1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../smpboot.h" 20 21 #include "pelt.h" 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/sched.h> 25 26 /* 27 * Export tracepoints that act as a bare tracehook (ie: have no trace event 28 * associated with them) to allow external modules to probe them. 29 */ 30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 36 37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 38 39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 40 /* 41 * Debugging: various feature bits 42 * 43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 44 * sysctl_sched_features, defined in sched.h, to allow constants propagation 45 * at compile time and compiler optimization based on features default. 46 */ 47 #define SCHED_FEAT(name, enabled) \ 48 (1UL << __SCHED_FEAT_##name) * enabled | 49 const_debug unsigned int sysctl_sched_features = 50 #include "features.h" 51 0; 52 #undef SCHED_FEAT 53 #endif 54 55 /* 56 * Number of tasks to iterate in a single balance run. 57 * Limited because this is done with IRQs disabled. 58 */ 59 const_debug unsigned int sysctl_sched_nr_migrate = 32; 60 61 /* 62 * period over which we measure -rt task CPU usage in us. 63 * default: 1s 64 */ 65 unsigned int sysctl_sched_rt_period = 1000000; 66 67 __read_mostly int scheduler_running; 68 69 /* 70 * part of the period that we allow rt tasks to run in us. 71 * default: 0.95s 72 */ 73 int sysctl_sched_rt_runtime = 950000; 74 75 /* 76 * __task_rq_lock - lock the rq @p resides on. 77 */ 78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 79 __acquires(rq->lock) 80 { 81 struct rq *rq; 82 83 lockdep_assert_held(&p->pi_lock); 84 85 for (;;) { 86 rq = task_rq(p); 87 raw_spin_lock(&rq->lock); 88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 89 rq_pin_lock(rq, rf); 90 return rq; 91 } 92 raw_spin_unlock(&rq->lock); 93 94 while (unlikely(task_on_rq_migrating(p))) 95 cpu_relax(); 96 } 97 } 98 99 /* 100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 101 */ 102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 103 __acquires(p->pi_lock) 104 __acquires(rq->lock) 105 { 106 struct rq *rq; 107 108 for (;;) { 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 110 rq = task_rq(p); 111 raw_spin_lock(&rq->lock); 112 /* 113 * move_queued_task() task_rq_lock() 114 * 115 * ACQUIRE (rq->lock) 116 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 118 * [S] ->cpu = new_cpu [L] task_rq() 119 * [L] ->on_rq 120 * RELEASE (rq->lock) 121 * 122 * If we observe the old CPU in task_rq_lock(), the acquire of 123 * the old rq->lock will fully serialize against the stores. 124 * 125 * If we observe the new CPU in task_rq_lock(), the address 126 * dependency headed by '[L] rq = task_rq()' and the acquire 127 * will pair with the WMB to ensure we then also see migrating. 128 */ 129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 130 rq_pin_lock(rq, rf); 131 return rq; 132 } 133 raw_spin_unlock(&rq->lock); 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 135 136 while (unlikely(task_on_rq_migrating(p))) 137 cpu_relax(); 138 } 139 } 140 141 /* 142 * RQ-clock updating methods: 143 */ 144 145 static void update_rq_clock_task(struct rq *rq, s64 delta) 146 { 147 /* 148 * In theory, the compile should just see 0 here, and optimize out the call 149 * to sched_rt_avg_update. But I don't trust it... 150 */ 151 s64 __maybe_unused steal = 0, irq_delta = 0; 152 153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 155 156 /* 157 * Since irq_time is only updated on {soft,}irq_exit, we might run into 158 * this case when a previous update_rq_clock() happened inside a 159 * {soft,}irq region. 160 * 161 * When this happens, we stop ->clock_task and only update the 162 * prev_irq_time stamp to account for the part that fit, so that a next 163 * update will consume the rest. This ensures ->clock_task is 164 * monotonic. 165 * 166 * It does however cause some slight miss-attribution of {soft,}irq 167 * time, a more accurate solution would be to update the irq_time using 168 * the current rq->clock timestamp, except that would require using 169 * atomic ops. 170 */ 171 if (irq_delta > delta) 172 irq_delta = delta; 173 174 rq->prev_irq_time += irq_delta; 175 delta -= irq_delta; 176 #endif 177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 178 if (static_key_false((¶virt_steal_rq_enabled))) { 179 steal = paravirt_steal_clock(cpu_of(rq)); 180 steal -= rq->prev_steal_time_rq; 181 182 if (unlikely(steal > delta)) 183 steal = delta; 184 185 rq->prev_steal_time_rq += steal; 186 delta -= steal; 187 } 188 #endif 189 190 rq->clock_task += delta; 191 192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 194 update_irq_load_avg(rq, irq_delta + steal); 195 #endif 196 update_rq_clock_pelt(rq, delta); 197 } 198 199 void update_rq_clock(struct rq *rq) 200 { 201 s64 delta; 202 203 lockdep_assert_held(&rq->lock); 204 205 if (rq->clock_update_flags & RQCF_ACT_SKIP) 206 return; 207 208 #ifdef CONFIG_SCHED_DEBUG 209 if (sched_feat(WARN_DOUBLE_CLOCK)) 210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 211 rq->clock_update_flags |= RQCF_UPDATED; 212 #endif 213 214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 215 if (delta < 0) 216 return; 217 rq->clock += delta; 218 update_rq_clock_task(rq, delta); 219 } 220 221 222 #ifdef CONFIG_SCHED_HRTICK 223 /* 224 * Use HR-timers to deliver accurate preemption points. 225 */ 226 227 static void hrtick_clear(struct rq *rq) 228 { 229 if (hrtimer_active(&rq->hrtick_timer)) 230 hrtimer_cancel(&rq->hrtick_timer); 231 } 232 233 /* 234 * High-resolution timer tick. 235 * Runs from hardirq context with interrupts disabled. 236 */ 237 static enum hrtimer_restart hrtick(struct hrtimer *timer) 238 { 239 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 240 struct rq_flags rf; 241 242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 243 244 rq_lock(rq, &rf); 245 update_rq_clock(rq); 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 247 rq_unlock(rq, &rf); 248 249 return HRTIMER_NORESTART; 250 } 251 252 #ifdef CONFIG_SMP 253 254 static void __hrtick_restart(struct rq *rq) 255 { 256 struct hrtimer *timer = &rq->hrtick_timer; 257 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 259 } 260 261 /* 262 * called from hardirq (IPI) context 263 */ 264 static void __hrtick_start(void *arg) 265 { 266 struct rq *rq = arg; 267 struct rq_flags rf; 268 269 rq_lock(rq, &rf); 270 __hrtick_restart(rq); 271 rq->hrtick_csd_pending = 0; 272 rq_unlock(rq, &rf); 273 } 274 275 /* 276 * Called to set the hrtick timer state. 277 * 278 * called with rq->lock held and irqs disabled 279 */ 280 void hrtick_start(struct rq *rq, u64 delay) 281 { 282 struct hrtimer *timer = &rq->hrtick_timer; 283 ktime_t time; 284 s64 delta; 285 286 /* 287 * Don't schedule slices shorter than 10000ns, that just 288 * doesn't make sense and can cause timer DoS. 289 */ 290 delta = max_t(s64, delay, 10000LL); 291 time = ktime_add_ns(timer->base->get_time(), delta); 292 293 hrtimer_set_expires(timer, time); 294 295 if (rq == this_rq()) { 296 __hrtick_restart(rq); 297 } else if (!rq->hrtick_csd_pending) { 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 299 rq->hrtick_csd_pending = 1; 300 } 301 } 302 303 #else 304 /* 305 * Called to set the hrtick timer state. 306 * 307 * called with rq->lock held and irqs disabled 308 */ 309 void hrtick_start(struct rq *rq, u64 delay) 310 { 311 /* 312 * Don't schedule slices shorter than 10000ns, that just 313 * doesn't make sense. Rely on vruntime for fairness. 314 */ 315 delay = max_t(u64, delay, 10000LL); 316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 317 HRTIMER_MODE_REL_PINNED_HARD); 318 } 319 #endif /* CONFIG_SMP */ 320 321 static void hrtick_rq_init(struct rq *rq) 322 { 323 #ifdef CONFIG_SMP 324 rq->hrtick_csd_pending = 0; 325 326 rq->hrtick_csd.flags = 0; 327 rq->hrtick_csd.func = __hrtick_start; 328 rq->hrtick_csd.info = rq; 329 #endif 330 331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 332 rq->hrtick_timer.function = hrtick; 333 } 334 #else /* CONFIG_SCHED_HRTICK */ 335 static inline void hrtick_clear(struct rq *rq) 336 { 337 } 338 339 static inline void hrtick_rq_init(struct rq *rq) 340 { 341 } 342 #endif /* CONFIG_SCHED_HRTICK */ 343 344 /* 345 * cmpxchg based fetch_or, macro so it works for different integer types 346 */ 347 #define fetch_or(ptr, mask) \ 348 ({ \ 349 typeof(ptr) _ptr = (ptr); \ 350 typeof(mask) _mask = (mask); \ 351 typeof(*_ptr) _old, _val = *_ptr; \ 352 \ 353 for (;;) { \ 354 _old = cmpxchg(_ptr, _val, _val | _mask); \ 355 if (_old == _val) \ 356 break; \ 357 _val = _old; \ 358 } \ 359 _old; \ 360 }) 361 362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 363 /* 364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 365 * this avoids any races wrt polling state changes and thereby avoids 366 * spurious IPIs. 367 */ 368 static bool set_nr_and_not_polling(struct task_struct *p) 369 { 370 struct thread_info *ti = task_thread_info(p); 371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 372 } 373 374 /* 375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 376 * 377 * If this returns true, then the idle task promises to call 378 * sched_ttwu_pending() and reschedule soon. 379 */ 380 static bool set_nr_if_polling(struct task_struct *p) 381 { 382 struct thread_info *ti = task_thread_info(p); 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 384 385 for (;;) { 386 if (!(val & _TIF_POLLING_NRFLAG)) 387 return false; 388 if (val & _TIF_NEED_RESCHED) 389 return true; 390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 391 if (old == val) 392 break; 393 val = old; 394 } 395 return true; 396 } 397 398 #else 399 static bool set_nr_and_not_polling(struct task_struct *p) 400 { 401 set_tsk_need_resched(p); 402 return true; 403 } 404 405 #ifdef CONFIG_SMP 406 static bool set_nr_if_polling(struct task_struct *p) 407 { 408 return false; 409 } 410 #endif 411 #endif 412 413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 414 { 415 struct wake_q_node *node = &task->wake_q; 416 417 /* 418 * Atomically grab the task, if ->wake_q is !nil already it means 419 * its already queued (either by us or someone else) and will get the 420 * wakeup due to that. 421 * 422 * In order to ensure that a pending wakeup will observe our pending 423 * state, even in the failed case, an explicit smp_mb() must be used. 424 */ 425 smp_mb__before_atomic(); 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 427 return false; 428 429 /* 430 * The head is context local, there can be no concurrency. 431 */ 432 *head->lastp = node; 433 head->lastp = &node->next; 434 return true; 435 } 436 437 /** 438 * wake_q_add() - queue a wakeup for 'later' waking. 439 * @head: the wake_q_head to add @task to 440 * @task: the task to queue for 'later' wakeup 441 * 442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 444 * instantly. 445 * 446 * This function must be used as-if it were wake_up_process(); IOW the task 447 * must be ready to be woken at this location. 448 */ 449 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 450 { 451 if (__wake_q_add(head, task)) 452 get_task_struct(task); 453 } 454 455 /** 456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 457 * @head: the wake_q_head to add @task to 458 * @task: the task to queue for 'later' wakeup 459 * 460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 462 * instantly. 463 * 464 * This function must be used as-if it were wake_up_process(); IOW the task 465 * must be ready to be woken at this location. 466 * 467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 468 * that already hold reference to @task can call the 'safe' version and trust 469 * wake_q to do the right thing depending whether or not the @task is already 470 * queued for wakeup. 471 */ 472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 473 { 474 if (!__wake_q_add(head, task)) 475 put_task_struct(task); 476 } 477 478 void wake_up_q(struct wake_q_head *head) 479 { 480 struct wake_q_node *node = head->first; 481 482 while (node != WAKE_Q_TAIL) { 483 struct task_struct *task; 484 485 task = container_of(node, struct task_struct, wake_q); 486 BUG_ON(!task); 487 /* Task can safely be re-inserted now: */ 488 node = node->next; 489 task->wake_q.next = NULL; 490 491 /* 492 * wake_up_process() executes a full barrier, which pairs with 493 * the queueing in wake_q_add() so as not to miss wakeups. 494 */ 495 wake_up_process(task); 496 put_task_struct(task); 497 } 498 } 499 500 /* 501 * resched_curr - mark rq's current task 'to be rescheduled now'. 502 * 503 * On UP this means the setting of the need_resched flag, on SMP it 504 * might also involve a cross-CPU call to trigger the scheduler on 505 * the target CPU. 506 */ 507 void resched_curr(struct rq *rq) 508 { 509 struct task_struct *curr = rq->curr; 510 int cpu; 511 512 lockdep_assert_held(&rq->lock); 513 514 if (test_tsk_need_resched(curr)) 515 return; 516 517 cpu = cpu_of(rq); 518 519 if (cpu == smp_processor_id()) { 520 set_tsk_need_resched(curr); 521 set_preempt_need_resched(); 522 return; 523 } 524 525 if (set_nr_and_not_polling(curr)) 526 smp_send_reschedule(cpu); 527 else 528 trace_sched_wake_idle_without_ipi(cpu); 529 } 530 531 void resched_cpu(int cpu) 532 { 533 struct rq *rq = cpu_rq(cpu); 534 unsigned long flags; 535 536 raw_spin_lock_irqsave(&rq->lock, flags); 537 if (cpu_online(cpu) || cpu == smp_processor_id()) 538 resched_curr(rq); 539 raw_spin_unlock_irqrestore(&rq->lock, flags); 540 } 541 542 #ifdef CONFIG_SMP 543 #ifdef CONFIG_NO_HZ_COMMON 544 /* 545 * In the semi idle case, use the nearest busy CPU for migrating timers 546 * from an idle CPU. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle CPU will add more delays to the timers than intended 550 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int i, cpu = smp_processor_id(); 555 struct sched_domain *sd; 556 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 558 return cpu; 559 560 rcu_read_lock(); 561 for_each_domain(cpu, sd) { 562 for_each_cpu(i, sched_domain_span(sd)) { 563 if (cpu == i) 564 continue; 565 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 567 cpu = i; 568 goto unlock; 569 } 570 } 571 } 572 573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 575 unlock: 576 rcu_read_unlock(); 577 return cpu; 578 } 579 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 static void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 if (set_nr_and_not_polling(rq->idle)) 598 smp_send_reschedule(cpu); 599 else 600 trace_sched_wake_idle_without_ipi(cpu); 601 } 602 603 static bool wake_up_full_nohz_cpu(int cpu) 604 { 605 /* 606 * We just need the target to call irq_exit() and re-evaluate 607 * the next tick. The nohz full kick at least implies that. 608 * If needed we can still optimize that later with an 609 * empty IRQ. 610 */ 611 if (cpu_is_offline(cpu)) 612 return true; /* Don't try to wake offline CPUs. */ 613 if (tick_nohz_full_cpu(cpu)) { 614 if (cpu != smp_processor_id() || 615 tick_nohz_tick_stopped()) 616 tick_nohz_full_kick_cpu(cpu); 617 return true; 618 } 619 620 return false; 621 } 622 623 /* 624 * Wake up the specified CPU. If the CPU is going offline, it is the 625 * caller's responsibility to deal with the lost wakeup, for example, 626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 627 */ 628 void wake_up_nohz_cpu(int cpu) 629 { 630 if (!wake_up_full_nohz_cpu(cpu)) 631 wake_up_idle_cpu(cpu); 632 } 633 634 static inline bool got_nohz_idle_kick(void) 635 { 636 int cpu = smp_processor_id(); 637 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 639 return false; 640 641 if (idle_cpu(cpu) && !need_resched()) 642 return true; 643 644 /* 645 * We can't run Idle Load Balance on this CPU for this time so we 646 * cancel it and clear NOHZ_BALANCE_KICK 647 */ 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 649 return false; 650 } 651 652 #else /* CONFIG_NO_HZ_COMMON */ 653 654 static inline bool got_nohz_idle_kick(void) 655 { 656 return false; 657 } 658 659 #endif /* CONFIG_NO_HZ_COMMON */ 660 661 #ifdef CONFIG_NO_HZ_FULL 662 bool sched_can_stop_tick(struct rq *rq) 663 { 664 int fifo_nr_running; 665 666 /* Deadline tasks, even if single, need the tick */ 667 if (rq->dl.dl_nr_running) 668 return false; 669 670 /* 671 * If there are more than one RR tasks, we need the tick to effect the 672 * actual RR behaviour. 673 */ 674 if (rq->rt.rr_nr_running) { 675 if (rq->rt.rr_nr_running == 1) 676 return true; 677 else 678 return false; 679 } 680 681 /* 682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 683 * forced preemption between FIFO tasks. 684 */ 685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 686 if (fifo_nr_running) 687 return true; 688 689 /* 690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 691 * if there's more than one we need the tick for involuntary 692 * preemption. 693 */ 694 if (rq->nr_running > 1) 695 return false; 696 697 return true; 698 } 699 #endif /* CONFIG_NO_HZ_FULL */ 700 #endif /* CONFIG_SMP */ 701 702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 704 /* 705 * Iterate task_group tree rooted at *from, calling @down when first entering a 706 * node and @up when leaving it for the final time. 707 * 708 * Caller must hold rcu_lock or sufficient equivalent. 709 */ 710 int walk_tg_tree_from(struct task_group *from, 711 tg_visitor down, tg_visitor up, void *data) 712 { 713 struct task_group *parent, *child; 714 int ret; 715 716 parent = from; 717 718 down: 719 ret = (*down)(parent, data); 720 if (ret) 721 goto out; 722 list_for_each_entry_rcu(child, &parent->children, siblings) { 723 parent = child; 724 goto down; 725 726 up: 727 continue; 728 } 729 ret = (*up)(parent, data); 730 if (ret || parent == from) 731 goto out; 732 733 child = parent; 734 parent = parent->parent; 735 if (parent) 736 goto up; 737 out: 738 return ret; 739 } 740 741 int tg_nop(struct task_group *tg, void *data) 742 { 743 return 0; 744 } 745 #endif 746 747 static void set_load_weight(struct task_struct *p, bool update_load) 748 { 749 int prio = p->static_prio - MAX_RT_PRIO; 750 struct load_weight *load = &p->se.load; 751 752 /* 753 * SCHED_IDLE tasks get minimal weight: 754 */ 755 if (task_has_idle_policy(p)) { 756 load->weight = scale_load(WEIGHT_IDLEPRIO); 757 load->inv_weight = WMULT_IDLEPRIO; 758 p->se.runnable_weight = load->weight; 759 return; 760 } 761 762 /* 763 * SCHED_OTHER tasks have to update their load when changing their 764 * weight 765 */ 766 if (update_load && p->sched_class == &fair_sched_class) { 767 reweight_task(p, prio); 768 } else { 769 load->weight = scale_load(sched_prio_to_weight[prio]); 770 load->inv_weight = sched_prio_to_wmult[prio]; 771 p->se.runnable_weight = load->weight; 772 } 773 } 774 775 #ifdef CONFIG_UCLAMP_TASK 776 /* 777 * Serializes updates of utilization clamp values 778 * 779 * The (slow-path) user-space triggers utilization clamp value updates which 780 * can require updates on (fast-path) scheduler's data structures used to 781 * support enqueue/dequeue operations. 782 * While the per-CPU rq lock protects fast-path update operations, user-space 783 * requests are serialized using a mutex to reduce the risk of conflicting 784 * updates or API abuses. 785 */ 786 static DEFINE_MUTEX(uclamp_mutex); 787 788 /* Max allowed minimum utilization */ 789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 790 791 /* Max allowed maximum utilization */ 792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 793 794 /* All clamps are required to be less or equal than these values */ 795 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 796 797 /* Integer rounded range for each bucket */ 798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 799 800 #define for_each_clamp_id(clamp_id) \ 801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 802 803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 804 { 805 return clamp_value / UCLAMP_BUCKET_DELTA; 806 } 807 808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 809 { 810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 811 } 812 813 static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id) 814 { 815 if (clamp_id == UCLAMP_MIN) 816 return 0; 817 return SCHED_CAPACITY_SCALE; 818 } 819 820 static inline void uclamp_se_set(struct uclamp_se *uc_se, 821 unsigned int value, bool user_defined) 822 { 823 uc_se->value = value; 824 uc_se->bucket_id = uclamp_bucket_id(value); 825 uc_se->user_defined = user_defined; 826 } 827 828 static inline unsigned int 829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 830 unsigned int clamp_value) 831 { 832 /* 833 * Avoid blocked utilization pushing up the frequency when we go 834 * idle (which drops the max-clamp) by retaining the last known 835 * max-clamp. 836 */ 837 if (clamp_id == UCLAMP_MAX) { 838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 839 return clamp_value; 840 } 841 842 return uclamp_none(UCLAMP_MIN); 843 } 844 845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 846 unsigned int clamp_value) 847 { 848 /* Reset max-clamp retention only on idle exit */ 849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 850 return; 851 852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 853 } 854 855 static inline 856 enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 857 unsigned int clamp_value) 858 { 859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 860 int bucket_id = UCLAMP_BUCKETS - 1; 861 862 /* 863 * Since both min and max clamps are max aggregated, find the 864 * top most bucket with tasks in. 865 */ 866 for ( ; bucket_id >= 0; bucket_id--) { 867 if (!bucket[bucket_id].tasks) 868 continue; 869 return bucket[bucket_id].value; 870 } 871 872 /* No tasks -- default clamp values */ 873 return uclamp_idle_value(rq, clamp_id, clamp_value); 874 } 875 876 static inline struct uclamp_se 877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 878 { 879 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 880 #ifdef CONFIG_UCLAMP_TASK_GROUP 881 struct uclamp_se uc_max; 882 883 /* 884 * Tasks in autogroups or root task group will be 885 * restricted by system defaults. 886 */ 887 if (task_group_is_autogroup(task_group(p))) 888 return uc_req; 889 if (task_group(p) == &root_task_group) 890 return uc_req; 891 892 uc_max = task_group(p)->uclamp[clamp_id]; 893 if (uc_req.value > uc_max.value || !uc_req.user_defined) 894 return uc_max; 895 #endif 896 897 return uc_req; 898 } 899 900 /* 901 * The effective clamp bucket index of a task depends on, by increasing 902 * priority: 903 * - the task specific clamp value, when explicitly requested from userspace 904 * - the task group effective clamp value, for tasks not either in the root 905 * group or in an autogroup 906 * - the system default clamp value, defined by the sysadmin 907 */ 908 static inline struct uclamp_se 909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 910 { 911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 912 struct uclamp_se uc_max = uclamp_default[clamp_id]; 913 914 /* System default restrictions always apply */ 915 if (unlikely(uc_req.value > uc_max.value)) 916 return uc_max; 917 918 return uc_req; 919 } 920 921 enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 922 { 923 struct uclamp_se uc_eff; 924 925 /* Task currently refcounted: use back-annotated (effective) value */ 926 if (p->uclamp[clamp_id].active) 927 return p->uclamp[clamp_id].value; 928 929 uc_eff = uclamp_eff_get(p, clamp_id); 930 931 return uc_eff.value; 932 } 933 934 /* 935 * When a task is enqueued on a rq, the clamp bucket currently defined by the 936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 937 * updates the rq's clamp value if required. 938 * 939 * Tasks can have a task-specific value requested from user-space, track 940 * within each bucket the maximum value for tasks refcounted in it. 941 * This "local max aggregation" allows to track the exact "requested" value 942 * for each bucket when all its RUNNABLE tasks require the same clamp. 943 */ 944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 945 enum uclamp_id clamp_id) 946 { 947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 948 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 949 struct uclamp_bucket *bucket; 950 951 lockdep_assert_held(&rq->lock); 952 953 /* Update task effective clamp */ 954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 955 956 bucket = &uc_rq->bucket[uc_se->bucket_id]; 957 bucket->tasks++; 958 uc_se->active = true; 959 960 uclamp_idle_reset(rq, clamp_id, uc_se->value); 961 962 /* 963 * Local max aggregation: rq buckets always track the max 964 * "requested" clamp value of its RUNNABLE tasks. 965 */ 966 if (bucket->tasks == 1 || uc_se->value > bucket->value) 967 bucket->value = uc_se->value; 968 969 if (uc_se->value > READ_ONCE(uc_rq->value)) 970 WRITE_ONCE(uc_rq->value, uc_se->value); 971 } 972 973 /* 974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 975 * is released. If this is the last task reference counting the rq's max 976 * active clamp value, then the rq's clamp value is updated. 977 * 978 * Both refcounted tasks and rq's cached clamp values are expected to be 979 * always valid. If it's detected they are not, as defensive programming, 980 * enforce the expected state and warn. 981 */ 982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 983 enum uclamp_id clamp_id) 984 { 985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 986 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 987 struct uclamp_bucket *bucket; 988 unsigned int bkt_clamp; 989 unsigned int rq_clamp; 990 991 lockdep_assert_held(&rq->lock); 992 993 bucket = &uc_rq->bucket[uc_se->bucket_id]; 994 SCHED_WARN_ON(!bucket->tasks); 995 if (likely(bucket->tasks)) 996 bucket->tasks--; 997 uc_se->active = false; 998 999 /* 1000 * Keep "local max aggregation" simple and accept to (possibly) 1001 * overboost some RUNNABLE tasks in the same bucket. 1002 * The rq clamp bucket value is reset to its base value whenever 1003 * there are no more RUNNABLE tasks refcounting it. 1004 */ 1005 if (likely(bucket->tasks)) 1006 return; 1007 1008 rq_clamp = READ_ONCE(uc_rq->value); 1009 /* 1010 * Defensive programming: this should never happen. If it happens, 1011 * e.g. due to future modification, warn and fixup the expected value. 1012 */ 1013 SCHED_WARN_ON(bucket->value > rq_clamp); 1014 if (bucket->value >= rq_clamp) { 1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1016 WRITE_ONCE(uc_rq->value, bkt_clamp); 1017 } 1018 } 1019 1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1021 { 1022 enum uclamp_id clamp_id; 1023 1024 if (unlikely(!p->sched_class->uclamp_enabled)) 1025 return; 1026 1027 for_each_clamp_id(clamp_id) 1028 uclamp_rq_inc_id(rq, p, clamp_id); 1029 1030 /* Reset clamp idle holding when there is one RUNNABLE task */ 1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1033 } 1034 1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1036 { 1037 enum uclamp_id clamp_id; 1038 1039 if (unlikely(!p->sched_class->uclamp_enabled)) 1040 return; 1041 1042 for_each_clamp_id(clamp_id) 1043 uclamp_rq_dec_id(rq, p, clamp_id); 1044 } 1045 1046 static inline void 1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1048 { 1049 struct rq_flags rf; 1050 struct rq *rq; 1051 1052 /* 1053 * Lock the task and the rq where the task is (or was) queued. 1054 * 1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1056 * price to pay to safely serialize util_{min,max} updates with 1057 * enqueues, dequeues and migration operations. 1058 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1059 */ 1060 rq = task_rq_lock(p, &rf); 1061 1062 /* 1063 * Setting the clamp bucket is serialized by task_rq_lock(). 1064 * If the task is not yet RUNNABLE and its task_struct is not 1065 * affecting a valid clamp bucket, the next time it's enqueued, 1066 * it will already see the updated clamp bucket value. 1067 */ 1068 if (!p->uclamp[clamp_id].active) { 1069 uclamp_rq_dec_id(rq, p, clamp_id); 1070 uclamp_rq_inc_id(rq, p, clamp_id); 1071 } 1072 1073 task_rq_unlock(rq, p, &rf); 1074 } 1075 1076 static inline void 1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1078 unsigned int clamps) 1079 { 1080 enum uclamp_id clamp_id; 1081 struct css_task_iter it; 1082 struct task_struct *p; 1083 1084 css_task_iter_start(css, 0, &it); 1085 while ((p = css_task_iter_next(&it))) { 1086 for_each_clamp_id(clamp_id) { 1087 if ((0x1 << clamp_id) & clamps) 1088 uclamp_update_active(p, clamp_id); 1089 } 1090 } 1091 css_task_iter_end(&it); 1092 } 1093 1094 #ifdef CONFIG_UCLAMP_TASK_GROUP 1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1096 static void uclamp_update_root_tg(void) 1097 { 1098 struct task_group *tg = &root_task_group; 1099 1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1101 sysctl_sched_uclamp_util_min, false); 1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1103 sysctl_sched_uclamp_util_max, false); 1104 1105 rcu_read_lock(); 1106 cpu_util_update_eff(&root_task_group.css); 1107 rcu_read_unlock(); 1108 } 1109 #else 1110 static void uclamp_update_root_tg(void) { } 1111 #endif 1112 1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1114 void __user *buffer, size_t *lenp, 1115 loff_t *ppos) 1116 { 1117 bool update_root_tg = false; 1118 int old_min, old_max; 1119 int result; 1120 1121 mutex_lock(&uclamp_mutex); 1122 old_min = sysctl_sched_uclamp_util_min; 1123 old_max = sysctl_sched_uclamp_util_max; 1124 1125 result = proc_dointvec(table, write, buffer, lenp, ppos); 1126 if (result) 1127 goto undo; 1128 if (!write) 1129 goto done; 1130 1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1133 result = -EINVAL; 1134 goto undo; 1135 } 1136 1137 if (old_min != sysctl_sched_uclamp_util_min) { 1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1139 sysctl_sched_uclamp_util_min, false); 1140 update_root_tg = true; 1141 } 1142 if (old_max != sysctl_sched_uclamp_util_max) { 1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1144 sysctl_sched_uclamp_util_max, false); 1145 update_root_tg = true; 1146 } 1147 1148 if (update_root_tg) 1149 uclamp_update_root_tg(); 1150 1151 /* 1152 * We update all RUNNABLE tasks only when task groups are in use. 1153 * Otherwise, keep it simple and do just a lazy update at each next 1154 * task enqueue time. 1155 */ 1156 1157 goto done; 1158 1159 undo: 1160 sysctl_sched_uclamp_util_min = old_min; 1161 sysctl_sched_uclamp_util_max = old_max; 1162 done: 1163 mutex_unlock(&uclamp_mutex); 1164 1165 return result; 1166 } 1167 1168 static int uclamp_validate(struct task_struct *p, 1169 const struct sched_attr *attr) 1170 { 1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1173 1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1175 lower_bound = attr->sched_util_min; 1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1177 upper_bound = attr->sched_util_max; 1178 1179 if (lower_bound > upper_bound) 1180 return -EINVAL; 1181 if (upper_bound > SCHED_CAPACITY_SCALE) 1182 return -EINVAL; 1183 1184 return 0; 1185 } 1186 1187 static void __setscheduler_uclamp(struct task_struct *p, 1188 const struct sched_attr *attr) 1189 { 1190 enum uclamp_id clamp_id; 1191 1192 /* 1193 * On scheduling class change, reset to default clamps for tasks 1194 * without a task-specific value. 1195 */ 1196 for_each_clamp_id(clamp_id) { 1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1198 unsigned int clamp_value = uclamp_none(clamp_id); 1199 1200 /* Keep using defined clamps across class changes */ 1201 if (uc_se->user_defined) 1202 continue; 1203 1204 /* By default, RT tasks always get 100% boost */ 1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1206 clamp_value = uclamp_none(UCLAMP_MAX); 1207 1208 uclamp_se_set(uc_se, clamp_value, false); 1209 } 1210 1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1212 return; 1213 1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1216 attr->sched_util_min, true); 1217 } 1218 1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1221 attr->sched_util_max, true); 1222 } 1223 } 1224 1225 static void uclamp_fork(struct task_struct *p) 1226 { 1227 enum uclamp_id clamp_id; 1228 1229 for_each_clamp_id(clamp_id) 1230 p->uclamp[clamp_id].active = false; 1231 1232 if (likely(!p->sched_reset_on_fork)) 1233 return; 1234 1235 for_each_clamp_id(clamp_id) { 1236 unsigned int clamp_value = uclamp_none(clamp_id); 1237 1238 /* By default, RT tasks always get 100% boost */ 1239 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1240 clamp_value = uclamp_none(UCLAMP_MAX); 1241 1242 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false); 1243 } 1244 } 1245 1246 static void __init init_uclamp(void) 1247 { 1248 struct uclamp_se uc_max = {}; 1249 enum uclamp_id clamp_id; 1250 int cpu; 1251 1252 mutex_init(&uclamp_mutex); 1253 1254 for_each_possible_cpu(cpu) { 1255 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq)); 1256 cpu_rq(cpu)->uclamp_flags = 0; 1257 } 1258 1259 for_each_clamp_id(clamp_id) { 1260 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1261 uclamp_none(clamp_id), false); 1262 } 1263 1264 /* System defaults allow max clamp values for both indexes */ 1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1266 for_each_clamp_id(clamp_id) { 1267 uclamp_default[clamp_id] = uc_max; 1268 #ifdef CONFIG_UCLAMP_TASK_GROUP 1269 root_task_group.uclamp_req[clamp_id] = uc_max; 1270 root_task_group.uclamp[clamp_id] = uc_max; 1271 #endif 1272 } 1273 } 1274 1275 #else /* CONFIG_UCLAMP_TASK */ 1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1278 static inline int uclamp_validate(struct task_struct *p, 1279 const struct sched_attr *attr) 1280 { 1281 return -EOPNOTSUPP; 1282 } 1283 static void __setscheduler_uclamp(struct task_struct *p, 1284 const struct sched_attr *attr) { } 1285 static inline void uclamp_fork(struct task_struct *p) { } 1286 static inline void init_uclamp(void) { } 1287 #endif /* CONFIG_UCLAMP_TASK */ 1288 1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1290 { 1291 if (!(flags & ENQUEUE_NOCLOCK)) 1292 update_rq_clock(rq); 1293 1294 if (!(flags & ENQUEUE_RESTORE)) { 1295 sched_info_queued(rq, p); 1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1297 } 1298 1299 uclamp_rq_inc(rq, p); 1300 p->sched_class->enqueue_task(rq, p, flags); 1301 } 1302 1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1304 { 1305 if (!(flags & DEQUEUE_NOCLOCK)) 1306 update_rq_clock(rq); 1307 1308 if (!(flags & DEQUEUE_SAVE)) { 1309 sched_info_dequeued(rq, p); 1310 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1311 } 1312 1313 uclamp_rq_dec(rq, p); 1314 p->sched_class->dequeue_task(rq, p, flags); 1315 } 1316 1317 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1318 { 1319 if (task_contributes_to_load(p)) 1320 rq->nr_uninterruptible--; 1321 1322 enqueue_task(rq, p, flags); 1323 1324 p->on_rq = TASK_ON_RQ_QUEUED; 1325 } 1326 1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1328 { 1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1330 1331 if (task_contributes_to_load(p)) 1332 rq->nr_uninterruptible++; 1333 1334 dequeue_task(rq, p, flags); 1335 } 1336 1337 /* 1338 * __normal_prio - return the priority that is based on the static prio 1339 */ 1340 static inline int __normal_prio(struct task_struct *p) 1341 { 1342 return p->static_prio; 1343 } 1344 1345 /* 1346 * Calculate the expected normal priority: i.e. priority 1347 * without taking RT-inheritance into account. Might be 1348 * boosted by interactivity modifiers. Changes upon fork, 1349 * setprio syscalls, and whenever the interactivity 1350 * estimator recalculates. 1351 */ 1352 static inline int normal_prio(struct task_struct *p) 1353 { 1354 int prio; 1355 1356 if (task_has_dl_policy(p)) 1357 prio = MAX_DL_PRIO-1; 1358 else if (task_has_rt_policy(p)) 1359 prio = MAX_RT_PRIO-1 - p->rt_priority; 1360 else 1361 prio = __normal_prio(p); 1362 return prio; 1363 } 1364 1365 /* 1366 * Calculate the current priority, i.e. the priority 1367 * taken into account by the scheduler. This value might 1368 * be boosted by RT tasks, or might be boosted by 1369 * interactivity modifiers. Will be RT if the task got 1370 * RT-boosted. If not then it returns p->normal_prio. 1371 */ 1372 static int effective_prio(struct task_struct *p) 1373 { 1374 p->normal_prio = normal_prio(p); 1375 /* 1376 * If we are RT tasks or we were boosted to RT priority, 1377 * keep the priority unchanged. Otherwise, update priority 1378 * to the normal priority: 1379 */ 1380 if (!rt_prio(p->prio)) 1381 return p->normal_prio; 1382 return p->prio; 1383 } 1384 1385 /** 1386 * task_curr - is this task currently executing on a CPU? 1387 * @p: the task in question. 1388 * 1389 * Return: 1 if the task is currently executing. 0 otherwise. 1390 */ 1391 inline int task_curr(const struct task_struct *p) 1392 { 1393 return cpu_curr(task_cpu(p)) == p; 1394 } 1395 1396 /* 1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1398 * use the balance_callback list if you want balancing. 1399 * 1400 * this means any call to check_class_changed() must be followed by a call to 1401 * balance_callback(). 1402 */ 1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1404 const struct sched_class *prev_class, 1405 int oldprio) 1406 { 1407 if (prev_class != p->sched_class) { 1408 if (prev_class->switched_from) 1409 prev_class->switched_from(rq, p); 1410 1411 p->sched_class->switched_to(rq, p); 1412 } else if (oldprio != p->prio || dl_task(p)) 1413 p->sched_class->prio_changed(rq, p, oldprio); 1414 } 1415 1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1417 { 1418 const struct sched_class *class; 1419 1420 if (p->sched_class == rq->curr->sched_class) { 1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1422 } else { 1423 for_each_class(class) { 1424 if (class == rq->curr->sched_class) 1425 break; 1426 if (class == p->sched_class) { 1427 resched_curr(rq); 1428 break; 1429 } 1430 } 1431 } 1432 1433 /* 1434 * A queue event has occurred, and we're going to schedule. In 1435 * this case, we can save a useless back to back clock update. 1436 */ 1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1438 rq_clock_skip_update(rq); 1439 } 1440 1441 #ifdef CONFIG_SMP 1442 1443 static inline bool is_per_cpu_kthread(struct task_struct *p) 1444 { 1445 if (!(p->flags & PF_KTHREAD)) 1446 return false; 1447 1448 if (p->nr_cpus_allowed != 1) 1449 return false; 1450 1451 return true; 1452 } 1453 1454 /* 1455 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1456 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1457 */ 1458 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1459 { 1460 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1461 return false; 1462 1463 if (is_per_cpu_kthread(p)) 1464 return cpu_online(cpu); 1465 1466 return cpu_active(cpu); 1467 } 1468 1469 /* 1470 * This is how migration works: 1471 * 1472 * 1) we invoke migration_cpu_stop() on the target CPU using 1473 * stop_one_cpu(). 1474 * 2) stopper starts to run (implicitly forcing the migrated thread 1475 * off the CPU) 1476 * 3) it checks whether the migrated task is still in the wrong runqueue. 1477 * 4) if it's in the wrong runqueue then the migration thread removes 1478 * it and puts it into the right queue. 1479 * 5) stopper completes and stop_one_cpu() returns and the migration 1480 * is done. 1481 */ 1482 1483 /* 1484 * move_queued_task - move a queued task to new rq. 1485 * 1486 * Returns (locked) new rq. Old rq's lock is released. 1487 */ 1488 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1489 struct task_struct *p, int new_cpu) 1490 { 1491 lockdep_assert_held(&rq->lock); 1492 1493 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1494 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1495 set_task_cpu(p, new_cpu); 1496 rq_unlock(rq, rf); 1497 1498 rq = cpu_rq(new_cpu); 1499 1500 rq_lock(rq, rf); 1501 BUG_ON(task_cpu(p) != new_cpu); 1502 enqueue_task(rq, p, 0); 1503 p->on_rq = TASK_ON_RQ_QUEUED; 1504 check_preempt_curr(rq, p, 0); 1505 1506 return rq; 1507 } 1508 1509 struct migration_arg { 1510 struct task_struct *task; 1511 int dest_cpu; 1512 }; 1513 1514 /* 1515 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1516 * this because either it can't run here any more (set_cpus_allowed() 1517 * away from this CPU, or CPU going down), or because we're 1518 * attempting to rebalance this task on exec (sched_exec). 1519 * 1520 * So we race with normal scheduler movements, but that's OK, as long 1521 * as the task is no longer on this CPU. 1522 */ 1523 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1524 struct task_struct *p, int dest_cpu) 1525 { 1526 /* Affinity changed (again). */ 1527 if (!is_cpu_allowed(p, dest_cpu)) 1528 return rq; 1529 1530 update_rq_clock(rq); 1531 rq = move_queued_task(rq, rf, p, dest_cpu); 1532 1533 return rq; 1534 } 1535 1536 /* 1537 * migration_cpu_stop - this will be executed by a highprio stopper thread 1538 * and performs thread migration by bumping thread off CPU then 1539 * 'pushing' onto another runqueue. 1540 */ 1541 static int migration_cpu_stop(void *data) 1542 { 1543 struct migration_arg *arg = data; 1544 struct task_struct *p = arg->task; 1545 struct rq *rq = this_rq(); 1546 struct rq_flags rf; 1547 1548 /* 1549 * The original target CPU might have gone down and we might 1550 * be on another CPU but it doesn't matter. 1551 */ 1552 local_irq_disable(); 1553 /* 1554 * We need to explicitly wake pending tasks before running 1555 * __migrate_task() such that we will not miss enforcing cpus_ptr 1556 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1557 */ 1558 sched_ttwu_pending(); 1559 1560 raw_spin_lock(&p->pi_lock); 1561 rq_lock(rq, &rf); 1562 /* 1563 * If task_rq(p) != rq, it cannot be migrated here, because we're 1564 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1565 * we're holding p->pi_lock. 1566 */ 1567 if (task_rq(p) == rq) { 1568 if (task_on_rq_queued(p)) 1569 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1570 else 1571 p->wake_cpu = arg->dest_cpu; 1572 } 1573 rq_unlock(rq, &rf); 1574 raw_spin_unlock(&p->pi_lock); 1575 1576 local_irq_enable(); 1577 return 0; 1578 } 1579 1580 /* 1581 * sched_class::set_cpus_allowed must do the below, but is not required to 1582 * actually call this function. 1583 */ 1584 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1585 { 1586 cpumask_copy(&p->cpus_mask, new_mask); 1587 p->nr_cpus_allowed = cpumask_weight(new_mask); 1588 } 1589 1590 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1591 { 1592 struct rq *rq = task_rq(p); 1593 bool queued, running; 1594 1595 lockdep_assert_held(&p->pi_lock); 1596 1597 queued = task_on_rq_queued(p); 1598 running = task_current(rq, p); 1599 1600 if (queued) { 1601 /* 1602 * Because __kthread_bind() calls this on blocked tasks without 1603 * holding rq->lock. 1604 */ 1605 lockdep_assert_held(&rq->lock); 1606 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1607 } 1608 if (running) 1609 put_prev_task(rq, p); 1610 1611 p->sched_class->set_cpus_allowed(p, new_mask); 1612 1613 if (queued) 1614 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1615 if (running) 1616 set_next_task(rq, p); 1617 } 1618 1619 /* 1620 * Change a given task's CPU affinity. Migrate the thread to a 1621 * proper CPU and schedule it away if the CPU it's executing on 1622 * is removed from the allowed bitmask. 1623 * 1624 * NOTE: the caller must have a valid reference to the task, the 1625 * task must not exit() & deallocate itself prematurely. The 1626 * call is not atomic; no spinlocks may be held. 1627 */ 1628 static int __set_cpus_allowed_ptr(struct task_struct *p, 1629 const struct cpumask *new_mask, bool check) 1630 { 1631 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1632 unsigned int dest_cpu; 1633 struct rq_flags rf; 1634 struct rq *rq; 1635 int ret = 0; 1636 1637 rq = task_rq_lock(p, &rf); 1638 update_rq_clock(rq); 1639 1640 if (p->flags & PF_KTHREAD) { 1641 /* 1642 * Kernel threads are allowed on online && !active CPUs 1643 */ 1644 cpu_valid_mask = cpu_online_mask; 1645 } 1646 1647 /* 1648 * Must re-check here, to close a race against __kthread_bind(), 1649 * sched_setaffinity() is not guaranteed to observe the flag. 1650 */ 1651 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1652 ret = -EINVAL; 1653 goto out; 1654 } 1655 1656 if (cpumask_equal(p->cpus_ptr, new_mask)) 1657 goto out; 1658 1659 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1660 ret = -EINVAL; 1661 goto out; 1662 } 1663 1664 do_set_cpus_allowed(p, new_mask); 1665 1666 if (p->flags & PF_KTHREAD) { 1667 /* 1668 * For kernel threads that do indeed end up on online && 1669 * !active we want to ensure they are strict per-CPU threads. 1670 */ 1671 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1672 !cpumask_intersects(new_mask, cpu_active_mask) && 1673 p->nr_cpus_allowed != 1); 1674 } 1675 1676 /* Can the task run on the task's current CPU? If so, we're done */ 1677 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1678 goto out; 1679 1680 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1681 if (task_running(rq, p) || p->state == TASK_WAKING) { 1682 struct migration_arg arg = { p, dest_cpu }; 1683 /* Need help from migration thread: drop lock and wait. */ 1684 task_rq_unlock(rq, p, &rf); 1685 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1686 return 0; 1687 } else if (task_on_rq_queued(p)) { 1688 /* 1689 * OK, since we're going to drop the lock immediately 1690 * afterwards anyway. 1691 */ 1692 rq = move_queued_task(rq, &rf, p, dest_cpu); 1693 } 1694 out: 1695 task_rq_unlock(rq, p, &rf); 1696 1697 return ret; 1698 } 1699 1700 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1701 { 1702 return __set_cpus_allowed_ptr(p, new_mask, false); 1703 } 1704 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1705 1706 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1707 { 1708 #ifdef CONFIG_SCHED_DEBUG 1709 /* 1710 * We should never call set_task_cpu() on a blocked task, 1711 * ttwu() will sort out the placement. 1712 */ 1713 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1714 !p->on_rq); 1715 1716 /* 1717 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1718 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1719 * time relying on p->on_rq. 1720 */ 1721 WARN_ON_ONCE(p->state == TASK_RUNNING && 1722 p->sched_class == &fair_sched_class && 1723 (p->on_rq && !task_on_rq_migrating(p))); 1724 1725 #ifdef CONFIG_LOCKDEP 1726 /* 1727 * The caller should hold either p->pi_lock or rq->lock, when changing 1728 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1729 * 1730 * sched_move_task() holds both and thus holding either pins the cgroup, 1731 * see task_group(). 1732 * 1733 * Furthermore, all task_rq users should acquire both locks, see 1734 * task_rq_lock(). 1735 */ 1736 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1737 lockdep_is_held(&task_rq(p)->lock))); 1738 #endif 1739 /* 1740 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1741 */ 1742 WARN_ON_ONCE(!cpu_online(new_cpu)); 1743 #endif 1744 1745 trace_sched_migrate_task(p, new_cpu); 1746 1747 if (task_cpu(p) != new_cpu) { 1748 if (p->sched_class->migrate_task_rq) 1749 p->sched_class->migrate_task_rq(p, new_cpu); 1750 p->se.nr_migrations++; 1751 rseq_migrate(p); 1752 perf_event_task_migrate(p); 1753 } 1754 1755 __set_task_cpu(p, new_cpu); 1756 } 1757 1758 #ifdef CONFIG_NUMA_BALANCING 1759 static void __migrate_swap_task(struct task_struct *p, int cpu) 1760 { 1761 if (task_on_rq_queued(p)) { 1762 struct rq *src_rq, *dst_rq; 1763 struct rq_flags srf, drf; 1764 1765 src_rq = task_rq(p); 1766 dst_rq = cpu_rq(cpu); 1767 1768 rq_pin_lock(src_rq, &srf); 1769 rq_pin_lock(dst_rq, &drf); 1770 1771 deactivate_task(src_rq, p, 0); 1772 set_task_cpu(p, cpu); 1773 activate_task(dst_rq, p, 0); 1774 check_preempt_curr(dst_rq, p, 0); 1775 1776 rq_unpin_lock(dst_rq, &drf); 1777 rq_unpin_lock(src_rq, &srf); 1778 1779 } else { 1780 /* 1781 * Task isn't running anymore; make it appear like we migrated 1782 * it before it went to sleep. This means on wakeup we make the 1783 * previous CPU our target instead of where it really is. 1784 */ 1785 p->wake_cpu = cpu; 1786 } 1787 } 1788 1789 struct migration_swap_arg { 1790 struct task_struct *src_task, *dst_task; 1791 int src_cpu, dst_cpu; 1792 }; 1793 1794 static int migrate_swap_stop(void *data) 1795 { 1796 struct migration_swap_arg *arg = data; 1797 struct rq *src_rq, *dst_rq; 1798 int ret = -EAGAIN; 1799 1800 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1801 return -EAGAIN; 1802 1803 src_rq = cpu_rq(arg->src_cpu); 1804 dst_rq = cpu_rq(arg->dst_cpu); 1805 1806 double_raw_lock(&arg->src_task->pi_lock, 1807 &arg->dst_task->pi_lock); 1808 double_rq_lock(src_rq, dst_rq); 1809 1810 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1811 goto unlock; 1812 1813 if (task_cpu(arg->src_task) != arg->src_cpu) 1814 goto unlock; 1815 1816 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1817 goto unlock; 1818 1819 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1820 goto unlock; 1821 1822 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1823 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1824 1825 ret = 0; 1826 1827 unlock: 1828 double_rq_unlock(src_rq, dst_rq); 1829 raw_spin_unlock(&arg->dst_task->pi_lock); 1830 raw_spin_unlock(&arg->src_task->pi_lock); 1831 1832 return ret; 1833 } 1834 1835 /* 1836 * Cross migrate two tasks 1837 */ 1838 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1839 int target_cpu, int curr_cpu) 1840 { 1841 struct migration_swap_arg arg; 1842 int ret = -EINVAL; 1843 1844 arg = (struct migration_swap_arg){ 1845 .src_task = cur, 1846 .src_cpu = curr_cpu, 1847 .dst_task = p, 1848 .dst_cpu = target_cpu, 1849 }; 1850 1851 if (arg.src_cpu == arg.dst_cpu) 1852 goto out; 1853 1854 /* 1855 * These three tests are all lockless; this is OK since all of them 1856 * will be re-checked with proper locks held further down the line. 1857 */ 1858 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1859 goto out; 1860 1861 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1862 goto out; 1863 1864 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1865 goto out; 1866 1867 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1868 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1869 1870 out: 1871 return ret; 1872 } 1873 #endif /* CONFIG_NUMA_BALANCING */ 1874 1875 /* 1876 * wait_task_inactive - wait for a thread to unschedule. 1877 * 1878 * If @match_state is nonzero, it's the @p->state value just checked and 1879 * not expected to change. If it changes, i.e. @p might have woken up, 1880 * then return zero. When we succeed in waiting for @p to be off its CPU, 1881 * we return a positive number (its total switch count). If a second call 1882 * a short while later returns the same number, the caller can be sure that 1883 * @p has remained unscheduled the whole time. 1884 * 1885 * The caller must ensure that the task *will* unschedule sometime soon, 1886 * else this function might spin for a *long* time. This function can't 1887 * be called with interrupts off, or it may introduce deadlock with 1888 * smp_call_function() if an IPI is sent by the same process we are 1889 * waiting to become inactive. 1890 */ 1891 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1892 { 1893 int running, queued; 1894 struct rq_flags rf; 1895 unsigned long ncsw; 1896 struct rq *rq; 1897 1898 for (;;) { 1899 /* 1900 * We do the initial early heuristics without holding 1901 * any task-queue locks at all. We'll only try to get 1902 * the runqueue lock when things look like they will 1903 * work out! 1904 */ 1905 rq = task_rq(p); 1906 1907 /* 1908 * If the task is actively running on another CPU 1909 * still, just relax and busy-wait without holding 1910 * any locks. 1911 * 1912 * NOTE! Since we don't hold any locks, it's not 1913 * even sure that "rq" stays as the right runqueue! 1914 * But we don't care, since "task_running()" will 1915 * return false if the runqueue has changed and p 1916 * is actually now running somewhere else! 1917 */ 1918 while (task_running(rq, p)) { 1919 if (match_state && unlikely(p->state != match_state)) 1920 return 0; 1921 cpu_relax(); 1922 } 1923 1924 /* 1925 * Ok, time to look more closely! We need the rq 1926 * lock now, to be *sure*. If we're wrong, we'll 1927 * just go back and repeat. 1928 */ 1929 rq = task_rq_lock(p, &rf); 1930 trace_sched_wait_task(p); 1931 running = task_running(rq, p); 1932 queued = task_on_rq_queued(p); 1933 ncsw = 0; 1934 if (!match_state || p->state == match_state) 1935 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1936 task_rq_unlock(rq, p, &rf); 1937 1938 /* 1939 * If it changed from the expected state, bail out now. 1940 */ 1941 if (unlikely(!ncsw)) 1942 break; 1943 1944 /* 1945 * Was it really running after all now that we 1946 * checked with the proper locks actually held? 1947 * 1948 * Oops. Go back and try again.. 1949 */ 1950 if (unlikely(running)) { 1951 cpu_relax(); 1952 continue; 1953 } 1954 1955 /* 1956 * It's not enough that it's not actively running, 1957 * it must be off the runqueue _entirely_, and not 1958 * preempted! 1959 * 1960 * So if it was still runnable (but just not actively 1961 * running right now), it's preempted, and we should 1962 * yield - it could be a while. 1963 */ 1964 if (unlikely(queued)) { 1965 ktime_t to = NSEC_PER_SEC / HZ; 1966 1967 set_current_state(TASK_UNINTERRUPTIBLE); 1968 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1969 continue; 1970 } 1971 1972 /* 1973 * Ahh, all good. It wasn't running, and it wasn't 1974 * runnable, which means that it will never become 1975 * running in the future either. We're all done! 1976 */ 1977 break; 1978 } 1979 1980 return ncsw; 1981 } 1982 1983 /*** 1984 * kick_process - kick a running thread to enter/exit the kernel 1985 * @p: the to-be-kicked thread 1986 * 1987 * Cause a process which is running on another CPU to enter 1988 * kernel-mode, without any delay. (to get signals handled.) 1989 * 1990 * NOTE: this function doesn't have to take the runqueue lock, 1991 * because all it wants to ensure is that the remote task enters 1992 * the kernel. If the IPI races and the task has been migrated 1993 * to another CPU then no harm is done and the purpose has been 1994 * achieved as well. 1995 */ 1996 void kick_process(struct task_struct *p) 1997 { 1998 int cpu; 1999 2000 preempt_disable(); 2001 cpu = task_cpu(p); 2002 if ((cpu != smp_processor_id()) && task_curr(p)) 2003 smp_send_reschedule(cpu); 2004 preempt_enable(); 2005 } 2006 EXPORT_SYMBOL_GPL(kick_process); 2007 2008 /* 2009 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2010 * 2011 * A few notes on cpu_active vs cpu_online: 2012 * 2013 * - cpu_active must be a subset of cpu_online 2014 * 2015 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2016 * see __set_cpus_allowed_ptr(). At this point the newly online 2017 * CPU isn't yet part of the sched domains, and balancing will not 2018 * see it. 2019 * 2020 * - on CPU-down we clear cpu_active() to mask the sched domains and 2021 * avoid the load balancer to place new tasks on the to be removed 2022 * CPU. Existing tasks will remain running there and will be taken 2023 * off. 2024 * 2025 * This means that fallback selection must not select !active CPUs. 2026 * And can assume that any active CPU must be online. Conversely 2027 * select_task_rq() below may allow selection of !active CPUs in order 2028 * to satisfy the above rules. 2029 */ 2030 static int select_fallback_rq(int cpu, struct task_struct *p) 2031 { 2032 int nid = cpu_to_node(cpu); 2033 const struct cpumask *nodemask = NULL; 2034 enum { cpuset, possible, fail } state = cpuset; 2035 int dest_cpu; 2036 2037 /* 2038 * If the node that the CPU is on has been offlined, cpu_to_node() 2039 * will return -1. There is no CPU on the node, and we should 2040 * select the CPU on the other node. 2041 */ 2042 if (nid != -1) { 2043 nodemask = cpumask_of_node(nid); 2044 2045 /* Look for allowed, online CPU in same node. */ 2046 for_each_cpu(dest_cpu, nodemask) { 2047 if (!cpu_active(dest_cpu)) 2048 continue; 2049 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2050 return dest_cpu; 2051 } 2052 } 2053 2054 for (;;) { 2055 /* Any allowed, online CPU? */ 2056 for_each_cpu(dest_cpu, p->cpus_ptr) { 2057 if (!is_cpu_allowed(p, dest_cpu)) 2058 continue; 2059 2060 goto out; 2061 } 2062 2063 /* No more Mr. Nice Guy. */ 2064 switch (state) { 2065 case cpuset: 2066 if (IS_ENABLED(CONFIG_CPUSETS)) { 2067 cpuset_cpus_allowed_fallback(p); 2068 state = possible; 2069 break; 2070 } 2071 /* Fall-through */ 2072 case possible: 2073 do_set_cpus_allowed(p, cpu_possible_mask); 2074 state = fail; 2075 break; 2076 2077 case fail: 2078 BUG(); 2079 break; 2080 } 2081 } 2082 2083 out: 2084 if (state != cpuset) { 2085 /* 2086 * Don't tell them about moving exiting tasks or 2087 * kernel threads (both mm NULL), since they never 2088 * leave kernel. 2089 */ 2090 if (p->mm && printk_ratelimit()) { 2091 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2092 task_pid_nr(p), p->comm, cpu); 2093 } 2094 } 2095 2096 return dest_cpu; 2097 } 2098 2099 /* 2100 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2101 */ 2102 static inline 2103 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2104 { 2105 lockdep_assert_held(&p->pi_lock); 2106 2107 if (p->nr_cpus_allowed > 1) 2108 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2109 else 2110 cpu = cpumask_any(p->cpus_ptr); 2111 2112 /* 2113 * In order not to call set_task_cpu() on a blocking task we need 2114 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2115 * CPU. 2116 * 2117 * Since this is common to all placement strategies, this lives here. 2118 * 2119 * [ this allows ->select_task() to simply return task_cpu(p) and 2120 * not worry about this generic constraint ] 2121 */ 2122 if (unlikely(!is_cpu_allowed(p, cpu))) 2123 cpu = select_fallback_rq(task_cpu(p), p); 2124 2125 return cpu; 2126 } 2127 2128 static void update_avg(u64 *avg, u64 sample) 2129 { 2130 s64 diff = sample - *avg; 2131 *avg += diff >> 3; 2132 } 2133 2134 void sched_set_stop_task(int cpu, struct task_struct *stop) 2135 { 2136 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2137 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2138 2139 if (stop) { 2140 /* 2141 * Make it appear like a SCHED_FIFO task, its something 2142 * userspace knows about and won't get confused about. 2143 * 2144 * Also, it will make PI more or less work without too 2145 * much confusion -- but then, stop work should not 2146 * rely on PI working anyway. 2147 */ 2148 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2149 2150 stop->sched_class = &stop_sched_class; 2151 } 2152 2153 cpu_rq(cpu)->stop = stop; 2154 2155 if (old_stop) { 2156 /* 2157 * Reset it back to a normal scheduling class so that 2158 * it can die in pieces. 2159 */ 2160 old_stop->sched_class = &rt_sched_class; 2161 } 2162 } 2163 2164 #else 2165 2166 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2167 const struct cpumask *new_mask, bool check) 2168 { 2169 return set_cpus_allowed_ptr(p, new_mask); 2170 } 2171 2172 #endif /* CONFIG_SMP */ 2173 2174 static void 2175 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2176 { 2177 struct rq *rq; 2178 2179 if (!schedstat_enabled()) 2180 return; 2181 2182 rq = this_rq(); 2183 2184 #ifdef CONFIG_SMP 2185 if (cpu == rq->cpu) { 2186 __schedstat_inc(rq->ttwu_local); 2187 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2188 } else { 2189 struct sched_domain *sd; 2190 2191 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2192 rcu_read_lock(); 2193 for_each_domain(rq->cpu, sd) { 2194 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2195 __schedstat_inc(sd->ttwu_wake_remote); 2196 break; 2197 } 2198 } 2199 rcu_read_unlock(); 2200 } 2201 2202 if (wake_flags & WF_MIGRATED) 2203 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2204 #endif /* CONFIG_SMP */ 2205 2206 __schedstat_inc(rq->ttwu_count); 2207 __schedstat_inc(p->se.statistics.nr_wakeups); 2208 2209 if (wake_flags & WF_SYNC) 2210 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2211 } 2212 2213 /* 2214 * Mark the task runnable and perform wakeup-preemption. 2215 */ 2216 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2217 struct rq_flags *rf) 2218 { 2219 check_preempt_curr(rq, p, wake_flags); 2220 p->state = TASK_RUNNING; 2221 trace_sched_wakeup(p); 2222 2223 #ifdef CONFIG_SMP 2224 if (p->sched_class->task_woken) { 2225 /* 2226 * Our task @p is fully woken up and running; so its safe to 2227 * drop the rq->lock, hereafter rq is only used for statistics. 2228 */ 2229 rq_unpin_lock(rq, rf); 2230 p->sched_class->task_woken(rq, p); 2231 rq_repin_lock(rq, rf); 2232 } 2233 2234 if (rq->idle_stamp) { 2235 u64 delta = rq_clock(rq) - rq->idle_stamp; 2236 u64 max = 2*rq->max_idle_balance_cost; 2237 2238 update_avg(&rq->avg_idle, delta); 2239 2240 if (rq->avg_idle > max) 2241 rq->avg_idle = max; 2242 2243 rq->idle_stamp = 0; 2244 } 2245 #endif 2246 } 2247 2248 static void 2249 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2250 struct rq_flags *rf) 2251 { 2252 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2253 2254 lockdep_assert_held(&rq->lock); 2255 2256 #ifdef CONFIG_SMP 2257 if (p->sched_contributes_to_load) 2258 rq->nr_uninterruptible--; 2259 2260 if (wake_flags & WF_MIGRATED) 2261 en_flags |= ENQUEUE_MIGRATED; 2262 #endif 2263 2264 activate_task(rq, p, en_flags); 2265 ttwu_do_wakeup(rq, p, wake_flags, rf); 2266 } 2267 2268 /* 2269 * Called in case the task @p isn't fully descheduled from its runqueue, 2270 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2271 * since all we need to do is flip p->state to TASK_RUNNING, since 2272 * the task is still ->on_rq. 2273 */ 2274 static int ttwu_remote(struct task_struct *p, int wake_flags) 2275 { 2276 struct rq_flags rf; 2277 struct rq *rq; 2278 int ret = 0; 2279 2280 rq = __task_rq_lock(p, &rf); 2281 if (task_on_rq_queued(p)) { 2282 /* check_preempt_curr() may use rq clock */ 2283 update_rq_clock(rq); 2284 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2285 ret = 1; 2286 } 2287 __task_rq_unlock(rq, &rf); 2288 2289 return ret; 2290 } 2291 2292 #ifdef CONFIG_SMP 2293 void sched_ttwu_pending(void) 2294 { 2295 struct rq *rq = this_rq(); 2296 struct llist_node *llist = llist_del_all(&rq->wake_list); 2297 struct task_struct *p, *t; 2298 struct rq_flags rf; 2299 2300 if (!llist) 2301 return; 2302 2303 rq_lock_irqsave(rq, &rf); 2304 update_rq_clock(rq); 2305 2306 llist_for_each_entry_safe(p, t, llist, wake_entry) 2307 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2308 2309 rq_unlock_irqrestore(rq, &rf); 2310 } 2311 2312 void scheduler_ipi(void) 2313 { 2314 /* 2315 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2316 * TIF_NEED_RESCHED remotely (for the first time) will also send 2317 * this IPI. 2318 */ 2319 preempt_fold_need_resched(); 2320 2321 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2322 return; 2323 2324 /* 2325 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2326 * traditionally all their work was done from the interrupt return 2327 * path. Now that we actually do some work, we need to make sure 2328 * we do call them. 2329 * 2330 * Some archs already do call them, luckily irq_enter/exit nest 2331 * properly. 2332 * 2333 * Arguably we should visit all archs and update all handlers, 2334 * however a fair share of IPIs are still resched only so this would 2335 * somewhat pessimize the simple resched case. 2336 */ 2337 irq_enter(); 2338 sched_ttwu_pending(); 2339 2340 /* 2341 * Check if someone kicked us for doing the nohz idle load balance. 2342 */ 2343 if (unlikely(got_nohz_idle_kick())) { 2344 this_rq()->idle_balance = 1; 2345 raise_softirq_irqoff(SCHED_SOFTIRQ); 2346 } 2347 irq_exit(); 2348 } 2349 2350 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2351 { 2352 struct rq *rq = cpu_rq(cpu); 2353 2354 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2355 2356 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2357 if (!set_nr_if_polling(rq->idle)) 2358 smp_send_reschedule(cpu); 2359 else 2360 trace_sched_wake_idle_without_ipi(cpu); 2361 } 2362 } 2363 2364 void wake_up_if_idle(int cpu) 2365 { 2366 struct rq *rq = cpu_rq(cpu); 2367 struct rq_flags rf; 2368 2369 rcu_read_lock(); 2370 2371 if (!is_idle_task(rcu_dereference(rq->curr))) 2372 goto out; 2373 2374 if (set_nr_if_polling(rq->idle)) { 2375 trace_sched_wake_idle_without_ipi(cpu); 2376 } else { 2377 rq_lock_irqsave(rq, &rf); 2378 if (is_idle_task(rq->curr)) 2379 smp_send_reschedule(cpu); 2380 /* Else CPU is not idle, do nothing here: */ 2381 rq_unlock_irqrestore(rq, &rf); 2382 } 2383 2384 out: 2385 rcu_read_unlock(); 2386 } 2387 2388 bool cpus_share_cache(int this_cpu, int that_cpu) 2389 { 2390 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2391 } 2392 #endif /* CONFIG_SMP */ 2393 2394 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2395 { 2396 struct rq *rq = cpu_rq(cpu); 2397 struct rq_flags rf; 2398 2399 #if defined(CONFIG_SMP) 2400 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2401 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2402 ttwu_queue_remote(p, cpu, wake_flags); 2403 return; 2404 } 2405 #endif 2406 2407 rq_lock(rq, &rf); 2408 update_rq_clock(rq); 2409 ttwu_do_activate(rq, p, wake_flags, &rf); 2410 rq_unlock(rq, &rf); 2411 } 2412 2413 /* 2414 * Notes on Program-Order guarantees on SMP systems. 2415 * 2416 * MIGRATION 2417 * 2418 * The basic program-order guarantee on SMP systems is that when a task [t] 2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2420 * execution on its new CPU [c1]. 2421 * 2422 * For migration (of runnable tasks) this is provided by the following means: 2423 * 2424 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2425 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2426 * rq(c1)->lock (if not at the same time, then in that order). 2427 * C) LOCK of the rq(c1)->lock scheduling in task 2428 * 2429 * Release/acquire chaining guarantees that B happens after A and C after B. 2430 * Note: the CPU doing B need not be c0 or c1 2431 * 2432 * Example: 2433 * 2434 * CPU0 CPU1 CPU2 2435 * 2436 * LOCK rq(0)->lock 2437 * sched-out X 2438 * sched-in Y 2439 * UNLOCK rq(0)->lock 2440 * 2441 * LOCK rq(0)->lock // orders against CPU0 2442 * dequeue X 2443 * UNLOCK rq(0)->lock 2444 * 2445 * LOCK rq(1)->lock 2446 * enqueue X 2447 * UNLOCK rq(1)->lock 2448 * 2449 * LOCK rq(1)->lock // orders against CPU2 2450 * sched-out Z 2451 * sched-in X 2452 * UNLOCK rq(1)->lock 2453 * 2454 * 2455 * BLOCKING -- aka. SLEEP + WAKEUP 2456 * 2457 * For blocking we (obviously) need to provide the same guarantee as for 2458 * migration. However the means are completely different as there is no lock 2459 * chain to provide order. Instead we do: 2460 * 2461 * 1) smp_store_release(X->on_cpu, 0) 2462 * 2) smp_cond_load_acquire(!X->on_cpu) 2463 * 2464 * Example: 2465 * 2466 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2467 * 2468 * LOCK rq(0)->lock LOCK X->pi_lock 2469 * dequeue X 2470 * sched-out X 2471 * smp_store_release(X->on_cpu, 0); 2472 * 2473 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2474 * X->state = WAKING 2475 * set_task_cpu(X,2) 2476 * 2477 * LOCK rq(2)->lock 2478 * enqueue X 2479 * X->state = RUNNING 2480 * UNLOCK rq(2)->lock 2481 * 2482 * LOCK rq(2)->lock // orders against CPU1 2483 * sched-out Z 2484 * sched-in X 2485 * UNLOCK rq(2)->lock 2486 * 2487 * UNLOCK X->pi_lock 2488 * UNLOCK rq(0)->lock 2489 * 2490 * 2491 * However, for wakeups there is a second guarantee we must provide, namely we 2492 * must ensure that CONDITION=1 done by the caller can not be reordered with 2493 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2494 */ 2495 2496 /** 2497 * try_to_wake_up - wake up a thread 2498 * @p: the thread to be awakened 2499 * @state: the mask of task states that can be woken 2500 * @wake_flags: wake modifier flags (WF_*) 2501 * 2502 * If (@state & @p->state) @p->state = TASK_RUNNING. 2503 * 2504 * If the task was not queued/runnable, also place it back on a runqueue. 2505 * 2506 * Atomic against schedule() which would dequeue a task, also see 2507 * set_current_state(). 2508 * 2509 * This function executes a full memory barrier before accessing the task 2510 * state; see set_current_state(). 2511 * 2512 * Return: %true if @p->state changes (an actual wakeup was done), 2513 * %false otherwise. 2514 */ 2515 static int 2516 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2517 { 2518 unsigned long flags; 2519 int cpu, success = 0; 2520 2521 preempt_disable(); 2522 if (p == current) { 2523 /* 2524 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2525 * == smp_processor_id()'. Together this means we can special 2526 * case the whole 'p->on_rq && ttwu_remote()' case below 2527 * without taking any locks. 2528 * 2529 * In particular: 2530 * - we rely on Program-Order guarantees for all the ordering, 2531 * - we're serialized against set_special_state() by virtue of 2532 * it disabling IRQs (this allows not taking ->pi_lock). 2533 */ 2534 if (!(p->state & state)) 2535 goto out; 2536 2537 success = 1; 2538 cpu = task_cpu(p); 2539 trace_sched_waking(p); 2540 p->state = TASK_RUNNING; 2541 trace_sched_wakeup(p); 2542 goto out; 2543 } 2544 2545 /* 2546 * If we are going to wake up a thread waiting for CONDITION we 2547 * need to ensure that CONDITION=1 done by the caller can not be 2548 * reordered with p->state check below. This pairs with mb() in 2549 * set_current_state() the waiting thread does. 2550 */ 2551 raw_spin_lock_irqsave(&p->pi_lock, flags); 2552 smp_mb__after_spinlock(); 2553 if (!(p->state & state)) 2554 goto unlock; 2555 2556 trace_sched_waking(p); 2557 2558 /* We're going to change ->state: */ 2559 success = 1; 2560 cpu = task_cpu(p); 2561 2562 /* 2563 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2564 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2565 * in smp_cond_load_acquire() below. 2566 * 2567 * sched_ttwu_pending() try_to_wake_up() 2568 * STORE p->on_rq = 1 LOAD p->state 2569 * UNLOCK rq->lock 2570 * 2571 * __schedule() (switch to task 'p') 2572 * LOCK rq->lock smp_rmb(); 2573 * smp_mb__after_spinlock(); 2574 * UNLOCK rq->lock 2575 * 2576 * [task p] 2577 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2578 * 2579 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2580 * __schedule(). See the comment for smp_mb__after_spinlock(). 2581 */ 2582 smp_rmb(); 2583 if (p->on_rq && ttwu_remote(p, wake_flags)) 2584 goto unlock; 2585 2586 #ifdef CONFIG_SMP 2587 /* 2588 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2589 * possible to, falsely, observe p->on_cpu == 0. 2590 * 2591 * One must be running (->on_cpu == 1) in order to remove oneself 2592 * from the runqueue. 2593 * 2594 * __schedule() (switch to task 'p') try_to_wake_up() 2595 * STORE p->on_cpu = 1 LOAD p->on_rq 2596 * UNLOCK rq->lock 2597 * 2598 * __schedule() (put 'p' to sleep) 2599 * LOCK rq->lock smp_rmb(); 2600 * smp_mb__after_spinlock(); 2601 * STORE p->on_rq = 0 LOAD p->on_cpu 2602 * 2603 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2604 * __schedule(). See the comment for smp_mb__after_spinlock(). 2605 */ 2606 smp_rmb(); 2607 2608 /* 2609 * If the owning (remote) CPU is still in the middle of schedule() with 2610 * this task as prev, wait until its done referencing the task. 2611 * 2612 * Pairs with the smp_store_release() in finish_task(). 2613 * 2614 * This ensures that tasks getting woken will be fully ordered against 2615 * their previous state and preserve Program Order. 2616 */ 2617 smp_cond_load_acquire(&p->on_cpu, !VAL); 2618 2619 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2620 p->state = TASK_WAKING; 2621 2622 if (p->in_iowait) { 2623 delayacct_blkio_end(p); 2624 atomic_dec(&task_rq(p)->nr_iowait); 2625 } 2626 2627 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2628 if (task_cpu(p) != cpu) { 2629 wake_flags |= WF_MIGRATED; 2630 psi_ttwu_dequeue(p); 2631 set_task_cpu(p, cpu); 2632 } 2633 2634 #else /* CONFIG_SMP */ 2635 2636 if (p->in_iowait) { 2637 delayacct_blkio_end(p); 2638 atomic_dec(&task_rq(p)->nr_iowait); 2639 } 2640 2641 #endif /* CONFIG_SMP */ 2642 2643 ttwu_queue(p, cpu, wake_flags); 2644 unlock: 2645 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2646 out: 2647 if (success) 2648 ttwu_stat(p, cpu, wake_flags); 2649 preempt_enable(); 2650 2651 return success; 2652 } 2653 2654 /** 2655 * wake_up_process - Wake up a specific process 2656 * @p: The process to be woken up. 2657 * 2658 * Attempt to wake up the nominated process and move it to the set of runnable 2659 * processes. 2660 * 2661 * Return: 1 if the process was woken up, 0 if it was already running. 2662 * 2663 * This function executes a full memory barrier before accessing the task state. 2664 */ 2665 int wake_up_process(struct task_struct *p) 2666 { 2667 return try_to_wake_up(p, TASK_NORMAL, 0); 2668 } 2669 EXPORT_SYMBOL(wake_up_process); 2670 2671 int wake_up_state(struct task_struct *p, unsigned int state) 2672 { 2673 return try_to_wake_up(p, state, 0); 2674 } 2675 2676 /* 2677 * Perform scheduler related setup for a newly forked process p. 2678 * p is forked by current. 2679 * 2680 * __sched_fork() is basic setup used by init_idle() too: 2681 */ 2682 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2683 { 2684 p->on_rq = 0; 2685 2686 p->se.on_rq = 0; 2687 p->se.exec_start = 0; 2688 p->se.sum_exec_runtime = 0; 2689 p->se.prev_sum_exec_runtime = 0; 2690 p->se.nr_migrations = 0; 2691 p->se.vruntime = 0; 2692 INIT_LIST_HEAD(&p->se.group_node); 2693 2694 #ifdef CONFIG_FAIR_GROUP_SCHED 2695 p->se.cfs_rq = NULL; 2696 #endif 2697 2698 #ifdef CONFIG_SCHEDSTATS 2699 /* Even if schedstat is disabled, there should not be garbage */ 2700 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2701 #endif 2702 2703 RB_CLEAR_NODE(&p->dl.rb_node); 2704 init_dl_task_timer(&p->dl); 2705 init_dl_inactive_task_timer(&p->dl); 2706 __dl_clear_params(p); 2707 2708 INIT_LIST_HEAD(&p->rt.run_list); 2709 p->rt.timeout = 0; 2710 p->rt.time_slice = sched_rr_timeslice; 2711 p->rt.on_rq = 0; 2712 p->rt.on_list = 0; 2713 2714 #ifdef CONFIG_PREEMPT_NOTIFIERS 2715 INIT_HLIST_HEAD(&p->preempt_notifiers); 2716 #endif 2717 2718 #ifdef CONFIG_COMPACTION 2719 p->capture_control = NULL; 2720 #endif 2721 init_numa_balancing(clone_flags, p); 2722 } 2723 2724 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2725 2726 #ifdef CONFIG_NUMA_BALANCING 2727 2728 void set_numabalancing_state(bool enabled) 2729 { 2730 if (enabled) 2731 static_branch_enable(&sched_numa_balancing); 2732 else 2733 static_branch_disable(&sched_numa_balancing); 2734 } 2735 2736 #ifdef CONFIG_PROC_SYSCTL 2737 int sysctl_numa_balancing(struct ctl_table *table, int write, 2738 void __user *buffer, size_t *lenp, loff_t *ppos) 2739 { 2740 struct ctl_table t; 2741 int err; 2742 int state = static_branch_likely(&sched_numa_balancing); 2743 2744 if (write && !capable(CAP_SYS_ADMIN)) 2745 return -EPERM; 2746 2747 t = *table; 2748 t.data = &state; 2749 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2750 if (err < 0) 2751 return err; 2752 if (write) 2753 set_numabalancing_state(state); 2754 return err; 2755 } 2756 #endif 2757 #endif 2758 2759 #ifdef CONFIG_SCHEDSTATS 2760 2761 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2762 static bool __initdata __sched_schedstats = false; 2763 2764 static void set_schedstats(bool enabled) 2765 { 2766 if (enabled) 2767 static_branch_enable(&sched_schedstats); 2768 else 2769 static_branch_disable(&sched_schedstats); 2770 } 2771 2772 void force_schedstat_enabled(void) 2773 { 2774 if (!schedstat_enabled()) { 2775 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2776 static_branch_enable(&sched_schedstats); 2777 } 2778 } 2779 2780 static int __init setup_schedstats(char *str) 2781 { 2782 int ret = 0; 2783 if (!str) 2784 goto out; 2785 2786 /* 2787 * This code is called before jump labels have been set up, so we can't 2788 * change the static branch directly just yet. Instead set a temporary 2789 * variable so init_schedstats() can do it later. 2790 */ 2791 if (!strcmp(str, "enable")) { 2792 __sched_schedstats = true; 2793 ret = 1; 2794 } else if (!strcmp(str, "disable")) { 2795 __sched_schedstats = false; 2796 ret = 1; 2797 } 2798 out: 2799 if (!ret) 2800 pr_warn("Unable to parse schedstats=\n"); 2801 2802 return ret; 2803 } 2804 __setup("schedstats=", setup_schedstats); 2805 2806 static void __init init_schedstats(void) 2807 { 2808 set_schedstats(__sched_schedstats); 2809 } 2810 2811 #ifdef CONFIG_PROC_SYSCTL 2812 int sysctl_schedstats(struct ctl_table *table, int write, 2813 void __user *buffer, size_t *lenp, loff_t *ppos) 2814 { 2815 struct ctl_table t; 2816 int err; 2817 int state = static_branch_likely(&sched_schedstats); 2818 2819 if (write && !capable(CAP_SYS_ADMIN)) 2820 return -EPERM; 2821 2822 t = *table; 2823 t.data = &state; 2824 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2825 if (err < 0) 2826 return err; 2827 if (write) 2828 set_schedstats(state); 2829 return err; 2830 } 2831 #endif /* CONFIG_PROC_SYSCTL */ 2832 #else /* !CONFIG_SCHEDSTATS */ 2833 static inline void init_schedstats(void) {} 2834 #endif /* CONFIG_SCHEDSTATS */ 2835 2836 /* 2837 * fork()/clone()-time setup: 2838 */ 2839 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2840 { 2841 unsigned long flags; 2842 2843 __sched_fork(clone_flags, p); 2844 /* 2845 * We mark the process as NEW here. This guarantees that 2846 * nobody will actually run it, and a signal or other external 2847 * event cannot wake it up and insert it on the runqueue either. 2848 */ 2849 p->state = TASK_NEW; 2850 2851 /* 2852 * Make sure we do not leak PI boosting priority to the child. 2853 */ 2854 p->prio = current->normal_prio; 2855 2856 uclamp_fork(p); 2857 2858 /* 2859 * Revert to default priority/policy on fork if requested. 2860 */ 2861 if (unlikely(p->sched_reset_on_fork)) { 2862 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2863 p->policy = SCHED_NORMAL; 2864 p->static_prio = NICE_TO_PRIO(0); 2865 p->rt_priority = 0; 2866 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2867 p->static_prio = NICE_TO_PRIO(0); 2868 2869 p->prio = p->normal_prio = __normal_prio(p); 2870 set_load_weight(p, false); 2871 2872 /* 2873 * We don't need the reset flag anymore after the fork. It has 2874 * fulfilled its duty: 2875 */ 2876 p->sched_reset_on_fork = 0; 2877 } 2878 2879 if (dl_prio(p->prio)) 2880 return -EAGAIN; 2881 else if (rt_prio(p->prio)) 2882 p->sched_class = &rt_sched_class; 2883 else 2884 p->sched_class = &fair_sched_class; 2885 2886 init_entity_runnable_average(&p->se); 2887 2888 /* 2889 * The child is not yet in the pid-hash so no cgroup attach races, 2890 * and the cgroup is pinned to this child due to cgroup_fork() 2891 * is ran before sched_fork(). 2892 * 2893 * Silence PROVE_RCU. 2894 */ 2895 raw_spin_lock_irqsave(&p->pi_lock, flags); 2896 /* 2897 * We're setting the CPU for the first time, we don't migrate, 2898 * so use __set_task_cpu(). 2899 */ 2900 __set_task_cpu(p, smp_processor_id()); 2901 if (p->sched_class->task_fork) 2902 p->sched_class->task_fork(p); 2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2904 2905 #ifdef CONFIG_SCHED_INFO 2906 if (likely(sched_info_on())) 2907 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2908 #endif 2909 #if defined(CONFIG_SMP) 2910 p->on_cpu = 0; 2911 #endif 2912 init_task_preempt_count(p); 2913 #ifdef CONFIG_SMP 2914 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2915 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2916 #endif 2917 return 0; 2918 } 2919 2920 unsigned long to_ratio(u64 period, u64 runtime) 2921 { 2922 if (runtime == RUNTIME_INF) 2923 return BW_UNIT; 2924 2925 /* 2926 * Doing this here saves a lot of checks in all 2927 * the calling paths, and returning zero seems 2928 * safe for them anyway. 2929 */ 2930 if (period == 0) 2931 return 0; 2932 2933 return div64_u64(runtime << BW_SHIFT, period); 2934 } 2935 2936 /* 2937 * wake_up_new_task - wake up a newly created task for the first time. 2938 * 2939 * This function will do some initial scheduler statistics housekeeping 2940 * that must be done for every newly created context, then puts the task 2941 * on the runqueue and wakes it. 2942 */ 2943 void wake_up_new_task(struct task_struct *p) 2944 { 2945 struct rq_flags rf; 2946 struct rq *rq; 2947 2948 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2949 p->state = TASK_RUNNING; 2950 #ifdef CONFIG_SMP 2951 /* 2952 * Fork balancing, do it here and not earlier because: 2953 * - cpus_ptr can change in the fork path 2954 * - any previously selected CPU might disappear through hotplug 2955 * 2956 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2957 * as we're not fully set-up yet. 2958 */ 2959 p->recent_used_cpu = task_cpu(p); 2960 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2961 #endif 2962 rq = __task_rq_lock(p, &rf); 2963 update_rq_clock(rq); 2964 post_init_entity_util_avg(p); 2965 2966 activate_task(rq, p, ENQUEUE_NOCLOCK); 2967 trace_sched_wakeup_new(p); 2968 check_preempt_curr(rq, p, WF_FORK); 2969 #ifdef CONFIG_SMP 2970 if (p->sched_class->task_woken) { 2971 /* 2972 * Nothing relies on rq->lock after this, so its fine to 2973 * drop it. 2974 */ 2975 rq_unpin_lock(rq, &rf); 2976 p->sched_class->task_woken(rq, p); 2977 rq_repin_lock(rq, &rf); 2978 } 2979 #endif 2980 task_rq_unlock(rq, p, &rf); 2981 } 2982 2983 #ifdef CONFIG_PREEMPT_NOTIFIERS 2984 2985 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2986 2987 void preempt_notifier_inc(void) 2988 { 2989 static_branch_inc(&preempt_notifier_key); 2990 } 2991 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2992 2993 void preempt_notifier_dec(void) 2994 { 2995 static_branch_dec(&preempt_notifier_key); 2996 } 2997 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2998 2999 /** 3000 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3001 * @notifier: notifier struct to register 3002 */ 3003 void preempt_notifier_register(struct preempt_notifier *notifier) 3004 { 3005 if (!static_branch_unlikely(&preempt_notifier_key)) 3006 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3007 3008 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3009 } 3010 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3011 3012 /** 3013 * preempt_notifier_unregister - no longer interested in preemption notifications 3014 * @notifier: notifier struct to unregister 3015 * 3016 * This is *not* safe to call from within a preemption notifier. 3017 */ 3018 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3019 { 3020 hlist_del(¬ifier->link); 3021 } 3022 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3023 3024 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3025 { 3026 struct preempt_notifier *notifier; 3027 3028 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3029 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3030 } 3031 3032 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3033 { 3034 if (static_branch_unlikely(&preempt_notifier_key)) 3035 __fire_sched_in_preempt_notifiers(curr); 3036 } 3037 3038 static void 3039 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3040 struct task_struct *next) 3041 { 3042 struct preempt_notifier *notifier; 3043 3044 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3045 notifier->ops->sched_out(notifier, next); 3046 } 3047 3048 static __always_inline void 3049 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3050 struct task_struct *next) 3051 { 3052 if (static_branch_unlikely(&preempt_notifier_key)) 3053 __fire_sched_out_preempt_notifiers(curr, next); 3054 } 3055 3056 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3057 3058 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3059 { 3060 } 3061 3062 static inline void 3063 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3064 struct task_struct *next) 3065 { 3066 } 3067 3068 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3069 3070 static inline void prepare_task(struct task_struct *next) 3071 { 3072 #ifdef CONFIG_SMP 3073 /* 3074 * Claim the task as running, we do this before switching to it 3075 * such that any running task will have this set. 3076 */ 3077 next->on_cpu = 1; 3078 #endif 3079 } 3080 3081 static inline void finish_task(struct task_struct *prev) 3082 { 3083 #ifdef CONFIG_SMP 3084 /* 3085 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3086 * We must ensure this doesn't happen until the switch is completely 3087 * finished. 3088 * 3089 * In particular, the load of prev->state in finish_task_switch() must 3090 * happen before this. 3091 * 3092 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3093 */ 3094 smp_store_release(&prev->on_cpu, 0); 3095 #endif 3096 } 3097 3098 static inline void 3099 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3100 { 3101 /* 3102 * Since the runqueue lock will be released by the next 3103 * task (which is an invalid locking op but in the case 3104 * of the scheduler it's an obvious special-case), so we 3105 * do an early lockdep release here: 3106 */ 3107 rq_unpin_lock(rq, rf); 3108 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 3109 #ifdef CONFIG_DEBUG_SPINLOCK 3110 /* this is a valid case when another task releases the spinlock */ 3111 rq->lock.owner = next; 3112 #endif 3113 } 3114 3115 static inline void finish_lock_switch(struct rq *rq) 3116 { 3117 /* 3118 * If we are tracking spinlock dependencies then we have to 3119 * fix up the runqueue lock - which gets 'carried over' from 3120 * prev into current: 3121 */ 3122 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3123 raw_spin_unlock_irq(&rq->lock); 3124 } 3125 3126 /* 3127 * NOP if the arch has not defined these: 3128 */ 3129 3130 #ifndef prepare_arch_switch 3131 # define prepare_arch_switch(next) do { } while (0) 3132 #endif 3133 3134 #ifndef finish_arch_post_lock_switch 3135 # define finish_arch_post_lock_switch() do { } while (0) 3136 #endif 3137 3138 /** 3139 * prepare_task_switch - prepare to switch tasks 3140 * @rq: the runqueue preparing to switch 3141 * @prev: the current task that is being switched out 3142 * @next: the task we are going to switch to. 3143 * 3144 * This is called with the rq lock held and interrupts off. It must 3145 * be paired with a subsequent finish_task_switch after the context 3146 * switch. 3147 * 3148 * prepare_task_switch sets up locking and calls architecture specific 3149 * hooks. 3150 */ 3151 static inline void 3152 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3153 struct task_struct *next) 3154 { 3155 kcov_prepare_switch(prev); 3156 sched_info_switch(rq, prev, next); 3157 perf_event_task_sched_out(prev, next); 3158 rseq_preempt(prev); 3159 fire_sched_out_preempt_notifiers(prev, next); 3160 prepare_task(next); 3161 prepare_arch_switch(next); 3162 } 3163 3164 /** 3165 * finish_task_switch - clean up after a task-switch 3166 * @prev: the thread we just switched away from. 3167 * 3168 * finish_task_switch must be called after the context switch, paired 3169 * with a prepare_task_switch call before the context switch. 3170 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3171 * and do any other architecture-specific cleanup actions. 3172 * 3173 * Note that we may have delayed dropping an mm in context_switch(). If 3174 * so, we finish that here outside of the runqueue lock. (Doing it 3175 * with the lock held can cause deadlocks; see schedule() for 3176 * details.) 3177 * 3178 * The context switch have flipped the stack from under us and restored the 3179 * local variables which were saved when this task called schedule() in the 3180 * past. prev == current is still correct but we need to recalculate this_rq 3181 * because prev may have moved to another CPU. 3182 */ 3183 static struct rq *finish_task_switch(struct task_struct *prev) 3184 __releases(rq->lock) 3185 { 3186 struct rq *rq = this_rq(); 3187 struct mm_struct *mm = rq->prev_mm; 3188 long prev_state; 3189 3190 /* 3191 * The previous task will have left us with a preempt_count of 2 3192 * because it left us after: 3193 * 3194 * schedule() 3195 * preempt_disable(); // 1 3196 * __schedule() 3197 * raw_spin_lock_irq(&rq->lock) // 2 3198 * 3199 * Also, see FORK_PREEMPT_COUNT. 3200 */ 3201 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3202 "corrupted preempt_count: %s/%d/0x%x\n", 3203 current->comm, current->pid, preempt_count())) 3204 preempt_count_set(FORK_PREEMPT_COUNT); 3205 3206 rq->prev_mm = NULL; 3207 3208 /* 3209 * A task struct has one reference for the use as "current". 3210 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3211 * schedule one last time. The schedule call will never return, and 3212 * the scheduled task must drop that reference. 3213 * 3214 * We must observe prev->state before clearing prev->on_cpu (in 3215 * finish_task), otherwise a concurrent wakeup can get prev 3216 * running on another CPU and we could rave with its RUNNING -> DEAD 3217 * transition, resulting in a double drop. 3218 */ 3219 prev_state = prev->state; 3220 vtime_task_switch(prev); 3221 perf_event_task_sched_in(prev, current); 3222 finish_task(prev); 3223 finish_lock_switch(rq); 3224 finish_arch_post_lock_switch(); 3225 kcov_finish_switch(current); 3226 3227 fire_sched_in_preempt_notifiers(current); 3228 /* 3229 * When switching through a kernel thread, the loop in 3230 * membarrier_{private,global}_expedited() may have observed that 3231 * kernel thread and not issued an IPI. It is therefore possible to 3232 * schedule between user->kernel->user threads without passing though 3233 * switch_mm(). Membarrier requires a barrier after storing to 3234 * rq->curr, before returning to userspace, so provide them here: 3235 * 3236 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3237 * provided by mmdrop(), 3238 * - a sync_core for SYNC_CORE. 3239 */ 3240 if (mm) { 3241 membarrier_mm_sync_core_before_usermode(mm); 3242 mmdrop(mm); 3243 } 3244 if (unlikely(prev_state == TASK_DEAD)) { 3245 if (prev->sched_class->task_dead) 3246 prev->sched_class->task_dead(prev); 3247 3248 /* 3249 * Remove function-return probe instances associated with this 3250 * task and put them back on the free list. 3251 */ 3252 kprobe_flush_task(prev); 3253 3254 /* Task is done with its stack. */ 3255 put_task_stack(prev); 3256 3257 put_task_struct(prev); 3258 } 3259 3260 tick_nohz_task_switch(); 3261 return rq; 3262 } 3263 3264 #ifdef CONFIG_SMP 3265 3266 /* rq->lock is NOT held, but preemption is disabled */ 3267 static void __balance_callback(struct rq *rq) 3268 { 3269 struct callback_head *head, *next; 3270 void (*func)(struct rq *rq); 3271 unsigned long flags; 3272 3273 raw_spin_lock_irqsave(&rq->lock, flags); 3274 head = rq->balance_callback; 3275 rq->balance_callback = NULL; 3276 while (head) { 3277 func = (void (*)(struct rq *))head->func; 3278 next = head->next; 3279 head->next = NULL; 3280 head = next; 3281 3282 func(rq); 3283 } 3284 raw_spin_unlock_irqrestore(&rq->lock, flags); 3285 } 3286 3287 static inline void balance_callback(struct rq *rq) 3288 { 3289 if (unlikely(rq->balance_callback)) 3290 __balance_callback(rq); 3291 } 3292 3293 #else 3294 3295 static inline void balance_callback(struct rq *rq) 3296 { 3297 } 3298 3299 #endif 3300 3301 /** 3302 * schedule_tail - first thing a freshly forked thread must call. 3303 * @prev: the thread we just switched away from. 3304 */ 3305 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3306 __releases(rq->lock) 3307 { 3308 struct rq *rq; 3309 3310 /* 3311 * New tasks start with FORK_PREEMPT_COUNT, see there and 3312 * finish_task_switch() for details. 3313 * 3314 * finish_task_switch() will drop rq->lock() and lower preempt_count 3315 * and the preempt_enable() will end up enabling preemption (on 3316 * PREEMPT_COUNT kernels). 3317 */ 3318 3319 rq = finish_task_switch(prev); 3320 balance_callback(rq); 3321 preempt_enable(); 3322 3323 if (current->set_child_tid) 3324 put_user(task_pid_vnr(current), current->set_child_tid); 3325 3326 calculate_sigpending(); 3327 } 3328 3329 /* 3330 * context_switch - switch to the new MM and the new thread's register state. 3331 */ 3332 static __always_inline struct rq * 3333 context_switch(struct rq *rq, struct task_struct *prev, 3334 struct task_struct *next, struct rq_flags *rf) 3335 { 3336 prepare_task_switch(rq, prev, next); 3337 3338 /* 3339 * For paravirt, this is coupled with an exit in switch_to to 3340 * combine the page table reload and the switch backend into 3341 * one hypercall. 3342 */ 3343 arch_start_context_switch(prev); 3344 3345 /* 3346 * kernel -> kernel lazy + transfer active 3347 * user -> kernel lazy + mmgrab() active 3348 * 3349 * kernel -> user switch + mmdrop() active 3350 * user -> user switch 3351 */ 3352 if (!next->mm) { // to kernel 3353 enter_lazy_tlb(prev->active_mm, next); 3354 3355 next->active_mm = prev->active_mm; 3356 if (prev->mm) // from user 3357 mmgrab(prev->active_mm); 3358 else 3359 prev->active_mm = NULL; 3360 } else { // to user 3361 /* 3362 * sys_membarrier() requires an smp_mb() between setting 3363 * rq->curr and returning to userspace. 3364 * 3365 * The below provides this either through switch_mm(), or in 3366 * case 'prev->active_mm == next->mm' through 3367 * finish_task_switch()'s mmdrop(). 3368 */ 3369 3370 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3371 3372 if (!prev->mm) { // from kernel 3373 /* will mmdrop() in finish_task_switch(). */ 3374 rq->prev_mm = prev->active_mm; 3375 prev->active_mm = NULL; 3376 } 3377 } 3378 3379 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3380 3381 prepare_lock_switch(rq, next, rf); 3382 3383 /* Here we just switch the register state and the stack. */ 3384 switch_to(prev, next, prev); 3385 barrier(); 3386 3387 return finish_task_switch(prev); 3388 } 3389 3390 /* 3391 * nr_running and nr_context_switches: 3392 * 3393 * externally visible scheduler statistics: current number of runnable 3394 * threads, total number of context switches performed since bootup. 3395 */ 3396 unsigned long nr_running(void) 3397 { 3398 unsigned long i, sum = 0; 3399 3400 for_each_online_cpu(i) 3401 sum += cpu_rq(i)->nr_running; 3402 3403 return sum; 3404 } 3405 3406 /* 3407 * Check if only the current task is running on the CPU. 3408 * 3409 * Caution: this function does not check that the caller has disabled 3410 * preemption, thus the result might have a time-of-check-to-time-of-use 3411 * race. The caller is responsible to use it correctly, for example: 3412 * 3413 * - from a non-preemptible section (of course) 3414 * 3415 * - from a thread that is bound to a single CPU 3416 * 3417 * - in a loop with very short iterations (e.g. a polling loop) 3418 */ 3419 bool single_task_running(void) 3420 { 3421 return raw_rq()->nr_running == 1; 3422 } 3423 EXPORT_SYMBOL(single_task_running); 3424 3425 unsigned long long nr_context_switches(void) 3426 { 3427 int i; 3428 unsigned long long sum = 0; 3429 3430 for_each_possible_cpu(i) 3431 sum += cpu_rq(i)->nr_switches; 3432 3433 return sum; 3434 } 3435 3436 /* 3437 * Consumers of these two interfaces, like for example the cpuidle menu 3438 * governor, are using nonsensical data. Preferring shallow idle state selection 3439 * for a CPU that has IO-wait which might not even end up running the task when 3440 * it does become runnable. 3441 */ 3442 3443 unsigned long nr_iowait_cpu(int cpu) 3444 { 3445 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3446 } 3447 3448 /* 3449 * IO-wait accounting, and how its mostly bollocks (on SMP). 3450 * 3451 * The idea behind IO-wait account is to account the idle time that we could 3452 * have spend running if it were not for IO. That is, if we were to improve the 3453 * storage performance, we'd have a proportional reduction in IO-wait time. 3454 * 3455 * This all works nicely on UP, where, when a task blocks on IO, we account 3456 * idle time as IO-wait, because if the storage were faster, it could've been 3457 * running and we'd not be idle. 3458 * 3459 * This has been extended to SMP, by doing the same for each CPU. This however 3460 * is broken. 3461 * 3462 * Imagine for instance the case where two tasks block on one CPU, only the one 3463 * CPU will have IO-wait accounted, while the other has regular idle. Even 3464 * though, if the storage were faster, both could've ran at the same time, 3465 * utilising both CPUs. 3466 * 3467 * This means, that when looking globally, the current IO-wait accounting on 3468 * SMP is a lower bound, by reason of under accounting. 3469 * 3470 * Worse, since the numbers are provided per CPU, they are sometimes 3471 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3472 * associated with any one particular CPU, it can wake to another CPU than it 3473 * blocked on. This means the per CPU IO-wait number is meaningless. 3474 * 3475 * Task CPU affinities can make all that even more 'interesting'. 3476 */ 3477 3478 unsigned long nr_iowait(void) 3479 { 3480 unsigned long i, sum = 0; 3481 3482 for_each_possible_cpu(i) 3483 sum += nr_iowait_cpu(i); 3484 3485 return sum; 3486 } 3487 3488 #ifdef CONFIG_SMP 3489 3490 /* 3491 * sched_exec - execve() is a valuable balancing opportunity, because at 3492 * this point the task has the smallest effective memory and cache footprint. 3493 */ 3494 void sched_exec(void) 3495 { 3496 struct task_struct *p = current; 3497 unsigned long flags; 3498 int dest_cpu; 3499 3500 raw_spin_lock_irqsave(&p->pi_lock, flags); 3501 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3502 if (dest_cpu == smp_processor_id()) 3503 goto unlock; 3504 3505 if (likely(cpu_active(dest_cpu))) { 3506 struct migration_arg arg = { p, dest_cpu }; 3507 3508 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3510 return; 3511 } 3512 unlock: 3513 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3514 } 3515 3516 #endif 3517 3518 DEFINE_PER_CPU(struct kernel_stat, kstat); 3519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3520 3521 EXPORT_PER_CPU_SYMBOL(kstat); 3522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3523 3524 /* 3525 * The function fair_sched_class.update_curr accesses the struct curr 3526 * and its field curr->exec_start; when called from task_sched_runtime(), 3527 * we observe a high rate of cache misses in practice. 3528 * Prefetching this data results in improved performance. 3529 */ 3530 static inline void prefetch_curr_exec_start(struct task_struct *p) 3531 { 3532 #ifdef CONFIG_FAIR_GROUP_SCHED 3533 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3534 #else 3535 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3536 #endif 3537 prefetch(curr); 3538 prefetch(&curr->exec_start); 3539 } 3540 3541 /* 3542 * Return accounted runtime for the task. 3543 * In case the task is currently running, return the runtime plus current's 3544 * pending runtime that have not been accounted yet. 3545 */ 3546 unsigned long long task_sched_runtime(struct task_struct *p) 3547 { 3548 struct rq_flags rf; 3549 struct rq *rq; 3550 u64 ns; 3551 3552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3553 /* 3554 * 64-bit doesn't need locks to atomically read a 64-bit value. 3555 * So we have a optimization chance when the task's delta_exec is 0. 3556 * Reading ->on_cpu is racy, but this is ok. 3557 * 3558 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3559 * If we race with it entering CPU, unaccounted time is 0. This is 3560 * indistinguishable from the read occurring a few cycles earlier. 3561 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3562 * been accounted, so we're correct here as well. 3563 */ 3564 if (!p->on_cpu || !task_on_rq_queued(p)) 3565 return p->se.sum_exec_runtime; 3566 #endif 3567 3568 rq = task_rq_lock(p, &rf); 3569 /* 3570 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3571 * project cycles that may never be accounted to this 3572 * thread, breaking clock_gettime(). 3573 */ 3574 if (task_current(rq, p) && task_on_rq_queued(p)) { 3575 prefetch_curr_exec_start(p); 3576 update_rq_clock(rq); 3577 p->sched_class->update_curr(rq); 3578 } 3579 ns = p->se.sum_exec_runtime; 3580 task_rq_unlock(rq, p, &rf); 3581 3582 return ns; 3583 } 3584 3585 /* 3586 * This function gets called by the timer code, with HZ frequency. 3587 * We call it with interrupts disabled. 3588 */ 3589 void scheduler_tick(void) 3590 { 3591 int cpu = smp_processor_id(); 3592 struct rq *rq = cpu_rq(cpu); 3593 struct task_struct *curr = rq->curr; 3594 struct rq_flags rf; 3595 3596 sched_clock_tick(); 3597 3598 rq_lock(rq, &rf); 3599 3600 update_rq_clock(rq); 3601 curr->sched_class->task_tick(rq, curr, 0); 3602 calc_global_load_tick(rq); 3603 psi_task_tick(rq); 3604 3605 rq_unlock(rq, &rf); 3606 3607 perf_event_task_tick(); 3608 3609 #ifdef CONFIG_SMP 3610 rq->idle_balance = idle_cpu(cpu); 3611 trigger_load_balance(rq); 3612 #endif 3613 } 3614 3615 #ifdef CONFIG_NO_HZ_FULL 3616 3617 struct tick_work { 3618 int cpu; 3619 atomic_t state; 3620 struct delayed_work work; 3621 }; 3622 /* Values for ->state, see diagram below. */ 3623 #define TICK_SCHED_REMOTE_OFFLINE 0 3624 #define TICK_SCHED_REMOTE_OFFLINING 1 3625 #define TICK_SCHED_REMOTE_RUNNING 2 3626 3627 /* 3628 * State diagram for ->state: 3629 * 3630 * 3631 * TICK_SCHED_REMOTE_OFFLINE 3632 * | ^ 3633 * | | 3634 * | | sched_tick_remote() 3635 * | | 3636 * | | 3637 * +--TICK_SCHED_REMOTE_OFFLINING 3638 * | ^ 3639 * | | 3640 * sched_tick_start() | | sched_tick_stop() 3641 * | | 3642 * V | 3643 * TICK_SCHED_REMOTE_RUNNING 3644 * 3645 * 3646 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3647 * and sched_tick_start() are happy to leave the state in RUNNING. 3648 */ 3649 3650 static struct tick_work __percpu *tick_work_cpu; 3651 3652 static void sched_tick_remote(struct work_struct *work) 3653 { 3654 struct delayed_work *dwork = to_delayed_work(work); 3655 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3656 int cpu = twork->cpu; 3657 struct rq *rq = cpu_rq(cpu); 3658 struct task_struct *curr; 3659 struct rq_flags rf; 3660 u64 delta; 3661 int os; 3662 3663 /* 3664 * Handle the tick only if it appears the remote CPU is running in full 3665 * dynticks mode. The check is racy by nature, but missing a tick or 3666 * having one too much is no big deal because the scheduler tick updates 3667 * statistics and checks timeslices in a time-independent way, regardless 3668 * of when exactly it is running. 3669 */ 3670 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3671 goto out_requeue; 3672 3673 rq_lock_irq(rq, &rf); 3674 curr = rq->curr; 3675 if (is_idle_task(curr) || cpu_is_offline(cpu)) 3676 goto out_unlock; 3677 3678 update_rq_clock(rq); 3679 delta = rq_clock_task(rq) - curr->se.exec_start; 3680 3681 /* 3682 * Make sure the next tick runs within a reasonable 3683 * amount of time. 3684 */ 3685 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3686 curr->sched_class->task_tick(rq, curr, 0); 3687 3688 out_unlock: 3689 rq_unlock_irq(rq, &rf); 3690 3691 out_requeue: 3692 /* 3693 * Run the remote tick once per second (1Hz). This arbitrary 3694 * frequency is large enough to avoid overload but short enough 3695 * to keep scheduler internal stats reasonably up to date. But 3696 * first update state to reflect hotplug activity if required. 3697 */ 3698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3700 if (os == TICK_SCHED_REMOTE_RUNNING) 3701 queue_delayed_work(system_unbound_wq, dwork, HZ); 3702 } 3703 3704 static void sched_tick_start(int cpu) 3705 { 3706 int os; 3707 struct tick_work *twork; 3708 3709 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3710 return; 3711 3712 WARN_ON_ONCE(!tick_work_cpu); 3713 3714 twork = per_cpu_ptr(tick_work_cpu, cpu); 3715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3717 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3718 twork->cpu = cpu; 3719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3720 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3721 } 3722 } 3723 3724 #ifdef CONFIG_HOTPLUG_CPU 3725 static void sched_tick_stop(int cpu) 3726 { 3727 struct tick_work *twork; 3728 int os; 3729 3730 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3731 return; 3732 3733 WARN_ON_ONCE(!tick_work_cpu); 3734 3735 twork = per_cpu_ptr(tick_work_cpu, cpu); 3736 /* There cannot be competing actions, but don't rely on stop-machine. */ 3737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3739 /* Don't cancel, as this would mess up the state machine. */ 3740 } 3741 #endif /* CONFIG_HOTPLUG_CPU */ 3742 3743 int __init sched_tick_offload_init(void) 3744 { 3745 tick_work_cpu = alloc_percpu(struct tick_work); 3746 BUG_ON(!tick_work_cpu); 3747 return 0; 3748 } 3749 3750 #else /* !CONFIG_NO_HZ_FULL */ 3751 static inline void sched_tick_start(int cpu) { } 3752 static inline void sched_tick_stop(int cpu) { } 3753 #endif 3754 3755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3756 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3757 /* 3758 * If the value passed in is equal to the current preempt count 3759 * then we just disabled preemption. Start timing the latency. 3760 */ 3761 static inline void preempt_latency_start(int val) 3762 { 3763 if (preempt_count() == val) { 3764 unsigned long ip = get_lock_parent_ip(); 3765 #ifdef CONFIG_DEBUG_PREEMPT 3766 current->preempt_disable_ip = ip; 3767 #endif 3768 trace_preempt_off(CALLER_ADDR0, ip); 3769 } 3770 } 3771 3772 void preempt_count_add(int val) 3773 { 3774 #ifdef CONFIG_DEBUG_PREEMPT 3775 /* 3776 * Underflow? 3777 */ 3778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3779 return; 3780 #endif 3781 __preempt_count_add(val); 3782 #ifdef CONFIG_DEBUG_PREEMPT 3783 /* 3784 * Spinlock count overflowing soon? 3785 */ 3786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3787 PREEMPT_MASK - 10); 3788 #endif 3789 preempt_latency_start(val); 3790 } 3791 EXPORT_SYMBOL(preempt_count_add); 3792 NOKPROBE_SYMBOL(preempt_count_add); 3793 3794 /* 3795 * If the value passed in equals to the current preempt count 3796 * then we just enabled preemption. Stop timing the latency. 3797 */ 3798 static inline void preempt_latency_stop(int val) 3799 { 3800 if (preempt_count() == val) 3801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3802 } 3803 3804 void preempt_count_sub(int val) 3805 { 3806 #ifdef CONFIG_DEBUG_PREEMPT 3807 /* 3808 * Underflow? 3809 */ 3810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3811 return; 3812 /* 3813 * Is the spinlock portion underflowing? 3814 */ 3815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3816 !(preempt_count() & PREEMPT_MASK))) 3817 return; 3818 #endif 3819 3820 preempt_latency_stop(val); 3821 __preempt_count_sub(val); 3822 } 3823 EXPORT_SYMBOL(preempt_count_sub); 3824 NOKPROBE_SYMBOL(preempt_count_sub); 3825 3826 #else 3827 static inline void preempt_latency_start(int val) { } 3828 static inline void preempt_latency_stop(int val) { } 3829 #endif 3830 3831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3832 { 3833 #ifdef CONFIG_DEBUG_PREEMPT 3834 return p->preempt_disable_ip; 3835 #else 3836 return 0; 3837 #endif 3838 } 3839 3840 /* 3841 * Print scheduling while atomic bug: 3842 */ 3843 static noinline void __schedule_bug(struct task_struct *prev) 3844 { 3845 /* Save this before calling printk(), since that will clobber it */ 3846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3847 3848 if (oops_in_progress) 3849 return; 3850 3851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3852 prev->comm, prev->pid, preempt_count()); 3853 3854 debug_show_held_locks(prev); 3855 print_modules(); 3856 if (irqs_disabled()) 3857 print_irqtrace_events(prev); 3858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3859 && in_atomic_preempt_off()) { 3860 pr_err("Preemption disabled at:"); 3861 print_ip_sym(preempt_disable_ip); 3862 pr_cont("\n"); 3863 } 3864 if (panic_on_warn) 3865 panic("scheduling while atomic\n"); 3866 3867 dump_stack(); 3868 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3869 } 3870 3871 /* 3872 * Various schedule()-time debugging checks and statistics: 3873 */ 3874 static inline void schedule_debug(struct task_struct *prev) 3875 { 3876 #ifdef CONFIG_SCHED_STACK_END_CHECK 3877 if (task_stack_end_corrupted(prev)) 3878 panic("corrupted stack end detected inside scheduler\n"); 3879 #endif 3880 3881 if (unlikely(in_atomic_preempt_off())) { 3882 __schedule_bug(prev); 3883 preempt_count_set(PREEMPT_DISABLED); 3884 } 3885 rcu_sleep_check(); 3886 3887 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3888 3889 schedstat_inc(this_rq()->sched_count); 3890 } 3891 3892 /* 3893 * Pick up the highest-prio task: 3894 */ 3895 static inline struct task_struct * 3896 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3897 { 3898 const struct sched_class *class; 3899 struct task_struct *p; 3900 3901 /* 3902 * Optimization: we know that if all tasks are in the fair class we can 3903 * call that function directly, but only if the @prev task wasn't of a 3904 * higher scheduling class, because otherwise those loose the 3905 * opportunity to pull in more work from other CPUs. 3906 */ 3907 if (likely((prev->sched_class == &idle_sched_class || 3908 prev->sched_class == &fair_sched_class) && 3909 rq->nr_running == rq->cfs.h_nr_running)) { 3910 3911 p = fair_sched_class.pick_next_task(rq, prev, rf); 3912 if (unlikely(p == RETRY_TASK)) 3913 goto restart; 3914 3915 /* Assumes fair_sched_class->next == idle_sched_class */ 3916 if (unlikely(!p)) 3917 p = idle_sched_class.pick_next_task(rq, prev, rf); 3918 3919 return p; 3920 } 3921 3922 restart: 3923 /* 3924 * Ensure that we put DL/RT tasks before the pick loop, such that they 3925 * can PULL higher prio tasks when we lower the RQ 'priority'. 3926 */ 3927 prev->sched_class->put_prev_task(rq, prev, rf); 3928 if (!rq->nr_running) 3929 newidle_balance(rq, rf); 3930 3931 for_each_class(class) { 3932 p = class->pick_next_task(rq, NULL, NULL); 3933 if (p) 3934 return p; 3935 } 3936 3937 /* The idle class should always have a runnable task: */ 3938 BUG(); 3939 } 3940 3941 /* 3942 * __schedule() is the main scheduler function. 3943 * 3944 * The main means of driving the scheduler and thus entering this function are: 3945 * 3946 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3947 * 3948 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3949 * paths. For example, see arch/x86/entry_64.S. 3950 * 3951 * To drive preemption between tasks, the scheduler sets the flag in timer 3952 * interrupt handler scheduler_tick(). 3953 * 3954 * 3. Wakeups don't really cause entry into schedule(). They add a 3955 * task to the run-queue and that's it. 3956 * 3957 * Now, if the new task added to the run-queue preempts the current 3958 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3959 * called on the nearest possible occasion: 3960 * 3961 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 3962 * 3963 * - in syscall or exception context, at the next outmost 3964 * preempt_enable(). (this might be as soon as the wake_up()'s 3965 * spin_unlock()!) 3966 * 3967 * - in IRQ context, return from interrupt-handler to 3968 * preemptible context 3969 * 3970 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 3971 * then at the next: 3972 * 3973 * - cond_resched() call 3974 * - explicit schedule() call 3975 * - return from syscall or exception to user-space 3976 * - return from interrupt-handler to user-space 3977 * 3978 * WARNING: must be called with preemption disabled! 3979 */ 3980 static void __sched notrace __schedule(bool preempt) 3981 { 3982 struct task_struct *prev, *next; 3983 unsigned long *switch_count; 3984 struct rq_flags rf; 3985 struct rq *rq; 3986 int cpu; 3987 3988 cpu = smp_processor_id(); 3989 rq = cpu_rq(cpu); 3990 prev = rq->curr; 3991 3992 schedule_debug(prev); 3993 3994 if (sched_feat(HRTICK)) 3995 hrtick_clear(rq); 3996 3997 local_irq_disable(); 3998 rcu_note_context_switch(preempt); 3999 4000 /* 4001 * Make sure that signal_pending_state()->signal_pending() below 4002 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4003 * done by the caller to avoid the race with signal_wake_up(). 4004 * 4005 * The membarrier system call requires a full memory barrier 4006 * after coming from user-space, before storing to rq->curr. 4007 */ 4008 rq_lock(rq, &rf); 4009 smp_mb__after_spinlock(); 4010 4011 /* Promote REQ to ACT */ 4012 rq->clock_update_flags <<= 1; 4013 update_rq_clock(rq); 4014 4015 switch_count = &prev->nivcsw; 4016 if (!preempt && prev->state) { 4017 if (signal_pending_state(prev->state, prev)) { 4018 prev->state = TASK_RUNNING; 4019 } else { 4020 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4021 4022 if (prev->in_iowait) { 4023 atomic_inc(&rq->nr_iowait); 4024 delayacct_blkio_start(); 4025 } 4026 } 4027 switch_count = &prev->nvcsw; 4028 } 4029 4030 next = pick_next_task(rq, prev, &rf); 4031 clear_tsk_need_resched(prev); 4032 clear_preempt_need_resched(); 4033 4034 if (likely(prev != next)) { 4035 rq->nr_switches++; 4036 rq->curr = next; 4037 /* 4038 * The membarrier system call requires each architecture 4039 * to have a full memory barrier after updating 4040 * rq->curr, before returning to user-space. 4041 * 4042 * Here are the schemes providing that barrier on the 4043 * various architectures: 4044 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4045 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4046 * - finish_lock_switch() for weakly-ordered 4047 * architectures where spin_unlock is a full barrier, 4048 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4049 * is a RELEASE barrier), 4050 */ 4051 ++*switch_count; 4052 4053 trace_sched_switch(preempt, prev, next); 4054 4055 /* Also unlocks the rq: */ 4056 rq = context_switch(rq, prev, next, &rf); 4057 } else { 4058 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4059 rq_unlock_irq(rq, &rf); 4060 } 4061 4062 balance_callback(rq); 4063 } 4064 4065 void __noreturn do_task_dead(void) 4066 { 4067 /* Causes final put_task_struct in finish_task_switch(): */ 4068 set_special_state(TASK_DEAD); 4069 4070 /* Tell freezer to ignore us: */ 4071 current->flags |= PF_NOFREEZE; 4072 4073 __schedule(false); 4074 BUG(); 4075 4076 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4077 for (;;) 4078 cpu_relax(); 4079 } 4080 4081 static inline void sched_submit_work(struct task_struct *tsk) 4082 { 4083 if (!tsk->state) 4084 return; 4085 4086 /* 4087 * If a worker went to sleep, notify and ask workqueue whether 4088 * it wants to wake up a task to maintain concurrency. 4089 * As this function is called inside the schedule() context, 4090 * we disable preemption to avoid it calling schedule() again 4091 * in the possible wakeup of a kworker. 4092 */ 4093 if (tsk->flags & PF_WQ_WORKER) { 4094 preempt_disable(); 4095 wq_worker_sleeping(tsk); 4096 preempt_enable_no_resched(); 4097 } 4098 4099 if (tsk_is_pi_blocked(tsk)) 4100 return; 4101 4102 /* 4103 * If we are going to sleep and we have plugged IO queued, 4104 * make sure to submit it to avoid deadlocks. 4105 */ 4106 if (blk_needs_flush_plug(tsk)) 4107 blk_schedule_flush_plug(tsk); 4108 } 4109 4110 static void sched_update_worker(struct task_struct *tsk) 4111 { 4112 if (tsk->flags & PF_WQ_WORKER) 4113 wq_worker_running(tsk); 4114 } 4115 4116 asmlinkage __visible void __sched schedule(void) 4117 { 4118 struct task_struct *tsk = current; 4119 4120 sched_submit_work(tsk); 4121 do { 4122 preempt_disable(); 4123 __schedule(false); 4124 sched_preempt_enable_no_resched(); 4125 } while (need_resched()); 4126 sched_update_worker(tsk); 4127 } 4128 EXPORT_SYMBOL(schedule); 4129 4130 /* 4131 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4132 * state (have scheduled out non-voluntarily) by making sure that all 4133 * tasks have either left the run queue or have gone into user space. 4134 * As idle tasks do not do either, they must not ever be preempted 4135 * (schedule out non-voluntarily). 4136 * 4137 * schedule_idle() is similar to schedule_preempt_disable() except that it 4138 * never enables preemption because it does not call sched_submit_work(). 4139 */ 4140 void __sched schedule_idle(void) 4141 { 4142 /* 4143 * As this skips calling sched_submit_work(), which the idle task does 4144 * regardless because that function is a nop when the task is in a 4145 * TASK_RUNNING state, make sure this isn't used someplace that the 4146 * current task can be in any other state. Note, idle is always in the 4147 * TASK_RUNNING state. 4148 */ 4149 WARN_ON_ONCE(current->state); 4150 do { 4151 __schedule(false); 4152 } while (need_resched()); 4153 } 4154 4155 #ifdef CONFIG_CONTEXT_TRACKING 4156 asmlinkage __visible void __sched schedule_user(void) 4157 { 4158 /* 4159 * If we come here after a random call to set_need_resched(), 4160 * or we have been woken up remotely but the IPI has not yet arrived, 4161 * we haven't yet exited the RCU idle mode. Do it here manually until 4162 * we find a better solution. 4163 * 4164 * NB: There are buggy callers of this function. Ideally we 4165 * should warn if prev_state != CONTEXT_USER, but that will trigger 4166 * too frequently to make sense yet. 4167 */ 4168 enum ctx_state prev_state = exception_enter(); 4169 schedule(); 4170 exception_exit(prev_state); 4171 } 4172 #endif 4173 4174 /** 4175 * schedule_preempt_disabled - called with preemption disabled 4176 * 4177 * Returns with preemption disabled. Note: preempt_count must be 1 4178 */ 4179 void __sched schedule_preempt_disabled(void) 4180 { 4181 sched_preempt_enable_no_resched(); 4182 schedule(); 4183 preempt_disable(); 4184 } 4185 4186 static void __sched notrace preempt_schedule_common(void) 4187 { 4188 do { 4189 /* 4190 * Because the function tracer can trace preempt_count_sub() 4191 * and it also uses preempt_enable/disable_notrace(), if 4192 * NEED_RESCHED is set, the preempt_enable_notrace() called 4193 * by the function tracer will call this function again and 4194 * cause infinite recursion. 4195 * 4196 * Preemption must be disabled here before the function 4197 * tracer can trace. Break up preempt_disable() into two 4198 * calls. One to disable preemption without fear of being 4199 * traced. The other to still record the preemption latency, 4200 * which can also be traced by the function tracer. 4201 */ 4202 preempt_disable_notrace(); 4203 preempt_latency_start(1); 4204 __schedule(true); 4205 preempt_latency_stop(1); 4206 preempt_enable_no_resched_notrace(); 4207 4208 /* 4209 * Check again in case we missed a preemption opportunity 4210 * between schedule and now. 4211 */ 4212 } while (need_resched()); 4213 } 4214 4215 #ifdef CONFIG_PREEMPTION 4216 /* 4217 * this is the entry point to schedule() from in-kernel preemption 4218 * off of preempt_enable. Kernel preemptions off return from interrupt 4219 * occur there and call schedule directly. 4220 */ 4221 asmlinkage __visible void __sched notrace preempt_schedule(void) 4222 { 4223 /* 4224 * If there is a non-zero preempt_count or interrupts are disabled, 4225 * we do not want to preempt the current task. Just return.. 4226 */ 4227 if (likely(!preemptible())) 4228 return; 4229 4230 preempt_schedule_common(); 4231 } 4232 NOKPROBE_SYMBOL(preempt_schedule); 4233 EXPORT_SYMBOL(preempt_schedule); 4234 4235 /** 4236 * preempt_schedule_notrace - preempt_schedule called by tracing 4237 * 4238 * The tracing infrastructure uses preempt_enable_notrace to prevent 4239 * recursion and tracing preempt enabling caused by the tracing 4240 * infrastructure itself. But as tracing can happen in areas coming 4241 * from userspace or just about to enter userspace, a preempt enable 4242 * can occur before user_exit() is called. This will cause the scheduler 4243 * to be called when the system is still in usermode. 4244 * 4245 * To prevent this, the preempt_enable_notrace will use this function 4246 * instead of preempt_schedule() to exit user context if needed before 4247 * calling the scheduler. 4248 */ 4249 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4250 { 4251 enum ctx_state prev_ctx; 4252 4253 if (likely(!preemptible())) 4254 return; 4255 4256 do { 4257 /* 4258 * Because the function tracer can trace preempt_count_sub() 4259 * and it also uses preempt_enable/disable_notrace(), if 4260 * NEED_RESCHED is set, the preempt_enable_notrace() called 4261 * by the function tracer will call this function again and 4262 * cause infinite recursion. 4263 * 4264 * Preemption must be disabled here before the function 4265 * tracer can trace. Break up preempt_disable() into two 4266 * calls. One to disable preemption without fear of being 4267 * traced. The other to still record the preemption latency, 4268 * which can also be traced by the function tracer. 4269 */ 4270 preempt_disable_notrace(); 4271 preempt_latency_start(1); 4272 /* 4273 * Needs preempt disabled in case user_exit() is traced 4274 * and the tracer calls preempt_enable_notrace() causing 4275 * an infinite recursion. 4276 */ 4277 prev_ctx = exception_enter(); 4278 __schedule(true); 4279 exception_exit(prev_ctx); 4280 4281 preempt_latency_stop(1); 4282 preempt_enable_no_resched_notrace(); 4283 } while (need_resched()); 4284 } 4285 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4286 4287 #endif /* CONFIG_PREEMPTION */ 4288 4289 /* 4290 * this is the entry point to schedule() from kernel preemption 4291 * off of irq context. 4292 * Note, that this is called and return with irqs disabled. This will 4293 * protect us against recursive calling from irq. 4294 */ 4295 asmlinkage __visible void __sched preempt_schedule_irq(void) 4296 { 4297 enum ctx_state prev_state; 4298 4299 /* Catch callers which need to be fixed */ 4300 BUG_ON(preempt_count() || !irqs_disabled()); 4301 4302 prev_state = exception_enter(); 4303 4304 do { 4305 preempt_disable(); 4306 local_irq_enable(); 4307 __schedule(true); 4308 local_irq_disable(); 4309 sched_preempt_enable_no_resched(); 4310 } while (need_resched()); 4311 4312 exception_exit(prev_state); 4313 } 4314 4315 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4316 void *key) 4317 { 4318 return try_to_wake_up(curr->private, mode, wake_flags); 4319 } 4320 EXPORT_SYMBOL(default_wake_function); 4321 4322 #ifdef CONFIG_RT_MUTEXES 4323 4324 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4325 { 4326 if (pi_task) 4327 prio = min(prio, pi_task->prio); 4328 4329 return prio; 4330 } 4331 4332 static inline int rt_effective_prio(struct task_struct *p, int prio) 4333 { 4334 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4335 4336 return __rt_effective_prio(pi_task, prio); 4337 } 4338 4339 /* 4340 * rt_mutex_setprio - set the current priority of a task 4341 * @p: task to boost 4342 * @pi_task: donor task 4343 * 4344 * This function changes the 'effective' priority of a task. It does 4345 * not touch ->normal_prio like __setscheduler(). 4346 * 4347 * Used by the rt_mutex code to implement priority inheritance 4348 * logic. Call site only calls if the priority of the task changed. 4349 */ 4350 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4351 { 4352 int prio, oldprio, queued, running, queue_flag = 4353 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4354 const struct sched_class *prev_class; 4355 struct rq_flags rf; 4356 struct rq *rq; 4357 4358 /* XXX used to be waiter->prio, not waiter->task->prio */ 4359 prio = __rt_effective_prio(pi_task, p->normal_prio); 4360 4361 /* 4362 * If nothing changed; bail early. 4363 */ 4364 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4365 return; 4366 4367 rq = __task_rq_lock(p, &rf); 4368 update_rq_clock(rq); 4369 /* 4370 * Set under pi_lock && rq->lock, such that the value can be used under 4371 * either lock. 4372 * 4373 * Note that there is loads of tricky to make this pointer cache work 4374 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4375 * ensure a task is de-boosted (pi_task is set to NULL) before the 4376 * task is allowed to run again (and can exit). This ensures the pointer 4377 * points to a blocked task -- which guaratees the task is present. 4378 */ 4379 p->pi_top_task = pi_task; 4380 4381 /* 4382 * For FIFO/RR we only need to set prio, if that matches we're done. 4383 */ 4384 if (prio == p->prio && !dl_prio(prio)) 4385 goto out_unlock; 4386 4387 /* 4388 * Idle task boosting is a nono in general. There is one 4389 * exception, when PREEMPT_RT and NOHZ is active: 4390 * 4391 * The idle task calls get_next_timer_interrupt() and holds 4392 * the timer wheel base->lock on the CPU and another CPU wants 4393 * to access the timer (probably to cancel it). We can safely 4394 * ignore the boosting request, as the idle CPU runs this code 4395 * with interrupts disabled and will complete the lock 4396 * protected section without being interrupted. So there is no 4397 * real need to boost. 4398 */ 4399 if (unlikely(p == rq->idle)) { 4400 WARN_ON(p != rq->curr); 4401 WARN_ON(p->pi_blocked_on); 4402 goto out_unlock; 4403 } 4404 4405 trace_sched_pi_setprio(p, pi_task); 4406 oldprio = p->prio; 4407 4408 if (oldprio == prio) 4409 queue_flag &= ~DEQUEUE_MOVE; 4410 4411 prev_class = p->sched_class; 4412 queued = task_on_rq_queued(p); 4413 running = task_current(rq, p); 4414 if (queued) 4415 dequeue_task(rq, p, queue_flag); 4416 if (running) 4417 put_prev_task(rq, p); 4418 4419 /* 4420 * Boosting condition are: 4421 * 1. -rt task is running and holds mutex A 4422 * --> -dl task blocks on mutex A 4423 * 4424 * 2. -dl task is running and holds mutex A 4425 * --> -dl task blocks on mutex A and could preempt the 4426 * running task 4427 */ 4428 if (dl_prio(prio)) { 4429 if (!dl_prio(p->normal_prio) || 4430 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4431 p->dl.dl_boosted = 1; 4432 queue_flag |= ENQUEUE_REPLENISH; 4433 } else 4434 p->dl.dl_boosted = 0; 4435 p->sched_class = &dl_sched_class; 4436 } else if (rt_prio(prio)) { 4437 if (dl_prio(oldprio)) 4438 p->dl.dl_boosted = 0; 4439 if (oldprio < prio) 4440 queue_flag |= ENQUEUE_HEAD; 4441 p->sched_class = &rt_sched_class; 4442 } else { 4443 if (dl_prio(oldprio)) 4444 p->dl.dl_boosted = 0; 4445 if (rt_prio(oldprio)) 4446 p->rt.timeout = 0; 4447 p->sched_class = &fair_sched_class; 4448 } 4449 4450 p->prio = prio; 4451 4452 if (queued) 4453 enqueue_task(rq, p, queue_flag); 4454 if (running) 4455 set_next_task(rq, p); 4456 4457 check_class_changed(rq, p, prev_class, oldprio); 4458 out_unlock: 4459 /* Avoid rq from going away on us: */ 4460 preempt_disable(); 4461 __task_rq_unlock(rq, &rf); 4462 4463 balance_callback(rq); 4464 preempt_enable(); 4465 } 4466 #else 4467 static inline int rt_effective_prio(struct task_struct *p, int prio) 4468 { 4469 return prio; 4470 } 4471 #endif 4472 4473 void set_user_nice(struct task_struct *p, long nice) 4474 { 4475 bool queued, running; 4476 int old_prio, delta; 4477 struct rq_flags rf; 4478 struct rq *rq; 4479 4480 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4481 return; 4482 /* 4483 * We have to be careful, if called from sys_setpriority(), 4484 * the task might be in the middle of scheduling on another CPU. 4485 */ 4486 rq = task_rq_lock(p, &rf); 4487 update_rq_clock(rq); 4488 4489 /* 4490 * The RT priorities are set via sched_setscheduler(), but we still 4491 * allow the 'normal' nice value to be set - but as expected 4492 * it wont have any effect on scheduling until the task is 4493 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4494 */ 4495 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4496 p->static_prio = NICE_TO_PRIO(nice); 4497 goto out_unlock; 4498 } 4499 queued = task_on_rq_queued(p); 4500 running = task_current(rq, p); 4501 if (queued) 4502 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4503 if (running) 4504 put_prev_task(rq, p); 4505 4506 p->static_prio = NICE_TO_PRIO(nice); 4507 set_load_weight(p, true); 4508 old_prio = p->prio; 4509 p->prio = effective_prio(p); 4510 delta = p->prio - old_prio; 4511 4512 if (queued) { 4513 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4514 /* 4515 * If the task increased its priority or is running and 4516 * lowered its priority, then reschedule its CPU: 4517 */ 4518 if (delta < 0 || (delta > 0 && task_running(rq, p))) 4519 resched_curr(rq); 4520 } 4521 if (running) 4522 set_next_task(rq, p); 4523 out_unlock: 4524 task_rq_unlock(rq, p, &rf); 4525 } 4526 EXPORT_SYMBOL(set_user_nice); 4527 4528 /* 4529 * can_nice - check if a task can reduce its nice value 4530 * @p: task 4531 * @nice: nice value 4532 */ 4533 int can_nice(const struct task_struct *p, const int nice) 4534 { 4535 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4536 int nice_rlim = nice_to_rlimit(nice); 4537 4538 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4539 capable(CAP_SYS_NICE)); 4540 } 4541 4542 #ifdef __ARCH_WANT_SYS_NICE 4543 4544 /* 4545 * sys_nice - change the priority of the current process. 4546 * @increment: priority increment 4547 * 4548 * sys_setpriority is a more generic, but much slower function that 4549 * does similar things. 4550 */ 4551 SYSCALL_DEFINE1(nice, int, increment) 4552 { 4553 long nice, retval; 4554 4555 /* 4556 * Setpriority might change our priority at the same moment. 4557 * We don't have to worry. Conceptually one call occurs first 4558 * and we have a single winner. 4559 */ 4560 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4561 nice = task_nice(current) + increment; 4562 4563 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4564 if (increment < 0 && !can_nice(current, nice)) 4565 return -EPERM; 4566 4567 retval = security_task_setnice(current, nice); 4568 if (retval) 4569 return retval; 4570 4571 set_user_nice(current, nice); 4572 return 0; 4573 } 4574 4575 #endif 4576 4577 /** 4578 * task_prio - return the priority value of a given task. 4579 * @p: the task in question. 4580 * 4581 * Return: The priority value as seen by users in /proc. 4582 * RT tasks are offset by -200. Normal tasks are centered 4583 * around 0, value goes from -16 to +15. 4584 */ 4585 int task_prio(const struct task_struct *p) 4586 { 4587 return p->prio - MAX_RT_PRIO; 4588 } 4589 4590 /** 4591 * idle_cpu - is a given CPU idle currently? 4592 * @cpu: the processor in question. 4593 * 4594 * Return: 1 if the CPU is currently idle. 0 otherwise. 4595 */ 4596 int idle_cpu(int cpu) 4597 { 4598 struct rq *rq = cpu_rq(cpu); 4599 4600 if (rq->curr != rq->idle) 4601 return 0; 4602 4603 if (rq->nr_running) 4604 return 0; 4605 4606 #ifdef CONFIG_SMP 4607 if (!llist_empty(&rq->wake_list)) 4608 return 0; 4609 #endif 4610 4611 return 1; 4612 } 4613 4614 /** 4615 * available_idle_cpu - is a given CPU idle for enqueuing work. 4616 * @cpu: the CPU in question. 4617 * 4618 * Return: 1 if the CPU is currently idle. 0 otherwise. 4619 */ 4620 int available_idle_cpu(int cpu) 4621 { 4622 if (!idle_cpu(cpu)) 4623 return 0; 4624 4625 if (vcpu_is_preempted(cpu)) 4626 return 0; 4627 4628 return 1; 4629 } 4630 4631 /** 4632 * idle_task - return the idle task for a given CPU. 4633 * @cpu: the processor in question. 4634 * 4635 * Return: The idle task for the CPU @cpu. 4636 */ 4637 struct task_struct *idle_task(int cpu) 4638 { 4639 return cpu_rq(cpu)->idle; 4640 } 4641 4642 /** 4643 * find_process_by_pid - find a process with a matching PID value. 4644 * @pid: the pid in question. 4645 * 4646 * The task of @pid, if found. %NULL otherwise. 4647 */ 4648 static struct task_struct *find_process_by_pid(pid_t pid) 4649 { 4650 return pid ? find_task_by_vpid(pid) : current; 4651 } 4652 4653 /* 4654 * sched_setparam() passes in -1 for its policy, to let the functions 4655 * it calls know not to change it. 4656 */ 4657 #define SETPARAM_POLICY -1 4658 4659 static void __setscheduler_params(struct task_struct *p, 4660 const struct sched_attr *attr) 4661 { 4662 int policy = attr->sched_policy; 4663 4664 if (policy == SETPARAM_POLICY) 4665 policy = p->policy; 4666 4667 p->policy = policy; 4668 4669 if (dl_policy(policy)) 4670 __setparam_dl(p, attr); 4671 else if (fair_policy(policy)) 4672 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4673 4674 /* 4675 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4676 * !rt_policy. Always setting this ensures that things like 4677 * getparam()/getattr() don't report silly values for !rt tasks. 4678 */ 4679 p->rt_priority = attr->sched_priority; 4680 p->normal_prio = normal_prio(p); 4681 set_load_weight(p, true); 4682 } 4683 4684 /* Actually do priority change: must hold pi & rq lock. */ 4685 static void __setscheduler(struct rq *rq, struct task_struct *p, 4686 const struct sched_attr *attr, bool keep_boost) 4687 { 4688 /* 4689 * If params can't change scheduling class changes aren't allowed 4690 * either. 4691 */ 4692 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4693 return; 4694 4695 __setscheduler_params(p, attr); 4696 4697 /* 4698 * Keep a potential priority boosting if called from 4699 * sched_setscheduler(). 4700 */ 4701 p->prio = normal_prio(p); 4702 if (keep_boost) 4703 p->prio = rt_effective_prio(p, p->prio); 4704 4705 if (dl_prio(p->prio)) 4706 p->sched_class = &dl_sched_class; 4707 else if (rt_prio(p->prio)) 4708 p->sched_class = &rt_sched_class; 4709 else 4710 p->sched_class = &fair_sched_class; 4711 } 4712 4713 /* 4714 * Check the target process has a UID that matches the current process's: 4715 */ 4716 static bool check_same_owner(struct task_struct *p) 4717 { 4718 const struct cred *cred = current_cred(), *pcred; 4719 bool match; 4720 4721 rcu_read_lock(); 4722 pcred = __task_cred(p); 4723 match = (uid_eq(cred->euid, pcred->euid) || 4724 uid_eq(cred->euid, pcred->uid)); 4725 rcu_read_unlock(); 4726 return match; 4727 } 4728 4729 static int __sched_setscheduler(struct task_struct *p, 4730 const struct sched_attr *attr, 4731 bool user, bool pi) 4732 { 4733 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4734 MAX_RT_PRIO - 1 - attr->sched_priority; 4735 int retval, oldprio, oldpolicy = -1, queued, running; 4736 int new_effective_prio, policy = attr->sched_policy; 4737 const struct sched_class *prev_class; 4738 struct rq_flags rf; 4739 int reset_on_fork; 4740 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4741 struct rq *rq; 4742 4743 /* The pi code expects interrupts enabled */ 4744 BUG_ON(pi && in_interrupt()); 4745 recheck: 4746 /* Double check policy once rq lock held: */ 4747 if (policy < 0) { 4748 reset_on_fork = p->sched_reset_on_fork; 4749 policy = oldpolicy = p->policy; 4750 } else { 4751 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4752 4753 if (!valid_policy(policy)) 4754 return -EINVAL; 4755 } 4756 4757 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4758 return -EINVAL; 4759 4760 /* 4761 * Valid priorities for SCHED_FIFO and SCHED_RR are 4762 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4763 * SCHED_BATCH and SCHED_IDLE is 0. 4764 */ 4765 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4766 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4767 return -EINVAL; 4768 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4769 (rt_policy(policy) != (attr->sched_priority != 0))) 4770 return -EINVAL; 4771 4772 /* 4773 * Allow unprivileged RT tasks to decrease priority: 4774 */ 4775 if (user && !capable(CAP_SYS_NICE)) { 4776 if (fair_policy(policy)) { 4777 if (attr->sched_nice < task_nice(p) && 4778 !can_nice(p, attr->sched_nice)) 4779 return -EPERM; 4780 } 4781 4782 if (rt_policy(policy)) { 4783 unsigned long rlim_rtprio = 4784 task_rlimit(p, RLIMIT_RTPRIO); 4785 4786 /* Can't set/change the rt policy: */ 4787 if (policy != p->policy && !rlim_rtprio) 4788 return -EPERM; 4789 4790 /* Can't increase priority: */ 4791 if (attr->sched_priority > p->rt_priority && 4792 attr->sched_priority > rlim_rtprio) 4793 return -EPERM; 4794 } 4795 4796 /* 4797 * Can't set/change SCHED_DEADLINE policy at all for now 4798 * (safest behavior); in the future we would like to allow 4799 * unprivileged DL tasks to increase their relative deadline 4800 * or reduce their runtime (both ways reducing utilization) 4801 */ 4802 if (dl_policy(policy)) 4803 return -EPERM; 4804 4805 /* 4806 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4807 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4808 */ 4809 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4810 if (!can_nice(p, task_nice(p))) 4811 return -EPERM; 4812 } 4813 4814 /* Can't change other user's priorities: */ 4815 if (!check_same_owner(p)) 4816 return -EPERM; 4817 4818 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4819 if (p->sched_reset_on_fork && !reset_on_fork) 4820 return -EPERM; 4821 } 4822 4823 if (user) { 4824 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4825 return -EINVAL; 4826 4827 retval = security_task_setscheduler(p); 4828 if (retval) 4829 return retval; 4830 } 4831 4832 /* Update task specific "requested" clamps */ 4833 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4834 retval = uclamp_validate(p, attr); 4835 if (retval) 4836 return retval; 4837 } 4838 4839 if (pi) 4840 cpuset_read_lock(); 4841 4842 /* 4843 * Make sure no PI-waiters arrive (or leave) while we are 4844 * changing the priority of the task: 4845 * 4846 * To be able to change p->policy safely, the appropriate 4847 * runqueue lock must be held. 4848 */ 4849 rq = task_rq_lock(p, &rf); 4850 update_rq_clock(rq); 4851 4852 /* 4853 * Changing the policy of the stop threads its a very bad idea: 4854 */ 4855 if (p == rq->stop) { 4856 retval = -EINVAL; 4857 goto unlock; 4858 } 4859 4860 /* 4861 * If not changing anything there's no need to proceed further, 4862 * but store a possible modification of reset_on_fork. 4863 */ 4864 if (unlikely(policy == p->policy)) { 4865 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4866 goto change; 4867 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4868 goto change; 4869 if (dl_policy(policy) && dl_param_changed(p, attr)) 4870 goto change; 4871 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4872 goto change; 4873 4874 p->sched_reset_on_fork = reset_on_fork; 4875 retval = 0; 4876 goto unlock; 4877 } 4878 change: 4879 4880 if (user) { 4881 #ifdef CONFIG_RT_GROUP_SCHED 4882 /* 4883 * Do not allow realtime tasks into groups that have no runtime 4884 * assigned. 4885 */ 4886 if (rt_bandwidth_enabled() && rt_policy(policy) && 4887 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4888 !task_group_is_autogroup(task_group(p))) { 4889 retval = -EPERM; 4890 goto unlock; 4891 } 4892 #endif 4893 #ifdef CONFIG_SMP 4894 if (dl_bandwidth_enabled() && dl_policy(policy) && 4895 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4896 cpumask_t *span = rq->rd->span; 4897 4898 /* 4899 * Don't allow tasks with an affinity mask smaller than 4900 * the entire root_domain to become SCHED_DEADLINE. We 4901 * will also fail if there's no bandwidth available. 4902 */ 4903 if (!cpumask_subset(span, p->cpus_ptr) || 4904 rq->rd->dl_bw.bw == 0) { 4905 retval = -EPERM; 4906 goto unlock; 4907 } 4908 } 4909 #endif 4910 } 4911 4912 /* Re-check policy now with rq lock held: */ 4913 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4914 policy = oldpolicy = -1; 4915 task_rq_unlock(rq, p, &rf); 4916 if (pi) 4917 cpuset_read_unlock(); 4918 goto recheck; 4919 } 4920 4921 /* 4922 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4923 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4924 * is available. 4925 */ 4926 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4927 retval = -EBUSY; 4928 goto unlock; 4929 } 4930 4931 p->sched_reset_on_fork = reset_on_fork; 4932 oldprio = p->prio; 4933 4934 if (pi) { 4935 /* 4936 * Take priority boosted tasks into account. If the new 4937 * effective priority is unchanged, we just store the new 4938 * normal parameters and do not touch the scheduler class and 4939 * the runqueue. This will be done when the task deboost 4940 * itself. 4941 */ 4942 new_effective_prio = rt_effective_prio(p, newprio); 4943 if (new_effective_prio == oldprio) 4944 queue_flags &= ~DEQUEUE_MOVE; 4945 } 4946 4947 queued = task_on_rq_queued(p); 4948 running = task_current(rq, p); 4949 if (queued) 4950 dequeue_task(rq, p, queue_flags); 4951 if (running) 4952 put_prev_task(rq, p); 4953 4954 prev_class = p->sched_class; 4955 4956 __setscheduler(rq, p, attr, pi); 4957 __setscheduler_uclamp(p, attr); 4958 4959 if (queued) { 4960 /* 4961 * We enqueue to tail when the priority of a task is 4962 * increased (user space view). 4963 */ 4964 if (oldprio < p->prio) 4965 queue_flags |= ENQUEUE_HEAD; 4966 4967 enqueue_task(rq, p, queue_flags); 4968 } 4969 if (running) 4970 set_next_task(rq, p); 4971 4972 check_class_changed(rq, p, prev_class, oldprio); 4973 4974 /* Avoid rq from going away on us: */ 4975 preempt_disable(); 4976 task_rq_unlock(rq, p, &rf); 4977 4978 if (pi) { 4979 cpuset_read_unlock(); 4980 rt_mutex_adjust_pi(p); 4981 } 4982 4983 /* Run balance callbacks after we've adjusted the PI chain: */ 4984 balance_callback(rq); 4985 preempt_enable(); 4986 4987 return 0; 4988 4989 unlock: 4990 task_rq_unlock(rq, p, &rf); 4991 if (pi) 4992 cpuset_read_unlock(); 4993 return retval; 4994 } 4995 4996 static int _sched_setscheduler(struct task_struct *p, int policy, 4997 const struct sched_param *param, bool check) 4998 { 4999 struct sched_attr attr = { 5000 .sched_policy = policy, 5001 .sched_priority = param->sched_priority, 5002 .sched_nice = PRIO_TO_NICE(p->static_prio), 5003 }; 5004 5005 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5006 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5007 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5008 policy &= ~SCHED_RESET_ON_FORK; 5009 attr.sched_policy = policy; 5010 } 5011 5012 return __sched_setscheduler(p, &attr, check, true); 5013 } 5014 /** 5015 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5016 * @p: the task in question. 5017 * @policy: new policy. 5018 * @param: structure containing the new RT priority. 5019 * 5020 * Return: 0 on success. An error code otherwise. 5021 * 5022 * NOTE that the task may be already dead. 5023 */ 5024 int sched_setscheduler(struct task_struct *p, int policy, 5025 const struct sched_param *param) 5026 { 5027 return _sched_setscheduler(p, policy, param, true); 5028 } 5029 EXPORT_SYMBOL_GPL(sched_setscheduler); 5030 5031 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5032 { 5033 return __sched_setscheduler(p, attr, true, true); 5034 } 5035 EXPORT_SYMBOL_GPL(sched_setattr); 5036 5037 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5038 { 5039 return __sched_setscheduler(p, attr, false, true); 5040 } 5041 5042 /** 5043 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5044 * @p: the task in question. 5045 * @policy: new policy. 5046 * @param: structure containing the new RT priority. 5047 * 5048 * Just like sched_setscheduler, only don't bother checking if the 5049 * current context has permission. For example, this is needed in 5050 * stop_machine(): we create temporary high priority worker threads, 5051 * but our caller might not have that capability. 5052 * 5053 * Return: 0 on success. An error code otherwise. 5054 */ 5055 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5056 const struct sched_param *param) 5057 { 5058 return _sched_setscheduler(p, policy, param, false); 5059 } 5060 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5061 5062 static int 5063 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5064 { 5065 struct sched_param lparam; 5066 struct task_struct *p; 5067 int retval; 5068 5069 if (!param || pid < 0) 5070 return -EINVAL; 5071 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5072 return -EFAULT; 5073 5074 rcu_read_lock(); 5075 retval = -ESRCH; 5076 p = find_process_by_pid(pid); 5077 if (likely(p)) 5078 get_task_struct(p); 5079 rcu_read_unlock(); 5080 5081 if (likely(p)) { 5082 retval = sched_setscheduler(p, policy, &lparam); 5083 put_task_struct(p); 5084 } 5085 5086 return retval; 5087 } 5088 5089 /* 5090 * Mimics kernel/events/core.c perf_copy_attr(). 5091 */ 5092 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5093 { 5094 u32 size; 5095 int ret; 5096 5097 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 5098 return -EFAULT; 5099 5100 /* Zero the full structure, so that a short copy will be nice: */ 5101 memset(attr, 0, sizeof(*attr)); 5102 5103 ret = get_user(size, &uattr->size); 5104 if (ret) 5105 return ret; 5106 5107 /* Bail out on silly large: */ 5108 if (size > PAGE_SIZE) 5109 goto err_size; 5110 5111 /* ABI compatibility quirk: */ 5112 if (!size) 5113 size = SCHED_ATTR_SIZE_VER0; 5114 5115 if (size < SCHED_ATTR_SIZE_VER0) 5116 goto err_size; 5117 5118 /* 5119 * If we're handed a bigger struct than we know of, 5120 * ensure all the unknown bits are 0 - i.e. new 5121 * user-space does not rely on any kernel feature 5122 * extensions we dont know about yet. 5123 */ 5124 if (size > sizeof(*attr)) { 5125 unsigned char __user *addr; 5126 unsigned char __user *end; 5127 unsigned char val; 5128 5129 addr = (void __user *)uattr + sizeof(*attr); 5130 end = (void __user *)uattr + size; 5131 5132 for (; addr < end; addr++) { 5133 ret = get_user(val, addr); 5134 if (ret) 5135 return ret; 5136 if (val) 5137 goto err_size; 5138 } 5139 size = sizeof(*attr); 5140 } 5141 5142 ret = copy_from_user(attr, uattr, size); 5143 if (ret) 5144 return -EFAULT; 5145 5146 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5147 size < SCHED_ATTR_SIZE_VER1) 5148 return -EINVAL; 5149 5150 /* 5151 * XXX: Do we want to be lenient like existing syscalls; or do we want 5152 * to be strict and return an error on out-of-bounds values? 5153 */ 5154 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5155 5156 return 0; 5157 5158 err_size: 5159 put_user(sizeof(*attr), &uattr->size); 5160 return -E2BIG; 5161 } 5162 5163 /** 5164 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5165 * @pid: the pid in question. 5166 * @policy: new policy. 5167 * @param: structure containing the new RT priority. 5168 * 5169 * Return: 0 on success. An error code otherwise. 5170 */ 5171 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5172 { 5173 if (policy < 0) 5174 return -EINVAL; 5175 5176 return do_sched_setscheduler(pid, policy, param); 5177 } 5178 5179 /** 5180 * sys_sched_setparam - set/change the RT priority of a thread 5181 * @pid: the pid in question. 5182 * @param: structure containing the new RT priority. 5183 * 5184 * Return: 0 on success. An error code otherwise. 5185 */ 5186 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5187 { 5188 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5189 } 5190 5191 /** 5192 * sys_sched_setattr - same as above, but with extended sched_attr 5193 * @pid: the pid in question. 5194 * @uattr: structure containing the extended parameters. 5195 * @flags: for future extension. 5196 */ 5197 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5198 unsigned int, flags) 5199 { 5200 struct sched_attr attr; 5201 struct task_struct *p; 5202 int retval; 5203 5204 if (!uattr || pid < 0 || flags) 5205 return -EINVAL; 5206 5207 retval = sched_copy_attr(uattr, &attr); 5208 if (retval) 5209 return retval; 5210 5211 if ((int)attr.sched_policy < 0) 5212 return -EINVAL; 5213 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5214 attr.sched_policy = SETPARAM_POLICY; 5215 5216 rcu_read_lock(); 5217 retval = -ESRCH; 5218 p = find_process_by_pid(pid); 5219 if (likely(p)) 5220 get_task_struct(p); 5221 rcu_read_unlock(); 5222 5223 if (likely(p)) { 5224 retval = sched_setattr(p, &attr); 5225 put_task_struct(p); 5226 } 5227 5228 return retval; 5229 } 5230 5231 /** 5232 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5233 * @pid: the pid in question. 5234 * 5235 * Return: On success, the policy of the thread. Otherwise, a negative error 5236 * code. 5237 */ 5238 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5239 { 5240 struct task_struct *p; 5241 int retval; 5242 5243 if (pid < 0) 5244 return -EINVAL; 5245 5246 retval = -ESRCH; 5247 rcu_read_lock(); 5248 p = find_process_by_pid(pid); 5249 if (p) { 5250 retval = security_task_getscheduler(p); 5251 if (!retval) 5252 retval = p->policy 5253 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5254 } 5255 rcu_read_unlock(); 5256 return retval; 5257 } 5258 5259 /** 5260 * sys_sched_getparam - get the RT priority of a thread 5261 * @pid: the pid in question. 5262 * @param: structure containing the RT priority. 5263 * 5264 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5265 * code. 5266 */ 5267 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5268 { 5269 struct sched_param lp = { .sched_priority = 0 }; 5270 struct task_struct *p; 5271 int retval; 5272 5273 if (!param || pid < 0) 5274 return -EINVAL; 5275 5276 rcu_read_lock(); 5277 p = find_process_by_pid(pid); 5278 retval = -ESRCH; 5279 if (!p) 5280 goto out_unlock; 5281 5282 retval = security_task_getscheduler(p); 5283 if (retval) 5284 goto out_unlock; 5285 5286 if (task_has_rt_policy(p)) 5287 lp.sched_priority = p->rt_priority; 5288 rcu_read_unlock(); 5289 5290 /* 5291 * This one might sleep, we cannot do it with a spinlock held ... 5292 */ 5293 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5294 5295 return retval; 5296 5297 out_unlock: 5298 rcu_read_unlock(); 5299 return retval; 5300 } 5301 5302 /* 5303 * Copy the kernel size attribute structure (which might be larger 5304 * than what user-space knows about) to user-space. 5305 * 5306 * Note that all cases are valid: user-space buffer can be larger or 5307 * smaller than the kernel-space buffer. The usual case is that both 5308 * have the same size. 5309 */ 5310 static int 5311 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5312 struct sched_attr *kattr, 5313 unsigned int usize) 5314 { 5315 unsigned int ksize = sizeof(*kattr); 5316 5317 if (!access_ok(uattr, usize)) 5318 return -EFAULT; 5319 5320 /* 5321 * sched_getattr() ABI forwards and backwards compatibility: 5322 * 5323 * If usize == ksize then we just copy everything to user-space and all is good. 5324 * 5325 * If usize < ksize then we only copy as much as user-space has space for, 5326 * this keeps ABI compatibility as well. We skip the rest. 5327 * 5328 * If usize > ksize then user-space is using a newer version of the ABI, 5329 * which part the kernel doesn't know about. Just ignore it - tooling can 5330 * detect the kernel's knowledge of attributes from the attr->size value 5331 * which is set to ksize in this case. 5332 */ 5333 kattr->size = min(usize, ksize); 5334 5335 if (copy_to_user(uattr, kattr, kattr->size)) 5336 return -EFAULT; 5337 5338 return 0; 5339 } 5340 5341 /** 5342 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5343 * @pid: the pid in question. 5344 * @uattr: structure containing the extended parameters. 5345 * @usize: sizeof(attr) that user-space knows about, for forwards and backwards compatibility. 5346 * @flags: for future extension. 5347 */ 5348 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5349 unsigned int, usize, unsigned int, flags) 5350 { 5351 struct sched_attr kattr = { }; 5352 struct task_struct *p; 5353 int retval; 5354 5355 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5356 usize < SCHED_ATTR_SIZE_VER0 || flags) 5357 return -EINVAL; 5358 5359 rcu_read_lock(); 5360 p = find_process_by_pid(pid); 5361 retval = -ESRCH; 5362 if (!p) 5363 goto out_unlock; 5364 5365 retval = security_task_getscheduler(p); 5366 if (retval) 5367 goto out_unlock; 5368 5369 kattr.sched_policy = p->policy; 5370 if (p->sched_reset_on_fork) 5371 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5372 if (task_has_dl_policy(p)) 5373 __getparam_dl(p, &kattr); 5374 else if (task_has_rt_policy(p)) 5375 kattr.sched_priority = p->rt_priority; 5376 else 5377 kattr.sched_nice = task_nice(p); 5378 5379 #ifdef CONFIG_UCLAMP_TASK 5380 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5381 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5382 #endif 5383 5384 rcu_read_unlock(); 5385 5386 return sched_attr_copy_to_user(uattr, &kattr, usize); 5387 5388 out_unlock: 5389 rcu_read_unlock(); 5390 return retval; 5391 } 5392 5393 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5394 { 5395 cpumask_var_t cpus_allowed, new_mask; 5396 struct task_struct *p; 5397 int retval; 5398 5399 rcu_read_lock(); 5400 5401 p = find_process_by_pid(pid); 5402 if (!p) { 5403 rcu_read_unlock(); 5404 return -ESRCH; 5405 } 5406 5407 /* Prevent p going away */ 5408 get_task_struct(p); 5409 rcu_read_unlock(); 5410 5411 if (p->flags & PF_NO_SETAFFINITY) { 5412 retval = -EINVAL; 5413 goto out_put_task; 5414 } 5415 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5416 retval = -ENOMEM; 5417 goto out_put_task; 5418 } 5419 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5420 retval = -ENOMEM; 5421 goto out_free_cpus_allowed; 5422 } 5423 retval = -EPERM; 5424 if (!check_same_owner(p)) { 5425 rcu_read_lock(); 5426 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5427 rcu_read_unlock(); 5428 goto out_free_new_mask; 5429 } 5430 rcu_read_unlock(); 5431 } 5432 5433 retval = security_task_setscheduler(p); 5434 if (retval) 5435 goto out_free_new_mask; 5436 5437 5438 cpuset_cpus_allowed(p, cpus_allowed); 5439 cpumask_and(new_mask, in_mask, cpus_allowed); 5440 5441 /* 5442 * Since bandwidth control happens on root_domain basis, 5443 * if admission test is enabled, we only admit -deadline 5444 * tasks allowed to run on all the CPUs in the task's 5445 * root_domain. 5446 */ 5447 #ifdef CONFIG_SMP 5448 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5449 rcu_read_lock(); 5450 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5451 retval = -EBUSY; 5452 rcu_read_unlock(); 5453 goto out_free_new_mask; 5454 } 5455 rcu_read_unlock(); 5456 } 5457 #endif 5458 again: 5459 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5460 5461 if (!retval) { 5462 cpuset_cpus_allowed(p, cpus_allowed); 5463 if (!cpumask_subset(new_mask, cpus_allowed)) { 5464 /* 5465 * We must have raced with a concurrent cpuset 5466 * update. Just reset the cpus_allowed to the 5467 * cpuset's cpus_allowed 5468 */ 5469 cpumask_copy(new_mask, cpus_allowed); 5470 goto again; 5471 } 5472 } 5473 out_free_new_mask: 5474 free_cpumask_var(new_mask); 5475 out_free_cpus_allowed: 5476 free_cpumask_var(cpus_allowed); 5477 out_put_task: 5478 put_task_struct(p); 5479 return retval; 5480 } 5481 5482 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5483 struct cpumask *new_mask) 5484 { 5485 if (len < cpumask_size()) 5486 cpumask_clear(new_mask); 5487 else if (len > cpumask_size()) 5488 len = cpumask_size(); 5489 5490 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5491 } 5492 5493 /** 5494 * sys_sched_setaffinity - set the CPU affinity of a process 5495 * @pid: pid of the process 5496 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5497 * @user_mask_ptr: user-space pointer to the new CPU mask 5498 * 5499 * Return: 0 on success. An error code otherwise. 5500 */ 5501 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5502 unsigned long __user *, user_mask_ptr) 5503 { 5504 cpumask_var_t new_mask; 5505 int retval; 5506 5507 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5508 return -ENOMEM; 5509 5510 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5511 if (retval == 0) 5512 retval = sched_setaffinity(pid, new_mask); 5513 free_cpumask_var(new_mask); 5514 return retval; 5515 } 5516 5517 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5518 { 5519 struct task_struct *p; 5520 unsigned long flags; 5521 int retval; 5522 5523 rcu_read_lock(); 5524 5525 retval = -ESRCH; 5526 p = find_process_by_pid(pid); 5527 if (!p) 5528 goto out_unlock; 5529 5530 retval = security_task_getscheduler(p); 5531 if (retval) 5532 goto out_unlock; 5533 5534 raw_spin_lock_irqsave(&p->pi_lock, flags); 5535 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5536 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5537 5538 out_unlock: 5539 rcu_read_unlock(); 5540 5541 return retval; 5542 } 5543 5544 /** 5545 * sys_sched_getaffinity - get the CPU affinity of a process 5546 * @pid: pid of the process 5547 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5548 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5549 * 5550 * Return: size of CPU mask copied to user_mask_ptr on success. An 5551 * error code otherwise. 5552 */ 5553 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5554 unsigned long __user *, user_mask_ptr) 5555 { 5556 int ret; 5557 cpumask_var_t mask; 5558 5559 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5560 return -EINVAL; 5561 if (len & (sizeof(unsigned long)-1)) 5562 return -EINVAL; 5563 5564 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5565 return -ENOMEM; 5566 5567 ret = sched_getaffinity(pid, mask); 5568 if (ret == 0) { 5569 unsigned int retlen = min(len, cpumask_size()); 5570 5571 if (copy_to_user(user_mask_ptr, mask, retlen)) 5572 ret = -EFAULT; 5573 else 5574 ret = retlen; 5575 } 5576 free_cpumask_var(mask); 5577 5578 return ret; 5579 } 5580 5581 /** 5582 * sys_sched_yield - yield the current processor to other threads. 5583 * 5584 * This function yields the current CPU to other tasks. If there are no 5585 * other threads running on this CPU then this function will return. 5586 * 5587 * Return: 0. 5588 */ 5589 static void do_sched_yield(void) 5590 { 5591 struct rq_flags rf; 5592 struct rq *rq; 5593 5594 rq = this_rq_lock_irq(&rf); 5595 5596 schedstat_inc(rq->yld_count); 5597 current->sched_class->yield_task(rq); 5598 5599 /* 5600 * Since we are going to call schedule() anyway, there's 5601 * no need to preempt or enable interrupts: 5602 */ 5603 preempt_disable(); 5604 rq_unlock(rq, &rf); 5605 sched_preempt_enable_no_resched(); 5606 5607 schedule(); 5608 } 5609 5610 SYSCALL_DEFINE0(sched_yield) 5611 { 5612 do_sched_yield(); 5613 return 0; 5614 } 5615 5616 #ifndef CONFIG_PREEMPTION 5617 int __sched _cond_resched(void) 5618 { 5619 if (should_resched(0)) { 5620 preempt_schedule_common(); 5621 return 1; 5622 } 5623 rcu_all_qs(); 5624 return 0; 5625 } 5626 EXPORT_SYMBOL(_cond_resched); 5627 #endif 5628 5629 /* 5630 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5631 * call schedule, and on return reacquire the lock. 5632 * 5633 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5634 * operations here to prevent schedule() from being called twice (once via 5635 * spin_unlock(), once by hand). 5636 */ 5637 int __cond_resched_lock(spinlock_t *lock) 5638 { 5639 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5640 int ret = 0; 5641 5642 lockdep_assert_held(lock); 5643 5644 if (spin_needbreak(lock) || resched) { 5645 spin_unlock(lock); 5646 if (resched) 5647 preempt_schedule_common(); 5648 else 5649 cpu_relax(); 5650 ret = 1; 5651 spin_lock(lock); 5652 } 5653 return ret; 5654 } 5655 EXPORT_SYMBOL(__cond_resched_lock); 5656 5657 /** 5658 * yield - yield the current processor to other threads. 5659 * 5660 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5661 * 5662 * The scheduler is at all times free to pick the calling task as the most 5663 * eligible task to run, if removing the yield() call from your code breaks 5664 * it, its already broken. 5665 * 5666 * Typical broken usage is: 5667 * 5668 * while (!event) 5669 * yield(); 5670 * 5671 * where one assumes that yield() will let 'the other' process run that will 5672 * make event true. If the current task is a SCHED_FIFO task that will never 5673 * happen. Never use yield() as a progress guarantee!! 5674 * 5675 * If you want to use yield() to wait for something, use wait_event(). 5676 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5677 * If you still want to use yield(), do not! 5678 */ 5679 void __sched yield(void) 5680 { 5681 set_current_state(TASK_RUNNING); 5682 do_sched_yield(); 5683 } 5684 EXPORT_SYMBOL(yield); 5685 5686 /** 5687 * yield_to - yield the current processor to another thread in 5688 * your thread group, or accelerate that thread toward the 5689 * processor it's on. 5690 * @p: target task 5691 * @preempt: whether task preemption is allowed or not 5692 * 5693 * It's the caller's job to ensure that the target task struct 5694 * can't go away on us before we can do any checks. 5695 * 5696 * Return: 5697 * true (>0) if we indeed boosted the target task. 5698 * false (0) if we failed to boost the target. 5699 * -ESRCH if there's no task to yield to. 5700 */ 5701 int __sched yield_to(struct task_struct *p, bool preempt) 5702 { 5703 struct task_struct *curr = current; 5704 struct rq *rq, *p_rq; 5705 unsigned long flags; 5706 int yielded = 0; 5707 5708 local_irq_save(flags); 5709 rq = this_rq(); 5710 5711 again: 5712 p_rq = task_rq(p); 5713 /* 5714 * If we're the only runnable task on the rq and target rq also 5715 * has only one task, there's absolutely no point in yielding. 5716 */ 5717 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5718 yielded = -ESRCH; 5719 goto out_irq; 5720 } 5721 5722 double_rq_lock(rq, p_rq); 5723 if (task_rq(p) != p_rq) { 5724 double_rq_unlock(rq, p_rq); 5725 goto again; 5726 } 5727 5728 if (!curr->sched_class->yield_to_task) 5729 goto out_unlock; 5730 5731 if (curr->sched_class != p->sched_class) 5732 goto out_unlock; 5733 5734 if (task_running(p_rq, p) || p->state) 5735 goto out_unlock; 5736 5737 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5738 if (yielded) { 5739 schedstat_inc(rq->yld_count); 5740 /* 5741 * Make p's CPU reschedule; pick_next_entity takes care of 5742 * fairness. 5743 */ 5744 if (preempt && rq != p_rq) 5745 resched_curr(p_rq); 5746 } 5747 5748 out_unlock: 5749 double_rq_unlock(rq, p_rq); 5750 out_irq: 5751 local_irq_restore(flags); 5752 5753 if (yielded > 0) 5754 schedule(); 5755 5756 return yielded; 5757 } 5758 EXPORT_SYMBOL_GPL(yield_to); 5759 5760 int io_schedule_prepare(void) 5761 { 5762 int old_iowait = current->in_iowait; 5763 5764 current->in_iowait = 1; 5765 blk_schedule_flush_plug(current); 5766 5767 return old_iowait; 5768 } 5769 5770 void io_schedule_finish(int token) 5771 { 5772 current->in_iowait = token; 5773 } 5774 5775 /* 5776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5777 * that process accounting knows that this is a task in IO wait state. 5778 */ 5779 long __sched io_schedule_timeout(long timeout) 5780 { 5781 int token; 5782 long ret; 5783 5784 token = io_schedule_prepare(); 5785 ret = schedule_timeout(timeout); 5786 io_schedule_finish(token); 5787 5788 return ret; 5789 } 5790 EXPORT_SYMBOL(io_schedule_timeout); 5791 5792 void __sched io_schedule(void) 5793 { 5794 int token; 5795 5796 token = io_schedule_prepare(); 5797 schedule(); 5798 io_schedule_finish(token); 5799 } 5800 EXPORT_SYMBOL(io_schedule); 5801 5802 /** 5803 * sys_sched_get_priority_max - return maximum RT priority. 5804 * @policy: scheduling class. 5805 * 5806 * Return: On success, this syscall returns the maximum 5807 * rt_priority that can be used by a given scheduling class. 5808 * On failure, a negative error code is returned. 5809 */ 5810 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5811 { 5812 int ret = -EINVAL; 5813 5814 switch (policy) { 5815 case SCHED_FIFO: 5816 case SCHED_RR: 5817 ret = MAX_USER_RT_PRIO-1; 5818 break; 5819 case SCHED_DEADLINE: 5820 case SCHED_NORMAL: 5821 case SCHED_BATCH: 5822 case SCHED_IDLE: 5823 ret = 0; 5824 break; 5825 } 5826 return ret; 5827 } 5828 5829 /** 5830 * sys_sched_get_priority_min - return minimum RT priority. 5831 * @policy: scheduling class. 5832 * 5833 * Return: On success, this syscall returns the minimum 5834 * rt_priority that can be used by a given scheduling class. 5835 * On failure, a negative error code is returned. 5836 */ 5837 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5838 { 5839 int ret = -EINVAL; 5840 5841 switch (policy) { 5842 case SCHED_FIFO: 5843 case SCHED_RR: 5844 ret = 1; 5845 break; 5846 case SCHED_DEADLINE: 5847 case SCHED_NORMAL: 5848 case SCHED_BATCH: 5849 case SCHED_IDLE: 5850 ret = 0; 5851 } 5852 return ret; 5853 } 5854 5855 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5856 { 5857 struct task_struct *p; 5858 unsigned int time_slice; 5859 struct rq_flags rf; 5860 struct rq *rq; 5861 int retval; 5862 5863 if (pid < 0) 5864 return -EINVAL; 5865 5866 retval = -ESRCH; 5867 rcu_read_lock(); 5868 p = find_process_by_pid(pid); 5869 if (!p) 5870 goto out_unlock; 5871 5872 retval = security_task_getscheduler(p); 5873 if (retval) 5874 goto out_unlock; 5875 5876 rq = task_rq_lock(p, &rf); 5877 time_slice = 0; 5878 if (p->sched_class->get_rr_interval) 5879 time_slice = p->sched_class->get_rr_interval(rq, p); 5880 task_rq_unlock(rq, p, &rf); 5881 5882 rcu_read_unlock(); 5883 jiffies_to_timespec64(time_slice, t); 5884 return 0; 5885 5886 out_unlock: 5887 rcu_read_unlock(); 5888 return retval; 5889 } 5890 5891 /** 5892 * sys_sched_rr_get_interval - return the default timeslice of a process. 5893 * @pid: pid of the process. 5894 * @interval: userspace pointer to the timeslice value. 5895 * 5896 * this syscall writes the default timeslice value of a given process 5897 * into the user-space timespec buffer. A value of '0' means infinity. 5898 * 5899 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5900 * an error code. 5901 */ 5902 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5903 struct __kernel_timespec __user *, interval) 5904 { 5905 struct timespec64 t; 5906 int retval = sched_rr_get_interval(pid, &t); 5907 5908 if (retval == 0) 5909 retval = put_timespec64(&t, interval); 5910 5911 return retval; 5912 } 5913 5914 #ifdef CONFIG_COMPAT_32BIT_TIME 5915 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5916 struct old_timespec32 __user *, interval) 5917 { 5918 struct timespec64 t; 5919 int retval = sched_rr_get_interval(pid, &t); 5920 5921 if (retval == 0) 5922 retval = put_old_timespec32(&t, interval); 5923 return retval; 5924 } 5925 #endif 5926 5927 void sched_show_task(struct task_struct *p) 5928 { 5929 unsigned long free = 0; 5930 int ppid; 5931 5932 if (!try_get_task_stack(p)) 5933 return; 5934 5935 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5936 5937 if (p->state == TASK_RUNNING) 5938 printk(KERN_CONT " running task "); 5939 #ifdef CONFIG_DEBUG_STACK_USAGE 5940 free = stack_not_used(p); 5941 #endif 5942 ppid = 0; 5943 rcu_read_lock(); 5944 if (pid_alive(p)) 5945 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5946 rcu_read_unlock(); 5947 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5948 task_pid_nr(p), ppid, 5949 (unsigned long)task_thread_info(p)->flags); 5950 5951 print_worker_info(KERN_INFO, p); 5952 show_stack(p, NULL); 5953 put_task_stack(p); 5954 } 5955 EXPORT_SYMBOL_GPL(sched_show_task); 5956 5957 static inline bool 5958 state_filter_match(unsigned long state_filter, struct task_struct *p) 5959 { 5960 /* no filter, everything matches */ 5961 if (!state_filter) 5962 return true; 5963 5964 /* filter, but doesn't match */ 5965 if (!(p->state & state_filter)) 5966 return false; 5967 5968 /* 5969 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5970 * TASK_KILLABLE). 5971 */ 5972 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5973 return false; 5974 5975 return true; 5976 } 5977 5978 5979 void show_state_filter(unsigned long state_filter) 5980 { 5981 struct task_struct *g, *p; 5982 5983 #if BITS_PER_LONG == 32 5984 printk(KERN_INFO 5985 " task PC stack pid father\n"); 5986 #else 5987 printk(KERN_INFO 5988 " task PC stack pid father\n"); 5989 #endif 5990 rcu_read_lock(); 5991 for_each_process_thread(g, p) { 5992 /* 5993 * reset the NMI-timeout, listing all files on a slow 5994 * console might take a lot of time: 5995 * Also, reset softlockup watchdogs on all CPUs, because 5996 * another CPU might be blocked waiting for us to process 5997 * an IPI. 5998 */ 5999 touch_nmi_watchdog(); 6000 touch_all_softlockup_watchdogs(); 6001 if (state_filter_match(state_filter, p)) 6002 sched_show_task(p); 6003 } 6004 6005 #ifdef CONFIG_SCHED_DEBUG 6006 if (!state_filter) 6007 sysrq_sched_debug_show(); 6008 #endif 6009 rcu_read_unlock(); 6010 /* 6011 * Only show locks if all tasks are dumped: 6012 */ 6013 if (!state_filter) 6014 debug_show_all_locks(); 6015 } 6016 6017 /** 6018 * init_idle - set up an idle thread for a given CPU 6019 * @idle: task in question 6020 * @cpu: CPU the idle task belongs to 6021 * 6022 * NOTE: this function does not set the idle thread's NEED_RESCHED 6023 * flag, to make booting more robust. 6024 */ 6025 void init_idle(struct task_struct *idle, int cpu) 6026 { 6027 struct rq *rq = cpu_rq(cpu); 6028 unsigned long flags; 6029 6030 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6031 raw_spin_lock(&rq->lock); 6032 6033 __sched_fork(0, idle); 6034 idle->state = TASK_RUNNING; 6035 idle->se.exec_start = sched_clock(); 6036 idle->flags |= PF_IDLE; 6037 6038 kasan_unpoison_task_stack(idle); 6039 6040 #ifdef CONFIG_SMP 6041 /* 6042 * Its possible that init_idle() gets called multiple times on a task, 6043 * in that case do_set_cpus_allowed() will not do the right thing. 6044 * 6045 * And since this is boot we can forgo the serialization. 6046 */ 6047 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6048 #endif 6049 /* 6050 * We're having a chicken and egg problem, even though we are 6051 * holding rq->lock, the CPU isn't yet set to this CPU so the 6052 * lockdep check in task_group() will fail. 6053 * 6054 * Similar case to sched_fork(). / Alternatively we could 6055 * use task_rq_lock() here and obtain the other rq->lock. 6056 * 6057 * Silence PROVE_RCU 6058 */ 6059 rcu_read_lock(); 6060 __set_task_cpu(idle, cpu); 6061 rcu_read_unlock(); 6062 6063 rq->curr = rq->idle = idle; 6064 idle->on_rq = TASK_ON_RQ_QUEUED; 6065 #ifdef CONFIG_SMP 6066 idle->on_cpu = 1; 6067 #endif 6068 raw_spin_unlock(&rq->lock); 6069 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6070 6071 /* Set the preempt count _outside_ the spinlocks! */ 6072 init_idle_preempt_count(idle, cpu); 6073 6074 /* 6075 * The idle tasks have their own, simple scheduling class: 6076 */ 6077 idle->sched_class = &idle_sched_class; 6078 ftrace_graph_init_idle_task(idle, cpu); 6079 vtime_init_idle(idle, cpu); 6080 #ifdef CONFIG_SMP 6081 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6082 #endif 6083 } 6084 6085 #ifdef CONFIG_SMP 6086 6087 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6088 const struct cpumask *trial) 6089 { 6090 int ret = 1; 6091 6092 if (!cpumask_weight(cur)) 6093 return ret; 6094 6095 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6096 6097 return ret; 6098 } 6099 6100 int task_can_attach(struct task_struct *p, 6101 const struct cpumask *cs_cpus_allowed) 6102 { 6103 int ret = 0; 6104 6105 /* 6106 * Kthreads which disallow setaffinity shouldn't be moved 6107 * to a new cpuset; we don't want to change their CPU 6108 * affinity and isolating such threads by their set of 6109 * allowed nodes is unnecessary. Thus, cpusets are not 6110 * applicable for such threads. This prevents checking for 6111 * success of set_cpus_allowed_ptr() on all attached tasks 6112 * before cpus_mask may be changed. 6113 */ 6114 if (p->flags & PF_NO_SETAFFINITY) { 6115 ret = -EINVAL; 6116 goto out; 6117 } 6118 6119 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6120 cs_cpus_allowed)) 6121 ret = dl_task_can_attach(p, cs_cpus_allowed); 6122 6123 out: 6124 return ret; 6125 } 6126 6127 bool sched_smp_initialized __read_mostly; 6128 6129 #ifdef CONFIG_NUMA_BALANCING 6130 /* Migrate current task p to target_cpu */ 6131 int migrate_task_to(struct task_struct *p, int target_cpu) 6132 { 6133 struct migration_arg arg = { p, target_cpu }; 6134 int curr_cpu = task_cpu(p); 6135 6136 if (curr_cpu == target_cpu) 6137 return 0; 6138 6139 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6140 return -EINVAL; 6141 6142 /* TODO: This is not properly updating schedstats */ 6143 6144 trace_sched_move_numa(p, curr_cpu, target_cpu); 6145 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6146 } 6147 6148 /* 6149 * Requeue a task on a given node and accurately track the number of NUMA 6150 * tasks on the runqueues 6151 */ 6152 void sched_setnuma(struct task_struct *p, int nid) 6153 { 6154 bool queued, running; 6155 struct rq_flags rf; 6156 struct rq *rq; 6157 6158 rq = task_rq_lock(p, &rf); 6159 queued = task_on_rq_queued(p); 6160 running = task_current(rq, p); 6161 6162 if (queued) 6163 dequeue_task(rq, p, DEQUEUE_SAVE); 6164 if (running) 6165 put_prev_task(rq, p); 6166 6167 p->numa_preferred_nid = nid; 6168 6169 if (queued) 6170 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6171 if (running) 6172 set_next_task(rq, p); 6173 task_rq_unlock(rq, p, &rf); 6174 } 6175 #endif /* CONFIG_NUMA_BALANCING */ 6176 6177 #ifdef CONFIG_HOTPLUG_CPU 6178 /* 6179 * Ensure that the idle task is using init_mm right before its CPU goes 6180 * offline. 6181 */ 6182 void idle_task_exit(void) 6183 { 6184 struct mm_struct *mm = current->active_mm; 6185 6186 BUG_ON(cpu_online(smp_processor_id())); 6187 6188 if (mm != &init_mm) { 6189 switch_mm(mm, &init_mm, current); 6190 current->active_mm = &init_mm; 6191 finish_arch_post_lock_switch(); 6192 } 6193 mmdrop(mm); 6194 } 6195 6196 /* 6197 * Since this CPU is going 'away' for a while, fold any nr_active delta 6198 * we might have. Assumes we're called after migrate_tasks() so that the 6199 * nr_active count is stable. We need to take the teardown thread which 6200 * is calling this into account, so we hand in adjust = 1 to the load 6201 * calculation. 6202 * 6203 * Also see the comment "Global load-average calculations". 6204 */ 6205 static void calc_load_migrate(struct rq *rq) 6206 { 6207 long delta = calc_load_fold_active(rq, 1); 6208 if (delta) 6209 atomic_long_add(delta, &calc_load_tasks); 6210 } 6211 6212 static struct task_struct *__pick_migrate_task(struct rq *rq) 6213 { 6214 const struct sched_class *class; 6215 struct task_struct *next; 6216 6217 for_each_class(class) { 6218 next = class->pick_next_task(rq, NULL, NULL); 6219 if (next) { 6220 next->sched_class->put_prev_task(rq, next, NULL); 6221 return next; 6222 } 6223 } 6224 6225 /* The idle class should always have a runnable task */ 6226 BUG(); 6227 } 6228 6229 /* 6230 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6231 * try_to_wake_up()->select_task_rq(). 6232 * 6233 * Called with rq->lock held even though we'er in stop_machine() and 6234 * there's no concurrency possible, we hold the required locks anyway 6235 * because of lock validation efforts. 6236 */ 6237 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6238 { 6239 struct rq *rq = dead_rq; 6240 struct task_struct *next, *stop = rq->stop; 6241 struct rq_flags orf = *rf; 6242 int dest_cpu; 6243 6244 /* 6245 * Fudge the rq selection such that the below task selection loop 6246 * doesn't get stuck on the currently eligible stop task. 6247 * 6248 * We're currently inside stop_machine() and the rq is either stuck 6249 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6250 * either way we should never end up calling schedule() until we're 6251 * done here. 6252 */ 6253 rq->stop = NULL; 6254 6255 /* 6256 * put_prev_task() and pick_next_task() sched 6257 * class method both need to have an up-to-date 6258 * value of rq->clock[_task] 6259 */ 6260 update_rq_clock(rq); 6261 6262 for (;;) { 6263 /* 6264 * There's this thread running, bail when that's the only 6265 * remaining thread: 6266 */ 6267 if (rq->nr_running == 1) 6268 break; 6269 6270 next = __pick_migrate_task(rq); 6271 6272 /* 6273 * Rules for changing task_struct::cpus_mask are holding 6274 * both pi_lock and rq->lock, such that holding either 6275 * stabilizes the mask. 6276 * 6277 * Drop rq->lock is not quite as disastrous as it usually is 6278 * because !cpu_active at this point, which means load-balance 6279 * will not interfere. Also, stop-machine. 6280 */ 6281 rq_unlock(rq, rf); 6282 raw_spin_lock(&next->pi_lock); 6283 rq_relock(rq, rf); 6284 6285 /* 6286 * Since we're inside stop-machine, _nothing_ should have 6287 * changed the task, WARN if weird stuff happened, because in 6288 * that case the above rq->lock drop is a fail too. 6289 */ 6290 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6291 raw_spin_unlock(&next->pi_lock); 6292 continue; 6293 } 6294 6295 /* Find suitable destination for @next, with force if needed. */ 6296 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6297 rq = __migrate_task(rq, rf, next, dest_cpu); 6298 if (rq != dead_rq) { 6299 rq_unlock(rq, rf); 6300 rq = dead_rq; 6301 *rf = orf; 6302 rq_relock(rq, rf); 6303 } 6304 raw_spin_unlock(&next->pi_lock); 6305 } 6306 6307 rq->stop = stop; 6308 } 6309 #endif /* CONFIG_HOTPLUG_CPU */ 6310 6311 void set_rq_online(struct rq *rq) 6312 { 6313 if (!rq->online) { 6314 const struct sched_class *class; 6315 6316 cpumask_set_cpu(rq->cpu, rq->rd->online); 6317 rq->online = 1; 6318 6319 for_each_class(class) { 6320 if (class->rq_online) 6321 class->rq_online(rq); 6322 } 6323 } 6324 } 6325 6326 void set_rq_offline(struct rq *rq) 6327 { 6328 if (rq->online) { 6329 const struct sched_class *class; 6330 6331 for_each_class(class) { 6332 if (class->rq_offline) 6333 class->rq_offline(rq); 6334 } 6335 6336 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6337 rq->online = 0; 6338 } 6339 } 6340 6341 /* 6342 * used to mark begin/end of suspend/resume: 6343 */ 6344 static int num_cpus_frozen; 6345 6346 /* 6347 * Update cpusets according to cpu_active mask. If cpusets are 6348 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6349 * around partition_sched_domains(). 6350 * 6351 * If we come here as part of a suspend/resume, don't touch cpusets because we 6352 * want to restore it back to its original state upon resume anyway. 6353 */ 6354 static void cpuset_cpu_active(void) 6355 { 6356 if (cpuhp_tasks_frozen) { 6357 /* 6358 * num_cpus_frozen tracks how many CPUs are involved in suspend 6359 * resume sequence. As long as this is not the last online 6360 * operation in the resume sequence, just build a single sched 6361 * domain, ignoring cpusets. 6362 */ 6363 partition_sched_domains(1, NULL, NULL); 6364 if (--num_cpus_frozen) 6365 return; 6366 /* 6367 * This is the last CPU online operation. So fall through and 6368 * restore the original sched domains by considering the 6369 * cpuset configurations. 6370 */ 6371 cpuset_force_rebuild(); 6372 } 6373 cpuset_update_active_cpus(); 6374 } 6375 6376 static int cpuset_cpu_inactive(unsigned int cpu) 6377 { 6378 if (!cpuhp_tasks_frozen) { 6379 if (dl_cpu_busy(cpu)) 6380 return -EBUSY; 6381 cpuset_update_active_cpus(); 6382 } else { 6383 num_cpus_frozen++; 6384 partition_sched_domains(1, NULL, NULL); 6385 } 6386 return 0; 6387 } 6388 6389 int sched_cpu_activate(unsigned int cpu) 6390 { 6391 struct rq *rq = cpu_rq(cpu); 6392 struct rq_flags rf; 6393 6394 #ifdef CONFIG_SCHED_SMT 6395 /* 6396 * When going up, increment the number of cores with SMT present. 6397 */ 6398 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6399 static_branch_inc_cpuslocked(&sched_smt_present); 6400 #endif 6401 set_cpu_active(cpu, true); 6402 6403 if (sched_smp_initialized) { 6404 sched_domains_numa_masks_set(cpu); 6405 cpuset_cpu_active(); 6406 } 6407 6408 /* 6409 * Put the rq online, if not already. This happens: 6410 * 6411 * 1) In the early boot process, because we build the real domains 6412 * after all CPUs have been brought up. 6413 * 6414 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6415 * domains. 6416 */ 6417 rq_lock_irqsave(rq, &rf); 6418 if (rq->rd) { 6419 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6420 set_rq_online(rq); 6421 } 6422 rq_unlock_irqrestore(rq, &rf); 6423 6424 update_max_interval(); 6425 6426 return 0; 6427 } 6428 6429 int sched_cpu_deactivate(unsigned int cpu) 6430 { 6431 int ret; 6432 6433 set_cpu_active(cpu, false); 6434 /* 6435 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6436 * users of this state to go away such that all new such users will 6437 * observe it. 6438 * 6439 * Do sync before park smpboot threads to take care the rcu boost case. 6440 */ 6441 synchronize_rcu(); 6442 6443 #ifdef CONFIG_SCHED_SMT 6444 /* 6445 * When going down, decrement the number of cores with SMT present. 6446 */ 6447 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6448 static_branch_dec_cpuslocked(&sched_smt_present); 6449 #endif 6450 6451 if (!sched_smp_initialized) 6452 return 0; 6453 6454 ret = cpuset_cpu_inactive(cpu); 6455 if (ret) { 6456 set_cpu_active(cpu, true); 6457 return ret; 6458 } 6459 sched_domains_numa_masks_clear(cpu); 6460 return 0; 6461 } 6462 6463 static void sched_rq_cpu_starting(unsigned int cpu) 6464 { 6465 struct rq *rq = cpu_rq(cpu); 6466 6467 rq->calc_load_update = calc_load_update; 6468 update_max_interval(); 6469 } 6470 6471 int sched_cpu_starting(unsigned int cpu) 6472 { 6473 sched_rq_cpu_starting(cpu); 6474 sched_tick_start(cpu); 6475 return 0; 6476 } 6477 6478 #ifdef CONFIG_HOTPLUG_CPU 6479 int sched_cpu_dying(unsigned int cpu) 6480 { 6481 struct rq *rq = cpu_rq(cpu); 6482 struct rq_flags rf; 6483 6484 /* Handle pending wakeups and then migrate everything off */ 6485 sched_ttwu_pending(); 6486 sched_tick_stop(cpu); 6487 6488 rq_lock_irqsave(rq, &rf); 6489 if (rq->rd) { 6490 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6491 set_rq_offline(rq); 6492 } 6493 migrate_tasks(rq, &rf); 6494 BUG_ON(rq->nr_running != 1); 6495 rq_unlock_irqrestore(rq, &rf); 6496 6497 calc_load_migrate(rq); 6498 update_max_interval(); 6499 nohz_balance_exit_idle(rq); 6500 hrtick_clear(rq); 6501 return 0; 6502 } 6503 #endif 6504 6505 void __init sched_init_smp(void) 6506 { 6507 sched_init_numa(); 6508 6509 /* 6510 * There's no userspace yet to cause hotplug operations; hence all the 6511 * CPU masks are stable and all blatant races in the below code cannot 6512 * happen. 6513 */ 6514 mutex_lock(&sched_domains_mutex); 6515 sched_init_domains(cpu_active_mask); 6516 mutex_unlock(&sched_domains_mutex); 6517 6518 /* Move init over to a non-isolated CPU */ 6519 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6520 BUG(); 6521 sched_init_granularity(); 6522 6523 init_sched_rt_class(); 6524 init_sched_dl_class(); 6525 6526 sched_smp_initialized = true; 6527 } 6528 6529 static int __init migration_init(void) 6530 { 6531 sched_cpu_starting(smp_processor_id()); 6532 return 0; 6533 } 6534 early_initcall(migration_init); 6535 6536 #else 6537 void __init sched_init_smp(void) 6538 { 6539 sched_init_granularity(); 6540 } 6541 #endif /* CONFIG_SMP */ 6542 6543 int in_sched_functions(unsigned long addr) 6544 { 6545 return in_lock_functions(addr) || 6546 (addr >= (unsigned long)__sched_text_start 6547 && addr < (unsigned long)__sched_text_end); 6548 } 6549 6550 #ifdef CONFIG_CGROUP_SCHED 6551 /* 6552 * Default task group. 6553 * Every task in system belongs to this group at bootup. 6554 */ 6555 struct task_group root_task_group; 6556 LIST_HEAD(task_groups); 6557 6558 /* Cacheline aligned slab cache for task_group */ 6559 static struct kmem_cache *task_group_cache __read_mostly; 6560 #endif 6561 6562 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6563 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6564 6565 void __init sched_init(void) 6566 { 6567 unsigned long ptr = 0; 6568 int i; 6569 6570 wait_bit_init(); 6571 6572 #ifdef CONFIG_FAIR_GROUP_SCHED 6573 ptr += 2 * nr_cpu_ids * sizeof(void **); 6574 #endif 6575 #ifdef CONFIG_RT_GROUP_SCHED 6576 ptr += 2 * nr_cpu_ids * sizeof(void **); 6577 #endif 6578 if (ptr) { 6579 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6580 6581 #ifdef CONFIG_FAIR_GROUP_SCHED 6582 root_task_group.se = (struct sched_entity **)ptr; 6583 ptr += nr_cpu_ids * sizeof(void **); 6584 6585 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6586 ptr += nr_cpu_ids * sizeof(void **); 6587 6588 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6589 #ifdef CONFIG_RT_GROUP_SCHED 6590 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6591 ptr += nr_cpu_ids * sizeof(void **); 6592 6593 root_task_group.rt_rq = (struct rt_rq **)ptr; 6594 ptr += nr_cpu_ids * sizeof(void **); 6595 6596 #endif /* CONFIG_RT_GROUP_SCHED */ 6597 } 6598 #ifdef CONFIG_CPUMASK_OFFSTACK 6599 for_each_possible_cpu(i) { 6600 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6601 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6602 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6603 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6604 } 6605 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6606 6607 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6608 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6609 6610 #ifdef CONFIG_SMP 6611 init_defrootdomain(); 6612 #endif 6613 6614 #ifdef CONFIG_RT_GROUP_SCHED 6615 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6616 global_rt_period(), global_rt_runtime()); 6617 #endif /* CONFIG_RT_GROUP_SCHED */ 6618 6619 #ifdef CONFIG_CGROUP_SCHED 6620 task_group_cache = KMEM_CACHE(task_group, 0); 6621 6622 list_add(&root_task_group.list, &task_groups); 6623 INIT_LIST_HEAD(&root_task_group.children); 6624 INIT_LIST_HEAD(&root_task_group.siblings); 6625 autogroup_init(&init_task); 6626 #endif /* CONFIG_CGROUP_SCHED */ 6627 6628 for_each_possible_cpu(i) { 6629 struct rq *rq; 6630 6631 rq = cpu_rq(i); 6632 raw_spin_lock_init(&rq->lock); 6633 rq->nr_running = 0; 6634 rq->calc_load_active = 0; 6635 rq->calc_load_update = jiffies + LOAD_FREQ; 6636 init_cfs_rq(&rq->cfs); 6637 init_rt_rq(&rq->rt); 6638 init_dl_rq(&rq->dl); 6639 #ifdef CONFIG_FAIR_GROUP_SCHED 6640 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6641 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6642 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6643 /* 6644 * How much CPU bandwidth does root_task_group get? 6645 * 6646 * In case of task-groups formed thr' the cgroup filesystem, it 6647 * gets 100% of the CPU resources in the system. This overall 6648 * system CPU resource is divided among the tasks of 6649 * root_task_group and its child task-groups in a fair manner, 6650 * based on each entity's (task or task-group's) weight 6651 * (se->load.weight). 6652 * 6653 * In other words, if root_task_group has 10 tasks of weight 6654 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6655 * then A0's share of the CPU resource is: 6656 * 6657 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6658 * 6659 * We achieve this by letting root_task_group's tasks sit 6660 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6661 */ 6662 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6663 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6664 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6665 6666 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6667 #ifdef CONFIG_RT_GROUP_SCHED 6668 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6669 #endif 6670 #ifdef CONFIG_SMP 6671 rq->sd = NULL; 6672 rq->rd = NULL; 6673 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6674 rq->balance_callback = NULL; 6675 rq->active_balance = 0; 6676 rq->next_balance = jiffies; 6677 rq->push_cpu = 0; 6678 rq->cpu = i; 6679 rq->online = 0; 6680 rq->idle_stamp = 0; 6681 rq->avg_idle = 2*sysctl_sched_migration_cost; 6682 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6683 6684 INIT_LIST_HEAD(&rq->cfs_tasks); 6685 6686 rq_attach_root(rq, &def_root_domain); 6687 #ifdef CONFIG_NO_HZ_COMMON 6688 rq->last_load_update_tick = jiffies; 6689 rq->last_blocked_load_update_tick = jiffies; 6690 atomic_set(&rq->nohz_flags, 0); 6691 #endif 6692 #endif /* CONFIG_SMP */ 6693 hrtick_rq_init(rq); 6694 atomic_set(&rq->nr_iowait, 0); 6695 } 6696 6697 set_load_weight(&init_task, false); 6698 6699 /* 6700 * The boot idle thread does lazy MMU switching as well: 6701 */ 6702 mmgrab(&init_mm); 6703 enter_lazy_tlb(&init_mm, current); 6704 6705 /* 6706 * Make us the idle thread. Technically, schedule() should not be 6707 * called from this thread, however somewhere below it might be, 6708 * but because we are the idle thread, we just pick up running again 6709 * when this runqueue becomes "idle". 6710 */ 6711 init_idle(current, smp_processor_id()); 6712 6713 calc_load_update = jiffies + LOAD_FREQ; 6714 6715 #ifdef CONFIG_SMP 6716 idle_thread_set_boot_cpu(); 6717 #endif 6718 init_sched_fair_class(); 6719 6720 init_schedstats(); 6721 6722 psi_init(); 6723 6724 init_uclamp(); 6725 6726 scheduler_running = 1; 6727 } 6728 6729 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6730 static inline int preempt_count_equals(int preempt_offset) 6731 { 6732 int nested = preempt_count() + rcu_preempt_depth(); 6733 6734 return (nested == preempt_offset); 6735 } 6736 6737 void __might_sleep(const char *file, int line, int preempt_offset) 6738 { 6739 /* 6740 * Blocking primitives will set (and therefore destroy) current->state, 6741 * since we will exit with TASK_RUNNING make sure we enter with it, 6742 * otherwise we will destroy state. 6743 */ 6744 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6745 "do not call blocking ops when !TASK_RUNNING; " 6746 "state=%lx set at [<%p>] %pS\n", 6747 current->state, 6748 (void *)current->task_state_change, 6749 (void *)current->task_state_change); 6750 6751 ___might_sleep(file, line, preempt_offset); 6752 } 6753 EXPORT_SYMBOL(__might_sleep); 6754 6755 void ___might_sleep(const char *file, int line, int preempt_offset) 6756 { 6757 /* Ratelimiting timestamp: */ 6758 static unsigned long prev_jiffy; 6759 6760 unsigned long preempt_disable_ip; 6761 6762 /* WARN_ON_ONCE() by default, no rate limit required: */ 6763 rcu_sleep_check(); 6764 6765 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6766 !is_idle_task(current)) || 6767 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6768 oops_in_progress) 6769 return; 6770 6771 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6772 return; 6773 prev_jiffy = jiffies; 6774 6775 /* Save this before calling printk(), since that will clobber it: */ 6776 preempt_disable_ip = get_preempt_disable_ip(current); 6777 6778 printk(KERN_ERR 6779 "BUG: sleeping function called from invalid context at %s:%d\n", 6780 file, line); 6781 printk(KERN_ERR 6782 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6783 in_atomic(), irqs_disabled(), 6784 current->pid, current->comm); 6785 6786 if (task_stack_end_corrupted(current)) 6787 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6788 6789 debug_show_held_locks(current); 6790 if (irqs_disabled()) 6791 print_irqtrace_events(current); 6792 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6793 && !preempt_count_equals(preempt_offset)) { 6794 pr_err("Preemption disabled at:"); 6795 print_ip_sym(preempt_disable_ip); 6796 pr_cont("\n"); 6797 } 6798 dump_stack(); 6799 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6800 } 6801 EXPORT_SYMBOL(___might_sleep); 6802 6803 void __cant_sleep(const char *file, int line, int preempt_offset) 6804 { 6805 static unsigned long prev_jiffy; 6806 6807 if (irqs_disabled()) 6808 return; 6809 6810 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6811 return; 6812 6813 if (preempt_count() > preempt_offset) 6814 return; 6815 6816 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6817 return; 6818 prev_jiffy = jiffies; 6819 6820 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6821 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6822 in_atomic(), irqs_disabled(), 6823 current->pid, current->comm); 6824 6825 debug_show_held_locks(current); 6826 dump_stack(); 6827 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6828 } 6829 EXPORT_SYMBOL_GPL(__cant_sleep); 6830 #endif 6831 6832 #ifdef CONFIG_MAGIC_SYSRQ 6833 void normalize_rt_tasks(void) 6834 { 6835 struct task_struct *g, *p; 6836 struct sched_attr attr = { 6837 .sched_policy = SCHED_NORMAL, 6838 }; 6839 6840 read_lock(&tasklist_lock); 6841 for_each_process_thread(g, p) { 6842 /* 6843 * Only normalize user tasks: 6844 */ 6845 if (p->flags & PF_KTHREAD) 6846 continue; 6847 6848 p->se.exec_start = 0; 6849 schedstat_set(p->se.statistics.wait_start, 0); 6850 schedstat_set(p->se.statistics.sleep_start, 0); 6851 schedstat_set(p->se.statistics.block_start, 0); 6852 6853 if (!dl_task(p) && !rt_task(p)) { 6854 /* 6855 * Renice negative nice level userspace 6856 * tasks back to 0: 6857 */ 6858 if (task_nice(p) < 0) 6859 set_user_nice(p, 0); 6860 continue; 6861 } 6862 6863 __sched_setscheduler(p, &attr, false, false); 6864 } 6865 read_unlock(&tasklist_lock); 6866 } 6867 6868 #endif /* CONFIG_MAGIC_SYSRQ */ 6869 6870 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6871 /* 6872 * These functions are only useful for the IA64 MCA handling, or kdb. 6873 * 6874 * They can only be called when the whole system has been 6875 * stopped - every CPU needs to be quiescent, and no scheduling 6876 * activity can take place. Using them for anything else would 6877 * be a serious bug, and as a result, they aren't even visible 6878 * under any other configuration. 6879 */ 6880 6881 /** 6882 * curr_task - return the current task for a given CPU. 6883 * @cpu: the processor in question. 6884 * 6885 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6886 * 6887 * Return: The current task for @cpu. 6888 */ 6889 struct task_struct *curr_task(int cpu) 6890 { 6891 return cpu_curr(cpu); 6892 } 6893 6894 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6895 6896 #ifdef CONFIG_IA64 6897 /** 6898 * ia64_set_curr_task - set the current task for a given CPU. 6899 * @cpu: the processor in question. 6900 * @p: the task pointer to set. 6901 * 6902 * Description: This function must only be used when non-maskable interrupts 6903 * are serviced on a separate stack. It allows the architecture to switch the 6904 * notion of the current task on a CPU in a non-blocking manner. This function 6905 * must be called with all CPU's synchronized, and interrupts disabled, the 6906 * and caller must save the original value of the current task (see 6907 * curr_task() above) and restore that value before reenabling interrupts and 6908 * re-starting the system. 6909 * 6910 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6911 */ 6912 void ia64_set_curr_task(int cpu, struct task_struct *p) 6913 { 6914 cpu_curr(cpu) = p; 6915 } 6916 6917 #endif 6918 6919 #ifdef CONFIG_CGROUP_SCHED 6920 /* task_group_lock serializes the addition/removal of task groups */ 6921 static DEFINE_SPINLOCK(task_group_lock); 6922 6923 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6924 struct task_group *parent) 6925 { 6926 #ifdef CONFIG_UCLAMP_TASK_GROUP 6927 enum uclamp_id clamp_id; 6928 6929 for_each_clamp_id(clamp_id) { 6930 uclamp_se_set(&tg->uclamp_req[clamp_id], 6931 uclamp_none(clamp_id), false); 6932 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6933 } 6934 #endif 6935 } 6936 6937 static void sched_free_group(struct task_group *tg) 6938 { 6939 free_fair_sched_group(tg); 6940 free_rt_sched_group(tg); 6941 autogroup_free(tg); 6942 kmem_cache_free(task_group_cache, tg); 6943 } 6944 6945 /* allocate runqueue etc for a new task group */ 6946 struct task_group *sched_create_group(struct task_group *parent) 6947 { 6948 struct task_group *tg; 6949 6950 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6951 if (!tg) 6952 return ERR_PTR(-ENOMEM); 6953 6954 if (!alloc_fair_sched_group(tg, parent)) 6955 goto err; 6956 6957 if (!alloc_rt_sched_group(tg, parent)) 6958 goto err; 6959 6960 alloc_uclamp_sched_group(tg, parent); 6961 6962 return tg; 6963 6964 err: 6965 sched_free_group(tg); 6966 return ERR_PTR(-ENOMEM); 6967 } 6968 6969 void sched_online_group(struct task_group *tg, struct task_group *parent) 6970 { 6971 unsigned long flags; 6972 6973 spin_lock_irqsave(&task_group_lock, flags); 6974 list_add_rcu(&tg->list, &task_groups); 6975 6976 /* Root should already exist: */ 6977 WARN_ON(!parent); 6978 6979 tg->parent = parent; 6980 INIT_LIST_HEAD(&tg->children); 6981 list_add_rcu(&tg->siblings, &parent->children); 6982 spin_unlock_irqrestore(&task_group_lock, flags); 6983 6984 online_fair_sched_group(tg); 6985 } 6986 6987 /* rcu callback to free various structures associated with a task group */ 6988 static void sched_free_group_rcu(struct rcu_head *rhp) 6989 { 6990 /* Now it should be safe to free those cfs_rqs: */ 6991 sched_free_group(container_of(rhp, struct task_group, rcu)); 6992 } 6993 6994 void sched_destroy_group(struct task_group *tg) 6995 { 6996 /* Wait for possible concurrent references to cfs_rqs complete: */ 6997 call_rcu(&tg->rcu, sched_free_group_rcu); 6998 } 6999 7000 void sched_offline_group(struct task_group *tg) 7001 { 7002 unsigned long flags; 7003 7004 /* End participation in shares distribution: */ 7005 unregister_fair_sched_group(tg); 7006 7007 spin_lock_irqsave(&task_group_lock, flags); 7008 list_del_rcu(&tg->list); 7009 list_del_rcu(&tg->siblings); 7010 spin_unlock_irqrestore(&task_group_lock, flags); 7011 } 7012 7013 static void sched_change_group(struct task_struct *tsk, int type) 7014 { 7015 struct task_group *tg; 7016 7017 /* 7018 * All callers are synchronized by task_rq_lock(); we do not use RCU 7019 * which is pointless here. Thus, we pass "true" to task_css_check() 7020 * to prevent lockdep warnings. 7021 */ 7022 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7023 struct task_group, css); 7024 tg = autogroup_task_group(tsk, tg); 7025 tsk->sched_task_group = tg; 7026 7027 #ifdef CONFIG_FAIR_GROUP_SCHED 7028 if (tsk->sched_class->task_change_group) 7029 tsk->sched_class->task_change_group(tsk, type); 7030 else 7031 #endif 7032 set_task_rq(tsk, task_cpu(tsk)); 7033 } 7034 7035 /* 7036 * Change task's runqueue when it moves between groups. 7037 * 7038 * The caller of this function should have put the task in its new group by 7039 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7040 * its new group. 7041 */ 7042 void sched_move_task(struct task_struct *tsk) 7043 { 7044 int queued, running, queue_flags = 7045 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7046 struct rq_flags rf; 7047 struct rq *rq; 7048 7049 rq = task_rq_lock(tsk, &rf); 7050 update_rq_clock(rq); 7051 7052 running = task_current(rq, tsk); 7053 queued = task_on_rq_queued(tsk); 7054 7055 if (queued) 7056 dequeue_task(rq, tsk, queue_flags); 7057 if (running) 7058 put_prev_task(rq, tsk); 7059 7060 sched_change_group(tsk, TASK_MOVE_GROUP); 7061 7062 if (queued) 7063 enqueue_task(rq, tsk, queue_flags); 7064 if (running) 7065 set_next_task(rq, tsk); 7066 7067 task_rq_unlock(rq, tsk, &rf); 7068 } 7069 7070 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7071 { 7072 return css ? container_of(css, struct task_group, css) : NULL; 7073 } 7074 7075 static struct cgroup_subsys_state * 7076 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7077 { 7078 struct task_group *parent = css_tg(parent_css); 7079 struct task_group *tg; 7080 7081 if (!parent) { 7082 /* This is early initialization for the top cgroup */ 7083 return &root_task_group.css; 7084 } 7085 7086 tg = sched_create_group(parent); 7087 if (IS_ERR(tg)) 7088 return ERR_PTR(-ENOMEM); 7089 7090 return &tg->css; 7091 } 7092 7093 /* Expose task group only after completing cgroup initialization */ 7094 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7095 { 7096 struct task_group *tg = css_tg(css); 7097 struct task_group *parent = css_tg(css->parent); 7098 7099 if (parent) 7100 sched_online_group(tg, parent); 7101 return 0; 7102 } 7103 7104 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7105 { 7106 struct task_group *tg = css_tg(css); 7107 7108 sched_offline_group(tg); 7109 } 7110 7111 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7112 { 7113 struct task_group *tg = css_tg(css); 7114 7115 /* 7116 * Relies on the RCU grace period between css_released() and this. 7117 */ 7118 sched_free_group(tg); 7119 } 7120 7121 /* 7122 * This is called before wake_up_new_task(), therefore we really only 7123 * have to set its group bits, all the other stuff does not apply. 7124 */ 7125 static void cpu_cgroup_fork(struct task_struct *task) 7126 { 7127 struct rq_flags rf; 7128 struct rq *rq; 7129 7130 rq = task_rq_lock(task, &rf); 7131 7132 update_rq_clock(rq); 7133 sched_change_group(task, TASK_SET_GROUP); 7134 7135 task_rq_unlock(rq, task, &rf); 7136 } 7137 7138 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7139 { 7140 struct task_struct *task; 7141 struct cgroup_subsys_state *css; 7142 int ret = 0; 7143 7144 cgroup_taskset_for_each(task, css, tset) { 7145 #ifdef CONFIG_RT_GROUP_SCHED 7146 if (!sched_rt_can_attach(css_tg(css), task)) 7147 return -EINVAL; 7148 #endif 7149 /* 7150 * Serialize against wake_up_new_task() such that if its 7151 * running, we're sure to observe its full state. 7152 */ 7153 raw_spin_lock_irq(&task->pi_lock); 7154 /* 7155 * Avoid calling sched_move_task() before wake_up_new_task() 7156 * has happened. This would lead to problems with PELT, due to 7157 * move wanting to detach+attach while we're not attached yet. 7158 */ 7159 if (task->state == TASK_NEW) 7160 ret = -EINVAL; 7161 raw_spin_unlock_irq(&task->pi_lock); 7162 7163 if (ret) 7164 break; 7165 } 7166 return ret; 7167 } 7168 7169 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7170 { 7171 struct task_struct *task; 7172 struct cgroup_subsys_state *css; 7173 7174 cgroup_taskset_for_each(task, css, tset) 7175 sched_move_task(task); 7176 } 7177 7178 #ifdef CONFIG_UCLAMP_TASK_GROUP 7179 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7180 { 7181 struct cgroup_subsys_state *top_css = css; 7182 struct uclamp_se *uc_parent = NULL; 7183 struct uclamp_se *uc_se = NULL; 7184 unsigned int eff[UCLAMP_CNT]; 7185 enum uclamp_id clamp_id; 7186 unsigned int clamps; 7187 7188 css_for_each_descendant_pre(css, top_css) { 7189 uc_parent = css_tg(css)->parent 7190 ? css_tg(css)->parent->uclamp : NULL; 7191 7192 for_each_clamp_id(clamp_id) { 7193 /* Assume effective clamps matches requested clamps */ 7194 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7195 /* Cap effective clamps with parent's effective clamps */ 7196 if (uc_parent && 7197 eff[clamp_id] > uc_parent[clamp_id].value) { 7198 eff[clamp_id] = uc_parent[clamp_id].value; 7199 } 7200 } 7201 /* Ensure protection is always capped by limit */ 7202 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7203 7204 /* Propagate most restrictive effective clamps */ 7205 clamps = 0x0; 7206 uc_se = css_tg(css)->uclamp; 7207 for_each_clamp_id(clamp_id) { 7208 if (eff[clamp_id] == uc_se[clamp_id].value) 7209 continue; 7210 uc_se[clamp_id].value = eff[clamp_id]; 7211 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7212 clamps |= (0x1 << clamp_id); 7213 } 7214 if (!clamps) { 7215 css = css_rightmost_descendant(css); 7216 continue; 7217 } 7218 7219 /* Immediately update descendants RUNNABLE tasks */ 7220 uclamp_update_active_tasks(css, clamps); 7221 } 7222 } 7223 7224 /* 7225 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7226 * C expression. Since there is no way to convert a macro argument (N) into a 7227 * character constant, use two levels of macros. 7228 */ 7229 #define _POW10(exp) ((unsigned int)1e##exp) 7230 #define POW10(exp) _POW10(exp) 7231 7232 struct uclamp_request { 7233 #define UCLAMP_PERCENT_SHIFT 2 7234 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7235 s64 percent; 7236 u64 util; 7237 int ret; 7238 }; 7239 7240 static inline struct uclamp_request 7241 capacity_from_percent(char *buf) 7242 { 7243 struct uclamp_request req = { 7244 .percent = UCLAMP_PERCENT_SCALE, 7245 .util = SCHED_CAPACITY_SCALE, 7246 .ret = 0, 7247 }; 7248 7249 buf = strim(buf); 7250 if (strcmp(buf, "max")) { 7251 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7252 &req.percent); 7253 if (req.ret) 7254 return req; 7255 if (req.percent > UCLAMP_PERCENT_SCALE) { 7256 req.ret = -ERANGE; 7257 return req; 7258 } 7259 7260 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7261 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7262 } 7263 7264 return req; 7265 } 7266 7267 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7268 size_t nbytes, loff_t off, 7269 enum uclamp_id clamp_id) 7270 { 7271 struct uclamp_request req; 7272 struct task_group *tg; 7273 7274 req = capacity_from_percent(buf); 7275 if (req.ret) 7276 return req.ret; 7277 7278 mutex_lock(&uclamp_mutex); 7279 rcu_read_lock(); 7280 7281 tg = css_tg(of_css(of)); 7282 if (tg->uclamp_req[clamp_id].value != req.util) 7283 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7284 7285 /* 7286 * Because of not recoverable conversion rounding we keep track of the 7287 * exact requested value 7288 */ 7289 tg->uclamp_pct[clamp_id] = req.percent; 7290 7291 /* Update effective clamps to track the most restrictive value */ 7292 cpu_util_update_eff(of_css(of)); 7293 7294 rcu_read_unlock(); 7295 mutex_unlock(&uclamp_mutex); 7296 7297 return nbytes; 7298 } 7299 7300 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7301 char *buf, size_t nbytes, 7302 loff_t off) 7303 { 7304 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7305 } 7306 7307 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7308 char *buf, size_t nbytes, 7309 loff_t off) 7310 { 7311 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7312 } 7313 7314 static inline void cpu_uclamp_print(struct seq_file *sf, 7315 enum uclamp_id clamp_id) 7316 { 7317 struct task_group *tg; 7318 u64 util_clamp; 7319 u64 percent; 7320 u32 rem; 7321 7322 rcu_read_lock(); 7323 tg = css_tg(seq_css(sf)); 7324 util_clamp = tg->uclamp_req[clamp_id].value; 7325 rcu_read_unlock(); 7326 7327 if (util_clamp == SCHED_CAPACITY_SCALE) { 7328 seq_puts(sf, "max\n"); 7329 return; 7330 } 7331 7332 percent = tg->uclamp_pct[clamp_id]; 7333 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7334 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7335 } 7336 7337 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7338 { 7339 cpu_uclamp_print(sf, UCLAMP_MIN); 7340 return 0; 7341 } 7342 7343 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7344 { 7345 cpu_uclamp_print(sf, UCLAMP_MAX); 7346 return 0; 7347 } 7348 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7349 7350 #ifdef CONFIG_FAIR_GROUP_SCHED 7351 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7352 struct cftype *cftype, u64 shareval) 7353 { 7354 if (shareval > scale_load_down(ULONG_MAX)) 7355 shareval = MAX_SHARES; 7356 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7357 } 7358 7359 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7360 struct cftype *cft) 7361 { 7362 struct task_group *tg = css_tg(css); 7363 7364 return (u64) scale_load_down(tg->shares); 7365 } 7366 7367 #ifdef CONFIG_CFS_BANDWIDTH 7368 static DEFINE_MUTEX(cfs_constraints_mutex); 7369 7370 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7371 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7372 7373 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7374 7375 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7376 { 7377 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7378 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7379 7380 if (tg == &root_task_group) 7381 return -EINVAL; 7382 7383 /* 7384 * Ensure we have at some amount of bandwidth every period. This is 7385 * to prevent reaching a state of large arrears when throttled via 7386 * entity_tick() resulting in prolonged exit starvation. 7387 */ 7388 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7389 return -EINVAL; 7390 7391 /* 7392 * Likewise, bound things on the otherside by preventing insane quota 7393 * periods. This also allows us to normalize in computing quota 7394 * feasibility. 7395 */ 7396 if (period > max_cfs_quota_period) 7397 return -EINVAL; 7398 7399 /* 7400 * Prevent race between setting of cfs_rq->runtime_enabled and 7401 * unthrottle_offline_cfs_rqs(). 7402 */ 7403 get_online_cpus(); 7404 mutex_lock(&cfs_constraints_mutex); 7405 ret = __cfs_schedulable(tg, period, quota); 7406 if (ret) 7407 goto out_unlock; 7408 7409 runtime_enabled = quota != RUNTIME_INF; 7410 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7411 /* 7412 * If we need to toggle cfs_bandwidth_used, off->on must occur 7413 * before making related changes, and on->off must occur afterwards 7414 */ 7415 if (runtime_enabled && !runtime_was_enabled) 7416 cfs_bandwidth_usage_inc(); 7417 raw_spin_lock_irq(&cfs_b->lock); 7418 cfs_b->period = ns_to_ktime(period); 7419 cfs_b->quota = quota; 7420 7421 __refill_cfs_bandwidth_runtime(cfs_b); 7422 7423 /* Restart the period timer (if active) to handle new period expiry: */ 7424 if (runtime_enabled) 7425 start_cfs_bandwidth(cfs_b); 7426 7427 raw_spin_unlock_irq(&cfs_b->lock); 7428 7429 for_each_online_cpu(i) { 7430 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7431 struct rq *rq = cfs_rq->rq; 7432 struct rq_flags rf; 7433 7434 rq_lock_irq(rq, &rf); 7435 cfs_rq->runtime_enabled = runtime_enabled; 7436 cfs_rq->runtime_remaining = 0; 7437 7438 if (cfs_rq->throttled) 7439 unthrottle_cfs_rq(cfs_rq); 7440 rq_unlock_irq(rq, &rf); 7441 } 7442 if (runtime_was_enabled && !runtime_enabled) 7443 cfs_bandwidth_usage_dec(); 7444 out_unlock: 7445 mutex_unlock(&cfs_constraints_mutex); 7446 put_online_cpus(); 7447 7448 return ret; 7449 } 7450 7451 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7452 { 7453 u64 quota, period; 7454 7455 period = ktime_to_ns(tg->cfs_bandwidth.period); 7456 if (cfs_quota_us < 0) 7457 quota = RUNTIME_INF; 7458 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7459 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7460 else 7461 return -EINVAL; 7462 7463 return tg_set_cfs_bandwidth(tg, period, quota); 7464 } 7465 7466 static long tg_get_cfs_quota(struct task_group *tg) 7467 { 7468 u64 quota_us; 7469 7470 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7471 return -1; 7472 7473 quota_us = tg->cfs_bandwidth.quota; 7474 do_div(quota_us, NSEC_PER_USEC); 7475 7476 return quota_us; 7477 } 7478 7479 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7480 { 7481 u64 quota, period; 7482 7483 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7484 return -EINVAL; 7485 7486 period = (u64)cfs_period_us * NSEC_PER_USEC; 7487 quota = tg->cfs_bandwidth.quota; 7488 7489 return tg_set_cfs_bandwidth(tg, period, quota); 7490 } 7491 7492 static long tg_get_cfs_period(struct task_group *tg) 7493 { 7494 u64 cfs_period_us; 7495 7496 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7497 do_div(cfs_period_us, NSEC_PER_USEC); 7498 7499 return cfs_period_us; 7500 } 7501 7502 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7503 struct cftype *cft) 7504 { 7505 return tg_get_cfs_quota(css_tg(css)); 7506 } 7507 7508 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7509 struct cftype *cftype, s64 cfs_quota_us) 7510 { 7511 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7512 } 7513 7514 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7515 struct cftype *cft) 7516 { 7517 return tg_get_cfs_period(css_tg(css)); 7518 } 7519 7520 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7521 struct cftype *cftype, u64 cfs_period_us) 7522 { 7523 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7524 } 7525 7526 struct cfs_schedulable_data { 7527 struct task_group *tg; 7528 u64 period, quota; 7529 }; 7530 7531 /* 7532 * normalize group quota/period to be quota/max_period 7533 * note: units are usecs 7534 */ 7535 static u64 normalize_cfs_quota(struct task_group *tg, 7536 struct cfs_schedulable_data *d) 7537 { 7538 u64 quota, period; 7539 7540 if (tg == d->tg) { 7541 period = d->period; 7542 quota = d->quota; 7543 } else { 7544 period = tg_get_cfs_period(tg); 7545 quota = tg_get_cfs_quota(tg); 7546 } 7547 7548 /* note: these should typically be equivalent */ 7549 if (quota == RUNTIME_INF || quota == -1) 7550 return RUNTIME_INF; 7551 7552 return to_ratio(period, quota); 7553 } 7554 7555 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7556 { 7557 struct cfs_schedulable_data *d = data; 7558 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7559 s64 quota = 0, parent_quota = -1; 7560 7561 if (!tg->parent) { 7562 quota = RUNTIME_INF; 7563 } else { 7564 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7565 7566 quota = normalize_cfs_quota(tg, d); 7567 parent_quota = parent_b->hierarchical_quota; 7568 7569 /* 7570 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7571 * always take the min. On cgroup1, only inherit when no 7572 * limit is set: 7573 */ 7574 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7575 quota = min(quota, parent_quota); 7576 } else { 7577 if (quota == RUNTIME_INF) 7578 quota = parent_quota; 7579 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7580 return -EINVAL; 7581 } 7582 } 7583 cfs_b->hierarchical_quota = quota; 7584 7585 return 0; 7586 } 7587 7588 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7589 { 7590 int ret; 7591 struct cfs_schedulable_data data = { 7592 .tg = tg, 7593 .period = period, 7594 .quota = quota, 7595 }; 7596 7597 if (quota != RUNTIME_INF) { 7598 do_div(data.period, NSEC_PER_USEC); 7599 do_div(data.quota, NSEC_PER_USEC); 7600 } 7601 7602 rcu_read_lock(); 7603 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7604 rcu_read_unlock(); 7605 7606 return ret; 7607 } 7608 7609 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7610 { 7611 struct task_group *tg = css_tg(seq_css(sf)); 7612 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7613 7614 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7615 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7616 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7617 7618 if (schedstat_enabled() && tg != &root_task_group) { 7619 u64 ws = 0; 7620 int i; 7621 7622 for_each_possible_cpu(i) 7623 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7624 7625 seq_printf(sf, "wait_sum %llu\n", ws); 7626 } 7627 7628 return 0; 7629 } 7630 #endif /* CONFIG_CFS_BANDWIDTH */ 7631 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7632 7633 #ifdef CONFIG_RT_GROUP_SCHED 7634 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7635 struct cftype *cft, s64 val) 7636 { 7637 return sched_group_set_rt_runtime(css_tg(css), val); 7638 } 7639 7640 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7641 struct cftype *cft) 7642 { 7643 return sched_group_rt_runtime(css_tg(css)); 7644 } 7645 7646 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7647 struct cftype *cftype, u64 rt_period_us) 7648 { 7649 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7650 } 7651 7652 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7653 struct cftype *cft) 7654 { 7655 return sched_group_rt_period(css_tg(css)); 7656 } 7657 #endif /* CONFIG_RT_GROUP_SCHED */ 7658 7659 static struct cftype cpu_legacy_files[] = { 7660 #ifdef CONFIG_FAIR_GROUP_SCHED 7661 { 7662 .name = "shares", 7663 .read_u64 = cpu_shares_read_u64, 7664 .write_u64 = cpu_shares_write_u64, 7665 }, 7666 #endif 7667 #ifdef CONFIG_CFS_BANDWIDTH 7668 { 7669 .name = "cfs_quota_us", 7670 .read_s64 = cpu_cfs_quota_read_s64, 7671 .write_s64 = cpu_cfs_quota_write_s64, 7672 }, 7673 { 7674 .name = "cfs_period_us", 7675 .read_u64 = cpu_cfs_period_read_u64, 7676 .write_u64 = cpu_cfs_period_write_u64, 7677 }, 7678 { 7679 .name = "stat", 7680 .seq_show = cpu_cfs_stat_show, 7681 }, 7682 #endif 7683 #ifdef CONFIG_RT_GROUP_SCHED 7684 { 7685 .name = "rt_runtime_us", 7686 .read_s64 = cpu_rt_runtime_read, 7687 .write_s64 = cpu_rt_runtime_write, 7688 }, 7689 { 7690 .name = "rt_period_us", 7691 .read_u64 = cpu_rt_period_read_uint, 7692 .write_u64 = cpu_rt_period_write_uint, 7693 }, 7694 #endif 7695 #ifdef CONFIG_UCLAMP_TASK_GROUP 7696 { 7697 .name = "uclamp.min", 7698 .flags = CFTYPE_NOT_ON_ROOT, 7699 .seq_show = cpu_uclamp_min_show, 7700 .write = cpu_uclamp_min_write, 7701 }, 7702 { 7703 .name = "uclamp.max", 7704 .flags = CFTYPE_NOT_ON_ROOT, 7705 .seq_show = cpu_uclamp_max_show, 7706 .write = cpu_uclamp_max_write, 7707 }, 7708 #endif 7709 { } /* Terminate */ 7710 }; 7711 7712 static int cpu_extra_stat_show(struct seq_file *sf, 7713 struct cgroup_subsys_state *css) 7714 { 7715 #ifdef CONFIG_CFS_BANDWIDTH 7716 { 7717 struct task_group *tg = css_tg(css); 7718 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7719 u64 throttled_usec; 7720 7721 throttled_usec = cfs_b->throttled_time; 7722 do_div(throttled_usec, NSEC_PER_USEC); 7723 7724 seq_printf(sf, "nr_periods %d\n" 7725 "nr_throttled %d\n" 7726 "throttled_usec %llu\n", 7727 cfs_b->nr_periods, cfs_b->nr_throttled, 7728 throttled_usec); 7729 } 7730 #endif 7731 return 0; 7732 } 7733 7734 #ifdef CONFIG_FAIR_GROUP_SCHED 7735 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7736 struct cftype *cft) 7737 { 7738 struct task_group *tg = css_tg(css); 7739 u64 weight = scale_load_down(tg->shares); 7740 7741 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7742 } 7743 7744 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7745 struct cftype *cft, u64 weight) 7746 { 7747 /* 7748 * cgroup weight knobs should use the common MIN, DFL and MAX 7749 * values which are 1, 100 and 10000 respectively. While it loses 7750 * a bit of range on both ends, it maps pretty well onto the shares 7751 * value used by scheduler and the round-trip conversions preserve 7752 * the original value over the entire range. 7753 */ 7754 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7755 return -ERANGE; 7756 7757 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7758 7759 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7760 } 7761 7762 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7763 struct cftype *cft) 7764 { 7765 unsigned long weight = scale_load_down(css_tg(css)->shares); 7766 int last_delta = INT_MAX; 7767 int prio, delta; 7768 7769 /* find the closest nice value to the current weight */ 7770 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7771 delta = abs(sched_prio_to_weight[prio] - weight); 7772 if (delta >= last_delta) 7773 break; 7774 last_delta = delta; 7775 } 7776 7777 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7778 } 7779 7780 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7781 struct cftype *cft, s64 nice) 7782 { 7783 unsigned long weight; 7784 int idx; 7785 7786 if (nice < MIN_NICE || nice > MAX_NICE) 7787 return -ERANGE; 7788 7789 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7790 idx = array_index_nospec(idx, 40); 7791 weight = sched_prio_to_weight[idx]; 7792 7793 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7794 } 7795 #endif 7796 7797 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7798 long period, long quota) 7799 { 7800 if (quota < 0) 7801 seq_puts(sf, "max"); 7802 else 7803 seq_printf(sf, "%ld", quota); 7804 7805 seq_printf(sf, " %ld\n", period); 7806 } 7807 7808 /* caller should put the current value in *@periodp before calling */ 7809 static int __maybe_unused cpu_period_quota_parse(char *buf, 7810 u64 *periodp, u64 *quotap) 7811 { 7812 char tok[21]; /* U64_MAX */ 7813 7814 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7815 return -EINVAL; 7816 7817 *periodp *= NSEC_PER_USEC; 7818 7819 if (sscanf(tok, "%llu", quotap)) 7820 *quotap *= NSEC_PER_USEC; 7821 else if (!strcmp(tok, "max")) 7822 *quotap = RUNTIME_INF; 7823 else 7824 return -EINVAL; 7825 7826 return 0; 7827 } 7828 7829 #ifdef CONFIG_CFS_BANDWIDTH 7830 static int cpu_max_show(struct seq_file *sf, void *v) 7831 { 7832 struct task_group *tg = css_tg(seq_css(sf)); 7833 7834 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7835 return 0; 7836 } 7837 7838 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7839 char *buf, size_t nbytes, loff_t off) 7840 { 7841 struct task_group *tg = css_tg(of_css(of)); 7842 u64 period = tg_get_cfs_period(tg); 7843 u64 quota; 7844 int ret; 7845 7846 ret = cpu_period_quota_parse(buf, &period, "a); 7847 if (!ret) 7848 ret = tg_set_cfs_bandwidth(tg, period, quota); 7849 return ret ?: nbytes; 7850 } 7851 #endif 7852 7853 static struct cftype cpu_files[] = { 7854 #ifdef CONFIG_FAIR_GROUP_SCHED 7855 { 7856 .name = "weight", 7857 .flags = CFTYPE_NOT_ON_ROOT, 7858 .read_u64 = cpu_weight_read_u64, 7859 .write_u64 = cpu_weight_write_u64, 7860 }, 7861 { 7862 .name = "weight.nice", 7863 .flags = CFTYPE_NOT_ON_ROOT, 7864 .read_s64 = cpu_weight_nice_read_s64, 7865 .write_s64 = cpu_weight_nice_write_s64, 7866 }, 7867 #endif 7868 #ifdef CONFIG_CFS_BANDWIDTH 7869 { 7870 .name = "max", 7871 .flags = CFTYPE_NOT_ON_ROOT, 7872 .seq_show = cpu_max_show, 7873 .write = cpu_max_write, 7874 }, 7875 #endif 7876 #ifdef CONFIG_UCLAMP_TASK_GROUP 7877 { 7878 .name = "uclamp.min", 7879 .flags = CFTYPE_NOT_ON_ROOT, 7880 .seq_show = cpu_uclamp_min_show, 7881 .write = cpu_uclamp_min_write, 7882 }, 7883 { 7884 .name = "uclamp.max", 7885 .flags = CFTYPE_NOT_ON_ROOT, 7886 .seq_show = cpu_uclamp_max_show, 7887 .write = cpu_uclamp_max_write, 7888 }, 7889 #endif 7890 { } /* terminate */ 7891 }; 7892 7893 struct cgroup_subsys cpu_cgrp_subsys = { 7894 .css_alloc = cpu_cgroup_css_alloc, 7895 .css_online = cpu_cgroup_css_online, 7896 .css_released = cpu_cgroup_css_released, 7897 .css_free = cpu_cgroup_css_free, 7898 .css_extra_stat_show = cpu_extra_stat_show, 7899 .fork = cpu_cgroup_fork, 7900 .can_attach = cpu_cgroup_can_attach, 7901 .attach = cpu_cgroup_attach, 7902 .legacy_cftypes = cpu_legacy_files, 7903 .dfl_cftypes = cpu_files, 7904 .early_init = true, 7905 .threaded = true, 7906 }; 7907 7908 #endif /* CONFIG_CGROUP_SCHED */ 7909 7910 void dump_cpu_task(int cpu) 7911 { 7912 pr_info("Task dump for CPU %d:\n", cpu); 7913 sched_show_task(cpu_curr(cpu)); 7914 } 7915 7916 /* 7917 * Nice levels are multiplicative, with a gentle 10% change for every 7918 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7919 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7920 * that remained on nice 0. 7921 * 7922 * The "10% effect" is relative and cumulative: from _any_ nice level, 7923 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7924 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7925 * If a task goes up by ~10% and another task goes down by ~10% then 7926 * the relative distance between them is ~25%.) 7927 */ 7928 const int sched_prio_to_weight[40] = { 7929 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7930 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7931 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7932 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7933 /* 0 */ 1024, 820, 655, 526, 423, 7934 /* 5 */ 335, 272, 215, 172, 137, 7935 /* 10 */ 110, 87, 70, 56, 45, 7936 /* 15 */ 36, 29, 23, 18, 15, 7937 }; 7938 7939 /* 7940 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7941 * 7942 * In cases where the weight does not change often, we can use the 7943 * precalculated inverse to speed up arithmetics by turning divisions 7944 * into multiplications: 7945 */ 7946 const u32 sched_prio_to_wmult[40] = { 7947 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7948 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7949 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7950 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7951 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7952 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7953 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7954 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7955 }; 7956 7957 #undef CREATE_TRACE_POINTS 7958