xref: /openbmc/linux/kernel/sched/core.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20 
21 #include "pelt.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25 
26 /*
27  * Export tracepoints that act as a bare tracehook (ie: have no trace event
28  * associated with them) to allow external modules to probe them.
29  */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36 
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38 
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41  * Debugging: various feature bits
42  *
43  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44  * sysctl_sched_features, defined in sched.h, to allow constants propagation
45  * at compile time and compiler optimization based on features default.
46  */
47 #define SCHED_FEAT(name, enabled)	\
48 	(1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 	0;
52 #undef SCHED_FEAT
53 #endif
54 
55 /*
56  * Number of tasks to iterate in a single balance run.
57  * Limited because this is done with IRQs disabled.
58  */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60 
61 /*
62  * period over which we measure -rt task CPU usage in us.
63  * default: 1s
64  */
65 unsigned int sysctl_sched_rt_period = 1000000;
66 
67 __read_mostly int scheduler_running;
68 
69 /*
70  * part of the period that we allow rt tasks to run in us.
71  * default: 0.95s
72  */
73 int sysctl_sched_rt_runtime = 950000;
74 
75 /*
76  * __task_rq_lock - lock the rq @p resides on.
77  */
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 	__acquires(rq->lock)
80 {
81 	struct rq *rq;
82 
83 	lockdep_assert_held(&p->pi_lock);
84 
85 	for (;;) {
86 		rq = task_rq(p);
87 		raw_spin_lock(&rq->lock);
88 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 			rq_pin_lock(rq, rf);
90 			return rq;
91 		}
92 		raw_spin_unlock(&rq->lock);
93 
94 		while (unlikely(task_on_rq_migrating(p)))
95 			cpu_relax();
96 	}
97 }
98 
99 /*
100  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101  */
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 	__acquires(p->pi_lock)
104 	__acquires(rq->lock)
105 {
106 	struct rq *rq;
107 
108 	for (;;) {
109 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 		rq = task_rq(p);
111 		raw_spin_lock(&rq->lock);
112 		/*
113 		 *	move_queued_task()		task_rq_lock()
114 		 *
115 		 *	ACQUIRE (rq->lock)
116 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
117 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
118 		 *	[S] ->cpu = new_cpu		[L] task_rq()
119 		 *					[L] ->on_rq
120 		 *	RELEASE (rq->lock)
121 		 *
122 		 * If we observe the old CPU in task_rq_lock(), the acquire of
123 		 * the old rq->lock will fully serialize against the stores.
124 		 *
125 		 * If we observe the new CPU in task_rq_lock(), the address
126 		 * dependency headed by '[L] rq = task_rq()' and the acquire
127 		 * will pair with the WMB to ensure we then also see migrating.
128 		 */
129 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 			rq_pin_lock(rq, rf);
131 			return rq;
132 		}
133 		raw_spin_unlock(&rq->lock);
134 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135 
136 		while (unlikely(task_on_rq_migrating(p)))
137 			cpu_relax();
138 	}
139 }
140 
141 /*
142  * RQ-clock updating methods:
143  */
144 
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148  * In theory, the compile should just see 0 here, and optimize out the call
149  * to sched_rt_avg_update. But I don't trust it...
150  */
151 	s64 __maybe_unused steal = 0, irq_delta = 0;
152 
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155 
156 	/*
157 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 	 * this case when a previous update_rq_clock() happened inside a
159 	 * {soft,}irq region.
160 	 *
161 	 * When this happens, we stop ->clock_task and only update the
162 	 * prev_irq_time stamp to account for the part that fit, so that a next
163 	 * update will consume the rest. This ensures ->clock_task is
164 	 * monotonic.
165 	 *
166 	 * It does however cause some slight miss-attribution of {soft,}irq
167 	 * time, a more accurate solution would be to update the irq_time using
168 	 * the current rq->clock timestamp, except that would require using
169 	 * atomic ops.
170 	 */
171 	if (irq_delta > delta)
172 		irq_delta = delta;
173 
174 	rq->prev_irq_time += irq_delta;
175 	delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 	if (static_key_false((&paravirt_steal_rq_enabled))) {
179 		steal = paravirt_steal_clock(cpu_of(rq));
180 		steal -= rq->prev_steal_time_rq;
181 
182 		if (unlikely(steal > delta))
183 			steal = delta;
184 
185 		rq->prev_steal_time_rq += steal;
186 		delta -= steal;
187 	}
188 #endif
189 
190 	rq->clock_task += delta;
191 
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 		update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 	update_rq_clock_pelt(rq, delta);
197 }
198 
199 void update_rq_clock(struct rq *rq)
200 {
201 	s64 delta;
202 
203 	lockdep_assert_held(&rq->lock);
204 
205 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 		return;
207 
208 #ifdef CONFIG_SCHED_DEBUG
209 	if (sched_feat(WARN_DOUBLE_CLOCK))
210 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 	rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213 
214 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 	if (delta < 0)
216 		return;
217 	rq->clock += delta;
218 	update_rq_clock_task(rq, delta);
219 }
220 
221 
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224  * Use HR-timers to deliver accurate preemption points.
225  */
226 
227 static void hrtick_clear(struct rq *rq)
228 {
229 	if (hrtimer_active(&rq->hrtick_timer))
230 		hrtimer_cancel(&rq->hrtick_timer);
231 }
232 
233 /*
234  * High-resolution timer tick.
235  * Runs from hardirq context with interrupts disabled.
236  */
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 	struct rq_flags rf;
241 
242 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243 
244 	rq_lock(rq, &rf);
245 	update_rq_clock(rq);
246 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 	rq_unlock(rq, &rf);
248 
249 	return HRTIMER_NORESTART;
250 }
251 
252 #ifdef CONFIG_SMP
253 
254 static void __hrtick_restart(struct rq *rq)
255 {
256 	struct hrtimer *timer = &rq->hrtick_timer;
257 
258 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259 }
260 
261 /*
262  * called from hardirq (IPI) context
263  */
264 static void __hrtick_start(void *arg)
265 {
266 	struct rq *rq = arg;
267 	struct rq_flags rf;
268 
269 	rq_lock(rq, &rf);
270 	__hrtick_restart(rq);
271 	rq->hrtick_csd_pending = 0;
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq()) {
296 		__hrtick_restart(rq);
297 	} else if (!rq->hrtick_csd_pending) {
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 		rq->hrtick_csd_pending = 1;
300 	}
301 }
302 
303 #else
304 /*
305  * Called to set the hrtick timer state.
306  *
307  * called with rq->lock held and irqs disabled
308  */
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 	/*
312 	 * Don't schedule slices shorter than 10000ns, that just
313 	 * doesn't make sense. Rely on vruntime for fairness.
314 	 */
315 	delay = max_t(u64, delay, 10000LL);
316 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 		      HRTIMER_MODE_REL_PINNED_HARD);
318 }
319 #endif /* CONFIG_SMP */
320 
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 	rq->hrtick_csd_pending = 0;
325 
326 	rq->hrtick_csd.flags = 0;
327 	rq->hrtick_csd.func = __hrtick_start;
328 	rq->hrtick_csd.info = rq;
329 #endif
330 
331 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 	rq->hrtick_timer.function = hrtick;
333 }
334 #else	/* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338 
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif	/* CONFIG_SCHED_HRTICK */
343 
344 /*
345  * cmpxchg based fetch_or, macro so it works for different integer types
346  */
347 #define fetch_or(ptr, mask)						\
348 	({								\
349 		typeof(ptr) _ptr = (ptr);				\
350 		typeof(mask) _mask = (mask);				\
351 		typeof(*_ptr) _old, _val = *_ptr;			\
352 									\
353 		for (;;) {						\
354 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
355 			if (_old == _val)				\
356 				break;					\
357 			_val = _old;					\
358 		}							\
359 	_old;								\
360 })
361 
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365  * this avoids any races wrt polling state changes and thereby avoids
366  * spurious IPIs.
367  */
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373 
374 /*
375  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376  *
377  * If this returns true, then the idle task promises to call
378  * sched_ttwu_pending() and reschedule soon.
379  */
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384 
385 	for (;;) {
386 		if (!(val & _TIF_POLLING_NRFLAG))
387 			return false;
388 		if (val & _TIF_NEED_RESCHED)
389 			return true;
390 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 		if (old == val)
392 			break;
393 		val = old;
394 	}
395 	return true;
396 }
397 
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 	set_tsk_need_resched(p);
402 	return true;
403 }
404 
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 	return false;
409 }
410 #endif
411 #endif
412 
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 	struct wake_q_node *node = &task->wake_q;
416 
417 	/*
418 	 * Atomically grab the task, if ->wake_q is !nil already it means
419 	 * its already queued (either by us or someone else) and will get the
420 	 * wakeup due to that.
421 	 *
422 	 * In order to ensure that a pending wakeup will observe our pending
423 	 * state, even in the failed case, an explicit smp_mb() must be used.
424 	 */
425 	smp_mb__before_atomic();
426 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 		return false;
428 
429 	/*
430 	 * The head is context local, there can be no concurrency.
431 	 */
432 	*head->lastp = node;
433 	head->lastp = &node->next;
434 	return true;
435 }
436 
437 /**
438  * wake_q_add() - queue a wakeup for 'later' waking.
439  * @head: the wake_q_head to add @task to
440  * @task: the task to queue for 'later' wakeup
441  *
442  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444  * instantly.
445  *
446  * This function must be used as-if it were wake_up_process(); IOW the task
447  * must be ready to be woken at this location.
448  */
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 	if (__wake_q_add(head, task))
452 		get_task_struct(task);
453 }
454 
455 /**
456  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457  * @head: the wake_q_head to add @task to
458  * @task: the task to queue for 'later' wakeup
459  *
460  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462  * instantly.
463  *
464  * This function must be used as-if it were wake_up_process(); IOW the task
465  * must be ready to be woken at this location.
466  *
467  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468  * that already hold reference to @task can call the 'safe' version and trust
469  * wake_q to do the right thing depending whether or not the @task is already
470  * queued for wakeup.
471  */
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 	if (!__wake_q_add(head, task))
475 		put_task_struct(task);
476 }
477 
478 void wake_up_q(struct wake_q_head *head)
479 {
480 	struct wake_q_node *node = head->first;
481 
482 	while (node != WAKE_Q_TAIL) {
483 		struct task_struct *task;
484 
485 		task = container_of(node, struct task_struct, wake_q);
486 		BUG_ON(!task);
487 		/* Task can safely be re-inserted now: */
488 		node = node->next;
489 		task->wake_q.next = NULL;
490 
491 		/*
492 		 * wake_up_process() executes a full barrier, which pairs with
493 		 * the queueing in wake_q_add() so as not to miss wakeups.
494 		 */
495 		wake_up_process(task);
496 		put_task_struct(task);
497 	}
498 }
499 
500 /*
501  * resched_curr - mark rq's current task 'to be rescheduled now'.
502  *
503  * On UP this means the setting of the need_resched flag, on SMP it
504  * might also involve a cross-CPU call to trigger the scheduler on
505  * the target CPU.
506  */
507 void resched_curr(struct rq *rq)
508 {
509 	struct task_struct *curr = rq->curr;
510 	int cpu;
511 
512 	lockdep_assert_held(&rq->lock);
513 
514 	if (test_tsk_need_resched(curr))
515 		return;
516 
517 	cpu = cpu_of(rq);
518 
519 	if (cpu == smp_processor_id()) {
520 		set_tsk_need_resched(curr);
521 		set_preempt_need_resched();
522 		return;
523 	}
524 
525 	if (set_nr_and_not_polling(curr))
526 		smp_send_reschedule(cpu);
527 	else
528 		trace_sched_wake_idle_without_ipi(cpu);
529 }
530 
531 void resched_cpu(int cpu)
532 {
533 	struct rq *rq = cpu_rq(cpu);
534 	unsigned long flags;
535 
536 	raw_spin_lock_irqsave(&rq->lock, flags);
537 	if (cpu_online(cpu) || cpu == smp_processor_id())
538 		resched_curr(rq);
539 	raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541 
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545  * In the semi idle case, use the nearest busy CPU for migrating timers
546  * from an idle CPU.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle CPU will add more delays to the timers than intended
550  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int i, cpu = smp_processor_id();
555 	struct sched_domain *sd;
556 
557 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 		return cpu;
559 
560 	rcu_read_lock();
561 	for_each_domain(cpu, sd) {
562 		for_each_cpu(i, sched_domain_span(sd)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	if (set_nr_and_not_polling(rq->idle))
598 		smp_send_reschedule(cpu);
599 	else
600 		trace_sched_wake_idle_without_ipi(cpu);
601 }
602 
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 	/*
606 	 * We just need the target to call irq_exit() and re-evaluate
607 	 * the next tick. The nohz full kick at least implies that.
608 	 * If needed we can still optimize that later with an
609 	 * empty IRQ.
610 	 */
611 	if (cpu_is_offline(cpu))
612 		return true;  /* Don't try to wake offline CPUs. */
613 	if (tick_nohz_full_cpu(cpu)) {
614 		if (cpu != smp_processor_id() ||
615 		    tick_nohz_tick_stopped())
616 			tick_nohz_full_kick_cpu(cpu);
617 		return true;
618 	}
619 
620 	return false;
621 }
622 
623 /*
624  * Wake up the specified CPU.  If the CPU is going offline, it is the
625  * caller's responsibility to deal with the lost wakeup, for example,
626  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627  */
628 void wake_up_nohz_cpu(int cpu)
629 {
630 	if (!wake_up_full_nohz_cpu(cpu))
631 		wake_up_idle_cpu(cpu);
632 }
633 
634 static inline bool got_nohz_idle_kick(void)
635 {
636 	int cpu = smp_processor_id();
637 
638 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 		return false;
640 
641 	if (idle_cpu(cpu) && !need_resched())
642 		return true;
643 
644 	/*
645 	 * We can't run Idle Load Balance on this CPU for this time so we
646 	 * cancel it and clear NOHZ_BALANCE_KICK
647 	 */
648 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 	return false;
650 }
651 
652 #else /* CONFIG_NO_HZ_COMMON */
653 
654 static inline bool got_nohz_idle_kick(void)
655 {
656 	return false;
657 }
658 
659 #endif /* CONFIG_NO_HZ_COMMON */
660 
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 	int fifo_nr_running;
665 
666 	/* Deadline tasks, even if single, need the tick */
667 	if (rq->dl.dl_nr_running)
668 		return false;
669 
670 	/*
671 	 * If there are more than one RR tasks, we need the tick to effect the
672 	 * actual RR behaviour.
673 	 */
674 	if (rq->rt.rr_nr_running) {
675 		if (rq->rt.rr_nr_running == 1)
676 			return true;
677 		else
678 			return false;
679 	}
680 
681 	/*
682 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 	 * forced preemption between FIFO tasks.
684 	 */
685 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 	if (fifo_nr_running)
687 		return true;
688 
689 	/*
690 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 	 * if there's more than one we need the tick for involuntary
692 	 * preemption.
693 	 */
694 	if (rq->nr_running > 1)
695 		return false;
696 
697 	return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (task_has_idle_policy(p)) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		p->se.runnable_weight = load->weight;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 		p->se.runnable_weight = load->weight;
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (!p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 			   unsigned int clamps)
1079 {
1080 	enum uclamp_id clamp_id;
1081 	struct css_task_iter it;
1082 	struct task_struct *p;
1083 
1084 	css_task_iter_start(css, 0, &it);
1085 	while ((p = css_task_iter_next(&it))) {
1086 		for_each_clamp_id(clamp_id) {
1087 			if ((0x1 << clamp_id) & clamps)
1088 				uclamp_update_active(p, clamp_id);
1089 		}
1090 	}
1091 	css_task_iter_end(&it);
1092 }
1093 
1094 #ifdef CONFIG_UCLAMP_TASK_GROUP
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void __user *buffer, size_t *lenp,
1115 				loff_t *ppos)
1116 {
1117 	bool update_root_tg = false;
1118 	int old_min, old_max;
1119 	int result;
1120 
1121 	mutex_lock(&uclamp_mutex);
1122 	old_min = sysctl_sched_uclamp_util_min;
1123 	old_max = sysctl_sched_uclamp_util_max;
1124 
1125 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 	if (result)
1127 		goto undo;
1128 	if (!write)
1129 		goto done;
1130 
1131 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 		result = -EINVAL;
1134 		goto undo;
1135 	}
1136 
1137 	if (old_min != sysctl_sched_uclamp_util_min) {
1138 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 			      sysctl_sched_uclamp_util_min, false);
1140 		update_root_tg = true;
1141 	}
1142 	if (old_max != sysctl_sched_uclamp_util_max) {
1143 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 			      sysctl_sched_uclamp_util_max, false);
1145 		update_root_tg = true;
1146 	}
1147 
1148 	if (update_root_tg)
1149 		uclamp_update_root_tg();
1150 
1151 	/*
1152 	 * We update all RUNNABLE tasks only when task groups are in use.
1153 	 * Otherwise, keep it simple and do just a lazy update at each next
1154 	 * task enqueue time.
1155 	 */
1156 
1157 	goto done;
1158 
1159 undo:
1160 	sysctl_sched_uclamp_util_min = old_min;
1161 	sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 	mutex_unlock(&uclamp_mutex);
1164 
1165 	return result;
1166 }
1167 
1168 static int uclamp_validate(struct task_struct *p,
1169 			   const struct sched_attr *attr)
1170 {
1171 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173 
1174 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 		lower_bound = attr->sched_util_min;
1176 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 		upper_bound = attr->sched_util_max;
1178 
1179 	if (lower_bound > upper_bound)
1180 		return -EINVAL;
1181 	if (upper_bound > SCHED_CAPACITY_SCALE)
1182 		return -EINVAL;
1183 
1184 	return 0;
1185 }
1186 
1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 				  const struct sched_attr *attr)
1189 {
1190 	enum uclamp_id clamp_id;
1191 
1192 	/*
1193 	 * On scheduling class change, reset to default clamps for tasks
1194 	 * without a task-specific value.
1195 	 */
1196 	for_each_clamp_id(clamp_id) {
1197 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 		unsigned int clamp_value = uclamp_none(clamp_id);
1199 
1200 		/* Keep using defined clamps across class changes */
1201 		if (uc_se->user_defined)
1202 			continue;
1203 
1204 		/* By default, RT tasks always get 100% boost */
1205 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 			clamp_value = uclamp_none(UCLAMP_MAX);
1207 
1208 		uclamp_se_set(uc_se, clamp_value, false);
1209 	}
1210 
1211 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 		return;
1213 
1214 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 			      attr->sched_util_min, true);
1217 	}
1218 
1219 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 			      attr->sched_util_max, true);
1222 	}
1223 }
1224 
1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 	enum uclamp_id clamp_id;
1228 
1229 	for_each_clamp_id(clamp_id)
1230 		p->uclamp[clamp_id].active = false;
1231 
1232 	if (likely(!p->sched_reset_on_fork))
1233 		return;
1234 
1235 	for_each_clamp_id(clamp_id) {
1236 		unsigned int clamp_value = uclamp_none(clamp_id);
1237 
1238 		/* By default, RT tasks always get 100% boost */
1239 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240 			clamp_value = uclamp_none(UCLAMP_MAX);
1241 
1242 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243 	}
1244 }
1245 
1246 static void __init init_uclamp(void)
1247 {
1248 	struct uclamp_se uc_max = {};
1249 	enum uclamp_id clamp_id;
1250 	int cpu;
1251 
1252 	mutex_init(&uclamp_mutex);
1253 
1254 	for_each_possible_cpu(cpu) {
1255 		memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1256 		cpu_rq(cpu)->uclamp_flags = 0;
1257 	}
1258 
1259 	for_each_clamp_id(clamp_id) {
1260 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 			      uclamp_none(clamp_id), false);
1262 	}
1263 
1264 	/* System defaults allow max clamp values for both indexes */
1265 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 	for_each_clamp_id(clamp_id) {
1267 		uclamp_default[clamp_id] = uc_max;
1268 #ifdef CONFIG_UCLAMP_TASK_GROUP
1269 		root_task_group.uclamp_req[clamp_id] = uc_max;
1270 		root_task_group.uclamp[clamp_id] = uc_max;
1271 #endif
1272 	}
1273 }
1274 
1275 #else /* CONFIG_UCLAMP_TASK */
1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278 static inline int uclamp_validate(struct task_struct *p,
1279 				  const struct sched_attr *attr)
1280 {
1281 	return -EOPNOTSUPP;
1282 }
1283 static void __setscheduler_uclamp(struct task_struct *p,
1284 				  const struct sched_attr *attr) { }
1285 static inline void uclamp_fork(struct task_struct *p) { }
1286 static inline void init_uclamp(void) { }
1287 #endif /* CONFIG_UCLAMP_TASK */
1288 
1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290 {
1291 	if (!(flags & ENQUEUE_NOCLOCK))
1292 		update_rq_clock(rq);
1293 
1294 	if (!(flags & ENQUEUE_RESTORE)) {
1295 		sched_info_queued(rq, p);
1296 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 	}
1298 
1299 	uclamp_rq_inc(rq, p);
1300 	p->sched_class->enqueue_task(rq, p, flags);
1301 }
1302 
1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 	if (!(flags & DEQUEUE_NOCLOCK))
1306 		update_rq_clock(rq);
1307 
1308 	if (!(flags & DEQUEUE_SAVE)) {
1309 		sched_info_dequeued(rq, p);
1310 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 	}
1312 
1313 	uclamp_rq_dec(rq, p);
1314 	p->sched_class->dequeue_task(rq, p, flags);
1315 }
1316 
1317 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 	if (task_contributes_to_load(p))
1320 		rq->nr_uninterruptible--;
1321 
1322 	enqueue_task(rq, p, flags);
1323 
1324 	p->on_rq = TASK_ON_RQ_QUEUED;
1325 }
1326 
1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330 
1331 	if (task_contributes_to_load(p))
1332 		rq->nr_uninterruptible++;
1333 
1334 	dequeue_task(rq, p, flags);
1335 }
1336 
1337 /*
1338  * __normal_prio - return the priority that is based on the static prio
1339  */
1340 static inline int __normal_prio(struct task_struct *p)
1341 {
1342 	return p->static_prio;
1343 }
1344 
1345 /*
1346  * Calculate the expected normal priority: i.e. priority
1347  * without taking RT-inheritance into account. Might be
1348  * boosted by interactivity modifiers. Changes upon fork,
1349  * setprio syscalls, and whenever the interactivity
1350  * estimator recalculates.
1351  */
1352 static inline int normal_prio(struct task_struct *p)
1353 {
1354 	int prio;
1355 
1356 	if (task_has_dl_policy(p))
1357 		prio = MAX_DL_PRIO-1;
1358 	else if (task_has_rt_policy(p))
1359 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 	else
1361 		prio = __normal_prio(p);
1362 	return prio;
1363 }
1364 
1365 /*
1366  * Calculate the current priority, i.e. the priority
1367  * taken into account by the scheduler. This value might
1368  * be boosted by RT tasks, or might be boosted by
1369  * interactivity modifiers. Will be RT if the task got
1370  * RT-boosted. If not then it returns p->normal_prio.
1371  */
1372 static int effective_prio(struct task_struct *p)
1373 {
1374 	p->normal_prio = normal_prio(p);
1375 	/*
1376 	 * If we are RT tasks or we were boosted to RT priority,
1377 	 * keep the priority unchanged. Otherwise, update priority
1378 	 * to the normal priority:
1379 	 */
1380 	if (!rt_prio(p->prio))
1381 		return p->normal_prio;
1382 	return p->prio;
1383 }
1384 
1385 /**
1386  * task_curr - is this task currently executing on a CPU?
1387  * @p: the task in question.
1388  *
1389  * Return: 1 if the task is currently executing. 0 otherwise.
1390  */
1391 inline int task_curr(const struct task_struct *p)
1392 {
1393 	return cpu_curr(task_cpu(p)) == p;
1394 }
1395 
1396 /*
1397  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398  * use the balance_callback list if you want balancing.
1399  *
1400  * this means any call to check_class_changed() must be followed by a call to
1401  * balance_callback().
1402  */
1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 				       const struct sched_class *prev_class,
1405 				       int oldprio)
1406 {
1407 	if (prev_class != p->sched_class) {
1408 		if (prev_class->switched_from)
1409 			prev_class->switched_from(rq, p);
1410 
1411 		p->sched_class->switched_to(rq, p);
1412 	} else if (oldprio != p->prio || dl_task(p))
1413 		p->sched_class->prio_changed(rq, p, oldprio);
1414 }
1415 
1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417 {
1418 	const struct sched_class *class;
1419 
1420 	if (p->sched_class == rq->curr->sched_class) {
1421 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 	} else {
1423 		for_each_class(class) {
1424 			if (class == rq->curr->sched_class)
1425 				break;
1426 			if (class == p->sched_class) {
1427 				resched_curr(rq);
1428 				break;
1429 			}
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * A queue event has occurred, and we're going to schedule.  In
1435 	 * this case, we can save a useless back to back clock update.
1436 	 */
1437 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 		rq_clock_skip_update(rq);
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 
1443 static inline bool is_per_cpu_kthread(struct task_struct *p)
1444 {
1445 	if (!(p->flags & PF_KTHREAD))
1446 		return false;
1447 
1448 	if (p->nr_cpus_allowed != 1)
1449 		return false;
1450 
1451 	return true;
1452 }
1453 
1454 /*
1455  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1456  * __set_cpus_allowed_ptr() and select_fallback_rq().
1457  */
1458 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1459 {
1460 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1461 		return false;
1462 
1463 	if (is_per_cpu_kthread(p))
1464 		return cpu_online(cpu);
1465 
1466 	return cpu_active(cpu);
1467 }
1468 
1469 /*
1470  * This is how migration works:
1471  *
1472  * 1) we invoke migration_cpu_stop() on the target CPU using
1473  *    stop_one_cpu().
1474  * 2) stopper starts to run (implicitly forcing the migrated thread
1475  *    off the CPU)
1476  * 3) it checks whether the migrated task is still in the wrong runqueue.
1477  * 4) if it's in the wrong runqueue then the migration thread removes
1478  *    it and puts it into the right queue.
1479  * 5) stopper completes and stop_one_cpu() returns and the migration
1480  *    is done.
1481  */
1482 
1483 /*
1484  * move_queued_task - move a queued task to new rq.
1485  *
1486  * Returns (locked) new rq. Old rq's lock is released.
1487  */
1488 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1489 				   struct task_struct *p, int new_cpu)
1490 {
1491 	lockdep_assert_held(&rq->lock);
1492 
1493 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1494 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1495 	set_task_cpu(p, new_cpu);
1496 	rq_unlock(rq, rf);
1497 
1498 	rq = cpu_rq(new_cpu);
1499 
1500 	rq_lock(rq, rf);
1501 	BUG_ON(task_cpu(p) != new_cpu);
1502 	enqueue_task(rq, p, 0);
1503 	p->on_rq = TASK_ON_RQ_QUEUED;
1504 	check_preempt_curr(rq, p, 0);
1505 
1506 	return rq;
1507 }
1508 
1509 struct migration_arg {
1510 	struct task_struct *task;
1511 	int dest_cpu;
1512 };
1513 
1514 /*
1515  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1516  * this because either it can't run here any more (set_cpus_allowed()
1517  * away from this CPU, or CPU going down), or because we're
1518  * attempting to rebalance this task on exec (sched_exec).
1519  *
1520  * So we race with normal scheduler movements, but that's OK, as long
1521  * as the task is no longer on this CPU.
1522  */
1523 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1524 				 struct task_struct *p, int dest_cpu)
1525 {
1526 	/* Affinity changed (again). */
1527 	if (!is_cpu_allowed(p, dest_cpu))
1528 		return rq;
1529 
1530 	update_rq_clock(rq);
1531 	rq = move_queued_task(rq, rf, p, dest_cpu);
1532 
1533 	return rq;
1534 }
1535 
1536 /*
1537  * migration_cpu_stop - this will be executed by a highprio stopper thread
1538  * and performs thread migration by bumping thread off CPU then
1539  * 'pushing' onto another runqueue.
1540  */
1541 static int migration_cpu_stop(void *data)
1542 {
1543 	struct migration_arg *arg = data;
1544 	struct task_struct *p = arg->task;
1545 	struct rq *rq = this_rq();
1546 	struct rq_flags rf;
1547 
1548 	/*
1549 	 * The original target CPU might have gone down and we might
1550 	 * be on another CPU but it doesn't matter.
1551 	 */
1552 	local_irq_disable();
1553 	/*
1554 	 * We need to explicitly wake pending tasks before running
1555 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1556 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1557 	 */
1558 	sched_ttwu_pending();
1559 
1560 	raw_spin_lock(&p->pi_lock);
1561 	rq_lock(rq, &rf);
1562 	/*
1563 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1564 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1565 	 * we're holding p->pi_lock.
1566 	 */
1567 	if (task_rq(p) == rq) {
1568 		if (task_on_rq_queued(p))
1569 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1570 		else
1571 			p->wake_cpu = arg->dest_cpu;
1572 	}
1573 	rq_unlock(rq, &rf);
1574 	raw_spin_unlock(&p->pi_lock);
1575 
1576 	local_irq_enable();
1577 	return 0;
1578 }
1579 
1580 /*
1581  * sched_class::set_cpus_allowed must do the below, but is not required to
1582  * actually call this function.
1583  */
1584 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1585 {
1586 	cpumask_copy(&p->cpus_mask, new_mask);
1587 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1588 }
1589 
1590 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1591 {
1592 	struct rq *rq = task_rq(p);
1593 	bool queued, running;
1594 
1595 	lockdep_assert_held(&p->pi_lock);
1596 
1597 	queued = task_on_rq_queued(p);
1598 	running = task_current(rq, p);
1599 
1600 	if (queued) {
1601 		/*
1602 		 * Because __kthread_bind() calls this on blocked tasks without
1603 		 * holding rq->lock.
1604 		 */
1605 		lockdep_assert_held(&rq->lock);
1606 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1607 	}
1608 	if (running)
1609 		put_prev_task(rq, p);
1610 
1611 	p->sched_class->set_cpus_allowed(p, new_mask);
1612 
1613 	if (queued)
1614 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1615 	if (running)
1616 		set_next_task(rq, p);
1617 }
1618 
1619 /*
1620  * Change a given task's CPU affinity. Migrate the thread to a
1621  * proper CPU and schedule it away if the CPU it's executing on
1622  * is removed from the allowed bitmask.
1623  *
1624  * NOTE: the caller must have a valid reference to the task, the
1625  * task must not exit() & deallocate itself prematurely. The
1626  * call is not atomic; no spinlocks may be held.
1627  */
1628 static int __set_cpus_allowed_ptr(struct task_struct *p,
1629 				  const struct cpumask *new_mask, bool check)
1630 {
1631 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1632 	unsigned int dest_cpu;
1633 	struct rq_flags rf;
1634 	struct rq *rq;
1635 	int ret = 0;
1636 
1637 	rq = task_rq_lock(p, &rf);
1638 	update_rq_clock(rq);
1639 
1640 	if (p->flags & PF_KTHREAD) {
1641 		/*
1642 		 * Kernel threads are allowed on online && !active CPUs
1643 		 */
1644 		cpu_valid_mask = cpu_online_mask;
1645 	}
1646 
1647 	/*
1648 	 * Must re-check here, to close a race against __kthread_bind(),
1649 	 * sched_setaffinity() is not guaranteed to observe the flag.
1650 	 */
1651 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1652 		ret = -EINVAL;
1653 		goto out;
1654 	}
1655 
1656 	if (cpumask_equal(p->cpus_ptr, new_mask))
1657 		goto out;
1658 
1659 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1660 		ret = -EINVAL;
1661 		goto out;
1662 	}
1663 
1664 	do_set_cpus_allowed(p, new_mask);
1665 
1666 	if (p->flags & PF_KTHREAD) {
1667 		/*
1668 		 * For kernel threads that do indeed end up on online &&
1669 		 * !active we want to ensure they are strict per-CPU threads.
1670 		 */
1671 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1672 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1673 			p->nr_cpus_allowed != 1);
1674 	}
1675 
1676 	/* Can the task run on the task's current CPU? If so, we're done */
1677 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1678 		goto out;
1679 
1680 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1681 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1682 		struct migration_arg arg = { p, dest_cpu };
1683 		/* Need help from migration thread: drop lock and wait. */
1684 		task_rq_unlock(rq, p, &rf);
1685 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1686 		return 0;
1687 	} else if (task_on_rq_queued(p)) {
1688 		/*
1689 		 * OK, since we're going to drop the lock immediately
1690 		 * afterwards anyway.
1691 		 */
1692 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1693 	}
1694 out:
1695 	task_rq_unlock(rq, p, &rf);
1696 
1697 	return ret;
1698 }
1699 
1700 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1701 {
1702 	return __set_cpus_allowed_ptr(p, new_mask, false);
1703 }
1704 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1705 
1706 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1707 {
1708 #ifdef CONFIG_SCHED_DEBUG
1709 	/*
1710 	 * We should never call set_task_cpu() on a blocked task,
1711 	 * ttwu() will sort out the placement.
1712 	 */
1713 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1714 			!p->on_rq);
1715 
1716 	/*
1717 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1718 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1719 	 * time relying on p->on_rq.
1720 	 */
1721 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1722 		     p->sched_class == &fair_sched_class &&
1723 		     (p->on_rq && !task_on_rq_migrating(p)));
1724 
1725 #ifdef CONFIG_LOCKDEP
1726 	/*
1727 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1728 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1729 	 *
1730 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1731 	 * see task_group().
1732 	 *
1733 	 * Furthermore, all task_rq users should acquire both locks, see
1734 	 * task_rq_lock().
1735 	 */
1736 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1737 				      lockdep_is_held(&task_rq(p)->lock)));
1738 #endif
1739 	/*
1740 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1741 	 */
1742 	WARN_ON_ONCE(!cpu_online(new_cpu));
1743 #endif
1744 
1745 	trace_sched_migrate_task(p, new_cpu);
1746 
1747 	if (task_cpu(p) != new_cpu) {
1748 		if (p->sched_class->migrate_task_rq)
1749 			p->sched_class->migrate_task_rq(p, new_cpu);
1750 		p->se.nr_migrations++;
1751 		rseq_migrate(p);
1752 		perf_event_task_migrate(p);
1753 	}
1754 
1755 	__set_task_cpu(p, new_cpu);
1756 }
1757 
1758 #ifdef CONFIG_NUMA_BALANCING
1759 static void __migrate_swap_task(struct task_struct *p, int cpu)
1760 {
1761 	if (task_on_rq_queued(p)) {
1762 		struct rq *src_rq, *dst_rq;
1763 		struct rq_flags srf, drf;
1764 
1765 		src_rq = task_rq(p);
1766 		dst_rq = cpu_rq(cpu);
1767 
1768 		rq_pin_lock(src_rq, &srf);
1769 		rq_pin_lock(dst_rq, &drf);
1770 
1771 		deactivate_task(src_rq, p, 0);
1772 		set_task_cpu(p, cpu);
1773 		activate_task(dst_rq, p, 0);
1774 		check_preempt_curr(dst_rq, p, 0);
1775 
1776 		rq_unpin_lock(dst_rq, &drf);
1777 		rq_unpin_lock(src_rq, &srf);
1778 
1779 	} else {
1780 		/*
1781 		 * Task isn't running anymore; make it appear like we migrated
1782 		 * it before it went to sleep. This means on wakeup we make the
1783 		 * previous CPU our target instead of where it really is.
1784 		 */
1785 		p->wake_cpu = cpu;
1786 	}
1787 }
1788 
1789 struct migration_swap_arg {
1790 	struct task_struct *src_task, *dst_task;
1791 	int src_cpu, dst_cpu;
1792 };
1793 
1794 static int migrate_swap_stop(void *data)
1795 {
1796 	struct migration_swap_arg *arg = data;
1797 	struct rq *src_rq, *dst_rq;
1798 	int ret = -EAGAIN;
1799 
1800 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1801 		return -EAGAIN;
1802 
1803 	src_rq = cpu_rq(arg->src_cpu);
1804 	dst_rq = cpu_rq(arg->dst_cpu);
1805 
1806 	double_raw_lock(&arg->src_task->pi_lock,
1807 			&arg->dst_task->pi_lock);
1808 	double_rq_lock(src_rq, dst_rq);
1809 
1810 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1811 		goto unlock;
1812 
1813 	if (task_cpu(arg->src_task) != arg->src_cpu)
1814 		goto unlock;
1815 
1816 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1817 		goto unlock;
1818 
1819 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1820 		goto unlock;
1821 
1822 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1823 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1824 
1825 	ret = 0;
1826 
1827 unlock:
1828 	double_rq_unlock(src_rq, dst_rq);
1829 	raw_spin_unlock(&arg->dst_task->pi_lock);
1830 	raw_spin_unlock(&arg->src_task->pi_lock);
1831 
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Cross migrate two tasks
1837  */
1838 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1839 		int target_cpu, int curr_cpu)
1840 {
1841 	struct migration_swap_arg arg;
1842 	int ret = -EINVAL;
1843 
1844 	arg = (struct migration_swap_arg){
1845 		.src_task = cur,
1846 		.src_cpu = curr_cpu,
1847 		.dst_task = p,
1848 		.dst_cpu = target_cpu,
1849 	};
1850 
1851 	if (arg.src_cpu == arg.dst_cpu)
1852 		goto out;
1853 
1854 	/*
1855 	 * These three tests are all lockless; this is OK since all of them
1856 	 * will be re-checked with proper locks held further down the line.
1857 	 */
1858 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1859 		goto out;
1860 
1861 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1862 		goto out;
1863 
1864 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1865 		goto out;
1866 
1867 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1868 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1869 
1870 out:
1871 	return ret;
1872 }
1873 #endif /* CONFIG_NUMA_BALANCING */
1874 
1875 /*
1876  * wait_task_inactive - wait for a thread to unschedule.
1877  *
1878  * If @match_state is nonzero, it's the @p->state value just checked and
1879  * not expected to change.  If it changes, i.e. @p might have woken up,
1880  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1881  * we return a positive number (its total switch count).  If a second call
1882  * a short while later returns the same number, the caller can be sure that
1883  * @p has remained unscheduled the whole time.
1884  *
1885  * The caller must ensure that the task *will* unschedule sometime soon,
1886  * else this function might spin for a *long* time. This function can't
1887  * be called with interrupts off, or it may introduce deadlock with
1888  * smp_call_function() if an IPI is sent by the same process we are
1889  * waiting to become inactive.
1890  */
1891 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1892 {
1893 	int running, queued;
1894 	struct rq_flags rf;
1895 	unsigned long ncsw;
1896 	struct rq *rq;
1897 
1898 	for (;;) {
1899 		/*
1900 		 * We do the initial early heuristics without holding
1901 		 * any task-queue locks at all. We'll only try to get
1902 		 * the runqueue lock when things look like they will
1903 		 * work out!
1904 		 */
1905 		rq = task_rq(p);
1906 
1907 		/*
1908 		 * If the task is actively running on another CPU
1909 		 * still, just relax and busy-wait without holding
1910 		 * any locks.
1911 		 *
1912 		 * NOTE! Since we don't hold any locks, it's not
1913 		 * even sure that "rq" stays as the right runqueue!
1914 		 * But we don't care, since "task_running()" will
1915 		 * return false if the runqueue has changed and p
1916 		 * is actually now running somewhere else!
1917 		 */
1918 		while (task_running(rq, p)) {
1919 			if (match_state && unlikely(p->state != match_state))
1920 				return 0;
1921 			cpu_relax();
1922 		}
1923 
1924 		/*
1925 		 * Ok, time to look more closely! We need the rq
1926 		 * lock now, to be *sure*. If we're wrong, we'll
1927 		 * just go back and repeat.
1928 		 */
1929 		rq = task_rq_lock(p, &rf);
1930 		trace_sched_wait_task(p);
1931 		running = task_running(rq, p);
1932 		queued = task_on_rq_queued(p);
1933 		ncsw = 0;
1934 		if (!match_state || p->state == match_state)
1935 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1936 		task_rq_unlock(rq, p, &rf);
1937 
1938 		/*
1939 		 * If it changed from the expected state, bail out now.
1940 		 */
1941 		if (unlikely(!ncsw))
1942 			break;
1943 
1944 		/*
1945 		 * Was it really running after all now that we
1946 		 * checked with the proper locks actually held?
1947 		 *
1948 		 * Oops. Go back and try again..
1949 		 */
1950 		if (unlikely(running)) {
1951 			cpu_relax();
1952 			continue;
1953 		}
1954 
1955 		/*
1956 		 * It's not enough that it's not actively running,
1957 		 * it must be off the runqueue _entirely_, and not
1958 		 * preempted!
1959 		 *
1960 		 * So if it was still runnable (but just not actively
1961 		 * running right now), it's preempted, and we should
1962 		 * yield - it could be a while.
1963 		 */
1964 		if (unlikely(queued)) {
1965 			ktime_t to = NSEC_PER_SEC / HZ;
1966 
1967 			set_current_state(TASK_UNINTERRUPTIBLE);
1968 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1969 			continue;
1970 		}
1971 
1972 		/*
1973 		 * Ahh, all good. It wasn't running, and it wasn't
1974 		 * runnable, which means that it will never become
1975 		 * running in the future either. We're all done!
1976 		 */
1977 		break;
1978 	}
1979 
1980 	return ncsw;
1981 }
1982 
1983 /***
1984  * kick_process - kick a running thread to enter/exit the kernel
1985  * @p: the to-be-kicked thread
1986  *
1987  * Cause a process which is running on another CPU to enter
1988  * kernel-mode, without any delay. (to get signals handled.)
1989  *
1990  * NOTE: this function doesn't have to take the runqueue lock,
1991  * because all it wants to ensure is that the remote task enters
1992  * the kernel. If the IPI races and the task has been migrated
1993  * to another CPU then no harm is done and the purpose has been
1994  * achieved as well.
1995  */
1996 void kick_process(struct task_struct *p)
1997 {
1998 	int cpu;
1999 
2000 	preempt_disable();
2001 	cpu = task_cpu(p);
2002 	if ((cpu != smp_processor_id()) && task_curr(p))
2003 		smp_send_reschedule(cpu);
2004 	preempt_enable();
2005 }
2006 EXPORT_SYMBOL_GPL(kick_process);
2007 
2008 /*
2009  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2010  *
2011  * A few notes on cpu_active vs cpu_online:
2012  *
2013  *  - cpu_active must be a subset of cpu_online
2014  *
2015  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2016  *    see __set_cpus_allowed_ptr(). At this point the newly online
2017  *    CPU isn't yet part of the sched domains, and balancing will not
2018  *    see it.
2019  *
2020  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2021  *    avoid the load balancer to place new tasks on the to be removed
2022  *    CPU. Existing tasks will remain running there and will be taken
2023  *    off.
2024  *
2025  * This means that fallback selection must not select !active CPUs.
2026  * And can assume that any active CPU must be online. Conversely
2027  * select_task_rq() below may allow selection of !active CPUs in order
2028  * to satisfy the above rules.
2029  */
2030 static int select_fallback_rq(int cpu, struct task_struct *p)
2031 {
2032 	int nid = cpu_to_node(cpu);
2033 	const struct cpumask *nodemask = NULL;
2034 	enum { cpuset, possible, fail } state = cpuset;
2035 	int dest_cpu;
2036 
2037 	/*
2038 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2039 	 * will return -1. There is no CPU on the node, and we should
2040 	 * select the CPU on the other node.
2041 	 */
2042 	if (nid != -1) {
2043 		nodemask = cpumask_of_node(nid);
2044 
2045 		/* Look for allowed, online CPU in same node. */
2046 		for_each_cpu(dest_cpu, nodemask) {
2047 			if (!cpu_active(dest_cpu))
2048 				continue;
2049 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2050 				return dest_cpu;
2051 		}
2052 	}
2053 
2054 	for (;;) {
2055 		/* Any allowed, online CPU? */
2056 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2057 			if (!is_cpu_allowed(p, dest_cpu))
2058 				continue;
2059 
2060 			goto out;
2061 		}
2062 
2063 		/* No more Mr. Nice Guy. */
2064 		switch (state) {
2065 		case cpuset:
2066 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2067 				cpuset_cpus_allowed_fallback(p);
2068 				state = possible;
2069 				break;
2070 			}
2071 			/* Fall-through */
2072 		case possible:
2073 			do_set_cpus_allowed(p, cpu_possible_mask);
2074 			state = fail;
2075 			break;
2076 
2077 		case fail:
2078 			BUG();
2079 			break;
2080 		}
2081 	}
2082 
2083 out:
2084 	if (state != cpuset) {
2085 		/*
2086 		 * Don't tell them about moving exiting tasks or
2087 		 * kernel threads (both mm NULL), since they never
2088 		 * leave kernel.
2089 		 */
2090 		if (p->mm && printk_ratelimit()) {
2091 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2092 					task_pid_nr(p), p->comm, cpu);
2093 		}
2094 	}
2095 
2096 	return dest_cpu;
2097 }
2098 
2099 /*
2100  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2101  */
2102 static inline
2103 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2104 {
2105 	lockdep_assert_held(&p->pi_lock);
2106 
2107 	if (p->nr_cpus_allowed > 1)
2108 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2109 	else
2110 		cpu = cpumask_any(p->cpus_ptr);
2111 
2112 	/*
2113 	 * In order not to call set_task_cpu() on a blocking task we need
2114 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2115 	 * CPU.
2116 	 *
2117 	 * Since this is common to all placement strategies, this lives here.
2118 	 *
2119 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2120 	 *   not worry about this generic constraint ]
2121 	 */
2122 	if (unlikely(!is_cpu_allowed(p, cpu)))
2123 		cpu = select_fallback_rq(task_cpu(p), p);
2124 
2125 	return cpu;
2126 }
2127 
2128 static void update_avg(u64 *avg, u64 sample)
2129 {
2130 	s64 diff = sample - *avg;
2131 	*avg += diff >> 3;
2132 }
2133 
2134 void sched_set_stop_task(int cpu, struct task_struct *stop)
2135 {
2136 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2137 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2138 
2139 	if (stop) {
2140 		/*
2141 		 * Make it appear like a SCHED_FIFO task, its something
2142 		 * userspace knows about and won't get confused about.
2143 		 *
2144 		 * Also, it will make PI more or less work without too
2145 		 * much confusion -- but then, stop work should not
2146 		 * rely on PI working anyway.
2147 		 */
2148 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2149 
2150 		stop->sched_class = &stop_sched_class;
2151 	}
2152 
2153 	cpu_rq(cpu)->stop = stop;
2154 
2155 	if (old_stop) {
2156 		/*
2157 		 * Reset it back to a normal scheduling class so that
2158 		 * it can die in pieces.
2159 		 */
2160 		old_stop->sched_class = &rt_sched_class;
2161 	}
2162 }
2163 
2164 #else
2165 
2166 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2167 					 const struct cpumask *new_mask, bool check)
2168 {
2169 	return set_cpus_allowed_ptr(p, new_mask);
2170 }
2171 
2172 #endif /* CONFIG_SMP */
2173 
2174 static void
2175 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2176 {
2177 	struct rq *rq;
2178 
2179 	if (!schedstat_enabled())
2180 		return;
2181 
2182 	rq = this_rq();
2183 
2184 #ifdef CONFIG_SMP
2185 	if (cpu == rq->cpu) {
2186 		__schedstat_inc(rq->ttwu_local);
2187 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2188 	} else {
2189 		struct sched_domain *sd;
2190 
2191 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2192 		rcu_read_lock();
2193 		for_each_domain(rq->cpu, sd) {
2194 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2195 				__schedstat_inc(sd->ttwu_wake_remote);
2196 				break;
2197 			}
2198 		}
2199 		rcu_read_unlock();
2200 	}
2201 
2202 	if (wake_flags & WF_MIGRATED)
2203 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2204 #endif /* CONFIG_SMP */
2205 
2206 	__schedstat_inc(rq->ttwu_count);
2207 	__schedstat_inc(p->se.statistics.nr_wakeups);
2208 
2209 	if (wake_flags & WF_SYNC)
2210 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2211 }
2212 
2213 /*
2214  * Mark the task runnable and perform wakeup-preemption.
2215  */
2216 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2217 			   struct rq_flags *rf)
2218 {
2219 	check_preempt_curr(rq, p, wake_flags);
2220 	p->state = TASK_RUNNING;
2221 	trace_sched_wakeup(p);
2222 
2223 #ifdef CONFIG_SMP
2224 	if (p->sched_class->task_woken) {
2225 		/*
2226 		 * Our task @p is fully woken up and running; so its safe to
2227 		 * drop the rq->lock, hereafter rq is only used for statistics.
2228 		 */
2229 		rq_unpin_lock(rq, rf);
2230 		p->sched_class->task_woken(rq, p);
2231 		rq_repin_lock(rq, rf);
2232 	}
2233 
2234 	if (rq->idle_stamp) {
2235 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2236 		u64 max = 2*rq->max_idle_balance_cost;
2237 
2238 		update_avg(&rq->avg_idle, delta);
2239 
2240 		if (rq->avg_idle > max)
2241 			rq->avg_idle = max;
2242 
2243 		rq->idle_stamp = 0;
2244 	}
2245 #endif
2246 }
2247 
2248 static void
2249 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2250 		 struct rq_flags *rf)
2251 {
2252 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2253 
2254 	lockdep_assert_held(&rq->lock);
2255 
2256 #ifdef CONFIG_SMP
2257 	if (p->sched_contributes_to_load)
2258 		rq->nr_uninterruptible--;
2259 
2260 	if (wake_flags & WF_MIGRATED)
2261 		en_flags |= ENQUEUE_MIGRATED;
2262 #endif
2263 
2264 	activate_task(rq, p, en_flags);
2265 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2266 }
2267 
2268 /*
2269  * Called in case the task @p isn't fully descheduled from its runqueue,
2270  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2271  * since all we need to do is flip p->state to TASK_RUNNING, since
2272  * the task is still ->on_rq.
2273  */
2274 static int ttwu_remote(struct task_struct *p, int wake_flags)
2275 {
2276 	struct rq_flags rf;
2277 	struct rq *rq;
2278 	int ret = 0;
2279 
2280 	rq = __task_rq_lock(p, &rf);
2281 	if (task_on_rq_queued(p)) {
2282 		/* check_preempt_curr() may use rq clock */
2283 		update_rq_clock(rq);
2284 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2285 		ret = 1;
2286 	}
2287 	__task_rq_unlock(rq, &rf);
2288 
2289 	return ret;
2290 }
2291 
2292 #ifdef CONFIG_SMP
2293 void sched_ttwu_pending(void)
2294 {
2295 	struct rq *rq = this_rq();
2296 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2297 	struct task_struct *p, *t;
2298 	struct rq_flags rf;
2299 
2300 	if (!llist)
2301 		return;
2302 
2303 	rq_lock_irqsave(rq, &rf);
2304 	update_rq_clock(rq);
2305 
2306 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2307 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2308 
2309 	rq_unlock_irqrestore(rq, &rf);
2310 }
2311 
2312 void scheduler_ipi(void)
2313 {
2314 	/*
2315 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2316 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2317 	 * this IPI.
2318 	 */
2319 	preempt_fold_need_resched();
2320 
2321 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2322 		return;
2323 
2324 	/*
2325 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2326 	 * traditionally all their work was done from the interrupt return
2327 	 * path. Now that we actually do some work, we need to make sure
2328 	 * we do call them.
2329 	 *
2330 	 * Some archs already do call them, luckily irq_enter/exit nest
2331 	 * properly.
2332 	 *
2333 	 * Arguably we should visit all archs and update all handlers,
2334 	 * however a fair share of IPIs are still resched only so this would
2335 	 * somewhat pessimize the simple resched case.
2336 	 */
2337 	irq_enter();
2338 	sched_ttwu_pending();
2339 
2340 	/*
2341 	 * Check if someone kicked us for doing the nohz idle load balance.
2342 	 */
2343 	if (unlikely(got_nohz_idle_kick())) {
2344 		this_rq()->idle_balance = 1;
2345 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2346 	}
2347 	irq_exit();
2348 }
2349 
2350 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2351 {
2352 	struct rq *rq = cpu_rq(cpu);
2353 
2354 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2355 
2356 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2357 		if (!set_nr_if_polling(rq->idle))
2358 			smp_send_reschedule(cpu);
2359 		else
2360 			trace_sched_wake_idle_without_ipi(cpu);
2361 	}
2362 }
2363 
2364 void wake_up_if_idle(int cpu)
2365 {
2366 	struct rq *rq = cpu_rq(cpu);
2367 	struct rq_flags rf;
2368 
2369 	rcu_read_lock();
2370 
2371 	if (!is_idle_task(rcu_dereference(rq->curr)))
2372 		goto out;
2373 
2374 	if (set_nr_if_polling(rq->idle)) {
2375 		trace_sched_wake_idle_without_ipi(cpu);
2376 	} else {
2377 		rq_lock_irqsave(rq, &rf);
2378 		if (is_idle_task(rq->curr))
2379 			smp_send_reschedule(cpu);
2380 		/* Else CPU is not idle, do nothing here: */
2381 		rq_unlock_irqrestore(rq, &rf);
2382 	}
2383 
2384 out:
2385 	rcu_read_unlock();
2386 }
2387 
2388 bool cpus_share_cache(int this_cpu, int that_cpu)
2389 {
2390 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2391 }
2392 #endif /* CONFIG_SMP */
2393 
2394 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395 {
2396 	struct rq *rq = cpu_rq(cpu);
2397 	struct rq_flags rf;
2398 
2399 #if defined(CONFIG_SMP)
2400 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2401 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2402 		ttwu_queue_remote(p, cpu, wake_flags);
2403 		return;
2404 	}
2405 #endif
2406 
2407 	rq_lock(rq, &rf);
2408 	update_rq_clock(rq);
2409 	ttwu_do_activate(rq, p, wake_flags, &rf);
2410 	rq_unlock(rq, &rf);
2411 }
2412 
2413 /*
2414  * Notes on Program-Order guarantees on SMP systems.
2415  *
2416  *  MIGRATION
2417  *
2418  * The basic program-order guarantee on SMP systems is that when a task [t]
2419  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420  * execution on its new CPU [c1].
2421  *
2422  * For migration (of runnable tasks) this is provided by the following means:
2423  *
2424  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2425  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2426  *     rq(c1)->lock (if not at the same time, then in that order).
2427  *  C) LOCK of the rq(c1)->lock scheduling in task
2428  *
2429  * Release/acquire chaining guarantees that B happens after A and C after B.
2430  * Note: the CPU doing B need not be c0 or c1
2431  *
2432  * Example:
2433  *
2434  *   CPU0            CPU1            CPU2
2435  *
2436  *   LOCK rq(0)->lock
2437  *   sched-out X
2438  *   sched-in Y
2439  *   UNLOCK rq(0)->lock
2440  *
2441  *                                   LOCK rq(0)->lock // orders against CPU0
2442  *                                   dequeue X
2443  *                                   UNLOCK rq(0)->lock
2444  *
2445  *                                   LOCK rq(1)->lock
2446  *                                   enqueue X
2447  *                                   UNLOCK rq(1)->lock
2448  *
2449  *                   LOCK rq(1)->lock // orders against CPU2
2450  *                   sched-out Z
2451  *                   sched-in X
2452  *                   UNLOCK rq(1)->lock
2453  *
2454  *
2455  *  BLOCKING -- aka. SLEEP + WAKEUP
2456  *
2457  * For blocking we (obviously) need to provide the same guarantee as for
2458  * migration. However the means are completely different as there is no lock
2459  * chain to provide order. Instead we do:
2460  *
2461  *   1) smp_store_release(X->on_cpu, 0)
2462  *   2) smp_cond_load_acquire(!X->on_cpu)
2463  *
2464  * Example:
2465  *
2466  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2467  *
2468  *   LOCK rq(0)->lock LOCK X->pi_lock
2469  *   dequeue X
2470  *   sched-out X
2471  *   smp_store_release(X->on_cpu, 0);
2472  *
2473  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2474  *                    X->state = WAKING
2475  *                    set_task_cpu(X,2)
2476  *
2477  *                    LOCK rq(2)->lock
2478  *                    enqueue X
2479  *                    X->state = RUNNING
2480  *                    UNLOCK rq(2)->lock
2481  *
2482  *                                          LOCK rq(2)->lock // orders against CPU1
2483  *                                          sched-out Z
2484  *                                          sched-in X
2485  *                                          UNLOCK rq(2)->lock
2486  *
2487  *                    UNLOCK X->pi_lock
2488  *   UNLOCK rq(0)->lock
2489  *
2490  *
2491  * However, for wakeups there is a second guarantee we must provide, namely we
2492  * must ensure that CONDITION=1 done by the caller can not be reordered with
2493  * accesses to the task state; see try_to_wake_up() and set_current_state().
2494  */
2495 
2496 /**
2497  * try_to_wake_up - wake up a thread
2498  * @p: the thread to be awakened
2499  * @state: the mask of task states that can be woken
2500  * @wake_flags: wake modifier flags (WF_*)
2501  *
2502  * If (@state & @p->state) @p->state = TASK_RUNNING.
2503  *
2504  * If the task was not queued/runnable, also place it back on a runqueue.
2505  *
2506  * Atomic against schedule() which would dequeue a task, also see
2507  * set_current_state().
2508  *
2509  * This function executes a full memory barrier before accessing the task
2510  * state; see set_current_state().
2511  *
2512  * Return: %true if @p->state changes (an actual wakeup was done),
2513  *	   %false otherwise.
2514  */
2515 static int
2516 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517 {
2518 	unsigned long flags;
2519 	int cpu, success = 0;
2520 
2521 	preempt_disable();
2522 	if (p == current) {
2523 		/*
2524 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525 		 * == smp_processor_id()'. Together this means we can special
2526 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2527 		 * without taking any locks.
2528 		 *
2529 		 * In particular:
2530 		 *  - we rely on Program-Order guarantees for all the ordering,
2531 		 *  - we're serialized against set_special_state() by virtue of
2532 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2533 		 */
2534 		if (!(p->state & state))
2535 			goto out;
2536 
2537 		success = 1;
2538 		cpu = task_cpu(p);
2539 		trace_sched_waking(p);
2540 		p->state = TASK_RUNNING;
2541 		trace_sched_wakeup(p);
2542 		goto out;
2543 	}
2544 
2545 	/*
2546 	 * If we are going to wake up a thread waiting for CONDITION we
2547 	 * need to ensure that CONDITION=1 done by the caller can not be
2548 	 * reordered with p->state check below. This pairs with mb() in
2549 	 * set_current_state() the waiting thread does.
2550 	 */
2551 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2552 	smp_mb__after_spinlock();
2553 	if (!(p->state & state))
2554 		goto unlock;
2555 
2556 	trace_sched_waking(p);
2557 
2558 	/* We're going to change ->state: */
2559 	success = 1;
2560 	cpu = task_cpu(p);
2561 
2562 	/*
2563 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565 	 * in smp_cond_load_acquire() below.
2566 	 *
2567 	 * sched_ttwu_pending()			try_to_wake_up()
2568 	 *   STORE p->on_rq = 1			  LOAD p->state
2569 	 *   UNLOCK rq->lock
2570 	 *
2571 	 * __schedule() (switch to task 'p')
2572 	 *   LOCK rq->lock			  smp_rmb();
2573 	 *   smp_mb__after_spinlock();
2574 	 *   UNLOCK rq->lock
2575 	 *
2576 	 * [task p]
2577 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2578 	 *
2579 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2581 	 */
2582 	smp_rmb();
2583 	if (p->on_rq && ttwu_remote(p, wake_flags))
2584 		goto unlock;
2585 
2586 #ifdef CONFIG_SMP
2587 	/*
2588 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2589 	 * possible to, falsely, observe p->on_cpu == 0.
2590 	 *
2591 	 * One must be running (->on_cpu == 1) in order to remove oneself
2592 	 * from the runqueue.
2593 	 *
2594 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2595 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2596 	 *   UNLOCK rq->lock
2597 	 *
2598 	 * __schedule() (put 'p' to sleep)
2599 	 *   LOCK rq->lock			  smp_rmb();
2600 	 *   smp_mb__after_spinlock();
2601 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2602 	 *
2603 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2604 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2605 	 */
2606 	smp_rmb();
2607 
2608 	/*
2609 	 * If the owning (remote) CPU is still in the middle of schedule() with
2610 	 * this task as prev, wait until its done referencing the task.
2611 	 *
2612 	 * Pairs with the smp_store_release() in finish_task().
2613 	 *
2614 	 * This ensures that tasks getting woken will be fully ordered against
2615 	 * their previous state and preserve Program Order.
2616 	 */
2617 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2618 
2619 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2620 	p->state = TASK_WAKING;
2621 
2622 	if (p->in_iowait) {
2623 		delayacct_blkio_end(p);
2624 		atomic_dec(&task_rq(p)->nr_iowait);
2625 	}
2626 
2627 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2628 	if (task_cpu(p) != cpu) {
2629 		wake_flags |= WF_MIGRATED;
2630 		psi_ttwu_dequeue(p);
2631 		set_task_cpu(p, cpu);
2632 	}
2633 
2634 #else /* CONFIG_SMP */
2635 
2636 	if (p->in_iowait) {
2637 		delayacct_blkio_end(p);
2638 		atomic_dec(&task_rq(p)->nr_iowait);
2639 	}
2640 
2641 #endif /* CONFIG_SMP */
2642 
2643 	ttwu_queue(p, cpu, wake_flags);
2644 unlock:
2645 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2646 out:
2647 	if (success)
2648 		ttwu_stat(p, cpu, wake_flags);
2649 	preempt_enable();
2650 
2651 	return success;
2652 }
2653 
2654 /**
2655  * wake_up_process - Wake up a specific process
2656  * @p: The process to be woken up.
2657  *
2658  * Attempt to wake up the nominated process and move it to the set of runnable
2659  * processes.
2660  *
2661  * Return: 1 if the process was woken up, 0 if it was already running.
2662  *
2663  * This function executes a full memory barrier before accessing the task state.
2664  */
2665 int wake_up_process(struct task_struct *p)
2666 {
2667 	return try_to_wake_up(p, TASK_NORMAL, 0);
2668 }
2669 EXPORT_SYMBOL(wake_up_process);
2670 
2671 int wake_up_state(struct task_struct *p, unsigned int state)
2672 {
2673 	return try_to_wake_up(p, state, 0);
2674 }
2675 
2676 /*
2677  * Perform scheduler related setup for a newly forked process p.
2678  * p is forked by current.
2679  *
2680  * __sched_fork() is basic setup used by init_idle() too:
2681  */
2682 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2683 {
2684 	p->on_rq			= 0;
2685 
2686 	p->se.on_rq			= 0;
2687 	p->se.exec_start		= 0;
2688 	p->se.sum_exec_runtime		= 0;
2689 	p->se.prev_sum_exec_runtime	= 0;
2690 	p->se.nr_migrations		= 0;
2691 	p->se.vruntime			= 0;
2692 	INIT_LIST_HEAD(&p->se.group_node);
2693 
2694 #ifdef CONFIG_FAIR_GROUP_SCHED
2695 	p->se.cfs_rq			= NULL;
2696 #endif
2697 
2698 #ifdef CONFIG_SCHEDSTATS
2699 	/* Even if schedstat is disabled, there should not be garbage */
2700 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2701 #endif
2702 
2703 	RB_CLEAR_NODE(&p->dl.rb_node);
2704 	init_dl_task_timer(&p->dl);
2705 	init_dl_inactive_task_timer(&p->dl);
2706 	__dl_clear_params(p);
2707 
2708 	INIT_LIST_HEAD(&p->rt.run_list);
2709 	p->rt.timeout		= 0;
2710 	p->rt.time_slice	= sched_rr_timeslice;
2711 	p->rt.on_rq		= 0;
2712 	p->rt.on_list		= 0;
2713 
2714 #ifdef CONFIG_PREEMPT_NOTIFIERS
2715 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2716 #endif
2717 
2718 #ifdef CONFIG_COMPACTION
2719 	p->capture_control = NULL;
2720 #endif
2721 	init_numa_balancing(clone_flags, p);
2722 }
2723 
2724 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2725 
2726 #ifdef CONFIG_NUMA_BALANCING
2727 
2728 void set_numabalancing_state(bool enabled)
2729 {
2730 	if (enabled)
2731 		static_branch_enable(&sched_numa_balancing);
2732 	else
2733 		static_branch_disable(&sched_numa_balancing);
2734 }
2735 
2736 #ifdef CONFIG_PROC_SYSCTL
2737 int sysctl_numa_balancing(struct ctl_table *table, int write,
2738 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2739 {
2740 	struct ctl_table t;
2741 	int err;
2742 	int state = static_branch_likely(&sched_numa_balancing);
2743 
2744 	if (write && !capable(CAP_SYS_ADMIN))
2745 		return -EPERM;
2746 
2747 	t = *table;
2748 	t.data = &state;
2749 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2750 	if (err < 0)
2751 		return err;
2752 	if (write)
2753 		set_numabalancing_state(state);
2754 	return err;
2755 }
2756 #endif
2757 #endif
2758 
2759 #ifdef CONFIG_SCHEDSTATS
2760 
2761 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2762 static bool __initdata __sched_schedstats = false;
2763 
2764 static void set_schedstats(bool enabled)
2765 {
2766 	if (enabled)
2767 		static_branch_enable(&sched_schedstats);
2768 	else
2769 		static_branch_disable(&sched_schedstats);
2770 }
2771 
2772 void force_schedstat_enabled(void)
2773 {
2774 	if (!schedstat_enabled()) {
2775 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2776 		static_branch_enable(&sched_schedstats);
2777 	}
2778 }
2779 
2780 static int __init setup_schedstats(char *str)
2781 {
2782 	int ret = 0;
2783 	if (!str)
2784 		goto out;
2785 
2786 	/*
2787 	 * This code is called before jump labels have been set up, so we can't
2788 	 * change the static branch directly just yet.  Instead set a temporary
2789 	 * variable so init_schedstats() can do it later.
2790 	 */
2791 	if (!strcmp(str, "enable")) {
2792 		__sched_schedstats = true;
2793 		ret = 1;
2794 	} else if (!strcmp(str, "disable")) {
2795 		__sched_schedstats = false;
2796 		ret = 1;
2797 	}
2798 out:
2799 	if (!ret)
2800 		pr_warn("Unable to parse schedstats=\n");
2801 
2802 	return ret;
2803 }
2804 __setup("schedstats=", setup_schedstats);
2805 
2806 static void __init init_schedstats(void)
2807 {
2808 	set_schedstats(__sched_schedstats);
2809 }
2810 
2811 #ifdef CONFIG_PROC_SYSCTL
2812 int sysctl_schedstats(struct ctl_table *table, int write,
2813 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2814 {
2815 	struct ctl_table t;
2816 	int err;
2817 	int state = static_branch_likely(&sched_schedstats);
2818 
2819 	if (write && !capable(CAP_SYS_ADMIN))
2820 		return -EPERM;
2821 
2822 	t = *table;
2823 	t.data = &state;
2824 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2825 	if (err < 0)
2826 		return err;
2827 	if (write)
2828 		set_schedstats(state);
2829 	return err;
2830 }
2831 #endif /* CONFIG_PROC_SYSCTL */
2832 #else  /* !CONFIG_SCHEDSTATS */
2833 static inline void init_schedstats(void) {}
2834 #endif /* CONFIG_SCHEDSTATS */
2835 
2836 /*
2837  * fork()/clone()-time setup:
2838  */
2839 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2840 {
2841 	unsigned long flags;
2842 
2843 	__sched_fork(clone_flags, p);
2844 	/*
2845 	 * We mark the process as NEW here. This guarantees that
2846 	 * nobody will actually run it, and a signal or other external
2847 	 * event cannot wake it up and insert it on the runqueue either.
2848 	 */
2849 	p->state = TASK_NEW;
2850 
2851 	/*
2852 	 * Make sure we do not leak PI boosting priority to the child.
2853 	 */
2854 	p->prio = current->normal_prio;
2855 
2856 	uclamp_fork(p);
2857 
2858 	/*
2859 	 * Revert to default priority/policy on fork if requested.
2860 	 */
2861 	if (unlikely(p->sched_reset_on_fork)) {
2862 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2863 			p->policy = SCHED_NORMAL;
2864 			p->static_prio = NICE_TO_PRIO(0);
2865 			p->rt_priority = 0;
2866 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2867 			p->static_prio = NICE_TO_PRIO(0);
2868 
2869 		p->prio = p->normal_prio = __normal_prio(p);
2870 		set_load_weight(p, false);
2871 
2872 		/*
2873 		 * We don't need the reset flag anymore after the fork. It has
2874 		 * fulfilled its duty:
2875 		 */
2876 		p->sched_reset_on_fork = 0;
2877 	}
2878 
2879 	if (dl_prio(p->prio))
2880 		return -EAGAIN;
2881 	else if (rt_prio(p->prio))
2882 		p->sched_class = &rt_sched_class;
2883 	else
2884 		p->sched_class = &fair_sched_class;
2885 
2886 	init_entity_runnable_average(&p->se);
2887 
2888 	/*
2889 	 * The child is not yet in the pid-hash so no cgroup attach races,
2890 	 * and the cgroup is pinned to this child due to cgroup_fork()
2891 	 * is ran before sched_fork().
2892 	 *
2893 	 * Silence PROVE_RCU.
2894 	 */
2895 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 	/*
2897 	 * We're setting the CPU for the first time, we don't migrate,
2898 	 * so use __set_task_cpu().
2899 	 */
2900 	__set_task_cpu(p, smp_processor_id());
2901 	if (p->sched_class->task_fork)
2902 		p->sched_class->task_fork(p);
2903 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904 
2905 #ifdef CONFIG_SCHED_INFO
2906 	if (likely(sched_info_on()))
2907 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2908 #endif
2909 #if defined(CONFIG_SMP)
2910 	p->on_cpu = 0;
2911 #endif
2912 	init_task_preempt_count(p);
2913 #ifdef CONFIG_SMP
2914 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2915 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2916 #endif
2917 	return 0;
2918 }
2919 
2920 unsigned long to_ratio(u64 period, u64 runtime)
2921 {
2922 	if (runtime == RUNTIME_INF)
2923 		return BW_UNIT;
2924 
2925 	/*
2926 	 * Doing this here saves a lot of checks in all
2927 	 * the calling paths, and returning zero seems
2928 	 * safe for them anyway.
2929 	 */
2930 	if (period == 0)
2931 		return 0;
2932 
2933 	return div64_u64(runtime << BW_SHIFT, period);
2934 }
2935 
2936 /*
2937  * wake_up_new_task - wake up a newly created task for the first time.
2938  *
2939  * This function will do some initial scheduler statistics housekeeping
2940  * that must be done for every newly created context, then puts the task
2941  * on the runqueue and wakes it.
2942  */
2943 void wake_up_new_task(struct task_struct *p)
2944 {
2945 	struct rq_flags rf;
2946 	struct rq *rq;
2947 
2948 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2949 	p->state = TASK_RUNNING;
2950 #ifdef CONFIG_SMP
2951 	/*
2952 	 * Fork balancing, do it here and not earlier because:
2953 	 *  - cpus_ptr can change in the fork path
2954 	 *  - any previously selected CPU might disappear through hotplug
2955 	 *
2956 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2957 	 * as we're not fully set-up yet.
2958 	 */
2959 	p->recent_used_cpu = task_cpu(p);
2960 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2961 #endif
2962 	rq = __task_rq_lock(p, &rf);
2963 	update_rq_clock(rq);
2964 	post_init_entity_util_avg(p);
2965 
2966 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2967 	trace_sched_wakeup_new(p);
2968 	check_preempt_curr(rq, p, WF_FORK);
2969 #ifdef CONFIG_SMP
2970 	if (p->sched_class->task_woken) {
2971 		/*
2972 		 * Nothing relies on rq->lock after this, so its fine to
2973 		 * drop it.
2974 		 */
2975 		rq_unpin_lock(rq, &rf);
2976 		p->sched_class->task_woken(rq, p);
2977 		rq_repin_lock(rq, &rf);
2978 	}
2979 #endif
2980 	task_rq_unlock(rq, p, &rf);
2981 }
2982 
2983 #ifdef CONFIG_PREEMPT_NOTIFIERS
2984 
2985 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2986 
2987 void preempt_notifier_inc(void)
2988 {
2989 	static_branch_inc(&preempt_notifier_key);
2990 }
2991 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2992 
2993 void preempt_notifier_dec(void)
2994 {
2995 	static_branch_dec(&preempt_notifier_key);
2996 }
2997 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2998 
2999 /**
3000  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3001  * @notifier: notifier struct to register
3002  */
3003 void preempt_notifier_register(struct preempt_notifier *notifier)
3004 {
3005 	if (!static_branch_unlikely(&preempt_notifier_key))
3006 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3007 
3008 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3009 }
3010 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011 
3012 /**
3013  * preempt_notifier_unregister - no longer interested in preemption notifications
3014  * @notifier: notifier struct to unregister
3015  *
3016  * This is *not* safe to call from within a preemption notifier.
3017  */
3018 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3019 {
3020 	hlist_del(&notifier->link);
3021 }
3022 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3023 
3024 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3025 {
3026 	struct preempt_notifier *notifier;
3027 
3028 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3029 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3030 }
3031 
3032 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3033 {
3034 	if (static_branch_unlikely(&preempt_notifier_key))
3035 		__fire_sched_in_preempt_notifiers(curr);
3036 }
3037 
3038 static void
3039 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3040 				   struct task_struct *next)
3041 {
3042 	struct preempt_notifier *notifier;
3043 
3044 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3045 		notifier->ops->sched_out(notifier, next);
3046 }
3047 
3048 static __always_inline void
3049 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050 				 struct task_struct *next)
3051 {
3052 	if (static_branch_unlikely(&preempt_notifier_key))
3053 		__fire_sched_out_preempt_notifiers(curr, next);
3054 }
3055 
3056 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3057 
3058 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059 {
3060 }
3061 
3062 static inline void
3063 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3064 				 struct task_struct *next)
3065 {
3066 }
3067 
3068 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3069 
3070 static inline void prepare_task(struct task_struct *next)
3071 {
3072 #ifdef CONFIG_SMP
3073 	/*
3074 	 * Claim the task as running, we do this before switching to it
3075 	 * such that any running task will have this set.
3076 	 */
3077 	next->on_cpu = 1;
3078 #endif
3079 }
3080 
3081 static inline void finish_task(struct task_struct *prev)
3082 {
3083 #ifdef CONFIG_SMP
3084 	/*
3085 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3086 	 * We must ensure this doesn't happen until the switch is completely
3087 	 * finished.
3088 	 *
3089 	 * In particular, the load of prev->state in finish_task_switch() must
3090 	 * happen before this.
3091 	 *
3092 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3093 	 */
3094 	smp_store_release(&prev->on_cpu, 0);
3095 #endif
3096 }
3097 
3098 static inline void
3099 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3100 {
3101 	/*
3102 	 * Since the runqueue lock will be released by the next
3103 	 * task (which is an invalid locking op but in the case
3104 	 * of the scheduler it's an obvious special-case), so we
3105 	 * do an early lockdep release here:
3106 	 */
3107 	rq_unpin_lock(rq, rf);
3108 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3109 #ifdef CONFIG_DEBUG_SPINLOCK
3110 	/* this is a valid case when another task releases the spinlock */
3111 	rq->lock.owner = next;
3112 #endif
3113 }
3114 
3115 static inline void finish_lock_switch(struct rq *rq)
3116 {
3117 	/*
3118 	 * If we are tracking spinlock dependencies then we have to
3119 	 * fix up the runqueue lock - which gets 'carried over' from
3120 	 * prev into current:
3121 	 */
3122 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3123 	raw_spin_unlock_irq(&rq->lock);
3124 }
3125 
3126 /*
3127  * NOP if the arch has not defined these:
3128  */
3129 
3130 #ifndef prepare_arch_switch
3131 # define prepare_arch_switch(next)	do { } while (0)
3132 #endif
3133 
3134 #ifndef finish_arch_post_lock_switch
3135 # define finish_arch_post_lock_switch()	do { } while (0)
3136 #endif
3137 
3138 /**
3139  * prepare_task_switch - prepare to switch tasks
3140  * @rq: the runqueue preparing to switch
3141  * @prev: the current task that is being switched out
3142  * @next: the task we are going to switch to.
3143  *
3144  * This is called with the rq lock held and interrupts off. It must
3145  * be paired with a subsequent finish_task_switch after the context
3146  * switch.
3147  *
3148  * prepare_task_switch sets up locking and calls architecture specific
3149  * hooks.
3150  */
3151 static inline void
3152 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 		    struct task_struct *next)
3154 {
3155 	kcov_prepare_switch(prev);
3156 	sched_info_switch(rq, prev, next);
3157 	perf_event_task_sched_out(prev, next);
3158 	rseq_preempt(prev);
3159 	fire_sched_out_preempt_notifiers(prev, next);
3160 	prepare_task(next);
3161 	prepare_arch_switch(next);
3162 }
3163 
3164 /**
3165  * finish_task_switch - clean up after a task-switch
3166  * @prev: the thread we just switched away from.
3167  *
3168  * finish_task_switch must be called after the context switch, paired
3169  * with a prepare_task_switch call before the context switch.
3170  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171  * and do any other architecture-specific cleanup actions.
3172  *
3173  * Note that we may have delayed dropping an mm in context_switch(). If
3174  * so, we finish that here outside of the runqueue lock. (Doing it
3175  * with the lock held can cause deadlocks; see schedule() for
3176  * details.)
3177  *
3178  * The context switch have flipped the stack from under us and restored the
3179  * local variables which were saved when this task called schedule() in the
3180  * past. prev == current is still correct but we need to recalculate this_rq
3181  * because prev may have moved to another CPU.
3182  */
3183 static struct rq *finish_task_switch(struct task_struct *prev)
3184 	__releases(rq->lock)
3185 {
3186 	struct rq *rq = this_rq();
3187 	struct mm_struct *mm = rq->prev_mm;
3188 	long prev_state;
3189 
3190 	/*
3191 	 * The previous task will have left us with a preempt_count of 2
3192 	 * because it left us after:
3193 	 *
3194 	 *	schedule()
3195 	 *	  preempt_disable();			// 1
3196 	 *	  __schedule()
3197 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3198 	 *
3199 	 * Also, see FORK_PREEMPT_COUNT.
3200 	 */
3201 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3202 		      "corrupted preempt_count: %s/%d/0x%x\n",
3203 		      current->comm, current->pid, preempt_count()))
3204 		preempt_count_set(FORK_PREEMPT_COUNT);
3205 
3206 	rq->prev_mm = NULL;
3207 
3208 	/*
3209 	 * A task struct has one reference for the use as "current".
3210 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3211 	 * schedule one last time. The schedule call will never return, and
3212 	 * the scheduled task must drop that reference.
3213 	 *
3214 	 * We must observe prev->state before clearing prev->on_cpu (in
3215 	 * finish_task), otherwise a concurrent wakeup can get prev
3216 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3217 	 * transition, resulting in a double drop.
3218 	 */
3219 	prev_state = prev->state;
3220 	vtime_task_switch(prev);
3221 	perf_event_task_sched_in(prev, current);
3222 	finish_task(prev);
3223 	finish_lock_switch(rq);
3224 	finish_arch_post_lock_switch();
3225 	kcov_finish_switch(current);
3226 
3227 	fire_sched_in_preempt_notifiers(current);
3228 	/*
3229 	 * When switching through a kernel thread, the loop in
3230 	 * membarrier_{private,global}_expedited() may have observed that
3231 	 * kernel thread and not issued an IPI. It is therefore possible to
3232 	 * schedule between user->kernel->user threads without passing though
3233 	 * switch_mm(). Membarrier requires a barrier after storing to
3234 	 * rq->curr, before returning to userspace, so provide them here:
3235 	 *
3236 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3237 	 *   provided by mmdrop(),
3238 	 * - a sync_core for SYNC_CORE.
3239 	 */
3240 	if (mm) {
3241 		membarrier_mm_sync_core_before_usermode(mm);
3242 		mmdrop(mm);
3243 	}
3244 	if (unlikely(prev_state == TASK_DEAD)) {
3245 		if (prev->sched_class->task_dead)
3246 			prev->sched_class->task_dead(prev);
3247 
3248 		/*
3249 		 * Remove function-return probe instances associated with this
3250 		 * task and put them back on the free list.
3251 		 */
3252 		kprobe_flush_task(prev);
3253 
3254 		/* Task is done with its stack. */
3255 		put_task_stack(prev);
3256 
3257 		put_task_struct(prev);
3258 	}
3259 
3260 	tick_nohz_task_switch();
3261 	return rq;
3262 }
3263 
3264 #ifdef CONFIG_SMP
3265 
3266 /* rq->lock is NOT held, but preemption is disabled */
3267 static void __balance_callback(struct rq *rq)
3268 {
3269 	struct callback_head *head, *next;
3270 	void (*func)(struct rq *rq);
3271 	unsigned long flags;
3272 
3273 	raw_spin_lock_irqsave(&rq->lock, flags);
3274 	head = rq->balance_callback;
3275 	rq->balance_callback = NULL;
3276 	while (head) {
3277 		func = (void (*)(struct rq *))head->func;
3278 		next = head->next;
3279 		head->next = NULL;
3280 		head = next;
3281 
3282 		func(rq);
3283 	}
3284 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3285 }
3286 
3287 static inline void balance_callback(struct rq *rq)
3288 {
3289 	if (unlikely(rq->balance_callback))
3290 		__balance_callback(rq);
3291 }
3292 
3293 #else
3294 
3295 static inline void balance_callback(struct rq *rq)
3296 {
3297 }
3298 
3299 #endif
3300 
3301 /**
3302  * schedule_tail - first thing a freshly forked thread must call.
3303  * @prev: the thread we just switched away from.
3304  */
3305 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3306 	__releases(rq->lock)
3307 {
3308 	struct rq *rq;
3309 
3310 	/*
3311 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3312 	 * finish_task_switch() for details.
3313 	 *
3314 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3315 	 * and the preempt_enable() will end up enabling preemption (on
3316 	 * PREEMPT_COUNT kernels).
3317 	 */
3318 
3319 	rq = finish_task_switch(prev);
3320 	balance_callback(rq);
3321 	preempt_enable();
3322 
3323 	if (current->set_child_tid)
3324 		put_user(task_pid_vnr(current), current->set_child_tid);
3325 
3326 	calculate_sigpending();
3327 }
3328 
3329 /*
3330  * context_switch - switch to the new MM and the new thread's register state.
3331  */
3332 static __always_inline struct rq *
3333 context_switch(struct rq *rq, struct task_struct *prev,
3334 	       struct task_struct *next, struct rq_flags *rf)
3335 {
3336 	prepare_task_switch(rq, prev, next);
3337 
3338 	/*
3339 	 * For paravirt, this is coupled with an exit in switch_to to
3340 	 * combine the page table reload and the switch backend into
3341 	 * one hypercall.
3342 	 */
3343 	arch_start_context_switch(prev);
3344 
3345 	/*
3346 	 * kernel -> kernel   lazy + transfer active
3347 	 *   user -> kernel   lazy + mmgrab() active
3348 	 *
3349 	 * kernel ->   user   switch + mmdrop() active
3350 	 *   user ->   user   switch
3351 	 */
3352 	if (!next->mm) {                                // to kernel
3353 		enter_lazy_tlb(prev->active_mm, next);
3354 
3355 		next->active_mm = prev->active_mm;
3356 		if (prev->mm)                           // from user
3357 			mmgrab(prev->active_mm);
3358 		else
3359 			prev->active_mm = NULL;
3360 	} else {                                        // to user
3361 		/*
3362 		 * sys_membarrier() requires an smp_mb() between setting
3363 		 * rq->curr and returning to userspace.
3364 		 *
3365 		 * The below provides this either through switch_mm(), or in
3366 		 * case 'prev->active_mm == next->mm' through
3367 		 * finish_task_switch()'s mmdrop().
3368 		 */
3369 
3370 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3371 
3372 		if (!prev->mm) {                        // from kernel
3373 			/* will mmdrop() in finish_task_switch(). */
3374 			rq->prev_mm = prev->active_mm;
3375 			prev->active_mm = NULL;
3376 		}
3377 	}
3378 
3379 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3380 
3381 	prepare_lock_switch(rq, next, rf);
3382 
3383 	/* Here we just switch the register state and the stack. */
3384 	switch_to(prev, next, prev);
3385 	barrier();
3386 
3387 	return finish_task_switch(prev);
3388 }
3389 
3390 /*
3391  * nr_running and nr_context_switches:
3392  *
3393  * externally visible scheduler statistics: current number of runnable
3394  * threads, total number of context switches performed since bootup.
3395  */
3396 unsigned long nr_running(void)
3397 {
3398 	unsigned long i, sum = 0;
3399 
3400 	for_each_online_cpu(i)
3401 		sum += cpu_rq(i)->nr_running;
3402 
3403 	return sum;
3404 }
3405 
3406 /*
3407  * Check if only the current task is running on the CPU.
3408  *
3409  * Caution: this function does not check that the caller has disabled
3410  * preemption, thus the result might have a time-of-check-to-time-of-use
3411  * race.  The caller is responsible to use it correctly, for example:
3412  *
3413  * - from a non-preemptible section (of course)
3414  *
3415  * - from a thread that is bound to a single CPU
3416  *
3417  * - in a loop with very short iterations (e.g. a polling loop)
3418  */
3419 bool single_task_running(void)
3420 {
3421 	return raw_rq()->nr_running == 1;
3422 }
3423 EXPORT_SYMBOL(single_task_running);
3424 
3425 unsigned long long nr_context_switches(void)
3426 {
3427 	int i;
3428 	unsigned long long sum = 0;
3429 
3430 	for_each_possible_cpu(i)
3431 		sum += cpu_rq(i)->nr_switches;
3432 
3433 	return sum;
3434 }
3435 
3436 /*
3437  * Consumers of these two interfaces, like for example the cpuidle menu
3438  * governor, are using nonsensical data. Preferring shallow idle state selection
3439  * for a CPU that has IO-wait which might not even end up running the task when
3440  * it does become runnable.
3441  */
3442 
3443 unsigned long nr_iowait_cpu(int cpu)
3444 {
3445 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3446 }
3447 
3448 /*
3449  * IO-wait accounting, and how its mostly bollocks (on SMP).
3450  *
3451  * The idea behind IO-wait account is to account the idle time that we could
3452  * have spend running if it were not for IO. That is, if we were to improve the
3453  * storage performance, we'd have a proportional reduction in IO-wait time.
3454  *
3455  * This all works nicely on UP, where, when a task blocks on IO, we account
3456  * idle time as IO-wait, because if the storage were faster, it could've been
3457  * running and we'd not be idle.
3458  *
3459  * This has been extended to SMP, by doing the same for each CPU. This however
3460  * is broken.
3461  *
3462  * Imagine for instance the case where two tasks block on one CPU, only the one
3463  * CPU will have IO-wait accounted, while the other has regular idle. Even
3464  * though, if the storage were faster, both could've ran at the same time,
3465  * utilising both CPUs.
3466  *
3467  * This means, that when looking globally, the current IO-wait accounting on
3468  * SMP is a lower bound, by reason of under accounting.
3469  *
3470  * Worse, since the numbers are provided per CPU, they are sometimes
3471  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3472  * associated with any one particular CPU, it can wake to another CPU than it
3473  * blocked on. This means the per CPU IO-wait number is meaningless.
3474  *
3475  * Task CPU affinities can make all that even more 'interesting'.
3476  */
3477 
3478 unsigned long nr_iowait(void)
3479 {
3480 	unsigned long i, sum = 0;
3481 
3482 	for_each_possible_cpu(i)
3483 		sum += nr_iowait_cpu(i);
3484 
3485 	return sum;
3486 }
3487 
3488 #ifdef CONFIG_SMP
3489 
3490 /*
3491  * sched_exec - execve() is a valuable balancing opportunity, because at
3492  * this point the task has the smallest effective memory and cache footprint.
3493  */
3494 void sched_exec(void)
3495 {
3496 	struct task_struct *p = current;
3497 	unsigned long flags;
3498 	int dest_cpu;
3499 
3500 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3501 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3502 	if (dest_cpu == smp_processor_id())
3503 		goto unlock;
3504 
3505 	if (likely(cpu_active(dest_cpu))) {
3506 		struct migration_arg arg = { p, dest_cpu };
3507 
3508 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3509 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3510 		return;
3511 	}
3512 unlock:
3513 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3514 }
3515 
3516 #endif
3517 
3518 DEFINE_PER_CPU(struct kernel_stat, kstat);
3519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3520 
3521 EXPORT_PER_CPU_SYMBOL(kstat);
3522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3523 
3524 /*
3525  * The function fair_sched_class.update_curr accesses the struct curr
3526  * and its field curr->exec_start; when called from task_sched_runtime(),
3527  * we observe a high rate of cache misses in practice.
3528  * Prefetching this data results in improved performance.
3529  */
3530 static inline void prefetch_curr_exec_start(struct task_struct *p)
3531 {
3532 #ifdef CONFIG_FAIR_GROUP_SCHED
3533 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3534 #else
3535 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3536 #endif
3537 	prefetch(curr);
3538 	prefetch(&curr->exec_start);
3539 }
3540 
3541 /*
3542  * Return accounted runtime for the task.
3543  * In case the task is currently running, return the runtime plus current's
3544  * pending runtime that have not been accounted yet.
3545  */
3546 unsigned long long task_sched_runtime(struct task_struct *p)
3547 {
3548 	struct rq_flags rf;
3549 	struct rq *rq;
3550 	u64 ns;
3551 
3552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3553 	/*
3554 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3555 	 * So we have a optimization chance when the task's delta_exec is 0.
3556 	 * Reading ->on_cpu is racy, but this is ok.
3557 	 *
3558 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3559 	 * If we race with it entering CPU, unaccounted time is 0. This is
3560 	 * indistinguishable from the read occurring a few cycles earlier.
3561 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3562 	 * been accounted, so we're correct here as well.
3563 	 */
3564 	if (!p->on_cpu || !task_on_rq_queued(p))
3565 		return p->se.sum_exec_runtime;
3566 #endif
3567 
3568 	rq = task_rq_lock(p, &rf);
3569 	/*
3570 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3571 	 * project cycles that may never be accounted to this
3572 	 * thread, breaking clock_gettime().
3573 	 */
3574 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3575 		prefetch_curr_exec_start(p);
3576 		update_rq_clock(rq);
3577 		p->sched_class->update_curr(rq);
3578 	}
3579 	ns = p->se.sum_exec_runtime;
3580 	task_rq_unlock(rq, p, &rf);
3581 
3582 	return ns;
3583 }
3584 
3585 /*
3586  * This function gets called by the timer code, with HZ frequency.
3587  * We call it with interrupts disabled.
3588  */
3589 void scheduler_tick(void)
3590 {
3591 	int cpu = smp_processor_id();
3592 	struct rq *rq = cpu_rq(cpu);
3593 	struct task_struct *curr = rq->curr;
3594 	struct rq_flags rf;
3595 
3596 	sched_clock_tick();
3597 
3598 	rq_lock(rq, &rf);
3599 
3600 	update_rq_clock(rq);
3601 	curr->sched_class->task_tick(rq, curr, 0);
3602 	calc_global_load_tick(rq);
3603 	psi_task_tick(rq);
3604 
3605 	rq_unlock(rq, &rf);
3606 
3607 	perf_event_task_tick();
3608 
3609 #ifdef CONFIG_SMP
3610 	rq->idle_balance = idle_cpu(cpu);
3611 	trigger_load_balance(rq);
3612 #endif
3613 }
3614 
3615 #ifdef CONFIG_NO_HZ_FULL
3616 
3617 struct tick_work {
3618 	int			cpu;
3619 	atomic_t		state;
3620 	struct delayed_work	work;
3621 };
3622 /* Values for ->state, see diagram below. */
3623 #define TICK_SCHED_REMOTE_OFFLINE	0
3624 #define TICK_SCHED_REMOTE_OFFLINING	1
3625 #define TICK_SCHED_REMOTE_RUNNING	2
3626 
3627 /*
3628  * State diagram for ->state:
3629  *
3630  *
3631  *          TICK_SCHED_REMOTE_OFFLINE
3632  *                    |   ^
3633  *                    |   |
3634  *                    |   | sched_tick_remote()
3635  *                    |   |
3636  *                    |   |
3637  *                    +--TICK_SCHED_REMOTE_OFFLINING
3638  *                    |   ^
3639  *                    |   |
3640  * sched_tick_start() |   | sched_tick_stop()
3641  *                    |   |
3642  *                    V   |
3643  *          TICK_SCHED_REMOTE_RUNNING
3644  *
3645  *
3646  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3647  * and sched_tick_start() are happy to leave the state in RUNNING.
3648  */
3649 
3650 static struct tick_work __percpu *tick_work_cpu;
3651 
3652 static void sched_tick_remote(struct work_struct *work)
3653 {
3654 	struct delayed_work *dwork = to_delayed_work(work);
3655 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3656 	int cpu = twork->cpu;
3657 	struct rq *rq = cpu_rq(cpu);
3658 	struct task_struct *curr;
3659 	struct rq_flags rf;
3660 	u64 delta;
3661 	int os;
3662 
3663 	/*
3664 	 * Handle the tick only if it appears the remote CPU is running in full
3665 	 * dynticks mode. The check is racy by nature, but missing a tick or
3666 	 * having one too much is no big deal because the scheduler tick updates
3667 	 * statistics and checks timeslices in a time-independent way, regardless
3668 	 * of when exactly it is running.
3669 	 */
3670 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3671 		goto out_requeue;
3672 
3673 	rq_lock_irq(rq, &rf);
3674 	curr = rq->curr;
3675 	if (is_idle_task(curr) || cpu_is_offline(cpu))
3676 		goto out_unlock;
3677 
3678 	update_rq_clock(rq);
3679 	delta = rq_clock_task(rq) - curr->se.exec_start;
3680 
3681 	/*
3682 	 * Make sure the next tick runs within a reasonable
3683 	 * amount of time.
3684 	 */
3685 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 	curr->sched_class->task_tick(rq, curr, 0);
3687 
3688 out_unlock:
3689 	rq_unlock_irq(rq, &rf);
3690 
3691 out_requeue:
3692 	/*
3693 	 * Run the remote tick once per second (1Hz). This arbitrary
3694 	 * frequency is large enough to avoid overload but short enough
3695 	 * to keep scheduler internal stats reasonably up to date.  But
3696 	 * first update state to reflect hotplug activity if required.
3697 	 */
3698 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 	if (os == TICK_SCHED_REMOTE_RUNNING)
3701 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3702 }
3703 
3704 static void sched_tick_start(int cpu)
3705 {
3706 	int os;
3707 	struct tick_work *twork;
3708 
3709 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 		return;
3711 
3712 	WARN_ON_ONCE(!tick_work_cpu);
3713 
3714 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 		twork->cpu = cpu;
3719 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 	}
3722 }
3723 
3724 #ifdef CONFIG_HOTPLUG_CPU
3725 static void sched_tick_stop(int cpu)
3726 {
3727 	struct tick_work *twork;
3728 	int os;
3729 
3730 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 		return;
3732 
3733 	WARN_ON_ONCE(!tick_work_cpu);
3734 
3735 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 	/* There cannot be competing actions, but don't rely on stop-machine. */
3737 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 	/* Don't cancel, as this would mess up the state machine. */
3740 }
3741 #endif /* CONFIG_HOTPLUG_CPU */
3742 
3743 int __init sched_tick_offload_init(void)
3744 {
3745 	tick_work_cpu = alloc_percpu(struct tick_work);
3746 	BUG_ON(!tick_work_cpu);
3747 	return 0;
3748 }
3749 
3750 #else /* !CONFIG_NO_HZ_FULL */
3751 static inline void sched_tick_start(int cpu) { }
3752 static inline void sched_tick_stop(int cpu) { }
3753 #endif
3754 
3755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757 /*
3758  * If the value passed in is equal to the current preempt count
3759  * then we just disabled preemption. Start timing the latency.
3760  */
3761 static inline void preempt_latency_start(int val)
3762 {
3763 	if (preempt_count() == val) {
3764 		unsigned long ip = get_lock_parent_ip();
3765 #ifdef CONFIG_DEBUG_PREEMPT
3766 		current->preempt_disable_ip = ip;
3767 #endif
3768 		trace_preempt_off(CALLER_ADDR0, ip);
3769 	}
3770 }
3771 
3772 void preempt_count_add(int val)
3773 {
3774 #ifdef CONFIG_DEBUG_PREEMPT
3775 	/*
3776 	 * Underflow?
3777 	 */
3778 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 		return;
3780 #endif
3781 	__preempt_count_add(val);
3782 #ifdef CONFIG_DEBUG_PREEMPT
3783 	/*
3784 	 * Spinlock count overflowing soon?
3785 	 */
3786 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 				PREEMPT_MASK - 10);
3788 #endif
3789 	preempt_latency_start(val);
3790 }
3791 EXPORT_SYMBOL(preempt_count_add);
3792 NOKPROBE_SYMBOL(preempt_count_add);
3793 
3794 /*
3795  * If the value passed in equals to the current preempt count
3796  * then we just enabled preemption. Stop timing the latency.
3797  */
3798 static inline void preempt_latency_stop(int val)
3799 {
3800 	if (preempt_count() == val)
3801 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802 }
3803 
3804 void preempt_count_sub(int val)
3805 {
3806 #ifdef CONFIG_DEBUG_PREEMPT
3807 	/*
3808 	 * Underflow?
3809 	 */
3810 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 		return;
3812 	/*
3813 	 * Is the spinlock portion underflowing?
3814 	 */
3815 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 			!(preempt_count() & PREEMPT_MASK)))
3817 		return;
3818 #endif
3819 
3820 	preempt_latency_stop(val);
3821 	__preempt_count_sub(val);
3822 }
3823 EXPORT_SYMBOL(preempt_count_sub);
3824 NOKPROBE_SYMBOL(preempt_count_sub);
3825 
3826 #else
3827 static inline void preempt_latency_start(int val) { }
3828 static inline void preempt_latency_stop(int val) { }
3829 #endif
3830 
3831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832 {
3833 #ifdef CONFIG_DEBUG_PREEMPT
3834 	return p->preempt_disable_ip;
3835 #else
3836 	return 0;
3837 #endif
3838 }
3839 
3840 /*
3841  * Print scheduling while atomic bug:
3842  */
3843 static noinline void __schedule_bug(struct task_struct *prev)
3844 {
3845 	/* Save this before calling printk(), since that will clobber it */
3846 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847 
3848 	if (oops_in_progress)
3849 		return;
3850 
3851 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 		prev->comm, prev->pid, preempt_count());
3853 
3854 	debug_show_held_locks(prev);
3855 	print_modules();
3856 	if (irqs_disabled())
3857 		print_irqtrace_events(prev);
3858 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 	    && in_atomic_preempt_off()) {
3860 		pr_err("Preemption disabled at:");
3861 		print_ip_sym(preempt_disable_ip);
3862 		pr_cont("\n");
3863 	}
3864 	if (panic_on_warn)
3865 		panic("scheduling while atomic\n");
3866 
3867 	dump_stack();
3868 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869 }
3870 
3871 /*
3872  * Various schedule()-time debugging checks and statistics:
3873  */
3874 static inline void schedule_debug(struct task_struct *prev)
3875 {
3876 #ifdef CONFIG_SCHED_STACK_END_CHECK
3877 	if (task_stack_end_corrupted(prev))
3878 		panic("corrupted stack end detected inside scheduler\n");
3879 #endif
3880 
3881 	if (unlikely(in_atomic_preempt_off())) {
3882 		__schedule_bug(prev);
3883 		preempt_count_set(PREEMPT_DISABLED);
3884 	}
3885 	rcu_sleep_check();
3886 
3887 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3888 
3889 	schedstat_inc(this_rq()->sched_count);
3890 }
3891 
3892 /*
3893  * Pick up the highest-prio task:
3894  */
3895 static inline struct task_struct *
3896 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3897 {
3898 	const struct sched_class *class;
3899 	struct task_struct *p;
3900 
3901 	/*
3902 	 * Optimization: we know that if all tasks are in the fair class we can
3903 	 * call that function directly, but only if the @prev task wasn't of a
3904 	 * higher scheduling class, because otherwise those loose the
3905 	 * opportunity to pull in more work from other CPUs.
3906 	 */
3907 	if (likely((prev->sched_class == &idle_sched_class ||
3908 		    prev->sched_class == &fair_sched_class) &&
3909 		   rq->nr_running == rq->cfs.h_nr_running)) {
3910 
3911 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3912 		if (unlikely(p == RETRY_TASK))
3913 			goto restart;
3914 
3915 		/* Assumes fair_sched_class->next == idle_sched_class */
3916 		if (unlikely(!p))
3917 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3918 
3919 		return p;
3920 	}
3921 
3922 restart:
3923 	/*
3924 	 * Ensure that we put DL/RT tasks before the pick loop, such that they
3925 	 * can PULL higher prio tasks when we lower the RQ 'priority'.
3926 	 */
3927 	prev->sched_class->put_prev_task(rq, prev, rf);
3928 	if (!rq->nr_running)
3929 		newidle_balance(rq, rf);
3930 
3931 	for_each_class(class) {
3932 		p = class->pick_next_task(rq, NULL, NULL);
3933 		if (p)
3934 			return p;
3935 	}
3936 
3937 	/* The idle class should always have a runnable task: */
3938 	BUG();
3939 }
3940 
3941 /*
3942  * __schedule() is the main scheduler function.
3943  *
3944  * The main means of driving the scheduler and thus entering this function are:
3945  *
3946  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3947  *
3948  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3949  *      paths. For example, see arch/x86/entry_64.S.
3950  *
3951  *      To drive preemption between tasks, the scheduler sets the flag in timer
3952  *      interrupt handler scheduler_tick().
3953  *
3954  *   3. Wakeups don't really cause entry into schedule(). They add a
3955  *      task to the run-queue and that's it.
3956  *
3957  *      Now, if the new task added to the run-queue preempts the current
3958  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3959  *      called on the nearest possible occasion:
3960  *
3961  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3962  *
3963  *         - in syscall or exception context, at the next outmost
3964  *           preempt_enable(). (this might be as soon as the wake_up()'s
3965  *           spin_unlock()!)
3966  *
3967  *         - in IRQ context, return from interrupt-handler to
3968  *           preemptible context
3969  *
3970  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3971  *         then at the next:
3972  *
3973  *          - cond_resched() call
3974  *          - explicit schedule() call
3975  *          - return from syscall or exception to user-space
3976  *          - return from interrupt-handler to user-space
3977  *
3978  * WARNING: must be called with preemption disabled!
3979  */
3980 static void __sched notrace __schedule(bool preempt)
3981 {
3982 	struct task_struct *prev, *next;
3983 	unsigned long *switch_count;
3984 	struct rq_flags rf;
3985 	struct rq *rq;
3986 	int cpu;
3987 
3988 	cpu = smp_processor_id();
3989 	rq = cpu_rq(cpu);
3990 	prev = rq->curr;
3991 
3992 	schedule_debug(prev);
3993 
3994 	if (sched_feat(HRTICK))
3995 		hrtick_clear(rq);
3996 
3997 	local_irq_disable();
3998 	rcu_note_context_switch(preempt);
3999 
4000 	/*
4001 	 * Make sure that signal_pending_state()->signal_pending() below
4002 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4003 	 * done by the caller to avoid the race with signal_wake_up().
4004 	 *
4005 	 * The membarrier system call requires a full memory barrier
4006 	 * after coming from user-space, before storing to rq->curr.
4007 	 */
4008 	rq_lock(rq, &rf);
4009 	smp_mb__after_spinlock();
4010 
4011 	/* Promote REQ to ACT */
4012 	rq->clock_update_flags <<= 1;
4013 	update_rq_clock(rq);
4014 
4015 	switch_count = &prev->nivcsw;
4016 	if (!preempt && prev->state) {
4017 		if (signal_pending_state(prev->state, prev)) {
4018 			prev->state = TASK_RUNNING;
4019 		} else {
4020 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4021 
4022 			if (prev->in_iowait) {
4023 				atomic_inc(&rq->nr_iowait);
4024 				delayacct_blkio_start();
4025 			}
4026 		}
4027 		switch_count = &prev->nvcsw;
4028 	}
4029 
4030 	next = pick_next_task(rq, prev, &rf);
4031 	clear_tsk_need_resched(prev);
4032 	clear_preempt_need_resched();
4033 
4034 	if (likely(prev != next)) {
4035 		rq->nr_switches++;
4036 		rq->curr = next;
4037 		/*
4038 		 * The membarrier system call requires each architecture
4039 		 * to have a full memory barrier after updating
4040 		 * rq->curr, before returning to user-space.
4041 		 *
4042 		 * Here are the schemes providing that barrier on the
4043 		 * various architectures:
4044 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4045 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4046 		 * - finish_lock_switch() for weakly-ordered
4047 		 *   architectures where spin_unlock is a full barrier,
4048 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4049 		 *   is a RELEASE barrier),
4050 		 */
4051 		++*switch_count;
4052 
4053 		trace_sched_switch(preempt, prev, next);
4054 
4055 		/* Also unlocks the rq: */
4056 		rq = context_switch(rq, prev, next, &rf);
4057 	} else {
4058 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4059 		rq_unlock_irq(rq, &rf);
4060 	}
4061 
4062 	balance_callback(rq);
4063 }
4064 
4065 void __noreturn do_task_dead(void)
4066 {
4067 	/* Causes final put_task_struct in finish_task_switch(): */
4068 	set_special_state(TASK_DEAD);
4069 
4070 	/* Tell freezer to ignore us: */
4071 	current->flags |= PF_NOFREEZE;
4072 
4073 	__schedule(false);
4074 	BUG();
4075 
4076 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4077 	for (;;)
4078 		cpu_relax();
4079 }
4080 
4081 static inline void sched_submit_work(struct task_struct *tsk)
4082 {
4083 	if (!tsk->state)
4084 		return;
4085 
4086 	/*
4087 	 * If a worker went to sleep, notify and ask workqueue whether
4088 	 * it wants to wake up a task to maintain concurrency.
4089 	 * As this function is called inside the schedule() context,
4090 	 * we disable preemption to avoid it calling schedule() again
4091 	 * in the possible wakeup of a kworker.
4092 	 */
4093 	if (tsk->flags & PF_WQ_WORKER) {
4094 		preempt_disable();
4095 		wq_worker_sleeping(tsk);
4096 		preempt_enable_no_resched();
4097 	}
4098 
4099 	if (tsk_is_pi_blocked(tsk))
4100 		return;
4101 
4102 	/*
4103 	 * If we are going to sleep and we have plugged IO queued,
4104 	 * make sure to submit it to avoid deadlocks.
4105 	 */
4106 	if (blk_needs_flush_plug(tsk))
4107 		blk_schedule_flush_plug(tsk);
4108 }
4109 
4110 static void sched_update_worker(struct task_struct *tsk)
4111 {
4112 	if (tsk->flags & PF_WQ_WORKER)
4113 		wq_worker_running(tsk);
4114 }
4115 
4116 asmlinkage __visible void __sched schedule(void)
4117 {
4118 	struct task_struct *tsk = current;
4119 
4120 	sched_submit_work(tsk);
4121 	do {
4122 		preempt_disable();
4123 		__schedule(false);
4124 		sched_preempt_enable_no_resched();
4125 	} while (need_resched());
4126 	sched_update_worker(tsk);
4127 }
4128 EXPORT_SYMBOL(schedule);
4129 
4130 /*
4131  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4132  * state (have scheduled out non-voluntarily) by making sure that all
4133  * tasks have either left the run queue or have gone into user space.
4134  * As idle tasks do not do either, they must not ever be preempted
4135  * (schedule out non-voluntarily).
4136  *
4137  * schedule_idle() is similar to schedule_preempt_disable() except that it
4138  * never enables preemption because it does not call sched_submit_work().
4139  */
4140 void __sched schedule_idle(void)
4141 {
4142 	/*
4143 	 * As this skips calling sched_submit_work(), which the idle task does
4144 	 * regardless because that function is a nop when the task is in a
4145 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4146 	 * current task can be in any other state. Note, idle is always in the
4147 	 * TASK_RUNNING state.
4148 	 */
4149 	WARN_ON_ONCE(current->state);
4150 	do {
4151 		__schedule(false);
4152 	} while (need_resched());
4153 }
4154 
4155 #ifdef CONFIG_CONTEXT_TRACKING
4156 asmlinkage __visible void __sched schedule_user(void)
4157 {
4158 	/*
4159 	 * If we come here after a random call to set_need_resched(),
4160 	 * or we have been woken up remotely but the IPI has not yet arrived,
4161 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4162 	 * we find a better solution.
4163 	 *
4164 	 * NB: There are buggy callers of this function.  Ideally we
4165 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4166 	 * too frequently to make sense yet.
4167 	 */
4168 	enum ctx_state prev_state = exception_enter();
4169 	schedule();
4170 	exception_exit(prev_state);
4171 }
4172 #endif
4173 
4174 /**
4175  * schedule_preempt_disabled - called with preemption disabled
4176  *
4177  * Returns with preemption disabled. Note: preempt_count must be 1
4178  */
4179 void __sched schedule_preempt_disabled(void)
4180 {
4181 	sched_preempt_enable_no_resched();
4182 	schedule();
4183 	preempt_disable();
4184 }
4185 
4186 static void __sched notrace preempt_schedule_common(void)
4187 {
4188 	do {
4189 		/*
4190 		 * Because the function tracer can trace preempt_count_sub()
4191 		 * and it also uses preempt_enable/disable_notrace(), if
4192 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4193 		 * by the function tracer will call this function again and
4194 		 * cause infinite recursion.
4195 		 *
4196 		 * Preemption must be disabled here before the function
4197 		 * tracer can trace. Break up preempt_disable() into two
4198 		 * calls. One to disable preemption without fear of being
4199 		 * traced. The other to still record the preemption latency,
4200 		 * which can also be traced by the function tracer.
4201 		 */
4202 		preempt_disable_notrace();
4203 		preempt_latency_start(1);
4204 		__schedule(true);
4205 		preempt_latency_stop(1);
4206 		preempt_enable_no_resched_notrace();
4207 
4208 		/*
4209 		 * Check again in case we missed a preemption opportunity
4210 		 * between schedule and now.
4211 		 */
4212 	} while (need_resched());
4213 }
4214 
4215 #ifdef CONFIG_PREEMPTION
4216 /*
4217  * this is the entry point to schedule() from in-kernel preemption
4218  * off of preempt_enable. Kernel preemptions off return from interrupt
4219  * occur there and call schedule directly.
4220  */
4221 asmlinkage __visible void __sched notrace preempt_schedule(void)
4222 {
4223 	/*
4224 	 * If there is a non-zero preempt_count or interrupts are disabled,
4225 	 * we do not want to preempt the current task. Just return..
4226 	 */
4227 	if (likely(!preemptible()))
4228 		return;
4229 
4230 	preempt_schedule_common();
4231 }
4232 NOKPROBE_SYMBOL(preempt_schedule);
4233 EXPORT_SYMBOL(preempt_schedule);
4234 
4235 /**
4236  * preempt_schedule_notrace - preempt_schedule called by tracing
4237  *
4238  * The tracing infrastructure uses preempt_enable_notrace to prevent
4239  * recursion and tracing preempt enabling caused by the tracing
4240  * infrastructure itself. But as tracing can happen in areas coming
4241  * from userspace or just about to enter userspace, a preempt enable
4242  * can occur before user_exit() is called. This will cause the scheduler
4243  * to be called when the system is still in usermode.
4244  *
4245  * To prevent this, the preempt_enable_notrace will use this function
4246  * instead of preempt_schedule() to exit user context if needed before
4247  * calling the scheduler.
4248  */
4249 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4250 {
4251 	enum ctx_state prev_ctx;
4252 
4253 	if (likely(!preemptible()))
4254 		return;
4255 
4256 	do {
4257 		/*
4258 		 * Because the function tracer can trace preempt_count_sub()
4259 		 * and it also uses preempt_enable/disable_notrace(), if
4260 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4261 		 * by the function tracer will call this function again and
4262 		 * cause infinite recursion.
4263 		 *
4264 		 * Preemption must be disabled here before the function
4265 		 * tracer can trace. Break up preempt_disable() into two
4266 		 * calls. One to disable preemption without fear of being
4267 		 * traced. The other to still record the preemption latency,
4268 		 * which can also be traced by the function tracer.
4269 		 */
4270 		preempt_disable_notrace();
4271 		preempt_latency_start(1);
4272 		/*
4273 		 * Needs preempt disabled in case user_exit() is traced
4274 		 * and the tracer calls preempt_enable_notrace() causing
4275 		 * an infinite recursion.
4276 		 */
4277 		prev_ctx = exception_enter();
4278 		__schedule(true);
4279 		exception_exit(prev_ctx);
4280 
4281 		preempt_latency_stop(1);
4282 		preempt_enable_no_resched_notrace();
4283 	} while (need_resched());
4284 }
4285 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4286 
4287 #endif /* CONFIG_PREEMPTION */
4288 
4289 /*
4290  * this is the entry point to schedule() from kernel preemption
4291  * off of irq context.
4292  * Note, that this is called and return with irqs disabled. This will
4293  * protect us against recursive calling from irq.
4294  */
4295 asmlinkage __visible void __sched preempt_schedule_irq(void)
4296 {
4297 	enum ctx_state prev_state;
4298 
4299 	/* Catch callers which need to be fixed */
4300 	BUG_ON(preempt_count() || !irqs_disabled());
4301 
4302 	prev_state = exception_enter();
4303 
4304 	do {
4305 		preempt_disable();
4306 		local_irq_enable();
4307 		__schedule(true);
4308 		local_irq_disable();
4309 		sched_preempt_enable_no_resched();
4310 	} while (need_resched());
4311 
4312 	exception_exit(prev_state);
4313 }
4314 
4315 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4316 			  void *key)
4317 {
4318 	return try_to_wake_up(curr->private, mode, wake_flags);
4319 }
4320 EXPORT_SYMBOL(default_wake_function);
4321 
4322 #ifdef CONFIG_RT_MUTEXES
4323 
4324 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4325 {
4326 	if (pi_task)
4327 		prio = min(prio, pi_task->prio);
4328 
4329 	return prio;
4330 }
4331 
4332 static inline int rt_effective_prio(struct task_struct *p, int prio)
4333 {
4334 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4335 
4336 	return __rt_effective_prio(pi_task, prio);
4337 }
4338 
4339 /*
4340  * rt_mutex_setprio - set the current priority of a task
4341  * @p: task to boost
4342  * @pi_task: donor task
4343  *
4344  * This function changes the 'effective' priority of a task. It does
4345  * not touch ->normal_prio like __setscheduler().
4346  *
4347  * Used by the rt_mutex code to implement priority inheritance
4348  * logic. Call site only calls if the priority of the task changed.
4349  */
4350 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4351 {
4352 	int prio, oldprio, queued, running, queue_flag =
4353 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4354 	const struct sched_class *prev_class;
4355 	struct rq_flags rf;
4356 	struct rq *rq;
4357 
4358 	/* XXX used to be waiter->prio, not waiter->task->prio */
4359 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4360 
4361 	/*
4362 	 * If nothing changed; bail early.
4363 	 */
4364 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4365 		return;
4366 
4367 	rq = __task_rq_lock(p, &rf);
4368 	update_rq_clock(rq);
4369 	/*
4370 	 * Set under pi_lock && rq->lock, such that the value can be used under
4371 	 * either lock.
4372 	 *
4373 	 * Note that there is loads of tricky to make this pointer cache work
4374 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4375 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4376 	 * task is allowed to run again (and can exit). This ensures the pointer
4377 	 * points to a blocked task -- which guaratees the task is present.
4378 	 */
4379 	p->pi_top_task = pi_task;
4380 
4381 	/*
4382 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4383 	 */
4384 	if (prio == p->prio && !dl_prio(prio))
4385 		goto out_unlock;
4386 
4387 	/*
4388 	 * Idle task boosting is a nono in general. There is one
4389 	 * exception, when PREEMPT_RT and NOHZ is active:
4390 	 *
4391 	 * The idle task calls get_next_timer_interrupt() and holds
4392 	 * the timer wheel base->lock on the CPU and another CPU wants
4393 	 * to access the timer (probably to cancel it). We can safely
4394 	 * ignore the boosting request, as the idle CPU runs this code
4395 	 * with interrupts disabled and will complete the lock
4396 	 * protected section without being interrupted. So there is no
4397 	 * real need to boost.
4398 	 */
4399 	if (unlikely(p == rq->idle)) {
4400 		WARN_ON(p != rq->curr);
4401 		WARN_ON(p->pi_blocked_on);
4402 		goto out_unlock;
4403 	}
4404 
4405 	trace_sched_pi_setprio(p, pi_task);
4406 	oldprio = p->prio;
4407 
4408 	if (oldprio == prio)
4409 		queue_flag &= ~DEQUEUE_MOVE;
4410 
4411 	prev_class = p->sched_class;
4412 	queued = task_on_rq_queued(p);
4413 	running = task_current(rq, p);
4414 	if (queued)
4415 		dequeue_task(rq, p, queue_flag);
4416 	if (running)
4417 		put_prev_task(rq, p);
4418 
4419 	/*
4420 	 * Boosting condition are:
4421 	 * 1. -rt task is running and holds mutex A
4422 	 *      --> -dl task blocks on mutex A
4423 	 *
4424 	 * 2. -dl task is running and holds mutex A
4425 	 *      --> -dl task blocks on mutex A and could preempt the
4426 	 *          running task
4427 	 */
4428 	if (dl_prio(prio)) {
4429 		if (!dl_prio(p->normal_prio) ||
4430 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4431 			p->dl.dl_boosted = 1;
4432 			queue_flag |= ENQUEUE_REPLENISH;
4433 		} else
4434 			p->dl.dl_boosted = 0;
4435 		p->sched_class = &dl_sched_class;
4436 	} else if (rt_prio(prio)) {
4437 		if (dl_prio(oldprio))
4438 			p->dl.dl_boosted = 0;
4439 		if (oldprio < prio)
4440 			queue_flag |= ENQUEUE_HEAD;
4441 		p->sched_class = &rt_sched_class;
4442 	} else {
4443 		if (dl_prio(oldprio))
4444 			p->dl.dl_boosted = 0;
4445 		if (rt_prio(oldprio))
4446 			p->rt.timeout = 0;
4447 		p->sched_class = &fair_sched_class;
4448 	}
4449 
4450 	p->prio = prio;
4451 
4452 	if (queued)
4453 		enqueue_task(rq, p, queue_flag);
4454 	if (running)
4455 		set_next_task(rq, p);
4456 
4457 	check_class_changed(rq, p, prev_class, oldprio);
4458 out_unlock:
4459 	/* Avoid rq from going away on us: */
4460 	preempt_disable();
4461 	__task_rq_unlock(rq, &rf);
4462 
4463 	balance_callback(rq);
4464 	preempt_enable();
4465 }
4466 #else
4467 static inline int rt_effective_prio(struct task_struct *p, int prio)
4468 {
4469 	return prio;
4470 }
4471 #endif
4472 
4473 void set_user_nice(struct task_struct *p, long nice)
4474 {
4475 	bool queued, running;
4476 	int old_prio, delta;
4477 	struct rq_flags rf;
4478 	struct rq *rq;
4479 
4480 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4481 		return;
4482 	/*
4483 	 * We have to be careful, if called from sys_setpriority(),
4484 	 * the task might be in the middle of scheduling on another CPU.
4485 	 */
4486 	rq = task_rq_lock(p, &rf);
4487 	update_rq_clock(rq);
4488 
4489 	/*
4490 	 * The RT priorities are set via sched_setscheduler(), but we still
4491 	 * allow the 'normal' nice value to be set - but as expected
4492 	 * it wont have any effect on scheduling until the task is
4493 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4494 	 */
4495 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4496 		p->static_prio = NICE_TO_PRIO(nice);
4497 		goto out_unlock;
4498 	}
4499 	queued = task_on_rq_queued(p);
4500 	running = task_current(rq, p);
4501 	if (queued)
4502 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4503 	if (running)
4504 		put_prev_task(rq, p);
4505 
4506 	p->static_prio = NICE_TO_PRIO(nice);
4507 	set_load_weight(p, true);
4508 	old_prio = p->prio;
4509 	p->prio = effective_prio(p);
4510 	delta = p->prio - old_prio;
4511 
4512 	if (queued) {
4513 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4514 		/*
4515 		 * If the task increased its priority or is running and
4516 		 * lowered its priority, then reschedule its CPU:
4517 		 */
4518 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4519 			resched_curr(rq);
4520 	}
4521 	if (running)
4522 		set_next_task(rq, p);
4523 out_unlock:
4524 	task_rq_unlock(rq, p, &rf);
4525 }
4526 EXPORT_SYMBOL(set_user_nice);
4527 
4528 /*
4529  * can_nice - check if a task can reduce its nice value
4530  * @p: task
4531  * @nice: nice value
4532  */
4533 int can_nice(const struct task_struct *p, const int nice)
4534 {
4535 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4536 	int nice_rlim = nice_to_rlimit(nice);
4537 
4538 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4539 		capable(CAP_SYS_NICE));
4540 }
4541 
4542 #ifdef __ARCH_WANT_SYS_NICE
4543 
4544 /*
4545  * sys_nice - change the priority of the current process.
4546  * @increment: priority increment
4547  *
4548  * sys_setpriority is a more generic, but much slower function that
4549  * does similar things.
4550  */
4551 SYSCALL_DEFINE1(nice, int, increment)
4552 {
4553 	long nice, retval;
4554 
4555 	/*
4556 	 * Setpriority might change our priority at the same moment.
4557 	 * We don't have to worry. Conceptually one call occurs first
4558 	 * and we have a single winner.
4559 	 */
4560 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4561 	nice = task_nice(current) + increment;
4562 
4563 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4564 	if (increment < 0 && !can_nice(current, nice))
4565 		return -EPERM;
4566 
4567 	retval = security_task_setnice(current, nice);
4568 	if (retval)
4569 		return retval;
4570 
4571 	set_user_nice(current, nice);
4572 	return 0;
4573 }
4574 
4575 #endif
4576 
4577 /**
4578  * task_prio - return the priority value of a given task.
4579  * @p: the task in question.
4580  *
4581  * Return: The priority value as seen by users in /proc.
4582  * RT tasks are offset by -200. Normal tasks are centered
4583  * around 0, value goes from -16 to +15.
4584  */
4585 int task_prio(const struct task_struct *p)
4586 {
4587 	return p->prio - MAX_RT_PRIO;
4588 }
4589 
4590 /**
4591  * idle_cpu - is a given CPU idle currently?
4592  * @cpu: the processor in question.
4593  *
4594  * Return: 1 if the CPU is currently idle. 0 otherwise.
4595  */
4596 int idle_cpu(int cpu)
4597 {
4598 	struct rq *rq = cpu_rq(cpu);
4599 
4600 	if (rq->curr != rq->idle)
4601 		return 0;
4602 
4603 	if (rq->nr_running)
4604 		return 0;
4605 
4606 #ifdef CONFIG_SMP
4607 	if (!llist_empty(&rq->wake_list))
4608 		return 0;
4609 #endif
4610 
4611 	return 1;
4612 }
4613 
4614 /**
4615  * available_idle_cpu - is a given CPU idle for enqueuing work.
4616  * @cpu: the CPU in question.
4617  *
4618  * Return: 1 if the CPU is currently idle. 0 otherwise.
4619  */
4620 int available_idle_cpu(int cpu)
4621 {
4622 	if (!idle_cpu(cpu))
4623 		return 0;
4624 
4625 	if (vcpu_is_preempted(cpu))
4626 		return 0;
4627 
4628 	return 1;
4629 }
4630 
4631 /**
4632  * idle_task - return the idle task for a given CPU.
4633  * @cpu: the processor in question.
4634  *
4635  * Return: The idle task for the CPU @cpu.
4636  */
4637 struct task_struct *idle_task(int cpu)
4638 {
4639 	return cpu_rq(cpu)->idle;
4640 }
4641 
4642 /**
4643  * find_process_by_pid - find a process with a matching PID value.
4644  * @pid: the pid in question.
4645  *
4646  * The task of @pid, if found. %NULL otherwise.
4647  */
4648 static struct task_struct *find_process_by_pid(pid_t pid)
4649 {
4650 	return pid ? find_task_by_vpid(pid) : current;
4651 }
4652 
4653 /*
4654  * sched_setparam() passes in -1 for its policy, to let the functions
4655  * it calls know not to change it.
4656  */
4657 #define SETPARAM_POLICY	-1
4658 
4659 static void __setscheduler_params(struct task_struct *p,
4660 		const struct sched_attr *attr)
4661 {
4662 	int policy = attr->sched_policy;
4663 
4664 	if (policy == SETPARAM_POLICY)
4665 		policy = p->policy;
4666 
4667 	p->policy = policy;
4668 
4669 	if (dl_policy(policy))
4670 		__setparam_dl(p, attr);
4671 	else if (fair_policy(policy))
4672 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4673 
4674 	/*
4675 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4676 	 * !rt_policy. Always setting this ensures that things like
4677 	 * getparam()/getattr() don't report silly values for !rt tasks.
4678 	 */
4679 	p->rt_priority = attr->sched_priority;
4680 	p->normal_prio = normal_prio(p);
4681 	set_load_weight(p, true);
4682 }
4683 
4684 /* Actually do priority change: must hold pi & rq lock. */
4685 static void __setscheduler(struct rq *rq, struct task_struct *p,
4686 			   const struct sched_attr *attr, bool keep_boost)
4687 {
4688 	/*
4689 	 * If params can't change scheduling class changes aren't allowed
4690 	 * either.
4691 	 */
4692 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4693 		return;
4694 
4695 	__setscheduler_params(p, attr);
4696 
4697 	/*
4698 	 * Keep a potential priority boosting if called from
4699 	 * sched_setscheduler().
4700 	 */
4701 	p->prio = normal_prio(p);
4702 	if (keep_boost)
4703 		p->prio = rt_effective_prio(p, p->prio);
4704 
4705 	if (dl_prio(p->prio))
4706 		p->sched_class = &dl_sched_class;
4707 	else if (rt_prio(p->prio))
4708 		p->sched_class = &rt_sched_class;
4709 	else
4710 		p->sched_class = &fair_sched_class;
4711 }
4712 
4713 /*
4714  * Check the target process has a UID that matches the current process's:
4715  */
4716 static bool check_same_owner(struct task_struct *p)
4717 {
4718 	const struct cred *cred = current_cred(), *pcred;
4719 	bool match;
4720 
4721 	rcu_read_lock();
4722 	pcred = __task_cred(p);
4723 	match = (uid_eq(cred->euid, pcred->euid) ||
4724 		 uid_eq(cred->euid, pcred->uid));
4725 	rcu_read_unlock();
4726 	return match;
4727 }
4728 
4729 static int __sched_setscheduler(struct task_struct *p,
4730 				const struct sched_attr *attr,
4731 				bool user, bool pi)
4732 {
4733 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4734 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4735 	int retval, oldprio, oldpolicy = -1, queued, running;
4736 	int new_effective_prio, policy = attr->sched_policy;
4737 	const struct sched_class *prev_class;
4738 	struct rq_flags rf;
4739 	int reset_on_fork;
4740 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4741 	struct rq *rq;
4742 
4743 	/* The pi code expects interrupts enabled */
4744 	BUG_ON(pi && in_interrupt());
4745 recheck:
4746 	/* Double check policy once rq lock held: */
4747 	if (policy < 0) {
4748 		reset_on_fork = p->sched_reset_on_fork;
4749 		policy = oldpolicy = p->policy;
4750 	} else {
4751 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4752 
4753 		if (!valid_policy(policy))
4754 			return -EINVAL;
4755 	}
4756 
4757 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4758 		return -EINVAL;
4759 
4760 	/*
4761 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4762 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4763 	 * SCHED_BATCH and SCHED_IDLE is 0.
4764 	 */
4765 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4766 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4767 		return -EINVAL;
4768 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4769 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4770 		return -EINVAL;
4771 
4772 	/*
4773 	 * Allow unprivileged RT tasks to decrease priority:
4774 	 */
4775 	if (user && !capable(CAP_SYS_NICE)) {
4776 		if (fair_policy(policy)) {
4777 			if (attr->sched_nice < task_nice(p) &&
4778 			    !can_nice(p, attr->sched_nice))
4779 				return -EPERM;
4780 		}
4781 
4782 		if (rt_policy(policy)) {
4783 			unsigned long rlim_rtprio =
4784 					task_rlimit(p, RLIMIT_RTPRIO);
4785 
4786 			/* Can't set/change the rt policy: */
4787 			if (policy != p->policy && !rlim_rtprio)
4788 				return -EPERM;
4789 
4790 			/* Can't increase priority: */
4791 			if (attr->sched_priority > p->rt_priority &&
4792 			    attr->sched_priority > rlim_rtprio)
4793 				return -EPERM;
4794 		}
4795 
4796 		 /*
4797 		  * Can't set/change SCHED_DEADLINE policy at all for now
4798 		  * (safest behavior); in the future we would like to allow
4799 		  * unprivileged DL tasks to increase their relative deadline
4800 		  * or reduce their runtime (both ways reducing utilization)
4801 		  */
4802 		if (dl_policy(policy))
4803 			return -EPERM;
4804 
4805 		/*
4806 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4807 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4808 		 */
4809 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4810 			if (!can_nice(p, task_nice(p)))
4811 				return -EPERM;
4812 		}
4813 
4814 		/* Can't change other user's priorities: */
4815 		if (!check_same_owner(p))
4816 			return -EPERM;
4817 
4818 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4819 		if (p->sched_reset_on_fork && !reset_on_fork)
4820 			return -EPERM;
4821 	}
4822 
4823 	if (user) {
4824 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4825 			return -EINVAL;
4826 
4827 		retval = security_task_setscheduler(p);
4828 		if (retval)
4829 			return retval;
4830 	}
4831 
4832 	/* Update task specific "requested" clamps */
4833 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4834 		retval = uclamp_validate(p, attr);
4835 		if (retval)
4836 			return retval;
4837 	}
4838 
4839 	if (pi)
4840 		cpuset_read_lock();
4841 
4842 	/*
4843 	 * Make sure no PI-waiters arrive (or leave) while we are
4844 	 * changing the priority of the task:
4845 	 *
4846 	 * To be able to change p->policy safely, the appropriate
4847 	 * runqueue lock must be held.
4848 	 */
4849 	rq = task_rq_lock(p, &rf);
4850 	update_rq_clock(rq);
4851 
4852 	/*
4853 	 * Changing the policy of the stop threads its a very bad idea:
4854 	 */
4855 	if (p == rq->stop) {
4856 		retval = -EINVAL;
4857 		goto unlock;
4858 	}
4859 
4860 	/*
4861 	 * If not changing anything there's no need to proceed further,
4862 	 * but store a possible modification of reset_on_fork.
4863 	 */
4864 	if (unlikely(policy == p->policy)) {
4865 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4866 			goto change;
4867 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4868 			goto change;
4869 		if (dl_policy(policy) && dl_param_changed(p, attr))
4870 			goto change;
4871 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4872 			goto change;
4873 
4874 		p->sched_reset_on_fork = reset_on_fork;
4875 		retval = 0;
4876 		goto unlock;
4877 	}
4878 change:
4879 
4880 	if (user) {
4881 #ifdef CONFIG_RT_GROUP_SCHED
4882 		/*
4883 		 * Do not allow realtime tasks into groups that have no runtime
4884 		 * assigned.
4885 		 */
4886 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4887 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4888 				!task_group_is_autogroup(task_group(p))) {
4889 			retval = -EPERM;
4890 			goto unlock;
4891 		}
4892 #endif
4893 #ifdef CONFIG_SMP
4894 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4895 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4896 			cpumask_t *span = rq->rd->span;
4897 
4898 			/*
4899 			 * Don't allow tasks with an affinity mask smaller than
4900 			 * the entire root_domain to become SCHED_DEADLINE. We
4901 			 * will also fail if there's no bandwidth available.
4902 			 */
4903 			if (!cpumask_subset(span, p->cpus_ptr) ||
4904 			    rq->rd->dl_bw.bw == 0) {
4905 				retval = -EPERM;
4906 				goto unlock;
4907 			}
4908 		}
4909 #endif
4910 	}
4911 
4912 	/* Re-check policy now with rq lock held: */
4913 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4914 		policy = oldpolicy = -1;
4915 		task_rq_unlock(rq, p, &rf);
4916 		if (pi)
4917 			cpuset_read_unlock();
4918 		goto recheck;
4919 	}
4920 
4921 	/*
4922 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4923 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4924 	 * is available.
4925 	 */
4926 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4927 		retval = -EBUSY;
4928 		goto unlock;
4929 	}
4930 
4931 	p->sched_reset_on_fork = reset_on_fork;
4932 	oldprio = p->prio;
4933 
4934 	if (pi) {
4935 		/*
4936 		 * Take priority boosted tasks into account. If the new
4937 		 * effective priority is unchanged, we just store the new
4938 		 * normal parameters and do not touch the scheduler class and
4939 		 * the runqueue. This will be done when the task deboost
4940 		 * itself.
4941 		 */
4942 		new_effective_prio = rt_effective_prio(p, newprio);
4943 		if (new_effective_prio == oldprio)
4944 			queue_flags &= ~DEQUEUE_MOVE;
4945 	}
4946 
4947 	queued = task_on_rq_queued(p);
4948 	running = task_current(rq, p);
4949 	if (queued)
4950 		dequeue_task(rq, p, queue_flags);
4951 	if (running)
4952 		put_prev_task(rq, p);
4953 
4954 	prev_class = p->sched_class;
4955 
4956 	__setscheduler(rq, p, attr, pi);
4957 	__setscheduler_uclamp(p, attr);
4958 
4959 	if (queued) {
4960 		/*
4961 		 * We enqueue to tail when the priority of a task is
4962 		 * increased (user space view).
4963 		 */
4964 		if (oldprio < p->prio)
4965 			queue_flags |= ENQUEUE_HEAD;
4966 
4967 		enqueue_task(rq, p, queue_flags);
4968 	}
4969 	if (running)
4970 		set_next_task(rq, p);
4971 
4972 	check_class_changed(rq, p, prev_class, oldprio);
4973 
4974 	/* Avoid rq from going away on us: */
4975 	preempt_disable();
4976 	task_rq_unlock(rq, p, &rf);
4977 
4978 	if (pi) {
4979 		cpuset_read_unlock();
4980 		rt_mutex_adjust_pi(p);
4981 	}
4982 
4983 	/* Run balance callbacks after we've adjusted the PI chain: */
4984 	balance_callback(rq);
4985 	preempt_enable();
4986 
4987 	return 0;
4988 
4989 unlock:
4990 	task_rq_unlock(rq, p, &rf);
4991 	if (pi)
4992 		cpuset_read_unlock();
4993 	return retval;
4994 }
4995 
4996 static int _sched_setscheduler(struct task_struct *p, int policy,
4997 			       const struct sched_param *param, bool check)
4998 {
4999 	struct sched_attr attr = {
5000 		.sched_policy   = policy,
5001 		.sched_priority = param->sched_priority,
5002 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5003 	};
5004 
5005 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5006 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5007 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5008 		policy &= ~SCHED_RESET_ON_FORK;
5009 		attr.sched_policy = policy;
5010 	}
5011 
5012 	return __sched_setscheduler(p, &attr, check, true);
5013 }
5014 /**
5015  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5016  * @p: the task in question.
5017  * @policy: new policy.
5018  * @param: structure containing the new RT priority.
5019  *
5020  * Return: 0 on success. An error code otherwise.
5021  *
5022  * NOTE that the task may be already dead.
5023  */
5024 int sched_setscheduler(struct task_struct *p, int policy,
5025 		       const struct sched_param *param)
5026 {
5027 	return _sched_setscheduler(p, policy, param, true);
5028 }
5029 EXPORT_SYMBOL_GPL(sched_setscheduler);
5030 
5031 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5032 {
5033 	return __sched_setscheduler(p, attr, true, true);
5034 }
5035 EXPORT_SYMBOL_GPL(sched_setattr);
5036 
5037 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5038 {
5039 	return __sched_setscheduler(p, attr, false, true);
5040 }
5041 
5042 /**
5043  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5044  * @p: the task in question.
5045  * @policy: new policy.
5046  * @param: structure containing the new RT priority.
5047  *
5048  * Just like sched_setscheduler, only don't bother checking if the
5049  * current context has permission.  For example, this is needed in
5050  * stop_machine(): we create temporary high priority worker threads,
5051  * but our caller might not have that capability.
5052  *
5053  * Return: 0 on success. An error code otherwise.
5054  */
5055 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5056 			       const struct sched_param *param)
5057 {
5058 	return _sched_setscheduler(p, policy, param, false);
5059 }
5060 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5061 
5062 static int
5063 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5064 {
5065 	struct sched_param lparam;
5066 	struct task_struct *p;
5067 	int retval;
5068 
5069 	if (!param || pid < 0)
5070 		return -EINVAL;
5071 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5072 		return -EFAULT;
5073 
5074 	rcu_read_lock();
5075 	retval = -ESRCH;
5076 	p = find_process_by_pid(pid);
5077 	if (likely(p))
5078 		get_task_struct(p);
5079 	rcu_read_unlock();
5080 
5081 	if (likely(p)) {
5082 		retval = sched_setscheduler(p, policy, &lparam);
5083 		put_task_struct(p);
5084 	}
5085 
5086 	return retval;
5087 }
5088 
5089 /*
5090  * Mimics kernel/events/core.c perf_copy_attr().
5091  */
5092 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5093 {
5094 	u32 size;
5095 	int ret;
5096 
5097 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
5098 		return -EFAULT;
5099 
5100 	/* Zero the full structure, so that a short copy will be nice: */
5101 	memset(attr, 0, sizeof(*attr));
5102 
5103 	ret = get_user(size, &uattr->size);
5104 	if (ret)
5105 		return ret;
5106 
5107 	/* Bail out on silly large: */
5108 	if (size > PAGE_SIZE)
5109 		goto err_size;
5110 
5111 	/* ABI compatibility quirk: */
5112 	if (!size)
5113 		size = SCHED_ATTR_SIZE_VER0;
5114 
5115 	if (size < SCHED_ATTR_SIZE_VER0)
5116 		goto err_size;
5117 
5118 	/*
5119 	 * If we're handed a bigger struct than we know of,
5120 	 * ensure all the unknown bits are 0 - i.e. new
5121 	 * user-space does not rely on any kernel feature
5122 	 * extensions we dont know about yet.
5123 	 */
5124 	if (size > sizeof(*attr)) {
5125 		unsigned char __user *addr;
5126 		unsigned char __user *end;
5127 		unsigned char val;
5128 
5129 		addr = (void __user *)uattr + sizeof(*attr);
5130 		end  = (void __user *)uattr + size;
5131 
5132 		for (; addr < end; addr++) {
5133 			ret = get_user(val, addr);
5134 			if (ret)
5135 				return ret;
5136 			if (val)
5137 				goto err_size;
5138 		}
5139 		size = sizeof(*attr);
5140 	}
5141 
5142 	ret = copy_from_user(attr, uattr, size);
5143 	if (ret)
5144 		return -EFAULT;
5145 
5146 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5147 	    size < SCHED_ATTR_SIZE_VER1)
5148 		return -EINVAL;
5149 
5150 	/*
5151 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5152 	 * to be strict and return an error on out-of-bounds values?
5153 	 */
5154 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5155 
5156 	return 0;
5157 
5158 err_size:
5159 	put_user(sizeof(*attr), &uattr->size);
5160 	return -E2BIG;
5161 }
5162 
5163 /**
5164  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5165  * @pid: the pid in question.
5166  * @policy: new policy.
5167  * @param: structure containing the new RT priority.
5168  *
5169  * Return: 0 on success. An error code otherwise.
5170  */
5171 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5172 {
5173 	if (policy < 0)
5174 		return -EINVAL;
5175 
5176 	return do_sched_setscheduler(pid, policy, param);
5177 }
5178 
5179 /**
5180  * sys_sched_setparam - set/change the RT priority of a thread
5181  * @pid: the pid in question.
5182  * @param: structure containing the new RT priority.
5183  *
5184  * Return: 0 on success. An error code otherwise.
5185  */
5186 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5187 {
5188 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5189 }
5190 
5191 /**
5192  * sys_sched_setattr - same as above, but with extended sched_attr
5193  * @pid: the pid in question.
5194  * @uattr: structure containing the extended parameters.
5195  * @flags: for future extension.
5196  */
5197 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5198 			       unsigned int, flags)
5199 {
5200 	struct sched_attr attr;
5201 	struct task_struct *p;
5202 	int retval;
5203 
5204 	if (!uattr || pid < 0 || flags)
5205 		return -EINVAL;
5206 
5207 	retval = sched_copy_attr(uattr, &attr);
5208 	if (retval)
5209 		return retval;
5210 
5211 	if ((int)attr.sched_policy < 0)
5212 		return -EINVAL;
5213 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5214 		attr.sched_policy = SETPARAM_POLICY;
5215 
5216 	rcu_read_lock();
5217 	retval = -ESRCH;
5218 	p = find_process_by_pid(pid);
5219 	if (likely(p))
5220 		get_task_struct(p);
5221 	rcu_read_unlock();
5222 
5223 	if (likely(p)) {
5224 		retval = sched_setattr(p, &attr);
5225 		put_task_struct(p);
5226 	}
5227 
5228 	return retval;
5229 }
5230 
5231 /**
5232  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5233  * @pid: the pid in question.
5234  *
5235  * Return: On success, the policy of the thread. Otherwise, a negative error
5236  * code.
5237  */
5238 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5239 {
5240 	struct task_struct *p;
5241 	int retval;
5242 
5243 	if (pid < 0)
5244 		return -EINVAL;
5245 
5246 	retval = -ESRCH;
5247 	rcu_read_lock();
5248 	p = find_process_by_pid(pid);
5249 	if (p) {
5250 		retval = security_task_getscheduler(p);
5251 		if (!retval)
5252 			retval = p->policy
5253 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5254 	}
5255 	rcu_read_unlock();
5256 	return retval;
5257 }
5258 
5259 /**
5260  * sys_sched_getparam - get the RT priority of a thread
5261  * @pid: the pid in question.
5262  * @param: structure containing the RT priority.
5263  *
5264  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5265  * code.
5266  */
5267 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5268 {
5269 	struct sched_param lp = { .sched_priority = 0 };
5270 	struct task_struct *p;
5271 	int retval;
5272 
5273 	if (!param || pid < 0)
5274 		return -EINVAL;
5275 
5276 	rcu_read_lock();
5277 	p = find_process_by_pid(pid);
5278 	retval = -ESRCH;
5279 	if (!p)
5280 		goto out_unlock;
5281 
5282 	retval = security_task_getscheduler(p);
5283 	if (retval)
5284 		goto out_unlock;
5285 
5286 	if (task_has_rt_policy(p))
5287 		lp.sched_priority = p->rt_priority;
5288 	rcu_read_unlock();
5289 
5290 	/*
5291 	 * This one might sleep, we cannot do it with a spinlock held ...
5292 	 */
5293 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5294 
5295 	return retval;
5296 
5297 out_unlock:
5298 	rcu_read_unlock();
5299 	return retval;
5300 }
5301 
5302 /*
5303  * Copy the kernel size attribute structure (which might be larger
5304  * than what user-space knows about) to user-space.
5305  *
5306  * Note that all cases are valid: user-space buffer can be larger or
5307  * smaller than the kernel-space buffer. The usual case is that both
5308  * have the same size.
5309  */
5310 static int
5311 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5312 			struct sched_attr *kattr,
5313 			unsigned int usize)
5314 {
5315 	unsigned int ksize = sizeof(*kattr);
5316 
5317 	if (!access_ok(uattr, usize))
5318 		return -EFAULT;
5319 
5320 	/*
5321 	 * sched_getattr() ABI forwards and backwards compatibility:
5322 	 *
5323 	 * If usize == ksize then we just copy everything to user-space and all is good.
5324 	 *
5325 	 * If usize < ksize then we only copy as much as user-space has space for,
5326 	 * this keeps ABI compatibility as well. We skip the rest.
5327 	 *
5328 	 * If usize > ksize then user-space is using a newer version of the ABI,
5329 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5330 	 * detect the kernel's knowledge of attributes from the attr->size value
5331 	 * which is set to ksize in this case.
5332 	 */
5333 	kattr->size = min(usize, ksize);
5334 
5335 	if (copy_to_user(uattr, kattr, kattr->size))
5336 		return -EFAULT;
5337 
5338 	return 0;
5339 }
5340 
5341 /**
5342  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5343  * @pid: the pid in question.
5344  * @uattr: structure containing the extended parameters.
5345  * @usize: sizeof(attr) that user-space knows about, for forwards and backwards compatibility.
5346  * @flags: for future extension.
5347  */
5348 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5349 		unsigned int, usize, unsigned int, flags)
5350 {
5351 	struct sched_attr kattr = { };
5352 	struct task_struct *p;
5353 	int retval;
5354 
5355 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5356 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5357 		return -EINVAL;
5358 
5359 	rcu_read_lock();
5360 	p = find_process_by_pid(pid);
5361 	retval = -ESRCH;
5362 	if (!p)
5363 		goto out_unlock;
5364 
5365 	retval = security_task_getscheduler(p);
5366 	if (retval)
5367 		goto out_unlock;
5368 
5369 	kattr.sched_policy = p->policy;
5370 	if (p->sched_reset_on_fork)
5371 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5372 	if (task_has_dl_policy(p))
5373 		__getparam_dl(p, &kattr);
5374 	else if (task_has_rt_policy(p))
5375 		kattr.sched_priority = p->rt_priority;
5376 	else
5377 		kattr.sched_nice = task_nice(p);
5378 
5379 #ifdef CONFIG_UCLAMP_TASK
5380 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5381 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5382 #endif
5383 
5384 	rcu_read_unlock();
5385 
5386 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5387 
5388 out_unlock:
5389 	rcu_read_unlock();
5390 	return retval;
5391 }
5392 
5393 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5394 {
5395 	cpumask_var_t cpus_allowed, new_mask;
5396 	struct task_struct *p;
5397 	int retval;
5398 
5399 	rcu_read_lock();
5400 
5401 	p = find_process_by_pid(pid);
5402 	if (!p) {
5403 		rcu_read_unlock();
5404 		return -ESRCH;
5405 	}
5406 
5407 	/* Prevent p going away */
5408 	get_task_struct(p);
5409 	rcu_read_unlock();
5410 
5411 	if (p->flags & PF_NO_SETAFFINITY) {
5412 		retval = -EINVAL;
5413 		goto out_put_task;
5414 	}
5415 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5416 		retval = -ENOMEM;
5417 		goto out_put_task;
5418 	}
5419 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5420 		retval = -ENOMEM;
5421 		goto out_free_cpus_allowed;
5422 	}
5423 	retval = -EPERM;
5424 	if (!check_same_owner(p)) {
5425 		rcu_read_lock();
5426 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5427 			rcu_read_unlock();
5428 			goto out_free_new_mask;
5429 		}
5430 		rcu_read_unlock();
5431 	}
5432 
5433 	retval = security_task_setscheduler(p);
5434 	if (retval)
5435 		goto out_free_new_mask;
5436 
5437 
5438 	cpuset_cpus_allowed(p, cpus_allowed);
5439 	cpumask_and(new_mask, in_mask, cpus_allowed);
5440 
5441 	/*
5442 	 * Since bandwidth control happens on root_domain basis,
5443 	 * if admission test is enabled, we only admit -deadline
5444 	 * tasks allowed to run on all the CPUs in the task's
5445 	 * root_domain.
5446 	 */
5447 #ifdef CONFIG_SMP
5448 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5449 		rcu_read_lock();
5450 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5451 			retval = -EBUSY;
5452 			rcu_read_unlock();
5453 			goto out_free_new_mask;
5454 		}
5455 		rcu_read_unlock();
5456 	}
5457 #endif
5458 again:
5459 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5460 
5461 	if (!retval) {
5462 		cpuset_cpus_allowed(p, cpus_allowed);
5463 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5464 			/*
5465 			 * We must have raced with a concurrent cpuset
5466 			 * update. Just reset the cpus_allowed to the
5467 			 * cpuset's cpus_allowed
5468 			 */
5469 			cpumask_copy(new_mask, cpus_allowed);
5470 			goto again;
5471 		}
5472 	}
5473 out_free_new_mask:
5474 	free_cpumask_var(new_mask);
5475 out_free_cpus_allowed:
5476 	free_cpumask_var(cpus_allowed);
5477 out_put_task:
5478 	put_task_struct(p);
5479 	return retval;
5480 }
5481 
5482 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5483 			     struct cpumask *new_mask)
5484 {
5485 	if (len < cpumask_size())
5486 		cpumask_clear(new_mask);
5487 	else if (len > cpumask_size())
5488 		len = cpumask_size();
5489 
5490 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5491 }
5492 
5493 /**
5494  * sys_sched_setaffinity - set the CPU affinity of a process
5495  * @pid: pid of the process
5496  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5497  * @user_mask_ptr: user-space pointer to the new CPU mask
5498  *
5499  * Return: 0 on success. An error code otherwise.
5500  */
5501 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5502 		unsigned long __user *, user_mask_ptr)
5503 {
5504 	cpumask_var_t new_mask;
5505 	int retval;
5506 
5507 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5508 		return -ENOMEM;
5509 
5510 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5511 	if (retval == 0)
5512 		retval = sched_setaffinity(pid, new_mask);
5513 	free_cpumask_var(new_mask);
5514 	return retval;
5515 }
5516 
5517 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5518 {
5519 	struct task_struct *p;
5520 	unsigned long flags;
5521 	int retval;
5522 
5523 	rcu_read_lock();
5524 
5525 	retval = -ESRCH;
5526 	p = find_process_by_pid(pid);
5527 	if (!p)
5528 		goto out_unlock;
5529 
5530 	retval = security_task_getscheduler(p);
5531 	if (retval)
5532 		goto out_unlock;
5533 
5534 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5535 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5536 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5537 
5538 out_unlock:
5539 	rcu_read_unlock();
5540 
5541 	return retval;
5542 }
5543 
5544 /**
5545  * sys_sched_getaffinity - get the CPU affinity of a process
5546  * @pid: pid of the process
5547  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5548  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5549  *
5550  * Return: size of CPU mask copied to user_mask_ptr on success. An
5551  * error code otherwise.
5552  */
5553 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5554 		unsigned long __user *, user_mask_ptr)
5555 {
5556 	int ret;
5557 	cpumask_var_t mask;
5558 
5559 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5560 		return -EINVAL;
5561 	if (len & (sizeof(unsigned long)-1))
5562 		return -EINVAL;
5563 
5564 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5565 		return -ENOMEM;
5566 
5567 	ret = sched_getaffinity(pid, mask);
5568 	if (ret == 0) {
5569 		unsigned int retlen = min(len, cpumask_size());
5570 
5571 		if (copy_to_user(user_mask_ptr, mask, retlen))
5572 			ret = -EFAULT;
5573 		else
5574 			ret = retlen;
5575 	}
5576 	free_cpumask_var(mask);
5577 
5578 	return ret;
5579 }
5580 
5581 /**
5582  * sys_sched_yield - yield the current processor to other threads.
5583  *
5584  * This function yields the current CPU to other tasks. If there are no
5585  * other threads running on this CPU then this function will return.
5586  *
5587  * Return: 0.
5588  */
5589 static void do_sched_yield(void)
5590 {
5591 	struct rq_flags rf;
5592 	struct rq *rq;
5593 
5594 	rq = this_rq_lock_irq(&rf);
5595 
5596 	schedstat_inc(rq->yld_count);
5597 	current->sched_class->yield_task(rq);
5598 
5599 	/*
5600 	 * Since we are going to call schedule() anyway, there's
5601 	 * no need to preempt or enable interrupts:
5602 	 */
5603 	preempt_disable();
5604 	rq_unlock(rq, &rf);
5605 	sched_preempt_enable_no_resched();
5606 
5607 	schedule();
5608 }
5609 
5610 SYSCALL_DEFINE0(sched_yield)
5611 {
5612 	do_sched_yield();
5613 	return 0;
5614 }
5615 
5616 #ifndef CONFIG_PREEMPTION
5617 int __sched _cond_resched(void)
5618 {
5619 	if (should_resched(0)) {
5620 		preempt_schedule_common();
5621 		return 1;
5622 	}
5623 	rcu_all_qs();
5624 	return 0;
5625 }
5626 EXPORT_SYMBOL(_cond_resched);
5627 #endif
5628 
5629 /*
5630  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5631  * call schedule, and on return reacquire the lock.
5632  *
5633  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5634  * operations here to prevent schedule() from being called twice (once via
5635  * spin_unlock(), once by hand).
5636  */
5637 int __cond_resched_lock(spinlock_t *lock)
5638 {
5639 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5640 	int ret = 0;
5641 
5642 	lockdep_assert_held(lock);
5643 
5644 	if (spin_needbreak(lock) || resched) {
5645 		spin_unlock(lock);
5646 		if (resched)
5647 			preempt_schedule_common();
5648 		else
5649 			cpu_relax();
5650 		ret = 1;
5651 		spin_lock(lock);
5652 	}
5653 	return ret;
5654 }
5655 EXPORT_SYMBOL(__cond_resched_lock);
5656 
5657 /**
5658  * yield - yield the current processor to other threads.
5659  *
5660  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5661  *
5662  * The scheduler is at all times free to pick the calling task as the most
5663  * eligible task to run, if removing the yield() call from your code breaks
5664  * it, its already broken.
5665  *
5666  * Typical broken usage is:
5667  *
5668  * while (!event)
5669  *	yield();
5670  *
5671  * where one assumes that yield() will let 'the other' process run that will
5672  * make event true. If the current task is a SCHED_FIFO task that will never
5673  * happen. Never use yield() as a progress guarantee!!
5674  *
5675  * If you want to use yield() to wait for something, use wait_event().
5676  * If you want to use yield() to be 'nice' for others, use cond_resched().
5677  * If you still want to use yield(), do not!
5678  */
5679 void __sched yield(void)
5680 {
5681 	set_current_state(TASK_RUNNING);
5682 	do_sched_yield();
5683 }
5684 EXPORT_SYMBOL(yield);
5685 
5686 /**
5687  * yield_to - yield the current processor to another thread in
5688  * your thread group, or accelerate that thread toward the
5689  * processor it's on.
5690  * @p: target task
5691  * @preempt: whether task preemption is allowed or not
5692  *
5693  * It's the caller's job to ensure that the target task struct
5694  * can't go away on us before we can do any checks.
5695  *
5696  * Return:
5697  *	true (>0) if we indeed boosted the target task.
5698  *	false (0) if we failed to boost the target.
5699  *	-ESRCH if there's no task to yield to.
5700  */
5701 int __sched yield_to(struct task_struct *p, bool preempt)
5702 {
5703 	struct task_struct *curr = current;
5704 	struct rq *rq, *p_rq;
5705 	unsigned long flags;
5706 	int yielded = 0;
5707 
5708 	local_irq_save(flags);
5709 	rq = this_rq();
5710 
5711 again:
5712 	p_rq = task_rq(p);
5713 	/*
5714 	 * If we're the only runnable task on the rq and target rq also
5715 	 * has only one task, there's absolutely no point in yielding.
5716 	 */
5717 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5718 		yielded = -ESRCH;
5719 		goto out_irq;
5720 	}
5721 
5722 	double_rq_lock(rq, p_rq);
5723 	if (task_rq(p) != p_rq) {
5724 		double_rq_unlock(rq, p_rq);
5725 		goto again;
5726 	}
5727 
5728 	if (!curr->sched_class->yield_to_task)
5729 		goto out_unlock;
5730 
5731 	if (curr->sched_class != p->sched_class)
5732 		goto out_unlock;
5733 
5734 	if (task_running(p_rq, p) || p->state)
5735 		goto out_unlock;
5736 
5737 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5738 	if (yielded) {
5739 		schedstat_inc(rq->yld_count);
5740 		/*
5741 		 * Make p's CPU reschedule; pick_next_entity takes care of
5742 		 * fairness.
5743 		 */
5744 		if (preempt && rq != p_rq)
5745 			resched_curr(p_rq);
5746 	}
5747 
5748 out_unlock:
5749 	double_rq_unlock(rq, p_rq);
5750 out_irq:
5751 	local_irq_restore(flags);
5752 
5753 	if (yielded > 0)
5754 		schedule();
5755 
5756 	return yielded;
5757 }
5758 EXPORT_SYMBOL_GPL(yield_to);
5759 
5760 int io_schedule_prepare(void)
5761 {
5762 	int old_iowait = current->in_iowait;
5763 
5764 	current->in_iowait = 1;
5765 	blk_schedule_flush_plug(current);
5766 
5767 	return old_iowait;
5768 }
5769 
5770 void io_schedule_finish(int token)
5771 {
5772 	current->in_iowait = token;
5773 }
5774 
5775 /*
5776  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5777  * that process accounting knows that this is a task in IO wait state.
5778  */
5779 long __sched io_schedule_timeout(long timeout)
5780 {
5781 	int token;
5782 	long ret;
5783 
5784 	token = io_schedule_prepare();
5785 	ret = schedule_timeout(timeout);
5786 	io_schedule_finish(token);
5787 
5788 	return ret;
5789 }
5790 EXPORT_SYMBOL(io_schedule_timeout);
5791 
5792 void __sched io_schedule(void)
5793 {
5794 	int token;
5795 
5796 	token = io_schedule_prepare();
5797 	schedule();
5798 	io_schedule_finish(token);
5799 }
5800 EXPORT_SYMBOL(io_schedule);
5801 
5802 /**
5803  * sys_sched_get_priority_max - return maximum RT priority.
5804  * @policy: scheduling class.
5805  *
5806  * Return: On success, this syscall returns the maximum
5807  * rt_priority that can be used by a given scheduling class.
5808  * On failure, a negative error code is returned.
5809  */
5810 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5811 {
5812 	int ret = -EINVAL;
5813 
5814 	switch (policy) {
5815 	case SCHED_FIFO:
5816 	case SCHED_RR:
5817 		ret = MAX_USER_RT_PRIO-1;
5818 		break;
5819 	case SCHED_DEADLINE:
5820 	case SCHED_NORMAL:
5821 	case SCHED_BATCH:
5822 	case SCHED_IDLE:
5823 		ret = 0;
5824 		break;
5825 	}
5826 	return ret;
5827 }
5828 
5829 /**
5830  * sys_sched_get_priority_min - return minimum RT priority.
5831  * @policy: scheduling class.
5832  *
5833  * Return: On success, this syscall returns the minimum
5834  * rt_priority that can be used by a given scheduling class.
5835  * On failure, a negative error code is returned.
5836  */
5837 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5838 {
5839 	int ret = -EINVAL;
5840 
5841 	switch (policy) {
5842 	case SCHED_FIFO:
5843 	case SCHED_RR:
5844 		ret = 1;
5845 		break;
5846 	case SCHED_DEADLINE:
5847 	case SCHED_NORMAL:
5848 	case SCHED_BATCH:
5849 	case SCHED_IDLE:
5850 		ret = 0;
5851 	}
5852 	return ret;
5853 }
5854 
5855 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5856 {
5857 	struct task_struct *p;
5858 	unsigned int time_slice;
5859 	struct rq_flags rf;
5860 	struct rq *rq;
5861 	int retval;
5862 
5863 	if (pid < 0)
5864 		return -EINVAL;
5865 
5866 	retval = -ESRCH;
5867 	rcu_read_lock();
5868 	p = find_process_by_pid(pid);
5869 	if (!p)
5870 		goto out_unlock;
5871 
5872 	retval = security_task_getscheduler(p);
5873 	if (retval)
5874 		goto out_unlock;
5875 
5876 	rq = task_rq_lock(p, &rf);
5877 	time_slice = 0;
5878 	if (p->sched_class->get_rr_interval)
5879 		time_slice = p->sched_class->get_rr_interval(rq, p);
5880 	task_rq_unlock(rq, p, &rf);
5881 
5882 	rcu_read_unlock();
5883 	jiffies_to_timespec64(time_slice, t);
5884 	return 0;
5885 
5886 out_unlock:
5887 	rcu_read_unlock();
5888 	return retval;
5889 }
5890 
5891 /**
5892  * sys_sched_rr_get_interval - return the default timeslice of a process.
5893  * @pid: pid of the process.
5894  * @interval: userspace pointer to the timeslice value.
5895  *
5896  * this syscall writes the default timeslice value of a given process
5897  * into the user-space timespec buffer. A value of '0' means infinity.
5898  *
5899  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5900  * an error code.
5901  */
5902 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5903 		struct __kernel_timespec __user *, interval)
5904 {
5905 	struct timespec64 t;
5906 	int retval = sched_rr_get_interval(pid, &t);
5907 
5908 	if (retval == 0)
5909 		retval = put_timespec64(&t, interval);
5910 
5911 	return retval;
5912 }
5913 
5914 #ifdef CONFIG_COMPAT_32BIT_TIME
5915 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5916 		struct old_timespec32 __user *, interval)
5917 {
5918 	struct timespec64 t;
5919 	int retval = sched_rr_get_interval(pid, &t);
5920 
5921 	if (retval == 0)
5922 		retval = put_old_timespec32(&t, interval);
5923 	return retval;
5924 }
5925 #endif
5926 
5927 void sched_show_task(struct task_struct *p)
5928 {
5929 	unsigned long free = 0;
5930 	int ppid;
5931 
5932 	if (!try_get_task_stack(p))
5933 		return;
5934 
5935 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5936 
5937 	if (p->state == TASK_RUNNING)
5938 		printk(KERN_CONT "  running task    ");
5939 #ifdef CONFIG_DEBUG_STACK_USAGE
5940 	free = stack_not_used(p);
5941 #endif
5942 	ppid = 0;
5943 	rcu_read_lock();
5944 	if (pid_alive(p))
5945 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5946 	rcu_read_unlock();
5947 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5948 		task_pid_nr(p), ppid,
5949 		(unsigned long)task_thread_info(p)->flags);
5950 
5951 	print_worker_info(KERN_INFO, p);
5952 	show_stack(p, NULL);
5953 	put_task_stack(p);
5954 }
5955 EXPORT_SYMBOL_GPL(sched_show_task);
5956 
5957 static inline bool
5958 state_filter_match(unsigned long state_filter, struct task_struct *p)
5959 {
5960 	/* no filter, everything matches */
5961 	if (!state_filter)
5962 		return true;
5963 
5964 	/* filter, but doesn't match */
5965 	if (!(p->state & state_filter))
5966 		return false;
5967 
5968 	/*
5969 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5970 	 * TASK_KILLABLE).
5971 	 */
5972 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5973 		return false;
5974 
5975 	return true;
5976 }
5977 
5978 
5979 void show_state_filter(unsigned long state_filter)
5980 {
5981 	struct task_struct *g, *p;
5982 
5983 #if BITS_PER_LONG == 32
5984 	printk(KERN_INFO
5985 		"  task                PC stack   pid father\n");
5986 #else
5987 	printk(KERN_INFO
5988 		"  task                        PC stack   pid father\n");
5989 #endif
5990 	rcu_read_lock();
5991 	for_each_process_thread(g, p) {
5992 		/*
5993 		 * reset the NMI-timeout, listing all files on a slow
5994 		 * console might take a lot of time:
5995 		 * Also, reset softlockup watchdogs on all CPUs, because
5996 		 * another CPU might be blocked waiting for us to process
5997 		 * an IPI.
5998 		 */
5999 		touch_nmi_watchdog();
6000 		touch_all_softlockup_watchdogs();
6001 		if (state_filter_match(state_filter, p))
6002 			sched_show_task(p);
6003 	}
6004 
6005 #ifdef CONFIG_SCHED_DEBUG
6006 	if (!state_filter)
6007 		sysrq_sched_debug_show();
6008 #endif
6009 	rcu_read_unlock();
6010 	/*
6011 	 * Only show locks if all tasks are dumped:
6012 	 */
6013 	if (!state_filter)
6014 		debug_show_all_locks();
6015 }
6016 
6017 /**
6018  * init_idle - set up an idle thread for a given CPU
6019  * @idle: task in question
6020  * @cpu: CPU the idle task belongs to
6021  *
6022  * NOTE: this function does not set the idle thread's NEED_RESCHED
6023  * flag, to make booting more robust.
6024  */
6025 void init_idle(struct task_struct *idle, int cpu)
6026 {
6027 	struct rq *rq = cpu_rq(cpu);
6028 	unsigned long flags;
6029 
6030 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6031 	raw_spin_lock(&rq->lock);
6032 
6033 	__sched_fork(0, idle);
6034 	idle->state = TASK_RUNNING;
6035 	idle->se.exec_start = sched_clock();
6036 	idle->flags |= PF_IDLE;
6037 
6038 	kasan_unpoison_task_stack(idle);
6039 
6040 #ifdef CONFIG_SMP
6041 	/*
6042 	 * Its possible that init_idle() gets called multiple times on a task,
6043 	 * in that case do_set_cpus_allowed() will not do the right thing.
6044 	 *
6045 	 * And since this is boot we can forgo the serialization.
6046 	 */
6047 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6048 #endif
6049 	/*
6050 	 * We're having a chicken and egg problem, even though we are
6051 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6052 	 * lockdep check in task_group() will fail.
6053 	 *
6054 	 * Similar case to sched_fork(). / Alternatively we could
6055 	 * use task_rq_lock() here and obtain the other rq->lock.
6056 	 *
6057 	 * Silence PROVE_RCU
6058 	 */
6059 	rcu_read_lock();
6060 	__set_task_cpu(idle, cpu);
6061 	rcu_read_unlock();
6062 
6063 	rq->curr = rq->idle = idle;
6064 	idle->on_rq = TASK_ON_RQ_QUEUED;
6065 #ifdef CONFIG_SMP
6066 	idle->on_cpu = 1;
6067 #endif
6068 	raw_spin_unlock(&rq->lock);
6069 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6070 
6071 	/* Set the preempt count _outside_ the spinlocks! */
6072 	init_idle_preempt_count(idle, cpu);
6073 
6074 	/*
6075 	 * The idle tasks have their own, simple scheduling class:
6076 	 */
6077 	idle->sched_class = &idle_sched_class;
6078 	ftrace_graph_init_idle_task(idle, cpu);
6079 	vtime_init_idle(idle, cpu);
6080 #ifdef CONFIG_SMP
6081 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6082 #endif
6083 }
6084 
6085 #ifdef CONFIG_SMP
6086 
6087 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6088 			      const struct cpumask *trial)
6089 {
6090 	int ret = 1;
6091 
6092 	if (!cpumask_weight(cur))
6093 		return ret;
6094 
6095 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6096 
6097 	return ret;
6098 }
6099 
6100 int task_can_attach(struct task_struct *p,
6101 		    const struct cpumask *cs_cpus_allowed)
6102 {
6103 	int ret = 0;
6104 
6105 	/*
6106 	 * Kthreads which disallow setaffinity shouldn't be moved
6107 	 * to a new cpuset; we don't want to change their CPU
6108 	 * affinity and isolating such threads by their set of
6109 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6110 	 * applicable for such threads.  This prevents checking for
6111 	 * success of set_cpus_allowed_ptr() on all attached tasks
6112 	 * before cpus_mask may be changed.
6113 	 */
6114 	if (p->flags & PF_NO_SETAFFINITY) {
6115 		ret = -EINVAL;
6116 		goto out;
6117 	}
6118 
6119 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6120 					      cs_cpus_allowed))
6121 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6122 
6123 out:
6124 	return ret;
6125 }
6126 
6127 bool sched_smp_initialized __read_mostly;
6128 
6129 #ifdef CONFIG_NUMA_BALANCING
6130 /* Migrate current task p to target_cpu */
6131 int migrate_task_to(struct task_struct *p, int target_cpu)
6132 {
6133 	struct migration_arg arg = { p, target_cpu };
6134 	int curr_cpu = task_cpu(p);
6135 
6136 	if (curr_cpu == target_cpu)
6137 		return 0;
6138 
6139 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6140 		return -EINVAL;
6141 
6142 	/* TODO: This is not properly updating schedstats */
6143 
6144 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6145 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6146 }
6147 
6148 /*
6149  * Requeue a task on a given node and accurately track the number of NUMA
6150  * tasks on the runqueues
6151  */
6152 void sched_setnuma(struct task_struct *p, int nid)
6153 {
6154 	bool queued, running;
6155 	struct rq_flags rf;
6156 	struct rq *rq;
6157 
6158 	rq = task_rq_lock(p, &rf);
6159 	queued = task_on_rq_queued(p);
6160 	running = task_current(rq, p);
6161 
6162 	if (queued)
6163 		dequeue_task(rq, p, DEQUEUE_SAVE);
6164 	if (running)
6165 		put_prev_task(rq, p);
6166 
6167 	p->numa_preferred_nid = nid;
6168 
6169 	if (queued)
6170 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6171 	if (running)
6172 		set_next_task(rq, p);
6173 	task_rq_unlock(rq, p, &rf);
6174 }
6175 #endif /* CONFIG_NUMA_BALANCING */
6176 
6177 #ifdef CONFIG_HOTPLUG_CPU
6178 /*
6179  * Ensure that the idle task is using init_mm right before its CPU goes
6180  * offline.
6181  */
6182 void idle_task_exit(void)
6183 {
6184 	struct mm_struct *mm = current->active_mm;
6185 
6186 	BUG_ON(cpu_online(smp_processor_id()));
6187 
6188 	if (mm != &init_mm) {
6189 		switch_mm(mm, &init_mm, current);
6190 		current->active_mm = &init_mm;
6191 		finish_arch_post_lock_switch();
6192 	}
6193 	mmdrop(mm);
6194 }
6195 
6196 /*
6197  * Since this CPU is going 'away' for a while, fold any nr_active delta
6198  * we might have. Assumes we're called after migrate_tasks() so that the
6199  * nr_active count is stable. We need to take the teardown thread which
6200  * is calling this into account, so we hand in adjust = 1 to the load
6201  * calculation.
6202  *
6203  * Also see the comment "Global load-average calculations".
6204  */
6205 static void calc_load_migrate(struct rq *rq)
6206 {
6207 	long delta = calc_load_fold_active(rq, 1);
6208 	if (delta)
6209 		atomic_long_add(delta, &calc_load_tasks);
6210 }
6211 
6212 static struct task_struct *__pick_migrate_task(struct rq *rq)
6213 {
6214 	const struct sched_class *class;
6215 	struct task_struct *next;
6216 
6217 	for_each_class(class) {
6218 		next = class->pick_next_task(rq, NULL, NULL);
6219 		if (next) {
6220 			next->sched_class->put_prev_task(rq, next, NULL);
6221 			return next;
6222 		}
6223 	}
6224 
6225 	/* The idle class should always have a runnable task */
6226 	BUG();
6227 }
6228 
6229 /*
6230  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6231  * try_to_wake_up()->select_task_rq().
6232  *
6233  * Called with rq->lock held even though we'er in stop_machine() and
6234  * there's no concurrency possible, we hold the required locks anyway
6235  * because of lock validation efforts.
6236  */
6237 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6238 {
6239 	struct rq *rq = dead_rq;
6240 	struct task_struct *next, *stop = rq->stop;
6241 	struct rq_flags orf = *rf;
6242 	int dest_cpu;
6243 
6244 	/*
6245 	 * Fudge the rq selection such that the below task selection loop
6246 	 * doesn't get stuck on the currently eligible stop task.
6247 	 *
6248 	 * We're currently inside stop_machine() and the rq is either stuck
6249 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6250 	 * either way we should never end up calling schedule() until we're
6251 	 * done here.
6252 	 */
6253 	rq->stop = NULL;
6254 
6255 	/*
6256 	 * put_prev_task() and pick_next_task() sched
6257 	 * class method both need to have an up-to-date
6258 	 * value of rq->clock[_task]
6259 	 */
6260 	update_rq_clock(rq);
6261 
6262 	for (;;) {
6263 		/*
6264 		 * There's this thread running, bail when that's the only
6265 		 * remaining thread:
6266 		 */
6267 		if (rq->nr_running == 1)
6268 			break;
6269 
6270 		next = __pick_migrate_task(rq);
6271 
6272 		/*
6273 		 * Rules for changing task_struct::cpus_mask are holding
6274 		 * both pi_lock and rq->lock, such that holding either
6275 		 * stabilizes the mask.
6276 		 *
6277 		 * Drop rq->lock is not quite as disastrous as it usually is
6278 		 * because !cpu_active at this point, which means load-balance
6279 		 * will not interfere. Also, stop-machine.
6280 		 */
6281 		rq_unlock(rq, rf);
6282 		raw_spin_lock(&next->pi_lock);
6283 		rq_relock(rq, rf);
6284 
6285 		/*
6286 		 * Since we're inside stop-machine, _nothing_ should have
6287 		 * changed the task, WARN if weird stuff happened, because in
6288 		 * that case the above rq->lock drop is a fail too.
6289 		 */
6290 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6291 			raw_spin_unlock(&next->pi_lock);
6292 			continue;
6293 		}
6294 
6295 		/* Find suitable destination for @next, with force if needed. */
6296 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6297 		rq = __migrate_task(rq, rf, next, dest_cpu);
6298 		if (rq != dead_rq) {
6299 			rq_unlock(rq, rf);
6300 			rq = dead_rq;
6301 			*rf = orf;
6302 			rq_relock(rq, rf);
6303 		}
6304 		raw_spin_unlock(&next->pi_lock);
6305 	}
6306 
6307 	rq->stop = stop;
6308 }
6309 #endif /* CONFIG_HOTPLUG_CPU */
6310 
6311 void set_rq_online(struct rq *rq)
6312 {
6313 	if (!rq->online) {
6314 		const struct sched_class *class;
6315 
6316 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6317 		rq->online = 1;
6318 
6319 		for_each_class(class) {
6320 			if (class->rq_online)
6321 				class->rq_online(rq);
6322 		}
6323 	}
6324 }
6325 
6326 void set_rq_offline(struct rq *rq)
6327 {
6328 	if (rq->online) {
6329 		const struct sched_class *class;
6330 
6331 		for_each_class(class) {
6332 			if (class->rq_offline)
6333 				class->rq_offline(rq);
6334 		}
6335 
6336 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6337 		rq->online = 0;
6338 	}
6339 }
6340 
6341 /*
6342  * used to mark begin/end of suspend/resume:
6343  */
6344 static int num_cpus_frozen;
6345 
6346 /*
6347  * Update cpusets according to cpu_active mask.  If cpusets are
6348  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6349  * around partition_sched_domains().
6350  *
6351  * If we come here as part of a suspend/resume, don't touch cpusets because we
6352  * want to restore it back to its original state upon resume anyway.
6353  */
6354 static void cpuset_cpu_active(void)
6355 {
6356 	if (cpuhp_tasks_frozen) {
6357 		/*
6358 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6359 		 * resume sequence. As long as this is not the last online
6360 		 * operation in the resume sequence, just build a single sched
6361 		 * domain, ignoring cpusets.
6362 		 */
6363 		partition_sched_domains(1, NULL, NULL);
6364 		if (--num_cpus_frozen)
6365 			return;
6366 		/*
6367 		 * This is the last CPU online operation. So fall through and
6368 		 * restore the original sched domains by considering the
6369 		 * cpuset configurations.
6370 		 */
6371 		cpuset_force_rebuild();
6372 	}
6373 	cpuset_update_active_cpus();
6374 }
6375 
6376 static int cpuset_cpu_inactive(unsigned int cpu)
6377 {
6378 	if (!cpuhp_tasks_frozen) {
6379 		if (dl_cpu_busy(cpu))
6380 			return -EBUSY;
6381 		cpuset_update_active_cpus();
6382 	} else {
6383 		num_cpus_frozen++;
6384 		partition_sched_domains(1, NULL, NULL);
6385 	}
6386 	return 0;
6387 }
6388 
6389 int sched_cpu_activate(unsigned int cpu)
6390 {
6391 	struct rq *rq = cpu_rq(cpu);
6392 	struct rq_flags rf;
6393 
6394 #ifdef CONFIG_SCHED_SMT
6395 	/*
6396 	 * When going up, increment the number of cores with SMT present.
6397 	 */
6398 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6399 		static_branch_inc_cpuslocked(&sched_smt_present);
6400 #endif
6401 	set_cpu_active(cpu, true);
6402 
6403 	if (sched_smp_initialized) {
6404 		sched_domains_numa_masks_set(cpu);
6405 		cpuset_cpu_active();
6406 	}
6407 
6408 	/*
6409 	 * Put the rq online, if not already. This happens:
6410 	 *
6411 	 * 1) In the early boot process, because we build the real domains
6412 	 *    after all CPUs have been brought up.
6413 	 *
6414 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6415 	 *    domains.
6416 	 */
6417 	rq_lock_irqsave(rq, &rf);
6418 	if (rq->rd) {
6419 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6420 		set_rq_online(rq);
6421 	}
6422 	rq_unlock_irqrestore(rq, &rf);
6423 
6424 	update_max_interval();
6425 
6426 	return 0;
6427 }
6428 
6429 int sched_cpu_deactivate(unsigned int cpu)
6430 {
6431 	int ret;
6432 
6433 	set_cpu_active(cpu, false);
6434 	/*
6435 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6436 	 * users of this state to go away such that all new such users will
6437 	 * observe it.
6438 	 *
6439 	 * Do sync before park smpboot threads to take care the rcu boost case.
6440 	 */
6441 	synchronize_rcu();
6442 
6443 #ifdef CONFIG_SCHED_SMT
6444 	/*
6445 	 * When going down, decrement the number of cores with SMT present.
6446 	 */
6447 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6448 		static_branch_dec_cpuslocked(&sched_smt_present);
6449 #endif
6450 
6451 	if (!sched_smp_initialized)
6452 		return 0;
6453 
6454 	ret = cpuset_cpu_inactive(cpu);
6455 	if (ret) {
6456 		set_cpu_active(cpu, true);
6457 		return ret;
6458 	}
6459 	sched_domains_numa_masks_clear(cpu);
6460 	return 0;
6461 }
6462 
6463 static void sched_rq_cpu_starting(unsigned int cpu)
6464 {
6465 	struct rq *rq = cpu_rq(cpu);
6466 
6467 	rq->calc_load_update = calc_load_update;
6468 	update_max_interval();
6469 }
6470 
6471 int sched_cpu_starting(unsigned int cpu)
6472 {
6473 	sched_rq_cpu_starting(cpu);
6474 	sched_tick_start(cpu);
6475 	return 0;
6476 }
6477 
6478 #ifdef CONFIG_HOTPLUG_CPU
6479 int sched_cpu_dying(unsigned int cpu)
6480 {
6481 	struct rq *rq = cpu_rq(cpu);
6482 	struct rq_flags rf;
6483 
6484 	/* Handle pending wakeups and then migrate everything off */
6485 	sched_ttwu_pending();
6486 	sched_tick_stop(cpu);
6487 
6488 	rq_lock_irqsave(rq, &rf);
6489 	if (rq->rd) {
6490 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6491 		set_rq_offline(rq);
6492 	}
6493 	migrate_tasks(rq, &rf);
6494 	BUG_ON(rq->nr_running != 1);
6495 	rq_unlock_irqrestore(rq, &rf);
6496 
6497 	calc_load_migrate(rq);
6498 	update_max_interval();
6499 	nohz_balance_exit_idle(rq);
6500 	hrtick_clear(rq);
6501 	return 0;
6502 }
6503 #endif
6504 
6505 void __init sched_init_smp(void)
6506 {
6507 	sched_init_numa();
6508 
6509 	/*
6510 	 * There's no userspace yet to cause hotplug operations; hence all the
6511 	 * CPU masks are stable and all blatant races in the below code cannot
6512 	 * happen.
6513 	 */
6514 	mutex_lock(&sched_domains_mutex);
6515 	sched_init_domains(cpu_active_mask);
6516 	mutex_unlock(&sched_domains_mutex);
6517 
6518 	/* Move init over to a non-isolated CPU */
6519 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6520 		BUG();
6521 	sched_init_granularity();
6522 
6523 	init_sched_rt_class();
6524 	init_sched_dl_class();
6525 
6526 	sched_smp_initialized = true;
6527 }
6528 
6529 static int __init migration_init(void)
6530 {
6531 	sched_cpu_starting(smp_processor_id());
6532 	return 0;
6533 }
6534 early_initcall(migration_init);
6535 
6536 #else
6537 void __init sched_init_smp(void)
6538 {
6539 	sched_init_granularity();
6540 }
6541 #endif /* CONFIG_SMP */
6542 
6543 int in_sched_functions(unsigned long addr)
6544 {
6545 	return in_lock_functions(addr) ||
6546 		(addr >= (unsigned long)__sched_text_start
6547 		&& addr < (unsigned long)__sched_text_end);
6548 }
6549 
6550 #ifdef CONFIG_CGROUP_SCHED
6551 /*
6552  * Default task group.
6553  * Every task in system belongs to this group at bootup.
6554  */
6555 struct task_group root_task_group;
6556 LIST_HEAD(task_groups);
6557 
6558 /* Cacheline aligned slab cache for task_group */
6559 static struct kmem_cache *task_group_cache __read_mostly;
6560 #endif
6561 
6562 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6563 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6564 
6565 void __init sched_init(void)
6566 {
6567 	unsigned long ptr = 0;
6568 	int i;
6569 
6570 	wait_bit_init();
6571 
6572 #ifdef CONFIG_FAIR_GROUP_SCHED
6573 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6574 #endif
6575 #ifdef CONFIG_RT_GROUP_SCHED
6576 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6577 #endif
6578 	if (ptr) {
6579 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6580 
6581 #ifdef CONFIG_FAIR_GROUP_SCHED
6582 		root_task_group.se = (struct sched_entity **)ptr;
6583 		ptr += nr_cpu_ids * sizeof(void **);
6584 
6585 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6586 		ptr += nr_cpu_ids * sizeof(void **);
6587 
6588 #endif /* CONFIG_FAIR_GROUP_SCHED */
6589 #ifdef CONFIG_RT_GROUP_SCHED
6590 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6591 		ptr += nr_cpu_ids * sizeof(void **);
6592 
6593 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6594 		ptr += nr_cpu_ids * sizeof(void **);
6595 
6596 #endif /* CONFIG_RT_GROUP_SCHED */
6597 	}
6598 #ifdef CONFIG_CPUMASK_OFFSTACK
6599 	for_each_possible_cpu(i) {
6600 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6601 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6602 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6603 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6604 	}
6605 #endif /* CONFIG_CPUMASK_OFFSTACK */
6606 
6607 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6608 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6609 
6610 #ifdef CONFIG_SMP
6611 	init_defrootdomain();
6612 #endif
6613 
6614 #ifdef CONFIG_RT_GROUP_SCHED
6615 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6616 			global_rt_period(), global_rt_runtime());
6617 #endif /* CONFIG_RT_GROUP_SCHED */
6618 
6619 #ifdef CONFIG_CGROUP_SCHED
6620 	task_group_cache = KMEM_CACHE(task_group, 0);
6621 
6622 	list_add(&root_task_group.list, &task_groups);
6623 	INIT_LIST_HEAD(&root_task_group.children);
6624 	INIT_LIST_HEAD(&root_task_group.siblings);
6625 	autogroup_init(&init_task);
6626 #endif /* CONFIG_CGROUP_SCHED */
6627 
6628 	for_each_possible_cpu(i) {
6629 		struct rq *rq;
6630 
6631 		rq = cpu_rq(i);
6632 		raw_spin_lock_init(&rq->lock);
6633 		rq->nr_running = 0;
6634 		rq->calc_load_active = 0;
6635 		rq->calc_load_update = jiffies + LOAD_FREQ;
6636 		init_cfs_rq(&rq->cfs);
6637 		init_rt_rq(&rq->rt);
6638 		init_dl_rq(&rq->dl);
6639 #ifdef CONFIG_FAIR_GROUP_SCHED
6640 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6641 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6642 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6643 		/*
6644 		 * How much CPU bandwidth does root_task_group get?
6645 		 *
6646 		 * In case of task-groups formed thr' the cgroup filesystem, it
6647 		 * gets 100% of the CPU resources in the system. This overall
6648 		 * system CPU resource is divided among the tasks of
6649 		 * root_task_group and its child task-groups in a fair manner,
6650 		 * based on each entity's (task or task-group's) weight
6651 		 * (se->load.weight).
6652 		 *
6653 		 * In other words, if root_task_group has 10 tasks of weight
6654 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6655 		 * then A0's share of the CPU resource is:
6656 		 *
6657 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6658 		 *
6659 		 * We achieve this by letting root_task_group's tasks sit
6660 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6661 		 */
6662 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6663 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6664 #endif /* CONFIG_FAIR_GROUP_SCHED */
6665 
6666 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6667 #ifdef CONFIG_RT_GROUP_SCHED
6668 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6669 #endif
6670 #ifdef CONFIG_SMP
6671 		rq->sd = NULL;
6672 		rq->rd = NULL;
6673 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6674 		rq->balance_callback = NULL;
6675 		rq->active_balance = 0;
6676 		rq->next_balance = jiffies;
6677 		rq->push_cpu = 0;
6678 		rq->cpu = i;
6679 		rq->online = 0;
6680 		rq->idle_stamp = 0;
6681 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6682 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6683 
6684 		INIT_LIST_HEAD(&rq->cfs_tasks);
6685 
6686 		rq_attach_root(rq, &def_root_domain);
6687 #ifdef CONFIG_NO_HZ_COMMON
6688 		rq->last_load_update_tick = jiffies;
6689 		rq->last_blocked_load_update_tick = jiffies;
6690 		atomic_set(&rq->nohz_flags, 0);
6691 #endif
6692 #endif /* CONFIG_SMP */
6693 		hrtick_rq_init(rq);
6694 		atomic_set(&rq->nr_iowait, 0);
6695 	}
6696 
6697 	set_load_weight(&init_task, false);
6698 
6699 	/*
6700 	 * The boot idle thread does lazy MMU switching as well:
6701 	 */
6702 	mmgrab(&init_mm);
6703 	enter_lazy_tlb(&init_mm, current);
6704 
6705 	/*
6706 	 * Make us the idle thread. Technically, schedule() should not be
6707 	 * called from this thread, however somewhere below it might be,
6708 	 * but because we are the idle thread, we just pick up running again
6709 	 * when this runqueue becomes "idle".
6710 	 */
6711 	init_idle(current, smp_processor_id());
6712 
6713 	calc_load_update = jiffies + LOAD_FREQ;
6714 
6715 #ifdef CONFIG_SMP
6716 	idle_thread_set_boot_cpu();
6717 #endif
6718 	init_sched_fair_class();
6719 
6720 	init_schedstats();
6721 
6722 	psi_init();
6723 
6724 	init_uclamp();
6725 
6726 	scheduler_running = 1;
6727 }
6728 
6729 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6730 static inline int preempt_count_equals(int preempt_offset)
6731 {
6732 	int nested = preempt_count() + rcu_preempt_depth();
6733 
6734 	return (nested == preempt_offset);
6735 }
6736 
6737 void __might_sleep(const char *file, int line, int preempt_offset)
6738 {
6739 	/*
6740 	 * Blocking primitives will set (and therefore destroy) current->state,
6741 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6742 	 * otherwise we will destroy state.
6743 	 */
6744 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6745 			"do not call blocking ops when !TASK_RUNNING; "
6746 			"state=%lx set at [<%p>] %pS\n",
6747 			current->state,
6748 			(void *)current->task_state_change,
6749 			(void *)current->task_state_change);
6750 
6751 	___might_sleep(file, line, preempt_offset);
6752 }
6753 EXPORT_SYMBOL(__might_sleep);
6754 
6755 void ___might_sleep(const char *file, int line, int preempt_offset)
6756 {
6757 	/* Ratelimiting timestamp: */
6758 	static unsigned long prev_jiffy;
6759 
6760 	unsigned long preempt_disable_ip;
6761 
6762 	/* WARN_ON_ONCE() by default, no rate limit required: */
6763 	rcu_sleep_check();
6764 
6765 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6766 	     !is_idle_task(current)) ||
6767 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6768 	    oops_in_progress)
6769 		return;
6770 
6771 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6772 		return;
6773 	prev_jiffy = jiffies;
6774 
6775 	/* Save this before calling printk(), since that will clobber it: */
6776 	preempt_disable_ip = get_preempt_disable_ip(current);
6777 
6778 	printk(KERN_ERR
6779 		"BUG: sleeping function called from invalid context at %s:%d\n",
6780 			file, line);
6781 	printk(KERN_ERR
6782 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6783 			in_atomic(), irqs_disabled(),
6784 			current->pid, current->comm);
6785 
6786 	if (task_stack_end_corrupted(current))
6787 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6788 
6789 	debug_show_held_locks(current);
6790 	if (irqs_disabled())
6791 		print_irqtrace_events(current);
6792 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6793 	    && !preempt_count_equals(preempt_offset)) {
6794 		pr_err("Preemption disabled at:");
6795 		print_ip_sym(preempt_disable_ip);
6796 		pr_cont("\n");
6797 	}
6798 	dump_stack();
6799 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6800 }
6801 EXPORT_SYMBOL(___might_sleep);
6802 
6803 void __cant_sleep(const char *file, int line, int preempt_offset)
6804 {
6805 	static unsigned long prev_jiffy;
6806 
6807 	if (irqs_disabled())
6808 		return;
6809 
6810 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6811 		return;
6812 
6813 	if (preempt_count() > preempt_offset)
6814 		return;
6815 
6816 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6817 		return;
6818 	prev_jiffy = jiffies;
6819 
6820 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6821 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6822 			in_atomic(), irqs_disabled(),
6823 			current->pid, current->comm);
6824 
6825 	debug_show_held_locks(current);
6826 	dump_stack();
6827 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6828 }
6829 EXPORT_SYMBOL_GPL(__cant_sleep);
6830 #endif
6831 
6832 #ifdef CONFIG_MAGIC_SYSRQ
6833 void normalize_rt_tasks(void)
6834 {
6835 	struct task_struct *g, *p;
6836 	struct sched_attr attr = {
6837 		.sched_policy = SCHED_NORMAL,
6838 	};
6839 
6840 	read_lock(&tasklist_lock);
6841 	for_each_process_thread(g, p) {
6842 		/*
6843 		 * Only normalize user tasks:
6844 		 */
6845 		if (p->flags & PF_KTHREAD)
6846 			continue;
6847 
6848 		p->se.exec_start = 0;
6849 		schedstat_set(p->se.statistics.wait_start,  0);
6850 		schedstat_set(p->se.statistics.sleep_start, 0);
6851 		schedstat_set(p->se.statistics.block_start, 0);
6852 
6853 		if (!dl_task(p) && !rt_task(p)) {
6854 			/*
6855 			 * Renice negative nice level userspace
6856 			 * tasks back to 0:
6857 			 */
6858 			if (task_nice(p) < 0)
6859 				set_user_nice(p, 0);
6860 			continue;
6861 		}
6862 
6863 		__sched_setscheduler(p, &attr, false, false);
6864 	}
6865 	read_unlock(&tasklist_lock);
6866 }
6867 
6868 #endif /* CONFIG_MAGIC_SYSRQ */
6869 
6870 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6871 /*
6872  * These functions are only useful for the IA64 MCA handling, or kdb.
6873  *
6874  * They can only be called when the whole system has been
6875  * stopped - every CPU needs to be quiescent, and no scheduling
6876  * activity can take place. Using them for anything else would
6877  * be a serious bug, and as a result, they aren't even visible
6878  * under any other configuration.
6879  */
6880 
6881 /**
6882  * curr_task - return the current task for a given CPU.
6883  * @cpu: the processor in question.
6884  *
6885  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6886  *
6887  * Return: The current task for @cpu.
6888  */
6889 struct task_struct *curr_task(int cpu)
6890 {
6891 	return cpu_curr(cpu);
6892 }
6893 
6894 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6895 
6896 #ifdef CONFIG_IA64
6897 /**
6898  * ia64_set_curr_task - set the current task for a given CPU.
6899  * @cpu: the processor in question.
6900  * @p: the task pointer to set.
6901  *
6902  * Description: This function must only be used when non-maskable interrupts
6903  * are serviced on a separate stack. It allows the architecture to switch the
6904  * notion of the current task on a CPU in a non-blocking manner. This function
6905  * must be called with all CPU's synchronized, and interrupts disabled, the
6906  * and caller must save the original value of the current task (see
6907  * curr_task() above) and restore that value before reenabling interrupts and
6908  * re-starting the system.
6909  *
6910  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6911  */
6912 void ia64_set_curr_task(int cpu, struct task_struct *p)
6913 {
6914 	cpu_curr(cpu) = p;
6915 }
6916 
6917 #endif
6918 
6919 #ifdef CONFIG_CGROUP_SCHED
6920 /* task_group_lock serializes the addition/removal of task groups */
6921 static DEFINE_SPINLOCK(task_group_lock);
6922 
6923 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6924 					    struct task_group *parent)
6925 {
6926 #ifdef CONFIG_UCLAMP_TASK_GROUP
6927 	enum uclamp_id clamp_id;
6928 
6929 	for_each_clamp_id(clamp_id) {
6930 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6931 			      uclamp_none(clamp_id), false);
6932 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6933 	}
6934 #endif
6935 }
6936 
6937 static void sched_free_group(struct task_group *tg)
6938 {
6939 	free_fair_sched_group(tg);
6940 	free_rt_sched_group(tg);
6941 	autogroup_free(tg);
6942 	kmem_cache_free(task_group_cache, tg);
6943 }
6944 
6945 /* allocate runqueue etc for a new task group */
6946 struct task_group *sched_create_group(struct task_group *parent)
6947 {
6948 	struct task_group *tg;
6949 
6950 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6951 	if (!tg)
6952 		return ERR_PTR(-ENOMEM);
6953 
6954 	if (!alloc_fair_sched_group(tg, parent))
6955 		goto err;
6956 
6957 	if (!alloc_rt_sched_group(tg, parent))
6958 		goto err;
6959 
6960 	alloc_uclamp_sched_group(tg, parent);
6961 
6962 	return tg;
6963 
6964 err:
6965 	sched_free_group(tg);
6966 	return ERR_PTR(-ENOMEM);
6967 }
6968 
6969 void sched_online_group(struct task_group *tg, struct task_group *parent)
6970 {
6971 	unsigned long flags;
6972 
6973 	spin_lock_irqsave(&task_group_lock, flags);
6974 	list_add_rcu(&tg->list, &task_groups);
6975 
6976 	/* Root should already exist: */
6977 	WARN_ON(!parent);
6978 
6979 	tg->parent = parent;
6980 	INIT_LIST_HEAD(&tg->children);
6981 	list_add_rcu(&tg->siblings, &parent->children);
6982 	spin_unlock_irqrestore(&task_group_lock, flags);
6983 
6984 	online_fair_sched_group(tg);
6985 }
6986 
6987 /* rcu callback to free various structures associated with a task group */
6988 static void sched_free_group_rcu(struct rcu_head *rhp)
6989 {
6990 	/* Now it should be safe to free those cfs_rqs: */
6991 	sched_free_group(container_of(rhp, struct task_group, rcu));
6992 }
6993 
6994 void sched_destroy_group(struct task_group *tg)
6995 {
6996 	/* Wait for possible concurrent references to cfs_rqs complete: */
6997 	call_rcu(&tg->rcu, sched_free_group_rcu);
6998 }
6999 
7000 void sched_offline_group(struct task_group *tg)
7001 {
7002 	unsigned long flags;
7003 
7004 	/* End participation in shares distribution: */
7005 	unregister_fair_sched_group(tg);
7006 
7007 	spin_lock_irqsave(&task_group_lock, flags);
7008 	list_del_rcu(&tg->list);
7009 	list_del_rcu(&tg->siblings);
7010 	spin_unlock_irqrestore(&task_group_lock, flags);
7011 }
7012 
7013 static void sched_change_group(struct task_struct *tsk, int type)
7014 {
7015 	struct task_group *tg;
7016 
7017 	/*
7018 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7019 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7020 	 * to prevent lockdep warnings.
7021 	 */
7022 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7023 			  struct task_group, css);
7024 	tg = autogroup_task_group(tsk, tg);
7025 	tsk->sched_task_group = tg;
7026 
7027 #ifdef CONFIG_FAIR_GROUP_SCHED
7028 	if (tsk->sched_class->task_change_group)
7029 		tsk->sched_class->task_change_group(tsk, type);
7030 	else
7031 #endif
7032 		set_task_rq(tsk, task_cpu(tsk));
7033 }
7034 
7035 /*
7036  * Change task's runqueue when it moves between groups.
7037  *
7038  * The caller of this function should have put the task in its new group by
7039  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7040  * its new group.
7041  */
7042 void sched_move_task(struct task_struct *tsk)
7043 {
7044 	int queued, running, queue_flags =
7045 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7046 	struct rq_flags rf;
7047 	struct rq *rq;
7048 
7049 	rq = task_rq_lock(tsk, &rf);
7050 	update_rq_clock(rq);
7051 
7052 	running = task_current(rq, tsk);
7053 	queued = task_on_rq_queued(tsk);
7054 
7055 	if (queued)
7056 		dequeue_task(rq, tsk, queue_flags);
7057 	if (running)
7058 		put_prev_task(rq, tsk);
7059 
7060 	sched_change_group(tsk, TASK_MOVE_GROUP);
7061 
7062 	if (queued)
7063 		enqueue_task(rq, tsk, queue_flags);
7064 	if (running)
7065 		set_next_task(rq, tsk);
7066 
7067 	task_rq_unlock(rq, tsk, &rf);
7068 }
7069 
7070 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7071 {
7072 	return css ? container_of(css, struct task_group, css) : NULL;
7073 }
7074 
7075 static struct cgroup_subsys_state *
7076 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7077 {
7078 	struct task_group *parent = css_tg(parent_css);
7079 	struct task_group *tg;
7080 
7081 	if (!parent) {
7082 		/* This is early initialization for the top cgroup */
7083 		return &root_task_group.css;
7084 	}
7085 
7086 	tg = sched_create_group(parent);
7087 	if (IS_ERR(tg))
7088 		return ERR_PTR(-ENOMEM);
7089 
7090 	return &tg->css;
7091 }
7092 
7093 /* Expose task group only after completing cgroup initialization */
7094 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7095 {
7096 	struct task_group *tg = css_tg(css);
7097 	struct task_group *parent = css_tg(css->parent);
7098 
7099 	if (parent)
7100 		sched_online_group(tg, parent);
7101 	return 0;
7102 }
7103 
7104 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7105 {
7106 	struct task_group *tg = css_tg(css);
7107 
7108 	sched_offline_group(tg);
7109 }
7110 
7111 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7112 {
7113 	struct task_group *tg = css_tg(css);
7114 
7115 	/*
7116 	 * Relies on the RCU grace period between css_released() and this.
7117 	 */
7118 	sched_free_group(tg);
7119 }
7120 
7121 /*
7122  * This is called before wake_up_new_task(), therefore we really only
7123  * have to set its group bits, all the other stuff does not apply.
7124  */
7125 static void cpu_cgroup_fork(struct task_struct *task)
7126 {
7127 	struct rq_flags rf;
7128 	struct rq *rq;
7129 
7130 	rq = task_rq_lock(task, &rf);
7131 
7132 	update_rq_clock(rq);
7133 	sched_change_group(task, TASK_SET_GROUP);
7134 
7135 	task_rq_unlock(rq, task, &rf);
7136 }
7137 
7138 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7139 {
7140 	struct task_struct *task;
7141 	struct cgroup_subsys_state *css;
7142 	int ret = 0;
7143 
7144 	cgroup_taskset_for_each(task, css, tset) {
7145 #ifdef CONFIG_RT_GROUP_SCHED
7146 		if (!sched_rt_can_attach(css_tg(css), task))
7147 			return -EINVAL;
7148 #endif
7149 		/*
7150 		 * Serialize against wake_up_new_task() such that if its
7151 		 * running, we're sure to observe its full state.
7152 		 */
7153 		raw_spin_lock_irq(&task->pi_lock);
7154 		/*
7155 		 * Avoid calling sched_move_task() before wake_up_new_task()
7156 		 * has happened. This would lead to problems with PELT, due to
7157 		 * move wanting to detach+attach while we're not attached yet.
7158 		 */
7159 		if (task->state == TASK_NEW)
7160 			ret = -EINVAL;
7161 		raw_spin_unlock_irq(&task->pi_lock);
7162 
7163 		if (ret)
7164 			break;
7165 	}
7166 	return ret;
7167 }
7168 
7169 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7170 {
7171 	struct task_struct *task;
7172 	struct cgroup_subsys_state *css;
7173 
7174 	cgroup_taskset_for_each(task, css, tset)
7175 		sched_move_task(task);
7176 }
7177 
7178 #ifdef CONFIG_UCLAMP_TASK_GROUP
7179 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7180 {
7181 	struct cgroup_subsys_state *top_css = css;
7182 	struct uclamp_se *uc_parent = NULL;
7183 	struct uclamp_se *uc_se = NULL;
7184 	unsigned int eff[UCLAMP_CNT];
7185 	enum uclamp_id clamp_id;
7186 	unsigned int clamps;
7187 
7188 	css_for_each_descendant_pre(css, top_css) {
7189 		uc_parent = css_tg(css)->parent
7190 			? css_tg(css)->parent->uclamp : NULL;
7191 
7192 		for_each_clamp_id(clamp_id) {
7193 			/* Assume effective clamps matches requested clamps */
7194 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7195 			/* Cap effective clamps with parent's effective clamps */
7196 			if (uc_parent &&
7197 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7198 				eff[clamp_id] = uc_parent[clamp_id].value;
7199 			}
7200 		}
7201 		/* Ensure protection is always capped by limit */
7202 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7203 
7204 		/* Propagate most restrictive effective clamps */
7205 		clamps = 0x0;
7206 		uc_se = css_tg(css)->uclamp;
7207 		for_each_clamp_id(clamp_id) {
7208 			if (eff[clamp_id] == uc_se[clamp_id].value)
7209 				continue;
7210 			uc_se[clamp_id].value = eff[clamp_id];
7211 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7212 			clamps |= (0x1 << clamp_id);
7213 		}
7214 		if (!clamps) {
7215 			css = css_rightmost_descendant(css);
7216 			continue;
7217 		}
7218 
7219 		/* Immediately update descendants RUNNABLE tasks */
7220 		uclamp_update_active_tasks(css, clamps);
7221 	}
7222 }
7223 
7224 /*
7225  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7226  * C expression. Since there is no way to convert a macro argument (N) into a
7227  * character constant, use two levels of macros.
7228  */
7229 #define _POW10(exp) ((unsigned int)1e##exp)
7230 #define POW10(exp) _POW10(exp)
7231 
7232 struct uclamp_request {
7233 #define UCLAMP_PERCENT_SHIFT	2
7234 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7235 	s64 percent;
7236 	u64 util;
7237 	int ret;
7238 };
7239 
7240 static inline struct uclamp_request
7241 capacity_from_percent(char *buf)
7242 {
7243 	struct uclamp_request req = {
7244 		.percent = UCLAMP_PERCENT_SCALE,
7245 		.util = SCHED_CAPACITY_SCALE,
7246 		.ret = 0,
7247 	};
7248 
7249 	buf = strim(buf);
7250 	if (strcmp(buf, "max")) {
7251 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7252 					     &req.percent);
7253 		if (req.ret)
7254 			return req;
7255 		if (req.percent > UCLAMP_PERCENT_SCALE) {
7256 			req.ret = -ERANGE;
7257 			return req;
7258 		}
7259 
7260 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7261 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7262 	}
7263 
7264 	return req;
7265 }
7266 
7267 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7268 				size_t nbytes, loff_t off,
7269 				enum uclamp_id clamp_id)
7270 {
7271 	struct uclamp_request req;
7272 	struct task_group *tg;
7273 
7274 	req = capacity_from_percent(buf);
7275 	if (req.ret)
7276 		return req.ret;
7277 
7278 	mutex_lock(&uclamp_mutex);
7279 	rcu_read_lock();
7280 
7281 	tg = css_tg(of_css(of));
7282 	if (tg->uclamp_req[clamp_id].value != req.util)
7283 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7284 
7285 	/*
7286 	 * Because of not recoverable conversion rounding we keep track of the
7287 	 * exact requested value
7288 	 */
7289 	tg->uclamp_pct[clamp_id] = req.percent;
7290 
7291 	/* Update effective clamps to track the most restrictive value */
7292 	cpu_util_update_eff(of_css(of));
7293 
7294 	rcu_read_unlock();
7295 	mutex_unlock(&uclamp_mutex);
7296 
7297 	return nbytes;
7298 }
7299 
7300 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7301 				    char *buf, size_t nbytes,
7302 				    loff_t off)
7303 {
7304 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7305 }
7306 
7307 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7308 				    char *buf, size_t nbytes,
7309 				    loff_t off)
7310 {
7311 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7312 }
7313 
7314 static inline void cpu_uclamp_print(struct seq_file *sf,
7315 				    enum uclamp_id clamp_id)
7316 {
7317 	struct task_group *tg;
7318 	u64 util_clamp;
7319 	u64 percent;
7320 	u32 rem;
7321 
7322 	rcu_read_lock();
7323 	tg = css_tg(seq_css(sf));
7324 	util_clamp = tg->uclamp_req[clamp_id].value;
7325 	rcu_read_unlock();
7326 
7327 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7328 		seq_puts(sf, "max\n");
7329 		return;
7330 	}
7331 
7332 	percent = tg->uclamp_pct[clamp_id];
7333 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7334 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7335 }
7336 
7337 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7338 {
7339 	cpu_uclamp_print(sf, UCLAMP_MIN);
7340 	return 0;
7341 }
7342 
7343 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7344 {
7345 	cpu_uclamp_print(sf, UCLAMP_MAX);
7346 	return 0;
7347 }
7348 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7349 
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7352 				struct cftype *cftype, u64 shareval)
7353 {
7354 	if (shareval > scale_load_down(ULONG_MAX))
7355 		shareval = MAX_SHARES;
7356 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7357 }
7358 
7359 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7360 			       struct cftype *cft)
7361 {
7362 	struct task_group *tg = css_tg(css);
7363 
7364 	return (u64) scale_load_down(tg->shares);
7365 }
7366 
7367 #ifdef CONFIG_CFS_BANDWIDTH
7368 static DEFINE_MUTEX(cfs_constraints_mutex);
7369 
7370 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7371 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7372 
7373 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7374 
7375 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7376 {
7377 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7378 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7379 
7380 	if (tg == &root_task_group)
7381 		return -EINVAL;
7382 
7383 	/*
7384 	 * Ensure we have at some amount of bandwidth every period.  This is
7385 	 * to prevent reaching a state of large arrears when throttled via
7386 	 * entity_tick() resulting in prolonged exit starvation.
7387 	 */
7388 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7389 		return -EINVAL;
7390 
7391 	/*
7392 	 * Likewise, bound things on the otherside by preventing insane quota
7393 	 * periods.  This also allows us to normalize in computing quota
7394 	 * feasibility.
7395 	 */
7396 	if (period > max_cfs_quota_period)
7397 		return -EINVAL;
7398 
7399 	/*
7400 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7401 	 * unthrottle_offline_cfs_rqs().
7402 	 */
7403 	get_online_cpus();
7404 	mutex_lock(&cfs_constraints_mutex);
7405 	ret = __cfs_schedulable(tg, period, quota);
7406 	if (ret)
7407 		goto out_unlock;
7408 
7409 	runtime_enabled = quota != RUNTIME_INF;
7410 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7411 	/*
7412 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7413 	 * before making related changes, and on->off must occur afterwards
7414 	 */
7415 	if (runtime_enabled && !runtime_was_enabled)
7416 		cfs_bandwidth_usage_inc();
7417 	raw_spin_lock_irq(&cfs_b->lock);
7418 	cfs_b->period = ns_to_ktime(period);
7419 	cfs_b->quota = quota;
7420 
7421 	__refill_cfs_bandwidth_runtime(cfs_b);
7422 
7423 	/* Restart the period timer (if active) to handle new period expiry: */
7424 	if (runtime_enabled)
7425 		start_cfs_bandwidth(cfs_b);
7426 
7427 	raw_spin_unlock_irq(&cfs_b->lock);
7428 
7429 	for_each_online_cpu(i) {
7430 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7431 		struct rq *rq = cfs_rq->rq;
7432 		struct rq_flags rf;
7433 
7434 		rq_lock_irq(rq, &rf);
7435 		cfs_rq->runtime_enabled = runtime_enabled;
7436 		cfs_rq->runtime_remaining = 0;
7437 
7438 		if (cfs_rq->throttled)
7439 			unthrottle_cfs_rq(cfs_rq);
7440 		rq_unlock_irq(rq, &rf);
7441 	}
7442 	if (runtime_was_enabled && !runtime_enabled)
7443 		cfs_bandwidth_usage_dec();
7444 out_unlock:
7445 	mutex_unlock(&cfs_constraints_mutex);
7446 	put_online_cpus();
7447 
7448 	return ret;
7449 }
7450 
7451 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7452 {
7453 	u64 quota, period;
7454 
7455 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7456 	if (cfs_quota_us < 0)
7457 		quota = RUNTIME_INF;
7458 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7459 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7460 	else
7461 		return -EINVAL;
7462 
7463 	return tg_set_cfs_bandwidth(tg, period, quota);
7464 }
7465 
7466 static long tg_get_cfs_quota(struct task_group *tg)
7467 {
7468 	u64 quota_us;
7469 
7470 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7471 		return -1;
7472 
7473 	quota_us = tg->cfs_bandwidth.quota;
7474 	do_div(quota_us, NSEC_PER_USEC);
7475 
7476 	return quota_us;
7477 }
7478 
7479 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7480 {
7481 	u64 quota, period;
7482 
7483 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7484 		return -EINVAL;
7485 
7486 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7487 	quota = tg->cfs_bandwidth.quota;
7488 
7489 	return tg_set_cfs_bandwidth(tg, period, quota);
7490 }
7491 
7492 static long tg_get_cfs_period(struct task_group *tg)
7493 {
7494 	u64 cfs_period_us;
7495 
7496 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7497 	do_div(cfs_period_us, NSEC_PER_USEC);
7498 
7499 	return cfs_period_us;
7500 }
7501 
7502 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7503 				  struct cftype *cft)
7504 {
7505 	return tg_get_cfs_quota(css_tg(css));
7506 }
7507 
7508 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7509 				   struct cftype *cftype, s64 cfs_quota_us)
7510 {
7511 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7512 }
7513 
7514 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7515 				   struct cftype *cft)
7516 {
7517 	return tg_get_cfs_period(css_tg(css));
7518 }
7519 
7520 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7521 				    struct cftype *cftype, u64 cfs_period_us)
7522 {
7523 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7524 }
7525 
7526 struct cfs_schedulable_data {
7527 	struct task_group *tg;
7528 	u64 period, quota;
7529 };
7530 
7531 /*
7532  * normalize group quota/period to be quota/max_period
7533  * note: units are usecs
7534  */
7535 static u64 normalize_cfs_quota(struct task_group *tg,
7536 			       struct cfs_schedulable_data *d)
7537 {
7538 	u64 quota, period;
7539 
7540 	if (tg == d->tg) {
7541 		period = d->period;
7542 		quota = d->quota;
7543 	} else {
7544 		period = tg_get_cfs_period(tg);
7545 		quota = tg_get_cfs_quota(tg);
7546 	}
7547 
7548 	/* note: these should typically be equivalent */
7549 	if (quota == RUNTIME_INF || quota == -1)
7550 		return RUNTIME_INF;
7551 
7552 	return to_ratio(period, quota);
7553 }
7554 
7555 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7556 {
7557 	struct cfs_schedulable_data *d = data;
7558 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7559 	s64 quota = 0, parent_quota = -1;
7560 
7561 	if (!tg->parent) {
7562 		quota = RUNTIME_INF;
7563 	} else {
7564 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7565 
7566 		quota = normalize_cfs_quota(tg, d);
7567 		parent_quota = parent_b->hierarchical_quota;
7568 
7569 		/*
7570 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7571 		 * always take the min.  On cgroup1, only inherit when no
7572 		 * limit is set:
7573 		 */
7574 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7575 			quota = min(quota, parent_quota);
7576 		} else {
7577 			if (quota == RUNTIME_INF)
7578 				quota = parent_quota;
7579 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7580 				return -EINVAL;
7581 		}
7582 	}
7583 	cfs_b->hierarchical_quota = quota;
7584 
7585 	return 0;
7586 }
7587 
7588 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7589 {
7590 	int ret;
7591 	struct cfs_schedulable_data data = {
7592 		.tg = tg,
7593 		.period = period,
7594 		.quota = quota,
7595 	};
7596 
7597 	if (quota != RUNTIME_INF) {
7598 		do_div(data.period, NSEC_PER_USEC);
7599 		do_div(data.quota, NSEC_PER_USEC);
7600 	}
7601 
7602 	rcu_read_lock();
7603 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7604 	rcu_read_unlock();
7605 
7606 	return ret;
7607 }
7608 
7609 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7610 {
7611 	struct task_group *tg = css_tg(seq_css(sf));
7612 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7613 
7614 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7615 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7616 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7617 
7618 	if (schedstat_enabled() && tg != &root_task_group) {
7619 		u64 ws = 0;
7620 		int i;
7621 
7622 		for_each_possible_cpu(i)
7623 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7624 
7625 		seq_printf(sf, "wait_sum %llu\n", ws);
7626 	}
7627 
7628 	return 0;
7629 }
7630 #endif /* CONFIG_CFS_BANDWIDTH */
7631 #endif /* CONFIG_FAIR_GROUP_SCHED */
7632 
7633 #ifdef CONFIG_RT_GROUP_SCHED
7634 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7635 				struct cftype *cft, s64 val)
7636 {
7637 	return sched_group_set_rt_runtime(css_tg(css), val);
7638 }
7639 
7640 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7641 			       struct cftype *cft)
7642 {
7643 	return sched_group_rt_runtime(css_tg(css));
7644 }
7645 
7646 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7647 				    struct cftype *cftype, u64 rt_period_us)
7648 {
7649 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7650 }
7651 
7652 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7653 				   struct cftype *cft)
7654 {
7655 	return sched_group_rt_period(css_tg(css));
7656 }
7657 #endif /* CONFIG_RT_GROUP_SCHED */
7658 
7659 static struct cftype cpu_legacy_files[] = {
7660 #ifdef CONFIG_FAIR_GROUP_SCHED
7661 	{
7662 		.name = "shares",
7663 		.read_u64 = cpu_shares_read_u64,
7664 		.write_u64 = cpu_shares_write_u64,
7665 	},
7666 #endif
7667 #ifdef CONFIG_CFS_BANDWIDTH
7668 	{
7669 		.name = "cfs_quota_us",
7670 		.read_s64 = cpu_cfs_quota_read_s64,
7671 		.write_s64 = cpu_cfs_quota_write_s64,
7672 	},
7673 	{
7674 		.name = "cfs_period_us",
7675 		.read_u64 = cpu_cfs_period_read_u64,
7676 		.write_u64 = cpu_cfs_period_write_u64,
7677 	},
7678 	{
7679 		.name = "stat",
7680 		.seq_show = cpu_cfs_stat_show,
7681 	},
7682 #endif
7683 #ifdef CONFIG_RT_GROUP_SCHED
7684 	{
7685 		.name = "rt_runtime_us",
7686 		.read_s64 = cpu_rt_runtime_read,
7687 		.write_s64 = cpu_rt_runtime_write,
7688 	},
7689 	{
7690 		.name = "rt_period_us",
7691 		.read_u64 = cpu_rt_period_read_uint,
7692 		.write_u64 = cpu_rt_period_write_uint,
7693 	},
7694 #endif
7695 #ifdef CONFIG_UCLAMP_TASK_GROUP
7696 	{
7697 		.name = "uclamp.min",
7698 		.flags = CFTYPE_NOT_ON_ROOT,
7699 		.seq_show = cpu_uclamp_min_show,
7700 		.write = cpu_uclamp_min_write,
7701 	},
7702 	{
7703 		.name = "uclamp.max",
7704 		.flags = CFTYPE_NOT_ON_ROOT,
7705 		.seq_show = cpu_uclamp_max_show,
7706 		.write = cpu_uclamp_max_write,
7707 	},
7708 #endif
7709 	{ }	/* Terminate */
7710 };
7711 
7712 static int cpu_extra_stat_show(struct seq_file *sf,
7713 			       struct cgroup_subsys_state *css)
7714 {
7715 #ifdef CONFIG_CFS_BANDWIDTH
7716 	{
7717 		struct task_group *tg = css_tg(css);
7718 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7719 		u64 throttled_usec;
7720 
7721 		throttled_usec = cfs_b->throttled_time;
7722 		do_div(throttled_usec, NSEC_PER_USEC);
7723 
7724 		seq_printf(sf, "nr_periods %d\n"
7725 			   "nr_throttled %d\n"
7726 			   "throttled_usec %llu\n",
7727 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7728 			   throttled_usec);
7729 	}
7730 #endif
7731 	return 0;
7732 }
7733 
7734 #ifdef CONFIG_FAIR_GROUP_SCHED
7735 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7736 			       struct cftype *cft)
7737 {
7738 	struct task_group *tg = css_tg(css);
7739 	u64 weight = scale_load_down(tg->shares);
7740 
7741 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7742 }
7743 
7744 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7745 				struct cftype *cft, u64 weight)
7746 {
7747 	/*
7748 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7749 	 * values which are 1, 100 and 10000 respectively.  While it loses
7750 	 * a bit of range on both ends, it maps pretty well onto the shares
7751 	 * value used by scheduler and the round-trip conversions preserve
7752 	 * the original value over the entire range.
7753 	 */
7754 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7755 		return -ERANGE;
7756 
7757 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7758 
7759 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7760 }
7761 
7762 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7763 				    struct cftype *cft)
7764 {
7765 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7766 	int last_delta = INT_MAX;
7767 	int prio, delta;
7768 
7769 	/* find the closest nice value to the current weight */
7770 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7771 		delta = abs(sched_prio_to_weight[prio] - weight);
7772 		if (delta >= last_delta)
7773 			break;
7774 		last_delta = delta;
7775 	}
7776 
7777 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7778 }
7779 
7780 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7781 				     struct cftype *cft, s64 nice)
7782 {
7783 	unsigned long weight;
7784 	int idx;
7785 
7786 	if (nice < MIN_NICE || nice > MAX_NICE)
7787 		return -ERANGE;
7788 
7789 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7790 	idx = array_index_nospec(idx, 40);
7791 	weight = sched_prio_to_weight[idx];
7792 
7793 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7794 }
7795 #endif
7796 
7797 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7798 						  long period, long quota)
7799 {
7800 	if (quota < 0)
7801 		seq_puts(sf, "max");
7802 	else
7803 		seq_printf(sf, "%ld", quota);
7804 
7805 	seq_printf(sf, " %ld\n", period);
7806 }
7807 
7808 /* caller should put the current value in *@periodp before calling */
7809 static int __maybe_unused cpu_period_quota_parse(char *buf,
7810 						 u64 *periodp, u64 *quotap)
7811 {
7812 	char tok[21];	/* U64_MAX */
7813 
7814 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7815 		return -EINVAL;
7816 
7817 	*periodp *= NSEC_PER_USEC;
7818 
7819 	if (sscanf(tok, "%llu", quotap))
7820 		*quotap *= NSEC_PER_USEC;
7821 	else if (!strcmp(tok, "max"))
7822 		*quotap = RUNTIME_INF;
7823 	else
7824 		return -EINVAL;
7825 
7826 	return 0;
7827 }
7828 
7829 #ifdef CONFIG_CFS_BANDWIDTH
7830 static int cpu_max_show(struct seq_file *sf, void *v)
7831 {
7832 	struct task_group *tg = css_tg(seq_css(sf));
7833 
7834 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7835 	return 0;
7836 }
7837 
7838 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7839 			     char *buf, size_t nbytes, loff_t off)
7840 {
7841 	struct task_group *tg = css_tg(of_css(of));
7842 	u64 period = tg_get_cfs_period(tg);
7843 	u64 quota;
7844 	int ret;
7845 
7846 	ret = cpu_period_quota_parse(buf, &period, &quota);
7847 	if (!ret)
7848 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7849 	return ret ?: nbytes;
7850 }
7851 #endif
7852 
7853 static struct cftype cpu_files[] = {
7854 #ifdef CONFIG_FAIR_GROUP_SCHED
7855 	{
7856 		.name = "weight",
7857 		.flags = CFTYPE_NOT_ON_ROOT,
7858 		.read_u64 = cpu_weight_read_u64,
7859 		.write_u64 = cpu_weight_write_u64,
7860 	},
7861 	{
7862 		.name = "weight.nice",
7863 		.flags = CFTYPE_NOT_ON_ROOT,
7864 		.read_s64 = cpu_weight_nice_read_s64,
7865 		.write_s64 = cpu_weight_nice_write_s64,
7866 	},
7867 #endif
7868 #ifdef CONFIG_CFS_BANDWIDTH
7869 	{
7870 		.name = "max",
7871 		.flags = CFTYPE_NOT_ON_ROOT,
7872 		.seq_show = cpu_max_show,
7873 		.write = cpu_max_write,
7874 	},
7875 #endif
7876 #ifdef CONFIG_UCLAMP_TASK_GROUP
7877 	{
7878 		.name = "uclamp.min",
7879 		.flags = CFTYPE_NOT_ON_ROOT,
7880 		.seq_show = cpu_uclamp_min_show,
7881 		.write = cpu_uclamp_min_write,
7882 	},
7883 	{
7884 		.name = "uclamp.max",
7885 		.flags = CFTYPE_NOT_ON_ROOT,
7886 		.seq_show = cpu_uclamp_max_show,
7887 		.write = cpu_uclamp_max_write,
7888 	},
7889 #endif
7890 	{ }	/* terminate */
7891 };
7892 
7893 struct cgroup_subsys cpu_cgrp_subsys = {
7894 	.css_alloc	= cpu_cgroup_css_alloc,
7895 	.css_online	= cpu_cgroup_css_online,
7896 	.css_released	= cpu_cgroup_css_released,
7897 	.css_free	= cpu_cgroup_css_free,
7898 	.css_extra_stat_show = cpu_extra_stat_show,
7899 	.fork		= cpu_cgroup_fork,
7900 	.can_attach	= cpu_cgroup_can_attach,
7901 	.attach		= cpu_cgroup_attach,
7902 	.legacy_cftypes	= cpu_legacy_files,
7903 	.dfl_cftypes	= cpu_files,
7904 	.early_init	= true,
7905 	.threaded	= true,
7906 };
7907 
7908 #endif	/* CONFIG_CGROUP_SCHED */
7909 
7910 void dump_cpu_task(int cpu)
7911 {
7912 	pr_info("Task dump for CPU %d:\n", cpu);
7913 	sched_show_task(cpu_curr(cpu));
7914 }
7915 
7916 /*
7917  * Nice levels are multiplicative, with a gentle 10% change for every
7918  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7919  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7920  * that remained on nice 0.
7921  *
7922  * The "10% effect" is relative and cumulative: from _any_ nice level,
7923  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7924  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7925  * If a task goes up by ~10% and another task goes down by ~10% then
7926  * the relative distance between them is ~25%.)
7927  */
7928 const int sched_prio_to_weight[40] = {
7929  /* -20 */     88761,     71755,     56483,     46273,     36291,
7930  /* -15 */     29154,     23254,     18705,     14949,     11916,
7931  /* -10 */      9548,      7620,      6100,      4904,      3906,
7932  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7933  /*   0 */      1024,       820,       655,       526,       423,
7934  /*   5 */       335,       272,       215,       172,       137,
7935  /*  10 */       110,        87,        70,        56,        45,
7936  /*  15 */        36,        29,        23,        18,        15,
7937 };
7938 
7939 /*
7940  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7941  *
7942  * In cases where the weight does not change often, we can use the
7943  * precalculated inverse to speed up arithmetics by turning divisions
7944  * into multiplications:
7945  */
7946 const u32 sched_prio_to_wmult[40] = {
7947  /* -20 */     48388,     59856,     76040,     92818,    118348,
7948  /* -15 */    147320,    184698,    229616,    287308,    360437,
7949  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7950  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7951  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7952  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7953  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7954  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7955 };
7956 
7957 #undef CREATE_TRACE_POINTS
7958