978 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1979 
1980 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1981 	if (likely(sched_info_on()))
1982 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1983 #endif
1984 #if defined(CONFIG_SMP)
1985 	p->on_cpu = 0;
1986 #endif
1987 	init_task_preempt_count(p);
1988 #ifdef CONFIG_SMP
1989 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1990 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1991 #endif
1992 
1993 	put_cpu();
1994 	return 0;
1995 }
1996 
1997 unsigned long to_ratio(u64 period, u64 runtime)
1998 {
1999 	if (runtime == RUNTIME_INF)
2000 		return 1ULL << 20;
2001 
2002 	/*
2003 	 * Doing this here saves a lot of checks in all
2004 	 * the calling paths, and returning zero seems
2005 	 * safe for them anyway.
2006 	 */
2007 	if (period == 0)
2008 		return 0;
2009 
2010 	return div64_u64(runtime << 20, period);
2011 }
2012 
2013 #ifdef CONFIG_SMP
2014 inline struct dl_bw *dl_bw_of(int i)
2015 {
2016 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2017 			   "sched RCU must be held");
2018 	return &cpu_rq(i)->rd->dl_bw;
2019 }
2020 
2021 static inline int dl_bw_cpus(int i)
2022 {
2023 	struct root_domain *rd = cpu_rq(i)->rd;
2024 	int cpus = 0;
2025 
2026 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2027 			   "sched RCU must be held");
2028 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2029 		cpus++;
2030 
2031 	return cpus;
2032 }
2033 #else
2034 inline struct dl_bw *dl_bw_of(int i)
2035 {
2036 	return &cpu_rq(i)->dl.dl_bw;
2037 }
2038 
2039 static inline int dl_bw_cpus(int i)
2040 {
2041 	return 1;
2042 }
2043 #endif
2044 
2045 /*
2046  * We must be sure that accepting a new task (or allowing changing the
2047  * parameters of an existing one) is consistent with the bandwidth
2048  * constraints. If yes, this function also accordingly updates the currently
2049  * allocated bandwidth to reflect the new situation.
2050  *
2051  * This function is called while holding p's rq->lock.
2052  */
2053 static int dl_overflow(struct task_struct *p, int policy,
2054 		       const struct sched_attr *attr)
2055 {
2056 
2057 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2058 	u64 period = attr->sched_period ?: attr->sched_deadline;
2059 	u64 runtime = attr->sched_runtime;
2060 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2061 	int cpus, err = -1;
2062 
2063 	if (new_bw == p->dl.dl_bw)
2064 		return 0;
2065 
2066 	/*
2067 	 * Either if a task, enters, leave, or stays -deadline but changes
2068 	 * its parameters, we may need to update accordingly the total
2069 	 * allocated bandwidth of the container.
2070 	 */
2071 	raw_spin_lock(&dl_b->lock);
2072 	cpus = dl_bw_cpus(task_cpu(p));
2073 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2074 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2075 		__dl_add(dl_b, new_bw);
2076 		err = 0;
2077 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2078 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2079 		__dl_clear(dl_b, p->dl.dl_bw);
2080 		__dl_add(dl_b, new_bw);
2081 		err = 0;
2082 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2083 		__dl_clear(dl_b, p->dl.dl_bw);
2084 		err = 0;
2085 	}
2086 	raw_spin_unlock(&dl_b->lock);
2087 
2088 	return err;
2089 }
2090 
2091 extern void init_dl_bw(struct dl_bw *dl_b);
2092 
2093 /*
2094  * wake_up_new_task - wake up a newly created task for the first time.
2095  *
2096  * This function will do some initial scheduler statistics housekeeping
2097  * that must be done for every newly created context, then puts the task
2098  * on the runqueue and wakes it.
2099  */
2100 void wake_up_new_task(struct task_struct *p)
2101 {
2102 	unsigned long flags;
2103 	struct rq *rq;
2104 
2105 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2106 #ifdef CONFIG_SMP
2107 	/*
2108 	 * Fork balancing, do it here and not earlier because:
2109 	 *  - cpus_allowed can change in the fork path
2110 	 *  - any previously selected cpu might disappear through hotplug
2111 	 */
2112 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2113 #endif
2114 
2115 	/* Initialize new task's runnable average */
2116 	init_task_runnable_average(p);
2117 	rq = __task_rq_lock(p);
2118 	activate_task(rq, p, 0);
2119 	p->on_rq = TASK_ON_RQ_QUEUED;
2120 	trace_sched_wakeup_new(p, true);
2121 	check_preempt_curr(rq, p, WF_FORK);
2122 #ifdef CONFIG_SMP
2123 	if (p->sched_class->task_woken)
2124 		p->sched_class->task_woken(rq, p);
2125 #endif
2126 	task_rq_unlock(rq, p, &flags);
2127 }
2128 
2129 #ifdef CONFIG_PREEMPT_NOTIFIERS
2130 
2131 /**
2132  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2133  * @notifier: notifier struct to register
2134  */
2135 void preempt_notifier_register(struct preempt_notifier *notifier)
2136 {
2137 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2138 }
2139 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2140 
2141 /**
2142  * preempt_notifier_unregister - no longer interested in preemption notifications
2143  * @notifier: notifier struct to unregister
2144  *
2145  * This is safe to call from within a preemption notifier.
2146  */
2147 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2148 {
2149 	hlist_del(&notifier->link);
2150 }
2151 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2152 
2153 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2154 {
2155 	struct preempt_notifier *notifier;
2156 
2157 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2158 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2159 }
2160 
2161 static void
2162 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2163 				 struct task_struct *next)
2164 {
2165 	struct preempt_notifier *notifier;
2166 
2167 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2168 		notifier->ops->sched_out(notifier, next);
2169 }
2170 
2171 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2172 
2173 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2174 {
2175 }
2176 
2177 static void
2178 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2179 				 struct task_struct *next)
2180 {
2181 }
2182 
2183 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2184 
2185 /**
2186  * prepare_task_switch - prepare to switch tasks
2187  * @rq: the runqueue preparing to switch
2188  * @prev: the current task that is being switched out
2189  * @next: the task we are going to switch to.
2190  *
2191  * This is called with the rq lock held and interrupts off. It must
2192  * be paired with a subsequent finish_task_switch after the context
2193  * switch.
2194  *
2195  * prepare_task_switch sets up locking and calls architecture specific
2196  * hooks.
2197  */
2198 static inline void
2199 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2200 		    struct task_struct *next)
2201 {
2202 	trace_sched_switch(prev, next);
2203 	sched_info_switch(rq, prev, next);
2204 	perf_event_task_sched_out(prev, next);
2205 	fire_sched_out_preempt_notifiers(prev, next);
2206 	prepare_lock_switch(rq, next);
2207 	prepare_arch_switch(next);
2208 }
2209 
2210 /**
2211  * finish_task_switch - clean up after a task-switch
2212  * @prev: the thread we just switched away from.
2213  *
2214  * finish_task_switch must be called after the context switch, paired
2215  * with a prepare_task_switch call before the context switch.
2216  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2217  * and do any other architecture-specific cleanup actions.
2218  *
2219  * Note that we may have delayed dropping an mm in context_switch(). If
2220  * so, we finish that here outside of the runqueue lock. (Doing it
2221  * with the lock held can cause deadlocks; see schedule() for
2222  * details.)
2223  *
2224  * The context switch have flipped the stack from under us and restored the
2225  * local variables which were saved when this task called schedule() in the
2226  * past. prev == current is still correct but we need to recalculate this_rq
2227  * because prev may have moved to another CPU.
2228  */
2229 static struct rq *finish_task_switch(struct task_struct *prev)
2230 	__releases(rq->lock)
2231 {
2232 	struct rq *rq = this_rq();
2233 	struct mm_struct *mm = rq->prev_mm;
2234 	long prev_state;
2235 
2236 	rq->prev_mm = NULL;
2237 
2238 	/*
2239 	 * A task struct has one reference for the use as "current".
2240 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2241 	 * schedule one last time. The schedule call will never return, and
2242 	 * the scheduled task must drop that reference.
2243 	 * The test for TASK_DEAD must occur while the runqueue locks are
2244 	 * still held, otherwise prev could be scheduled on another cpu, die
2245 	 * there before we look at prev->state, and then the reference would
2246 	 * be dropped twice.
2247 	 *		Manfred Spraul <manfred@colorfullife.com>
2248 	 */
2249 	prev_state = prev->state;
2250 	vtime_task_switch(prev);
2251 	finish_arch_switch(prev);
2252 	perf_event_task_sched_in(prev, current);
2253 	finish_lock_switch(rq, prev);
2254 	finish_arch_post_lock_switch();
2255 
2256 	fire_sched_in_preempt_notifiers(current);
2257 	if (mm)
2258 		mmdrop(mm);
2259 	if (unlikely(prev_state == TASK_DEAD)) {
2260 		if (prev->sched_class->task_dead)
2261 			prev->sched_class->task_dead(prev);
2262 
2263 		/*
2264 		 * Remove function-return probe instances associated with this
2265 		 * task and put them back on the free list.
2266 		 */
2267 		kprobe_flush_task(prev);
2268 		put_task_struct(prev);
2269 	}
2270 
2271 	tick_nohz_task_switch(current);
2272 	return rq;
2273 }
2274 
2275 #ifdef CONFIG_SMP
2276 
2277 /* rq->lock is NOT held, but preemption is disabled */
2278 static inline void post_schedule(struct rq *rq)
2279 {
2280 	if (rq->post_schedule) {
2281 		unsigned long flags;
2282 
2283 		raw_spin_lock_irqsave(&rq->lock, flags);
2284 		if (rq->curr->sched_class->post_schedule)
2285 			rq->curr->sched_class->post_schedule(rq);
2286 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2287 
2288 		rq->post_schedule = 0;
2289 	}
2290 }
2291 
2292 #else
2293 
2294 static inline void post_schedule(struct rq *rq)
2295 {
2296 }
2297 
2298 #endif
2299 
2300 /**
2301  * schedule_tail - first thing a freshly forked thread must call.
2302  * @prev: the thread we just switched away from.
2303  */
2304 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2305 	__releases(rq->lock)
2306 {
2307 	struct rq *rq;
2308 
2309 	/* finish_task_switch() drops rq->lock and enables preemtion */
2310 	preempt_disable();
2311 	rq = finish_task_switch(prev);
2312 	post_schedule(rq);
2313 	preempt_enable();
2314 
2315 	if (current->set_child_tid)
2316 		put_user(task_pid_vnr(current), current->set_child_tid);
2317 }
2318 
2319 /*
2320  * context_switch - switch to the new MM and the new thread's register state.
2321  */
2322 static inline struct rq *
2323 context_switch(struct rq *rq, struct task_struct *prev,
2324 	       struct task_struct *next)
2325 {
2326 	struct mm_struct *mm, *oldmm;
2327 
2328 	prepare_task_switch(rq, prev, next);
2329 
2330 	mm = next->mm;
2331 	oldmm = prev->active_mm;
2332 	/*
2333 	 * For paravirt, this is coupled with an exit in switch_to to
2334 	 * combine the page table reload and the switch backend into
2335 	 * one hypercall.
2336 	 */
2337 	arch_start_context_switch(prev);
2338 
2339 	if (!mm) {
2340 		next->active_mm = oldmm;
2341 		atomic_inc(&oldmm->mm_count);
2342 		enter_lazy_tlb(oldmm, next);
2343 	} else
2344 		switch_mm(oldmm, mm, next);
2345 
2346 	if (!prev->mm) {
2347 		prev->active_mm = NULL;
2348 		rq->prev_mm = oldmm;
2349 	}
2350 	/*
2351 	 * Since the runqueue lock will be released by the next
2352 	 * task (which is an invalid locking op but in the case
2353 	 * of the scheduler it's an obvious special-case), so we
2354 	 * do an early lockdep release here:
2355 	 */
2356 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2357 
2358 	context_tracking_task_switch(prev, next);
2359 	/* Here we just switch the register state and the stack. */
2360 	switch_to(prev, next, prev);
2361 	barrier();
2362 
2363 	return finish_task_switch(prev);
2364 }
2365 
2366 /*
2367  * nr_running and nr_context_switches:
2368  *
2369  * externally visible scheduler statistics: current number of runnable
2370  * threads, total number of context switches performed since bootup.
2371  */
2372 unsigned long nr_running(void)
2373 {
2374 	unsigned long i, sum = 0;
2375 
2376 	for_each_online_cpu(i)
2377 		sum += cpu_rq(i)->nr_running;
2378 
2379 	return sum;
2380 }
2381 
2382 /*
2383  * Check if only the current task is running on the cpu.
2384  */
2385 bool single_task_running(void)
2386 {
2387 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2388 		return true;
2389 	else
2390 		return false;
2391 }
2392 EXPORT_SYMBOL(single_task_running);
2393 
2394 unsigned long long nr_context_switches(void)
2395 {
2396 	int i;
2397 	unsigned long long sum = 0;
2398 
2399 	for_each_possible_cpu(i)
2400 		sum += cpu_rq(i)->nr_switches;
2401 
2402 	return sum;
2403 }
2404 
2405 unsigned long nr_iowait(void)
2406 {
2407 	unsigned long i, sum = 0;
2408 
2409 	for_each_possible_cpu(i)
2410 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2411 
2412 	return sum;
2413 }
2414 
2415 unsigned long nr_iowait_cpu(int cpu)
2416 {
2417 	struct rq *this = cpu_rq(cpu);
2418 	return atomic_read(&this->nr_iowait);
2419 }
2420 
2421 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2422 {
2423 	struct rq *this = this_rq();
2424 	*nr_waiters = atomic_read(&this->nr_iowait);
2425 	*load = this->cpu_load[0];
2426 }
2427 
2428 #ifdef CONFIG_SMP
2429 
2430 /*
2431  * sched_exec - execve() is a valuable balancing opportunity, because at
2432  * this point the task has the smallest effective memory and cache footprint.
2433  */
2434 void sched_exec(void)
2435 {
2436 	struct task_struct *p = current;
2437 	unsigned long flags;
2438 	int dest_cpu;
2439 
2440 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2441 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2442 	if (dest_cpu == smp_processor_id())
2443 		goto unlock;
2444 
2445 	if (likely(cpu_active(dest_cpu))) {
2446 		struct migration_arg arg = { p, dest_cpu };
2447 
2448 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2449 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2450 		return;
2451 	}
2452 unlock:
2453 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2454 }
2455 
2456 #endif
2457 
2458 DEFINE_PER_CPU(struct kernel_stat, kstat);
2459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2460 
2461 EXPORT_PER_CPU_SYMBOL(kstat);
2462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2463 
2464 /*
2465  * Return accounted runtime for the task.
2466  * In case the task is currently running, return the runtime plus current's
2467  * pending runtime that have not been accounted yet.
2468  */
2469 unsigned long long task_sched_runtime(struct task_struct *p)
2470 {
2471 	unsigned long flags;
2472 	struct rq *rq;
2473 	u64 ns;
2474 
2475 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2476 	/*
2477 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2478 	 * So we have a optimization chance when the task's delta_exec is 0.
2479 	 * Reading ->on_cpu is racy, but this is ok.
2480 	 *
2481 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2482 	 * If we race with it entering cpu, unaccounted time is 0. This is
2483 	 * indistinguishable from the read occurring a few cycles earlier.
2484 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2485 	 * been accounted, so we're correct here as well.
2486 	 */
2487 	if (!p->on_cpu || !task_on_rq_queued(p))
2488 		return p->se.sum_exec_runtime;
2489 #endif
2490 
2491 	rq = task_rq_lock(p, &flags);
2492 	/*
2493 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2494 	 * project cycles that may never be accounted to this
2495 	 * thread, breaking clock_gettime().
2496 	 */
2497 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2498 		update_rq_clock(rq);
2499 		p->sched_class->update_curr(rq);
2500 	}
2501 	ns = p->se.sum_exec_runtime;
2502 	task_rq_unlock(rq, p, &flags);
2503 
2504 	return ns;
2505 }
2506 
2507 /*
2508  * This function gets called by the timer code, with HZ frequency.
2509  * We call it with interrupts disabled.
2510  */
2511 void scheduler_tick(void)
2512 {
2513 	int cpu = smp_processor_id();
2514 	struct rq *rq = cpu_rq(cpu);
2515 	struct task_struct *curr = rq->curr;
2516 
2517 	sched_clock_tick();
2518 
2519 	raw_spin_lock(&rq->lock);
2520 	update_rq_clock(rq);
2521 	curr->sched_class->task_tick(rq, curr, 0);
2522 	update_cpu_load_active(rq);
2523 	raw_spin_unlock(&rq->lock);
2524 
2525 	perf_event_task_tick();
2526 
2527 #ifdef CONFIG_SMP
2528 	rq->idle_balance = idle_cpu(cpu);
2529 	trigger_load_balance(rq);
2530 #endif
2531 	rq_last_tick_reset(rq);
2532 }
2533 
2534 #ifdef CONFIG_NO_HZ_FULL
2535 /**
2536  * scheduler_tick_max_deferment
2537  *
2538  * Keep at least one tick per second when a single
2539  * active task is running because the scheduler doesn't
2540  * yet completely support full dynticks environment.
2541  *
2542  * This makes sure that uptime, CFS vruntime, load
2543  * balancing, etc... continue to move forward, even
2544  * with a very low granularity.
2545  *
2546  * Return: Maximum deferment in nanoseconds.
2547  */
2548 u64 scheduler_tick_max_deferment(void)
2549 {
2550 	struct rq *rq = this_rq();
2551 	unsigned long next, now = ACCESS_ONCE(jiffies);
2552 
2553 	next = rq->last_sched_tick + HZ;
2554 
2555 	if (time_before_eq(next, now))
2556 		return 0;
2557 
2558 	return jiffies_to_nsecs(next - now);
2559 }
2560 #endif
2561 
2562 notrace unsigned long get_parent_ip(unsigned long addr)
2563 {
2564 	if (in_lock_functions(addr)) {
2565 		addr = CALLER_ADDR2;
2566 		if (in_lock_functions(addr))
2567 			addr = CALLER_ADDR3;
2568 	}
2569 	return addr;
2570 }
2571 
2572 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2573 				defined(CONFIG_PREEMPT_TRACER))
2574 
2575 void preempt_count_add(int val)
2576 {
2577 #ifdef CONFIG_DEBUG_PREEMPT
2578 	/*
2579 	 * Underflow?
2580 	 */
2581 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2582 		return;
2583 #endif
2584 	__preempt_count_add(val);
2585 #ifdef CONFIG_DEBUG_PREEMPT
2586 	/*
2587 	 * Spinlock count overflowing soon?
2588 	 */
2589 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2590 				PREEMPT_MASK - 10);
2591 #endif
2592 	if (preempt_count() == val) {
2593 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2594 #ifdef CONFIG_DEBUG_PREEMPT
2595 		current->preempt_disable_ip = ip;
2596 #endif
2597 		trace_preempt_off(CALLER_ADDR0, ip);
2598 	}
2599 }
2600 EXPORT_SYMBOL(preempt_count_add);
2601 NOKPROBE_SYMBOL(preempt_count_add);
2602 
2603 void preempt_count_sub(int val)
2604 {
2605 #ifdef CONFIG_DEBUG_PREEMPT
2606 	/*
2607 	 * Underflow?
2608 	 */
2609 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2610 		return;
2611 	/*
2612 	 * Is the spinlock portion underflowing?
2613 	 */
2614 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2615 			!(preempt_count() & PREEMPT_MASK)))
2616 		return;
2617 #endif
2618 
2619 	if (preempt_count() == val)
2620 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2621 	__preempt_count_sub(val);
2622 }
2623 EXPORT_SYMBOL(preempt_count_sub);
2624 NOKPROBE_SYMBOL(preempt_count_sub);
2625 
2626 #endif
2627 
2628 /*
2629  * Print scheduling while atomic bug:
2630  */
2631 static noinline void __schedule_bug(struct task_struct *prev)
2632 {
2633 	if (oops_in_progress)
2634 		return;
2635 
2636 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2637 		prev->comm, prev->pid, preempt_count());
2638 
2639 	debug_show_held_locks(prev);
2640 	print_modules();
2641 	if (irqs_disabled())
2642 		print_irqtrace_events(prev);
2643 #ifdef CONFIG_DEBUG_PREEMPT
2644 	if (in_atomic_preempt_off()) {
2645 		pr_err("Preemption disabled at:");
2646 		print_ip_sym(current->preempt_disable_ip);
2647 		pr_cont("\n");
2648 	}
2649 #endif
2650 	dump_stack();
2651 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2652 }
2653 
2654 /*
2655  * Various schedule()-time debugging checks and statistics:
2656  */
2657 static inline void schedule_debug(struct task_struct *prev)
2658 {
2659 #ifdef CONFIG_SCHED_STACK_END_CHECK
2660 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2661 #endif
2662 	/*
2663 	 * Test if we are atomic. Since do_exit() needs to call into
2664 	 * schedule() atomically, we ignore that path. Otherwise whine
2665 	 * if we are scheduling when we should not.
2666 	 */
2667 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2668 		__schedule_bug(prev);
2669 	rcu_sleep_check();
2670 
2671 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2672 
2673 	schedstat_inc(this_rq(), sched_count);
2674 }
2675 
2676 /*
2677  * Pick up the highest-prio task:
2678  */
2679 static inline struct task_struct *
2680 pick_next_task(struct rq *rq, struct task_struct *prev)
2681 {
2682 	const struct sched_class *class = &fair_sched_class;
2683 	struct task_struct *p;
2684 
2685 	/*
2686 	 * Optimization: we know that if all tasks are in
2687 	 * the fair class we can call that function directly:
2688 	 */
2689 	if (likely(prev->sched_class == class &&
2690 		   rq->nr_running == rq->cfs.h_nr_running)) {
2691 		p = fair_sched_class.pick_next_task(rq, prev);
2692 		if (unlikely(p == RETRY_TASK))
2693 			goto again;
2694 
2695 		/* assumes fair_sched_class->next == idle_sched_class */
2696 		if (unlikely(!p))
2697 			p = idle_sched_class.pick_next_task(rq, prev);
2698 
2699 		return p;
2700 	}
2701 
2702 again:
2703 	for_each_class(class) {
2704 		p = class->pick_next_task(rq, prev);
2705 		if (p) {
2706 			if (unlikely(p == RETRY_TASK))
2707 				goto again;
2708 			return p;
2709 		}
2710 	}
2711 
2712 	BUG(); /* the idle class will always have a runnable task */
2713 }
2714 
2715 /*
2716  * __schedule() is the main scheduler function.
2717  *
2718  * The main means of driving the scheduler and thus entering this function are:
2719  *
2720  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2721  *
2722  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2723  *      paths. For example, see arch/x86/entry_64.S.
2724  *
2725  *      To drive preemption between tasks, the scheduler sets the flag in timer
2726  *      interrupt handler scheduler_tick().
2727  *
2728  *   3. Wakeups don't really cause entry into schedule(). They add a
2729  *      task to the run-queue and that's it.
2730  *
2731  *      Now, if the new task added to the run-queue preempts the current
2732  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2733  *      called on the nearest possible occasion:
2734  *
2735  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2736  *
2737  *         - in syscall or exception context, at the next outmost
2738  *           preempt_enable(). (this might be as soon as the wake_up()'s
2739  *           spin_unlock()!)
2740  *
2741  *         - in IRQ context, return from interrupt-handler to
2742  *           preemptible context
2743  *
2744  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2745  *         then at the next:
2746  *
2747  *          - cond_resched() call
2748  *          - explicit schedule() call
2749  *          - return from syscall or exception to user-space
2750  *          - return from interrupt-handler to user-space
2751  */
2752 static void __sched __schedule(void)
2753 {
2754 	struct task_struct *prev, *next;
2755 	unsigned long *switch_count;
2756 	struct rq *rq;
2757 	int cpu;
2758 
2759 need_resched:
2760 	preempt_disable();
2761 	cpu = smp_processor_id();
2762 	rq = cpu_rq(cpu);
2763 	rcu_note_context_switch();
2764 	prev = rq->curr;
2765 
2766 	schedule_debug(prev);
2767 
2768 	if (sched_feat(HRTICK))
2769 		hrtick_clear(rq);
2770 
2771 	/*
2772 	 * Make sure that signal_pending_state()->signal_pending() below
2773 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2774 	 * done by the caller to avoid the race with signal_wake_up().
2775 	 */
2776 	smp_mb__before_spinlock();
2777 	raw_spin_lock_irq(&rq->lock);
2778 
2779 	switch_count = &prev->nivcsw;
2780 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2781 		if (unlikely(signal_pending_state(prev->state, prev))) {
2782 			prev->state = TASK_RUNNING;
2783 		} else {
2784 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2785 			prev->on_rq = 0;
2786 
2787 			/*
2788 			 * If a worker went to sleep, notify and ask workqueue
2789 			 * whether it wants to wake up a task to maintain
2790 			 * concurrency.
2791 			 */
2792 			if (prev->flags & PF_WQ_WORKER) {
2793 				struct task_struct *to_wakeup;
2794 
2795 				to_wakeup = wq_worker_sleeping(prev, cpu);
2796 				if (to_wakeup)
2797 					try_to_wake_up_local(to_wakeup);
2798 			}
2799 		}
2800 		switch_count = &prev->nvcsw;
2801 	}
2802 
2803 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2804 		update_rq_clock(rq);
2805 
2806 	next = pick_next_task(rq, prev);
2807 	clear_tsk_need_resched(prev);
2808 	clear_preempt_need_resched();
2809 	rq->skip_clock_update = 0;
2810 
2811 	if (likely(prev != next)) {
2812 		rq->nr_switches++;
2813 		rq->curr = next;
2814 		++*switch_count;
2815 
2816 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2817 		cpu = cpu_of(rq);
2818 	} else
2819 		raw_spin_unlock_irq(&rq->lock);
2820 
2821 	post_schedule(rq);
2822 
2823 	sched_preempt_enable_no_resched();
2824 	if (need_resched())
2825 		goto need_resched;
2826 }
2827 
2828 static inline void sched_submit_work(struct task_struct *tsk)
2829 {
2830 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2831 		return;
2832 	/*
2833 	 * If we are going to sleep and we have plugged IO queued,
2834 	 * make sure to submit it to avoid deadlocks.
2835 	 */
2836 	if (blk_needs_flush_plug(tsk))
2837 		blk_schedule_flush_plug(tsk);
2838 }
2839 
2840 asmlinkage __visible void __sched schedule(void)
2841 {
2842 	struct task_struct *tsk = current;
2843 
2844 	sched_submit_work(tsk);
2845 	__schedule();
2846 }
2847 EXPORT_SYMBOL(schedule);
2848 
2849 #ifdef CONFIG_CONTEXT_TRACKING
2850 asmlinkage __visible void __sched schedule_user(void)
2851 {
2852 	/*
2853 	 * If we come here after a random call to set_need_resched(),
2854 	 * or we have been woken up remotely but the IPI has not yet arrived,
2855 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2856 	 * we find a better solution.
2857 	 *
2858 	 * NB: There are buggy callers of this function.  Ideally we
2859 	 * should warn if prev_state != IN_USER, but that will trigger
2860 	 * too frequently to make sense yet.
2861 	 */
2862 	enum ctx_state prev_state = exception_enter();
2863 	schedule();
2864 	exception_exit(prev_state);
2865 }
2866 #endif
2867 
2868 /**
2869  * schedule_preempt_disabled - called with preemption disabled
2870  *
2871  * Returns with preemption disabled. Note: preempt_count must be 1
2872  */
2873 void __sched schedule_preempt_disabled(void)
2874 {
2875 	sched_preempt_enable_no_resched();
2876 	schedule();
2877 	preempt_disable();
2878 }
2879 
2880 #ifdef CONFIG_PREEMPT
2881 /*
2882  * this is the entry point to schedule() from in-kernel preemption
2883  * off of preempt_enable. Kernel preemptions off return from interrupt
2884  * occur there and call schedule directly.
2885  */
2886 asmlinkage __visible void __sched notrace preempt_schedule(void)
2887 {
2888 	/*
2889 	 * If there is a non-zero preempt_count or interrupts are disabled,
2890 	 * we do not want to preempt the current task. Just return..
2891 	 */
2892 	if (likely(!preemptible()))
2893 		return;
2894 
2895 	do {
2896 		__preempt_count_add(PREEMPT_ACTIVE);
2897 		__schedule();
2898 		__preempt_count_sub(PREEMPT_ACTIVE);
2899 
2900 		/*
2901 		 * Check again in case we missed a preemption opportunity
2902 		 * between schedule and now.
2903 		 */
2904 		barrier();
2905 	} while (need_resched());
2906 }
2907 NOKPROBE_SYMBOL(preempt_schedule);
2908 EXPORT_SYMBOL(preempt_schedule);
2909 
2910 #ifdef CONFIG_CONTEXT_TRACKING
2911 /**
2912  * preempt_schedule_context - preempt_schedule called by tracing
2913  *
2914  * The tracing infrastructure uses preempt_enable_notrace to prevent
2915  * recursion and tracing preempt enabling caused by the tracing
2916  * infrastructure itself. But as tracing can happen in areas coming
2917  * from userspace or just about to enter userspace, a preempt enable
2918  * can occur before user_exit() is called. This will cause the scheduler
2919  * to be called when the system is still in usermode.
2920  *
2921  * To prevent this, the preempt_enable_notrace will use this function
2922  * instead of preempt_schedule() to exit user context if needed before
2923  * calling the scheduler.
2924  */
2925 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2926 {
2927 	enum ctx_state prev_ctx;
2928 
2929 	if (likely(!preemptible()))
2930 		return;
2931 
2932 	do {
2933 		__preempt_count_add(PREEMPT_ACTIVE);
2934 		/*
2935 		 * Needs preempt disabled in case user_exit() is traced
2936 		 * and the tracer calls preempt_enable_notrace() causing
2937 		 * an infinite recursion.
2938 		 */
2939 		prev_ctx = exception_enter();
2940 		__schedule();
2941 		exception_exit(prev_ctx);
2942 
2943 		__preempt_count_sub(PREEMPT_ACTIVE);
2944 		barrier();
2945 	} while (need_resched());
2946 }
2947 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2948 #endif /* CONFIG_CONTEXT_TRACKING */
2949 
2950 #endif /* CONFIG_PREEMPT */
2951 
2952 /*
2953  * this is the entry point to schedule() from kernel preemption
2954  * off of irq context.
2955  * Note, that this is called and return with irqs disabled. This will
2956  * protect us against recursive calling from irq.
2957  */
2958 asmlinkage __visible void __sched preempt_schedule_irq(void)
2959 {
2960 	enum ctx_state prev_state;
2961 
2962 	/* Catch callers which need to be fixed */
2963 	BUG_ON(preempt_count() || !irqs_disabled());
2964 
2965 	prev_state = exception_enter();
2966 
2967 	do {
2968 		__preempt_count_add(PREEMPT_ACTIVE);
2969 		local_irq_enable();
2970 		__schedule();
2971 		local_irq_disable();
2972 		__preempt_count_sub(PREEMPT_ACTIVE);
2973 
2974 		/*
2975 		 * Check again in case we missed a preemption opportunity
2976 		 * between schedule and now.
2977 		 */
2978 		barrier();
2979 	} while (need_resched());
2980 
2981 	exception_exit(prev_state);
2982 }
2983 
2984 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2985 			  void *key)
2986 {
2987 	return try_to_wake_up(curr->private, mode, wake_flags);
2988 }
2989 EXPORT_SYMBOL(default_wake_function);
2990 
2991 #ifdef CONFIG_RT_MUTEXES
2992 
2993 /*
2994  * rt_mutex_setprio - set the current priority of a task
2995  * @p: task
2996  * @prio: prio value (kernel-internal form)
2997  *
2998  * This function changes the 'effective' priority of a task. It does
2999  * not touch ->normal_prio like __setscheduler().
3000  *
3001  * Used by the rt_mutex code to implement priority inheritance
3002  * logic. Call site only calls if the priority of the task changed.
3003  */
3004 void rt_mutex_setprio(struct task_struct *p, int prio)
3005 {
3006 	int oldprio, queued, running, enqueue_flag = 0;
3007 	struct rq *rq;
3008 	const struct sched_class *prev_class;
3009 
3010 	BUG_ON(prio > MAX_PRIO);
3011 
3012 	rq = __task_rq_lock(p);
3013 
3014 	/*
3015 	 * Idle task boosting is a nono in general. There is one
3016 	 * exception, when PREEMPT_RT and NOHZ is active:
3017 	 *
3018 	 * The idle task calls get_next_timer_interrupt() and holds
3019 	 * the timer wheel base->lock on the CPU and another CPU wants
3020 	 * to access the timer (probably to cancel it). We can safely
3021 	 * ignore the boosting request, as the idle CPU runs this code
3022 	 * with interrupts disabled and will complete the lock
3023 	 * protected section without being interrupted. So there is no
3024 	 * real need to boost.
3025 	 */
3026 	if (unlikely(p == rq->idle)) {
3027 		WARN_ON(p != rq->curr);
3028 		WARN_ON(p->pi_blocked_on);
3029 		goto out_unlock;
3030 	}
3031 
3032 	trace_sched_pi_setprio(p, prio);
3033 	oldprio = p->prio;
3034 	prev_class = p->sched_class;
3035 	queued = task_on_rq_queued(p);
3036 	running = task_current(rq, p);
3037 	if (queued)
3038 		dequeue_task(rq, p, 0);
3039 	if (running)
3040 		put_prev_task(rq, p);
3041 
3042 	/*
3043 	 * Boosting condition are:
3044 	 * 1. -rt task is running and holds mutex A
3045 	 *      --> -dl task blocks on mutex A
3046 	 *
3047 	 * 2. -dl task is running and holds mutex A
3048 	 *      --> -dl task blocks on mutex A and could preempt the
3049 	 *          running task
3050 	 */
3051 	if (dl_prio(prio)) {
3052 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3053 		if (!dl_prio(p->normal_prio) ||
3054 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3055 			p->dl.dl_boosted = 1;
3056 			p->dl.dl_throttled = 0;
3057 			enqueue_flag = ENQUEUE_REPLENISH;
3058 		} else
3059 			p->dl.dl_boosted = 0;
3060 		p->sched_class = &dl_sched_class;
3061 	} else if (rt_prio(prio)) {
3062 		if (dl_prio(oldprio))
3063 			p->dl.dl_boosted = 0;
3064 		if (oldprio < prio)
3065 			enqueue_flag = ENQUEUE_HEAD;
3066 		p->sched_class = &rt_sched_class;
3067 	} else {
3068 		if (dl_prio(oldprio))
3069 			p->dl.dl_boosted = 0;
3070 		p->sched_class = &fair_sched_class;
3071 	}
3072 
3073 	p->prio = prio;
3074 
3075 	if (running)
3076 		p->sched_class->set_curr_task(rq);
3077 	if (queued)
3078 		enqueue_task(rq, p, enqueue_flag);
3079 
3080 	check_class_changed(rq, p, prev_class, oldprio);
3081 out_unlock:
3082 	__task_rq_unlock(rq);
3083 }
3084 #endif
3085 
3086 void set_user_nice(struct task_struct *p, long nice)
3087 {
3088 	int old_prio, delta, queued;
3089 	unsigned long flags;
3090 	struct rq *rq;
3091 
3092 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3093 		return;
3094 	/*
3095 	 * We have to be careful, if called from sys_setpriority(),
3096 	 * the task might be in the middle of scheduling on another CPU.
3097 	 */
3098 	rq = task_rq_lock(p, &flags);
3099 	/*
3100 	 * The RT priorities are set via sched_setscheduler(), but we still
3101 	 * allow the 'normal' nice value to be set - but as expected
3102 	 * it wont have any effect on scheduling until the task is
3103 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3104 	 */
3105 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3106 		p->static_prio = NICE_TO_PRIO(nice);
3107 		goto out_unlock;
3108 	}
3109 	queued = task_on_rq_queued(p);
3110 	if (queued)
3111 		dequeue_task(rq, p, 0);
3112 
3113 	p->static_prio = NICE_TO_PRIO(nice);
3114 	set_load_weight(p);
3115 	old_prio = p->prio;
3116 	p->prio = effective_prio(p);
3117 	delta = p->prio - old_prio;
3118 
3119 	if (queued) {
3120 		enqueue_task(rq, p, 0);
3121 		/*
3122 		 * If the task increased its priority or is running and
3123 		 * lowered its priority, then reschedule its CPU:
3124 		 */
3125 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3126 			resched_curr(rq);
3127 	}
3128 out_unlock:
3129 	task_rq_unlock(rq, p, &flags);
3130 }
3131 EXPORT_SYMBOL(set_user_nice);
3132 
3133 /*
3134  * can_nice - check if a task can reduce its nice value
3135  * @p: task
3136  * @nice: nice value
3137  */
3138 int can_nice(const struct task_struct *p, const int nice)
3139 {
3140 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3141 	int nice_rlim = nice_to_rlimit(nice);
3142 
3143 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3144 		capable(CAP_SYS_NICE));
3145 }
3146 
3147 #ifdef __ARCH_WANT_SYS_NICE
3148 
3149 /*
3150  * sys_nice - change the priority of the current process.
3151  * @increment: priority increment
3152  *
3153  * sys_setpriority is a more generic, but much slower function that
3154  * does similar things.
3155  */
3156 SYSCALL_DEFINE1(nice, int, increment)
3157 {
3158 	long nice, retval;
3159 
3160 	/*
3161 	 * Setpriority might change our priority at the same moment.
3162 	 * We don't have to worry. Conceptually one call occurs first
3163 	 * and we have a single winner.
3164 	 */
3165 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3166 	nice = task_nice(current) + increment;
3167 
3168 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3169 	if (increment < 0 && !can_nice(current, nice))
3170 		return -EPERM;
3171 
3172 	retval = security_task_setnice(current, nice);
3173 	if (retval)
3174 		return retval;
3175 
3176 	set_user_nice(current, nice);
3177 	return 0;
3178 }
3179 
3180 #endif
3181 
3182 /**
3183  * task_prio - return the priority value of a given task.
3184  * @p: the task in question.
3185  *
3186  * Return: The priority value as seen by users in /proc.
3187  * RT tasks are offset by -200. Normal tasks are centered
3188  * around 0, value goes from -16 to +15.
3189  */
3190 int task_prio(const struct task_struct *p)
3191 {
3192 	return p->prio - MAX_RT_PRIO;
3193 }
3194 
3195 /**
3196  * idle_cpu - is a given cpu idle currently?
3197  * @cpu: the processor in question.
3198  *
3199  * Return: 1 if the CPU is currently idle. 0 otherwise.
3200  */
3201 int idle_cpu(int cpu)
3202 {
3203 	struct rq *rq = cpu_rq(cpu);
3204 
3205 	if (rq->curr != rq->idle)
3206 		return 0;
3207 
3208 	if (rq->nr_running)
3209 		return 0;
3210 
3211 #ifdef CONFIG_SMP
3212 	if (!llist_empty(&rq->wake_list))
3213 		return 0;
3214 #endif
3215 
3216 	return 1;
3217 }
3218 
3219 /**
3220  * idle_task - return the idle task for a given cpu.
3221  * @cpu: the processor in question.
3222  *
3223  * Return: The idle task for the cpu @cpu.
3224  */
3225 struct task_struct *idle_task(int cpu)
3226 {
3227 	return cpu_rq(cpu)->idle;
3228 }
3229 
3230 /**
3231  * find_process_by_pid - find a process with a matching PID value.
3232  * @pid: the pid in question.
3233  *
3234  * The task of @pid, if found. %NULL otherwise.
3235  */
3236 static struct task_struct *find_process_by_pid(pid_t pid)
3237 {
3238 	return pid ? find_task_by_vpid(pid) : current;
3239 }
3240 
3241 /*
3242  * This function initializes the sched_dl_entity of a newly becoming
3243  * SCHED_DEADLINE task.
3244  *
3245  * Only the static values are considered here, the actual runtime and the
3246  * absolute deadline will be properly calculated when the task is enqueued
3247  * for the first time with its new policy.
3248  */
3249 static void
3250 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3251 {
3252 	struct sched_dl_entity *dl_se = &p->dl;
3253 
3254 	init_dl_task_timer(dl_se);
3255 	dl_se->dl_runtime = attr->sched_runtime;
3256 	dl_se->dl_deadline = attr->sched_deadline;
3257 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3258 	dl_se->flags = attr->sched_flags;
3259 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3260 	dl_se->dl_throttled = 0;
3261 	dl_se->dl_new = 1;
3262 	dl_se->dl_yielded = 0;
3263 }
3264 
3265 /*
3266  * sched_setparam() passes in -1 for its policy, to let the functions
3267  * it calls know not to change it.
3268  */
3269 #define SETPARAM_POLICY	-1
3270 
3271 static void __setscheduler_params(struct task_struct *p,
3272 		const struct sched_attr *attr)
3273 {
3274 	int policy = attr->sched_policy;
3275 
3276 	if (policy == SETPARAM_POLICY)
3277 		policy = p->policy;
3278 
3279 	p->policy = policy;
3280 
3281 	if (dl_policy(policy))
3282 		__setparam_dl(p, attr);
3283 	else if (fair_policy(policy))
3284 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3285 
3286 	/*
3287 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3288 	 * !rt_policy. Always setting this ensures that things like
3289 	 * getparam()/getattr() don't report silly values for !rt tasks.
3290 	 */
3291 	p->rt_priority = attr->sched_priority;
3292 	p->normal_prio = normal_prio(p);
3293 	set_load_weight(p);
3294 }
3295 
3296 /* Actually do priority change: must hold pi & rq lock. */
3297 static void __setscheduler(struct rq *rq, struct task_struct *p,
3298 			   const struct sched_attr *attr)
3299 {
3300 	__setscheduler_params(p, attr);
3301 
3302 	/*
3303 	 * If we get here, there was no pi waiters boosting the
3304 	 * task. It is safe to use the normal prio.
3305 	 */
3306 	p->prio = normal_prio(p);
3307 
3308 	if (dl_prio(p->prio))
3309 		p->sched_class = &dl_sched_class;
3310 	else if (rt_prio(p->prio))
3311 		p->sched_class = &rt_sched_class;
3312 	else
3313 		p->sched_class = &fair_sched_class;
3314 }
3315 
3316 static void
3317 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3318 {
3319 	struct sched_dl_entity *dl_se = &p->dl;
3320 
3321 	attr->sched_priority = p->rt_priority;
3322 	attr->sched_runtime = dl_se->dl_runtime;
3323 	attr->sched_deadline = dl_se->dl_deadline;
3324 	attr->sched_period = dl_se->dl_period;
3325 	attr->sched_flags = dl_se->flags;
3326 }
3327 
3328 /*
3329  * This function validates the new parameters of a -deadline task.
3330  * We ask for the deadline not being zero, and greater or equal
3331  * than the runtime, as well as the period of being zero or
3332  * greater than deadline. Furthermore, we have to be sure that
3333  * user parameters are above the internal resolution of 1us (we
3334  * check sched_runtime only since it is always the smaller one) and
3335  * below 2^63 ns (we have to check both sched_deadline and
3336  * sched_period, as the latter can be zero).
3337  */
3338 static bool
3339 __checkparam_dl(const struct sched_attr *attr)
3340 {
3341 	/* deadline != 0 */
3342 	if (attr->sched_deadline == 0)
3343 		return false;
3344 
3345 	/*
3346 	 * Since we truncate DL_SCALE bits, make sure we're at least
3347 	 * that big.
3348 	 */
3349 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3350 		return false;
3351 
3352 	/*
3353 	 * Since we use the MSB for wrap-around and sign issues, make
3354 	 * sure it's not set (mind that period can be equal to zero).
3355 	 */
3356 	if (attr->sched_deadline & (1ULL << 63) ||
3357 	    attr->sched_period & (1ULL << 63))
3358 		return false;
3359 
3360 	/* runtime <= deadline <= period (if period != 0) */
3361 	if ((attr->sched_period != 0 &&
3362 	     attr->sched_period < attr->sched_deadline) ||
3363 	    attr->sched_deadline < attr->sched_runtime)
3364 		return false;
3365 
3366 	return true;
3367 }
3368 
3369 /*
3370  * check the target process has a UID that matches the current process's
3371  */
3372 static bool check_same_owner(struct task_struct *p)
3373 {
3374 	const struct cred *cred = current_cred(), *pcred;
3375 	bool match;
3376 
3377 	rcu_read_lock();
3378 	pcred = __task_cred(p);
3379 	match = (uid_eq(cred->euid, pcred->euid) ||
3380 		 uid_eq(cred->euid, pcred->uid));
3381 	rcu_read_unlock();
3382 	return match;
3383 }
3384 
3385 static int __sched_setscheduler(struct task_struct *p,
3386 				const struct sched_attr *attr,
3387 				bool user)
3388 {
3389 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3390 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3391 	int retval, oldprio, oldpolicy = -1, queued, running;
3392 	int policy = attr->sched_policy;
3393 	unsigned long flags;
3394 	const struct sched_class *prev_class;
3395 	struct rq *rq;
3396 	int reset_on_fork;
3397 
3398 	/* may grab non-irq protected spin_locks */
3399 	BUG_ON(in_interrupt());
3400 recheck:
3401 	/* double check policy once rq lock held */
3402 	if (policy < 0) {
3403 		reset_on_fork = p->sched_reset_on_fork;
3404 		policy = oldpolicy = p->policy;
3405 	} else {
3406 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3407 
3408 		if (policy != SCHED_DEADLINE &&
3409 				policy != SCHED_FIFO && policy != SCHED_RR &&
3410 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3411 				policy != SCHED_IDLE)
3412 			return -EINVAL;
3413 	}
3414 
3415 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3416 		return -EINVAL;
3417 
3418 	/*
3419 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3420 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3421 	 * SCHED_BATCH and SCHED_IDLE is 0.
3422 	 */
3423 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3424 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3425 		return -EINVAL;
3426 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3427 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3428 		return -EINVAL;
3429 
3430 	/*
3431 	 * Allow unprivileged RT tasks to decrease priority:
3432 	 */
3433 	if (user && !capable(CAP_SYS_NICE)) {
3434 		if (fair_policy(policy)) {
3435 			if (attr->sched_nice < task_nice(p) &&
3436 			    !can_nice(p, attr->sched_nice))
3437 				return -EPERM;
3438 		}
3439 
3440 		if (rt_policy(policy)) {
3441 			unsigned long rlim_rtprio =
3442 					task_rlimit(p, RLIMIT_RTPRIO);
3443 
3444 			/* can't set/change the rt policy */
3445 			if (policy != p->policy && !rlim_rtprio)
3446 				return -EPERM;
3447 
3448 			/* can't increase priority */
3449 			if (attr->sched_priority > p->rt_priority &&
3450 			    attr->sched_priority > rlim_rtprio)
3451 				return -EPERM;
3452 		}
3453 
3454 		 /*
3455 		  * Can't set/change SCHED_DEADLINE policy at all for now
3456 		  * (safest behavior); in the future we would like to allow
3457 		  * unprivileged DL tasks to increase their relative deadline
3458 		  * or reduce their runtime (both ways reducing utilization)
3459 		  */
3460 		if (dl_policy(policy))
3461 			return -EPERM;
3462 
3463 		/*
3464 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3465 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3466 		 */
3467 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3468 			if (!can_nice(p, task_nice(p)))
3469 				return -EPERM;
3470 		}
3471 
3472 		/* can't change other user's priorities */
3473 		if (!check_same_owner(p))
3474 			return -EPERM;
3475 
3476 		/* Normal users shall not reset the sched_reset_on_fork flag */
3477 		if (p->sched_reset_on_fork && !reset_on_fork)
3478 			return -EPERM;
3479 	}
3480 
3481 	if (user) {
3482 		retval = security_task_setscheduler(p);
3483 		if (retval)
3484 			return retval;
3485 	}
3486 
3487 	/*
3488 	 * make sure no PI-waiters arrive (or leave) while we are
3489 	 * changing the priority of the task:
3490 	 *
3491 	 * To be able to change p->policy safely, the appropriate
3492 	 * runqueue lock must be held.
3493 	 */
3494 	rq = task_rq_lock(p, &flags);
3495 
3496 	/*
3497 	 * Changing the policy of the stop threads its a very bad idea
3498 	 */
3499 	if (p == rq->stop) {
3500 		task_rq_unlock(rq, p, &flags);
3501 		return -EINVAL;
3502 	}
3503 
3504 	/*
3505 	 * If not changing anything there's no need to proceed further,
3506 	 * but store a possible modification of reset_on_fork.
3507 	 */
3508 	if (unlikely(policy == p->policy)) {
3509 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3510 			goto change;
3511 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3512 			goto change;
3513 		if (dl_policy(policy))
3514 			goto change;
3515 
3516 		p->sched_reset_on_fork = reset_on_fork;
3517 		task_rq_unlock(rq, p, &flags);
3518 		return 0;
3519 	}
3520 change:
3521 
3522 	if (user) {
3523 #ifdef CONFIG_RT_GROUP_SCHED
3524 		/*
3525 		 * Do not allow realtime tasks into groups that have no runtime
3526 		 * assigned.
3527 		 */
3528 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3529 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3530 				!task_group_is_autogroup(task_group(p))) {
3531 			task_rq_unlock(rq, p, &flags);
3532 			return -EPERM;
3533 		}
3534 #endif
3535 #ifdef CONFIG_SMP
3536 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3537 			cpumask_t *span = rq->rd->span;
3538 
3539 			/*
3540 			 * Don't allow tasks with an affinity mask smaller than
3541 			 * the entire root_domain to become SCHED_DEADLINE. We
3542 			 * will also fail if there's no bandwidth available.
3543 			 */
3544 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3545 			    rq->rd->dl_bw.bw == 0) {
3546 				task_rq_unlock(rq, p, &flags);
3547 				return -EPERM;
3548 			}
3549 		}
3550 #endif
3551 	}
3552 
3553 	/* recheck policy now with rq lock held */
3554 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3555 		policy = oldpolicy = -1;
3556 		task_rq_unlock(rq, p, &flags);
3557 		goto recheck;
3558 	}
3559 
3560 	/*
3561 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3562 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3563 	 * is available.
3564 	 */
3565 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3566 		task_rq_unlock(rq, p, &flags);
3567 		return -EBUSY;
3568 	}
3569 
3570 	p->sched_reset_on_fork = reset_on_fork;
3571 	oldprio = p->prio;
3572 
3573 	/*
3574 	 * Special case for priority boosted tasks.
3575 	 *
3576 	 * If the new priority is lower or equal (user space view)
3577 	 * than the current (boosted) priority, we just store the new
3578 	 * normal parameters and do not touch the scheduler class and
3579 	 * the runqueue. This will be done when the task deboost
3580 	 * itself.
3581 	 */
3582 	if (rt_mutex_check_prio(p, newprio)) {
3583 		__setscheduler_params(p, attr);
3584 		task_rq_unlock(rq, p, &flags);
3585 		return 0;
3586 	}
3587 
3588 	queued = task_on_rq_queued(p);
3589 	running = task_current(rq, p);
3590 	if (queued)
3591 		dequeue_task(rq, p, 0);
3592 	if (running)
3593 		put_prev_task(rq, p);
3594 
3595 	prev_class = p->sched_class;
3596 	__setscheduler(rq, p, attr);
3597 
3598 	if (running)
3599 		p->sched_class->set_curr_task(rq);
3600 	if (queued) {
3601 		/*
3602 		 * We enqueue to tail when the priority of a task is
3603 		 * increased (user space view).
3604 		 */
3605 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3606 	}
3607 
3608 	check_class_changed(rq, p, prev_class, oldprio);
3609 	task_rq_unlock(rq, p, &flags);
3610 
3611 	rt_mutex_adjust_pi(p);
3612 
3613 	return 0;
3614 }
3615 
3616 static int _sched_setscheduler(struct task_struct *p, int policy,
3617 			       const struct sched_param *param, bool check)
3618 {
3619 	struct sched_attr attr = {
3620 		.sched_policy   = policy,
3621 		.sched_priority = param->sched_priority,
3622 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3623 	};
3624 
3625 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3626 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3627 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3628 		policy &= ~SCHED_RESET_ON_FORK;
3629 		attr.sched_policy = policy;
3630 	}
3631 
3632 	return __sched_setscheduler(p, &attr, check);
3633 }
3634 /**
3635  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3636  * @p: the task in question.
3637  * @policy: new policy.
3638  * @param: structure containing the new RT priority.
3639  *
3640  * Return: 0 on success. An error code otherwise.
3641  *
3642  * NOTE that the task may be already dead.
3643  */
3644 int sched_setscheduler(struct task_struct *p, int policy,
3645 		       const struct sched_param *param)
3646 {
3647 	return _sched_setscheduler(p, policy, param, true);
3648 }
3649 EXPORT_SYMBOL_GPL(sched_setscheduler);
3650 
3651 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3652 {
3653 	return __sched_setscheduler(p, attr, true);
3654 }
3655 EXPORT_SYMBOL_GPL(sched_setattr);
3656 
3657 /**
3658  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3659  * @p: the task in question.
3660  * @policy: new policy.
3661  * @param: structure containing the new RT priority.
3662  *
3663  * Just like sched_setscheduler, only don't bother checking if the
3664  * current context has permission.  For example, this is needed in
3665  * stop_machine(): we create temporary high priority worker threads,
3666  * but our caller might not have that capability.
3667  *
3668  * Return: 0 on success. An error code otherwise.
3669  */
3670 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3671 			       const struct sched_param *param)
3672 {
3673 	return _sched_setscheduler(p, policy, param, false);
3674 }
3675 
3676 static int
3677 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3678 {
3679 	struct sched_param lparam;
3680 	struct task_struct *p;
3681 	int retval;
3682 
3683 	if (!param || pid < 0)
3684 		return -EINVAL;
3685 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3686 		return -EFAULT;
3687 
3688 	rcu_read_lock();
3689 	retval = -ESRCH;
3690 	p = find_process_by_pid(pid);
3691 	if (p != NULL)
3692 		retval = sched_setscheduler(p, policy, &lparam);
3693 	rcu_read_unlock();
3694 
3695 	return retval;
3696 }
3697 
3698 /*
3699  * Mimics kernel/events/core.c perf_copy_attr().
3700  */
3701 static int sched_copy_attr(struct sched_attr __user *uattr,
3702 			   struct sched_attr *attr)
3703 {
3704 	u32 size;
3705 	int ret;
3706 
3707 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3708 		return -EFAULT;
3709 
3710 	/*
3711 	 * zero the full structure, so that a short copy will be nice.
3712 	 */
3713 	memset(attr, 0, sizeof(*attr));
3714 
3715 	ret = get_user(size, &uattr->size);
3716 	if (ret)
3717 		return ret;
3718 
3719 	if (size > PAGE_SIZE)	/* silly large */
3720 		goto err_size;
3721 
3722 	if (!size)		/* abi compat */
3723 		size = SCHED_ATTR_SIZE_VER0;
3724 
3725 	if (size < SCHED_ATTR_SIZE_VER0)
3726 		goto err_size;
3727 
3728 	/*
3729 	 * If we're handed a bigger struct than we know of,
3730 	 * ensure all the unknown bits are 0 - i.e. new
3731 	 * user-space does not rely on any kernel feature
3732 	 * extensions we dont know about yet.
3733 	 */
3734 	if (size > sizeof(*attr)) {
3735 		unsigned char __user *addr;
3736 		unsigned char __user *end;
3737 		unsigned char val;
3738 
3739 		addr = (void __user *)uattr + sizeof(*attr);
3740 		end  = (void __user *)uattr + size;
3741 
3742 		for (; addr < end; addr++) {
3743 			ret = get_user(val, addr);
3744 			if (ret)
3745 				return ret;
3746 			if (val)
3747 				goto err_size;
3748 		}
3749 		size = sizeof(*attr);
3750 	}
3751 
3752 	ret = copy_from_user(attr, uattr, size);
3753 	if (ret)
3754 		return -EFAULT;
3755 
3756 	/*
3757 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3758 	 * to be strict and return an error on out-of-bounds values?
3759 	 */
3760 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3761 
3762 	return 0;
3763 
3764 err_size:
3765 	put_user(sizeof(*attr), &uattr->size);
3766 	return -E2BIG;
3767 }
3768 
3769 /**
3770  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3771  * @pid: the pid in question.
3772  * @policy: new policy.
3773  * @param: structure containing the new RT priority.
3774  *
3775  * Return: 0 on success. An error code otherwise.
3776  */
3777 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3778 		struct sched_param __user *, param)
3779 {
3780 	/* negative values for policy are not valid */
3781 	if (policy < 0)
3782 		return -EINVAL;
3783 
3784 	return do_sched_setscheduler(pid, policy, param);
3785 }
3786 
3787 /**
3788  * sys_sched_setparam - set/change the RT priority of a thread
3789  * @pid: the pid in question.
3790  * @param: structure containing the new RT priority.
3791  *
3792  * Return: 0 on success. An error code otherwise.
3793  */
3794 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3795 {
3796 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3797 }
3798 
3799 /**
3800  * sys_sched_setattr - same as above, but with extended sched_attr
3801  * @pid: the pid in question.
3802  * @uattr: structure containing the extended parameters.
3803  * @flags: for future extension.
3804  */
3805 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3806 			       unsigned int, flags)
3807 {
3808 	struct sched_attr attr;
3809 	struct task_struct *p;
3810 	int retval;
3811 
3812 	if (!uattr || pid < 0 || flags)
3813 		return -EINVAL;
3814 
3815 	retval = sched_copy_attr(uattr, &attr);
3816 	if (retval)
3817 		return retval;
3818 
3819 	if ((int)attr.sched_policy < 0)
3820 		return -EINVAL;
3821 
3822 	rcu_read_lock();
3823 	retval = -ESRCH;
3824 	p = find_process_by_pid(pid);
3825 	if (p != NULL)
3826 		retval = sched_setattr(p, &attr);
3827 	rcu_read_unlock();
3828 
3829 	return retval;
3830 }
3831 
3832 /**
3833  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834  * @pid: the pid in question.
3835  *
3836  * Return: On success, the policy of the thread. Otherwise, a negative error
3837  * code.
3838  */
3839 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3840 {
3841 	struct task_struct *p;
3842 	int retval;
3843 
3844 	if (pid < 0)
3845 		return -EINVAL;
3846 
3847 	retval = -ESRCH;
3848 	rcu_read_lock();
3849 	p = find_process_by_pid(pid);
3850 	if (p) {
3851 		retval = security_task_getscheduler(p);
3852 		if (!retval)
3853 			retval = p->policy
3854 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3855 	}
3856 	rcu_read_unlock();
3857 	return retval;
3858 }
3859 
3860 /**
3861  * sys_sched_getparam - get the RT priority of a thread
3862  * @pid: the pid in question.
3863  * @param: structure containing the RT priority.
3864  *
3865  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3866  * code.
3867  */
3868 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3869 {
3870 	struct sched_param lp = { .sched_priority = 0 };
3871 	struct task_struct *p;
3872 	int retval;
3873 
3874 	if (!param || pid < 0)
3875 		return -EINVAL;
3876 
3877 	rcu_read_lock();
3878 	p = find_process_by_pid(pid);
3879 	retval = -ESRCH;
3880 	if (!p)
3881 		goto out_unlock;
3882 
3883 	retval = security_task_getscheduler(p);
3884 	if (retval)
3885 		goto out_unlock;
3886 
3887 	if (task_has_rt_policy(p))
3888 		lp.sched_priority = p->rt_priority;
3889 	rcu_read_unlock();
3890 
3891 	/*
3892 	 * This one might sleep, we cannot do it with a spinlock held ...
3893 	 */
3894 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3895 
3896 	return retval;
3897 
3898 out_unlock:
3899 	rcu_read_unlock();
3900 	return retval;
3901 }
3902 
3903 static int sched_read_attr(struct sched_attr __user *uattr,
3904 			   struct sched_attr *attr,
3905 			   unsigned int usize)
3906 {
3907 	int ret;
3908 
3909 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3910 		return -EFAULT;
3911 
3912 	/*
3913 	 * If we're handed a smaller struct than we know of,
3914 	 * ensure all the unknown bits are 0 - i.e. old
3915 	 * user-space does not get uncomplete information.
3916 	 */
3917 	if (usize < sizeof(*attr)) {
3918 		unsigned char *addr;
3919 		unsigned char *end;
3920 
3921 		addr = (void *)attr + usize;
3922 		end  = (void *)attr + sizeof(*attr);
3923 
3924 		for (; addr < end; addr++) {
3925 			if (*addr)
3926 				return -EFBIG;
3927 		}
3928 
3929 		attr->size = usize;
3930 	}
3931 
3932 	ret = copy_to_user(uattr, attr, attr->size);
3933 	if (ret)
3934 		return -EFAULT;
3935 
3936 	return 0;
3937 }
3938 
3939 /**
3940  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3941  * @pid: the pid in question.
3942  * @uattr: structure containing the extended parameters.
3943  * @size: sizeof(attr) for fwd/bwd comp.
3944  * @flags: for future extension.
3945  */
3946 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3947 		unsigned int, size, unsigned int, flags)
3948 {
3949 	struct sched_attr attr = {
3950 		.size = sizeof(struct sched_attr),
3951 	};
3952 	struct task_struct *p;
3953 	int retval;
3954 
3955 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3956 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3957 		return -EINVAL;
3958 
3959 	rcu_read_lock();
3960 	p = find_process_by_pid(pid);
3961 	retval = -ESRCH;
3962 	if (!p)
3963 		goto out_unlock;
3964 
3965 	retval = security_task_getscheduler(p);
3966 	if (retval)
3967 		goto out_unlock;
3968 
3969 	attr.sched_policy = p->policy;
3970 	if (p->sched_reset_on_fork)
3971 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3972 	if (task_has_dl_policy(p))
3973 		__getparam_dl(p, &attr);
3974 	else if (task_has_rt_policy(p))
3975 		attr.sched_priority = p->rt_priority;
3976 	else
3977 		attr.sched_nice = task_nice(p);
3978 
3979 	rcu_read_unlock();
3980 
3981 	retval = sched_read_attr(uattr, &attr, size);
3982 	return retval;
3983 
3984 out_unlock:
3985 	rcu_read_unlock();
3986 	return retval;
3987 }
3988 
3989 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3990 {
3991 	cpumask_var_t cpus_allowed, new_mask;
3992 	struct task_struct *p;
3993 	int retval;
3994 
3995 	rcu_read_lock();
3996 
3997 	p = find_process_by_pid(pid);
3998 	if (!p) {
3999 		rcu_read_unlock();
4000 		return -ESRCH;
4001 	}
4002 
4003 	/* Prevent p going away */
4004 	get_task_struct(p);
4005 	rcu_read_unlock();
4006 
4007 	if (p->flags & PF_NO_SETAFFINITY) {
4008 		retval = -EINVAL;
4009 		goto out_put_task;
4010 	}
4011 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4012 		retval = -ENOMEM;
4013 		goto out_put_task;
4014 	}
4015 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4016 		retval = -ENOMEM;
4017 		goto out_free_cpus_allowed;
4018 	}
4019 	retval = -EPERM;
4020 	if (!check_same_owner(p)) {
4021 		rcu_read_lock();
4022 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4023 			rcu_read_unlock();
4024 			goto out_free_new_mask;
4025 		}
4026 		rcu_read_unlock();
4027 	}
4028 
4029 	retval = security_task_setscheduler(p);
4030 	if (retval)
4031 		goto out_free_new_mask;
4032 
4033 
4034 	cpuset_cpus_allowed(p, cpus_allowed);
4035 	cpumask_and(new_mask, in_mask, cpus_allowed);
4036 
4037 	/*
4038 	 * Since bandwidth control happens on root_domain basis,
4039 	 * if admission test is enabled, we only admit -deadline
4040 	 * tasks allowed to run on all the CPUs in the task's
4041 	 * root_domain.
4042 	 */
4043 #ifdef CONFIG_SMP
4044 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4045 		rcu_read_lock();
4046 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4047 			retval = -EBUSY;
4048 			rcu_read_unlock();
4049 			goto out_free_new_mask;
4050 		}
4051 		rcu_read_unlock();
4052 	}
4053 #endif
4054 again:
4055 	retval = set_cpus_allowed_ptr(p, new_mask);
4056 
4057 	if (!retval) {
4058 		cpuset_cpus_allowed(p, cpus_allowed);
4059 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4060 			/*
4061 			 * We must have raced with a concurrent cpuset
4062 			 * update. Just reset the cpus_allowed to the
4063 			 * cpuset's cpus_allowed
4064 			 */
4065 			cpumask_copy(new_mask, cpus_allowed);
4066 			goto again;
4067 		}
4068 	}
4069 out_free_new_mask:
4070 	free_cpumask_var(new_mask);
4071 out_free_cpus_allowed:
4072 	free_cpumask_var(cpus_allowed);
4073 out_put_task:
4074 	put_task_struct(p);
4075 	return retval;
4076 }
4077 
4078 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4079 			     struct cpumask *new_mask)
4080 {
4081 	if (len < cpumask_size())
4082 		cpumask_clear(new_mask);
4083 	else if (len > cpumask_size())
4084 		len = cpumask_size();
4085 
4086 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4087 }
4088 
4089 /**
4090  * sys_sched_setaffinity - set the cpu affinity of a process
4091  * @pid: pid of the process
4092  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4093  * @user_mask_ptr: user-space pointer to the new cpu mask
4094  *
4095  * Return: 0 on success. An error code otherwise.
4096  */
4097 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4098 		unsigned long __user *, user_mask_ptr)
4099 {
4100 	cpumask_var_t new_mask;
4101 	int retval;
4102 
4103 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4104 		return -ENOMEM;
4105 
4106 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4107 	if (retval == 0)
4108 		retval = sched_setaffinity(pid, new_mask);
4109 	free_cpumask_var(new_mask);
4110 	return retval;
4111 }
4112 
4113 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4114 {
4115 	struct task_struct *p;
4116 	unsigned long flags;
4117 	int retval;
4118 
4119 	rcu_read_lock();
4120 
4121 	retval = -ESRCH;
4122 	p = find_process_by_pid(pid);
4123 	if (!p)
4124 		goto out_unlock;
4125 
4126 	retval = security_task_getscheduler(p);
4127 	if (retval)
4128 		goto out_unlock;
4129 
4130 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4131 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4132 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133 
4134 out_unlock:
4135 	rcu_read_unlock();
4136 
4137 	return retval;
4138 }
4139 
4140 /**
4141  * sys_sched_getaffinity - get the cpu affinity of a process
4142  * @pid: pid of the process
4143  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4144  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4145  *
4146  * Return: 0 on success. An error code otherwise.
4147  */
4148 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4149 		unsigned long __user *, user_mask_ptr)
4150 {
4151 	int ret;
4152 	cpumask_var_t mask;
4153 
4154 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4155 		return -EINVAL;
4156 	if (len & (sizeof(unsigned long)-1))
4157 		return -EINVAL;
4158 
4159 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4160 		return -ENOMEM;
4161 
4162 	ret = sched_getaffinity(pid, mask);
4163 	if (ret == 0) {
4164 		size_t retlen = min_t(size_t, len, cpumask_size());
4165 
4166 		if (copy_to_user(user_mask_ptr, mask, retlen))
4167 			ret = -EFAULT;
4168 		else
4169 			ret = retlen;
4170 	}
4171 	free_cpumask_var(mask);
4172 
4173 	return ret;
4174 }
4175 
4176 /**
4177  * sys_sched_yield - yield the current processor to other threads.
4178  *
4179  * This function yields the current CPU to other tasks. If there are no
4180  * other threads running on this CPU then this function will return.
4181  *
4182  * Return: 0.
4183  */
4184 SYSCALL_DEFINE0(sched_yield)
4185 {
4186 	struct rq *rq = this_rq_lock();
4187 
4188 	schedstat_inc(rq, yld_count);
4189 	current->sched_class->yield_task(rq);
4190 
4191 	/*
4192 	 * Since we are going to call schedule() anyway, there's
4193 	 * no need to preempt or enable interrupts:
4194 	 */
4195 	__release(rq->lock);
4196 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4197 	do_raw_spin_unlock(&rq->lock);
4198 	sched_preempt_enable_no_resched();
4199 
4200 	schedule();
4201 
4202 	return 0;
4203 }
4204 
4205 static void __cond_resched(void)
4206 {
4207 	__preempt_count_add(PREEMPT_ACTIVE);
4208 	__schedule();
4209 	__preempt_count_sub(PREEMPT_ACTIVE);
4210 }
4211 
4212 int __sched _cond_resched(void)
4213 {
4214 	if (should_resched()) {
4215 		__cond_resched();
4216 		return 1;
4217 	}
4218 	return 0;
4219 }
4220 EXPORT_SYMBOL(_cond_resched);
4221 
4222 /*
4223  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4224  * call schedule, and on return reacquire the lock.
4225  *
4226  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4227  * operations here to prevent schedule() from being called twice (once via
4228  * spin_unlock(), once by hand).
4229  */
4230 int __cond_resched_lock(spinlock_t *lock)
4231 {
4232 	int resched = should_resched();
4233 	int ret = 0;
4234 
4235 	lockdep_assert_held(lock);
4236 
4237 	if (spin_needbreak(lock) || resched) {
4238 		spin_unlock(lock);
4239 		if (resched)
4240 			__cond_resched();
4241 		else
4242 			cpu_relax();
4243 		ret = 1;
4244 		spin_lock(lock);
4245 	}
4246 	return ret;
4247 }
4248 EXPORT_SYMBOL(__cond_resched_lock);
4249 
4250 int __sched __cond_resched_softirq(void)
4251 {
4252 	BUG_ON(!in_softirq());
4253 
4254 	if (should_resched()) {
4255 		local_bh_enable();
4256 		__cond_resched();
4257 		local_bh_disable();
4258 		return 1;
4259 	}
4260 	return 0;
4261 }
4262 EXPORT_SYMBOL(__cond_resched_softirq);
4263 
4264 /**
4265  * yield - yield the current processor to other threads.
4266  *
4267  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4268  *
4269  * The scheduler is at all times free to pick the calling task as the most
4270  * eligible task to run, if removing the yield() call from your code breaks
4271  * it, its already broken.
4272  *
4273  * Typical broken usage is:
4274  *
4275  * while (!event)
4276  * 	yield();
4277  *
4278  * where one assumes that yield() will let 'the other' process run that will
4279  * make event true. If the current task is a SCHED_FIFO task that will never
4280  * happen. Never use yield() as a progress guarantee!!
4281  *
4282  * If you want to use yield() to wait for something, use wait_event().
4283  * If you want to use yield() to be 'nice' for others, use cond_resched().
4284  * If you still want to use yield(), do not!
4285  */
4286 void __sched yield(void)
4287 {
4288 	set_current_state(TASK_RUNNING);
4289 	sys_sched_yield();
4290 }
4291 EXPORT_SYMBOL(yield);
4292 
4293 /**
4294  * yield_to - yield the current processor to another thread in
4295  * your thread group, or accelerate that thread toward the
4296  * processor it's on.
4297  * @p: target task
4298  * @preempt: whether task preemption is allowed or not
4299  *
4300  * It's the caller's job to ensure that the target task struct
4301  * can't go away on us before we can do any checks.
4302  *
4303  * Return:
4304  *	true (>0) if we indeed boosted the target task.
4305  *	false (0) if we failed to boost the target.
4306  *	-ESRCH if there's no task to yield to.
4307  */
4308 int __sched yield_to(struct task_struct *p, bool preempt)
4309 {
4310 	struct task_struct *curr = current;
4311 	struct rq *rq, *p_rq;
4312 	unsigned long flags;
4313 	int yielded = 0;
4314 
4315 	local_irq_save(flags);
4316 	rq = this_rq();
4317 
4318 again:
4319 	p_rq = task_rq(p);
4320 	/*
4321 	 * If we're the only runnable task on the rq and target rq also
4322 	 * has only one task, there's absolutely no point in yielding.
4323 	 */
4324 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4325 		yielded = -ESRCH;
4326 		goto out_irq;
4327 	}
4328 
4329 	double_rq_lock(rq, p_rq);
4330 	if (task_rq(p) != p_rq) {
4331 		double_rq_unlock(rq, p_rq);
4332 		goto again;
4333 	}
4334 
4335 	if (!curr->sched_class->yield_to_task)
4336 		goto out_unlock;
4337 
4338 	if (curr->sched_class != p->sched_class)
4339 		goto out_unlock;
4340 
4341 	if (task_running(p_rq, p) || p->state)
4342 		goto out_unlock;
4343 
4344 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4345 	if (yielded) {
4346 		schedstat_inc(rq, yld_count);
4347 		/*
4348 		 * Make p's CPU reschedule; pick_next_entity takes care of
4349 		 * fairness.
4350 		 */
4351 		if (preempt && rq != p_rq)
4352 			resched_curr(p_rq);
4353 	}
4354 
4355 out_unlock:
4356 	double_rq_unlock(rq, p_rq);
4357 out_irq:
4358 	local_irq_restore(flags);
4359 
4360 	if (yielded > 0)
4361 		schedule();
4362 
4363 	return yielded;
4364 }
4365 EXPORT_SYMBOL_GPL(yield_to);
4366 
4367 /*
4368  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4369  * that process accounting knows that this is a task in IO wait state.
4370  */
4371 void __sched io_schedule(void)
4372 {
4373 	struct rq *rq = raw_rq();
4374 
4375 	delayacct_blkio_start();
4376 	atomic_inc(&rq->nr_iowait);
4377 	blk_flush_plug(current);
4378 	current->in_iowait = 1;
4379 	schedule();
4380 	current->in_iowait = 0;
4381 	atomic_dec(&rq->nr_iowait);
4382 	delayacct_blkio_end();
4383 }
4384 EXPORT_SYMBOL(io_schedule);
4385 
4386 long __sched io_schedule_timeout(long timeout)
4387 {
4388 	struct rq *rq = raw_rq();
4389 	long ret;
4390 
4391 	delayacct_blkio_start();
4392 	atomic_inc(&rq->nr_iowait);
4393 	blk_flush_plug(current);
4394 	current->in_iowait = 1;
4395 	ret = schedule_timeout(timeout);
4396 	current->in_iowait = 0;
4397 	atomic_dec(&rq->nr_iowait);
4398 	delayacct_blkio_end();
4399 	return ret;
4400 }
4401 
4402 /**
4403  * sys_sched_get_priority_max - return maximum RT priority.
4404  * @policy: scheduling class.
4405  *
4406  * Return: On success, this syscall returns the maximum
4407  * rt_priority that can be used by a given scheduling class.
4408  * On failure, a negative error code is returned.
4409  */
4410 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4411 {
4412 	int ret = -EINVAL;
4413 
4414 	switch (policy) {
4415 	case SCHED_FIFO:
4416 	case SCHED_RR:
4417 		ret = MAX_USER_RT_PRIO-1;
4418 		break;
4419 	case SCHED_DEADLINE:
4420 	case SCHED_NORMAL:
4421 	case SCHED_BATCH:
4422 	case SCHED_IDLE:
4423 		ret = 0;
4424 		break;
4425 	}
4426 	return ret;
4427 }
4428 
4429 /**
4430  * sys_sched_get_priority_min - return minimum RT priority.
4431  * @policy: scheduling class.
4432  *
4433  * Return: On success, this syscall returns the minimum
4434  * rt_priority that can be used by a given scheduling class.
4435  * On failure, a negative error code is returned.
4436  */
4437 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4438 {
4439 	int ret = -EINVAL;
4440 
4441 	switch (policy) {
4442 	case SCHED_FIFO:
4443 	case SCHED_RR:
4444 		ret = 1;
4445 		break;
4446 	case SCHED_DEADLINE:
4447 	case SCHED_NORMAL:
4448 	case SCHED_BATCH:
4449 	case SCHED_IDLE:
4450 		ret = 0;
4451 	}
4452 	return ret;
4453 }
4454 
4455 /**
4456  * sys_sched_rr_get_interval - return the default timeslice of a process.
4457  * @pid: pid of the process.
4458  * @interval: userspace pointer to the timeslice value.
4459  *
4460  * this syscall writes the default timeslice value of a given process
4461  * into the user-space timespec buffer. A value of '0' means infinity.
4462  *
4463  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4464  * an error code.
4465  */
4466 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4467 		struct timespec __user *, interval)
4468 {
4469 	struct task_struct *p;
4470 	unsigned int time_slice;
4471 	unsigned long flags;
4472 	struct rq *rq;
4473 	int retval;
4474 	struct timespec t;
4475 
4476 	if (pid < 0)
4477 		return -EINVAL;
4478 
4479 	retval = -ESRCH;
4480 	rcu_read_lock();
4481 	p = find_process_by_pid(pid);
4482 	if (!p)
4483 		goto out_unlock;
4484 
4485 	retval = security_task_getscheduler(p);
4486 	if (retval)
4487 		goto out_unlock;
4488 
4489 	rq = task_rq_lock(p, &flags);
4490 	time_slice = 0;
4491 	if (p->sched_class->get_rr_interval)
4492 		time_slice = p->sched_class->get_rr_interval(rq, p);
4493 	task_rq_unlock(rq, p, &flags);
4494 
4495 	rcu_read_unlock();
4496 	jiffies_to_timespec(time_slice, &t);
4497 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4498 	return retval;
4499 
4500 out_unlock:
4501 	rcu_read_unlock();
4502 	return retval;
4503 }
4504 
4505 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4506 
4507 void sched_show_task(struct task_struct *p)
4508 {
4509 	unsigned long free = 0;
4510 	int ppid;
4511 	unsigned state;
4512 
4513 	state = p->state ? __ffs(p->state) + 1 : 0;
4514 	printk(KERN_INFO "%-15.15s %c", p->comm,
4515 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4516 #if BITS_PER_LONG == 32
4517 	if (state == TASK_RUNNING)
4518 		printk(KERN_CONT " running  ");
4519 	else
4520 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4521 #else
4522 	if (state == TASK_RUNNING)
4523 		printk(KERN_CONT "  running task    ");
4524 	else
4525 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4526 #endif
4527 #ifdef CONFIG_DEBUG_STACK_USAGE
4528 	free = stack_not_used(p);
4529 #endif
4530 	ppid = 0;
4531 	rcu_read_lock();
4532 	if (pid_alive(p))
4533 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4534 	rcu_read_unlock();
4535 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4536 		task_pid_nr(p), ppid,
4537 		(unsigned long)task_thread_info(p)->flags);
4538 
4539 	print_worker_info(KERN_INFO, p);
4540 	show_stack(p, NULL);
4541 }
4542 
4543 void show_state_filter(unsigned long state_filter)
4544 {
4545 	struct task_struct *g, *p;
4546 
4547 #if BITS_PER_LONG == 32
4548 	printk(KERN_INFO
4549 		"  task                PC stack   pid father\n");
4550 #else
4551 	printk(KERN_INFO
4552 		"  task                        PC stack   pid father\n");
4553 #endif
4554 	rcu_read_lock();
4555 	for_each_process_thread(g, p) {
4556 		/*
4557 		 * reset the NMI-timeout, listing all files on a slow
4558 		 * console might take a lot of time:
4559 		 */
4560 		touch_nmi_watchdog();
4561 		if (!state_filter || (p->state & state_filter))
4562 			sched_show_task(p);
4563 	}
4564 
4565 	touch_all_softlockup_watchdogs();
4566 
4567 #ifdef CONFIG_SCHED_DEBUG
4568 	sysrq_sched_debug_show();
4569 #endif
4570 	rcu_read_unlock();
4571 	/*
4572 	 * Only show locks if all tasks are dumped:
4573 	 */
4574 	if (!state_filter)
4575 		debug_show_all_locks();
4576 }
4577 
4578 void init_idle_bootup_task(struct task_struct *idle)
4579 {
4580 	idle->sched_class = &idle_sched_class;
4581 }
4582 
4583 /**
4584  * init_idle - set up an idle thread for a given CPU
4585  * @idle: task in question
4586  * @cpu: cpu the idle task belongs to
4587  *
4588  * NOTE: this function does not set the idle thread's NEED_RESCHED
4589  * flag, to make booting more robust.
4590  */
4591 void init_idle(struct task_struct *idle, int cpu)
4592 {
4593 	struct rq *rq = cpu_rq(cpu);
4594 	unsigned long flags;
4595 
4596 	raw_spin_lock_irqsave(&rq->lock, flags);
4597 
4598 	__sched_fork(0, idle);
4599 	idle->state = TASK_RUNNING;
4600 	idle->se.exec_start = sched_clock();
4601 
4602 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4603 	/*
4604 	 * We're having a chicken and egg problem, even though we are
4605 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4606 	 * lockdep check in task_group() will fail.
4607 	 *
4608 	 * Similar case to sched_fork(). / Alternatively we could
4609 	 * use task_rq_lock() here and obtain the other rq->lock.
4610 	 *
4611 	 * Silence PROVE_RCU
4612 	 */
4613 	rcu_read_lock();
4614 	__set_task_cpu(idle, cpu);
4615 	rcu_read_unlock();
4616 
4617 	rq->curr = rq->idle = idle;
4618 	idle->on_rq = TASK_ON_RQ_QUEUED;
4619 #if defined(CONFIG_SMP)
4620 	idle->on_cpu = 1;
4621 #endif
4622 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4623 
4624 	/* Set the preempt count _outside_ the spinlocks! */
4625 	init_idle_preempt_count(idle, cpu);
4626 
4627 	/*
4628 	 * The idle tasks have their own, simple scheduling class:
4629 	 */
4630 	idle->sched_class = &idle_sched_class;
4631 	ftrace_graph_init_idle_task(idle, cpu);
4632 	vtime_init_idle(idle, cpu);
4633 #if defined(CONFIG_SMP)
4634 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4635 #endif
4636 }
4637 
4638 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4639 			      const struct cpumask *trial)
4640 {
4641 	int ret = 1, trial_cpus;
4642 	struct dl_bw *cur_dl_b;
4643 	unsigned long flags;
4644 
4645 	rcu_read_lock_sched();
4646 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4647 	trial_cpus = cpumask_weight(trial);
4648 
4649 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4650 	if (cur_dl_b->bw != -1 &&
4651 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4652 		ret = 0;
4653 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4654 	rcu_read_unlock_sched();
4655 
4656 	return ret;
4657 }
4658 
4659 int task_can_attach(struct task_struct *p,
4660 		    const struct cpumask *cs_cpus_allowed)
4661 {
4662 	int ret = 0;
4663 
4664 	/*
4665 	 * Kthreads which disallow setaffinity shouldn't be moved
4666 	 * to a new cpuset; we don't want to change their cpu
4667 	 * affinity and isolating such threads by their set of
4668 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4669 	 * applicable for such threads.  This prevents checking for
4670 	 * success of set_cpus_allowed_ptr() on all attached tasks
4671 	 * before cpus_allowed may be changed.
4672 	 */
4673 	if (p->flags & PF_NO_SETAFFINITY) {
4674 		ret = -EINVAL;
4675 		goto out;
4676 	}
4677 
4678 #ifdef CONFIG_SMP
4679 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4680 					      cs_cpus_allowed)) {
4681 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4682 							cs_cpus_allowed);
4683 		struct dl_bw *dl_b;
4684 		bool overflow;
4685 		int cpus;
4686 		unsigned long flags;
4687 
4688 		rcu_read_lock_sched();
4689 		dl_b = dl_bw_of(dest_cpu);
4690 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4691 		cpus = dl_bw_cpus(dest_cpu);
4692 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4693 		if (overflow)
4694 			ret = -EBUSY;
4695 		else {
4696 			/*
4697 			 * We reserve space for this task in the destination
4698 			 * root_domain, as we can't fail after this point.
4699 			 * We will free resources in the source root_domain
4700 			 * later on (see set_cpus_allowed_dl()).
4701 			 */
4702 			__dl_add(dl_b, p->dl.dl_bw);
4703 		}
4704 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4705 		rcu_read_unlock_sched();
4706 
4707 	}
4708 #endif
4709 out:
4710 	return ret;
4711 }
4712 
4713 #ifdef CONFIG_SMP
4714 /*
4715  * move_queued_task - move a queued task to new rq.
4716  *
4717  * Returns (locked) new rq. Old rq's lock is released.
4718  */
4719 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4720 {
4721 	struct rq *rq = task_rq(p);
4722 
4723 	lockdep_assert_held(&rq->lock);
4724 
4725 	dequeue_task(rq, p, 0);
4726 	p->on_rq = TASK_ON_RQ_MIGRATING;
4727 	set_task_cpu(p, new_cpu);
4728 	raw_spin_unlock(&rq->lock);
4729 
4730 	rq = cpu_rq(new_cpu);
4731 
4732 	raw_spin_lock(&rq->lock);
4733 	BUG_ON(task_cpu(p) != new_cpu);
4734 	p->on_rq = TASK_ON_RQ_QUEUED;
4735 	enqueue_task(rq, p, 0);
4736 	check_preempt_curr(rq, p, 0);
4737 
4738 	return rq;
4739 }
4740 
4741 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4742 {
4743 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4744 		p->sched_class->set_cpus_allowed(p, new_mask);
4745 
4746 	cpumask_copy(&p->cpus_allowed, new_mask);
4747 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4748 }
4749 
4750 /*
4751  * This is how migration works:
4752  *
4753  * 1) we invoke migration_cpu_stop() on the target CPU using
4754  *    stop_one_cpu().
4755  * 2) stopper starts to run (implicitly forcing the migrated thread
4756  *    off the CPU)
4757  * 3) it checks whether the migrated task is still in the wrong runqueue.
4758  * 4) if it's in the wrong runqueue then the migration thread removes
4759  *    it and puts it into the right queue.
4760  * 5) stopper completes and stop_one_cpu() returns and the migration
4761  *    is done.
4762  */
4763 
4764 /*
4765  * Change a given task's CPU affinity. Migrate the thread to a
4766  * proper CPU and schedule it away if the CPU it's executing on
4767  * is removed from the allowed bitmask.
4768  *
4769  * NOTE: the caller must have a valid reference to the task, the
4770  * task must not exit() & deallocate itself prematurely. The
4771  * call is not atomic; no spinlocks may be held.
4772  */
4773 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4774 {
4775 	unsigned long flags;
4776 	struct rq *rq;
4777 	unsigned int dest_cpu;
4778 	int ret = 0;
4779 
4780 	rq = task_rq_lock(p, &flags);
4781 
4782 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4783 		goto out;
4784 
4785 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4786 		ret = -EINVAL;
4787 		goto out;
4788 	}
4789 
4790 	do_set_cpus_allowed(p, new_mask);
4791 
4792 	/* Can the task run on the task's current CPU? If so, we're done */
4793 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4794 		goto out;
4795 
4796 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4797 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4798 		struct migration_arg arg = { p, dest_cpu };
4799 		/* Need help from migration thread: drop lock and wait. */
4800 		task_rq_unlock(rq, p, &flags);
4801 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4802 		tlb_migrate_finish(p->mm);
4803 		return 0;
4804 	} else if (task_on_rq_queued(p))
4805 		rq = move_queued_task(p, dest_cpu);
4806 out:
4807 	task_rq_unlock(rq, p, &flags);
4808 
4809 	return ret;
4810 }
4811 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4812 
4813 /*
4814  * Move (not current) task off this cpu, onto dest cpu. We're doing
4815  * this because either it can't run here any more (set_cpus_allowed()
4816  * away from this CPU, or CPU going down), or because we're
4817  * attempting to rebalance this task on exec (sched_exec).
4818  *
4819  * So we race with normal scheduler movements, but that's OK, as long
4820  * as the task is no longer on this CPU.
4821  *
4822  * Returns non-zero if task was successfully migrated.
4823  */
4824 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4825 {
4826 	struct rq *rq;
4827 	int ret = 0;
4828 
4829 	if (unlikely(!cpu_active(dest_cpu)))
4830 		return ret;
4831 
4832 	rq = cpu_rq(src_cpu);
4833 
4834 	raw_spin_lock(&p->pi_lock);
4835 	raw_spin_lock(&rq->lock);
4836 	/* Already moved. */
4837 	if (task_cpu(p) != src_cpu)
4838 		goto done;
4839 
4840 	/* Affinity changed (again). */
4841 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4842 		goto fail;
4843 
4844 	/*
4845 	 * If we're not on a rq, the next wake-up will ensure we're
4846 	 * placed properly.
4847 	 */
4848 	if (task_on_rq_queued(p))
4849 		rq = move_queued_task(p, dest_cpu);
4850 done:
4851 	ret = 1;
4852 fail:
4853 	raw_spin_unlock(&rq->lock);
4854 	raw_spin_unlock(&p->pi_lock);
4855 	return ret;
4856 }
4857 
4858 #ifdef CONFIG_NUMA_BALANCING
4859 /* Migrate current task p to target_cpu */
4860 int migrate_task_to(struct task_struct *p, int target_cpu)
4861 {
4862 	struct migration_arg arg = { p, target_cpu };
4863 	int curr_cpu = task_cpu(p);
4864 
4865 	if (curr_cpu == target_cpu)
4866 		return 0;
4867 
4868 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4869 		return -EINVAL;
4870 
4871 	/* TODO: This is not properly updating schedstats */
4872 
4873 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4874 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4875 }
4876 
4877 /*
4878  * Requeue a task on a given node and accurately track the number of NUMA
4879  * tasks on the runqueues
4880  */
4881 void sched_setnuma(struct task_struct *p, int nid)
4882 {
4883 	struct rq *rq;
4884 	unsigned long flags;
4885 	bool queued, running;
4886 
4887 	rq = task_rq_lock(p, &flags);
4888 	queued = task_on_rq_queued(p);
4889 	running = task_current(rq, p);
4890 
4891 	if (queued)
4892 		dequeue_task(rq, p, 0);
4893 	if (running)
4894 		put_prev_task(rq, p);
4895 
4896 	p->numa_preferred_nid = nid;
4897 
4898 	if (running)
4899 		p->sched_class->set_curr_task(rq);
4900 	if (queued)
4901 		enqueue_task(rq, p, 0);
4902 	task_rq_unlock(rq, p, &flags);
4903 }
4904 #endif
4905 
4906 /*
4907  * migration_cpu_stop - this will be executed by a highprio stopper thread
4908  * and performs thread migration by bumping thread off CPU then
4909  * 'pushing' onto another runqueue.
4910  */
4911 static int migration_cpu_stop(void *data)
4912 {
4913 	struct migration_arg *arg = data;
4914 
4915 	/*
4916 	 * The original target cpu might have gone down and we might
4917 	 * be on another cpu but it doesn't matter.
4918 	 */
4919 	local_irq_disable();
4920 	/*
4921 	 * We need to explicitly wake pending tasks before running
4922 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4923 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4924 	 */
4925 	sched_ttwu_pending();
4926 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4927 	local_irq_enable();
4928 	return 0;
4929 }
4930 
4931 #ifdef CONFIG_HOTPLUG_CPU
4932 
4933 /*
4934  * Ensures that the idle task is using init_mm right before its cpu goes
4935  * offline.
4936  */
4937 void idle_task_exit(void)
4938 {
4939 	struct mm_struct *mm = current->active_mm;
4940 
4941 	BUG_ON(cpu_online(smp_processor_id()));
4942 
4943 	if (mm != &init_mm) {
4944 		switch_mm(mm, &init_mm, current);
4945 		finish_arch_post_lock_switch();
4946 	}
4947 	mmdrop(mm);
4948 }
4949 
4950 /*
4951  * Since this CPU is going 'away' for a while, fold any nr_active delta
4952  * we might have. Assumes we're called after migrate_tasks() so that the
4953  * nr_active count is stable.
4954  *
4955  * Also see the comment "Global load-average calculations".
4956  */
4957 static void calc_load_migrate(struct rq *rq)
4958 {
4959 	long delta = calc_load_fold_active(rq);
4960 	if (delta)
4961 		atomic_long_add(delta, &calc_load_tasks);
4962 }
4963 
4964 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4965 {
4966 }
4967 
4968 static const struct sched_class fake_sched_class = {
4969 	.put_prev_task = put_prev_task_fake,
4970 };
4971 
4972 static struct task_struct fake_task = {
4973 	/*
4974 	 * Avoid pull_{rt,dl}_task()
4975 	 */
4976 	.prio = MAX_PRIO + 1,
4977 	.sched_class = &fake_sched_class,
4978 };
4979 
4980 /*
4981  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4982  * try_to_wake_up()->select_task_rq().
4983  *
4984  * Called with rq->lock held even though we'er in stop_machine() and
4985  * there's no concurrency possible, we hold the required locks anyway
4986  * because of lock validation efforts.
4987  */
4988 static void migrate_tasks(unsigned int dead_cpu)
4989 {
4990 	struct rq *rq = cpu_rq(dead_cpu);
4991 	struct task_struct *next, *stop = rq->stop;
4992 	int dest_cpu;
4993 
4994 	/*
4995 	 * Fudge the rq selection such that the below task selection loop
4996 	 * doesn't get stuck on the currently eligible stop task.
4997 	 *
4998 	 * We're currently inside stop_machine() and the rq is either stuck
4999 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5000 	 * either way we should never end up calling schedule() until we're
5001 	 * done here.
5002 	 */
5003 	rq->stop = NULL;
5004 
5005 	/*
5006 	 * put_prev_task() and pick_next_task() sched
5007 	 * class method both need to have an up-to-date
5008 	 * value of rq->clock[_task]
5009 	 */
5010 	update_rq_clock(rq);
5011 
5012 	for ( ; ; ) {
5013 		/*
5014 		 * There's this thread running, bail when that's the only
5015 		 * remaining thread.
5016 		 */
5017 		if (rq->nr_running == 1)
5018 			break;
5019 
5020 		next = pick_next_task(rq, &fake_task);
5021 		BUG_ON(!next);
5022 		next->sched_class->put_prev_task(rq, next);
5023 
5024 		/* Find suitable destination for @next, with force if needed. */
5025 		dest_cpu = select_fallback_rq(dead_cpu, next);
5026 		raw_spin_unlock(&rq->lock);
5027 
5028 		__migrate_task(next, dead_cpu, dest_cpu);
5029 
5030 		raw_spin_lock(&rq->lock);
5031 	}
5032 
5033 	rq->stop = stop;
5034 }
5035 
5036 #endif /* CONFIG_HOTPLUG_CPU */
5037 
5038 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5039 
5040 static struct ctl_table sd_ctl_dir[] = {
5041 	{
5042 		.procname	= "sched_domain",
5043 		.mode		= 0555,
5044 	},
5045 	{}
5046 };
5047 
5048 static struct ctl_table sd_ctl_root[] = {
5049 	{
5050 		.procname	= "kernel",
5051 		.mode		= 0555,
5052 		.child		= sd_ctl_dir,
5053 	},
5054 	{}
5055 };
5056 
5057 static struct ctl_table *sd_alloc_ctl_entry(int n)
5058 {
5059 	struct ctl_table *entry =
5060 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5061 
5062 	return entry;
5063 }
5064 
5065 static void sd_free_ctl_entry(struct ctl_table **tablep)
5066 {
5067 	struct ctl_table *entry;
5068 
5069 	/*
5070 	 * In the intermediate directories, both the child directory and
5071 	 * procname are dynamically allocated and could fail but the mode
5072 	 * will always be set. In the lowest directory the names are
5073 	 * static strings and all have proc handlers.
5074 	 */
5075 	for (entry = *tablep; entry->mode; entry++) {
5076 		if (entry->child)
5077 			sd_free_ctl_entry(&entry->child);
5078 		if (entry->proc_handler == NULL)
5079 			kfree(entry->procname);
5080 	}
5081 
5082 	kfree(*tablep);
5083 	*tablep = NULL;
5084 }
5085 
5086 static int min_load_idx = 0;
5087 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5088 
5089 static void
5090 set_table_entry(struct ctl_table *entry,
5091 		const char *procname, void *data, int maxlen,
5092 		umode_t mode, proc_handler *proc_handler,
5093 		bool load_idx)
5094 {
5095 	entry->procname = procname;
5096 	entry->data = data;
5097 	entry->maxlen = maxlen;
5098 	entry->mode = mode;
5099 	entry->proc_handler = proc_handler;
5100 
5101 	if (load_idx) {
5102 		entry->extra1 = &min_load_idx;
5103 		entry->extra2 = &max_load_idx;
5104 	}
5105 }
5106 
5107 static struct ctl_table *
5108 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5109 {
5110 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5111 
5112 	if (table == NULL)
5113 		return NULL;
5114 
5115 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5116 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5117 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5118 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5119 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5120 		sizeof(int), 0644, proc_dointvec_minmax, true);
5121 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5122 		sizeof(int), 0644, proc_dointvec_minmax, true);
5123 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5124 		sizeof(int), 0644, proc_dointvec_minmax, true);
5125 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5126 		sizeof(int), 0644, proc_dointvec_minmax, true);
5127 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5128 		sizeof(int), 0644, proc_dointvec_minmax, true);
5129 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5130 		sizeof(int), 0644, proc_dointvec_minmax, false);
5131 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5132 		sizeof(int), 0644, proc_dointvec_minmax, false);
5133 	set_table_entry(&table[9], "cache_nice_tries",
5134 		&sd->cache_nice_tries,
5135 		sizeof(int), 0644, proc_dointvec_minmax, false);
5136 	set_table_entry(&table[10], "flags", &sd->flags,
5137 		sizeof(int), 0644, proc_dointvec_minmax, false);
5138 	set_table_entry(&table[11], "max_newidle_lb_cost",
5139 		&sd->max_newidle_lb_cost,
5140 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5141 	set_table_entry(&table[12], "name", sd->name,
5142 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5143 	/* &table[13] is terminator */
5144 
5145 	return table;
5146 }
5147 
5148 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5149 {
5150 	struct ctl_table *entry, *table;
5151 	struct sched_domain *sd;
5152 	int domain_num = 0, i;
5153 	char buf[32];
5154 
5155 	for_each_domain(cpu, sd)
5156 		domain_num++;
5157 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5158 	if (table == NULL)
5159 		return NULL;
5160 
5161 	i = 0;
5162 	for_each_domain(cpu, sd) {
5163 		snprintf(buf, 32, "domain%d", i);
5164 		entry->procname = kstrdup(buf, GFP_KERNEL);
5165 		entry->mode = 0555;
5166 		entry->child = sd_alloc_ctl_domain_table(sd);
5167 		entry++;
5168 		i++;
5169 	}
5170 	return table;
5171 }
5172 
5173 static struct ctl_table_header *sd_sysctl_header;
5174 static void register_sched_domain_sysctl(void)
5175 {
5176 	int i, cpu_num = num_possible_cpus();
5177 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5178 	char buf[32];
5179 
5180 	WARN_ON(sd_ctl_dir[0].child);
5181 	sd_ctl_dir[0].child = entry;
5182 
5183 	if (entry == NULL)
5184 		return;
5185 
5186 	for_each_possible_cpu(i) {
5187 		snprintf(buf, 32, "cpu%d", i);
5188 		entry->procname = kstrdup(buf, GFP_KERNEL);
5189 		entry->mode = 0555;
5190 		entry->child = sd_alloc_ctl_cpu_table(i);
5191 		entry++;
5192 	}
5193 
5194 	WARN_ON(sd_sysctl_header);
5195 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5196 }
5197 
5198 /* may be called multiple times per register */
5199 static void unregister_sched_domain_sysctl(void)
5200 {
5201 	if (sd_sysctl_header)
5202 		unregister_sysctl_table(sd_sysctl_header);
5203 	sd_sysctl_header = NULL;
5204 	if (sd_ctl_dir[0].child)
5205 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5206 }
5207 #else
5208 static void register_sched_domain_sysctl(void)
5209 {
5210 }
5211 static void unregister_sched_domain_sysctl(void)
5212 {
5213 }
5214 #endif
5215 
5216 static void set_rq_online(struct rq *rq)
5217 {
5218 	if (!rq->online) {
5219 		const struct sched_class *class;
5220 
5221 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5222 		rq->online = 1;
5223 
5224 		for_each_class(class) {
5225 			if (class->rq_online)
5226 				class->rq_online(rq);
5227 		}
5228 	}
5229 }
5230 
5231 static void set_rq_offline(struct rq *rq)
5232 {
5233 	if (rq->online) {
5234 		const struct sched_class *class;
5235 
5236 		for_each_class(class) {
5237 			if (class->rq_offline)
5238 				class->rq_offline(rq);
5239 		}
5240 
5241 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5242 		rq->online = 0;
5243 	}
5244 }
5245 
5246 /*
5247  * migration_call - callback that gets triggered when a CPU is added.
5248  * Here we can start up the necessary migration thread for the new CPU.
5249  */
5250 static int
5251 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5252 {
5253 	int cpu = (long)hcpu;
5254 	unsigned long flags;
5255 	struct rq *rq = cpu_rq(cpu);
5256 
5257 	switch (action & ~CPU_TASKS_FROZEN) {
5258 
5259 	case CPU_UP_PREPARE:
5260 		rq->calc_load_update = calc_load_update;
5261 		break;
5262 
5263 	case CPU_ONLINE:
5264 		/* Update our root-domain */
5265 		raw_spin_lock_irqsave(&rq->lock, flags);
5266 		if (rq->rd) {
5267 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5268 
5269 			set_rq_online(rq);
5270 		}
5271 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5272 		break;
5273 
5274 #ifdef CONFIG_HOTPLUG_CPU
5275 	case CPU_DYING:
5276 		sched_ttwu_pending();
5277 		/* Update our root-domain */
5278 		raw_spin_lock_irqsave(&rq->lock, flags);
5279 		if (rq->rd) {
5280 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5281 			set_rq_offline(rq);
5282 		}
5283 		migrate_tasks(cpu);
5284 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5285 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5286 		break;
5287 
5288 	case CPU_DEAD:
5289 		calc_load_migrate(rq);
5290 		break;
5291 #endif
5292 	}
5293 
5294 	update_max_interval();
5295 
5296 	return NOTIFY_OK;
5297 }
5298 
5299 /*
5300  * Register at high priority so that task migration (migrate_all_tasks)
5301  * happens before everything else.  This has to be lower priority than
5302  * the notifier in the perf_event subsystem, though.
5303  */
5304 static struct notifier_block migration_notifier = {
5305 	.notifier_call = migration_call,
5306 	.priority = CPU_PRI_MIGRATION,
5307 };
5308 
5309 static void __cpuinit set_cpu_rq_start_time(void)
5310 {
5311 	int cpu = smp_processor_id();
5312 	struct rq *rq = cpu_rq(cpu);
5313 	rq->age_stamp = sched_clock_cpu(cpu);
5314 }
5315 
5316 static int sched_cpu_active(struct notifier_block *nfb,
5317 				      unsigned long action, void *hcpu)
5318 {
5319 	switch (action & ~CPU_TASKS_FROZEN) {
5320 	case CPU_STARTING:
5321 		set_cpu_rq_start_time();
5322 		return NOTIFY_OK;
5323 	case CPU_DOWN_FAILED:
5324 		set_cpu_active((long)hcpu, true);
5325 		return NOTIFY_OK;
5326 	default:
5327 		return NOTIFY_DONE;
5328 	}
5329 }
5330 
5331 static int sched_cpu_inactive(struct notifier_block *nfb,
5332 					unsigned long action, void *hcpu)
5333 {
5334 	unsigned long flags;
5335 	long cpu = (long)hcpu;
5336 	struct dl_bw *dl_b;
5337 
5338 	switch (action & ~CPU_TASKS_FROZEN) {
5339 	case CPU_DOWN_PREPARE:
5340 		set_cpu_active(cpu, false);
5341 
5342 		/* explicitly allow suspend */
5343 		if (!(action & CPU_TASKS_FROZEN)) {
5344 			bool overflow;
5345 			int cpus;
5346 
5347 			rcu_read_lock_sched();
5348 			dl_b = dl_bw_of(cpu);
5349 
5350 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5351 			cpus = dl_bw_cpus(cpu);
5352 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5353 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5354 
5355 			rcu_read_unlock_sched();
5356 
5357 			if (overflow)
5358 				return notifier_from_errno(-EBUSY);
5359 		}
5360 		return NOTIFY_OK;
5361 	}
5362 
5363 	return NOTIFY_DONE;
5364 }
5365 
5366 static int __init migration_init(void)
5367 {
5368 	void *cpu = (void *)(long)smp_processor_id();
5369 	int err;
5370 
5371 	/* Initialize migration for the boot CPU */
5372 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5373 	BUG_ON(err == NOTIFY_BAD);
5374 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5375 	register_cpu_notifier(&migration_notifier);
5376 
5377 	/* Register cpu active notifiers */
5378 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5379 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5380 
5381 	return 0;
5382 }
5383 early_initcall(migration_init);
5384 #endif
5385 
5386 #ifdef CONFIG_SMP
5387 
5388 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5389 
5390 #ifdef CONFIG_SCHED_DEBUG
5391 
5392 static __read_mostly int sched_debug_enabled;
5393 
5394 static int __init sched_debug_setup(char *str)
5395 {
5396 	sched_debug_enabled = 1;
5397 
5398 	return 0;
5399 }
5400 early_param("sched_debug", sched_debug_setup);
5401 
5402 static inline bool sched_debug(void)
5403 {
5404 	return sched_debug_enabled;
5405 }
5406 
5407 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5408 				  struct cpumask *groupmask)
5409 {
5410 	struct sched_group *group = sd->groups;
5411 	char str[256];
5412 
5413 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5414 	cpumask_clear(groupmask);
5415 
5416 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5417 
5418 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5419 		printk("does not load-balance\n");
5420 		if (sd->parent)
5421 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5422 					" has parent");
5423 		return -1;
5424 	}
5425 
5426 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5427 
5428 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5429 		printk(KERN_ERR "ERROR: domain->span does not contain "
5430 				"CPU%d\n", cpu);
5431 	}
5432 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5433 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5434 				" CPU%d\n", cpu);
5435 	}
5436 
5437 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5438 	do {
5439 		if (!group) {
5440 			printk("\n");
5441 			printk(KERN_ERR "ERROR: group is NULL\n");
5442 			break;
5443 		}
5444 
5445 		/*
5446 		 * Even though we initialize ->capacity to something semi-sane,
5447 		 * we leave capacity_orig unset. This allows us to detect if
5448 		 * domain iteration is still funny without causing /0 traps.
5449 		 */
5450 		if (!group->sgc->capacity_orig) {
5451 			printk(KERN_CONT "\n");
5452 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5453 			break;
5454 		}
5455 
5456 		if (!cpumask_weight(sched_group_cpus(group))) {
5457 			printk(KERN_CONT "\n");
5458 			printk(KERN_ERR "ERROR: empty group\n");
5459 			break;
5460 		}
5461 
5462 		if (!(sd->flags & SD_OVERLAP) &&
5463 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5464 			printk(KERN_CONT "\n");
5465 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5466 			break;
5467 		}
5468 
5469 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5470 
5471 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5472 
5473 		printk(KERN_CONT " %s", str);
5474 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5475 			printk(KERN_CONT " (cpu_capacity = %d)",
5476 				group->sgc->capacity);
5477 		}
5478 
5479 		group = group->next;
5480 	} while (group != sd->groups);
5481 	printk(KERN_CONT "\n");
5482 
5483 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5484 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5485 
5486 	if (sd->parent &&
5487 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5488 		printk(KERN_ERR "ERROR: parent span is not a superset "
5489 			"of domain->span\n");
5490 	return 0;
5491 }
5492 
5493 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5494 {
5495 	int level = 0;
5496 
5497 	if (!sched_debug_enabled)
5498 		return;
5499 
5500 	if (!sd) {
5501 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5502 		return;
5503 	}
5504 
5505 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5506 
5507 	for (;;) {
5508 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5509 			break;
5510 		level++;
5511 		sd = sd->parent;
5512 		if (!sd)
5513 			break;
5514 	}
5515 }
5516 #else /* !CONFIG_SCHED_DEBUG */
5517 # define sched_domain_debug(sd, cpu) do { } while (0)
5518 static inline bool sched_debug(void)
5519 {
5520 	return false;
5521 }
5522 #endif /* CONFIG_SCHED_DEBUG */
5523 
5524 static int sd_degenerate(struct sched_domain *sd)
5525 {
5526 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5527 		return 1;
5528 
5529 	/* Following flags need at least 2 groups */
5530 	if (sd->flags & (SD_LOAD_BALANCE |
5531 			 SD_BALANCE_NEWIDLE |
5532 			 SD_BALANCE_FORK |
5533 			 SD_BALANCE_EXEC |
5534 			 SD_SHARE_CPUCAPACITY |
5535 			 SD_SHARE_PKG_RESOURCES |
5536 			 SD_SHARE_POWERDOMAIN)) {
5537 		if (sd->groups != sd->groups->next)
5538 			return 0;
5539 	}
5540 
5541 	/* Following flags don't use groups */
5542 	if (sd->flags & (SD_WAKE_AFFINE))
5543 		return 0;
5544 
5545 	return 1;
5546 }
5547 
5548 static int
5549 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5550 {
5551 	unsigned long cflags = sd->flags, pflags = parent->flags;
5552 
5553 	if (sd_degenerate(parent))
5554 		return 1;
5555 
5556 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5557 		return 0;
5558 
5559 	/* Flags needing groups don't count if only 1 group in parent */
5560 	if (parent->groups == parent->groups->next) {
5561 		pflags &= ~(SD_LOAD_BALANCE |
5562 				SD_BALANCE_NEWIDLE |
5563 				SD_BALANCE_FORK |
5564 				SD_BALANCE_EXEC |
5565 				SD_SHARE_CPUCAPACITY |
5566 				SD_SHARE_PKG_RESOURCES |
5567 				SD_PREFER_SIBLING |
5568 				SD_SHARE_POWERDOMAIN);
5569 		if (nr_node_ids == 1)
5570 			pflags &= ~SD_SERIALIZE;
5571 	}
5572 	if (~cflags & pflags)
5573 		return 0;
5574 
5575 	return 1;
5576 }
5577 
5578 static void free_rootdomain(struct rcu_head *rcu)
5579 {
5580 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5581 
5582 	cpupri_cleanup(&rd->cpupri);
5583 	cpudl_cleanup(&rd->cpudl);
5584 	free_cpumask_var(rd->dlo_mask);
5585 	free_cpumask_var(rd->rto_mask);
5586 	free_cpumask_var(rd->online);
5587 	free_cpumask_var(rd->span);
5588 	kfree(rd);
5589 }
5590 
5591 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5592 {
5593 	struct root_domain *old_rd = NULL;
5594 	unsigned long flags;
5595 
5596 	raw_spin_lock_irqsave(&rq->lock, flags);
5597 
5598 	if (rq->rd) {
5599 		old_rd = rq->rd;
5600 
5601 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5602 			set_rq_offline(rq);
5603 
5604 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5605 
5606 		/*
5607 		 * If we dont want to free the old_rd yet then
5608 		 * set old_rd to NULL to skip the freeing later
5609 		 * in this function:
5610 		 */
5611 		if (!atomic_dec_and_test(&old_rd->refcount))
5612 			old_rd = NULL;
5613 	}
5614 
5615 	atomic_inc(&rd->refcount);
5616 	rq->rd = rd;
5617 
5618 	cpumask_set_cpu(rq->cpu, rd->span);
5619 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5620 		set_rq_online(rq);
5621 
5622 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5623 
5624 	if (old_rd)
5625 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5626 }
5627 
5628 static int init_rootdomain(struct root_domain *rd)
5629 {
5630 	memset(rd, 0, sizeof(*rd));
5631 
5632 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5633 		goto out;
5634 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5635 		goto free_span;
5636 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5637 		goto free_online;
5638 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5639 		goto free_dlo_mask;
5640 
5641 	init_dl_bw(&rd->dl_bw);
5642 	if (cpudl_init(&rd->cpudl) != 0)
5643 		goto free_dlo_mask;
5644 
5645 	if (cpupri_init(&rd->cpupri) != 0)
5646 		goto free_rto_mask;
5647 	return 0;
5648 
5649 free_rto_mask:
5650 	free_cpumask_var(rd->rto_mask);
5651 free_dlo_mask:
5652 	free_cpumask_var(rd->dlo_mask);
5653 free_online:
5654 	free_cpumask_var(rd->online);
5655 free_span:
5656 	free_cpumask_var(rd->span);
5657 out:
5658 	return -ENOMEM;
5659 }
5660 
5661 /*
5662  * By default the system creates a single root-domain with all cpus as
5663  * members (mimicking the global state we have today).
5664  */
5665 struct root_domain def_root_domain;
5666 
5667 static void init_defrootdomain(void)
5668 {
5669 	init_rootdomain(&def_root_domain);
5670 
5671 	atomic_set(&def_root_domain.refcount, 1);
5672 }
5673 
5674 static struct root_domain *alloc_rootdomain(void)
5675 {
5676 	struct root_domain *rd;
5677 
5678 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5679 	if (!rd)
5680 		return NULL;
5681 
5682 	if (init_rootdomain(rd) != 0) {
5683 		kfree(rd);
5684 		return NULL;
5685 	}
5686 
5687 	return rd;
5688 }
5689 
5690 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5691 {
5692 	struct sched_group *tmp, *first;
5693 
5694 	if (!sg)
5695 		return;
5696 
5697 	first = sg;
5698 	do {
5699 		tmp = sg->next;
5700 
5701 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5702 			kfree(sg->sgc);
5703 
5704 		kfree(sg);
5705 		sg = tmp;
5706 	} while (sg != first);
5707 }
5708 
5709 static void free_sched_domain(struct rcu_head *rcu)
5710 {
5711 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5712 
5713 	/*
5714 	 * If its an overlapping domain it has private groups, iterate and
5715 	 * nuke them all.
5716 	 */
5717 	if (sd->flags & SD_OVERLAP) {
5718 		free_sched_groups(sd->groups, 1);
5719 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5720 		kfree(sd->groups->sgc);
5721 		kfree(sd->groups);
5722 	}
5723 	kfree(sd);
5724 }
5725 
5726 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5727 {
5728 	call_rcu(&sd->rcu, free_sched_domain);
5729 }
5730 
5731 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5732 {
5733 	for (; sd; sd = sd->parent)
5734 		destroy_sched_domain(sd, cpu);
5735 }
5736 
5737 /*
5738  * Keep a special pointer to the highest sched_domain that has
5739  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5740  * allows us to avoid some pointer chasing select_idle_sibling().
5741  *
5742  * Also keep a unique ID per domain (we use the first cpu number in
5743  * the cpumask of the domain), this allows us to quickly tell if
5744  * two cpus are in the same cache domain, see cpus_share_cache().
5745  */
5746 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5747 DEFINE_PER_CPU(int, sd_llc_size);
5748 DEFINE_PER_CPU(int, sd_llc_id);
5749 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5750 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5751 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5752 
5753 static void update_top_cache_domain(int cpu)
5754 {
5755 	struct sched_domain *sd;
5756 	struct sched_domain *busy_sd = NULL;
5757 	int id = cpu;
5758 	int size = 1;
5759 
5760 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5761 	if (sd) {
5762 		id = cpumask_first(sched_domain_span(sd));
5763 		size = cpumask_weight(sched_domain_span(sd));
5764 		busy_sd = sd->parent; /* sd_busy */
5765 	}
5766 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5767 
5768 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5769 	per_cpu(sd_llc_size, cpu) = size;
5770 	per_cpu(sd_llc_id, cpu) = id;
5771 
5772 	sd = lowest_flag_domain(cpu, SD_NUMA);
5773 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5774 
5775 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5776 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5777 }
5778 
5779 /*
5780  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5781  * hold the hotplug lock.
5782  */
5783 static void
5784 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5785 {
5786 	struct rq *rq = cpu_rq(cpu);
5787 	struct sched_domain *tmp;
5788 
5789 	/* Remove the sched domains which do not contribute to scheduling. */
5790 	for (tmp = sd; tmp; ) {
5791 		struct sched_domain *parent = tmp->parent;
5792 		if (!parent)
5793 			break;
5794 
5795 		if (sd_parent_degenerate(tmp, parent)) {
5796 			tmp->parent = parent->parent;
5797 			if (parent->parent)
5798 				parent->parent->child = tmp;
5799 			/*
5800 			 * Transfer SD_PREFER_SIBLING down in case of a
5801 			 * degenerate parent; the spans match for this
5802 			 * so the property transfers.
5803 			 */
5804 			if (parent->flags & SD_PREFER_SIBLING)
5805 				tmp->flags |= SD_PREFER_SIBLING;
5806 			destroy_sched_domain(parent, cpu);
5807 		} else
5808 			tmp = tmp->parent;
5809 	}
5810 
5811 	if (sd && sd_degenerate(sd)) {
5812 		tmp = sd;
5813 		sd = sd->parent;
5814 		destroy_sched_domain(tmp, cpu);
5815 		if (sd)
5816 			sd->child = NULL;
5817 	}
5818 
5819 	sched_domain_debug(sd, cpu);
5820 
5821 	rq_attach_root(rq, rd);
5822 	tmp = rq->sd;
5823 	rcu_assign_pointer(rq->sd, sd);
5824 	destroy_sched_domains(tmp, cpu);
5825 
5826 	update_top_cache_domain(cpu);
5827 }
5828 
5829 /* cpus with isolated domains */
5830 static cpumask_var_t cpu_isolated_map;
5831 
5832 /* Setup the mask of cpus configured for isolated domains */
5833 static int __init isolated_cpu_setup(char *str)
5834 {
5835 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5836 	cpulist_parse(str, cpu_isolated_map);
5837 	return 1;
5838 }
5839 
5840 __setup("isolcpus=", isolated_cpu_setup);
5841 
5842 struct s_data {
5843 	struct sched_domain ** __percpu sd;
5844 	struct root_domain	*rd;
5845 };
5846 
5847 enum s_alloc {
5848 	sa_rootdomain,
5849 	sa_sd,
5850 	sa_sd_storage,
5851 	sa_none,
5852 };
5853 
5854 /*
5855  * Build an iteration mask that can exclude certain CPUs from the upwards
5856  * domain traversal.
5857  *
5858  * Asymmetric node setups can result in situations where the domain tree is of
5859  * unequal depth, make sure to skip domains that already cover the entire
5860  * range.
5861  *
5862  * In that case build_sched_domains() will have terminated the iteration early
5863  * and our sibling sd spans will be empty. Domains should always include the
5864  * cpu they're built on, so check that.
5865  *
5866  */
5867 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5868 {
5869 	const struct cpumask *span = sched_domain_span(sd);
5870 	struct sd_data *sdd = sd->private;
5871 	struct sched_domain *sibling;
5872 	int i;
5873 
5874 	for_each_cpu(i, span) {
5875 		sibling = *per_cpu_ptr(sdd->sd, i);
5876 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5877 			continue;
5878 
5879 		cpumask_set_cpu(i, sched_group_mask(sg));
5880 	}
5881 }
5882 
5883 /*
5884  * Return the canonical balance cpu for this group, this is the first cpu
5885  * of this group that's also in the iteration mask.
5886  */
5887 int group_balance_cpu(struct sched_group *sg)
5888 {
5889 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5890 }
5891 
5892 static int
5893 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5894 {
5895 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5896 	const struct cpumask *span = sched_domain_span(sd);
5897 	struct cpumask *covered = sched_domains_tmpmask;
5898 	struct sd_data *sdd = sd->private;
5899 	struct sched_domain *sibling;
5900 	int i;
5901 
5902 	cpumask_clear(covered);
5903 
5904 	for_each_cpu(i, span) {
5905 		struct cpumask *sg_span;
5906 
5907 		if (cpumask_test_cpu(i, covered))
5908 			continue;
5909 
5910 		sibling = *per_cpu_ptr(sdd->sd, i);
5911 
5912 		/* See the comment near build_group_mask(). */
5913 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5914 			continue;
5915 
5916 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5917 				GFP_KERNEL, cpu_to_node(cpu));
5918 
5919 		if (!sg)
5920 			goto fail;
5921 
5922 		sg_span = sched_group_cpus(sg);
5923 		if (sibling->child)
5924 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5925 		else
5926 			cpumask_set_cpu(i, sg_span);
5927 
5928 		cpumask_or(covered, covered, sg_span);
5929 
5930 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5931 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5932 			build_group_mask(sd, sg);
5933 
5934 		/*
5935 		 * Initialize sgc->capacity such that even if we mess up the
5936 		 * domains and no possible iteration will get us here, we won't
5937 		 * die on a /0 trap.
5938 		 */
5939 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5940 		sg->sgc->capacity_orig = sg->sgc->capacity;
5941 
5942 		/*
5943 		 * Make sure the first group of this domain contains the
5944 		 * canonical balance cpu. Otherwise the sched_domain iteration
5945 		 * breaks. See update_sg_lb_stats().
5946 		 */
5947 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5948 		    group_balance_cpu(sg) == cpu)
5949 			groups = sg;
5950 
5951 		if (!first)
5952 			first = sg;
5953 		if (last)
5954 			last->next = sg;
5955 		last = sg;
5956 		last->next = first;
5957 	}
5958 	sd->groups = groups;
5959 
5960 	return 0;
5961 
5962 fail:
5963 	free_sched_groups(first, 0);
5964 
5965 	return -ENOMEM;
5966 }
5967 
5968 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5969 {
5970 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5971 	struct sched_domain *child = sd->child;
5972 
5973 	if (child)
5974 		cpu = cpumask_first(sched_domain_span(child));
5975 
5976 	if (sg) {
5977 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5978 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5979 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5980 	}
5981 
5982 	return cpu;
5983 }
5984 
5985 /*
5986  * build_sched_groups will build a circular linked list of the groups
5987  * covered by the given span, and will set each group's ->cpumask correctly,
5988  * and ->cpu_capacity to 0.
5989  *
5990  * Assumes the sched_domain tree is fully constructed
5991  */
5992 static int
5993 build_sched_groups(struct sched_domain *sd, int cpu)
5994 {
5995 	struct sched_group *first = NULL, *last = NULL;
5996 	struct sd_data *sdd = sd->private;
5997 	const struct cpumask *span = sched_domain_span(sd);
5998 	struct cpumask *covered;
5999 	int i;
6000 
6001 	get_group(cpu, sdd, &sd->groups);
6002 	atomic_inc(&sd->groups->ref);
6003 
6004 	if (cpu != cpumask_first(span))
6005 		return 0;
6006 
6007 	lockdep_assert_held(&sched_domains_mutex);
6008 	covered = sched_domains_tmpmask;
6009 
6010 	cpumask_clear(covered);
6011 
6012 	for_each_cpu(i, span) {
6013 		struct sched_group *sg;
6014 		int group, j;
6015 
6016 		if (cpumask_test_cpu(i, covered))
6017 			continue;
6018 
6019 		group = get_group(i, sdd, &sg);
6020 		cpumask_setall(sched_group_mask(sg));
6021 
6022 		for_each_cpu(j, span) {
6023 			if (get_group(j, sdd, NULL) != group)
6024 				continue;
6025 
6026 			cpumask_set_cpu(j, covered);
6027 			cpumask_set_cpu(j, sched_group_cpus(sg));
6028 		}
6029 
6030 		if (!first)
6031 			first = sg;
6032 		if (last)
6033 			last->next = sg;
6034 		last = sg;
6035 	}
6036 	last->next = first;
6037 
6038 	return 0;
6039 }
6040 
6041 /*
6042  * Initialize sched groups cpu_capacity.
6043  *
6044  * cpu_capacity indicates the capacity of sched group, which is used while
6045  * distributing the load between different sched groups in a sched domain.
6046  * Typically cpu_capacity for all the groups in a sched domain will be same
6047  * unless there are asymmetries in the topology. If there are asymmetries,
6048  * group having more cpu_capacity will pickup more load compared to the
6049  * group having less cpu_capacity.
6050  */
6051 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6052 {
6053 	struct sched_group *sg = sd->groups;
6054 
6055 	WARN_ON(!sg);
6056 
6057 	do {
6058 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6059 		sg = sg->next;
6060 	} while (sg != sd->groups);
6061 
6062 	if (cpu != group_balance_cpu(sg))
6063 		return;
6064 
6065 	update_group_capacity(sd, cpu);
6066 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6067 }
6068 
6069 /*
6070  * Initializers for schedule domains
6071  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6072  */
6073 
6074 static int default_relax_domain_level = -1;
6075 int sched_domain_level_max;
6076 
6077 static int __init setup_relax_domain_level(char *str)
6078 {
6079 	if (kstrtoint(str, 0, &default_relax_domain_level))
6080 		pr_warn("Unable to set relax_domain_level\n");
6081 
6082 	return 1;
6083 }
6084 __setup("relax_domain_level=", setup_relax_domain_level);
6085 
6086 static void set_domain_attribute(struct sched_domain *sd,
6087 				 struct sched_domain_attr *attr)
6088 {
6089 	int request;
6090 
6091 	if (!attr || attr->relax_domain_level < 0) {
6092 		if (default_relax_domain_level < 0)
6093 			return;
6094 		else
6095 			request = default_relax_domain_level;
6096 	} else
6097 		request = attr->relax_domain_level;
6098 	if (request < sd->level) {
6099 		/* turn off idle balance on this domain */
6100 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6101 	} else {
6102 		/* turn on idle balance on this domain */
6103 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6104 	}
6105 }
6106 
6107 static void __sdt_free(const struct cpumask *cpu_map);
6108 static int __sdt_alloc(const struct cpumask *cpu_map);
6109 
6110 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6111 				 const struct cpumask *cpu_map)
6112 {
6113 	switch (what) {
6114 	case sa_rootdomain:
6115 		if (!atomic_read(&d->rd->refcount))
6116 			free_rootdomain(&d->rd->rcu); /* fall through */
6117 	case sa_sd:
6118 		free_percpu(d->sd); /* fall through */
6119 	case sa_sd_storage:
6120 		__sdt_free(cpu_map); /* fall through */
6121 	case sa_none:
6122 		break;
6123 	}
6124 }
6125 
6126 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6127 						   const struct cpumask *cpu_map)
6128 {
6129 	memset(d, 0, sizeof(*d));
6130 
6131 	if (__sdt_alloc(cpu_map))
6132 		return sa_sd_storage;
6133 	d->sd = alloc_percpu(struct sched_domain *);
6134 	if (!d->sd)
6135 		return sa_sd_storage;
6136 	d->rd = alloc_rootdomain();
6137 	if (!d->rd)
6138 		return sa_sd;
6139 	return sa_rootdomain;
6140 }
6141 
6142 /*
6143  * NULL the sd_data elements we've used to build the sched_domain and
6144  * sched_group structure so that the subsequent __free_domain_allocs()
6145  * will not free the data we're using.
6146  */
6147 static void claim_allocations(int cpu, struct sched_domain *sd)
6148 {
6149 	struct sd_data *sdd = sd->private;
6150 
6151 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6152 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6153 
6154 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6155 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6156 
6157 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6158 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6159 }
6160 
6161 #ifdef CONFIG_NUMA
6162 static int sched_domains_numa_levels;
6163 enum numa_topology_type sched_numa_topology_type;
6164 static int *sched_domains_numa_distance;
6165 int sched_max_numa_distance;
6166 static struct cpumask ***sched_domains_numa_masks;
6167 static int sched_domains_curr_level;
6168 #endif
6169 
6170 /*
6171  * SD_flags allowed in topology descriptions.
6172  *
6173  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6174  * SD_SHARE_PKG_RESOURCES - describes shared caches
6175  * SD_NUMA                - describes NUMA topologies
6176  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6177  *
6178  * Odd one out:
6179  * SD_ASYM_PACKING        - describes SMT quirks
6180  */
6181 #define TOPOLOGY_SD_FLAGS		\
6182 	(SD_SHARE_CPUCAPACITY |		\
6183 	 SD_SHARE_PKG_RESOURCES |	\
6184 	 SD_NUMA |			\
6185 	 SD_ASYM_PACKING |		\
6186 	 SD_SHARE_POWERDOMAIN)
6187 
6188 static struct sched_domain *
6189 sd_init(struct sched_domain_topology_level *tl, int cpu)
6190 {
6191 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6192 	int sd_weight, sd_flags = 0;
6193 
6194 #ifdef CONFIG_NUMA
6195 	/*
6196 	 * Ugly hack to pass state to sd_numa_mask()...
6197 	 */
6198 	sched_domains_curr_level = tl->numa_level;
6199 #endif
6200 
6201 	sd_weight = cpumask_weight(tl->mask(cpu));
6202 
6203 	if (tl->sd_flags)
6204 		sd_flags = (*tl->sd_flags)();
6205 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6206 			"wrong sd_flags in topology description\n"))
6207 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6208 
6209 	*sd = (struct sched_domain){
6210 		.min_interval		= sd_weight,
6211 		.max_interval		= 2*sd_weight,
6212 		.busy_factor		= 32,
6213 		.imbalance_pct		= 125,
6214 
6215 		.cache_nice_tries	= 0,
6216 		.busy_idx		= 0,
6217 		.idle_idx		= 0,
6218 		.newidle_idx		= 0,
6219 		.wake_idx		= 0,
6220 		.forkexec_idx		= 0,
6221 
6222 		.flags			= 1*SD_LOAD_BALANCE
6223 					| 1*SD_BALANCE_NEWIDLE
6224 					| 1*SD_BALANCE_EXEC
6225 					| 1*SD_BALANCE_FORK
6226 					| 0*SD_BALANCE_WAKE
6227 					| 1*SD_WAKE_AFFINE
6228 					| 0*SD_SHARE_CPUCAPACITY
6229 					| 0*SD_SHARE_PKG_RESOURCES
6230 					| 0*SD_SERIALIZE
6231 					| 0*SD_PREFER_SIBLING
6232 					| 0*SD_NUMA
6233 					| sd_flags
6234 					,
6235 
6236 		.last_balance		= jiffies,
6237 		.balance_interval	= sd_weight,
6238 		.smt_gain		= 0,
6239 		.max_newidle_lb_cost	= 0,
6240 		.next_decay_max_lb_cost	= jiffies,
6241 #ifdef CONFIG_SCHED_DEBUG
6242 		.name			= tl->name,
6243 #endif
6244 	};
6245 
6246 	/*
6247 	 * Convert topological properties into behaviour.
6248 	 */
6249 
6250 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6251 		sd->imbalance_pct = 110;
6252 		sd->smt_gain = 1178; /* ~15% */
6253 
6254 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6255 		sd->imbalance_pct = 117;
6256 		sd->cache_nice_tries = 1;
6257 		sd->busy_idx = 2;
6258 
6259 #ifdef CONFIG_NUMA
6260 	} else if (sd->flags & SD_NUMA) {
6261 		sd->cache_nice_tries = 2;
6262 		sd->busy_idx = 3;
6263 		sd->idle_idx = 2;
6264 
6265 		sd->flags |= SD_SERIALIZE;
6266 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6267 			sd->flags &= ~(SD_BALANCE_EXEC |
6268 				       SD_BALANCE_FORK |
6269 				       SD_WAKE_AFFINE);
6270 		}
6271 
6272 #endif
6273 	} else {
6274 		sd->flags |= SD_PREFER_SIBLING;
6275 		sd->cache_nice_tries = 1;
6276 		sd->busy_idx = 2;
6277 		sd->idle_idx = 1;
6278 	}
6279 
6280 	sd->private = &tl->data;
6281 
6282 	return sd;
6283 }
6284 
6285 /*
6286  * Topology list, bottom-up.
6287  */
6288 static struct sched_domain_topology_level default_topology[] = {
6289 #ifdef CONFIG_SCHED_SMT
6290 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6291 #endif
6292 #ifdef CONFIG_SCHED_MC
6293 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6294 #endif
6295 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6296 	{ NULL, },
6297 };
6298 
6299 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6300 
6301 #define for_each_sd_topology(tl)			\
6302 	for (tl = sched_domain_topology; tl->mask; tl++)
6303 
6304 void set_sched_topology(struct sched_domain_topology_level *tl)
6305 {
6306 	sched_domain_topology = tl;
6307 }
6308 
6309 #ifdef CONFIG_NUMA
6310 
6311 static const struct cpumask *sd_numa_mask(int cpu)
6312 {
6313 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6314 }
6315 
6316 static void sched_numa_warn(const char *str)
6317 {
6318 	static int done = false;
6319 	int i,j;
6320 
6321 	if (done)
6322 		return;
6323 
6324 	done = true;
6325 
6326 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6327 
6328 	for (i = 0; i < nr_node_ids; i++) {
6329 		printk(KERN_WARNING "  ");
6330 		for (j = 0; j < nr_node_ids; j++)
6331 			printk(KERN_CONT "%02d ", node_distance(i,j));
6332 		printk(KERN_CONT "\n");
6333 	}
6334 	printk(KERN_WARNING "\n");
6335 }
6336 
6337 bool find_numa_distance(int distance)
6338 {
6339 	int i;
6340 
6341 	if (distance == node_distance(0, 0))
6342 		return true;
6343 
6344 	for (i = 0; i < sched_domains_numa_levels; i++) {
6345 		if (sched_domains_numa_distance[i] == distance)
6346 			return true;
6347 	}
6348 
6349 	return false;
6350 }
6351 
6352 /*
6353  * A system can have three types of NUMA topology:
6354  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6355  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6356  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6357  *
6358  * The difference between a glueless mesh topology and a backplane
6359  * topology lies in whether communication between not directly
6360  * connected nodes goes through intermediary nodes (where programs
6361  * could run), or through backplane controllers. This affects
6362  * placement of programs.
6363  *
6364  * The type of topology can be discerned with the following tests:
6365  * - If the maximum distance between any nodes is 1 hop, the system
6366  *   is directly connected.
6367  * - If for two nodes A and B, located N > 1 hops away from each other,
6368  *   there is an intermediary node C, which is < N hops away from both
6369  *   nodes A and B, the system is a glueless mesh.
6370  */
6371 static void init_numa_topology_type(void)
6372 {
6373 	int a, b, c, n;
6374 
6375 	n = sched_max_numa_distance;
6376 
6377 	if (n <= 1)
6378 		sched_numa_topology_type = NUMA_DIRECT;
6379 
6380 	for_each_online_node(a) {
6381 		for_each_online_node(b) {
6382 			/* Find two nodes furthest removed from each other. */
6383 			if (node_distance(a, b) < n)
6384 				continue;
6385 
6386 			/* Is there an intermediary node between a and b? */
6387 			for_each_online_node(c) {
6388 				if (node_distance(a, c) < n &&
6389 				    node_distance(b, c) < n) {
6390 					sched_numa_topology_type =
6391 							NUMA_GLUELESS_MESH;
6392 					return;
6393 				}
6394 			}
6395 
6396 			sched_numa_topology_type = NUMA_BACKPLANE;
6397 			return;
6398 		}
6399 	}
6400 }
6401 
6402 static void sched_init_numa(void)
6403 {
6404 	int next_distance, curr_distance = node_distance(0, 0);
6405 	struct sched_domain_topology_level *tl;
6406 	int level = 0;
6407 	int i, j, k;
6408 
6409 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6410 	if (!sched_domains_numa_distance)
6411 		return;
6412 
6413 	/*
6414 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6415 	 * unique distances in the node_distance() table.
6416 	 *
6417 	 * Assumes node_distance(0,j) includes all distances in
6418 	 * node_distance(i,j) in order to avoid cubic time.
6419 	 */
6420 	next_distance = curr_distance;
6421 	for (i = 0; i < nr_node_ids; i++) {
6422 		for (j = 0; j < nr_node_ids; j++) {
6423 			for (k = 0; k < nr_node_ids; k++) {
6424 				int distance = node_distance(i, k);
6425 
6426 				if (distance > curr_distance &&
6427 				    (distance < next_distance ||
6428 				     next_distance == curr_distance))
6429 					next_distance = distance;
6430 
6431 				/*
6432 				 * While not a strong assumption it would be nice to know
6433 				 * about cases where if node A is connected to B, B is not
6434 				 * equally connected to A.
6435 				 */
6436 				if (sched_debug() && node_distance(k, i) != distance)
6437 					sched_numa_warn("Node-distance not symmetric");
6438 
6439 				if (sched_debug() && i && !find_numa_distance(distance))
6440 					sched_numa_warn("Node-0 not representative");
6441 			}
6442 			if (next_distance != curr_distance) {
6443 				sched_domains_numa_distance[level++] = next_distance;
6444 				sched_domains_numa_levels = level;
6445 				curr_distance = next_distance;
6446 			} else break;
6447 		}
6448 
6449 		/*
6450 		 * In case of sched_debug() we verify the above assumption.
6451 		 */
6452 		if (!sched_debug())
6453 			break;
6454 	}
6455 
6456 	if (!level)
6457 		return;
6458 
6459 	/*
6460 	 * 'level' contains the number of unique distances, excluding the
6461 	 * identity distance node_distance(i,i).
6462 	 *
6463 	 * The sched_domains_numa_distance[] array includes the actual distance
6464 	 * numbers.
6465 	 */
6466 
6467 	/*
6468 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6469 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6470 	 * the array will contain less then 'level' members. This could be
6471 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6472 	 * in other functions.
6473 	 *
6474 	 * We reset it to 'level' at the end of this function.
6475 	 */
6476 	sched_domains_numa_levels = 0;
6477 
6478 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6479 	if (!sched_domains_numa_masks)
6480 		return;
6481 
6482 	/*
6483 	 * Now for each level, construct a mask per node which contains all
6484 	 * cpus of nodes that are that many hops away from us.
6485 	 */
6486 	for (i = 0; i < level; i++) {
6487 		sched_domains_numa_masks[i] =
6488 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6489 		if (!sched_domains_numa_masks[i])
6490 			return;
6491 
6492 		for (j = 0; j < nr_node_ids; j++) {
6493 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6494 			if (!mask)
6495 				return;
6496 
6497 			sched_domains_numa_masks[i][j] = mask;
6498 
6499 			for (k = 0; k < nr_node_ids; k++) {
6500 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6501 					continue;
6502 
6503 				cpumask_or(mask, mask, cpumask_of_node(k));
6504 			}
6505 		}
6506 	}
6507 
6508 	/* Compute default topology size */
6509 	for (i = 0; sched_domain_topology[i].mask; i++);
6510 
6511 	tl = kzalloc((i + level + 1) *
6512 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6513 	if (!tl)
6514 		return;
6515 
6516 	/*
6517 	 * Copy the default topology bits..
6518 	 */
6519 	for (i = 0; sched_domain_topology[i].mask; i++)
6520 		tl[i] = sched_domain_topology[i];
6521 
6522 	/*
6523 	 * .. and append 'j' levels of NUMA goodness.
6524 	 */
6525 	for (j = 0; j < level; i++, j++) {
6526 		tl[i] = (struct sched_domain_topology_level){
6527 			.mask = sd_numa_mask,
6528 			.sd_flags = cpu_numa_flags,
6529 			.flags = SDTL_OVERLAP,
6530 			.numa_level = j,
6531 			SD_INIT_NAME(NUMA)
6532 		};
6533 	}
6534 
6535 	sched_domain_topology = tl;
6536 
6537 	sched_domains_numa_levels = level;
6538 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6539 
6540 	init_numa_topology_type();
6541 }
6542 
6543 static void sched_domains_numa_masks_set(int cpu)
6544 {
6545 	int i, j;
6546 	int node = cpu_to_node(cpu);
6547 
6548 	for (i = 0; i < sched_domains_numa_levels; i++) {
6549 		for (j = 0; j < nr_node_ids; j++) {
6550 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6551 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6552 		}
6553 	}
6554 }
6555 
6556 static void sched_domains_numa_masks_clear(int cpu)
6557 {
6558 	int i, j;
6559 	for (i = 0; i < sched_domains_numa_levels; i++) {
6560 		for (j = 0; j < nr_node_ids; j++)
6561 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6562 	}
6563 }
6564 
6565 /*
6566  * Update sched_domains_numa_masks[level][node] array when new cpus
6567  * are onlined.
6568  */
6569 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6570 					   unsigned long action,
6571 					   void *hcpu)
6572 {
6573 	int cpu = (long)hcpu;
6574 
6575 	switch (action & ~CPU_TASKS_FROZEN) {
6576 	case CPU_ONLINE:
6577 		sched_domains_numa_masks_set(cpu);
6578 		break;
6579 
6580 	case CPU_DEAD:
6581 		sched_domains_numa_masks_clear(cpu);
6582 		break;
6583 
6584 	default:
6585 		return NOTIFY_DONE;
6586 	}
6587 
6588 	return NOTIFY_OK;
6589 }
6590 #else
6591 static inline void sched_init_numa(void)
6592 {
6593 }
6594 
6595 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6596 					   unsigned long action,
6597 					   void *hcpu)
6598 {
6599 	return 0;
6600 }
6601 #endif /* CONFIG_NUMA */
6602 
6603 static int __sdt_alloc(const struct cpumask *cpu_map)
6604 {
6605 	struct sched_domain_topology_level *tl;
6606 	int j;
6607 
6608 	for_each_sd_topology(tl) {
6609 		struct sd_data *sdd = &tl->data;
6610 
6611 		sdd->sd = alloc_percpu(struct sched_domain *);
6612 		if (!sdd->sd)
6613 			return -ENOMEM;
6614 
6615 		sdd->sg = alloc_percpu(struct sched_group *);
6616 		if (!sdd->sg)
6617 			return -ENOMEM;
6618 
6619 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6620 		if (!sdd->sgc)
6621 			return -ENOMEM;
6622 
6623 		for_each_cpu(j, cpu_map) {
6624 			struct sched_domain *sd;
6625 			struct sched_group *sg;
6626 			struct sched_group_capacity *sgc;
6627 
6628 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6629 					GFP_KERNEL, cpu_to_node(j));
6630 			if (!sd)
6631 				return -ENOMEM;
6632 
6633 			*per_cpu_ptr(sdd->sd, j) = sd;
6634 
6635 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6636 					GFP_KERNEL, cpu_to_node(j));
6637 			if (!sg)
6638 				return -ENOMEM;
6639 
6640 			sg->next = sg;
6641 
6642 			*per_cpu_ptr(sdd->sg, j) = sg;
6643 
6644 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6645 					GFP_KERNEL, cpu_to_node(j));
6646 			if (!sgc)
6647 				return -ENOMEM;
6648 
6649 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6650 		}
6651 	}
6652 
6653 	return 0;
6654 }
6655 
6656 static void __sdt_free(const struct cpumask *cpu_map)
6657 {
6658 	struct sched_domain_topology_level *tl;
6659 	int j;
6660 
6661 	for_each_sd_topology(tl) {
6662 		struct sd_data *sdd = &tl->data;
6663 
6664 		for_each_cpu(j, cpu_map) {
6665 			struct sched_domain *sd;
6666 
6667 			if (sdd->sd) {
6668 				sd = *per_cpu_ptr(sdd->sd, j);
6669 				if (sd && (sd->flags & SD_OVERLAP))
6670 					free_sched_groups(sd->groups, 0);
6671 				kfree(*per_cpu_ptr(sdd->sd, j));
6672 			}
6673 
6674 			if (sdd->sg)
6675 				kfree(*per_cpu_ptr(sdd->sg, j));
6676 			if (sdd->sgc)
6677 				kfree(*per_cpu_ptr(sdd->sgc, j));
6678 		}
6679 		free_percpu(sdd->sd);
6680 		sdd->sd = NULL;
6681 		free_percpu(sdd->sg);
6682 		sdd->sg = NULL;
6683 		free_percpu(sdd->sgc);
6684 		sdd->sgc = NULL;
6685 	}
6686 }
6687 
6688 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6689 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6690 		struct sched_domain *child, int cpu)
6691 {
6692 	struct sched_domain *sd = sd_init(tl, cpu);
6693 	if (!sd)
6694 		return child;
6695 
6696 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6697 	if (child) {
6698 		sd->level = child->level + 1;
6699 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6700 		child->parent = sd;
6701 		sd->child = child;
6702 
6703 		if (!cpumask_subset(sched_domain_span(child),
6704 				    sched_domain_span(sd))) {
6705 			pr_err("BUG: arch topology borken\n");
6706 #ifdef CONFIG_SCHED_DEBUG
6707 			pr_err("     the %s domain not a subset of the %s domain\n",
6708 					child->name, sd->name);
6709 #endif
6710 			/* Fixup, ensure @sd has at least @child cpus. */
6711 			cpumask_or(sched_domain_span(sd),
6712 				   sched_domain_span(sd),
6713 				   sched_domain_span(child));
6714 		}
6715 
6716 	}
6717 	set_domain_attribute(sd, attr);
6718 
6719 	return sd;
6720 }
6721 
6722 /*
6723  * Build sched domains for a given set of cpus and attach the sched domains
6724  * to the individual cpus
6725  */
6726 static int build_sched_domains(const struct cpumask *cpu_map,
6727 			       struct sched_domain_attr *attr)
6728 {
6729 	enum s_alloc alloc_state;
6730 	struct sched_domain *sd;
6731 	struct s_data d;
6732 	int i, ret = -ENOMEM;
6733 
6734 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6735 	if (alloc_state != sa_rootdomain)
6736 		goto error;
6737 
6738 	/* Set up domains for cpus specified by the cpu_map. */
6739 	for_each_cpu(i, cpu_map) {
6740 		struct sched_domain_topology_level *tl;
6741 
6742 		sd = NULL;
6743 		for_each_sd_topology(tl) {
6744 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6745 			if (tl == sched_domain_topology)
6746 				*per_cpu_ptr(d.sd, i) = sd;
6747 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6748 				sd->flags |= SD_OVERLAP;
6749 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6750 				break;
6751 		}
6752 	}
6753 
6754 	/* Build the groups for the domains */
6755 	for_each_cpu(i, cpu_map) {
6756 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6757 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6758 			if (sd->flags & SD_OVERLAP) {
6759 				if (build_overlap_sched_groups(sd, i))
6760 					goto error;
6761 			} else {
6762 				if (build_sched_groups(sd, i))
6763 					goto error;
6764 			}
6765 		}
6766 	}
6767 
6768 	/* Calculate CPU capacity for physical packages and nodes */
6769 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6770 		if (!cpumask_test_cpu(i, cpu_map))
6771 			continue;
6772 
6773 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6774 			claim_allocations(i, sd);
6775 			init_sched_groups_capacity(i, sd);
6776 		}
6777 	}
6778 
6779 	/* Attach the domains */
6780 	rcu_read_lock();
6781 	for_each_cpu(i, cpu_map) {
6782 		sd = *per_cpu_ptr(d.sd, i);
6783 		cpu_attach_domain(sd, d.rd, i);
6784 	}
6785 	rcu_read_unlock();
6786 
6787 	ret = 0;
6788 error:
6789 	__free_domain_allocs(&d, alloc_state, cpu_map);
6790 	return ret;
6791 }
6792 
6793 static cpumask_var_t *doms_cur;	/* current sched domains */
6794 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6795 static struct sched_domain_attr *dattr_cur;
6796 				/* attribues of custom domains in 'doms_cur' */
6797 
6798 /*
6799  * Special case: If a kmalloc of a doms_cur partition (array of
6800  * cpumask) fails, then fallback to a single sched domain,
6801  * as determined by the single cpumask fallback_doms.
6802  */
6803 static cpumask_var_t fallback_doms;
6804 
6805 /*
6806  * arch_update_cpu_topology lets virtualized architectures update the
6807  * cpu core maps. It is supposed to return 1 if the topology changed
6808  * or 0 if it stayed the same.
6809  */
6810 int __weak arch_update_cpu_topology(void)
6811 {
6812 	return 0;
6813 }
6814 
6815 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6816 {
6817 	int i;
6818 	cpumask_var_t *doms;
6819 
6820 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6821 	if (!doms)
6822 		return NULL;
6823 	for (i = 0; i < ndoms; i++) {
6824 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6825 			free_sched_domains(doms, i);
6826 			return NULL;
6827 		}
6828 	}
6829 	return doms;
6830 }
6831 
6832 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6833 {
6834 	unsigned int i;
6835 	for (i = 0; i < ndoms; i++)
6836 		free_cpumask_var(doms[i]);
6837 	kfree(doms);
6838 }
6839 
6840 /*
6841  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6842  * For now this just excludes isolated cpus, but could be used to
6843  * exclude other special cases in the future.
6844  */
6845 static int init_sched_domains(const struct cpumask *cpu_map)
6846 {
6847 	int err;
6848 
6849 	arch_update_cpu_topology();
6850 	ndoms_cur = 1;
6851 	doms_cur = alloc_sched_domains(ndoms_cur);
6852 	if (!doms_cur)
6853 		doms_cur = &fallback_doms;
6854 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6855 	err = build_sched_domains(doms_cur[0], NULL);
6856 	register_sched_domain_sysctl();
6857 
6858 	return err;
6859 }
6860 
6861 /*
6862  * Detach sched domains from a group of cpus specified in cpu_map
6863  * These cpus will now be attached to the NULL domain
6864  */
6865 static void detach_destroy_domains(const struct cpumask *cpu_map)
6866 {
6867 	int i;
6868 
6869 	rcu_read_lock();
6870 	for_each_cpu(i, cpu_map)
6871 		cpu_attach_domain(NULL, &def_root_domain, i);
6872 	rcu_read_unlock();
6873 }
6874 
6875 /* handle null as "default" */
6876 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6877 			struct sched_domain_attr *new, int idx_new)
6878 {
6879 	struct sched_domain_attr tmp;
6880 
6881 	/* fast path */
6882 	if (!new && !cur)
6883 		return 1;
6884 
6885 	tmp = SD_ATTR_INIT;
6886 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6887 			new ? (new + idx_new) : &tmp,
6888 			sizeof(struct sched_domain_attr));
6889 }
6890 
6891 /*
6892  * Partition sched domains as specified by the 'ndoms_new'
6893  * cpumasks in the array doms_new[] of cpumasks. This compares
6894  * doms_new[] to the current sched domain partitioning, doms_cur[].
6895  * It destroys each deleted domain and builds each new domain.
6896  *
6897  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6898  * The masks don't intersect (don't overlap.) We should setup one
6899  * sched domain for each mask. CPUs not in any of the cpumasks will
6900  * not be load balanced. If the same cpumask appears both in the
6901  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6902  * it as it is.
6903  *
6904  * The passed in 'doms_new' should be allocated using
6905  * alloc_sched_domains.  This routine takes ownership of it and will
6906  * free_sched_domains it when done with it. If the caller failed the
6907  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6908  * and partition_sched_domains() will fallback to the single partition
6909  * 'fallback_doms', it also forces the domains to be rebuilt.
6910  *
6911  * If doms_new == NULL it will be replaced with cpu_online_mask.
6912  * ndoms_new == 0 is a special case for destroying existing domains,
6913  * and it will not create the default domain.
6914  *
6915  * Call with hotplug lock held
6916  */
6917 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6918 			     struct sched_domain_attr *dattr_new)
6919 {
6920 	int i, j, n;
6921 	int new_topology;
6922 
6923 	mutex_lock(&sched_domains_mutex);
6924 
6925 	/* always unregister in case we don't destroy any domains */
6926 	unregister_sched_domain_sysctl();
6927 
6928 	/* Let architecture update cpu core mappings. */
6929 	new_topology = arch_update_cpu_topology();
6930 
6931 	n = doms_new ? ndoms_new : 0;
6932 
6933 	/* Destroy deleted domains */
6934 	for (i = 0; i < ndoms_cur; i++) {
6935 		for (j = 0; j < n && !new_topology; j++) {
6936 			if (cpumask_equal(doms_cur[i], doms_new[j])
6937 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6938 				goto match1;
6939 		}
6940 		/* no match - a current sched domain not in new doms_new[] */
6941 		detach_destroy_domains(doms_cur[i]);
6942 match1:
6943 		;
6944 	}
6945 
6946 	n = ndoms_cur;
6947 	if (doms_new == NULL) {
6948 		n = 0;
6949 		doms_new = &fallback_doms;
6950 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6951 		WARN_ON_ONCE(dattr_new);
6952 	}
6953 
6954 	/* Build new domains */
6955 	for (i = 0; i < ndoms_new; i++) {
6956 		for (j = 0; j < n && !new_topology; j++) {
6957 			if (cpumask_equal(doms_new[i], doms_cur[j])
6958 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6959 				goto match2;
6960 		}
6961 		/* no match - add a new doms_new */
6962 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6963 match2:
6964 		;
6965 	}
6966 
6967 	/* Remember the new sched domains */
6968 	if (doms_cur != &fallback_doms)
6969 		free_sched_domains(doms_cur, ndoms_cur);
6970 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6971 	doms_cur = doms_new;
6972 	dattr_cur = dattr_new;
6973 	ndoms_cur = ndoms_new;
6974 
6975 	register_sched_domain_sysctl();
6976 
6977 	mutex_unlock(&sched_domains_mutex);
6978 }
6979 
6980 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6981 
6982 /*
6983  * Update cpusets according to cpu_active mask.  If cpusets are
6984  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6985  * around partition_sched_domains().
6986  *
6987  * If we come here as part of a suspend/resume, don't touch cpusets because we
6988  * want to restore it back to its original state upon resume anyway.
6989  */
6990 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6991 			     void *hcpu)
6992 {
6993 	switch (action) {
6994 	case CPU_ONLINE_FROZEN:
6995 	case CPU_DOWN_FAILED_FROZEN:
6996 
6997 		/*
6998 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6999 		 * resume sequence. As long as this is not the last online
7000 		 * operation in the resume sequence, just build a single sched
7001 		 * domain, ignoring cpusets.
7002 		 */
7003 		num_cpus_frozen--;
7004 		if (likely(num_cpus_frozen)) {
7005 			partition_sched_domains(1, NULL, NULL);
7006 			break;
7007 		}
7008 
7009 		/*
7010 		 * This is the last CPU online operation. So fall through and
7011 		 * restore the original sched domains by considering the
7012 		 * cpuset configurations.
7013 		 */
7014 
7015 	case CPU_ONLINE:
7016 	case CPU_DOWN_FAILED:
7017 		cpuset_update_active_cpus(true);
7018 		break;
7019 	default:
7020 		return NOTIFY_DONE;
7021 	}
7022 	return NOTIFY_OK;
7023 }
7024 
7025 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7026 			       void *hcpu)
7027 {
7028 	switch (action) {
7029 	case CPU_DOWN_PREPARE:
7030 		cpuset_update_active_cpus(false);
7031 		break;
7032 	case CPU_DOWN_PREPARE_FROZEN:
7033 		num_cpus_frozen++;
7034 		partition_sched_domains(1, NULL, NULL);
7035 		break;
7036 	default:
7037 		return NOTIFY_DONE;
7038 	}
7039 	return NOTIFY_OK;
7040 }
7041 
7042 void __init sched_init_smp(void)
7043 {
7044 	cpumask_var_t non_isolated_cpus;
7045 
7046 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7047 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7048 
7049 	sched_init_numa();
7050 
7051 	/*
7052 	 * There's no userspace yet to cause hotplug operations; hence all the
7053 	 * cpu masks are stable and all blatant races in the below code cannot
7054 	 * happen.
7055 	 */
7056 	mutex_lock(&sched_domains_mutex);
7057 	init_sched_domains(cpu_active_mask);
7058 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7059 	if (cpumask_empty(non_isolated_cpus))
7060 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7061 	mutex_unlock(&sched_domains_mutex);
7062 
7063 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7064 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7065 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7066 
7067 	init_hrtick();
7068 
7069 	/* Move init over to a non-isolated CPU */
7070 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7071 		BUG();
7072 	sched_init_granularity();
7073 	free_cpumask_var(non_isolated_cpus);
7074 
7075 	init_sched_rt_class();
7076 	init_sched_dl_class();
7077 }
7078 #else
7079 void __init sched_init_smp(void)
7080 {
7081 	sched_init_granularity();
7082 }
7083 #endif /* CONFIG_SMP */
7084 
7085 const_debug unsigned int sysctl_timer_migration = 1;
7086 
7087 int in_sched_functions(unsigned long addr)
7088 {
7089 	return in_lock_functions(addr) ||
7090 		(addr >= (unsigned long)__sched_text_start
7091 		&& addr < (unsigned long)__sched_text_end);
7092 }
7093 
7094 #ifdef CONFIG_CGROUP_SCHED
7095 /*
7096  * Default task group.
7097  * Every task in system belongs to this group at bootup.
7098  */
7099 struct task_group root_task_group;
7100 LIST_HEAD(task_groups);
7101 #endif
7102 
7103 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7104 
7105 void __init sched_init(void)
7106 {
7107 	int i, j;
7108 	unsigned long alloc_size = 0, ptr;
7109 
7110 #ifdef CONFIG_FAIR_GROUP_SCHED
7111 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7112 #endif
7113 #ifdef CONFIG_RT_GROUP_SCHED
7114 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7115 #endif
7116 	if (alloc_size) {
7117 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7118 
7119 #ifdef CONFIG_FAIR_GROUP_SCHED
7120 		root_task_group.se = (struct sched_entity **)ptr;
7121 		ptr += nr_cpu_ids * sizeof(void **);
7122 
7123 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7124 		ptr += nr_cpu_ids * sizeof(void **);
7125 
7126 #endif /* CONFIG_FAIR_GROUP_SCHED */
7127 #ifdef CONFIG_RT_GROUP_SCHED
7128 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7129 		ptr += nr_cpu_ids * sizeof(void **);
7130 
7131 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7132 		ptr += nr_cpu_ids * sizeof(void **);
7133 
7134 #endif /* CONFIG_RT_GROUP_SCHED */
7135 	}
7136 #ifdef CONFIG_CPUMASK_OFFSTACK
7137 	for_each_possible_cpu(i) {
7138 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7139 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7140 	}
7141 #endif /* CONFIG_CPUMASK_OFFSTACK */
7142 
7143 	init_rt_bandwidth(&def_rt_bandwidth,
7144 			global_rt_period(), global_rt_runtime());
7145 	init_dl_bandwidth(&def_dl_bandwidth,
7146 			global_rt_period(), global_rt_runtime());
7147 
7148 #ifdef CONFIG_SMP
7149 	init_defrootdomain();
7150 #endif
7151 
7152 #ifdef CONFIG_RT_GROUP_SCHED
7153 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7154 			global_rt_period(), global_rt_runtime());
7155 #endif /* CONFIG_RT_GROUP_SCHED */
7156 
7157 #ifdef CONFIG_CGROUP_SCHED
7158 	list_add(&root_task_group.list, &task_groups);
7159 	INIT_LIST_HEAD(&root_task_group.children);
7160 	INIT_LIST_HEAD(&root_task_group.siblings);
7161 	autogroup_init(&init_task);
7162 
7163 #endif /* CONFIG_CGROUP_SCHED */
7164 
7165 	for_each_possible_cpu(i) {
7166 		struct rq *rq;
7167 
7168 		rq = cpu_rq(i);
7169 		raw_spin_lock_init(&rq->lock);
7170 		rq->nr_running = 0;
7171 		rq->calc_load_active = 0;
7172 		rq->calc_load_update = jiffies + LOAD_FREQ;
7173 		init_cfs_rq(&rq->cfs);
7174 		init_rt_rq(&rq->rt, rq);
7175 		init_dl_rq(&rq->dl, rq);
7176 #ifdef CONFIG_FAIR_GROUP_SCHED
7177 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7178 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7179 		/*
7180 		 * How much cpu bandwidth does root_task_group get?
7181 		 *
7182 		 * In case of task-groups formed thr' the cgroup filesystem, it
7183 		 * gets 100% of the cpu resources in the system. This overall
7184 		 * system cpu resource is divided among the tasks of
7185 		 * root_task_group and its child task-groups in a fair manner,
7186 		 * based on each entity's (task or task-group's) weight
7187 		 * (se->load.weight).
7188 		 *
7189 		 * In other words, if root_task_group has 10 tasks of weight
7190 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7191 		 * then A0's share of the cpu resource is:
7192 		 *
7193 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7194 		 *
7195 		 * We achieve this by letting root_task_group's tasks sit
7196 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7197 		 */
7198 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7199 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7200 #endif /* CONFIG_FAIR_GROUP_SCHED */
7201 
7202 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7203 #ifdef CONFIG_RT_GROUP_SCHED
7204 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7205 #endif
7206 
7207 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7208 			rq->cpu_load[j] = 0;
7209 
7210 		rq->last_load_update_tick = jiffies;
7211 
7212 #ifdef CONFIG_SMP
7213 		rq->sd = NULL;
7214 		rq->rd = NULL;
7215 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7216 		rq->post_schedule = 0;
7217 		rq->active_balance = 0;
7218 		rq->next_balance = jiffies;
7219 		rq->push_cpu = 0;
7220 		rq->cpu = i;
7221 		rq->online = 0;
7222 		rq->idle_stamp = 0;
7223 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7224 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7225 
7226 		INIT_LIST_HEAD(&rq->cfs_tasks);
7227 
7228 		rq_attach_root(rq, &def_root_domain);
7229 #ifdef CONFIG_NO_HZ_COMMON
7230 		rq->nohz_flags = 0;
7231 #endif
7232 #ifdef CONFIG_NO_HZ_FULL
7233 		rq->last_sched_tick = 0;
7234 #endif
7235 #endif
7236 		init_rq_hrtick(rq);
7237 		atomic_set(&rq->nr_iowait, 0);
7238 	}
7239 
7240 	set_load_weight(&init_task);
7241 
7242 #ifdef CONFIG_PREEMPT_NOTIFIERS
7243 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7244 #endif
7245 
7246 	/*
7247 	 * The boot idle thread does lazy MMU switching as well:
7248 	 */
7249 	atomic_inc(&init_mm.mm_count);
7250 	enter_lazy_tlb(&init_mm, current);
7251 
7252 	/*
7253 	 * Make us the idle thread. Technically, schedule() should not be
7254 	 * called from this thread, however somewhere below it might be,
7255 	 * but because we are the idle thread, we just pick up running again
7256 	 * when this runqueue becomes "idle".
7257 	 */
7258 	init_idle(current, smp_processor_id());
7259 
7260 	calc_load_update = jiffies + LOAD_FREQ;
7261 
7262 	/*
7263 	 * During early bootup we pretend to be a normal task:
7264 	 */
7265 	current->sched_class = &fair_sched_class;
7266 
7267 #ifdef CONFIG_SMP
7268 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7269 	/* May be allocated at isolcpus cmdline parse time */
7270 	if (cpu_isolated_map == NULL)
7271 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7272 	idle_thread_set_boot_cpu();
7273 	set_cpu_rq_start_time();
7274 #endif
7275 	init_sched_fair_class();
7276 
7277 	scheduler_running = 1;
7278 }
7279 
7280 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7281 static inline int preempt_count_equals(int preempt_offset)
7282 {
7283 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7284 
7285 	return (nested == preempt_offset);
7286 }
7287 
7288 void __might_sleep(const char *file, int line, int preempt_offset)
7289 {
7290 	/*
7291 	 * Blocking primitives will set (and therefore destroy) current->state,
7292 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7293 	 * otherwise we will destroy state.
7294 	 */
7295 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7296 			"do not call blocking ops when !TASK_RUNNING; "
7297 			"state=%lx set at [<%p>] %pS\n",
7298 			current->state,
7299 			(void *)current->task_state_change,
7300 			(void *)current->task_state_change);
7301 
7302 	___might_sleep(file, line, preempt_offset);
7303 }
7304 EXPORT_SYMBOL(__might_sleep);
7305 
7306 void ___might_sleep(const char *file, int line, int preempt_offset)
7307 {
7308 	static unsigned long prev_jiffy;	/* ratelimiting */
7309 
7310 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7311 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7312 	     !is_idle_task(current)) ||
7313 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7314 		return;
7315 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7316 		return;
7317 	prev_jiffy = jiffies;
7318 
7319 	printk(KERN_ERR
7320 		"BUG: sleeping function called from invalid context at %s:%d\n",
7321 			file, line);
7322 	printk(KERN_ERR
7323 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7324 			in_atomic(), irqs_disabled(),
7325 			current->pid, current->comm);
7326 
7327 	debug_show_held_locks(current);
7328 	if (irqs_disabled())
7329 		print_irqtrace_events(current);
7330 #ifdef CONFIG_DEBUG_PREEMPT
7331 	if (!preempt_count_equals(preempt_offset)) {
7332 		pr_err("Preemption disabled at:");
7333 		print_ip_sym(current->preempt_disable_ip);
7334 		pr_cont("\n");
7335 	}
7336 #endif
7337 	dump_stack();
7338 }
7339 EXPORT_SYMBOL(___might_sleep);
7340 #endif
7341 
7342 #ifdef CONFIG_MAGIC_SYSRQ
7343 static void normalize_task(struct rq *rq, struct task_struct *p)
7344 {
7345 	const struct sched_class *prev_class = p->sched_class;
7346 	struct sched_attr attr = {
7347 		.sched_policy = SCHED_NORMAL,
7348 	};
7349 	int old_prio = p->prio;
7350 	int queued;
7351 
7352 	queued = task_on_rq_queued(p);
7353 	if (queued)
7354 		dequeue_task(rq, p, 0);
7355 	__setscheduler(rq, p, &attr);
7356 	if (queued) {
7357 		enqueue_task(rq, p, 0);
7358 		resched_curr(rq);
7359 	}
7360 
7361 	check_class_changed(rq, p, prev_class, old_prio);
7362 }
7363 
7364 void normalize_rt_tasks(void)
7365 {
7366 	struct task_struct *g, *p;
7367 	unsigned long flags;
7368 	struct rq *rq;
7369 
7370 	read_lock(&tasklist_lock);
7371 	for_each_process_thread(g, p) {
7372 		/*
7373 		 * Only normalize user tasks:
7374 		 */
7375 		if (p->flags & PF_KTHREAD)
7376 			continue;
7377 
7378 		p->se.exec_start		= 0;
7379 #ifdef CONFIG_SCHEDSTATS
7380 		p->se.statistics.wait_start	= 0;
7381 		p->se.statistics.sleep_start	= 0;
7382 		p->se.statistics.block_start	= 0;
7383 #endif
7384 
7385 		if (!dl_task(p) && !rt_task(p)) {
7386 			/*
7387 			 * Renice negative nice level userspace
7388 			 * tasks back to 0:
7389 			 */
7390 			if (task_nice(p) < 0)
7391 				set_user_nice(p, 0);
7392 			continue;
7393 		}
7394 
7395 		rq = task_rq_lock(p, &flags);
7396 		normalize_task(rq, p);
7397 		task_rq_unlock(rq, p, &flags);
7398 	}
7399 	read_unlock(&tasklist_lock);
7400 }
7401 
7402 #endif /* CONFIG_MAGIC_SYSRQ */
7403 
7404 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7405 /*
7406  * These functions are only useful for the IA64 MCA handling, or kdb.
7407  *
7408  * They can only be called when the whole system has been
7409  * stopped - every CPU needs to be quiescent, and no scheduling
7410  * activity can take place. Using them for anything else would
7411  * be a serious bug, and as a result, they aren't even visible
7412  * under any other configuration.
7413  */
7414 
7415 /**
7416  * curr_task - return the current task for a given cpu.
7417  * @cpu: the processor in question.
7418  *
7419  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7420  *
7421  * Return: The current task for @cpu.
7422  */
7423 struct task_struct *curr_task(int cpu)
7424 {
7425 	return cpu_curr(cpu);
7426 }
7427 
7428 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7429 
7430 #ifdef CONFIG_IA64
7431 /**
7432  * set_curr_task - set the current task for a given cpu.
7433  * @cpu: the processor in question.
7434  * @p: the task pointer to set.
7435  *
7436  * Description: This function must only be used when non-maskable interrupts
7437  * are serviced on a separate stack. It allows the architecture to switch the
7438  * notion of the current task on a cpu in a non-blocking manner. This function
7439  * must be called with all CPU's synchronized, and interrupts disabled, the
7440  * and caller must save the original value of the current task (see
7441  * curr_task() above) and restore that value before reenabling interrupts and
7442  * re-starting the system.
7443  *
7444  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7445  */
7446 void set_curr_task(int cpu, struct task_struct *p)
7447 {
7448 	cpu_curr(cpu) = p;
7449 }
7450 
7451 #endif
7452 
7453 #ifdef CONFIG_CGROUP_SCHED
7454 /* task_group_lock serializes the addition/removal of task groups */
7455 static DEFINE_SPINLOCK(task_group_lock);
7456 
7457 static void free_sched_group(struct task_group *tg)
7458 {
7459 	free_fair_sched_group(tg);
7460 	free_rt_sched_group(tg);
7461 	autogroup_free(tg);
7462 	kfree(tg);
7463 }
7464 
7465 /* allocate runqueue etc for a new task group */
7466 struct task_group *sched_create_group(struct task_group *parent)
7467 {
7468 	struct task_group *tg;
7469 
7470 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7471 	if (!tg)
7472 		return ERR_PTR(-ENOMEM);
7473 
7474 	if (!alloc_fair_sched_group(tg, parent))
7475 		goto err;
7476 
7477 	if (!alloc_rt_sched_group(tg, parent))
7478 		goto err;
7479 
7480 	return tg;
7481 
7482 err:
7483 	free_sched_group(tg);
7484 	return ERR_PTR(-ENOMEM);
7485 }
7486 
7487 void sched_online_group(struct task_group *tg, struct task_group *parent)
7488 {
7489 	unsigned long flags;
7490 
7491 	spin_lock_irqsave(&task_group_lock, flags);
7492 	list_add_rcu(&tg->list, &task_groups);
7493 
7494 	WARN_ON(!parent); /* root should already exist */
7495 
7496 	tg->parent = parent;
7497 	INIT_LIST_HEAD(&tg->children);
7498 	list_add_rcu(&tg->siblings, &parent->children);
7499 	spin_unlock_irqrestore(&task_group_lock, flags);
7500 }
7501 
7502 /* rcu callback to free various structures associated with a task group */
7503 static void free_sched_group_rcu(struct rcu_head *rhp)
7504 {
7505 	/* now it should be safe to free those cfs_rqs */
7506 	free_sched_group(container_of(rhp, struct task_group, rcu));
7507 }
7508 
7509 /* Destroy runqueue etc associated with a task group */
7510 void sched_destroy_group(struct task_group *tg)
7511 {
7512 	/* wait for possible concurrent references to cfs_rqs complete */
7513 	call_rcu(&tg->rcu, free_sched_group_rcu);
7514 }
7515 
7516 void sched_offline_group(struct task_group *tg)
7517 {
7518 	unsigned long flags;
7519 	int i;
7520 
7521 	/* end participation in shares distribution */
7522 	for_each_possible_cpu(i)
7523 		unregister_fair_sched_group(tg, i);
7524 
7525 	spin_lock_irqsave(&task_group_lock, flags);
7526 	list_del_rcu(&tg->list);
7527 	list_del_rcu(&tg->siblings);
7528 	spin_unlock_irqrestore(&task_group_lock, flags);
7529 }
7530 
7531 /* change task's runqueue when it moves between groups.
7532  *	The caller of this function should have put the task in its new group
7533  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7534  *	reflect its new group.
7535  */
7536 void sched_move_task(struct task_struct *tsk)
7537 {
7538 	struct task_group *tg;
7539 	int queued, running;
7540 	unsigned long flags;
7541 	struct rq *rq;
7542 
7543 	rq = task_rq_lock(tsk, &flags);
7544 
7545 	running = task_current(rq, tsk);
7546 	queued = task_on_rq_queued(tsk);
7547 
7548 	if (queued)
7549 		dequeue_task(rq, tsk, 0);
7550 	if (unlikely(running))
7551 		put_prev_task(rq, tsk);
7552 
7553 	/*
7554 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7555 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7556 	 * to prevent lockdep warnings.
7557 	 */
7558 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7559 			  struct task_group, css);
7560 	tg = autogroup_task_group(tsk, tg);
7561 	tsk->sched_task_group = tg;
7562 
7563 #ifdef CONFIG_FAIR_GROUP_SCHED
7564 	if (tsk->sched_class->task_move_group)
7565 		tsk->sched_class->task_move_group(tsk, queued);
7566 	else
7567 #endif
7568 		set_task_rq(tsk, task_cpu(tsk));
7569 
7570 	if (unlikely(running))
7571 		tsk->sched_class->set_curr_task(rq);
7572 	if (queued)
7573 		enqueue_task(rq, tsk, 0);
7574 
7575 	task_rq_unlock(rq, tsk, &flags);
7576 }
7577 #endif /* CONFIG_CGROUP_SCHED */
7578 
7579 #ifdef CONFIG_RT_GROUP_SCHED
7580 /*
7581  * Ensure that the real time constraints are schedulable.
7582  */
7583 static DEFINE_MUTEX(rt_constraints_mutex);
7584 
7585 /* Must be called with tasklist_lock held */
7586 static inline int tg_has_rt_tasks(struct task_group *tg)
7587 {
7588 	struct task_struct *g, *p;
7589 
7590 	for_each_process_thread(g, p) {
7591 		if (rt_task(p) && task_group(p) == tg)
7592 			return 1;
7593 	}
7594 
7595 	return 0;
7596 }
7597 
7598 struct rt_schedulable_data {
7599 	struct task_group *tg;
7600 	u64 rt_period;
7601 	u64 rt_runtime;
7602 };
7603 
7604 static int tg_rt_schedulable(struct task_group *tg, void *data)
7605 {
7606 	struct rt_schedulable_data *d = data;
7607 	struct task_group *child;
7608 	unsigned long total, sum = 0;
7609 	u64 period, runtime;
7610 
7611 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7612 	runtime = tg->rt_bandwidth.rt_runtime;
7613 
7614 	if (tg == d->tg) {
7615 		period = d->rt_period;
7616 		runtime = d->rt_runtime;
7617 	}
7618 
7619 	/*
7620 	 * Cannot have more runtime than the period.
7621 	 */
7622 	if (runtime > period && runtime != RUNTIME_INF)
7623 		return -EINVAL;
7624 
7625 	/*
7626 	 * Ensure we don't starve existing RT tasks.
7627 	 */
7628 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7629 		return -EBUSY;
7630 
7631 	total = to_ratio(period, runtime);
7632 
7633 	/*
7634 	 * Nobody can have more than the global setting allows.
7635 	 */
7636 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7637 		return -EINVAL;
7638 
7639 	/*
7640 	 * The sum of our children's runtime should not exceed our own.
7641 	 */
7642 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7643 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7644 		runtime = child->rt_bandwidth.rt_runtime;
7645 
7646 		if (child == d->tg) {
7647 			period = d->rt_period;
7648 			runtime = d->rt_runtime;
7649 		}
7650 
7651 		sum += to_ratio(period, runtime);
7652 	}
7653 
7654 	if (sum > total)
7655 		return -EINVAL;
7656 
7657 	return 0;
7658 }
7659 
7660 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7661 {
7662 	int ret;
7663 
7664 	struct rt_schedulable_data data = {
7665 		.tg = tg,
7666 		.rt_period = period,
7667 		.rt_runtime = runtime,
7668 	};
7669 
7670 	rcu_read_lock();
7671 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7672 	rcu_read_unlock();
7673 
7674 	return ret;
7675 }
7676 
7677 static int tg_set_rt_bandwidth(struct task_group *tg,
7678 		u64 rt_period, u64 rt_runtime)
7679 {
7680 	int i, err = 0;
7681 
7682 	mutex_lock(&rt_constraints_mutex);
7683 	read_lock(&tasklist_lock);
7684 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7685 	if (err)
7686 		goto unlock;
7687 
7688 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7689 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7690 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7691 
7692 	for_each_possible_cpu(i) {
7693 		struct rt_rq *rt_rq = tg->rt_rq[i];
7694 
7695 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7696 		rt_rq->rt_runtime = rt_runtime;
7697 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7698 	}
7699 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7700 unlock:
7701 	read_unlock(&tasklist_lock);
7702 	mutex_unlock(&rt_constraints_mutex);
7703 
7704 	return err;
7705 }
7706 
7707 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7708 {
7709 	u64 rt_runtime, rt_period;
7710 
7711 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7712 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7713 	if (rt_runtime_us < 0)
7714 		rt_runtime = RUNTIME_INF;
7715 
7716 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7717 }
7718 
7719 static long sched_group_rt_runtime(struct task_group *tg)
7720 {
7721 	u64 rt_runtime_us;
7722 
7723 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7724 		return -1;
7725 
7726 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7727 	do_div(rt_runtime_us, NSEC_PER_USEC);
7728 	return rt_runtime_us;
7729 }
7730 
7731 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7732 {
7733 	u64 rt_runtime, rt_period;
7734 
7735 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7736 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7737 
7738 	if (rt_period == 0)
7739 		return -EINVAL;
7740 
7741 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7742 }
7743 
7744 static long sched_group_rt_period(struct task_group *tg)
7745 {
7746 	u64 rt_period_us;
7747 
7748 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7749 	do_div(rt_period_us, NSEC_PER_USEC);
7750 	return rt_period_us;
7751 }
7752 #endif /* CONFIG_RT_GROUP_SCHED */
7753 
7754 #ifdef CONFIG_RT_GROUP_SCHED
7755 static int sched_rt_global_constraints(void)
7756 {
7757 	int ret = 0;
7758 
7759 	mutex_lock(&rt_constraints_mutex);
7760 	read_lock(&tasklist_lock);
7761 	ret = __rt_schedulable(NULL, 0, 0);
7762 	read_unlock(&tasklist_lock);
7763 	mutex_unlock(&rt_constraints_mutex);
7764 
7765 	return ret;
7766 }
7767 
7768 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7769 {
7770 	/* Don't accept realtime tasks when there is no way for them to run */
7771 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7772 		return 0;
7773 
7774 	return 1;
7775 }
7776 
7777 #else /* !CONFIG_RT_GROUP_SCHED */
7778 static int sched_rt_global_constraints(void)
7779 {
7780 	unsigned long flags;
7781 	int i, ret = 0;
7782 
7783 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7784 	for_each_possible_cpu(i) {
7785 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7786 
7787 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7788 		rt_rq->rt_runtime = global_rt_runtime();
7789 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7790 	}
7791 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7792 
7793 	return ret;
7794 }
7795 #endif /* CONFIG_RT_GROUP_SCHED */
7796 
7797 static int sched_dl_global_constraints(void)
7798 {
7799 	u64 runtime = global_rt_runtime();
7800 	u64 period = global_rt_period();
7801 	u64 new_bw = to_ratio(period, runtime);
7802 	struct dl_bw *dl_b;
7803 	int cpu, ret = 0;
7804 	unsigned long flags;
7805 
7806 	/*
7807 	 * Here we want to check the bandwidth not being set to some
7808 	 * value smaller than the currently allocated bandwidth in
7809 	 * any of the root_domains.
7810 	 *
7811 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7812 	 * cycling on root_domains... Discussion on different/better
7813 	 * solutions is welcome!
7814 	 */
7815 	for_each_possible_cpu(cpu) {
7816 		rcu_read_lock_sched();
7817 		dl_b = dl_bw_of(cpu);
7818 
7819 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7820 		if (new_bw < dl_b->total_bw)
7821 			ret = -EBUSY;
7822 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7823 
7824 		rcu_read_unlock_sched();
7825 
7826 		if (ret)
7827 			break;
7828 	}
7829 
7830 	return ret;
7831 }
7832 
7833 static void sched_dl_do_global(void)
7834 {
7835 	u64 new_bw = -1;
7836 	struct dl_bw *dl_b;
7837 	int cpu;
7838 	unsigned long flags;
7839 
7840 	def_dl_bandwidth.dl_period = global_rt_period();
7841 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7842 
7843 	if (global_rt_runtime() != RUNTIME_INF)
7844 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7845 
7846 	/*
7847 	 * FIXME: As above...
7848 	 */
7849 	for_each_possible_cpu(cpu) {
7850 		rcu_read_lock_sched();
7851 		dl_b = dl_bw_of(cpu);
7852 
7853 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7854 		dl_b->bw = new_bw;
7855 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7856 
7857 		rcu_read_unlock_sched();
7858 	}
7859 }
7860 
7861 static int sched_rt_global_validate(void)
7862 {
7863 	if (sysctl_sched_rt_period <= 0)
7864 		return -EINVAL;
7865 
7866 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7867 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7868 		return -EINVAL;
7869 
7870 	return 0;
7871 }
7872 
7873 static void sched_rt_do_global(void)
7874 {
7875 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7876 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7877 }
7878 
7879 int sched_rt_handler(struct ctl_table *table, int write,
7880 		void __user *buffer, size_t *lenp,
7881 		loff_t *ppos)
7882 {
7883 	int old_period, old_runtime;
7884 	static DEFINE_MUTEX(mutex);
7885 	int ret;
7886 
7887 	mutex_lock(&mutex);
7888 	old_period = sysctl_sched_rt_period;
7889 	old_runtime = sysctl_sched_rt_runtime;
7890 
7891 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7892 
7893 	if (!ret && write) {
7894 		ret = sched_rt_global_validate();
7895 		if (ret)
7896 			goto undo;
7897 
7898 		ret = sched_rt_global_constraints();
7899 		if (ret)
7900 			goto undo;
7901 
7902 		ret = sched_dl_global_constraints();
7903 		if (ret)
7904 			goto undo;
7905 
7906 		sched_rt_do_global();
7907 		sched_dl_do_global();
7908 	}
7909 	if (0) {
7910 undo:
7911 		sysctl_sched_rt_period = old_period;
7912 		sysctl_sched_rt_runtime = old_runtime;
7913 	}
7914 	mutex_unlock(&mutex);
7915 
7916 	return ret;
7917 }
7918 
7919 int sched_rr_handler(struct ctl_table *table, int write,
7920 		void __user *buffer, size_t *lenp,
7921 		loff_t *ppos)
7922 {
7923 	int ret;
7924 	static DEFINE_MUTEX(mutex);
7925 
7926 	mutex_lock(&mutex);
7927 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7928 	/* make sure that internally we keep jiffies */
7929 	/* also, writing zero resets timeslice to default */
7930 	if (!ret && write) {
7931 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7932 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7933 	}
7934 	mutex_unlock(&mutex);
7935 	return ret;
7936 }
7937 
7938 #ifdef CONFIG_CGROUP_SCHED
7939 
7940 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7941 {
7942 	return css ? container_of(css, struct task_group, css) : NULL;
7943 }
7944 
7945 static struct cgroup_subsys_state *
7946 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7947 {
7948 	struct task_group *parent = css_tg(parent_css);
7949 	struct task_group *tg;
7950 
7951 	if (!parent) {
7952 		/* This is early initialization for the top cgroup */
7953 		return &root_task_group.css;
7954 	}
7955 
7956 	tg = sched_create_group(parent);
7957 	if (IS_ERR(tg))
7958 		return ERR_PTR(-ENOMEM);
7959 
7960 	return &tg->css;
7961 }
7962 
7963 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7964 {
7965 	struct task_group *tg = css_tg(css);
7966 	struct task_group *parent = css_tg(css->parent);
7967 
7968 	if (parent)
7969 		sched_online_group(tg, parent);
7970 	return 0;
7971 }
7972 
7973 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7974 {
7975 	struct task_group *tg = css_tg(css);
7976 
7977 	sched_destroy_group(tg);
7978 }
7979 
7980 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7981 {
7982 	struct task_group *tg = css_tg(css);
7983 
7984 	sched_offline_group(tg);
7985 }
7986 
7987 static void cpu_cgroup_fork(struct task_struct *task)
7988 {
7989 	sched_move_task(task);
7990 }
7991 
7992 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7993 				 struct cgroup_taskset *tset)
7994 {
7995 	struct task_struct *task;
7996 
7997 	cgroup_taskset_for_each(task, tset) {
7998 #ifdef CONFIG_RT_GROUP_SCHED
7999 		if (!sched_rt_can_attach(css_tg(css), task))
8000 			return -EINVAL;
8001 #else
8002 		/* We don't support RT-tasks being in separate groups */
8003 		if (task->sched_class != &fair_sched_class)
8004 			return -EINVAL;
8005 #endif
8006 	}
8007 	return 0;
8008 }
8009 
8010 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8011 			      struct cgroup_taskset *tset)
8012 {
8013 	struct task_struct *task;
8014 
8015 	cgroup_taskset_for_each(task, tset)
8016 		sched_move_task(task);
8017 }
8018 
8019 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8020 			    struct cgroup_subsys_state *old_css,
8021 			    struct task_struct *task)
8022 {
8023 	/*
8024 	 * cgroup_exit() is called in the copy_process() failure path.
8025 	 * Ignore this case since the task hasn't ran yet, this avoids
8026 	 * trying to poke a half freed task state from generic code.
8027 	 */
8028 	if (!(task->flags & PF_EXITING))
8029 		return;
8030 
8031 	sched_move_task(task);
8032 }
8033 
8034 #ifdef CONFIG_FAIR_GROUP_SCHED
8035 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8036 				struct cftype *cftype, u64 shareval)
8037 {
8038 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8039 }
8040 
8041 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8042 			       struct cftype *cft)
8043 {
8044 	struct task_group *tg = css_tg(css);
8045 
8046 	return (u64) scale_load_down(tg->shares);
8047 }
8048 
8049 #ifdef CONFIG_CFS_BANDWIDTH
8050 static DEFINE_MUTEX(cfs_constraints_mutex);
8051 
8052 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8053 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8054 
8055 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8056 
8057 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8058 {
8059 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8060 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8061 
8062 	if (tg == &root_task_group)
8063 		return -EINVAL;
8064 
8065 	/*
8066 	 * Ensure we have at some amount of bandwidth every period.  This is
8067 	 * to prevent reaching a state of large arrears when throttled via
8068 	 * entity_tick() resulting in prolonged exit starvation.
8069 	 */
8070 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8071 		return -EINVAL;
8072 
8073 	/*
8074 	 * Likewise, bound things on the otherside by preventing insane quota
8075 	 * periods.  This also allows us to normalize in computing quota
8076 	 * feasibility.
8077 	 */
8078 	if (period > max_cfs_quota_period)
8079 		return -EINVAL;
8080 
8081 	/*
8082 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8083 	 * unthrottle_offline_cfs_rqs().
8084 	 */
8085 	get_online_cpus();
8086 	mutex_lock(&cfs_constraints_mutex);
8087 	ret = __cfs_schedulable(tg, period, quota);
8088 	if (ret)
8089 		goto out_unlock;
8090 
8091 	runtime_enabled = quota != RUNTIME_INF;
8092 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8093 	/*
8094 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8095 	 * before making related changes, and on->off must occur afterwards
8096 	 */
8097 	if (runtime_enabled && !runtime_was_enabled)
8098 		cfs_bandwidth_usage_inc();
8099 	raw_spin_lock_irq(&cfs_b->lock);
8100 	cfs_b->period = ns_to_ktime(period);
8101 	cfs_b->quota = quota;
8102 
8103 	__refill_cfs_bandwidth_runtime(cfs_b);
8104 	/* restart the period timer (if active) to handle new period expiry */
8105 	if (runtime_enabled && cfs_b->timer_active) {
8106 		/* force a reprogram */
8107 		__start_cfs_bandwidth(cfs_b, true);
8108 	}
8109 	raw_spin_unlock_irq(&cfs_b->lock);
8110 
8111 	for_each_online_cpu(i) {
8112 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8113 		struct rq *rq = cfs_rq->rq;
8114 
8115 		raw_spin_lock_irq(&rq->lock);
8116 		cfs_rq->runtime_enabled = runtime_enabled;
8117 		cfs_rq->runtime_remaining = 0;
8118 
8119 		if (cfs_rq->throttled)
8120 			unthrottle_cfs_rq(cfs_rq);
8121 		raw_spin_unlock_irq(&rq->lock);
8122 	}
8123 	if (runtime_was_enabled && !runtime_enabled)
8124 		cfs_bandwidth_usage_dec();
8125 out_unlock:
8126 	mutex_unlock(&cfs_constraints_mutex);
8127 	put_online_cpus();
8128 
8129 	return ret;
8130 }
8131 
8132 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8133 {
8134 	u64 quota, period;
8135 
8136 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8137 	if (cfs_quota_us < 0)
8138 		quota = RUNTIME_INF;
8139 	else
8140 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8141 
8142 	return tg_set_cfs_bandwidth(tg, period, quota);
8143 }
8144 
8145 long tg_get_cfs_quota(struct task_group *tg)
8146 {
8147 	u64 quota_us;
8148 
8149 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8150 		return -1;
8151 
8152 	quota_us = tg->cfs_bandwidth.quota;
8153 	do_div(quota_us, NSEC_PER_USEC);
8154 
8155 	return quota_us;
8156 }
8157 
8158 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8159 {
8160 	u64 quota, period;
8161 
8162 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8163 	quota = tg->cfs_bandwidth.quota;
8164 
8165 	return tg_set_cfs_bandwidth(tg, period, quota);
8166 }
8167 
8168 long tg_get_cfs_period(struct task_group *tg)
8169 {
8170 	u64 cfs_period_us;
8171 
8172 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8173 	do_div(cfs_period_us, NSEC_PER_USEC);
8174 
8175 	return cfs_period_us;
8176 }
8177 
8178 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8179 				  struct cftype *cft)
8180 {
8181 	return tg_get_cfs_quota(css_tg(css));
8182 }
8183 
8184 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8185 				   struct cftype *cftype, s64 cfs_quota_us)
8186 {
8187 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8188 }
8189 
8190 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8191 				   struct cftype *cft)
8192 {
8193 	return tg_get_cfs_period(css_tg(css));
8194 }
8195 
8196 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8197 				    struct cftype *cftype, u64 cfs_period_us)
8198 {
8199 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8200 }
8201 
8202 struct cfs_schedulable_data {
8203 	struct task_group *tg;
8204 	u64 period, quota;
8205 };
8206 
8207 /*
8208  * normalize group quota/period to be quota/max_period
8209  * note: units are usecs
8210  */
8211 static u64 normalize_cfs_quota(struct task_group *tg,
8212 			       struct cfs_schedulable_data *d)
8213 {
8214 	u64 quota, period;
8215 
8216 	if (tg == d->tg) {
8217 		period = d->period;
8218 		quota = d->quota;
8219 	} else {
8220 		period = tg_get_cfs_period(tg);
8221 		quota = tg_get_cfs_quota(tg);
8222 	}
8223 
8224 	/* note: these should typically be equivalent */
8225 	if (quota == RUNTIME_INF || quota == -1)
8226 		return RUNTIME_INF;
8227 
8228 	return to_ratio(period, quota);
8229 }
8230 
8231 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8232 {
8233 	struct cfs_schedulable_data *d = data;
8234 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8235 	s64 quota = 0, parent_quota = -1;
8236 
8237 	if (!tg->parent) {
8238 		quota = RUNTIME_INF;
8239 	} else {
8240 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8241 
8242 		quota = normalize_cfs_quota(tg, d);
8243 		parent_quota = parent_b->hierarchical_quota;
8244 
8245 		/*
8246 		 * ensure max(child_quota) <= parent_quota, inherit when no
8247 		 * limit is set
8248 		 */
8249 		if (quota == RUNTIME_INF)
8250 			quota = parent_quota;
8251 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8252 			return -EINVAL;
8253 	}
8254 	cfs_b->hierarchical_quota = quota;
8255 
8256 	return 0;
8257 }
8258 
8259 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8260 {
8261 	int ret;
8262 	struct cfs_schedulable_data data = {
8263 		.tg = tg,
8264 		.period = period,
8265 		.quota = quota,
8266 	};
8267 
8268 	if (quota != RUNTIME_INF) {
8269 		do_div(data.period, NSEC_PER_USEC);
8270 		do_div(data.quota, NSEC_PER_USEC);
8271 	}
8272 
8273 	rcu_read_lock();
8274 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8275 	rcu_read_unlock();
8276 
8277 	return ret;
8278 }
8279 
8280 static int cpu_stats_show(struct seq_file *sf, void *v)
8281 {
8282 	struct task_group *tg = css_tg(seq_css(sf));
8283 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8284 
8285 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8286 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8287 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8288 
8289 	return 0;
8290 }
8291 #endif /* CONFIG_CFS_BANDWIDTH */
8292 #endif /* CONFIG_FAIR_GROUP_SCHED */
8293 
8294 #ifdef CONFIG_RT_GROUP_SCHED
8295 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8296 				struct cftype *cft, s64 val)
8297 {
8298 	return sched_group_set_rt_runtime(css_tg(css), val);
8299 }
8300 
8301 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8302 			       struct cftype *cft)
8303 {
8304 	return sched_group_rt_runtime(css_tg(css));
8305 }
8306 
8307 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8308 				    struct cftype *cftype, u64 rt_period_us)
8309 {
8310 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8311 }
8312 
8313 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8314 				   struct cftype *cft)
8315 {
8316 	return sched_group_rt_period(css_tg(css));
8317 }
8318 #endif /* CONFIG_RT_GROUP_SCHED */
8319 
8320 static struct cftype cpu_files[] = {
8321 #ifdef CONFIG_FAIR_GROUP_SCHED
8322 	{
8323 		.name = "shares",
8324 		.read_u64 = cpu_shares_read_u64,
8325 		.write_u64 = cpu_shares_write_u64,
8326 	},
8327 #endif
8328 #ifdef CONFIG_CFS_BANDWIDTH
8329 	{
8330 		.name = "cfs_quota_us",
8331 		.read_s64 = cpu_cfs_quota_read_s64,
8332 		.write_s64 = cpu_cfs_quota_write_s64,
8333 	},
8334 	{
8335 		.name = "cfs_period_us",
8336 		.read_u64 = cpu_cfs_period_read_u64,
8337 		.write_u64 = cpu_cfs_period_write_u64,
8338 	},
8339 	{
8340 		.name = "stat",
8341 		.seq_show = cpu_stats_show,
8342 	},
8343 #endif
8344 #ifdef CONFIG_RT_GROUP_SCHED
8345 	{
8346 		.name = "rt_runtime_us",
8347 		.read_s64 = cpu_rt_runtime_read,
8348 		.write_s64 = cpu_rt_runtime_write,
8349 	},
8350 	{
8351 		.name = "rt_period_us",
8352 		.read_u64 = cpu_rt_period_read_uint,
8353 		.write_u64 = cpu_rt_period_write_uint,
8354 	},
8355 #endif
8356 	{ }	/* terminate */
8357 };
8358 
8359 struct cgroup_subsys cpu_cgrp_subsys = {
8360 	.css_alloc	= cpu_cgroup_css_alloc,
8361 	.css_free	= cpu_cgroup_css_free,
8362 	.css_online	= cpu_cgroup_css_online,
8363 	.css_offline	= cpu_cgroup_css_offline,
8364 	.fork		= cpu_cgroup_fork,
8365 	.can_attach	= cpu_cgroup_can_attach,
8366 	.attach		= cpu_cgroup_attach,
8367 	.exit		= cpu_cgroup_exit,
8368 	.legacy_cftypes	= cpu_files,
8369 	.early_init	= 1,
8370 };
8371 
8372 #endif	/* CONFIG_CGROUP_SCHED */
8373 
8374 void dump_cpu_task(int cpu)
8375 {
8376 	pr_info("Task dump for CPU %d:\n", cpu);
8377 	sched_show_task(cpu_curr(cpu));
8378 }
8379