1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 if (rq->skip_clock_update > 0) 123 return; 124 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 126 if (delta < 0) 127 return; 128 rq->clock += delta; 129 update_rq_clock_task(rq, delta); 130 } 131 132 /* 133 * Debugging: various feature bits 134 */ 135 136 #define SCHED_FEAT(name, enabled) \ 137 (1UL << __SCHED_FEAT_##name) * enabled | 138 139 const_debug unsigned int sysctl_sched_features = 140 #include "features.h" 141 0; 142 143 #undef SCHED_FEAT 144 145 #ifdef CONFIG_SCHED_DEBUG 146 #define SCHED_FEAT(name, enabled) \ 147 #name , 148 149 static const char * const sched_feat_names[] = { 150 #include "features.h" 151 }; 152 153 #undef SCHED_FEAT 154 155 static int sched_feat_show(struct seq_file *m, void *v) 156 { 157 int i; 158 159 for (i = 0; i < __SCHED_FEAT_NR; i++) { 160 if (!(sysctl_sched_features & (1UL << i))) 161 seq_puts(m, "NO_"); 162 seq_printf(m, "%s ", sched_feat_names[i]); 163 } 164 seq_puts(m, "\n"); 165 166 return 0; 167 } 168 169 #ifdef HAVE_JUMP_LABEL 170 171 #define jump_label_key__true STATIC_KEY_INIT_TRUE 172 #define jump_label_key__false STATIC_KEY_INIT_FALSE 173 174 #define SCHED_FEAT(name, enabled) \ 175 jump_label_key__##enabled , 176 177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 178 #include "features.h" 179 }; 180 181 #undef SCHED_FEAT 182 183 static void sched_feat_disable(int i) 184 { 185 if (static_key_enabled(&sched_feat_keys[i])) 186 static_key_slow_dec(&sched_feat_keys[i]); 187 } 188 189 static void sched_feat_enable(int i) 190 { 191 if (!static_key_enabled(&sched_feat_keys[i])) 192 static_key_slow_inc(&sched_feat_keys[i]); 193 } 194 #else 195 static void sched_feat_disable(int i) { }; 196 static void sched_feat_enable(int i) { }; 197 #endif /* HAVE_JUMP_LABEL */ 198 199 static int sched_feat_set(char *cmp) 200 { 201 int i; 202 int neg = 0; 203 204 if (strncmp(cmp, "NO_", 3) == 0) { 205 neg = 1; 206 cmp += 3; 207 } 208 209 for (i = 0; i < __SCHED_FEAT_NR; i++) { 210 if (strcmp(cmp, sched_feat_names[i]) == 0) { 211 if (neg) { 212 sysctl_sched_features &= ~(1UL << i); 213 sched_feat_disable(i); 214 } else { 215 sysctl_sched_features |= (1UL << i); 216 sched_feat_enable(i); 217 } 218 break; 219 } 220 } 221 222 return i; 223 } 224 225 static ssize_t 226 sched_feat_write(struct file *filp, const char __user *ubuf, 227 size_t cnt, loff_t *ppos) 228 { 229 char buf[64]; 230 char *cmp; 231 int i; 232 struct inode *inode; 233 234 if (cnt > 63) 235 cnt = 63; 236 237 if (copy_from_user(&buf, ubuf, cnt)) 238 return -EFAULT; 239 240 buf[cnt] = 0; 241 cmp = strstrip(buf); 242 243 /* Ensure the static_key remains in a consistent state */ 244 inode = file_inode(filp); 245 mutex_lock(&inode->i_mutex); 246 i = sched_feat_set(cmp); 247 mutex_unlock(&inode->i_mutex); 248 if (i == __SCHED_FEAT_NR) 249 return -EINVAL; 250 251 *ppos += cnt; 252 253 return cnt; 254 } 255 256 static int sched_feat_open(struct inode *inode, struct file *filp) 257 { 258 return single_open(filp, sched_feat_show, NULL); 259 } 260 261 static const struct file_operations sched_feat_fops = { 262 .open = sched_feat_open, 263 .write = sched_feat_write, 264 .read = seq_read, 265 .llseek = seq_lseek, 266 .release = single_release, 267 }; 268 269 static __init int sched_init_debug(void) 270 { 271 debugfs_create_file("sched_features", 0644, NULL, NULL, 272 &sched_feat_fops); 273 274 return 0; 275 } 276 late_initcall(sched_init_debug); 277 #endif /* CONFIG_SCHED_DEBUG */ 278 279 /* 280 * Number of tasks to iterate in a single balance run. 281 * Limited because this is done with IRQs disabled. 282 */ 283 const_debug unsigned int sysctl_sched_nr_migrate = 32; 284 285 /* 286 * period over which we average the RT time consumption, measured 287 * in ms. 288 * 289 * default: 1s 290 */ 291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 292 293 /* 294 * period over which we measure -rt task cpu usage in us. 295 * default: 1s 296 */ 297 unsigned int sysctl_sched_rt_period = 1000000; 298 299 __read_mostly int scheduler_running; 300 301 /* 302 * part of the period that we allow rt tasks to run in us. 303 * default: 0.95s 304 */ 305 int sysctl_sched_rt_runtime = 950000; 306 307 /* 308 * __task_rq_lock - lock the rq @p resides on. 309 */ 310 static inline struct rq *__task_rq_lock(struct task_struct *p) 311 __acquires(rq->lock) 312 { 313 struct rq *rq; 314 315 lockdep_assert_held(&p->pi_lock); 316 317 for (;;) { 318 rq = task_rq(p); 319 raw_spin_lock(&rq->lock); 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 321 return rq; 322 raw_spin_unlock(&rq->lock); 323 324 while (unlikely(task_on_rq_migrating(p))) 325 cpu_relax(); 326 } 327 } 328 329 /* 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 331 */ 332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 333 __acquires(p->pi_lock) 334 __acquires(rq->lock) 335 { 336 struct rq *rq; 337 338 for (;;) { 339 raw_spin_lock_irqsave(&p->pi_lock, *flags); 340 rq = task_rq(p); 341 raw_spin_lock(&rq->lock); 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 343 return rq; 344 raw_spin_unlock(&rq->lock); 345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 346 347 while (unlikely(task_on_rq_migrating(p))) 348 cpu_relax(); 349 } 350 } 351 352 static void __task_rq_unlock(struct rq *rq) 353 __releases(rq->lock) 354 { 355 raw_spin_unlock(&rq->lock); 356 } 357 358 static inline void 359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 360 __releases(rq->lock) 361 __releases(p->pi_lock) 362 { 363 raw_spin_unlock(&rq->lock); 364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 365 } 366 367 /* 368 * this_rq_lock - lock this runqueue and disable interrupts. 369 */ 370 static struct rq *this_rq_lock(void) 371 __acquires(rq->lock) 372 { 373 struct rq *rq; 374 375 local_irq_disable(); 376 rq = this_rq(); 377 raw_spin_lock(&rq->lock); 378 379 return rq; 380 } 381 382 #ifdef CONFIG_SCHED_HRTICK 383 /* 384 * Use HR-timers to deliver accurate preemption points. 385 */ 386 387 static void hrtick_clear(struct rq *rq) 388 { 389 if (hrtimer_active(&rq->hrtick_timer)) 390 hrtimer_cancel(&rq->hrtick_timer); 391 } 392 393 /* 394 * High-resolution timer tick. 395 * Runs from hardirq context with interrupts disabled. 396 */ 397 static enum hrtimer_restart hrtick(struct hrtimer *timer) 398 { 399 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 400 401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 402 403 raw_spin_lock(&rq->lock); 404 update_rq_clock(rq); 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 406 raw_spin_unlock(&rq->lock); 407 408 return HRTIMER_NORESTART; 409 } 410 411 #ifdef CONFIG_SMP 412 413 static int __hrtick_restart(struct rq *rq) 414 { 415 struct hrtimer *timer = &rq->hrtick_timer; 416 ktime_t time = hrtimer_get_softexpires(timer); 417 418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 419 } 420 421 /* 422 * called from hardirq (IPI) context 423 */ 424 static void __hrtick_start(void *arg) 425 { 426 struct rq *rq = arg; 427 428 raw_spin_lock(&rq->lock); 429 __hrtick_restart(rq); 430 rq->hrtick_csd_pending = 0; 431 raw_spin_unlock(&rq->lock); 432 } 433 434 /* 435 * Called to set the hrtick timer state. 436 * 437 * called with rq->lock held and irqs disabled 438 */ 439 void hrtick_start(struct rq *rq, u64 delay) 440 { 441 struct hrtimer *timer = &rq->hrtick_timer; 442 ktime_t time; 443 s64 delta; 444 445 /* 446 * Don't schedule slices shorter than 10000ns, that just 447 * doesn't make sense and can cause timer DoS. 448 */ 449 delta = max_t(s64, delay, 10000LL); 450 time = ktime_add_ns(timer->base->get_time(), delta); 451 452 hrtimer_set_expires(timer, time); 453 454 if (rq == this_rq()) { 455 __hrtick_restart(rq); 456 } else if (!rq->hrtick_csd_pending) { 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 458 rq->hrtick_csd_pending = 1; 459 } 460 } 461 462 static int 463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 464 { 465 int cpu = (int)(long)hcpu; 466 467 switch (action) { 468 case CPU_UP_CANCELED: 469 case CPU_UP_CANCELED_FROZEN: 470 case CPU_DOWN_PREPARE: 471 case CPU_DOWN_PREPARE_FROZEN: 472 case CPU_DEAD: 473 case CPU_DEAD_FROZEN: 474 hrtick_clear(cpu_rq(cpu)); 475 return NOTIFY_OK; 476 } 477 478 return NOTIFY_DONE; 479 } 480 481 static __init void init_hrtick(void) 482 { 483 hotcpu_notifier(hotplug_hrtick, 0); 484 } 485 #else 486 /* 487 * Called to set the hrtick timer state. 488 * 489 * called with rq->lock held and irqs disabled 490 */ 491 void hrtick_start(struct rq *rq, u64 delay) 492 { 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 494 HRTIMER_MODE_REL_PINNED, 0); 495 } 496 497 static inline void init_hrtick(void) 498 { 499 } 500 #endif /* CONFIG_SMP */ 501 502 static void init_rq_hrtick(struct rq *rq) 503 { 504 #ifdef CONFIG_SMP 505 rq->hrtick_csd_pending = 0; 506 507 rq->hrtick_csd.flags = 0; 508 rq->hrtick_csd.func = __hrtick_start; 509 rq->hrtick_csd.info = rq; 510 #endif 511 512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 513 rq->hrtick_timer.function = hrtick; 514 } 515 #else /* CONFIG_SCHED_HRTICK */ 516 static inline void hrtick_clear(struct rq *rq) 517 { 518 } 519 520 static inline void init_rq_hrtick(struct rq *rq) 521 { 522 } 523 524 static inline void init_hrtick(void) 525 { 526 } 527 #endif /* CONFIG_SCHED_HRTICK */ 528 529 /* 530 * cmpxchg based fetch_or, macro so it works for different integer types 531 */ 532 #define fetch_or(ptr, val) \ 533 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 534 for (;;) { \ 535 __old = cmpxchg((ptr), __val, __val | (val)); \ 536 if (__old == __val) \ 537 break; \ 538 __val = __old; \ 539 } \ 540 __old; \ 541 }) 542 543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 544 /* 545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 546 * this avoids any races wrt polling state changes and thereby avoids 547 * spurious IPIs. 548 */ 549 static bool set_nr_and_not_polling(struct task_struct *p) 550 { 551 struct thread_info *ti = task_thread_info(p); 552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 553 } 554 555 /* 556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 557 * 558 * If this returns true, then the idle task promises to call 559 * sched_ttwu_pending() and reschedule soon. 560 */ 561 static bool set_nr_if_polling(struct task_struct *p) 562 { 563 struct thread_info *ti = task_thread_info(p); 564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 565 566 for (;;) { 567 if (!(val & _TIF_POLLING_NRFLAG)) 568 return false; 569 if (val & _TIF_NEED_RESCHED) 570 return true; 571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 572 if (old == val) 573 break; 574 val = old; 575 } 576 return true; 577 } 578 579 #else 580 static bool set_nr_and_not_polling(struct task_struct *p) 581 { 582 set_tsk_need_resched(p); 583 return true; 584 } 585 586 #ifdef CONFIG_SMP 587 static bool set_nr_if_polling(struct task_struct *p) 588 { 589 return false; 590 } 591 #endif 592 #endif 593 594 /* 595 * resched_curr - mark rq's current task 'to be rescheduled now'. 596 * 597 * On UP this means the setting of the need_resched flag, on SMP it 598 * might also involve a cross-CPU call to trigger the scheduler on 599 * the target CPU. 600 */ 601 void resched_curr(struct rq *rq) 602 { 603 struct task_struct *curr = rq->curr; 604 int cpu; 605 606 lockdep_assert_held(&rq->lock); 607 608 if (test_tsk_need_resched(curr)) 609 return; 610 611 cpu = cpu_of(rq); 612 613 if (cpu == smp_processor_id()) { 614 set_tsk_need_resched(curr); 615 set_preempt_need_resched(); 616 return; 617 } 618 619 if (set_nr_and_not_polling(curr)) 620 smp_send_reschedule(cpu); 621 else 622 trace_sched_wake_idle_without_ipi(cpu); 623 } 624 625 void resched_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 unsigned long flags; 629 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 631 return; 632 resched_curr(rq); 633 raw_spin_unlock_irqrestore(&rq->lock, flags); 634 } 635 636 #ifdef CONFIG_SMP 637 #ifdef CONFIG_NO_HZ_COMMON 638 /* 639 * In the semi idle case, use the nearest busy cpu for migrating timers 640 * from an idle cpu. This is good for power-savings. 641 * 642 * We don't do similar optimization for completely idle system, as 643 * selecting an idle cpu will add more delays to the timers than intended 644 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 645 */ 646 int get_nohz_timer_target(int pinned) 647 { 648 int cpu = smp_processor_id(); 649 int i; 650 struct sched_domain *sd; 651 652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 653 return cpu; 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu(i, sched_domain_span(sd)) { 658 if (!idle_cpu(i)) { 659 cpu = i; 660 goto unlock; 661 } 662 } 663 } 664 unlock: 665 rcu_read_unlock(); 666 return cpu; 667 } 668 /* 669 * When add_timer_on() enqueues a timer into the timer wheel of an 670 * idle CPU then this timer might expire before the next timer event 671 * which is scheduled to wake up that CPU. In case of a completely 672 * idle system the next event might even be infinite time into the 673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 674 * leaves the inner idle loop so the newly added timer is taken into 675 * account when the CPU goes back to idle and evaluates the timer 676 * wheel for the next timer event. 677 */ 678 static void wake_up_idle_cpu(int cpu) 679 { 680 struct rq *rq = cpu_rq(cpu); 681 682 if (cpu == smp_processor_id()) 683 return; 684 685 if (set_nr_and_not_polling(rq->idle)) 686 smp_send_reschedule(cpu); 687 else 688 trace_sched_wake_idle_without_ipi(cpu); 689 } 690 691 static bool wake_up_full_nohz_cpu(int cpu) 692 { 693 /* 694 * We just need the target to call irq_exit() and re-evaluate 695 * the next tick. The nohz full kick at least implies that. 696 * If needed we can still optimize that later with an 697 * empty IRQ. 698 */ 699 if (tick_nohz_full_cpu(cpu)) { 700 if (cpu != smp_processor_id() || 701 tick_nohz_tick_stopped()) 702 tick_nohz_full_kick_cpu(cpu); 703 return true; 704 } 705 706 return false; 707 } 708 709 void wake_up_nohz_cpu(int cpu) 710 { 711 if (!wake_up_full_nohz_cpu(cpu)) 712 wake_up_idle_cpu(cpu); 713 } 714 715 static inline bool got_nohz_idle_kick(void) 716 { 717 int cpu = smp_processor_id(); 718 719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 720 return false; 721 722 if (idle_cpu(cpu) && !need_resched()) 723 return true; 724 725 /* 726 * We can't run Idle Load Balance on this CPU for this time so we 727 * cancel it and clear NOHZ_BALANCE_KICK 728 */ 729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 730 return false; 731 } 732 733 #else /* CONFIG_NO_HZ_COMMON */ 734 735 static inline bool got_nohz_idle_kick(void) 736 { 737 return false; 738 } 739 740 #endif /* CONFIG_NO_HZ_COMMON */ 741 742 #ifdef CONFIG_NO_HZ_FULL 743 bool sched_can_stop_tick(void) 744 { 745 /* 746 * More than one running task need preemption. 747 * nr_running update is assumed to be visible 748 * after IPI is sent from wakers. 749 */ 750 if (this_rq()->nr_running > 1) 751 return false; 752 753 return true; 754 } 755 #endif /* CONFIG_NO_HZ_FULL */ 756 757 void sched_avg_update(struct rq *rq) 758 { 759 s64 period = sched_avg_period(); 760 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 762 /* 763 * Inline assembly required to prevent the compiler 764 * optimising this loop into a divmod call. 765 * See __iter_div_u64_rem() for another example of this. 766 */ 767 asm("" : "+rm" (rq->age_stamp)); 768 rq->age_stamp += period; 769 rq->rt_avg /= 2; 770 } 771 } 772 773 #endif /* CONFIG_SMP */ 774 775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 777 /* 778 * Iterate task_group tree rooted at *from, calling @down when first entering a 779 * node and @up when leaving it for the final time. 780 * 781 * Caller must hold rcu_lock or sufficient equivalent. 782 */ 783 int walk_tg_tree_from(struct task_group *from, 784 tg_visitor down, tg_visitor up, void *data) 785 { 786 struct task_group *parent, *child; 787 int ret; 788 789 parent = from; 790 791 down: 792 ret = (*down)(parent, data); 793 if (ret) 794 goto out; 795 list_for_each_entry_rcu(child, &parent->children, siblings) { 796 parent = child; 797 goto down; 798 799 up: 800 continue; 801 } 802 ret = (*up)(parent, data); 803 if (ret || parent == from) 804 goto out; 805 806 child = parent; 807 parent = parent->parent; 808 if (parent) 809 goto up; 810 out: 811 return ret; 812 } 813 814 int tg_nop(struct task_group *tg, void *data) 815 { 816 return 0; 817 } 818 #endif 819 820 static void set_load_weight(struct task_struct *p) 821 { 822 int prio = p->static_prio - MAX_RT_PRIO; 823 struct load_weight *load = &p->se.load; 824 825 /* 826 * SCHED_IDLE tasks get minimal weight: 827 */ 828 if (p->policy == SCHED_IDLE) { 829 load->weight = scale_load(WEIGHT_IDLEPRIO); 830 load->inv_weight = WMULT_IDLEPRIO; 831 return; 832 } 833 834 load->weight = scale_load(prio_to_weight[prio]); 835 load->inv_weight = prio_to_wmult[prio]; 836 } 837 838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 839 { 840 update_rq_clock(rq); 841 sched_info_queued(rq, p); 842 p->sched_class->enqueue_task(rq, p, flags); 843 } 844 845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 846 { 847 update_rq_clock(rq); 848 sched_info_dequeued(rq, p); 849 p->sched_class->dequeue_task(rq, p, flags); 850 } 851 852 void activate_task(struct rq *rq, struct task_struct *p, int flags) 853 { 854 if (task_contributes_to_load(p)) 855 rq->nr_uninterruptible--; 856 857 enqueue_task(rq, p, flags); 858 } 859 860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 861 { 862 if (task_contributes_to_load(p)) 863 rq->nr_uninterruptible++; 864 865 dequeue_task(rq, p, flags); 866 } 867 868 static void update_rq_clock_task(struct rq *rq, s64 delta) 869 { 870 /* 871 * In theory, the compile should just see 0 here, and optimize out the call 872 * to sched_rt_avg_update. But I don't trust it... 873 */ 874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 875 s64 steal = 0, irq_delta = 0; 876 #endif 877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 879 880 /* 881 * Since irq_time is only updated on {soft,}irq_exit, we might run into 882 * this case when a previous update_rq_clock() happened inside a 883 * {soft,}irq region. 884 * 885 * When this happens, we stop ->clock_task and only update the 886 * prev_irq_time stamp to account for the part that fit, so that a next 887 * update will consume the rest. This ensures ->clock_task is 888 * monotonic. 889 * 890 * It does however cause some slight miss-attribution of {soft,}irq 891 * time, a more accurate solution would be to update the irq_time using 892 * the current rq->clock timestamp, except that would require using 893 * atomic ops. 894 */ 895 if (irq_delta > delta) 896 irq_delta = delta; 897 898 rq->prev_irq_time += irq_delta; 899 delta -= irq_delta; 900 #endif 901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 902 if (static_key_false((¶virt_steal_rq_enabled))) { 903 steal = paravirt_steal_clock(cpu_of(rq)); 904 steal -= rq->prev_steal_time_rq; 905 906 if (unlikely(steal > delta)) 907 steal = delta; 908 909 rq->prev_steal_time_rq += steal; 910 delta -= steal; 911 } 912 #endif 913 914 rq->clock_task += delta; 915 916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 918 sched_rt_avg_update(rq, irq_delta + steal); 919 #endif 920 } 921 922 void sched_set_stop_task(int cpu, struct task_struct *stop) 923 { 924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 925 struct task_struct *old_stop = cpu_rq(cpu)->stop; 926 927 if (stop) { 928 /* 929 * Make it appear like a SCHED_FIFO task, its something 930 * userspace knows about and won't get confused about. 931 * 932 * Also, it will make PI more or less work without too 933 * much confusion -- but then, stop work should not 934 * rely on PI working anyway. 935 */ 936 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 937 938 stop->sched_class = &stop_sched_class; 939 } 940 941 cpu_rq(cpu)->stop = stop; 942 943 if (old_stop) { 944 /* 945 * Reset it back to a normal scheduling class so that 946 * it can die in pieces. 947 */ 948 old_stop->sched_class = &rt_sched_class; 949 } 950 } 951 952 /* 953 * __normal_prio - return the priority that is based on the static prio 954 */ 955 static inline int __normal_prio(struct task_struct *p) 956 { 957 return p->static_prio; 958 } 959 960 /* 961 * Calculate the expected normal priority: i.e. priority 962 * without taking RT-inheritance into account. Might be 963 * boosted by interactivity modifiers. Changes upon fork, 964 * setprio syscalls, and whenever the interactivity 965 * estimator recalculates. 966 */ 967 static inline int normal_prio(struct task_struct *p) 968 { 969 int prio; 970 971 if (task_has_dl_policy(p)) 972 prio = MAX_DL_PRIO-1; 973 else if (task_has_rt_policy(p)) 974 prio = MAX_RT_PRIO-1 - p->rt_priority; 975 else 976 prio = __normal_prio(p); 977 return prio; 978 } 979 980 /* 981 * Calculate the current priority, i.e. the priority 982 * taken into account by the scheduler. This value might 983 * be boosted by RT tasks, or might be boosted by 984 * interactivity modifiers. Will be RT if the task got 985 * RT-boosted. If not then it returns p->normal_prio. 986 */ 987 static int effective_prio(struct task_struct *p) 988 { 989 p->normal_prio = normal_prio(p); 990 /* 991 * If we are RT tasks or we were boosted to RT priority, 992 * keep the priority unchanged. Otherwise, update priority 993 * to the normal priority: 994 */ 995 if (!rt_prio(p->prio)) 996 return p->normal_prio; 997 return p->prio; 998 } 999 1000 /** 1001 * task_curr - is this task currently executing on a CPU? 1002 * @p: the task in question. 1003 * 1004 * Return: 1 if the task is currently executing. 0 otherwise. 1005 */ 1006 inline int task_curr(const struct task_struct *p) 1007 { 1008 return cpu_curr(task_cpu(p)) == p; 1009 } 1010 1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1012 const struct sched_class *prev_class, 1013 int oldprio) 1014 { 1015 if (prev_class != p->sched_class) { 1016 if (prev_class->switched_from) 1017 prev_class->switched_from(rq, p); 1018 p->sched_class->switched_to(rq, p); 1019 } else if (oldprio != p->prio || dl_task(p)) 1020 p->sched_class->prio_changed(rq, p, oldprio); 1021 } 1022 1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1024 { 1025 const struct sched_class *class; 1026 1027 if (p->sched_class == rq->curr->sched_class) { 1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1029 } else { 1030 for_each_class(class) { 1031 if (class == rq->curr->sched_class) 1032 break; 1033 if (class == p->sched_class) { 1034 resched_curr(rq); 1035 break; 1036 } 1037 } 1038 } 1039 1040 /* 1041 * A queue event has occurred, and we're going to schedule. In 1042 * this case, we can save a useless back to back clock update. 1043 */ 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1045 rq->skip_clock_update = 1; 1046 } 1047 1048 #ifdef CONFIG_SMP 1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1050 { 1051 #ifdef CONFIG_SCHED_DEBUG 1052 /* 1053 * We should never call set_task_cpu() on a blocked task, 1054 * ttwu() will sort out the placement. 1055 */ 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1058 1059 #ifdef CONFIG_LOCKDEP 1060 /* 1061 * The caller should hold either p->pi_lock or rq->lock, when changing 1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1063 * 1064 * sched_move_task() holds both and thus holding either pins the cgroup, 1065 * see task_group(). 1066 * 1067 * Furthermore, all task_rq users should acquire both locks, see 1068 * task_rq_lock(). 1069 */ 1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1071 lockdep_is_held(&task_rq(p)->lock))); 1072 #endif 1073 #endif 1074 1075 trace_sched_migrate_task(p, new_cpu); 1076 1077 if (task_cpu(p) != new_cpu) { 1078 if (p->sched_class->migrate_task_rq) 1079 p->sched_class->migrate_task_rq(p, new_cpu); 1080 p->se.nr_migrations++; 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1082 } 1083 1084 __set_task_cpu(p, new_cpu); 1085 } 1086 1087 static void __migrate_swap_task(struct task_struct *p, int cpu) 1088 { 1089 if (task_on_rq_queued(p)) { 1090 struct rq *src_rq, *dst_rq; 1091 1092 src_rq = task_rq(p); 1093 dst_rq = cpu_rq(cpu); 1094 1095 deactivate_task(src_rq, p, 0); 1096 set_task_cpu(p, cpu); 1097 activate_task(dst_rq, p, 0); 1098 check_preempt_curr(dst_rq, p, 0); 1099 } else { 1100 /* 1101 * Task isn't running anymore; make it appear like we migrated 1102 * it before it went to sleep. This means on wakeup we make the 1103 * previous cpu our targer instead of where it really is. 1104 */ 1105 p->wake_cpu = cpu; 1106 } 1107 } 1108 1109 struct migration_swap_arg { 1110 struct task_struct *src_task, *dst_task; 1111 int src_cpu, dst_cpu; 1112 }; 1113 1114 static int migrate_swap_stop(void *data) 1115 { 1116 struct migration_swap_arg *arg = data; 1117 struct rq *src_rq, *dst_rq; 1118 int ret = -EAGAIN; 1119 1120 src_rq = cpu_rq(arg->src_cpu); 1121 dst_rq = cpu_rq(arg->dst_cpu); 1122 1123 double_raw_lock(&arg->src_task->pi_lock, 1124 &arg->dst_task->pi_lock); 1125 double_rq_lock(src_rq, dst_rq); 1126 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1127 goto unlock; 1128 1129 if (task_cpu(arg->src_task) != arg->src_cpu) 1130 goto unlock; 1131 1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1133 goto unlock; 1134 1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1136 goto unlock; 1137 1138 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1139 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1140 1141 ret = 0; 1142 1143 unlock: 1144 double_rq_unlock(src_rq, dst_rq); 1145 raw_spin_unlock(&arg->dst_task->pi_lock); 1146 raw_spin_unlock(&arg->src_task->pi_lock); 1147 1148 return ret; 1149 } 1150 1151 /* 1152 * Cross migrate two tasks 1153 */ 1154 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1155 { 1156 struct migration_swap_arg arg; 1157 int ret = -EINVAL; 1158 1159 arg = (struct migration_swap_arg){ 1160 .src_task = cur, 1161 .src_cpu = task_cpu(cur), 1162 .dst_task = p, 1163 .dst_cpu = task_cpu(p), 1164 }; 1165 1166 if (arg.src_cpu == arg.dst_cpu) 1167 goto out; 1168 1169 /* 1170 * These three tests are all lockless; this is OK since all of them 1171 * will be re-checked with proper locks held further down the line. 1172 */ 1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1174 goto out; 1175 1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1177 goto out; 1178 1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1180 goto out; 1181 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1184 1185 out: 1186 return ret; 1187 } 1188 1189 struct migration_arg { 1190 struct task_struct *task; 1191 int dest_cpu; 1192 }; 1193 1194 static int migration_cpu_stop(void *data); 1195 1196 /* 1197 * wait_task_inactive - wait for a thread to unschedule. 1198 * 1199 * If @match_state is nonzero, it's the @p->state value just checked and 1200 * not expected to change. If it changes, i.e. @p might have woken up, 1201 * then return zero. When we succeed in waiting for @p to be off its CPU, 1202 * we return a positive number (its total switch count). If a second call 1203 * a short while later returns the same number, the caller can be sure that 1204 * @p has remained unscheduled the whole time. 1205 * 1206 * The caller must ensure that the task *will* unschedule sometime soon, 1207 * else this function might spin for a *long* time. This function can't 1208 * be called with interrupts off, or it may introduce deadlock with 1209 * smp_call_function() if an IPI is sent by the same process we are 1210 * waiting to become inactive. 1211 */ 1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1213 { 1214 unsigned long flags; 1215 int running, queued; 1216 unsigned long ncsw; 1217 struct rq *rq; 1218 1219 for (;;) { 1220 /* 1221 * We do the initial early heuristics without holding 1222 * any task-queue locks at all. We'll only try to get 1223 * the runqueue lock when things look like they will 1224 * work out! 1225 */ 1226 rq = task_rq(p); 1227 1228 /* 1229 * If the task is actively running on another CPU 1230 * still, just relax and busy-wait without holding 1231 * any locks. 1232 * 1233 * NOTE! Since we don't hold any locks, it's not 1234 * even sure that "rq" stays as the right runqueue! 1235 * But we don't care, since "task_running()" will 1236 * return false if the runqueue has changed and p 1237 * is actually now running somewhere else! 1238 */ 1239 while (task_running(rq, p)) { 1240 if (match_state && unlikely(p->state != match_state)) 1241 return 0; 1242 cpu_relax(); 1243 } 1244 1245 /* 1246 * Ok, time to look more closely! We need the rq 1247 * lock now, to be *sure*. If we're wrong, we'll 1248 * just go back and repeat. 1249 */ 1250 rq = task_rq_lock(p, &flags); 1251 trace_sched_wait_task(p); 1252 running = task_running(rq, p); 1253 queued = task_on_rq_queued(p); 1254 ncsw = 0; 1255 if (!match_state || p->state == match_state) 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1257 task_rq_unlock(rq, p, &flags); 1258 1259 /* 1260 * If it changed from the expected state, bail out now. 1261 */ 1262 if (unlikely(!ncsw)) 1263 break; 1264 1265 /* 1266 * Was it really running after all now that we 1267 * checked with the proper locks actually held? 1268 * 1269 * Oops. Go back and try again.. 1270 */ 1271 if (unlikely(running)) { 1272 cpu_relax(); 1273 continue; 1274 } 1275 1276 /* 1277 * It's not enough that it's not actively running, 1278 * it must be off the runqueue _entirely_, and not 1279 * preempted! 1280 * 1281 * So if it was still runnable (but just not actively 1282 * running right now), it's preempted, and we should 1283 * yield - it could be a while. 1284 */ 1285 if (unlikely(queued)) { 1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1287 1288 set_current_state(TASK_UNINTERRUPTIBLE); 1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1290 continue; 1291 } 1292 1293 /* 1294 * Ahh, all good. It wasn't running, and it wasn't 1295 * runnable, which means that it will never become 1296 * running in the future either. We're all done! 1297 */ 1298 break; 1299 } 1300 1301 return ncsw; 1302 } 1303 1304 /*** 1305 * kick_process - kick a running thread to enter/exit the kernel 1306 * @p: the to-be-kicked thread 1307 * 1308 * Cause a process which is running on another CPU to enter 1309 * kernel-mode, without any delay. (to get signals handled.) 1310 * 1311 * NOTE: this function doesn't have to take the runqueue lock, 1312 * because all it wants to ensure is that the remote task enters 1313 * the kernel. If the IPI races and the task has been migrated 1314 * to another CPU then no harm is done and the purpose has been 1315 * achieved as well. 1316 */ 1317 void kick_process(struct task_struct *p) 1318 { 1319 int cpu; 1320 1321 preempt_disable(); 1322 cpu = task_cpu(p); 1323 if ((cpu != smp_processor_id()) && task_curr(p)) 1324 smp_send_reschedule(cpu); 1325 preempt_enable(); 1326 } 1327 EXPORT_SYMBOL_GPL(kick_process); 1328 #endif /* CONFIG_SMP */ 1329 1330 #ifdef CONFIG_SMP 1331 /* 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1333 */ 1334 static int select_fallback_rq(int cpu, struct task_struct *p) 1335 { 1336 int nid = cpu_to_node(cpu); 1337 const struct cpumask *nodemask = NULL; 1338 enum { cpuset, possible, fail } state = cpuset; 1339 int dest_cpu; 1340 1341 /* 1342 * If the node that the cpu is on has been offlined, cpu_to_node() 1343 * will return -1. There is no cpu on the node, and we should 1344 * select the cpu on the other node. 1345 */ 1346 if (nid != -1) { 1347 nodemask = cpumask_of_node(nid); 1348 1349 /* Look for allowed, online CPU in same node. */ 1350 for_each_cpu(dest_cpu, nodemask) { 1351 if (!cpu_online(dest_cpu)) 1352 continue; 1353 if (!cpu_active(dest_cpu)) 1354 continue; 1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1356 return dest_cpu; 1357 } 1358 } 1359 1360 for (;;) { 1361 /* Any allowed, online CPU? */ 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1363 if (!cpu_online(dest_cpu)) 1364 continue; 1365 if (!cpu_active(dest_cpu)) 1366 continue; 1367 goto out; 1368 } 1369 1370 switch (state) { 1371 case cpuset: 1372 /* No more Mr. Nice Guy. */ 1373 cpuset_cpus_allowed_fallback(p); 1374 state = possible; 1375 break; 1376 1377 case possible: 1378 do_set_cpus_allowed(p, cpu_possible_mask); 1379 state = fail; 1380 break; 1381 1382 case fail: 1383 BUG(); 1384 break; 1385 } 1386 } 1387 1388 out: 1389 if (state != cpuset) { 1390 /* 1391 * Don't tell them about moving exiting tasks or 1392 * kernel threads (both mm NULL), since they never 1393 * leave kernel. 1394 */ 1395 if (p->mm && printk_ratelimit()) { 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1397 task_pid_nr(p), p->comm, cpu); 1398 } 1399 } 1400 1401 return dest_cpu; 1402 } 1403 1404 /* 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1406 */ 1407 static inline 1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1409 { 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1411 1412 /* 1413 * In order not to call set_task_cpu() on a blocking task we need 1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1415 * cpu. 1416 * 1417 * Since this is common to all placement strategies, this lives here. 1418 * 1419 * [ this allows ->select_task() to simply return task_cpu(p) and 1420 * not worry about this generic constraint ] 1421 */ 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1423 !cpu_online(cpu))) 1424 cpu = select_fallback_rq(task_cpu(p), p); 1425 1426 return cpu; 1427 } 1428 1429 static void update_avg(u64 *avg, u64 sample) 1430 { 1431 s64 diff = sample - *avg; 1432 *avg += diff >> 3; 1433 } 1434 #endif 1435 1436 static void 1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1438 { 1439 #ifdef CONFIG_SCHEDSTATS 1440 struct rq *rq = this_rq(); 1441 1442 #ifdef CONFIG_SMP 1443 int this_cpu = smp_processor_id(); 1444 1445 if (cpu == this_cpu) { 1446 schedstat_inc(rq, ttwu_local); 1447 schedstat_inc(p, se.statistics.nr_wakeups_local); 1448 } else { 1449 struct sched_domain *sd; 1450 1451 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1452 rcu_read_lock(); 1453 for_each_domain(this_cpu, sd) { 1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1455 schedstat_inc(sd, ttwu_wake_remote); 1456 break; 1457 } 1458 } 1459 rcu_read_unlock(); 1460 } 1461 1462 if (wake_flags & WF_MIGRATED) 1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1464 1465 #endif /* CONFIG_SMP */ 1466 1467 schedstat_inc(rq, ttwu_count); 1468 schedstat_inc(p, se.statistics.nr_wakeups); 1469 1470 if (wake_flags & WF_SYNC) 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1472 1473 #endif /* CONFIG_SCHEDSTATS */ 1474 } 1475 1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1477 { 1478 activate_task(rq, p, en_flags); 1479 p->on_rq = TASK_ON_RQ_QUEUED; 1480 1481 /* if a worker is waking up, notify workqueue */ 1482 if (p->flags & PF_WQ_WORKER) 1483 wq_worker_waking_up(p, cpu_of(rq)); 1484 } 1485 1486 /* 1487 * Mark the task runnable and perform wakeup-preemption. 1488 */ 1489 static void 1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1491 { 1492 check_preempt_curr(rq, p, wake_flags); 1493 trace_sched_wakeup(p, true); 1494 1495 p->state = TASK_RUNNING; 1496 #ifdef CONFIG_SMP 1497 if (p->sched_class->task_woken) 1498 p->sched_class->task_woken(rq, p); 1499 1500 if (rq->idle_stamp) { 1501 u64 delta = rq_clock(rq) - rq->idle_stamp; 1502 u64 max = 2*rq->max_idle_balance_cost; 1503 1504 update_avg(&rq->avg_idle, delta); 1505 1506 if (rq->avg_idle > max) 1507 rq->avg_idle = max; 1508 1509 rq->idle_stamp = 0; 1510 } 1511 #endif 1512 } 1513 1514 static void 1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1516 { 1517 #ifdef CONFIG_SMP 1518 if (p->sched_contributes_to_load) 1519 rq->nr_uninterruptible--; 1520 #endif 1521 1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1523 ttwu_do_wakeup(rq, p, wake_flags); 1524 } 1525 1526 /* 1527 * Called in case the task @p isn't fully descheduled from its runqueue, 1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1529 * since all we need to do is flip p->state to TASK_RUNNING, since 1530 * the task is still ->on_rq. 1531 */ 1532 static int ttwu_remote(struct task_struct *p, int wake_flags) 1533 { 1534 struct rq *rq; 1535 int ret = 0; 1536 1537 rq = __task_rq_lock(p); 1538 if (task_on_rq_queued(p)) { 1539 /* check_preempt_curr() may use rq clock */ 1540 update_rq_clock(rq); 1541 ttwu_do_wakeup(rq, p, wake_flags); 1542 ret = 1; 1543 } 1544 __task_rq_unlock(rq); 1545 1546 return ret; 1547 } 1548 1549 #ifdef CONFIG_SMP 1550 void sched_ttwu_pending(void) 1551 { 1552 struct rq *rq = this_rq(); 1553 struct llist_node *llist = llist_del_all(&rq->wake_list); 1554 struct task_struct *p; 1555 unsigned long flags; 1556 1557 if (!llist) 1558 return; 1559 1560 raw_spin_lock_irqsave(&rq->lock, flags); 1561 1562 while (llist) { 1563 p = llist_entry(llist, struct task_struct, wake_entry); 1564 llist = llist_next(llist); 1565 ttwu_do_activate(rq, p, 0); 1566 } 1567 1568 raw_spin_unlock_irqrestore(&rq->lock, flags); 1569 } 1570 1571 void scheduler_ipi(void) 1572 { 1573 /* 1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1575 * TIF_NEED_RESCHED remotely (for the first time) will also send 1576 * this IPI. 1577 */ 1578 preempt_fold_need_resched(); 1579 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1581 return; 1582 1583 /* 1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1585 * traditionally all their work was done from the interrupt return 1586 * path. Now that we actually do some work, we need to make sure 1587 * we do call them. 1588 * 1589 * Some archs already do call them, luckily irq_enter/exit nest 1590 * properly. 1591 * 1592 * Arguably we should visit all archs and update all handlers, 1593 * however a fair share of IPIs are still resched only so this would 1594 * somewhat pessimize the simple resched case. 1595 */ 1596 irq_enter(); 1597 sched_ttwu_pending(); 1598 1599 /* 1600 * Check if someone kicked us for doing the nohz idle load balance. 1601 */ 1602 if (unlikely(got_nohz_idle_kick())) { 1603 this_rq()->idle_balance = 1; 1604 raise_softirq_irqoff(SCHED_SOFTIRQ); 1605 } 1606 irq_exit(); 1607 } 1608 1609 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1610 { 1611 struct rq *rq = cpu_rq(cpu); 1612 1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1614 if (!set_nr_if_polling(rq->idle)) 1615 smp_send_reschedule(cpu); 1616 else 1617 trace_sched_wake_idle_without_ipi(cpu); 1618 } 1619 } 1620 1621 void wake_up_if_idle(int cpu) 1622 { 1623 struct rq *rq = cpu_rq(cpu); 1624 unsigned long flags; 1625 1626 if (!is_idle_task(rq->curr)) 1627 return; 1628 1629 if (set_nr_if_polling(rq->idle)) { 1630 trace_sched_wake_idle_without_ipi(cpu); 1631 } else { 1632 raw_spin_lock_irqsave(&rq->lock, flags); 1633 if (is_idle_task(rq->curr)) 1634 smp_send_reschedule(cpu); 1635 /* Else cpu is not in idle, do nothing here */ 1636 raw_spin_unlock_irqrestore(&rq->lock, flags); 1637 } 1638 } 1639 1640 bool cpus_share_cache(int this_cpu, int that_cpu) 1641 { 1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1643 } 1644 #endif /* CONFIG_SMP */ 1645 1646 static void ttwu_queue(struct task_struct *p, int cpu) 1647 { 1648 struct rq *rq = cpu_rq(cpu); 1649 1650 #if defined(CONFIG_SMP) 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1653 ttwu_queue_remote(p, cpu); 1654 return; 1655 } 1656 #endif 1657 1658 raw_spin_lock(&rq->lock); 1659 ttwu_do_activate(rq, p, 0); 1660 raw_spin_unlock(&rq->lock); 1661 } 1662 1663 /** 1664 * try_to_wake_up - wake up a thread 1665 * @p: the thread to be awakened 1666 * @state: the mask of task states that can be woken 1667 * @wake_flags: wake modifier flags (WF_*) 1668 * 1669 * Put it on the run-queue if it's not already there. The "current" 1670 * thread is always on the run-queue (except when the actual 1671 * re-schedule is in progress), and as such you're allowed to do 1672 * the simpler "current->state = TASK_RUNNING" to mark yourself 1673 * runnable without the overhead of this. 1674 * 1675 * Return: %true if @p was woken up, %false if it was already running. 1676 * or @state didn't match @p's state. 1677 */ 1678 static int 1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1680 { 1681 unsigned long flags; 1682 int cpu, success = 0; 1683 1684 /* 1685 * If we are going to wake up a thread waiting for CONDITION we 1686 * need to ensure that CONDITION=1 done by the caller can not be 1687 * reordered with p->state check below. This pairs with mb() in 1688 * set_current_state() the waiting thread does. 1689 */ 1690 smp_mb__before_spinlock(); 1691 raw_spin_lock_irqsave(&p->pi_lock, flags); 1692 if (!(p->state & state)) 1693 goto out; 1694 1695 success = 1; /* we're going to change ->state */ 1696 cpu = task_cpu(p); 1697 1698 if (p->on_rq && ttwu_remote(p, wake_flags)) 1699 goto stat; 1700 1701 #ifdef CONFIG_SMP 1702 /* 1703 * If the owning (remote) cpu is still in the middle of schedule() with 1704 * this task as prev, wait until its done referencing the task. 1705 */ 1706 while (p->on_cpu) 1707 cpu_relax(); 1708 /* 1709 * Pairs with the smp_wmb() in finish_lock_switch(). 1710 */ 1711 smp_rmb(); 1712 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1714 p->state = TASK_WAKING; 1715 1716 if (p->sched_class->task_waking) 1717 p->sched_class->task_waking(p); 1718 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1720 if (task_cpu(p) != cpu) { 1721 wake_flags |= WF_MIGRATED; 1722 set_task_cpu(p, cpu); 1723 } 1724 #endif /* CONFIG_SMP */ 1725 1726 ttwu_queue(p, cpu); 1727 stat: 1728 ttwu_stat(p, cpu, wake_flags); 1729 out: 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1731 1732 return success; 1733 } 1734 1735 /** 1736 * try_to_wake_up_local - try to wake up a local task with rq lock held 1737 * @p: the thread to be awakened 1738 * 1739 * Put @p on the run-queue if it's not already there. The caller must 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1741 * the current task. 1742 */ 1743 static void try_to_wake_up_local(struct task_struct *p) 1744 { 1745 struct rq *rq = task_rq(p); 1746 1747 if (WARN_ON_ONCE(rq != this_rq()) || 1748 WARN_ON_ONCE(p == current)) 1749 return; 1750 1751 lockdep_assert_held(&rq->lock); 1752 1753 if (!raw_spin_trylock(&p->pi_lock)) { 1754 raw_spin_unlock(&rq->lock); 1755 raw_spin_lock(&p->pi_lock); 1756 raw_spin_lock(&rq->lock); 1757 } 1758 1759 if (!(p->state & TASK_NORMAL)) 1760 goto out; 1761 1762 if (!task_on_rq_queued(p)) 1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1764 1765 ttwu_do_wakeup(rq, p, 0); 1766 ttwu_stat(p, smp_processor_id(), 0); 1767 out: 1768 raw_spin_unlock(&p->pi_lock); 1769 } 1770 1771 /** 1772 * wake_up_process - Wake up a specific process 1773 * @p: The process to be woken up. 1774 * 1775 * Attempt to wake up the nominated process and move it to the set of runnable 1776 * processes. 1777 * 1778 * Return: 1 if the process was woken up, 0 if it was already running. 1779 * 1780 * It may be assumed that this function implies a write memory barrier before 1781 * changing the task state if and only if any tasks are woken up. 1782 */ 1783 int wake_up_process(struct task_struct *p) 1784 { 1785 WARN_ON(task_is_stopped_or_traced(p)); 1786 return try_to_wake_up(p, TASK_NORMAL, 0); 1787 } 1788 EXPORT_SYMBOL(wake_up_process); 1789 1790 int wake_up_state(struct task_struct *p, unsigned int state) 1791 { 1792 return try_to_wake_up(p, state, 0); 1793 } 1794 1795 /* 1796 * This function clears the sched_dl_entity static params. 1797 */ 1798 void __dl_clear_params(struct task_struct *p) 1799 { 1800 struct sched_dl_entity *dl_se = &p->dl; 1801 1802 dl_se->dl_runtime = 0; 1803 dl_se->dl_deadline = 0; 1804 dl_se->dl_period = 0; 1805 dl_se->flags = 0; 1806 dl_se->dl_bw = 0; 1807 } 1808 1809 /* 1810 * Perform scheduler related setup for a newly forked process p. 1811 * p is forked by current. 1812 * 1813 * __sched_fork() is basic setup used by init_idle() too: 1814 */ 1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1816 { 1817 p->on_rq = 0; 1818 1819 p->se.on_rq = 0; 1820 p->se.exec_start = 0; 1821 p->se.sum_exec_runtime = 0; 1822 p->se.prev_sum_exec_runtime = 0; 1823 p->se.nr_migrations = 0; 1824 p->se.vruntime = 0; 1825 INIT_LIST_HEAD(&p->se.group_node); 1826 1827 #ifdef CONFIG_SCHEDSTATS 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1829 #endif 1830 1831 RB_CLEAR_NODE(&p->dl.rb_node); 1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1833 __dl_clear_params(p); 1834 1835 INIT_LIST_HEAD(&p->rt.run_list); 1836 1837 #ifdef CONFIG_PREEMPT_NOTIFIERS 1838 INIT_HLIST_HEAD(&p->preempt_notifiers); 1839 #endif 1840 1841 #ifdef CONFIG_NUMA_BALANCING 1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1844 p->mm->numa_scan_seq = 0; 1845 } 1846 1847 if (clone_flags & CLONE_VM) 1848 p->numa_preferred_nid = current->numa_preferred_nid; 1849 else 1850 p->numa_preferred_nid = -1; 1851 1852 p->node_stamp = 0ULL; 1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1855 p->numa_work.next = &p->numa_work; 1856 p->numa_faults_memory = NULL; 1857 p->numa_faults_buffer_memory = NULL; 1858 p->last_task_numa_placement = 0; 1859 p->last_sum_exec_runtime = 0; 1860 1861 INIT_LIST_HEAD(&p->numa_entry); 1862 p->numa_group = NULL; 1863 #endif /* CONFIG_NUMA_BALANCING */ 1864 } 1865 1866 #ifdef CONFIG_NUMA_BALANCING 1867 #ifdef CONFIG_SCHED_DEBUG 1868 void set_numabalancing_state(bool enabled) 1869 { 1870 if (enabled) 1871 sched_feat_set("NUMA"); 1872 else 1873 sched_feat_set("NO_NUMA"); 1874 } 1875 #else 1876 __read_mostly bool numabalancing_enabled; 1877 1878 void set_numabalancing_state(bool enabled) 1879 { 1880 numabalancing_enabled = enabled; 1881 } 1882 #endif /* CONFIG_SCHED_DEBUG */ 1883 1884 #ifdef CONFIG_PROC_SYSCTL 1885 int sysctl_numa_balancing(struct ctl_table *table, int write, 1886 void __user *buffer, size_t *lenp, loff_t *ppos) 1887 { 1888 struct ctl_table t; 1889 int err; 1890 int state = numabalancing_enabled; 1891 1892 if (write && !capable(CAP_SYS_ADMIN)) 1893 return -EPERM; 1894 1895 t = *table; 1896 t.data = &state; 1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1898 if (err < 0) 1899 return err; 1900 if (write) 1901 set_numabalancing_state(state); 1902 return err; 1903 } 1904 #endif 1905 #endif 1906 1907 /* 1908 * fork()/clone()-time setup: 1909 */ 1910 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1911 { 1912 unsigned long flags; 1913 int cpu = get_cpu(); 1914 1915 __sched_fork(clone_flags, p); 1916 /* 1917 * We mark the process as running here. This guarantees that 1918 * nobody will actually run it, and a signal or other external 1919 * event cannot wake it up and insert it on the runqueue either. 1920 */ 1921 p->state = TASK_RUNNING; 1922 1923 /* 1924 * Make sure we do not leak PI boosting priority to the child. 1925 */ 1926 p->prio = current->normal_prio; 1927 1928 /* 1929 * Revert to default priority/policy on fork if requested. 1930 */ 1931 if (unlikely(p->sched_reset_on_fork)) { 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1933 p->policy = SCHED_NORMAL; 1934 p->static_prio = NICE_TO_PRIO(0); 1935 p->rt_priority = 0; 1936 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1937 p->static_prio = NICE_TO_PRIO(0); 1938 1939 p->prio = p->normal_prio = __normal_prio(p); 1940 set_load_weight(p); 1941 1942 /* 1943 * We don't need the reset flag anymore after the fork. It has 1944 * fulfilled its duty: 1945 */ 1946 p->sched_reset_on_fork = 0; 1947 } 1948 1949 if (dl_prio(p->prio)) { 1950 put_cpu(); 1951 return -EAGAIN; 1952 } else if (rt_prio(p->prio)) { 1953 p->sched_class = &rt_sched_class; 1954 } else { 1955 p->sched_class = &fair_sched_class; 1956 } 1957 1958 if (p->sched_class->task_fork) 1959 p->sched_class->task_fork(p); 1960 1961 /* 1962 * The child is not yet in the pid-hash so no cgroup attach races, 1963 * and the cgroup is pinned to this child due to cgroup_fork() 1964 * is ran before sched_fork(). 1965 * 1966 * Silence PROVE_RCU. 1967 */ 1968 raw_spin_lock_irqsave(&p->pi_lock, flags); 1969 set_task_cpu(p, cpu); 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1971 1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1973 if (likely(sched_info_on())) 1974 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1975 #endif 1976 #if defined(CONFIG_SMP) 1977 p->on_cpu = 0; 1978 #endif 1979 init_task_preempt_count(p); 1980 #ifdef CONFIG_SMP 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1983 #endif 1984 1985 put_cpu(); 1986 return 0; 1987 } 1988 1989 unsigned long to_ratio(u64 period, u64 runtime) 1990 { 1991 if (runtime == RUNTIME_INF) 1992 return 1ULL << 20; 1993 1994 /* 1995 * Doing this here saves a lot of checks in all 1996 * the calling paths, and returning zero seems 1997 * safe for them anyway. 1998 */ 1999 if (period == 0) 2000 return 0; 2001 2002 return div64_u64(runtime << 20, period); 2003 } 2004 2005 #ifdef CONFIG_SMP 2006 inline struct dl_bw *dl_bw_of(int i) 2007 { 2008 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2009 "sched RCU must be held"); 2010 return &cpu_rq(i)->rd->dl_bw; 2011 } 2012 2013 static inline int dl_bw_cpus(int i) 2014 { 2015 struct root_domain *rd = cpu_rq(i)->rd; 2016 int cpus = 0; 2017 2018 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2019 "sched RCU must be held"); 2020 for_each_cpu_and(i, rd->span, cpu_active_mask) 2021 cpus++; 2022 2023 return cpus; 2024 } 2025 #else 2026 inline struct dl_bw *dl_bw_of(int i) 2027 { 2028 return &cpu_rq(i)->dl.dl_bw; 2029 } 2030 2031 static inline int dl_bw_cpus(int i) 2032 { 2033 return 1; 2034 } 2035 #endif 2036 2037 static inline 2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 2039 { 2040 dl_b->total_bw -= tsk_bw; 2041 } 2042 2043 static inline 2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 2045 { 2046 dl_b->total_bw += tsk_bw; 2047 } 2048 2049 static inline 2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 2051 { 2052 return dl_b->bw != -1 && 2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 2054 } 2055 2056 /* 2057 * We must be sure that accepting a new task (or allowing changing the 2058 * parameters of an existing one) is consistent with the bandwidth 2059 * constraints. If yes, this function also accordingly updates the currently 2060 * allocated bandwidth to reflect the new situation. 2061 * 2062 * This function is called while holding p's rq->lock. 2063 */ 2064 static int dl_overflow(struct task_struct *p, int policy, 2065 const struct sched_attr *attr) 2066 { 2067 2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2069 u64 period = attr->sched_period ?: attr->sched_deadline; 2070 u64 runtime = attr->sched_runtime; 2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2072 int cpus, err = -1; 2073 2074 if (new_bw == p->dl.dl_bw) 2075 return 0; 2076 2077 /* 2078 * Either if a task, enters, leave, or stays -deadline but changes 2079 * its parameters, we may need to update accordingly the total 2080 * allocated bandwidth of the container. 2081 */ 2082 raw_spin_lock(&dl_b->lock); 2083 cpus = dl_bw_cpus(task_cpu(p)); 2084 if (dl_policy(policy) && !task_has_dl_policy(p) && 2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2086 __dl_add(dl_b, new_bw); 2087 err = 0; 2088 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2090 __dl_clear(dl_b, p->dl.dl_bw); 2091 __dl_add(dl_b, new_bw); 2092 err = 0; 2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2094 __dl_clear(dl_b, p->dl.dl_bw); 2095 err = 0; 2096 } 2097 raw_spin_unlock(&dl_b->lock); 2098 2099 return err; 2100 } 2101 2102 extern void init_dl_bw(struct dl_bw *dl_b); 2103 2104 /* 2105 * wake_up_new_task - wake up a newly created task for the first time. 2106 * 2107 * This function will do some initial scheduler statistics housekeeping 2108 * that must be done for every newly created context, then puts the task 2109 * on the runqueue and wakes it. 2110 */ 2111 void wake_up_new_task(struct task_struct *p) 2112 { 2113 unsigned long flags; 2114 struct rq *rq; 2115 2116 raw_spin_lock_irqsave(&p->pi_lock, flags); 2117 #ifdef CONFIG_SMP 2118 /* 2119 * Fork balancing, do it here and not earlier because: 2120 * - cpus_allowed can change in the fork path 2121 * - any previously selected cpu might disappear through hotplug 2122 */ 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2124 #endif 2125 2126 /* Initialize new task's runnable average */ 2127 init_task_runnable_average(p); 2128 rq = __task_rq_lock(p); 2129 activate_task(rq, p, 0); 2130 p->on_rq = TASK_ON_RQ_QUEUED; 2131 trace_sched_wakeup_new(p, true); 2132 check_preempt_curr(rq, p, WF_FORK); 2133 #ifdef CONFIG_SMP 2134 if (p->sched_class->task_woken) 2135 p->sched_class->task_woken(rq, p); 2136 #endif 2137 task_rq_unlock(rq, p, &flags); 2138 } 2139 2140 #ifdef CONFIG_PREEMPT_NOTIFIERS 2141 2142 /** 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2144 * @notifier: notifier struct to register 2145 */ 2146 void preempt_notifier_register(struct preempt_notifier *notifier) 2147 { 2148 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2149 } 2150 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2151 2152 /** 2153 * preempt_notifier_unregister - no longer interested in preemption notifications 2154 * @notifier: notifier struct to unregister 2155 * 2156 * This is safe to call from within a preemption notifier. 2157 */ 2158 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2159 { 2160 hlist_del(¬ifier->link); 2161 } 2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2163 2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2165 { 2166 struct preempt_notifier *notifier; 2167 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2169 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2170 } 2171 2172 static void 2173 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2174 struct task_struct *next) 2175 { 2176 struct preempt_notifier *notifier; 2177 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2179 notifier->ops->sched_out(notifier, next); 2180 } 2181 2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2183 2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2185 { 2186 } 2187 2188 static void 2189 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2190 struct task_struct *next) 2191 { 2192 } 2193 2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2195 2196 /** 2197 * prepare_task_switch - prepare to switch tasks 2198 * @rq: the runqueue preparing to switch 2199 * @prev: the current task that is being switched out 2200 * @next: the task we are going to switch to. 2201 * 2202 * This is called with the rq lock held and interrupts off. It must 2203 * be paired with a subsequent finish_task_switch after the context 2204 * switch. 2205 * 2206 * prepare_task_switch sets up locking and calls architecture specific 2207 * hooks. 2208 */ 2209 static inline void 2210 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2211 struct task_struct *next) 2212 { 2213 trace_sched_switch(prev, next); 2214 sched_info_switch(rq, prev, next); 2215 perf_event_task_sched_out(prev, next); 2216 fire_sched_out_preempt_notifiers(prev, next); 2217 prepare_lock_switch(rq, next); 2218 prepare_arch_switch(next); 2219 } 2220 2221 /** 2222 * finish_task_switch - clean up after a task-switch 2223 * @rq: runqueue associated with task-switch 2224 * @prev: the thread we just switched away from. 2225 * 2226 * finish_task_switch must be called after the context switch, paired 2227 * with a prepare_task_switch call before the context switch. 2228 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2229 * and do any other architecture-specific cleanup actions. 2230 * 2231 * Note that we may have delayed dropping an mm in context_switch(). If 2232 * so, we finish that here outside of the runqueue lock. (Doing it 2233 * with the lock held can cause deadlocks; see schedule() for 2234 * details.) 2235 */ 2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2237 __releases(rq->lock) 2238 { 2239 struct mm_struct *mm = rq->prev_mm; 2240 long prev_state; 2241 2242 rq->prev_mm = NULL; 2243 2244 /* 2245 * A task struct has one reference for the use as "current". 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2247 * schedule one last time. The schedule call will never return, and 2248 * the scheduled task must drop that reference. 2249 * The test for TASK_DEAD must occur while the runqueue locks are 2250 * still held, otherwise prev could be scheduled on another cpu, die 2251 * there before we look at prev->state, and then the reference would 2252 * be dropped twice. 2253 * Manfred Spraul <manfred@colorfullife.com> 2254 */ 2255 prev_state = prev->state; 2256 vtime_task_switch(prev); 2257 finish_arch_switch(prev); 2258 perf_event_task_sched_in(prev, current); 2259 finish_lock_switch(rq, prev); 2260 finish_arch_post_lock_switch(); 2261 2262 fire_sched_in_preempt_notifiers(current); 2263 if (mm) 2264 mmdrop(mm); 2265 if (unlikely(prev_state == TASK_DEAD)) { 2266 if (prev->sched_class->task_dead) 2267 prev->sched_class->task_dead(prev); 2268 2269 /* 2270 * Remove function-return probe instances associated with this 2271 * task and put them back on the free list. 2272 */ 2273 kprobe_flush_task(prev); 2274 put_task_struct(prev); 2275 } 2276 2277 tick_nohz_task_switch(current); 2278 } 2279 2280 #ifdef CONFIG_SMP 2281 2282 /* rq->lock is NOT held, but preemption is disabled */ 2283 static inline void post_schedule(struct rq *rq) 2284 { 2285 if (rq->post_schedule) { 2286 unsigned long flags; 2287 2288 raw_spin_lock_irqsave(&rq->lock, flags); 2289 if (rq->curr->sched_class->post_schedule) 2290 rq->curr->sched_class->post_schedule(rq); 2291 raw_spin_unlock_irqrestore(&rq->lock, flags); 2292 2293 rq->post_schedule = 0; 2294 } 2295 } 2296 2297 #else 2298 2299 static inline void post_schedule(struct rq *rq) 2300 { 2301 } 2302 2303 #endif 2304 2305 /** 2306 * schedule_tail - first thing a freshly forked thread must call. 2307 * @prev: the thread we just switched away from. 2308 */ 2309 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2310 __releases(rq->lock) 2311 { 2312 struct rq *rq = this_rq(); 2313 2314 finish_task_switch(rq, prev); 2315 2316 /* 2317 * FIXME: do we need to worry about rq being invalidated by the 2318 * task_switch? 2319 */ 2320 post_schedule(rq); 2321 2322 if (current->set_child_tid) 2323 put_user(task_pid_vnr(current), current->set_child_tid); 2324 } 2325 2326 /* 2327 * context_switch - switch to the new MM and the new 2328 * thread's register state. 2329 */ 2330 static inline void 2331 context_switch(struct rq *rq, struct task_struct *prev, 2332 struct task_struct *next) 2333 { 2334 struct mm_struct *mm, *oldmm; 2335 2336 prepare_task_switch(rq, prev, next); 2337 2338 mm = next->mm; 2339 oldmm = prev->active_mm; 2340 /* 2341 * For paravirt, this is coupled with an exit in switch_to to 2342 * combine the page table reload and the switch backend into 2343 * one hypercall. 2344 */ 2345 arch_start_context_switch(prev); 2346 2347 if (!mm) { 2348 next->active_mm = oldmm; 2349 atomic_inc(&oldmm->mm_count); 2350 enter_lazy_tlb(oldmm, next); 2351 } else 2352 switch_mm(oldmm, mm, next); 2353 2354 if (!prev->mm) { 2355 prev->active_mm = NULL; 2356 rq->prev_mm = oldmm; 2357 } 2358 /* 2359 * Since the runqueue lock will be released by the next 2360 * task (which is an invalid locking op but in the case 2361 * of the scheduler it's an obvious special-case), so we 2362 * do an early lockdep release here: 2363 */ 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2365 2366 context_tracking_task_switch(prev, next); 2367 /* Here we just switch the register state and the stack. */ 2368 switch_to(prev, next, prev); 2369 2370 barrier(); 2371 /* 2372 * this_rq must be evaluated again because prev may have moved 2373 * CPUs since it called schedule(), thus the 'rq' on its stack 2374 * frame will be invalid. 2375 */ 2376 finish_task_switch(this_rq(), prev); 2377 } 2378 2379 /* 2380 * nr_running and nr_context_switches: 2381 * 2382 * externally visible scheduler statistics: current number of runnable 2383 * threads, total number of context switches performed since bootup. 2384 */ 2385 unsigned long nr_running(void) 2386 { 2387 unsigned long i, sum = 0; 2388 2389 for_each_online_cpu(i) 2390 sum += cpu_rq(i)->nr_running; 2391 2392 return sum; 2393 } 2394 2395 /* 2396 * Check if only the current task is running on the cpu. 2397 */ 2398 bool single_task_running(void) 2399 { 2400 if (cpu_rq(smp_processor_id())->nr_running == 1) 2401 return true; 2402 else 2403 return false; 2404 } 2405 EXPORT_SYMBOL(single_task_running); 2406 2407 unsigned long long nr_context_switches(void) 2408 { 2409 int i; 2410 unsigned long long sum = 0; 2411 2412 for_each_possible_cpu(i) 2413 sum += cpu_rq(i)->nr_switches; 2414 2415 return sum; 2416 } 2417 2418 unsigned long nr_iowait(void) 2419 { 2420 unsigned long i, sum = 0; 2421 2422 for_each_possible_cpu(i) 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2424 2425 return sum; 2426 } 2427 2428 unsigned long nr_iowait_cpu(int cpu) 2429 { 2430 struct rq *this = cpu_rq(cpu); 2431 return atomic_read(&this->nr_iowait); 2432 } 2433 2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2435 { 2436 struct rq *this = this_rq(); 2437 *nr_waiters = atomic_read(&this->nr_iowait); 2438 *load = this->cpu_load[0]; 2439 } 2440 2441 #ifdef CONFIG_SMP 2442 2443 /* 2444 * sched_exec - execve() is a valuable balancing opportunity, because at 2445 * this point the task has the smallest effective memory and cache footprint. 2446 */ 2447 void sched_exec(void) 2448 { 2449 struct task_struct *p = current; 2450 unsigned long flags; 2451 int dest_cpu; 2452 2453 raw_spin_lock_irqsave(&p->pi_lock, flags); 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2455 if (dest_cpu == smp_processor_id()) 2456 goto unlock; 2457 2458 if (likely(cpu_active(dest_cpu))) { 2459 struct migration_arg arg = { p, dest_cpu }; 2460 2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2463 return; 2464 } 2465 unlock: 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2467 } 2468 2469 #endif 2470 2471 DEFINE_PER_CPU(struct kernel_stat, kstat); 2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2473 2474 EXPORT_PER_CPU_SYMBOL(kstat); 2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2476 2477 /* 2478 * Return accounted runtime for the task. 2479 * In case the task is currently running, return the runtime plus current's 2480 * pending runtime that have not been accounted yet. 2481 */ 2482 unsigned long long task_sched_runtime(struct task_struct *p) 2483 { 2484 unsigned long flags; 2485 struct rq *rq; 2486 u64 ns; 2487 2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2489 /* 2490 * 64-bit doesn't need locks to atomically read a 64bit value. 2491 * So we have a optimization chance when the task's delta_exec is 0. 2492 * Reading ->on_cpu is racy, but this is ok. 2493 * 2494 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2495 * If we race with it entering cpu, unaccounted time is 0. This is 2496 * indistinguishable from the read occurring a few cycles earlier. 2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2498 * been accounted, so we're correct here as well. 2499 */ 2500 if (!p->on_cpu || !task_on_rq_queued(p)) 2501 return p->se.sum_exec_runtime; 2502 #endif 2503 2504 rq = task_rq_lock(p, &flags); 2505 /* 2506 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2507 * project cycles that may never be accounted to this 2508 * thread, breaking clock_gettime(). 2509 */ 2510 if (task_current(rq, p) && task_on_rq_queued(p)) { 2511 update_rq_clock(rq); 2512 p->sched_class->update_curr(rq); 2513 } 2514 ns = p->se.sum_exec_runtime; 2515 task_rq_unlock(rq, p, &flags); 2516 2517 return ns; 2518 } 2519 2520 /* 2521 * This function gets called by the timer code, with HZ frequency. 2522 * We call it with interrupts disabled. 2523 */ 2524 void scheduler_tick(void) 2525 { 2526 int cpu = smp_processor_id(); 2527 struct rq *rq = cpu_rq(cpu); 2528 struct task_struct *curr = rq->curr; 2529 2530 sched_clock_tick(); 2531 2532 raw_spin_lock(&rq->lock); 2533 update_rq_clock(rq); 2534 curr->sched_class->task_tick(rq, curr, 0); 2535 update_cpu_load_active(rq); 2536 raw_spin_unlock(&rq->lock); 2537 2538 perf_event_task_tick(); 2539 2540 #ifdef CONFIG_SMP 2541 rq->idle_balance = idle_cpu(cpu); 2542 trigger_load_balance(rq); 2543 #endif 2544 rq_last_tick_reset(rq); 2545 } 2546 2547 #ifdef CONFIG_NO_HZ_FULL 2548 /** 2549 * scheduler_tick_max_deferment 2550 * 2551 * Keep at least one tick per second when a single 2552 * active task is running because the scheduler doesn't 2553 * yet completely support full dynticks environment. 2554 * 2555 * This makes sure that uptime, CFS vruntime, load 2556 * balancing, etc... continue to move forward, even 2557 * with a very low granularity. 2558 * 2559 * Return: Maximum deferment in nanoseconds. 2560 */ 2561 u64 scheduler_tick_max_deferment(void) 2562 { 2563 struct rq *rq = this_rq(); 2564 unsigned long next, now = ACCESS_ONCE(jiffies); 2565 2566 next = rq->last_sched_tick + HZ; 2567 2568 if (time_before_eq(next, now)) 2569 return 0; 2570 2571 return jiffies_to_nsecs(next - now); 2572 } 2573 #endif 2574 2575 notrace unsigned long get_parent_ip(unsigned long addr) 2576 { 2577 if (in_lock_functions(addr)) { 2578 addr = CALLER_ADDR2; 2579 if (in_lock_functions(addr)) 2580 addr = CALLER_ADDR3; 2581 } 2582 return addr; 2583 } 2584 2585 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2586 defined(CONFIG_PREEMPT_TRACER)) 2587 2588 void preempt_count_add(int val) 2589 { 2590 #ifdef CONFIG_DEBUG_PREEMPT 2591 /* 2592 * Underflow? 2593 */ 2594 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2595 return; 2596 #endif 2597 __preempt_count_add(val); 2598 #ifdef CONFIG_DEBUG_PREEMPT 2599 /* 2600 * Spinlock count overflowing soon? 2601 */ 2602 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2603 PREEMPT_MASK - 10); 2604 #endif 2605 if (preempt_count() == val) { 2606 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2607 #ifdef CONFIG_DEBUG_PREEMPT 2608 current->preempt_disable_ip = ip; 2609 #endif 2610 trace_preempt_off(CALLER_ADDR0, ip); 2611 } 2612 } 2613 EXPORT_SYMBOL(preempt_count_add); 2614 NOKPROBE_SYMBOL(preempt_count_add); 2615 2616 void preempt_count_sub(int val) 2617 { 2618 #ifdef CONFIG_DEBUG_PREEMPT 2619 /* 2620 * Underflow? 2621 */ 2622 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2623 return; 2624 /* 2625 * Is the spinlock portion underflowing? 2626 */ 2627 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2628 !(preempt_count() & PREEMPT_MASK))) 2629 return; 2630 #endif 2631 2632 if (preempt_count() == val) 2633 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2634 __preempt_count_sub(val); 2635 } 2636 EXPORT_SYMBOL(preempt_count_sub); 2637 NOKPROBE_SYMBOL(preempt_count_sub); 2638 2639 #endif 2640 2641 /* 2642 * Print scheduling while atomic bug: 2643 */ 2644 static noinline void __schedule_bug(struct task_struct *prev) 2645 { 2646 if (oops_in_progress) 2647 return; 2648 2649 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2650 prev->comm, prev->pid, preempt_count()); 2651 2652 debug_show_held_locks(prev); 2653 print_modules(); 2654 if (irqs_disabled()) 2655 print_irqtrace_events(prev); 2656 #ifdef CONFIG_DEBUG_PREEMPT 2657 if (in_atomic_preempt_off()) { 2658 pr_err("Preemption disabled at:"); 2659 print_ip_sym(current->preempt_disable_ip); 2660 pr_cont("\n"); 2661 } 2662 #endif 2663 dump_stack(); 2664 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2665 } 2666 2667 /* 2668 * Various schedule()-time debugging checks and statistics: 2669 */ 2670 static inline void schedule_debug(struct task_struct *prev) 2671 { 2672 #ifdef CONFIG_SCHED_STACK_END_CHECK 2673 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2674 #endif 2675 /* 2676 * Test if we are atomic. Since do_exit() needs to call into 2677 * schedule() atomically, we ignore that path. Otherwise whine 2678 * if we are scheduling when we should not. 2679 */ 2680 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2681 __schedule_bug(prev); 2682 rcu_sleep_check(); 2683 2684 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2685 2686 schedstat_inc(this_rq(), sched_count); 2687 } 2688 2689 /* 2690 * Pick up the highest-prio task: 2691 */ 2692 static inline struct task_struct * 2693 pick_next_task(struct rq *rq, struct task_struct *prev) 2694 { 2695 const struct sched_class *class = &fair_sched_class; 2696 struct task_struct *p; 2697 2698 /* 2699 * Optimization: we know that if all tasks are in 2700 * the fair class we can call that function directly: 2701 */ 2702 if (likely(prev->sched_class == class && 2703 rq->nr_running == rq->cfs.h_nr_running)) { 2704 p = fair_sched_class.pick_next_task(rq, prev); 2705 if (unlikely(p == RETRY_TASK)) 2706 goto again; 2707 2708 /* assumes fair_sched_class->next == idle_sched_class */ 2709 if (unlikely(!p)) 2710 p = idle_sched_class.pick_next_task(rq, prev); 2711 2712 return p; 2713 } 2714 2715 again: 2716 for_each_class(class) { 2717 p = class->pick_next_task(rq, prev); 2718 if (p) { 2719 if (unlikely(p == RETRY_TASK)) 2720 goto again; 2721 return p; 2722 } 2723 } 2724 2725 BUG(); /* the idle class will always have a runnable task */ 2726 } 2727 2728 /* 2729 * __schedule() is the main scheduler function. 2730 * 2731 * The main means of driving the scheduler and thus entering this function are: 2732 * 2733 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2734 * 2735 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2736 * paths. For example, see arch/x86/entry_64.S. 2737 * 2738 * To drive preemption between tasks, the scheduler sets the flag in timer 2739 * interrupt handler scheduler_tick(). 2740 * 2741 * 3. Wakeups don't really cause entry into schedule(). They add a 2742 * task to the run-queue and that's it. 2743 * 2744 * Now, if the new task added to the run-queue preempts the current 2745 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2746 * called on the nearest possible occasion: 2747 * 2748 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2749 * 2750 * - in syscall or exception context, at the next outmost 2751 * preempt_enable(). (this might be as soon as the wake_up()'s 2752 * spin_unlock()!) 2753 * 2754 * - in IRQ context, return from interrupt-handler to 2755 * preemptible context 2756 * 2757 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2758 * then at the next: 2759 * 2760 * - cond_resched() call 2761 * - explicit schedule() call 2762 * - return from syscall or exception to user-space 2763 * - return from interrupt-handler to user-space 2764 */ 2765 static void __sched __schedule(void) 2766 { 2767 struct task_struct *prev, *next; 2768 unsigned long *switch_count; 2769 struct rq *rq; 2770 int cpu; 2771 2772 need_resched: 2773 preempt_disable(); 2774 cpu = smp_processor_id(); 2775 rq = cpu_rq(cpu); 2776 rcu_note_context_switch(cpu); 2777 prev = rq->curr; 2778 2779 schedule_debug(prev); 2780 2781 if (sched_feat(HRTICK)) 2782 hrtick_clear(rq); 2783 2784 /* 2785 * Make sure that signal_pending_state()->signal_pending() below 2786 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2787 * done by the caller to avoid the race with signal_wake_up(). 2788 */ 2789 smp_mb__before_spinlock(); 2790 raw_spin_lock_irq(&rq->lock); 2791 2792 switch_count = &prev->nivcsw; 2793 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2794 if (unlikely(signal_pending_state(prev->state, prev))) { 2795 prev->state = TASK_RUNNING; 2796 } else { 2797 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2798 prev->on_rq = 0; 2799 2800 /* 2801 * If a worker went to sleep, notify and ask workqueue 2802 * whether it wants to wake up a task to maintain 2803 * concurrency. 2804 */ 2805 if (prev->flags & PF_WQ_WORKER) { 2806 struct task_struct *to_wakeup; 2807 2808 to_wakeup = wq_worker_sleeping(prev, cpu); 2809 if (to_wakeup) 2810 try_to_wake_up_local(to_wakeup); 2811 } 2812 } 2813 switch_count = &prev->nvcsw; 2814 } 2815 2816 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0) 2817 update_rq_clock(rq); 2818 2819 next = pick_next_task(rq, prev); 2820 clear_tsk_need_resched(prev); 2821 clear_preempt_need_resched(); 2822 rq->skip_clock_update = 0; 2823 2824 if (likely(prev != next)) { 2825 rq->nr_switches++; 2826 rq->curr = next; 2827 ++*switch_count; 2828 2829 context_switch(rq, prev, next); /* unlocks the rq */ 2830 /* 2831 * The context switch have flipped the stack from under us 2832 * and restored the local variables which were saved when 2833 * this task called schedule() in the past. prev == current 2834 * is still correct, but it can be moved to another cpu/rq. 2835 */ 2836 cpu = smp_processor_id(); 2837 rq = cpu_rq(cpu); 2838 } else 2839 raw_spin_unlock_irq(&rq->lock); 2840 2841 post_schedule(rq); 2842 2843 sched_preempt_enable_no_resched(); 2844 if (need_resched()) 2845 goto need_resched; 2846 } 2847 2848 static inline void sched_submit_work(struct task_struct *tsk) 2849 { 2850 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2851 return; 2852 /* 2853 * If we are going to sleep and we have plugged IO queued, 2854 * make sure to submit it to avoid deadlocks. 2855 */ 2856 if (blk_needs_flush_plug(tsk)) 2857 blk_schedule_flush_plug(tsk); 2858 } 2859 2860 asmlinkage __visible void __sched schedule(void) 2861 { 2862 struct task_struct *tsk = current; 2863 2864 sched_submit_work(tsk); 2865 __schedule(); 2866 } 2867 EXPORT_SYMBOL(schedule); 2868 2869 #ifdef CONFIG_CONTEXT_TRACKING 2870 asmlinkage __visible void __sched schedule_user(void) 2871 { 2872 /* 2873 * If we come here after a random call to set_need_resched(), 2874 * or we have been woken up remotely but the IPI has not yet arrived, 2875 * we haven't yet exited the RCU idle mode. Do it here manually until 2876 * we find a better solution. 2877 * 2878 * NB: There are buggy callers of this function. Ideally we 2879 * should warn if prev_state != IN_USER, but that will trigger 2880 * too frequently to make sense yet. 2881 */ 2882 enum ctx_state prev_state = exception_enter(); 2883 schedule(); 2884 exception_exit(prev_state); 2885 } 2886 #endif 2887 2888 /** 2889 * schedule_preempt_disabled - called with preemption disabled 2890 * 2891 * Returns with preemption disabled. Note: preempt_count must be 1 2892 */ 2893 void __sched schedule_preempt_disabled(void) 2894 { 2895 sched_preempt_enable_no_resched(); 2896 schedule(); 2897 preempt_disable(); 2898 } 2899 2900 #ifdef CONFIG_PREEMPT 2901 /* 2902 * this is the entry point to schedule() from in-kernel preemption 2903 * off of preempt_enable. Kernel preemptions off return from interrupt 2904 * occur there and call schedule directly. 2905 */ 2906 asmlinkage __visible void __sched notrace preempt_schedule(void) 2907 { 2908 /* 2909 * If there is a non-zero preempt_count or interrupts are disabled, 2910 * we do not want to preempt the current task. Just return.. 2911 */ 2912 if (likely(!preemptible())) 2913 return; 2914 2915 do { 2916 __preempt_count_add(PREEMPT_ACTIVE); 2917 __schedule(); 2918 __preempt_count_sub(PREEMPT_ACTIVE); 2919 2920 /* 2921 * Check again in case we missed a preemption opportunity 2922 * between schedule and now. 2923 */ 2924 barrier(); 2925 } while (need_resched()); 2926 } 2927 NOKPROBE_SYMBOL(preempt_schedule); 2928 EXPORT_SYMBOL(preempt_schedule); 2929 2930 #ifdef CONFIG_CONTEXT_TRACKING 2931 /** 2932 * preempt_schedule_context - preempt_schedule called by tracing 2933 * 2934 * The tracing infrastructure uses preempt_enable_notrace to prevent 2935 * recursion and tracing preempt enabling caused by the tracing 2936 * infrastructure itself. But as tracing can happen in areas coming 2937 * from userspace or just about to enter userspace, a preempt enable 2938 * can occur before user_exit() is called. This will cause the scheduler 2939 * to be called when the system is still in usermode. 2940 * 2941 * To prevent this, the preempt_enable_notrace will use this function 2942 * instead of preempt_schedule() to exit user context if needed before 2943 * calling the scheduler. 2944 */ 2945 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2946 { 2947 enum ctx_state prev_ctx; 2948 2949 if (likely(!preemptible())) 2950 return; 2951 2952 do { 2953 __preempt_count_add(PREEMPT_ACTIVE); 2954 /* 2955 * Needs preempt disabled in case user_exit() is traced 2956 * and the tracer calls preempt_enable_notrace() causing 2957 * an infinite recursion. 2958 */ 2959 prev_ctx = exception_enter(); 2960 __schedule(); 2961 exception_exit(prev_ctx); 2962 2963 __preempt_count_sub(PREEMPT_ACTIVE); 2964 barrier(); 2965 } while (need_resched()); 2966 } 2967 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2968 #endif /* CONFIG_CONTEXT_TRACKING */ 2969 2970 #endif /* CONFIG_PREEMPT */ 2971 2972 /* 2973 * this is the entry point to schedule() from kernel preemption 2974 * off of irq context. 2975 * Note, that this is called and return with irqs disabled. This will 2976 * protect us against recursive calling from irq. 2977 */ 2978 asmlinkage __visible void __sched preempt_schedule_irq(void) 2979 { 2980 enum ctx_state prev_state; 2981 2982 /* Catch callers which need to be fixed */ 2983 BUG_ON(preempt_count() || !irqs_disabled()); 2984 2985 prev_state = exception_enter(); 2986 2987 do { 2988 __preempt_count_add(PREEMPT_ACTIVE); 2989 local_irq_enable(); 2990 __schedule(); 2991 local_irq_disable(); 2992 __preempt_count_sub(PREEMPT_ACTIVE); 2993 2994 /* 2995 * Check again in case we missed a preemption opportunity 2996 * between schedule and now. 2997 */ 2998 barrier(); 2999 } while (need_resched()); 3000 3001 exception_exit(prev_state); 3002 } 3003 3004 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3005 void *key) 3006 { 3007 return try_to_wake_up(curr->private, mode, wake_flags); 3008 } 3009 EXPORT_SYMBOL(default_wake_function); 3010 3011 #ifdef CONFIG_RT_MUTEXES 3012 3013 /* 3014 * rt_mutex_setprio - set the current priority of a task 3015 * @p: task 3016 * @prio: prio value (kernel-internal form) 3017 * 3018 * This function changes the 'effective' priority of a task. It does 3019 * not touch ->normal_prio like __setscheduler(). 3020 * 3021 * Used by the rt_mutex code to implement priority inheritance 3022 * logic. Call site only calls if the priority of the task changed. 3023 */ 3024 void rt_mutex_setprio(struct task_struct *p, int prio) 3025 { 3026 int oldprio, queued, running, enqueue_flag = 0; 3027 struct rq *rq; 3028 const struct sched_class *prev_class; 3029 3030 BUG_ON(prio > MAX_PRIO); 3031 3032 rq = __task_rq_lock(p); 3033 3034 /* 3035 * Idle task boosting is a nono in general. There is one 3036 * exception, when PREEMPT_RT and NOHZ is active: 3037 * 3038 * The idle task calls get_next_timer_interrupt() and holds 3039 * the timer wheel base->lock on the CPU and another CPU wants 3040 * to access the timer (probably to cancel it). We can safely 3041 * ignore the boosting request, as the idle CPU runs this code 3042 * with interrupts disabled and will complete the lock 3043 * protected section without being interrupted. So there is no 3044 * real need to boost. 3045 */ 3046 if (unlikely(p == rq->idle)) { 3047 WARN_ON(p != rq->curr); 3048 WARN_ON(p->pi_blocked_on); 3049 goto out_unlock; 3050 } 3051 3052 trace_sched_pi_setprio(p, prio); 3053 oldprio = p->prio; 3054 prev_class = p->sched_class; 3055 queued = task_on_rq_queued(p); 3056 running = task_current(rq, p); 3057 if (queued) 3058 dequeue_task(rq, p, 0); 3059 if (running) 3060 put_prev_task(rq, p); 3061 3062 /* 3063 * Boosting condition are: 3064 * 1. -rt task is running and holds mutex A 3065 * --> -dl task blocks on mutex A 3066 * 3067 * 2. -dl task is running and holds mutex A 3068 * --> -dl task blocks on mutex A and could preempt the 3069 * running task 3070 */ 3071 if (dl_prio(prio)) { 3072 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3073 if (!dl_prio(p->normal_prio) || 3074 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3075 p->dl.dl_boosted = 1; 3076 p->dl.dl_throttled = 0; 3077 enqueue_flag = ENQUEUE_REPLENISH; 3078 } else 3079 p->dl.dl_boosted = 0; 3080 p->sched_class = &dl_sched_class; 3081 } else if (rt_prio(prio)) { 3082 if (dl_prio(oldprio)) 3083 p->dl.dl_boosted = 0; 3084 if (oldprio < prio) 3085 enqueue_flag = ENQUEUE_HEAD; 3086 p->sched_class = &rt_sched_class; 3087 } else { 3088 if (dl_prio(oldprio)) 3089 p->dl.dl_boosted = 0; 3090 p->sched_class = &fair_sched_class; 3091 } 3092 3093 p->prio = prio; 3094 3095 if (running) 3096 p->sched_class->set_curr_task(rq); 3097 if (queued) 3098 enqueue_task(rq, p, enqueue_flag); 3099 3100 check_class_changed(rq, p, prev_class, oldprio); 3101 out_unlock: 3102 __task_rq_unlock(rq); 3103 } 3104 #endif 3105 3106 void set_user_nice(struct task_struct *p, long nice) 3107 { 3108 int old_prio, delta, queued; 3109 unsigned long flags; 3110 struct rq *rq; 3111 3112 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3113 return; 3114 /* 3115 * We have to be careful, if called from sys_setpriority(), 3116 * the task might be in the middle of scheduling on another CPU. 3117 */ 3118 rq = task_rq_lock(p, &flags); 3119 /* 3120 * The RT priorities are set via sched_setscheduler(), but we still 3121 * allow the 'normal' nice value to be set - but as expected 3122 * it wont have any effect on scheduling until the task is 3123 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3124 */ 3125 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3126 p->static_prio = NICE_TO_PRIO(nice); 3127 goto out_unlock; 3128 } 3129 queued = task_on_rq_queued(p); 3130 if (queued) 3131 dequeue_task(rq, p, 0); 3132 3133 p->static_prio = NICE_TO_PRIO(nice); 3134 set_load_weight(p); 3135 old_prio = p->prio; 3136 p->prio = effective_prio(p); 3137 delta = p->prio - old_prio; 3138 3139 if (queued) { 3140 enqueue_task(rq, p, 0); 3141 /* 3142 * If the task increased its priority or is running and 3143 * lowered its priority, then reschedule its CPU: 3144 */ 3145 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3146 resched_curr(rq); 3147 } 3148 out_unlock: 3149 task_rq_unlock(rq, p, &flags); 3150 } 3151 EXPORT_SYMBOL(set_user_nice); 3152 3153 /* 3154 * can_nice - check if a task can reduce its nice value 3155 * @p: task 3156 * @nice: nice value 3157 */ 3158 int can_nice(const struct task_struct *p, const int nice) 3159 { 3160 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3161 int nice_rlim = nice_to_rlimit(nice); 3162 3163 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3164 capable(CAP_SYS_NICE)); 3165 } 3166 3167 #ifdef __ARCH_WANT_SYS_NICE 3168 3169 /* 3170 * sys_nice - change the priority of the current process. 3171 * @increment: priority increment 3172 * 3173 * sys_setpriority is a more generic, but much slower function that 3174 * does similar things. 3175 */ 3176 SYSCALL_DEFINE1(nice, int, increment) 3177 { 3178 long nice, retval; 3179 3180 /* 3181 * Setpriority might change our priority at the same moment. 3182 * We don't have to worry. Conceptually one call occurs first 3183 * and we have a single winner. 3184 */ 3185 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3186 nice = task_nice(current) + increment; 3187 3188 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3189 if (increment < 0 && !can_nice(current, nice)) 3190 return -EPERM; 3191 3192 retval = security_task_setnice(current, nice); 3193 if (retval) 3194 return retval; 3195 3196 set_user_nice(current, nice); 3197 return 0; 3198 } 3199 3200 #endif 3201 3202 /** 3203 * task_prio - return the priority value of a given task. 3204 * @p: the task in question. 3205 * 3206 * Return: The priority value as seen by users in /proc. 3207 * RT tasks are offset by -200. Normal tasks are centered 3208 * around 0, value goes from -16 to +15. 3209 */ 3210 int task_prio(const struct task_struct *p) 3211 { 3212 return p->prio - MAX_RT_PRIO; 3213 } 3214 3215 /** 3216 * idle_cpu - is a given cpu idle currently? 3217 * @cpu: the processor in question. 3218 * 3219 * Return: 1 if the CPU is currently idle. 0 otherwise. 3220 */ 3221 int idle_cpu(int cpu) 3222 { 3223 struct rq *rq = cpu_rq(cpu); 3224 3225 if (rq->curr != rq->idle) 3226 return 0; 3227 3228 if (rq->nr_running) 3229 return 0; 3230 3231 #ifdef CONFIG_SMP 3232 if (!llist_empty(&rq->wake_list)) 3233 return 0; 3234 #endif 3235 3236 return 1; 3237 } 3238 3239 /** 3240 * idle_task - return the idle task for a given cpu. 3241 * @cpu: the processor in question. 3242 * 3243 * Return: The idle task for the cpu @cpu. 3244 */ 3245 struct task_struct *idle_task(int cpu) 3246 { 3247 return cpu_rq(cpu)->idle; 3248 } 3249 3250 /** 3251 * find_process_by_pid - find a process with a matching PID value. 3252 * @pid: the pid in question. 3253 * 3254 * The task of @pid, if found. %NULL otherwise. 3255 */ 3256 static struct task_struct *find_process_by_pid(pid_t pid) 3257 { 3258 return pid ? find_task_by_vpid(pid) : current; 3259 } 3260 3261 /* 3262 * This function initializes the sched_dl_entity of a newly becoming 3263 * SCHED_DEADLINE task. 3264 * 3265 * Only the static values are considered here, the actual runtime and the 3266 * absolute deadline will be properly calculated when the task is enqueued 3267 * for the first time with its new policy. 3268 */ 3269 static void 3270 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3271 { 3272 struct sched_dl_entity *dl_se = &p->dl; 3273 3274 init_dl_task_timer(dl_se); 3275 dl_se->dl_runtime = attr->sched_runtime; 3276 dl_se->dl_deadline = attr->sched_deadline; 3277 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3278 dl_se->flags = attr->sched_flags; 3279 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3280 dl_se->dl_throttled = 0; 3281 dl_se->dl_new = 1; 3282 dl_se->dl_yielded = 0; 3283 } 3284 3285 /* 3286 * sched_setparam() passes in -1 for its policy, to let the functions 3287 * it calls know not to change it. 3288 */ 3289 #define SETPARAM_POLICY -1 3290 3291 static void __setscheduler_params(struct task_struct *p, 3292 const struct sched_attr *attr) 3293 { 3294 int policy = attr->sched_policy; 3295 3296 if (policy == SETPARAM_POLICY) 3297 policy = p->policy; 3298 3299 p->policy = policy; 3300 3301 if (dl_policy(policy)) 3302 __setparam_dl(p, attr); 3303 else if (fair_policy(policy)) 3304 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3305 3306 /* 3307 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3308 * !rt_policy. Always setting this ensures that things like 3309 * getparam()/getattr() don't report silly values for !rt tasks. 3310 */ 3311 p->rt_priority = attr->sched_priority; 3312 p->normal_prio = normal_prio(p); 3313 set_load_weight(p); 3314 } 3315 3316 /* Actually do priority change: must hold pi & rq lock. */ 3317 static void __setscheduler(struct rq *rq, struct task_struct *p, 3318 const struct sched_attr *attr) 3319 { 3320 __setscheduler_params(p, attr); 3321 3322 /* 3323 * If we get here, there was no pi waiters boosting the 3324 * task. It is safe to use the normal prio. 3325 */ 3326 p->prio = normal_prio(p); 3327 3328 if (dl_prio(p->prio)) 3329 p->sched_class = &dl_sched_class; 3330 else if (rt_prio(p->prio)) 3331 p->sched_class = &rt_sched_class; 3332 else 3333 p->sched_class = &fair_sched_class; 3334 } 3335 3336 static void 3337 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3338 { 3339 struct sched_dl_entity *dl_se = &p->dl; 3340 3341 attr->sched_priority = p->rt_priority; 3342 attr->sched_runtime = dl_se->dl_runtime; 3343 attr->sched_deadline = dl_se->dl_deadline; 3344 attr->sched_period = dl_se->dl_period; 3345 attr->sched_flags = dl_se->flags; 3346 } 3347 3348 /* 3349 * This function validates the new parameters of a -deadline task. 3350 * We ask for the deadline not being zero, and greater or equal 3351 * than the runtime, as well as the period of being zero or 3352 * greater than deadline. Furthermore, we have to be sure that 3353 * user parameters are above the internal resolution of 1us (we 3354 * check sched_runtime only since it is always the smaller one) and 3355 * below 2^63 ns (we have to check both sched_deadline and 3356 * sched_period, as the latter can be zero). 3357 */ 3358 static bool 3359 __checkparam_dl(const struct sched_attr *attr) 3360 { 3361 /* deadline != 0 */ 3362 if (attr->sched_deadline == 0) 3363 return false; 3364 3365 /* 3366 * Since we truncate DL_SCALE bits, make sure we're at least 3367 * that big. 3368 */ 3369 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3370 return false; 3371 3372 /* 3373 * Since we use the MSB for wrap-around and sign issues, make 3374 * sure it's not set (mind that period can be equal to zero). 3375 */ 3376 if (attr->sched_deadline & (1ULL << 63) || 3377 attr->sched_period & (1ULL << 63)) 3378 return false; 3379 3380 /* runtime <= deadline <= period (if period != 0) */ 3381 if ((attr->sched_period != 0 && 3382 attr->sched_period < attr->sched_deadline) || 3383 attr->sched_deadline < attr->sched_runtime) 3384 return false; 3385 3386 return true; 3387 } 3388 3389 /* 3390 * check the target process has a UID that matches the current process's 3391 */ 3392 static bool check_same_owner(struct task_struct *p) 3393 { 3394 const struct cred *cred = current_cred(), *pcred; 3395 bool match; 3396 3397 rcu_read_lock(); 3398 pcred = __task_cred(p); 3399 match = (uid_eq(cred->euid, pcred->euid) || 3400 uid_eq(cred->euid, pcred->uid)); 3401 rcu_read_unlock(); 3402 return match; 3403 } 3404 3405 static int __sched_setscheduler(struct task_struct *p, 3406 const struct sched_attr *attr, 3407 bool user) 3408 { 3409 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3410 MAX_RT_PRIO - 1 - attr->sched_priority; 3411 int retval, oldprio, oldpolicy = -1, queued, running; 3412 int policy = attr->sched_policy; 3413 unsigned long flags; 3414 const struct sched_class *prev_class; 3415 struct rq *rq; 3416 int reset_on_fork; 3417 3418 /* may grab non-irq protected spin_locks */ 3419 BUG_ON(in_interrupt()); 3420 recheck: 3421 /* double check policy once rq lock held */ 3422 if (policy < 0) { 3423 reset_on_fork = p->sched_reset_on_fork; 3424 policy = oldpolicy = p->policy; 3425 } else { 3426 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3427 3428 if (policy != SCHED_DEADLINE && 3429 policy != SCHED_FIFO && policy != SCHED_RR && 3430 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3431 policy != SCHED_IDLE) 3432 return -EINVAL; 3433 } 3434 3435 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3436 return -EINVAL; 3437 3438 /* 3439 * Valid priorities for SCHED_FIFO and SCHED_RR are 3440 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3441 * SCHED_BATCH and SCHED_IDLE is 0. 3442 */ 3443 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3444 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3445 return -EINVAL; 3446 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3447 (rt_policy(policy) != (attr->sched_priority != 0))) 3448 return -EINVAL; 3449 3450 /* 3451 * Allow unprivileged RT tasks to decrease priority: 3452 */ 3453 if (user && !capable(CAP_SYS_NICE)) { 3454 if (fair_policy(policy)) { 3455 if (attr->sched_nice < task_nice(p) && 3456 !can_nice(p, attr->sched_nice)) 3457 return -EPERM; 3458 } 3459 3460 if (rt_policy(policy)) { 3461 unsigned long rlim_rtprio = 3462 task_rlimit(p, RLIMIT_RTPRIO); 3463 3464 /* can't set/change the rt policy */ 3465 if (policy != p->policy && !rlim_rtprio) 3466 return -EPERM; 3467 3468 /* can't increase priority */ 3469 if (attr->sched_priority > p->rt_priority && 3470 attr->sched_priority > rlim_rtprio) 3471 return -EPERM; 3472 } 3473 3474 /* 3475 * Can't set/change SCHED_DEADLINE policy at all for now 3476 * (safest behavior); in the future we would like to allow 3477 * unprivileged DL tasks to increase their relative deadline 3478 * or reduce their runtime (both ways reducing utilization) 3479 */ 3480 if (dl_policy(policy)) 3481 return -EPERM; 3482 3483 /* 3484 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3485 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3486 */ 3487 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3488 if (!can_nice(p, task_nice(p))) 3489 return -EPERM; 3490 } 3491 3492 /* can't change other user's priorities */ 3493 if (!check_same_owner(p)) 3494 return -EPERM; 3495 3496 /* Normal users shall not reset the sched_reset_on_fork flag */ 3497 if (p->sched_reset_on_fork && !reset_on_fork) 3498 return -EPERM; 3499 } 3500 3501 if (user) { 3502 retval = security_task_setscheduler(p); 3503 if (retval) 3504 return retval; 3505 } 3506 3507 /* 3508 * make sure no PI-waiters arrive (or leave) while we are 3509 * changing the priority of the task: 3510 * 3511 * To be able to change p->policy safely, the appropriate 3512 * runqueue lock must be held. 3513 */ 3514 rq = task_rq_lock(p, &flags); 3515 3516 /* 3517 * Changing the policy of the stop threads its a very bad idea 3518 */ 3519 if (p == rq->stop) { 3520 task_rq_unlock(rq, p, &flags); 3521 return -EINVAL; 3522 } 3523 3524 /* 3525 * If not changing anything there's no need to proceed further, 3526 * but store a possible modification of reset_on_fork. 3527 */ 3528 if (unlikely(policy == p->policy)) { 3529 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3530 goto change; 3531 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3532 goto change; 3533 if (dl_policy(policy)) 3534 goto change; 3535 3536 p->sched_reset_on_fork = reset_on_fork; 3537 task_rq_unlock(rq, p, &flags); 3538 return 0; 3539 } 3540 change: 3541 3542 if (user) { 3543 #ifdef CONFIG_RT_GROUP_SCHED 3544 /* 3545 * Do not allow realtime tasks into groups that have no runtime 3546 * assigned. 3547 */ 3548 if (rt_bandwidth_enabled() && rt_policy(policy) && 3549 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3550 !task_group_is_autogroup(task_group(p))) { 3551 task_rq_unlock(rq, p, &flags); 3552 return -EPERM; 3553 } 3554 #endif 3555 #ifdef CONFIG_SMP 3556 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3557 cpumask_t *span = rq->rd->span; 3558 3559 /* 3560 * Don't allow tasks with an affinity mask smaller than 3561 * the entire root_domain to become SCHED_DEADLINE. We 3562 * will also fail if there's no bandwidth available. 3563 */ 3564 if (!cpumask_subset(span, &p->cpus_allowed) || 3565 rq->rd->dl_bw.bw == 0) { 3566 task_rq_unlock(rq, p, &flags); 3567 return -EPERM; 3568 } 3569 } 3570 #endif 3571 } 3572 3573 /* recheck policy now with rq lock held */ 3574 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3575 policy = oldpolicy = -1; 3576 task_rq_unlock(rq, p, &flags); 3577 goto recheck; 3578 } 3579 3580 /* 3581 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3582 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3583 * is available. 3584 */ 3585 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3586 task_rq_unlock(rq, p, &flags); 3587 return -EBUSY; 3588 } 3589 3590 p->sched_reset_on_fork = reset_on_fork; 3591 oldprio = p->prio; 3592 3593 /* 3594 * Special case for priority boosted tasks. 3595 * 3596 * If the new priority is lower or equal (user space view) 3597 * than the current (boosted) priority, we just store the new 3598 * normal parameters and do not touch the scheduler class and 3599 * the runqueue. This will be done when the task deboost 3600 * itself. 3601 */ 3602 if (rt_mutex_check_prio(p, newprio)) { 3603 __setscheduler_params(p, attr); 3604 task_rq_unlock(rq, p, &flags); 3605 return 0; 3606 } 3607 3608 queued = task_on_rq_queued(p); 3609 running = task_current(rq, p); 3610 if (queued) 3611 dequeue_task(rq, p, 0); 3612 if (running) 3613 put_prev_task(rq, p); 3614 3615 prev_class = p->sched_class; 3616 __setscheduler(rq, p, attr); 3617 3618 if (running) 3619 p->sched_class->set_curr_task(rq); 3620 if (queued) { 3621 /* 3622 * We enqueue to tail when the priority of a task is 3623 * increased (user space view). 3624 */ 3625 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3626 } 3627 3628 check_class_changed(rq, p, prev_class, oldprio); 3629 task_rq_unlock(rq, p, &flags); 3630 3631 rt_mutex_adjust_pi(p); 3632 3633 return 0; 3634 } 3635 3636 static int _sched_setscheduler(struct task_struct *p, int policy, 3637 const struct sched_param *param, bool check) 3638 { 3639 struct sched_attr attr = { 3640 .sched_policy = policy, 3641 .sched_priority = param->sched_priority, 3642 .sched_nice = PRIO_TO_NICE(p->static_prio), 3643 }; 3644 3645 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3646 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3647 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3648 policy &= ~SCHED_RESET_ON_FORK; 3649 attr.sched_policy = policy; 3650 } 3651 3652 return __sched_setscheduler(p, &attr, check); 3653 } 3654 /** 3655 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3656 * @p: the task in question. 3657 * @policy: new policy. 3658 * @param: structure containing the new RT priority. 3659 * 3660 * Return: 0 on success. An error code otherwise. 3661 * 3662 * NOTE that the task may be already dead. 3663 */ 3664 int sched_setscheduler(struct task_struct *p, int policy, 3665 const struct sched_param *param) 3666 { 3667 return _sched_setscheduler(p, policy, param, true); 3668 } 3669 EXPORT_SYMBOL_GPL(sched_setscheduler); 3670 3671 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3672 { 3673 return __sched_setscheduler(p, attr, true); 3674 } 3675 EXPORT_SYMBOL_GPL(sched_setattr); 3676 3677 /** 3678 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3679 * @p: the task in question. 3680 * @policy: new policy. 3681 * @param: structure containing the new RT priority. 3682 * 3683 * Just like sched_setscheduler, only don't bother checking if the 3684 * current context has permission. For example, this is needed in 3685 * stop_machine(): we create temporary high priority worker threads, 3686 * but our caller might not have that capability. 3687 * 3688 * Return: 0 on success. An error code otherwise. 3689 */ 3690 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3691 const struct sched_param *param) 3692 { 3693 return _sched_setscheduler(p, policy, param, false); 3694 } 3695 3696 static int 3697 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3698 { 3699 struct sched_param lparam; 3700 struct task_struct *p; 3701 int retval; 3702 3703 if (!param || pid < 0) 3704 return -EINVAL; 3705 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3706 return -EFAULT; 3707 3708 rcu_read_lock(); 3709 retval = -ESRCH; 3710 p = find_process_by_pid(pid); 3711 if (p != NULL) 3712 retval = sched_setscheduler(p, policy, &lparam); 3713 rcu_read_unlock(); 3714 3715 return retval; 3716 } 3717 3718 /* 3719 * Mimics kernel/events/core.c perf_copy_attr(). 3720 */ 3721 static int sched_copy_attr(struct sched_attr __user *uattr, 3722 struct sched_attr *attr) 3723 { 3724 u32 size; 3725 int ret; 3726 3727 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3728 return -EFAULT; 3729 3730 /* 3731 * zero the full structure, so that a short copy will be nice. 3732 */ 3733 memset(attr, 0, sizeof(*attr)); 3734 3735 ret = get_user(size, &uattr->size); 3736 if (ret) 3737 return ret; 3738 3739 if (size > PAGE_SIZE) /* silly large */ 3740 goto err_size; 3741 3742 if (!size) /* abi compat */ 3743 size = SCHED_ATTR_SIZE_VER0; 3744 3745 if (size < SCHED_ATTR_SIZE_VER0) 3746 goto err_size; 3747 3748 /* 3749 * If we're handed a bigger struct than we know of, 3750 * ensure all the unknown bits are 0 - i.e. new 3751 * user-space does not rely on any kernel feature 3752 * extensions we dont know about yet. 3753 */ 3754 if (size > sizeof(*attr)) { 3755 unsigned char __user *addr; 3756 unsigned char __user *end; 3757 unsigned char val; 3758 3759 addr = (void __user *)uattr + sizeof(*attr); 3760 end = (void __user *)uattr + size; 3761 3762 for (; addr < end; addr++) { 3763 ret = get_user(val, addr); 3764 if (ret) 3765 return ret; 3766 if (val) 3767 goto err_size; 3768 } 3769 size = sizeof(*attr); 3770 } 3771 3772 ret = copy_from_user(attr, uattr, size); 3773 if (ret) 3774 return -EFAULT; 3775 3776 /* 3777 * XXX: do we want to be lenient like existing syscalls; or do we want 3778 * to be strict and return an error on out-of-bounds values? 3779 */ 3780 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3781 3782 return 0; 3783 3784 err_size: 3785 put_user(sizeof(*attr), &uattr->size); 3786 return -E2BIG; 3787 } 3788 3789 /** 3790 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3791 * @pid: the pid in question. 3792 * @policy: new policy. 3793 * @param: structure containing the new RT priority. 3794 * 3795 * Return: 0 on success. An error code otherwise. 3796 */ 3797 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3798 struct sched_param __user *, param) 3799 { 3800 /* negative values for policy are not valid */ 3801 if (policy < 0) 3802 return -EINVAL; 3803 3804 return do_sched_setscheduler(pid, policy, param); 3805 } 3806 3807 /** 3808 * sys_sched_setparam - set/change the RT priority of a thread 3809 * @pid: the pid in question. 3810 * @param: structure containing the new RT priority. 3811 * 3812 * Return: 0 on success. An error code otherwise. 3813 */ 3814 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3815 { 3816 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3817 } 3818 3819 /** 3820 * sys_sched_setattr - same as above, but with extended sched_attr 3821 * @pid: the pid in question. 3822 * @uattr: structure containing the extended parameters. 3823 * @flags: for future extension. 3824 */ 3825 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3826 unsigned int, flags) 3827 { 3828 struct sched_attr attr; 3829 struct task_struct *p; 3830 int retval; 3831 3832 if (!uattr || pid < 0 || flags) 3833 return -EINVAL; 3834 3835 retval = sched_copy_attr(uattr, &attr); 3836 if (retval) 3837 return retval; 3838 3839 if ((int)attr.sched_policy < 0) 3840 return -EINVAL; 3841 3842 rcu_read_lock(); 3843 retval = -ESRCH; 3844 p = find_process_by_pid(pid); 3845 if (p != NULL) 3846 retval = sched_setattr(p, &attr); 3847 rcu_read_unlock(); 3848 3849 return retval; 3850 } 3851 3852 /** 3853 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3854 * @pid: the pid in question. 3855 * 3856 * Return: On success, the policy of the thread. Otherwise, a negative error 3857 * code. 3858 */ 3859 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3860 { 3861 struct task_struct *p; 3862 int retval; 3863 3864 if (pid < 0) 3865 return -EINVAL; 3866 3867 retval = -ESRCH; 3868 rcu_read_lock(); 3869 p = find_process_by_pid(pid); 3870 if (p) { 3871 retval = security_task_getscheduler(p); 3872 if (!retval) 3873 retval = p->policy 3874 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3875 } 3876 rcu_read_unlock(); 3877 return retval; 3878 } 3879 3880 /** 3881 * sys_sched_getparam - get the RT priority of a thread 3882 * @pid: the pid in question. 3883 * @param: structure containing the RT priority. 3884 * 3885 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3886 * code. 3887 */ 3888 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3889 { 3890 struct sched_param lp = { .sched_priority = 0 }; 3891 struct task_struct *p; 3892 int retval; 3893 3894 if (!param || pid < 0) 3895 return -EINVAL; 3896 3897 rcu_read_lock(); 3898 p = find_process_by_pid(pid); 3899 retval = -ESRCH; 3900 if (!p) 3901 goto out_unlock; 3902 3903 retval = security_task_getscheduler(p); 3904 if (retval) 3905 goto out_unlock; 3906 3907 if (task_has_rt_policy(p)) 3908 lp.sched_priority = p->rt_priority; 3909 rcu_read_unlock(); 3910 3911 /* 3912 * This one might sleep, we cannot do it with a spinlock held ... 3913 */ 3914 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3915 3916 return retval; 3917 3918 out_unlock: 3919 rcu_read_unlock(); 3920 return retval; 3921 } 3922 3923 static int sched_read_attr(struct sched_attr __user *uattr, 3924 struct sched_attr *attr, 3925 unsigned int usize) 3926 { 3927 int ret; 3928 3929 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3930 return -EFAULT; 3931 3932 /* 3933 * If we're handed a smaller struct than we know of, 3934 * ensure all the unknown bits are 0 - i.e. old 3935 * user-space does not get uncomplete information. 3936 */ 3937 if (usize < sizeof(*attr)) { 3938 unsigned char *addr; 3939 unsigned char *end; 3940 3941 addr = (void *)attr + usize; 3942 end = (void *)attr + sizeof(*attr); 3943 3944 for (; addr < end; addr++) { 3945 if (*addr) 3946 return -EFBIG; 3947 } 3948 3949 attr->size = usize; 3950 } 3951 3952 ret = copy_to_user(uattr, attr, attr->size); 3953 if (ret) 3954 return -EFAULT; 3955 3956 return 0; 3957 } 3958 3959 /** 3960 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3961 * @pid: the pid in question. 3962 * @uattr: structure containing the extended parameters. 3963 * @size: sizeof(attr) for fwd/bwd comp. 3964 * @flags: for future extension. 3965 */ 3966 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3967 unsigned int, size, unsigned int, flags) 3968 { 3969 struct sched_attr attr = { 3970 .size = sizeof(struct sched_attr), 3971 }; 3972 struct task_struct *p; 3973 int retval; 3974 3975 if (!uattr || pid < 0 || size > PAGE_SIZE || 3976 size < SCHED_ATTR_SIZE_VER0 || flags) 3977 return -EINVAL; 3978 3979 rcu_read_lock(); 3980 p = find_process_by_pid(pid); 3981 retval = -ESRCH; 3982 if (!p) 3983 goto out_unlock; 3984 3985 retval = security_task_getscheduler(p); 3986 if (retval) 3987 goto out_unlock; 3988 3989 attr.sched_policy = p->policy; 3990 if (p->sched_reset_on_fork) 3991 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3992 if (task_has_dl_policy(p)) 3993 __getparam_dl(p, &attr); 3994 else if (task_has_rt_policy(p)) 3995 attr.sched_priority = p->rt_priority; 3996 else 3997 attr.sched_nice = task_nice(p); 3998 3999 rcu_read_unlock(); 4000 4001 retval = sched_read_attr(uattr, &attr, size); 4002 return retval; 4003 4004 out_unlock: 4005 rcu_read_unlock(); 4006 return retval; 4007 } 4008 4009 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4010 { 4011 cpumask_var_t cpus_allowed, new_mask; 4012 struct task_struct *p; 4013 int retval; 4014 4015 rcu_read_lock(); 4016 4017 p = find_process_by_pid(pid); 4018 if (!p) { 4019 rcu_read_unlock(); 4020 return -ESRCH; 4021 } 4022 4023 /* Prevent p going away */ 4024 get_task_struct(p); 4025 rcu_read_unlock(); 4026 4027 if (p->flags & PF_NO_SETAFFINITY) { 4028 retval = -EINVAL; 4029 goto out_put_task; 4030 } 4031 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4032 retval = -ENOMEM; 4033 goto out_put_task; 4034 } 4035 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4036 retval = -ENOMEM; 4037 goto out_free_cpus_allowed; 4038 } 4039 retval = -EPERM; 4040 if (!check_same_owner(p)) { 4041 rcu_read_lock(); 4042 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4043 rcu_read_unlock(); 4044 goto out_free_new_mask; 4045 } 4046 rcu_read_unlock(); 4047 } 4048 4049 retval = security_task_setscheduler(p); 4050 if (retval) 4051 goto out_free_new_mask; 4052 4053 4054 cpuset_cpus_allowed(p, cpus_allowed); 4055 cpumask_and(new_mask, in_mask, cpus_allowed); 4056 4057 /* 4058 * Since bandwidth control happens on root_domain basis, 4059 * if admission test is enabled, we only admit -deadline 4060 * tasks allowed to run on all the CPUs in the task's 4061 * root_domain. 4062 */ 4063 #ifdef CONFIG_SMP 4064 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4065 rcu_read_lock(); 4066 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4067 retval = -EBUSY; 4068 rcu_read_unlock(); 4069 goto out_free_new_mask; 4070 } 4071 rcu_read_unlock(); 4072 } 4073 #endif 4074 again: 4075 retval = set_cpus_allowed_ptr(p, new_mask); 4076 4077 if (!retval) { 4078 cpuset_cpus_allowed(p, cpus_allowed); 4079 if (!cpumask_subset(new_mask, cpus_allowed)) { 4080 /* 4081 * We must have raced with a concurrent cpuset 4082 * update. Just reset the cpus_allowed to the 4083 * cpuset's cpus_allowed 4084 */ 4085 cpumask_copy(new_mask, cpus_allowed); 4086 goto again; 4087 } 4088 } 4089 out_free_new_mask: 4090 free_cpumask_var(new_mask); 4091 out_free_cpus_allowed: 4092 free_cpumask_var(cpus_allowed); 4093 out_put_task: 4094 put_task_struct(p); 4095 return retval; 4096 } 4097 4098 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4099 struct cpumask *new_mask) 4100 { 4101 if (len < cpumask_size()) 4102 cpumask_clear(new_mask); 4103 else if (len > cpumask_size()) 4104 len = cpumask_size(); 4105 4106 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4107 } 4108 4109 /** 4110 * sys_sched_setaffinity - set the cpu affinity of a process 4111 * @pid: pid of the process 4112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4113 * @user_mask_ptr: user-space pointer to the new cpu mask 4114 * 4115 * Return: 0 on success. An error code otherwise. 4116 */ 4117 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4118 unsigned long __user *, user_mask_ptr) 4119 { 4120 cpumask_var_t new_mask; 4121 int retval; 4122 4123 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4124 return -ENOMEM; 4125 4126 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4127 if (retval == 0) 4128 retval = sched_setaffinity(pid, new_mask); 4129 free_cpumask_var(new_mask); 4130 return retval; 4131 } 4132 4133 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4134 { 4135 struct task_struct *p; 4136 unsigned long flags; 4137 int retval; 4138 4139 rcu_read_lock(); 4140 4141 retval = -ESRCH; 4142 p = find_process_by_pid(pid); 4143 if (!p) 4144 goto out_unlock; 4145 4146 retval = security_task_getscheduler(p); 4147 if (retval) 4148 goto out_unlock; 4149 4150 raw_spin_lock_irqsave(&p->pi_lock, flags); 4151 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4152 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4153 4154 out_unlock: 4155 rcu_read_unlock(); 4156 4157 return retval; 4158 } 4159 4160 /** 4161 * sys_sched_getaffinity - get the cpu affinity of a process 4162 * @pid: pid of the process 4163 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4164 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4165 * 4166 * Return: 0 on success. An error code otherwise. 4167 */ 4168 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4169 unsigned long __user *, user_mask_ptr) 4170 { 4171 int ret; 4172 cpumask_var_t mask; 4173 4174 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4175 return -EINVAL; 4176 if (len & (sizeof(unsigned long)-1)) 4177 return -EINVAL; 4178 4179 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4180 return -ENOMEM; 4181 4182 ret = sched_getaffinity(pid, mask); 4183 if (ret == 0) { 4184 size_t retlen = min_t(size_t, len, cpumask_size()); 4185 4186 if (copy_to_user(user_mask_ptr, mask, retlen)) 4187 ret = -EFAULT; 4188 else 4189 ret = retlen; 4190 } 4191 free_cpumask_var(mask); 4192 4193 return ret; 4194 } 4195 4196 /** 4197 * sys_sched_yield - yield the current processor to other threads. 4198 * 4199 * This function yields the current CPU to other tasks. If there are no 4200 * other threads running on this CPU then this function will return. 4201 * 4202 * Return: 0. 4203 */ 4204 SYSCALL_DEFINE0(sched_yield) 4205 { 4206 struct rq *rq = this_rq_lock(); 4207 4208 schedstat_inc(rq, yld_count); 4209 current->sched_class->yield_task(rq); 4210 4211 /* 4212 * Since we are going to call schedule() anyway, there's 4213 * no need to preempt or enable interrupts: 4214 */ 4215 __release(rq->lock); 4216 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4217 do_raw_spin_unlock(&rq->lock); 4218 sched_preempt_enable_no_resched(); 4219 4220 schedule(); 4221 4222 return 0; 4223 } 4224 4225 static void __cond_resched(void) 4226 { 4227 __preempt_count_add(PREEMPT_ACTIVE); 4228 __schedule(); 4229 __preempt_count_sub(PREEMPT_ACTIVE); 4230 } 4231 4232 int __sched _cond_resched(void) 4233 { 4234 if (should_resched()) { 4235 __cond_resched(); 4236 return 1; 4237 } 4238 return 0; 4239 } 4240 EXPORT_SYMBOL(_cond_resched); 4241 4242 /* 4243 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4244 * call schedule, and on return reacquire the lock. 4245 * 4246 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4247 * operations here to prevent schedule() from being called twice (once via 4248 * spin_unlock(), once by hand). 4249 */ 4250 int __cond_resched_lock(spinlock_t *lock) 4251 { 4252 int resched = should_resched(); 4253 int ret = 0; 4254 4255 lockdep_assert_held(lock); 4256 4257 if (spin_needbreak(lock) || resched) { 4258 spin_unlock(lock); 4259 if (resched) 4260 __cond_resched(); 4261 else 4262 cpu_relax(); 4263 ret = 1; 4264 spin_lock(lock); 4265 } 4266 return ret; 4267 } 4268 EXPORT_SYMBOL(__cond_resched_lock); 4269 4270 int __sched __cond_resched_softirq(void) 4271 { 4272 BUG_ON(!in_softirq()); 4273 4274 if (should_resched()) { 4275 local_bh_enable(); 4276 __cond_resched(); 4277 local_bh_disable(); 4278 return 1; 4279 } 4280 return 0; 4281 } 4282 EXPORT_SYMBOL(__cond_resched_softirq); 4283 4284 /** 4285 * yield - yield the current processor to other threads. 4286 * 4287 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4288 * 4289 * The scheduler is at all times free to pick the calling task as the most 4290 * eligible task to run, if removing the yield() call from your code breaks 4291 * it, its already broken. 4292 * 4293 * Typical broken usage is: 4294 * 4295 * while (!event) 4296 * yield(); 4297 * 4298 * where one assumes that yield() will let 'the other' process run that will 4299 * make event true. If the current task is a SCHED_FIFO task that will never 4300 * happen. Never use yield() as a progress guarantee!! 4301 * 4302 * If you want to use yield() to wait for something, use wait_event(). 4303 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4304 * If you still want to use yield(), do not! 4305 */ 4306 void __sched yield(void) 4307 { 4308 set_current_state(TASK_RUNNING); 4309 sys_sched_yield(); 4310 } 4311 EXPORT_SYMBOL(yield); 4312 4313 /** 4314 * yield_to - yield the current processor to another thread in 4315 * your thread group, or accelerate that thread toward the 4316 * processor it's on. 4317 * @p: target task 4318 * @preempt: whether task preemption is allowed or not 4319 * 4320 * It's the caller's job to ensure that the target task struct 4321 * can't go away on us before we can do any checks. 4322 * 4323 * Return: 4324 * true (>0) if we indeed boosted the target task. 4325 * false (0) if we failed to boost the target. 4326 * -ESRCH if there's no task to yield to. 4327 */ 4328 int __sched yield_to(struct task_struct *p, bool preempt) 4329 { 4330 struct task_struct *curr = current; 4331 struct rq *rq, *p_rq; 4332 unsigned long flags; 4333 int yielded = 0; 4334 4335 local_irq_save(flags); 4336 rq = this_rq(); 4337 4338 again: 4339 p_rq = task_rq(p); 4340 /* 4341 * If we're the only runnable task on the rq and target rq also 4342 * has only one task, there's absolutely no point in yielding. 4343 */ 4344 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4345 yielded = -ESRCH; 4346 goto out_irq; 4347 } 4348 4349 double_rq_lock(rq, p_rq); 4350 if (task_rq(p) != p_rq) { 4351 double_rq_unlock(rq, p_rq); 4352 goto again; 4353 } 4354 4355 if (!curr->sched_class->yield_to_task) 4356 goto out_unlock; 4357 4358 if (curr->sched_class != p->sched_class) 4359 goto out_unlock; 4360 4361 if (task_running(p_rq, p) || p->state) 4362 goto out_unlock; 4363 4364 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4365 if (yielded) { 4366 schedstat_inc(rq, yld_count); 4367 /* 4368 * Make p's CPU reschedule; pick_next_entity takes care of 4369 * fairness. 4370 */ 4371 if (preempt && rq != p_rq) 4372 resched_curr(p_rq); 4373 } 4374 4375 out_unlock: 4376 double_rq_unlock(rq, p_rq); 4377 out_irq: 4378 local_irq_restore(flags); 4379 4380 if (yielded > 0) 4381 schedule(); 4382 4383 return yielded; 4384 } 4385 EXPORT_SYMBOL_GPL(yield_to); 4386 4387 /* 4388 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4389 * that process accounting knows that this is a task in IO wait state. 4390 */ 4391 void __sched io_schedule(void) 4392 { 4393 struct rq *rq = raw_rq(); 4394 4395 delayacct_blkio_start(); 4396 atomic_inc(&rq->nr_iowait); 4397 blk_flush_plug(current); 4398 current->in_iowait = 1; 4399 schedule(); 4400 current->in_iowait = 0; 4401 atomic_dec(&rq->nr_iowait); 4402 delayacct_blkio_end(); 4403 } 4404 EXPORT_SYMBOL(io_schedule); 4405 4406 long __sched io_schedule_timeout(long timeout) 4407 { 4408 struct rq *rq = raw_rq(); 4409 long ret; 4410 4411 delayacct_blkio_start(); 4412 atomic_inc(&rq->nr_iowait); 4413 blk_flush_plug(current); 4414 current->in_iowait = 1; 4415 ret = schedule_timeout(timeout); 4416 current->in_iowait = 0; 4417 atomic_dec(&rq->nr_iowait); 4418 delayacct_blkio_end(); 4419 return ret; 4420 } 4421 4422 /** 4423 * sys_sched_get_priority_max - return maximum RT priority. 4424 * @policy: scheduling class. 4425 * 4426 * Return: On success, this syscall returns the maximum 4427 * rt_priority that can be used by a given scheduling class. 4428 * On failure, a negative error code is returned. 4429 */ 4430 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4431 { 4432 int ret = -EINVAL; 4433 4434 switch (policy) { 4435 case SCHED_FIFO: 4436 case SCHED_RR: 4437 ret = MAX_USER_RT_PRIO-1; 4438 break; 4439 case SCHED_DEADLINE: 4440 case SCHED_NORMAL: 4441 case SCHED_BATCH: 4442 case SCHED_IDLE: 4443 ret = 0; 4444 break; 4445 } 4446 return ret; 4447 } 4448 4449 /** 4450 * sys_sched_get_priority_min - return minimum RT priority. 4451 * @policy: scheduling class. 4452 * 4453 * Return: On success, this syscall returns the minimum 4454 * rt_priority that can be used by a given scheduling class. 4455 * On failure, a negative error code is returned. 4456 */ 4457 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4458 { 4459 int ret = -EINVAL; 4460 4461 switch (policy) { 4462 case SCHED_FIFO: 4463 case SCHED_RR: 4464 ret = 1; 4465 break; 4466 case SCHED_DEADLINE: 4467 case SCHED_NORMAL: 4468 case SCHED_BATCH: 4469 case SCHED_IDLE: 4470 ret = 0; 4471 } 4472 return ret; 4473 } 4474 4475 /** 4476 * sys_sched_rr_get_interval - return the default timeslice of a process. 4477 * @pid: pid of the process. 4478 * @interval: userspace pointer to the timeslice value. 4479 * 4480 * this syscall writes the default timeslice value of a given process 4481 * into the user-space timespec buffer. A value of '0' means infinity. 4482 * 4483 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4484 * an error code. 4485 */ 4486 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4487 struct timespec __user *, interval) 4488 { 4489 struct task_struct *p; 4490 unsigned int time_slice; 4491 unsigned long flags; 4492 struct rq *rq; 4493 int retval; 4494 struct timespec t; 4495 4496 if (pid < 0) 4497 return -EINVAL; 4498 4499 retval = -ESRCH; 4500 rcu_read_lock(); 4501 p = find_process_by_pid(pid); 4502 if (!p) 4503 goto out_unlock; 4504 4505 retval = security_task_getscheduler(p); 4506 if (retval) 4507 goto out_unlock; 4508 4509 rq = task_rq_lock(p, &flags); 4510 time_slice = 0; 4511 if (p->sched_class->get_rr_interval) 4512 time_slice = p->sched_class->get_rr_interval(rq, p); 4513 task_rq_unlock(rq, p, &flags); 4514 4515 rcu_read_unlock(); 4516 jiffies_to_timespec(time_slice, &t); 4517 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4518 return retval; 4519 4520 out_unlock: 4521 rcu_read_unlock(); 4522 return retval; 4523 } 4524 4525 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4526 4527 void sched_show_task(struct task_struct *p) 4528 { 4529 unsigned long free = 0; 4530 int ppid; 4531 unsigned state; 4532 4533 state = p->state ? __ffs(p->state) + 1 : 0; 4534 printk(KERN_INFO "%-15.15s %c", p->comm, 4535 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4536 #if BITS_PER_LONG == 32 4537 if (state == TASK_RUNNING) 4538 printk(KERN_CONT " running "); 4539 else 4540 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4541 #else 4542 if (state == TASK_RUNNING) 4543 printk(KERN_CONT " running task "); 4544 else 4545 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4546 #endif 4547 #ifdef CONFIG_DEBUG_STACK_USAGE 4548 free = stack_not_used(p); 4549 #endif 4550 rcu_read_lock(); 4551 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4552 rcu_read_unlock(); 4553 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4554 task_pid_nr(p), ppid, 4555 (unsigned long)task_thread_info(p)->flags); 4556 4557 print_worker_info(KERN_INFO, p); 4558 show_stack(p, NULL); 4559 } 4560 4561 void show_state_filter(unsigned long state_filter) 4562 { 4563 struct task_struct *g, *p; 4564 4565 #if BITS_PER_LONG == 32 4566 printk(KERN_INFO 4567 " task PC stack pid father\n"); 4568 #else 4569 printk(KERN_INFO 4570 " task PC stack pid father\n"); 4571 #endif 4572 rcu_read_lock(); 4573 for_each_process_thread(g, p) { 4574 /* 4575 * reset the NMI-timeout, listing all files on a slow 4576 * console might take a lot of time: 4577 */ 4578 touch_nmi_watchdog(); 4579 if (!state_filter || (p->state & state_filter)) 4580 sched_show_task(p); 4581 } 4582 4583 touch_all_softlockup_watchdogs(); 4584 4585 #ifdef CONFIG_SCHED_DEBUG 4586 sysrq_sched_debug_show(); 4587 #endif 4588 rcu_read_unlock(); 4589 /* 4590 * Only show locks if all tasks are dumped: 4591 */ 4592 if (!state_filter) 4593 debug_show_all_locks(); 4594 } 4595 4596 void init_idle_bootup_task(struct task_struct *idle) 4597 { 4598 idle->sched_class = &idle_sched_class; 4599 } 4600 4601 /** 4602 * init_idle - set up an idle thread for a given CPU 4603 * @idle: task in question 4604 * @cpu: cpu the idle task belongs to 4605 * 4606 * NOTE: this function does not set the idle thread's NEED_RESCHED 4607 * flag, to make booting more robust. 4608 */ 4609 void init_idle(struct task_struct *idle, int cpu) 4610 { 4611 struct rq *rq = cpu_rq(cpu); 4612 unsigned long flags; 4613 4614 raw_spin_lock_irqsave(&rq->lock, flags); 4615 4616 __sched_fork(0, idle); 4617 idle->state = TASK_RUNNING; 4618 idle->se.exec_start = sched_clock(); 4619 4620 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4621 /* 4622 * We're having a chicken and egg problem, even though we are 4623 * holding rq->lock, the cpu isn't yet set to this cpu so the 4624 * lockdep check in task_group() will fail. 4625 * 4626 * Similar case to sched_fork(). / Alternatively we could 4627 * use task_rq_lock() here and obtain the other rq->lock. 4628 * 4629 * Silence PROVE_RCU 4630 */ 4631 rcu_read_lock(); 4632 __set_task_cpu(idle, cpu); 4633 rcu_read_unlock(); 4634 4635 rq->curr = rq->idle = idle; 4636 idle->on_rq = TASK_ON_RQ_QUEUED; 4637 #if defined(CONFIG_SMP) 4638 idle->on_cpu = 1; 4639 #endif 4640 raw_spin_unlock_irqrestore(&rq->lock, flags); 4641 4642 /* Set the preempt count _outside_ the spinlocks! */ 4643 init_idle_preempt_count(idle, cpu); 4644 4645 /* 4646 * The idle tasks have their own, simple scheduling class: 4647 */ 4648 idle->sched_class = &idle_sched_class; 4649 ftrace_graph_init_idle_task(idle, cpu); 4650 vtime_init_idle(idle, cpu); 4651 #if defined(CONFIG_SMP) 4652 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4653 #endif 4654 } 4655 4656 #ifdef CONFIG_SMP 4657 /* 4658 * move_queued_task - move a queued task to new rq. 4659 * 4660 * Returns (locked) new rq. Old rq's lock is released. 4661 */ 4662 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4663 { 4664 struct rq *rq = task_rq(p); 4665 4666 lockdep_assert_held(&rq->lock); 4667 4668 dequeue_task(rq, p, 0); 4669 p->on_rq = TASK_ON_RQ_MIGRATING; 4670 set_task_cpu(p, new_cpu); 4671 raw_spin_unlock(&rq->lock); 4672 4673 rq = cpu_rq(new_cpu); 4674 4675 raw_spin_lock(&rq->lock); 4676 BUG_ON(task_cpu(p) != new_cpu); 4677 p->on_rq = TASK_ON_RQ_QUEUED; 4678 enqueue_task(rq, p, 0); 4679 check_preempt_curr(rq, p, 0); 4680 4681 return rq; 4682 } 4683 4684 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4685 { 4686 if (p->sched_class && p->sched_class->set_cpus_allowed) 4687 p->sched_class->set_cpus_allowed(p, new_mask); 4688 4689 cpumask_copy(&p->cpus_allowed, new_mask); 4690 p->nr_cpus_allowed = cpumask_weight(new_mask); 4691 } 4692 4693 /* 4694 * This is how migration works: 4695 * 4696 * 1) we invoke migration_cpu_stop() on the target CPU using 4697 * stop_one_cpu(). 4698 * 2) stopper starts to run (implicitly forcing the migrated thread 4699 * off the CPU) 4700 * 3) it checks whether the migrated task is still in the wrong runqueue. 4701 * 4) if it's in the wrong runqueue then the migration thread removes 4702 * it and puts it into the right queue. 4703 * 5) stopper completes and stop_one_cpu() returns and the migration 4704 * is done. 4705 */ 4706 4707 /* 4708 * Change a given task's CPU affinity. Migrate the thread to a 4709 * proper CPU and schedule it away if the CPU it's executing on 4710 * is removed from the allowed bitmask. 4711 * 4712 * NOTE: the caller must have a valid reference to the task, the 4713 * task must not exit() & deallocate itself prematurely. The 4714 * call is not atomic; no spinlocks may be held. 4715 */ 4716 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4717 { 4718 unsigned long flags; 4719 struct rq *rq; 4720 unsigned int dest_cpu; 4721 int ret = 0; 4722 4723 rq = task_rq_lock(p, &flags); 4724 4725 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4726 goto out; 4727 4728 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4729 ret = -EINVAL; 4730 goto out; 4731 } 4732 4733 do_set_cpus_allowed(p, new_mask); 4734 4735 /* Can the task run on the task's current CPU? If so, we're done */ 4736 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4737 goto out; 4738 4739 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4740 if (task_running(rq, p) || p->state == TASK_WAKING) { 4741 struct migration_arg arg = { p, dest_cpu }; 4742 /* Need help from migration thread: drop lock and wait. */ 4743 task_rq_unlock(rq, p, &flags); 4744 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4745 tlb_migrate_finish(p->mm); 4746 return 0; 4747 } else if (task_on_rq_queued(p)) 4748 rq = move_queued_task(p, dest_cpu); 4749 out: 4750 task_rq_unlock(rq, p, &flags); 4751 4752 return ret; 4753 } 4754 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4755 4756 /* 4757 * Move (not current) task off this cpu, onto dest cpu. We're doing 4758 * this because either it can't run here any more (set_cpus_allowed() 4759 * away from this CPU, or CPU going down), or because we're 4760 * attempting to rebalance this task on exec (sched_exec). 4761 * 4762 * So we race with normal scheduler movements, but that's OK, as long 4763 * as the task is no longer on this CPU. 4764 * 4765 * Returns non-zero if task was successfully migrated. 4766 */ 4767 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4768 { 4769 struct rq *rq; 4770 int ret = 0; 4771 4772 if (unlikely(!cpu_active(dest_cpu))) 4773 return ret; 4774 4775 rq = cpu_rq(src_cpu); 4776 4777 raw_spin_lock(&p->pi_lock); 4778 raw_spin_lock(&rq->lock); 4779 /* Already moved. */ 4780 if (task_cpu(p) != src_cpu) 4781 goto done; 4782 4783 /* Affinity changed (again). */ 4784 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4785 goto fail; 4786 4787 /* 4788 * If we're not on a rq, the next wake-up will ensure we're 4789 * placed properly. 4790 */ 4791 if (task_on_rq_queued(p)) 4792 rq = move_queued_task(p, dest_cpu); 4793 done: 4794 ret = 1; 4795 fail: 4796 raw_spin_unlock(&rq->lock); 4797 raw_spin_unlock(&p->pi_lock); 4798 return ret; 4799 } 4800 4801 #ifdef CONFIG_NUMA_BALANCING 4802 /* Migrate current task p to target_cpu */ 4803 int migrate_task_to(struct task_struct *p, int target_cpu) 4804 { 4805 struct migration_arg arg = { p, target_cpu }; 4806 int curr_cpu = task_cpu(p); 4807 4808 if (curr_cpu == target_cpu) 4809 return 0; 4810 4811 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4812 return -EINVAL; 4813 4814 /* TODO: This is not properly updating schedstats */ 4815 4816 trace_sched_move_numa(p, curr_cpu, target_cpu); 4817 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4818 } 4819 4820 /* 4821 * Requeue a task on a given node and accurately track the number of NUMA 4822 * tasks on the runqueues 4823 */ 4824 void sched_setnuma(struct task_struct *p, int nid) 4825 { 4826 struct rq *rq; 4827 unsigned long flags; 4828 bool queued, running; 4829 4830 rq = task_rq_lock(p, &flags); 4831 queued = task_on_rq_queued(p); 4832 running = task_current(rq, p); 4833 4834 if (queued) 4835 dequeue_task(rq, p, 0); 4836 if (running) 4837 put_prev_task(rq, p); 4838 4839 p->numa_preferred_nid = nid; 4840 4841 if (running) 4842 p->sched_class->set_curr_task(rq); 4843 if (queued) 4844 enqueue_task(rq, p, 0); 4845 task_rq_unlock(rq, p, &flags); 4846 } 4847 #endif 4848 4849 /* 4850 * migration_cpu_stop - this will be executed by a highprio stopper thread 4851 * and performs thread migration by bumping thread off CPU then 4852 * 'pushing' onto another runqueue. 4853 */ 4854 static int migration_cpu_stop(void *data) 4855 { 4856 struct migration_arg *arg = data; 4857 4858 /* 4859 * The original target cpu might have gone down and we might 4860 * be on another cpu but it doesn't matter. 4861 */ 4862 local_irq_disable(); 4863 /* 4864 * We need to explicitly wake pending tasks before running 4865 * __migrate_task() such that we will not miss enforcing cpus_allowed 4866 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4867 */ 4868 sched_ttwu_pending(); 4869 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4870 local_irq_enable(); 4871 return 0; 4872 } 4873 4874 #ifdef CONFIG_HOTPLUG_CPU 4875 4876 /* 4877 * Ensures that the idle task is using init_mm right before its cpu goes 4878 * offline. 4879 */ 4880 void idle_task_exit(void) 4881 { 4882 struct mm_struct *mm = current->active_mm; 4883 4884 BUG_ON(cpu_online(smp_processor_id())); 4885 4886 if (mm != &init_mm) { 4887 switch_mm(mm, &init_mm, current); 4888 finish_arch_post_lock_switch(); 4889 } 4890 mmdrop(mm); 4891 } 4892 4893 /* 4894 * Since this CPU is going 'away' for a while, fold any nr_active delta 4895 * we might have. Assumes we're called after migrate_tasks() so that the 4896 * nr_active count is stable. 4897 * 4898 * Also see the comment "Global load-average calculations". 4899 */ 4900 static void calc_load_migrate(struct rq *rq) 4901 { 4902 long delta = calc_load_fold_active(rq); 4903 if (delta) 4904 atomic_long_add(delta, &calc_load_tasks); 4905 } 4906 4907 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4908 { 4909 } 4910 4911 static const struct sched_class fake_sched_class = { 4912 .put_prev_task = put_prev_task_fake, 4913 }; 4914 4915 static struct task_struct fake_task = { 4916 /* 4917 * Avoid pull_{rt,dl}_task() 4918 */ 4919 .prio = MAX_PRIO + 1, 4920 .sched_class = &fake_sched_class, 4921 }; 4922 4923 /* 4924 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4925 * try_to_wake_up()->select_task_rq(). 4926 * 4927 * Called with rq->lock held even though we'er in stop_machine() and 4928 * there's no concurrency possible, we hold the required locks anyway 4929 * because of lock validation efforts. 4930 */ 4931 static void migrate_tasks(unsigned int dead_cpu) 4932 { 4933 struct rq *rq = cpu_rq(dead_cpu); 4934 struct task_struct *next, *stop = rq->stop; 4935 int dest_cpu; 4936 4937 /* 4938 * Fudge the rq selection such that the below task selection loop 4939 * doesn't get stuck on the currently eligible stop task. 4940 * 4941 * We're currently inside stop_machine() and the rq is either stuck 4942 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4943 * either way we should never end up calling schedule() until we're 4944 * done here. 4945 */ 4946 rq->stop = NULL; 4947 4948 /* 4949 * put_prev_task() and pick_next_task() sched 4950 * class method both need to have an up-to-date 4951 * value of rq->clock[_task] 4952 */ 4953 update_rq_clock(rq); 4954 4955 for ( ; ; ) { 4956 /* 4957 * There's this thread running, bail when that's the only 4958 * remaining thread. 4959 */ 4960 if (rq->nr_running == 1) 4961 break; 4962 4963 next = pick_next_task(rq, &fake_task); 4964 BUG_ON(!next); 4965 next->sched_class->put_prev_task(rq, next); 4966 4967 /* Find suitable destination for @next, with force if needed. */ 4968 dest_cpu = select_fallback_rq(dead_cpu, next); 4969 raw_spin_unlock(&rq->lock); 4970 4971 __migrate_task(next, dead_cpu, dest_cpu); 4972 4973 raw_spin_lock(&rq->lock); 4974 } 4975 4976 rq->stop = stop; 4977 } 4978 4979 #endif /* CONFIG_HOTPLUG_CPU */ 4980 4981 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4982 4983 static struct ctl_table sd_ctl_dir[] = { 4984 { 4985 .procname = "sched_domain", 4986 .mode = 0555, 4987 }, 4988 {} 4989 }; 4990 4991 static struct ctl_table sd_ctl_root[] = { 4992 { 4993 .procname = "kernel", 4994 .mode = 0555, 4995 .child = sd_ctl_dir, 4996 }, 4997 {} 4998 }; 4999 5000 static struct ctl_table *sd_alloc_ctl_entry(int n) 5001 { 5002 struct ctl_table *entry = 5003 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5004 5005 return entry; 5006 } 5007 5008 static void sd_free_ctl_entry(struct ctl_table **tablep) 5009 { 5010 struct ctl_table *entry; 5011 5012 /* 5013 * In the intermediate directories, both the child directory and 5014 * procname are dynamically allocated and could fail but the mode 5015 * will always be set. In the lowest directory the names are 5016 * static strings and all have proc handlers. 5017 */ 5018 for (entry = *tablep; entry->mode; entry++) { 5019 if (entry->child) 5020 sd_free_ctl_entry(&entry->child); 5021 if (entry->proc_handler == NULL) 5022 kfree(entry->procname); 5023 } 5024 5025 kfree(*tablep); 5026 *tablep = NULL; 5027 } 5028 5029 static int min_load_idx = 0; 5030 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5031 5032 static void 5033 set_table_entry(struct ctl_table *entry, 5034 const char *procname, void *data, int maxlen, 5035 umode_t mode, proc_handler *proc_handler, 5036 bool load_idx) 5037 { 5038 entry->procname = procname; 5039 entry->data = data; 5040 entry->maxlen = maxlen; 5041 entry->mode = mode; 5042 entry->proc_handler = proc_handler; 5043 5044 if (load_idx) { 5045 entry->extra1 = &min_load_idx; 5046 entry->extra2 = &max_load_idx; 5047 } 5048 } 5049 5050 static struct ctl_table * 5051 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5052 { 5053 struct ctl_table *table = sd_alloc_ctl_entry(14); 5054 5055 if (table == NULL) 5056 return NULL; 5057 5058 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5059 sizeof(long), 0644, proc_doulongvec_minmax, false); 5060 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5061 sizeof(long), 0644, proc_doulongvec_minmax, false); 5062 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5063 sizeof(int), 0644, proc_dointvec_minmax, true); 5064 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5065 sizeof(int), 0644, proc_dointvec_minmax, true); 5066 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5067 sizeof(int), 0644, proc_dointvec_minmax, true); 5068 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5069 sizeof(int), 0644, proc_dointvec_minmax, true); 5070 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5071 sizeof(int), 0644, proc_dointvec_minmax, true); 5072 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5073 sizeof(int), 0644, proc_dointvec_minmax, false); 5074 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5075 sizeof(int), 0644, proc_dointvec_minmax, false); 5076 set_table_entry(&table[9], "cache_nice_tries", 5077 &sd->cache_nice_tries, 5078 sizeof(int), 0644, proc_dointvec_minmax, false); 5079 set_table_entry(&table[10], "flags", &sd->flags, 5080 sizeof(int), 0644, proc_dointvec_minmax, false); 5081 set_table_entry(&table[11], "max_newidle_lb_cost", 5082 &sd->max_newidle_lb_cost, 5083 sizeof(long), 0644, proc_doulongvec_minmax, false); 5084 set_table_entry(&table[12], "name", sd->name, 5085 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5086 /* &table[13] is terminator */ 5087 5088 return table; 5089 } 5090 5091 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5092 { 5093 struct ctl_table *entry, *table; 5094 struct sched_domain *sd; 5095 int domain_num = 0, i; 5096 char buf[32]; 5097 5098 for_each_domain(cpu, sd) 5099 domain_num++; 5100 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5101 if (table == NULL) 5102 return NULL; 5103 5104 i = 0; 5105 for_each_domain(cpu, sd) { 5106 snprintf(buf, 32, "domain%d", i); 5107 entry->procname = kstrdup(buf, GFP_KERNEL); 5108 entry->mode = 0555; 5109 entry->child = sd_alloc_ctl_domain_table(sd); 5110 entry++; 5111 i++; 5112 } 5113 return table; 5114 } 5115 5116 static struct ctl_table_header *sd_sysctl_header; 5117 static void register_sched_domain_sysctl(void) 5118 { 5119 int i, cpu_num = num_possible_cpus(); 5120 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5121 char buf[32]; 5122 5123 WARN_ON(sd_ctl_dir[0].child); 5124 sd_ctl_dir[0].child = entry; 5125 5126 if (entry == NULL) 5127 return; 5128 5129 for_each_possible_cpu(i) { 5130 snprintf(buf, 32, "cpu%d", i); 5131 entry->procname = kstrdup(buf, GFP_KERNEL); 5132 entry->mode = 0555; 5133 entry->child = sd_alloc_ctl_cpu_table(i); 5134 entry++; 5135 } 5136 5137 WARN_ON(sd_sysctl_header); 5138 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5139 } 5140 5141 /* may be called multiple times per register */ 5142 static void unregister_sched_domain_sysctl(void) 5143 { 5144 if (sd_sysctl_header) 5145 unregister_sysctl_table(sd_sysctl_header); 5146 sd_sysctl_header = NULL; 5147 if (sd_ctl_dir[0].child) 5148 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5149 } 5150 #else 5151 static void register_sched_domain_sysctl(void) 5152 { 5153 } 5154 static void unregister_sched_domain_sysctl(void) 5155 { 5156 } 5157 #endif 5158 5159 static void set_rq_online(struct rq *rq) 5160 { 5161 if (!rq->online) { 5162 const struct sched_class *class; 5163 5164 cpumask_set_cpu(rq->cpu, rq->rd->online); 5165 rq->online = 1; 5166 5167 for_each_class(class) { 5168 if (class->rq_online) 5169 class->rq_online(rq); 5170 } 5171 } 5172 } 5173 5174 static void set_rq_offline(struct rq *rq) 5175 { 5176 if (rq->online) { 5177 const struct sched_class *class; 5178 5179 for_each_class(class) { 5180 if (class->rq_offline) 5181 class->rq_offline(rq); 5182 } 5183 5184 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5185 rq->online = 0; 5186 } 5187 } 5188 5189 /* 5190 * migration_call - callback that gets triggered when a CPU is added. 5191 * Here we can start up the necessary migration thread for the new CPU. 5192 */ 5193 static int 5194 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5195 { 5196 int cpu = (long)hcpu; 5197 unsigned long flags; 5198 struct rq *rq = cpu_rq(cpu); 5199 5200 switch (action & ~CPU_TASKS_FROZEN) { 5201 5202 case CPU_UP_PREPARE: 5203 rq->calc_load_update = calc_load_update; 5204 break; 5205 5206 case CPU_ONLINE: 5207 /* Update our root-domain */ 5208 raw_spin_lock_irqsave(&rq->lock, flags); 5209 if (rq->rd) { 5210 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5211 5212 set_rq_online(rq); 5213 } 5214 raw_spin_unlock_irqrestore(&rq->lock, flags); 5215 break; 5216 5217 #ifdef CONFIG_HOTPLUG_CPU 5218 case CPU_DYING: 5219 sched_ttwu_pending(); 5220 /* Update our root-domain */ 5221 raw_spin_lock_irqsave(&rq->lock, flags); 5222 if (rq->rd) { 5223 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5224 set_rq_offline(rq); 5225 } 5226 migrate_tasks(cpu); 5227 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5228 raw_spin_unlock_irqrestore(&rq->lock, flags); 5229 break; 5230 5231 case CPU_DEAD: 5232 calc_load_migrate(rq); 5233 break; 5234 #endif 5235 } 5236 5237 update_max_interval(); 5238 5239 return NOTIFY_OK; 5240 } 5241 5242 /* 5243 * Register at high priority so that task migration (migrate_all_tasks) 5244 * happens before everything else. This has to be lower priority than 5245 * the notifier in the perf_event subsystem, though. 5246 */ 5247 static struct notifier_block migration_notifier = { 5248 .notifier_call = migration_call, 5249 .priority = CPU_PRI_MIGRATION, 5250 }; 5251 5252 static void __cpuinit set_cpu_rq_start_time(void) 5253 { 5254 int cpu = smp_processor_id(); 5255 struct rq *rq = cpu_rq(cpu); 5256 rq->age_stamp = sched_clock_cpu(cpu); 5257 } 5258 5259 static int sched_cpu_active(struct notifier_block *nfb, 5260 unsigned long action, void *hcpu) 5261 { 5262 switch (action & ~CPU_TASKS_FROZEN) { 5263 case CPU_STARTING: 5264 set_cpu_rq_start_time(); 5265 return NOTIFY_OK; 5266 case CPU_DOWN_FAILED: 5267 set_cpu_active((long)hcpu, true); 5268 return NOTIFY_OK; 5269 default: 5270 return NOTIFY_DONE; 5271 } 5272 } 5273 5274 static int sched_cpu_inactive(struct notifier_block *nfb, 5275 unsigned long action, void *hcpu) 5276 { 5277 unsigned long flags; 5278 long cpu = (long)hcpu; 5279 struct dl_bw *dl_b; 5280 5281 switch (action & ~CPU_TASKS_FROZEN) { 5282 case CPU_DOWN_PREPARE: 5283 set_cpu_active(cpu, false); 5284 5285 /* explicitly allow suspend */ 5286 if (!(action & CPU_TASKS_FROZEN)) { 5287 bool overflow; 5288 int cpus; 5289 5290 rcu_read_lock_sched(); 5291 dl_b = dl_bw_of(cpu); 5292 5293 raw_spin_lock_irqsave(&dl_b->lock, flags); 5294 cpus = dl_bw_cpus(cpu); 5295 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5296 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5297 5298 rcu_read_unlock_sched(); 5299 5300 if (overflow) 5301 return notifier_from_errno(-EBUSY); 5302 } 5303 return NOTIFY_OK; 5304 } 5305 5306 return NOTIFY_DONE; 5307 } 5308 5309 static int __init migration_init(void) 5310 { 5311 void *cpu = (void *)(long)smp_processor_id(); 5312 int err; 5313 5314 /* Initialize migration for the boot CPU */ 5315 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5316 BUG_ON(err == NOTIFY_BAD); 5317 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5318 register_cpu_notifier(&migration_notifier); 5319 5320 /* Register cpu active notifiers */ 5321 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5322 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5323 5324 return 0; 5325 } 5326 early_initcall(migration_init); 5327 #endif 5328 5329 #ifdef CONFIG_SMP 5330 5331 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5332 5333 #ifdef CONFIG_SCHED_DEBUG 5334 5335 static __read_mostly int sched_debug_enabled; 5336 5337 static int __init sched_debug_setup(char *str) 5338 { 5339 sched_debug_enabled = 1; 5340 5341 return 0; 5342 } 5343 early_param("sched_debug", sched_debug_setup); 5344 5345 static inline bool sched_debug(void) 5346 { 5347 return sched_debug_enabled; 5348 } 5349 5350 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5351 struct cpumask *groupmask) 5352 { 5353 struct sched_group *group = sd->groups; 5354 char str[256]; 5355 5356 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5357 cpumask_clear(groupmask); 5358 5359 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5360 5361 if (!(sd->flags & SD_LOAD_BALANCE)) { 5362 printk("does not load-balance\n"); 5363 if (sd->parent) 5364 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5365 " has parent"); 5366 return -1; 5367 } 5368 5369 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5370 5371 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5372 printk(KERN_ERR "ERROR: domain->span does not contain " 5373 "CPU%d\n", cpu); 5374 } 5375 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5376 printk(KERN_ERR "ERROR: domain->groups does not contain" 5377 " CPU%d\n", cpu); 5378 } 5379 5380 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5381 do { 5382 if (!group) { 5383 printk("\n"); 5384 printk(KERN_ERR "ERROR: group is NULL\n"); 5385 break; 5386 } 5387 5388 /* 5389 * Even though we initialize ->capacity to something semi-sane, 5390 * we leave capacity_orig unset. This allows us to detect if 5391 * domain iteration is still funny without causing /0 traps. 5392 */ 5393 if (!group->sgc->capacity_orig) { 5394 printk(KERN_CONT "\n"); 5395 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5396 break; 5397 } 5398 5399 if (!cpumask_weight(sched_group_cpus(group))) { 5400 printk(KERN_CONT "\n"); 5401 printk(KERN_ERR "ERROR: empty group\n"); 5402 break; 5403 } 5404 5405 if (!(sd->flags & SD_OVERLAP) && 5406 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5407 printk(KERN_CONT "\n"); 5408 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5409 break; 5410 } 5411 5412 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5413 5414 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5415 5416 printk(KERN_CONT " %s", str); 5417 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5418 printk(KERN_CONT " (cpu_capacity = %d)", 5419 group->sgc->capacity); 5420 } 5421 5422 group = group->next; 5423 } while (group != sd->groups); 5424 printk(KERN_CONT "\n"); 5425 5426 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5427 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5428 5429 if (sd->parent && 5430 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5431 printk(KERN_ERR "ERROR: parent span is not a superset " 5432 "of domain->span\n"); 5433 return 0; 5434 } 5435 5436 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5437 { 5438 int level = 0; 5439 5440 if (!sched_debug_enabled) 5441 return; 5442 5443 if (!sd) { 5444 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5445 return; 5446 } 5447 5448 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5449 5450 for (;;) { 5451 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5452 break; 5453 level++; 5454 sd = sd->parent; 5455 if (!sd) 5456 break; 5457 } 5458 } 5459 #else /* !CONFIG_SCHED_DEBUG */ 5460 # define sched_domain_debug(sd, cpu) do { } while (0) 5461 static inline bool sched_debug(void) 5462 { 5463 return false; 5464 } 5465 #endif /* CONFIG_SCHED_DEBUG */ 5466 5467 static int sd_degenerate(struct sched_domain *sd) 5468 { 5469 if (cpumask_weight(sched_domain_span(sd)) == 1) 5470 return 1; 5471 5472 /* Following flags need at least 2 groups */ 5473 if (sd->flags & (SD_LOAD_BALANCE | 5474 SD_BALANCE_NEWIDLE | 5475 SD_BALANCE_FORK | 5476 SD_BALANCE_EXEC | 5477 SD_SHARE_CPUCAPACITY | 5478 SD_SHARE_PKG_RESOURCES | 5479 SD_SHARE_POWERDOMAIN)) { 5480 if (sd->groups != sd->groups->next) 5481 return 0; 5482 } 5483 5484 /* Following flags don't use groups */ 5485 if (sd->flags & (SD_WAKE_AFFINE)) 5486 return 0; 5487 5488 return 1; 5489 } 5490 5491 static int 5492 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5493 { 5494 unsigned long cflags = sd->flags, pflags = parent->flags; 5495 5496 if (sd_degenerate(parent)) 5497 return 1; 5498 5499 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5500 return 0; 5501 5502 /* Flags needing groups don't count if only 1 group in parent */ 5503 if (parent->groups == parent->groups->next) { 5504 pflags &= ~(SD_LOAD_BALANCE | 5505 SD_BALANCE_NEWIDLE | 5506 SD_BALANCE_FORK | 5507 SD_BALANCE_EXEC | 5508 SD_SHARE_CPUCAPACITY | 5509 SD_SHARE_PKG_RESOURCES | 5510 SD_PREFER_SIBLING | 5511 SD_SHARE_POWERDOMAIN); 5512 if (nr_node_ids == 1) 5513 pflags &= ~SD_SERIALIZE; 5514 } 5515 if (~cflags & pflags) 5516 return 0; 5517 5518 return 1; 5519 } 5520 5521 static void free_rootdomain(struct rcu_head *rcu) 5522 { 5523 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5524 5525 cpupri_cleanup(&rd->cpupri); 5526 cpudl_cleanup(&rd->cpudl); 5527 free_cpumask_var(rd->dlo_mask); 5528 free_cpumask_var(rd->rto_mask); 5529 free_cpumask_var(rd->online); 5530 free_cpumask_var(rd->span); 5531 kfree(rd); 5532 } 5533 5534 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5535 { 5536 struct root_domain *old_rd = NULL; 5537 unsigned long flags; 5538 5539 raw_spin_lock_irqsave(&rq->lock, flags); 5540 5541 if (rq->rd) { 5542 old_rd = rq->rd; 5543 5544 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5545 set_rq_offline(rq); 5546 5547 cpumask_clear_cpu(rq->cpu, old_rd->span); 5548 5549 /* 5550 * If we dont want to free the old_rd yet then 5551 * set old_rd to NULL to skip the freeing later 5552 * in this function: 5553 */ 5554 if (!atomic_dec_and_test(&old_rd->refcount)) 5555 old_rd = NULL; 5556 } 5557 5558 atomic_inc(&rd->refcount); 5559 rq->rd = rd; 5560 5561 cpumask_set_cpu(rq->cpu, rd->span); 5562 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5563 set_rq_online(rq); 5564 5565 raw_spin_unlock_irqrestore(&rq->lock, flags); 5566 5567 if (old_rd) 5568 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5569 } 5570 5571 static int init_rootdomain(struct root_domain *rd) 5572 { 5573 memset(rd, 0, sizeof(*rd)); 5574 5575 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5576 goto out; 5577 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5578 goto free_span; 5579 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5580 goto free_online; 5581 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5582 goto free_dlo_mask; 5583 5584 init_dl_bw(&rd->dl_bw); 5585 if (cpudl_init(&rd->cpudl) != 0) 5586 goto free_dlo_mask; 5587 5588 if (cpupri_init(&rd->cpupri) != 0) 5589 goto free_rto_mask; 5590 return 0; 5591 5592 free_rto_mask: 5593 free_cpumask_var(rd->rto_mask); 5594 free_dlo_mask: 5595 free_cpumask_var(rd->dlo_mask); 5596 free_online: 5597 free_cpumask_var(rd->online); 5598 free_span: 5599 free_cpumask_var(rd->span); 5600 out: 5601 return -ENOMEM; 5602 } 5603 5604 /* 5605 * By default the system creates a single root-domain with all cpus as 5606 * members (mimicking the global state we have today). 5607 */ 5608 struct root_domain def_root_domain; 5609 5610 static void init_defrootdomain(void) 5611 { 5612 init_rootdomain(&def_root_domain); 5613 5614 atomic_set(&def_root_domain.refcount, 1); 5615 } 5616 5617 static struct root_domain *alloc_rootdomain(void) 5618 { 5619 struct root_domain *rd; 5620 5621 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5622 if (!rd) 5623 return NULL; 5624 5625 if (init_rootdomain(rd) != 0) { 5626 kfree(rd); 5627 return NULL; 5628 } 5629 5630 return rd; 5631 } 5632 5633 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5634 { 5635 struct sched_group *tmp, *first; 5636 5637 if (!sg) 5638 return; 5639 5640 first = sg; 5641 do { 5642 tmp = sg->next; 5643 5644 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5645 kfree(sg->sgc); 5646 5647 kfree(sg); 5648 sg = tmp; 5649 } while (sg != first); 5650 } 5651 5652 static void free_sched_domain(struct rcu_head *rcu) 5653 { 5654 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5655 5656 /* 5657 * If its an overlapping domain it has private groups, iterate and 5658 * nuke them all. 5659 */ 5660 if (sd->flags & SD_OVERLAP) { 5661 free_sched_groups(sd->groups, 1); 5662 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5663 kfree(sd->groups->sgc); 5664 kfree(sd->groups); 5665 } 5666 kfree(sd); 5667 } 5668 5669 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5670 { 5671 call_rcu(&sd->rcu, free_sched_domain); 5672 } 5673 5674 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5675 { 5676 for (; sd; sd = sd->parent) 5677 destroy_sched_domain(sd, cpu); 5678 } 5679 5680 /* 5681 * Keep a special pointer to the highest sched_domain that has 5682 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5683 * allows us to avoid some pointer chasing select_idle_sibling(). 5684 * 5685 * Also keep a unique ID per domain (we use the first cpu number in 5686 * the cpumask of the domain), this allows us to quickly tell if 5687 * two cpus are in the same cache domain, see cpus_share_cache(). 5688 */ 5689 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5690 DEFINE_PER_CPU(int, sd_llc_size); 5691 DEFINE_PER_CPU(int, sd_llc_id); 5692 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5693 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5694 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5695 5696 static void update_top_cache_domain(int cpu) 5697 { 5698 struct sched_domain *sd; 5699 struct sched_domain *busy_sd = NULL; 5700 int id = cpu; 5701 int size = 1; 5702 5703 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5704 if (sd) { 5705 id = cpumask_first(sched_domain_span(sd)); 5706 size = cpumask_weight(sched_domain_span(sd)); 5707 busy_sd = sd->parent; /* sd_busy */ 5708 } 5709 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5710 5711 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5712 per_cpu(sd_llc_size, cpu) = size; 5713 per_cpu(sd_llc_id, cpu) = id; 5714 5715 sd = lowest_flag_domain(cpu, SD_NUMA); 5716 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5717 5718 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5719 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5720 } 5721 5722 /* 5723 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5724 * hold the hotplug lock. 5725 */ 5726 static void 5727 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5728 { 5729 struct rq *rq = cpu_rq(cpu); 5730 struct sched_domain *tmp; 5731 5732 /* Remove the sched domains which do not contribute to scheduling. */ 5733 for (tmp = sd; tmp; ) { 5734 struct sched_domain *parent = tmp->parent; 5735 if (!parent) 5736 break; 5737 5738 if (sd_parent_degenerate(tmp, parent)) { 5739 tmp->parent = parent->parent; 5740 if (parent->parent) 5741 parent->parent->child = tmp; 5742 /* 5743 * Transfer SD_PREFER_SIBLING down in case of a 5744 * degenerate parent; the spans match for this 5745 * so the property transfers. 5746 */ 5747 if (parent->flags & SD_PREFER_SIBLING) 5748 tmp->flags |= SD_PREFER_SIBLING; 5749 destroy_sched_domain(parent, cpu); 5750 } else 5751 tmp = tmp->parent; 5752 } 5753 5754 if (sd && sd_degenerate(sd)) { 5755 tmp = sd; 5756 sd = sd->parent; 5757 destroy_sched_domain(tmp, cpu); 5758 if (sd) 5759 sd->child = NULL; 5760 } 5761 5762 sched_domain_debug(sd, cpu); 5763 5764 rq_attach_root(rq, rd); 5765 tmp = rq->sd; 5766 rcu_assign_pointer(rq->sd, sd); 5767 destroy_sched_domains(tmp, cpu); 5768 5769 update_top_cache_domain(cpu); 5770 } 5771 5772 /* cpus with isolated domains */ 5773 static cpumask_var_t cpu_isolated_map; 5774 5775 /* Setup the mask of cpus configured for isolated domains */ 5776 static int __init isolated_cpu_setup(char *str) 5777 { 5778 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5779 cpulist_parse(str, cpu_isolated_map); 5780 return 1; 5781 } 5782 5783 __setup("isolcpus=", isolated_cpu_setup); 5784 5785 struct s_data { 5786 struct sched_domain ** __percpu sd; 5787 struct root_domain *rd; 5788 }; 5789 5790 enum s_alloc { 5791 sa_rootdomain, 5792 sa_sd, 5793 sa_sd_storage, 5794 sa_none, 5795 }; 5796 5797 /* 5798 * Build an iteration mask that can exclude certain CPUs from the upwards 5799 * domain traversal. 5800 * 5801 * Asymmetric node setups can result in situations where the domain tree is of 5802 * unequal depth, make sure to skip domains that already cover the entire 5803 * range. 5804 * 5805 * In that case build_sched_domains() will have terminated the iteration early 5806 * and our sibling sd spans will be empty. Domains should always include the 5807 * cpu they're built on, so check that. 5808 * 5809 */ 5810 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5811 { 5812 const struct cpumask *span = sched_domain_span(sd); 5813 struct sd_data *sdd = sd->private; 5814 struct sched_domain *sibling; 5815 int i; 5816 5817 for_each_cpu(i, span) { 5818 sibling = *per_cpu_ptr(sdd->sd, i); 5819 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5820 continue; 5821 5822 cpumask_set_cpu(i, sched_group_mask(sg)); 5823 } 5824 } 5825 5826 /* 5827 * Return the canonical balance cpu for this group, this is the first cpu 5828 * of this group that's also in the iteration mask. 5829 */ 5830 int group_balance_cpu(struct sched_group *sg) 5831 { 5832 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5833 } 5834 5835 static int 5836 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5837 { 5838 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5839 const struct cpumask *span = sched_domain_span(sd); 5840 struct cpumask *covered = sched_domains_tmpmask; 5841 struct sd_data *sdd = sd->private; 5842 struct sched_domain *sibling; 5843 int i; 5844 5845 cpumask_clear(covered); 5846 5847 for_each_cpu(i, span) { 5848 struct cpumask *sg_span; 5849 5850 if (cpumask_test_cpu(i, covered)) 5851 continue; 5852 5853 sibling = *per_cpu_ptr(sdd->sd, i); 5854 5855 /* See the comment near build_group_mask(). */ 5856 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5857 continue; 5858 5859 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5860 GFP_KERNEL, cpu_to_node(cpu)); 5861 5862 if (!sg) 5863 goto fail; 5864 5865 sg_span = sched_group_cpus(sg); 5866 if (sibling->child) 5867 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5868 else 5869 cpumask_set_cpu(i, sg_span); 5870 5871 cpumask_or(covered, covered, sg_span); 5872 5873 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5874 if (atomic_inc_return(&sg->sgc->ref) == 1) 5875 build_group_mask(sd, sg); 5876 5877 /* 5878 * Initialize sgc->capacity such that even if we mess up the 5879 * domains and no possible iteration will get us here, we won't 5880 * die on a /0 trap. 5881 */ 5882 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5883 sg->sgc->capacity_orig = sg->sgc->capacity; 5884 5885 /* 5886 * Make sure the first group of this domain contains the 5887 * canonical balance cpu. Otherwise the sched_domain iteration 5888 * breaks. See update_sg_lb_stats(). 5889 */ 5890 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5891 group_balance_cpu(sg) == cpu) 5892 groups = sg; 5893 5894 if (!first) 5895 first = sg; 5896 if (last) 5897 last->next = sg; 5898 last = sg; 5899 last->next = first; 5900 } 5901 sd->groups = groups; 5902 5903 return 0; 5904 5905 fail: 5906 free_sched_groups(first, 0); 5907 5908 return -ENOMEM; 5909 } 5910 5911 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5912 { 5913 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5914 struct sched_domain *child = sd->child; 5915 5916 if (child) 5917 cpu = cpumask_first(sched_domain_span(child)); 5918 5919 if (sg) { 5920 *sg = *per_cpu_ptr(sdd->sg, cpu); 5921 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5922 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5923 } 5924 5925 return cpu; 5926 } 5927 5928 /* 5929 * build_sched_groups will build a circular linked list of the groups 5930 * covered by the given span, and will set each group's ->cpumask correctly, 5931 * and ->cpu_capacity to 0. 5932 * 5933 * Assumes the sched_domain tree is fully constructed 5934 */ 5935 static int 5936 build_sched_groups(struct sched_domain *sd, int cpu) 5937 { 5938 struct sched_group *first = NULL, *last = NULL; 5939 struct sd_data *sdd = sd->private; 5940 const struct cpumask *span = sched_domain_span(sd); 5941 struct cpumask *covered; 5942 int i; 5943 5944 get_group(cpu, sdd, &sd->groups); 5945 atomic_inc(&sd->groups->ref); 5946 5947 if (cpu != cpumask_first(span)) 5948 return 0; 5949 5950 lockdep_assert_held(&sched_domains_mutex); 5951 covered = sched_domains_tmpmask; 5952 5953 cpumask_clear(covered); 5954 5955 for_each_cpu(i, span) { 5956 struct sched_group *sg; 5957 int group, j; 5958 5959 if (cpumask_test_cpu(i, covered)) 5960 continue; 5961 5962 group = get_group(i, sdd, &sg); 5963 cpumask_setall(sched_group_mask(sg)); 5964 5965 for_each_cpu(j, span) { 5966 if (get_group(j, sdd, NULL) != group) 5967 continue; 5968 5969 cpumask_set_cpu(j, covered); 5970 cpumask_set_cpu(j, sched_group_cpus(sg)); 5971 } 5972 5973 if (!first) 5974 first = sg; 5975 if (last) 5976 last->next = sg; 5977 last = sg; 5978 } 5979 last->next = first; 5980 5981 return 0; 5982 } 5983 5984 /* 5985 * Initialize sched groups cpu_capacity. 5986 * 5987 * cpu_capacity indicates the capacity of sched group, which is used while 5988 * distributing the load between different sched groups in a sched domain. 5989 * Typically cpu_capacity for all the groups in a sched domain will be same 5990 * unless there are asymmetries in the topology. If there are asymmetries, 5991 * group having more cpu_capacity will pickup more load compared to the 5992 * group having less cpu_capacity. 5993 */ 5994 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 5995 { 5996 struct sched_group *sg = sd->groups; 5997 5998 WARN_ON(!sg); 5999 6000 do { 6001 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6002 sg = sg->next; 6003 } while (sg != sd->groups); 6004 6005 if (cpu != group_balance_cpu(sg)) 6006 return; 6007 6008 update_group_capacity(sd, cpu); 6009 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6010 } 6011 6012 /* 6013 * Initializers for schedule domains 6014 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6015 */ 6016 6017 static int default_relax_domain_level = -1; 6018 int sched_domain_level_max; 6019 6020 static int __init setup_relax_domain_level(char *str) 6021 { 6022 if (kstrtoint(str, 0, &default_relax_domain_level)) 6023 pr_warn("Unable to set relax_domain_level\n"); 6024 6025 return 1; 6026 } 6027 __setup("relax_domain_level=", setup_relax_domain_level); 6028 6029 static void set_domain_attribute(struct sched_domain *sd, 6030 struct sched_domain_attr *attr) 6031 { 6032 int request; 6033 6034 if (!attr || attr->relax_domain_level < 0) { 6035 if (default_relax_domain_level < 0) 6036 return; 6037 else 6038 request = default_relax_domain_level; 6039 } else 6040 request = attr->relax_domain_level; 6041 if (request < sd->level) { 6042 /* turn off idle balance on this domain */ 6043 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6044 } else { 6045 /* turn on idle balance on this domain */ 6046 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6047 } 6048 } 6049 6050 static void __sdt_free(const struct cpumask *cpu_map); 6051 static int __sdt_alloc(const struct cpumask *cpu_map); 6052 6053 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6054 const struct cpumask *cpu_map) 6055 { 6056 switch (what) { 6057 case sa_rootdomain: 6058 if (!atomic_read(&d->rd->refcount)) 6059 free_rootdomain(&d->rd->rcu); /* fall through */ 6060 case sa_sd: 6061 free_percpu(d->sd); /* fall through */ 6062 case sa_sd_storage: 6063 __sdt_free(cpu_map); /* fall through */ 6064 case sa_none: 6065 break; 6066 } 6067 } 6068 6069 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6070 const struct cpumask *cpu_map) 6071 { 6072 memset(d, 0, sizeof(*d)); 6073 6074 if (__sdt_alloc(cpu_map)) 6075 return sa_sd_storage; 6076 d->sd = alloc_percpu(struct sched_domain *); 6077 if (!d->sd) 6078 return sa_sd_storage; 6079 d->rd = alloc_rootdomain(); 6080 if (!d->rd) 6081 return sa_sd; 6082 return sa_rootdomain; 6083 } 6084 6085 /* 6086 * NULL the sd_data elements we've used to build the sched_domain and 6087 * sched_group structure so that the subsequent __free_domain_allocs() 6088 * will not free the data we're using. 6089 */ 6090 static void claim_allocations(int cpu, struct sched_domain *sd) 6091 { 6092 struct sd_data *sdd = sd->private; 6093 6094 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6095 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6096 6097 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6098 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6099 6100 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6101 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6102 } 6103 6104 #ifdef CONFIG_NUMA 6105 static int sched_domains_numa_levels; 6106 static int *sched_domains_numa_distance; 6107 static struct cpumask ***sched_domains_numa_masks; 6108 static int sched_domains_curr_level; 6109 #endif 6110 6111 /* 6112 * SD_flags allowed in topology descriptions. 6113 * 6114 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6115 * SD_SHARE_PKG_RESOURCES - describes shared caches 6116 * SD_NUMA - describes NUMA topologies 6117 * SD_SHARE_POWERDOMAIN - describes shared power domain 6118 * 6119 * Odd one out: 6120 * SD_ASYM_PACKING - describes SMT quirks 6121 */ 6122 #define TOPOLOGY_SD_FLAGS \ 6123 (SD_SHARE_CPUCAPACITY | \ 6124 SD_SHARE_PKG_RESOURCES | \ 6125 SD_NUMA | \ 6126 SD_ASYM_PACKING | \ 6127 SD_SHARE_POWERDOMAIN) 6128 6129 static struct sched_domain * 6130 sd_init(struct sched_domain_topology_level *tl, int cpu) 6131 { 6132 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6133 int sd_weight, sd_flags = 0; 6134 6135 #ifdef CONFIG_NUMA 6136 /* 6137 * Ugly hack to pass state to sd_numa_mask()... 6138 */ 6139 sched_domains_curr_level = tl->numa_level; 6140 #endif 6141 6142 sd_weight = cpumask_weight(tl->mask(cpu)); 6143 6144 if (tl->sd_flags) 6145 sd_flags = (*tl->sd_flags)(); 6146 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6147 "wrong sd_flags in topology description\n")) 6148 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6149 6150 *sd = (struct sched_domain){ 6151 .min_interval = sd_weight, 6152 .max_interval = 2*sd_weight, 6153 .busy_factor = 32, 6154 .imbalance_pct = 125, 6155 6156 .cache_nice_tries = 0, 6157 .busy_idx = 0, 6158 .idle_idx = 0, 6159 .newidle_idx = 0, 6160 .wake_idx = 0, 6161 .forkexec_idx = 0, 6162 6163 .flags = 1*SD_LOAD_BALANCE 6164 | 1*SD_BALANCE_NEWIDLE 6165 | 1*SD_BALANCE_EXEC 6166 | 1*SD_BALANCE_FORK 6167 | 0*SD_BALANCE_WAKE 6168 | 1*SD_WAKE_AFFINE 6169 | 0*SD_SHARE_CPUCAPACITY 6170 | 0*SD_SHARE_PKG_RESOURCES 6171 | 0*SD_SERIALIZE 6172 | 0*SD_PREFER_SIBLING 6173 | 0*SD_NUMA 6174 | sd_flags 6175 , 6176 6177 .last_balance = jiffies, 6178 .balance_interval = sd_weight, 6179 .smt_gain = 0, 6180 .max_newidle_lb_cost = 0, 6181 .next_decay_max_lb_cost = jiffies, 6182 #ifdef CONFIG_SCHED_DEBUG 6183 .name = tl->name, 6184 #endif 6185 }; 6186 6187 /* 6188 * Convert topological properties into behaviour. 6189 */ 6190 6191 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6192 sd->imbalance_pct = 110; 6193 sd->smt_gain = 1178; /* ~15% */ 6194 6195 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6196 sd->imbalance_pct = 117; 6197 sd->cache_nice_tries = 1; 6198 sd->busy_idx = 2; 6199 6200 #ifdef CONFIG_NUMA 6201 } else if (sd->flags & SD_NUMA) { 6202 sd->cache_nice_tries = 2; 6203 sd->busy_idx = 3; 6204 sd->idle_idx = 2; 6205 6206 sd->flags |= SD_SERIALIZE; 6207 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6208 sd->flags &= ~(SD_BALANCE_EXEC | 6209 SD_BALANCE_FORK | 6210 SD_WAKE_AFFINE); 6211 } 6212 6213 #endif 6214 } else { 6215 sd->flags |= SD_PREFER_SIBLING; 6216 sd->cache_nice_tries = 1; 6217 sd->busy_idx = 2; 6218 sd->idle_idx = 1; 6219 } 6220 6221 sd->private = &tl->data; 6222 6223 return sd; 6224 } 6225 6226 /* 6227 * Topology list, bottom-up. 6228 */ 6229 static struct sched_domain_topology_level default_topology[] = { 6230 #ifdef CONFIG_SCHED_SMT 6231 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6232 #endif 6233 #ifdef CONFIG_SCHED_MC 6234 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6235 #endif 6236 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6237 { NULL, }, 6238 }; 6239 6240 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6241 6242 #define for_each_sd_topology(tl) \ 6243 for (tl = sched_domain_topology; tl->mask; tl++) 6244 6245 void set_sched_topology(struct sched_domain_topology_level *tl) 6246 { 6247 sched_domain_topology = tl; 6248 } 6249 6250 #ifdef CONFIG_NUMA 6251 6252 static const struct cpumask *sd_numa_mask(int cpu) 6253 { 6254 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6255 } 6256 6257 static void sched_numa_warn(const char *str) 6258 { 6259 static int done = false; 6260 int i,j; 6261 6262 if (done) 6263 return; 6264 6265 done = true; 6266 6267 printk(KERN_WARNING "ERROR: %s\n\n", str); 6268 6269 for (i = 0; i < nr_node_ids; i++) { 6270 printk(KERN_WARNING " "); 6271 for (j = 0; j < nr_node_ids; j++) 6272 printk(KERN_CONT "%02d ", node_distance(i,j)); 6273 printk(KERN_CONT "\n"); 6274 } 6275 printk(KERN_WARNING "\n"); 6276 } 6277 6278 static bool find_numa_distance(int distance) 6279 { 6280 int i; 6281 6282 if (distance == node_distance(0, 0)) 6283 return true; 6284 6285 for (i = 0; i < sched_domains_numa_levels; i++) { 6286 if (sched_domains_numa_distance[i] == distance) 6287 return true; 6288 } 6289 6290 return false; 6291 } 6292 6293 static void sched_init_numa(void) 6294 { 6295 int next_distance, curr_distance = node_distance(0, 0); 6296 struct sched_domain_topology_level *tl; 6297 int level = 0; 6298 int i, j, k; 6299 6300 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6301 if (!sched_domains_numa_distance) 6302 return; 6303 6304 /* 6305 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6306 * unique distances in the node_distance() table. 6307 * 6308 * Assumes node_distance(0,j) includes all distances in 6309 * node_distance(i,j) in order to avoid cubic time. 6310 */ 6311 next_distance = curr_distance; 6312 for (i = 0; i < nr_node_ids; i++) { 6313 for (j = 0; j < nr_node_ids; j++) { 6314 for (k = 0; k < nr_node_ids; k++) { 6315 int distance = node_distance(i, k); 6316 6317 if (distance > curr_distance && 6318 (distance < next_distance || 6319 next_distance == curr_distance)) 6320 next_distance = distance; 6321 6322 /* 6323 * While not a strong assumption it would be nice to know 6324 * about cases where if node A is connected to B, B is not 6325 * equally connected to A. 6326 */ 6327 if (sched_debug() && node_distance(k, i) != distance) 6328 sched_numa_warn("Node-distance not symmetric"); 6329 6330 if (sched_debug() && i && !find_numa_distance(distance)) 6331 sched_numa_warn("Node-0 not representative"); 6332 } 6333 if (next_distance != curr_distance) { 6334 sched_domains_numa_distance[level++] = next_distance; 6335 sched_domains_numa_levels = level; 6336 curr_distance = next_distance; 6337 } else break; 6338 } 6339 6340 /* 6341 * In case of sched_debug() we verify the above assumption. 6342 */ 6343 if (!sched_debug()) 6344 break; 6345 } 6346 6347 if (!level) 6348 return; 6349 6350 /* 6351 * 'level' contains the number of unique distances, excluding the 6352 * identity distance node_distance(i,i). 6353 * 6354 * The sched_domains_numa_distance[] array includes the actual distance 6355 * numbers. 6356 */ 6357 6358 /* 6359 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6360 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6361 * the array will contain less then 'level' members. This could be 6362 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6363 * in other functions. 6364 * 6365 * We reset it to 'level' at the end of this function. 6366 */ 6367 sched_domains_numa_levels = 0; 6368 6369 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6370 if (!sched_domains_numa_masks) 6371 return; 6372 6373 /* 6374 * Now for each level, construct a mask per node which contains all 6375 * cpus of nodes that are that many hops away from us. 6376 */ 6377 for (i = 0; i < level; i++) { 6378 sched_domains_numa_masks[i] = 6379 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6380 if (!sched_domains_numa_masks[i]) 6381 return; 6382 6383 for (j = 0; j < nr_node_ids; j++) { 6384 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6385 if (!mask) 6386 return; 6387 6388 sched_domains_numa_masks[i][j] = mask; 6389 6390 for (k = 0; k < nr_node_ids; k++) { 6391 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6392 continue; 6393 6394 cpumask_or(mask, mask, cpumask_of_node(k)); 6395 } 6396 } 6397 } 6398 6399 /* Compute default topology size */ 6400 for (i = 0; sched_domain_topology[i].mask; i++); 6401 6402 tl = kzalloc((i + level + 1) * 6403 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6404 if (!tl) 6405 return; 6406 6407 /* 6408 * Copy the default topology bits.. 6409 */ 6410 for (i = 0; sched_domain_topology[i].mask; i++) 6411 tl[i] = sched_domain_topology[i]; 6412 6413 /* 6414 * .. and append 'j' levels of NUMA goodness. 6415 */ 6416 for (j = 0; j < level; i++, j++) { 6417 tl[i] = (struct sched_domain_topology_level){ 6418 .mask = sd_numa_mask, 6419 .sd_flags = cpu_numa_flags, 6420 .flags = SDTL_OVERLAP, 6421 .numa_level = j, 6422 SD_INIT_NAME(NUMA) 6423 }; 6424 } 6425 6426 sched_domain_topology = tl; 6427 6428 sched_domains_numa_levels = level; 6429 } 6430 6431 static void sched_domains_numa_masks_set(int cpu) 6432 { 6433 int i, j; 6434 int node = cpu_to_node(cpu); 6435 6436 for (i = 0; i < sched_domains_numa_levels; i++) { 6437 for (j = 0; j < nr_node_ids; j++) { 6438 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6439 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6440 } 6441 } 6442 } 6443 6444 static void sched_domains_numa_masks_clear(int cpu) 6445 { 6446 int i, j; 6447 for (i = 0; i < sched_domains_numa_levels; i++) { 6448 for (j = 0; j < nr_node_ids; j++) 6449 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6450 } 6451 } 6452 6453 /* 6454 * Update sched_domains_numa_masks[level][node] array when new cpus 6455 * are onlined. 6456 */ 6457 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6458 unsigned long action, 6459 void *hcpu) 6460 { 6461 int cpu = (long)hcpu; 6462 6463 switch (action & ~CPU_TASKS_FROZEN) { 6464 case CPU_ONLINE: 6465 sched_domains_numa_masks_set(cpu); 6466 break; 6467 6468 case CPU_DEAD: 6469 sched_domains_numa_masks_clear(cpu); 6470 break; 6471 6472 default: 6473 return NOTIFY_DONE; 6474 } 6475 6476 return NOTIFY_OK; 6477 } 6478 #else 6479 static inline void sched_init_numa(void) 6480 { 6481 } 6482 6483 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6484 unsigned long action, 6485 void *hcpu) 6486 { 6487 return 0; 6488 } 6489 #endif /* CONFIG_NUMA */ 6490 6491 static int __sdt_alloc(const struct cpumask *cpu_map) 6492 { 6493 struct sched_domain_topology_level *tl; 6494 int j; 6495 6496 for_each_sd_topology(tl) { 6497 struct sd_data *sdd = &tl->data; 6498 6499 sdd->sd = alloc_percpu(struct sched_domain *); 6500 if (!sdd->sd) 6501 return -ENOMEM; 6502 6503 sdd->sg = alloc_percpu(struct sched_group *); 6504 if (!sdd->sg) 6505 return -ENOMEM; 6506 6507 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6508 if (!sdd->sgc) 6509 return -ENOMEM; 6510 6511 for_each_cpu(j, cpu_map) { 6512 struct sched_domain *sd; 6513 struct sched_group *sg; 6514 struct sched_group_capacity *sgc; 6515 6516 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6517 GFP_KERNEL, cpu_to_node(j)); 6518 if (!sd) 6519 return -ENOMEM; 6520 6521 *per_cpu_ptr(sdd->sd, j) = sd; 6522 6523 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6524 GFP_KERNEL, cpu_to_node(j)); 6525 if (!sg) 6526 return -ENOMEM; 6527 6528 sg->next = sg; 6529 6530 *per_cpu_ptr(sdd->sg, j) = sg; 6531 6532 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6533 GFP_KERNEL, cpu_to_node(j)); 6534 if (!sgc) 6535 return -ENOMEM; 6536 6537 *per_cpu_ptr(sdd->sgc, j) = sgc; 6538 } 6539 } 6540 6541 return 0; 6542 } 6543 6544 static void __sdt_free(const struct cpumask *cpu_map) 6545 { 6546 struct sched_domain_topology_level *tl; 6547 int j; 6548 6549 for_each_sd_topology(tl) { 6550 struct sd_data *sdd = &tl->data; 6551 6552 for_each_cpu(j, cpu_map) { 6553 struct sched_domain *sd; 6554 6555 if (sdd->sd) { 6556 sd = *per_cpu_ptr(sdd->sd, j); 6557 if (sd && (sd->flags & SD_OVERLAP)) 6558 free_sched_groups(sd->groups, 0); 6559 kfree(*per_cpu_ptr(sdd->sd, j)); 6560 } 6561 6562 if (sdd->sg) 6563 kfree(*per_cpu_ptr(sdd->sg, j)); 6564 if (sdd->sgc) 6565 kfree(*per_cpu_ptr(sdd->sgc, j)); 6566 } 6567 free_percpu(sdd->sd); 6568 sdd->sd = NULL; 6569 free_percpu(sdd->sg); 6570 sdd->sg = NULL; 6571 free_percpu(sdd->sgc); 6572 sdd->sgc = NULL; 6573 } 6574 } 6575 6576 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6577 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6578 struct sched_domain *child, int cpu) 6579 { 6580 struct sched_domain *sd = sd_init(tl, cpu); 6581 if (!sd) 6582 return child; 6583 6584 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6585 if (child) { 6586 sd->level = child->level + 1; 6587 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6588 child->parent = sd; 6589 sd->child = child; 6590 6591 if (!cpumask_subset(sched_domain_span(child), 6592 sched_domain_span(sd))) { 6593 pr_err("BUG: arch topology borken\n"); 6594 #ifdef CONFIG_SCHED_DEBUG 6595 pr_err(" the %s domain not a subset of the %s domain\n", 6596 child->name, sd->name); 6597 #endif 6598 /* Fixup, ensure @sd has at least @child cpus. */ 6599 cpumask_or(sched_domain_span(sd), 6600 sched_domain_span(sd), 6601 sched_domain_span(child)); 6602 } 6603 6604 } 6605 set_domain_attribute(sd, attr); 6606 6607 return sd; 6608 } 6609 6610 /* 6611 * Build sched domains for a given set of cpus and attach the sched domains 6612 * to the individual cpus 6613 */ 6614 static int build_sched_domains(const struct cpumask *cpu_map, 6615 struct sched_domain_attr *attr) 6616 { 6617 enum s_alloc alloc_state; 6618 struct sched_domain *sd; 6619 struct s_data d; 6620 int i, ret = -ENOMEM; 6621 6622 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6623 if (alloc_state != sa_rootdomain) 6624 goto error; 6625 6626 /* Set up domains for cpus specified by the cpu_map. */ 6627 for_each_cpu(i, cpu_map) { 6628 struct sched_domain_topology_level *tl; 6629 6630 sd = NULL; 6631 for_each_sd_topology(tl) { 6632 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6633 if (tl == sched_domain_topology) 6634 *per_cpu_ptr(d.sd, i) = sd; 6635 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6636 sd->flags |= SD_OVERLAP; 6637 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6638 break; 6639 } 6640 } 6641 6642 /* Build the groups for the domains */ 6643 for_each_cpu(i, cpu_map) { 6644 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6645 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6646 if (sd->flags & SD_OVERLAP) { 6647 if (build_overlap_sched_groups(sd, i)) 6648 goto error; 6649 } else { 6650 if (build_sched_groups(sd, i)) 6651 goto error; 6652 } 6653 } 6654 } 6655 6656 /* Calculate CPU capacity for physical packages and nodes */ 6657 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6658 if (!cpumask_test_cpu(i, cpu_map)) 6659 continue; 6660 6661 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6662 claim_allocations(i, sd); 6663 init_sched_groups_capacity(i, sd); 6664 } 6665 } 6666 6667 /* Attach the domains */ 6668 rcu_read_lock(); 6669 for_each_cpu(i, cpu_map) { 6670 sd = *per_cpu_ptr(d.sd, i); 6671 cpu_attach_domain(sd, d.rd, i); 6672 } 6673 rcu_read_unlock(); 6674 6675 ret = 0; 6676 error: 6677 __free_domain_allocs(&d, alloc_state, cpu_map); 6678 return ret; 6679 } 6680 6681 static cpumask_var_t *doms_cur; /* current sched domains */ 6682 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6683 static struct sched_domain_attr *dattr_cur; 6684 /* attribues of custom domains in 'doms_cur' */ 6685 6686 /* 6687 * Special case: If a kmalloc of a doms_cur partition (array of 6688 * cpumask) fails, then fallback to a single sched domain, 6689 * as determined by the single cpumask fallback_doms. 6690 */ 6691 static cpumask_var_t fallback_doms; 6692 6693 /* 6694 * arch_update_cpu_topology lets virtualized architectures update the 6695 * cpu core maps. It is supposed to return 1 if the topology changed 6696 * or 0 if it stayed the same. 6697 */ 6698 int __weak arch_update_cpu_topology(void) 6699 { 6700 return 0; 6701 } 6702 6703 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6704 { 6705 int i; 6706 cpumask_var_t *doms; 6707 6708 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6709 if (!doms) 6710 return NULL; 6711 for (i = 0; i < ndoms; i++) { 6712 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6713 free_sched_domains(doms, i); 6714 return NULL; 6715 } 6716 } 6717 return doms; 6718 } 6719 6720 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6721 { 6722 unsigned int i; 6723 for (i = 0; i < ndoms; i++) 6724 free_cpumask_var(doms[i]); 6725 kfree(doms); 6726 } 6727 6728 /* 6729 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6730 * For now this just excludes isolated cpus, but could be used to 6731 * exclude other special cases in the future. 6732 */ 6733 static int init_sched_domains(const struct cpumask *cpu_map) 6734 { 6735 int err; 6736 6737 arch_update_cpu_topology(); 6738 ndoms_cur = 1; 6739 doms_cur = alloc_sched_domains(ndoms_cur); 6740 if (!doms_cur) 6741 doms_cur = &fallback_doms; 6742 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6743 err = build_sched_domains(doms_cur[0], NULL); 6744 register_sched_domain_sysctl(); 6745 6746 return err; 6747 } 6748 6749 /* 6750 * Detach sched domains from a group of cpus specified in cpu_map 6751 * These cpus will now be attached to the NULL domain 6752 */ 6753 static void detach_destroy_domains(const struct cpumask *cpu_map) 6754 { 6755 int i; 6756 6757 rcu_read_lock(); 6758 for_each_cpu(i, cpu_map) 6759 cpu_attach_domain(NULL, &def_root_domain, i); 6760 rcu_read_unlock(); 6761 } 6762 6763 /* handle null as "default" */ 6764 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6765 struct sched_domain_attr *new, int idx_new) 6766 { 6767 struct sched_domain_attr tmp; 6768 6769 /* fast path */ 6770 if (!new && !cur) 6771 return 1; 6772 6773 tmp = SD_ATTR_INIT; 6774 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6775 new ? (new + idx_new) : &tmp, 6776 sizeof(struct sched_domain_attr)); 6777 } 6778 6779 /* 6780 * Partition sched domains as specified by the 'ndoms_new' 6781 * cpumasks in the array doms_new[] of cpumasks. This compares 6782 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6783 * It destroys each deleted domain and builds each new domain. 6784 * 6785 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6786 * The masks don't intersect (don't overlap.) We should setup one 6787 * sched domain for each mask. CPUs not in any of the cpumasks will 6788 * not be load balanced. If the same cpumask appears both in the 6789 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6790 * it as it is. 6791 * 6792 * The passed in 'doms_new' should be allocated using 6793 * alloc_sched_domains. This routine takes ownership of it and will 6794 * free_sched_domains it when done with it. If the caller failed the 6795 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6796 * and partition_sched_domains() will fallback to the single partition 6797 * 'fallback_doms', it also forces the domains to be rebuilt. 6798 * 6799 * If doms_new == NULL it will be replaced with cpu_online_mask. 6800 * ndoms_new == 0 is a special case for destroying existing domains, 6801 * and it will not create the default domain. 6802 * 6803 * Call with hotplug lock held 6804 */ 6805 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6806 struct sched_domain_attr *dattr_new) 6807 { 6808 int i, j, n; 6809 int new_topology; 6810 6811 mutex_lock(&sched_domains_mutex); 6812 6813 /* always unregister in case we don't destroy any domains */ 6814 unregister_sched_domain_sysctl(); 6815 6816 /* Let architecture update cpu core mappings. */ 6817 new_topology = arch_update_cpu_topology(); 6818 6819 n = doms_new ? ndoms_new : 0; 6820 6821 /* Destroy deleted domains */ 6822 for (i = 0; i < ndoms_cur; i++) { 6823 for (j = 0; j < n && !new_topology; j++) { 6824 if (cpumask_equal(doms_cur[i], doms_new[j]) 6825 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6826 goto match1; 6827 } 6828 /* no match - a current sched domain not in new doms_new[] */ 6829 detach_destroy_domains(doms_cur[i]); 6830 match1: 6831 ; 6832 } 6833 6834 n = ndoms_cur; 6835 if (doms_new == NULL) { 6836 n = 0; 6837 doms_new = &fallback_doms; 6838 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6839 WARN_ON_ONCE(dattr_new); 6840 } 6841 6842 /* Build new domains */ 6843 for (i = 0; i < ndoms_new; i++) { 6844 for (j = 0; j < n && !new_topology; j++) { 6845 if (cpumask_equal(doms_new[i], doms_cur[j]) 6846 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6847 goto match2; 6848 } 6849 /* no match - add a new doms_new */ 6850 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6851 match2: 6852 ; 6853 } 6854 6855 /* Remember the new sched domains */ 6856 if (doms_cur != &fallback_doms) 6857 free_sched_domains(doms_cur, ndoms_cur); 6858 kfree(dattr_cur); /* kfree(NULL) is safe */ 6859 doms_cur = doms_new; 6860 dattr_cur = dattr_new; 6861 ndoms_cur = ndoms_new; 6862 6863 register_sched_domain_sysctl(); 6864 6865 mutex_unlock(&sched_domains_mutex); 6866 } 6867 6868 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6869 6870 /* 6871 * Update cpusets according to cpu_active mask. If cpusets are 6872 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6873 * around partition_sched_domains(). 6874 * 6875 * If we come here as part of a suspend/resume, don't touch cpusets because we 6876 * want to restore it back to its original state upon resume anyway. 6877 */ 6878 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6879 void *hcpu) 6880 { 6881 switch (action) { 6882 case CPU_ONLINE_FROZEN: 6883 case CPU_DOWN_FAILED_FROZEN: 6884 6885 /* 6886 * num_cpus_frozen tracks how many CPUs are involved in suspend 6887 * resume sequence. As long as this is not the last online 6888 * operation in the resume sequence, just build a single sched 6889 * domain, ignoring cpusets. 6890 */ 6891 num_cpus_frozen--; 6892 if (likely(num_cpus_frozen)) { 6893 partition_sched_domains(1, NULL, NULL); 6894 break; 6895 } 6896 6897 /* 6898 * This is the last CPU online operation. So fall through and 6899 * restore the original sched domains by considering the 6900 * cpuset configurations. 6901 */ 6902 6903 case CPU_ONLINE: 6904 case CPU_DOWN_FAILED: 6905 cpuset_update_active_cpus(true); 6906 break; 6907 default: 6908 return NOTIFY_DONE; 6909 } 6910 return NOTIFY_OK; 6911 } 6912 6913 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6914 void *hcpu) 6915 { 6916 switch (action) { 6917 case CPU_DOWN_PREPARE: 6918 cpuset_update_active_cpus(false); 6919 break; 6920 case CPU_DOWN_PREPARE_FROZEN: 6921 num_cpus_frozen++; 6922 partition_sched_domains(1, NULL, NULL); 6923 break; 6924 default: 6925 return NOTIFY_DONE; 6926 } 6927 return NOTIFY_OK; 6928 } 6929 6930 void __init sched_init_smp(void) 6931 { 6932 cpumask_var_t non_isolated_cpus; 6933 6934 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6935 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6936 6937 sched_init_numa(); 6938 6939 /* 6940 * There's no userspace yet to cause hotplug operations; hence all the 6941 * cpu masks are stable and all blatant races in the below code cannot 6942 * happen. 6943 */ 6944 mutex_lock(&sched_domains_mutex); 6945 init_sched_domains(cpu_active_mask); 6946 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6947 if (cpumask_empty(non_isolated_cpus)) 6948 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6949 mutex_unlock(&sched_domains_mutex); 6950 6951 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6952 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6953 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6954 6955 init_hrtick(); 6956 6957 /* Move init over to a non-isolated CPU */ 6958 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6959 BUG(); 6960 sched_init_granularity(); 6961 free_cpumask_var(non_isolated_cpus); 6962 6963 init_sched_rt_class(); 6964 init_sched_dl_class(); 6965 } 6966 #else 6967 void __init sched_init_smp(void) 6968 { 6969 sched_init_granularity(); 6970 } 6971 #endif /* CONFIG_SMP */ 6972 6973 const_debug unsigned int sysctl_timer_migration = 1; 6974 6975 int in_sched_functions(unsigned long addr) 6976 { 6977 return in_lock_functions(addr) || 6978 (addr >= (unsigned long)__sched_text_start 6979 && addr < (unsigned long)__sched_text_end); 6980 } 6981 6982 #ifdef CONFIG_CGROUP_SCHED 6983 /* 6984 * Default task group. 6985 * Every task in system belongs to this group at bootup. 6986 */ 6987 struct task_group root_task_group; 6988 LIST_HEAD(task_groups); 6989 #endif 6990 6991 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6992 6993 void __init sched_init(void) 6994 { 6995 int i, j; 6996 unsigned long alloc_size = 0, ptr; 6997 6998 #ifdef CONFIG_FAIR_GROUP_SCHED 6999 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7000 #endif 7001 #ifdef CONFIG_RT_GROUP_SCHED 7002 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7003 #endif 7004 #ifdef CONFIG_CPUMASK_OFFSTACK 7005 alloc_size += num_possible_cpus() * cpumask_size(); 7006 #endif 7007 if (alloc_size) { 7008 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7009 7010 #ifdef CONFIG_FAIR_GROUP_SCHED 7011 root_task_group.se = (struct sched_entity **)ptr; 7012 ptr += nr_cpu_ids * sizeof(void **); 7013 7014 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7015 ptr += nr_cpu_ids * sizeof(void **); 7016 7017 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7018 #ifdef CONFIG_RT_GROUP_SCHED 7019 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7020 ptr += nr_cpu_ids * sizeof(void **); 7021 7022 root_task_group.rt_rq = (struct rt_rq **)ptr; 7023 ptr += nr_cpu_ids * sizeof(void **); 7024 7025 #endif /* CONFIG_RT_GROUP_SCHED */ 7026 #ifdef CONFIG_CPUMASK_OFFSTACK 7027 for_each_possible_cpu(i) { 7028 per_cpu(load_balance_mask, i) = (void *)ptr; 7029 ptr += cpumask_size(); 7030 } 7031 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7032 } 7033 7034 init_rt_bandwidth(&def_rt_bandwidth, 7035 global_rt_period(), global_rt_runtime()); 7036 init_dl_bandwidth(&def_dl_bandwidth, 7037 global_rt_period(), global_rt_runtime()); 7038 7039 #ifdef CONFIG_SMP 7040 init_defrootdomain(); 7041 #endif 7042 7043 #ifdef CONFIG_RT_GROUP_SCHED 7044 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7045 global_rt_period(), global_rt_runtime()); 7046 #endif /* CONFIG_RT_GROUP_SCHED */ 7047 7048 #ifdef CONFIG_CGROUP_SCHED 7049 list_add(&root_task_group.list, &task_groups); 7050 INIT_LIST_HEAD(&root_task_group.children); 7051 INIT_LIST_HEAD(&root_task_group.siblings); 7052 autogroup_init(&init_task); 7053 7054 #endif /* CONFIG_CGROUP_SCHED */ 7055 7056 for_each_possible_cpu(i) { 7057 struct rq *rq; 7058 7059 rq = cpu_rq(i); 7060 raw_spin_lock_init(&rq->lock); 7061 rq->nr_running = 0; 7062 rq->calc_load_active = 0; 7063 rq->calc_load_update = jiffies + LOAD_FREQ; 7064 init_cfs_rq(&rq->cfs); 7065 init_rt_rq(&rq->rt, rq); 7066 init_dl_rq(&rq->dl, rq); 7067 #ifdef CONFIG_FAIR_GROUP_SCHED 7068 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7070 /* 7071 * How much cpu bandwidth does root_task_group get? 7072 * 7073 * In case of task-groups formed thr' the cgroup filesystem, it 7074 * gets 100% of the cpu resources in the system. This overall 7075 * system cpu resource is divided among the tasks of 7076 * root_task_group and its child task-groups in a fair manner, 7077 * based on each entity's (task or task-group's) weight 7078 * (se->load.weight). 7079 * 7080 * In other words, if root_task_group has 10 tasks of weight 7081 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7082 * then A0's share of the cpu resource is: 7083 * 7084 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7085 * 7086 * We achieve this by letting root_task_group's tasks sit 7087 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7088 */ 7089 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7091 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7092 7093 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7094 #ifdef CONFIG_RT_GROUP_SCHED 7095 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7096 #endif 7097 7098 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7099 rq->cpu_load[j] = 0; 7100 7101 rq->last_load_update_tick = jiffies; 7102 7103 #ifdef CONFIG_SMP 7104 rq->sd = NULL; 7105 rq->rd = NULL; 7106 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7107 rq->post_schedule = 0; 7108 rq->active_balance = 0; 7109 rq->next_balance = jiffies; 7110 rq->push_cpu = 0; 7111 rq->cpu = i; 7112 rq->online = 0; 7113 rq->idle_stamp = 0; 7114 rq->avg_idle = 2*sysctl_sched_migration_cost; 7115 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7116 7117 INIT_LIST_HEAD(&rq->cfs_tasks); 7118 7119 rq_attach_root(rq, &def_root_domain); 7120 #ifdef CONFIG_NO_HZ_COMMON 7121 rq->nohz_flags = 0; 7122 #endif 7123 #ifdef CONFIG_NO_HZ_FULL 7124 rq->last_sched_tick = 0; 7125 #endif 7126 #endif 7127 init_rq_hrtick(rq); 7128 atomic_set(&rq->nr_iowait, 0); 7129 } 7130 7131 set_load_weight(&init_task); 7132 7133 #ifdef CONFIG_PREEMPT_NOTIFIERS 7134 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7135 #endif 7136 7137 /* 7138 * The boot idle thread does lazy MMU switching as well: 7139 */ 7140 atomic_inc(&init_mm.mm_count); 7141 enter_lazy_tlb(&init_mm, current); 7142 7143 /* 7144 * Make us the idle thread. Technically, schedule() should not be 7145 * called from this thread, however somewhere below it might be, 7146 * but because we are the idle thread, we just pick up running again 7147 * when this runqueue becomes "idle". 7148 */ 7149 init_idle(current, smp_processor_id()); 7150 7151 calc_load_update = jiffies + LOAD_FREQ; 7152 7153 /* 7154 * During early bootup we pretend to be a normal task: 7155 */ 7156 current->sched_class = &fair_sched_class; 7157 7158 #ifdef CONFIG_SMP 7159 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7160 /* May be allocated at isolcpus cmdline parse time */ 7161 if (cpu_isolated_map == NULL) 7162 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7163 idle_thread_set_boot_cpu(); 7164 set_cpu_rq_start_time(); 7165 #endif 7166 init_sched_fair_class(); 7167 7168 scheduler_running = 1; 7169 } 7170 7171 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7172 static inline int preempt_count_equals(int preempt_offset) 7173 { 7174 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7175 7176 return (nested == preempt_offset); 7177 } 7178 7179 void __might_sleep(const char *file, int line, int preempt_offset) 7180 { 7181 static unsigned long prev_jiffy; /* ratelimiting */ 7182 7183 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7184 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7185 !is_idle_task(current)) || 7186 system_state != SYSTEM_RUNNING || oops_in_progress) 7187 return; 7188 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7189 return; 7190 prev_jiffy = jiffies; 7191 7192 printk(KERN_ERR 7193 "BUG: sleeping function called from invalid context at %s:%d\n", 7194 file, line); 7195 printk(KERN_ERR 7196 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7197 in_atomic(), irqs_disabled(), 7198 current->pid, current->comm); 7199 7200 debug_show_held_locks(current); 7201 if (irqs_disabled()) 7202 print_irqtrace_events(current); 7203 #ifdef CONFIG_DEBUG_PREEMPT 7204 if (!preempt_count_equals(preempt_offset)) { 7205 pr_err("Preemption disabled at:"); 7206 print_ip_sym(current->preempt_disable_ip); 7207 pr_cont("\n"); 7208 } 7209 #endif 7210 dump_stack(); 7211 } 7212 EXPORT_SYMBOL(__might_sleep); 7213 #endif 7214 7215 #ifdef CONFIG_MAGIC_SYSRQ 7216 static void normalize_task(struct rq *rq, struct task_struct *p) 7217 { 7218 const struct sched_class *prev_class = p->sched_class; 7219 struct sched_attr attr = { 7220 .sched_policy = SCHED_NORMAL, 7221 }; 7222 int old_prio = p->prio; 7223 int queued; 7224 7225 queued = task_on_rq_queued(p); 7226 if (queued) 7227 dequeue_task(rq, p, 0); 7228 __setscheduler(rq, p, &attr); 7229 if (queued) { 7230 enqueue_task(rq, p, 0); 7231 resched_curr(rq); 7232 } 7233 7234 check_class_changed(rq, p, prev_class, old_prio); 7235 } 7236 7237 void normalize_rt_tasks(void) 7238 { 7239 struct task_struct *g, *p; 7240 unsigned long flags; 7241 struct rq *rq; 7242 7243 read_lock(&tasklist_lock); 7244 for_each_process_thread(g, p) { 7245 /* 7246 * Only normalize user tasks: 7247 */ 7248 if (p->flags & PF_KTHREAD) 7249 continue; 7250 7251 p->se.exec_start = 0; 7252 #ifdef CONFIG_SCHEDSTATS 7253 p->se.statistics.wait_start = 0; 7254 p->se.statistics.sleep_start = 0; 7255 p->se.statistics.block_start = 0; 7256 #endif 7257 7258 if (!dl_task(p) && !rt_task(p)) { 7259 /* 7260 * Renice negative nice level userspace 7261 * tasks back to 0: 7262 */ 7263 if (task_nice(p) < 0) 7264 set_user_nice(p, 0); 7265 continue; 7266 } 7267 7268 rq = task_rq_lock(p, &flags); 7269 normalize_task(rq, p); 7270 task_rq_unlock(rq, p, &flags); 7271 } 7272 read_unlock(&tasklist_lock); 7273 } 7274 7275 #endif /* CONFIG_MAGIC_SYSRQ */ 7276 7277 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7278 /* 7279 * These functions are only useful for the IA64 MCA handling, or kdb. 7280 * 7281 * They can only be called when the whole system has been 7282 * stopped - every CPU needs to be quiescent, and no scheduling 7283 * activity can take place. Using them for anything else would 7284 * be a serious bug, and as a result, they aren't even visible 7285 * under any other configuration. 7286 */ 7287 7288 /** 7289 * curr_task - return the current task for a given cpu. 7290 * @cpu: the processor in question. 7291 * 7292 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7293 * 7294 * Return: The current task for @cpu. 7295 */ 7296 struct task_struct *curr_task(int cpu) 7297 { 7298 return cpu_curr(cpu); 7299 } 7300 7301 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7302 7303 #ifdef CONFIG_IA64 7304 /** 7305 * set_curr_task - set the current task for a given cpu. 7306 * @cpu: the processor in question. 7307 * @p: the task pointer to set. 7308 * 7309 * Description: This function must only be used when non-maskable interrupts 7310 * are serviced on a separate stack. It allows the architecture to switch the 7311 * notion of the current task on a cpu in a non-blocking manner. This function 7312 * must be called with all CPU's synchronized, and interrupts disabled, the 7313 * and caller must save the original value of the current task (see 7314 * curr_task() above) and restore that value before reenabling interrupts and 7315 * re-starting the system. 7316 * 7317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7318 */ 7319 void set_curr_task(int cpu, struct task_struct *p) 7320 { 7321 cpu_curr(cpu) = p; 7322 } 7323 7324 #endif 7325 7326 #ifdef CONFIG_CGROUP_SCHED 7327 /* task_group_lock serializes the addition/removal of task groups */ 7328 static DEFINE_SPINLOCK(task_group_lock); 7329 7330 static void free_sched_group(struct task_group *tg) 7331 { 7332 free_fair_sched_group(tg); 7333 free_rt_sched_group(tg); 7334 autogroup_free(tg); 7335 kfree(tg); 7336 } 7337 7338 /* allocate runqueue etc for a new task group */ 7339 struct task_group *sched_create_group(struct task_group *parent) 7340 { 7341 struct task_group *tg; 7342 7343 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7344 if (!tg) 7345 return ERR_PTR(-ENOMEM); 7346 7347 if (!alloc_fair_sched_group(tg, parent)) 7348 goto err; 7349 7350 if (!alloc_rt_sched_group(tg, parent)) 7351 goto err; 7352 7353 return tg; 7354 7355 err: 7356 free_sched_group(tg); 7357 return ERR_PTR(-ENOMEM); 7358 } 7359 7360 void sched_online_group(struct task_group *tg, struct task_group *parent) 7361 { 7362 unsigned long flags; 7363 7364 spin_lock_irqsave(&task_group_lock, flags); 7365 list_add_rcu(&tg->list, &task_groups); 7366 7367 WARN_ON(!parent); /* root should already exist */ 7368 7369 tg->parent = parent; 7370 INIT_LIST_HEAD(&tg->children); 7371 list_add_rcu(&tg->siblings, &parent->children); 7372 spin_unlock_irqrestore(&task_group_lock, flags); 7373 } 7374 7375 /* rcu callback to free various structures associated with a task group */ 7376 static void free_sched_group_rcu(struct rcu_head *rhp) 7377 { 7378 /* now it should be safe to free those cfs_rqs */ 7379 free_sched_group(container_of(rhp, struct task_group, rcu)); 7380 } 7381 7382 /* Destroy runqueue etc associated with a task group */ 7383 void sched_destroy_group(struct task_group *tg) 7384 { 7385 /* wait for possible concurrent references to cfs_rqs complete */ 7386 call_rcu(&tg->rcu, free_sched_group_rcu); 7387 } 7388 7389 void sched_offline_group(struct task_group *tg) 7390 { 7391 unsigned long flags; 7392 int i; 7393 7394 /* end participation in shares distribution */ 7395 for_each_possible_cpu(i) 7396 unregister_fair_sched_group(tg, i); 7397 7398 spin_lock_irqsave(&task_group_lock, flags); 7399 list_del_rcu(&tg->list); 7400 list_del_rcu(&tg->siblings); 7401 spin_unlock_irqrestore(&task_group_lock, flags); 7402 } 7403 7404 /* change task's runqueue when it moves between groups. 7405 * The caller of this function should have put the task in its new group 7406 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7407 * reflect its new group. 7408 */ 7409 void sched_move_task(struct task_struct *tsk) 7410 { 7411 struct task_group *tg; 7412 int queued, running; 7413 unsigned long flags; 7414 struct rq *rq; 7415 7416 rq = task_rq_lock(tsk, &flags); 7417 7418 running = task_current(rq, tsk); 7419 queued = task_on_rq_queued(tsk); 7420 7421 if (queued) 7422 dequeue_task(rq, tsk, 0); 7423 if (unlikely(running)) 7424 put_prev_task(rq, tsk); 7425 7426 /* 7427 * All callers are synchronized by task_rq_lock(); we do not use RCU 7428 * which is pointless here. Thus, we pass "true" to task_css_check() 7429 * to prevent lockdep warnings. 7430 */ 7431 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7432 struct task_group, css); 7433 tg = autogroup_task_group(tsk, tg); 7434 tsk->sched_task_group = tg; 7435 7436 #ifdef CONFIG_FAIR_GROUP_SCHED 7437 if (tsk->sched_class->task_move_group) 7438 tsk->sched_class->task_move_group(tsk, queued); 7439 else 7440 #endif 7441 set_task_rq(tsk, task_cpu(tsk)); 7442 7443 if (unlikely(running)) 7444 tsk->sched_class->set_curr_task(rq); 7445 if (queued) 7446 enqueue_task(rq, tsk, 0); 7447 7448 task_rq_unlock(rq, tsk, &flags); 7449 } 7450 #endif /* CONFIG_CGROUP_SCHED */ 7451 7452 #ifdef CONFIG_RT_GROUP_SCHED 7453 /* 7454 * Ensure that the real time constraints are schedulable. 7455 */ 7456 static DEFINE_MUTEX(rt_constraints_mutex); 7457 7458 /* Must be called with tasklist_lock held */ 7459 static inline int tg_has_rt_tasks(struct task_group *tg) 7460 { 7461 struct task_struct *g, *p; 7462 7463 for_each_process_thread(g, p) { 7464 if (rt_task(p) && task_group(p) == tg) 7465 return 1; 7466 } 7467 7468 return 0; 7469 } 7470 7471 struct rt_schedulable_data { 7472 struct task_group *tg; 7473 u64 rt_period; 7474 u64 rt_runtime; 7475 }; 7476 7477 static int tg_rt_schedulable(struct task_group *tg, void *data) 7478 { 7479 struct rt_schedulable_data *d = data; 7480 struct task_group *child; 7481 unsigned long total, sum = 0; 7482 u64 period, runtime; 7483 7484 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7485 runtime = tg->rt_bandwidth.rt_runtime; 7486 7487 if (tg == d->tg) { 7488 period = d->rt_period; 7489 runtime = d->rt_runtime; 7490 } 7491 7492 /* 7493 * Cannot have more runtime than the period. 7494 */ 7495 if (runtime > period && runtime != RUNTIME_INF) 7496 return -EINVAL; 7497 7498 /* 7499 * Ensure we don't starve existing RT tasks. 7500 */ 7501 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7502 return -EBUSY; 7503 7504 total = to_ratio(period, runtime); 7505 7506 /* 7507 * Nobody can have more than the global setting allows. 7508 */ 7509 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7510 return -EINVAL; 7511 7512 /* 7513 * The sum of our children's runtime should not exceed our own. 7514 */ 7515 list_for_each_entry_rcu(child, &tg->children, siblings) { 7516 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7517 runtime = child->rt_bandwidth.rt_runtime; 7518 7519 if (child == d->tg) { 7520 period = d->rt_period; 7521 runtime = d->rt_runtime; 7522 } 7523 7524 sum += to_ratio(period, runtime); 7525 } 7526 7527 if (sum > total) 7528 return -EINVAL; 7529 7530 return 0; 7531 } 7532 7533 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7534 { 7535 int ret; 7536 7537 struct rt_schedulable_data data = { 7538 .tg = tg, 7539 .rt_period = period, 7540 .rt_runtime = runtime, 7541 }; 7542 7543 rcu_read_lock(); 7544 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7545 rcu_read_unlock(); 7546 7547 return ret; 7548 } 7549 7550 static int tg_set_rt_bandwidth(struct task_group *tg, 7551 u64 rt_period, u64 rt_runtime) 7552 { 7553 int i, err = 0; 7554 7555 mutex_lock(&rt_constraints_mutex); 7556 read_lock(&tasklist_lock); 7557 err = __rt_schedulable(tg, rt_period, rt_runtime); 7558 if (err) 7559 goto unlock; 7560 7561 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7562 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7563 tg->rt_bandwidth.rt_runtime = rt_runtime; 7564 7565 for_each_possible_cpu(i) { 7566 struct rt_rq *rt_rq = tg->rt_rq[i]; 7567 7568 raw_spin_lock(&rt_rq->rt_runtime_lock); 7569 rt_rq->rt_runtime = rt_runtime; 7570 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7571 } 7572 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7573 unlock: 7574 read_unlock(&tasklist_lock); 7575 mutex_unlock(&rt_constraints_mutex); 7576 7577 return err; 7578 } 7579 7580 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7581 { 7582 u64 rt_runtime, rt_period; 7583 7584 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7585 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7586 if (rt_runtime_us < 0) 7587 rt_runtime = RUNTIME_INF; 7588 7589 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7590 } 7591 7592 static long sched_group_rt_runtime(struct task_group *tg) 7593 { 7594 u64 rt_runtime_us; 7595 7596 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7597 return -1; 7598 7599 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7600 do_div(rt_runtime_us, NSEC_PER_USEC); 7601 return rt_runtime_us; 7602 } 7603 7604 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7605 { 7606 u64 rt_runtime, rt_period; 7607 7608 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7609 rt_runtime = tg->rt_bandwidth.rt_runtime; 7610 7611 if (rt_period == 0) 7612 return -EINVAL; 7613 7614 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7615 } 7616 7617 static long sched_group_rt_period(struct task_group *tg) 7618 { 7619 u64 rt_period_us; 7620 7621 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7622 do_div(rt_period_us, NSEC_PER_USEC); 7623 return rt_period_us; 7624 } 7625 #endif /* CONFIG_RT_GROUP_SCHED */ 7626 7627 #ifdef CONFIG_RT_GROUP_SCHED 7628 static int sched_rt_global_constraints(void) 7629 { 7630 int ret = 0; 7631 7632 mutex_lock(&rt_constraints_mutex); 7633 read_lock(&tasklist_lock); 7634 ret = __rt_schedulable(NULL, 0, 0); 7635 read_unlock(&tasklist_lock); 7636 mutex_unlock(&rt_constraints_mutex); 7637 7638 return ret; 7639 } 7640 7641 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7642 { 7643 /* Don't accept realtime tasks when there is no way for them to run */ 7644 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7645 return 0; 7646 7647 return 1; 7648 } 7649 7650 #else /* !CONFIG_RT_GROUP_SCHED */ 7651 static int sched_rt_global_constraints(void) 7652 { 7653 unsigned long flags; 7654 int i, ret = 0; 7655 7656 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7657 for_each_possible_cpu(i) { 7658 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7659 7660 raw_spin_lock(&rt_rq->rt_runtime_lock); 7661 rt_rq->rt_runtime = global_rt_runtime(); 7662 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7663 } 7664 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7665 7666 return ret; 7667 } 7668 #endif /* CONFIG_RT_GROUP_SCHED */ 7669 7670 static int sched_dl_global_constraints(void) 7671 { 7672 u64 runtime = global_rt_runtime(); 7673 u64 period = global_rt_period(); 7674 u64 new_bw = to_ratio(period, runtime); 7675 struct dl_bw *dl_b; 7676 int cpu, ret = 0; 7677 unsigned long flags; 7678 7679 /* 7680 * Here we want to check the bandwidth not being set to some 7681 * value smaller than the currently allocated bandwidth in 7682 * any of the root_domains. 7683 * 7684 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7685 * cycling on root_domains... Discussion on different/better 7686 * solutions is welcome! 7687 */ 7688 for_each_possible_cpu(cpu) { 7689 rcu_read_lock_sched(); 7690 dl_b = dl_bw_of(cpu); 7691 7692 raw_spin_lock_irqsave(&dl_b->lock, flags); 7693 if (new_bw < dl_b->total_bw) 7694 ret = -EBUSY; 7695 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7696 7697 rcu_read_unlock_sched(); 7698 7699 if (ret) 7700 break; 7701 } 7702 7703 return ret; 7704 } 7705 7706 static void sched_dl_do_global(void) 7707 { 7708 u64 new_bw = -1; 7709 struct dl_bw *dl_b; 7710 int cpu; 7711 unsigned long flags; 7712 7713 def_dl_bandwidth.dl_period = global_rt_period(); 7714 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7715 7716 if (global_rt_runtime() != RUNTIME_INF) 7717 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7718 7719 /* 7720 * FIXME: As above... 7721 */ 7722 for_each_possible_cpu(cpu) { 7723 rcu_read_lock_sched(); 7724 dl_b = dl_bw_of(cpu); 7725 7726 raw_spin_lock_irqsave(&dl_b->lock, flags); 7727 dl_b->bw = new_bw; 7728 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7729 7730 rcu_read_unlock_sched(); 7731 } 7732 } 7733 7734 static int sched_rt_global_validate(void) 7735 { 7736 if (sysctl_sched_rt_period <= 0) 7737 return -EINVAL; 7738 7739 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7740 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7741 return -EINVAL; 7742 7743 return 0; 7744 } 7745 7746 static void sched_rt_do_global(void) 7747 { 7748 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7749 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7750 } 7751 7752 int sched_rt_handler(struct ctl_table *table, int write, 7753 void __user *buffer, size_t *lenp, 7754 loff_t *ppos) 7755 { 7756 int old_period, old_runtime; 7757 static DEFINE_MUTEX(mutex); 7758 int ret; 7759 7760 mutex_lock(&mutex); 7761 old_period = sysctl_sched_rt_period; 7762 old_runtime = sysctl_sched_rt_runtime; 7763 7764 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7765 7766 if (!ret && write) { 7767 ret = sched_rt_global_validate(); 7768 if (ret) 7769 goto undo; 7770 7771 ret = sched_rt_global_constraints(); 7772 if (ret) 7773 goto undo; 7774 7775 ret = sched_dl_global_constraints(); 7776 if (ret) 7777 goto undo; 7778 7779 sched_rt_do_global(); 7780 sched_dl_do_global(); 7781 } 7782 if (0) { 7783 undo: 7784 sysctl_sched_rt_period = old_period; 7785 sysctl_sched_rt_runtime = old_runtime; 7786 } 7787 mutex_unlock(&mutex); 7788 7789 return ret; 7790 } 7791 7792 int sched_rr_handler(struct ctl_table *table, int write, 7793 void __user *buffer, size_t *lenp, 7794 loff_t *ppos) 7795 { 7796 int ret; 7797 static DEFINE_MUTEX(mutex); 7798 7799 mutex_lock(&mutex); 7800 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7801 /* make sure that internally we keep jiffies */ 7802 /* also, writing zero resets timeslice to default */ 7803 if (!ret && write) { 7804 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7805 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7806 } 7807 mutex_unlock(&mutex); 7808 return ret; 7809 } 7810 7811 #ifdef CONFIG_CGROUP_SCHED 7812 7813 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7814 { 7815 return css ? container_of(css, struct task_group, css) : NULL; 7816 } 7817 7818 static struct cgroup_subsys_state * 7819 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7820 { 7821 struct task_group *parent = css_tg(parent_css); 7822 struct task_group *tg; 7823 7824 if (!parent) { 7825 /* This is early initialization for the top cgroup */ 7826 return &root_task_group.css; 7827 } 7828 7829 tg = sched_create_group(parent); 7830 if (IS_ERR(tg)) 7831 return ERR_PTR(-ENOMEM); 7832 7833 return &tg->css; 7834 } 7835 7836 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7837 { 7838 struct task_group *tg = css_tg(css); 7839 struct task_group *parent = css_tg(css->parent); 7840 7841 if (parent) 7842 sched_online_group(tg, parent); 7843 return 0; 7844 } 7845 7846 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7847 { 7848 struct task_group *tg = css_tg(css); 7849 7850 sched_destroy_group(tg); 7851 } 7852 7853 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7854 { 7855 struct task_group *tg = css_tg(css); 7856 7857 sched_offline_group(tg); 7858 } 7859 7860 static void cpu_cgroup_fork(struct task_struct *task) 7861 { 7862 sched_move_task(task); 7863 } 7864 7865 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7866 struct cgroup_taskset *tset) 7867 { 7868 struct task_struct *task; 7869 7870 cgroup_taskset_for_each(task, tset) { 7871 #ifdef CONFIG_RT_GROUP_SCHED 7872 if (!sched_rt_can_attach(css_tg(css), task)) 7873 return -EINVAL; 7874 #else 7875 /* We don't support RT-tasks being in separate groups */ 7876 if (task->sched_class != &fair_sched_class) 7877 return -EINVAL; 7878 #endif 7879 } 7880 return 0; 7881 } 7882 7883 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7884 struct cgroup_taskset *tset) 7885 { 7886 struct task_struct *task; 7887 7888 cgroup_taskset_for_each(task, tset) 7889 sched_move_task(task); 7890 } 7891 7892 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7893 struct cgroup_subsys_state *old_css, 7894 struct task_struct *task) 7895 { 7896 /* 7897 * cgroup_exit() is called in the copy_process() failure path. 7898 * Ignore this case since the task hasn't ran yet, this avoids 7899 * trying to poke a half freed task state from generic code. 7900 */ 7901 if (!(task->flags & PF_EXITING)) 7902 return; 7903 7904 sched_move_task(task); 7905 } 7906 7907 #ifdef CONFIG_FAIR_GROUP_SCHED 7908 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7909 struct cftype *cftype, u64 shareval) 7910 { 7911 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7912 } 7913 7914 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7915 struct cftype *cft) 7916 { 7917 struct task_group *tg = css_tg(css); 7918 7919 return (u64) scale_load_down(tg->shares); 7920 } 7921 7922 #ifdef CONFIG_CFS_BANDWIDTH 7923 static DEFINE_MUTEX(cfs_constraints_mutex); 7924 7925 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7926 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7927 7928 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7929 7930 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7931 { 7932 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7933 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7934 7935 if (tg == &root_task_group) 7936 return -EINVAL; 7937 7938 /* 7939 * Ensure we have at some amount of bandwidth every period. This is 7940 * to prevent reaching a state of large arrears when throttled via 7941 * entity_tick() resulting in prolonged exit starvation. 7942 */ 7943 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7944 return -EINVAL; 7945 7946 /* 7947 * Likewise, bound things on the otherside by preventing insane quota 7948 * periods. This also allows us to normalize in computing quota 7949 * feasibility. 7950 */ 7951 if (period > max_cfs_quota_period) 7952 return -EINVAL; 7953 7954 /* 7955 * Prevent race between setting of cfs_rq->runtime_enabled and 7956 * unthrottle_offline_cfs_rqs(). 7957 */ 7958 get_online_cpus(); 7959 mutex_lock(&cfs_constraints_mutex); 7960 ret = __cfs_schedulable(tg, period, quota); 7961 if (ret) 7962 goto out_unlock; 7963 7964 runtime_enabled = quota != RUNTIME_INF; 7965 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7966 /* 7967 * If we need to toggle cfs_bandwidth_used, off->on must occur 7968 * before making related changes, and on->off must occur afterwards 7969 */ 7970 if (runtime_enabled && !runtime_was_enabled) 7971 cfs_bandwidth_usage_inc(); 7972 raw_spin_lock_irq(&cfs_b->lock); 7973 cfs_b->period = ns_to_ktime(period); 7974 cfs_b->quota = quota; 7975 7976 __refill_cfs_bandwidth_runtime(cfs_b); 7977 /* restart the period timer (if active) to handle new period expiry */ 7978 if (runtime_enabled && cfs_b->timer_active) { 7979 /* force a reprogram */ 7980 __start_cfs_bandwidth(cfs_b, true); 7981 } 7982 raw_spin_unlock_irq(&cfs_b->lock); 7983 7984 for_each_online_cpu(i) { 7985 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7986 struct rq *rq = cfs_rq->rq; 7987 7988 raw_spin_lock_irq(&rq->lock); 7989 cfs_rq->runtime_enabled = runtime_enabled; 7990 cfs_rq->runtime_remaining = 0; 7991 7992 if (cfs_rq->throttled) 7993 unthrottle_cfs_rq(cfs_rq); 7994 raw_spin_unlock_irq(&rq->lock); 7995 } 7996 if (runtime_was_enabled && !runtime_enabled) 7997 cfs_bandwidth_usage_dec(); 7998 out_unlock: 7999 mutex_unlock(&cfs_constraints_mutex); 8000 put_online_cpus(); 8001 8002 return ret; 8003 } 8004 8005 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8006 { 8007 u64 quota, period; 8008 8009 period = ktime_to_ns(tg->cfs_bandwidth.period); 8010 if (cfs_quota_us < 0) 8011 quota = RUNTIME_INF; 8012 else 8013 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8014 8015 return tg_set_cfs_bandwidth(tg, period, quota); 8016 } 8017 8018 long tg_get_cfs_quota(struct task_group *tg) 8019 { 8020 u64 quota_us; 8021 8022 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8023 return -1; 8024 8025 quota_us = tg->cfs_bandwidth.quota; 8026 do_div(quota_us, NSEC_PER_USEC); 8027 8028 return quota_us; 8029 } 8030 8031 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8032 { 8033 u64 quota, period; 8034 8035 period = (u64)cfs_period_us * NSEC_PER_USEC; 8036 quota = tg->cfs_bandwidth.quota; 8037 8038 return tg_set_cfs_bandwidth(tg, period, quota); 8039 } 8040 8041 long tg_get_cfs_period(struct task_group *tg) 8042 { 8043 u64 cfs_period_us; 8044 8045 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8046 do_div(cfs_period_us, NSEC_PER_USEC); 8047 8048 return cfs_period_us; 8049 } 8050 8051 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8052 struct cftype *cft) 8053 { 8054 return tg_get_cfs_quota(css_tg(css)); 8055 } 8056 8057 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8058 struct cftype *cftype, s64 cfs_quota_us) 8059 { 8060 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8061 } 8062 8063 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8064 struct cftype *cft) 8065 { 8066 return tg_get_cfs_period(css_tg(css)); 8067 } 8068 8069 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8070 struct cftype *cftype, u64 cfs_period_us) 8071 { 8072 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8073 } 8074 8075 struct cfs_schedulable_data { 8076 struct task_group *tg; 8077 u64 period, quota; 8078 }; 8079 8080 /* 8081 * normalize group quota/period to be quota/max_period 8082 * note: units are usecs 8083 */ 8084 static u64 normalize_cfs_quota(struct task_group *tg, 8085 struct cfs_schedulable_data *d) 8086 { 8087 u64 quota, period; 8088 8089 if (tg == d->tg) { 8090 period = d->period; 8091 quota = d->quota; 8092 } else { 8093 period = tg_get_cfs_period(tg); 8094 quota = tg_get_cfs_quota(tg); 8095 } 8096 8097 /* note: these should typically be equivalent */ 8098 if (quota == RUNTIME_INF || quota == -1) 8099 return RUNTIME_INF; 8100 8101 return to_ratio(period, quota); 8102 } 8103 8104 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8105 { 8106 struct cfs_schedulable_data *d = data; 8107 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8108 s64 quota = 0, parent_quota = -1; 8109 8110 if (!tg->parent) { 8111 quota = RUNTIME_INF; 8112 } else { 8113 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8114 8115 quota = normalize_cfs_quota(tg, d); 8116 parent_quota = parent_b->hierarchical_quota; 8117 8118 /* 8119 * ensure max(child_quota) <= parent_quota, inherit when no 8120 * limit is set 8121 */ 8122 if (quota == RUNTIME_INF) 8123 quota = parent_quota; 8124 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8125 return -EINVAL; 8126 } 8127 cfs_b->hierarchical_quota = quota; 8128 8129 return 0; 8130 } 8131 8132 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8133 { 8134 int ret; 8135 struct cfs_schedulable_data data = { 8136 .tg = tg, 8137 .period = period, 8138 .quota = quota, 8139 }; 8140 8141 if (quota != RUNTIME_INF) { 8142 do_div(data.period, NSEC_PER_USEC); 8143 do_div(data.quota, NSEC_PER_USEC); 8144 } 8145 8146 rcu_read_lock(); 8147 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8148 rcu_read_unlock(); 8149 8150 return ret; 8151 } 8152 8153 static int cpu_stats_show(struct seq_file *sf, void *v) 8154 { 8155 struct task_group *tg = css_tg(seq_css(sf)); 8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8157 8158 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8159 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8160 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8161 8162 return 0; 8163 } 8164 #endif /* CONFIG_CFS_BANDWIDTH */ 8165 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8166 8167 #ifdef CONFIG_RT_GROUP_SCHED 8168 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8169 struct cftype *cft, s64 val) 8170 { 8171 return sched_group_set_rt_runtime(css_tg(css), val); 8172 } 8173 8174 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8175 struct cftype *cft) 8176 { 8177 return sched_group_rt_runtime(css_tg(css)); 8178 } 8179 8180 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8181 struct cftype *cftype, u64 rt_period_us) 8182 { 8183 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8184 } 8185 8186 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8187 struct cftype *cft) 8188 { 8189 return sched_group_rt_period(css_tg(css)); 8190 } 8191 #endif /* CONFIG_RT_GROUP_SCHED */ 8192 8193 static struct cftype cpu_files[] = { 8194 #ifdef CONFIG_FAIR_GROUP_SCHED 8195 { 8196 .name = "shares", 8197 .read_u64 = cpu_shares_read_u64, 8198 .write_u64 = cpu_shares_write_u64, 8199 }, 8200 #endif 8201 #ifdef CONFIG_CFS_BANDWIDTH 8202 { 8203 .name = "cfs_quota_us", 8204 .read_s64 = cpu_cfs_quota_read_s64, 8205 .write_s64 = cpu_cfs_quota_write_s64, 8206 }, 8207 { 8208 .name = "cfs_period_us", 8209 .read_u64 = cpu_cfs_period_read_u64, 8210 .write_u64 = cpu_cfs_period_write_u64, 8211 }, 8212 { 8213 .name = "stat", 8214 .seq_show = cpu_stats_show, 8215 }, 8216 #endif 8217 #ifdef CONFIG_RT_GROUP_SCHED 8218 { 8219 .name = "rt_runtime_us", 8220 .read_s64 = cpu_rt_runtime_read, 8221 .write_s64 = cpu_rt_runtime_write, 8222 }, 8223 { 8224 .name = "rt_period_us", 8225 .read_u64 = cpu_rt_period_read_uint, 8226 .write_u64 = cpu_rt_period_write_uint, 8227 }, 8228 #endif 8229 { } /* terminate */ 8230 }; 8231 8232 struct cgroup_subsys cpu_cgrp_subsys = { 8233 .css_alloc = cpu_cgroup_css_alloc, 8234 .css_free = cpu_cgroup_css_free, 8235 .css_online = cpu_cgroup_css_online, 8236 .css_offline = cpu_cgroup_css_offline, 8237 .fork = cpu_cgroup_fork, 8238 .can_attach = cpu_cgroup_can_attach, 8239 .attach = cpu_cgroup_attach, 8240 .exit = cpu_cgroup_exit, 8241 .legacy_cftypes = cpu_files, 8242 .early_init = 1, 8243 }; 8244 8245 #endif /* CONFIG_CGROUP_SCHED */ 8246 8247 void dump_cpu_task(int cpu) 8248 { 8249 pr_info("Task dump for CPU %d:\n", cpu); 8250 sched_show_task(cpu_curr(cpu)); 8251 } 8252