xref: /openbmc/linux/kernel/sched/core.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/kthread.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/switch_to.h>
14 #include <asm/tlb.h>
15 
16 #include "../workqueue_internal.h"
17 #include "../smpboot.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/sched.h>
21 
22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23 
24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
25 /*
26  * Debugging: various feature bits
27  *
28  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29  * sysctl_sched_features, defined in sched.h, to allow constants propagation
30  * at compile time and compiler optimization based on features default.
31  */
32 #define SCHED_FEAT(name, enabled)	\
33 	(1UL << __SCHED_FEAT_##name) * enabled |
34 const_debug unsigned int sysctl_sched_features =
35 #include "features.h"
36 	0;
37 #undef SCHED_FEAT
38 #endif
39 
40 /*
41  * Number of tasks to iterate in a single balance run.
42  * Limited because this is done with IRQs disabled.
43  */
44 const_debug unsigned int sysctl_sched_nr_migrate = 32;
45 
46 /*
47  * period over which we average the RT time consumption, measured
48  * in ms.
49  *
50  * default: 1s
51  */
52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53 
54 /*
55  * period over which we measure -rt task CPU usage in us.
56  * default: 1s
57  */
58 unsigned int sysctl_sched_rt_period = 1000000;
59 
60 __read_mostly int scheduler_running;
61 
62 /*
63  * part of the period that we allow rt tasks to run in us.
64  * default: 0.95s
65  */
66 int sysctl_sched_rt_runtime = 950000;
67 
68 /*
69  * __task_rq_lock - lock the rq @p resides on.
70  */
71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 	__acquires(rq->lock)
73 {
74 	struct rq *rq;
75 
76 	lockdep_assert_held(&p->pi_lock);
77 
78 	for (;;) {
79 		rq = task_rq(p);
80 		raw_spin_lock(&rq->lock);
81 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82 			rq_pin_lock(rq, rf);
83 			return rq;
84 		}
85 		raw_spin_unlock(&rq->lock);
86 
87 		while (unlikely(task_on_rq_migrating(p)))
88 			cpu_relax();
89 	}
90 }
91 
92 /*
93  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94  */
95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 	__acquires(p->pi_lock)
97 	__acquires(rq->lock)
98 {
99 	struct rq *rq;
100 
101 	for (;;) {
102 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 		rq = task_rq(p);
104 		raw_spin_lock(&rq->lock);
105 		/*
106 		 *	move_queued_task()		task_rq_lock()
107 		 *
108 		 *	ACQUIRE (rq->lock)
109 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
110 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
111 		 *	[S] ->cpu = new_cpu		[L] task_rq()
112 		 *					[L] ->on_rq
113 		 *	RELEASE (rq->lock)
114 		 *
115 		 * If we observe the old CPU in task_rq_lock, the acquire of
116 		 * the old rq->lock will fully serialize against the stores.
117 		 *
118 		 * If we observe the new CPU in task_rq_lock, the acquire will
119 		 * pair with the WMB to ensure we must then also see migrating.
120 		 */
121 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122 			rq_pin_lock(rq, rf);
123 			return rq;
124 		}
125 		raw_spin_unlock(&rq->lock);
126 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127 
128 		while (unlikely(task_on_rq_migrating(p)))
129 			cpu_relax();
130 	}
131 }
132 
133 /*
134  * RQ-clock updating methods:
135  */
136 
137 static void update_rq_clock_task(struct rq *rq, s64 delta)
138 {
139 /*
140  * In theory, the compile should just see 0 here, and optimize out the call
141  * to sched_rt_avg_update. But I don't trust it...
142  */
143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 	s64 steal = 0, irq_delta = 0;
145 #endif
146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148 
149 	/*
150 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 	 * this case when a previous update_rq_clock() happened inside a
152 	 * {soft,}irq region.
153 	 *
154 	 * When this happens, we stop ->clock_task and only update the
155 	 * prev_irq_time stamp to account for the part that fit, so that a next
156 	 * update will consume the rest. This ensures ->clock_task is
157 	 * monotonic.
158 	 *
159 	 * It does however cause some slight miss-attribution of {soft,}irq
160 	 * time, a more accurate solution would be to update the irq_time using
161 	 * the current rq->clock timestamp, except that would require using
162 	 * atomic ops.
163 	 */
164 	if (irq_delta > delta)
165 		irq_delta = delta;
166 
167 	rq->prev_irq_time += irq_delta;
168 	delta -= irq_delta;
169 #endif
170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 	if (static_key_false((&paravirt_steal_rq_enabled))) {
172 		steal = paravirt_steal_clock(cpu_of(rq));
173 		steal -= rq->prev_steal_time_rq;
174 
175 		if (unlikely(steal > delta))
176 			steal = delta;
177 
178 		rq->prev_steal_time_rq += steal;
179 		delta -= steal;
180 	}
181 #endif
182 
183 	rq->clock_task += delta;
184 
185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 		sched_rt_avg_update(rq, irq_delta + steal);
188 #endif
189 }
190 
191 void update_rq_clock(struct rq *rq)
192 {
193 	s64 delta;
194 
195 	lockdep_assert_held(&rq->lock);
196 
197 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 		return;
199 
200 #ifdef CONFIG_SCHED_DEBUG
201 	if (sched_feat(WARN_DOUBLE_CLOCK))
202 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 	rq->clock_update_flags |= RQCF_UPDATED;
204 #endif
205 
206 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 	if (delta < 0)
208 		return;
209 	rq->clock += delta;
210 	update_rq_clock_task(rq, delta);
211 }
212 
213 
214 #ifdef CONFIG_SCHED_HRTICK
215 /*
216  * Use HR-timers to deliver accurate preemption points.
217  */
218 
219 static void hrtick_clear(struct rq *rq)
220 {
221 	if (hrtimer_active(&rq->hrtick_timer))
222 		hrtimer_cancel(&rq->hrtick_timer);
223 }
224 
225 /*
226  * High-resolution timer tick.
227  * Runs from hardirq context with interrupts disabled.
228  */
229 static enum hrtimer_restart hrtick(struct hrtimer *timer)
230 {
231 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232 	struct rq_flags rf;
233 
234 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235 
236 	rq_lock(rq, &rf);
237 	update_rq_clock(rq);
238 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239 	rq_unlock(rq, &rf);
240 
241 	return HRTIMER_NORESTART;
242 }
243 
244 #ifdef CONFIG_SMP
245 
246 static void __hrtick_restart(struct rq *rq)
247 {
248 	struct hrtimer *timer = &rq->hrtick_timer;
249 
250 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
251 }
252 
253 /*
254  * called from hardirq (IPI) context
255  */
256 static void __hrtick_start(void *arg)
257 {
258 	struct rq *rq = arg;
259 	struct rq_flags rf;
260 
261 	rq_lock(rq, &rf);
262 	__hrtick_restart(rq);
263 	rq->hrtick_csd_pending = 0;
264 	rq_unlock(rq, &rf);
265 }
266 
267 /*
268  * Called to set the hrtick timer state.
269  *
270  * called with rq->lock held and irqs disabled
271  */
272 void hrtick_start(struct rq *rq, u64 delay)
273 {
274 	struct hrtimer *timer = &rq->hrtick_timer;
275 	ktime_t time;
276 	s64 delta;
277 
278 	/*
279 	 * Don't schedule slices shorter than 10000ns, that just
280 	 * doesn't make sense and can cause timer DoS.
281 	 */
282 	delta = max_t(s64, delay, 10000LL);
283 	time = ktime_add_ns(timer->base->get_time(), delta);
284 
285 	hrtimer_set_expires(timer, time);
286 
287 	if (rq == this_rq()) {
288 		__hrtick_restart(rq);
289 	} else if (!rq->hrtick_csd_pending) {
290 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 		rq->hrtick_csd_pending = 1;
292 	}
293 }
294 
295 #else
296 /*
297  * Called to set the hrtick timer state.
298  *
299  * called with rq->lock held and irqs disabled
300  */
301 void hrtick_start(struct rq *rq, u64 delay)
302 {
303 	/*
304 	 * Don't schedule slices shorter than 10000ns, that just
305 	 * doesn't make sense. Rely on vruntime for fairness.
306 	 */
307 	delay = max_t(u64, delay, 10000LL);
308 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 		      HRTIMER_MODE_REL_PINNED);
310 }
311 #endif /* CONFIG_SMP */
312 
313 static void hrtick_rq_init(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 	rq->hrtick_csd_pending = 0;
317 
318 	rq->hrtick_csd.flags = 0;
319 	rq->hrtick_csd.func = __hrtick_start;
320 	rq->hrtick_csd.info = rq;
321 #endif
322 
323 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 	rq->hrtick_timer.function = hrtick;
325 }
326 #else	/* CONFIG_SCHED_HRTICK */
327 static inline void hrtick_clear(struct rq *rq)
328 {
329 }
330 
331 static inline void hrtick_rq_init(struct rq *rq)
332 {
333 }
334 #endif	/* CONFIG_SCHED_HRTICK */
335 
336 /*
337  * cmpxchg based fetch_or, macro so it works for different integer types
338  */
339 #define fetch_or(ptr, mask)						\
340 	({								\
341 		typeof(ptr) _ptr = (ptr);				\
342 		typeof(mask) _mask = (mask);				\
343 		typeof(*_ptr) _old, _val = *_ptr;			\
344 									\
345 		for (;;) {						\
346 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
347 			if (_old == _val)				\
348 				break;					\
349 			_val = _old;					\
350 		}							\
351 	_old;								\
352 })
353 
354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355 /*
356  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357  * this avoids any races wrt polling state changes and thereby avoids
358  * spurious IPIs.
359  */
360 static bool set_nr_and_not_polling(struct task_struct *p)
361 {
362 	struct thread_info *ti = task_thread_info(p);
363 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364 }
365 
366 /*
367  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368  *
369  * If this returns true, then the idle task promises to call
370  * sched_ttwu_pending() and reschedule soon.
371  */
372 static bool set_nr_if_polling(struct task_struct *p)
373 {
374 	struct thread_info *ti = task_thread_info(p);
375 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376 
377 	for (;;) {
378 		if (!(val & _TIF_POLLING_NRFLAG))
379 			return false;
380 		if (val & _TIF_NEED_RESCHED)
381 			return true;
382 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 		if (old == val)
384 			break;
385 		val = old;
386 	}
387 	return true;
388 }
389 
390 #else
391 static bool set_nr_and_not_polling(struct task_struct *p)
392 {
393 	set_tsk_need_resched(p);
394 	return true;
395 }
396 
397 #ifdef CONFIG_SMP
398 static bool set_nr_if_polling(struct task_struct *p)
399 {
400 	return false;
401 }
402 #endif
403 #endif
404 
405 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406 {
407 	struct wake_q_node *node = &task->wake_q;
408 
409 	/*
410 	 * Atomically grab the task, if ->wake_q is !nil already it means
411 	 * its already queued (either by us or someone else) and will get the
412 	 * wakeup due to that.
413 	 *
414 	 * This cmpxchg() implies a full barrier, which pairs with the write
415 	 * barrier implied by the wakeup in wake_up_q().
416 	 */
417 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 		return;
419 
420 	get_task_struct(task);
421 
422 	/*
423 	 * The head is context local, there can be no concurrency.
424 	 */
425 	*head->lastp = node;
426 	head->lastp = &node->next;
427 }
428 
429 void wake_up_q(struct wake_q_head *head)
430 {
431 	struct wake_q_node *node = head->first;
432 
433 	while (node != WAKE_Q_TAIL) {
434 		struct task_struct *task;
435 
436 		task = container_of(node, struct task_struct, wake_q);
437 		BUG_ON(!task);
438 		/* Task can safely be re-inserted now: */
439 		node = node->next;
440 		task->wake_q.next = NULL;
441 
442 		/*
443 		 * wake_up_process() implies a wmb() to pair with the queueing
444 		 * in wake_q_add() so as not to miss wakeups.
445 		 */
446 		wake_up_process(task);
447 		put_task_struct(task);
448 	}
449 }
450 
451 /*
452  * resched_curr - mark rq's current task 'to be rescheduled now'.
453  *
454  * On UP this means the setting of the need_resched flag, on SMP it
455  * might also involve a cross-CPU call to trigger the scheduler on
456  * the target CPU.
457  */
458 void resched_curr(struct rq *rq)
459 {
460 	struct task_struct *curr = rq->curr;
461 	int cpu;
462 
463 	lockdep_assert_held(&rq->lock);
464 
465 	if (test_tsk_need_resched(curr))
466 		return;
467 
468 	cpu = cpu_of(rq);
469 
470 	if (cpu == smp_processor_id()) {
471 		set_tsk_need_resched(curr);
472 		set_preempt_need_resched();
473 		return;
474 	}
475 
476 	if (set_nr_and_not_polling(curr))
477 		smp_send_reschedule(cpu);
478 	else
479 		trace_sched_wake_idle_without_ipi(cpu);
480 }
481 
482 void resched_cpu(int cpu)
483 {
484 	struct rq *rq = cpu_rq(cpu);
485 	unsigned long flags;
486 
487 	raw_spin_lock_irqsave(&rq->lock, flags);
488 	if (cpu_online(cpu) || cpu == smp_processor_id())
489 		resched_curr(rq);
490 	raw_spin_unlock_irqrestore(&rq->lock, flags);
491 }
492 
493 #ifdef CONFIG_SMP
494 #ifdef CONFIG_NO_HZ_COMMON
495 /*
496  * In the semi idle case, use the nearest busy CPU for migrating timers
497  * from an idle CPU.  This is good for power-savings.
498  *
499  * We don't do similar optimization for completely idle system, as
500  * selecting an idle CPU will add more delays to the timers than intended
501  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502  */
503 int get_nohz_timer_target(void)
504 {
505 	int i, cpu = smp_processor_id();
506 	struct sched_domain *sd;
507 
508 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 		return cpu;
510 
511 	rcu_read_lock();
512 	for_each_domain(cpu, sd) {
513 		for_each_cpu(i, sched_domain_span(sd)) {
514 			if (cpu == i)
515 				continue;
516 
517 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 				cpu = i;
519 				goto unlock;
520 			}
521 		}
522 	}
523 
524 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526 unlock:
527 	rcu_read_unlock();
528 	return cpu;
529 }
530 
531 /*
532  * When add_timer_on() enqueues a timer into the timer wheel of an
533  * idle CPU then this timer might expire before the next timer event
534  * which is scheduled to wake up that CPU. In case of a completely
535  * idle system the next event might even be infinite time into the
536  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537  * leaves the inner idle loop so the newly added timer is taken into
538  * account when the CPU goes back to idle and evaluates the timer
539  * wheel for the next timer event.
540  */
541 static void wake_up_idle_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 
545 	if (cpu == smp_processor_id())
546 		return;
547 
548 	if (set_nr_and_not_polling(rq->idle))
549 		smp_send_reschedule(cpu);
550 	else
551 		trace_sched_wake_idle_without_ipi(cpu);
552 }
553 
554 static bool wake_up_full_nohz_cpu(int cpu)
555 {
556 	/*
557 	 * We just need the target to call irq_exit() and re-evaluate
558 	 * the next tick. The nohz full kick at least implies that.
559 	 * If needed we can still optimize that later with an
560 	 * empty IRQ.
561 	 */
562 	if (cpu_is_offline(cpu))
563 		return true;  /* Don't try to wake offline CPUs. */
564 	if (tick_nohz_full_cpu(cpu)) {
565 		if (cpu != smp_processor_id() ||
566 		    tick_nohz_tick_stopped())
567 			tick_nohz_full_kick_cpu(cpu);
568 		return true;
569 	}
570 
571 	return false;
572 }
573 
574 /*
575  * Wake up the specified CPU.  If the CPU is going offline, it is the
576  * caller's responsibility to deal with the lost wakeup, for example,
577  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578  */
579 void wake_up_nohz_cpu(int cpu)
580 {
581 	if (!wake_up_full_nohz_cpu(cpu))
582 		wake_up_idle_cpu(cpu);
583 }
584 
585 static inline bool got_nohz_idle_kick(void)
586 {
587 	int cpu = smp_processor_id();
588 
589 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 		return false;
591 
592 	if (idle_cpu(cpu) && !need_resched())
593 		return true;
594 
595 	/*
596 	 * We can't run Idle Load Balance on this CPU for this time so we
597 	 * cancel it and clear NOHZ_BALANCE_KICK
598 	 */
599 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600 	return false;
601 }
602 
603 #else /* CONFIG_NO_HZ_COMMON */
604 
605 static inline bool got_nohz_idle_kick(void)
606 {
607 	return false;
608 }
609 
610 #endif /* CONFIG_NO_HZ_COMMON */
611 
612 #ifdef CONFIG_NO_HZ_FULL
613 bool sched_can_stop_tick(struct rq *rq)
614 {
615 	int fifo_nr_running;
616 
617 	/* Deadline tasks, even if single, need the tick */
618 	if (rq->dl.dl_nr_running)
619 		return false;
620 
621 	/*
622 	 * If there are more than one RR tasks, we need the tick to effect the
623 	 * actual RR behaviour.
624 	 */
625 	if (rq->rt.rr_nr_running) {
626 		if (rq->rt.rr_nr_running == 1)
627 			return true;
628 		else
629 			return false;
630 	}
631 
632 	/*
633 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 	 * forced preemption between FIFO tasks.
635 	 */
636 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 	if (fifo_nr_running)
638 		return true;
639 
640 	/*
641 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 	 * if there's more than one we need the tick for involuntary
643 	 * preemption.
644 	 */
645 	if (rq->nr_running > 1)
646 		return false;
647 
648 	return true;
649 }
650 #endif /* CONFIG_NO_HZ_FULL */
651 
652 void sched_avg_update(struct rq *rq)
653 {
654 	s64 period = sched_avg_period();
655 
656 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 		/*
658 		 * Inline assembly required to prevent the compiler
659 		 * optimising this loop into a divmod call.
660 		 * See __iter_div_u64_rem() for another example of this.
661 		 */
662 		asm("" : "+rm" (rq->age_stamp));
663 		rq->age_stamp += period;
664 		rq->rt_avg /= 2;
665 	}
666 }
667 
668 #endif /* CONFIG_SMP */
669 
670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672 /*
673  * Iterate task_group tree rooted at *from, calling @down when first entering a
674  * node and @up when leaving it for the final time.
675  *
676  * Caller must hold rcu_lock or sufficient equivalent.
677  */
678 int walk_tg_tree_from(struct task_group *from,
679 			     tg_visitor down, tg_visitor up, void *data)
680 {
681 	struct task_group *parent, *child;
682 	int ret;
683 
684 	parent = from;
685 
686 down:
687 	ret = (*down)(parent, data);
688 	if (ret)
689 		goto out;
690 	list_for_each_entry_rcu(child, &parent->children, siblings) {
691 		parent = child;
692 		goto down;
693 
694 up:
695 		continue;
696 	}
697 	ret = (*up)(parent, data);
698 	if (ret || parent == from)
699 		goto out;
700 
701 	child = parent;
702 	parent = parent->parent;
703 	if (parent)
704 		goto up;
705 out:
706 	return ret;
707 }
708 
709 int tg_nop(struct task_group *tg, void *data)
710 {
711 	return 0;
712 }
713 #endif
714 
715 static void set_load_weight(struct task_struct *p, bool update_load)
716 {
717 	int prio = p->static_prio - MAX_RT_PRIO;
718 	struct load_weight *load = &p->se.load;
719 
720 	/*
721 	 * SCHED_IDLE tasks get minimal weight:
722 	 */
723 	if (idle_policy(p->policy)) {
724 		load->weight = scale_load(WEIGHT_IDLEPRIO);
725 		load->inv_weight = WMULT_IDLEPRIO;
726 		return;
727 	}
728 
729 	/*
730 	 * SCHED_OTHER tasks have to update their load when changing their
731 	 * weight
732 	 */
733 	if (update_load && p->sched_class == &fair_sched_class) {
734 		reweight_task(p, prio);
735 	} else {
736 		load->weight = scale_load(sched_prio_to_weight[prio]);
737 		load->inv_weight = sched_prio_to_wmult[prio];
738 	}
739 }
740 
741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742 {
743 	if (!(flags & ENQUEUE_NOCLOCK))
744 		update_rq_clock(rq);
745 
746 	if (!(flags & ENQUEUE_RESTORE))
747 		sched_info_queued(rq, p);
748 
749 	p->sched_class->enqueue_task(rq, p, flags);
750 }
751 
752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753 {
754 	if (!(flags & DEQUEUE_NOCLOCK))
755 		update_rq_clock(rq);
756 
757 	if (!(flags & DEQUEUE_SAVE))
758 		sched_info_dequeued(rq, p);
759 
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 /*
780  * __normal_prio - return the priority that is based on the static prio
781  */
782 static inline int __normal_prio(struct task_struct *p)
783 {
784 	return p->static_prio;
785 }
786 
787 /*
788  * Calculate the expected normal priority: i.e. priority
789  * without taking RT-inheritance into account. Might be
790  * boosted by interactivity modifiers. Changes upon fork,
791  * setprio syscalls, and whenever the interactivity
792  * estimator recalculates.
793  */
794 static inline int normal_prio(struct task_struct *p)
795 {
796 	int prio;
797 
798 	if (task_has_dl_policy(p))
799 		prio = MAX_DL_PRIO-1;
800 	else if (task_has_rt_policy(p))
801 		prio = MAX_RT_PRIO-1 - p->rt_priority;
802 	else
803 		prio = __normal_prio(p);
804 	return prio;
805 }
806 
807 /*
808  * Calculate the current priority, i.e. the priority
809  * taken into account by the scheduler. This value might
810  * be boosted by RT tasks, or might be boosted by
811  * interactivity modifiers. Will be RT if the task got
812  * RT-boosted. If not then it returns p->normal_prio.
813  */
814 static int effective_prio(struct task_struct *p)
815 {
816 	p->normal_prio = normal_prio(p);
817 	/*
818 	 * If we are RT tasks or we were boosted to RT priority,
819 	 * keep the priority unchanged. Otherwise, update priority
820 	 * to the normal priority:
821 	 */
822 	if (!rt_prio(p->prio))
823 		return p->normal_prio;
824 	return p->prio;
825 }
826 
827 /**
828  * task_curr - is this task currently executing on a CPU?
829  * @p: the task in question.
830  *
831  * Return: 1 if the task is currently executing. 0 otherwise.
832  */
833 inline int task_curr(const struct task_struct *p)
834 {
835 	return cpu_curr(task_cpu(p)) == p;
836 }
837 
838 /*
839  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840  * use the balance_callback list if you want balancing.
841  *
842  * this means any call to check_class_changed() must be followed by a call to
843  * balance_callback().
844  */
845 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 				       const struct sched_class *prev_class,
847 				       int oldprio)
848 {
849 	if (prev_class != p->sched_class) {
850 		if (prev_class->switched_from)
851 			prev_class->switched_from(rq, p);
852 
853 		p->sched_class->switched_to(rq, p);
854 	} else if (oldprio != p->prio || dl_task(p))
855 		p->sched_class->prio_changed(rq, p, oldprio);
856 }
857 
858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859 {
860 	const struct sched_class *class;
861 
862 	if (p->sched_class == rq->curr->sched_class) {
863 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 	} else {
865 		for_each_class(class) {
866 			if (class == rq->curr->sched_class)
867 				break;
868 			if (class == p->sched_class) {
869 				resched_curr(rq);
870 				break;
871 			}
872 		}
873 	}
874 
875 	/*
876 	 * A queue event has occurred, and we're going to schedule.  In
877 	 * this case, we can save a useless back to back clock update.
878 	 */
879 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 		rq_clock_skip_update(rq);
881 }
882 
883 #ifdef CONFIG_SMP
884 
885 static inline bool is_per_cpu_kthread(struct task_struct *p)
886 {
887 	if (!(p->flags & PF_KTHREAD))
888 		return false;
889 
890 	if (p->nr_cpus_allowed != 1)
891 		return false;
892 
893 	return true;
894 }
895 
896 /*
897  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898  * __set_cpus_allowed_ptr() and select_fallback_rq().
899  */
900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901 {
902 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 		return false;
904 
905 	if (is_per_cpu_kthread(p))
906 		return cpu_online(cpu);
907 
908 	return cpu_active(cpu);
909 }
910 
911 /*
912  * This is how migration works:
913  *
914  * 1) we invoke migration_cpu_stop() on the target CPU using
915  *    stop_one_cpu().
916  * 2) stopper starts to run (implicitly forcing the migrated thread
917  *    off the CPU)
918  * 3) it checks whether the migrated task is still in the wrong runqueue.
919  * 4) if it's in the wrong runqueue then the migration thread removes
920  *    it and puts it into the right queue.
921  * 5) stopper completes and stop_one_cpu() returns and the migration
922  *    is done.
923  */
924 
925 /*
926  * move_queued_task - move a queued task to new rq.
927  *
928  * Returns (locked) new rq. Old rq's lock is released.
929  */
930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 				   struct task_struct *p, int new_cpu)
932 {
933 	lockdep_assert_held(&rq->lock);
934 
935 	p->on_rq = TASK_ON_RQ_MIGRATING;
936 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 	set_task_cpu(p, new_cpu);
938 	rq_unlock(rq, rf);
939 
940 	rq = cpu_rq(new_cpu);
941 
942 	rq_lock(rq, rf);
943 	BUG_ON(task_cpu(p) != new_cpu);
944 	enqueue_task(rq, p, 0);
945 	p->on_rq = TASK_ON_RQ_QUEUED;
946 	check_preempt_curr(rq, p, 0);
947 
948 	return rq;
949 }
950 
951 struct migration_arg {
952 	struct task_struct *task;
953 	int dest_cpu;
954 };
955 
956 /*
957  * Move (not current) task off this CPU, onto the destination CPU. We're doing
958  * this because either it can't run here any more (set_cpus_allowed()
959  * away from this CPU, or CPU going down), or because we're
960  * attempting to rebalance this task on exec (sched_exec).
961  *
962  * So we race with normal scheduler movements, but that's OK, as long
963  * as the task is no longer on this CPU.
964  */
965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 				 struct task_struct *p, int dest_cpu)
967 {
968 	/* Affinity changed (again). */
969 	if (!is_cpu_allowed(p, dest_cpu))
970 		return rq;
971 
972 	update_rq_clock(rq);
973 	rq = move_queued_task(rq, rf, p, dest_cpu);
974 
975 	return rq;
976 }
977 
978 /*
979  * migration_cpu_stop - this will be executed by a highprio stopper thread
980  * and performs thread migration by bumping thread off CPU then
981  * 'pushing' onto another runqueue.
982  */
983 static int migration_cpu_stop(void *data)
984 {
985 	struct migration_arg *arg = data;
986 	struct task_struct *p = arg->task;
987 	struct rq *rq = this_rq();
988 	struct rq_flags rf;
989 
990 	/*
991 	 * The original target CPU might have gone down and we might
992 	 * be on another CPU but it doesn't matter.
993 	 */
994 	local_irq_disable();
995 	/*
996 	 * We need to explicitly wake pending tasks before running
997 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 	 */
1000 	sched_ttwu_pending();
1001 
1002 	raw_spin_lock(&p->pi_lock);
1003 	rq_lock(rq, &rf);
1004 	/*
1005 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 	 * we're holding p->pi_lock.
1008 	 */
1009 	if (task_rq(p) == rq) {
1010 		if (task_on_rq_queued(p))
1011 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 		else
1013 			p->wake_cpu = arg->dest_cpu;
1014 	}
1015 	rq_unlock(rq, &rf);
1016 	raw_spin_unlock(&p->pi_lock);
1017 
1018 	local_irq_enable();
1019 	return 0;
1020 }
1021 
1022 /*
1023  * sched_class::set_cpus_allowed must do the below, but is not required to
1024  * actually call this function.
1025  */
1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 	cpumask_copy(&p->cpus_allowed, new_mask);
1029 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1030 }
1031 
1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033 {
1034 	struct rq *rq = task_rq(p);
1035 	bool queued, running;
1036 
1037 	lockdep_assert_held(&p->pi_lock);
1038 
1039 	queued = task_on_rq_queued(p);
1040 	running = task_current(rq, p);
1041 
1042 	if (queued) {
1043 		/*
1044 		 * Because __kthread_bind() calls this on blocked tasks without
1045 		 * holding rq->lock.
1046 		 */
1047 		lockdep_assert_held(&rq->lock);
1048 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 	}
1050 	if (running)
1051 		put_prev_task(rq, p);
1052 
1053 	p->sched_class->set_cpus_allowed(p, new_mask);
1054 
1055 	if (queued)
1056 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057 	if (running)
1058 		set_curr_task(rq, p);
1059 }
1060 
1061 /*
1062  * Change a given task's CPU affinity. Migrate the thread to a
1063  * proper CPU and schedule it away if the CPU it's executing on
1064  * is removed from the allowed bitmask.
1065  *
1066  * NOTE: the caller must have a valid reference to the task, the
1067  * task must not exit() & deallocate itself prematurely. The
1068  * call is not atomic; no spinlocks may be held.
1069  */
1070 static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 				  const struct cpumask *new_mask, bool check)
1072 {
1073 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 	unsigned int dest_cpu;
1075 	struct rq_flags rf;
1076 	struct rq *rq;
1077 	int ret = 0;
1078 
1079 	rq = task_rq_lock(p, &rf);
1080 	update_rq_clock(rq);
1081 
1082 	if (p->flags & PF_KTHREAD) {
1083 		/*
1084 		 * Kernel threads are allowed on online && !active CPUs
1085 		 */
1086 		cpu_valid_mask = cpu_online_mask;
1087 	}
1088 
1089 	/*
1090 	 * Must re-check here, to close a race against __kthread_bind(),
1091 	 * sched_setaffinity() is not guaranteed to observe the flag.
1092 	 */
1093 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 		ret = -EINVAL;
1095 		goto out;
1096 	}
1097 
1098 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 		goto out;
1100 
1101 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1102 		ret = -EINVAL;
1103 		goto out;
1104 	}
1105 
1106 	do_set_cpus_allowed(p, new_mask);
1107 
1108 	if (p->flags & PF_KTHREAD) {
1109 		/*
1110 		 * For kernel threads that do indeed end up on online &&
1111 		 * !active we want to ensure they are strict per-CPU threads.
1112 		 */
1113 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1115 			p->nr_cpus_allowed != 1);
1116 	}
1117 
1118 	/* Can the task run on the task's current CPU? If so, we're done */
1119 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 		goto out;
1121 
1122 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 		struct migration_arg arg = { p, dest_cpu };
1125 		/* Need help from migration thread: drop lock and wait. */
1126 		task_rq_unlock(rq, p, &rf);
1127 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 		tlb_migrate_finish(p->mm);
1129 		return 0;
1130 	} else if (task_on_rq_queued(p)) {
1131 		/*
1132 		 * OK, since we're going to drop the lock immediately
1133 		 * afterwards anyway.
1134 		 */
1135 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1136 	}
1137 out:
1138 	task_rq_unlock(rq, p, &rf);
1139 
1140 	return ret;
1141 }
1142 
1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144 {
1145 	return __set_cpus_allowed_ptr(p, new_mask, false);
1146 }
1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148 
1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150 {
1151 #ifdef CONFIG_SCHED_DEBUG
1152 	/*
1153 	 * We should never call set_task_cpu() on a blocked task,
1154 	 * ttwu() will sort out the placement.
1155 	 */
1156 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157 			!p->on_rq);
1158 
1159 	/*
1160 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 	 * time relying on p->on_rq.
1163 	 */
1164 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 		     p->sched_class == &fair_sched_class &&
1166 		     (p->on_rq && !task_on_rq_migrating(p)));
1167 
1168 #ifdef CONFIG_LOCKDEP
1169 	/*
1170 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 	 *
1173 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1174 	 * see task_group().
1175 	 *
1176 	 * Furthermore, all task_rq users should acquire both locks, see
1177 	 * task_rq_lock().
1178 	 */
1179 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 				      lockdep_is_held(&task_rq(p)->lock)));
1181 #endif
1182 	/*
1183 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 	 */
1185 	WARN_ON_ONCE(!cpu_online(new_cpu));
1186 #endif
1187 
1188 	trace_sched_migrate_task(p, new_cpu);
1189 
1190 	if (task_cpu(p) != new_cpu) {
1191 		if (p->sched_class->migrate_task_rq)
1192 			p->sched_class->migrate_task_rq(p);
1193 		p->se.nr_migrations++;
1194 		rseq_migrate(p);
1195 		perf_event_task_migrate(p);
1196 	}
1197 
1198 	__set_task_cpu(p, new_cpu);
1199 }
1200 
1201 static void __migrate_swap_task(struct task_struct *p, int cpu)
1202 {
1203 	if (task_on_rq_queued(p)) {
1204 		struct rq *src_rq, *dst_rq;
1205 		struct rq_flags srf, drf;
1206 
1207 		src_rq = task_rq(p);
1208 		dst_rq = cpu_rq(cpu);
1209 
1210 		rq_pin_lock(src_rq, &srf);
1211 		rq_pin_lock(dst_rq, &drf);
1212 
1213 		p->on_rq = TASK_ON_RQ_MIGRATING;
1214 		deactivate_task(src_rq, p, 0);
1215 		set_task_cpu(p, cpu);
1216 		activate_task(dst_rq, p, 0);
1217 		p->on_rq = TASK_ON_RQ_QUEUED;
1218 		check_preempt_curr(dst_rq, p, 0);
1219 
1220 		rq_unpin_lock(dst_rq, &drf);
1221 		rq_unpin_lock(src_rq, &srf);
1222 
1223 	} else {
1224 		/*
1225 		 * Task isn't running anymore; make it appear like we migrated
1226 		 * it before it went to sleep. This means on wakeup we make the
1227 		 * previous CPU our target instead of where it really is.
1228 		 */
1229 		p->wake_cpu = cpu;
1230 	}
1231 }
1232 
1233 struct migration_swap_arg {
1234 	struct task_struct *src_task, *dst_task;
1235 	int src_cpu, dst_cpu;
1236 };
1237 
1238 static int migrate_swap_stop(void *data)
1239 {
1240 	struct migration_swap_arg *arg = data;
1241 	struct rq *src_rq, *dst_rq;
1242 	int ret = -EAGAIN;
1243 
1244 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1245 		return -EAGAIN;
1246 
1247 	src_rq = cpu_rq(arg->src_cpu);
1248 	dst_rq = cpu_rq(arg->dst_cpu);
1249 
1250 	double_raw_lock(&arg->src_task->pi_lock,
1251 			&arg->dst_task->pi_lock);
1252 	double_rq_lock(src_rq, dst_rq);
1253 
1254 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1255 		goto unlock;
1256 
1257 	if (task_cpu(arg->src_task) != arg->src_cpu)
1258 		goto unlock;
1259 
1260 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1261 		goto unlock;
1262 
1263 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1264 		goto unlock;
1265 
1266 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1267 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1268 
1269 	ret = 0;
1270 
1271 unlock:
1272 	double_rq_unlock(src_rq, dst_rq);
1273 	raw_spin_unlock(&arg->dst_task->pi_lock);
1274 	raw_spin_unlock(&arg->src_task->pi_lock);
1275 
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Cross migrate two tasks
1281  */
1282 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1283 {
1284 	struct migration_swap_arg arg;
1285 	int ret = -EINVAL;
1286 
1287 	arg = (struct migration_swap_arg){
1288 		.src_task = cur,
1289 		.src_cpu = task_cpu(cur),
1290 		.dst_task = p,
1291 		.dst_cpu = task_cpu(p),
1292 	};
1293 
1294 	if (arg.src_cpu == arg.dst_cpu)
1295 		goto out;
1296 
1297 	/*
1298 	 * These three tests are all lockless; this is OK since all of them
1299 	 * will be re-checked with proper locks held further down the line.
1300 	 */
1301 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1302 		goto out;
1303 
1304 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1305 		goto out;
1306 
1307 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1308 		goto out;
1309 
1310 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1311 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1312 
1313 out:
1314 	return ret;
1315 }
1316 
1317 /*
1318  * wait_task_inactive - wait for a thread to unschedule.
1319  *
1320  * If @match_state is nonzero, it's the @p->state value just checked and
1321  * not expected to change.  If it changes, i.e. @p might have woken up,
1322  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1323  * we return a positive number (its total switch count).  If a second call
1324  * a short while later returns the same number, the caller can be sure that
1325  * @p has remained unscheduled the whole time.
1326  *
1327  * The caller must ensure that the task *will* unschedule sometime soon,
1328  * else this function might spin for a *long* time. This function can't
1329  * be called with interrupts off, or it may introduce deadlock with
1330  * smp_call_function() if an IPI is sent by the same process we are
1331  * waiting to become inactive.
1332  */
1333 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1334 {
1335 	int running, queued;
1336 	struct rq_flags rf;
1337 	unsigned long ncsw;
1338 	struct rq *rq;
1339 
1340 	for (;;) {
1341 		/*
1342 		 * We do the initial early heuristics without holding
1343 		 * any task-queue locks at all. We'll only try to get
1344 		 * the runqueue lock when things look like they will
1345 		 * work out!
1346 		 */
1347 		rq = task_rq(p);
1348 
1349 		/*
1350 		 * If the task is actively running on another CPU
1351 		 * still, just relax and busy-wait without holding
1352 		 * any locks.
1353 		 *
1354 		 * NOTE! Since we don't hold any locks, it's not
1355 		 * even sure that "rq" stays as the right runqueue!
1356 		 * But we don't care, since "task_running()" will
1357 		 * return false if the runqueue has changed and p
1358 		 * is actually now running somewhere else!
1359 		 */
1360 		while (task_running(rq, p)) {
1361 			if (match_state && unlikely(p->state != match_state))
1362 				return 0;
1363 			cpu_relax();
1364 		}
1365 
1366 		/*
1367 		 * Ok, time to look more closely! We need the rq
1368 		 * lock now, to be *sure*. If we're wrong, we'll
1369 		 * just go back and repeat.
1370 		 */
1371 		rq = task_rq_lock(p, &rf);
1372 		trace_sched_wait_task(p);
1373 		running = task_running(rq, p);
1374 		queued = task_on_rq_queued(p);
1375 		ncsw = 0;
1376 		if (!match_state || p->state == match_state)
1377 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1378 		task_rq_unlock(rq, p, &rf);
1379 
1380 		/*
1381 		 * If it changed from the expected state, bail out now.
1382 		 */
1383 		if (unlikely(!ncsw))
1384 			break;
1385 
1386 		/*
1387 		 * Was it really running after all now that we
1388 		 * checked with the proper locks actually held?
1389 		 *
1390 		 * Oops. Go back and try again..
1391 		 */
1392 		if (unlikely(running)) {
1393 			cpu_relax();
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * It's not enough that it's not actively running,
1399 		 * it must be off the runqueue _entirely_, and not
1400 		 * preempted!
1401 		 *
1402 		 * So if it was still runnable (but just not actively
1403 		 * running right now), it's preempted, and we should
1404 		 * yield - it could be a while.
1405 		 */
1406 		if (unlikely(queued)) {
1407 			ktime_t to = NSEC_PER_SEC / HZ;
1408 
1409 			set_current_state(TASK_UNINTERRUPTIBLE);
1410 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1411 			continue;
1412 		}
1413 
1414 		/*
1415 		 * Ahh, all good. It wasn't running, and it wasn't
1416 		 * runnable, which means that it will never become
1417 		 * running in the future either. We're all done!
1418 		 */
1419 		break;
1420 	}
1421 
1422 	return ncsw;
1423 }
1424 
1425 /***
1426  * kick_process - kick a running thread to enter/exit the kernel
1427  * @p: the to-be-kicked thread
1428  *
1429  * Cause a process which is running on another CPU to enter
1430  * kernel-mode, without any delay. (to get signals handled.)
1431  *
1432  * NOTE: this function doesn't have to take the runqueue lock,
1433  * because all it wants to ensure is that the remote task enters
1434  * the kernel. If the IPI races and the task has been migrated
1435  * to another CPU then no harm is done and the purpose has been
1436  * achieved as well.
1437  */
1438 void kick_process(struct task_struct *p)
1439 {
1440 	int cpu;
1441 
1442 	preempt_disable();
1443 	cpu = task_cpu(p);
1444 	if ((cpu != smp_processor_id()) && task_curr(p))
1445 		smp_send_reschedule(cpu);
1446 	preempt_enable();
1447 }
1448 EXPORT_SYMBOL_GPL(kick_process);
1449 
1450 /*
1451  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1452  *
1453  * A few notes on cpu_active vs cpu_online:
1454  *
1455  *  - cpu_active must be a subset of cpu_online
1456  *
1457  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1458  *    see __set_cpus_allowed_ptr(). At this point the newly online
1459  *    CPU isn't yet part of the sched domains, and balancing will not
1460  *    see it.
1461  *
1462  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1463  *    avoid the load balancer to place new tasks on the to be removed
1464  *    CPU. Existing tasks will remain running there and will be taken
1465  *    off.
1466  *
1467  * This means that fallback selection must not select !active CPUs.
1468  * And can assume that any active CPU must be online. Conversely
1469  * select_task_rq() below may allow selection of !active CPUs in order
1470  * to satisfy the above rules.
1471  */
1472 static int select_fallback_rq(int cpu, struct task_struct *p)
1473 {
1474 	int nid = cpu_to_node(cpu);
1475 	const struct cpumask *nodemask = NULL;
1476 	enum { cpuset, possible, fail } state = cpuset;
1477 	int dest_cpu;
1478 
1479 	/*
1480 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1481 	 * will return -1. There is no CPU on the node, and we should
1482 	 * select the CPU on the other node.
1483 	 */
1484 	if (nid != -1) {
1485 		nodemask = cpumask_of_node(nid);
1486 
1487 		/* Look for allowed, online CPU in same node. */
1488 		for_each_cpu(dest_cpu, nodemask) {
1489 			if (!cpu_active(dest_cpu))
1490 				continue;
1491 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1492 				return dest_cpu;
1493 		}
1494 	}
1495 
1496 	for (;;) {
1497 		/* Any allowed, online CPU? */
1498 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1499 			if (!is_cpu_allowed(p, dest_cpu))
1500 				continue;
1501 
1502 			goto out;
1503 		}
1504 
1505 		/* No more Mr. Nice Guy. */
1506 		switch (state) {
1507 		case cpuset:
1508 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1509 				cpuset_cpus_allowed_fallback(p);
1510 				state = possible;
1511 				break;
1512 			}
1513 			/* Fall-through */
1514 		case possible:
1515 			do_set_cpus_allowed(p, cpu_possible_mask);
1516 			state = fail;
1517 			break;
1518 
1519 		case fail:
1520 			BUG();
1521 			break;
1522 		}
1523 	}
1524 
1525 out:
1526 	if (state != cpuset) {
1527 		/*
1528 		 * Don't tell them about moving exiting tasks or
1529 		 * kernel threads (both mm NULL), since they never
1530 		 * leave kernel.
1531 		 */
1532 		if (p->mm && printk_ratelimit()) {
1533 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1534 					task_pid_nr(p), p->comm, cpu);
1535 		}
1536 	}
1537 
1538 	return dest_cpu;
1539 }
1540 
1541 /*
1542  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1543  */
1544 static inline
1545 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1546 {
1547 	lockdep_assert_held(&p->pi_lock);
1548 
1549 	if (p->nr_cpus_allowed > 1)
1550 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1551 	else
1552 		cpu = cpumask_any(&p->cpus_allowed);
1553 
1554 	/*
1555 	 * In order not to call set_task_cpu() on a blocking task we need
1556 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1557 	 * CPU.
1558 	 *
1559 	 * Since this is common to all placement strategies, this lives here.
1560 	 *
1561 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1562 	 *   not worry about this generic constraint ]
1563 	 */
1564 	if (unlikely(!is_cpu_allowed(p, cpu)))
1565 		cpu = select_fallback_rq(task_cpu(p), p);
1566 
1567 	return cpu;
1568 }
1569 
1570 static void update_avg(u64 *avg, u64 sample)
1571 {
1572 	s64 diff = sample - *avg;
1573 	*avg += diff >> 3;
1574 }
1575 
1576 void sched_set_stop_task(int cpu, struct task_struct *stop)
1577 {
1578 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1579 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1580 
1581 	if (stop) {
1582 		/*
1583 		 * Make it appear like a SCHED_FIFO task, its something
1584 		 * userspace knows about and won't get confused about.
1585 		 *
1586 		 * Also, it will make PI more or less work without too
1587 		 * much confusion -- but then, stop work should not
1588 		 * rely on PI working anyway.
1589 		 */
1590 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1591 
1592 		stop->sched_class = &stop_sched_class;
1593 	}
1594 
1595 	cpu_rq(cpu)->stop = stop;
1596 
1597 	if (old_stop) {
1598 		/*
1599 		 * Reset it back to a normal scheduling class so that
1600 		 * it can die in pieces.
1601 		 */
1602 		old_stop->sched_class = &rt_sched_class;
1603 	}
1604 }
1605 
1606 #else
1607 
1608 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1609 					 const struct cpumask *new_mask, bool check)
1610 {
1611 	return set_cpus_allowed_ptr(p, new_mask);
1612 }
1613 
1614 #endif /* CONFIG_SMP */
1615 
1616 static void
1617 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1618 {
1619 	struct rq *rq;
1620 
1621 	if (!schedstat_enabled())
1622 		return;
1623 
1624 	rq = this_rq();
1625 
1626 #ifdef CONFIG_SMP
1627 	if (cpu == rq->cpu) {
1628 		__schedstat_inc(rq->ttwu_local);
1629 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1630 	} else {
1631 		struct sched_domain *sd;
1632 
1633 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1634 		rcu_read_lock();
1635 		for_each_domain(rq->cpu, sd) {
1636 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1637 				__schedstat_inc(sd->ttwu_wake_remote);
1638 				break;
1639 			}
1640 		}
1641 		rcu_read_unlock();
1642 	}
1643 
1644 	if (wake_flags & WF_MIGRATED)
1645 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1646 #endif /* CONFIG_SMP */
1647 
1648 	__schedstat_inc(rq->ttwu_count);
1649 	__schedstat_inc(p->se.statistics.nr_wakeups);
1650 
1651 	if (wake_flags & WF_SYNC)
1652 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1653 }
1654 
1655 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1656 {
1657 	activate_task(rq, p, en_flags);
1658 	p->on_rq = TASK_ON_RQ_QUEUED;
1659 
1660 	/* If a worker is waking up, notify the workqueue: */
1661 	if (p->flags & PF_WQ_WORKER)
1662 		wq_worker_waking_up(p, cpu_of(rq));
1663 }
1664 
1665 /*
1666  * Mark the task runnable and perform wakeup-preemption.
1667  */
1668 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1669 			   struct rq_flags *rf)
1670 {
1671 	check_preempt_curr(rq, p, wake_flags);
1672 	p->state = TASK_RUNNING;
1673 	trace_sched_wakeup(p);
1674 
1675 #ifdef CONFIG_SMP
1676 	if (p->sched_class->task_woken) {
1677 		/*
1678 		 * Our task @p is fully woken up and running; so its safe to
1679 		 * drop the rq->lock, hereafter rq is only used for statistics.
1680 		 */
1681 		rq_unpin_lock(rq, rf);
1682 		p->sched_class->task_woken(rq, p);
1683 		rq_repin_lock(rq, rf);
1684 	}
1685 
1686 	if (rq->idle_stamp) {
1687 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1688 		u64 max = 2*rq->max_idle_balance_cost;
1689 
1690 		update_avg(&rq->avg_idle, delta);
1691 
1692 		if (rq->avg_idle > max)
1693 			rq->avg_idle = max;
1694 
1695 		rq->idle_stamp = 0;
1696 	}
1697 #endif
1698 }
1699 
1700 static void
1701 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1702 		 struct rq_flags *rf)
1703 {
1704 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1705 
1706 	lockdep_assert_held(&rq->lock);
1707 
1708 #ifdef CONFIG_SMP
1709 	if (p->sched_contributes_to_load)
1710 		rq->nr_uninterruptible--;
1711 
1712 	if (wake_flags & WF_MIGRATED)
1713 		en_flags |= ENQUEUE_MIGRATED;
1714 #endif
1715 
1716 	ttwu_activate(rq, p, en_flags);
1717 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1718 }
1719 
1720 /*
1721  * Called in case the task @p isn't fully descheduled from its runqueue,
1722  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1723  * since all we need to do is flip p->state to TASK_RUNNING, since
1724  * the task is still ->on_rq.
1725  */
1726 static int ttwu_remote(struct task_struct *p, int wake_flags)
1727 {
1728 	struct rq_flags rf;
1729 	struct rq *rq;
1730 	int ret = 0;
1731 
1732 	rq = __task_rq_lock(p, &rf);
1733 	if (task_on_rq_queued(p)) {
1734 		/* check_preempt_curr() may use rq clock */
1735 		update_rq_clock(rq);
1736 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1737 		ret = 1;
1738 	}
1739 	__task_rq_unlock(rq, &rf);
1740 
1741 	return ret;
1742 }
1743 
1744 #ifdef CONFIG_SMP
1745 void sched_ttwu_pending(void)
1746 {
1747 	struct rq *rq = this_rq();
1748 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1749 	struct task_struct *p, *t;
1750 	struct rq_flags rf;
1751 
1752 	if (!llist)
1753 		return;
1754 
1755 	rq_lock_irqsave(rq, &rf);
1756 	update_rq_clock(rq);
1757 
1758 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1759 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1760 
1761 	rq_unlock_irqrestore(rq, &rf);
1762 }
1763 
1764 void scheduler_ipi(void)
1765 {
1766 	/*
1767 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1768 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1769 	 * this IPI.
1770 	 */
1771 	preempt_fold_need_resched();
1772 
1773 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1774 		return;
1775 
1776 	/*
1777 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1778 	 * traditionally all their work was done from the interrupt return
1779 	 * path. Now that we actually do some work, we need to make sure
1780 	 * we do call them.
1781 	 *
1782 	 * Some archs already do call them, luckily irq_enter/exit nest
1783 	 * properly.
1784 	 *
1785 	 * Arguably we should visit all archs and update all handlers,
1786 	 * however a fair share of IPIs are still resched only so this would
1787 	 * somewhat pessimize the simple resched case.
1788 	 */
1789 	irq_enter();
1790 	sched_ttwu_pending();
1791 
1792 	/*
1793 	 * Check if someone kicked us for doing the nohz idle load balance.
1794 	 */
1795 	if (unlikely(got_nohz_idle_kick())) {
1796 		this_rq()->idle_balance = 1;
1797 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1798 	}
1799 	irq_exit();
1800 }
1801 
1802 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1803 {
1804 	struct rq *rq = cpu_rq(cpu);
1805 
1806 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1807 
1808 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1809 		if (!set_nr_if_polling(rq->idle))
1810 			smp_send_reschedule(cpu);
1811 		else
1812 			trace_sched_wake_idle_without_ipi(cpu);
1813 	}
1814 }
1815 
1816 void wake_up_if_idle(int cpu)
1817 {
1818 	struct rq *rq = cpu_rq(cpu);
1819 	struct rq_flags rf;
1820 
1821 	rcu_read_lock();
1822 
1823 	if (!is_idle_task(rcu_dereference(rq->curr)))
1824 		goto out;
1825 
1826 	if (set_nr_if_polling(rq->idle)) {
1827 		trace_sched_wake_idle_without_ipi(cpu);
1828 	} else {
1829 		rq_lock_irqsave(rq, &rf);
1830 		if (is_idle_task(rq->curr))
1831 			smp_send_reschedule(cpu);
1832 		/* Else CPU is not idle, do nothing here: */
1833 		rq_unlock_irqrestore(rq, &rf);
1834 	}
1835 
1836 out:
1837 	rcu_read_unlock();
1838 }
1839 
1840 bool cpus_share_cache(int this_cpu, int that_cpu)
1841 {
1842 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1843 }
1844 #endif /* CONFIG_SMP */
1845 
1846 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1847 {
1848 	struct rq *rq = cpu_rq(cpu);
1849 	struct rq_flags rf;
1850 
1851 #if defined(CONFIG_SMP)
1852 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1853 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1854 		ttwu_queue_remote(p, cpu, wake_flags);
1855 		return;
1856 	}
1857 #endif
1858 
1859 	rq_lock(rq, &rf);
1860 	update_rq_clock(rq);
1861 	ttwu_do_activate(rq, p, wake_flags, &rf);
1862 	rq_unlock(rq, &rf);
1863 }
1864 
1865 /*
1866  * Notes on Program-Order guarantees on SMP systems.
1867  *
1868  *  MIGRATION
1869  *
1870  * The basic program-order guarantee on SMP systems is that when a task [t]
1871  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1872  * execution on its new CPU [c1].
1873  *
1874  * For migration (of runnable tasks) this is provided by the following means:
1875  *
1876  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1877  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1878  *     rq(c1)->lock (if not at the same time, then in that order).
1879  *  C) LOCK of the rq(c1)->lock scheduling in task
1880  *
1881  * Transitivity guarantees that B happens after A and C after B.
1882  * Note: we only require RCpc transitivity.
1883  * Note: the CPU doing B need not be c0 or c1
1884  *
1885  * Example:
1886  *
1887  *   CPU0            CPU1            CPU2
1888  *
1889  *   LOCK rq(0)->lock
1890  *   sched-out X
1891  *   sched-in Y
1892  *   UNLOCK rq(0)->lock
1893  *
1894  *                                   LOCK rq(0)->lock // orders against CPU0
1895  *                                   dequeue X
1896  *                                   UNLOCK rq(0)->lock
1897  *
1898  *                                   LOCK rq(1)->lock
1899  *                                   enqueue X
1900  *                                   UNLOCK rq(1)->lock
1901  *
1902  *                   LOCK rq(1)->lock // orders against CPU2
1903  *                   sched-out Z
1904  *                   sched-in X
1905  *                   UNLOCK rq(1)->lock
1906  *
1907  *
1908  *  BLOCKING -- aka. SLEEP + WAKEUP
1909  *
1910  * For blocking we (obviously) need to provide the same guarantee as for
1911  * migration. However the means are completely different as there is no lock
1912  * chain to provide order. Instead we do:
1913  *
1914  *   1) smp_store_release(X->on_cpu, 0)
1915  *   2) smp_cond_load_acquire(!X->on_cpu)
1916  *
1917  * Example:
1918  *
1919  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1920  *
1921  *   LOCK rq(0)->lock LOCK X->pi_lock
1922  *   dequeue X
1923  *   sched-out X
1924  *   smp_store_release(X->on_cpu, 0);
1925  *
1926  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1927  *                    X->state = WAKING
1928  *                    set_task_cpu(X,2)
1929  *
1930  *                    LOCK rq(2)->lock
1931  *                    enqueue X
1932  *                    X->state = RUNNING
1933  *                    UNLOCK rq(2)->lock
1934  *
1935  *                                          LOCK rq(2)->lock // orders against CPU1
1936  *                                          sched-out Z
1937  *                                          sched-in X
1938  *                                          UNLOCK rq(2)->lock
1939  *
1940  *                    UNLOCK X->pi_lock
1941  *   UNLOCK rq(0)->lock
1942  *
1943  *
1944  * However; for wakeups there is a second guarantee we must provide, namely we
1945  * must observe the state that lead to our wakeup. That is, not only must our
1946  * task observe its own prior state, it must also observe the stores prior to
1947  * its wakeup.
1948  *
1949  * This means that any means of doing remote wakeups must order the CPU doing
1950  * the wakeup against the CPU the task is going to end up running on. This,
1951  * however, is already required for the regular Program-Order guarantee above,
1952  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1953  *
1954  */
1955 
1956 /**
1957  * try_to_wake_up - wake up a thread
1958  * @p: the thread to be awakened
1959  * @state: the mask of task states that can be woken
1960  * @wake_flags: wake modifier flags (WF_*)
1961  *
1962  * If (@state & @p->state) @p->state = TASK_RUNNING.
1963  *
1964  * If the task was not queued/runnable, also place it back on a runqueue.
1965  *
1966  * Atomic against schedule() which would dequeue a task, also see
1967  * set_current_state().
1968  *
1969  * Return: %true if @p->state changes (an actual wakeup was done),
1970  *	   %false otherwise.
1971  */
1972 static int
1973 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1974 {
1975 	unsigned long flags;
1976 	int cpu, success = 0;
1977 
1978 	/*
1979 	 * If we are going to wake up a thread waiting for CONDITION we
1980 	 * need to ensure that CONDITION=1 done by the caller can not be
1981 	 * reordered with p->state check below. This pairs with mb() in
1982 	 * set_current_state() the waiting thread does.
1983 	 */
1984 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1985 	smp_mb__after_spinlock();
1986 	if (!(p->state & state))
1987 		goto out;
1988 
1989 	trace_sched_waking(p);
1990 
1991 	/* We're going to change ->state: */
1992 	success = 1;
1993 	cpu = task_cpu(p);
1994 
1995 	/*
1996 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1997 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1998 	 * in smp_cond_load_acquire() below.
1999 	 *
2000 	 * sched_ttwu_pending()                 try_to_wake_up()
2001 	 *   [S] p->on_rq = 1;                  [L] P->state
2002 	 *       UNLOCK rq->lock  -----.
2003 	 *                              \
2004 	 *				 +---   RMB
2005 	 * schedule()                   /
2006 	 *       LOCK rq->lock    -----'
2007 	 *       UNLOCK rq->lock
2008 	 *
2009 	 * [task p]
2010 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2011 	 *
2012 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2013 	 * last wakeup of our task and the schedule that got our task
2014 	 * current.
2015 	 */
2016 	smp_rmb();
2017 	if (p->on_rq && ttwu_remote(p, wake_flags))
2018 		goto stat;
2019 
2020 #ifdef CONFIG_SMP
2021 	/*
2022 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2023 	 * possible to, falsely, observe p->on_cpu == 0.
2024 	 *
2025 	 * One must be running (->on_cpu == 1) in order to remove oneself
2026 	 * from the runqueue.
2027 	 *
2028 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2029 	 *      UNLOCK rq->lock
2030 	 *			RMB
2031 	 *      LOCK   rq->lock
2032 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2033 	 *
2034 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2035 	 * from the consecutive calls to schedule(); the first switching to our
2036 	 * task, the second putting it to sleep.
2037 	 */
2038 	smp_rmb();
2039 
2040 	/*
2041 	 * If the owning (remote) CPU is still in the middle of schedule() with
2042 	 * this task as prev, wait until its done referencing the task.
2043 	 *
2044 	 * Pairs with the smp_store_release() in finish_task().
2045 	 *
2046 	 * This ensures that tasks getting woken will be fully ordered against
2047 	 * their previous state and preserve Program Order.
2048 	 */
2049 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2050 
2051 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2052 	p->state = TASK_WAKING;
2053 
2054 	if (p->in_iowait) {
2055 		delayacct_blkio_end(p);
2056 		atomic_dec(&task_rq(p)->nr_iowait);
2057 	}
2058 
2059 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2060 	if (task_cpu(p) != cpu) {
2061 		wake_flags |= WF_MIGRATED;
2062 		set_task_cpu(p, cpu);
2063 	}
2064 
2065 #else /* CONFIG_SMP */
2066 
2067 	if (p->in_iowait) {
2068 		delayacct_blkio_end(p);
2069 		atomic_dec(&task_rq(p)->nr_iowait);
2070 	}
2071 
2072 #endif /* CONFIG_SMP */
2073 
2074 	ttwu_queue(p, cpu, wake_flags);
2075 stat:
2076 	ttwu_stat(p, cpu, wake_flags);
2077 out:
2078 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2079 
2080 	return success;
2081 }
2082 
2083 /**
2084  * try_to_wake_up_local - try to wake up a local task with rq lock held
2085  * @p: the thread to be awakened
2086  * @rf: request-queue flags for pinning
2087  *
2088  * Put @p on the run-queue if it's not already there. The caller must
2089  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2090  * the current task.
2091  */
2092 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2093 {
2094 	struct rq *rq = task_rq(p);
2095 
2096 	if (WARN_ON_ONCE(rq != this_rq()) ||
2097 	    WARN_ON_ONCE(p == current))
2098 		return;
2099 
2100 	lockdep_assert_held(&rq->lock);
2101 
2102 	if (!raw_spin_trylock(&p->pi_lock)) {
2103 		/*
2104 		 * This is OK, because current is on_cpu, which avoids it being
2105 		 * picked for load-balance and preemption/IRQs are still
2106 		 * disabled avoiding further scheduler activity on it and we've
2107 		 * not yet picked a replacement task.
2108 		 */
2109 		rq_unlock(rq, rf);
2110 		raw_spin_lock(&p->pi_lock);
2111 		rq_relock(rq, rf);
2112 	}
2113 
2114 	if (!(p->state & TASK_NORMAL))
2115 		goto out;
2116 
2117 	trace_sched_waking(p);
2118 
2119 	if (!task_on_rq_queued(p)) {
2120 		if (p->in_iowait) {
2121 			delayacct_blkio_end(p);
2122 			atomic_dec(&rq->nr_iowait);
2123 		}
2124 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2125 	}
2126 
2127 	ttwu_do_wakeup(rq, p, 0, rf);
2128 	ttwu_stat(p, smp_processor_id(), 0);
2129 out:
2130 	raw_spin_unlock(&p->pi_lock);
2131 }
2132 
2133 /**
2134  * wake_up_process - Wake up a specific process
2135  * @p: The process to be woken up.
2136  *
2137  * Attempt to wake up the nominated process and move it to the set of runnable
2138  * processes.
2139  *
2140  * Return: 1 if the process was woken up, 0 if it was already running.
2141  *
2142  * It may be assumed that this function implies a write memory barrier before
2143  * changing the task state if and only if any tasks are woken up.
2144  */
2145 int wake_up_process(struct task_struct *p)
2146 {
2147 	return try_to_wake_up(p, TASK_NORMAL, 0);
2148 }
2149 EXPORT_SYMBOL(wake_up_process);
2150 
2151 int wake_up_state(struct task_struct *p, unsigned int state)
2152 {
2153 	return try_to_wake_up(p, state, 0);
2154 }
2155 
2156 /*
2157  * Perform scheduler related setup for a newly forked process p.
2158  * p is forked by current.
2159  *
2160  * __sched_fork() is basic setup used by init_idle() too:
2161  */
2162 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2163 {
2164 	p->on_rq			= 0;
2165 
2166 	p->se.on_rq			= 0;
2167 	p->se.exec_start		= 0;
2168 	p->se.sum_exec_runtime		= 0;
2169 	p->se.prev_sum_exec_runtime	= 0;
2170 	p->se.nr_migrations		= 0;
2171 	p->se.vruntime			= 0;
2172 	INIT_LIST_HEAD(&p->se.group_node);
2173 
2174 #ifdef CONFIG_FAIR_GROUP_SCHED
2175 	p->se.cfs_rq			= NULL;
2176 #endif
2177 
2178 #ifdef CONFIG_SCHEDSTATS
2179 	/* Even if schedstat is disabled, there should not be garbage */
2180 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2181 #endif
2182 
2183 	RB_CLEAR_NODE(&p->dl.rb_node);
2184 	init_dl_task_timer(&p->dl);
2185 	init_dl_inactive_task_timer(&p->dl);
2186 	__dl_clear_params(p);
2187 
2188 	INIT_LIST_HEAD(&p->rt.run_list);
2189 	p->rt.timeout		= 0;
2190 	p->rt.time_slice	= sched_rr_timeslice;
2191 	p->rt.on_rq		= 0;
2192 	p->rt.on_list		= 0;
2193 
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197 
2198 	init_numa_balancing(clone_flags, p);
2199 }
2200 
2201 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2202 
2203 #ifdef CONFIG_NUMA_BALANCING
2204 
2205 void set_numabalancing_state(bool enabled)
2206 {
2207 	if (enabled)
2208 		static_branch_enable(&sched_numa_balancing);
2209 	else
2210 		static_branch_disable(&sched_numa_balancing);
2211 }
2212 
2213 #ifdef CONFIG_PROC_SYSCTL
2214 int sysctl_numa_balancing(struct ctl_table *table, int write,
2215 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2216 {
2217 	struct ctl_table t;
2218 	int err;
2219 	int state = static_branch_likely(&sched_numa_balancing);
2220 
2221 	if (write && !capable(CAP_SYS_ADMIN))
2222 		return -EPERM;
2223 
2224 	t = *table;
2225 	t.data = &state;
2226 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2227 	if (err < 0)
2228 		return err;
2229 	if (write)
2230 		set_numabalancing_state(state);
2231 	return err;
2232 }
2233 #endif
2234 #endif
2235 
2236 #ifdef CONFIG_SCHEDSTATS
2237 
2238 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2239 static bool __initdata __sched_schedstats = false;
2240 
2241 static void set_schedstats(bool enabled)
2242 {
2243 	if (enabled)
2244 		static_branch_enable(&sched_schedstats);
2245 	else
2246 		static_branch_disable(&sched_schedstats);
2247 }
2248 
2249 void force_schedstat_enabled(void)
2250 {
2251 	if (!schedstat_enabled()) {
2252 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2253 		static_branch_enable(&sched_schedstats);
2254 	}
2255 }
2256 
2257 static int __init setup_schedstats(char *str)
2258 {
2259 	int ret = 0;
2260 	if (!str)
2261 		goto out;
2262 
2263 	/*
2264 	 * This code is called before jump labels have been set up, so we can't
2265 	 * change the static branch directly just yet.  Instead set a temporary
2266 	 * variable so init_schedstats() can do it later.
2267 	 */
2268 	if (!strcmp(str, "enable")) {
2269 		__sched_schedstats = true;
2270 		ret = 1;
2271 	} else if (!strcmp(str, "disable")) {
2272 		__sched_schedstats = false;
2273 		ret = 1;
2274 	}
2275 out:
2276 	if (!ret)
2277 		pr_warn("Unable to parse schedstats=\n");
2278 
2279 	return ret;
2280 }
2281 __setup("schedstats=", setup_schedstats);
2282 
2283 static void __init init_schedstats(void)
2284 {
2285 	set_schedstats(__sched_schedstats);
2286 }
2287 
2288 #ifdef CONFIG_PROC_SYSCTL
2289 int sysctl_schedstats(struct ctl_table *table, int write,
2290 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2291 {
2292 	struct ctl_table t;
2293 	int err;
2294 	int state = static_branch_likely(&sched_schedstats);
2295 
2296 	if (write && !capable(CAP_SYS_ADMIN))
2297 		return -EPERM;
2298 
2299 	t = *table;
2300 	t.data = &state;
2301 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2302 	if (err < 0)
2303 		return err;
2304 	if (write)
2305 		set_schedstats(state);
2306 	return err;
2307 }
2308 #endif /* CONFIG_PROC_SYSCTL */
2309 #else  /* !CONFIG_SCHEDSTATS */
2310 static inline void init_schedstats(void) {}
2311 #endif /* CONFIG_SCHEDSTATS */
2312 
2313 /*
2314  * fork()/clone()-time setup:
2315  */
2316 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2317 {
2318 	unsigned long flags;
2319 	int cpu = get_cpu();
2320 
2321 	__sched_fork(clone_flags, p);
2322 	/*
2323 	 * We mark the process as NEW here. This guarantees that
2324 	 * nobody will actually run it, and a signal or other external
2325 	 * event cannot wake it up and insert it on the runqueue either.
2326 	 */
2327 	p->state = TASK_NEW;
2328 
2329 	/*
2330 	 * Make sure we do not leak PI boosting priority to the child.
2331 	 */
2332 	p->prio = current->normal_prio;
2333 
2334 	/*
2335 	 * Revert to default priority/policy on fork if requested.
2336 	 */
2337 	if (unlikely(p->sched_reset_on_fork)) {
2338 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2339 			p->policy = SCHED_NORMAL;
2340 			p->static_prio = NICE_TO_PRIO(0);
2341 			p->rt_priority = 0;
2342 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2343 			p->static_prio = NICE_TO_PRIO(0);
2344 
2345 		p->prio = p->normal_prio = __normal_prio(p);
2346 		set_load_weight(p, false);
2347 
2348 		/*
2349 		 * We don't need the reset flag anymore after the fork. It has
2350 		 * fulfilled its duty:
2351 		 */
2352 		p->sched_reset_on_fork = 0;
2353 	}
2354 
2355 	if (dl_prio(p->prio)) {
2356 		put_cpu();
2357 		return -EAGAIN;
2358 	} else if (rt_prio(p->prio)) {
2359 		p->sched_class = &rt_sched_class;
2360 	} else {
2361 		p->sched_class = &fair_sched_class;
2362 	}
2363 
2364 	init_entity_runnable_average(&p->se);
2365 
2366 	/*
2367 	 * The child is not yet in the pid-hash so no cgroup attach races,
2368 	 * and the cgroup is pinned to this child due to cgroup_fork()
2369 	 * is ran before sched_fork().
2370 	 *
2371 	 * Silence PROVE_RCU.
2372 	 */
2373 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2374 	/*
2375 	 * We're setting the CPU for the first time, we don't migrate,
2376 	 * so use __set_task_cpu().
2377 	 */
2378 	__set_task_cpu(p, cpu);
2379 	if (p->sched_class->task_fork)
2380 		p->sched_class->task_fork(p);
2381 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2382 
2383 #ifdef CONFIG_SCHED_INFO
2384 	if (likely(sched_info_on()))
2385 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2386 #endif
2387 #if defined(CONFIG_SMP)
2388 	p->on_cpu = 0;
2389 #endif
2390 	init_task_preempt_count(p);
2391 #ifdef CONFIG_SMP
2392 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2393 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2394 #endif
2395 
2396 	put_cpu();
2397 	return 0;
2398 }
2399 
2400 unsigned long to_ratio(u64 period, u64 runtime)
2401 {
2402 	if (runtime == RUNTIME_INF)
2403 		return BW_UNIT;
2404 
2405 	/*
2406 	 * Doing this here saves a lot of checks in all
2407 	 * the calling paths, and returning zero seems
2408 	 * safe for them anyway.
2409 	 */
2410 	if (period == 0)
2411 		return 0;
2412 
2413 	return div64_u64(runtime << BW_SHIFT, period);
2414 }
2415 
2416 /*
2417  * wake_up_new_task - wake up a newly created task for the first time.
2418  *
2419  * This function will do some initial scheduler statistics housekeeping
2420  * that must be done for every newly created context, then puts the task
2421  * on the runqueue and wakes it.
2422  */
2423 void wake_up_new_task(struct task_struct *p)
2424 {
2425 	struct rq_flags rf;
2426 	struct rq *rq;
2427 
2428 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2429 	p->state = TASK_RUNNING;
2430 #ifdef CONFIG_SMP
2431 	/*
2432 	 * Fork balancing, do it here and not earlier because:
2433 	 *  - cpus_allowed can change in the fork path
2434 	 *  - any previously selected CPU might disappear through hotplug
2435 	 *
2436 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2437 	 * as we're not fully set-up yet.
2438 	 */
2439 	p->recent_used_cpu = task_cpu(p);
2440 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2441 #endif
2442 	rq = __task_rq_lock(p, &rf);
2443 	update_rq_clock(rq);
2444 	post_init_entity_util_avg(&p->se);
2445 
2446 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2447 	p->on_rq = TASK_ON_RQ_QUEUED;
2448 	trace_sched_wakeup_new(p);
2449 	check_preempt_curr(rq, p, WF_FORK);
2450 #ifdef CONFIG_SMP
2451 	if (p->sched_class->task_woken) {
2452 		/*
2453 		 * Nothing relies on rq->lock after this, so its fine to
2454 		 * drop it.
2455 		 */
2456 		rq_unpin_lock(rq, &rf);
2457 		p->sched_class->task_woken(rq, p);
2458 		rq_repin_lock(rq, &rf);
2459 	}
2460 #endif
2461 	task_rq_unlock(rq, p, &rf);
2462 }
2463 
2464 #ifdef CONFIG_PREEMPT_NOTIFIERS
2465 
2466 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2467 
2468 void preempt_notifier_inc(void)
2469 {
2470 	static_branch_inc(&preempt_notifier_key);
2471 }
2472 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2473 
2474 void preempt_notifier_dec(void)
2475 {
2476 	static_branch_dec(&preempt_notifier_key);
2477 }
2478 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2479 
2480 /**
2481  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2482  * @notifier: notifier struct to register
2483  */
2484 void preempt_notifier_register(struct preempt_notifier *notifier)
2485 {
2486 	if (!static_branch_unlikely(&preempt_notifier_key))
2487 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2488 
2489 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2490 }
2491 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2492 
2493 /**
2494  * preempt_notifier_unregister - no longer interested in preemption notifications
2495  * @notifier: notifier struct to unregister
2496  *
2497  * This is *not* safe to call from within a preemption notifier.
2498  */
2499 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2500 {
2501 	hlist_del(&notifier->link);
2502 }
2503 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2504 
2505 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2506 {
2507 	struct preempt_notifier *notifier;
2508 
2509 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2510 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2511 }
2512 
2513 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2514 {
2515 	if (static_branch_unlikely(&preempt_notifier_key))
2516 		__fire_sched_in_preempt_notifiers(curr);
2517 }
2518 
2519 static void
2520 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 				   struct task_struct *next)
2522 {
2523 	struct preempt_notifier *notifier;
2524 
2525 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2526 		notifier->ops->sched_out(notifier, next);
2527 }
2528 
2529 static __always_inline void
2530 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2531 				 struct task_struct *next)
2532 {
2533 	if (static_branch_unlikely(&preempt_notifier_key))
2534 		__fire_sched_out_preempt_notifiers(curr, next);
2535 }
2536 
2537 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2538 
2539 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2540 {
2541 }
2542 
2543 static inline void
2544 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 				 struct task_struct *next)
2546 {
2547 }
2548 
2549 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2550 
2551 static inline void prepare_task(struct task_struct *next)
2552 {
2553 #ifdef CONFIG_SMP
2554 	/*
2555 	 * Claim the task as running, we do this before switching to it
2556 	 * such that any running task will have this set.
2557 	 */
2558 	next->on_cpu = 1;
2559 #endif
2560 }
2561 
2562 static inline void finish_task(struct task_struct *prev)
2563 {
2564 #ifdef CONFIG_SMP
2565 	/*
2566 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2567 	 * We must ensure this doesn't happen until the switch is completely
2568 	 * finished.
2569 	 *
2570 	 * In particular, the load of prev->state in finish_task_switch() must
2571 	 * happen before this.
2572 	 *
2573 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2574 	 */
2575 	smp_store_release(&prev->on_cpu, 0);
2576 #endif
2577 }
2578 
2579 static inline void
2580 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2581 {
2582 	/*
2583 	 * Since the runqueue lock will be released by the next
2584 	 * task (which is an invalid locking op but in the case
2585 	 * of the scheduler it's an obvious special-case), so we
2586 	 * do an early lockdep release here:
2587 	 */
2588 	rq_unpin_lock(rq, rf);
2589 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2590 #ifdef CONFIG_DEBUG_SPINLOCK
2591 	/* this is a valid case when another task releases the spinlock */
2592 	rq->lock.owner = next;
2593 #endif
2594 }
2595 
2596 static inline void finish_lock_switch(struct rq *rq)
2597 {
2598 	/*
2599 	 * If we are tracking spinlock dependencies then we have to
2600 	 * fix up the runqueue lock - which gets 'carried over' from
2601 	 * prev into current:
2602 	 */
2603 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2604 	raw_spin_unlock_irq(&rq->lock);
2605 }
2606 
2607 /*
2608  * NOP if the arch has not defined these:
2609  */
2610 
2611 #ifndef prepare_arch_switch
2612 # define prepare_arch_switch(next)	do { } while (0)
2613 #endif
2614 
2615 #ifndef finish_arch_post_lock_switch
2616 # define finish_arch_post_lock_switch()	do { } while (0)
2617 #endif
2618 
2619 /**
2620  * prepare_task_switch - prepare to switch tasks
2621  * @rq: the runqueue preparing to switch
2622  * @prev: the current task that is being switched out
2623  * @next: the task we are going to switch to.
2624  *
2625  * This is called with the rq lock held and interrupts off. It must
2626  * be paired with a subsequent finish_task_switch after the context
2627  * switch.
2628  *
2629  * prepare_task_switch sets up locking and calls architecture specific
2630  * hooks.
2631  */
2632 static inline void
2633 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2634 		    struct task_struct *next)
2635 {
2636 	sched_info_switch(rq, prev, next);
2637 	perf_event_task_sched_out(prev, next);
2638 	rseq_preempt(prev);
2639 	fire_sched_out_preempt_notifiers(prev, next);
2640 	prepare_task(next);
2641 	prepare_arch_switch(next);
2642 }
2643 
2644 /**
2645  * finish_task_switch - clean up after a task-switch
2646  * @prev: the thread we just switched away from.
2647  *
2648  * finish_task_switch must be called after the context switch, paired
2649  * with a prepare_task_switch call before the context switch.
2650  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2651  * and do any other architecture-specific cleanup actions.
2652  *
2653  * Note that we may have delayed dropping an mm in context_switch(). If
2654  * so, we finish that here outside of the runqueue lock. (Doing it
2655  * with the lock held can cause deadlocks; see schedule() for
2656  * details.)
2657  *
2658  * The context switch have flipped the stack from under us and restored the
2659  * local variables which were saved when this task called schedule() in the
2660  * past. prev == current is still correct but we need to recalculate this_rq
2661  * because prev may have moved to another CPU.
2662  */
2663 static struct rq *finish_task_switch(struct task_struct *prev)
2664 	__releases(rq->lock)
2665 {
2666 	struct rq *rq = this_rq();
2667 	struct mm_struct *mm = rq->prev_mm;
2668 	long prev_state;
2669 
2670 	/*
2671 	 * The previous task will have left us with a preempt_count of 2
2672 	 * because it left us after:
2673 	 *
2674 	 *	schedule()
2675 	 *	  preempt_disable();			// 1
2676 	 *	  __schedule()
2677 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2678 	 *
2679 	 * Also, see FORK_PREEMPT_COUNT.
2680 	 */
2681 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2682 		      "corrupted preempt_count: %s/%d/0x%x\n",
2683 		      current->comm, current->pid, preempt_count()))
2684 		preempt_count_set(FORK_PREEMPT_COUNT);
2685 
2686 	rq->prev_mm = NULL;
2687 
2688 	/*
2689 	 * A task struct has one reference for the use as "current".
2690 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2691 	 * schedule one last time. The schedule call will never return, and
2692 	 * the scheduled task must drop that reference.
2693 	 *
2694 	 * We must observe prev->state before clearing prev->on_cpu (in
2695 	 * finish_task), otherwise a concurrent wakeup can get prev
2696 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2697 	 * transition, resulting in a double drop.
2698 	 */
2699 	prev_state = prev->state;
2700 	vtime_task_switch(prev);
2701 	perf_event_task_sched_in(prev, current);
2702 	finish_task(prev);
2703 	finish_lock_switch(rq);
2704 	finish_arch_post_lock_switch();
2705 
2706 	fire_sched_in_preempt_notifiers(current);
2707 	/*
2708 	 * When switching through a kernel thread, the loop in
2709 	 * membarrier_{private,global}_expedited() may have observed that
2710 	 * kernel thread and not issued an IPI. It is therefore possible to
2711 	 * schedule between user->kernel->user threads without passing though
2712 	 * switch_mm(). Membarrier requires a barrier after storing to
2713 	 * rq->curr, before returning to userspace, so provide them here:
2714 	 *
2715 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2716 	 *   provided by mmdrop(),
2717 	 * - a sync_core for SYNC_CORE.
2718 	 */
2719 	if (mm) {
2720 		membarrier_mm_sync_core_before_usermode(mm);
2721 		mmdrop(mm);
2722 	}
2723 	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2724 		switch (prev_state) {
2725 		case TASK_DEAD:
2726 			if (prev->sched_class->task_dead)
2727 				prev->sched_class->task_dead(prev);
2728 
2729 			/*
2730 			 * Remove function-return probe instances associated with this
2731 			 * task and put them back on the free list.
2732 			 */
2733 			kprobe_flush_task(prev);
2734 
2735 			/* Task is done with its stack. */
2736 			put_task_stack(prev);
2737 
2738 			put_task_struct(prev);
2739 			break;
2740 
2741 		case TASK_PARKED:
2742 			kthread_park_complete(prev);
2743 			break;
2744 		}
2745 	}
2746 
2747 	tick_nohz_task_switch();
2748 	return rq;
2749 }
2750 
2751 #ifdef CONFIG_SMP
2752 
2753 /* rq->lock is NOT held, but preemption is disabled */
2754 static void __balance_callback(struct rq *rq)
2755 {
2756 	struct callback_head *head, *next;
2757 	void (*func)(struct rq *rq);
2758 	unsigned long flags;
2759 
2760 	raw_spin_lock_irqsave(&rq->lock, flags);
2761 	head = rq->balance_callback;
2762 	rq->balance_callback = NULL;
2763 	while (head) {
2764 		func = (void (*)(struct rq *))head->func;
2765 		next = head->next;
2766 		head->next = NULL;
2767 		head = next;
2768 
2769 		func(rq);
2770 	}
2771 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2772 }
2773 
2774 static inline void balance_callback(struct rq *rq)
2775 {
2776 	if (unlikely(rq->balance_callback))
2777 		__balance_callback(rq);
2778 }
2779 
2780 #else
2781 
2782 static inline void balance_callback(struct rq *rq)
2783 {
2784 }
2785 
2786 #endif
2787 
2788 /**
2789  * schedule_tail - first thing a freshly forked thread must call.
2790  * @prev: the thread we just switched away from.
2791  */
2792 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2793 	__releases(rq->lock)
2794 {
2795 	struct rq *rq;
2796 
2797 	/*
2798 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2799 	 * finish_task_switch() for details.
2800 	 *
2801 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2802 	 * and the preempt_enable() will end up enabling preemption (on
2803 	 * PREEMPT_COUNT kernels).
2804 	 */
2805 
2806 	rq = finish_task_switch(prev);
2807 	balance_callback(rq);
2808 	preempt_enable();
2809 
2810 	if (current->set_child_tid)
2811 		put_user(task_pid_vnr(current), current->set_child_tid);
2812 }
2813 
2814 /*
2815  * context_switch - switch to the new MM and the new thread's register state.
2816  */
2817 static __always_inline struct rq *
2818 context_switch(struct rq *rq, struct task_struct *prev,
2819 	       struct task_struct *next, struct rq_flags *rf)
2820 {
2821 	struct mm_struct *mm, *oldmm;
2822 
2823 	prepare_task_switch(rq, prev, next);
2824 
2825 	mm = next->mm;
2826 	oldmm = prev->active_mm;
2827 	/*
2828 	 * For paravirt, this is coupled with an exit in switch_to to
2829 	 * combine the page table reload and the switch backend into
2830 	 * one hypercall.
2831 	 */
2832 	arch_start_context_switch(prev);
2833 
2834 	/*
2835 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2836 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2837 	 * Both of these contain the full memory barrier required by
2838 	 * membarrier after storing to rq->curr, before returning to
2839 	 * user-space.
2840 	 */
2841 	if (!mm) {
2842 		next->active_mm = oldmm;
2843 		mmgrab(oldmm);
2844 		enter_lazy_tlb(oldmm, next);
2845 	} else
2846 		switch_mm_irqs_off(oldmm, mm, next);
2847 
2848 	if (!prev->mm) {
2849 		prev->active_mm = NULL;
2850 		rq->prev_mm = oldmm;
2851 	}
2852 
2853 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2854 
2855 	prepare_lock_switch(rq, next, rf);
2856 
2857 	/* Here we just switch the register state and the stack. */
2858 	switch_to(prev, next, prev);
2859 	barrier();
2860 
2861 	return finish_task_switch(prev);
2862 }
2863 
2864 /*
2865  * nr_running and nr_context_switches:
2866  *
2867  * externally visible scheduler statistics: current number of runnable
2868  * threads, total number of context switches performed since bootup.
2869  */
2870 unsigned long nr_running(void)
2871 {
2872 	unsigned long i, sum = 0;
2873 
2874 	for_each_online_cpu(i)
2875 		sum += cpu_rq(i)->nr_running;
2876 
2877 	return sum;
2878 }
2879 
2880 /*
2881  * Check if only the current task is running on the CPU.
2882  *
2883  * Caution: this function does not check that the caller has disabled
2884  * preemption, thus the result might have a time-of-check-to-time-of-use
2885  * race.  The caller is responsible to use it correctly, for example:
2886  *
2887  * - from a non-preemptable section (of course)
2888  *
2889  * - from a thread that is bound to a single CPU
2890  *
2891  * - in a loop with very short iterations (e.g. a polling loop)
2892  */
2893 bool single_task_running(void)
2894 {
2895 	return raw_rq()->nr_running == 1;
2896 }
2897 EXPORT_SYMBOL(single_task_running);
2898 
2899 unsigned long long nr_context_switches(void)
2900 {
2901 	int i;
2902 	unsigned long long sum = 0;
2903 
2904 	for_each_possible_cpu(i)
2905 		sum += cpu_rq(i)->nr_switches;
2906 
2907 	return sum;
2908 }
2909 
2910 /*
2911  * IO-wait accounting, and how its mostly bollocks (on SMP).
2912  *
2913  * The idea behind IO-wait account is to account the idle time that we could
2914  * have spend running if it were not for IO. That is, if we were to improve the
2915  * storage performance, we'd have a proportional reduction in IO-wait time.
2916  *
2917  * This all works nicely on UP, where, when a task blocks on IO, we account
2918  * idle time as IO-wait, because if the storage were faster, it could've been
2919  * running and we'd not be idle.
2920  *
2921  * This has been extended to SMP, by doing the same for each CPU. This however
2922  * is broken.
2923  *
2924  * Imagine for instance the case where two tasks block on one CPU, only the one
2925  * CPU will have IO-wait accounted, while the other has regular idle. Even
2926  * though, if the storage were faster, both could've ran at the same time,
2927  * utilising both CPUs.
2928  *
2929  * This means, that when looking globally, the current IO-wait accounting on
2930  * SMP is a lower bound, by reason of under accounting.
2931  *
2932  * Worse, since the numbers are provided per CPU, they are sometimes
2933  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2934  * associated with any one particular CPU, it can wake to another CPU than it
2935  * blocked on. This means the per CPU IO-wait number is meaningless.
2936  *
2937  * Task CPU affinities can make all that even more 'interesting'.
2938  */
2939 
2940 unsigned long nr_iowait(void)
2941 {
2942 	unsigned long i, sum = 0;
2943 
2944 	for_each_possible_cpu(i)
2945 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2946 
2947 	return sum;
2948 }
2949 
2950 /*
2951  * Consumers of these two interfaces, like for example the cpufreq menu
2952  * governor are using nonsensical data. Boosting frequency for a CPU that has
2953  * IO-wait which might not even end up running the task when it does become
2954  * runnable.
2955  */
2956 
2957 unsigned long nr_iowait_cpu(int cpu)
2958 {
2959 	struct rq *this = cpu_rq(cpu);
2960 	return atomic_read(&this->nr_iowait);
2961 }
2962 
2963 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2964 {
2965 	struct rq *rq = this_rq();
2966 	*nr_waiters = atomic_read(&rq->nr_iowait);
2967 	*load = rq->load.weight;
2968 }
2969 
2970 #ifdef CONFIG_SMP
2971 
2972 /*
2973  * sched_exec - execve() is a valuable balancing opportunity, because at
2974  * this point the task has the smallest effective memory and cache footprint.
2975  */
2976 void sched_exec(void)
2977 {
2978 	struct task_struct *p = current;
2979 	unsigned long flags;
2980 	int dest_cpu;
2981 
2982 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2983 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2984 	if (dest_cpu == smp_processor_id())
2985 		goto unlock;
2986 
2987 	if (likely(cpu_active(dest_cpu))) {
2988 		struct migration_arg arg = { p, dest_cpu };
2989 
2990 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2991 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2992 		return;
2993 	}
2994 unlock:
2995 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996 }
2997 
2998 #endif
2999 
3000 DEFINE_PER_CPU(struct kernel_stat, kstat);
3001 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3002 
3003 EXPORT_PER_CPU_SYMBOL(kstat);
3004 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3005 
3006 /*
3007  * The function fair_sched_class.update_curr accesses the struct curr
3008  * and its field curr->exec_start; when called from task_sched_runtime(),
3009  * we observe a high rate of cache misses in practice.
3010  * Prefetching this data results in improved performance.
3011  */
3012 static inline void prefetch_curr_exec_start(struct task_struct *p)
3013 {
3014 #ifdef CONFIG_FAIR_GROUP_SCHED
3015 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3016 #else
3017 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3018 #endif
3019 	prefetch(curr);
3020 	prefetch(&curr->exec_start);
3021 }
3022 
3023 /*
3024  * Return accounted runtime for the task.
3025  * In case the task is currently running, return the runtime plus current's
3026  * pending runtime that have not been accounted yet.
3027  */
3028 unsigned long long task_sched_runtime(struct task_struct *p)
3029 {
3030 	struct rq_flags rf;
3031 	struct rq *rq;
3032 	u64 ns;
3033 
3034 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3035 	/*
3036 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3037 	 * So we have a optimization chance when the task's delta_exec is 0.
3038 	 * Reading ->on_cpu is racy, but this is ok.
3039 	 *
3040 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3041 	 * If we race with it entering CPU, unaccounted time is 0. This is
3042 	 * indistinguishable from the read occurring a few cycles earlier.
3043 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3044 	 * been accounted, so we're correct here as well.
3045 	 */
3046 	if (!p->on_cpu || !task_on_rq_queued(p))
3047 		return p->se.sum_exec_runtime;
3048 #endif
3049 
3050 	rq = task_rq_lock(p, &rf);
3051 	/*
3052 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3053 	 * project cycles that may never be accounted to this
3054 	 * thread, breaking clock_gettime().
3055 	 */
3056 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3057 		prefetch_curr_exec_start(p);
3058 		update_rq_clock(rq);
3059 		p->sched_class->update_curr(rq);
3060 	}
3061 	ns = p->se.sum_exec_runtime;
3062 	task_rq_unlock(rq, p, &rf);
3063 
3064 	return ns;
3065 }
3066 
3067 /*
3068  * This function gets called by the timer code, with HZ frequency.
3069  * We call it with interrupts disabled.
3070  */
3071 void scheduler_tick(void)
3072 {
3073 	int cpu = smp_processor_id();
3074 	struct rq *rq = cpu_rq(cpu);
3075 	struct task_struct *curr = rq->curr;
3076 	struct rq_flags rf;
3077 
3078 	sched_clock_tick();
3079 
3080 	rq_lock(rq, &rf);
3081 
3082 	update_rq_clock(rq);
3083 	curr->sched_class->task_tick(rq, curr, 0);
3084 	cpu_load_update_active(rq);
3085 	calc_global_load_tick(rq);
3086 
3087 	rq_unlock(rq, &rf);
3088 
3089 	perf_event_task_tick();
3090 
3091 #ifdef CONFIG_SMP
3092 	rq->idle_balance = idle_cpu(cpu);
3093 	trigger_load_balance(rq);
3094 #endif
3095 }
3096 
3097 #ifdef CONFIG_NO_HZ_FULL
3098 
3099 struct tick_work {
3100 	int			cpu;
3101 	struct delayed_work	work;
3102 };
3103 
3104 static struct tick_work __percpu *tick_work_cpu;
3105 
3106 static void sched_tick_remote(struct work_struct *work)
3107 {
3108 	struct delayed_work *dwork = to_delayed_work(work);
3109 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3110 	int cpu = twork->cpu;
3111 	struct rq *rq = cpu_rq(cpu);
3112 	struct rq_flags rf;
3113 
3114 	/*
3115 	 * Handle the tick only if it appears the remote CPU is running in full
3116 	 * dynticks mode. The check is racy by nature, but missing a tick or
3117 	 * having one too much is no big deal because the scheduler tick updates
3118 	 * statistics and checks timeslices in a time-independent way, regardless
3119 	 * of when exactly it is running.
3120 	 */
3121 	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3122 		struct task_struct *curr;
3123 		u64 delta;
3124 
3125 		rq_lock_irq(rq, &rf);
3126 		update_rq_clock(rq);
3127 		curr = rq->curr;
3128 		delta = rq_clock_task(rq) - curr->se.exec_start;
3129 
3130 		/*
3131 		 * Make sure the next tick runs within a reasonable
3132 		 * amount of time.
3133 		 */
3134 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3135 		curr->sched_class->task_tick(rq, curr, 0);
3136 		rq_unlock_irq(rq, &rf);
3137 	}
3138 
3139 	/*
3140 	 * Run the remote tick once per second (1Hz). This arbitrary
3141 	 * frequency is large enough to avoid overload but short enough
3142 	 * to keep scheduler internal stats reasonably up to date.
3143 	 */
3144 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3145 }
3146 
3147 static void sched_tick_start(int cpu)
3148 {
3149 	struct tick_work *twork;
3150 
3151 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3152 		return;
3153 
3154 	WARN_ON_ONCE(!tick_work_cpu);
3155 
3156 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3157 	twork->cpu = cpu;
3158 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3159 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3160 }
3161 
3162 #ifdef CONFIG_HOTPLUG_CPU
3163 static void sched_tick_stop(int cpu)
3164 {
3165 	struct tick_work *twork;
3166 
3167 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3168 		return;
3169 
3170 	WARN_ON_ONCE(!tick_work_cpu);
3171 
3172 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3173 	cancel_delayed_work_sync(&twork->work);
3174 }
3175 #endif /* CONFIG_HOTPLUG_CPU */
3176 
3177 int __init sched_tick_offload_init(void)
3178 {
3179 	tick_work_cpu = alloc_percpu(struct tick_work);
3180 	BUG_ON(!tick_work_cpu);
3181 
3182 	return 0;
3183 }
3184 
3185 #else /* !CONFIG_NO_HZ_FULL */
3186 static inline void sched_tick_start(int cpu) { }
3187 static inline void sched_tick_stop(int cpu) { }
3188 #endif
3189 
3190 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3191 				defined(CONFIG_PREEMPT_TRACER))
3192 /*
3193  * If the value passed in is equal to the current preempt count
3194  * then we just disabled preemption. Start timing the latency.
3195  */
3196 static inline void preempt_latency_start(int val)
3197 {
3198 	if (preempt_count() == val) {
3199 		unsigned long ip = get_lock_parent_ip();
3200 #ifdef CONFIG_DEBUG_PREEMPT
3201 		current->preempt_disable_ip = ip;
3202 #endif
3203 		trace_preempt_off(CALLER_ADDR0, ip);
3204 	}
3205 }
3206 
3207 void preempt_count_add(int val)
3208 {
3209 #ifdef CONFIG_DEBUG_PREEMPT
3210 	/*
3211 	 * Underflow?
3212 	 */
3213 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3214 		return;
3215 #endif
3216 	__preempt_count_add(val);
3217 #ifdef CONFIG_DEBUG_PREEMPT
3218 	/*
3219 	 * Spinlock count overflowing soon?
3220 	 */
3221 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3222 				PREEMPT_MASK - 10);
3223 #endif
3224 	preempt_latency_start(val);
3225 }
3226 EXPORT_SYMBOL(preempt_count_add);
3227 NOKPROBE_SYMBOL(preempt_count_add);
3228 
3229 /*
3230  * If the value passed in equals to the current preempt count
3231  * then we just enabled preemption. Stop timing the latency.
3232  */
3233 static inline void preempt_latency_stop(int val)
3234 {
3235 	if (preempt_count() == val)
3236 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3237 }
3238 
3239 void preempt_count_sub(int val)
3240 {
3241 #ifdef CONFIG_DEBUG_PREEMPT
3242 	/*
3243 	 * Underflow?
3244 	 */
3245 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3246 		return;
3247 	/*
3248 	 * Is the spinlock portion underflowing?
3249 	 */
3250 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3251 			!(preempt_count() & PREEMPT_MASK)))
3252 		return;
3253 #endif
3254 
3255 	preempt_latency_stop(val);
3256 	__preempt_count_sub(val);
3257 }
3258 EXPORT_SYMBOL(preempt_count_sub);
3259 NOKPROBE_SYMBOL(preempt_count_sub);
3260 
3261 #else
3262 static inline void preempt_latency_start(int val) { }
3263 static inline void preempt_latency_stop(int val) { }
3264 #endif
3265 
3266 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3267 {
3268 #ifdef CONFIG_DEBUG_PREEMPT
3269 	return p->preempt_disable_ip;
3270 #else
3271 	return 0;
3272 #endif
3273 }
3274 
3275 /*
3276  * Print scheduling while atomic bug:
3277  */
3278 static noinline void __schedule_bug(struct task_struct *prev)
3279 {
3280 	/* Save this before calling printk(), since that will clobber it */
3281 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3282 
3283 	if (oops_in_progress)
3284 		return;
3285 
3286 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3287 		prev->comm, prev->pid, preempt_count());
3288 
3289 	debug_show_held_locks(prev);
3290 	print_modules();
3291 	if (irqs_disabled())
3292 		print_irqtrace_events(prev);
3293 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3294 	    && in_atomic_preempt_off()) {
3295 		pr_err("Preemption disabled at:");
3296 		print_ip_sym(preempt_disable_ip);
3297 		pr_cont("\n");
3298 	}
3299 	if (panic_on_warn)
3300 		panic("scheduling while atomic\n");
3301 
3302 	dump_stack();
3303 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3304 }
3305 
3306 /*
3307  * Various schedule()-time debugging checks and statistics:
3308  */
3309 static inline void schedule_debug(struct task_struct *prev)
3310 {
3311 #ifdef CONFIG_SCHED_STACK_END_CHECK
3312 	if (task_stack_end_corrupted(prev))
3313 		panic("corrupted stack end detected inside scheduler\n");
3314 #endif
3315 
3316 	if (unlikely(in_atomic_preempt_off())) {
3317 		__schedule_bug(prev);
3318 		preempt_count_set(PREEMPT_DISABLED);
3319 	}
3320 	rcu_sleep_check();
3321 
3322 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3323 
3324 	schedstat_inc(this_rq()->sched_count);
3325 }
3326 
3327 /*
3328  * Pick up the highest-prio task:
3329  */
3330 static inline struct task_struct *
3331 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3332 {
3333 	const struct sched_class *class;
3334 	struct task_struct *p;
3335 
3336 	/*
3337 	 * Optimization: we know that if all tasks are in the fair class we can
3338 	 * call that function directly, but only if the @prev task wasn't of a
3339 	 * higher scheduling class, because otherwise those loose the
3340 	 * opportunity to pull in more work from other CPUs.
3341 	 */
3342 	if (likely((prev->sched_class == &idle_sched_class ||
3343 		    prev->sched_class == &fair_sched_class) &&
3344 		   rq->nr_running == rq->cfs.h_nr_running)) {
3345 
3346 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3347 		if (unlikely(p == RETRY_TASK))
3348 			goto again;
3349 
3350 		/* Assumes fair_sched_class->next == idle_sched_class */
3351 		if (unlikely(!p))
3352 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3353 
3354 		return p;
3355 	}
3356 
3357 again:
3358 	for_each_class(class) {
3359 		p = class->pick_next_task(rq, prev, rf);
3360 		if (p) {
3361 			if (unlikely(p == RETRY_TASK))
3362 				goto again;
3363 			return p;
3364 		}
3365 	}
3366 
3367 	/* The idle class should always have a runnable task: */
3368 	BUG();
3369 }
3370 
3371 /*
3372  * __schedule() is the main scheduler function.
3373  *
3374  * The main means of driving the scheduler and thus entering this function are:
3375  *
3376  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3377  *
3378  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3379  *      paths. For example, see arch/x86/entry_64.S.
3380  *
3381  *      To drive preemption between tasks, the scheduler sets the flag in timer
3382  *      interrupt handler scheduler_tick().
3383  *
3384  *   3. Wakeups don't really cause entry into schedule(). They add a
3385  *      task to the run-queue and that's it.
3386  *
3387  *      Now, if the new task added to the run-queue preempts the current
3388  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3389  *      called on the nearest possible occasion:
3390  *
3391  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3392  *
3393  *         - in syscall or exception context, at the next outmost
3394  *           preempt_enable(). (this might be as soon as the wake_up()'s
3395  *           spin_unlock()!)
3396  *
3397  *         - in IRQ context, return from interrupt-handler to
3398  *           preemptible context
3399  *
3400  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3401  *         then at the next:
3402  *
3403  *          - cond_resched() call
3404  *          - explicit schedule() call
3405  *          - return from syscall or exception to user-space
3406  *          - return from interrupt-handler to user-space
3407  *
3408  * WARNING: must be called with preemption disabled!
3409  */
3410 static void __sched notrace __schedule(bool preempt)
3411 {
3412 	struct task_struct *prev, *next;
3413 	unsigned long *switch_count;
3414 	struct rq_flags rf;
3415 	struct rq *rq;
3416 	int cpu;
3417 
3418 	cpu = smp_processor_id();
3419 	rq = cpu_rq(cpu);
3420 	prev = rq->curr;
3421 
3422 	schedule_debug(prev);
3423 
3424 	if (sched_feat(HRTICK))
3425 		hrtick_clear(rq);
3426 
3427 	local_irq_disable();
3428 	rcu_note_context_switch(preempt);
3429 
3430 	/*
3431 	 * Make sure that signal_pending_state()->signal_pending() below
3432 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3433 	 * done by the caller to avoid the race with signal_wake_up().
3434 	 *
3435 	 * The membarrier system call requires a full memory barrier
3436 	 * after coming from user-space, before storing to rq->curr.
3437 	 */
3438 	rq_lock(rq, &rf);
3439 	smp_mb__after_spinlock();
3440 
3441 	/* Promote REQ to ACT */
3442 	rq->clock_update_flags <<= 1;
3443 	update_rq_clock(rq);
3444 
3445 	switch_count = &prev->nivcsw;
3446 	if (!preempt && prev->state) {
3447 		if (unlikely(signal_pending_state(prev->state, prev))) {
3448 			prev->state = TASK_RUNNING;
3449 		} else {
3450 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3451 			prev->on_rq = 0;
3452 
3453 			if (prev->in_iowait) {
3454 				atomic_inc(&rq->nr_iowait);
3455 				delayacct_blkio_start();
3456 			}
3457 
3458 			/*
3459 			 * If a worker went to sleep, notify and ask workqueue
3460 			 * whether it wants to wake up a task to maintain
3461 			 * concurrency.
3462 			 */
3463 			if (prev->flags & PF_WQ_WORKER) {
3464 				struct task_struct *to_wakeup;
3465 
3466 				to_wakeup = wq_worker_sleeping(prev);
3467 				if (to_wakeup)
3468 					try_to_wake_up_local(to_wakeup, &rf);
3469 			}
3470 		}
3471 		switch_count = &prev->nvcsw;
3472 	}
3473 
3474 	next = pick_next_task(rq, prev, &rf);
3475 	clear_tsk_need_resched(prev);
3476 	clear_preempt_need_resched();
3477 
3478 	if (likely(prev != next)) {
3479 		rq->nr_switches++;
3480 		rq->curr = next;
3481 		/*
3482 		 * The membarrier system call requires each architecture
3483 		 * to have a full memory barrier after updating
3484 		 * rq->curr, before returning to user-space.
3485 		 *
3486 		 * Here are the schemes providing that barrier on the
3487 		 * various architectures:
3488 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3489 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3490 		 * - finish_lock_switch() for weakly-ordered
3491 		 *   architectures where spin_unlock is a full barrier,
3492 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3493 		 *   is a RELEASE barrier),
3494 		 */
3495 		++*switch_count;
3496 
3497 		trace_sched_switch(preempt, prev, next);
3498 
3499 		/* Also unlocks the rq: */
3500 		rq = context_switch(rq, prev, next, &rf);
3501 	} else {
3502 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3503 		rq_unlock_irq(rq, &rf);
3504 	}
3505 
3506 	balance_callback(rq);
3507 }
3508 
3509 void __noreturn do_task_dead(void)
3510 {
3511 	/* Causes final put_task_struct in finish_task_switch(): */
3512 	set_special_state(TASK_DEAD);
3513 
3514 	/* Tell freezer to ignore us: */
3515 	current->flags |= PF_NOFREEZE;
3516 
3517 	__schedule(false);
3518 	BUG();
3519 
3520 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3521 	for (;;)
3522 		cpu_relax();
3523 }
3524 
3525 static inline void sched_submit_work(struct task_struct *tsk)
3526 {
3527 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3528 		return;
3529 	/*
3530 	 * If we are going to sleep and we have plugged IO queued,
3531 	 * make sure to submit it to avoid deadlocks.
3532 	 */
3533 	if (blk_needs_flush_plug(tsk))
3534 		blk_schedule_flush_plug(tsk);
3535 }
3536 
3537 asmlinkage __visible void __sched schedule(void)
3538 {
3539 	struct task_struct *tsk = current;
3540 
3541 	sched_submit_work(tsk);
3542 	do {
3543 		preempt_disable();
3544 		__schedule(false);
3545 		sched_preempt_enable_no_resched();
3546 	} while (need_resched());
3547 }
3548 EXPORT_SYMBOL(schedule);
3549 
3550 /*
3551  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3552  * state (have scheduled out non-voluntarily) by making sure that all
3553  * tasks have either left the run queue or have gone into user space.
3554  * As idle tasks do not do either, they must not ever be preempted
3555  * (schedule out non-voluntarily).
3556  *
3557  * schedule_idle() is similar to schedule_preempt_disable() except that it
3558  * never enables preemption because it does not call sched_submit_work().
3559  */
3560 void __sched schedule_idle(void)
3561 {
3562 	/*
3563 	 * As this skips calling sched_submit_work(), which the idle task does
3564 	 * regardless because that function is a nop when the task is in a
3565 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3566 	 * current task can be in any other state. Note, idle is always in the
3567 	 * TASK_RUNNING state.
3568 	 */
3569 	WARN_ON_ONCE(current->state);
3570 	do {
3571 		__schedule(false);
3572 	} while (need_resched());
3573 }
3574 
3575 #ifdef CONFIG_CONTEXT_TRACKING
3576 asmlinkage __visible void __sched schedule_user(void)
3577 {
3578 	/*
3579 	 * If we come here after a random call to set_need_resched(),
3580 	 * or we have been woken up remotely but the IPI has not yet arrived,
3581 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3582 	 * we find a better solution.
3583 	 *
3584 	 * NB: There are buggy callers of this function.  Ideally we
3585 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3586 	 * too frequently to make sense yet.
3587 	 */
3588 	enum ctx_state prev_state = exception_enter();
3589 	schedule();
3590 	exception_exit(prev_state);
3591 }
3592 #endif
3593 
3594 /**
3595  * schedule_preempt_disabled - called with preemption disabled
3596  *
3597  * Returns with preemption disabled. Note: preempt_count must be 1
3598  */
3599 void __sched schedule_preempt_disabled(void)
3600 {
3601 	sched_preempt_enable_no_resched();
3602 	schedule();
3603 	preempt_disable();
3604 }
3605 
3606 static void __sched notrace preempt_schedule_common(void)
3607 {
3608 	do {
3609 		/*
3610 		 * Because the function tracer can trace preempt_count_sub()
3611 		 * and it also uses preempt_enable/disable_notrace(), if
3612 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3613 		 * by the function tracer will call this function again and
3614 		 * cause infinite recursion.
3615 		 *
3616 		 * Preemption must be disabled here before the function
3617 		 * tracer can trace. Break up preempt_disable() into two
3618 		 * calls. One to disable preemption without fear of being
3619 		 * traced. The other to still record the preemption latency,
3620 		 * which can also be traced by the function tracer.
3621 		 */
3622 		preempt_disable_notrace();
3623 		preempt_latency_start(1);
3624 		__schedule(true);
3625 		preempt_latency_stop(1);
3626 		preempt_enable_no_resched_notrace();
3627 
3628 		/*
3629 		 * Check again in case we missed a preemption opportunity
3630 		 * between schedule and now.
3631 		 */
3632 	} while (need_resched());
3633 }
3634 
3635 #ifdef CONFIG_PREEMPT
3636 /*
3637  * this is the entry point to schedule() from in-kernel preemption
3638  * off of preempt_enable. Kernel preemptions off return from interrupt
3639  * occur there and call schedule directly.
3640  */
3641 asmlinkage __visible void __sched notrace preempt_schedule(void)
3642 {
3643 	/*
3644 	 * If there is a non-zero preempt_count or interrupts are disabled,
3645 	 * we do not want to preempt the current task. Just return..
3646 	 */
3647 	if (likely(!preemptible()))
3648 		return;
3649 
3650 	preempt_schedule_common();
3651 }
3652 NOKPROBE_SYMBOL(preempt_schedule);
3653 EXPORT_SYMBOL(preempt_schedule);
3654 
3655 /**
3656  * preempt_schedule_notrace - preempt_schedule called by tracing
3657  *
3658  * The tracing infrastructure uses preempt_enable_notrace to prevent
3659  * recursion and tracing preempt enabling caused by the tracing
3660  * infrastructure itself. But as tracing can happen in areas coming
3661  * from userspace or just about to enter userspace, a preempt enable
3662  * can occur before user_exit() is called. This will cause the scheduler
3663  * to be called when the system is still in usermode.
3664  *
3665  * To prevent this, the preempt_enable_notrace will use this function
3666  * instead of preempt_schedule() to exit user context if needed before
3667  * calling the scheduler.
3668  */
3669 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3670 {
3671 	enum ctx_state prev_ctx;
3672 
3673 	if (likely(!preemptible()))
3674 		return;
3675 
3676 	do {
3677 		/*
3678 		 * Because the function tracer can trace preempt_count_sub()
3679 		 * and it also uses preempt_enable/disable_notrace(), if
3680 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3681 		 * by the function tracer will call this function again and
3682 		 * cause infinite recursion.
3683 		 *
3684 		 * Preemption must be disabled here before the function
3685 		 * tracer can trace. Break up preempt_disable() into two
3686 		 * calls. One to disable preemption without fear of being
3687 		 * traced. The other to still record the preemption latency,
3688 		 * which can also be traced by the function tracer.
3689 		 */
3690 		preempt_disable_notrace();
3691 		preempt_latency_start(1);
3692 		/*
3693 		 * Needs preempt disabled in case user_exit() is traced
3694 		 * and the tracer calls preempt_enable_notrace() causing
3695 		 * an infinite recursion.
3696 		 */
3697 		prev_ctx = exception_enter();
3698 		__schedule(true);
3699 		exception_exit(prev_ctx);
3700 
3701 		preempt_latency_stop(1);
3702 		preempt_enable_no_resched_notrace();
3703 	} while (need_resched());
3704 }
3705 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3706 
3707 #endif /* CONFIG_PREEMPT */
3708 
3709 /*
3710  * this is the entry point to schedule() from kernel preemption
3711  * off of irq context.
3712  * Note, that this is called and return with irqs disabled. This will
3713  * protect us against recursive calling from irq.
3714  */
3715 asmlinkage __visible void __sched preempt_schedule_irq(void)
3716 {
3717 	enum ctx_state prev_state;
3718 
3719 	/* Catch callers which need to be fixed */
3720 	BUG_ON(preempt_count() || !irqs_disabled());
3721 
3722 	prev_state = exception_enter();
3723 
3724 	do {
3725 		preempt_disable();
3726 		local_irq_enable();
3727 		__schedule(true);
3728 		local_irq_disable();
3729 		sched_preempt_enable_no_resched();
3730 	} while (need_resched());
3731 
3732 	exception_exit(prev_state);
3733 }
3734 
3735 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3736 			  void *key)
3737 {
3738 	return try_to_wake_up(curr->private, mode, wake_flags);
3739 }
3740 EXPORT_SYMBOL(default_wake_function);
3741 
3742 #ifdef CONFIG_RT_MUTEXES
3743 
3744 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3745 {
3746 	if (pi_task)
3747 		prio = min(prio, pi_task->prio);
3748 
3749 	return prio;
3750 }
3751 
3752 static inline int rt_effective_prio(struct task_struct *p, int prio)
3753 {
3754 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3755 
3756 	return __rt_effective_prio(pi_task, prio);
3757 }
3758 
3759 /*
3760  * rt_mutex_setprio - set the current priority of a task
3761  * @p: task to boost
3762  * @pi_task: donor task
3763  *
3764  * This function changes the 'effective' priority of a task. It does
3765  * not touch ->normal_prio like __setscheduler().
3766  *
3767  * Used by the rt_mutex code to implement priority inheritance
3768  * logic. Call site only calls if the priority of the task changed.
3769  */
3770 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3771 {
3772 	int prio, oldprio, queued, running, queue_flag =
3773 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3774 	const struct sched_class *prev_class;
3775 	struct rq_flags rf;
3776 	struct rq *rq;
3777 
3778 	/* XXX used to be waiter->prio, not waiter->task->prio */
3779 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3780 
3781 	/*
3782 	 * If nothing changed; bail early.
3783 	 */
3784 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3785 		return;
3786 
3787 	rq = __task_rq_lock(p, &rf);
3788 	update_rq_clock(rq);
3789 	/*
3790 	 * Set under pi_lock && rq->lock, such that the value can be used under
3791 	 * either lock.
3792 	 *
3793 	 * Note that there is loads of tricky to make this pointer cache work
3794 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3795 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3796 	 * task is allowed to run again (and can exit). This ensures the pointer
3797 	 * points to a blocked task -- which guaratees the task is present.
3798 	 */
3799 	p->pi_top_task = pi_task;
3800 
3801 	/*
3802 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3803 	 */
3804 	if (prio == p->prio && !dl_prio(prio))
3805 		goto out_unlock;
3806 
3807 	/*
3808 	 * Idle task boosting is a nono in general. There is one
3809 	 * exception, when PREEMPT_RT and NOHZ is active:
3810 	 *
3811 	 * The idle task calls get_next_timer_interrupt() and holds
3812 	 * the timer wheel base->lock on the CPU and another CPU wants
3813 	 * to access the timer (probably to cancel it). We can safely
3814 	 * ignore the boosting request, as the idle CPU runs this code
3815 	 * with interrupts disabled and will complete the lock
3816 	 * protected section without being interrupted. So there is no
3817 	 * real need to boost.
3818 	 */
3819 	if (unlikely(p == rq->idle)) {
3820 		WARN_ON(p != rq->curr);
3821 		WARN_ON(p->pi_blocked_on);
3822 		goto out_unlock;
3823 	}
3824 
3825 	trace_sched_pi_setprio(p, pi_task);
3826 	oldprio = p->prio;
3827 
3828 	if (oldprio == prio)
3829 		queue_flag &= ~DEQUEUE_MOVE;
3830 
3831 	prev_class = p->sched_class;
3832 	queued = task_on_rq_queued(p);
3833 	running = task_current(rq, p);
3834 	if (queued)
3835 		dequeue_task(rq, p, queue_flag);
3836 	if (running)
3837 		put_prev_task(rq, p);
3838 
3839 	/*
3840 	 * Boosting condition are:
3841 	 * 1. -rt task is running and holds mutex A
3842 	 *      --> -dl task blocks on mutex A
3843 	 *
3844 	 * 2. -dl task is running and holds mutex A
3845 	 *      --> -dl task blocks on mutex A and could preempt the
3846 	 *          running task
3847 	 */
3848 	if (dl_prio(prio)) {
3849 		if (!dl_prio(p->normal_prio) ||
3850 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3851 			p->dl.dl_boosted = 1;
3852 			queue_flag |= ENQUEUE_REPLENISH;
3853 		} else
3854 			p->dl.dl_boosted = 0;
3855 		p->sched_class = &dl_sched_class;
3856 	} else if (rt_prio(prio)) {
3857 		if (dl_prio(oldprio))
3858 			p->dl.dl_boosted = 0;
3859 		if (oldprio < prio)
3860 			queue_flag |= ENQUEUE_HEAD;
3861 		p->sched_class = &rt_sched_class;
3862 	} else {
3863 		if (dl_prio(oldprio))
3864 			p->dl.dl_boosted = 0;
3865 		if (rt_prio(oldprio))
3866 			p->rt.timeout = 0;
3867 		p->sched_class = &fair_sched_class;
3868 	}
3869 
3870 	p->prio = prio;
3871 
3872 	if (queued)
3873 		enqueue_task(rq, p, queue_flag);
3874 	if (running)
3875 		set_curr_task(rq, p);
3876 
3877 	check_class_changed(rq, p, prev_class, oldprio);
3878 out_unlock:
3879 	/* Avoid rq from going away on us: */
3880 	preempt_disable();
3881 	__task_rq_unlock(rq, &rf);
3882 
3883 	balance_callback(rq);
3884 	preempt_enable();
3885 }
3886 #else
3887 static inline int rt_effective_prio(struct task_struct *p, int prio)
3888 {
3889 	return prio;
3890 }
3891 #endif
3892 
3893 void set_user_nice(struct task_struct *p, long nice)
3894 {
3895 	bool queued, running;
3896 	int old_prio, delta;
3897 	struct rq_flags rf;
3898 	struct rq *rq;
3899 
3900 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3901 		return;
3902 	/*
3903 	 * We have to be careful, if called from sys_setpriority(),
3904 	 * the task might be in the middle of scheduling on another CPU.
3905 	 */
3906 	rq = task_rq_lock(p, &rf);
3907 	update_rq_clock(rq);
3908 
3909 	/*
3910 	 * The RT priorities are set via sched_setscheduler(), but we still
3911 	 * allow the 'normal' nice value to be set - but as expected
3912 	 * it wont have any effect on scheduling until the task is
3913 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3914 	 */
3915 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3916 		p->static_prio = NICE_TO_PRIO(nice);
3917 		goto out_unlock;
3918 	}
3919 	queued = task_on_rq_queued(p);
3920 	running = task_current(rq, p);
3921 	if (queued)
3922 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3923 	if (running)
3924 		put_prev_task(rq, p);
3925 
3926 	p->static_prio = NICE_TO_PRIO(nice);
3927 	set_load_weight(p, true);
3928 	old_prio = p->prio;
3929 	p->prio = effective_prio(p);
3930 	delta = p->prio - old_prio;
3931 
3932 	if (queued) {
3933 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3934 		/*
3935 		 * If the task increased its priority or is running and
3936 		 * lowered its priority, then reschedule its CPU:
3937 		 */
3938 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3939 			resched_curr(rq);
3940 	}
3941 	if (running)
3942 		set_curr_task(rq, p);
3943 out_unlock:
3944 	task_rq_unlock(rq, p, &rf);
3945 }
3946 EXPORT_SYMBOL(set_user_nice);
3947 
3948 /*
3949  * can_nice - check if a task can reduce its nice value
3950  * @p: task
3951  * @nice: nice value
3952  */
3953 int can_nice(const struct task_struct *p, const int nice)
3954 {
3955 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3956 	int nice_rlim = nice_to_rlimit(nice);
3957 
3958 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3959 		capable(CAP_SYS_NICE));
3960 }
3961 
3962 #ifdef __ARCH_WANT_SYS_NICE
3963 
3964 /*
3965  * sys_nice - change the priority of the current process.
3966  * @increment: priority increment
3967  *
3968  * sys_setpriority is a more generic, but much slower function that
3969  * does similar things.
3970  */
3971 SYSCALL_DEFINE1(nice, int, increment)
3972 {
3973 	long nice, retval;
3974 
3975 	/*
3976 	 * Setpriority might change our priority at the same moment.
3977 	 * We don't have to worry. Conceptually one call occurs first
3978 	 * and we have a single winner.
3979 	 */
3980 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3981 	nice = task_nice(current) + increment;
3982 
3983 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3984 	if (increment < 0 && !can_nice(current, nice))
3985 		return -EPERM;
3986 
3987 	retval = security_task_setnice(current, nice);
3988 	if (retval)
3989 		return retval;
3990 
3991 	set_user_nice(current, nice);
3992 	return 0;
3993 }
3994 
3995 #endif
3996 
3997 /**
3998  * task_prio - return the priority value of a given task.
3999  * @p: the task in question.
4000  *
4001  * Return: The priority value as seen by users in /proc.
4002  * RT tasks are offset by -200. Normal tasks are centered
4003  * around 0, value goes from -16 to +15.
4004  */
4005 int task_prio(const struct task_struct *p)
4006 {
4007 	return p->prio - MAX_RT_PRIO;
4008 }
4009 
4010 /**
4011  * idle_cpu - is a given CPU idle currently?
4012  * @cpu: the processor in question.
4013  *
4014  * Return: 1 if the CPU is currently idle. 0 otherwise.
4015  */
4016 int idle_cpu(int cpu)
4017 {
4018 	struct rq *rq = cpu_rq(cpu);
4019 
4020 	if (rq->curr != rq->idle)
4021 		return 0;
4022 
4023 	if (rq->nr_running)
4024 		return 0;
4025 
4026 #ifdef CONFIG_SMP
4027 	if (!llist_empty(&rq->wake_list))
4028 		return 0;
4029 #endif
4030 
4031 	return 1;
4032 }
4033 
4034 /**
4035  * available_idle_cpu - is a given CPU idle for enqueuing work.
4036  * @cpu: the CPU in question.
4037  *
4038  * Return: 1 if the CPU is currently idle. 0 otherwise.
4039  */
4040 int available_idle_cpu(int cpu)
4041 {
4042 	if (!idle_cpu(cpu))
4043 		return 0;
4044 
4045 	if (vcpu_is_preempted(cpu))
4046 		return 0;
4047 
4048 	return 1;
4049 }
4050 
4051 /**
4052  * idle_task - return the idle task for a given CPU.
4053  * @cpu: the processor in question.
4054  *
4055  * Return: The idle task for the CPU @cpu.
4056  */
4057 struct task_struct *idle_task(int cpu)
4058 {
4059 	return cpu_rq(cpu)->idle;
4060 }
4061 
4062 /**
4063  * find_process_by_pid - find a process with a matching PID value.
4064  * @pid: the pid in question.
4065  *
4066  * The task of @pid, if found. %NULL otherwise.
4067  */
4068 static struct task_struct *find_process_by_pid(pid_t pid)
4069 {
4070 	return pid ? find_task_by_vpid(pid) : current;
4071 }
4072 
4073 /*
4074  * sched_setparam() passes in -1 for its policy, to let the functions
4075  * it calls know not to change it.
4076  */
4077 #define SETPARAM_POLICY	-1
4078 
4079 static void __setscheduler_params(struct task_struct *p,
4080 		const struct sched_attr *attr)
4081 {
4082 	int policy = attr->sched_policy;
4083 
4084 	if (policy == SETPARAM_POLICY)
4085 		policy = p->policy;
4086 
4087 	p->policy = policy;
4088 
4089 	if (dl_policy(policy))
4090 		__setparam_dl(p, attr);
4091 	else if (fair_policy(policy))
4092 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4093 
4094 	/*
4095 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4096 	 * !rt_policy. Always setting this ensures that things like
4097 	 * getparam()/getattr() don't report silly values for !rt tasks.
4098 	 */
4099 	p->rt_priority = attr->sched_priority;
4100 	p->normal_prio = normal_prio(p);
4101 	set_load_weight(p, true);
4102 }
4103 
4104 /* Actually do priority change: must hold pi & rq lock. */
4105 static void __setscheduler(struct rq *rq, struct task_struct *p,
4106 			   const struct sched_attr *attr, bool keep_boost)
4107 {
4108 	__setscheduler_params(p, attr);
4109 
4110 	/*
4111 	 * Keep a potential priority boosting if called from
4112 	 * sched_setscheduler().
4113 	 */
4114 	p->prio = normal_prio(p);
4115 	if (keep_boost)
4116 		p->prio = rt_effective_prio(p, p->prio);
4117 
4118 	if (dl_prio(p->prio))
4119 		p->sched_class = &dl_sched_class;
4120 	else if (rt_prio(p->prio))
4121 		p->sched_class = &rt_sched_class;
4122 	else
4123 		p->sched_class = &fair_sched_class;
4124 }
4125 
4126 /*
4127  * Check the target process has a UID that matches the current process's:
4128  */
4129 static bool check_same_owner(struct task_struct *p)
4130 {
4131 	const struct cred *cred = current_cred(), *pcred;
4132 	bool match;
4133 
4134 	rcu_read_lock();
4135 	pcred = __task_cred(p);
4136 	match = (uid_eq(cred->euid, pcred->euid) ||
4137 		 uid_eq(cred->euid, pcred->uid));
4138 	rcu_read_unlock();
4139 	return match;
4140 }
4141 
4142 static int __sched_setscheduler(struct task_struct *p,
4143 				const struct sched_attr *attr,
4144 				bool user, bool pi)
4145 {
4146 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4147 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4148 	int retval, oldprio, oldpolicy = -1, queued, running;
4149 	int new_effective_prio, policy = attr->sched_policy;
4150 	const struct sched_class *prev_class;
4151 	struct rq_flags rf;
4152 	int reset_on_fork;
4153 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4154 	struct rq *rq;
4155 
4156 	/* The pi code expects interrupts enabled */
4157 	BUG_ON(pi && in_interrupt());
4158 recheck:
4159 	/* Double check policy once rq lock held: */
4160 	if (policy < 0) {
4161 		reset_on_fork = p->sched_reset_on_fork;
4162 		policy = oldpolicy = p->policy;
4163 	} else {
4164 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4165 
4166 		if (!valid_policy(policy))
4167 			return -EINVAL;
4168 	}
4169 
4170 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4171 		return -EINVAL;
4172 
4173 	/*
4174 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4175 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4176 	 * SCHED_BATCH and SCHED_IDLE is 0.
4177 	 */
4178 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4179 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4180 		return -EINVAL;
4181 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4182 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4183 		return -EINVAL;
4184 
4185 	/*
4186 	 * Allow unprivileged RT tasks to decrease priority:
4187 	 */
4188 	if (user && !capable(CAP_SYS_NICE)) {
4189 		if (fair_policy(policy)) {
4190 			if (attr->sched_nice < task_nice(p) &&
4191 			    !can_nice(p, attr->sched_nice))
4192 				return -EPERM;
4193 		}
4194 
4195 		if (rt_policy(policy)) {
4196 			unsigned long rlim_rtprio =
4197 					task_rlimit(p, RLIMIT_RTPRIO);
4198 
4199 			/* Can't set/change the rt policy: */
4200 			if (policy != p->policy && !rlim_rtprio)
4201 				return -EPERM;
4202 
4203 			/* Can't increase priority: */
4204 			if (attr->sched_priority > p->rt_priority &&
4205 			    attr->sched_priority > rlim_rtprio)
4206 				return -EPERM;
4207 		}
4208 
4209 		 /*
4210 		  * Can't set/change SCHED_DEADLINE policy at all for now
4211 		  * (safest behavior); in the future we would like to allow
4212 		  * unprivileged DL tasks to increase their relative deadline
4213 		  * or reduce their runtime (both ways reducing utilization)
4214 		  */
4215 		if (dl_policy(policy))
4216 			return -EPERM;
4217 
4218 		/*
4219 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4220 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4221 		 */
4222 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4223 			if (!can_nice(p, task_nice(p)))
4224 				return -EPERM;
4225 		}
4226 
4227 		/* Can't change other user's priorities: */
4228 		if (!check_same_owner(p))
4229 			return -EPERM;
4230 
4231 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4232 		if (p->sched_reset_on_fork && !reset_on_fork)
4233 			return -EPERM;
4234 	}
4235 
4236 	if (user) {
4237 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4238 			return -EINVAL;
4239 
4240 		retval = security_task_setscheduler(p);
4241 		if (retval)
4242 			return retval;
4243 	}
4244 
4245 	/*
4246 	 * Make sure no PI-waiters arrive (or leave) while we are
4247 	 * changing the priority of the task:
4248 	 *
4249 	 * To be able to change p->policy safely, the appropriate
4250 	 * runqueue lock must be held.
4251 	 */
4252 	rq = task_rq_lock(p, &rf);
4253 	update_rq_clock(rq);
4254 
4255 	/*
4256 	 * Changing the policy of the stop threads its a very bad idea:
4257 	 */
4258 	if (p == rq->stop) {
4259 		task_rq_unlock(rq, p, &rf);
4260 		return -EINVAL;
4261 	}
4262 
4263 	/*
4264 	 * If not changing anything there's no need to proceed further,
4265 	 * but store a possible modification of reset_on_fork.
4266 	 */
4267 	if (unlikely(policy == p->policy)) {
4268 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4269 			goto change;
4270 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4271 			goto change;
4272 		if (dl_policy(policy) && dl_param_changed(p, attr))
4273 			goto change;
4274 
4275 		p->sched_reset_on_fork = reset_on_fork;
4276 		task_rq_unlock(rq, p, &rf);
4277 		return 0;
4278 	}
4279 change:
4280 
4281 	if (user) {
4282 #ifdef CONFIG_RT_GROUP_SCHED
4283 		/*
4284 		 * Do not allow realtime tasks into groups that have no runtime
4285 		 * assigned.
4286 		 */
4287 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4288 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4289 				!task_group_is_autogroup(task_group(p))) {
4290 			task_rq_unlock(rq, p, &rf);
4291 			return -EPERM;
4292 		}
4293 #endif
4294 #ifdef CONFIG_SMP
4295 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4296 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4297 			cpumask_t *span = rq->rd->span;
4298 
4299 			/*
4300 			 * Don't allow tasks with an affinity mask smaller than
4301 			 * the entire root_domain to become SCHED_DEADLINE. We
4302 			 * will also fail if there's no bandwidth available.
4303 			 */
4304 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4305 			    rq->rd->dl_bw.bw == 0) {
4306 				task_rq_unlock(rq, p, &rf);
4307 				return -EPERM;
4308 			}
4309 		}
4310 #endif
4311 	}
4312 
4313 	/* Re-check policy now with rq lock held: */
4314 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4315 		policy = oldpolicy = -1;
4316 		task_rq_unlock(rq, p, &rf);
4317 		goto recheck;
4318 	}
4319 
4320 	/*
4321 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4322 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4323 	 * is available.
4324 	 */
4325 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4326 		task_rq_unlock(rq, p, &rf);
4327 		return -EBUSY;
4328 	}
4329 
4330 	p->sched_reset_on_fork = reset_on_fork;
4331 	oldprio = p->prio;
4332 
4333 	if (pi) {
4334 		/*
4335 		 * Take priority boosted tasks into account. If the new
4336 		 * effective priority is unchanged, we just store the new
4337 		 * normal parameters and do not touch the scheduler class and
4338 		 * the runqueue. This will be done when the task deboost
4339 		 * itself.
4340 		 */
4341 		new_effective_prio = rt_effective_prio(p, newprio);
4342 		if (new_effective_prio == oldprio)
4343 			queue_flags &= ~DEQUEUE_MOVE;
4344 	}
4345 
4346 	queued = task_on_rq_queued(p);
4347 	running = task_current(rq, p);
4348 	if (queued)
4349 		dequeue_task(rq, p, queue_flags);
4350 	if (running)
4351 		put_prev_task(rq, p);
4352 
4353 	prev_class = p->sched_class;
4354 	__setscheduler(rq, p, attr, pi);
4355 
4356 	if (queued) {
4357 		/*
4358 		 * We enqueue to tail when the priority of a task is
4359 		 * increased (user space view).
4360 		 */
4361 		if (oldprio < p->prio)
4362 			queue_flags |= ENQUEUE_HEAD;
4363 
4364 		enqueue_task(rq, p, queue_flags);
4365 	}
4366 	if (running)
4367 		set_curr_task(rq, p);
4368 
4369 	check_class_changed(rq, p, prev_class, oldprio);
4370 
4371 	/* Avoid rq from going away on us: */
4372 	preempt_disable();
4373 	task_rq_unlock(rq, p, &rf);
4374 
4375 	if (pi)
4376 		rt_mutex_adjust_pi(p);
4377 
4378 	/* Run balance callbacks after we've adjusted the PI chain: */
4379 	balance_callback(rq);
4380 	preempt_enable();
4381 
4382 	return 0;
4383 }
4384 
4385 static int _sched_setscheduler(struct task_struct *p, int policy,
4386 			       const struct sched_param *param, bool check)
4387 {
4388 	struct sched_attr attr = {
4389 		.sched_policy   = policy,
4390 		.sched_priority = param->sched_priority,
4391 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4392 	};
4393 
4394 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4395 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4396 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4397 		policy &= ~SCHED_RESET_ON_FORK;
4398 		attr.sched_policy = policy;
4399 	}
4400 
4401 	return __sched_setscheduler(p, &attr, check, true);
4402 }
4403 /**
4404  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4405  * @p: the task in question.
4406  * @policy: new policy.
4407  * @param: structure containing the new RT priority.
4408  *
4409  * Return: 0 on success. An error code otherwise.
4410  *
4411  * NOTE that the task may be already dead.
4412  */
4413 int sched_setscheduler(struct task_struct *p, int policy,
4414 		       const struct sched_param *param)
4415 {
4416 	return _sched_setscheduler(p, policy, param, true);
4417 }
4418 EXPORT_SYMBOL_GPL(sched_setscheduler);
4419 
4420 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4421 {
4422 	return __sched_setscheduler(p, attr, true, true);
4423 }
4424 EXPORT_SYMBOL_GPL(sched_setattr);
4425 
4426 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4427 {
4428 	return __sched_setscheduler(p, attr, false, true);
4429 }
4430 
4431 /**
4432  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4433  * @p: the task in question.
4434  * @policy: new policy.
4435  * @param: structure containing the new RT priority.
4436  *
4437  * Just like sched_setscheduler, only don't bother checking if the
4438  * current context has permission.  For example, this is needed in
4439  * stop_machine(): we create temporary high priority worker threads,
4440  * but our caller might not have that capability.
4441  *
4442  * Return: 0 on success. An error code otherwise.
4443  */
4444 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4445 			       const struct sched_param *param)
4446 {
4447 	return _sched_setscheduler(p, policy, param, false);
4448 }
4449 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4450 
4451 static int
4452 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4453 {
4454 	struct sched_param lparam;
4455 	struct task_struct *p;
4456 	int retval;
4457 
4458 	if (!param || pid < 0)
4459 		return -EINVAL;
4460 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4461 		return -EFAULT;
4462 
4463 	rcu_read_lock();
4464 	retval = -ESRCH;
4465 	p = find_process_by_pid(pid);
4466 	if (p != NULL)
4467 		retval = sched_setscheduler(p, policy, &lparam);
4468 	rcu_read_unlock();
4469 
4470 	return retval;
4471 }
4472 
4473 /*
4474  * Mimics kernel/events/core.c perf_copy_attr().
4475  */
4476 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4477 {
4478 	u32 size;
4479 	int ret;
4480 
4481 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4482 		return -EFAULT;
4483 
4484 	/* Zero the full structure, so that a short copy will be nice: */
4485 	memset(attr, 0, sizeof(*attr));
4486 
4487 	ret = get_user(size, &uattr->size);
4488 	if (ret)
4489 		return ret;
4490 
4491 	/* Bail out on silly large: */
4492 	if (size > PAGE_SIZE)
4493 		goto err_size;
4494 
4495 	/* ABI compatibility quirk: */
4496 	if (!size)
4497 		size = SCHED_ATTR_SIZE_VER0;
4498 
4499 	if (size < SCHED_ATTR_SIZE_VER0)
4500 		goto err_size;
4501 
4502 	/*
4503 	 * If we're handed a bigger struct than we know of,
4504 	 * ensure all the unknown bits are 0 - i.e. new
4505 	 * user-space does not rely on any kernel feature
4506 	 * extensions we dont know about yet.
4507 	 */
4508 	if (size > sizeof(*attr)) {
4509 		unsigned char __user *addr;
4510 		unsigned char __user *end;
4511 		unsigned char val;
4512 
4513 		addr = (void __user *)uattr + sizeof(*attr);
4514 		end  = (void __user *)uattr + size;
4515 
4516 		for (; addr < end; addr++) {
4517 			ret = get_user(val, addr);
4518 			if (ret)
4519 				return ret;
4520 			if (val)
4521 				goto err_size;
4522 		}
4523 		size = sizeof(*attr);
4524 	}
4525 
4526 	ret = copy_from_user(attr, uattr, size);
4527 	if (ret)
4528 		return -EFAULT;
4529 
4530 	/*
4531 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4532 	 * to be strict and return an error on out-of-bounds values?
4533 	 */
4534 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4535 
4536 	return 0;
4537 
4538 err_size:
4539 	put_user(sizeof(*attr), &uattr->size);
4540 	return -E2BIG;
4541 }
4542 
4543 /**
4544  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4545  * @pid: the pid in question.
4546  * @policy: new policy.
4547  * @param: structure containing the new RT priority.
4548  *
4549  * Return: 0 on success. An error code otherwise.
4550  */
4551 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4552 {
4553 	if (policy < 0)
4554 		return -EINVAL;
4555 
4556 	return do_sched_setscheduler(pid, policy, param);
4557 }
4558 
4559 /**
4560  * sys_sched_setparam - set/change the RT priority of a thread
4561  * @pid: the pid in question.
4562  * @param: structure containing the new RT priority.
4563  *
4564  * Return: 0 on success. An error code otherwise.
4565  */
4566 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4567 {
4568 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4569 }
4570 
4571 /**
4572  * sys_sched_setattr - same as above, but with extended sched_attr
4573  * @pid: the pid in question.
4574  * @uattr: structure containing the extended parameters.
4575  * @flags: for future extension.
4576  */
4577 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4578 			       unsigned int, flags)
4579 {
4580 	struct sched_attr attr;
4581 	struct task_struct *p;
4582 	int retval;
4583 
4584 	if (!uattr || pid < 0 || flags)
4585 		return -EINVAL;
4586 
4587 	retval = sched_copy_attr(uattr, &attr);
4588 	if (retval)
4589 		return retval;
4590 
4591 	if ((int)attr.sched_policy < 0)
4592 		return -EINVAL;
4593 
4594 	rcu_read_lock();
4595 	retval = -ESRCH;
4596 	p = find_process_by_pid(pid);
4597 	if (p != NULL)
4598 		retval = sched_setattr(p, &attr);
4599 	rcu_read_unlock();
4600 
4601 	return retval;
4602 }
4603 
4604 /**
4605  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4606  * @pid: the pid in question.
4607  *
4608  * Return: On success, the policy of the thread. Otherwise, a negative error
4609  * code.
4610  */
4611 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4612 {
4613 	struct task_struct *p;
4614 	int retval;
4615 
4616 	if (pid < 0)
4617 		return -EINVAL;
4618 
4619 	retval = -ESRCH;
4620 	rcu_read_lock();
4621 	p = find_process_by_pid(pid);
4622 	if (p) {
4623 		retval = security_task_getscheduler(p);
4624 		if (!retval)
4625 			retval = p->policy
4626 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4627 	}
4628 	rcu_read_unlock();
4629 	return retval;
4630 }
4631 
4632 /**
4633  * sys_sched_getparam - get the RT priority of a thread
4634  * @pid: the pid in question.
4635  * @param: structure containing the RT priority.
4636  *
4637  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4638  * code.
4639  */
4640 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4641 {
4642 	struct sched_param lp = { .sched_priority = 0 };
4643 	struct task_struct *p;
4644 	int retval;
4645 
4646 	if (!param || pid < 0)
4647 		return -EINVAL;
4648 
4649 	rcu_read_lock();
4650 	p = find_process_by_pid(pid);
4651 	retval = -ESRCH;
4652 	if (!p)
4653 		goto out_unlock;
4654 
4655 	retval = security_task_getscheduler(p);
4656 	if (retval)
4657 		goto out_unlock;
4658 
4659 	if (task_has_rt_policy(p))
4660 		lp.sched_priority = p->rt_priority;
4661 	rcu_read_unlock();
4662 
4663 	/*
4664 	 * This one might sleep, we cannot do it with a spinlock held ...
4665 	 */
4666 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4667 
4668 	return retval;
4669 
4670 out_unlock:
4671 	rcu_read_unlock();
4672 	return retval;
4673 }
4674 
4675 static int sched_read_attr(struct sched_attr __user *uattr,
4676 			   struct sched_attr *attr,
4677 			   unsigned int usize)
4678 {
4679 	int ret;
4680 
4681 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4682 		return -EFAULT;
4683 
4684 	/*
4685 	 * If we're handed a smaller struct than we know of,
4686 	 * ensure all the unknown bits are 0 - i.e. old
4687 	 * user-space does not get uncomplete information.
4688 	 */
4689 	if (usize < sizeof(*attr)) {
4690 		unsigned char *addr;
4691 		unsigned char *end;
4692 
4693 		addr = (void *)attr + usize;
4694 		end  = (void *)attr + sizeof(*attr);
4695 
4696 		for (; addr < end; addr++) {
4697 			if (*addr)
4698 				return -EFBIG;
4699 		}
4700 
4701 		attr->size = usize;
4702 	}
4703 
4704 	ret = copy_to_user(uattr, attr, attr->size);
4705 	if (ret)
4706 		return -EFAULT;
4707 
4708 	return 0;
4709 }
4710 
4711 /**
4712  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4713  * @pid: the pid in question.
4714  * @uattr: structure containing the extended parameters.
4715  * @size: sizeof(attr) for fwd/bwd comp.
4716  * @flags: for future extension.
4717  */
4718 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4719 		unsigned int, size, unsigned int, flags)
4720 {
4721 	struct sched_attr attr = {
4722 		.size = sizeof(struct sched_attr),
4723 	};
4724 	struct task_struct *p;
4725 	int retval;
4726 
4727 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4728 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4729 		return -EINVAL;
4730 
4731 	rcu_read_lock();
4732 	p = find_process_by_pid(pid);
4733 	retval = -ESRCH;
4734 	if (!p)
4735 		goto out_unlock;
4736 
4737 	retval = security_task_getscheduler(p);
4738 	if (retval)
4739 		goto out_unlock;
4740 
4741 	attr.sched_policy = p->policy;
4742 	if (p->sched_reset_on_fork)
4743 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4744 	if (task_has_dl_policy(p))
4745 		__getparam_dl(p, &attr);
4746 	else if (task_has_rt_policy(p))
4747 		attr.sched_priority = p->rt_priority;
4748 	else
4749 		attr.sched_nice = task_nice(p);
4750 
4751 	rcu_read_unlock();
4752 
4753 	retval = sched_read_attr(uattr, &attr, size);
4754 	return retval;
4755 
4756 out_unlock:
4757 	rcu_read_unlock();
4758 	return retval;
4759 }
4760 
4761 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4762 {
4763 	cpumask_var_t cpus_allowed, new_mask;
4764 	struct task_struct *p;
4765 	int retval;
4766 
4767 	rcu_read_lock();
4768 
4769 	p = find_process_by_pid(pid);
4770 	if (!p) {
4771 		rcu_read_unlock();
4772 		return -ESRCH;
4773 	}
4774 
4775 	/* Prevent p going away */
4776 	get_task_struct(p);
4777 	rcu_read_unlock();
4778 
4779 	if (p->flags & PF_NO_SETAFFINITY) {
4780 		retval = -EINVAL;
4781 		goto out_put_task;
4782 	}
4783 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4784 		retval = -ENOMEM;
4785 		goto out_put_task;
4786 	}
4787 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4788 		retval = -ENOMEM;
4789 		goto out_free_cpus_allowed;
4790 	}
4791 	retval = -EPERM;
4792 	if (!check_same_owner(p)) {
4793 		rcu_read_lock();
4794 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4795 			rcu_read_unlock();
4796 			goto out_free_new_mask;
4797 		}
4798 		rcu_read_unlock();
4799 	}
4800 
4801 	retval = security_task_setscheduler(p);
4802 	if (retval)
4803 		goto out_free_new_mask;
4804 
4805 
4806 	cpuset_cpus_allowed(p, cpus_allowed);
4807 	cpumask_and(new_mask, in_mask, cpus_allowed);
4808 
4809 	/*
4810 	 * Since bandwidth control happens on root_domain basis,
4811 	 * if admission test is enabled, we only admit -deadline
4812 	 * tasks allowed to run on all the CPUs in the task's
4813 	 * root_domain.
4814 	 */
4815 #ifdef CONFIG_SMP
4816 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4817 		rcu_read_lock();
4818 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4819 			retval = -EBUSY;
4820 			rcu_read_unlock();
4821 			goto out_free_new_mask;
4822 		}
4823 		rcu_read_unlock();
4824 	}
4825 #endif
4826 again:
4827 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4828 
4829 	if (!retval) {
4830 		cpuset_cpus_allowed(p, cpus_allowed);
4831 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4832 			/*
4833 			 * We must have raced with a concurrent cpuset
4834 			 * update. Just reset the cpus_allowed to the
4835 			 * cpuset's cpus_allowed
4836 			 */
4837 			cpumask_copy(new_mask, cpus_allowed);
4838 			goto again;
4839 		}
4840 	}
4841 out_free_new_mask:
4842 	free_cpumask_var(new_mask);
4843 out_free_cpus_allowed:
4844 	free_cpumask_var(cpus_allowed);
4845 out_put_task:
4846 	put_task_struct(p);
4847 	return retval;
4848 }
4849 
4850 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4851 			     struct cpumask *new_mask)
4852 {
4853 	if (len < cpumask_size())
4854 		cpumask_clear(new_mask);
4855 	else if (len > cpumask_size())
4856 		len = cpumask_size();
4857 
4858 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4859 }
4860 
4861 /**
4862  * sys_sched_setaffinity - set the CPU affinity of a process
4863  * @pid: pid of the process
4864  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4865  * @user_mask_ptr: user-space pointer to the new CPU mask
4866  *
4867  * Return: 0 on success. An error code otherwise.
4868  */
4869 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4870 		unsigned long __user *, user_mask_ptr)
4871 {
4872 	cpumask_var_t new_mask;
4873 	int retval;
4874 
4875 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4876 		return -ENOMEM;
4877 
4878 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4879 	if (retval == 0)
4880 		retval = sched_setaffinity(pid, new_mask);
4881 	free_cpumask_var(new_mask);
4882 	return retval;
4883 }
4884 
4885 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4886 {
4887 	struct task_struct *p;
4888 	unsigned long flags;
4889 	int retval;
4890 
4891 	rcu_read_lock();
4892 
4893 	retval = -ESRCH;
4894 	p = find_process_by_pid(pid);
4895 	if (!p)
4896 		goto out_unlock;
4897 
4898 	retval = security_task_getscheduler(p);
4899 	if (retval)
4900 		goto out_unlock;
4901 
4902 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4903 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4904 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4905 
4906 out_unlock:
4907 	rcu_read_unlock();
4908 
4909 	return retval;
4910 }
4911 
4912 /**
4913  * sys_sched_getaffinity - get the CPU affinity of a process
4914  * @pid: pid of the process
4915  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4916  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4917  *
4918  * Return: size of CPU mask copied to user_mask_ptr on success. An
4919  * error code otherwise.
4920  */
4921 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4922 		unsigned long __user *, user_mask_ptr)
4923 {
4924 	int ret;
4925 	cpumask_var_t mask;
4926 
4927 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4928 		return -EINVAL;
4929 	if (len & (sizeof(unsigned long)-1))
4930 		return -EINVAL;
4931 
4932 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4933 		return -ENOMEM;
4934 
4935 	ret = sched_getaffinity(pid, mask);
4936 	if (ret == 0) {
4937 		unsigned int retlen = min(len, cpumask_size());
4938 
4939 		if (copy_to_user(user_mask_ptr, mask, retlen))
4940 			ret = -EFAULT;
4941 		else
4942 			ret = retlen;
4943 	}
4944 	free_cpumask_var(mask);
4945 
4946 	return ret;
4947 }
4948 
4949 /**
4950  * sys_sched_yield - yield the current processor to other threads.
4951  *
4952  * This function yields the current CPU to other tasks. If there are no
4953  * other threads running on this CPU then this function will return.
4954  *
4955  * Return: 0.
4956  */
4957 static void do_sched_yield(void)
4958 {
4959 	struct rq_flags rf;
4960 	struct rq *rq;
4961 
4962 	local_irq_disable();
4963 	rq = this_rq();
4964 	rq_lock(rq, &rf);
4965 
4966 	schedstat_inc(rq->yld_count);
4967 	current->sched_class->yield_task(rq);
4968 
4969 	/*
4970 	 * Since we are going to call schedule() anyway, there's
4971 	 * no need to preempt or enable interrupts:
4972 	 */
4973 	preempt_disable();
4974 	rq_unlock(rq, &rf);
4975 	sched_preempt_enable_no_resched();
4976 
4977 	schedule();
4978 }
4979 
4980 SYSCALL_DEFINE0(sched_yield)
4981 {
4982 	do_sched_yield();
4983 	return 0;
4984 }
4985 
4986 #ifndef CONFIG_PREEMPT
4987 int __sched _cond_resched(void)
4988 {
4989 	if (should_resched(0)) {
4990 		preempt_schedule_common();
4991 		return 1;
4992 	}
4993 	rcu_all_qs();
4994 	return 0;
4995 }
4996 EXPORT_SYMBOL(_cond_resched);
4997 #endif
4998 
4999 /*
5000  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5001  * call schedule, and on return reacquire the lock.
5002  *
5003  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5004  * operations here to prevent schedule() from being called twice (once via
5005  * spin_unlock(), once by hand).
5006  */
5007 int __cond_resched_lock(spinlock_t *lock)
5008 {
5009 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5010 	int ret = 0;
5011 
5012 	lockdep_assert_held(lock);
5013 
5014 	if (spin_needbreak(lock) || resched) {
5015 		spin_unlock(lock);
5016 		if (resched)
5017 			preempt_schedule_common();
5018 		else
5019 			cpu_relax();
5020 		ret = 1;
5021 		spin_lock(lock);
5022 	}
5023 	return ret;
5024 }
5025 EXPORT_SYMBOL(__cond_resched_lock);
5026 
5027 /**
5028  * yield - yield the current processor to other threads.
5029  *
5030  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5031  *
5032  * The scheduler is at all times free to pick the calling task as the most
5033  * eligible task to run, if removing the yield() call from your code breaks
5034  * it, its already broken.
5035  *
5036  * Typical broken usage is:
5037  *
5038  * while (!event)
5039  *	yield();
5040  *
5041  * where one assumes that yield() will let 'the other' process run that will
5042  * make event true. If the current task is a SCHED_FIFO task that will never
5043  * happen. Never use yield() as a progress guarantee!!
5044  *
5045  * If you want to use yield() to wait for something, use wait_event().
5046  * If you want to use yield() to be 'nice' for others, use cond_resched().
5047  * If you still want to use yield(), do not!
5048  */
5049 void __sched yield(void)
5050 {
5051 	set_current_state(TASK_RUNNING);
5052 	do_sched_yield();
5053 }
5054 EXPORT_SYMBOL(yield);
5055 
5056 /**
5057  * yield_to - yield the current processor to another thread in
5058  * your thread group, or accelerate that thread toward the
5059  * processor it's on.
5060  * @p: target task
5061  * @preempt: whether task preemption is allowed or not
5062  *
5063  * It's the caller's job to ensure that the target task struct
5064  * can't go away on us before we can do any checks.
5065  *
5066  * Return:
5067  *	true (>0) if we indeed boosted the target task.
5068  *	false (0) if we failed to boost the target.
5069  *	-ESRCH if there's no task to yield to.
5070  */
5071 int __sched yield_to(struct task_struct *p, bool preempt)
5072 {
5073 	struct task_struct *curr = current;
5074 	struct rq *rq, *p_rq;
5075 	unsigned long flags;
5076 	int yielded = 0;
5077 
5078 	local_irq_save(flags);
5079 	rq = this_rq();
5080 
5081 again:
5082 	p_rq = task_rq(p);
5083 	/*
5084 	 * If we're the only runnable task on the rq and target rq also
5085 	 * has only one task, there's absolutely no point in yielding.
5086 	 */
5087 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5088 		yielded = -ESRCH;
5089 		goto out_irq;
5090 	}
5091 
5092 	double_rq_lock(rq, p_rq);
5093 	if (task_rq(p) != p_rq) {
5094 		double_rq_unlock(rq, p_rq);
5095 		goto again;
5096 	}
5097 
5098 	if (!curr->sched_class->yield_to_task)
5099 		goto out_unlock;
5100 
5101 	if (curr->sched_class != p->sched_class)
5102 		goto out_unlock;
5103 
5104 	if (task_running(p_rq, p) || p->state)
5105 		goto out_unlock;
5106 
5107 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5108 	if (yielded) {
5109 		schedstat_inc(rq->yld_count);
5110 		/*
5111 		 * Make p's CPU reschedule; pick_next_entity takes care of
5112 		 * fairness.
5113 		 */
5114 		if (preempt && rq != p_rq)
5115 			resched_curr(p_rq);
5116 	}
5117 
5118 out_unlock:
5119 	double_rq_unlock(rq, p_rq);
5120 out_irq:
5121 	local_irq_restore(flags);
5122 
5123 	if (yielded > 0)
5124 		schedule();
5125 
5126 	return yielded;
5127 }
5128 EXPORT_SYMBOL_GPL(yield_to);
5129 
5130 int io_schedule_prepare(void)
5131 {
5132 	int old_iowait = current->in_iowait;
5133 
5134 	current->in_iowait = 1;
5135 	blk_schedule_flush_plug(current);
5136 
5137 	return old_iowait;
5138 }
5139 
5140 void io_schedule_finish(int token)
5141 {
5142 	current->in_iowait = token;
5143 }
5144 
5145 /*
5146  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5147  * that process accounting knows that this is a task in IO wait state.
5148  */
5149 long __sched io_schedule_timeout(long timeout)
5150 {
5151 	int token;
5152 	long ret;
5153 
5154 	token = io_schedule_prepare();
5155 	ret = schedule_timeout(timeout);
5156 	io_schedule_finish(token);
5157 
5158 	return ret;
5159 }
5160 EXPORT_SYMBOL(io_schedule_timeout);
5161 
5162 void io_schedule(void)
5163 {
5164 	int token;
5165 
5166 	token = io_schedule_prepare();
5167 	schedule();
5168 	io_schedule_finish(token);
5169 }
5170 EXPORT_SYMBOL(io_schedule);
5171 
5172 /**
5173  * sys_sched_get_priority_max - return maximum RT priority.
5174  * @policy: scheduling class.
5175  *
5176  * Return: On success, this syscall returns the maximum
5177  * rt_priority that can be used by a given scheduling class.
5178  * On failure, a negative error code is returned.
5179  */
5180 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5181 {
5182 	int ret = -EINVAL;
5183 
5184 	switch (policy) {
5185 	case SCHED_FIFO:
5186 	case SCHED_RR:
5187 		ret = MAX_USER_RT_PRIO-1;
5188 		break;
5189 	case SCHED_DEADLINE:
5190 	case SCHED_NORMAL:
5191 	case SCHED_BATCH:
5192 	case SCHED_IDLE:
5193 		ret = 0;
5194 		break;
5195 	}
5196 	return ret;
5197 }
5198 
5199 /**
5200  * sys_sched_get_priority_min - return minimum RT priority.
5201  * @policy: scheduling class.
5202  *
5203  * Return: On success, this syscall returns the minimum
5204  * rt_priority that can be used by a given scheduling class.
5205  * On failure, a negative error code is returned.
5206  */
5207 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5208 {
5209 	int ret = -EINVAL;
5210 
5211 	switch (policy) {
5212 	case SCHED_FIFO:
5213 	case SCHED_RR:
5214 		ret = 1;
5215 		break;
5216 	case SCHED_DEADLINE:
5217 	case SCHED_NORMAL:
5218 	case SCHED_BATCH:
5219 	case SCHED_IDLE:
5220 		ret = 0;
5221 	}
5222 	return ret;
5223 }
5224 
5225 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5226 {
5227 	struct task_struct *p;
5228 	unsigned int time_slice;
5229 	struct rq_flags rf;
5230 	struct rq *rq;
5231 	int retval;
5232 
5233 	if (pid < 0)
5234 		return -EINVAL;
5235 
5236 	retval = -ESRCH;
5237 	rcu_read_lock();
5238 	p = find_process_by_pid(pid);
5239 	if (!p)
5240 		goto out_unlock;
5241 
5242 	retval = security_task_getscheduler(p);
5243 	if (retval)
5244 		goto out_unlock;
5245 
5246 	rq = task_rq_lock(p, &rf);
5247 	time_slice = 0;
5248 	if (p->sched_class->get_rr_interval)
5249 		time_slice = p->sched_class->get_rr_interval(rq, p);
5250 	task_rq_unlock(rq, p, &rf);
5251 
5252 	rcu_read_unlock();
5253 	jiffies_to_timespec64(time_slice, t);
5254 	return 0;
5255 
5256 out_unlock:
5257 	rcu_read_unlock();
5258 	return retval;
5259 }
5260 
5261 /**
5262  * sys_sched_rr_get_interval - return the default timeslice of a process.
5263  * @pid: pid of the process.
5264  * @interval: userspace pointer to the timeslice value.
5265  *
5266  * this syscall writes the default timeslice value of a given process
5267  * into the user-space timespec buffer. A value of '0' means infinity.
5268  *
5269  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5270  * an error code.
5271  */
5272 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5273 		struct timespec __user *, interval)
5274 {
5275 	struct timespec64 t;
5276 	int retval = sched_rr_get_interval(pid, &t);
5277 
5278 	if (retval == 0)
5279 		retval = put_timespec64(&t, interval);
5280 
5281 	return retval;
5282 }
5283 
5284 #ifdef CONFIG_COMPAT
5285 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5286 		       compat_pid_t, pid,
5287 		       struct compat_timespec __user *, interval)
5288 {
5289 	struct timespec64 t;
5290 	int retval = sched_rr_get_interval(pid, &t);
5291 
5292 	if (retval == 0)
5293 		retval = compat_put_timespec64(&t, interval);
5294 	return retval;
5295 }
5296 #endif
5297 
5298 void sched_show_task(struct task_struct *p)
5299 {
5300 	unsigned long free = 0;
5301 	int ppid;
5302 
5303 	if (!try_get_task_stack(p))
5304 		return;
5305 
5306 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5307 
5308 	if (p->state == TASK_RUNNING)
5309 		printk(KERN_CONT "  running task    ");
5310 #ifdef CONFIG_DEBUG_STACK_USAGE
5311 	free = stack_not_used(p);
5312 #endif
5313 	ppid = 0;
5314 	rcu_read_lock();
5315 	if (pid_alive(p))
5316 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5317 	rcu_read_unlock();
5318 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5319 		task_pid_nr(p), ppid,
5320 		(unsigned long)task_thread_info(p)->flags);
5321 
5322 	print_worker_info(KERN_INFO, p);
5323 	show_stack(p, NULL);
5324 	put_task_stack(p);
5325 }
5326 EXPORT_SYMBOL_GPL(sched_show_task);
5327 
5328 static inline bool
5329 state_filter_match(unsigned long state_filter, struct task_struct *p)
5330 {
5331 	/* no filter, everything matches */
5332 	if (!state_filter)
5333 		return true;
5334 
5335 	/* filter, but doesn't match */
5336 	if (!(p->state & state_filter))
5337 		return false;
5338 
5339 	/*
5340 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5341 	 * TASK_KILLABLE).
5342 	 */
5343 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5344 		return false;
5345 
5346 	return true;
5347 }
5348 
5349 
5350 void show_state_filter(unsigned long state_filter)
5351 {
5352 	struct task_struct *g, *p;
5353 
5354 #if BITS_PER_LONG == 32
5355 	printk(KERN_INFO
5356 		"  task                PC stack   pid father\n");
5357 #else
5358 	printk(KERN_INFO
5359 		"  task                        PC stack   pid father\n");
5360 #endif
5361 	rcu_read_lock();
5362 	for_each_process_thread(g, p) {
5363 		/*
5364 		 * reset the NMI-timeout, listing all files on a slow
5365 		 * console might take a lot of time:
5366 		 * Also, reset softlockup watchdogs on all CPUs, because
5367 		 * another CPU might be blocked waiting for us to process
5368 		 * an IPI.
5369 		 */
5370 		touch_nmi_watchdog();
5371 		touch_all_softlockup_watchdogs();
5372 		if (state_filter_match(state_filter, p))
5373 			sched_show_task(p);
5374 	}
5375 
5376 #ifdef CONFIG_SCHED_DEBUG
5377 	if (!state_filter)
5378 		sysrq_sched_debug_show();
5379 #endif
5380 	rcu_read_unlock();
5381 	/*
5382 	 * Only show locks if all tasks are dumped:
5383 	 */
5384 	if (!state_filter)
5385 		debug_show_all_locks();
5386 }
5387 
5388 /**
5389  * init_idle - set up an idle thread for a given CPU
5390  * @idle: task in question
5391  * @cpu: CPU the idle task belongs to
5392  *
5393  * NOTE: this function does not set the idle thread's NEED_RESCHED
5394  * flag, to make booting more robust.
5395  */
5396 void init_idle(struct task_struct *idle, int cpu)
5397 {
5398 	struct rq *rq = cpu_rq(cpu);
5399 	unsigned long flags;
5400 
5401 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5402 	raw_spin_lock(&rq->lock);
5403 
5404 	__sched_fork(0, idle);
5405 	idle->state = TASK_RUNNING;
5406 	idle->se.exec_start = sched_clock();
5407 	idle->flags |= PF_IDLE;
5408 
5409 	kasan_unpoison_task_stack(idle);
5410 
5411 #ifdef CONFIG_SMP
5412 	/*
5413 	 * Its possible that init_idle() gets called multiple times on a task,
5414 	 * in that case do_set_cpus_allowed() will not do the right thing.
5415 	 *
5416 	 * And since this is boot we can forgo the serialization.
5417 	 */
5418 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5419 #endif
5420 	/*
5421 	 * We're having a chicken and egg problem, even though we are
5422 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5423 	 * lockdep check in task_group() will fail.
5424 	 *
5425 	 * Similar case to sched_fork(). / Alternatively we could
5426 	 * use task_rq_lock() here and obtain the other rq->lock.
5427 	 *
5428 	 * Silence PROVE_RCU
5429 	 */
5430 	rcu_read_lock();
5431 	__set_task_cpu(idle, cpu);
5432 	rcu_read_unlock();
5433 
5434 	rq->curr = rq->idle = idle;
5435 	idle->on_rq = TASK_ON_RQ_QUEUED;
5436 #ifdef CONFIG_SMP
5437 	idle->on_cpu = 1;
5438 #endif
5439 	raw_spin_unlock(&rq->lock);
5440 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5441 
5442 	/* Set the preempt count _outside_ the spinlocks! */
5443 	init_idle_preempt_count(idle, cpu);
5444 
5445 	/*
5446 	 * The idle tasks have their own, simple scheduling class:
5447 	 */
5448 	idle->sched_class = &idle_sched_class;
5449 	ftrace_graph_init_idle_task(idle, cpu);
5450 	vtime_init_idle(idle, cpu);
5451 #ifdef CONFIG_SMP
5452 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5453 #endif
5454 }
5455 
5456 #ifdef CONFIG_SMP
5457 
5458 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5459 			      const struct cpumask *trial)
5460 {
5461 	int ret = 1;
5462 
5463 	if (!cpumask_weight(cur))
5464 		return ret;
5465 
5466 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5467 
5468 	return ret;
5469 }
5470 
5471 int task_can_attach(struct task_struct *p,
5472 		    const struct cpumask *cs_cpus_allowed)
5473 {
5474 	int ret = 0;
5475 
5476 	/*
5477 	 * Kthreads which disallow setaffinity shouldn't be moved
5478 	 * to a new cpuset; we don't want to change their CPU
5479 	 * affinity and isolating such threads by their set of
5480 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5481 	 * applicable for such threads.  This prevents checking for
5482 	 * success of set_cpus_allowed_ptr() on all attached tasks
5483 	 * before cpus_allowed may be changed.
5484 	 */
5485 	if (p->flags & PF_NO_SETAFFINITY) {
5486 		ret = -EINVAL;
5487 		goto out;
5488 	}
5489 
5490 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5491 					      cs_cpus_allowed))
5492 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5493 
5494 out:
5495 	return ret;
5496 }
5497 
5498 bool sched_smp_initialized __read_mostly;
5499 
5500 #ifdef CONFIG_NUMA_BALANCING
5501 /* Migrate current task p to target_cpu */
5502 int migrate_task_to(struct task_struct *p, int target_cpu)
5503 {
5504 	struct migration_arg arg = { p, target_cpu };
5505 	int curr_cpu = task_cpu(p);
5506 
5507 	if (curr_cpu == target_cpu)
5508 		return 0;
5509 
5510 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5511 		return -EINVAL;
5512 
5513 	/* TODO: This is not properly updating schedstats */
5514 
5515 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5516 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5517 }
5518 
5519 /*
5520  * Requeue a task on a given node and accurately track the number of NUMA
5521  * tasks on the runqueues
5522  */
5523 void sched_setnuma(struct task_struct *p, int nid)
5524 {
5525 	bool queued, running;
5526 	struct rq_flags rf;
5527 	struct rq *rq;
5528 
5529 	rq = task_rq_lock(p, &rf);
5530 	queued = task_on_rq_queued(p);
5531 	running = task_current(rq, p);
5532 
5533 	if (queued)
5534 		dequeue_task(rq, p, DEQUEUE_SAVE);
5535 	if (running)
5536 		put_prev_task(rq, p);
5537 
5538 	p->numa_preferred_nid = nid;
5539 
5540 	if (queued)
5541 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5542 	if (running)
5543 		set_curr_task(rq, p);
5544 	task_rq_unlock(rq, p, &rf);
5545 }
5546 #endif /* CONFIG_NUMA_BALANCING */
5547 
5548 #ifdef CONFIG_HOTPLUG_CPU
5549 /*
5550  * Ensure that the idle task is using init_mm right before its CPU goes
5551  * offline.
5552  */
5553 void idle_task_exit(void)
5554 {
5555 	struct mm_struct *mm = current->active_mm;
5556 
5557 	BUG_ON(cpu_online(smp_processor_id()));
5558 
5559 	if (mm != &init_mm) {
5560 		switch_mm(mm, &init_mm, current);
5561 		current->active_mm = &init_mm;
5562 		finish_arch_post_lock_switch();
5563 	}
5564 	mmdrop(mm);
5565 }
5566 
5567 /*
5568  * Since this CPU is going 'away' for a while, fold any nr_active delta
5569  * we might have. Assumes we're called after migrate_tasks() so that the
5570  * nr_active count is stable. We need to take the teardown thread which
5571  * is calling this into account, so we hand in adjust = 1 to the load
5572  * calculation.
5573  *
5574  * Also see the comment "Global load-average calculations".
5575  */
5576 static void calc_load_migrate(struct rq *rq)
5577 {
5578 	long delta = calc_load_fold_active(rq, 1);
5579 	if (delta)
5580 		atomic_long_add(delta, &calc_load_tasks);
5581 }
5582 
5583 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5584 {
5585 }
5586 
5587 static const struct sched_class fake_sched_class = {
5588 	.put_prev_task = put_prev_task_fake,
5589 };
5590 
5591 static struct task_struct fake_task = {
5592 	/*
5593 	 * Avoid pull_{rt,dl}_task()
5594 	 */
5595 	.prio = MAX_PRIO + 1,
5596 	.sched_class = &fake_sched_class,
5597 };
5598 
5599 /*
5600  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5601  * try_to_wake_up()->select_task_rq().
5602  *
5603  * Called with rq->lock held even though we'er in stop_machine() and
5604  * there's no concurrency possible, we hold the required locks anyway
5605  * because of lock validation efforts.
5606  */
5607 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5608 {
5609 	struct rq *rq = dead_rq;
5610 	struct task_struct *next, *stop = rq->stop;
5611 	struct rq_flags orf = *rf;
5612 	int dest_cpu;
5613 
5614 	/*
5615 	 * Fudge the rq selection such that the below task selection loop
5616 	 * doesn't get stuck on the currently eligible stop task.
5617 	 *
5618 	 * We're currently inside stop_machine() and the rq is either stuck
5619 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5620 	 * either way we should never end up calling schedule() until we're
5621 	 * done here.
5622 	 */
5623 	rq->stop = NULL;
5624 
5625 	/*
5626 	 * put_prev_task() and pick_next_task() sched
5627 	 * class method both need to have an up-to-date
5628 	 * value of rq->clock[_task]
5629 	 */
5630 	update_rq_clock(rq);
5631 
5632 	for (;;) {
5633 		/*
5634 		 * There's this thread running, bail when that's the only
5635 		 * remaining thread:
5636 		 */
5637 		if (rq->nr_running == 1)
5638 			break;
5639 
5640 		/*
5641 		 * pick_next_task() assumes pinned rq->lock:
5642 		 */
5643 		next = pick_next_task(rq, &fake_task, rf);
5644 		BUG_ON(!next);
5645 		put_prev_task(rq, next);
5646 
5647 		/*
5648 		 * Rules for changing task_struct::cpus_allowed are holding
5649 		 * both pi_lock and rq->lock, such that holding either
5650 		 * stabilizes the mask.
5651 		 *
5652 		 * Drop rq->lock is not quite as disastrous as it usually is
5653 		 * because !cpu_active at this point, which means load-balance
5654 		 * will not interfere. Also, stop-machine.
5655 		 */
5656 		rq_unlock(rq, rf);
5657 		raw_spin_lock(&next->pi_lock);
5658 		rq_relock(rq, rf);
5659 
5660 		/*
5661 		 * Since we're inside stop-machine, _nothing_ should have
5662 		 * changed the task, WARN if weird stuff happened, because in
5663 		 * that case the above rq->lock drop is a fail too.
5664 		 */
5665 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5666 			raw_spin_unlock(&next->pi_lock);
5667 			continue;
5668 		}
5669 
5670 		/* Find suitable destination for @next, with force if needed. */
5671 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5672 		rq = __migrate_task(rq, rf, next, dest_cpu);
5673 		if (rq != dead_rq) {
5674 			rq_unlock(rq, rf);
5675 			rq = dead_rq;
5676 			*rf = orf;
5677 			rq_relock(rq, rf);
5678 		}
5679 		raw_spin_unlock(&next->pi_lock);
5680 	}
5681 
5682 	rq->stop = stop;
5683 }
5684 #endif /* CONFIG_HOTPLUG_CPU */
5685 
5686 void set_rq_online(struct rq *rq)
5687 {
5688 	if (!rq->online) {
5689 		const struct sched_class *class;
5690 
5691 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5692 		rq->online = 1;
5693 
5694 		for_each_class(class) {
5695 			if (class->rq_online)
5696 				class->rq_online(rq);
5697 		}
5698 	}
5699 }
5700 
5701 void set_rq_offline(struct rq *rq)
5702 {
5703 	if (rq->online) {
5704 		const struct sched_class *class;
5705 
5706 		for_each_class(class) {
5707 			if (class->rq_offline)
5708 				class->rq_offline(rq);
5709 		}
5710 
5711 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5712 		rq->online = 0;
5713 	}
5714 }
5715 
5716 static void set_cpu_rq_start_time(unsigned int cpu)
5717 {
5718 	struct rq *rq = cpu_rq(cpu);
5719 
5720 	rq->age_stamp = sched_clock_cpu(cpu);
5721 }
5722 
5723 /*
5724  * used to mark begin/end of suspend/resume:
5725  */
5726 static int num_cpus_frozen;
5727 
5728 /*
5729  * Update cpusets according to cpu_active mask.  If cpusets are
5730  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5731  * around partition_sched_domains().
5732  *
5733  * If we come here as part of a suspend/resume, don't touch cpusets because we
5734  * want to restore it back to its original state upon resume anyway.
5735  */
5736 static void cpuset_cpu_active(void)
5737 {
5738 	if (cpuhp_tasks_frozen) {
5739 		/*
5740 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5741 		 * resume sequence. As long as this is not the last online
5742 		 * operation in the resume sequence, just build a single sched
5743 		 * domain, ignoring cpusets.
5744 		 */
5745 		partition_sched_domains(1, NULL, NULL);
5746 		if (--num_cpus_frozen)
5747 			return;
5748 		/*
5749 		 * This is the last CPU online operation. So fall through and
5750 		 * restore the original sched domains by considering the
5751 		 * cpuset configurations.
5752 		 */
5753 		cpuset_force_rebuild();
5754 	}
5755 	cpuset_update_active_cpus();
5756 }
5757 
5758 static int cpuset_cpu_inactive(unsigned int cpu)
5759 {
5760 	if (!cpuhp_tasks_frozen) {
5761 		if (dl_cpu_busy(cpu))
5762 			return -EBUSY;
5763 		cpuset_update_active_cpus();
5764 	} else {
5765 		num_cpus_frozen++;
5766 		partition_sched_domains(1, NULL, NULL);
5767 	}
5768 	return 0;
5769 }
5770 
5771 int sched_cpu_activate(unsigned int cpu)
5772 {
5773 	struct rq *rq = cpu_rq(cpu);
5774 	struct rq_flags rf;
5775 
5776 	set_cpu_active(cpu, true);
5777 
5778 	if (sched_smp_initialized) {
5779 		sched_domains_numa_masks_set(cpu);
5780 		cpuset_cpu_active();
5781 	}
5782 
5783 	/*
5784 	 * Put the rq online, if not already. This happens:
5785 	 *
5786 	 * 1) In the early boot process, because we build the real domains
5787 	 *    after all CPUs have been brought up.
5788 	 *
5789 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5790 	 *    domains.
5791 	 */
5792 	rq_lock_irqsave(rq, &rf);
5793 	if (rq->rd) {
5794 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5795 		set_rq_online(rq);
5796 	}
5797 	rq_unlock_irqrestore(rq, &rf);
5798 
5799 	update_max_interval();
5800 
5801 	return 0;
5802 }
5803 
5804 int sched_cpu_deactivate(unsigned int cpu)
5805 {
5806 	int ret;
5807 
5808 	set_cpu_active(cpu, false);
5809 	/*
5810 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5811 	 * users of this state to go away such that all new such users will
5812 	 * observe it.
5813 	 *
5814 	 * Do sync before park smpboot threads to take care the rcu boost case.
5815 	 */
5816 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5817 
5818 	if (!sched_smp_initialized)
5819 		return 0;
5820 
5821 	ret = cpuset_cpu_inactive(cpu);
5822 	if (ret) {
5823 		set_cpu_active(cpu, true);
5824 		return ret;
5825 	}
5826 	sched_domains_numa_masks_clear(cpu);
5827 	return 0;
5828 }
5829 
5830 static void sched_rq_cpu_starting(unsigned int cpu)
5831 {
5832 	struct rq *rq = cpu_rq(cpu);
5833 
5834 	rq->calc_load_update = calc_load_update;
5835 	update_max_interval();
5836 }
5837 
5838 int sched_cpu_starting(unsigned int cpu)
5839 {
5840 	set_cpu_rq_start_time(cpu);
5841 	sched_rq_cpu_starting(cpu);
5842 	sched_tick_start(cpu);
5843 	return 0;
5844 }
5845 
5846 #ifdef CONFIG_HOTPLUG_CPU
5847 int sched_cpu_dying(unsigned int cpu)
5848 {
5849 	struct rq *rq = cpu_rq(cpu);
5850 	struct rq_flags rf;
5851 
5852 	/* Handle pending wakeups and then migrate everything off */
5853 	sched_ttwu_pending();
5854 	sched_tick_stop(cpu);
5855 
5856 	rq_lock_irqsave(rq, &rf);
5857 	if (rq->rd) {
5858 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5859 		set_rq_offline(rq);
5860 	}
5861 	migrate_tasks(rq, &rf);
5862 	BUG_ON(rq->nr_running != 1);
5863 	rq_unlock_irqrestore(rq, &rf);
5864 
5865 	calc_load_migrate(rq);
5866 	update_max_interval();
5867 	nohz_balance_exit_idle(rq);
5868 	hrtick_clear(rq);
5869 	return 0;
5870 }
5871 #endif
5872 
5873 #ifdef CONFIG_SCHED_SMT
5874 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5875 
5876 static void sched_init_smt(void)
5877 {
5878 	/*
5879 	 * We've enumerated all CPUs and will assume that if any CPU
5880 	 * has SMT siblings, CPU0 will too.
5881 	 */
5882 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5883 		static_branch_enable(&sched_smt_present);
5884 }
5885 #else
5886 static inline void sched_init_smt(void) { }
5887 #endif
5888 
5889 void __init sched_init_smp(void)
5890 {
5891 	sched_init_numa();
5892 
5893 	/*
5894 	 * There's no userspace yet to cause hotplug operations; hence all the
5895 	 * CPU masks are stable and all blatant races in the below code cannot
5896 	 * happen.
5897 	 */
5898 	mutex_lock(&sched_domains_mutex);
5899 	sched_init_domains(cpu_active_mask);
5900 	mutex_unlock(&sched_domains_mutex);
5901 
5902 	/* Move init over to a non-isolated CPU */
5903 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5904 		BUG();
5905 	sched_init_granularity();
5906 
5907 	init_sched_rt_class();
5908 	init_sched_dl_class();
5909 
5910 	sched_init_smt();
5911 
5912 	sched_smp_initialized = true;
5913 }
5914 
5915 static int __init migration_init(void)
5916 {
5917 	sched_rq_cpu_starting(smp_processor_id());
5918 	return 0;
5919 }
5920 early_initcall(migration_init);
5921 
5922 #else
5923 void __init sched_init_smp(void)
5924 {
5925 	sched_init_granularity();
5926 }
5927 #endif /* CONFIG_SMP */
5928 
5929 int in_sched_functions(unsigned long addr)
5930 {
5931 	return in_lock_functions(addr) ||
5932 		(addr >= (unsigned long)__sched_text_start
5933 		&& addr < (unsigned long)__sched_text_end);
5934 }
5935 
5936 #ifdef CONFIG_CGROUP_SCHED
5937 /*
5938  * Default task group.
5939  * Every task in system belongs to this group at bootup.
5940  */
5941 struct task_group root_task_group;
5942 LIST_HEAD(task_groups);
5943 
5944 /* Cacheline aligned slab cache for task_group */
5945 static struct kmem_cache *task_group_cache __read_mostly;
5946 #endif
5947 
5948 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5949 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5950 
5951 void __init sched_init(void)
5952 {
5953 	int i, j;
5954 	unsigned long alloc_size = 0, ptr;
5955 
5956 	sched_clock_init();
5957 	wait_bit_init();
5958 
5959 #ifdef CONFIG_FAIR_GROUP_SCHED
5960 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5961 #endif
5962 #ifdef CONFIG_RT_GROUP_SCHED
5963 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5964 #endif
5965 	if (alloc_size) {
5966 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5967 
5968 #ifdef CONFIG_FAIR_GROUP_SCHED
5969 		root_task_group.se = (struct sched_entity **)ptr;
5970 		ptr += nr_cpu_ids * sizeof(void **);
5971 
5972 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5973 		ptr += nr_cpu_ids * sizeof(void **);
5974 
5975 #endif /* CONFIG_FAIR_GROUP_SCHED */
5976 #ifdef CONFIG_RT_GROUP_SCHED
5977 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5978 		ptr += nr_cpu_ids * sizeof(void **);
5979 
5980 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5981 		ptr += nr_cpu_ids * sizeof(void **);
5982 
5983 #endif /* CONFIG_RT_GROUP_SCHED */
5984 	}
5985 #ifdef CONFIG_CPUMASK_OFFSTACK
5986 	for_each_possible_cpu(i) {
5987 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5988 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5989 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5990 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5991 	}
5992 #endif /* CONFIG_CPUMASK_OFFSTACK */
5993 
5994 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5995 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5996 
5997 #ifdef CONFIG_SMP
5998 	init_defrootdomain();
5999 #endif
6000 
6001 #ifdef CONFIG_RT_GROUP_SCHED
6002 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6003 			global_rt_period(), global_rt_runtime());
6004 #endif /* CONFIG_RT_GROUP_SCHED */
6005 
6006 #ifdef CONFIG_CGROUP_SCHED
6007 	task_group_cache = KMEM_CACHE(task_group, 0);
6008 
6009 	list_add(&root_task_group.list, &task_groups);
6010 	INIT_LIST_HEAD(&root_task_group.children);
6011 	INIT_LIST_HEAD(&root_task_group.siblings);
6012 	autogroup_init(&init_task);
6013 #endif /* CONFIG_CGROUP_SCHED */
6014 
6015 	for_each_possible_cpu(i) {
6016 		struct rq *rq;
6017 
6018 		rq = cpu_rq(i);
6019 		raw_spin_lock_init(&rq->lock);
6020 		rq->nr_running = 0;
6021 		rq->calc_load_active = 0;
6022 		rq->calc_load_update = jiffies + LOAD_FREQ;
6023 		init_cfs_rq(&rq->cfs);
6024 		init_rt_rq(&rq->rt);
6025 		init_dl_rq(&rq->dl);
6026 #ifdef CONFIG_FAIR_GROUP_SCHED
6027 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6028 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6029 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6030 		/*
6031 		 * How much CPU bandwidth does root_task_group get?
6032 		 *
6033 		 * In case of task-groups formed thr' the cgroup filesystem, it
6034 		 * gets 100% of the CPU resources in the system. This overall
6035 		 * system CPU resource is divided among the tasks of
6036 		 * root_task_group and its child task-groups in a fair manner,
6037 		 * based on each entity's (task or task-group's) weight
6038 		 * (se->load.weight).
6039 		 *
6040 		 * In other words, if root_task_group has 10 tasks of weight
6041 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6042 		 * then A0's share of the CPU resource is:
6043 		 *
6044 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6045 		 *
6046 		 * We achieve this by letting root_task_group's tasks sit
6047 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6048 		 */
6049 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6050 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6051 #endif /* CONFIG_FAIR_GROUP_SCHED */
6052 
6053 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6054 #ifdef CONFIG_RT_GROUP_SCHED
6055 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6056 #endif
6057 
6058 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6059 			rq->cpu_load[j] = 0;
6060 
6061 #ifdef CONFIG_SMP
6062 		rq->sd = NULL;
6063 		rq->rd = NULL;
6064 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6065 		rq->balance_callback = NULL;
6066 		rq->active_balance = 0;
6067 		rq->next_balance = jiffies;
6068 		rq->push_cpu = 0;
6069 		rq->cpu = i;
6070 		rq->online = 0;
6071 		rq->idle_stamp = 0;
6072 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6073 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6074 
6075 		INIT_LIST_HEAD(&rq->cfs_tasks);
6076 
6077 		rq_attach_root(rq, &def_root_domain);
6078 #ifdef CONFIG_NO_HZ_COMMON
6079 		rq->last_load_update_tick = jiffies;
6080 		rq->last_blocked_load_update_tick = jiffies;
6081 		atomic_set(&rq->nohz_flags, 0);
6082 #endif
6083 #endif /* CONFIG_SMP */
6084 		hrtick_rq_init(rq);
6085 		atomic_set(&rq->nr_iowait, 0);
6086 	}
6087 
6088 	set_load_weight(&init_task, false);
6089 
6090 	/*
6091 	 * The boot idle thread does lazy MMU switching as well:
6092 	 */
6093 	mmgrab(&init_mm);
6094 	enter_lazy_tlb(&init_mm, current);
6095 
6096 	/*
6097 	 * Make us the idle thread. Technically, schedule() should not be
6098 	 * called from this thread, however somewhere below it might be,
6099 	 * but because we are the idle thread, we just pick up running again
6100 	 * when this runqueue becomes "idle".
6101 	 */
6102 	init_idle(current, smp_processor_id());
6103 
6104 	calc_load_update = jiffies + LOAD_FREQ;
6105 
6106 #ifdef CONFIG_SMP
6107 	idle_thread_set_boot_cpu();
6108 	set_cpu_rq_start_time(smp_processor_id());
6109 #endif
6110 	init_sched_fair_class();
6111 
6112 	init_schedstats();
6113 
6114 	scheduler_running = 1;
6115 }
6116 
6117 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6118 static inline int preempt_count_equals(int preempt_offset)
6119 {
6120 	int nested = preempt_count() + rcu_preempt_depth();
6121 
6122 	return (nested == preempt_offset);
6123 }
6124 
6125 void __might_sleep(const char *file, int line, int preempt_offset)
6126 {
6127 	/*
6128 	 * Blocking primitives will set (and therefore destroy) current->state,
6129 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6130 	 * otherwise we will destroy state.
6131 	 */
6132 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6133 			"do not call blocking ops when !TASK_RUNNING; "
6134 			"state=%lx set at [<%p>] %pS\n",
6135 			current->state,
6136 			(void *)current->task_state_change,
6137 			(void *)current->task_state_change);
6138 
6139 	___might_sleep(file, line, preempt_offset);
6140 }
6141 EXPORT_SYMBOL(__might_sleep);
6142 
6143 void ___might_sleep(const char *file, int line, int preempt_offset)
6144 {
6145 	/* Ratelimiting timestamp: */
6146 	static unsigned long prev_jiffy;
6147 
6148 	unsigned long preempt_disable_ip;
6149 
6150 	/* WARN_ON_ONCE() by default, no rate limit required: */
6151 	rcu_sleep_check();
6152 
6153 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6154 	     !is_idle_task(current)) ||
6155 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6156 	    oops_in_progress)
6157 		return;
6158 
6159 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6160 		return;
6161 	prev_jiffy = jiffies;
6162 
6163 	/* Save this before calling printk(), since that will clobber it: */
6164 	preempt_disable_ip = get_preempt_disable_ip(current);
6165 
6166 	printk(KERN_ERR
6167 		"BUG: sleeping function called from invalid context at %s:%d\n",
6168 			file, line);
6169 	printk(KERN_ERR
6170 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6171 			in_atomic(), irqs_disabled(),
6172 			current->pid, current->comm);
6173 
6174 	if (task_stack_end_corrupted(current))
6175 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6176 
6177 	debug_show_held_locks(current);
6178 	if (irqs_disabled())
6179 		print_irqtrace_events(current);
6180 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6181 	    && !preempt_count_equals(preempt_offset)) {
6182 		pr_err("Preemption disabled at:");
6183 		print_ip_sym(preempt_disable_ip);
6184 		pr_cont("\n");
6185 	}
6186 	dump_stack();
6187 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6188 }
6189 EXPORT_SYMBOL(___might_sleep);
6190 #endif
6191 
6192 #ifdef CONFIG_MAGIC_SYSRQ
6193 void normalize_rt_tasks(void)
6194 {
6195 	struct task_struct *g, *p;
6196 	struct sched_attr attr = {
6197 		.sched_policy = SCHED_NORMAL,
6198 	};
6199 
6200 	read_lock(&tasklist_lock);
6201 	for_each_process_thread(g, p) {
6202 		/*
6203 		 * Only normalize user tasks:
6204 		 */
6205 		if (p->flags & PF_KTHREAD)
6206 			continue;
6207 
6208 		p->se.exec_start = 0;
6209 		schedstat_set(p->se.statistics.wait_start,  0);
6210 		schedstat_set(p->se.statistics.sleep_start, 0);
6211 		schedstat_set(p->se.statistics.block_start, 0);
6212 
6213 		if (!dl_task(p) && !rt_task(p)) {
6214 			/*
6215 			 * Renice negative nice level userspace
6216 			 * tasks back to 0:
6217 			 */
6218 			if (task_nice(p) < 0)
6219 				set_user_nice(p, 0);
6220 			continue;
6221 		}
6222 
6223 		__sched_setscheduler(p, &attr, false, false);
6224 	}
6225 	read_unlock(&tasklist_lock);
6226 }
6227 
6228 #endif /* CONFIG_MAGIC_SYSRQ */
6229 
6230 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6231 /*
6232  * These functions are only useful for the IA64 MCA handling, or kdb.
6233  *
6234  * They can only be called when the whole system has been
6235  * stopped - every CPU needs to be quiescent, and no scheduling
6236  * activity can take place. Using them for anything else would
6237  * be a serious bug, and as a result, they aren't even visible
6238  * under any other configuration.
6239  */
6240 
6241 /**
6242  * curr_task - return the current task for a given CPU.
6243  * @cpu: the processor in question.
6244  *
6245  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6246  *
6247  * Return: The current task for @cpu.
6248  */
6249 struct task_struct *curr_task(int cpu)
6250 {
6251 	return cpu_curr(cpu);
6252 }
6253 
6254 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6255 
6256 #ifdef CONFIG_IA64
6257 /**
6258  * set_curr_task - set the current task for a given CPU.
6259  * @cpu: the processor in question.
6260  * @p: the task pointer to set.
6261  *
6262  * Description: This function must only be used when non-maskable interrupts
6263  * are serviced on a separate stack. It allows the architecture to switch the
6264  * notion of the current task on a CPU in a non-blocking manner. This function
6265  * must be called with all CPU's synchronized, and interrupts disabled, the
6266  * and caller must save the original value of the current task (see
6267  * curr_task() above) and restore that value before reenabling interrupts and
6268  * re-starting the system.
6269  *
6270  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6271  */
6272 void ia64_set_curr_task(int cpu, struct task_struct *p)
6273 {
6274 	cpu_curr(cpu) = p;
6275 }
6276 
6277 #endif
6278 
6279 #ifdef CONFIG_CGROUP_SCHED
6280 /* task_group_lock serializes the addition/removal of task groups */
6281 static DEFINE_SPINLOCK(task_group_lock);
6282 
6283 static void sched_free_group(struct task_group *tg)
6284 {
6285 	free_fair_sched_group(tg);
6286 	free_rt_sched_group(tg);
6287 	autogroup_free(tg);
6288 	kmem_cache_free(task_group_cache, tg);
6289 }
6290 
6291 /* allocate runqueue etc for a new task group */
6292 struct task_group *sched_create_group(struct task_group *parent)
6293 {
6294 	struct task_group *tg;
6295 
6296 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6297 	if (!tg)
6298 		return ERR_PTR(-ENOMEM);
6299 
6300 	if (!alloc_fair_sched_group(tg, parent))
6301 		goto err;
6302 
6303 	if (!alloc_rt_sched_group(tg, parent))
6304 		goto err;
6305 
6306 	return tg;
6307 
6308 err:
6309 	sched_free_group(tg);
6310 	return ERR_PTR(-ENOMEM);
6311 }
6312 
6313 void sched_online_group(struct task_group *tg, struct task_group *parent)
6314 {
6315 	unsigned long flags;
6316 
6317 	spin_lock_irqsave(&task_group_lock, flags);
6318 	list_add_rcu(&tg->list, &task_groups);
6319 
6320 	/* Root should already exist: */
6321 	WARN_ON(!parent);
6322 
6323 	tg->parent = parent;
6324 	INIT_LIST_HEAD(&tg->children);
6325 	list_add_rcu(&tg->siblings, &parent->children);
6326 	spin_unlock_irqrestore(&task_group_lock, flags);
6327 
6328 	online_fair_sched_group(tg);
6329 }
6330 
6331 /* rcu callback to free various structures associated with a task group */
6332 static void sched_free_group_rcu(struct rcu_head *rhp)
6333 {
6334 	/* Now it should be safe to free those cfs_rqs: */
6335 	sched_free_group(container_of(rhp, struct task_group, rcu));
6336 }
6337 
6338 void sched_destroy_group(struct task_group *tg)
6339 {
6340 	/* Wait for possible concurrent references to cfs_rqs complete: */
6341 	call_rcu(&tg->rcu, sched_free_group_rcu);
6342 }
6343 
6344 void sched_offline_group(struct task_group *tg)
6345 {
6346 	unsigned long flags;
6347 
6348 	/* End participation in shares distribution: */
6349 	unregister_fair_sched_group(tg);
6350 
6351 	spin_lock_irqsave(&task_group_lock, flags);
6352 	list_del_rcu(&tg->list);
6353 	list_del_rcu(&tg->siblings);
6354 	spin_unlock_irqrestore(&task_group_lock, flags);
6355 }
6356 
6357 static void sched_change_group(struct task_struct *tsk, int type)
6358 {
6359 	struct task_group *tg;
6360 
6361 	/*
6362 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6363 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6364 	 * to prevent lockdep warnings.
6365 	 */
6366 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6367 			  struct task_group, css);
6368 	tg = autogroup_task_group(tsk, tg);
6369 	tsk->sched_task_group = tg;
6370 
6371 #ifdef CONFIG_FAIR_GROUP_SCHED
6372 	if (tsk->sched_class->task_change_group)
6373 		tsk->sched_class->task_change_group(tsk, type);
6374 	else
6375 #endif
6376 		set_task_rq(tsk, task_cpu(tsk));
6377 }
6378 
6379 /*
6380  * Change task's runqueue when it moves between groups.
6381  *
6382  * The caller of this function should have put the task in its new group by
6383  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6384  * its new group.
6385  */
6386 void sched_move_task(struct task_struct *tsk)
6387 {
6388 	int queued, running, queue_flags =
6389 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6390 	struct rq_flags rf;
6391 	struct rq *rq;
6392 
6393 	rq = task_rq_lock(tsk, &rf);
6394 	update_rq_clock(rq);
6395 
6396 	running = task_current(rq, tsk);
6397 	queued = task_on_rq_queued(tsk);
6398 
6399 	if (queued)
6400 		dequeue_task(rq, tsk, queue_flags);
6401 	if (running)
6402 		put_prev_task(rq, tsk);
6403 
6404 	sched_change_group(tsk, TASK_MOVE_GROUP);
6405 
6406 	if (queued)
6407 		enqueue_task(rq, tsk, queue_flags);
6408 	if (running)
6409 		set_curr_task(rq, tsk);
6410 
6411 	task_rq_unlock(rq, tsk, &rf);
6412 }
6413 
6414 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6415 {
6416 	return css ? container_of(css, struct task_group, css) : NULL;
6417 }
6418 
6419 static struct cgroup_subsys_state *
6420 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6421 {
6422 	struct task_group *parent = css_tg(parent_css);
6423 	struct task_group *tg;
6424 
6425 	if (!parent) {
6426 		/* This is early initialization for the top cgroup */
6427 		return &root_task_group.css;
6428 	}
6429 
6430 	tg = sched_create_group(parent);
6431 	if (IS_ERR(tg))
6432 		return ERR_PTR(-ENOMEM);
6433 
6434 	return &tg->css;
6435 }
6436 
6437 /* Expose task group only after completing cgroup initialization */
6438 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6439 {
6440 	struct task_group *tg = css_tg(css);
6441 	struct task_group *parent = css_tg(css->parent);
6442 
6443 	if (parent)
6444 		sched_online_group(tg, parent);
6445 	return 0;
6446 }
6447 
6448 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6449 {
6450 	struct task_group *tg = css_tg(css);
6451 
6452 	sched_offline_group(tg);
6453 }
6454 
6455 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6456 {
6457 	struct task_group *tg = css_tg(css);
6458 
6459 	/*
6460 	 * Relies on the RCU grace period between css_released() and this.
6461 	 */
6462 	sched_free_group(tg);
6463 }
6464 
6465 /*
6466  * This is called before wake_up_new_task(), therefore we really only
6467  * have to set its group bits, all the other stuff does not apply.
6468  */
6469 static void cpu_cgroup_fork(struct task_struct *task)
6470 {
6471 	struct rq_flags rf;
6472 	struct rq *rq;
6473 
6474 	rq = task_rq_lock(task, &rf);
6475 
6476 	update_rq_clock(rq);
6477 	sched_change_group(task, TASK_SET_GROUP);
6478 
6479 	task_rq_unlock(rq, task, &rf);
6480 }
6481 
6482 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6483 {
6484 	struct task_struct *task;
6485 	struct cgroup_subsys_state *css;
6486 	int ret = 0;
6487 
6488 	cgroup_taskset_for_each(task, css, tset) {
6489 #ifdef CONFIG_RT_GROUP_SCHED
6490 		if (!sched_rt_can_attach(css_tg(css), task))
6491 			return -EINVAL;
6492 #else
6493 		/* We don't support RT-tasks being in separate groups */
6494 		if (task->sched_class != &fair_sched_class)
6495 			return -EINVAL;
6496 #endif
6497 		/*
6498 		 * Serialize against wake_up_new_task() such that if its
6499 		 * running, we're sure to observe its full state.
6500 		 */
6501 		raw_spin_lock_irq(&task->pi_lock);
6502 		/*
6503 		 * Avoid calling sched_move_task() before wake_up_new_task()
6504 		 * has happened. This would lead to problems with PELT, due to
6505 		 * move wanting to detach+attach while we're not attached yet.
6506 		 */
6507 		if (task->state == TASK_NEW)
6508 			ret = -EINVAL;
6509 		raw_spin_unlock_irq(&task->pi_lock);
6510 
6511 		if (ret)
6512 			break;
6513 	}
6514 	return ret;
6515 }
6516 
6517 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6518 {
6519 	struct task_struct *task;
6520 	struct cgroup_subsys_state *css;
6521 
6522 	cgroup_taskset_for_each(task, css, tset)
6523 		sched_move_task(task);
6524 }
6525 
6526 #ifdef CONFIG_FAIR_GROUP_SCHED
6527 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6528 				struct cftype *cftype, u64 shareval)
6529 {
6530 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6531 }
6532 
6533 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6534 			       struct cftype *cft)
6535 {
6536 	struct task_group *tg = css_tg(css);
6537 
6538 	return (u64) scale_load_down(tg->shares);
6539 }
6540 
6541 #ifdef CONFIG_CFS_BANDWIDTH
6542 static DEFINE_MUTEX(cfs_constraints_mutex);
6543 
6544 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6545 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6546 
6547 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6548 
6549 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6550 {
6551 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6552 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6553 
6554 	if (tg == &root_task_group)
6555 		return -EINVAL;
6556 
6557 	/*
6558 	 * Ensure we have at some amount of bandwidth every period.  This is
6559 	 * to prevent reaching a state of large arrears when throttled via
6560 	 * entity_tick() resulting in prolonged exit starvation.
6561 	 */
6562 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6563 		return -EINVAL;
6564 
6565 	/*
6566 	 * Likewise, bound things on the otherside by preventing insane quota
6567 	 * periods.  This also allows us to normalize in computing quota
6568 	 * feasibility.
6569 	 */
6570 	if (period > max_cfs_quota_period)
6571 		return -EINVAL;
6572 
6573 	/*
6574 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6575 	 * unthrottle_offline_cfs_rqs().
6576 	 */
6577 	get_online_cpus();
6578 	mutex_lock(&cfs_constraints_mutex);
6579 	ret = __cfs_schedulable(tg, period, quota);
6580 	if (ret)
6581 		goto out_unlock;
6582 
6583 	runtime_enabled = quota != RUNTIME_INF;
6584 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6585 	/*
6586 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6587 	 * before making related changes, and on->off must occur afterwards
6588 	 */
6589 	if (runtime_enabled && !runtime_was_enabled)
6590 		cfs_bandwidth_usage_inc();
6591 	raw_spin_lock_irq(&cfs_b->lock);
6592 	cfs_b->period = ns_to_ktime(period);
6593 	cfs_b->quota = quota;
6594 
6595 	__refill_cfs_bandwidth_runtime(cfs_b);
6596 
6597 	/* Restart the period timer (if active) to handle new period expiry: */
6598 	if (runtime_enabled)
6599 		start_cfs_bandwidth(cfs_b);
6600 
6601 	raw_spin_unlock_irq(&cfs_b->lock);
6602 
6603 	for_each_online_cpu(i) {
6604 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6605 		struct rq *rq = cfs_rq->rq;
6606 		struct rq_flags rf;
6607 
6608 		rq_lock_irq(rq, &rf);
6609 		cfs_rq->runtime_enabled = runtime_enabled;
6610 		cfs_rq->runtime_remaining = 0;
6611 
6612 		if (cfs_rq->throttled)
6613 			unthrottle_cfs_rq(cfs_rq);
6614 		rq_unlock_irq(rq, &rf);
6615 	}
6616 	if (runtime_was_enabled && !runtime_enabled)
6617 		cfs_bandwidth_usage_dec();
6618 out_unlock:
6619 	mutex_unlock(&cfs_constraints_mutex);
6620 	put_online_cpus();
6621 
6622 	return ret;
6623 }
6624 
6625 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6626 {
6627 	u64 quota, period;
6628 
6629 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6630 	if (cfs_quota_us < 0)
6631 		quota = RUNTIME_INF;
6632 	else
6633 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6634 
6635 	return tg_set_cfs_bandwidth(tg, period, quota);
6636 }
6637 
6638 long tg_get_cfs_quota(struct task_group *tg)
6639 {
6640 	u64 quota_us;
6641 
6642 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6643 		return -1;
6644 
6645 	quota_us = tg->cfs_bandwidth.quota;
6646 	do_div(quota_us, NSEC_PER_USEC);
6647 
6648 	return quota_us;
6649 }
6650 
6651 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6652 {
6653 	u64 quota, period;
6654 
6655 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6656 	quota = tg->cfs_bandwidth.quota;
6657 
6658 	return tg_set_cfs_bandwidth(tg, period, quota);
6659 }
6660 
6661 long tg_get_cfs_period(struct task_group *tg)
6662 {
6663 	u64 cfs_period_us;
6664 
6665 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6666 	do_div(cfs_period_us, NSEC_PER_USEC);
6667 
6668 	return cfs_period_us;
6669 }
6670 
6671 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6672 				  struct cftype *cft)
6673 {
6674 	return tg_get_cfs_quota(css_tg(css));
6675 }
6676 
6677 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6678 				   struct cftype *cftype, s64 cfs_quota_us)
6679 {
6680 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6681 }
6682 
6683 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6684 				   struct cftype *cft)
6685 {
6686 	return tg_get_cfs_period(css_tg(css));
6687 }
6688 
6689 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6690 				    struct cftype *cftype, u64 cfs_period_us)
6691 {
6692 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6693 }
6694 
6695 struct cfs_schedulable_data {
6696 	struct task_group *tg;
6697 	u64 period, quota;
6698 };
6699 
6700 /*
6701  * normalize group quota/period to be quota/max_period
6702  * note: units are usecs
6703  */
6704 static u64 normalize_cfs_quota(struct task_group *tg,
6705 			       struct cfs_schedulable_data *d)
6706 {
6707 	u64 quota, period;
6708 
6709 	if (tg == d->tg) {
6710 		period = d->period;
6711 		quota = d->quota;
6712 	} else {
6713 		period = tg_get_cfs_period(tg);
6714 		quota = tg_get_cfs_quota(tg);
6715 	}
6716 
6717 	/* note: these should typically be equivalent */
6718 	if (quota == RUNTIME_INF || quota == -1)
6719 		return RUNTIME_INF;
6720 
6721 	return to_ratio(period, quota);
6722 }
6723 
6724 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6725 {
6726 	struct cfs_schedulable_data *d = data;
6727 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6728 	s64 quota = 0, parent_quota = -1;
6729 
6730 	if (!tg->parent) {
6731 		quota = RUNTIME_INF;
6732 	} else {
6733 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6734 
6735 		quota = normalize_cfs_quota(tg, d);
6736 		parent_quota = parent_b->hierarchical_quota;
6737 
6738 		/*
6739 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6740 		 * always take the min.  On cgroup1, only inherit when no
6741 		 * limit is set:
6742 		 */
6743 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6744 			quota = min(quota, parent_quota);
6745 		} else {
6746 			if (quota == RUNTIME_INF)
6747 				quota = parent_quota;
6748 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6749 				return -EINVAL;
6750 		}
6751 	}
6752 	cfs_b->hierarchical_quota = quota;
6753 
6754 	return 0;
6755 }
6756 
6757 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6758 {
6759 	int ret;
6760 	struct cfs_schedulable_data data = {
6761 		.tg = tg,
6762 		.period = period,
6763 		.quota = quota,
6764 	};
6765 
6766 	if (quota != RUNTIME_INF) {
6767 		do_div(data.period, NSEC_PER_USEC);
6768 		do_div(data.quota, NSEC_PER_USEC);
6769 	}
6770 
6771 	rcu_read_lock();
6772 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6773 	rcu_read_unlock();
6774 
6775 	return ret;
6776 }
6777 
6778 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6779 {
6780 	struct task_group *tg = css_tg(seq_css(sf));
6781 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6782 
6783 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6784 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6785 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6786 
6787 	return 0;
6788 }
6789 #endif /* CONFIG_CFS_BANDWIDTH */
6790 #endif /* CONFIG_FAIR_GROUP_SCHED */
6791 
6792 #ifdef CONFIG_RT_GROUP_SCHED
6793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6794 				struct cftype *cft, s64 val)
6795 {
6796 	return sched_group_set_rt_runtime(css_tg(css), val);
6797 }
6798 
6799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6800 			       struct cftype *cft)
6801 {
6802 	return sched_group_rt_runtime(css_tg(css));
6803 }
6804 
6805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6806 				    struct cftype *cftype, u64 rt_period_us)
6807 {
6808 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6809 }
6810 
6811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6812 				   struct cftype *cft)
6813 {
6814 	return sched_group_rt_period(css_tg(css));
6815 }
6816 #endif /* CONFIG_RT_GROUP_SCHED */
6817 
6818 static struct cftype cpu_legacy_files[] = {
6819 #ifdef CONFIG_FAIR_GROUP_SCHED
6820 	{
6821 		.name = "shares",
6822 		.read_u64 = cpu_shares_read_u64,
6823 		.write_u64 = cpu_shares_write_u64,
6824 	},
6825 #endif
6826 #ifdef CONFIG_CFS_BANDWIDTH
6827 	{
6828 		.name = "cfs_quota_us",
6829 		.read_s64 = cpu_cfs_quota_read_s64,
6830 		.write_s64 = cpu_cfs_quota_write_s64,
6831 	},
6832 	{
6833 		.name = "cfs_period_us",
6834 		.read_u64 = cpu_cfs_period_read_u64,
6835 		.write_u64 = cpu_cfs_period_write_u64,
6836 	},
6837 	{
6838 		.name = "stat",
6839 		.seq_show = cpu_cfs_stat_show,
6840 	},
6841 #endif
6842 #ifdef CONFIG_RT_GROUP_SCHED
6843 	{
6844 		.name = "rt_runtime_us",
6845 		.read_s64 = cpu_rt_runtime_read,
6846 		.write_s64 = cpu_rt_runtime_write,
6847 	},
6848 	{
6849 		.name = "rt_period_us",
6850 		.read_u64 = cpu_rt_period_read_uint,
6851 		.write_u64 = cpu_rt_period_write_uint,
6852 	},
6853 #endif
6854 	{ }	/* Terminate */
6855 };
6856 
6857 static int cpu_extra_stat_show(struct seq_file *sf,
6858 			       struct cgroup_subsys_state *css)
6859 {
6860 #ifdef CONFIG_CFS_BANDWIDTH
6861 	{
6862 		struct task_group *tg = css_tg(css);
6863 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6864 		u64 throttled_usec;
6865 
6866 		throttled_usec = cfs_b->throttled_time;
6867 		do_div(throttled_usec, NSEC_PER_USEC);
6868 
6869 		seq_printf(sf, "nr_periods %d\n"
6870 			   "nr_throttled %d\n"
6871 			   "throttled_usec %llu\n",
6872 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6873 			   throttled_usec);
6874 	}
6875 #endif
6876 	return 0;
6877 }
6878 
6879 #ifdef CONFIG_FAIR_GROUP_SCHED
6880 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6881 			       struct cftype *cft)
6882 {
6883 	struct task_group *tg = css_tg(css);
6884 	u64 weight = scale_load_down(tg->shares);
6885 
6886 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6887 }
6888 
6889 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6890 				struct cftype *cft, u64 weight)
6891 {
6892 	/*
6893 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6894 	 * values which are 1, 100 and 10000 respectively.  While it loses
6895 	 * a bit of range on both ends, it maps pretty well onto the shares
6896 	 * value used by scheduler and the round-trip conversions preserve
6897 	 * the original value over the entire range.
6898 	 */
6899 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6900 		return -ERANGE;
6901 
6902 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6903 
6904 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6905 }
6906 
6907 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6908 				    struct cftype *cft)
6909 {
6910 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6911 	int last_delta = INT_MAX;
6912 	int prio, delta;
6913 
6914 	/* find the closest nice value to the current weight */
6915 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6916 		delta = abs(sched_prio_to_weight[prio] - weight);
6917 		if (delta >= last_delta)
6918 			break;
6919 		last_delta = delta;
6920 	}
6921 
6922 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6923 }
6924 
6925 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6926 				     struct cftype *cft, s64 nice)
6927 {
6928 	unsigned long weight;
6929 	int idx;
6930 
6931 	if (nice < MIN_NICE || nice > MAX_NICE)
6932 		return -ERANGE;
6933 
6934 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6935 	idx = array_index_nospec(idx, 40);
6936 	weight = sched_prio_to_weight[idx];
6937 
6938 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6939 }
6940 #endif
6941 
6942 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6943 						  long period, long quota)
6944 {
6945 	if (quota < 0)
6946 		seq_puts(sf, "max");
6947 	else
6948 		seq_printf(sf, "%ld", quota);
6949 
6950 	seq_printf(sf, " %ld\n", period);
6951 }
6952 
6953 /* caller should put the current value in *@periodp before calling */
6954 static int __maybe_unused cpu_period_quota_parse(char *buf,
6955 						 u64 *periodp, u64 *quotap)
6956 {
6957 	char tok[21];	/* U64_MAX */
6958 
6959 	if (!sscanf(buf, "%s %llu", tok, periodp))
6960 		return -EINVAL;
6961 
6962 	*periodp *= NSEC_PER_USEC;
6963 
6964 	if (sscanf(tok, "%llu", quotap))
6965 		*quotap *= NSEC_PER_USEC;
6966 	else if (!strcmp(tok, "max"))
6967 		*quotap = RUNTIME_INF;
6968 	else
6969 		return -EINVAL;
6970 
6971 	return 0;
6972 }
6973 
6974 #ifdef CONFIG_CFS_BANDWIDTH
6975 static int cpu_max_show(struct seq_file *sf, void *v)
6976 {
6977 	struct task_group *tg = css_tg(seq_css(sf));
6978 
6979 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6980 	return 0;
6981 }
6982 
6983 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6984 			     char *buf, size_t nbytes, loff_t off)
6985 {
6986 	struct task_group *tg = css_tg(of_css(of));
6987 	u64 period = tg_get_cfs_period(tg);
6988 	u64 quota;
6989 	int ret;
6990 
6991 	ret = cpu_period_quota_parse(buf, &period, &quota);
6992 	if (!ret)
6993 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6994 	return ret ?: nbytes;
6995 }
6996 #endif
6997 
6998 static struct cftype cpu_files[] = {
6999 #ifdef CONFIG_FAIR_GROUP_SCHED
7000 	{
7001 		.name = "weight",
7002 		.flags = CFTYPE_NOT_ON_ROOT,
7003 		.read_u64 = cpu_weight_read_u64,
7004 		.write_u64 = cpu_weight_write_u64,
7005 	},
7006 	{
7007 		.name = "weight.nice",
7008 		.flags = CFTYPE_NOT_ON_ROOT,
7009 		.read_s64 = cpu_weight_nice_read_s64,
7010 		.write_s64 = cpu_weight_nice_write_s64,
7011 	},
7012 #endif
7013 #ifdef CONFIG_CFS_BANDWIDTH
7014 	{
7015 		.name = "max",
7016 		.flags = CFTYPE_NOT_ON_ROOT,
7017 		.seq_show = cpu_max_show,
7018 		.write = cpu_max_write,
7019 	},
7020 #endif
7021 	{ }	/* terminate */
7022 };
7023 
7024 struct cgroup_subsys cpu_cgrp_subsys = {
7025 	.css_alloc	= cpu_cgroup_css_alloc,
7026 	.css_online	= cpu_cgroup_css_online,
7027 	.css_released	= cpu_cgroup_css_released,
7028 	.css_free	= cpu_cgroup_css_free,
7029 	.css_extra_stat_show = cpu_extra_stat_show,
7030 	.fork		= cpu_cgroup_fork,
7031 	.can_attach	= cpu_cgroup_can_attach,
7032 	.attach		= cpu_cgroup_attach,
7033 	.legacy_cftypes	= cpu_legacy_files,
7034 	.dfl_cftypes	= cpu_files,
7035 	.early_init	= true,
7036 	.threaded	= true,
7037 };
7038 
7039 #endif	/* CONFIG_CGROUP_SCHED */
7040 
7041 void dump_cpu_task(int cpu)
7042 {
7043 	pr_info("Task dump for CPU %d:\n", cpu);
7044 	sched_show_task(cpu_curr(cpu));
7045 }
7046 
7047 /*
7048  * Nice levels are multiplicative, with a gentle 10% change for every
7049  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7050  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7051  * that remained on nice 0.
7052  *
7053  * The "10% effect" is relative and cumulative: from _any_ nice level,
7054  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7055  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7056  * If a task goes up by ~10% and another task goes down by ~10% then
7057  * the relative distance between them is ~25%.)
7058  */
7059 const int sched_prio_to_weight[40] = {
7060  /* -20 */     88761,     71755,     56483,     46273,     36291,
7061  /* -15 */     29154,     23254,     18705,     14949,     11916,
7062  /* -10 */      9548,      7620,      6100,      4904,      3906,
7063  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7064  /*   0 */      1024,       820,       655,       526,       423,
7065  /*   5 */       335,       272,       215,       172,       137,
7066  /*  10 */       110,        87,        70,        56,        45,
7067  /*  15 */        36,        29,        23,        18,        15,
7068 };
7069 
7070 /*
7071  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7072  *
7073  * In cases where the weight does not change often, we can use the
7074  * precalculated inverse to speed up arithmetics by turning divisions
7075  * into multiplications:
7076  */
7077 const u32 sched_prio_to_wmult[40] = {
7078  /* -20 */     48388,     59856,     76040,     92818,    118348,
7079  /* -15 */    147320,    184698,    229616,    287308,    360437,
7080  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7081  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7082  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7083  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7084  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7085  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7086 };
7087 
7088 #undef CREATE_TRACE_POINTS
7089