xref: /openbmc/linux/kernel/sched/core.c (revision 6b43538f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 	psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 	if (static_key_false((&paravirt_steal_rq_enabled))) {
708 		steal = paravirt_steal_clock(cpu_of(rq));
709 		steal -= rq->prev_steal_time_rq;
710 
711 		if (unlikely(steal > delta))
712 			steal = delta;
713 
714 		rq->prev_steal_time_rq += steal;
715 		delta -= steal;
716 	}
717 #endif
718 
719 	rq->clock_task += delta;
720 
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 		update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 	update_rq_clock_pelt(rq, delta);
726 }
727 
728 void update_rq_clock(struct rq *rq)
729 {
730 	s64 delta;
731 
732 	lockdep_assert_rq_held(rq);
733 
734 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 		return;
736 
737 #ifdef CONFIG_SCHED_DEBUG
738 	if (sched_feat(WARN_DOUBLE_CLOCK))
739 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 	rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742 
743 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 	if (delta < 0)
745 		return;
746 	rq->clock += delta;
747 	update_rq_clock_task(rq, delta);
748 }
749 
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752  * Use HR-timers to deliver accurate preemption points.
753  */
754 
755 static void hrtick_clear(struct rq *rq)
756 {
757 	if (hrtimer_active(&rq->hrtick_timer))
758 		hrtimer_cancel(&rq->hrtick_timer);
759 }
760 
761 /*
762  * High-resolution timer tick.
763  * Runs from hardirq context with interrupts disabled.
764  */
765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 	struct rq_flags rf;
769 
770 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771 
772 	rq_lock(rq, &rf);
773 	update_rq_clock(rq);
774 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 	rq_unlock(rq, &rf);
776 
777 	return HRTIMER_NORESTART;
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static void __hrtick_restart(struct rq *rq)
783 {
784 	struct hrtimer *timer = &rq->hrtick_timer;
785 	ktime_t time = rq->hrtick_time;
786 
787 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789 
790 /*
791  * called from hardirq (IPI) context
792  */
793 static void __hrtick_start(void *arg)
794 {
795 	struct rq *rq = arg;
796 	struct rq_flags rf;
797 
798 	rq_lock(rq, &rf);
799 	__hrtick_restart(rq);
800 	rq_unlock(rq, &rf);
801 }
802 
803 /*
804  * Called to set the hrtick timer state.
805  *
806  * called with rq->lock held and irqs disabled
807  */
808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 	struct hrtimer *timer = &rq->hrtick_timer;
811 	s64 delta;
812 
813 	/*
814 	 * Don't schedule slices shorter than 10000ns, that just
815 	 * doesn't make sense and can cause timer DoS.
816 	 */
817 	delta = max_t(s64, delay, 10000LL);
818 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819 
820 	if (rq == this_rq())
821 		__hrtick_restart(rq);
822 	else
823 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825 
826 #else
827 /*
828  * Called to set the hrtick timer state.
829  *
830  * called with rq->lock held and irqs disabled
831  */
832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense. Rely on vruntime for fairness.
837 	 */
838 	delay = max_t(u64, delay, 10000LL);
839 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 		      HRTIMER_MODE_REL_PINNED_HARD);
841 }
842 
843 #endif /* CONFIG_SMP */
844 
845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 	rq->hrtick_timer.function = hrtick;
852 }
853 #else	/* CONFIG_SCHED_HRTICK */
854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857 
858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif	/* CONFIG_SCHED_HRTICK */
862 
863 /*
864  * cmpxchg based fetch_or, macro so it works for different integer types
865  */
866 #define fetch_or(ptr, mask)						\
867 	({								\
868 		typeof(ptr) _ptr = (ptr);				\
869 		typeof(mask) _mask = (mask);				\
870 		typeof(*_ptr) _val = *_ptr;				\
871 									\
872 		do {							\
873 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
874 	_val;								\
875 })
876 
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880  * this avoids any races wrt polling state changes and thereby avoids
881  * spurious IPIs.
882  */
883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 	struct thread_info *ti = task_thread_info(p);
886 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888 
889 /*
890  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891  *
892  * If this returns true, then the idle task promises to call
893  * sched_ttwu_pending() and reschedule soon.
894  */
895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 	struct thread_info *ti = task_thread_info(p);
898 	typeof(ti->flags) val = READ_ONCE(ti->flags);
899 
900 	for (;;) {
901 		if (!(val & _TIF_POLLING_NRFLAG))
902 			return false;
903 		if (val & _TIF_NEED_RESCHED)
904 			return true;
905 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 			break;
907 	}
908 	return true;
909 }
910 
911 #else
912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	set_tsk_need_resched(p);
915 	return true;
916 }
917 
918 #ifdef CONFIG_SMP
919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 	return false;
922 }
923 #endif
924 #endif
925 
926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 	struct wake_q_node *node = &task->wake_q;
929 
930 	/*
931 	 * Atomically grab the task, if ->wake_q is !nil already it means
932 	 * it's already queued (either by us or someone else) and will get the
933 	 * wakeup due to that.
934 	 *
935 	 * In order to ensure that a pending wakeup will observe our pending
936 	 * state, even in the failed case, an explicit smp_mb() must be used.
937 	 */
938 	smp_mb__before_atomic();
939 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 		return false;
941 
942 	/*
943 	 * The head is context local, there can be no concurrency.
944 	 */
945 	*head->lastp = node;
946 	head->lastp = &node->next;
947 	return true;
948 }
949 
950 /**
951  * wake_q_add() - queue a wakeup for 'later' waking.
952  * @head: the wake_q_head to add @task to
953  * @task: the task to queue for 'later' wakeup
954  *
955  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957  * instantly.
958  *
959  * This function must be used as-if it were wake_up_process(); IOW the task
960  * must be ready to be woken at this location.
961  */
962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 	if (__wake_q_add(head, task))
965 		get_task_struct(task);
966 }
967 
968 /**
969  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970  * @head: the wake_q_head to add @task to
971  * @task: the task to queue for 'later' wakeup
972  *
973  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975  * instantly.
976  *
977  * This function must be used as-if it were wake_up_process(); IOW the task
978  * must be ready to be woken at this location.
979  *
980  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981  * that already hold reference to @task can call the 'safe' version and trust
982  * wake_q to do the right thing depending whether or not the @task is already
983  * queued for wakeup.
984  */
985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 	if (!__wake_q_add(head, task))
988 		put_task_struct(task);
989 }
990 
991 void wake_up_q(struct wake_q_head *head)
992 {
993 	struct wake_q_node *node = head->first;
994 
995 	while (node != WAKE_Q_TAIL) {
996 		struct task_struct *task;
997 
998 		task = container_of(node, struct task_struct, wake_q);
999 		/* Task can safely be re-inserted now: */
1000 		node = node->next;
1001 		task->wake_q.next = NULL;
1002 
1003 		/*
1004 		 * wake_up_process() executes a full barrier, which pairs with
1005 		 * the queueing in wake_q_add() so as not to miss wakeups.
1006 		 */
1007 		wake_up_process(task);
1008 		put_task_struct(task);
1009 	}
1010 }
1011 
1012 /*
1013  * resched_curr - mark rq's current task 'to be rescheduled now'.
1014  *
1015  * On UP this means the setting of the need_resched flag, on SMP it
1016  * might also involve a cross-CPU call to trigger the scheduler on
1017  * the target CPU.
1018  */
1019 void resched_curr(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	int cpu;
1023 
1024 	lockdep_assert_rq_held(rq);
1025 
1026 	if (test_tsk_need_resched(curr))
1027 		return;
1028 
1029 	cpu = cpu_of(rq);
1030 
1031 	if (cpu == smp_processor_id()) {
1032 		set_tsk_need_resched(curr);
1033 		set_preempt_need_resched();
1034 		return;
1035 	}
1036 
1037 	if (set_nr_and_not_polling(curr))
1038 		smp_send_reschedule(cpu);
1039 	else
1040 		trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042 
1043 void resched_cpu(int cpu)
1044 {
1045 	struct rq *rq = cpu_rq(cpu);
1046 	unsigned long flags;
1047 
1048 	raw_spin_rq_lock_irqsave(rq, flags);
1049 	if (cpu_online(cpu) || cpu == smp_processor_id())
1050 		resched_curr(rq);
1051 	raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057  * In the semi idle case, use the nearest busy CPU for migrating timers
1058  * from an idle CPU.  This is good for power-savings.
1059  *
1060  * We don't do similar optimization for completely idle system, as
1061  * selecting an idle CPU will add more delays to the timers than intended
1062  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063  */
1064 int get_nohz_timer_target(void)
1065 {
1066 	int i, cpu = smp_processor_id(), default_cpu = -1;
1067 	struct sched_domain *sd;
1068 	const struct cpumask *hk_mask;
1069 
1070 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 		if (!idle_cpu(cpu))
1072 			return cpu;
1073 		default_cpu = cpu;
1074 	}
1075 
1076 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077 
1078 	rcu_read_lock();
1079 	for_each_domain(cpu, sd) {
1080 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 			if (cpu == i)
1082 				continue;
1083 
1084 			if (!idle_cpu(i)) {
1085 				cpu = i;
1086 				goto unlock;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (default_cpu == -1)
1092 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 	cpu = default_cpu;
1094 unlock:
1095 	rcu_read_unlock();
1096 	return cpu;
1097 }
1098 
1099 /*
1100  * When add_timer_on() enqueues a timer into the timer wheel of an
1101  * idle CPU then this timer might expire before the next timer event
1102  * which is scheduled to wake up that CPU. In case of a completely
1103  * idle system the next event might even be infinite time into the
1104  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105  * leaves the inner idle loop so the newly added timer is taken into
1106  * account when the CPU goes back to idle and evaluates the timer
1107  * wheel for the next timer event.
1108  */
1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 	struct rq *rq = cpu_rq(cpu);
1112 
1113 	if (cpu == smp_processor_id())
1114 		return;
1115 
1116 	if (set_nr_and_not_polling(rq->idle))
1117 		smp_send_reschedule(cpu);
1118 	else
1119 		trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121 
1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 	/*
1125 	 * We just need the target to call irq_exit() and re-evaluate
1126 	 * the next tick. The nohz full kick at least implies that.
1127 	 * If needed we can still optimize that later with an
1128 	 * empty IRQ.
1129 	 */
1130 	if (cpu_is_offline(cpu))
1131 		return true;  /* Don't try to wake offline CPUs. */
1132 	if (tick_nohz_full_cpu(cpu)) {
1133 		if (cpu != smp_processor_id() ||
1134 		    tick_nohz_tick_stopped())
1135 			tick_nohz_full_kick_cpu(cpu);
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
1142 /*
1143  * Wake up the specified CPU.  If the CPU is going offline, it is the
1144  * caller's responsibility to deal with the lost wakeup, for example,
1145  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146  */
1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 	if (!wake_up_full_nohz_cpu(cpu))
1150 		wake_up_idle_cpu(cpu);
1151 }
1152 
1153 static void nohz_csd_func(void *info)
1154 {
1155 	struct rq *rq = info;
1156 	int cpu = cpu_of(rq);
1157 	unsigned int flags;
1158 
1159 	/*
1160 	 * Release the rq::nohz_csd.
1161 	 */
1162 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1164 
1165 	rq->idle_balance = idle_cpu(cpu);
1166 	if (rq->idle_balance && !need_resched()) {
1167 		rq->nohz_idle_balance = flags;
1168 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 	}
1170 }
1171 
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173 
1174 #ifdef CONFIG_NO_HZ_FULL
1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 	int fifo_nr_running;
1178 
1179 	/* Deadline tasks, even if single, need the tick */
1180 	if (rq->dl.dl_nr_running)
1181 		return false;
1182 
1183 	/*
1184 	 * If there are more than one RR tasks, we need the tick to affect the
1185 	 * actual RR behaviour.
1186 	 */
1187 	if (rq->rt.rr_nr_running) {
1188 		if (rq->rt.rr_nr_running == 1)
1189 			return true;
1190 		else
1191 			return false;
1192 	}
1193 
1194 	/*
1195 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 	 * forced preemption between FIFO tasks.
1197 	 */
1198 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 	if (fifo_nr_running)
1200 		return true;
1201 
1202 	/*
1203 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 	 * if there's more than one we need the tick for involuntary
1205 	 * preemption.
1206 	 */
1207 	if (rq->nr_running > 1)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214 
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218  * Iterate task_group tree rooted at *from, calling @down when first entering a
1219  * node and @up when leaving it for the final time.
1220  *
1221  * Caller must hold rcu_lock or sufficient equivalent.
1222  */
1223 int walk_tg_tree_from(struct task_group *from,
1224 			     tg_visitor down, tg_visitor up, void *data)
1225 {
1226 	struct task_group *parent, *child;
1227 	int ret;
1228 
1229 	parent = from;
1230 
1231 down:
1232 	ret = (*down)(parent, data);
1233 	if (ret)
1234 		goto out;
1235 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 		parent = child;
1237 		goto down;
1238 
1239 up:
1240 		continue;
1241 	}
1242 	ret = (*up)(parent, data);
1243 	if (ret || parent == from)
1244 		goto out;
1245 
1246 	child = parent;
1247 	parent = parent->parent;
1248 	if (parent)
1249 		goto up;
1250 out:
1251 	return ret;
1252 }
1253 
1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 	return 0;
1257 }
1258 #endif
1259 
1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 	int prio = p->static_prio - MAX_RT_PRIO;
1263 	struct load_weight *load = &p->se.load;
1264 
1265 	/*
1266 	 * SCHED_IDLE tasks get minimal weight:
1267 	 */
1268 	if (task_has_idle_policy(p)) {
1269 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 		load->inv_weight = WMULT_IDLEPRIO;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * SCHED_OTHER tasks have to update their load when changing their
1276 	 * weight
1277 	 */
1278 	if (update_load && p->sched_class == &fair_sched_class) {
1279 		reweight_task(p, prio);
1280 	} else {
1281 		load->weight = scale_load(sched_prio_to_weight[prio]);
1282 		load->inv_weight = sched_prio_to_wmult[prio];
1283 	}
1284 }
1285 
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288  * Serializes updates of utilization clamp values
1289  *
1290  * The (slow-path) user-space triggers utilization clamp value updates which
1291  * can require updates on (fast-path) scheduler's data structures used to
1292  * support enqueue/dequeue operations.
1293  * While the per-CPU rq lock protects fast-path update operations, user-space
1294  * requests are serialized using a mutex to reduce the risk of conflicting
1295  * updates or API abuses.
1296  */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298 
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301 
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304 
1305 /*
1306  * By default RT tasks run at the maximum performance point/capacity of the
1307  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308  * SCHED_CAPACITY_SCALE.
1309  *
1310  * This knob allows admins to change the default behavior when uclamp is being
1311  * used. In battery powered devices, particularly, running at the maximum
1312  * capacity and frequency will increase energy consumption and shorten the
1313  * battery life.
1314  *
1315  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316  *
1317  * This knob will not override the system default sched_util_clamp_min defined
1318  * above.
1319  */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321 
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324 
1325 /*
1326  * This static key is used to reduce the uclamp overhead in the fast path. It
1327  * primarily disables the call to uclamp_rq_{inc, dec}() in
1328  * enqueue/dequeue_task().
1329  *
1330  * This allows users to continue to enable uclamp in their kernel config with
1331  * minimum uclamp overhead in the fast path.
1332  *
1333  * As soon as userspace modifies any of the uclamp knobs, the static key is
1334  * enabled, since we have an actual users that make use of uclamp
1335  * functionality.
1336  *
1337  * The knobs that would enable this static key are:
1338  *
1339  *   * A task modifying its uclamp value with sched_setattr().
1340  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1342  */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344 
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347 
1348 #define for_each_clamp_id(clamp_id) \
1349 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350 
1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355 
1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 	if (clamp_id == UCLAMP_MIN)
1359 		return 0;
1360 	return SCHED_CAPACITY_SCALE;
1361 }
1362 
1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 				 unsigned int value, bool user_defined)
1365 {
1366 	uc_se->value = value;
1367 	uc_se->bucket_id = uclamp_bucket_id(value);
1368 	uc_se->user_defined = user_defined;
1369 }
1370 
1371 static inline unsigned int
1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 		  unsigned int clamp_value)
1374 {
1375 	/*
1376 	 * Avoid blocked utilization pushing up the frequency when we go
1377 	 * idle (which drops the max-clamp) by retaining the last known
1378 	 * max-clamp.
1379 	 */
1380 	if (clamp_id == UCLAMP_MAX) {
1381 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 		return clamp_value;
1383 	}
1384 
1385 	return uclamp_none(UCLAMP_MIN);
1386 }
1387 
1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 				     unsigned int clamp_value)
1390 {
1391 	/* Reset max-clamp retention only on idle exit */
1392 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 		return;
1394 
1395 	uclamp_rq_set(rq, clamp_id, clamp_value);
1396 }
1397 
1398 static inline
1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 				   unsigned int clamp_value)
1401 {
1402 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 	int bucket_id = UCLAMP_BUCKETS - 1;
1404 
1405 	/*
1406 	 * Since both min and max clamps are max aggregated, find the
1407 	 * top most bucket with tasks in.
1408 	 */
1409 	for ( ; bucket_id >= 0; bucket_id--) {
1410 		if (!bucket[bucket_id].tasks)
1411 			continue;
1412 		return bucket[bucket_id].value;
1413 	}
1414 
1415 	/* No tasks -- default clamp values */
1416 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418 
1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 	unsigned int default_util_min;
1422 	struct uclamp_se *uc_se;
1423 
1424 	lockdep_assert_held(&p->pi_lock);
1425 
1426 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1427 
1428 	/* Only sync if user didn't override the default */
1429 	if (uc_se->user_defined)
1430 		return;
1431 
1432 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 	uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435 
1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 	struct rq_flags rf;
1439 	struct rq *rq;
1440 
1441 	if (!rt_task(p))
1442 		return;
1443 
1444 	/* Protect updates to p->uclamp_* */
1445 	rq = task_rq_lock(p, &rf);
1446 	__uclamp_update_util_min_rt_default(p);
1447 	task_rq_unlock(rq, p, &rf);
1448 }
1449 
1450 static inline struct uclamp_se
1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	/* Copy by value as we could modify it */
1454 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 	unsigned int tg_min, tg_max, value;
1457 
1458 	/*
1459 	 * Tasks in autogroups or root task group will be
1460 	 * restricted by system defaults.
1461 	 */
1462 	if (task_group_is_autogroup(task_group(p)))
1463 		return uc_req;
1464 	if (task_group(p) == &root_task_group)
1465 		return uc_req;
1466 
1467 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 	value = uc_req.value;
1470 	value = clamp(value, tg_min, tg_max);
1471 	uclamp_se_set(&uc_req, value, false);
1472 #endif
1473 
1474 	return uc_req;
1475 }
1476 
1477 /*
1478  * The effective clamp bucket index of a task depends on, by increasing
1479  * priority:
1480  * - the task specific clamp value, when explicitly requested from userspace
1481  * - the task group effective clamp value, for tasks not either in the root
1482  *   group or in an autogroup
1483  * - the system default clamp value, defined by the sysadmin
1484  */
1485 static inline struct uclamp_se
1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1490 
1491 	/* System default restrictions always apply */
1492 	if (unlikely(uc_req.value > uc_max.value))
1493 		return uc_max;
1494 
1495 	return uc_req;
1496 }
1497 
1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_eff;
1501 
1502 	/* Task currently refcounted: use back-annotated (effective) value */
1503 	if (p->uclamp[clamp_id].active)
1504 		return (unsigned long)p->uclamp[clamp_id].value;
1505 
1506 	uc_eff = uclamp_eff_get(p, clamp_id);
1507 
1508 	return (unsigned long)uc_eff.value;
1509 }
1510 
1511 /*
1512  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514  * updates the rq's clamp value if required.
1515  *
1516  * Tasks can have a task-specific value requested from user-space, track
1517  * within each bucket the maximum value for tasks refcounted in it.
1518  * This "local max aggregation" allows to track the exact "requested" value
1519  * for each bucket when all its RUNNABLE tasks require the same clamp.
1520  */
1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 				    enum uclamp_id clamp_id)
1523 {
1524 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 	struct uclamp_bucket *bucket;
1527 
1528 	lockdep_assert_rq_held(rq);
1529 
1530 	/* Update task effective clamp */
1531 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532 
1533 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 	bucket->tasks++;
1535 	uc_se->active = true;
1536 
1537 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538 
1539 	/*
1540 	 * Local max aggregation: rq buckets always track the max
1541 	 * "requested" clamp value of its RUNNABLE tasks.
1542 	 */
1543 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 		bucket->value = uc_se->value;
1545 
1546 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1547 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1548 }
1549 
1550 /*
1551  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552  * is released. If this is the last task reference counting the rq's max
1553  * active clamp value, then the rq's clamp value is updated.
1554  *
1555  * Both refcounted tasks and rq's cached clamp values are expected to be
1556  * always valid. If it's detected they are not, as defensive programming,
1557  * enforce the expected state and warn.
1558  */
1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 	unsigned int bkt_clamp;
1566 	unsigned int rq_clamp;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/*
1571 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 	 *
1574 	 * In this case the uc_se->active flag should be false since no uclamp
1575 	 * accounting was performed at enqueue time and we can just return
1576 	 * here.
1577 	 *
1578 	 * Need to be careful of the following enqueue/dequeue ordering
1579 	 * problem too
1580 	 *
1581 	 *	enqueue(taskA)
1582 	 *	// sched_uclamp_used gets enabled
1583 	 *	enqueue(taskB)
1584 	 *	dequeue(taskA)
1585 	 *	// Must not decrement bucket->tasks here
1586 	 *	dequeue(taskB)
1587 	 *
1588 	 * where we could end up with stale data in uc_se and
1589 	 * bucket[uc_se->bucket_id].
1590 	 *
1591 	 * The following check here eliminates the possibility of such race.
1592 	 */
1593 	if (unlikely(!uc_se->active))
1594 		return;
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 
1598 	SCHED_WARN_ON(!bucket->tasks);
1599 	if (likely(bucket->tasks))
1600 		bucket->tasks--;
1601 
1602 	uc_se->active = false;
1603 
1604 	/*
1605 	 * Keep "local max aggregation" simple and accept to (possibly)
1606 	 * overboost some RUNNABLE tasks in the same bucket.
1607 	 * The rq clamp bucket value is reset to its base value whenever
1608 	 * there are no more RUNNABLE tasks refcounting it.
1609 	 */
1610 	if (likely(bucket->tasks))
1611 		return;
1612 
1613 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1614 	/*
1615 	 * Defensive programming: this should never happen. If it happens,
1616 	 * e.g. due to future modification, warn and fixup the expected value.
1617 	 */
1618 	SCHED_WARN_ON(bucket->value > rq_clamp);
1619 	if (bucket->value >= rq_clamp) {
1620 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1622 	}
1623 }
1624 
1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 	enum uclamp_id clamp_id;
1628 
1629 	/*
1630 	 * Avoid any overhead until uclamp is actually used by the userspace.
1631 	 *
1632 	 * The condition is constructed such that a NOP is generated when
1633 	 * sched_uclamp_used is disabled.
1634 	 */
1635 	if (!static_branch_unlikely(&sched_uclamp_used))
1636 		return;
1637 
1638 	if (unlikely(!p->sched_class->uclamp_enabled))
1639 		return;
1640 
1641 	for_each_clamp_id(clamp_id)
1642 		uclamp_rq_inc_id(rq, p, clamp_id);
1643 
1644 	/* Reset clamp idle holding when there is one RUNNABLE task */
1645 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648 
1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 	enum uclamp_id clamp_id;
1652 
1653 	/*
1654 	 * Avoid any overhead until uclamp is actually used by the userspace.
1655 	 *
1656 	 * The condition is constructed such that a NOP is generated when
1657 	 * sched_uclamp_used is disabled.
1658 	 */
1659 	if (!static_branch_unlikely(&sched_uclamp_used))
1660 		return;
1661 
1662 	if (unlikely(!p->sched_class->uclamp_enabled))
1663 		return;
1664 
1665 	for_each_clamp_id(clamp_id)
1666 		uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668 
1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 				      enum uclamp_id clamp_id)
1671 {
1672 	if (!p->uclamp[clamp_id].active)
1673 		return;
1674 
1675 	uclamp_rq_dec_id(rq, p, clamp_id);
1676 	uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/*
1679 	 * Make sure to clear the idle flag if we've transiently reached 0
1680 	 * active tasks on rq.
1681 	 */
1682 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685 
1686 static inline void
1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 	struct rq_flags rf;
1691 	struct rq *rq;
1692 
1693 	/*
1694 	 * Lock the task and the rq where the task is (or was) queued.
1695 	 *
1696 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 	 * price to pay to safely serialize util_{min,max} updates with
1698 	 * enqueues, dequeues and migration operations.
1699 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 	 */
1701 	rq = task_rq_lock(p, &rf);
1702 
1703 	/*
1704 	 * Setting the clamp bucket is serialized by task_rq_lock().
1705 	 * If the task is not yet RUNNABLE and its task_struct is not
1706 	 * affecting a valid clamp bucket, the next time it's enqueued,
1707 	 * it will already see the updated clamp bucket value.
1708 	 */
1709 	for_each_clamp_id(clamp_id)
1710 		uclamp_rq_reinc_id(rq, p, clamp_id);
1711 
1712 	task_rq_unlock(rq, p, &rf);
1713 }
1714 
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 	struct css_task_iter it;
1720 	struct task_struct *p;
1721 
1722 	css_task_iter_start(css, 0, &it);
1723 	while ((p = css_task_iter_next(&it)))
1724 		uclamp_update_active(p);
1725 	css_task_iter_end(&it);
1726 }
1727 
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730 
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
1734 static void uclamp_update_root_tg(void)
1735 {
1736 	struct task_group *tg = &root_task_group;
1737 
1738 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 		      sysctl_sched_uclamp_util_min, false);
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 		      sysctl_sched_uclamp_util_max, false);
1742 
1743 	rcu_read_lock();
1744 	cpu_util_update_eff(&root_task_group.css);
1745 	rcu_read_unlock();
1746 }
1747 #else
1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750 
1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 	struct task_struct *g, *p;
1754 
1755 	/*
1756 	 * copy_process()			sysctl_uclamp
1757 	 *					  uclamp_min_rt = X;
1758 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1759 	 *   // link thread			  smp_mb__after_spinlock()
1760 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1761 	 *   sched_post_fork()			  for_each_process_thread()
1762 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1763 	 *
1764 	 * Ensures that either sched_post_fork() will observe the new
1765 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 	 * task.
1767 	 */
1768 	read_lock(&tasklist_lock);
1769 	smp_mb__after_spinlock();
1770 	read_unlock(&tasklist_lock);
1771 
1772 	rcu_read_lock();
1773 	for_each_process_thread(g, p)
1774 		uclamp_update_util_min_rt_default(p);
1775 	rcu_read_unlock();
1776 }
1777 
1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 				void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 	bool update_root_tg = false;
1782 	int old_min, old_max, old_min_rt;
1783 	int result;
1784 
1785 	mutex_lock(&uclamp_mutex);
1786 	old_min = sysctl_sched_uclamp_util_min;
1787 	old_max = sysctl_sched_uclamp_util_max;
1788 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789 
1790 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 	if (result)
1792 		goto undo;
1793 	if (!write)
1794 		goto done;
1795 
1796 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1798 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799 
1800 		result = -EINVAL;
1801 		goto undo;
1802 	}
1803 
1804 	if (old_min != sysctl_sched_uclamp_util_min) {
1805 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 			      sysctl_sched_uclamp_util_min, false);
1807 		update_root_tg = true;
1808 	}
1809 	if (old_max != sysctl_sched_uclamp_util_max) {
1810 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 			      sysctl_sched_uclamp_util_max, false);
1812 		update_root_tg = true;
1813 	}
1814 
1815 	if (update_root_tg) {
1816 		static_branch_enable(&sched_uclamp_used);
1817 		uclamp_update_root_tg();
1818 	}
1819 
1820 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 		static_branch_enable(&sched_uclamp_used);
1822 		uclamp_sync_util_min_rt_default();
1823 	}
1824 
1825 	/*
1826 	 * We update all RUNNABLE tasks only when task groups are in use.
1827 	 * Otherwise, keep it simple and do just a lazy update at each next
1828 	 * task enqueue time.
1829 	 */
1830 
1831 	goto done;
1832 
1833 undo:
1834 	sysctl_sched_uclamp_util_min = old_min;
1835 	sysctl_sched_uclamp_util_max = old_max;
1836 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 	mutex_unlock(&uclamp_mutex);
1839 
1840 	return result;
1841 }
1842 #endif
1843 #endif
1844 
1845 static int uclamp_validate(struct task_struct *p,
1846 			   const struct sched_attr *attr)
1847 {
1848 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850 
1851 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 		util_min = attr->sched_util_min;
1853 
1854 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 			return -EINVAL;
1856 	}
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 		util_max = attr->sched_util_max;
1860 
1861 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 	 *
1871 	 * We need to do that here, because enabling static branches is a
1872 	 * blocking operation which obviously cannot be done while holding
1873 	 * scheduler locks.
1874 	 */
1875 	static_branch_enable(&sched_uclamp_used);
1876 
1877 	return 0;
1878 }
1879 
1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 			 enum uclamp_id clamp_id,
1882 			 struct uclamp_se *uc_se)
1883 {
1884 	/* Reset on sched class change for a non user-defined clamp value. */
1885 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 	    !uc_se->user_defined)
1887 		return true;
1888 
1889 	/* Reset on sched_util_{min,max} == -1. */
1890 	if (clamp_id == UCLAMP_MIN &&
1891 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 	    attr->sched_util_min == -1) {
1893 		return true;
1894 	}
1895 
1896 	if (clamp_id == UCLAMP_MAX &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 	    attr->sched_util_max == -1) {
1899 		return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 				  const struct sched_attr *attr)
1907 {
1908 	enum uclamp_id clamp_id;
1909 
1910 	for_each_clamp_id(clamp_id) {
1911 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 		unsigned int value;
1913 
1914 		if (!uclamp_reset(attr, clamp_id, uc_se))
1915 			continue;
1916 
1917 		/*
1918 		 * RT by default have a 100% boost value that could be modified
1919 		 * at runtime.
1920 		 */
1921 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 			value = sysctl_sched_uclamp_util_min_rt_default;
1923 		else
1924 			value = uclamp_none(clamp_id);
1925 
1926 		uclamp_se_set(uc_se, value, false);
1927 
1928 	}
1929 
1930 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 		return;
1932 
1933 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min != -1) {
1935 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 			      attr->sched_util_min, true);
1937 	}
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 			      attr->sched_util_max, true);
1943 	}
1944 }
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* CONFIG_UCLAMP_TASK */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline int uclamp_validate(struct task_struct *p,
2014 				  const struct sched_attr *attr)
2015 {
2016 	return -EOPNOTSUPP;
2017 }
2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 				  const struct sched_attr *attr) { }
2020 static inline void uclamp_fork(struct task_struct *p) { }
2021 static inline void uclamp_post_fork(struct task_struct *p) { }
2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024 
2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 	return task_on_rq_queued(p);
2028 }
2029 
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 	unsigned long ip = 0;
2033 	unsigned int state;
2034 
2035 	if (!p || p == current)
2036 		return 0;
2037 
2038 	/* Only get wchan if task is blocked and we can keep it that way. */
2039 	raw_spin_lock_irq(&p->pi_lock);
2040 	state = READ_ONCE(p->__state);
2041 	smp_rmb(); /* see try_to_wake_up() */
2042 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 		ip = __get_wchan(p);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	return ip;
2047 }
2048 
2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (!(flags & ENQUEUE_NOCLOCK))
2052 		update_rq_clock(rq);
2053 
2054 	if (!(flags & ENQUEUE_RESTORE)) {
2055 		sched_info_enqueue(rq, p);
2056 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2057 	}
2058 
2059 	uclamp_rq_inc(rq, p);
2060 	p->sched_class->enqueue_task(rq, p, flags);
2061 
2062 	if (sched_core_enabled(rq))
2063 		sched_core_enqueue(rq, p);
2064 }
2065 
2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 	if (sched_core_enabled(rq))
2069 		sched_core_dequeue(rq, p, flags);
2070 
2071 	if (!(flags & DEQUEUE_NOCLOCK))
2072 		update_rq_clock(rq);
2073 
2074 	if (!(flags & DEQUEUE_SAVE)) {
2075 		sched_info_dequeue(rq, p);
2076 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 	}
2078 
2079 	uclamp_rq_dec(rq, p);
2080 	p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082 
2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	enqueue_task(rq, p, flags);
2086 
2087 	p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089 
2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093 
2094 	dequeue_task(rq, p, flags);
2095 }
2096 
2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 	int prio;
2100 
2101 	if (dl_policy(policy))
2102 		prio = MAX_DL_PRIO - 1;
2103 	else if (rt_policy(policy))
2104 		prio = MAX_RT_PRIO - 1 - rt_prio;
2105 	else
2106 		prio = NICE_TO_PRIO(nice);
2107 
2108 	return prio;
2109 }
2110 
2111 /*
2112  * Calculate the expected normal priority: i.e. priority
2113  * without taking RT-inheritance into account. Might be
2114  * boosted by interactivity modifiers. Changes upon fork,
2115  * setprio syscalls, and whenever the interactivity
2116  * estimator recalculates.
2117  */
2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122 
2123 /*
2124  * Calculate the current priority, i.e. the priority
2125  * taken into account by the scheduler. This value might
2126  * be boosted by RT tasks, or might be boosted by
2127  * interactivity modifiers. Will be RT if the task got
2128  * RT-boosted. If not then it returns p->normal_prio.
2129  */
2130 static int effective_prio(struct task_struct *p)
2131 {
2132 	p->normal_prio = normal_prio(p);
2133 	/*
2134 	 * If we are RT tasks or we were boosted to RT priority,
2135 	 * keep the priority unchanged. Otherwise, update priority
2136 	 * to the normal priority:
2137 	 */
2138 	if (!rt_prio(p->prio))
2139 		return p->normal_prio;
2140 	return p->prio;
2141 }
2142 
2143 /**
2144  * task_curr - is this task currently executing on a CPU?
2145  * @p: the task in question.
2146  *
2147  * Return: 1 if the task is currently executing. 0 otherwise.
2148  */
2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 	return cpu_curr(task_cpu(p)) == p;
2152 }
2153 
2154 /*
2155  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156  * use the balance_callback list if you want balancing.
2157  *
2158  * this means any call to check_class_changed() must be followed by a call to
2159  * balance_callback().
2160  */
2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 				       const struct sched_class *prev_class,
2163 				       int oldprio)
2164 {
2165 	if (prev_class != p->sched_class) {
2166 		if (prev_class->switched_from)
2167 			prev_class->switched_from(rq, p);
2168 
2169 		p->sched_class->switched_to(rq, p);
2170 	} else if (oldprio != p->prio || dl_task(p))
2171 		p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173 
2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 	if (p->sched_class == rq->curr->sched_class)
2177 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 		resched_curr(rq);
2180 
2181 	/*
2182 	 * A queue event has occurred, and we're going to schedule.  In
2183 	 * this case, we can save a useless back to back clock update.
2184 	 */
2185 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 		rq_clock_skip_update(rq);
2187 }
2188 
2189 #ifdef CONFIG_SMP
2190 
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2193 
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 				  struct affinity_context *ctx);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	struct affinity_context ac = {
2200 		.new_mask  = cpumask_of(rq->cpu),
2201 		.flags     = SCA_MIGRATE_DISABLE,
2202 	};
2203 
2204 	if (likely(!p->migration_disabled))
2205 		return;
2206 
2207 	if (p->cpus_ptr != &p->cpus_mask)
2208 		return;
2209 
2210 	/*
2211 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2212 	 */
2213 	__do_set_cpus_allowed(p, &ac);
2214 }
2215 
2216 void migrate_disable(void)
2217 {
2218 	struct task_struct *p = current;
2219 
2220 	if (p->migration_disabled) {
2221 		p->migration_disabled++;
2222 		return;
2223 	}
2224 
2225 	preempt_disable();
2226 	this_rq()->nr_pinned++;
2227 	p->migration_disabled = 1;
2228 	preempt_enable();
2229 }
2230 EXPORT_SYMBOL_GPL(migrate_disable);
2231 
2232 void migrate_enable(void)
2233 {
2234 	struct task_struct *p = current;
2235 	struct affinity_context ac = {
2236 		.new_mask  = &p->cpus_mask,
2237 		.flags     = SCA_MIGRATE_ENABLE,
2238 	};
2239 
2240 	if (p->migration_disabled > 1) {
2241 		p->migration_disabled--;
2242 		return;
2243 	}
2244 
2245 	if (WARN_ON_ONCE(!p->migration_disabled))
2246 		return;
2247 
2248 	/*
2249 	 * Ensure stop_task runs either before or after this, and that
2250 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2251 	 */
2252 	preempt_disable();
2253 	if (p->cpus_ptr != &p->cpus_mask)
2254 		__set_cpus_allowed_ptr(p, &ac);
2255 	/*
2256 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2257 	 * regular cpus_mask, otherwise things that race (eg.
2258 	 * select_fallback_rq) get confused.
2259 	 */
2260 	barrier();
2261 	p->migration_disabled = 0;
2262 	this_rq()->nr_pinned--;
2263 	preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(migrate_enable);
2266 
2267 static inline bool rq_has_pinned_tasks(struct rq *rq)
2268 {
2269 	return rq->nr_pinned;
2270 }
2271 
2272 /*
2273  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2274  * __set_cpus_allowed_ptr() and select_fallback_rq().
2275  */
2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2277 {
2278 	/* When not in the task's cpumask, no point in looking further. */
2279 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2280 		return false;
2281 
2282 	/* migrate_disabled() must be allowed to finish. */
2283 	if (is_migration_disabled(p))
2284 		return cpu_online(cpu);
2285 
2286 	/* Non kernel threads are not allowed during either online or offline. */
2287 	if (!(p->flags & PF_KTHREAD))
2288 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2289 
2290 	/* KTHREAD_IS_PER_CPU is always allowed. */
2291 	if (kthread_is_per_cpu(p))
2292 		return cpu_online(cpu);
2293 
2294 	/* Regular kernel threads don't get to stay during offline. */
2295 	if (cpu_dying(cpu))
2296 		return false;
2297 
2298 	/* But are allowed during online. */
2299 	return cpu_online(cpu);
2300 }
2301 
2302 /*
2303  * This is how migration works:
2304  *
2305  * 1) we invoke migration_cpu_stop() on the target CPU using
2306  *    stop_one_cpu().
2307  * 2) stopper starts to run (implicitly forcing the migrated thread
2308  *    off the CPU)
2309  * 3) it checks whether the migrated task is still in the wrong runqueue.
2310  * 4) if it's in the wrong runqueue then the migration thread removes
2311  *    it and puts it into the right queue.
2312  * 5) stopper completes and stop_one_cpu() returns and the migration
2313  *    is done.
2314  */
2315 
2316 /*
2317  * move_queued_task - move a queued task to new rq.
2318  *
2319  * Returns (locked) new rq. Old rq's lock is released.
2320  */
2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2322 				   struct task_struct *p, int new_cpu)
2323 {
2324 	lockdep_assert_rq_held(rq);
2325 
2326 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2327 	set_task_cpu(p, new_cpu);
2328 	rq_unlock(rq, rf);
2329 
2330 	rq = cpu_rq(new_cpu);
2331 
2332 	rq_lock(rq, rf);
2333 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2334 	activate_task(rq, p, 0);
2335 	check_preempt_curr(rq, p, 0);
2336 
2337 	return rq;
2338 }
2339 
2340 struct migration_arg {
2341 	struct task_struct		*task;
2342 	int				dest_cpu;
2343 	struct set_affinity_pending	*pending;
2344 };
2345 
2346 /*
2347  * @refs: number of wait_for_completion()
2348  * @stop_pending: is @stop_work in use
2349  */
2350 struct set_affinity_pending {
2351 	refcount_t		refs;
2352 	unsigned int		stop_pending;
2353 	struct completion	done;
2354 	struct cpu_stop_work	stop_work;
2355 	struct migration_arg	arg;
2356 };
2357 
2358 /*
2359  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2360  * this because either it can't run here any more (set_cpus_allowed()
2361  * away from this CPU, or CPU going down), or because we're
2362  * attempting to rebalance this task on exec (sched_exec).
2363  *
2364  * So we race with normal scheduler movements, but that's OK, as long
2365  * as the task is no longer on this CPU.
2366  */
2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2368 				 struct task_struct *p, int dest_cpu)
2369 {
2370 	/* Affinity changed (again). */
2371 	if (!is_cpu_allowed(p, dest_cpu))
2372 		return rq;
2373 
2374 	update_rq_clock(rq);
2375 	rq = move_queued_task(rq, rf, p, dest_cpu);
2376 
2377 	return rq;
2378 }
2379 
2380 /*
2381  * migration_cpu_stop - this will be executed by a highprio stopper thread
2382  * and performs thread migration by bumping thread off CPU then
2383  * 'pushing' onto another runqueue.
2384  */
2385 static int migration_cpu_stop(void *data)
2386 {
2387 	struct migration_arg *arg = data;
2388 	struct set_affinity_pending *pending = arg->pending;
2389 	struct task_struct *p = arg->task;
2390 	struct rq *rq = this_rq();
2391 	bool complete = false;
2392 	struct rq_flags rf;
2393 
2394 	/*
2395 	 * The original target CPU might have gone down and we might
2396 	 * be on another CPU but it doesn't matter.
2397 	 */
2398 	local_irq_save(rf.flags);
2399 	/*
2400 	 * We need to explicitly wake pending tasks before running
2401 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2402 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2403 	 */
2404 	flush_smp_call_function_queue();
2405 
2406 	raw_spin_lock(&p->pi_lock);
2407 	rq_lock(rq, &rf);
2408 
2409 	/*
2410 	 * If we were passed a pending, then ->stop_pending was set, thus
2411 	 * p->migration_pending must have remained stable.
2412 	 */
2413 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2414 
2415 	/*
2416 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2417 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2418 	 * we're holding p->pi_lock.
2419 	 */
2420 	if (task_rq(p) == rq) {
2421 		if (is_migration_disabled(p))
2422 			goto out;
2423 
2424 		if (pending) {
2425 			p->migration_pending = NULL;
2426 			complete = true;
2427 
2428 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2429 				goto out;
2430 		}
2431 
2432 		if (task_on_rq_queued(p))
2433 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2434 		else
2435 			p->wake_cpu = arg->dest_cpu;
2436 
2437 		/*
2438 		 * XXX __migrate_task() can fail, at which point we might end
2439 		 * up running on a dodgy CPU, AFAICT this can only happen
2440 		 * during CPU hotplug, at which point we'll get pushed out
2441 		 * anyway, so it's probably not a big deal.
2442 		 */
2443 
2444 	} else if (pending) {
2445 		/*
2446 		 * This happens when we get migrated between migrate_enable()'s
2447 		 * preempt_enable() and scheduling the stopper task. At that
2448 		 * point we're a regular task again and not current anymore.
2449 		 *
2450 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2451 		 * more likely.
2452 		 */
2453 
2454 		/*
2455 		 * The task moved before the stopper got to run. We're holding
2456 		 * ->pi_lock, so the allowed mask is stable - if it got
2457 		 * somewhere allowed, we're done.
2458 		 */
2459 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2460 			p->migration_pending = NULL;
2461 			complete = true;
2462 			goto out;
2463 		}
2464 
2465 		/*
2466 		 * When migrate_enable() hits a rq mis-match we can't reliably
2467 		 * determine is_migration_disabled() and so have to chase after
2468 		 * it.
2469 		 */
2470 		WARN_ON_ONCE(!pending->stop_pending);
2471 		task_rq_unlock(rq, p, &rf);
2472 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2473 				    &pending->arg, &pending->stop_work);
2474 		return 0;
2475 	}
2476 out:
2477 	if (pending)
2478 		pending->stop_pending = false;
2479 	task_rq_unlock(rq, p, &rf);
2480 
2481 	if (complete)
2482 		complete_all(&pending->done);
2483 
2484 	return 0;
2485 }
2486 
2487 int push_cpu_stop(void *arg)
2488 {
2489 	struct rq *lowest_rq = NULL, *rq = this_rq();
2490 	struct task_struct *p = arg;
2491 
2492 	raw_spin_lock_irq(&p->pi_lock);
2493 	raw_spin_rq_lock(rq);
2494 
2495 	if (task_rq(p) != rq)
2496 		goto out_unlock;
2497 
2498 	if (is_migration_disabled(p)) {
2499 		p->migration_flags |= MDF_PUSH;
2500 		goto out_unlock;
2501 	}
2502 
2503 	p->migration_flags &= ~MDF_PUSH;
2504 
2505 	if (p->sched_class->find_lock_rq)
2506 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2507 
2508 	if (!lowest_rq)
2509 		goto out_unlock;
2510 
2511 	// XXX validate p is still the highest prio task
2512 	if (task_rq(p) == rq) {
2513 		deactivate_task(rq, p, 0);
2514 		set_task_cpu(p, lowest_rq->cpu);
2515 		activate_task(lowest_rq, p, 0);
2516 		resched_curr(lowest_rq);
2517 	}
2518 
2519 	double_unlock_balance(rq, lowest_rq);
2520 
2521 out_unlock:
2522 	rq->push_busy = false;
2523 	raw_spin_rq_unlock(rq);
2524 	raw_spin_unlock_irq(&p->pi_lock);
2525 
2526 	put_task_struct(p);
2527 	return 0;
2528 }
2529 
2530 /*
2531  * sched_class::set_cpus_allowed must do the below, but is not required to
2532  * actually call this function.
2533  */
2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2535 {
2536 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2537 		p->cpus_ptr = ctx->new_mask;
2538 		return;
2539 	}
2540 
2541 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2542 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2543 
2544 	/*
2545 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2546 	 */
2547 	if (ctx->flags & SCA_USER)
2548 		swap(p->user_cpus_ptr, ctx->user_mask);
2549 }
2550 
2551 static void
2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2553 {
2554 	struct rq *rq = task_rq(p);
2555 	bool queued, running;
2556 
2557 	/*
2558 	 * This here violates the locking rules for affinity, since we're only
2559 	 * supposed to change these variables while holding both rq->lock and
2560 	 * p->pi_lock.
2561 	 *
2562 	 * HOWEVER, it magically works, because ttwu() is the only code that
2563 	 * accesses these variables under p->pi_lock and only does so after
2564 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2565 	 * before finish_task().
2566 	 *
2567 	 * XXX do further audits, this smells like something putrid.
2568 	 */
2569 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2570 		SCHED_WARN_ON(!p->on_cpu);
2571 	else
2572 		lockdep_assert_held(&p->pi_lock);
2573 
2574 	queued = task_on_rq_queued(p);
2575 	running = task_current(rq, p);
2576 
2577 	if (queued) {
2578 		/*
2579 		 * Because __kthread_bind() calls this on blocked tasks without
2580 		 * holding rq->lock.
2581 		 */
2582 		lockdep_assert_rq_held(rq);
2583 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2584 	}
2585 	if (running)
2586 		put_prev_task(rq, p);
2587 
2588 	p->sched_class->set_cpus_allowed(p, ctx);
2589 
2590 	if (queued)
2591 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2592 	if (running)
2593 		set_next_task(rq, p);
2594 }
2595 
2596 /*
2597  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2598  * affinity (if any) should be destroyed too.
2599  */
2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601 {
2602 	struct affinity_context ac = {
2603 		.new_mask  = new_mask,
2604 		.user_mask = NULL,
2605 		.flags     = SCA_USER,	/* clear the user requested mask */
2606 	};
2607 
2608 	__do_set_cpus_allowed(p, &ac);
2609 	kfree(ac.user_mask);
2610 }
2611 
2612 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2613 		      int node)
2614 {
2615 	unsigned long flags;
2616 
2617 	if (!src->user_cpus_ptr)
2618 		return 0;
2619 
2620 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2621 	if (!dst->user_cpus_ptr)
2622 		return -ENOMEM;
2623 
2624 	/* Use pi_lock to protect content of user_cpus_ptr */
2625 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2626 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2627 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2628 	return 0;
2629 }
2630 
2631 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2632 {
2633 	struct cpumask *user_mask = NULL;
2634 
2635 	swap(p->user_cpus_ptr, user_mask);
2636 
2637 	return user_mask;
2638 }
2639 
2640 void release_user_cpus_ptr(struct task_struct *p)
2641 {
2642 	kfree(clear_user_cpus_ptr(p));
2643 }
2644 
2645 /*
2646  * This function is wildly self concurrent; here be dragons.
2647  *
2648  *
2649  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2650  * designated task is enqueued on an allowed CPU. If that task is currently
2651  * running, we have to kick it out using the CPU stopper.
2652  *
2653  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2654  * Consider:
2655  *
2656  *     Initial conditions: P0->cpus_mask = [0, 1]
2657  *
2658  *     P0@CPU0                  P1
2659  *
2660  *     migrate_disable();
2661  *     <preempted>
2662  *                              set_cpus_allowed_ptr(P0, [1]);
2663  *
2664  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2665  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2666  * This means we need the following scheme:
2667  *
2668  *     P0@CPU0                  P1
2669  *
2670  *     migrate_disable();
2671  *     <preempted>
2672  *                              set_cpus_allowed_ptr(P0, [1]);
2673  *                                <blocks>
2674  *     <resumes>
2675  *     migrate_enable();
2676  *       __set_cpus_allowed_ptr();
2677  *       <wakes local stopper>
2678  *                         `--> <woken on migration completion>
2679  *
2680  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2681  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2682  * task p are serialized by p->pi_lock, which we can leverage: the one that
2683  * should come into effect at the end of the Migrate-Disable region is the last
2684  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2685  * but we still need to properly signal those waiting tasks at the appropriate
2686  * moment.
2687  *
2688  * This is implemented using struct set_affinity_pending. The first
2689  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2690  * setup an instance of that struct and install it on the targeted task_struct.
2691  * Any and all further callers will reuse that instance. Those then wait for
2692  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2693  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2694  *
2695  *
2696  * (1) In the cases covered above. There is one more where the completion is
2697  * signaled within affine_move_task() itself: when a subsequent affinity request
2698  * occurs after the stopper bailed out due to the targeted task still being
2699  * Migrate-Disable. Consider:
2700  *
2701  *     Initial conditions: P0->cpus_mask = [0, 1]
2702  *
2703  *     CPU0		  P1				P2
2704  *     <P0>
2705  *       migrate_disable();
2706  *       <preempted>
2707  *                        set_cpus_allowed_ptr(P0, [1]);
2708  *                          <blocks>
2709  *     <migration/0>
2710  *       migration_cpu_stop()
2711  *         is_migration_disabled()
2712  *           <bails>
2713  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2714  *                                                         <signal completion>
2715  *                          <awakes>
2716  *
2717  * Note that the above is safe vs a concurrent migrate_enable(), as any
2718  * pending affinity completion is preceded by an uninstallation of
2719  * p->migration_pending done with p->pi_lock held.
2720  */
2721 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2722 			    int dest_cpu, unsigned int flags)
2723 	__releases(rq->lock)
2724 	__releases(p->pi_lock)
2725 {
2726 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2727 	bool stop_pending, complete = false;
2728 
2729 	/* Can the task run on the task's current CPU? If so, we're done */
2730 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2731 		struct task_struct *push_task = NULL;
2732 
2733 		if ((flags & SCA_MIGRATE_ENABLE) &&
2734 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2735 			rq->push_busy = true;
2736 			push_task = get_task_struct(p);
2737 		}
2738 
2739 		/*
2740 		 * If there are pending waiters, but no pending stop_work,
2741 		 * then complete now.
2742 		 */
2743 		pending = p->migration_pending;
2744 		if (pending && !pending->stop_pending) {
2745 			p->migration_pending = NULL;
2746 			complete = true;
2747 		}
2748 
2749 		task_rq_unlock(rq, p, rf);
2750 
2751 		if (push_task) {
2752 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2753 					    p, &rq->push_work);
2754 		}
2755 
2756 		if (complete)
2757 			complete_all(&pending->done);
2758 
2759 		return 0;
2760 	}
2761 
2762 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2763 		/* serialized by p->pi_lock */
2764 		if (!p->migration_pending) {
2765 			/* Install the request */
2766 			refcount_set(&my_pending.refs, 1);
2767 			init_completion(&my_pending.done);
2768 			my_pending.arg = (struct migration_arg) {
2769 				.task = p,
2770 				.dest_cpu = dest_cpu,
2771 				.pending = &my_pending,
2772 			};
2773 
2774 			p->migration_pending = &my_pending;
2775 		} else {
2776 			pending = p->migration_pending;
2777 			refcount_inc(&pending->refs);
2778 			/*
2779 			 * Affinity has changed, but we've already installed a
2780 			 * pending. migration_cpu_stop() *must* see this, else
2781 			 * we risk a completion of the pending despite having a
2782 			 * task on a disallowed CPU.
2783 			 *
2784 			 * Serialized by p->pi_lock, so this is safe.
2785 			 */
2786 			pending->arg.dest_cpu = dest_cpu;
2787 		}
2788 	}
2789 	pending = p->migration_pending;
2790 	/*
2791 	 * - !MIGRATE_ENABLE:
2792 	 *   we'll have installed a pending if there wasn't one already.
2793 	 *
2794 	 * - MIGRATE_ENABLE:
2795 	 *   we're here because the current CPU isn't matching anymore,
2796 	 *   the only way that can happen is because of a concurrent
2797 	 *   set_cpus_allowed_ptr() call, which should then still be
2798 	 *   pending completion.
2799 	 *
2800 	 * Either way, we really should have a @pending here.
2801 	 */
2802 	if (WARN_ON_ONCE(!pending)) {
2803 		task_rq_unlock(rq, p, rf);
2804 		return -EINVAL;
2805 	}
2806 
2807 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2808 		/*
2809 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2810 		 * anything else we cannot do is_migration_disabled(), punt
2811 		 * and have the stopper function handle it all race-free.
2812 		 */
2813 		stop_pending = pending->stop_pending;
2814 		if (!stop_pending)
2815 			pending->stop_pending = true;
2816 
2817 		if (flags & SCA_MIGRATE_ENABLE)
2818 			p->migration_flags &= ~MDF_PUSH;
2819 
2820 		task_rq_unlock(rq, p, rf);
2821 
2822 		if (!stop_pending) {
2823 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2824 					    &pending->arg, &pending->stop_work);
2825 		}
2826 
2827 		if (flags & SCA_MIGRATE_ENABLE)
2828 			return 0;
2829 	} else {
2830 
2831 		if (!is_migration_disabled(p)) {
2832 			if (task_on_rq_queued(p))
2833 				rq = move_queued_task(rq, rf, p, dest_cpu);
2834 
2835 			if (!pending->stop_pending) {
2836 				p->migration_pending = NULL;
2837 				complete = true;
2838 			}
2839 		}
2840 		task_rq_unlock(rq, p, rf);
2841 
2842 		if (complete)
2843 			complete_all(&pending->done);
2844 	}
2845 
2846 	wait_for_completion(&pending->done);
2847 
2848 	if (refcount_dec_and_test(&pending->refs))
2849 		wake_up_var(&pending->refs); /* No UaF, just an address */
2850 
2851 	/*
2852 	 * Block the original owner of &pending until all subsequent callers
2853 	 * have seen the completion and decremented the refcount
2854 	 */
2855 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2856 
2857 	/* ARGH */
2858 	WARN_ON_ONCE(my_pending.stop_pending);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2865  */
2866 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2867 					 struct affinity_context *ctx,
2868 					 struct rq *rq,
2869 					 struct rq_flags *rf)
2870 	__releases(rq->lock)
2871 	__releases(p->pi_lock)
2872 {
2873 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2874 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2875 	bool kthread = p->flags & PF_KTHREAD;
2876 	unsigned int dest_cpu;
2877 	int ret = 0;
2878 
2879 	update_rq_clock(rq);
2880 
2881 	if (kthread || is_migration_disabled(p)) {
2882 		/*
2883 		 * Kernel threads are allowed on online && !active CPUs,
2884 		 * however, during cpu-hot-unplug, even these might get pushed
2885 		 * away if not KTHREAD_IS_PER_CPU.
2886 		 *
2887 		 * Specifically, migration_disabled() tasks must not fail the
2888 		 * cpumask_any_and_distribute() pick below, esp. so on
2889 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2890 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2891 		 */
2892 		cpu_valid_mask = cpu_online_mask;
2893 	}
2894 
2895 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2896 		ret = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	/*
2901 	 * Must re-check here, to close a race against __kthread_bind(),
2902 	 * sched_setaffinity() is not guaranteed to observe the flag.
2903 	 */
2904 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2905 		ret = -EINVAL;
2906 		goto out;
2907 	}
2908 
2909 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2910 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
2911 			goto out;
2912 
2913 		if (WARN_ON_ONCE(p == current &&
2914 				 is_migration_disabled(p) &&
2915 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2916 			ret = -EBUSY;
2917 			goto out;
2918 		}
2919 	}
2920 
2921 	/*
2922 	 * Picking a ~random cpu helps in cases where we are changing affinity
2923 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2924 	 * immediately required to distribute the tasks within their new mask.
2925 	 */
2926 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2927 	if (dest_cpu >= nr_cpu_ids) {
2928 		ret = -EINVAL;
2929 		goto out;
2930 	}
2931 
2932 	__do_set_cpus_allowed(p, ctx);
2933 
2934 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2935 
2936 out:
2937 	task_rq_unlock(rq, p, rf);
2938 
2939 	return ret;
2940 }
2941 
2942 /*
2943  * Change a given task's CPU affinity. Migrate the thread to a
2944  * proper CPU and schedule it away if the CPU it's executing on
2945  * is removed from the allowed bitmask.
2946  *
2947  * NOTE: the caller must have a valid reference to the task, the
2948  * task must not exit() & deallocate itself prematurely. The
2949  * call is not atomic; no spinlocks may be held.
2950  */
2951 static int __set_cpus_allowed_ptr(struct task_struct *p,
2952 				  struct affinity_context *ctx)
2953 {
2954 	struct rq_flags rf;
2955 	struct rq *rq;
2956 
2957 	rq = task_rq_lock(p, &rf);
2958 	/*
2959 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
2960 	 * flags are set.
2961 	 */
2962 	if (p->user_cpus_ptr &&
2963 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
2964 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
2965 		ctx->new_mask = rq->scratch_mask;
2966 
2967 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
2968 }
2969 
2970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2971 {
2972 	struct affinity_context ac = {
2973 		.new_mask  = new_mask,
2974 		.flags     = 0,
2975 	};
2976 
2977 	return __set_cpus_allowed_ptr(p, &ac);
2978 }
2979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2980 
2981 /*
2982  * Change a given task's CPU affinity to the intersection of its current
2983  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2984  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
2985  * affinity or use cpu_online_mask instead.
2986  *
2987  * If the resulting mask is empty, leave the affinity unchanged and return
2988  * -EINVAL.
2989  */
2990 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2991 				     struct cpumask *new_mask,
2992 				     const struct cpumask *subset_mask)
2993 {
2994 	struct affinity_context ac = {
2995 		.new_mask  = new_mask,
2996 		.flags     = 0,
2997 	};
2998 	struct rq_flags rf;
2999 	struct rq *rq;
3000 	int err;
3001 
3002 	rq = task_rq_lock(p, &rf);
3003 
3004 	/*
3005 	 * Forcefully restricting the affinity of a deadline task is
3006 	 * likely to cause problems, so fail and noisily override the
3007 	 * mask entirely.
3008 	 */
3009 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3010 		err = -EPERM;
3011 		goto err_unlock;
3012 	}
3013 
3014 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3015 		err = -EINVAL;
3016 		goto err_unlock;
3017 	}
3018 
3019 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3020 
3021 err_unlock:
3022 	task_rq_unlock(rq, p, &rf);
3023 	return err;
3024 }
3025 
3026 /*
3027  * Restrict the CPU affinity of task @p so that it is a subset of
3028  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3029  * old affinity mask. If the resulting mask is empty, we warn and walk
3030  * up the cpuset hierarchy until we find a suitable mask.
3031  */
3032 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3033 {
3034 	cpumask_var_t new_mask;
3035 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3036 
3037 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3038 
3039 	/*
3040 	 * __migrate_task() can fail silently in the face of concurrent
3041 	 * offlining of the chosen destination CPU, so take the hotplug
3042 	 * lock to ensure that the migration succeeds.
3043 	 */
3044 	cpus_read_lock();
3045 	if (!cpumask_available(new_mask))
3046 		goto out_set_mask;
3047 
3048 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3049 		goto out_free_mask;
3050 
3051 	/*
3052 	 * We failed to find a valid subset of the affinity mask for the
3053 	 * task, so override it based on its cpuset hierarchy.
3054 	 */
3055 	cpuset_cpus_allowed(p, new_mask);
3056 	override_mask = new_mask;
3057 
3058 out_set_mask:
3059 	if (printk_ratelimit()) {
3060 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3061 				task_pid_nr(p), p->comm,
3062 				cpumask_pr_args(override_mask));
3063 	}
3064 
3065 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3066 out_free_mask:
3067 	cpus_read_unlock();
3068 	free_cpumask_var(new_mask);
3069 }
3070 
3071 static int
3072 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3073 
3074 /*
3075  * Restore the affinity of a task @p which was previously restricted by a
3076  * call to force_compatible_cpus_allowed_ptr().
3077  *
3078  * It is the caller's responsibility to serialise this with any calls to
3079  * force_compatible_cpus_allowed_ptr(@p).
3080  */
3081 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3082 {
3083 	struct affinity_context ac = {
3084 		.new_mask  = task_user_cpus(p),
3085 		.flags     = 0,
3086 	};
3087 	int ret;
3088 
3089 	/*
3090 	 * Try to restore the old affinity mask with __sched_setaffinity().
3091 	 * Cpuset masking will be done there too.
3092 	 */
3093 	ret = __sched_setaffinity(p, &ac);
3094 	WARN_ON_ONCE(ret);
3095 }
3096 
3097 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3098 {
3099 #ifdef CONFIG_SCHED_DEBUG
3100 	unsigned int state = READ_ONCE(p->__state);
3101 
3102 	/*
3103 	 * We should never call set_task_cpu() on a blocked task,
3104 	 * ttwu() will sort out the placement.
3105 	 */
3106 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3107 
3108 	/*
3109 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3110 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3111 	 * time relying on p->on_rq.
3112 	 */
3113 	WARN_ON_ONCE(state == TASK_RUNNING &&
3114 		     p->sched_class == &fair_sched_class &&
3115 		     (p->on_rq && !task_on_rq_migrating(p)));
3116 
3117 #ifdef CONFIG_LOCKDEP
3118 	/*
3119 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3120 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3121 	 *
3122 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3123 	 * see task_group().
3124 	 *
3125 	 * Furthermore, all task_rq users should acquire both locks, see
3126 	 * task_rq_lock().
3127 	 */
3128 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3129 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3130 #endif
3131 	/*
3132 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3133 	 */
3134 	WARN_ON_ONCE(!cpu_online(new_cpu));
3135 
3136 	WARN_ON_ONCE(is_migration_disabled(p));
3137 #endif
3138 
3139 	trace_sched_migrate_task(p, new_cpu);
3140 
3141 	if (task_cpu(p) != new_cpu) {
3142 		if (p->sched_class->migrate_task_rq)
3143 			p->sched_class->migrate_task_rq(p, new_cpu);
3144 		p->se.nr_migrations++;
3145 		rseq_migrate(p);
3146 		perf_event_task_migrate(p);
3147 	}
3148 
3149 	__set_task_cpu(p, new_cpu);
3150 }
3151 
3152 #ifdef CONFIG_NUMA_BALANCING
3153 static void __migrate_swap_task(struct task_struct *p, int cpu)
3154 {
3155 	if (task_on_rq_queued(p)) {
3156 		struct rq *src_rq, *dst_rq;
3157 		struct rq_flags srf, drf;
3158 
3159 		src_rq = task_rq(p);
3160 		dst_rq = cpu_rq(cpu);
3161 
3162 		rq_pin_lock(src_rq, &srf);
3163 		rq_pin_lock(dst_rq, &drf);
3164 
3165 		deactivate_task(src_rq, p, 0);
3166 		set_task_cpu(p, cpu);
3167 		activate_task(dst_rq, p, 0);
3168 		check_preempt_curr(dst_rq, p, 0);
3169 
3170 		rq_unpin_lock(dst_rq, &drf);
3171 		rq_unpin_lock(src_rq, &srf);
3172 
3173 	} else {
3174 		/*
3175 		 * Task isn't running anymore; make it appear like we migrated
3176 		 * it before it went to sleep. This means on wakeup we make the
3177 		 * previous CPU our target instead of where it really is.
3178 		 */
3179 		p->wake_cpu = cpu;
3180 	}
3181 }
3182 
3183 struct migration_swap_arg {
3184 	struct task_struct *src_task, *dst_task;
3185 	int src_cpu, dst_cpu;
3186 };
3187 
3188 static int migrate_swap_stop(void *data)
3189 {
3190 	struct migration_swap_arg *arg = data;
3191 	struct rq *src_rq, *dst_rq;
3192 	int ret = -EAGAIN;
3193 
3194 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3195 		return -EAGAIN;
3196 
3197 	src_rq = cpu_rq(arg->src_cpu);
3198 	dst_rq = cpu_rq(arg->dst_cpu);
3199 
3200 	double_raw_lock(&arg->src_task->pi_lock,
3201 			&arg->dst_task->pi_lock);
3202 	double_rq_lock(src_rq, dst_rq);
3203 
3204 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3205 		goto unlock;
3206 
3207 	if (task_cpu(arg->src_task) != arg->src_cpu)
3208 		goto unlock;
3209 
3210 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3211 		goto unlock;
3212 
3213 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3214 		goto unlock;
3215 
3216 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3217 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3218 
3219 	ret = 0;
3220 
3221 unlock:
3222 	double_rq_unlock(src_rq, dst_rq);
3223 	raw_spin_unlock(&arg->dst_task->pi_lock);
3224 	raw_spin_unlock(&arg->src_task->pi_lock);
3225 
3226 	return ret;
3227 }
3228 
3229 /*
3230  * Cross migrate two tasks
3231  */
3232 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3233 		int target_cpu, int curr_cpu)
3234 {
3235 	struct migration_swap_arg arg;
3236 	int ret = -EINVAL;
3237 
3238 	arg = (struct migration_swap_arg){
3239 		.src_task = cur,
3240 		.src_cpu = curr_cpu,
3241 		.dst_task = p,
3242 		.dst_cpu = target_cpu,
3243 	};
3244 
3245 	if (arg.src_cpu == arg.dst_cpu)
3246 		goto out;
3247 
3248 	/*
3249 	 * These three tests are all lockless; this is OK since all of them
3250 	 * will be re-checked with proper locks held further down the line.
3251 	 */
3252 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3253 		goto out;
3254 
3255 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3256 		goto out;
3257 
3258 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3259 		goto out;
3260 
3261 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3262 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3263 
3264 out:
3265 	return ret;
3266 }
3267 #endif /* CONFIG_NUMA_BALANCING */
3268 
3269 /*
3270  * wait_task_inactive - wait for a thread to unschedule.
3271  *
3272  * Wait for the thread to block in any of the states set in @match_state.
3273  * If it changes, i.e. @p might have woken up, then return zero.  When we
3274  * succeed in waiting for @p to be off its CPU, we return a positive number
3275  * (its total switch count).  If a second call a short while later returns the
3276  * same number, the caller can be sure that @p has remained unscheduled the
3277  * whole time.
3278  *
3279  * The caller must ensure that the task *will* unschedule sometime soon,
3280  * else this function might spin for a *long* time. This function can't
3281  * be called with interrupts off, or it may introduce deadlock with
3282  * smp_call_function() if an IPI is sent by the same process we are
3283  * waiting to become inactive.
3284  */
3285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3286 {
3287 	int running, queued;
3288 	struct rq_flags rf;
3289 	unsigned long ncsw;
3290 	struct rq *rq;
3291 
3292 	for (;;) {
3293 		/*
3294 		 * We do the initial early heuristics without holding
3295 		 * any task-queue locks at all. We'll only try to get
3296 		 * the runqueue lock when things look like they will
3297 		 * work out!
3298 		 */
3299 		rq = task_rq(p);
3300 
3301 		/*
3302 		 * If the task is actively running on another CPU
3303 		 * still, just relax and busy-wait without holding
3304 		 * any locks.
3305 		 *
3306 		 * NOTE! Since we don't hold any locks, it's not
3307 		 * even sure that "rq" stays as the right runqueue!
3308 		 * But we don't care, since "task_on_cpu()" will
3309 		 * return false if the runqueue has changed and p
3310 		 * is actually now running somewhere else!
3311 		 */
3312 		while (task_on_cpu(rq, p)) {
3313 			if (!(READ_ONCE(p->__state) & match_state))
3314 				return 0;
3315 			cpu_relax();
3316 		}
3317 
3318 		/*
3319 		 * Ok, time to look more closely! We need the rq
3320 		 * lock now, to be *sure*. If we're wrong, we'll
3321 		 * just go back and repeat.
3322 		 */
3323 		rq = task_rq_lock(p, &rf);
3324 		trace_sched_wait_task(p);
3325 		running = task_on_cpu(rq, p);
3326 		queued = task_on_rq_queued(p);
3327 		ncsw = 0;
3328 		if (READ_ONCE(p->__state) & match_state)
3329 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3330 		task_rq_unlock(rq, p, &rf);
3331 
3332 		/*
3333 		 * If it changed from the expected state, bail out now.
3334 		 */
3335 		if (unlikely(!ncsw))
3336 			break;
3337 
3338 		/*
3339 		 * Was it really running after all now that we
3340 		 * checked with the proper locks actually held?
3341 		 *
3342 		 * Oops. Go back and try again..
3343 		 */
3344 		if (unlikely(running)) {
3345 			cpu_relax();
3346 			continue;
3347 		}
3348 
3349 		/*
3350 		 * It's not enough that it's not actively running,
3351 		 * it must be off the runqueue _entirely_, and not
3352 		 * preempted!
3353 		 *
3354 		 * So if it was still runnable (but just not actively
3355 		 * running right now), it's preempted, and we should
3356 		 * yield - it could be a while.
3357 		 */
3358 		if (unlikely(queued)) {
3359 			ktime_t to = NSEC_PER_SEC / HZ;
3360 
3361 			set_current_state(TASK_UNINTERRUPTIBLE);
3362 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3363 			continue;
3364 		}
3365 
3366 		/*
3367 		 * Ahh, all good. It wasn't running, and it wasn't
3368 		 * runnable, which means that it will never become
3369 		 * running in the future either. We're all done!
3370 		 */
3371 		break;
3372 	}
3373 
3374 	return ncsw;
3375 }
3376 
3377 /***
3378  * kick_process - kick a running thread to enter/exit the kernel
3379  * @p: the to-be-kicked thread
3380  *
3381  * Cause a process which is running on another CPU to enter
3382  * kernel-mode, without any delay. (to get signals handled.)
3383  *
3384  * NOTE: this function doesn't have to take the runqueue lock,
3385  * because all it wants to ensure is that the remote task enters
3386  * the kernel. If the IPI races and the task has been migrated
3387  * to another CPU then no harm is done and the purpose has been
3388  * achieved as well.
3389  */
3390 void kick_process(struct task_struct *p)
3391 {
3392 	int cpu;
3393 
3394 	preempt_disable();
3395 	cpu = task_cpu(p);
3396 	if ((cpu != smp_processor_id()) && task_curr(p))
3397 		smp_send_reschedule(cpu);
3398 	preempt_enable();
3399 }
3400 EXPORT_SYMBOL_GPL(kick_process);
3401 
3402 /*
3403  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3404  *
3405  * A few notes on cpu_active vs cpu_online:
3406  *
3407  *  - cpu_active must be a subset of cpu_online
3408  *
3409  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3410  *    see __set_cpus_allowed_ptr(). At this point the newly online
3411  *    CPU isn't yet part of the sched domains, and balancing will not
3412  *    see it.
3413  *
3414  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3415  *    avoid the load balancer to place new tasks on the to be removed
3416  *    CPU. Existing tasks will remain running there and will be taken
3417  *    off.
3418  *
3419  * This means that fallback selection must not select !active CPUs.
3420  * And can assume that any active CPU must be online. Conversely
3421  * select_task_rq() below may allow selection of !active CPUs in order
3422  * to satisfy the above rules.
3423  */
3424 static int select_fallback_rq(int cpu, struct task_struct *p)
3425 {
3426 	int nid = cpu_to_node(cpu);
3427 	const struct cpumask *nodemask = NULL;
3428 	enum { cpuset, possible, fail } state = cpuset;
3429 	int dest_cpu;
3430 
3431 	/*
3432 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3433 	 * will return -1. There is no CPU on the node, and we should
3434 	 * select the CPU on the other node.
3435 	 */
3436 	if (nid != -1) {
3437 		nodemask = cpumask_of_node(nid);
3438 
3439 		/* Look for allowed, online CPU in same node. */
3440 		for_each_cpu(dest_cpu, nodemask) {
3441 			if (is_cpu_allowed(p, dest_cpu))
3442 				return dest_cpu;
3443 		}
3444 	}
3445 
3446 	for (;;) {
3447 		/* Any allowed, online CPU? */
3448 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3449 			if (!is_cpu_allowed(p, dest_cpu))
3450 				continue;
3451 
3452 			goto out;
3453 		}
3454 
3455 		/* No more Mr. Nice Guy. */
3456 		switch (state) {
3457 		case cpuset:
3458 			if (cpuset_cpus_allowed_fallback(p)) {
3459 				state = possible;
3460 				break;
3461 			}
3462 			fallthrough;
3463 		case possible:
3464 			/*
3465 			 * XXX When called from select_task_rq() we only
3466 			 * hold p->pi_lock and again violate locking order.
3467 			 *
3468 			 * More yuck to audit.
3469 			 */
3470 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3471 			state = fail;
3472 			break;
3473 		case fail:
3474 			BUG();
3475 			break;
3476 		}
3477 	}
3478 
3479 out:
3480 	if (state != cpuset) {
3481 		/*
3482 		 * Don't tell them about moving exiting tasks or
3483 		 * kernel threads (both mm NULL), since they never
3484 		 * leave kernel.
3485 		 */
3486 		if (p->mm && printk_ratelimit()) {
3487 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3488 					task_pid_nr(p), p->comm, cpu);
3489 		}
3490 	}
3491 
3492 	return dest_cpu;
3493 }
3494 
3495 /*
3496  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3497  */
3498 static inline
3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3500 {
3501 	lockdep_assert_held(&p->pi_lock);
3502 
3503 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3504 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3505 	else
3506 		cpu = cpumask_any(p->cpus_ptr);
3507 
3508 	/*
3509 	 * In order not to call set_task_cpu() on a blocking task we need
3510 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3511 	 * CPU.
3512 	 *
3513 	 * Since this is common to all placement strategies, this lives here.
3514 	 *
3515 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3516 	 *   not worry about this generic constraint ]
3517 	 */
3518 	if (unlikely(!is_cpu_allowed(p, cpu)))
3519 		cpu = select_fallback_rq(task_cpu(p), p);
3520 
3521 	return cpu;
3522 }
3523 
3524 void sched_set_stop_task(int cpu, struct task_struct *stop)
3525 {
3526 	static struct lock_class_key stop_pi_lock;
3527 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3528 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3529 
3530 	if (stop) {
3531 		/*
3532 		 * Make it appear like a SCHED_FIFO task, its something
3533 		 * userspace knows about and won't get confused about.
3534 		 *
3535 		 * Also, it will make PI more or less work without too
3536 		 * much confusion -- but then, stop work should not
3537 		 * rely on PI working anyway.
3538 		 */
3539 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3540 
3541 		stop->sched_class = &stop_sched_class;
3542 
3543 		/*
3544 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3545 		 * adjust the effective priority of a task. As a result,
3546 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3547 		 * which can then trigger wakeups of the stop thread to push
3548 		 * around the current task.
3549 		 *
3550 		 * The stop task itself will never be part of the PI-chain, it
3551 		 * never blocks, therefore that ->pi_lock recursion is safe.
3552 		 * Tell lockdep about this by placing the stop->pi_lock in its
3553 		 * own class.
3554 		 */
3555 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3556 	}
3557 
3558 	cpu_rq(cpu)->stop = stop;
3559 
3560 	if (old_stop) {
3561 		/*
3562 		 * Reset it back to a normal scheduling class so that
3563 		 * it can die in pieces.
3564 		 */
3565 		old_stop->sched_class = &rt_sched_class;
3566 	}
3567 }
3568 
3569 #else /* CONFIG_SMP */
3570 
3571 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3572 					 struct affinity_context *ctx)
3573 {
3574 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3575 }
3576 
3577 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3578 
3579 static inline bool rq_has_pinned_tasks(struct rq *rq)
3580 {
3581 	return false;
3582 }
3583 
3584 #endif /* !CONFIG_SMP */
3585 
3586 static void
3587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3588 {
3589 	struct rq *rq;
3590 
3591 	if (!schedstat_enabled())
3592 		return;
3593 
3594 	rq = this_rq();
3595 
3596 #ifdef CONFIG_SMP
3597 	if (cpu == rq->cpu) {
3598 		__schedstat_inc(rq->ttwu_local);
3599 		__schedstat_inc(p->stats.nr_wakeups_local);
3600 	} else {
3601 		struct sched_domain *sd;
3602 
3603 		__schedstat_inc(p->stats.nr_wakeups_remote);
3604 		rcu_read_lock();
3605 		for_each_domain(rq->cpu, sd) {
3606 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3607 				__schedstat_inc(sd->ttwu_wake_remote);
3608 				break;
3609 			}
3610 		}
3611 		rcu_read_unlock();
3612 	}
3613 
3614 	if (wake_flags & WF_MIGRATED)
3615 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3616 #endif /* CONFIG_SMP */
3617 
3618 	__schedstat_inc(rq->ttwu_count);
3619 	__schedstat_inc(p->stats.nr_wakeups);
3620 
3621 	if (wake_flags & WF_SYNC)
3622 		__schedstat_inc(p->stats.nr_wakeups_sync);
3623 }
3624 
3625 /*
3626  * Mark the task runnable and perform wakeup-preemption.
3627  */
3628 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3629 			   struct rq_flags *rf)
3630 {
3631 	check_preempt_curr(rq, p, wake_flags);
3632 	WRITE_ONCE(p->__state, TASK_RUNNING);
3633 	trace_sched_wakeup(p);
3634 
3635 #ifdef CONFIG_SMP
3636 	if (p->sched_class->task_woken) {
3637 		/*
3638 		 * Our task @p is fully woken up and running; so it's safe to
3639 		 * drop the rq->lock, hereafter rq is only used for statistics.
3640 		 */
3641 		rq_unpin_lock(rq, rf);
3642 		p->sched_class->task_woken(rq, p);
3643 		rq_repin_lock(rq, rf);
3644 	}
3645 
3646 	if (rq->idle_stamp) {
3647 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3648 		u64 max = 2*rq->max_idle_balance_cost;
3649 
3650 		update_avg(&rq->avg_idle, delta);
3651 
3652 		if (rq->avg_idle > max)
3653 			rq->avg_idle = max;
3654 
3655 		rq->wake_stamp = jiffies;
3656 		rq->wake_avg_idle = rq->avg_idle / 2;
3657 
3658 		rq->idle_stamp = 0;
3659 	}
3660 #endif
3661 }
3662 
3663 static void
3664 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3665 		 struct rq_flags *rf)
3666 {
3667 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3668 
3669 	lockdep_assert_rq_held(rq);
3670 
3671 	if (p->sched_contributes_to_load)
3672 		rq->nr_uninterruptible--;
3673 
3674 #ifdef CONFIG_SMP
3675 	if (wake_flags & WF_MIGRATED)
3676 		en_flags |= ENQUEUE_MIGRATED;
3677 	else
3678 #endif
3679 	if (p->in_iowait) {
3680 		delayacct_blkio_end(p);
3681 		atomic_dec(&task_rq(p)->nr_iowait);
3682 	}
3683 
3684 	activate_task(rq, p, en_flags);
3685 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3686 }
3687 
3688 /*
3689  * Consider @p being inside a wait loop:
3690  *
3691  *   for (;;) {
3692  *      set_current_state(TASK_UNINTERRUPTIBLE);
3693  *
3694  *      if (CONDITION)
3695  *         break;
3696  *
3697  *      schedule();
3698  *   }
3699  *   __set_current_state(TASK_RUNNING);
3700  *
3701  * between set_current_state() and schedule(). In this case @p is still
3702  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3703  * an atomic manner.
3704  *
3705  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3706  * then schedule() must still happen and p->state can be changed to
3707  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3708  * need to do a full wakeup with enqueue.
3709  *
3710  * Returns: %true when the wakeup is done,
3711  *          %false otherwise.
3712  */
3713 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3714 {
3715 	struct rq_flags rf;
3716 	struct rq *rq;
3717 	int ret = 0;
3718 
3719 	rq = __task_rq_lock(p, &rf);
3720 	if (task_on_rq_queued(p)) {
3721 		/* check_preempt_curr() may use rq clock */
3722 		update_rq_clock(rq);
3723 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3724 		ret = 1;
3725 	}
3726 	__task_rq_unlock(rq, &rf);
3727 
3728 	return ret;
3729 }
3730 
3731 #ifdef CONFIG_SMP
3732 void sched_ttwu_pending(void *arg)
3733 {
3734 	struct llist_node *llist = arg;
3735 	struct rq *rq = this_rq();
3736 	struct task_struct *p, *t;
3737 	struct rq_flags rf;
3738 
3739 	if (!llist)
3740 		return;
3741 
3742 	rq_lock_irqsave(rq, &rf);
3743 	update_rq_clock(rq);
3744 
3745 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3746 		if (WARN_ON_ONCE(p->on_cpu))
3747 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3748 
3749 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3750 			set_task_cpu(p, cpu_of(rq));
3751 
3752 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3753 	}
3754 
3755 	/*
3756 	 * Must be after enqueueing at least once task such that
3757 	 * idle_cpu() does not observe a false-negative -- if it does,
3758 	 * it is possible for select_idle_siblings() to stack a number
3759 	 * of tasks on this CPU during that window.
3760 	 *
3761 	 * It is ok to clear ttwu_pending when another task pending.
3762 	 * We will receive IPI after local irq enabled and then enqueue it.
3763 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3764 	 */
3765 	WRITE_ONCE(rq->ttwu_pending, 0);
3766 	rq_unlock_irqrestore(rq, &rf);
3767 }
3768 
3769 void send_call_function_single_ipi(int cpu)
3770 {
3771 	struct rq *rq = cpu_rq(cpu);
3772 
3773 	if (!set_nr_if_polling(rq->idle))
3774 		arch_send_call_function_single_ipi(cpu);
3775 	else
3776 		trace_sched_wake_idle_without_ipi(cpu);
3777 }
3778 
3779 /*
3780  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3781  * necessary. The wakee CPU on receipt of the IPI will queue the task
3782  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3783  * of the wakeup instead of the waker.
3784  */
3785 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3786 {
3787 	struct rq *rq = cpu_rq(cpu);
3788 
3789 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3790 
3791 	WRITE_ONCE(rq->ttwu_pending, 1);
3792 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3793 }
3794 
3795 void wake_up_if_idle(int cpu)
3796 {
3797 	struct rq *rq = cpu_rq(cpu);
3798 	struct rq_flags rf;
3799 
3800 	rcu_read_lock();
3801 
3802 	if (!is_idle_task(rcu_dereference(rq->curr)))
3803 		goto out;
3804 
3805 	rq_lock_irqsave(rq, &rf);
3806 	if (is_idle_task(rq->curr))
3807 		resched_curr(rq);
3808 	/* Else CPU is not idle, do nothing here: */
3809 	rq_unlock_irqrestore(rq, &rf);
3810 
3811 out:
3812 	rcu_read_unlock();
3813 }
3814 
3815 bool cpus_share_cache(int this_cpu, int that_cpu)
3816 {
3817 	if (this_cpu == that_cpu)
3818 		return true;
3819 
3820 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3821 }
3822 
3823 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3824 {
3825 	/*
3826 	 * Do not complicate things with the async wake_list while the CPU is
3827 	 * in hotplug state.
3828 	 */
3829 	if (!cpu_active(cpu))
3830 		return false;
3831 
3832 	/* Ensure the task will still be allowed to run on the CPU. */
3833 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3834 		return false;
3835 
3836 	/*
3837 	 * If the CPU does not share cache, then queue the task on the
3838 	 * remote rqs wakelist to avoid accessing remote data.
3839 	 */
3840 	if (!cpus_share_cache(smp_processor_id(), cpu))
3841 		return true;
3842 
3843 	if (cpu == smp_processor_id())
3844 		return false;
3845 
3846 	/*
3847 	 * If the wakee cpu is idle, or the task is descheduling and the
3848 	 * only running task on the CPU, then use the wakelist to offload
3849 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3850 	 * the current CPU is likely busy. nr_running is checked to
3851 	 * avoid unnecessary task stacking.
3852 	 *
3853 	 * Note that we can only get here with (wakee) p->on_rq=0,
3854 	 * p->on_cpu can be whatever, we've done the dequeue, so
3855 	 * the wakee has been accounted out of ->nr_running.
3856 	 */
3857 	if (!cpu_rq(cpu)->nr_running)
3858 		return true;
3859 
3860 	return false;
3861 }
3862 
3863 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3864 {
3865 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3866 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3867 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3868 		return true;
3869 	}
3870 
3871 	return false;
3872 }
3873 
3874 #else /* !CONFIG_SMP */
3875 
3876 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3877 {
3878 	return false;
3879 }
3880 
3881 #endif /* CONFIG_SMP */
3882 
3883 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3884 {
3885 	struct rq *rq = cpu_rq(cpu);
3886 	struct rq_flags rf;
3887 
3888 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3889 		return;
3890 
3891 	rq_lock(rq, &rf);
3892 	update_rq_clock(rq);
3893 	ttwu_do_activate(rq, p, wake_flags, &rf);
3894 	rq_unlock(rq, &rf);
3895 }
3896 
3897 /*
3898  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3899  *
3900  * The caller holds p::pi_lock if p != current or has preemption
3901  * disabled when p == current.
3902  *
3903  * The rules of PREEMPT_RT saved_state:
3904  *
3905  *   The related locking code always holds p::pi_lock when updating
3906  *   p::saved_state, which means the code is fully serialized in both cases.
3907  *
3908  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3909  *   bits set. This allows to distinguish all wakeup scenarios.
3910  */
3911 static __always_inline
3912 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3913 {
3914 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3915 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3916 			     state != TASK_RTLOCK_WAIT);
3917 	}
3918 
3919 	if (READ_ONCE(p->__state) & state) {
3920 		*success = 1;
3921 		return true;
3922 	}
3923 
3924 #ifdef CONFIG_PREEMPT_RT
3925 	/*
3926 	 * Saved state preserves the task state across blocking on
3927 	 * an RT lock.  If the state matches, set p::saved_state to
3928 	 * TASK_RUNNING, but do not wake the task because it waits
3929 	 * for a lock wakeup. Also indicate success because from
3930 	 * the regular waker's point of view this has succeeded.
3931 	 *
3932 	 * After acquiring the lock the task will restore p::__state
3933 	 * from p::saved_state which ensures that the regular
3934 	 * wakeup is not lost. The restore will also set
3935 	 * p::saved_state to TASK_RUNNING so any further tests will
3936 	 * not result in false positives vs. @success
3937 	 */
3938 	if (p->saved_state & state) {
3939 		p->saved_state = TASK_RUNNING;
3940 		*success = 1;
3941 	}
3942 #endif
3943 	return false;
3944 }
3945 
3946 /*
3947  * Notes on Program-Order guarantees on SMP systems.
3948  *
3949  *  MIGRATION
3950  *
3951  * The basic program-order guarantee on SMP systems is that when a task [t]
3952  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3953  * execution on its new CPU [c1].
3954  *
3955  * For migration (of runnable tasks) this is provided by the following means:
3956  *
3957  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3958  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3959  *     rq(c1)->lock (if not at the same time, then in that order).
3960  *  C) LOCK of the rq(c1)->lock scheduling in task
3961  *
3962  * Release/acquire chaining guarantees that B happens after A and C after B.
3963  * Note: the CPU doing B need not be c0 or c1
3964  *
3965  * Example:
3966  *
3967  *   CPU0            CPU1            CPU2
3968  *
3969  *   LOCK rq(0)->lock
3970  *   sched-out X
3971  *   sched-in Y
3972  *   UNLOCK rq(0)->lock
3973  *
3974  *                                   LOCK rq(0)->lock // orders against CPU0
3975  *                                   dequeue X
3976  *                                   UNLOCK rq(0)->lock
3977  *
3978  *                                   LOCK rq(1)->lock
3979  *                                   enqueue X
3980  *                                   UNLOCK rq(1)->lock
3981  *
3982  *                   LOCK rq(1)->lock // orders against CPU2
3983  *                   sched-out Z
3984  *                   sched-in X
3985  *                   UNLOCK rq(1)->lock
3986  *
3987  *
3988  *  BLOCKING -- aka. SLEEP + WAKEUP
3989  *
3990  * For blocking we (obviously) need to provide the same guarantee as for
3991  * migration. However the means are completely different as there is no lock
3992  * chain to provide order. Instead we do:
3993  *
3994  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3995  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3996  *
3997  * Example:
3998  *
3999  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4000  *
4001  *   LOCK rq(0)->lock LOCK X->pi_lock
4002  *   dequeue X
4003  *   sched-out X
4004  *   smp_store_release(X->on_cpu, 0);
4005  *
4006  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4007  *                    X->state = WAKING
4008  *                    set_task_cpu(X,2)
4009  *
4010  *                    LOCK rq(2)->lock
4011  *                    enqueue X
4012  *                    X->state = RUNNING
4013  *                    UNLOCK rq(2)->lock
4014  *
4015  *                                          LOCK rq(2)->lock // orders against CPU1
4016  *                                          sched-out Z
4017  *                                          sched-in X
4018  *                                          UNLOCK rq(2)->lock
4019  *
4020  *                    UNLOCK X->pi_lock
4021  *   UNLOCK rq(0)->lock
4022  *
4023  *
4024  * However, for wakeups there is a second guarantee we must provide, namely we
4025  * must ensure that CONDITION=1 done by the caller can not be reordered with
4026  * accesses to the task state; see try_to_wake_up() and set_current_state().
4027  */
4028 
4029 /**
4030  * try_to_wake_up - wake up a thread
4031  * @p: the thread to be awakened
4032  * @state: the mask of task states that can be woken
4033  * @wake_flags: wake modifier flags (WF_*)
4034  *
4035  * Conceptually does:
4036  *
4037  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4038  *
4039  * If the task was not queued/runnable, also place it back on a runqueue.
4040  *
4041  * This function is atomic against schedule() which would dequeue the task.
4042  *
4043  * It issues a full memory barrier before accessing @p->state, see the comment
4044  * with set_current_state().
4045  *
4046  * Uses p->pi_lock to serialize against concurrent wake-ups.
4047  *
4048  * Relies on p->pi_lock stabilizing:
4049  *  - p->sched_class
4050  *  - p->cpus_ptr
4051  *  - p->sched_task_group
4052  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4053  *
4054  * Tries really hard to only take one task_rq(p)->lock for performance.
4055  * Takes rq->lock in:
4056  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4057  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4058  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4059  *
4060  * As a consequence we race really badly with just about everything. See the
4061  * many memory barriers and their comments for details.
4062  *
4063  * Return: %true if @p->state changes (an actual wakeup was done),
4064  *	   %false otherwise.
4065  */
4066 static int
4067 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4068 {
4069 	unsigned long flags;
4070 	int cpu, success = 0;
4071 
4072 	preempt_disable();
4073 	if (p == current) {
4074 		/*
4075 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4076 		 * == smp_processor_id()'. Together this means we can special
4077 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4078 		 * without taking any locks.
4079 		 *
4080 		 * In particular:
4081 		 *  - we rely on Program-Order guarantees for all the ordering,
4082 		 *  - we're serialized against set_special_state() by virtue of
4083 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4084 		 */
4085 		if (!ttwu_state_match(p, state, &success))
4086 			goto out;
4087 
4088 		trace_sched_waking(p);
4089 		WRITE_ONCE(p->__state, TASK_RUNNING);
4090 		trace_sched_wakeup(p);
4091 		goto out;
4092 	}
4093 
4094 	/*
4095 	 * If we are going to wake up a thread waiting for CONDITION we
4096 	 * need to ensure that CONDITION=1 done by the caller can not be
4097 	 * reordered with p->state check below. This pairs with smp_store_mb()
4098 	 * in set_current_state() that the waiting thread does.
4099 	 */
4100 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4101 	smp_mb__after_spinlock();
4102 	if (!ttwu_state_match(p, state, &success))
4103 		goto unlock;
4104 
4105 	trace_sched_waking(p);
4106 
4107 	/*
4108 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4109 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4110 	 * in smp_cond_load_acquire() below.
4111 	 *
4112 	 * sched_ttwu_pending()			try_to_wake_up()
4113 	 *   STORE p->on_rq = 1			  LOAD p->state
4114 	 *   UNLOCK rq->lock
4115 	 *
4116 	 * __schedule() (switch to task 'p')
4117 	 *   LOCK rq->lock			  smp_rmb();
4118 	 *   smp_mb__after_spinlock();
4119 	 *   UNLOCK rq->lock
4120 	 *
4121 	 * [task p]
4122 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4123 	 *
4124 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4125 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4126 	 *
4127 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4128 	 */
4129 	smp_rmb();
4130 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4131 		goto unlock;
4132 
4133 #ifdef CONFIG_SMP
4134 	/*
4135 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4136 	 * possible to, falsely, observe p->on_cpu == 0.
4137 	 *
4138 	 * One must be running (->on_cpu == 1) in order to remove oneself
4139 	 * from the runqueue.
4140 	 *
4141 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4142 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4143 	 *   UNLOCK rq->lock
4144 	 *
4145 	 * __schedule() (put 'p' to sleep)
4146 	 *   LOCK rq->lock			  smp_rmb();
4147 	 *   smp_mb__after_spinlock();
4148 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4149 	 *
4150 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4151 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4152 	 *
4153 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4154 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4155 	 * care about it's own p->state. See the comment in __schedule().
4156 	 */
4157 	smp_acquire__after_ctrl_dep();
4158 
4159 	/*
4160 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4161 	 * == 0), which means we need to do an enqueue, change p->state to
4162 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4163 	 * enqueue, such as ttwu_queue_wakelist().
4164 	 */
4165 	WRITE_ONCE(p->__state, TASK_WAKING);
4166 
4167 	/*
4168 	 * If the owning (remote) CPU is still in the middle of schedule() with
4169 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4170 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4171 	 * let the waker make forward progress. This is safe because IRQs are
4172 	 * disabled and the IPI will deliver after on_cpu is cleared.
4173 	 *
4174 	 * Ensure we load task_cpu(p) after p->on_cpu:
4175 	 *
4176 	 * set_task_cpu(p, cpu);
4177 	 *   STORE p->cpu = @cpu
4178 	 * __schedule() (switch to task 'p')
4179 	 *   LOCK rq->lock
4180 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4181 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4182 	 *
4183 	 * to ensure we observe the correct CPU on which the task is currently
4184 	 * scheduling.
4185 	 */
4186 	if (smp_load_acquire(&p->on_cpu) &&
4187 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4188 		goto unlock;
4189 
4190 	/*
4191 	 * If the owning (remote) CPU is still in the middle of schedule() with
4192 	 * this task as prev, wait until it's done referencing the task.
4193 	 *
4194 	 * Pairs with the smp_store_release() in finish_task().
4195 	 *
4196 	 * This ensures that tasks getting woken will be fully ordered against
4197 	 * their previous state and preserve Program Order.
4198 	 */
4199 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4200 
4201 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4202 	if (task_cpu(p) != cpu) {
4203 		if (p->in_iowait) {
4204 			delayacct_blkio_end(p);
4205 			atomic_dec(&task_rq(p)->nr_iowait);
4206 		}
4207 
4208 		wake_flags |= WF_MIGRATED;
4209 		psi_ttwu_dequeue(p);
4210 		set_task_cpu(p, cpu);
4211 	}
4212 #else
4213 	cpu = task_cpu(p);
4214 #endif /* CONFIG_SMP */
4215 
4216 	ttwu_queue(p, cpu, wake_flags);
4217 unlock:
4218 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4219 out:
4220 	if (success)
4221 		ttwu_stat(p, task_cpu(p), wake_flags);
4222 	preempt_enable();
4223 
4224 	return success;
4225 }
4226 
4227 static bool __task_needs_rq_lock(struct task_struct *p)
4228 {
4229 	unsigned int state = READ_ONCE(p->__state);
4230 
4231 	/*
4232 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4233 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4234 	 * locks at the end, see ttwu_queue_wakelist().
4235 	 */
4236 	if (state == TASK_RUNNING || state == TASK_WAKING)
4237 		return true;
4238 
4239 	/*
4240 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4241 	 * possible to, falsely, observe p->on_rq == 0.
4242 	 *
4243 	 * See try_to_wake_up() for a longer comment.
4244 	 */
4245 	smp_rmb();
4246 	if (p->on_rq)
4247 		return true;
4248 
4249 #ifdef CONFIG_SMP
4250 	/*
4251 	 * Ensure the task has finished __schedule() and will not be referenced
4252 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4253 	 */
4254 	smp_rmb();
4255 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4256 #endif
4257 
4258 	return false;
4259 }
4260 
4261 /**
4262  * task_call_func - Invoke a function on task in fixed state
4263  * @p: Process for which the function is to be invoked, can be @current.
4264  * @func: Function to invoke.
4265  * @arg: Argument to function.
4266  *
4267  * Fix the task in it's current state by avoiding wakeups and or rq operations
4268  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4269  * to work out what the state is, if required.  Given that @func can be invoked
4270  * with a runqueue lock held, it had better be quite lightweight.
4271  *
4272  * Returns:
4273  *   Whatever @func returns
4274  */
4275 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4276 {
4277 	struct rq *rq = NULL;
4278 	struct rq_flags rf;
4279 	int ret;
4280 
4281 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4282 
4283 	if (__task_needs_rq_lock(p))
4284 		rq = __task_rq_lock(p, &rf);
4285 
4286 	/*
4287 	 * At this point the task is pinned; either:
4288 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4289 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4290 	 *  - queued, and we're holding off schedule	 (rq->lock)
4291 	 *  - running, and we're holding off de-schedule (rq->lock)
4292 	 *
4293 	 * The called function (@func) can use: task_curr(), p->on_rq and
4294 	 * p->__state to differentiate between these states.
4295 	 */
4296 	ret = func(p, arg);
4297 
4298 	if (rq)
4299 		rq_unlock(rq, &rf);
4300 
4301 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4302 	return ret;
4303 }
4304 
4305 /**
4306  * cpu_curr_snapshot - Return a snapshot of the currently running task
4307  * @cpu: The CPU on which to snapshot the task.
4308  *
4309  * Returns the task_struct pointer of the task "currently" running on
4310  * the specified CPU.  If the same task is running on that CPU throughout,
4311  * the return value will be a pointer to that task's task_struct structure.
4312  * If the CPU did any context switches even vaguely concurrently with the
4313  * execution of this function, the return value will be a pointer to the
4314  * task_struct structure of a randomly chosen task that was running on
4315  * that CPU somewhere around the time that this function was executing.
4316  *
4317  * If the specified CPU was offline, the return value is whatever it
4318  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4319  * task, but there is no guarantee.  Callers wishing a useful return
4320  * value must take some action to ensure that the specified CPU remains
4321  * online throughout.
4322  *
4323  * This function executes full memory barriers before and after fetching
4324  * the pointer, which permits the caller to confine this function's fetch
4325  * with respect to the caller's accesses to other shared variables.
4326  */
4327 struct task_struct *cpu_curr_snapshot(int cpu)
4328 {
4329 	struct task_struct *t;
4330 
4331 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4332 	t = rcu_dereference(cpu_curr(cpu));
4333 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4334 	return t;
4335 }
4336 
4337 /**
4338  * wake_up_process - Wake up a specific process
4339  * @p: The process to be woken up.
4340  *
4341  * Attempt to wake up the nominated process and move it to the set of runnable
4342  * processes.
4343  *
4344  * Return: 1 if the process was woken up, 0 if it was already running.
4345  *
4346  * This function executes a full memory barrier before accessing the task state.
4347  */
4348 int wake_up_process(struct task_struct *p)
4349 {
4350 	return try_to_wake_up(p, TASK_NORMAL, 0);
4351 }
4352 EXPORT_SYMBOL(wake_up_process);
4353 
4354 int wake_up_state(struct task_struct *p, unsigned int state)
4355 {
4356 	return try_to_wake_up(p, state, 0);
4357 }
4358 
4359 /*
4360  * Perform scheduler related setup for a newly forked process p.
4361  * p is forked by current.
4362  *
4363  * __sched_fork() is basic setup used by init_idle() too:
4364  */
4365 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4366 {
4367 	p->on_rq			= 0;
4368 
4369 	p->se.on_rq			= 0;
4370 	p->se.exec_start		= 0;
4371 	p->se.sum_exec_runtime		= 0;
4372 	p->se.prev_sum_exec_runtime	= 0;
4373 	p->se.nr_migrations		= 0;
4374 	p->se.vruntime			= 0;
4375 	INIT_LIST_HEAD(&p->se.group_node);
4376 
4377 #ifdef CONFIG_FAIR_GROUP_SCHED
4378 	p->se.cfs_rq			= NULL;
4379 #endif
4380 
4381 #ifdef CONFIG_SCHEDSTATS
4382 	/* Even if schedstat is disabled, there should not be garbage */
4383 	memset(&p->stats, 0, sizeof(p->stats));
4384 #endif
4385 
4386 	RB_CLEAR_NODE(&p->dl.rb_node);
4387 	init_dl_task_timer(&p->dl);
4388 	init_dl_inactive_task_timer(&p->dl);
4389 	__dl_clear_params(p);
4390 
4391 	INIT_LIST_HEAD(&p->rt.run_list);
4392 	p->rt.timeout		= 0;
4393 	p->rt.time_slice	= sched_rr_timeslice;
4394 	p->rt.on_rq		= 0;
4395 	p->rt.on_list		= 0;
4396 
4397 #ifdef CONFIG_PREEMPT_NOTIFIERS
4398 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4399 #endif
4400 
4401 #ifdef CONFIG_COMPACTION
4402 	p->capture_control = NULL;
4403 #endif
4404 	init_numa_balancing(clone_flags, p);
4405 #ifdef CONFIG_SMP
4406 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4407 	p->migration_pending = NULL;
4408 #endif
4409 }
4410 
4411 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4412 
4413 #ifdef CONFIG_NUMA_BALANCING
4414 
4415 int sysctl_numa_balancing_mode;
4416 
4417 static void __set_numabalancing_state(bool enabled)
4418 {
4419 	if (enabled)
4420 		static_branch_enable(&sched_numa_balancing);
4421 	else
4422 		static_branch_disable(&sched_numa_balancing);
4423 }
4424 
4425 void set_numabalancing_state(bool enabled)
4426 {
4427 	if (enabled)
4428 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4429 	else
4430 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4431 	__set_numabalancing_state(enabled);
4432 }
4433 
4434 #ifdef CONFIG_PROC_SYSCTL
4435 static void reset_memory_tiering(void)
4436 {
4437 	struct pglist_data *pgdat;
4438 
4439 	for_each_online_pgdat(pgdat) {
4440 		pgdat->nbp_threshold = 0;
4441 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4442 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4443 	}
4444 }
4445 
4446 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4447 			  void *buffer, size_t *lenp, loff_t *ppos)
4448 {
4449 	struct ctl_table t;
4450 	int err;
4451 	int state = sysctl_numa_balancing_mode;
4452 
4453 	if (write && !capable(CAP_SYS_ADMIN))
4454 		return -EPERM;
4455 
4456 	t = *table;
4457 	t.data = &state;
4458 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4459 	if (err < 0)
4460 		return err;
4461 	if (write) {
4462 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4463 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4464 			reset_memory_tiering();
4465 		sysctl_numa_balancing_mode = state;
4466 		__set_numabalancing_state(state);
4467 	}
4468 	return err;
4469 }
4470 #endif
4471 #endif
4472 
4473 #ifdef CONFIG_SCHEDSTATS
4474 
4475 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4476 
4477 static void set_schedstats(bool enabled)
4478 {
4479 	if (enabled)
4480 		static_branch_enable(&sched_schedstats);
4481 	else
4482 		static_branch_disable(&sched_schedstats);
4483 }
4484 
4485 void force_schedstat_enabled(void)
4486 {
4487 	if (!schedstat_enabled()) {
4488 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4489 		static_branch_enable(&sched_schedstats);
4490 	}
4491 }
4492 
4493 static int __init setup_schedstats(char *str)
4494 {
4495 	int ret = 0;
4496 	if (!str)
4497 		goto out;
4498 
4499 	if (!strcmp(str, "enable")) {
4500 		set_schedstats(true);
4501 		ret = 1;
4502 	} else if (!strcmp(str, "disable")) {
4503 		set_schedstats(false);
4504 		ret = 1;
4505 	}
4506 out:
4507 	if (!ret)
4508 		pr_warn("Unable to parse schedstats=\n");
4509 
4510 	return ret;
4511 }
4512 __setup("schedstats=", setup_schedstats);
4513 
4514 #ifdef CONFIG_PROC_SYSCTL
4515 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4516 		size_t *lenp, loff_t *ppos)
4517 {
4518 	struct ctl_table t;
4519 	int err;
4520 	int state = static_branch_likely(&sched_schedstats);
4521 
4522 	if (write && !capable(CAP_SYS_ADMIN))
4523 		return -EPERM;
4524 
4525 	t = *table;
4526 	t.data = &state;
4527 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4528 	if (err < 0)
4529 		return err;
4530 	if (write)
4531 		set_schedstats(state);
4532 	return err;
4533 }
4534 #endif /* CONFIG_PROC_SYSCTL */
4535 #endif /* CONFIG_SCHEDSTATS */
4536 
4537 #ifdef CONFIG_SYSCTL
4538 static struct ctl_table sched_core_sysctls[] = {
4539 #ifdef CONFIG_SCHEDSTATS
4540 	{
4541 		.procname       = "sched_schedstats",
4542 		.data           = NULL,
4543 		.maxlen         = sizeof(unsigned int),
4544 		.mode           = 0644,
4545 		.proc_handler   = sysctl_schedstats,
4546 		.extra1         = SYSCTL_ZERO,
4547 		.extra2         = SYSCTL_ONE,
4548 	},
4549 #endif /* CONFIG_SCHEDSTATS */
4550 #ifdef CONFIG_UCLAMP_TASK
4551 	{
4552 		.procname       = "sched_util_clamp_min",
4553 		.data           = &sysctl_sched_uclamp_util_min,
4554 		.maxlen         = sizeof(unsigned int),
4555 		.mode           = 0644,
4556 		.proc_handler   = sysctl_sched_uclamp_handler,
4557 	},
4558 	{
4559 		.procname       = "sched_util_clamp_max",
4560 		.data           = &sysctl_sched_uclamp_util_max,
4561 		.maxlen         = sizeof(unsigned int),
4562 		.mode           = 0644,
4563 		.proc_handler   = sysctl_sched_uclamp_handler,
4564 	},
4565 	{
4566 		.procname       = "sched_util_clamp_min_rt_default",
4567 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4568 		.maxlen         = sizeof(unsigned int),
4569 		.mode           = 0644,
4570 		.proc_handler   = sysctl_sched_uclamp_handler,
4571 	},
4572 #endif /* CONFIG_UCLAMP_TASK */
4573 #ifdef CONFIG_NUMA_BALANCING
4574 	{
4575 		.procname	= "numa_balancing",
4576 		.data		= NULL, /* filled in by handler */
4577 		.maxlen		= sizeof(unsigned int),
4578 		.mode		= 0644,
4579 		.proc_handler	= sysctl_numa_balancing,
4580 		.extra1		= SYSCTL_ZERO,
4581 		.extra2		= SYSCTL_FOUR,
4582 	},
4583 #endif /* CONFIG_NUMA_BALANCING */
4584 	{}
4585 };
4586 static int __init sched_core_sysctl_init(void)
4587 {
4588 	register_sysctl_init("kernel", sched_core_sysctls);
4589 	return 0;
4590 }
4591 late_initcall(sched_core_sysctl_init);
4592 #endif /* CONFIG_SYSCTL */
4593 
4594 /*
4595  * fork()/clone()-time setup:
4596  */
4597 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4598 {
4599 	__sched_fork(clone_flags, p);
4600 	/*
4601 	 * We mark the process as NEW here. This guarantees that
4602 	 * nobody will actually run it, and a signal or other external
4603 	 * event cannot wake it up and insert it on the runqueue either.
4604 	 */
4605 	p->__state = TASK_NEW;
4606 
4607 	/*
4608 	 * Make sure we do not leak PI boosting priority to the child.
4609 	 */
4610 	p->prio = current->normal_prio;
4611 
4612 	uclamp_fork(p);
4613 
4614 	/*
4615 	 * Revert to default priority/policy on fork if requested.
4616 	 */
4617 	if (unlikely(p->sched_reset_on_fork)) {
4618 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4619 			p->policy = SCHED_NORMAL;
4620 			p->static_prio = NICE_TO_PRIO(0);
4621 			p->rt_priority = 0;
4622 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4623 			p->static_prio = NICE_TO_PRIO(0);
4624 
4625 		p->prio = p->normal_prio = p->static_prio;
4626 		set_load_weight(p, false);
4627 
4628 		/*
4629 		 * We don't need the reset flag anymore after the fork. It has
4630 		 * fulfilled its duty:
4631 		 */
4632 		p->sched_reset_on_fork = 0;
4633 	}
4634 
4635 	if (dl_prio(p->prio))
4636 		return -EAGAIN;
4637 	else if (rt_prio(p->prio))
4638 		p->sched_class = &rt_sched_class;
4639 	else
4640 		p->sched_class = &fair_sched_class;
4641 
4642 	init_entity_runnable_average(&p->se);
4643 
4644 
4645 #ifdef CONFIG_SCHED_INFO
4646 	if (likely(sched_info_on()))
4647 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4648 #endif
4649 #if defined(CONFIG_SMP)
4650 	p->on_cpu = 0;
4651 #endif
4652 	init_task_preempt_count(p);
4653 #ifdef CONFIG_SMP
4654 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4655 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4656 #endif
4657 	return 0;
4658 }
4659 
4660 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4661 {
4662 	unsigned long flags;
4663 
4664 	/*
4665 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4666 	 * required yet, but lockdep gets upset if rules are violated.
4667 	 */
4668 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4669 #ifdef CONFIG_CGROUP_SCHED
4670 	if (1) {
4671 		struct task_group *tg;
4672 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4673 				  struct task_group, css);
4674 		tg = autogroup_task_group(p, tg);
4675 		p->sched_task_group = tg;
4676 	}
4677 #endif
4678 	rseq_migrate(p);
4679 	/*
4680 	 * We're setting the CPU for the first time, we don't migrate,
4681 	 * so use __set_task_cpu().
4682 	 */
4683 	__set_task_cpu(p, smp_processor_id());
4684 	if (p->sched_class->task_fork)
4685 		p->sched_class->task_fork(p);
4686 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4687 }
4688 
4689 void sched_post_fork(struct task_struct *p)
4690 {
4691 	uclamp_post_fork(p);
4692 }
4693 
4694 unsigned long to_ratio(u64 period, u64 runtime)
4695 {
4696 	if (runtime == RUNTIME_INF)
4697 		return BW_UNIT;
4698 
4699 	/*
4700 	 * Doing this here saves a lot of checks in all
4701 	 * the calling paths, and returning zero seems
4702 	 * safe for them anyway.
4703 	 */
4704 	if (period == 0)
4705 		return 0;
4706 
4707 	return div64_u64(runtime << BW_SHIFT, period);
4708 }
4709 
4710 /*
4711  * wake_up_new_task - wake up a newly created task for the first time.
4712  *
4713  * This function will do some initial scheduler statistics housekeeping
4714  * that must be done for every newly created context, then puts the task
4715  * on the runqueue and wakes it.
4716  */
4717 void wake_up_new_task(struct task_struct *p)
4718 {
4719 	struct rq_flags rf;
4720 	struct rq *rq;
4721 
4722 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4723 	WRITE_ONCE(p->__state, TASK_RUNNING);
4724 #ifdef CONFIG_SMP
4725 	/*
4726 	 * Fork balancing, do it here and not earlier because:
4727 	 *  - cpus_ptr can change in the fork path
4728 	 *  - any previously selected CPU might disappear through hotplug
4729 	 *
4730 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4731 	 * as we're not fully set-up yet.
4732 	 */
4733 	p->recent_used_cpu = task_cpu(p);
4734 	rseq_migrate(p);
4735 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4736 #endif
4737 	rq = __task_rq_lock(p, &rf);
4738 	update_rq_clock(rq);
4739 	post_init_entity_util_avg(p);
4740 
4741 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4742 	trace_sched_wakeup_new(p);
4743 	check_preempt_curr(rq, p, WF_FORK);
4744 #ifdef CONFIG_SMP
4745 	if (p->sched_class->task_woken) {
4746 		/*
4747 		 * Nothing relies on rq->lock after this, so it's fine to
4748 		 * drop it.
4749 		 */
4750 		rq_unpin_lock(rq, &rf);
4751 		p->sched_class->task_woken(rq, p);
4752 		rq_repin_lock(rq, &rf);
4753 	}
4754 #endif
4755 	task_rq_unlock(rq, p, &rf);
4756 }
4757 
4758 #ifdef CONFIG_PREEMPT_NOTIFIERS
4759 
4760 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4761 
4762 void preempt_notifier_inc(void)
4763 {
4764 	static_branch_inc(&preempt_notifier_key);
4765 }
4766 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4767 
4768 void preempt_notifier_dec(void)
4769 {
4770 	static_branch_dec(&preempt_notifier_key);
4771 }
4772 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4773 
4774 /**
4775  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4776  * @notifier: notifier struct to register
4777  */
4778 void preempt_notifier_register(struct preempt_notifier *notifier)
4779 {
4780 	if (!static_branch_unlikely(&preempt_notifier_key))
4781 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4782 
4783 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4784 }
4785 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4786 
4787 /**
4788  * preempt_notifier_unregister - no longer interested in preemption notifications
4789  * @notifier: notifier struct to unregister
4790  *
4791  * This is *not* safe to call from within a preemption notifier.
4792  */
4793 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4794 {
4795 	hlist_del(&notifier->link);
4796 }
4797 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4798 
4799 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4800 {
4801 	struct preempt_notifier *notifier;
4802 
4803 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4804 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4805 }
4806 
4807 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4808 {
4809 	if (static_branch_unlikely(&preempt_notifier_key))
4810 		__fire_sched_in_preempt_notifiers(curr);
4811 }
4812 
4813 static void
4814 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4815 				   struct task_struct *next)
4816 {
4817 	struct preempt_notifier *notifier;
4818 
4819 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4820 		notifier->ops->sched_out(notifier, next);
4821 }
4822 
4823 static __always_inline void
4824 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4825 				 struct task_struct *next)
4826 {
4827 	if (static_branch_unlikely(&preempt_notifier_key))
4828 		__fire_sched_out_preempt_notifiers(curr, next);
4829 }
4830 
4831 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4832 
4833 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4834 {
4835 }
4836 
4837 static inline void
4838 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4839 				 struct task_struct *next)
4840 {
4841 }
4842 
4843 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4844 
4845 static inline void prepare_task(struct task_struct *next)
4846 {
4847 #ifdef CONFIG_SMP
4848 	/*
4849 	 * Claim the task as running, we do this before switching to it
4850 	 * such that any running task will have this set.
4851 	 *
4852 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4853 	 * its ordering comment.
4854 	 */
4855 	WRITE_ONCE(next->on_cpu, 1);
4856 #endif
4857 }
4858 
4859 static inline void finish_task(struct task_struct *prev)
4860 {
4861 #ifdef CONFIG_SMP
4862 	/*
4863 	 * This must be the very last reference to @prev from this CPU. After
4864 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4865 	 * must ensure this doesn't happen until the switch is completely
4866 	 * finished.
4867 	 *
4868 	 * In particular, the load of prev->state in finish_task_switch() must
4869 	 * happen before this.
4870 	 *
4871 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4872 	 */
4873 	smp_store_release(&prev->on_cpu, 0);
4874 #endif
4875 }
4876 
4877 #ifdef CONFIG_SMP
4878 
4879 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4880 {
4881 	void (*func)(struct rq *rq);
4882 	struct balance_callback *next;
4883 
4884 	lockdep_assert_rq_held(rq);
4885 
4886 	while (head) {
4887 		func = (void (*)(struct rq *))head->func;
4888 		next = head->next;
4889 		head->next = NULL;
4890 		head = next;
4891 
4892 		func(rq);
4893 	}
4894 }
4895 
4896 static void balance_push(struct rq *rq);
4897 
4898 /*
4899  * balance_push_callback is a right abuse of the callback interface and plays
4900  * by significantly different rules.
4901  *
4902  * Where the normal balance_callback's purpose is to be ran in the same context
4903  * that queued it (only later, when it's safe to drop rq->lock again),
4904  * balance_push_callback is specifically targeted at __schedule().
4905  *
4906  * This abuse is tolerated because it places all the unlikely/odd cases behind
4907  * a single test, namely: rq->balance_callback == NULL.
4908  */
4909 struct balance_callback balance_push_callback = {
4910 	.next = NULL,
4911 	.func = balance_push,
4912 };
4913 
4914 static inline struct balance_callback *
4915 __splice_balance_callbacks(struct rq *rq, bool split)
4916 {
4917 	struct balance_callback *head = rq->balance_callback;
4918 
4919 	if (likely(!head))
4920 		return NULL;
4921 
4922 	lockdep_assert_rq_held(rq);
4923 	/*
4924 	 * Must not take balance_push_callback off the list when
4925 	 * splice_balance_callbacks() and balance_callbacks() are not
4926 	 * in the same rq->lock section.
4927 	 *
4928 	 * In that case it would be possible for __schedule() to interleave
4929 	 * and observe the list empty.
4930 	 */
4931 	if (split && head == &balance_push_callback)
4932 		head = NULL;
4933 	else
4934 		rq->balance_callback = NULL;
4935 
4936 	return head;
4937 }
4938 
4939 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4940 {
4941 	return __splice_balance_callbacks(rq, true);
4942 }
4943 
4944 static void __balance_callbacks(struct rq *rq)
4945 {
4946 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4947 }
4948 
4949 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4950 {
4951 	unsigned long flags;
4952 
4953 	if (unlikely(head)) {
4954 		raw_spin_rq_lock_irqsave(rq, flags);
4955 		do_balance_callbacks(rq, head);
4956 		raw_spin_rq_unlock_irqrestore(rq, flags);
4957 	}
4958 }
4959 
4960 #else
4961 
4962 static inline void __balance_callbacks(struct rq *rq)
4963 {
4964 }
4965 
4966 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4967 {
4968 	return NULL;
4969 }
4970 
4971 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4972 {
4973 }
4974 
4975 #endif
4976 
4977 static inline void
4978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4979 {
4980 	/*
4981 	 * Since the runqueue lock will be released by the next
4982 	 * task (which is an invalid locking op but in the case
4983 	 * of the scheduler it's an obvious special-case), so we
4984 	 * do an early lockdep release here:
4985 	 */
4986 	rq_unpin_lock(rq, rf);
4987 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4988 #ifdef CONFIG_DEBUG_SPINLOCK
4989 	/* this is a valid case when another task releases the spinlock */
4990 	rq_lockp(rq)->owner = next;
4991 #endif
4992 }
4993 
4994 static inline void finish_lock_switch(struct rq *rq)
4995 {
4996 	/*
4997 	 * If we are tracking spinlock dependencies then we have to
4998 	 * fix up the runqueue lock - which gets 'carried over' from
4999 	 * prev into current:
5000 	 */
5001 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5002 	__balance_callbacks(rq);
5003 	raw_spin_rq_unlock_irq(rq);
5004 }
5005 
5006 /*
5007  * NOP if the arch has not defined these:
5008  */
5009 
5010 #ifndef prepare_arch_switch
5011 # define prepare_arch_switch(next)	do { } while (0)
5012 #endif
5013 
5014 #ifndef finish_arch_post_lock_switch
5015 # define finish_arch_post_lock_switch()	do { } while (0)
5016 #endif
5017 
5018 static inline void kmap_local_sched_out(void)
5019 {
5020 #ifdef CONFIG_KMAP_LOCAL
5021 	if (unlikely(current->kmap_ctrl.idx))
5022 		__kmap_local_sched_out();
5023 #endif
5024 }
5025 
5026 static inline void kmap_local_sched_in(void)
5027 {
5028 #ifdef CONFIG_KMAP_LOCAL
5029 	if (unlikely(current->kmap_ctrl.idx))
5030 		__kmap_local_sched_in();
5031 #endif
5032 }
5033 
5034 /**
5035  * prepare_task_switch - prepare to switch tasks
5036  * @rq: the runqueue preparing to switch
5037  * @prev: the current task that is being switched out
5038  * @next: the task we are going to switch to.
5039  *
5040  * This is called with the rq lock held and interrupts off. It must
5041  * be paired with a subsequent finish_task_switch after the context
5042  * switch.
5043  *
5044  * prepare_task_switch sets up locking and calls architecture specific
5045  * hooks.
5046  */
5047 static inline void
5048 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5049 		    struct task_struct *next)
5050 {
5051 	kcov_prepare_switch(prev);
5052 	sched_info_switch(rq, prev, next);
5053 	perf_event_task_sched_out(prev, next);
5054 	rseq_preempt(prev);
5055 	fire_sched_out_preempt_notifiers(prev, next);
5056 	kmap_local_sched_out();
5057 	prepare_task(next);
5058 	prepare_arch_switch(next);
5059 }
5060 
5061 /**
5062  * finish_task_switch - clean up after a task-switch
5063  * @prev: the thread we just switched away from.
5064  *
5065  * finish_task_switch must be called after the context switch, paired
5066  * with a prepare_task_switch call before the context switch.
5067  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5068  * and do any other architecture-specific cleanup actions.
5069  *
5070  * Note that we may have delayed dropping an mm in context_switch(). If
5071  * so, we finish that here outside of the runqueue lock. (Doing it
5072  * with the lock held can cause deadlocks; see schedule() for
5073  * details.)
5074  *
5075  * The context switch have flipped the stack from under us and restored the
5076  * local variables which were saved when this task called schedule() in the
5077  * past. prev == current is still correct but we need to recalculate this_rq
5078  * because prev may have moved to another CPU.
5079  */
5080 static struct rq *finish_task_switch(struct task_struct *prev)
5081 	__releases(rq->lock)
5082 {
5083 	struct rq *rq = this_rq();
5084 	struct mm_struct *mm = rq->prev_mm;
5085 	unsigned int prev_state;
5086 
5087 	/*
5088 	 * The previous task will have left us with a preempt_count of 2
5089 	 * because it left us after:
5090 	 *
5091 	 *	schedule()
5092 	 *	  preempt_disable();			// 1
5093 	 *	  __schedule()
5094 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5095 	 *
5096 	 * Also, see FORK_PREEMPT_COUNT.
5097 	 */
5098 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5099 		      "corrupted preempt_count: %s/%d/0x%x\n",
5100 		      current->comm, current->pid, preempt_count()))
5101 		preempt_count_set(FORK_PREEMPT_COUNT);
5102 
5103 	rq->prev_mm = NULL;
5104 
5105 	/*
5106 	 * A task struct has one reference for the use as "current".
5107 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5108 	 * schedule one last time. The schedule call will never return, and
5109 	 * the scheduled task must drop that reference.
5110 	 *
5111 	 * We must observe prev->state before clearing prev->on_cpu (in
5112 	 * finish_task), otherwise a concurrent wakeup can get prev
5113 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5114 	 * transition, resulting in a double drop.
5115 	 */
5116 	prev_state = READ_ONCE(prev->__state);
5117 	vtime_task_switch(prev);
5118 	perf_event_task_sched_in(prev, current);
5119 	finish_task(prev);
5120 	tick_nohz_task_switch();
5121 	finish_lock_switch(rq);
5122 	finish_arch_post_lock_switch();
5123 	kcov_finish_switch(current);
5124 	/*
5125 	 * kmap_local_sched_out() is invoked with rq::lock held and
5126 	 * interrupts disabled. There is no requirement for that, but the
5127 	 * sched out code does not have an interrupt enabled section.
5128 	 * Restoring the maps on sched in does not require interrupts being
5129 	 * disabled either.
5130 	 */
5131 	kmap_local_sched_in();
5132 
5133 	fire_sched_in_preempt_notifiers(current);
5134 	/*
5135 	 * When switching through a kernel thread, the loop in
5136 	 * membarrier_{private,global}_expedited() may have observed that
5137 	 * kernel thread and not issued an IPI. It is therefore possible to
5138 	 * schedule between user->kernel->user threads without passing though
5139 	 * switch_mm(). Membarrier requires a barrier after storing to
5140 	 * rq->curr, before returning to userspace, so provide them here:
5141 	 *
5142 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5143 	 *   provided by mmdrop(),
5144 	 * - a sync_core for SYNC_CORE.
5145 	 */
5146 	if (mm) {
5147 		membarrier_mm_sync_core_before_usermode(mm);
5148 		mmdrop_sched(mm);
5149 	}
5150 	if (unlikely(prev_state == TASK_DEAD)) {
5151 		if (prev->sched_class->task_dead)
5152 			prev->sched_class->task_dead(prev);
5153 
5154 		/* Task is done with its stack. */
5155 		put_task_stack(prev);
5156 
5157 		put_task_struct_rcu_user(prev);
5158 	}
5159 
5160 	return rq;
5161 }
5162 
5163 /**
5164  * schedule_tail - first thing a freshly forked thread must call.
5165  * @prev: the thread we just switched away from.
5166  */
5167 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5168 	__releases(rq->lock)
5169 {
5170 	/*
5171 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5172 	 * finish_task_switch() for details.
5173 	 *
5174 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5175 	 * and the preempt_enable() will end up enabling preemption (on
5176 	 * PREEMPT_COUNT kernels).
5177 	 */
5178 
5179 	finish_task_switch(prev);
5180 	preempt_enable();
5181 
5182 	if (current->set_child_tid)
5183 		put_user(task_pid_vnr(current), current->set_child_tid);
5184 
5185 	calculate_sigpending();
5186 }
5187 
5188 /*
5189  * context_switch - switch to the new MM and the new thread's register state.
5190  */
5191 static __always_inline struct rq *
5192 context_switch(struct rq *rq, struct task_struct *prev,
5193 	       struct task_struct *next, struct rq_flags *rf)
5194 {
5195 	prepare_task_switch(rq, prev, next);
5196 
5197 	/*
5198 	 * For paravirt, this is coupled with an exit in switch_to to
5199 	 * combine the page table reload and the switch backend into
5200 	 * one hypercall.
5201 	 */
5202 	arch_start_context_switch(prev);
5203 
5204 	/*
5205 	 * kernel -> kernel   lazy + transfer active
5206 	 *   user -> kernel   lazy + mmgrab() active
5207 	 *
5208 	 * kernel ->   user   switch + mmdrop() active
5209 	 *   user ->   user   switch
5210 	 */
5211 	if (!next->mm) {                                // to kernel
5212 		enter_lazy_tlb(prev->active_mm, next);
5213 
5214 		next->active_mm = prev->active_mm;
5215 		if (prev->mm)                           // from user
5216 			mmgrab(prev->active_mm);
5217 		else
5218 			prev->active_mm = NULL;
5219 	} else {                                        // to user
5220 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5221 		/*
5222 		 * sys_membarrier() requires an smp_mb() between setting
5223 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5224 		 *
5225 		 * The below provides this either through switch_mm(), or in
5226 		 * case 'prev->active_mm == next->mm' through
5227 		 * finish_task_switch()'s mmdrop().
5228 		 */
5229 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5230 		lru_gen_use_mm(next->mm);
5231 
5232 		if (!prev->mm) {                        // from kernel
5233 			/* will mmdrop() in finish_task_switch(). */
5234 			rq->prev_mm = prev->active_mm;
5235 			prev->active_mm = NULL;
5236 		}
5237 	}
5238 
5239 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5240 
5241 	prepare_lock_switch(rq, next, rf);
5242 
5243 	/* Here we just switch the register state and the stack. */
5244 	switch_to(prev, next, prev);
5245 	barrier();
5246 
5247 	return finish_task_switch(prev);
5248 }
5249 
5250 /*
5251  * nr_running and nr_context_switches:
5252  *
5253  * externally visible scheduler statistics: current number of runnable
5254  * threads, total number of context switches performed since bootup.
5255  */
5256 unsigned int nr_running(void)
5257 {
5258 	unsigned int i, sum = 0;
5259 
5260 	for_each_online_cpu(i)
5261 		sum += cpu_rq(i)->nr_running;
5262 
5263 	return sum;
5264 }
5265 
5266 /*
5267  * Check if only the current task is running on the CPU.
5268  *
5269  * Caution: this function does not check that the caller has disabled
5270  * preemption, thus the result might have a time-of-check-to-time-of-use
5271  * race.  The caller is responsible to use it correctly, for example:
5272  *
5273  * - from a non-preemptible section (of course)
5274  *
5275  * - from a thread that is bound to a single CPU
5276  *
5277  * - in a loop with very short iterations (e.g. a polling loop)
5278  */
5279 bool single_task_running(void)
5280 {
5281 	return raw_rq()->nr_running == 1;
5282 }
5283 EXPORT_SYMBOL(single_task_running);
5284 
5285 unsigned long long nr_context_switches(void)
5286 {
5287 	int i;
5288 	unsigned long long sum = 0;
5289 
5290 	for_each_possible_cpu(i)
5291 		sum += cpu_rq(i)->nr_switches;
5292 
5293 	return sum;
5294 }
5295 
5296 /*
5297  * Consumers of these two interfaces, like for example the cpuidle menu
5298  * governor, are using nonsensical data. Preferring shallow idle state selection
5299  * for a CPU that has IO-wait which might not even end up running the task when
5300  * it does become runnable.
5301  */
5302 
5303 unsigned int nr_iowait_cpu(int cpu)
5304 {
5305 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5306 }
5307 
5308 /*
5309  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5310  *
5311  * The idea behind IO-wait account is to account the idle time that we could
5312  * have spend running if it were not for IO. That is, if we were to improve the
5313  * storage performance, we'd have a proportional reduction in IO-wait time.
5314  *
5315  * This all works nicely on UP, where, when a task blocks on IO, we account
5316  * idle time as IO-wait, because if the storage were faster, it could've been
5317  * running and we'd not be idle.
5318  *
5319  * This has been extended to SMP, by doing the same for each CPU. This however
5320  * is broken.
5321  *
5322  * Imagine for instance the case where two tasks block on one CPU, only the one
5323  * CPU will have IO-wait accounted, while the other has regular idle. Even
5324  * though, if the storage were faster, both could've ran at the same time,
5325  * utilising both CPUs.
5326  *
5327  * This means, that when looking globally, the current IO-wait accounting on
5328  * SMP is a lower bound, by reason of under accounting.
5329  *
5330  * Worse, since the numbers are provided per CPU, they are sometimes
5331  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5332  * associated with any one particular CPU, it can wake to another CPU than it
5333  * blocked on. This means the per CPU IO-wait number is meaningless.
5334  *
5335  * Task CPU affinities can make all that even more 'interesting'.
5336  */
5337 
5338 unsigned int nr_iowait(void)
5339 {
5340 	unsigned int i, sum = 0;
5341 
5342 	for_each_possible_cpu(i)
5343 		sum += nr_iowait_cpu(i);
5344 
5345 	return sum;
5346 }
5347 
5348 #ifdef CONFIG_SMP
5349 
5350 /*
5351  * sched_exec - execve() is a valuable balancing opportunity, because at
5352  * this point the task has the smallest effective memory and cache footprint.
5353  */
5354 void sched_exec(void)
5355 {
5356 	struct task_struct *p = current;
5357 	unsigned long flags;
5358 	int dest_cpu;
5359 
5360 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5361 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5362 	if (dest_cpu == smp_processor_id())
5363 		goto unlock;
5364 
5365 	if (likely(cpu_active(dest_cpu))) {
5366 		struct migration_arg arg = { p, dest_cpu };
5367 
5368 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5369 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5370 		return;
5371 	}
5372 unlock:
5373 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5374 }
5375 
5376 #endif
5377 
5378 DEFINE_PER_CPU(struct kernel_stat, kstat);
5379 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5380 
5381 EXPORT_PER_CPU_SYMBOL(kstat);
5382 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5383 
5384 /*
5385  * The function fair_sched_class.update_curr accesses the struct curr
5386  * and its field curr->exec_start; when called from task_sched_runtime(),
5387  * we observe a high rate of cache misses in practice.
5388  * Prefetching this data results in improved performance.
5389  */
5390 static inline void prefetch_curr_exec_start(struct task_struct *p)
5391 {
5392 #ifdef CONFIG_FAIR_GROUP_SCHED
5393 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5394 #else
5395 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5396 #endif
5397 	prefetch(curr);
5398 	prefetch(&curr->exec_start);
5399 }
5400 
5401 /*
5402  * Return accounted runtime for the task.
5403  * In case the task is currently running, return the runtime plus current's
5404  * pending runtime that have not been accounted yet.
5405  */
5406 unsigned long long task_sched_runtime(struct task_struct *p)
5407 {
5408 	struct rq_flags rf;
5409 	struct rq *rq;
5410 	u64 ns;
5411 
5412 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5413 	/*
5414 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5415 	 * So we have a optimization chance when the task's delta_exec is 0.
5416 	 * Reading ->on_cpu is racy, but this is ok.
5417 	 *
5418 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5419 	 * If we race with it entering CPU, unaccounted time is 0. This is
5420 	 * indistinguishable from the read occurring a few cycles earlier.
5421 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5422 	 * been accounted, so we're correct here as well.
5423 	 */
5424 	if (!p->on_cpu || !task_on_rq_queued(p))
5425 		return p->se.sum_exec_runtime;
5426 #endif
5427 
5428 	rq = task_rq_lock(p, &rf);
5429 	/*
5430 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5431 	 * project cycles that may never be accounted to this
5432 	 * thread, breaking clock_gettime().
5433 	 */
5434 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5435 		prefetch_curr_exec_start(p);
5436 		update_rq_clock(rq);
5437 		p->sched_class->update_curr(rq);
5438 	}
5439 	ns = p->se.sum_exec_runtime;
5440 	task_rq_unlock(rq, p, &rf);
5441 
5442 	return ns;
5443 }
5444 
5445 #ifdef CONFIG_SCHED_DEBUG
5446 static u64 cpu_resched_latency(struct rq *rq)
5447 {
5448 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5449 	u64 resched_latency, now = rq_clock(rq);
5450 	static bool warned_once;
5451 
5452 	if (sysctl_resched_latency_warn_once && warned_once)
5453 		return 0;
5454 
5455 	if (!need_resched() || !latency_warn_ms)
5456 		return 0;
5457 
5458 	if (system_state == SYSTEM_BOOTING)
5459 		return 0;
5460 
5461 	if (!rq->last_seen_need_resched_ns) {
5462 		rq->last_seen_need_resched_ns = now;
5463 		rq->ticks_without_resched = 0;
5464 		return 0;
5465 	}
5466 
5467 	rq->ticks_without_resched++;
5468 	resched_latency = now - rq->last_seen_need_resched_ns;
5469 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5470 		return 0;
5471 
5472 	warned_once = true;
5473 
5474 	return resched_latency;
5475 }
5476 
5477 static int __init setup_resched_latency_warn_ms(char *str)
5478 {
5479 	long val;
5480 
5481 	if ((kstrtol(str, 0, &val))) {
5482 		pr_warn("Unable to set resched_latency_warn_ms\n");
5483 		return 1;
5484 	}
5485 
5486 	sysctl_resched_latency_warn_ms = val;
5487 	return 1;
5488 }
5489 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5490 #else
5491 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5492 #endif /* CONFIG_SCHED_DEBUG */
5493 
5494 /*
5495  * This function gets called by the timer code, with HZ frequency.
5496  * We call it with interrupts disabled.
5497  */
5498 void scheduler_tick(void)
5499 {
5500 	int cpu = smp_processor_id();
5501 	struct rq *rq = cpu_rq(cpu);
5502 	struct task_struct *curr = rq->curr;
5503 	struct rq_flags rf;
5504 	unsigned long thermal_pressure;
5505 	u64 resched_latency;
5506 
5507 	arch_scale_freq_tick();
5508 	sched_clock_tick();
5509 
5510 	rq_lock(rq, &rf);
5511 
5512 	update_rq_clock(rq);
5513 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5514 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5515 	curr->sched_class->task_tick(rq, curr, 0);
5516 	if (sched_feat(LATENCY_WARN))
5517 		resched_latency = cpu_resched_latency(rq);
5518 	calc_global_load_tick(rq);
5519 	sched_core_tick(rq);
5520 
5521 	rq_unlock(rq, &rf);
5522 
5523 	if (sched_feat(LATENCY_WARN) && resched_latency)
5524 		resched_latency_warn(cpu, resched_latency);
5525 
5526 	perf_event_task_tick();
5527 
5528 #ifdef CONFIG_SMP
5529 	rq->idle_balance = idle_cpu(cpu);
5530 	trigger_load_balance(rq);
5531 #endif
5532 }
5533 
5534 #ifdef CONFIG_NO_HZ_FULL
5535 
5536 struct tick_work {
5537 	int			cpu;
5538 	atomic_t		state;
5539 	struct delayed_work	work;
5540 };
5541 /* Values for ->state, see diagram below. */
5542 #define TICK_SCHED_REMOTE_OFFLINE	0
5543 #define TICK_SCHED_REMOTE_OFFLINING	1
5544 #define TICK_SCHED_REMOTE_RUNNING	2
5545 
5546 /*
5547  * State diagram for ->state:
5548  *
5549  *
5550  *          TICK_SCHED_REMOTE_OFFLINE
5551  *                    |   ^
5552  *                    |   |
5553  *                    |   | sched_tick_remote()
5554  *                    |   |
5555  *                    |   |
5556  *                    +--TICK_SCHED_REMOTE_OFFLINING
5557  *                    |   ^
5558  *                    |   |
5559  * sched_tick_start() |   | sched_tick_stop()
5560  *                    |   |
5561  *                    V   |
5562  *          TICK_SCHED_REMOTE_RUNNING
5563  *
5564  *
5565  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5566  * and sched_tick_start() are happy to leave the state in RUNNING.
5567  */
5568 
5569 static struct tick_work __percpu *tick_work_cpu;
5570 
5571 static void sched_tick_remote(struct work_struct *work)
5572 {
5573 	struct delayed_work *dwork = to_delayed_work(work);
5574 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5575 	int cpu = twork->cpu;
5576 	struct rq *rq = cpu_rq(cpu);
5577 	struct task_struct *curr;
5578 	struct rq_flags rf;
5579 	u64 delta;
5580 	int os;
5581 
5582 	/*
5583 	 * Handle the tick only if it appears the remote CPU is running in full
5584 	 * dynticks mode. The check is racy by nature, but missing a tick or
5585 	 * having one too much is no big deal because the scheduler tick updates
5586 	 * statistics and checks timeslices in a time-independent way, regardless
5587 	 * of when exactly it is running.
5588 	 */
5589 	if (!tick_nohz_tick_stopped_cpu(cpu))
5590 		goto out_requeue;
5591 
5592 	rq_lock_irq(rq, &rf);
5593 	curr = rq->curr;
5594 	if (cpu_is_offline(cpu))
5595 		goto out_unlock;
5596 
5597 	update_rq_clock(rq);
5598 
5599 	if (!is_idle_task(curr)) {
5600 		/*
5601 		 * Make sure the next tick runs within a reasonable
5602 		 * amount of time.
5603 		 */
5604 		delta = rq_clock_task(rq) - curr->se.exec_start;
5605 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5606 	}
5607 	curr->sched_class->task_tick(rq, curr, 0);
5608 
5609 	calc_load_nohz_remote(rq);
5610 out_unlock:
5611 	rq_unlock_irq(rq, &rf);
5612 out_requeue:
5613 
5614 	/*
5615 	 * Run the remote tick once per second (1Hz). This arbitrary
5616 	 * frequency is large enough to avoid overload but short enough
5617 	 * to keep scheduler internal stats reasonably up to date.  But
5618 	 * first update state to reflect hotplug activity if required.
5619 	 */
5620 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5621 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5622 	if (os == TICK_SCHED_REMOTE_RUNNING)
5623 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5624 }
5625 
5626 static void sched_tick_start(int cpu)
5627 {
5628 	int os;
5629 	struct tick_work *twork;
5630 
5631 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5632 		return;
5633 
5634 	WARN_ON_ONCE(!tick_work_cpu);
5635 
5636 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5637 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5638 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5639 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5640 		twork->cpu = cpu;
5641 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5642 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5643 	}
5644 }
5645 
5646 #ifdef CONFIG_HOTPLUG_CPU
5647 static void sched_tick_stop(int cpu)
5648 {
5649 	struct tick_work *twork;
5650 	int os;
5651 
5652 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5653 		return;
5654 
5655 	WARN_ON_ONCE(!tick_work_cpu);
5656 
5657 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5658 	/* There cannot be competing actions, but don't rely on stop-machine. */
5659 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5660 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5661 	/* Don't cancel, as this would mess up the state machine. */
5662 }
5663 #endif /* CONFIG_HOTPLUG_CPU */
5664 
5665 int __init sched_tick_offload_init(void)
5666 {
5667 	tick_work_cpu = alloc_percpu(struct tick_work);
5668 	BUG_ON(!tick_work_cpu);
5669 	return 0;
5670 }
5671 
5672 #else /* !CONFIG_NO_HZ_FULL */
5673 static inline void sched_tick_start(int cpu) { }
5674 static inline void sched_tick_stop(int cpu) { }
5675 #endif
5676 
5677 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5678 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5679 /*
5680  * If the value passed in is equal to the current preempt count
5681  * then we just disabled preemption. Start timing the latency.
5682  */
5683 static inline void preempt_latency_start(int val)
5684 {
5685 	if (preempt_count() == val) {
5686 		unsigned long ip = get_lock_parent_ip();
5687 #ifdef CONFIG_DEBUG_PREEMPT
5688 		current->preempt_disable_ip = ip;
5689 #endif
5690 		trace_preempt_off(CALLER_ADDR0, ip);
5691 	}
5692 }
5693 
5694 void preempt_count_add(int val)
5695 {
5696 #ifdef CONFIG_DEBUG_PREEMPT
5697 	/*
5698 	 * Underflow?
5699 	 */
5700 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5701 		return;
5702 #endif
5703 	__preempt_count_add(val);
5704 #ifdef CONFIG_DEBUG_PREEMPT
5705 	/*
5706 	 * Spinlock count overflowing soon?
5707 	 */
5708 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5709 				PREEMPT_MASK - 10);
5710 #endif
5711 	preempt_latency_start(val);
5712 }
5713 EXPORT_SYMBOL(preempt_count_add);
5714 NOKPROBE_SYMBOL(preempt_count_add);
5715 
5716 /*
5717  * If the value passed in equals to the current preempt count
5718  * then we just enabled preemption. Stop timing the latency.
5719  */
5720 static inline void preempt_latency_stop(int val)
5721 {
5722 	if (preempt_count() == val)
5723 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5724 }
5725 
5726 void preempt_count_sub(int val)
5727 {
5728 #ifdef CONFIG_DEBUG_PREEMPT
5729 	/*
5730 	 * Underflow?
5731 	 */
5732 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5733 		return;
5734 	/*
5735 	 * Is the spinlock portion underflowing?
5736 	 */
5737 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5738 			!(preempt_count() & PREEMPT_MASK)))
5739 		return;
5740 #endif
5741 
5742 	preempt_latency_stop(val);
5743 	__preempt_count_sub(val);
5744 }
5745 EXPORT_SYMBOL(preempt_count_sub);
5746 NOKPROBE_SYMBOL(preempt_count_sub);
5747 
5748 #else
5749 static inline void preempt_latency_start(int val) { }
5750 static inline void preempt_latency_stop(int val) { }
5751 #endif
5752 
5753 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5754 {
5755 #ifdef CONFIG_DEBUG_PREEMPT
5756 	return p->preempt_disable_ip;
5757 #else
5758 	return 0;
5759 #endif
5760 }
5761 
5762 /*
5763  * Print scheduling while atomic bug:
5764  */
5765 static noinline void __schedule_bug(struct task_struct *prev)
5766 {
5767 	/* Save this before calling printk(), since that will clobber it */
5768 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5769 
5770 	if (oops_in_progress)
5771 		return;
5772 
5773 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5774 		prev->comm, prev->pid, preempt_count());
5775 
5776 	debug_show_held_locks(prev);
5777 	print_modules();
5778 	if (irqs_disabled())
5779 		print_irqtrace_events(prev);
5780 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5781 	    && in_atomic_preempt_off()) {
5782 		pr_err("Preemption disabled at:");
5783 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5784 	}
5785 	check_panic_on_warn("scheduling while atomic");
5786 
5787 	dump_stack();
5788 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5789 }
5790 
5791 /*
5792  * Various schedule()-time debugging checks and statistics:
5793  */
5794 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5795 {
5796 #ifdef CONFIG_SCHED_STACK_END_CHECK
5797 	if (task_stack_end_corrupted(prev))
5798 		panic("corrupted stack end detected inside scheduler\n");
5799 
5800 	if (task_scs_end_corrupted(prev))
5801 		panic("corrupted shadow stack detected inside scheduler\n");
5802 #endif
5803 
5804 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5805 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5806 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5807 			prev->comm, prev->pid, prev->non_block_count);
5808 		dump_stack();
5809 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5810 	}
5811 #endif
5812 
5813 	if (unlikely(in_atomic_preempt_off())) {
5814 		__schedule_bug(prev);
5815 		preempt_count_set(PREEMPT_DISABLED);
5816 	}
5817 	rcu_sleep_check();
5818 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5819 
5820 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5821 
5822 	schedstat_inc(this_rq()->sched_count);
5823 }
5824 
5825 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5826 				  struct rq_flags *rf)
5827 {
5828 #ifdef CONFIG_SMP
5829 	const struct sched_class *class;
5830 	/*
5831 	 * We must do the balancing pass before put_prev_task(), such
5832 	 * that when we release the rq->lock the task is in the same
5833 	 * state as before we took rq->lock.
5834 	 *
5835 	 * We can terminate the balance pass as soon as we know there is
5836 	 * a runnable task of @class priority or higher.
5837 	 */
5838 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5839 		if (class->balance(rq, prev, rf))
5840 			break;
5841 	}
5842 #endif
5843 
5844 	put_prev_task(rq, prev);
5845 }
5846 
5847 /*
5848  * Pick up the highest-prio task:
5849  */
5850 static inline struct task_struct *
5851 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5852 {
5853 	const struct sched_class *class;
5854 	struct task_struct *p;
5855 
5856 	/*
5857 	 * Optimization: we know that if all tasks are in the fair class we can
5858 	 * call that function directly, but only if the @prev task wasn't of a
5859 	 * higher scheduling class, because otherwise those lose the
5860 	 * opportunity to pull in more work from other CPUs.
5861 	 */
5862 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5863 		   rq->nr_running == rq->cfs.h_nr_running)) {
5864 
5865 		p = pick_next_task_fair(rq, prev, rf);
5866 		if (unlikely(p == RETRY_TASK))
5867 			goto restart;
5868 
5869 		/* Assume the next prioritized class is idle_sched_class */
5870 		if (!p) {
5871 			put_prev_task(rq, prev);
5872 			p = pick_next_task_idle(rq);
5873 		}
5874 
5875 		return p;
5876 	}
5877 
5878 restart:
5879 	put_prev_task_balance(rq, prev, rf);
5880 
5881 	for_each_class(class) {
5882 		p = class->pick_next_task(rq);
5883 		if (p)
5884 			return p;
5885 	}
5886 
5887 	BUG(); /* The idle class should always have a runnable task. */
5888 }
5889 
5890 #ifdef CONFIG_SCHED_CORE
5891 static inline bool is_task_rq_idle(struct task_struct *t)
5892 {
5893 	return (task_rq(t)->idle == t);
5894 }
5895 
5896 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5897 {
5898 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5899 }
5900 
5901 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5902 {
5903 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5904 		return true;
5905 
5906 	return a->core_cookie == b->core_cookie;
5907 }
5908 
5909 static inline struct task_struct *pick_task(struct rq *rq)
5910 {
5911 	const struct sched_class *class;
5912 	struct task_struct *p;
5913 
5914 	for_each_class(class) {
5915 		p = class->pick_task(rq);
5916 		if (p)
5917 			return p;
5918 	}
5919 
5920 	BUG(); /* The idle class should always have a runnable task. */
5921 }
5922 
5923 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5924 
5925 static void queue_core_balance(struct rq *rq);
5926 
5927 static struct task_struct *
5928 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5929 {
5930 	struct task_struct *next, *p, *max = NULL;
5931 	const struct cpumask *smt_mask;
5932 	bool fi_before = false;
5933 	bool core_clock_updated = (rq == rq->core);
5934 	unsigned long cookie;
5935 	int i, cpu, occ = 0;
5936 	struct rq *rq_i;
5937 	bool need_sync;
5938 
5939 	if (!sched_core_enabled(rq))
5940 		return __pick_next_task(rq, prev, rf);
5941 
5942 	cpu = cpu_of(rq);
5943 
5944 	/* Stopper task is switching into idle, no need core-wide selection. */
5945 	if (cpu_is_offline(cpu)) {
5946 		/*
5947 		 * Reset core_pick so that we don't enter the fastpath when
5948 		 * coming online. core_pick would already be migrated to
5949 		 * another cpu during offline.
5950 		 */
5951 		rq->core_pick = NULL;
5952 		return __pick_next_task(rq, prev, rf);
5953 	}
5954 
5955 	/*
5956 	 * If there were no {en,de}queues since we picked (IOW, the task
5957 	 * pointers are all still valid), and we haven't scheduled the last
5958 	 * pick yet, do so now.
5959 	 *
5960 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5961 	 * it was either offline or went offline during a sibling's core-wide
5962 	 * selection. In this case, do a core-wide selection.
5963 	 */
5964 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5965 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5966 	    rq->core_pick) {
5967 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5968 
5969 		next = rq->core_pick;
5970 		if (next != prev) {
5971 			put_prev_task(rq, prev);
5972 			set_next_task(rq, next);
5973 		}
5974 
5975 		rq->core_pick = NULL;
5976 		goto out;
5977 	}
5978 
5979 	put_prev_task_balance(rq, prev, rf);
5980 
5981 	smt_mask = cpu_smt_mask(cpu);
5982 	need_sync = !!rq->core->core_cookie;
5983 
5984 	/* reset state */
5985 	rq->core->core_cookie = 0UL;
5986 	if (rq->core->core_forceidle_count) {
5987 		if (!core_clock_updated) {
5988 			update_rq_clock(rq->core);
5989 			core_clock_updated = true;
5990 		}
5991 		sched_core_account_forceidle(rq);
5992 		/* reset after accounting force idle */
5993 		rq->core->core_forceidle_start = 0;
5994 		rq->core->core_forceidle_count = 0;
5995 		rq->core->core_forceidle_occupation = 0;
5996 		need_sync = true;
5997 		fi_before = true;
5998 	}
5999 
6000 	/*
6001 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6002 	 *
6003 	 * @task_seq guards the task state ({en,de}queues)
6004 	 * @pick_seq is the @task_seq we did a selection on
6005 	 * @sched_seq is the @pick_seq we scheduled
6006 	 *
6007 	 * However, preemptions can cause multiple picks on the same task set.
6008 	 * 'Fix' this by also increasing @task_seq for every pick.
6009 	 */
6010 	rq->core->core_task_seq++;
6011 
6012 	/*
6013 	 * Optimize for common case where this CPU has no cookies
6014 	 * and there are no cookied tasks running on siblings.
6015 	 */
6016 	if (!need_sync) {
6017 		next = pick_task(rq);
6018 		if (!next->core_cookie) {
6019 			rq->core_pick = NULL;
6020 			/*
6021 			 * For robustness, update the min_vruntime_fi for
6022 			 * unconstrained picks as well.
6023 			 */
6024 			WARN_ON_ONCE(fi_before);
6025 			task_vruntime_update(rq, next, false);
6026 			goto out_set_next;
6027 		}
6028 	}
6029 
6030 	/*
6031 	 * For each thread: do the regular task pick and find the max prio task
6032 	 * amongst them.
6033 	 *
6034 	 * Tie-break prio towards the current CPU
6035 	 */
6036 	for_each_cpu_wrap(i, smt_mask, cpu) {
6037 		rq_i = cpu_rq(i);
6038 
6039 		/*
6040 		 * Current cpu always has its clock updated on entrance to
6041 		 * pick_next_task(). If the current cpu is not the core,
6042 		 * the core may also have been updated above.
6043 		 */
6044 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6045 			update_rq_clock(rq_i);
6046 
6047 		p = rq_i->core_pick = pick_task(rq_i);
6048 		if (!max || prio_less(max, p, fi_before))
6049 			max = p;
6050 	}
6051 
6052 	cookie = rq->core->core_cookie = max->core_cookie;
6053 
6054 	/*
6055 	 * For each thread: try and find a runnable task that matches @max or
6056 	 * force idle.
6057 	 */
6058 	for_each_cpu(i, smt_mask) {
6059 		rq_i = cpu_rq(i);
6060 		p = rq_i->core_pick;
6061 
6062 		if (!cookie_equals(p, cookie)) {
6063 			p = NULL;
6064 			if (cookie)
6065 				p = sched_core_find(rq_i, cookie);
6066 			if (!p)
6067 				p = idle_sched_class.pick_task(rq_i);
6068 		}
6069 
6070 		rq_i->core_pick = p;
6071 
6072 		if (p == rq_i->idle) {
6073 			if (rq_i->nr_running) {
6074 				rq->core->core_forceidle_count++;
6075 				if (!fi_before)
6076 					rq->core->core_forceidle_seq++;
6077 			}
6078 		} else {
6079 			occ++;
6080 		}
6081 	}
6082 
6083 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6084 		rq->core->core_forceidle_start = rq_clock(rq->core);
6085 		rq->core->core_forceidle_occupation = occ;
6086 	}
6087 
6088 	rq->core->core_pick_seq = rq->core->core_task_seq;
6089 	next = rq->core_pick;
6090 	rq->core_sched_seq = rq->core->core_pick_seq;
6091 
6092 	/* Something should have been selected for current CPU */
6093 	WARN_ON_ONCE(!next);
6094 
6095 	/*
6096 	 * Reschedule siblings
6097 	 *
6098 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6099 	 * sending an IPI (below) ensures the sibling will no longer be running
6100 	 * their task. This ensures there is no inter-sibling overlap between
6101 	 * non-matching user state.
6102 	 */
6103 	for_each_cpu(i, smt_mask) {
6104 		rq_i = cpu_rq(i);
6105 
6106 		/*
6107 		 * An online sibling might have gone offline before a task
6108 		 * could be picked for it, or it might be offline but later
6109 		 * happen to come online, but its too late and nothing was
6110 		 * picked for it.  That's Ok - it will pick tasks for itself,
6111 		 * so ignore it.
6112 		 */
6113 		if (!rq_i->core_pick)
6114 			continue;
6115 
6116 		/*
6117 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6118 		 * fi_before     fi      update?
6119 		 *  0            0       1
6120 		 *  0            1       1
6121 		 *  1            0       1
6122 		 *  1            1       0
6123 		 */
6124 		if (!(fi_before && rq->core->core_forceidle_count))
6125 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6126 
6127 		rq_i->core_pick->core_occupation = occ;
6128 
6129 		if (i == cpu) {
6130 			rq_i->core_pick = NULL;
6131 			continue;
6132 		}
6133 
6134 		/* Did we break L1TF mitigation requirements? */
6135 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6136 
6137 		if (rq_i->curr == rq_i->core_pick) {
6138 			rq_i->core_pick = NULL;
6139 			continue;
6140 		}
6141 
6142 		resched_curr(rq_i);
6143 	}
6144 
6145 out_set_next:
6146 	set_next_task(rq, next);
6147 out:
6148 	if (rq->core->core_forceidle_count && next == rq->idle)
6149 		queue_core_balance(rq);
6150 
6151 	return next;
6152 }
6153 
6154 static bool try_steal_cookie(int this, int that)
6155 {
6156 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6157 	struct task_struct *p;
6158 	unsigned long cookie;
6159 	bool success = false;
6160 
6161 	local_irq_disable();
6162 	double_rq_lock(dst, src);
6163 
6164 	cookie = dst->core->core_cookie;
6165 	if (!cookie)
6166 		goto unlock;
6167 
6168 	if (dst->curr != dst->idle)
6169 		goto unlock;
6170 
6171 	p = sched_core_find(src, cookie);
6172 	if (p == src->idle)
6173 		goto unlock;
6174 
6175 	do {
6176 		if (p == src->core_pick || p == src->curr)
6177 			goto next;
6178 
6179 		if (!is_cpu_allowed(p, this))
6180 			goto next;
6181 
6182 		if (p->core_occupation > dst->idle->core_occupation)
6183 			goto next;
6184 
6185 		deactivate_task(src, p, 0);
6186 		set_task_cpu(p, this);
6187 		activate_task(dst, p, 0);
6188 
6189 		resched_curr(dst);
6190 
6191 		success = true;
6192 		break;
6193 
6194 next:
6195 		p = sched_core_next(p, cookie);
6196 	} while (p);
6197 
6198 unlock:
6199 	double_rq_unlock(dst, src);
6200 	local_irq_enable();
6201 
6202 	return success;
6203 }
6204 
6205 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6206 {
6207 	int i;
6208 
6209 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6210 		if (i == cpu)
6211 			continue;
6212 
6213 		if (need_resched())
6214 			break;
6215 
6216 		if (try_steal_cookie(cpu, i))
6217 			return true;
6218 	}
6219 
6220 	return false;
6221 }
6222 
6223 static void sched_core_balance(struct rq *rq)
6224 {
6225 	struct sched_domain *sd;
6226 	int cpu = cpu_of(rq);
6227 
6228 	preempt_disable();
6229 	rcu_read_lock();
6230 	raw_spin_rq_unlock_irq(rq);
6231 	for_each_domain(cpu, sd) {
6232 		if (need_resched())
6233 			break;
6234 
6235 		if (steal_cookie_task(cpu, sd))
6236 			break;
6237 	}
6238 	raw_spin_rq_lock_irq(rq);
6239 	rcu_read_unlock();
6240 	preempt_enable();
6241 }
6242 
6243 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6244 
6245 static void queue_core_balance(struct rq *rq)
6246 {
6247 	if (!sched_core_enabled(rq))
6248 		return;
6249 
6250 	if (!rq->core->core_cookie)
6251 		return;
6252 
6253 	if (!rq->nr_running) /* not forced idle */
6254 		return;
6255 
6256 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6257 }
6258 
6259 static void sched_core_cpu_starting(unsigned int cpu)
6260 {
6261 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6262 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6263 	unsigned long flags;
6264 	int t;
6265 
6266 	sched_core_lock(cpu, &flags);
6267 
6268 	WARN_ON_ONCE(rq->core != rq);
6269 
6270 	/* if we're the first, we'll be our own leader */
6271 	if (cpumask_weight(smt_mask) == 1)
6272 		goto unlock;
6273 
6274 	/* find the leader */
6275 	for_each_cpu(t, smt_mask) {
6276 		if (t == cpu)
6277 			continue;
6278 		rq = cpu_rq(t);
6279 		if (rq->core == rq) {
6280 			core_rq = rq;
6281 			break;
6282 		}
6283 	}
6284 
6285 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6286 		goto unlock;
6287 
6288 	/* install and validate core_rq */
6289 	for_each_cpu(t, smt_mask) {
6290 		rq = cpu_rq(t);
6291 
6292 		if (t == cpu)
6293 			rq->core = core_rq;
6294 
6295 		WARN_ON_ONCE(rq->core != core_rq);
6296 	}
6297 
6298 unlock:
6299 	sched_core_unlock(cpu, &flags);
6300 }
6301 
6302 static void sched_core_cpu_deactivate(unsigned int cpu)
6303 {
6304 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6305 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6306 	unsigned long flags;
6307 	int t;
6308 
6309 	sched_core_lock(cpu, &flags);
6310 
6311 	/* if we're the last man standing, nothing to do */
6312 	if (cpumask_weight(smt_mask) == 1) {
6313 		WARN_ON_ONCE(rq->core != rq);
6314 		goto unlock;
6315 	}
6316 
6317 	/* if we're not the leader, nothing to do */
6318 	if (rq->core != rq)
6319 		goto unlock;
6320 
6321 	/* find a new leader */
6322 	for_each_cpu(t, smt_mask) {
6323 		if (t == cpu)
6324 			continue;
6325 		core_rq = cpu_rq(t);
6326 		break;
6327 	}
6328 
6329 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6330 		goto unlock;
6331 
6332 	/* copy the shared state to the new leader */
6333 	core_rq->core_task_seq             = rq->core_task_seq;
6334 	core_rq->core_pick_seq             = rq->core_pick_seq;
6335 	core_rq->core_cookie               = rq->core_cookie;
6336 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6337 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6338 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6339 
6340 	/*
6341 	 * Accounting edge for forced idle is handled in pick_next_task().
6342 	 * Don't need another one here, since the hotplug thread shouldn't
6343 	 * have a cookie.
6344 	 */
6345 	core_rq->core_forceidle_start = 0;
6346 
6347 	/* install new leader */
6348 	for_each_cpu(t, smt_mask) {
6349 		rq = cpu_rq(t);
6350 		rq->core = core_rq;
6351 	}
6352 
6353 unlock:
6354 	sched_core_unlock(cpu, &flags);
6355 }
6356 
6357 static inline void sched_core_cpu_dying(unsigned int cpu)
6358 {
6359 	struct rq *rq = cpu_rq(cpu);
6360 
6361 	if (rq->core != rq)
6362 		rq->core = rq;
6363 }
6364 
6365 #else /* !CONFIG_SCHED_CORE */
6366 
6367 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6368 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6369 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6370 
6371 static struct task_struct *
6372 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6373 {
6374 	return __pick_next_task(rq, prev, rf);
6375 }
6376 
6377 #endif /* CONFIG_SCHED_CORE */
6378 
6379 /*
6380  * Constants for the sched_mode argument of __schedule().
6381  *
6382  * The mode argument allows RT enabled kernels to differentiate a
6383  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6384  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6385  * optimize the AND operation out and just check for zero.
6386  */
6387 #define SM_NONE			0x0
6388 #define SM_PREEMPT		0x1
6389 #define SM_RTLOCK_WAIT		0x2
6390 
6391 #ifndef CONFIG_PREEMPT_RT
6392 # define SM_MASK_PREEMPT	(~0U)
6393 #else
6394 # define SM_MASK_PREEMPT	SM_PREEMPT
6395 #endif
6396 
6397 /*
6398  * __schedule() is the main scheduler function.
6399  *
6400  * The main means of driving the scheduler and thus entering this function are:
6401  *
6402  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6403  *
6404  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6405  *      paths. For example, see arch/x86/entry_64.S.
6406  *
6407  *      To drive preemption between tasks, the scheduler sets the flag in timer
6408  *      interrupt handler scheduler_tick().
6409  *
6410  *   3. Wakeups don't really cause entry into schedule(). They add a
6411  *      task to the run-queue and that's it.
6412  *
6413  *      Now, if the new task added to the run-queue preempts the current
6414  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6415  *      called on the nearest possible occasion:
6416  *
6417  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6418  *
6419  *         - in syscall or exception context, at the next outmost
6420  *           preempt_enable(). (this might be as soon as the wake_up()'s
6421  *           spin_unlock()!)
6422  *
6423  *         - in IRQ context, return from interrupt-handler to
6424  *           preemptible context
6425  *
6426  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6427  *         then at the next:
6428  *
6429  *          - cond_resched() call
6430  *          - explicit schedule() call
6431  *          - return from syscall or exception to user-space
6432  *          - return from interrupt-handler to user-space
6433  *
6434  * WARNING: must be called with preemption disabled!
6435  */
6436 static void __sched notrace __schedule(unsigned int sched_mode)
6437 {
6438 	struct task_struct *prev, *next;
6439 	unsigned long *switch_count;
6440 	unsigned long prev_state;
6441 	struct rq_flags rf;
6442 	struct rq *rq;
6443 	int cpu;
6444 
6445 	cpu = smp_processor_id();
6446 	rq = cpu_rq(cpu);
6447 	prev = rq->curr;
6448 
6449 	schedule_debug(prev, !!sched_mode);
6450 
6451 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6452 		hrtick_clear(rq);
6453 
6454 	local_irq_disable();
6455 	rcu_note_context_switch(!!sched_mode);
6456 
6457 	/*
6458 	 * Make sure that signal_pending_state()->signal_pending() below
6459 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6460 	 * done by the caller to avoid the race with signal_wake_up():
6461 	 *
6462 	 * __set_current_state(@state)		signal_wake_up()
6463 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6464 	 *					  wake_up_state(p, state)
6465 	 *   LOCK rq->lock			    LOCK p->pi_state
6466 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6467 	 *     if (signal_pending_state())	    if (p->state & @state)
6468 	 *
6469 	 * Also, the membarrier system call requires a full memory barrier
6470 	 * after coming from user-space, before storing to rq->curr.
6471 	 */
6472 	rq_lock(rq, &rf);
6473 	smp_mb__after_spinlock();
6474 
6475 	/* Promote REQ to ACT */
6476 	rq->clock_update_flags <<= 1;
6477 	update_rq_clock(rq);
6478 
6479 	switch_count = &prev->nivcsw;
6480 
6481 	/*
6482 	 * We must load prev->state once (task_struct::state is volatile), such
6483 	 * that we form a control dependency vs deactivate_task() below.
6484 	 */
6485 	prev_state = READ_ONCE(prev->__state);
6486 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6487 		if (signal_pending_state(prev_state, prev)) {
6488 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6489 		} else {
6490 			prev->sched_contributes_to_load =
6491 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6492 				!(prev_state & TASK_NOLOAD) &&
6493 				!(prev_state & TASK_FROZEN);
6494 
6495 			if (prev->sched_contributes_to_load)
6496 				rq->nr_uninterruptible++;
6497 
6498 			/*
6499 			 * __schedule()			ttwu()
6500 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6501 			 *   if (prev_state)		    goto out;
6502 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6503 			 *				  p->state = TASK_WAKING
6504 			 *
6505 			 * Where __schedule() and ttwu() have matching control dependencies.
6506 			 *
6507 			 * After this, schedule() must not care about p->state any more.
6508 			 */
6509 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6510 
6511 			if (prev->in_iowait) {
6512 				atomic_inc(&rq->nr_iowait);
6513 				delayacct_blkio_start();
6514 			}
6515 		}
6516 		switch_count = &prev->nvcsw;
6517 	}
6518 
6519 	next = pick_next_task(rq, prev, &rf);
6520 	clear_tsk_need_resched(prev);
6521 	clear_preempt_need_resched();
6522 #ifdef CONFIG_SCHED_DEBUG
6523 	rq->last_seen_need_resched_ns = 0;
6524 #endif
6525 
6526 	if (likely(prev != next)) {
6527 		rq->nr_switches++;
6528 		/*
6529 		 * RCU users of rcu_dereference(rq->curr) may not see
6530 		 * changes to task_struct made by pick_next_task().
6531 		 */
6532 		RCU_INIT_POINTER(rq->curr, next);
6533 		/*
6534 		 * The membarrier system call requires each architecture
6535 		 * to have a full memory barrier after updating
6536 		 * rq->curr, before returning to user-space.
6537 		 *
6538 		 * Here are the schemes providing that barrier on the
6539 		 * various architectures:
6540 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6541 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6542 		 * - finish_lock_switch() for weakly-ordered
6543 		 *   architectures where spin_unlock is a full barrier,
6544 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6545 		 *   is a RELEASE barrier),
6546 		 */
6547 		++*switch_count;
6548 
6549 		migrate_disable_switch(rq, prev);
6550 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6551 
6552 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6553 
6554 		/* Also unlocks the rq: */
6555 		rq = context_switch(rq, prev, next, &rf);
6556 	} else {
6557 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6558 
6559 		rq_unpin_lock(rq, &rf);
6560 		__balance_callbacks(rq);
6561 		raw_spin_rq_unlock_irq(rq);
6562 	}
6563 }
6564 
6565 void __noreturn do_task_dead(void)
6566 {
6567 	/* Causes final put_task_struct in finish_task_switch(): */
6568 	set_special_state(TASK_DEAD);
6569 
6570 	/* Tell freezer to ignore us: */
6571 	current->flags |= PF_NOFREEZE;
6572 
6573 	__schedule(SM_NONE);
6574 	BUG();
6575 
6576 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6577 	for (;;)
6578 		cpu_relax();
6579 }
6580 
6581 static inline void sched_submit_work(struct task_struct *tsk)
6582 {
6583 	unsigned int task_flags;
6584 
6585 	if (task_is_running(tsk))
6586 		return;
6587 
6588 	task_flags = tsk->flags;
6589 	/*
6590 	 * If a worker goes to sleep, notify and ask workqueue whether it
6591 	 * wants to wake up a task to maintain concurrency.
6592 	 */
6593 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6594 		if (task_flags & PF_WQ_WORKER)
6595 			wq_worker_sleeping(tsk);
6596 		else
6597 			io_wq_worker_sleeping(tsk);
6598 	}
6599 
6600 	/*
6601 	 * spinlock and rwlock must not flush block requests.  This will
6602 	 * deadlock if the callback attempts to acquire a lock which is
6603 	 * already acquired.
6604 	 */
6605 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6606 
6607 	/*
6608 	 * If we are going to sleep and we have plugged IO queued,
6609 	 * make sure to submit it to avoid deadlocks.
6610 	 */
6611 	blk_flush_plug(tsk->plug, true);
6612 }
6613 
6614 static void sched_update_worker(struct task_struct *tsk)
6615 {
6616 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6617 		if (tsk->flags & PF_WQ_WORKER)
6618 			wq_worker_running(tsk);
6619 		else
6620 			io_wq_worker_running(tsk);
6621 	}
6622 }
6623 
6624 asmlinkage __visible void __sched schedule(void)
6625 {
6626 	struct task_struct *tsk = current;
6627 
6628 	sched_submit_work(tsk);
6629 	do {
6630 		preempt_disable();
6631 		__schedule(SM_NONE);
6632 		sched_preempt_enable_no_resched();
6633 	} while (need_resched());
6634 	sched_update_worker(tsk);
6635 }
6636 EXPORT_SYMBOL(schedule);
6637 
6638 /*
6639  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6640  * state (have scheduled out non-voluntarily) by making sure that all
6641  * tasks have either left the run queue or have gone into user space.
6642  * As idle tasks do not do either, they must not ever be preempted
6643  * (schedule out non-voluntarily).
6644  *
6645  * schedule_idle() is similar to schedule_preempt_disable() except that it
6646  * never enables preemption because it does not call sched_submit_work().
6647  */
6648 void __sched schedule_idle(void)
6649 {
6650 	/*
6651 	 * As this skips calling sched_submit_work(), which the idle task does
6652 	 * regardless because that function is a nop when the task is in a
6653 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6654 	 * current task can be in any other state. Note, idle is always in the
6655 	 * TASK_RUNNING state.
6656 	 */
6657 	WARN_ON_ONCE(current->__state);
6658 	do {
6659 		__schedule(SM_NONE);
6660 	} while (need_resched());
6661 }
6662 
6663 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6664 asmlinkage __visible void __sched schedule_user(void)
6665 {
6666 	/*
6667 	 * If we come here after a random call to set_need_resched(),
6668 	 * or we have been woken up remotely but the IPI has not yet arrived,
6669 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6670 	 * we find a better solution.
6671 	 *
6672 	 * NB: There are buggy callers of this function.  Ideally we
6673 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6674 	 * too frequently to make sense yet.
6675 	 */
6676 	enum ctx_state prev_state = exception_enter();
6677 	schedule();
6678 	exception_exit(prev_state);
6679 }
6680 #endif
6681 
6682 /**
6683  * schedule_preempt_disabled - called with preemption disabled
6684  *
6685  * Returns with preemption disabled. Note: preempt_count must be 1
6686  */
6687 void __sched schedule_preempt_disabled(void)
6688 {
6689 	sched_preempt_enable_no_resched();
6690 	schedule();
6691 	preempt_disable();
6692 }
6693 
6694 #ifdef CONFIG_PREEMPT_RT
6695 void __sched notrace schedule_rtlock(void)
6696 {
6697 	do {
6698 		preempt_disable();
6699 		__schedule(SM_RTLOCK_WAIT);
6700 		sched_preempt_enable_no_resched();
6701 	} while (need_resched());
6702 }
6703 NOKPROBE_SYMBOL(schedule_rtlock);
6704 #endif
6705 
6706 static void __sched notrace preempt_schedule_common(void)
6707 {
6708 	do {
6709 		/*
6710 		 * Because the function tracer can trace preempt_count_sub()
6711 		 * and it also uses preempt_enable/disable_notrace(), if
6712 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6713 		 * by the function tracer will call this function again and
6714 		 * cause infinite recursion.
6715 		 *
6716 		 * Preemption must be disabled here before the function
6717 		 * tracer can trace. Break up preempt_disable() into two
6718 		 * calls. One to disable preemption without fear of being
6719 		 * traced. The other to still record the preemption latency,
6720 		 * which can also be traced by the function tracer.
6721 		 */
6722 		preempt_disable_notrace();
6723 		preempt_latency_start(1);
6724 		__schedule(SM_PREEMPT);
6725 		preempt_latency_stop(1);
6726 		preempt_enable_no_resched_notrace();
6727 
6728 		/*
6729 		 * Check again in case we missed a preemption opportunity
6730 		 * between schedule and now.
6731 		 */
6732 	} while (need_resched());
6733 }
6734 
6735 #ifdef CONFIG_PREEMPTION
6736 /*
6737  * This is the entry point to schedule() from in-kernel preemption
6738  * off of preempt_enable.
6739  */
6740 asmlinkage __visible void __sched notrace preempt_schedule(void)
6741 {
6742 	/*
6743 	 * If there is a non-zero preempt_count or interrupts are disabled,
6744 	 * we do not want to preempt the current task. Just return..
6745 	 */
6746 	if (likely(!preemptible()))
6747 		return;
6748 	preempt_schedule_common();
6749 }
6750 NOKPROBE_SYMBOL(preempt_schedule);
6751 EXPORT_SYMBOL(preempt_schedule);
6752 
6753 #ifdef CONFIG_PREEMPT_DYNAMIC
6754 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6755 #ifndef preempt_schedule_dynamic_enabled
6756 #define preempt_schedule_dynamic_enabled	preempt_schedule
6757 #define preempt_schedule_dynamic_disabled	NULL
6758 #endif
6759 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6760 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6761 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6762 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6763 void __sched notrace dynamic_preempt_schedule(void)
6764 {
6765 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6766 		return;
6767 	preempt_schedule();
6768 }
6769 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6770 EXPORT_SYMBOL(dynamic_preempt_schedule);
6771 #endif
6772 #endif
6773 
6774 /**
6775  * preempt_schedule_notrace - preempt_schedule called by tracing
6776  *
6777  * The tracing infrastructure uses preempt_enable_notrace to prevent
6778  * recursion and tracing preempt enabling caused by the tracing
6779  * infrastructure itself. But as tracing can happen in areas coming
6780  * from userspace or just about to enter userspace, a preempt enable
6781  * can occur before user_exit() is called. This will cause the scheduler
6782  * to be called when the system is still in usermode.
6783  *
6784  * To prevent this, the preempt_enable_notrace will use this function
6785  * instead of preempt_schedule() to exit user context if needed before
6786  * calling the scheduler.
6787  */
6788 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6789 {
6790 	enum ctx_state prev_ctx;
6791 
6792 	if (likely(!preemptible()))
6793 		return;
6794 
6795 	do {
6796 		/*
6797 		 * Because the function tracer can trace preempt_count_sub()
6798 		 * and it also uses preempt_enable/disable_notrace(), if
6799 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6800 		 * by the function tracer will call this function again and
6801 		 * cause infinite recursion.
6802 		 *
6803 		 * Preemption must be disabled here before the function
6804 		 * tracer can trace. Break up preempt_disable() into two
6805 		 * calls. One to disable preemption without fear of being
6806 		 * traced. The other to still record the preemption latency,
6807 		 * which can also be traced by the function tracer.
6808 		 */
6809 		preempt_disable_notrace();
6810 		preempt_latency_start(1);
6811 		/*
6812 		 * Needs preempt disabled in case user_exit() is traced
6813 		 * and the tracer calls preempt_enable_notrace() causing
6814 		 * an infinite recursion.
6815 		 */
6816 		prev_ctx = exception_enter();
6817 		__schedule(SM_PREEMPT);
6818 		exception_exit(prev_ctx);
6819 
6820 		preempt_latency_stop(1);
6821 		preempt_enable_no_resched_notrace();
6822 	} while (need_resched());
6823 }
6824 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6825 
6826 #ifdef CONFIG_PREEMPT_DYNAMIC
6827 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6828 #ifndef preempt_schedule_notrace_dynamic_enabled
6829 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6830 #define preempt_schedule_notrace_dynamic_disabled	NULL
6831 #endif
6832 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6833 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6834 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6835 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6836 void __sched notrace dynamic_preempt_schedule_notrace(void)
6837 {
6838 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6839 		return;
6840 	preempt_schedule_notrace();
6841 }
6842 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6843 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6844 #endif
6845 #endif
6846 
6847 #endif /* CONFIG_PREEMPTION */
6848 
6849 /*
6850  * This is the entry point to schedule() from kernel preemption
6851  * off of irq context.
6852  * Note, that this is called and return with irqs disabled. This will
6853  * protect us against recursive calling from irq.
6854  */
6855 asmlinkage __visible void __sched preempt_schedule_irq(void)
6856 {
6857 	enum ctx_state prev_state;
6858 
6859 	/* Catch callers which need to be fixed */
6860 	BUG_ON(preempt_count() || !irqs_disabled());
6861 
6862 	prev_state = exception_enter();
6863 
6864 	do {
6865 		preempt_disable();
6866 		local_irq_enable();
6867 		__schedule(SM_PREEMPT);
6868 		local_irq_disable();
6869 		sched_preempt_enable_no_resched();
6870 	} while (need_resched());
6871 
6872 	exception_exit(prev_state);
6873 }
6874 
6875 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6876 			  void *key)
6877 {
6878 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6879 	return try_to_wake_up(curr->private, mode, wake_flags);
6880 }
6881 EXPORT_SYMBOL(default_wake_function);
6882 
6883 static void __setscheduler_prio(struct task_struct *p, int prio)
6884 {
6885 	if (dl_prio(prio))
6886 		p->sched_class = &dl_sched_class;
6887 	else if (rt_prio(prio))
6888 		p->sched_class = &rt_sched_class;
6889 	else
6890 		p->sched_class = &fair_sched_class;
6891 
6892 	p->prio = prio;
6893 }
6894 
6895 #ifdef CONFIG_RT_MUTEXES
6896 
6897 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6898 {
6899 	if (pi_task)
6900 		prio = min(prio, pi_task->prio);
6901 
6902 	return prio;
6903 }
6904 
6905 static inline int rt_effective_prio(struct task_struct *p, int prio)
6906 {
6907 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6908 
6909 	return __rt_effective_prio(pi_task, prio);
6910 }
6911 
6912 /*
6913  * rt_mutex_setprio - set the current priority of a task
6914  * @p: task to boost
6915  * @pi_task: donor task
6916  *
6917  * This function changes the 'effective' priority of a task. It does
6918  * not touch ->normal_prio like __setscheduler().
6919  *
6920  * Used by the rt_mutex code to implement priority inheritance
6921  * logic. Call site only calls if the priority of the task changed.
6922  */
6923 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6924 {
6925 	int prio, oldprio, queued, running, queue_flag =
6926 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6927 	const struct sched_class *prev_class;
6928 	struct rq_flags rf;
6929 	struct rq *rq;
6930 
6931 	/* XXX used to be waiter->prio, not waiter->task->prio */
6932 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6933 
6934 	/*
6935 	 * If nothing changed; bail early.
6936 	 */
6937 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6938 		return;
6939 
6940 	rq = __task_rq_lock(p, &rf);
6941 	update_rq_clock(rq);
6942 	/*
6943 	 * Set under pi_lock && rq->lock, such that the value can be used under
6944 	 * either lock.
6945 	 *
6946 	 * Note that there is loads of tricky to make this pointer cache work
6947 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6948 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6949 	 * task is allowed to run again (and can exit). This ensures the pointer
6950 	 * points to a blocked task -- which guarantees the task is present.
6951 	 */
6952 	p->pi_top_task = pi_task;
6953 
6954 	/*
6955 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6956 	 */
6957 	if (prio == p->prio && !dl_prio(prio))
6958 		goto out_unlock;
6959 
6960 	/*
6961 	 * Idle task boosting is a nono in general. There is one
6962 	 * exception, when PREEMPT_RT and NOHZ is active:
6963 	 *
6964 	 * The idle task calls get_next_timer_interrupt() and holds
6965 	 * the timer wheel base->lock on the CPU and another CPU wants
6966 	 * to access the timer (probably to cancel it). We can safely
6967 	 * ignore the boosting request, as the idle CPU runs this code
6968 	 * with interrupts disabled and will complete the lock
6969 	 * protected section without being interrupted. So there is no
6970 	 * real need to boost.
6971 	 */
6972 	if (unlikely(p == rq->idle)) {
6973 		WARN_ON(p != rq->curr);
6974 		WARN_ON(p->pi_blocked_on);
6975 		goto out_unlock;
6976 	}
6977 
6978 	trace_sched_pi_setprio(p, pi_task);
6979 	oldprio = p->prio;
6980 
6981 	if (oldprio == prio)
6982 		queue_flag &= ~DEQUEUE_MOVE;
6983 
6984 	prev_class = p->sched_class;
6985 	queued = task_on_rq_queued(p);
6986 	running = task_current(rq, p);
6987 	if (queued)
6988 		dequeue_task(rq, p, queue_flag);
6989 	if (running)
6990 		put_prev_task(rq, p);
6991 
6992 	/*
6993 	 * Boosting condition are:
6994 	 * 1. -rt task is running and holds mutex A
6995 	 *      --> -dl task blocks on mutex A
6996 	 *
6997 	 * 2. -dl task is running and holds mutex A
6998 	 *      --> -dl task blocks on mutex A and could preempt the
6999 	 *          running task
7000 	 */
7001 	if (dl_prio(prio)) {
7002 		if (!dl_prio(p->normal_prio) ||
7003 		    (pi_task && dl_prio(pi_task->prio) &&
7004 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7005 			p->dl.pi_se = pi_task->dl.pi_se;
7006 			queue_flag |= ENQUEUE_REPLENISH;
7007 		} else {
7008 			p->dl.pi_se = &p->dl;
7009 		}
7010 	} else if (rt_prio(prio)) {
7011 		if (dl_prio(oldprio))
7012 			p->dl.pi_se = &p->dl;
7013 		if (oldprio < prio)
7014 			queue_flag |= ENQUEUE_HEAD;
7015 	} else {
7016 		if (dl_prio(oldprio))
7017 			p->dl.pi_se = &p->dl;
7018 		if (rt_prio(oldprio))
7019 			p->rt.timeout = 0;
7020 	}
7021 
7022 	__setscheduler_prio(p, prio);
7023 
7024 	if (queued)
7025 		enqueue_task(rq, p, queue_flag);
7026 	if (running)
7027 		set_next_task(rq, p);
7028 
7029 	check_class_changed(rq, p, prev_class, oldprio);
7030 out_unlock:
7031 	/* Avoid rq from going away on us: */
7032 	preempt_disable();
7033 
7034 	rq_unpin_lock(rq, &rf);
7035 	__balance_callbacks(rq);
7036 	raw_spin_rq_unlock(rq);
7037 
7038 	preempt_enable();
7039 }
7040 #else
7041 static inline int rt_effective_prio(struct task_struct *p, int prio)
7042 {
7043 	return prio;
7044 }
7045 #endif
7046 
7047 void set_user_nice(struct task_struct *p, long nice)
7048 {
7049 	bool queued, running;
7050 	int old_prio;
7051 	struct rq_flags rf;
7052 	struct rq *rq;
7053 
7054 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7055 		return;
7056 	/*
7057 	 * We have to be careful, if called from sys_setpriority(),
7058 	 * the task might be in the middle of scheduling on another CPU.
7059 	 */
7060 	rq = task_rq_lock(p, &rf);
7061 	update_rq_clock(rq);
7062 
7063 	/*
7064 	 * The RT priorities are set via sched_setscheduler(), but we still
7065 	 * allow the 'normal' nice value to be set - but as expected
7066 	 * it won't have any effect on scheduling until the task is
7067 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7068 	 */
7069 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7070 		p->static_prio = NICE_TO_PRIO(nice);
7071 		goto out_unlock;
7072 	}
7073 	queued = task_on_rq_queued(p);
7074 	running = task_current(rq, p);
7075 	if (queued)
7076 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7077 	if (running)
7078 		put_prev_task(rq, p);
7079 
7080 	p->static_prio = NICE_TO_PRIO(nice);
7081 	set_load_weight(p, true);
7082 	old_prio = p->prio;
7083 	p->prio = effective_prio(p);
7084 
7085 	if (queued)
7086 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7087 	if (running)
7088 		set_next_task(rq, p);
7089 
7090 	/*
7091 	 * If the task increased its priority or is running and
7092 	 * lowered its priority, then reschedule its CPU:
7093 	 */
7094 	p->sched_class->prio_changed(rq, p, old_prio);
7095 
7096 out_unlock:
7097 	task_rq_unlock(rq, p, &rf);
7098 }
7099 EXPORT_SYMBOL(set_user_nice);
7100 
7101 /*
7102  * is_nice_reduction - check if nice value is an actual reduction
7103  *
7104  * Similar to can_nice() but does not perform a capability check.
7105  *
7106  * @p: task
7107  * @nice: nice value
7108  */
7109 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7110 {
7111 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7112 	int nice_rlim = nice_to_rlimit(nice);
7113 
7114 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7115 }
7116 
7117 /*
7118  * can_nice - check if a task can reduce its nice value
7119  * @p: task
7120  * @nice: nice value
7121  */
7122 int can_nice(const struct task_struct *p, const int nice)
7123 {
7124 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7125 }
7126 
7127 #ifdef __ARCH_WANT_SYS_NICE
7128 
7129 /*
7130  * sys_nice - change the priority of the current process.
7131  * @increment: priority increment
7132  *
7133  * sys_setpriority is a more generic, but much slower function that
7134  * does similar things.
7135  */
7136 SYSCALL_DEFINE1(nice, int, increment)
7137 {
7138 	long nice, retval;
7139 
7140 	/*
7141 	 * Setpriority might change our priority at the same moment.
7142 	 * We don't have to worry. Conceptually one call occurs first
7143 	 * and we have a single winner.
7144 	 */
7145 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7146 	nice = task_nice(current) + increment;
7147 
7148 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7149 	if (increment < 0 && !can_nice(current, nice))
7150 		return -EPERM;
7151 
7152 	retval = security_task_setnice(current, nice);
7153 	if (retval)
7154 		return retval;
7155 
7156 	set_user_nice(current, nice);
7157 	return 0;
7158 }
7159 
7160 #endif
7161 
7162 /**
7163  * task_prio - return the priority value of a given task.
7164  * @p: the task in question.
7165  *
7166  * Return: The priority value as seen by users in /proc.
7167  *
7168  * sched policy         return value   kernel prio    user prio/nice
7169  *
7170  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7171  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7172  * deadline                     -101             -1           0
7173  */
7174 int task_prio(const struct task_struct *p)
7175 {
7176 	return p->prio - MAX_RT_PRIO;
7177 }
7178 
7179 /**
7180  * idle_cpu - is a given CPU idle currently?
7181  * @cpu: the processor in question.
7182  *
7183  * Return: 1 if the CPU is currently idle. 0 otherwise.
7184  */
7185 int idle_cpu(int cpu)
7186 {
7187 	struct rq *rq = cpu_rq(cpu);
7188 
7189 	if (rq->curr != rq->idle)
7190 		return 0;
7191 
7192 	if (rq->nr_running)
7193 		return 0;
7194 
7195 #ifdef CONFIG_SMP
7196 	if (rq->ttwu_pending)
7197 		return 0;
7198 #endif
7199 
7200 	return 1;
7201 }
7202 
7203 /**
7204  * available_idle_cpu - is a given CPU idle for enqueuing work.
7205  * @cpu: the CPU in question.
7206  *
7207  * Return: 1 if the CPU is currently idle. 0 otherwise.
7208  */
7209 int available_idle_cpu(int cpu)
7210 {
7211 	if (!idle_cpu(cpu))
7212 		return 0;
7213 
7214 	if (vcpu_is_preempted(cpu))
7215 		return 0;
7216 
7217 	return 1;
7218 }
7219 
7220 /**
7221  * idle_task - return the idle task for a given CPU.
7222  * @cpu: the processor in question.
7223  *
7224  * Return: The idle task for the CPU @cpu.
7225  */
7226 struct task_struct *idle_task(int cpu)
7227 {
7228 	return cpu_rq(cpu)->idle;
7229 }
7230 
7231 #ifdef CONFIG_SMP
7232 /*
7233  * This function computes an effective utilization for the given CPU, to be
7234  * used for frequency selection given the linear relation: f = u * f_max.
7235  *
7236  * The scheduler tracks the following metrics:
7237  *
7238  *   cpu_util_{cfs,rt,dl,irq}()
7239  *   cpu_bw_dl()
7240  *
7241  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7242  * synchronized windows and are thus directly comparable.
7243  *
7244  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7245  * which excludes things like IRQ and steal-time. These latter are then accrued
7246  * in the irq utilization.
7247  *
7248  * The DL bandwidth number otoh is not a measured metric but a value computed
7249  * based on the task model parameters and gives the minimal utilization
7250  * required to meet deadlines.
7251  */
7252 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7253 				 enum cpu_util_type type,
7254 				 struct task_struct *p)
7255 {
7256 	unsigned long dl_util, util, irq, max;
7257 	struct rq *rq = cpu_rq(cpu);
7258 
7259 	max = arch_scale_cpu_capacity(cpu);
7260 
7261 	if (!uclamp_is_used() &&
7262 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7263 		return max;
7264 	}
7265 
7266 	/*
7267 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7268 	 * because of inaccuracies in how we track these -- see
7269 	 * update_irq_load_avg().
7270 	 */
7271 	irq = cpu_util_irq(rq);
7272 	if (unlikely(irq >= max))
7273 		return max;
7274 
7275 	/*
7276 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7277 	 * CFS tasks and we use the same metric to track the effective
7278 	 * utilization (PELT windows are synchronized) we can directly add them
7279 	 * to obtain the CPU's actual utilization.
7280 	 *
7281 	 * CFS and RT utilization can be boosted or capped, depending on
7282 	 * utilization clamp constraints requested by currently RUNNABLE
7283 	 * tasks.
7284 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7285 	 * frequency will be gracefully reduced with the utilization decay.
7286 	 */
7287 	util = util_cfs + cpu_util_rt(rq);
7288 	if (type == FREQUENCY_UTIL)
7289 		util = uclamp_rq_util_with(rq, util, p);
7290 
7291 	dl_util = cpu_util_dl(rq);
7292 
7293 	/*
7294 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7295 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7296 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7297 	 * that we select f_max when there is no idle time.
7298 	 *
7299 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7300 	 * saturation when we should -- something for later.
7301 	 */
7302 	if (util + dl_util >= max)
7303 		return max;
7304 
7305 	/*
7306 	 * OTOH, for energy computation we need the estimated running time, so
7307 	 * include util_dl and ignore dl_bw.
7308 	 */
7309 	if (type == ENERGY_UTIL)
7310 		util += dl_util;
7311 
7312 	/*
7313 	 * There is still idle time; further improve the number by using the
7314 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7315 	 * need to scale the task numbers:
7316 	 *
7317 	 *              max - irq
7318 	 *   U' = irq + --------- * U
7319 	 *                 max
7320 	 */
7321 	util = scale_irq_capacity(util, irq, max);
7322 	util += irq;
7323 
7324 	/*
7325 	 * Bandwidth required by DEADLINE must always be granted while, for
7326 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7327 	 * to gracefully reduce the frequency when no tasks show up for longer
7328 	 * periods of time.
7329 	 *
7330 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7331 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7332 	 * an interface. So, we only do the latter for now.
7333 	 */
7334 	if (type == FREQUENCY_UTIL)
7335 		util += cpu_bw_dl(rq);
7336 
7337 	return min(max, util);
7338 }
7339 
7340 unsigned long sched_cpu_util(int cpu)
7341 {
7342 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7343 }
7344 #endif /* CONFIG_SMP */
7345 
7346 /**
7347  * find_process_by_pid - find a process with a matching PID value.
7348  * @pid: the pid in question.
7349  *
7350  * The task of @pid, if found. %NULL otherwise.
7351  */
7352 static struct task_struct *find_process_by_pid(pid_t pid)
7353 {
7354 	return pid ? find_task_by_vpid(pid) : current;
7355 }
7356 
7357 /*
7358  * sched_setparam() passes in -1 for its policy, to let the functions
7359  * it calls know not to change it.
7360  */
7361 #define SETPARAM_POLICY	-1
7362 
7363 static void __setscheduler_params(struct task_struct *p,
7364 		const struct sched_attr *attr)
7365 {
7366 	int policy = attr->sched_policy;
7367 
7368 	if (policy == SETPARAM_POLICY)
7369 		policy = p->policy;
7370 
7371 	p->policy = policy;
7372 
7373 	if (dl_policy(policy))
7374 		__setparam_dl(p, attr);
7375 	else if (fair_policy(policy))
7376 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7377 
7378 	/*
7379 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7380 	 * !rt_policy. Always setting this ensures that things like
7381 	 * getparam()/getattr() don't report silly values for !rt tasks.
7382 	 */
7383 	p->rt_priority = attr->sched_priority;
7384 	p->normal_prio = normal_prio(p);
7385 	set_load_weight(p, true);
7386 }
7387 
7388 /*
7389  * Check the target process has a UID that matches the current process's:
7390  */
7391 static bool check_same_owner(struct task_struct *p)
7392 {
7393 	const struct cred *cred = current_cred(), *pcred;
7394 	bool match;
7395 
7396 	rcu_read_lock();
7397 	pcred = __task_cred(p);
7398 	match = (uid_eq(cred->euid, pcred->euid) ||
7399 		 uid_eq(cred->euid, pcred->uid));
7400 	rcu_read_unlock();
7401 	return match;
7402 }
7403 
7404 /*
7405  * Allow unprivileged RT tasks to decrease priority.
7406  * Only issue a capable test if needed and only once to avoid an audit
7407  * event on permitted non-privileged operations:
7408  */
7409 static int user_check_sched_setscheduler(struct task_struct *p,
7410 					 const struct sched_attr *attr,
7411 					 int policy, int reset_on_fork)
7412 {
7413 	if (fair_policy(policy)) {
7414 		if (attr->sched_nice < task_nice(p) &&
7415 		    !is_nice_reduction(p, attr->sched_nice))
7416 			goto req_priv;
7417 	}
7418 
7419 	if (rt_policy(policy)) {
7420 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7421 
7422 		/* Can't set/change the rt policy: */
7423 		if (policy != p->policy && !rlim_rtprio)
7424 			goto req_priv;
7425 
7426 		/* Can't increase priority: */
7427 		if (attr->sched_priority > p->rt_priority &&
7428 		    attr->sched_priority > rlim_rtprio)
7429 			goto req_priv;
7430 	}
7431 
7432 	/*
7433 	 * Can't set/change SCHED_DEADLINE policy at all for now
7434 	 * (safest behavior); in the future we would like to allow
7435 	 * unprivileged DL tasks to increase their relative deadline
7436 	 * or reduce their runtime (both ways reducing utilization)
7437 	 */
7438 	if (dl_policy(policy))
7439 		goto req_priv;
7440 
7441 	/*
7442 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7443 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7444 	 */
7445 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7446 		if (!is_nice_reduction(p, task_nice(p)))
7447 			goto req_priv;
7448 	}
7449 
7450 	/* Can't change other user's priorities: */
7451 	if (!check_same_owner(p))
7452 		goto req_priv;
7453 
7454 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7455 	if (p->sched_reset_on_fork && !reset_on_fork)
7456 		goto req_priv;
7457 
7458 	return 0;
7459 
7460 req_priv:
7461 	if (!capable(CAP_SYS_NICE))
7462 		return -EPERM;
7463 
7464 	return 0;
7465 }
7466 
7467 static int __sched_setscheduler(struct task_struct *p,
7468 				const struct sched_attr *attr,
7469 				bool user, bool pi)
7470 {
7471 	int oldpolicy = -1, policy = attr->sched_policy;
7472 	int retval, oldprio, newprio, queued, running;
7473 	const struct sched_class *prev_class;
7474 	struct balance_callback *head;
7475 	struct rq_flags rf;
7476 	int reset_on_fork;
7477 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7478 	struct rq *rq;
7479 
7480 	/* The pi code expects interrupts enabled */
7481 	BUG_ON(pi && in_interrupt());
7482 recheck:
7483 	/* Double check policy once rq lock held: */
7484 	if (policy < 0) {
7485 		reset_on_fork = p->sched_reset_on_fork;
7486 		policy = oldpolicy = p->policy;
7487 	} else {
7488 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7489 
7490 		if (!valid_policy(policy))
7491 			return -EINVAL;
7492 	}
7493 
7494 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7495 		return -EINVAL;
7496 
7497 	/*
7498 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7499 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7500 	 * SCHED_BATCH and SCHED_IDLE is 0.
7501 	 */
7502 	if (attr->sched_priority > MAX_RT_PRIO-1)
7503 		return -EINVAL;
7504 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7505 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7506 		return -EINVAL;
7507 
7508 	if (user) {
7509 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7510 		if (retval)
7511 			return retval;
7512 
7513 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7514 			return -EINVAL;
7515 
7516 		retval = security_task_setscheduler(p);
7517 		if (retval)
7518 			return retval;
7519 	}
7520 
7521 	/* Update task specific "requested" clamps */
7522 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7523 		retval = uclamp_validate(p, attr);
7524 		if (retval)
7525 			return retval;
7526 	}
7527 
7528 	if (pi)
7529 		cpuset_read_lock();
7530 
7531 	/*
7532 	 * Make sure no PI-waiters arrive (or leave) while we are
7533 	 * changing the priority of the task:
7534 	 *
7535 	 * To be able to change p->policy safely, the appropriate
7536 	 * runqueue lock must be held.
7537 	 */
7538 	rq = task_rq_lock(p, &rf);
7539 	update_rq_clock(rq);
7540 
7541 	/*
7542 	 * Changing the policy of the stop threads its a very bad idea:
7543 	 */
7544 	if (p == rq->stop) {
7545 		retval = -EINVAL;
7546 		goto unlock;
7547 	}
7548 
7549 	/*
7550 	 * If not changing anything there's no need to proceed further,
7551 	 * but store a possible modification of reset_on_fork.
7552 	 */
7553 	if (unlikely(policy == p->policy)) {
7554 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7555 			goto change;
7556 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7557 			goto change;
7558 		if (dl_policy(policy) && dl_param_changed(p, attr))
7559 			goto change;
7560 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7561 			goto change;
7562 
7563 		p->sched_reset_on_fork = reset_on_fork;
7564 		retval = 0;
7565 		goto unlock;
7566 	}
7567 change:
7568 
7569 	if (user) {
7570 #ifdef CONFIG_RT_GROUP_SCHED
7571 		/*
7572 		 * Do not allow realtime tasks into groups that have no runtime
7573 		 * assigned.
7574 		 */
7575 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7576 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7577 				!task_group_is_autogroup(task_group(p))) {
7578 			retval = -EPERM;
7579 			goto unlock;
7580 		}
7581 #endif
7582 #ifdef CONFIG_SMP
7583 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7584 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7585 			cpumask_t *span = rq->rd->span;
7586 
7587 			/*
7588 			 * Don't allow tasks with an affinity mask smaller than
7589 			 * the entire root_domain to become SCHED_DEADLINE. We
7590 			 * will also fail if there's no bandwidth available.
7591 			 */
7592 			if (!cpumask_subset(span, p->cpus_ptr) ||
7593 			    rq->rd->dl_bw.bw == 0) {
7594 				retval = -EPERM;
7595 				goto unlock;
7596 			}
7597 		}
7598 #endif
7599 	}
7600 
7601 	/* Re-check policy now with rq lock held: */
7602 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7603 		policy = oldpolicy = -1;
7604 		task_rq_unlock(rq, p, &rf);
7605 		if (pi)
7606 			cpuset_read_unlock();
7607 		goto recheck;
7608 	}
7609 
7610 	/*
7611 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7612 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7613 	 * is available.
7614 	 */
7615 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7616 		retval = -EBUSY;
7617 		goto unlock;
7618 	}
7619 
7620 	p->sched_reset_on_fork = reset_on_fork;
7621 	oldprio = p->prio;
7622 
7623 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7624 	if (pi) {
7625 		/*
7626 		 * Take priority boosted tasks into account. If the new
7627 		 * effective priority is unchanged, we just store the new
7628 		 * normal parameters and do not touch the scheduler class and
7629 		 * the runqueue. This will be done when the task deboost
7630 		 * itself.
7631 		 */
7632 		newprio = rt_effective_prio(p, newprio);
7633 		if (newprio == oldprio)
7634 			queue_flags &= ~DEQUEUE_MOVE;
7635 	}
7636 
7637 	queued = task_on_rq_queued(p);
7638 	running = task_current(rq, p);
7639 	if (queued)
7640 		dequeue_task(rq, p, queue_flags);
7641 	if (running)
7642 		put_prev_task(rq, p);
7643 
7644 	prev_class = p->sched_class;
7645 
7646 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7647 		__setscheduler_params(p, attr);
7648 		__setscheduler_prio(p, newprio);
7649 	}
7650 	__setscheduler_uclamp(p, attr);
7651 
7652 	if (queued) {
7653 		/*
7654 		 * We enqueue to tail when the priority of a task is
7655 		 * increased (user space view).
7656 		 */
7657 		if (oldprio < p->prio)
7658 			queue_flags |= ENQUEUE_HEAD;
7659 
7660 		enqueue_task(rq, p, queue_flags);
7661 	}
7662 	if (running)
7663 		set_next_task(rq, p);
7664 
7665 	check_class_changed(rq, p, prev_class, oldprio);
7666 
7667 	/* Avoid rq from going away on us: */
7668 	preempt_disable();
7669 	head = splice_balance_callbacks(rq);
7670 	task_rq_unlock(rq, p, &rf);
7671 
7672 	if (pi) {
7673 		cpuset_read_unlock();
7674 		rt_mutex_adjust_pi(p);
7675 	}
7676 
7677 	/* Run balance callbacks after we've adjusted the PI chain: */
7678 	balance_callbacks(rq, head);
7679 	preempt_enable();
7680 
7681 	return 0;
7682 
7683 unlock:
7684 	task_rq_unlock(rq, p, &rf);
7685 	if (pi)
7686 		cpuset_read_unlock();
7687 	return retval;
7688 }
7689 
7690 static int _sched_setscheduler(struct task_struct *p, int policy,
7691 			       const struct sched_param *param, bool check)
7692 {
7693 	struct sched_attr attr = {
7694 		.sched_policy   = policy,
7695 		.sched_priority = param->sched_priority,
7696 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7697 	};
7698 
7699 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7700 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7701 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7702 		policy &= ~SCHED_RESET_ON_FORK;
7703 		attr.sched_policy = policy;
7704 	}
7705 
7706 	return __sched_setscheduler(p, &attr, check, true);
7707 }
7708 /**
7709  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7710  * @p: the task in question.
7711  * @policy: new policy.
7712  * @param: structure containing the new RT priority.
7713  *
7714  * Use sched_set_fifo(), read its comment.
7715  *
7716  * Return: 0 on success. An error code otherwise.
7717  *
7718  * NOTE that the task may be already dead.
7719  */
7720 int sched_setscheduler(struct task_struct *p, int policy,
7721 		       const struct sched_param *param)
7722 {
7723 	return _sched_setscheduler(p, policy, param, true);
7724 }
7725 
7726 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7727 {
7728 	return __sched_setscheduler(p, attr, true, true);
7729 }
7730 
7731 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7732 {
7733 	return __sched_setscheduler(p, attr, false, true);
7734 }
7735 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7736 
7737 /**
7738  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7739  * @p: the task in question.
7740  * @policy: new policy.
7741  * @param: structure containing the new RT priority.
7742  *
7743  * Just like sched_setscheduler, only don't bother checking if the
7744  * current context has permission.  For example, this is needed in
7745  * stop_machine(): we create temporary high priority worker threads,
7746  * but our caller might not have that capability.
7747  *
7748  * Return: 0 on success. An error code otherwise.
7749  */
7750 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7751 			       const struct sched_param *param)
7752 {
7753 	return _sched_setscheduler(p, policy, param, false);
7754 }
7755 
7756 /*
7757  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7758  * incapable of resource management, which is the one thing an OS really should
7759  * be doing.
7760  *
7761  * This is of course the reason it is limited to privileged users only.
7762  *
7763  * Worse still; it is fundamentally impossible to compose static priority
7764  * workloads. You cannot take two correctly working static prio workloads
7765  * and smash them together and still expect them to work.
7766  *
7767  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7768  *
7769  *   MAX_RT_PRIO / 2
7770  *
7771  * The administrator _MUST_ configure the system, the kernel simply doesn't
7772  * know enough information to make a sensible choice.
7773  */
7774 void sched_set_fifo(struct task_struct *p)
7775 {
7776 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7777 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7778 }
7779 EXPORT_SYMBOL_GPL(sched_set_fifo);
7780 
7781 /*
7782  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7783  */
7784 void sched_set_fifo_low(struct task_struct *p)
7785 {
7786 	struct sched_param sp = { .sched_priority = 1 };
7787 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7788 }
7789 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7790 
7791 void sched_set_normal(struct task_struct *p, int nice)
7792 {
7793 	struct sched_attr attr = {
7794 		.sched_policy = SCHED_NORMAL,
7795 		.sched_nice = nice,
7796 	};
7797 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7798 }
7799 EXPORT_SYMBOL_GPL(sched_set_normal);
7800 
7801 static int
7802 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7803 {
7804 	struct sched_param lparam;
7805 	struct task_struct *p;
7806 	int retval;
7807 
7808 	if (!param || pid < 0)
7809 		return -EINVAL;
7810 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7811 		return -EFAULT;
7812 
7813 	rcu_read_lock();
7814 	retval = -ESRCH;
7815 	p = find_process_by_pid(pid);
7816 	if (likely(p))
7817 		get_task_struct(p);
7818 	rcu_read_unlock();
7819 
7820 	if (likely(p)) {
7821 		retval = sched_setscheduler(p, policy, &lparam);
7822 		put_task_struct(p);
7823 	}
7824 
7825 	return retval;
7826 }
7827 
7828 /*
7829  * Mimics kernel/events/core.c perf_copy_attr().
7830  */
7831 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7832 {
7833 	u32 size;
7834 	int ret;
7835 
7836 	/* Zero the full structure, so that a short copy will be nice: */
7837 	memset(attr, 0, sizeof(*attr));
7838 
7839 	ret = get_user(size, &uattr->size);
7840 	if (ret)
7841 		return ret;
7842 
7843 	/* ABI compatibility quirk: */
7844 	if (!size)
7845 		size = SCHED_ATTR_SIZE_VER0;
7846 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7847 		goto err_size;
7848 
7849 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7850 	if (ret) {
7851 		if (ret == -E2BIG)
7852 			goto err_size;
7853 		return ret;
7854 	}
7855 
7856 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7857 	    size < SCHED_ATTR_SIZE_VER1)
7858 		return -EINVAL;
7859 
7860 	/*
7861 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7862 	 * to be strict and return an error on out-of-bounds values?
7863 	 */
7864 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7865 
7866 	return 0;
7867 
7868 err_size:
7869 	put_user(sizeof(*attr), &uattr->size);
7870 	return -E2BIG;
7871 }
7872 
7873 static void get_params(struct task_struct *p, struct sched_attr *attr)
7874 {
7875 	if (task_has_dl_policy(p))
7876 		__getparam_dl(p, attr);
7877 	else if (task_has_rt_policy(p))
7878 		attr->sched_priority = p->rt_priority;
7879 	else
7880 		attr->sched_nice = task_nice(p);
7881 }
7882 
7883 /**
7884  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7885  * @pid: the pid in question.
7886  * @policy: new policy.
7887  * @param: structure containing the new RT priority.
7888  *
7889  * Return: 0 on success. An error code otherwise.
7890  */
7891 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7892 {
7893 	if (policy < 0)
7894 		return -EINVAL;
7895 
7896 	return do_sched_setscheduler(pid, policy, param);
7897 }
7898 
7899 /**
7900  * sys_sched_setparam - set/change the RT priority of a thread
7901  * @pid: the pid in question.
7902  * @param: structure containing the new RT priority.
7903  *
7904  * Return: 0 on success. An error code otherwise.
7905  */
7906 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7907 {
7908 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7909 }
7910 
7911 /**
7912  * sys_sched_setattr - same as above, but with extended sched_attr
7913  * @pid: the pid in question.
7914  * @uattr: structure containing the extended parameters.
7915  * @flags: for future extension.
7916  */
7917 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7918 			       unsigned int, flags)
7919 {
7920 	struct sched_attr attr;
7921 	struct task_struct *p;
7922 	int retval;
7923 
7924 	if (!uattr || pid < 0 || flags)
7925 		return -EINVAL;
7926 
7927 	retval = sched_copy_attr(uattr, &attr);
7928 	if (retval)
7929 		return retval;
7930 
7931 	if ((int)attr.sched_policy < 0)
7932 		return -EINVAL;
7933 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7934 		attr.sched_policy = SETPARAM_POLICY;
7935 
7936 	rcu_read_lock();
7937 	retval = -ESRCH;
7938 	p = find_process_by_pid(pid);
7939 	if (likely(p))
7940 		get_task_struct(p);
7941 	rcu_read_unlock();
7942 
7943 	if (likely(p)) {
7944 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7945 			get_params(p, &attr);
7946 		retval = sched_setattr(p, &attr);
7947 		put_task_struct(p);
7948 	}
7949 
7950 	return retval;
7951 }
7952 
7953 /**
7954  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7955  * @pid: the pid in question.
7956  *
7957  * Return: On success, the policy of the thread. Otherwise, a negative error
7958  * code.
7959  */
7960 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7961 {
7962 	struct task_struct *p;
7963 	int retval;
7964 
7965 	if (pid < 0)
7966 		return -EINVAL;
7967 
7968 	retval = -ESRCH;
7969 	rcu_read_lock();
7970 	p = find_process_by_pid(pid);
7971 	if (p) {
7972 		retval = security_task_getscheduler(p);
7973 		if (!retval)
7974 			retval = p->policy
7975 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7976 	}
7977 	rcu_read_unlock();
7978 	return retval;
7979 }
7980 
7981 /**
7982  * sys_sched_getparam - get the RT priority of a thread
7983  * @pid: the pid in question.
7984  * @param: structure containing the RT priority.
7985  *
7986  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7987  * code.
7988  */
7989 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7990 {
7991 	struct sched_param lp = { .sched_priority = 0 };
7992 	struct task_struct *p;
7993 	int retval;
7994 
7995 	if (!param || pid < 0)
7996 		return -EINVAL;
7997 
7998 	rcu_read_lock();
7999 	p = find_process_by_pid(pid);
8000 	retval = -ESRCH;
8001 	if (!p)
8002 		goto out_unlock;
8003 
8004 	retval = security_task_getscheduler(p);
8005 	if (retval)
8006 		goto out_unlock;
8007 
8008 	if (task_has_rt_policy(p))
8009 		lp.sched_priority = p->rt_priority;
8010 	rcu_read_unlock();
8011 
8012 	/*
8013 	 * This one might sleep, we cannot do it with a spinlock held ...
8014 	 */
8015 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8016 
8017 	return retval;
8018 
8019 out_unlock:
8020 	rcu_read_unlock();
8021 	return retval;
8022 }
8023 
8024 /*
8025  * Copy the kernel size attribute structure (which might be larger
8026  * than what user-space knows about) to user-space.
8027  *
8028  * Note that all cases are valid: user-space buffer can be larger or
8029  * smaller than the kernel-space buffer. The usual case is that both
8030  * have the same size.
8031  */
8032 static int
8033 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8034 			struct sched_attr *kattr,
8035 			unsigned int usize)
8036 {
8037 	unsigned int ksize = sizeof(*kattr);
8038 
8039 	if (!access_ok(uattr, usize))
8040 		return -EFAULT;
8041 
8042 	/*
8043 	 * sched_getattr() ABI forwards and backwards compatibility:
8044 	 *
8045 	 * If usize == ksize then we just copy everything to user-space and all is good.
8046 	 *
8047 	 * If usize < ksize then we only copy as much as user-space has space for,
8048 	 * this keeps ABI compatibility as well. We skip the rest.
8049 	 *
8050 	 * If usize > ksize then user-space is using a newer version of the ABI,
8051 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8052 	 * detect the kernel's knowledge of attributes from the attr->size value
8053 	 * which is set to ksize in this case.
8054 	 */
8055 	kattr->size = min(usize, ksize);
8056 
8057 	if (copy_to_user(uattr, kattr, kattr->size))
8058 		return -EFAULT;
8059 
8060 	return 0;
8061 }
8062 
8063 /**
8064  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8065  * @pid: the pid in question.
8066  * @uattr: structure containing the extended parameters.
8067  * @usize: sizeof(attr) for fwd/bwd comp.
8068  * @flags: for future extension.
8069  */
8070 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8071 		unsigned int, usize, unsigned int, flags)
8072 {
8073 	struct sched_attr kattr = { };
8074 	struct task_struct *p;
8075 	int retval;
8076 
8077 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8078 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8079 		return -EINVAL;
8080 
8081 	rcu_read_lock();
8082 	p = find_process_by_pid(pid);
8083 	retval = -ESRCH;
8084 	if (!p)
8085 		goto out_unlock;
8086 
8087 	retval = security_task_getscheduler(p);
8088 	if (retval)
8089 		goto out_unlock;
8090 
8091 	kattr.sched_policy = p->policy;
8092 	if (p->sched_reset_on_fork)
8093 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8094 	get_params(p, &kattr);
8095 	kattr.sched_flags &= SCHED_FLAG_ALL;
8096 
8097 #ifdef CONFIG_UCLAMP_TASK
8098 	/*
8099 	 * This could race with another potential updater, but this is fine
8100 	 * because it'll correctly read the old or the new value. We don't need
8101 	 * to guarantee who wins the race as long as it doesn't return garbage.
8102 	 */
8103 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8104 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8105 #endif
8106 
8107 	rcu_read_unlock();
8108 
8109 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8110 
8111 out_unlock:
8112 	rcu_read_unlock();
8113 	return retval;
8114 }
8115 
8116 #ifdef CONFIG_SMP
8117 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8118 {
8119 	int ret = 0;
8120 
8121 	/*
8122 	 * If the task isn't a deadline task or admission control is
8123 	 * disabled then we don't care about affinity changes.
8124 	 */
8125 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8126 		return 0;
8127 
8128 	/*
8129 	 * Since bandwidth control happens on root_domain basis,
8130 	 * if admission test is enabled, we only admit -deadline
8131 	 * tasks allowed to run on all the CPUs in the task's
8132 	 * root_domain.
8133 	 */
8134 	rcu_read_lock();
8135 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8136 		ret = -EBUSY;
8137 	rcu_read_unlock();
8138 	return ret;
8139 }
8140 #endif
8141 
8142 static int
8143 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8144 {
8145 	int retval;
8146 	cpumask_var_t cpus_allowed, new_mask;
8147 
8148 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8149 		return -ENOMEM;
8150 
8151 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8152 		retval = -ENOMEM;
8153 		goto out_free_cpus_allowed;
8154 	}
8155 
8156 	cpuset_cpus_allowed(p, cpus_allowed);
8157 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8158 
8159 	ctx->new_mask = new_mask;
8160 	ctx->flags |= SCA_CHECK;
8161 
8162 	retval = dl_task_check_affinity(p, new_mask);
8163 	if (retval)
8164 		goto out_free_new_mask;
8165 
8166 	retval = __set_cpus_allowed_ptr(p, ctx);
8167 	if (retval)
8168 		goto out_free_new_mask;
8169 
8170 	cpuset_cpus_allowed(p, cpus_allowed);
8171 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8172 		/*
8173 		 * We must have raced with a concurrent cpuset update.
8174 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8175 		 */
8176 		cpumask_copy(new_mask, cpus_allowed);
8177 
8178 		/*
8179 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8180 		 * will restore the previous user_cpus_ptr value.
8181 		 *
8182 		 * In the unlikely event a previous user_cpus_ptr exists,
8183 		 * we need to further restrict the mask to what is allowed
8184 		 * by that old user_cpus_ptr.
8185 		 */
8186 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8187 			bool empty = !cpumask_and(new_mask, new_mask,
8188 						  ctx->user_mask);
8189 
8190 			if (WARN_ON_ONCE(empty))
8191 				cpumask_copy(new_mask, cpus_allowed);
8192 		}
8193 		__set_cpus_allowed_ptr(p, ctx);
8194 		retval = -EINVAL;
8195 	}
8196 
8197 out_free_new_mask:
8198 	free_cpumask_var(new_mask);
8199 out_free_cpus_allowed:
8200 	free_cpumask_var(cpus_allowed);
8201 	return retval;
8202 }
8203 
8204 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8205 {
8206 	struct affinity_context ac;
8207 	struct cpumask *user_mask;
8208 	struct task_struct *p;
8209 	int retval;
8210 
8211 	rcu_read_lock();
8212 
8213 	p = find_process_by_pid(pid);
8214 	if (!p) {
8215 		rcu_read_unlock();
8216 		return -ESRCH;
8217 	}
8218 
8219 	/* Prevent p going away */
8220 	get_task_struct(p);
8221 	rcu_read_unlock();
8222 
8223 	if (p->flags & PF_NO_SETAFFINITY) {
8224 		retval = -EINVAL;
8225 		goto out_put_task;
8226 	}
8227 
8228 	if (!check_same_owner(p)) {
8229 		rcu_read_lock();
8230 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8231 			rcu_read_unlock();
8232 			retval = -EPERM;
8233 			goto out_put_task;
8234 		}
8235 		rcu_read_unlock();
8236 	}
8237 
8238 	retval = security_task_setscheduler(p);
8239 	if (retval)
8240 		goto out_put_task;
8241 
8242 	user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
8243 	if (!user_mask) {
8244 		retval = -ENOMEM;
8245 		goto out_put_task;
8246 	}
8247 	cpumask_copy(user_mask, in_mask);
8248 	ac = (struct affinity_context){
8249 		.new_mask  = in_mask,
8250 		.user_mask = user_mask,
8251 		.flags     = SCA_USER,
8252 	};
8253 
8254 	retval = __sched_setaffinity(p, &ac);
8255 	kfree(ac.user_mask);
8256 
8257 out_put_task:
8258 	put_task_struct(p);
8259 	return retval;
8260 }
8261 
8262 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8263 			     struct cpumask *new_mask)
8264 {
8265 	if (len < cpumask_size())
8266 		cpumask_clear(new_mask);
8267 	else if (len > cpumask_size())
8268 		len = cpumask_size();
8269 
8270 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8271 }
8272 
8273 /**
8274  * sys_sched_setaffinity - set the CPU affinity of a process
8275  * @pid: pid of the process
8276  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8277  * @user_mask_ptr: user-space pointer to the new CPU mask
8278  *
8279  * Return: 0 on success. An error code otherwise.
8280  */
8281 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8282 		unsigned long __user *, user_mask_ptr)
8283 {
8284 	cpumask_var_t new_mask;
8285 	int retval;
8286 
8287 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8288 		return -ENOMEM;
8289 
8290 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8291 	if (retval == 0)
8292 		retval = sched_setaffinity(pid, new_mask);
8293 	free_cpumask_var(new_mask);
8294 	return retval;
8295 }
8296 
8297 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8298 {
8299 	struct task_struct *p;
8300 	unsigned long flags;
8301 	int retval;
8302 
8303 	rcu_read_lock();
8304 
8305 	retval = -ESRCH;
8306 	p = find_process_by_pid(pid);
8307 	if (!p)
8308 		goto out_unlock;
8309 
8310 	retval = security_task_getscheduler(p);
8311 	if (retval)
8312 		goto out_unlock;
8313 
8314 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8315 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8316 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8317 
8318 out_unlock:
8319 	rcu_read_unlock();
8320 
8321 	return retval;
8322 }
8323 
8324 /**
8325  * sys_sched_getaffinity - get the CPU affinity of a process
8326  * @pid: pid of the process
8327  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8328  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8329  *
8330  * Return: size of CPU mask copied to user_mask_ptr on success. An
8331  * error code otherwise.
8332  */
8333 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8334 		unsigned long __user *, user_mask_ptr)
8335 {
8336 	int ret;
8337 	cpumask_var_t mask;
8338 
8339 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8340 		return -EINVAL;
8341 	if (len & (sizeof(unsigned long)-1))
8342 		return -EINVAL;
8343 
8344 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8345 		return -ENOMEM;
8346 
8347 	ret = sched_getaffinity(pid, mask);
8348 	if (ret == 0) {
8349 		unsigned int retlen = min(len, cpumask_size());
8350 
8351 		if (copy_to_user(user_mask_ptr, mask, retlen))
8352 			ret = -EFAULT;
8353 		else
8354 			ret = retlen;
8355 	}
8356 	free_cpumask_var(mask);
8357 
8358 	return ret;
8359 }
8360 
8361 static void do_sched_yield(void)
8362 {
8363 	struct rq_flags rf;
8364 	struct rq *rq;
8365 
8366 	rq = this_rq_lock_irq(&rf);
8367 
8368 	schedstat_inc(rq->yld_count);
8369 	current->sched_class->yield_task(rq);
8370 
8371 	preempt_disable();
8372 	rq_unlock_irq(rq, &rf);
8373 	sched_preempt_enable_no_resched();
8374 
8375 	schedule();
8376 }
8377 
8378 /**
8379  * sys_sched_yield - yield the current processor to other threads.
8380  *
8381  * This function yields the current CPU to other tasks. If there are no
8382  * other threads running on this CPU then this function will return.
8383  *
8384  * Return: 0.
8385  */
8386 SYSCALL_DEFINE0(sched_yield)
8387 {
8388 	do_sched_yield();
8389 	return 0;
8390 }
8391 
8392 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8393 int __sched __cond_resched(void)
8394 {
8395 	if (should_resched(0)) {
8396 		preempt_schedule_common();
8397 		return 1;
8398 	}
8399 	/*
8400 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8401 	 * whether the current CPU is in an RCU read-side critical section,
8402 	 * so the tick can report quiescent states even for CPUs looping
8403 	 * in kernel context.  In contrast, in non-preemptible kernels,
8404 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8405 	 * processes executing in kernel context might never report an
8406 	 * RCU quiescent state.  Therefore, the following code causes
8407 	 * cond_resched() to report a quiescent state, but only when RCU
8408 	 * is in urgent need of one.
8409 	 */
8410 #ifndef CONFIG_PREEMPT_RCU
8411 	rcu_all_qs();
8412 #endif
8413 	return 0;
8414 }
8415 EXPORT_SYMBOL(__cond_resched);
8416 #endif
8417 
8418 #ifdef CONFIG_PREEMPT_DYNAMIC
8419 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8420 #define cond_resched_dynamic_enabled	__cond_resched
8421 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8422 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8423 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8424 
8425 #define might_resched_dynamic_enabled	__cond_resched
8426 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8427 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8428 EXPORT_STATIC_CALL_TRAMP(might_resched);
8429 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8430 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8431 int __sched dynamic_cond_resched(void)
8432 {
8433 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8434 		return 0;
8435 	return __cond_resched();
8436 }
8437 EXPORT_SYMBOL(dynamic_cond_resched);
8438 
8439 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8440 int __sched dynamic_might_resched(void)
8441 {
8442 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8443 		return 0;
8444 	return __cond_resched();
8445 }
8446 EXPORT_SYMBOL(dynamic_might_resched);
8447 #endif
8448 #endif
8449 
8450 /*
8451  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8452  * call schedule, and on return reacquire the lock.
8453  *
8454  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8455  * operations here to prevent schedule() from being called twice (once via
8456  * spin_unlock(), once by hand).
8457  */
8458 int __cond_resched_lock(spinlock_t *lock)
8459 {
8460 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8461 	int ret = 0;
8462 
8463 	lockdep_assert_held(lock);
8464 
8465 	if (spin_needbreak(lock) || resched) {
8466 		spin_unlock(lock);
8467 		if (!_cond_resched())
8468 			cpu_relax();
8469 		ret = 1;
8470 		spin_lock(lock);
8471 	}
8472 	return ret;
8473 }
8474 EXPORT_SYMBOL(__cond_resched_lock);
8475 
8476 int __cond_resched_rwlock_read(rwlock_t *lock)
8477 {
8478 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8479 	int ret = 0;
8480 
8481 	lockdep_assert_held_read(lock);
8482 
8483 	if (rwlock_needbreak(lock) || resched) {
8484 		read_unlock(lock);
8485 		if (!_cond_resched())
8486 			cpu_relax();
8487 		ret = 1;
8488 		read_lock(lock);
8489 	}
8490 	return ret;
8491 }
8492 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8493 
8494 int __cond_resched_rwlock_write(rwlock_t *lock)
8495 {
8496 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8497 	int ret = 0;
8498 
8499 	lockdep_assert_held_write(lock);
8500 
8501 	if (rwlock_needbreak(lock) || resched) {
8502 		write_unlock(lock);
8503 		if (!_cond_resched())
8504 			cpu_relax();
8505 		ret = 1;
8506 		write_lock(lock);
8507 	}
8508 	return ret;
8509 }
8510 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8511 
8512 #ifdef CONFIG_PREEMPT_DYNAMIC
8513 
8514 #ifdef CONFIG_GENERIC_ENTRY
8515 #include <linux/entry-common.h>
8516 #endif
8517 
8518 /*
8519  * SC:cond_resched
8520  * SC:might_resched
8521  * SC:preempt_schedule
8522  * SC:preempt_schedule_notrace
8523  * SC:irqentry_exit_cond_resched
8524  *
8525  *
8526  * NONE:
8527  *   cond_resched               <- __cond_resched
8528  *   might_resched              <- RET0
8529  *   preempt_schedule           <- NOP
8530  *   preempt_schedule_notrace   <- NOP
8531  *   irqentry_exit_cond_resched <- NOP
8532  *
8533  * VOLUNTARY:
8534  *   cond_resched               <- __cond_resched
8535  *   might_resched              <- __cond_resched
8536  *   preempt_schedule           <- NOP
8537  *   preempt_schedule_notrace   <- NOP
8538  *   irqentry_exit_cond_resched <- NOP
8539  *
8540  * FULL:
8541  *   cond_resched               <- RET0
8542  *   might_resched              <- RET0
8543  *   preempt_schedule           <- preempt_schedule
8544  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8545  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8546  */
8547 
8548 enum {
8549 	preempt_dynamic_undefined = -1,
8550 	preempt_dynamic_none,
8551 	preempt_dynamic_voluntary,
8552 	preempt_dynamic_full,
8553 };
8554 
8555 int preempt_dynamic_mode = preempt_dynamic_undefined;
8556 
8557 int sched_dynamic_mode(const char *str)
8558 {
8559 	if (!strcmp(str, "none"))
8560 		return preempt_dynamic_none;
8561 
8562 	if (!strcmp(str, "voluntary"))
8563 		return preempt_dynamic_voluntary;
8564 
8565 	if (!strcmp(str, "full"))
8566 		return preempt_dynamic_full;
8567 
8568 	return -EINVAL;
8569 }
8570 
8571 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8572 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8573 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8574 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8575 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8576 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8577 #else
8578 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8579 #endif
8580 
8581 void sched_dynamic_update(int mode)
8582 {
8583 	/*
8584 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8585 	 * the ZERO state, which is invalid.
8586 	 */
8587 	preempt_dynamic_enable(cond_resched);
8588 	preempt_dynamic_enable(might_resched);
8589 	preempt_dynamic_enable(preempt_schedule);
8590 	preempt_dynamic_enable(preempt_schedule_notrace);
8591 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8592 
8593 	switch (mode) {
8594 	case preempt_dynamic_none:
8595 		preempt_dynamic_enable(cond_resched);
8596 		preempt_dynamic_disable(might_resched);
8597 		preempt_dynamic_disable(preempt_schedule);
8598 		preempt_dynamic_disable(preempt_schedule_notrace);
8599 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8600 		pr_info("Dynamic Preempt: none\n");
8601 		break;
8602 
8603 	case preempt_dynamic_voluntary:
8604 		preempt_dynamic_enable(cond_resched);
8605 		preempt_dynamic_enable(might_resched);
8606 		preempt_dynamic_disable(preempt_schedule);
8607 		preempt_dynamic_disable(preempt_schedule_notrace);
8608 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8609 		pr_info("Dynamic Preempt: voluntary\n");
8610 		break;
8611 
8612 	case preempt_dynamic_full:
8613 		preempt_dynamic_disable(cond_resched);
8614 		preempt_dynamic_disable(might_resched);
8615 		preempt_dynamic_enable(preempt_schedule);
8616 		preempt_dynamic_enable(preempt_schedule_notrace);
8617 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8618 		pr_info("Dynamic Preempt: full\n");
8619 		break;
8620 	}
8621 
8622 	preempt_dynamic_mode = mode;
8623 }
8624 
8625 static int __init setup_preempt_mode(char *str)
8626 {
8627 	int mode = sched_dynamic_mode(str);
8628 	if (mode < 0) {
8629 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8630 		return 0;
8631 	}
8632 
8633 	sched_dynamic_update(mode);
8634 	return 1;
8635 }
8636 __setup("preempt=", setup_preempt_mode);
8637 
8638 static void __init preempt_dynamic_init(void)
8639 {
8640 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8641 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8642 			sched_dynamic_update(preempt_dynamic_none);
8643 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8644 			sched_dynamic_update(preempt_dynamic_voluntary);
8645 		} else {
8646 			/* Default static call setting, nothing to do */
8647 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8648 			preempt_dynamic_mode = preempt_dynamic_full;
8649 			pr_info("Dynamic Preempt: full\n");
8650 		}
8651 	}
8652 }
8653 
8654 #define PREEMPT_MODEL_ACCESSOR(mode) \
8655 	bool preempt_model_##mode(void)						 \
8656 	{									 \
8657 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8658 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8659 	}									 \
8660 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8661 
8662 PREEMPT_MODEL_ACCESSOR(none);
8663 PREEMPT_MODEL_ACCESSOR(voluntary);
8664 PREEMPT_MODEL_ACCESSOR(full);
8665 
8666 #else /* !CONFIG_PREEMPT_DYNAMIC */
8667 
8668 static inline void preempt_dynamic_init(void) { }
8669 
8670 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8671 
8672 /**
8673  * yield - yield the current processor to other threads.
8674  *
8675  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8676  *
8677  * The scheduler is at all times free to pick the calling task as the most
8678  * eligible task to run, if removing the yield() call from your code breaks
8679  * it, it's already broken.
8680  *
8681  * Typical broken usage is:
8682  *
8683  * while (!event)
8684  *	yield();
8685  *
8686  * where one assumes that yield() will let 'the other' process run that will
8687  * make event true. If the current task is a SCHED_FIFO task that will never
8688  * happen. Never use yield() as a progress guarantee!!
8689  *
8690  * If you want to use yield() to wait for something, use wait_event().
8691  * If you want to use yield() to be 'nice' for others, use cond_resched().
8692  * If you still want to use yield(), do not!
8693  */
8694 void __sched yield(void)
8695 {
8696 	set_current_state(TASK_RUNNING);
8697 	do_sched_yield();
8698 }
8699 EXPORT_SYMBOL(yield);
8700 
8701 /**
8702  * yield_to - yield the current processor to another thread in
8703  * your thread group, or accelerate that thread toward the
8704  * processor it's on.
8705  * @p: target task
8706  * @preempt: whether task preemption is allowed or not
8707  *
8708  * It's the caller's job to ensure that the target task struct
8709  * can't go away on us before we can do any checks.
8710  *
8711  * Return:
8712  *	true (>0) if we indeed boosted the target task.
8713  *	false (0) if we failed to boost the target.
8714  *	-ESRCH if there's no task to yield to.
8715  */
8716 int __sched yield_to(struct task_struct *p, bool preempt)
8717 {
8718 	struct task_struct *curr = current;
8719 	struct rq *rq, *p_rq;
8720 	unsigned long flags;
8721 	int yielded = 0;
8722 
8723 	local_irq_save(flags);
8724 	rq = this_rq();
8725 
8726 again:
8727 	p_rq = task_rq(p);
8728 	/*
8729 	 * If we're the only runnable task on the rq and target rq also
8730 	 * has only one task, there's absolutely no point in yielding.
8731 	 */
8732 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8733 		yielded = -ESRCH;
8734 		goto out_irq;
8735 	}
8736 
8737 	double_rq_lock(rq, p_rq);
8738 	if (task_rq(p) != p_rq) {
8739 		double_rq_unlock(rq, p_rq);
8740 		goto again;
8741 	}
8742 
8743 	if (!curr->sched_class->yield_to_task)
8744 		goto out_unlock;
8745 
8746 	if (curr->sched_class != p->sched_class)
8747 		goto out_unlock;
8748 
8749 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8750 		goto out_unlock;
8751 
8752 	yielded = curr->sched_class->yield_to_task(rq, p);
8753 	if (yielded) {
8754 		schedstat_inc(rq->yld_count);
8755 		/*
8756 		 * Make p's CPU reschedule; pick_next_entity takes care of
8757 		 * fairness.
8758 		 */
8759 		if (preempt && rq != p_rq)
8760 			resched_curr(p_rq);
8761 	}
8762 
8763 out_unlock:
8764 	double_rq_unlock(rq, p_rq);
8765 out_irq:
8766 	local_irq_restore(flags);
8767 
8768 	if (yielded > 0)
8769 		schedule();
8770 
8771 	return yielded;
8772 }
8773 EXPORT_SYMBOL_GPL(yield_to);
8774 
8775 int io_schedule_prepare(void)
8776 {
8777 	int old_iowait = current->in_iowait;
8778 
8779 	current->in_iowait = 1;
8780 	blk_flush_plug(current->plug, true);
8781 	return old_iowait;
8782 }
8783 
8784 void io_schedule_finish(int token)
8785 {
8786 	current->in_iowait = token;
8787 }
8788 
8789 /*
8790  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8791  * that process accounting knows that this is a task in IO wait state.
8792  */
8793 long __sched io_schedule_timeout(long timeout)
8794 {
8795 	int token;
8796 	long ret;
8797 
8798 	token = io_schedule_prepare();
8799 	ret = schedule_timeout(timeout);
8800 	io_schedule_finish(token);
8801 
8802 	return ret;
8803 }
8804 EXPORT_SYMBOL(io_schedule_timeout);
8805 
8806 void __sched io_schedule(void)
8807 {
8808 	int token;
8809 
8810 	token = io_schedule_prepare();
8811 	schedule();
8812 	io_schedule_finish(token);
8813 }
8814 EXPORT_SYMBOL(io_schedule);
8815 
8816 /**
8817  * sys_sched_get_priority_max - return maximum RT priority.
8818  * @policy: scheduling class.
8819  *
8820  * Return: On success, this syscall returns the maximum
8821  * rt_priority that can be used by a given scheduling class.
8822  * On failure, a negative error code is returned.
8823  */
8824 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8825 {
8826 	int ret = -EINVAL;
8827 
8828 	switch (policy) {
8829 	case SCHED_FIFO:
8830 	case SCHED_RR:
8831 		ret = MAX_RT_PRIO-1;
8832 		break;
8833 	case SCHED_DEADLINE:
8834 	case SCHED_NORMAL:
8835 	case SCHED_BATCH:
8836 	case SCHED_IDLE:
8837 		ret = 0;
8838 		break;
8839 	}
8840 	return ret;
8841 }
8842 
8843 /**
8844  * sys_sched_get_priority_min - return minimum RT priority.
8845  * @policy: scheduling class.
8846  *
8847  * Return: On success, this syscall returns the minimum
8848  * rt_priority that can be used by a given scheduling class.
8849  * On failure, a negative error code is returned.
8850  */
8851 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8852 {
8853 	int ret = -EINVAL;
8854 
8855 	switch (policy) {
8856 	case SCHED_FIFO:
8857 	case SCHED_RR:
8858 		ret = 1;
8859 		break;
8860 	case SCHED_DEADLINE:
8861 	case SCHED_NORMAL:
8862 	case SCHED_BATCH:
8863 	case SCHED_IDLE:
8864 		ret = 0;
8865 	}
8866 	return ret;
8867 }
8868 
8869 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8870 {
8871 	struct task_struct *p;
8872 	unsigned int time_slice;
8873 	struct rq_flags rf;
8874 	struct rq *rq;
8875 	int retval;
8876 
8877 	if (pid < 0)
8878 		return -EINVAL;
8879 
8880 	retval = -ESRCH;
8881 	rcu_read_lock();
8882 	p = find_process_by_pid(pid);
8883 	if (!p)
8884 		goto out_unlock;
8885 
8886 	retval = security_task_getscheduler(p);
8887 	if (retval)
8888 		goto out_unlock;
8889 
8890 	rq = task_rq_lock(p, &rf);
8891 	time_slice = 0;
8892 	if (p->sched_class->get_rr_interval)
8893 		time_slice = p->sched_class->get_rr_interval(rq, p);
8894 	task_rq_unlock(rq, p, &rf);
8895 
8896 	rcu_read_unlock();
8897 	jiffies_to_timespec64(time_slice, t);
8898 	return 0;
8899 
8900 out_unlock:
8901 	rcu_read_unlock();
8902 	return retval;
8903 }
8904 
8905 /**
8906  * sys_sched_rr_get_interval - return the default timeslice of a process.
8907  * @pid: pid of the process.
8908  * @interval: userspace pointer to the timeslice value.
8909  *
8910  * this syscall writes the default timeslice value of a given process
8911  * into the user-space timespec buffer. A value of '0' means infinity.
8912  *
8913  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8914  * an error code.
8915  */
8916 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8917 		struct __kernel_timespec __user *, interval)
8918 {
8919 	struct timespec64 t;
8920 	int retval = sched_rr_get_interval(pid, &t);
8921 
8922 	if (retval == 0)
8923 		retval = put_timespec64(&t, interval);
8924 
8925 	return retval;
8926 }
8927 
8928 #ifdef CONFIG_COMPAT_32BIT_TIME
8929 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8930 		struct old_timespec32 __user *, interval)
8931 {
8932 	struct timespec64 t;
8933 	int retval = sched_rr_get_interval(pid, &t);
8934 
8935 	if (retval == 0)
8936 		retval = put_old_timespec32(&t, interval);
8937 	return retval;
8938 }
8939 #endif
8940 
8941 void sched_show_task(struct task_struct *p)
8942 {
8943 	unsigned long free = 0;
8944 	int ppid;
8945 
8946 	if (!try_get_task_stack(p))
8947 		return;
8948 
8949 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8950 
8951 	if (task_is_running(p))
8952 		pr_cont("  running task    ");
8953 #ifdef CONFIG_DEBUG_STACK_USAGE
8954 	free = stack_not_used(p);
8955 #endif
8956 	ppid = 0;
8957 	rcu_read_lock();
8958 	if (pid_alive(p))
8959 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8960 	rcu_read_unlock();
8961 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8962 		free, task_pid_nr(p), ppid,
8963 		read_task_thread_flags(p));
8964 
8965 	print_worker_info(KERN_INFO, p);
8966 	print_stop_info(KERN_INFO, p);
8967 	show_stack(p, NULL, KERN_INFO);
8968 	put_task_stack(p);
8969 }
8970 EXPORT_SYMBOL_GPL(sched_show_task);
8971 
8972 static inline bool
8973 state_filter_match(unsigned long state_filter, struct task_struct *p)
8974 {
8975 	unsigned int state = READ_ONCE(p->__state);
8976 
8977 	/* no filter, everything matches */
8978 	if (!state_filter)
8979 		return true;
8980 
8981 	/* filter, but doesn't match */
8982 	if (!(state & state_filter))
8983 		return false;
8984 
8985 	/*
8986 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8987 	 * TASK_KILLABLE).
8988 	 */
8989 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8990 		return false;
8991 
8992 	return true;
8993 }
8994 
8995 
8996 void show_state_filter(unsigned int state_filter)
8997 {
8998 	struct task_struct *g, *p;
8999 
9000 	rcu_read_lock();
9001 	for_each_process_thread(g, p) {
9002 		/*
9003 		 * reset the NMI-timeout, listing all files on a slow
9004 		 * console might take a lot of time:
9005 		 * Also, reset softlockup watchdogs on all CPUs, because
9006 		 * another CPU might be blocked waiting for us to process
9007 		 * an IPI.
9008 		 */
9009 		touch_nmi_watchdog();
9010 		touch_all_softlockup_watchdogs();
9011 		if (state_filter_match(state_filter, p))
9012 			sched_show_task(p);
9013 	}
9014 
9015 #ifdef CONFIG_SCHED_DEBUG
9016 	if (!state_filter)
9017 		sysrq_sched_debug_show();
9018 #endif
9019 	rcu_read_unlock();
9020 	/*
9021 	 * Only show locks if all tasks are dumped:
9022 	 */
9023 	if (!state_filter)
9024 		debug_show_all_locks();
9025 }
9026 
9027 /**
9028  * init_idle - set up an idle thread for a given CPU
9029  * @idle: task in question
9030  * @cpu: CPU the idle task belongs to
9031  *
9032  * NOTE: this function does not set the idle thread's NEED_RESCHED
9033  * flag, to make booting more robust.
9034  */
9035 void __init init_idle(struct task_struct *idle, int cpu)
9036 {
9037 #ifdef CONFIG_SMP
9038 	struct affinity_context ac = (struct affinity_context) {
9039 		.new_mask  = cpumask_of(cpu),
9040 		.flags     = 0,
9041 	};
9042 #endif
9043 	struct rq *rq = cpu_rq(cpu);
9044 	unsigned long flags;
9045 
9046 	__sched_fork(0, idle);
9047 
9048 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9049 	raw_spin_rq_lock(rq);
9050 
9051 	idle->__state = TASK_RUNNING;
9052 	idle->se.exec_start = sched_clock();
9053 	/*
9054 	 * PF_KTHREAD should already be set at this point; regardless, make it
9055 	 * look like a proper per-CPU kthread.
9056 	 */
9057 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9058 	kthread_set_per_cpu(idle, cpu);
9059 
9060 #ifdef CONFIG_SMP
9061 	/*
9062 	 * It's possible that init_idle() gets called multiple times on a task,
9063 	 * in that case do_set_cpus_allowed() will not do the right thing.
9064 	 *
9065 	 * And since this is boot we can forgo the serialization.
9066 	 */
9067 	set_cpus_allowed_common(idle, &ac);
9068 #endif
9069 	/*
9070 	 * We're having a chicken and egg problem, even though we are
9071 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9072 	 * lockdep check in task_group() will fail.
9073 	 *
9074 	 * Similar case to sched_fork(). / Alternatively we could
9075 	 * use task_rq_lock() here and obtain the other rq->lock.
9076 	 *
9077 	 * Silence PROVE_RCU
9078 	 */
9079 	rcu_read_lock();
9080 	__set_task_cpu(idle, cpu);
9081 	rcu_read_unlock();
9082 
9083 	rq->idle = idle;
9084 	rcu_assign_pointer(rq->curr, idle);
9085 	idle->on_rq = TASK_ON_RQ_QUEUED;
9086 #ifdef CONFIG_SMP
9087 	idle->on_cpu = 1;
9088 #endif
9089 	raw_spin_rq_unlock(rq);
9090 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9091 
9092 	/* Set the preempt count _outside_ the spinlocks! */
9093 	init_idle_preempt_count(idle, cpu);
9094 
9095 	/*
9096 	 * The idle tasks have their own, simple scheduling class:
9097 	 */
9098 	idle->sched_class = &idle_sched_class;
9099 	ftrace_graph_init_idle_task(idle, cpu);
9100 	vtime_init_idle(idle, cpu);
9101 #ifdef CONFIG_SMP
9102 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9103 #endif
9104 }
9105 
9106 #ifdef CONFIG_SMP
9107 
9108 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9109 			      const struct cpumask *trial)
9110 {
9111 	int ret = 1;
9112 
9113 	if (cpumask_empty(cur))
9114 		return ret;
9115 
9116 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9117 
9118 	return ret;
9119 }
9120 
9121 int task_can_attach(struct task_struct *p,
9122 		    const struct cpumask *cs_effective_cpus)
9123 {
9124 	int ret = 0;
9125 
9126 	/*
9127 	 * Kthreads which disallow setaffinity shouldn't be moved
9128 	 * to a new cpuset; we don't want to change their CPU
9129 	 * affinity and isolating such threads by their set of
9130 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9131 	 * applicable for such threads.  This prevents checking for
9132 	 * success of set_cpus_allowed_ptr() on all attached tasks
9133 	 * before cpus_mask may be changed.
9134 	 */
9135 	if (p->flags & PF_NO_SETAFFINITY) {
9136 		ret = -EINVAL;
9137 		goto out;
9138 	}
9139 
9140 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9141 					      cs_effective_cpus)) {
9142 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9143 
9144 		if (unlikely(cpu >= nr_cpu_ids))
9145 			return -EINVAL;
9146 		ret = dl_cpu_busy(cpu, p);
9147 	}
9148 
9149 out:
9150 	return ret;
9151 }
9152 
9153 bool sched_smp_initialized __read_mostly;
9154 
9155 #ifdef CONFIG_NUMA_BALANCING
9156 /* Migrate current task p to target_cpu */
9157 int migrate_task_to(struct task_struct *p, int target_cpu)
9158 {
9159 	struct migration_arg arg = { p, target_cpu };
9160 	int curr_cpu = task_cpu(p);
9161 
9162 	if (curr_cpu == target_cpu)
9163 		return 0;
9164 
9165 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9166 		return -EINVAL;
9167 
9168 	/* TODO: This is not properly updating schedstats */
9169 
9170 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9171 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9172 }
9173 
9174 /*
9175  * Requeue a task on a given node and accurately track the number of NUMA
9176  * tasks on the runqueues
9177  */
9178 void sched_setnuma(struct task_struct *p, int nid)
9179 {
9180 	bool queued, running;
9181 	struct rq_flags rf;
9182 	struct rq *rq;
9183 
9184 	rq = task_rq_lock(p, &rf);
9185 	queued = task_on_rq_queued(p);
9186 	running = task_current(rq, p);
9187 
9188 	if (queued)
9189 		dequeue_task(rq, p, DEQUEUE_SAVE);
9190 	if (running)
9191 		put_prev_task(rq, p);
9192 
9193 	p->numa_preferred_nid = nid;
9194 
9195 	if (queued)
9196 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9197 	if (running)
9198 		set_next_task(rq, p);
9199 	task_rq_unlock(rq, p, &rf);
9200 }
9201 #endif /* CONFIG_NUMA_BALANCING */
9202 
9203 #ifdef CONFIG_HOTPLUG_CPU
9204 /*
9205  * Ensure that the idle task is using init_mm right before its CPU goes
9206  * offline.
9207  */
9208 void idle_task_exit(void)
9209 {
9210 	struct mm_struct *mm = current->active_mm;
9211 
9212 	BUG_ON(cpu_online(smp_processor_id()));
9213 	BUG_ON(current != this_rq()->idle);
9214 
9215 	if (mm != &init_mm) {
9216 		switch_mm(mm, &init_mm, current);
9217 		finish_arch_post_lock_switch();
9218 	}
9219 
9220 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9221 }
9222 
9223 static int __balance_push_cpu_stop(void *arg)
9224 {
9225 	struct task_struct *p = arg;
9226 	struct rq *rq = this_rq();
9227 	struct rq_flags rf;
9228 	int cpu;
9229 
9230 	raw_spin_lock_irq(&p->pi_lock);
9231 	rq_lock(rq, &rf);
9232 
9233 	update_rq_clock(rq);
9234 
9235 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9236 		cpu = select_fallback_rq(rq->cpu, p);
9237 		rq = __migrate_task(rq, &rf, p, cpu);
9238 	}
9239 
9240 	rq_unlock(rq, &rf);
9241 	raw_spin_unlock_irq(&p->pi_lock);
9242 
9243 	put_task_struct(p);
9244 
9245 	return 0;
9246 }
9247 
9248 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9249 
9250 /*
9251  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9252  *
9253  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9254  * effective when the hotplug motion is down.
9255  */
9256 static void balance_push(struct rq *rq)
9257 {
9258 	struct task_struct *push_task = rq->curr;
9259 
9260 	lockdep_assert_rq_held(rq);
9261 
9262 	/*
9263 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9264 	 */
9265 	rq->balance_callback = &balance_push_callback;
9266 
9267 	/*
9268 	 * Only active while going offline and when invoked on the outgoing
9269 	 * CPU.
9270 	 */
9271 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9272 		return;
9273 
9274 	/*
9275 	 * Both the cpu-hotplug and stop task are in this case and are
9276 	 * required to complete the hotplug process.
9277 	 */
9278 	if (kthread_is_per_cpu(push_task) ||
9279 	    is_migration_disabled(push_task)) {
9280 
9281 		/*
9282 		 * If this is the idle task on the outgoing CPU try to wake
9283 		 * up the hotplug control thread which might wait for the
9284 		 * last task to vanish. The rcuwait_active() check is
9285 		 * accurate here because the waiter is pinned on this CPU
9286 		 * and can't obviously be running in parallel.
9287 		 *
9288 		 * On RT kernels this also has to check whether there are
9289 		 * pinned and scheduled out tasks on the runqueue. They
9290 		 * need to leave the migrate disabled section first.
9291 		 */
9292 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9293 		    rcuwait_active(&rq->hotplug_wait)) {
9294 			raw_spin_rq_unlock(rq);
9295 			rcuwait_wake_up(&rq->hotplug_wait);
9296 			raw_spin_rq_lock(rq);
9297 		}
9298 		return;
9299 	}
9300 
9301 	get_task_struct(push_task);
9302 	/*
9303 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9304 	 * Both preemption and IRQs are still disabled.
9305 	 */
9306 	raw_spin_rq_unlock(rq);
9307 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9308 			    this_cpu_ptr(&push_work));
9309 	/*
9310 	 * At this point need_resched() is true and we'll take the loop in
9311 	 * schedule(). The next pick is obviously going to be the stop task
9312 	 * which kthread_is_per_cpu() and will push this task away.
9313 	 */
9314 	raw_spin_rq_lock(rq);
9315 }
9316 
9317 static void balance_push_set(int cpu, bool on)
9318 {
9319 	struct rq *rq = cpu_rq(cpu);
9320 	struct rq_flags rf;
9321 
9322 	rq_lock_irqsave(rq, &rf);
9323 	if (on) {
9324 		WARN_ON_ONCE(rq->balance_callback);
9325 		rq->balance_callback = &balance_push_callback;
9326 	} else if (rq->balance_callback == &balance_push_callback) {
9327 		rq->balance_callback = NULL;
9328 	}
9329 	rq_unlock_irqrestore(rq, &rf);
9330 }
9331 
9332 /*
9333  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9334  * inactive. All tasks which are not per CPU kernel threads are either
9335  * pushed off this CPU now via balance_push() or placed on a different CPU
9336  * during wakeup. Wait until the CPU is quiescent.
9337  */
9338 static void balance_hotplug_wait(void)
9339 {
9340 	struct rq *rq = this_rq();
9341 
9342 	rcuwait_wait_event(&rq->hotplug_wait,
9343 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9344 			   TASK_UNINTERRUPTIBLE);
9345 }
9346 
9347 #else
9348 
9349 static inline void balance_push(struct rq *rq)
9350 {
9351 }
9352 
9353 static inline void balance_push_set(int cpu, bool on)
9354 {
9355 }
9356 
9357 static inline void balance_hotplug_wait(void)
9358 {
9359 }
9360 
9361 #endif /* CONFIG_HOTPLUG_CPU */
9362 
9363 void set_rq_online(struct rq *rq)
9364 {
9365 	if (!rq->online) {
9366 		const struct sched_class *class;
9367 
9368 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9369 		rq->online = 1;
9370 
9371 		for_each_class(class) {
9372 			if (class->rq_online)
9373 				class->rq_online(rq);
9374 		}
9375 	}
9376 }
9377 
9378 void set_rq_offline(struct rq *rq)
9379 {
9380 	if (rq->online) {
9381 		const struct sched_class *class;
9382 
9383 		for_each_class(class) {
9384 			if (class->rq_offline)
9385 				class->rq_offline(rq);
9386 		}
9387 
9388 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9389 		rq->online = 0;
9390 	}
9391 }
9392 
9393 /*
9394  * used to mark begin/end of suspend/resume:
9395  */
9396 static int num_cpus_frozen;
9397 
9398 /*
9399  * Update cpusets according to cpu_active mask.  If cpusets are
9400  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9401  * around partition_sched_domains().
9402  *
9403  * If we come here as part of a suspend/resume, don't touch cpusets because we
9404  * want to restore it back to its original state upon resume anyway.
9405  */
9406 static void cpuset_cpu_active(void)
9407 {
9408 	if (cpuhp_tasks_frozen) {
9409 		/*
9410 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9411 		 * resume sequence. As long as this is not the last online
9412 		 * operation in the resume sequence, just build a single sched
9413 		 * domain, ignoring cpusets.
9414 		 */
9415 		partition_sched_domains(1, NULL, NULL);
9416 		if (--num_cpus_frozen)
9417 			return;
9418 		/*
9419 		 * This is the last CPU online operation. So fall through and
9420 		 * restore the original sched domains by considering the
9421 		 * cpuset configurations.
9422 		 */
9423 		cpuset_force_rebuild();
9424 	}
9425 	cpuset_update_active_cpus();
9426 }
9427 
9428 static int cpuset_cpu_inactive(unsigned int cpu)
9429 {
9430 	if (!cpuhp_tasks_frozen) {
9431 		int ret = dl_cpu_busy(cpu, NULL);
9432 
9433 		if (ret)
9434 			return ret;
9435 		cpuset_update_active_cpus();
9436 	} else {
9437 		num_cpus_frozen++;
9438 		partition_sched_domains(1, NULL, NULL);
9439 	}
9440 	return 0;
9441 }
9442 
9443 int sched_cpu_activate(unsigned int cpu)
9444 {
9445 	struct rq *rq = cpu_rq(cpu);
9446 	struct rq_flags rf;
9447 
9448 	/*
9449 	 * Clear the balance_push callback and prepare to schedule
9450 	 * regular tasks.
9451 	 */
9452 	balance_push_set(cpu, false);
9453 
9454 #ifdef CONFIG_SCHED_SMT
9455 	/*
9456 	 * When going up, increment the number of cores with SMT present.
9457 	 */
9458 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9459 		static_branch_inc_cpuslocked(&sched_smt_present);
9460 #endif
9461 	set_cpu_active(cpu, true);
9462 
9463 	if (sched_smp_initialized) {
9464 		sched_update_numa(cpu, true);
9465 		sched_domains_numa_masks_set(cpu);
9466 		cpuset_cpu_active();
9467 	}
9468 
9469 	/*
9470 	 * Put the rq online, if not already. This happens:
9471 	 *
9472 	 * 1) In the early boot process, because we build the real domains
9473 	 *    after all CPUs have been brought up.
9474 	 *
9475 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9476 	 *    domains.
9477 	 */
9478 	rq_lock_irqsave(rq, &rf);
9479 	if (rq->rd) {
9480 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9481 		set_rq_online(rq);
9482 	}
9483 	rq_unlock_irqrestore(rq, &rf);
9484 
9485 	return 0;
9486 }
9487 
9488 int sched_cpu_deactivate(unsigned int cpu)
9489 {
9490 	struct rq *rq = cpu_rq(cpu);
9491 	struct rq_flags rf;
9492 	int ret;
9493 
9494 	/*
9495 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9496 	 * load balancing when not active
9497 	 */
9498 	nohz_balance_exit_idle(rq);
9499 
9500 	set_cpu_active(cpu, false);
9501 
9502 	/*
9503 	 * From this point forward, this CPU will refuse to run any task that
9504 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9505 	 * push those tasks away until this gets cleared, see
9506 	 * sched_cpu_dying().
9507 	 */
9508 	balance_push_set(cpu, true);
9509 
9510 	/*
9511 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9512 	 * preempt-disabled and RCU users of this state to go away such that
9513 	 * all new such users will observe it.
9514 	 *
9515 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9516 	 * ttwu_queue_cond() and is_cpu_allowed().
9517 	 *
9518 	 * Do sync before park smpboot threads to take care the rcu boost case.
9519 	 */
9520 	synchronize_rcu();
9521 
9522 	rq_lock_irqsave(rq, &rf);
9523 	if (rq->rd) {
9524 		update_rq_clock(rq);
9525 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9526 		set_rq_offline(rq);
9527 	}
9528 	rq_unlock_irqrestore(rq, &rf);
9529 
9530 #ifdef CONFIG_SCHED_SMT
9531 	/*
9532 	 * When going down, decrement the number of cores with SMT present.
9533 	 */
9534 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9535 		static_branch_dec_cpuslocked(&sched_smt_present);
9536 
9537 	sched_core_cpu_deactivate(cpu);
9538 #endif
9539 
9540 	if (!sched_smp_initialized)
9541 		return 0;
9542 
9543 	sched_update_numa(cpu, false);
9544 	ret = cpuset_cpu_inactive(cpu);
9545 	if (ret) {
9546 		balance_push_set(cpu, false);
9547 		set_cpu_active(cpu, true);
9548 		sched_update_numa(cpu, true);
9549 		return ret;
9550 	}
9551 	sched_domains_numa_masks_clear(cpu);
9552 	return 0;
9553 }
9554 
9555 static void sched_rq_cpu_starting(unsigned int cpu)
9556 {
9557 	struct rq *rq = cpu_rq(cpu);
9558 
9559 	rq->calc_load_update = calc_load_update;
9560 	update_max_interval();
9561 }
9562 
9563 int sched_cpu_starting(unsigned int cpu)
9564 {
9565 	sched_core_cpu_starting(cpu);
9566 	sched_rq_cpu_starting(cpu);
9567 	sched_tick_start(cpu);
9568 	return 0;
9569 }
9570 
9571 #ifdef CONFIG_HOTPLUG_CPU
9572 
9573 /*
9574  * Invoked immediately before the stopper thread is invoked to bring the
9575  * CPU down completely. At this point all per CPU kthreads except the
9576  * hotplug thread (current) and the stopper thread (inactive) have been
9577  * either parked or have been unbound from the outgoing CPU. Ensure that
9578  * any of those which might be on the way out are gone.
9579  *
9580  * If after this point a bound task is being woken on this CPU then the
9581  * responsible hotplug callback has failed to do it's job.
9582  * sched_cpu_dying() will catch it with the appropriate fireworks.
9583  */
9584 int sched_cpu_wait_empty(unsigned int cpu)
9585 {
9586 	balance_hotplug_wait();
9587 	return 0;
9588 }
9589 
9590 /*
9591  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9592  * might have. Called from the CPU stopper task after ensuring that the
9593  * stopper is the last running task on the CPU, so nr_active count is
9594  * stable. We need to take the teardown thread which is calling this into
9595  * account, so we hand in adjust = 1 to the load calculation.
9596  *
9597  * Also see the comment "Global load-average calculations".
9598  */
9599 static void calc_load_migrate(struct rq *rq)
9600 {
9601 	long delta = calc_load_fold_active(rq, 1);
9602 
9603 	if (delta)
9604 		atomic_long_add(delta, &calc_load_tasks);
9605 }
9606 
9607 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9608 {
9609 	struct task_struct *g, *p;
9610 	int cpu = cpu_of(rq);
9611 
9612 	lockdep_assert_rq_held(rq);
9613 
9614 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9615 	for_each_process_thread(g, p) {
9616 		if (task_cpu(p) != cpu)
9617 			continue;
9618 
9619 		if (!task_on_rq_queued(p))
9620 			continue;
9621 
9622 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9623 	}
9624 }
9625 
9626 int sched_cpu_dying(unsigned int cpu)
9627 {
9628 	struct rq *rq = cpu_rq(cpu);
9629 	struct rq_flags rf;
9630 
9631 	/* Handle pending wakeups and then migrate everything off */
9632 	sched_tick_stop(cpu);
9633 
9634 	rq_lock_irqsave(rq, &rf);
9635 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9636 		WARN(true, "Dying CPU not properly vacated!");
9637 		dump_rq_tasks(rq, KERN_WARNING);
9638 	}
9639 	rq_unlock_irqrestore(rq, &rf);
9640 
9641 	calc_load_migrate(rq);
9642 	update_max_interval();
9643 	hrtick_clear(rq);
9644 	sched_core_cpu_dying(cpu);
9645 	return 0;
9646 }
9647 #endif
9648 
9649 void __init sched_init_smp(void)
9650 {
9651 	sched_init_numa(NUMA_NO_NODE);
9652 
9653 	/*
9654 	 * There's no userspace yet to cause hotplug operations; hence all the
9655 	 * CPU masks are stable and all blatant races in the below code cannot
9656 	 * happen.
9657 	 */
9658 	mutex_lock(&sched_domains_mutex);
9659 	sched_init_domains(cpu_active_mask);
9660 	mutex_unlock(&sched_domains_mutex);
9661 
9662 	/* Move init over to a non-isolated CPU */
9663 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9664 		BUG();
9665 	current->flags &= ~PF_NO_SETAFFINITY;
9666 	sched_init_granularity();
9667 
9668 	init_sched_rt_class();
9669 	init_sched_dl_class();
9670 
9671 	sched_smp_initialized = true;
9672 }
9673 
9674 static int __init migration_init(void)
9675 {
9676 	sched_cpu_starting(smp_processor_id());
9677 	return 0;
9678 }
9679 early_initcall(migration_init);
9680 
9681 #else
9682 void __init sched_init_smp(void)
9683 {
9684 	sched_init_granularity();
9685 }
9686 #endif /* CONFIG_SMP */
9687 
9688 int in_sched_functions(unsigned long addr)
9689 {
9690 	return in_lock_functions(addr) ||
9691 		(addr >= (unsigned long)__sched_text_start
9692 		&& addr < (unsigned long)__sched_text_end);
9693 }
9694 
9695 #ifdef CONFIG_CGROUP_SCHED
9696 /*
9697  * Default task group.
9698  * Every task in system belongs to this group at bootup.
9699  */
9700 struct task_group root_task_group;
9701 LIST_HEAD(task_groups);
9702 
9703 /* Cacheline aligned slab cache for task_group */
9704 static struct kmem_cache *task_group_cache __read_mostly;
9705 #endif
9706 
9707 void __init sched_init(void)
9708 {
9709 	unsigned long ptr = 0;
9710 	int i;
9711 
9712 	/* Make sure the linker didn't screw up */
9713 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9714 	       &fair_sched_class != &rt_sched_class + 1 ||
9715 	       &rt_sched_class   != &dl_sched_class + 1);
9716 #ifdef CONFIG_SMP
9717 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9718 #endif
9719 
9720 	wait_bit_init();
9721 
9722 #ifdef CONFIG_FAIR_GROUP_SCHED
9723 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9724 #endif
9725 #ifdef CONFIG_RT_GROUP_SCHED
9726 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9727 #endif
9728 	if (ptr) {
9729 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9730 
9731 #ifdef CONFIG_FAIR_GROUP_SCHED
9732 		root_task_group.se = (struct sched_entity **)ptr;
9733 		ptr += nr_cpu_ids * sizeof(void **);
9734 
9735 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9736 		ptr += nr_cpu_ids * sizeof(void **);
9737 
9738 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9739 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9740 #endif /* CONFIG_FAIR_GROUP_SCHED */
9741 #ifdef CONFIG_RT_GROUP_SCHED
9742 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9743 		ptr += nr_cpu_ids * sizeof(void **);
9744 
9745 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9746 		ptr += nr_cpu_ids * sizeof(void **);
9747 
9748 #endif /* CONFIG_RT_GROUP_SCHED */
9749 	}
9750 
9751 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9752 
9753 #ifdef CONFIG_SMP
9754 	init_defrootdomain();
9755 #endif
9756 
9757 #ifdef CONFIG_RT_GROUP_SCHED
9758 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9759 			global_rt_period(), global_rt_runtime());
9760 #endif /* CONFIG_RT_GROUP_SCHED */
9761 
9762 #ifdef CONFIG_CGROUP_SCHED
9763 	task_group_cache = KMEM_CACHE(task_group, 0);
9764 
9765 	list_add(&root_task_group.list, &task_groups);
9766 	INIT_LIST_HEAD(&root_task_group.children);
9767 	INIT_LIST_HEAD(&root_task_group.siblings);
9768 	autogroup_init(&init_task);
9769 #endif /* CONFIG_CGROUP_SCHED */
9770 
9771 	for_each_possible_cpu(i) {
9772 		struct rq *rq;
9773 
9774 		rq = cpu_rq(i);
9775 		raw_spin_lock_init(&rq->__lock);
9776 		rq->nr_running = 0;
9777 		rq->calc_load_active = 0;
9778 		rq->calc_load_update = jiffies + LOAD_FREQ;
9779 		init_cfs_rq(&rq->cfs);
9780 		init_rt_rq(&rq->rt);
9781 		init_dl_rq(&rq->dl);
9782 #ifdef CONFIG_FAIR_GROUP_SCHED
9783 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9784 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9785 		/*
9786 		 * How much CPU bandwidth does root_task_group get?
9787 		 *
9788 		 * In case of task-groups formed thr' the cgroup filesystem, it
9789 		 * gets 100% of the CPU resources in the system. This overall
9790 		 * system CPU resource is divided among the tasks of
9791 		 * root_task_group and its child task-groups in a fair manner,
9792 		 * based on each entity's (task or task-group's) weight
9793 		 * (se->load.weight).
9794 		 *
9795 		 * In other words, if root_task_group has 10 tasks of weight
9796 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9797 		 * then A0's share of the CPU resource is:
9798 		 *
9799 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9800 		 *
9801 		 * We achieve this by letting root_task_group's tasks sit
9802 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9803 		 */
9804 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9805 #endif /* CONFIG_FAIR_GROUP_SCHED */
9806 
9807 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9808 #ifdef CONFIG_RT_GROUP_SCHED
9809 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9810 #endif
9811 #ifdef CONFIG_SMP
9812 		rq->sd = NULL;
9813 		rq->rd = NULL;
9814 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9815 		rq->balance_callback = &balance_push_callback;
9816 		rq->active_balance = 0;
9817 		rq->next_balance = jiffies;
9818 		rq->push_cpu = 0;
9819 		rq->cpu = i;
9820 		rq->online = 0;
9821 		rq->idle_stamp = 0;
9822 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9823 		rq->wake_stamp = jiffies;
9824 		rq->wake_avg_idle = rq->avg_idle;
9825 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9826 
9827 		INIT_LIST_HEAD(&rq->cfs_tasks);
9828 
9829 		rq_attach_root(rq, &def_root_domain);
9830 #ifdef CONFIG_NO_HZ_COMMON
9831 		rq->last_blocked_load_update_tick = jiffies;
9832 		atomic_set(&rq->nohz_flags, 0);
9833 
9834 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9835 #endif
9836 #ifdef CONFIG_HOTPLUG_CPU
9837 		rcuwait_init(&rq->hotplug_wait);
9838 #endif
9839 #endif /* CONFIG_SMP */
9840 		hrtick_rq_init(rq);
9841 		atomic_set(&rq->nr_iowait, 0);
9842 
9843 #ifdef CONFIG_SCHED_CORE
9844 		rq->core = rq;
9845 		rq->core_pick = NULL;
9846 		rq->core_enabled = 0;
9847 		rq->core_tree = RB_ROOT;
9848 		rq->core_forceidle_count = 0;
9849 		rq->core_forceidle_occupation = 0;
9850 		rq->core_forceidle_start = 0;
9851 
9852 		rq->core_cookie = 0UL;
9853 #endif
9854 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9855 	}
9856 
9857 	set_load_weight(&init_task, false);
9858 
9859 	/*
9860 	 * The boot idle thread does lazy MMU switching as well:
9861 	 */
9862 	mmgrab(&init_mm);
9863 	enter_lazy_tlb(&init_mm, current);
9864 
9865 	/*
9866 	 * The idle task doesn't need the kthread struct to function, but it
9867 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9868 	 * if we want to avoid special-casing it in code that deals with per-CPU
9869 	 * kthreads.
9870 	 */
9871 	WARN_ON(!set_kthread_struct(current));
9872 
9873 	/*
9874 	 * Make us the idle thread. Technically, schedule() should not be
9875 	 * called from this thread, however somewhere below it might be,
9876 	 * but because we are the idle thread, we just pick up running again
9877 	 * when this runqueue becomes "idle".
9878 	 */
9879 	init_idle(current, smp_processor_id());
9880 
9881 	calc_load_update = jiffies + LOAD_FREQ;
9882 
9883 #ifdef CONFIG_SMP
9884 	idle_thread_set_boot_cpu();
9885 	balance_push_set(smp_processor_id(), false);
9886 #endif
9887 	init_sched_fair_class();
9888 
9889 	psi_init();
9890 
9891 	init_uclamp();
9892 
9893 	preempt_dynamic_init();
9894 
9895 	scheduler_running = 1;
9896 }
9897 
9898 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9899 
9900 void __might_sleep(const char *file, int line)
9901 {
9902 	unsigned int state = get_current_state();
9903 	/*
9904 	 * Blocking primitives will set (and therefore destroy) current->state,
9905 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9906 	 * otherwise we will destroy state.
9907 	 */
9908 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9909 			"do not call blocking ops when !TASK_RUNNING; "
9910 			"state=%x set at [<%p>] %pS\n", state,
9911 			(void *)current->task_state_change,
9912 			(void *)current->task_state_change);
9913 
9914 	__might_resched(file, line, 0);
9915 }
9916 EXPORT_SYMBOL(__might_sleep);
9917 
9918 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9919 {
9920 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9921 		return;
9922 
9923 	if (preempt_count() == preempt_offset)
9924 		return;
9925 
9926 	pr_err("Preemption disabled at:");
9927 	print_ip_sym(KERN_ERR, ip);
9928 }
9929 
9930 static inline bool resched_offsets_ok(unsigned int offsets)
9931 {
9932 	unsigned int nested = preempt_count();
9933 
9934 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9935 
9936 	return nested == offsets;
9937 }
9938 
9939 void __might_resched(const char *file, int line, unsigned int offsets)
9940 {
9941 	/* Ratelimiting timestamp: */
9942 	static unsigned long prev_jiffy;
9943 
9944 	unsigned long preempt_disable_ip;
9945 
9946 	/* WARN_ON_ONCE() by default, no rate limit required: */
9947 	rcu_sleep_check();
9948 
9949 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9950 	     !is_idle_task(current) && !current->non_block_count) ||
9951 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9952 	    oops_in_progress)
9953 		return;
9954 
9955 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9956 		return;
9957 	prev_jiffy = jiffies;
9958 
9959 	/* Save this before calling printk(), since that will clobber it: */
9960 	preempt_disable_ip = get_preempt_disable_ip(current);
9961 
9962 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9963 	       file, line);
9964 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9965 	       in_atomic(), irqs_disabled(), current->non_block_count,
9966 	       current->pid, current->comm);
9967 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9968 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9969 
9970 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9971 		pr_err("RCU nest depth: %d, expected: %u\n",
9972 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9973 	}
9974 
9975 	if (task_stack_end_corrupted(current))
9976 		pr_emerg("Thread overran stack, or stack corrupted\n");
9977 
9978 	debug_show_held_locks(current);
9979 	if (irqs_disabled())
9980 		print_irqtrace_events(current);
9981 
9982 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9983 				 preempt_disable_ip);
9984 
9985 	dump_stack();
9986 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9987 }
9988 EXPORT_SYMBOL(__might_resched);
9989 
9990 void __cant_sleep(const char *file, int line, int preempt_offset)
9991 {
9992 	static unsigned long prev_jiffy;
9993 
9994 	if (irqs_disabled())
9995 		return;
9996 
9997 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9998 		return;
9999 
10000 	if (preempt_count() > preempt_offset)
10001 		return;
10002 
10003 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10004 		return;
10005 	prev_jiffy = jiffies;
10006 
10007 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10008 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10009 			in_atomic(), irqs_disabled(),
10010 			current->pid, current->comm);
10011 
10012 	debug_show_held_locks(current);
10013 	dump_stack();
10014 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10015 }
10016 EXPORT_SYMBOL_GPL(__cant_sleep);
10017 
10018 #ifdef CONFIG_SMP
10019 void __cant_migrate(const char *file, int line)
10020 {
10021 	static unsigned long prev_jiffy;
10022 
10023 	if (irqs_disabled())
10024 		return;
10025 
10026 	if (is_migration_disabled(current))
10027 		return;
10028 
10029 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10030 		return;
10031 
10032 	if (preempt_count() > 0)
10033 		return;
10034 
10035 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10036 		return;
10037 	prev_jiffy = jiffies;
10038 
10039 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10040 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10041 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10042 	       current->pid, current->comm);
10043 
10044 	debug_show_held_locks(current);
10045 	dump_stack();
10046 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10047 }
10048 EXPORT_SYMBOL_GPL(__cant_migrate);
10049 #endif
10050 #endif
10051 
10052 #ifdef CONFIG_MAGIC_SYSRQ
10053 void normalize_rt_tasks(void)
10054 {
10055 	struct task_struct *g, *p;
10056 	struct sched_attr attr = {
10057 		.sched_policy = SCHED_NORMAL,
10058 	};
10059 
10060 	read_lock(&tasklist_lock);
10061 	for_each_process_thread(g, p) {
10062 		/*
10063 		 * Only normalize user tasks:
10064 		 */
10065 		if (p->flags & PF_KTHREAD)
10066 			continue;
10067 
10068 		p->se.exec_start = 0;
10069 		schedstat_set(p->stats.wait_start,  0);
10070 		schedstat_set(p->stats.sleep_start, 0);
10071 		schedstat_set(p->stats.block_start, 0);
10072 
10073 		if (!dl_task(p) && !rt_task(p)) {
10074 			/*
10075 			 * Renice negative nice level userspace
10076 			 * tasks back to 0:
10077 			 */
10078 			if (task_nice(p) < 0)
10079 				set_user_nice(p, 0);
10080 			continue;
10081 		}
10082 
10083 		__sched_setscheduler(p, &attr, false, false);
10084 	}
10085 	read_unlock(&tasklist_lock);
10086 }
10087 
10088 #endif /* CONFIG_MAGIC_SYSRQ */
10089 
10090 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10091 /*
10092  * These functions are only useful for the IA64 MCA handling, or kdb.
10093  *
10094  * They can only be called when the whole system has been
10095  * stopped - every CPU needs to be quiescent, and no scheduling
10096  * activity can take place. Using them for anything else would
10097  * be a serious bug, and as a result, they aren't even visible
10098  * under any other configuration.
10099  */
10100 
10101 /**
10102  * curr_task - return the current task for a given CPU.
10103  * @cpu: the processor in question.
10104  *
10105  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10106  *
10107  * Return: The current task for @cpu.
10108  */
10109 struct task_struct *curr_task(int cpu)
10110 {
10111 	return cpu_curr(cpu);
10112 }
10113 
10114 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10115 
10116 #ifdef CONFIG_IA64
10117 /**
10118  * ia64_set_curr_task - set the current task for a given CPU.
10119  * @cpu: the processor in question.
10120  * @p: the task pointer to set.
10121  *
10122  * Description: This function must only be used when non-maskable interrupts
10123  * are serviced on a separate stack. It allows the architecture to switch the
10124  * notion of the current task on a CPU in a non-blocking manner. This function
10125  * must be called with all CPU's synchronized, and interrupts disabled, the
10126  * and caller must save the original value of the current task (see
10127  * curr_task() above) and restore that value before reenabling interrupts and
10128  * re-starting the system.
10129  *
10130  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10131  */
10132 void ia64_set_curr_task(int cpu, struct task_struct *p)
10133 {
10134 	cpu_curr(cpu) = p;
10135 }
10136 
10137 #endif
10138 
10139 #ifdef CONFIG_CGROUP_SCHED
10140 /* task_group_lock serializes the addition/removal of task groups */
10141 static DEFINE_SPINLOCK(task_group_lock);
10142 
10143 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10144 					    struct task_group *parent)
10145 {
10146 #ifdef CONFIG_UCLAMP_TASK_GROUP
10147 	enum uclamp_id clamp_id;
10148 
10149 	for_each_clamp_id(clamp_id) {
10150 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10151 			      uclamp_none(clamp_id), false);
10152 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10153 	}
10154 #endif
10155 }
10156 
10157 static void sched_free_group(struct task_group *tg)
10158 {
10159 	free_fair_sched_group(tg);
10160 	free_rt_sched_group(tg);
10161 	autogroup_free(tg);
10162 	kmem_cache_free(task_group_cache, tg);
10163 }
10164 
10165 static void sched_free_group_rcu(struct rcu_head *rcu)
10166 {
10167 	sched_free_group(container_of(rcu, struct task_group, rcu));
10168 }
10169 
10170 static void sched_unregister_group(struct task_group *tg)
10171 {
10172 	unregister_fair_sched_group(tg);
10173 	unregister_rt_sched_group(tg);
10174 	/*
10175 	 * We have to wait for yet another RCU grace period to expire, as
10176 	 * print_cfs_stats() might run concurrently.
10177 	 */
10178 	call_rcu(&tg->rcu, sched_free_group_rcu);
10179 }
10180 
10181 /* allocate runqueue etc for a new task group */
10182 struct task_group *sched_create_group(struct task_group *parent)
10183 {
10184 	struct task_group *tg;
10185 
10186 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10187 	if (!tg)
10188 		return ERR_PTR(-ENOMEM);
10189 
10190 	if (!alloc_fair_sched_group(tg, parent))
10191 		goto err;
10192 
10193 	if (!alloc_rt_sched_group(tg, parent))
10194 		goto err;
10195 
10196 	alloc_uclamp_sched_group(tg, parent);
10197 
10198 	return tg;
10199 
10200 err:
10201 	sched_free_group(tg);
10202 	return ERR_PTR(-ENOMEM);
10203 }
10204 
10205 void sched_online_group(struct task_group *tg, struct task_group *parent)
10206 {
10207 	unsigned long flags;
10208 
10209 	spin_lock_irqsave(&task_group_lock, flags);
10210 	list_add_rcu(&tg->list, &task_groups);
10211 
10212 	/* Root should already exist: */
10213 	WARN_ON(!parent);
10214 
10215 	tg->parent = parent;
10216 	INIT_LIST_HEAD(&tg->children);
10217 	list_add_rcu(&tg->siblings, &parent->children);
10218 	spin_unlock_irqrestore(&task_group_lock, flags);
10219 
10220 	online_fair_sched_group(tg);
10221 }
10222 
10223 /* rcu callback to free various structures associated with a task group */
10224 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10225 {
10226 	/* Now it should be safe to free those cfs_rqs: */
10227 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10228 }
10229 
10230 void sched_destroy_group(struct task_group *tg)
10231 {
10232 	/* Wait for possible concurrent references to cfs_rqs complete: */
10233 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10234 }
10235 
10236 void sched_release_group(struct task_group *tg)
10237 {
10238 	unsigned long flags;
10239 
10240 	/*
10241 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10242 	 * sched_cfs_period_timer()).
10243 	 *
10244 	 * For this to be effective, we have to wait for all pending users of
10245 	 * this task group to leave their RCU critical section to ensure no new
10246 	 * user will see our dying task group any more. Specifically ensure
10247 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10248 	 *
10249 	 * We therefore defer calling unregister_fair_sched_group() to
10250 	 * sched_unregister_group() which is guarantied to get called only after the
10251 	 * current RCU grace period has expired.
10252 	 */
10253 	spin_lock_irqsave(&task_group_lock, flags);
10254 	list_del_rcu(&tg->list);
10255 	list_del_rcu(&tg->siblings);
10256 	spin_unlock_irqrestore(&task_group_lock, flags);
10257 }
10258 
10259 static void sched_change_group(struct task_struct *tsk)
10260 {
10261 	struct task_group *tg;
10262 
10263 	/*
10264 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10265 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10266 	 * to prevent lockdep warnings.
10267 	 */
10268 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10269 			  struct task_group, css);
10270 	tg = autogroup_task_group(tsk, tg);
10271 	tsk->sched_task_group = tg;
10272 
10273 #ifdef CONFIG_FAIR_GROUP_SCHED
10274 	if (tsk->sched_class->task_change_group)
10275 		tsk->sched_class->task_change_group(tsk);
10276 	else
10277 #endif
10278 		set_task_rq(tsk, task_cpu(tsk));
10279 }
10280 
10281 /*
10282  * Change task's runqueue when it moves between groups.
10283  *
10284  * The caller of this function should have put the task in its new group by
10285  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10286  * its new group.
10287  */
10288 void sched_move_task(struct task_struct *tsk)
10289 {
10290 	int queued, running, queue_flags =
10291 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10292 	struct rq_flags rf;
10293 	struct rq *rq;
10294 
10295 	rq = task_rq_lock(tsk, &rf);
10296 	update_rq_clock(rq);
10297 
10298 	running = task_current(rq, tsk);
10299 	queued = task_on_rq_queued(tsk);
10300 
10301 	if (queued)
10302 		dequeue_task(rq, tsk, queue_flags);
10303 	if (running)
10304 		put_prev_task(rq, tsk);
10305 
10306 	sched_change_group(tsk);
10307 
10308 	if (queued)
10309 		enqueue_task(rq, tsk, queue_flags);
10310 	if (running) {
10311 		set_next_task(rq, tsk);
10312 		/*
10313 		 * After changing group, the running task may have joined a
10314 		 * throttled one but it's still the running task. Trigger a
10315 		 * resched to make sure that task can still run.
10316 		 */
10317 		resched_curr(rq);
10318 	}
10319 
10320 	task_rq_unlock(rq, tsk, &rf);
10321 }
10322 
10323 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10324 {
10325 	return css ? container_of(css, struct task_group, css) : NULL;
10326 }
10327 
10328 static struct cgroup_subsys_state *
10329 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10330 {
10331 	struct task_group *parent = css_tg(parent_css);
10332 	struct task_group *tg;
10333 
10334 	if (!parent) {
10335 		/* This is early initialization for the top cgroup */
10336 		return &root_task_group.css;
10337 	}
10338 
10339 	tg = sched_create_group(parent);
10340 	if (IS_ERR(tg))
10341 		return ERR_PTR(-ENOMEM);
10342 
10343 	return &tg->css;
10344 }
10345 
10346 /* Expose task group only after completing cgroup initialization */
10347 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10348 {
10349 	struct task_group *tg = css_tg(css);
10350 	struct task_group *parent = css_tg(css->parent);
10351 
10352 	if (parent)
10353 		sched_online_group(tg, parent);
10354 
10355 #ifdef CONFIG_UCLAMP_TASK_GROUP
10356 	/* Propagate the effective uclamp value for the new group */
10357 	mutex_lock(&uclamp_mutex);
10358 	rcu_read_lock();
10359 	cpu_util_update_eff(css);
10360 	rcu_read_unlock();
10361 	mutex_unlock(&uclamp_mutex);
10362 #endif
10363 
10364 	return 0;
10365 }
10366 
10367 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10368 {
10369 	struct task_group *tg = css_tg(css);
10370 
10371 	sched_release_group(tg);
10372 }
10373 
10374 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10375 {
10376 	struct task_group *tg = css_tg(css);
10377 
10378 	/*
10379 	 * Relies on the RCU grace period between css_released() and this.
10380 	 */
10381 	sched_unregister_group(tg);
10382 }
10383 
10384 #ifdef CONFIG_RT_GROUP_SCHED
10385 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10386 {
10387 	struct task_struct *task;
10388 	struct cgroup_subsys_state *css;
10389 
10390 	cgroup_taskset_for_each(task, css, tset) {
10391 		if (!sched_rt_can_attach(css_tg(css), task))
10392 			return -EINVAL;
10393 	}
10394 	return 0;
10395 }
10396 #endif
10397 
10398 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10399 {
10400 	struct task_struct *task;
10401 	struct cgroup_subsys_state *css;
10402 
10403 	cgroup_taskset_for_each(task, css, tset)
10404 		sched_move_task(task);
10405 }
10406 
10407 #ifdef CONFIG_UCLAMP_TASK_GROUP
10408 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10409 {
10410 	struct cgroup_subsys_state *top_css = css;
10411 	struct uclamp_se *uc_parent = NULL;
10412 	struct uclamp_se *uc_se = NULL;
10413 	unsigned int eff[UCLAMP_CNT];
10414 	enum uclamp_id clamp_id;
10415 	unsigned int clamps;
10416 
10417 	lockdep_assert_held(&uclamp_mutex);
10418 	SCHED_WARN_ON(!rcu_read_lock_held());
10419 
10420 	css_for_each_descendant_pre(css, top_css) {
10421 		uc_parent = css_tg(css)->parent
10422 			? css_tg(css)->parent->uclamp : NULL;
10423 
10424 		for_each_clamp_id(clamp_id) {
10425 			/* Assume effective clamps matches requested clamps */
10426 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10427 			/* Cap effective clamps with parent's effective clamps */
10428 			if (uc_parent &&
10429 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10430 				eff[clamp_id] = uc_parent[clamp_id].value;
10431 			}
10432 		}
10433 		/* Ensure protection is always capped by limit */
10434 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10435 
10436 		/* Propagate most restrictive effective clamps */
10437 		clamps = 0x0;
10438 		uc_se = css_tg(css)->uclamp;
10439 		for_each_clamp_id(clamp_id) {
10440 			if (eff[clamp_id] == uc_se[clamp_id].value)
10441 				continue;
10442 			uc_se[clamp_id].value = eff[clamp_id];
10443 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10444 			clamps |= (0x1 << clamp_id);
10445 		}
10446 		if (!clamps) {
10447 			css = css_rightmost_descendant(css);
10448 			continue;
10449 		}
10450 
10451 		/* Immediately update descendants RUNNABLE tasks */
10452 		uclamp_update_active_tasks(css);
10453 	}
10454 }
10455 
10456 /*
10457  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10458  * C expression. Since there is no way to convert a macro argument (N) into a
10459  * character constant, use two levels of macros.
10460  */
10461 #define _POW10(exp) ((unsigned int)1e##exp)
10462 #define POW10(exp) _POW10(exp)
10463 
10464 struct uclamp_request {
10465 #define UCLAMP_PERCENT_SHIFT	2
10466 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10467 	s64 percent;
10468 	u64 util;
10469 	int ret;
10470 };
10471 
10472 static inline struct uclamp_request
10473 capacity_from_percent(char *buf)
10474 {
10475 	struct uclamp_request req = {
10476 		.percent = UCLAMP_PERCENT_SCALE,
10477 		.util = SCHED_CAPACITY_SCALE,
10478 		.ret = 0,
10479 	};
10480 
10481 	buf = strim(buf);
10482 	if (strcmp(buf, "max")) {
10483 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10484 					     &req.percent);
10485 		if (req.ret)
10486 			return req;
10487 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10488 			req.ret = -ERANGE;
10489 			return req;
10490 		}
10491 
10492 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10493 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10494 	}
10495 
10496 	return req;
10497 }
10498 
10499 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10500 				size_t nbytes, loff_t off,
10501 				enum uclamp_id clamp_id)
10502 {
10503 	struct uclamp_request req;
10504 	struct task_group *tg;
10505 
10506 	req = capacity_from_percent(buf);
10507 	if (req.ret)
10508 		return req.ret;
10509 
10510 	static_branch_enable(&sched_uclamp_used);
10511 
10512 	mutex_lock(&uclamp_mutex);
10513 	rcu_read_lock();
10514 
10515 	tg = css_tg(of_css(of));
10516 	if (tg->uclamp_req[clamp_id].value != req.util)
10517 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10518 
10519 	/*
10520 	 * Because of not recoverable conversion rounding we keep track of the
10521 	 * exact requested value
10522 	 */
10523 	tg->uclamp_pct[clamp_id] = req.percent;
10524 
10525 	/* Update effective clamps to track the most restrictive value */
10526 	cpu_util_update_eff(of_css(of));
10527 
10528 	rcu_read_unlock();
10529 	mutex_unlock(&uclamp_mutex);
10530 
10531 	return nbytes;
10532 }
10533 
10534 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10535 				    char *buf, size_t nbytes,
10536 				    loff_t off)
10537 {
10538 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10539 }
10540 
10541 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10542 				    char *buf, size_t nbytes,
10543 				    loff_t off)
10544 {
10545 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10546 }
10547 
10548 static inline void cpu_uclamp_print(struct seq_file *sf,
10549 				    enum uclamp_id clamp_id)
10550 {
10551 	struct task_group *tg;
10552 	u64 util_clamp;
10553 	u64 percent;
10554 	u32 rem;
10555 
10556 	rcu_read_lock();
10557 	tg = css_tg(seq_css(sf));
10558 	util_clamp = tg->uclamp_req[clamp_id].value;
10559 	rcu_read_unlock();
10560 
10561 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10562 		seq_puts(sf, "max\n");
10563 		return;
10564 	}
10565 
10566 	percent = tg->uclamp_pct[clamp_id];
10567 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10568 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10569 }
10570 
10571 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10572 {
10573 	cpu_uclamp_print(sf, UCLAMP_MIN);
10574 	return 0;
10575 }
10576 
10577 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10578 {
10579 	cpu_uclamp_print(sf, UCLAMP_MAX);
10580 	return 0;
10581 }
10582 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10583 
10584 #ifdef CONFIG_FAIR_GROUP_SCHED
10585 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10586 				struct cftype *cftype, u64 shareval)
10587 {
10588 	if (shareval > scale_load_down(ULONG_MAX))
10589 		shareval = MAX_SHARES;
10590 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10591 }
10592 
10593 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10594 			       struct cftype *cft)
10595 {
10596 	struct task_group *tg = css_tg(css);
10597 
10598 	return (u64) scale_load_down(tg->shares);
10599 }
10600 
10601 #ifdef CONFIG_CFS_BANDWIDTH
10602 static DEFINE_MUTEX(cfs_constraints_mutex);
10603 
10604 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10605 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10606 /* More than 203 days if BW_SHIFT equals 20. */
10607 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10608 
10609 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10610 
10611 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10612 				u64 burst)
10613 {
10614 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10615 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10616 
10617 	if (tg == &root_task_group)
10618 		return -EINVAL;
10619 
10620 	/*
10621 	 * Ensure we have at some amount of bandwidth every period.  This is
10622 	 * to prevent reaching a state of large arrears when throttled via
10623 	 * entity_tick() resulting in prolonged exit starvation.
10624 	 */
10625 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10626 		return -EINVAL;
10627 
10628 	/*
10629 	 * Likewise, bound things on the other side by preventing insane quota
10630 	 * periods.  This also allows us to normalize in computing quota
10631 	 * feasibility.
10632 	 */
10633 	if (period > max_cfs_quota_period)
10634 		return -EINVAL;
10635 
10636 	/*
10637 	 * Bound quota to defend quota against overflow during bandwidth shift.
10638 	 */
10639 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10640 		return -EINVAL;
10641 
10642 	if (quota != RUNTIME_INF && (burst > quota ||
10643 				     burst + quota > max_cfs_runtime))
10644 		return -EINVAL;
10645 
10646 	/*
10647 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10648 	 * unthrottle_offline_cfs_rqs().
10649 	 */
10650 	cpus_read_lock();
10651 	mutex_lock(&cfs_constraints_mutex);
10652 	ret = __cfs_schedulable(tg, period, quota);
10653 	if (ret)
10654 		goto out_unlock;
10655 
10656 	runtime_enabled = quota != RUNTIME_INF;
10657 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10658 	/*
10659 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10660 	 * before making related changes, and on->off must occur afterwards
10661 	 */
10662 	if (runtime_enabled && !runtime_was_enabled)
10663 		cfs_bandwidth_usage_inc();
10664 	raw_spin_lock_irq(&cfs_b->lock);
10665 	cfs_b->period = ns_to_ktime(period);
10666 	cfs_b->quota = quota;
10667 	cfs_b->burst = burst;
10668 
10669 	__refill_cfs_bandwidth_runtime(cfs_b);
10670 
10671 	/* Restart the period timer (if active) to handle new period expiry: */
10672 	if (runtime_enabled)
10673 		start_cfs_bandwidth(cfs_b);
10674 
10675 	raw_spin_unlock_irq(&cfs_b->lock);
10676 
10677 	for_each_online_cpu(i) {
10678 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10679 		struct rq *rq = cfs_rq->rq;
10680 		struct rq_flags rf;
10681 
10682 		rq_lock_irq(rq, &rf);
10683 		cfs_rq->runtime_enabled = runtime_enabled;
10684 		cfs_rq->runtime_remaining = 0;
10685 
10686 		if (cfs_rq->throttled)
10687 			unthrottle_cfs_rq(cfs_rq);
10688 		rq_unlock_irq(rq, &rf);
10689 	}
10690 	if (runtime_was_enabled && !runtime_enabled)
10691 		cfs_bandwidth_usage_dec();
10692 out_unlock:
10693 	mutex_unlock(&cfs_constraints_mutex);
10694 	cpus_read_unlock();
10695 
10696 	return ret;
10697 }
10698 
10699 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10700 {
10701 	u64 quota, period, burst;
10702 
10703 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10704 	burst = tg->cfs_bandwidth.burst;
10705 	if (cfs_quota_us < 0)
10706 		quota = RUNTIME_INF;
10707 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10708 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10709 	else
10710 		return -EINVAL;
10711 
10712 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10713 }
10714 
10715 static long tg_get_cfs_quota(struct task_group *tg)
10716 {
10717 	u64 quota_us;
10718 
10719 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10720 		return -1;
10721 
10722 	quota_us = tg->cfs_bandwidth.quota;
10723 	do_div(quota_us, NSEC_PER_USEC);
10724 
10725 	return quota_us;
10726 }
10727 
10728 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10729 {
10730 	u64 quota, period, burst;
10731 
10732 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10733 		return -EINVAL;
10734 
10735 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10736 	quota = tg->cfs_bandwidth.quota;
10737 	burst = tg->cfs_bandwidth.burst;
10738 
10739 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10740 }
10741 
10742 static long tg_get_cfs_period(struct task_group *tg)
10743 {
10744 	u64 cfs_period_us;
10745 
10746 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10747 	do_div(cfs_period_us, NSEC_PER_USEC);
10748 
10749 	return cfs_period_us;
10750 }
10751 
10752 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10753 {
10754 	u64 quota, period, burst;
10755 
10756 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10757 		return -EINVAL;
10758 
10759 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10760 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10761 	quota = tg->cfs_bandwidth.quota;
10762 
10763 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10764 }
10765 
10766 static long tg_get_cfs_burst(struct task_group *tg)
10767 {
10768 	u64 burst_us;
10769 
10770 	burst_us = tg->cfs_bandwidth.burst;
10771 	do_div(burst_us, NSEC_PER_USEC);
10772 
10773 	return burst_us;
10774 }
10775 
10776 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10777 				  struct cftype *cft)
10778 {
10779 	return tg_get_cfs_quota(css_tg(css));
10780 }
10781 
10782 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10783 				   struct cftype *cftype, s64 cfs_quota_us)
10784 {
10785 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10786 }
10787 
10788 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10789 				   struct cftype *cft)
10790 {
10791 	return tg_get_cfs_period(css_tg(css));
10792 }
10793 
10794 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10795 				    struct cftype *cftype, u64 cfs_period_us)
10796 {
10797 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10798 }
10799 
10800 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10801 				  struct cftype *cft)
10802 {
10803 	return tg_get_cfs_burst(css_tg(css));
10804 }
10805 
10806 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10807 				   struct cftype *cftype, u64 cfs_burst_us)
10808 {
10809 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10810 }
10811 
10812 struct cfs_schedulable_data {
10813 	struct task_group *tg;
10814 	u64 period, quota;
10815 };
10816 
10817 /*
10818  * normalize group quota/period to be quota/max_period
10819  * note: units are usecs
10820  */
10821 static u64 normalize_cfs_quota(struct task_group *tg,
10822 			       struct cfs_schedulable_data *d)
10823 {
10824 	u64 quota, period;
10825 
10826 	if (tg == d->tg) {
10827 		period = d->period;
10828 		quota = d->quota;
10829 	} else {
10830 		period = tg_get_cfs_period(tg);
10831 		quota = tg_get_cfs_quota(tg);
10832 	}
10833 
10834 	/* note: these should typically be equivalent */
10835 	if (quota == RUNTIME_INF || quota == -1)
10836 		return RUNTIME_INF;
10837 
10838 	return to_ratio(period, quota);
10839 }
10840 
10841 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10842 {
10843 	struct cfs_schedulable_data *d = data;
10844 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10845 	s64 quota = 0, parent_quota = -1;
10846 
10847 	if (!tg->parent) {
10848 		quota = RUNTIME_INF;
10849 	} else {
10850 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10851 
10852 		quota = normalize_cfs_quota(tg, d);
10853 		parent_quota = parent_b->hierarchical_quota;
10854 
10855 		/*
10856 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10857 		 * always take the min.  On cgroup1, only inherit when no
10858 		 * limit is set:
10859 		 */
10860 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10861 			quota = min(quota, parent_quota);
10862 		} else {
10863 			if (quota == RUNTIME_INF)
10864 				quota = parent_quota;
10865 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10866 				return -EINVAL;
10867 		}
10868 	}
10869 	cfs_b->hierarchical_quota = quota;
10870 
10871 	return 0;
10872 }
10873 
10874 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10875 {
10876 	int ret;
10877 	struct cfs_schedulable_data data = {
10878 		.tg = tg,
10879 		.period = period,
10880 		.quota = quota,
10881 	};
10882 
10883 	if (quota != RUNTIME_INF) {
10884 		do_div(data.period, NSEC_PER_USEC);
10885 		do_div(data.quota, NSEC_PER_USEC);
10886 	}
10887 
10888 	rcu_read_lock();
10889 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10890 	rcu_read_unlock();
10891 
10892 	return ret;
10893 }
10894 
10895 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10896 {
10897 	struct task_group *tg = css_tg(seq_css(sf));
10898 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10899 
10900 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10901 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10902 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10903 
10904 	if (schedstat_enabled() && tg != &root_task_group) {
10905 		struct sched_statistics *stats;
10906 		u64 ws = 0;
10907 		int i;
10908 
10909 		for_each_possible_cpu(i) {
10910 			stats = __schedstats_from_se(tg->se[i]);
10911 			ws += schedstat_val(stats->wait_sum);
10912 		}
10913 
10914 		seq_printf(sf, "wait_sum %llu\n", ws);
10915 	}
10916 
10917 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10918 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10919 
10920 	return 0;
10921 }
10922 #endif /* CONFIG_CFS_BANDWIDTH */
10923 #endif /* CONFIG_FAIR_GROUP_SCHED */
10924 
10925 #ifdef CONFIG_RT_GROUP_SCHED
10926 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10927 				struct cftype *cft, s64 val)
10928 {
10929 	return sched_group_set_rt_runtime(css_tg(css), val);
10930 }
10931 
10932 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10933 			       struct cftype *cft)
10934 {
10935 	return sched_group_rt_runtime(css_tg(css));
10936 }
10937 
10938 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10939 				    struct cftype *cftype, u64 rt_period_us)
10940 {
10941 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10942 }
10943 
10944 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10945 				   struct cftype *cft)
10946 {
10947 	return sched_group_rt_period(css_tg(css));
10948 }
10949 #endif /* CONFIG_RT_GROUP_SCHED */
10950 
10951 #ifdef CONFIG_FAIR_GROUP_SCHED
10952 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10953 			       struct cftype *cft)
10954 {
10955 	return css_tg(css)->idle;
10956 }
10957 
10958 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10959 				struct cftype *cft, s64 idle)
10960 {
10961 	return sched_group_set_idle(css_tg(css), idle);
10962 }
10963 #endif
10964 
10965 static struct cftype cpu_legacy_files[] = {
10966 #ifdef CONFIG_FAIR_GROUP_SCHED
10967 	{
10968 		.name = "shares",
10969 		.read_u64 = cpu_shares_read_u64,
10970 		.write_u64 = cpu_shares_write_u64,
10971 	},
10972 	{
10973 		.name = "idle",
10974 		.read_s64 = cpu_idle_read_s64,
10975 		.write_s64 = cpu_idle_write_s64,
10976 	},
10977 #endif
10978 #ifdef CONFIG_CFS_BANDWIDTH
10979 	{
10980 		.name = "cfs_quota_us",
10981 		.read_s64 = cpu_cfs_quota_read_s64,
10982 		.write_s64 = cpu_cfs_quota_write_s64,
10983 	},
10984 	{
10985 		.name = "cfs_period_us",
10986 		.read_u64 = cpu_cfs_period_read_u64,
10987 		.write_u64 = cpu_cfs_period_write_u64,
10988 	},
10989 	{
10990 		.name = "cfs_burst_us",
10991 		.read_u64 = cpu_cfs_burst_read_u64,
10992 		.write_u64 = cpu_cfs_burst_write_u64,
10993 	},
10994 	{
10995 		.name = "stat",
10996 		.seq_show = cpu_cfs_stat_show,
10997 	},
10998 #endif
10999 #ifdef CONFIG_RT_GROUP_SCHED
11000 	{
11001 		.name = "rt_runtime_us",
11002 		.read_s64 = cpu_rt_runtime_read,
11003 		.write_s64 = cpu_rt_runtime_write,
11004 	},
11005 	{
11006 		.name = "rt_period_us",
11007 		.read_u64 = cpu_rt_period_read_uint,
11008 		.write_u64 = cpu_rt_period_write_uint,
11009 	},
11010 #endif
11011 #ifdef CONFIG_UCLAMP_TASK_GROUP
11012 	{
11013 		.name = "uclamp.min",
11014 		.flags = CFTYPE_NOT_ON_ROOT,
11015 		.seq_show = cpu_uclamp_min_show,
11016 		.write = cpu_uclamp_min_write,
11017 	},
11018 	{
11019 		.name = "uclamp.max",
11020 		.flags = CFTYPE_NOT_ON_ROOT,
11021 		.seq_show = cpu_uclamp_max_show,
11022 		.write = cpu_uclamp_max_write,
11023 	},
11024 #endif
11025 	{ }	/* Terminate */
11026 };
11027 
11028 static int cpu_extra_stat_show(struct seq_file *sf,
11029 			       struct cgroup_subsys_state *css)
11030 {
11031 #ifdef CONFIG_CFS_BANDWIDTH
11032 	{
11033 		struct task_group *tg = css_tg(css);
11034 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11035 		u64 throttled_usec, burst_usec;
11036 
11037 		throttled_usec = cfs_b->throttled_time;
11038 		do_div(throttled_usec, NSEC_PER_USEC);
11039 		burst_usec = cfs_b->burst_time;
11040 		do_div(burst_usec, NSEC_PER_USEC);
11041 
11042 		seq_printf(sf, "nr_periods %d\n"
11043 			   "nr_throttled %d\n"
11044 			   "throttled_usec %llu\n"
11045 			   "nr_bursts %d\n"
11046 			   "burst_usec %llu\n",
11047 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11048 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11049 	}
11050 #endif
11051 	return 0;
11052 }
11053 
11054 #ifdef CONFIG_FAIR_GROUP_SCHED
11055 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11056 			       struct cftype *cft)
11057 {
11058 	struct task_group *tg = css_tg(css);
11059 	u64 weight = scale_load_down(tg->shares);
11060 
11061 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11062 }
11063 
11064 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11065 				struct cftype *cft, u64 weight)
11066 {
11067 	/*
11068 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11069 	 * values which are 1, 100 and 10000 respectively.  While it loses
11070 	 * a bit of range on both ends, it maps pretty well onto the shares
11071 	 * value used by scheduler and the round-trip conversions preserve
11072 	 * the original value over the entire range.
11073 	 */
11074 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11075 		return -ERANGE;
11076 
11077 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11078 
11079 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11080 }
11081 
11082 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11083 				    struct cftype *cft)
11084 {
11085 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11086 	int last_delta = INT_MAX;
11087 	int prio, delta;
11088 
11089 	/* find the closest nice value to the current weight */
11090 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11091 		delta = abs(sched_prio_to_weight[prio] - weight);
11092 		if (delta >= last_delta)
11093 			break;
11094 		last_delta = delta;
11095 	}
11096 
11097 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11098 }
11099 
11100 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11101 				     struct cftype *cft, s64 nice)
11102 {
11103 	unsigned long weight;
11104 	int idx;
11105 
11106 	if (nice < MIN_NICE || nice > MAX_NICE)
11107 		return -ERANGE;
11108 
11109 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11110 	idx = array_index_nospec(idx, 40);
11111 	weight = sched_prio_to_weight[idx];
11112 
11113 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11114 }
11115 #endif
11116 
11117 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11118 						  long period, long quota)
11119 {
11120 	if (quota < 0)
11121 		seq_puts(sf, "max");
11122 	else
11123 		seq_printf(sf, "%ld", quota);
11124 
11125 	seq_printf(sf, " %ld\n", period);
11126 }
11127 
11128 /* caller should put the current value in *@periodp before calling */
11129 static int __maybe_unused cpu_period_quota_parse(char *buf,
11130 						 u64 *periodp, u64 *quotap)
11131 {
11132 	char tok[21];	/* U64_MAX */
11133 
11134 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11135 		return -EINVAL;
11136 
11137 	*periodp *= NSEC_PER_USEC;
11138 
11139 	if (sscanf(tok, "%llu", quotap))
11140 		*quotap *= NSEC_PER_USEC;
11141 	else if (!strcmp(tok, "max"))
11142 		*quotap = RUNTIME_INF;
11143 	else
11144 		return -EINVAL;
11145 
11146 	return 0;
11147 }
11148 
11149 #ifdef CONFIG_CFS_BANDWIDTH
11150 static int cpu_max_show(struct seq_file *sf, void *v)
11151 {
11152 	struct task_group *tg = css_tg(seq_css(sf));
11153 
11154 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11155 	return 0;
11156 }
11157 
11158 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11159 			     char *buf, size_t nbytes, loff_t off)
11160 {
11161 	struct task_group *tg = css_tg(of_css(of));
11162 	u64 period = tg_get_cfs_period(tg);
11163 	u64 burst = tg_get_cfs_burst(tg);
11164 	u64 quota;
11165 	int ret;
11166 
11167 	ret = cpu_period_quota_parse(buf, &period, &quota);
11168 	if (!ret)
11169 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11170 	return ret ?: nbytes;
11171 }
11172 #endif
11173 
11174 static struct cftype cpu_files[] = {
11175 #ifdef CONFIG_FAIR_GROUP_SCHED
11176 	{
11177 		.name = "weight",
11178 		.flags = CFTYPE_NOT_ON_ROOT,
11179 		.read_u64 = cpu_weight_read_u64,
11180 		.write_u64 = cpu_weight_write_u64,
11181 	},
11182 	{
11183 		.name = "weight.nice",
11184 		.flags = CFTYPE_NOT_ON_ROOT,
11185 		.read_s64 = cpu_weight_nice_read_s64,
11186 		.write_s64 = cpu_weight_nice_write_s64,
11187 	},
11188 	{
11189 		.name = "idle",
11190 		.flags = CFTYPE_NOT_ON_ROOT,
11191 		.read_s64 = cpu_idle_read_s64,
11192 		.write_s64 = cpu_idle_write_s64,
11193 	},
11194 #endif
11195 #ifdef CONFIG_CFS_BANDWIDTH
11196 	{
11197 		.name = "max",
11198 		.flags = CFTYPE_NOT_ON_ROOT,
11199 		.seq_show = cpu_max_show,
11200 		.write = cpu_max_write,
11201 	},
11202 	{
11203 		.name = "max.burst",
11204 		.flags = CFTYPE_NOT_ON_ROOT,
11205 		.read_u64 = cpu_cfs_burst_read_u64,
11206 		.write_u64 = cpu_cfs_burst_write_u64,
11207 	},
11208 #endif
11209 #ifdef CONFIG_UCLAMP_TASK_GROUP
11210 	{
11211 		.name = "uclamp.min",
11212 		.flags = CFTYPE_NOT_ON_ROOT,
11213 		.seq_show = cpu_uclamp_min_show,
11214 		.write = cpu_uclamp_min_write,
11215 	},
11216 	{
11217 		.name = "uclamp.max",
11218 		.flags = CFTYPE_NOT_ON_ROOT,
11219 		.seq_show = cpu_uclamp_max_show,
11220 		.write = cpu_uclamp_max_write,
11221 	},
11222 #endif
11223 	{ }	/* terminate */
11224 };
11225 
11226 struct cgroup_subsys cpu_cgrp_subsys = {
11227 	.css_alloc	= cpu_cgroup_css_alloc,
11228 	.css_online	= cpu_cgroup_css_online,
11229 	.css_released	= cpu_cgroup_css_released,
11230 	.css_free	= cpu_cgroup_css_free,
11231 	.css_extra_stat_show = cpu_extra_stat_show,
11232 #ifdef CONFIG_RT_GROUP_SCHED
11233 	.can_attach	= cpu_cgroup_can_attach,
11234 #endif
11235 	.attach		= cpu_cgroup_attach,
11236 	.legacy_cftypes	= cpu_legacy_files,
11237 	.dfl_cftypes	= cpu_files,
11238 	.early_init	= true,
11239 	.threaded	= true,
11240 };
11241 
11242 #endif	/* CONFIG_CGROUP_SCHED */
11243 
11244 void dump_cpu_task(int cpu)
11245 {
11246 	if (cpu == smp_processor_id() && in_hardirq()) {
11247 		struct pt_regs *regs;
11248 
11249 		regs = get_irq_regs();
11250 		if (regs) {
11251 			show_regs(regs);
11252 			return;
11253 		}
11254 	}
11255 
11256 	if (trigger_single_cpu_backtrace(cpu))
11257 		return;
11258 
11259 	pr_info("Task dump for CPU %d:\n", cpu);
11260 	sched_show_task(cpu_curr(cpu));
11261 }
11262 
11263 /*
11264  * Nice levels are multiplicative, with a gentle 10% change for every
11265  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11266  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11267  * that remained on nice 0.
11268  *
11269  * The "10% effect" is relative and cumulative: from _any_ nice level,
11270  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11271  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11272  * If a task goes up by ~10% and another task goes down by ~10% then
11273  * the relative distance between them is ~25%.)
11274  */
11275 const int sched_prio_to_weight[40] = {
11276  /* -20 */     88761,     71755,     56483,     46273,     36291,
11277  /* -15 */     29154,     23254,     18705,     14949,     11916,
11278  /* -10 */      9548,      7620,      6100,      4904,      3906,
11279  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11280  /*   0 */      1024,       820,       655,       526,       423,
11281  /*   5 */       335,       272,       215,       172,       137,
11282  /*  10 */       110,        87,        70,        56,        45,
11283  /*  15 */        36,        29,        23,        18,        15,
11284 };
11285 
11286 /*
11287  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11288  *
11289  * In cases where the weight does not change often, we can use the
11290  * precalculated inverse to speed up arithmetics by turning divisions
11291  * into multiplications:
11292  */
11293 const u32 sched_prio_to_wmult[40] = {
11294  /* -20 */     48388,     59856,     76040,     92818,    118348,
11295  /* -15 */    147320,    184698,    229616,    287308,    360437,
11296  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11297  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11298  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11299  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11300  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11301  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11302 };
11303 
11304 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11305 {
11306         trace_sched_update_nr_running_tp(rq, count);
11307 }
11308