xref: /openbmc/linux/kernel/sched/core.c (revision 6c9e92476bc924ede6d6d2f0bfed2c06ae148d29)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	if (delta < 0)
127 		return;
128 	rq->clock += delta;
129 	update_rq_clock_task(rq, delta);
130 }
131 
132 /*
133  * Debugging: various feature bits
134  */
135 
136 #define SCHED_FEAT(name, enabled)	\
137 	(1UL << __SCHED_FEAT_##name) * enabled |
138 
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 	0;
142 
143 #undef SCHED_FEAT
144 
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled)	\
147 	#name ,
148 
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152 
153 #undef SCHED_FEAT
154 
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 
159 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 		if (!(sysctl_sched_features & (1UL << i)))
161 			seq_puts(m, "NO_");
162 		seq_printf(m, "%s ", sched_feat_names[i]);
163 	}
164 	seq_puts(m, "\n");
165 
166 	return 0;
167 }
168 
169 #ifdef HAVE_JUMP_LABEL
170 
171 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173 
174 #define SCHED_FEAT(name, enabled)	\
175 	jump_label_key__##enabled ,
176 
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180 
181 #undef SCHED_FEAT
182 
183 static void sched_feat_disable(int i)
184 {
185 	if (static_key_enabled(&sched_feat_keys[i]))
186 		static_key_slow_dec(&sched_feat_keys[i]);
187 }
188 
189 static void sched_feat_enable(int i)
190 {
191 	if (!static_key_enabled(&sched_feat_keys[i]))
192 		static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198 
199 static int sched_feat_set(char *cmp)
200 {
201 	int i;
202 	int neg = 0;
203 
204 	if (strncmp(cmp, "NO_", 3) == 0) {
205 		neg = 1;
206 		cmp += 3;
207 	}
208 
209 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 			if (neg) {
212 				sysctl_sched_features &= ~(1UL << i);
213 				sched_feat_disable(i);
214 			} else {
215 				sysctl_sched_features |= (1UL << i);
216 				sched_feat_enable(i);
217 			}
218 			break;
219 		}
220 	}
221 
222 	return i;
223 }
224 
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 		size_t cnt, loff_t *ppos)
228 {
229 	char buf[64];
230 	char *cmp;
231 	int i;
232 	struct inode *inode;
233 
234 	if (cnt > 63)
235 		cnt = 63;
236 
237 	if (copy_from_user(&buf, ubuf, cnt))
238 		return -EFAULT;
239 
240 	buf[cnt] = 0;
241 	cmp = strstrip(buf);
242 
243 	/* Ensure the static_key remains in a consistent state */
244 	inode = file_inode(filp);
245 	mutex_lock(&inode->i_mutex);
246 	i = sched_feat_set(cmp);
247 	mutex_unlock(&inode->i_mutex);
248 	if (i == __SCHED_FEAT_NR)
249 		return -EINVAL;
250 
251 	*ppos += cnt;
252 
253 	return cnt;
254 }
255 
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 	return single_open(filp, sched_feat_show, NULL);
259 }
260 
261 static const struct file_operations sched_feat_fops = {
262 	.open		= sched_feat_open,
263 	.write		= sched_feat_write,
264 	.read		= seq_read,
265 	.llseek		= seq_lseek,
266 	.release	= single_release,
267 };
268 
269 static __init int sched_init_debug(void)
270 {
271 	debugfs_create_file("sched_features", 0644, NULL, NULL,
272 			&sched_feat_fops);
273 
274 	return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278 
279 /*
280  * Number of tasks to iterate in a single balance run.
281  * Limited because this is done with IRQs disabled.
282  */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284 
285 /*
286  * period over which we average the RT time consumption, measured
287  * in ms.
288  *
289  * default: 1s
290  */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292 
293 /*
294  * period over which we measure -rt task cpu usage in us.
295  * default: 1s
296  */
297 unsigned int sysctl_sched_rt_period = 1000000;
298 
299 __read_mostly int scheduler_running;
300 
301 /*
302  * part of the period that we allow rt tasks to run in us.
303  * default: 0.95s
304  */
305 int sysctl_sched_rt_runtime = 950000;
306 
307 /*
308  * __task_rq_lock - lock the rq @p resides on.
309  */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 	__acquires(rq->lock)
312 {
313 	struct rq *rq;
314 
315 	lockdep_assert_held(&p->pi_lock);
316 
317 	for (;;) {
318 		rq = task_rq(p);
319 		raw_spin_lock(&rq->lock);
320 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 			return rq;
322 		raw_spin_unlock(&rq->lock);
323 
324 		while (unlikely(task_on_rq_migrating(p)))
325 			cpu_relax();
326 	}
327 }
328 
329 /*
330  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331  */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 	__acquires(p->pi_lock)
334 	__acquires(rq->lock)
335 {
336 	struct rq *rq;
337 
338 	for (;;) {
339 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 		rq = task_rq(p);
341 		raw_spin_lock(&rq->lock);
342 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 			return rq;
344 		raw_spin_unlock(&rq->lock);
345 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 
347 		while (unlikely(task_on_rq_migrating(p)))
348 			cpu_relax();
349 	}
350 }
351 
352 static void __task_rq_unlock(struct rq *rq)
353 	__releases(rq->lock)
354 {
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 	__releases(rq->lock)
361 	__releases(p->pi_lock)
362 {
363 	raw_spin_unlock(&rq->lock);
364 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366 
367 /*
368  * this_rq_lock - lock this runqueue and disable interrupts.
369  */
370 static struct rq *this_rq_lock(void)
371 	__acquires(rq->lock)
372 {
373 	struct rq *rq;
374 
375 	local_irq_disable();
376 	rq = this_rq();
377 	raw_spin_lock(&rq->lock);
378 
379 	return rq;
380 }
381 
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384  * Use HR-timers to deliver accurate preemption points.
385  */
386 
387 static void hrtick_clear(struct rq *rq)
388 {
389 	if (hrtimer_active(&rq->hrtick_timer))
390 		hrtimer_cancel(&rq->hrtick_timer);
391 }
392 
393 /*
394  * High-resolution timer tick.
395  * Runs from hardirq context with interrupts disabled.
396  */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400 
401 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402 
403 	raw_spin_lock(&rq->lock);
404 	update_rq_clock(rq);
405 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 	raw_spin_unlock(&rq->lock);
407 
408 	return HRTIMER_NORESTART;
409 }
410 
411 #ifdef CONFIG_SMP
412 
413 static int __hrtick_restart(struct rq *rq)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = hrtimer_get_softexpires(timer);
417 
418 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420 
421 /*
422  * called from hardirq (IPI) context
423  */
424 static void __hrtick_start(void *arg)
425 {
426 	struct rq *rq = arg;
427 
428 	raw_spin_lock(&rq->lock);
429 	__hrtick_restart(rq);
430 	rq->hrtick_csd_pending = 0;
431 	raw_spin_unlock(&rq->lock);
432 }
433 
434 /*
435  * Called to set the hrtick timer state.
436  *
437  * called with rq->lock held and irqs disabled
438  */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 	struct hrtimer *timer = &rq->hrtick_timer;
442 	ktime_t time;
443 	s64 delta;
444 
445 	/*
446 	 * Don't schedule slices shorter than 10000ns, that just
447 	 * doesn't make sense and can cause timer DoS.
448 	 */
449 	delta = max_t(s64, delay, 10000LL);
450 	time = ktime_add_ns(timer->base->get_time(), delta);
451 
452 	hrtimer_set_expires(timer, time);
453 
454 	if (rq == this_rq()) {
455 		__hrtick_restart(rq);
456 	} else if (!rq->hrtick_csd_pending) {
457 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 		rq->hrtick_csd_pending = 1;
459 	}
460 }
461 
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 	int cpu = (int)(long)hcpu;
466 
467 	switch (action) {
468 	case CPU_UP_CANCELED:
469 	case CPU_UP_CANCELED_FROZEN:
470 	case CPU_DOWN_PREPARE:
471 	case CPU_DOWN_PREPARE_FROZEN:
472 	case CPU_DEAD:
473 	case CPU_DEAD_FROZEN:
474 		hrtick_clear(cpu_rq(cpu));
475 		return NOTIFY_OK;
476 	}
477 
478 	return NOTIFY_DONE;
479 }
480 
481 static __init void init_hrtick(void)
482 {
483 	hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487  * Called to set the hrtick timer state.
488  *
489  * called with rq->lock held and irqs disabled
490  */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 			HRTIMER_MODE_REL_PINNED, 0);
495 }
496 
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501 
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 	rq->hrtick_csd_pending = 0;
506 
507 	rq->hrtick_csd.flags = 0;
508 	rq->hrtick_csd.func = __hrtick_start;
509 	rq->hrtick_csd.info = rq;
510 #endif
511 
512 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 	rq->hrtick_timer.function = hrtick;
514 }
515 #else	/* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519 
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523 
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif	/* CONFIG_SCHED_HRTICK */
528 
529 /*
530  * cmpxchg based fetch_or, macro so it works for different integer types
531  */
532 #define fetch_or(ptr, val)						\
533 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
534  	for (;;) {							\
535  		__old = cmpxchg((ptr), __val, __val | (val));		\
536  		if (__old == __val)					\
537  			break;						\
538  		__val = __old;						\
539  	}								\
540  	__old;								\
541 })
542 
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546  * this avoids any races wrt polling state changes and thereby avoids
547  * spurious IPIs.
548  */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 	struct thread_info *ti = task_thread_info(p);
552 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554 
555 /*
556  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557  *
558  * If this returns true, then the idle task promises to call
559  * sched_ttwu_pending() and reschedule soon.
560  */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 	struct thread_info *ti = task_thread_info(p);
564 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565 
566 	for (;;) {
567 		if (!(val & _TIF_POLLING_NRFLAG))
568 			return false;
569 		if (val & _TIF_NEED_RESCHED)
570 			return true;
571 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 		if (old == val)
573 			break;
574 		val = old;
575 	}
576 	return true;
577 }
578 
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 	set_tsk_need_resched(p);
583 	return true;
584 }
585 
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 	return false;
590 }
591 #endif
592 #endif
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 		return;
632 	resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy cpu for migrating timers
640  * from an idle cpu.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle cpu will add more delays to the timers than intended
644  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(int pinned)
647 {
648 	int cpu = smp_processor_id();
649 	int i;
650 	struct sched_domain *sd;
651 
652 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 		return cpu;
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu(i, sched_domain_span(sd)) {
658 			if (!idle_cpu(i)) {
659 				cpu = i;
660 				goto unlock;
661 			}
662 		}
663 	}
664 unlock:
665 	rcu_read_unlock();
666 	return cpu;
667 }
668 /*
669  * When add_timer_on() enqueues a timer into the timer wheel of an
670  * idle CPU then this timer might expire before the next timer event
671  * which is scheduled to wake up that CPU. In case of a completely
672  * idle system the next event might even be infinite time into the
673  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674  * leaves the inner idle loop so the newly added timer is taken into
675  * account when the CPU goes back to idle and evaluates the timer
676  * wheel for the next timer event.
677  */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 	struct rq *rq = cpu_rq(cpu);
681 
682 	if (cpu == smp_processor_id())
683 		return;
684 
685 	if (set_nr_and_not_polling(rq->idle))
686 		smp_send_reschedule(cpu);
687 	else
688 		trace_sched_wake_idle_without_ipi(cpu);
689 }
690 
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 	/*
694 	 * We just need the target to call irq_exit() and re-evaluate
695 	 * the next tick. The nohz full kick at least implies that.
696 	 * If needed we can still optimize that later with an
697 	 * empty IRQ.
698 	 */
699 	if (tick_nohz_full_cpu(cpu)) {
700 		if (cpu != smp_processor_id() ||
701 		    tick_nohz_tick_stopped())
702 			tick_nohz_full_kick_cpu(cpu);
703 		return true;
704 	}
705 
706 	return false;
707 }
708 
709 void wake_up_nohz_cpu(int cpu)
710 {
711 	if (!wake_up_full_nohz_cpu(cpu))
712 		wake_up_idle_cpu(cpu);
713 }
714 
715 static inline bool got_nohz_idle_kick(void)
716 {
717 	int cpu = smp_processor_id();
718 
719 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 		return false;
721 
722 	if (idle_cpu(cpu) && !need_resched())
723 		return true;
724 
725 	/*
726 	 * We can't run Idle Load Balance on this CPU for this time so we
727 	 * cancel it and clear NOHZ_BALANCE_KICK
728 	 */
729 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 	return false;
731 }
732 
733 #else /* CONFIG_NO_HZ_COMMON */
734 
735 static inline bool got_nohz_idle_kick(void)
736 {
737 	return false;
738 }
739 
740 #endif /* CONFIG_NO_HZ_COMMON */
741 
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 	/*
746 	 * More than one running task need preemption.
747 	 * nr_running update is assumed to be visible
748 	 * after IPI is sent from wakers.
749 	 */
750 	if (this_rq()->nr_running > 1)
751 		return false;
752 
753 	return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756 
757 void sched_avg_update(struct rq *rq)
758 {
759 	s64 period = sched_avg_period();
760 
761 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 		/*
763 		 * Inline assembly required to prevent the compiler
764 		 * optimising this loop into a divmod call.
765 		 * See __iter_div_u64_rem() for another example of this.
766 		 */
767 		asm("" : "+rm" (rq->age_stamp));
768 		rq->age_stamp += period;
769 		rq->rt_avg /= 2;
770 	}
771 }
772 
773 #endif /* CONFIG_SMP */
774 
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778  * Iterate task_group tree rooted at *from, calling @down when first entering a
779  * node and @up when leaving it for the final time.
780  *
781  * Caller must hold rcu_lock or sufficient equivalent.
782  */
783 int walk_tg_tree_from(struct task_group *from,
784 			     tg_visitor down, tg_visitor up, void *data)
785 {
786 	struct task_group *parent, *child;
787 	int ret;
788 
789 	parent = from;
790 
791 down:
792 	ret = (*down)(parent, data);
793 	if (ret)
794 		goto out;
795 	list_for_each_entry_rcu(child, &parent->children, siblings) {
796 		parent = child;
797 		goto down;
798 
799 up:
800 		continue;
801 	}
802 	ret = (*up)(parent, data);
803 	if (ret || parent == from)
804 		goto out;
805 
806 	child = parent;
807 	parent = parent->parent;
808 	if (parent)
809 		goto up;
810 out:
811 	return ret;
812 }
813 
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 	return 0;
817 }
818 #endif
819 
820 static void set_load_weight(struct task_struct *p)
821 {
822 	int prio = p->static_prio - MAX_RT_PRIO;
823 	struct load_weight *load = &p->se.load;
824 
825 	/*
826 	 * SCHED_IDLE tasks get minimal weight:
827 	 */
828 	if (p->policy == SCHED_IDLE) {
829 		load->weight = scale_load(WEIGHT_IDLEPRIO);
830 		load->inv_weight = WMULT_IDLEPRIO;
831 		return;
832 	}
833 
834 	load->weight = scale_load(prio_to_weight[prio]);
835 	load->inv_weight = prio_to_wmult[prio];
836 }
837 
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	sched_info_queued(rq, p);
842 	p->sched_class->enqueue_task(rq, p, flags);
843 }
844 
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_dequeued(rq, p);
849 	p->sched_class->dequeue_task(rq, p, flags);
850 }
851 
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible--;
856 
857 	enqueue_task(rq, p, flags);
858 }
859 
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	if (task_contributes_to_load(p))
863 		rq->nr_uninterruptible++;
864 
865 	dequeue_task(rq, p, flags);
866 }
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 		steal = paravirt_steal_clock(cpu_of(rq));
904 		steal -= rq->prev_steal_time_rq;
905 
906 		if (unlikely(steal > delta))
907 			steal = delta;
908 
909 		rq->prev_steal_time_rq += steal;
910 		delta -= steal;
911 	}
912 #endif
913 
914 	rq->clock_task += delta;
915 
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 		sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921 
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926 
927 	if (stop) {
928 		/*
929 		 * Make it appear like a SCHED_FIFO task, its something
930 		 * userspace knows about and won't get confused about.
931 		 *
932 		 * Also, it will make PI more or less work without too
933 		 * much confusion -- but then, stop work should not
934 		 * rely on PI working anyway.
935 		 */
936 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937 
938 		stop->sched_class = &stop_sched_class;
939 	}
940 
941 	cpu_rq(cpu)->stop = stop;
942 
943 	if (old_stop) {
944 		/*
945 		 * Reset it back to a normal scheduling class so that
946 		 * it can die in pieces.
947 		 */
948 		old_stop->sched_class = &rt_sched_class;
949 	}
950 }
951 
952 /*
953  * __normal_prio - return the priority that is based on the static prio
954  */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 	return p->static_prio;
958 }
959 
960 /*
961  * Calculate the expected normal priority: i.e. priority
962  * without taking RT-inheritance into account. Might be
963  * boosted by interactivity modifiers. Changes upon fork,
964  * setprio syscalls, and whenever the interactivity
965  * estimator recalculates.
966  */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 	int prio;
970 
971 	if (task_has_dl_policy(p))
972 		prio = MAX_DL_PRIO-1;
973 	else if (task_has_rt_policy(p))
974 		prio = MAX_RT_PRIO-1 - p->rt_priority;
975 	else
976 		prio = __normal_prio(p);
977 	return prio;
978 }
979 
980 /*
981  * Calculate the current priority, i.e. the priority
982  * taken into account by the scheduler. This value might
983  * be boosted by RT tasks, or might be boosted by
984  * interactivity modifiers. Will be RT if the task got
985  * RT-boosted. If not then it returns p->normal_prio.
986  */
987 static int effective_prio(struct task_struct *p)
988 {
989 	p->normal_prio = normal_prio(p);
990 	/*
991 	 * If we are RT tasks or we were boosted to RT priority,
992 	 * keep the priority unchanged. Otherwise, update priority
993 	 * to the normal priority:
994 	 */
995 	if (!rt_prio(p->prio))
996 		return p->normal_prio;
997 	return p->prio;
998 }
999 
1000 /**
1001  * task_curr - is this task currently executing on a CPU?
1002  * @p: the task in question.
1003  *
1004  * Return: 1 if the task is currently executing. 0 otherwise.
1005  */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 	return cpu_curr(task_cpu(p)) == p;
1009 }
1010 
1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 				       const struct sched_class *prev_class,
1013 				       int oldprio)
1014 {
1015 	if (prev_class != p->sched_class) {
1016 		if (prev_class->switched_from)
1017 			prev_class->switched_from(rq, p);
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq->skip_clock_update = 1;
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	/*
1053 	 * We should never call set_task_cpu() on a blocked task,
1054 	 * ttwu() will sort out the placement.
1055 	 */
1056 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058 
1059 #ifdef CONFIG_LOCKDEP
1060 	/*
1061 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 	 *
1064 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 	 * see task_group().
1066 	 *
1067 	 * Furthermore, all task_rq users should acquire both locks, see
1068 	 * task_rq_lock().
1069 	 */
1070 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 				      lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074 
1075 	trace_sched_migrate_task(p, new_cpu);
1076 
1077 	if (task_cpu(p) != new_cpu) {
1078 		if (p->sched_class->migrate_task_rq)
1079 			p->sched_class->migrate_task_rq(p, new_cpu);
1080 		p->se.nr_migrations++;
1081 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 	}
1083 
1084 	__set_task_cpu(p, new_cpu);
1085 }
1086 
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 	if (task_on_rq_queued(p)) {
1090 		struct rq *src_rq, *dst_rq;
1091 
1092 		src_rq = task_rq(p);
1093 		dst_rq = cpu_rq(cpu);
1094 
1095 		deactivate_task(src_rq, p, 0);
1096 		set_task_cpu(p, cpu);
1097 		activate_task(dst_rq, p, 0);
1098 		check_preempt_curr(dst_rq, p, 0);
1099 	} else {
1100 		/*
1101 		 * Task isn't running anymore; make it appear like we migrated
1102 		 * it before it went to sleep. This means on wakeup we make the
1103 		 * previous cpu our targer instead of where it really is.
1104 		 */
1105 		p->wake_cpu = cpu;
1106 	}
1107 }
1108 
1109 struct migration_swap_arg {
1110 	struct task_struct *src_task, *dst_task;
1111 	int src_cpu, dst_cpu;
1112 };
1113 
1114 static int migrate_swap_stop(void *data)
1115 {
1116 	struct migration_swap_arg *arg = data;
1117 	struct rq *src_rq, *dst_rq;
1118 	int ret = -EAGAIN;
1119 
1120 	src_rq = cpu_rq(arg->src_cpu);
1121 	dst_rq = cpu_rq(arg->dst_cpu);
1122 
1123 	double_raw_lock(&arg->src_task->pi_lock,
1124 			&arg->dst_task->pi_lock);
1125 	double_rq_lock(src_rq, dst_rq);
1126 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 		goto unlock;
1128 
1129 	if (task_cpu(arg->src_task) != arg->src_cpu)
1130 		goto unlock;
1131 
1132 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 		goto unlock;
1134 
1135 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 		goto unlock;
1137 
1138 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140 
1141 	ret = 0;
1142 
1143 unlock:
1144 	double_rq_unlock(src_rq, dst_rq);
1145 	raw_spin_unlock(&arg->dst_task->pi_lock);
1146 	raw_spin_unlock(&arg->src_task->pi_lock);
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Cross migrate two tasks
1153  */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 	struct migration_swap_arg arg;
1157 	int ret = -EINVAL;
1158 
1159 	arg = (struct migration_swap_arg){
1160 		.src_task = cur,
1161 		.src_cpu = task_cpu(cur),
1162 		.dst_task = p,
1163 		.dst_cpu = task_cpu(p),
1164 	};
1165 
1166 	if (arg.src_cpu == arg.dst_cpu)
1167 		goto out;
1168 
1169 	/*
1170 	 * These three tests are all lockless; this is OK since all of them
1171 	 * will be re-checked with proper locks held further down the line.
1172 	 */
1173 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 		goto out;
1175 
1176 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 		goto out;
1178 
1179 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 		goto out;
1181 
1182 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184 
1185 out:
1186 	return ret;
1187 }
1188 
1189 struct migration_arg {
1190 	struct task_struct *task;
1191 	int dest_cpu;
1192 };
1193 
1194 static int migration_cpu_stop(void *data);
1195 
1196 /*
1197  * wait_task_inactive - wait for a thread to unschedule.
1198  *
1199  * If @match_state is nonzero, it's the @p->state value just checked and
1200  * not expected to change.  If it changes, i.e. @p might have woken up,
1201  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202  * we return a positive number (its total switch count).  If a second call
1203  * a short while later returns the same number, the caller can be sure that
1204  * @p has remained unscheduled the whole time.
1205  *
1206  * The caller must ensure that the task *will* unschedule sometime soon,
1207  * else this function might spin for a *long* time. This function can't
1208  * be called with interrupts off, or it may introduce deadlock with
1209  * smp_call_function() if an IPI is sent by the same process we are
1210  * waiting to become inactive.
1211  */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 	unsigned long flags;
1215 	int running, queued;
1216 	unsigned long ncsw;
1217 	struct rq *rq;
1218 
1219 	for (;;) {
1220 		/*
1221 		 * We do the initial early heuristics without holding
1222 		 * any task-queue locks at all. We'll only try to get
1223 		 * the runqueue lock when things look like they will
1224 		 * work out!
1225 		 */
1226 		rq = task_rq(p);
1227 
1228 		/*
1229 		 * If the task is actively running on another CPU
1230 		 * still, just relax and busy-wait without holding
1231 		 * any locks.
1232 		 *
1233 		 * NOTE! Since we don't hold any locks, it's not
1234 		 * even sure that "rq" stays as the right runqueue!
1235 		 * But we don't care, since "task_running()" will
1236 		 * return false if the runqueue has changed and p
1237 		 * is actually now running somewhere else!
1238 		 */
1239 		while (task_running(rq, p)) {
1240 			if (match_state && unlikely(p->state != match_state))
1241 				return 0;
1242 			cpu_relax();
1243 		}
1244 
1245 		/*
1246 		 * Ok, time to look more closely! We need the rq
1247 		 * lock now, to be *sure*. If we're wrong, we'll
1248 		 * just go back and repeat.
1249 		 */
1250 		rq = task_rq_lock(p, &flags);
1251 		trace_sched_wait_task(p);
1252 		running = task_running(rq, p);
1253 		queued = task_on_rq_queued(p);
1254 		ncsw = 0;
1255 		if (!match_state || p->state == match_state)
1256 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 		task_rq_unlock(rq, p, &flags);
1258 
1259 		/*
1260 		 * If it changed from the expected state, bail out now.
1261 		 */
1262 		if (unlikely(!ncsw))
1263 			break;
1264 
1265 		/*
1266 		 * Was it really running after all now that we
1267 		 * checked with the proper locks actually held?
1268 		 *
1269 		 * Oops. Go back and try again..
1270 		 */
1271 		if (unlikely(running)) {
1272 			cpu_relax();
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * It's not enough that it's not actively running,
1278 		 * it must be off the runqueue _entirely_, and not
1279 		 * preempted!
1280 		 *
1281 		 * So if it was still runnable (but just not actively
1282 		 * running right now), it's preempted, and we should
1283 		 * yield - it could be a while.
1284 		 */
1285 		if (unlikely(queued)) {
1286 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287 
1288 			set_current_state(TASK_UNINTERRUPTIBLE);
1289 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 			continue;
1291 		}
1292 
1293 		/*
1294 		 * Ahh, all good. It wasn't running, and it wasn't
1295 		 * runnable, which means that it will never become
1296 		 * running in the future either. We're all done!
1297 		 */
1298 		break;
1299 	}
1300 
1301 	return ncsw;
1302 }
1303 
1304 /***
1305  * kick_process - kick a running thread to enter/exit the kernel
1306  * @p: the to-be-kicked thread
1307  *
1308  * Cause a process which is running on another CPU to enter
1309  * kernel-mode, without any delay. (to get signals handled.)
1310  *
1311  * NOTE: this function doesn't have to take the runqueue lock,
1312  * because all it wants to ensure is that the remote task enters
1313  * the kernel. If the IPI races and the task has been migrated
1314  * to another CPU then no harm is done and the purpose has been
1315  * achieved as well.
1316  */
1317 void kick_process(struct task_struct *p)
1318 {
1319 	int cpu;
1320 
1321 	preempt_disable();
1322 	cpu = task_cpu(p);
1323 	if ((cpu != smp_processor_id()) && task_curr(p))
1324 		smp_send_reschedule(cpu);
1325 	preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329 
1330 #ifdef CONFIG_SMP
1331 /*
1332  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333  */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 	int nid = cpu_to_node(cpu);
1337 	const struct cpumask *nodemask = NULL;
1338 	enum { cpuset, possible, fail } state = cpuset;
1339 	int dest_cpu;
1340 
1341 	/*
1342 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 	 * will return -1. There is no cpu on the node, and we should
1344 	 * select the cpu on the other node.
1345 	 */
1346 	if (nid != -1) {
1347 		nodemask = cpumask_of_node(nid);
1348 
1349 		/* Look for allowed, online CPU in same node. */
1350 		for_each_cpu(dest_cpu, nodemask) {
1351 			if (!cpu_online(dest_cpu))
1352 				continue;
1353 			if (!cpu_active(dest_cpu))
1354 				continue;
1355 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 				return dest_cpu;
1357 		}
1358 	}
1359 
1360 	for (;;) {
1361 		/* Any allowed, online CPU? */
1362 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 			if (!cpu_online(dest_cpu))
1364 				continue;
1365 			if (!cpu_active(dest_cpu))
1366 				continue;
1367 			goto out;
1368 		}
1369 
1370 		switch (state) {
1371 		case cpuset:
1372 			/* No more Mr. Nice Guy. */
1373 			cpuset_cpus_allowed_fallback(p);
1374 			state = possible;
1375 			break;
1376 
1377 		case possible:
1378 			do_set_cpus_allowed(p, cpu_possible_mask);
1379 			state = fail;
1380 			break;
1381 
1382 		case fail:
1383 			BUG();
1384 			break;
1385 		}
1386 	}
1387 
1388 out:
1389 	if (state != cpuset) {
1390 		/*
1391 		 * Don't tell them about moving exiting tasks or
1392 		 * kernel threads (both mm NULL), since they never
1393 		 * leave kernel.
1394 		 */
1395 		if (p->mm && printk_ratelimit()) {
1396 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 					task_pid_nr(p), p->comm, cpu);
1398 		}
1399 	}
1400 
1401 	return dest_cpu;
1402 }
1403 
1404 /*
1405  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406  */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411 
1412 	/*
1413 	 * In order not to call set_task_cpu() on a blocking task we need
1414 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 	 * cpu.
1416 	 *
1417 	 * Since this is common to all placement strategies, this lives here.
1418 	 *
1419 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 	 *   not worry about this generic constraint ]
1421 	 */
1422 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 		     !cpu_online(cpu)))
1424 		cpu = select_fallback_rq(task_cpu(p), p);
1425 
1426 	return cpu;
1427 }
1428 
1429 static void update_avg(u64 *avg, u64 sample)
1430 {
1431 	s64 diff = sample - *avg;
1432 	*avg += diff >> 3;
1433 }
1434 #endif
1435 
1436 static void
1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438 {
1439 #ifdef CONFIG_SCHEDSTATS
1440 	struct rq *rq = this_rq();
1441 
1442 #ifdef CONFIG_SMP
1443 	int this_cpu = smp_processor_id();
1444 
1445 	if (cpu == this_cpu) {
1446 		schedstat_inc(rq, ttwu_local);
1447 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 	} else {
1449 		struct sched_domain *sd;
1450 
1451 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 		rcu_read_lock();
1453 		for_each_domain(this_cpu, sd) {
1454 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 				schedstat_inc(sd, ttwu_wake_remote);
1456 				break;
1457 			}
1458 		}
1459 		rcu_read_unlock();
1460 	}
1461 
1462 	if (wake_flags & WF_MIGRATED)
1463 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464 
1465 #endif /* CONFIG_SMP */
1466 
1467 	schedstat_inc(rq, ttwu_count);
1468 	schedstat_inc(p, se.statistics.nr_wakeups);
1469 
1470 	if (wake_flags & WF_SYNC)
1471 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472 
1473 #endif /* CONFIG_SCHEDSTATS */
1474 }
1475 
1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477 {
1478 	activate_task(rq, p, en_flags);
1479 	p->on_rq = TASK_ON_RQ_QUEUED;
1480 
1481 	/* if a worker is waking up, notify workqueue */
1482 	if (p->flags & PF_WQ_WORKER)
1483 		wq_worker_waking_up(p, cpu_of(rq));
1484 }
1485 
1486 /*
1487  * Mark the task runnable and perform wakeup-preemption.
1488  */
1489 static void
1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491 {
1492 	check_preempt_curr(rq, p, wake_flags);
1493 	trace_sched_wakeup(p, true);
1494 
1495 	p->state = TASK_RUNNING;
1496 #ifdef CONFIG_SMP
1497 	if (p->sched_class->task_woken)
1498 		p->sched_class->task_woken(rq, p);
1499 
1500 	if (rq->idle_stamp) {
1501 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 		u64 max = 2*rq->max_idle_balance_cost;
1503 
1504 		update_avg(&rq->avg_idle, delta);
1505 
1506 		if (rq->avg_idle > max)
1507 			rq->avg_idle = max;
1508 
1509 		rq->idle_stamp = 0;
1510 	}
1511 #endif
1512 }
1513 
1514 static void
1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516 {
1517 #ifdef CONFIG_SMP
1518 	if (p->sched_contributes_to_load)
1519 		rq->nr_uninterruptible--;
1520 #endif
1521 
1522 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 	ttwu_do_wakeup(rq, p, wake_flags);
1524 }
1525 
1526 /*
1527  * Called in case the task @p isn't fully descheduled from its runqueue,
1528  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529  * since all we need to do is flip p->state to TASK_RUNNING, since
1530  * the task is still ->on_rq.
1531  */
1532 static int ttwu_remote(struct task_struct *p, int wake_flags)
1533 {
1534 	struct rq *rq;
1535 	int ret = 0;
1536 
1537 	rq = __task_rq_lock(p);
1538 	if (task_on_rq_queued(p)) {
1539 		/* check_preempt_curr() may use rq clock */
1540 		update_rq_clock(rq);
1541 		ttwu_do_wakeup(rq, p, wake_flags);
1542 		ret = 1;
1543 	}
1544 	__task_rq_unlock(rq);
1545 
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_SMP
1550 void sched_ttwu_pending(void)
1551 {
1552 	struct rq *rq = this_rq();
1553 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 	struct task_struct *p;
1555 	unsigned long flags;
1556 
1557 	if (!llist)
1558 		return;
1559 
1560 	raw_spin_lock_irqsave(&rq->lock, flags);
1561 
1562 	while (llist) {
1563 		p = llist_entry(llist, struct task_struct, wake_entry);
1564 		llist = llist_next(llist);
1565 		ttwu_do_activate(rq, p, 0);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569 }
1570 
1571 void scheduler_ipi(void)
1572 {
1573 	/*
1574 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 	 * this IPI.
1577 	 */
1578 	preempt_fold_need_resched();
1579 
1580 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 		return;
1582 
1583 	/*
1584 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 	 * traditionally all their work was done from the interrupt return
1586 	 * path. Now that we actually do some work, we need to make sure
1587 	 * we do call them.
1588 	 *
1589 	 * Some archs already do call them, luckily irq_enter/exit nest
1590 	 * properly.
1591 	 *
1592 	 * Arguably we should visit all archs and update all handlers,
1593 	 * however a fair share of IPIs are still resched only so this would
1594 	 * somewhat pessimize the simple resched case.
1595 	 */
1596 	irq_enter();
1597 	sched_ttwu_pending();
1598 
1599 	/*
1600 	 * Check if someone kicked us for doing the nohz idle load balance.
1601 	 */
1602 	if (unlikely(got_nohz_idle_kick())) {
1603 		this_rq()->idle_balance = 1;
1604 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 	}
1606 	irq_exit();
1607 }
1608 
1609 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610 {
1611 	struct rq *rq = cpu_rq(cpu);
1612 
1613 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 		if (!set_nr_if_polling(rq->idle))
1615 			smp_send_reschedule(cpu);
1616 		else
1617 			trace_sched_wake_idle_without_ipi(cpu);
1618 	}
1619 }
1620 
1621 void wake_up_if_idle(int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 	unsigned long flags;
1625 
1626 	if (!is_idle_task(rq->curr))
1627 		return;
1628 
1629 	if (set_nr_if_polling(rq->idle)) {
1630 		trace_sched_wake_idle_without_ipi(cpu);
1631 	} else {
1632 		raw_spin_lock_irqsave(&rq->lock, flags);
1633 		if (is_idle_task(rq->curr))
1634 			smp_send_reschedule(cpu);
1635 		/* Else cpu is not in idle, do nothing here */
1636 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 	}
1638 }
1639 
1640 bool cpus_share_cache(int this_cpu, int that_cpu)
1641 {
1642 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643 }
1644 #endif /* CONFIG_SMP */
1645 
1646 static void ttwu_queue(struct task_struct *p, int cpu)
1647 {
1648 	struct rq *rq = cpu_rq(cpu);
1649 
1650 #if defined(CONFIG_SMP)
1651 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 		ttwu_queue_remote(p, cpu);
1654 		return;
1655 	}
1656 #endif
1657 
1658 	raw_spin_lock(&rq->lock);
1659 	ttwu_do_activate(rq, p, 0);
1660 	raw_spin_unlock(&rq->lock);
1661 }
1662 
1663 /**
1664  * try_to_wake_up - wake up a thread
1665  * @p: the thread to be awakened
1666  * @state: the mask of task states that can be woken
1667  * @wake_flags: wake modifier flags (WF_*)
1668  *
1669  * Put it on the run-queue if it's not already there. The "current"
1670  * thread is always on the run-queue (except when the actual
1671  * re-schedule is in progress), and as such you're allowed to do
1672  * the simpler "current->state = TASK_RUNNING" to mark yourself
1673  * runnable without the overhead of this.
1674  *
1675  * Return: %true if @p was woken up, %false if it was already running.
1676  * or @state didn't match @p's state.
1677  */
1678 static int
1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680 {
1681 	unsigned long flags;
1682 	int cpu, success = 0;
1683 
1684 	/*
1685 	 * If we are going to wake up a thread waiting for CONDITION we
1686 	 * need to ensure that CONDITION=1 done by the caller can not be
1687 	 * reordered with p->state check below. This pairs with mb() in
1688 	 * set_current_state() the waiting thread does.
1689 	 */
1690 	smp_mb__before_spinlock();
1691 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 	if (!(p->state & state))
1693 		goto out;
1694 
1695 	success = 1; /* we're going to change ->state */
1696 	cpu = task_cpu(p);
1697 
1698 	if (p->on_rq && ttwu_remote(p, wake_flags))
1699 		goto stat;
1700 
1701 #ifdef CONFIG_SMP
1702 	/*
1703 	 * If the owning (remote) cpu is still in the middle of schedule() with
1704 	 * this task as prev, wait until its done referencing the task.
1705 	 */
1706 	while (p->on_cpu)
1707 		cpu_relax();
1708 	/*
1709 	 * Pairs with the smp_wmb() in finish_lock_switch().
1710 	 */
1711 	smp_rmb();
1712 
1713 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 	p->state = TASK_WAKING;
1715 
1716 	if (p->sched_class->task_waking)
1717 		p->sched_class->task_waking(p);
1718 
1719 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 	if (task_cpu(p) != cpu) {
1721 		wake_flags |= WF_MIGRATED;
1722 		set_task_cpu(p, cpu);
1723 	}
1724 #endif /* CONFIG_SMP */
1725 
1726 	ttwu_queue(p, cpu);
1727 stat:
1728 	ttwu_stat(p, cpu, wake_flags);
1729 out:
1730 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731 
1732 	return success;
1733 }
1734 
1735 /**
1736  * try_to_wake_up_local - try to wake up a local task with rq lock held
1737  * @p: the thread to be awakened
1738  *
1739  * Put @p on the run-queue if it's not already there. The caller must
1740  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741  * the current task.
1742  */
1743 static void try_to_wake_up_local(struct task_struct *p)
1744 {
1745 	struct rq *rq = task_rq(p);
1746 
1747 	if (WARN_ON_ONCE(rq != this_rq()) ||
1748 	    WARN_ON_ONCE(p == current))
1749 		return;
1750 
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 	if (!raw_spin_trylock(&p->pi_lock)) {
1754 		raw_spin_unlock(&rq->lock);
1755 		raw_spin_lock(&p->pi_lock);
1756 		raw_spin_lock(&rq->lock);
1757 	}
1758 
1759 	if (!(p->state & TASK_NORMAL))
1760 		goto out;
1761 
1762 	if (!task_on_rq_queued(p))
1763 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764 
1765 	ttwu_do_wakeup(rq, p, 0);
1766 	ttwu_stat(p, smp_processor_id(), 0);
1767 out:
1768 	raw_spin_unlock(&p->pi_lock);
1769 }
1770 
1771 /**
1772  * wake_up_process - Wake up a specific process
1773  * @p: The process to be woken up.
1774  *
1775  * Attempt to wake up the nominated process and move it to the set of runnable
1776  * processes.
1777  *
1778  * Return: 1 if the process was woken up, 0 if it was already running.
1779  *
1780  * It may be assumed that this function implies a write memory barrier before
1781  * changing the task state if and only if any tasks are woken up.
1782  */
1783 int wake_up_process(struct task_struct *p)
1784 {
1785 	WARN_ON(task_is_stopped_or_traced(p));
1786 	return try_to_wake_up(p, TASK_NORMAL, 0);
1787 }
1788 EXPORT_SYMBOL(wake_up_process);
1789 
1790 int wake_up_state(struct task_struct *p, unsigned int state)
1791 {
1792 	return try_to_wake_up(p, state, 0);
1793 }
1794 
1795 /*
1796  * This function clears the sched_dl_entity static params.
1797  */
1798 void __dl_clear_params(struct task_struct *p)
1799 {
1800 	struct sched_dl_entity *dl_se = &p->dl;
1801 
1802 	dl_se->dl_runtime = 0;
1803 	dl_se->dl_deadline = 0;
1804 	dl_se->dl_period = 0;
1805 	dl_se->flags = 0;
1806 	dl_se->dl_bw = 0;
1807 }
1808 
1809 /*
1810  * Perform scheduler related setup for a newly forked process p.
1811  * p is forked by current.
1812  *
1813  * __sched_fork() is basic setup used by init_idle() too:
1814  */
1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816 {
1817 	p->on_rq			= 0;
1818 
1819 	p->se.on_rq			= 0;
1820 	p->se.exec_start		= 0;
1821 	p->se.sum_exec_runtime		= 0;
1822 	p->se.prev_sum_exec_runtime	= 0;
1823 	p->se.nr_migrations		= 0;
1824 	p->se.vruntime			= 0;
1825 	INIT_LIST_HEAD(&p->se.group_node);
1826 
1827 #ifdef CONFIG_SCHEDSTATS
1828 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829 #endif
1830 
1831 	RB_CLEAR_NODE(&p->dl.rb_node);
1832 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 	__dl_clear_params(p);
1834 
1835 	INIT_LIST_HEAD(&p->rt.run_list);
1836 
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839 #endif
1840 
1841 #ifdef CONFIG_NUMA_BALANCING
1842 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 		p->mm->numa_scan_seq = 0;
1845 	}
1846 
1847 	if (clone_flags & CLONE_VM)
1848 		p->numa_preferred_nid = current->numa_preferred_nid;
1849 	else
1850 		p->numa_preferred_nid = -1;
1851 
1852 	p->node_stamp = 0ULL;
1853 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 	p->numa_work.next = &p->numa_work;
1856 	p->numa_faults_memory = NULL;
1857 	p->numa_faults_buffer_memory = NULL;
1858 	p->last_task_numa_placement = 0;
1859 	p->last_sum_exec_runtime = 0;
1860 
1861 	INIT_LIST_HEAD(&p->numa_entry);
1862 	p->numa_group = NULL;
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 }
1865 
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled)
1869 {
1870 	if (enabled)
1871 		sched_feat_set("NUMA");
1872 	else
1873 		sched_feat_set("NO_NUMA");
1874 }
1875 #else
1876 __read_mostly bool numabalancing_enabled;
1877 
1878 void set_numabalancing_state(bool enabled)
1879 {
1880 	numabalancing_enabled = enabled;
1881 }
1882 #endif /* CONFIG_SCHED_DEBUG */
1883 
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888 	struct ctl_table t;
1889 	int err;
1890 	int state = numabalancing_enabled;
1891 
1892 	if (write && !capable(CAP_SYS_ADMIN))
1893 		return -EPERM;
1894 
1895 	t = *table;
1896 	t.data = &state;
1897 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 	if (err < 0)
1899 		return err;
1900 	if (write)
1901 		set_numabalancing_state(state);
1902 	return err;
1903 }
1904 #endif
1905 #endif
1906 
1907 /*
1908  * fork()/clone()-time setup:
1909  */
1910 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911 {
1912 	unsigned long flags;
1913 	int cpu = get_cpu();
1914 
1915 	__sched_fork(clone_flags, p);
1916 	/*
1917 	 * We mark the process as running here. This guarantees that
1918 	 * nobody will actually run it, and a signal or other external
1919 	 * event cannot wake it up and insert it on the runqueue either.
1920 	 */
1921 	p->state = TASK_RUNNING;
1922 
1923 	/*
1924 	 * Make sure we do not leak PI boosting priority to the child.
1925 	 */
1926 	p->prio = current->normal_prio;
1927 
1928 	/*
1929 	 * Revert to default priority/policy on fork if requested.
1930 	 */
1931 	if (unlikely(p->sched_reset_on_fork)) {
1932 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 			p->policy = SCHED_NORMAL;
1934 			p->static_prio = NICE_TO_PRIO(0);
1935 			p->rt_priority = 0;
1936 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 			p->static_prio = NICE_TO_PRIO(0);
1938 
1939 		p->prio = p->normal_prio = __normal_prio(p);
1940 		set_load_weight(p);
1941 
1942 		/*
1943 		 * We don't need the reset flag anymore after the fork. It has
1944 		 * fulfilled its duty:
1945 		 */
1946 		p->sched_reset_on_fork = 0;
1947 	}
1948 
1949 	if (dl_prio(p->prio)) {
1950 		put_cpu();
1951 		return -EAGAIN;
1952 	} else if (rt_prio(p->prio)) {
1953 		p->sched_class = &rt_sched_class;
1954 	} else {
1955 		p->sched_class = &fair_sched_class;
1956 	}
1957 
1958 	if (p->sched_class->task_fork)
1959 		p->sched_class->task_fork(p);
1960 
1961 	/*
1962 	 * The child is not yet in the pid-hash so no cgroup attach races,
1963 	 * and the cgroup is pinned to this child due to cgroup_fork()
1964 	 * is ran before sched_fork().
1965 	 *
1966 	 * Silence PROVE_RCU.
1967 	 */
1968 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 	set_task_cpu(p, cpu);
1970 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971 
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 	if (likely(sched_info_on()))
1974 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975 #endif
1976 #if defined(CONFIG_SMP)
1977 	p->on_cpu = 0;
1978 #endif
1979 	init_task_preempt_count(p);
1980 #ifdef CONFIG_SMP
1981 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983 #endif
1984 
1985 	put_cpu();
1986 	return 0;
1987 }
1988 
1989 unsigned long to_ratio(u64 period, u64 runtime)
1990 {
1991 	if (runtime == RUNTIME_INF)
1992 		return 1ULL << 20;
1993 
1994 	/*
1995 	 * Doing this here saves a lot of checks in all
1996 	 * the calling paths, and returning zero seems
1997 	 * safe for them anyway.
1998 	 */
1999 	if (period == 0)
2000 		return 0;
2001 
2002 	return div64_u64(runtime << 20, period);
2003 }
2004 
2005 #ifdef CONFIG_SMP
2006 inline struct dl_bw *dl_bw_of(int i)
2007 {
2008 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 			   "sched RCU must be held");
2010 	return &cpu_rq(i)->rd->dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	struct root_domain *rd = cpu_rq(i)->rd;
2016 	int cpus = 0;
2017 
2018 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 			   "sched RCU must be held");
2020 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 		cpus++;
2022 
2023 	return cpus;
2024 }
2025 #else
2026 inline struct dl_bw *dl_bw_of(int i)
2027 {
2028 	return &cpu_rq(i)->dl.dl_bw;
2029 }
2030 
2031 static inline int dl_bw_cpus(int i)
2032 {
2033 	return 1;
2034 }
2035 #endif
2036 
2037 static inline
2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039 {
2040 	dl_b->total_bw -= tsk_bw;
2041 }
2042 
2043 static inline
2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045 {
2046 	dl_b->total_bw += tsk_bw;
2047 }
2048 
2049 static inline
2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051 {
2052 	return dl_b->bw != -1 &&
2053 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054 }
2055 
2056 /*
2057  * We must be sure that accepting a new task (or allowing changing the
2058  * parameters of an existing one) is consistent with the bandwidth
2059  * constraints. If yes, this function also accordingly updates the currently
2060  * allocated bandwidth to reflect the new situation.
2061  *
2062  * This function is called while holding p's rq->lock.
2063  */
2064 static int dl_overflow(struct task_struct *p, int policy,
2065 		       const struct sched_attr *attr)
2066 {
2067 
2068 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 	u64 period = attr->sched_period ?: attr->sched_deadline;
2070 	u64 runtime = attr->sched_runtime;
2071 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 	int cpus, err = -1;
2073 
2074 	if (new_bw == p->dl.dl_bw)
2075 		return 0;
2076 
2077 	/*
2078 	 * Either if a task, enters, leave, or stays -deadline but changes
2079 	 * its parameters, we may need to update accordingly the total
2080 	 * allocated bandwidth of the container.
2081 	 */
2082 	raw_spin_lock(&dl_b->lock);
2083 	cpus = dl_bw_cpus(task_cpu(p));
2084 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 		__dl_add(dl_b, new_bw);
2087 		err = 0;
2088 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 		__dl_clear(dl_b, p->dl.dl_bw);
2091 		__dl_add(dl_b, new_bw);
2092 		err = 0;
2093 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 		__dl_clear(dl_b, p->dl.dl_bw);
2095 		err = 0;
2096 	}
2097 	raw_spin_unlock(&dl_b->lock);
2098 
2099 	return err;
2100 }
2101 
2102 extern void init_dl_bw(struct dl_bw *dl_b);
2103 
2104 /*
2105  * wake_up_new_task - wake up a newly created task for the first time.
2106  *
2107  * This function will do some initial scheduler statistics housekeeping
2108  * that must be done for every newly created context, then puts the task
2109  * on the runqueue and wakes it.
2110  */
2111 void wake_up_new_task(struct task_struct *p)
2112 {
2113 	unsigned long flags;
2114 	struct rq *rq;
2115 
2116 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117 #ifdef CONFIG_SMP
2118 	/*
2119 	 * Fork balancing, do it here and not earlier because:
2120 	 *  - cpus_allowed can change in the fork path
2121 	 *  - any previously selected cpu might disappear through hotplug
2122 	 */
2123 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124 #endif
2125 
2126 	/* Initialize new task's runnable average */
2127 	init_task_runnable_average(p);
2128 	rq = __task_rq_lock(p);
2129 	activate_task(rq, p, 0);
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 	trace_sched_wakeup_new(p, true);
2132 	check_preempt_curr(rq, p, WF_FORK);
2133 #ifdef CONFIG_SMP
2134 	if (p->sched_class->task_woken)
2135 		p->sched_class->task_woken(rq, p);
2136 #endif
2137 	task_rq_unlock(rq, p, &flags);
2138 }
2139 
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2141 
2142 /**
2143  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144  * @notifier: notifier struct to register
2145  */
2146 void preempt_notifier_register(struct preempt_notifier *notifier)
2147 {
2148 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149 }
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151 
2152 /**
2153  * preempt_notifier_unregister - no longer interested in preemption notifications
2154  * @notifier: notifier struct to unregister
2155  *
2156  * This is safe to call from within a preemption notifier.
2157  */
2158 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159 {
2160 	hlist_del(&notifier->link);
2161 }
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163 
2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165 {
2166 	struct preempt_notifier *notifier;
2167 
2168 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170 }
2171 
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 				 struct task_struct *next)
2175 {
2176 	struct preempt_notifier *notifier;
2177 
2178 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 		notifier->ops->sched_out(notifier, next);
2180 }
2181 
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2183 
2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185 {
2186 }
2187 
2188 static void
2189 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 				 struct task_struct *next)
2191 {
2192 }
2193 
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2195 
2196 /**
2197  * prepare_task_switch - prepare to switch tasks
2198  * @rq: the runqueue preparing to switch
2199  * @prev: the current task that is being switched out
2200  * @next: the task we are going to switch to.
2201  *
2202  * This is called with the rq lock held and interrupts off. It must
2203  * be paired with a subsequent finish_task_switch after the context
2204  * switch.
2205  *
2206  * prepare_task_switch sets up locking and calls architecture specific
2207  * hooks.
2208  */
2209 static inline void
2210 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 		    struct task_struct *next)
2212 {
2213 	trace_sched_switch(prev, next);
2214 	sched_info_switch(rq, prev, next);
2215 	perf_event_task_sched_out(prev, next);
2216 	fire_sched_out_preempt_notifiers(prev, next);
2217 	prepare_lock_switch(rq, next);
2218 	prepare_arch_switch(next);
2219 }
2220 
2221 /**
2222  * finish_task_switch - clean up after a task-switch
2223  * @rq: runqueue associated with task-switch
2224  * @prev: the thread we just switched away from.
2225  *
2226  * finish_task_switch must be called after the context switch, paired
2227  * with a prepare_task_switch call before the context switch.
2228  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229  * and do any other architecture-specific cleanup actions.
2230  *
2231  * Note that we may have delayed dropping an mm in context_switch(). If
2232  * so, we finish that here outside of the runqueue lock. (Doing it
2233  * with the lock held can cause deadlocks; see schedule() for
2234  * details.)
2235  */
2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 	__releases(rq->lock)
2238 {
2239 	struct mm_struct *mm = rq->prev_mm;
2240 	long prev_state;
2241 
2242 	rq->prev_mm = NULL;
2243 
2244 	/*
2245 	 * A task struct has one reference for the use as "current".
2246 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 	 * schedule one last time. The schedule call will never return, and
2248 	 * the scheduled task must drop that reference.
2249 	 * The test for TASK_DEAD must occur while the runqueue locks are
2250 	 * still held, otherwise prev could be scheduled on another cpu, die
2251 	 * there before we look at prev->state, and then the reference would
2252 	 * be dropped twice.
2253 	 *		Manfred Spraul <manfred@colorfullife.com>
2254 	 */
2255 	prev_state = prev->state;
2256 	vtime_task_switch(prev);
2257 	finish_arch_switch(prev);
2258 	perf_event_task_sched_in(prev, current);
2259 	finish_lock_switch(rq, prev);
2260 	finish_arch_post_lock_switch();
2261 
2262 	fire_sched_in_preempt_notifiers(current);
2263 	if (mm)
2264 		mmdrop(mm);
2265 	if (unlikely(prev_state == TASK_DEAD)) {
2266 		if (prev->sched_class->task_dead)
2267 			prev->sched_class->task_dead(prev);
2268 
2269 		/*
2270 		 * Remove function-return probe instances associated with this
2271 		 * task and put them back on the free list.
2272 		 */
2273 		kprobe_flush_task(prev);
2274 		put_task_struct(prev);
2275 	}
2276 
2277 	tick_nohz_task_switch(current);
2278 }
2279 
2280 #ifdef CONFIG_SMP
2281 
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq *rq)
2284 {
2285 	if (rq->post_schedule) {
2286 		unsigned long flags;
2287 
2288 		raw_spin_lock_irqsave(&rq->lock, flags);
2289 		if (rq->curr->sched_class->post_schedule)
2290 			rq->curr->sched_class->post_schedule(rq);
2291 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292 
2293 		rq->post_schedule = 0;
2294 	}
2295 }
2296 
2297 #else
2298 
2299 static inline void post_schedule(struct rq *rq)
2300 {
2301 }
2302 
2303 #endif
2304 
2305 /**
2306  * schedule_tail - first thing a freshly forked thread must call.
2307  * @prev: the thread we just switched away from.
2308  */
2309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 	__releases(rq->lock)
2311 {
2312 	struct rq *rq = this_rq();
2313 
2314 	finish_task_switch(rq, prev);
2315 
2316 	/*
2317 	 * FIXME: do we need to worry about rq being invalidated by the
2318 	 * task_switch?
2319 	 */
2320 	post_schedule(rq);
2321 
2322 	if (current->set_child_tid)
2323 		put_user(task_pid_vnr(current), current->set_child_tid);
2324 }
2325 
2326 /*
2327  * context_switch - switch to the new MM and the new
2328  * thread's register state.
2329  */
2330 static inline void
2331 context_switch(struct rq *rq, struct task_struct *prev,
2332 	       struct task_struct *next)
2333 {
2334 	struct mm_struct *mm, *oldmm;
2335 
2336 	prepare_task_switch(rq, prev, next);
2337 
2338 	mm = next->mm;
2339 	oldmm = prev->active_mm;
2340 	/*
2341 	 * For paravirt, this is coupled with an exit in switch_to to
2342 	 * combine the page table reload and the switch backend into
2343 	 * one hypercall.
2344 	 */
2345 	arch_start_context_switch(prev);
2346 
2347 	if (!mm) {
2348 		next->active_mm = oldmm;
2349 		atomic_inc(&oldmm->mm_count);
2350 		enter_lazy_tlb(oldmm, next);
2351 	} else
2352 		switch_mm(oldmm, mm, next);
2353 
2354 	if (!prev->mm) {
2355 		prev->active_mm = NULL;
2356 		rq->prev_mm = oldmm;
2357 	}
2358 	/*
2359 	 * Since the runqueue lock will be released by the next
2360 	 * task (which is an invalid locking op but in the case
2361 	 * of the scheduler it's an obvious special-case), so we
2362 	 * do an early lockdep release here:
2363 	 */
2364 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365 
2366 	context_tracking_task_switch(prev, next);
2367 	/* Here we just switch the register state and the stack. */
2368 	switch_to(prev, next, prev);
2369 
2370 	barrier();
2371 	/*
2372 	 * this_rq must be evaluated again because prev may have moved
2373 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 	 * frame will be invalid.
2375 	 */
2376 	finish_task_switch(this_rq(), prev);
2377 }
2378 
2379 /*
2380  * nr_running and nr_context_switches:
2381  *
2382  * externally visible scheduler statistics: current number of runnable
2383  * threads, total number of context switches performed since bootup.
2384  */
2385 unsigned long nr_running(void)
2386 {
2387 	unsigned long i, sum = 0;
2388 
2389 	for_each_online_cpu(i)
2390 		sum += cpu_rq(i)->nr_running;
2391 
2392 	return sum;
2393 }
2394 
2395 /*
2396  * Check if only the current task is running on the cpu.
2397  */
2398 bool single_task_running(void)
2399 {
2400 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 		return true;
2402 	else
2403 		return false;
2404 }
2405 EXPORT_SYMBOL(single_task_running);
2406 
2407 unsigned long long nr_context_switches(void)
2408 {
2409 	int i;
2410 	unsigned long long sum = 0;
2411 
2412 	for_each_possible_cpu(i)
2413 		sum += cpu_rq(i)->nr_switches;
2414 
2415 	return sum;
2416 }
2417 
2418 unsigned long nr_iowait(void)
2419 {
2420 	unsigned long i, sum = 0;
2421 
2422 	for_each_possible_cpu(i)
2423 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424 
2425 	return sum;
2426 }
2427 
2428 unsigned long nr_iowait_cpu(int cpu)
2429 {
2430 	struct rq *this = cpu_rq(cpu);
2431 	return atomic_read(&this->nr_iowait);
2432 }
2433 
2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435 {
2436 	struct rq *this = this_rq();
2437 	*nr_waiters = atomic_read(&this->nr_iowait);
2438 	*load = this->cpu_load[0];
2439 }
2440 
2441 #ifdef CONFIG_SMP
2442 
2443 /*
2444  * sched_exec - execve() is a valuable balancing opportunity, because at
2445  * this point the task has the smallest effective memory and cache footprint.
2446  */
2447 void sched_exec(void)
2448 {
2449 	struct task_struct *p = current;
2450 	unsigned long flags;
2451 	int dest_cpu;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 	if (dest_cpu == smp_processor_id())
2456 		goto unlock;
2457 
2458 	if (likely(cpu_active(dest_cpu))) {
2459 		struct migration_arg arg = { p, dest_cpu };
2460 
2461 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 		return;
2464 	}
2465 unlock:
2466 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467 }
2468 
2469 #endif
2470 
2471 DEFINE_PER_CPU(struct kernel_stat, kstat);
2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473 
2474 EXPORT_PER_CPU_SYMBOL(kstat);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476 
2477 /*
2478  * Return accounted runtime for the task.
2479  * In case the task is currently running, return the runtime plus current's
2480  * pending runtime that have not been accounted yet.
2481  */
2482 unsigned long long task_sched_runtime(struct task_struct *p)
2483 {
2484 	unsigned long flags;
2485 	struct rq *rq;
2486 	u64 ns;
2487 
2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 	/*
2490 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 	 * So we have a optimization chance when the task's delta_exec is 0.
2492 	 * Reading ->on_cpu is racy, but this is ok.
2493 	 *
2494 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 	 * If we race with it entering cpu, unaccounted time is 0. This is
2496 	 * indistinguishable from the read occurring a few cycles earlier.
2497 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 	 * been accounted, so we're correct here as well.
2499 	 */
2500 	if (!p->on_cpu || !task_on_rq_queued(p))
2501 		return p->se.sum_exec_runtime;
2502 #endif
2503 
2504 	rq = task_rq_lock(p, &flags);
2505 	/*
2506 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2507 	 * project cycles that may never be accounted to this
2508 	 * thread, breaking clock_gettime().
2509 	 */
2510 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2511 		update_rq_clock(rq);
2512 		p->sched_class->update_curr(rq);
2513 	}
2514 	ns = p->se.sum_exec_runtime;
2515 	task_rq_unlock(rq, p, &flags);
2516 
2517 	return ns;
2518 }
2519 
2520 /*
2521  * This function gets called by the timer code, with HZ frequency.
2522  * We call it with interrupts disabled.
2523  */
2524 void scheduler_tick(void)
2525 {
2526 	int cpu = smp_processor_id();
2527 	struct rq *rq = cpu_rq(cpu);
2528 	struct task_struct *curr = rq->curr;
2529 
2530 	sched_clock_tick();
2531 
2532 	raw_spin_lock(&rq->lock);
2533 	update_rq_clock(rq);
2534 	curr->sched_class->task_tick(rq, curr, 0);
2535 	update_cpu_load_active(rq);
2536 	raw_spin_unlock(&rq->lock);
2537 
2538 	perf_event_task_tick();
2539 
2540 #ifdef CONFIG_SMP
2541 	rq->idle_balance = idle_cpu(cpu);
2542 	trigger_load_balance(rq);
2543 #endif
2544 	rq_last_tick_reset(rq);
2545 }
2546 
2547 #ifdef CONFIG_NO_HZ_FULL
2548 /**
2549  * scheduler_tick_max_deferment
2550  *
2551  * Keep at least one tick per second when a single
2552  * active task is running because the scheduler doesn't
2553  * yet completely support full dynticks environment.
2554  *
2555  * This makes sure that uptime, CFS vruntime, load
2556  * balancing, etc... continue to move forward, even
2557  * with a very low granularity.
2558  *
2559  * Return: Maximum deferment in nanoseconds.
2560  */
2561 u64 scheduler_tick_max_deferment(void)
2562 {
2563 	struct rq *rq = this_rq();
2564 	unsigned long next, now = ACCESS_ONCE(jiffies);
2565 
2566 	next = rq->last_sched_tick + HZ;
2567 
2568 	if (time_before_eq(next, now))
2569 		return 0;
2570 
2571 	return jiffies_to_nsecs(next - now);
2572 }
2573 #endif
2574 
2575 notrace unsigned long get_parent_ip(unsigned long addr)
2576 {
2577 	if (in_lock_functions(addr)) {
2578 		addr = CALLER_ADDR2;
2579 		if (in_lock_functions(addr))
2580 			addr = CALLER_ADDR3;
2581 	}
2582 	return addr;
2583 }
2584 
2585 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2586 				defined(CONFIG_PREEMPT_TRACER))
2587 
2588 void preempt_count_add(int val)
2589 {
2590 #ifdef CONFIG_DEBUG_PREEMPT
2591 	/*
2592 	 * Underflow?
2593 	 */
2594 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2595 		return;
2596 #endif
2597 	__preempt_count_add(val);
2598 #ifdef CONFIG_DEBUG_PREEMPT
2599 	/*
2600 	 * Spinlock count overflowing soon?
2601 	 */
2602 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2603 				PREEMPT_MASK - 10);
2604 #endif
2605 	if (preempt_count() == val) {
2606 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2607 #ifdef CONFIG_DEBUG_PREEMPT
2608 		current->preempt_disable_ip = ip;
2609 #endif
2610 		trace_preempt_off(CALLER_ADDR0, ip);
2611 	}
2612 }
2613 EXPORT_SYMBOL(preempt_count_add);
2614 NOKPROBE_SYMBOL(preempt_count_add);
2615 
2616 void preempt_count_sub(int val)
2617 {
2618 #ifdef CONFIG_DEBUG_PREEMPT
2619 	/*
2620 	 * Underflow?
2621 	 */
2622 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2623 		return;
2624 	/*
2625 	 * Is the spinlock portion underflowing?
2626 	 */
2627 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2628 			!(preempt_count() & PREEMPT_MASK)))
2629 		return;
2630 #endif
2631 
2632 	if (preempt_count() == val)
2633 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2634 	__preempt_count_sub(val);
2635 }
2636 EXPORT_SYMBOL(preempt_count_sub);
2637 NOKPROBE_SYMBOL(preempt_count_sub);
2638 
2639 #endif
2640 
2641 /*
2642  * Print scheduling while atomic bug:
2643  */
2644 static noinline void __schedule_bug(struct task_struct *prev)
2645 {
2646 	if (oops_in_progress)
2647 		return;
2648 
2649 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2650 		prev->comm, prev->pid, preempt_count());
2651 
2652 	debug_show_held_locks(prev);
2653 	print_modules();
2654 	if (irqs_disabled())
2655 		print_irqtrace_events(prev);
2656 #ifdef CONFIG_DEBUG_PREEMPT
2657 	if (in_atomic_preempt_off()) {
2658 		pr_err("Preemption disabled at:");
2659 		print_ip_sym(current->preempt_disable_ip);
2660 		pr_cont("\n");
2661 	}
2662 #endif
2663 	dump_stack();
2664 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2665 }
2666 
2667 /*
2668  * Various schedule()-time debugging checks and statistics:
2669  */
2670 static inline void schedule_debug(struct task_struct *prev)
2671 {
2672 #ifdef CONFIG_SCHED_STACK_END_CHECK
2673 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2674 #endif
2675 	/*
2676 	 * Test if we are atomic. Since do_exit() needs to call into
2677 	 * schedule() atomically, we ignore that path. Otherwise whine
2678 	 * if we are scheduling when we should not.
2679 	 */
2680 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2681 		__schedule_bug(prev);
2682 	rcu_sleep_check();
2683 
2684 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2685 
2686 	schedstat_inc(this_rq(), sched_count);
2687 }
2688 
2689 /*
2690  * Pick up the highest-prio task:
2691  */
2692 static inline struct task_struct *
2693 pick_next_task(struct rq *rq, struct task_struct *prev)
2694 {
2695 	const struct sched_class *class = &fair_sched_class;
2696 	struct task_struct *p;
2697 
2698 	/*
2699 	 * Optimization: we know that if all tasks are in
2700 	 * the fair class we can call that function directly:
2701 	 */
2702 	if (likely(prev->sched_class == class &&
2703 		   rq->nr_running == rq->cfs.h_nr_running)) {
2704 		p = fair_sched_class.pick_next_task(rq, prev);
2705 		if (unlikely(p == RETRY_TASK))
2706 			goto again;
2707 
2708 		/* assumes fair_sched_class->next == idle_sched_class */
2709 		if (unlikely(!p))
2710 			p = idle_sched_class.pick_next_task(rq, prev);
2711 
2712 		return p;
2713 	}
2714 
2715 again:
2716 	for_each_class(class) {
2717 		p = class->pick_next_task(rq, prev);
2718 		if (p) {
2719 			if (unlikely(p == RETRY_TASK))
2720 				goto again;
2721 			return p;
2722 		}
2723 	}
2724 
2725 	BUG(); /* the idle class will always have a runnable task */
2726 }
2727 
2728 /*
2729  * __schedule() is the main scheduler function.
2730  *
2731  * The main means of driving the scheduler and thus entering this function are:
2732  *
2733  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2734  *
2735  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2736  *      paths. For example, see arch/x86/entry_64.S.
2737  *
2738  *      To drive preemption between tasks, the scheduler sets the flag in timer
2739  *      interrupt handler scheduler_tick().
2740  *
2741  *   3. Wakeups don't really cause entry into schedule(). They add a
2742  *      task to the run-queue and that's it.
2743  *
2744  *      Now, if the new task added to the run-queue preempts the current
2745  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2746  *      called on the nearest possible occasion:
2747  *
2748  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2749  *
2750  *         - in syscall or exception context, at the next outmost
2751  *           preempt_enable(). (this might be as soon as the wake_up()'s
2752  *           spin_unlock()!)
2753  *
2754  *         - in IRQ context, return from interrupt-handler to
2755  *           preemptible context
2756  *
2757  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2758  *         then at the next:
2759  *
2760  *          - cond_resched() call
2761  *          - explicit schedule() call
2762  *          - return from syscall or exception to user-space
2763  *          - return from interrupt-handler to user-space
2764  */
2765 static void __sched __schedule(void)
2766 {
2767 	struct task_struct *prev, *next;
2768 	unsigned long *switch_count;
2769 	struct rq *rq;
2770 	int cpu;
2771 
2772 need_resched:
2773 	preempt_disable();
2774 	cpu = smp_processor_id();
2775 	rq = cpu_rq(cpu);
2776 	rcu_note_context_switch(cpu);
2777 	prev = rq->curr;
2778 
2779 	schedule_debug(prev);
2780 
2781 	if (sched_feat(HRTICK))
2782 		hrtick_clear(rq);
2783 
2784 	/*
2785 	 * Make sure that signal_pending_state()->signal_pending() below
2786 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2787 	 * done by the caller to avoid the race with signal_wake_up().
2788 	 */
2789 	smp_mb__before_spinlock();
2790 	raw_spin_lock_irq(&rq->lock);
2791 
2792 	switch_count = &prev->nivcsw;
2793 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2794 		if (unlikely(signal_pending_state(prev->state, prev))) {
2795 			prev->state = TASK_RUNNING;
2796 		} else {
2797 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2798 			prev->on_rq = 0;
2799 
2800 			/*
2801 			 * If a worker went to sleep, notify and ask workqueue
2802 			 * whether it wants to wake up a task to maintain
2803 			 * concurrency.
2804 			 */
2805 			if (prev->flags & PF_WQ_WORKER) {
2806 				struct task_struct *to_wakeup;
2807 
2808 				to_wakeup = wq_worker_sleeping(prev, cpu);
2809 				if (to_wakeup)
2810 					try_to_wake_up_local(to_wakeup);
2811 			}
2812 		}
2813 		switch_count = &prev->nvcsw;
2814 	}
2815 
2816 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2817 		update_rq_clock(rq);
2818 
2819 	next = pick_next_task(rq, prev);
2820 	clear_tsk_need_resched(prev);
2821 	clear_preempt_need_resched();
2822 	rq->skip_clock_update = 0;
2823 
2824 	if (likely(prev != next)) {
2825 		rq->nr_switches++;
2826 		rq->curr = next;
2827 		++*switch_count;
2828 
2829 		context_switch(rq, prev, next); /* unlocks the rq */
2830 		/*
2831 		 * The context switch have flipped the stack from under us
2832 		 * and restored the local variables which were saved when
2833 		 * this task called schedule() in the past. prev == current
2834 		 * is still correct, but it can be moved to another cpu/rq.
2835 		 */
2836 		cpu = smp_processor_id();
2837 		rq = cpu_rq(cpu);
2838 	} else
2839 		raw_spin_unlock_irq(&rq->lock);
2840 
2841 	post_schedule(rq);
2842 
2843 	sched_preempt_enable_no_resched();
2844 	if (need_resched())
2845 		goto need_resched;
2846 }
2847 
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 		return;
2852 	/*
2853 	 * If we are going to sleep and we have plugged IO queued,
2854 	 * make sure to submit it to avoid deadlocks.
2855 	 */
2856 	if (blk_needs_flush_plug(tsk))
2857 		blk_schedule_flush_plug(tsk);
2858 }
2859 
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 	struct task_struct *tsk = current;
2863 
2864 	sched_submit_work(tsk);
2865 	__schedule();
2866 }
2867 EXPORT_SYMBOL(schedule);
2868 
2869 #ifdef CONFIG_CONTEXT_TRACKING
2870 asmlinkage __visible void __sched schedule_user(void)
2871 {
2872 	/*
2873 	 * If we come here after a random call to set_need_resched(),
2874 	 * or we have been woken up remotely but the IPI has not yet arrived,
2875 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2876 	 * we find a better solution.
2877 	 *
2878 	 * NB: There are buggy callers of this function.  Ideally we
2879 	 * should warn if prev_state != IN_USER, but that will trigger
2880 	 * too frequently to make sense yet.
2881 	 */
2882 	enum ctx_state prev_state = exception_enter();
2883 	schedule();
2884 	exception_exit(prev_state);
2885 }
2886 #endif
2887 
2888 /**
2889  * schedule_preempt_disabled - called with preemption disabled
2890  *
2891  * Returns with preemption disabled. Note: preempt_count must be 1
2892  */
2893 void __sched schedule_preempt_disabled(void)
2894 {
2895 	sched_preempt_enable_no_resched();
2896 	schedule();
2897 	preempt_disable();
2898 }
2899 
2900 #ifdef CONFIG_PREEMPT
2901 /*
2902  * this is the entry point to schedule() from in-kernel preemption
2903  * off of preempt_enable. Kernel preemptions off return from interrupt
2904  * occur there and call schedule directly.
2905  */
2906 asmlinkage __visible void __sched notrace preempt_schedule(void)
2907 {
2908 	/*
2909 	 * If there is a non-zero preempt_count or interrupts are disabled,
2910 	 * we do not want to preempt the current task. Just return..
2911 	 */
2912 	if (likely(!preemptible()))
2913 		return;
2914 
2915 	do {
2916 		__preempt_count_add(PREEMPT_ACTIVE);
2917 		__schedule();
2918 		__preempt_count_sub(PREEMPT_ACTIVE);
2919 
2920 		/*
2921 		 * Check again in case we missed a preemption opportunity
2922 		 * between schedule and now.
2923 		 */
2924 		barrier();
2925 	} while (need_resched());
2926 }
2927 NOKPROBE_SYMBOL(preempt_schedule);
2928 EXPORT_SYMBOL(preempt_schedule);
2929 
2930 #ifdef CONFIG_CONTEXT_TRACKING
2931 /**
2932  * preempt_schedule_context - preempt_schedule called by tracing
2933  *
2934  * The tracing infrastructure uses preempt_enable_notrace to prevent
2935  * recursion and tracing preempt enabling caused by the tracing
2936  * infrastructure itself. But as tracing can happen in areas coming
2937  * from userspace or just about to enter userspace, a preempt enable
2938  * can occur before user_exit() is called. This will cause the scheduler
2939  * to be called when the system is still in usermode.
2940  *
2941  * To prevent this, the preempt_enable_notrace will use this function
2942  * instead of preempt_schedule() to exit user context if needed before
2943  * calling the scheduler.
2944  */
2945 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2946 {
2947 	enum ctx_state prev_ctx;
2948 
2949 	if (likely(!preemptible()))
2950 		return;
2951 
2952 	do {
2953 		__preempt_count_add(PREEMPT_ACTIVE);
2954 		/*
2955 		 * Needs preempt disabled in case user_exit() is traced
2956 		 * and the tracer calls preempt_enable_notrace() causing
2957 		 * an infinite recursion.
2958 		 */
2959 		prev_ctx = exception_enter();
2960 		__schedule();
2961 		exception_exit(prev_ctx);
2962 
2963 		__preempt_count_sub(PREEMPT_ACTIVE);
2964 		barrier();
2965 	} while (need_resched());
2966 }
2967 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2968 #endif /* CONFIG_CONTEXT_TRACKING */
2969 
2970 #endif /* CONFIG_PREEMPT */
2971 
2972 /*
2973  * this is the entry point to schedule() from kernel preemption
2974  * off of irq context.
2975  * Note, that this is called and return with irqs disabled. This will
2976  * protect us against recursive calling from irq.
2977  */
2978 asmlinkage __visible void __sched preempt_schedule_irq(void)
2979 {
2980 	enum ctx_state prev_state;
2981 
2982 	/* Catch callers which need to be fixed */
2983 	BUG_ON(preempt_count() || !irqs_disabled());
2984 
2985 	prev_state = exception_enter();
2986 
2987 	do {
2988 		__preempt_count_add(PREEMPT_ACTIVE);
2989 		local_irq_enable();
2990 		__schedule();
2991 		local_irq_disable();
2992 		__preempt_count_sub(PREEMPT_ACTIVE);
2993 
2994 		/*
2995 		 * Check again in case we missed a preemption opportunity
2996 		 * between schedule and now.
2997 		 */
2998 		barrier();
2999 	} while (need_resched());
3000 
3001 	exception_exit(prev_state);
3002 }
3003 
3004 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3005 			  void *key)
3006 {
3007 	return try_to_wake_up(curr->private, mode, wake_flags);
3008 }
3009 EXPORT_SYMBOL(default_wake_function);
3010 
3011 #ifdef CONFIG_RT_MUTEXES
3012 
3013 /*
3014  * rt_mutex_setprio - set the current priority of a task
3015  * @p: task
3016  * @prio: prio value (kernel-internal form)
3017  *
3018  * This function changes the 'effective' priority of a task. It does
3019  * not touch ->normal_prio like __setscheduler().
3020  *
3021  * Used by the rt_mutex code to implement priority inheritance
3022  * logic. Call site only calls if the priority of the task changed.
3023  */
3024 void rt_mutex_setprio(struct task_struct *p, int prio)
3025 {
3026 	int oldprio, queued, running, enqueue_flag = 0;
3027 	struct rq *rq;
3028 	const struct sched_class *prev_class;
3029 
3030 	BUG_ON(prio > MAX_PRIO);
3031 
3032 	rq = __task_rq_lock(p);
3033 
3034 	/*
3035 	 * Idle task boosting is a nono in general. There is one
3036 	 * exception, when PREEMPT_RT and NOHZ is active:
3037 	 *
3038 	 * The idle task calls get_next_timer_interrupt() and holds
3039 	 * the timer wheel base->lock on the CPU and another CPU wants
3040 	 * to access the timer (probably to cancel it). We can safely
3041 	 * ignore the boosting request, as the idle CPU runs this code
3042 	 * with interrupts disabled and will complete the lock
3043 	 * protected section without being interrupted. So there is no
3044 	 * real need to boost.
3045 	 */
3046 	if (unlikely(p == rq->idle)) {
3047 		WARN_ON(p != rq->curr);
3048 		WARN_ON(p->pi_blocked_on);
3049 		goto out_unlock;
3050 	}
3051 
3052 	trace_sched_pi_setprio(p, prio);
3053 	oldprio = p->prio;
3054 	prev_class = p->sched_class;
3055 	queued = task_on_rq_queued(p);
3056 	running = task_current(rq, p);
3057 	if (queued)
3058 		dequeue_task(rq, p, 0);
3059 	if (running)
3060 		put_prev_task(rq, p);
3061 
3062 	/*
3063 	 * Boosting condition are:
3064 	 * 1. -rt task is running and holds mutex A
3065 	 *      --> -dl task blocks on mutex A
3066 	 *
3067 	 * 2. -dl task is running and holds mutex A
3068 	 *      --> -dl task blocks on mutex A and could preempt the
3069 	 *          running task
3070 	 */
3071 	if (dl_prio(prio)) {
3072 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3073 		if (!dl_prio(p->normal_prio) ||
3074 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3075 			p->dl.dl_boosted = 1;
3076 			p->dl.dl_throttled = 0;
3077 			enqueue_flag = ENQUEUE_REPLENISH;
3078 		} else
3079 			p->dl.dl_boosted = 0;
3080 		p->sched_class = &dl_sched_class;
3081 	} else if (rt_prio(prio)) {
3082 		if (dl_prio(oldprio))
3083 			p->dl.dl_boosted = 0;
3084 		if (oldprio < prio)
3085 			enqueue_flag = ENQUEUE_HEAD;
3086 		p->sched_class = &rt_sched_class;
3087 	} else {
3088 		if (dl_prio(oldprio))
3089 			p->dl.dl_boosted = 0;
3090 		p->sched_class = &fair_sched_class;
3091 	}
3092 
3093 	p->prio = prio;
3094 
3095 	if (running)
3096 		p->sched_class->set_curr_task(rq);
3097 	if (queued)
3098 		enqueue_task(rq, p, enqueue_flag);
3099 
3100 	check_class_changed(rq, p, prev_class, oldprio);
3101 out_unlock:
3102 	__task_rq_unlock(rq);
3103 }
3104 #endif
3105 
3106 void set_user_nice(struct task_struct *p, long nice)
3107 {
3108 	int old_prio, delta, queued;
3109 	unsigned long flags;
3110 	struct rq *rq;
3111 
3112 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3113 		return;
3114 	/*
3115 	 * We have to be careful, if called from sys_setpriority(),
3116 	 * the task might be in the middle of scheduling on another CPU.
3117 	 */
3118 	rq = task_rq_lock(p, &flags);
3119 	/*
3120 	 * The RT priorities are set via sched_setscheduler(), but we still
3121 	 * allow the 'normal' nice value to be set - but as expected
3122 	 * it wont have any effect on scheduling until the task is
3123 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3124 	 */
3125 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3126 		p->static_prio = NICE_TO_PRIO(nice);
3127 		goto out_unlock;
3128 	}
3129 	queued = task_on_rq_queued(p);
3130 	if (queued)
3131 		dequeue_task(rq, p, 0);
3132 
3133 	p->static_prio = NICE_TO_PRIO(nice);
3134 	set_load_weight(p);
3135 	old_prio = p->prio;
3136 	p->prio = effective_prio(p);
3137 	delta = p->prio - old_prio;
3138 
3139 	if (queued) {
3140 		enqueue_task(rq, p, 0);
3141 		/*
3142 		 * If the task increased its priority or is running and
3143 		 * lowered its priority, then reschedule its CPU:
3144 		 */
3145 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3146 			resched_curr(rq);
3147 	}
3148 out_unlock:
3149 	task_rq_unlock(rq, p, &flags);
3150 }
3151 EXPORT_SYMBOL(set_user_nice);
3152 
3153 /*
3154  * can_nice - check if a task can reduce its nice value
3155  * @p: task
3156  * @nice: nice value
3157  */
3158 int can_nice(const struct task_struct *p, const int nice)
3159 {
3160 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3161 	int nice_rlim = nice_to_rlimit(nice);
3162 
3163 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3164 		capable(CAP_SYS_NICE));
3165 }
3166 
3167 #ifdef __ARCH_WANT_SYS_NICE
3168 
3169 /*
3170  * sys_nice - change the priority of the current process.
3171  * @increment: priority increment
3172  *
3173  * sys_setpriority is a more generic, but much slower function that
3174  * does similar things.
3175  */
3176 SYSCALL_DEFINE1(nice, int, increment)
3177 {
3178 	long nice, retval;
3179 
3180 	/*
3181 	 * Setpriority might change our priority at the same moment.
3182 	 * We don't have to worry. Conceptually one call occurs first
3183 	 * and we have a single winner.
3184 	 */
3185 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3186 	nice = task_nice(current) + increment;
3187 
3188 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3189 	if (increment < 0 && !can_nice(current, nice))
3190 		return -EPERM;
3191 
3192 	retval = security_task_setnice(current, nice);
3193 	if (retval)
3194 		return retval;
3195 
3196 	set_user_nice(current, nice);
3197 	return 0;
3198 }
3199 
3200 #endif
3201 
3202 /**
3203  * task_prio - return the priority value of a given task.
3204  * @p: the task in question.
3205  *
3206  * Return: The priority value as seen by users in /proc.
3207  * RT tasks are offset by -200. Normal tasks are centered
3208  * around 0, value goes from -16 to +15.
3209  */
3210 int task_prio(const struct task_struct *p)
3211 {
3212 	return p->prio - MAX_RT_PRIO;
3213 }
3214 
3215 /**
3216  * idle_cpu - is a given cpu idle currently?
3217  * @cpu: the processor in question.
3218  *
3219  * Return: 1 if the CPU is currently idle. 0 otherwise.
3220  */
3221 int idle_cpu(int cpu)
3222 {
3223 	struct rq *rq = cpu_rq(cpu);
3224 
3225 	if (rq->curr != rq->idle)
3226 		return 0;
3227 
3228 	if (rq->nr_running)
3229 		return 0;
3230 
3231 #ifdef CONFIG_SMP
3232 	if (!llist_empty(&rq->wake_list))
3233 		return 0;
3234 #endif
3235 
3236 	return 1;
3237 }
3238 
3239 /**
3240  * idle_task - return the idle task for a given cpu.
3241  * @cpu: the processor in question.
3242  *
3243  * Return: The idle task for the cpu @cpu.
3244  */
3245 struct task_struct *idle_task(int cpu)
3246 {
3247 	return cpu_rq(cpu)->idle;
3248 }
3249 
3250 /**
3251  * find_process_by_pid - find a process with a matching PID value.
3252  * @pid: the pid in question.
3253  *
3254  * The task of @pid, if found. %NULL otherwise.
3255  */
3256 static struct task_struct *find_process_by_pid(pid_t pid)
3257 {
3258 	return pid ? find_task_by_vpid(pid) : current;
3259 }
3260 
3261 /*
3262  * This function initializes the sched_dl_entity of a newly becoming
3263  * SCHED_DEADLINE task.
3264  *
3265  * Only the static values are considered here, the actual runtime and the
3266  * absolute deadline will be properly calculated when the task is enqueued
3267  * for the first time with its new policy.
3268  */
3269 static void
3270 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3271 {
3272 	struct sched_dl_entity *dl_se = &p->dl;
3273 
3274 	init_dl_task_timer(dl_se);
3275 	dl_se->dl_runtime = attr->sched_runtime;
3276 	dl_se->dl_deadline = attr->sched_deadline;
3277 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3278 	dl_se->flags = attr->sched_flags;
3279 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3280 	dl_se->dl_throttled = 0;
3281 	dl_se->dl_new = 1;
3282 	dl_se->dl_yielded = 0;
3283 }
3284 
3285 /*
3286  * sched_setparam() passes in -1 for its policy, to let the functions
3287  * it calls know not to change it.
3288  */
3289 #define SETPARAM_POLICY	-1
3290 
3291 static void __setscheduler_params(struct task_struct *p,
3292 		const struct sched_attr *attr)
3293 {
3294 	int policy = attr->sched_policy;
3295 
3296 	if (policy == SETPARAM_POLICY)
3297 		policy = p->policy;
3298 
3299 	p->policy = policy;
3300 
3301 	if (dl_policy(policy))
3302 		__setparam_dl(p, attr);
3303 	else if (fair_policy(policy))
3304 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3305 
3306 	/*
3307 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3308 	 * !rt_policy. Always setting this ensures that things like
3309 	 * getparam()/getattr() don't report silly values for !rt tasks.
3310 	 */
3311 	p->rt_priority = attr->sched_priority;
3312 	p->normal_prio = normal_prio(p);
3313 	set_load_weight(p);
3314 }
3315 
3316 /* Actually do priority change: must hold pi & rq lock. */
3317 static void __setscheduler(struct rq *rq, struct task_struct *p,
3318 			   const struct sched_attr *attr)
3319 {
3320 	__setscheduler_params(p, attr);
3321 
3322 	/*
3323 	 * If we get here, there was no pi waiters boosting the
3324 	 * task. It is safe to use the normal prio.
3325 	 */
3326 	p->prio = normal_prio(p);
3327 
3328 	if (dl_prio(p->prio))
3329 		p->sched_class = &dl_sched_class;
3330 	else if (rt_prio(p->prio))
3331 		p->sched_class = &rt_sched_class;
3332 	else
3333 		p->sched_class = &fair_sched_class;
3334 }
3335 
3336 static void
3337 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3338 {
3339 	struct sched_dl_entity *dl_se = &p->dl;
3340 
3341 	attr->sched_priority = p->rt_priority;
3342 	attr->sched_runtime = dl_se->dl_runtime;
3343 	attr->sched_deadline = dl_se->dl_deadline;
3344 	attr->sched_period = dl_se->dl_period;
3345 	attr->sched_flags = dl_se->flags;
3346 }
3347 
3348 /*
3349  * This function validates the new parameters of a -deadline task.
3350  * We ask for the deadline not being zero, and greater or equal
3351  * than the runtime, as well as the period of being zero or
3352  * greater than deadline. Furthermore, we have to be sure that
3353  * user parameters are above the internal resolution of 1us (we
3354  * check sched_runtime only since it is always the smaller one) and
3355  * below 2^63 ns (we have to check both sched_deadline and
3356  * sched_period, as the latter can be zero).
3357  */
3358 static bool
3359 __checkparam_dl(const struct sched_attr *attr)
3360 {
3361 	/* deadline != 0 */
3362 	if (attr->sched_deadline == 0)
3363 		return false;
3364 
3365 	/*
3366 	 * Since we truncate DL_SCALE bits, make sure we're at least
3367 	 * that big.
3368 	 */
3369 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3370 		return false;
3371 
3372 	/*
3373 	 * Since we use the MSB for wrap-around and sign issues, make
3374 	 * sure it's not set (mind that period can be equal to zero).
3375 	 */
3376 	if (attr->sched_deadline & (1ULL << 63) ||
3377 	    attr->sched_period & (1ULL << 63))
3378 		return false;
3379 
3380 	/* runtime <= deadline <= period (if period != 0) */
3381 	if ((attr->sched_period != 0 &&
3382 	     attr->sched_period < attr->sched_deadline) ||
3383 	    attr->sched_deadline < attr->sched_runtime)
3384 		return false;
3385 
3386 	return true;
3387 }
3388 
3389 /*
3390  * check the target process has a UID that matches the current process's
3391  */
3392 static bool check_same_owner(struct task_struct *p)
3393 {
3394 	const struct cred *cred = current_cred(), *pcred;
3395 	bool match;
3396 
3397 	rcu_read_lock();
3398 	pcred = __task_cred(p);
3399 	match = (uid_eq(cred->euid, pcred->euid) ||
3400 		 uid_eq(cred->euid, pcred->uid));
3401 	rcu_read_unlock();
3402 	return match;
3403 }
3404 
3405 static int __sched_setscheduler(struct task_struct *p,
3406 				const struct sched_attr *attr,
3407 				bool user)
3408 {
3409 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3410 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3411 	int retval, oldprio, oldpolicy = -1, queued, running;
3412 	int policy = attr->sched_policy;
3413 	unsigned long flags;
3414 	const struct sched_class *prev_class;
3415 	struct rq *rq;
3416 	int reset_on_fork;
3417 
3418 	/* may grab non-irq protected spin_locks */
3419 	BUG_ON(in_interrupt());
3420 recheck:
3421 	/* double check policy once rq lock held */
3422 	if (policy < 0) {
3423 		reset_on_fork = p->sched_reset_on_fork;
3424 		policy = oldpolicy = p->policy;
3425 	} else {
3426 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3427 
3428 		if (policy != SCHED_DEADLINE &&
3429 				policy != SCHED_FIFO && policy != SCHED_RR &&
3430 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3431 				policy != SCHED_IDLE)
3432 			return -EINVAL;
3433 	}
3434 
3435 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3436 		return -EINVAL;
3437 
3438 	/*
3439 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3440 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3441 	 * SCHED_BATCH and SCHED_IDLE is 0.
3442 	 */
3443 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3444 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3445 		return -EINVAL;
3446 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3447 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3448 		return -EINVAL;
3449 
3450 	/*
3451 	 * Allow unprivileged RT tasks to decrease priority:
3452 	 */
3453 	if (user && !capable(CAP_SYS_NICE)) {
3454 		if (fair_policy(policy)) {
3455 			if (attr->sched_nice < task_nice(p) &&
3456 			    !can_nice(p, attr->sched_nice))
3457 				return -EPERM;
3458 		}
3459 
3460 		if (rt_policy(policy)) {
3461 			unsigned long rlim_rtprio =
3462 					task_rlimit(p, RLIMIT_RTPRIO);
3463 
3464 			/* can't set/change the rt policy */
3465 			if (policy != p->policy && !rlim_rtprio)
3466 				return -EPERM;
3467 
3468 			/* can't increase priority */
3469 			if (attr->sched_priority > p->rt_priority &&
3470 			    attr->sched_priority > rlim_rtprio)
3471 				return -EPERM;
3472 		}
3473 
3474 		 /*
3475 		  * Can't set/change SCHED_DEADLINE policy at all for now
3476 		  * (safest behavior); in the future we would like to allow
3477 		  * unprivileged DL tasks to increase their relative deadline
3478 		  * or reduce their runtime (both ways reducing utilization)
3479 		  */
3480 		if (dl_policy(policy))
3481 			return -EPERM;
3482 
3483 		/*
3484 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3485 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3486 		 */
3487 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3488 			if (!can_nice(p, task_nice(p)))
3489 				return -EPERM;
3490 		}
3491 
3492 		/* can't change other user's priorities */
3493 		if (!check_same_owner(p))
3494 			return -EPERM;
3495 
3496 		/* Normal users shall not reset the sched_reset_on_fork flag */
3497 		if (p->sched_reset_on_fork && !reset_on_fork)
3498 			return -EPERM;
3499 	}
3500 
3501 	if (user) {
3502 		retval = security_task_setscheduler(p);
3503 		if (retval)
3504 			return retval;
3505 	}
3506 
3507 	/*
3508 	 * make sure no PI-waiters arrive (or leave) while we are
3509 	 * changing the priority of the task:
3510 	 *
3511 	 * To be able to change p->policy safely, the appropriate
3512 	 * runqueue lock must be held.
3513 	 */
3514 	rq = task_rq_lock(p, &flags);
3515 
3516 	/*
3517 	 * Changing the policy of the stop threads its a very bad idea
3518 	 */
3519 	if (p == rq->stop) {
3520 		task_rq_unlock(rq, p, &flags);
3521 		return -EINVAL;
3522 	}
3523 
3524 	/*
3525 	 * If not changing anything there's no need to proceed further,
3526 	 * but store a possible modification of reset_on_fork.
3527 	 */
3528 	if (unlikely(policy == p->policy)) {
3529 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3530 			goto change;
3531 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3532 			goto change;
3533 		if (dl_policy(policy))
3534 			goto change;
3535 
3536 		p->sched_reset_on_fork = reset_on_fork;
3537 		task_rq_unlock(rq, p, &flags);
3538 		return 0;
3539 	}
3540 change:
3541 
3542 	if (user) {
3543 #ifdef CONFIG_RT_GROUP_SCHED
3544 		/*
3545 		 * Do not allow realtime tasks into groups that have no runtime
3546 		 * assigned.
3547 		 */
3548 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3549 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3550 				!task_group_is_autogroup(task_group(p))) {
3551 			task_rq_unlock(rq, p, &flags);
3552 			return -EPERM;
3553 		}
3554 #endif
3555 #ifdef CONFIG_SMP
3556 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3557 			cpumask_t *span = rq->rd->span;
3558 
3559 			/*
3560 			 * Don't allow tasks with an affinity mask smaller than
3561 			 * the entire root_domain to become SCHED_DEADLINE. We
3562 			 * will also fail if there's no bandwidth available.
3563 			 */
3564 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3565 			    rq->rd->dl_bw.bw == 0) {
3566 				task_rq_unlock(rq, p, &flags);
3567 				return -EPERM;
3568 			}
3569 		}
3570 #endif
3571 	}
3572 
3573 	/* recheck policy now with rq lock held */
3574 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3575 		policy = oldpolicy = -1;
3576 		task_rq_unlock(rq, p, &flags);
3577 		goto recheck;
3578 	}
3579 
3580 	/*
3581 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3582 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3583 	 * is available.
3584 	 */
3585 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3586 		task_rq_unlock(rq, p, &flags);
3587 		return -EBUSY;
3588 	}
3589 
3590 	p->sched_reset_on_fork = reset_on_fork;
3591 	oldprio = p->prio;
3592 
3593 	/*
3594 	 * Special case for priority boosted tasks.
3595 	 *
3596 	 * If the new priority is lower or equal (user space view)
3597 	 * than the current (boosted) priority, we just store the new
3598 	 * normal parameters and do not touch the scheduler class and
3599 	 * the runqueue. This will be done when the task deboost
3600 	 * itself.
3601 	 */
3602 	if (rt_mutex_check_prio(p, newprio)) {
3603 		__setscheduler_params(p, attr);
3604 		task_rq_unlock(rq, p, &flags);
3605 		return 0;
3606 	}
3607 
3608 	queued = task_on_rq_queued(p);
3609 	running = task_current(rq, p);
3610 	if (queued)
3611 		dequeue_task(rq, p, 0);
3612 	if (running)
3613 		put_prev_task(rq, p);
3614 
3615 	prev_class = p->sched_class;
3616 	__setscheduler(rq, p, attr);
3617 
3618 	if (running)
3619 		p->sched_class->set_curr_task(rq);
3620 	if (queued) {
3621 		/*
3622 		 * We enqueue to tail when the priority of a task is
3623 		 * increased (user space view).
3624 		 */
3625 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3626 	}
3627 
3628 	check_class_changed(rq, p, prev_class, oldprio);
3629 	task_rq_unlock(rq, p, &flags);
3630 
3631 	rt_mutex_adjust_pi(p);
3632 
3633 	return 0;
3634 }
3635 
3636 static int _sched_setscheduler(struct task_struct *p, int policy,
3637 			       const struct sched_param *param, bool check)
3638 {
3639 	struct sched_attr attr = {
3640 		.sched_policy   = policy,
3641 		.sched_priority = param->sched_priority,
3642 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3643 	};
3644 
3645 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3646 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3647 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3648 		policy &= ~SCHED_RESET_ON_FORK;
3649 		attr.sched_policy = policy;
3650 	}
3651 
3652 	return __sched_setscheduler(p, &attr, check);
3653 }
3654 /**
3655  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3656  * @p: the task in question.
3657  * @policy: new policy.
3658  * @param: structure containing the new RT priority.
3659  *
3660  * Return: 0 on success. An error code otherwise.
3661  *
3662  * NOTE that the task may be already dead.
3663  */
3664 int sched_setscheduler(struct task_struct *p, int policy,
3665 		       const struct sched_param *param)
3666 {
3667 	return _sched_setscheduler(p, policy, param, true);
3668 }
3669 EXPORT_SYMBOL_GPL(sched_setscheduler);
3670 
3671 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3672 {
3673 	return __sched_setscheduler(p, attr, true);
3674 }
3675 EXPORT_SYMBOL_GPL(sched_setattr);
3676 
3677 /**
3678  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3679  * @p: the task in question.
3680  * @policy: new policy.
3681  * @param: structure containing the new RT priority.
3682  *
3683  * Just like sched_setscheduler, only don't bother checking if the
3684  * current context has permission.  For example, this is needed in
3685  * stop_machine(): we create temporary high priority worker threads,
3686  * but our caller might not have that capability.
3687  *
3688  * Return: 0 on success. An error code otherwise.
3689  */
3690 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3691 			       const struct sched_param *param)
3692 {
3693 	return _sched_setscheduler(p, policy, param, false);
3694 }
3695 
3696 static int
3697 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3698 {
3699 	struct sched_param lparam;
3700 	struct task_struct *p;
3701 	int retval;
3702 
3703 	if (!param || pid < 0)
3704 		return -EINVAL;
3705 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3706 		return -EFAULT;
3707 
3708 	rcu_read_lock();
3709 	retval = -ESRCH;
3710 	p = find_process_by_pid(pid);
3711 	if (p != NULL)
3712 		retval = sched_setscheduler(p, policy, &lparam);
3713 	rcu_read_unlock();
3714 
3715 	return retval;
3716 }
3717 
3718 /*
3719  * Mimics kernel/events/core.c perf_copy_attr().
3720  */
3721 static int sched_copy_attr(struct sched_attr __user *uattr,
3722 			   struct sched_attr *attr)
3723 {
3724 	u32 size;
3725 	int ret;
3726 
3727 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3728 		return -EFAULT;
3729 
3730 	/*
3731 	 * zero the full structure, so that a short copy will be nice.
3732 	 */
3733 	memset(attr, 0, sizeof(*attr));
3734 
3735 	ret = get_user(size, &uattr->size);
3736 	if (ret)
3737 		return ret;
3738 
3739 	if (size > PAGE_SIZE)	/* silly large */
3740 		goto err_size;
3741 
3742 	if (!size)		/* abi compat */
3743 		size = SCHED_ATTR_SIZE_VER0;
3744 
3745 	if (size < SCHED_ATTR_SIZE_VER0)
3746 		goto err_size;
3747 
3748 	/*
3749 	 * If we're handed a bigger struct than we know of,
3750 	 * ensure all the unknown bits are 0 - i.e. new
3751 	 * user-space does not rely on any kernel feature
3752 	 * extensions we dont know about yet.
3753 	 */
3754 	if (size > sizeof(*attr)) {
3755 		unsigned char __user *addr;
3756 		unsigned char __user *end;
3757 		unsigned char val;
3758 
3759 		addr = (void __user *)uattr + sizeof(*attr);
3760 		end  = (void __user *)uattr + size;
3761 
3762 		for (; addr < end; addr++) {
3763 			ret = get_user(val, addr);
3764 			if (ret)
3765 				return ret;
3766 			if (val)
3767 				goto err_size;
3768 		}
3769 		size = sizeof(*attr);
3770 	}
3771 
3772 	ret = copy_from_user(attr, uattr, size);
3773 	if (ret)
3774 		return -EFAULT;
3775 
3776 	/*
3777 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3778 	 * to be strict and return an error on out-of-bounds values?
3779 	 */
3780 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3781 
3782 	return 0;
3783 
3784 err_size:
3785 	put_user(sizeof(*attr), &uattr->size);
3786 	return -E2BIG;
3787 }
3788 
3789 /**
3790  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3791  * @pid: the pid in question.
3792  * @policy: new policy.
3793  * @param: structure containing the new RT priority.
3794  *
3795  * Return: 0 on success. An error code otherwise.
3796  */
3797 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3798 		struct sched_param __user *, param)
3799 {
3800 	/* negative values for policy are not valid */
3801 	if (policy < 0)
3802 		return -EINVAL;
3803 
3804 	return do_sched_setscheduler(pid, policy, param);
3805 }
3806 
3807 /**
3808  * sys_sched_setparam - set/change the RT priority of a thread
3809  * @pid: the pid in question.
3810  * @param: structure containing the new RT priority.
3811  *
3812  * Return: 0 on success. An error code otherwise.
3813  */
3814 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3815 {
3816 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3817 }
3818 
3819 /**
3820  * sys_sched_setattr - same as above, but with extended sched_attr
3821  * @pid: the pid in question.
3822  * @uattr: structure containing the extended parameters.
3823  * @flags: for future extension.
3824  */
3825 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3826 			       unsigned int, flags)
3827 {
3828 	struct sched_attr attr;
3829 	struct task_struct *p;
3830 	int retval;
3831 
3832 	if (!uattr || pid < 0 || flags)
3833 		return -EINVAL;
3834 
3835 	retval = sched_copy_attr(uattr, &attr);
3836 	if (retval)
3837 		return retval;
3838 
3839 	if ((int)attr.sched_policy < 0)
3840 		return -EINVAL;
3841 
3842 	rcu_read_lock();
3843 	retval = -ESRCH;
3844 	p = find_process_by_pid(pid);
3845 	if (p != NULL)
3846 		retval = sched_setattr(p, &attr);
3847 	rcu_read_unlock();
3848 
3849 	return retval;
3850 }
3851 
3852 /**
3853  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3854  * @pid: the pid in question.
3855  *
3856  * Return: On success, the policy of the thread. Otherwise, a negative error
3857  * code.
3858  */
3859 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3860 {
3861 	struct task_struct *p;
3862 	int retval;
3863 
3864 	if (pid < 0)
3865 		return -EINVAL;
3866 
3867 	retval = -ESRCH;
3868 	rcu_read_lock();
3869 	p = find_process_by_pid(pid);
3870 	if (p) {
3871 		retval = security_task_getscheduler(p);
3872 		if (!retval)
3873 			retval = p->policy
3874 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3875 	}
3876 	rcu_read_unlock();
3877 	return retval;
3878 }
3879 
3880 /**
3881  * sys_sched_getparam - get the RT priority of a thread
3882  * @pid: the pid in question.
3883  * @param: structure containing the RT priority.
3884  *
3885  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3886  * code.
3887  */
3888 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3889 {
3890 	struct sched_param lp = { .sched_priority = 0 };
3891 	struct task_struct *p;
3892 	int retval;
3893 
3894 	if (!param || pid < 0)
3895 		return -EINVAL;
3896 
3897 	rcu_read_lock();
3898 	p = find_process_by_pid(pid);
3899 	retval = -ESRCH;
3900 	if (!p)
3901 		goto out_unlock;
3902 
3903 	retval = security_task_getscheduler(p);
3904 	if (retval)
3905 		goto out_unlock;
3906 
3907 	if (task_has_rt_policy(p))
3908 		lp.sched_priority = p->rt_priority;
3909 	rcu_read_unlock();
3910 
3911 	/*
3912 	 * This one might sleep, we cannot do it with a spinlock held ...
3913 	 */
3914 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3915 
3916 	return retval;
3917 
3918 out_unlock:
3919 	rcu_read_unlock();
3920 	return retval;
3921 }
3922 
3923 static int sched_read_attr(struct sched_attr __user *uattr,
3924 			   struct sched_attr *attr,
3925 			   unsigned int usize)
3926 {
3927 	int ret;
3928 
3929 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3930 		return -EFAULT;
3931 
3932 	/*
3933 	 * If we're handed a smaller struct than we know of,
3934 	 * ensure all the unknown bits are 0 - i.e. old
3935 	 * user-space does not get uncomplete information.
3936 	 */
3937 	if (usize < sizeof(*attr)) {
3938 		unsigned char *addr;
3939 		unsigned char *end;
3940 
3941 		addr = (void *)attr + usize;
3942 		end  = (void *)attr + sizeof(*attr);
3943 
3944 		for (; addr < end; addr++) {
3945 			if (*addr)
3946 				return -EFBIG;
3947 		}
3948 
3949 		attr->size = usize;
3950 	}
3951 
3952 	ret = copy_to_user(uattr, attr, attr->size);
3953 	if (ret)
3954 		return -EFAULT;
3955 
3956 	return 0;
3957 }
3958 
3959 /**
3960  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3961  * @pid: the pid in question.
3962  * @uattr: structure containing the extended parameters.
3963  * @size: sizeof(attr) for fwd/bwd comp.
3964  * @flags: for future extension.
3965  */
3966 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3967 		unsigned int, size, unsigned int, flags)
3968 {
3969 	struct sched_attr attr = {
3970 		.size = sizeof(struct sched_attr),
3971 	};
3972 	struct task_struct *p;
3973 	int retval;
3974 
3975 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3976 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3977 		return -EINVAL;
3978 
3979 	rcu_read_lock();
3980 	p = find_process_by_pid(pid);
3981 	retval = -ESRCH;
3982 	if (!p)
3983 		goto out_unlock;
3984 
3985 	retval = security_task_getscheduler(p);
3986 	if (retval)
3987 		goto out_unlock;
3988 
3989 	attr.sched_policy = p->policy;
3990 	if (p->sched_reset_on_fork)
3991 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3992 	if (task_has_dl_policy(p))
3993 		__getparam_dl(p, &attr);
3994 	else if (task_has_rt_policy(p))
3995 		attr.sched_priority = p->rt_priority;
3996 	else
3997 		attr.sched_nice = task_nice(p);
3998 
3999 	rcu_read_unlock();
4000 
4001 	retval = sched_read_attr(uattr, &attr, size);
4002 	return retval;
4003 
4004 out_unlock:
4005 	rcu_read_unlock();
4006 	return retval;
4007 }
4008 
4009 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4010 {
4011 	cpumask_var_t cpus_allowed, new_mask;
4012 	struct task_struct *p;
4013 	int retval;
4014 
4015 	rcu_read_lock();
4016 
4017 	p = find_process_by_pid(pid);
4018 	if (!p) {
4019 		rcu_read_unlock();
4020 		return -ESRCH;
4021 	}
4022 
4023 	/* Prevent p going away */
4024 	get_task_struct(p);
4025 	rcu_read_unlock();
4026 
4027 	if (p->flags & PF_NO_SETAFFINITY) {
4028 		retval = -EINVAL;
4029 		goto out_put_task;
4030 	}
4031 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4032 		retval = -ENOMEM;
4033 		goto out_put_task;
4034 	}
4035 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4036 		retval = -ENOMEM;
4037 		goto out_free_cpus_allowed;
4038 	}
4039 	retval = -EPERM;
4040 	if (!check_same_owner(p)) {
4041 		rcu_read_lock();
4042 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4043 			rcu_read_unlock();
4044 			goto out_free_new_mask;
4045 		}
4046 		rcu_read_unlock();
4047 	}
4048 
4049 	retval = security_task_setscheduler(p);
4050 	if (retval)
4051 		goto out_free_new_mask;
4052 
4053 
4054 	cpuset_cpus_allowed(p, cpus_allowed);
4055 	cpumask_and(new_mask, in_mask, cpus_allowed);
4056 
4057 	/*
4058 	 * Since bandwidth control happens on root_domain basis,
4059 	 * if admission test is enabled, we only admit -deadline
4060 	 * tasks allowed to run on all the CPUs in the task's
4061 	 * root_domain.
4062 	 */
4063 #ifdef CONFIG_SMP
4064 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4065 		rcu_read_lock();
4066 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4067 			retval = -EBUSY;
4068 			rcu_read_unlock();
4069 			goto out_free_new_mask;
4070 		}
4071 		rcu_read_unlock();
4072 	}
4073 #endif
4074 again:
4075 	retval = set_cpus_allowed_ptr(p, new_mask);
4076 
4077 	if (!retval) {
4078 		cpuset_cpus_allowed(p, cpus_allowed);
4079 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4080 			/*
4081 			 * We must have raced with a concurrent cpuset
4082 			 * update. Just reset the cpus_allowed to the
4083 			 * cpuset's cpus_allowed
4084 			 */
4085 			cpumask_copy(new_mask, cpus_allowed);
4086 			goto again;
4087 		}
4088 	}
4089 out_free_new_mask:
4090 	free_cpumask_var(new_mask);
4091 out_free_cpus_allowed:
4092 	free_cpumask_var(cpus_allowed);
4093 out_put_task:
4094 	put_task_struct(p);
4095 	return retval;
4096 }
4097 
4098 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4099 			     struct cpumask *new_mask)
4100 {
4101 	if (len < cpumask_size())
4102 		cpumask_clear(new_mask);
4103 	else if (len > cpumask_size())
4104 		len = cpumask_size();
4105 
4106 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4107 }
4108 
4109 /**
4110  * sys_sched_setaffinity - set the cpu affinity of a process
4111  * @pid: pid of the process
4112  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4113  * @user_mask_ptr: user-space pointer to the new cpu mask
4114  *
4115  * Return: 0 on success. An error code otherwise.
4116  */
4117 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4118 		unsigned long __user *, user_mask_ptr)
4119 {
4120 	cpumask_var_t new_mask;
4121 	int retval;
4122 
4123 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4124 		return -ENOMEM;
4125 
4126 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4127 	if (retval == 0)
4128 		retval = sched_setaffinity(pid, new_mask);
4129 	free_cpumask_var(new_mask);
4130 	return retval;
4131 }
4132 
4133 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4134 {
4135 	struct task_struct *p;
4136 	unsigned long flags;
4137 	int retval;
4138 
4139 	rcu_read_lock();
4140 
4141 	retval = -ESRCH;
4142 	p = find_process_by_pid(pid);
4143 	if (!p)
4144 		goto out_unlock;
4145 
4146 	retval = security_task_getscheduler(p);
4147 	if (retval)
4148 		goto out_unlock;
4149 
4150 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4151 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4152 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4153 
4154 out_unlock:
4155 	rcu_read_unlock();
4156 
4157 	return retval;
4158 }
4159 
4160 /**
4161  * sys_sched_getaffinity - get the cpu affinity of a process
4162  * @pid: pid of the process
4163  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4164  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4165  *
4166  * Return: 0 on success. An error code otherwise.
4167  */
4168 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4169 		unsigned long __user *, user_mask_ptr)
4170 {
4171 	int ret;
4172 	cpumask_var_t mask;
4173 
4174 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4175 		return -EINVAL;
4176 	if (len & (sizeof(unsigned long)-1))
4177 		return -EINVAL;
4178 
4179 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4180 		return -ENOMEM;
4181 
4182 	ret = sched_getaffinity(pid, mask);
4183 	if (ret == 0) {
4184 		size_t retlen = min_t(size_t, len, cpumask_size());
4185 
4186 		if (copy_to_user(user_mask_ptr, mask, retlen))
4187 			ret = -EFAULT;
4188 		else
4189 			ret = retlen;
4190 	}
4191 	free_cpumask_var(mask);
4192 
4193 	return ret;
4194 }
4195 
4196 /**
4197  * sys_sched_yield - yield the current processor to other threads.
4198  *
4199  * This function yields the current CPU to other tasks. If there are no
4200  * other threads running on this CPU then this function will return.
4201  *
4202  * Return: 0.
4203  */
4204 SYSCALL_DEFINE0(sched_yield)
4205 {
4206 	struct rq *rq = this_rq_lock();
4207 
4208 	schedstat_inc(rq, yld_count);
4209 	current->sched_class->yield_task(rq);
4210 
4211 	/*
4212 	 * Since we are going to call schedule() anyway, there's
4213 	 * no need to preempt or enable interrupts:
4214 	 */
4215 	__release(rq->lock);
4216 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4217 	do_raw_spin_unlock(&rq->lock);
4218 	sched_preempt_enable_no_resched();
4219 
4220 	schedule();
4221 
4222 	return 0;
4223 }
4224 
4225 static void __cond_resched(void)
4226 {
4227 	__preempt_count_add(PREEMPT_ACTIVE);
4228 	__schedule();
4229 	__preempt_count_sub(PREEMPT_ACTIVE);
4230 }
4231 
4232 int __sched _cond_resched(void)
4233 {
4234 	if (should_resched()) {
4235 		__cond_resched();
4236 		return 1;
4237 	}
4238 	return 0;
4239 }
4240 EXPORT_SYMBOL(_cond_resched);
4241 
4242 /*
4243  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4244  * call schedule, and on return reacquire the lock.
4245  *
4246  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4247  * operations here to prevent schedule() from being called twice (once via
4248  * spin_unlock(), once by hand).
4249  */
4250 int __cond_resched_lock(spinlock_t *lock)
4251 {
4252 	int resched = should_resched();
4253 	int ret = 0;
4254 
4255 	lockdep_assert_held(lock);
4256 
4257 	if (spin_needbreak(lock) || resched) {
4258 		spin_unlock(lock);
4259 		if (resched)
4260 			__cond_resched();
4261 		else
4262 			cpu_relax();
4263 		ret = 1;
4264 		spin_lock(lock);
4265 	}
4266 	return ret;
4267 }
4268 EXPORT_SYMBOL(__cond_resched_lock);
4269 
4270 int __sched __cond_resched_softirq(void)
4271 {
4272 	BUG_ON(!in_softirq());
4273 
4274 	if (should_resched()) {
4275 		local_bh_enable();
4276 		__cond_resched();
4277 		local_bh_disable();
4278 		return 1;
4279 	}
4280 	return 0;
4281 }
4282 EXPORT_SYMBOL(__cond_resched_softirq);
4283 
4284 /**
4285  * yield - yield the current processor to other threads.
4286  *
4287  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4288  *
4289  * The scheduler is at all times free to pick the calling task as the most
4290  * eligible task to run, if removing the yield() call from your code breaks
4291  * it, its already broken.
4292  *
4293  * Typical broken usage is:
4294  *
4295  * while (!event)
4296  * 	yield();
4297  *
4298  * where one assumes that yield() will let 'the other' process run that will
4299  * make event true. If the current task is a SCHED_FIFO task that will never
4300  * happen. Never use yield() as a progress guarantee!!
4301  *
4302  * If you want to use yield() to wait for something, use wait_event().
4303  * If you want to use yield() to be 'nice' for others, use cond_resched().
4304  * If you still want to use yield(), do not!
4305  */
4306 void __sched yield(void)
4307 {
4308 	set_current_state(TASK_RUNNING);
4309 	sys_sched_yield();
4310 }
4311 EXPORT_SYMBOL(yield);
4312 
4313 /**
4314  * yield_to - yield the current processor to another thread in
4315  * your thread group, or accelerate that thread toward the
4316  * processor it's on.
4317  * @p: target task
4318  * @preempt: whether task preemption is allowed or not
4319  *
4320  * It's the caller's job to ensure that the target task struct
4321  * can't go away on us before we can do any checks.
4322  *
4323  * Return:
4324  *	true (>0) if we indeed boosted the target task.
4325  *	false (0) if we failed to boost the target.
4326  *	-ESRCH if there's no task to yield to.
4327  */
4328 int __sched yield_to(struct task_struct *p, bool preempt)
4329 {
4330 	struct task_struct *curr = current;
4331 	struct rq *rq, *p_rq;
4332 	unsigned long flags;
4333 	int yielded = 0;
4334 
4335 	local_irq_save(flags);
4336 	rq = this_rq();
4337 
4338 again:
4339 	p_rq = task_rq(p);
4340 	/*
4341 	 * If we're the only runnable task on the rq and target rq also
4342 	 * has only one task, there's absolutely no point in yielding.
4343 	 */
4344 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4345 		yielded = -ESRCH;
4346 		goto out_irq;
4347 	}
4348 
4349 	double_rq_lock(rq, p_rq);
4350 	if (task_rq(p) != p_rq) {
4351 		double_rq_unlock(rq, p_rq);
4352 		goto again;
4353 	}
4354 
4355 	if (!curr->sched_class->yield_to_task)
4356 		goto out_unlock;
4357 
4358 	if (curr->sched_class != p->sched_class)
4359 		goto out_unlock;
4360 
4361 	if (task_running(p_rq, p) || p->state)
4362 		goto out_unlock;
4363 
4364 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4365 	if (yielded) {
4366 		schedstat_inc(rq, yld_count);
4367 		/*
4368 		 * Make p's CPU reschedule; pick_next_entity takes care of
4369 		 * fairness.
4370 		 */
4371 		if (preempt && rq != p_rq)
4372 			resched_curr(p_rq);
4373 	}
4374 
4375 out_unlock:
4376 	double_rq_unlock(rq, p_rq);
4377 out_irq:
4378 	local_irq_restore(flags);
4379 
4380 	if (yielded > 0)
4381 		schedule();
4382 
4383 	return yielded;
4384 }
4385 EXPORT_SYMBOL_GPL(yield_to);
4386 
4387 /*
4388  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4389  * that process accounting knows that this is a task in IO wait state.
4390  */
4391 void __sched io_schedule(void)
4392 {
4393 	struct rq *rq = raw_rq();
4394 
4395 	delayacct_blkio_start();
4396 	atomic_inc(&rq->nr_iowait);
4397 	blk_flush_plug(current);
4398 	current->in_iowait = 1;
4399 	schedule();
4400 	current->in_iowait = 0;
4401 	atomic_dec(&rq->nr_iowait);
4402 	delayacct_blkio_end();
4403 }
4404 EXPORT_SYMBOL(io_schedule);
4405 
4406 long __sched io_schedule_timeout(long timeout)
4407 {
4408 	struct rq *rq = raw_rq();
4409 	long ret;
4410 
4411 	delayacct_blkio_start();
4412 	atomic_inc(&rq->nr_iowait);
4413 	blk_flush_plug(current);
4414 	current->in_iowait = 1;
4415 	ret = schedule_timeout(timeout);
4416 	current->in_iowait = 0;
4417 	atomic_dec(&rq->nr_iowait);
4418 	delayacct_blkio_end();
4419 	return ret;
4420 }
4421 
4422 /**
4423  * sys_sched_get_priority_max - return maximum RT priority.
4424  * @policy: scheduling class.
4425  *
4426  * Return: On success, this syscall returns the maximum
4427  * rt_priority that can be used by a given scheduling class.
4428  * On failure, a negative error code is returned.
4429  */
4430 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4431 {
4432 	int ret = -EINVAL;
4433 
4434 	switch (policy) {
4435 	case SCHED_FIFO:
4436 	case SCHED_RR:
4437 		ret = MAX_USER_RT_PRIO-1;
4438 		break;
4439 	case SCHED_DEADLINE:
4440 	case SCHED_NORMAL:
4441 	case SCHED_BATCH:
4442 	case SCHED_IDLE:
4443 		ret = 0;
4444 		break;
4445 	}
4446 	return ret;
4447 }
4448 
4449 /**
4450  * sys_sched_get_priority_min - return minimum RT priority.
4451  * @policy: scheduling class.
4452  *
4453  * Return: On success, this syscall returns the minimum
4454  * rt_priority that can be used by a given scheduling class.
4455  * On failure, a negative error code is returned.
4456  */
4457 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4458 {
4459 	int ret = -EINVAL;
4460 
4461 	switch (policy) {
4462 	case SCHED_FIFO:
4463 	case SCHED_RR:
4464 		ret = 1;
4465 		break;
4466 	case SCHED_DEADLINE:
4467 	case SCHED_NORMAL:
4468 	case SCHED_BATCH:
4469 	case SCHED_IDLE:
4470 		ret = 0;
4471 	}
4472 	return ret;
4473 }
4474 
4475 /**
4476  * sys_sched_rr_get_interval - return the default timeslice of a process.
4477  * @pid: pid of the process.
4478  * @interval: userspace pointer to the timeslice value.
4479  *
4480  * this syscall writes the default timeslice value of a given process
4481  * into the user-space timespec buffer. A value of '0' means infinity.
4482  *
4483  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4484  * an error code.
4485  */
4486 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4487 		struct timespec __user *, interval)
4488 {
4489 	struct task_struct *p;
4490 	unsigned int time_slice;
4491 	unsigned long flags;
4492 	struct rq *rq;
4493 	int retval;
4494 	struct timespec t;
4495 
4496 	if (pid < 0)
4497 		return -EINVAL;
4498 
4499 	retval = -ESRCH;
4500 	rcu_read_lock();
4501 	p = find_process_by_pid(pid);
4502 	if (!p)
4503 		goto out_unlock;
4504 
4505 	retval = security_task_getscheduler(p);
4506 	if (retval)
4507 		goto out_unlock;
4508 
4509 	rq = task_rq_lock(p, &flags);
4510 	time_slice = 0;
4511 	if (p->sched_class->get_rr_interval)
4512 		time_slice = p->sched_class->get_rr_interval(rq, p);
4513 	task_rq_unlock(rq, p, &flags);
4514 
4515 	rcu_read_unlock();
4516 	jiffies_to_timespec(time_slice, &t);
4517 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4518 	return retval;
4519 
4520 out_unlock:
4521 	rcu_read_unlock();
4522 	return retval;
4523 }
4524 
4525 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4526 
4527 void sched_show_task(struct task_struct *p)
4528 {
4529 	unsigned long free = 0;
4530 	int ppid;
4531 	unsigned state;
4532 
4533 	state = p->state ? __ffs(p->state) + 1 : 0;
4534 	printk(KERN_INFO "%-15.15s %c", p->comm,
4535 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4536 #if BITS_PER_LONG == 32
4537 	if (state == TASK_RUNNING)
4538 		printk(KERN_CONT " running  ");
4539 	else
4540 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4541 #else
4542 	if (state == TASK_RUNNING)
4543 		printk(KERN_CONT "  running task    ");
4544 	else
4545 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4546 #endif
4547 #ifdef CONFIG_DEBUG_STACK_USAGE
4548 	free = stack_not_used(p);
4549 #endif
4550 	rcu_read_lock();
4551 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4552 	rcu_read_unlock();
4553 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4554 		task_pid_nr(p), ppid,
4555 		(unsigned long)task_thread_info(p)->flags);
4556 
4557 	print_worker_info(KERN_INFO, p);
4558 	show_stack(p, NULL);
4559 }
4560 
4561 void show_state_filter(unsigned long state_filter)
4562 {
4563 	struct task_struct *g, *p;
4564 
4565 #if BITS_PER_LONG == 32
4566 	printk(KERN_INFO
4567 		"  task                PC stack   pid father\n");
4568 #else
4569 	printk(KERN_INFO
4570 		"  task                        PC stack   pid father\n");
4571 #endif
4572 	rcu_read_lock();
4573 	for_each_process_thread(g, p) {
4574 		/*
4575 		 * reset the NMI-timeout, listing all files on a slow
4576 		 * console might take a lot of time:
4577 		 */
4578 		touch_nmi_watchdog();
4579 		if (!state_filter || (p->state & state_filter))
4580 			sched_show_task(p);
4581 	}
4582 
4583 	touch_all_softlockup_watchdogs();
4584 
4585 #ifdef CONFIG_SCHED_DEBUG
4586 	sysrq_sched_debug_show();
4587 #endif
4588 	rcu_read_unlock();
4589 	/*
4590 	 * Only show locks if all tasks are dumped:
4591 	 */
4592 	if (!state_filter)
4593 		debug_show_all_locks();
4594 }
4595 
4596 void init_idle_bootup_task(struct task_struct *idle)
4597 {
4598 	idle->sched_class = &idle_sched_class;
4599 }
4600 
4601 /**
4602  * init_idle - set up an idle thread for a given CPU
4603  * @idle: task in question
4604  * @cpu: cpu the idle task belongs to
4605  *
4606  * NOTE: this function does not set the idle thread's NEED_RESCHED
4607  * flag, to make booting more robust.
4608  */
4609 void init_idle(struct task_struct *idle, int cpu)
4610 {
4611 	struct rq *rq = cpu_rq(cpu);
4612 	unsigned long flags;
4613 
4614 	raw_spin_lock_irqsave(&rq->lock, flags);
4615 
4616 	__sched_fork(0, idle);
4617 	idle->state = TASK_RUNNING;
4618 	idle->se.exec_start = sched_clock();
4619 
4620 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4621 	/*
4622 	 * We're having a chicken and egg problem, even though we are
4623 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4624 	 * lockdep check in task_group() will fail.
4625 	 *
4626 	 * Similar case to sched_fork(). / Alternatively we could
4627 	 * use task_rq_lock() here and obtain the other rq->lock.
4628 	 *
4629 	 * Silence PROVE_RCU
4630 	 */
4631 	rcu_read_lock();
4632 	__set_task_cpu(idle, cpu);
4633 	rcu_read_unlock();
4634 
4635 	rq->curr = rq->idle = idle;
4636 	idle->on_rq = TASK_ON_RQ_QUEUED;
4637 #if defined(CONFIG_SMP)
4638 	idle->on_cpu = 1;
4639 #endif
4640 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4641 
4642 	/* Set the preempt count _outside_ the spinlocks! */
4643 	init_idle_preempt_count(idle, cpu);
4644 
4645 	/*
4646 	 * The idle tasks have their own, simple scheduling class:
4647 	 */
4648 	idle->sched_class = &idle_sched_class;
4649 	ftrace_graph_init_idle_task(idle, cpu);
4650 	vtime_init_idle(idle, cpu);
4651 #if defined(CONFIG_SMP)
4652 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4653 #endif
4654 }
4655 
4656 #ifdef CONFIG_SMP
4657 /*
4658  * move_queued_task - move a queued task to new rq.
4659  *
4660  * Returns (locked) new rq. Old rq's lock is released.
4661  */
4662 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4663 {
4664 	struct rq *rq = task_rq(p);
4665 
4666 	lockdep_assert_held(&rq->lock);
4667 
4668 	dequeue_task(rq, p, 0);
4669 	p->on_rq = TASK_ON_RQ_MIGRATING;
4670 	set_task_cpu(p, new_cpu);
4671 	raw_spin_unlock(&rq->lock);
4672 
4673 	rq = cpu_rq(new_cpu);
4674 
4675 	raw_spin_lock(&rq->lock);
4676 	BUG_ON(task_cpu(p) != new_cpu);
4677 	p->on_rq = TASK_ON_RQ_QUEUED;
4678 	enqueue_task(rq, p, 0);
4679 	check_preempt_curr(rq, p, 0);
4680 
4681 	return rq;
4682 }
4683 
4684 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4685 {
4686 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4687 		p->sched_class->set_cpus_allowed(p, new_mask);
4688 
4689 	cpumask_copy(&p->cpus_allowed, new_mask);
4690 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4691 }
4692 
4693 /*
4694  * This is how migration works:
4695  *
4696  * 1) we invoke migration_cpu_stop() on the target CPU using
4697  *    stop_one_cpu().
4698  * 2) stopper starts to run (implicitly forcing the migrated thread
4699  *    off the CPU)
4700  * 3) it checks whether the migrated task is still in the wrong runqueue.
4701  * 4) if it's in the wrong runqueue then the migration thread removes
4702  *    it and puts it into the right queue.
4703  * 5) stopper completes and stop_one_cpu() returns and the migration
4704  *    is done.
4705  */
4706 
4707 /*
4708  * Change a given task's CPU affinity. Migrate the thread to a
4709  * proper CPU and schedule it away if the CPU it's executing on
4710  * is removed from the allowed bitmask.
4711  *
4712  * NOTE: the caller must have a valid reference to the task, the
4713  * task must not exit() & deallocate itself prematurely. The
4714  * call is not atomic; no spinlocks may be held.
4715  */
4716 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4717 {
4718 	unsigned long flags;
4719 	struct rq *rq;
4720 	unsigned int dest_cpu;
4721 	int ret = 0;
4722 
4723 	rq = task_rq_lock(p, &flags);
4724 
4725 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4726 		goto out;
4727 
4728 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4729 		ret = -EINVAL;
4730 		goto out;
4731 	}
4732 
4733 	do_set_cpus_allowed(p, new_mask);
4734 
4735 	/* Can the task run on the task's current CPU? If so, we're done */
4736 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4737 		goto out;
4738 
4739 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4740 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4741 		struct migration_arg arg = { p, dest_cpu };
4742 		/* Need help from migration thread: drop lock and wait. */
4743 		task_rq_unlock(rq, p, &flags);
4744 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4745 		tlb_migrate_finish(p->mm);
4746 		return 0;
4747 	} else if (task_on_rq_queued(p))
4748 		rq = move_queued_task(p, dest_cpu);
4749 out:
4750 	task_rq_unlock(rq, p, &flags);
4751 
4752 	return ret;
4753 }
4754 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4755 
4756 /*
4757  * Move (not current) task off this cpu, onto dest cpu. We're doing
4758  * this because either it can't run here any more (set_cpus_allowed()
4759  * away from this CPU, or CPU going down), or because we're
4760  * attempting to rebalance this task on exec (sched_exec).
4761  *
4762  * So we race with normal scheduler movements, but that's OK, as long
4763  * as the task is no longer on this CPU.
4764  *
4765  * Returns non-zero if task was successfully migrated.
4766  */
4767 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4768 {
4769 	struct rq *rq;
4770 	int ret = 0;
4771 
4772 	if (unlikely(!cpu_active(dest_cpu)))
4773 		return ret;
4774 
4775 	rq = cpu_rq(src_cpu);
4776 
4777 	raw_spin_lock(&p->pi_lock);
4778 	raw_spin_lock(&rq->lock);
4779 	/* Already moved. */
4780 	if (task_cpu(p) != src_cpu)
4781 		goto done;
4782 
4783 	/* Affinity changed (again). */
4784 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4785 		goto fail;
4786 
4787 	/*
4788 	 * If we're not on a rq, the next wake-up will ensure we're
4789 	 * placed properly.
4790 	 */
4791 	if (task_on_rq_queued(p))
4792 		rq = move_queued_task(p, dest_cpu);
4793 done:
4794 	ret = 1;
4795 fail:
4796 	raw_spin_unlock(&rq->lock);
4797 	raw_spin_unlock(&p->pi_lock);
4798 	return ret;
4799 }
4800 
4801 #ifdef CONFIG_NUMA_BALANCING
4802 /* Migrate current task p to target_cpu */
4803 int migrate_task_to(struct task_struct *p, int target_cpu)
4804 {
4805 	struct migration_arg arg = { p, target_cpu };
4806 	int curr_cpu = task_cpu(p);
4807 
4808 	if (curr_cpu == target_cpu)
4809 		return 0;
4810 
4811 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4812 		return -EINVAL;
4813 
4814 	/* TODO: This is not properly updating schedstats */
4815 
4816 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4817 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4818 }
4819 
4820 /*
4821  * Requeue a task on a given node and accurately track the number of NUMA
4822  * tasks on the runqueues
4823  */
4824 void sched_setnuma(struct task_struct *p, int nid)
4825 {
4826 	struct rq *rq;
4827 	unsigned long flags;
4828 	bool queued, running;
4829 
4830 	rq = task_rq_lock(p, &flags);
4831 	queued = task_on_rq_queued(p);
4832 	running = task_current(rq, p);
4833 
4834 	if (queued)
4835 		dequeue_task(rq, p, 0);
4836 	if (running)
4837 		put_prev_task(rq, p);
4838 
4839 	p->numa_preferred_nid = nid;
4840 
4841 	if (running)
4842 		p->sched_class->set_curr_task(rq);
4843 	if (queued)
4844 		enqueue_task(rq, p, 0);
4845 	task_rq_unlock(rq, p, &flags);
4846 }
4847 #endif
4848 
4849 /*
4850  * migration_cpu_stop - this will be executed by a highprio stopper thread
4851  * and performs thread migration by bumping thread off CPU then
4852  * 'pushing' onto another runqueue.
4853  */
4854 static int migration_cpu_stop(void *data)
4855 {
4856 	struct migration_arg *arg = data;
4857 
4858 	/*
4859 	 * The original target cpu might have gone down and we might
4860 	 * be on another cpu but it doesn't matter.
4861 	 */
4862 	local_irq_disable();
4863 	/*
4864 	 * We need to explicitly wake pending tasks before running
4865 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4866 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4867 	 */
4868 	sched_ttwu_pending();
4869 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4870 	local_irq_enable();
4871 	return 0;
4872 }
4873 
4874 #ifdef CONFIG_HOTPLUG_CPU
4875 
4876 /*
4877  * Ensures that the idle task is using init_mm right before its cpu goes
4878  * offline.
4879  */
4880 void idle_task_exit(void)
4881 {
4882 	struct mm_struct *mm = current->active_mm;
4883 
4884 	BUG_ON(cpu_online(smp_processor_id()));
4885 
4886 	if (mm != &init_mm) {
4887 		switch_mm(mm, &init_mm, current);
4888 		finish_arch_post_lock_switch();
4889 	}
4890 	mmdrop(mm);
4891 }
4892 
4893 /*
4894  * Since this CPU is going 'away' for a while, fold any nr_active delta
4895  * we might have. Assumes we're called after migrate_tasks() so that the
4896  * nr_active count is stable.
4897  *
4898  * Also see the comment "Global load-average calculations".
4899  */
4900 static void calc_load_migrate(struct rq *rq)
4901 {
4902 	long delta = calc_load_fold_active(rq);
4903 	if (delta)
4904 		atomic_long_add(delta, &calc_load_tasks);
4905 }
4906 
4907 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4908 {
4909 }
4910 
4911 static const struct sched_class fake_sched_class = {
4912 	.put_prev_task = put_prev_task_fake,
4913 };
4914 
4915 static struct task_struct fake_task = {
4916 	/*
4917 	 * Avoid pull_{rt,dl}_task()
4918 	 */
4919 	.prio = MAX_PRIO + 1,
4920 	.sched_class = &fake_sched_class,
4921 };
4922 
4923 /*
4924  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4925  * try_to_wake_up()->select_task_rq().
4926  *
4927  * Called with rq->lock held even though we'er in stop_machine() and
4928  * there's no concurrency possible, we hold the required locks anyway
4929  * because of lock validation efforts.
4930  */
4931 static void migrate_tasks(unsigned int dead_cpu)
4932 {
4933 	struct rq *rq = cpu_rq(dead_cpu);
4934 	struct task_struct *next, *stop = rq->stop;
4935 	int dest_cpu;
4936 
4937 	/*
4938 	 * Fudge the rq selection such that the below task selection loop
4939 	 * doesn't get stuck on the currently eligible stop task.
4940 	 *
4941 	 * We're currently inside stop_machine() and the rq is either stuck
4942 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4943 	 * either way we should never end up calling schedule() until we're
4944 	 * done here.
4945 	 */
4946 	rq->stop = NULL;
4947 
4948 	/*
4949 	 * put_prev_task() and pick_next_task() sched
4950 	 * class method both need to have an up-to-date
4951 	 * value of rq->clock[_task]
4952 	 */
4953 	update_rq_clock(rq);
4954 
4955 	for ( ; ; ) {
4956 		/*
4957 		 * There's this thread running, bail when that's the only
4958 		 * remaining thread.
4959 		 */
4960 		if (rq->nr_running == 1)
4961 			break;
4962 
4963 		next = pick_next_task(rq, &fake_task);
4964 		BUG_ON(!next);
4965 		next->sched_class->put_prev_task(rq, next);
4966 
4967 		/* Find suitable destination for @next, with force if needed. */
4968 		dest_cpu = select_fallback_rq(dead_cpu, next);
4969 		raw_spin_unlock(&rq->lock);
4970 
4971 		__migrate_task(next, dead_cpu, dest_cpu);
4972 
4973 		raw_spin_lock(&rq->lock);
4974 	}
4975 
4976 	rq->stop = stop;
4977 }
4978 
4979 #endif /* CONFIG_HOTPLUG_CPU */
4980 
4981 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4982 
4983 static struct ctl_table sd_ctl_dir[] = {
4984 	{
4985 		.procname	= "sched_domain",
4986 		.mode		= 0555,
4987 	},
4988 	{}
4989 };
4990 
4991 static struct ctl_table sd_ctl_root[] = {
4992 	{
4993 		.procname	= "kernel",
4994 		.mode		= 0555,
4995 		.child		= sd_ctl_dir,
4996 	},
4997 	{}
4998 };
4999 
5000 static struct ctl_table *sd_alloc_ctl_entry(int n)
5001 {
5002 	struct ctl_table *entry =
5003 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5004 
5005 	return entry;
5006 }
5007 
5008 static void sd_free_ctl_entry(struct ctl_table **tablep)
5009 {
5010 	struct ctl_table *entry;
5011 
5012 	/*
5013 	 * In the intermediate directories, both the child directory and
5014 	 * procname are dynamically allocated and could fail but the mode
5015 	 * will always be set. In the lowest directory the names are
5016 	 * static strings and all have proc handlers.
5017 	 */
5018 	for (entry = *tablep; entry->mode; entry++) {
5019 		if (entry->child)
5020 			sd_free_ctl_entry(&entry->child);
5021 		if (entry->proc_handler == NULL)
5022 			kfree(entry->procname);
5023 	}
5024 
5025 	kfree(*tablep);
5026 	*tablep = NULL;
5027 }
5028 
5029 static int min_load_idx = 0;
5030 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5031 
5032 static void
5033 set_table_entry(struct ctl_table *entry,
5034 		const char *procname, void *data, int maxlen,
5035 		umode_t mode, proc_handler *proc_handler,
5036 		bool load_idx)
5037 {
5038 	entry->procname = procname;
5039 	entry->data = data;
5040 	entry->maxlen = maxlen;
5041 	entry->mode = mode;
5042 	entry->proc_handler = proc_handler;
5043 
5044 	if (load_idx) {
5045 		entry->extra1 = &min_load_idx;
5046 		entry->extra2 = &max_load_idx;
5047 	}
5048 }
5049 
5050 static struct ctl_table *
5051 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5052 {
5053 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5054 
5055 	if (table == NULL)
5056 		return NULL;
5057 
5058 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5059 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5060 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5061 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5062 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5063 		sizeof(int), 0644, proc_dointvec_minmax, true);
5064 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5065 		sizeof(int), 0644, proc_dointvec_minmax, true);
5066 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5067 		sizeof(int), 0644, proc_dointvec_minmax, true);
5068 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5069 		sizeof(int), 0644, proc_dointvec_minmax, true);
5070 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5071 		sizeof(int), 0644, proc_dointvec_minmax, true);
5072 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5073 		sizeof(int), 0644, proc_dointvec_minmax, false);
5074 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5075 		sizeof(int), 0644, proc_dointvec_minmax, false);
5076 	set_table_entry(&table[9], "cache_nice_tries",
5077 		&sd->cache_nice_tries,
5078 		sizeof(int), 0644, proc_dointvec_minmax, false);
5079 	set_table_entry(&table[10], "flags", &sd->flags,
5080 		sizeof(int), 0644, proc_dointvec_minmax, false);
5081 	set_table_entry(&table[11], "max_newidle_lb_cost",
5082 		&sd->max_newidle_lb_cost,
5083 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5084 	set_table_entry(&table[12], "name", sd->name,
5085 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5086 	/* &table[13] is terminator */
5087 
5088 	return table;
5089 }
5090 
5091 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5092 {
5093 	struct ctl_table *entry, *table;
5094 	struct sched_domain *sd;
5095 	int domain_num = 0, i;
5096 	char buf[32];
5097 
5098 	for_each_domain(cpu, sd)
5099 		domain_num++;
5100 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5101 	if (table == NULL)
5102 		return NULL;
5103 
5104 	i = 0;
5105 	for_each_domain(cpu, sd) {
5106 		snprintf(buf, 32, "domain%d", i);
5107 		entry->procname = kstrdup(buf, GFP_KERNEL);
5108 		entry->mode = 0555;
5109 		entry->child = sd_alloc_ctl_domain_table(sd);
5110 		entry++;
5111 		i++;
5112 	}
5113 	return table;
5114 }
5115 
5116 static struct ctl_table_header *sd_sysctl_header;
5117 static void register_sched_domain_sysctl(void)
5118 {
5119 	int i, cpu_num = num_possible_cpus();
5120 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5121 	char buf[32];
5122 
5123 	WARN_ON(sd_ctl_dir[0].child);
5124 	sd_ctl_dir[0].child = entry;
5125 
5126 	if (entry == NULL)
5127 		return;
5128 
5129 	for_each_possible_cpu(i) {
5130 		snprintf(buf, 32, "cpu%d", i);
5131 		entry->procname = kstrdup(buf, GFP_KERNEL);
5132 		entry->mode = 0555;
5133 		entry->child = sd_alloc_ctl_cpu_table(i);
5134 		entry++;
5135 	}
5136 
5137 	WARN_ON(sd_sysctl_header);
5138 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5139 }
5140 
5141 /* may be called multiple times per register */
5142 static void unregister_sched_domain_sysctl(void)
5143 {
5144 	if (sd_sysctl_header)
5145 		unregister_sysctl_table(sd_sysctl_header);
5146 	sd_sysctl_header = NULL;
5147 	if (sd_ctl_dir[0].child)
5148 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5149 }
5150 #else
5151 static void register_sched_domain_sysctl(void)
5152 {
5153 }
5154 static void unregister_sched_domain_sysctl(void)
5155 {
5156 }
5157 #endif
5158 
5159 static void set_rq_online(struct rq *rq)
5160 {
5161 	if (!rq->online) {
5162 		const struct sched_class *class;
5163 
5164 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5165 		rq->online = 1;
5166 
5167 		for_each_class(class) {
5168 			if (class->rq_online)
5169 				class->rq_online(rq);
5170 		}
5171 	}
5172 }
5173 
5174 static void set_rq_offline(struct rq *rq)
5175 {
5176 	if (rq->online) {
5177 		const struct sched_class *class;
5178 
5179 		for_each_class(class) {
5180 			if (class->rq_offline)
5181 				class->rq_offline(rq);
5182 		}
5183 
5184 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5185 		rq->online = 0;
5186 	}
5187 }
5188 
5189 /*
5190  * migration_call - callback that gets triggered when a CPU is added.
5191  * Here we can start up the necessary migration thread for the new CPU.
5192  */
5193 static int
5194 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5195 {
5196 	int cpu = (long)hcpu;
5197 	unsigned long flags;
5198 	struct rq *rq = cpu_rq(cpu);
5199 
5200 	switch (action & ~CPU_TASKS_FROZEN) {
5201 
5202 	case CPU_UP_PREPARE:
5203 		rq->calc_load_update = calc_load_update;
5204 		break;
5205 
5206 	case CPU_ONLINE:
5207 		/* Update our root-domain */
5208 		raw_spin_lock_irqsave(&rq->lock, flags);
5209 		if (rq->rd) {
5210 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5211 
5212 			set_rq_online(rq);
5213 		}
5214 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5215 		break;
5216 
5217 #ifdef CONFIG_HOTPLUG_CPU
5218 	case CPU_DYING:
5219 		sched_ttwu_pending();
5220 		/* Update our root-domain */
5221 		raw_spin_lock_irqsave(&rq->lock, flags);
5222 		if (rq->rd) {
5223 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5224 			set_rq_offline(rq);
5225 		}
5226 		migrate_tasks(cpu);
5227 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5228 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5229 		break;
5230 
5231 	case CPU_DEAD:
5232 		calc_load_migrate(rq);
5233 		break;
5234 #endif
5235 	}
5236 
5237 	update_max_interval();
5238 
5239 	return NOTIFY_OK;
5240 }
5241 
5242 /*
5243  * Register at high priority so that task migration (migrate_all_tasks)
5244  * happens before everything else.  This has to be lower priority than
5245  * the notifier in the perf_event subsystem, though.
5246  */
5247 static struct notifier_block migration_notifier = {
5248 	.notifier_call = migration_call,
5249 	.priority = CPU_PRI_MIGRATION,
5250 };
5251 
5252 static void __cpuinit set_cpu_rq_start_time(void)
5253 {
5254 	int cpu = smp_processor_id();
5255 	struct rq *rq = cpu_rq(cpu);
5256 	rq->age_stamp = sched_clock_cpu(cpu);
5257 }
5258 
5259 static int sched_cpu_active(struct notifier_block *nfb,
5260 				      unsigned long action, void *hcpu)
5261 {
5262 	switch (action & ~CPU_TASKS_FROZEN) {
5263 	case CPU_STARTING:
5264 		set_cpu_rq_start_time();
5265 		return NOTIFY_OK;
5266 	case CPU_DOWN_FAILED:
5267 		set_cpu_active((long)hcpu, true);
5268 		return NOTIFY_OK;
5269 	default:
5270 		return NOTIFY_DONE;
5271 	}
5272 }
5273 
5274 static int sched_cpu_inactive(struct notifier_block *nfb,
5275 					unsigned long action, void *hcpu)
5276 {
5277 	unsigned long flags;
5278 	long cpu = (long)hcpu;
5279 	struct dl_bw *dl_b;
5280 
5281 	switch (action & ~CPU_TASKS_FROZEN) {
5282 	case CPU_DOWN_PREPARE:
5283 		set_cpu_active(cpu, false);
5284 
5285 		/* explicitly allow suspend */
5286 		if (!(action & CPU_TASKS_FROZEN)) {
5287 			bool overflow;
5288 			int cpus;
5289 
5290 			rcu_read_lock_sched();
5291 			dl_b = dl_bw_of(cpu);
5292 
5293 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5294 			cpus = dl_bw_cpus(cpu);
5295 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5296 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5297 
5298 			rcu_read_unlock_sched();
5299 
5300 			if (overflow)
5301 				return notifier_from_errno(-EBUSY);
5302 		}
5303 		return NOTIFY_OK;
5304 	}
5305 
5306 	return NOTIFY_DONE;
5307 }
5308 
5309 static int __init migration_init(void)
5310 {
5311 	void *cpu = (void *)(long)smp_processor_id();
5312 	int err;
5313 
5314 	/* Initialize migration for the boot CPU */
5315 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5316 	BUG_ON(err == NOTIFY_BAD);
5317 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5318 	register_cpu_notifier(&migration_notifier);
5319 
5320 	/* Register cpu active notifiers */
5321 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5322 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5323 
5324 	return 0;
5325 }
5326 early_initcall(migration_init);
5327 #endif
5328 
5329 #ifdef CONFIG_SMP
5330 
5331 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5332 
5333 #ifdef CONFIG_SCHED_DEBUG
5334 
5335 static __read_mostly int sched_debug_enabled;
5336 
5337 static int __init sched_debug_setup(char *str)
5338 {
5339 	sched_debug_enabled = 1;
5340 
5341 	return 0;
5342 }
5343 early_param("sched_debug", sched_debug_setup);
5344 
5345 static inline bool sched_debug(void)
5346 {
5347 	return sched_debug_enabled;
5348 }
5349 
5350 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5351 				  struct cpumask *groupmask)
5352 {
5353 	struct sched_group *group = sd->groups;
5354 	char str[256];
5355 
5356 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5357 	cpumask_clear(groupmask);
5358 
5359 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5360 
5361 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5362 		printk("does not load-balance\n");
5363 		if (sd->parent)
5364 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5365 					" has parent");
5366 		return -1;
5367 	}
5368 
5369 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5370 
5371 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5372 		printk(KERN_ERR "ERROR: domain->span does not contain "
5373 				"CPU%d\n", cpu);
5374 	}
5375 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5376 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5377 				" CPU%d\n", cpu);
5378 	}
5379 
5380 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5381 	do {
5382 		if (!group) {
5383 			printk("\n");
5384 			printk(KERN_ERR "ERROR: group is NULL\n");
5385 			break;
5386 		}
5387 
5388 		/*
5389 		 * Even though we initialize ->capacity to something semi-sane,
5390 		 * we leave capacity_orig unset. This allows us to detect if
5391 		 * domain iteration is still funny without causing /0 traps.
5392 		 */
5393 		if (!group->sgc->capacity_orig) {
5394 			printk(KERN_CONT "\n");
5395 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5396 			break;
5397 		}
5398 
5399 		if (!cpumask_weight(sched_group_cpus(group))) {
5400 			printk(KERN_CONT "\n");
5401 			printk(KERN_ERR "ERROR: empty group\n");
5402 			break;
5403 		}
5404 
5405 		if (!(sd->flags & SD_OVERLAP) &&
5406 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5407 			printk(KERN_CONT "\n");
5408 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5409 			break;
5410 		}
5411 
5412 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5413 
5414 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5415 
5416 		printk(KERN_CONT " %s", str);
5417 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5418 			printk(KERN_CONT " (cpu_capacity = %d)",
5419 				group->sgc->capacity);
5420 		}
5421 
5422 		group = group->next;
5423 	} while (group != sd->groups);
5424 	printk(KERN_CONT "\n");
5425 
5426 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5427 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5428 
5429 	if (sd->parent &&
5430 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5431 		printk(KERN_ERR "ERROR: parent span is not a superset "
5432 			"of domain->span\n");
5433 	return 0;
5434 }
5435 
5436 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5437 {
5438 	int level = 0;
5439 
5440 	if (!sched_debug_enabled)
5441 		return;
5442 
5443 	if (!sd) {
5444 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5445 		return;
5446 	}
5447 
5448 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5449 
5450 	for (;;) {
5451 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5452 			break;
5453 		level++;
5454 		sd = sd->parent;
5455 		if (!sd)
5456 			break;
5457 	}
5458 }
5459 #else /* !CONFIG_SCHED_DEBUG */
5460 # define sched_domain_debug(sd, cpu) do { } while (0)
5461 static inline bool sched_debug(void)
5462 {
5463 	return false;
5464 }
5465 #endif /* CONFIG_SCHED_DEBUG */
5466 
5467 static int sd_degenerate(struct sched_domain *sd)
5468 {
5469 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5470 		return 1;
5471 
5472 	/* Following flags need at least 2 groups */
5473 	if (sd->flags & (SD_LOAD_BALANCE |
5474 			 SD_BALANCE_NEWIDLE |
5475 			 SD_BALANCE_FORK |
5476 			 SD_BALANCE_EXEC |
5477 			 SD_SHARE_CPUCAPACITY |
5478 			 SD_SHARE_PKG_RESOURCES |
5479 			 SD_SHARE_POWERDOMAIN)) {
5480 		if (sd->groups != sd->groups->next)
5481 			return 0;
5482 	}
5483 
5484 	/* Following flags don't use groups */
5485 	if (sd->flags & (SD_WAKE_AFFINE))
5486 		return 0;
5487 
5488 	return 1;
5489 }
5490 
5491 static int
5492 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5493 {
5494 	unsigned long cflags = sd->flags, pflags = parent->flags;
5495 
5496 	if (sd_degenerate(parent))
5497 		return 1;
5498 
5499 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5500 		return 0;
5501 
5502 	/* Flags needing groups don't count if only 1 group in parent */
5503 	if (parent->groups == parent->groups->next) {
5504 		pflags &= ~(SD_LOAD_BALANCE |
5505 				SD_BALANCE_NEWIDLE |
5506 				SD_BALANCE_FORK |
5507 				SD_BALANCE_EXEC |
5508 				SD_SHARE_CPUCAPACITY |
5509 				SD_SHARE_PKG_RESOURCES |
5510 				SD_PREFER_SIBLING |
5511 				SD_SHARE_POWERDOMAIN);
5512 		if (nr_node_ids == 1)
5513 			pflags &= ~SD_SERIALIZE;
5514 	}
5515 	if (~cflags & pflags)
5516 		return 0;
5517 
5518 	return 1;
5519 }
5520 
5521 static void free_rootdomain(struct rcu_head *rcu)
5522 {
5523 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5524 
5525 	cpupri_cleanup(&rd->cpupri);
5526 	cpudl_cleanup(&rd->cpudl);
5527 	free_cpumask_var(rd->dlo_mask);
5528 	free_cpumask_var(rd->rto_mask);
5529 	free_cpumask_var(rd->online);
5530 	free_cpumask_var(rd->span);
5531 	kfree(rd);
5532 }
5533 
5534 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5535 {
5536 	struct root_domain *old_rd = NULL;
5537 	unsigned long flags;
5538 
5539 	raw_spin_lock_irqsave(&rq->lock, flags);
5540 
5541 	if (rq->rd) {
5542 		old_rd = rq->rd;
5543 
5544 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5545 			set_rq_offline(rq);
5546 
5547 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5548 
5549 		/*
5550 		 * If we dont want to free the old_rd yet then
5551 		 * set old_rd to NULL to skip the freeing later
5552 		 * in this function:
5553 		 */
5554 		if (!atomic_dec_and_test(&old_rd->refcount))
5555 			old_rd = NULL;
5556 	}
5557 
5558 	atomic_inc(&rd->refcount);
5559 	rq->rd = rd;
5560 
5561 	cpumask_set_cpu(rq->cpu, rd->span);
5562 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5563 		set_rq_online(rq);
5564 
5565 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5566 
5567 	if (old_rd)
5568 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5569 }
5570 
5571 static int init_rootdomain(struct root_domain *rd)
5572 {
5573 	memset(rd, 0, sizeof(*rd));
5574 
5575 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5576 		goto out;
5577 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5578 		goto free_span;
5579 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5580 		goto free_online;
5581 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5582 		goto free_dlo_mask;
5583 
5584 	init_dl_bw(&rd->dl_bw);
5585 	if (cpudl_init(&rd->cpudl) != 0)
5586 		goto free_dlo_mask;
5587 
5588 	if (cpupri_init(&rd->cpupri) != 0)
5589 		goto free_rto_mask;
5590 	return 0;
5591 
5592 free_rto_mask:
5593 	free_cpumask_var(rd->rto_mask);
5594 free_dlo_mask:
5595 	free_cpumask_var(rd->dlo_mask);
5596 free_online:
5597 	free_cpumask_var(rd->online);
5598 free_span:
5599 	free_cpumask_var(rd->span);
5600 out:
5601 	return -ENOMEM;
5602 }
5603 
5604 /*
5605  * By default the system creates a single root-domain with all cpus as
5606  * members (mimicking the global state we have today).
5607  */
5608 struct root_domain def_root_domain;
5609 
5610 static void init_defrootdomain(void)
5611 {
5612 	init_rootdomain(&def_root_domain);
5613 
5614 	atomic_set(&def_root_domain.refcount, 1);
5615 }
5616 
5617 static struct root_domain *alloc_rootdomain(void)
5618 {
5619 	struct root_domain *rd;
5620 
5621 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5622 	if (!rd)
5623 		return NULL;
5624 
5625 	if (init_rootdomain(rd) != 0) {
5626 		kfree(rd);
5627 		return NULL;
5628 	}
5629 
5630 	return rd;
5631 }
5632 
5633 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5634 {
5635 	struct sched_group *tmp, *first;
5636 
5637 	if (!sg)
5638 		return;
5639 
5640 	first = sg;
5641 	do {
5642 		tmp = sg->next;
5643 
5644 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5645 			kfree(sg->sgc);
5646 
5647 		kfree(sg);
5648 		sg = tmp;
5649 	} while (sg != first);
5650 }
5651 
5652 static void free_sched_domain(struct rcu_head *rcu)
5653 {
5654 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5655 
5656 	/*
5657 	 * If its an overlapping domain it has private groups, iterate and
5658 	 * nuke them all.
5659 	 */
5660 	if (sd->flags & SD_OVERLAP) {
5661 		free_sched_groups(sd->groups, 1);
5662 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5663 		kfree(sd->groups->sgc);
5664 		kfree(sd->groups);
5665 	}
5666 	kfree(sd);
5667 }
5668 
5669 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5670 {
5671 	call_rcu(&sd->rcu, free_sched_domain);
5672 }
5673 
5674 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5675 {
5676 	for (; sd; sd = sd->parent)
5677 		destroy_sched_domain(sd, cpu);
5678 }
5679 
5680 /*
5681  * Keep a special pointer to the highest sched_domain that has
5682  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5683  * allows us to avoid some pointer chasing select_idle_sibling().
5684  *
5685  * Also keep a unique ID per domain (we use the first cpu number in
5686  * the cpumask of the domain), this allows us to quickly tell if
5687  * two cpus are in the same cache domain, see cpus_share_cache().
5688  */
5689 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5690 DEFINE_PER_CPU(int, sd_llc_size);
5691 DEFINE_PER_CPU(int, sd_llc_id);
5692 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5693 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5694 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5695 
5696 static void update_top_cache_domain(int cpu)
5697 {
5698 	struct sched_domain *sd;
5699 	struct sched_domain *busy_sd = NULL;
5700 	int id = cpu;
5701 	int size = 1;
5702 
5703 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5704 	if (sd) {
5705 		id = cpumask_first(sched_domain_span(sd));
5706 		size = cpumask_weight(sched_domain_span(sd));
5707 		busy_sd = sd->parent; /* sd_busy */
5708 	}
5709 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5710 
5711 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5712 	per_cpu(sd_llc_size, cpu) = size;
5713 	per_cpu(sd_llc_id, cpu) = id;
5714 
5715 	sd = lowest_flag_domain(cpu, SD_NUMA);
5716 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5717 
5718 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5719 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5720 }
5721 
5722 /*
5723  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5724  * hold the hotplug lock.
5725  */
5726 static void
5727 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5728 {
5729 	struct rq *rq = cpu_rq(cpu);
5730 	struct sched_domain *tmp;
5731 
5732 	/* Remove the sched domains which do not contribute to scheduling. */
5733 	for (tmp = sd; tmp; ) {
5734 		struct sched_domain *parent = tmp->parent;
5735 		if (!parent)
5736 			break;
5737 
5738 		if (sd_parent_degenerate(tmp, parent)) {
5739 			tmp->parent = parent->parent;
5740 			if (parent->parent)
5741 				parent->parent->child = tmp;
5742 			/*
5743 			 * Transfer SD_PREFER_SIBLING down in case of a
5744 			 * degenerate parent; the spans match for this
5745 			 * so the property transfers.
5746 			 */
5747 			if (parent->flags & SD_PREFER_SIBLING)
5748 				tmp->flags |= SD_PREFER_SIBLING;
5749 			destroy_sched_domain(parent, cpu);
5750 		} else
5751 			tmp = tmp->parent;
5752 	}
5753 
5754 	if (sd && sd_degenerate(sd)) {
5755 		tmp = sd;
5756 		sd = sd->parent;
5757 		destroy_sched_domain(tmp, cpu);
5758 		if (sd)
5759 			sd->child = NULL;
5760 	}
5761 
5762 	sched_domain_debug(sd, cpu);
5763 
5764 	rq_attach_root(rq, rd);
5765 	tmp = rq->sd;
5766 	rcu_assign_pointer(rq->sd, sd);
5767 	destroy_sched_domains(tmp, cpu);
5768 
5769 	update_top_cache_domain(cpu);
5770 }
5771 
5772 /* cpus with isolated domains */
5773 static cpumask_var_t cpu_isolated_map;
5774 
5775 /* Setup the mask of cpus configured for isolated domains */
5776 static int __init isolated_cpu_setup(char *str)
5777 {
5778 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5779 	cpulist_parse(str, cpu_isolated_map);
5780 	return 1;
5781 }
5782 
5783 __setup("isolcpus=", isolated_cpu_setup);
5784 
5785 struct s_data {
5786 	struct sched_domain ** __percpu sd;
5787 	struct root_domain	*rd;
5788 };
5789 
5790 enum s_alloc {
5791 	sa_rootdomain,
5792 	sa_sd,
5793 	sa_sd_storage,
5794 	sa_none,
5795 };
5796 
5797 /*
5798  * Build an iteration mask that can exclude certain CPUs from the upwards
5799  * domain traversal.
5800  *
5801  * Asymmetric node setups can result in situations where the domain tree is of
5802  * unequal depth, make sure to skip domains that already cover the entire
5803  * range.
5804  *
5805  * In that case build_sched_domains() will have terminated the iteration early
5806  * and our sibling sd spans will be empty. Domains should always include the
5807  * cpu they're built on, so check that.
5808  *
5809  */
5810 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5811 {
5812 	const struct cpumask *span = sched_domain_span(sd);
5813 	struct sd_data *sdd = sd->private;
5814 	struct sched_domain *sibling;
5815 	int i;
5816 
5817 	for_each_cpu(i, span) {
5818 		sibling = *per_cpu_ptr(sdd->sd, i);
5819 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5820 			continue;
5821 
5822 		cpumask_set_cpu(i, sched_group_mask(sg));
5823 	}
5824 }
5825 
5826 /*
5827  * Return the canonical balance cpu for this group, this is the first cpu
5828  * of this group that's also in the iteration mask.
5829  */
5830 int group_balance_cpu(struct sched_group *sg)
5831 {
5832 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5833 }
5834 
5835 static int
5836 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5837 {
5838 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5839 	const struct cpumask *span = sched_domain_span(sd);
5840 	struct cpumask *covered = sched_domains_tmpmask;
5841 	struct sd_data *sdd = sd->private;
5842 	struct sched_domain *sibling;
5843 	int i;
5844 
5845 	cpumask_clear(covered);
5846 
5847 	for_each_cpu(i, span) {
5848 		struct cpumask *sg_span;
5849 
5850 		if (cpumask_test_cpu(i, covered))
5851 			continue;
5852 
5853 		sibling = *per_cpu_ptr(sdd->sd, i);
5854 
5855 		/* See the comment near build_group_mask(). */
5856 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5857 			continue;
5858 
5859 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5860 				GFP_KERNEL, cpu_to_node(cpu));
5861 
5862 		if (!sg)
5863 			goto fail;
5864 
5865 		sg_span = sched_group_cpus(sg);
5866 		if (sibling->child)
5867 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5868 		else
5869 			cpumask_set_cpu(i, sg_span);
5870 
5871 		cpumask_or(covered, covered, sg_span);
5872 
5873 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5874 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5875 			build_group_mask(sd, sg);
5876 
5877 		/*
5878 		 * Initialize sgc->capacity such that even if we mess up the
5879 		 * domains and no possible iteration will get us here, we won't
5880 		 * die on a /0 trap.
5881 		 */
5882 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5883 		sg->sgc->capacity_orig = sg->sgc->capacity;
5884 
5885 		/*
5886 		 * Make sure the first group of this domain contains the
5887 		 * canonical balance cpu. Otherwise the sched_domain iteration
5888 		 * breaks. See update_sg_lb_stats().
5889 		 */
5890 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5891 		    group_balance_cpu(sg) == cpu)
5892 			groups = sg;
5893 
5894 		if (!first)
5895 			first = sg;
5896 		if (last)
5897 			last->next = sg;
5898 		last = sg;
5899 		last->next = first;
5900 	}
5901 	sd->groups = groups;
5902 
5903 	return 0;
5904 
5905 fail:
5906 	free_sched_groups(first, 0);
5907 
5908 	return -ENOMEM;
5909 }
5910 
5911 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5912 {
5913 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5914 	struct sched_domain *child = sd->child;
5915 
5916 	if (child)
5917 		cpu = cpumask_first(sched_domain_span(child));
5918 
5919 	if (sg) {
5920 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5921 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5922 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5923 	}
5924 
5925 	return cpu;
5926 }
5927 
5928 /*
5929  * build_sched_groups will build a circular linked list of the groups
5930  * covered by the given span, and will set each group's ->cpumask correctly,
5931  * and ->cpu_capacity to 0.
5932  *
5933  * Assumes the sched_domain tree is fully constructed
5934  */
5935 static int
5936 build_sched_groups(struct sched_domain *sd, int cpu)
5937 {
5938 	struct sched_group *first = NULL, *last = NULL;
5939 	struct sd_data *sdd = sd->private;
5940 	const struct cpumask *span = sched_domain_span(sd);
5941 	struct cpumask *covered;
5942 	int i;
5943 
5944 	get_group(cpu, sdd, &sd->groups);
5945 	atomic_inc(&sd->groups->ref);
5946 
5947 	if (cpu != cpumask_first(span))
5948 		return 0;
5949 
5950 	lockdep_assert_held(&sched_domains_mutex);
5951 	covered = sched_domains_tmpmask;
5952 
5953 	cpumask_clear(covered);
5954 
5955 	for_each_cpu(i, span) {
5956 		struct sched_group *sg;
5957 		int group, j;
5958 
5959 		if (cpumask_test_cpu(i, covered))
5960 			continue;
5961 
5962 		group = get_group(i, sdd, &sg);
5963 		cpumask_setall(sched_group_mask(sg));
5964 
5965 		for_each_cpu(j, span) {
5966 			if (get_group(j, sdd, NULL) != group)
5967 				continue;
5968 
5969 			cpumask_set_cpu(j, covered);
5970 			cpumask_set_cpu(j, sched_group_cpus(sg));
5971 		}
5972 
5973 		if (!first)
5974 			first = sg;
5975 		if (last)
5976 			last->next = sg;
5977 		last = sg;
5978 	}
5979 	last->next = first;
5980 
5981 	return 0;
5982 }
5983 
5984 /*
5985  * Initialize sched groups cpu_capacity.
5986  *
5987  * cpu_capacity indicates the capacity of sched group, which is used while
5988  * distributing the load between different sched groups in a sched domain.
5989  * Typically cpu_capacity for all the groups in a sched domain will be same
5990  * unless there are asymmetries in the topology. If there are asymmetries,
5991  * group having more cpu_capacity will pickup more load compared to the
5992  * group having less cpu_capacity.
5993  */
5994 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5995 {
5996 	struct sched_group *sg = sd->groups;
5997 
5998 	WARN_ON(!sg);
5999 
6000 	do {
6001 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6002 		sg = sg->next;
6003 	} while (sg != sd->groups);
6004 
6005 	if (cpu != group_balance_cpu(sg))
6006 		return;
6007 
6008 	update_group_capacity(sd, cpu);
6009 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6010 }
6011 
6012 /*
6013  * Initializers for schedule domains
6014  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6015  */
6016 
6017 static int default_relax_domain_level = -1;
6018 int sched_domain_level_max;
6019 
6020 static int __init setup_relax_domain_level(char *str)
6021 {
6022 	if (kstrtoint(str, 0, &default_relax_domain_level))
6023 		pr_warn("Unable to set relax_domain_level\n");
6024 
6025 	return 1;
6026 }
6027 __setup("relax_domain_level=", setup_relax_domain_level);
6028 
6029 static void set_domain_attribute(struct sched_domain *sd,
6030 				 struct sched_domain_attr *attr)
6031 {
6032 	int request;
6033 
6034 	if (!attr || attr->relax_domain_level < 0) {
6035 		if (default_relax_domain_level < 0)
6036 			return;
6037 		else
6038 			request = default_relax_domain_level;
6039 	} else
6040 		request = attr->relax_domain_level;
6041 	if (request < sd->level) {
6042 		/* turn off idle balance on this domain */
6043 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6044 	} else {
6045 		/* turn on idle balance on this domain */
6046 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6047 	}
6048 }
6049 
6050 static void __sdt_free(const struct cpumask *cpu_map);
6051 static int __sdt_alloc(const struct cpumask *cpu_map);
6052 
6053 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6054 				 const struct cpumask *cpu_map)
6055 {
6056 	switch (what) {
6057 	case sa_rootdomain:
6058 		if (!atomic_read(&d->rd->refcount))
6059 			free_rootdomain(&d->rd->rcu); /* fall through */
6060 	case sa_sd:
6061 		free_percpu(d->sd); /* fall through */
6062 	case sa_sd_storage:
6063 		__sdt_free(cpu_map); /* fall through */
6064 	case sa_none:
6065 		break;
6066 	}
6067 }
6068 
6069 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6070 						   const struct cpumask *cpu_map)
6071 {
6072 	memset(d, 0, sizeof(*d));
6073 
6074 	if (__sdt_alloc(cpu_map))
6075 		return sa_sd_storage;
6076 	d->sd = alloc_percpu(struct sched_domain *);
6077 	if (!d->sd)
6078 		return sa_sd_storage;
6079 	d->rd = alloc_rootdomain();
6080 	if (!d->rd)
6081 		return sa_sd;
6082 	return sa_rootdomain;
6083 }
6084 
6085 /*
6086  * NULL the sd_data elements we've used to build the sched_domain and
6087  * sched_group structure so that the subsequent __free_domain_allocs()
6088  * will not free the data we're using.
6089  */
6090 static void claim_allocations(int cpu, struct sched_domain *sd)
6091 {
6092 	struct sd_data *sdd = sd->private;
6093 
6094 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6095 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6096 
6097 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6098 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6099 
6100 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6101 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6102 }
6103 
6104 #ifdef CONFIG_NUMA
6105 static int sched_domains_numa_levels;
6106 static int *sched_domains_numa_distance;
6107 static struct cpumask ***sched_domains_numa_masks;
6108 static int sched_domains_curr_level;
6109 #endif
6110 
6111 /*
6112  * SD_flags allowed in topology descriptions.
6113  *
6114  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6115  * SD_SHARE_PKG_RESOURCES - describes shared caches
6116  * SD_NUMA                - describes NUMA topologies
6117  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6118  *
6119  * Odd one out:
6120  * SD_ASYM_PACKING        - describes SMT quirks
6121  */
6122 #define TOPOLOGY_SD_FLAGS		\
6123 	(SD_SHARE_CPUCAPACITY |		\
6124 	 SD_SHARE_PKG_RESOURCES |	\
6125 	 SD_NUMA |			\
6126 	 SD_ASYM_PACKING |		\
6127 	 SD_SHARE_POWERDOMAIN)
6128 
6129 static struct sched_domain *
6130 sd_init(struct sched_domain_topology_level *tl, int cpu)
6131 {
6132 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6133 	int sd_weight, sd_flags = 0;
6134 
6135 #ifdef CONFIG_NUMA
6136 	/*
6137 	 * Ugly hack to pass state to sd_numa_mask()...
6138 	 */
6139 	sched_domains_curr_level = tl->numa_level;
6140 #endif
6141 
6142 	sd_weight = cpumask_weight(tl->mask(cpu));
6143 
6144 	if (tl->sd_flags)
6145 		sd_flags = (*tl->sd_flags)();
6146 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6147 			"wrong sd_flags in topology description\n"))
6148 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6149 
6150 	*sd = (struct sched_domain){
6151 		.min_interval		= sd_weight,
6152 		.max_interval		= 2*sd_weight,
6153 		.busy_factor		= 32,
6154 		.imbalance_pct		= 125,
6155 
6156 		.cache_nice_tries	= 0,
6157 		.busy_idx		= 0,
6158 		.idle_idx		= 0,
6159 		.newidle_idx		= 0,
6160 		.wake_idx		= 0,
6161 		.forkexec_idx		= 0,
6162 
6163 		.flags			= 1*SD_LOAD_BALANCE
6164 					| 1*SD_BALANCE_NEWIDLE
6165 					| 1*SD_BALANCE_EXEC
6166 					| 1*SD_BALANCE_FORK
6167 					| 0*SD_BALANCE_WAKE
6168 					| 1*SD_WAKE_AFFINE
6169 					| 0*SD_SHARE_CPUCAPACITY
6170 					| 0*SD_SHARE_PKG_RESOURCES
6171 					| 0*SD_SERIALIZE
6172 					| 0*SD_PREFER_SIBLING
6173 					| 0*SD_NUMA
6174 					| sd_flags
6175 					,
6176 
6177 		.last_balance		= jiffies,
6178 		.balance_interval	= sd_weight,
6179 		.smt_gain		= 0,
6180 		.max_newidle_lb_cost	= 0,
6181 		.next_decay_max_lb_cost	= jiffies,
6182 #ifdef CONFIG_SCHED_DEBUG
6183 		.name			= tl->name,
6184 #endif
6185 	};
6186 
6187 	/*
6188 	 * Convert topological properties into behaviour.
6189 	 */
6190 
6191 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6192 		sd->imbalance_pct = 110;
6193 		sd->smt_gain = 1178; /* ~15% */
6194 
6195 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6196 		sd->imbalance_pct = 117;
6197 		sd->cache_nice_tries = 1;
6198 		sd->busy_idx = 2;
6199 
6200 #ifdef CONFIG_NUMA
6201 	} else if (sd->flags & SD_NUMA) {
6202 		sd->cache_nice_tries = 2;
6203 		sd->busy_idx = 3;
6204 		sd->idle_idx = 2;
6205 
6206 		sd->flags |= SD_SERIALIZE;
6207 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6208 			sd->flags &= ~(SD_BALANCE_EXEC |
6209 				       SD_BALANCE_FORK |
6210 				       SD_WAKE_AFFINE);
6211 		}
6212 
6213 #endif
6214 	} else {
6215 		sd->flags |= SD_PREFER_SIBLING;
6216 		sd->cache_nice_tries = 1;
6217 		sd->busy_idx = 2;
6218 		sd->idle_idx = 1;
6219 	}
6220 
6221 	sd->private = &tl->data;
6222 
6223 	return sd;
6224 }
6225 
6226 /*
6227  * Topology list, bottom-up.
6228  */
6229 static struct sched_domain_topology_level default_topology[] = {
6230 #ifdef CONFIG_SCHED_SMT
6231 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6232 #endif
6233 #ifdef CONFIG_SCHED_MC
6234 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6235 #endif
6236 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6237 	{ NULL, },
6238 };
6239 
6240 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6241 
6242 #define for_each_sd_topology(tl)			\
6243 	for (tl = sched_domain_topology; tl->mask; tl++)
6244 
6245 void set_sched_topology(struct sched_domain_topology_level *tl)
6246 {
6247 	sched_domain_topology = tl;
6248 }
6249 
6250 #ifdef CONFIG_NUMA
6251 
6252 static const struct cpumask *sd_numa_mask(int cpu)
6253 {
6254 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6255 }
6256 
6257 static void sched_numa_warn(const char *str)
6258 {
6259 	static int done = false;
6260 	int i,j;
6261 
6262 	if (done)
6263 		return;
6264 
6265 	done = true;
6266 
6267 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6268 
6269 	for (i = 0; i < nr_node_ids; i++) {
6270 		printk(KERN_WARNING "  ");
6271 		for (j = 0; j < nr_node_ids; j++)
6272 			printk(KERN_CONT "%02d ", node_distance(i,j));
6273 		printk(KERN_CONT "\n");
6274 	}
6275 	printk(KERN_WARNING "\n");
6276 }
6277 
6278 static bool find_numa_distance(int distance)
6279 {
6280 	int i;
6281 
6282 	if (distance == node_distance(0, 0))
6283 		return true;
6284 
6285 	for (i = 0; i < sched_domains_numa_levels; i++) {
6286 		if (sched_domains_numa_distance[i] == distance)
6287 			return true;
6288 	}
6289 
6290 	return false;
6291 }
6292 
6293 static void sched_init_numa(void)
6294 {
6295 	int next_distance, curr_distance = node_distance(0, 0);
6296 	struct sched_domain_topology_level *tl;
6297 	int level = 0;
6298 	int i, j, k;
6299 
6300 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6301 	if (!sched_domains_numa_distance)
6302 		return;
6303 
6304 	/*
6305 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6306 	 * unique distances in the node_distance() table.
6307 	 *
6308 	 * Assumes node_distance(0,j) includes all distances in
6309 	 * node_distance(i,j) in order to avoid cubic time.
6310 	 */
6311 	next_distance = curr_distance;
6312 	for (i = 0; i < nr_node_ids; i++) {
6313 		for (j = 0; j < nr_node_ids; j++) {
6314 			for (k = 0; k < nr_node_ids; k++) {
6315 				int distance = node_distance(i, k);
6316 
6317 				if (distance > curr_distance &&
6318 				    (distance < next_distance ||
6319 				     next_distance == curr_distance))
6320 					next_distance = distance;
6321 
6322 				/*
6323 				 * While not a strong assumption it would be nice to know
6324 				 * about cases where if node A is connected to B, B is not
6325 				 * equally connected to A.
6326 				 */
6327 				if (sched_debug() && node_distance(k, i) != distance)
6328 					sched_numa_warn("Node-distance not symmetric");
6329 
6330 				if (sched_debug() && i && !find_numa_distance(distance))
6331 					sched_numa_warn("Node-0 not representative");
6332 			}
6333 			if (next_distance != curr_distance) {
6334 				sched_domains_numa_distance[level++] = next_distance;
6335 				sched_domains_numa_levels = level;
6336 				curr_distance = next_distance;
6337 			} else break;
6338 		}
6339 
6340 		/*
6341 		 * In case of sched_debug() we verify the above assumption.
6342 		 */
6343 		if (!sched_debug())
6344 			break;
6345 	}
6346 
6347 	if (!level)
6348 		return;
6349 
6350 	/*
6351 	 * 'level' contains the number of unique distances, excluding the
6352 	 * identity distance node_distance(i,i).
6353 	 *
6354 	 * The sched_domains_numa_distance[] array includes the actual distance
6355 	 * numbers.
6356 	 */
6357 
6358 	/*
6359 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6360 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6361 	 * the array will contain less then 'level' members. This could be
6362 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6363 	 * in other functions.
6364 	 *
6365 	 * We reset it to 'level' at the end of this function.
6366 	 */
6367 	sched_domains_numa_levels = 0;
6368 
6369 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6370 	if (!sched_domains_numa_masks)
6371 		return;
6372 
6373 	/*
6374 	 * Now for each level, construct a mask per node which contains all
6375 	 * cpus of nodes that are that many hops away from us.
6376 	 */
6377 	for (i = 0; i < level; i++) {
6378 		sched_domains_numa_masks[i] =
6379 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6380 		if (!sched_domains_numa_masks[i])
6381 			return;
6382 
6383 		for (j = 0; j < nr_node_ids; j++) {
6384 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6385 			if (!mask)
6386 				return;
6387 
6388 			sched_domains_numa_masks[i][j] = mask;
6389 
6390 			for (k = 0; k < nr_node_ids; k++) {
6391 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6392 					continue;
6393 
6394 				cpumask_or(mask, mask, cpumask_of_node(k));
6395 			}
6396 		}
6397 	}
6398 
6399 	/* Compute default topology size */
6400 	for (i = 0; sched_domain_topology[i].mask; i++);
6401 
6402 	tl = kzalloc((i + level + 1) *
6403 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6404 	if (!tl)
6405 		return;
6406 
6407 	/*
6408 	 * Copy the default topology bits..
6409 	 */
6410 	for (i = 0; sched_domain_topology[i].mask; i++)
6411 		tl[i] = sched_domain_topology[i];
6412 
6413 	/*
6414 	 * .. and append 'j' levels of NUMA goodness.
6415 	 */
6416 	for (j = 0; j < level; i++, j++) {
6417 		tl[i] = (struct sched_domain_topology_level){
6418 			.mask = sd_numa_mask,
6419 			.sd_flags = cpu_numa_flags,
6420 			.flags = SDTL_OVERLAP,
6421 			.numa_level = j,
6422 			SD_INIT_NAME(NUMA)
6423 		};
6424 	}
6425 
6426 	sched_domain_topology = tl;
6427 
6428 	sched_domains_numa_levels = level;
6429 }
6430 
6431 static void sched_domains_numa_masks_set(int cpu)
6432 {
6433 	int i, j;
6434 	int node = cpu_to_node(cpu);
6435 
6436 	for (i = 0; i < sched_domains_numa_levels; i++) {
6437 		for (j = 0; j < nr_node_ids; j++) {
6438 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6439 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6440 		}
6441 	}
6442 }
6443 
6444 static void sched_domains_numa_masks_clear(int cpu)
6445 {
6446 	int i, j;
6447 	for (i = 0; i < sched_domains_numa_levels; i++) {
6448 		for (j = 0; j < nr_node_ids; j++)
6449 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6450 	}
6451 }
6452 
6453 /*
6454  * Update sched_domains_numa_masks[level][node] array when new cpus
6455  * are onlined.
6456  */
6457 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6458 					   unsigned long action,
6459 					   void *hcpu)
6460 {
6461 	int cpu = (long)hcpu;
6462 
6463 	switch (action & ~CPU_TASKS_FROZEN) {
6464 	case CPU_ONLINE:
6465 		sched_domains_numa_masks_set(cpu);
6466 		break;
6467 
6468 	case CPU_DEAD:
6469 		sched_domains_numa_masks_clear(cpu);
6470 		break;
6471 
6472 	default:
6473 		return NOTIFY_DONE;
6474 	}
6475 
6476 	return NOTIFY_OK;
6477 }
6478 #else
6479 static inline void sched_init_numa(void)
6480 {
6481 }
6482 
6483 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6484 					   unsigned long action,
6485 					   void *hcpu)
6486 {
6487 	return 0;
6488 }
6489 #endif /* CONFIG_NUMA */
6490 
6491 static int __sdt_alloc(const struct cpumask *cpu_map)
6492 {
6493 	struct sched_domain_topology_level *tl;
6494 	int j;
6495 
6496 	for_each_sd_topology(tl) {
6497 		struct sd_data *sdd = &tl->data;
6498 
6499 		sdd->sd = alloc_percpu(struct sched_domain *);
6500 		if (!sdd->sd)
6501 			return -ENOMEM;
6502 
6503 		sdd->sg = alloc_percpu(struct sched_group *);
6504 		if (!sdd->sg)
6505 			return -ENOMEM;
6506 
6507 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6508 		if (!sdd->sgc)
6509 			return -ENOMEM;
6510 
6511 		for_each_cpu(j, cpu_map) {
6512 			struct sched_domain *sd;
6513 			struct sched_group *sg;
6514 			struct sched_group_capacity *sgc;
6515 
6516 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6517 					GFP_KERNEL, cpu_to_node(j));
6518 			if (!sd)
6519 				return -ENOMEM;
6520 
6521 			*per_cpu_ptr(sdd->sd, j) = sd;
6522 
6523 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6524 					GFP_KERNEL, cpu_to_node(j));
6525 			if (!sg)
6526 				return -ENOMEM;
6527 
6528 			sg->next = sg;
6529 
6530 			*per_cpu_ptr(sdd->sg, j) = sg;
6531 
6532 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6533 					GFP_KERNEL, cpu_to_node(j));
6534 			if (!sgc)
6535 				return -ENOMEM;
6536 
6537 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6538 		}
6539 	}
6540 
6541 	return 0;
6542 }
6543 
6544 static void __sdt_free(const struct cpumask *cpu_map)
6545 {
6546 	struct sched_domain_topology_level *tl;
6547 	int j;
6548 
6549 	for_each_sd_topology(tl) {
6550 		struct sd_data *sdd = &tl->data;
6551 
6552 		for_each_cpu(j, cpu_map) {
6553 			struct sched_domain *sd;
6554 
6555 			if (sdd->sd) {
6556 				sd = *per_cpu_ptr(sdd->sd, j);
6557 				if (sd && (sd->flags & SD_OVERLAP))
6558 					free_sched_groups(sd->groups, 0);
6559 				kfree(*per_cpu_ptr(sdd->sd, j));
6560 			}
6561 
6562 			if (sdd->sg)
6563 				kfree(*per_cpu_ptr(sdd->sg, j));
6564 			if (sdd->sgc)
6565 				kfree(*per_cpu_ptr(sdd->sgc, j));
6566 		}
6567 		free_percpu(sdd->sd);
6568 		sdd->sd = NULL;
6569 		free_percpu(sdd->sg);
6570 		sdd->sg = NULL;
6571 		free_percpu(sdd->sgc);
6572 		sdd->sgc = NULL;
6573 	}
6574 }
6575 
6576 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6577 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6578 		struct sched_domain *child, int cpu)
6579 {
6580 	struct sched_domain *sd = sd_init(tl, cpu);
6581 	if (!sd)
6582 		return child;
6583 
6584 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6585 	if (child) {
6586 		sd->level = child->level + 1;
6587 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6588 		child->parent = sd;
6589 		sd->child = child;
6590 
6591 		if (!cpumask_subset(sched_domain_span(child),
6592 				    sched_domain_span(sd))) {
6593 			pr_err("BUG: arch topology borken\n");
6594 #ifdef CONFIG_SCHED_DEBUG
6595 			pr_err("     the %s domain not a subset of the %s domain\n",
6596 					child->name, sd->name);
6597 #endif
6598 			/* Fixup, ensure @sd has at least @child cpus. */
6599 			cpumask_or(sched_domain_span(sd),
6600 				   sched_domain_span(sd),
6601 				   sched_domain_span(child));
6602 		}
6603 
6604 	}
6605 	set_domain_attribute(sd, attr);
6606 
6607 	return sd;
6608 }
6609 
6610 /*
6611  * Build sched domains for a given set of cpus and attach the sched domains
6612  * to the individual cpus
6613  */
6614 static int build_sched_domains(const struct cpumask *cpu_map,
6615 			       struct sched_domain_attr *attr)
6616 {
6617 	enum s_alloc alloc_state;
6618 	struct sched_domain *sd;
6619 	struct s_data d;
6620 	int i, ret = -ENOMEM;
6621 
6622 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6623 	if (alloc_state != sa_rootdomain)
6624 		goto error;
6625 
6626 	/* Set up domains for cpus specified by the cpu_map. */
6627 	for_each_cpu(i, cpu_map) {
6628 		struct sched_domain_topology_level *tl;
6629 
6630 		sd = NULL;
6631 		for_each_sd_topology(tl) {
6632 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6633 			if (tl == sched_domain_topology)
6634 				*per_cpu_ptr(d.sd, i) = sd;
6635 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6636 				sd->flags |= SD_OVERLAP;
6637 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6638 				break;
6639 		}
6640 	}
6641 
6642 	/* Build the groups for the domains */
6643 	for_each_cpu(i, cpu_map) {
6644 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6645 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6646 			if (sd->flags & SD_OVERLAP) {
6647 				if (build_overlap_sched_groups(sd, i))
6648 					goto error;
6649 			} else {
6650 				if (build_sched_groups(sd, i))
6651 					goto error;
6652 			}
6653 		}
6654 	}
6655 
6656 	/* Calculate CPU capacity for physical packages and nodes */
6657 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6658 		if (!cpumask_test_cpu(i, cpu_map))
6659 			continue;
6660 
6661 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6662 			claim_allocations(i, sd);
6663 			init_sched_groups_capacity(i, sd);
6664 		}
6665 	}
6666 
6667 	/* Attach the domains */
6668 	rcu_read_lock();
6669 	for_each_cpu(i, cpu_map) {
6670 		sd = *per_cpu_ptr(d.sd, i);
6671 		cpu_attach_domain(sd, d.rd, i);
6672 	}
6673 	rcu_read_unlock();
6674 
6675 	ret = 0;
6676 error:
6677 	__free_domain_allocs(&d, alloc_state, cpu_map);
6678 	return ret;
6679 }
6680 
6681 static cpumask_var_t *doms_cur;	/* current sched domains */
6682 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6683 static struct sched_domain_attr *dattr_cur;
6684 				/* attribues of custom domains in 'doms_cur' */
6685 
6686 /*
6687  * Special case: If a kmalloc of a doms_cur partition (array of
6688  * cpumask) fails, then fallback to a single sched domain,
6689  * as determined by the single cpumask fallback_doms.
6690  */
6691 static cpumask_var_t fallback_doms;
6692 
6693 /*
6694  * arch_update_cpu_topology lets virtualized architectures update the
6695  * cpu core maps. It is supposed to return 1 if the topology changed
6696  * or 0 if it stayed the same.
6697  */
6698 int __weak arch_update_cpu_topology(void)
6699 {
6700 	return 0;
6701 }
6702 
6703 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6704 {
6705 	int i;
6706 	cpumask_var_t *doms;
6707 
6708 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6709 	if (!doms)
6710 		return NULL;
6711 	for (i = 0; i < ndoms; i++) {
6712 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6713 			free_sched_domains(doms, i);
6714 			return NULL;
6715 		}
6716 	}
6717 	return doms;
6718 }
6719 
6720 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6721 {
6722 	unsigned int i;
6723 	for (i = 0; i < ndoms; i++)
6724 		free_cpumask_var(doms[i]);
6725 	kfree(doms);
6726 }
6727 
6728 /*
6729  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6730  * For now this just excludes isolated cpus, but could be used to
6731  * exclude other special cases in the future.
6732  */
6733 static int init_sched_domains(const struct cpumask *cpu_map)
6734 {
6735 	int err;
6736 
6737 	arch_update_cpu_topology();
6738 	ndoms_cur = 1;
6739 	doms_cur = alloc_sched_domains(ndoms_cur);
6740 	if (!doms_cur)
6741 		doms_cur = &fallback_doms;
6742 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6743 	err = build_sched_domains(doms_cur[0], NULL);
6744 	register_sched_domain_sysctl();
6745 
6746 	return err;
6747 }
6748 
6749 /*
6750  * Detach sched domains from a group of cpus specified in cpu_map
6751  * These cpus will now be attached to the NULL domain
6752  */
6753 static void detach_destroy_domains(const struct cpumask *cpu_map)
6754 {
6755 	int i;
6756 
6757 	rcu_read_lock();
6758 	for_each_cpu(i, cpu_map)
6759 		cpu_attach_domain(NULL, &def_root_domain, i);
6760 	rcu_read_unlock();
6761 }
6762 
6763 /* handle null as "default" */
6764 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6765 			struct sched_domain_attr *new, int idx_new)
6766 {
6767 	struct sched_domain_attr tmp;
6768 
6769 	/* fast path */
6770 	if (!new && !cur)
6771 		return 1;
6772 
6773 	tmp = SD_ATTR_INIT;
6774 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6775 			new ? (new + idx_new) : &tmp,
6776 			sizeof(struct sched_domain_attr));
6777 }
6778 
6779 /*
6780  * Partition sched domains as specified by the 'ndoms_new'
6781  * cpumasks in the array doms_new[] of cpumasks. This compares
6782  * doms_new[] to the current sched domain partitioning, doms_cur[].
6783  * It destroys each deleted domain and builds each new domain.
6784  *
6785  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6786  * The masks don't intersect (don't overlap.) We should setup one
6787  * sched domain for each mask. CPUs not in any of the cpumasks will
6788  * not be load balanced. If the same cpumask appears both in the
6789  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6790  * it as it is.
6791  *
6792  * The passed in 'doms_new' should be allocated using
6793  * alloc_sched_domains.  This routine takes ownership of it and will
6794  * free_sched_domains it when done with it. If the caller failed the
6795  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6796  * and partition_sched_domains() will fallback to the single partition
6797  * 'fallback_doms', it also forces the domains to be rebuilt.
6798  *
6799  * If doms_new == NULL it will be replaced with cpu_online_mask.
6800  * ndoms_new == 0 is a special case for destroying existing domains,
6801  * and it will not create the default domain.
6802  *
6803  * Call with hotplug lock held
6804  */
6805 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6806 			     struct sched_domain_attr *dattr_new)
6807 {
6808 	int i, j, n;
6809 	int new_topology;
6810 
6811 	mutex_lock(&sched_domains_mutex);
6812 
6813 	/* always unregister in case we don't destroy any domains */
6814 	unregister_sched_domain_sysctl();
6815 
6816 	/* Let architecture update cpu core mappings. */
6817 	new_topology = arch_update_cpu_topology();
6818 
6819 	n = doms_new ? ndoms_new : 0;
6820 
6821 	/* Destroy deleted domains */
6822 	for (i = 0; i < ndoms_cur; i++) {
6823 		for (j = 0; j < n && !new_topology; j++) {
6824 			if (cpumask_equal(doms_cur[i], doms_new[j])
6825 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6826 				goto match1;
6827 		}
6828 		/* no match - a current sched domain not in new doms_new[] */
6829 		detach_destroy_domains(doms_cur[i]);
6830 match1:
6831 		;
6832 	}
6833 
6834 	n = ndoms_cur;
6835 	if (doms_new == NULL) {
6836 		n = 0;
6837 		doms_new = &fallback_doms;
6838 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6839 		WARN_ON_ONCE(dattr_new);
6840 	}
6841 
6842 	/* Build new domains */
6843 	for (i = 0; i < ndoms_new; i++) {
6844 		for (j = 0; j < n && !new_topology; j++) {
6845 			if (cpumask_equal(doms_new[i], doms_cur[j])
6846 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6847 				goto match2;
6848 		}
6849 		/* no match - add a new doms_new */
6850 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6851 match2:
6852 		;
6853 	}
6854 
6855 	/* Remember the new sched domains */
6856 	if (doms_cur != &fallback_doms)
6857 		free_sched_domains(doms_cur, ndoms_cur);
6858 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6859 	doms_cur = doms_new;
6860 	dattr_cur = dattr_new;
6861 	ndoms_cur = ndoms_new;
6862 
6863 	register_sched_domain_sysctl();
6864 
6865 	mutex_unlock(&sched_domains_mutex);
6866 }
6867 
6868 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6869 
6870 /*
6871  * Update cpusets according to cpu_active mask.  If cpusets are
6872  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6873  * around partition_sched_domains().
6874  *
6875  * If we come here as part of a suspend/resume, don't touch cpusets because we
6876  * want to restore it back to its original state upon resume anyway.
6877  */
6878 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6879 			     void *hcpu)
6880 {
6881 	switch (action) {
6882 	case CPU_ONLINE_FROZEN:
6883 	case CPU_DOWN_FAILED_FROZEN:
6884 
6885 		/*
6886 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6887 		 * resume sequence. As long as this is not the last online
6888 		 * operation in the resume sequence, just build a single sched
6889 		 * domain, ignoring cpusets.
6890 		 */
6891 		num_cpus_frozen--;
6892 		if (likely(num_cpus_frozen)) {
6893 			partition_sched_domains(1, NULL, NULL);
6894 			break;
6895 		}
6896 
6897 		/*
6898 		 * This is the last CPU online operation. So fall through and
6899 		 * restore the original sched domains by considering the
6900 		 * cpuset configurations.
6901 		 */
6902 
6903 	case CPU_ONLINE:
6904 	case CPU_DOWN_FAILED:
6905 		cpuset_update_active_cpus(true);
6906 		break;
6907 	default:
6908 		return NOTIFY_DONE;
6909 	}
6910 	return NOTIFY_OK;
6911 }
6912 
6913 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6914 			       void *hcpu)
6915 {
6916 	switch (action) {
6917 	case CPU_DOWN_PREPARE:
6918 		cpuset_update_active_cpus(false);
6919 		break;
6920 	case CPU_DOWN_PREPARE_FROZEN:
6921 		num_cpus_frozen++;
6922 		partition_sched_domains(1, NULL, NULL);
6923 		break;
6924 	default:
6925 		return NOTIFY_DONE;
6926 	}
6927 	return NOTIFY_OK;
6928 }
6929 
6930 void __init sched_init_smp(void)
6931 {
6932 	cpumask_var_t non_isolated_cpus;
6933 
6934 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6935 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6936 
6937 	sched_init_numa();
6938 
6939 	/*
6940 	 * There's no userspace yet to cause hotplug operations; hence all the
6941 	 * cpu masks are stable and all blatant races in the below code cannot
6942 	 * happen.
6943 	 */
6944 	mutex_lock(&sched_domains_mutex);
6945 	init_sched_domains(cpu_active_mask);
6946 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6947 	if (cpumask_empty(non_isolated_cpus))
6948 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6949 	mutex_unlock(&sched_domains_mutex);
6950 
6951 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6952 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6953 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6954 
6955 	init_hrtick();
6956 
6957 	/* Move init over to a non-isolated CPU */
6958 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6959 		BUG();
6960 	sched_init_granularity();
6961 	free_cpumask_var(non_isolated_cpus);
6962 
6963 	init_sched_rt_class();
6964 	init_sched_dl_class();
6965 }
6966 #else
6967 void __init sched_init_smp(void)
6968 {
6969 	sched_init_granularity();
6970 }
6971 #endif /* CONFIG_SMP */
6972 
6973 const_debug unsigned int sysctl_timer_migration = 1;
6974 
6975 int in_sched_functions(unsigned long addr)
6976 {
6977 	return in_lock_functions(addr) ||
6978 		(addr >= (unsigned long)__sched_text_start
6979 		&& addr < (unsigned long)__sched_text_end);
6980 }
6981 
6982 #ifdef CONFIG_CGROUP_SCHED
6983 /*
6984  * Default task group.
6985  * Every task in system belongs to this group at bootup.
6986  */
6987 struct task_group root_task_group;
6988 LIST_HEAD(task_groups);
6989 #endif
6990 
6991 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6992 
6993 void __init sched_init(void)
6994 {
6995 	int i, j;
6996 	unsigned long alloc_size = 0, ptr;
6997 
6998 #ifdef CONFIG_FAIR_GROUP_SCHED
6999 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7000 #endif
7001 #ifdef CONFIG_RT_GROUP_SCHED
7002 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7003 #endif
7004 #ifdef CONFIG_CPUMASK_OFFSTACK
7005 	alloc_size += num_possible_cpus() * cpumask_size();
7006 #endif
7007 	if (alloc_size) {
7008 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7009 
7010 #ifdef CONFIG_FAIR_GROUP_SCHED
7011 		root_task_group.se = (struct sched_entity **)ptr;
7012 		ptr += nr_cpu_ids * sizeof(void **);
7013 
7014 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7015 		ptr += nr_cpu_ids * sizeof(void **);
7016 
7017 #endif /* CONFIG_FAIR_GROUP_SCHED */
7018 #ifdef CONFIG_RT_GROUP_SCHED
7019 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7020 		ptr += nr_cpu_ids * sizeof(void **);
7021 
7022 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7023 		ptr += nr_cpu_ids * sizeof(void **);
7024 
7025 #endif /* CONFIG_RT_GROUP_SCHED */
7026 #ifdef CONFIG_CPUMASK_OFFSTACK
7027 		for_each_possible_cpu(i) {
7028 			per_cpu(load_balance_mask, i) = (void *)ptr;
7029 			ptr += cpumask_size();
7030 		}
7031 #endif /* CONFIG_CPUMASK_OFFSTACK */
7032 	}
7033 
7034 	init_rt_bandwidth(&def_rt_bandwidth,
7035 			global_rt_period(), global_rt_runtime());
7036 	init_dl_bandwidth(&def_dl_bandwidth,
7037 			global_rt_period(), global_rt_runtime());
7038 
7039 #ifdef CONFIG_SMP
7040 	init_defrootdomain();
7041 #endif
7042 
7043 #ifdef CONFIG_RT_GROUP_SCHED
7044 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7045 			global_rt_period(), global_rt_runtime());
7046 #endif /* CONFIG_RT_GROUP_SCHED */
7047 
7048 #ifdef CONFIG_CGROUP_SCHED
7049 	list_add(&root_task_group.list, &task_groups);
7050 	INIT_LIST_HEAD(&root_task_group.children);
7051 	INIT_LIST_HEAD(&root_task_group.siblings);
7052 	autogroup_init(&init_task);
7053 
7054 #endif /* CONFIG_CGROUP_SCHED */
7055 
7056 	for_each_possible_cpu(i) {
7057 		struct rq *rq;
7058 
7059 		rq = cpu_rq(i);
7060 		raw_spin_lock_init(&rq->lock);
7061 		rq->nr_running = 0;
7062 		rq->calc_load_active = 0;
7063 		rq->calc_load_update = jiffies + LOAD_FREQ;
7064 		init_cfs_rq(&rq->cfs);
7065 		init_rt_rq(&rq->rt, rq);
7066 		init_dl_rq(&rq->dl, rq);
7067 #ifdef CONFIG_FAIR_GROUP_SCHED
7068 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7069 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7070 		/*
7071 		 * How much cpu bandwidth does root_task_group get?
7072 		 *
7073 		 * In case of task-groups formed thr' the cgroup filesystem, it
7074 		 * gets 100% of the cpu resources in the system. This overall
7075 		 * system cpu resource is divided among the tasks of
7076 		 * root_task_group and its child task-groups in a fair manner,
7077 		 * based on each entity's (task or task-group's) weight
7078 		 * (se->load.weight).
7079 		 *
7080 		 * In other words, if root_task_group has 10 tasks of weight
7081 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7082 		 * then A0's share of the cpu resource is:
7083 		 *
7084 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7085 		 *
7086 		 * We achieve this by letting root_task_group's tasks sit
7087 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7088 		 */
7089 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7090 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7091 #endif /* CONFIG_FAIR_GROUP_SCHED */
7092 
7093 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7094 #ifdef CONFIG_RT_GROUP_SCHED
7095 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7096 #endif
7097 
7098 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7099 			rq->cpu_load[j] = 0;
7100 
7101 		rq->last_load_update_tick = jiffies;
7102 
7103 #ifdef CONFIG_SMP
7104 		rq->sd = NULL;
7105 		rq->rd = NULL;
7106 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7107 		rq->post_schedule = 0;
7108 		rq->active_balance = 0;
7109 		rq->next_balance = jiffies;
7110 		rq->push_cpu = 0;
7111 		rq->cpu = i;
7112 		rq->online = 0;
7113 		rq->idle_stamp = 0;
7114 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7115 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7116 
7117 		INIT_LIST_HEAD(&rq->cfs_tasks);
7118 
7119 		rq_attach_root(rq, &def_root_domain);
7120 #ifdef CONFIG_NO_HZ_COMMON
7121 		rq->nohz_flags = 0;
7122 #endif
7123 #ifdef CONFIG_NO_HZ_FULL
7124 		rq->last_sched_tick = 0;
7125 #endif
7126 #endif
7127 		init_rq_hrtick(rq);
7128 		atomic_set(&rq->nr_iowait, 0);
7129 	}
7130 
7131 	set_load_weight(&init_task);
7132 
7133 #ifdef CONFIG_PREEMPT_NOTIFIERS
7134 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7135 #endif
7136 
7137 	/*
7138 	 * The boot idle thread does lazy MMU switching as well:
7139 	 */
7140 	atomic_inc(&init_mm.mm_count);
7141 	enter_lazy_tlb(&init_mm, current);
7142 
7143 	/*
7144 	 * Make us the idle thread. Technically, schedule() should not be
7145 	 * called from this thread, however somewhere below it might be,
7146 	 * but because we are the idle thread, we just pick up running again
7147 	 * when this runqueue becomes "idle".
7148 	 */
7149 	init_idle(current, smp_processor_id());
7150 
7151 	calc_load_update = jiffies + LOAD_FREQ;
7152 
7153 	/*
7154 	 * During early bootup we pretend to be a normal task:
7155 	 */
7156 	current->sched_class = &fair_sched_class;
7157 
7158 #ifdef CONFIG_SMP
7159 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7160 	/* May be allocated at isolcpus cmdline parse time */
7161 	if (cpu_isolated_map == NULL)
7162 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7163 	idle_thread_set_boot_cpu();
7164 	set_cpu_rq_start_time();
7165 #endif
7166 	init_sched_fair_class();
7167 
7168 	scheduler_running = 1;
7169 }
7170 
7171 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7172 static inline int preempt_count_equals(int preempt_offset)
7173 {
7174 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7175 
7176 	return (nested == preempt_offset);
7177 }
7178 
7179 void __might_sleep(const char *file, int line, int preempt_offset)
7180 {
7181 	static unsigned long prev_jiffy;	/* ratelimiting */
7182 
7183 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7184 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7185 	     !is_idle_task(current)) ||
7186 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7187 		return;
7188 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7189 		return;
7190 	prev_jiffy = jiffies;
7191 
7192 	printk(KERN_ERR
7193 		"BUG: sleeping function called from invalid context at %s:%d\n",
7194 			file, line);
7195 	printk(KERN_ERR
7196 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7197 			in_atomic(), irqs_disabled(),
7198 			current->pid, current->comm);
7199 
7200 	debug_show_held_locks(current);
7201 	if (irqs_disabled())
7202 		print_irqtrace_events(current);
7203 #ifdef CONFIG_DEBUG_PREEMPT
7204 	if (!preempt_count_equals(preempt_offset)) {
7205 		pr_err("Preemption disabled at:");
7206 		print_ip_sym(current->preempt_disable_ip);
7207 		pr_cont("\n");
7208 	}
7209 #endif
7210 	dump_stack();
7211 }
7212 EXPORT_SYMBOL(__might_sleep);
7213 #endif
7214 
7215 #ifdef CONFIG_MAGIC_SYSRQ
7216 static void normalize_task(struct rq *rq, struct task_struct *p)
7217 {
7218 	const struct sched_class *prev_class = p->sched_class;
7219 	struct sched_attr attr = {
7220 		.sched_policy = SCHED_NORMAL,
7221 	};
7222 	int old_prio = p->prio;
7223 	int queued;
7224 
7225 	queued = task_on_rq_queued(p);
7226 	if (queued)
7227 		dequeue_task(rq, p, 0);
7228 	__setscheduler(rq, p, &attr);
7229 	if (queued) {
7230 		enqueue_task(rq, p, 0);
7231 		resched_curr(rq);
7232 	}
7233 
7234 	check_class_changed(rq, p, prev_class, old_prio);
7235 }
7236 
7237 void normalize_rt_tasks(void)
7238 {
7239 	struct task_struct *g, *p;
7240 	unsigned long flags;
7241 	struct rq *rq;
7242 
7243 	read_lock(&tasklist_lock);
7244 	for_each_process_thread(g, p) {
7245 		/*
7246 		 * Only normalize user tasks:
7247 		 */
7248 		if (p->flags & PF_KTHREAD)
7249 			continue;
7250 
7251 		p->se.exec_start		= 0;
7252 #ifdef CONFIG_SCHEDSTATS
7253 		p->se.statistics.wait_start	= 0;
7254 		p->se.statistics.sleep_start	= 0;
7255 		p->se.statistics.block_start	= 0;
7256 #endif
7257 
7258 		if (!dl_task(p) && !rt_task(p)) {
7259 			/*
7260 			 * Renice negative nice level userspace
7261 			 * tasks back to 0:
7262 			 */
7263 			if (task_nice(p) < 0)
7264 				set_user_nice(p, 0);
7265 			continue;
7266 		}
7267 
7268 		rq = task_rq_lock(p, &flags);
7269 		normalize_task(rq, p);
7270 		task_rq_unlock(rq, p, &flags);
7271 	}
7272 	read_unlock(&tasklist_lock);
7273 }
7274 
7275 #endif /* CONFIG_MAGIC_SYSRQ */
7276 
7277 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7278 /*
7279  * These functions are only useful for the IA64 MCA handling, or kdb.
7280  *
7281  * They can only be called when the whole system has been
7282  * stopped - every CPU needs to be quiescent, and no scheduling
7283  * activity can take place. Using them for anything else would
7284  * be a serious bug, and as a result, they aren't even visible
7285  * under any other configuration.
7286  */
7287 
7288 /**
7289  * curr_task - return the current task for a given cpu.
7290  * @cpu: the processor in question.
7291  *
7292  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7293  *
7294  * Return: The current task for @cpu.
7295  */
7296 struct task_struct *curr_task(int cpu)
7297 {
7298 	return cpu_curr(cpu);
7299 }
7300 
7301 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7302 
7303 #ifdef CONFIG_IA64
7304 /**
7305  * set_curr_task - set the current task for a given cpu.
7306  * @cpu: the processor in question.
7307  * @p: the task pointer to set.
7308  *
7309  * Description: This function must only be used when non-maskable interrupts
7310  * are serviced on a separate stack. It allows the architecture to switch the
7311  * notion of the current task on a cpu in a non-blocking manner. This function
7312  * must be called with all CPU's synchronized, and interrupts disabled, the
7313  * and caller must save the original value of the current task (see
7314  * curr_task() above) and restore that value before reenabling interrupts and
7315  * re-starting the system.
7316  *
7317  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7318  */
7319 void set_curr_task(int cpu, struct task_struct *p)
7320 {
7321 	cpu_curr(cpu) = p;
7322 }
7323 
7324 #endif
7325 
7326 #ifdef CONFIG_CGROUP_SCHED
7327 /* task_group_lock serializes the addition/removal of task groups */
7328 static DEFINE_SPINLOCK(task_group_lock);
7329 
7330 static void free_sched_group(struct task_group *tg)
7331 {
7332 	free_fair_sched_group(tg);
7333 	free_rt_sched_group(tg);
7334 	autogroup_free(tg);
7335 	kfree(tg);
7336 }
7337 
7338 /* allocate runqueue etc for a new task group */
7339 struct task_group *sched_create_group(struct task_group *parent)
7340 {
7341 	struct task_group *tg;
7342 
7343 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7344 	if (!tg)
7345 		return ERR_PTR(-ENOMEM);
7346 
7347 	if (!alloc_fair_sched_group(tg, parent))
7348 		goto err;
7349 
7350 	if (!alloc_rt_sched_group(tg, parent))
7351 		goto err;
7352 
7353 	return tg;
7354 
7355 err:
7356 	free_sched_group(tg);
7357 	return ERR_PTR(-ENOMEM);
7358 }
7359 
7360 void sched_online_group(struct task_group *tg, struct task_group *parent)
7361 {
7362 	unsigned long flags;
7363 
7364 	spin_lock_irqsave(&task_group_lock, flags);
7365 	list_add_rcu(&tg->list, &task_groups);
7366 
7367 	WARN_ON(!parent); /* root should already exist */
7368 
7369 	tg->parent = parent;
7370 	INIT_LIST_HEAD(&tg->children);
7371 	list_add_rcu(&tg->siblings, &parent->children);
7372 	spin_unlock_irqrestore(&task_group_lock, flags);
7373 }
7374 
7375 /* rcu callback to free various structures associated with a task group */
7376 static void free_sched_group_rcu(struct rcu_head *rhp)
7377 {
7378 	/* now it should be safe to free those cfs_rqs */
7379 	free_sched_group(container_of(rhp, struct task_group, rcu));
7380 }
7381 
7382 /* Destroy runqueue etc associated with a task group */
7383 void sched_destroy_group(struct task_group *tg)
7384 {
7385 	/* wait for possible concurrent references to cfs_rqs complete */
7386 	call_rcu(&tg->rcu, free_sched_group_rcu);
7387 }
7388 
7389 void sched_offline_group(struct task_group *tg)
7390 {
7391 	unsigned long flags;
7392 	int i;
7393 
7394 	/* end participation in shares distribution */
7395 	for_each_possible_cpu(i)
7396 		unregister_fair_sched_group(tg, i);
7397 
7398 	spin_lock_irqsave(&task_group_lock, flags);
7399 	list_del_rcu(&tg->list);
7400 	list_del_rcu(&tg->siblings);
7401 	spin_unlock_irqrestore(&task_group_lock, flags);
7402 }
7403 
7404 /* change task's runqueue when it moves between groups.
7405  *	The caller of this function should have put the task in its new group
7406  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7407  *	reflect its new group.
7408  */
7409 void sched_move_task(struct task_struct *tsk)
7410 {
7411 	struct task_group *tg;
7412 	int queued, running;
7413 	unsigned long flags;
7414 	struct rq *rq;
7415 
7416 	rq = task_rq_lock(tsk, &flags);
7417 
7418 	running = task_current(rq, tsk);
7419 	queued = task_on_rq_queued(tsk);
7420 
7421 	if (queued)
7422 		dequeue_task(rq, tsk, 0);
7423 	if (unlikely(running))
7424 		put_prev_task(rq, tsk);
7425 
7426 	/*
7427 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7428 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7429 	 * to prevent lockdep warnings.
7430 	 */
7431 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7432 			  struct task_group, css);
7433 	tg = autogroup_task_group(tsk, tg);
7434 	tsk->sched_task_group = tg;
7435 
7436 #ifdef CONFIG_FAIR_GROUP_SCHED
7437 	if (tsk->sched_class->task_move_group)
7438 		tsk->sched_class->task_move_group(tsk, queued);
7439 	else
7440 #endif
7441 		set_task_rq(tsk, task_cpu(tsk));
7442 
7443 	if (unlikely(running))
7444 		tsk->sched_class->set_curr_task(rq);
7445 	if (queued)
7446 		enqueue_task(rq, tsk, 0);
7447 
7448 	task_rq_unlock(rq, tsk, &flags);
7449 }
7450 #endif /* CONFIG_CGROUP_SCHED */
7451 
7452 #ifdef CONFIG_RT_GROUP_SCHED
7453 /*
7454  * Ensure that the real time constraints are schedulable.
7455  */
7456 static DEFINE_MUTEX(rt_constraints_mutex);
7457 
7458 /* Must be called with tasklist_lock held */
7459 static inline int tg_has_rt_tasks(struct task_group *tg)
7460 {
7461 	struct task_struct *g, *p;
7462 
7463 	for_each_process_thread(g, p) {
7464 		if (rt_task(p) && task_group(p) == tg)
7465 			return 1;
7466 	}
7467 
7468 	return 0;
7469 }
7470 
7471 struct rt_schedulable_data {
7472 	struct task_group *tg;
7473 	u64 rt_period;
7474 	u64 rt_runtime;
7475 };
7476 
7477 static int tg_rt_schedulable(struct task_group *tg, void *data)
7478 {
7479 	struct rt_schedulable_data *d = data;
7480 	struct task_group *child;
7481 	unsigned long total, sum = 0;
7482 	u64 period, runtime;
7483 
7484 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7485 	runtime = tg->rt_bandwidth.rt_runtime;
7486 
7487 	if (tg == d->tg) {
7488 		period = d->rt_period;
7489 		runtime = d->rt_runtime;
7490 	}
7491 
7492 	/*
7493 	 * Cannot have more runtime than the period.
7494 	 */
7495 	if (runtime > period && runtime != RUNTIME_INF)
7496 		return -EINVAL;
7497 
7498 	/*
7499 	 * Ensure we don't starve existing RT tasks.
7500 	 */
7501 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7502 		return -EBUSY;
7503 
7504 	total = to_ratio(period, runtime);
7505 
7506 	/*
7507 	 * Nobody can have more than the global setting allows.
7508 	 */
7509 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7510 		return -EINVAL;
7511 
7512 	/*
7513 	 * The sum of our children's runtime should not exceed our own.
7514 	 */
7515 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7516 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7517 		runtime = child->rt_bandwidth.rt_runtime;
7518 
7519 		if (child == d->tg) {
7520 			period = d->rt_period;
7521 			runtime = d->rt_runtime;
7522 		}
7523 
7524 		sum += to_ratio(period, runtime);
7525 	}
7526 
7527 	if (sum > total)
7528 		return -EINVAL;
7529 
7530 	return 0;
7531 }
7532 
7533 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7534 {
7535 	int ret;
7536 
7537 	struct rt_schedulable_data data = {
7538 		.tg = tg,
7539 		.rt_period = period,
7540 		.rt_runtime = runtime,
7541 	};
7542 
7543 	rcu_read_lock();
7544 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7545 	rcu_read_unlock();
7546 
7547 	return ret;
7548 }
7549 
7550 static int tg_set_rt_bandwidth(struct task_group *tg,
7551 		u64 rt_period, u64 rt_runtime)
7552 {
7553 	int i, err = 0;
7554 
7555 	mutex_lock(&rt_constraints_mutex);
7556 	read_lock(&tasklist_lock);
7557 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7558 	if (err)
7559 		goto unlock;
7560 
7561 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7562 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7563 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7564 
7565 	for_each_possible_cpu(i) {
7566 		struct rt_rq *rt_rq = tg->rt_rq[i];
7567 
7568 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7569 		rt_rq->rt_runtime = rt_runtime;
7570 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7571 	}
7572 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7573 unlock:
7574 	read_unlock(&tasklist_lock);
7575 	mutex_unlock(&rt_constraints_mutex);
7576 
7577 	return err;
7578 }
7579 
7580 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7581 {
7582 	u64 rt_runtime, rt_period;
7583 
7584 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7585 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7586 	if (rt_runtime_us < 0)
7587 		rt_runtime = RUNTIME_INF;
7588 
7589 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7590 }
7591 
7592 static long sched_group_rt_runtime(struct task_group *tg)
7593 {
7594 	u64 rt_runtime_us;
7595 
7596 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7597 		return -1;
7598 
7599 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7600 	do_div(rt_runtime_us, NSEC_PER_USEC);
7601 	return rt_runtime_us;
7602 }
7603 
7604 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7605 {
7606 	u64 rt_runtime, rt_period;
7607 
7608 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7609 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7610 
7611 	if (rt_period == 0)
7612 		return -EINVAL;
7613 
7614 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7615 }
7616 
7617 static long sched_group_rt_period(struct task_group *tg)
7618 {
7619 	u64 rt_period_us;
7620 
7621 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7622 	do_div(rt_period_us, NSEC_PER_USEC);
7623 	return rt_period_us;
7624 }
7625 #endif /* CONFIG_RT_GROUP_SCHED */
7626 
7627 #ifdef CONFIG_RT_GROUP_SCHED
7628 static int sched_rt_global_constraints(void)
7629 {
7630 	int ret = 0;
7631 
7632 	mutex_lock(&rt_constraints_mutex);
7633 	read_lock(&tasklist_lock);
7634 	ret = __rt_schedulable(NULL, 0, 0);
7635 	read_unlock(&tasklist_lock);
7636 	mutex_unlock(&rt_constraints_mutex);
7637 
7638 	return ret;
7639 }
7640 
7641 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7642 {
7643 	/* Don't accept realtime tasks when there is no way for them to run */
7644 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7645 		return 0;
7646 
7647 	return 1;
7648 }
7649 
7650 #else /* !CONFIG_RT_GROUP_SCHED */
7651 static int sched_rt_global_constraints(void)
7652 {
7653 	unsigned long flags;
7654 	int i, ret = 0;
7655 
7656 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7657 	for_each_possible_cpu(i) {
7658 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7659 
7660 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7661 		rt_rq->rt_runtime = global_rt_runtime();
7662 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7663 	}
7664 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7665 
7666 	return ret;
7667 }
7668 #endif /* CONFIG_RT_GROUP_SCHED */
7669 
7670 static int sched_dl_global_constraints(void)
7671 {
7672 	u64 runtime = global_rt_runtime();
7673 	u64 period = global_rt_period();
7674 	u64 new_bw = to_ratio(period, runtime);
7675 	struct dl_bw *dl_b;
7676 	int cpu, ret = 0;
7677 	unsigned long flags;
7678 
7679 	/*
7680 	 * Here we want to check the bandwidth not being set to some
7681 	 * value smaller than the currently allocated bandwidth in
7682 	 * any of the root_domains.
7683 	 *
7684 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7685 	 * cycling on root_domains... Discussion on different/better
7686 	 * solutions is welcome!
7687 	 */
7688 	for_each_possible_cpu(cpu) {
7689 		rcu_read_lock_sched();
7690 		dl_b = dl_bw_of(cpu);
7691 
7692 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7693 		if (new_bw < dl_b->total_bw)
7694 			ret = -EBUSY;
7695 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7696 
7697 		rcu_read_unlock_sched();
7698 
7699 		if (ret)
7700 			break;
7701 	}
7702 
7703 	return ret;
7704 }
7705 
7706 static void sched_dl_do_global(void)
7707 {
7708 	u64 new_bw = -1;
7709 	struct dl_bw *dl_b;
7710 	int cpu;
7711 	unsigned long flags;
7712 
7713 	def_dl_bandwidth.dl_period = global_rt_period();
7714 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7715 
7716 	if (global_rt_runtime() != RUNTIME_INF)
7717 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7718 
7719 	/*
7720 	 * FIXME: As above...
7721 	 */
7722 	for_each_possible_cpu(cpu) {
7723 		rcu_read_lock_sched();
7724 		dl_b = dl_bw_of(cpu);
7725 
7726 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7727 		dl_b->bw = new_bw;
7728 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7729 
7730 		rcu_read_unlock_sched();
7731 	}
7732 }
7733 
7734 static int sched_rt_global_validate(void)
7735 {
7736 	if (sysctl_sched_rt_period <= 0)
7737 		return -EINVAL;
7738 
7739 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7740 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7741 		return -EINVAL;
7742 
7743 	return 0;
7744 }
7745 
7746 static void sched_rt_do_global(void)
7747 {
7748 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7749 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7750 }
7751 
7752 int sched_rt_handler(struct ctl_table *table, int write,
7753 		void __user *buffer, size_t *lenp,
7754 		loff_t *ppos)
7755 {
7756 	int old_period, old_runtime;
7757 	static DEFINE_MUTEX(mutex);
7758 	int ret;
7759 
7760 	mutex_lock(&mutex);
7761 	old_period = sysctl_sched_rt_period;
7762 	old_runtime = sysctl_sched_rt_runtime;
7763 
7764 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7765 
7766 	if (!ret && write) {
7767 		ret = sched_rt_global_validate();
7768 		if (ret)
7769 			goto undo;
7770 
7771 		ret = sched_rt_global_constraints();
7772 		if (ret)
7773 			goto undo;
7774 
7775 		ret = sched_dl_global_constraints();
7776 		if (ret)
7777 			goto undo;
7778 
7779 		sched_rt_do_global();
7780 		sched_dl_do_global();
7781 	}
7782 	if (0) {
7783 undo:
7784 		sysctl_sched_rt_period = old_period;
7785 		sysctl_sched_rt_runtime = old_runtime;
7786 	}
7787 	mutex_unlock(&mutex);
7788 
7789 	return ret;
7790 }
7791 
7792 int sched_rr_handler(struct ctl_table *table, int write,
7793 		void __user *buffer, size_t *lenp,
7794 		loff_t *ppos)
7795 {
7796 	int ret;
7797 	static DEFINE_MUTEX(mutex);
7798 
7799 	mutex_lock(&mutex);
7800 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7801 	/* make sure that internally we keep jiffies */
7802 	/* also, writing zero resets timeslice to default */
7803 	if (!ret && write) {
7804 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7805 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7806 	}
7807 	mutex_unlock(&mutex);
7808 	return ret;
7809 }
7810 
7811 #ifdef CONFIG_CGROUP_SCHED
7812 
7813 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7814 {
7815 	return css ? container_of(css, struct task_group, css) : NULL;
7816 }
7817 
7818 static struct cgroup_subsys_state *
7819 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7820 {
7821 	struct task_group *parent = css_tg(parent_css);
7822 	struct task_group *tg;
7823 
7824 	if (!parent) {
7825 		/* This is early initialization for the top cgroup */
7826 		return &root_task_group.css;
7827 	}
7828 
7829 	tg = sched_create_group(parent);
7830 	if (IS_ERR(tg))
7831 		return ERR_PTR(-ENOMEM);
7832 
7833 	return &tg->css;
7834 }
7835 
7836 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7837 {
7838 	struct task_group *tg = css_tg(css);
7839 	struct task_group *parent = css_tg(css->parent);
7840 
7841 	if (parent)
7842 		sched_online_group(tg, parent);
7843 	return 0;
7844 }
7845 
7846 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7847 {
7848 	struct task_group *tg = css_tg(css);
7849 
7850 	sched_destroy_group(tg);
7851 }
7852 
7853 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7854 {
7855 	struct task_group *tg = css_tg(css);
7856 
7857 	sched_offline_group(tg);
7858 }
7859 
7860 static void cpu_cgroup_fork(struct task_struct *task)
7861 {
7862 	sched_move_task(task);
7863 }
7864 
7865 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7866 				 struct cgroup_taskset *tset)
7867 {
7868 	struct task_struct *task;
7869 
7870 	cgroup_taskset_for_each(task, tset) {
7871 #ifdef CONFIG_RT_GROUP_SCHED
7872 		if (!sched_rt_can_attach(css_tg(css), task))
7873 			return -EINVAL;
7874 #else
7875 		/* We don't support RT-tasks being in separate groups */
7876 		if (task->sched_class != &fair_sched_class)
7877 			return -EINVAL;
7878 #endif
7879 	}
7880 	return 0;
7881 }
7882 
7883 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7884 			      struct cgroup_taskset *tset)
7885 {
7886 	struct task_struct *task;
7887 
7888 	cgroup_taskset_for_each(task, tset)
7889 		sched_move_task(task);
7890 }
7891 
7892 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7893 			    struct cgroup_subsys_state *old_css,
7894 			    struct task_struct *task)
7895 {
7896 	/*
7897 	 * cgroup_exit() is called in the copy_process() failure path.
7898 	 * Ignore this case since the task hasn't ran yet, this avoids
7899 	 * trying to poke a half freed task state from generic code.
7900 	 */
7901 	if (!(task->flags & PF_EXITING))
7902 		return;
7903 
7904 	sched_move_task(task);
7905 }
7906 
7907 #ifdef CONFIG_FAIR_GROUP_SCHED
7908 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7909 				struct cftype *cftype, u64 shareval)
7910 {
7911 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7912 }
7913 
7914 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7915 			       struct cftype *cft)
7916 {
7917 	struct task_group *tg = css_tg(css);
7918 
7919 	return (u64) scale_load_down(tg->shares);
7920 }
7921 
7922 #ifdef CONFIG_CFS_BANDWIDTH
7923 static DEFINE_MUTEX(cfs_constraints_mutex);
7924 
7925 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7926 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7927 
7928 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7929 
7930 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7931 {
7932 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7933 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7934 
7935 	if (tg == &root_task_group)
7936 		return -EINVAL;
7937 
7938 	/*
7939 	 * Ensure we have at some amount of bandwidth every period.  This is
7940 	 * to prevent reaching a state of large arrears when throttled via
7941 	 * entity_tick() resulting in prolonged exit starvation.
7942 	 */
7943 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7944 		return -EINVAL;
7945 
7946 	/*
7947 	 * Likewise, bound things on the otherside by preventing insane quota
7948 	 * periods.  This also allows us to normalize in computing quota
7949 	 * feasibility.
7950 	 */
7951 	if (period > max_cfs_quota_period)
7952 		return -EINVAL;
7953 
7954 	/*
7955 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7956 	 * unthrottle_offline_cfs_rqs().
7957 	 */
7958 	get_online_cpus();
7959 	mutex_lock(&cfs_constraints_mutex);
7960 	ret = __cfs_schedulable(tg, period, quota);
7961 	if (ret)
7962 		goto out_unlock;
7963 
7964 	runtime_enabled = quota != RUNTIME_INF;
7965 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7966 	/*
7967 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7968 	 * before making related changes, and on->off must occur afterwards
7969 	 */
7970 	if (runtime_enabled && !runtime_was_enabled)
7971 		cfs_bandwidth_usage_inc();
7972 	raw_spin_lock_irq(&cfs_b->lock);
7973 	cfs_b->period = ns_to_ktime(period);
7974 	cfs_b->quota = quota;
7975 
7976 	__refill_cfs_bandwidth_runtime(cfs_b);
7977 	/* restart the period timer (if active) to handle new period expiry */
7978 	if (runtime_enabled && cfs_b->timer_active) {
7979 		/* force a reprogram */
7980 		__start_cfs_bandwidth(cfs_b, true);
7981 	}
7982 	raw_spin_unlock_irq(&cfs_b->lock);
7983 
7984 	for_each_online_cpu(i) {
7985 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7986 		struct rq *rq = cfs_rq->rq;
7987 
7988 		raw_spin_lock_irq(&rq->lock);
7989 		cfs_rq->runtime_enabled = runtime_enabled;
7990 		cfs_rq->runtime_remaining = 0;
7991 
7992 		if (cfs_rq->throttled)
7993 			unthrottle_cfs_rq(cfs_rq);
7994 		raw_spin_unlock_irq(&rq->lock);
7995 	}
7996 	if (runtime_was_enabled && !runtime_enabled)
7997 		cfs_bandwidth_usage_dec();
7998 out_unlock:
7999 	mutex_unlock(&cfs_constraints_mutex);
8000 	put_online_cpus();
8001 
8002 	return ret;
8003 }
8004 
8005 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8006 {
8007 	u64 quota, period;
8008 
8009 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8010 	if (cfs_quota_us < 0)
8011 		quota = RUNTIME_INF;
8012 	else
8013 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8014 
8015 	return tg_set_cfs_bandwidth(tg, period, quota);
8016 }
8017 
8018 long tg_get_cfs_quota(struct task_group *tg)
8019 {
8020 	u64 quota_us;
8021 
8022 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8023 		return -1;
8024 
8025 	quota_us = tg->cfs_bandwidth.quota;
8026 	do_div(quota_us, NSEC_PER_USEC);
8027 
8028 	return quota_us;
8029 }
8030 
8031 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8032 {
8033 	u64 quota, period;
8034 
8035 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8036 	quota = tg->cfs_bandwidth.quota;
8037 
8038 	return tg_set_cfs_bandwidth(tg, period, quota);
8039 }
8040 
8041 long tg_get_cfs_period(struct task_group *tg)
8042 {
8043 	u64 cfs_period_us;
8044 
8045 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8046 	do_div(cfs_period_us, NSEC_PER_USEC);
8047 
8048 	return cfs_period_us;
8049 }
8050 
8051 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8052 				  struct cftype *cft)
8053 {
8054 	return tg_get_cfs_quota(css_tg(css));
8055 }
8056 
8057 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8058 				   struct cftype *cftype, s64 cfs_quota_us)
8059 {
8060 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8061 }
8062 
8063 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8064 				   struct cftype *cft)
8065 {
8066 	return tg_get_cfs_period(css_tg(css));
8067 }
8068 
8069 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8070 				    struct cftype *cftype, u64 cfs_period_us)
8071 {
8072 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8073 }
8074 
8075 struct cfs_schedulable_data {
8076 	struct task_group *tg;
8077 	u64 period, quota;
8078 };
8079 
8080 /*
8081  * normalize group quota/period to be quota/max_period
8082  * note: units are usecs
8083  */
8084 static u64 normalize_cfs_quota(struct task_group *tg,
8085 			       struct cfs_schedulable_data *d)
8086 {
8087 	u64 quota, period;
8088 
8089 	if (tg == d->tg) {
8090 		period = d->period;
8091 		quota = d->quota;
8092 	} else {
8093 		period = tg_get_cfs_period(tg);
8094 		quota = tg_get_cfs_quota(tg);
8095 	}
8096 
8097 	/* note: these should typically be equivalent */
8098 	if (quota == RUNTIME_INF || quota == -1)
8099 		return RUNTIME_INF;
8100 
8101 	return to_ratio(period, quota);
8102 }
8103 
8104 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8105 {
8106 	struct cfs_schedulable_data *d = data;
8107 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8108 	s64 quota = 0, parent_quota = -1;
8109 
8110 	if (!tg->parent) {
8111 		quota = RUNTIME_INF;
8112 	} else {
8113 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8114 
8115 		quota = normalize_cfs_quota(tg, d);
8116 		parent_quota = parent_b->hierarchical_quota;
8117 
8118 		/*
8119 		 * ensure max(child_quota) <= parent_quota, inherit when no
8120 		 * limit is set
8121 		 */
8122 		if (quota == RUNTIME_INF)
8123 			quota = parent_quota;
8124 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8125 			return -EINVAL;
8126 	}
8127 	cfs_b->hierarchical_quota = quota;
8128 
8129 	return 0;
8130 }
8131 
8132 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8133 {
8134 	int ret;
8135 	struct cfs_schedulable_data data = {
8136 		.tg = tg,
8137 		.period = period,
8138 		.quota = quota,
8139 	};
8140 
8141 	if (quota != RUNTIME_INF) {
8142 		do_div(data.period, NSEC_PER_USEC);
8143 		do_div(data.quota, NSEC_PER_USEC);
8144 	}
8145 
8146 	rcu_read_lock();
8147 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8148 	rcu_read_unlock();
8149 
8150 	return ret;
8151 }
8152 
8153 static int cpu_stats_show(struct seq_file *sf, void *v)
8154 {
8155 	struct task_group *tg = css_tg(seq_css(sf));
8156 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157 
8158 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8159 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8160 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8161 
8162 	return 0;
8163 }
8164 #endif /* CONFIG_CFS_BANDWIDTH */
8165 #endif /* CONFIG_FAIR_GROUP_SCHED */
8166 
8167 #ifdef CONFIG_RT_GROUP_SCHED
8168 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8169 				struct cftype *cft, s64 val)
8170 {
8171 	return sched_group_set_rt_runtime(css_tg(css), val);
8172 }
8173 
8174 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8175 			       struct cftype *cft)
8176 {
8177 	return sched_group_rt_runtime(css_tg(css));
8178 }
8179 
8180 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8181 				    struct cftype *cftype, u64 rt_period_us)
8182 {
8183 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8184 }
8185 
8186 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8187 				   struct cftype *cft)
8188 {
8189 	return sched_group_rt_period(css_tg(css));
8190 }
8191 #endif /* CONFIG_RT_GROUP_SCHED */
8192 
8193 static struct cftype cpu_files[] = {
8194 #ifdef CONFIG_FAIR_GROUP_SCHED
8195 	{
8196 		.name = "shares",
8197 		.read_u64 = cpu_shares_read_u64,
8198 		.write_u64 = cpu_shares_write_u64,
8199 	},
8200 #endif
8201 #ifdef CONFIG_CFS_BANDWIDTH
8202 	{
8203 		.name = "cfs_quota_us",
8204 		.read_s64 = cpu_cfs_quota_read_s64,
8205 		.write_s64 = cpu_cfs_quota_write_s64,
8206 	},
8207 	{
8208 		.name = "cfs_period_us",
8209 		.read_u64 = cpu_cfs_period_read_u64,
8210 		.write_u64 = cpu_cfs_period_write_u64,
8211 	},
8212 	{
8213 		.name = "stat",
8214 		.seq_show = cpu_stats_show,
8215 	},
8216 #endif
8217 #ifdef CONFIG_RT_GROUP_SCHED
8218 	{
8219 		.name = "rt_runtime_us",
8220 		.read_s64 = cpu_rt_runtime_read,
8221 		.write_s64 = cpu_rt_runtime_write,
8222 	},
8223 	{
8224 		.name = "rt_period_us",
8225 		.read_u64 = cpu_rt_period_read_uint,
8226 		.write_u64 = cpu_rt_period_write_uint,
8227 	},
8228 #endif
8229 	{ }	/* terminate */
8230 };
8231 
8232 struct cgroup_subsys cpu_cgrp_subsys = {
8233 	.css_alloc	= cpu_cgroup_css_alloc,
8234 	.css_free	= cpu_cgroup_css_free,
8235 	.css_online	= cpu_cgroup_css_online,
8236 	.css_offline	= cpu_cgroup_css_offline,
8237 	.fork		= cpu_cgroup_fork,
8238 	.can_attach	= cpu_cgroup_can_attach,
8239 	.attach		= cpu_cgroup_attach,
8240 	.exit		= cpu_cgroup_exit,
8241 	.legacy_cftypes	= cpu_files,
8242 	.early_init	= 1,
8243 };
8244 
8245 #endif	/* CONFIG_CGROUP_SCHED */
8246 
8247 void dump_cpu_task(int cpu)
8248 {
8249 	pr_info("Task dump for CPU %d:\n", cpu);
8250 	sched_show_task(cpu_curr(cpu));
8251 }
8252