1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 #ifdef smp_mb__before_atomic 94 void __smp_mb__before_atomic(void) 95 { 96 smp_mb__before_atomic(); 97 } 98 EXPORT_SYMBOL(__smp_mb__before_atomic); 99 #endif 100 101 #ifdef smp_mb__after_atomic 102 void __smp_mb__after_atomic(void) 103 { 104 smp_mb__after_atomic(); 105 } 106 EXPORT_SYMBOL(__smp_mb__after_atomic); 107 #endif 108 109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 110 { 111 unsigned long delta; 112 ktime_t soft, hard, now; 113 114 for (;;) { 115 if (hrtimer_active(period_timer)) 116 break; 117 118 now = hrtimer_cb_get_time(period_timer); 119 hrtimer_forward(period_timer, now, period); 120 121 soft = hrtimer_get_softexpires(period_timer); 122 hard = hrtimer_get_expires(period_timer); 123 delta = ktime_to_ns(ktime_sub(hard, soft)); 124 __hrtimer_start_range_ns(period_timer, soft, delta, 125 HRTIMER_MODE_ABS_PINNED, 0); 126 } 127 } 128 129 DEFINE_MUTEX(sched_domains_mutex); 130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta); 133 134 void update_rq_clock(struct rq *rq) 135 { 136 s64 delta; 137 138 if (rq->skip_clock_update > 0) 139 return; 140 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 142 if (delta < 0) 143 return; 144 rq->clock += delta; 145 update_rq_clock_task(rq, delta); 146 } 147 148 /* 149 * Debugging: various feature bits 150 */ 151 152 #define SCHED_FEAT(name, enabled) \ 153 (1UL << __SCHED_FEAT_##name) * enabled | 154 155 const_debug unsigned int sysctl_sched_features = 156 #include "features.h" 157 0; 158 159 #undef SCHED_FEAT 160 161 #ifdef CONFIG_SCHED_DEBUG 162 #define SCHED_FEAT(name, enabled) \ 163 #name , 164 165 static const char * const sched_feat_names[] = { 166 #include "features.h" 167 }; 168 169 #undef SCHED_FEAT 170 171 static int sched_feat_show(struct seq_file *m, void *v) 172 { 173 int i; 174 175 for (i = 0; i < __SCHED_FEAT_NR; i++) { 176 if (!(sysctl_sched_features & (1UL << i))) 177 seq_puts(m, "NO_"); 178 seq_printf(m, "%s ", sched_feat_names[i]); 179 } 180 seq_puts(m, "\n"); 181 182 return 0; 183 } 184 185 #ifdef HAVE_JUMP_LABEL 186 187 #define jump_label_key__true STATIC_KEY_INIT_TRUE 188 #define jump_label_key__false STATIC_KEY_INIT_FALSE 189 190 #define SCHED_FEAT(name, enabled) \ 191 jump_label_key__##enabled , 192 193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 194 #include "features.h" 195 }; 196 197 #undef SCHED_FEAT 198 199 static void sched_feat_disable(int i) 200 { 201 if (static_key_enabled(&sched_feat_keys[i])) 202 static_key_slow_dec(&sched_feat_keys[i]); 203 } 204 205 static void sched_feat_enable(int i) 206 { 207 if (!static_key_enabled(&sched_feat_keys[i])) 208 static_key_slow_inc(&sched_feat_keys[i]); 209 } 210 #else 211 static void sched_feat_disable(int i) { }; 212 static void sched_feat_enable(int i) { }; 213 #endif /* HAVE_JUMP_LABEL */ 214 215 static int sched_feat_set(char *cmp) 216 { 217 int i; 218 int neg = 0; 219 220 if (strncmp(cmp, "NO_", 3) == 0) { 221 neg = 1; 222 cmp += 3; 223 } 224 225 for (i = 0; i < __SCHED_FEAT_NR; i++) { 226 if (strcmp(cmp, sched_feat_names[i]) == 0) { 227 if (neg) { 228 sysctl_sched_features &= ~(1UL << i); 229 sched_feat_disable(i); 230 } else { 231 sysctl_sched_features |= (1UL << i); 232 sched_feat_enable(i); 233 } 234 break; 235 } 236 } 237 238 return i; 239 } 240 241 static ssize_t 242 sched_feat_write(struct file *filp, const char __user *ubuf, 243 size_t cnt, loff_t *ppos) 244 { 245 char buf[64]; 246 char *cmp; 247 int i; 248 struct inode *inode; 249 250 if (cnt > 63) 251 cnt = 63; 252 253 if (copy_from_user(&buf, ubuf, cnt)) 254 return -EFAULT; 255 256 buf[cnt] = 0; 257 cmp = strstrip(buf); 258 259 /* Ensure the static_key remains in a consistent state */ 260 inode = file_inode(filp); 261 mutex_lock(&inode->i_mutex); 262 i = sched_feat_set(cmp); 263 mutex_unlock(&inode->i_mutex); 264 if (i == __SCHED_FEAT_NR) 265 return -EINVAL; 266 267 *ppos += cnt; 268 269 return cnt; 270 } 271 272 static int sched_feat_open(struct inode *inode, struct file *filp) 273 { 274 return single_open(filp, sched_feat_show, NULL); 275 } 276 277 static const struct file_operations sched_feat_fops = { 278 .open = sched_feat_open, 279 .write = sched_feat_write, 280 .read = seq_read, 281 .llseek = seq_lseek, 282 .release = single_release, 283 }; 284 285 static __init int sched_init_debug(void) 286 { 287 debugfs_create_file("sched_features", 0644, NULL, NULL, 288 &sched_feat_fops); 289 290 return 0; 291 } 292 late_initcall(sched_init_debug); 293 #endif /* CONFIG_SCHED_DEBUG */ 294 295 /* 296 * Number of tasks to iterate in a single balance run. 297 * Limited because this is done with IRQs disabled. 298 */ 299 const_debug unsigned int sysctl_sched_nr_migrate = 32; 300 301 /* 302 * period over which we average the RT time consumption, measured 303 * in ms. 304 * 305 * default: 1s 306 */ 307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 308 309 /* 310 * period over which we measure -rt task cpu usage in us. 311 * default: 1s 312 */ 313 unsigned int sysctl_sched_rt_period = 1000000; 314 315 __read_mostly int scheduler_running; 316 317 /* 318 * part of the period that we allow rt tasks to run in us. 319 * default: 0.95s 320 */ 321 int sysctl_sched_rt_runtime = 950000; 322 323 /* 324 * __task_rq_lock - lock the rq @p resides on. 325 */ 326 static inline struct rq *__task_rq_lock(struct task_struct *p) 327 __acquires(rq->lock) 328 { 329 struct rq *rq; 330 331 lockdep_assert_held(&p->pi_lock); 332 333 for (;;) { 334 rq = task_rq(p); 335 raw_spin_lock(&rq->lock); 336 if (likely(rq == task_rq(p))) 337 return rq; 338 raw_spin_unlock(&rq->lock); 339 } 340 } 341 342 /* 343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 344 */ 345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 346 __acquires(p->pi_lock) 347 __acquires(rq->lock) 348 { 349 struct rq *rq; 350 351 for (;;) { 352 raw_spin_lock_irqsave(&p->pi_lock, *flags); 353 rq = task_rq(p); 354 raw_spin_lock(&rq->lock); 355 if (likely(rq == task_rq(p))) 356 return rq; 357 raw_spin_unlock(&rq->lock); 358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 359 } 360 } 361 362 static void __task_rq_unlock(struct rq *rq) 363 __releases(rq->lock) 364 { 365 raw_spin_unlock(&rq->lock); 366 } 367 368 static inline void 369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 370 __releases(rq->lock) 371 __releases(p->pi_lock) 372 { 373 raw_spin_unlock(&rq->lock); 374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 375 } 376 377 /* 378 * this_rq_lock - lock this runqueue and disable interrupts. 379 */ 380 static struct rq *this_rq_lock(void) 381 __acquires(rq->lock) 382 { 383 struct rq *rq; 384 385 local_irq_disable(); 386 rq = this_rq(); 387 raw_spin_lock(&rq->lock); 388 389 return rq; 390 } 391 392 #ifdef CONFIG_SCHED_HRTICK 393 /* 394 * Use HR-timers to deliver accurate preemption points. 395 */ 396 397 static void hrtick_clear(struct rq *rq) 398 { 399 if (hrtimer_active(&rq->hrtick_timer)) 400 hrtimer_cancel(&rq->hrtick_timer); 401 } 402 403 /* 404 * High-resolution timer tick. 405 * Runs from hardirq context with interrupts disabled. 406 */ 407 static enum hrtimer_restart hrtick(struct hrtimer *timer) 408 { 409 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 410 411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 412 413 raw_spin_lock(&rq->lock); 414 update_rq_clock(rq); 415 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 416 raw_spin_unlock(&rq->lock); 417 418 return HRTIMER_NORESTART; 419 } 420 421 #ifdef CONFIG_SMP 422 423 static int __hrtick_restart(struct rq *rq) 424 { 425 struct hrtimer *timer = &rq->hrtick_timer; 426 ktime_t time = hrtimer_get_softexpires(timer); 427 428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 429 } 430 431 /* 432 * called from hardirq (IPI) context 433 */ 434 static void __hrtick_start(void *arg) 435 { 436 struct rq *rq = arg; 437 438 raw_spin_lock(&rq->lock); 439 __hrtick_restart(rq); 440 rq->hrtick_csd_pending = 0; 441 raw_spin_unlock(&rq->lock); 442 } 443 444 /* 445 * Called to set the hrtick timer state. 446 * 447 * called with rq->lock held and irqs disabled 448 */ 449 void hrtick_start(struct rq *rq, u64 delay) 450 { 451 struct hrtimer *timer = &rq->hrtick_timer; 452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 453 454 hrtimer_set_expires(timer, time); 455 456 if (rq == this_rq()) { 457 __hrtick_restart(rq); 458 } else if (!rq->hrtick_csd_pending) { 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 460 rq->hrtick_csd_pending = 1; 461 } 462 } 463 464 static int 465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 466 { 467 int cpu = (int)(long)hcpu; 468 469 switch (action) { 470 case CPU_UP_CANCELED: 471 case CPU_UP_CANCELED_FROZEN: 472 case CPU_DOWN_PREPARE: 473 case CPU_DOWN_PREPARE_FROZEN: 474 case CPU_DEAD: 475 case CPU_DEAD_FROZEN: 476 hrtick_clear(cpu_rq(cpu)); 477 return NOTIFY_OK; 478 } 479 480 return NOTIFY_DONE; 481 } 482 483 static __init void init_hrtick(void) 484 { 485 hotcpu_notifier(hotplug_hrtick, 0); 486 } 487 #else 488 /* 489 * Called to set the hrtick timer state. 490 * 491 * called with rq->lock held and irqs disabled 492 */ 493 void hrtick_start(struct rq *rq, u64 delay) 494 { 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 496 HRTIMER_MODE_REL_PINNED, 0); 497 } 498 499 static inline void init_hrtick(void) 500 { 501 } 502 #endif /* CONFIG_SMP */ 503 504 static void init_rq_hrtick(struct rq *rq) 505 { 506 #ifdef CONFIG_SMP 507 rq->hrtick_csd_pending = 0; 508 509 rq->hrtick_csd.flags = 0; 510 rq->hrtick_csd.func = __hrtick_start; 511 rq->hrtick_csd.info = rq; 512 #endif 513 514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 515 rq->hrtick_timer.function = hrtick; 516 } 517 #else /* CONFIG_SCHED_HRTICK */ 518 static inline void hrtick_clear(struct rq *rq) 519 { 520 } 521 522 static inline void init_rq_hrtick(struct rq *rq) 523 { 524 } 525 526 static inline void init_hrtick(void) 527 { 528 } 529 #endif /* CONFIG_SCHED_HRTICK */ 530 531 /* 532 * cmpxchg based fetch_or, macro so it works for different integer types 533 */ 534 #define fetch_or(ptr, val) \ 535 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 536 for (;;) { \ 537 __old = cmpxchg((ptr), __val, __val | (val)); \ 538 if (__old == __val) \ 539 break; \ 540 __val = __old; \ 541 } \ 542 __old; \ 543 }) 544 545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 546 /* 547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 548 * this avoids any races wrt polling state changes and thereby avoids 549 * spurious IPIs. 550 */ 551 static bool set_nr_and_not_polling(struct task_struct *p) 552 { 553 struct thread_info *ti = task_thread_info(p); 554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 555 } 556 557 /* 558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 559 * 560 * If this returns true, then the idle task promises to call 561 * sched_ttwu_pending() and reschedule soon. 562 */ 563 static bool set_nr_if_polling(struct task_struct *p) 564 { 565 struct thread_info *ti = task_thread_info(p); 566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 567 568 for (;;) { 569 if (!(val & _TIF_POLLING_NRFLAG)) 570 return false; 571 if (val & _TIF_NEED_RESCHED) 572 return true; 573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 574 if (old == val) 575 break; 576 val = old; 577 } 578 return true; 579 } 580 581 #else 582 static bool set_nr_and_not_polling(struct task_struct *p) 583 { 584 set_tsk_need_resched(p); 585 return true; 586 } 587 588 #ifdef CONFIG_SMP 589 static bool set_nr_if_polling(struct task_struct *p) 590 { 591 return false; 592 } 593 #endif 594 #endif 595 596 /* 597 * resched_curr - mark rq's current task 'to be rescheduled now'. 598 * 599 * On UP this means the setting of the need_resched flag, on SMP it 600 * might also involve a cross-CPU call to trigger the scheduler on 601 * the target CPU. 602 */ 603 void resched_curr(struct rq *rq) 604 { 605 struct task_struct *curr = rq->curr; 606 int cpu; 607 608 lockdep_assert_held(&rq->lock); 609 610 if (test_tsk_need_resched(curr)) 611 return; 612 613 cpu = cpu_of(rq); 614 615 if (cpu == smp_processor_id()) { 616 set_tsk_need_resched(curr); 617 set_preempt_need_resched(); 618 return; 619 } 620 621 if (set_nr_and_not_polling(curr)) 622 smp_send_reschedule(cpu); 623 else 624 trace_sched_wake_idle_without_ipi(cpu); 625 } 626 627 void resched_cpu(int cpu) 628 { 629 struct rq *rq = cpu_rq(cpu); 630 unsigned long flags; 631 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 633 return; 634 resched_curr(rq); 635 raw_spin_unlock_irqrestore(&rq->lock, flags); 636 } 637 638 #ifdef CONFIG_SMP 639 #ifdef CONFIG_NO_HZ_COMMON 640 /* 641 * In the semi idle case, use the nearest busy cpu for migrating timers 642 * from an idle cpu. This is good for power-savings. 643 * 644 * We don't do similar optimization for completely idle system, as 645 * selecting an idle cpu will add more delays to the timers than intended 646 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 647 */ 648 int get_nohz_timer_target(int pinned) 649 { 650 int cpu = smp_processor_id(); 651 int i; 652 struct sched_domain *sd; 653 654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 655 return cpu; 656 657 rcu_read_lock(); 658 for_each_domain(cpu, sd) { 659 for_each_cpu(i, sched_domain_span(sd)) { 660 if (!idle_cpu(i)) { 661 cpu = i; 662 goto unlock; 663 } 664 } 665 } 666 unlock: 667 rcu_read_unlock(); 668 return cpu; 669 } 670 /* 671 * When add_timer_on() enqueues a timer into the timer wheel of an 672 * idle CPU then this timer might expire before the next timer event 673 * which is scheduled to wake up that CPU. In case of a completely 674 * idle system the next event might even be infinite time into the 675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 676 * leaves the inner idle loop so the newly added timer is taken into 677 * account when the CPU goes back to idle and evaluates the timer 678 * wheel for the next timer event. 679 */ 680 static void wake_up_idle_cpu(int cpu) 681 { 682 struct rq *rq = cpu_rq(cpu); 683 684 if (cpu == smp_processor_id()) 685 return; 686 687 if (set_nr_and_not_polling(rq->idle)) 688 smp_send_reschedule(cpu); 689 else 690 trace_sched_wake_idle_without_ipi(cpu); 691 } 692 693 static bool wake_up_full_nohz_cpu(int cpu) 694 { 695 /* 696 * We just need the target to call irq_exit() and re-evaluate 697 * the next tick. The nohz full kick at least implies that. 698 * If needed we can still optimize that later with an 699 * empty IRQ. 700 */ 701 if (tick_nohz_full_cpu(cpu)) { 702 if (cpu != smp_processor_id() || 703 tick_nohz_tick_stopped()) 704 tick_nohz_full_kick_cpu(cpu); 705 return true; 706 } 707 708 return false; 709 } 710 711 void wake_up_nohz_cpu(int cpu) 712 { 713 if (!wake_up_full_nohz_cpu(cpu)) 714 wake_up_idle_cpu(cpu); 715 } 716 717 static inline bool got_nohz_idle_kick(void) 718 { 719 int cpu = smp_processor_id(); 720 721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 722 return false; 723 724 if (idle_cpu(cpu) && !need_resched()) 725 return true; 726 727 /* 728 * We can't run Idle Load Balance on this CPU for this time so we 729 * cancel it and clear NOHZ_BALANCE_KICK 730 */ 731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 732 return false; 733 } 734 735 #else /* CONFIG_NO_HZ_COMMON */ 736 737 static inline bool got_nohz_idle_kick(void) 738 { 739 return false; 740 } 741 742 #endif /* CONFIG_NO_HZ_COMMON */ 743 744 #ifdef CONFIG_NO_HZ_FULL 745 bool sched_can_stop_tick(void) 746 { 747 /* 748 * More than one running task need preemption. 749 * nr_running update is assumed to be visible 750 * after IPI is sent from wakers. 751 */ 752 if (this_rq()->nr_running > 1) 753 return false; 754 755 return true; 756 } 757 #endif /* CONFIG_NO_HZ_FULL */ 758 759 void sched_avg_update(struct rq *rq) 760 { 761 s64 period = sched_avg_period(); 762 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 764 /* 765 * Inline assembly required to prevent the compiler 766 * optimising this loop into a divmod call. 767 * See __iter_div_u64_rem() for another example of this. 768 */ 769 asm("" : "+rm" (rq->age_stamp)); 770 rq->age_stamp += period; 771 rq->rt_avg /= 2; 772 } 773 } 774 775 #endif /* CONFIG_SMP */ 776 777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 779 /* 780 * Iterate task_group tree rooted at *from, calling @down when first entering a 781 * node and @up when leaving it for the final time. 782 * 783 * Caller must hold rcu_lock or sufficient equivalent. 784 */ 785 int walk_tg_tree_from(struct task_group *from, 786 tg_visitor down, tg_visitor up, void *data) 787 { 788 struct task_group *parent, *child; 789 int ret; 790 791 parent = from; 792 793 down: 794 ret = (*down)(parent, data); 795 if (ret) 796 goto out; 797 list_for_each_entry_rcu(child, &parent->children, siblings) { 798 parent = child; 799 goto down; 800 801 up: 802 continue; 803 } 804 ret = (*up)(parent, data); 805 if (ret || parent == from) 806 goto out; 807 808 child = parent; 809 parent = parent->parent; 810 if (parent) 811 goto up; 812 out: 813 return ret; 814 } 815 816 int tg_nop(struct task_group *tg, void *data) 817 { 818 return 0; 819 } 820 #endif 821 822 static void set_load_weight(struct task_struct *p) 823 { 824 int prio = p->static_prio - MAX_RT_PRIO; 825 struct load_weight *load = &p->se.load; 826 827 /* 828 * SCHED_IDLE tasks get minimal weight: 829 */ 830 if (p->policy == SCHED_IDLE) { 831 load->weight = scale_load(WEIGHT_IDLEPRIO); 832 load->inv_weight = WMULT_IDLEPRIO; 833 return; 834 } 835 836 load->weight = scale_load(prio_to_weight[prio]); 837 load->inv_weight = prio_to_wmult[prio]; 838 } 839 840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 841 { 842 update_rq_clock(rq); 843 sched_info_queued(rq, p); 844 p->sched_class->enqueue_task(rq, p, flags); 845 } 846 847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 848 { 849 update_rq_clock(rq); 850 sched_info_dequeued(rq, p); 851 p->sched_class->dequeue_task(rq, p, flags); 852 } 853 854 void activate_task(struct rq *rq, struct task_struct *p, int flags) 855 { 856 if (task_contributes_to_load(p)) 857 rq->nr_uninterruptible--; 858 859 enqueue_task(rq, p, flags); 860 } 861 862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 863 { 864 if (task_contributes_to_load(p)) 865 rq->nr_uninterruptible++; 866 867 dequeue_task(rq, p, flags); 868 } 869 870 static void update_rq_clock_task(struct rq *rq, s64 delta) 871 { 872 /* 873 * In theory, the compile should just see 0 here, and optimize out the call 874 * to sched_rt_avg_update. But I don't trust it... 875 */ 876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 877 s64 steal = 0, irq_delta = 0; 878 #endif 879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 881 882 /* 883 * Since irq_time is only updated on {soft,}irq_exit, we might run into 884 * this case when a previous update_rq_clock() happened inside a 885 * {soft,}irq region. 886 * 887 * When this happens, we stop ->clock_task and only update the 888 * prev_irq_time stamp to account for the part that fit, so that a next 889 * update will consume the rest. This ensures ->clock_task is 890 * monotonic. 891 * 892 * It does however cause some slight miss-attribution of {soft,}irq 893 * time, a more accurate solution would be to update the irq_time using 894 * the current rq->clock timestamp, except that would require using 895 * atomic ops. 896 */ 897 if (irq_delta > delta) 898 irq_delta = delta; 899 900 rq->prev_irq_time += irq_delta; 901 delta -= irq_delta; 902 #endif 903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 904 if (static_key_false((¶virt_steal_rq_enabled))) { 905 steal = paravirt_steal_clock(cpu_of(rq)); 906 steal -= rq->prev_steal_time_rq; 907 908 if (unlikely(steal > delta)) 909 steal = delta; 910 911 rq->prev_steal_time_rq += steal; 912 delta -= steal; 913 } 914 #endif 915 916 rq->clock_task += delta; 917 918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 920 sched_rt_avg_update(rq, irq_delta + steal); 921 #endif 922 } 923 924 void sched_set_stop_task(int cpu, struct task_struct *stop) 925 { 926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 927 struct task_struct *old_stop = cpu_rq(cpu)->stop; 928 929 if (stop) { 930 /* 931 * Make it appear like a SCHED_FIFO task, its something 932 * userspace knows about and won't get confused about. 933 * 934 * Also, it will make PI more or less work without too 935 * much confusion -- but then, stop work should not 936 * rely on PI working anyway. 937 */ 938 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 939 940 stop->sched_class = &stop_sched_class; 941 } 942 943 cpu_rq(cpu)->stop = stop; 944 945 if (old_stop) { 946 /* 947 * Reset it back to a normal scheduling class so that 948 * it can die in pieces. 949 */ 950 old_stop->sched_class = &rt_sched_class; 951 } 952 } 953 954 /* 955 * __normal_prio - return the priority that is based on the static prio 956 */ 957 static inline int __normal_prio(struct task_struct *p) 958 { 959 return p->static_prio; 960 } 961 962 /* 963 * Calculate the expected normal priority: i.e. priority 964 * without taking RT-inheritance into account. Might be 965 * boosted by interactivity modifiers. Changes upon fork, 966 * setprio syscalls, and whenever the interactivity 967 * estimator recalculates. 968 */ 969 static inline int normal_prio(struct task_struct *p) 970 { 971 int prio; 972 973 if (task_has_dl_policy(p)) 974 prio = MAX_DL_PRIO-1; 975 else if (task_has_rt_policy(p)) 976 prio = MAX_RT_PRIO-1 - p->rt_priority; 977 else 978 prio = __normal_prio(p); 979 return prio; 980 } 981 982 /* 983 * Calculate the current priority, i.e. the priority 984 * taken into account by the scheduler. This value might 985 * be boosted by RT tasks, or might be boosted by 986 * interactivity modifiers. Will be RT if the task got 987 * RT-boosted. If not then it returns p->normal_prio. 988 */ 989 static int effective_prio(struct task_struct *p) 990 { 991 p->normal_prio = normal_prio(p); 992 /* 993 * If we are RT tasks or we were boosted to RT priority, 994 * keep the priority unchanged. Otherwise, update priority 995 * to the normal priority: 996 */ 997 if (!rt_prio(p->prio)) 998 return p->normal_prio; 999 return p->prio; 1000 } 1001 1002 /** 1003 * task_curr - is this task currently executing on a CPU? 1004 * @p: the task in question. 1005 * 1006 * Return: 1 if the task is currently executing. 0 otherwise. 1007 */ 1008 inline int task_curr(const struct task_struct *p) 1009 { 1010 return cpu_curr(task_cpu(p)) == p; 1011 } 1012 1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1014 const struct sched_class *prev_class, 1015 int oldprio) 1016 { 1017 if (prev_class != p->sched_class) { 1018 if (prev_class->switched_from) 1019 prev_class->switched_from(rq, p); 1020 p->sched_class->switched_to(rq, p); 1021 } else if (oldprio != p->prio || dl_task(p)) 1022 p->sched_class->prio_changed(rq, p, oldprio); 1023 } 1024 1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1026 { 1027 const struct sched_class *class; 1028 1029 if (p->sched_class == rq->curr->sched_class) { 1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1031 } else { 1032 for_each_class(class) { 1033 if (class == rq->curr->sched_class) 1034 break; 1035 if (class == p->sched_class) { 1036 resched_curr(rq); 1037 break; 1038 } 1039 } 1040 } 1041 1042 /* 1043 * A queue event has occurred, and we're going to schedule. In 1044 * this case, we can save a useless back to back clock update. 1045 */ 1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1047 rq->skip_clock_update = 1; 1048 } 1049 1050 #ifdef CONFIG_SMP 1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1052 { 1053 #ifdef CONFIG_SCHED_DEBUG 1054 /* 1055 * We should never call set_task_cpu() on a blocked task, 1056 * ttwu() will sort out the placement. 1057 */ 1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1059 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1060 1061 #ifdef CONFIG_LOCKDEP 1062 /* 1063 * The caller should hold either p->pi_lock or rq->lock, when changing 1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1065 * 1066 * sched_move_task() holds both and thus holding either pins the cgroup, 1067 * see task_group(). 1068 * 1069 * Furthermore, all task_rq users should acquire both locks, see 1070 * task_rq_lock(). 1071 */ 1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1073 lockdep_is_held(&task_rq(p)->lock))); 1074 #endif 1075 #endif 1076 1077 trace_sched_migrate_task(p, new_cpu); 1078 1079 if (task_cpu(p) != new_cpu) { 1080 if (p->sched_class->migrate_task_rq) 1081 p->sched_class->migrate_task_rq(p, new_cpu); 1082 p->se.nr_migrations++; 1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1084 } 1085 1086 __set_task_cpu(p, new_cpu); 1087 } 1088 1089 static void __migrate_swap_task(struct task_struct *p, int cpu) 1090 { 1091 if (p->on_rq) { 1092 struct rq *src_rq, *dst_rq; 1093 1094 src_rq = task_rq(p); 1095 dst_rq = cpu_rq(cpu); 1096 1097 deactivate_task(src_rq, p, 0); 1098 set_task_cpu(p, cpu); 1099 activate_task(dst_rq, p, 0); 1100 check_preempt_curr(dst_rq, p, 0); 1101 } else { 1102 /* 1103 * Task isn't running anymore; make it appear like we migrated 1104 * it before it went to sleep. This means on wakeup we make the 1105 * previous cpu our targer instead of where it really is. 1106 */ 1107 p->wake_cpu = cpu; 1108 } 1109 } 1110 1111 struct migration_swap_arg { 1112 struct task_struct *src_task, *dst_task; 1113 int src_cpu, dst_cpu; 1114 }; 1115 1116 static int migrate_swap_stop(void *data) 1117 { 1118 struct migration_swap_arg *arg = data; 1119 struct rq *src_rq, *dst_rq; 1120 int ret = -EAGAIN; 1121 1122 src_rq = cpu_rq(arg->src_cpu); 1123 dst_rq = cpu_rq(arg->dst_cpu); 1124 1125 double_raw_lock(&arg->src_task->pi_lock, 1126 &arg->dst_task->pi_lock); 1127 double_rq_lock(src_rq, dst_rq); 1128 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1129 goto unlock; 1130 1131 if (task_cpu(arg->src_task) != arg->src_cpu) 1132 goto unlock; 1133 1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1135 goto unlock; 1136 1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1138 goto unlock; 1139 1140 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1141 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1142 1143 ret = 0; 1144 1145 unlock: 1146 double_rq_unlock(src_rq, dst_rq); 1147 raw_spin_unlock(&arg->dst_task->pi_lock); 1148 raw_spin_unlock(&arg->src_task->pi_lock); 1149 1150 return ret; 1151 } 1152 1153 /* 1154 * Cross migrate two tasks 1155 */ 1156 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1157 { 1158 struct migration_swap_arg arg; 1159 int ret = -EINVAL; 1160 1161 arg = (struct migration_swap_arg){ 1162 .src_task = cur, 1163 .src_cpu = task_cpu(cur), 1164 .dst_task = p, 1165 .dst_cpu = task_cpu(p), 1166 }; 1167 1168 if (arg.src_cpu == arg.dst_cpu) 1169 goto out; 1170 1171 /* 1172 * These three tests are all lockless; this is OK since all of them 1173 * will be re-checked with proper locks held further down the line. 1174 */ 1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1176 goto out; 1177 1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1179 goto out; 1180 1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1182 goto out; 1183 1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1186 1187 out: 1188 return ret; 1189 } 1190 1191 struct migration_arg { 1192 struct task_struct *task; 1193 int dest_cpu; 1194 }; 1195 1196 static int migration_cpu_stop(void *data); 1197 1198 /* 1199 * wait_task_inactive - wait for a thread to unschedule. 1200 * 1201 * If @match_state is nonzero, it's the @p->state value just checked and 1202 * not expected to change. If it changes, i.e. @p might have woken up, 1203 * then return zero. When we succeed in waiting for @p to be off its CPU, 1204 * we return a positive number (its total switch count). If a second call 1205 * a short while later returns the same number, the caller can be sure that 1206 * @p has remained unscheduled the whole time. 1207 * 1208 * The caller must ensure that the task *will* unschedule sometime soon, 1209 * else this function might spin for a *long* time. This function can't 1210 * be called with interrupts off, or it may introduce deadlock with 1211 * smp_call_function() if an IPI is sent by the same process we are 1212 * waiting to become inactive. 1213 */ 1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1215 { 1216 unsigned long flags; 1217 int running, on_rq; 1218 unsigned long ncsw; 1219 struct rq *rq; 1220 1221 for (;;) { 1222 /* 1223 * We do the initial early heuristics without holding 1224 * any task-queue locks at all. We'll only try to get 1225 * the runqueue lock when things look like they will 1226 * work out! 1227 */ 1228 rq = task_rq(p); 1229 1230 /* 1231 * If the task is actively running on another CPU 1232 * still, just relax and busy-wait without holding 1233 * any locks. 1234 * 1235 * NOTE! Since we don't hold any locks, it's not 1236 * even sure that "rq" stays as the right runqueue! 1237 * But we don't care, since "task_running()" will 1238 * return false if the runqueue has changed and p 1239 * is actually now running somewhere else! 1240 */ 1241 while (task_running(rq, p)) { 1242 if (match_state && unlikely(p->state != match_state)) 1243 return 0; 1244 cpu_relax(); 1245 } 1246 1247 /* 1248 * Ok, time to look more closely! We need the rq 1249 * lock now, to be *sure*. If we're wrong, we'll 1250 * just go back and repeat. 1251 */ 1252 rq = task_rq_lock(p, &flags); 1253 trace_sched_wait_task(p); 1254 running = task_running(rq, p); 1255 on_rq = p->on_rq; 1256 ncsw = 0; 1257 if (!match_state || p->state == match_state) 1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1259 task_rq_unlock(rq, p, &flags); 1260 1261 /* 1262 * If it changed from the expected state, bail out now. 1263 */ 1264 if (unlikely(!ncsw)) 1265 break; 1266 1267 /* 1268 * Was it really running after all now that we 1269 * checked with the proper locks actually held? 1270 * 1271 * Oops. Go back and try again.. 1272 */ 1273 if (unlikely(running)) { 1274 cpu_relax(); 1275 continue; 1276 } 1277 1278 /* 1279 * It's not enough that it's not actively running, 1280 * it must be off the runqueue _entirely_, and not 1281 * preempted! 1282 * 1283 * So if it was still runnable (but just not actively 1284 * running right now), it's preempted, and we should 1285 * yield - it could be a while. 1286 */ 1287 if (unlikely(on_rq)) { 1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1289 1290 set_current_state(TASK_UNINTERRUPTIBLE); 1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1292 continue; 1293 } 1294 1295 /* 1296 * Ahh, all good. It wasn't running, and it wasn't 1297 * runnable, which means that it will never become 1298 * running in the future either. We're all done! 1299 */ 1300 break; 1301 } 1302 1303 return ncsw; 1304 } 1305 1306 /*** 1307 * kick_process - kick a running thread to enter/exit the kernel 1308 * @p: the to-be-kicked thread 1309 * 1310 * Cause a process which is running on another CPU to enter 1311 * kernel-mode, without any delay. (to get signals handled.) 1312 * 1313 * NOTE: this function doesn't have to take the runqueue lock, 1314 * because all it wants to ensure is that the remote task enters 1315 * the kernel. If the IPI races and the task has been migrated 1316 * to another CPU then no harm is done and the purpose has been 1317 * achieved as well. 1318 */ 1319 void kick_process(struct task_struct *p) 1320 { 1321 int cpu; 1322 1323 preempt_disable(); 1324 cpu = task_cpu(p); 1325 if ((cpu != smp_processor_id()) && task_curr(p)) 1326 smp_send_reschedule(cpu); 1327 preempt_enable(); 1328 } 1329 EXPORT_SYMBOL_GPL(kick_process); 1330 #endif /* CONFIG_SMP */ 1331 1332 #ifdef CONFIG_SMP 1333 /* 1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1335 */ 1336 static int select_fallback_rq(int cpu, struct task_struct *p) 1337 { 1338 int nid = cpu_to_node(cpu); 1339 const struct cpumask *nodemask = NULL; 1340 enum { cpuset, possible, fail } state = cpuset; 1341 int dest_cpu; 1342 1343 /* 1344 * If the node that the cpu is on has been offlined, cpu_to_node() 1345 * will return -1. There is no cpu on the node, and we should 1346 * select the cpu on the other node. 1347 */ 1348 if (nid != -1) { 1349 nodemask = cpumask_of_node(nid); 1350 1351 /* Look for allowed, online CPU in same node. */ 1352 for_each_cpu(dest_cpu, nodemask) { 1353 if (!cpu_online(dest_cpu)) 1354 continue; 1355 if (!cpu_active(dest_cpu)) 1356 continue; 1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1358 return dest_cpu; 1359 } 1360 } 1361 1362 for (;;) { 1363 /* Any allowed, online CPU? */ 1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1365 if (!cpu_online(dest_cpu)) 1366 continue; 1367 if (!cpu_active(dest_cpu)) 1368 continue; 1369 goto out; 1370 } 1371 1372 switch (state) { 1373 case cpuset: 1374 /* No more Mr. Nice Guy. */ 1375 cpuset_cpus_allowed_fallback(p); 1376 state = possible; 1377 break; 1378 1379 case possible: 1380 do_set_cpus_allowed(p, cpu_possible_mask); 1381 state = fail; 1382 break; 1383 1384 case fail: 1385 BUG(); 1386 break; 1387 } 1388 } 1389 1390 out: 1391 if (state != cpuset) { 1392 /* 1393 * Don't tell them about moving exiting tasks or 1394 * kernel threads (both mm NULL), since they never 1395 * leave kernel. 1396 */ 1397 if (p->mm && printk_ratelimit()) { 1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1399 task_pid_nr(p), p->comm, cpu); 1400 } 1401 } 1402 1403 return dest_cpu; 1404 } 1405 1406 /* 1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1408 */ 1409 static inline 1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1411 { 1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1413 1414 /* 1415 * In order not to call set_task_cpu() on a blocking task we need 1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1417 * cpu. 1418 * 1419 * Since this is common to all placement strategies, this lives here. 1420 * 1421 * [ this allows ->select_task() to simply return task_cpu(p) and 1422 * not worry about this generic constraint ] 1423 */ 1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1425 !cpu_online(cpu))) 1426 cpu = select_fallback_rq(task_cpu(p), p); 1427 1428 return cpu; 1429 } 1430 1431 static void update_avg(u64 *avg, u64 sample) 1432 { 1433 s64 diff = sample - *avg; 1434 *avg += diff >> 3; 1435 } 1436 #endif 1437 1438 static void 1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1440 { 1441 #ifdef CONFIG_SCHEDSTATS 1442 struct rq *rq = this_rq(); 1443 1444 #ifdef CONFIG_SMP 1445 int this_cpu = smp_processor_id(); 1446 1447 if (cpu == this_cpu) { 1448 schedstat_inc(rq, ttwu_local); 1449 schedstat_inc(p, se.statistics.nr_wakeups_local); 1450 } else { 1451 struct sched_domain *sd; 1452 1453 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1454 rcu_read_lock(); 1455 for_each_domain(this_cpu, sd) { 1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1457 schedstat_inc(sd, ttwu_wake_remote); 1458 break; 1459 } 1460 } 1461 rcu_read_unlock(); 1462 } 1463 1464 if (wake_flags & WF_MIGRATED) 1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1466 1467 #endif /* CONFIG_SMP */ 1468 1469 schedstat_inc(rq, ttwu_count); 1470 schedstat_inc(p, se.statistics.nr_wakeups); 1471 1472 if (wake_flags & WF_SYNC) 1473 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1474 1475 #endif /* CONFIG_SCHEDSTATS */ 1476 } 1477 1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1479 { 1480 activate_task(rq, p, en_flags); 1481 p->on_rq = 1; 1482 1483 /* if a worker is waking up, notify workqueue */ 1484 if (p->flags & PF_WQ_WORKER) 1485 wq_worker_waking_up(p, cpu_of(rq)); 1486 } 1487 1488 /* 1489 * Mark the task runnable and perform wakeup-preemption. 1490 */ 1491 static void 1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1493 { 1494 check_preempt_curr(rq, p, wake_flags); 1495 trace_sched_wakeup(p, true); 1496 1497 p->state = TASK_RUNNING; 1498 #ifdef CONFIG_SMP 1499 if (p->sched_class->task_woken) 1500 p->sched_class->task_woken(rq, p); 1501 1502 if (rq->idle_stamp) { 1503 u64 delta = rq_clock(rq) - rq->idle_stamp; 1504 u64 max = 2*rq->max_idle_balance_cost; 1505 1506 update_avg(&rq->avg_idle, delta); 1507 1508 if (rq->avg_idle > max) 1509 rq->avg_idle = max; 1510 1511 rq->idle_stamp = 0; 1512 } 1513 #endif 1514 } 1515 1516 static void 1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1518 { 1519 #ifdef CONFIG_SMP 1520 if (p->sched_contributes_to_load) 1521 rq->nr_uninterruptible--; 1522 #endif 1523 1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1525 ttwu_do_wakeup(rq, p, wake_flags); 1526 } 1527 1528 /* 1529 * Called in case the task @p isn't fully descheduled from its runqueue, 1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1531 * since all we need to do is flip p->state to TASK_RUNNING, since 1532 * the task is still ->on_rq. 1533 */ 1534 static int ttwu_remote(struct task_struct *p, int wake_flags) 1535 { 1536 struct rq *rq; 1537 int ret = 0; 1538 1539 rq = __task_rq_lock(p); 1540 if (p->on_rq) { 1541 /* check_preempt_curr() may use rq clock */ 1542 update_rq_clock(rq); 1543 ttwu_do_wakeup(rq, p, wake_flags); 1544 ret = 1; 1545 } 1546 __task_rq_unlock(rq); 1547 1548 return ret; 1549 } 1550 1551 #ifdef CONFIG_SMP 1552 void sched_ttwu_pending(void) 1553 { 1554 struct rq *rq = this_rq(); 1555 struct llist_node *llist = llist_del_all(&rq->wake_list); 1556 struct task_struct *p; 1557 unsigned long flags; 1558 1559 if (!llist) 1560 return; 1561 1562 raw_spin_lock_irqsave(&rq->lock, flags); 1563 1564 while (llist) { 1565 p = llist_entry(llist, struct task_struct, wake_entry); 1566 llist = llist_next(llist); 1567 ttwu_do_activate(rq, p, 0); 1568 } 1569 1570 raw_spin_unlock_irqrestore(&rq->lock, flags); 1571 } 1572 1573 void scheduler_ipi(void) 1574 { 1575 /* 1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1577 * TIF_NEED_RESCHED remotely (for the first time) will also send 1578 * this IPI. 1579 */ 1580 preempt_fold_need_resched(); 1581 1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1583 return; 1584 1585 /* 1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1587 * traditionally all their work was done from the interrupt return 1588 * path. Now that we actually do some work, we need to make sure 1589 * we do call them. 1590 * 1591 * Some archs already do call them, luckily irq_enter/exit nest 1592 * properly. 1593 * 1594 * Arguably we should visit all archs and update all handlers, 1595 * however a fair share of IPIs are still resched only so this would 1596 * somewhat pessimize the simple resched case. 1597 */ 1598 irq_enter(); 1599 sched_ttwu_pending(); 1600 1601 /* 1602 * Check if someone kicked us for doing the nohz idle load balance. 1603 */ 1604 if (unlikely(got_nohz_idle_kick())) { 1605 this_rq()->idle_balance = 1; 1606 raise_softirq_irqoff(SCHED_SOFTIRQ); 1607 } 1608 irq_exit(); 1609 } 1610 1611 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1612 { 1613 struct rq *rq = cpu_rq(cpu); 1614 1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1616 if (!set_nr_if_polling(rq->idle)) 1617 smp_send_reschedule(cpu); 1618 else 1619 trace_sched_wake_idle_without_ipi(cpu); 1620 } 1621 } 1622 1623 bool cpus_share_cache(int this_cpu, int that_cpu) 1624 { 1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 static void ttwu_queue(struct task_struct *p, int cpu) 1630 { 1631 struct rq *rq = cpu_rq(cpu); 1632 1633 #if defined(CONFIG_SMP) 1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1636 ttwu_queue_remote(p, cpu); 1637 return; 1638 } 1639 #endif 1640 1641 raw_spin_lock(&rq->lock); 1642 ttwu_do_activate(rq, p, 0); 1643 raw_spin_unlock(&rq->lock); 1644 } 1645 1646 /** 1647 * try_to_wake_up - wake up a thread 1648 * @p: the thread to be awakened 1649 * @state: the mask of task states that can be woken 1650 * @wake_flags: wake modifier flags (WF_*) 1651 * 1652 * Put it on the run-queue if it's not already there. The "current" 1653 * thread is always on the run-queue (except when the actual 1654 * re-schedule is in progress), and as such you're allowed to do 1655 * the simpler "current->state = TASK_RUNNING" to mark yourself 1656 * runnable without the overhead of this. 1657 * 1658 * Return: %true if @p was woken up, %false if it was already running. 1659 * or @state didn't match @p's state. 1660 */ 1661 static int 1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1663 { 1664 unsigned long flags; 1665 int cpu, success = 0; 1666 1667 /* 1668 * If we are going to wake up a thread waiting for CONDITION we 1669 * need to ensure that CONDITION=1 done by the caller can not be 1670 * reordered with p->state check below. This pairs with mb() in 1671 * set_current_state() the waiting thread does. 1672 */ 1673 smp_mb__before_spinlock(); 1674 raw_spin_lock_irqsave(&p->pi_lock, flags); 1675 if (!(p->state & state)) 1676 goto out; 1677 1678 success = 1; /* we're going to change ->state */ 1679 cpu = task_cpu(p); 1680 1681 if (p->on_rq && ttwu_remote(p, wake_flags)) 1682 goto stat; 1683 1684 #ifdef CONFIG_SMP 1685 /* 1686 * If the owning (remote) cpu is still in the middle of schedule() with 1687 * this task as prev, wait until its done referencing the task. 1688 */ 1689 while (p->on_cpu) 1690 cpu_relax(); 1691 /* 1692 * Pairs with the smp_wmb() in finish_lock_switch(). 1693 */ 1694 smp_rmb(); 1695 1696 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1697 p->state = TASK_WAKING; 1698 1699 if (p->sched_class->task_waking) 1700 p->sched_class->task_waking(p); 1701 1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1703 if (task_cpu(p) != cpu) { 1704 wake_flags |= WF_MIGRATED; 1705 set_task_cpu(p, cpu); 1706 } 1707 #endif /* CONFIG_SMP */ 1708 1709 ttwu_queue(p, cpu); 1710 stat: 1711 ttwu_stat(p, cpu, wake_flags); 1712 out: 1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1714 1715 return success; 1716 } 1717 1718 /** 1719 * try_to_wake_up_local - try to wake up a local task with rq lock held 1720 * @p: the thread to be awakened 1721 * 1722 * Put @p on the run-queue if it's not already there. The caller must 1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1724 * the current task. 1725 */ 1726 static void try_to_wake_up_local(struct task_struct *p) 1727 { 1728 struct rq *rq = task_rq(p); 1729 1730 if (WARN_ON_ONCE(rq != this_rq()) || 1731 WARN_ON_ONCE(p == current)) 1732 return; 1733 1734 lockdep_assert_held(&rq->lock); 1735 1736 if (!raw_spin_trylock(&p->pi_lock)) { 1737 raw_spin_unlock(&rq->lock); 1738 raw_spin_lock(&p->pi_lock); 1739 raw_spin_lock(&rq->lock); 1740 } 1741 1742 if (!(p->state & TASK_NORMAL)) 1743 goto out; 1744 1745 if (!p->on_rq) 1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1747 1748 ttwu_do_wakeup(rq, p, 0); 1749 ttwu_stat(p, smp_processor_id(), 0); 1750 out: 1751 raw_spin_unlock(&p->pi_lock); 1752 } 1753 1754 /** 1755 * wake_up_process - Wake up a specific process 1756 * @p: The process to be woken up. 1757 * 1758 * Attempt to wake up the nominated process and move it to the set of runnable 1759 * processes. 1760 * 1761 * Return: 1 if the process was woken up, 0 if it was already running. 1762 * 1763 * It may be assumed that this function implies a write memory barrier before 1764 * changing the task state if and only if any tasks are woken up. 1765 */ 1766 int wake_up_process(struct task_struct *p) 1767 { 1768 WARN_ON(task_is_stopped_or_traced(p)); 1769 return try_to_wake_up(p, TASK_NORMAL, 0); 1770 } 1771 EXPORT_SYMBOL(wake_up_process); 1772 1773 int wake_up_state(struct task_struct *p, unsigned int state) 1774 { 1775 return try_to_wake_up(p, state, 0); 1776 } 1777 1778 /* 1779 * Perform scheduler related setup for a newly forked process p. 1780 * p is forked by current. 1781 * 1782 * __sched_fork() is basic setup used by init_idle() too: 1783 */ 1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1785 { 1786 p->on_rq = 0; 1787 1788 p->se.on_rq = 0; 1789 p->se.exec_start = 0; 1790 p->se.sum_exec_runtime = 0; 1791 p->se.prev_sum_exec_runtime = 0; 1792 p->se.nr_migrations = 0; 1793 p->se.vruntime = 0; 1794 INIT_LIST_HEAD(&p->se.group_node); 1795 1796 #ifdef CONFIG_SCHEDSTATS 1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1798 #endif 1799 1800 RB_CLEAR_NODE(&p->dl.rb_node); 1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1802 p->dl.dl_runtime = p->dl.runtime = 0; 1803 p->dl.dl_deadline = p->dl.deadline = 0; 1804 p->dl.dl_period = 0; 1805 p->dl.flags = 0; 1806 1807 INIT_LIST_HEAD(&p->rt.run_list); 1808 1809 #ifdef CONFIG_PREEMPT_NOTIFIERS 1810 INIT_HLIST_HEAD(&p->preempt_notifiers); 1811 #endif 1812 1813 #ifdef CONFIG_NUMA_BALANCING 1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1816 p->mm->numa_scan_seq = 0; 1817 } 1818 1819 if (clone_flags & CLONE_VM) 1820 p->numa_preferred_nid = current->numa_preferred_nid; 1821 else 1822 p->numa_preferred_nid = -1; 1823 1824 p->node_stamp = 0ULL; 1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1827 p->numa_work.next = &p->numa_work; 1828 p->numa_faults_memory = NULL; 1829 p->numa_faults_buffer_memory = NULL; 1830 p->last_task_numa_placement = 0; 1831 p->last_sum_exec_runtime = 0; 1832 1833 INIT_LIST_HEAD(&p->numa_entry); 1834 p->numa_group = NULL; 1835 #endif /* CONFIG_NUMA_BALANCING */ 1836 } 1837 1838 #ifdef CONFIG_NUMA_BALANCING 1839 #ifdef CONFIG_SCHED_DEBUG 1840 void set_numabalancing_state(bool enabled) 1841 { 1842 if (enabled) 1843 sched_feat_set("NUMA"); 1844 else 1845 sched_feat_set("NO_NUMA"); 1846 } 1847 #else 1848 __read_mostly bool numabalancing_enabled; 1849 1850 void set_numabalancing_state(bool enabled) 1851 { 1852 numabalancing_enabled = enabled; 1853 } 1854 #endif /* CONFIG_SCHED_DEBUG */ 1855 1856 #ifdef CONFIG_PROC_SYSCTL 1857 int sysctl_numa_balancing(struct ctl_table *table, int write, 1858 void __user *buffer, size_t *lenp, loff_t *ppos) 1859 { 1860 struct ctl_table t; 1861 int err; 1862 int state = numabalancing_enabled; 1863 1864 if (write && !capable(CAP_SYS_ADMIN)) 1865 return -EPERM; 1866 1867 t = *table; 1868 t.data = &state; 1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1870 if (err < 0) 1871 return err; 1872 if (write) 1873 set_numabalancing_state(state); 1874 return err; 1875 } 1876 #endif 1877 #endif 1878 1879 /* 1880 * fork()/clone()-time setup: 1881 */ 1882 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1883 { 1884 unsigned long flags; 1885 int cpu = get_cpu(); 1886 1887 __sched_fork(clone_flags, p); 1888 /* 1889 * We mark the process as running here. This guarantees that 1890 * nobody will actually run it, and a signal or other external 1891 * event cannot wake it up and insert it on the runqueue either. 1892 */ 1893 p->state = TASK_RUNNING; 1894 1895 /* 1896 * Make sure we do not leak PI boosting priority to the child. 1897 */ 1898 p->prio = current->normal_prio; 1899 1900 /* 1901 * Revert to default priority/policy on fork if requested. 1902 */ 1903 if (unlikely(p->sched_reset_on_fork)) { 1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1905 p->policy = SCHED_NORMAL; 1906 p->static_prio = NICE_TO_PRIO(0); 1907 p->rt_priority = 0; 1908 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1909 p->static_prio = NICE_TO_PRIO(0); 1910 1911 p->prio = p->normal_prio = __normal_prio(p); 1912 set_load_weight(p); 1913 1914 /* 1915 * We don't need the reset flag anymore after the fork. It has 1916 * fulfilled its duty: 1917 */ 1918 p->sched_reset_on_fork = 0; 1919 } 1920 1921 if (dl_prio(p->prio)) { 1922 put_cpu(); 1923 return -EAGAIN; 1924 } else if (rt_prio(p->prio)) { 1925 p->sched_class = &rt_sched_class; 1926 } else { 1927 p->sched_class = &fair_sched_class; 1928 } 1929 1930 if (p->sched_class->task_fork) 1931 p->sched_class->task_fork(p); 1932 1933 /* 1934 * The child is not yet in the pid-hash so no cgroup attach races, 1935 * and the cgroup is pinned to this child due to cgroup_fork() 1936 * is ran before sched_fork(). 1937 * 1938 * Silence PROVE_RCU. 1939 */ 1940 raw_spin_lock_irqsave(&p->pi_lock, flags); 1941 set_task_cpu(p, cpu); 1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1943 1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1945 if (likely(sched_info_on())) 1946 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1947 #endif 1948 #if defined(CONFIG_SMP) 1949 p->on_cpu = 0; 1950 #endif 1951 init_task_preempt_count(p); 1952 #ifdef CONFIG_SMP 1953 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1954 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1955 #endif 1956 1957 put_cpu(); 1958 return 0; 1959 } 1960 1961 unsigned long to_ratio(u64 period, u64 runtime) 1962 { 1963 if (runtime == RUNTIME_INF) 1964 return 1ULL << 20; 1965 1966 /* 1967 * Doing this here saves a lot of checks in all 1968 * the calling paths, and returning zero seems 1969 * safe for them anyway. 1970 */ 1971 if (period == 0) 1972 return 0; 1973 1974 return div64_u64(runtime << 20, period); 1975 } 1976 1977 #ifdef CONFIG_SMP 1978 inline struct dl_bw *dl_bw_of(int i) 1979 { 1980 return &cpu_rq(i)->rd->dl_bw; 1981 } 1982 1983 static inline int dl_bw_cpus(int i) 1984 { 1985 struct root_domain *rd = cpu_rq(i)->rd; 1986 int cpus = 0; 1987 1988 for_each_cpu_and(i, rd->span, cpu_active_mask) 1989 cpus++; 1990 1991 return cpus; 1992 } 1993 #else 1994 inline struct dl_bw *dl_bw_of(int i) 1995 { 1996 return &cpu_rq(i)->dl.dl_bw; 1997 } 1998 1999 static inline int dl_bw_cpus(int i) 2000 { 2001 return 1; 2002 } 2003 #endif 2004 2005 static inline 2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 2007 { 2008 dl_b->total_bw -= tsk_bw; 2009 } 2010 2011 static inline 2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 2013 { 2014 dl_b->total_bw += tsk_bw; 2015 } 2016 2017 static inline 2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 2019 { 2020 return dl_b->bw != -1 && 2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 2022 } 2023 2024 /* 2025 * We must be sure that accepting a new task (or allowing changing the 2026 * parameters of an existing one) is consistent with the bandwidth 2027 * constraints. If yes, this function also accordingly updates the currently 2028 * allocated bandwidth to reflect the new situation. 2029 * 2030 * This function is called while holding p's rq->lock. 2031 */ 2032 static int dl_overflow(struct task_struct *p, int policy, 2033 const struct sched_attr *attr) 2034 { 2035 2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2037 u64 period = attr->sched_period ?: attr->sched_deadline; 2038 u64 runtime = attr->sched_runtime; 2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2040 int cpus, err = -1; 2041 2042 if (new_bw == p->dl.dl_bw) 2043 return 0; 2044 2045 /* 2046 * Either if a task, enters, leave, or stays -deadline but changes 2047 * its parameters, we may need to update accordingly the total 2048 * allocated bandwidth of the container. 2049 */ 2050 raw_spin_lock(&dl_b->lock); 2051 cpus = dl_bw_cpus(task_cpu(p)); 2052 if (dl_policy(policy) && !task_has_dl_policy(p) && 2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2054 __dl_add(dl_b, new_bw); 2055 err = 0; 2056 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2058 __dl_clear(dl_b, p->dl.dl_bw); 2059 __dl_add(dl_b, new_bw); 2060 err = 0; 2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2062 __dl_clear(dl_b, p->dl.dl_bw); 2063 err = 0; 2064 } 2065 raw_spin_unlock(&dl_b->lock); 2066 2067 return err; 2068 } 2069 2070 extern void init_dl_bw(struct dl_bw *dl_b); 2071 2072 /* 2073 * wake_up_new_task - wake up a newly created task for the first time. 2074 * 2075 * This function will do some initial scheduler statistics housekeeping 2076 * that must be done for every newly created context, then puts the task 2077 * on the runqueue and wakes it. 2078 */ 2079 void wake_up_new_task(struct task_struct *p) 2080 { 2081 unsigned long flags; 2082 struct rq *rq; 2083 2084 raw_spin_lock_irqsave(&p->pi_lock, flags); 2085 #ifdef CONFIG_SMP 2086 /* 2087 * Fork balancing, do it here and not earlier because: 2088 * - cpus_allowed can change in the fork path 2089 * - any previously selected cpu might disappear through hotplug 2090 */ 2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2092 #endif 2093 2094 /* Initialize new task's runnable average */ 2095 init_task_runnable_average(p); 2096 rq = __task_rq_lock(p); 2097 activate_task(rq, p, 0); 2098 p->on_rq = 1; 2099 trace_sched_wakeup_new(p, true); 2100 check_preempt_curr(rq, p, WF_FORK); 2101 #ifdef CONFIG_SMP 2102 if (p->sched_class->task_woken) 2103 p->sched_class->task_woken(rq, p); 2104 #endif 2105 task_rq_unlock(rq, p, &flags); 2106 } 2107 2108 #ifdef CONFIG_PREEMPT_NOTIFIERS 2109 2110 /** 2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2112 * @notifier: notifier struct to register 2113 */ 2114 void preempt_notifier_register(struct preempt_notifier *notifier) 2115 { 2116 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2117 } 2118 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2119 2120 /** 2121 * preempt_notifier_unregister - no longer interested in preemption notifications 2122 * @notifier: notifier struct to unregister 2123 * 2124 * This is safe to call from within a preemption notifier. 2125 */ 2126 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2127 { 2128 hlist_del(¬ifier->link); 2129 } 2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2131 2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2133 { 2134 struct preempt_notifier *notifier; 2135 2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2137 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2138 } 2139 2140 static void 2141 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2142 struct task_struct *next) 2143 { 2144 struct preempt_notifier *notifier; 2145 2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2147 notifier->ops->sched_out(notifier, next); 2148 } 2149 2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2151 2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2153 { 2154 } 2155 2156 static void 2157 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2158 struct task_struct *next) 2159 { 2160 } 2161 2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2163 2164 /** 2165 * prepare_task_switch - prepare to switch tasks 2166 * @rq: the runqueue preparing to switch 2167 * @prev: the current task that is being switched out 2168 * @next: the task we are going to switch to. 2169 * 2170 * This is called with the rq lock held and interrupts off. It must 2171 * be paired with a subsequent finish_task_switch after the context 2172 * switch. 2173 * 2174 * prepare_task_switch sets up locking and calls architecture specific 2175 * hooks. 2176 */ 2177 static inline void 2178 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2179 struct task_struct *next) 2180 { 2181 trace_sched_switch(prev, next); 2182 sched_info_switch(rq, prev, next); 2183 perf_event_task_sched_out(prev, next); 2184 fire_sched_out_preempt_notifiers(prev, next); 2185 prepare_lock_switch(rq, next); 2186 prepare_arch_switch(next); 2187 } 2188 2189 /** 2190 * finish_task_switch - clean up after a task-switch 2191 * @rq: runqueue associated with task-switch 2192 * @prev: the thread we just switched away from. 2193 * 2194 * finish_task_switch must be called after the context switch, paired 2195 * with a prepare_task_switch call before the context switch. 2196 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2197 * and do any other architecture-specific cleanup actions. 2198 * 2199 * Note that we may have delayed dropping an mm in context_switch(). If 2200 * so, we finish that here outside of the runqueue lock. (Doing it 2201 * with the lock held can cause deadlocks; see schedule() for 2202 * details.) 2203 */ 2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2205 __releases(rq->lock) 2206 { 2207 struct mm_struct *mm = rq->prev_mm; 2208 long prev_state; 2209 2210 rq->prev_mm = NULL; 2211 2212 /* 2213 * A task struct has one reference for the use as "current". 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2215 * schedule one last time. The schedule call will never return, and 2216 * the scheduled task must drop that reference. 2217 * The test for TASK_DEAD must occur while the runqueue locks are 2218 * still held, otherwise prev could be scheduled on another cpu, die 2219 * there before we look at prev->state, and then the reference would 2220 * be dropped twice. 2221 * Manfred Spraul <manfred@colorfullife.com> 2222 */ 2223 prev_state = prev->state; 2224 vtime_task_switch(prev); 2225 finish_arch_switch(prev); 2226 perf_event_task_sched_in(prev, current); 2227 finish_lock_switch(rq, prev); 2228 finish_arch_post_lock_switch(); 2229 2230 fire_sched_in_preempt_notifiers(current); 2231 if (mm) 2232 mmdrop(mm); 2233 if (unlikely(prev_state == TASK_DEAD)) { 2234 if (prev->sched_class->task_dead) 2235 prev->sched_class->task_dead(prev); 2236 2237 /* 2238 * Remove function-return probe instances associated with this 2239 * task and put them back on the free list. 2240 */ 2241 kprobe_flush_task(prev); 2242 put_task_struct(prev); 2243 } 2244 2245 tick_nohz_task_switch(current); 2246 } 2247 2248 #ifdef CONFIG_SMP 2249 2250 /* rq->lock is NOT held, but preemption is disabled */ 2251 static inline void post_schedule(struct rq *rq) 2252 { 2253 if (rq->post_schedule) { 2254 unsigned long flags; 2255 2256 raw_spin_lock_irqsave(&rq->lock, flags); 2257 if (rq->curr->sched_class->post_schedule) 2258 rq->curr->sched_class->post_schedule(rq); 2259 raw_spin_unlock_irqrestore(&rq->lock, flags); 2260 2261 rq->post_schedule = 0; 2262 } 2263 } 2264 2265 #else 2266 2267 static inline void post_schedule(struct rq *rq) 2268 { 2269 } 2270 2271 #endif 2272 2273 /** 2274 * schedule_tail - first thing a freshly forked thread must call. 2275 * @prev: the thread we just switched away from. 2276 */ 2277 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2278 __releases(rq->lock) 2279 { 2280 struct rq *rq = this_rq(); 2281 2282 finish_task_switch(rq, prev); 2283 2284 /* 2285 * FIXME: do we need to worry about rq being invalidated by the 2286 * task_switch? 2287 */ 2288 post_schedule(rq); 2289 2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2291 /* In this case, finish_task_switch does not reenable preemption */ 2292 preempt_enable(); 2293 #endif 2294 if (current->set_child_tid) 2295 put_user(task_pid_vnr(current), current->set_child_tid); 2296 } 2297 2298 /* 2299 * context_switch - switch to the new MM and the new 2300 * thread's register state. 2301 */ 2302 static inline void 2303 context_switch(struct rq *rq, struct task_struct *prev, 2304 struct task_struct *next) 2305 { 2306 struct mm_struct *mm, *oldmm; 2307 2308 prepare_task_switch(rq, prev, next); 2309 2310 mm = next->mm; 2311 oldmm = prev->active_mm; 2312 /* 2313 * For paravirt, this is coupled with an exit in switch_to to 2314 * combine the page table reload and the switch backend into 2315 * one hypercall. 2316 */ 2317 arch_start_context_switch(prev); 2318 2319 if (!mm) { 2320 next->active_mm = oldmm; 2321 atomic_inc(&oldmm->mm_count); 2322 enter_lazy_tlb(oldmm, next); 2323 } else 2324 switch_mm(oldmm, mm, next); 2325 2326 if (!prev->mm) { 2327 prev->active_mm = NULL; 2328 rq->prev_mm = oldmm; 2329 } 2330 /* 2331 * Since the runqueue lock will be released by the next 2332 * task (which is an invalid locking op but in the case 2333 * of the scheduler it's an obvious special-case), so we 2334 * do an early lockdep release here: 2335 */ 2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2338 #endif 2339 2340 context_tracking_task_switch(prev, next); 2341 /* Here we just switch the register state and the stack. */ 2342 switch_to(prev, next, prev); 2343 2344 barrier(); 2345 /* 2346 * this_rq must be evaluated again because prev may have moved 2347 * CPUs since it called schedule(), thus the 'rq' on its stack 2348 * frame will be invalid. 2349 */ 2350 finish_task_switch(this_rq(), prev); 2351 } 2352 2353 /* 2354 * nr_running and nr_context_switches: 2355 * 2356 * externally visible scheduler statistics: current number of runnable 2357 * threads, total number of context switches performed since bootup. 2358 */ 2359 unsigned long nr_running(void) 2360 { 2361 unsigned long i, sum = 0; 2362 2363 for_each_online_cpu(i) 2364 sum += cpu_rq(i)->nr_running; 2365 2366 return sum; 2367 } 2368 2369 unsigned long long nr_context_switches(void) 2370 { 2371 int i; 2372 unsigned long long sum = 0; 2373 2374 for_each_possible_cpu(i) 2375 sum += cpu_rq(i)->nr_switches; 2376 2377 return sum; 2378 } 2379 2380 unsigned long nr_iowait(void) 2381 { 2382 unsigned long i, sum = 0; 2383 2384 for_each_possible_cpu(i) 2385 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2386 2387 return sum; 2388 } 2389 2390 unsigned long nr_iowait_cpu(int cpu) 2391 { 2392 struct rq *this = cpu_rq(cpu); 2393 return atomic_read(&this->nr_iowait); 2394 } 2395 2396 #ifdef CONFIG_SMP 2397 2398 /* 2399 * sched_exec - execve() is a valuable balancing opportunity, because at 2400 * this point the task has the smallest effective memory and cache footprint. 2401 */ 2402 void sched_exec(void) 2403 { 2404 struct task_struct *p = current; 2405 unsigned long flags; 2406 int dest_cpu; 2407 2408 raw_spin_lock_irqsave(&p->pi_lock, flags); 2409 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2410 if (dest_cpu == smp_processor_id()) 2411 goto unlock; 2412 2413 if (likely(cpu_active(dest_cpu))) { 2414 struct migration_arg arg = { p, dest_cpu }; 2415 2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2417 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2418 return; 2419 } 2420 unlock: 2421 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2422 } 2423 2424 #endif 2425 2426 DEFINE_PER_CPU(struct kernel_stat, kstat); 2427 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2428 2429 EXPORT_PER_CPU_SYMBOL(kstat); 2430 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2431 2432 /* 2433 * Return any ns on the sched_clock that have not yet been accounted in 2434 * @p in case that task is currently running. 2435 * 2436 * Called with task_rq_lock() held on @rq. 2437 */ 2438 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2439 { 2440 u64 ns = 0; 2441 2442 /* 2443 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2444 * project cycles that may never be accounted to this 2445 * thread, breaking clock_gettime(). 2446 */ 2447 if (task_current(rq, p) && p->on_rq) { 2448 update_rq_clock(rq); 2449 ns = rq_clock_task(rq) - p->se.exec_start; 2450 if ((s64)ns < 0) 2451 ns = 0; 2452 } 2453 2454 return ns; 2455 } 2456 2457 unsigned long long task_delta_exec(struct task_struct *p) 2458 { 2459 unsigned long flags; 2460 struct rq *rq; 2461 u64 ns = 0; 2462 2463 rq = task_rq_lock(p, &flags); 2464 ns = do_task_delta_exec(p, rq); 2465 task_rq_unlock(rq, p, &flags); 2466 2467 return ns; 2468 } 2469 2470 /* 2471 * Return accounted runtime for the task. 2472 * In case the task is currently running, return the runtime plus current's 2473 * pending runtime that have not been accounted yet. 2474 */ 2475 unsigned long long task_sched_runtime(struct task_struct *p) 2476 { 2477 unsigned long flags; 2478 struct rq *rq; 2479 u64 ns = 0; 2480 2481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2482 /* 2483 * 64-bit doesn't need locks to atomically read a 64bit value. 2484 * So we have a optimization chance when the task's delta_exec is 0. 2485 * Reading ->on_cpu is racy, but this is ok. 2486 * 2487 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2488 * If we race with it entering cpu, unaccounted time is 0. This is 2489 * indistinguishable from the read occurring a few cycles earlier. 2490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2491 * been accounted, so we're correct here as well. 2492 */ 2493 if (!p->on_cpu || !p->on_rq) 2494 return p->se.sum_exec_runtime; 2495 #endif 2496 2497 rq = task_rq_lock(p, &flags); 2498 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2499 task_rq_unlock(rq, p, &flags); 2500 2501 return ns; 2502 } 2503 2504 /* 2505 * This function gets called by the timer code, with HZ frequency. 2506 * We call it with interrupts disabled. 2507 */ 2508 void scheduler_tick(void) 2509 { 2510 int cpu = smp_processor_id(); 2511 struct rq *rq = cpu_rq(cpu); 2512 struct task_struct *curr = rq->curr; 2513 2514 sched_clock_tick(); 2515 2516 raw_spin_lock(&rq->lock); 2517 update_rq_clock(rq); 2518 curr->sched_class->task_tick(rq, curr, 0); 2519 update_cpu_load_active(rq); 2520 raw_spin_unlock(&rq->lock); 2521 2522 perf_event_task_tick(); 2523 2524 #ifdef CONFIG_SMP 2525 rq->idle_balance = idle_cpu(cpu); 2526 trigger_load_balance(rq); 2527 #endif 2528 rq_last_tick_reset(rq); 2529 } 2530 2531 #ifdef CONFIG_NO_HZ_FULL 2532 /** 2533 * scheduler_tick_max_deferment 2534 * 2535 * Keep at least one tick per second when a single 2536 * active task is running because the scheduler doesn't 2537 * yet completely support full dynticks environment. 2538 * 2539 * This makes sure that uptime, CFS vruntime, load 2540 * balancing, etc... continue to move forward, even 2541 * with a very low granularity. 2542 * 2543 * Return: Maximum deferment in nanoseconds. 2544 */ 2545 u64 scheduler_tick_max_deferment(void) 2546 { 2547 struct rq *rq = this_rq(); 2548 unsigned long next, now = ACCESS_ONCE(jiffies); 2549 2550 next = rq->last_sched_tick + HZ; 2551 2552 if (time_before_eq(next, now)) 2553 return 0; 2554 2555 return jiffies_to_nsecs(next - now); 2556 } 2557 #endif 2558 2559 notrace unsigned long get_parent_ip(unsigned long addr) 2560 { 2561 if (in_lock_functions(addr)) { 2562 addr = CALLER_ADDR2; 2563 if (in_lock_functions(addr)) 2564 addr = CALLER_ADDR3; 2565 } 2566 return addr; 2567 } 2568 2569 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2570 defined(CONFIG_PREEMPT_TRACER)) 2571 2572 void preempt_count_add(int val) 2573 { 2574 #ifdef CONFIG_DEBUG_PREEMPT 2575 /* 2576 * Underflow? 2577 */ 2578 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2579 return; 2580 #endif 2581 __preempt_count_add(val); 2582 #ifdef CONFIG_DEBUG_PREEMPT 2583 /* 2584 * Spinlock count overflowing soon? 2585 */ 2586 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2587 PREEMPT_MASK - 10); 2588 #endif 2589 if (preempt_count() == val) { 2590 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2591 #ifdef CONFIG_DEBUG_PREEMPT 2592 current->preempt_disable_ip = ip; 2593 #endif 2594 trace_preempt_off(CALLER_ADDR0, ip); 2595 } 2596 } 2597 EXPORT_SYMBOL(preempt_count_add); 2598 NOKPROBE_SYMBOL(preempt_count_add); 2599 2600 void preempt_count_sub(int val) 2601 { 2602 #ifdef CONFIG_DEBUG_PREEMPT 2603 /* 2604 * Underflow? 2605 */ 2606 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2607 return; 2608 /* 2609 * Is the spinlock portion underflowing? 2610 */ 2611 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2612 !(preempt_count() & PREEMPT_MASK))) 2613 return; 2614 #endif 2615 2616 if (preempt_count() == val) 2617 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2618 __preempt_count_sub(val); 2619 } 2620 EXPORT_SYMBOL(preempt_count_sub); 2621 NOKPROBE_SYMBOL(preempt_count_sub); 2622 2623 #endif 2624 2625 /* 2626 * Print scheduling while atomic bug: 2627 */ 2628 static noinline void __schedule_bug(struct task_struct *prev) 2629 { 2630 if (oops_in_progress) 2631 return; 2632 2633 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2634 prev->comm, prev->pid, preempt_count()); 2635 2636 debug_show_held_locks(prev); 2637 print_modules(); 2638 if (irqs_disabled()) 2639 print_irqtrace_events(prev); 2640 #ifdef CONFIG_DEBUG_PREEMPT 2641 if (in_atomic_preempt_off()) { 2642 pr_err("Preemption disabled at:"); 2643 print_ip_sym(current->preempt_disable_ip); 2644 pr_cont("\n"); 2645 } 2646 #endif 2647 dump_stack(); 2648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2649 } 2650 2651 /* 2652 * Various schedule()-time debugging checks and statistics: 2653 */ 2654 static inline void schedule_debug(struct task_struct *prev) 2655 { 2656 /* 2657 * Test if we are atomic. Since do_exit() needs to call into 2658 * schedule() atomically, we ignore that path. Otherwise whine 2659 * if we are scheduling when we should not. 2660 */ 2661 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2662 __schedule_bug(prev); 2663 rcu_sleep_check(); 2664 2665 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2666 2667 schedstat_inc(this_rq(), sched_count); 2668 } 2669 2670 /* 2671 * Pick up the highest-prio task: 2672 */ 2673 static inline struct task_struct * 2674 pick_next_task(struct rq *rq, struct task_struct *prev) 2675 { 2676 const struct sched_class *class = &fair_sched_class; 2677 struct task_struct *p; 2678 2679 /* 2680 * Optimization: we know that if all tasks are in 2681 * the fair class we can call that function directly: 2682 */ 2683 if (likely(prev->sched_class == class && 2684 rq->nr_running == rq->cfs.h_nr_running)) { 2685 p = fair_sched_class.pick_next_task(rq, prev); 2686 if (unlikely(p == RETRY_TASK)) 2687 goto again; 2688 2689 /* assumes fair_sched_class->next == idle_sched_class */ 2690 if (unlikely(!p)) 2691 p = idle_sched_class.pick_next_task(rq, prev); 2692 2693 return p; 2694 } 2695 2696 again: 2697 for_each_class(class) { 2698 p = class->pick_next_task(rq, prev); 2699 if (p) { 2700 if (unlikely(p == RETRY_TASK)) 2701 goto again; 2702 return p; 2703 } 2704 } 2705 2706 BUG(); /* the idle class will always have a runnable task */ 2707 } 2708 2709 /* 2710 * __schedule() is the main scheduler function. 2711 * 2712 * The main means of driving the scheduler and thus entering this function are: 2713 * 2714 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2715 * 2716 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2717 * paths. For example, see arch/x86/entry_64.S. 2718 * 2719 * To drive preemption between tasks, the scheduler sets the flag in timer 2720 * interrupt handler scheduler_tick(). 2721 * 2722 * 3. Wakeups don't really cause entry into schedule(). They add a 2723 * task to the run-queue and that's it. 2724 * 2725 * Now, if the new task added to the run-queue preempts the current 2726 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2727 * called on the nearest possible occasion: 2728 * 2729 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2730 * 2731 * - in syscall or exception context, at the next outmost 2732 * preempt_enable(). (this might be as soon as the wake_up()'s 2733 * spin_unlock()!) 2734 * 2735 * - in IRQ context, return from interrupt-handler to 2736 * preemptible context 2737 * 2738 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2739 * then at the next: 2740 * 2741 * - cond_resched() call 2742 * - explicit schedule() call 2743 * - return from syscall or exception to user-space 2744 * - return from interrupt-handler to user-space 2745 */ 2746 static void __sched __schedule(void) 2747 { 2748 struct task_struct *prev, *next; 2749 unsigned long *switch_count; 2750 struct rq *rq; 2751 int cpu; 2752 2753 need_resched: 2754 preempt_disable(); 2755 cpu = smp_processor_id(); 2756 rq = cpu_rq(cpu); 2757 rcu_note_context_switch(cpu); 2758 prev = rq->curr; 2759 2760 schedule_debug(prev); 2761 2762 if (sched_feat(HRTICK)) 2763 hrtick_clear(rq); 2764 2765 /* 2766 * Make sure that signal_pending_state()->signal_pending() below 2767 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2768 * done by the caller to avoid the race with signal_wake_up(). 2769 */ 2770 smp_mb__before_spinlock(); 2771 raw_spin_lock_irq(&rq->lock); 2772 2773 switch_count = &prev->nivcsw; 2774 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2775 if (unlikely(signal_pending_state(prev->state, prev))) { 2776 prev->state = TASK_RUNNING; 2777 } else { 2778 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2779 prev->on_rq = 0; 2780 2781 /* 2782 * If a worker went to sleep, notify and ask workqueue 2783 * whether it wants to wake up a task to maintain 2784 * concurrency. 2785 */ 2786 if (prev->flags & PF_WQ_WORKER) { 2787 struct task_struct *to_wakeup; 2788 2789 to_wakeup = wq_worker_sleeping(prev, cpu); 2790 if (to_wakeup) 2791 try_to_wake_up_local(to_wakeup); 2792 } 2793 } 2794 switch_count = &prev->nvcsw; 2795 } 2796 2797 if (prev->on_rq || rq->skip_clock_update < 0) 2798 update_rq_clock(rq); 2799 2800 next = pick_next_task(rq, prev); 2801 clear_tsk_need_resched(prev); 2802 clear_preempt_need_resched(); 2803 rq->skip_clock_update = 0; 2804 2805 if (likely(prev != next)) { 2806 rq->nr_switches++; 2807 rq->curr = next; 2808 ++*switch_count; 2809 2810 context_switch(rq, prev, next); /* unlocks the rq */ 2811 /* 2812 * The context switch have flipped the stack from under us 2813 * and restored the local variables which were saved when 2814 * this task called schedule() in the past. prev == current 2815 * is still correct, but it can be moved to another cpu/rq. 2816 */ 2817 cpu = smp_processor_id(); 2818 rq = cpu_rq(cpu); 2819 } else 2820 raw_spin_unlock_irq(&rq->lock); 2821 2822 post_schedule(rq); 2823 2824 sched_preempt_enable_no_resched(); 2825 if (need_resched()) 2826 goto need_resched; 2827 } 2828 2829 static inline void sched_submit_work(struct task_struct *tsk) 2830 { 2831 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2832 return; 2833 /* 2834 * If we are going to sleep and we have plugged IO queued, 2835 * make sure to submit it to avoid deadlocks. 2836 */ 2837 if (blk_needs_flush_plug(tsk)) 2838 blk_schedule_flush_plug(tsk); 2839 } 2840 2841 asmlinkage __visible void __sched schedule(void) 2842 { 2843 struct task_struct *tsk = current; 2844 2845 sched_submit_work(tsk); 2846 __schedule(); 2847 } 2848 EXPORT_SYMBOL(schedule); 2849 2850 #ifdef CONFIG_CONTEXT_TRACKING 2851 asmlinkage __visible void __sched schedule_user(void) 2852 { 2853 /* 2854 * If we come here after a random call to set_need_resched(), 2855 * or we have been woken up remotely but the IPI has not yet arrived, 2856 * we haven't yet exited the RCU idle mode. Do it here manually until 2857 * we find a better solution. 2858 */ 2859 user_exit(); 2860 schedule(); 2861 user_enter(); 2862 } 2863 #endif 2864 2865 /** 2866 * schedule_preempt_disabled - called with preemption disabled 2867 * 2868 * Returns with preemption disabled. Note: preempt_count must be 1 2869 */ 2870 void __sched schedule_preempt_disabled(void) 2871 { 2872 sched_preempt_enable_no_resched(); 2873 schedule(); 2874 preempt_disable(); 2875 } 2876 2877 #ifdef CONFIG_PREEMPT 2878 /* 2879 * this is the entry point to schedule() from in-kernel preemption 2880 * off of preempt_enable. Kernel preemptions off return from interrupt 2881 * occur there and call schedule directly. 2882 */ 2883 asmlinkage __visible void __sched notrace preempt_schedule(void) 2884 { 2885 /* 2886 * If there is a non-zero preempt_count or interrupts are disabled, 2887 * we do not want to preempt the current task. Just return.. 2888 */ 2889 if (likely(!preemptible())) 2890 return; 2891 2892 do { 2893 __preempt_count_add(PREEMPT_ACTIVE); 2894 __schedule(); 2895 __preempt_count_sub(PREEMPT_ACTIVE); 2896 2897 /* 2898 * Check again in case we missed a preemption opportunity 2899 * between schedule and now. 2900 */ 2901 barrier(); 2902 } while (need_resched()); 2903 } 2904 NOKPROBE_SYMBOL(preempt_schedule); 2905 EXPORT_SYMBOL(preempt_schedule); 2906 #endif /* CONFIG_PREEMPT */ 2907 2908 /* 2909 * this is the entry point to schedule() from kernel preemption 2910 * off of irq context. 2911 * Note, that this is called and return with irqs disabled. This will 2912 * protect us against recursive calling from irq. 2913 */ 2914 asmlinkage __visible void __sched preempt_schedule_irq(void) 2915 { 2916 enum ctx_state prev_state; 2917 2918 /* Catch callers which need to be fixed */ 2919 BUG_ON(preempt_count() || !irqs_disabled()); 2920 2921 prev_state = exception_enter(); 2922 2923 do { 2924 __preempt_count_add(PREEMPT_ACTIVE); 2925 local_irq_enable(); 2926 __schedule(); 2927 local_irq_disable(); 2928 __preempt_count_sub(PREEMPT_ACTIVE); 2929 2930 /* 2931 * Check again in case we missed a preemption opportunity 2932 * between schedule and now. 2933 */ 2934 barrier(); 2935 } while (need_resched()); 2936 2937 exception_exit(prev_state); 2938 } 2939 2940 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2941 void *key) 2942 { 2943 return try_to_wake_up(curr->private, mode, wake_flags); 2944 } 2945 EXPORT_SYMBOL(default_wake_function); 2946 2947 #ifdef CONFIG_RT_MUTEXES 2948 2949 /* 2950 * rt_mutex_setprio - set the current priority of a task 2951 * @p: task 2952 * @prio: prio value (kernel-internal form) 2953 * 2954 * This function changes the 'effective' priority of a task. It does 2955 * not touch ->normal_prio like __setscheduler(). 2956 * 2957 * Used by the rt_mutex code to implement priority inheritance 2958 * logic. Call site only calls if the priority of the task changed. 2959 */ 2960 void rt_mutex_setprio(struct task_struct *p, int prio) 2961 { 2962 int oldprio, on_rq, running, enqueue_flag = 0; 2963 struct rq *rq; 2964 const struct sched_class *prev_class; 2965 2966 BUG_ON(prio > MAX_PRIO); 2967 2968 rq = __task_rq_lock(p); 2969 2970 /* 2971 * Idle task boosting is a nono in general. There is one 2972 * exception, when PREEMPT_RT and NOHZ is active: 2973 * 2974 * The idle task calls get_next_timer_interrupt() and holds 2975 * the timer wheel base->lock on the CPU and another CPU wants 2976 * to access the timer (probably to cancel it). We can safely 2977 * ignore the boosting request, as the idle CPU runs this code 2978 * with interrupts disabled and will complete the lock 2979 * protected section without being interrupted. So there is no 2980 * real need to boost. 2981 */ 2982 if (unlikely(p == rq->idle)) { 2983 WARN_ON(p != rq->curr); 2984 WARN_ON(p->pi_blocked_on); 2985 goto out_unlock; 2986 } 2987 2988 trace_sched_pi_setprio(p, prio); 2989 oldprio = p->prio; 2990 prev_class = p->sched_class; 2991 on_rq = p->on_rq; 2992 running = task_current(rq, p); 2993 if (on_rq) 2994 dequeue_task(rq, p, 0); 2995 if (running) 2996 p->sched_class->put_prev_task(rq, p); 2997 2998 /* 2999 * Boosting condition are: 3000 * 1. -rt task is running and holds mutex A 3001 * --> -dl task blocks on mutex A 3002 * 3003 * 2. -dl task is running and holds mutex A 3004 * --> -dl task blocks on mutex A and could preempt the 3005 * running task 3006 */ 3007 if (dl_prio(prio)) { 3008 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3009 if (!dl_prio(p->normal_prio) || 3010 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3011 p->dl.dl_boosted = 1; 3012 p->dl.dl_throttled = 0; 3013 enqueue_flag = ENQUEUE_REPLENISH; 3014 } else 3015 p->dl.dl_boosted = 0; 3016 p->sched_class = &dl_sched_class; 3017 } else if (rt_prio(prio)) { 3018 if (dl_prio(oldprio)) 3019 p->dl.dl_boosted = 0; 3020 if (oldprio < prio) 3021 enqueue_flag = ENQUEUE_HEAD; 3022 p->sched_class = &rt_sched_class; 3023 } else { 3024 if (dl_prio(oldprio)) 3025 p->dl.dl_boosted = 0; 3026 p->sched_class = &fair_sched_class; 3027 } 3028 3029 p->prio = prio; 3030 3031 if (running) 3032 p->sched_class->set_curr_task(rq); 3033 if (on_rq) 3034 enqueue_task(rq, p, enqueue_flag); 3035 3036 check_class_changed(rq, p, prev_class, oldprio); 3037 out_unlock: 3038 __task_rq_unlock(rq); 3039 } 3040 #endif 3041 3042 void set_user_nice(struct task_struct *p, long nice) 3043 { 3044 int old_prio, delta, on_rq; 3045 unsigned long flags; 3046 struct rq *rq; 3047 3048 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3049 return; 3050 /* 3051 * We have to be careful, if called from sys_setpriority(), 3052 * the task might be in the middle of scheduling on another CPU. 3053 */ 3054 rq = task_rq_lock(p, &flags); 3055 /* 3056 * The RT priorities are set via sched_setscheduler(), but we still 3057 * allow the 'normal' nice value to be set - but as expected 3058 * it wont have any effect on scheduling until the task is 3059 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3060 */ 3061 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3062 p->static_prio = NICE_TO_PRIO(nice); 3063 goto out_unlock; 3064 } 3065 on_rq = p->on_rq; 3066 if (on_rq) 3067 dequeue_task(rq, p, 0); 3068 3069 p->static_prio = NICE_TO_PRIO(nice); 3070 set_load_weight(p); 3071 old_prio = p->prio; 3072 p->prio = effective_prio(p); 3073 delta = p->prio - old_prio; 3074 3075 if (on_rq) { 3076 enqueue_task(rq, p, 0); 3077 /* 3078 * If the task increased its priority or is running and 3079 * lowered its priority, then reschedule its CPU: 3080 */ 3081 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3082 resched_curr(rq); 3083 } 3084 out_unlock: 3085 task_rq_unlock(rq, p, &flags); 3086 } 3087 EXPORT_SYMBOL(set_user_nice); 3088 3089 /* 3090 * can_nice - check if a task can reduce its nice value 3091 * @p: task 3092 * @nice: nice value 3093 */ 3094 int can_nice(const struct task_struct *p, const int nice) 3095 { 3096 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3097 int nice_rlim = nice_to_rlimit(nice); 3098 3099 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3100 capable(CAP_SYS_NICE)); 3101 } 3102 3103 #ifdef __ARCH_WANT_SYS_NICE 3104 3105 /* 3106 * sys_nice - change the priority of the current process. 3107 * @increment: priority increment 3108 * 3109 * sys_setpriority is a more generic, but much slower function that 3110 * does similar things. 3111 */ 3112 SYSCALL_DEFINE1(nice, int, increment) 3113 { 3114 long nice, retval; 3115 3116 /* 3117 * Setpriority might change our priority at the same moment. 3118 * We don't have to worry. Conceptually one call occurs first 3119 * and we have a single winner. 3120 */ 3121 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3122 nice = task_nice(current) + increment; 3123 3124 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3125 if (increment < 0 && !can_nice(current, nice)) 3126 return -EPERM; 3127 3128 retval = security_task_setnice(current, nice); 3129 if (retval) 3130 return retval; 3131 3132 set_user_nice(current, nice); 3133 return 0; 3134 } 3135 3136 #endif 3137 3138 /** 3139 * task_prio - return the priority value of a given task. 3140 * @p: the task in question. 3141 * 3142 * Return: The priority value as seen by users in /proc. 3143 * RT tasks are offset by -200. Normal tasks are centered 3144 * around 0, value goes from -16 to +15. 3145 */ 3146 int task_prio(const struct task_struct *p) 3147 { 3148 return p->prio - MAX_RT_PRIO; 3149 } 3150 3151 /** 3152 * idle_cpu - is a given cpu idle currently? 3153 * @cpu: the processor in question. 3154 * 3155 * Return: 1 if the CPU is currently idle. 0 otherwise. 3156 */ 3157 int idle_cpu(int cpu) 3158 { 3159 struct rq *rq = cpu_rq(cpu); 3160 3161 if (rq->curr != rq->idle) 3162 return 0; 3163 3164 if (rq->nr_running) 3165 return 0; 3166 3167 #ifdef CONFIG_SMP 3168 if (!llist_empty(&rq->wake_list)) 3169 return 0; 3170 #endif 3171 3172 return 1; 3173 } 3174 3175 /** 3176 * idle_task - return the idle task for a given cpu. 3177 * @cpu: the processor in question. 3178 * 3179 * Return: The idle task for the cpu @cpu. 3180 */ 3181 struct task_struct *idle_task(int cpu) 3182 { 3183 return cpu_rq(cpu)->idle; 3184 } 3185 3186 /** 3187 * find_process_by_pid - find a process with a matching PID value. 3188 * @pid: the pid in question. 3189 * 3190 * The task of @pid, if found. %NULL otherwise. 3191 */ 3192 static struct task_struct *find_process_by_pid(pid_t pid) 3193 { 3194 return pid ? find_task_by_vpid(pid) : current; 3195 } 3196 3197 /* 3198 * This function initializes the sched_dl_entity of a newly becoming 3199 * SCHED_DEADLINE task. 3200 * 3201 * Only the static values are considered here, the actual runtime and the 3202 * absolute deadline will be properly calculated when the task is enqueued 3203 * for the first time with its new policy. 3204 */ 3205 static void 3206 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3207 { 3208 struct sched_dl_entity *dl_se = &p->dl; 3209 3210 init_dl_task_timer(dl_se); 3211 dl_se->dl_runtime = attr->sched_runtime; 3212 dl_se->dl_deadline = attr->sched_deadline; 3213 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3214 dl_se->flags = attr->sched_flags; 3215 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3216 dl_se->dl_throttled = 0; 3217 dl_se->dl_new = 1; 3218 dl_se->dl_yielded = 0; 3219 } 3220 3221 /* 3222 * sched_setparam() passes in -1 for its policy, to let the functions 3223 * it calls know not to change it. 3224 */ 3225 #define SETPARAM_POLICY -1 3226 3227 static void __setscheduler_params(struct task_struct *p, 3228 const struct sched_attr *attr) 3229 { 3230 int policy = attr->sched_policy; 3231 3232 if (policy == SETPARAM_POLICY) 3233 policy = p->policy; 3234 3235 p->policy = policy; 3236 3237 if (dl_policy(policy)) 3238 __setparam_dl(p, attr); 3239 else if (fair_policy(policy)) 3240 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3241 3242 /* 3243 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3244 * !rt_policy. Always setting this ensures that things like 3245 * getparam()/getattr() don't report silly values for !rt tasks. 3246 */ 3247 p->rt_priority = attr->sched_priority; 3248 p->normal_prio = normal_prio(p); 3249 set_load_weight(p); 3250 } 3251 3252 /* Actually do priority change: must hold pi & rq lock. */ 3253 static void __setscheduler(struct rq *rq, struct task_struct *p, 3254 const struct sched_attr *attr) 3255 { 3256 __setscheduler_params(p, attr); 3257 3258 /* 3259 * If we get here, there was no pi waiters boosting the 3260 * task. It is safe to use the normal prio. 3261 */ 3262 p->prio = normal_prio(p); 3263 3264 if (dl_prio(p->prio)) 3265 p->sched_class = &dl_sched_class; 3266 else if (rt_prio(p->prio)) 3267 p->sched_class = &rt_sched_class; 3268 else 3269 p->sched_class = &fair_sched_class; 3270 } 3271 3272 static void 3273 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3274 { 3275 struct sched_dl_entity *dl_se = &p->dl; 3276 3277 attr->sched_priority = p->rt_priority; 3278 attr->sched_runtime = dl_se->dl_runtime; 3279 attr->sched_deadline = dl_se->dl_deadline; 3280 attr->sched_period = dl_se->dl_period; 3281 attr->sched_flags = dl_se->flags; 3282 } 3283 3284 /* 3285 * This function validates the new parameters of a -deadline task. 3286 * We ask for the deadline not being zero, and greater or equal 3287 * than the runtime, as well as the period of being zero or 3288 * greater than deadline. Furthermore, we have to be sure that 3289 * user parameters are above the internal resolution of 1us (we 3290 * check sched_runtime only since it is always the smaller one) and 3291 * below 2^63 ns (we have to check both sched_deadline and 3292 * sched_period, as the latter can be zero). 3293 */ 3294 static bool 3295 __checkparam_dl(const struct sched_attr *attr) 3296 { 3297 /* deadline != 0 */ 3298 if (attr->sched_deadline == 0) 3299 return false; 3300 3301 /* 3302 * Since we truncate DL_SCALE bits, make sure we're at least 3303 * that big. 3304 */ 3305 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3306 return false; 3307 3308 /* 3309 * Since we use the MSB for wrap-around and sign issues, make 3310 * sure it's not set (mind that period can be equal to zero). 3311 */ 3312 if (attr->sched_deadline & (1ULL << 63) || 3313 attr->sched_period & (1ULL << 63)) 3314 return false; 3315 3316 /* runtime <= deadline <= period (if period != 0) */ 3317 if ((attr->sched_period != 0 && 3318 attr->sched_period < attr->sched_deadline) || 3319 attr->sched_deadline < attr->sched_runtime) 3320 return false; 3321 3322 return true; 3323 } 3324 3325 /* 3326 * check the target process has a UID that matches the current process's 3327 */ 3328 static bool check_same_owner(struct task_struct *p) 3329 { 3330 const struct cred *cred = current_cred(), *pcred; 3331 bool match; 3332 3333 rcu_read_lock(); 3334 pcred = __task_cred(p); 3335 match = (uid_eq(cred->euid, pcred->euid) || 3336 uid_eq(cred->euid, pcred->uid)); 3337 rcu_read_unlock(); 3338 return match; 3339 } 3340 3341 static int __sched_setscheduler(struct task_struct *p, 3342 const struct sched_attr *attr, 3343 bool user) 3344 { 3345 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3346 MAX_RT_PRIO - 1 - attr->sched_priority; 3347 int retval, oldprio, oldpolicy = -1, on_rq, running; 3348 int policy = attr->sched_policy; 3349 unsigned long flags; 3350 const struct sched_class *prev_class; 3351 struct rq *rq; 3352 int reset_on_fork; 3353 3354 /* may grab non-irq protected spin_locks */ 3355 BUG_ON(in_interrupt()); 3356 recheck: 3357 /* double check policy once rq lock held */ 3358 if (policy < 0) { 3359 reset_on_fork = p->sched_reset_on_fork; 3360 policy = oldpolicy = p->policy; 3361 } else { 3362 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3363 3364 if (policy != SCHED_DEADLINE && 3365 policy != SCHED_FIFO && policy != SCHED_RR && 3366 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3367 policy != SCHED_IDLE) 3368 return -EINVAL; 3369 } 3370 3371 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3372 return -EINVAL; 3373 3374 /* 3375 * Valid priorities for SCHED_FIFO and SCHED_RR are 3376 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3377 * SCHED_BATCH and SCHED_IDLE is 0. 3378 */ 3379 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3380 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3381 return -EINVAL; 3382 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3383 (rt_policy(policy) != (attr->sched_priority != 0))) 3384 return -EINVAL; 3385 3386 /* 3387 * Allow unprivileged RT tasks to decrease priority: 3388 */ 3389 if (user && !capable(CAP_SYS_NICE)) { 3390 if (fair_policy(policy)) { 3391 if (attr->sched_nice < task_nice(p) && 3392 !can_nice(p, attr->sched_nice)) 3393 return -EPERM; 3394 } 3395 3396 if (rt_policy(policy)) { 3397 unsigned long rlim_rtprio = 3398 task_rlimit(p, RLIMIT_RTPRIO); 3399 3400 /* can't set/change the rt policy */ 3401 if (policy != p->policy && !rlim_rtprio) 3402 return -EPERM; 3403 3404 /* can't increase priority */ 3405 if (attr->sched_priority > p->rt_priority && 3406 attr->sched_priority > rlim_rtprio) 3407 return -EPERM; 3408 } 3409 3410 /* 3411 * Can't set/change SCHED_DEADLINE policy at all for now 3412 * (safest behavior); in the future we would like to allow 3413 * unprivileged DL tasks to increase their relative deadline 3414 * or reduce their runtime (both ways reducing utilization) 3415 */ 3416 if (dl_policy(policy)) 3417 return -EPERM; 3418 3419 /* 3420 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3421 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3422 */ 3423 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3424 if (!can_nice(p, task_nice(p))) 3425 return -EPERM; 3426 } 3427 3428 /* can't change other user's priorities */ 3429 if (!check_same_owner(p)) 3430 return -EPERM; 3431 3432 /* Normal users shall not reset the sched_reset_on_fork flag */ 3433 if (p->sched_reset_on_fork && !reset_on_fork) 3434 return -EPERM; 3435 } 3436 3437 if (user) { 3438 retval = security_task_setscheduler(p); 3439 if (retval) 3440 return retval; 3441 } 3442 3443 /* 3444 * make sure no PI-waiters arrive (or leave) while we are 3445 * changing the priority of the task: 3446 * 3447 * To be able to change p->policy safely, the appropriate 3448 * runqueue lock must be held. 3449 */ 3450 rq = task_rq_lock(p, &flags); 3451 3452 /* 3453 * Changing the policy of the stop threads its a very bad idea 3454 */ 3455 if (p == rq->stop) { 3456 task_rq_unlock(rq, p, &flags); 3457 return -EINVAL; 3458 } 3459 3460 /* 3461 * If not changing anything there's no need to proceed further, 3462 * but store a possible modification of reset_on_fork. 3463 */ 3464 if (unlikely(policy == p->policy)) { 3465 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3466 goto change; 3467 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3468 goto change; 3469 if (dl_policy(policy)) 3470 goto change; 3471 3472 p->sched_reset_on_fork = reset_on_fork; 3473 task_rq_unlock(rq, p, &flags); 3474 return 0; 3475 } 3476 change: 3477 3478 if (user) { 3479 #ifdef CONFIG_RT_GROUP_SCHED 3480 /* 3481 * Do not allow realtime tasks into groups that have no runtime 3482 * assigned. 3483 */ 3484 if (rt_bandwidth_enabled() && rt_policy(policy) && 3485 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3486 !task_group_is_autogroup(task_group(p))) { 3487 task_rq_unlock(rq, p, &flags); 3488 return -EPERM; 3489 } 3490 #endif 3491 #ifdef CONFIG_SMP 3492 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3493 cpumask_t *span = rq->rd->span; 3494 3495 /* 3496 * Don't allow tasks with an affinity mask smaller than 3497 * the entire root_domain to become SCHED_DEADLINE. We 3498 * will also fail if there's no bandwidth available. 3499 */ 3500 if (!cpumask_subset(span, &p->cpus_allowed) || 3501 rq->rd->dl_bw.bw == 0) { 3502 task_rq_unlock(rq, p, &flags); 3503 return -EPERM; 3504 } 3505 } 3506 #endif 3507 } 3508 3509 /* recheck policy now with rq lock held */ 3510 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3511 policy = oldpolicy = -1; 3512 task_rq_unlock(rq, p, &flags); 3513 goto recheck; 3514 } 3515 3516 /* 3517 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3518 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3519 * is available. 3520 */ 3521 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3522 task_rq_unlock(rq, p, &flags); 3523 return -EBUSY; 3524 } 3525 3526 p->sched_reset_on_fork = reset_on_fork; 3527 oldprio = p->prio; 3528 3529 /* 3530 * Special case for priority boosted tasks. 3531 * 3532 * If the new priority is lower or equal (user space view) 3533 * than the current (boosted) priority, we just store the new 3534 * normal parameters and do not touch the scheduler class and 3535 * the runqueue. This will be done when the task deboost 3536 * itself. 3537 */ 3538 if (rt_mutex_check_prio(p, newprio)) { 3539 __setscheduler_params(p, attr); 3540 task_rq_unlock(rq, p, &flags); 3541 return 0; 3542 } 3543 3544 on_rq = p->on_rq; 3545 running = task_current(rq, p); 3546 if (on_rq) 3547 dequeue_task(rq, p, 0); 3548 if (running) 3549 p->sched_class->put_prev_task(rq, p); 3550 3551 prev_class = p->sched_class; 3552 __setscheduler(rq, p, attr); 3553 3554 if (running) 3555 p->sched_class->set_curr_task(rq); 3556 if (on_rq) { 3557 /* 3558 * We enqueue to tail when the priority of a task is 3559 * increased (user space view). 3560 */ 3561 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3562 } 3563 3564 check_class_changed(rq, p, prev_class, oldprio); 3565 task_rq_unlock(rq, p, &flags); 3566 3567 rt_mutex_adjust_pi(p); 3568 3569 return 0; 3570 } 3571 3572 static int _sched_setscheduler(struct task_struct *p, int policy, 3573 const struct sched_param *param, bool check) 3574 { 3575 struct sched_attr attr = { 3576 .sched_policy = policy, 3577 .sched_priority = param->sched_priority, 3578 .sched_nice = PRIO_TO_NICE(p->static_prio), 3579 }; 3580 3581 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3582 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3583 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3584 policy &= ~SCHED_RESET_ON_FORK; 3585 attr.sched_policy = policy; 3586 } 3587 3588 return __sched_setscheduler(p, &attr, check); 3589 } 3590 /** 3591 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3592 * @p: the task in question. 3593 * @policy: new policy. 3594 * @param: structure containing the new RT priority. 3595 * 3596 * Return: 0 on success. An error code otherwise. 3597 * 3598 * NOTE that the task may be already dead. 3599 */ 3600 int sched_setscheduler(struct task_struct *p, int policy, 3601 const struct sched_param *param) 3602 { 3603 return _sched_setscheduler(p, policy, param, true); 3604 } 3605 EXPORT_SYMBOL_GPL(sched_setscheduler); 3606 3607 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3608 { 3609 return __sched_setscheduler(p, attr, true); 3610 } 3611 EXPORT_SYMBOL_GPL(sched_setattr); 3612 3613 /** 3614 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3615 * @p: the task in question. 3616 * @policy: new policy. 3617 * @param: structure containing the new RT priority. 3618 * 3619 * Just like sched_setscheduler, only don't bother checking if the 3620 * current context has permission. For example, this is needed in 3621 * stop_machine(): we create temporary high priority worker threads, 3622 * but our caller might not have that capability. 3623 * 3624 * Return: 0 on success. An error code otherwise. 3625 */ 3626 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3627 const struct sched_param *param) 3628 { 3629 return _sched_setscheduler(p, policy, param, false); 3630 } 3631 3632 static int 3633 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3634 { 3635 struct sched_param lparam; 3636 struct task_struct *p; 3637 int retval; 3638 3639 if (!param || pid < 0) 3640 return -EINVAL; 3641 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3642 return -EFAULT; 3643 3644 rcu_read_lock(); 3645 retval = -ESRCH; 3646 p = find_process_by_pid(pid); 3647 if (p != NULL) 3648 retval = sched_setscheduler(p, policy, &lparam); 3649 rcu_read_unlock(); 3650 3651 return retval; 3652 } 3653 3654 /* 3655 * Mimics kernel/events/core.c perf_copy_attr(). 3656 */ 3657 static int sched_copy_attr(struct sched_attr __user *uattr, 3658 struct sched_attr *attr) 3659 { 3660 u32 size; 3661 int ret; 3662 3663 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3664 return -EFAULT; 3665 3666 /* 3667 * zero the full structure, so that a short copy will be nice. 3668 */ 3669 memset(attr, 0, sizeof(*attr)); 3670 3671 ret = get_user(size, &uattr->size); 3672 if (ret) 3673 return ret; 3674 3675 if (size > PAGE_SIZE) /* silly large */ 3676 goto err_size; 3677 3678 if (!size) /* abi compat */ 3679 size = SCHED_ATTR_SIZE_VER0; 3680 3681 if (size < SCHED_ATTR_SIZE_VER0) 3682 goto err_size; 3683 3684 /* 3685 * If we're handed a bigger struct than we know of, 3686 * ensure all the unknown bits are 0 - i.e. new 3687 * user-space does not rely on any kernel feature 3688 * extensions we dont know about yet. 3689 */ 3690 if (size > sizeof(*attr)) { 3691 unsigned char __user *addr; 3692 unsigned char __user *end; 3693 unsigned char val; 3694 3695 addr = (void __user *)uattr + sizeof(*attr); 3696 end = (void __user *)uattr + size; 3697 3698 for (; addr < end; addr++) { 3699 ret = get_user(val, addr); 3700 if (ret) 3701 return ret; 3702 if (val) 3703 goto err_size; 3704 } 3705 size = sizeof(*attr); 3706 } 3707 3708 ret = copy_from_user(attr, uattr, size); 3709 if (ret) 3710 return -EFAULT; 3711 3712 /* 3713 * XXX: do we want to be lenient like existing syscalls; or do we want 3714 * to be strict and return an error on out-of-bounds values? 3715 */ 3716 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3717 3718 return 0; 3719 3720 err_size: 3721 put_user(sizeof(*attr), &uattr->size); 3722 return -E2BIG; 3723 } 3724 3725 /** 3726 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3727 * @pid: the pid in question. 3728 * @policy: new policy. 3729 * @param: structure containing the new RT priority. 3730 * 3731 * Return: 0 on success. An error code otherwise. 3732 */ 3733 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3734 struct sched_param __user *, param) 3735 { 3736 /* negative values for policy are not valid */ 3737 if (policy < 0) 3738 return -EINVAL; 3739 3740 return do_sched_setscheduler(pid, policy, param); 3741 } 3742 3743 /** 3744 * sys_sched_setparam - set/change the RT priority of a thread 3745 * @pid: the pid in question. 3746 * @param: structure containing the new RT priority. 3747 * 3748 * Return: 0 on success. An error code otherwise. 3749 */ 3750 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3751 { 3752 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3753 } 3754 3755 /** 3756 * sys_sched_setattr - same as above, but with extended sched_attr 3757 * @pid: the pid in question. 3758 * @uattr: structure containing the extended parameters. 3759 * @flags: for future extension. 3760 */ 3761 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3762 unsigned int, flags) 3763 { 3764 struct sched_attr attr; 3765 struct task_struct *p; 3766 int retval; 3767 3768 if (!uattr || pid < 0 || flags) 3769 return -EINVAL; 3770 3771 retval = sched_copy_attr(uattr, &attr); 3772 if (retval) 3773 return retval; 3774 3775 if ((int)attr.sched_policy < 0) 3776 return -EINVAL; 3777 3778 rcu_read_lock(); 3779 retval = -ESRCH; 3780 p = find_process_by_pid(pid); 3781 if (p != NULL) 3782 retval = sched_setattr(p, &attr); 3783 rcu_read_unlock(); 3784 3785 return retval; 3786 } 3787 3788 /** 3789 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3790 * @pid: the pid in question. 3791 * 3792 * Return: On success, the policy of the thread. Otherwise, a negative error 3793 * code. 3794 */ 3795 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3796 { 3797 struct task_struct *p; 3798 int retval; 3799 3800 if (pid < 0) 3801 return -EINVAL; 3802 3803 retval = -ESRCH; 3804 rcu_read_lock(); 3805 p = find_process_by_pid(pid); 3806 if (p) { 3807 retval = security_task_getscheduler(p); 3808 if (!retval) 3809 retval = p->policy 3810 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3811 } 3812 rcu_read_unlock(); 3813 return retval; 3814 } 3815 3816 /** 3817 * sys_sched_getparam - get the RT priority of a thread 3818 * @pid: the pid in question. 3819 * @param: structure containing the RT priority. 3820 * 3821 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3822 * code. 3823 */ 3824 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3825 { 3826 struct sched_param lp = { .sched_priority = 0 }; 3827 struct task_struct *p; 3828 int retval; 3829 3830 if (!param || pid < 0) 3831 return -EINVAL; 3832 3833 rcu_read_lock(); 3834 p = find_process_by_pid(pid); 3835 retval = -ESRCH; 3836 if (!p) 3837 goto out_unlock; 3838 3839 retval = security_task_getscheduler(p); 3840 if (retval) 3841 goto out_unlock; 3842 3843 if (task_has_rt_policy(p)) 3844 lp.sched_priority = p->rt_priority; 3845 rcu_read_unlock(); 3846 3847 /* 3848 * This one might sleep, we cannot do it with a spinlock held ... 3849 */ 3850 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3851 3852 return retval; 3853 3854 out_unlock: 3855 rcu_read_unlock(); 3856 return retval; 3857 } 3858 3859 static int sched_read_attr(struct sched_attr __user *uattr, 3860 struct sched_attr *attr, 3861 unsigned int usize) 3862 { 3863 int ret; 3864 3865 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3866 return -EFAULT; 3867 3868 /* 3869 * If we're handed a smaller struct than we know of, 3870 * ensure all the unknown bits are 0 - i.e. old 3871 * user-space does not get uncomplete information. 3872 */ 3873 if (usize < sizeof(*attr)) { 3874 unsigned char *addr; 3875 unsigned char *end; 3876 3877 addr = (void *)attr + usize; 3878 end = (void *)attr + sizeof(*attr); 3879 3880 for (; addr < end; addr++) { 3881 if (*addr) 3882 return -EFBIG; 3883 } 3884 3885 attr->size = usize; 3886 } 3887 3888 ret = copy_to_user(uattr, attr, attr->size); 3889 if (ret) 3890 return -EFAULT; 3891 3892 return 0; 3893 } 3894 3895 /** 3896 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3897 * @pid: the pid in question. 3898 * @uattr: structure containing the extended parameters. 3899 * @size: sizeof(attr) for fwd/bwd comp. 3900 * @flags: for future extension. 3901 */ 3902 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3903 unsigned int, size, unsigned int, flags) 3904 { 3905 struct sched_attr attr = { 3906 .size = sizeof(struct sched_attr), 3907 }; 3908 struct task_struct *p; 3909 int retval; 3910 3911 if (!uattr || pid < 0 || size > PAGE_SIZE || 3912 size < SCHED_ATTR_SIZE_VER0 || flags) 3913 return -EINVAL; 3914 3915 rcu_read_lock(); 3916 p = find_process_by_pid(pid); 3917 retval = -ESRCH; 3918 if (!p) 3919 goto out_unlock; 3920 3921 retval = security_task_getscheduler(p); 3922 if (retval) 3923 goto out_unlock; 3924 3925 attr.sched_policy = p->policy; 3926 if (p->sched_reset_on_fork) 3927 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3928 if (task_has_dl_policy(p)) 3929 __getparam_dl(p, &attr); 3930 else if (task_has_rt_policy(p)) 3931 attr.sched_priority = p->rt_priority; 3932 else 3933 attr.sched_nice = task_nice(p); 3934 3935 rcu_read_unlock(); 3936 3937 retval = sched_read_attr(uattr, &attr, size); 3938 return retval; 3939 3940 out_unlock: 3941 rcu_read_unlock(); 3942 return retval; 3943 } 3944 3945 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3946 { 3947 cpumask_var_t cpus_allowed, new_mask; 3948 struct task_struct *p; 3949 int retval; 3950 3951 rcu_read_lock(); 3952 3953 p = find_process_by_pid(pid); 3954 if (!p) { 3955 rcu_read_unlock(); 3956 return -ESRCH; 3957 } 3958 3959 /* Prevent p going away */ 3960 get_task_struct(p); 3961 rcu_read_unlock(); 3962 3963 if (p->flags & PF_NO_SETAFFINITY) { 3964 retval = -EINVAL; 3965 goto out_put_task; 3966 } 3967 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3968 retval = -ENOMEM; 3969 goto out_put_task; 3970 } 3971 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3972 retval = -ENOMEM; 3973 goto out_free_cpus_allowed; 3974 } 3975 retval = -EPERM; 3976 if (!check_same_owner(p)) { 3977 rcu_read_lock(); 3978 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3979 rcu_read_unlock(); 3980 goto out_unlock; 3981 } 3982 rcu_read_unlock(); 3983 } 3984 3985 retval = security_task_setscheduler(p); 3986 if (retval) 3987 goto out_unlock; 3988 3989 3990 cpuset_cpus_allowed(p, cpus_allowed); 3991 cpumask_and(new_mask, in_mask, cpus_allowed); 3992 3993 /* 3994 * Since bandwidth control happens on root_domain basis, 3995 * if admission test is enabled, we only admit -deadline 3996 * tasks allowed to run on all the CPUs in the task's 3997 * root_domain. 3998 */ 3999 #ifdef CONFIG_SMP 4000 if (task_has_dl_policy(p)) { 4001 const struct cpumask *span = task_rq(p)->rd->span; 4002 4003 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 4004 retval = -EBUSY; 4005 goto out_unlock; 4006 } 4007 } 4008 #endif 4009 again: 4010 retval = set_cpus_allowed_ptr(p, new_mask); 4011 4012 if (!retval) { 4013 cpuset_cpus_allowed(p, cpus_allowed); 4014 if (!cpumask_subset(new_mask, cpus_allowed)) { 4015 /* 4016 * We must have raced with a concurrent cpuset 4017 * update. Just reset the cpus_allowed to the 4018 * cpuset's cpus_allowed 4019 */ 4020 cpumask_copy(new_mask, cpus_allowed); 4021 goto again; 4022 } 4023 } 4024 out_unlock: 4025 free_cpumask_var(new_mask); 4026 out_free_cpus_allowed: 4027 free_cpumask_var(cpus_allowed); 4028 out_put_task: 4029 put_task_struct(p); 4030 return retval; 4031 } 4032 4033 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4034 struct cpumask *new_mask) 4035 { 4036 if (len < cpumask_size()) 4037 cpumask_clear(new_mask); 4038 else if (len > cpumask_size()) 4039 len = cpumask_size(); 4040 4041 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4042 } 4043 4044 /** 4045 * sys_sched_setaffinity - set the cpu affinity of a process 4046 * @pid: pid of the process 4047 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4048 * @user_mask_ptr: user-space pointer to the new cpu mask 4049 * 4050 * Return: 0 on success. An error code otherwise. 4051 */ 4052 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4053 unsigned long __user *, user_mask_ptr) 4054 { 4055 cpumask_var_t new_mask; 4056 int retval; 4057 4058 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4059 return -ENOMEM; 4060 4061 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4062 if (retval == 0) 4063 retval = sched_setaffinity(pid, new_mask); 4064 free_cpumask_var(new_mask); 4065 return retval; 4066 } 4067 4068 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4069 { 4070 struct task_struct *p; 4071 unsigned long flags; 4072 int retval; 4073 4074 rcu_read_lock(); 4075 4076 retval = -ESRCH; 4077 p = find_process_by_pid(pid); 4078 if (!p) 4079 goto out_unlock; 4080 4081 retval = security_task_getscheduler(p); 4082 if (retval) 4083 goto out_unlock; 4084 4085 raw_spin_lock_irqsave(&p->pi_lock, flags); 4086 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4087 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4088 4089 out_unlock: 4090 rcu_read_unlock(); 4091 4092 return retval; 4093 } 4094 4095 /** 4096 * sys_sched_getaffinity - get the cpu affinity of a process 4097 * @pid: pid of the process 4098 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4099 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4100 * 4101 * Return: 0 on success. An error code otherwise. 4102 */ 4103 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4104 unsigned long __user *, user_mask_ptr) 4105 { 4106 int ret; 4107 cpumask_var_t mask; 4108 4109 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4110 return -EINVAL; 4111 if (len & (sizeof(unsigned long)-1)) 4112 return -EINVAL; 4113 4114 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4115 return -ENOMEM; 4116 4117 ret = sched_getaffinity(pid, mask); 4118 if (ret == 0) { 4119 size_t retlen = min_t(size_t, len, cpumask_size()); 4120 4121 if (copy_to_user(user_mask_ptr, mask, retlen)) 4122 ret = -EFAULT; 4123 else 4124 ret = retlen; 4125 } 4126 free_cpumask_var(mask); 4127 4128 return ret; 4129 } 4130 4131 /** 4132 * sys_sched_yield - yield the current processor to other threads. 4133 * 4134 * This function yields the current CPU to other tasks. If there are no 4135 * other threads running on this CPU then this function will return. 4136 * 4137 * Return: 0. 4138 */ 4139 SYSCALL_DEFINE0(sched_yield) 4140 { 4141 struct rq *rq = this_rq_lock(); 4142 4143 schedstat_inc(rq, yld_count); 4144 current->sched_class->yield_task(rq); 4145 4146 /* 4147 * Since we are going to call schedule() anyway, there's 4148 * no need to preempt or enable interrupts: 4149 */ 4150 __release(rq->lock); 4151 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4152 do_raw_spin_unlock(&rq->lock); 4153 sched_preempt_enable_no_resched(); 4154 4155 schedule(); 4156 4157 return 0; 4158 } 4159 4160 static void __cond_resched(void) 4161 { 4162 __preempt_count_add(PREEMPT_ACTIVE); 4163 __schedule(); 4164 __preempt_count_sub(PREEMPT_ACTIVE); 4165 } 4166 4167 int __sched _cond_resched(void) 4168 { 4169 if (should_resched()) { 4170 __cond_resched(); 4171 return 1; 4172 } 4173 return 0; 4174 } 4175 EXPORT_SYMBOL(_cond_resched); 4176 4177 /* 4178 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4179 * call schedule, and on return reacquire the lock. 4180 * 4181 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4182 * operations here to prevent schedule() from being called twice (once via 4183 * spin_unlock(), once by hand). 4184 */ 4185 int __cond_resched_lock(spinlock_t *lock) 4186 { 4187 int resched = should_resched(); 4188 int ret = 0; 4189 4190 lockdep_assert_held(lock); 4191 4192 if (spin_needbreak(lock) || resched) { 4193 spin_unlock(lock); 4194 if (resched) 4195 __cond_resched(); 4196 else 4197 cpu_relax(); 4198 ret = 1; 4199 spin_lock(lock); 4200 } 4201 return ret; 4202 } 4203 EXPORT_SYMBOL(__cond_resched_lock); 4204 4205 int __sched __cond_resched_softirq(void) 4206 { 4207 BUG_ON(!in_softirq()); 4208 4209 if (should_resched()) { 4210 local_bh_enable(); 4211 __cond_resched(); 4212 local_bh_disable(); 4213 return 1; 4214 } 4215 return 0; 4216 } 4217 EXPORT_SYMBOL(__cond_resched_softirq); 4218 4219 /** 4220 * yield - yield the current processor to other threads. 4221 * 4222 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4223 * 4224 * The scheduler is at all times free to pick the calling task as the most 4225 * eligible task to run, if removing the yield() call from your code breaks 4226 * it, its already broken. 4227 * 4228 * Typical broken usage is: 4229 * 4230 * while (!event) 4231 * yield(); 4232 * 4233 * where one assumes that yield() will let 'the other' process run that will 4234 * make event true. If the current task is a SCHED_FIFO task that will never 4235 * happen. Never use yield() as a progress guarantee!! 4236 * 4237 * If you want to use yield() to wait for something, use wait_event(). 4238 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4239 * If you still want to use yield(), do not! 4240 */ 4241 void __sched yield(void) 4242 { 4243 set_current_state(TASK_RUNNING); 4244 sys_sched_yield(); 4245 } 4246 EXPORT_SYMBOL(yield); 4247 4248 /** 4249 * yield_to - yield the current processor to another thread in 4250 * your thread group, or accelerate that thread toward the 4251 * processor it's on. 4252 * @p: target task 4253 * @preempt: whether task preemption is allowed or not 4254 * 4255 * It's the caller's job to ensure that the target task struct 4256 * can't go away on us before we can do any checks. 4257 * 4258 * Return: 4259 * true (>0) if we indeed boosted the target task. 4260 * false (0) if we failed to boost the target. 4261 * -ESRCH if there's no task to yield to. 4262 */ 4263 int __sched yield_to(struct task_struct *p, bool preempt) 4264 { 4265 struct task_struct *curr = current; 4266 struct rq *rq, *p_rq; 4267 unsigned long flags; 4268 int yielded = 0; 4269 4270 local_irq_save(flags); 4271 rq = this_rq(); 4272 4273 again: 4274 p_rq = task_rq(p); 4275 /* 4276 * If we're the only runnable task on the rq and target rq also 4277 * has only one task, there's absolutely no point in yielding. 4278 */ 4279 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4280 yielded = -ESRCH; 4281 goto out_irq; 4282 } 4283 4284 double_rq_lock(rq, p_rq); 4285 if (task_rq(p) != p_rq) { 4286 double_rq_unlock(rq, p_rq); 4287 goto again; 4288 } 4289 4290 if (!curr->sched_class->yield_to_task) 4291 goto out_unlock; 4292 4293 if (curr->sched_class != p->sched_class) 4294 goto out_unlock; 4295 4296 if (task_running(p_rq, p) || p->state) 4297 goto out_unlock; 4298 4299 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4300 if (yielded) { 4301 schedstat_inc(rq, yld_count); 4302 /* 4303 * Make p's CPU reschedule; pick_next_entity takes care of 4304 * fairness. 4305 */ 4306 if (preempt && rq != p_rq) 4307 resched_curr(p_rq); 4308 } 4309 4310 out_unlock: 4311 double_rq_unlock(rq, p_rq); 4312 out_irq: 4313 local_irq_restore(flags); 4314 4315 if (yielded > 0) 4316 schedule(); 4317 4318 return yielded; 4319 } 4320 EXPORT_SYMBOL_GPL(yield_to); 4321 4322 /* 4323 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4324 * that process accounting knows that this is a task in IO wait state. 4325 */ 4326 void __sched io_schedule(void) 4327 { 4328 struct rq *rq = raw_rq(); 4329 4330 delayacct_blkio_start(); 4331 atomic_inc(&rq->nr_iowait); 4332 blk_flush_plug(current); 4333 current->in_iowait = 1; 4334 schedule(); 4335 current->in_iowait = 0; 4336 atomic_dec(&rq->nr_iowait); 4337 delayacct_blkio_end(); 4338 } 4339 EXPORT_SYMBOL(io_schedule); 4340 4341 long __sched io_schedule_timeout(long timeout) 4342 { 4343 struct rq *rq = raw_rq(); 4344 long ret; 4345 4346 delayacct_blkio_start(); 4347 atomic_inc(&rq->nr_iowait); 4348 blk_flush_plug(current); 4349 current->in_iowait = 1; 4350 ret = schedule_timeout(timeout); 4351 current->in_iowait = 0; 4352 atomic_dec(&rq->nr_iowait); 4353 delayacct_blkio_end(); 4354 return ret; 4355 } 4356 4357 /** 4358 * sys_sched_get_priority_max - return maximum RT priority. 4359 * @policy: scheduling class. 4360 * 4361 * Return: On success, this syscall returns the maximum 4362 * rt_priority that can be used by a given scheduling class. 4363 * On failure, a negative error code is returned. 4364 */ 4365 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4366 { 4367 int ret = -EINVAL; 4368 4369 switch (policy) { 4370 case SCHED_FIFO: 4371 case SCHED_RR: 4372 ret = MAX_USER_RT_PRIO-1; 4373 break; 4374 case SCHED_DEADLINE: 4375 case SCHED_NORMAL: 4376 case SCHED_BATCH: 4377 case SCHED_IDLE: 4378 ret = 0; 4379 break; 4380 } 4381 return ret; 4382 } 4383 4384 /** 4385 * sys_sched_get_priority_min - return minimum RT priority. 4386 * @policy: scheduling class. 4387 * 4388 * Return: On success, this syscall returns the minimum 4389 * rt_priority that can be used by a given scheduling class. 4390 * On failure, a negative error code is returned. 4391 */ 4392 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4393 { 4394 int ret = -EINVAL; 4395 4396 switch (policy) { 4397 case SCHED_FIFO: 4398 case SCHED_RR: 4399 ret = 1; 4400 break; 4401 case SCHED_DEADLINE: 4402 case SCHED_NORMAL: 4403 case SCHED_BATCH: 4404 case SCHED_IDLE: 4405 ret = 0; 4406 } 4407 return ret; 4408 } 4409 4410 /** 4411 * sys_sched_rr_get_interval - return the default timeslice of a process. 4412 * @pid: pid of the process. 4413 * @interval: userspace pointer to the timeslice value. 4414 * 4415 * this syscall writes the default timeslice value of a given process 4416 * into the user-space timespec buffer. A value of '0' means infinity. 4417 * 4418 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4419 * an error code. 4420 */ 4421 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4422 struct timespec __user *, interval) 4423 { 4424 struct task_struct *p; 4425 unsigned int time_slice; 4426 unsigned long flags; 4427 struct rq *rq; 4428 int retval; 4429 struct timespec t; 4430 4431 if (pid < 0) 4432 return -EINVAL; 4433 4434 retval = -ESRCH; 4435 rcu_read_lock(); 4436 p = find_process_by_pid(pid); 4437 if (!p) 4438 goto out_unlock; 4439 4440 retval = security_task_getscheduler(p); 4441 if (retval) 4442 goto out_unlock; 4443 4444 rq = task_rq_lock(p, &flags); 4445 time_slice = 0; 4446 if (p->sched_class->get_rr_interval) 4447 time_slice = p->sched_class->get_rr_interval(rq, p); 4448 task_rq_unlock(rq, p, &flags); 4449 4450 rcu_read_unlock(); 4451 jiffies_to_timespec(time_slice, &t); 4452 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4453 return retval; 4454 4455 out_unlock: 4456 rcu_read_unlock(); 4457 return retval; 4458 } 4459 4460 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4461 4462 void sched_show_task(struct task_struct *p) 4463 { 4464 unsigned long free = 0; 4465 int ppid; 4466 unsigned state; 4467 4468 state = p->state ? __ffs(p->state) + 1 : 0; 4469 printk(KERN_INFO "%-15.15s %c", p->comm, 4470 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4471 #if BITS_PER_LONG == 32 4472 if (state == TASK_RUNNING) 4473 printk(KERN_CONT " running "); 4474 else 4475 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4476 #else 4477 if (state == TASK_RUNNING) 4478 printk(KERN_CONT " running task "); 4479 else 4480 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4481 #endif 4482 #ifdef CONFIG_DEBUG_STACK_USAGE 4483 free = stack_not_used(p); 4484 #endif 4485 rcu_read_lock(); 4486 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4487 rcu_read_unlock(); 4488 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4489 task_pid_nr(p), ppid, 4490 (unsigned long)task_thread_info(p)->flags); 4491 4492 print_worker_info(KERN_INFO, p); 4493 show_stack(p, NULL); 4494 } 4495 4496 void show_state_filter(unsigned long state_filter) 4497 { 4498 struct task_struct *g, *p; 4499 4500 #if BITS_PER_LONG == 32 4501 printk(KERN_INFO 4502 " task PC stack pid father\n"); 4503 #else 4504 printk(KERN_INFO 4505 " task PC stack pid father\n"); 4506 #endif 4507 rcu_read_lock(); 4508 do_each_thread(g, p) { 4509 /* 4510 * reset the NMI-timeout, listing all files on a slow 4511 * console might take a lot of time: 4512 */ 4513 touch_nmi_watchdog(); 4514 if (!state_filter || (p->state & state_filter)) 4515 sched_show_task(p); 4516 } while_each_thread(g, p); 4517 4518 touch_all_softlockup_watchdogs(); 4519 4520 #ifdef CONFIG_SCHED_DEBUG 4521 sysrq_sched_debug_show(); 4522 #endif 4523 rcu_read_unlock(); 4524 /* 4525 * Only show locks if all tasks are dumped: 4526 */ 4527 if (!state_filter) 4528 debug_show_all_locks(); 4529 } 4530 4531 void init_idle_bootup_task(struct task_struct *idle) 4532 { 4533 idle->sched_class = &idle_sched_class; 4534 } 4535 4536 /** 4537 * init_idle - set up an idle thread for a given CPU 4538 * @idle: task in question 4539 * @cpu: cpu the idle task belongs to 4540 * 4541 * NOTE: this function does not set the idle thread's NEED_RESCHED 4542 * flag, to make booting more robust. 4543 */ 4544 void init_idle(struct task_struct *idle, int cpu) 4545 { 4546 struct rq *rq = cpu_rq(cpu); 4547 unsigned long flags; 4548 4549 raw_spin_lock_irqsave(&rq->lock, flags); 4550 4551 __sched_fork(0, idle); 4552 idle->state = TASK_RUNNING; 4553 idle->se.exec_start = sched_clock(); 4554 4555 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4556 /* 4557 * We're having a chicken and egg problem, even though we are 4558 * holding rq->lock, the cpu isn't yet set to this cpu so the 4559 * lockdep check in task_group() will fail. 4560 * 4561 * Similar case to sched_fork(). / Alternatively we could 4562 * use task_rq_lock() here and obtain the other rq->lock. 4563 * 4564 * Silence PROVE_RCU 4565 */ 4566 rcu_read_lock(); 4567 __set_task_cpu(idle, cpu); 4568 rcu_read_unlock(); 4569 4570 rq->curr = rq->idle = idle; 4571 idle->on_rq = 1; 4572 #if defined(CONFIG_SMP) 4573 idle->on_cpu = 1; 4574 #endif 4575 raw_spin_unlock_irqrestore(&rq->lock, flags); 4576 4577 /* Set the preempt count _outside_ the spinlocks! */ 4578 init_idle_preempt_count(idle, cpu); 4579 4580 /* 4581 * The idle tasks have their own, simple scheduling class: 4582 */ 4583 idle->sched_class = &idle_sched_class; 4584 ftrace_graph_init_idle_task(idle, cpu); 4585 vtime_init_idle(idle, cpu); 4586 #if defined(CONFIG_SMP) 4587 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4588 #endif 4589 } 4590 4591 #ifdef CONFIG_SMP 4592 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4593 { 4594 if (p->sched_class && p->sched_class->set_cpus_allowed) 4595 p->sched_class->set_cpus_allowed(p, new_mask); 4596 4597 cpumask_copy(&p->cpus_allowed, new_mask); 4598 p->nr_cpus_allowed = cpumask_weight(new_mask); 4599 } 4600 4601 /* 4602 * This is how migration works: 4603 * 4604 * 1) we invoke migration_cpu_stop() on the target CPU using 4605 * stop_one_cpu(). 4606 * 2) stopper starts to run (implicitly forcing the migrated thread 4607 * off the CPU) 4608 * 3) it checks whether the migrated task is still in the wrong runqueue. 4609 * 4) if it's in the wrong runqueue then the migration thread removes 4610 * it and puts it into the right queue. 4611 * 5) stopper completes and stop_one_cpu() returns and the migration 4612 * is done. 4613 */ 4614 4615 /* 4616 * Change a given task's CPU affinity. Migrate the thread to a 4617 * proper CPU and schedule it away if the CPU it's executing on 4618 * is removed from the allowed bitmask. 4619 * 4620 * NOTE: the caller must have a valid reference to the task, the 4621 * task must not exit() & deallocate itself prematurely. The 4622 * call is not atomic; no spinlocks may be held. 4623 */ 4624 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4625 { 4626 unsigned long flags; 4627 struct rq *rq; 4628 unsigned int dest_cpu; 4629 int ret = 0; 4630 4631 rq = task_rq_lock(p, &flags); 4632 4633 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4634 goto out; 4635 4636 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4637 ret = -EINVAL; 4638 goto out; 4639 } 4640 4641 do_set_cpus_allowed(p, new_mask); 4642 4643 /* Can the task run on the task's current CPU? If so, we're done */ 4644 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4645 goto out; 4646 4647 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4648 if (p->on_rq) { 4649 struct migration_arg arg = { p, dest_cpu }; 4650 /* Need help from migration thread: drop lock and wait. */ 4651 task_rq_unlock(rq, p, &flags); 4652 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4653 tlb_migrate_finish(p->mm); 4654 return 0; 4655 } 4656 out: 4657 task_rq_unlock(rq, p, &flags); 4658 4659 return ret; 4660 } 4661 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4662 4663 /* 4664 * Move (not current) task off this cpu, onto dest cpu. We're doing 4665 * this because either it can't run here any more (set_cpus_allowed() 4666 * away from this CPU, or CPU going down), or because we're 4667 * attempting to rebalance this task on exec (sched_exec). 4668 * 4669 * So we race with normal scheduler movements, but that's OK, as long 4670 * as the task is no longer on this CPU. 4671 * 4672 * Returns non-zero if task was successfully migrated. 4673 */ 4674 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4675 { 4676 struct rq *rq_dest, *rq_src; 4677 int ret = 0; 4678 4679 if (unlikely(!cpu_active(dest_cpu))) 4680 return ret; 4681 4682 rq_src = cpu_rq(src_cpu); 4683 rq_dest = cpu_rq(dest_cpu); 4684 4685 raw_spin_lock(&p->pi_lock); 4686 double_rq_lock(rq_src, rq_dest); 4687 /* Already moved. */ 4688 if (task_cpu(p) != src_cpu) 4689 goto done; 4690 /* Affinity changed (again). */ 4691 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4692 goto fail; 4693 4694 /* 4695 * If we're not on a rq, the next wake-up will ensure we're 4696 * placed properly. 4697 */ 4698 if (p->on_rq) { 4699 dequeue_task(rq_src, p, 0); 4700 set_task_cpu(p, dest_cpu); 4701 enqueue_task(rq_dest, p, 0); 4702 check_preempt_curr(rq_dest, p, 0); 4703 } 4704 done: 4705 ret = 1; 4706 fail: 4707 double_rq_unlock(rq_src, rq_dest); 4708 raw_spin_unlock(&p->pi_lock); 4709 return ret; 4710 } 4711 4712 #ifdef CONFIG_NUMA_BALANCING 4713 /* Migrate current task p to target_cpu */ 4714 int migrate_task_to(struct task_struct *p, int target_cpu) 4715 { 4716 struct migration_arg arg = { p, target_cpu }; 4717 int curr_cpu = task_cpu(p); 4718 4719 if (curr_cpu == target_cpu) 4720 return 0; 4721 4722 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4723 return -EINVAL; 4724 4725 /* TODO: This is not properly updating schedstats */ 4726 4727 trace_sched_move_numa(p, curr_cpu, target_cpu); 4728 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4729 } 4730 4731 /* 4732 * Requeue a task on a given node and accurately track the number of NUMA 4733 * tasks on the runqueues 4734 */ 4735 void sched_setnuma(struct task_struct *p, int nid) 4736 { 4737 struct rq *rq; 4738 unsigned long flags; 4739 bool on_rq, running; 4740 4741 rq = task_rq_lock(p, &flags); 4742 on_rq = p->on_rq; 4743 running = task_current(rq, p); 4744 4745 if (on_rq) 4746 dequeue_task(rq, p, 0); 4747 if (running) 4748 p->sched_class->put_prev_task(rq, p); 4749 4750 p->numa_preferred_nid = nid; 4751 4752 if (running) 4753 p->sched_class->set_curr_task(rq); 4754 if (on_rq) 4755 enqueue_task(rq, p, 0); 4756 task_rq_unlock(rq, p, &flags); 4757 } 4758 #endif 4759 4760 /* 4761 * migration_cpu_stop - this will be executed by a highprio stopper thread 4762 * and performs thread migration by bumping thread off CPU then 4763 * 'pushing' onto another runqueue. 4764 */ 4765 static int migration_cpu_stop(void *data) 4766 { 4767 struct migration_arg *arg = data; 4768 4769 /* 4770 * The original target cpu might have gone down and we might 4771 * be on another cpu but it doesn't matter. 4772 */ 4773 local_irq_disable(); 4774 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4775 local_irq_enable(); 4776 return 0; 4777 } 4778 4779 #ifdef CONFIG_HOTPLUG_CPU 4780 4781 /* 4782 * Ensures that the idle task is using init_mm right before its cpu goes 4783 * offline. 4784 */ 4785 void idle_task_exit(void) 4786 { 4787 struct mm_struct *mm = current->active_mm; 4788 4789 BUG_ON(cpu_online(smp_processor_id())); 4790 4791 if (mm != &init_mm) { 4792 switch_mm(mm, &init_mm, current); 4793 finish_arch_post_lock_switch(); 4794 } 4795 mmdrop(mm); 4796 } 4797 4798 /* 4799 * Since this CPU is going 'away' for a while, fold any nr_active delta 4800 * we might have. Assumes we're called after migrate_tasks() so that the 4801 * nr_active count is stable. 4802 * 4803 * Also see the comment "Global load-average calculations". 4804 */ 4805 static void calc_load_migrate(struct rq *rq) 4806 { 4807 long delta = calc_load_fold_active(rq); 4808 if (delta) 4809 atomic_long_add(delta, &calc_load_tasks); 4810 } 4811 4812 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4813 { 4814 } 4815 4816 static const struct sched_class fake_sched_class = { 4817 .put_prev_task = put_prev_task_fake, 4818 }; 4819 4820 static struct task_struct fake_task = { 4821 /* 4822 * Avoid pull_{rt,dl}_task() 4823 */ 4824 .prio = MAX_PRIO + 1, 4825 .sched_class = &fake_sched_class, 4826 }; 4827 4828 /* 4829 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4830 * try_to_wake_up()->select_task_rq(). 4831 * 4832 * Called with rq->lock held even though we'er in stop_machine() and 4833 * there's no concurrency possible, we hold the required locks anyway 4834 * because of lock validation efforts. 4835 */ 4836 static void migrate_tasks(unsigned int dead_cpu) 4837 { 4838 struct rq *rq = cpu_rq(dead_cpu); 4839 struct task_struct *next, *stop = rq->stop; 4840 int dest_cpu; 4841 4842 /* 4843 * Fudge the rq selection such that the below task selection loop 4844 * doesn't get stuck on the currently eligible stop task. 4845 * 4846 * We're currently inside stop_machine() and the rq is either stuck 4847 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4848 * either way we should never end up calling schedule() until we're 4849 * done here. 4850 */ 4851 rq->stop = NULL; 4852 4853 /* 4854 * put_prev_task() and pick_next_task() sched 4855 * class method both need to have an up-to-date 4856 * value of rq->clock[_task] 4857 */ 4858 update_rq_clock(rq); 4859 4860 for ( ; ; ) { 4861 /* 4862 * There's this thread running, bail when that's the only 4863 * remaining thread. 4864 */ 4865 if (rq->nr_running == 1) 4866 break; 4867 4868 next = pick_next_task(rq, &fake_task); 4869 BUG_ON(!next); 4870 next->sched_class->put_prev_task(rq, next); 4871 4872 /* Find suitable destination for @next, with force if needed. */ 4873 dest_cpu = select_fallback_rq(dead_cpu, next); 4874 raw_spin_unlock(&rq->lock); 4875 4876 __migrate_task(next, dead_cpu, dest_cpu); 4877 4878 raw_spin_lock(&rq->lock); 4879 } 4880 4881 rq->stop = stop; 4882 } 4883 4884 #endif /* CONFIG_HOTPLUG_CPU */ 4885 4886 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4887 4888 static struct ctl_table sd_ctl_dir[] = { 4889 { 4890 .procname = "sched_domain", 4891 .mode = 0555, 4892 }, 4893 {} 4894 }; 4895 4896 static struct ctl_table sd_ctl_root[] = { 4897 { 4898 .procname = "kernel", 4899 .mode = 0555, 4900 .child = sd_ctl_dir, 4901 }, 4902 {} 4903 }; 4904 4905 static struct ctl_table *sd_alloc_ctl_entry(int n) 4906 { 4907 struct ctl_table *entry = 4908 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4909 4910 return entry; 4911 } 4912 4913 static void sd_free_ctl_entry(struct ctl_table **tablep) 4914 { 4915 struct ctl_table *entry; 4916 4917 /* 4918 * In the intermediate directories, both the child directory and 4919 * procname are dynamically allocated and could fail but the mode 4920 * will always be set. In the lowest directory the names are 4921 * static strings and all have proc handlers. 4922 */ 4923 for (entry = *tablep; entry->mode; entry++) { 4924 if (entry->child) 4925 sd_free_ctl_entry(&entry->child); 4926 if (entry->proc_handler == NULL) 4927 kfree(entry->procname); 4928 } 4929 4930 kfree(*tablep); 4931 *tablep = NULL; 4932 } 4933 4934 static int min_load_idx = 0; 4935 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4936 4937 static void 4938 set_table_entry(struct ctl_table *entry, 4939 const char *procname, void *data, int maxlen, 4940 umode_t mode, proc_handler *proc_handler, 4941 bool load_idx) 4942 { 4943 entry->procname = procname; 4944 entry->data = data; 4945 entry->maxlen = maxlen; 4946 entry->mode = mode; 4947 entry->proc_handler = proc_handler; 4948 4949 if (load_idx) { 4950 entry->extra1 = &min_load_idx; 4951 entry->extra2 = &max_load_idx; 4952 } 4953 } 4954 4955 static struct ctl_table * 4956 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4957 { 4958 struct ctl_table *table = sd_alloc_ctl_entry(14); 4959 4960 if (table == NULL) 4961 return NULL; 4962 4963 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4964 sizeof(long), 0644, proc_doulongvec_minmax, false); 4965 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4966 sizeof(long), 0644, proc_doulongvec_minmax, false); 4967 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4968 sizeof(int), 0644, proc_dointvec_minmax, true); 4969 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4970 sizeof(int), 0644, proc_dointvec_minmax, true); 4971 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4972 sizeof(int), 0644, proc_dointvec_minmax, true); 4973 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4974 sizeof(int), 0644, proc_dointvec_minmax, true); 4975 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4976 sizeof(int), 0644, proc_dointvec_minmax, true); 4977 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4978 sizeof(int), 0644, proc_dointvec_minmax, false); 4979 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4980 sizeof(int), 0644, proc_dointvec_minmax, false); 4981 set_table_entry(&table[9], "cache_nice_tries", 4982 &sd->cache_nice_tries, 4983 sizeof(int), 0644, proc_dointvec_minmax, false); 4984 set_table_entry(&table[10], "flags", &sd->flags, 4985 sizeof(int), 0644, proc_dointvec_minmax, false); 4986 set_table_entry(&table[11], "max_newidle_lb_cost", 4987 &sd->max_newidle_lb_cost, 4988 sizeof(long), 0644, proc_doulongvec_minmax, false); 4989 set_table_entry(&table[12], "name", sd->name, 4990 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4991 /* &table[13] is terminator */ 4992 4993 return table; 4994 } 4995 4996 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4997 { 4998 struct ctl_table *entry, *table; 4999 struct sched_domain *sd; 5000 int domain_num = 0, i; 5001 char buf[32]; 5002 5003 for_each_domain(cpu, sd) 5004 domain_num++; 5005 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5006 if (table == NULL) 5007 return NULL; 5008 5009 i = 0; 5010 for_each_domain(cpu, sd) { 5011 snprintf(buf, 32, "domain%d", i); 5012 entry->procname = kstrdup(buf, GFP_KERNEL); 5013 entry->mode = 0555; 5014 entry->child = sd_alloc_ctl_domain_table(sd); 5015 entry++; 5016 i++; 5017 } 5018 return table; 5019 } 5020 5021 static struct ctl_table_header *sd_sysctl_header; 5022 static void register_sched_domain_sysctl(void) 5023 { 5024 int i, cpu_num = num_possible_cpus(); 5025 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5026 char buf[32]; 5027 5028 WARN_ON(sd_ctl_dir[0].child); 5029 sd_ctl_dir[0].child = entry; 5030 5031 if (entry == NULL) 5032 return; 5033 5034 for_each_possible_cpu(i) { 5035 snprintf(buf, 32, "cpu%d", i); 5036 entry->procname = kstrdup(buf, GFP_KERNEL); 5037 entry->mode = 0555; 5038 entry->child = sd_alloc_ctl_cpu_table(i); 5039 entry++; 5040 } 5041 5042 WARN_ON(sd_sysctl_header); 5043 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5044 } 5045 5046 /* may be called multiple times per register */ 5047 static void unregister_sched_domain_sysctl(void) 5048 { 5049 if (sd_sysctl_header) 5050 unregister_sysctl_table(sd_sysctl_header); 5051 sd_sysctl_header = NULL; 5052 if (sd_ctl_dir[0].child) 5053 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5054 } 5055 #else 5056 static void register_sched_domain_sysctl(void) 5057 { 5058 } 5059 static void unregister_sched_domain_sysctl(void) 5060 { 5061 } 5062 #endif 5063 5064 static void set_rq_online(struct rq *rq) 5065 { 5066 if (!rq->online) { 5067 const struct sched_class *class; 5068 5069 cpumask_set_cpu(rq->cpu, rq->rd->online); 5070 rq->online = 1; 5071 5072 for_each_class(class) { 5073 if (class->rq_online) 5074 class->rq_online(rq); 5075 } 5076 } 5077 } 5078 5079 static void set_rq_offline(struct rq *rq) 5080 { 5081 if (rq->online) { 5082 const struct sched_class *class; 5083 5084 for_each_class(class) { 5085 if (class->rq_offline) 5086 class->rq_offline(rq); 5087 } 5088 5089 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5090 rq->online = 0; 5091 } 5092 } 5093 5094 /* 5095 * migration_call - callback that gets triggered when a CPU is added. 5096 * Here we can start up the necessary migration thread for the new CPU. 5097 */ 5098 static int 5099 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5100 { 5101 int cpu = (long)hcpu; 5102 unsigned long flags; 5103 struct rq *rq = cpu_rq(cpu); 5104 5105 switch (action & ~CPU_TASKS_FROZEN) { 5106 5107 case CPU_UP_PREPARE: 5108 rq->calc_load_update = calc_load_update; 5109 break; 5110 5111 case CPU_ONLINE: 5112 /* Update our root-domain */ 5113 raw_spin_lock_irqsave(&rq->lock, flags); 5114 if (rq->rd) { 5115 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5116 5117 set_rq_online(rq); 5118 } 5119 raw_spin_unlock_irqrestore(&rq->lock, flags); 5120 break; 5121 5122 #ifdef CONFIG_HOTPLUG_CPU 5123 case CPU_DYING: 5124 sched_ttwu_pending(); 5125 /* Update our root-domain */ 5126 raw_spin_lock_irqsave(&rq->lock, flags); 5127 if (rq->rd) { 5128 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5129 set_rq_offline(rq); 5130 } 5131 migrate_tasks(cpu); 5132 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5133 raw_spin_unlock_irqrestore(&rq->lock, flags); 5134 break; 5135 5136 case CPU_DEAD: 5137 calc_load_migrate(rq); 5138 break; 5139 #endif 5140 } 5141 5142 update_max_interval(); 5143 5144 return NOTIFY_OK; 5145 } 5146 5147 /* 5148 * Register at high priority so that task migration (migrate_all_tasks) 5149 * happens before everything else. This has to be lower priority than 5150 * the notifier in the perf_event subsystem, though. 5151 */ 5152 static struct notifier_block migration_notifier = { 5153 .notifier_call = migration_call, 5154 .priority = CPU_PRI_MIGRATION, 5155 }; 5156 5157 static void __cpuinit set_cpu_rq_start_time(void) 5158 { 5159 int cpu = smp_processor_id(); 5160 struct rq *rq = cpu_rq(cpu); 5161 rq->age_stamp = sched_clock_cpu(cpu); 5162 } 5163 5164 static int sched_cpu_active(struct notifier_block *nfb, 5165 unsigned long action, void *hcpu) 5166 { 5167 switch (action & ~CPU_TASKS_FROZEN) { 5168 case CPU_STARTING: 5169 set_cpu_rq_start_time(); 5170 return NOTIFY_OK; 5171 case CPU_DOWN_FAILED: 5172 set_cpu_active((long)hcpu, true); 5173 return NOTIFY_OK; 5174 default: 5175 return NOTIFY_DONE; 5176 } 5177 } 5178 5179 static int sched_cpu_inactive(struct notifier_block *nfb, 5180 unsigned long action, void *hcpu) 5181 { 5182 unsigned long flags; 5183 long cpu = (long)hcpu; 5184 5185 switch (action & ~CPU_TASKS_FROZEN) { 5186 case CPU_DOWN_PREPARE: 5187 set_cpu_active(cpu, false); 5188 5189 /* explicitly allow suspend */ 5190 if (!(action & CPU_TASKS_FROZEN)) { 5191 struct dl_bw *dl_b = dl_bw_of(cpu); 5192 bool overflow; 5193 int cpus; 5194 5195 raw_spin_lock_irqsave(&dl_b->lock, flags); 5196 cpus = dl_bw_cpus(cpu); 5197 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5198 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5199 5200 if (overflow) 5201 return notifier_from_errno(-EBUSY); 5202 } 5203 return NOTIFY_OK; 5204 } 5205 5206 return NOTIFY_DONE; 5207 } 5208 5209 static int __init migration_init(void) 5210 { 5211 void *cpu = (void *)(long)smp_processor_id(); 5212 int err; 5213 5214 /* Initialize migration for the boot CPU */ 5215 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5216 BUG_ON(err == NOTIFY_BAD); 5217 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5218 register_cpu_notifier(&migration_notifier); 5219 5220 /* Register cpu active notifiers */ 5221 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5222 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5223 5224 return 0; 5225 } 5226 early_initcall(migration_init); 5227 #endif 5228 5229 #ifdef CONFIG_SMP 5230 5231 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5232 5233 #ifdef CONFIG_SCHED_DEBUG 5234 5235 static __read_mostly int sched_debug_enabled; 5236 5237 static int __init sched_debug_setup(char *str) 5238 { 5239 sched_debug_enabled = 1; 5240 5241 return 0; 5242 } 5243 early_param("sched_debug", sched_debug_setup); 5244 5245 static inline bool sched_debug(void) 5246 { 5247 return sched_debug_enabled; 5248 } 5249 5250 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5251 struct cpumask *groupmask) 5252 { 5253 struct sched_group *group = sd->groups; 5254 char str[256]; 5255 5256 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5257 cpumask_clear(groupmask); 5258 5259 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5260 5261 if (!(sd->flags & SD_LOAD_BALANCE)) { 5262 printk("does not load-balance\n"); 5263 if (sd->parent) 5264 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5265 " has parent"); 5266 return -1; 5267 } 5268 5269 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5270 5271 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5272 printk(KERN_ERR "ERROR: domain->span does not contain " 5273 "CPU%d\n", cpu); 5274 } 5275 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5276 printk(KERN_ERR "ERROR: domain->groups does not contain" 5277 " CPU%d\n", cpu); 5278 } 5279 5280 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5281 do { 5282 if (!group) { 5283 printk("\n"); 5284 printk(KERN_ERR "ERROR: group is NULL\n"); 5285 break; 5286 } 5287 5288 /* 5289 * Even though we initialize ->capacity to something semi-sane, 5290 * we leave capacity_orig unset. This allows us to detect if 5291 * domain iteration is still funny without causing /0 traps. 5292 */ 5293 if (!group->sgc->capacity_orig) { 5294 printk(KERN_CONT "\n"); 5295 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5296 break; 5297 } 5298 5299 if (!cpumask_weight(sched_group_cpus(group))) { 5300 printk(KERN_CONT "\n"); 5301 printk(KERN_ERR "ERROR: empty group\n"); 5302 break; 5303 } 5304 5305 if (!(sd->flags & SD_OVERLAP) && 5306 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5307 printk(KERN_CONT "\n"); 5308 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5309 break; 5310 } 5311 5312 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5313 5314 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5315 5316 printk(KERN_CONT " %s", str); 5317 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5318 printk(KERN_CONT " (cpu_capacity = %d)", 5319 group->sgc->capacity); 5320 } 5321 5322 group = group->next; 5323 } while (group != sd->groups); 5324 printk(KERN_CONT "\n"); 5325 5326 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5327 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5328 5329 if (sd->parent && 5330 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5331 printk(KERN_ERR "ERROR: parent span is not a superset " 5332 "of domain->span\n"); 5333 return 0; 5334 } 5335 5336 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5337 { 5338 int level = 0; 5339 5340 if (!sched_debug_enabled) 5341 return; 5342 5343 if (!sd) { 5344 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5345 return; 5346 } 5347 5348 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5349 5350 for (;;) { 5351 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5352 break; 5353 level++; 5354 sd = sd->parent; 5355 if (!sd) 5356 break; 5357 } 5358 } 5359 #else /* !CONFIG_SCHED_DEBUG */ 5360 # define sched_domain_debug(sd, cpu) do { } while (0) 5361 static inline bool sched_debug(void) 5362 { 5363 return false; 5364 } 5365 #endif /* CONFIG_SCHED_DEBUG */ 5366 5367 static int sd_degenerate(struct sched_domain *sd) 5368 { 5369 if (cpumask_weight(sched_domain_span(sd)) == 1) 5370 return 1; 5371 5372 /* Following flags need at least 2 groups */ 5373 if (sd->flags & (SD_LOAD_BALANCE | 5374 SD_BALANCE_NEWIDLE | 5375 SD_BALANCE_FORK | 5376 SD_BALANCE_EXEC | 5377 SD_SHARE_CPUCAPACITY | 5378 SD_SHARE_PKG_RESOURCES | 5379 SD_SHARE_POWERDOMAIN)) { 5380 if (sd->groups != sd->groups->next) 5381 return 0; 5382 } 5383 5384 /* Following flags don't use groups */ 5385 if (sd->flags & (SD_WAKE_AFFINE)) 5386 return 0; 5387 5388 return 1; 5389 } 5390 5391 static int 5392 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5393 { 5394 unsigned long cflags = sd->flags, pflags = parent->flags; 5395 5396 if (sd_degenerate(parent)) 5397 return 1; 5398 5399 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5400 return 0; 5401 5402 /* Flags needing groups don't count if only 1 group in parent */ 5403 if (parent->groups == parent->groups->next) { 5404 pflags &= ~(SD_LOAD_BALANCE | 5405 SD_BALANCE_NEWIDLE | 5406 SD_BALANCE_FORK | 5407 SD_BALANCE_EXEC | 5408 SD_SHARE_CPUCAPACITY | 5409 SD_SHARE_PKG_RESOURCES | 5410 SD_PREFER_SIBLING | 5411 SD_SHARE_POWERDOMAIN); 5412 if (nr_node_ids == 1) 5413 pflags &= ~SD_SERIALIZE; 5414 } 5415 if (~cflags & pflags) 5416 return 0; 5417 5418 return 1; 5419 } 5420 5421 static void free_rootdomain(struct rcu_head *rcu) 5422 { 5423 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5424 5425 cpupri_cleanup(&rd->cpupri); 5426 cpudl_cleanup(&rd->cpudl); 5427 free_cpumask_var(rd->dlo_mask); 5428 free_cpumask_var(rd->rto_mask); 5429 free_cpumask_var(rd->online); 5430 free_cpumask_var(rd->span); 5431 kfree(rd); 5432 } 5433 5434 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5435 { 5436 struct root_domain *old_rd = NULL; 5437 unsigned long flags; 5438 5439 raw_spin_lock_irqsave(&rq->lock, flags); 5440 5441 if (rq->rd) { 5442 old_rd = rq->rd; 5443 5444 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5445 set_rq_offline(rq); 5446 5447 cpumask_clear_cpu(rq->cpu, old_rd->span); 5448 5449 /* 5450 * If we dont want to free the old_rd yet then 5451 * set old_rd to NULL to skip the freeing later 5452 * in this function: 5453 */ 5454 if (!atomic_dec_and_test(&old_rd->refcount)) 5455 old_rd = NULL; 5456 } 5457 5458 atomic_inc(&rd->refcount); 5459 rq->rd = rd; 5460 5461 cpumask_set_cpu(rq->cpu, rd->span); 5462 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5463 set_rq_online(rq); 5464 5465 raw_spin_unlock_irqrestore(&rq->lock, flags); 5466 5467 if (old_rd) 5468 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5469 } 5470 5471 static int init_rootdomain(struct root_domain *rd) 5472 { 5473 memset(rd, 0, sizeof(*rd)); 5474 5475 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5476 goto out; 5477 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5478 goto free_span; 5479 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5480 goto free_online; 5481 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5482 goto free_dlo_mask; 5483 5484 init_dl_bw(&rd->dl_bw); 5485 if (cpudl_init(&rd->cpudl) != 0) 5486 goto free_dlo_mask; 5487 5488 if (cpupri_init(&rd->cpupri) != 0) 5489 goto free_rto_mask; 5490 return 0; 5491 5492 free_rto_mask: 5493 free_cpumask_var(rd->rto_mask); 5494 free_dlo_mask: 5495 free_cpumask_var(rd->dlo_mask); 5496 free_online: 5497 free_cpumask_var(rd->online); 5498 free_span: 5499 free_cpumask_var(rd->span); 5500 out: 5501 return -ENOMEM; 5502 } 5503 5504 /* 5505 * By default the system creates a single root-domain with all cpus as 5506 * members (mimicking the global state we have today). 5507 */ 5508 struct root_domain def_root_domain; 5509 5510 static void init_defrootdomain(void) 5511 { 5512 init_rootdomain(&def_root_domain); 5513 5514 atomic_set(&def_root_domain.refcount, 1); 5515 } 5516 5517 static struct root_domain *alloc_rootdomain(void) 5518 { 5519 struct root_domain *rd; 5520 5521 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5522 if (!rd) 5523 return NULL; 5524 5525 if (init_rootdomain(rd) != 0) { 5526 kfree(rd); 5527 return NULL; 5528 } 5529 5530 return rd; 5531 } 5532 5533 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5534 { 5535 struct sched_group *tmp, *first; 5536 5537 if (!sg) 5538 return; 5539 5540 first = sg; 5541 do { 5542 tmp = sg->next; 5543 5544 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5545 kfree(sg->sgc); 5546 5547 kfree(sg); 5548 sg = tmp; 5549 } while (sg != first); 5550 } 5551 5552 static void free_sched_domain(struct rcu_head *rcu) 5553 { 5554 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5555 5556 /* 5557 * If its an overlapping domain it has private groups, iterate and 5558 * nuke them all. 5559 */ 5560 if (sd->flags & SD_OVERLAP) { 5561 free_sched_groups(sd->groups, 1); 5562 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5563 kfree(sd->groups->sgc); 5564 kfree(sd->groups); 5565 } 5566 kfree(sd); 5567 } 5568 5569 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5570 { 5571 call_rcu(&sd->rcu, free_sched_domain); 5572 } 5573 5574 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5575 { 5576 for (; sd; sd = sd->parent) 5577 destroy_sched_domain(sd, cpu); 5578 } 5579 5580 /* 5581 * Keep a special pointer to the highest sched_domain that has 5582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5583 * allows us to avoid some pointer chasing select_idle_sibling(). 5584 * 5585 * Also keep a unique ID per domain (we use the first cpu number in 5586 * the cpumask of the domain), this allows us to quickly tell if 5587 * two cpus are in the same cache domain, see cpus_share_cache(). 5588 */ 5589 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5590 DEFINE_PER_CPU(int, sd_llc_size); 5591 DEFINE_PER_CPU(int, sd_llc_id); 5592 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5593 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5594 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5595 5596 static void update_top_cache_domain(int cpu) 5597 { 5598 struct sched_domain *sd; 5599 struct sched_domain *busy_sd = NULL; 5600 int id = cpu; 5601 int size = 1; 5602 5603 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5604 if (sd) { 5605 id = cpumask_first(sched_domain_span(sd)); 5606 size = cpumask_weight(sched_domain_span(sd)); 5607 busy_sd = sd->parent; /* sd_busy */ 5608 } 5609 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5610 5611 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5612 per_cpu(sd_llc_size, cpu) = size; 5613 per_cpu(sd_llc_id, cpu) = id; 5614 5615 sd = lowest_flag_domain(cpu, SD_NUMA); 5616 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5617 5618 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5619 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5620 } 5621 5622 /* 5623 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5624 * hold the hotplug lock. 5625 */ 5626 static void 5627 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5628 { 5629 struct rq *rq = cpu_rq(cpu); 5630 struct sched_domain *tmp; 5631 5632 /* Remove the sched domains which do not contribute to scheduling. */ 5633 for (tmp = sd; tmp; ) { 5634 struct sched_domain *parent = tmp->parent; 5635 if (!parent) 5636 break; 5637 5638 if (sd_parent_degenerate(tmp, parent)) { 5639 tmp->parent = parent->parent; 5640 if (parent->parent) 5641 parent->parent->child = tmp; 5642 /* 5643 * Transfer SD_PREFER_SIBLING down in case of a 5644 * degenerate parent; the spans match for this 5645 * so the property transfers. 5646 */ 5647 if (parent->flags & SD_PREFER_SIBLING) 5648 tmp->flags |= SD_PREFER_SIBLING; 5649 destroy_sched_domain(parent, cpu); 5650 } else 5651 tmp = tmp->parent; 5652 } 5653 5654 if (sd && sd_degenerate(sd)) { 5655 tmp = sd; 5656 sd = sd->parent; 5657 destroy_sched_domain(tmp, cpu); 5658 if (sd) 5659 sd->child = NULL; 5660 } 5661 5662 sched_domain_debug(sd, cpu); 5663 5664 rq_attach_root(rq, rd); 5665 tmp = rq->sd; 5666 rcu_assign_pointer(rq->sd, sd); 5667 destroy_sched_domains(tmp, cpu); 5668 5669 update_top_cache_domain(cpu); 5670 } 5671 5672 /* cpus with isolated domains */ 5673 static cpumask_var_t cpu_isolated_map; 5674 5675 /* Setup the mask of cpus configured for isolated domains */ 5676 static int __init isolated_cpu_setup(char *str) 5677 { 5678 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5679 cpulist_parse(str, cpu_isolated_map); 5680 return 1; 5681 } 5682 5683 __setup("isolcpus=", isolated_cpu_setup); 5684 5685 struct s_data { 5686 struct sched_domain ** __percpu sd; 5687 struct root_domain *rd; 5688 }; 5689 5690 enum s_alloc { 5691 sa_rootdomain, 5692 sa_sd, 5693 sa_sd_storage, 5694 sa_none, 5695 }; 5696 5697 /* 5698 * Build an iteration mask that can exclude certain CPUs from the upwards 5699 * domain traversal. 5700 * 5701 * Asymmetric node setups can result in situations where the domain tree is of 5702 * unequal depth, make sure to skip domains that already cover the entire 5703 * range. 5704 * 5705 * In that case build_sched_domains() will have terminated the iteration early 5706 * and our sibling sd spans will be empty. Domains should always include the 5707 * cpu they're built on, so check that. 5708 * 5709 */ 5710 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5711 { 5712 const struct cpumask *span = sched_domain_span(sd); 5713 struct sd_data *sdd = sd->private; 5714 struct sched_domain *sibling; 5715 int i; 5716 5717 for_each_cpu(i, span) { 5718 sibling = *per_cpu_ptr(sdd->sd, i); 5719 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5720 continue; 5721 5722 cpumask_set_cpu(i, sched_group_mask(sg)); 5723 } 5724 } 5725 5726 /* 5727 * Return the canonical balance cpu for this group, this is the first cpu 5728 * of this group that's also in the iteration mask. 5729 */ 5730 int group_balance_cpu(struct sched_group *sg) 5731 { 5732 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5733 } 5734 5735 static int 5736 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5737 { 5738 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5739 const struct cpumask *span = sched_domain_span(sd); 5740 struct cpumask *covered = sched_domains_tmpmask; 5741 struct sd_data *sdd = sd->private; 5742 struct sched_domain *child; 5743 int i; 5744 5745 cpumask_clear(covered); 5746 5747 for_each_cpu(i, span) { 5748 struct cpumask *sg_span; 5749 5750 if (cpumask_test_cpu(i, covered)) 5751 continue; 5752 5753 child = *per_cpu_ptr(sdd->sd, i); 5754 5755 /* See the comment near build_group_mask(). */ 5756 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5757 continue; 5758 5759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5760 GFP_KERNEL, cpu_to_node(cpu)); 5761 5762 if (!sg) 5763 goto fail; 5764 5765 sg_span = sched_group_cpus(sg); 5766 if (child->child) { 5767 child = child->child; 5768 cpumask_copy(sg_span, sched_domain_span(child)); 5769 } else 5770 cpumask_set_cpu(i, sg_span); 5771 5772 cpumask_or(covered, covered, sg_span); 5773 5774 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5775 if (atomic_inc_return(&sg->sgc->ref) == 1) 5776 build_group_mask(sd, sg); 5777 5778 /* 5779 * Initialize sgc->capacity such that even if we mess up the 5780 * domains and no possible iteration will get us here, we won't 5781 * die on a /0 trap. 5782 */ 5783 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5784 sg->sgc->capacity_orig = sg->sgc->capacity; 5785 5786 /* 5787 * Make sure the first group of this domain contains the 5788 * canonical balance cpu. Otherwise the sched_domain iteration 5789 * breaks. See update_sg_lb_stats(). 5790 */ 5791 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5792 group_balance_cpu(sg) == cpu) 5793 groups = sg; 5794 5795 if (!first) 5796 first = sg; 5797 if (last) 5798 last->next = sg; 5799 last = sg; 5800 last->next = first; 5801 } 5802 sd->groups = groups; 5803 5804 return 0; 5805 5806 fail: 5807 free_sched_groups(first, 0); 5808 5809 return -ENOMEM; 5810 } 5811 5812 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5813 { 5814 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5815 struct sched_domain *child = sd->child; 5816 5817 if (child) 5818 cpu = cpumask_first(sched_domain_span(child)); 5819 5820 if (sg) { 5821 *sg = *per_cpu_ptr(sdd->sg, cpu); 5822 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5823 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5824 } 5825 5826 return cpu; 5827 } 5828 5829 /* 5830 * build_sched_groups will build a circular linked list of the groups 5831 * covered by the given span, and will set each group's ->cpumask correctly, 5832 * and ->cpu_capacity to 0. 5833 * 5834 * Assumes the sched_domain tree is fully constructed 5835 */ 5836 static int 5837 build_sched_groups(struct sched_domain *sd, int cpu) 5838 { 5839 struct sched_group *first = NULL, *last = NULL; 5840 struct sd_data *sdd = sd->private; 5841 const struct cpumask *span = sched_domain_span(sd); 5842 struct cpumask *covered; 5843 int i; 5844 5845 get_group(cpu, sdd, &sd->groups); 5846 atomic_inc(&sd->groups->ref); 5847 5848 if (cpu != cpumask_first(span)) 5849 return 0; 5850 5851 lockdep_assert_held(&sched_domains_mutex); 5852 covered = sched_domains_tmpmask; 5853 5854 cpumask_clear(covered); 5855 5856 for_each_cpu(i, span) { 5857 struct sched_group *sg; 5858 int group, j; 5859 5860 if (cpumask_test_cpu(i, covered)) 5861 continue; 5862 5863 group = get_group(i, sdd, &sg); 5864 cpumask_setall(sched_group_mask(sg)); 5865 5866 for_each_cpu(j, span) { 5867 if (get_group(j, sdd, NULL) != group) 5868 continue; 5869 5870 cpumask_set_cpu(j, covered); 5871 cpumask_set_cpu(j, sched_group_cpus(sg)); 5872 } 5873 5874 if (!first) 5875 first = sg; 5876 if (last) 5877 last->next = sg; 5878 last = sg; 5879 } 5880 last->next = first; 5881 5882 return 0; 5883 } 5884 5885 /* 5886 * Initialize sched groups cpu_capacity. 5887 * 5888 * cpu_capacity indicates the capacity of sched group, which is used while 5889 * distributing the load between different sched groups in a sched domain. 5890 * Typically cpu_capacity for all the groups in a sched domain will be same 5891 * unless there are asymmetries in the topology. If there are asymmetries, 5892 * group having more cpu_capacity will pickup more load compared to the 5893 * group having less cpu_capacity. 5894 */ 5895 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 5896 { 5897 struct sched_group *sg = sd->groups; 5898 5899 WARN_ON(!sg); 5900 5901 do { 5902 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5903 sg = sg->next; 5904 } while (sg != sd->groups); 5905 5906 if (cpu != group_balance_cpu(sg)) 5907 return; 5908 5909 update_group_capacity(sd, cpu); 5910 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 5911 } 5912 5913 /* 5914 * Initializers for schedule domains 5915 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5916 */ 5917 5918 static int default_relax_domain_level = -1; 5919 int sched_domain_level_max; 5920 5921 static int __init setup_relax_domain_level(char *str) 5922 { 5923 if (kstrtoint(str, 0, &default_relax_domain_level)) 5924 pr_warn("Unable to set relax_domain_level\n"); 5925 5926 return 1; 5927 } 5928 __setup("relax_domain_level=", setup_relax_domain_level); 5929 5930 static void set_domain_attribute(struct sched_domain *sd, 5931 struct sched_domain_attr *attr) 5932 { 5933 int request; 5934 5935 if (!attr || attr->relax_domain_level < 0) { 5936 if (default_relax_domain_level < 0) 5937 return; 5938 else 5939 request = default_relax_domain_level; 5940 } else 5941 request = attr->relax_domain_level; 5942 if (request < sd->level) { 5943 /* turn off idle balance on this domain */ 5944 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5945 } else { 5946 /* turn on idle balance on this domain */ 5947 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5948 } 5949 } 5950 5951 static void __sdt_free(const struct cpumask *cpu_map); 5952 static int __sdt_alloc(const struct cpumask *cpu_map); 5953 5954 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5955 const struct cpumask *cpu_map) 5956 { 5957 switch (what) { 5958 case sa_rootdomain: 5959 if (!atomic_read(&d->rd->refcount)) 5960 free_rootdomain(&d->rd->rcu); /* fall through */ 5961 case sa_sd: 5962 free_percpu(d->sd); /* fall through */ 5963 case sa_sd_storage: 5964 __sdt_free(cpu_map); /* fall through */ 5965 case sa_none: 5966 break; 5967 } 5968 } 5969 5970 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5971 const struct cpumask *cpu_map) 5972 { 5973 memset(d, 0, sizeof(*d)); 5974 5975 if (__sdt_alloc(cpu_map)) 5976 return sa_sd_storage; 5977 d->sd = alloc_percpu(struct sched_domain *); 5978 if (!d->sd) 5979 return sa_sd_storage; 5980 d->rd = alloc_rootdomain(); 5981 if (!d->rd) 5982 return sa_sd; 5983 return sa_rootdomain; 5984 } 5985 5986 /* 5987 * NULL the sd_data elements we've used to build the sched_domain and 5988 * sched_group structure so that the subsequent __free_domain_allocs() 5989 * will not free the data we're using. 5990 */ 5991 static void claim_allocations(int cpu, struct sched_domain *sd) 5992 { 5993 struct sd_data *sdd = sd->private; 5994 5995 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5996 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5997 5998 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5999 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6000 6001 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6002 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6003 } 6004 6005 #ifdef CONFIG_NUMA 6006 static int sched_domains_numa_levels; 6007 static int *sched_domains_numa_distance; 6008 static struct cpumask ***sched_domains_numa_masks; 6009 static int sched_domains_curr_level; 6010 #endif 6011 6012 /* 6013 * SD_flags allowed in topology descriptions. 6014 * 6015 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6016 * SD_SHARE_PKG_RESOURCES - describes shared caches 6017 * SD_NUMA - describes NUMA topologies 6018 * SD_SHARE_POWERDOMAIN - describes shared power domain 6019 * 6020 * Odd one out: 6021 * SD_ASYM_PACKING - describes SMT quirks 6022 */ 6023 #define TOPOLOGY_SD_FLAGS \ 6024 (SD_SHARE_CPUCAPACITY | \ 6025 SD_SHARE_PKG_RESOURCES | \ 6026 SD_NUMA | \ 6027 SD_ASYM_PACKING | \ 6028 SD_SHARE_POWERDOMAIN) 6029 6030 static struct sched_domain * 6031 sd_init(struct sched_domain_topology_level *tl, int cpu) 6032 { 6033 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6034 int sd_weight, sd_flags = 0; 6035 6036 #ifdef CONFIG_NUMA 6037 /* 6038 * Ugly hack to pass state to sd_numa_mask()... 6039 */ 6040 sched_domains_curr_level = tl->numa_level; 6041 #endif 6042 6043 sd_weight = cpumask_weight(tl->mask(cpu)); 6044 6045 if (tl->sd_flags) 6046 sd_flags = (*tl->sd_flags)(); 6047 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6048 "wrong sd_flags in topology description\n")) 6049 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6050 6051 *sd = (struct sched_domain){ 6052 .min_interval = sd_weight, 6053 .max_interval = 2*sd_weight, 6054 .busy_factor = 32, 6055 .imbalance_pct = 125, 6056 6057 .cache_nice_tries = 0, 6058 .busy_idx = 0, 6059 .idle_idx = 0, 6060 .newidle_idx = 0, 6061 .wake_idx = 0, 6062 .forkexec_idx = 0, 6063 6064 .flags = 1*SD_LOAD_BALANCE 6065 | 1*SD_BALANCE_NEWIDLE 6066 | 1*SD_BALANCE_EXEC 6067 | 1*SD_BALANCE_FORK 6068 | 0*SD_BALANCE_WAKE 6069 | 1*SD_WAKE_AFFINE 6070 | 0*SD_SHARE_CPUCAPACITY 6071 | 0*SD_SHARE_PKG_RESOURCES 6072 | 0*SD_SERIALIZE 6073 | 0*SD_PREFER_SIBLING 6074 | 0*SD_NUMA 6075 | sd_flags 6076 , 6077 6078 .last_balance = jiffies, 6079 .balance_interval = sd_weight, 6080 .smt_gain = 0, 6081 .max_newidle_lb_cost = 0, 6082 .next_decay_max_lb_cost = jiffies, 6083 #ifdef CONFIG_SCHED_DEBUG 6084 .name = tl->name, 6085 #endif 6086 }; 6087 6088 /* 6089 * Convert topological properties into behaviour. 6090 */ 6091 6092 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6093 sd->imbalance_pct = 110; 6094 sd->smt_gain = 1178; /* ~15% */ 6095 6096 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6097 sd->imbalance_pct = 117; 6098 sd->cache_nice_tries = 1; 6099 sd->busy_idx = 2; 6100 6101 #ifdef CONFIG_NUMA 6102 } else if (sd->flags & SD_NUMA) { 6103 sd->cache_nice_tries = 2; 6104 sd->busy_idx = 3; 6105 sd->idle_idx = 2; 6106 6107 sd->flags |= SD_SERIALIZE; 6108 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6109 sd->flags &= ~(SD_BALANCE_EXEC | 6110 SD_BALANCE_FORK | 6111 SD_WAKE_AFFINE); 6112 } 6113 6114 #endif 6115 } else { 6116 sd->flags |= SD_PREFER_SIBLING; 6117 sd->cache_nice_tries = 1; 6118 sd->busy_idx = 2; 6119 sd->idle_idx = 1; 6120 } 6121 6122 sd->private = &tl->data; 6123 6124 return sd; 6125 } 6126 6127 /* 6128 * Topology list, bottom-up. 6129 */ 6130 static struct sched_domain_topology_level default_topology[] = { 6131 #ifdef CONFIG_SCHED_SMT 6132 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6133 #endif 6134 #ifdef CONFIG_SCHED_MC 6135 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6136 #endif 6137 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6138 { NULL, }, 6139 }; 6140 6141 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6142 6143 #define for_each_sd_topology(tl) \ 6144 for (tl = sched_domain_topology; tl->mask; tl++) 6145 6146 void set_sched_topology(struct sched_domain_topology_level *tl) 6147 { 6148 sched_domain_topology = tl; 6149 } 6150 6151 #ifdef CONFIG_NUMA 6152 6153 static const struct cpumask *sd_numa_mask(int cpu) 6154 { 6155 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6156 } 6157 6158 static void sched_numa_warn(const char *str) 6159 { 6160 static int done = false; 6161 int i,j; 6162 6163 if (done) 6164 return; 6165 6166 done = true; 6167 6168 printk(KERN_WARNING "ERROR: %s\n\n", str); 6169 6170 for (i = 0; i < nr_node_ids; i++) { 6171 printk(KERN_WARNING " "); 6172 for (j = 0; j < nr_node_ids; j++) 6173 printk(KERN_CONT "%02d ", node_distance(i,j)); 6174 printk(KERN_CONT "\n"); 6175 } 6176 printk(KERN_WARNING "\n"); 6177 } 6178 6179 static bool find_numa_distance(int distance) 6180 { 6181 int i; 6182 6183 if (distance == node_distance(0, 0)) 6184 return true; 6185 6186 for (i = 0; i < sched_domains_numa_levels; i++) { 6187 if (sched_domains_numa_distance[i] == distance) 6188 return true; 6189 } 6190 6191 return false; 6192 } 6193 6194 static void sched_init_numa(void) 6195 { 6196 int next_distance, curr_distance = node_distance(0, 0); 6197 struct sched_domain_topology_level *tl; 6198 int level = 0; 6199 int i, j, k; 6200 6201 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6202 if (!sched_domains_numa_distance) 6203 return; 6204 6205 /* 6206 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6207 * unique distances in the node_distance() table. 6208 * 6209 * Assumes node_distance(0,j) includes all distances in 6210 * node_distance(i,j) in order to avoid cubic time. 6211 */ 6212 next_distance = curr_distance; 6213 for (i = 0; i < nr_node_ids; i++) { 6214 for (j = 0; j < nr_node_ids; j++) { 6215 for (k = 0; k < nr_node_ids; k++) { 6216 int distance = node_distance(i, k); 6217 6218 if (distance > curr_distance && 6219 (distance < next_distance || 6220 next_distance == curr_distance)) 6221 next_distance = distance; 6222 6223 /* 6224 * While not a strong assumption it would be nice to know 6225 * about cases where if node A is connected to B, B is not 6226 * equally connected to A. 6227 */ 6228 if (sched_debug() && node_distance(k, i) != distance) 6229 sched_numa_warn("Node-distance not symmetric"); 6230 6231 if (sched_debug() && i && !find_numa_distance(distance)) 6232 sched_numa_warn("Node-0 not representative"); 6233 } 6234 if (next_distance != curr_distance) { 6235 sched_domains_numa_distance[level++] = next_distance; 6236 sched_domains_numa_levels = level; 6237 curr_distance = next_distance; 6238 } else break; 6239 } 6240 6241 /* 6242 * In case of sched_debug() we verify the above assumption. 6243 */ 6244 if (!sched_debug()) 6245 break; 6246 } 6247 /* 6248 * 'level' contains the number of unique distances, excluding the 6249 * identity distance node_distance(i,i). 6250 * 6251 * The sched_domains_numa_distance[] array includes the actual distance 6252 * numbers. 6253 */ 6254 6255 /* 6256 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6257 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6258 * the array will contain less then 'level' members. This could be 6259 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6260 * in other functions. 6261 * 6262 * We reset it to 'level' at the end of this function. 6263 */ 6264 sched_domains_numa_levels = 0; 6265 6266 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6267 if (!sched_domains_numa_masks) 6268 return; 6269 6270 /* 6271 * Now for each level, construct a mask per node which contains all 6272 * cpus of nodes that are that many hops away from us. 6273 */ 6274 for (i = 0; i < level; i++) { 6275 sched_domains_numa_masks[i] = 6276 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6277 if (!sched_domains_numa_masks[i]) 6278 return; 6279 6280 for (j = 0; j < nr_node_ids; j++) { 6281 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6282 if (!mask) 6283 return; 6284 6285 sched_domains_numa_masks[i][j] = mask; 6286 6287 for (k = 0; k < nr_node_ids; k++) { 6288 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6289 continue; 6290 6291 cpumask_or(mask, mask, cpumask_of_node(k)); 6292 } 6293 } 6294 } 6295 6296 /* Compute default topology size */ 6297 for (i = 0; sched_domain_topology[i].mask; i++); 6298 6299 tl = kzalloc((i + level + 1) * 6300 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6301 if (!tl) 6302 return; 6303 6304 /* 6305 * Copy the default topology bits.. 6306 */ 6307 for (i = 0; sched_domain_topology[i].mask; i++) 6308 tl[i] = sched_domain_topology[i]; 6309 6310 /* 6311 * .. and append 'j' levels of NUMA goodness. 6312 */ 6313 for (j = 0; j < level; i++, j++) { 6314 tl[i] = (struct sched_domain_topology_level){ 6315 .mask = sd_numa_mask, 6316 .sd_flags = cpu_numa_flags, 6317 .flags = SDTL_OVERLAP, 6318 .numa_level = j, 6319 SD_INIT_NAME(NUMA) 6320 }; 6321 } 6322 6323 sched_domain_topology = tl; 6324 6325 sched_domains_numa_levels = level; 6326 } 6327 6328 static void sched_domains_numa_masks_set(int cpu) 6329 { 6330 int i, j; 6331 int node = cpu_to_node(cpu); 6332 6333 for (i = 0; i < sched_domains_numa_levels; i++) { 6334 for (j = 0; j < nr_node_ids; j++) { 6335 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6336 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6337 } 6338 } 6339 } 6340 6341 static void sched_domains_numa_masks_clear(int cpu) 6342 { 6343 int i, j; 6344 for (i = 0; i < sched_domains_numa_levels; i++) { 6345 for (j = 0; j < nr_node_ids; j++) 6346 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6347 } 6348 } 6349 6350 /* 6351 * Update sched_domains_numa_masks[level][node] array when new cpus 6352 * are onlined. 6353 */ 6354 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6355 unsigned long action, 6356 void *hcpu) 6357 { 6358 int cpu = (long)hcpu; 6359 6360 switch (action & ~CPU_TASKS_FROZEN) { 6361 case CPU_ONLINE: 6362 sched_domains_numa_masks_set(cpu); 6363 break; 6364 6365 case CPU_DEAD: 6366 sched_domains_numa_masks_clear(cpu); 6367 break; 6368 6369 default: 6370 return NOTIFY_DONE; 6371 } 6372 6373 return NOTIFY_OK; 6374 } 6375 #else 6376 static inline void sched_init_numa(void) 6377 { 6378 } 6379 6380 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6381 unsigned long action, 6382 void *hcpu) 6383 { 6384 return 0; 6385 } 6386 #endif /* CONFIG_NUMA */ 6387 6388 static int __sdt_alloc(const struct cpumask *cpu_map) 6389 { 6390 struct sched_domain_topology_level *tl; 6391 int j; 6392 6393 for_each_sd_topology(tl) { 6394 struct sd_data *sdd = &tl->data; 6395 6396 sdd->sd = alloc_percpu(struct sched_domain *); 6397 if (!sdd->sd) 6398 return -ENOMEM; 6399 6400 sdd->sg = alloc_percpu(struct sched_group *); 6401 if (!sdd->sg) 6402 return -ENOMEM; 6403 6404 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6405 if (!sdd->sgc) 6406 return -ENOMEM; 6407 6408 for_each_cpu(j, cpu_map) { 6409 struct sched_domain *sd; 6410 struct sched_group *sg; 6411 struct sched_group_capacity *sgc; 6412 6413 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6414 GFP_KERNEL, cpu_to_node(j)); 6415 if (!sd) 6416 return -ENOMEM; 6417 6418 *per_cpu_ptr(sdd->sd, j) = sd; 6419 6420 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6421 GFP_KERNEL, cpu_to_node(j)); 6422 if (!sg) 6423 return -ENOMEM; 6424 6425 sg->next = sg; 6426 6427 *per_cpu_ptr(sdd->sg, j) = sg; 6428 6429 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6430 GFP_KERNEL, cpu_to_node(j)); 6431 if (!sgc) 6432 return -ENOMEM; 6433 6434 *per_cpu_ptr(sdd->sgc, j) = sgc; 6435 } 6436 } 6437 6438 return 0; 6439 } 6440 6441 static void __sdt_free(const struct cpumask *cpu_map) 6442 { 6443 struct sched_domain_topology_level *tl; 6444 int j; 6445 6446 for_each_sd_topology(tl) { 6447 struct sd_data *sdd = &tl->data; 6448 6449 for_each_cpu(j, cpu_map) { 6450 struct sched_domain *sd; 6451 6452 if (sdd->sd) { 6453 sd = *per_cpu_ptr(sdd->sd, j); 6454 if (sd && (sd->flags & SD_OVERLAP)) 6455 free_sched_groups(sd->groups, 0); 6456 kfree(*per_cpu_ptr(sdd->sd, j)); 6457 } 6458 6459 if (sdd->sg) 6460 kfree(*per_cpu_ptr(sdd->sg, j)); 6461 if (sdd->sgc) 6462 kfree(*per_cpu_ptr(sdd->sgc, j)); 6463 } 6464 free_percpu(sdd->sd); 6465 sdd->sd = NULL; 6466 free_percpu(sdd->sg); 6467 sdd->sg = NULL; 6468 free_percpu(sdd->sgc); 6469 sdd->sgc = NULL; 6470 } 6471 } 6472 6473 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6474 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6475 struct sched_domain *child, int cpu) 6476 { 6477 struct sched_domain *sd = sd_init(tl, cpu); 6478 if (!sd) 6479 return child; 6480 6481 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6482 if (child) { 6483 sd->level = child->level + 1; 6484 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6485 child->parent = sd; 6486 sd->child = child; 6487 6488 if (!cpumask_subset(sched_domain_span(child), 6489 sched_domain_span(sd))) { 6490 pr_err("BUG: arch topology borken\n"); 6491 #ifdef CONFIG_SCHED_DEBUG 6492 pr_err(" the %s domain not a subset of the %s domain\n", 6493 child->name, sd->name); 6494 #endif 6495 /* Fixup, ensure @sd has at least @child cpus. */ 6496 cpumask_or(sched_domain_span(sd), 6497 sched_domain_span(sd), 6498 sched_domain_span(child)); 6499 } 6500 6501 } 6502 set_domain_attribute(sd, attr); 6503 6504 return sd; 6505 } 6506 6507 /* 6508 * Build sched domains for a given set of cpus and attach the sched domains 6509 * to the individual cpus 6510 */ 6511 static int build_sched_domains(const struct cpumask *cpu_map, 6512 struct sched_domain_attr *attr) 6513 { 6514 enum s_alloc alloc_state; 6515 struct sched_domain *sd; 6516 struct s_data d; 6517 int i, ret = -ENOMEM; 6518 6519 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6520 if (alloc_state != sa_rootdomain) 6521 goto error; 6522 6523 /* Set up domains for cpus specified by the cpu_map. */ 6524 for_each_cpu(i, cpu_map) { 6525 struct sched_domain_topology_level *tl; 6526 6527 sd = NULL; 6528 for_each_sd_topology(tl) { 6529 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6530 if (tl == sched_domain_topology) 6531 *per_cpu_ptr(d.sd, i) = sd; 6532 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6533 sd->flags |= SD_OVERLAP; 6534 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6535 break; 6536 } 6537 } 6538 6539 /* Build the groups for the domains */ 6540 for_each_cpu(i, cpu_map) { 6541 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6542 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6543 if (sd->flags & SD_OVERLAP) { 6544 if (build_overlap_sched_groups(sd, i)) 6545 goto error; 6546 } else { 6547 if (build_sched_groups(sd, i)) 6548 goto error; 6549 } 6550 } 6551 } 6552 6553 /* Calculate CPU capacity for physical packages and nodes */ 6554 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6555 if (!cpumask_test_cpu(i, cpu_map)) 6556 continue; 6557 6558 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6559 claim_allocations(i, sd); 6560 init_sched_groups_capacity(i, sd); 6561 } 6562 } 6563 6564 /* Attach the domains */ 6565 rcu_read_lock(); 6566 for_each_cpu(i, cpu_map) { 6567 sd = *per_cpu_ptr(d.sd, i); 6568 cpu_attach_domain(sd, d.rd, i); 6569 } 6570 rcu_read_unlock(); 6571 6572 ret = 0; 6573 error: 6574 __free_domain_allocs(&d, alloc_state, cpu_map); 6575 return ret; 6576 } 6577 6578 static cpumask_var_t *doms_cur; /* current sched domains */ 6579 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6580 static struct sched_domain_attr *dattr_cur; 6581 /* attribues of custom domains in 'doms_cur' */ 6582 6583 /* 6584 * Special case: If a kmalloc of a doms_cur partition (array of 6585 * cpumask) fails, then fallback to a single sched domain, 6586 * as determined by the single cpumask fallback_doms. 6587 */ 6588 static cpumask_var_t fallback_doms; 6589 6590 /* 6591 * arch_update_cpu_topology lets virtualized architectures update the 6592 * cpu core maps. It is supposed to return 1 if the topology changed 6593 * or 0 if it stayed the same. 6594 */ 6595 int __weak arch_update_cpu_topology(void) 6596 { 6597 return 0; 6598 } 6599 6600 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6601 { 6602 int i; 6603 cpumask_var_t *doms; 6604 6605 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6606 if (!doms) 6607 return NULL; 6608 for (i = 0; i < ndoms; i++) { 6609 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6610 free_sched_domains(doms, i); 6611 return NULL; 6612 } 6613 } 6614 return doms; 6615 } 6616 6617 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6618 { 6619 unsigned int i; 6620 for (i = 0; i < ndoms; i++) 6621 free_cpumask_var(doms[i]); 6622 kfree(doms); 6623 } 6624 6625 /* 6626 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6627 * For now this just excludes isolated cpus, but could be used to 6628 * exclude other special cases in the future. 6629 */ 6630 static int init_sched_domains(const struct cpumask *cpu_map) 6631 { 6632 int err; 6633 6634 arch_update_cpu_topology(); 6635 ndoms_cur = 1; 6636 doms_cur = alloc_sched_domains(ndoms_cur); 6637 if (!doms_cur) 6638 doms_cur = &fallback_doms; 6639 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6640 err = build_sched_domains(doms_cur[0], NULL); 6641 register_sched_domain_sysctl(); 6642 6643 return err; 6644 } 6645 6646 /* 6647 * Detach sched domains from a group of cpus specified in cpu_map 6648 * These cpus will now be attached to the NULL domain 6649 */ 6650 static void detach_destroy_domains(const struct cpumask *cpu_map) 6651 { 6652 int i; 6653 6654 rcu_read_lock(); 6655 for_each_cpu(i, cpu_map) 6656 cpu_attach_domain(NULL, &def_root_domain, i); 6657 rcu_read_unlock(); 6658 } 6659 6660 /* handle null as "default" */ 6661 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6662 struct sched_domain_attr *new, int idx_new) 6663 { 6664 struct sched_domain_attr tmp; 6665 6666 /* fast path */ 6667 if (!new && !cur) 6668 return 1; 6669 6670 tmp = SD_ATTR_INIT; 6671 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6672 new ? (new + idx_new) : &tmp, 6673 sizeof(struct sched_domain_attr)); 6674 } 6675 6676 /* 6677 * Partition sched domains as specified by the 'ndoms_new' 6678 * cpumasks in the array doms_new[] of cpumasks. This compares 6679 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6680 * It destroys each deleted domain and builds each new domain. 6681 * 6682 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6683 * The masks don't intersect (don't overlap.) We should setup one 6684 * sched domain for each mask. CPUs not in any of the cpumasks will 6685 * not be load balanced. If the same cpumask appears both in the 6686 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6687 * it as it is. 6688 * 6689 * The passed in 'doms_new' should be allocated using 6690 * alloc_sched_domains. This routine takes ownership of it and will 6691 * free_sched_domains it when done with it. If the caller failed the 6692 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6693 * and partition_sched_domains() will fallback to the single partition 6694 * 'fallback_doms', it also forces the domains to be rebuilt. 6695 * 6696 * If doms_new == NULL it will be replaced with cpu_online_mask. 6697 * ndoms_new == 0 is a special case for destroying existing domains, 6698 * and it will not create the default domain. 6699 * 6700 * Call with hotplug lock held 6701 */ 6702 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6703 struct sched_domain_attr *dattr_new) 6704 { 6705 int i, j, n; 6706 int new_topology; 6707 6708 mutex_lock(&sched_domains_mutex); 6709 6710 /* always unregister in case we don't destroy any domains */ 6711 unregister_sched_domain_sysctl(); 6712 6713 /* Let architecture update cpu core mappings. */ 6714 new_topology = arch_update_cpu_topology(); 6715 6716 n = doms_new ? ndoms_new : 0; 6717 6718 /* Destroy deleted domains */ 6719 for (i = 0; i < ndoms_cur; i++) { 6720 for (j = 0; j < n && !new_topology; j++) { 6721 if (cpumask_equal(doms_cur[i], doms_new[j]) 6722 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6723 goto match1; 6724 } 6725 /* no match - a current sched domain not in new doms_new[] */ 6726 detach_destroy_domains(doms_cur[i]); 6727 match1: 6728 ; 6729 } 6730 6731 n = ndoms_cur; 6732 if (doms_new == NULL) { 6733 n = 0; 6734 doms_new = &fallback_doms; 6735 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6736 WARN_ON_ONCE(dattr_new); 6737 } 6738 6739 /* Build new domains */ 6740 for (i = 0; i < ndoms_new; i++) { 6741 for (j = 0; j < n && !new_topology; j++) { 6742 if (cpumask_equal(doms_new[i], doms_cur[j]) 6743 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6744 goto match2; 6745 } 6746 /* no match - add a new doms_new */ 6747 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6748 match2: 6749 ; 6750 } 6751 6752 /* Remember the new sched domains */ 6753 if (doms_cur != &fallback_doms) 6754 free_sched_domains(doms_cur, ndoms_cur); 6755 kfree(dattr_cur); /* kfree(NULL) is safe */ 6756 doms_cur = doms_new; 6757 dattr_cur = dattr_new; 6758 ndoms_cur = ndoms_new; 6759 6760 register_sched_domain_sysctl(); 6761 6762 mutex_unlock(&sched_domains_mutex); 6763 } 6764 6765 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6766 6767 /* 6768 * Update cpusets according to cpu_active mask. If cpusets are 6769 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6770 * around partition_sched_domains(). 6771 * 6772 * If we come here as part of a suspend/resume, don't touch cpusets because we 6773 * want to restore it back to its original state upon resume anyway. 6774 */ 6775 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6776 void *hcpu) 6777 { 6778 switch (action) { 6779 case CPU_ONLINE_FROZEN: 6780 case CPU_DOWN_FAILED_FROZEN: 6781 6782 /* 6783 * num_cpus_frozen tracks how many CPUs are involved in suspend 6784 * resume sequence. As long as this is not the last online 6785 * operation in the resume sequence, just build a single sched 6786 * domain, ignoring cpusets. 6787 */ 6788 num_cpus_frozen--; 6789 if (likely(num_cpus_frozen)) { 6790 partition_sched_domains(1, NULL, NULL); 6791 break; 6792 } 6793 6794 /* 6795 * This is the last CPU online operation. So fall through and 6796 * restore the original sched domains by considering the 6797 * cpuset configurations. 6798 */ 6799 6800 case CPU_ONLINE: 6801 case CPU_DOWN_FAILED: 6802 cpuset_update_active_cpus(true); 6803 break; 6804 default: 6805 return NOTIFY_DONE; 6806 } 6807 return NOTIFY_OK; 6808 } 6809 6810 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6811 void *hcpu) 6812 { 6813 switch (action) { 6814 case CPU_DOWN_PREPARE: 6815 cpuset_update_active_cpus(false); 6816 break; 6817 case CPU_DOWN_PREPARE_FROZEN: 6818 num_cpus_frozen++; 6819 partition_sched_domains(1, NULL, NULL); 6820 break; 6821 default: 6822 return NOTIFY_DONE; 6823 } 6824 return NOTIFY_OK; 6825 } 6826 6827 void __init sched_init_smp(void) 6828 { 6829 cpumask_var_t non_isolated_cpus; 6830 6831 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6832 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6833 6834 sched_init_numa(); 6835 6836 /* 6837 * There's no userspace yet to cause hotplug operations; hence all the 6838 * cpu masks are stable and all blatant races in the below code cannot 6839 * happen. 6840 */ 6841 mutex_lock(&sched_domains_mutex); 6842 init_sched_domains(cpu_active_mask); 6843 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6844 if (cpumask_empty(non_isolated_cpus)) 6845 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6846 mutex_unlock(&sched_domains_mutex); 6847 6848 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6849 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6850 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6851 6852 init_hrtick(); 6853 6854 /* Move init over to a non-isolated CPU */ 6855 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6856 BUG(); 6857 sched_init_granularity(); 6858 free_cpumask_var(non_isolated_cpus); 6859 6860 init_sched_rt_class(); 6861 init_sched_dl_class(); 6862 } 6863 #else 6864 void __init sched_init_smp(void) 6865 { 6866 sched_init_granularity(); 6867 } 6868 #endif /* CONFIG_SMP */ 6869 6870 const_debug unsigned int sysctl_timer_migration = 1; 6871 6872 int in_sched_functions(unsigned long addr) 6873 { 6874 return in_lock_functions(addr) || 6875 (addr >= (unsigned long)__sched_text_start 6876 && addr < (unsigned long)__sched_text_end); 6877 } 6878 6879 #ifdef CONFIG_CGROUP_SCHED 6880 /* 6881 * Default task group. 6882 * Every task in system belongs to this group at bootup. 6883 */ 6884 struct task_group root_task_group; 6885 LIST_HEAD(task_groups); 6886 #endif 6887 6888 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6889 6890 void __init sched_init(void) 6891 { 6892 int i, j; 6893 unsigned long alloc_size = 0, ptr; 6894 6895 #ifdef CONFIG_FAIR_GROUP_SCHED 6896 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6897 #endif 6898 #ifdef CONFIG_RT_GROUP_SCHED 6899 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6900 #endif 6901 #ifdef CONFIG_CPUMASK_OFFSTACK 6902 alloc_size += num_possible_cpus() * cpumask_size(); 6903 #endif 6904 if (alloc_size) { 6905 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6906 6907 #ifdef CONFIG_FAIR_GROUP_SCHED 6908 root_task_group.se = (struct sched_entity **)ptr; 6909 ptr += nr_cpu_ids * sizeof(void **); 6910 6911 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6912 ptr += nr_cpu_ids * sizeof(void **); 6913 6914 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6915 #ifdef CONFIG_RT_GROUP_SCHED 6916 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6917 ptr += nr_cpu_ids * sizeof(void **); 6918 6919 root_task_group.rt_rq = (struct rt_rq **)ptr; 6920 ptr += nr_cpu_ids * sizeof(void **); 6921 6922 #endif /* CONFIG_RT_GROUP_SCHED */ 6923 #ifdef CONFIG_CPUMASK_OFFSTACK 6924 for_each_possible_cpu(i) { 6925 per_cpu(load_balance_mask, i) = (void *)ptr; 6926 ptr += cpumask_size(); 6927 } 6928 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6929 } 6930 6931 init_rt_bandwidth(&def_rt_bandwidth, 6932 global_rt_period(), global_rt_runtime()); 6933 init_dl_bandwidth(&def_dl_bandwidth, 6934 global_rt_period(), global_rt_runtime()); 6935 6936 #ifdef CONFIG_SMP 6937 init_defrootdomain(); 6938 #endif 6939 6940 #ifdef CONFIG_RT_GROUP_SCHED 6941 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6942 global_rt_period(), global_rt_runtime()); 6943 #endif /* CONFIG_RT_GROUP_SCHED */ 6944 6945 #ifdef CONFIG_CGROUP_SCHED 6946 list_add(&root_task_group.list, &task_groups); 6947 INIT_LIST_HEAD(&root_task_group.children); 6948 INIT_LIST_HEAD(&root_task_group.siblings); 6949 autogroup_init(&init_task); 6950 6951 #endif /* CONFIG_CGROUP_SCHED */ 6952 6953 for_each_possible_cpu(i) { 6954 struct rq *rq; 6955 6956 rq = cpu_rq(i); 6957 raw_spin_lock_init(&rq->lock); 6958 rq->nr_running = 0; 6959 rq->calc_load_active = 0; 6960 rq->calc_load_update = jiffies + LOAD_FREQ; 6961 init_cfs_rq(&rq->cfs); 6962 init_rt_rq(&rq->rt, rq); 6963 init_dl_rq(&rq->dl, rq); 6964 #ifdef CONFIG_FAIR_GROUP_SCHED 6965 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6966 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6967 /* 6968 * How much cpu bandwidth does root_task_group get? 6969 * 6970 * In case of task-groups formed thr' the cgroup filesystem, it 6971 * gets 100% of the cpu resources in the system. This overall 6972 * system cpu resource is divided among the tasks of 6973 * root_task_group and its child task-groups in a fair manner, 6974 * based on each entity's (task or task-group's) weight 6975 * (se->load.weight). 6976 * 6977 * In other words, if root_task_group has 10 tasks of weight 6978 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6979 * then A0's share of the cpu resource is: 6980 * 6981 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6982 * 6983 * We achieve this by letting root_task_group's tasks sit 6984 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6985 */ 6986 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6987 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6988 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6989 6990 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6991 #ifdef CONFIG_RT_GROUP_SCHED 6992 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6993 #endif 6994 6995 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6996 rq->cpu_load[j] = 0; 6997 6998 rq->last_load_update_tick = jiffies; 6999 7000 #ifdef CONFIG_SMP 7001 rq->sd = NULL; 7002 rq->rd = NULL; 7003 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7004 rq->post_schedule = 0; 7005 rq->active_balance = 0; 7006 rq->next_balance = jiffies; 7007 rq->push_cpu = 0; 7008 rq->cpu = i; 7009 rq->online = 0; 7010 rq->idle_stamp = 0; 7011 rq->avg_idle = 2*sysctl_sched_migration_cost; 7012 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7013 7014 INIT_LIST_HEAD(&rq->cfs_tasks); 7015 7016 rq_attach_root(rq, &def_root_domain); 7017 #ifdef CONFIG_NO_HZ_COMMON 7018 rq->nohz_flags = 0; 7019 #endif 7020 #ifdef CONFIG_NO_HZ_FULL 7021 rq->last_sched_tick = 0; 7022 #endif 7023 #endif 7024 init_rq_hrtick(rq); 7025 atomic_set(&rq->nr_iowait, 0); 7026 } 7027 7028 set_load_weight(&init_task); 7029 7030 #ifdef CONFIG_PREEMPT_NOTIFIERS 7031 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7032 #endif 7033 7034 /* 7035 * The boot idle thread does lazy MMU switching as well: 7036 */ 7037 atomic_inc(&init_mm.mm_count); 7038 enter_lazy_tlb(&init_mm, current); 7039 7040 /* 7041 * Make us the idle thread. Technically, schedule() should not be 7042 * called from this thread, however somewhere below it might be, 7043 * but because we are the idle thread, we just pick up running again 7044 * when this runqueue becomes "idle". 7045 */ 7046 init_idle(current, smp_processor_id()); 7047 7048 calc_load_update = jiffies + LOAD_FREQ; 7049 7050 /* 7051 * During early bootup we pretend to be a normal task: 7052 */ 7053 current->sched_class = &fair_sched_class; 7054 7055 #ifdef CONFIG_SMP 7056 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7057 /* May be allocated at isolcpus cmdline parse time */ 7058 if (cpu_isolated_map == NULL) 7059 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7060 idle_thread_set_boot_cpu(); 7061 set_cpu_rq_start_time(); 7062 #endif 7063 init_sched_fair_class(); 7064 7065 scheduler_running = 1; 7066 } 7067 7068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7069 static inline int preempt_count_equals(int preempt_offset) 7070 { 7071 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7072 7073 return (nested == preempt_offset); 7074 } 7075 7076 void __might_sleep(const char *file, int line, int preempt_offset) 7077 { 7078 static unsigned long prev_jiffy; /* ratelimiting */ 7079 7080 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7081 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7082 !is_idle_task(current)) || 7083 system_state != SYSTEM_RUNNING || oops_in_progress) 7084 return; 7085 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7086 return; 7087 prev_jiffy = jiffies; 7088 7089 printk(KERN_ERR 7090 "BUG: sleeping function called from invalid context at %s:%d\n", 7091 file, line); 7092 printk(KERN_ERR 7093 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7094 in_atomic(), irqs_disabled(), 7095 current->pid, current->comm); 7096 7097 debug_show_held_locks(current); 7098 if (irqs_disabled()) 7099 print_irqtrace_events(current); 7100 #ifdef CONFIG_DEBUG_PREEMPT 7101 if (!preempt_count_equals(preempt_offset)) { 7102 pr_err("Preemption disabled at:"); 7103 print_ip_sym(current->preempt_disable_ip); 7104 pr_cont("\n"); 7105 } 7106 #endif 7107 dump_stack(); 7108 } 7109 EXPORT_SYMBOL(__might_sleep); 7110 #endif 7111 7112 #ifdef CONFIG_MAGIC_SYSRQ 7113 static void normalize_task(struct rq *rq, struct task_struct *p) 7114 { 7115 const struct sched_class *prev_class = p->sched_class; 7116 struct sched_attr attr = { 7117 .sched_policy = SCHED_NORMAL, 7118 }; 7119 int old_prio = p->prio; 7120 int on_rq; 7121 7122 on_rq = p->on_rq; 7123 if (on_rq) 7124 dequeue_task(rq, p, 0); 7125 __setscheduler(rq, p, &attr); 7126 if (on_rq) { 7127 enqueue_task(rq, p, 0); 7128 resched_curr(rq); 7129 } 7130 7131 check_class_changed(rq, p, prev_class, old_prio); 7132 } 7133 7134 void normalize_rt_tasks(void) 7135 { 7136 struct task_struct *g, *p; 7137 unsigned long flags; 7138 struct rq *rq; 7139 7140 read_lock_irqsave(&tasklist_lock, flags); 7141 do_each_thread(g, p) { 7142 /* 7143 * Only normalize user tasks: 7144 */ 7145 if (!p->mm) 7146 continue; 7147 7148 p->se.exec_start = 0; 7149 #ifdef CONFIG_SCHEDSTATS 7150 p->se.statistics.wait_start = 0; 7151 p->se.statistics.sleep_start = 0; 7152 p->se.statistics.block_start = 0; 7153 #endif 7154 7155 if (!dl_task(p) && !rt_task(p)) { 7156 /* 7157 * Renice negative nice level userspace 7158 * tasks back to 0: 7159 */ 7160 if (task_nice(p) < 0 && p->mm) 7161 set_user_nice(p, 0); 7162 continue; 7163 } 7164 7165 raw_spin_lock(&p->pi_lock); 7166 rq = __task_rq_lock(p); 7167 7168 normalize_task(rq, p); 7169 7170 __task_rq_unlock(rq); 7171 raw_spin_unlock(&p->pi_lock); 7172 } while_each_thread(g, p); 7173 7174 read_unlock_irqrestore(&tasklist_lock, flags); 7175 } 7176 7177 #endif /* CONFIG_MAGIC_SYSRQ */ 7178 7179 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7180 /* 7181 * These functions are only useful for the IA64 MCA handling, or kdb. 7182 * 7183 * They can only be called when the whole system has been 7184 * stopped - every CPU needs to be quiescent, and no scheduling 7185 * activity can take place. Using them for anything else would 7186 * be a serious bug, and as a result, they aren't even visible 7187 * under any other configuration. 7188 */ 7189 7190 /** 7191 * curr_task - return the current task for a given cpu. 7192 * @cpu: the processor in question. 7193 * 7194 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7195 * 7196 * Return: The current task for @cpu. 7197 */ 7198 struct task_struct *curr_task(int cpu) 7199 { 7200 return cpu_curr(cpu); 7201 } 7202 7203 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7204 7205 #ifdef CONFIG_IA64 7206 /** 7207 * set_curr_task - set the current task for a given cpu. 7208 * @cpu: the processor in question. 7209 * @p: the task pointer to set. 7210 * 7211 * Description: This function must only be used when non-maskable interrupts 7212 * are serviced on a separate stack. It allows the architecture to switch the 7213 * notion of the current task on a cpu in a non-blocking manner. This function 7214 * must be called with all CPU's synchronized, and interrupts disabled, the 7215 * and caller must save the original value of the current task (see 7216 * curr_task() above) and restore that value before reenabling interrupts and 7217 * re-starting the system. 7218 * 7219 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7220 */ 7221 void set_curr_task(int cpu, struct task_struct *p) 7222 { 7223 cpu_curr(cpu) = p; 7224 } 7225 7226 #endif 7227 7228 #ifdef CONFIG_CGROUP_SCHED 7229 /* task_group_lock serializes the addition/removal of task groups */ 7230 static DEFINE_SPINLOCK(task_group_lock); 7231 7232 static void free_sched_group(struct task_group *tg) 7233 { 7234 free_fair_sched_group(tg); 7235 free_rt_sched_group(tg); 7236 autogroup_free(tg); 7237 kfree(tg); 7238 } 7239 7240 /* allocate runqueue etc for a new task group */ 7241 struct task_group *sched_create_group(struct task_group *parent) 7242 { 7243 struct task_group *tg; 7244 7245 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7246 if (!tg) 7247 return ERR_PTR(-ENOMEM); 7248 7249 if (!alloc_fair_sched_group(tg, parent)) 7250 goto err; 7251 7252 if (!alloc_rt_sched_group(tg, parent)) 7253 goto err; 7254 7255 return tg; 7256 7257 err: 7258 free_sched_group(tg); 7259 return ERR_PTR(-ENOMEM); 7260 } 7261 7262 void sched_online_group(struct task_group *tg, struct task_group *parent) 7263 { 7264 unsigned long flags; 7265 7266 spin_lock_irqsave(&task_group_lock, flags); 7267 list_add_rcu(&tg->list, &task_groups); 7268 7269 WARN_ON(!parent); /* root should already exist */ 7270 7271 tg->parent = parent; 7272 INIT_LIST_HEAD(&tg->children); 7273 list_add_rcu(&tg->siblings, &parent->children); 7274 spin_unlock_irqrestore(&task_group_lock, flags); 7275 } 7276 7277 /* rcu callback to free various structures associated with a task group */ 7278 static void free_sched_group_rcu(struct rcu_head *rhp) 7279 { 7280 /* now it should be safe to free those cfs_rqs */ 7281 free_sched_group(container_of(rhp, struct task_group, rcu)); 7282 } 7283 7284 /* Destroy runqueue etc associated with a task group */ 7285 void sched_destroy_group(struct task_group *tg) 7286 { 7287 /* wait for possible concurrent references to cfs_rqs complete */ 7288 call_rcu(&tg->rcu, free_sched_group_rcu); 7289 } 7290 7291 void sched_offline_group(struct task_group *tg) 7292 { 7293 unsigned long flags; 7294 int i; 7295 7296 /* end participation in shares distribution */ 7297 for_each_possible_cpu(i) 7298 unregister_fair_sched_group(tg, i); 7299 7300 spin_lock_irqsave(&task_group_lock, flags); 7301 list_del_rcu(&tg->list); 7302 list_del_rcu(&tg->siblings); 7303 spin_unlock_irqrestore(&task_group_lock, flags); 7304 } 7305 7306 /* change task's runqueue when it moves between groups. 7307 * The caller of this function should have put the task in its new group 7308 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7309 * reflect its new group. 7310 */ 7311 void sched_move_task(struct task_struct *tsk) 7312 { 7313 struct task_group *tg; 7314 int on_rq, running; 7315 unsigned long flags; 7316 struct rq *rq; 7317 7318 rq = task_rq_lock(tsk, &flags); 7319 7320 running = task_current(rq, tsk); 7321 on_rq = tsk->on_rq; 7322 7323 if (on_rq) 7324 dequeue_task(rq, tsk, 0); 7325 if (unlikely(running)) 7326 tsk->sched_class->put_prev_task(rq, tsk); 7327 7328 tg = container_of(task_css_check(tsk, cpu_cgrp_id, 7329 lockdep_is_held(&tsk->sighand->siglock)), 7330 struct task_group, css); 7331 tg = autogroup_task_group(tsk, tg); 7332 tsk->sched_task_group = tg; 7333 7334 #ifdef CONFIG_FAIR_GROUP_SCHED 7335 if (tsk->sched_class->task_move_group) 7336 tsk->sched_class->task_move_group(tsk, on_rq); 7337 else 7338 #endif 7339 set_task_rq(tsk, task_cpu(tsk)); 7340 7341 if (unlikely(running)) 7342 tsk->sched_class->set_curr_task(rq); 7343 if (on_rq) 7344 enqueue_task(rq, tsk, 0); 7345 7346 task_rq_unlock(rq, tsk, &flags); 7347 } 7348 #endif /* CONFIG_CGROUP_SCHED */ 7349 7350 #ifdef CONFIG_RT_GROUP_SCHED 7351 /* 7352 * Ensure that the real time constraints are schedulable. 7353 */ 7354 static DEFINE_MUTEX(rt_constraints_mutex); 7355 7356 /* Must be called with tasklist_lock held */ 7357 static inline int tg_has_rt_tasks(struct task_group *tg) 7358 { 7359 struct task_struct *g, *p; 7360 7361 do_each_thread(g, p) { 7362 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7363 return 1; 7364 } while_each_thread(g, p); 7365 7366 return 0; 7367 } 7368 7369 struct rt_schedulable_data { 7370 struct task_group *tg; 7371 u64 rt_period; 7372 u64 rt_runtime; 7373 }; 7374 7375 static int tg_rt_schedulable(struct task_group *tg, void *data) 7376 { 7377 struct rt_schedulable_data *d = data; 7378 struct task_group *child; 7379 unsigned long total, sum = 0; 7380 u64 period, runtime; 7381 7382 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7383 runtime = tg->rt_bandwidth.rt_runtime; 7384 7385 if (tg == d->tg) { 7386 period = d->rt_period; 7387 runtime = d->rt_runtime; 7388 } 7389 7390 /* 7391 * Cannot have more runtime than the period. 7392 */ 7393 if (runtime > period && runtime != RUNTIME_INF) 7394 return -EINVAL; 7395 7396 /* 7397 * Ensure we don't starve existing RT tasks. 7398 */ 7399 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7400 return -EBUSY; 7401 7402 total = to_ratio(period, runtime); 7403 7404 /* 7405 * Nobody can have more than the global setting allows. 7406 */ 7407 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7408 return -EINVAL; 7409 7410 /* 7411 * The sum of our children's runtime should not exceed our own. 7412 */ 7413 list_for_each_entry_rcu(child, &tg->children, siblings) { 7414 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7415 runtime = child->rt_bandwidth.rt_runtime; 7416 7417 if (child == d->tg) { 7418 period = d->rt_period; 7419 runtime = d->rt_runtime; 7420 } 7421 7422 sum += to_ratio(period, runtime); 7423 } 7424 7425 if (sum > total) 7426 return -EINVAL; 7427 7428 return 0; 7429 } 7430 7431 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7432 { 7433 int ret; 7434 7435 struct rt_schedulable_data data = { 7436 .tg = tg, 7437 .rt_period = period, 7438 .rt_runtime = runtime, 7439 }; 7440 7441 rcu_read_lock(); 7442 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7443 rcu_read_unlock(); 7444 7445 return ret; 7446 } 7447 7448 static int tg_set_rt_bandwidth(struct task_group *tg, 7449 u64 rt_period, u64 rt_runtime) 7450 { 7451 int i, err = 0; 7452 7453 mutex_lock(&rt_constraints_mutex); 7454 read_lock(&tasklist_lock); 7455 err = __rt_schedulable(tg, rt_period, rt_runtime); 7456 if (err) 7457 goto unlock; 7458 7459 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7460 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7461 tg->rt_bandwidth.rt_runtime = rt_runtime; 7462 7463 for_each_possible_cpu(i) { 7464 struct rt_rq *rt_rq = tg->rt_rq[i]; 7465 7466 raw_spin_lock(&rt_rq->rt_runtime_lock); 7467 rt_rq->rt_runtime = rt_runtime; 7468 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7469 } 7470 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7471 unlock: 7472 read_unlock(&tasklist_lock); 7473 mutex_unlock(&rt_constraints_mutex); 7474 7475 return err; 7476 } 7477 7478 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7479 { 7480 u64 rt_runtime, rt_period; 7481 7482 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7483 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7484 if (rt_runtime_us < 0) 7485 rt_runtime = RUNTIME_INF; 7486 7487 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7488 } 7489 7490 static long sched_group_rt_runtime(struct task_group *tg) 7491 { 7492 u64 rt_runtime_us; 7493 7494 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7495 return -1; 7496 7497 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7498 do_div(rt_runtime_us, NSEC_PER_USEC); 7499 return rt_runtime_us; 7500 } 7501 7502 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7503 { 7504 u64 rt_runtime, rt_period; 7505 7506 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7507 rt_runtime = tg->rt_bandwidth.rt_runtime; 7508 7509 if (rt_period == 0) 7510 return -EINVAL; 7511 7512 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7513 } 7514 7515 static long sched_group_rt_period(struct task_group *tg) 7516 { 7517 u64 rt_period_us; 7518 7519 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7520 do_div(rt_period_us, NSEC_PER_USEC); 7521 return rt_period_us; 7522 } 7523 #endif /* CONFIG_RT_GROUP_SCHED */ 7524 7525 #ifdef CONFIG_RT_GROUP_SCHED 7526 static int sched_rt_global_constraints(void) 7527 { 7528 int ret = 0; 7529 7530 mutex_lock(&rt_constraints_mutex); 7531 read_lock(&tasklist_lock); 7532 ret = __rt_schedulable(NULL, 0, 0); 7533 read_unlock(&tasklist_lock); 7534 mutex_unlock(&rt_constraints_mutex); 7535 7536 return ret; 7537 } 7538 7539 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7540 { 7541 /* Don't accept realtime tasks when there is no way for them to run */ 7542 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7543 return 0; 7544 7545 return 1; 7546 } 7547 7548 #else /* !CONFIG_RT_GROUP_SCHED */ 7549 static int sched_rt_global_constraints(void) 7550 { 7551 unsigned long flags; 7552 int i, ret = 0; 7553 7554 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7555 for_each_possible_cpu(i) { 7556 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7557 7558 raw_spin_lock(&rt_rq->rt_runtime_lock); 7559 rt_rq->rt_runtime = global_rt_runtime(); 7560 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7561 } 7562 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7563 7564 return ret; 7565 } 7566 #endif /* CONFIG_RT_GROUP_SCHED */ 7567 7568 static int sched_dl_global_constraints(void) 7569 { 7570 u64 runtime = global_rt_runtime(); 7571 u64 period = global_rt_period(); 7572 u64 new_bw = to_ratio(period, runtime); 7573 int cpu, ret = 0; 7574 unsigned long flags; 7575 7576 /* 7577 * Here we want to check the bandwidth not being set to some 7578 * value smaller than the currently allocated bandwidth in 7579 * any of the root_domains. 7580 * 7581 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7582 * cycling on root_domains... Discussion on different/better 7583 * solutions is welcome! 7584 */ 7585 for_each_possible_cpu(cpu) { 7586 struct dl_bw *dl_b = dl_bw_of(cpu); 7587 7588 raw_spin_lock_irqsave(&dl_b->lock, flags); 7589 if (new_bw < dl_b->total_bw) 7590 ret = -EBUSY; 7591 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7592 7593 if (ret) 7594 break; 7595 } 7596 7597 return ret; 7598 } 7599 7600 static void sched_dl_do_global(void) 7601 { 7602 u64 new_bw = -1; 7603 int cpu; 7604 unsigned long flags; 7605 7606 def_dl_bandwidth.dl_period = global_rt_period(); 7607 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7608 7609 if (global_rt_runtime() != RUNTIME_INF) 7610 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7611 7612 /* 7613 * FIXME: As above... 7614 */ 7615 for_each_possible_cpu(cpu) { 7616 struct dl_bw *dl_b = dl_bw_of(cpu); 7617 7618 raw_spin_lock_irqsave(&dl_b->lock, flags); 7619 dl_b->bw = new_bw; 7620 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7621 } 7622 } 7623 7624 static int sched_rt_global_validate(void) 7625 { 7626 if (sysctl_sched_rt_period <= 0) 7627 return -EINVAL; 7628 7629 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7630 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7631 return -EINVAL; 7632 7633 return 0; 7634 } 7635 7636 static void sched_rt_do_global(void) 7637 { 7638 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7639 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7640 } 7641 7642 int sched_rt_handler(struct ctl_table *table, int write, 7643 void __user *buffer, size_t *lenp, 7644 loff_t *ppos) 7645 { 7646 int old_period, old_runtime; 7647 static DEFINE_MUTEX(mutex); 7648 int ret; 7649 7650 mutex_lock(&mutex); 7651 old_period = sysctl_sched_rt_period; 7652 old_runtime = sysctl_sched_rt_runtime; 7653 7654 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7655 7656 if (!ret && write) { 7657 ret = sched_rt_global_validate(); 7658 if (ret) 7659 goto undo; 7660 7661 ret = sched_rt_global_constraints(); 7662 if (ret) 7663 goto undo; 7664 7665 ret = sched_dl_global_constraints(); 7666 if (ret) 7667 goto undo; 7668 7669 sched_rt_do_global(); 7670 sched_dl_do_global(); 7671 } 7672 if (0) { 7673 undo: 7674 sysctl_sched_rt_period = old_period; 7675 sysctl_sched_rt_runtime = old_runtime; 7676 } 7677 mutex_unlock(&mutex); 7678 7679 return ret; 7680 } 7681 7682 int sched_rr_handler(struct ctl_table *table, int write, 7683 void __user *buffer, size_t *lenp, 7684 loff_t *ppos) 7685 { 7686 int ret; 7687 static DEFINE_MUTEX(mutex); 7688 7689 mutex_lock(&mutex); 7690 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7691 /* make sure that internally we keep jiffies */ 7692 /* also, writing zero resets timeslice to default */ 7693 if (!ret && write) { 7694 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7695 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7696 } 7697 mutex_unlock(&mutex); 7698 return ret; 7699 } 7700 7701 #ifdef CONFIG_CGROUP_SCHED 7702 7703 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7704 { 7705 return css ? container_of(css, struct task_group, css) : NULL; 7706 } 7707 7708 static struct cgroup_subsys_state * 7709 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7710 { 7711 struct task_group *parent = css_tg(parent_css); 7712 struct task_group *tg; 7713 7714 if (!parent) { 7715 /* This is early initialization for the top cgroup */ 7716 return &root_task_group.css; 7717 } 7718 7719 tg = sched_create_group(parent); 7720 if (IS_ERR(tg)) 7721 return ERR_PTR(-ENOMEM); 7722 7723 return &tg->css; 7724 } 7725 7726 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7727 { 7728 struct task_group *tg = css_tg(css); 7729 struct task_group *parent = css_tg(css->parent); 7730 7731 if (parent) 7732 sched_online_group(tg, parent); 7733 return 0; 7734 } 7735 7736 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7737 { 7738 struct task_group *tg = css_tg(css); 7739 7740 sched_destroy_group(tg); 7741 } 7742 7743 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7744 { 7745 struct task_group *tg = css_tg(css); 7746 7747 sched_offline_group(tg); 7748 } 7749 7750 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7751 struct cgroup_taskset *tset) 7752 { 7753 struct task_struct *task; 7754 7755 cgroup_taskset_for_each(task, tset) { 7756 #ifdef CONFIG_RT_GROUP_SCHED 7757 if (!sched_rt_can_attach(css_tg(css), task)) 7758 return -EINVAL; 7759 #else 7760 /* We don't support RT-tasks being in separate groups */ 7761 if (task->sched_class != &fair_sched_class) 7762 return -EINVAL; 7763 #endif 7764 } 7765 return 0; 7766 } 7767 7768 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7769 struct cgroup_taskset *tset) 7770 { 7771 struct task_struct *task; 7772 7773 cgroup_taskset_for_each(task, tset) 7774 sched_move_task(task); 7775 } 7776 7777 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7778 struct cgroup_subsys_state *old_css, 7779 struct task_struct *task) 7780 { 7781 /* 7782 * cgroup_exit() is called in the copy_process() failure path. 7783 * Ignore this case since the task hasn't ran yet, this avoids 7784 * trying to poke a half freed task state from generic code. 7785 */ 7786 if (!(task->flags & PF_EXITING)) 7787 return; 7788 7789 sched_move_task(task); 7790 } 7791 7792 #ifdef CONFIG_FAIR_GROUP_SCHED 7793 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7794 struct cftype *cftype, u64 shareval) 7795 { 7796 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7797 } 7798 7799 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7800 struct cftype *cft) 7801 { 7802 struct task_group *tg = css_tg(css); 7803 7804 return (u64) scale_load_down(tg->shares); 7805 } 7806 7807 #ifdef CONFIG_CFS_BANDWIDTH 7808 static DEFINE_MUTEX(cfs_constraints_mutex); 7809 7810 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7811 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7812 7813 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7814 7815 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7816 { 7817 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7818 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7819 7820 if (tg == &root_task_group) 7821 return -EINVAL; 7822 7823 /* 7824 * Ensure we have at some amount of bandwidth every period. This is 7825 * to prevent reaching a state of large arrears when throttled via 7826 * entity_tick() resulting in prolonged exit starvation. 7827 */ 7828 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7829 return -EINVAL; 7830 7831 /* 7832 * Likewise, bound things on the otherside by preventing insane quota 7833 * periods. This also allows us to normalize in computing quota 7834 * feasibility. 7835 */ 7836 if (period > max_cfs_quota_period) 7837 return -EINVAL; 7838 7839 /* 7840 * Prevent race between setting of cfs_rq->runtime_enabled and 7841 * unthrottle_offline_cfs_rqs(). 7842 */ 7843 get_online_cpus(); 7844 mutex_lock(&cfs_constraints_mutex); 7845 ret = __cfs_schedulable(tg, period, quota); 7846 if (ret) 7847 goto out_unlock; 7848 7849 runtime_enabled = quota != RUNTIME_INF; 7850 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7851 /* 7852 * If we need to toggle cfs_bandwidth_used, off->on must occur 7853 * before making related changes, and on->off must occur afterwards 7854 */ 7855 if (runtime_enabled && !runtime_was_enabled) 7856 cfs_bandwidth_usage_inc(); 7857 raw_spin_lock_irq(&cfs_b->lock); 7858 cfs_b->period = ns_to_ktime(period); 7859 cfs_b->quota = quota; 7860 7861 __refill_cfs_bandwidth_runtime(cfs_b); 7862 /* restart the period timer (if active) to handle new period expiry */ 7863 if (runtime_enabled && cfs_b->timer_active) { 7864 /* force a reprogram */ 7865 __start_cfs_bandwidth(cfs_b, true); 7866 } 7867 raw_spin_unlock_irq(&cfs_b->lock); 7868 7869 for_each_online_cpu(i) { 7870 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7871 struct rq *rq = cfs_rq->rq; 7872 7873 raw_spin_lock_irq(&rq->lock); 7874 cfs_rq->runtime_enabled = runtime_enabled; 7875 cfs_rq->runtime_remaining = 0; 7876 7877 if (cfs_rq->throttled) 7878 unthrottle_cfs_rq(cfs_rq); 7879 raw_spin_unlock_irq(&rq->lock); 7880 } 7881 if (runtime_was_enabled && !runtime_enabled) 7882 cfs_bandwidth_usage_dec(); 7883 out_unlock: 7884 mutex_unlock(&cfs_constraints_mutex); 7885 put_online_cpus(); 7886 7887 return ret; 7888 } 7889 7890 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7891 { 7892 u64 quota, period; 7893 7894 period = ktime_to_ns(tg->cfs_bandwidth.period); 7895 if (cfs_quota_us < 0) 7896 quota = RUNTIME_INF; 7897 else 7898 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7899 7900 return tg_set_cfs_bandwidth(tg, period, quota); 7901 } 7902 7903 long tg_get_cfs_quota(struct task_group *tg) 7904 { 7905 u64 quota_us; 7906 7907 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7908 return -1; 7909 7910 quota_us = tg->cfs_bandwidth.quota; 7911 do_div(quota_us, NSEC_PER_USEC); 7912 7913 return quota_us; 7914 } 7915 7916 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7917 { 7918 u64 quota, period; 7919 7920 period = (u64)cfs_period_us * NSEC_PER_USEC; 7921 quota = tg->cfs_bandwidth.quota; 7922 7923 return tg_set_cfs_bandwidth(tg, period, quota); 7924 } 7925 7926 long tg_get_cfs_period(struct task_group *tg) 7927 { 7928 u64 cfs_period_us; 7929 7930 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7931 do_div(cfs_period_us, NSEC_PER_USEC); 7932 7933 return cfs_period_us; 7934 } 7935 7936 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7937 struct cftype *cft) 7938 { 7939 return tg_get_cfs_quota(css_tg(css)); 7940 } 7941 7942 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7943 struct cftype *cftype, s64 cfs_quota_us) 7944 { 7945 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7946 } 7947 7948 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7949 struct cftype *cft) 7950 { 7951 return tg_get_cfs_period(css_tg(css)); 7952 } 7953 7954 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7955 struct cftype *cftype, u64 cfs_period_us) 7956 { 7957 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7958 } 7959 7960 struct cfs_schedulable_data { 7961 struct task_group *tg; 7962 u64 period, quota; 7963 }; 7964 7965 /* 7966 * normalize group quota/period to be quota/max_period 7967 * note: units are usecs 7968 */ 7969 static u64 normalize_cfs_quota(struct task_group *tg, 7970 struct cfs_schedulable_data *d) 7971 { 7972 u64 quota, period; 7973 7974 if (tg == d->tg) { 7975 period = d->period; 7976 quota = d->quota; 7977 } else { 7978 period = tg_get_cfs_period(tg); 7979 quota = tg_get_cfs_quota(tg); 7980 } 7981 7982 /* note: these should typically be equivalent */ 7983 if (quota == RUNTIME_INF || quota == -1) 7984 return RUNTIME_INF; 7985 7986 return to_ratio(period, quota); 7987 } 7988 7989 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7990 { 7991 struct cfs_schedulable_data *d = data; 7992 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7993 s64 quota = 0, parent_quota = -1; 7994 7995 if (!tg->parent) { 7996 quota = RUNTIME_INF; 7997 } else { 7998 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7999 8000 quota = normalize_cfs_quota(tg, d); 8001 parent_quota = parent_b->hierarchal_quota; 8002 8003 /* 8004 * ensure max(child_quota) <= parent_quota, inherit when no 8005 * limit is set 8006 */ 8007 if (quota == RUNTIME_INF) 8008 quota = parent_quota; 8009 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8010 return -EINVAL; 8011 } 8012 cfs_b->hierarchal_quota = quota; 8013 8014 return 0; 8015 } 8016 8017 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8018 { 8019 int ret; 8020 struct cfs_schedulable_data data = { 8021 .tg = tg, 8022 .period = period, 8023 .quota = quota, 8024 }; 8025 8026 if (quota != RUNTIME_INF) { 8027 do_div(data.period, NSEC_PER_USEC); 8028 do_div(data.quota, NSEC_PER_USEC); 8029 } 8030 8031 rcu_read_lock(); 8032 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8033 rcu_read_unlock(); 8034 8035 return ret; 8036 } 8037 8038 static int cpu_stats_show(struct seq_file *sf, void *v) 8039 { 8040 struct task_group *tg = css_tg(seq_css(sf)); 8041 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8042 8043 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8044 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8045 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8046 8047 return 0; 8048 } 8049 #endif /* CONFIG_CFS_BANDWIDTH */ 8050 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8051 8052 #ifdef CONFIG_RT_GROUP_SCHED 8053 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8054 struct cftype *cft, s64 val) 8055 { 8056 return sched_group_set_rt_runtime(css_tg(css), val); 8057 } 8058 8059 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8060 struct cftype *cft) 8061 { 8062 return sched_group_rt_runtime(css_tg(css)); 8063 } 8064 8065 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8066 struct cftype *cftype, u64 rt_period_us) 8067 { 8068 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8069 } 8070 8071 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8072 struct cftype *cft) 8073 { 8074 return sched_group_rt_period(css_tg(css)); 8075 } 8076 #endif /* CONFIG_RT_GROUP_SCHED */ 8077 8078 static struct cftype cpu_files[] = { 8079 #ifdef CONFIG_FAIR_GROUP_SCHED 8080 { 8081 .name = "shares", 8082 .read_u64 = cpu_shares_read_u64, 8083 .write_u64 = cpu_shares_write_u64, 8084 }, 8085 #endif 8086 #ifdef CONFIG_CFS_BANDWIDTH 8087 { 8088 .name = "cfs_quota_us", 8089 .read_s64 = cpu_cfs_quota_read_s64, 8090 .write_s64 = cpu_cfs_quota_write_s64, 8091 }, 8092 { 8093 .name = "cfs_period_us", 8094 .read_u64 = cpu_cfs_period_read_u64, 8095 .write_u64 = cpu_cfs_period_write_u64, 8096 }, 8097 { 8098 .name = "stat", 8099 .seq_show = cpu_stats_show, 8100 }, 8101 #endif 8102 #ifdef CONFIG_RT_GROUP_SCHED 8103 { 8104 .name = "rt_runtime_us", 8105 .read_s64 = cpu_rt_runtime_read, 8106 .write_s64 = cpu_rt_runtime_write, 8107 }, 8108 { 8109 .name = "rt_period_us", 8110 .read_u64 = cpu_rt_period_read_uint, 8111 .write_u64 = cpu_rt_period_write_uint, 8112 }, 8113 #endif 8114 { } /* terminate */ 8115 }; 8116 8117 struct cgroup_subsys cpu_cgrp_subsys = { 8118 .css_alloc = cpu_cgroup_css_alloc, 8119 .css_free = cpu_cgroup_css_free, 8120 .css_online = cpu_cgroup_css_online, 8121 .css_offline = cpu_cgroup_css_offline, 8122 .can_attach = cpu_cgroup_can_attach, 8123 .attach = cpu_cgroup_attach, 8124 .exit = cpu_cgroup_exit, 8125 .legacy_cftypes = cpu_files, 8126 .early_init = 1, 8127 }; 8128 8129 #endif /* CONFIG_CGROUP_SCHED */ 8130 8131 void dump_cpu_task(int cpu) 8132 { 8133 pr_info("Task dump for CPU %d:\n", cpu); 8134 sched_show_task(cpu_curr(cpu)); 8135 } 8136