1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most eligible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 #ifdef CONFIG_SCHED_HRTICK 324 /* 325 * Use HR-timers to deliver accurate preemption points. 326 */ 327 328 static void hrtick_clear(struct rq *rq) 329 { 330 if (hrtimer_active(&rq->hrtick_timer)) 331 hrtimer_cancel(&rq->hrtick_timer); 332 } 333 334 /* 335 * High-resolution timer tick. 336 * Runs from hardirq context with interrupts disabled. 337 */ 338 static enum hrtimer_restart hrtick(struct hrtimer *timer) 339 { 340 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 341 struct rq_flags rf; 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 rq_lock(rq, &rf); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 rq_unlock(rq, &rf); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static void __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = rq->hrtick_time; 359 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 struct rq_flags rf; 370 371 rq_lock(rq, &rf); 372 __hrtick_restart(rq); 373 rq_unlock(rq, &rf); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 s64 delta; 385 386 /* 387 * Don't schedule slices shorter than 10000ns, that just 388 * doesn't make sense and can cause timer DoS. 389 */ 390 delta = max_t(s64, delay, 10000LL); 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 392 393 if (rq == this_rq()) 394 __hrtick_restart(rq); 395 else 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 397 } 398 399 #else 400 /* 401 * Called to set the hrtick timer state. 402 * 403 * called with rq->lock held and irqs disabled 404 */ 405 void hrtick_start(struct rq *rq, u64 delay) 406 { 407 /* 408 * Don't schedule slices shorter than 10000ns, that just 409 * doesn't make sense. Rely on vruntime for fairness. 410 */ 411 delay = max_t(u64, delay, 10000LL); 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 413 HRTIMER_MODE_REL_PINNED_HARD); 414 } 415 416 #endif /* CONFIG_SMP */ 417 418 static void hrtick_rq_init(struct rq *rq) 419 { 420 #ifdef CONFIG_SMP 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 422 #endif 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 424 rq->hrtick_timer.function = hrtick; 425 } 426 #else /* CONFIG_SCHED_HRTICK */ 427 static inline void hrtick_clear(struct rq *rq) 428 { 429 } 430 431 static inline void hrtick_rq_init(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SCHED_HRTICK */ 435 436 /* 437 * cmpxchg based fetch_or, macro so it works for different integer types 438 */ 439 #define fetch_or(ptr, mask) \ 440 ({ \ 441 typeof(ptr) _ptr = (ptr); \ 442 typeof(mask) _mask = (mask); \ 443 typeof(*_ptr) _old, _val = *_ptr; \ 444 \ 445 for (;;) { \ 446 _old = cmpxchg(_ptr, _val, _val | _mask); \ 447 if (_old == _val) \ 448 break; \ 449 _val = _old; \ 450 } \ 451 _old; \ 452 }) 453 454 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 455 /* 456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 457 * this avoids any races wrt polling state changes and thereby avoids 458 * spurious IPIs. 459 */ 460 static bool set_nr_and_not_polling(struct task_struct *p) 461 { 462 struct thread_info *ti = task_thread_info(p); 463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 464 } 465 466 /* 467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 468 * 469 * If this returns true, then the idle task promises to call 470 * sched_ttwu_pending() and reschedule soon. 471 */ 472 static bool set_nr_if_polling(struct task_struct *p) 473 { 474 struct thread_info *ti = task_thread_info(p); 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 476 477 for (;;) { 478 if (!(val & _TIF_POLLING_NRFLAG)) 479 return false; 480 if (val & _TIF_NEED_RESCHED) 481 return true; 482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 483 if (old == val) 484 break; 485 val = old; 486 } 487 return true; 488 } 489 490 #else 491 static bool set_nr_and_not_polling(struct task_struct *p) 492 { 493 set_tsk_need_resched(p); 494 return true; 495 } 496 497 #ifdef CONFIG_SMP 498 static bool set_nr_if_polling(struct task_struct *p) 499 { 500 return false; 501 } 502 #endif 503 #endif 504 505 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 506 { 507 struct wake_q_node *node = &task->wake_q; 508 509 /* 510 * Atomically grab the task, if ->wake_q is !nil already it means 511 * it's already queued (either by us or someone else) and will get the 512 * wakeup due to that. 513 * 514 * In order to ensure that a pending wakeup will observe our pending 515 * state, even in the failed case, an explicit smp_mb() must be used. 516 */ 517 smp_mb__before_atomic(); 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 519 return false; 520 521 /* 522 * The head is context local, there can be no concurrency. 523 */ 524 *head->lastp = node; 525 head->lastp = &node->next; 526 return true; 527 } 528 529 /** 530 * wake_q_add() - queue a wakeup for 'later' waking. 531 * @head: the wake_q_head to add @task to 532 * @task: the task to queue for 'later' wakeup 533 * 534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 536 * instantly. 537 * 538 * This function must be used as-if it were wake_up_process(); IOW the task 539 * must be ready to be woken at this location. 540 */ 541 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 542 { 543 if (__wake_q_add(head, task)) 544 get_task_struct(task); 545 } 546 547 /** 548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 549 * @head: the wake_q_head to add @task to 550 * @task: the task to queue for 'later' wakeup 551 * 552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 554 * instantly. 555 * 556 * This function must be used as-if it were wake_up_process(); IOW the task 557 * must be ready to be woken at this location. 558 * 559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 560 * that already hold reference to @task can call the 'safe' version and trust 561 * wake_q to do the right thing depending whether or not the @task is already 562 * queued for wakeup. 563 */ 564 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 565 { 566 if (!__wake_q_add(head, task)) 567 put_task_struct(task); 568 } 569 570 void wake_up_q(struct wake_q_head *head) 571 { 572 struct wake_q_node *node = head->first; 573 574 while (node != WAKE_Q_TAIL) { 575 struct task_struct *task; 576 577 task = container_of(node, struct task_struct, wake_q); 578 BUG_ON(!task); 579 /* Task can safely be re-inserted now: */ 580 node = node->next; 581 task->wake_q.next = NULL; 582 583 /* 584 * wake_up_process() executes a full barrier, which pairs with 585 * the queueing in wake_q_add() so as not to miss wakeups. 586 */ 587 wake_up_process(task); 588 put_task_struct(task); 589 } 590 } 591 592 /* 593 * resched_curr - mark rq's current task 'to be rescheduled now'. 594 * 595 * On UP this means the setting of the need_resched flag, on SMP it 596 * might also involve a cross-CPU call to trigger the scheduler on 597 * the target CPU. 598 */ 599 void resched_curr(struct rq *rq) 600 { 601 struct task_struct *curr = rq->curr; 602 int cpu; 603 604 lockdep_assert_held(&rq->lock); 605 606 if (test_tsk_need_resched(curr)) 607 return; 608 609 cpu = cpu_of(rq); 610 611 if (cpu == smp_processor_id()) { 612 set_tsk_need_resched(curr); 613 set_preempt_need_resched(); 614 return; 615 } 616 617 if (set_nr_and_not_polling(curr)) 618 smp_send_reschedule(cpu); 619 else 620 trace_sched_wake_idle_without_ipi(cpu); 621 } 622 623 void resched_cpu(int cpu) 624 { 625 struct rq *rq = cpu_rq(cpu); 626 unsigned long flags; 627 628 raw_spin_lock_irqsave(&rq->lock, flags); 629 if (cpu_online(cpu) || cpu == smp_processor_id()) 630 resched_curr(rq); 631 raw_spin_unlock_irqrestore(&rq->lock, flags); 632 } 633 634 #ifdef CONFIG_SMP 635 #ifdef CONFIG_NO_HZ_COMMON 636 /* 637 * In the semi idle case, use the nearest busy CPU for migrating timers 638 * from an idle CPU. This is good for power-savings. 639 * 640 * We don't do similar optimization for completely idle system, as 641 * selecting an idle CPU will add more delays to the timers than intended 642 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 643 */ 644 int get_nohz_timer_target(void) 645 { 646 int i, cpu = smp_processor_id(), default_cpu = -1; 647 struct sched_domain *sd; 648 649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 650 if (!idle_cpu(cpu)) 651 return cpu; 652 default_cpu = cpu; 653 } 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu_and(i, sched_domain_span(sd), 658 housekeeping_cpumask(HK_FLAG_TIMER)) { 659 if (cpu == i) 660 continue; 661 662 if (!idle_cpu(i)) { 663 cpu = i; 664 goto unlock; 665 } 666 } 667 } 668 669 if (default_cpu == -1) 670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 671 cpu = default_cpu; 672 unlock: 673 rcu_read_unlock(); 674 return cpu; 675 } 676 677 /* 678 * When add_timer_on() enqueues a timer into the timer wheel of an 679 * idle CPU then this timer might expire before the next timer event 680 * which is scheduled to wake up that CPU. In case of a completely 681 * idle system the next event might even be infinite time into the 682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 683 * leaves the inner idle loop so the newly added timer is taken into 684 * account when the CPU goes back to idle and evaluates the timer 685 * wheel for the next timer event. 686 */ 687 static void wake_up_idle_cpu(int cpu) 688 { 689 struct rq *rq = cpu_rq(cpu); 690 691 if (cpu == smp_processor_id()) 692 return; 693 694 if (set_nr_and_not_polling(rq->idle)) 695 smp_send_reschedule(cpu); 696 else 697 trace_sched_wake_idle_without_ipi(cpu); 698 } 699 700 static bool wake_up_full_nohz_cpu(int cpu) 701 { 702 /* 703 * We just need the target to call irq_exit() and re-evaluate 704 * the next tick. The nohz full kick at least implies that. 705 * If needed we can still optimize that later with an 706 * empty IRQ. 707 */ 708 if (cpu_is_offline(cpu)) 709 return true; /* Don't try to wake offline CPUs. */ 710 if (tick_nohz_full_cpu(cpu)) { 711 if (cpu != smp_processor_id() || 712 tick_nohz_tick_stopped()) 713 tick_nohz_full_kick_cpu(cpu); 714 return true; 715 } 716 717 return false; 718 } 719 720 /* 721 * Wake up the specified CPU. If the CPU is going offline, it is the 722 * caller's responsibility to deal with the lost wakeup, for example, 723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 724 */ 725 void wake_up_nohz_cpu(int cpu) 726 { 727 if (!wake_up_full_nohz_cpu(cpu)) 728 wake_up_idle_cpu(cpu); 729 } 730 731 static void nohz_csd_func(void *info) 732 { 733 struct rq *rq = info; 734 int cpu = cpu_of(rq); 735 unsigned int flags; 736 737 /* 738 * Release the rq::nohz_csd. 739 */ 740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 741 WARN_ON(!(flags & NOHZ_KICK_MASK)); 742 743 rq->idle_balance = idle_cpu(cpu); 744 if (rq->idle_balance && !need_resched()) { 745 rq->nohz_idle_balance = flags; 746 raise_softirq_irqoff(SCHED_SOFTIRQ); 747 } 748 } 749 750 #endif /* CONFIG_NO_HZ_COMMON */ 751 752 #ifdef CONFIG_NO_HZ_FULL 753 bool sched_can_stop_tick(struct rq *rq) 754 { 755 int fifo_nr_running; 756 757 /* Deadline tasks, even if single, need the tick */ 758 if (rq->dl.dl_nr_running) 759 return false; 760 761 /* 762 * If there are more than one RR tasks, we need the tick to affect the 763 * actual RR behaviour. 764 */ 765 if (rq->rt.rr_nr_running) { 766 if (rq->rt.rr_nr_running == 1) 767 return true; 768 else 769 return false; 770 } 771 772 /* 773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 774 * forced preemption between FIFO tasks. 775 */ 776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 777 if (fifo_nr_running) 778 return true; 779 780 /* 781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 782 * if there's more than one we need the tick for involuntary 783 * preemption. 784 */ 785 if (rq->nr_running > 1) 786 return false; 787 788 return true; 789 } 790 #endif /* CONFIG_NO_HZ_FULL */ 791 #endif /* CONFIG_SMP */ 792 793 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 795 /* 796 * Iterate task_group tree rooted at *from, calling @down when first entering a 797 * node and @up when leaving it for the final time. 798 * 799 * Caller must hold rcu_lock or sufficient equivalent. 800 */ 801 int walk_tg_tree_from(struct task_group *from, 802 tg_visitor down, tg_visitor up, void *data) 803 { 804 struct task_group *parent, *child; 805 int ret; 806 807 parent = from; 808 809 down: 810 ret = (*down)(parent, data); 811 if (ret) 812 goto out; 813 list_for_each_entry_rcu(child, &parent->children, siblings) { 814 parent = child; 815 goto down; 816 817 up: 818 continue; 819 } 820 ret = (*up)(parent, data); 821 if (ret || parent == from) 822 goto out; 823 824 child = parent; 825 parent = parent->parent; 826 if (parent) 827 goto up; 828 out: 829 return ret; 830 } 831 832 int tg_nop(struct task_group *tg, void *data) 833 { 834 return 0; 835 } 836 #endif 837 838 static void set_load_weight(struct task_struct *p, bool update_load) 839 { 840 int prio = p->static_prio - MAX_RT_PRIO; 841 struct load_weight *load = &p->se.load; 842 843 /* 844 * SCHED_IDLE tasks get minimal weight: 845 */ 846 if (task_has_idle_policy(p)) { 847 load->weight = scale_load(WEIGHT_IDLEPRIO); 848 load->inv_weight = WMULT_IDLEPRIO; 849 return; 850 } 851 852 /* 853 * SCHED_OTHER tasks have to update their load when changing their 854 * weight 855 */ 856 if (update_load && p->sched_class == &fair_sched_class) { 857 reweight_task(p, prio); 858 } else { 859 load->weight = scale_load(sched_prio_to_weight[prio]); 860 load->inv_weight = sched_prio_to_wmult[prio]; 861 } 862 } 863 864 #ifdef CONFIG_UCLAMP_TASK 865 /* 866 * Serializes updates of utilization clamp values 867 * 868 * The (slow-path) user-space triggers utilization clamp value updates which 869 * can require updates on (fast-path) scheduler's data structures used to 870 * support enqueue/dequeue operations. 871 * While the per-CPU rq lock protects fast-path update operations, user-space 872 * requests are serialized using a mutex to reduce the risk of conflicting 873 * updates or API abuses. 874 */ 875 static DEFINE_MUTEX(uclamp_mutex); 876 877 /* Max allowed minimum utilization */ 878 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 879 880 /* Max allowed maximum utilization */ 881 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 882 883 /* 884 * By default RT tasks run at the maximum performance point/capacity of the 885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 886 * SCHED_CAPACITY_SCALE. 887 * 888 * This knob allows admins to change the default behavior when uclamp is being 889 * used. In battery powered devices, particularly, running at the maximum 890 * capacity and frequency will increase energy consumption and shorten the 891 * battery life. 892 * 893 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 894 * 895 * This knob will not override the system default sched_util_clamp_min defined 896 * above. 897 */ 898 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 899 900 /* All clamps are required to be less or equal than these values */ 901 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 902 903 /* 904 * This static key is used to reduce the uclamp overhead in the fast path. It 905 * primarily disables the call to uclamp_rq_{inc, dec}() in 906 * enqueue/dequeue_task(). 907 * 908 * This allows users to continue to enable uclamp in their kernel config with 909 * minimum uclamp overhead in the fast path. 910 * 911 * As soon as userspace modifies any of the uclamp knobs, the static key is 912 * enabled, since we have an actual users that make use of uclamp 913 * functionality. 914 * 915 * The knobs that would enable this static key are: 916 * 917 * * A task modifying its uclamp value with sched_setattr(). 918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 919 * * An admin modifying the cgroup cpu.uclamp.{min, max} 920 */ 921 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 922 923 /* Integer rounded range for each bucket */ 924 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 925 926 #define for_each_clamp_id(clamp_id) \ 927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 928 929 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 930 { 931 return clamp_value / UCLAMP_BUCKET_DELTA; 932 } 933 934 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 935 { 936 if (clamp_id == UCLAMP_MIN) 937 return 0; 938 return SCHED_CAPACITY_SCALE; 939 } 940 941 static inline void uclamp_se_set(struct uclamp_se *uc_se, 942 unsigned int value, bool user_defined) 943 { 944 uc_se->value = value; 945 uc_se->bucket_id = uclamp_bucket_id(value); 946 uc_se->user_defined = user_defined; 947 } 948 949 static inline unsigned int 950 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 951 unsigned int clamp_value) 952 { 953 /* 954 * Avoid blocked utilization pushing up the frequency when we go 955 * idle (which drops the max-clamp) by retaining the last known 956 * max-clamp. 957 */ 958 if (clamp_id == UCLAMP_MAX) { 959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 960 return clamp_value; 961 } 962 963 return uclamp_none(UCLAMP_MIN); 964 } 965 966 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 967 unsigned int clamp_value) 968 { 969 /* Reset max-clamp retention only on idle exit */ 970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 971 return; 972 973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 974 } 975 976 static inline 977 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 978 unsigned int clamp_value) 979 { 980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 981 int bucket_id = UCLAMP_BUCKETS - 1; 982 983 /* 984 * Since both min and max clamps are max aggregated, find the 985 * top most bucket with tasks in. 986 */ 987 for ( ; bucket_id >= 0; bucket_id--) { 988 if (!bucket[bucket_id].tasks) 989 continue; 990 return bucket[bucket_id].value; 991 } 992 993 /* No tasks -- default clamp values */ 994 return uclamp_idle_value(rq, clamp_id, clamp_value); 995 } 996 997 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 998 { 999 unsigned int default_util_min; 1000 struct uclamp_se *uc_se; 1001 1002 lockdep_assert_held(&p->pi_lock); 1003 1004 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1005 1006 /* Only sync if user didn't override the default */ 1007 if (uc_se->user_defined) 1008 return; 1009 1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1011 uclamp_se_set(uc_se, default_util_min, false); 1012 } 1013 1014 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1015 { 1016 struct rq_flags rf; 1017 struct rq *rq; 1018 1019 if (!rt_task(p)) 1020 return; 1021 1022 /* Protect updates to p->uclamp_* */ 1023 rq = task_rq_lock(p, &rf); 1024 __uclamp_update_util_min_rt_default(p); 1025 task_rq_unlock(rq, p, &rf); 1026 } 1027 1028 static void uclamp_sync_util_min_rt_default(void) 1029 { 1030 struct task_struct *g, *p; 1031 1032 /* 1033 * copy_process() sysctl_uclamp 1034 * uclamp_min_rt = X; 1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1036 * // link thread smp_mb__after_spinlock() 1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1038 * sched_post_fork() for_each_process_thread() 1039 * __uclamp_sync_rt() __uclamp_sync_rt() 1040 * 1041 * Ensures that either sched_post_fork() will observe the new 1042 * uclamp_min_rt or for_each_process_thread() will observe the new 1043 * task. 1044 */ 1045 read_lock(&tasklist_lock); 1046 smp_mb__after_spinlock(); 1047 read_unlock(&tasklist_lock); 1048 1049 rcu_read_lock(); 1050 for_each_process_thread(g, p) 1051 uclamp_update_util_min_rt_default(p); 1052 rcu_read_unlock(); 1053 } 1054 1055 static inline struct uclamp_se 1056 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1057 { 1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1059 #ifdef CONFIG_UCLAMP_TASK_GROUP 1060 struct uclamp_se uc_max; 1061 1062 /* 1063 * Tasks in autogroups or root task group will be 1064 * restricted by system defaults. 1065 */ 1066 if (task_group_is_autogroup(task_group(p))) 1067 return uc_req; 1068 if (task_group(p) == &root_task_group) 1069 return uc_req; 1070 1071 uc_max = task_group(p)->uclamp[clamp_id]; 1072 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1073 return uc_max; 1074 #endif 1075 1076 return uc_req; 1077 } 1078 1079 /* 1080 * The effective clamp bucket index of a task depends on, by increasing 1081 * priority: 1082 * - the task specific clamp value, when explicitly requested from userspace 1083 * - the task group effective clamp value, for tasks not either in the root 1084 * group or in an autogroup 1085 * - the system default clamp value, defined by the sysadmin 1086 */ 1087 static inline struct uclamp_se 1088 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1089 { 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1091 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1092 1093 /* System default restrictions always apply */ 1094 if (unlikely(uc_req.value > uc_max.value)) 1095 return uc_max; 1096 1097 return uc_req; 1098 } 1099 1100 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1101 { 1102 struct uclamp_se uc_eff; 1103 1104 /* Task currently refcounted: use back-annotated (effective) value */ 1105 if (p->uclamp[clamp_id].active) 1106 return (unsigned long)p->uclamp[clamp_id].value; 1107 1108 uc_eff = uclamp_eff_get(p, clamp_id); 1109 1110 return (unsigned long)uc_eff.value; 1111 } 1112 1113 /* 1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1116 * updates the rq's clamp value if required. 1117 * 1118 * Tasks can have a task-specific value requested from user-space, track 1119 * within each bucket the maximum value for tasks refcounted in it. 1120 * This "local max aggregation" allows to track the exact "requested" value 1121 * for each bucket when all its RUNNABLE tasks require the same clamp. 1122 */ 1123 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1124 enum uclamp_id clamp_id) 1125 { 1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1128 struct uclamp_bucket *bucket; 1129 1130 lockdep_assert_held(&rq->lock); 1131 1132 /* Update task effective clamp */ 1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1134 1135 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1136 bucket->tasks++; 1137 uc_se->active = true; 1138 1139 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1140 1141 /* 1142 * Local max aggregation: rq buckets always track the max 1143 * "requested" clamp value of its RUNNABLE tasks. 1144 */ 1145 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1146 bucket->value = uc_se->value; 1147 1148 if (uc_se->value > READ_ONCE(uc_rq->value)) 1149 WRITE_ONCE(uc_rq->value, uc_se->value); 1150 } 1151 1152 /* 1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1154 * is released. If this is the last task reference counting the rq's max 1155 * active clamp value, then the rq's clamp value is updated. 1156 * 1157 * Both refcounted tasks and rq's cached clamp values are expected to be 1158 * always valid. If it's detected they are not, as defensive programming, 1159 * enforce the expected state and warn. 1160 */ 1161 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1162 enum uclamp_id clamp_id) 1163 { 1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1166 struct uclamp_bucket *bucket; 1167 unsigned int bkt_clamp; 1168 unsigned int rq_clamp; 1169 1170 lockdep_assert_held(&rq->lock); 1171 1172 /* 1173 * If sched_uclamp_used was enabled after task @p was enqueued, 1174 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1175 * 1176 * In this case the uc_se->active flag should be false since no uclamp 1177 * accounting was performed at enqueue time and we can just return 1178 * here. 1179 * 1180 * Need to be careful of the following enqueue/dequeue ordering 1181 * problem too 1182 * 1183 * enqueue(taskA) 1184 * // sched_uclamp_used gets enabled 1185 * enqueue(taskB) 1186 * dequeue(taskA) 1187 * // Must not decrement bucket->tasks here 1188 * dequeue(taskB) 1189 * 1190 * where we could end up with stale data in uc_se and 1191 * bucket[uc_se->bucket_id]. 1192 * 1193 * The following check here eliminates the possibility of such race. 1194 */ 1195 if (unlikely(!uc_se->active)) 1196 return; 1197 1198 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1199 1200 SCHED_WARN_ON(!bucket->tasks); 1201 if (likely(bucket->tasks)) 1202 bucket->tasks--; 1203 1204 uc_se->active = false; 1205 1206 /* 1207 * Keep "local max aggregation" simple and accept to (possibly) 1208 * overboost some RUNNABLE tasks in the same bucket. 1209 * The rq clamp bucket value is reset to its base value whenever 1210 * there are no more RUNNABLE tasks refcounting it. 1211 */ 1212 if (likely(bucket->tasks)) 1213 return; 1214 1215 rq_clamp = READ_ONCE(uc_rq->value); 1216 /* 1217 * Defensive programming: this should never happen. If it happens, 1218 * e.g. due to future modification, warn and fixup the expected value. 1219 */ 1220 SCHED_WARN_ON(bucket->value > rq_clamp); 1221 if (bucket->value >= rq_clamp) { 1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1223 WRITE_ONCE(uc_rq->value, bkt_clamp); 1224 } 1225 } 1226 1227 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1228 { 1229 enum uclamp_id clamp_id; 1230 1231 /* 1232 * Avoid any overhead until uclamp is actually used by the userspace. 1233 * 1234 * The condition is constructed such that a NOP is generated when 1235 * sched_uclamp_used is disabled. 1236 */ 1237 if (!static_branch_unlikely(&sched_uclamp_used)) 1238 return; 1239 1240 if (unlikely(!p->sched_class->uclamp_enabled)) 1241 return; 1242 1243 for_each_clamp_id(clamp_id) 1244 uclamp_rq_inc_id(rq, p, clamp_id); 1245 1246 /* Reset clamp idle holding when there is one RUNNABLE task */ 1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1249 } 1250 1251 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1252 { 1253 enum uclamp_id clamp_id; 1254 1255 /* 1256 * Avoid any overhead until uclamp is actually used by the userspace. 1257 * 1258 * The condition is constructed such that a NOP is generated when 1259 * sched_uclamp_used is disabled. 1260 */ 1261 if (!static_branch_unlikely(&sched_uclamp_used)) 1262 return; 1263 1264 if (unlikely(!p->sched_class->uclamp_enabled)) 1265 return; 1266 1267 for_each_clamp_id(clamp_id) 1268 uclamp_rq_dec_id(rq, p, clamp_id); 1269 } 1270 1271 static inline void 1272 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1273 { 1274 struct rq_flags rf; 1275 struct rq *rq; 1276 1277 /* 1278 * Lock the task and the rq where the task is (or was) queued. 1279 * 1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1281 * price to pay to safely serialize util_{min,max} updates with 1282 * enqueues, dequeues and migration operations. 1283 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1284 */ 1285 rq = task_rq_lock(p, &rf); 1286 1287 /* 1288 * Setting the clamp bucket is serialized by task_rq_lock(). 1289 * If the task is not yet RUNNABLE and its task_struct is not 1290 * affecting a valid clamp bucket, the next time it's enqueued, 1291 * it will already see the updated clamp bucket value. 1292 */ 1293 if (p->uclamp[clamp_id].active) { 1294 uclamp_rq_dec_id(rq, p, clamp_id); 1295 uclamp_rq_inc_id(rq, p, clamp_id); 1296 } 1297 1298 task_rq_unlock(rq, p, &rf); 1299 } 1300 1301 #ifdef CONFIG_UCLAMP_TASK_GROUP 1302 static inline void 1303 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1304 unsigned int clamps) 1305 { 1306 enum uclamp_id clamp_id; 1307 struct css_task_iter it; 1308 struct task_struct *p; 1309 1310 css_task_iter_start(css, 0, &it); 1311 while ((p = css_task_iter_next(&it))) { 1312 for_each_clamp_id(clamp_id) { 1313 if ((0x1 << clamp_id) & clamps) 1314 uclamp_update_active(p, clamp_id); 1315 } 1316 } 1317 css_task_iter_end(&it); 1318 } 1319 1320 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1321 static void uclamp_update_root_tg(void) 1322 { 1323 struct task_group *tg = &root_task_group; 1324 1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1326 sysctl_sched_uclamp_util_min, false); 1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1328 sysctl_sched_uclamp_util_max, false); 1329 1330 rcu_read_lock(); 1331 cpu_util_update_eff(&root_task_group.css); 1332 rcu_read_unlock(); 1333 } 1334 #else 1335 static void uclamp_update_root_tg(void) { } 1336 #endif 1337 1338 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1339 void *buffer, size_t *lenp, loff_t *ppos) 1340 { 1341 bool update_root_tg = false; 1342 int old_min, old_max, old_min_rt; 1343 int result; 1344 1345 mutex_lock(&uclamp_mutex); 1346 old_min = sysctl_sched_uclamp_util_min; 1347 old_max = sysctl_sched_uclamp_util_max; 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1349 1350 result = proc_dointvec(table, write, buffer, lenp, ppos); 1351 if (result) 1352 goto undo; 1353 if (!write) 1354 goto done; 1355 1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1359 1360 result = -EINVAL; 1361 goto undo; 1362 } 1363 1364 if (old_min != sysctl_sched_uclamp_util_min) { 1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1366 sysctl_sched_uclamp_util_min, false); 1367 update_root_tg = true; 1368 } 1369 if (old_max != sysctl_sched_uclamp_util_max) { 1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1371 sysctl_sched_uclamp_util_max, false); 1372 update_root_tg = true; 1373 } 1374 1375 if (update_root_tg) { 1376 static_branch_enable(&sched_uclamp_used); 1377 uclamp_update_root_tg(); 1378 } 1379 1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1381 static_branch_enable(&sched_uclamp_used); 1382 uclamp_sync_util_min_rt_default(); 1383 } 1384 1385 /* 1386 * We update all RUNNABLE tasks only when task groups are in use. 1387 * Otherwise, keep it simple and do just a lazy update at each next 1388 * task enqueue time. 1389 */ 1390 1391 goto done; 1392 1393 undo: 1394 sysctl_sched_uclamp_util_min = old_min; 1395 sysctl_sched_uclamp_util_max = old_max; 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1397 done: 1398 mutex_unlock(&uclamp_mutex); 1399 1400 return result; 1401 } 1402 1403 static int uclamp_validate(struct task_struct *p, 1404 const struct sched_attr *attr) 1405 { 1406 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1407 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1408 1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1410 util_min = attr->sched_util_min; 1411 1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1413 return -EINVAL; 1414 } 1415 1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1417 util_max = attr->sched_util_max; 1418 1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1420 return -EINVAL; 1421 } 1422 1423 if (util_min != -1 && util_max != -1 && util_min > util_max) 1424 return -EINVAL; 1425 1426 /* 1427 * We have valid uclamp attributes; make sure uclamp is enabled. 1428 * 1429 * We need to do that here, because enabling static branches is a 1430 * blocking operation which obviously cannot be done while holding 1431 * scheduler locks. 1432 */ 1433 static_branch_enable(&sched_uclamp_used); 1434 1435 return 0; 1436 } 1437 1438 static bool uclamp_reset(const struct sched_attr *attr, 1439 enum uclamp_id clamp_id, 1440 struct uclamp_se *uc_se) 1441 { 1442 /* Reset on sched class change for a non user-defined clamp value. */ 1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1444 !uc_se->user_defined) 1445 return true; 1446 1447 /* Reset on sched_util_{min,max} == -1. */ 1448 if (clamp_id == UCLAMP_MIN && 1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1450 attr->sched_util_min == -1) { 1451 return true; 1452 } 1453 1454 if (clamp_id == UCLAMP_MAX && 1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1456 attr->sched_util_max == -1) { 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 static void __setscheduler_uclamp(struct task_struct *p, 1464 const struct sched_attr *attr) 1465 { 1466 enum uclamp_id clamp_id; 1467 1468 for_each_clamp_id(clamp_id) { 1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1470 unsigned int value; 1471 1472 if (!uclamp_reset(attr, clamp_id, uc_se)) 1473 continue; 1474 1475 /* 1476 * RT by default have a 100% boost value that could be modified 1477 * at runtime. 1478 */ 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1480 value = sysctl_sched_uclamp_util_min_rt_default; 1481 else 1482 value = uclamp_none(clamp_id); 1483 1484 uclamp_se_set(uc_se, value, false); 1485 1486 } 1487 1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1489 return; 1490 1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1492 attr->sched_util_min != -1) { 1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1494 attr->sched_util_min, true); 1495 } 1496 1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1498 attr->sched_util_max != -1) { 1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1500 attr->sched_util_max, true); 1501 } 1502 } 1503 1504 static void uclamp_fork(struct task_struct *p) 1505 { 1506 enum uclamp_id clamp_id; 1507 1508 /* 1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1510 * as the task is still at its early fork stages. 1511 */ 1512 for_each_clamp_id(clamp_id) 1513 p->uclamp[clamp_id].active = false; 1514 1515 if (likely(!p->sched_reset_on_fork)) 1516 return; 1517 1518 for_each_clamp_id(clamp_id) { 1519 uclamp_se_set(&p->uclamp_req[clamp_id], 1520 uclamp_none(clamp_id), false); 1521 } 1522 } 1523 1524 static void uclamp_post_fork(struct task_struct *p) 1525 { 1526 uclamp_update_util_min_rt_default(p); 1527 } 1528 1529 static void __init init_uclamp_rq(struct rq *rq) 1530 { 1531 enum uclamp_id clamp_id; 1532 struct uclamp_rq *uc_rq = rq->uclamp; 1533 1534 for_each_clamp_id(clamp_id) { 1535 uc_rq[clamp_id] = (struct uclamp_rq) { 1536 .value = uclamp_none(clamp_id) 1537 }; 1538 } 1539 1540 rq->uclamp_flags = 0; 1541 } 1542 1543 static void __init init_uclamp(void) 1544 { 1545 struct uclamp_se uc_max = {}; 1546 enum uclamp_id clamp_id; 1547 int cpu; 1548 1549 for_each_possible_cpu(cpu) 1550 init_uclamp_rq(cpu_rq(cpu)); 1551 1552 for_each_clamp_id(clamp_id) { 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1554 uclamp_none(clamp_id), false); 1555 } 1556 1557 /* System defaults allow max clamp values for both indexes */ 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1559 for_each_clamp_id(clamp_id) { 1560 uclamp_default[clamp_id] = uc_max; 1561 #ifdef CONFIG_UCLAMP_TASK_GROUP 1562 root_task_group.uclamp_req[clamp_id] = uc_max; 1563 root_task_group.uclamp[clamp_id] = uc_max; 1564 #endif 1565 } 1566 } 1567 1568 #else /* CONFIG_UCLAMP_TASK */ 1569 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1570 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1571 static inline int uclamp_validate(struct task_struct *p, 1572 const struct sched_attr *attr) 1573 { 1574 return -EOPNOTSUPP; 1575 } 1576 static void __setscheduler_uclamp(struct task_struct *p, 1577 const struct sched_attr *attr) { } 1578 static inline void uclamp_fork(struct task_struct *p) { } 1579 static inline void uclamp_post_fork(struct task_struct *p) { } 1580 static inline void init_uclamp(void) { } 1581 #endif /* CONFIG_UCLAMP_TASK */ 1582 1583 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1584 { 1585 if (!(flags & ENQUEUE_NOCLOCK)) 1586 update_rq_clock(rq); 1587 1588 if (!(flags & ENQUEUE_RESTORE)) { 1589 sched_info_queued(rq, p); 1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1591 } 1592 1593 uclamp_rq_inc(rq, p); 1594 p->sched_class->enqueue_task(rq, p, flags); 1595 } 1596 1597 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1598 { 1599 if (!(flags & DEQUEUE_NOCLOCK)) 1600 update_rq_clock(rq); 1601 1602 if (!(flags & DEQUEUE_SAVE)) { 1603 sched_info_dequeued(rq, p); 1604 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1605 } 1606 1607 uclamp_rq_dec(rq, p); 1608 p->sched_class->dequeue_task(rq, p, flags); 1609 } 1610 1611 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1612 { 1613 enqueue_task(rq, p, flags); 1614 1615 p->on_rq = TASK_ON_RQ_QUEUED; 1616 } 1617 1618 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1619 { 1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1621 1622 dequeue_task(rq, p, flags); 1623 } 1624 1625 /* 1626 * __normal_prio - return the priority that is based on the static prio 1627 */ 1628 static inline int __normal_prio(struct task_struct *p) 1629 { 1630 return p->static_prio; 1631 } 1632 1633 /* 1634 * Calculate the expected normal priority: i.e. priority 1635 * without taking RT-inheritance into account. Might be 1636 * boosted by interactivity modifiers. Changes upon fork, 1637 * setprio syscalls, and whenever the interactivity 1638 * estimator recalculates. 1639 */ 1640 static inline int normal_prio(struct task_struct *p) 1641 { 1642 int prio; 1643 1644 if (task_has_dl_policy(p)) 1645 prio = MAX_DL_PRIO-1; 1646 else if (task_has_rt_policy(p)) 1647 prio = MAX_RT_PRIO-1 - p->rt_priority; 1648 else 1649 prio = __normal_prio(p); 1650 return prio; 1651 } 1652 1653 /* 1654 * Calculate the current priority, i.e. the priority 1655 * taken into account by the scheduler. This value might 1656 * be boosted by RT tasks, or might be boosted by 1657 * interactivity modifiers. Will be RT if the task got 1658 * RT-boosted. If not then it returns p->normal_prio. 1659 */ 1660 static int effective_prio(struct task_struct *p) 1661 { 1662 p->normal_prio = normal_prio(p); 1663 /* 1664 * If we are RT tasks or we were boosted to RT priority, 1665 * keep the priority unchanged. Otherwise, update priority 1666 * to the normal priority: 1667 */ 1668 if (!rt_prio(p->prio)) 1669 return p->normal_prio; 1670 return p->prio; 1671 } 1672 1673 /** 1674 * task_curr - is this task currently executing on a CPU? 1675 * @p: the task in question. 1676 * 1677 * Return: 1 if the task is currently executing. 0 otherwise. 1678 */ 1679 inline int task_curr(const struct task_struct *p) 1680 { 1681 return cpu_curr(task_cpu(p)) == p; 1682 } 1683 1684 /* 1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1686 * use the balance_callback list if you want balancing. 1687 * 1688 * this means any call to check_class_changed() must be followed by a call to 1689 * balance_callback(). 1690 */ 1691 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1692 const struct sched_class *prev_class, 1693 int oldprio) 1694 { 1695 if (prev_class != p->sched_class) { 1696 if (prev_class->switched_from) 1697 prev_class->switched_from(rq, p); 1698 1699 p->sched_class->switched_to(rq, p); 1700 } else if (oldprio != p->prio || dl_task(p)) 1701 p->sched_class->prio_changed(rq, p, oldprio); 1702 } 1703 1704 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1705 { 1706 if (p->sched_class == rq->curr->sched_class) 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1708 else if (p->sched_class > rq->curr->sched_class) 1709 resched_curr(rq); 1710 1711 /* 1712 * A queue event has occurred, and we're going to schedule. In 1713 * this case, we can save a useless back to back clock update. 1714 */ 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1716 rq_clock_skip_update(rq); 1717 } 1718 1719 #ifdef CONFIG_SMP 1720 1721 static void 1722 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1723 1724 static int __set_cpus_allowed_ptr(struct task_struct *p, 1725 const struct cpumask *new_mask, 1726 u32 flags); 1727 1728 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1729 { 1730 if (likely(!p->migration_disabled)) 1731 return; 1732 1733 if (p->cpus_ptr != &p->cpus_mask) 1734 return; 1735 1736 /* 1737 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1738 */ 1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1740 } 1741 1742 void migrate_disable(void) 1743 { 1744 struct task_struct *p = current; 1745 1746 if (p->migration_disabled) { 1747 p->migration_disabled++; 1748 return; 1749 } 1750 1751 preempt_disable(); 1752 this_rq()->nr_pinned++; 1753 p->migration_disabled = 1; 1754 preempt_enable(); 1755 } 1756 EXPORT_SYMBOL_GPL(migrate_disable); 1757 1758 void migrate_enable(void) 1759 { 1760 struct task_struct *p = current; 1761 1762 if (p->migration_disabled > 1) { 1763 p->migration_disabled--; 1764 return; 1765 } 1766 1767 /* 1768 * Ensure stop_task runs either before or after this, and that 1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1770 */ 1771 preempt_disable(); 1772 if (p->cpus_ptr != &p->cpus_mask) 1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1774 /* 1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1776 * regular cpus_mask, otherwise things that race (eg. 1777 * select_fallback_rq) get confused. 1778 */ 1779 barrier(); 1780 p->migration_disabled = 0; 1781 this_rq()->nr_pinned--; 1782 preempt_enable(); 1783 } 1784 EXPORT_SYMBOL_GPL(migrate_enable); 1785 1786 static inline bool rq_has_pinned_tasks(struct rq *rq) 1787 { 1788 return rq->nr_pinned; 1789 } 1790 1791 /* 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1793 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1794 */ 1795 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1796 { 1797 /* When not in the task's cpumask, no point in looking further. */ 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1799 return false; 1800 1801 /* migrate_disabled() must be allowed to finish. */ 1802 if (is_migration_disabled(p)) 1803 return cpu_online(cpu); 1804 1805 /* Non kernel threads are not allowed during either online or offline. */ 1806 if (!(p->flags & PF_KTHREAD)) 1807 return cpu_active(cpu); 1808 1809 /* KTHREAD_IS_PER_CPU is always allowed. */ 1810 if (kthread_is_per_cpu(p)) 1811 return cpu_online(cpu); 1812 1813 /* Regular kernel threads don't get to stay during offline. */ 1814 if (cpu_rq(cpu)->balance_push) 1815 return false; 1816 1817 /* But are allowed during online. */ 1818 return cpu_online(cpu); 1819 } 1820 1821 /* 1822 * This is how migration works: 1823 * 1824 * 1) we invoke migration_cpu_stop() on the target CPU using 1825 * stop_one_cpu(). 1826 * 2) stopper starts to run (implicitly forcing the migrated thread 1827 * off the CPU) 1828 * 3) it checks whether the migrated task is still in the wrong runqueue. 1829 * 4) if it's in the wrong runqueue then the migration thread removes 1830 * it and puts it into the right queue. 1831 * 5) stopper completes and stop_one_cpu() returns and the migration 1832 * is done. 1833 */ 1834 1835 /* 1836 * move_queued_task - move a queued task to new rq. 1837 * 1838 * Returns (locked) new rq. Old rq's lock is released. 1839 */ 1840 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1841 struct task_struct *p, int new_cpu) 1842 { 1843 lockdep_assert_held(&rq->lock); 1844 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1846 set_task_cpu(p, new_cpu); 1847 rq_unlock(rq, rf); 1848 1849 rq = cpu_rq(new_cpu); 1850 1851 rq_lock(rq, rf); 1852 BUG_ON(task_cpu(p) != new_cpu); 1853 activate_task(rq, p, 0); 1854 check_preempt_curr(rq, p, 0); 1855 1856 return rq; 1857 } 1858 1859 struct migration_arg { 1860 struct task_struct *task; 1861 int dest_cpu; 1862 struct set_affinity_pending *pending; 1863 }; 1864 1865 /* 1866 * @refs: number of wait_for_completion() 1867 * @stop_pending: is @stop_work in use 1868 */ 1869 struct set_affinity_pending { 1870 refcount_t refs; 1871 unsigned int stop_pending; 1872 struct completion done; 1873 struct cpu_stop_work stop_work; 1874 struct migration_arg arg; 1875 }; 1876 1877 /* 1878 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1879 * this because either it can't run here any more (set_cpus_allowed() 1880 * away from this CPU, or CPU going down), or because we're 1881 * attempting to rebalance this task on exec (sched_exec). 1882 * 1883 * So we race with normal scheduler movements, but that's OK, as long 1884 * as the task is no longer on this CPU. 1885 */ 1886 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1887 struct task_struct *p, int dest_cpu) 1888 { 1889 /* Affinity changed (again). */ 1890 if (!is_cpu_allowed(p, dest_cpu)) 1891 return rq; 1892 1893 update_rq_clock(rq); 1894 rq = move_queued_task(rq, rf, p, dest_cpu); 1895 1896 return rq; 1897 } 1898 1899 /* 1900 * migration_cpu_stop - this will be executed by a highprio stopper thread 1901 * and performs thread migration by bumping thread off CPU then 1902 * 'pushing' onto another runqueue. 1903 */ 1904 static int migration_cpu_stop(void *data) 1905 { 1906 struct migration_arg *arg = data; 1907 struct set_affinity_pending *pending = arg->pending; 1908 struct task_struct *p = arg->task; 1909 int dest_cpu = arg->dest_cpu; 1910 struct rq *rq = this_rq(); 1911 bool complete = false; 1912 struct rq_flags rf; 1913 1914 /* 1915 * The original target CPU might have gone down and we might 1916 * be on another CPU but it doesn't matter. 1917 */ 1918 local_irq_save(rf.flags); 1919 /* 1920 * We need to explicitly wake pending tasks before running 1921 * __migrate_task() such that we will not miss enforcing cpus_ptr 1922 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1923 */ 1924 flush_smp_call_function_from_idle(); 1925 1926 raw_spin_lock(&p->pi_lock); 1927 rq_lock(rq, &rf); 1928 1929 /* 1930 * If task_rq(p) != rq, it cannot be migrated here, because we're 1931 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1932 * we're holding p->pi_lock. 1933 */ 1934 if (task_rq(p) == rq) { 1935 if (is_migration_disabled(p)) 1936 goto out; 1937 1938 if (pending) { 1939 if (p->migration_pending == pending) 1940 p->migration_pending = NULL; 1941 complete = true; 1942 } 1943 1944 if (dest_cpu < 0) { 1945 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 1946 goto out; 1947 1948 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1949 } 1950 1951 if (task_on_rq_queued(p)) 1952 rq = __migrate_task(rq, &rf, p, dest_cpu); 1953 else 1954 p->wake_cpu = dest_cpu; 1955 1956 /* 1957 * XXX __migrate_task() can fail, at which point we might end 1958 * up running on a dodgy CPU, AFAICT this can only happen 1959 * during CPU hotplug, at which point we'll get pushed out 1960 * anyway, so it's probably not a big deal. 1961 */ 1962 1963 } else if (pending) { 1964 /* 1965 * This happens when we get migrated between migrate_enable()'s 1966 * preempt_enable() and scheduling the stopper task. At that 1967 * point we're a regular task again and not current anymore. 1968 * 1969 * A !PREEMPT kernel has a giant hole here, which makes it far 1970 * more likely. 1971 */ 1972 1973 /* 1974 * The task moved before the stopper got to run. We're holding 1975 * ->pi_lock, so the allowed mask is stable - if it got 1976 * somewhere allowed, we're done. 1977 */ 1978 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1979 if (p->migration_pending == pending) 1980 p->migration_pending = NULL; 1981 complete = true; 1982 goto out; 1983 } 1984 1985 /* 1986 * When migrate_enable() hits a rq mis-match we can't reliably 1987 * determine is_migration_disabled() and so have to chase after 1988 * it. 1989 */ 1990 WARN_ON_ONCE(!pending->stop_pending); 1991 task_rq_unlock(rq, p, &rf); 1992 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 1993 &pending->arg, &pending->stop_work); 1994 return 0; 1995 } 1996 out: 1997 if (pending) 1998 pending->stop_pending = false; 1999 task_rq_unlock(rq, p, &rf); 2000 2001 if (complete) 2002 complete_all(&pending->done); 2003 2004 return 0; 2005 } 2006 2007 int push_cpu_stop(void *arg) 2008 { 2009 struct rq *lowest_rq = NULL, *rq = this_rq(); 2010 struct task_struct *p = arg; 2011 2012 raw_spin_lock_irq(&p->pi_lock); 2013 raw_spin_lock(&rq->lock); 2014 2015 if (task_rq(p) != rq) 2016 goto out_unlock; 2017 2018 if (is_migration_disabled(p)) { 2019 p->migration_flags |= MDF_PUSH; 2020 goto out_unlock; 2021 } 2022 2023 p->migration_flags &= ~MDF_PUSH; 2024 2025 if (p->sched_class->find_lock_rq) 2026 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2027 2028 if (!lowest_rq) 2029 goto out_unlock; 2030 2031 // XXX validate p is still the highest prio task 2032 if (task_rq(p) == rq) { 2033 deactivate_task(rq, p, 0); 2034 set_task_cpu(p, lowest_rq->cpu); 2035 activate_task(lowest_rq, p, 0); 2036 resched_curr(lowest_rq); 2037 } 2038 2039 double_unlock_balance(rq, lowest_rq); 2040 2041 out_unlock: 2042 rq->push_busy = false; 2043 raw_spin_unlock(&rq->lock); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 put_task_struct(p); 2047 return 0; 2048 } 2049 2050 /* 2051 * sched_class::set_cpus_allowed must do the below, but is not required to 2052 * actually call this function. 2053 */ 2054 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2055 { 2056 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2057 p->cpus_ptr = new_mask; 2058 return; 2059 } 2060 2061 cpumask_copy(&p->cpus_mask, new_mask); 2062 p->nr_cpus_allowed = cpumask_weight(new_mask); 2063 } 2064 2065 static void 2066 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2067 { 2068 struct rq *rq = task_rq(p); 2069 bool queued, running; 2070 2071 /* 2072 * This here violates the locking rules for affinity, since we're only 2073 * supposed to change these variables while holding both rq->lock and 2074 * p->pi_lock. 2075 * 2076 * HOWEVER, it magically works, because ttwu() is the only code that 2077 * accesses these variables under p->pi_lock and only does so after 2078 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2079 * before finish_task(). 2080 * 2081 * XXX do further audits, this smells like something putrid. 2082 */ 2083 if (flags & SCA_MIGRATE_DISABLE) 2084 SCHED_WARN_ON(!p->on_cpu); 2085 else 2086 lockdep_assert_held(&p->pi_lock); 2087 2088 queued = task_on_rq_queued(p); 2089 running = task_current(rq, p); 2090 2091 if (queued) { 2092 /* 2093 * Because __kthread_bind() calls this on blocked tasks without 2094 * holding rq->lock. 2095 */ 2096 lockdep_assert_held(&rq->lock); 2097 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2098 } 2099 if (running) 2100 put_prev_task(rq, p); 2101 2102 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2103 2104 if (queued) 2105 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2106 if (running) 2107 set_next_task(rq, p); 2108 } 2109 2110 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2111 { 2112 __do_set_cpus_allowed(p, new_mask, 0); 2113 } 2114 2115 /* 2116 * This function is wildly self concurrent; here be dragons. 2117 * 2118 * 2119 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2120 * designated task is enqueued on an allowed CPU. If that task is currently 2121 * running, we have to kick it out using the CPU stopper. 2122 * 2123 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2124 * Consider: 2125 * 2126 * Initial conditions: P0->cpus_mask = [0, 1] 2127 * 2128 * P0@CPU0 P1 2129 * 2130 * migrate_disable(); 2131 * <preempted> 2132 * set_cpus_allowed_ptr(P0, [1]); 2133 * 2134 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2135 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2136 * This means we need the following scheme: 2137 * 2138 * P0@CPU0 P1 2139 * 2140 * migrate_disable(); 2141 * <preempted> 2142 * set_cpus_allowed_ptr(P0, [1]); 2143 * <blocks> 2144 * <resumes> 2145 * migrate_enable(); 2146 * __set_cpus_allowed_ptr(); 2147 * <wakes local stopper> 2148 * `--> <woken on migration completion> 2149 * 2150 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2151 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2152 * task p are serialized by p->pi_lock, which we can leverage: the one that 2153 * should come into effect at the end of the Migrate-Disable region is the last 2154 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2155 * but we still need to properly signal those waiting tasks at the appropriate 2156 * moment. 2157 * 2158 * This is implemented using struct set_affinity_pending. The first 2159 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2160 * setup an instance of that struct and install it on the targeted task_struct. 2161 * Any and all further callers will reuse that instance. Those then wait for 2162 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2163 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2164 * 2165 * 2166 * (1) In the cases covered above. There is one more where the completion is 2167 * signaled within affine_move_task() itself: when a subsequent affinity request 2168 * cancels the need for an active migration. Consider: 2169 * 2170 * Initial conditions: P0->cpus_mask = [0, 1] 2171 * 2172 * P0@CPU0 P1 P2 2173 * 2174 * migrate_disable(); 2175 * <preempted> 2176 * set_cpus_allowed_ptr(P0, [1]); 2177 * <blocks> 2178 * set_cpus_allowed_ptr(P0, [0, 1]); 2179 * <signal completion> 2180 * <awakes> 2181 * 2182 * Note that the above is safe vs a concurrent migrate_enable(), as any 2183 * pending affinity completion is preceded by an uninstallation of 2184 * p->migration_pending done with p->pi_lock held. 2185 */ 2186 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2187 int dest_cpu, unsigned int flags) 2188 { 2189 struct set_affinity_pending my_pending = { }, *pending = NULL; 2190 bool stop_pending, complete = false; 2191 2192 /* Can the task run on the task's current CPU? If so, we're done */ 2193 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2194 struct task_struct *push_task = NULL; 2195 2196 if ((flags & SCA_MIGRATE_ENABLE) && 2197 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2198 rq->push_busy = true; 2199 push_task = get_task_struct(p); 2200 } 2201 2202 /* 2203 * If there are pending waiters, but no pending stop_work, 2204 * then complete now. 2205 */ 2206 pending = p->migration_pending; 2207 if (pending && !pending->stop_pending) { 2208 p->migration_pending = NULL; 2209 complete = true; 2210 } 2211 2212 task_rq_unlock(rq, p, rf); 2213 2214 if (push_task) { 2215 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2216 p, &rq->push_work); 2217 } 2218 2219 if (complete) 2220 complete_all(&pending->done); 2221 2222 return 0; 2223 } 2224 2225 if (!(flags & SCA_MIGRATE_ENABLE)) { 2226 /* serialized by p->pi_lock */ 2227 if (!p->migration_pending) { 2228 /* Install the request */ 2229 refcount_set(&my_pending.refs, 1); 2230 init_completion(&my_pending.done); 2231 my_pending.arg = (struct migration_arg) { 2232 .task = p, 2233 .dest_cpu = -1, /* any */ 2234 .pending = &my_pending, 2235 }; 2236 2237 p->migration_pending = &my_pending; 2238 } else { 2239 pending = p->migration_pending; 2240 refcount_inc(&pending->refs); 2241 } 2242 } 2243 pending = p->migration_pending; 2244 /* 2245 * - !MIGRATE_ENABLE: 2246 * we'll have installed a pending if there wasn't one already. 2247 * 2248 * - MIGRATE_ENABLE: 2249 * we're here because the current CPU isn't matching anymore, 2250 * the only way that can happen is because of a concurrent 2251 * set_cpus_allowed_ptr() call, which should then still be 2252 * pending completion. 2253 * 2254 * Either way, we really should have a @pending here. 2255 */ 2256 if (WARN_ON_ONCE(!pending)) { 2257 task_rq_unlock(rq, p, rf); 2258 return -EINVAL; 2259 } 2260 2261 if (task_running(rq, p) || p->state == TASK_WAKING) { 2262 /* 2263 * MIGRATE_ENABLE gets here because 'p == current', but for 2264 * anything else we cannot do is_migration_disabled(), punt 2265 * and have the stopper function handle it all race-free. 2266 */ 2267 stop_pending = pending->stop_pending; 2268 if (!stop_pending) 2269 pending->stop_pending = true; 2270 2271 if (flags & SCA_MIGRATE_ENABLE) 2272 p->migration_flags &= ~MDF_PUSH; 2273 2274 task_rq_unlock(rq, p, rf); 2275 2276 if (!stop_pending) { 2277 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2278 &pending->arg, &pending->stop_work); 2279 } 2280 2281 if (flags & SCA_MIGRATE_ENABLE) 2282 return 0; 2283 } else { 2284 2285 if (!is_migration_disabled(p)) { 2286 if (task_on_rq_queued(p)) 2287 rq = move_queued_task(rq, rf, p, dest_cpu); 2288 2289 if (!pending->stop_pending) { 2290 p->migration_pending = NULL; 2291 complete = true; 2292 } 2293 } 2294 task_rq_unlock(rq, p, rf); 2295 2296 if (complete) 2297 complete_all(&pending->done); 2298 } 2299 2300 wait_for_completion(&pending->done); 2301 2302 if (refcount_dec_and_test(&pending->refs)) 2303 wake_up_var(&pending->refs); /* No UaF, just an address */ 2304 2305 /* 2306 * Block the original owner of &pending until all subsequent callers 2307 * have seen the completion and decremented the refcount 2308 */ 2309 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2310 2311 /* ARGH */ 2312 WARN_ON_ONCE(my_pending.stop_pending); 2313 2314 return 0; 2315 } 2316 2317 /* 2318 * Change a given task's CPU affinity. Migrate the thread to a 2319 * proper CPU and schedule it away if the CPU it's executing on 2320 * is removed from the allowed bitmask. 2321 * 2322 * NOTE: the caller must have a valid reference to the task, the 2323 * task must not exit() & deallocate itself prematurely. The 2324 * call is not atomic; no spinlocks may be held. 2325 */ 2326 static int __set_cpus_allowed_ptr(struct task_struct *p, 2327 const struct cpumask *new_mask, 2328 u32 flags) 2329 { 2330 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2331 unsigned int dest_cpu; 2332 struct rq_flags rf; 2333 struct rq *rq; 2334 int ret = 0; 2335 2336 rq = task_rq_lock(p, &rf); 2337 update_rq_clock(rq); 2338 2339 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2340 /* 2341 * Kernel threads are allowed on online && !active CPUs, 2342 * however, during cpu-hot-unplug, even these might get pushed 2343 * away if not KTHREAD_IS_PER_CPU. 2344 * 2345 * Specifically, migration_disabled() tasks must not fail the 2346 * cpumask_any_and_distribute() pick below, esp. so on 2347 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2348 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2349 */ 2350 cpu_valid_mask = cpu_online_mask; 2351 } 2352 2353 /* 2354 * Must re-check here, to close a race against __kthread_bind(), 2355 * sched_setaffinity() is not guaranteed to observe the flag. 2356 */ 2357 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2358 ret = -EINVAL; 2359 goto out; 2360 } 2361 2362 if (!(flags & SCA_MIGRATE_ENABLE)) { 2363 if (cpumask_equal(&p->cpus_mask, new_mask)) 2364 goto out; 2365 2366 if (WARN_ON_ONCE(p == current && 2367 is_migration_disabled(p) && 2368 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2369 ret = -EBUSY; 2370 goto out; 2371 } 2372 } 2373 2374 /* 2375 * Picking a ~random cpu helps in cases where we are changing affinity 2376 * for groups of tasks (ie. cpuset), so that load balancing is not 2377 * immediately required to distribute the tasks within their new mask. 2378 */ 2379 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2380 if (dest_cpu >= nr_cpu_ids) { 2381 ret = -EINVAL; 2382 goto out; 2383 } 2384 2385 __do_set_cpus_allowed(p, new_mask, flags); 2386 2387 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2388 2389 out: 2390 task_rq_unlock(rq, p, &rf); 2391 2392 return ret; 2393 } 2394 2395 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2396 { 2397 return __set_cpus_allowed_ptr(p, new_mask, 0); 2398 } 2399 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2400 2401 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2402 { 2403 #ifdef CONFIG_SCHED_DEBUG 2404 /* 2405 * We should never call set_task_cpu() on a blocked task, 2406 * ttwu() will sort out the placement. 2407 */ 2408 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2409 !p->on_rq); 2410 2411 /* 2412 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2413 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2414 * time relying on p->on_rq. 2415 */ 2416 WARN_ON_ONCE(p->state == TASK_RUNNING && 2417 p->sched_class == &fair_sched_class && 2418 (p->on_rq && !task_on_rq_migrating(p))); 2419 2420 #ifdef CONFIG_LOCKDEP 2421 /* 2422 * The caller should hold either p->pi_lock or rq->lock, when changing 2423 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2424 * 2425 * sched_move_task() holds both and thus holding either pins the cgroup, 2426 * see task_group(). 2427 * 2428 * Furthermore, all task_rq users should acquire both locks, see 2429 * task_rq_lock(). 2430 */ 2431 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2432 lockdep_is_held(&task_rq(p)->lock))); 2433 #endif 2434 /* 2435 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2436 */ 2437 WARN_ON_ONCE(!cpu_online(new_cpu)); 2438 2439 WARN_ON_ONCE(is_migration_disabled(p)); 2440 #endif 2441 2442 trace_sched_migrate_task(p, new_cpu); 2443 2444 if (task_cpu(p) != new_cpu) { 2445 if (p->sched_class->migrate_task_rq) 2446 p->sched_class->migrate_task_rq(p, new_cpu); 2447 p->se.nr_migrations++; 2448 rseq_migrate(p); 2449 perf_event_task_migrate(p); 2450 } 2451 2452 __set_task_cpu(p, new_cpu); 2453 } 2454 2455 #ifdef CONFIG_NUMA_BALANCING 2456 static void __migrate_swap_task(struct task_struct *p, int cpu) 2457 { 2458 if (task_on_rq_queued(p)) { 2459 struct rq *src_rq, *dst_rq; 2460 struct rq_flags srf, drf; 2461 2462 src_rq = task_rq(p); 2463 dst_rq = cpu_rq(cpu); 2464 2465 rq_pin_lock(src_rq, &srf); 2466 rq_pin_lock(dst_rq, &drf); 2467 2468 deactivate_task(src_rq, p, 0); 2469 set_task_cpu(p, cpu); 2470 activate_task(dst_rq, p, 0); 2471 check_preempt_curr(dst_rq, p, 0); 2472 2473 rq_unpin_lock(dst_rq, &drf); 2474 rq_unpin_lock(src_rq, &srf); 2475 2476 } else { 2477 /* 2478 * Task isn't running anymore; make it appear like we migrated 2479 * it before it went to sleep. This means on wakeup we make the 2480 * previous CPU our target instead of where it really is. 2481 */ 2482 p->wake_cpu = cpu; 2483 } 2484 } 2485 2486 struct migration_swap_arg { 2487 struct task_struct *src_task, *dst_task; 2488 int src_cpu, dst_cpu; 2489 }; 2490 2491 static int migrate_swap_stop(void *data) 2492 { 2493 struct migration_swap_arg *arg = data; 2494 struct rq *src_rq, *dst_rq; 2495 int ret = -EAGAIN; 2496 2497 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2498 return -EAGAIN; 2499 2500 src_rq = cpu_rq(arg->src_cpu); 2501 dst_rq = cpu_rq(arg->dst_cpu); 2502 2503 double_raw_lock(&arg->src_task->pi_lock, 2504 &arg->dst_task->pi_lock); 2505 double_rq_lock(src_rq, dst_rq); 2506 2507 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2508 goto unlock; 2509 2510 if (task_cpu(arg->src_task) != arg->src_cpu) 2511 goto unlock; 2512 2513 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2514 goto unlock; 2515 2516 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2517 goto unlock; 2518 2519 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2520 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2521 2522 ret = 0; 2523 2524 unlock: 2525 double_rq_unlock(src_rq, dst_rq); 2526 raw_spin_unlock(&arg->dst_task->pi_lock); 2527 raw_spin_unlock(&arg->src_task->pi_lock); 2528 2529 return ret; 2530 } 2531 2532 /* 2533 * Cross migrate two tasks 2534 */ 2535 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2536 int target_cpu, int curr_cpu) 2537 { 2538 struct migration_swap_arg arg; 2539 int ret = -EINVAL; 2540 2541 arg = (struct migration_swap_arg){ 2542 .src_task = cur, 2543 .src_cpu = curr_cpu, 2544 .dst_task = p, 2545 .dst_cpu = target_cpu, 2546 }; 2547 2548 if (arg.src_cpu == arg.dst_cpu) 2549 goto out; 2550 2551 /* 2552 * These three tests are all lockless; this is OK since all of them 2553 * will be re-checked with proper locks held further down the line. 2554 */ 2555 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2556 goto out; 2557 2558 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2559 goto out; 2560 2561 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2562 goto out; 2563 2564 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2565 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2566 2567 out: 2568 return ret; 2569 } 2570 #endif /* CONFIG_NUMA_BALANCING */ 2571 2572 /* 2573 * wait_task_inactive - wait for a thread to unschedule. 2574 * 2575 * If @match_state is nonzero, it's the @p->state value just checked and 2576 * not expected to change. If it changes, i.e. @p might have woken up, 2577 * then return zero. When we succeed in waiting for @p to be off its CPU, 2578 * we return a positive number (its total switch count). If a second call 2579 * a short while later returns the same number, the caller can be sure that 2580 * @p has remained unscheduled the whole time. 2581 * 2582 * The caller must ensure that the task *will* unschedule sometime soon, 2583 * else this function might spin for a *long* time. This function can't 2584 * be called with interrupts off, or it may introduce deadlock with 2585 * smp_call_function() if an IPI is sent by the same process we are 2586 * waiting to become inactive. 2587 */ 2588 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2589 { 2590 int running, queued; 2591 struct rq_flags rf; 2592 unsigned long ncsw; 2593 struct rq *rq; 2594 2595 for (;;) { 2596 /* 2597 * We do the initial early heuristics without holding 2598 * any task-queue locks at all. We'll only try to get 2599 * the runqueue lock when things look like they will 2600 * work out! 2601 */ 2602 rq = task_rq(p); 2603 2604 /* 2605 * If the task is actively running on another CPU 2606 * still, just relax and busy-wait without holding 2607 * any locks. 2608 * 2609 * NOTE! Since we don't hold any locks, it's not 2610 * even sure that "rq" stays as the right runqueue! 2611 * But we don't care, since "task_running()" will 2612 * return false if the runqueue has changed and p 2613 * is actually now running somewhere else! 2614 */ 2615 while (task_running(rq, p)) { 2616 if (match_state && unlikely(p->state != match_state)) 2617 return 0; 2618 cpu_relax(); 2619 } 2620 2621 /* 2622 * Ok, time to look more closely! We need the rq 2623 * lock now, to be *sure*. If we're wrong, we'll 2624 * just go back and repeat. 2625 */ 2626 rq = task_rq_lock(p, &rf); 2627 trace_sched_wait_task(p); 2628 running = task_running(rq, p); 2629 queued = task_on_rq_queued(p); 2630 ncsw = 0; 2631 if (!match_state || p->state == match_state) 2632 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2633 task_rq_unlock(rq, p, &rf); 2634 2635 /* 2636 * If it changed from the expected state, bail out now. 2637 */ 2638 if (unlikely(!ncsw)) 2639 break; 2640 2641 /* 2642 * Was it really running after all now that we 2643 * checked with the proper locks actually held? 2644 * 2645 * Oops. Go back and try again.. 2646 */ 2647 if (unlikely(running)) { 2648 cpu_relax(); 2649 continue; 2650 } 2651 2652 /* 2653 * It's not enough that it's not actively running, 2654 * it must be off the runqueue _entirely_, and not 2655 * preempted! 2656 * 2657 * So if it was still runnable (but just not actively 2658 * running right now), it's preempted, and we should 2659 * yield - it could be a while. 2660 */ 2661 if (unlikely(queued)) { 2662 ktime_t to = NSEC_PER_SEC / HZ; 2663 2664 set_current_state(TASK_UNINTERRUPTIBLE); 2665 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2666 continue; 2667 } 2668 2669 /* 2670 * Ahh, all good. It wasn't running, and it wasn't 2671 * runnable, which means that it will never become 2672 * running in the future either. We're all done! 2673 */ 2674 break; 2675 } 2676 2677 return ncsw; 2678 } 2679 2680 /*** 2681 * kick_process - kick a running thread to enter/exit the kernel 2682 * @p: the to-be-kicked thread 2683 * 2684 * Cause a process which is running on another CPU to enter 2685 * kernel-mode, without any delay. (to get signals handled.) 2686 * 2687 * NOTE: this function doesn't have to take the runqueue lock, 2688 * because all it wants to ensure is that the remote task enters 2689 * the kernel. If the IPI races and the task has been migrated 2690 * to another CPU then no harm is done and the purpose has been 2691 * achieved as well. 2692 */ 2693 void kick_process(struct task_struct *p) 2694 { 2695 int cpu; 2696 2697 preempt_disable(); 2698 cpu = task_cpu(p); 2699 if ((cpu != smp_processor_id()) && task_curr(p)) 2700 smp_send_reschedule(cpu); 2701 preempt_enable(); 2702 } 2703 EXPORT_SYMBOL_GPL(kick_process); 2704 2705 /* 2706 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2707 * 2708 * A few notes on cpu_active vs cpu_online: 2709 * 2710 * - cpu_active must be a subset of cpu_online 2711 * 2712 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2713 * see __set_cpus_allowed_ptr(). At this point the newly online 2714 * CPU isn't yet part of the sched domains, and balancing will not 2715 * see it. 2716 * 2717 * - on CPU-down we clear cpu_active() to mask the sched domains and 2718 * avoid the load balancer to place new tasks on the to be removed 2719 * CPU. Existing tasks will remain running there and will be taken 2720 * off. 2721 * 2722 * This means that fallback selection must not select !active CPUs. 2723 * And can assume that any active CPU must be online. Conversely 2724 * select_task_rq() below may allow selection of !active CPUs in order 2725 * to satisfy the above rules. 2726 */ 2727 static int select_fallback_rq(int cpu, struct task_struct *p) 2728 { 2729 int nid = cpu_to_node(cpu); 2730 const struct cpumask *nodemask = NULL; 2731 enum { cpuset, possible, fail } state = cpuset; 2732 int dest_cpu; 2733 2734 /* 2735 * If the node that the CPU is on has been offlined, cpu_to_node() 2736 * will return -1. There is no CPU on the node, and we should 2737 * select the CPU on the other node. 2738 */ 2739 if (nid != -1) { 2740 nodemask = cpumask_of_node(nid); 2741 2742 /* Look for allowed, online CPU in same node. */ 2743 for_each_cpu(dest_cpu, nodemask) { 2744 if (!cpu_active(dest_cpu)) 2745 continue; 2746 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2747 return dest_cpu; 2748 } 2749 } 2750 2751 for (;;) { 2752 /* Any allowed, online CPU? */ 2753 for_each_cpu(dest_cpu, p->cpus_ptr) { 2754 if (!is_cpu_allowed(p, dest_cpu)) 2755 continue; 2756 2757 goto out; 2758 } 2759 2760 /* No more Mr. Nice Guy. */ 2761 switch (state) { 2762 case cpuset: 2763 if (IS_ENABLED(CONFIG_CPUSETS)) { 2764 cpuset_cpus_allowed_fallback(p); 2765 state = possible; 2766 break; 2767 } 2768 fallthrough; 2769 case possible: 2770 /* 2771 * XXX When called from select_task_rq() we only 2772 * hold p->pi_lock and again violate locking order. 2773 * 2774 * More yuck to audit. 2775 */ 2776 do_set_cpus_allowed(p, cpu_possible_mask); 2777 state = fail; 2778 break; 2779 2780 case fail: 2781 BUG(); 2782 break; 2783 } 2784 } 2785 2786 out: 2787 if (state != cpuset) { 2788 /* 2789 * Don't tell them about moving exiting tasks or 2790 * kernel threads (both mm NULL), since they never 2791 * leave kernel. 2792 */ 2793 if (p->mm && printk_ratelimit()) { 2794 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2795 task_pid_nr(p), p->comm, cpu); 2796 } 2797 } 2798 2799 return dest_cpu; 2800 } 2801 2802 /* 2803 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2804 */ 2805 static inline 2806 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2807 { 2808 lockdep_assert_held(&p->pi_lock); 2809 2810 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2811 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2812 else 2813 cpu = cpumask_any(p->cpus_ptr); 2814 2815 /* 2816 * In order not to call set_task_cpu() on a blocking task we need 2817 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2818 * CPU. 2819 * 2820 * Since this is common to all placement strategies, this lives here. 2821 * 2822 * [ this allows ->select_task() to simply return task_cpu(p) and 2823 * not worry about this generic constraint ] 2824 */ 2825 if (unlikely(!is_cpu_allowed(p, cpu))) 2826 cpu = select_fallback_rq(task_cpu(p), p); 2827 2828 return cpu; 2829 } 2830 2831 void sched_set_stop_task(int cpu, struct task_struct *stop) 2832 { 2833 static struct lock_class_key stop_pi_lock; 2834 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2835 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2836 2837 if (stop) { 2838 /* 2839 * Make it appear like a SCHED_FIFO task, its something 2840 * userspace knows about and won't get confused about. 2841 * 2842 * Also, it will make PI more or less work without too 2843 * much confusion -- but then, stop work should not 2844 * rely on PI working anyway. 2845 */ 2846 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2847 2848 stop->sched_class = &stop_sched_class; 2849 2850 /* 2851 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2852 * adjust the effective priority of a task. As a result, 2853 * rt_mutex_setprio() can trigger (RT) balancing operations, 2854 * which can then trigger wakeups of the stop thread to push 2855 * around the current task. 2856 * 2857 * The stop task itself will never be part of the PI-chain, it 2858 * never blocks, therefore that ->pi_lock recursion is safe. 2859 * Tell lockdep about this by placing the stop->pi_lock in its 2860 * own class. 2861 */ 2862 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2863 } 2864 2865 cpu_rq(cpu)->stop = stop; 2866 2867 if (old_stop) { 2868 /* 2869 * Reset it back to a normal scheduling class so that 2870 * it can die in pieces. 2871 */ 2872 old_stop->sched_class = &rt_sched_class; 2873 } 2874 } 2875 2876 #else /* CONFIG_SMP */ 2877 2878 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2879 const struct cpumask *new_mask, 2880 u32 flags) 2881 { 2882 return set_cpus_allowed_ptr(p, new_mask); 2883 } 2884 2885 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2886 2887 static inline bool rq_has_pinned_tasks(struct rq *rq) 2888 { 2889 return false; 2890 } 2891 2892 #endif /* !CONFIG_SMP */ 2893 2894 static void 2895 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2896 { 2897 struct rq *rq; 2898 2899 if (!schedstat_enabled()) 2900 return; 2901 2902 rq = this_rq(); 2903 2904 #ifdef CONFIG_SMP 2905 if (cpu == rq->cpu) { 2906 __schedstat_inc(rq->ttwu_local); 2907 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2908 } else { 2909 struct sched_domain *sd; 2910 2911 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2912 rcu_read_lock(); 2913 for_each_domain(rq->cpu, sd) { 2914 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2915 __schedstat_inc(sd->ttwu_wake_remote); 2916 break; 2917 } 2918 } 2919 rcu_read_unlock(); 2920 } 2921 2922 if (wake_flags & WF_MIGRATED) 2923 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2924 #endif /* CONFIG_SMP */ 2925 2926 __schedstat_inc(rq->ttwu_count); 2927 __schedstat_inc(p->se.statistics.nr_wakeups); 2928 2929 if (wake_flags & WF_SYNC) 2930 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2931 } 2932 2933 /* 2934 * Mark the task runnable and perform wakeup-preemption. 2935 */ 2936 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2937 struct rq_flags *rf) 2938 { 2939 check_preempt_curr(rq, p, wake_flags); 2940 p->state = TASK_RUNNING; 2941 trace_sched_wakeup(p); 2942 2943 #ifdef CONFIG_SMP 2944 if (p->sched_class->task_woken) { 2945 /* 2946 * Our task @p is fully woken up and running; so it's safe to 2947 * drop the rq->lock, hereafter rq is only used for statistics. 2948 */ 2949 rq_unpin_lock(rq, rf); 2950 p->sched_class->task_woken(rq, p); 2951 rq_repin_lock(rq, rf); 2952 } 2953 2954 if (rq->idle_stamp) { 2955 u64 delta = rq_clock(rq) - rq->idle_stamp; 2956 u64 max = 2*rq->max_idle_balance_cost; 2957 2958 update_avg(&rq->avg_idle, delta); 2959 2960 if (rq->avg_idle > max) 2961 rq->avg_idle = max; 2962 2963 rq->idle_stamp = 0; 2964 } 2965 #endif 2966 } 2967 2968 static void 2969 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2970 struct rq_flags *rf) 2971 { 2972 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2973 2974 lockdep_assert_held(&rq->lock); 2975 2976 if (p->sched_contributes_to_load) 2977 rq->nr_uninterruptible--; 2978 2979 #ifdef CONFIG_SMP 2980 if (wake_flags & WF_MIGRATED) 2981 en_flags |= ENQUEUE_MIGRATED; 2982 else 2983 #endif 2984 if (p->in_iowait) { 2985 delayacct_blkio_end(p); 2986 atomic_dec(&task_rq(p)->nr_iowait); 2987 } 2988 2989 activate_task(rq, p, en_flags); 2990 ttwu_do_wakeup(rq, p, wake_flags, rf); 2991 } 2992 2993 /* 2994 * Consider @p being inside a wait loop: 2995 * 2996 * for (;;) { 2997 * set_current_state(TASK_UNINTERRUPTIBLE); 2998 * 2999 * if (CONDITION) 3000 * break; 3001 * 3002 * schedule(); 3003 * } 3004 * __set_current_state(TASK_RUNNING); 3005 * 3006 * between set_current_state() and schedule(). In this case @p is still 3007 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3008 * an atomic manner. 3009 * 3010 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3011 * then schedule() must still happen and p->state can be changed to 3012 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3013 * need to do a full wakeup with enqueue. 3014 * 3015 * Returns: %true when the wakeup is done, 3016 * %false otherwise. 3017 */ 3018 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3019 { 3020 struct rq_flags rf; 3021 struct rq *rq; 3022 int ret = 0; 3023 3024 rq = __task_rq_lock(p, &rf); 3025 if (task_on_rq_queued(p)) { 3026 /* check_preempt_curr() may use rq clock */ 3027 update_rq_clock(rq); 3028 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3029 ret = 1; 3030 } 3031 __task_rq_unlock(rq, &rf); 3032 3033 return ret; 3034 } 3035 3036 #ifdef CONFIG_SMP 3037 void sched_ttwu_pending(void *arg) 3038 { 3039 struct llist_node *llist = arg; 3040 struct rq *rq = this_rq(); 3041 struct task_struct *p, *t; 3042 struct rq_flags rf; 3043 3044 if (!llist) 3045 return; 3046 3047 /* 3048 * rq::ttwu_pending racy indication of out-standing wakeups. 3049 * Races such that false-negatives are possible, since they 3050 * are shorter lived that false-positives would be. 3051 */ 3052 WRITE_ONCE(rq->ttwu_pending, 0); 3053 3054 rq_lock_irqsave(rq, &rf); 3055 update_rq_clock(rq); 3056 3057 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3058 if (WARN_ON_ONCE(p->on_cpu)) 3059 smp_cond_load_acquire(&p->on_cpu, !VAL); 3060 3061 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3062 set_task_cpu(p, cpu_of(rq)); 3063 3064 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3065 } 3066 3067 rq_unlock_irqrestore(rq, &rf); 3068 } 3069 3070 void send_call_function_single_ipi(int cpu) 3071 { 3072 struct rq *rq = cpu_rq(cpu); 3073 3074 if (!set_nr_if_polling(rq->idle)) 3075 arch_send_call_function_single_ipi(cpu); 3076 else 3077 trace_sched_wake_idle_without_ipi(cpu); 3078 } 3079 3080 /* 3081 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3082 * necessary. The wakee CPU on receipt of the IPI will queue the task 3083 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3084 * of the wakeup instead of the waker. 3085 */ 3086 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3087 { 3088 struct rq *rq = cpu_rq(cpu); 3089 3090 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3091 3092 WRITE_ONCE(rq->ttwu_pending, 1); 3093 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3094 } 3095 3096 void wake_up_if_idle(int cpu) 3097 { 3098 struct rq *rq = cpu_rq(cpu); 3099 struct rq_flags rf; 3100 3101 rcu_read_lock(); 3102 3103 if (!is_idle_task(rcu_dereference(rq->curr))) 3104 goto out; 3105 3106 if (set_nr_if_polling(rq->idle)) { 3107 trace_sched_wake_idle_without_ipi(cpu); 3108 } else { 3109 rq_lock_irqsave(rq, &rf); 3110 if (is_idle_task(rq->curr)) 3111 smp_send_reschedule(cpu); 3112 /* Else CPU is not idle, do nothing here: */ 3113 rq_unlock_irqrestore(rq, &rf); 3114 } 3115 3116 out: 3117 rcu_read_unlock(); 3118 } 3119 3120 bool cpus_share_cache(int this_cpu, int that_cpu) 3121 { 3122 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3123 } 3124 3125 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3126 { 3127 /* 3128 * Do not complicate things with the async wake_list while the CPU is 3129 * in hotplug state. 3130 */ 3131 if (!cpu_active(cpu)) 3132 return false; 3133 3134 /* 3135 * If the CPU does not share cache, then queue the task on the 3136 * remote rqs wakelist to avoid accessing remote data. 3137 */ 3138 if (!cpus_share_cache(smp_processor_id(), cpu)) 3139 return true; 3140 3141 /* 3142 * If the task is descheduling and the only running task on the 3143 * CPU then use the wakelist to offload the task activation to 3144 * the soon-to-be-idle CPU as the current CPU is likely busy. 3145 * nr_running is checked to avoid unnecessary task stacking. 3146 */ 3147 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3148 return true; 3149 3150 return false; 3151 } 3152 3153 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3154 { 3155 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3156 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3157 return false; 3158 3159 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3160 __ttwu_queue_wakelist(p, cpu, wake_flags); 3161 return true; 3162 } 3163 3164 return false; 3165 } 3166 3167 #else /* !CONFIG_SMP */ 3168 3169 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3170 { 3171 return false; 3172 } 3173 3174 #endif /* CONFIG_SMP */ 3175 3176 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3177 { 3178 struct rq *rq = cpu_rq(cpu); 3179 struct rq_flags rf; 3180 3181 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3182 return; 3183 3184 rq_lock(rq, &rf); 3185 update_rq_clock(rq); 3186 ttwu_do_activate(rq, p, wake_flags, &rf); 3187 rq_unlock(rq, &rf); 3188 } 3189 3190 /* 3191 * Notes on Program-Order guarantees on SMP systems. 3192 * 3193 * MIGRATION 3194 * 3195 * The basic program-order guarantee on SMP systems is that when a task [t] 3196 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3197 * execution on its new CPU [c1]. 3198 * 3199 * For migration (of runnable tasks) this is provided by the following means: 3200 * 3201 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3202 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3203 * rq(c1)->lock (if not at the same time, then in that order). 3204 * C) LOCK of the rq(c1)->lock scheduling in task 3205 * 3206 * Release/acquire chaining guarantees that B happens after A and C after B. 3207 * Note: the CPU doing B need not be c0 or c1 3208 * 3209 * Example: 3210 * 3211 * CPU0 CPU1 CPU2 3212 * 3213 * LOCK rq(0)->lock 3214 * sched-out X 3215 * sched-in Y 3216 * UNLOCK rq(0)->lock 3217 * 3218 * LOCK rq(0)->lock // orders against CPU0 3219 * dequeue X 3220 * UNLOCK rq(0)->lock 3221 * 3222 * LOCK rq(1)->lock 3223 * enqueue X 3224 * UNLOCK rq(1)->lock 3225 * 3226 * LOCK rq(1)->lock // orders against CPU2 3227 * sched-out Z 3228 * sched-in X 3229 * UNLOCK rq(1)->lock 3230 * 3231 * 3232 * BLOCKING -- aka. SLEEP + WAKEUP 3233 * 3234 * For blocking we (obviously) need to provide the same guarantee as for 3235 * migration. However the means are completely different as there is no lock 3236 * chain to provide order. Instead we do: 3237 * 3238 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3239 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3240 * 3241 * Example: 3242 * 3243 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3244 * 3245 * LOCK rq(0)->lock LOCK X->pi_lock 3246 * dequeue X 3247 * sched-out X 3248 * smp_store_release(X->on_cpu, 0); 3249 * 3250 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3251 * X->state = WAKING 3252 * set_task_cpu(X,2) 3253 * 3254 * LOCK rq(2)->lock 3255 * enqueue X 3256 * X->state = RUNNING 3257 * UNLOCK rq(2)->lock 3258 * 3259 * LOCK rq(2)->lock // orders against CPU1 3260 * sched-out Z 3261 * sched-in X 3262 * UNLOCK rq(2)->lock 3263 * 3264 * UNLOCK X->pi_lock 3265 * UNLOCK rq(0)->lock 3266 * 3267 * 3268 * However, for wakeups there is a second guarantee we must provide, namely we 3269 * must ensure that CONDITION=1 done by the caller can not be reordered with 3270 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3271 */ 3272 3273 /** 3274 * try_to_wake_up - wake up a thread 3275 * @p: the thread to be awakened 3276 * @state: the mask of task states that can be woken 3277 * @wake_flags: wake modifier flags (WF_*) 3278 * 3279 * Conceptually does: 3280 * 3281 * If (@state & @p->state) @p->state = TASK_RUNNING. 3282 * 3283 * If the task was not queued/runnable, also place it back on a runqueue. 3284 * 3285 * This function is atomic against schedule() which would dequeue the task. 3286 * 3287 * It issues a full memory barrier before accessing @p->state, see the comment 3288 * with set_current_state(). 3289 * 3290 * Uses p->pi_lock to serialize against concurrent wake-ups. 3291 * 3292 * Relies on p->pi_lock stabilizing: 3293 * - p->sched_class 3294 * - p->cpus_ptr 3295 * - p->sched_task_group 3296 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3297 * 3298 * Tries really hard to only take one task_rq(p)->lock for performance. 3299 * Takes rq->lock in: 3300 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3301 * - ttwu_queue() -- new rq, for enqueue of the task; 3302 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3303 * 3304 * As a consequence we race really badly with just about everything. See the 3305 * many memory barriers and their comments for details. 3306 * 3307 * Return: %true if @p->state changes (an actual wakeup was done), 3308 * %false otherwise. 3309 */ 3310 static int 3311 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3312 { 3313 unsigned long flags; 3314 int cpu, success = 0; 3315 3316 preempt_disable(); 3317 if (p == current) { 3318 /* 3319 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3320 * == smp_processor_id()'. Together this means we can special 3321 * case the whole 'p->on_rq && ttwu_runnable()' case below 3322 * without taking any locks. 3323 * 3324 * In particular: 3325 * - we rely on Program-Order guarantees for all the ordering, 3326 * - we're serialized against set_special_state() by virtue of 3327 * it disabling IRQs (this allows not taking ->pi_lock). 3328 */ 3329 if (!(p->state & state)) 3330 goto out; 3331 3332 success = 1; 3333 trace_sched_waking(p); 3334 p->state = TASK_RUNNING; 3335 trace_sched_wakeup(p); 3336 goto out; 3337 } 3338 3339 /* 3340 * If we are going to wake up a thread waiting for CONDITION we 3341 * need to ensure that CONDITION=1 done by the caller can not be 3342 * reordered with p->state check below. This pairs with smp_store_mb() 3343 * in set_current_state() that the waiting thread does. 3344 */ 3345 raw_spin_lock_irqsave(&p->pi_lock, flags); 3346 smp_mb__after_spinlock(); 3347 if (!(p->state & state)) 3348 goto unlock; 3349 3350 trace_sched_waking(p); 3351 3352 /* We're going to change ->state: */ 3353 success = 1; 3354 3355 /* 3356 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3357 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3358 * in smp_cond_load_acquire() below. 3359 * 3360 * sched_ttwu_pending() try_to_wake_up() 3361 * STORE p->on_rq = 1 LOAD p->state 3362 * UNLOCK rq->lock 3363 * 3364 * __schedule() (switch to task 'p') 3365 * LOCK rq->lock smp_rmb(); 3366 * smp_mb__after_spinlock(); 3367 * UNLOCK rq->lock 3368 * 3369 * [task p] 3370 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3371 * 3372 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3373 * __schedule(). See the comment for smp_mb__after_spinlock(). 3374 * 3375 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3376 */ 3377 smp_rmb(); 3378 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3379 goto unlock; 3380 3381 #ifdef CONFIG_SMP 3382 /* 3383 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3384 * possible to, falsely, observe p->on_cpu == 0. 3385 * 3386 * One must be running (->on_cpu == 1) in order to remove oneself 3387 * from the runqueue. 3388 * 3389 * __schedule() (switch to task 'p') try_to_wake_up() 3390 * STORE p->on_cpu = 1 LOAD p->on_rq 3391 * UNLOCK rq->lock 3392 * 3393 * __schedule() (put 'p' to sleep) 3394 * LOCK rq->lock smp_rmb(); 3395 * smp_mb__after_spinlock(); 3396 * STORE p->on_rq = 0 LOAD p->on_cpu 3397 * 3398 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3399 * __schedule(). See the comment for smp_mb__after_spinlock(). 3400 * 3401 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3402 * schedule()'s deactivate_task() has 'happened' and p will no longer 3403 * care about it's own p->state. See the comment in __schedule(). 3404 */ 3405 smp_acquire__after_ctrl_dep(); 3406 3407 /* 3408 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3409 * == 0), which means we need to do an enqueue, change p->state to 3410 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3411 * enqueue, such as ttwu_queue_wakelist(). 3412 */ 3413 p->state = TASK_WAKING; 3414 3415 /* 3416 * If the owning (remote) CPU is still in the middle of schedule() with 3417 * this task as prev, considering queueing p on the remote CPUs wake_list 3418 * which potentially sends an IPI instead of spinning on p->on_cpu to 3419 * let the waker make forward progress. This is safe because IRQs are 3420 * disabled and the IPI will deliver after on_cpu is cleared. 3421 * 3422 * Ensure we load task_cpu(p) after p->on_cpu: 3423 * 3424 * set_task_cpu(p, cpu); 3425 * STORE p->cpu = @cpu 3426 * __schedule() (switch to task 'p') 3427 * LOCK rq->lock 3428 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3429 * STORE p->on_cpu = 1 LOAD p->cpu 3430 * 3431 * to ensure we observe the correct CPU on which the task is currently 3432 * scheduling. 3433 */ 3434 if (smp_load_acquire(&p->on_cpu) && 3435 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3436 goto unlock; 3437 3438 /* 3439 * If the owning (remote) CPU is still in the middle of schedule() with 3440 * this task as prev, wait until it's done referencing the task. 3441 * 3442 * Pairs with the smp_store_release() in finish_task(). 3443 * 3444 * This ensures that tasks getting woken will be fully ordered against 3445 * their previous state and preserve Program Order. 3446 */ 3447 smp_cond_load_acquire(&p->on_cpu, !VAL); 3448 3449 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3450 if (task_cpu(p) != cpu) { 3451 if (p->in_iowait) { 3452 delayacct_blkio_end(p); 3453 atomic_dec(&task_rq(p)->nr_iowait); 3454 } 3455 3456 wake_flags |= WF_MIGRATED; 3457 psi_ttwu_dequeue(p); 3458 set_task_cpu(p, cpu); 3459 } 3460 #else 3461 cpu = task_cpu(p); 3462 #endif /* CONFIG_SMP */ 3463 3464 ttwu_queue(p, cpu, wake_flags); 3465 unlock: 3466 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3467 out: 3468 if (success) 3469 ttwu_stat(p, task_cpu(p), wake_flags); 3470 preempt_enable(); 3471 3472 return success; 3473 } 3474 3475 /** 3476 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3477 * @p: Process for which the function is to be invoked, can be @current. 3478 * @func: Function to invoke. 3479 * @arg: Argument to function. 3480 * 3481 * If the specified task can be quickly locked into a definite state 3482 * (either sleeping or on a given runqueue), arrange to keep it in that 3483 * state while invoking @func(@arg). This function can use ->on_rq and 3484 * task_curr() to work out what the state is, if required. Given that 3485 * @func can be invoked with a runqueue lock held, it had better be quite 3486 * lightweight. 3487 * 3488 * Returns: 3489 * @false if the task slipped out from under the locks. 3490 * @true if the task was locked onto a runqueue or is sleeping. 3491 * However, @func can override this by returning @false. 3492 */ 3493 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3494 { 3495 struct rq_flags rf; 3496 bool ret = false; 3497 struct rq *rq; 3498 3499 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3500 if (p->on_rq) { 3501 rq = __task_rq_lock(p, &rf); 3502 if (task_rq(p) == rq) 3503 ret = func(p, arg); 3504 rq_unlock(rq, &rf); 3505 } else { 3506 switch (p->state) { 3507 case TASK_RUNNING: 3508 case TASK_WAKING: 3509 break; 3510 default: 3511 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3512 if (!p->on_rq) 3513 ret = func(p, arg); 3514 } 3515 } 3516 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3517 return ret; 3518 } 3519 3520 /** 3521 * wake_up_process - Wake up a specific process 3522 * @p: The process to be woken up. 3523 * 3524 * Attempt to wake up the nominated process and move it to the set of runnable 3525 * processes. 3526 * 3527 * Return: 1 if the process was woken up, 0 if it was already running. 3528 * 3529 * This function executes a full memory barrier before accessing the task state. 3530 */ 3531 int wake_up_process(struct task_struct *p) 3532 { 3533 return try_to_wake_up(p, TASK_NORMAL, 0); 3534 } 3535 EXPORT_SYMBOL(wake_up_process); 3536 3537 int wake_up_state(struct task_struct *p, unsigned int state) 3538 { 3539 return try_to_wake_up(p, state, 0); 3540 } 3541 3542 /* 3543 * Perform scheduler related setup for a newly forked process p. 3544 * p is forked by current. 3545 * 3546 * __sched_fork() is basic setup used by init_idle() too: 3547 */ 3548 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3549 { 3550 p->on_rq = 0; 3551 3552 p->se.on_rq = 0; 3553 p->se.exec_start = 0; 3554 p->se.sum_exec_runtime = 0; 3555 p->se.prev_sum_exec_runtime = 0; 3556 p->se.nr_migrations = 0; 3557 p->se.vruntime = 0; 3558 INIT_LIST_HEAD(&p->se.group_node); 3559 3560 #ifdef CONFIG_FAIR_GROUP_SCHED 3561 p->se.cfs_rq = NULL; 3562 #endif 3563 3564 #ifdef CONFIG_SCHEDSTATS 3565 /* Even if schedstat is disabled, there should not be garbage */ 3566 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3567 #endif 3568 3569 RB_CLEAR_NODE(&p->dl.rb_node); 3570 init_dl_task_timer(&p->dl); 3571 init_dl_inactive_task_timer(&p->dl); 3572 __dl_clear_params(p); 3573 3574 INIT_LIST_HEAD(&p->rt.run_list); 3575 p->rt.timeout = 0; 3576 p->rt.time_slice = sched_rr_timeslice; 3577 p->rt.on_rq = 0; 3578 p->rt.on_list = 0; 3579 3580 #ifdef CONFIG_PREEMPT_NOTIFIERS 3581 INIT_HLIST_HEAD(&p->preempt_notifiers); 3582 #endif 3583 3584 #ifdef CONFIG_COMPACTION 3585 p->capture_control = NULL; 3586 #endif 3587 init_numa_balancing(clone_flags, p); 3588 #ifdef CONFIG_SMP 3589 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3590 p->migration_pending = NULL; 3591 #endif 3592 } 3593 3594 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3595 3596 #ifdef CONFIG_NUMA_BALANCING 3597 3598 void set_numabalancing_state(bool enabled) 3599 { 3600 if (enabled) 3601 static_branch_enable(&sched_numa_balancing); 3602 else 3603 static_branch_disable(&sched_numa_balancing); 3604 } 3605 3606 #ifdef CONFIG_PROC_SYSCTL 3607 int sysctl_numa_balancing(struct ctl_table *table, int write, 3608 void *buffer, size_t *lenp, loff_t *ppos) 3609 { 3610 struct ctl_table t; 3611 int err; 3612 int state = static_branch_likely(&sched_numa_balancing); 3613 3614 if (write && !capable(CAP_SYS_ADMIN)) 3615 return -EPERM; 3616 3617 t = *table; 3618 t.data = &state; 3619 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3620 if (err < 0) 3621 return err; 3622 if (write) 3623 set_numabalancing_state(state); 3624 return err; 3625 } 3626 #endif 3627 #endif 3628 3629 #ifdef CONFIG_SCHEDSTATS 3630 3631 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3632 static bool __initdata __sched_schedstats = false; 3633 3634 static void set_schedstats(bool enabled) 3635 { 3636 if (enabled) 3637 static_branch_enable(&sched_schedstats); 3638 else 3639 static_branch_disable(&sched_schedstats); 3640 } 3641 3642 void force_schedstat_enabled(void) 3643 { 3644 if (!schedstat_enabled()) { 3645 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3646 static_branch_enable(&sched_schedstats); 3647 } 3648 } 3649 3650 static int __init setup_schedstats(char *str) 3651 { 3652 int ret = 0; 3653 if (!str) 3654 goto out; 3655 3656 /* 3657 * This code is called before jump labels have been set up, so we can't 3658 * change the static branch directly just yet. Instead set a temporary 3659 * variable so init_schedstats() can do it later. 3660 */ 3661 if (!strcmp(str, "enable")) { 3662 __sched_schedstats = true; 3663 ret = 1; 3664 } else if (!strcmp(str, "disable")) { 3665 __sched_schedstats = false; 3666 ret = 1; 3667 } 3668 out: 3669 if (!ret) 3670 pr_warn("Unable to parse schedstats=\n"); 3671 3672 return ret; 3673 } 3674 __setup("schedstats=", setup_schedstats); 3675 3676 static void __init init_schedstats(void) 3677 { 3678 set_schedstats(__sched_schedstats); 3679 } 3680 3681 #ifdef CONFIG_PROC_SYSCTL 3682 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3683 size_t *lenp, loff_t *ppos) 3684 { 3685 struct ctl_table t; 3686 int err; 3687 int state = static_branch_likely(&sched_schedstats); 3688 3689 if (write && !capable(CAP_SYS_ADMIN)) 3690 return -EPERM; 3691 3692 t = *table; 3693 t.data = &state; 3694 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3695 if (err < 0) 3696 return err; 3697 if (write) 3698 set_schedstats(state); 3699 return err; 3700 } 3701 #endif /* CONFIG_PROC_SYSCTL */ 3702 #else /* !CONFIG_SCHEDSTATS */ 3703 static inline void init_schedstats(void) {} 3704 #endif /* CONFIG_SCHEDSTATS */ 3705 3706 /* 3707 * fork()/clone()-time setup: 3708 */ 3709 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3710 { 3711 unsigned long flags; 3712 3713 __sched_fork(clone_flags, p); 3714 /* 3715 * We mark the process as NEW here. This guarantees that 3716 * nobody will actually run it, and a signal or other external 3717 * event cannot wake it up and insert it on the runqueue either. 3718 */ 3719 p->state = TASK_NEW; 3720 3721 /* 3722 * Make sure we do not leak PI boosting priority to the child. 3723 */ 3724 p->prio = current->normal_prio; 3725 3726 uclamp_fork(p); 3727 3728 /* 3729 * Revert to default priority/policy on fork if requested. 3730 */ 3731 if (unlikely(p->sched_reset_on_fork)) { 3732 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3733 p->policy = SCHED_NORMAL; 3734 p->static_prio = NICE_TO_PRIO(0); 3735 p->rt_priority = 0; 3736 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3737 p->static_prio = NICE_TO_PRIO(0); 3738 3739 p->prio = p->normal_prio = __normal_prio(p); 3740 set_load_weight(p, false); 3741 3742 /* 3743 * We don't need the reset flag anymore after the fork. It has 3744 * fulfilled its duty: 3745 */ 3746 p->sched_reset_on_fork = 0; 3747 } 3748 3749 if (dl_prio(p->prio)) 3750 return -EAGAIN; 3751 else if (rt_prio(p->prio)) 3752 p->sched_class = &rt_sched_class; 3753 else 3754 p->sched_class = &fair_sched_class; 3755 3756 init_entity_runnable_average(&p->se); 3757 3758 /* 3759 * The child is not yet in the pid-hash so no cgroup attach races, 3760 * and the cgroup is pinned to this child due to cgroup_fork() 3761 * is ran before sched_fork(). 3762 * 3763 * Silence PROVE_RCU. 3764 */ 3765 raw_spin_lock_irqsave(&p->pi_lock, flags); 3766 rseq_migrate(p); 3767 /* 3768 * We're setting the CPU for the first time, we don't migrate, 3769 * so use __set_task_cpu(). 3770 */ 3771 __set_task_cpu(p, smp_processor_id()); 3772 if (p->sched_class->task_fork) 3773 p->sched_class->task_fork(p); 3774 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3775 3776 #ifdef CONFIG_SCHED_INFO 3777 if (likely(sched_info_on())) 3778 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3779 #endif 3780 #if defined(CONFIG_SMP) 3781 p->on_cpu = 0; 3782 #endif 3783 init_task_preempt_count(p); 3784 #ifdef CONFIG_SMP 3785 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3786 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3787 #endif 3788 return 0; 3789 } 3790 3791 void sched_post_fork(struct task_struct *p) 3792 { 3793 uclamp_post_fork(p); 3794 } 3795 3796 unsigned long to_ratio(u64 period, u64 runtime) 3797 { 3798 if (runtime == RUNTIME_INF) 3799 return BW_UNIT; 3800 3801 /* 3802 * Doing this here saves a lot of checks in all 3803 * the calling paths, and returning zero seems 3804 * safe for them anyway. 3805 */ 3806 if (period == 0) 3807 return 0; 3808 3809 return div64_u64(runtime << BW_SHIFT, period); 3810 } 3811 3812 /* 3813 * wake_up_new_task - wake up a newly created task for the first time. 3814 * 3815 * This function will do some initial scheduler statistics housekeeping 3816 * that must be done for every newly created context, then puts the task 3817 * on the runqueue and wakes it. 3818 */ 3819 void wake_up_new_task(struct task_struct *p) 3820 { 3821 struct rq_flags rf; 3822 struct rq *rq; 3823 3824 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3825 p->state = TASK_RUNNING; 3826 #ifdef CONFIG_SMP 3827 /* 3828 * Fork balancing, do it here and not earlier because: 3829 * - cpus_ptr can change in the fork path 3830 * - any previously selected CPU might disappear through hotplug 3831 * 3832 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3833 * as we're not fully set-up yet. 3834 */ 3835 p->recent_used_cpu = task_cpu(p); 3836 rseq_migrate(p); 3837 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3838 #endif 3839 rq = __task_rq_lock(p, &rf); 3840 update_rq_clock(rq); 3841 post_init_entity_util_avg(p); 3842 3843 activate_task(rq, p, ENQUEUE_NOCLOCK); 3844 trace_sched_wakeup_new(p); 3845 check_preempt_curr(rq, p, WF_FORK); 3846 #ifdef CONFIG_SMP 3847 if (p->sched_class->task_woken) { 3848 /* 3849 * Nothing relies on rq->lock after this, so it's fine to 3850 * drop it. 3851 */ 3852 rq_unpin_lock(rq, &rf); 3853 p->sched_class->task_woken(rq, p); 3854 rq_repin_lock(rq, &rf); 3855 } 3856 #endif 3857 task_rq_unlock(rq, p, &rf); 3858 } 3859 3860 #ifdef CONFIG_PREEMPT_NOTIFIERS 3861 3862 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3863 3864 void preempt_notifier_inc(void) 3865 { 3866 static_branch_inc(&preempt_notifier_key); 3867 } 3868 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3869 3870 void preempt_notifier_dec(void) 3871 { 3872 static_branch_dec(&preempt_notifier_key); 3873 } 3874 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3875 3876 /** 3877 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3878 * @notifier: notifier struct to register 3879 */ 3880 void preempt_notifier_register(struct preempt_notifier *notifier) 3881 { 3882 if (!static_branch_unlikely(&preempt_notifier_key)) 3883 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3884 3885 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3886 } 3887 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3888 3889 /** 3890 * preempt_notifier_unregister - no longer interested in preemption notifications 3891 * @notifier: notifier struct to unregister 3892 * 3893 * This is *not* safe to call from within a preemption notifier. 3894 */ 3895 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3896 { 3897 hlist_del(¬ifier->link); 3898 } 3899 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3900 3901 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3902 { 3903 struct preempt_notifier *notifier; 3904 3905 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3906 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3907 } 3908 3909 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3910 { 3911 if (static_branch_unlikely(&preempt_notifier_key)) 3912 __fire_sched_in_preempt_notifiers(curr); 3913 } 3914 3915 static void 3916 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3917 struct task_struct *next) 3918 { 3919 struct preempt_notifier *notifier; 3920 3921 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3922 notifier->ops->sched_out(notifier, next); 3923 } 3924 3925 static __always_inline void 3926 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3927 struct task_struct *next) 3928 { 3929 if (static_branch_unlikely(&preempt_notifier_key)) 3930 __fire_sched_out_preempt_notifiers(curr, next); 3931 } 3932 3933 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3934 3935 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3936 { 3937 } 3938 3939 static inline void 3940 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3941 struct task_struct *next) 3942 { 3943 } 3944 3945 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3946 3947 static inline void prepare_task(struct task_struct *next) 3948 { 3949 #ifdef CONFIG_SMP 3950 /* 3951 * Claim the task as running, we do this before switching to it 3952 * such that any running task will have this set. 3953 * 3954 * See the ttwu() WF_ON_CPU case and its ordering comment. 3955 */ 3956 WRITE_ONCE(next->on_cpu, 1); 3957 #endif 3958 } 3959 3960 static inline void finish_task(struct task_struct *prev) 3961 { 3962 #ifdef CONFIG_SMP 3963 /* 3964 * This must be the very last reference to @prev from this CPU. After 3965 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3966 * must ensure this doesn't happen until the switch is completely 3967 * finished. 3968 * 3969 * In particular, the load of prev->state in finish_task_switch() must 3970 * happen before this. 3971 * 3972 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3973 */ 3974 smp_store_release(&prev->on_cpu, 0); 3975 #endif 3976 } 3977 3978 #ifdef CONFIG_SMP 3979 3980 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 3981 { 3982 void (*func)(struct rq *rq); 3983 struct callback_head *next; 3984 3985 lockdep_assert_held(&rq->lock); 3986 3987 while (head) { 3988 func = (void (*)(struct rq *))head->func; 3989 next = head->next; 3990 head->next = NULL; 3991 head = next; 3992 3993 func(rq); 3994 } 3995 } 3996 3997 static void balance_push(struct rq *rq); 3998 3999 struct callback_head balance_push_callback = { 4000 .next = NULL, 4001 .func = (void (*)(struct callback_head *))balance_push, 4002 }; 4003 4004 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4005 { 4006 struct callback_head *head = rq->balance_callback; 4007 4008 lockdep_assert_held(&rq->lock); 4009 if (head) 4010 rq->balance_callback = NULL; 4011 4012 return head; 4013 } 4014 4015 static void __balance_callbacks(struct rq *rq) 4016 { 4017 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4018 } 4019 4020 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4021 { 4022 unsigned long flags; 4023 4024 if (unlikely(head)) { 4025 raw_spin_lock_irqsave(&rq->lock, flags); 4026 do_balance_callbacks(rq, head); 4027 raw_spin_unlock_irqrestore(&rq->lock, flags); 4028 } 4029 } 4030 4031 #else 4032 4033 static inline void __balance_callbacks(struct rq *rq) 4034 { 4035 } 4036 4037 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4038 { 4039 return NULL; 4040 } 4041 4042 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4043 { 4044 } 4045 4046 #endif 4047 4048 static inline void 4049 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4050 { 4051 /* 4052 * Since the runqueue lock will be released by the next 4053 * task (which is an invalid locking op but in the case 4054 * of the scheduler it's an obvious special-case), so we 4055 * do an early lockdep release here: 4056 */ 4057 rq_unpin_lock(rq, rf); 4058 spin_release(&rq->lock.dep_map, _THIS_IP_); 4059 #ifdef CONFIG_DEBUG_SPINLOCK 4060 /* this is a valid case when another task releases the spinlock */ 4061 rq->lock.owner = next; 4062 #endif 4063 } 4064 4065 static inline void finish_lock_switch(struct rq *rq) 4066 { 4067 /* 4068 * If we are tracking spinlock dependencies then we have to 4069 * fix up the runqueue lock - which gets 'carried over' from 4070 * prev into current: 4071 */ 4072 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4073 __balance_callbacks(rq); 4074 raw_spin_unlock_irq(&rq->lock); 4075 } 4076 4077 /* 4078 * NOP if the arch has not defined these: 4079 */ 4080 4081 #ifndef prepare_arch_switch 4082 # define prepare_arch_switch(next) do { } while (0) 4083 #endif 4084 4085 #ifndef finish_arch_post_lock_switch 4086 # define finish_arch_post_lock_switch() do { } while (0) 4087 #endif 4088 4089 static inline void kmap_local_sched_out(void) 4090 { 4091 #ifdef CONFIG_KMAP_LOCAL 4092 if (unlikely(current->kmap_ctrl.idx)) 4093 __kmap_local_sched_out(); 4094 #endif 4095 } 4096 4097 static inline void kmap_local_sched_in(void) 4098 { 4099 #ifdef CONFIG_KMAP_LOCAL 4100 if (unlikely(current->kmap_ctrl.idx)) 4101 __kmap_local_sched_in(); 4102 #endif 4103 } 4104 4105 /** 4106 * prepare_task_switch - prepare to switch tasks 4107 * @rq: the runqueue preparing to switch 4108 * @prev: the current task that is being switched out 4109 * @next: the task we are going to switch to. 4110 * 4111 * This is called with the rq lock held and interrupts off. It must 4112 * be paired with a subsequent finish_task_switch after the context 4113 * switch. 4114 * 4115 * prepare_task_switch sets up locking and calls architecture specific 4116 * hooks. 4117 */ 4118 static inline void 4119 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4120 struct task_struct *next) 4121 { 4122 kcov_prepare_switch(prev); 4123 sched_info_switch(rq, prev, next); 4124 perf_event_task_sched_out(prev, next); 4125 rseq_preempt(prev); 4126 fire_sched_out_preempt_notifiers(prev, next); 4127 kmap_local_sched_out(); 4128 prepare_task(next); 4129 prepare_arch_switch(next); 4130 } 4131 4132 /** 4133 * finish_task_switch - clean up after a task-switch 4134 * @prev: the thread we just switched away from. 4135 * 4136 * finish_task_switch must be called after the context switch, paired 4137 * with a prepare_task_switch call before the context switch. 4138 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4139 * and do any other architecture-specific cleanup actions. 4140 * 4141 * Note that we may have delayed dropping an mm in context_switch(). If 4142 * so, we finish that here outside of the runqueue lock. (Doing it 4143 * with the lock held can cause deadlocks; see schedule() for 4144 * details.) 4145 * 4146 * The context switch have flipped the stack from under us and restored the 4147 * local variables which were saved when this task called schedule() in the 4148 * past. prev == current is still correct but we need to recalculate this_rq 4149 * because prev may have moved to another CPU. 4150 */ 4151 static struct rq *finish_task_switch(struct task_struct *prev) 4152 __releases(rq->lock) 4153 { 4154 struct rq *rq = this_rq(); 4155 struct mm_struct *mm = rq->prev_mm; 4156 long prev_state; 4157 4158 /* 4159 * The previous task will have left us with a preempt_count of 2 4160 * because it left us after: 4161 * 4162 * schedule() 4163 * preempt_disable(); // 1 4164 * __schedule() 4165 * raw_spin_lock_irq(&rq->lock) // 2 4166 * 4167 * Also, see FORK_PREEMPT_COUNT. 4168 */ 4169 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4170 "corrupted preempt_count: %s/%d/0x%x\n", 4171 current->comm, current->pid, preempt_count())) 4172 preempt_count_set(FORK_PREEMPT_COUNT); 4173 4174 rq->prev_mm = NULL; 4175 4176 /* 4177 * A task struct has one reference for the use as "current". 4178 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4179 * schedule one last time. The schedule call will never return, and 4180 * the scheduled task must drop that reference. 4181 * 4182 * We must observe prev->state before clearing prev->on_cpu (in 4183 * finish_task), otherwise a concurrent wakeup can get prev 4184 * running on another CPU and we could rave with its RUNNING -> DEAD 4185 * transition, resulting in a double drop. 4186 */ 4187 prev_state = prev->state; 4188 vtime_task_switch(prev); 4189 perf_event_task_sched_in(prev, current); 4190 finish_task(prev); 4191 finish_lock_switch(rq); 4192 finish_arch_post_lock_switch(); 4193 kcov_finish_switch(current); 4194 /* 4195 * kmap_local_sched_out() is invoked with rq::lock held and 4196 * interrupts disabled. There is no requirement for that, but the 4197 * sched out code does not have an interrupt enabled section. 4198 * Restoring the maps on sched in does not require interrupts being 4199 * disabled either. 4200 */ 4201 kmap_local_sched_in(); 4202 4203 fire_sched_in_preempt_notifiers(current); 4204 /* 4205 * When switching through a kernel thread, the loop in 4206 * membarrier_{private,global}_expedited() may have observed that 4207 * kernel thread and not issued an IPI. It is therefore possible to 4208 * schedule between user->kernel->user threads without passing though 4209 * switch_mm(). Membarrier requires a barrier after storing to 4210 * rq->curr, before returning to userspace, so provide them here: 4211 * 4212 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4213 * provided by mmdrop(), 4214 * - a sync_core for SYNC_CORE. 4215 */ 4216 if (mm) { 4217 membarrier_mm_sync_core_before_usermode(mm); 4218 mmdrop(mm); 4219 } 4220 if (unlikely(prev_state == TASK_DEAD)) { 4221 if (prev->sched_class->task_dead) 4222 prev->sched_class->task_dead(prev); 4223 4224 /* 4225 * Remove function-return probe instances associated with this 4226 * task and put them back on the free list. 4227 */ 4228 kprobe_flush_task(prev); 4229 4230 /* Task is done with its stack. */ 4231 put_task_stack(prev); 4232 4233 put_task_struct_rcu_user(prev); 4234 } 4235 4236 tick_nohz_task_switch(); 4237 return rq; 4238 } 4239 4240 /** 4241 * schedule_tail - first thing a freshly forked thread must call. 4242 * @prev: the thread we just switched away from. 4243 */ 4244 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4245 __releases(rq->lock) 4246 { 4247 struct rq *rq; 4248 4249 /* 4250 * New tasks start with FORK_PREEMPT_COUNT, see there and 4251 * finish_task_switch() for details. 4252 * 4253 * finish_task_switch() will drop rq->lock() and lower preempt_count 4254 * and the preempt_enable() will end up enabling preemption (on 4255 * PREEMPT_COUNT kernels). 4256 */ 4257 4258 rq = finish_task_switch(prev); 4259 preempt_enable(); 4260 4261 if (current->set_child_tid) 4262 put_user(task_pid_vnr(current), current->set_child_tid); 4263 4264 calculate_sigpending(); 4265 } 4266 4267 /* 4268 * context_switch - switch to the new MM and the new thread's register state. 4269 */ 4270 static __always_inline struct rq * 4271 context_switch(struct rq *rq, struct task_struct *prev, 4272 struct task_struct *next, struct rq_flags *rf) 4273 { 4274 prepare_task_switch(rq, prev, next); 4275 4276 /* 4277 * For paravirt, this is coupled with an exit in switch_to to 4278 * combine the page table reload and the switch backend into 4279 * one hypercall. 4280 */ 4281 arch_start_context_switch(prev); 4282 4283 /* 4284 * kernel -> kernel lazy + transfer active 4285 * user -> kernel lazy + mmgrab() active 4286 * 4287 * kernel -> user switch + mmdrop() active 4288 * user -> user switch 4289 */ 4290 if (!next->mm) { // to kernel 4291 enter_lazy_tlb(prev->active_mm, next); 4292 4293 next->active_mm = prev->active_mm; 4294 if (prev->mm) // from user 4295 mmgrab(prev->active_mm); 4296 else 4297 prev->active_mm = NULL; 4298 } else { // to user 4299 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4300 /* 4301 * sys_membarrier() requires an smp_mb() between setting 4302 * rq->curr / membarrier_switch_mm() and returning to userspace. 4303 * 4304 * The below provides this either through switch_mm(), or in 4305 * case 'prev->active_mm == next->mm' through 4306 * finish_task_switch()'s mmdrop(). 4307 */ 4308 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4309 4310 if (!prev->mm) { // from kernel 4311 /* will mmdrop() in finish_task_switch(). */ 4312 rq->prev_mm = prev->active_mm; 4313 prev->active_mm = NULL; 4314 } 4315 } 4316 4317 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4318 4319 prepare_lock_switch(rq, next, rf); 4320 4321 /* Here we just switch the register state and the stack. */ 4322 switch_to(prev, next, prev); 4323 barrier(); 4324 4325 return finish_task_switch(prev); 4326 } 4327 4328 /* 4329 * nr_running and nr_context_switches: 4330 * 4331 * externally visible scheduler statistics: current number of runnable 4332 * threads, total number of context switches performed since bootup. 4333 */ 4334 unsigned long nr_running(void) 4335 { 4336 unsigned long i, sum = 0; 4337 4338 for_each_online_cpu(i) 4339 sum += cpu_rq(i)->nr_running; 4340 4341 return sum; 4342 } 4343 4344 /* 4345 * Check if only the current task is running on the CPU. 4346 * 4347 * Caution: this function does not check that the caller has disabled 4348 * preemption, thus the result might have a time-of-check-to-time-of-use 4349 * race. The caller is responsible to use it correctly, for example: 4350 * 4351 * - from a non-preemptible section (of course) 4352 * 4353 * - from a thread that is bound to a single CPU 4354 * 4355 * - in a loop with very short iterations (e.g. a polling loop) 4356 */ 4357 bool single_task_running(void) 4358 { 4359 return raw_rq()->nr_running == 1; 4360 } 4361 EXPORT_SYMBOL(single_task_running); 4362 4363 unsigned long long nr_context_switches(void) 4364 { 4365 int i; 4366 unsigned long long sum = 0; 4367 4368 for_each_possible_cpu(i) 4369 sum += cpu_rq(i)->nr_switches; 4370 4371 return sum; 4372 } 4373 4374 /* 4375 * Consumers of these two interfaces, like for example the cpuidle menu 4376 * governor, are using nonsensical data. Preferring shallow idle state selection 4377 * for a CPU that has IO-wait which might not even end up running the task when 4378 * it does become runnable. 4379 */ 4380 4381 unsigned long nr_iowait_cpu(int cpu) 4382 { 4383 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4384 } 4385 4386 /* 4387 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4388 * 4389 * The idea behind IO-wait account is to account the idle time that we could 4390 * have spend running if it were not for IO. That is, if we were to improve the 4391 * storage performance, we'd have a proportional reduction in IO-wait time. 4392 * 4393 * This all works nicely on UP, where, when a task blocks on IO, we account 4394 * idle time as IO-wait, because if the storage were faster, it could've been 4395 * running and we'd not be idle. 4396 * 4397 * This has been extended to SMP, by doing the same for each CPU. This however 4398 * is broken. 4399 * 4400 * Imagine for instance the case where two tasks block on one CPU, only the one 4401 * CPU will have IO-wait accounted, while the other has regular idle. Even 4402 * though, if the storage were faster, both could've ran at the same time, 4403 * utilising both CPUs. 4404 * 4405 * This means, that when looking globally, the current IO-wait accounting on 4406 * SMP is a lower bound, by reason of under accounting. 4407 * 4408 * Worse, since the numbers are provided per CPU, they are sometimes 4409 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4410 * associated with any one particular CPU, it can wake to another CPU than it 4411 * blocked on. This means the per CPU IO-wait number is meaningless. 4412 * 4413 * Task CPU affinities can make all that even more 'interesting'. 4414 */ 4415 4416 unsigned long nr_iowait(void) 4417 { 4418 unsigned long i, sum = 0; 4419 4420 for_each_possible_cpu(i) 4421 sum += nr_iowait_cpu(i); 4422 4423 return sum; 4424 } 4425 4426 #ifdef CONFIG_SMP 4427 4428 /* 4429 * sched_exec - execve() is a valuable balancing opportunity, because at 4430 * this point the task has the smallest effective memory and cache footprint. 4431 */ 4432 void sched_exec(void) 4433 { 4434 struct task_struct *p = current; 4435 unsigned long flags; 4436 int dest_cpu; 4437 4438 raw_spin_lock_irqsave(&p->pi_lock, flags); 4439 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4440 if (dest_cpu == smp_processor_id()) 4441 goto unlock; 4442 4443 if (likely(cpu_active(dest_cpu))) { 4444 struct migration_arg arg = { p, dest_cpu }; 4445 4446 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4447 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4448 return; 4449 } 4450 unlock: 4451 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4452 } 4453 4454 #endif 4455 4456 DEFINE_PER_CPU(struct kernel_stat, kstat); 4457 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4458 4459 EXPORT_PER_CPU_SYMBOL(kstat); 4460 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4461 4462 /* 4463 * The function fair_sched_class.update_curr accesses the struct curr 4464 * and its field curr->exec_start; when called from task_sched_runtime(), 4465 * we observe a high rate of cache misses in practice. 4466 * Prefetching this data results in improved performance. 4467 */ 4468 static inline void prefetch_curr_exec_start(struct task_struct *p) 4469 { 4470 #ifdef CONFIG_FAIR_GROUP_SCHED 4471 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4472 #else 4473 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4474 #endif 4475 prefetch(curr); 4476 prefetch(&curr->exec_start); 4477 } 4478 4479 /* 4480 * Return accounted runtime for the task. 4481 * In case the task is currently running, return the runtime plus current's 4482 * pending runtime that have not been accounted yet. 4483 */ 4484 unsigned long long task_sched_runtime(struct task_struct *p) 4485 { 4486 struct rq_flags rf; 4487 struct rq *rq; 4488 u64 ns; 4489 4490 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4491 /* 4492 * 64-bit doesn't need locks to atomically read a 64-bit value. 4493 * So we have a optimization chance when the task's delta_exec is 0. 4494 * Reading ->on_cpu is racy, but this is ok. 4495 * 4496 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4497 * If we race with it entering CPU, unaccounted time is 0. This is 4498 * indistinguishable from the read occurring a few cycles earlier. 4499 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4500 * been accounted, so we're correct here as well. 4501 */ 4502 if (!p->on_cpu || !task_on_rq_queued(p)) 4503 return p->se.sum_exec_runtime; 4504 #endif 4505 4506 rq = task_rq_lock(p, &rf); 4507 /* 4508 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4509 * project cycles that may never be accounted to this 4510 * thread, breaking clock_gettime(). 4511 */ 4512 if (task_current(rq, p) && task_on_rq_queued(p)) { 4513 prefetch_curr_exec_start(p); 4514 update_rq_clock(rq); 4515 p->sched_class->update_curr(rq); 4516 } 4517 ns = p->se.sum_exec_runtime; 4518 task_rq_unlock(rq, p, &rf); 4519 4520 return ns; 4521 } 4522 4523 /* 4524 * This function gets called by the timer code, with HZ frequency. 4525 * We call it with interrupts disabled. 4526 */ 4527 void scheduler_tick(void) 4528 { 4529 int cpu = smp_processor_id(); 4530 struct rq *rq = cpu_rq(cpu); 4531 struct task_struct *curr = rq->curr; 4532 struct rq_flags rf; 4533 unsigned long thermal_pressure; 4534 4535 arch_scale_freq_tick(); 4536 sched_clock_tick(); 4537 4538 rq_lock(rq, &rf); 4539 4540 update_rq_clock(rq); 4541 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4542 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4543 curr->sched_class->task_tick(rq, curr, 0); 4544 calc_global_load_tick(rq); 4545 psi_task_tick(rq); 4546 4547 rq_unlock(rq, &rf); 4548 4549 perf_event_task_tick(); 4550 4551 #ifdef CONFIG_SMP 4552 rq->idle_balance = idle_cpu(cpu); 4553 trigger_load_balance(rq); 4554 #endif 4555 } 4556 4557 #ifdef CONFIG_NO_HZ_FULL 4558 4559 struct tick_work { 4560 int cpu; 4561 atomic_t state; 4562 struct delayed_work work; 4563 }; 4564 /* Values for ->state, see diagram below. */ 4565 #define TICK_SCHED_REMOTE_OFFLINE 0 4566 #define TICK_SCHED_REMOTE_OFFLINING 1 4567 #define TICK_SCHED_REMOTE_RUNNING 2 4568 4569 /* 4570 * State diagram for ->state: 4571 * 4572 * 4573 * TICK_SCHED_REMOTE_OFFLINE 4574 * | ^ 4575 * | | 4576 * | | sched_tick_remote() 4577 * | | 4578 * | | 4579 * +--TICK_SCHED_REMOTE_OFFLINING 4580 * | ^ 4581 * | | 4582 * sched_tick_start() | | sched_tick_stop() 4583 * | | 4584 * V | 4585 * TICK_SCHED_REMOTE_RUNNING 4586 * 4587 * 4588 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4589 * and sched_tick_start() are happy to leave the state in RUNNING. 4590 */ 4591 4592 static struct tick_work __percpu *tick_work_cpu; 4593 4594 static void sched_tick_remote(struct work_struct *work) 4595 { 4596 struct delayed_work *dwork = to_delayed_work(work); 4597 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4598 int cpu = twork->cpu; 4599 struct rq *rq = cpu_rq(cpu); 4600 struct task_struct *curr; 4601 struct rq_flags rf; 4602 u64 delta; 4603 int os; 4604 4605 /* 4606 * Handle the tick only if it appears the remote CPU is running in full 4607 * dynticks mode. The check is racy by nature, but missing a tick or 4608 * having one too much is no big deal because the scheduler tick updates 4609 * statistics and checks timeslices in a time-independent way, regardless 4610 * of when exactly it is running. 4611 */ 4612 if (!tick_nohz_tick_stopped_cpu(cpu)) 4613 goto out_requeue; 4614 4615 rq_lock_irq(rq, &rf); 4616 curr = rq->curr; 4617 if (cpu_is_offline(cpu)) 4618 goto out_unlock; 4619 4620 update_rq_clock(rq); 4621 4622 if (!is_idle_task(curr)) { 4623 /* 4624 * Make sure the next tick runs within a reasonable 4625 * amount of time. 4626 */ 4627 delta = rq_clock_task(rq) - curr->se.exec_start; 4628 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4629 } 4630 curr->sched_class->task_tick(rq, curr, 0); 4631 4632 calc_load_nohz_remote(rq); 4633 out_unlock: 4634 rq_unlock_irq(rq, &rf); 4635 out_requeue: 4636 4637 /* 4638 * Run the remote tick once per second (1Hz). This arbitrary 4639 * frequency is large enough to avoid overload but short enough 4640 * to keep scheduler internal stats reasonably up to date. But 4641 * first update state to reflect hotplug activity if required. 4642 */ 4643 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4644 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4645 if (os == TICK_SCHED_REMOTE_RUNNING) 4646 queue_delayed_work(system_unbound_wq, dwork, HZ); 4647 } 4648 4649 static void sched_tick_start(int cpu) 4650 { 4651 int os; 4652 struct tick_work *twork; 4653 4654 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4655 return; 4656 4657 WARN_ON_ONCE(!tick_work_cpu); 4658 4659 twork = per_cpu_ptr(tick_work_cpu, cpu); 4660 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4661 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4662 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4663 twork->cpu = cpu; 4664 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4665 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4666 } 4667 } 4668 4669 #ifdef CONFIG_HOTPLUG_CPU 4670 static void sched_tick_stop(int cpu) 4671 { 4672 struct tick_work *twork; 4673 int os; 4674 4675 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4676 return; 4677 4678 WARN_ON_ONCE(!tick_work_cpu); 4679 4680 twork = per_cpu_ptr(tick_work_cpu, cpu); 4681 /* There cannot be competing actions, but don't rely on stop-machine. */ 4682 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4683 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4684 /* Don't cancel, as this would mess up the state machine. */ 4685 } 4686 #endif /* CONFIG_HOTPLUG_CPU */ 4687 4688 int __init sched_tick_offload_init(void) 4689 { 4690 tick_work_cpu = alloc_percpu(struct tick_work); 4691 BUG_ON(!tick_work_cpu); 4692 return 0; 4693 } 4694 4695 #else /* !CONFIG_NO_HZ_FULL */ 4696 static inline void sched_tick_start(int cpu) { } 4697 static inline void sched_tick_stop(int cpu) { } 4698 #endif 4699 4700 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4701 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4702 /* 4703 * If the value passed in is equal to the current preempt count 4704 * then we just disabled preemption. Start timing the latency. 4705 */ 4706 static inline void preempt_latency_start(int val) 4707 { 4708 if (preempt_count() == val) { 4709 unsigned long ip = get_lock_parent_ip(); 4710 #ifdef CONFIG_DEBUG_PREEMPT 4711 current->preempt_disable_ip = ip; 4712 #endif 4713 trace_preempt_off(CALLER_ADDR0, ip); 4714 } 4715 } 4716 4717 void preempt_count_add(int val) 4718 { 4719 #ifdef CONFIG_DEBUG_PREEMPT 4720 /* 4721 * Underflow? 4722 */ 4723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4724 return; 4725 #endif 4726 __preempt_count_add(val); 4727 #ifdef CONFIG_DEBUG_PREEMPT 4728 /* 4729 * Spinlock count overflowing soon? 4730 */ 4731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4732 PREEMPT_MASK - 10); 4733 #endif 4734 preempt_latency_start(val); 4735 } 4736 EXPORT_SYMBOL(preempt_count_add); 4737 NOKPROBE_SYMBOL(preempt_count_add); 4738 4739 /* 4740 * If the value passed in equals to the current preempt count 4741 * then we just enabled preemption. Stop timing the latency. 4742 */ 4743 static inline void preempt_latency_stop(int val) 4744 { 4745 if (preempt_count() == val) 4746 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4747 } 4748 4749 void preempt_count_sub(int val) 4750 { 4751 #ifdef CONFIG_DEBUG_PREEMPT 4752 /* 4753 * Underflow? 4754 */ 4755 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4756 return; 4757 /* 4758 * Is the spinlock portion underflowing? 4759 */ 4760 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4761 !(preempt_count() & PREEMPT_MASK))) 4762 return; 4763 #endif 4764 4765 preempt_latency_stop(val); 4766 __preempt_count_sub(val); 4767 } 4768 EXPORT_SYMBOL(preempt_count_sub); 4769 NOKPROBE_SYMBOL(preempt_count_sub); 4770 4771 #else 4772 static inline void preempt_latency_start(int val) { } 4773 static inline void preempt_latency_stop(int val) { } 4774 #endif 4775 4776 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4777 { 4778 #ifdef CONFIG_DEBUG_PREEMPT 4779 return p->preempt_disable_ip; 4780 #else 4781 return 0; 4782 #endif 4783 } 4784 4785 /* 4786 * Print scheduling while atomic bug: 4787 */ 4788 static noinline void __schedule_bug(struct task_struct *prev) 4789 { 4790 /* Save this before calling printk(), since that will clobber it */ 4791 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4792 4793 if (oops_in_progress) 4794 return; 4795 4796 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4797 prev->comm, prev->pid, preempt_count()); 4798 4799 debug_show_held_locks(prev); 4800 print_modules(); 4801 if (irqs_disabled()) 4802 print_irqtrace_events(prev); 4803 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4804 && in_atomic_preempt_off()) { 4805 pr_err("Preemption disabled at:"); 4806 print_ip_sym(KERN_ERR, preempt_disable_ip); 4807 } 4808 if (panic_on_warn) 4809 panic("scheduling while atomic\n"); 4810 4811 dump_stack(); 4812 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4813 } 4814 4815 /* 4816 * Various schedule()-time debugging checks and statistics: 4817 */ 4818 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4819 { 4820 #ifdef CONFIG_SCHED_STACK_END_CHECK 4821 if (task_stack_end_corrupted(prev)) 4822 panic("corrupted stack end detected inside scheduler\n"); 4823 4824 if (task_scs_end_corrupted(prev)) 4825 panic("corrupted shadow stack detected inside scheduler\n"); 4826 #endif 4827 4828 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4829 if (!preempt && prev->state && prev->non_block_count) { 4830 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4831 prev->comm, prev->pid, prev->non_block_count); 4832 dump_stack(); 4833 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4834 } 4835 #endif 4836 4837 if (unlikely(in_atomic_preempt_off())) { 4838 __schedule_bug(prev); 4839 preempt_count_set(PREEMPT_DISABLED); 4840 } 4841 rcu_sleep_check(); 4842 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4843 4844 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4845 4846 schedstat_inc(this_rq()->sched_count); 4847 } 4848 4849 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4850 struct rq_flags *rf) 4851 { 4852 #ifdef CONFIG_SMP 4853 const struct sched_class *class; 4854 /* 4855 * We must do the balancing pass before put_prev_task(), such 4856 * that when we release the rq->lock the task is in the same 4857 * state as before we took rq->lock. 4858 * 4859 * We can terminate the balance pass as soon as we know there is 4860 * a runnable task of @class priority or higher. 4861 */ 4862 for_class_range(class, prev->sched_class, &idle_sched_class) { 4863 if (class->balance(rq, prev, rf)) 4864 break; 4865 } 4866 #endif 4867 4868 put_prev_task(rq, prev); 4869 } 4870 4871 /* 4872 * Pick up the highest-prio task: 4873 */ 4874 static inline struct task_struct * 4875 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4876 { 4877 const struct sched_class *class; 4878 struct task_struct *p; 4879 4880 /* 4881 * Optimization: we know that if all tasks are in the fair class we can 4882 * call that function directly, but only if the @prev task wasn't of a 4883 * higher scheduling class, because otherwise those lose the 4884 * opportunity to pull in more work from other CPUs. 4885 */ 4886 if (likely(prev->sched_class <= &fair_sched_class && 4887 rq->nr_running == rq->cfs.h_nr_running)) { 4888 4889 p = pick_next_task_fair(rq, prev, rf); 4890 if (unlikely(p == RETRY_TASK)) 4891 goto restart; 4892 4893 /* Assumes fair_sched_class->next == idle_sched_class */ 4894 if (!p) { 4895 put_prev_task(rq, prev); 4896 p = pick_next_task_idle(rq); 4897 } 4898 4899 return p; 4900 } 4901 4902 restart: 4903 put_prev_task_balance(rq, prev, rf); 4904 4905 for_each_class(class) { 4906 p = class->pick_next_task(rq); 4907 if (p) 4908 return p; 4909 } 4910 4911 /* The idle class should always have a runnable task: */ 4912 BUG(); 4913 } 4914 4915 /* 4916 * __schedule() is the main scheduler function. 4917 * 4918 * The main means of driving the scheduler and thus entering this function are: 4919 * 4920 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4921 * 4922 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4923 * paths. For example, see arch/x86/entry_64.S. 4924 * 4925 * To drive preemption between tasks, the scheduler sets the flag in timer 4926 * interrupt handler scheduler_tick(). 4927 * 4928 * 3. Wakeups don't really cause entry into schedule(). They add a 4929 * task to the run-queue and that's it. 4930 * 4931 * Now, if the new task added to the run-queue preempts the current 4932 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4933 * called on the nearest possible occasion: 4934 * 4935 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4936 * 4937 * - in syscall or exception context, at the next outmost 4938 * preempt_enable(). (this might be as soon as the wake_up()'s 4939 * spin_unlock()!) 4940 * 4941 * - in IRQ context, return from interrupt-handler to 4942 * preemptible context 4943 * 4944 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4945 * then at the next: 4946 * 4947 * - cond_resched() call 4948 * - explicit schedule() call 4949 * - return from syscall or exception to user-space 4950 * - return from interrupt-handler to user-space 4951 * 4952 * WARNING: must be called with preemption disabled! 4953 */ 4954 static void __sched notrace __schedule(bool preempt) 4955 { 4956 struct task_struct *prev, *next; 4957 unsigned long *switch_count; 4958 unsigned long prev_state; 4959 struct rq_flags rf; 4960 struct rq *rq; 4961 int cpu; 4962 4963 cpu = smp_processor_id(); 4964 rq = cpu_rq(cpu); 4965 prev = rq->curr; 4966 4967 schedule_debug(prev, preempt); 4968 4969 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 4970 hrtick_clear(rq); 4971 4972 local_irq_disable(); 4973 rcu_note_context_switch(preempt); 4974 4975 /* 4976 * Make sure that signal_pending_state()->signal_pending() below 4977 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4978 * done by the caller to avoid the race with signal_wake_up(): 4979 * 4980 * __set_current_state(@state) signal_wake_up() 4981 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4982 * wake_up_state(p, state) 4983 * LOCK rq->lock LOCK p->pi_state 4984 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4985 * if (signal_pending_state()) if (p->state & @state) 4986 * 4987 * Also, the membarrier system call requires a full memory barrier 4988 * after coming from user-space, before storing to rq->curr. 4989 */ 4990 rq_lock(rq, &rf); 4991 smp_mb__after_spinlock(); 4992 4993 /* Promote REQ to ACT */ 4994 rq->clock_update_flags <<= 1; 4995 update_rq_clock(rq); 4996 4997 switch_count = &prev->nivcsw; 4998 4999 /* 5000 * We must load prev->state once (task_struct::state is volatile), such 5001 * that: 5002 * 5003 * - we form a control dependency vs deactivate_task() below. 5004 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 5005 */ 5006 prev_state = prev->state; 5007 if (!preempt && prev_state) { 5008 if (signal_pending_state(prev_state, prev)) { 5009 prev->state = TASK_RUNNING; 5010 } else { 5011 prev->sched_contributes_to_load = 5012 (prev_state & TASK_UNINTERRUPTIBLE) && 5013 !(prev_state & TASK_NOLOAD) && 5014 !(prev->flags & PF_FROZEN); 5015 5016 if (prev->sched_contributes_to_load) 5017 rq->nr_uninterruptible++; 5018 5019 /* 5020 * __schedule() ttwu() 5021 * prev_state = prev->state; if (p->on_rq && ...) 5022 * if (prev_state) goto out; 5023 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5024 * p->state = TASK_WAKING 5025 * 5026 * Where __schedule() and ttwu() have matching control dependencies. 5027 * 5028 * After this, schedule() must not care about p->state any more. 5029 */ 5030 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5031 5032 if (prev->in_iowait) { 5033 atomic_inc(&rq->nr_iowait); 5034 delayacct_blkio_start(); 5035 } 5036 } 5037 switch_count = &prev->nvcsw; 5038 } 5039 5040 next = pick_next_task(rq, prev, &rf); 5041 clear_tsk_need_resched(prev); 5042 clear_preempt_need_resched(); 5043 5044 if (likely(prev != next)) { 5045 rq->nr_switches++; 5046 /* 5047 * RCU users of rcu_dereference(rq->curr) may not see 5048 * changes to task_struct made by pick_next_task(). 5049 */ 5050 RCU_INIT_POINTER(rq->curr, next); 5051 /* 5052 * The membarrier system call requires each architecture 5053 * to have a full memory barrier after updating 5054 * rq->curr, before returning to user-space. 5055 * 5056 * Here are the schemes providing that barrier on the 5057 * various architectures: 5058 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5059 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5060 * - finish_lock_switch() for weakly-ordered 5061 * architectures where spin_unlock is a full barrier, 5062 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5063 * is a RELEASE barrier), 5064 */ 5065 ++*switch_count; 5066 5067 migrate_disable_switch(rq, prev); 5068 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5069 5070 trace_sched_switch(preempt, prev, next); 5071 5072 /* Also unlocks the rq: */ 5073 rq = context_switch(rq, prev, next, &rf); 5074 } else { 5075 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5076 5077 rq_unpin_lock(rq, &rf); 5078 __balance_callbacks(rq); 5079 raw_spin_unlock_irq(&rq->lock); 5080 } 5081 } 5082 5083 void __noreturn do_task_dead(void) 5084 { 5085 /* Causes final put_task_struct in finish_task_switch(): */ 5086 set_special_state(TASK_DEAD); 5087 5088 /* Tell freezer to ignore us: */ 5089 current->flags |= PF_NOFREEZE; 5090 5091 __schedule(false); 5092 BUG(); 5093 5094 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5095 for (;;) 5096 cpu_relax(); 5097 } 5098 5099 static inline void sched_submit_work(struct task_struct *tsk) 5100 { 5101 unsigned int task_flags; 5102 5103 if (!tsk->state) 5104 return; 5105 5106 task_flags = tsk->flags; 5107 /* 5108 * If a worker went to sleep, notify and ask workqueue whether 5109 * it wants to wake up a task to maintain concurrency. 5110 * As this function is called inside the schedule() context, 5111 * we disable preemption to avoid it calling schedule() again 5112 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5113 * requires it. 5114 */ 5115 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5116 preempt_disable(); 5117 if (task_flags & PF_WQ_WORKER) 5118 wq_worker_sleeping(tsk); 5119 else 5120 io_wq_worker_sleeping(tsk); 5121 preempt_enable_no_resched(); 5122 } 5123 5124 if (tsk_is_pi_blocked(tsk)) 5125 return; 5126 5127 /* 5128 * If we are going to sleep and we have plugged IO queued, 5129 * make sure to submit it to avoid deadlocks. 5130 */ 5131 if (blk_needs_flush_plug(tsk)) 5132 blk_schedule_flush_plug(tsk); 5133 } 5134 5135 static void sched_update_worker(struct task_struct *tsk) 5136 { 5137 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5138 if (tsk->flags & PF_WQ_WORKER) 5139 wq_worker_running(tsk); 5140 else 5141 io_wq_worker_running(tsk); 5142 } 5143 } 5144 5145 asmlinkage __visible void __sched schedule(void) 5146 { 5147 struct task_struct *tsk = current; 5148 5149 sched_submit_work(tsk); 5150 do { 5151 preempt_disable(); 5152 __schedule(false); 5153 sched_preempt_enable_no_resched(); 5154 } while (need_resched()); 5155 sched_update_worker(tsk); 5156 } 5157 EXPORT_SYMBOL(schedule); 5158 5159 /* 5160 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5161 * state (have scheduled out non-voluntarily) by making sure that all 5162 * tasks have either left the run queue or have gone into user space. 5163 * As idle tasks do not do either, they must not ever be preempted 5164 * (schedule out non-voluntarily). 5165 * 5166 * schedule_idle() is similar to schedule_preempt_disable() except that it 5167 * never enables preemption because it does not call sched_submit_work(). 5168 */ 5169 void __sched schedule_idle(void) 5170 { 5171 /* 5172 * As this skips calling sched_submit_work(), which the idle task does 5173 * regardless because that function is a nop when the task is in a 5174 * TASK_RUNNING state, make sure this isn't used someplace that the 5175 * current task can be in any other state. Note, idle is always in the 5176 * TASK_RUNNING state. 5177 */ 5178 WARN_ON_ONCE(current->state); 5179 do { 5180 __schedule(false); 5181 } while (need_resched()); 5182 } 5183 5184 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5185 asmlinkage __visible void __sched schedule_user(void) 5186 { 5187 /* 5188 * If we come here after a random call to set_need_resched(), 5189 * or we have been woken up remotely but the IPI has not yet arrived, 5190 * we haven't yet exited the RCU idle mode. Do it here manually until 5191 * we find a better solution. 5192 * 5193 * NB: There are buggy callers of this function. Ideally we 5194 * should warn if prev_state != CONTEXT_USER, but that will trigger 5195 * too frequently to make sense yet. 5196 */ 5197 enum ctx_state prev_state = exception_enter(); 5198 schedule(); 5199 exception_exit(prev_state); 5200 } 5201 #endif 5202 5203 /** 5204 * schedule_preempt_disabled - called with preemption disabled 5205 * 5206 * Returns with preemption disabled. Note: preempt_count must be 1 5207 */ 5208 void __sched schedule_preempt_disabled(void) 5209 { 5210 sched_preempt_enable_no_resched(); 5211 schedule(); 5212 preempt_disable(); 5213 } 5214 5215 static void __sched notrace preempt_schedule_common(void) 5216 { 5217 do { 5218 /* 5219 * Because the function tracer can trace preempt_count_sub() 5220 * and it also uses preempt_enable/disable_notrace(), if 5221 * NEED_RESCHED is set, the preempt_enable_notrace() called 5222 * by the function tracer will call this function again and 5223 * cause infinite recursion. 5224 * 5225 * Preemption must be disabled here before the function 5226 * tracer can trace. Break up preempt_disable() into two 5227 * calls. One to disable preemption without fear of being 5228 * traced. The other to still record the preemption latency, 5229 * which can also be traced by the function tracer. 5230 */ 5231 preempt_disable_notrace(); 5232 preempt_latency_start(1); 5233 __schedule(true); 5234 preempt_latency_stop(1); 5235 preempt_enable_no_resched_notrace(); 5236 5237 /* 5238 * Check again in case we missed a preemption opportunity 5239 * between schedule and now. 5240 */ 5241 } while (need_resched()); 5242 } 5243 5244 #ifdef CONFIG_PREEMPTION 5245 /* 5246 * This is the entry point to schedule() from in-kernel preemption 5247 * off of preempt_enable. 5248 */ 5249 asmlinkage __visible void __sched notrace preempt_schedule(void) 5250 { 5251 /* 5252 * If there is a non-zero preempt_count or interrupts are disabled, 5253 * we do not want to preempt the current task. Just return.. 5254 */ 5255 if (likely(!preemptible())) 5256 return; 5257 5258 preempt_schedule_common(); 5259 } 5260 NOKPROBE_SYMBOL(preempt_schedule); 5261 EXPORT_SYMBOL(preempt_schedule); 5262 5263 #ifdef CONFIG_PREEMPT_DYNAMIC 5264 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 5265 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 5266 #endif 5267 5268 5269 /** 5270 * preempt_schedule_notrace - preempt_schedule called by tracing 5271 * 5272 * The tracing infrastructure uses preempt_enable_notrace to prevent 5273 * recursion and tracing preempt enabling caused by the tracing 5274 * infrastructure itself. But as tracing can happen in areas coming 5275 * from userspace or just about to enter userspace, a preempt enable 5276 * can occur before user_exit() is called. This will cause the scheduler 5277 * to be called when the system is still in usermode. 5278 * 5279 * To prevent this, the preempt_enable_notrace will use this function 5280 * instead of preempt_schedule() to exit user context if needed before 5281 * calling the scheduler. 5282 */ 5283 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5284 { 5285 enum ctx_state prev_ctx; 5286 5287 if (likely(!preemptible())) 5288 return; 5289 5290 do { 5291 /* 5292 * Because the function tracer can trace preempt_count_sub() 5293 * and it also uses preempt_enable/disable_notrace(), if 5294 * NEED_RESCHED is set, the preempt_enable_notrace() called 5295 * by the function tracer will call this function again and 5296 * cause infinite recursion. 5297 * 5298 * Preemption must be disabled here before the function 5299 * tracer can trace. Break up preempt_disable() into two 5300 * calls. One to disable preemption without fear of being 5301 * traced. The other to still record the preemption latency, 5302 * which can also be traced by the function tracer. 5303 */ 5304 preempt_disable_notrace(); 5305 preempt_latency_start(1); 5306 /* 5307 * Needs preempt disabled in case user_exit() is traced 5308 * and the tracer calls preempt_enable_notrace() causing 5309 * an infinite recursion. 5310 */ 5311 prev_ctx = exception_enter(); 5312 __schedule(true); 5313 exception_exit(prev_ctx); 5314 5315 preempt_latency_stop(1); 5316 preempt_enable_no_resched_notrace(); 5317 } while (need_resched()); 5318 } 5319 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5320 5321 #ifdef CONFIG_PREEMPT_DYNAMIC 5322 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5323 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 5324 #endif 5325 5326 #endif /* CONFIG_PREEMPTION */ 5327 5328 #ifdef CONFIG_PREEMPT_DYNAMIC 5329 5330 #include <linux/entry-common.h> 5331 5332 /* 5333 * SC:cond_resched 5334 * SC:might_resched 5335 * SC:preempt_schedule 5336 * SC:preempt_schedule_notrace 5337 * SC:irqentry_exit_cond_resched 5338 * 5339 * 5340 * NONE: 5341 * cond_resched <- __cond_resched 5342 * might_resched <- RET0 5343 * preempt_schedule <- NOP 5344 * preempt_schedule_notrace <- NOP 5345 * irqentry_exit_cond_resched <- NOP 5346 * 5347 * VOLUNTARY: 5348 * cond_resched <- __cond_resched 5349 * might_resched <- __cond_resched 5350 * preempt_schedule <- NOP 5351 * preempt_schedule_notrace <- NOP 5352 * irqentry_exit_cond_resched <- NOP 5353 * 5354 * FULL: 5355 * cond_resched <- RET0 5356 * might_resched <- RET0 5357 * preempt_schedule <- preempt_schedule 5358 * preempt_schedule_notrace <- preempt_schedule_notrace 5359 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 5360 */ 5361 5362 enum { 5363 preempt_dynamic_none = 0, 5364 preempt_dynamic_voluntary, 5365 preempt_dynamic_full, 5366 }; 5367 5368 static int preempt_dynamic_mode = preempt_dynamic_full; 5369 5370 static int sched_dynamic_mode(const char *str) 5371 { 5372 if (!strcmp(str, "none")) 5373 return 0; 5374 5375 if (!strcmp(str, "voluntary")) 5376 return 1; 5377 5378 if (!strcmp(str, "full")) 5379 return 2; 5380 5381 return -1; 5382 } 5383 5384 static void sched_dynamic_update(int mode) 5385 { 5386 /* 5387 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 5388 * the ZERO state, which is invalid. 5389 */ 5390 static_call_update(cond_resched, __cond_resched); 5391 static_call_update(might_resched, __cond_resched); 5392 static_call_update(preempt_schedule, __preempt_schedule_func); 5393 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5394 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5395 5396 switch (mode) { 5397 case preempt_dynamic_none: 5398 static_call_update(cond_resched, __cond_resched); 5399 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5400 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5401 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5402 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5403 pr_info("Dynamic Preempt: none\n"); 5404 break; 5405 5406 case preempt_dynamic_voluntary: 5407 static_call_update(cond_resched, __cond_resched); 5408 static_call_update(might_resched, __cond_resched); 5409 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL); 5410 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL); 5411 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL); 5412 pr_info("Dynamic Preempt: voluntary\n"); 5413 break; 5414 5415 case preempt_dynamic_full: 5416 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0); 5417 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0); 5418 static_call_update(preempt_schedule, __preempt_schedule_func); 5419 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 5420 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 5421 pr_info("Dynamic Preempt: full\n"); 5422 break; 5423 } 5424 5425 preempt_dynamic_mode = mode; 5426 } 5427 5428 static int __init setup_preempt_mode(char *str) 5429 { 5430 int mode = sched_dynamic_mode(str); 5431 if (mode < 0) { 5432 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 5433 return 1; 5434 } 5435 5436 sched_dynamic_update(mode); 5437 return 0; 5438 } 5439 __setup("preempt=", setup_preempt_mode); 5440 5441 #ifdef CONFIG_SCHED_DEBUG 5442 5443 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 5444 size_t cnt, loff_t *ppos) 5445 { 5446 char buf[16]; 5447 int mode; 5448 5449 if (cnt > 15) 5450 cnt = 15; 5451 5452 if (copy_from_user(&buf, ubuf, cnt)) 5453 return -EFAULT; 5454 5455 buf[cnt] = 0; 5456 mode = sched_dynamic_mode(strstrip(buf)); 5457 if (mode < 0) 5458 return mode; 5459 5460 sched_dynamic_update(mode); 5461 5462 *ppos += cnt; 5463 5464 return cnt; 5465 } 5466 5467 static int sched_dynamic_show(struct seq_file *m, void *v) 5468 { 5469 static const char * preempt_modes[] = { 5470 "none", "voluntary", "full" 5471 }; 5472 int i; 5473 5474 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 5475 if (preempt_dynamic_mode == i) 5476 seq_puts(m, "("); 5477 seq_puts(m, preempt_modes[i]); 5478 if (preempt_dynamic_mode == i) 5479 seq_puts(m, ")"); 5480 5481 seq_puts(m, " "); 5482 } 5483 5484 seq_puts(m, "\n"); 5485 return 0; 5486 } 5487 5488 static int sched_dynamic_open(struct inode *inode, struct file *filp) 5489 { 5490 return single_open(filp, sched_dynamic_show, NULL); 5491 } 5492 5493 static const struct file_operations sched_dynamic_fops = { 5494 .open = sched_dynamic_open, 5495 .write = sched_dynamic_write, 5496 .read = seq_read, 5497 .llseek = seq_lseek, 5498 .release = single_release, 5499 }; 5500 5501 static __init int sched_init_debug_dynamic(void) 5502 { 5503 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops); 5504 return 0; 5505 } 5506 late_initcall(sched_init_debug_dynamic); 5507 5508 #endif /* CONFIG_SCHED_DEBUG */ 5509 #endif /* CONFIG_PREEMPT_DYNAMIC */ 5510 5511 5512 /* 5513 * This is the entry point to schedule() from kernel preemption 5514 * off of irq context. 5515 * Note, that this is called and return with irqs disabled. This will 5516 * protect us against recursive calling from irq. 5517 */ 5518 asmlinkage __visible void __sched preempt_schedule_irq(void) 5519 { 5520 enum ctx_state prev_state; 5521 5522 /* Catch callers which need to be fixed */ 5523 BUG_ON(preempt_count() || !irqs_disabled()); 5524 5525 prev_state = exception_enter(); 5526 5527 do { 5528 preempt_disable(); 5529 local_irq_enable(); 5530 __schedule(true); 5531 local_irq_disable(); 5532 sched_preempt_enable_no_resched(); 5533 } while (need_resched()); 5534 5535 exception_exit(prev_state); 5536 } 5537 5538 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5539 void *key) 5540 { 5541 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5542 return try_to_wake_up(curr->private, mode, wake_flags); 5543 } 5544 EXPORT_SYMBOL(default_wake_function); 5545 5546 #ifdef CONFIG_RT_MUTEXES 5547 5548 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5549 { 5550 if (pi_task) 5551 prio = min(prio, pi_task->prio); 5552 5553 return prio; 5554 } 5555 5556 static inline int rt_effective_prio(struct task_struct *p, int prio) 5557 { 5558 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5559 5560 return __rt_effective_prio(pi_task, prio); 5561 } 5562 5563 /* 5564 * rt_mutex_setprio - set the current priority of a task 5565 * @p: task to boost 5566 * @pi_task: donor task 5567 * 5568 * This function changes the 'effective' priority of a task. It does 5569 * not touch ->normal_prio like __setscheduler(). 5570 * 5571 * Used by the rt_mutex code to implement priority inheritance 5572 * logic. Call site only calls if the priority of the task changed. 5573 */ 5574 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5575 { 5576 int prio, oldprio, queued, running, queue_flag = 5577 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5578 const struct sched_class *prev_class; 5579 struct rq_flags rf; 5580 struct rq *rq; 5581 5582 /* XXX used to be waiter->prio, not waiter->task->prio */ 5583 prio = __rt_effective_prio(pi_task, p->normal_prio); 5584 5585 /* 5586 * If nothing changed; bail early. 5587 */ 5588 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5589 return; 5590 5591 rq = __task_rq_lock(p, &rf); 5592 update_rq_clock(rq); 5593 /* 5594 * Set under pi_lock && rq->lock, such that the value can be used under 5595 * either lock. 5596 * 5597 * Note that there is loads of tricky to make this pointer cache work 5598 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5599 * ensure a task is de-boosted (pi_task is set to NULL) before the 5600 * task is allowed to run again (and can exit). This ensures the pointer 5601 * points to a blocked task -- which guarantees the task is present. 5602 */ 5603 p->pi_top_task = pi_task; 5604 5605 /* 5606 * For FIFO/RR we only need to set prio, if that matches we're done. 5607 */ 5608 if (prio == p->prio && !dl_prio(prio)) 5609 goto out_unlock; 5610 5611 /* 5612 * Idle task boosting is a nono in general. There is one 5613 * exception, when PREEMPT_RT and NOHZ is active: 5614 * 5615 * The idle task calls get_next_timer_interrupt() and holds 5616 * the timer wheel base->lock on the CPU and another CPU wants 5617 * to access the timer (probably to cancel it). We can safely 5618 * ignore the boosting request, as the idle CPU runs this code 5619 * with interrupts disabled and will complete the lock 5620 * protected section without being interrupted. So there is no 5621 * real need to boost. 5622 */ 5623 if (unlikely(p == rq->idle)) { 5624 WARN_ON(p != rq->curr); 5625 WARN_ON(p->pi_blocked_on); 5626 goto out_unlock; 5627 } 5628 5629 trace_sched_pi_setprio(p, pi_task); 5630 oldprio = p->prio; 5631 5632 if (oldprio == prio) 5633 queue_flag &= ~DEQUEUE_MOVE; 5634 5635 prev_class = p->sched_class; 5636 queued = task_on_rq_queued(p); 5637 running = task_current(rq, p); 5638 if (queued) 5639 dequeue_task(rq, p, queue_flag); 5640 if (running) 5641 put_prev_task(rq, p); 5642 5643 /* 5644 * Boosting condition are: 5645 * 1. -rt task is running and holds mutex A 5646 * --> -dl task blocks on mutex A 5647 * 5648 * 2. -dl task is running and holds mutex A 5649 * --> -dl task blocks on mutex A and could preempt the 5650 * running task 5651 */ 5652 if (dl_prio(prio)) { 5653 if (!dl_prio(p->normal_prio) || 5654 (pi_task && dl_prio(pi_task->prio) && 5655 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5656 p->dl.pi_se = pi_task->dl.pi_se; 5657 queue_flag |= ENQUEUE_REPLENISH; 5658 } else { 5659 p->dl.pi_se = &p->dl; 5660 } 5661 p->sched_class = &dl_sched_class; 5662 } else if (rt_prio(prio)) { 5663 if (dl_prio(oldprio)) 5664 p->dl.pi_se = &p->dl; 5665 if (oldprio < prio) 5666 queue_flag |= ENQUEUE_HEAD; 5667 p->sched_class = &rt_sched_class; 5668 } else { 5669 if (dl_prio(oldprio)) 5670 p->dl.pi_se = &p->dl; 5671 if (rt_prio(oldprio)) 5672 p->rt.timeout = 0; 5673 p->sched_class = &fair_sched_class; 5674 } 5675 5676 p->prio = prio; 5677 5678 if (queued) 5679 enqueue_task(rq, p, queue_flag); 5680 if (running) 5681 set_next_task(rq, p); 5682 5683 check_class_changed(rq, p, prev_class, oldprio); 5684 out_unlock: 5685 /* Avoid rq from going away on us: */ 5686 preempt_disable(); 5687 5688 rq_unpin_lock(rq, &rf); 5689 __balance_callbacks(rq); 5690 raw_spin_unlock(&rq->lock); 5691 5692 preempt_enable(); 5693 } 5694 #else 5695 static inline int rt_effective_prio(struct task_struct *p, int prio) 5696 { 5697 return prio; 5698 } 5699 #endif 5700 5701 void set_user_nice(struct task_struct *p, long nice) 5702 { 5703 bool queued, running; 5704 int old_prio; 5705 struct rq_flags rf; 5706 struct rq *rq; 5707 5708 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5709 return; 5710 /* 5711 * We have to be careful, if called from sys_setpriority(), 5712 * the task might be in the middle of scheduling on another CPU. 5713 */ 5714 rq = task_rq_lock(p, &rf); 5715 update_rq_clock(rq); 5716 5717 /* 5718 * The RT priorities are set via sched_setscheduler(), but we still 5719 * allow the 'normal' nice value to be set - but as expected 5720 * it won't have any effect on scheduling until the task is 5721 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5722 */ 5723 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5724 p->static_prio = NICE_TO_PRIO(nice); 5725 goto out_unlock; 5726 } 5727 queued = task_on_rq_queued(p); 5728 running = task_current(rq, p); 5729 if (queued) 5730 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5731 if (running) 5732 put_prev_task(rq, p); 5733 5734 p->static_prio = NICE_TO_PRIO(nice); 5735 set_load_weight(p, true); 5736 old_prio = p->prio; 5737 p->prio = effective_prio(p); 5738 5739 if (queued) 5740 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5741 if (running) 5742 set_next_task(rq, p); 5743 5744 /* 5745 * If the task increased its priority or is running and 5746 * lowered its priority, then reschedule its CPU: 5747 */ 5748 p->sched_class->prio_changed(rq, p, old_prio); 5749 5750 out_unlock: 5751 task_rq_unlock(rq, p, &rf); 5752 } 5753 EXPORT_SYMBOL(set_user_nice); 5754 5755 /* 5756 * can_nice - check if a task can reduce its nice value 5757 * @p: task 5758 * @nice: nice value 5759 */ 5760 int can_nice(const struct task_struct *p, const int nice) 5761 { 5762 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5763 int nice_rlim = nice_to_rlimit(nice); 5764 5765 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5766 capable(CAP_SYS_NICE)); 5767 } 5768 5769 #ifdef __ARCH_WANT_SYS_NICE 5770 5771 /* 5772 * sys_nice - change the priority of the current process. 5773 * @increment: priority increment 5774 * 5775 * sys_setpriority is a more generic, but much slower function that 5776 * does similar things. 5777 */ 5778 SYSCALL_DEFINE1(nice, int, increment) 5779 { 5780 long nice, retval; 5781 5782 /* 5783 * Setpriority might change our priority at the same moment. 5784 * We don't have to worry. Conceptually one call occurs first 5785 * and we have a single winner. 5786 */ 5787 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5788 nice = task_nice(current) + increment; 5789 5790 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5791 if (increment < 0 && !can_nice(current, nice)) 5792 return -EPERM; 5793 5794 retval = security_task_setnice(current, nice); 5795 if (retval) 5796 return retval; 5797 5798 set_user_nice(current, nice); 5799 return 0; 5800 } 5801 5802 #endif 5803 5804 /** 5805 * task_prio - return the priority value of a given task. 5806 * @p: the task in question. 5807 * 5808 * Return: The priority value as seen by users in /proc. 5809 * 5810 * sched policy return value kernel prio user prio/nice 5811 * 5812 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 5813 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 5814 * deadline -101 -1 0 5815 */ 5816 int task_prio(const struct task_struct *p) 5817 { 5818 return p->prio - MAX_RT_PRIO; 5819 } 5820 5821 /** 5822 * idle_cpu - is a given CPU idle currently? 5823 * @cpu: the processor in question. 5824 * 5825 * Return: 1 if the CPU is currently idle. 0 otherwise. 5826 */ 5827 int idle_cpu(int cpu) 5828 { 5829 struct rq *rq = cpu_rq(cpu); 5830 5831 if (rq->curr != rq->idle) 5832 return 0; 5833 5834 if (rq->nr_running) 5835 return 0; 5836 5837 #ifdef CONFIG_SMP 5838 if (rq->ttwu_pending) 5839 return 0; 5840 #endif 5841 5842 return 1; 5843 } 5844 5845 /** 5846 * available_idle_cpu - is a given CPU idle for enqueuing work. 5847 * @cpu: the CPU in question. 5848 * 5849 * Return: 1 if the CPU is currently idle. 0 otherwise. 5850 */ 5851 int available_idle_cpu(int cpu) 5852 { 5853 if (!idle_cpu(cpu)) 5854 return 0; 5855 5856 if (vcpu_is_preempted(cpu)) 5857 return 0; 5858 5859 return 1; 5860 } 5861 5862 /** 5863 * idle_task - return the idle task for a given CPU. 5864 * @cpu: the processor in question. 5865 * 5866 * Return: The idle task for the CPU @cpu. 5867 */ 5868 struct task_struct *idle_task(int cpu) 5869 { 5870 return cpu_rq(cpu)->idle; 5871 } 5872 5873 #ifdef CONFIG_SMP 5874 /* 5875 * This function computes an effective utilization for the given CPU, to be 5876 * used for frequency selection given the linear relation: f = u * f_max. 5877 * 5878 * The scheduler tracks the following metrics: 5879 * 5880 * cpu_util_{cfs,rt,dl,irq}() 5881 * cpu_bw_dl() 5882 * 5883 * Where the cfs,rt and dl util numbers are tracked with the same metric and 5884 * synchronized windows and are thus directly comparable. 5885 * 5886 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 5887 * which excludes things like IRQ and steal-time. These latter are then accrued 5888 * in the irq utilization. 5889 * 5890 * The DL bandwidth number otoh is not a measured metric but a value computed 5891 * based on the task model parameters and gives the minimal utilization 5892 * required to meet deadlines. 5893 */ 5894 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 5895 unsigned long max, enum cpu_util_type type, 5896 struct task_struct *p) 5897 { 5898 unsigned long dl_util, util, irq; 5899 struct rq *rq = cpu_rq(cpu); 5900 5901 if (!uclamp_is_used() && 5902 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 5903 return max; 5904 } 5905 5906 /* 5907 * Early check to see if IRQ/steal time saturates the CPU, can be 5908 * because of inaccuracies in how we track these -- see 5909 * update_irq_load_avg(). 5910 */ 5911 irq = cpu_util_irq(rq); 5912 if (unlikely(irq >= max)) 5913 return max; 5914 5915 /* 5916 * Because the time spend on RT/DL tasks is visible as 'lost' time to 5917 * CFS tasks and we use the same metric to track the effective 5918 * utilization (PELT windows are synchronized) we can directly add them 5919 * to obtain the CPU's actual utilization. 5920 * 5921 * CFS and RT utilization can be boosted or capped, depending on 5922 * utilization clamp constraints requested by currently RUNNABLE 5923 * tasks. 5924 * When there are no CFS RUNNABLE tasks, clamps are released and 5925 * frequency will be gracefully reduced with the utilization decay. 5926 */ 5927 util = util_cfs + cpu_util_rt(rq); 5928 if (type == FREQUENCY_UTIL) 5929 util = uclamp_rq_util_with(rq, util, p); 5930 5931 dl_util = cpu_util_dl(rq); 5932 5933 /* 5934 * For frequency selection we do not make cpu_util_dl() a permanent part 5935 * of this sum because we want to use cpu_bw_dl() later on, but we need 5936 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 5937 * that we select f_max when there is no idle time. 5938 * 5939 * NOTE: numerical errors or stop class might cause us to not quite hit 5940 * saturation when we should -- something for later. 5941 */ 5942 if (util + dl_util >= max) 5943 return max; 5944 5945 /* 5946 * OTOH, for energy computation we need the estimated running time, so 5947 * include util_dl and ignore dl_bw. 5948 */ 5949 if (type == ENERGY_UTIL) 5950 util += dl_util; 5951 5952 /* 5953 * There is still idle time; further improve the number by using the 5954 * irq metric. Because IRQ/steal time is hidden from the task clock we 5955 * need to scale the task numbers: 5956 * 5957 * max - irq 5958 * U' = irq + --------- * U 5959 * max 5960 */ 5961 util = scale_irq_capacity(util, irq, max); 5962 util += irq; 5963 5964 /* 5965 * Bandwidth required by DEADLINE must always be granted while, for 5966 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 5967 * to gracefully reduce the frequency when no tasks show up for longer 5968 * periods of time. 5969 * 5970 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 5971 * bw_dl as requested freq. However, cpufreq is not yet ready for such 5972 * an interface. So, we only do the latter for now. 5973 */ 5974 if (type == FREQUENCY_UTIL) 5975 util += cpu_bw_dl(rq); 5976 5977 return min(max, util); 5978 } 5979 5980 unsigned long sched_cpu_util(int cpu, unsigned long max) 5981 { 5982 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 5983 ENERGY_UTIL, NULL); 5984 } 5985 #endif /* CONFIG_SMP */ 5986 5987 /** 5988 * find_process_by_pid - find a process with a matching PID value. 5989 * @pid: the pid in question. 5990 * 5991 * The task of @pid, if found. %NULL otherwise. 5992 */ 5993 static struct task_struct *find_process_by_pid(pid_t pid) 5994 { 5995 return pid ? find_task_by_vpid(pid) : current; 5996 } 5997 5998 /* 5999 * sched_setparam() passes in -1 for its policy, to let the functions 6000 * it calls know not to change it. 6001 */ 6002 #define SETPARAM_POLICY -1 6003 6004 static void __setscheduler_params(struct task_struct *p, 6005 const struct sched_attr *attr) 6006 { 6007 int policy = attr->sched_policy; 6008 6009 if (policy == SETPARAM_POLICY) 6010 policy = p->policy; 6011 6012 p->policy = policy; 6013 6014 if (dl_policy(policy)) 6015 __setparam_dl(p, attr); 6016 else if (fair_policy(policy)) 6017 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6018 6019 /* 6020 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6021 * !rt_policy. Always setting this ensures that things like 6022 * getparam()/getattr() don't report silly values for !rt tasks. 6023 */ 6024 p->rt_priority = attr->sched_priority; 6025 p->normal_prio = normal_prio(p); 6026 set_load_weight(p, true); 6027 } 6028 6029 /* Actually do priority change: must hold pi & rq lock. */ 6030 static void __setscheduler(struct rq *rq, struct task_struct *p, 6031 const struct sched_attr *attr, bool keep_boost) 6032 { 6033 /* 6034 * If params can't change scheduling class changes aren't allowed 6035 * either. 6036 */ 6037 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6038 return; 6039 6040 __setscheduler_params(p, attr); 6041 6042 /* 6043 * Keep a potential priority boosting if called from 6044 * sched_setscheduler(). 6045 */ 6046 p->prio = normal_prio(p); 6047 if (keep_boost) 6048 p->prio = rt_effective_prio(p, p->prio); 6049 6050 if (dl_prio(p->prio)) 6051 p->sched_class = &dl_sched_class; 6052 else if (rt_prio(p->prio)) 6053 p->sched_class = &rt_sched_class; 6054 else 6055 p->sched_class = &fair_sched_class; 6056 } 6057 6058 /* 6059 * Check the target process has a UID that matches the current process's: 6060 */ 6061 static bool check_same_owner(struct task_struct *p) 6062 { 6063 const struct cred *cred = current_cred(), *pcred; 6064 bool match; 6065 6066 rcu_read_lock(); 6067 pcred = __task_cred(p); 6068 match = (uid_eq(cred->euid, pcred->euid) || 6069 uid_eq(cred->euid, pcred->uid)); 6070 rcu_read_unlock(); 6071 return match; 6072 } 6073 6074 static int __sched_setscheduler(struct task_struct *p, 6075 const struct sched_attr *attr, 6076 bool user, bool pi) 6077 { 6078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6079 MAX_RT_PRIO - 1 - attr->sched_priority; 6080 int retval, oldprio, oldpolicy = -1, queued, running; 6081 int new_effective_prio, policy = attr->sched_policy; 6082 const struct sched_class *prev_class; 6083 struct callback_head *head; 6084 struct rq_flags rf; 6085 int reset_on_fork; 6086 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6087 struct rq *rq; 6088 6089 /* The pi code expects interrupts enabled */ 6090 BUG_ON(pi && in_interrupt()); 6091 recheck: 6092 /* Double check policy once rq lock held: */ 6093 if (policy < 0) { 6094 reset_on_fork = p->sched_reset_on_fork; 6095 policy = oldpolicy = p->policy; 6096 } else { 6097 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6098 6099 if (!valid_policy(policy)) 6100 return -EINVAL; 6101 } 6102 6103 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6104 return -EINVAL; 6105 6106 /* 6107 * Valid priorities for SCHED_FIFO and SCHED_RR are 6108 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6109 * SCHED_BATCH and SCHED_IDLE is 0. 6110 */ 6111 if (attr->sched_priority > MAX_RT_PRIO-1) 6112 return -EINVAL; 6113 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6114 (rt_policy(policy) != (attr->sched_priority != 0))) 6115 return -EINVAL; 6116 6117 /* 6118 * Allow unprivileged RT tasks to decrease priority: 6119 */ 6120 if (user && !capable(CAP_SYS_NICE)) { 6121 if (fair_policy(policy)) { 6122 if (attr->sched_nice < task_nice(p) && 6123 !can_nice(p, attr->sched_nice)) 6124 return -EPERM; 6125 } 6126 6127 if (rt_policy(policy)) { 6128 unsigned long rlim_rtprio = 6129 task_rlimit(p, RLIMIT_RTPRIO); 6130 6131 /* Can't set/change the rt policy: */ 6132 if (policy != p->policy && !rlim_rtprio) 6133 return -EPERM; 6134 6135 /* Can't increase priority: */ 6136 if (attr->sched_priority > p->rt_priority && 6137 attr->sched_priority > rlim_rtprio) 6138 return -EPERM; 6139 } 6140 6141 /* 6142 * Can't set/change SCHED_DEADLINE policy at all for now 6143 * (safest behavior); in the future we would like to allow 6144 * unprivileged DL tasks to increase their relative deadline 6145 * or reduce their runtime (both ways reducing utilization) 6146 */ 6147 if (dl_policy(policy)) 6148 return -EPERM; 6149 6150 /* 6151 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6153 */ 6154 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6155 if (!can_nice(p, task_nice(p))) 6156 return -EPERM; 6157 } 6158 6159 /* Can't change other user's priorities: */ 6160 if (!check_same_owner(p)) 6161 return -EPERM; 6162 6163 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6164 if (p->sched_reset_on_fork && !reset_on_fork) 6165 return -EPERM; 6166 } 6167 6168 if (user) { 6169 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6170 return -EINVAL; 6171 6172 retval = security_task_setscheduler(p); 6173 if (retval) 6174 return retval; 6175 } 6176 6177 /* Update task specific "requested" clamps */ 6178 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6179 retval = uclamp_validate(p, attr); 6180 if (retval) 6181 return retval; 6182 } 6183 6184 if (pi) 6185 cpuset_read_lock(); 6186 6187 /* 6188 * Make sure no PI-waiters arrive (or leave) while we are 6189 * changing the priority of the task: 6190 * 6191 * To be able to change p->policy safely, the appropriate 6192 * runqueue lock must be held. 6193 */ 6194 rq = task_rq_lock(p, &rf); 6195 update_rq_clock(rq); 6196 6197 /* 6198 * Changing the policy of the stop threads its a very bad idea: 6199 */ 6200 if (p == rq->stop) { 6201 retval = -EINVAL; 6202 goto unlock; 6203 } 6204 6205 /* 6206 * If not changing anything there's no need to proceed further, 6207 * but store a possible modification of reset_on_fork. 6208 */ 6209 if (unlikely(policy == p->policy)) { 6210 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 6211 goto change; 6212 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 6213 goto change; 6214 if (dl_policy(policy) && dl_param_changed(p, attr)) 6215 goto change; 6216 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 6217 goto change; 6218 6219 p->sched_reset_on_fork = reset_on_fork; 6220 retval = 0; 6221 goto unlock; 6222 } 6223 change: 6224 6225 if (user) { 6226 #ifdef CONFIG_RT_GROUP_SCHED 6227 /* 6228 * Do not allow realtime tasks into groups that have no runtime 6229 * assigned. 6230 */ 6231 if (rt_bandwidth_enabled() && rt_policy(policy) && 6232 task_group(p)->rt_bandwidth.rt_runtime == 0 && 6233 !task_group_is_autogroup(task_group(p))) { 6234 retval = -EPERM; 6235 goto unlock; 6236 } 6237 #endif 6238 #ifdef CONFIG_SMP 6239 if (dl_bandwidth_enabled() && dl_policy(policy) && 6240 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 6241 cpumask_t *span = rq->rd->span; 6242 6243 /* 6244 * Don't allow tasks with an affinity mask smaller than 6245 * the entire root_domain to become SCHED_DEADLINE. We 6246 * will also fail if there's no bandwidth available. 6247 */ 6248 if (!cpumask_subset(span, p->cpus_ptr) || 6249 rq->rd->dl_bw.bw == 0) { 6250 retval = -EPERM; 6251 goto unlock; 6252 } 6253 } 6254 #endif 6255 } 6256 6257 /* Re-check policy now with rq lock held: */ 6258 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6259 policy = oldpolicy = -1; 6260 task_rq_unlock(rq, p, &rf); 6261 if (pi) 6262 cpuset_read_unlock(); 6263 goto recheck; 6264 } 6265 6266 /* 6267 * If setscheduling to SCHED_DEADLINE (or changing the parameters 6268 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 6269 * is available. 6270 */ 6271 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 6272 retval = -EBUSY; 6273 goto unlock; 6274 } 6275 6276 p->sched_reset_on_fork = reset_on_fork; 6277 oldprio = p->prio; 6278 6279 if (pi) { 6280 /* 6281 * Take priority boosted tasks into account. If the new 6282 * effective priority is unchanged, we just store the new 6283 * normal parameters and do not touch the scheduler class and 6284 * the runqueue. This will be done when the task deboost 6285 * itself. 6286 */ 6287 new_effective_prio = rt_effective_prio(p, newprio); 6288 if (new_effective_prio == oldprio) 6289 queue_flags &= ~DEQUEUE_MOVE; 6290 } 6291 6292 queued = task_on_rq_queued(p); 6293 running = task_current(rq, p); 6294 if (queued) 6295 dequeue_task(rq, p, queue_flags); 6296 if (running) 6297 put_prev_task(rq, p); 6298 6299 prev_class = p->sched_class; 6300 6301 __setscheduler(rq, p, attr, pi); 6302 __setscheduler_uclamp(p, attr); 6303 6304 if (queued) { 6305 /* 6306 * We enqueue to tail when the priority of a task is 6307 * increased (user space view). 6308 */ 6309 if (oldprio < p->prio) 6310 queue_flags |= ENQUEUE_HEAD; 6311 6312 enqueue_task(rq, p, queue_flags); 6313 } 6314 if (running) 6315 set_next_task(rq, p); 6316 6317 check_class_changed(rq, p, prev_class, oldprio); 6318 6319 /* Avoid rq from going away on us: */ 6320 preempt_disable(); 6321 head = splice_balance_callbacks(rq); 6322 task_rq_unlock(rq, p, &rf); 6323 6324 if (pi) { 6325 cpuset_read_unlock(); 6326 rt_mutex_adjust_pi(p); 6327 } 6328 6329 /* Run balance callbacks after we've adjusted the PI chain: */ 6330 balance_callbacks(rq, head); 6331 preempt_enable(); 6332 6333 return 0; 6334 6335 unlock: 6336 task_rq_unlock(rq, p, &rf); 6337 if (pi) 6338 cpuset_read_unlock(); 6339 return retval; 6340 } 6341 6342 static int _sched_setscheduler(struct task_struct *p, int policy, 6343 const struct sched_param *param, bool check) 6344 { 6345 struct sched_attr attr = { 6346 .sched_policy = policy, 6347 .sched_priority = param->sched_priority, 6348 .sched_nice = PRIO_TO_NICE(p->static_prio), 6349 }; 6350 6351 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6352 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6353 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6354 policy &= ~SCHED_RESET_ON_FORK; 6355 attr.sched_policy = policy; 6356 } 6357 6358 return __sched_setscheduler(p, &attr, check, true); 6359 } 6360 /** 6361 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6362 * @p: the task in question. 6363 * @policy: new policy. 6364 * @param: structure containing the new RT priority. 6365 * 6366 * Use sched_set_fifo(), read its comment. 6367 * 6368 * Return: 0 on success. An error code otherwise. 6369 * 6370 * NOTE that the task may be already dead. 6371 */ 6372 int sched_setscheduler(struct task_struct *p, int policy, 6373 const struct sched_param *param) 6374 { 6375 return _sched_setscheduler(p, policy, param, true); 6376 } 6377 6378 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6379 { 6380 return __sched_setscheduler(p, attr, true, true); 6381 } 6382 6383 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6384 { 6385 return __sched_setscheduler(p, attr, false, true); 6386 } 6387 6388 /** 6389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6390 * @p: the task in question. 6391 * @policy: new policy. 6392 * @param: structure containing the new RT priority. 6393 * 6394 * Just like sched_setscheduler, only don't bother checking if the 6395 * current context has permission. For example, this is needed in 6396 * stop_machine(): we create temporary high priority worker threads, 6397 * but our caller might not have that capability. 6398 * 6399 * Return: 0 on success. An error code otherwise. 6400 */ 6401 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6402 const struct sched_param *param) 6403 { 6404 return _sched_setscheduler(p, policy, param, false); 6405 } 6406 6407 /* 6408 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6409 * incapable of resource management, which is the one thing an OS really should 6410 * be doing. 6411 * 6412 * This is of course the reason it is limited to privileged users only. 6413 * 6414 * Worse still; it is fundamentally impossible to compose static priority 6415 * workloads. You cannot take two correctly working static prio workloads 6416 * and smash them together and still expect them to work. 6417 * 6418 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6419 * 6420 * MAX_RT_PRIO / 2 6421 * 6422 * The administrator _MUST_ configure the system, the kernel simply doesn't 6423 * know enough information to make a sensible choice. 6424 */ 6425 void sched_set_fifo(struct task_struct *p) 6426 { 6427 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6428 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6429 } 6430 EXPORT_SYMBOL_GPL(sched_set_fifo); 6431 6432 /* 6433 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6434 */ 6435 void sched_set_fifo_low(struct task_struct *p) 6436 { 6437 struct sched_param sp = { .sched_priority = 1 }; 6438 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6439 } 6440 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6441 6442 void sched_set_normal(struct task_struct *p, int nice) 6443 { 6444 struct sched_attr attr = { 6445 .sched_policy = SCHED_NORMAL, 6446 .sched_nice = nice, 6447 }; 6448 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6449 } 6450 EXPORT_SYMBOL_GPL(sched_set_normal); 6451 6452 static int 6453 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6454 { 6455 struct sched_param lparam; 6456 struct task_struct *p; 6457 int retval; 6458 6459 if (!param || pid < 0) 6460 return -EINVAL; 6461 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6462 return -EFAULT; 6463 6464 rcu_read_lock(); 6465 retval = -ESRCH; 6466 p = find_process_by_pid(pid); 6467 if (likely(p)) 6468 get_task_struct(p); 6469 rcu_read_unlock(); 6470 6471 if (likely(p)) { 6472 retval = sched_setscheduler(p, policy, &lparam); 6473 put_task_struct(p); 6474 } 6475 6476 return retval; 6477 } 6478 6479 /* 6480 * Mimics kernel/events/core.c perf_copy_attr(). 6481 */ 6482 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6483 { 6484 u32 size; 6485 int ret; 6486 6487 /* Zero the full structure, so that a short copy will be nice: */ 6488 memset(attr, 0, sizeof(*attr)); 6489 6490 ret = get_user(size, &uattr->size); 6491 if (ret) 6492 return ret; 6493 6494 /* ABI compatibility quirk: */ 6495 if (!size) 6496 size = SCHED_ATTR_SIZE_VER0; 6497 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6498 goto err_size; 6499 6500 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6501 if (ret) { 6502 if (ret == -E2BIG) 6503 goto err_size; 6504 return ret; 6505 } 6506 6507 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6508 size < SCHED_ATTR_SIZE_VER1) 6509 return -EINVAL; 6510 6511 /* 6512 * XXX: Do we want to be lenient like existing syscalls; or do we want 6513 * to be strict and return an error on out-of-bounds values? 6514 */ 6515 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6516 6517 return 0; 6518 6519 err_size: 6520 put_user(sizeof(*attr), &uattr->size); 6521 return -E2BIG; 6522 } 6523 6524 /** 6525 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6526 * @pid: the pid in question. 6527 * @policy: new policy. 6528 * @param: structure containing the new RT priority. 6529 * 6530 * Return: 0 on success. An error code otherwise. 6531 */ 6532 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6533 { 6534 if (policy < 0) 6535 return -EINVAL; 6536 6537 return do_sched_setscheduler(pid, policy, param); 6538 } 6539 6540 /** 6541 * sys_sched_setparam - set/change the RT priority of a thread 6542 * @pid: the pid in question. 6543 * @param: structure containing the new RT priority. 6544 * 6545 * Return: 0 on success. An error code otherwise. 6546 */ 6547 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6548 { 6549 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6550 } 6551 6552 /** 6553 * sys_sched_setattr - same as above, but with extended sched_attr 6554 * @pid: the pid in question. 6555 * @uattr: structure containing the extended parameters. 6556 * @flags: for future extension. 6557 */ 6558 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6559 unsigned int, flags) 6560 { 6561 struct sched_attr attr; 6562 struct task_struct *p; 6563 int retval; 6564 6565 if (!uattr || pid < 0 || flags) 6566 return -EINVAL; 6567 6568 retval = sched_copy_attr(uattr, &attr); 6569 if (retval) 6570 return retval; 6571 6572 if ((int)attr.sched_policy < 0) 6573 return -EINVAL; 6574 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6575 attr.sched_policy = SETPARAM_POLICY; 6576 6577 rcu_read_lock(); 6578 retval = -ESRCH; 6579 p = find_process_by_pid(pid); 6580 if (likely(p)) 6581 get_task_struct(p); 6582 rcu_read_unlock(); 6583 6584 if (likely(p)) { 6585 retval = sched_setattr(p, &attr); 6586 put_task_struct(p); 6587 } 6588 6589 return retval; 6590 } 6591 6592 /** 6593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6594 * @pid: the pid in question. 6595 * 6596 * Return: On success, the policy of the thread. Otherwise, a negative error 6597 * code. 6598 */ 6599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6600 { 6601 struct task_struct *p; 6602 int retval; 6603 6604 if (pid < 0) 6605 return -EINVAL; 6606 6607 retval = -ESRCH; 6608 rcu_read_lock(); 6609 p = find_process_by_pid(pid); 6610 if (p) { 6611 retval = security_task_getscheduler(p); 6612 if (!retval) 6613 retval = p->policy 6614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6615 } 6616 rcu_read_unlock(); 6617 return retval; 6618 } 6619 6620 /** 6621 * sys_sched_getparam - get the RT priority of a thread 6622 * @pid: the pid in question. 6623 * @param: structure containing the RT priority. 6624 * 6625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6626 * code. 6627 */ 6628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6629 { 6630 struct sched_param lp = { .sched_priority = 0 }; 6631 struct task_struct *p; 6632 int retval; 6633 6634 if (!param || pid < 0) 6635 return -EINVAL; 6636 6637 rcu_read_lock(); 6638 p = find_process_by_pid(pid); 6639 retval = -ESRCH; 6640 if (!p) 6641 goto out_unlock; 6642 6643 retval = security_task_getscheduler(p); 6644 if (retval) 6645 goto out_unlock; 6646 6647 if (task_has_rt_policy(p)) 6648 lp.sched_priority = p->rt_priority; 6649 rcu_read_unlock(); 6650 6651 /* 6652 * This one might sleep, we cannot do it with a spinlock held ... 6653 */ 6654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6655 6656 return retval; 6657 6658 out_unlock: 6659 rcu_read_unlock(); 6660 return retval; 6661 } 6662 6663 /* 6664 * Copy the kernel size attribute structure (which might be larger 6665 * than what user-space knows about) to user-space. 6666 * 6667 * Note that all cases are valid: user-space buffer can be larger or 6668 * smaller than the kernel-space buffer. The usual case is that both 6669 * have the same size. 6670 */ 6671 static int 6672 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6673 struct sched_attr *kattr, 6674 unsigned int usize) 6675 { 6676 unsigned int ksize = sizeof(*kattr); 6677 6678 if (!access_ok(uattr, usize)) 6679 return -EFAULT; 6680 6681 /* 6682 * sched_getattr() ABI forwards and backwards compatibility: 6683 * 6684 * If usize == ksize then we just copy everything to user-space and all is good. 6685 * 6686 * If usize < ksize then we only copy as much as user-space has space for, 6687 * this keeps ABI compatibility as well. We skip the rest. 6688 * 6689 * If usize > ksize then user-space is using a newer version of the ABI, 6690 * which part the kernel doesn't know about. Just ignore it - tooling can 6691 * detect the kernel's knowledge of attributes from the attr->size value 6692 * which is set to ksize in this case. 6693 */ 6694 kattr->size = min(usize, ksize); 6695 6696 if (copy_to_user(uattr, kattr, kattr->size)) 6697 return -EFAULT; 6698 6699 return 0; 6700 } 6701 6702 /** 6703 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6704 * @pid: the pid in question. 6705 * @uattr: structure containing the extended parameters. 6706 * @usize: sizeof(attr) for fwd/bwd comp. 6707 * @flags: for future extension. 6708 */ 6709 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6710 unsigned int, usize, unsigned int, flags) 6711 { 6712 struct sched_attr kattr = { }; 6713 struct task_struct *p; 6714 int retval; 6715 6716 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6717 usize < SCHED_ATTR_SIZE_VER0 || flags) 6718 return -EINVAL; 6719 6720 rcu_read_lock(); 6721 p = find_process_by_pid(pid); 6722 retval = -ESRCH; 6723 if (!p) 6724 goto out_unlock; 6725 6726 retval = security_task_getscheduler(p); 6727 if (retval) 6728 goto out_unlock; 6729 6730 kattr.sched_policy = p->policy; 6731 if (p->sched_reset_on_fork) 6732 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6733 if (task_has_dl_policy(p)) 6734 __getparam_dl(p, &kattr); 6735 else if (task_has_rt_policy(p)) 6736 kattr.sched_priority = p->rt_priority; 6737 else 6738 kattr.sched_nice = task_nice(p); 6739 6740 #ifdef CONFIG_UCLAMP_TASK 6741 /* 6742 * This could race with another potential updater, but this is fine 6743 * because it'll correctly read the old or the new value. We don't need 6744 * to guarantee who wins the race as long as it doesn't return garbage. 6745 */ 6746 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6747 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6748 #endif 6749 6750 rcu_read_unlock(); 6751 6752 return sched_attr_copy_to_user(uattr, &kattr, usize); 6753 6754 out_unlock: 6755 rcu_read_unlock(); 6756 return retval; 6757 } 6758 6759 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6760 { 6761 cpumask_var_t cpus_allowed, new_mask; 6762 struct task_struct *p; 6763 int retval; 6764 6765 rcu_read_lock(); 6766 6767 p = find_process_by_pid(pid); 6768 if (!p) { 6769 rcu_read_unlock(); 6770 return -ESRCH; 6771 } 6772 6773 /* Prevent p going away */ 6774 get_task_struct(p); 6775 rcu_read_unlock(); 6776 6777 if (p->flags & PF_NO_SETAFFINITY) { 6778 retval = -EINVAL; 6779 goto out_put_task; 6780 } 6781 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6782 retval = -ENOMEM; 6783 goto out_put_task; 6784 } 6785 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6786 retval = -ENOMEM; 6787 goto out_free_cpus_allowed; 6788 } 6789 retval = -EPERM; 6790 if (!check_same_owner(p)) { 6791 rcu_read_lock(); 6792 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6793 rcu_read_unlock(); 6794 goto out_free_new_mask; 6795 } 6796 rcu_read_unlock(); 6797 } 6798 6799 retval = security_task_setscheduler(p); 6800 if (retval) 6801 goto out_free_new_mask; 6802 6803 6804 cpuset_cpus_allowed(p, cpus_allowed); 6805 cpumask_and(new_mask, in_mask, cpus_allowed); 6806 6807 /* 6808 * Since bandwidth control happens on root_domain basis, 6809 * if admission test is enabled, we only admit -deadline 6810 * tasks allowed to run on all the CPUs in the task's 6811 * root_domain. 6812 */ 6813 #ifdef CONFIG_SMP 6814 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6815 rcu_read_lock(); 6816 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6817 retval = -EBUSY; 6818 rcu_read_unlock(); 6819 goto out_free_new_mask; 6820 } 6821 rcu_read_unlock(); 6822 } 6823 #endif 6824 again: 6825 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6826 6827 if (!retval) { 6828 cpuset_cpus_allowed(p, cpus_allowed); 6829 if (!cpumask_subset(new_mask, cpus_allowed)) { 6830 /* 6831 * We must have raced with a concurrent cpuset 6832 * update. Just reset the cpus_allowed to the 6833 * cpuset's cpus_allowed 6834 */ 6835 cpumask_copy(new_mask, cpus_allowed); 6836 goto again; 6837 } 6838 } 6839 out_free_new_mask: 6840 free_cpumask_var(new_mask); 6841 out_free_cpus_allowed: 6842 free_cpumask_var(cpus_allowed); 6843 out_put_task: 6844 put_task_struct(p); 6845 return retval; 6846 } 6847 6848 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6849 struct cpumask *new_mask) 6850 { 6851 if (len < cpumask_size()) 6852 cpumask_clear(new_mask); 6853 else if (len > cpumask_size()) 6854 len = cpumask_size(); 6855 6856 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6857 } 6858 6859 /** 6860 * sys_sched_setaffinity - set the CPU affinity of a process 6861 * @pid: pid of the process 6862 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6863 * @user_mask_ptr: user-space pointer to the new CPU mask 6864 * 6865 * Return: 0 on success. An error code otherwise. 6866 */ 6867 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6868 unsigned long __user *, user_mask_ptr) 6869 { 6870 cpumask_var_t new_mask; 6871 int retval; 6872 6873 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6874 return -ENOMEM; 6875 6876 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6877 if (retval == 0) 6878 retval = sched_setaffinity(pid, new_mask); 6879 free_cpumask_var(new_mask); 6880 return retval; 6881 } 6882 6883 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6884 { 6885 struct task_struct *p; 6886 unsigned long flags; 6887 int retval; 6888 6889 rcu_read_lock(); 6890 6891 retval = -ESRCH; 6892 p = find_process_by_pid(pid); 6893 if (!p) 6894 goto out_unlock; 6895 6896 retval = security_task_getscheduler(p); 6897 if (retval) 6898 goto out_unlock; 6899 6900 raw_spin_lock_irqsave(&p->pi_lock, flags); 6901 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6902 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6903 6904 out_unlock: 6905 rcu_read_unlock(); 6906 6907 return retval; 6908 } 6909 6910 /** 6911 * sys_sched_getaffinity - get the CPU affinity of a process 6912 * @pid: pid of the process 6913 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6914 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6915 * 6916 * Return: size of CPU mask copied to user_mask_ptr on success. An 6917 * error code otherwise. 6918 */ 6919 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6920 unsigned long __user *, user_mask_ptr) 6921 { 6922 int ret; 6923 cpumask_var_t mask; 6924 6925 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6926 return -EINVAL; 6927 if (len & (sizeof(unsigned long)-1)) 6928 return -EINVAL; 6929 6930 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6931 return -ENOMEM; 6932 6933 ret = sched_getaffinity(pid, mask); 6934 if (ret == 0) { 6935 unsigned int retlen = min(len, cpumask_size()); 6936 6937 if (copy_to_user(user_mask_ptr, mask, retlen)) 6938 ret = -EFAULT; 6939 else 6940 ret = retlen; 6941 } 6942 free_cpumask_var(mask); 6943 6944 return ret; 6945 } 6946 6947 static void do_sched_yield(void) 6948 { 6949 struct rq_flags rf; 6950 struct rq *rq; 6951 6952 rq = this_rq_lock_irq(&rf); 6953 6954 schedstat_inc(rq->yld_count); 6955 current->sched_class->yield_task(rq); 6956 6957 preempt_disable(); 6958 rq_unlock_irq(rq, &rf); 6959 sched_preempt_enable_no_resched(); 6960 6961 schedule(); 6962 } 6963 6964 /** 6965 * sys_sched_yield - yield the current processor to other threads. 6966 * 6967 * This function yields the current CPU to other tasks. If there are no 6968 * other threads running on this CPU then this function will return. 6969 * 6970 * Return: 0. 6971 */ 6972 SYSCALL_DEFINE0(sched_yield) 6973 { 6974 do_sched_yield(); 6975 return 0; 6976 } 6977 6978 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 6979 int __sched __cond_resched(void) 6980 { 6981 if (should_resched(0)) { 6982 preempt_schedule_common(); 6983 return 1; 6984 } 6985 #ifndef CONFIG_PREEMPT_RCU 6986 rcu_all_qs(); 6987 #endif 6988 return 0; 6989 } 6990 EXPORT_SYMBOL(__cond_resched); 6991 #endif 6992 6993 #ifdef CONFIG_PREEMPT_DYNAMIC 6994 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 6995 EXPORT_STATIC_CALL_TRAMP(cond_resched); 6996 6997 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 6998 EXPORT_STATIC_CALL_TRAMP(might_resched); 6999 #endif 7000 7001 /* 7002 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7003 * call schedule, and on return reacquire the lock. 7004 * 7005 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7006 * operations here to prevent schedule() from being called twice (once via 7007 * spin_unlock(), once by hand). 7008 */ 7009 int __cond_resched_lock(spinlock_t *lock) 7010 { 7011 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7012 int ret = 0; 7013 7014 lockdep_assert_held(lock); 7015 7016 if (spin_needbreak(lock) || resched) { 7017 spin_unlock(lock); 7018 if (resched) 7019 preempt_schedule_common(); 7020 else 7021 cpu_relax(); 7022 ret = 1; 7023 spin_lock(lock); 7024 } 7025 return ret; 7026 } 7027 EXPORT_SYMBOL(__cond_resched_lock); 7028 7029 int __cond_resched_rwlock_read(rwlock_t *lock) 7030 { 7031 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7032 int ret = 0; 7033 7034 lockdep_assert_held_read(lock); 7035 7036 if (rwlock_needbreak(lock) || resched) { 7037 read_unlock(lock); 7038 if (resched) 7039 preempt_schedule_common(); 7040 else 7041 cpu_relax(); 7042 ret = 1; 7043 read_lock(lock); 7044 } 7045 return ret; 7046 } 7047 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7048 7049 int __cond_resched_rwlock_write(rwlock_t *lock) 7050 { 7051 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7052 int ret = 0; 7053 7054 lockdep_assert_held_write(lock); 7055 7056 if (rwlock_needbreak(lock) || resched) { 7057 write_unlock(lock); 7058 if (resched) 7059 preempt_schedule_common(); 7060 else 7061 cpu_relax(); 7062 ret = 1; 7063 write_lock(lock); 7064 } 7065 return ret; 7066 } 7067 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7068 7069 /** 7070 * yield - yield the current processor to other threads. 7071 * 7072 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7073 * 7074 * The scheduler is at all times free to pick the calling task as the most 7075 * eligible task to run, if removing the yield() call from your code breaks 7076 * it, it's already broken. 7077 * 7078 * Typical broken usage is: 7079 * 7080 * while (!event) 7081 * yield(); 7082 * 7083 * where one assumes that yield() will let 'the other' process run that will 7084 * make event true. If the current task is a SCHED_FIFO task that will never 7085 * happen. Never use yield() as a progress guarantee!! 7086 * 7087 * If you want to use yield() to wait for something, use wait_event(). 7088 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7089 * If you still want to use yield(), do not! 7090 */ 7091 void __sched yield(void) 7092 { 7093 set_current_state(TASK_RUNNING); 7094 do_sched_yield(); 7095 } 7096 EXPORT_SYMBOL(yield); 7097 7098 /** 7099 * yield_to - yield the current processor to another thread in 7100 * your thread group, or accelerate that thread toward the 7101 * processor it's on. 7102 * @p: target task 7103 * @preempt: whether task preemption is allowed or not 7104 * 7105 * It's the caller's job to ensure that the target task struct 7106 * can't go away on us before we can do any checks. 7107 * 7108 * Return: 7109 * true (>0) if we indeed boosted the target task. 7110 * false (0) if we failed to boost the target. 7111 * -ESRCH if there's no task to yield to. 7112 */ 7113 int __sched yield_to(struct task_struct *p, bool preempt) 7114 { 7115 struct task_struct *curr = current; 7116 struct rq *rq, *p_rq; 7117 unsigned long flags; 7118 int yielded = 0; 7119 7120 local_irq_save(flags); 7121 rq = this_rq(); 7122 7123 again: 7124 p_rq = task_rq(p); 7125 /* 7126 * If we're the only runnable task on the rq and target rq also 7127 * has only one task, there's absolutely no point in yielding. 7128 */ 7129 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7130 yielded = -ESRCH; 7131 goto out_irq; 7132 } 7133 7134 double_rq_lock(rq, p_rq); 7135 if (task_rq(p) != p_rq) { 7136 double_rq_unlock(rq, p_rq); 7137 goto again; 7138 } 7139 7140 if (!curr->sched_class->yield_to_task) 7141 goto out_unlock; 7142 7143 if (curr->sched_class != p->sched_class) 7144 goto out_unlock; 7145 7146 if (task_running(p_rq, p) || p->state) 7147 goto out_unlock; 7148 7149 yielded = curr->sched_class->yield_to_task(rq, p); 7150 if (yielded) { 7151 schedstat_inc(rq->yld_count); 7152 /* 7153 * Make p's CPU reschedule; pick_next_entity takes care of 7154 * fairness. 7155 */ 7156 if (preempt && rq != p_rq) 7157 resched_curr(p_rq); 7158 } 7159 7160 out_unlock: 7161 double_rq_unlock(rq, p_rq); 7162 out_irq: 7163 local_irq_restore(flags); 7164 7165 if (yielded > 0) 7166 schedule(); 7167 7168 return yielded; 7169 } 7170 EXPORT_SYMBOL_GPL(yield_to); 7171 7172 int io_schedule_prepare(void) 7173 { 7174 int old_iowait = current->in_iowait; 7175 7176 current->in_iowait = 1; 7177 blk_schedule_flush_plug(current); 7178 7179 return old_iowait; 7180 } 7181 7182 void io_schedule_finish(int token) 7183 { 7184 current->in_iowait = token; 7185 } 7186 7187 /* 7188 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7189 * that process accounting knows that this is a task in IO wait state. 7190 */ 7191 long __sched io_schedule_timeout(long timeout) 7192 { 7193 int token; 7194 long ret; 7195 7196 token = io_schedule_prepare(); 7197 ret = schedule_timeout(timeout); 7198 io_schedule_finish(token); 7199 7200 return ret; 7201 } 7202 EXPORT_SYMBOL(io_schedule_timeout); 7203 7204 void __sched io_schedule(void) 7205 { 7206 int token; 7207 7208 token = io_schedule_prepare(); 7209 schedule(); 7210 io_schedule_finish(token); 7211 } 7212 EXPORT_SYMBOL(io_schedule); 7213 7214 /** 7215 * sys_sched_get_priority_max - return maximum RT priority. 7216 * @policy: scheduling class. 7217 * 7218 * Return: On success, this syscall returns the maximum 7219 * rt_priority that can be used by a given scheduling class. 7220 * On failure, a negative error code is returned. 7221 */ 7222 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 7223 { 7224 int ret = -EINVAL; 7225 7226 switch (policy) { 7227 case SCHED_FIFO: 7228 case SCHED_RR: 7229 ret = MAX_RT_PRIO-1; 7230 break; 7231 case SCHED_DEADLINE: 7232 case SCHED_NORMAL: 7233 case SCHED_BATCH: 7234 case SCHED_IDLE: 7235 ret = 0; 7236 break; 7237 } 7238 return ret; 7239 } 7240 7241 /** 7242 * sys_sched_get_priority_min - return minimum RT priority. 7243 * @policy: scheduling class. 7244 * 7245 * Return: On success, this syscall returns the minimum 7246 * rt_priority that can be used by a given scheduling class. 7247 * On failure, a negative error code is returned. 7248 */ 7249 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 7250 { 7251 int ret = -EINVAL; 7252 7253 switch (policy) { 7254 case SCHED_FIFO: 7255 case SCHED_RR: 7256 ret = 1; 7257 break; 7258 case SCHED_DEADLINE: 7259 case SCHED_NORMAL: 7260 case SCHED_BATCH: 7261 case SCHED_IDLE: 7262 ret = 0; 7263 } 7264 return ret; 7265 } 7266 7267 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 7268 { 7269 struct task_struct *p; 7270 unsigned int time_slice; 7271 struct rq_flags rf; 7272 struct rq *rq; 7273 int retval; 7274 7275 if (pid < 0) 7276 return -EINVAL; 7277 7278 retval = -ESRCH; 7279 rcu_read_lock(); 7280 p = find_process_by_pid(pid); 7281 if (!p) 7282 goto out_unlock; 7283 7284 retval = security_task_getscheduler(p); 7285 if (retval) 7286 goto out_unlock; 7287 7288 rq = task_rq_lock(p, &rf); 7289 time_slice = 0; 7290 if (p->sched_class->get_rr_interval) 7291 time_slice = p->sched_class->get_rr_interval(rq, p); 7292 task_rq_unlock(rq, p, &rf); 7293 7294 rcu_read_unlock(); 7295 jiffies_to_timespec64(time_slice, t); 7296 return 0; 7297 7298 out_unlock: 7299 rcu_read_unlock(); 7300 return retval; 7301 } 7302 7303 /** 7304 * sys_sched_rr_get_interval - return the default timeslice of a process. 7305 * @pid: pid of the process. 7306 * @interval: userspace pointer to the timeslice value. 7307 * 7308 * this syscall writes the default timeslice value of a given process 7309 * into the user-space timespec buffer. A value of '0' means infinity. 7310 * 7311 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 7312 * an error code. 7313 */ 7314 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 7315 struct __kernel_timespec __user *, interval) 7316 { 7317 struct timespec64 t; 7318 int retval = sched_rr_get_interval(pid, &t); 7319 7320 if (retval == 0) 7321 retval = put_timespec64(&t, interval); 7322 7323 return retval; 7324 } 7325 7326 #ifdef CONFIG_COMPAT_32BIT_TIME 7327 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 7328 struct old_timespec32 __user *, interval) 7329 { 7330 struct timespec64 t; 7331 int retval = sched_rr_get_interval(pid, &t); 7332 7333 if (retval == 0) 7334 retval = put_old_timespec32(&t, interval); 7335 return retval; 7336 } 7337 #endif 7338 7339 void sched_show_task(struct task_struct *p) 7340 { 7341 unsigned long free = 0; 7342 int ppid; 7343 7344 if (!try_get_task_stack(p)) 7345 return; 7346 7347 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7348 7349 if (p->state == TASK_RUNNING) 7350 pr_cont(" running task "); 7351 #ifdef CONFIG_DEBUG_STACK_USAGE 7352 free = stack_not_used(p); 7353 #endif 7354 ppid = 0; 7355 rcu_read_lock(); 7356 if (pid_alive(p)) 7357 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7358 rcu_read_unlock(); 7359 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 7360 free, task_pid_nr(p), ppid, 7361 (unsigned long)task_thread_info(p)->flags); 7362 7363 print_worker_info(KERN_INFO, p); 7364 print_stop_info(KERN_INFO, p); 7365 show_stack(p, NULL, KERN_INFO); 7366 put_task_stack(p); 7367 } 7368 EXPORT_SYMBOL_GPL(sched_show_task); 7369 7370 static inline bool 7371 state_filter_match(unsigned long state_filter, struct task_struct *p) 7372 { 7373 /* no filter, everything matches */ 7374 if (!state_filter) 7375 return true; 7376 7377 /* filter, but doesn't match */ 7378 if (!(p->state & state_filter)) 7379 return false; 7380 7381 /* 7382 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7383 * TASK_KILLABLE). 7384 */ 7385 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7386 return false; 7387 7388 return true; 7389 } 7390 7391 7392 void show_state_filter(unsigned long state_filter) 7393 { 7394 struct task_struct *g, *p; 7395 7396 rcu_read_lock(); 7397 for_each_process_thread(g, p) { 7398 /* 7399 * reset the NMI-timeout, listing all files on a slow 7400 * console might take a lot of time: 7401 * Also, reset softlockup watchdogs on all CPUs, because 7402 * another CPU might be blocked waiting for us to process 7403 * an IPI. 7404 */ 7405 touch_nmi_watchdog(); 7406 touch_all_softlockup_watchdogs(); 7407 if (state_filter_match(state_filter, p)) 7408 sched_show_task(p); 7409 } 7410 7411 #ifdef CONFIG_SCHED_DEBUG 7412 if (!state_filter) 7413 sysrq_sched_debug_show(); 7414 #endif 7415 rcu_read_unlock(); 7416 /* 7417 * Only show locks if all tasks are dumped: 7418 */ 7419 if (!state_filter) 7420 debug_show_all_locks(); 7421 } 7422 7423 /** 7424 * init_idle - set up an idle thread for a given CPU 7425 * @idle: task in question 7426 * @cpu: CPU the idle task belongs to 7427 * 7428 * NOTE: this function does not set the idle thread's NEED_RESCHED 7429 * flag, to make booting more robust. 7430 */ 7431 void init_idle(struct task_struct *idle, int cpu) 7432 { 7433 struct rq *rq = cpu_rq(cpu); 7434 unsigned long flags; 7435 7436 __sched_fork(0, idle); 7437 7438 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7439 raw_spin_lock(&rq->lock); 7440 7441 idle->state = TASK_RUNNING; 7442 idle->se.exec_start = sched_clock(); 7443 idle->flags |= PF_IDLE; 7444 7445 scs_task_reset(idle); 7446 kasan_unpoison_task_stack(idle); 7447 7448 #ifdef CONFIG_SMP 7449 /* 7450 * It's possible that init_idle() gets called multiple times on a task, 7451 * in that case do_set_cpus_allowed() will not do the right thing. 7452 * 7453 * And since this is boot we can forgo the serialization. 7454 */ 7455 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7456 #endif 7457 /* 7458 * We're having a chicken and egg problem, even though we are 7459 * holding rq->lock, the CPU isn't yet set to this CPU so the 7460 * lockdep check in task_group() will fail. 7461 * 7462 * Similar case to sched_fork(). / Alternatively we could 7463 * use task_rq_lock() here and obtain the other rq->lock. 7464 * 7465 * Silence PROVE_RCU 7466 */ 7467 rcu_read_lock(); 7468 __set_task_cpu(idle, cpu); 7469 rcu_read_unlock(); 7470 7471 rq->idle = idle; 7472 rcu_assign_pointer(rq->curr, idle); 7473 idle->on_rq = TASK_ON_RQ_QUEUED; 7474 #ifdef CONFIG_SMP 7475 idle->on_cpu = 1; 7476 #endif 7477 raw_spin_unlock(&rq->lock); 7478 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7479 7480 /* Set the preempt count _outside_ the spinlocks! */ 7481 init_idle_preempt_count(idle, cpu); 7482 7483 /* 7484 * The idle tasks have their own, simple scheduling class: 7485 */ 7486 idle->sched_class = &idle_sched_class; 7487 ftrace_graph_init_idle_task(idle, cpu); 7488 vtime_init_idle(idle, cpu); 7489 #ifdef CONFIG_SMP 7490 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7491 #endif 7492 } 7493 7494 #ifdef CONFIG_SMP 7495 7496 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7497 const struct cpumask *trial) 7498 { 7499 int ret = 1; 7500 7501 if (!cpumask_weight(cur)) 7502 return ret; 7503 7504 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7505 7506 return ret; 7507 } 7508 7509 int task_can_attach(struct task_struct *p, 7510 const struct cpumask *cs_cpus_allowed) 7511 { 7512 int ret = 0; 7513 7514 /* 7515 * Kthreads which disallow setaffinity shouldn't be moved 7516 * to a new cpuset; we don't want to change their CPU 7517 * affinity and isolating such threads by their set of 7518 * allowed nodes is unnecessary. Thus, cpusets are not 7519 * applicable for such threads. This prevents checking for 7520 * success of set_cpus_allowed_ptr() on all attached tasks 7521 * before cpus_mask may be changed. 7522 */ 7523 if (p->flags & PF_NO_SETAFFINITY) { 7524 ret = -EINVAL; 7525 goto out; 7526 } 7527 7528 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7529 cs_cpus_allowed)) 7530 ret = dl_task_can_attach(p, cs_cpus_allowed); 7531 7532 out: 7533 return ret; 7534 } 7535 7536 bool sched_smp_initialized __read_mostly; 7537 7538 #ifdef CONFIG_NUMA_BALANCING 7539 /* Migrate current task p to target_cpu */ 7540 int migrate_task_to(struct task_struct *p, int target_cpu) 7541 { 7542 struct migration_arg arg = { p, target_cpu }; 7543 int curr_cpu = task_cpu(p); 7544 7545 if (curr_cpu == target_cpu) 7546 return 0; 7547 7548 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7549 return -EINVAL; 7550 7551 /* TODO: This is not properly updating schedstats */ 7552 7553 trace_sched_move_numa(p, curr_cpu, target_cpu); 7554 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7555 } 7556 7557 /* 7558 * Requeue a task on a given node and accurately track the number of NUMA 7559 * tasks on the runqueues 7560 */ 7561 void sched_setnuma(struct task_struct *p, int nid) 7562 { 7563 bool queued, running; 7564 struct rq_flags rf; 7565 struct rq *rq; 7566 7567 rq = task_rq_lock(p, &rf); 7568 queued = task_on_rq_queued(p); 7569 running = task_current(rq, p); 7570 7571 if (queued) 7572 dequeue_task(rq, p, DEQUEUE_SAVE); 7573 if (running) 7574 put_prev_task(rq, p); 7575 7576 p->numa_preferred_nid = nid; 7577 7578 if (queued) 7579 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7580 if (running) 7581 set_next_task(rq, p); 7582 task_rq_unlock(rq, p, &rf); 7583 } 7584 #endif /* CONFIG_NUMA_BALANCING */ 7585 7586 #ifdef CONFIG_HOTPLUG_CPU 7587 /* 7588 * Ensure that the idle task is using init_mm right before its CPU goes 7589 * offline. 7590 */ 7591 void idle_task_exit(void) 7592 { 7593 struct mm_struct *mm = current->active_mm; 7594 7595 BUG_ON(cpu_online(smp_processor_id())); 7596 BUG_ON(current != this_rq()->idle); 7597 7598 if (mm != &init_mm) { 7599 switch_mm(mm, &init_mm, current); 7600 finish_arch_post_lock_switch(); 7601 } 7602 7603 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7604 } 7605 7606 static int __balance_push_cpu_stop(void *arg) 7607 { 7608 struct task_struct *p = arg; 7609 struct rq *rq = this_rq(); 7610 struct rq_flags rf; 7611 int cpu; 7612 7613 raw_spin_lock_irq(&p->pi_lock); 7614 rq_lock(rq, &rf); 7615 7616 update_rq_clock(rq); 7617 7618 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7619 cpu = select_fallback_rq(rq->cpu, p); 7620 rq = __migrate_task(rq, &rf, p, cpu); 7621 } 7622 7623 rq_unlock(rq, &rf); 7624 raw_spin_unlock_irq(&p->pi_lock); 7625 7626 put_task_struct(p); 7627 7628 return 0; 7629 } 7630 7631 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7632 7633 /* 7634 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7635 */ 7636 static void balance_push(struct rq *rq) 7637 { 7638 struct task_struct *push_task = rq->curr; 7639 7640 lockdep_assert_held(&rq->lock); 7641 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7642 /* 7643 * Ensure the thing is persistent until balance_push_set(.on = false); 7644 */ 7645 rq->balance_callback = &balance_push_callback; 7646 7647 /* 7648 * Both the cpu-hotplug and stop task are in this case and are 7649 * required to complete the hotplug process. 7650 * 7651 * XXX: the idle task does not match kthread_is_per_cpu() due to 7652 * histerical raisins. 7653 */ 7654 if (rq->idle == push_task || 7655 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) || 7656 is_migration_disabled(push_task)) { 7657 7658 /* 7659 * If this is the idle task on the outgoing CPU try to wake 7660 * up the hotplug control thread which might wait for the 7661 * last task to vanish. The rcuwait_active() check is 7662 * accurate here because the waiter is pinned on this CPU 7663 * and can't obviously be running in parallel. 7664 * 7665 * On RT kernels this also has to check whether there are 7666 * pinned and scheduled out tasks on the runqueue. They 7667 * need to leave the migrate disabled section first. 7668 */ 7669 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7670 rcuwait_active(&rq->hotplug_wait)) { 7671 raw_spin_unlock(&rq->lock); 7672 rcuwait_wake_up(&rq->hotplug_wait); 7673 raw_spin_lock(&rq->lock); 7674 } 7675 return; 7676 } 7677 7678 get_task_struct(push_task); 7679 /* 7680 * Temporarily drop rq->lock such that we can wake-up the stop task. 7681 * Both preemption and IRQs are still disabled. 7682 */ 7683 raw_spin_unlock(&rq->lock); 7684 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7685 this_cpu_ptr(&push_work)); 7686 /* 7687 * At this point need_resched() is true and we'll take the loop in 7688 * schedule(). The next pick is obviously going to be the stop task 7689 * which kthread_is_per_cpu() and will push this task away. 7690 */ 7691 raw_spin_lock(&rq->lock); 7692 } 7693 7694 static void balance_push_set(int cpu, bool on) 7695 { 7696 struct rq *rq = cpu_rq(cpu); 7697 struct rq_flags rf; 7698 7699 rq_lock_irqsave(rq, &rf); 7700 rq->balance_push = on; 7701 if (on) { 7702 WARN_ON_ONCE(rq->balance_callback); 7703 rq->balance_callback = &balance_push_callback; 7704 } else if (rq->balance_callback == &balance_push_callback) { 7705 rq->balance_callback = NULL; 7706 } 7707 rq_unlock_irqrestore(rq, &rf); 7708 } 7709 7710 /* 7711 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7712 * inactive. All tasks which are not per CPU kernel threads are either 7713 * pushed off this CPU now via balance_push() or placed on a different CPU 7714 * during wakeup. Wait until the CPU is quiescent. 7715 */ 7716 static void balance_hotplug_wait(void) 7717 { 7718 struct rq *rq = this_rq(); 7719 7720 rcuwait_wait_event(&rq->hotplug_wait, 7721 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7722 TASK_UNINTERRUPTIBLE); 7723 } 7724 7725 #else 7726 7727 static inline void balance_push(struct rq *rq) 7728 { 7729 } 7730 7731 static inline void balance_push_set(int cpu, bool on) 7732 { 7733 } 7734 7735 static inline void balance_hotplug_wait(void) 7736 { 7737 } 7738 7739 #endif /* CONFIG_HOTPLUG_CPU */ 7740 7741 void set_rq_online(struct rq *rq) 7742 { 7743 if (!rq->online) { 7744 const struct sched_class *class; 7745 7746 cpumask_set_cpu(rq->cpu, rq->rd->online); 7747 rq->online = 1; 7748 7749 for_each_class(class) { 7750 if (class->rq_online) 7751 class->rq_online(rq); 7752 } 7753 } 7754 } 7755 7756 void set_rq_offline(struct rq *rq) 7757 { 7758 if (rq->online) { 7759 const struct sched_class *class; 7760 7761 for_each_class(class) { 7762 if (class->rq_offline) 7763 class->rq_offline(rq); 7764 } 7765 7766 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7767 rq->online = 0; 7768 } 7769 } 7770 7771 /* 7772 * used to mark begin/end of suspend/resume: 7773 */ 7774 static int num_cpus_frozen; 7775 7776 /* 7777 * Update cpusets according to cpu_active mask. If cpusets are 7778 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7779 * around partition_sched_domains(). 7780 * 7781 * If we come here as part of a suspend/resume, don't touch cpusets because we 7782 * want to restore it back to its original state upon resume anyway. 7783 */ 7784 static void cpuset_cpu_active(void) 7785 { 7786 if (cpuhp_tasks_frozen) { 7787 /* 7788 * num_cpus_frozen tracks how many CPUs are involved in suspend 7789 * resume sequence. As long as this is not the last online 7790 * operation in the resume sequence, just build a single sched 7791 * domain, ignoring cpusets. 7792 */ 7793 partition_sched_domains(1, NULL, NULL); 7794 if (--num_cpus_frozen) 7795 return; 7796 /* 7797 * This is the last CPU online operation. So fall through and 7798 * restore the original sched domains by considering the 7799 * cpuset configurations. 7800 */ 7801 cpuset_force_rebuild(); 7802 } 7803 cpuset_update_active_cpus(); 7804 } 7805 7806 static int cpuset_cpu_inactive(unsigned int cpu) 7807 { 7808 if (!cpuhp_tasks_frozen) { 7809 if (dl_cpu_busy(cpu)) 7810 return -EBUSY; 7811 cpuset_update_active_cpus(); 7812 } else { 7813 num_cpus_frozen++; 7814 partition_sched_domains(1, NULL, NULL); 7815 } 7816 return 0; 7817 } 7818 7819 int sched_cpu_activate(unsigned int cpu) 7820 { 7821 struct rq *rq = cpu_rq(cpu); 7822 struct rq_flags rf; 7823 7824 /* 7825 * Make sure that when the hotplug state machine does a roll-back 7826 * we clear balance_push. Ideally that would happen earlier... 7827 */ 7828 balance_push_set(cpu, false); 7829 7830 #ifdef CONFIG_SCHED_SMT 7831 /* 7832 * When going up, increment the number of cores with SMT present. 7833 */ 7834 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7835 static_branch_inc_cpuslocked(&sched_smt_present); 7836 #endif 7837 set_cpu_active(cpu, true); 7838 7839 if (sched_smp_initialized) { 7840 sched_domains_numa_masks_set(cpu); 7841 cpuset_cpu_active(); 7842 } 7843 7844 /* 7845 * Put the rq online, if not already. This happens: 7846 * 7847 * 1) In the early boot process, because we build the real domains 7848 * after all CPUs have been brought up. 7849 * 7850 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7851 * domains. 7852 */ 7853 rq_lock_irqsave(rq, &rf); 7854 if (rq->rd) { 7855 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7856 set_rq_online(rq); 7857 } 7858 rq_unlock_irqrestore(rq, &rf); 7859 7860 return 0; 7861 } 7862 7863 int sched_cpu_deactivate(unsigned int cpu) 7864 { 7865 struct rq *rq = cpu_rq(cpu); 7866 struct rq_flags rf; 7867 int ret; 7868 7869 /* 7870 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7871 * load balancing when not active 7872 */ 7873 nohz_balance_exit_idle(rq); 7874 7875 set_cpu_active(cpu, false); 7876 7877 /* 7878 * From this point forward, this CPU will refuse to run any task that 7879 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 7880 * push those tasks away until this gets cleared, see 7881 * sched_cpu_dying(). 7882 */ 7883 balance_push_set(cpu, true); 7884 7885 /* 7886 * We've cleared cpu_active_mask / set balance_push, wait for all 7887 * preempt-disabled and RCU users of this state to go away such that 7888 * all new such users will observe it. 7889 * 7890 * Specifically, we rely on ttwu to no longer target this CPU, see 7891 * ttwu_queue_cond() and is_cpu_allowed(). 7892 * 7893 * Do sync before park smpboot threads to take care the rcu boost case. 7894 */ 7895 synchronize_rcu(); 7896 7897 rq_lock_irqsave(rq, &rf); 7898 if (rq->rd) { 7899 update_rq_clock(rq); 7900 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7901 set_rq_offline(rq); 7902 } 7903 rq_unlock_irqrestore(rq, &rf); 7904 7905 #ifdef CONFIG_SCHED_SMT 7906 /* 7907 * When going down, decrement the number of cores with SMT present. 7908 */ 7909 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7910 static_branch_dec_cpuslocked(&sched_smt_present); 7911 #endif 7912 7913 if (!sched_smp_initialized) 7914 return 0; 7915 7916 ret = cpuset_cpu_inactive(cpu); 7917 if (ret) { 7918 balance_push_set(cpu, false); 7919 set_cpu_active(cpu, true); 7920 return ret; 7921 } 7922 sched_domains_numa_masks_clear(cpu); 7923 return 0; 7924 } 7925 7926 static void sched_rq_cpu_starting(unsigned int cpu) 7927 { 7928 struct rq *rq = cpu_rq(cpu); 7929 7930 rq->calc_load_update = calc_load_update; 7931 update_max_interval(); 7932 } 7933 7934 int sched_cpu_starting(unsigned int cpu) 7935 { 7936 sched_rq_cpu_starting(cpu); 7937 sched_tick_start(cpu); 7938 return 0; 7939 } 7940 7941 #ifdef CONFIG_HOTPLUG_CPU 7942 7943 /* 7944 * Invoked immediately before the stopper thread is invoked to bring the 7945 * CPU down completely. At this point all per CPU kthreads except the 7946 * hotplug thread (current) and the stopper thread (inactive) have been 7947 * either parked or have been unbound from the outgoing CPU. Ensure that 7948 * any of those which might be on the way out are gone. 7949 * 7950 * If after this point a bound task is being woken on this CPU then the 7951 * responsible hotplug callback has failed to do it's job. 7952 * sched_cpu_dying() will catch it with the appropriate fireworks. 7953 */ 7954 int sched_cpu_wait_empty(unsigned int cpu) 7955 { 7956 balance_hotplug_wait(); 7957 return 0; 7958 } 7959 7960 /* 7961 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7962 * might have. Called from the CPU stopper task after ensuring that the 7963 * stopper is the last running task on the CPU, so nr_active count is 7964 * stable. We need to take the teardown thread which is calling this into 7965 * account, so we hand in adjust = 1 to the load calculation. 7966 * 7967 * Also see the comment "Global load-average calculations". 7968 */ 7969 static void calc_load_migrate(struct rq *rq) 7970 { 7971 long delta = calc_load_fold_active(rq, 1); 7972 7973 if (delta) 7974 atomic_long_add(delta, &calc_load_tasks); 7975 } 7976 7977 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 7978 { 7979 struct task_struct *g, *p; 7980 int cpu = cpu_of(rq); 7981 7982 lockdep_assert_held(&rq->lock); 7983 7984 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 7985 for_each_process_thread(g, p) { 7986 if (task_cpu(p) != cpu) 7987 continue; 7988 7989 if (!task_on_rq_queued(p)) 7990 continue; 7991 7992 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 7993 } 7994 } 7995 7996 int sched_cpu_dying(unsigned int cpu) 7997 { 7998 struct rq *rq = cpu_rq(cpu); 7999 struct rq_flags rf; 8000 8001 /* Handle pending wakeups and then migrate everything off */ 8002 sched_tick_stop(cpu); 8003 8004 rq_lock_irqsave(rq, &rf); 8005 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8006 WARN(true, "Dying CPU not properly vacated!"); 8007 dump_rq_tasks(rq, KERN_WARNING); 8008 } 8009 rq_unlock_irqrestore(rq, &rf); 8010 8011 /* 8012 * Now that the CPU is offline, make sure we're welcome 8013 * to new tasks once we come back up. 8014 */ 8015 balance_push_set(cpu, false); 8016 8017 calc_load_migrate(rq); 8018 update_max_interval(); 8019 hrtick_clear(rq); 8020 return 0; 8021 } 8022 #endif 8023 8024 void __init sched_init_smp(void) 8025 { 8026 sched_init_numa(); 8027 8028 /* 8029 * There's no userspace yet to cause hotplug operations; hence all the 8030 * CPU masks are stable and all blatant races in the below code cannot 8031 * happen. 8032 */ 8033 mutex_lock(&sched_domains_mutex); 8034 sched_init_domains(cpu_active_mask); 8035 mutex_unlock(&sched_domains_mutex); 8036 8037 /* Move init over to a non-isolated CPU */ 8038 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8039 BUG(); 8040 sched_init_granularity(); 8041 8042 init_sched_rt_class(); 8043 init_sched_dl_class(); 8044 8045 sched_smp_initialized = true; 8046 } 8047 8048 static int __init migration_init(void) 8049 { 8050 sched_cpu_starting(smp_processor_id()); 8051 return 0; 8052 } 8053 early_initcall(migration_init); 8054 8055 #else 8056 void __init sched_init_smp(void) 8057 { 8058 sched_init_granularity(); 8059 } 8060 #endif /* CONFIG_SMP */ 8061 8062 int in_sched_functions(unsigned long addr) 8063 { 8064 return in_lock_functions(addr) || 8065 (addr >= (unsigned long)__sched_text_start 8066 && addr < (unsigned long)__sched_text_end); 8067 } 8068 8069 #ifdef CONFIG_CGROUP_SCHED 8070 /* 8071 * Default task group. 8072 * Every task in system belongs to this group at bootup. 8073 */ 8074 struct task_group root_task_group; 8075 LIST_HEAD(task_groups); 8076 8077 /* Cacheline aligned slab cache for task_group */ 8078 static struct kmem_cache *task_group_cache __read_mostly; 8079 #endif 8080 8081 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8082 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8083 8084 void __init sched_init(void) 8085 { 8086 unsigned long ptr = 0; 8087 int i; 8088 8089 /* Make sure the linker didn't screw up */ 8090 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8091 &fair_sched_class + 1 != &rt_sched_class || 8092 &rt_sched_class + 1 != &dl_sched_class); 8093 #ifdef CONFIG_SMP 8094 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8095 #endif 8096 8097 wait_bit_init(); 8098 8099 #ifdef CONFIG_FAIR_GROUP_SCHED 8100 ptr += 2 * nr_cpu_ids * sizeof(void **); 8101 #endif 8102 #ifdef CONFIG_RT_GROUP_SCHED 8103 ptr += 2 * nr_cpu_ids * sizeof(void **); 8104 #endif 8105 if (ptr) { 8106 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8107 8108 #ifdef CONFIG_FAIR_GROUP_SCHED 8109 root_task_group.se = (struct sched_entity **)ptr; 8110 ptr += nr_cpu_ids * sizeof(void **); 8111 8112 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8113 ptr += nr_cpu_ids * sizeof(void **); 8114 8115 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8116 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8117 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8118 #ifdef CONFIG_RT_GROUP_SCHED 8119 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8120 ptr += nr_cpu_ids * sizeof(void **); 8121 8122 root_task_group.rt_rq = (struct rt_rq **)ptr; 8123 ptr += nr_cpu_ids * sizeof(void **); 8124 8125 #endif /* CONFIG_RT_GROUP_SCHED */ 8126 } 8127 #ifdef CONFIG_CPUMASK_OFFSTACK 8128 for_each_possible_cpu(i) { 8129 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8130 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8131 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8132 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8133 } 8134 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8135 8136 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8137 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8138 8139 #ifdef CONFIG_SMP 8140 init_defrootdomain(); 8141 #endif 8142 8143 #ifdef CONFIG_RT_GROUP_SCHED 8144 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8145 global_rt_period(), global_rt_runtime()); 8146 #endif /* CONFIG_RT_GROUP_SCHED */ 8147 8148 #ifdef CONFIG_CGROUP_SCHED 8149 task_group_cache = KMEM_CACHE(task_group, 0); 8150 8151 list_add(&root_task_group.list, &task_groups); 8152 INIT_LIST_HEAD(&root_task_group.children); 8153 INIT_LIST_HEAD(&root_task_group.siblings); 8154 autogroup_init(&init_task); 8155 #endif /* CONFIG_CGROUP_SCHED */ 8156 8157 for_each_possible_cpu(i) { 8158 struct rq *rq; 8159 8160 rq = cpu_rq(i); 8161 raw_spin_lock_init(&rq->lock); 8162 rq->nr_running = 0; 8163 rq->calc_load_active = 0; 8164 rq->calc_load_update = jiffies + LOAD_FREQ; 8165 init_cfs_rq(&rq->cfs); 8166 init_rt_rq(&rq->rt); 8167 init_dl_rq(&rq->dl); 8168 #ifdef CONFIG_FAIR_GROUP_SCHED 8169 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8170 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8171 /* 8172 * How much CPU bandwidth does root_task_group get? 8173 * 8174 * In case of task-groups formed thr' the cgroup filesystem, it 8175 * gets 100% of the CPU resources in the system. This overall 8176 * system CPU resource is divided among the tasks of 8177 * root_task_group and its child task-groups in a fair manner, 8178 * based on each entity's (task or task-group's) weight 8179 * (se->load.weight). 8180 * 8181 * In other words, if root_task_group has 10 tasks of weight 8182 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8183 * then A0's share of the CPU resource is: 8184 * 8185 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8186 * 8187 * We achieve this by letting root_task_group's tasks sit 8188 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8189 */ 8190 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8191 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8192 8193 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8194 #ifdef CONFIG_RT_GROUP_SCHED 8195 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8196 #endif 8197 #ifdef CONFIG_SMP 8198 rq->sd = NULL; 8199 rq->rd = NULL; 8200 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 8201 rq->balance_callback = NULL; 8202 rq->active_balance = 0; 8203 rq->next_balance = jiffies; 8204 rq->push_cpu = 0; 8205 rq->cpu = i; 8206 rq->online = 0; 8207 rq->idle_stamp = 0; 8208 rq->avg_idle = 2*sysctl_sched_migration_cost; 8209 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8210 8211 INIT_LIST_HEAD(&rq->cfs_tasks); 8212 8213 rq_attach_root(rq, &def_root_domain); 8214 #ifdef CONFIG_NO_HZ_COMMON 8215 rq->last_blocked_load_update_tick = jiffies; 8216 atomic_set(&rq->nohz_flags, 0); 8217 8218 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8219 #endif 8220 #ifdef CONFIG_HOTPLUG_CPU 8221 rcuwait_init(&rq->hotplug_wait); 8222 #endif 8223 #endif /* CONFIG_SMP */ 8224 hrtick_rq_init(rq); 8225 atomic_set(&rq->nr_iowait, 0); 8226 } 8227 8228 set_load_weight(&init_task, false); 8229 8230 /* 8231 * The boot idle thread does lazy MMU switching as well: 8232 */ 8233 mmgrab(&init_mm); 8234 enter_lazy_tlb(&init_mm, current); 8235 8236 /* 8237 * Make us the idle thread. Technically, schedule() should not be 8238 * called from this thread, however somewhere below it might be, 8239 * but because we are the idle thread, we just pick up running again 8240 * when this runqueue becomes "idle". 8241 */ 8242 init_idle(current, smp_processor_id()); 8243 8244 calc_load_update = jiffies + LOAD_FREQ; 8245 8246 #ifdef CONFIG_SMP 8247 idle_thread_set_boot_cpu(); 8248 #endif 8249 init_sched_fair_class(); 8250 8251 init_schedstats(); 8252 8253 psi_init(); 8254 8255 init_uclamp(); 8256 8257 scheduler_running = 1; 8258 } 8259 8260 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8261 static inline int preempt_count_equals(int preempt_offset) 8262 { 8263 int nested = preempt_count() + rcu_preempt_depth(); 8264 8265 return (nested == preempt_offset); 8266 } 8267 8268 void __might_sleep(const char *file, int line, int preempt_offset) 8269 { 8270 /* 8271 * Blocking primitives will set (and therefore destroy) current->state, 8272 * since we will exit with TASK_RUNNING make sure we enter with it, 8273 * otherwise we will destroy state. 8274 */ 8275 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 8276 "do not call blocking ops when !TASK_RUNNING; " 8277 "state=%lx set at [<%p>] %pS\n", 8278 current->state, 8279 (void *)current->task_state_change, 8280 (void *)current->task_state_change); 8281 8282 ___might_sleep(file, line, preempt_offset); 8283 } 8284 EXPORT_SYMBOL(__might_sleep); 8285 8286 void ___might_sleep(const char *file, int line, int preempt_offset) 8287 { 8288 /* Ratelimiting timestamp: */ 8289 static unsigned long prev_jiffy; 8290 8291 unsigned long preempt_disable_ip; 8292 8293 /* WARN_ON_ONCE() by default, no rate limit required: */ 8294 rcu_sleep_check(); 8295 8296 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 8297 !is_idle_task(current) && !current->non_block_count) || 8298 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8299 oops_in_progress) 8300 return; 8301 8302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8303 return; 8304 prev_jiffy = jiffies; 8305 8306 /* Save this before calling printk(), since that will clobber it: */ 8307 preempt_disable_ip = get_preempt_disable_ip(current); 8308 8309 printk(KERN_ERR 8310 "BUG: sleeping function called from invalid context at %s:%d\n", 8311 file, line); 8312 printk(KERN_ERR 8313 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8314 in_atomic(), irqs_disabled(), current->non_block_count, 8315 current->pid, current->comm); 8316 8317 if (task_stack_end_corrupted(current)) 8318 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 8319 8320 debug_show_held_locks(current); 8321 if (irqs_disabled()) 8322 print_irqtrace_events(current); 8323 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 8324 && !preempt_count_equals(preempt_offset)) { 8325 pr_err("Preemption disabled at:"); 8326 print_ip_sym(KERN_ERR, preempt_disable_ip); 8327 } 8328 dump_stack(); 8329 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8330 } 8331 EXPORT_SYMBOL(___might_sleep); 8332 8333 void __cant_sleep(const char *file, int line, int preempt_offset) 8334 { 8335 static unsigned long prev_jiffy; 8336 8337 if (irqs_disabled()) 8338 return; 8339 8340 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8341 return; 8342 8343 if (preempt_count() > preempt_offset) 8344 return; 8345 8346 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8347 return; 8348 prev_jiffy = jiffies; 8349 8350 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8351 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8352 in_atomic(), irqs_disabled(), 8353 current->pid, current->comm); 8354 8355 debug_show_held_locks(current); 8356 dump_stack(); 8357 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8358 } 8359 EXPORT_SYMBOL_GPL(__cant_sleep); 8360 8361 #ifdef CONFIG_SMP 8362 void __cant_migrate(const char *file, int line) 8363 { 8364 static unsigned long prev_jiffy; 8365 8366 if (irqs_disabled()) 8367 return; 8368 8369 if (is_migration_disabled(current)) 8370 return; 8371 8372 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8373 return; 8374 8375 if (preempt_count() > 0) 8376 return; 8377 8378 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8379 return; 8380 prev_jiffy = jiffies; 8381 8382 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8383 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8384 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8385 current->pid, current->comm); 8386 8387 debug_show_held_locks(current); 8388 dump_stack(); 8389 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8390 } 8391 EXPORT_SYMBOL_GPL(__cant_migrate); 8392 #endif 8393 #endif 8394 8395 #ifdef CONFIG_MAGIC_SYSRQ 8396 void normalize_rt_tasks(void) 8397 { 8398 struct task_struct *g, *p; 8399 struct sched_attr attr = { 8400 .sched_policy = SCHED_NORMAL, 8401 }; 8402 8403 read_lock(&tasklist_lock); 8404 for_each_process_thread(g, p) { 8405 /* 8406 * Only normalize user tasks: 8407 */ 8408 if (p->flags & PF_KTHREAD) 8409 continue; 8410 8411 p->se.exec_start = 0; 8412 schedstat_set(p->se.statistics.wait_start, 0); 8413 schedstat_set(p->se.statistics.sleep_start, 0); 8414 schedstat_set(p->se.statistics.block_start, 0); 8415 8416 if (!dl_task(p) && !rt_task(p)) { 8417 /* 8418 * Renice negative nice level userspace 8419 * tasks back to 0: 8420 */ 8421 if (task_nice(p) < 0) 8422 set_user_nice(p, 0); 8423 continue; 8424 } 8425 8426 __sched_setscheduler(p, &attr, false, false); 8427 } 8428 read_unlock(&tasklist_lock); 8429 } 8430 8431 #endif /* CONFIG_MAGIC_SYSRQ */ 8432 8433 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8434 /* 8435 * These functions are only useful for the IA64 MCA handling, or kdb. 8436 * 8437 * They can only be called when the whole system has been 8438 * stopped - every CPU needs to be quiescent, and no scheduling 8439 * activity can take place. Using them for anything else would 8440 * be a serious bug, and as a result, they aren't even visible 8441 * under any other configuration. 8442 */ 8443 8444 /** 8445 * curr_task - return the current task for a given CPU. 8446 * @cpu: the processor in question. 8447 * 8448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8449 * 8450 * Return: The current task for @cpu. 8451 */ 8452 struct task_struct *curr_task(int cpu) 8453 { 8454 return cpu_curr(cpu); 8455 } 8456 8457 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8458 8459 #ifdef CONFIG_IA64 8460 /** 8461 * ia64_set_curr_task - set the current task for a given CPU. 8462 * @cpu: the processor in question. 8463 * @p: the task pointer to set. 8464 * 8465 * Description: This function must only be used when non-maskable interrupts 8466 * are serviced on a separate stack. It allows the architecture to switch the 8467 * notion of the current task on a CPU in a non-blocking manner. This function 8468 * must be called with all CPU's synchronized, and interrupts disabled, the 8469 * and caller must save the original value of the current task (see 8470 * curr_task() above) and restore that value before reenabling interrupts and 8471 * re-starting the system. 8472 * 8473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8474 */ 8475 void ia64_set_curr_task(int cpu, struct task_struct *p) 8476 { 8477 cpu_curr(cpu) = p; 8478 } 8479 8480 #endif 8481 8482 #ifdef CONFIG_CGROUP_SCHED 8483 /* task_group_lock serializes the addition/removal of task groups */ 8484 static DEFINE_SPINLOCK(task_group_lock); 8485 8486 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8487 struct task_group *parent) 8488 { 8489 #ifdef CONFIG_UCLAMP_TASK_GROUP 8490 enum uclamp_id clamp_id; 8491 8492 for_each_clamp_id(clamp_id) { 8493 uclamp_se_set(&tg->uclamp_req[clamp_id], 8494 uclamp_none(clamp_id), false); 8495 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8496 } 8497 #endif 8498 } 8499 8500 static void sched_free_group(struct task_group *tg) 8501 { 8502 free_fair_sched_group(tg); 8503 free_rt_sched_group(tg); 8504 autogroup_free(tg); 8505 kmem_cache_free(task_group_cache, tg); 8506 } 8507 8508 /* allocate runqueue etc for a new task group */ 8509 struct task_group *sched_create_group(struct task_group *parent) 8510 { 8511 struct task_group *tg; 8512 8513 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8514 if (!tg) 8515 return ERR_PTR(-ENOMEM); 8516 8517 if (!alloc_fair_sched_group(tg, parent)) 8518 goto err; 8519 8520 if (!alloc_rt_sched_group(tg, parent)) 8521 goto err; 8522 8523 alloc_uclamp_sched_group(tg, parent); 8524 8525 return tg; 8526 8527 err: 8528 sched_free_group(tg); 8529 return ERR_PTR(-ENOMEM); 8530 } 8531 8532 void sched_online_group(struct task_group *tg, struct task_group *parent) 8533 { 8534 unsigned long flags; 8535 8536 spin_lock_irqsave(&task_group_lock, flags); 8537 list_add_rcu(&tg->list, &task_groups); 8538 8539 /* Root should already exist: */ 8540 WARN_ON(!parent); 8541 8542 tg->parent = parent; 8543 INIT_LIST_HEAD(&tg->children); 8544 list_add_rcu(&tg->siblings, &parent->children); 8545 spin_unlock_irqrestore(&task_group_lock, flags); 8546 8547 online_fair_sched_group(tg); 8548 } 8549 8550 /* rcu callback to free various structures associated with a task group */ 8551 static void sched_free_group_rcu(struct rcu_head *rhp) 8552 { 8553 /* Now it should be safe to free those cfs_rqs: */ 8554 sched_free_group(container_of(rhp, struct task_group, rcu)); 8555 } 8556 8557 void sched_destroy_group(struct task_group *tg) 8558 { 8559 /* Wait for possible concurrent references to cfs_rqs complete: */ 8560 call_rcu(&tg->rcu, sched_free_group_rcu); 8561 } 8562 8563 void sched_offline_group(struct task_group *tg) 8564 { 8565 unsigned long flags; 8566 8567 /* End participation in shares distribution: */ 8568 unregister_fair_sched_group(tg); 8569 8570 spin_lock_irqsave(&task_group_lock, flags); 8571 list_del_rcu(&tg->list); 8572 list_del_rcu(&tg->siblings); 8573 spin_unlock_irqrestore(&task_group_lock, flags); 8574 } 8575 8576 static void sched_change_group(struct task_struct *tsk, int type) 8577 { 8578 struct task_group *tg; 8579 8580 /* 8581 * All callers are synchronized by task_rq_lock(); we do not use RCU 8582 * which is pointless here. Thus, we pass "true" to task_css_check() 8583 * to prevent lockdep warnings. 8584 */ 8585 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8586 struct task_group, css); 8587 tg = autogroup_task_group(tsk, tg); 8588 tsk->sched_task_group = tg; 8589 8590 #ifdef CONFIG_FAIR_GROUP_SCHED 8591 if (tsk->sched_class->task_change_group) 8592 tsk->sched_class->task_change_group(tsk, type); 8593 else 8594 #endif 8595 set_task_rq(tsk, task_cpu(tsk)); 8596 } 8597 8598 /* 8599 * Change task's runqueue when it moves between groups. 8600 * 8601 * The caller of this function should have put the task in its new group by 8602 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8603 * its new group. 8604 */ 8605 void sched_move_task(struct task_struct *tsk) 8606 { 8607 int queued, running, queue_flags = 8608 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8609 struct rq_flags rf; 8610 struct rq *rq; 8611 8612 rq = task_rq_lock(tsk, &rf); 8613 update_rq_clock(rq); 8614 8615 running = task_current(rq, tsk); 8616 queued = task_on_rq_queued(tsk); 8617 8618 if (queued) 8619 dequeue_task(rq, tsk, queue_flags); 8620 if (running) 8621 put_prev_task(rq, tsk); 8622 8623 sched_change_group(tsk, TASK_MOVE_GROUP); 8624 8625 if (queued) 8626 enqueue_task(rq, tsk, queue_flags); 8627 if (running) { 8628 set_next_task(rq, tsk); 8629 /* 8630 * After changing group, the running task may have joined a 8631 * throttled one but it's still the running task. Trigger a 8632 * resched to make sure that task can still run. 8633 */ 8634 resched_curr(rq); 8635 } 8636 8637 task_rq_unlock(rq, tsk, &rf); 8638 } 8639 8640 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8641 { 8642 return css ? container_of(css, struct task_group, css) : NULL; 8643 } 8644 8645 static struct cgroup_subsys_state * 8646 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8647 { 8648 struct task_group *parent = css_tg(parent_css); 8649 struct task_group *tg; 8650 8651 if (!parent) { 8652 /* This is early initialization for the top cgroup */ 8653 return &root_task_group.css; 8654 } 8655 8656 tg = sched_create_group(parent); 8657 if (IS_ERR(tg)) 8658 return ERR_PTR(-ENOMEM); 8659 8660 return &tg->css; 8661 } 8662 8663 /* Expose task group only after completing cgroup initialization */ 8664 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8665 { 8666 struct task_group *tg = css_tg(css); 8667 struct task_group *parent = css_tg(css->parent); 8668 8669 if (parent) 8670 sched_online_group(tg, parent); 8671 8672 #ifdef CONFIG_UCLAMP_TASK_GROUP 8673 /* Propagate the effective uclamp value for the new group */ 8674 cpu_util_update_eff(css); 8675 #endif 8676 8677 return 0; 8678 } 8679 8680 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8681 { 8682 struct task_group *tg = css_tg(css); 8683 8684 sched_offline_group(tg); 8685 } 8686 8687 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8688 { 8689 struct task_group *tg = css_tg(css); 8690 8691 /* 8692 * Relies on the RCU grace period between css_released() and this. 8693 */ 8694 sched_free_group(tg); 8695 } 8696 8697 /* 8698 * This is called before wake_up_new_task(), therefore we really only 8699 * have to set its group bits, all the other stuff does not apply. 8700 */ 8701 static void cpu_cgroup_fork(struct task_struct *task) 8702 { 8703 struct rq_flags rf; 8704 struct rq *rq; 8705 8706 rq = task_rq_lock(task, &rf); 8707 8708 update_rq_clock(rq); 8709 sched_change_group(task, TASK_SET_GROUP); 8710 8711 task_rq_unlock(rq, task, &rf); 8712 } 8713 8714 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8715 { 8716 struct task_struct *task; 8717 struct cgroup_subsys_state *css; 8718 int ret = 0; 8719 8720 cgroup_taskset_for_each(task, css, tset) { 8721 #ifdef CONFIG_RT_GROUP_SCHED 8722 if (!sched_rt_can_attach(css_tg(css), task)) 8723 return -EINVAL; 8724 #endif 8725 /* 8726 * Serialize against wake_up_new_task() such that if it's 8727 * running, we're sure to observe its full state. 8728 */ 8729 raw_spin_lock_irq(&task->pi_lock); 8730 /* 8731 * Avoid calling sched_move_task() before wake_up_new_task() 8732 * has happened. This would lead to problems with PELT, due to 8733 * move wanting to detach+attach while we're not attached yet. 8734 */ 8735 if (task->state == TASK_NEW) 8736 ret = -EINVAL; 8737 raw_spin_unlock_irq(&task->pi_lock); 8738 8739 if (ret) 8740 break; 8741 } 8742 return ret; 8743 } 8744 8745 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8746 { 8747 struct task_struct *task; 8748 struct cgroup_subsys_state *css; 8749 8750 cgroup_taskset_for_each(task, css, tset) 8751 sched_move_task(task); 8752 } 8753 8754 #ifdef CONFIG_UCLAMP_TASK_GROUP 8755 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8756 { 8757 struct cgroup_subsys_state *top_css = css; 8758 struct uclamp_se *uc_parent = NULL; 8759 struct uclamp_se *uc_se = NULL; 8760 unsigned int eff[UCLAMP_CNT]; 8761 enum uclamp_id clamp_id; 8762 unsigned int clamps; 8763 8764 css_for_each_descendant_pre(css, top_css) { 8765 uc_parent = css_tg(css)->parent 8766 ? css_tg(css)->parent->uclamp : NULL; 8767 8768 for_each_clamp_id(clamp_id) { 8769 /* Assume effective clamps matches requested clamps */ 8770 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8771 /* Cap effective clamps with parent's effective clamps */ 8772 if (uc_parent && 8773 eff[clamp_id] > uc_parent[clamp_id].value) { 8774 eff[clamp_id] = uc_parent[clamp_id].value; 8775 } 8776 } 8777 /* Ensure protection is always capped by limit */ 8778 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8779 8780 /* Propagate most restrictive effective clamps */ 8781 clamps = 0x0; 8782 uc_se = css_tg(css)->uclamp; 8783 for_each_clamp_id(clamp_id) { 8784 if (eff[clamp_id] == uc_se[clamp_id].value) 8785 continue; 8786 uc_se[clamp_id].value = eff[clamp_id]; 8787 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8788 clamps |= (0x1 << clamp_id); 8789 } 8790 if (!clamps) { 8791 css = css_rightmost_descendant(css); 8792 continue; 8793 } 8794 8795 /* Immediately update descendants RUNNABLE tasks */ 8796 uclamp_update_active_tasks(css, clamps); 8797 } 8798 } 8799 8800 /* 8801 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8802 * C expression. Since there is no way to convert a macro argument (N) into a 8803 * character constant, use two levels of macros. 8804 */ 8805 #define _POW10(exp) ((unsigned int)1e##exp) 8806 #define POW10(exp) _POW10(exp) 8807 8808 struct uclamp_request { 8809 #define UCLAMP_PERCENT_SHIFT 2 8810 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8811 s64 percent; 8812 u64 util; 8813 int ret; 8814 }; 8815 8816 static inline struct uclamp_request 8817 capacity_from_percent(char *buf) 8818 { 8819 struct uclamp_request req = { 8820 .percent = UCLAMP_PERCENT_SCALE, 8821 .util = SCHED_CAPACITY_SCALE, 8822 .ret = 0, 8823 }; 8824 8825 buf = strim(buf); 8826 if (strcmp(buf, "max")) { 8827 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8828 &req.percent); 8829 if (req.ret) 8830 return req; 8831 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8832 req.ret = -ERANGE; 8833 return req; 8834 } 8835 8836 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8837 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8838 } 8839 8840 return req; 8841 } 8842 8843 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8844 size_t nbytes, loff_t off, 8845 enum uclamp_id clamp_id) 8846 { 8847 struct uclamp_request req; 8848 struct task_group *tg; 8849 8850 req = capacity_from_percent(buf); 8851 if (req.ret) 8852 return req.ret; 8853 8854 static_branch_enable(&sched_uclamp_used); 8855 8856 mutex_lock(&uclamp_mutex); 8857 rcu_read_lock(); 8858 8859 tg = css_tg(of_css(of)); 8860 if (tg->uclamp_req[clamp_id].value != req.util) 8861 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8862 8863 /* 8864 * Because of not recoverable conversion rounding we keep track of the 8865 * exact requested value 8866 */ 8867 tg->uclamp_pct[clamp_id] = req.percent; 8868 8869 /* Update effective clamps to track the most restrictive value */ 8870 cpu_util_update_eff(of_css(of)); 8871 8872 rcu_read_unlock(); 8873 mutex_unlock(&uclamp_mutex); 8874 8875 return nbytes; 8876 } 8877 8878 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8879 char *buf, size_t nbytes, 8880 loff_t off) 8881 { 8882 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8883 } 8884 8885 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8886 char *buf, size_t nbytes, 8887 loff_t off) 8888 { 8889 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8890 } 8891 8892 static inline void cpu_uclamp_print(struct seq_file *sf, 8893 enum uclamp_id clamp_id) 8894 { 8895 struct task_group *tg; 8896 u64 util_clamp; 8897 u64 percent; 8898 u32 rem; 8899 8900 rcu_read_lock(); 8901 tg = css_tg(seq_css(sf)); 8902 util_clamp = tg->uclamp_req[clamp_id].value; 8903 rcu_read_unlock(); 8904 8905 if (util_clamp == SCHED_CAPACITY_SCALE) { 8906 seq_puts(sf, "max\n"); 8907 return; 8908 } 8909 8910 percent = tg->uclamp_pct[clamp_id]; 8911 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8912 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8913 } 8914 8915 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8916 { 8917 cpu_uclamp_print(sf, UCLAMP_MIN); 8918 return 0; 8919 } 8920 8921 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8922 { 8923 cpu_uclamp_print(sf, UCLAMP_MAX); 8924 return 0; 8925 } 8926 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8927 8928 #ifdef CONFIG_FAIR_GROUP_SCHED 8929 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8930 struct cftype *cftype, u64 shareval) 8931 { 8932 if (shareval > scale_load_down(ULONG_MAX)) 8933 shareval = MAX_SHARES; 8934 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8935 } 8936 8937 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8938 struct cftype *cft) 8939 { 8940 struct task_group *tg = css_tg(css); 8941 8942 return (u64) scale_load_down(tg->shares); 8943 } 8944 8945 #ifdef CONFIG_CFS_BANDWIDTH 8946 static DEFINE_MUTEX(cfs_constraints_mutex); 8947 8948 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8949 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8950 /* More than 203 days if BW_SHIFT equals 20. */ 8951 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8952 8953 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8954 8955 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8956 { 8957 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8959 8960 if (tg == &root_task_group) 8961 return -EINVAL; 8962 8963 /* 8964 * Ensure we have at some amount of bandwidth every period. This is 8965 * to prevent reaching a state of large arrears when throttled via 8966 * entity_tick() resulting in prolonged exit starvation. 8967 */ 8968 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8969 return -EINVAL; 8970 8971 /* 8972 * Likewise, bound things on the otherside by preventing insane quota 8973 * periods. This also allows us to normalize in computing quota 8974 * feasibility. 8975 */ 8976 if (period > max_cfs_quota_period) 8977 return -EINVAL; 8978 8979 /* 8980 * Bound quota to defend quota against overflow during bandwidth shift. 8981 */ 8982 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 8983 return -EINVAL; 8984 8985 /* 8986 * Prevent race between setting of cfs_rq->runtime_enabled and 8987 * unthrottle_offline_cfs_rqs(). 8988 */ 8989 get_online_cpus(); 8990 mutex_lock(&cfs_constraints_mutex); 8991 ret = __cfs_schedulable(tg, period, quota); 8992 if (ret) 8993 goto out_unlock; 8994 8995 runtime_enabled = quota != RUNTIME_INF; 8996 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8997 /* 8998 * If we need to toggle cfs_bandwidth_used, off->on must occur 8999 * before making related changes, and on->off must occur afterwards 9000 */ 9001 if (runtime_enabled && !runtime_was_enabled) 9002 cfs_bandwidth_usage_inc(); 9003 raw_spin_lock_irq(&cfs_b->lock); 9004 cfs_b->period = ns_to_ktime(period); 9005 cfs_b->quota = quota; 9006 9007 __refill_cfs_bandwidth_runtime(cfs_b); 9008 9009 /* Restart the period timer (if active) to handle new period expiry: */ 9010 if (runtime_enabled) 9011 start_cfs_bandwidth(cfs_b); 9012 9013 raw_spin_unlock_irq(&cfs_b->lock); 9014 9015 for_each_online_cpu(i) { 9016 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9017 struct rq *rq = cfs_rq->rq; 9018 struct rq_flags rf; 9019 9020 rq_lock_irq(rq, &rf); 9021 cfs_rq->runtime_enabled = runtime_enabled; 9022 cfs_rq->runtime_remaining = 0; 9023 9024 if (cfs_rq->throttled) 9025 unthrottle_cfs_rq(cfs_rq); 9026 rq_unlock_irq(rq, &rf); 9027 } 9028 if (runtime_was_enabled && !runtime_enabled) 9029 cfs_bandwidth_usage_dec(); 9030 out_unlock: 9031 mutex_unlock(&cfs_constraints_mutex); 9032 put_online_cpus(); 9033 9034 return ret; 9035 } 9036 9037 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9038 { 9039 u64 quota, period; 9040 9041 period = ktime_to_ns(tg->cfs_bandwidth.period); 9042 if (cfs_quota_us < 0) 9043 quota = RUNTIME_INF; 9044 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9045 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9046 else 9047 return -EINVAL; 9048 9049 return tg_set_cfs_bandwidth(tg, period, quota); 9050 } 9051 9052 static long tg_get_cfs_quota(struct task_group *tg) 9053 { 9054 u64 quota_us; 9055 9056 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9057 return -1; 9058 9059 quota_us = tg->cfs_bandwidth.quota; 9060 do_div(quota_us, NSEC_PER_USEC); 9061 9062 return quota_us; 9063 } 9064 9065 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9066 { 9067 u64 quota, period; 9068 9069 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9070 return -EINVAL; 9071 9072 period = (u64)cfs_period_us * NSEC_PER_USEC; 9073 quota = tg->cfs_bandwidth.quota; 9074 9075 return tg_set_cfs_bandwidth(tg, period, quota); 9076 } 9077 9078 static long tg_get_cfs_period(struct task_group *tg) 9079 { 9080 u64 cfs_period_us; 9081 9082 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9083 do_div(cfs_period_us, NSEC_PER_USEC); 9084 9085 return cfs_period_us; 9086 } 9087 9088 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9089 struct cftype *cft) 9090 { 9091 return tg_get_cfs_quota(css_tg(css)); 9092 } 9093 9094 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9095 struct cftype *cftype, s64 cfs_quota_us) 9096 { 9097 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9098 } 9099 9100 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9101 struct cftype *cft) 9102 { 9103 return tg_get_cfs_period(css_tg(css)); 9104 } 9105 9106 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9107 struct cftype *cftype, u64 cfs_period_us) 9108 { 9109 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9110 } 9111 9112 struct cfs_schedulable_data { 9113 struct task_group *tg; 9114 u64 period, quota; 9115 }; 9116 9117 /* 9118 * normalize group quota/period to be quota/max_period 9119 * note: units are usecs 9120 */ 9121 static u64 normalize_cfs_quota(struct task_group *tg, 9122 struct cfs_schedulable_data *d) 9123 { 9124 u64 quota, period; 9125 9126 if (tg == d->tg) { 9127 period = d->period; 9128 quota = d->quota; 9129 } else { 9130 period = tg_get_cfs_period(tg); 9131 quota = tg_get_cfs_quota(tg); 9132 } 9133 9134 /* note: these should typically be equivalent */ 9135 if (quota == RUNTIME_INF || quota == -1) 9136 return RUNTIME_INF; 9137 9138 return to_ratio(period, quota); 9139 } 9140 9141 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9142 { 9143 struct cfs_schedulable_data *d = data; 9144 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9145 s64 quota = 0, parent_quota = -1; 9146 9147 if (!tg->parent) { 9148 quota = RUNTIME_INF; 9149 } else { 9150 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9151 9152 quota = normalize_cfs_quota(tg, d); 9153 parent_quota = parent_b->hierarchical_quota; 9154 9155 /* 9156 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9157 * always take the min. On cgroup1, only inherit when no 9158 * limit is set: 9159 */ 9160 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9161 quota = min(quota, parent_quota); 9162 } else { 9163 if (quota == RUNTIME_INF) 9164 quota = parent_quota; 9165 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9166 return -EINVAL; 9167 } 9168 } 9169 cfs_b->hierarchical_quota = quota; 9170 9171 return 0; 9172 } 9173 9174 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9175 { 9176 int ret; 9177 struct cfs_schedulable_data data = { 9178 .tg = tg, 9179 .period = period, 9180 .quota = quota, 9181 }; 9182 9183 if (quota != RUNTIME_INF) { 9184 do_div(data.period, NSEC_PER_USEC); 9185 do_div(data.quota, NSEC_PER_USEC); 9186 } 9187 9188 rcu_read_lock(); 9189 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9190 rcu_read_unlock(); 9191 9192 return ret; 9193 } 9194 9195 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9196 { 9197 struct task_group *tg = css_tg(seq_css(sf)); 9198 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9199 9200 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9201 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9202 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9203 9204 if (schedstat_enabled() && tg != &root_task_group) { 9205 u64 ws = 0; 9206 int i; 9207 9208 for_each_possible_cpu(i) 9209 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 9210 9211 seq_printf(sf, "wait_sum %llu\n", ws); 9212 } 9213 9214 return 0; 9215 } 9216 #endif /* CONFIG_CFS_BANDWIDTH */ 9217 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9218 9219 #ifdef CONFIG_RT_GROUP_SCHED 9220 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9221 struct cftype *cft, s64 val) 9222 { 9223 return sched_group_set_rt_runtime(css_tg(css), val); 9224 } 9225 9226 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9227 struct cftype *cft) 9228 { 9229 return sched_group_rt_runtime(css_tg(css)); 9230 } 9231 9232 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9233 struct cftype *cftype, u64 rt_period_us) 9234 { 9235 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9236 } 9237 9238 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9239 struct cftype *cft) 9240 { 9241 return sched_group_rt_period(css_tg(css)); 9242 } 9243 #endif /* CONFIG_RT_GROUP_SCHED */ 9244 9245 static struct cftype cpu_legacy_files[] = { 9246 #ifdef CONFIG_FAIR_GROUP_SCHED 9247 { 9248 .name = "shares", 9249 .read_u64 = cpu_shares_read_u64, 9250 .write_u64 = cpu_shares_write_u64, 9251 }, 9252 #endif 9253 #ifdef CONFIG_CFS_BANDWIDTH 9254 { 9255 .name = "cfs_quota_us", 9256 .read_s64 = cpu_cfs_quota_read_s64, 9257 .write_s64 = cpu_cfs_quota_write_s64, 9258 }, 9259 { 9260 .name = "cfs_period_us", 9261 .read_u64 = cpu_cfs_period_read_u64, 9262 .write_u64 = cpu_cfs_period_write_u64, 9263 }, 9264 { 9265 .name = "stat", 9266 .seq_show = cpu_cfs_stat_show, 9267 }, 9268 #endif 9269 #ifdef CONFIG_RT_GROUP_SCHED 9270 { 9271 .name = "rt_runtime_us", 9272 .read_s64 = cpu_rt_runtime_read, 9273 .write_s64 = cpu_rt_runtime_write, 9274 }, 9275 { 9276 .name = "rt_period_us", 9277 .read_u64 = cpu_rt_period_read_uint, 9278 .write_u64 = cpu_rt_period_write_uint, 9279 }, 9280 #endif 9281 #ifdef CONFIG_UCLAMP_TASK_GROUP 9282 { 9283 .name = "uclamp.min", 9284 .flags = CFTYPE_NOT_ON_ROOT, 9285 .seq_show = cpu_uclamp_min_show, 9286 .write = cpu_uclamp_min_write, 9287 }, 9288 { 9289 .name = "uclamp.max", 9290 .flags = CFTYPE_NOT_ON_ROOT, 9291 .seq_show = cpu_uclamp_max_show, 9292 .write = cpu_uclamp_max_write, 9293 }, 9294 #endif 9295 { } /* Terminate */ 9296 }; 9297 9298 static int cpu_extra_stat_show(struct seq_file *sf, 9299 struct cgroup_subsys_state *css) 9300 { 9301 #ifdef CONFIG_CFS_BANDWIDTH 9302 { 9303 struct task_group *tg = css_tg(css); 9304 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9305 u64 throttled_usec; 9306 9307 throttled_usec = cfs_b->throttled_time; 9308 do_div(throttled_usec, NSEC_PER_USEC); 9309 9310 seq_printf(sf, "nr_periods %d\n" 9311 "nr_throttled %d\n" 9312 "throttled_usec %llu\n", 9313 cfs_b->nr_periods, cfs_b->nr_throttled, 9314 throttled_usec); 9315 } 9316 #endif 9317 return 0; 9318 } 9319 9320 #ifdef CONFIG_FAIR_GROUP_SCHED 9321 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9322 struct cftype *cft) 9323 { 9324 struct task_group *tg = css_tg(css); 9325 u64 weight = scale_load_down(tg->shares); 9326 9327 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9328 } 9329 9330 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9331 struct cftype *cft, u64 weight) 9332 { 9333 /* 9334 * cgroup weight knobs should use the common MIN, DFL and MAX 9335 * values which are 1, 100 and 10000 respectively. While it loses 9336 * a bit of range on both ends, it maps pretty well onto the shares 9337 * value used by scheduler and the round-trip conversions preserve 9338 * the original value over the entire range. 9339 */ 9340 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9341 return -ERANGE; 9342 9343 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9344 9345 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9346 } 9347 9348 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9349 struct cftype *cft) 9350 { 9351 unsigned long weight = scale_load_down(css_tg(css)->shares); 9352 int last_delta = INT_MAX; 9353 int prio, delta; 9354 9355 /* find the closest nice value to the current weight */ 9356 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9357 delta = abs(sched_prio_to_weight[prio] - weight); 9358 if (delta >= last_delta) 9359 break; 9360 last_delta = delta; 9361 } 9362 9363 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9364 } 9365 9366 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9367 struct cftype *cft, s64 nice) 9368 { 9369 unsigned long weight; 9370 int idx; 9371 9372 if (nice < MIN_NICE || nice > MAX_NICE) 9373 return -ERANGE; 9374 9375 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9376 idx = array_index_nospec(idx, 40); 9377 weight = sched_prio_to_weight[idx]; 9378 9379 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9380 } 9381 #endif 9382 9383 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9384 long period, long quota) 9385 { 9386 if (quota < 0) 9387 seq_puts(sf, "max"); 9388 else 9389 seq_printf(sf, "%ld", quota); 9390 9391 seq_printf(sf, " %ld\n", period); 9392 } 9393 9394 /* caller should put the current value in *@periodp before calling */ 9395 static int __maybe_unused cpu_period_quota_parse(char *buf, 9396 u64 *periodp, u64 *quotap) 9397 { 9398 char tok[21]; /* U64_MAX */ 9399 9400 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9401 return -EINVAL; 9402 9403 *periodp *= NSEC_PER_USEC; 9404 9405 if (sscanf(tok, "%llu", quotap)) 9406 *quotap *= NSEC_PER_USEC; 9407 else if (!strcmp(tok, "max")) 9408 *quotap = RUNTIME_INF; 9409 else 9410 return -EINVAL; 9411 9412 return 0; 9413 } 9414 9415 #ifdef CONFIG_CFS_BANDWIDTH 9416 static int cpu_max_show(struct seq_file *sf, void *v) 9417 { 9418 struct task_group *tg = css_tg(seq_css(sf)); 9419 9420 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9421 return 0; 9422 } 9423 9424 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9425 char *buf, size_t nbytes, loff_t off) 9426 { 9427 struct task_group *tg = css_tg(of_css(of)); 9428 u64 period = tg_get_cfs_period(tg); 9429 u64 quota; 9430 int ret; 9431 9432 ret = cpu_period_quota_parse(buf, &period, "a); 9433 if (!ret) 9434 ret = tg_set_cfs_bandwidth(tg, period, quota); 9435 return ret ?: nbytes; 9436 } 9437 #endif 9438 9439 static struct cftype cpu_files[] = { 9440 #ifdef CONFIG_FAIR_GROUP_SCHED 9441 { 9442 .name = "weight", 9443 .flags = CFTYPE_NOT_ON_ROOT, 9444 .read_u64 = cpu_weight_read_u64, 9445 .write_u64 = cpu_weight_write_u64, 9446 }, 9447 { 9448 .name = "weight.nice", 9449 .flags = CFTYPE_NOT_ON_ROOT, 9450 .read_s64 = cpu_weight_nice_read_s64, 9451 .write_s64 = cpu_weight_nice_write_s64, 9452 }, 9453 #endif 9454 #ifdef CONFIG_CFS_BANDWIDTH 9455 { 9456 .name = "max", 9457 .flags = CFTYPE_NOT_ON_ROOT, 9458 .seq_show = cpu_max_show, 9459 .write = cpu_max_write, 9460 }, 9461 #endif 9462 #ifdef CONFIG_UCLAMP_TASK_GROUP 9463 { 9464 .name = "uclamp.min", 9465 .flags = CFTYPE_NOT_ON_ROOT, 9466 .seq_show = cpu_uclamp_min_show, 9467 .write = cpu_uclamp_min_write, 9468 }, 9469 { 9470 .name = "uclamp.max", 9471 .flags = CFTYPE_NOT_ON_ROOT, 9472 .seq_show = cpu_uclamp_max_show, 9473 .write = cpu_uclamp_max_write, 9474 }, 9475 #endif 9476 { } /* terminate */ 9477 }; 9478 9479 struct cgroup_subsys cpu_cgrp_subsys = { 9480 .css_alloc = cpu_cgroup_css_alloc, 9481 .css_online = cpu_cgroup_css_online, 9482 .css_released = cpu_cgroup_css_released, 9483 .css_free = cpu_cgroup_css_free, 9484 .css_extra_stat_show = cpu_extra_stat_show, 9485 .fork = cpu_cgroup_fork, 9486 .can_attach = cpu_cgroup_can_attach, 9487 .attach = cpu_cgroup_attach, 9488 .legacy_cftypes = cpu_legacy_files, 9489 .dfl_cftypes = cpu_files, 9490 .early_init = true, 9491 .threaded = true, 9492 }; 9493 9494 #endif /* CONFIG_CGROUP_SCHED */ 9495 9496 void dump_cpu_task(int cpu) 9497 { 9498 pr_info("Task dump for CPU %d:\n", cpu); 9499 sched_show_task(cpu_curr(cpu)); 9500 } 9501 9502 /* 9503 * Nice levels are multiplicative, with a gentle 10% change for every 9504 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9505 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9506 * that remained on nice 0. 9507 * 9508 * The "10% effect" is relative and cumulative: from _any_ nice level, 9509 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9510 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9511 * If a task goes up by ~10% and another task goes down by ~10% then 9512 * the relative distance between them is ~25%.) 9513 */ 9514 const int sched_prio_to_weight[40] = { 9515 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9516 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9517 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9518 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9519 /* 0 */ 1024, 820, 655, 526, 423, 9520 /* 5 */ 335, 272, 215, 172, 137, 9521 /* 10 */ 110, 87, 70, 56, 45, 9522 /* 15 */ 36, 29, 23, 18, 15, 9523 }; 9524 9525 /* 9526 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9527 * 9528 * In cases where the weight does not change often, we can use the 9529 * precalculated inverse to speed up arithmetics by turning divisions 9530 * into multiplications: 9531 */ 9532 const u32 sched_prio_to_wmult[40] = { 9533 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9534 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9535 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9536 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9537 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9538 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9539 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9540 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9541 }; 9542 9543 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9544 { 9545 trace_sched_update_nr_running_tp(rq, count); 9546 } 9547