1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/kthread.h> 11 #include <linux/nospec.h> 12 13 #include <asm/switch_to.h> 14 #include <asm/tlb.h> 15 16 #include "../workqueue_internal.h" 17 #include "../smpboot.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/sched.h> 21 22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 23 24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 25 /* 26 * Debugging: various feature bits 27 * 28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 29 * sysctl_sched_features, defined in sched.h, to allow constants propagation 30 * at compile time and compiler optimization based on features default. 31 */ 32 #define SCHED_FEAT(name, enabled) \ 33 (1UL << __SCHED_FEAT_##name) * enabled | 34 const_debug unsigned int sysctl_sched_features = 35 #include "features.h" 36 0; 37 #undef SCHED_FEAT 38 #endif 39 40 /* 41 * Number of tasks to iterate in a single balance run. 42 * Limited because this is done with IRQs disabled. 43 */ 44 const_debug unsigned int sysctl_sched_nr_migrate = 32; 45 46 /* 47 * period over which we average the RT time consumption, measured 48 * in ms. 49 * 50 * default: 1s 51 */ 52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 53 54 /* 55 * period over which we measure -rt task CPU usage in us. 56 * default: 1s 57 */ 58 unsigned int sysctl_sched_rt_period = 1000000; 59 60 __read_mostly int scheduler_running; 61 62 /* 63 * part of the period that we allow rt tasks to run in us. 64 * default: 0.95s 65 */ 66 int sysctl_sched_rt_runtime = 950000; 67 68 /* 69 * __task_rq_lock - lock the rq @p resides on. 70 */ 71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 72 __acquires(rq->lock) 73 { 74 struct rq *rq; 75 76 lockdep_assert_held(&p->pi_lock); 77 78 for (;;) { 79 rq = task_rq(p); 80 raw_spin_lock(&rq->lock); 81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 82 rq_pin_lock(rq, rf); 83 return rq; 84 } 85 raw_spin_unlock(&rq->lock); 86 87 while (unlikely(task_on_rq_migrating(p))) 88 cpu_relax(); 89 } 90 } 91 92 /* 93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 94 */ 95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 96 __acquires(p->pi_lock) 97 __acquires(rq->lock) 98 { 99 struct rq *rq; 100 101 for (;;) { 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 103 rq = task_rq(p); 104 raw_spin_lock(&rq->lock); 105 /* 106 * move_queued_task() task_rq_lock() 107 * 108 * ACQUIRE (rq->lock) 109 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 111 * [S] ->cpu = new_cpu [L] task_rq() 112 * [L] ->on_rq 113 * RELEASE (rq->lock) 114 * 115 * If we observe the old CPU in task_rq_lock, the acquire of 116 * the old rq->lock will fully serialize against the stores. 117 * 118 * If we observe the new CPU in task_rq_lock, the acquire will 119 * pair with the WMB to ensure we must then also see migrating. 120 */ 121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 122 rq_pin_lock(rq, rf); 123 return rq; 124 } 125 raw_spin_unlock(&rq->lock); 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 127 128 while (unlikely(task_on_rq_migrating(p))) 129 cpu_relax(); 130 } 131 } 132 133 /* 134 * RQ-clock updating methods: 135 */ 136 137 static void update_rq_clock_task(struct rq *rq, s64 delta) 138 { 139 /* 140 * In theory, the compile should just see 0 here, and optimize out the call 141 * to sched_rt_avg_update. But I don't trust it... 142 */ 143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 144 s64 steal = 0, irq_delta = 0; 145 #endif 146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 148 149 /* 150 * Since irq_time is only updated on {soft,}irq_exit, we might run into 151 * this case when a previous update_rq_clock() happened inside a 152 * {soft,}irq region. 153 * 154 * When this happens, we stop ->clock_task and only update the 155 * prev_irq_time stamp to account for the part that fit, so that a next 156 * update will consume the rest. This ensures ->clock_task is 157 * monotonic. 158 * 159 * It does however cause some slight miss-attribution of {soft,}irq 160 * time, a more accurate solution would be to update the irq_time using 161 * the current rq->clock timestamp, except that would require using 162 * atomic ops. 163 */ 164 if (irq_delta > delta) 165 irq_delta = delta; 166 167 rq->prev_irq_time += irq_delta; 168 delta -= irq_delta; 169 #endif 170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 171 if (static_key_false((¶virt_steal_rq_enabled))) { 172 steal = paravirt_steal_clock(cpu_of(rq)); 173 steal -= rq->prev_steal_time_rq; 174 175 if (unlikely(steal > delta)) 176 steal = delta; 177 178 rq->prev_steal_time_rq += steal; 179 delta -= steal; 180 } 181 #endif 182 183 rq->clock_task += delta; 184 185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 187 sched_rt_avg_update(rq, irq_delta + steal); 188 #endif 189 } 190 191 void update_rq_clock(struct rq *rq) 192 { 193 s64 delta; 194 195 lockdep_assert_held(&rq->lock); 196 197 if (rq->clock_update_flags & RQCF_ACT_SKIP) 198 return; 199 200 #ifdef CONFIG_SCHED_DEBUG 201 if (sched_feat(WARN_DOUBLE_CLOCK)) 202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 203 rq->clock_update_flags |= RQCF_UPDATED; 204 #endif 205 206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 207 if (delta < 0) 208 return; 209 rq->clock += delta; 210 update_rq_clock_task(rq, delta); 211 } 212 213 214 #ifdef CONFIG_SCHED_HRTICK 215 /* 216 * Use HR-timers to deliver accurate preemption points. 217 */ 218 219 static void hrtick_clear(struct rq *rq) 220 { 221 if (hrtimer_active(&rq->hrtick_timer)) 222 hrtimer_cancel(&rq->hrtick_timer); 223 } 224 225 /* 226 * High-resolution timer tick. 227 * Runs from hardirq context with interrupts disabled. 228 */ 229 static enum hrtimer_restart hrtick(struct hrtimer *timer) 230 { 231 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 232 struct rq_flags rf; 233 234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 235 236 rq_lock(rq, &rf); 237 update_rq_clock(rq); 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 239 rq_unlock(rq, &rf); 240 241 return HRTIMER_NORESTART; 242 } 243 244 #ifdef CONFIG_SMP 245 246 static void __hrtick_restart(struct rq *rq) 247 { 248 struct hrtimer *timer = &rq->hrtick_timer; 249 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 251 } 252 253 /* 254 * called from hardirq (IPI) context 255 */ 256 static void __hrtick_start(void *arg) 257 { 258 struct rq *rq = arg; 259 struct rq_flags rf; 260 261 rq_lock(rq, &rf); 262 __hrtick_restart(rq); 263 rq->hrtick_csd_pending = 0; 264 rq_unlock(rq, &rf); 265 } 266 267 /* 268 * Called to set the hrtick timer state. 269 * 270 * called with rq->lock held and irqs disabled 271 */ 272 void hrtick_start(struct rq *rq, u64 delay) 273 { 274 struct hrtimer *timer = &rq->hrtick_timer; 275 ktime_t time; 276 s64 delta; 277 278 /* 279 * Don't schedule slices shorter than 10000ns, that just 280 * doesn't make sense and can cause timer DoS. 281 */ 282 delta = max_t(s64, delay, 10000LL); 283 time = ktime_add_ns(timer->base->get_time(), delta); 284 285 hrtimer_set_expires(timer, time); 286 287 if (rq == this_rq()) { 288 __hrtick_restart(rq); 289 } else if (!rq->hrtick_csd_pending) { 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 291 rq->hrtick_csd_pending = 1; 292 } 293 } 294 295 #else 296 /* 297 * Called to set the hrtick timer state. 298 * 299 * called with rq->lock held and irqs disabled 300 */ 301 void hrtick_start(struct rq *rq, u64 delay) 302 { 303 /* 304 * Don't schedule slices shorter than 10000ns, that just 305 * doesn't make sense. Rely on vruntime for fairness. 306 */ 307 delay = max_t(u64, delay, 10000LL); 308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 309 HRTIMER_MODE_REL_PINNED); 310 } 311 #endif /* CONFIG_SMP */ 312 313 static void hrtick_rq_init(struct rq *rq) 314 { 315 #ifdef CONFIG_SMP 316 rq->hrtick_csd_pending = 0; 317 318 rq->hrtick_csd.flags = 0; 319 rq->hrtick_csd.func = __hrtick_start; 320 rq->hrtick_csd.info = rq; 321 #endif 322 323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 324 rq->hrtick_timer.function = hrtick; 325 } 326 #else /* CONFIG_SCHED_HRTICK */ 327 static inline void hrtick_clear(struct rq *rq) 328 { 329 } 330 331 static inline void hrtick_rq_init(struct rq *rq) 332 { 333 } 334 #endif /* CONFIG_SCHED_HRTICK */ 335 336 /* 337 * cmpxchg based fetch_or, macro so it works for different integer types 338 */ 339 #define fetch_or(ptr, mask) \ 340 ({ \ 341 typeof(ptr) _ptr = (ptr); \ 342 typeof(mask) _mask = (mask); \ 343 typeof(*_ptr) _old, _val = *_ptr; \ 344 \ 345 for (;;) { \ 346 _old = cmpxchg(_ptr, _val, _val | _mask); \ 347 if (_old == _val) \ 348 break; \ 349 _val = _old; \ 350 } \ 351 _old; \ 352 }) 353 354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 355 /* 356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 357 * this avoids any races wrt polling state changes and thereby avoids 358 * spurious IPIs. 359 */ 360 static bool set_nr_and_not_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 364 } 365 366 /* 367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 368 * 369 * If this returns true, then the idle task promises to call 370 * sched_ttwu_pending() and reschedule soon. 371 */ 372 static bool set_nr_if_polling(struct task_struct *p) 373 { 374 struct thread_info *ti = task_thread_info(p); 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 376 377 for (;;) { 378 if (!(val & _TIF_POLLING_NRFLAG)) 379 return false; 380 if (val & _TIF_NEED_RESCHED) 381 return true; 382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 383 if (old == val) 384 break; 385 val = old; 386 } 387 return true; 388 } 389 390 #else 391 static bool set_nr_and_not_polling(struct task_struct *p) 392 { 393 set_tsk_need_resched(p); 394 return true; 395 } 396 397 #ifdef CONFIG_SMP 398 static bool set_nr_if_polling(struct task_struct *p) 399 { 400 return false; 401 } 402 #endif 403 #endif 404 405 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 406 { 407 struct wake_q_node *node = &task->wake_q; 408 409 /* 410 * Atomically grab the task, if ->wake_q is !nil already it means 411 * its already queued (either by us or someone else) and will get the 412 * wakeup due to that. 413 * 414 * This cmpxchg() implies a full barrier, which pairs with the write 415 * barrier implied by the wakeup in wake_up_q(). 416 */ 417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 418 return; 419 420 get_task_struct(task); 421 422 /* 423 * The head is context local, there can be no concurrency. 424 */ 425 *head->lastp = node; 426 head->lastp = &node->next; 427 } 428 429 void wake_up_q(struct wake_q_head *head) 430 { 431 struct wake_q_node *node = head->first; 432 433 while (node != WAKE_Q_TAIL) { 434 struct task_struct *task; 435 436 task = container_of(node, struct task_struct, wake_q); 437 BUG_ON(!task); 438 /* Task can safely be re-inserted now: */ 439 node = node->next; 440 task->wake_q.next = NULL; 441 442 /* 443 * wake_up_process() implies a wmb() to pair with the queueing 444 * in wake_q_add() so as not to miss wakeups. 445 */ 446 wake_up_process(task); 447 put_task_struct(task); 448 } 449 } 450 451 /* 452 * resched_curr - mark rq's current task 'to be rescheduled now'. 453 * 454 * On UP this means the setting of the need_resched flag, on SMP it 455 * might also involve a cross-CPU call to trigger the scheduler on 456 * the target CPU. 457 */ 458 void resched_curr(struct rq *rq) 459 { 460 struct task_struct *curr = rq->curr; 461 int cpu; 462 463 lockdep_assert_held(&rq->lock); 464 465 if (test_tsk_need_resched(curr)) 466 return; 467 468 cpu = cpu_of(rq); 469 470 if (cpu == smp_processor_id()) { 471 set_tsk_need_resched(curr); 472 set_preempt_need_resched(); 473 return; 474 } 475 476 if (set_nr_and_not_polling(curr)) 477 smp_send_reschedule(cpu); 478 else 479 trace_sched_wake_idle_without_ipi(cpu); 480 } 481 482 void resched_cpu(int cpu) 483 { 484 struct rq *rq = cpu_rq(cpu); 485 unsigned long flags; 486 487 raw_spin_lock_irqsave(&rq->lock, flags); 488 if (cpu_online(cpu) || cpu == smp_processor_id()) 489 resched_curr(rq); 490 raw_spin_unlock_irqrestore(&rq->lock, flags); 491 } 492 493 #ifdef CONFIG_SMP 494 #ifdef CONFIG_NO_HZ_COMMON 495 /* 496 * In the semi idle case, use the nearest busy CPU for migrating timers 497 * from an idle CPU. This is good for power-savings. 498 * 499 * We don't do similar optimization for completely idle system, as 500 * selecting an idle CPU will add more delays to the timers than intended 501 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 502 */ 503 int get_nohz_timer_target(void) 504 { 505 int i, cpu = smp_processor_id(); 506 struct sched_domain *sd; 507 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 509 return cpu; 510 511 rcu_read_lock(); 512 for_each_domain(cpu, sd) { 513 for_each_cpu(i, sched_domain_span(sd)) { 514 if (cpu == i) 515 continue; 516 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 518 cpu = i; 519 goto unlock; 520 } 521 } 522 } 523 524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 526 unlock: 527 rcu_read_unlock(); 528 return cpu; 529 } 530 531 /* 532 * When add_timer_on() enqueues a timer into the timer wheel of an 533 * idle CPU then this timer might expire before the next timer event 534 * which is scheduled to wake up that CPU. In case of a completely 535 * idle system the next event might even be infinite time into the 536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 537 * leaves the inner idle loop so the newly added timer is taken into 538 * account when the CPU goes back to idle and evaluates the timer 539 * wheel for the next timer event. 540 */ 541 static void wake_up_idle_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 545 if (cpu == smp_processor_id()) 546 return; 547 548 if (set_nr_and_not_polling(rq->idle)) 549 smp_send_reschedule(cpu); 550 else 551 trace_sched_wake_idle_without_ipi(cpu); 552 } 553 554 static bool wake_up_full_nohz_cpu(int cpu) 555 { 556 /* 557 * We just need the target to call irq_exit() and re-evaluate 558 * the next tick. The nohz full kick at least implies that. 559 * If needed we can still optimize that later with an 560 * empty IRQ. 561 */ 562 if (cpu_is_offline(cpu)) 563 return true; /* Don't try to wake offline CPUs. */ 564 if (tick_nohz_full_cpu(cpu)) { 565 if (cpu != smp_processor_id() || 566 tick_nohz_tick_stopped()) 567 tick_nohz_full_kick_cpu(cpu); 568 return true; 569 } 570 571 return false; 572 } 573 574 /* 575 * Wake up the specified CPU. If the CPU is going offline, it is the 576 * caller's responsibility to deal with the lost wakeup, for example, 577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 578 */ 579 void wake_up_nohz_cpu(int cpu) 580 { 581 if (!wake_up_full_nohz_cpu(cpu)) 582 wake_up_idle_cpu(cpu); 583 } 584 585 static inline bool got_nohz_idle_kick(void) 586 { 587 int cpu = smp_processor_id(); 588 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 590 return false; 591 592 if (idle_cpu(cpu) && !need_resched()) 593 return true; 594 595 /* 596 * We can't run Idle Load Balance on this CPU for this time so we 597 * cancel it and clear NOHZ_BALANCE_KICK 598 */ 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 600 return false; 601 } 602 603 #else /* CONFIG_NO_HZ_COMMON */ 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 return false; 608 } 609 610 #endif /* CONFIG_NO_HZ_COMMON */ 611 612 #ifdef CONFIG_NO_HZ_FULL 613 bool sched_can_stop_tick(struct rq *rq) 614 { 615 int fifo_nr_running; 616 617 /* Deadline tasks, even if single, need the tick */ 618 if (rq->dl.dl_nr_running) 619 return false; 620 621 /* 622 * If there are more than one RR tasks, we need the tick to effect the 623 * actual RR behaviour. 624 */ 625 if (rq->rt.rr_nr_running) { 626 if (rq->rt.rr_nr_running == 1) 627 return true; 628 else 629 return false; 630 } 631 632 /* 633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 634 * forced preemption between FIFO tasks. 635 */ 636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 637 if (fifo_nr_running) 638 return true; 639 640 /* 641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 642 * if there's more than one we need the tick for involuntary 643 * preemption. 644 */ 645 if (rq->nr_running > 1) 646 return false; 647 648 return true; 649 } 650 #endif /* CONFIG_NO_HZ_FULL */ 651 652 void sched_avg_update(struct rq *rq) 653 { 654 s64 period = sched_avg_period(); 655 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 657 /* 658 * Inline assembly required to prevent the compiler 659 * optimising this loop into a divmod call. 660 * See __iter_div_u64_rem() for another example of this. 661 */ 662 asm("" : "+rm" (rq->age_stamp)); 663 rq->age_stamp += period; 664 rq->rt_avg /= 2; 665 } 666 } 667 668 #endif /* CONFIG_SMP */ 669 670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 672 /* 673 * Iterate task_group tree rooted at *from, calling @down when first entering a 674 * node and @up when leaving it for the final time. 675 * 676 * Caller must hold rcu_lock or sufficient equivalent. 677 */ 678 int walk_tg_tree_from(struct task_group *from, 679 tg_visitor down, tg_visitor up, void *data) 680 { 681 struct task_group *parent, *child; 682 int ret; 683 684 parent = from; 685 686 down: 687 ret = (*down)(parent, data); 688 if (ret) 689 goto out; 690 list_for_each_entry_rcu(child, &parent->children, siblings) { 691 parent = child; 692 goto down; 693 694 up: 695 continue; 696 } 697 ret = (*up)(parent, data); 698 if (ret || parent == from) 699 goto out; 700 701 child = parent; 702 parent = parent->parent; 703 if (parent) 704 goto up; 705 out: 706 return ret; 707 } 708 709 int tg_nop(struct task_group *tg, void *data) 710 { 711 return 0; 712 } 713 #endif 714 715 static void set_load_weight(struct task_struct *p, bool update_load) 716 { 717 int prio = p->static_prio - MAX_RT_PRIO; 718 struct load_weight *load = &p->se.load; 719 720 /* 721 * SCHED_IDLE tasks get minimal weight: 722 */ 723 if (idle_policy(p->policy)) { 724 load->weight = scale_load(WEIGHT_IDLEPRIO); 725 load->inv_weight = WMULT_IDLEPRIO; 726 return; 727 } 728 729 /* 730 * SCHED_OTHER tasks have to update their load when changing their 731 * weight 732 */ 733 if (update_load && p->sched_class == &fair_sched_class) { 734 reweight_task(p, prio); 735 } else { 736 load->weight = scale_load(sched_prio_to_weight[prio]); 737 load->inv_weight = sched_prio_to_wmult[prio]; 738 } 739 } 740 741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 742 { 743 if (!(flags & ENQUEUE_NOCLOCK)) 744 update_rq_clock(rq); 745 746 if (!(flags & ENQUEUE_RESTORE)) 747 sched_info_queued(rq, p); 748 749 p->sched_class->enqueue_task(rq, p, flags); 750 } 751 752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 753 { 754 if (!(flags & DEQUEUE_NOCLOCK)) 755 update_rq_clock(rq); 756 757 if (!(flags & DEQUEUE_SAVE)) 758 sched_info_dequeued(rq, p); 759 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 /* 780 * __normal_prio - return the priority that is based on the static prio 781 */ 782 static inline int __normal_prio(struct task_struct *p) 783 { 784 return p->static_prio; 785 } 786 787 /* 788 * Calculate the expected normal priority: i.e. priority 789 * without taking RT-inheritance into account. Might be 790 * boosted by interactivity modifiers. Changes upon fork, 791 * setprio syscalls, and whenever the interactivity 792 * estimator recalculates. 793 */ 794 static inline int normal_prio(struct task_struct *p) 795 { 796 int prio; 797 798 if (task_has_dl_policy(p)) 799 prio = MAX_DL_PRIO-1; 800 else if (task_has_rt_policy(p)) 801 prio = MAX_RT_PRIO-1 - p->rt_priority; 802 else 803 prio = __normal_prio(p); 804 return prio; 805 } 806 807 /* 808 * Calculate the current priority, i.e. the priority 809 * taken into account by the scheduler. This value might 810 * be boosted by RT tasks, or might be boosted by 811 * interactivity modifiers. Will be RT if the task got 812 * RT-boosted. If not then it returns p->normal_prio. 813 */ 814 static int effective_prio(struct task_struct *p) 815 { 816 p->normal_prio = normal_prio(p); 817 /* 818 * If we are RT tasks or we were boosted to RT priority, 819 * keep the priority unchanged. Otherwise, update priority 820 * to the normal priority: 821 */ 822 if (!rt_prio(p->prio)) 823 return p->normal_prio; 824 return p->prio; 825 } 826 827 /** 828 * task_curr - is this task currently executing on a CPU? 829 * @p: the task in question. 830 * 831 * Return: 1 if the task is currently executing. 0 otherwise. 832 */ 833 inline int task_curr(const struct task_struct *p) 834 { 835 return cpu_curr(task_cpu(p)) == p; 836 } 837 838 /* 839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 840 * use the balance_callback list if you want balancing. 841 * 842 * this means any call to check_class_changed() must be followed by a call to 843 * balance_callback(). 844 */ 845 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 846 const struct sched_class *prev_class, 847 int oldprio) 848 { 849 if (prev_class != p->sched_class) { 850 if (prev_class->switched_from) 851 prev_class->switched_from(rq, p); 852 853 p->sched_class->switched_to(rq, p); 854 } else if (oldprio != p->prio || dl_task(p)) 855 p->sched_class->prio_changed(rq, p, oldprio); 856 } 857 858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 859 { 860 const struct sched_class *class; 861 862 if (p->sched_class == rq->curr->sched_class) { 863 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 864 } else { 865 for_each_class(class) { 866 if (class == rq->curr->sched_class) 867 break; 868 if (class == p->sched_class) { 869 resched_curr(rq); 870 break; 871 } 872 } 873 } 874 875 /* 876 * A queue event has occurred, and we're going to schedule. In 877 * this case, we can save a useless back to back clock update. 878 */ 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 880 rq_clock_skip_update(rq); 881 } 882 883 #ifdef CONFIG_SMP 884 885 static inline bool is_per_cpu_kthread(struct task_struct *p) 886 { 887 if (!(p->flags & PF_KTHREAD)) 888 return false; 889 890 if (p->nr_cpus_allowed != 1) 891 return false; 892 893 return true; 894 } 895 896 /* 897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 898 * __set_cpus_allowed_ptr() and select_fallback_rq(). 899 */ 900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 901 { 902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 903 return false; 904 905 if (is_per_cpu_kthread(p)) 906 return cpu_online(cpu); 907 908 return cpu_active(cpu); 909 } 910 911 /* 912 * This is how migration works: 913 * 914 * 1) we invoke migration_cpu_stop() on the target CPU using 915 * stop_one_cpu(). 916 * 2) stopper starts to run (implicitly forcing the migrated thread 917 * off the CPU) 918 * 3) it checks whether the migrated task is still in the wrong runqueue. 919 * 4) if it's in the wrong runqueue then the migration thread removes 920 * it and puts it into the right queue. 921 * 5) stopper completes and stop_one_cpu() returns and the migration 922 * is done. 923 */ 924 925 /* 926 * move_queued_task - move a queued task to new rq. 927 * 928 * Returns (locked) new rq. Old rq's lock is released. 929 */ 930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 931 struct task_struct *p, int new_cpu) 932 { 933 lockdep_assert_held(&rq->lock); 934 935 p->on_rq = TASK_ON_RQ_MIGRATING; 936 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 937 set_task_cpu(p, new_cpu); 938 rq_unlock(rq, rf); 939 940 rq = cpu_rq(new_cpu); 941 942 rq_lock(rq, rf); 943 BUG_ON(task_cpu(p) != new_cpu); 944 enqueue_task(rq, p, 0); 945 p->on_rq = TASK_ON_RQ_QUEUED; 946 check_preempt_curr(rq, p, 0); 947 948 return rq; 949 } 950 951 struct migration_arg { 952 struct task_struct *task; 953 int dest_cpu; 954 }; 955 956 /* 957 * Move (not current) task off this CPU, onto the destination CPU. We're doing 958 * this because either it can't run here any more (set_cpus_allowed() 959 * away from this CPU, or CPU going down), or because we're 960 * attempting to rebalance this task on exec (sched_exec). 961 * 962 * So we race with normal scheduler movements, but that's OK, as long 963 * as the task is no longer on this CPU. 964 */ 965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 966 struct task_struct *p, int dest_cpu) 967 { 968 /* Affinity changed (again). */ 969 if (!is_cpu_allowed(p, dest_cpu)) 970 return rq; 971 972 update_rq_clock(rq); 973 rq = move_queued_task(rq, rf, p, dest_cpu); 974 975 return rq; 976 } 977 978 /* 979 * migration_cpu_stop - this will be executed by a highprio stopper thread 980 * and performs thread migration by bumping thread off CPU then 981 * 'pushing' onto another runqueue. 982 */ 983 static int migration_cpu_stop(void *data) 984 { 985 struct migration_arg *arg = data; 986 struct task_struct *p = arg->task; 987 struct rq *rq = this_rq(); 988 struct rq_flags rf; 989 990 /* 991 * The original target CPU might have gone down and we might 992 * be on another CPU but it doesn't matter. 993 */ 994 local_irq_disable(); 995 /* 996 * We need to explicitly wake pending tasks before running 997 * __migrate_task() such that we will not miss enforcing cpus_allowed 998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 999 */ 1000 sched_ttwu_pending(); 1001 1002 raw_spin_lock(&p->pi_lock); 1003 rq_lock(rq, &rf); 1004 /* 1005 * If task_rq(p) != rq, it cannot be migrated here, because we're 1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1007 * we're holding p->pi_lock. 1008 */ 1009 if (task_rq(p) == rq) { 1010 if (task_on_rq_queued(p)) 1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1012 else 1013 p->wake_cpu = arg->dest_cpu; 1014 } 1015 rq_unlock(rq, &rf); 1016 raw_spin_unlock(&p->pi_lock); 1017 1018 local_irq_enable(); 1019 return 0; 1020 } 1021 1022 /* 1023 * sched_class::set_cpus_allowed must do the below, but is not required to 1024 * actually call this function. 1025 */ 1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1027 { 1028 cpumask_copy(&p->cpus_allowed, new_mask); 1029 p->nr_cpus_allowed = cpumask_weight(new_mask); 1030 } 1031 1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1033 { 1034 struct rq *rq = task_rq(p); 1035 bool queued, running; 1036 1037 lockdep_assert_held(&p->pi_lock); 1038 1039 queued = task_on_rq_queued(p); 1040 running = task_current(rq, p); 1041 1042 if (queued) { 1043 /* 1044 * Because __kthread_bind() calls this on blocked tasks without 1045 * holding rq->lock. 1046 */ 1047 lockdep_assert_held(&rq->lock); 1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1049 } 1050 if (running) 1051 put_prev_task(rq, p); 1052 1053 p->sched_class->set_cpus_allowed(p, new_mask); 1054 1055 if (queued) 1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1057 if (running) 1058 set_curr_task(rq, p); 1059 } 1060 1061 /* 1062 * Change a given task's CPU affinity. Migrate the thread to a 1063 * proper CPU and schedule it away if the CPU it's executing on 1064 * is removed from the allowed bitmask. 1065 * 1066 * NOTE: the caller must have a valid reference to the task, the 1067 * task must not exit() & deallocate itself prematurely. The 1068 * call is not atomic; no spinlocks may be held. 1069 */ 1070 static int __set_cpus_allowed_ptr(struct task_struct *p, 1071 const struct cpumask *new_mask, bool check) 1072 { 1073 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1074 unsigned int dest_cpu; 1075 struct rq_flags rf; 1076 struct rq *rq; 1077 int ret = 0; 1078 1079 rq = task_rq_lock(p, &rf); 1080 update_rq_clock(rq); 1081 1082 if (p->flags & PF_KTHREAD) { 1083 /* 1084 * Kernel threads are allowed on online && !active CPUs 1085 */ 1086 cpu_valid_mask = cpu_online_mask; 1087 } 1088 1089 /* 1090 * Must re-check here, to close a race against __kthread_bind(), 1091 * sched_setaffinity() is not guaranteed to observe the flag. 1092 */ 1093 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1094 ret = -EINVAL; 1095 goto out; 1096 } 1097 1098 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1099 goto out; 1100 1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1102 ret = -EINVAL; 1103 goto out; 1104 } 1105 1106 do_set_cpus_allowed(p, new_mask); 1107 1108 if (p->flags & PF_KTHREAD) { 1109 /* 1110 * For kernel threads that do indeed end up on online && 1111 * !active we want to ensure they are strict per-CPU threads. 1112 */ 1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1114 !cpumask_intersects(new_mask, cpu_active_mask) && 1115 p->nr_cpus_allowed != 1); 1116 } 1117 1118 /* Can the task run on the task's current CPU? If so, we're done */ 1119 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1120 goto out; 1121 1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1123 if (task_running(rq, p) || p->state == TASK_WAKING) { 1124 struct migration_arg arg = { p, dest_cpu }; 1125 /* Need help from migration thread: drop lock and wait. */ 1126 task_rq_unlock(rq, p, &rf); 1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1128 tlb_migrate_finish(p->mm); 1129 return 0; 1130 } else if (task_on_rq_queued(p)) { 1131 /* 1132 * OK, since we're going to drop the lock immediately 1133 * afterwards anyway. 1134 */ 1135 rq = move_queued_task(rq, &rf, p, dest_cpu); 1136 } 1137 out: 1138 task_rq_unlock(rq, p, &rf); 1139 1140 return ret; 1141 } 1142 1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1144 { 1145 return __set_cpus_allowed_ptr(p, new_mask, false); 1146 } 1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1148 1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1150 { 1151 #ifdef CONFIG_SCHED_DEBUG 1152 /* 1153 * We should never call set_task_cpu() on a blocked task, 1154 * ttwu() will sort out the placement. 1155 */ 1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1157 !p->on_rq); 1158 1159 /* 1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1162 * time relying on p->on_rq. 1163 */ 1164 WARN_ON_ONCE(p->state == TASK_RUNNING && 1165 p->sched_class == &fair_sched_class && 1166 (p->on_rq && !task_on_rq_migrating(p))); 1167 1168 #ifdef CONFIG_LOCKDEP 1169 /* 1170 * The caller should hold either p->pi_lock or rq->lock, when changing 1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1172 * 1173 * sched_move_task() holds both and thus holding either pins the cgroup, 1174 * see task_group(). 1175 * 1176 * Furthermore, all task_rq users should acquire both locks, see 1177 * task_rq_lock(). 1178 */ 1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1180 lockdep_is_held(&task_rq(p)->lock))); 1181 #endif 1182 /* 1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1184 */ 1185 WARN_ON_ONCE(!cpu_online(new_cpu)); 1186 #endif 1187 1188 trace_sched_migrate_task(p, new_cpu); 1189 1190 if (task_cpu(p) != new_cpu) { 1191 if (p->sched_class->migrate_task_rq) 1192 p->sched_class->migrate_task_rq(p); 1193 p->se.nr_migrations++; 1194 rseq_migrate(p); 1195 perf_event_task_migrate(p); 1196 } 1197 1198 __set_task_cpu(p, new_cpu); 1199 } 1200 1201 static void __migrate_swap_task(struct task_struct *p, int cpu) 1202 { 1203 if (task_on_rq_queued(p)) { 1204 struct rq *src_rq, *dst_rq; 1205 struct rq_flags srf, drf; 1206 1207 src_rq = task_rq(p); 1208 dst_rq = cpu_rq(cpu); 1209 1210 rq_pin_lock(src_rq, &srf); 1211 rq_pin_lock(dst_rq, &drf); 1212 1213 p->on_rq = TASK_ON_RQ_MIGRATING; 1214 deactivate_task(src_rq, p, 0); 1215 set_task_cpu(p, cpu); 1216 activate_task(dst_rq, p, 0); 1217 p->on_rq = TASK_ON_RQ_QUEUED; 1218 check_preempt_curr(dst_rq, p, 0); 1219 1220 rq_unpin_lock(dst_rq, &drf); 1221 rq_unpin_lock(src_rq, &srf); 1222 1223 } else { 1224 /* 1225 * Task isn't running anymore; make it appear like we migrated 1226 * it before it went to sleep. This means on wakeup we make the 1227 * previous CPU our target instead of where it really is. 1228 */ 1229 p->wake_cpu = cpu; 1230 } 1231 } 1232 1233 struct migration_swap_arg { 1234 struct task_struct *src_task, *dst_task; 1235 int src_cpu, dst_cpu; 1236 }; 1237 1238 static int migrate_swap_stop(void *data) 1239 { 1240 struct migration_swap_arg *arg = data; 1241 struct rq *src_rq, *dst_rq; 1242 int ret = -EAGAIN; 1243 1244 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1245 return -EAGAIN; 1246 1247 src_rq = cpu_rq(arg->src_cpu); 1248 dst_rq = cpu_rq(arg->dst_cpu); 1249 1250 double_raw_lock(&arg->src_task->pi_lock, 1251 &arg->dst_task->pi_lock); 1252 double_rq_lock(src_rq, dst_rq); 1253 1254 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1255 goto unlock; 1256 1257 if (task_cpu(arg->src_task) != arg->src_cpu) 1258 goto unlock; 1259 1260 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1261 goto unlock; 1262 1263 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1264 goto unlock; 1265 1266 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1267 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1268 1269 ret = 0; 1270 1271 unlock: 1272 double_rq_unlock(src_rq, dst_rq); 1273 raw_spin_unlock(&arg->dst_task->pi_lock); 1274 raw_spin_unlock(&arg->src_task->pi_lock); 1275 1276 return ret; 1277 } 1278 1279 /* 1280 * Cross migrate two tasks 1281 */ 1282 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1283 { 1284 struct migration_swap_arg arg; 1285 int ret = -EINVAL; 1286 1287 arg = (struct migration_swap_arg){ 1288 .src_task = cur, 1289 .src_cpu = task_cpu(cur), 1290 .dst_task = p, 1291 .dst_cpu = task_cpu(p), 1292 }; 1293 1294 if (arg.src_cpu == arg.dst_cpu) 1295 goto out; 1296 1297 /* 1298 * These three tests are all lockless; this is OK since all of them 1299 * will be re-checked with proper locks held further down the line. 1300 */ 1301 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1302 goto out; 1303 1304 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1305 goto out; 1306 1307 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1308 goto out; 1309 1310 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1311 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1312 1313 out: 1314 return ret; 1315 } 1316 1317 /* 1318 * wait_task_inactive - wait for a thread to unschedule. 1319 * 1320 * If @match_state is nonzero, it's the @p->state value just checked and 1321 * not expected to change. If it changes, i.e. @p might have woken up, 1322 * then return zero. When we succeed in waiting for @p to be off its CPU, 1323 * we return a positive number (its total switch count). If a second call 1324 * a short while later returns the same number, the caller can be sure that 1325 * @p has remained unscheduled the whole time. 1326 * 1327 * The caller must ensure that the task *will* unschedule sometime soon, 1328 * else this function might spin for a *long* time. This function can't 1329 * be called with interrupts off, or it may introduce deadlock with 1330 * smp_call_function() if an IPI is sent by the same process we are 1331 * waiting to become inactive. 1332 */ 1333 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1334 { 1335 int running, queued; 1336 struct rq_flags rf; 1337 unsigned long ncsw; 1338 struct rq *rq; 1339 1340 for (;;) { 1341 /* 1342 * We do the initial early heuristics without holding 1343 * any task-queue locks at all. We'll only try to get 1344 * the runqueue lock when things look like they will 1345 * work out! 1346 */ 1347 rq = task_rq(p); 1348 1349 /* 1350 * If the task is actively running on another CPU 1351 * still, just relax and busy-wait without holding 1352 * any locks. 1353 * 1354 * NOTE! Since we don't hold any locks, it's not 1355 * even sure that "rq" stays as the right runqueue! 1356 * But we don't care, since "task_running()" will 1357 * return false if the runqueue has changed and p 1358 * is actually now running somewhere else! 1359 */ 1360 while (task_running(rq, p)) { 1361 if (match_state && unlikely(p->state != match_state)) 1362 return 0; 1363 cpu_relax(); 1364 } 1365 1366 /* 1367 * Ok, time to look more closely! We need the rq 1368 * lock now, to be *sure*. If we're wrong, we'll 1369 * just go back and repeat. 1370 */ 1371 rq = task_rq_lock(p, &rf); 1372 trace_sched_wait_task(p); 1373 running = task_running(rq, p); 1374 queued = task_on_rq_queued(p); 1375 ncsw = 0; 1376 if (!match_state || p->state == match_state) 1377 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1378 task_rq_unlock(rq, p, &rf); 1379 1380 /* 1381 * If it changed from the expected state, bail out now. 1382 */ 1383 if (unlikely(!ncsw)) 1384 break; 1385 1386 /* 1387 * Was it really running after all now that we 1388 * checked with the proper locks actually held? 1389 * 1390 * Oops. Go back and try again.. 1391 */ 1392 if (unlikely(running)) { 1393 cpu_relax(); 1394 continue; 1395 } 1396 1397 /* 1398 * It's not enough that it's not actively running, 1399 * it must be off the runqueue _entirely_, and not 1400 * preempted! 1401 * 1402 * So if it was still runnable (but just not actively 1403 * running right now), it's preempted, and we should 1404 * yield - it could be a while. 1405 */ 1406 if (unlikely(queued)) { 1407 ktime_t to = NSEC_PER_SEC / HZ; 1408 1409 set_current_state(TASK_UNINTERRUPTIBLE); 1410 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1411 continue; 1412 } 1413 1414 /* 1415 * Ahh, all good. It wasn't running, and it wasn't 1416 * runnable, which means that it will never become 1417 * running in the future either. We're all done! 1418 */ 1419 break; 1420 } 1421 1422 return ncsw; 1423 } 1424 1425 /*** 1426 * kick_process - kick a running thread to enter/exit the kernel 1427 * @p: the to-be-kicked thread 1428 * 1429 * Cause a process which is running on another CPU to enter 1430 * kernel-mode, without any delay. (to get signals handled.) 1431 * 1432 * NOTE: this function doesn't have to take the runqueue lock, 1433 * because all it wants to ensure is that the remote task enters 1434 * the kernel. If the IPI races and the task has been migrated 1435 * to another CPU then no harm is done and the purpose has been 1436 * achieved as well. 1437 */ 1438 void kick_process(struct task_struct *p) 1439 { 1440 int cpu; 1441 1442 preempt_disable(); 1443 cpu = task_cpu(p); 1444 if ((cpu != smp_processor_id()) && task_curr(p)) 1445 smp_send_reschedule(cpu); 1446 preempt_enable(); 1447 } 1448 EXPORT_SYMBOL_GPL(kick_process); 1449 1450 /* 1451 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1452 * 1453 * A few notes on cpu_active vs cpu_online: 1454 * 1455 * - cpu_active must be a subset of cpu_online 1456 * 1457 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1458 * see __set_cpus_allowed_ptr(). At this point the newly online 1459 * CPU isn't yet part of the sched domains, and balancing will not 1460 * see it. 1461 * 1462 * - on CPU-down we clear cpu_active() to mask the sched domains and 1463 * avoid the load balancer to place new tasks on the to be removed 1464 * CPU. Existing tasks will remain running there and will be taken 1465 * off. 1466 * 1467 * This means that fallback selection must not select !active CPUs. 1468 * And can assume that any active CPU must be online. Conversely 1469 * select_task_rq() below may allow selection of !active CPUs in order 1470 * to satisfy the above rules. 1471 */ 1472 static int select_fallback_rq(int cpu, struct task_struct *p) 1473 { 1474 int nid = cpu_to_node(cpu); 1475 const struct cpumask *nodemask = NULL; 1476 enum { cpuset, possible, fail } state = cpuset; 1477 int dest_cpu; 1478 1479 /* 1480 * If the node that the CPU is on has been offlined, cpu_to_node() 1481 * will return -1. There is no CPU on the node, and we should 1482 * select the CPU on the other node. 1483 */ 1484 if (nid != -1) { 1485 nodemask = cpumask_of_node(nid); 1486 1487 /* Look for allowed, online CPU in same node. */ 1488 for_each_cpu(dest_cpu, nodemask) { 1489 if (!cpu_active(dest_cpu)) 1490 continue; 1491 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1492 return dest_cpu; 1493 } 1494 } 1495 1496 for (;;) { 1497 /* Any allowed, online CPU? */ 1498 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1499 if (!is_cpu_allowed(p, dest_cpu)) 1500 continue; 1501 1502 goto out; 1503 } 1504 1505 /* No more Mr. Nice Guy. */ 1506 switch (state) { 1507 case cpuset: 1508 if (IS_ENABLED(CONFIG_CPUSETS)) { 1509 cpuset_cpus_allowed_fallback(p); 1510 state = possible; 1511 break; 1512 } 1513 /* Fall-through */ 1514 case possible: 1515 do_set_cpus_allowed(p, cpu_possible_mask); 1516 state = fail; 1517 break; 1518 1519 case fail: 1520 BUG(); 1521 break; 1522 } 1523 } 1524 1525 out: 1526 if (state != cpuset) { 1527 /* 1528 * Don't tell them about moving exiting tasks or 1529 * kernel threads (both mm NULL), since they never 1530 * leave kernel. 1531 */ 1532 if (p->mm && printk_ratelimit()) { 1533 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1534 task_pid_nr(p), p->comm, cpu); 1535 } 1536 } 1537 1538 return dest_cpu; 1539 } 1540 1541 /* 1542 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1543 */ 1544 static inline 1545 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1546 { 1547 lockdep_assert_held(&p->pi_lock); 1548 1549 if (p->nr_cpus_allowed > 1) 1550 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1551 else 1552 cpu = cpumask_any(&p->cpus_allowed); 1553 1554 /* 1555 * In order not to call set_task_cpu() on a blocking task we need 1556 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1557 * CPU. 1558 * 1559 * Since this is common to all placement strategies, this lives here. 1560 * 1561 * [ this allows ->select_task() to simply return task_cpu(p) and 1562 * not worry about this generic constraint ] 1563 */ 1564 if (unlikely(!is_cpu_allowed(p, cpu))) 1565 cpu = select_fallback_rq(task_cpu(p), p); 1566 1567 return cpu; 1568 } 1569 1570 static void update_avg(u64 *avg, u64 sample) 1571 { 1572 s64 diff = sample - *avg; 1573 *avg += diff >> 3; 1574 } 1575 1576 void sched_set_stop_task(int cpu, struct task_struct *stop) 1577 { 1578 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1579 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1580 1581 if (stop) { 1582 /* 1583 * Make it appear like a SCHED_FIFO task, its something 1584 * userspace knows about and won't get confused about. 1585 * 1586 * Also, it will make PI more or less work without too 1587 * much confusion -- but then, stop work should not 1588 * rely on PI working anyway. 1589 */ 1590 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1591 1592 stop->sched_class = &stop_sched_class; 1593 } 1594 1595 cpu_rq(cpu)->stop = stop; 1596 1597 if (old_stop) { 1598 /* 1599 * Reset it back to a normal scheduling class so that 1600 * it can die in pieces. 1601 */ 1602 old_stop->sched_class = &rt_sched_class; 1603 } 1604 } 1605 1606 #else 1607 1608 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1609 const struct cpumask *new_mask, bool check) 1610 { 1611 return set_cpus_allowed_ptr(p, new_mask); 1612 } 1613 1614 #endif /* CONFIG_SMP */ 1615 1616 static void 1617 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1618 { 1619 struct rq *rq; 1620 1621 if (!schedstat_enabled()) 1622 return; 1623 1624 rq = this_rq(); 1625 1626 #ifdef CONFIG_SMP 1627 if (cpu == rq->cpu) { 1628 __schedstat_inc(rq->ttwu_local); 1629 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1630 } else { 1631 struct sched_domain *sd; 1632 1633 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1634 rcu_read_lock(); 1635 for_each_domain(rq->cpu, sd) { 1636 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1637 __schedstat_inc(sd->ttwu_wake_remote); 1638 break; 1639 } 1640 } 1641 rcu_read_unlock(); 1642 } 1643 1644 if (wake_flags & WF_MIGRATED) 1645 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1646 #endif /* CONFIG_SMP */ 1647 1648 __schedstat_inc(rq->ttwu_count); 1649 __schedstat_inc(p->se.statistics.nr_wakeups); 1650 1651 if (wake_flags & WF_SYNC) 1652 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1653 } 1654 1655 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1656 { 1657 activate_task(rq, p, en_flags); 1658 p->on_rq = TASK_ON_RQ_QUEUED; 1659 1660 /* If a worker is waking up, notify the workqueue: */ 1661 if (p->flags & PF_WQ_WORKER) 1662 wq_worker_waking_up(p, cpu_of(rq)); 1663 } 1664 1665 /* 1666 * Mark the task runnable and perform wakeup-preemption. 1667 */ 1668 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1669 struct rq_flags *rf) 1670 { 1671 check_preempt_curr(rq, p, wake_flags); 1672 p->state = TASK_RUNNING; 1673 trace_sched_wakeup(p); 1674 1675 #ifdef CONFIG_SMP 1676 if (p->sched_class->task_woken) { 1677 /* 1678 * Our task @p is fully woken up and running; so its safe to 1679 * drop the rq->lock, hereafter rq is only used for statistics. 1680 */ 1681 rq_unpin_lock(rq, rf); 1682 p->sched_class->task_woken(rq, p); 1683 rq_repin_lock(rq, rf); 1684 } 1685 1686 if (rq->idle_stamp) { 1687 u64 delta = rq_clock(rq) - rq->idle_stamp; 1688 u64 max = 2*rq->max_idle_balance_cost; 1689 1690 update_avg(&rq->avg_idle, delta); 1691 1692 if (rq->avg_idle > max) 1693 rq->avg_idle = max; 1694 1695 rq->idle_stamp = 0; 1696 } 1697 #endif 1698 } 1699 1700 static void 1701 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1702 struct rq_flags *rf) 1703 { 1704 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1705 1706 lockdep_assert_held(&rq->lock); 1707 1708 #ifdef CONFIG_SMP 1709 if (p->sched_contributes_to_load) 1710 rq->nr_uninterruptible--; 1711 1712 if (wake_flags & WF_MIGRATED) 1713 en_flags |= ENQUEUE_MIGRATED; 1714 #endif 1715 1716 ttwu_activate(rq, p, en_flags); 1717 ttwu_do_wakeup(rq, p, wake_flags, rf); 1718 } 1719 1720 /* 1721 * Called in case the task @p isn't fully descheduled from its runqueue, 1722 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1723 * since all we need to do is flip p->state to TASK_RUNNING, since 1724 * the task is still ->on_rq. 1725 */ 1726 static int ttwu_remote(struct task_struct *p, int wake_flags) 1727 { 1728 struct rq_flags rf; 1729 struct rq *rq; 1730 int ret = 0; 1731 1732 rq = __task_rq_lock(p, &rf); 1733 if (task_on_rq_queued(p)) { 1734 /* check_preempt_curr() may use rq clock */ 1735 update_rq_clock(rq); 1736 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1737 ret = 1; 1738 } 1739 __task_rq_unlock(rq, &rf); 1740 1741 return ret; 1742 } 1743 1744 #ifdef CONFIG_SMP 1745 void sched_ttwu_pending(void) 1746 { 1747 struct rq *rq = this_rq(); 1748 struct llist_node *llist = llist_del_all(&rq->wake_list); 1749 struct task_struct *p, *t; 1750 struct rq_flags rf; 1751 1752 if (!llist) 1753 return; 1754 1755 rq_lock_irqsave(rq, &rf); 1756 update_rq_clock(rq); 1757 1758 llist_for_each_entry_safe(p, t, llist, wake_entry) 1759 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1760 1761 rq_unlock_irqrestore(rq, &rf); 1762 } 1763 1764 void scheduler_ipi(void) 1765 { 1766 /* 1767 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1768 * TIF_NEED_RESCHED remotely (for the first time) will also send 1769 * this IPI. 1770 */ 1771 preempt_fold_need_resched(); 1772 1773 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1774 return; 1775 1776 /* 1777 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1778 * traditionally all their work was done from the interrupt return 1779 * path. Now that we actually do some work, we need to make sure 1780 * we do call them. 1781 * 1782 * Some archs already do call them, luckily irq_enter/exit nest 1783 * properly. 1784 * 1785 * Arguably we should visit all archs and update all handlers, 1786 * however a fair share of IPIs are still resched only so this would 1787 * somewhat pessimize the simple resched case. 1788 */ 1789 irq_enter(); 1790 sched_ttwu_pending(); 1791 1792 /* 1793 * Check if someone kicked us for doing the nohz idle load balance. 1794 */ 1795 if (unlikely(got_nohz_idle_kick())) { 1796 this_rq()->idle_balance = 1; 1797 raise_softirq_irqoff(SCHED_SOFTIRQ); 1798 } 1799 irq_exit(); 1800 } 1801 1802 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1803 { 1804 struct rq *rq = cpu_rq(cpu); 1805 1806 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1807 1808 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1809 if (!set_nr_if_polling(rq->idle)) 1810 smp_send_reschedule(cpu); 1811 else 1812 trace_sched_wake_idle_without_ipi(cpu); 1813 } 1814 } 1815 1816 void wake_up_if_idle(int cpu) 1817 { 1818 struct rq *rq = cpu_rq(cpu); 1819 struct rq_flags rf; 1820 1821 rcu_read_lock(); 1822 1823 if (!is_idle_task(rcu_dereference(rq->curr))) 1824 goto out; 1825 1826 if (set_nr_if_polling(rq->idle)) { 1827 trace_sched_wake_idle_without_ipi(cpu); 1828 } else { 1829 rq_lock_irqsave(rq, &rf); 1830 if (is_idle_task(rq->curr)) 1831 smp_send_reschedule(cpu); 1832 /* Else CPU is not idle, do nothing here: */ 1833 rq_unlock_irqrestore(rq, &rf); 1834 } 1835 1836 out: 1837 rcu_read_unlock(); 1838 } 1839 1840 bool cpus_share_cache(int this_cpu, int that_cpu) 1841 { 1842 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1843 } 1844 #endif /* CONFIG_SMP */ 1845 1846 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1847 { 1848 struct rq *rq = cpu_rq(cpu); 1849 struct rq_flags rf; 1850 1851 #if defined(CONFIG_SMP) 1852 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1853 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1854 ttwu_queue_remote(p, cpu, wake_flags); 1855 return; 1856 } 1857 #endif 1858 1859 rq_lock(rq, &rf); 1860 update_rq_clock(rq); 1861 ttwu_do_activate(rq, p, wake_flags, &rf); 1862 rq_unlock(rq, &rf); 1863 } 1864 1865 /* 1866 * Notes on Program-Order guarantees on SMP systems. 1867 * 1868 * MIGRATION 1869 * 1870 * The basic program-order guarantee on SMP systems is that when a task [t] 1871 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1872 * execution on its new CPU [c1]. 1873 * 1874 * For migration (of runnable tasks) this is provided by the following means: 1875 * 1876 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1877 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1878 * rq(c1)->lock (if not at the same time, then in that order). 1879 * C) LOCK of the rq(c1)->lock scheduling in task 1880 * 1881 * Transitivity guarantees that B happens after A and C after B. 1882 * Note: we only require RCpc transitivity. 1883 * Note: the CPU doing B need not be c0 or c1 1884 * 1885 * Example: 1886 * 1887 * CPU0 CPU1 CPU2 1888 * 1889 * LOCK rq(0)->lock 1890 * sched-out X 1891 * sched-in Y 1892 * UNLOCK rq(0)->lock 1893 * 1894 * LOCK rq(0)->lock // orders against CPU0 1895 * dequeue X 1896 * UNLOCK rq(0)->lock 1897 * 1898 * LOCK rq(1)->lock 1899 * enqueue X 1900 * UNLOCK rq(1)->lock 1901 * 1902 * LOCK rq(1)->lock // orders against CPU2 1903 * sched-out Z 1904 * sched-in X 1905 * UNLOCK rq(1)->lock 1906 * 1907 * 1908 * BLOCKING -- aka. SLEEP + WAKEUP 1909 * 1910 * For blocking we (obviously) need to provide the same guarantee as for 1911 * migration. However the means are completely different as there is no lock 1912 * chain to provide order. Instead we do: 1913 * 1914 * 1) smp_store_release(X->on_cpu, 0) 1915 * 2) smp_cond_load_acquire(!X->on_cpu) 1916 * 1917 * Example: 1918 * 1919 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1920 * 1921 * LOCK rq(0)->lock LOCK X->pi_lock 1922 * dequeue X 1923 * sched-out X 1924 * smp_store_release(X->on_cpu, 0); 1925 * 1926 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1927 * X->state = WAKING 1928 * set_task_cpu(X,2) 1929 * 1930 * LOCK rq(2)->lock 1931 * enqueue X 1932 * X->state = RUNNING 1933 * UNLOCK rq(2)->lock 1934 * 1935 * LOCK rq(2)->lock // orders against CPU1 1936 * sched-out Z 1937 * sched-in X 1938 * UNLOCK rq(2)->lock 1939 * 1940 * UNLOCK X->pi_lock 1941 * UNLOCK rq(0)->lock 1942 * 1943 * 1944 * However; for wakeups there is a second guarantee we must provide, namely we 1945 * must observe the state that lead to our wakeup. That is, not only must our 1946 * task observe its own prior state, it must also observe the stores prior to 1947 * its wakeup. 1948 * 1949 * This means that any means of doing remote wakeups must order the CPU doing 1950 * the wakeup against the CPU the task is going to end up running on. This, 1951 * however, is already required for the regular Program-Order guarantee above, 1952 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1953 * 1954 */ 1955 1956 /** 1957 * try_to_wake_up - wake up a thread 1958 * @p: the thread to be awakened 1959 * @state: the mask of task states that can be woken 1960 * @wake_flags: wake modifier flags (WF_*) 1961 * 1962 * If (@state & @p->state) @p->state = TASK_RUNNING. 1963 * 1964 * If the task was not queued/runnable, also place it back on a runqueue. 1965 * 1966 * Atomic against schedule() which would dequeue a task, also see 1967 * set_current_state(). 1968 * 1969 * Return: %true if @p->state changes (an actual wakeup was done), 1970 * %false otherwise. 1971 */ 1972 static int 1973 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1974 { 1975 unsigned long flags; 1976 int cpu, success = 0; 1977 1978 /* 1979 * If we are going to wake up a thread waiting for CONDITION we 1980 * need to ensure that CONDITION=1 done by the caller can not be 1981 * reordered with p->state check below. This pairs with mb() in 1982 * set_current_state() the waiting thread does. 1983 */ 1984 raw_spin_lock_irqsave(&p->pi_lock, flags); 1985 smp_mb__after_spinlock(); 1986 if (!(p->state & state)) 1987 goto out; 1988 1989 trace_sched_waking(p); 1990 1991 /* We're going to change ->state: */ 1992 success = 1; 1993 cpu = task_cpu(p); 1994 1995 /* 1996 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1997 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1998 * in smp_cond_load_acquire() below. 1999 * 2000 * sched_ttwu_pending() try_to_wake_up() 2001 * [S] p->on_rq = 1; [L] P->state 2002 * UNLOCK rq->lock -----. 2003 * \ 2004 * +--- RMB 2005 * schedule() / 2006 * LOCK rq->lock -----' 2007 * UNLOCK rq->lock 2008 * 2009 * [task p] 2010 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2011 * 2012 * Pairs with the UNLOCK+LOCK on rq->lock from the 2013 * last wakeup of our task and the schedule that got our task 2014 * current. 2015 */ 2016 smp_rmb(); 2017 if (p->on_rq && ttwu_remote(p, wake_flags)) 2018 goto stat; 2019 2020 #ifdef CONFIG_SMP 2021 /* 2022 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2023 * possible to, falsely, observe p->on_cpu == 0. 2024 * 2025 * One must be running (->on_cpu == 1) in order to remove oneself 2026 * from the runqueue. 2027 * 2028 * [S] ->on_cpu = 1; [L] ->on_rq 2029 * UNLOCK rq->lock 2030 * RMB 2031 * LOCK rq->lock 2032 * [S] ->on_rq = 0; [L] ->on_cpu 2033 * 2034 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2035 * from the consecutive calls to schedule(); the first switching to our 2036 * task, the second putting it to sleep. 2037 */ 2038 smp_rmb(); 2039 2040 /* 2041 * If the owning (remote) CPU is still in the middle of schedule() with 2042 * this task as prev, wait until its done referencing the task. 2043 * 2044 * Pairs with the smp_store_release() in finish_task(). 2045 * 2046 * This ensures that tasks getting woken will be fully ordered against 2047 * their previous state and preserve Program Order. 2048 */ 2049 smp_cond_load_acquire(&p->on_cpu, !VAL); 2050 2051 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2052 p->state = TASK_WAKING; 2053 2054 if (p->in_iowait) { 2055 delayacct_blkio_end(p); 2056 atomic_dec(&task_rq(p)->nr_iowait); 2057 } 2058 2059 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2060 if (task_cpu(p) != cpu) { 2061 wake_flags |= WF_MIGRATED; 2062 set_task_cpu(p, cpu); 2063 } 2064 2065 #else /* CONFIG_SMP */ 2066 2067 if (p->in_iowait) { 2068 delayacct_blkio_end(p); 2069 atomic_dec(&task_rq(p)->nr_iowait); 2070 } 2071 2072 #endif /* CONFIG_SMP */ 2073 2074 ttwu_queue(p, cpu, wake_flags); 2075 stat: 2076 ttwu_stat(p, cpu, wake_flags); 2077 out: 2078 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2079 2080 return success; 2081 } 2082 2083 /** 2084 * try_to_wake_up_local - try to wake up a local task with rq lock held 2085 * @p: the thread to be awakened 2086 * @rf: request-queue flags for pinning 2087 * 2088 * Put @p on the run-queue if it's not already there. The caller must 2089 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2090 * the current task. 2091 */ 2092 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2093 { 2094 struct rq *rq = task_rq(p); 2095 2096 if (WARN_ON_ONCE(rq != this_rq()) || 2097 WARN_ON_ONCE(p == current)) 2098 return; 2099 2100 lockdep_assert_held(&rq->lock); 2101 2102 if (!raw_spin_trylock(&p->pi_lock)) { 2103 /* 2104 * This is OK, because current is on_cpu, which avoids it being 2105 * picked for load-balance and preemption/IRQs are still 2106 * disabled avoiding further scheduler activity on it and we've 2107 * not yet picked a replacement task. 2108 */ 2109 rq_unlock(rq, rf); 2110 raw_spin_lock(&p->pi_lock); 2111 rq_relock(rq, rf); 2112 } 2113 2114 if (!(p->state & TASK_NORMAL)) 2115 goto out; 2116 2117 trace_sched_waking(p); 2118 2119 if (!task_on_rq_queued(p)) { 2120 if (p->in_iowait) { 2121 delayacct_blkio_end(p); 2122 atomic_dec(&rq->nr_iowait); 2123 } 2124 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2125 } 2126 2127 ttwu_do_wakeup(rq, p, 0, rf); 2128 ttwu_stat(p, smp_processor_id(), 0); 2129 out: 2130 raw_spin_unlock(&p->pi_lock); 2131 } 2132 2133 /** 2134 * wake_up_process - Wake up a specific process 2135 * @p: The process to be woken up. 2136 * 2137 * Attempt to wake up the nominated process and move it to the set of runnable 2138 * processes. 2139 * 2140 * Return: 1 if the process was woken up, 0 if it was already running. 2141 * 2142 * It may be assumed that this function implies a write memory barrier before 2143 * changing the task state if and only if any tasks are woken up. 2144 */ 2145 int wake_up_process(struct task_struct *p) 2146 { 2147 return try_to_wake_up(p, TASK_NORMAL, 0); 2148 } 2149 EXPORT_SYMBOL(wake_up_process); 2150 2151 int wake_up_state(struct task_struct *p, unsigned int state) 2152 { 2153 return try_to_wake_up(p, state, 0); 2154 } 2155 2156 /* 2157 * Perform scheduler related setup for a newly forked process p. 2158 * p is forked by current. 2159 * 2160 * __sched_fork() is basic setup used by init_idle() too: 2161 */ 2162 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2163 { 2164 p->on_rq = 0; 2165 2166 p->se.on_rq = 0; 2167 p->se.exec_start = 0; 2168 p->se.sum_exec_runtime = 0; 2169 p->se.prev_sum_exec_runtime = 0; 2170 p->se.nr_migrations = 0; 2171 p->se.vruntime = 0; 2172 INIT_LIST_HEAD(&p->se.group_node); 2173 2174 #ifdef CONFIG_FAIR_GROUP_SCHED 2175 p->se.cfs_rq = NULL; 2176 #endif 2177 2178 #ifdef CONFIG_SCHEDSTATS 2179 /* Even if schedstat is disabled, there should not be garbage */ 2180 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2181 #endif 2182 2183 RB_CLEAR_NODE(&p->dl.rb_node); 2184 init_dl_task_timer(&p->dl); 2185 init_dl_inactive_task_timer(&p->dl); 2186 __dl_clear_params(p); 2187 2188 INIT_LIST_HEAD(&p->rt.run_list); 2189 p->rt.timeout = 0; 2190 p->rt.time_slice = sched_rr_timeslice; 2191 p->rt.on_rq = 0; 2192 p->rt.on_list = 0; 2193 2194 #ifdef CONFIG_PREEMPT_NOTIFIERS 2195 INIT_HLIST_HEAD(&p->preempt_notifiers); 2196 #endif 2197 2198 init_numa_balancing(clone_flags, p); 2199 } 2200 2201 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2202 2203 #ifdef CONFIG_NUMA_BALANCING 2204 2205 void set_numabalancing_state(bool enabled) 2206 { 2207 if (enabled) 2208 static_branch_enable(&sched_numa_balancing); 2209 else 2210 static_branch_disable(&sched_numa_balancing); 2211 } 2212 2213 #ifdef CONFIG_PROC_SYSCTL 2214 int sysctl_numa_balancing(struct ctl_table *table, int write, 2215 void __user *buffer, size_t *lenp, loff_t *ppos) 2216 { 2217 struct ctl_table t; 2218 int err; 2219 int state = static_branch_likely(&sched_numa_balancing); 2220 2221 if (write && !capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 2224 t = *table; 2225 t.data = &state; 2226 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2227 if (err < 0) 2228 return err; 2229 if (write) 2230 set_numabalancing_state(state); 2231 return err; 2232 } 2233 #endif 2234 #endif 2235 2236 #ifdef CONFIG_SCHEDSTATS 2237 2238 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2239 static bool __initdata __sched_schedstats = false; 2240 2241 static void set_schedstats(bool enabled) 2242 { 2243 if (enabled) 2244 static_branch_enable(&sched_schedstats); 2245 else 2246 static_branch_disable(&sched_schedstats); 2247 } 2248 2249 void force_schedstat_enabled(void) 2250 { 2251 if (!schedstat_enabled()) { 2252 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2253 static_branch_enable(&sched_schedstats); 2254 } 2255 } 2256 2257 static int __init setup_schedstats(char *str) 2258 { 2259 int ret = 0; 2260 if (!str) 2261 goto out; 2262 2263 /* 2264 * This code is called before jump labels have been set up, so we can't 2265 * change the static branch directly just yet. Instead set a temporary 2266 * variable so init_schedstats() can do it later. 2267 */ 2268 if (!strcmp(str, "enable")) { 2269 __sched_schedstats = true; 2270 ret = 1; 2271 } else if (!strcmp(str, "disable")) { 2272 __sched_schedstats = false; 2273 ret = 1; 2274 } 2275 out: 2276 if (!ret) 2277 pr_warn("Unable to parse schedstats=\n"); 2278 2279 return ret; 2280 } 2281 __setup("schedstats=", setup_schedstats); 2282 2283 static void __init init_schedstats(void) 2284 { 2285 set_schedstats(__sched_schedstats); 2286 } 2287 2288 #ifdef CONFIG_PROC_SYSCTL 2289 int sysctl_schedstats(struct ctl_table *table, int write, 2290 void __user *buffer, size_t *lenp, loff_t *ppos) 2291 { 2292 struct ctl_table t; 2293 int err; 2294 int state = static_branch_likely(&sched_schedstats); 2295 2296 if (write && !capable(CAP_SYS_ADMIN)) 2297 return -EPERM; 2298 2299 t = *table; 2300 t.data = &state; 2301 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2302 if (err < 0) 2303 return err; 2304 if (write) 2305 set_schedstats(state); 2306 return err; 2307 } 2308 #endif /* CONFIG_PROC_SYSCTL */ 2309 #else /* !CONFIG_SCHEDSTATS */ 2310 static inline void init_schedstats(void) {} 2311 #endif /* CONFIG_SCHEDSTATS */ 2312 2313 /* 2314 * fork()/clone()-time setup: 2315 */ 2316 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2317 { 2318 unsigned long flags; 2319 int cpu = get_cpu(); 2320 2321 __sched_fork(clone_flags, p); 2322 /* 2323 * We mark the process as NEW here. This guarantees that 2324 * nobody will actually run it, and a signal or other external 2325 * event cannot wake it up and insert it on the runqueue either. 2326 */ 2327 p->state = TASK_NEW; 2328 2329 /* 2330 * Make sure we do not leak PI boosting priority to the child. 2331 */ 2332 p->prio = current->normal_prio; 2333 2334 /* 2335 * Revert to default priority/policy on fork if requested. 2336 */ 2337 if (unlikely(p->sched_reset_on_fork)) { 2338 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2339 p->policy = SCHED_NORMAL; 2340 p->static_prio = NICE_TO_PRIO(0); 2341 p->rt_priority = 0; 2342 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2343 p->static_prio = NICE_TO_PRIO(0); 2344 2345 p->prio = p->normal_prio = __normal_prio(p); 2346 set_load_weight(p, false); 2347 2348 /* 2349 * We don't need the reset flag anymore after the fork. It has 2350 * fulfilled its duty: 2351 */ 2352 p->sched_reset_on_fork = 0; 2353 } 2354 2355 if (dl_prio(p->prio)) { 2356 put_cpu(); 2357 return -EAGAIN; 2358 } else if (rt_prio(p->prio)) { 2359 p->sched_class = &rt_sched_class; 2360 } else { 2361 p->sched_class = &fair_sched_class; 2362 } 2363 2364 init_entity_runnable_average(&p->se); 2365 2366 /* 2367 * The child is not yet in the pid-hash so no cgroup attach races, 2368 * and the cgroup is pinned to this child due to cgroup_fork() 2369 * is ran before sched_fork(). 2370 * 2371 * Silence PROVE_RCU. 2372 */ 2373 raw_spin_lock_irqsave(&p->pi_lock, flags); 2374 /* 2375 * We're setting the CPU for the first time, we don't migrate, 2376 * so use __set_task_cpu(). 2377 */ 2378 __set_task_cpu(p, cpu); 2379 if (p->sched_class->task_fork) 2380 p->sched_class->task_fork(p); 2381 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2382 2383 #ifdef CONFIG_SCHED_INFO 2384 if (likely(sched_info_on())) 2385 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2386 #endif 2387 #if defined(CONFIG_SMP) 2388 p->on_cpu = 0; 2389 #endif 2390 init_task_preempt_count(p); 2391 #ifdef CONFIG_SMP 2392 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2393 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2394 #endif 2395 2396 put_cpu(); 2397 return 0; 2398 } 2399 2400 unsigned long to_ratio(u64 period, u64 runtime) 2401 { 2402 if (runtime == RUNTIME_INF) 2403 return BW_UNIT; 2404 2405 /* 2406 * Doing this here saves a lot of checks in all 2407 * the calling paths, and returning zero seems 2408 * safe for them anyway. 2409 */ 2410 if (period == 0) 2411 return 0; 2412 2413 return div64_u64(runtime << BW_SHIFT, period); 2414 } 2415 2416 /* 2417 * wake_up_new_task - wake up a newly created task for the first time. 2418 * 2419 * This function will do some initial scheduler statistics housekeeping 2420 * that must be done for every newly created context, then puts the task 2421 * on the runqueue and wakes it. 2422 */ 2423 void wake_up_new_task(struct task_struct *p) 2424 { 2425 struct rq_flags rf; 2426 struct rq *rq; 2427 2428 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2429 p->state = TASK_RUNNING; 2430 #ifdef CONFIG_SMP 2431 /* 2432 * Fork balancing, do it here and not earlier because: 2433 * - cpus_allowed can change in the fork path 2434 * - any previously selected CPU might disappear through hotplug 2435 * 2436 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2437 * as we're not fully set-up yet. 2438 */ 2439 p->recent_used_cpu = task_cpu(p); 2440 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2441 #endif 2442 rq = __task_rq_lock(p, &rf); 2443 update_rq_clock(rq); 2444 post_init_entity_util_avg(&p->se); 2445 2446 activate_task(rq, p, ENQUEUE_NOCLOCK); 2447 p->on_rq = TASK_ON_RQ_QUEUED; 2448 trace_sched_wakeup_new(p); 2449 check_preempt_curr(rq, p, WF_FORK); 2450 #ifdef CONFIG_SMP 2451 if (p->sched_class->task_woken) { 2452 /* 2453 * Nothing relies on rq->lock after this, so its fine to 2454 * drop it. 2455 */ 2456 rq_unpin_lock(rq, &rf); 2457 p->sched_class->task_woken(rq, p); 2458 rq_repin_lock(rq, &rf); 2459 } 2460 #endif 2461 task_rq_unlock(rq, p, &rf); 2462 } 2463 2464 #ifdef CONFIG_PREEMPT_NOTIFIERS 2465 2466 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2467 2468 void preempt_notifier_inc(void) 2469 { 2470 static_branch_inc(&preempt_notifier_key); 2471 } 2472 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2473 2474 void preempt_notifier_dec(void) 2475 { 2476 static_branch_dec(&preempt_notifier_key); 2477 } 2478 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2479 2480 /** 2481 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2482 * @notifier: notifier struct to register 2483 */ 2484 void preempt_notifier_register(struct preempt_notifier *notifier) 2485 { 2486 if (!static_branch_unlikely(&preempt_notifier_key)) 2487 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2488 2489 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2490 } 2491 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2492 2493 /** 2494 * preempt_notifier_unregister - no longer interested in preemption notifications 2495 * @notifier: notifier struct to unregister 2496 * 2497 * This is *not* safe to call from within a preemption notifier. 2498 */ 2499 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2500 { 2501 hlist_del(¬ifier->link); 2502 } 2503 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2504 2505 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2506 { 2507 struct preempt_notifier *notifier; 2508 2509 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2510 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2511 } 2512 2513 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2514 { 2515 if (static_branch_unlikely(&preempt_notifier_key)) 2516 __fire_sched_in_preempt_notifiers(curr); 2517 } 2518 2519 static void 2520 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2521 struct task_struct *next) 2522 { 2523 struct preempt_notifier *notifier; 2524 2525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2526 notifier->ops->sched_out(notifier, next); 2527 } 2528 2529 static __always_inline void 2530 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2531 struct task_struct *next) 2532 { 2533 if (static_branch_unlikely(&preempt_notifier_key)) 2534 __fire_sched_out_preempt_notifiers(curr, next); 2535 } 2536 2537 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2538 2539 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2540 { 2541 } 2542 2543 static inline void 2544 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2545 struct task_struct *next) 2546 { 2547 } 2548 2549 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2550 2551 static inline void prepare_task(struct task_struct *next) 2552 { 2553 #ifdef CONFIG_SMP 2554 /* 2555 * Claim the task as running, we do this before switching to it 2556 * such that any running task will have this set. 2557 */ 2558 next->on_cpu = 1; 2559 #endif 2560 } 2561 2562 static inline void finish_task(struct task_struct *prev) 2563 { 2564 #ifdef CONFIG_SMP 2565 /* 2566 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2567 * We must ensure this doesn't happen until the switch is completely 2568 * finished. 2569 * 2570 * In particular, the load of prev->state in finish_task_switch() must 2571 * happen before this. 2572 * 2573 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2574 */ 2575 smp_store_release(&prev->on_cpu, 0); 2576 #endif 2577 } 2578 2579 static inline void 2580 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2581 { 2582 /* 2583 * Since the runqueue lock will be released by the next 2584 * task (which is an invalid locking op but in the case 2585 * of the scheduler it's an obvious special-case), so we 2586 * do an early lockdep release here: 2587 */ 2588 rq_unpin_lock(rq, rf); 2589 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2590 #ifdef CONFIG_DEBUG_SPINLOCK 2591 /* this is a valid case when another task releases the spinlock */ 2592 rq->lock.owner = next; 2593 #endif 2594 } 2595 2596 static inline void finish_lock_switch(struct rq *rq) 2597 { 2598 /* 2599 * If we are tracking spinlock dependencies then we have to 2600 * fix up the runqueue lock - which gets 'carried over' from 2601 * prev into current: 2602 */ 2603 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2604 raw_spin_unlock_irq(&rq->lock); 2605 } 2606 2607 /* 2608 * NOP if the arch has not defined these: 2609 */ 2610 2611 #ifndef prepare_arch_switch 2612 # define prepare_arch_switch(next) do { } while (0) 2613 #endif 2614 2615 #ifndef finish_arch_post_lock_switch 2616 # define finish_arch_post_lock_switch() do { } while (0) 2617 #endif 2618 2619 /** 2620 * prepare_task_switch - prepare to switch tasks 2621 * @rq: the runqueue preparing to switch 2622 * @prev: the current task that is being switched out 2623 * @next: the task we are going to switch to. 2624 * 2625 * This is called with the rq lock held and interrupts off. It must 2626 * be paired with a subsequent finish_task_switch after the context 2627 * switch. 2628 * 2629 * prepare_task_switch sets up locking and calls architecture specific 2630 * hooks. 2631 */ 2632 static inline void 2633 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2634 struct task_struct *next) 2635 { 2636 sched_info_switch(rq, prev, next); 2637 perf_event_task_sched_out(prev, next); 2638 rseq_preempt(prev); 2639 fire_sched_out_preempt_notifiers(prev, next); 2640 prepare_task(next); 2641 prepare_arch_switch(next); 2642 } 2643 2644 /** 2645 * finish_task_switch - clean up after a task-switch 2646 * @prev: the thread we just switched away from. 2647 * 2648 * finish_task_switch must be called after the context switch, paired 2649 * with a prepare_task_switch call before the context switch. 2650 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2651 * and do any other architecture-specific cleanup actions. 2652 * 2653 * Note that we may have delayed dropping an mm in context_switch(). If 2654 * so, we finish that here outside of the runqueue lock. (Doing it 2655 * with the lock held can cause deadlocks; see schedule() for 2656 * details.) 2657 * 2658 * The context switch have flipped the stack from under us and restored the 2659 * local variables which were saved when this task called schedule() in the 2660 * past. prev == current is still correct but we need to recalculate this_rq 2661 * because prev may have moved to another CPU. 2662 */ 2663 static struct rq *finish_task_switch(struct task_struct *prev) 2664 __releases(rq->lock) 2665 { 2666 struct rq *rq = this_rq(); 2667 struct mm_struct *mm = rq->prev_mm; 2668 long prev_state; 2669 2670 /* 2671 * The previous task will have left us with a preempt_count of 2 2672 * because it left us after: 2673 * 2674 * schedule() 2675 * preempt_disable(); // 1 2676 * __schedule() 2677 * raw_spin_lock_irq(&rq->lock) // 2 2678 * 2679 * Also, see FORK_PREEMPT_COUNT. 2680 */ 2681 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2682 "corrupted preempt_count: %s/%d/0x%x\n", 2683 current->comm, current->pid, preempt_count())) 2684 preempt_count_set(FORK_PREEMPT_COUNT); 2685 2686 rq->prev_mm = NULL; 2687 2688 /* 2689 * A task struct has one reference for the use as "current". 2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2691 * schedule one last time. The schedule call will never return, and 2692 * the scheduled task must drop that reference. 2693 * 2694 * We must observe prev->state before clearing prev->on_cpu (in 2695 * finish_task), otherwise a concurrent wakeup can get prev 2696 * running on another CPU and we could rave with its RUNNING -> DEAD 2697 * transition, resulting in a double drop. 2698 */ 2699 prev_state = prev->state; 2700 vtime_task_switch(prev); 2701 perf_event_task_sched_in(prev, current); 2702 finish_task(prev); 2703 finish_lock_switch(rq); 2704 finish_arch_post_lock_switch(); 2705 2706 fire_sched_in_preempt_notifiers(current); 2707 /* 2708 * When switching through a kernel thread, the loop in 2709 * membarrier_{private,global}_expedited() may have observed that 2710 * kernel thread and not issued an IPI. It is therefore possible to 2711 * schedule between user->kernel->user threads without passing though 2712 * switch_mm(). Membarrier requires a barrier after storing to 2713 * rq->curr, before returning to userspace, so provide them here: 2714 * 2715 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2716 * provided by mmdrop(), 2717 * - a sync_core for SYNC_CORE. 2718 */ 2719 if (mm) { 2720 membarrier_mm_sync_core_before_usermode(mm); 2721 mmdrop(mm); 2722 } 2723 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { 2724 switch (prev_state) { 2725 case TASK_DEAD: 2726 if (prev->sched_class->task_dead) 2727 prev->sched_class->task_dead(prev); 2728 2729 /* 2730 * Remove function-return probe instances associated with this 2731 * task and put them back on the free list. 2732 */ 2733 kprobe_flush_task(prev); 2734 2735 /* Task is done with its stack. */ 2736 put_task_stack(prev); 2737 2738 put_task_struct(prev); 2739 break; 2740 2741 case TASK_PARKED: 2742 kthread_park_complete(prev); 2743 break; 2744 } 2745 } 2746 2747 tick_nohz_task_switch(); 2748 return rq; 2749 } 2750 2751 #ifdef CONFIG_SMP 2752 2753 /* rq->lock is NOT held, but preemption is disabled */ 2754 static void __balance_callback(struct rq *rq) 2755 { 2756 struct callback_head *head, *next; 2757 void (*func)(struct rq *rq); 2758 unsigned long flags; 2759 2760 raw_spin_lock_irqsave(&rq->lock, flags); 2761 head = rq->balance_callback; 2762 rq->balance_callback = NULL; 2763 while (head) { 2764 func = (void (*)(struct rq *))head->func; 2765 next = head->next; 2766 head->next = NULL; 2767 head = next; 2768 2769 func(rq); 2770 } 2771 raw_spin_unlock_irqrestore(&rq->lock, flags); 2772 } 2773 2774 static inline void balance_callback(struct rq *rq) 2775 { 2776 if (unlikely(rq->balance_callback)) 2777 __balance_callback(rq); 2778 } 2779 2780 #else 2781 2782 static inline void balance_callback(struct rq *rq) 2783 { 2784 } 2785 2786 #endif 2787 2788 /** 2789 * schedule_tail - first thing a freshly forked thread must call. 2790 * @prev: the thread we just switched away from. 2791 */ 2792 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2793 __releases(rq->lock) 2794 { 2795 struct rq *rq; 2796 2797 /* 2798 * New tasks start with FORK_PREEMPT_COUNT, see there and 2799 * finish_task_switch() for details. 2800 * 2801 * finish_task_switch() will drop rq->lock() and lower preempt_count 2802 * and the preempt_enable() will end up enabling preemption (on 2803 * PREEMPT_COUNT kernels). 2804 */ 2805 2806 rq = finish_task_switch(prev); 2807 balance_callback(rq); 2808 preempt_enable(); 2809 2810 if (current->set_child_tid) 2811 put_user(task_pid_vnr(current), current->set_child_tid); 2812 } 2813 2814 /* 2815 * context_switch - switch to the new MM and the new thread's register state. 2816 */ 2817 static __always_inline struct rq * 2818 context_switch(struct rq *rq, struct task_struct *prev, 2819 struct task_struct *next, struct rq_flags *rf) 2820 { 2821 struct mm_struct *mm, *oldmm; 2822 2823 prepare_task_switch(rq, prev, next); 2824 2825 mm = next->mm; 2826 oldmm = prev->active_mm; 2827 /* 2828 * For paravirt, this is coupled with an exit in switch_to to 2829 * combine the page table reload and the switch backend into 2830 * one hypercall. 2831 */ 2832 arch_start_context_switch(prev); 2833 2834 /* 2835 * If mm is non-NULL, we pass through switch_mm(). If mm is 2836 * NULL, we will pass through mmdrop() in finish_task_switch(). 2837 * Both of these contain the full memory barrier required by 2838 * membarrier after storing to rq->curr, before returning to 2839 * user-space. 2840 */ 2841 if (!mm) { 2842 next->active_mm = oldmm; 2843 mmgrab(oldmm); 2844 enter_lazy_tlb(oldmm, next); 2845 } else 2846 switch_mm_irqs_off(oldmm, mm, next); 2847 2848 if (!prev->mm) { 2849 prev->active_mm = NULL; 2850 rq->prev_mm = oldmm; 2851 } 2852 2853 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2854 2855 prepare_lock_switch(rq, next, rf); 2856 2857 /* Here we just switch the register state and the stack. */ 2858 switch_to(prev, next, prev); 2859 barrier(); 2860 2861 return finish_task_switch(prev); 2862 } 2863 2864 /* 2865 * nr_running and nr_context_switches: 2866 * 2867 * externally visible scheduler statistics: current number of runnable 2868 * threads, total number of context switches performed since bootup. 2869 */ 2870 unsigned long nr_running(void) 2871 { 2872 unsigned long i, sum = 0; 2873 2874 for_each_online_cpu(i) 2875 sum += cpu_rq(i)->nr_running; 2876 2877 return sum; 2878 } 2879 2880 /* 2881 * Check if only the current task is running on the CPU. 2882 * 2883 * Caution: this function does not check that the caller has disabled 2884 * preemption, thus the result might have a time-of-check-to-time-of-use 2885 * race. The caller is responsible to use it correctly, for example: 2886 * 2887 * - from a non-preemptable section (of course) 2888 * 2889 * - from a thread that is bound to a single CPU 2890 * 2891 * - in a loop with very short iterations (e.g. a polling loop) 2892 */ 2893 bool single_task_running(void) 2894 { 2895 return raw_rq()->nr_running == 1; 2896 } 2897 EXPORT_SYMBOL(single_task_running); 2898 2899 unsigned long long nr_context_switches(void) 2900 { 2901 int i; 2902 unsigned long long sum = 0; 2903 2904 for_each_possible_cpu(i) 2905 sum += cpu_rq(i)->nr_switches; 2906 2907 return sum; 2908 } 2909 2910 /* 2911 * IO-wait accounting, and how its mostly bollocks (on SMP). 2912 * 2913 * The idea behind IO-wait account is to account the idle time that we could 2914 * have spend running if it were not for IO. That is, if we were to improve the 2915 * storage performance, we'd have a proportional reduction in IO-wait time. 2916 * 2917 * This all works nicely on UP, where, when a task blocks on IO, we account 2918 * idle time as IO-wait, because if the storage were faster, it could've been 2919 * running and we'd not be idle. 2920 * 2921 * This has been extended to SMP, by doing the same for each CPU. This however 2922 * is broken. 2923 * 2924 * Imagine for instance the case where two tasks block on one CPU, only the one 2925 * CPU will have IO-wait accounted, while the other has regular idle. Even 2926 * though, if the storage were faster, both could've ran at the same time, 2927 * utilising both CPUs. 2928 * 2929 * This means, that when looking globally, the current IO-wait accounting on 2930 * SMP is a lower bound, by reason of under accounting. 2931 * 2932 * Worse, since the numbers are provided per CPU, they are sometimes 2933 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2934 * associated with any one particular CPU, it can wake to another CPU than it 2935 * blocked on. This means the per CPU IO-wait number is meaningless. 2936 * 2937 * Task CPU affinities can make all that even more 'interesting'. 2938 */ 2939 2940 unsigned long nr_iowait(void) 2941 { 2942 unsigned long i, sum = 0; 2943 2944 for_each_possible_cpu(i) 2945 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2946 2947 return sum; 2948 } 2949 2950 /* 2951 * Consumers of these two interfaces, like for example the cpufreq menu 2952 * governor are using nonsensical data. Boosting frequency for a CPU that has 2953 * IO-wait which might not even end up running the task when it does become 2954 * runnable. 2955 */ 2956 2957 unsigned long nr_iowait_cpu(int cpu) 2958 { 2959 struct rq *this = cpu_rq(cpu); 2960 return atomic_read(&this->nr_iowait); 2961 } 2962 2963 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2964 { 2965 struct rq *rq = this_rq(); 2966 *nr_waiters = atomic_read(&rq->nr_iowait); 2967 *load = rq->load.weight; 2968 } 2969 2970 #ifdef CONFIG_SMP 2971 2972 /* 2973 * sched_exec - execve() is a valuable balancing opportunity, because at 2974 * this point the task has the smallest effective memory and cache footprint. 2975 */ 2976 void sched_exec(void) 2977 { 2978 struct task_struct *p = current; 2979 unsigned long flags; 2980 int dest_cpu; 2981 2982 raw_spin_lock_irqsave(&p->pi_lock, flags); 2983 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2984 if (dest_cpu == smp_processor_id()) 2985 goto unlock; 2986 2987 if (likely(cpu_active(dest_cpu))) { 2988 struct migration_arg arg = { p, dest_cpu }; 2989 2990 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2991 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2992 return; 2993 } 2994 unlock: 2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2996 } 2997 2998 #endif 2999 3000 DEFINE_PER_CPU(struct kernel_stat, kstat); 3001 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3002 3003 EXPORT_PER_CPU_SYMBOL(kstat); 3004 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3005 3006 /* 3007 * The function fair_sched_class.update_curr accesses the struct curr 3008 * and its field curr->exec_start; when called from task_sched_runtime(), 3009 * we observe a high rate of cache misses in practice. 3010 * Prefetching this data results in improved performance. 3011 */ 3012 static inline void prefetch_curr_exec_start(struct task_struct *p) 3013 { 3014 #ifdef CONFIG_FAIR_GROUP_SCHED 3015 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3016 #else 3017 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3018 #endif 3019 prefetch(curr); 3020 prefetch(&curr->exec_start); 3021 } 3022 3023 /* 3024 * Return accounted runtime for the task. 3025 * In case the task is currently running, return the runtime plus current's 3026 * pending runtime that have not been accounted yet. 3027 */ 3028 unsigned long long task_sched_runtime(struct task_struct *p) 3029 { 3030 struct rq_flags rf; 3031 struct rq *rq; 3032 u64 ns; 3033 3034 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3035 /* 3036 * 64-bit doesn't need locks to atomically read a 64-bit value. 3037 * So we have a optimization chance when the task's delta_exec is 0. 3038 * Reading ->on_cpu is racy, but this is ok. 3039 * 3040 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3041 * If we race with it entering CPU, unaccounted time is 0. This is 3042 * indistinguishable from the read occurring a few cycles earlier. 3043 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3044 * been accounted, so we're correct here as well. 3045 */ 3046 if (!p->on_cpu || !task_on_rq_queued(p)) 3047 return p->se.sum_exec_runtime; 3048 #endif 3049 3050 rq = task_rq_lock(p, &rf); 3051 /* 3052 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3053 * project cycles that may never be accounted to this 3054 * thread, breaking clock_gettime(). 3055 */ 3056 if (task_current(rq, p) && task_on_rq_queued(p)) { 3057 prefetch_curr_exec_start(p); 3058 update_rq_clock(rq); 3059 p->sched_class->update_curr(rq); 3060 } 3061 ns = p->se.sum_exec_runtime; 3062 task_rq_unlock(rq, p, &rf); 3063 3064 return ns; 3065 } 3066 3067 /* 3068 * This function gets called by the timer code, with HZ frequency. 3069 * We call it with interrupts disabled. 3070 */ 3071 void scheduler_tick(void) 3072 { 3073 int cpu = smp_processor_id(); 3074 struct rq *rq = cpu_rq(cpu); 3075 struct task_struct *curr = rq->curr; 3076 struct rq_flags rf; 3077 3078 sched_clock_tick(); 3079 3080 rq_lock(rq, &rf); 3081 3082 update_rq_clock(rq); 3083 curr->sched_class->task_tick(rq, curr, 0); 3084 cpu_load_update_active(rq); 3085 calc_global_load_tick(rq); 3086 3087 rq_unlock(rq, &rf); 3088 3089 perf_event_task_tick(); 3090 3091 #ifdef CONFIG_SMP 3092 rq->idle_balance = idle_cpu(cpu); 3093 trigger_load_balance(rq); 3094 #endif 3095 } 3096 3097 #ifdef CONFIG_NO_HZ_FULL 3098 3099 struct tick_work { 3100 int cpu; 3101 struct delayed_work work; 3102 }; 3103 3104 static struct tick_work __percpu *tick_work_cpu; 3105 3106 static void sched_tick_remote(struct work_struct *work) 3107 { 3108 struct delayed_work *dwork = to_delayed_work(work); 3109 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3110 int cpu = twork->cpu; 3111 struct rq *rq = cpu_rq(cpu); 3112 struct rq_flags rf; 3113 3114 /* 3115 * Handle the tick only if it appears the remote CPU is running in full 3116 * dynticks mode. The check is racy by nature, but missing a tick or 3117 * having one too much is no big deal because the scheduler tick updates 3118 * statistics and checks timeslices in a time-independent way, regardless 3119 * of when exactly it is running. 3120 */ 3121 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3122 struct task_struct *curr; 3123 u64 delta; 3124 3125 rq_lock_irq(rq, &rf); 3126 update_rq_clock(rq); 3127 curr = rq->curr; 3128 delta = rq_clock_task(rq) - curr->se.exec_start; 3129 3130 /* 3131 * Make sure the next tick runs within a reasonable 3132 * amount of time. 3133 */ 3134 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3135 curr->sched_class->task_tick(rq, curr, 0); 3136 rq_unlock_irq(rq, &rf); 3137 } 3138 3139 /* 3140 * Run the remote tick once per second (1Hz). This arbitrary 3141 * frequency is large enough to avoid overload but short enough 3142 * to keep scheduler internal stats reasonably up to date. 3143 */ 3144 queue_delayed_work(system_unbound_wq, dwork, HZ); 3145 } 3146 3147 static void sched_tick_start(int cpu) 3148 { 3149 struct tick_work *twork; 3150 3151 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3152 return; 3153 3154 WARN_ON_ONCE(!tick_work_cpu); 3155 3156 twork = per_cpu_ptr(tick_work_cpu, cpu); 3157 twork->cpu = cpu; 3158 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3159 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3160 } 3161 3162 #ifdef CONFIG_HOTPLUG_CPU 3163 static void sched_tick_stop(int cpu) 3164 { 3165 struct tick_work *twork; 3166 3167 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3168 return; 3169 3170 WARN_ON_ONCE(!tick_work_cpu); 3171 3172 twork = per_cpu_ptr(tick_work_cpu, cpu); 3173 cancel_delayed_work_sync(&twork->work); 3174 } 3175 #endif /* CONFIG_HOTPLUG_CPU */ 3176 3177 int __init sched_tick_offload_init(void) 3178 { 3179 tick_work_cpu = alloc_percpu(struct tick_work); 3180 BUG_ON(!tick_work_cpu); 3181 3182 return 0; 3183 } 3184 3185 #else /* !CONFIG_NO_HZ_FULL */ 3186 static inline void sched_tick_start(int cpu) { } 3187 static inline void sched_tick_stop(int cpu) { } 3188 #endif 3189 3190 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3191 defined(CONFIG_PREEMPT_TRACER)) 3192 /* 3193 * If the value passed in is equal to the current preempt count 3194 * then we just disabled preemption. Start timing the latency. 3195 */ 3196 static inline void preempt_latency_start(int val) 3197 { 3198 if (preempt_count() == val) { 3199 unsigned long ip = get_lock_parent_ip(); 3200 #ifdef CONFIG_DEBUG_PREEMPT 3201 current->preempt_disable_ip = ip; 3202 #endif 3203 trace_preempt_off(CALLER_ADDR0, ip); 3204 } 3205 } 3206 3207 void preempt_count_add(int val) 3208 { 3209 #ifdef CONFIG_DEBUG_PREEMPT 3210 /* 3211 * Underflow? 3212 */ 3213 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3214 return; 3215 #endif 3216 __preempt_count_add(val); 3217 #ifdef CONFIG_DEBUG_PREEMPT 3218 /* 3219 * Spinlock count overflowing soon? 3220 */ 3221 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3222 PREEMPT_MASK - 10); 3223 #endif 3224 preempt_latency_start(val); 3225 } 3226 EXPORT_SYMBOL(preempt_count_add); 3227 NOKPROBE_SYMBOL(preempt_count_add); 3228 3229 /* 3230 * If the value passed in equals to the current preempt count 3231 * then we just enabled preemption. Stop timing the latency. 3232 */ 3233 static inline void preempt_latency_stop(int val) 3234 { 3235 if (preempt_count() == val) 3236 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3237 } 3238 3239 void preempt_count_sub(int val) 3240 { 3241 #ifdef CONFIG_DEBUG_PREEMPT 3242 /* 3243 * Underflow? 3244 */ 3245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3246 return; 3247 /* 3248 * Is the spinlock portion underflowing? 3249 */ 3250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3251 !(preempt_count() & PREEMPT_MASK))) 3252 return; 3253 #endif 3254 3255 preempt_latency_stop(val); 3256 __preempt_count_sub(val); 3257 } 3258 EXPORT_SYMBOL(preempt_count_sub); 3259 NOKPROBE_SYMBOL(preempt_count_sub); 3260 3261 #else 3262 static inline void preempt_latency_start(int val) { } 3263 static inline void preempt_latency_stop(int val) { } 3264 #endif 3265 3266 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3267 { 3268 #ifdef CONFIG_DEBUG_PREEMPT 3269 return p->preempt_disable_ip; 3270 #else 3271 return 0; 3272 #endif 3273 } 3274 3275 /* 3276 * Print scheduling while atomic bug: 3277 */ 3278 static noinline void __schedule_bug(struct task_struct *prev) 3279 { 3280 /* Save this before calling printk(), since that will clobber it */ 3281 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3282 3283 if (oops_in_progress) 3284 return; 3285 3286 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3287 prev->comm, prev->pid, preempt_count()); 3288 3289 debug_show_held_locks(prev); 3290 print_modules(); 3291 if (irqs_disabled()) 3292 print_irqtrace_events(prev); 3293 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3294 && in_atomic_preempt_off()) { 3295 pr_err("Preemption disabled at:"); 3296 print_ip_sym(preempt_disable_ip); 3297 pr_cont("\n"); 3298 } 3299 if (panic_on_warn) 3300 panic("scheduling while atomic\n"); 3301 3302 dump_stack(); 3303 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3304 } 3305 3306 /* 3307 * Various schedule()-time debugging checks and statistics: 3308 */ 3309 static inline void schedule_debug(struct task_struct *prev) 3310 { 3311 #ifdef CONFIG_SCHED_STACK_END_CHECK 3312 if (task_stack_end_corrupted(prev)) 3313 panic("corrupted stack end detected inside scheduler\n"); 3314 #endif 3315 3316 if (unlikely(in_atomic_preempt_off())) { 3317 __schedule_bug(prev); 3318 preempt_count_set(PREEMPT_DISABLED); 3319 } 3320 rcu_sleep_check(); 3321 3322 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3323 3324 schedstat_inc(this_rq()->sched_count); 3325 } 3326 3327 /* 3328 * Pick up the highest-prio task: 3329 */ 3330 static inline struct task_struct * 3331 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3332 { 3333 const struct sched_class *class; 3334 struct task_struct *p; 3335 3336 /* 3337 * Optimization: we know that if all tasks are in the fair class we can 3338 * call that function directly, but only if the @prev task wasn't of a 3339 * higher scheduling class, because otherwise those loose the 3340 * opportunity to pull in more work from other CPUs. 3341 */ 3342 if (likely((prev->sched_class == &idle_sched_class || 3343 prev->sched_class == &fair_sched_class) && 3344 rq->nr_running == rq->cfs.h_nr_running)) { 3345 3346 p = fair_sched_class.pick_next_task(rq, prev, rf); 3347 if (unlikely(p == RETRY_TASK)) 3348 goto again; 3349 3350 /* Assumes fair_sched_class->next == idle_sched_class */ 3351 if (unlikely(!p)) 3352 p = idle_sched_class.pick_next_task(rq, prev, rf); 3353 3354 return p; 3355 } 3356 3357 again: 3358 for_each_class(class) { 3359 p = class->pick_next_task(rq, prev, rf); 3360 if (p) { 3361 if (unlikely(p == RETRY_TASK)) 3362 goto again; 3363 return p; 3364 } 3365 } 3366 3367 /* The idle class should always have a runnable task: */ 3368 BUG(); 3369 } 3370 3371 /* 3372 * __schedule() is the main scheduler function. 3373 * 3374 * The main means of driving the scheduler and thus entering this function are: 3375 * 3376 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3377 * 3378 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3379 * paths. For example, see arch/x86/entry_64.S. 3380 * 3381 * To drive preemption between tasks, the scheduler sets the flag in timer 3382 * interrupt handler scheduler_tick(). 3383 * 3384 * 3. Wakeups don't really cause entry into schedule(). They add a 3385 * task to the run-queue and that's it. 3386 * 3387 * Now, if the new task added to the run-queue preempts the current 3388 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3389 * called on the nearest possible occasion: 3390 * 3391 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3392 * 3393 * - in syscall or exception context, at the next outmost 3394 * preempt_enable(). (this might be as soon as the wake_up()'s 3395 * spin_unlock()!) 3396 * 3397 * - in IRQ context, return from interrupt-handler to 3398 * preemptible context 3399 * 3400 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3401 * then at the next: 3402 * 3403 * - cond_resched() call 3404 * - explicit schedule() call 3405 * - return from syscall or exception to user-space 3406 * - return from interrupt-handler to user-space 3407 * 3408 * WARNING: must be called with preemption disabled! 3409 */ 3410 static void __sched notrace __schedule(bool preempt) 3411 { 3412 struct task_struct *prev, *next; 3413 unsigned long *switch_count; 3414 struct rq_flags rf; 3415 struct rq *rq; 3416 int cpu; 3417 3418 cpu = smp_processor_id(); 3419 rq = cpu_rq(cpu); 3420 prev = rq->curr; 3421 3422 schedule_debug(prev); 3423 3424 if (sched_feat(HRTICK)) 3425 hrtick_clear(rq); 3426 3427 local_irq_disable(); 3428 rcu_note_context_switch(preempt); 3429 3430 /* 3431 * Make sure that signal_pending_state()->signal_pending() below 3432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3433 * done by the caller to avoid the race with signal_wake_up(). 3434 * 3435 * The membarrier system call requires a full memory barrier 3436 * after coming from user-space, before storing to rq->curr. 3437 */ 3438 rq_lock(rq, &rf); 3439 smp_mb__after_spinlock(); 3440 3441 /* Promote REQ to ACT */ 3442 rq->clock_update_flags <<= 1; 3443 update_rq_clock(rq); 3444 3445 switch_count = &prev->nivcsw; 3446 if (!preempt && prev->state) { 3447 if (unlikely(signal_pending_state(prev->state, prev))) { 3448 prev->state = TASK_RUNNING; 3449 } else { 3450 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3451 prev->on_rq = 0; 3452 3453 if (prev->in_iowait) { 3454 atomic_inc(&rq->nr_iowait); 3455 delayacct_blkio_start(); 3456 } 3457 3458 /* 3459 * If a worker went to sleep, notify and ask workqueue 3460 * whether it wants to wake up a task to maintain 3461 * concurrency. 3462 */ 3463 if (prev->flags & PF_WQ_WORKER) { 3464 struct task_struct *to_wakeup; 3465 3466 to_wakeup = wq_worker_sleeping(prev); 3467 if (to_wakeup) 3468 try_to_wake_up_local(to_wakeup, &rf); 3469 } 3470 } 3471 switch_count = &prev->nvcsw; 3472 } 3473 3474 next = pick_next_task(rq, prev, &rf); 3475 clear_tsk_need_resched(prev); 3476 clear_preempt_need_resched(); 3477 3478 if (likely(prev != next)) { 3479 rq->nr_switches++; 3480 rq->curr = next; 3481 /* 3482 * The membarrier system call requires each architecture 3483 * to have a full memory barrier after updating 3484 * rq->curr, before returning to user-space. 3485 * 3486 * Here are the schemes providing that barrier on the 3487 * various architectures: 3488 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3489 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3490 * - finish_lock_switch() for weakly-ordered 3491 * architectures where spin_unlock is a full barrier, 3492 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3493 * is a RELEASE barrier), 3494 */ 3495 ++*switch_count; 3496 3497 trace_sched_switch(preempt, prev, next); 3498 3499 /* Also unlocks the rq: */ 3500 rq = context_switch(rq, prev, next, &rf); 3501 } else { 3502 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3503 rq_unlock_irq(rq, &rf); 3504 } 3505 3506 balance_callback(rq); 3507 } 3508 3509 void __noreturn do_task_dead(void) 3510 { 3511 /* Causes final put_task_struct in finish_task_switch(): */ 3512 set_special_state(TASK_DEAD); 3513 3514 /* Tell freezer to ignore us: */ 3515 current->flags |= PF_NOFREEZE; 3516 3517 __schedule(false); 3518 BUG(); 3519 3520 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3521 for (;;) 3522 cpu_relax(); 3523 } 3524 3525 static inline void sched_submit_work(struct task_struct *tsk) 3526 { 3527 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3528 return; 3529 /* 3530 * If we are going to sleep and we have plugged IO queued, 3531 * make sure to submit it to avoid deadlocks. 3532 */ 3533 if (blk_needs_flush_plug(tsk)) 3534 blk_schedule_flush_plug(tsk); 3535 } 3536 3537 asmlinkage __visible void __sched schedule(void) 3538 { 3539 struct task_struct *tsk = current; 3540 3541 sched_submit_work(tsk); 3542 do { 3543 preempt_disable(); 3544 __schedule(false); 3545 sched_preempt_enable_no_resched(); 3546 } while (need_resched()); 3547 } 3548 EXPORT_SYMBOL(schedule); 3549 3550 /* 3551 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3552 * state (have scheduled out non-voluntarily) by making sure that all 3553 * tasks have either left the run queue or have gone into user space. 3554 * As idle tasks do not do either, they must not ever be preempted 3555 * (schedule out non-voluntarily). 3556 * 3557 * schedule_idle() is similar to schedule_preempt_disable() except that it 3558 * never enables preemption because it does not call sched_submit_work(). 3559 */ 3560 void __sched schedule_idle(void) 3561 { 3562 /* 3563 * As this skips calling sched_submit_work(), which the idle task does 3564 * regardless because that function is a nop when the task is in a 3565 * TASK_RUNNING state, make sure this isn't used someplace that the 3566 * current task can be in any other state. Note, idle is always in the 3567 * TASK_RUNNING state. 3568 */ 3569 WARN_ON_ONCE(current->state); 3570 do { 3571 __schedule(false); 3572 } while (need_resched()); 3573 } 3574 3575 #ifdef CONFIG_CONTEXT_TRACKING 3576 asmlinkage __visible void __sched schedule_user(void) 3577 { 3578 /* 3579 * If we come here after a random call to set_need_resched(), 3580 * or we have been woken up remotely but the IPI has not yet arrived, 3581 * we haven't yet exited the RCU idle mode. Do it here manually until 3582 * we find a better solution. 3583 * 3584 * NB: There are buggy callers of this function. Ideally we 3585 * should warn if prev_state != CONTEXT_USER, but that will trigger 3586 * too frequently to make sense yet. 3587 */ 3588 enum ctx_state prev_state = exception_enter(); 3589 schedule(); 3590 exception_exit(prev_state); 3591 } 3592 #endif 3593 3594 /** 3595 * schedule_preempt_disabled - called with preemption disabled 3596 * 3597 * Returns with preemption disabled. Note: preempt_count must be 1 3598 */ 3599 void __sched schedule_preempt_disabled(void) 3600 { 3601 sched_preempt_enable_no_resched(); 3602 schedule(); 3603 preempt_disable(); 3604 } 3605 3606 static void __sched notrace preempt_schedule_common(void) 3607 { 3608 do { 3609 /* 3610 * Because the function tracer can trace preempt_count_sub() 3611 * and it also uses preempt_enable/disable_notrace(), if 3612 * NEED_RESCHED is set, the preempt_enable_notrace() called 3613 * by the function tracer will call this function again and 3614 * cause infinite recursion. 3615 * 3616 * Preemption must be disabled here before the function 3617 * tracer can trace. Break up preempt_disable() into two 3618 * calls. One to disable preemption without fear of being 3619 * traced. The other to still record the preemption latency, 3620 * which can also be traced by the function tracer. 3621 */ 3622 preempt_disable_notrace(); 3623 preempt_latency_start(1); 3624 __schedule(true); 3625 preempt_latency_stop(1); 3626 preempt_enable_no_resched_notrace(); 3627 3628 /* 3629 * Check again in case we missed a preemption opportunity 3630 * between schedule and now. 3631 */ 3632 } while (need_resched()); 3633 } 3634 3635 #ifdef CONFIG_PREEMPT 3636 /* 3637 * this is the entry point to schedule() from in-kernel preemption 3638 * off of preempt_enable. Kernel preemptions off return from interrupt 3639 * occur there and call schedule directly. 3640 */ 3641 asmlinkage __visible void __sched notrace preempt_schedule(void) 3642 { 3643 /* 3644 * If there is a non-zero preempt_count or interrupts are disabled, 3645 * we do not want to preempt the current task. Just return.. 3646 */ 3647 if (likely(!preemptible())) 3648 return; 3649 3650 preempt_schedule_common(); 3651 } 3652 NOKPROBE_SYMBOL(preempt_schedule); 3653 EXPORT_SYMBOL(preempt_schedule); 3654 3655 /** 3656 * preempt_schedule_notrace - preempt_schedule called by tracing 3657 * 3658 * The tracing infrastructure uses preempt_enable_notrace to prevent 3659 * recursion and tracing preempt enabling caused by the tracing 3660 * infrastructure itself. But as tracing can happen in areas coming 3661 * from userspace or just about to enter userspace, a preempt enable 3662 * can occur before user_exit() is called. This will cause the scheduler 3663 * to be called when the system is still in usermode. 3664 * 3665 * To prevent this, the preempt_enable_notrace will use this function 3666 * instead of preempt_schedule() to exit user context if needed before 3667 * calling the scheduler. 3668 */ 3669 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3670 { 3671 enum ctx_state prev_ctx; 3672 3673 if (likely(!preemptible())) 3674 return; 3675 3676 do { 3677 /* 3678 * Because the function tracer can trace preempt_count_sub() 3679 * and it also uses preempt_enable/disable_notrace(), if 3680 * NEED_RESCHED is set, the preempt_enable_notrace() called 3681 * by the function tracer will call this function again and 3682 * cause infinite recursion. 3683 * 3684 * Preemption must be disabled here before the function 3685 * tracer can trace. Break up preempt_disable() into two 3686 * calls. One to disable preemption without fear of being 3687 * traced. The other to still record the preemption latency, 3688 * which can also be traced by the function tracer. 3689 */ 3690 preempt_disable_notrace(); 3691 preempt_latency_start(1); 3692 /* 3693 * Needs preempt disabled in case user_exit() is traced 3694 * and the tracer calls preempt_enable_notrace() causing 3695 * an infinite recursion. 3696 */ 3697 prev_ctx = exception_enter(); 3698 __schedule(true); 3699 exception_exit(prev_ctx); 3700 3701 preempt_latency_stop(1); 3702 preempt_enable_no_resched_notrace(); 3703 } while (need_resched()); 3704 } 3705 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3706 3707 #endif /* CONFIG_PREEMPT */ 3708 3709 /* 3710 * this is the entry point to schedule() from kernel preemption 3711 * off of irq context. 3712 * Note, that this is called and return with irqs disabled. This will 3713 * protect us against recursive calling from irq. 3714 */ 3715 asmlinkage __visible void __sched preempt_schedule_irq(void) 3716 { 3717 enum ctx_state prev_state; 3718 3719 /* Catch callers which need to be fixed */ 3720 BUG_ON(preempt_count() || !irqs_disabled()); 3721 3722 prev_state = exception_enter(); 3723 3724 do { 3725 preempt_disable(); 3726 local_irq_enable(); 3727 __schedule(true); 3728 local_irq_disable(); 3729 sched_preempt_enable_no_resched(); 3730 } while (need_resched()); 3731 3732 exception_exit(prev_state); 3733 } 3734 3735 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3736 void *key) 3737 { 3738 return try_to_wake_up(curr->private, mode, wake_flags); 3739 } 3740 EXPORT_SYMBOL(default_wake_function); 3741 3742 #ifdef CONFIG_RT_MUTEXES 3743 3744 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3745 { 3746 if (pi_task) 3747 prio = min(prio, pi_task->prio); 3748 3749 return prio; 3750 } 3751 3752 static inline int rt_effective_prio(struct task_struct *p, int prio) 3753 { 3754 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3755 3756 return __rt_effective_prio(pi_task, prio); 3757 } 3758 3759 /* 3760 * rt_mutex_setprio - set the current priority of a task 3761 * @p: task to boost 3762 * @pi_task: donor task 3763 * 3764 * This function changes the 'effective' priority of a task. It does 3765 * not touch ->normal_prio like __setscheduler(). 3766 * 3767 * Used by the rt_mutex code to implement priority inheritance 3768 * logic. Call site only calls if the priority of the task changed. 3769 */ 3770 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3771 { 3772 int prio, oldprio, queued, running, queue_flag = 3773 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3774 const struct sched_class *prev_class; 3775 struct rq_flags rf; 3776 struct rq *rq; 3777 3778 /* XXX used to be waiter->prio, not waiter->task->prio */ 3779 prio = __rt_effective_prio(pi_task, p->normal_prio); 3780 3781 /* 3782 * If nothing changed; bail early. 3783 */ 3784 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3785 return; 3786 3787 rq = __task_rq_lock(p, &rf); 3788 update_rq_clock(rq); 3789 /* 3790 * Set under pi_lock && rq->lock, such that the value can be used under 3791 * either lock. 3792 * 3793 * Note that there is loads of tricky to make this pointer cache work 3794 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3795 * ensure a task is de-boosted (pi_task is set to NULL) before the 3796 * task is allowed to run again (and can exit). This ensures the pointer 3797 * points to a blocked task -- which guaratees the task is present. 3798 */ 3799 p->pi_top_task = pi_task; 3800 3801 /* 3802 * For FIFO/RR we only need to set prio, if that matches we're done. 3803 */ 3804 if (prio == p->prio && !dl_prio(prio)) 3805 goto out_unlock; 3806 3807 /* 3808 * Idle task boosting is a nono in general. There is one 3809 * exception, when PREEMPT_RT and NOHZ is active: 3810 * 3811 * The idle task calls get_next_timer_interrupt() and holds 3812 * the timer wheel base->lock on the CPU and another CPU wants 3813 * to access the timer (probably to cancel it). We can safely 3814 * ignore the boosting request, as the idle CPU runs this code 3815 * with interrupts disabled and will complete the lock 3816 * protected section without being interrupted. So there is no 3817 * real need to boost. 3818 */ 3819 if (unlikely(p == rq->idle)) { 3820 WARN_ON(p != rq->curr); 3821 WARN_ON(p->pi_blocked_on); 3822 goto out_unlock; 3823 } 3824 3825 trace_sched_pi_setprio(p, pi_task); 3826 oldprio = p->prio; 3827 3828 if (oldprio == prio) 3829 queue_flag &= ~DEQUEUE_MOVE; 3830 3831 prev_class = p->sched_class; 3832 queued = task_on_rq_queued(p); 3833 running = task_current(rq, p); 3834 if (queued) 3835 dequeue_task(rq, p, queue_flag); 3836 if (running) 3837 put_prev_task(rq, p); 3838 3839 /* 3840 * Boosting condition are: 3841 * 1. -rt task is running and holds mutex A 3842 * --> -dl task blocks on mutex A 3843 * 3844 * 2. -dl task is running and holds mutex A 3845 * --> -dl task blocks on mutex A and could preempt the 3846 * running task 3847 */ 3848 if (dl_prio(prio)) { 3849 if (!dl_prio(p->normal_prio) || 3850 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3851 p->dl.dl_boosted = 1; 3852 queue_flag |= ENQUEUE_REPLENISH; 3853 } else 3854 p->dl.dl_boosted = 0; 3855 p->sched_class = &dl_sched_class; 3856 } else if (rt_prio(prio)) { 3857 if (dl_prio(oldprio)) 3858 p->dl.dl_boosted = 0; 3859 if (oldprio < prio) 3860 queue_flag |= ENQUEUE_HEAD; 3861 p->sched_class = &rt_sched_class; 3862 } else { 3863 if (dl_prio(oldprio)) 3864 p->dl.dl_boosted = 0; 3865 if (rt_prio(oldprio)) 3866 p->rt.timeout = 0; 3867 p->sched_class = &fair_sched_class; 3868 } 3869 3870 p->prio = prio; 3871 3872 if (queued) 3873 enqueue_task(rq, p, queue_flag); 3874 if (running) 3875 set_curr_task(rq, p); 3876 3877 check_class_changed(rq, p, prev_class, oldprio); 3878 out_unlock: 3879 /* Avoid rq from going away on us: */ 3880 preempt_disable(); 3881 __task_rq_unlock(rq, &rf); 3882 3883 balance_callback(rq); 3884 preempt_enable(); 3885 } 3886 #else 3887 static inline int rt_effective_prio(struct task_struct *p, int prio) 3888 { 3889 return prio; 3890 } 3891 #endif 3892 3893 void set_user_nice(struct task_struct *p, long nice) 3894 { 3895 bool queued, running; 3896 int old_prio, delta; 3897 struct rq_flags rf; 3898 struct rq *rq; 3899 3900 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3901 return; 3902 /* 3903 * We have to be careful, if called from sys_setpriority(), 3904 * the task might be in the middle of scheduling on another CPU. 3905 */ 3906 rq = task_rq_lock(p, &rf); 3907 update_rq_clock(rq); 3908 3909 /* 3910 * The RT priorities are set via sched_setscheduler(), but we still 3911 * allow the 'normal' nice value to be set - but as expected 3912 * it wont have any effect on scheduling until the task is 3913 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3914 */ 3915 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3916 p->static_prio = NICE_TO_PRIO(nice); 3917 goto out_unlock; 3918 } 3919 queued = task_on_rq_queued(p); 3920 running = task_current(rq, p); 3921 if (queued) 3922 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3923 if (running) 3924 put_prev_task(rq, p); 3925 3926 p->static_prio = NICE_TO_PRIO(nice); 3927 set_load_weight(p, true); 3928 old_prio = p->prio; 3929 p->prio = effective_prio(p); 3930 delta = p->prio - old_prio; 3931 3932 if (queued) { 3933 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3934 /* 3935 * If the task increased its priority or is running and 3936 * lowered its priority, then reschedule its CPU: 3937 */ 3938 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3939 resched_curr(rq); 3940 } 3941 if (running) 3942 set_curr_task(rq, p); 3943 out_unlock: 3944 task_rq_unlock(rq, p, &rf); 3945 } 3946 EXPORT_SYMBOL(set_user_nice); 3947 3948 /* 3949 * can_nice - check if a task can reduce its nice value 3950 * @p: task 3951 * @nice: nice value 3952 */ 3953 int can_nice(const struct task_struct *p, const int nice) 3954 { 3955 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3956 int nice_rlim = nice_to_rlimit(nice); 3957 3958 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3959 capable(CAP_SYS_NICE)); 3960 } 3961 3962 #ifdef __ARCH_WANT_SYS_NICE 3963 3964 /* 3965 * sys_nice - change the priority of the current process. 3966 * @increment: priority increment 3967 * 3968 * sys_setpriority is a more generic, but much slower function that 3969 * does similar things. 3970 */ 3971 SYSCALL_DEFINE1(nice, int, increment) 3972 { 3973 long nice, retval; 3974 3975 /* 3976 * Setpriority might change our priority at the same moment. 3977 * We don't have to worry. Conceptually one call occurs first 3978 * and we have a single winner. 3979 */ 3980 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3981 nice = task_nice(current) + increment; 3982 3983 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3984 if (increment < 0 && !can_nice(current, nice)) 3985 return -EPERM; 3986 3987 retval = security_task_setnice(current, nice); 3988 if (retval) 3989 return retval; 3990 3991 set_user_nice(current, nice); 3992 return 0; 3993 } 3994 3995 #endif 3996 3997 /** 3998 * task_prio - return the priority value of a given task. 3999 * @p: the task in question. 4000 * 4001 * Return: The priority value as seen by users in /proc. 4002 * RT tasks are offset by -200. Normal tasks are centered 4003 * around 0, value goes from -16 to +15. 4004 */ 4005 int task_prio(const struct task_struct *p) 4006 { 4007 return p->prio - MAX_RT_PRIO; 4008 } 4009 4010 /** 4011 * idle_cpu - is a given CPU idle currently? 4012 * @cpu: the processor in question. 4013 * 4014 * Return: 1 if the CPU is currently idle. 0 otherwise. 4015 */ 4016 int idle_cpu(int cpu) 4017 { 4018 struct rq *rq = cpu_rq(cpu); 4019 4020 if (rq->curr != rq->idle) 4021 return 0; 4022 4023 if (rq->nr_running) 4024 return 0; 4025 4026 #ifdef CONFIG_SMP 4027 if (!llist_empty(&rq->wake_list)) 4028 return 0; 4029 #endif 4030 4031 return 1; 4032 } 4033 4034 /** 4035 * available_idle_cpu - is a given CPU idle for enqueuing work. 4036 * @cpu: the CPU in question. 4037 * 4038 * Return: 1 if the CPU is currently idle. 0 otherwise. 4039 */ 4040 int available_idle_cpu(int cpu) 4041 { 4042 if (!idle_cpu(cpu)) 4043 return 0; 4044 4045 if (vcpu_is_preempted(cpu)) 4046 return 0; 4047 4048 return 1; 4049 } 4050 4051 /** 4052 * idle_task - return the idle task for a given CPU. 4053 * @cpu: the processor in question. 4054 * 4055 * Return: The idle task for the CPU @cpu. 4056 */ 4057 struct task_struct *idle_task(int cpu) 4058 { 4059 return cpu_rq(cpu)->idle; 4060 } 4061 4062 /** 4063 * find_process_by_pid - find a process with a matching PID value. 4064 * @pid: the pid in question. 4065 * 4066 * The task of @pid, if found. %NULL otherwise. 4067 */ 4068 static struct task_struct *find_process_by_pid(pid_t pid) 4069 { 4070 return pid ? find_task_by_vpid(pid) : current; 4071 } 4072 4073 /* 4074 * sched_setparam() passes in -1 for its policy, to let the functions 4075 * it calls know not to change it. 4076 */ 4077 #define SETPARAM_POLICY -1 4078 4079 static void __setscheduler_params(struct task_struct *p, 4080 const struct sched_attr *attr) 4081 { 4082 int policy = attr->sched_policy; 4083 4084 if (policy == SETPARAM_POLICY) 4085 policy = p->policy; 4086 4087 p->policy = policy; 4088 4089 if (dl_policy(policy)) 4090 __setparam_dl(p, attr); 4091 else if (fair_policy(policy)) 4092 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4093 4094 /* 4095 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4096 * !rt_policy. Always setting this ensures that things like 4097 * getparam()/getattr() don't report silly values for !rt tasks. 4098 */ 4099 p->rt_priority = attr->sched_priority; 4100 p->normal_prio = normal_prio(p); 4101 set_load_weight(p, true); 4102 } 4103 4104 /* Actually do priority change: must hold pi & rq lock. */ 4105 static void __setscheduler(struct rq *rq, struct task_struct *p, 4106 const struct sched_attr *attr, bool keep_boost) 4107 { 4108 __setscheduler_params(p, attr); 4109 4110 /* 4111 * Keep a potential priority boosting if called from 4112 * sched_setscheduler(). 4113 */ 4114 p->prio = normal_prio(p); 4115 if (keep_boost) 4116 p->prio = rt_effective_prio(p, p->prio); 4117 4118 if (dl_prio(p->prio)) 4119 p->sched_class = &dl_sched_class; 4120 else if (rt_prio(p->prio)) 4121 p->sched_class = &rt_sched_class; 4122 else 4123 p->sched_class = &fair_sched_class; 4124 } 4125 4126 /* 4127 * Check the target process has a UID that matches the current process's: 4128 */ 4129 static bool check_same_owner(struct task_struct *p) 4130 { 4131 const struct cred *cred = current_cred(), *pcred; 4132 bool match; 4133 4134 rcu_read_lock(); 4135 pcred = __task_cred(p); 4136 match = (uid_eq(cred->euid, pcred->euid) || 4137 uid_eq(cred->euid, pcred->uid)); 4138 rcu_read_unlock(); 4139 return match; 4140 } 4141 4142 static int __sched_setscheduler(struct task_struct *p, 4143 const struct sched_attr *attr, 4144 bool user, bool pi) 4145 { 4146 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4147 MAX_RT_PRIO - 1 - attr->sched_priority; 4148 int retval, oldprio, oldpolicy = -1, queued, running; 4149 int new_effective_prio, policy = attr->sched_policy; 4150 const struct sched_class *prev_class; 4151 struct rq_flags rf; 4152 int reset_on_fork; 4153 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4154 struct rq *rq; 4155 4156 /* The pi code expects interrupts enabled */ 4157 BUG_ON(pi && in_interrupt()); 4158 recheck: 4159 /* Double check policy once rq lock held: */ 4160 if (policy < 0) { 4161 reset_on_fork = p->sched_reset_on_fork; 4162 policy = oldpolicy = p->policy; 4163 } else { 4164 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4165 4166 if (!valid_policy(policy)) 4167 return -EINVAL; 4168 } 4169 4170 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4171 return -EINVAL; 4172 4173 /* 4174 * Valid priorities for SCHED_FIFO and SCHED_RR are 4175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4176 * SCHED_BATCH and SCHED_IDLE is 0. 4177 */ 4178 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4179 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4180 return -EINVAL; 4181 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4182 (rt_policy(policy) != (attr->sched_priority != 0))) 4183 return -EINVAL; 4184 4185 /* 4186 * Allow unprivileged RT tasks to decrease priority: 4187 */ 4188 if (user && !capable(CAP_SYS_NICE)) { 4189 if (fair_policy(policy)) { 4190 if (attr->sched_nice < task_nice(p) && 4191 !can_nice(p, attr->sched_nice)) 4192 return -EPERM; 4193 } 4194 4195 if (rt_policy(policy)) { 4196 unsigned long rlim_rtprio = 4197 task_rlimit(p, RLIMIT_RTPRIO); 4198 4199 /* Can't set/change the rt policy: */ 4200 if (policy != p->policy && !rlim_rtprio) 4201 return -EPERM; 4202 4203 /* Can't increase priority: */ 4204 if (attr->sched_priority > p->rt_priority && 4205 attr->sched_priority > rlim_rtprio) 4206 return -EPERM; 4207 } 4208 4209 /* 4210 * Can't set/change SCHED_DEADLINE policy at all for now 4211 * (safest behavior); in the future we would like to allow 4212 * unprivileged DL tasks to increase their relative deadline 4213 * or reduce their runtime (both ways reducing utilization) 4214 */ 4215 if (dl_policy(policy)) 4216 return -EPERM; 4217 4218 /* 4219 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4220 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4221 */ 4222 if (idle_policy(p->policy) && !idle_policy(policy)) { 4223 if (!can_nice(p, task_nice(p))) 4224 return -EPERM; 4225 } 4226 4227 /* Can't change other user's priorities: */ 4228 if (!check_same_owner(p)) 4229 return -EPERM; 4230 4231 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4232 if (p->sched_reset_on_fork && !reset_on_fork) 4233 return -EPERM; 4234 } 4235 4236 if (user) { 4237 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4238 return -EINVAL; 4239 4240 retval = security_task_setscheduler(p); 4241 if (retval) 4242 return retval; 4243 } 4244 4245 /* 4246 * Make sure no PI-waiters arrive (or leave) while we are 4247 * changing the priority of the task: 4248 * 4249 * To be able to change p->policy safely, the appropriate 4250 * runqueue lock must be held. 4251 */ 4252 rq = task_rq_lock(p, &rf); 4253 update_rq_clock(rq); 4254 4255 /* 4256 * Changing the policy of the stop threads its a very bad idea: 4257 */ 4258 if (p == rq->stop) { 4259 task_rq_unlock(rq, p, &rf); 4260 return -EINVAL; 4261 } 4262 4263 /* 4264 * If not changing anything there's no need to proceed further, 4265 * but store a possible modification of reset_on_fork. 4266 */ 4267 if (unlikely(policy == p->policy)) { 4268 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4269 goto change; 4270 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4271 goto change; 4272 if (dl_policy(policy) && dl_param_changed(p, attr)) 4273 goto change; 4274 4275 p->sched_reset_on_fork = reset_on_fork; 4276 task_rq_unlock(rq, p, &rf); 4277 return 0; 4278 } 4279 change: 4280 4281 if (user) { 4282 #ifdef CONFIG_RT_GROUP_SCHED 4283 /* 4284 * Do not allow realtime tasks into groups that have no runtime 4285 * assigned. 4286 */ 4287 if (rt_bandwidth_enabled() && rt_policy(policy) && 4288 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4289 !task_group_is_autogroup(task_group(p))) { 4290 task_rq_unlock(rq, p, &rf); 4291 return -EPERM; 4292 } 4293 #endif 4294 #ifdef CONFIG_SMP 4295 if (dl_bandwidth_enabled() && dl_policy(policy) && 4296 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4297 cpumask_t *span = rq->rd->span; 4298 4299 /* 4300 * Don't allow tasks with an affinity mask smaller than 4301 * the entire root_domain to become SCHED_DEADLINE. We 4302 * will also fail if there's no bandwidth available. 4303 */ 4304 if (!cpumask_subset(span, &p->cpus_allowed) || 4305 rq->rd->dl_bw.bw == 0) { 4306 task_rq_unlock(rq, p, &rf); 4307 return -EPERM; 4308 } 4309 } 4310 #endif 4311 } 4312 4313 /* Re-check policy now with rq lock held: */ 4314 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4315 policy = oldpolicy = -1; 4316 task_rq_unlock(rq, p, &rf); 4317 goto recheck; 4318 } 4319 4320 /* 4321 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4322 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4323 * is available. 4324 */ 4325 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4326 task_rq_unlock(rq, p, &rf); 4327 return -EBUSY; 4328 } 4329 4330 p->sched_reset_on_fork = reset_on_fork; 4331 oldprio = p->prio; 4332 4333 if (pi) { 4334 /* 4335 * Take priority boosted tasks into account. If the new 4336 * effective priority is unchanged, we just store the new 4337 * normal parameters and do not touch the scheduler class and 4338 * the runqueue. This will be done when the task deboost 4339 * itself. 4340 */ 4341 new_effective_prio = rt_effective_prio(p, newprio); 4342 if (new_effective_prio == oldprio) 4343 queue_flags &= ~DEQUEUE_MOVE; 4344 } 4345 4346 queued = task_on_rq_queued(p); 4347 running = task_current(rq, p); 4348 if (queued) 4349 dequeue_task(rq, p, queue_flags); 4350 if (running) 4351 put_prev_task(rq, p); 4352 4353 prev_class = p->sched_class; 4354 __setscheduler(rq, p, attr, pi); 4355 4356 if (queued) { 4357 /* 4358 * We enqueue to tail when the priority of a task is 4359 * increased (user space view). 4360 */ 4361 if (oldprio < p->prio) 4362 queue_flags |= ENQUEUE_HEAD; 4363 4364 enqueue_task(rq, p, queue_flags); 4365 } 4366 if (running) 4367 set_curr_task(rq, p); 4368 4369 check_class_changed(rq, p, prev_class, oldprio); 4370 4371 /* Avoid rq from going away on us: */ 4372 preempt_disable(); 4373 task_rq_unlock(rq, p, &rf); 4374 4375 if (pi) 4376 rt_mutex_adjust_pi(p); 4377 4378 /* Run balance callbacks after we've adjusted the PI chain: */ 4379 balance_callback(rq); 4380 preempt_enable(); 4381 4382 return 0; 4383 } 4384 4385 static int _sched_setscheduler(struct task_struct *p, int policy, 4386 const struct sched_param *param, bool check) 4387 { 4388 struct sched_attr attr = { 4389 .sched_policy = policy, 4390 .sched_priority = param->sched_priority, 4391 .sched_nice = PRIO_TO_NICE(p->static_prio), 4392 }; 4393 4394 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4395 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4396 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4397 policy &= ~SCHED_RESET_ON_FORK; 4398 attr.sched_policy = policy; 4399 } 4400 4401 return __sched_setscheduler(p, &attr, check, true); 4402 } 4403 /** 4404 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4405 * @p: the task in question. 4406 * @policy: new policy. 4407 * @param: structure containing the new RT priority. 4408 * 4409 * Return: 0 on success. An error code otherwise. 4410 * 4411 * NOTE that the task may be already dead. 4412 */ 4413 int sched_setscheduler(struct task_struct *p, int policy, 4414 const struct sched_param *param) 4415 { 4416 return _sched_setscheduler(p, policy, param, true); 4417 } 4418 EXPORT_SYMBOL_GPL(sched_setscheduler); 4419 4420 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4421 { 4422 return __sched_setscheduler(p, attr, true, true); 4423 } 4424 EXPORT_SYMBOL_GPL(sched_setattr); 4425 4426 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4427 { 4428 return __sched_setscheduler(p, attr, false, true); 4429 } 4430 4431 /** 4432 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4433 * @p: the task in question. 4434 * @policy: new policy. 4435 * @param: structure containing the new RT priority. 4436 * 4437 * Just like sched_setscheduler, only don't bother checking if the 4438 * current context has permission. For example, this is needed in 4439 * stop_machine(): we create temporary high priority worker threads, 4440 * but our caller might not have that capability. 4441 * 4442 * Return: 0 on success. An error code otherwise. 4443 */ 4444 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4445 const struct sched_param *param) 4446 { 4447 return _sched_setscheduler(p, policy, param, false); 4448 } 4449 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4450 4451 static int 4452 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4453 { 4454 struct sched_param lparam; 4455 struct task_struct *p; 4456 int retval; 4457 4458 if (!param || pid < 0) 4459 return -EINVAL; 4460 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4461 return -EFAULT; 4462 4463 rcu_read_lock(); 4464 retval = -ESRCH; 4465 p = find_process_by_pid(pid); 4466 if (p != NULL) 4467 retval = sched_setscheduler(p, policy, &lparam); 4468 rcu_read_unlock(); 4469 4470 return retval; 4471 } 4472 4473 /* 4474 * Mimics kernel/events/core.c perf_copy_attr(). 4475 */ 4476 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4477 { 4478 u32 size; 4479 int ret; 4480 4481 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4482 return -EFAULT; 4483 4484 /* Zero the full structure, so that a short copy will be nice: */ 4485 memset(attr, 0, sizeof(*attr)); 4486 4487 ret = get_user(size, &uattr->size); 4488 if (ret) 4489 return ret; 4490 4491 /* Bail out on silly large: */ 4492 if (size > PAGE_SIZE) 4493 goto err_size; 4494 4495 /* ABI compatibility quirk: */ 4496 if (!size) 4497 size = SCHED_ATTR_SIZE_VER0; 4498 4499 if (size < SCHED_ATTR_SIZE_VER0) 4500 goto err_size; 4501 4502 /* 4503 * If we're handed a bigger struct than we know of, 4504 * ensure all the unknown bits are 0 - i.e. new 4505 * user-space does not rely on any kernel feature 4506 * extensions we dont know about yet. 4507 */ 4508 if (size > sizeof(*attr)) { 4509 unsigned char __user *addr; 4510 unsigned char __user *end; 4511 unsigned char val; 4512 4513 addr = (void __user *)uattr + sizeof(*attr); 4514 end = (void __user *)uattr + size; 4515 4516 for (; addr < end; addr++) { 4517 ret = get_user(val, addr); 4518 if (ret) 4519 return ret; 4520 if (val) 4521 goto err_size; 4522 } 4523 size = sizeof(*attr); 4524 } 4525 4526 ret = copy_from_user(attr, uattr, size); 4527 if (ret) 4528 return -EFAULT; 4529 4530 /* 4531 * XXX: Do we want to be lenient like existing syscalls; or do we want 4532 * to be strict and return an error on out-of-bounds values? 4533 */ 4534 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4535 4536 return 0; 4537 4538 err_size: 4539 put_user(sizeof(*attr), &uattr->size); 4540 return -E2BIG; 4541 } 4542 4543 /** 4544 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4545 * @pid: the pid in question. 4546 * @policy: new policy. 4547 * @param: structure containing the new RT priority. 4548 * 4549 * Return: 0 on success. An error code otherwise. 4550 */ 4551 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4552 { 4553 if (policy < 0) 4554 return -EINVAL; 4555 4556 return do_sched_setscheduler(pid, policy, param); 4557 } 4558 4559 /** 4560 * sys_sched_setparam - set/change the RT priority of a thread 4561 * @pid: the pid in question. 4562 * @param: structure containing the new RT priority. 4563 * 4564 * Return: 0 on success. An error code otherwise. 4565 */ 4566 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4567 { 4568 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4569 } 4570 4571 /** 4572 * sys_sched_setattr - same as above, but with extended sched_attr 4573 * @pid: the pid in question. 4574 * @uattr: structure containing the extended parameters. 4575 * @flags: for future extension. 4576 */ 4577 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4578 unsigned int, flags) 4579 { 4580 struct sched_attr attr; 4581 struct task_struct *p; 4582 int retval; 4583 4584 if (!uattr || pid < 0 || flags) 4585 return -EINVAL; 4586 4587 retval = sched_copy_attr(uattr, &attr); 4588 if (retval) 4589 return retval; 4590 4591 if ((int)attr.sched_policy < 0) 4592 return -EINVAL; 4593 4594 rcu_read_lock(); 4595 retval = -ESRCH; 4596 p = find_process_by_pid(pid); 4597 if (p != NULL) 4598 retval = sched_setattr(p, &attr); 4599 rcu_read_unlock(); 4600 4601 return retval; 4602 } 4603 4604 /** 4605 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4606 * @pid: the pid in question. 4607 * 4608 * Return: On success, the policy of the thread. Otherwise, a negative error 4609 * code. 4610 */ 4611 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4612 { 4613 struct task_struct *p; 4614 int retval; 4615 4616 if (pid < 0) 4617 return -EINVAL; 4618 4619 retval = -ESRCH; 4620 rcu_read_lock(); 4621 p = find_process_by_pid(pid); 4622 if (p) { 4623 retval = security_task_getscheduler(p); 4624 if (!retval) 4625 retval = p->policy 4626 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4627 } 4628 rcu_read_unlock(); 4629 return retval; 4630 } 4631 4632 /** 4633 * sys_sched_getparam - get the RT priority of a thread 4634 * @pid: the pid in question. 4635 * @param: structure containing the RT priority. 4636 * 4637 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4638 * code. 4639 */ 4640 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4641 { 4642 struct sched_param lp = { .sched_priority = 0 }; 4643 struct task_struct *p; 4644 int retval; 4645 4646 if (!param || pid < 0) 4647 return -EINVAL; 4648 4649 rcu_read_lock(); 4650 p = find_process_by_pid(pid); 4651 retval = -ESRCH; 4652 if (!p) 4653 goto out_unlock; 4654 4655 retval = security_task_getscheduler(p); 4656 if (retval) 4657 goto out_unlock; 4658 4659 if (task_has_rt_policy(p)) 4660 lp.sched_priority = p->rt_priority; 4661 rcu_read_unlock(); 4662 4663 /* 4664 * This one might sleep, we cannot do it with a spinlock held ... 4665 */ 4666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4667 4668 return retval; 4669 4670 out_unlock: 4671 rcu_read_unlock(); 4672 return retval; 4673 } 4674 4675 static int sched_read_attr(struct sched_attr __user *uattr, 4676 struct sched_attr *attr, 4677 unsigned int usize) 4678 { 4679 int ret; 4680 4681 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4682 return -EFAULT; 4683 4684 /* 4685 * If we're handed a smaller struct than we know of, 4686 * ensure all the unknown bits are 0 - i.e. old 4687 * user-space does not get uncomplete information. 4688 */ 4689 if (usize < sizeof(*attr)) { 4690 unsigned char *addr; 4691 unsigned char *end; 4692 4693 addr = (void *)attr + usize; 4694 end = (void *)attr + sizeof(*attr); 4695 4696 for (; addr < end; addr++) { 4697 if (*addr) 4698 return -EFBIG; 4699 } 4700 4701 attr->size = usize; 4702 } 4703 4704 ret = copy_to_user(uattr, attr, attr->size); 4705 if (ret) 4706 return -EFAULT; 4707 4708 return 0; 4709 } 4710 4711 /** 4712 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4713 * @pid: the pid in question. 4714 * @uattr: structure containing the extended parameters. 4715 * @size: sizeof(attr) for fwd/bwd comp. 4716 * @flags: for future extension. 4717 */ 4718 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4719 unsigned int, size, unsigned int, flags) 4720 { 4721 struct sched_attr attr = { 4722 .size = sizeof(struct sched_attr), 4723 }; 4724 struct task_struct *p; 4725 int retval; 4726 4727 if (!uattr || pid < 0 || size > PAGE_SIZE || 4728 size < SCHED_ATTR_SIZE_VER0 || flags) 4729 return -EINVAL; 4730 4731 rcu_read_lock(); 4732 p = find_process_by_pid(pid); 4733 retval = -ESRCH; 4734 if (!p) 4735 goto out_unlock; 4736 4737 retval = security_task_getscheduler(p); 4738 if (retval) 4739 goto out_unlock; 4740 4741 attr.sched_policy = p->policy; 4742 if (p->sched_reset_on_fork) 4743 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4744 if (task_has_dl_policy(p)) 4745 __getparam_dl(p, &attr); 4746 else if (task_has_rt_policy(p)) 4747 attr.sched_priority = p->rt_priority; 4748 else 4749 attr.sched_nice = task_nice(p); 4750 4751 rcu_read_unlock(); 4752 4753 retval = sched_read_attr(uattr, &attr, size); 4754 return retval; 4755 4756 out_unlock: 4757 rcu_read_unlock(); 4758 return retval; 4759 } 4760 4761 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4762 { 4763 cpumask_var_t cpus_allowed, new_mask; 4764 struct task_struct *p; 4765 int retval; 4766 4767 rcu_read_lock(); 4768 4769 p = find_process_by_pid(pid); 4770 if (!p) { 4771 rcu_read_unlock(); 4772 return -ESRCH; 4773 } 4774 4775 /* Prevent p going away */ 4776 get_task_struct(p); 4777 rcu_read_unlock(); 4778 4779 if (p->flags & PF_NO_SETAFFINITY) { 4780 retval = -EINVAL; 4781 goto out_put_task; 4782 } 4783 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4784 retval = -ENOMEM; 4785 goto out_put_task; 4786 } 4787 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4788 retval = -ENOMEM; 4789 goto out_free_cpus_allowed; 4790 } 4791 retval = -EPERM; 4792 if (!check_same_owner(p)) { 4793 rcu_read_lock(); 4794 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4795 rcu_read_unlock(); 4796 goto out_free_new_mask; 4797 } 4798 rcu_read_unlock(); 4799 } 4800 4801 retval = security_task_setscheduler(p); 4802 if (retval) 4803 goto out_free_new_mask; 4804 4805 4806 cpuset_cpus_allowed(p, cpus_allowed); 4807 cpumask_and(new_mask, in_mask, cpus_allowed); 4808 4809 /* 4810 * Since bandwidth control happens on root_domain basis, 4811 * if admission test is enabled, we only admit -deadline 4812 * tasks allowed to run on all the CPUs in the task's 4813 * root_domain. 4814 */ 4815 #ifdef CONFIG_SMP 4816 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4817 rcu_read_lock(); 4818 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4819 retval = -EBUSY; 4820 rcu_read_unlock(); 4821 goto out_free_new_mask; 4822 } 4823 rcu_read_unlock(); 4824 } 4825 #endif 4826 again: 4827 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4828 4829 if (!retval) { 4830 cpuset_cpus_allowed(p, cpus_allowed); 4831 if (!cpumask_subset(new_mask, cpus_allowed)) { 4832 /* 4833 * We must have raced with a concurrent cpuset 4834 * update. Just reset the cpus_allowed to the 4835 * cpuset's cpus_allowed 4836 */ 4837 cpumask_copy(new_mask, cpus_allowed); 4838 goto again; 4839 } 4840 } 4841 out_free_new_mask: 4842 free_cpumask_var(new_mask); 4843 out_free_cpus_allowed: 4844 free_cpumask_var(cpus_allowed); 4845 out_put_task: 4846 put_task_struct(p); 4847 return retval; 4848 } 4849 4850 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4851 struct cpumask *new_mask) 4852 { 4853 if (len < cpumask_size()) 4854 cpumask_clear(new_mask); 4855 else if (len > cpumask_size()) 4856 len = cpumask_size(); 4857 4858 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4859 } 4860 4861 /** 4862 * sys_sched_setaffinity - set the CPU affinity of a process 4863 * @pid: pid of the process 4864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4865 * @user_mask_ptr: user-space pointer to the new CPU mask 4866 * 4867 * Return: 0 on success. An error code otherwise. 4868 */ 4869 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4870 unsigned long __user *, user_mask_ptr) 4871 { 4872 cpumask_var_t new_mask; 4873 int retval; 4874 4875 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4876 return -ENOMEM; 4877 4878 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4879 if (retval == 0) 4880 retval = sched_setaffinity(pid, new_mask); 4881 free_cpumask_var(new_mask); 4882 return retval; 4883 } 4884 4885 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4886 { 4887 struct task_struct *p; 4888 unsigned long flags; 4889 int retval; 4890 4891 rcu_read_lock(); 4892 4893 retval = -ESRCH; 4894 p = find_process_by_pid(pid); 4895 if (!p) 4896 goto out_unlock; 4897 4898 retval = security_task_getscheduler(p); 4899 if (retval) 4900 goto out_unlock; 4901 4902 raw_spin_lock_irqsave(&p->pi_lock, flags); 4903 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4904 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4905 4906 out_unlock: 4907 rcu_read_unlock(); 4908 4909 return retval; 4910 } 4911 4912 /** 4913 * sys_sched_getaffinity - get the CPU affinity of a process 4914 * @pid: pid of the process 4915 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4916 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4917 * 4918 * Return: size of CPU mask copied to user_mask_ptr on success. An 4919 * error code otherwise. 4920 */ 4921 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4922 unsigned long __user *, user_mask_ptr) 4923 { 4924 int ret; 4925 cpumask_var_t mask; 4926 4927 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4928 return -EINVAL; 4929 if (len & (sizeof(unsigned long)-1)) 4930 return -EINVAL; 4931 4932 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4933 return -ENOMEM; 4934 4935 ret = sched_getaffinity(pid, mask); 4936 if (ret == 0) { 4937 unsigned int retlen = min(len, cpumask_size()); 4938 4939 if (copy_to_user(user_mask_ptr, mask, retlen)) 4940 ret = -EFAULT; 4941 else 4942 ret = retlen; 4943 } 4944 free_cpumask_var(mask); 4945 4946 return ret; 4947 } 4948 4949 /** 4950 * sys_sched_yield - yield the current processor to other threads. 4951 * 4952 * This function yields the current CPU to other tasks. If there are no 4953 * other threads running on this CPU then this function will return. 4954 * 4955 * Return: 0. 4956 */ 4957 static void do_sched_yield(void) 4958 { 4959 struct rq_flags rf; 4960 struct rq *rq; 4961 4962 local_irq_disable(); 4963 rq = this_rq(); 4964 rq_lock(rq, &rf); 4965 4966 schedstat_inc(rq->yld_count); 4967 current->sched_class->yield_task(rq); 4968 4969 /* 4970 * Since we are going to call schedule() anyway, there's 4971 * no need to preempt or enable interrupts: 4972 */ 4973 preempt_disable(); 4974 rq_unlock(rq, &rf); 4975 sched_preempt_enable_no_resched(); 4976 4977 schedule(); 4978 } 4979 4980 SYSCALL_DEFINE0(sched_yield) 4981 { 4982 do_sched_yield(); 4983 return 0; 4984 } 4985 4986 #ifndef CONFIG_PREEMPT 4987 int __sched _cond_resched(void) 4988 { 4989 if (should_resched(0)) { 4990 preempt_schedule_common(); 4991 return 1; 4992 } 4993 rcu_all_qs(); 4994 return 0; 4995 } 4996 EXPORT_SYMBOL(_cond_resched); 4997 #endif 4998 4999 /* 5000 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5001 * call schedule, and on return reacquire the lock. 5002 * 5003 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5004 * operations here to prevent schedule() from being called twice (once via 5005 * spin_unlock(), once by hand). 5006 */ 5007 int __cond_resched_lock(spinlock_t *lock) 5008 { 5009 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5010 int ret = 0; 5011 5012 lockdep_assert_held(lock); 5013 5014 if (spin_needbreak(lock) || resched) { 5015 spin_unlock(lock); 5016 if (resched) 5017 preempt_schedule_common(); 5018 else 5019 cpu_relax(); 5020 ret = 1; 5021 spin_lock(lock); 5022 } 5023 return ret; 5024 } 5025 EXPORT_SYMBOL(__cond_resched_lock); 5026 5027 /** 5028 * yield - yield the current processor to other threads. 5029 * 5030 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5031 * 5032 * The scheduler is at all times free to pick the calling task as the most 5033 * eligible task to run, if removing the yield() call from your code breaks 5034 * it, its already broken. 5035 * 5036 * Typical broken usage is: 5037 * 5038 * while (!event) 5039 * yield(); 5040 * 5041 * where one assumes that yield() will let 'the other' process run that will 5042 * make event true. If the current task is a SCHED_FIFO task that will never 5043 * happen. Never use yield() as a progress guarantee!! 5044 * 5045 * If you want to use yield() to wait for something, use wait_event(). 5046 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5047 * If you still want to use yield(), do not! 5048 */ 5049 void __sched yield(void) 5050 { 5051 set_current_state(TASK_RUNNING); 5052 do_sched_yield(); 5053 } 5054 EXPORT_SYMBOL(yield); 5055 5056 /** 5057 * yield_to - yield the current processor to another thread in 5058 * your thread group, or accelerate that thread toward the 5059 * processor it's on. 5060 * @p: target task 5061 * @preempt: whether task preemption is allowed or not 5062 * 5063 * It's the caller's job to ensure that the target task struct 5064 * can't go away on us before we can do any checks. 5065 * 5066 * Return: 5067 * true (>0) if we indeed boosted the target task. 5068 * false (0) if we failed to boost the target. 5069 * -ESRCH if there's no task to yield to. 5070 */ 5071 int __sched yield_to(struct task_struct *p, bool preempt) 5072 { 5073 struct task_struct *curr = current; 5074 struct rq *rq, *p_rq; 5075 unsigned long flags; 5076 int yielded = 0; 5077 5078 local_irq_save(flags); 5079 rq = this_rq(); 5080 5081 again: 5082 p_rq = task_rq(p); 5083 /* 5084 * If we're the only runnable task on the rq and target rq also 5085 * has only one task, there's absolutely no point in yielding. 5086 */ 5087 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5088 yielded = -ESRCH; 5089 goto out_irq; 5090 } 5091 5092 double_rq_lock(rq, p_rq); 5093 if (task_rq(p) != p_rq) { 5094 double_rq_unlock(rq, p_rq); 5095 goto again; 5096 } 5097 5098 if (!curr->sched_class->yield_to_task) 5099 goto out_unlock; 5100 5101 if (curr->sched_class != p->sched_class) 5102 goto out_unlock; 5103 5104 if (task_running(p_rq, p) || p->state) 5105 goto out_unlock; 5106 5107 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5108 if (yielded) { 5109 schedstat_inc(rq->yld_count); 5110 /* 5111 * Make p's CPU reschedule; pick_next_entity takes care of 5112 * fairness. 5113 */ 5114 if (preempt && rq != p_rq) 5115 resched_curr(p_rq); 5116 } 5117 5118 out_unlock: 5119 double_rq_unlock(rq, p_rq); 5120 out_irq: 5121 local_irq_restore(flags); 5122 5123 if (yielded > 0) 5124 schedule(); 5125 5126 return yielded; 5127 } 5128 EXPORT_SYMBOL_GPL(yield_to); 5129 5130 int io_schedule_prepare(void) 5131 { 5132 int old_iowait = current->in_iowait; 5133 5134 current->in_iowait = 1; 5135 blk_schedule_flush_plug(current); 5136 5137 return old_iowait; 5138 } 5139 5140 void io_schedule_finish(int token) 5141 { 5142 current->in_iowait = token; 5143 } 5144 5145 /* 5146 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5147 * that process accounting knows that this is a task in IO wait state. 5148 */ 5149 long __sched io_schedule_timeout(long timeout) 5150 { 5151 int token; 5152 long ret; 5153 5154 token = io_schedule_prepare(); 5155 ret = schedule_timeout(timeout); 5156 io_schedule_finish(token); 5157 5158 return ret; 5159 } 5160 EXPORT_SYMBOL(io_schedule_timeout); 5161 5162 void io_schedule(void) 5163 { 5164 int token; 5165 5166 token = io_schedule_prepare(); 5167 schedule(); 5168 io_schedule_finish(token); 5169 } 5170 EXPORT_SYMBOL(io_schedule); 5171 5172 /** 5173 * sys_sched_get_priority_max - return maximum RT priority. 5174 * @policy: scheduling class. 5175 * 5176 * Return: On success, this syscall returns the maximum 5177 * rt_priority that can be used by a given scheduling class. 5178 * On failure, a negative error code is returned. 5179 */ 5180 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5181 { 5182 int ret = -EINVAL; 5183 5184 switch (policy) { 5185 case SCHED_FIFO: 5186 case SCHED_RR: 5187 ret = MAX_USER_RT_PRIO-1; 5188 break; 5189 case SCHED_DEADLINE: 5190 case SCHED_NORMAL: 5191 case SCHED_BATCH: 5192 case SCHED_IDLE: 5193 ret = 0; 5194 break; 5195 } 5196 return ret; 5197 } 5198 5199 /** 5200 * sys_sched_get_priority_min - return minimum RT priority. 5201 * @policy: scheduling class. 5202 * 5203 * Return: On success, this syscall returns the minimum 5204 * rt_priority that can be used by a given scheduling class. 5205 * On failure, a negative error code is returned. 5206 */ 5207 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5208 { 5209 int ret = -EINVAL; 5210 5211 switch (policy) { 5212 case SCHED_FIFO: 5213 case SCHED_RR: 5214 ret = 1; 5215 break; 5216 case SCHED_DEADLINE: 5217 case SCHED_NORMAL: 5218 case SCHED_BATCH: 5219 case SCHED_IDLE: 5220 ret = 0; 5221 } 5222 return ret; 5223 } 5224 5225 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5226 { 5227 struct task_struct *p; 5228 unsigned int time_slice; 5229 struct rq_flags rf; 5230 struct rq *rq; 5231 int retval; 5232 5233 if (pid < 0) 5234 return -EINVAL; 5235 5236 retval = -ESRCH; 5237 rcu_read_lock(); 5238 p = find_process_by_pid(pid); 5239 if (!p) 5240 goto out_unlock; 5241 5242 retval = security_task_getscheduler(p); 5243 if (retval) 5244 goto out_unlock; 5245 5246 rq = task_rq_lock(p, &rf); 5247 time_slice = 0; 5248 if (p->sched_class->get_rr_interval) 5249 time_slice = p->sched_class->get_rr_interval(rq, p); 5250 task_rq_unlock(rq, p, &rf); 5251 5252 rcu_read_unlock(); 5253 jiffies_to_timespec64(time_slice, t); 5254 return 0; 5255 5256 out_unlock: 5257 rcu_read_unlock(); 5258 return retval; 5259 } 5260 5261 /** 5262 * sys_sched_rr_get_interval - return the default timeslice of a process. 5263 * @pid: pid of the process. 5264 * @interval: userspace pointer to the timeslice value. 5265 * 5266 * this syscall writes the default timeslice value of a given process 5267 * into the user-space timespec buffer. A value of '0' means infinity. 5268 * 5269 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5270 * an error code. 5271 */ 5272 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5273 struct timespec __user *, interval) 5274 { 5275 struct timespec64 t; 5276 int retval = sched_rr_get_interval(pid, &t); 5277 5278 if (retval == 0) 5279 retval = put_timespec64(&t, interval); 5280 5281 return retval; 5282 } 5283 5284 #ifdef CONFIG_COMPAT 5285 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5286 compat_pid_t, pid, 5287 struct compat_timespec __user *, interval) 5288 { 5289 struct timespec64 t; 5290 int retval = sched_rr_get_interval(pid, &t); 5291 5292 if (retval == 0) 5293 retval = compat_put_timespec64(&t, interval); 5294 return retval; 5295 } 5296 #endif 5297 5298 void sched_show_task(struct task_struct *p) 5299 { 5300 unsigned long free = 0; 5301 int ppid; 5302 5303 if (!try_get_task_stack(p)) 5304 return; 5305 5306 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5307 5308 if (p->state == TASK_RUNNING) 5309 printk(KERN_CONT " running task "); 5310 #ifdef CONFIG_DEBUG_STACK_USAGE 5311 free = stack_not_used(p); 5312 #endif 5313 ppid = 0; 5314 rcu_read_lock(); 5315 if (pid_alive(p)) 5316 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5317 rcu_read_unlock(); 5318 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5319 task_pid_nr(p), ppid, 5320 (unsigned long)task_thread_info(p)->flags); 5321 5322 print_worker_info(KERN_INFO, p); 5323 show_stack(p, NULL); 5324 put_task_stack(p); 5325 } 5326 EXPORT_SYMBOL_GPL(sched_show_task); 5327 5328 static inline bool 5329 state_filter_match(unsigned long state_filter, struct task_struct *p) 5330 { 5331 /* no filter, everything matches */ 5332 if (!state_filter) 5333 return true; 5334 5335 /* filter, but doesn't match */ 5336 if (!(p->state & state_filter)) 5337 return false; 5338 5339 /* 5340 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5341 * TASK_KILLABLE). 5342 */ 5343 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5344 return false; 5345 5346 return true; 5347 } 5348 5349 5350 void show_state_filter(unsigned long state_filter) 5351 { 5352 struct task_struct *g, *p; 5353 5354 #if BITS_PER_LONG == 32 5355 printk(KERN_INFO 5356 " task PC stack pid father\n"); 5357 #else 5358 printk(KERN_INFO 5359 " task PC stack pid father\n"); 5360 #endif 5361 rcu_read_lock(); 5362 for_each_process_thread(g, p) { 5363 /* 5364 * reset the NMI-timeout, listing all files on a slow 5365 * console might take a lot of time: 5366 * Also, reset softlockup watchdogs on all CPUs, because 5367 * another CPU might be blocked waiting for us to process 5368 * an IPI. 5369 */ 5370 touch_nmi_watchdog(); 5371 touch_all_softlockup_watchdogs(); 5372 if (state_filter_match(state_filter, p)) 5373 sched_show_task(p); 5374 } 5375 5376 #ifdef CONFIG_SCHED_DEBUG 5377 if (!state_filter) 5378 sysrq_sched_debug_show(); 5379 #endif 5380 rcu_read_unlock(); 5381 /* 5382 * Only show locks if all tasks are dumped: 5383 */ 5384 if (!state_filter) 5385 debug_show_all_locks(); 5386 } 5387 5388 /** 5389 * init_idle - set up an idle thread for a given CPU 5390 * @idle: task in question 5391 * @cpu: CPU the idle task belongs to 5392 * 5393 * NOTE: this function does not set the idle thread's NEED_RESCHED 5394 * flag, to make booting more robust. 5395 */ 5396 void init_idle(struct task_struct *idle, int cpu) 5397 { 5398 struct rq *rq = cpu_rq(cpu); 5399 unsigned long flags; 5400 5401 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5402 raw_spin_lock(&rq->lock); 5403 5404 __sched_fork(0, idle); 5405 idle->state = TASK_RUNNING; 5406 idle->se.exec_start = sched_clock(); 5407 idle->flags |= PF_IDLE; 5408 5409 kasan_unpoison_task_stack(idle); 5410 5411 #ifdef CONFIG_SMP 5412 /* 5413 * Its possible that init_idle() gets called multiple times on a task, 5414 * in that case do_set_cpus_allowed() will not do the right thing. 5415 * 5416 * And since this is boot we can forgo the serialization. 5417 */ 5418 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5419 #endif 5420 /* 5421 * We're having a chicken and egg problem, even though we are 5422 * holding rq->lock, the CPU isn't yet set to this CPU so the 5423 * lockdep check in task_group() will fail. 5424 * 5425 * Similar case to sched_fork(). / Alternatively we could 5426 * use task_rq_lock() here and obtain the other rq->lock. 5427 * 5428 * Silence PROVE_RCU 5429 */ 5430 rcu_read_lock(); 5431 __set_task_cpu(idle, cpu); 5432 rcu_read_unlock(); 5433 5434 rq->curr = rq->idle = idle; 5435 idle->on_rq = TASK_ON_RQ_QUEUED; 5436 #ifdef CONFIG_SMP 5437 idle->on_cpu = 1; 5438 #endif 5439 raw_spin_unlock(&rq->lock); 5440 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5441 5442 /* Set the preempt count _outside_ the spinlocks! */ 5443 init_idle_preempt_count(idle, cpu); 5444 5445 /* 5446 * The idle tasks have their own, simple scheduling class: 5447 */ 5448 idle->sched_class = &idle_sched_class; 5449 ftrace_graph_init_idle_task(idle, cpu); 5450 vtime_init_idle(idle, cpu); 5451 #ifdef CONFIG_SMP 5452 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5453 #endif 5454 } 5455 5456 #ifdef CONFIG_SMP 5457 5458 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5459 const struct cpumask *trial) 5460 { 5461 int ret = 1; 5462 5463 if (!cpumask_weight(cur)) 5464 return ret; 5465 5466 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5467 5468 return ret; 5469 } 5470 5471 int task_can_attach(struct task_struct *p, 5472 const struct cpumask *cs_cpus_allowed) 5473 { 5474 int ret = 0; 5475 5476 /* 5477 * Kthreads which disallow setaffinity shouldn't be moved 5478 * to a new cpuset; we don't want to change their CPU 5479 * affinity and isolating such threads by their set of 5480 * allowed nodes is unnecessary. Thus, cpusets are not 5481 * applicable for such threads. This prevents checking for 5482 * success of set_cpus_allowed_ptr() on all attached tasks 5483 * before cpus_allowed may be changed. 5484 */ 5485 if (p->flags & PF_NO_SETAFFINITY) { 5486 ret = -EINVAL; 5487 goto out; 5488 } 5489 5490 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5491 cs_cpus_allowed)) 5492 ret = dl_task_can_attach(p, cs_cpus_allowed); 5493 5494 out: 5495 return ret; 5496 } 5497 5498 bool sched_smp_initialized __read_mostly; 5499 5500 #ifdef CONFIG_NUMA_BALANCING 5501 /* Migrate current task p to target_cpu */ 5502 int migrate_task_to(struct task_struct *p, int target_cpu) 5503 { 5504 struct migration_arg arg = { p, target_cpu }; 5505 int curr_cpu = task_cpu(p); 5506 5507 if (curr_cpu == target_cpu) 5508 return 0; 5509 5510 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5511 return -EINVAL; 5512 5513 /* TODO: This is not properly updating schedstats */ 5514 5515 trace_sched_move_numa(p, curr_cpu, target_cpu); 5516 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5517 } 5518 5519 /* 5520 * Requeue a task on a given node and accurately track the number of NUMA 5521 * tasks on the runqueues 5522 */ 5523 void sched_setnuma(struct task_struct *p, int nid) 5524 { 5525 bool queued, running; 5526 struct rq_flags rf; 5527 struct rq *rq; 5528 5529 rq = task_rq_lock(p, &rf); 5530 queued = task_on_rq_queued(p); 5531 running = task_current(rq, p); 5532 5533 if (queued) 5534 dequeue_task(rq, p, DEQUEUE_SAVE); 5535 if (running) 5536 put_prev_task(rq, p); 5537 5538 p->numa_preferred_nid = nid; 5539 5540 if (queued) 5541 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5542 if (running) 5543 set_curr_task(rq, p); 5544 task_rq_unlock(rq, p, &rf); 5545 } 5546 #endif /* CONFIG_NUMA_BALANCING */ 5547 5548 #ifdef CONFIG_HOTPLUG_CPU 5549 /* 5550 * Ensure that the idle task is using init_mm right before its CPU goes 5551 * offline. 5552 */ 5553 void idle_task_exit(void) 5554 { 5555 struct mm_struct *mm = current->active_mm; 5556 5557 BUG_ON(cpu_online(smp_processor_id())); 5558 5559 if (mm != &init_mm) { 5560 switch_mm(mm, &init_mm, current); 5561 current->active_mm = &init_mm; 5562 finish_arch_post_lock_switch(); 5563 } 5564 mmdrop(mm); 5565 } 5566 5567 /* 5568 * Since this CPU is going 'away' for a while, fold any nr_active delta 5569 * we might have. Assumes we're called after migrate_tasks() so that the 5570 * nr_active count is stable. We need to take the teardown thread which 5571 * is calling this into account, so we hand in adjust = 1 to the load 5572 * calculation. 5573 * 5574 * Also see the comment "Global load-average calculations". 5575 */ 5576 static void calc_load_migrate(struct rq *rq) 5577 { 5578 long delta = calc_load_fold_active(rq, 1); 5579 if (delta) 5580 atomic_long_add(delta, &calc_load_tasks); 5581 } 5582 5583 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5584 { 5585 } 5586 5587 static const struct sched_class fake_sched_class = { 5588 .put_prev_task = put_prev_task_fake, 5589 }; 5590 5591 static struct task_struct fake_task = { 5592 /* 5593 * Avoid pull_{rt,dl}_task() 5594 */ 5595 .prio = MAX_PRIO + 1, 5596 .sched_class = &fake_sched_class, 5597 }; 5598 5599 /* 5600 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5601 * try_to_wake_up()->select_task_rq(). 5602 * 5603 * Called with rq->lock held even though we'er in stop_machine() and 5604 * there's no concurrency possible, we hold the required locks anyway 5605 * because of lock validation efforts. 5606 */ 5607 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5608 { 5609 struct rq *rq = dead_rq; 5610 struct task_struct *next, *stop = rq->stop; 5611 struct rq_flags orf = *rf; 5612 int dest_cpu; 5613 5614 /* 5615 * Fudge the rq selection such that the below task selection loop 5616 * doesn't get stuck on the currently eligible stop task. 5617 * 5618 * We're currently inside stop_machine() and the rq is either stuck 5619 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5620 * either way we should never end up calling schedule() until we're 5621 * done here. 5622 */ 5623 rq->stop = NULL; 5624 5625 /* 5626 * put_prev_task() and pick_next_task() sched 5627 * class method both need to have an up-to-date 5628 * value of rq->clock[_task] 5629 */ 5630 update_rq_clock(rq); 5631 5632 for (;;) { 5633 /* 5634 * There's this thread running, bail when that's the only 5635 * remaining thread: 5636 */ 5637 if (rq->nr_running == 1) 5638 break; 5639 5640 /* 5641 * pick_next_task() assumes pinned rq->lock: 5642 */ 5643 next = pick_next_task(rq, &fake_task, rf); 5644 BUG_ON(!next); 5645 put_prev_task(rq, next); 5646 5647 /* 5648 * Rules for changing task_struct::cpus_allowed are holding 5649 * both pi_lock and rq->lock, such that holding either 5650 * stabilizes the mask. 5651 * 5652 * Drop rq->lock is not quite as disastrous as it usually is 5653 * because !cpu_active at this point, which means load-balance 5654 * will not interfere. Also, stop-machine. 5655 */ 5656 rq_unlock(rq, rf); 5657 raw_spin_lock(&next->pi_lock); 5658 rq_relock(rq, rf); 5659 5660 /* 5661 * Since we're inside stop-machine, _nothing_ should have 5662 * changed the task, WARN if weird stuff happened, because in 5663 * that case the above rq->lock drop is a fail too. 5664 */ 5665 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5666 raw_spin_unlock(&next->pi_lock); 5667 continue; 5668 } 5669 5670 /* Find suitable destination for @next, with force if needed. */ 5671 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5672 rq = __migrate_task(rq, rf, next, dest_cpu); 5673 if (rq != dead_rq) { 5674 rq_unlock(rq, rf); 5675 rq = dead_rq; 5676 *rf = orf; 5677 rq_relock(rq, rf); 5678 } 5679 raw_spin_unlock(&next->pi_lock); 5680 } 5681 5682 rq->stop = stop; 5683 } 5684 #endif /* CONFIG_HOTPLUG_CPU */ 5685 5686 void set_rq_online(struct rq *rq) 5687 { 5688 if (!rq->online) { 5689 const struct sched_class *class; 5690 5691 cpumask_set_cpu(rq->cpu, rq->rd->online); 5692 rq->online = 1; 5693 5694 for_each_class(class) { 5695 if (class->rq_online) 5696 class->rq_online(rq); 5697 } 5698 } 5699 } 5700 5701 void set_rq_offline(struct rq *rq) 5702 { 5703 if (rq->online) { 5704 const struct sched_class *class; 5705 5706 for_each_class(class) { 5707 if (class->rq_offline) 5708 class->rq_offline(rq); 5709 } 5710 5711 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5712 rq->online = 0; 5713 } 5714 } 5715 5716 static void set_cpu_rq_start_time(unsigned int cpu) 5717 { 5718 struct rq *rq = cpu_rq(cpu); 5719 5720 rq->age_stamp = sched_clock_cpu(cpu); 5721 } 5722 5723 /* 5724 * used to mark begin/end of suspend/resume: 5725 */ 5726 static int num_cpus_frozen; 5727 5728 /* 5729 * Update cpusets according to cpu_active mask. If cpusets are 5730 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5731 * around partition_sched_domains(). 5732 * 5733 * If we come here as part of a suspend/resume, don't touch cpusets because we 5734 * want to restore it back to its original state upon resume anyway. 5735 */ 5736 static void cpuset_cpu_active(void) 5737 { 5738 if (cpuhp_tasks_frozen) { 5739 /* 5740 * num_cpus_frozen tracks how many CPUs are involved in suspend 5741 * resume sequence. As long as this is not the last online 5742 * operation in the resume sequence, just build a single sched 5743 * domain, ignoring cpusets. 5744 */ 5745 partition_sched_domains(1, NULL, NULL); 5746 if (--num_cpus_frozen) 5747 return; 5748 /* 5749 * This is the last CPU online operation. So fall through and 5750 * restore the original sched domains by considering the 5751 * cpuset configurations. 5752 */ 5753 cpuset_force_rebuild(); 5754 } 5755 cpuset_update_active_cpus(); 5756 } 5757 5758 static int cpuset_cpu_inactive(unsigned int cpu) 5759 { 5760 if (!cpuhp_tasks_frozen) { 5761 if (dl_cpu_busy(cpu)) 5762 return -EBUSY; 5763 cpuset_update_active_cpus(); 5764 } else { 5765 num_cpus_frozen++; 5766 partition_sched_domains(1, NULL, NULL); 5767 } 5768 return 0; 5769 } 5770 5771 int sched_cpu_activate(unsigned int cpu) 5772 { 5773 struct rq *rq = cpu_rq(cpu); 5774 struct rq_flags rf; 5775 5776 set_cpu_active(cpu, true); 5777 5778 if (sched_smp_initialized) { 5779 sched_domains_numa_masks_set(cpu); 5780 cpuset_cpu_active(); 5781 } 5782 5783 /* 5784 * Put the rq online, if not already. This happens: 5785 * 5786 * 1) In the early boot process, because we build the real domains 5787 * after all CPUs have been brought up. 5788 * 5789 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5790 * domains. 5791 */ 5792 rq_lock_irqsave(rq, &rf); 5793 if (rq->rd) { 5794 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5795 set_rq_online(rq); 5796 } 5797 rq_unlock_irqrestore(rq, &rf); 5798 5799 update_max_interval(); 5800 5801 return 0; 5802 } 5803 5804 int sched_cpu_deactivate(unsigned int cpu) 5805 { 5806 int ret; 5807 5808 set_cpu_active(cpu, false); 5809 /* 5810 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5811 * users of this state to go away such that all new such users will 5812 * observe it. 5813 * 5814 * Do sync before park smpboot threads to take care the rcu boost case. 5815 */ 5816 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5817 5818 if (!sched_smp_initialized) 5819 return 0; 5820 5821 ret = cpuset_cpu_inactive(cpu); 5822 if (ret) { 5823 set_cpu_active(cpu, true); 5824 return ret; 5825 } 5826 sched_domains_numa_masks_clear(cpu); 5827 return 0; 5828 } 5829 5830 static void sched_rq_cpu_starting(unsigned int cpu) 5831 { 5832 struct rq *rq = cpu_rq(cpu); 5833 5834 rq->calc_load_update = calc_load_update; 5835 update_max_interval(); 5836 } 5837 5838 int sched_cpu_starting(unsigned int cpu) 5839 { 5840 set_cpu_rq_start_time(cpu); 5841 sched_rq_cpu_starting(cpu); 5842 sched_tick_start(cpu); 5843 return 0; 5844 } 5845 5846 #ifdef CONFIG_HOTPLUG_CPU 5847 int sched_cpu_dying(unsigned int cpu) 5848 { 5849 struct rq *rq = cpu_rq(cpu); 5850 struct rq_flags rf; 5851 5852 /* Handle pending wakeups and then migrate everything off */ 5853 sched_ttwu_pending(); 5854 sched_tick_stop(cpu); 5855 5856 rq_lock_irqsave(rq, &rf); 5857 if (rq->rd) { 5858 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5859 set_rq_offline(rq); 5860 } 5861 migrate_tasks(rq, &rf); 5862 BUG_ON(rq->nr_running != 1); 5863 rq_unlock_irqrestore(rq, &rf); 5864 5865 calc_load_migrate(rq); 5866 update_max_interval(); 5867 nohz_balance_exit_idle(rq); 5868 hrtick_clear(rq); 5869 return 0; 5870 } 5871 #endif 5872 5873 #ifdef CONFIG_SCHED_SMT 5874 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5875 5876 static void sched_init_smt(void) 5877 { 5878 /* 5879 * We've enumerated all CPUs and will assume that if any CPU 5880 * has SMT siblings, CPU0 will too. 5881 */ 5882 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5883 static_branch_enable(&sched_smt_present); 5884 } 5885 #else 5886 static inline void sched_init_smt(void) { } 5887 #endif 5888 5889 void __init sched_init_smp(void) 5890 { 5891 sched_init_numa(); 5892 5893 /* 5894 * There's no userspace yet to cause hotplug operations; hence all the 5895 * CPU masks are stable and all blatant races in the below code cannot 5896 * happen. 5897 */ 5898 mutex_lock(&sched_domains_mutex); 5899 sched_init_domains(cpu_active_mask); 5900 mutex_unlock(&sched_domains_mutex); 5901 5902 /* Move init over to a non-isolated CPU */ 5903 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5904 BUG(); 5905 sched_init_granularity(); 5906 5907 init_sched_rt_class(); 5908 init_sched_dl_class(); 5909 5910 sched_init_smt(); 5911 5912 sched_smp_initialized = true; 5913 } 5914 5915 static int __init migration_init(void) 5916 { 5917 sched_rq_cpu_starting(smp_processor_id()); 5918 return 0; 5919 } 5920 early_initcall(migration_init); 5921 5922 #else 5923 void __init sched_init_smp(void) 5924 { 5925 sched_init_granularity(); 5926 } 5927 #endif /* CONFIG_SMP */ 5928 5929 int in_sched_functions(unsigned long addr) 5930 { 5931 return in_lock_functions(addr) || 5932 (addr >= (unsigned long)__sched_text_start 5933 && addr < (unsigned long)__sched_text_end); 5934 } 5935 5936 #ifdef CONFIG_CGROUP_SCHED 5937 /* 5938 * Default task group. 5939 * Every task in system belongs to this group at bootup. 5940 */ 5941 struct task_group root_task_group; 5942 LIST_HEAD(task_groups); 5943 5944 /* Cacheline aligned slab cache for task_group */ 5945 static struct kmem_cache *task_group_cache __read_mostly; 5946 #endif 5947 5948 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5949 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5950 5951 void __init sched_init(void) 5952 { 5953 int i, j; 5954 unsigned long alloc_size = 0, ptr; 5955 5956 sched_clock_init(); 5957 wait_bit_init(); 5958 5959 #ifdef CONFIG_FAIR_GROUP_SCHED 5960 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5961 #endif 5962 #ifdef CONFIG_RT_GROUP_SCHED 5963 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5964 #endif 5965 if (alloc_size) { 5966 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5967 5968 #ifdef CONFIG_FAIR_GROUP_SCHED 5969 root_task_group.se = (struct sched_entity **)ptr; 5970 ptr += nr_cpu_ids * sizeof(void **); 5971 5972 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5973 ptr += nr_cpu_ids * sizeof(void **); 5974 5975 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5976 #ifdef CONFIG_RT_GROUP_SCHED 5977 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5978 ptr += nr_cpu_ids * sizeof(void **); 5979 5980 root_task_group.rt_rq = (struct rt_rq **)ptr; 5981 ptr += nr_cpu_ids * sizeof(void **); 5982 5983 #endif /* CONFIG_RT_GROUP_SCHED */ 5984 } 5985 #ifdef CONFIG_CPUMASK_OFFSTACK 5986 for_each_possible_cpu(i) { 5987 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5988 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5989 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5990 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5991 } 5992 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5993 5994 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5995 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5996 5997 #ifdef CONFIG_SMP 5998 init_defrootdomain(); 5999 #endif 6000 6001 #ifdef CONFIG_RT_GROUP_SCHED 6002 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6003 global_rt_period(), global_rt_runtime()); 6004 #endif /* CONFIG_RT_GROUP_SCHED */ 6005 6006 #ifdef CONFIG_CGROUP_SCHED 6007 task_group_cache = KMEM_CACHE(task_group, 0); 6008 6009 list_add(&root_task_group.list, &task_groups); 6010 INIT_LIST_HEAD(&root_task_group.children); 6011 INIT_LIST_HEAD(&root_task_group.siblings); 6012 autogroup_init(&init_task); 6013 #endif /* CONFIG_CGROUP_SCHED */ 6014 6015 for_each_possible_cpu(i) { 6016 struct rq *rq; 6017 6018 rq = cpu_rq(i); 6019 raw_spin_lock_init(&rq->lock); 6020 rq->nr_running = 0; 6021 rq->calc_load_active = 0; 6022 rq->calc_load_update = jiffies + LOAD_FREQ; 6023 init_cfs_rq(&rq->cfs); 6024 init_rt_rq(&rq->rt); 6025 init_dl_rq(&rq->dl); 6026 #ifdef CONFIG_FAIR_GROUP_SCHED 6027 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6028 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6029 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6030 /* 6031 * How much CPU bandwidth does root_task_group get? 6032 * 6033 * In case of task-groups formed thr' the cgroup filesystem, it 6034 * gets 100% of the CPU resources in the system. This overall 6035 * system CPU resource is divided among the tasks of 6036 * root_task_group and its child task-groups in a fair manner, 6037 * based on each entity's (task or task-group's) weight 6038 * (se->load.weight). 6039 * 6040 * In other words, if root_task_group has 10 tasks of weight 6041 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6042 * then A0's share of the CPU resource is: 6043 * 6044 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6045 * 6046 * We achieve this by letting root_task_group's tasks sit 6047 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6048 */ 6049 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6050 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6051 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6052 6053 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6054 #ifdef CONFIG_RT_GROUP_SCHED 6055 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6056 #endif 6057 6058 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6059 rq->cpu_load[j] = 0; 6060 6061 #ifdef CONFIG_SMP 6062 rq->sd = NULL; 6063 rq->rd = NULL; 6064 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6065 rq->balance_callback = NULL; 6066 rq->active_balance = 0; 6067 rq->next_balance = jiffies; 6068 rq->push_cpu = 0; 6069 rq->cpu = i; 6070 rq->online = 0; 6071 rq->idle_stamp = 0; 6072 rq->avg_idle = 2*sysctl_sched_migration_cost; 6073 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6074 6075 INIT_LIST_HEAD(&rq->cfs_tasks); 6076 6077 rq_attach_root(rq, &def_root_domain); 6078 #ifdef CONFIG_NO_HZ_COMMON 6079 rq->last_load_update_tick = jiffies; 6080 rq->last_blocked_load_update_tick = jiffies; 6081 atomic_set(&rq->nohz_flags, 0); 6082 #endif 6083 #endif /* CONFIG_SMP */ 6084 hrtick_rq_init(rq); 6085 atomic_set(&rq->nr_iowait, 0); 6086 } 6087 6088 set_load_weight(&init_task, false); 6089 6090 /* 6091 * The boot idle thread does lazy MMU switching as well: 6092 */ 6093 mmgrab(&init_mm); 6094 enter_lazy_tlb(&init_mm, current); 6095 6096 /* 6097 * Make us the idle thread. Technically, schedule() should not be 6098 * called from this thread, however somewhere below it might be, 6099 * but because we are the idle thread, we just pick up running again 6100 * when this runqueue becomes "idle". 6101 */ 6102 init_idle(current, smp_processor_id()); 6103 6104 calc_load_update = jiffies + LOAD_FREQ; 6105 6106 #ifdef CONFIG_SMP 6107 idle_thread_set_boot_cpu(); 6108 set_cpu_rq_start_time(smp_processor_id()); 6109 #endif 6110 init_sched_fair_class(); 6111 6112 init_schedstats(); 6113 6114 scheduler_running = 1; 6115 } 6116 6117 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6118 static inline int preempt_count_equals(int preempt_offset) 6119 { 6120 int nested = preempt_count() + rcu_preempt_depth(); 6121 6122 return (nested == preempt_offset); 6123 } 6124 6125 void __might_sleep(const char *file, int line, int preempt_offset) 6126 { 6127 /* 6128 * Blocking primitives will set (and therefore destroy) current->state, 6129 * since we will exit with TASK_RUNNING make sure we enter with it, 6130 * otherwise we will destroy state. 6131 */ 6132 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6133 "do not call blocking ops when !TASK_RUNNING; " 6134 "state=%lx set at [<%p>] %pS\n", 6135 current->state, 6136 (void *)current->task_state_change, 6137 (void *)current->task_state_change); 6138 6139 ___might_sleep(file, line, preempt_offset); 6140 } 6141 EXPORT_SYMBOL(__might_sleep); 6142 6143 void ___might_sleep(const char *file, int line, int preempt_offset) 6144 { 6145 /* Ratelimiting timestamp: */ 6146 static unsigned long prev_jiffy; 6147 6148 unsigned long preempt_disable_ip; 6149 6150 /* WARN_ON_ONCE() by default, no rate limit required: */ 6151 rcu_sleep_check(); 6152 6153 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6154 !is_idle_task(current)) || 6155 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6156 oops_in_progress) 6157 return; 6158 6159 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6160 return; 6161 prev_jiffy = jiffies; 6162 6163 /* Save this before calling printk(), since that will clobber it: */ 6164 preempt_disable_ip = get_preempt_disable_ip(current); 6165 6166 printk(KERN_ERR 6167 "BUG: sleeping function called from invalid context at %s:%d\n", 6168 file, line); 6169 printk(KERN_ERR 6170 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6171 in_atomic(), irqs_disabled(), 6172 current->pid, current->comm); 6173 6174 if (task_stack_end_corrupted(current)) 6175 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6176 6177 debug_show_held_locks(current); 6178 if (irqs_disabled()) 6179 print_irqtrace_events(current); 6180 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6181 && !preempt_count_equals(preempt_offset)) { 6182 pr_err("Preemption disabled at:"); 6183 print_ip_sym(preempt_disable_ip); 6184 pr_cont("\n"); 6185 } 6186 dump_stack(); 6187 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6188 } 6189 EXPORT_SYMBOL(___might_sleep); 6190 #endif 6191 6192 #ifdef CONFIG_MAGIC_SYSRQ 6193 void normalize_rt_tasks(void) 6194 { 6195 struct task_struct *g, *p; 6196 struct sched_attr attr = { 6197 .sched_policy = SCHED_NORMAL, 6198 }; 6199 6200 read_lock(&tasklist_lock); 6201 for_each_process_thread(g, p) { 6202 /* 6203 * Only normalize user tasks: 6204 */ 6205 if (p->flags & PF_KTHREAD) 6206 continue; 6207 6208 p->se.exec_start = 0; 6209 schedstat_set(p->se.statistics.wait_start, 0); 6210 schedstat_set(p->se.statistics.sleep_start, 0); 6211 schedstat_set(p->se.statistics.block_start, 0); 6212 6213 if (!dl_task(p) && !rt_task(p)) { 6214 /* 6215 * Renice negative nice level userspace 6216 * tasks back to 0: 6217 */ 6218 if (task_nice(p) < 0) 6219 set_user_nice(p, 0); 6220 continue; 6221 } 6222 6223 __sched_setscheduler(p, &attr, false, false); 6224 } 6225 read_unlock(&tasklist_lock); 6226 } 6227 6228 #endif /* CONFIG_MAGIC_SYSRQ */ 6229 6230 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6231 /* 6232 * These functions are only useful for the IA64 MCA handling, or kdb. 6233 * 6234 * They can only be called when the whole system has been 6235 * stopped - every CPU needs to be quiescent, and no scheduling 6236 * activity can take place. Using them for anything else would 6237 * be a serious bug, and as a result, they aren't even visible 6238 * under any other configuration. 6239 */ 6240 6241 /** 6242 * curr_task - return the current task for a given CPU. 6243 * @cpu: the processor in question. 6244 * 6245 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6246 * 6247 * Return: The current task for @cpu. 6248 */ 6249 struct task_struct *curr_task(int cpu) 6250 { 6251 return cpu_curr(cpu); 6252 } 6253 6254 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6255 6256 #ifdef CONFIG_IA64 6257 /** 6258 * set_curr_task - set the current task for a given CPU. 6259 * @cpu: the processor in question. 6260 * @p: the task pointer to set. 6261 * 6262 * Description: This function must only be used when non-maskable interrupts 6263 * are serviced on a separate stack. It allows the architecture to switch the 6264 * notion of the current task on a CPU in a non-blocking manner. This function 6265 * must be called with all CPU's synchronized, and interrupts disabled, the 6266 * and caller must save the original value of the current task (see 6267 * curr_task() above) and restore that value before reenabling interrupts and 6268 * re-starting the system. 6269 * 6270 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6271 */ 6272 void ia64_set_curr_task(int cpu, struct task_struct *p) 6273 { 6274 cpu_curr(cpu) = p; 6275 } 6276 6277 #endif 6278 6279 #ifdef CONFIG_CGROUP_SCHED 6280 /* task_group_lock serializes the addition/removal of task groups */ 6281 static DEFINE_SPINLOCK(task_group_lock); 6282 6283 static void sched_free_group(struct task_group *tg) 6284 { 6285 free_fair_sched_group(tg); 6286 free_rt_sched_group(tg); 6287 autogroup_free(tg); 6288 kmem_cache_free(task_group_cache, tg); 6289 } 6290 6291 /* allocate runqueue etc for a new task group */ 6292 struct task_group *sched_create_group(struct task_group *parent) 6293 { 6294 struct task_group *tg; 6295 6296 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6297 if (!tg) 6298 return ERR_PTR(-ENOMEM); 6299 6300 if (!alloc_fair_sched_group(tg, parent)) 6301 goto err; 6302 6303 if (!alloc_rt_sched_group(tg, parent)) 6304 goto err; 6305 6306 return tg; 6307 6308 err: 6309 sched_free_group(tg); 6310 return ERR_PTR(-ENOMEM); 6311 } 6312 6313 void sched_online_group(struct task_group *tg, struct task_group *parent) 6314 { 6315 unsigned long flags; 6316 6317 spin_lock_irqsave(&task_group_lock, flags); 6318 list_add_rcu(&tg->list, &task_groups); 6319 6320 /* Root should already exist: */ 6321 WARN_ON(!parent); 6322 6323 tg->parent = parent; 6324 INIT_LIST_HEAD(&tg->children); 6325 list_add_rcu(&tg->siblings, &parent->children); 6326 spin_unlock_irqrestore(&task_group_lock, flags); 6327 6328 online_fair_sched_group(tg); 6329 } 6330 6331 /* rcu callback to free various structures associated with a task group */ 6332 static void sched_free_group_rcu(struct rcu_head *rhp) 6333 { 6334 /* Now it should be safe to free those cfs_rqs: */ 6335 sched_free_group(container_of(rhp, struct task_group, rcu)); 6336 } 6337 6338 void sched_destroy_group(struct task_group *tg) 6339 { 6340 /* Wait for possible concurrent references to cfs_rqs complete: */ 6341 call_rcu(&tg->rcu, sched_free_group_rcu); 6342 } 6343 6344 void sched_offline_group(struct task_group *tg) 6345 { 6346 unsigned long flags; 6347 6348 /* End participation in shares distribution: */ 6349 unregister_fair_sched_group(tg); 6350 6351 spin_lock_irqsave(&task_group_lock, flags); 6352 list_del_rcu(&tg->list); 6353 list_del_rcu(&tg->siblings); 6354 spin_unlock_irqrestore(&task_group_lock, flags); 6355 } 6356 6357 static void sched_change_group(struct task_struct *tsk, int type) 6358 { 6359 struct task_group *tg; 6360 6361 /* 6362 * All callers are synchronized by task_rq_lock(); we do not use RCU 6363 * which is pointless here. Thus, we pass "true" to task_css_check() 6364 * to prevent lockdep warnings. 6365 */ 6366 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6367 struct task_group, css); 6368 tg = autogroup_task_group(tsk, tg); 6369 tsk->sched_task_group = tg; 6370 6371 #ifdef CONFIG_FAIR_GROUP_SCHED 6372 if (tsk->sched_class->task_change_group) 6373 tsk->sched_class->task_change_group(tsk, type); 6374 else 6375 #endif 6376 set_task_rq(tsk, task_cpu(tsk)); 6377 } 6378 6379 /* 6380 * Change task's runqueue when it moves between groups. 6381 * 6382 * The caller of this function should have put the task in its new group by 6383 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6384 * its new group. 6385 */ 6386 void sched_move_task(struct task_struct *tsk) 6387 { 6388 int queued, running, queue_flags = 6389 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6390 struct rq_flags rf; 6391 struct rq *rq; 6392 6393 rq = task_rq_lock(tsk, &rf); 6394 update_rq_clock(rq); 6395 6396 running = task_current(rq, tsk); 6397 queued = task_on_rq_queued(tsk); 6398 6399 if (queued) 6400 dequeue_task(rq, tsk, queue_flags); 6401 if (running) 6402 put_prev_task(rq, tsk); 6403 6404 sched_change_group(tsk, TASK_MOVE_GROUP); 6405 6406 if (queued) 6407 enqueue_task(rq, tsk, queue_flags); 6408 if (running) 6409 set_curr_task(rq, tsk); 6410 6411 task_rq_unlock(rq, tsk, &rf); 6412 } 6413 6414 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6415 { 6416 return css ? container_of(css, struct task_group, css) : NULL; 6417 } 6418 6419 static struct cgroup_subsys_state * 6420 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6421 { 6422 struct task_group *parent = css_tg(parent_css); 6423 struct task_group *tg; 6424 6425 if (!parent) { 6426 /* This is early initialization for the top cgroup */ 6427 return &root_task_group.css; 6428 } 6429 6430 tg = sched_create_group(parent); 6431 if (IS_ERR(tg)) 6432 return ERR_PTR(-ENOMEM); 6433 6434 return &tg->css; 6435 } 6436 6437 /* Expose task group only after completing cgroup initialization */ 6438 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6439 { 6440 struct task_group *tg = css_tg(css); 6441 struct task_group *parent = css_tg(css->parent); 6442 6443 if (parent) 6444 sched_online_group(tg, parent); 6445 return 0; 6446 } 6447 6448 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6449 { 6450 struct task_group *tg = css_tg(css); 6451 6452 sched_offline_group(tg); 6453 } 6454 6455 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6456 { 6457 struct task_group *tg = css_tg(css); 6458 6459 /* 6460 * Relies on the RCU grace period between css_released() and this. 6461 */ 6462 sched_free_group(tg); 6463 } 6464 6465 /* 6466 * This is called before wake_up_new_task(), therefore we really only 6467 * have to set its group bits, all the other stuff does not apply. 6468 */ 6469 static void cpu_cgroup_fork(struct task_struct *task) 6470 { 6471 struct rq_flags rf; 6472 struct rq *rq; 6473 6474 rq = task_rq_lock(task, &rf); 6475 6476 update_rq_clock(rq); 6477 sched_change_group(task, TASK_SET_GROUP); 6478 6479 task_rq_unlock(rq, task, &rf); 6480 } 6481 6482 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6483 { 6484 struct task_struct *task; 6485 struct cgroup_subsys_state *css; 6486 int ret = 0; 6487 6488 cgroup_taskset_for_each(task, css, tset) { 6489 #ifdef CONFIG_RT_GROUP_SCHED 6490 if (!sched_rt_can_attach(css_tg(css), task)) 6491 return -EINVAL; 6492 #else 6493 /* We don't support RT-tasks being in separate groups */ 6494 if (task->sched_class != &fair_sched_class) 6495 return -EINVAL; 6496 #endif 6497 /* 6498 * Serialize against wake_up_new_task() such that if its 6499 * running, we're sure to observe its full state. 6500 */ 6501 raw_spin_lock_irq(&task->pi_lock); 6502 /* 6503 * Avoid calling sched_move_task() before wake_up_new_task() 6504 * has happened. This would lead to problems with PELT, due to 6505 * move wanting to detach+attach while we're not attached yet. 6506 */ 6507 if (task->state == TASK_NEW) 6508 ret = -EINVAL; 6509 raw_spin_unlock_irq(&task->pi_lock); 6510 6511 if (ret) 6512 break; 6513 } 6514 return ret; 6515 } 6516 6517 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6518 { 6519 struct task_struct *task; 6520 struct cgroup_subsys_state *css; 6521 6522 cgroup_taskset_for_each(task, css, tset) 6523 sched_move_task(task); 6524 } 6525 6526 #ifdef CONFIG_FAIR_GROUP_SCHED 6527 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6528 struct cftype *cftype, u64 shareval) 6529 { 6530 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6531 } 6532 6533 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6534 struct cftype *cft) 6535 { 6536 struct task_group *tg = css_tg(css); 6537 6538 return (u64) scale_load_down(tg->shares); 6539 } 6540 6541 #ifdef CONFIG_CFS_BANDWIDTH 6542 static DEFINE_MUTEX(cfs_constraints_mutex); 6543 6544 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6545 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6546 6547 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6548 6549 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6550 { 6551 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6552 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6553 6554 if (tg == &root_task_group) 6555 return -EINVAL; 6556 6557 /* 6558 * Ensure we have at some amount of bandwidth every period. This is 6559 * to prevent reaching a state of large arrears when throttled via 6560 * entity_tick() resulting in prolonged exit starvation. 6561 */ 6562 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6563 return -EINVAL; 6564 6565 /* 6566 * Likewise, bound things on the otherside by preventing insane quota 6567 * periods. This also allows us to normalize in computing quota 6568 * feasibility. 6569 */ 6570 if (period > max_cfs_quota_period) 6571 return -EINVAL; 6572 6573 /* 6574 * Prevent race between setting of cfs_rq->runtime_enabled and 6575 * unthrottle_offline_cfs_rqs(). 6576 */ 6577 get_online_cpus(); 6578 mutex_lock(&cfs_constraints_mutex); 6579 ret = __cfs_schedulable(tg, period, quota); 6580 if (ret) 6581 goto out_unlock; 6582 6583 runtime_enabled = quota != RUNTIME_INF; 6584 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6585 /* 6586 * If we need to toggle cfs_bandwidth_used, off->on must occur 6587 * before making related changes, and on->off must occur afterwards 6588 */ 6589 if (runtime_enabled && !runtime_was_enabled) 6590 cfs_bandwidth_usage_inc(); 6591 raw_spin_lock_irq(&cfs_b->lock); 6592 cfs_b->period = ns_to_ktime(period); 6593 cfs_b->quota = quota; 6594 6595 __refill_cfs_bandwidth_runtime(cfs_b); 6596 6597 /* Restart the period timer (if active) to handle new period expiry: */ 6598 if (runtime_enabled) 6599 start_cfs_bandwidth(cfs_b); 6600 6601 raw_spin_unlock_irq(&cfs_b->lock); 6602 6603 for_each_online_cpu(i) { 6604 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6605 struct rq *rq = cfs_rq->rq; 6606 struct rq_flags rf; 6607 6608 rq_lock_irq(rq, &rf); 6609 cfs_rq->runtime_enabled = runtime_enabled; 6610 cfs_rq->runtime_remaining = 0; 6611 6612 if (cfs_rq->throttled) 6613 unthrottle_cfs_rq(cfs_rq); 6614 rq_unlock_irq(rq, &rf); 6615 } 6616 if (runtime_was_enabled && !runtime_enabled) 6617 cfs_bandwidth_usage_dec(); 6618 out_unlock: 6619 mutex_unlock(&cfs_constraints_mutex); 6620 put_online_cpus(); 6621 6622 return ret; 6623 } 6624 6625 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6626 { 6627 u64 quota, period; 6628 6629 period = ktime_to_ns(tg->cfs_bandwidth.period); 6630 if (cfs_quota_us < 0) 6631 quota = RUNTIME_INF; 6632 else 6633 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6634 6635 return tg_set_cfs_bandwidth(tg, period, quota); 6636 } 6637 6638 long tg_get_cfs_quota(struct task_group *tg) 6639 { 6640 u64 quota_us; 6641 6642 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6643 return -1; 6644 6645 quota_us = tg->cfs_bandwidth.quota; 6646 do_div(quota_us, NSEC_PER_USEC); 6647 6648 return quota_us; 6649 } 6650 6651 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6652 { 6653 u64 quota, period; 6654 6655 period = (u64)cfs_period_us * NSEC_PER_USEC; 6656 quota = tg->cfs_bandwidth.quota; 6657 6658 return tg_set_cfs_bandwidth(tg, period, quota); 6659 } 6660 6661 long tg_get_cfs_period(struct task_group *tg) 6662 { 6663 u64 cfs_period_us; 6664 6665 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6666 do_div(cfs_period_us, NSEC_PER_USEC); 6667 6668 return cfs_period_us; 6669 } 6670 6671 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6672 struct cftype *cft) 6673 { 6674 return tg_get_cfs_quota(css_tg(css)); 6675 } 6676 6677 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6678 struct cftype *cftype, s64 cfs_quota_us) 6679 { 6680 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6681 } 6682 6683 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6684 struct cftype *cft) 6685 { 6686 return tg_get_cfs_period(css_tg(css)); 6687 } 6688 6689 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6690 struct cftype *cftype, u64 cfs_period_us) 6691 { 6692 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6693 } 6694 6695 struct cfs_schedulable_data { 6696 struct task_group *tg; 6697 u64 period, quota; 6698 }; 6699 6700 /* 6701 * normalize group quota/period to be quota/max_period 6702 * note: units are usecs 6703 */ 6704 static u64 normalize_cfs_quota(struct task_group *tg, 6705 struct cfs_schedulable_data *d) 6706 { 6707 u64 quota, period; 6708 6709 if (tg == d->tg) { 6710 period = d->period; 6711 quota = d->quota; 6712 } else { 6713 period = tg_get_cfs_period(tg); 6714 quota = tg_get_cfs_quota(tg); 6715 } 6716 6717 /* note: these should typically be equivalent */ 6718 if (quota == RUNTIME_INF || quota == -1) 6719 return RUNTIME_INF; 6720 6721 return to_ratio(period, quota); 6722 } 6723 6724 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6725 { 6726 struct cfs_schedulable_data *d = data; 6727 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6728 s64 quota = 0, parent_quota = -1; 6729 6730 if (!tg->parent) { 6731 quota = RUNTIME_INF; 6732 } else { 6733 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6734 6735 quota = normalize_cfs_quota(tg, d); 6736 parent_quota = parent_b->hierarchical_quota; 6737 6738 /* 6739 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6740 * always take the min. On cgroup1, only inherit when no 6741 * limit is set: 6742 */ 6743 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6744 quota = min(quota, parent_quota); 6745 } else { 6746 if (quota == RUNTIME_INF) 6747 quota = parent_quota; 6748 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6749 return -EINVAL; 6750 } 6751 } 6752 cfs_b->hierarchical_quota = quota; 6753 6754 return 0; 6755 } 6756 6757 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6758 { 6759 int ret; 6760 struct cfs_schedulable_data data = { 6761 .tg = tg, 6762 .period = period, 6763 .quota = quota, 6764 }; 6765 6766 if (quota != RUNTIME_INF) { 6767 do_div(data.period, NSEC_PER_USEC); 6768 do_div(data.quota, NSEC_PER_USEC); 6769 } 6770 6771 rcu_read_lock(); 6772 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6773 rcu_read_unlock(); 6774 6775 return ret; 6776 } 6777 6778 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6779 { 6780 struct task_group *tg = css_tg(seq_css(sf)); 6781 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6782 6783 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6784 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6785 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6786 6787 return 0; 6788 } 6789 #endif /* CONFIG_CFS_BANDWIDTH */ 6790 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6791 6792 #ifdef CONFIG_RT_GROUP_SCHED 6793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6794 struct cftype *cft, s64 val) 6795 { 6796 return sched_group_set_rt_runtime(css_tg(css), val); 6797 } 6798 6799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6800 struct cftype *cft) 6801 { 6802 return sched_group_rt_runtime(css_tg(css)); 6803 } 6804 6805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6806 struct cftype *cftype, u64 rt_period_us) 6807 { 6808 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6809 } 6810 6811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6812 struct cftype *cft) 6813 { 6814 return sched_group_rt_period(css_tg(css)); 6815 } 6816 #endif /* CONFIG_RT_GROUP_SCHED */ 6817 6818 static struct cftype cpu_legacy_files[] = { 6819 #ifdef CONFIG_FAIR_GROUP_SCHED 6820 { 6821 .name = "shares", 6822 .read_u64 = cpu_shares_read_u64, 6823 .write_u64 = cpu_shares_write_u64, 6824 }, 6825 #endif 6826 #ifdef CONFIG_CFS_BANDWIDTH 6827 { 6828 .name = "cfs_quota_us", 6829 .read_s64 = cpu_cfs_quota_read_s64, 6830 .write_s64 = cpu_cfs_quota_write_s64, 6831 }, 6832 { 6833 .name = "cfs_period_us", 6834 .read_u64 = cpu_cfs_period_read_u64, 6835 .write_u64 = cpu_cfs_period_write_u64, 6836 }, 6837 { 6838 .name = "stat", 6839 .seq_show = cpu_cfs_stat_show, 6840 }, 6841 #endif 6842 #ifdef CONFIG_RT_GROUP_SCHED 6843 { 6844 .name = "rt_runtime_us", 6845 .read_s64 = cpu_rt_runtime_read, 6846 .write_s64 = cpu_rt_runtime_write, 6847 }, 6848 { 6849 .name = "rt_period_us", 6850 .read_u64 = cpu_rt_period_read_uint, 6851 .write_u64 = cpu_rt_period_write_uint, 6852 }, 6853 #endif 6854 { } /* Terminate */ 6855 }; 6856 6857 static int cpu_extra_stat_show(struct seq_file *sf, 6858 struct cgroup_subsys_state *css) 6859 { 6860 #ifdef CONFIG_CFS_BANDWIDTH 6861 { 6862 struct task_group *tg = css_tg(css); 6863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6864 u64 throttled_usec; 6865 6866 throttled_usec = cfs_b->throttled_time; 6867 do_div(throttled_usec, NSEC_PER_USEC); 6868 6869 seq_printf(sf, "nr_periods %d\n" 6870 "nr_throttled %d\n" 6871 "throttled_usec %llu\n", 6872 cfs_b->nr_periods, cfs_b->nr_throttled, 6873 throttled_usec); 6874 } 6875 #endif 6876 return 0; 6877 } 6878 6879 #ifdef CONFIG_FAIR_GROUP_SCHED 6880 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6881 struct cftype *cft) 6882 { 6883 struct task_group *tg = css_tg(css); 6884 u64 weight = scale_load_down(tg->shares); 6885 6886 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6887 } 6888 6889 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6890 struct cftype *cft, u64 weight) 6891 { 6892 /* 6893 * cgroup weight knobs should use the common MIN, DFL and MAX 6894 * values which are 1, 100 and 10000 respectively. While it loses 6895 * a bit of range on both ends, it maps pretty well onto the shares 6896 * value used by scheduler and the round-trip conversions preserve 6897 * the original value over the entire range. 6898 */ 6899 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6900 return -ERANGE; 6901 6902 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6903 6904 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6905 } 6906 6907 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6908 struct cftype *cft) 6909 { 6910 unsigned long weight = scale_load_down(css_tg(css)->shares); 6911 int last_delta = INT_MAX; 6912 int prio, delta; 6913 6914 /* find the closest nice value to the current weight */ 6915 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6916 delta = abs(sched_prio_to_weight[prio] - weight); 6917 if (delta >= last_delta) 6918 break; 6919 last_delta = delta; 6920 } 6921 6922 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6923 } 6924 6925 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6926 struct cftype *cft, s64 nice) 6927 { 6928 unsigned long weight; 6929 int idx; 6930 6931 if (nice < MIN_NICE || nice > MAX_NICE) 6932 return -ERANGE; 6933 6934 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6935 idx = array_index_nospec(idx, 40); 6936 weight = sched_prio_to_weight[idx]; 6937 6938 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6939 } 6940 #endif 6941 6942 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6943 long period, long quota) 6944 { 6945 if (quota < 0) 6946 seq_puts(sf, "max"); 6947 else 6948 seq_printf(sf, "%ld", quota); 6949 6950 seq_printf(sf, " %ld\n", period); 6951 } 6952 6953 /* caller should put the current value in *@periodp before calling */ 6954 static int __maybe_unused cpu_period_quota_parse(char *buf, 6955 u64 *periodp, u64 *quotap) 6956 { 6957 char tok[21]; /* U64_MAX */ 6958 6959 if (!sscanf(buf, "%s %llu", tok, periodp)) 6960 return -EINVAL; 6961 6962 *periodp *= NSEC_PER_USEC; 6963 6964 if (sscanf(tok, "%llu", quotap)) 6965 *quotap *= NSEC_PER_USEC; 6966 else if (!strcmp(tok, "max")) 6967 *quotap = RUNTIME_INF; 6968 else 6969 return -EINVAL; 6970 6971 return 0; 6972 } 6973 6974 #ifdef CONFIG_CFS_BANDWIDTH 6975 static int cpu_max_show(struct seq_file *sf, void *v) 6976 { 6977 struct task_group *tg = css_tg(seq_css(sf)); 6978 6979 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6980 return 0; 6981 } 6982 6983 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6984 char *buf, size_t nbytes, loff_t off) 6985 { 6986 struct task_group *tg = css_tg(of_css(of)); 6987 u64 period = tg_get_cfs_period(tg); 6988 u64 quota; 6989 int ret; 6990 6991 ret = cpu_period_quota_parse(buf, &period, "a); 6992 if (!ret) 6993 ret = tg_set_cfs_bandwidth(tg, period, quota); 6994 return ret ?: nbytes; 6995 } 6996 #endif 6997 6998 static struct cftype cpu_files[] = { 6999 #ifdef CONFIG_FAIR_GROUP_SCHED 7000 { 7001 .name = "weight", 7002 .flags = CFTYPE_NOT_ON_ROOT, 7003 .read_u64 = cpu_weight_read_u64, 7004 .write_u64 = cpu_weight_write_u64, 7005 }, 7006 { 7007 .name = "weight.nice", 7008 .flags = CFTYPE_NOT_ON_ROOT, 7009 .read_s64 = cpu_weight_nice_read_s64, 7010 .write_s64 = cpu_weight_nice_write_s64, 7011 }, 7012 #endif 7013 #ifdef CONFIG_CFS_BANDWIDTH 7014 { 7015 .name = "max", 7016 .flags = CFTYPE_NOT_ON_ROOT, 7017 .seq_show = cpu_max_show, 7018 .write = cpu_max_write, 7019 }, 7020 #endif 7021 { } /* terminate */ 7022 }; 7023 7024 struct cgroup_subsys cpu_cgrp_subsys = { 7025 .css_alloc = cpu_cgroup_css_alloc, 7026 .css_online = cpu_cgroup_css_online, 7027 .css_released = cpu_cgroup_css_released, 7028 .css_free = cpu_cgroup_css_free, 7029 .css_extra_stat_show = cpu_extra_stat_show, 7030 .fork = cpu_cgroup_fork, 7031 .can_attach = cpu_cgroup_can_attach, 7032 .attach = cpu_cgroup_attach, 7033 .legacy_cftypes = cpu_legacy_files, 7034 .dfl_cftypes = cpu_files, 7035 .early_init = true, 7036 .threaded = true, 7037 }; 7038 7039 #endif /* CONFIG_CGROUP_SCHED */ 7040 7041 void dump_cpu_task(int cpu) 7042 { 7043 pr_info("Task dump for CPU %d:\n", cpu); 7044 sched_show_task(cpu_curr(cpu)); 7045 } 7046 7047 /* 7048 * Nice levels are multiplicative, with a gentle 10% change for every 7049 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7050 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7051 * that remained on nice 0. 7052 * 7053 * The "10% effect" is relative and cumulative: from _any_ nice level, 7054 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7055 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7056 * If a task goes up by ~10% and another task goes down by ~10% then 7057 * the relative distance between them is ~25%.) 7058 */ 7059 const int sched_prio_to_weight[40] = { 7060 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7061 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7062 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7063 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7064 /* 0 */ 1024, 820, 655, 526, 423, 7065 /* 5 */ 335, 272, 215, 172, 137, 7066 /* 10 */ 110, 87, 70, 56, 45, 7067 /* 15 */ 36, 29, 23, 18, 15, 7068 }; 7069 7070 /* 7071 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7072 * 7073 * In cases where the weight does not change often, we can use the 7074 * precalculated inverse to speed up arithmetics by turning divisions 7075 * into multiplications: 7076 */ 7077 const u32 sched_prio_to_wmult[40] = { 7078 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7079 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7080 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7081 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7082 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7083 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7084 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7085 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7086 }; 7087 7088 #undef CREATE_TRACE_POINTS 7089