xref: /openbmc/linux/kernel/sched/core.c (revision 62e7ca52)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 	smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100 
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 	smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108 
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 	unsigned long delta;
112 	ktime_t soft, hard, now;
113 
114 	for (;;) {
115 		if (hrtimer_active(period_timer))
116 			break;
117 
118 		now = hrtimer_cb_get_time(period_timer);
119 		hrtimer_forward(period_timer, now, period);
120 
121 		soft = hrtimer_get_softexpires(period_timer);
122 		hard = hrtimer_get_expires(period_timer);
123 		delta = ktime_to_ns(ktime_sub(hard, soft));
124 		__hrtimer_start_range_ns(period_timer, soft, delta,
125 					 HRTIMER_MODE_ABS_PINNED, 0);
126 	}
127 }
128 
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133 
134 void update_rq_clock(struct rq *rq)
135 {
136 	s64 delta;
137 
138 	if (rq->skip_clock_update > 0)
139 		return;
140 
141 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 	if (delta < 0)
143 		return;
144 	rq->clock += delta;
145 	update_rq_clock_task(rq, delta);
146 }
147 
148 /*
149  * Debugging: various feature bits
150  */
151 
152 #define SCHED_FEAT(name, enabled)	\
153 	(1UL << __SCHED_FEAT_##name) * enabled |
154 
155 const_debug unsigned int sysctl_sched_features =
156 #include "features.h"
157 	0;
158 
159 #undef SCHED_FEAT
160 
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled)	\
163 	#name ,
164 
165 static const char * const sched_feat_names[] = {
166 #include "features.h"
167 };
168 
169 #undef SCHED_FEAT
170 
171 static int sched_feat_show(struct seq_file *m, void *v)
172 {
173 	int i;
174 
175 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176 		if (!(sysctl_sched_features & (1UL << i)))
177 			seq_puts(m, "NO_");
178 		seq_printf(m, "%s ", sched_feat_names[i]);
179 	}
180 	seq_puts(m, "\n");
181 
182 	return 0;
183 }
184 
185 #ifdef HAVE_JUMP_LABEL
186 
187 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
189 
190 #define SCHED_FEAT(name, enabled)	\
191 	jump_label_key__##enabled ,
192 
193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 #include "features.h"
195 };
196 
197 #undef SCHED_FEAT
198 
199 static void sched_feat_disable(int i)
200 {
201 	if (static_key_enabled(&sched_feat_keys[i]))
202 		static_key_slow_dec(&sched_feat_keys[i]);
203 }
204 
205 static void sched_feat_enable(int i)
206 {
207 	if (!static_key_enabled(&sched_feat_keys[i]))
208 		static_key_slow_inc(&sched_feat_keys[i]);
209 }
210 #else
211 static void sched_feat_disable(int i) { };
212 static void sched_feat_enable(int i) { };
213 #endif /* HAVE_JUMP_LABEL */
214 
215 static int sched_feat_set(char *cmp)
216 {
217 	int i;
218 	int neg = 0;
219 
220 	if (strncmp(cmp, "NO_", 3) == 0) {
221 		neg = 1;
222 		cmp += 3;
223 	}
224 
225 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227 			if (neg) {
228 				sysctl_sched_features &= ~(1UL << i);
229 				sched_feat_disable(i);
230 			} else {
231 				sysctl_sched_features |= (1UL << i);
232 				sched_feat_enable(i);
233 			}
234 			break;
235 		}
236 	}
237 
238 	return i;
239 }
240 
241 static ssize_t
242 sched_feat_write(struct file *filp, const char __user *ubuf,
243 		size_t cnt, loff_t *ppos)
244 {
245 	char buf[64];
246 	char *cmp;
247 	int i;
248 	struct inode *inode;
249 
250 	if (cnt > 63)
251 		cnt = 63;
252 
253 	if (copy_from_user(&buf, ubuf, cnt))
254 		return -EFAULT;
255 
256 	buf[cnt] = 0;
257 	cmp = strstrip(buf);
258 
259 	/* Ensure the static_key remains in a consistent state */
260 	inode = file_inode(filp);
261 	mutex_lock(&inode->i_mutex);
262 	i = sched_feat_set(cmp);
263 	mutex_unlock(&inode->i_mutex);
264 	if (i == __SCHED_FEAT_NR)
265 		return -EINVAL;
266 
267 	*ppos += cnt;
268 
269 	return cnt;
270 }
271 
272 static int sched_feat_open(struct inode *inode, struct file *filp)
273 {
274 	return single_open(filp, sched_feat_show, NULL);
275 }
276 
277 static const struct file_operations sched_feat_fops = {
278 	.open		= sched_feat_open,
279 	.write		= sched_feat_write,
280 	.read		= seq_read,
281 	.llseek		= seq_lseek,
282 	.release	= single_release,
283 };
284 
285 static __init int sched_init_debug(void)
286 {
287 	debugfs_create_file("sched_features", 0644, NULL, NULL,
288 			&sched_feat_fops);
289 
290 	return 0;
291 }
292 late_initcall(sched_init_debug);
293 #endif /* CONFIG_SCHED_DEBUG */
294 
295 /*
296  * Number of tasks to iterate in a single balance run.
297  * Limited because this is done with IRQs disabled.
298  */
299 const_debug unsigned int sysctl_sched_nr_migrate = 32;
300 
301 /*
302  * period over which we average the RT time consumption, measured
303  * in ms.
304  *
305  * default: 1s
306  */
307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308 
309 /*
310  * period over which we measure -rt task cpu usage in us.
311  * default: 1s
312  */
313 unsigned int sysctl_sched_rt_period = 1000000;
314 
315 __read_mostly int scheduler_running;
316 
317 /*
318  * part of the period that we allow rt tasks to run in us.
319  * default: 0.95s
320  */
321 int sysctl_sched_rt_runtime = 950000;
322 
323 /*
324  * __task_rq_lock - lock the rq @p resides on.
325  */
326 static inline struct rq *__task_rq_lock(struct task_struct *p)
327 	__acquires(rq->lock)
328 {
329 	struct rq *rq;
330 
331 	lockdep_assert_held(&p->pi_lock);
332 
333 	for (;;) {
334 		rq = task_rq(p);
335 		raw_spin_lock(&rq->lock);
336 		if (likely(rq == task_rq(p)))
337 			return rq;
338 		raw_spin_unlock(&rq->lock);
339 	}
340 }
341 
342 /*
343  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
344  */
345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346 	__acquires(p->pi_lock)
347 	__acquires(rq->lock)
348 {
349 	struct rq *rq;
350 
351 	for (;;) {
352 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
353 		rq = task_rq(p);
354 		raw_spin_lock(&rq->lock);
355 		if (likely(rq == task_rq(p)))
356 			return rq;
357 		raw_spin_unlock(&rq->lock);
358 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
359 	}
360 }
361 
362 static void __task_rq_unlock(struct rq *rq)
363 	__releases(rq->lock)
364 {
365 	raw_spin_unlock(&rq->lock);
366 }
367 
368 static inline void
369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370 	__releases(rq->lock)
371 	__releases(p->pi_lock)
372 {
373 	raw_spin_unlock(&rq->lock);
374 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
375 }
376 
377 /*
378  * this_rq_lock - lock this runqueue and disable interrupts.
379  */
380 static struct rq *this_rq_lock(void)
381 	__acquires(rq->lock)
382 {
383 	struct rq *rq;
384 
385 	local_irq_disable();
386 	rq = this_rq();
387 	raw_spin_lock(&rq->lock);
388 
389 	return rq;
390 }
391 
392 #ifdef CONFIG_SCHED_HRTICK
393 /*
394  * Use HR-timers to deliver accurate preemption points.
395  */
396 
397 static void hrtick_clear(struct rq *rq)
398 {
399 	if (hrtimer_active(&rq->hrtick_timer))
400 		hrtimer_cancel(&rq->hrtick_timer);
401 }
402 
403 /*
404  * High-resolution timer tick.
405  * Runs from hardirq context with interrupts disabled.
406  */
407 static enum hrtimer_restart hrtick(struct hrtimer *timer)
408 {
409 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410 
411 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412 
413 	raw_spin_lock(&rq->lock);
414 	update_rq_clock(rq);
415 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416 	raw_spin_unlock(&rq->lock);
417 
418 	return HRTIMER_NORESTART;
419 }
420 
421 #ifdef CONFIG_SMP
422 
423 static int __hrtick_restart(struct rq *rq)
424 {
425 	struct hrtimer *timer = &rq->hrtick_timer;
426 	ktime_t time = hrtimer_get_softexpires(timer);
427 
428 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429 }
430 
431 /*
432  * called from hardirq (IPI) context
433  */
434 static void __hrtick_start(void *arg)
435 {
436 	struct rq *rq = arg;
437 
438 	raw_spin_lock(&rq->lock);
439 	__hrtick_restart(rq);
440 	rq->hrtick_csd_pending = 0;
441 	raw_spin_unlock(&rq->lock);
442 }
443 
444 /*
445  * Called to set the hrtick timer state.
446  *
447  * called with rq->lock held and irqs disabled
448  */
449 void hrtick_start(struct rq *rq, u64 delay)
450 {
451 	struct hrtimer *timer = &rq->hrtick_timer;
452 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453 
454 	hrtimer_set_expires(timer, time);
455 
456 	if (rq == this_rq()) {
457 		__hrtick_restart(rq);
458 	} else if (!rq->hrtick_csd_pending) {
459 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 		rq->hrtick_csd_pending = 1;
461 	}
462 }
463 
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 	int cpu = (int)(long)hcpu;
468 
469 	switch (action) {
470 	case CPU_UP_CANCELED:
471 	case CPU_UP_CANCELED_FROZEN:
472 	case CPU_DOWN_PREPARE:
473 	case CPU_DOWN_PREPARE_FROZEN:
474 	case CPU_DEAD:
475 	case CPU_DEAD_FROZEN:
476 		hrtick_clear(cpu_rq(cpu));
477 		return NOTIFY_OK;
478 	}
479 
480 	return NOTIFY_DONE;
481 }
482 
483 static __init void init_hrtick(void)
484 {
485 	hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489  * Called to set the hrtick timer state.
490  *
491  * called with rq->lock held and irqs disabled
492  */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496 			HRTIMER_MODE_REL_PINNED, 0);
497 }
498 
499 static inline void init_hrtick(void)
500 {
501 }
502 #endif /* CONFIG_SMP */
503 
504 static void init_rq_hrtick(struct rq *rq)
505 {
506 #ifdef CONFIG_SMP
507 	rq->hrtick_csd_pending = 0;
508 
509 	rq->hrtick_csd.flags = 0;
510 	rq->hrtick_csd.func = __hrtick_start;
511 	rq->hrtick_csd.info = rq;
512 #endif
513 
514 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 	rq->hrtick_timer.function = hrtick;
516 }
517 #else	/* CONFIG_SCHED_HRTICK */
518 static inline void hrtick_clear(struct rq *rq)
519 {
520 }
521 
522 static inline void init_rq_hrtick(struct rq *rq)
523 {
524 }
525 
526 static inline void init_hrtick(void)
527 {
528 }
529 #endif	/* CONFIG_SCHED_HRTICK */
530 
531 /*
532  * cmpxchg based fetch_or, macro so it works for different integer types
533  */
534 #define fetch_or(ptr, val)						\
535 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
536  	for (;;) {							\
537  		__old = cmpxchg((ptr), __val, __val | (val));		\
538  		if (__old == __val)					\
539  			break;						\
540  		__val = __old;						\
541  	}								\
542  	__old;								\
543 })
544 
545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546 /*
547  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548  * this avoids any races wrt polling state changes and thereby avoids
549  * spurious IPIs.
550  */
551 static bool set_nr_and_not_polling(struct task_struct *p)
552 {
553 	struct thread_info *ti = task_thread_info(p);
554 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555 }
556 
557 /*
558  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559  *
560  * If this returns true, then the idle task promises to call
561  * sched_ttwu_pending() and reschedule soon.
562  */
563 static bool set_nr_if_polling(struct task_struct *p)
564 {
565 	struct thread_info *ti = task_thread_info(p);
566 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567 
568 	for (;;) {
569 		if (!(val & _TIF_POLLING_NRFLAG))
570 			return false;
571 		if (val & _TIF_NEED_RESCHED)
572 			return true;
573 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 		if (old == val)
575 			break;
576 		val = old;
577 	}
578 	return true;
579 }
580 
581 #else
582 static bool set_nr_and_not_polling(struct task_struct *p)
583 {
584 	set_tsk_need_resched(p);
585 	return true;
586 }
587 
588 #ifdef CONFIG_SMP
589 static bool set_nr_if_polling(struct task_struct *p)
590 {
591 	return false;
592 }
593 #endif
594 #endif
595 
596 /*
597  * resched_curr - mark rq's current task 'to be rescheduled now'.
598  *
599  * On UP this means the setting of the need_resched flag, on SMP it
600  * might also involve a cross-CPU call to trigger the scheduler on
601  * the target CPU.
602  */
603 void resched_curr(struct rq *rq)
604 {
605 	struct task_struct *curr = rq->curr;
606 	int cpu;
607 
608 	lockdep_assert_held(&rq->lock);
609 
610 	if (test_tsk_need_resched(curr))
611 		return;
612 
613 	cpu = cpu_of(rq);
614 
615 	if (cpu == smp_processor_id()) {
616 		set_tsk_need_resched(curr);
617 		set_preempt_need_resched();
618 		return;
619 	}
620 
621 	if (set_nr_and_not_polling(curr))
622 		smp_send_reschedule(cpu);
623 	else
624 		trace_sched_wake_idle_without_ipi(cpu);
625 }
626 
627 void resched_cpu(int cpu)
628 {
629 	struct rq *rq = cpu_rq(cpu);
630 	unsigned long flags;
631 
632 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633 		return;
634 	resched_curr(rq);
635 	raw_spin_unlock_irqrestore(&rq->lock, flags);
636 }
637 
638 #ifdef CONFIG_SMP
639 #ifdef CONFIG_NO_HZ_COMMON
640 /*
641  * In the semi idle case, use the nearest busy cpu for migrating timers
642  * from an idle cpu.  This is good for power-savings.
643  *
644  * We don't do similar optimization for completely idle system, as
645  * selecting an idle cpu will add more delays to the timers than intended
646  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647  */
648 int get_nohz_timer_target(int pinned)
649 {
650 	int cpu = smp_processor_id();
651 	int i;
652 	struct sched_domain *sd;
653 
654 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 		return cpu;
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu(i, sched_domain_span(sd)) {
660 			if (!idle_cpu(i)) {
661 				cpu = i;
662 				goto unlock;
663 			}
664 		}
665 	}
666 unlock:
667 	rcu_read_unlock();
668 	return cpu;
669 }
670 /*
671  * When add_timer_on() enqueues a timer into the timer wheel of an
672  * idle CPU then this timer might expire before the next timer event
673  * which is scheduled to wake up that CPU. In case of a completely
674  * idle system the next event might even be infinite time into the
675  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676  * leaves the inner idle loop so the newly added timer is taken into
677  * account when the CPU goes back to idle and evaluates the timer
678  * wheel for the next timer event.
679  */
680 static void wake_up_idle_cpu(int cpu)
681 {
682 	struct rq *rq = cpu_rq(cpu);
683 
684 	if (cpu == smp_processor_id())
685 		return;
686 
687 	if (set_nr_and_not_polling(rq->idle))
688 		smp_send_reschedule(cpu);
689 	else
690 		trace_sched_wake_idle_without_ipi(cpu);
691 }
692 
693 static bool wake_up_full_nohz_cpu(int cpu)
694 {
695 	/*
696 	 * We just need the target to call irq_exit() and re-evaluate
697 	 * the next tick. The nohz full kick at least implies that.
698 	 * If needed we can still optimize that later with an
699 	 * empty IRQ.
700 	 */
701 	if (tick_nohz_full_cpu(cpu)) {
702 		if (cpu != smp_processor_id() ||
703 		    tick_nohz_tick_stopped())
704 			tick_nohz_full_kick_cpu(cpu);
705 		return true;
706 	}
707 
708 	return false;
709 }
710 
711 void wake_up_nohz_cpu(int cpu)
712 {
713 	if (!wake_up_full_nohz_cpu(cpu))
714 		wake_up_idle_cpu(cpu);
715 }
716 
717 static inline bool got_nohz_idle_kick(void)
718 {
719 	int cpu = smp_processor_id();
720 
721 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 		return false;
723 
724 	if (idle_cpu(cpu) && !need_resched())
725 		return true;
726 
727 	/*
728 	 * We can't run Idle Load Balance on this CPU for this time so we
729 	 * cancel it and clear NOHZ_BALANCE_KICK
730 	 */
731 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 	return false;
733 }
734 
735 #else /* CONFIG_NO_HZ_COMMON */
736 
737 static inline bool got_nohz_idle_kick(void)
738 {
739 	return false;
740 }
741 
742 #endif /* CONFIG_NO_HZ_COMMON */
743 
744 #ifdef CONFIG_NO_HZ_FULL
745 bool sched_can_stop_tick(void)
746 {
747 	/*
748 	 * More than one running task need preemption.
749 	 * nr_running update is assumed to be visible
750 	 * after IPI is sent from wakers.
751 	 */
752 	if (this_rq()->nr_running > 1)
753 		return false;
754 
755 	return true;
756 }
757 #endif /* CONFIG_NO_HZ_FULL */
758 
759 void sched_avg_update(struct rq *rq)
760 {
761 	s64 period = sched_avg_period();
762 
763 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764 		/*
765 		 * Inline assembly required to prevent the compiler
766 		 * optimising this loop into a divmod call.
767 		 * See __iter_div_u64_rem() for another example of this.
768 		 */
769 		asm("" : "+rm" (rq->age_stamp));
770 		rq->age_stamp += period;
771 		rq->rt_avg /= 2;
772 	}
773 }
774 
775 #endif /* CONFIG_SMP */
776 
777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779 /*
780  * Iterate task_group tree rooted at *from, calling @down when first entering a
781  * node and @up when leaving it for the final time.
782  *
783  * Caller must hold rcu_lock or sufficient equivalent.
784  */
785 int walk_tg_tree_from(struct task_group *from,
786 			     tg_visitor down, tg_visitor up, void *data)
787 {
788 	struct task_group *parent, *child;
789 	int ret;
790 
791 	parent = from;
792 
793 down:
794 	ret = (*down)(parent, data);
795 	if (ret)
796 		goto out;
797 	list_for_each_entry_rcu(child, &parent->children, siblings) {
798 		parent = child;
799 		goto down;
800 
801 up:
802 		continue;
803 	}
804 	ret = (*up)(parent, data);
805 	if (ret || parent == from)
806 		goto out;
807 
808 	child = parent;
809 	parent = parent->parent;
810 	if (parent)
811 		goto up;
812 out:
813 	return ret;
814 }
815 
816 int tg_nop(struct task_group *tg, void *data)
817 {
818 	return 0;
819 }
820 #endif
821 
822 static void set_load_weight(struct task_struct *p)
823 {
824 	int prio = p->static_prio - MAX_RT_PRIO;
825 	struct load_weight *load = &p->se.load;
826 
827 	/*
828 	 * SCHED_IDLE tasks get minimal weight:
829 	 */
830 	if (p->policy == SCHED_IDLE) {
831 		load->weight = scale_load(WEIGHT_IDLEPRIO);
832 		load->inv_weight = WMULT_IDLEPRIO;
833 		return;
834 	}
835 
836 	load->weight = scale_load(prio_to_weight[prio]);
837 	load->inv_weight = prio_to_wmult[prio];
838 }
839 
840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841 {
842 	update_rq_clock(rq);
843 	sched_info_queued(rq, p);
844 	p->sched_class->enqueue_task(rq, p, flags);
845 }
846 
847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 	update_rq_clock(rq);
850 	sched_info_dequeued(rq, p);
851 	p->sched_class->dequeue_task(rq, p, flags);
852 }
853 
854 void activate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	if (task_contributes_to_load(p))
857 		rq->nr_uninterruptible--;
858 
859 	enqueue_task(rq, p, flags);
860 }
861 
862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863 {
864 	if (task_contributes_to_load(p))
865 		rq->nr_uninterruptible++;
866 
867 	dequeue_task(rq, p, flags);
868 }
869 
870 static void update_rq_clock_task(struct rq *rq, s64 delta)
871 {
872 /*
873  * In theory, the compile should just see 0 here, and optimize out the call
874  * to sched_rt_avg_update. But I don't trust it...
875  */
876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 	s64 steal = 0, irq_delta = 0;
878 #endif
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881 
882 	/*
883 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 	 * this case when a previous update_rq_clock() happened inside a
885 	 * {soft,}irq region.
886 	 *
887 	 * When this happens, we stop ->clock_task and only update the
888 	 * prev_irq_time stamp to account for the part that fit, so that a next
889 	 * update will consume the rest. This ensures ->clock_task is
890 	 * monotonic.
891 	 *
892 	 * It does however cause some slight miss-attribution of {soft,}irq
893 	 * time, a more accurate solution would be to update the irq_time using
894 	 * the current rq->clock timestamp, except that would require using
895 	 * atomic ops.
896 	 */
897 	if (irq_delta > delta)
898 		irq_delta = delta;
899 
900 	rq->prev_irq_time += irq_delta;
901 	delta -= irq_delta;
902 #endif
903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904 	if (static_key_false((&paravirt_steal_rq_enabled))) {
905 		steal = paravirt_steal_clock(cpu_of(rq));
906 		steal -= rq->prev_steal_time_rq;
907 
908 		if (unlikely(steal > delta))
909 			steal = delta;
910 
911 		rq->prev_steal_time_rq += steal;
912 		delta -= steal;
913 	}
914 #endif
915 
916 	rq->clock_task += delta;
917 
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 		sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923 
924 void sched_set_stop_task(int cpu, struct task_struct *stop)
925 {
926 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
928 
929 	if (stop) {
930 		/*
931 		 * Make it appear like a SCHED_FIFO task, its something
932 		 * userspace knows about and won't get confused about.
933 		 *
934 		 * Also, it will make PI more or less work without too
935 		 * much confusion -- but then, stop work should not
936 		 * rely on PI working anyway.
937 		 */
938 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939 
940 		stop->sched_class = &stop_sched_class;
941 	}
942 
943 	cpu_rq(cpu)->stop = stop;
944 
945 	if (old_stop) {
946 		/*
947 		 * Reset it back to a normal scheduling class so that
948 		 * it can die in pieces.
949 		 */
950 		old_stop->sched_class = &rt_sched_class;
951 	}
952 }
953 
954 /*
955  * __normal_prio - return the priority that is based on the static prio
956  */
957 static inline int __normal_prio(struct task_struct *p)
958 {
959 	return p->static_prio;
960 }
961 
962 /*
963  * Calculate the expected normal priority: i.e. priority
964  * without taking RT-inheritance into account. Might be
965  * boosted by interactivity modifiers. Changes upon fork,
966  * setprio syscalls, and whenever the interactivity
967  * estimator recalculates.
968  */
969 static inline int normal_prio(struct task_struct *p)
970 {
971 	int prio;
972 
973 	if (task_has_dl_policy(p))
974 		prio = MAX_DL_PRIO-1;
975 	else if (task_has_rt_policy(p))
976 		prio = MAX_RT_PRIO-1 - p->rt_priority;
977 	else
978 		prio = __normal_prio(p);
979 	return prio;
980 }
981 
982 /*
983  * Calculate the current priority, i.e. the priority
984  * taken into account by the scheduler. This value might
985  * be boosted by RT tasks, or might be boosted by
986  * interactivity modifiers. Will be RT if the task got
987  * RT-boosted. If not then it returns p->normal_prio.
988  */
989 static int effective_prio(struct task_struct *p)
990 {
991 	p->normal_prio = normal_prio(p);
992 	/*
993 	 * If we are RT tasks or we were boosted to RT priority,
994 	 * keep the priority unchanged. Otherwise, update priority
995 	 * to the normal priority:
996 	 */
997 	if (!rt_prio(p->prio))
998 		return p->normal_prio;
999 	return p->prio;
1000 }
1001 
1002 /**
1003  * task_curr - is this task currently executing on a CPU?
1004  * @p: the task in question.
1005  *
1006  * Return: 1 if the task is currently executing. 0 otherwise.
1007  */
1008 inline int task_curr(const struct task_struct *p)
1009 {
1010 	return cpu_curr(task_cpu(p)) == p;
1011 }
1012 
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 				       const struct sched_class *prev_class,
1015 				       int oldprio)
1016 {
1017 	if (prev_class != p->sched_class) {
1018 		if (prev_class->switched_from)
1019 			prev_class->switched_from(rq, p);
1020 		p->sched_class->switched_to(rq, p);
1021 	} else if (oldprio != p->prio || dl_task(p))
1022 		p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024 
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 	const struct sched_class *class;
1028 
1029 	if (p->sched_class == rq->curr->sched_class) {
1030 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 	} else {
1032 		for_each_class(class) {
1033 			if (class == rq->curr->sched_class)
1034 				break;
1035 			if (class == p->sched_class) {
1036 				resched_curr(rq);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * A queue event has occurred, and we're going to schedule.  In
1044 	 * this case, we can save a useless back to back clock update.
1045 	 */
1046 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047 		rq->skip_clock_update = 1;
1048 }
1049 
1050 #ifdef CONFIG_SMP
1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 	/*
1055 	 * We should never call set_task_cpu() on a blocked task,
1056 	 * ttwu() will sort out the placement.
1057 	 */
1058 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1060 
1061 #ifdef CONFIG_LOCKDEP
1062 	/*
1063 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 	 *
1066 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 	 * see task_group().
1068 	 *
1069 	 * Furthermore, all task_rq users should acquire both locks, see
1070 	 * task_rq_lock().
1071 	 */
1072 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 				      lockdep_is_held(&task_rq(p)->lock)));
1074 #endif
1075 #endif
1076 
1077 	trace_sched_migrate_task(p, new_cpu);
1078 
1079 	if (task_cpu(p) != new_cpu) {
1080 		if (p->sched_class->migrate_task_rq)
1081 			p->sched_class->migrate_task_rq(p, new_cpu);
1082 		p->se.nr_migrations++;
1083 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084 	}
1085 
1086 	__set_task_cpu(p, new_cpu);
1087 }
1088 
1089 static void __migrate_swap_task(struct task_struct *p, int cpu)
1090 {
1091 	if (p->on_rq) {
1092 		struct rq *src_rq, *dst_rq;
1093 
1094 		src_rq = task_rq(p);
1095 		dst_rq = cpu_rq(cpu);
1096 
1097 		deactivate_task(src_rq, p, 0);
1098 		set_task_cpu(p, cpu);
1099 		activate_task(dst_rq, p, 0);
1100 		check_preempt_curr(dst_rq, p, 0);
1101 	} else {
1102 		/*
1103 		 * Task isn't running anymore; make it appear like we migrated
1104 		 * it before it went to sleep. This means on wakeup we make the
1105 		 * previous cpu our targer instead of where it really is.
1106 		 */
1107 		p->wake_cpu = cpu;
1108 	}
1109 }
1110 
1111 struct migration_swap_arg {
1112 	struct task_struct *src_task, *dst_task;
1113 	int src_cpu, dst_cpu;
1114 };
1115 
1116 static int migrate_swap_stop(void *data)
1117 {
1118 	struct migration_swap_arg *arg = data;
1119 	struct rq *src_rq, *dst_rq;
1120 	int ret = -EAGAIN;
1121 
1122 	src_rq = cpu_rq(arg->src_cpu);
1123 	dst_rq = cpu_rq(arg->dst_cpu);
1124 
1125 	double_raw_lock(&arg->src_task->pi_lock,
1126 			&arg->dst_task->pi_lock);
1127 	double_rq_lock(src_rq, dst_rq);
1128 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 		goto unlock;
1130 
1131 	if (task_cpu(arg->src_task) != arg->src_cpu)
1132 		goto unlock;
1133 
1134 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 		goto unlock;
1136 
1137 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 		goto unlock;
1139 
1140 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1142 
1143 	ret = 0;
1144 
1145 unlock:
1146 	double_rq_unlock(src_rq, dst_rq);
1147 	raw_spin_unlock(&arg->dst_task->pi_lock);
1148 	raw_spin_unlock(&arg->src_task->pi_lock);
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * Cross migrate two tasks
1155  */
1156 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157 {
1158 	struct migration_swap_arg arg;
1159 	int ret = -EINVAL;
1160 
1161 	arg = (struct migration_swap_arg){
1162 		.src_task = cur,
1163 		.src_cpu = task_cpu(cur),
1164 		.dst_task = p,
1165 		.dst_cpu = task_cpu(p),
1166 	};
1167 
1168 	if (arg.src_cpu == arg.dst_cpu)
1169 		goto out;
1170 
1171 	/*
1172 	 * These three tests are all lockless; this is OK since all of them
1173 	 * will be re-checked with proper locks held further down the line.
1174 	 */
1175 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 		goto out;
1177 
1178 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 		goto out;
1180 
1181 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 		goto out;
1183 
1184 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186 
1187 out:
1188 	return ret;
1189 }
1190 
1191 struct migration_arg {
1192 	struct task_struct *task;
1193 	int dest_cpu;
1194 };
1195 
1196 static int migration_cpu_stop(void *data);
1197 
1198 /*
1199  * wait_task_inactive - wait for a thread to unschedule.
1200  *
1201  * If @match_state is nonzero, it's the @p->state value just checked and
1202  * not expected to change.  If it changes, i.e. @p might have woken up,
1203  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1204  * we return a positive number (its total switch count).  If a second call
1205  * a short while later returns the same number, the caller can be sure that
1206  * @p has remained unscheduled the whole time.
1207  *
1208  * The caller must ensure that the task *will* unschedule sometime soon,
1209  * else this function might spin for a *long* time. This function can't
1210  * be called with interrupts off, or it may introduce deadlock with
1211  * smp_call_function() if an IPI is sent by the same process we are
1212  * waiting to become inactive.
1213  */
1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1215 {
1216 	unsigned long flags;
1217 	int running, on_rq;
1218 	unsigned long ncsw;
1219 	struct rq *rq;
1220 
1221 	for (;;) {
1222 		/*
1223 		 * We do the initial early heuristics without holding
1224 		 * any task-queue locks at all. We'll only try to get
1225 		 * the runqueue lock when things look like they will
1226 		 * work out!
1227 		 */
1228 		rq = task_rq(p);
1229 
1230 		/*
1231 		 * If the task is actively running on another CPU
1232 		 * still, just relax and busy-wait without holding
1233 		 * any locks.
1234 		 *
1235 		 * NOTE! Since we don't hold any locks, it's not
1236 		 * even sure that "rq" stays as the right runqueue!
1237 		 * But we don't care, since "task_running()" will
1238 		 * return false if the runqueue has changed and p
1239 		 * is actually now running somewhere else!
1240 		 */
1241 		while (task_running(rq, p)) {
1242 			if (match_state && unlikely(p->state != match_state))
1243 				return 0;
1244 			cpu_relax();
1245 		}
1246 
1247 		/*
1248 		 * Ok, time to look more closely! We need the rq
1249 		 * lock now, to be *sure*. If we're wrong, we'll
1250 		 * just go back and repeat.
1251 		 */
1252 		rq = task_rq_lock(p, &flags);
1253 		trace_sched_wait_task(p);
1254 		running = task_running(rq, p);
1255 		on_rq = p->on_rq;
1256 		ncsw = 0;
1257 		if (!match_state || p->state == match_state)
1258 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259 		task_rq_unlock(rq, p, &flags);
1260 
1261 		/*
1262 		 * If it changed from the expected state, bail out now.
1263 		 */
1264 		if (unlikely(!ncsw))
1265 			break;
1266 
1267 		/*
1268 		 * Was it really running after all now that we
1269 		 * checked with the proper locks actually held?
1270 		 *
1271 		 * Oops. Go back and try again..
1272 		 */
1273 		if (unlikely(running)) {
1274 			cpu_relax();
1275 			continue;
1276 		}
1277 
1278 		/*
1279 		 * It's not enough that it's not actively running,
1280 		 * it must be off the runqueue _entirely_, and not
1281 		 * preempted!
1282 		 *
1283 		 * So if it was still runnable (but just not actively
1284 		 * running right now), it's preempted, and we should
1285 		 * yield - it could be a while.
1286 		 */
1287 		if (unlikely(on_rq)) {
1288 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289 
1290 			set_current_state(TASK_UNINTERRUPTIBLE);
1291 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * Ahh, all good. It wasn't running, and it wasn't
1297 		 * runnable, which means that it will never become
1298 		 * running in the future either. We're all done!
1299 		 */
1300 		break;
1301 	}
1302 
1303 	return ncsw;
1304 }
1305 
1306 /***
1307  * kick_process - kick a running thread to enter/exit the kernel
1308  * @p: the to-be-kicked thread
1309  *
1310  * Cause a process which is running on another CPU to enter
1311  * kernel-mode, without any delay. (to get signals handled.)
1312  *
1313  * NOTE: this function doesn't have to take the runqueue lock,
1314  * because all it wants to ensure is that the remote task enters
1315  * the kernel. If the IPI races and the task has been migrated
1316  * to another CPU then no harm is done and the purpose has been
1317  * achieved as well.
1318  */
1319 void kick_process(struct task_struct *p)
1320 {
1321 	int cpu;
1322 
1323 	preempt_disable();
1324 	cpu = task_cpu(p);
1325 	if ((cpu != smp_processor_id()) && task_curr(p))
1326 		smp_send_reschedule(cpu);
1327 	preempt_enable();
1328 }
1329 EXPORT_SYMBOL_GPL(kick_process);
1330 #endif /* CONFIG_SMP */
1331 
1332 #ifdef CONFIG_SMP
1333 /*
1334  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335  */
1336 static int select_fallback_rq(int cpu, struct task_struct *p)
1337 {
1338 	int nid = cpu_to_node(cpu);
1339 	const struct cpumask *nodemask = NULL;
1340 	enum { cpuset, possible, fail } state = cpuset;
1341 	int dest_cpu;
1342 
1343 	/*
1344 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 	 * will return -1. There is no cpu on the node, and we should
1346 	 * select the cpu on the other node.
1347 	 */
1348 	if (nid != -1) {
1349 		nodemask = cpumask_of_node(nid);
1350 
1351 		/* Look for allowed, online CPU in same node. */
1352 		for_each_cpu(dest_cpu, nodemask) {
1353 			if (!cpu_online(dest_cpu))
1354 				continue;
1355 			if (!cpu_active(dest_cpu))
1356 				continue;
1357 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 				return dest_cpu;
1359 		}
1360 	}
1361 
1362 	for (;;) {
1363 		/* Any allowed, online CPU? */
1364 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 			if (!cpu_online(dest_cpu))
1366 				continue;
1367 			if (!cpu_active(dest_cpu))
1368 				continue;
1369 			goto out;
1370 		}
1371 
1372 		switch (state) {
1373 		case cpuset:
1374 			/* No more Mr. Nice Guy. */
1375 			cpuset_cpus_allowed_fallback(p);
1376 			state = possible;
1377 			break;
1378 
1379 		case possible:
1380 			do_set_cpus_allowed(p, cpu_possible_mask);
1381 			state = fail;
1382 			break;
1383 
1384 		case fail:
1385 			BUG();
1386 			break;
1387 		}
1388 	}
1389 
1390 out:
1391 	if (state != cpuset) {
1392 		/*
1393 		 * Don't tell them about moving exiting tasks or
1394 		 * kernel threads (both mm NULL), since they never
1395 		 * leave kernel.
1396 		 */
1397 		if (p->mm && printk_ratelimit()) {
1398 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 					task_pid_nr(p), p->comm, cpu);
1400 		}
1401 	}
1402 
1403 	return dest_cpu;
1404 }
1405 
1406 /*
1407  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408  */
1409 static inline
1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411 {
1412 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413 
1414 	/*
1415 	 * In order not to call set_task_cpu() on a blocking task we need
1416 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 	 * cpu.
1418 	 *
1419 	 * Since this is common to all placement strategies, this lives here.
1420 	 *
1421 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 	 *   not worry about this generic constraint ]
1423 	 */
1424 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425 		     !cpu_online(cpu)))
1426 		cpu = select_fallback_rq(task_cpu(p), p);
1427 
1428 	return cpu;
1429 }
1430 
1431 static void update_avg(u64 *avg, u64 sample)
1432 {
1433 	s64 diff = sample - *avg;
1434 	*avg += diff >> 3;
1435 }
1436 #endif
1437 
1438 static void
1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1440 {
1441 #ifdef CONFIG_SCHEDSTATS
1442 	struct rq *rq = this_rq();
1443 
1444 #ifdef CONFIG_SMP
1445 	int this_cpu = smp_processor_id();
1446 
1447 	if (cpu == this_cpu) {
1448 		schedstat_inc(rq, ttwu_local);
1449 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 	} else {
1451 		struct sched_domain *sd;
1452 
1453 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454 		rcu_read_lock();
1455 		for_each_domain(this_cpu, sd) {
1456 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 				schedstat_inc(sd, ttwu_wake_remote);
1458 				break;
1459 			}
1460 		}
1461 		rcu_read_unlock();
1462 	}
1463 
1464 	if (wake_flags & WF_MIGRATED)
1465 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466 
1467 #endif /* CONFIG_SMP */
1468 
1469 	schedstat_inc(rq, ttwu_count);
1470 	schedstat_inc(p, se.statistics.nr_wakeups);
1471 
1472 	if (wake_flags & WF_SYNC)
1473 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1474 
1475 #endif /* CONFIG_SCHEDSTATS */
1476 }
1477 
1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479 {
1480 	activate_task(rq, p, en_flags);
1481 	p->on_rq = 1;
1482 
1483 	/* if a worker is waking up, notify workqueue */
1484 	if (p->flags & PF_WQ_WORKER)
1485 		wq_worker_waking_up(p, cpu_of(rq));
1486 }
1487 
1488 /*
1489  * Mark the task runnable and perform wakeup-preemption.
1490  */
1491 static void
1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1493 {
1494 	check_preempt_curr(rq, p, wake_flags);
1495 	trace_sched_wakeup(p, true);
1496 
1497 	p->state = TASK_RUNNING;
1498 #ifdef CONFIG_SMP
1499 	if (p->sched_class->task_woken)
1500 		p->sched_class->task_woken(rq, p);
1501 
1502 	if (rq->idle_stamp) {
1503 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1504 		u64 max = 2*rq->max_idle_balance_cost;
1505 
1506 		update_avg(&rq->avg_idle, delta);
1507 
1508 		if (rq->avg_idle > max)
1509 			rq->avg_idle = max;
1510 
1511 		rq->idle_stamp = 0;
1512 	}
1513 #endif
1514 }
1515 
1516 static void
1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518 {
1519 #ifdef CONFIG_SMP
1520 	if (p->sched_contributes_to_load)
1521 		rq->nr_uninterruptible--;
1522 #endif
1523 
1524 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 	ttwu_do_wakeup(rq, p, wake_flags);
1526 }
1527 
1528 /*
1529  * Called in case the task @p isn't fully descheduled from its runqueue,
1530  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531  * since all we need to do is flip p->state to TASK_RUNNING, since
1532  * the task is still ->on_rq.
1533  */
1534 static int ttwu_remote(struct task_struct *p, int wake_flags)
1535 {
1536 	struct rq *rq;
1537 	int ret = 0;
1538 
1539 	rq = __task_rq_lock(p);
1540 	if (p->on_rq) {
1541 		/* check_preempt_curr() may use rq clock */
1542 		update_rq_clock(rq);
1543 		ttwu_do_wakeup(rq, p, wake_flags);
1544 		ret = 1;
1545 	}
1546 	__task_rq_unlock(rq);
1547 
1548 	return ret;
1549 }
1550 
1551 #ifdef CONFIG_SMP
1552 void sched_ttwu_pending(void)
1553 {
1554 	struct rq *rq = this_rq();
1555 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 	struct task_struct *p;
1557 	unsigned long flags;
1558 
1559 	if (!llist)
1560 		return;
1561 
1562 	raw_spin_lock_irqsave(&rq->lock, flags);
1563 
1564 	while (llist) {
1565 		p = llist_entry(llist, struct task_struct, wake_entry);
1566 		llist = llist_next(llist);
1567 		ttwu_do_activate(rq, p, 0);
1568 	}
1569 
1570 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1571 }
1572 
1573 void scheduler_ipi(void)
1574 {
1575 	/*
1576 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 	 * this IPI.
1579 	 */
1580 	preempt_fold_need_resched();
1581 
1582 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 		return;
1584 
1585 	/*
1586 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 	 * traditionally all their work was done from the interrupt return
1588 	 * path. Now that we actually do some work, we need to make sure
1589 	 * we do call them.
1590 	 *
1591 	 * Some archs already do call them, luckily irq_enter/exit nest
1592 	 * properly.
1593 	 *
1594 	 * Arguably we should visit all archs and update all handlers,
1595 	 * however a fair share of IPIs are still resched only so this would
1596 	 * somewhat pessimize the simple resched case.
1597 	 */
1598 	irq_enter();
1599 	sched_ttwu_pending();
1600 
1601 	/*
1602 	 * Check if someone kicked us for doing the nohz idle load balance.
1603 	 */
1604 	if (unlikely(got_nohz_idle_kick())) {
1605 		this_rq()->idle_balance = 1;
1606 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1607 	}
1608 	irq_exit();
1609 }
1610 
1611 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612 {
1613 	struct rq *rq = cpu_rq(cpu);
1614 
1615 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 		if (!set_nr_if_polling(rq->idle))
1617 			smp_send_reschedule(cpu);
1618 		else
1619 			trace_sched_wake_idle_without_ipi(cpu);
1620 	}
1621 }
1622 
1623 bool cpus_share_cache(int this_cpu, int that_cpu)
1624 {
1625 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628 
1629 static void ttwu_queue(struct task_struct *p, int cpu)
1630 {
1631 	struct rq *rq = cpu_rq(cpu);
1632 
1633 #if defined(CONFIG_SMP)
1634 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 		ttwu_queue_remote(p, cpu);
1637 		return;
1638 	}
1639 #endif
1640 
1641 	raw_spin_lock(&rq->lock);
1642 	ttwu_do_activate(rq, p, 0);
1643 	raw_spin_unlock(&rq->lock);
1644 }
1645 
1646 /**
1647  * try_to_wake_up - wake up a thread
1648  * @p: the thread to be awakened
1649  * @state: the mask of task states that can be woken
1650  * @wake_flags: wake modifier flags (WF_*)
1651  *
1652  * Put it on the run-queue if it's not already there. The "current"
1653  * thread is always on the run-queue (except when the actual
1654  * re-schedule is in progress), and as such you're allowed to do
1655  * the simpler "current->state = TASK_RUNNING" to mark yourself
1656  * runnable without the overhead of this.
1657  *
1658  * Return: %true if @p was woken up, %false if it was already running.
1659  * or @state didn't match @p's state.
1660  */
1661 static int
1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1663 {
1664 	unsigned long flags;
1665 	int cpu, success = 0;
1666 
1667 	/*
1668 	 * If we are going to wake up a thread waiting for CONDITION we
1669 	 * need to ensure that CONDITION=1 done by the caller can not be
1670 	 * reordered with p->state check below. This pairs with mb() in
1671 	 * set_current_state() the waiting thread does.
1672 	 */
1673 	smp_mb__before_spinlock();
1674 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 	if (!(p->state & state))
1676 		goto out;
1677 
1678 	success = 1; /* we're going to change ->state */
1679 	cpu = task_cpu(p);
1680 
1681 	if (p->on_rq && ttwu_remote(p, wake_flags))
1682 		goto stat;
1683 
1684 #ifdef CONFIG_SMP
1685 	/*
1686 	 * If the owning (remote) cpu is still in the middle of schedule() with
1687 	 * this task as prev, wait until its done referencing the task.
1688 	 */
1689 	while (p->on_cpu)
1690 		cpu_relax();
1691 	/*
1692 	 * Pairs with the smp_wmb() in finish_lock_switch().
1693 	 */
1694 	smp_rmb();
1695 
1696 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697 	p->state = TASK_WAKING;
1698 
1699 	if (p->sched_class->task_waking)
1700 		p->sched_class->task_waking(p);
1701 
1702 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 	if (task_cpu(p) != cpu) {
1704 		wake_flags |= WF_MIGRATED;
1705 		set_task_cpu(p, cpu);
1706 	}
1707 #endif /* CONFIG_SMP */
1708 
1709 	ttwu_queue(p, cpu);
1710 stat:
1711 	ttwu_stat(p, cpu, wake_flags);
1712 out:
1713 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1714 
1715 	return success;
1716 }
1717 
1718 /**
1719  * try_to_wake_up_local - try to wake up a local task with rq lock held
1720  * @p: the thread to be awakened
1721  *
1722  * Put @p on the run-queue if it's not already there. The caller must
1723  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724  * the current task.
1725  */
1726 static void try_to_wake_up_local(struct task_struct *p)
1727 {
1728 	struct rq *rq = task_rq(p);
1729 
1730 	if (WARN_ON_ONCE(rq != this_rq()) ||
1731 	    WARN_ON_ONCE(p == current))
1732 		return;
1733 
1734 	lockdep_assert_held(&rq->lock);
1735 
1736 	if (!raw_spin_trylock(&p->pi_lock)) {
1737 		raw_spin_unlock(&rq->lock);
1738 		raw_spin_lock(&p->pi_lock);
1739 		raw_spin_lock(&rq->lock);
1740 	}
1741 
1742 	if (!(p->state & TASK_NORMAL))
1743 		goto out;
1744 
1745 	if (!p->on_rq)
1746 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747 
1748 	ttwu_do_wakeup(rq, p, 0);
1749 	ttwu_stat(p, smp_processor_id(), 0);
1750 out:
1751 	raw_spin_unlock(&p->pi_lock);
1752 }
1753 
1754 /**
1755  * wake_up_process - Wake up a specific process
1756  * @p: The process to be woken up.
1757  *
1758  * Attempt to wake up the nominated process and move it to the set of runnable
1759  * processes.
1760  *
1761  * Return: 1 if the process was woken up, 0 if it was already running.
1762  *
1763  * It may be assumed that this function implies a write memory barrier before
1764  * changing the task state if and only if any tasks are woken up.
1765  */
1766 int wake_up_process(struct task_struct *p)
1767 {
1768 	WARN_ON(task_is_stopped_or_traced(p));
1769 	return try_to_wake_up(p, TASK_NORMAL, 0);
1770 }
1771 EXPORT_SYMBOL(wake_up_process);
1772 
1773 int wake_up_state(struct task_struct *p, unsigned int state)
1774 {
1775 	return try_to_wake_up(p, state, 0);
1776 }
1777 
1778 /*
1779  * Perform scheduler related setup for a newly forked process p.
1780  * p is forked by current.
1781  *
1782  * __sched_fork() is basic setup used by init_idle() too:
1783  */
1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1785 {
1786 	p->on_rq			= 0;
1787 
1788 	p->se.on_rq			= 0;
1789 	p->se.exec_start		= 0;
1790 	p->se.sum_exec_runtime		= 0;
1791 	p->se.prev_sum_exec_runtime	= 0;
1792 	p->se.nr_migrations		= 0;
1793 	p->se.vruntime			= 0;
1794 	INIT_LIST_HEAD(&p->se.group_node);
1795 
1796 #ifdef CONFIG_SCHEDSTATS
1797 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798 #endif
1799 
1800 	RB_CLEAR_NODE(&p->dl.rb_node);
1801 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 	p->dl.dl_runtime = p->dl.runtime = 0;
1803 	p->dl.dl_deadline = p->dl.deadline = 0;
1804 	p->dl.dl_period = 0;
1805 	p->dl.flags = 0;
1806 
1807 	INIT_LIST_HEAD(&p->rt.run_list);
1808 
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1811 #endif
1812 
1813 #ifdef CONFIG_NUMA_BALANCING
1814 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 		p->mm->numa_scan_seq = 0;
1817 	}
1818 
1819 	if (clone_flags & CLONE_VM)
1820 		p->numa_preferred_nid = current->numa_preferred_nid;
1821 	else
1822 		p->numa_preferred_nid = -1;
1823 
1824 	p->node_stamp = 0ULL;
1825 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827 	p->numa_work.next = &p->numa_work;
1828 	p->numa_faults_memory = NULL;
1829 	p->numa_faults_buffer_memory = NULL;
1830 	p->last_task_numa_placement = 0;
1831 	p->last_sum_exec_runtime = 0;
1832 
1833 	INIT_LIST_HEAD(&p->numa_entry);
1834 	p->numa_group = NULL;
1835 #endif /* CONFIG_NUMA_BALANCING */
1836 }
1837 
1838 #ifdef CONFIG_NUMA_BALANCING
1839 #ifdef CONFIG_SCHED_DEBUG
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 	if (enabled)
1843 		sched_feat_set("NUMA");
1844 	else
1845 		sched_feat_set("NO_NUMA");
1846 }
1847 #else
1848 __read_mostly bool numabalancing_enabled;
1849 
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 	numabalancing_enabled = enabled;
1853 }
1854 #endif /* CONFIG_SCHED_DEBUG */
1855 
1856 #ifdef CONFIG_PROC_SYSCTL
1857 int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1859 {
1860 	struct ctl_table t;
1861 	int err;
1862 	int state = numabalancing_enabled;
1863 
1864 	if (write && !capable(CAP_SYS_ADMIN))
1865 		return -EPERM;
1866 
1867 	t = *table;
1868 	t.data = &state;
1869 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 	if (err < 0)
1871 		return err;
1872 	if (write)
1873 		set_numabalancing_state(state);
1874 	return err;
1875 }
1876 #endif
1877 #endif
1878 
1879 /*
1880  * fork()/clone()-time setup:
1881  */
1882 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1883 {
1884 	unsigned long flags;
1885 	int cpu = get_cpu();
1886 
1887 	__sched_fork(clone_flags, p);
1888 	/*
1889 	 * We mark the process as running here. This guarantees that
1890 	 * nobody will actually run it, and a signal or other external
1891 	 * event cannot wake it up and insert it on the runqueue either.
1892 	 */
1893 	p->state = TASK_RUNNING;
1894 
1895 	/*
1896 	 * Make sure we do not leak PI boosting priority to the child.
1897 	 */
1898 	p->prio = current->normal_prio;
1899 
1900 	/*
1901 	 * Revert to default priority/policy on fork if requested.
1902 	 */
1903 	if (unlikely(p->sched_reset_on_fork)) {
1904 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905 			p->policy = SCHED_NORMAL;
1906 			p->static_prio = NICE_TO_PRIO(0);
1907 			p->rt_priority = 0;
1908 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 			p->static_prio = NICE_TO_PRIO(0);
1910 
1911 		p->prio = p->normal_prio = __normal_prio(p);
1912 		set_load_weight(p);
1913 
1914 		/*
1915 		 * We don't need the reset flag anymore after the fork. It has
1916 		 * fulfilled its duty:
1917 		 */
1918 		p->sched_reset_on_fork = 0;
1919 	}
1920 
1921 	if (dl_prio(p->prio)) {
1922 		put_cpu();
1923 		return -EAGAIN;
1924 	} else if (rt_prio(p->prio)) {
1925 		p->sched_class = &rt_sched_class;
1926 	} else {
1927 		p->sched_class = &fair_sched_class;
1928 	}
1929 
1930 	if (p->sched_class->task_fork)
1931 		p->sched_class->task_fork(p);
1932 
1933 	/*
1934 	 * The child is not yet in the pid-hash so no cgroup attach races,
1935 	 * and the cgroup is pinned to this child due to cgroup_fork()
1936 	 * is ran before sched_fork().
1937 	 *
1938 	 * Silence PROVE_RCU.
1939 	 */
1940 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1941 	set_task_cpu(p, cpu);
1942 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943 
1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945 	if (likely(sched_info_on()))
1946 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #endif
1948 #if defined(CONFIG_SMP)
1949 	p->on_cpu = 0;
1950 #endif
1951 	init_task_preempt_count(p);
1952 #ifdef CONFIG_SMP
1953 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955 #endif
1956 
1957 	put_cpu();
1958 	return 0;
1959 }
1960 
1961 unsigned long to_ratio(u64 period, u64 runtime)
1962 {
1963 	if (runtime == RUNTIME_INF)
1964 		return 1ULL << 20;
1965 
1966 	/*
1967 	 * Doing this here saves a lot of checks in all
1968 	 * the calling paths, and returning zero seems
1969 	 * safe for them anyway.
1970 	 */
1971 	if (period == 0)
1972 		return 0;
1973 
1974 	return div64_u64(runtime << 20, period);
1975 }
1976 
1977 #ifdef CONFIG_SMP
1978 inline struct dl_bw *dl_bw_of(int i)
1979 {
1980 	return &cpu_rq(i)->rd->dl_bw;
1981 }
1982 
1983 static inline int dl_bw_cpus(int i)
1984 {
1985 	struct root_domain *rd = cpu_rq(i)->rd;
1986 	int cpus = 0;
1987 
1988 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 		cpus++;
1990 
1991 	return cpus;
1992 }
1993 #else
1994 inline struct dl_bw *dl_bw_of(int i)
1995 {
1996 	return &cpu_rq(i)->dl.dl_bw;
1997 }
1998 
1999 static inline int dl_bw_cpus(int i)
2000 {
2001 	return 1;
2002 }
2003 #endif
2004 
2005 static inline
2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007 {
2008 	dl_b->total_bw -= tsk_bw;
2009 }
2010 
2011 static inline
2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013 {
2014 	dl_b->total_bw += tsk_bw;
2015 }
2016 
2017 static inline
2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019 {
2020 	return dl_b->bw != -1 &&
2021 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022 }
2023 
2024 /*
2025  * We must be sure that accepting a new task (or allowing changing the
2026  * parameters of an existing one) is consistent with the bandwidth
2027  * constraints. If yes, this function also accordingly updates the currently
2028  * allocated bandwidth to reflect the new situation.
2029  *
2030  * This function is called while holding p's rq->lock.
2031  */
2032 static int dl_overflow(struct task_struct *p, int policy,
2033 		       const struct sched_attr *attr)
2034 {
2035 
2036 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037 	u64 period = attr->sched_period ?: attr->sched_deadline;
2038 	u64 runtime = attr->sched_runtime;
2039 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040 	int cpus, err = -1;
2041 
2042 	if (new_bw == p->dl.dl_bw)
2043 		return 0;
2044 
2045 	/*
2046 	 * Either if a task, enters, leave, or stays -deadline but changes
2047 	 * its parameters, we may need to update accordingly the total
2048 	 * allocated bandwidth of the container.
2049 	 */
2050 	raw_spin_lock(&dl_b->lock);
2051 	cpus = dl_bw_cpus(task_cpu(p));
2052 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 		__dl_add(dl_b, new_bw);
2055 		err = 0;
2056 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 		__dl_clear(dl_b, p->dl.dl_bw);
2059 		__dl_add(dl_b, new_bw);
2060 		err = 0;
2061 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 		__dl_clear(dl_b, p->dl.dl_bw);
2063 		err = 0;
2064 	}
2065 	raw_spin_unlock(&dl_b->lock);
2066 
2067 	return err;
2068 }
2069 
2070 extern void init_dl_bw(struct dl_bw *dl_b);
2071 
2072 /*
2073  * wake_up_new_task - wake up a newly created task for the first time.
2074  *
2075  * This function will do some initial scheduler statistics housekeeping
2076  * that must be done for every newly created context, then puts the task
2077  * on the runqueue and wakes it.
2078  */
2079 void wake_up_new_task(struct task_struct *p)
2080 {
2081 	unsigned long flags;
2082 	struct rq *rq;
2083 
2084 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 #ifdef CONFIG_SMP
2086 	/*
2087 	 * Fork balancing, do it here and not earlier because:
2088 	 *  - cpus_allowed can change in the fork path
2089 	 *  - any previously selected cpu might disappear through hotplug
2090 	 */
2091 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 #endif
2093 
2094 	/* Initialize new task's runnable average */
2095 	init_task_runnable_average(p);
2096 	rq = __task_rq_lock(p);
2097 	activate_task(rq, p, 0);
2098 	p->on_rq = 1;
2099 	trace_sched_wakeup_new(p, true);
2100 	check_preempt_curr(rq, p, WF_FORK);
2101 #ifdef CONFIG_SMP
2102 	if (p->sched_class->task_woken)
2103 		p->sched_class->task_woken(rq, p);
2104 #endif
2105 	task_rq_unlock(rq, p, &flags);
2106 }
2107 
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 
2110 /**
2111  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112  * @notifier: notifier struct to register
2113  */
2114 void preempt_notifier_register(struct preempt_notifier *notifier)
2115 {
2116 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117 }
2118 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119 
2120 /**
2121  * preempt_notifier_unregister - no longer interested in preemption notifications
2122  * @notifier: notifier struct to unregister
2123  *
2124  * This is safe to call from within a preemption notifier.
2125  */
2126 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127 {
2128 	hlist_del(&notifier->link);
2129 }
2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131 
2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133 {
2134 	struct preempt_notifier *notifier;
2135 
2136 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138 }
2139 
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 				 struct task_struct *next)
2143 {
2144 	struct preempt_notifier *notifier;
2145 
2146 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 		notifier->ops->sched_out(notifier, next);
2148 }
2149 
2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2151 
2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153 {
2154 }
2155 
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 				 struct task_struct *next)
2159 {
2160 }
2161 
2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2163 
2164 /**
2165  * prepare_task_switch - prepare to switch tasks
2166  * @rq: the runqueue preparing to switch
2167  * @prev: the current task that is being switched out
2168  * @next: the task we are going to switch to.
2169  *
2170  * This is called with the rq lock held and interrupts off. It must
2171  * be paired with a subsequent finish_task_switch after the context
2172  * switch.
2173  *
2174  * prepare_task_switch sets up locking and calls architecture specific
2175  * hooks.
2176  */
2177 static inline void
2178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 		    struct task_struct *next)
2180 {
2181 	trace_sched_switch(prev, next);
2182 	sched_info_switch(rq, prev, next);
2183 	perf_event_task_sched_out(prev, next);
2184 	fire_sched_out_preempt_notifiers(prev, next);
2185 	prepare_lock_switch(rq, next);
2186 	prepare_arch_switch(next);
2187 }
2188 
2189 /**
2190  * finish_task_switch - clean up after a task-switch
2191  * @rq: runqueue associated with task-switch
2192  * @prev: the thread we just switched away from.
2193  *
2194  * finish_task_switch must be called after the context switch, paired
2195  * with a prepare_task_switch call before the context switch.
2196  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197  * and do any other architecture-specific cleanup actions.
2198  *
2199  * Note that we may have delayed dropping an mm in context_switch(). If
2200  * so, we finish that here outside of the runqueue lock. (Doing it
2201  * with the lock held can cause deadlocks; see schedule() for
2202  * details.)
2203  */
2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205 	__releases(rq->lock)
2206 {
2207 	struct mm_struct *mm = rq->prev_mm;
2208 	long prev_state;
2209 
2210 	rq->prev_mm = NULL;
2211 
2212 	/*
2213 	 * A task struct has one reference for the use as "current".
2214 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 	 * schedule one last time. The schedule call will never return, and
2216 	 * the scheduled task must drop that reference.
2217 	 * The test for TASK_DEAD must occur while the runqueue locks are
2218 	 * still held, otherwise prev could be scheduled on another cpu, die
2219 	 * there before we look at prev->state, and then the reference would
2220 	 * be dropped twice.
2221 	 *		Manfred Spraul <manfred@colorfullife.com>
2222 	 */
2223 	prev_state = prev->state;
2224 	vtime_task_switch(prev);
2225 	finish_arch_switch(prev);
2226 	perf_event_task_sched_in(prev, current);
2227 	finish_lock_switch(rq, prev);
2228 	finish_arch_post_lock_switch();
2229 
2230 	fire_sched_in_preempt_notifiers(current);
2231 	if (mm)
2232 		mmdrop(mm);
2233 	if (unlikely(prev_state == TASK_DEAD)) {
2234 		if (prev->sched_class->task_dead)
2235 			prev->sched_class->task_dead(prev);
2236 
2237 		/*
2238 		 * Remove function-return probe instances associated with this
2239 		 * task and put them back on the free list.
2240 		 */
2241 		kprobe_flush_task(prev);
2242 		put_task_struct(prev);
2243 	}
2244 
2245 	tick_nohz_task_switch(current);
2246 }
2247 
2248 #ifdef CONFIG_SMP
2249 
2250 /* rq->lock is NOT held, but preemption is disabled */
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 	if (rq->post_schedule) {
2254 		unsigned long flags;
2255 
2256 		raw_spin_lock_irqsave(&rq->lock, flags);
2257 		if (rq->curr->sched_class->post_schedule)
2258 			rq->curr->sched_class->post_schedule(rq);
2259 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2260 
2261 		rq->post_schedule = 0;
2262 	}
2263 }
2264 
2265 #else
2266 
2267 static inline void post_schedule(struct rq *rq)
2268 {
2269 }
2270 
2271 #endif
2272 
2273 /**
2274  * schedule_tail - first thing a freshly forked thread must call.
2275  * @prev: the thread we just switched away from.
2276  */
2277 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278 	__releases(rq->lock)
2279 {
2280 	struct rq *rq = this_rq();
2281 
2282 	finish_task_switch(rq, prev);
2283 
2284 	/*
2285 	 * FIXME: do we need to worry about rq being invalidated by the
2286 	 * task_switch?
2287 	 */
2288 	post_schedule(rq);
2289 
2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 	/* In this case, finish_task_switch does not reenable preemption */
2292 	preempt_enable();
2293 #endif
2294 	if (current->set_child_tid)
2295 		put_user(task_pid_vnr(current), current->set_child_tid);
2296 }
2297 
2298 /*
2299  * context_switch - switch to the new MM and the new
2300  * thread's register state.
2301  */
2302 static inline void
2303 context_switch(struct rq *rq, struct task_struct *prev,
2304 	       struct task_struct *next)
2305 {
2306 	struct mm_struct *mm, *oldmm;
2307 
2308 	prepare_task_switch(rq, prev, next);
2309 
2310 	mm = next->mm;
2311 	oldmm = prev->active_mm;
2312 	/*
2313 	 * For paravirt, this is coupled with an exit in switch_to to
2314 	 * combine the page table reload and the switch backend into
2315 	 * one hypercall.
2316 	 */
2317 	arch_start_context_switch(prev);
2318 
2319 	if (!mm) {
2320 		next->active_mm = oldmm;
2321 		atomic_inc(&oldmm->mm_count);
2322 		enter_lazy_tlb(oldmm, next);
2323 	} else
2324 		switch_mm(oldmm, mm, next);
2325 
2326 	if (!prev->mm) {
2327 		prev->active_mm = NULL;
2328 		rq->prev_mm = oldmm;
2329 	}
2330 	/*
2331 	 * Since the runqueue lock will be released by the next
2332 	 * task (which is an invalid locking op but in the case
2333 	 * of the scheduler it's an obvious special-case), so we
2334 	 * do an early lockdep release here:
2335 	 */
2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338 #endif
2339 
2340 	context_tracking_task_switch(prev, next);
2341 	/* Here we just switch the register state and the stack. */
2342 	switch_to(prev, next, prev);
2343 
2344 	barrier();
2345 	/*
2346 	 * this_rq must be evaluated again because prev may have moved
2347 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 	 * frame will be invalid.
2349 	 */
2350 	finish_task_switch(this_rq(), prev);
2351 }
2352 
2353 /*
2354  * nr_running and nr_context_switches:
2355  *
2356  * externally visible scheduler statistics: current number of runnable
2357  * threads, total number of context switches performed since bootup.
2358  */
2359 unsigned long nr_running(void)
2360 {
2361 	unsigned long i, sum = 0;
2362 
2363 	for_each_online_cpu(i)
2364 		sum += cpu_rq(i)->nr_running;
2365 
2366 	return sum;
2367 }
2368 
2369 unsigned long long nr_context_switches(void)
2370 {
2371 	int i;
2372 	unsigned long long sum = 0;
2373 
2374 	for_each_possible_cpu(i)
2375 		sum += cpu_rq(i)->nr_switches;
2376 
2377 	return sum;
2378 }
2379 
2380 unsigned long nr_iowait(void)
2381 {
2382 	unsigned long i, sum = 0;
2383 
2384 	for_each_possible_cpu(i)
2385 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2386 
2387 	return sum;
2388 }
2389 
2390 unsigned long nr_iowait_cpu(int cpu)
2391 {
2392 	struct rq *this = cpu_rq(cpu);
2393 	return atomic_read(&this->nr_iowait);
2394 }
2395 
2396 #ifdef CONFIG_SMP
2397 
2398 /*
2399  * sched_exec - execve() is a valuable balancing opportunity, because at
2400  * this point the task has the smallest effective memory and cache footprint.
2401  */
2402 void sched_exec(void)
2403 {
2404 	struct task_struct *p = current;
2405 	unsigned long flags;
2406 	int dest_cpu;
2407 
2408 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2409 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2410 	if (dest_cpu == smp_processor_id())
2411 		goto unlock;
2412 
2413 	if (likely(cpu_active(dest_cpu))) {
2414 		struct migration_arg arg = { p, dest_cpu };
2415 
2416 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2418 		return;
2419 	}
2420 unlock:
2421 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2422 }
2423 
2424 #endif
2425 
2426 DEFINE_PER_CPU(struct kernel_stat, kstat);
2427 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2428 
2429 EXPORT_PER_CPU_SYMBOL(kstat);
2430 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2431 
2432 /*
2433  * Return any ns on the sched_clock that have not yet been accounted in
2434  * @p in case that task is currently running.
2435  *
2436  * Called with task_rq_lock() held on @rq.
2437  */
2438 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2439 {
2440 	u64 ns = 0;
2441 
2442 	/*
2443 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2444 	 * project cycles that may never be accounted to this
2445 	 * thread, breaking clock_gettime().
2446 	 */
2447 	if (task_current(rq, p) && p->on_rq) {
2448 		update_rq_clock(rq);
2449 		ns = rq_clock_task(rq) - p->se.exec_start;
2450 		if ((s64)ns < 0)
2451 			ns = 0;
2452 	}
2453 
2454 	return ns;
2455 }
2456 
2457 unsigned long long task_delta_exec(struct task_struct *p)
2458 {
2459 	unsigned long flags;
2460 	struct rq *rq;
2461 	u64 ns = 0;
2462 
2463 	rq = task_rq_lock(p, &flags);
2464 	ns = do_task_delta_exec(p, rq);
2465 	task_rq_unlock(rq, p, &flags);
2466 
2467 	return ns;
2468 }
2469 
2470 /*
2471  * Return accounted runtime for the task.
2472  * In case the task is currently running, return the runtime plus current's
2473  * pending runtime that have not been accounted yet.
2474  */
2475 unsigned long long task_sched_runtime(struct task_struct *p)
2476 {
2477 	unsigned long flags;
2478 	struct rq *rq;
2479 	u64 ns = 0;
2480 
2481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2482 	/*
2483 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2484 	 * So we have a optimization chance when the task's delta_exec is 0.
2485 	 * Reading ->on_cpu is racy, but this is ok.
2486 	 *
2487 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2488 	 * If we race with it entering cpu, unaccounted time is 0. This is
2489 	 * indistinguishable from the read occurring a few cycles earlier.
2490 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2491 	 * been accounted, so we're correct here as well.
2492 	 */
2493 	if (!p->on_cpu || !p->on_rq)
2494 		return p->se.sum_exec_runtime;
2495 #endif
2496 
2497 	rq = task_rq_lock(p, &flags);
2498 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2499 	task_rq_unlock(rq, p, &flags);
2500 
2501 	return ns;
2502 }
2503 
2504 /*
2505  * This function gets called by the timer code, with HZ frequency.
2506  * We call it with interrupts disabled.
2507  */
2508 void scheduler_tick(void)
2509 {
2510 	int cpu = smp_processor_id();
2511 	struct rq *rq = cpu_rq(cpu);
2512 	struct task_struct *curr = rq->curr;
2513 
2514 	sched_clock_tick();
2515 
2516 	raw_spin_lock(&rq->lock);
2517 	update_rq_clock(rq);
2518 	curr->sched_class->task_tick(rq, curr, 0);
2519 	update_cpu_load_active(rq);
2520 	raw_spin_unlock(&rq->lock);
2521 
2522 	perf_event_task_tick();
2523 
2524 #ifdef CONFIG_SMP
2525 	rq->idle_balance = idle_cpu(cpu);
2526 	trigger_load_balance(rq);
2527 #endif
2528 	rq_last_tick_reset(rq);
2529 }
2530 
2531 #ifdef CONFIG_NO_HZ_FULL
2532 /**
2533  * scheduler_tick_max_deferment
2534  *
2535  * Keep at least one tick per second when a single
2536  * active task is running because the scheduler doesn't
2537  * yet completely support full dynticks environment.
2538  *
2539  * This makes sure that uptime, CFS vruntime, load
2540  * balancing, etc... continue to move forward, even
2541  * with a very low granularity.
2542  *
2543  * Return: Maximum deferment in nanoseconds.
2544  */
2545 u64 scheduler_tick_max_deferment(void)
2546 {
2547 	struct rq *rq = this_rq();
2548 	unsigned long next, now = ACCESS_ONCE(jiffies);
2549 
2550 	next = rq->last_sched_tick + HZ;
2551 
2552 	if (time_before_eq(next, now))
2553 		return 0;
2554 
2555 	return jiffies_to_nsecs(next - now);
2556 }
2557 #endif
2558 
2559 notrace unsigned long get_parent_ip(unsigned long addr)
2560 {
2561 	if (in_lock_functions(addr)) {
2562 		addr = CALLER_ADDR2;
2563 		if (in_lock_functions(addr))
2564 			addr = CALLER_ADDR3;
2565 	}
2566 	return addr;
2567 }
2568 
2569 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2570 				defined(CONFIG_PREEMPT_TRACER))
2571 
2572 void preempt_count_add(int val)
2573 {
2574 #ifdef CONFIG_DEBUG_PREEMPT
2575 	/*
2576 	 * Underflow?
2577 	 */
2578 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2579 		return;
2580 #endif
2581 	__preempt_count_add(val);
2582 #ifdef CONFIG_DEBUG_PREEMPT
2583 	/*
2584 	 * Spinlock count overflowing soon?
2585 	 */
2586 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2587 				PREEMPT_MASK - 10);
2588 #endif
2589 	if (preempt_count() == val) {
2590 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2591 #ifdef CONFIG_DEBUG_PREEMPT
2592 		current->preempt_disable_ip = ip;
2593 #endif
2594 		trace_preempt_off(CALLER_ADDR0, ip);
2595 	}
2596 }
2597 EXPORT_SYMBOL(preempt_count_add);
2598 NOKPROBE_SYMBOL(preempt_count_add);
2599 
2600 void preempt_count_sub(int val)
2601 {
2602 #ifdef CONFIG_DEBUG_PREEMPT
2603 	/*
2604 	 * Underflow?
2605 	 */
2606 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2607 		return;
2608 	/*
2609 	 * Is the spinlock portion underflowing?
2610 	 */
2611 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2612 			!(preempt_count() & PREEMPT_MASK)))
2613 		return;
2614 #endif
2615 
2616 	if (preempt_count() == val)
2617 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2618 	__preempt_count_sub(val);
2619 }
2620 EXPORT_SYMBOL(preempt_count_sub);
2621 NOKPROBE_SYMBOL(preempt_count_sub);
2622 
2623 #endif
2624 
2625 /*
2626  * Print scheduling while atomic bug:
2627  */
2628 static noinline void __schedule_bug(struct task_struct *prev)
2629 {
2630 	if (oops_in_progress)
2631 		return;
2632 
2633 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2634 		prev->comm, prev->pid, preempt_count());
2635 
2636 	debug_show_held_locks(prev);
2637 	print_modules();
2638 	if (irqs_disabled())
2639 		print_irqtrace_events(prev);
2640 #ifdef CONFIG_DEBUG_PREEMPT
2641 	if (in_atomic_preempt_off()) {
2642 		pr_err("Preemption disabled at:");
2643 		print_ip_sym(current->preempt_disable_ip);
2644 		pr_cont("\n");
2645 	}
2646 #endif
2647 	dump_stack();
2648 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2649 }
2650 
2651 /*
2652  * Various schedule()-time debugging checks and statistics:
2653  */
2654 static inline void schedule_debug(struct task_struct *prev)
2655 {
2656 	/*
2657 	 * Test if we are atomic. Since do_exit() needs to call into
2658 	 * schedule() atomically, we ignore that path. Otherwise whine
2659 	 * if we are scheduling when we should not.
2660 	 */
2661 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2662 		__schedule_bug(prev);
2663 	rcu_sleep_check();
2664 
2665 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2666 
2667 	schedstat_inc(this_rq(), sched_count);
2668 }
2669 
2670 /*
2671  * Pick up the highest-prio task:
2672  */
2673 static inline struct task_struct *
2674 pick_next_task(struct rq *rq, struct task_struct *prev)
2675 {
2676 	const struct sched_class *class = &fair_sched_class;
2677 	struct task_struct *p;
2678 
2679 	/*
2680 	 * Optimization: we know that if all tasks are in
2681 	 * the fair class we can call that function directly:
2682 	 */
2683 	if (likely(prev->sched_class == class &&
2684 		   rq->nr_running == rq->cfs.h_nr_running)) {
2685 		p = fair_sched_class.pick_next_task(rq, prev);
2686 		if (unlikely(p == RETRY_TASK))
2687 			goto again;
2688 
2689 		/* assumes fair_sched_class->next == idle_sched_class */
2690 		if (unlikely(!p))
2691 			p = idle_sched_class.pick_next_task(rq, prev);
2692 
2693 		return p;
2694 	}
2695 
2696 again:
2697 	for_each_class(class) {
2698 		p = class->pick_next_task(rq, prev);
2699 		if (p) {
2700 			if (unlikely(p == RETRY_TASK))
2701 				goto again;
2702 			return p;
2703 		}
2704 	}
2705 
2706 	BUG(); /* the idle class will always have a runnable task */
2707 }
2708 
2709 /*
2710  * __schedule() is the main scheduler function.
2711  *
2712  * The main means of driving the scheduler and thus entering this function are:
2713  *
2714  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2715  *
2716  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2717  *      paths. For example, see arch/x86/entry_64.S.
2718  *
2719  *      To drive preemption between tasks, the scheduler sets the flag in timer
2720  *      interrupt handler scheduler_tick().
2721  *
2722  *   3. Wakeups don't really cause entry into schedule(). They add a
2723  *      task to the run-queue and that's it.
2724  *
2725  *      Now, if the new task added to the run-queue preempts the current
2726  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2727  *      called on the nearest possible occasion:
2728  *
2729  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2730  *
2731  *         - in syscall or exception context, at the next outmost
2732  *           preempt_enable(). (this might be as soon as the wake_up()'s
2733  *           spin_unlock()!)
2734  *
2735  *         - in IRQ context, return from interrupt-handler to
2736  *           preemptible context
2737  *
2738  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2739  *         then at the next:
2740  *
2741  *          - cond_resched() call
2742  *          - explicit schedule() call
2743  *          - return from syscall or exception to user-space
2744  *          - return from interrupt-handler to user-space
2745  */
2746 static void __sched __schedule(void)
2747 {
2748 	struct task_struct *prev, *next;
2749 	unsigned long *switch_count;
2750 	struct rq *rq;
2751 	int cpu;
2752 
2753 need_resched:
2754 	preempt_disable();
2755 	cpu = smp_processor_id();
2756 	rq = cpu_rq(cpu);
2757 	rcu_note_context_switch(cpu);
2758 	prev = rq->curr;
2759 
2760 	schedule_debug(prev);
2761 
2762 	if (sched_feat(HRTICK))
2763 		hrtick_clear(rq);
2764 
2765 	/*
2766 	 * Make sure that signal_pending_state()->signal_pending() below
2767 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2768 	 * done by the caller to avoid the race with signal_wake_up().
2769 	 */
2770 	smp_mb__before_spinlock();
2771 	raw_spin_lock_irq(&rq->lock);
2772 
2773 	switch_count = &prev->nivcsw;
2774 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2775 		if (unlikely(signal_pending_state(prev->state, prev))) {
2776 			prev->state = TASK_RUNNING;
2777 		} else {
2778 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2779 			prev->on_rq = 0;
2780 
2781 			/*
2782 			 * If a worker went to sleep, notify and ask workqueue
2783 			 * whether it wants to wake up a task to maintain
2784 			 * concurrency.
2785 			 */
2786 			if (prev->flags & PF_WQ_WORKER) {
2787 				struct task_struct *to_wakeup;
2788 
2789 				to_wakeup = wq_worker_sleeping(prev, cpu);
2790 				if (to_wakeup)
2791 					try_to_wake_up_local(to_wakeup);
2792 			}
2793 		}
2794 		switch_count = &prev->nvcsw;
2795 	}
2796 
2797 	if (prev->on_rq || rq->skip_clock_update < 0)
2798 		update_rq_clock(rq);
2799 
2800 	next = pick_next_task(rq, prev);
2801 	clear_tsk_need_resched(prev);
2802 	clear_preempt_need_resched();
2803 	rq->skip_clock_update = 0;
2804 
2805 	if (likely(prev != next)) {
2806 		rq->nr_switches++;
2807 		rq->curr = next;
2808 		++*switch_count;
2809 
2810 		context_switch(rq, prev, next); /* unlocks the rq */
2811 		/*
2812 		 * The context switch have flipped the stack from under us
2813 		 * and restored the local variables which were saved when
2814 		 * this task called schedule() in the past. prev == current
2815 		 * is still correct, but it can be moved to another cpu/rq.
2816 		 */
2817 		cpu = smp_processor_id();
2818 		rq = cpu_rq(cpu);
2819 	} else
2820 		raw_spin_unlock_irq(&rq->lock);
2821 
2822 	post_schedule(rq);
2823 
2824 	sched_preempt_enable_no_resched();
2825 	if (need_resched())
2826 		goto need_resched;
2827 }
2828 
2829 static inline void sched_submit_work(struct task_struct *tsk)
2830 {
2831 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2832 		return;
2833 	/*
2834 	 * If we are going to sleep and we have plugged IO queued,
2835 	 * make sure to submit it to avoid deadlocks.
2836 	 */
2837 	if (blk_needs_flush_plug(tsk))
2838 		blk_schedule_flush_plug(tsk);
2839 }
2840 
2841 asmlinkage __visible void __sched schedule(void)
2842 {
2843 	struct task_struct *tsk = current;
2844 
2845 	sched_submit_work(tsk);
2846 	__schedule();
2847 }
2848 EXPORT_SYMBOL(schedule);
2849 
2850 #ifdef CONFIG_CONTEXT_TRACKING
2851 asmlinkage __visible void __sched schedule_user(void)
2852 {
2853 	/*
2854 	 * If we come here after a random call to set_need_resched(),
2855 	 * or we have been woken up remotely but the IPI has not yet arrived,
2856 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2857 	 * we find a better solution.
2858 	 */
2859 	user_exit();
2860 	schedule();
2861 	user_enter();
2862 }
2863 #endif
2864 
2865 /**
2866  * schedule_preempt_disabled - called with preemption disabled
2867  *
2868  * Returns with preemption disabled. Note: preempt_count must be 1
2869  */
2870 void __sched schedule_preempt_disabled(void)
2871 {
2872 	sched_preempt_enable_no_resched();
2873 	schedule();
2874 	preempt_disable();
2875 }
2876 
2877 #ifdef CONFIG_PREEMPT
2878 /*
2879  * this is the entry point to schedule() from in-kernel preemption
2880  * off of preempt_enable. Kernel preemptions off return from interrupt
2881  * occur there and call schedule directly.
2882  */
2883 asmlinkage __visible void __sched notrace preempt_schedule(void)
2884 {
2885 	/*
2886 	 * If there is a non-zero preempt_count or interrupts are disabled,
2887 	 * we do not want to preempt the current task. Just return..
2888 	 */
2889 	if (likely(!preemptible()))
2890 		return;
2891 
2892 	do {
2893 		__preempt_count_add(PREEMPT_ACTIVE);
2894 		__schedule();
2895 		__preempt_count_sub(PREEMPT_ACTIVE);
2896 
2897 		/*
2898 		 * Check again in case we missed a preemption opportunity
2899 		 * between schedule and now.
2900 		 */
2901 		barrier();
2902 	} while (need_resched());
2903 }
2904 NOKPROBE_SYMBOL(preempt_schedule);
2905 EXPORT_SYMBOL(preempt_schedule);
2906 #endif /* CONFIG_PREEMPT */
2907 
2908 /*
2909  * this is the entry point to schedule() from kernel preemption
2910  * off of irq context.
2911  * Note, that this is called and return with irqs disabled. This will
2912  * protect us against recursive calling from irq.
2913  */
2914 asmlinkage __visible void __sched preempt_schedule_irq(void)
2915 {
2916 	enum ctx_state prev_state;
2917 
2918 	/* Catch callers which need to be fixed */
2919 	BUG_ON(preempt_count() || !irqs_disabled());
2920 
2921 	prev_state = exception_enter();
2922 
2923 	do {
2924 		__preempt_count_add(PREEMPT_ACTIVE);
2925 		local_irq_enable();
2926 		__schedule();
2927 		local_irq_disable();
2928 		__preempt_count_sub(PREEMPT_ACTIVE);
2929 
2930 		/*
2931 		 * Check again in case we missed a preemption opportunity
2932 		 * between schedule and now.
2933 		 */
2934 		barrier();
2935 	} while (need_resched());
2936 
2937 	exception_exit(prev_state);
2938 }
2939 
2940 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2941 			  void *key)
2942 {
2943 	return try_to_wake_up(curr->private, mode, wake_flags);
2944 }
2945 EXPORT_SYMBOL(default_wake_function);
2946 
2947 #ifdef CONFIG_RT_MUTEXES
2948 
2949 /*
2950  * rt_mutex_setprio - set the current priority of a task
2951  * @p: task
2952  * @prio: prio value (kernel-internal form)
2953  *
2954  * This function changes the 'effective' priority of a task. It does
2955  * not touch ->normal_prio like __setscheduler().
2956  *
2957  * Used by the rt_mutex code to implement priority inheritance
2958  * logic. Call site only calls if the priority of the task changed.
2959  */
2960 void rt_mutex_setprio(struct task_struct *p, int prio)
2961 {
2962 	int oldprio, on_rq, running, enqueue_flag = 0;
2963 	struct rq *rq;
2964 	const struct sched_class *prev_class;
2965 
2966 	BUG_ON(prio > MAX_PRIO);
2967 
2968 	rq = __task_rq_lock(p);
2969 
2970 	/*
2971 	 * Idle task boosting is a nono in general. There is one
2972 	 * exception, when PREEMPT_RT and NOHZ is active:
2973 	 *
2974 	 * The idle task calls get_next_timer_interrupt() and holds
2975 	 * the timer wheel base->lock on the CPU and another CPU wants
2976 	 * to access the timer (probably to cancel it). We can safely
2977 	 * ignore the boosting request, as the idle CPU runs this code
2978 	 * with interrupts disabled and will complete the lock
2979 	 * protected section without being interrupted. So there is no
2980 	 * real need to boost.
2981 	 */
2982 	if (unlikely(p == rq->idle)) {
2983 		WARN_ON(p != rq->curr);
2984 		WARN_ON(p->pi_blocked_on);
2985 		goto out_unlock;
2986 	}
2987 
2988 	trace_sched_pi_setprio(p, prio);
2989 	oldprio = p->prio;
2990 	prev_class = p->sched_class;
2991 	on_rq = p->on_rq;
2992 	running = task_current(rq, p);
2993 	if (on_rq)
2994 		dequeue_task(rq, p, 0);
2995 	if (running)
2996 		p->sched_class->put_prev_task(rq, p);
2997 
2998 	/*
2999 	 * Boosting condition are:
3000 	 * 1. -rt task is running and holds mutex A
3001 	 *      --> -dl task blocks on mutex A
3002 	 *
3003 	 * 2. -dl task is running and holds mutex A
3004 	 *      --> -dl task blocks on mutex A and could preempt the
3005 	 *          running task
3006 	 */
3007 	if (dl_prio(prio)) {
3008 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3009 		if (!dl_prio(p->normal_prio) ||
3010 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3011 			p->dl.dl_boosted = 1;
3012 			p->dl.dl_throttled = 0;
3013 			enqueue_flag = ENQUEUE_REPLENISH;
3014 		} else
3015 			p->dl.dl_boosted = 0;
3016 		p->sched_class = &dl_sched_class;
3017 	} else if (rt_prio(prio)) {
3018 		if (dl_prio(oldprio))
3019 			p->dl.dl_boosted = 0;
3020 		if (oldprio < prio)
3021 			enqueue_flag = ENQUEUE_HEAD;
3022 		p->sched_class = &rt_sched_class;
3023 	} else {
3024 		if (dl_prio(oldprio))
3025 			p->dl.dl_boosted = 0;
3026 		p->sched_class = &fair_sched_class;
3027 	}
3028 
3029 	p->prio = prio;
3030 
3031 	if (running)
3032 		p->sched_class->set_curr_task(rq);
3033 	if (on_rq)
3034 		enqueue_task(rq, p, enqueue_flag);
3035 
3036 	check_class_changed(rq, p, prev_class, oldprio);
3037 out_unlock:
3038 	__task_rq_unlock(rq);
3039 }
3040 #endif
3041 
3042 void set_user_nice(struct task_struct *p, long nice)
3043 {
3044 	int old_prio, delta, on_rq;
3045 	unsigned long flags;
3046 	struct rq *rq;
3047 
3048 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3049 		return;
3050 	/*
3051 	 * We have to be careful, if called from sys_setpriority(),
3052 	 * the task might be in the middle of scheduling on another CPU.
3053 	 */
3054 	rq = task_rq_lock(p, &flags);
3055 	/*
3056 	 * The RT priorities are set via sched_setscheduler(), but we still
3057 	 * allow the 'normal' nice value to be set - but as expected
3058 	 * it wont have any effect on scheduling until the task is
3059 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3060 	 */
3061 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3062 		p->static_prio = NICE_TO_PRIO(nice);
3063 		goto out_unlock;
3064 	}
3065 	on_rq = p->on_rq;
3066 	if (on_rq)
3067 		dequeue_task(rq, p, 0);
3068 
3069 	p->static_prio = NICE_TO_PRIO(nice);
3070 	set_load_weight(p);
3071 	old_prio = p->prio;
3072 	p->prio = effective_prio(p);
3073 	delta = p->prio - old_prio;
3074 
3075 	if (on_rq) {
3076 		enqueue_task(rq, p, 0);
3077 		/*
3078 		 * If the task increased its priority or is running and
3079 		 * lowered its priority, then reschedule its CPU:
3080 		 */
3081 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3082 			resched_curr(rq);
3083 	}
3084 out_unlock:
3085 	task_rq_unlock(rq, p, &flags);
3086 }
3087 EXPORT_SYMBOL(set_user_nice);
3088 
3089 /*
3090  * can_nice - check if a task can reduce its nice value
3091  * @p: task
3092  * @nice: nice value
3093  */
3094 int can_nice(const struct task_struct *p, const int nice)
3095 {
3096 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3097 	int nice_rlim = nice_to_rlimit(nice);
3098 
3099 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3100 		capable(CAP_SYS_NICE));
3101 }
3102 
3103 #ifdef __ARCH_WANT_SYS_NICE
3104 
3105 /*
3106  * sys_nice - change the priority of the current process.
3107  * @increment: priority increment
3108  *
3109  * sys_setpriority is a more generic, but much slower function that
3110  * does similar things.
3111  */
3112 SYSCALL_DEFINE1(nice, int, increment)
3113 {
3114 	long nice, retval;
3115 
3116 	/*
3117 	 * Setpriority might change our priority at the same moment.
3118 	 * We don't have to worry. Conceptually one call occurs first
3119 	 * and we have a single winner.
3120 	 */
3121 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3122 	nice = task_nice(current) + increment;
3123 
3124 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3125 	if (increment < 0 && !can_nice(current, nice))
3126 		return -EPERM;
3127 
3128 	retval = security_task_setnice(current, nice);
3129 	if (retval)
3130 		return retval;
3131 
3132 	set_user_nice(current, nice);
3133 	return 0;
3134 }
3135 
3136 #endif
3137 
3138 /**
3139  * task_prio - return the priority value of a given task.
3140  * @p: the task in question.
3141  *
3142  * Return: The priority value as seen by users in /proc.
3143  * RT tasks are offset by -200. Normal tasks are centered
3144  * around 0, value goes from -16 to +15.
3145  */
3146 int task_prio(const struct task_struct *p)
3147 {
3148 	return p->prio - MAX_RT_PRIO;
3149 }
3150 
3151 /**
3152  * idle_cpu - is a given cpu idle currently?
3153  * @cpu: the processor in question.
3154  *
3155  * Return: 1 if the CPU is currently idle. 0 otherwise.
3156  */
3157 int idle_cpu(int cpu)
3158 {
3159 	struct rq *rq = cpu_rq(cpu);
3160 
3161 	if (rq->curr != rq->idle)
3162 		return 0;
3163 
3164 	if (rq->nr_running)
3165 		return 0;
3166 
3167 #ifdef CONFIG_SMP
3168 	if (!llist_empty(&rq->wake_list))
3169 		return 0;
3170 #endif
3171 
3172 	return 1;
3173 }
3174 
3175 /**
3176  * idle_task - return the idle task for a given cpu.
3177  * @cpu: the processor in question.
3178  *
3179  * Return: The idle task for the cpu @cpu.
3180  */
3181 struct task_struct *idle_task(int cpu)
3182 {
3183 	return cpu_rq(cpu)->idle;
3184 }
3185 
3186 /**
3187  * find_process_by_pid - find a process with a matching PID value.
3188  * @pid: the pid in question.
3189  *
3190  * The task of @pid, if found. %NULL otherwise.
3191  */
3192 static struct task_struct *find_process_by_pid(pid_t pid)
3193 {
3194 	return pid ? find_task_by_vpid(pid) : current;
3195 }
3196 
3197 /*
3198  * This function initializes the sched_dl_entity of a newly becoming
3199  * SCHED_DEADLINE task.
3200  *
3201  * Only the static values are considered here, the actual runtime and the
3202  * absolute deadline will be properly calculated when the task is enqueued
3203  * for the first time with its new policy.
3204  */
3205 static void
3206 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3207 {
3208 	struct sched_dl_entity *dl_se = &p->dl;
3209 
3210 	init_dl_task_timer(dl_se);
3211 	dl_se->dl_runtime = attr->sched_runtime;
3212 	dl_se->dl_deadline = attr->sched_deadline;
3213 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3214 	dl_se->flags = attr->sched_flags;
3215 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3216 	dl_se->dl_throttled = 0;
3217 	dl_se->dl_new = 1;
3218 	dl_se->dl_yielded = 0;
3219 }
3220 
3221 /*
3222  * sched_setparam() passes in -1 for its policy, to let the functions
3223  * it calls know not to change it.
3224  */
3225 #define SETPARAM_POLICY	-1
3226 
3227 static void __setscheduler_params(struct task_struct *p,
3228 		const struct sched_attr *attr)
3229 {
3230 	int policy = attr->sched_policy;
3231 
3232 	if (policy == SETPARAM_POLICY)
3233 		policy = p->policy;
3234 
3235 	p->policy = policy;
3236 
3237 	if (dl_policy(policy))
3238 		__setparam_dl(p, attr);
3239 	else if (fair_policy(policy))
3240 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3241 
3242 	/*
3243 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3244 	 * !rt_policy. Always setting this ensures that things like
3245 	 * getparam()/getattr() don't report silly values for !rt tasks.
3246 	 */
3247 	p->rt_priority = attr->sched_priority;
3248 	p->normal_prio = normal_prio(p);
3249 	set_load_weight(p);
3250 }
3251 
3252 /* Actually do priority change: must hold pi & rq lock. */
3253 static void __setscheduler(struct rq *rq, struct task_struct *p,
3254 			   const struct sched_attr *attr)
3255 {
3256 	__setscheduler_params(p, attr);
3257 
3258 	/*
3259 	 * If we get here, there was no pi waiters boosting the
3260 	 * task. It is safe to use the normal prio.
3261 	 */
3262 	p->prio = normal_prio(p);
3263 
3264 	if (dl_prio(p->prio))
3265 		p->sched_class = &dl_sched_class;
3266 	else if (rt_prio(p->prio))
3267 		p->sched_class = &rt_sched_class;
3268 	else
3269 		p->sched_class = &fair_sched_class;
3270 }
3271 
3272 static void
3273 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3274 {
3275 	struct sched_dl_entity *dl_se = &p->dl;
3276 
3277 	attr->sched_priority = p->rt_priority;
3278 	attr->sched_runtime = dl_se->dl_runtime;
3279 	attr->sched_deadline = dl_se->dl_deadline;
3280 	attr->sched_period = dl_se->dl_period;
3281 	attr->sched_flags = dl_se->flags;
3282 }
3283 
3284 /*
3285  * This function validates the new parameters of a -deadline task.
3286  * We ask for the deadline not being zero, and greater or equal
3287  * than the runtime, as well as the period of being zero or
3288  * greater than deadline. Furthermore, we have to be sure that
3289  * user parameters are above the internal resolution of 1us (we
3290  * check sched_runtime only since it is always the smaller one) and
3291  * below 2^63 ns (we have to check both sched_deadline and
3292  * sched_period, as the latter can be zero).
3293  */
3294 static bool
3295 __checkparam_dl(const struct sched_attr *attr)
3296 {
3297 	/* deadline != 0 */
3298 	if (attr->sched_deadline == 0)
3299 		return false;
3300 
3301 	/*
3302 	 * Since we truncate DL_SCALE bits, make sure we're at least
3303 	 * that big.
3304 	 */
3305 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3306 		return false;
3307 
3308 	/*
3309 	 * Since we use the MSB for wrap-around and sign issues, make
3310 	 * sure it's not set (mind that period can be equal to zero).
3311 	 */
3312 	if (attr->sched_deadline & (1ULL << 63) ||
3313 	    attr->sched_period & (1ULL << 63))
3314 		return false;
3315 
3316 	/* runtime <= deadline <= period (if period != 0) */
3317 	if ((attr->sched_period != 0 &&
3318 	     attr->sched_period < attr->sched_deadline) ||
3319 	    attr->sched_deadline < attr->sched_runtime)
3320 		return false;
3321 
3322 	return true;
3323 }
3324 
3325 /*
3326  * check the target process has a UID that matches the current process's
3327  */
3328 static bool check_same_owner(struct task_struct *p)
3329 {
3330 	const struct cred *cred = current_cred(), *pcred;
3331 	bool match;
3332 
3333 	rcu_read_lock();
3334 	pcred = __task_cred(p);
3335 	match = (uid_eq(cred->euid, pcred->euid) ||
3336 		 uid_eq(cred->euid, pcred->uid));
3337 	rcu_read_unlock();
3338 	return match;
3339 }
3340 
3341 static int __sched_setscheduler(struct task_struct *p,
3342 				const struct sched_attr *attr,
3343 				bool user)
3344 {
3345 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3346 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3347 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3348 	int policy = attr->sched_policy;
3349 	unsigned long flags;
3350 	const struct sched_class *prev_class;
3351 	struct rq *rq;
3352 	int reset_on_fork;
3353 
3354 	/* may grab non-irq protected spin_locks */
3355 	BUG_ON(in_interrupt());
3356 recheck:
3357 	/* double check policy once rq lock held */
3358 	if (policy < 0) {
3359 		reset_on_fork = p->sched_reset_on_fork;
3360 		policy = oldpolicy = p->policy;
3361 	} else {
3362 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3363 
3364 		if (policy != SCHED_DEADLINE &&
3365 				policy != SCHED_FIFO && policy != SCHED_RR &&
3366 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3367 				policy != SCHED_IDLE)
3368 			return -EINVAL;
3369 	}
3370 
3371 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3372 		return -EINVAL;
3373 
3374 	/*
3375 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3376 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3377 	 * SCHED_BATCH and SCHED_IDLE is 0.
3378 	 */
3379 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3380 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3381 		return -EINVAL;
3382 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3383 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3384 		return -EINVAL;
3385 
3386 	/*
3387 	 * Allow unprivileged RT tasks to decrease priority:
3388 	 */
3389 	if (user && !capable(CAP_SYS_NICE)) {
3390 		if (fair_policy(policy)) {
3391 			if (attr->sched_nice < task_nice(p) &&
3392 			    !can_nice(p, attr->sched_nice))
3393 				return -EPERM;
3394 		}
3395 
3396 		if (rt_policy(policy)) {
3397 			unsigned long rlim_rtprio =
3398 					task_rlimit(p, RLIMIT_RTPRIO);
3399 
3400 			/* can't set/change the rt policy */
3401 			if (policy != p->policy && !rlim_rtprio)
3402 				return -EPERM;
3403 
3404 			/* can't increase priority */
3405 			if (attr->sched_priority > p->rt_priority &&
3406 			    attr->sched_priority > rlim_rtprio)
3407 				return -EPERM;
3408 		}
3409 
3410 		 /*
3411 		  * Can't set/change SCHED_DEADLINE policy at all for now
3412 		  * (safest behavior); in the future we would like to allow
3413 		  * unprivileged DL tasks to increase their relative deadline
3414 		  * or reduce their runtime (both ways reducing utilization)
3415 		  */
3416 		if (dl_policy(policy))
3417 			return -EPERM;
3418 
3419 		/*
3420 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3421 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3422 		 */
3423 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3424 			if (!can_nice(p, task_nice(p)))
3425 				return -EPERM;
3426 		}
3427 
3428 		/* can't change other user's priorities */
3429 		if (!check_same_owner(p))
3430 			return -EPERM;
3431 
3432 		/* Normal users shall not reset the sched_reset_on_fork flag */
3433 		if (p->sched_reset_on_fork && !reset_on_fork)
3434 			return -EPERM;
3435 	}
3436 
3437 	if (user) {
3438 		retval = security_task_setscheduler(p);
3439 		if (retval)
3440 			return retval;
3441 	}
3442 
3443 	/*
3444 	 * make sure no PI-waiters arrive (or leave) while we are
3445 	 * changing the priority of the task:
3446 	 *
3447 	 * To be able to change p->policy safely, the appropriate
3448 	 * runqueue lock must be held.
3449 	 */
3450 	rq = task_rq_lock(p, &flags);
3451 
3452 	/*
3453 	 * Changing the policy of the stop threads its a very bad idea
3454 	 */
3455 	if (p == rq->stop) {
3456 		task_rq_unlock(rq, p, &flags);
3457 		return -EINVAL;
3458 	}
3459 
3460 	/*
3461 	 * If not changing anything there's no need to proceed further,
3462 	 * but store a possible modification of reset_on_fork.
3463 	 */
3464 	if (unlikely(policy == p->policy)) {
3465 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3466 			goto change;
3467 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3468 			goto change;
3469 		if (dl_policy(policy))
3470 			goto change;
3471 
3472 		p->sched_reset_on_fork = reset_on_fork;
3473 		task_rq_unlock(rq, p, &flags);
3474 		return 0;
3475 	}
3476 change:
3477 
3478 	if (user) {
3479 #ifdef CONFIG_RT_GROUP_SCHED
3480 		/*
3481 		 * Do not allow realtime tasks into groups that have no runtime
3482 		 * assigned.
3483 		 */
3484 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3485 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3486 				!task_group_is_autogroup(task_group(p))) {
3487 			task_rq_unlock(rq, p, &flags);
3488 			return -EPERM;
3489 		}
3490 #endif
3491 #ifdef CONFIG_SMP
3492 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3493 			cpumask_t *span = rq->rd->span;
3494 
3495 			/*
3496 			 * Don't allow tasks with an affinity mask smaller than
3497 			 * the entire root_domain to become SCHED_DEADLINE. We
3498 			 * will also fail if there's no bandwidth available.
3499 			 */
3500 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3501 			    rq->rd->dl_bw.bw == 0) {
3502 				task_rq_unlock(rq, p, &flags);
3503 				return -EPERM;
3504 			}
3505 		}
3506 #endif
3507 	}
3508 
3509 	/* recheck policy now with rq lock held */
3510 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3511 		policy = oldpolicy = -1;
3512 		task_rq_unlock(rq, p, &flags);
3513 		goto recheck;
3514 	}
3515 
3516 	/*
3517 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3518 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3519 	 * is available.
3520 	 */
3521 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3522 		task_rq_unlock(rq, p, &flags);
3523 		return -EBUSY;
3524 	}
3525 
3526 	p->sched_reset_on_fork = reset_on_fork;
3527 	oldprio = p->prio;
3528 
3529 	/*
3530 	 * Special case for priority boosted tasks.
3531 	 *
3532 	 * If the new priority is lower or equal (user space view)
3533 	 * than the current (boosted) priority, we just store the new
3534 	 * normal parameters and do not touch the scheduler class and
3535 	 * the runqueue. This will be done when the task deboost
3536 	 * itself.
3537 	 */
3538 	if (rt_mutex_check_prio(p, newprio)) {
3539 		__setscheduler_params(p, attr);
3540 		task_rq_unlock(rq, p, &flags);
3541 		return 0;
3542 	}
3543 
3544 	on_rq = p->on_rq;
3545 	running = task_current(rq, p);
3546 	if (on_rq)
3547 		dequeue_task(rq, p, 0);
3548 	if (running)
3549 		p->sched_class->put_prev_task(rq, p);
3550 
3551 	prev_class = p->sched_class;
3552 	__setscheduler(rq, p, attr);
3553 
3554 	if (running)
3555 		p->sched_class->set_curr_task(rq);
3556 	if (on_rq) {
3557 		/*
3558 		 * We enqueue to tail when the priority of a task is
3559 		 * increased (user space view).
3560 		 */
3561 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3562 	}
3563 
3564 	check_class_changed(rq, p, prev_class, oldprio);
3565 	task_rq_unlock(rq, p, &flags);
3566 
3567 	rt_mutex_adjust_pi(p);
3568 
3569 	return 0;
3570 }
3571 
3572 static int _sched_setscheduler(struct task_struct *p, int policy,
3573 			       const struct sched_param *param, bool check)
3574 {
3575 	struct sched_attr attr = {
3576 		.sched_policy   = policy,
3577 		.sched_priority = param->sched_priority,
3578 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3579 	};
3580 
3581 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3582 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3583 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3584 		policy &= ~SCHED_RESET_ON_FORK;
3585 		attr.sched_policy = policy;
3586 	}
3587 
3588 	return __sched_setscheduler(p, &attr, check);
3589 }
3590 /**
3591  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3592  * @p: the task in question.
3593  * @policy: new policy.
3594  * @param: structure containing the new RT priority.
3595  *
3596  * Return: 0 on success. An error code otherwise.
3597  *
3598  * NOTE that the task may be already dead.
3599  */
3600 int sched_setscheduler(struct task_struct *p, int policy,
3601 		       const struct sched_param *param)
3602 {
3603 	return _sched_setscheduler(p, policy, param, true);
3604 }
3605 EXPORT_SYMBOL_GPL(sched_setscheduler);
3606 
3607 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3608 {
3609 	return __sched_setscheduler(p, attr, true);
3610 }
3611 EXPORT_SYMBOL_GPL(sched_setattr);
3612 
3613 /**
3614  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3615  * @p: the task in question.
3616  * @policy: new policy.
3617  * @param: structure containing the new RT priority.
3618  *
3619  * Just like sched_setscheduler, only don't bother checking if the
3620  * current context has permission.  For example, this is needed in
3621  * stop_machine(): we create temporary high priority worker threads,
3622  * but our caller might not have that capability.
3623  *
3624  * Return: 0 on success. An error code otherwise.
3625  */
3626 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3627 			       const struct sched_param *param)
3628 {
3629 	return _sched_setscheduler(p, policy, param, false);
3630 }
3631 
3632 static int
3633 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3634 {
3635 	struct sched_param lparam;
3636 	struct task_struct *p;
3637 	int retval;
3638 
3639 	if (!param || pid < 0)
3640 		return -EINVAL;
3641 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3642 		return -EFAULT;
3643 
3644 	rcu_read_lock();
3645 	retval = -ESRCH;
3646 	p = find_process_by_pid(pid);
3647 	if (p != NULL)
3648 		retval = sched_setscheduler(p, policy, &lparam);
3649 	rcu_read_unlock();
3650 
3651 	return retval;
3652 }
3653 
3654 /*
3655  * Mimics kernel/events/core.c perf_copy_attr().
3656  */
3657 static int sched_copy_attr(struct sched_attr __user *uattr,
3658 			   struct sched_attr *attr)
3659 {
3660 	u32 size;
3661 	int ret;
3662 
3663 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3664 		return -EFAULT;
3665 
3666 	/*
3667 	 * zero the full structure, so that a short copy will be nice.
3668 	 */
3669 	memset(attr, 0, sizeof(*attr));
3670 
3671 	ret = get_user(size, &uattr->size);
3672 	if (ret)
3673 		return ret;
3674 
3675 	if (size > PAGE_SIZE)	/* silly large */
3676 		goto err_size;
3677 
3678 	if (!size)		/* abi compat */
3679 		size = SCHED_ATTR_SIZE_VER0;
3680 
3681 	if (size < SCHED_ATTR_SIZE_VER0)
3682 		goto err_size;
3683 
3684 	/*
3685 	 * If we're handed a bigger struct than we know of,
3686 	 * ensure all the unknown bits are 0 - i.e. new
3687 	 * user-space does not rely on any kernel feature
3688 	 * extensions we dont know about yet.
3689 	 */
3690 	if (size > sizeof(*attr)) {
3691 		unsigned char __user *addr;
3692 		unsigned char __user *end;
3693 		unsigned char val;
3694 
3695 		addr = (void __user *)uattr + sizeof(*attr);
3696 		end  = (void __user *)uattr + size;
3697 
3698 		for (; addr < end; addr++) {
3699 			ret = get_user(val, addr);
3700 			if (ret)
3701 				return ret;
3702 			if (val)
3703 				goto err_size;
3704 		}
3705 		size = sizeof(*attr);
3706 	}
3707 
3708 	ret = copy_from_user(attr, uattr, size);
3709 	if (ret)
3710 		return -EFAULT;
3711 
3712 	/*
3713 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3714 	 * to be strict and return an error on out-of-bounds values?
3715 	 */
3716 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3717 
3718 	return 0;
3719 
3720 err_size:
3721 	put_user(sizeof(*attr), &uattr->size);
3722 	return -E2BIG;
3723 }
3724 
3725 /**
3726  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3727  * @pid: the pid in question.
3728  * @policy: new policy.
3729  * @param: structure containing the new RT priority.
3730  *
3731  * Return: 0 on success. An error code otherwise.
3732  */
3733 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3734 		struct sched_param __user *, param)
3735 {
3736 	/* negative values for policy are not valid */
3737 	if (policy < 0)
3738 		return -EINVAL;
3739 
3740 	return do_sched_setscheduler(pid, policy, param);
3741 }
3742 
3743 /**
3744  * sys_sched_setparam - set/change the RT priority of a thread
3745  * @pid: the pid in question.
3746  * @param: structure containing the new RT priority.
3747  *
3748  * Return: 0 on success. An error code otherwise.
3749  */
3750 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3751 {
3752 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3753 }
3754 
3755 /**
3756  * sys_sched_setattr - same as above, but with extended sched_attr
3757  * @pid: the pid in question.
3758  * @uattr: structure containing the extended parameters.
3759  * @flags: for future extension.
3760  */
3761 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3762 			       unsigned int, flags)
3763 {
3764 	struct sched_attr attr;
3765 	struct task_struct *p;
3766 	int retval;
3767 
3768 	if (!uattr || pid < 0 || flags)
3769 		return -EINVAL;
3770 
3771 	retval = sched_copy_attr(uattr, &attr);
3772 	if (retval)
3773 		return retval;
3774 
3775 	if ((int)attr.sched_policy < 0)
3776 		return -EINVAL;
3777 
3778 	rcu_read_lock();
3779 	retval = -ESRCH;
3780 	p = find_process_by_pid(pid);
3781 	if (p != NULL)
3782 		retval = sched_setattr(p, &attr);
3783 	rcu_read_unlock();
3784 
3785 	return retval;
3786 }
3787 
3788 /**
3789  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3790  * @pid: the pid in question.
3791  *
3792  * Return: On success, the policy of the thread. Otherwise, a negative error
3793  * code.
3794  */
3795 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3796 {
3797 	struct task_struct *p;
3798 	int retval;
3799 
3800 	if (pid < 0)
3801 		return -EINVAL;
3802 
3803 	retval = -ESRCH;
3804 	rcu_read_lock();
3805 	p = find_process_by_pid(pid);
3806 	if (p) {
3807 		retval = security_task_getscheduler(p);
3808 		if (!retval)
3809 			retval = p->policy
3810 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3811 	}
3812 	rcu_read_unlock();
3813 	return retval;
3814 }
3815 
3816 /**
3817  * sys_sched_getparam - get the RT priority of a thread
3818  * @pid: the pid in question.
3819  * @param: structure containing the RT priority.
3820  *
3821  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3822  * code.
3823  */
3824 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3825 {
3826 	struct sched_param lp = { .sched_priority = 0 };
3827 	struct task_struct *p;
3828 	int retval;
3829 
3830 	if (!param || pid < 0)
3831 		return -EINVAL;
3832 
3833 	rcu_read_lock();
3834 	p = find_process_by_pid(pid);
3835 	retval = -ESRCH;
3836 	if (!p)
3837 		goto out_unlock;
3838 
3839 	retval = security_task_getscheduler(p);
3840 	if (retval)
3841 		goto out_unlock;
3842 
3843 	if (task_has_rt_policy(p))
3844 		lp.sched_priority = p->rt_priority;
3845 	rcu_read_unlock();
3846 
3847 	/*
3848 	 * This one might sleep, we cannot do it with a spinlock held ...
3849 	 */
3850 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3851 
3852 	return retval;
3853 
3854 out_unlock:
3855 	rcu_read_unlock();
3856 	return retval;
3857 }
3858 
3859 static int sched_read_attr(struct sched_attr __user *uattr,
3860 			   struct sched_attr *attr,
3861 			   unsigned int usize)
3862 {
3863 	int ret;
3864 
3865 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3866 		return -EFAULT;
3867 
3868 	/*
3869 	 * If we're handed a smaller struct than we know of,
3870 	 * ensure all the unknown bits are 0 - i.e. old
3871 	 * user-space does not get uncomplete information.
3872 	 */
3873 	if (usize < sizeof(*attr)) {
3874 		unsigned char *addr;
3875 		unsigned char *end;
3876 
3877 		addr = (void *)attr + usize;
3878 		end  = (void *)attr + sizeof(*attr);
3879 
3880 		for (; addr < end; addr++) {
3881 			if (*addr)
3882 				return -EFBIG;
3883 		}
3884 
3885 		attr->size = usize;
3886 	}
3887 
3888 	ret = copy_to_user(uattr, attr, attr->size);
3889 	if (ret)
3890 		return -EFAULT;
3891 
3892 	return 0;
3893 }
3894 
3895 /**
3896  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3897  * @pid: the pid in question.
3898  * @uattr: structure containing the extended parameters.
3899  * @size: sizeof(attr) for fwd/bwd comp.
3900  * @flags: for future extension.
3901  */
3902 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3903 		unsigned int, size, unsigned int, flags)
3904 {
3905 	struct sched_attr attr = {
3906 		.size = sizeof(struct sched_attr),
3907 	};
3908 	struct task_struct *p;
3909 	int retval;
3910 
3911 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3912 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3913 		return -EINVAL;
3914 
3915 	rcu_read_lock();
3916 	p = find_process_by_pid(pid);
3917 	retval = -ESRCH;
3918 	if (!p)
3919 		goto out_unlock;
3920 
3921 	retval = security_task_getscheduler(p);
3922 	if (retval)
3923 		goto out_unlock;
3924 
3925 	attr.sched_policy = p->policy;
3926 	if (p->sched_reset_on_fork)
3927 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3928 	if (task_has_dl_policy(p))
3929 		__getparam_dl(p, &attr);
3930 	else if (task_has_rt_policy(p))
3931 		attr.sched_priority = p->rt_priority;
3932 	else
3933 		attr.sched_nice = task_nice(p);
3934 
3935 	rcu_read_unlock();
3936 
3937 	retval = sched_read_attr(uattr, &attr, size);
3938 	return retval;
3939 
3940 out_unlock:
3941 	rcu_read_unlock();
3942 	return retval;
3943 }
3944 
3945 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3946 {
3947 	cpumask_var_t cpus_allowed, new_mask;
3948 	struct task_struct *p;
3949 	int retval;
3950 
3951 	rcu_read_lock();
3952 
3953 	p = find_process_by_pid(pid);
3954 	if (!p) {
3955 		rcu_read_unlock();
3956 		return -ESRCH;
3957 	}
3958 
3959 	/* Prevent p going away */
3960 	get_task_struct(p);
3961 	rcu_read_unlock();
3962 
3963 	if (p->flags & PF_NO_SETAFFINITY) {
3964 		retval = -EINVAL;
3965 		goto out_put_task;
3966 	}
3967 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3968 		retval = -ENOMEM;
3969 		goto out_put_task;
3970 	}
3971 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3972 		retval = -ENOMEM;
3973 		goto out_free_cpus_allowed;
3974 	}
3975 	retval = -EPERM;
3976 	if (!check_same_owner(p)) {
3977 		rcu_read_lock();
3978 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3979 			rcu_read_unlock();
3980 			goto out_unlock;
3981 		}
3982 		rcu_read_unlock();
3983 	}
3984 
3985 	retval = security_task_setscheduler(p);
3986 	if (retval)
3987 		goto out_unlock;
3988 
3989 
3990 	cpuset_cpus_allowed(p, cpus_allowed);
3991 	cpumask_and(new_mask, in_mask, cpus_allowed);
3992 
3993 	/*
3994 	 * Since bandwidth control happens on root_domain basis,
3995 	 * if admission test is enabled, we only admit -deadline
3996 	 * tasks allowed to run on all the CPUs in the task's
3997 	 * root_domain.
3998 	 */
3999 #ifdef CONFIG_SMP
4000 	if (task_has_dl_policy(p)) {
4001 		const struct cpumask *span = task_rq(p)->rd->span;
4002 
4003 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4004 			retval = -EBUSY;
4005 			goto out_unlock;
4006 		}
4007 	}
4008 #endif
4009 again:
4010 	retval = set_cpus_allowed_ptr(p, new_mask);
4011 
4012 	if (!retval) {
4013 		cpuset_cpus_allowed(p, cpus_allowed);
4014 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4015 			/*
4016 			 * We must have raced with a concurrent cpuset
4017 			 * update. Just reset the cpus_allowed to the
4018 			 * cpuset's cpus_allowed
4019 			 */
4020 			cpumask_copy(new_mask, cpus_allowed);
4021 			goto again;
4022 		}
4023 	}
4024 out_unlock:
4025 	free_cpumask_var(new_mask);
4026 out_free_cpus_allowed:
4027 	free_cpumask_var(cpus_allowed);
4028 out_put_task:
4029 	put_task_struct(p);
4030 	return retval;
4031 }
4032 
4033 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4034 			     struct cpumask *new_mask)
4035 {
4036 	if (len < cpumask_size())
4037 		cpumask_clear(new_mask);
4038 	else if (len > cpumask_size())
4039 		len = cpumask_size();
4040 
4041 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4042 }
4043 
4044 /**
4045  * sys_sched_setaffinity - set the cpu affinity of a process
4046  * @pid: pid of the process
4047  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4048  * @user_mask_ptr: user-space pointer to the new cpu mask
4049  *
4050  * Return: 0 on success. An error code otherwise.
4051  */
4052 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4053 		unsigned long __user *, user_mask_ptr)
4054 {
4055 	cpumask_var_t new_mask;
4056 	int retval;
4057 
4058 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4059 		return -ENOMEM;
4060 
4061 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4062 	if (retval == 0)
4063 		retval = sched_setaffinity(pid, new_mask);
4064 	free_cpumask_var(new_mask);
4065 	return retval;
4066 }
4067 
4068 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4069 {
4070 	struct task_struct *p;
4071 	unsigned long flags;
4072 	int retval;
4073 
4074 	rcu_read_lock();
4075 
4076 	retval = -ESRCH;
4077 	p = find_process_by_pid(pid);
4078 	if (!p)
4079 		goto out_unlock;
4080 
4081 	retval = security_task_getscheduler(p);
4082 	if (retval)
4083 		goto out_unlock;
4084 
4085 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4086 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4087 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4088 
4089 out_unlock:
4090 	rcu_read_unlock();
4091 
4092 	return retval;
4093 }
4094 
4095 /**
4096  * sys_sched_getaffinity - get the cpu affinity of a process
4097  * @pid: pid of the process
4098  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4099  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4100  *
4101  * Return: 0 on success. An error code otherwise.
4102  */
4103 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4104 		unsigned long __user *, user_mask_ptr)
4105 {
4106 	int ret;
4107 	cpumask_var_t mask;
4108 
4109 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4110 		return -EINVAL;
4111 	if (len & (sizeof(unsigned long)-1))
4112 		return -EINVAL;
4113 
4114 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4115 		return -ENOMEM;
4116 
4117 	ret = sched_getaffinity(pid, mask);
4118 	if (ret == 0) {
4119 		size_t retlen = min_t(size_t, len, cpumask_size());
4120 
4121 		if (copy_to_user(user_mask_ptr, mask, retlen))
4122 			ret = -EFAULT;
4123 		else
4124 			ret = retlen;
4125 	}
4126 	free_cpumask_var(mask);
4127 
4128 	return ret;
4129 }
4130 
4131 /**
4132  * sys_sched_yield - yield the current processor to other threads.
4133  *
4134  * This function yields the current CPU to other tasks. If there are no
4135  * other threads running on this CPU then this function will return.
4136  *
4137  * Return: 0.
4138  */
4139 SYSCALL_DEFINE0(sched_yield)
4140 {
4141 	struct rq *rq = this_rq_lock();
4142 
4143 	schedstat_inc(rq, yld_count);
4144 	current->sched_class->yield_task(rq);
4145 
4146 	/*
4147 	 * Since we are going to call schedule() anyway, there's
4148 	 * no need to preempt or enable interrupts:
4149 	 */
4150 	__release(rq->lock);
4151 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4152 	do_raw_spin_unlock(&rq->lock);
4153 	sched_preempt_enable_no_resched();
4154 
4155 	schedule();
4156 
4157 	return 0;
4158 }
4159 
4160 static void __cond_resched(void)
4161 {
4162 	__preempt_count_add(PREEMPT_ACTIVE);
4163 	__schedule();
4164 	__preempt_count_sub(PREEMPT_ACTIVE);
4165 }
4166 
4167 int __sched _cond_resched(void)
4168 {
4169 	if (should_resched()) {
4170 		__cond_resched();
4171 		return 1;
4172 	}
4173 	return 0;
4174 }
4175 EXPORT_SYMBOL(_cond_resched);
4176 
4177 /*
4178  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4179  * call schedule, and on return reacquire the lock.
4180  *
4181  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4182  * operations here to prevent schedule() from being called twice (once via
4183  * spin_unlock(), once by hand).
4184  */
4185 int __cond_resched_lock(spinlock_t *lock)
4186 {
4187 	int resched = should_resched();
4188 	int ret = 0;
4189 
4190 	lockdep_assert_held(lock);
4191 
4192 	if (spin_needbreak(lock) || resched) {
4193 		spin_unlock(lock);
4194 		if (resched)
4195 			__cond_resched();
4196 		else
4197 			cpu_relax();
4198 		ret = 1;
4199 		spin_lock(lock);
4200 	}
4201 	return ret;
4202 }
4203 EXPORT_SYMBOL(__cond_resched_lock);
4204 
4205 int __sched __cond_resched_softirq(void)
4206 {
4207 	BUG_ON(!in_softirq());
4208 
4209 	if (should_resched()) {
4210 		local_bh_enable();
4211 		__cond_resched();
4212 		local_bh_disable();
4213 		return 1;
4214 	}
4215 	return 0;
4216 }
4217 EXPORT_SYMBOL(__cond_resched_softirq);
4218 
4219 /**
4220  * yield - yield the current processor to other threads.
4221  *
4222  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4223  *
4224  * The scheduler is at all times free to pick the calling task as the most
4225  * eligible task to run, if removing the yield() call from your code breaks
4226  * it, its already broken.
4227  *
4228  * Typical broken usage is:
4229  *
4230  * while (!event)
4231  * 	yield();
4232  *
4233  * where one assumes that yield() will let 'the other' process run that will
4234  * make event true. If the current task is a SCHED_FIFO task that will never
4235  * happen. Never use yield() as a progress guarantee!!
4236  *
4237  * If you want to use yield() to wait for something, use wait_event().
4238  * If you want to use yield() to be 'nice' for others, use cond_resched().
4239  * If you still want to use yield(), do not!
4240  */
4241 void __sched yield(void)
4242 {
4243 	set_current_state(TASK_RUNNING);
4244 	sys_sched_yield();
4245 }
4246 EXPORT_SYMBOL(yield);
4247 
4248 /**
4249  * yield_to - yield the current processor to another thread in
4250  * your thread group, or accelerate that thread toward the
4251  * processor it's on.
4252  * @p: target task
4253  * @preempt: whether task preemption is allowed or not
4254  *
4255  * It's the caller's job to ensure that the target task struct
4256  * can't go away on us before we can do any checks.
4257  *
4258  * Return:
4259  *	true (>0) if we indeed boosted the target task.
4260  *	false (0) if we failed to boost the target.
4261  *	-ESRCH if there's no task to yield to.
4262  */
4263 int __sched yield_to(struct task_struct *p, bool preempt)
4264 {
4265 	struct task_struct *curr = current;
4266 	struct rq *rq, *p_rq;
4267 	unsigned long flags;
4268 	int yielded = 0;
4269 
4270 	local_irq_save(flags);
4271 	rq = this_rq();
4272 
4273 again:
4274 	p_rq = task_rq(p);
4275 	/*
4276 	 * If we're the only runnable task on the rq and target rq also
4277 	 * has only one task, there's absolutely no point in yielding.
4278 	 */
4279 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4280 		yielded = -ESRCH;
4281 		goto out_irq;
4282 	}
4283 
4284 	double_rq_lock(rq, p_rq);
4285 	if (task_rq(p) != p_rq) {
4286 		double_rq_unlock(rq, p_rq);
4287 		goto again;
4288 	}
4289 
4290 	if (!curr->sched_class->yield_to_task)
4291 		goto out_unlock;
4292 
4293 	if (curr->sched_class != p->sched_class)
4294 		goto out_unlock;
4295 
4296 	if (task_running(p_rq, p) || p->state)
4297 		goto out_unlock;
4298 
4299 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4300 	if (yielded) {
4301 		schedstat_inc(rq, yld_count);
4302 		/*
4303 		 * Make p's CPU reschedule; pick_next_entity takes care of
4304 		 * fairness.
4305 		 */
4306 		if (preempt && rq != p_rq)
4307 			resched_curr(p_rq);
4308 	}
4309 
4310 out_unlock:
4311 	double_rq_unlock(rq, p_rq);
4312 out_irq:
4313 	local_irq_restore(flags);
4314 
4315 	if (yielded > 0)
4316 		schedule();
4317 
4318 	return yielded;
4319 }
4320 EXPORT_SYMBOL_GPL(yield_to);
4321 
4322 /*
4323  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4324  * that process accounting knows that this is a task in IO wait state.
4325  */
4326 void __sched io_schedule(void)
4327 {
4328 	struct rq *rq = raw_rq();
4329 
4330 	delayacct_blkio_start();
4331 	atomic_inc(&rq->nr_iowait);
4332 	blk_flush_plug(current);
4333 	current->in_iowait = 1;
4334 	schedule();
4335 	current->in_iowait = 0;
4336 	atomic_dec(&rq->nr_iowait);
4337 	delayacct_blkio_end();
4338 }
4339 EXPORT_SYMBOL(io_schedule);
4340 
4341 long __sched io_schedule_timeout(long timeout)
4342 {
4343 	struct rq *rq = raw_rq();
4344 	long ret;
4345 
4346 	delayacct_blkio_start();
4347 	atomic_inc(&rq->nr_iowait);
4348 	blk_flush_plug(current);
4349 	current->in_iowait = 1;
4350 	ret = schedule_timeout(timeout);
4351 	current->in_iowait = 0;
4352 	atomic_dec(&rq->nr_iowait);
4353 	delayacct_blkio_end();
4354 	return ret;
4355 }
4356 
4357 /**
4358  * sys_sched_get_priority_max - return maximum RT priority.
4359  * @policy: scheduling class.
4360  *
4361  * Return: On success, this syscall returns the maximum
4362  * rt_priority that can be used by a given scheduling class.
4363  * On failure, a negative error code is returned.
4364  */
4365 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4366 {
4367 	int ret = -EINVAL;
4368 
4369 	switch (policy) {
4370 	case SCHED_FIFO:
4371 	case SCHED_RR:
4372 		ret = MAX_USER_RT_PRIO-1;
4373 		break;
4374 	case SCHED_DEADLINE:
4375 	case SCHED_NORMAL:
4376 	case SCHED_BATCH:
4377 	case SCHED_IDLE:
4378 		ret = 0;
4379 		break;
4380 	}
4381 	return ret;
4382 }
4383 
4384 /**
4385  * sys_sched_get_priority_min - return minimum RT priority.
4386  * @policy: scheduling class.
4387  *
4388  * Return: On success, this syscall returns the minimum
4389  * rt_priority that can be used by a given scheduling class.
4390  * On failure, a negative error code is returned.
4391  */
4392 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4393 {
4394 	int ret = -EINVAL;
4395 
4396 	switch (policy) {
4397 	case SCHED_FIFO:
4398 	case SCHED_RR:
4399 		ret = 1;
4400 		break;
4401 	case SCHED_DEADLINE:
4402 	case SCHED_NORMAL:
4403 	case SCHED_BATCH:
4404 	case SCHED_IDLE:
4405 		ret = 0;
4406 	}
4407 	return ret;
4408 }
4409 
4410 /**
4411  * sys_sched_rr_get_interval - return the default timeslice of a process.
4412  * @pid: pid of the process.
4413  * @interval: userspace pointer to the timeslice value.
4414  *
4415  * this syscall writes the default timeslice value of a given process
4416  * into the user-space timespec buffer. A value of '0' means infinity.
4417  *
4418  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4419  * an error code.
4420  */
4421 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4422 		struct timespec __user *, interval)
4423 {
4424 	struct task_struct *p;
4425 	unsigned int time_slice;
4426 	unsigned long flags;
4427 	struct rq *rq;
4428 	int retval;
4429 	struct timespec t;
4430 
4431 	if (pid < 0)
4432 		return -EINVAL;
4433 
4434 	retval = -ESRCH;
4435 	rcu_read_lock();
4436 	p = find_process_by_pid(pid);
4437 	if (!p)
4438 		goto out_unlock;
4439 
4440 	retval = security_task_getscheduler(p);
4441 	if (retval)
4442 		goto out_unlock;
4443 
4444 	rq = task_rq_lock(p, &flags);
4445 	time_slice = 0;
4446 	if (p->sched_class->get_rr_interval)
4447 		time_slice = p->sched_class->get_rr_interval(rq, p);
4448 	task_rq_unlock(rq, p, &flags);
4449 
4450 	rcu_read_unlock();
4451 	jiffies_to_timespec(time_slice, &t);
4452 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4453 	return retval;
4454 
4455 out_unlock:
4456 	rcu_read_unlock();
4457 	return retval;
4458 }
4459 
4460 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4461 
4462 void sched_show_task(struct task_struct *p)
4463 {
4464 	unsigned long free = 0;
4465 	int ppid;
4466 	unsigned state;
4467 
4468 	state = p->state ? __ffs(p->state) + 1 : 0;
4469 	printk(KERN_INFO "%-15.15s %c", p->comm,
4470 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4471 #if BITS_PER_LONG == 32
4472 	if (state == TASK_RUNNING)
4473 		printk(KERN_CONT " running  ");
4474 	else
4475 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4476 #else
4477 	if (state == TASK_RUNNING)
4478 		printk(KERN_CONT "  running task    ");
4479 	else
4480 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4481 #endif
4482 #ifdef CONFIG_DEBUG_STACK_USAGE
4483 	free = stack_not_used(p);
4484 #endif
4485 	rcu_read_lock();
4486 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4487 	rcu_read_unlock();
4488 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4489 		task_pid_nr(p), ppid,
4490 		(unsigned long)task_thread_info(p)->flags);
4491 
4492 	print_worker_info(KERN_INFO, p);
4493 	show_stack(p, NULL);
4494 }
4495 
4496 void show_state_filter(unsigned long state_filter)
4497 {
4498 	struct task_struct *g, *p;
4499 
4500 #if BITS_PER_LONG == 32
4501 	printk(KERN_INFO
4502 		"  task                PC stack   pid father\n");
4503 #else
4504 	printk(KERN_INFO
4505 		"  task                        PC stack   pid father\n");
4506 #endif
4507 	rcu_read_lock();
4508 	do_each_thread(g, p) {
4509 		/*
4510 		 * reset the NMI-timeout, listing all files on a slow
4511 		 * console might take a lot of time:
4512 		 */
4513 		touch_nmi_watchdog();
4514 		if (!state_filter || (p->state & state_filter))
4515 			sched_show_task(p);
4516 	} while_each_thread(g, p);
4517 
4518 	touch_all_softlockup_watchdogs();
4519 
4520 #ifdef CONFIG_SCHED_DEBUG
4521 	sysrq_sched_debug_show();
4522 #endif
4523 	rcu_read_unlock();
4524 	/*
4525 	 * Only show locks if all tasks are dumped:
4526 	 */
4527 	if (!state_filter)
4528 		debug_show_all_locks();
4529 }
4530 
4531 void init_idle_bootup_task(struct task_struct *idle)
4532 {
4533 	idle->sched_class = &idle_sched_class;
4534 }
4535 
4536 /**
4537  * init_idle - set up an idle thread for a given CPU
4538  * @idle: task in question
4539  * @cpu: cpu the idle task belongs to
4540  *
4541  * NOTE: this function does not set the idle thread's NEED_RESCHED
4542  * flag, to make booting more robust.
4543  */
4544 void init_idle(struct task_struct *idle, int cpu)
4545 {
4546 	struct rq *rq = cpu_rq(cpu);
4547 	unsigned long flags;
4548 
4549 	raw_spin_lock_irqsave(&rq->lock, flags);
4550 
4551 	__sched_fork(0, idle);
4552 	idle->state = TASK_RUNNING;
4553 	idle->se.exec_start = sched_clock();
4554 
4555 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4556 	/*
4557 	 * We're having a chicken and egg problem, even though we are
4558 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4559 	 * lockdep check in task_group() will fail.
4560 	 *
4561 	 * Similar case to sched_fork(). / Alternatively we could
4562 	 * use task_rq_lock() here and obtain the other rq->lock.
4563 	 *
4564 	 * Silence PROVE_RCU
4565 	 */
4566 	rcu_read_lock();
4567 	__set_task_cpu(idle, cpu);
4568 	rcu_read_unlock();
4569 
4570 	rq->curr = rq->idle = idle;
4571 	idle->on_rq = 1;
4572 #if defined(CONFIG_SMP)
4573 	idle->on_cpu = 1;
4574 #endif
4575 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4576 
4577 	/* Set the preempt count _outside_ the spinlocks! */
4578 	init_idle_preempt_count(idle, cpu);
4579 
4580 	/*
4581 	 * The idle tasks have their own, simple scheduling class:
4582 	 */
4583 	idle->sched_class = &idle_sched_class;
4584 	ftrace_graph_init_idle_task(idle, cpu);
4585 	vtime_init_idle(idle, cpu);
4586 #if defined(CONFIG_SMP)
4587 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4588 #endif
4589 }
4590 
4591 #ifdef CONFIG_SMP
4592 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4593 {
4594 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4595 		p->sched_class->set_cpus_allowed(p, new_mask);
4596 
4597 	cpumask_copy(&p->cpus_allowed, new_mask);
4598 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4599 }
4600 
4601 /*
4602  * This is how migration works:
4603  *
4604  * 1) we invoke migration_cpu_stop() on the target CPU using
4605  *    stop_one_cpu().
4606  * 2) stopper starts to run (implicitly forcing the migrated thread
4607  *    off the CPU)
4608  * 3) it checks whether the migrated task is still in the wrong runqueue.
4609  * 4) if it's in the wrong runqueue then the migration thread removes
4610  *    it and puts it into the right queue.
4611  * 5) stopper completes and stop_one_cpu() returns and the migration
4612  *    is done.
4613  */
4614 
4615 /*
4616  * Change a given task's CPU affinity. Migrate the thread to a
4617  * proper CPU and schedule it away if the CPU it's executing on
4618  * is removed from the allowed bitmask.
4619  *
4620  * NOTE: the caller must have a valid reference to the task, the
4621  * task must not exit() & deallocate itself prematurely. The
4622  * call is not atomic; no spinlocks may be held.
4623  */
4624 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4625 {
4626 	unsigned long flags;
4627 	struct rq *rq;
4628 	unsigned int dest_cpu;
4629 	int ret = 0;
4630 
4631 	rq = task_rq_lock(p, &flags);
4632 
4633 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4634 		goto out;
4635 
4636 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4637 		ret = -EINVAL;
4638 		goto out;
4639 	}
4640 
4641 	do_set_cpus_allowed(p, new_mask);
4642 
4643 	/* Can the task run on the task's current CPU? If so, we're done */
4644 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4645 		goto out;
4646 
4647 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4648 	if (p->on_rq) {
4649 		struct migration_arg arg = { p, dest_cpu };
4650 		/* Need help from migration thread: drop lock and wait. */
4651 		task_rq_unlock(rq, p, &flags);
4652 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4653 		tlb_migrate_finish(p->mm);
4654 		return 0;
4655 	}
4656 out:
4657 	task_rq_unlock(rq, p, &flags);
4658 
4659 	return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4662 
4663 /*
4664  * Move (not current) task off this cpu, onto dest cpu. We're doing
4665  * this because either it can't run here any more (set_cpus_allowed()
4666  * away from this CPU, or CPU going down), or because we're
4667  * attempting to rebalance this task on exec (sched_exec).
4668  *
4669  * So we race with normal scheduler movements, but that's OK, as long
4670  * as the task is no longer on this CPU.
4671  *
4672  * Returns non-zero if task was successfully migrated.
4673  */
4674 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4675 {
4676 	struct rq *rq_dest, *rq_src;
4677 	int ret = 0;
4678 
4679 	if (unlikely(!cpu_active(dest_cpu)))
4680 		return ret;
4681 
4682 	rq_src = cpu_rq(src_cpu);
4683 	rq_dest = cpu_rq(dest_cpu);
4684 
4685 	raw_spin_lock(&p->pi_lock);
4686 	double_rq_lock(rq_src, rq_dest);
4687 	/* Already moved. */
4688 	if (task_cpu(p) != src_cpu)
4689 		goto done;
4690 	/* Affinity changed (again). */
4691 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4692 		goto fail;
4693 
4694 	/*
4695 	 * If we're not on a rq, the next wake-up will ensure we're
4696 	 * placed properly.
4697 	 */
4698 	if (p->on_rq) {
4699 		dequeue_task(rq_src, p, 0);
4700 		set_task_cpu(p, dest_cpu);
4701 		enqueue_task(rq_dest, p, 0);
4702 		check_preempt_curr(rq_dest, p, 0);
4703 	}
4704 done:
4705 	ret = 1;
4706 fail:
4707 	double_rq_unlock(rq_src, rq_dest);
4708 	raw_spin_unlock(&p->pi_lock);
4709 	return ret;
4710 }
4711 
4712 #ifdef CONFIG_NUMA_BALANCING
4713 /* Migrate current task p to target_cpu */
4714 int migrate_task_to(struct task_struct *p, int target_cpu)
4715 {
4716 	struct migration_arg arg = { p, target_cpu };
4717 	int curr_cpu = task_cpu(p);
4718 
4719 	if (curr_cpu == target_cpu)
4720 		return 0;
4721 
4722 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4723 		return -EINVAL;
4724 
4725 	/* TODO: This is not properly updating schedstats */
4726 
4727 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4728 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4729 }
4730 
4731 /*
4732  * Requeue a task on a given node and accurately track the number of NUMA
4733  * tasks on the runqueues
4734  */
4735 void sched_setnuma(struct task_struct *p, int nid)
4736 {
4737 	struct rq *rq;
4738 	unsigned long flags;
4739 	bool on_rq, running;
4740 
4741 	rq = task_rq_lock(p, &flags);
4742 	on_rq = p->on_rq;
4743 	running = task_current(rq, p);
4744 
4745 	if (on_rq)
4746 		dequeue_task(rq, p, 0);
4747 	if (running)
4748 		p->sched_class->put_prev_task(rq, p);
4749 
4750 	p->numa_preferred_nid = nid;
4751 
4752 	if (running)
4753 		p->sched_class->set_curr_task(rq);
4754 	if (on_rq)
4755 		enqueue_task(rq, p, 0);
4756 	task_rq_unlock(rq, p, &flags);
4757 }
4758 #endif
4759 
4760 /*
4761  * migration_cpu_stop - this will be executed by a highprio stopper thread
4762  * and performs thread migration by bumping thread off CPU then
4763  * 'pushing' onto another runqueue.
4764  */
4765 static int migration_cpu_stop(void *data)
4766 {
4767 	struct migration_arg *arg = data;
4768 
4769 	/*
4770 	 * The original target cpu might have gone down and we might
4771 	 * be on another cpu but it doesn't matter.
4772 	 */
4773 	local_irq_disable();
4774 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4775 	local_irq_enable();
4776 	return 0;
4777 }
4778 
4779 #ifdef CONFIG_HOTPLUG_CPU
4780 
4781 /*
4782  * Ensures that the idle task is using init_mm right before its cpu goes
4783  * offline.
4784  */
4785 void idle_task_exit(void)
4786 {
4787 	struct mm_struct *mm = current->active_mm;
4788 
4789 	BUG_ON(cpu_online(smp_processor_id()));
4790 
4791 	if (mm != &init_mm) {
4792 		switch_mm(mm, &init_mm, current);
4793 		finish_arch_post_lock_switch();
4794 	}
4795 	mmdrop(mm);
4796 }
4797 
4798 /*
4799  * Since this CPU is going 'away' for a while, fold any nr_active delta
4800  * we might have. Assumes we're called after migrate_tasks() so that the
4801  * nr_active count is stable.
4802  *
4803  * Also see the comment "Global load-average calculations".
4804  */
4805 static void calc_load_migrate(struct rq *rq)
4806 {
4807 	long delta = calc_load_fold_active(rq);
4808 	if (delta)
4809 		atomic_long_add(delta, &calc_load_tasks);
4810 }
4811 
4812 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4813 {
4814 }
4815 
4816 static const struct sched_class fake_sched_class = {
4817 	.put_prev_task = put_prev_task_fake,
4818 };
4819 
4820 static struct task_struct fake_task = {
4821 	/*
4822 	 * Avoid pull_{rt,dl}_task()
4823 	 */
4824 	.prio = MAX_PRIO + 1,
4825 	.sched_class = &fake_sched_class,
4826 };
4827 
4828 /*
4829  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4830  * try_to_wake_up()->select_task_rq().
4831  *
4832  * Called with rq->lock held even though we'er in stop_machine() and
4833  * there's no concurrency possible, we hold the required locks anyway
4834  * because of lock validation efforts.
4835  */
4836 static void migrate_tasks(unsigned int dead_cpu)
4837 {
4838 	struct rq *rq = cpu_rq(dead_cpu);
4839 	struct task_struct *next, *stop = rq->stop;
4840 	int dest_cpu;
4841 
4842 	/*
4843 	 * Fudge the rq selection such that the below task selection loop
4844 	 * doesn't get stuck on the currently eligible stop task.
4845 	 *
4846 	 * We're currently inside stop_machine() and the rq is either stuck
4847 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4848 	 * either way we should never end up calling schedule() until we're
4849 	 * done here.
4850 	 */
4851 	rq->stop = NULL;
4852 
4853 	/*
4854 	 * put_prev_task() and pick_next_task() sched
4855 	 * class method both need to have an up-to-date
4856 	 * value of rq->clock[_task]
4857 	 */
4858 	update_rq_clock(rq);
4859 
4860 	for ( ; ; ) {
4861 		/*
4862 		 * There's this thread running, bail when that's the only
4863 		 * remaining thread.
4864 		 */
4865 		if (rq->nr_running == 1)
4866 			break;
4867 
4868 		next = pick_next_task(rq, &fake_task);
4869 		BUG_ON(!next);
4870 		next->sched_class->put_prev_task(rq, next);
4871 
4872 		/* Find suitable destination for @next, with force if needed. */
4873 		dest_cpu = select_fallback_rq(dead_cpu, next);
4874 		raw_spin_unlock(&rq->lock);
4875 
4876 		__migrate_task(next, dead_cpu, dest_cpu);
4877 
4878 		raw_spin_lock(&rq->lock);
4879 	}
4880 
4881 	rq->stop = stop;
4882 }
4883 
4884 #endif /* CONFIG_HOTPLUG_CPU */
4885 
4886 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4887 
4888 static struct ctl_table sd_ctl_dir[] = {
4889 	{
4890 		.procname	= "sched_domain",
4891 		.mode		= 0555,
4892 	},
4893 	{}
4894 };
4895 
4896 static struct ctl_table sd_ctl_root[] = {
4897 	{
4898 		.procname	= "kernel",
4899 		.mode		= 0555,
4900 		.child		= sd_ctl_dir,
4901 	},
4902 	{}
4903 };
4904 
4905 static struct ctl_table *sd_alloc_ctl_entry(int n)
4906 {
4907 	struct ctl_table *entry =
4908 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4909 
4910 	return entry;
4911 }
4912 
4913 static void sd_free_ctl_entry(struct ctl_table **tablep)
4914 {
4915 	struct ctl_table *entry;
4916 
4917 	/*
4918 	 * In the intermediate directories, both the child directory and
4919 	 * procname are dynamically allocated and could fail but the mode
4920 	 * will always be set. In the lowest directory the names are
4921 	 * static strings and all have proc handlers.
4922 	 */
4923 	for (entry = *tablep; entry->mode; entry++) {
4924 		if (entry->child)
4925 			sd_free_ctl_entry(&entry->child);
4926 		if (entry->proc_handler == NULL)
4927 			kfree(entry->procname);
4928 	}
4929 
4930 	kfree(*tablep);
4931 	*tablep = NULL;
4932 }
4933 
4934 static int min_load_idx = 0;
4935 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4936 
4937 static void
4938 set_table_entry(struct ctl_table *entry,
4939 		const char *procname, void *data, int maxlen,
4940 		umode_t mode, proc_handler *proc_handler,
4941 		bool load_idx)
4942 {
4943 	entry->procname = procname;
4944 	entry->data = data;
4945 	entry->maxlen = maxlen;
4946 	entry->mode = mode;
4947 	entry->proc_handler = proc_handler;
4948 
4949 	if (load_idx) {
4950 		entry->extra1 = &min_load_idx;
4951 		entry->extra2 = &max_load_idx;
4952 	}
4953 }
4954 
4955 static struct ctl_table *
4956 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4957 {
4958 	struct ctl_table *table = sd_alloc_ctl_entry(14);
4959 
4960 	if (table == NULL)
4961 		return NULL;
4962 
4963 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4964 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4965 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4966 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4967 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4968 		sizeof(int), 0644, proc_dointvec_minmax, true);
4969 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4970 		sizeof(int), 0644, proc_dointvec_minmax, true);
4971 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4972 		sizeof(int), 0644, proc_dointvec_minmax, true);
4973 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4974 		sizeof(int), 0644, proc_dointvec_minmax, true);
4975 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4976 		sizeof(int), 0644, proc_dointvec_minmax, true);
4977 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4978 		sizeof(int), 0644, proc_dointvec_minmax, false);
4979 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4980 		sizeof(int), 0644, proc_dointvec_minmax, false);
4981 	set_table_entry(&table[9], "cache_nice_tries",
4982 		&sd->cache_nice_tries,
4983 		sizeof(int), 0644, proc_dointvec_minmax, false);
4984 	set_table_entry(&table[10], "flags", &sd->flags,
4985 		sizeof(int), 0644, proc_dointvec_minmax, false);
4986 	set_table_entry(&table[11], "max_newidle_lb_cost",
4987 		&sd->max_newidle_lb_cost,
4988 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4989 	set_table_entry(&table[12], "name", sd->name,
4990 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4991 	/* &table[13] is terminator */
4992 
4993 	return table;
4994 }
4995 
4996 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4997 {
4998 	struct ctl_table *entry, *table;
4999 	struct sched_domain *sd;
5000 	int domain_num = 0, i;
5001 	char buf[32];
5002 
5003 	for_each_domain(cpu, sd)
5004 		domain_num++;
5005 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5006 	if (table == NULL)
5007 		return NULL;
5008 
5009 	i = 0;
5010 	for_each_domain(cpu, sd) {
5011 		snprintf(buf, 32, "domain%d", i);
5012 		entry->procname = kstrdup(buf, GFP_KERNEL);
5013 		entry->mode = 0555;
5014 		entry->child = sd_alloc_ctl_domain_table(sd);
5015 		entry++;
5016 		i++;
5017 	}
5018 	return table;
5019 }
5020 
5021 static struct ctl_table_header *sd_sysctl_header;
5022 static void register_sched_domain_sysctl(void)
5023 {
5024 	int i, cpu_num = num_possible_cpus();
5025 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5026 	char buf[32];
5027 
5028 	WARN_ON(sd_ctl_dir[0].child);
5029 	sd_ctl_dir[0].child = entry;
5030 
5031 	if (entry == NULL)
5032 		return;
5033 
5034 	for_each_possible_cpu(i) {
5035 		snprintf(buf, 32, "cpu%d", i);
5036 		entry->procname = kstrdup(buf, GFP_KERNEL);
5037 		entry->mode = 0555;
5038 		entry->child = sd_alloc_ctl_cpu_table(i);
5039 		entry++;
5040 	}
5041 
5042 	WARN_ON(sd_sysctl_header);
5043 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5044 }
5045 
5046 /* may be called multiple times per register */
5047 static void unregister_sched_domain_sysctl(void)
5048 {
5049 	if (sd_sysctl_header)
5050 		unregister_sysctl_table(sd_sysctl_header);
5051 	sd_sysctl_header = NULL;
5052 	if (sd_ctl_dir[0].child)
5053 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5054 }
5055 #else
5056 static void register_sched_domain_sysctl(void)
5057 {
5058 }
5059 static void unregister_sched_domain_sysctl(void)
5060 {
5061 }
5062 #endif
5063 
5064 static void set_rq_online(struct rq *rq)
5065 {
5066 	if (!rq->online) {
5067 		const struct sched_class *class;
5068 
5069 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5070 		rq->online = 1;
5071 
5072 		for_each_class(class) {
5073 			if (class->rq_online)
5074 				class->rq_online(rq);
5075 		}
5076 	}
5077 }
5078 
5079 static void set_rq_offline(struct rq *rq)
5080 {
5081 	if (rq->online) {
5082 		const struct sched_class *class;
5083 
5084 		for_each_class(class) {
5085 			if (class->rq_offline)
5086 				class->rq_offline(rq);
5087 		}
5088 
5089 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5090 		rq->online = 0;
5091 	}
5092 }
5093 
5094 /*
5095  * migration_call - callback that gets triggered when a CPU is added.
5096  * Here we can start up the necessary migration thread for the new CPU.
5097  */
5098 static int
5099 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5100 {
5101 	int cpu = (long)hcpu;
5102 	unsigned long flags;
5103 	struct rq *rq = cpu_rq(cpu);
5104 
5105 	switch (action & ~CPU_TASKS_FROZEN) {
5106 
5107 	case CPU_UP_PREPARE:
5108 		rq->calc_load_update = calc_load_update;
5109 		break;
5110 
5111 	case CPU_ONLINE:
5112 		/* Update our root-domain */
5113 		raw_spin_lock_irqsave(&rq->lock, flags);
5114 		if (rq->rd) {
5115 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5116 
5117 			set_rq_online(rq);
5118 		}
5119 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5120 		break;
5121 
5122 #ifdef CONFIG_HOTPLUG_CPU
5123 	case CPU_DYING:
5124 		sched_ttwu_pending();
5125 		/* Update our root-domain */
5126 		raw_spin_lock_irqsave(&rq->lock, flags);
5127 		if (rq->rd) {
5128 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5129 			set_rq_offline(rq);
5130 		}
5131 		migrate_tasks(cpu);
5132 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5133 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5134 		break;
5135 
5136 	case CPU_DEAD:
5137 		calc_load_migrate(rq);
5138 		break;
5139 #endif
5140 	}
5141 
5142 	update_max_interval();
5143 
5144 	return NOTIFY_OK;
5145 }
5146 
5147 /*
5148  * Register at high priority so that task migration (migrate_all_tasks)
5149  * happens before everything else.  This has to be lower priority than
5150  * the notifier in the perf_event subsystem, though.
5151  */
5152 static struct notifier_block migration_notifier = {
5153 	.notifier_call = migration_call,
5154 	.priority = CPU_PRI_MIGRATION,
5155 };
5156 
5157 static void __cpuinit set_cpu_rq_start_time(void)
5158 {
5159 	int cpu = smp_processor_id();
5160 	struct rq *rq = cpu_rq(cpu);
5161 	rq->age_stamp = sched_clock_cpu(cpu);
5162 }
5163 
5164 static int sched_cpu_active(struct notifier_block *nfb,
5165 				      unsigned long action, void *hcpu)
5166 {
5167 	switch (action & ~CPU_TASKS_FROZEN) {
5168 	case CPU_STARTING:
5169 		set_cpu_rq_start_time();
5170 		return NOTIFY_OK;
5171 	case CPU_DOWN_FAILED:
5172 		set_cpu_active((long)hcpu, true);
5173 		return NOTIFY_OK;
5174 	default:
5175 		return NOTIFY_DONE;
5176 	}
5177 }
5178 
5179 static int sched_cpu_inactive(struct notifier_block *nfb,
5180 					unsigned long action, void *hcpu)
5181 {
5182 	unsigned long flags;
5183 	long cpu = (long)hcpu;
5184 
5185 	switch (action & ~CPU_TASKS_FROZEN) {
5186 	case CPU_DOWN_PREPARE:
5187 		set_cpu_active(cpu, false);
5188 
5189 		/* explicitly allow suspend */
5190 		if (!(action & CPU_TASKS_FROZEN)) {
5191 			struct dl_bw *dl_b = dl_bw_of(cpu);
5192 			bool overflow;
5193 			int cpus;
5194 
5195 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5196 			cpus = dl_bw_cpus(cpu);
5197 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5198 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5199 
5200 			if (overflow)
5201 				return notifier_from_errno(-EBUSY);
5202 		}
5203 		return NOTIFY_OK;
5204 	}
5205 
5206 	return NOTIFY_DONE;
5207 }
5208 
5209 static int __init migration_init(void)
5210 {
5211 	void *cpu = (void *)(long)smp_processor_id();
5212 	int err;
5213 
5214 	/* Initialize migration for the boot CPU */
5215 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5216 	BUG_ON(err == NOTIFY_BAD);
5217 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5218 	register_cpu_notifier(&migration_notifier);
5219 
5220 	/* Register cpu active notifiers */
5221 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5222 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5223 
5224 	return 0;
5225 }
5226 early_initcall(migration_init);
5227 #endif
5228 
5229 #ifdef CONFIG_SMP
5230 
5231 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5232 
5233 #ifdef CONFIG_SCHED_DEBUG
5234 
5235 static __read_mostly int sched_debug_enabled;
5236 
5237 static int __init sched_debug_setup(char *str)
5238 {
5239 	sched_debug_enabled = 1;
5240 
5241 	return 0;
5242 }
5243 early_param("sched_debug", sched_debug_setup);
5244 
5245 static inline bool sched_debug(void)
5246 {
5247 	return sched_debug_enabled;
5248 }
5249 
5250 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5251 				  struct cpumask *groupmask)
5252 {
5253 	struct sched_group *group = sd->groups;
5254 	char str[256];
5255 
5256 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5257 	cpumask_clear(groupmask);
5258 
5259 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5260 
5261 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5262 		printk("does not load-balance\n");
5263 		if (sd->parent)
5264 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5265 					" has parent");
5266 		return -1;
5267 	}
5268 
5269 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5270 
5271 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5272 		printk(KERN_ERR "ERROR: domain->span does not contain "
5273 				"CPU%d\n", cpu);
5274 	}
5275 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5276 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5277 				" CPU%d\n", cpu);
5278 	}
5279 
5280 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5281 	do {
5282 		if (!group) {
5283 			printk("\n");
5284 			printk(KERN_ERR "ERROR: group is NULL\n");
5285 			break;
5286 		}
5287 
5288 		/*
5289 		 * Even though we initialize ->capacity to something semi-sane,
5290 		 * we leave capacity_orig unset. This allows us to detect if
5291 		 * domain iteration is still funny without causing /0 traps.
5292 		 */
5293 		if (!group->sgc->capacity_orig) {
5294 			printk(KERN_CONT "\n");
5295 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5296 			break;
5297 		}
5298 
5299 		if (!cpumask_weight(sched_group_cpus(group))) {
5300 			printk(KERN_CONT "\n");
5301 			printk(KERN_ERR "ERROR: empty group\n");
5302 			break;
5303 		}
5304 
5305 		if (!(sd->flags & SD_OVERLAP) &&
5306 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5307 			printk(KERN_CONT "\n");
5308 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5309 			break;
5310 		}
5311 
5312 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5313 
5314 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5315 
5316 		printk(KERN_CONT " %s", str);
5317 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5318 			printk(KERN_CONT " (cpu_capacity = %d)",
5319 				group->sgc->capacity);
5320 		}
5321 
5322 		group = group->next;
5323 	} while (group != sd->groups);
5324 	printk(KERN_CONT "\n");
5325 
5326 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5327 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5328 
5329 	if (sd->parent &&
5330 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5331 		printk(KERN_ERR "ERROR: parent span is not a superset "
5332 			"of domain->span\n");
5333 	return 0;
5334 }
5335 
5336 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5337 {
5338 	int level = 0;
5339 
5340 	if (!sched_debug_enabled)
5341 		return;
5342 
5343 	if (!sd) {
5344 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5345 		return;
5346 	}
5347 
5348 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5349 
5350 	for (;;) {
5351 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5352 			break;
5353 		level++;
5354 		sd = sd->parent;
5355 		if (!sd)
5356 			break;
5357 	}
5358 }
5359 #else /* !CONFIG_SCHED_DEBUG */
5360 # define sched_domain_debug(sd, cpu) do { } while (0)
5361 static inline bool sched_debug(void)
5362 {
5363 	return false;
5364 }
5365 #endif /* CONFIG_SCHED_DEBUG */
5366 
5367 static int sd_degenerate(struct sched_domain *sd)
5368 {
5369 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5370 		return 1;
5371 
5372 	/* Following flags need at least 2 groups */
5373 	if (sd->flags & (SD_LOAD_BALANCE |
5374 			 SD_BALANCE_NEWIDLE |
5375 			 SD_BALANCE_FORK |
5376 			 SD_BALANCE_EXEC |
5377 			 SD_SHARE_CPUCAPACITY |
5378 			 SD_SHARE_PKG_RESOURCES |
5379 			 SD_SHARE_POWERDOMAIN)) {
5380 		if (sd->groups != sd->groups->next)
5381 			return 0;
5382 	}
5383 
5384 	/* Following flags don't use groups */
5385 	if (sd->flags & (SD_WAKE_AFFINE))
5386 		return 0;
5387 
5388 	return 1;
5389 }
5390 
5391 static int
5392 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5393 {
5394 	unsigned long cflags = sd->flags, pflags = parent->flags;
5395 
5396 	if (sd_degenerate(parent))
5397 		return 1;
5398 
5399 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5400 		return 0;
5401 
5402 	/* Flags needing groups don't count if only 1 group in parent */
5403 	if (parent->groups == parent->groups->next) {
5404 		pflags &= ~(SD_LOAD_BALANCE |
5405 				SD_BALANCE_NEWIDLE |
5406 				SD_BALANCE_FORK |
5407 				SD_BALANCE_EXEC |
5408 				SD_SHARE_CPUCAPACITY |
5409 				SD_SHARE_PKG_RESOURCES |
5410 				SD_PREFER_SIBLING |
5411 				SD_SHARE_POWERDOMAIN);
5412 		if (nr_node_ids == 1)
5413 			pflags &= ~SD_SERIALIZE;
5414 	}
5415 	if (~cflags & pflags)
5416 		return 0;
5417 
5418 	return 1;
5419 }
5420 
5421 static void free_rootdomain(struct rcu_head *rcu)
5422 {
5423 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5424 
5425 	cpupri_cleanup(&rd->cpupri);
5426 	cpudl_cleanup(&rd->cpudl);
5427 	free_cpumask_var(rd->dlo_mask);
5428 	free_cpumask_var(rd->rto_mask);
5429 	free_cpumask_var(rd->online);
5430 	free_cpumask_var(rd->span);
5431 	kfree(rd);
5432 }
5433 
5434 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5435 {
5436 	struct root_domain *old_rd = NULL;
5437 	unsigned long flags;
5438 
5439 	raw_spin_lock_irqsave(&rq->lock, flags);
5440 
5441 	if (rq->rd) {
5442 		old_rd = rq->rd;
5443 
5444 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5445 			set_rq_offline(rq);
5446 
5447 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5448 
5449 		/*
5450 		 * If we dont want to free the old_rd yet then
5451 		 * set old_rd to NULL to skip the freeing later
5452 		 * in this function:
5453 		 */
5454 		if (!atomic_dec_and_test(&old_rd->refcount))
5455 			old_rd = NULL;
5456 	}
5457 
5458 	atomic_inc(&rd->refcount);
5459 	rq->rd = rd;
5460 
5461 	cpumask_set_cpu(rq->cpu, rd->span);
5462 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5463 		set_rq_online(rq);
5464 
5465 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5466 
5467 	if (old_rd)
5468 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5469 }
5470 
5471 static int init_rootdomain(struct root_domain *rd)
5472 {
5473 	memset(rd, 0, sizeof(*rd));
5474 
5475 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5476 		goto out;
5477 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5478 		goto free_span;
5479 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5480 		goto free_online;
5481 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5482 		goto free_dlo_mask;
5483 
5484 	init_dl_bw(&rd->dl_bw);
5485 	if (cpudl_init(&rd->cpudl) != 0)
5486 		goto free_dlo_mask;
5487 
5488 	if (cpupri_init(&rd->cpupri) != 0)
5489 		goto free_rto_mask;
5490 	return 0;
5491 
5492 free_rto_mask:
5493 	free_cpumask_var(rd->rto_mask);
5494 free_dlo_mask:
5495 	free_cpumask_var(rd->dlo_mask);
5496 free_online:
5497 	free_cpumask_var(rd->online);
5498 free_span:
5499 	free_cpumask_var(rd->span);
5500 out:
5501 	return -ENOMEM;
5502 }
5503 
5504 /*
5505  * By default the system creates a single root-domain with all cpus as
5506  * members (mimicking the global state we have today).
5507  */
5508 struct root_domain def_root_domain;
5509 
5510 static void init_defrootdomain(void)
5511 {
5512 	init_rootdomain(&def_root_domain);
5513 
5514 	atomic_set(&def_root_domain.refcount, 1);
5515 }
5516 
5517 static struct root_domain *alloc_rootdomain(void)
5518 {
5519 	struct root_domain *rd;
5520 
5521 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5522 	if (!rd)
5523 		return NULL;
5524 
5525 	if (init_rootdomain(rd) != 0) {
5526 		kfree(rd);
5527 		return NULL;
5528 	}
5529 
5530 	return rd;
5531 }
5532 
5533 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5534 {
5535 	struct sched_group *tmp, *first;
5536 
5537 	if (!sg)
5538 		return;
5539 
5540 	first = sg;
5541 	do {
5542 		tmp = sg->next;
5543 
5544 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5545 			kfree(sg->sgc);
5546 
5547 		kfree(sg);
5548 		sg = tmp;
5549 	} while (sg != first);
5550 }
5551 
5552 static void free_sched_domain(struct rcu_head *rcu)
5553 {
5554 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5555 
5556 	/*
5557 	 * If its an overlapping domain it has private groups, iterate and
5558 	 * nuke them all.
5559 	 */
5560 	if (sd->flags & SD_OVERLAP) {
5561 		free_sched_groups(sd->groups, 1);
5562 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5563 		kfree(sd->groups->sgc);
5564 		kfree(sd->groups);
5565 	}
5566 	kfree(sd);
5567 }
5568 
5569 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5570 {
5571 	call_rcu(&sd->rcu, free_sched_domain);
5572 }
5573 
5574 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5575 {
5576 	for (; sd; sd = sd->parent)
5577 		destroy_sched_domain(sd, cpu);
5578 }
5579 
5580 /*
5581  * Keep a special pointer to the highest sched_domain that has
5582  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5583  * allows us to avoid some pointer chasing select_idle_sibling().
5584  *
5585  * Also keep a unique ID per domain (we use the first cpu number in
5586  * the cpumask of the domain), this allows us to quickly tell if
5587  * two cpus are in the same cache domain, see cpus_share_cache().
5588  */
5589 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5590 DEFINE_PER_CPU(int, sd_llc_size);
5591 DEFINE_PER_CPU(int, sd_llc_id);
5592 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5593 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5594 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5595 
5596 static void update_top_cache_domain(int cpu)
5597 {
5598 	struct sched_domain *sd;
5599 	struct sched_domain *busy_sd = NULL;
5600 	int id = cpu;
5601 	int size = 1;
5602 
5603 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5604 	if (sd) {
5605 		id = cpumask_first(sched_domain_span(sd));
5606 		size = cpumask_weight(sched_domain_span(sd));
5607 		busy_sd = sd->parent; /* sd_busy */
5608 	}
5609 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5610 
5611 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5612 	per_cpu(sd_llc_size, cpu) = size;
5613 	per_cpu(sd_llc_id, cpu) = id;
5614 
5615 	sd = lowest_flag_domain(cpu, SD_NUMA);
5616 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5617 
5618 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5619 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5620 }
5621 
5622 /*
5623  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5624  * hold the hotplug lock.
5625  */
5626 static void
5627 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5628 {
5629 	struct rq *rq = cpu_rq(cpu);
5630 	struct sched_domain *tmp;
5631 
5632 	/* Remove the sched domains which do not contribute to scheduling. */
5633 	for (tmp = sd; tmp; ) {
5634 		struct sched_domain *parent = tmp->parent;
5635 		if (!parent)
5636 			break;
5637 
5638 		if (sd_parent_degenerate(tmp, parent)) {
5639 			tmp->parent = parent->parent;
5640 			if (parent->parent)
5641 				parent->parent->child = tmp;
5642 			/*
5643 			 * Transfer SD_PREFER_SIBLING down in case of a
5644 			 * degenerate parent; the spans match for this
5645 			 * so the property transfers.
5646 			 */
5647 			if (parent->flags & SD_PREFER_SIBLING)
5648 				tmp->flags |= SD_PREFER_SIBLING;
5649 			destroy_sched_domain(parent, cpu);
5650 		} else
5651 			tmp = tmp->parent;
5652 	}
5653 
5654 	if (sd && sd_degenerate(sd)) {
5655 		tmp = sd;
5656 		sd = sd->parent;
5657 		destroy_sched_domain(tmp, cpu);
5658 		if (sd)
5659 			sd->child = NULL;
5660 	}
5661 
5662 	sched_domain_debug(sd, cpu);
5663 
5664 	rq_attach_root(rq, rd);
5665 	tmp = rq->sd;
5666 	rcu_assign_pointer(rq->sd, sd);
5667 	destroy_sched_domains(tmp, cpu);
5668 
5669 	update_top_cache_domain(cpu);
5670 }
5671 
5672 /* cpus with isolated domains */
5673 static cpumask_var_t cpu_isolated_map;
5674 
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init isolated_cpu_setup(char *str)
5677 {
5678 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5679 	cpulist_parse(str, cpu_isolated_map);
5680 	return 1;
5681 }
5682 
5683 __setup("isolcpus=", isolated_cpu_setup);
5684 
5685 struct s_data {
5686 	struct sched_domain ** __percpu sd;
5687 	struct root_domain	*rd;
5688 };
5689 
5690 enum s_alloc {
5691 	sa_rootdomain,
5692 	sa_sd,
5693 	sa_sd_storage,
5694 	sa_none,
5695 };
5696 
5697 /*
5698  * Build an iteration mask that can exclude certain CPUs from the upwards
5699  * domain traversal.
5700  *
5701  * Asymmetric node setups can result in situations where the domain tree is of
5702  * unequal depth, make sure to skip domains that already cover the entire
5703  * range.
5704  *
5705  * In that case build_sched_domains() will have terminated the iteration early
5706  * and our sibling sd spans will be empty. Domains should always include the
5707  * cpu they're built on, so check that.
5708  *
5709  */
5710 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5711 {
5712 	const struct cpumask *span = sched_domain_span(sd);
5713 	struct sd_data *sdd = sd->private;
5714 	struct sched_domain *sibling;
5715 	int i;
5716 
5717 	for_each_cpu(i, span) {
5718 		sibling = *per_cpu_ptr(sdd->sd, i);
5719 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5720 			continue;
5721 
5722 		cpumask_set_cpu(i, sched_group_mask(sg));
5723 	}
5724 }
5725 
5726 /*
5727  * Return the canonical balance cpu for this group, this is the first cpu
5728  * of this group that's also in the iteration mask.
5729  */
5730 int group_balance_cpu(struct sched_group *sg)
5731 {
5732 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5733 }
5734 
5735 static int
5736 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5737 {
5738 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5739 	const struct cpumask *span = sched_domain_span(sd);
5740 	struct cpumask *covered = sched_domains_tmpmask;
5741 	struct sd_data *sdd = sd->private;
5742 	struct sched_domain *child;
5743 	int i;
5744 
5745 	cpumask_clear(covered);
5746 
5747 	for_each_cpu(i, span) {
5748 		struct cpumask *sg_span;
5749 
5750 		if (cpumask_test_cpu(i, covered))
5751 			continue;
5752 
5753 		child = *per_cpu_ptr(sdd->sd, i);
5754 
5755 		/* See the comment near build_group_mask(). */
5756 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5757 			continue;
5758 
5759 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5760 				GFP_KERNEL, cpu_to_node(cpu));
5761 
5762 		if (!sg)
5763 			goto fail;
5764 
5765 		sg_span = sched_group_cpus(sg);
5766 		if (child->child) {
5767 			child = child->child;
5768 			cpumask_copy(sg_span, sched_domain_span(child));
5769 		} else
5770 			cpumask_set_cpu(i, sg_span);
5771 
5772 		cpumask_or(covered, covered, sg_span);
5773 
5774 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5775 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5776 			build_group_mask(sd, sg);
5777 
5778 		/*
5779 		 * Initialize sgc->capacity such that even if we mess up the
5780 		 * domains and no possible iteration will get us here, we won't
5781 		 * die on a /0 trap.
5782 		 */
5783 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5784 		sg->sgc->capacity_orig = sg->sgc->capacity;
5785 
5786 		/*
5787 		 * Make sure the first group of this domain contains the
5788 		 * canonical balance cpu. Otherwise the sched_domain iteration
5789 		 * breaks. See update_sg_lb_stats().
5790 		 */
5791 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5792 		    group_balance_cpu(sg) == cpu)
5793 			groups = sg;
5794 
5795 		if (!first)
5796 			first = sg;
5797 		if (last)
5798 			last->next = sg;
5799 		last = sg;
5800 		last->next = first;
5801 	}
5802 	sd->groups = groups;
5803 
5804 	return 0;
5805 
5806 fail:
5807 	free_sched_groups(first, 0);
5808 
5809 	return -ENOMEM;
5810 }
5811 
5812 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5813 {
5814 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5815 	struct sched_domain *child = sd->child;
5816 
5817 	if (child)
5818 		cpu = cpumask_first(sched_domain_span(child));
5819 
5820 	if (sg) {
5821 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5822 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5823 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5824 	}
5825 
5826 	return cpu;
5827 }
5828 
5829 /*
5830  * build_sched_groups will build a circular linked list of the groups
5831  * covered by the given span, and will set each group's ->cpumask correctly,
5832  * and ->cpu_capacity to 0.
5833  *
5834  * Assumes the sched_domain tree is fully constructed
5835  */
5836 static int
5837 build_sched_groups(struct sched_domain *sd, int cpu)
5838 {
5839 	struct sched_group *first = NULL, *last = NULL;
5840 	struct sd_data *sdd = sd->private;
5841 	const struct cpumask *span = sched_domain_span(sd);
5842 	struct cpumask *covered;
5843 	int i;
5844 
5845 	get_group(cpu, sdd, &sd->groups);
5846 	atomic_inc(&sd->groups->ref);
5847 
5848 	if (cpu != cpumask_first(span))
5849 		return 0;
5850 
5851 	lockdep_assert_held(&sched_domains_mutex);
5852 	covered = sched_domains_tmpmask;
5853 
5854 	cpumask_clear(covered);
5855 
5856 	for_each_cpu(i, span) {
5857 		struct sched_group *sg;
5858 		int group, j;
5859 
5860 		if (cpumask_test_cpu(i, covered))
5861 			continue;
5862 
5863 		group = get_group(i, sdd, &sg);
5864 		cpumask_setall(sched_group_mask(sg));
5865 
5866 		for_each_cpu(j, span) {
5867 			if (get_group(j, sdd, NULL) != group)
5868 				continue;
5869 
5870 			cpumask_set_cpu(j, covered);
5871 			cpumask_set_cpu(j, sched_group_cpus(sg));
5872 		}
5873 
5874 		if (!first)
5875 			first = sg;
5876 		if (last)
5877 			last->next = sg;
5878 		last = sg;
5879 	}
5880 	last->next = first;
5881 
5882 	return 0;
5883 }
5884 
5885 /*
5886  * Initialize sched groups cpu_capacity.
5887  *
5888  * cpu_capacity indicates the capacity of sched group, which is used while
5889  * distributing the load between different sched groups in a sched domain.
5890  * Typically cpu_capacity for all the groups in a sched domain will be same
5891  * unless there are asymmetries in the topology. If there are asymmetries,
5892  * group having more cpu_capacity will pickup more load compared to the
5893  * group having less cpu_capacity.
5894  */
5895 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5896 {
5897 	struct sched_group *sg = sd->groups;
5898 
5899 	WARN_ON(!sg);
5900 
5901 	do {
5902 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5903 		sg = sg->next;
5904 	} while (sg != sd->groups);
5905 
5906 	if (cpu != group_balance_cpu(sg))
5907 		return;
5908 
5909 	update_group_capacity(sd, cpu);
5910 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5911 }
5912 
5913 /*
5914  * Initializers for schedule domains
5915  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5916  */
5917 
5918 static int default_relax_domain_level = -1;
5919 int sched_domain_level_max;
5920 
5921 static int __init setup_relax_domain_level(char *str)
5922 {
5923 	if (kstrtoint(str, 0, &default_relax_domain_level))
5924 		pr_warn("Unable to set relax_domain_level\n");
5925 
5926 	return 1;
5927 }
5928 __setup("relax_domain_level=", setup_relax_domain_level);
5929 
5930 static void set_domain_attribute(struct sched_domain *sd,
5931 				 struct sched_domain_attr *attr)
5932 {
5933 	int request;
5934 
5935 	if (!attr || attr->relax_domain_level < 0) {
5936 		if (default_relax_domain_level < 0)
5937 			return;
5938 		else
5939 			request = default_relax_domain_level;
5940 	} else
5941 		request = attr->relax_domain_level;
5942 	if (request < sd->level) {
5943 		/* turn off idle balance on this domain */
5944 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5945 	} else {
5946 		/* turn on idle balance on this domain */
5947 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5948 	}
5949 }
5950 
5951 static void __sdt_free(const struct cpumask *cpu_map);
5952 static int __sdt_alloc(const struct cpumask *cpu_map);
5953 
5954 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5955 				 const struct cpumask *cpu_map)
5956 {
5957 	switch (what) {
5958 	case sa_rootdomain:
5959 		if (!atomic_read(&d->rd->refcount))
5960 			free_rootdomain(&d->rd->rcu); /* fall through */
5961 	case sa_sd:
5962 		free_percpu(d->sd); /* fall through */
5963 	case sa_sd_storage:
5964 		__sdt_free(cpu_map); /* fall through */
5965 	case sa_none:
5966 		break;
5967 	}
5968 }
5969 
5970 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5971 						   const struct cpumask *cpu_map)
5972 {
5973 	memset(d, 0, sizeof(*d));
5974 
5975 	if (__sdt_alloc(cpu_map))
5976 		return sa_sd_storage;
5977 	d->sd = alloc_percpu(struct sched_domain *);
5978 	if (!d->sd)
5979 		return sa_sd_storage;
5980 	d->rd = alloc_rootdomain();
5981 	if (!d->rd)
5982 		return sa_sd;
5983 	return sa_rootdomain;
5984 }
5985 
5986 /*
5987  * NULL the sd_data elements we've used to build the sched_domain and
5988  * sched_group structure so that the subsequent __free_domain_allocs()
5989  * will not free the data we're using.
5990  */
5991 static void claim_allocations(int cpu, struct sched_domain *sd)
5992 {
5993 	struct sd_data *sdd = sd->private;
5994 
5995 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5996 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5997 
5998 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5999 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6000 
6001 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6002 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6003 }
6004 
6005 #ifdef CONFIG_NUMA
6006 static int sched_domains_numa_levels;
6007 static int *sched_domains_numa_distance;
6008 static struct cpumask ***sched_domains_numa_masks;
6009 static int sched_domains_curr_level;
6010 #endif
6011 
6012 /*
6013  * SD_flags allowed in topology descriptions.
6014  *
6015  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6016  * SD_SHARE_PKG_RESOURCES - describes shared caches
6017  * SD_NUMA                - describes NUMA topologies
6018  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6019  *
6020  * Odd one out:
6021  * SD_ASYM_PACKING        - describes SMT quirks
6022  */
6023 #define TOPOLOGY_SD_FLAGS		\
6024 	(SD_SHARE_CPUCAPACITY |		\
6025 	 SD_SHARE_PKG_RESOURCES |	\
6026 	 SD_NUMA |			\
6027 	 SD_ASYM_PACKING |		\
6028 	 SD_SHARE_POWERDOMAIN)
6029 
6030 static struct sched_domain *
6031 sd_init(struct sched_domain_topology_level *tl, int cpu)
6032 {
6033 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6034 	int sd_weight, sd_flags = 0;
6035 
6036 #ifdef CONFIG_NUMA
6037 	/*
6038 	 * Ugly hack to pass state to sd_numa_mask()...
6039 	 */
6040 	sched_domains_curr_level = tl->numa_level;
6041 #endif
6042 
6043 	sd_weight = cpumask_weight(tl->mask(cpu));
6044 
6045 	if (tl->sd_flags)
6046 		sd_flags = (*tl->sd_flags)();
6047 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6048 			"wrong sd_flags in topology description\n"))
6049 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6050 
6051 	*sd = (struct sched_domain){
6052 		.min_interval		= sd_weight,
6053 		.max_interval		= 2*sd_weight,
6054 		.busy_factor		= 32,
6055 		.imbalance_pct		= 125,
6056 
6057 		.cache_nice_tries	= 0,
6058 		.busy_idx		= 0,
6059 		.idle_idx		= 0,
6060 		.newidle_idx		= 0,
6061 		.wake_idx		= 0,
6062 		.forkexec_idx		= 0,
6063 
6064 		.flags			= 1*SD_LOAD_BALANCE
6065 					| 1*SD_BALANCE_NEWIDLE
6066 					| 1*SD_BALANCE_EXEC
6067 					| 1*SD_BALANCE_FORK
6068 					| 0*SD_BALANCE_WAKE
6069 					| 1*SD_WAKE_AFFINE
6070 					| 0*SD_SHARE_CPUCAPACITY
6071 					| 0*SD_SHARE_PKG_RESOURCES
6072 					| 0*SD_SERIALIZE
6073 					| 0*SD_PREFER_SIBLING
6074 					| 0*SD_NUMA
6075 					| sd_flags
6076 					,
6077 
6078 		.last_balance		= jiffies,
6079 		.balance_interval	= sd_weight,
6080 		.smt_gain		= 0,
6081 		.max_newidle_lb_cost	= 0,
6082 		.next_decay_max_lb_cost	= jiffies,
6083 #ifdef CONFIG_SCHED_DEBUG
6084 		.name			= tl->name,
6085 #endif
6086 	};
6087 
6088 	/*
6089 	 * Convert topological properties into behaviour.
6090 	 */
6091 
6092 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6093 		sd->imbalance_pct = 110;
6094 		sd->smt_gain = 1178; /* ~15% */
6095 
6096 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6097 		sd->imbalance_pct = 117;
6098 		sd->cache_nice_tries = 1;
6099 		sd->busy_idx = 2;
6100 
6101 #ifdef CONFIG_NUMA
6102 	} else if (sd->flags & SD_NUMA) {
6103 		sd->cache_nice_tries = 2;
6104 		sd->busy_idx = 3;
6105 		sd->idle_idx = 2;
6106 
6107 		sd->flags |= SD_SERIALIZE;
6108 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6109 			sd->flags &= ~(SD_BALANCE_EXEC |
6110 				       SD_BALANCE_FORK |
6111 				       SD_WAKE_AFFINE);
6112 		}
6113 
6114 #endif
6115 	} else {
6116 		sd->flags |= SD_PREFER_SIBLING;
6117 		sd->cache_nice_tries = 1;
6118 		sd->busy_idx = 2;
6119 		sd->idle_idx = 1;
6120 	}
6121 
6122 	sd->private = &tl->data;
6123 
6124 	return sd;
6125 }
6126 
6127 /*
6128  * Topology list, bottom-up.
6129  */
6130 static struct sched_domain_topology_level default_topology[] = {
6131 #ifdef CONFIG_SCHED_SMT
6132 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6133 #endif
6134 #ifdef CONFIG_SCHED_MC
6135 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6136 #endif
6137 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6138 	{ NULL, },
6139 };
6140 
6141 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6142 
6143 #define for_each_sd_topology(tl)			\
6144 	for (tl = sched_domain_topology; tl->mask; tl++)
6145 
6146 void set_sched_topology(struct sched_domain_topology_level *tl)
6147 {
6148 	sched_domain_topology = tl;
6149 }
6150 
6151 #ifdef CONFIG_NUMA
6152 
6153 static const struct cpumask *sd_numa_mask(int cpu)
6154 {
6155 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6156 }
6157 
6158 static void sched_numa_warn(const char *str)
6159 {
6160 	static int done = false;
6161 	int i,j;
6162 
6163 	if (done)
6164 		return;
6165 
6166 	done = true;
6167 
6168 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6169 
6170 	for (i = 0; i < nr_node_ids; i++) {
6171 		printk(KERN_WARNING "  ");
6172 		for (j = 0; j < nr_node_ids; j++)
6173 			printk(KERN_CONT "%02d ", node_distance(i,j));
6174 		printk(KERN_CONT "\n");
6175 	}
6176 	printk(KERN_WARNING "\n");
6177 }
6178 
6179 static bool find_numa_distance(int distance)
6180 {
6181 	int i;
6182 
6183 	if (distance == node_distance(0, 0))
6184 		return true;
6185 
6186 	for (i = 0; i < sched_domains_numa_levels; i++) {
6187 		if (sched_domains_numa_distance[i] == distance)
6188 			return true;
6189 	}
6190 
6191 	return false;
6192 }
6193 
6194 static void sched_init_numa(void)
6195 {
6196 	int next_distance, curr_distance = node_distance(0, 0);
6197 	struct sched_domain_topology_level *tl;
6198 	int level = 0;
6199 	int i, j, k;
6200 
6201 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6202 	if (!sched_domains_numa_distance)
6203 		return;
6204 
6205 	/*
6206 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6207 	 * unique distances in the node_distance() table.
6208 	 *
6209 	 * Assumes node_distance(0,j) includes all distances in
6210 	 * node_distance(i,j) in order to avoid cubic time.
6211 	 */
6212 	next_distance = curr_distance;
6213 	for (i = 0; i < nr_node_ids; i++) {
6214 		for (j = 0; j < nr_node_ids; j++) {
6215 			for (k = 0; k < nr_node_ids; k++) {
6216 				int distance = node_distance(i, k);
6217 
6218 				if (distance > curr_distance &&
6219 				    (distance < next_distance ||
6220 				     next_distance == curr_distance))
6221 					next_distance = distance;
6222 
6223 				/*
6224 				 * While not a strong assumption it would be nice to know
6225 				 * about cases where if node A is connected to B, B is not
6226 				 * equally connected to A.
6227 				 */
6228 				if (sched_debug() && node_distance(k, i) != distance)
6229 					sched_numa_warn("Node-distance not symmetric");
6230 
6231 				if (sched_debug() && i && !find_numa_distance(distance))
6232 					sched_numa_warn("Node-0 not representative");
6233 			}
6234 			if (next_distance != curr_distance) {
6235 				sched_domains_numa_distance[level++] = next_distance;
6236 				sched_domains_numa_levels = level;
6237 				curr_distance = next_distance;
6238 			} else break;
6239 		}
6240 
6241 		/*
6242 		 * In case of sched_debug() we verify the above assumption.
6243 		 */
6244 		if (!sched_debug())
6245 			break;
6246 	}
6247 	/*
6248 	 * 'level' contains the number of unique distances, excluding the
6249 	 * identity distance node_distance(i,i).
6250 	 *
6251 	 * The sched_domains_numa_distance[] array includes the actual distance
6252 	 * numbers.
6253 	 */
6254 
6255 	/*
6256 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6257 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6258 	 * the array will contain less then 'level' members. This could be
6259 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6260 	 * in other functions.
6261 	 *
6262 	 * We reset it to 'level' at the end of this function.
6263 	 */
6264 	sched_domains_numa_levels = 0;
6265 
6266 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6267 	if (!sched_domains_numa_masks)
6268 		return;
6269 
6270 	/*
6271 	 * Now for each level, construct a mask per node which contains all
6272 	 * cpus of nodes that are that many hops away from us.
6273 	 */
6274 	for (i = 0; i < level; i++) {
6275 		sched_domains_numa_masks[i] =
6276 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6277 		if (!sched_domains_numa_masks[i])
6278 			return;
6279 
6280 		for (j = 0; j < nr_node_ids; j++) {
6281 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6282 			if (!mask)
6283 				return;
6284 
6285 			sched_domains_numa_masks[i][j] = mask;
6286 
6287 			for (k = 0; k < nr_node_ids; k++) {
6288 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6289 					continue;
6290 
6291 				cpumask_or(mask, mask, cpumask_of_node(k));
6292 			}
6293 		}
6294 	}
6295 
6296 	/* Compute default topology size */
6297 	for (i = 0; sched_domain_topology[i].mask; i++);
6298 
6299 	tl = kzalloc((i + level + 1) *
6300 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6301 	if (!tl)
6302 		return;
6303 
6304 	/*
6305 	 * Copy the default topology bits..
6306 	 */
6307 	for (i = 0; sched_domain_topology[i].mask; i++)
6308 		tl[i] = sched_domain_topology[i];
6309 
6310 	/*
6311 	 * .. and append 'j' levels of NUMA goodness.
6312 	 */
6313 	for (j = 0; j < level; i++, j++) {
6314 		tl[i] = (struct sched_domain_topology_level){
6315 			.mask = sd_numa_mask,
6316 			.sd_flags = cpu_numa_flags,
6317 			.flags = SDTL_OVERLAP,
6318 			.numa_level = j,
6319 			SD_INIT_NAME(NUMA)
6320 		};
6321 	}
6322 
6323 	sched_domain_topology = tl;
6324 
6325 	sched_domains_numa_levels = level;
6326 }
6327 
6328 static void sched_domains_numa_masks_set(int cpu)
6329 {
6330 	int i, j;
6331 	int node = cpu_to_node(cpu);
6332 
6333 	for (i = 0; i < sched_domains_numa_levels; i++) {
6334 		for (j = 0; j < nr_node_ids; j++) {
6335 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6336 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6337 		}
6338 	}
6339 }
6340 
6341 static void sched_domains_numa_masks_clear(int cpu)
6342 {
6343 	int i, j;
6344 	for (i = 0; i < sched_domains_numa_levels; i++) {
6345 		for (j = 0; j < nr_node_ids; j++)
6346 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6347 	}
6348 }
6349 
6350 /*
6351  * Update sched_domains_numa_masks[level][node] array when new cpus
6352  * are onlined.
6353  */
6354 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6355 					   unsigned long action,
6356 					   void *hcpu)
6357 {
6358 	int cpu = (long)hcpu;
6359 
6360 	switch (action & ~CPU_TASKS_FROZEN) {
6361 	case CPU_ONLINE:
6362 		sched_domains_numa_masks_set(cpu);
6363 		break;
6364 
6365 	case CPU_DEAD:
6366 		sched_domains_numa_masks_clear(cpu);
6367 		break;
6368 
6369 	default:
6370 		return NOTIFY_DONE;
6371 	}
6372 
6373 	return NOTIFY_OK;
6374 }
6375 #else
6376 static inline void sched_init_numa(void)
6377 {
6378 }
6379 
6380 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6381 					   unsigned long action,
6382 					   void *hcpu)
6383 {
6384 	return 0;
6385 }
6386 #endif /* CONFIG_NUMA */
6387 
6388 static int __sdt_alloc(const struct cpumask *cpu_map)
6389 {
6390 	struct sched_domain_topology_level *tl;
6391 	int j;
6392 
6393 	for_each_sd_topology(tl) {
6394 		struct sd_data *sdd = &tl->data;
6395 
6396 		sdd->sd = alloc_percpu(struct sched_domain *);
6397 		if (!sdd->sd)
6398 			return -ENOMEM;
6399 
6400 		sdd->sg = alloc_percpu(struct sched_group *);
6401 		if (!sdd->sg)
6402 			return -ENOMEM;
6403 
6404 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6405 		if (!sdd->sgc)
6406 			return -ENOMEM;
6407 
6408 		for_each_cpu(j, cpu_map) {
6409 			struct sched_domain *sd;
6410 			struct sched_group *sg;
6411 			struct sched_group_capacity *sgc;
6412 
6413 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6414 					GFP_KERNEL, cpu_to_node(j));
6415 			if (!sd)
6416 				return -ENOMEM;
6417 
6418 			*per_cpu_ptr(sdd->sd, j) = sd;
6419 
6420 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6421 					GFP_KERNEL, cpu_to_node(j));
6422 			if (!sg)
6423 				return -ENOMEM;
6424 
6425 			sg->next = sg;
6426 
6427 			*per_cpu_ptr(sdd->sg, j) = sg;
6428 
6429 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6430 					GFP_KERNEL, cpu_to_node(j));
6431 			if (!sgc)
6432 				return -ENOMEM;
6433 
6434 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6435 		}
6436 	}
6437 
6438 	return 0;
6439 }
6440 
6441 static void __sdt_free(const struct cpumask *cpu_map)
6442 {
6443 	struct sched_domain_topology_level *tl;
6444 	int j;
6445 
6446 	for_each_sd_topology(tl) {
6447 		struct sd_data *sdd = &tl->data;
6448 
6449 		for_each_cpu(j, cpu_map) {
6450 			struct sched_domain *sd;
6451 
6452 			if (sdd->sd) {
6453 				sd = *per_cpu_ptr(sdd->sd, j);
6454 				if (sd && (sd->flags & SD_OVERLAP))
6455 					free_sched_groups(sd->groups, 0);
6456 				kfree(*per_cpu_ptr(sdd->sd, j));
6457 			}
6458 
6459 			if (sdd->sg)
6460 				kfree(*per_cpu_ptr(sdd->sg, j));
6461 			if (sdd->sgc)
6462 				kfree(*per_cpu_ptr(sdd->sgc, j));
6463 		}
6464 		free_percpu(sdd->sd);
6465 		sdd->sd = NULL;
6466 		free_percpu(sdd->sg);
6467 		sdd->sg = NULL;
6468 		free_percpu(sdd->sgc);
6469 		sdd->sgc = NULL;
6470 	}
6471 }
6472 
6473 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6474 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6475 		struct sched_domain *child, int cpu)
6476 {
6477 	struct sched_domain *sd = sd_init(tl, cpu);
6478 	if (!sd)
6479 		return child;
6480 
6481 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6482 	if (child) {
6483 		sd->level = child->level + 1;
6484 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6485 		child->parent = sd;
6486 		sd->child = child;
6487 
6488 		if (!cpumask_subset(sched_domain_span(child),
6489 				    sched_domain_span(sd))) {
6490 			pr_err("BUG: arch topology borken\n");
6491 #ifdef CONFIG_SCHED_DEBUG
6492 			pr_err("     the %s domain not a subset of the %s domain\n",
6493 					child->name, sd->name);
6494 #endif
6495 			/* Fixup, ensure @sd has at least @child cpus. */
6496 			cpumask_or(sched_domain_span(sd),
6497 				   sched_domain_span(sd),
6498 				   sched_domain_span(child));
6499 		}
6500 
6501 	}
6502 	set_domain_attribute(sd, attr);
6503 
6504 	return sd;
6505 }
6506 
6507 /*
6508  * Build sched domains for a given set of cpus and attach the sched domains
6509  * to the individual cpus
6510  */
6511 static int build_sched_domains(const struct cpumask *cpu_map,
6512 			       struct sched_domain_attr *attr)
6513 {
6514 	enum s_alloc alloc_state;
6515 	struct sched_domain *sd;
6516 	struct s_data d;
6517 	int i, ret = -ENOMEM;
6518 
6519 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6520 	if (alloc_state != sa_rootdomain)
6521 		goto error;
6522 
6523 	/* Set up domains for cpus specified by the cpu_map. */
6524 	for_each_cpu(i, cpu_map) {
6525 		struct sched_domain_topology_level *tl;
6526 
6527 		sd = NULL;
6528 		for_each_sd_topology(tl) {
6529 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6530 			if (tl == sched_domain_topology)
6531 				*per_cpu_ptr(d.sd, i) = sd;
6532 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6533 				sd->flags |= SD_OVERLAP;
6534 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6535 				break;
6536 		}
6537 	}
6538 
6539 	/* Build the groups for the domains */
6540 	for_each_cpu(i, cpu_map) {
6541 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6542 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6543 			if (sd->flags & SD_OVERLAP) {
6544 				if (build_overlap_sched_groups(sd, i))
6545 					goto error;
6546 			} else {
6547 				if (build_sched_groups(sd, i))
6548 					goto error;
6549 			}
6550 		}
6551 	}
6552 
6553 	/* Calculate CPU capacity for physical packages and nodes */
6554 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6555 		if (!cpumask_test_cpu(i, cpu_map))
6556 			continue;
6557 
6558 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6559 			claim_allocations(i, sd);
6560 			init_sched_groups_capacity(i, sd);
6561 		}
6562 	}
6563 
6564 	/* Attach the domains */
6565 	rcu_read_lock();
6566 	for_each_cpu(i, cpu_map) {
6567 		sd = *per_cpu_ptr(d.sd, i);
6568 		cpu_attach_domain(sd, d.rd, i);
6569 	}
6570 	rcu_read_unlock();
6571 
6572 	ret = 0;
6573 error:
6574 	__free_domain_allocs(&d, alloc_state, cpu_map);
6575 	return ret;
6576 }
6577 
6578 static cpumask_var_t *doms_cur;	/* current sched domains */
6579 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6580 static struct sched_domain_attr *dattr_cur;
6581 				/* attribues of custom domains in 'doms_cur' */
6582 
6583 /*
6584  * Special case: If a kmalloc of a doms_cur partition (array of
6585  * cpumask) fails, then fallback to a single sched domain,
6586  * as determined by the single cpumask fallback_doms.
6587  */
6588 static cpumask_var_t fallback_doms;
6589 
6590 /*
6591  * arch_update_cpu_topology lets virtualized architectures update the
6592  * cpu core maps. It is supposed to return 1 if the topology changed
6593  * or 0 if it stayed the same.
6594  */
6595 int __weak arch_update_cpu_topology(void)
6596 {
6597 	return 0;
6598 }
6599 
6600 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6601 {
6602 	int i;
6603 	cpumask_var_t *doms;
6604 
6605 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6606 	if (!doms)
6607 		return NULL;
6608 	for (i = 0; i < ndoms; i++) {
6609 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6610 			free_sched_domains(doms, i);
6611 			return NULL;
6612 		}
6613 	}
6614 	return doms;
6615 }
6616 
6617 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6618 {
6619 	unsigned int i;
6620 	for (i = 0; i < ndoms; i++)
6621 		free_cpumask_var(doms[i]);
6622 	kfree(doms);
6623 }
6624 
6625 /*
6626  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6627  * For now this just excludes isolated cpus, but could be used to
6628  * exclude other special cases in the future.
6629  */
6630 static int init_sched_domains(const struct cpumask *cpu_map)
6631 {
6632 	int err;
6633 
6634 	arch_update_cpu_topology();
6635 	ndoms_cur = 1;
6636 	doms_cur = alloc_sched_domains(ndoms_cur);
6637 	if (!doms_cur)
6638 		doms_cur = &fallback_doms;
6639 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6640 	err = build_sched_domains(doms_cur[0], NULL);
6641 	register_sched_domain_sysctl();
6642 
6643 	return err;
6644 }
6645 
6646 /*
6647  * Detach sched domains from a group of cpus specified in cpu_map
6648  * These cpus will now be attached to the NULL domain
6649  */
6650 static void detach_destroy_domains(const struct cpumask *cpu_map)
6651 {
6652 	int i;
6653 
6654 	rcu_read_lock();
6655 	for_each_cpu(i, cpu_map)
6656 		cpu_attach_domain(NULL, &def_root_domain, i);
6657 	rcu_read_unlock();
6658 }
6659 
6660 /* handle null as "default" */
6661 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6662 			struct sched_domain_attr *new, int idx_new)
6663 {
6664 	struct sched_domain_attr tmp;
6665 
6666 	/* fast path */
6667 	if (!new && !cur)
6668 		return 1;
6669 
6670 	tmp = SD_ATTR_INIT;
6671 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6672 			new ? (new + idx_new) : &tmp,
6673 			sizeof(struct sched_domain_attr));
6674 }
6675 
6676 /*
6677  * Partition sched domains as specified by the 'ndoms_new'
6678  * cpumasks in the array doms_new[] of cpumasks. This compares
6679  * doms_new[] to the current sched domain partitioning, doms_cur[].
6680  * It destroys each deleted domain and builds each new domain.
6681  *
6682  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6683  * The masks don't intersect (don't overlap.) We should setup one
6684  * sched domain for each mask. CPUs not in any of the cpumasks will
6685  * not be load balanced. If the same cpumask appears both in the
6686  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6687  * it as it is.
6688  *
6689  * The passed in 'doms_new' should be allocated using
6690  * alloc_sched_domains.  This routine takes ownership of it and will
6691  * free_sched_domains it when done with it. If the caller failed the
6692  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6693  * and partition_sched_domains() will fallback to the single partition
6694  * 'fallback_doms', it also forces the domains to be rebuilt.
6695  *
6696  * If doms_new == NULL it will be replaced with cpu_online_mask.
6697  * ndoms_new == 0 is a special case for destroying existing domains,
6698  * and it will not create the default domain.
6699  *
6700  * Call with hotplug lock held
6701  */
6702 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6703 			     struct sched_domain_attr *dattr_new)
6704 {
6705 	int i, j, n;
6706 	int new_topology;
6707 
6708 	mutex_lock(&sched_domains_mutex);
6709 
6710 	/* always unregister in case we don't destroy any domains */
6711 	unregister_sched_domain_sysctl();
6712 
6713 	/* Let architecture update cpu core mappings. */
6714 	new_topology = arch_update_cpu_topology();
6715 
6716 	n = doms_new ? ndoms_new : 0;
6717 
6718 	/* Destroy deleted domains */
6719 	for (i = 0; i < ndoms_cur; i++) {
6720 		for (j = 0; j < n && !new_topology; j++) {
6721 			if (cpumask_equal(doms_cur[i], doms_new[j])
6722 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6723 				goto match1;
6724 		}
6725 		/* no match - a current sched domain not in new doms_new[] */
6726 		detach_destroy_domains(doms_cur[i]);
6727 match1:
6728 		;
6729 	}
6730 
6731 	n = ndoms_cur;
6732 	if (doms_new == NULL) {
6733 		n = 0;
6734 		doms_new = &fallback_doms;
6735 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6736 		WARN_ON_ONCE(dattr_new);
6737 	}
6738 
6739 	/* Build new domains */
6740 	for (i = 0; i < ndoms_new; i++) {
6741 		for (j = 0; j < n && !new_topology; j++) {
6742 			if (cpumask_equal(doms_new[i], doms_cur[j])
6743 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6744 				goto match2;
6745 		}
6746 		/* no match - add a new doms_new */
6747 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6748 match2:
6749 		;
6750 	}
6751 
6752 	/* Remember the new sched domains */
6753 	if (doms_cur != &fallback_doms)
6754 		free_sched_domains(doms_cur, ndoms_cur);
6755 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6756 	doms_cur = doms_new;
6757 	dattr_cur = dattr_new;
6758 	ndoms_cur = ndoms_new;
6759 
6760 	register_sched_domain_sysctl();
6761 
6762 	mutex_unlock(&sched_domains_mutex);
6763 }
6764 
6765 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6766 
6767 /*
6768  * Update cpusets according to cpu_active mask.  If cpusets are
6769  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6770  * around partition_sched_domains().
6771  *
6772  * If we come here as part of a suspend/resume, don't touch cpusets because we
6773  * want to restore it back to its original state upon resume anyway.
6774  */
6775 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6776 			     void *hcpu)
6777 {
6778 	switch (action) {
6779 	case CPU_ONLINE_FROZEN:
6780 	case CPU_DOWN_FAILED_FROZEN:
6781 
6782 		/*
6783 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6784 		 * resume sequence. As long as this is not the last online
6785 		 * operation in the resume sequence, just build a single sched
6786 		 * domain, ignoring cpusets.
6787 		 */
6788 		num_cpus_frozen--;
6789 		if (likely(num_cpus_frozen)) {
6790 			partition_sched_domains(1, NULL, NULL);
6791 			break;
6792 		}
6793 
6794 		/*
6795 		 * This is the last CPU online operation. So fall through and
6796 		 * restore the original sched domains by considering the
6797 		 * cpuset configurations.
6798 		 */
6799 
6800 	case CPU_ONLINE:
6801 	case CPU_DOWN_FAILED:
6802 		cpuset_update_active_cpus(true);
6803 		break;
6804 	default:
6805 		return NOTIFY_DONE;
6806 	}
6807 	return NOTIFY_OK;
6808 }
6809 
6810 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6811 			       void *hcpu)
6812 {
6813 	switch (action) {
6814 	case CPU_DOWN_PREPARE:
6815 		cpuset_update_active_cpus(false);
6816 		break;
6817 	case CPU_DOWN_PREPARE_FROZEN:
6818 		num_cpus_frozen++;
6819 		partition_sched_domains(1, NULL, NULL);
6820 		break;
6821 	default:
6822 		return NOTIFY_DONE;
6823 	}
6824 	return NOTIFY_OK;
6825 }
6826 
6827 void __init sched_init_smp(void)
6828 {
6829 	cpumask_var_t non_isolated_cpus;
6830 
6831 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6832 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6833 
6834 	sched_init_numa();
6835 
6836 	/*
6837 	 * There's no userspace yet to cause hotplug operations; hence all the
6838 	 * cpu masks are stable and all blatant races in the below code cannot
6839 	 * happen.
6840 	 */
6841 	mutex_lock(&sched_domains_mutex);
6842 	init_sched_domains(cpu_active_mask);
6843 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6844 	if (cpumask_empty(non_isolated_cpus))
6845 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6846 	mutex_unlock(&sched_domains_mutex);
6847 
6848 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6849 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6850 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6851 
6852 	init_hrtick();
6853 
6854 	/* Move init over to a non-isolated CPU */
6855 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6856 		BUG();
6857 	sched_init_granularity();
6858 	free_cpumask_var(non_isolated_cpus);
6859 
6860 	init_sched_rt_class();
6861 	init_sched_dl_class();
6862 }
6863 #else
6864 void __init sched_init_smp(void)
6865 {
6866 	sched_init_granularity();
6867 }
6868 #endif /* CONFIG_SMP */
6869 
6870 const_debug unsigned int sysctl_timer_migration = 1;
6871 
6872 int in_sched_functions(unsigned long addr)
6873 {
6874 	return in_lock_functions(addr) ||
6875 		(addr >= (unsigned long)__sched_text_start
6876 		&& addr < (unsigned long)__sched_text_end);
6877 }
6878 
6879 #ifdef CONFIG_CGROUP_SCHED
6880 /*
6881  * Default task group.
6882  * Every task in system belongs to this group at bootup.
6883  */
6884 struct task_group root_task_group;
6885 LIST_HEAD(task_groups);
6886 #endif
6887 
6888 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6889 
6890 void __init sched_init(void)
6891 {
6892 	int i, j;
6893 	unsigned long alloc_size = 0, ptr;
6894 
6895 #ifdef CONFIG_FAIR_GROUP_SCHED
6896 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6897 #endif
6898 #ifdef CONFIG_RT_GROUP_SCHED
6899 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6900 #endif
6901 #ifdef CONFIG_CPUMASK_OFFSTACK
6902 	alloc_size += num_possible_cpus() * cpumask_size();
6903 #endif
6904 	if (alloc_size) {
6905 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6906 
6907 #ifdef CONFIG_FAIR_GROUP_SCHED
6908 		root_task_group.se = (struct sched_entity **)ptr;
6909 		ptr += nr_cpu_ids * sizeof(void **);
6910 
6911 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6912 		ptr += nr_cpu_ids * sizeof(void **);
6913 
6914 #endif /* CONFIG_FAIR_GROUP_SCHED */
6915 #ifdef CONFIG_RT_GROUP_SCHED
6916 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6917 		ptr += nr_cpu_ids * sizeof(void **);
6918 
6919 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6920 		ptr += nr_cpu_ids * sizeof(void **);
6921 
6922 #endif /* CONFIG_RT_GROUP_SCHED */
6923 #ifdef CONFIG_CPUMASK_OFFSTACK
6924 		for_each_possible_cpu(i) {
6925 			per_cpu(load_balance_mask, i) = (void *)ptr;
6926 			ptr += cpumask_size();
6927 		}
6928 #endif /* CONFIG_CPUMASK_OFFSTACK */
6929 	}
6930 
6931 	init_rt_bandwidth(&def_rt_bandwidth,
6932 			global_rt_period(), global_rt_runtime());
6933 	init_dl_bandwidth(&def_dl_bandwidth,
6934 			global_rt_period(), global_rt_runtime());
6935 
6936 #ifdef CONFIG_SMP
6937 	init_defrootdomain();
6938 #endif
6939 
6940 #ifdef CONFIG_RT_GROUP_SCHED
6941 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6942 			global_rt_period(), global_rt_runtime());
6943 #endif /* CONFIG_RT_GROUP_SCHED */
6944 
6945 #ifdef CONFIG_CGROUP_SCHED
6946 	list_add(&root_task_group.list, &task_groups);
6947 	INIT_LIST_HEAD(&root_task_group.children);
6948 	INIT_LIST_HEAD(&root_task_group.siblings);
6949 	autogroup_init(&init_task);
6950 
6951 #endif /* CONFIG_CGROUP_SCHED */
6952 
6953 	for_each_possible_cpu(i) {
6954 		struct rq *rq;
6955 
6956 		rq = cpu_rq(i);
6957 		raw_spin_lock_init(&rq->lock);
6958 		rq->nr_running = 0;
6959 		rq->calc_load_active = 0;
6960 		rq->calc_load_update = jiffies + LOAD_FREQ;
6961 		init_cfs_rq(&rq->cfs);
6962 		init_rt_rq(&rq->rt, rq);
6963 		init_dl_rq(&rq->dl, rq);
6964 #ifdef CONFIG_FAIR_GROUP_SCHED
6965 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6966 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6967 		/*
6968 		 * How much cpu bandwidth does root_task_group get?
6969 		 *
6970 		 * In case of task-groups formed thr' the cgroup filesystem, it
6971 		 * gets 100% of the cpu resources in the system. This overall
6972 		 * system cpu resource is divided among the tasks of
6973 		 * root_task_group and its child task-groups in a fair manner,
6974 		 * based on each entity's (task or task-group's) weight
6975 		 * (se->load.weight).
6976 		 *
6977 		 * In other words, if root_task_group has 10 tasks of weight
6978 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6979 		 * then A0's share of the cpu resource is:
6980 		 *
6981 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6982 		 *
6983 		 * We achieve this by letting root_task_group's tasks sit
6984 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6985 		 */
6986 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6987 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6988 #endif /* CONFIG_FAIR_GROUP_SCHED */
6989 
6990 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6991 #ifdef CONFIG_RT_GROUP_SCHED
6992 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6993 #endif
6994 
6995 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6996 			rq->cpu_load[j] = 0;
6997 
6998 		rq->last_load_update_tick = jiffies;
6999 
7000 #ifdef CONFIG_SMP
7001 		rq->sd = NULL;
7002 		rq->rd = NULL;
7003 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7004 		rq->post_schedule = 0;
7005 		rq->active_balance = 0;
7006 		rq->next_balance = jiffies;
7007 		rq->push_cpu = 0;
7008 		rq->cpu = i;
7009 		rq->online = 0;
7010 		rq->idle_stamp = 0;
7011 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7012 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7013 
7014 		INIT_LIST_HEAD(&rq->cfs_tasks);
7015 
7016 		rq_attach_root(rq, &def_root_domain);
7017 #ifdef CONFIG_NO_HZ_COMMON
7018 		rq->nohz_flags = 0;
7019 #endif
7020 #ifdef CONFIG_NO_HZ_FULL
7021 		rq->last_sched_tick = 0;
7022 #endif
7023 #endif
7024 		init_rq_hrtick(rq);
7025 		atomic_set(&rq->nr_iowait, 0);
7026 	}
7027 
7028 	set_load_weight(&init_task);
7029 
7030 #ifdef CONFIG_PREEMPT_NOTIFIERS
7031 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7032 #endif
7033 
7034 	/*
7035 	 * The boot idle thread does lazy MMU switching as well:
7036 	 */
7037 	atomic_inc(&init_mm.mm_count);
7038 	enter_lazy_tlb(&init_mm, current);
7039 
7040 	/*
7041 	 * Make us the idle thread. Technically, schedule() should not be
7042 	 * called from this thread, however somewhere below it might be,
7043 	 * but because we are the idle thread, we just pick up running again
7044 	 * when this runqueue becomes "idle".
7045 	 */
7046 	init_idle(current, smp_processor_id());
7047 
7048 	calc_load_update = jiffies + LOAD_FREQ;
7049 
7050 	/*
7051 	 * During early bootup we pretend to be a normal task:
7052 	 */
7053 	current->sched_class = &fair_sched_class;
7054 
7055 #ifdef CONFIG_SMP
7056 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7057 	/* May be allocated at isolcpus cmdline parse time */
7058 	if (cpu_isolated_map == NULL)
7059 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7060 	idle_thread_set_boot_cpu();
7061 	set_cpu_rq_start_time();
7062 #endif
7063 	init_sched_fair_class();
7064 
7065 	scheduler_running = 1;
7066 }
7067 
7068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7069 static inline int preempt_count_equals(int preempt_offset)
7070 {
7071 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7072 
7073 	return (nested == preempt_offset);
7074 }
7075 
7076 void __might_sleep(const char *file, int line, int preempt_offset)
7077 {
7078 	static unsigned long prev_jiffy;	/* ratelimiting */
7079 
7080 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7081 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7082 	     !is_idle_task(current)) ||
7083 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7084 		return;
7085 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7086 		return;
7087 	prev_jiffy = jiffies;
7088 
7089 	printk(KERN_ERR
7090 		"BUG: sleeping function called from invalid context at %s:%d\n",
7091 			file, line);
7092 	printk(KERN_ERR
7093 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7094 			in_atomic(), irqs_disabled(),
7095 			current->pid, current->comm);
7096 
7097 	debug_show_held_locks(current);
7098 	if (irqs_disabled())
7099 		print_irqtrace_events(current);
7100 #ifdef CONFIG_DEBUG_PREEMPT
7101 	if (!preempt_count_equals(preempt_offset)) {
7102 		pr_err("Preemption disabled at:");
7103 		print_ip_sym(current->preempt_disable_ip);
7104 		pr_cont("\n");
7105 	}
7106 #endif
7107 	dump_stack();
7108 }
7109 EXPORT_SYMBOL(__might_sleep);
7110 #endif
7111 
7112 #ifdef CONFIG_MAGIC_SYSRQ
7113 static void normalize_task(struct rq *rq, struct task_struct *p)
7114 {
7115 	const struct sched_class *prev_class = p->sched_class;
7116 	struct sched_attr attr = {
7117 		.sched_policy = SCHED_NORMAL,
7118 	};
7119 	int old_prio = p->prio;
7120 	int on_rq;
7121 
7122 	on_rq = p->on_rq;
7123 	if (on_rq)
7124 		dequeue_task(rq, p, 0);
7125 	__setscheduler(rq, p, &attr);
7126 	if (on_rq) {
7127 		enqueue_task(rq, p, 0);
7128 		resched_curr(rq);
7129 	}
7130 
7131 	check_class_changed(rq, p, prev_class, old_prio);
7132 }
7133 
7134 void normalize_rt_tasks(void)
7135 {
7136 	struct task_struct *g, *p;
7137 	unsigned long flags;
7138 	struct rq *rq;
7139 
7140 	read_lock_irqsave(&tasklist_lock, flags);
7141 	do_each_thread(g, p) {
7142 		/*
7143 		 * Only normalize user tasks:
7144 		 */
7145 		if (!p->mm)
7146 			continue;
7147 
7148 		p->se.exec_start		= 0;
7149 #ifdef CONFIG_SCHEDSTATS
7150 		p->se.statistics.wait_start	= 0;
7151 		p->se.statistics.sleep_start	= 0;
7152 		p->se.statistics.block_start	= 0;
7153 #endif
7154 
7155 		if (!dl_task(p) && !rt_task(p)) {
7156 			/*
7157 			 * Renice negative nice level userspace
7158 			 * tasks back to 0:
7159 			 */
7160 			if (task_nice(p) < 0 && p->mm)
7161 				set_user_nice(p, 0);
7162 			continue;
7163 		}
7164 
7165 		raw_spin_lock(&p->pi_lock);
7166 		rq = __task_rq_lock(p);
7167 
7168 		normalize_task(rq, p);
7169 
7170 		__task_rq_unlock(rq);
7171 		raw_spin_unlock(&p->pi_lock);
7172 	} while_each_thread(g, p);
7173 
7174 	read_unlock_irqrestore(&tasklist_lock, flags);
7175 }
7176 
7177 #endif /* CONFIG_MAGIC_SYSRQ */
7178 
7179 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7180 /*
7181  * These functions are only useful for the IA64 MCA handling, or kdb.
7182  *
7183  * They can only be called when the whole system has been
7184  * stopped - every CPU needs to be quiescent, and no scheduling
7185  * activity can take place. Using them for anything else would
7186  * be a serious bug, and as a result, they aren't even visible
7187  * under any other configuration.
7188  */
7189 
7190 /**
7191  * curr_task - return the current task for a given cpu.
7192  * @cpu: the processor in question.
7193  *
7194  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7195  *
7196  * Return: The current task for @cpu.
7197  */
7198 struct task_struct *curr_task(int cpu)
7199 {
7200 	return cpu_curr(cpu);
7201 }
7202 
7203 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7204 
7205 #ifdef CONFIG_IA64
7206 /**
7207  * set_curr_task - set the current task for a given cpu.
7208  * @cpu: the processor in question.
7209  * @p: the task pointer to set.
7210  *
7211  * Description: This function must only be used when non-maskable interrupts
7212  * are serviced on a separate stack. It allows the architecture to switch the
7213  * notion of the current task on a cpu in a non-blocking manner. This function
7214  * must be called with all CPU's synchronized, and interrupts disabled, the
7215  * and caller must save the original value of the current task (see
7216  * curr_task() above) and restore that value before reenabling interrupts and
7217  * re-starting the system.
7218  *
7219  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7220  */
7221 void set_curr_task(int cpu, struct task_struct *p)
7222 {
7223 	cpu_curr(cpu) = p;
7224 }
7225 
7226 #endif
7227 
7228 #ifdef CONFIG_CGROUP_SCHED
7229 /* task_group_lock serializes the addition/removal of task groups */
7230 static DEFINE_SPINLOCK(task_group_lock);
7231 
7232 static void free_sched_group(struct task_group *tg)
7233 {
7234 	free_fair_sched_group(tg);
7235 	free_rt_sched_group(tg);
7236 	autogroup_free(tg);
7237 	kfree(tg);
7238 }
7239 
7240 /* allocate runqueue etc for a new task group */
7241 struct task_group *sched_create_group(struct task_group *parent)
7242 {
7243 	struct task_group *tg;
7244 
7245 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7246 	if (!tg)
7247 		return ERR_PTR(-ENOMEM);
7248 
7249 	if (!alloc_fair_sched_group(tg, parent))
7250 		goto err;
7251 
7252 	if (!alloc_rt_sched_group(tg, parent))
7253 		goto err;
7254 
7255 	return tg;
7256 
7257 err:
7258 	free_sched_group(tg);
7259 	return ERR_PTR(-ENOMEM);
7260 }
7261 
7262 void sched_online_group(struct task_group *tg, struct task_group *parent)
7263 {
7264 	unsigned long flags;
7265 
7266 	spin_lock_irqsave(&task_group_lock, flags);
7267 	list_add_rcu(&tg->list, &task_groups);
7268 
7269 	WARN_ON(!parent); /* root should already exist */
7270 
7271 	tg->parent = parent;
7272 	INIT_LIST_HEAD(&tg->children);
7273 	list_add_rcu(&tg->siblings, &parent->children);
7274 	spin_unlock_irqrestore(&task_group_lock, flags);
7275 }
7276 
7277 /* rcu callback to free various structures associated with a task group */
7278 static void free_sched_group_rcu(struct rcu_head *rhp)
7279 {
7280 	/* now it should be safe to free those cfs_rqs */
7281 	free_sched_group(container_of(rhp, struct task_group, rcu));
7282 }
7283 
7284 /* Destroy runqueue etc associated with a task group */
7285 void sched_destroy_group(struct task_group *tg)
7286 {
7287 	/* wait for possible concurrent references to cfs_rqs complete */
7288 	call_rcu(&tg->rcu, free_sched_group_rcu);
7289 }
7290 
7291 void sched_offline_group(struct task_group *tg)
7292 {
7293 	unsigned long flags;
7294 	int i;
7295 
7296 	/* end participation in shares distribution */
7297 	for_each_possible_cpu(i)
7298 		unregister_fair_sched_group(tg, i);
7299 
7300 	spin_lock_irqsave(&task_group_lock, flags);
7301 	list_del_rcu(&tg->list);
7302 	list_del_rcu(&tg->siblings);
7303 	spin_unlock_irqrestore(&task_group_lock, flags);
7304 }
7305 
7306 /* change task's runqueue when it moves between groups.
7307  *	The caller of this function should have put the task in its new group
7308  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7309  *	reflect its new group.
7310  */
7311 void sched_move_task(struct task_struct *tsk)
7312 {
7313 	struct task_group *tg;
7314 	int on_rq, running;
7315 	unsigned long flags;
7316 	struct rq *rq;
7317 
7318 	rq = task_rq_lock(tsk, &flags);
7319 
7320 	running = task_current(rq, tsk);
7321 	on_rq = tsk->on_rq;
7322 
7323 	if (on_rq)
7324 		dequeue_task(rq, tsk, 0);
7325 	if (unlikely(running))
7326 		tsk->sched_class->put_prev_task(rq, tsk);
7327 
7328 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7329 				lockdep_is_held(&tsk->sighand->siglock)),
7330 			  struct task_group, css);
7331 	tg = autogroup_task_group(tsk, tg);
7332 	tsk->sched_task_group = tg;
7333 
7334 #ifdef CONFIG_FAIR_GROUP_SCHED
7335 	if (tsk->sched_class->task_move_group)
7336 		tsk->sched_class->task_move_group(tsk, on_rq);
7337 	else
7338 #endif
7339 		set_task_rq(tsk, task_cpu(tsk));
7340 
7341 	if (unlikely(running))
7342 		tsk->sched_class->set_curr_task(rq);
7343 	if (on_rq)
7344 		enqueue_task(rq, tsk, 0);
7345 
7346 	task_rq_unlock(rq, tsk, &flags);
7347 }
7348 #endif /* CONFIG_CGROUP_SCHED */
7349 
7350 #ifdef CONFIG_RT_GROUP_SCHED
7351 /*
7352  * Ensure that the real time constraints are schedulable.
7353  */
7354 static DEFINE_MUTEX(rt_constraints_mutex);
7355 
7356 /* Must be called with tasklist_lock held */
7357 static inline int tg_has_rt_tasks(struct task_group *tg)
7358 {
7359 	struct task_struct *g, *p;
7360 
7361 	do_each_thread(g, p) {
7362 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7363 			return 1;
7364 	} while_each_thread(g, p);
7365 
7366 	return 0;
7367 }
7368 
7369 struct rt_schedulable_data {
7370 	struct task_group *tg;
7371 	u64 rt_period;
7372 	u64 rt_runtime;
7373 };
7374 
7375 static int tg_rt_schedulable(struct task_group *tg, void *data)
7376 {
7377 	struct rt_schedulable_data *d = data;
7378 	struct task_group *child;
7379 	unsigned long total, sum = 0;
7380 	u64 period, runtime;
7381 
7382 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7383 	runtime = tg->rt_bandwidth.rt_runtime;
7384 
7385 	if (tg == d->tg) {
7386 		period = d->rt_period;
7387 		runtime = d->rt_runtime;
7388 	}
7389 
7390 	/*
7391 	 * Cannot have more runtime than the period.
7392 	 */
7393 	if (runtime > period && runtime != RUNTIME_INF)
7394 		return -EINVAL;
7395 
7396 	/*
7397 	 * Ensure we don't starve existing RT tasks.
7398 	 */
7399 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7400 		return -EBUSY;
7401 
7402 	total = to_ratio(period, runtime);
7403 
7404 	/*
7405 	 * Nobody can have more than the global setting allows.
7406 	 */
7407 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7408 		return -EINVAL;
7409 
7410 	/*
7411 	 * The sum of our children's runtime should not exceed our own.
7412 	 */
7413 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7414 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7415 		runtime = child->rt_bandwidth.rt_runtime;
7416 
7417 		if (child == d->tg) {
7418 			period = d->rt_period;
7419 			runtime = d->rt_runtime;
7420 		}
7421 
7422 		sum += to_ratio(period, runtime);
7423 	}
7424 
7425 	if (sum > total)
7426 		return -EINVAL;
7427 
7428 	return 0;
7429 }
7430 
7431 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7432 {
7433 	int ret;
7434 
7435 	struct rt_schedulable_data data = {
7436 		.tg = tg,
7437 		.rt_period = period,
7438 		.rt_runtime = runtime,
7439 	};
7440 
7441 	rcu_read_lock();
7442 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7443 	rcu_read_unlock();
7444 
7445 	return ret;
7446 }
7447 
7448 static int tg_set_rt_bandwidth(struct task_group *tg,
7449 		u64 rt_period, u64 rt_runtime)
7450 {
7451 	int i, err = 0;
7452 
7453 	mutex_lock(&rt_constraints_mutex);
7454 	read_lock(&tasklist_lock);
7455 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7456 	if (err)
7457 		goto unlock;
7458 
7459 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7460 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7461 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7462 
7463 	for_each_possible_cpu(i) {
7464 		struct rt_rq *rt_rq = tg->rt_rq[i];
7465 
7466 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7467 		rt_rq->rt_runtime = rt_runtime;
7468 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7469 	}
7470 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7471 unlock:
7472 	read_unlock(&tasklist_lock);
7473 	mutex_unlock(&rt_constraints_mutex);
7474 
7475 	return err;
7476 }
7477 
7478 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7479 {
7480 	u64 rt_runtime, rt_period;
7481 
7482 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7483 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7484 	if (rt_runtime_us < 0)
7485 		rt_runtime = RUNTIME_INF;
7486 
7487 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7488 }
7489 
7490 static long sched_group_rt_runtime(struct task_group *tg)
7491 {
7492 	u64 rt_runtime_us;
7493 
7494 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7495 		return -1;
7496 
7497 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7498 	do_div(rt_runtime_us, NSEC_PER_USEC);
7499 	return rt_runtime_us;
7500 }
7501 
7502 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7503 {
7504 	u64 rt_runtime, rt_period;
7505 
7506 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7507 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7508 
7509 	if (rt_period == 0)
7510 		return -EINVAL;
7511 
7512 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7513 }
7514 
7515 static long sched_group_rt_period(struct task_group *tg)
7516 {
7517 	u64 rt_period_us;
7518 
7519 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7520 	do_div(rt_period_us, NSEC_PER_USEC);
7521 	return rt_period_us;
7522 }
7523 #endif /* CONFIG_RT_GROUP_SCHED */
7524 
7525 #ifdef CONFIG_RT_GROUP_SCHED
7526 static int sched_rt_global_constraints(void)
7527 {
7528 	int ret = 0;
7529 
7530 	mutex_lock(&rt_constraints_mutex);
7531 	read_lock(&tasklist_lock);
7532 	ret = __rt_schedulable(NULL, 0, 0);
7533 	read_unlock(&tasklist_lock);
7534 	mutex_unlock(&rt_constraints_mutex);
7535 
7536 	return ret;
7537 }
7538 
7539 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7540 {
7541 	/* Don't accept realtime tasks when there is no way for them to run */
7542 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7543 		return 0;
7544 
7545 	return 1;
7546 }
7547 
7548 #else /* !CONFIG_RT_GROUP_SCHED */
7549 static int sched_rt_global_constraints(void)
7550 {
7551 	unsigned long flags;
7552 	int i, ret = 0;
7553 
7554 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7555 	for_each_possible_cpu(i) {
7556 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7557 
7558 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7559 		rt_rq->rt_runtime = global_rt_runtime();
7560 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7561 	}
7562 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7563 
7564 	return ret;
7565 }
7566 #endif /* CONFIG_RT_GROUP_SCHED */
7567 
7568 static int sched_dl_global_constraints(void)
7569 {
7570 	u64 runtime = global_rt_runtime();
7571 	u64 period = global_rt_period();
7572 	u64 new_bw = to_ratio(period, runtime);
7573 	int cpu, ret = 0;
7574 	unsigned long flags;
7575 
7576 	/*
7577 	 * Here we want to check the bandwidth not being set to some
7578 	 * value smaller than the currently allocated bandwidth in
7579 	 * any of the root_domains.
7580 	 *
7581 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7582 	 * cycling on root_domains... Discussion on different/better
7583 	 * solutions is welcome!
7584 	 */
7585 	for_each_possible_cpu(cpu) {
7586 		struct dl_bw *dl_b = dl_bw_of(cpu);
7587 
7588 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7589 		if (new_bw < dl_b->total_bw)
7590 			ret = -EBUSY;
7591 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7592 
7593 		if (ret)
7594 			break;
7595 	}
7596 
7597 	return ret;
7598 }
7599 
7600 static void sched_dl_do_global(void)
7601 {
7602 	u64 new_bw = -1;
7603 	int cpu;
7604 	unsigned long flags;
7605 
7606 	def_dl_bandwidth.dl_period = global_rt_period();
7607 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7608 
7609 	if (global_rt_runtime() != RUNTIME_INF)
7610 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7611 
7612 	/*
7613 	 * FIXME: As above...
7614 	 */
7615 	for_each_possible_cpu(cpu) {
7616 		struct dl_bw *dl_b = dl_bw_of(cpu);
7617 
7618 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7619 		dl_b->bw = new_bw;
7620 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7621 	}
7622 }
7623 
7624 static int sched_rt_global_validate(void)
7625 {
7626 	if (sysctl_sched_rt_period <= 0)
7627 		return -EINVAL;
7628 
7629 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7630 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7631 		return -EINVAL;
7632 
7633 	return 0;
7634 }
7635 
7636 static void sched_rt_do_global(void)
7637 {
7638 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7639 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7640 }
7641 
7642 int sched_rt_handler(struct ctl_table *table, int write,
7643 		void __user *buffer, size_t *lenp,
7644 		loff_t *ppos)
7645 {
7646 	int old_period, old_runtime;
7647 	static DEFINE_MUTEX(mutex);
7648 	int ret;
7649 
7650 	mutex_lock(&mutex);
7651 	old_period = sysctl_sched_rt_period;
7652 	old_runtime = sysctl_sched_rt_runtime;
7653 
7654 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7655 
7656 	if (!ret && write) {
7657 		ret = sched_rt_global_validate();
7658 		if (ret)
7659 			goto undo;
7660 
7661 		ret = sched_rt_global_constraints();
7662 		if (ret)
7663 			goto undo;
7664 
7665 		ret = sched_dl_global_constraints();
7666 		if (ret)
7667 			goto undo;
7668 
7669 		sched_rt_do_global();
7670 		sched_dl_do_global();
7671 	}
7672 	if (0) {
7673 undo:
7674 		sysctl_sched_rt_period = old_period;
7675 		sysctl_sched_rt_runtime = old_runtime;
7676 	}
7677 	mutex_unlock(&mutex);
7678 
7679 	return ret;
7680 }
7681 
7682 int sched_rr_handler(struct ctl_table *table, int write,
7683 		void __user *buffer, size_t *lenp,
7684 		loff_t *ppos)
7685 {
7686 	int ret;
7687 	static DEFINE_MUTEX(mutex);
7688 
7689 	mutex_lock(&mutex);
7690 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7691 	/* make sure that internally we keep jiffies */
7692 	/* also, writing zero resets timeslice to default */
7693 	if (!ret && write) {
7694 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7695 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7696 	}
7697 	mutex_unlock(&mutex);
7698 	return ret;
7699 }
7700 
7701 #ifdef CONFIG_CGROUP_SCHED
7702 
7703 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7704 {
7705 	return css ? container_of(css, struct task_group, css) : NULL;
7706 }
7707 
7708 static struct cgroup_subsys_state *
7709 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7710 {
7711 	struct task_group *parent = css_tg(parent_css);
7712 	struct task_group *tg;
7713 
7714 	if (!parent) {
7715 		/* This is early initialization for the top cgroup */
7716 		return &root_task_group.css;
7717 	}
7718 
7719 	tg = sched_create_group(parent);
7720 	if (IS_ERR(tg))
7721 		return ERR_PTR(-ENOMEM);
7722 
7723 	return &tg->css;
7724 }
7725 
7726 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7727 {
7728 	struct task_group *tg = css_tg(css);
7729 	struct task_group *parent = css_tg(css->parent);
7730 
7731 	if (parent)
7732 		sched_online_group(tg, parent);
7733 	return 0;
7734 }
7735 
7736 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7737 {
7738 	struct task_group *tg = css_tg(css);
7739 
7740 	sched_destroy_group(tg);
7741 }
7742 
7743 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7744 {
7745 	struct task_group *tg = css_tg(css);
7746 
7747 	sched_offline_group(tg);
7748 }
7749 
7750 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7751 				 struct cgroup_taskset *tset)
7752 {
7753 	struct task_struct *task;
7754 
7755 	cgroup_taskset_for_each(task, tset) {
7756 #ifdef CONFIG_RT_GROUP_SCHED
7757 		if (!sched_rt_can_attach(css_tg(css), task))
7758 			return -EINVAL;
7759 #else
7760 		/* We don't support RT-tasks being in separate groups */
7761 		if (task->sched_class != &fair_sched_class)
7762 			return -EINVAL;
7763 #endif
7764 	}
7765 	return 0;
7766 }
7767 
7768 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7769 			      struct cgroup_taskset *tset)
7770 {
7771 	struct task_struct *task;
7772 
7773 	cgroup_taskset_for_each(task, tset)
7774 		sched_move_task(task);
7775 }
7776 
7777 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7778 			    struct cgroup_subsys_state *old_css,
7779 			    struct task_struct *task)
7780 {
7781 	/*
7782 	 * cgroup_exit() is called in the copy_process() failure path.
7783 	 * Ignore this case since the task hasn't ran yet, this avoids
7784 	 * trying to poke a half freed task state from generic code.
7785 	 */
7786 	if (!(task->flags & PF_EXITING))
7787 		return;
7788 
7789 	sched_move_task(task);
7790 }
7791 
7792 #ifdef CONFIG_FAIR_GROUP_SCHED
7793 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7794 				struct cftype *cftype, u64 shareval)
7795 {
7796 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7797 }
7798 
7799 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7800 			       struct cftype *cft)
7801 {
7802 	struct task_group *tg = css_tg(css);
7803 
7804 	return (u64) scale_load_down(tg->shares);
7805 }
7806 
7807 #ifdef CONFIG_CFS_BANDWIDTH
7808 static DEFINE_MUTEX(cfs_constraints_mutex);
7809 
7810 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7811 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7812 
7813 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7814 
7815 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7816 {
7817 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7818 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7819 
7820 	if (tg == &root_task_group)
7821 		return -EINVAL;
7822 
7823 	/*
7824 	 * Ensure we have at some amount of bandwidth every period.  This is
7825 	 * to prevent reaching a state of large arrears when throttled via
7826 	 * entity_tick() resulting in prolonged exit starvation.
7827 	 */
7828 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7829 		return -EINVAL;
7830 
7831 	/*
7832 	 * Likewise, bound things on the otherside by preventing insane quota
7833 	 * periods.  This also allows us to normalize in computing quota
7834 	 * feasibility.
7835 	 */
7836 	if (period > max_cfs_quota_period)
7837 		return -EINVAL;
7838 
7839 	/*
7840 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7841 	 * unthrottle_offline_cfs_rqs().
7842 	 */
7843 	get_online_cpus();
7844 	mutex_lock(&cfs_constraints_mutex);
7845 	ret = __cfs_schedulable(tg, period, quota);
7846 	if (ret)
7847 		goto out_unlock;
7848 
7849 	runtime_enabled = quota != RUNTIME_INF;
7850 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7851 	/*
7852 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7853 	 * before making related changes, and on->off must occur afterwards
7854 	 */
7855 	if (runtime_enabled && !runtime_was_enabled)
7856 		cfs_bandwidth_usage_inc();
7857 	raw_spin_lock_irq(&cfs_b->lock);
7858 	cfs_b->period = ns_to_ktime(period);
7859 	cfs_b->quota = quota;
7860 
7861 	__refill_cfs_bandwidth_runtime(cfs_b);
7862 	/* restart the period timer (if active) to handle new period expiry */
7863 	if (runtime_enabled && cfs_b->timer_active) {
7864 		/* force a reprogram */
7865 		__start_cfs_bandwidth(cfs_b, true);
7866 	}
7867 	raw_spin_unlock_irq(&cfs_b->lock);
7868 
7869 	for_each_online_cpu(i) {
7870 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7871 		struct rq *rq = cfs_rq->rq;
7872 
7873 		raw_spin_lock_irq(&rq->lock);
7874 		cfs_rq->runtime_enabled = runtime_enabled;
7875 		cfs_rq->runtime_remaining = 0;
7876 
7877 		if (cfs_rq->throttled)
7878 			unthrottle_cfs_rq(cfs_rq);
7879 		raw_spin_unlock_irq(&rq->lock);
7880 	}
7881 	if (runtime_was_enabled && !runtime_enabled)
7882 		cfs_bandwidth_usage_dec();
7883 out_unlock:
7884 	mutex_unlock(&cfs_constraints_mutex);
7885 	put_online_cpus();
7886 
7887 	return ret;
7888 }
7889 
7890 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7891 {
7892 	u64 quota, period;
7893 
7894 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7895 	if (cfs_quota_us < 0)
7896 		quota = RUNTIME_INF;
7897 	else
7898 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7899 
7900 	return tg_set_cfs_bandwidth(tg, period, quota);
7901 }
7902 
7903 long tg_get_cfs_quota(struct task_group *tg)
7904 {
7905 	u64 quota_us;
7906 
7907 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7908 		return -1;
7909 
7910 	quota_us = tg->cfs_bandwidth.quota;
7911 	do_div(quota_us, NSEC_PER_USEC);
7912 
7913 	return quota_us;
7914 }
7915 
7916 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7917 {
7918 	u64 quota, period;
7919 
7920 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7921 	quota = tg->cfs_bandwidth.quota;
7922 
7923 	return tg_set_cfs_bandwidth(tg, period, quota);
7924 }
7925 
7926 long tg_get_cfs_period(struct task_group *tg)
7927 {
7928 	u64 cfs_period_us;
7929 
7930 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7931 	do_div(cfs_period_us, NSEC_PER_USEC);
7932 
7933 	return cfs_period_us;
7934 }
7935 
7936 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7937 				  struct cftype *cft)
7938 {
7939 	return tg_get_cfs_quota(css_tg(css));
7940 }
7941 
7942 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7943 				   struct cftype *cftype, s64 cfs_quota_us)
7944 {
7945 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7946 }
7947 
7948 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7949 				   struct cftype *cft)
7950 {
7951 	return tg_get_cfs_period(css_tg(css));
7952 }
7953 
7954 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7955 				    struct cftype *cftype, u64 cfs_period_us)
7956 {
7957 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7958 }
7959 
7960 struct cfs_schedulable_data {
7961 	struct task_group *tg;
7962 	u64 period, quota;
7963 };
7964 
7965 /*
7966  * normalize group quota/period to be quota/max_period
7967  * note: units are usecs
7968  */
7969 static u64 normalize_cfs_quota(struct task_group *tg,
7970 			       struct cfs_schedulable_data *d)
7971 {
7972 	u64 quota, period;
7973 
7974 	if (tg == d->tg) {
7975 		period = d->period;
7976 		quota = d->quota;
7977 	} else {
7978 		period = tg_get_cfs_period(tg);
7979 		quota = tg_get_cfs_quota(tg);
7980 	}
7981 
7982 	/* note: these should typically be equivalent */
7983 	if (quota == RUNTIME_INF || quota == -1)
7984 		return RUNTIME_INF;
7985 
7986 	return to_ratio(period, quota);
7987 }
7988 
7989 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7990 {
7991 	struct cfs_schedulable_data *d = data;
7992 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7993 	s64 quota = 0, parent_quota = -1;
7994 
7995 	if (!tg->parent) {
7996 		quota = RUNTIME_INF;
7997 	} else {
7998 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7999 
8000 		quota = normalize_cfs_quota(tg, d);
8001 		parent_quota = parent_b->hierarchal_quota;
8002 
8003 		/*
8004 		 * ensure max(child_quota) <= parent_quota, inherit when no
8005 		 * limit is set
8006 		 */
8007 		if (quota == RUNTIME_INF)
8008 			quota = parent_quota;
8009 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8010 			return -EINVAL;
8011 	}
8012 	cfs_b->hierarchal_quota = quota;
8013 
8014 	return 0;
8015 }
8016 
8017 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8018 {
8019 	int ret;
8020 	struct cfs_schedulable_data data = {
8021 		.tg = tg,
8022 		.period = period,
8023 		.quota = quota,
8024 	};
8025 
8026 	if (quota != RUNTIME_INF) {
8027 		do_div(data.period, NSEC_PER_USEC);
8028 		do_div(data.quota, NSEC_PER_USEC);
8029 	}
8030 
8031 	rcu_read_lock();
8032 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8033 	rcu_read_unlock();
8034 
8035 	return ret;
8036 }
8037 
8038 static int cpu_stats_show(struct seq_file *sf, void *v)
8039 {
8040 	struct task_group *tg = css_tg(seq_css(sf));
8041 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8042 
8043 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8044 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8045 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8046 
8047 	return 0;
8048 }
8049 #endif /* CONFIG_CFS_BANDWIDTH */
8050 #endif /* CONFIG_FAIR_GROUP_SCHED */
8051 
8052 #ifdef CONFIG_RT_GROUP_SCHED
8053 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8054 				struct cftype *cft, s64 val)
8055 {
8056 	return sched_group_set_rt_runtime(css_tg(css), val);
8057 }
8058 
8059 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8060 			       struct cftype *cft)
8061 {
8062 	return sched_group_rt_runtime(css_tg(css));
8063 }
8064 
8065 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8066 				    struct cftype *cftype, u64 rt_period_us)
8067 {
8068 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8069 }
8070 
8071 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8072 				   struct cftype *cft)
8073 {
8074 	return sched_group_rt_period(css_tg(css));
8075 }
8076 #endif /* CONFIG_RT_GROUP_SCHED */
8077 
8078 static struct cftype cpu_files[] = {
8079 #ifdef CONFIG_FAIR_GROUP_SCHED
8080 	{
8081 		.name = "shares",
8082 		.read_u64 = cpu_shares_read_u64,
8083 		.write_u64 = cpu_shares_write_u64,
8084 	},
8085 #endif
8086 #ifdef CONFIG_CFS_BANDWIDTH
8087 	{
8088 		.name = "cfs_quota_us",
8089 		.read_s64 = cpu_cfs_quota_read_s64,
8090 		.write_s64 = cpu_cfs_quota_write_s64,
8091 	},
8092 	{
8093 		.name = "cfs_period_us",
8094 		.read_u64 = cpu_cfs_period_read_u64,
8095 		.write_u64 = cpu_cfs_period_write_u64,
8096 	},
8097 	{
8098 		.name = "stat",
8099 		.seq_show = cpu_stats_show,
8100 	},
8101 #endif
8102 #ifdef CONFIG_RT_GROUP_SCHED
8103 	{
8104 		.name = "rt_runtime_us",
8105 		.read_s64 = cpu_rt_runtime_read,
8106 		.write_s64 = cpu_rt_runtime_write,
8107 	},
8108 	{
8109 		.name = "rt_period_us",
8110 		.read_u64 = cpu_rt_period_read_uint,
8111 		.write_u64 = cpu_rt_period_write_uint,
8112 	},
8113 #endif
8114 	{ }	/* terminate */
8115 };
8116 
8117 struct cgroup_subsys cpu_cgrp_subsys = {
8118 	.css_alloc	= cpu_cgroup_css_alloc,
8119 	.css_free	= cpu_cgroup_css_free,
8120 	.css_online	= cpu_cgroup_css_online,
8121 	.css_offline	= cpu_cgroup_css_offline,
8122 	.can_attach	= cpu_cgroup_can_attach,
8123 	.attach		= cpu_cgroup_attach,
8124 	.exit		= cpu_cgroup_exit,
8125 	.legacy_cftypes	= cpu_files,
8126 	.early_init	= 1,
8127 };
8128 
8129 #endif	/* CONFIG_CGROUP_SCHED */
8130 
8131 void dump_cpu_task(int cpu)
8132 {
8133 	pr_info("Task dump for CPU %d:\n", cpu);
8134 	sched_show_task(cpu_curr(cpu));
8135 }
8136