xref: /openbmc/linux/kernel/sched/core.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	for (;;) {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 			break;
929 	}
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	rcu_read_lock();
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i)) {
1107 				cpu = i;
1108 				goto unlock;
1109 			}
1110 		}
1111 	}
1112 
1113 	if (default_cpu == -1)
1114 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1115 	cpu = default_cpu;
1116 unlock:
1117 	rcu_read_unlock();
1118 	return cpu;
1119 }
1120 
1121 /*
1122  * When add_timer_on() enqueues a timer into the timer wheel of an
1123  * idle CPU then this timer might expire before the next timer event
1124  * which is scheduled to wake up that CPU. In case of a completely
1125  * idle system the next event might even be infinite time into the
1126  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1127  * leaves the inner idle loop so the newly added timer is taken into
1128  * account when the CPU goes back to idle and evaluates the timer
1129  * wheel for the next timer event.
1130  */
1131 static void wake_up_idle_cpu(int cpu)
1132 {
1133 	struct rq *rq = cpu_rq(cpu);
1134 
1135 	if (cpu == smp_processor_id())
1136 		return;
1137 
1138 	if (set_nr_and_not_polling(rq->idle))
1139 		smp_send_reschedule(cpu);
1140 	else
1141 		trace_sched_wake_idle_without_ipi(cpu);
1142 }
1143 
1144 static bool wake_up_full_nohz_cpu(int cpu)
1145 {
1146 	/*
1147 	 * We just need the target to call irq_exit() and re-evaluate
1148 	 * the next tick. The nohz full kick at least implies that.
1149 	 * If needed we can still optimize that later with an
1150 	 * empty IRQ.
1151 	 */
1152 	if (cpu_is_offline(cpu))
1153 		return true;  /* Don't try to wake offline CPUs. */
1154 	if (tick_nohz_full_cpu(cpu)) {
1155 		if (cpu != smp_processor_id() ||
1156 		    tick_nohz_tick_stopped())
1157 			tick_nohz_full_kick_cpu(cpu);
1158 		return true;
1159 	}
1160 
1161 	return false;
1162 }
1163 
1164 /*
1165  * Wake up the specified CPU.  If the CPU is going offline, it is the
1166  * caller's responsibility to deal with the lost wakeup, for example,
1167  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1168  */
1169 void wake_up_nohz_cpu(int cpu)
1170 {
1171 	if (!wake_up_full_nohz_cpu(cpu))
1172 		wake_up_idle_cpu(cpu);
1173 }
1174 
1175 static void nohz_csd_func(void *info)
1176 {
1177 	struct rq *rq = info;
1178 	int cpu = cpu_of(rq);
1179 	unsigned int flags;
1180 
1181 	/*
1182 	 * Release the rq::nohz_csd.
1183 	 */
1184 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1185 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1186 
1187 	rq->idle_balance = idle_cpu(cpu);
1188 	if (rq->idle_balance && !need_resched()) {
1189 		rq->nohz_idle_balance = flags;
1190 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1191 	}
1192 }
1193 
1194 #endif /* CONFIG_NO_HZ_COMMON */
1195 
1196 #ifdef CONFIG_NO_HZ_FULL
1197 bool sched_can_stop_tick(struct rq *rq)
1198 {
1199 	int fifo_nr_running;
1200 
1201 	/* Deadline tasks, even if single, need the tick */
1202 	if (rq->dl.dl_nr_running)
1203 		return false;
1204 
1205 	/*
1206 	 * If there are more than one RR tasks, we need the tick to affect the
1207 	 * actual RR behaviour.
1208 	 */
1209 	if (rq->rt.rr_nr_running) {
1210 		if (rq->rt.rr_nr_running == 1)
1211 			return true;
1212 		else
1213 			return false;
1214 	}
1215 
1216 	/*
1217 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1218 	 * forced preemption between FIFO tasks.
1219 	 */
1220 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1221 	if (fifo_nr_running)
1222 		return true;
1223 
1224 	/*
1225 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1226 	 * if there's more than one we need the tick for involuntary
1227 	 * preemption.
1228 	 */
1229 	if (rq->nr_running > 1)
1230 		return false;
1231 
1232 	return true;
1233 }
1234 #endif /* CONFIG_NO_HZ_FULL */
1235 #endif /* CONFIG_SMP */
1236 
1237 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1238 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1239 /*
1240  * Iterate task_group tree rooted at *from, calling @down when first entering a
1241  * node and @up when leaving it for the final time.
1242  *
1243  * Caller must hold rcu_lock or sufficient equivalent.
1244  */
1245 int walk_tg_tree_from(struct task_group *from,
1246 			     tg_visitor down, tg_visitor up, void *data)
1247 {
1248 	struct task_group *parent, *child;
1249 	int ret;
1250 
1251 	parent = from;
1252 
1253 down:
1254 	ret = (*down)(parent, data);
1255 	if (ret)
1256 		goto out;
1257 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1258 		parent = child;
1259 		goto down;
1260 
1261 up:
1262 		continue;
1263 	}
1264 	ret = (*up)(parent, data);
1265 	if (ret || parent == from)
1266 		goto out;
1267 
1268 	child = parent;
1269 	parent = parent->parent;
1270 	if (parent)
1271 		goto up;
1272 out:
1273 	return ret;
1274 }
1275 
1276 int tg_nop(struct task_group *tg, void *data)
1277 {
1278 	return 0;
1279 }
1280 #endif
1281 
1282 static void set_load_weight(struct task_struct *p, bool update_load)
1283 {
1284 	int prio = p->static_prio - MAX_RT_PRIO;
1285 	struct load_weight *load = &p->se.load;
1286 
1287 	/*
1288 	 * SCHED_IDLE tasks get minimal weight:
1289 	 */
1290 	if (task_has_idle_policy(p)) {
1291 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1292 		load->inv_weight = WMULT_IDLEPRIO;
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * SCHED_OTHER tasks have to update their load when changing their
1298 	 * weight
1299 	 */
1300 	if (update_load && p->sched_class == &fair_sched_class) {
1301 		reweight_task(p, prio);
1302 	} else {
1303 		load->weight = scale_load(sched_prio_to_weight[prio]);
1304 		load->inv_weight = sched_prio_to_wmult[prio];
1305 	}
1306 }
1307 
1308 #ifdef CONFIG_UCLAMP_TASK
1309 /*
1310  * Serializes updates of utilization clamp values
1311  *
1312  * The (slow-path) user-space triggers utilization clamp value updates which
1313  * can require updates on (fast-path) scheduler's data structures used to
1314  * support enqueue/dequeue operations.
1315  * While the per-CPU rq lock protects fast-path update operations, user-space
1316  * requests are serialized using a mutex to reduce the risk of conflicting
1317  * updates or API abuses.
1318  */
1319 static DEFINE_MUTEX(uclamp_mutex);
1320 
1321 /* Max allowed minimum utilization */
1322 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1323 
1324 /* Max allowed maximum utilization */
1325 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1326 
1327 /*
1328  * By default RT tasks run at the maximum performance point/capacity of the
1329  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1330  * SCHED_CAPACITY_SCALE.
1331  *
1332  * This knob allows admins to change the default behavior when uclamp is being
1333  * used. In battery powered devices, particularly, running at the maximum
1334  * capacity and frequency will increase energy consumption and shorten the
1335  * battery life.
1336  *
1337  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1338  *
1339  * This knob will not override the system default sched_util_clamp_min defined
1340  * above.
1341  */
1342 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1343 
1344 /* All clamps are required to be less or equal than these values */
1345 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1346 
1347 /*
1348  * This static key is used to reduce the uclamp overhead in the fast path. It
1349  * primarily disables the call to uclamp_rq_{inc, dec}() in
1350  * enqueue/dequeue_task().
1351  *
1352  * This allows users to continue to enable uclamp in their kernel config with
1353  * minimum uclamp overhead in the fast path.
1354  *
1355  * As soon as userspace modifies any of the uclamp knobs, the static key is
1356  * enabled, since we have an actual users that make use of uclamp
1357  * functionality.
1358  *
1359  * The knobs that would enable this static key are:
1360  *
1361  *   * A task modifying its uclamp value with sched_setattr().
1362  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1363  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1364  */
1365 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1366 
1367 /* Integer rounded range for each bucket */
1368 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1369 
1370 #define for_each_clamp_id(clamp_id) \
1371 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1372 
1373 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1374 {
1375 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1376 }
1377 
1378 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1379 {
1380 	if (clamp_id == UCLAMP_MIN)
1381 		return 0;
1382 	return SCHED_CAPACITY_SCALE;
1383 }
1384 
1385 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1386 				 unsigned int value, bool user_defined)
1387 {
1388 	uc_se->value = value;
1389 	uc_se->bucket_id = uclamp_bucket_id(value);
1390 	uc_se->user_defined = user_defined;
1391 }
1392 
1393 static inline unsigned int
1394 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1395 		  unsigned int clamp_value)
1396 {
1397 	/*
1398 	 * Avoid blocked utilization pushing up the frequency when we go
1399 	 * idle (which drops the max-clamp) by retaining the last known
1400 	 * max-clamp.
1401 	 */
1402 	if (clamp_id == UCLAMP_MAX) {
1403 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1404 		return clamp_value;
1405 	}
1406 
1407 	return uclamp_none(UCLAMP_MIN);
1408 }
1409 
1410 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1411 				     unsigned int clamp_value)
1412 {
1413 	/* Reset max-clamp retention only on idle exit */
1414 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1415 		return;
1416 
1417 	uclamp_rq_set(rq, clamp_id, clamp_value);
1418 }
1419 
1420 static inline
1421 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1422 				   unsigned int clamp_value)
1423 {
1424 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1425 	int bucket_id = UCLAMP_BUCKETS - 1;
1426 
1427 	/*
1428 	 * Since both min and max clamps are max aggregated, find the
1429 	 * top most bucket with tasks in.
1430 	 */
1431 	for ( ; bucket_id >= 0; bucket_id--) {
1432 		if (!bucket[bucket_id].tasks)
1433 			continue;
1434 		return bucket[bucket_id].value;
1435 	}
1436 
1437 	/* No tasks -- default clamp values */
1438 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1439 }
1440 
1441 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1442 {
1443 	unsigned int default_util_min;
1444 	struct uclamp_se *uc_se;
1445 
1446 	lockdep_assert_held(&p->pi_lock);
1447 
1448 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1449 
1450 	/* Only sync if user didn't override the default */
1451 	if (uc_se->user_defined)
1452 		return;
1453 
1454 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1455 	uclamp_se_set(uc_se, default_util_min, false);
1456 }
1457 
1458 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1459 {
1460 	struct rq_flags rf;
1461 	struct rq *rq;
1462 
1463 	if (!rt_task(p))
1464 		return;
1465 
1466 	/* Protect updates to p->uclamp_* */
1467 	rq = task_rq_lock(p, &rf);
1468 	__uclamp_update_util_min_rt_default(p);
1469 	task_rq_unlock(rq, p, &rf);
1470 }
1471 
1472 static inline struct uclamp_se
1473 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1474 {
1475 	/* Copy by value as we could modify it */
1476 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1477 #ifdef CONFIG_UCLAMP_TASK_GROUP
1478 	unsigned int tg_min, tg_max, value;
1479 
1480 	/*
1481 	 * Tasks in autogroups or root task group will be
1482 	 * restricted by system defaults.
1483 	 */
1484 	if (task_group_is_autogroup(task_group(p)))
1485 		return uc_req;
1486 	if (task_group(p) == &root_task_group)
1487 		return uc_req;
1488 
1489 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1490 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1491 	value = uc_req.value;
1492 	value = clamp(value, tg_min, tg_max);
1493 	uclamp_se_set(&uc_req, value, false);
1494 #endif
1495 
1496 	return uc_req;
1497 }
1498 
1499 /*
1500  * The effective clamp bucket index of a task depends on, by increasing
1501  * priority:
1502  * - the task specific clamp value, when explicitly requested from userspace
1503  * - the task group effective clamp value, for tasks not either in the root
1504  *   group or in an autogroup
1505  * - the system default clamp value, defined by the sysadmin
1506  */
1507 static inline struct uclamp_se
1508 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1509 {
1510 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1511 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1512 
1513 	/* System default restrictions always apply */
1514 	if (unlikely(uc_req.value > uc_max.value))
1515 		return uc_max;
1516 
1517 	return uc_req;
1518 }
1519 
1520 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1521 {
1522 	struct uclamp_se uc_eff;
1523 
1524 	/* Task currently refcounted: use back-annotated (effective) value */
1525 	if (p->uclamp[clamp_id].active)
1526 		return (unsigned long)p->uclamp[clamp_id].value;
1527 
1528 	uc_eff = uclamp_eff_get(p, clamp_id);
1529 
1530 	return (unsigned long)uc_eff.value;
1531 }
1532 
1533 /*
1534  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1535  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1536  * updates the rq's clamp value if required.
1537  *
1538  * Tasks can have a task-specific value requested from user-space, track
1539  * within each bucket the maximum value for tasks refcounted in it.
1540  * This "local max aggregation" allows to track the exact "requested" value
1541  * for each bucket when all its RUNNABLE tasks require the same clamp.
1542  */
1543 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1544 				    enum uclamp_id clamp_id)
1545 {
1546 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1547 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1548 	struct uclamp_bucket *bucket;
1549 
1550 	lockdep_assert_rq_held(rq);
1551 
1552 	/* Update task effective clamp */
1553 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1554 
1555 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1556 	bucket->tasks++;
1557 	uc_se->active = true;
1558 
1559 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1560 
1561 	/*
1562 	 * Local max aggregation: rq buckets always track the max
1563 	 * "requested" clamp value of its RUNNABLE tasks.
1564 	 */
1565 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1566 		bucket->value = uc_se->value;
1567 
1568 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1569 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1570 }
1571 
1572 /*
1573  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1574  * is released. If this is the last task reference counting the rq's max
1575  * active clamp value, then the rq's clamp value is updated.
1576  *
1577  * Both refcounted tasks and rq's cached clamp values are expected to be
1578  * always valid. If it's detected they are not, as defensive programming,
1579  * enforce the expected state and warn.
1580  */
1581 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1582 				    enum uclamp_id clamp_id)
1583 {
1584 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1585 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1586 	struct uclamp_bucket *bucket;
1587 	unsigned int bkt_clamp;
1588 	unsigned int rq_clamp;
1589 
1590 	lockdep_assert_rq_held(rq);
1591 
1592 	/*
1593 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1594 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1595 	 *
1596 	 * In this case the uc_se->active flag should be false since no uclamp
1597 	 * accounting was performed at enqueue time and we can just return
1598 	 * here.
1599 	 *
1600 	 * Need to be careful of the following enqueue/dequeue ordering
1601 	 * problem too
1602 	 *
1603 	 *	enqueue(taskA)
1604 	 *	// sched_uclamp_used gets enabled
1605 	 *	enqueue(taskB)
1606 	 *	dequeue(taskA)
1607 	 *	// Must not decrement bucket->tasks here
1608 	 *	dequeue(taskB)
1609 	 *
1610 	 * where we could end up with stale data in uc_se and
1611 	 * bucket[uc_se->bucket_id].
1612 	 *
1613 	 * The following check here eliminates the possibility of such race.
1614 	 */
1615 	if (unlikely(!uc_se->active))
1616 		return;
1617 
1618 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1619 
1620 	SCHED_WARN_ON(!bucket->tasks);
1621 	if (likely(bucket->tasks))
1622 		bucket->tasks--;
1623 
1624 	uc_se->active = false;
1625 
1626 	/*
1627 	 * Keep "local max aggregation" simple and accept to (possibly)
1628 	 * overboost some RUNNABLE tasks in the same bucket.
1629 	 * The rq clamp bucket value is reset to its base value whenever
1630 	 * there are no more RUNNABLE tasks refcounting it.
1631 	 */
1632 	if (likely(bucket->tasks))
1633 		return;
1634 
1635 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1636 	/*
1637 	 * Defensive programming: this should never happen. If it happens,
1638 	 * e.g. due to future modification, warn and fixup the expected value.
1639 	 */
1640 	SCHED_WARN_ON(bucket->value > rq_clamp);
1641 	if (bucket->value >= rq_clamp) {
1642 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1643 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1644 	}
1645 }
1646 
1647 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1648 {
1649 	enum uclamp_id clamp_id;
1650 
1651 	/*
1652 	 * Avoid any overhead until uclamp is actually used by the userspace.
1653 	 *
1654 	 * The condition is constructed such that a NOP is generated when
1655 	 * sched_uclamp_used is disabled.
1656 	 */
1657 	if (!static_branch_unlikely(&sched_uclamp_used))
1658 		return;
1659 
1660 	if (unlikely(!p->sched_class->uclamp_enabled))
1661 		return;
1662 
1663 	for_each_clamp_id(clamp_id)
1664 		uclamp_rq_inc_id(rq, p, clamp_id);
1665 
1666 	/* Reset clamp idle holding when there is one RUNNABLE task */
1667 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1668 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1669 }
1670 
1671 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1672 {
1673 	enum uclamp_id clamp_id;
1674 
1675 	/*
1676 	 * Avoid any overhead until uclamp is actually used by the userspace.
1677 	 *
1678 	 * The condition is constructed such that a NOP is generated when
1679 	 * sched_uclamp_used is disabled.
1680 	 */
1681 	if (!static_branch_unlikely(&sched_uclamp_used))
1682 		return;
1683 
1684 	if (unlikely(!p->sched_class->uclamp_enabled))
1685 		return;
1686 
1687 	for_each_clamp_id(clamp_id)
1688 		uclamp_rq_dec_id(rq, p, clamp_id);
1689 }
1690 
1691 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1692 				      enum uclamp_id clamp_id)
1693 {
1694 	if (!p->uclamp[clamp_id].active)
1695 		return;
1696 
1697 	uclamp_rq_dec_id(rq, p, clamp_id);
1698 	uclamp_rq_inc_id(rq, p, clamp_id);
1699 
1700 	/*
1701 	 * Make sure to clear the idle flag if we've transiently reached 0
1702 	 * active tasks on rq.
1703 	 */
1704 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1705 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1706 }
1707 
1708 static inline void
1709 uclamp_update_active(struct task_struct *p)
1710 {
1711 	enum uclamp_id clamp_id;
1712 	struct rq_flags rf;
1713 	struct rq *rq;
1714 
1715 	/*
1716 	 * Lock the task and the rq where the task is (or was) queued.
1717 	 *
1718 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1719 	 * price to pay to safely serialize util_{min,max} updates with
1720 	 * enqueues, dequeues and migration operations.
1721 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1722 	 */
1723 	rq = task_rq_lock(p, &rf);
1724 
1725 	/*
1726 	 * Setting the clamp bucket is serialized by task_rq_lock().
1727 	 * If the task is not yet RUNNABLE and its task_struct is not
1728 	 * affecting a valid clamp bucket, the next time it's enqueued,
1729 	 * it will already see the updated clamp bucket value.
1730 	 */
1731 	for_each_clamp_id(clamp_id)
1732 		uclamp_rq_reinc_id(rq, p, clamp_id);
1733 
1734 	task_rq_unlock(rq, p, &rf);
1735 }
1736 
1737 #ifdef CONFIG_UCLAMP_TASK_GROUP
1738 static inline void
1739 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1740 {
1741 	struct css_task_iter it;
1742 	struct task_struct *p;
1743 
1744 	css_task_iter_start(css, 0, &it);
1745 	while ((p = css_task_iter_next(&it)))
1746 		uclamp_update_active(p);
1747 	css_task_iter_end(&it);
1748 }
1749 
1750 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1751 #endif
1752 
1753 #ifdef CONFIG_SYSCTL
1754 #ifdef CONFIG_UCLAMP_TASK
1755 #ifdef CONFIG_UCLAMP_TASK_GROUP
1756 static void uclamp_update_root_tg(void)
1757 {
1758 	struct task_group *tg = &root_task_group;
1759 
1760 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1761 		      sysctl_sched_uclamp_util_min, false);
1762 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1763 		      sysctl_sched_uclamp_util_max, false);
1764 
1765 	rcu_read_lock();
1766 	cpu_util_update_eff(&root_task_group.css);
1767 	rcu_read_unlock();
1768 }
1769 #else
1770 static void uclamp_update_root_tg(void) { }
1771 #endif
1772 
1773 static void uclamp_sync_util_min_rt_default(void)
1774 {
1775 	struct task_struct *g, *p;
1776 
1777 	/*
1778 	 * copy_process()			sysctl_uclamp
1779 	 *					  uclamp_min_rt = X;
1780 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1781 	 *   // link thread			  smp_mb__after_spinlock()
1782 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1783 	 *   sched_post_fork()			  for_each_process_thread()
1784 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1785 	 *
1786 	 * Ensures that either sched_post_fork() will observe the new
1787 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1788 	 * task.
1789 	 */
1790 	read_lock(&tasklist_lock);
1791 	smp_mb__after_spinlock();
1792 	read_unlock(&tasklist_lock);
1793 
1794 	rcu_read_lock();
1795 	for_each_process_thread(g, p)
1796 		uclamp_update_util_min_rt_default(p);
1797 	rcu_read_unlock();
1798 }
1799 
1800 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1801 				void *buffer, size_t *lenp, loff_t *ppos)
1802 {
1803 	bool update_root_tg = false;
1804 	int old_min, old_max, old_min_rt;
1805 	int result;
1806 
1807 	mutex_lock(&uclamp_mutex);
1808 	old_min = sysctl_sched_uclamp_util_min;
1809 	old_max = sysctl_sched_uclamp_util_max;
1810 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1811 
1812 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1813 	if (result)
1814 		goto undo;
1815 	if (!write)
1816 		goto done;
1817 
1818 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1819 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1820 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1821 
1822 		result = -EINVAL;
1823 		goto undo;
1824 	}
1825 
1826 	if (old_min != sysctl_sched_uclamp_util_min) {
1827 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1828 			      sysctl_sched_uclamp_util_min, false);
1829 		update_root_tg = true;
1830 	}
1831 	if (old_max != sysctl_sched_uclamp_util_max) {
1832 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1833 			      sysctl_sched_uclamp_util_max, false);
1834 		update_root_tg = true;
1835 	}
1836 
1837 	if (update_root_tg) {
1838 		static_branch_enable(&sched_uclamp_used);
1839 		uclamp_update_root_tg();
1840 	}
1841 
1842 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1843 		static_branch_enable(&sched_uclamp_used);
1844 		uclamp_sync_util_min_rt_default();
1845 	}
1846 
1847 	/*
1848 	 * We update all RUNNABLE tasks only when task groups are in use.
1849 	 * Otherwise, keep it simple and do just a lazy update at each next
1850 	 * task enqueue time.
1851 	 */
1852 
1853 	goto done;
1854 
1855 undo:
1856 	sysctl_sched_uclamp_util_min = old_min;
1857 	sysctl_sched_uclamp_util_max = old_max;
1858 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1859 done:
1860 	mutex_unlock(&uclamp_mutex);
1861 
1862 	return result;
1863 }
1864 #endif
1865 #endif
1866 
1867 static int uclamp_validate(struct task_struct *p,
1868 			   const struct sched_attr *attr)
1869 {
1870 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1871 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1872 
1873 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1874 		util_min = attr->sched_util_min;
1875 
1876 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1877 			return -EINVAL;
1878 	}
1879 
1880 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1881 		util_max = attr->sched_util_max;
1882 
1883 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1884 			return -EINVAL;
1885 	}
1886 
1887 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1888 		return -EINVAL;
1889 
1890 	/*
1891 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1892 	 *
1893 	 * We need to do that here, because enabling static branches is a
1894 	 * blocking operation which obviously cannot be done while holding
1895 	 * scheduler locks.
1896 	 */
1897 	static_branch_enable(&sched_uclamp_used);
1898 
1899 	return 0;
1900 }
1901 
1902 static bool uclamp_reset(const struct sched_attr *attr,
1903 			 enum uclamp_id clamp_id,
1904 			 struct uclamp_se *uc_se)
1905 {
1906 	/* Reset on sched class change for a non user-defined clamp value. */
1907 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1908 	    !uc_se->user_defined)
1909 		return true;
1910 
1911 	/* Reset on sched_util_{min,max} == -1. */
1912 	if (clamp_id == UCLAMP_MIN &&
1913 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1914 	    attr->sched_util_min == -1) {
1915 		return true;
1916 	}
1917 
1918 	if (clamp_id == UCLAMP_MAX &&
1919 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1920 	    attr->sched_util_max == -1) {
1921 		return true;
1922 	}
1923 
1924 	return false;
1925 }
1926 
1927 static void __setscheduler_uclamp(struct task_struct *p,
1928 				  const struct sched_attr *attr)
1929 {
1930 	enum uclamp_id clamp_id;
1931 
1932 	for_each_clamp_id(clamp_id) {
1933 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1934 		unsigned int value;
1935 
1936 		if (!uclamp_reset(attr, clamp_id, uc_se))
1937 			continue;
1938 
1939 		/*
1940 		 * RT by default have a 100% boost value that could be modified
1941 		 * at runtime.
1942 		 */
1943 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1944 			value = sysctl_sched_uclamp_util_min_rt_default;
1945 		else
1946 			value = uclamp_none(clamp_id);
1947 
1948 		uclamp_se_set(uc_se, value, false);
1949 
1950 	}
1951 
1952 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1953 		return;
1954 
1955 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1956 	    attr->sched_util_min != -1) {
1957 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1958 			      attr->sched_util_min, true);
1959 	}
1960 
1961 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1962 	    attr->sched_util_max != -1) {
1963 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1964 			      attr->sched_util_max, true);
1965 	}
1966 }
1967 
1968 static void uclamp_fork(struct task_struct *p)
1969 {
1970 	enum uclamp_id clamp_id;
1971 
1972 	/*
1973 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1974 	 * as the task is still at its early fork stages.
1975 	 */
1976 	for_each_clamp_id(clamp_id)
1977 		p->uclamp[clamp_id].active = false;
1978 
1979 	if (likely(!p->sched_reset_on_fork))
1980 		return;
1981 
1982 	for_each_clamp_id(clamp_id) {
1983 		uclamp_se_set(&p->uclamp_req[clamp_id],
1984 			      uclamp_none(clamp_id), false);
1985 	}
1986 }
1987 
1988 static void uclamp_post_fork(struct task_struct *p)
1989 {
1990 	uclamp_update_util_min_rt_default(p);
1991 }
1992 
1993 static void __init init_uclamp_rq(struct rq *rq)
1994 {
1995 	enum uclamp_id clamp_id;
1996 	struct uclamp_rq *uc_rq = rq->uclamp;
1997 
1998 	for_each_clamp_id(clamp_id) {
1999 		uc_rq[clamp_id] = (struct uclamp_rq) {
2000 			.value = uclamp_none(clamp_id)
2001 		};
2002 	}
2003 
2004 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2005 }
2006 
2007 static void __init init_uclamp(void)
2008 {
2009 	struct uclamp_se uc_max = {};
2010 	enum uclamp_id clamp_id;
2011 	int cpu;
2012 
2013 	for_each_possible_cpu(cpu)
2014 		init_uclamp_rq(cpu_rq(cpu));
2015 
2016 	for_each_clamp_id(clamp_id) {
2017 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2018 			      uclamp_none(clamp_id), false);
2019 	}
2020 
2021 	/* System defaults allow max clamp values for both indexes */
2022 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2023 	for_each_clamp_id(clamp_id) {
2024 		uclamp_default[clamp_id] = uc_max;
2025 #ifdef CONFIG_UCLAMP_TASK_GROUP
2026 		root_task_group.uclamp_req[clamp_id] = uc_max;
2027 		root_task_group.uclamp[clamp_id] = uc_max;
2028 #endif
2029 	}
2030 }
2031 
2032 #else /* CONFIG_UCLAMP_TASK */
2033 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2035 static inline int uclamp_validate(struct task_struct *p,
2036 				  const struct sched_attr *attr)
2037 {
2038 	return -EOPNOTSUPP;
2039 }
2040 static void __setscheduler_uclamp(struct task_struct *p,
2041 				  const struct sched_attr *attr) { }
2042 static inline void uclamp_fork(struct task_struct *p) { }
2043 static inline void uclamp_post_fork(struct task_struct *p) { }
2044 static inline void init_uclamp(void) { }
2045 #endif /* CONFIG_UCLAMP_TASK */
2046 
2047 bool sched_task_on_rq(struct task_struct *p)
2048 {
2049 	return task_on_rq_queued(p);
2050 }
2051 
2052 unsigned long get_wchan(struct task_struct *p)
2053 {
2054 	unsigned long ip = 0;
2055 	unsigned int state;
2056 
2057 	if (!p || p == current)
2058 		return 0;
2059 
2060 	/* Only get wchan if task is blocked and we can keep it that way. */
2061 	raw_spin_lock_irq(&p->pi_lock);
2062 	state = READ_ONCE(p->__state);
2063 	smp_rmb(); /* see try_to_wake_up() */
2064 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2065 		ip = __get_wchan(p);
2066 	raw_spin_unlock_irq(&p->pi_lock);
2067 
2068 	return ip;
2069 }
2070 
2071 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2072 {
2073 	if (!(flags & ENQUEUE_NOCLOCK))
2074 		update_rq_clock(rq);
2075 
2076 	if (!(flags & ENQUEUE_RESTORE)) {
2077 		sched_info_enqueue(rq, p);
2078 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2079 	}
2080 
2081 	uclamp_rq_inc(rq, p);
2082 	p->sched_class->enqueue_task(rq, p, flags);
2083 
2084 	if (sched_core_enabled(rq))
2085 		sched_core_enqueue(rq, p);
2086 }
2087 
2088 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2089 {
2090 	if (sched_core_enabled(rq))
2091 		sched_core_dequeue(rq, p, flags);
2092 
2093 	if (!(flags & DEQUEUE_NOCLOCK))
2094 		update_rq_clock(rq);
2095 
2096 	if (!(flags & DEQUEUE_SAVE)) {
2097 		sched_info_dequeue(rq, p);
2098 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2099 	}
2100 
2101 	uclamp_rq_dec(rq, p);
2102 	p->sched_class->dequeue_task(rq, p, flags);
2103 }
2104 
2105 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 	if (task_on_rq_migrating(p))
2108 		flags |= ENQUEUE_MIGRATED;
2109 	if (flags & ENQUEUE_MIGRATED)
2110 		sched_mm_cid_migrate_to(rq, p);
2111 
2112 	enqueue_task(rq, p, flags);
2113 
2114 	p->on_rq = TASK_ON_RQ_QUEUED;
2115 }
2116 
2117 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2118 {
2119 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2120 
2121 	dequeue_task(rq, p, flags);
2122 }
2123 
2124 static inline int __normal_prio(int policy, int rt_prio, int nice)
2125 {
2126 	int prio;
2127 
2128 	if (dl_policy(policy))
2129 		prio = MAX_DL_PRIO - 1;
2130 	else if (rt_policy(policy))
2131 		prio = MAX_RT_PRIO - 1 - rt_prio;
2132 	else
2133 		prio = NICE_TO_PRIO(nice);
2134 
2135 	return prio;
2136 }
2137 
2138 /*
2139  * Calculate the expected normal priority: i.e. priority
2140  * without taking RT-inheritance into account. Might be
2141  * boosted by interactivity modifiers. Changes upon fork,
2142  * setprio syscalls, and whenever the interactivity
2143  * estimator recalculates.
2144  */
2145 static inline int normal_prio(struct task_struct *p)
2146 {
2147 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2148 }
2149 
2150 /*
2151  * Calculate the current priority, i.e. the priority
2152  * taken into account by the scheduler. This value might
2153  * be boosted by RT tasks, or might be boosted by
2154  * interactivity modifiers. Will be RT if the task got
2155  * RT-boosted. If not then it returns p->normal_prio.
2156  */
2157 static int effective_prio(struct task_struct *p)
2158 {
2159 	p->normal_prio = normal_prio(p);
2160 	/*
2161 	 * If we are RT tasks or we were boosted to RT priority,
2162 	 * keep the priority unchanged. Otherwise, update priority
2163 	 * to the normal priority:
2164 	 */
2165 	if (!rt_prio(p->prio))
2166 		return p->normal_prio;
2167 	return p->prio;
2168 }
2169 
2170 /**
2171  * task_curr - is this task currently executing on a CPU?
2172  * @p: the task in question.
2173  *
2174  * Return: 1 if the task is currently executing. 0 otherwise.
2175  */
2176 inline int task_curr(const struct task_struct *p)
2177 {
2178 	return cpu_curr(task_cpu(p)) == p;
2179 }
2180 
2181 /*
2182  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183  * use the balance_callback list if you want balancing.
2184  *
2185  * this means any call to check_class_changed() must be followed by a call to
2186  * balance_callback().
2187  */
2188 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2189 				       const struct sched_class *prev_class,
2190 				       int oldprio)
2191 {
2192 	if (prev_class != p->sched_class) {
2193 		if (prev_class->switched_from)
2194 			prev_class->switched_from(rq, p);
2195 
2196 		p->sched_class->switched_to(rq, p);
2197 	} else if (oldprio != p->prio || dl_task(p))
2198 		p->sched_class->prio_changed(rq, p, oldprio);
2199 }
2200 
2201 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2202 {
2203 	if (p->sched_class == rq->curr->sched_class)
2204 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2205 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2206 		resched_curr(rq);
2207 
2208 	/*
2209 	 * A queue event has occurred, and we're going to schedule.  In
2210 	 * this case, we can save a useless back to back clock update.
2211 	 */
2212 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2213 		rq_clock_skip_update(rq);
2214 }
2215 
2216 static __always_inline
2217 int __task_state_match(struct task_struct *p, unsigned int state)
2218 {
2219 	if (READ_ONCE(p->__state) & state)
2220 		return 1;
2221 
2222 #ifdef CONFIG_PREEMPT_RT
2223 	if (READ_ONCE(p->saved_state) & state)
2224 		return -1;
2225 #endif
2226 	return 0;
2227 }
2228 
2229 static __always_inline
2230 int task_state_match(struct task_struct *p, unsigned int state)
2231 {
2232 #ifdef CONFIG_PREEMPT_RT
2233 	int match;
2234 
2235 	/*
2236 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2237 	 * current_restore_rtlock_saved_state().
2238 	 */
2239 	raw_spin_lock_irq(&p->pi_lock);
2240 	match = __task_state_match(p, state);
2241 	raw_spin_unlock_irq(&p->pi_lock);
2242 
2243 	return match;
2244 #else
2245 	return __task_state_match(p, state);
2246 #endif
2247 }
2248 
2249 /*
2250  * wait_task_inactive - wait for a thread to unschedule.
2251  *
2252  * Wait for the thread to block in any of the states set in @match_state.
2253  * If it changes, i.e. @p might have woken up, then return zero.  When we
2254  * succeed in waiting for @p to be off its CPU, we return a positive number
2255  * (its total switch count).  If a second call a short while later returns the
2256  * same number, the caller can be sure that @p has remained unscheduled the
2257  * whole time.
2258  *
2259  * The caller must ensure that the task *will* unschedule sometime soon,
2260  * else this function might spin for a *long* time. This function can't
2261  * be called with interrupts off, or it may introduce deadlock with
2262  * smp_call_function() if an IPI is sent by the same process we are
2263  * waiting to become inactive.
2264  */
2265 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2266 {
2267 	int running, queued, match;
2268 	struct rq_flags rf;
2269 	unsigned long ncsw;
2270 	struct rq *rq;
2271 
2272 	for (;;) {
2273 		/*
2274 		 * We do the initial early heuristics without holding
2275 		 * any task-queue locks at all. We'll only try to get
2276 		 * the runqueue lock when things look like they will
2277 		 * work out!
2278 		 */
2279 		rq = task_rq(p);
2280 
2281 		/*
2282 		 * If the task is actively running on another CPU
2283 		 * still, just relax and busy-wait without holding
2284 		 * any locks.
2285 		 *
2286 		 * NOTE! Since we don't hold any locks, it's not
2287 		 * even sure that "rq" stays as the right runqueue!
2288 		 * But we don't care, since "task_on_cpu()" will
2289 		 * return false if the runqueue has changed and p
2290 		 * is actually now running somewhere else!
2291 		 */
2292 		while (task_on_cpu(rq, p)) {
2293 			if (!task_state_match(p, match_state))
2294 				return 0;
2295 			cpu_relax();
2296 		}
2297 
2298 		/*
2299 		 * Ok, time to look more closely! We need the rq
2300 		 * lock now, to be *sure*. If we're wrong, we'll
2301 		 * just go back and repeat.
2302 		 */
2303 		rq = task_rq_lock(p, &rf);
2304 		trace_sched_wait_task(p);
2305 		running = task_on_cpu(rq, p);
2306 		queued = task_on_rq_queued(p);
2307 		ncsw = 0;
2308 		if ((match = __task_state_match(p, match_state))) {
2309 			/*
2310 			 * When matching on p->saved_state, consider this task
2311 			 * still queued so it will wait.
2312 			 */
2313 			if (match < 0)
2314 				queued = 1;
2315 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2316 		}
2317 		task_rq_unlock(rq, p, &rf);
2318 
2319 		/*
2320 		 * If it changed from the expected state, bail out now.
2321 		 */
2322 		if (unlikely(!ncsw))
2323 			break;
2324 
2325 		/*
2326 		 * Was it really running after all now that we
2327 		 * checked with the proper locks actually held?
2328 		 *
2329 		 * Oops. Go back and try again..
2330 		 */
2331 		if (unlikely(running)) {
2332 			cpu_relax();
2333 			continue;
2334 		}
2335 
2336 		/*
2337 		 * It's not enough that it's not actively running,
2338 		 * it must be off the runqueue _entirely_, and not
2339 		 * preempted!
2340 		 *
2341 		 * So if it was still runnable (but just not actively
2342 		 * running right now), it's preempted, and we should
2343 		 * yield - it could be a while.
2344 		 */
2345 		if (unlikely(queued)) {
2346 			ktime_t to = NSEC_PER_SEC / HZ;
2347 
2348 			set_current_state(TASK_UNINTERRUPTIBLE);
2349 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2350 			continue;
2351 		}
2352 
2353 		/*
2354 		 * Ahh, all good. It wasn't running, and it wasn't
2355 		 * runnable, which means that it will never become
2356 		 * running in the future either. We're all done!
2357 		 */
2358 		break;
2359 	}
2360 
2361 	return ncsw;
2362 }
2363 
2364 #ifdef CONFIG_SMP
2365 
2366 static void
2367 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2368 
2369 static int __set_cpus_allowed_ptr(struct task_struct *p,
2370 				  struct affinity_context *ctx);
2371 
2372 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2373 {
2374 	struct affinity_context ac = {
2375 		.new_mask  = cpumask_of(rq->cpu),
2376 		.flags     = SCA_MIGRATE_DISABLE,
2377 	};
2378 
2379 	if (likely(!p->migration_disabled))
2380 		return;
2381 
2382 	if (p->cpus_ptr != &p->cpus_mask)
2383 		return;
2384 
2385 	/*
2386 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2387 	 */
2388 	__do_set_cpus_allowed(p, &ac);
2389 }
2390 
2391 void migrate_disable(void)
2392 {
2393 	struct task_struct *p = current;
2394 
2395 	if (p->migration_disabled) {
2396 		p->migration_disabled++;
2397 		return;
2398 	}
2399 
2400 	preempt_disable();
2401 	this_rq()->nr_pinned++;
2402 	p->migration_disabled = 1;
2403 	preempt_enable();
2404 }
2405 EXPORT_SYMBOL_GPL(migrate_disable);
2406 
2407 void migrate_enable(void)
2408 {
2409 	struct task_struct *p = current;
2410 	struct affinity_context ac = {
2411 		.new_mask  = &p->cpus_mask,
2412 		.flags     = SCA_MIGRATE_ENABLE,
2413 	};
2414 
2415 	if (p->migration_disabled > 1) {
2416 		p->migration_disabled--;
2417 		return;
2418 	}
2419 
2420 	if (WARN_ON_ONCE(!p->migration_disabled))
2421 		return;
2422 
2423 	/*
2424 	 * Ensure stop_task runs either before or after this, and that
2425 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2426 	 */
2427 	preempt_disable();
2428 	if (p->cpus_ptr != &p->cpus_mask)
2429 		__set_cpus_allowed_ptr(p, &ac);
2430 	/*
2431 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2432 	 * regular cpus_mask, otherwise things that race (eg.
2433 	 * select_fallback_rq) get confused.
2434 	 */
2435 	barrier();
2436 	p->migration_disabled = 0;
2437 	this_rq()->nr_pinned--;
2438 	preempt_enable();
2439 }
2440 EXPORT_SYMBOL_GPL(migrate_enable);
2441 
2442 static inline bool rq_has_pinned_tasks(struct rq *rq)
2443 {
2444 	return rq->nr_pinned;
2445 }
2446 
2447 /*
2448  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2449  * __set_cpus_allowed_ptr() and select_fallback_rq().
2450  */
2451 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2452 {
2453 	/* When not in the task's cpumask, no point in looking further. */
2454 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2455 		return false;
2456 
2457 	/* migrate_disabled() must be allowed to finish. */
2458 	if (is_migration_disabled(p))
2459 		return cpu_online(cpu);
2460 
2461 	/* Non kernel threads are not allowed during either online or offline. */
2462 	if (!(p->flags & PF_KTHREAD))
2463 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2464 
2465 	/* KTHREAD_IS_PER_CPU is always allowed. */
2466 	if (kthread_is_per_cpu(p))
2467 		return cpu_online(cpu);
2468 
2469 	/* Regular kernel threads don't get to stay during offline. */
2470 	if (cpu_dying(cpu))
2471 		return false;
2472 
2473 	/* But are allowed during online. */
2474 	return cpu_online(cpu);
2475 }
2476 
2477 /*
2478  * This is how migration works:
2479  *
2480  * 1) we invoke migration_cpu_stop() on the target CPU using
2481  *    stop_one_cpu().
2482  * 2) stopper starts to run (implicitly forcing the migrated thread
2483  *    off the CPU)
2484  * 3) it checks whether the migrated task is still in the wrong runqueue.
2485  * 4) if it's in the wrong runqueue then the migration thread removes
2486  *    it and puts it into the right queue.
2487  * 5) stopper completes and stop_one_cpu() returns and the migration
2488  *    is done.
2489  */
2490 
2491 /*
2492  * move_queued_task - move a queued task to new rq.
2493  *
2494  * Returns (locked) new rq. Old rq's lock is released.
2495  */
2496 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2497 				   struct task_struct *p, int new_cpu)
2498 {
2499 	lockdep_assert_rq_held(rq);
2500 
2501 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2502 	set_task_cpu(p, new_cpu);
2503 	rq_unlock(rq, rf);
2504 
2505 	rq = cpu_rq(new_cpu);
2506 
2507 	rq_lock(rq, rf);
2508 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2509 	activate_task(rq, p, 0);
2510 	check_preempt_curr(rq, p, 0);
2511 
2512 	return rq;
2513 }
2514 
2515 struct migration_arg {
2516 	struct task_struct		*task;
2517 	int				dest_cpu;
2518 	struct set_affinity_pending	*pending;
2519 };
2520 
2521 /*
2522  * @refs: number of wait_for_completion()
2523  * @stop_pending: is @stop_work in use
2524  */
2525 struct set_affinity_pending {
2526 	refcount_t		refs;
2527 	unsigned int		stop_pending;
2528 	struct completion	done;
2529 	struct cpu_stop_work	stop_work;
2530 	struct migration_arg	arg;
2531 };
2532 
2533 /*
2534  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2535  * this because either it can't run here any more (set_cpus_allowed()
2536  * away from this CPU, or CPU going down), or because we're
2537  * attempting to rebalance this task on exec (sched_exec).
2538  *
2539  * So we race with normal scheduler movements, but that's OK, as long
2540  * as the task is no longer on this CPU.
2541  */
2542 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2543 				 struct task_struct *p, int dest_cpu)
2544 {
2545 	/* Affinity changed (again). */
2546 	if (!is_cpu_allowed(p, dest_cpu))
2547 		return rq;
2548 
2549 	rq = move_queued_task(rq, rf, p, dest_cpu);
2550 
2551 	return rq;
2552 }
2553 
2554 /*
2555  * migration_cpu_stop - this will be executed by a highprio stopper thread
2556  * and performs thread migration by bumping thread off CPU then
2557  * 'pushing' onto another runqueue.
2558  */
2559 static int migration_cpu_stop(void *data)
2560 {
2561 	struct migration_arg *arg = data;
2562 	struct set_affinity_pending *pending = arg->pending;
2563 	struct task_struct *p = arg->task;
2564 	struct rq *rq = this_rq();
2565 	bool complete = false;
2566 	struct rq_flags rf;
2567 
2568 	/*
2569 	 * The original target CPU might have gone down and we might
2570 	 * be on another CPU but it doesn't matter.
2571 	 */
2572 	local_irq_save(rf.flags);
2573 	/*
2574 	 * We need to explicitly wake pending tasks before running
2575 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2576 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2577 	 */
2578 	flush_smp_call_function_queue();
2579 
2580 	raw_spin_lock(&p->pi_lock);
2581 	rq_lock(rq, &rf);
2582 
2583 	/*
2584 	 * If we were passed a pending, then ->stop_pending was set, thus
2585 	 * p->migration_pending must have remained stable.
2586 	 */
2587 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2588 
2589 	/*
2590 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2591 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2592 	 * we're holding p->pi_lock.
2593 	 */
2594 	if (task_rq(p) == rq) {
2595 		if (is_migration_disabled(p))
2596 			goto out;
2597 
2598 		if (pending) {
2599 			p->migration_pending = NULL;
2600 			complete = true;
2601 
2602 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2603 				goto out;
2604 		}
2605 
2606 		if (task_on_rq_queued(p)) {
2607 			update_rq_clock(rq);
2608 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2609 		} else {
2610 			p->wake_cpu = arg->dest_cpu;
2611 		}
2612 
2613 		/*
2614 		 * XXX __migrate_task() can fail, at which point we might end
2615 		 * up running on a dodgy CPU, AFAICT this can only happen
2616 		 * during CPU hotplug, at which point we'll get pushed out
2617 		 * anyway, so it's probably not a big deal.
2618 		 */
2619 
2620 	} else if (pending) {
2621 		/*
2622 		 * This happens when we get migrated between migrate_enable()'s
2623 		 * preempt_enable() and scheduling the stopper task. At that
2624 		 * point we're a regular task again and not current anymore.
2625 		 *
2626 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2627 		 * more likely.
2628 		 */
2629 
2630 		/*
2631 		 * The task moved before the stopper got to run. We're holding
2632 		 * ->pi_lock, so the allowed mask is stable - if it got
2633 		 * somewhere allowed, we're done.
2634 		 */
2635 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2636 			p->migration_pending = NULL;
2637 			complete = true;
2638 			goto out;
2639 		}
2640 
2641 		/*
2642 		 * When migrate_enable() hits a rq mis-match we can't reliably
2643 		 * determine is_migration_disabled() and so have to chase after
2644 		 * it.
2645 		 */
2646 		WARN_ON_ONCE(!pending->stop_pending);
2647 		task_rq_unlock(rq, p, &rf);
2648 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2649 				    &pending->arg, &pending->stop_work);
2650 		return 0;
2651 	}
2652 out:
2653 	if (pending)
2654 		pending->stop_pending = false;
2655 	task_rq_unlock(rq, p, &rf);
2656 
2657 	if (complete)
2658 		complete_all(&pending->done);
2659 
2660 	return 0;
2661 }
2662 
2663 int push_cpu_stop(void *arg)
2664 {
2665 	struct rq *lowest_rq = NULL, *rq = this_rq();
2666 	struct task_struct *p = arg;
2667 
2668 	raw_spin_lock_irq(&p->pi_lock);
2669 	raw_spin_rq_lock(rq);
2670 
2671 	if (task_rq(p) != rq)
2672 		goto out_unlock;
2673 
2674 	if (is_migration_disabled(p)) {
2675 		p->migration_flags |= MDF_PUSH;
2676 		goto out_unlock;
2677 	}
2678 
2679 	p->migration_flags &= ~MDF_PUSH;
2680 
2681 	if (p->sched_class->find_lock_rq)
2682 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2683 
2684 	if (!lowest_rq)
2685 		goto out_unlock;
2686 
2687 	// XXX validate p is still the highest prio task
2688 	if (task_rq(p) == rq) {
2689 		deactivate_task(rq, p, 0);
2690 		set_task_cpu(p, lowest_rq->cpu);
2691 		activate_task(lowest_rq, p, 0);
2692 		resched_curr(lowest_rq);
2693 	}
2694 
2695 	double_unlock_balance(rq, lowest_rq);
2696 
2697 out_unlock:
2698 	rq->push_busy = false;
2699 	raw_spin_rq_unlock(rq);
2700 	raw_spin_unlock_irq(&p->pi_lock);
2701 
2702 	put_task_struct(p);
2703 	return 0;
2704 }
2705 
2706 /*
2707  * sched_class::set_cpus_allowed must do the below, but is not required to
2708  * actually call this function.
2709  */
2710 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2711 {
2712 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2713 		p->cpus_ptr = ctx->new_mask;
2714 		return;
2715 	}
2716 
2717 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2718 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2719 
2720 	/*
2721 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2722 	 */
2723 	if (ctx->flags & SCA_USER)
2724 		swap(p->user_cpus_ptr, ctx->user_mask);
2725 }
2726 
2727 static void
2728 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2729 {
2730 	struct rq *rq = task_rq(p);
2731 	bool queued, running;
2732 
2733 	/*
2734 	 * This here violates the locking rules for affinity, since we're only
2735 	 * supposed to change these variables while holding both rq->lock and
2736 	 * p->pi_lock.
2737 	 *
2738 	 * HOWEVER, it magically works, because ttwu() is the only code that
2739 	 * accesses these variables under p->pi_lock and only does so after
2740 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2741 	 * before finish_task().
2742 	 *
2743 	 * XXX do further audits, this smells like something putrid.
2744 	 */
2745 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2746 		SCHED_WARN_ON(!p->on_cpu);
2747 	else
2748 		lockdep_assert_held(&p->pi_lock);
2749 
2750 	queued = task_on_rq_queued(p);
2751 	running = task_current(rq, p);
2752 
2753 	if (queued) {
2754 		/*
2755 		 * Because __kthread_bind() calls this on blocked tasks without
2756 		 * holding rq->lock.
2757 		 */
2758 		lockdep_assert_rq_held(rq);
2759 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2760 	}
2761 	if (running)
2762 		put_prev_task(rq, p);
2763 
2764 	p->sched_class->set_cpus_allowed(p, ctx);
2765 
2766 	if (queued)
2767 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2768 	if (running)
2769 		set_next_task(rq, p);
2770 }
2771 
2772 /*
2773  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2774  * affinity (if any) should be destroyed too.
2775  */
2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2777 {
2778 	struct affinity_context ac = {
2779 		.new_mask  = new_mask,
2780 		.user_mask = NULL,
2781 		.flags     = SCA_USER,	/* clear the user requested mask */
2782 	};
2783 	union cpumask_rcuhead {
2784 		cpumask_t cpumask;
2785 		struct rcu_head rcu;
2786 	};
2787 
2788 	__do_set_cpus_allowed(p, &ac);
2789 
2790 	/*
2791 	 * Because this is called with p->pi_lock held, it is not possible
2792 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2793 	 * kfree_rcu().
2794 	 */
2795 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2796 }
2797 
2798 static cpumask_t *alloc_user_cpus_ptr(int node)
2799 {
2800 	/*
2801 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2802 	 */
2803 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2804 
2805 	return kmalloc_node(size, GFP_KERNEL, node);
2806 }
2807 
2808 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2809 		      int node)
2810 {
2811 	cpumask_t *user_mask;
2812 	unsigned long flags;
2813 
2814 	/*
2815 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2816 	 * may differ by now due to racing.
2817 	 */
2818 	dst->user_cpus_ptr = NULL;
2819 
2820 	/*
2821 	 * This check is racy and losing the race is a valid situation.
2822 	 * It is not worth the extra overhead of taking the pi_lock on
2823 	 * every fork/clone.
2824 	 */
2825 	if (data_race(!src->user_cpus_ptr))
2826 		return 0;
2827 
2828 	user_mask = alloc_user_cpus_ptr(node);
2829 	if (!user_mask)
2830 		return -ENOMEM;
2831 
2832 	/*
2833 	 * Use pi_lock to protect content of user_cpus_ptr
2834 	 *
2835 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2836 	 * do_set_cpus_allowed().
2837 	 */
2838 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2839 	if (src->user_cpus_ptr) {
2840 		swap(dst->user_cpus_ptr, user_mask);
2841 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2842 	}
2843 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2844 
2845 	if (unlikely(user_mask))
2846 		kfree(user_mask);
2847 
2848 	return 0;
2849 }
2850 
2851 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2852 {
2853 	struct cpumask *user_mask = NULL;
2854 
2855 	swap(p->user_cpus_ptr, user_mask);
2856 
2857 	return user_mask;
2858 }
2859 
2860 void release_user_cpus_ptr(struct task_struct *p)
2861 {
2862 	kfree(clear_user_cpus_ptr(p));
2863 }
2864 
2865 /*
2866  * This function is wildly self concurrent; here be dragons.
2867  *
2868  *
2869  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2870  * designated task is enqueued on an allowed CPU. If that task is currently
2871  * running, we have to kick it out using the CPU stopper.
2872  *
2873  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2874  * Consider:
2875  *
2876  *     Initial conditions: P0->cpus_mask = [0, 1]
2877  *
2878  *     P0@CPU0                  P1
2879  *
2880  *     migrate_disable();
2881  *     <preempted>
2882  *                              set_cpus_allowed_ptr(P0, [1]);
2883  *
2884  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2885  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2886  * This means we need the following scheme:
2887  *
2888  *     P0@CPU0                  P1
2889  *
2890  *     migrate_disable();
2891  *     <preempted>
2892  *                              set_cpus_allowed_ptr(P0, [1]);
2893  *                                <blocks>
2894  *     <resumes>
2895  *     migrate_enable();
2896  *       __set_cpus_allowed_ptr();
2897  *       <wakes local stopper>
2898  *                         `--> <woken on migration completion>
2899  *
2900  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2901  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2902  * task p are serialized by p->pi_lock, which we can leverage: the one that
2903  * should come into effect at the end of the Migrate-Disable region is the last
2904  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2905  * but we still need to properly signal those waiting tasks at the appropriate
2906  * moment.
2907  *
2908  * This is implemented using struct set_affinity_pending. The first
2909  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2910  * setup an instance of that struct and install it on the targeted task_struct.
2911  * Any and all further callers will reuse that instance. Those then wait for
2912  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2913  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2914  *
2915  *
2916  * (1) In the cases covered above. There is one more where the completion is
2917  * signaled within affine_move_task() itself: when a subsequent affinity request
2918  * occurs after the stopper bailed out due to the targeted task still being
2919  * Migrate-Disable. Consider:
2920  *
2921  *     Initial conditions: P0->cpus_mask = [0, 1]
2922  *
2923  *     CPU0		  P1				P2
2924  *     <P0>
2925  *       migrate_disable();
2926  *       <preempted>
2927  *                        set_cpus_allowed_ptr(P0, [1]);
2928  *                          <blocks>
2929  *     <migration/0>
2930  *       migration_cpu_stop()
2931  *         is_migration_disabled()
2932  *           <bails>
2933  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2934  *                                                         <signal completion>
2935  *                          <awakes>
2936  *
2937  * Note that the above is safe vs a concurrent migrate_enable(), as any
2938  * pending affinity completion is preceded by an uninstallation of
2939  * p->migration_pending done with p->pi_lock held.
2940  */
2941 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2942 			    int dest_cpu, unsigned int flags)
2943 	__releases(rq->lock)
2944 	__releases(p->pi_lock)
2945 {
2946 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2947 	bool stop_pending, complete = false;
2948 
2949 	/* Can the task run on the task's current CPU? If so, we're done */
2950 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2951 		struct task_struct *push_task = NULL;
2952 
2953 		if ((flags & SCA_MIGRATE_ENABLE) &&
2954 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2955 			rq->push_busy = true;
2956 			push_task = get_task_struct(p);
2957 		}
2958 
2959 		/*
2960 		 * If there are pending waiters, but no pending stop_work,
2961 		 * then complete now.
2962 		 */
2963 		pending = p->migration_pending;
2964 		if (pending && !pending->stop_pending) {
2965 			p->migration_pending = NULL;
2966 			complete = true;
2967 		}
2968 
2969 		task_rq_unlock(rq, p, rf);
2970 
2971 		if (push_task) {
2972 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2973 					    p, &rq->push_work);
2974 		}
2975 
2976 		if (complete)
2977 			complete_all(&pending->done);
2978 
2979 		return 0;
2980 	}
2981 
2982 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2983 		/* serialized by p->pi_lock */
2984 		if (!p->migration_pending) {
2985 			/* Install the request */
2986 			refcount_set(&my_pending.refs, 1);
2987 			init_completion(&my_pending.done);
2988 			my_pending.arg = (struct migration_arg) {
2989 				.task = p,
2990 				.dest_cpu = dest_cpu,
2991 				.pending = &my_pending,
2992 			};
2993 
2994 			p->migration_pending = &my_pending;
2995 		} else {
2996 			pending = p->migration_pending;
2997 			refcount_inc(&pending->refs);
2998 			/*
2999 			 * Affinity has changed, but we've already installed a
3000 			 * pending. migration_cpu_stop() *must* see this, else
3001 			 * we risk a completion of the pending despite having a
3002 			 * task on a disallowed CPU.
3003 			 *
3004 			 * Serialized by p->pi_lock, so this is safe.
3005 			 */
3006 			pending->arg.dest_cpu = dest_cpu;
3007 		}
3008 	}
3009 	pending = p->migration_pending;
3010 	/*
3011 	 * - !MIGRATE_ENABLE:
3012 	 *   we'll have installed a pending if there wasn't one already.
3013 	 *
3014 	 * - MIGRATE_ENABLE:
3015 	 *   we're here because the current CPU isn't matching anymore,
3016 	 *   the only way that can happen is because of a concurrent
3017 	 *   set_cpus_allowed_ptr() call, which should then still be
3018 	 *   pending completion.
3019 	 *
3020 	 * Either way, we really should have a @pending here.
3021 	 */
3022 	if (WARN_ON_ONCE(!pending)) {
3023 		task_rq_unlock(rq, p, rf);
3024 		return -EINVAL;
3025 	}
3026 
3027 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3028 		/*
3029 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3030 		 * anything else we cannot do is_migration_disabled(), punt
3031 		 * and have the stopper function handle it all race-free.
3032 		 */
3033 		stop_pending = pending->stop_pending;
3034 		if (!stop_pending)
3035 			pending->stop_pending = true;
3036 
3037 		if (flags & SCA_MIGRATE_ENABLE)
3038 			p->migration_flags &= ~MDF_PUSH;
3039 
3040 		task_rq_unlock(rq, p, rf);
3041 
3042 		if (!stop_pending) {
3043 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3044 					    &pending->arg, &pending->stop_work);
3045 		}
3046 
3047 		if (flags & SCA_MIGRATE_ENABLE)
3048 			return 0;
3049 	} else {
3050 
3051 		if (!is_migration_disabled(p)) {
3052 			if (task_on_rq_queued(p))
3053 				rq = move_queued_task(rq, rf, p, dest_cpu);
3054 
3055 			if (!pending->stop_pending) {
3056 				p->migration_pending = NULL;
3057 				complete = true;
3058 			}
3059 		}
3060 		task_rq_unlock(rq, p, rf);
3061 
3062 		if (complete)
3063 			complete_all(&pending->done);
3064 	}
3065 
3066 	wait_for_completion(&pending->done);
3067 
3068 	if (refcount_dec_and_test(&pending->refs))
3069 		wake_up_var(&pending->refs); /* No UaF, just an address */
3070 
3071 	/*
3072 	 * Block the original owner of &pending until all subsequent callers
3073 	 * have seen the completion and decremented the refcount
3074 	 */
3075 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3076 
3077 	/* ARGH */
3078 	WARN_ON_ONCE(my_pending.stop_pending);
3079 
3080 	return 0;
3081 }
3082 
3083 /*
3084  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3085  */
3086 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3087 					 struct affinity_context *ctx,
3088 					 struct rq *rq,
3089 					 struct rq_flags *rf)
3090 	__releases(rq->lock)
3091 	__releases(p->pi_lock)
3092 {
3093 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3094 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3095 	bool kthread = p->flags & PF_KTHREAD;
3096 	unsigned int dest_cpu;
3097 	int ret = 0;
3098 
3099 	update_rq_clock(rq);
3100 
3101 	if (kthread || is_migration_disabled(p)) {
3102 		/*
3103 		 * Kernel threads are allowed on online && !active CPUs,
3104 		 * however, during cpu-hot-unplug, even these might get pushed
3105 		 * away if not KTHREAD_IS_PER_CPU.
3106 		 *
3107 		 * Specifically, migration_disabled() tasks must not fail the
3108 		 * cpumask_any_and_distribute() pick below, esp. so on
3109 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3110 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3111 		 */
3112 		cpu_valid_mask = cpu_online_mask;
3113 	}
3114 
3115 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3116 		ret = -EINVAL;
3117 		goto out;
3118 	}
3119 
3120 	/*
3121 	 * Must re-check here, to close a race against __kthread_bind(),
3122 	 * sched_setaffinity() is not guaranteed to observe the flag.
3123 	 */
3124 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3125 		ret = -EINVAL;
3126 		goto out;
3127 	}
3128 
3129 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3130 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3131 			if (ctx->flags & SCA_USER)
3132 				swap(p->user_cpus_ptr, ctx->user_mask);
3133 			goto out;
3134 		}
3135 
3136 		if (WARN_ON_ONCE(p == current &&
3137 				 is_migration_disabled(p) &&
3138 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3139 			ret = -EBUSY;
3140 			goto out;
3141 		}
3142 	}
3143 
3144 	/*
3145 	 * Picking a ~random cpu helps in cases where we are changing affinity
3146 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3147 	 * immediately required to distribute the tasks within their new mask.
3148 	 */
3149 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3150 	if (dest_cpu >= nr_cpu_ids) {
3151 		ret = -EINVAL;
3152 		goto out;
3153 	}
3154 
3155 	__do_set_cpus_allowed(p, ctx);
3156 
3157 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3158 
3159 out:
3160 	task_rq_unlock(rq, p, rf);
3161 
3162 	return ret;
3163 }
3164 
3165 /*
3166  * Change a given task's CPU affinity. Migrate the thread to a
3167  * proper CPU and schedule it away if the CPU it's executing on
3168  * is removed from the allowed bitmask.
3169  *
3170  * NOTE: the caller must have a valid reference to the task, the
3171  * task must not exit() & deallocate itself prematurely. The
3172  * call is not atomic; no spinlocks may be held.
3173  */
3174 static int __set_cpus_allowed_ptr(struct task_struct *p,
3175 				  struct affinity_context *ctx)
3176 {
3177 	struct rq_flags rf;
3178 	struct rq *rq;
3179 
3180 	rq = task_rq_lock(p, &rf);
3181 	/*
3182 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3183 	 * flags are set.
3184 	 */
3185 	if (p->user_cpus_ptr &&
3186 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3187 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3188 		ctx->new_mask = rq->scratch_mask;
3189 
3190 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3191 }
3192 
3193 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3194 {
3195 	struct affinity_context ac = {
3196 		.new_mask  = new_mask,
3197 		.flags     = 0,
3198 	};
3199 
3200 	return __set_cpus_allowed_ptr(p, &ac);
3201 }
3202 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3203 
3204 /*
3205  * Change a given task's CPU affinity to the intersection of its current
3206  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3207  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3208  * affinity or use cpu_online_mask instead.
3209  *
3210  * If the resulting mask is empty, leave the affinity unchanged and return
3211  * -EINVAL.
3212  */
3213 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3214 				     struct cpumask *new_mask,
3215 				     const struct cpumask *subset_mask)
3216 {
3217 	struct affinity_context ac = {
3218 		.new_mask  = new_mask,
3219 		.flags     = 0,
3220 	};
3221 	struct rq_flags rf;
3222 	struct rq *rq;
3223 	int err;
3224 
3225 	rq = task_rq_lock(p, &rf);
3226 
3227 	/*
3228 	 * Forcefully restricting the affinity of a deadline task is
3229 	 * likely to cause problems, so fail and noisily override the
3230 	 * mask entirely.
3231 	 */
3232 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3233 		err = -EPERM;
3234 		goto err_unlock;
3235 	}
3236 
3237 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3238 		err = -EINVAL;
3239 		goto err_unlock;
3240 	}
3241 
3242 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3243 
3244 err_unlock:
3245 	task_rq_unlock(rq, p, &rf);
3246 	return err;
3247 }
3248 
3249 /*
3250  * Restrict the CPU affinity of task @p so that it is a subset of
3251  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3252  * old affinity mask. If the resulting mask is empty, we warn and walk
3253  * up the cpuset hierarchy until we find a suitable mask.
3254  */
3255 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3256 {
3257 	cpumask_var_t new_mask;
3258 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3259 
3260 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3261 
3262 	/*
3263 	 * __migrate_task() can fail silently in the face of concurrent
3264 	 * offlining of the chosen destination CPU, so take the hotplug
3265 	 * lock to ensure that the migration succeeds.
3266 	 */
3267 	cpus_read_lock();
3268 	if (!cpumask_available(new_mask))
3269 		goto out_set_mask;
3270 
3271 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3272 		goto out_free_mask;
3273 
3274 	/*
3275 	 * We failed to find a valid subset of the affinity mask for the
3276 	 * task, so override it based on its cpuset hierarchy.
3277 	 */
3278 	cpuset_cpus_allowed(p, new_mask);
3279 	override_mask = new_mask;
3280 
3281 out_set_mask:
3282 	if (printk_ratelimit()) {
3283 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3284 				task_pid_nr(p), p->comm,
3285 				cpumask_pr_args(override_mask));
3286 	}
3287 
3288 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3289 out_free_mask:
3290 	cpus_read_unlock();
3291 	free_cpumask_var(new_mask);
3292 }
3293 
3294 static int
3295 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3296 
3297 /*
3298  * Restore the affinity of a task @p which was previously restricted by a
3299  * call to force_compatible_cpus_allowed_ptr().
3300  *
3301  * It is the caller's responsibility to serialise this with any calls to
3302  * force_compatible_cpus_allowed_ptr(@p).
3303  */
3304 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3305 {
3306 	struct affinity_context ac = {
3307 		.new_mask  = task_user_cpus(p),
3308 		.flags     = 0,
3309 	};
3310 	int ret;
3311 
3312 	/*
3313 	 * Try to restore the old affinity mask with __sched_setaffinity().
3314 	 * Cpuset masking will be done there too.
3315 	 */
3316 	ret = __sched_setaffinity(p, &ac);
3317 	WARN_ON_ONCE(ret);
3318 }
3319 
3320 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3321 {
3322 #ifdef CONFIG_SCHED_DEBUG
3323 	unsigned int state = READ_ONCE(p->__state);
3324 
3325 	/*
3326 	 * We should never call set_task_cpu() on a blocked task,
3327 	 * ttwu() will sort out the placement.
3328 	 */
3329 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3330 
3331 	/*
3332 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3333 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3334 	 * time relying on p->on_rq.
3335 	 */
3336 	WARN_ON_ONCE(state == TASK_RUNNING &&
3337 		     p->sched_class == &fair_sched_class &&
3338 		     (p->on_rq && !task_on_rq_migrating(p)));
3339 
3340 #ifdef CONFIG_LOCKDEP
3341 	/*
3342 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3343 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3344 	 *
3345 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3346 	 * see task_group().
3347 	 *
3348 	 * Furthermore, all task_rq users should acquire both locks, see
3349 	 * task_rq_lock().
3350 	 */
3351 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3352 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3353 #endif
3354 	/*
3355 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3356 	 */
3357 	WARN_ON_ONCE(!cpu_online(new_cpu));
3358 
3359 	WARN_ON_ONCE(is_migration_disabled(p));
3360 #endif
3361 
3362 	trace_sched_migrate_task(p, new_cpu);
3363 
3364 	if (task_cpu(p) != new_cpu) {
3365 		if (p->sched_class->migrate_task_rq)
3366 			p->sched_class->migrate_task_rq(p, new_cpu);
3367 		p->se.nr_migrations++;
3368 		rseq_migrate(p);
3369 		sched_mm_cid_migrate_from(p);
3370 		perf_event_task_migrate(p);
3371 	}
3372 
3373 	__set_task_cpu(p, new_cpu);
3374 }
3375 
3376 #ifdef CONFIG_NUMA_BALANCING
3377 static void __migrate_swap_task(struct task_struct *p, int cpu)
3378 {
3379 	if (task_on_rq_queued(p)) {
3380 		struct rq *src_rq, *dst_rq;
3381 		struct rq_flags srf, drf;
3382 
3383 		src_rq = task_rq(p);
3384 		dst_rq = cpu_rq(cpu);
3385 
3386 		rq_pin_lock(src_rq, &srf);
3387 		rq_pin_lock(dst_rq, &drf);
3388 
3389 		deactivate_task(src_rq, p, 0);
3390 		set_task_cpu(p, cpu);
3391 		activate_task(dst_rq, p, 0);
3392 		check_preempt_curr(dst_rq, p, 0);
3393 
3394 		rq_unpin_lock(dst_rq, &drf);
3395 		rq_unpin_lock(src_rq, &srf);
3396 
3397 	} else {
3398 		/*
3399 		 * Task isn't running anymore; make it appear like we migrated
3400 		 * it before it went to sleep. This means on wakeup we make the
3401 		 * previous CPU our target instead of where it really is.
3402 		 */
3403 		p->wake_cpu = cpu;
3404 	}
3405 }
3406 
3407 struct migration_swap_arg {
3408 	struct task_struct *src_task, *dst_task;
3409 	int src_cpu, dst_cpu;
3410 };
3411 
3412 static int migrate_swap_stop(void *data)
3413 {
3414 	struct migration_swap_arg *arg = data;
3415 	struct rq *src_rq, *dst_rq;
3416 	int ret = -EAGAIN;
3417 
3418 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3419 		return -EAGAIN;
3420 
3421 	src_rq = cpu_rq(arg->src_cpu);
3422 	dst_rq = cpu_rq(arg->dst_cpu);
3423 
3424 	double_raw_lock(&arg->src_task->pi_lock,
3425 			&arg->dst_task->pi_lock);
3426 	double_rq_lock(src_rq, dst_rq);
3427 
3428 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3429 		goto unlock;
3430 
3431 	if (task_cpu(arg->src_task) != arg->src_cpu)
3432 		goto unlock;
3433 
3434 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3435 		goto unlock;
3436 
3437 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3438 		goto unlock;
3439 
3440 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3441 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3442 
3443 	ret = 0;
3444 
3445 unlock:
3446 	double_rq_unlock(src_rq, dst_rq);
3447 	raw_spin_unlock(&arg->dst_task->pi_lock);
3448 	raw_spin_unlock(&arg->src_task->pi_lock);
3449 
3450 	return ret;
3451 }
3452 
3453 /*
3454  * Cross migrate two tasks
3455  */
3456 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3457 		int target_cpu, int curr_cpu)
3458 {
3459 	struct migration_swap_arg arg;
3460 	int ret = -EINVAL;
3461 
3462 	arg = (struct migration_swap_arg){
3463 		.src_task = cur,
3464 		.src_cpu = curr_cpu,
3465 		.dst_task = p,
3466 		.dst_cpu = target_cpu,
3467 	};
3468 
3469 	if (arg.src_cpu == arg.dst_cpu)
3470 		goto out;
3471 
3472 	/*
3473 	 * These three tests are all lockless; this is OK since all of them
3474 	 * will be re-checked with proper locks held further down the line.
3475 	 */
3476 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3477 		goto out;
3478 
3479 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3480 		goto out;
3481 
3482 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3483 		goto out;
3484 
3485 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3486 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3487 
3488 out:
3489 	return ret;
3490 }
3491 #endif /* CONFIG_NUMA_BALANCING */
3492 
3493 /***
3494  * kick_process - kick a running thread to enter/exit the kernel
3495  * @p: the to-be-kicked thread
3496  *
3497  * Cause a process which is running on another CPU to enter
3498  * kernel-mode, without any delay. (to get signals handled.)
3499  *
3500  * NOTE: this function doesn't have to take the runqueue lock,
3501  * because all it wants to ensure is that the remote task enters
3502  * the kernel. If the IPI races and the task has been migrated
3503  * to another CPU then no harm is done and the purpose has been
3504  * achieved as well.
3505  */
3506 void kick_process(struct task_struct *p)
3507 {
3508 	int cpu;
3509 
3510 	preempt_disable();
3511 	cpu = task_cpu(p);
3512 	if ((cpu != smp_processor_id()) && task_curr(p))
3513 		smp_send_reschedule(cpu);
3514 	preempt_enable();
3515 }
3516 EXPORT_SYMBOL_GPL(kick_process);
3517 
3518 /*
3519  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3520  *
3521  * A few notes on cpu_active vs cpu_online:
3522  *
3523  *  - cpu_active must be a subset of cpu_online
3524  *
3525  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3526  *    see __set_cpus_allowed_ptr(). At this point the newly online
3527  *    CPU isn't yet part of the sched domains, and balancing will not
3528  *    see it.
3529  *
3530  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3531  *    avoid the load balancer to place new tasks on the to be removed
3532  *    CPU. Existing tasks will remain running there and will be taken
3533  *    off.
3534  *
3535  * This means that fallback selection must not select !active CPUs.
3536  * And can assume that any active CPU must be online. Conversely
3537  * select_task_rq() below may allow selection of !active CPUs in order
3538  * to satisfy the above rules.
3539  */
3540 static int select_fallback_rq(int cpu, struct task_struct *p)
3541 {
3542 	int nid = cpu_to_node(cpu);
3543 	const struct cpumask *nodemask = NULL;
3544 	enum { cpuset, possible, fail } state = cpuset;
3545 	int dest_cpu;
3546 
3547 	/*
3548 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3549 	 * will return -1. There is no CPU on the node, and we should
3550 	 * select the CPU on the other node.
3551 	 */
3552 	if (nid != -1) {
3553 		nodemask = cpumask_of_node(nid);
3554 
3555 		/* Look for allowed, online CPU in same node. */
3556 		for_each_cpu(dest_cpu, nodemask) {
3557 			if (is_cpu_allowed(p, dest_cpu))
3558 				return dest_cpu;
3559 		}
3560 	}
3561 
3562 	for (;;) {
3563 		/* Any allowed, online CPU? */
3564 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3565 			if (!is_cpu_allowed(p, dest_cpu))
3566 				continue;
3567 
3568 			goto out;
3569 		}
3570 
3571 		/* No more Mr. Nice Guy. */
3572 		switch (state) {
3573 		case cpuset:
3574 			if (cpuset_cpus_allowed_fallback(p)) {
3575 				state = possible;
3576 				break;
3577 			}
3578 			fallthrough;
3579 		case possible:
3580 			/*
3581 			 * XXX When called from select_task_rq() we only
3582 			 * hold p->pi_lock and again violate locking order.
3583 			 *
3584 			 * More yuck to audit.
3585 			 */
3586 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3587 			state = fail;
3588 			break;
3589 		case fail:
3590 			BUG();
3591 			break;
3592 		}
3593 	}
3594 
3595 out:
3596 	if (state != cpuset) {
3597 		/*
3598 		 * Don't tell them about moving exiting tasks or
3599 		 * kernel threads (both mm NULL), since they never
3600 		 * leave kernel.
3601 		 */
3602 		if (p->mm && printk_ratelimit()) {
3603 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3604 					task_pid_nr(p), p->comm, cpu);
3605 		}
3606 	}
3607 
3608 	return dest_cpu;
3609 }
3610 
3611 /*
3612  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3613  */
3614 static inline
3615 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3616 {
3617 	lockdep_assert_held(&p->pi_lock);
3618 
3619 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3620 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3621 	else
3622 		cpu = cpumask_any(p->cpus_ptr);
3623 
3624 	/*
3625 	 * In order not to call set_task_cpu() on a blocking task we need
3626 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3627 	 * CPU.
3628 	 *
3629 	 * Since this is common to all placement strategies, this lives here.
3630 	 *
3631 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3632 	 *   not worry about this generic constraint ]
3633 	 */
3634 	if (unlikely(!is_cpu_allowed(p, cpu)))
3635 		cpu = select_fallback_rq(task_cpu(p), p);
3636 
3637 	return cpu;
3638 }
3639 
3640 void sched_set_stop_task(int cpu, struct task_struct *stop)
3641 {
3642 	static struct lock_class_key stop_pi_lock;
3643 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3644 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3645 
3646 	if (stop) {
3647 		/*
3648 		 * Make it appear like a SCHED_FIFO task, its something
3649 		 * userspace knows about and won't get confused about.
3650 		 *
3651 		 * Also, it will make PI more or less work without too
3652 		 * much confusion -- but then, stop work should not
3653 		 * rely on PI working anyway.
3654 		 */
3655 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3656 
3657 		stop->sched_class = &stop_sched_class;
3658 
3659 		/*
3660 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3661 		 * adjust the effective priority of a task. As a result,
3662 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3663 		 * which can then trigger wakeups of the stop thread to push
3664 		 * around the current task.
3665 		 *
3666 		 * The stop task itself will never be part of the PI-chain, it
3667 		 * never blocks, therefore that ->pi_lock recursion is safe.
3668 		 * Tell lockdep about this by placing the stop->pi_lock in its
3669 		 * own class.
3670 		 */
3671 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3672 	}
3673 
3674 	cpu_rq(cpu)->stop = stop;
3675 
3676 	if (old_stop) {
3677 		/*
3678 		 * Reset it back to a normal scheduling class so that
3679 		 * it can die in pieces.
3680 		 */
3681 		old_stop->sched_class = &rt_sched_class;
3682 	}
3683 }
3684 
3685 #else /* CONFIG_SMP */
3686 
3687 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3688 					 struct affinity_context *ctx)
3689 {
3690 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3691 }
3692 
3693 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3694 
3695 static inline bool rq_has_pinned_tasks(struct rq *rq)
3696 {
3697 	return false;
3698 }
3699 
3700 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3701 {
3702 	return NULL;
3703 }
3704 
3705 #endif /* !CONFIG_SMP */
3706 
3707 static void
3708 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3709 {
3710 	struct rq *rq;
3711 
3712 	if (!schedstat_enabled())
3713 		return;
3714 
3715 	rq = this_rq();
3716 
3717 #ifdef CONFIG_SMP
3718 	if (cpu == rq->cpu) {
3719 		__schedstat_inc(rq->ttwu_local);
3720 		__schedstat_inc(p->stats.nr_wakeups_local);
3721 	} else {
3722 		struct sched_domain *sd;
3723 
3724 		__schedstat_inc(p->stats.nr_wakeups_remote);
3725 		rcu_read_lock();
3726 		for_each_domain(rq->cpu, sd) {
3727 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3728 				__schedstat_inc(sd->ttwu_wake_remote);
3729 				break;
3730 			}
3731 		}
3732 		rcu_read_unlock();
3733 	}
3734 
3735 	if (wake_flags & WF_MIGRATED)
3736 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3737 #endif /* CONFIG_SMP */
3738 
3739 	__schedstat_inc(rq->ttwu_count);
3740 	__schedstat_inc(p->stats.nr_wakeups);
3741 
3742 	if (wake_flags & WF_SYNC)
3743 		__schedstat_inc(p->stats.nr_wakeups_sync);
3744 }
3745 
3746 /*
3747  * Mark the task runnable.
3748  */
3749 static inline void ttwu_do_wakeup(struct task_struct *p)
3750 {
3751 	WRITE_ONCE(p->__state, TASK_RUNNING);
3752 	trace_sched_wakeup(p);
3753 }
3754 
3755 static void
3756 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3757 		 struct rq_flags *rf)
3758 {
3759 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3760 
3761 	lockdep_assert_rq_held(rq);
3762 
3763 	if (p->sched_contributes_to_load)
3764 		rq->nr_uninterruptible--;
3765 
3766 #ifdef CONFIG_SMP
3767 	if (wake_flags & WF_MIGRATED)
3768 		en_flags |= ENQUEUE_MIGRATED;
3769 	else
3770 #endif
3771 	if (p->in_iowait) {
3772 		delayacct_blkio_end(p);
3773 		atomic_dec(&task_rq(p)->nr_iowait);
3774 	}
3775 
3776 	activate_task(rq, p, en_flags);
3777 	check_preempt_curr(rq, p, wake_flags);
3778 
3779 	ttwu_do_wakeup(p);
3780 
3781 #ifdef CONFIG_SMP
3782 	if (p->sched_class->task_woken) {
3783 		/*
3784 		 * Our task @p is fully woken up and running; so it's safe to
3785 		 * drop the rq->lock, hereafter rq is only used for statistics.
3786 		 */
3787 		rq_unpin_lock(rq, rf);
3788 		p->sched_class->task_woken(rq, p);
3789 		rq_repin_lock(rq, rf);
3790 	}
3791 
3792 	if (rq->idle_stamp) {
3793 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3794 		u64 max = 2*rq->max_idle_balance_cost;
3795 
3796 		update_avg(&rq->avg_idle, delta);
3797 
3798 		if (rq->avg_idle > max)
3799 			rq->avg_idle = max;
3800 
3801 		rq->wake_stamp = jiffies;
3802 		rq->wake_avg_idle = rq->avg_idle / 2;
3803 
3804 		rq->idle_stamp = 0;
3805 	}
3806 #endif
3807 }
3808 
3809 /*
3810  * Consider @p being inside a wait loop:
3811  *
3812  *   for (;;) {
3813  *      set_current_state(TASK_UNINTERRUPTIBLE);
3814  *
3815  *      if (CONDITION)
3816  *         break;
3817  *
3818  *      schedule();
3819  *   }
3820  *   __set_current_state(TASK_RUNNING);
3821  *
3822  * between set_current_state() and schedule(). In this case @p is still
3823  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3824  * an atomic manner.
3825  *
3826  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3827  * then schedule() must still happen and p->state can be changed to
3828  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3829  * need to do a full wakeup with enqueue.
3830  *
3831  * Returns: %true when the wakeup is done,
3832  *          %false otherwise.
3833  */
3834 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3835 {
3836 	struct rq_flags rf;
3837 	struct rq *rq;
3838 	int ret = 0;
3839 
3840 	rq = __task_rq_lock(p, &rf);
3841 	if (task_on_rq_queued(p)) {
3842 		if (!task_on_cpu(rq, p)) {
3843 			/*
3844 			 * When on_rq && !on_cpu the task is preempted, see if
3845 			 * it should preempt the task that is current now.
3846 			 */
3847 			update_rq_clock(rq);
3848 			check_preempt_curr(rq, p, wake_flags);
3849 		}
3850 		ttwu_do_wakeup(p);
3851 		ret = 1;
3852 	}
3853 	__task_rq_unlock(rq, &rf);
3854 
3855 	return ret;
3856 }
3857 
3858 #ifdef CONFIG_SMP
3859 void sched_ttwu_pending(void *arg)
3860 {
3861 	struct llist_node *llist = arg;
3862 	struct rq *rq = this_rq();
3863 	struct task_struct *p, *t;
3864 	struct rq_flags rf;
3865 
3866 	if (!llist)
3867 		return;
3868 
3869 	rq_lock_irqsave(rq, &rf);
3870 	update_rq_clock(rq);
3871 
3872 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3873 		if (WARN_ON_ONCE(p->on_cpu))
3874 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3875 
3876 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3877 			set_task_cpu(p, cpu_of(rq));
3878 
3879 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3880 	}
3881 
3882 	/*
3883 	 * Must be after enqueueing at least once task such that
3884 	 * idle_cpu() does not observe a false-negative -- if it does,
3885 	 * it is possible for select_idle_siblings() to stack a number
3886 	 * of tasks on this CPU during that window.
3887 	 *
3888 	 * It is ok to clear ttwu_pending when another task pending.
3889 	 * We will receive IPI after local irq enabled and then enqueue it.
3890 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3891 	 */
3892 	WRITE_ONCE(rq->ttwu_pending, 0);
3893 	rq_unlock_irqrestore(rq, &rf);
3894 }
3895 
3896 /*
3897  * Prepare the scene for sending an IPI for a remote smp_call
3898  *
3899  * Returns true if the caller can proceed with sending the IPI.
3900  * Returns false otherwise.
3901  */
3902 bool call_function_single_prep_ipi(int cpu)
3903 {
3904 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3905 		trace_sched_wake_idle_without_ipi(cpu);
3906 		return false;
3907 	}
3908 
3909 	return true;
3910 }
3911 
3912 /*
3913  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3914  * necessary. The wakee CPU on receipt of the IPI will queue the task
3915  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3916  * of the wakeup instead of the waker.
3917  */
3918 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3919 {
3920 	struct rq *rq = cpu_rq(cpu);
3921 
3922 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3923 
3924 	WRITE_ONCE(rq->ttwu_pending, 1);
3925 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3926 }
3927 
3928 void wake_up_if_idle(int cpu)
3929 {
3930 	struct rq *rq = cpu_rq(cpu);
3931 	struct rq_flags rf;
3932 
3933 	rcu_read_lock();
3934 
3935 	if (!is_idle_task(rcu_dereference(rq->curr)))
3936 		goto out;
3937 
3938 	rq_lock_irqsave(rq, &rf);
3939 	if (is_idle_task(rq->curr))
3940 		resched_curr(rq);
3941 	/* Else CPU is not idle, do nothing here: */
3942 	rq_unlock_irqrestore(rq, &rf);
3943 
3944 out:
3945 	rcu_read_unlock();
3946 }
3947 
3948 bool cpus_share_cache(int this_cpu, int that_cpu)
3949 {
3950 	if (this_cpu == that_cpu)
3951 		return true;
3952 
3953 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3954 }
3955 
3956 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3957 {
3958 	/*
3959 	 * Do not complicate things with the async wake_list while the CPU is
3960 	 * in hotplug state.
3961 	 */
3962 	if (!cpu_active(cpu))
3963 		return false;
3964 
3965 	/* Ensure the task will still be allowed to run on the CPU. */
3966 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3967 		return false;
3968 
3969 	/*
3970 	 * If the CPU does not share cache, then queue the task on the
3971 	 * remote rqs wakelist to avoid accessing remote data.
3972 	 */
3973 	if (!cpus_share_cache(smp_processor_id(), cpu))
3974 		return true;
3975 
3976 	if (cpu == smp_processor_id())
3977 		return false;
3978 
3979 	/*
3980 	 * If the wakee cpu is idle, or the task is descheduling and the
3981 	 * only running task on the CPU, then use the wakelist to offload
3982 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3983 	 * the current CPU is likely busy. nr_running is checked to
3984 	 * avoid unnecessary task stacking.
3985 	 *
3986 	 * Note that we can only get here with (wakee) p->on_rq=0,
3987 	 * p->on_cpu can be whatever, we've done the dequeue, so
3988 	 * the wakee has been accounted out of ->nr_running.
3989 	 */
3990 	if (!cpu_rq(cpu)->nr_running)
3991 		return true;
3992 
3993 	return false;
3994 }
3995 
3996 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3997 {
3998 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3999 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4000 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4001 		return true;
4002 	}
4003 
4004 	return false;
4005 }
4006 
4007 #else /* !CONFIG_SMP */
4008 
4009 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4010 {
4011 	return false;
4012 }
4013 
4014 #endif /* CONFIG_SMP */
4015 
4016 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4017 {
4018 	struct rq *rq = cpu_rq(cpu);
4019 	struct rq_flags rf;
4020 
4021 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4022 		return;
4023 
4024 	rq_lock(rq, &rf);
4025 	update_rq_clock(rq);
4026 	ttwu_do_activate(rq, p, wake_flags, &rf);
4027 	rq_unlock(rq, &rf);
4028 }
4029 
4030 /*
4031  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4032  *
4033  * The caller holds p::pi_lock if p != current or has preemption
4034  * disabled when p == current.
4035  *
4036  * The rules of PREEMPT_RT saved_state:
4037  *
4038  *   The related locking code always holds p::pi_lock when updating
4039  *   p::saved_state, which means the code is fully serialized in both cases.
4040  *
4041  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4042  *   bits set. This allows to distinguish all wakeup scenarios.
4043  */
4044 static __always_inline
4045 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4046 {
4047 	int match;
4048 
4049 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4050 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4051 			     state != TASK_RTLOCK_WAIT);
4052 	}
4053 
4054 	*success = !!(match = __task_state_match(p, state));
4055 
4056 #ifdef CONFIG_PREEMPT_RT
4057 	/*
4058 	 * Saved state preserves the task state across blocking on
4059 	 * an RT lock.  If the state matches, set p::saved_state to
4060 	 * TASK_RUNNING, but do not wake the task because it waits
4061 	 * for a lock wakeup. Also indicate success because from
4062 	 * the regular waker's point of view this has succeeded.
4063 	 *
4064 	 * After acquiring the lock the task will restore p::__state
4065 	 * from p::saved_state which ensures that the regular
4066 	 * wakeup is not lost. The restore will also set
4067 	 * p::saved_state to TASK_RUNNING so any further tests will
4068 	 * not result in false positives vs. @success
4069 	 */
4070 	if (match < 0)
4071 		p->saved_state = TASK_RUNNING;
4072 #endif
4073 	return match > 0;
4074 }
4075 
4076 /*
4077  * Notes on Program-Order guarantees on SMP systems.
4078  *
4079  *  MIGRATION
4080  *
4081  * The basic program-order guarantee on SMP systems is that when a task [t]
4082  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4083  * execution on its new CPU [c1].
4084  *
4085  * For migration (of runnable tasks) this is provided by the following means:
4086  *
4087  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4088  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4089  *     rq(c1)->lock (if not at the same time, then in that order).
4090  *  C) LOCK of the rq(c1)->lock scheduling in task
4091  *
4092  * Release/acquire chaining guarantees that B happens after A and C after B.
4093  * Note: the CPU doing B need not be c0 or c1
4094  *
4095  * Example:
4096  *
4097  *   CPU0            CPU1            CPU2
4098  *
4099  *   LOCK rq(0)->lock
4100  *   sched-out X
4101  *   sched-in Y
4102  *   UNLOCK rq(0)->lock
4103  *
4104  *                                   LOCK rq(0)->lock // orders against CPU0
4105  *                                   dequeue X
4106  *                                   UNLOCK rq(0)->lock
4107  *
4108  *                                   LOCK rq(1)->lock
4109  *                                   enqueue X
4110  *                                   UNLOCK rq(1)->lock
4111  *
4112  *                   LOCK rq(1)->lock // orders against CPU2
4113  *                   sched-out Z
4114  *                   sched-in X
4115  *                   UNLOCK rq(1)->lock
4116  *
4117  *
4118  *  BLOCKING -- aka. SLEEP + WAKEUP
4119  *
4120  * For blocking we (obviously) need to provide the same guarantee as for
4121  * migration. However the means are completely different as there is no lock
4122  * chain to provide order. Instead we do:
4123  *
4124  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4125  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4126  *
4127  * Example:
4128  *
4129  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4130  *
4131  *   LOCK rq(0)->lock LOCK X->pi_lock
4132  *   dequeue X
4133  *   sched-out X
4134  *   smp_store_release(X->on_cpu, 0);
4135  *
4136  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4137  *                    X->state = WAKING
4138  *                    set_task_cpu(X,2)
4139  *
4140  *                    LOCK rq(2)->lock
4141  *                    enqueue X
4142  *                    X->state = RUNNING
4143  *                    UNLOCK rq(2)->lock
4144  *
4145  *                                          LOCK rq(2)->lock // orders against CPU1
4146  *                                          sched-out Z
4147  *                                          sched-in X
4148  *                                          UNLOCK rq(2)->lock
4149  *
4150  *                    UNLOCK X->pi_lock
4151  *   UNLOCK rq(0)->lock
4152  *
4153  *
4154  * However, for wakeups there is a second guarantee we must provide, namely we
4155  * must ensure that CONDITION=1 done by the caller can not be reordered with
4156  * accesses to the task state; see try_to_wake_up() and set_current_state().
4157  */
4158 
4159 /**
4160  * try_to_wake_up - wake up a thread
4161  * @p: the thread to be awakened
4162  * @state: the mask of task states that can be woken
4163  * @wake_flags: wake modifier flags (WF_*)
4164  *
4165  * Conceptually does:
4166  *
4167  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4168  *
4169  * If the task was not queued/runnable, also place it back on a runqueue.
4170  *
4171  * This function is atomic against schedule() which would dequeue the task.
4172  *
4173  * It issues a full memory barrier before accessing @p->state, see the comment
4174  * with set_current_state().
4175  *
4176  * Uses p->pi_lock to serialize against concurrent wake-ups.
4177  *
4178  * Relies on p->pi_lock stabilizing:
4179  *  - p->sched_class
4180  *  - p->cpus_ptr
4181  *  - p->sched_task_group
4182  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4183  *
4184  * Tries really hard to only take one task_rq(p)->lock for performance.
4185  * Takes rq->lock in:
4186  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4187  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4188  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4189  *
4190  * As a consequence we race really badly with just about everything. See the
4191  * many memory barriers and their comments for details.
4192  *
4193  * Return: %true if @p->state changes (an actual wakeup was done),
4194  *	   %false otherwise.
4195  */
4196 static int
4197 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4198 {
4199 	unsigned long flags;
4200 	int cpu, success = 0;
4201 
4202 	preempt_disable();
4203 	if (p == current) {
4204 		/*
4205 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4206 		 * == smp_processor_id()'. Together this means we can special
4207 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4208 		 * without taking any locks.
4209 		 *
4210 		 * In particular:
4211 		 *  - we rely on Program-Order guarantees for all the ordering,
4212 		 *  - we're serialized against set_special_state() by virtue of
4213 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4214 		 */
4215 		if (!ttwu_state_match(p, state, &success))
4216 			goto out;
4217 
4218 		trace_sched_waking(p);
4219 		ttwu_do_wakeup(p);
4220 		goto out;
4221 	}
4222 
4223 	/*
4224 	 * If we are going to wake up a thread waiting for CONDITION we
4225 	 * need to ensure that CONDITION=1 done by the caller can not be
4226 	 * reordered with p->state check below. This pairs with smp_store_mb()
4227 	 * in set_current_state() that the waiting thread does.
4228 	 */
4229 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4230 	smp_mb__after_spinlock();
4231 	if (!ttwu_state_match(p, state, &success))
4232 		goto unlock;
4233 
4234 	trace_sched_waking(p);
4235 
4236 	/*
4237 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4238 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4239 	 * in smp_cond_load_acquire() below.
4240 	 *
4241 	 * sched_ttwu_pending()			try_to_wake_up()
4242 	 *   STORE p->on_rq = 1			  LOAD p->state
4243 	 *   UNLOCK rq->lock
4244 	 *
4245 	 * __schedule() (switch to task 'p')
4246 	 *   LOCK rq->lock			  smp_rmb();
4247 	 *   smp_mb__after_spinlock();
4248 	 *   UNLOCK rq->lock
4249 	 *
4250 	 * [task p]
4251 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4252 	 *
4253 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4254 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4255 	 *
4256 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4257 	 */
4258 	smp_rmb();
4259 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4260 		goto unlock;
4261 
4262 #ifdef CONFIG_SMP
4263 	/*
4264 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4265 	 * possible to, falsely, observe p->on_cpu == 0.
4266 	 *
4267 	 * One must be running (->on_cpu == 1) in order to remove oneself
4268 	 * from the runqueue.
4269 	 *
4270 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4271 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4272 	 *   UNLOCK rq->lock
4273 	 *
4274 	 * __schedule() (put 'p' to sleep)
4275 	 *   LOCK rq->lock			  smp_rmb();
4276 	 *   smp_mb__after_spinlock();
4277 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4278 	 *
4279 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4280 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4281 	 *
4282 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4283 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4284 	 * care about it's own p->state. See the comment in __schedule().
4285 	 */
4286 	smp_acquire__after_ctrl_dep();
4287 
4288 	/*
4289 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4290 	 * == 0), which means we need to do an enqueue, change p->state to
4291 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4292 	 * enqueue, such as ttwu_queue_wakelist().
4293 	 */
4294 	WRITE_ONCE(p->__state, TASK_WAKING);
4295 
4296 	/*
4297 	 * If the owning (remote) CPU is still in the middle of schedule() with
4298 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4299 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4300 	 * let the waker make forward progress. This is safe because IRQs are
4301 	 * disabled and the IPI will deliver after on_cpu is cleared.
4302 	 *
4303 	 * Ensure we load task_cpu(p) after p->on_cpu:
4304 	 *
4305 	 * set_task_cpu(p, cpu);
4306 	 *   STORE p->cpu = @cpu
4307 	 * __schedule() (switch to task 'p')
4308 	 *   LOCK rq->lock
4309 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4310 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4311 	 *
4312 	 * to ensure we observe the correct CPU on which the task is currently
4313 	 * scheduling.
4314 	 */
4315 	if (smp_load_acquire(&p->on_cpu) &&
4316 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4317 		goto unlock;
4318 
4319 	/*
4320 	 * If the owning (remote) CPU is still in the middle of schedule() with
4321 	 * this task as prev, wait until it's done referencing the task.
4322 	 *
4323 	 * Pairs with the smp_store_release() in finish_task().
4324 	 *
4325 	 * This ensures that tasks getting woken will be fully ordered against
4326 	 * their previous state and preserve Program Order.
4327 	 */
4328 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4329 
4330 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4331 	if (task_cpu(p) != cpu) {
4332 		if (p->in_iowait) {
4333 			delayacct_blkio_end(p);
4334 			atomic_dec(&task_rq(p)->nr_iowait);
4335 		}
4336 
4337 		wake_flags |= WF_MIGRATED;
4338 		psi_ttwu_dequeue(p);
4339 		set_task_cpu(p, cpu);
4340 	}
4341 #else
4342 	cpu = task_cpu(p);
4343 #endif /* CONFIG_SMP */
4344 
4345 	ttwu_queue(p, cpu, wake_flags);
4346 unlock:
4347 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4348 out:
4349 	if (success)
4350 		ttwu_stat(p, task_cpu(p), wake_flags);
4351 	preempt_enable();
4352 
4353 	return success;
4354 }
4355 
4356 static bool __task_needs_rq_lock(struct task_struct *p)
4357 {
4358 	unsigned int state = READ_ONCE(p->__state);
4359 
4360 	/*
4361 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4362 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4363 	 * locks at the end, see ttwu_queue_wakelist().
4364 	 */
4365 	if (state == TASK_RUNNING || state == TASK_WAKING)
4366 		return true;
4367 
4368 	/*
4369 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4370 	 * possible to, falsely, observe p->on_rq == 0.
4371 	 *
4372 	 * See try_to_wake_up() for a longer comment.
4373 	 */
4374 	smp_rmb();
4375 	if (p->on_rq)
4376 		return true;
4377 
4378 #ifdef CONFIG_SMP
4379 	/*
4380 	 * Ensure the task has finished __schedule() and will not be referenced
4381 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4382 	 */
4383 	smp_rmb();
4384 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4385 #endif
4386 
4387 	return false;
4388 }
4389 
4390 /**
4391  * task_call_func - Invoke a function on task in fixed state
4392  * @p: Process for which the function is to be invoked, can be @current.
4393  * @func: Function to invoke.
4394  * @arg: Argument to function.
4395  *
4396  * Fix the task in it's current state by avoiding wakeups and or rq operations
4397  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4398  * to work out what the state is, if required.  Given that @func can be invoked
4399  * with a runqueue lock held, it had better be quite lightweight.
4400  *
4401  * Returns:
4402  *   Whatever @func returns
4403  */
4404 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4405 {
4406 	struct rq *rq = NULL;
4407 	struct rq_flags rf;
4408 	int ret;
4409 
4410 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4411 
4412 	if (__task_needs_rq_lock(p))
4413 		rq = __task_rq_lock(p, &rf);
4414 
4415 	/*
4416 	 * At this point the task is pinned; either:
4417 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4418 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4419 	 *  - queued, and we're holding off schedule	 (rq->lock)
4420 	 *  - running, and we're holding off de-schedule (rq->lock)
4421 	 *
4422 	 * The called function (@func) can use: task_curr(), p->on_rq and
4423 	 * p->__state to differentiate between these states.
4424 	 */
4425 	ret = func(p, arg);
4426 
4427 	if (rq)
4428 		rq_unlock(rq, &rf);
4429 
4430 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4431 	return ret;
4432 }
4433 
4434 /**
4435  * cpu_curr_snapshot - Return a snapshot of the currently running task
4436  * @cpu: The CPU on which to snapshot the task.
4437  *
4438  * Returns the task_struct pointer of the task "currently" running on
4439  * the specified CPU.  If the same task is running on that CPU throughout,
4440  * the return value will be a pointer to that task's task_struct structure.
4441  * If the CPU did any context switches even vaguely concurrently with the
4442  * execution of this function, the return value will be a pointer to the
4443  * task_struct structure of a randomly chosen task that was running on
4444  * that CPU somewhere around the time that this function was executing.
4445  *
4446  * If the specified CPU was offline, the return value is whatever it
4447  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4448  * task, but there is no guarantee.  Callers wishing a useful return
4449  * value must take some action to ensure that the specified CPU remains
4450  * online throughout.
4451  *
4452  * This function executes full memory barriers before and after fetching
4453  * the pointer, which permits the caller to confine this function's fetch
4454  * with respect to the caller's accesses to other shared variables.
4455  */
4456 struct task_struct *cpu_curr_snapshot(int cpu)
4457 {
4458 	struct task_struct *t;
4459 
4460 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4461 	t = rcu_dereference(cpu_curr(cpu));
4462 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4463 	return t;
4464 }
4465 
4466 /**
4467  * wake_up_process - Wake up a specific process
4468  * @p: The process to be woken up.
4469  *
4470  * Attempt to wake up the nominated process and move it to the set of runnable
4471  * processes.
4472  *
4473  * Return: 1 if the process was woken up, 0 if it was already running.
4474  *
4475  * This function executes a full memory barrier before accessing the task state.
4476  */
4477 int wake_up_process(struct task_struct *p)
4478 {
4479 	return try_to_wake_up(p, TASK_NORMAL, 0);
4480 }
4481 EXPORT_SYMBOL(wake_up_process);
4482 
4483 int wake_up_state(struct task_struct *p, unsigned int state)
4484 {
4485 	return try_to_wake_up(p, state, 0);
4486 }
4487 
4488 /*
4489  * Perform scheduler related setup for a newly forked process p.
4490  * p is forked by current.
4491  *
4492  * __sched_fork() is basic setup used by init_idle() too:
4493  */
4494 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4495 {
4496 	p->on_rq			= 0;
4497 
4498 	p->se.on_rq			= 0;
4499 	p->se.exec_start		= 0;
4500 	p->se.sum_exec_runtime		= 0;
4501 	p->se.prev_sum_exec_runtime	= 0;
4502 	p->se.nr_migrations		= 0;
4503 	p->se.vruntime			= 0;
4504 	INIT_LIST_HEAD(&p->se.group_node);
4505 
4506 #ifdef CONFIG_FAIR_GROUP_SCHED
4507 	p->se.cfs_rq			= NULL;
4508 #endif
4509 
4510 #ifdef CONFIG_SCHEDSTATS
4511 	/* Even if schedstat is disabled, there should not be garbage */
4512 	memset(&p->stats, 0, sizeof(p->stats));
4513 #endif
4514 
4515 	RB_CLEAR_NODE(&p->dl.rb_node);
4516 	init_dl_task_timer(&p->dl);
4517 	init_dl_inactive_task_timer(&p->dl);
4518 	__dl_clear_params(p);
4519 
4520 	INIT_LIST_HEAD(&p->rt.run_list);
4521 	p->rt.timeout		= 0;
4522 	p->rt.time_slice	= sched_rr_timeslice;
4523 	p->rt.on_rq		= 0;
4524 	p->rt.on_list		= 0;
4525 
4526 #ifdef CONFIG_PREEMPT_NOTIFIERS
4527 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4528 #endif
4529 
4530 #ifdef CONFIG_COMPACTION
4531 	p->capture_control = NULL;
4532 #endif
4533 	init_numa_balancing(clone_flags, p);
4534 #ifdef CONFIG_SMP
4535 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4536 	p->migration_pending = NULL;
4537 #endif
4538 	init_sched_mm_cid(p);
4539 }
4540 
4541 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4542 
4543 #ifdef CONFIG_NUMA_BALANCING
4544 
4545 int sysctl_numa_balancing_mode;
4546 
4547 static void __set_numabalancing_state(bool enabled)
4548 {
4549 	if (enabled)
4550 		static_branch_enable(&sched_numa_balancing);
4551 	else
4552 		static_branch_disable(&sched_numa_balancing);
4553 }
4554 
4555 void set_numabalancing_state(bool enabled)
4556 {
4557 	if (enabled)
4558 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4559 	else
4560 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4561 	__set_numabalancing_state(enabled);
4562 }
4563 
4564 #ifdef CONFIG_PROC_SYSCTL
4565 static void reset_memory_tiering(void)
4566 {
4567 	struct pglist_data *pgdat;
4568 
4569 	for_each_online_pgdat(pgdat) {
4570 		pgdat->nbp_threshold = 0;
4571 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4572 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4573 	}
4574 }
4575 
4576 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4577 			  void *buffer, size_t *lenp, loff_t *ppos)
4578 {
4579 	struct ctl_table t;
4580 	int err;
4581 	int state = sysctl_numa_balancing_mode;
4582 
4583 	if (write && !capable(CAP_SYS_ADMIN))
4584 		return -EPERM;
4585 
4586 	t = *table;
4587 	t.data = &state;
4588 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4589 	if (err < 0)
4590 		return err;
4591 	if (write) {
4592 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4593 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4594 			reset_memory_tiering();
4595 		sysctl_numa_balancing_mode = state;
4596 		__set_numabalancing_state(state);
4597 	}
4598 	return err;
4599 }
4600 #endif
4601 #endif
4602 
4603 #ifdef CONFIG_SCHEDSTATS
4604 
4605 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4606 
4607 static void set_schedstats(bool enabled)
4608 {
4609 	if (enabled)
4610 		static_branch_enable(&sched_schedstats);
4611 	else
4612 		static_branch_disable(&sched_schedstats);
4613 }
4614 
4615 void force_schedstat_enabled(void)
4616 {
4617 	if (!schedstat_enabled()) {
4618 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4619 		static_branch_enable(&sched_schedstats);
4620 	}
4621 }
4622 
4623 static int __init setup_schedstats(char *str)
4624 {
4625 	int ret = 0;
4626 	if (!str)
4627 		goto out;
4628 
4629 	if (!strcmp(str, "enable")) {
4630 		set_schedstats(true);
4631 		ret = 1;
4632 	} else if (!strcmp(str, "disable")) {
4633 		set_schedstats(false);
4634 		ret = 1;
4635 	}
4636 out:
4637 	if (!ret)
4638 		pr_warn("Unable to parse schedstats=\n");
4639 
4640 	return ret;
4641 }
4642 __setup("schedstats=", setup_schedstats);
4643 
4644 #ifdef CONFIG_PROC_SYSCTL
4645 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4646 		size_t *lenp, loff_t *ppos)
4647 {
4648 	struct ctl_table t;
4649 	int err;
4650 	int state = static_branch_likely(&sched_schedstats);
4651 
4652 	if (write && !capable(CAP_SYS_ADMIN))
4653 		return -EPERM;
4654 
4655 	t = *table;
4656 	t.data = &state;
4657 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4658 	if (err < 0)
4659 		return err;
4660 	if (write)
4661 		set_schedstats(state);
4662 	return err;
4663 }
4664 #endif /* CONFIG_PROC_SYSCTL */
4665 #endif /* CONFIG_SCHEDSTATS */
4666 
4667 #ifdef CONFIG_SYSCTL
4668 static struct ctl_table sched_core_sysctls[] = {
4669 #ifdef CONFIG_SCHEDSTATS
4670 	{
4671 		.procname       = "sched_schedstats",
4672 		.data           = NULL,
4673 		.maxlen         = sizeof(unsigned int),
4674 		.mode           = 0644,
4675 		.proc_handler   = sysctl_schedstats,
4676 		.extra1         = SYSCTL_ZERO,
4677 		.extra2         = SYSCTL_ONE,
4678 	},
4679 #endif /* CONFIG_SCHEDSTATS */
4680 #ifdef CONFIG_UCLAMP_TASK
4681 	{
4682 		.procname       = "sched_util_clamp_min",
4683 		.data           = &sysctl_sched_uclamp_util_min,
4684 		.maxlen         = sizeof(unsigned int),
4685 		.mode           = 0644,
4686 		.proc_handler   = sysctl_sched_uclamp_handler,
4687 	},
4688 	{
4689 		.procname       = "sched_util_clamp_max",
4690 		.data           = &sysctl_sched_uclamp_util_max,
4691 		.maxlen         = sizeof(unsigned int),
4692 		.mode           = 0644,
4693 		.proc_handler   = sysctl_sched_uclamp_handler,
4694 	},
4695 	{
4696 		.procname       = "sched_util_clamp_min_rt_default",
4697 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4698 		.maxlen         = sizeof(unsigned int),
4699 		.mode           = 0644,
4700 		.proc_handler   = sysctl_sched_uclamp_handler,
4701 	},
4702 #endif /* CONFIG_UCLAMP_TASK */
4703 #ifdef CONFIG_NUMA_BALANCING
4704 	{
4705 		.procname	= "numa_balancing",
4706 		.data		= NULL, /* filled in by handler */
4707 		.maxlen		= sizeof(unsigned int),
4708 		.mode		= 0644,
4709 		.proc_handler	= sysctl_numa_balancing,
4710 		.extra1		= SYSCTL_ZERO,
4711 		.extra2		= SYSCTL_FOUR,
4712 	},
4713 #endif /* CONFIG_NUMA_BALANCING */
4714 	{}
4715 };
4716 static int __init sched_core_sysctl_init(void)
4717 {
4718 	register_sysctl_init("kernel", sched_core_sysctls);
4719 	return 0;
4720 }
4721 late_initcall(sched_core_sysctl_init);
4722 #endif /* CONFIG_SYSCTL */
4723 
4724 /*
4725  * fork()/clone()-time setup:
4726  */
4727 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4728 {
4729 	__sched_fork(clone_flags, p);
4730 	/*
4731 	 * We mark the process as NEW here. This guarantees that
4732 	 * nobody will actually run it, and a signal or other external
4733 	 * event cannot wake it up and insert it on the runqueue either.
4734 	 */
4735 	p->__state = TASK_NEW;
4736 
4737 	/*
4738 	 * Make sure we do not leak PI boosting priority to the child.
4739 	 */
4740 	p->prio = current->normal_prio;
4741 
4742 	uclamp_fork(p);
4743 
4744 	/*
4745 	 * Revert to default priority/policy on fork if requested.
4746 	 */
4747 	if (unlikely(p->sched_reset_on_fork)) {
4748 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4749 			p->policy = SCHED_NORMAL;
4750 			p->static_prio = NICE_TO_PRIO(0);
4751 			p->rt_priority = 0;
4752 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4753 			p->static_prio = NICE_TO_PRIO(0);
4754 
4755 		p->prio = p->normal_prio = p->static_prio;
4756 		set_load_weight(p, false);
4757 
4758 		/*
4759 		 * We don't need the reset flag anymore after the fork. It has
4760 		 * fulfilled its duty:
4761 		 */
4762 		p->sched_reset_on_fork = 0;
4763 	}
4764 
4765 	if (dl_prio(p->prio))
4766 		return -EAGAIN;
4767 	else if (rt_prio(p->prio))
4768 		p->sched_class = &rt_sched_class;
4769 	else
4770 		p->sched_class = &fair_sched_class;
4771 
4772 	init_entity_runnable_average(&p->se);
4773 
4774 
4775 #ifdef CONFIG_SCHED_INFO
4776 	if (likely(sched_info_on()))
4777 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4778 #endif
4779 #if defined(CONFIG_SMP)
4780 	p->on_cpu = 0;
4781 #endif
4782 	init_task_preempt_count(p);
4783 #ifdef CONFIG_SMP
4784 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4785 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4786 #endif
4787 	return 0;
4788 }
4789 
4790 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4791 {
4792 	unsigned long flags;
4793 
4794 	/*
4795 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4796 	 * required yet, but lockdep gets upset if rules are violated.
4797 	 */
4798 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4799 #ifdef CONFIG_CGROUP_SCHED
4800 	if (1) {
4801 		struct task_group *tg;
4802 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4803 				  struct task_group, css);
4804 		tg = autogroup_task_group(p, tg);
4805 		p->sched_task_group = tg;
4806 	}
4807 #endif
4808 	rseq_migrate(p);
4809 	/*
4810 	 * We're setting the CPU for the first time, we don't migrate,
4811 	 * so use __set_task_cpu().
4812 	 */
4813 	__set_task_cpu(p, smp_processor_id());
4814 	if (p->sched_class->task_fork)
4815 		p->sched_class->task_fork(p);
4816 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4817 }
4818 
4819 void sched_post_fork(struct task_struct *p)
4820 {
4821 	uclamp_post_fork(p);
4822 }
4823 
4824 unsigned long to_ratio(u64 period, u64 runtime)
4825 {
4826 	if (runtime == RUNTIME_INF)
4827 		return BW_UNIT;
4828 
4829 	/*
4830 	 * Doing this here saves a lot of checks in all
4831 	 * the calling paths, and returning zero seems
4832 	 * safe for them anyway.
4833 	 */
4834 	if (period == 0)
4835 		return 0;
4836 
4837 	return div64_u64(runtime << BW_SHIFT, period);
4838 }
4839 
4840 /*
4841  * wake_up_new_task - wake up a newly created task for the first time.
4842  *
4843  * This function will do some initial scheduler statistics housekeeping
4844  * that must be done for every newly created context, then puts the task
4845  * on the runqueue and wakes it.
4846  */
4847 void wake_up_new_task(struct task_struct *p)
4848 {
4849 	struct rq_flags rf;
4850 	struct rq *rq;
4851 
4852 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4853 	WRITE_ONCE(p->__state, TASK_RUNNING);
4854 #ifdef CONFIG_SMP
4855 	/*
4856 	 * Fork balancing, do it here and not earlier because:
4857 	 *  - cpus_ptr can change in the fork path
4858 	 *  - any previously selected CPU might disappear through hotplug
4859 	 *
4860 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4861 	 * as we're not fully set-up yet.
4862 	 */
4863 	p->recent_used_cpu = task_cpu(p);
4864 	rseq_migrate(p);
4865 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4866 #endif
4867 	rq = __task_rq_lock(p, &rf);
4868 	update_rq_clock(rq);
4869 	post_init_entity_util_avg(p);
4870 
4871 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4872 	trace_sched_wakeup_new(p);
4873 	check_preempt_curr(rq, p, WF_FORK);
4874 #ifdef CONFIG_SMP
4875 	if (p->sched_class->task_woken) {
4876 		/*
4877 		 * Nothing relies on rq->lock after this, so it's fine to
4878 		 * drop it.
4879 		 */
4880 		rq_unpin_lock(rq, &rf);
4881 		p->sched_class->task_woken(rq, p);
4882 		rq_repin_lock(rq, &rf);
4883 	}
4884 #endif
4885 	task_rq_unlock(rq, p, &rf);
4886 }
4887 
4888 #ifdef CONFIG_PREEMPT_NOTIFIERS
4889 
4890 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4891 
4892 void preempt_notifier_inc(void)
4893 {
4894 	static_branch_inc(&preempt_notifier_key);
4895 }
4896 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4897 
4898 void preempt_notifier_dec(void)
4899 {
4900 	static_branch_dec(&preempt_notifier_key);
4901 }
4902 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4903 
4904 /**
4905  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4906  * @notifier: notifier struct to register
4907  */
4908 void preempt_notifier_register(struct preempt_notifier *notifier)
4909 {
4910 	if (!static_branch_unlikely(&preempt_notifier_key))
4911 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4912 
4913 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4914 }
4915 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4916 
4917 /**
4918  * preempt_notifier_unregister - no longer interested in preemption notifications
4919  * @notifier: notifier struct to unregister
4920  *
4921  * This is *not* safe to call from within a preemption notifier.
4922  */
4923 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4924 {
4925 	hlist_del(&notifier->link);
4926 }
4927 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4928 
4929 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4930 {
4931 	struct preempt_notifier *notifier;
4932 
4933 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4934 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4935 }
4936 
4937 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4938 {
4939 	if (static_branch_unlikely(&preempt_notifier_key))
4940 		__fire_sched_in_preempt_notifiers(curr);
4941 }
4942 
4943 static void
4944 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4945 				   struct task_struct *next)
4946 {
4947 	struct preempt_notifier *notifier;
4948 
4949 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4950 		notifier->ops->sched_out(notifier, next);
4951 }
4952 
4953 static __always_inline void
4954 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4955 				 struct task_struct *next)
4956 {
4957 	if (static_branch_unlikely(&preempt_notifier_key))
4958 		__fire_sched_out_preempt_notifiers(curr, next);
4959 }
4960 
4961 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4962 
4963 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4964 {
4965 }
4966 
4967 static inline void
4968 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4969 				 struct task_struct *next)
4970 {
4971 }
4972 
4973 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4974 
4975 static inline void prepare_task(struct task_struct *next)
4976 {
4977 #ifdef CONFIG_SMP
4978 	/*
4979 	 * Claim the task as running, we do this before switching to it
4980 	 * such that any running task will have this set.
4981 	 *
4982 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4983 	 * its ordering comment.
4984 	 */
4985 	WRITE_ONCE(next->on_cpu, 1);
4986 #endif
4987 }
4988 
4989 static inline void finish_task(struct task_struct *prev)
4990 {
4991 #ifdef CONFIG_SMP
4992 	/*
4993 	 * This must be the very last reference to @prev from this CPU. After
4994 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4995 	 * must ensure this doesn't happen until the switch is completely
4996 	 * finished.
4997 	 *
4998 	 * In particular, the load of prev->state in finish_task_switch() must
4999 	 * happen before this.
5000 	 *
5001 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5002 	 */
5003 	smp_store_release(&prev->on_cpu, 0);
5004 #endif
5005 }
5006 
5007 #ifdef CONFIG_SMP
5008 
5009 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5010 {
5011 	void (*func)(struct rq *rq);
5012 	struct balance_callback *next;
5013 
5014 	lockdep_assert_rq_held(rq);
5015 
5016 	while (head) {
5017 		func = (void (*)(struct rq *))head->func;
5018 		next = head->next;
5019 		head->next = NULL;
5020 		head = next;
5021 
5022 		func(rq);
5023 	}
5024 }
5025 
5026 static void balance_push(struct rq *rq);
5027 
5028 /*
5029  * balance_push_callback is a right abuse of the callback interface and plays
5030  * by significantly different rules.
5031  *
5032  * Where the normal balance_callback's purpose is to be ran in the same context
5033  * that queued it (only later, when it's safe to drop rq->lock again),
5034  * balance_push_callback is specifically targeted at __schedule().
5035  *
5036  * This abuse is tolerated because it places all the unlikely/odd cases behind
5037  * a single test, namely: rq->balance_callback == NULL.
5038  */
5039 struct balance_callback balance_push_callback = {
5040 	.next = NULL,
5041 	.func = balance_push,
5042 };
5043 
5044 static inline struct balance_callback *
5045 __splice_balance_callbacks(struct rq *rq, bool split)
5046 {
5047 	struct balance_callback *head = rq->balance_callback;
5048 
5049 	if (likely(!head))
5050 		return NULL;
5051 
5052 	lockdep_assert_rq_held(rq);
5053 	/*
5054 	 * Must not take balance_push_callback off the list when
5055 	 * splice_balance_callbacks() and balance_callbacks() are not
5056 	 * in the same rq->lock section.
5057 	 *
5058 	 * In that case it would be possible for __schedule() to interleave
5059 	 * and observe the list empty.
5060 	 */
5061 	if (split && head == &balance_push_callback)
5062 		head = NULL;
5063 	else
5064 		rq->balance_callback = NULL;
5065 
5066 	return head;
5067 }
5068 
5069 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5070 {
5071 	return __splice_balance_callbacks(rq, true);
5072 }
5073 
5074 static void __balance_callbacks(struct rq *rq)
5075 {
5076 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5077 }
5078 
5079 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5080 {
5081 	unsigned long flags;
5082 
5083 	if (unlikely(head)) {
5084 		raw_spin_rq_lock_irqsave(rq, flags);
5085 		do_balance_callbacks(rq, head);
5086 		raw_spin_rq_unlock_irqrestore(rq, flags);
5087 	}
5088 }
5089 
5090 #else
5091 
5092 static inline void __balance_callbacks(struct rq *rq)
5093 {
5094 }
5095 
5096 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5097 {
5098 	return NULL;
5099 }
5100 
5101 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5102 {
5103 }
5104 
5105 #endif
5106 
5107 static inline void
5108 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5109 {
5110 	/*
5111 	 * Since the runqueue lock will be released by the next
5112 	 * task (which is an invalid locking op but in the case
5113 	 * of the scheduler it's an obvious special-case), so we
5114 	 * do an early lockdep release here:
5115 	 */
5116 	rq_unpin_lock(rq, rf);
5117 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5118 #ifdef CONFIG_DEBUG_SPINLOCK
5119 	/* this is a valid case when another task releases the spinlock */
5120 	rq_lockp(rq)->owner = next;
5121 #endif
5122 }
5123 
5124 static inline void finish_lock_switch(struct rq *rq)
5125 {
5126 	/*
5127 	 * If we are tracking spinlock dependencies then we have to
5128 	 * fix up the runqueue lock - which gets 'carried over' from
5129 	 * prev into current:
5130 	 */
5131 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5132 	__balance_callbacks(rq);
5133 	raw_spin_rq_unlock_irq(rq);
5134 }
5135 
5136 /*
5137  * NOP if the arch has not defined these:
5138  */
5139 
5140 #ifndef prepare_arch_switch
5141 # define prepare_arch_switch(next)	do { } while (0)
5142 #endif
5143 
5144 #ifndef finish_arch_post_lock_switch
5145 # define finish_arch_post_lock_switch()	do { } while (0)
5146 #endif
5147 
5148 static inline void kmap_local_sched_out(void)
5149 {
5150 #ifdef CONFIG_KMAP_LOCAL
5151 	if (unlikely(current->kmap_ctrl.idx))
5152 		__kmap_local_sched_out();
5153 #endif
5154 }
5155 
5156 static inline void kmap_local_sched_in(void)
5157 {
5158 #ifdef CONFIG_KMAP_LOCAL
5159 	if (unlikely(current->kmap_ctrl.idx))
5160 		__kmap_local_sched_in();
5161 #endif
5162 }
5163 
5164 /**
5165  * prepare_task_switch - prepare to switch tasks
5166  * @rq: the runqueue preparing to switch
5167  * @prev: the current task that is being switched out
5168  * @next: the task we are going to switch to.
5169  *
5170  * This is called with the rq lock held and interrupts off. It must
5171  * be paired with a subsequent finish_task_switch after the context
5172  * switch.
5173  *
5174  * prepare_task_switch sets up locking and calls architecture specific
5175  * hooks.
5176  */
5177 static inline void
5178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5179 		    struct task_struct *next)
5180 {
5181 	kcov_prepare_switch(prev);
5182 	sched_info_switch(rq, prev, next);
5183 	perf_event_task_sched_out(prev, next);
5184 	rseq_preempt(prev);
5185 	fire_sched_out_preempt_notifiers(prev, next);
5186 	kmap_local_sched_out();
5187 	prepare_task(next);
5188 	prepare_arch_switch(next);
5189 }
5190 
5191 /**
5192  * finish_task_switch - clean up after a task-switch
5193  * @prev: the thread we just switched away from.
5194  *
5195  * finish_task_switch must be called after the context switch, paired
5196  * with a prepare_task_switch call before the context switch.
5197  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5198  * and do any other architecture-specific cleanup actions.
5199  *
5200  * Note that we may have delayed dropping an mm in context_switch(). If
5201  * so, we finish that here outside of the runqueue lock. (Doing it
5202  * with the lock held can cause deadlocks; see schedule() for
5203  * details.)
5204  *
5205  * The context switch have flipped the stack from under us and restored the
5206  * local variables which were saved when this task called schedule() in the
5207  * past. prev == current is still correct but we need to recalculate this_rq
5208  * because prev may have moved to another CPU.
5209  */
5210 static struct rq *finish_task_switch(struct task_struct *prev)
5211 	__releases(rq->lock)
5212 {
5213 	struct rq *rq = this_rq();
5214 	struct mm_struct *mm = rq->prev_mm;
5215 	unsigned int prev_state;
5216 
5217 	/*
5218 	 * The previous task will have left us with a preempt_count of 2
5219 	 * because it left us after:
5220 	 *
5221 	 *	schedule()
5222 	 *	  preempt_disable();			// 1
5223 	 *	  __schedule()
5224 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5225 	 *
5226 	 * Also, see FORK_PREEMPT_COUNT.
5227 	 */
5228 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5229 		      "corrupted preempt_count: %s/%d/0x%x\n",
5230 		      current->comm, current->pid, preempt_count()))
5231 		preempt_count_set(FORK_PREEMPT_COUNT);
5232 
5233 	rq->prev_mm = NULL;
5234 
5235 	/*
5236 	 * A task struct has one reference for the use as "current".
5237 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5238 	 * schedule one last time. The schedule call will never return, and
5239 	 * the scheduled task must drop that reference.
5240 	 *
5241 	 * We must observe prev->state before clearing prev->on_cpu (in
5242 	 * finish_task), otherwise a concurrent wakeup can get prev
5243 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5244 	 * transition, resulting in a double drop.
5245 	 */
5246 	prev_state = READ_ONCE(prev->__state);
5247 	vtime_task_switch(prev);
5248 	perf_event_task_sched_in(prev, current);
5249 	finish_task(prev);
5250 	tick_nohz_task_switch();
5251 	finish_lock_switch(rq);
5252 	finish_arch_post_lock_switch();
5253 	kcov_finish_switch(current);
5254 	/*
5255 	 * kmap_local_sched_out() is invoked with rq::lock held and
5256 	 * interrupts disabled. There is no requirement for that, but the
5257 	 * sched out code does not have an interrupt enabled section.
5258 	 * Restoring the maps on sched in does not require interrupts being
5259 	 * disabled either.
5260 	 */
5261 	kmap_local_sched_in();
5262 
5263 	fire_sched_in_preempt_notifiers(current);
5264 	/*
5265 	 * When switching through a kernel thread, the loop in
5266 	 * membarrier_{private,global}_expedited() may have observed that
5267 	 * kernel thread and not issued an IPI. It is therefore possible to
5268 	 * schedule between user->kernel->user threads without passing though
5269 	 * switch_mm(). Membarrier requires a barrier after storing to
5270 	 * rq->curr, before returning to userspace, so provide them here:
5271 	 *
5272 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5273 	 *   provided by mmdrop_lazy_tlb(),
5274 	 * - a sync_core for SYNC_CORE.
5275 	 */
5276 	if (mm) {
5277 		membarrier_mm_sync_core_before_usermode(mm);
5278 		mmdrop_lazy_tlb_sched(mm);
5279 	}
5280 
5281 	if (unlikely(prev_state == TASK_DEAD)) {
5282 		if (prev->sched_class->task_dead)
5283 			prev->sched_class->task_dead(prev);
5284 
5285 		/* Task is done with its stack. */
5286 		put_task_stack(prev);
5287 
5288 		put_task_struct_rcu_user(prev);
5289 	}
5290 
5291 	return rq;
5292 }
5293 
5294 /**
5295  * schedule_tail - first thing a freshly forked thread must call.
5296  * @prev: the thread we just switched away from.
5297  */
5298 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5299 	__releases(rq->lock)
5300 {
5301 	/*
5302 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5303 	 * finish_task_switch() for details.
5304 	 *
5305 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5306 	 * and the preempt_enable() will end up enabling preemption (on
5307 	 * PREEMPT_COUNT kernels).
5308 	 */
5309 
5310 	finish_task_switch(prev);
5311 	preempt_enable();
5312 
5313 	if (current->set_child_tid)
5314 		put_user(task_pid_vnr(current), current->set_child_tid);
5315 
5316 	calculate_sigpending();
5317 }
5318 
5319 /*
5320  * context_switch - switch to the new MM and the new thread's register state.
5321  */
5322 static __always_inline struct rq *
5323 context_switch(struct rq *rq, struct task_struct *prev,
5324 	       struct task_struct *next, struct rq_flags *rf)
5325 {
5326 	prepare_task_switch(rq, prev, next);
5327 
5328 	/*
5329 	 * For paravirt, this is coupled with an exit in switch_to to
5330 	 * combine the page table reload and the switch backend into
5331 	 * one hypercall.
5332 	 */
5333 	arch_start_context_switch(prev);
5334 
5335 	/*
5336 	 * kernel -> kernel   lazy + transfer active
5337 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5338 	 *
5339 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5340 	 *   user ->   user   switch
5341 	 *
5342 	 * switch_mm_cid() needs to be updated if the barriers provided
5343 	 * by context_switch() are modified.
5344 	 */
5345 	if (!next->mm) {                                // to kernel
5346 		enter_lazy_tlb(prev->active_mm, next);
5347 
5348 		next->active_mm = prev->active_mm;
5349 		if (prev->mm)                           // from user
5350 			mmgrab_lazy_tlb(prev->active_mm);
5351 		else
5352 			prev->active_mm = NULL;
5353 	} else {                                        // to user
5354 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5355 		/*
5356 		 * sys_membarrier() requires an smp_mb() between setting
5357 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5358 		 *
5359 		 * The below provides this either through switch_mm(), or in
5360 		 * case 'prev->active_mm == next->mm' through
5361 		 * finish_task_switch()'s mmdrop().
5362 		 */
5363 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5364 		lru_gen_use_mm(next->mm);
5365 
5366 		if (!prev->mm) {                        // from kernel
5367 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5368 			rq->prev_mm = prev->active_mm;
5369 			prev->active_mm = NULL;
5370 		}
5371 	}
5372 
5373 	/* switch_mm_cid() requires the memory barriers above. */
5374 	switch_mm_cid(rq, prev, next);
5375 
5376 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5377 
5378 	prepare_lock_switch(rq, next, rf);
5379 
5380 	/* Here we just switch the register state and the stack. */
5381 	switch_to(prev, next, prev);
5382 	barrier();
5383 
5384 	return finish_task_switch(prev);
5385 }
5386 
5387 /*
5388  * nr_running and nr_context_switches:
5389  *
5390  * externally visible scheduler statistics: current number of runnable
5391  * threads, total number of context switches performed since bootup.
5392  */
5393 unsigned int nr_running(void)
5394 {
5395 	unsigned int i, sum = 0;
5396 
5397 	for_each_online_cpu(i)
5398 		sum += cpu_rq(i)->nr_running;
5399 
5400 	return sum;
5401 }
5402 
5403 /*
5404  * Check if only the current task is running on the CPU.
5405  *
5406  * Caution: this function does not check that the caller has disabled
5407  * preemption, thus the result might have a time-of-check-to-time-of-use
5408  * race.  The caller is responsible to use it correctly, for example:
5409  *
5410  * - from a non-preemptible section (of course)
5411  *
5412  * - from a thread that is bound to a single CPU
5413  *
5414  * - in a loop with very short iterations (e.g. a polling loop)
5415  */
5416 bool single_task_running(void)
5417 {
5418 	return raw_rq()->nr_running == 1;
5419 }
5420 EXPORT_SYMBOL(single_task_running);
5421 
5422 unsigned long long nr_context_switches_cpu(int cpu)
5423 {
5424 	return cpu_rq(cpu)->nr_switches;
5425 }
5426 
5427 unsigned long long nr_context_switches(void)
5428 {
5429 	int i;
5430 	unsigned long long sum = 0;
5431 
5432 	for_each_possible_cpu(i)
5433 		sum += cpu_rq(i)->nr_switches;
5434 
5435 	return sum;
5436 }
5437 
5438 /*
5439  * Consumers of these two interfaces, like for example the cpuidle menu
5440  * governor, are using nonsensical data. Preferring shallow idle state selection
5441  * for a CPU that has IO-wait which might not even end up running the task when
5442  * it does become runnable.
5443  */
5444 
5445 unsigned int nr_iowait_cpu(int cpu)
5446 {
5447 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5448 }
5449 
5450 /*
5451  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5452  *
5453  * The idea behind IO-wait account is to account the idle time that we could
5454  * have spend running if it were not for IO. That is, if we were to improve the
5455  * storage performance, we'd have a proportional reduction in IO-wait time.
5456  *
5457  * This all works nicely on UP, where, when a task blocks on IO, we account
5458  * idle time as IO-wait, because if the storage were faster, it could've been
5459  * running and we'd not be idle.
5460  *
5461  * This has been extended to SMP, by doing the same for each CPU. This however
5462  * is broken.
5463  *
5464  * Imagine for instance the case where two tasks block on one CPU, only the one
5465  * CPU will have IO-wait accounted, while the other has regular idle. Even
5466  * though, if the storage were faster, both could've ran at the same time,
5467  * utilising both CPUs.
5468  *
5469  * This means, that when looking globally, the current IO-wait accounting on
5470  * SMP is a lower bound, by reason of under accounting.
5471  *
5472  * Worse, since the numbers are provided per CPU, they are sometimes
5473  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5474  * associated with any one particular CPU, it can wake to another CPU than it
5475  * blocked on. This means the per CPU IO-wait number is meaningless.
5476  *
5477  * Task CPU affinities can make all that even more 'interesting'.
5478  */
5479 
5480 unsigned int nr_iowait(void)
5481 {
5482 	unsigned int i, sum = 0;
5483 
5484 	for_each_possible_cpu(i)
5485 		sum += nr_iowait_cpu(i);
5486 
5487 	return sum;
5488 }
5489 
5490 #ifdef CONFIG_SMP
5491 
5492 /*
5493  * sched_exec - execve() is a valuable balancing opportunity, because at
5494  * this point the task has the smallest effective memory and cache footprint.
5495  */
5496 void sched_exec(void)
5497 {
5498 	struct task_struct *p = current;
5499 	unsigned long flags;
5500 	int dest_cpu;
5501 
5502 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5503 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5504 	if (dest_cpu == smp_processor_id())
5505 		goto unlock;
5506 
5507 	if (likely(cpu_active(dest_cpu))) {
5508 		struct migration_arg arg = { p, dest_cpu };
5509 
5510 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5511 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5512 		return;
5513 	}
5514 unlock:
5515 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5516 }
5517 
5518 #endif
5519 
5520 DEFINE_PER_CPU(struct kernel_stat, kstat);
5521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5522 
5523 EXPORT_PER_CPU_SYMBOL(kstat);
5524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5525 
5526 /*
5527  * The function fair_sched_class.update_curr accesses the struct curr
5528  * and its field curr->exec_start; when called from task_sched_runtime(),
5529  * we observe a high rate of cache misses in practice.
5530  * Prefetching this data results in improved performance.
5531  */
5532 static inline void prefetch_curr_exec_start(struct task_struct *p)
5533 {
5534 #ifdef CONFIG_FAIR_GROUP_SCHED
5535 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5536 #else
5537 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5538 #endif
5539 	prefetch(curr);
5540 	prefetch(&curr->exec_start);
5541 }
5542 
5543 /*
5544  * Return accounted runtime for the task.
5545  * In case the task is currently running, return the runtime plus current's
5546  * pending runtime that have not been accounted yet.
5547  */
5548 unsigned long long task_sched_runtime(struct task_struct *p)
5549 {
5550 	struct rq_flags rf;
5551 	struct rq *rq;
5552 	u64 ns;
5553 
5554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5555 	/*
5556 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5557 	 * So we have a optimization chance when the task's delta_exec is 0.
5558 	 * Reading ->on_cpu is racy, but this is ok.
5559 	 *
5560 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5561 	 * If we race with it entering CPU, unaccounted time is 0. This is
5562 	 * indistinguishable from the read occurring a few cycles earlier.
5563 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5564 	 * been accounted, so we're correct here as well.
5565 	 */
5566 	if (!p->on_cpu || !task_on_rq_queued(p))
5567 		return p->se.sum_exec_runtime;
5568 #endif
5569 
5570 	rq = task_rq_lock(p, &rf);
5571 	/*
5572 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5573 	 * project cycles that may never be accounted to this
5574 	 * thread, breaking clock_gettime().
5575 	 */
5576 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5577 		prefetch_curr_exec_start(p);
5578 		update_rq_clock(rq);
5579 		p->sched_class->update_curr(rq);
5580 	}
5581 	ns = p->se.sum_exec_runtime;
5582 	task_rq_unlock(rq, p, &rf);
5583 
5584 	return ns;
5585 }
5586 
5587 #ifdef CONFIG_SCHED_DEBUG
5588 static u64 cpu_resched_latency(struct rq *rq)
5589 {
5590 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5591 	u64 resched_latency, now = rq_clock(rq);
5592 	static bool warned_once;
5593 
5594 	if (sysctl_resched_latency_warn_once && warned_once)
5595 		return 0;
5596 
5597 	if (!need_resched() || !latency_warn_ms)
5598 		return 0;
5599 
5600 	if (system_state == SYSTEM_BOOTING)
5601 		return 0;
5602 
5603 	if (!rq->last_seen_need_resched_ns) {
5604 		rq->last_seen_need_resched_ns = now;
5605 		rq->ticks_without_resched = 0;
5606 		return 0;
5607 	}
5608 
5609 	rq->ticks_without_resched++;
5610 	resched_latency = now - rq->last_seen_need_resched_ns;
5611 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5612 		return 0;
5613 
5614 	warned_once = true;
5615 
5616 	return resched_latency;
5617 }
5618 
5619 static int __init setup_resched_latency_warn_ms(char *str)
5620 {
5621 	long val;
5622 
5623 	if ((kstrtol(str, 0, &val))) {
5624 		pr_warn("Unable to set resched_latency_warn_ms\n");
5625 		return 1;
5626 	}
5627 
5628 	sysctl_resched_latency_warn_ms = val;
5629 	return 1;
5630 }
5631 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5632 #else
5633 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5634 #endif /* CONFIG_SCHED_DEBUG */
5635 
5636 /*
5637  * This function gets called by the timer code, with HZ frequency.
5638  * We call it with interrupts disabled.
5639  */
5640 void scheduler_tick(void)
5641 {
5642 	int cpu = smp_processor_id();
5643 	struct rq *rq = cpu_rq(cpu);
5644 	struct task_struct *curr = rq->curr;
5645 	struct rq_flags rf;
5646 	unsigned long thermal_pressure;
5647 	u64 resched_latency;
5648 
5649 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5650 		arch_scale_freq_tick();
5651 
5652 	sched_clock_tick();
5653 
5654 	rq_lock(rq, &rf);
5655 
5656 	update_rq_clock(rq);
5657 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5658 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5659 	curr->sched_class->task_tick(rq, curr, 0);
5660 	if (sched_feat(LATENCY_WARN))
5661 		resched_latency = cpu_resched_latency(rq);
5662 	calc_global_load_tick(rq);
5663 	sched_core_tick(rq);
5664 	task_tick_mm_cid(rq, curr);
5665 
5666 	rq_unlock(rq, &rf);
5667 
5668 	if (sched_feat(LATENCY_WARN) && resched_latency)
5669 		resched_latency_warn(cpu, resched_latency);
5670 
5671 	perf_event_task_tick();
5672 
5673 	if (curr->flags & PF_WQ_WORKER)
5674 		wq_worker_tick(curr);
5675 
5676 #ifdef CONFIG_SMP
5677 	rq->idle_balance = idle_cpu(cpu);
5678 	trigger_load_balance(rq);
5679 #endif
5680 }
5681 
5682 #ifdef CONFIG_NO_HZ_FULL
5683 
5684 struct tick_work {
5685 	int			cpu;
5686 	atomic_t		state;
5687 	struct delayed_work	work;
5688 };
5689 /* Values for ->state, see diagram below. */
5690 #define TICK_SCHED_REMOTE_OFFLINE	0
5691 #define TICK_SCHED_REMOTE_OFFLINING	1
5692 #define TICK_SCHED_REMOTE_RUNNING	2
5693 
5694 /*
5695  * State diagram for ->state:
5696  *
5697  *
5698  *          TICK_SCHED_REMOTE_OFFLINE
5699  *                    |   ^
5700  *                    |   |
5701  *                    |   | sched_tick_remote()
5702  *                    |   |
5703  *                    |   |
5704  *                    +--TICK_SCHED_REMOTE_OFFLINING
5705  *                    |   ^
5706  *                    |   |
5707  * sched_tick_start() |   | sched_tick_stop()
5708  *                    |   |
5709  *                    V   |
5710  *          TICK_SCHED_REMOTE_RUNNING
5711  *
5712  *
5713  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5714  * and sched_tick_start() are happy to leave the state in RUNNING.
5715  */
5716 
5717 static struct tick_work __percpu *tick_work_cpu;
5718 
5719 static void sched_tick_remote(struct work_struct *work)
5720 {
5721 	struct delayed_work *dwork = to_delayed_work(work);
5722 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5723 	int cpu = twork->cpu;
5724 	struct rq *rq = cpu_rq(cpu);
5725 	struct task_struct *curr;
5726 	struct rq_flags rf;
5727 	u64 delta;
5728 	int os;
5729 
5730 	/*
5731 	 * Handle the tick only if it appears the remote CPU is running in full
5732 	 * dynticks mode. The check is racy by nature, but missing a tick or
5733 	 * having one too much is no big deal because the scheduler tick updates
5734 	 * statistics and checks timeslices in a time-independent way, regardless
5735 	 * of when exactly it is running.
5736 	 */
5737 	if (!tick_nohz_tick_stopped_cpu(cpu))
5738 		goto out_requeue;
5739 
5740 	rq_lock_irq(rq, &rf);
5741 	curr = rq->curr;
5742 	if (cpu_is_offline(cpu))
5743 		goto out_unlock;
5744 
5745 	update_rq_clock(rq);
5746 
5747 	if (!is_idle_task(curr)) {
5748 		/*
5749 		 * Make sure the next tick runs within a reasonable
5750 		 * amount of time.
5751 		 */
5752 		delta = rq_clock_task(rq) - curr->se.exec_start;
5753 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5754 	}
5755 	curr->sched_class->task_tick(rq, curr, 0);
5756 
5757 	calc_load_nohz_remote(rq);
5758 out_unlock:
5759 	rq_unlock_irq(rq, &rf);
5760 out_requeue:
5761 
5762 	/*
5763 	 * Run the remote tick once per second (1Hz). This arbitrary
5764 	 * frequency is large enough to avoid overload but short enough
5765 	 * to keep scheduler internal stats reasonably up to date.  But
5766 	 * first update state to reflect hotplug activity if required.
5767 	 */
5768 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5769 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5770 	if (os == TICK_SCHED_REMOTE_RUNNING)
5771 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5772 }
5773 
5774 static void sched_tick_start(int cpu)
5775 {
5776 	int os;
5777 	struct tick_work *twork;
5778 
5779 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5780 		return;
5781 
5782 	WARN_ON_ONCE(!tick_work_cpu);
5783 
5784 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5785 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5786 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5787 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5788 		twork->cpu = cpu;
5789 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5790 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5791 	}
5792 }
5793 
5794 #ifdef CONFIG_HOTPLUG_CPU
5795 static void sched_tick_stop(int cpu)
5796 {
5797 	struct tick_work *twork;
5798 	int os;
5799 
5800 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5801 		return;
5802 
5803 	WARN_ON_ONCE(!tick_work_cpu);
5804 
5805 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5806 	/* There cannot be competing actions, but don't rely on stop-machine. */
5807 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5808 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5809 	/* Don't cancel, as this would mess up the state machine. */
5810 }
5811 #endif /* CONFIG_HOTPLUG_CPU */
5812 
5813 int __init sched_tick_offload_init(void)
5814 {
5815 	tick_work_cpu = alloc_percpu(struct tick_work);
5816 	BUG_ON(!tick_work_cpu);
5817 	return 0;
5818 }
5819 
5820 #else /* !CONFIG_NO_HZ_FULL */
5821 static inline void sched_tick_start(int cpu) { }
5822 static inline void sched_tick_stop(int cpu) { }
5823 #endif
5824 
5825 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5826 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5827 /*
5828  * If the value passed in is equal to the current preempt count
5829  * then we just disabled preemption. Start timing the latency.
5830  */
5831 static inline void preempt_latency_start(int val)
5832 {
5833 	if (preempt_count() == val) {
5834 		unsigned long ip = get_lock_parent_ip();
5835 #ifdef CONFIG_DEBUG_PREEMPT
5836 		current->preempt_disable_ip = ip;
5837 #endif
5838 		trace_preempt_off(CALLER_ADDR0, ip);
5839 	}
5840 }
5841 
5842 void preempt_count_add(int val)
5843 {
5844 #ifdef CONFIG_DEBUG_PREEMPT
5845 	/*
5846 	 * Underflow?
5847 	 */
5848 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5849 		return;
5850 #endif
5851 	__preempt_count_add(val);
5852 #ifdef CONFIG_DEBUG_PREEMPT
5853 	/*
5854 	 * Spinlock count overflowing soon?
5855 	 */
5856 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5857 				PREEMPT_MASK - 10);
5858 #endif
5859 	preempt_latency_start(val);
5860 }
5861 EXPORT_SYMBOL(preempt_count_add);
5862 NOKPROBE_SYMBOL(preempt_count_add);
5863 
5864 /*
5865  * If the value passed in equals to the current preempt count
5866  * then we just enabled preemption. Stop timing the latency.
5867  */
5868 static inline void preempt_latency_stop(int val)
5869 {
5870 	if (preempt_count() == val)
5871 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5872 }
5873 
5874 void preempt_count_sub(int val)
5875 {
5876 #ifdef CONFIG_DEBUG_PREEMPT
5877 	/*
5878 	 * Underflow?
5879 	 */
5880 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5881 		return;
5882 	/*
5883 	 * Is the spinlock portion underflowing?
5884 	 */
5885 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5886 			!(preempt_count() & PREEMPT_MASK)))
5887 		return;
5888 #endif
5889 
5890 	preempt_latency_stop(val);
5891 	__preempt_count_sub(val);
5892 }
5893 EXPORT_SYMBOL(preempt_count_sub);
5894 NOKPROBE_SYMBOL(preempt_count_sub);
5895 
5896 #else
5897 static inline void preempt_latency_start(int val) { }
5898 static inline void preempt_latency_stop(int val) { }
5899 #endif
5900 
5901 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5902 {
5903 #ifdef CONFIG_DEBUG_PREEMPT
5904 	return p->preempt_disable_ip;
5905 #else
5906 	return 0;
5907 #endif
5908 }
5909 
5910 /*
5911  * Print scheduling while atomic bug:
5912  */
5913 static noinline void __schedule_bug(struct task_struct *prev)
5914 {
5915 	/* Save this before calling printk(), since that will clobber it */
5916 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5917 
5918 	if (oops_in_progress)
5919 		return;
5920 
5921 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5922 		prev->comm, prev->pid, preempt_count());
5923 
5924 	debug_show_held_locks(prev);
5925 	print_modules();
5926 	if (irqs_disabled())
5927 		print_irqtrace_events(prev);
5928 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5929 	    && in_atomic_preempt_off()) {
5930 		pr_err("Preemption disabled at:");
5931 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5932 	}
5933 	check_panic_on_warn("scheduling while atomic");
5934 
5935 	dump_stack();
5936 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5937 }
5938 
5939 /*
5940  * Various schedule()-time debugging checks and statistics:
5941  */
5942 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5943 {
5944 #ifdef CONFIG_SCHED_STACK_END_CHECK
5945 	if (task_stack_end_corrupted(prev))
5946 		panic("corrupted stack end detected inside scheduler\n");
5947 
5948 	if (task_scs_end_corrupted(prev))
5949 		panic("corrupted shadow stack detected inside scheduler\n");
5950 #endif
5951 
5952 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5953 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5954 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5955 			prev->comm, prev->pid, prev->non_block_count);
5956 		dump_stack();
5957 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5958 	}
5959 #endif
5960 
5961 	if (unlikely(in_atomic_preempt_off())) {
5962 		__schedule_bug(prev);
5963 		preempt_count_set(PREEMPT_DISABLED);
5964 	}
5965 	rcu_sleep_check();
5966 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5967 
5968 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5969 
5970 	schedstat_inc(this_rq()->sched_count);
5971 }
5972 
5973 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5974 				  struct rq_flags *rf)
5975 {
5976 #ifdef CONFIG_SMP
5977 	const struct sched_class *class;
5978 	/*
5979 	 * We must do the balancing pass before put_prev_task(), such
5980 	 * that when we release the rq->lock the task is in the same
5981 	 * state as before we took rq->lock.
5982 	 *
5983 	 * We can terminate the balance pass as soon as we know there is
5984 	 * a runnable task of @class priority or higher.
5985 	 */
5986 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5987 		if (class->balance(rq, prev, rf))
5988 			break;
5989 	}
5990 #endif
5991 
5992 	put_prev_task(rq, prev);
5993 }
5994 
5995 /*
5996  * Pick up the highest-prio task:
5997  */
5998 static inline struct task_struct *
5999 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6000 {
6001 	const struct sched_class *class;
6002 	struct task_struct *p;
6003 
6004 	/*
6005 	 * Optimization: we know that if all tasks are in the fair class we can
6006 	 * call that function directly, but only if the @prev task wasn't of a
6007 	 * higher scheduling class, because otherwise those lose the
6008 	 * opportunity to pull in more work from other CPUs.
6009 	 */
6010 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6011 		   rq->nr_running == rq->cfs.h_nr_running)) {
6012 
6013 		p = pick_next_task_fair(rq, prev, rf);
6014 		if (unlikely(p == RETRY_TASK))
6015 			goto restart;
6016 
6017 		/* Assume the next prioritized class is idle_sched_class */
6018 		if (!p) {
6019 			put_prev_task(rq, prev);
6020 			p = pick_next_task_idle(rq);
6021 		}
6022 
6023 		return p;
6024 	}
6025 
6026 restart:
6027 	put_prev_task_balance(rq, prev, rf);
6028 
6029 	for_each_class(class) {
6030 		p = class->pick_next_task(rq);
6031 		if (p)
6032 			return p;
6033 	}
6034 
6035 	BUG(); /* The idle class should always have a runnable task. */
6036 }
6037 
6038 #ifdef CONFIG_SCHED_CORE
6039 static inline bool is_task_rq_idle(struct task_struct *t)
6040 {
6041 	return (task_rq(t)->idle == t);
6042 }
6043 
6044 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6045 {
6046 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6047 }
6048 
6049 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6050 {
6051 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6052 		return true;
6053 
6054 	return a->core_cookie == b->core_cookie;
6055 }
6056 
6057 static inline struct task_struct *pick_task(struct rq *rq)
6058 {
6059 	const struct sched_class *class;
6060 	struct task_struct *p;
6061 
6062 	for_each_class(class) {
6063 		p = class->pick_task(rq);
6064 		if (p)
6065 			return p;
6066 	}
6067 
6068 	BUG(); /* The idle class should always have a runnable task. */
6069 }
6070 
6071 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6072 
6073 static void queue_core_balance(struct rq *rq);
6074 
6075 static struct task_struct *
6076 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6077 {
6078 	struct task_struct *next, *p, *max = NULL;
6079 	const struct cpumask *smt_mask;
6080 	bool fi_before = false;
6081 	bool core_clock_updated = (rq == rq->core);
6082 	unsigned long cookie;
6083 	int i, cpu, occ = 0;
6084 	struct rq *rq_i;
6085 	bool need_sync;
6086 
6087 	if (!sched_core_enabled(rq))
6088 		return __pick_next_task(rq, prev, rf);
6089 
6090 	cpu = cpu_of(rq);
6091 
6092 	/* Stopper task is switching into idle, no need core-wide selection. */
6093 	if (cpu_is_offline(cpu)) {
6094 		/*
6095 		 * Reset core_pick so that we don't enter the fastpath when
6096 		 * coming online. core_pick would already be migrated to
6097 		 * another cpu during offline.
6098 		 */
6099 		rq->core_pick = NULL;
6100 		return __pick_next_task(rq, prev, rf);
6101 	}
6102 
6103 	/*
6104 	 * If there were no {en,de}queues since we picked (IOW, the task
6105 	 * pointers are all still valid), and we haven't scheduled the last
6106 	 * pick yet, do so now.
6107 	 *
6108 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6109 	 * it was either offline or went offline during a sibling's core-wide
6110 	 * selection. In this case, do a core-wide selection.
6111 	 */
6112 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6113 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6114 	    rq->core_pick) {
6115 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6116 
6117 		next = rq->core_pick;
6118 		if (next != prev) {
6119 			put_prev_task(rq, prev);
6120 			set_next_task(rq, next);
6121 		}
6122 
6123 		rq->core_pick = NULL;
6124 		goto out;
6125 	}
6126 
6127 	put_prev_task_balance(rq, prev, rf);
6128 
6129 	smt_mask = cpu_smt_mask(cpu);
6130 	need_sync = !!rq->core->core_cookie;
6131 
6132 	/* reset state */
6133 	rq->core->core_cookie = 0UL;
6134 	if (rq->core->core_forceidle_count) {
6135 		if (!core_clock_updated) {
6136 			update_rq_clock(rq->core);
6137 			core_clock_updated = true;
6138 		}
6139 		sched_core_account_forceidle(rq);
6140 		/* reset after accounting force idle */
6141 		rq->core->core_forceidle_start = 0;
6142 		rq->core->core_forceidle_count = 0;
6143 		rq->core->core_forceidle_occupation = 0;
6144 		need_sync = true;
6145 		fi_before = true;
6146 	}
6147 
6148 	/*
6149 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6150 	 *
6151 	 * @task_seq guards the task state ({en,de}queues)
6152 	 * @pick_seq is the @task_seq we did a selection on
6153 	 * @sched_seq is the @pick_seq we scheduled
6154 	 *
6155 	 * However, preemptions can cause multiple picks on the same task set.
6156 	 * 'Fix' this by also increasing @task_seq for every pick.
6157 	 */
6158 	rq->core->core_task_seq++;
6159 
6160 	/*
6161 	 * Optimize for common case where this CPU has no cookies
6162 	 * and there are no cookied tasks running on siblings.
6163 	 */
6164 	if (!need_sync) {
6165 		next = pick_task(rq);
6166 		if (!next->core_cookie) {
6167 			rq->core_pick = NULL;
6168 			/*
6169 			 * For robustness, update the min_vruntime_fi for
6170 			 * unconstrained picks as well.
6171 			 */
6172 			WARN_ON_ONCE(fi_before);
6173 			task_vruntime_update(rq, next, false);
6174 			goto out_set_next;
6175 		}
6176 	}
6177 
6178 	/*
6179 	 * For each thread: do the regular task pick and find the max prio task
6180 	 * amongst them.
6181 	 *
6182 	 * Tie-break prio towards the current CPU
6183 	 */
6184 	for_each_cpu_wrap(i, smt_mask, cpu) {
6185 		rq_i = cpu_rq(i);
6186 
6187 		/*
6188 		 * Current cpu always has its clock updated on entrance to
6189 		 * pick_next_task(). If the current cpu is not the core,
6190 		 * the core may also have been updated above.
6191 		 */
6192 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6193 			update_rq_clock(rq_i);
6194 
6195 		p = rq_i->core_pick = pick_task(rq_i);
6196 		if (!max || prio_less(max, p, fi_before))
6197 			max = p;
6198 	}
6199 
6200 	cookie = rq->core->core_cookie = max->core_cookie;
6201 
6202 	/*
6203 	 * For each thread: try and find a runnable task that matches @max or
6204 	 * force idle.
6205 	 */
6206 	for_each_cpu(i, smt_mask) {
6207 		rq_i = cpu_rq(i);
6208 		p = rq_i->core_pick;
6209 
6210 		if (!cookie_equals(p, cookie)) {
6211 			p = NULL;
6212 			if (cookie)
6213 				p = sched_core_find(rq_i, cookie);
6214 			if (!p)
6215 				p = idle_sched_class.pick_task(rq_i);
6216 		}
6217 
6218 		rq_i->core_pick = p;
6219 
6220 		if (p == rq_i->idle) {
6221 			if (rq_i->nr_running) {
6222 				rq->core->core_forceidle_count++;
6223 				if (!fi_before)
6224 					rq->core->core_forceidle_seq++;
6225 			}
6226 		} else {
6227 			occ++;
6228 		}
6229 	}
6230 
6231 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6232 		rq->core->core_forceidle_start = rq_clock(rq->core);
6233 		rq->core->core_forceidle_occupation = occ;
6234 	}
6235 
6236 	rq->core->core_pick_seq = rq->core->core_task_seq;
6237 	next = rq->core_pick;
6238 	rq->core_sched_seq = rq->core->core_pick_seq;
6239 
6240 	/* Something should have been selected for current CPU */
6241 	WARN_ON_ONCE(!next);
6242 
6243 	/*
6244 	 * Reschedule siblings
6245 	 *
6246 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6247 	 * sending an IPI (below) ensures the sibling will no longer be running
6248 	 * their task. This ensures there is no inter-sibling overlap between
6249 	 * non-matching user state.
6250 	 */
6251 	for_each_cpu(i, smt_mask) {
6252 		rq_i = cpu_rq(i);
6253 
6254 		/*
6255 		 * An online sibling might have gone offline before a task
6256 		 * could be picked for it, or it might be offline but later
6257 		 * happen to come online, but its too late and nothing was
6258 		 * picked for it.  That's Ok - it will pick tasks for itself,
6259 		 * so ignore it.
6260 		 */
6261 		if (!rq_i->core_pick)
6262 			continue;
6263 
6264 		/*
6265 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6266 		 * fi_before     fi      update?
6267 		 *  0            0       1
6268 		 *  0            1       1
6269 		 *  1            0       1
6270 		 *  1            1       0
6271 		 */
6272 		if (!(fi_before && rq->core->core_forceidle_count))
6273 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6274 
6275 		rq_i->core_pick->core_occupation = occ;
6276 
6277 		if (i == cpu) {
6278 			rq_i->core_pick = NULL;
6279 			continue;
6280 		}
6281 
6282 		/* Did we break L1TF mitigation requirements? */
6283 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6284 
6285 		if (rq_i->curr == rq_i->core_pick) {
6286 			rq_i->core_pick = NULL;
6287 			continue;
6288 		}
6289 
6290 		resched_curr(rq_i);
6291 	}
6292 
6293 out_set_next:
6294 	set_next_task(rq, next);
6295 out:
6296 	if (rq->core->core_forceidle_count && next == rq->idle)
6297 		queue_core_balance(rq);
6298 
6299 	return next;
6300 }
6301 
6302 static bool try_steal_cookie(int this, int that)
6303 {
6304 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6305 	struct task_struct *p;
6306 	unsigned long cookie;
6307 	bool success = false;
6308 
6309 	local_irq_disable();
6310 	double_rq_lock(dst, src);
6311 
6312 	cookie = dst->core->core_cookie;
6313 	if (!cookie)
6314 		goto unlock;
6315 
6316 	if (dst->curr != dst->idle)
6317 		goto unlock;
6318 
6319 	p = sched_core_find(src, cookie);
6320 	if (!p)
6321 		goto unlock;
6322 
6323 	do {
6324 		if (p == src->core_pick || p == src->curr)
6325 			goto next;
6326 
6327 		if (!is_cpu_allowed(p, this))
6328 			goto next;
6329 
6330 		if (p->core_occupation > dst->idle->core_occupation)
6331 			goto next;
6332 		/*
6333 		 * sched_core_find() and sched_core_next() will ensure that task @p
6334 		 * is not throttled now, we also need to check whether the runqueue
6335 		 * of the destination CPU is being throttled.
6336 		 */
6337 		if (sched_task_is_throttled(p, this))
6338 			goto next;
6339 
6340 		deactivate_task(src, p, 0);
6341 		set_task_cpu(p, this);
6342 		activate_task(dst, p, 0);
6343 
6344 		resched_curr(dst);
6345 
6346 		success = true;
6347 		break;
6348 
6349 next:
6350 		p = sched_core_next(p, cookie);
6351 	} while (p);
6352 
6353 unlock:
6354 	double_rq_unlock(dst, src);
6355 	local_irq_enable();
6356 
6357 	return success;
6358 }
6359 
6360 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6361 {
6362 	int i;
6363 
6364 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6365 		if (i == cpu)
6366 			continue;
6367 
6368 		if (need_resched())
6369 			break;
6370 
6371 		if (try_steal_cookie(cpu, i))
6372 			return true;
6373 	}
6374 
6375 	return false;
6376 }
6377 
6378 static void sched_core_balance(struct rq *rq)
6379 {
6380 	struct sched_domain *sd;
6381 	int cpu = cpu_of(rq);
6382 
6383 	preempt_disable();
6384 	rcu_read_lock();
6385 	raw_spin_rq_unlock_irq(rq);
6386 	for_each_domain(cpu, sd) {
6387 		if (need_resched())
6388 			break;
6389 
6390 		if (steal_cookie_task(cpu, sd))
6391 			break;
6392 	}
6393 	raw_spin_rq_lock_irq(rq);
6394 	rcu_read_unlock();
6395 	preempt_enable();
6396 }
6397 
6398 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6399 
6400 static void queue_core_balance(struct rq *rq)
6401 {
6402 	if (!sched_core_enabled(rq))
6403 		return;
6404 
6405 	if (!rq->core->core_cookie)
6406 		return;
6407 
6408 	if (!rq->nr_running) /* not forced idle */
6409 		return;
6410 
6411 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6412 }
6413 
6414 static void sched_core_cpu_starting(unsigned int cpu)
6415 {
6416 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6417 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6418 	unsigned long flags;
6419 	int t;
6420 
6421 	sched_core_lock(cpu, &flags);
6422 
6423 	WARN_ON_ONCE(rq->core != rq);
6424 
6425 	/* if we're the first, we'll be our own leader */
6426 	if (cpumask_weight(smt_mask) == 1)
6427 		goto unlock;
6428 
6429 	/* find the leader */
6430 	for_each_cpu(t, smt_mask) {
6431 		if (t == cpu)
6432 			continue;
6433 		rq = cpu_rq(t);
6434 		if (rq->core == rq) {
6435 			core_rq = rq;
6436 			break;
6437 		}
6438 	}
6439 
6440 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6441 		goto unlock;
6442 
6443 	/* install and validate core_rq */
6444 	for_each_cpu(t, smt_mask) {
6445 		rq = cpu_rq(t);
6446 
6447 		if (t == cpu)
6448 			rq->core = core_rq;
6449 
6450 		WARN_ON_ONCE(rq->core != core_rq);
6451 	}
6452 
6453 unlock:
6454 	sched_core_unlock(cpu, &flags);
6455 }
6456 
6457 static void sched_core_cpu_deactivate(unsigned int cpu)
6458 {
6459 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6460 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6461 	unsigned long flags;
6462 	int t;
6463 
6464 	sched_core_lock(cpu, &flags);
6465 
6466 	/* if we're the last man standing, nothing to do */
6467 	if (cpumask_weight(smt_mask) == 1) {
6468 		WARN_ON_ONCE(rq->core != rq);
6469 		goto unlock;
6470 	}
6471 
6472 	/* if we're not the leader, nothing to do */
6473 	if (rq->core != rq)
6474 		goto unlock;
6475 
6476 	/* find a new leader */
6477 	for_each_cpu(t, smt_mask) {
6478 		if (t == cpu)
6479 			continue;
6480 		core_rq = cpu_rq(t);
6481 		break;
6482 	}
6483 
6484 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6485 		goto unlock;
6486 
6487 	/* copy the shared state to the new leader */
6488 	core_rq->core_task_seq             = rq->core_task_seq;
6489 	core_rq->core_pick_seq             = rq->core_pick_seq;
6490 	core_rq->core_cookie               = rq->core_cookie;
6491 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6492 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6493 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6494 
6495 	/*
6496 	 * Accounting edge for forced idle is handled in pick_next_task().
6497 	 * Don't need another one here, since the hotplug thread shouldn't
6498 	 * have a cookie.
6499 	 */
6500 	core_rq->core_forceidle_start = 0;
6501 
6502 	/* install new leader */
6503 	for_each_cpu(t, smt_mask) {
6504 		rq = cpu_rq(t);
6505 		rq->core = core_rq;
6506 	}
6507 
6508 unlock:
6509 	sched_core_unlock(cpu, &flags);
6510 }
6511 
6512 static inline void sched_core_cpu_dying(unsigned int cpu)
6513 {
6514 	struct rq *rq = cpu_rq(cpu);
6515 
6516 	if (rq->core != rq)
6517 		rq->core = rq;
6518 }
6519 
6520 #else /* !CONFIG_SCHED_CORE */
6521 
6522 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6523 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6524 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6525 
6526 static struct task_struct *
6527 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6528 {
6529 	return __pick_next_task(rq, prev, rf);
6530 }
6531 
6532 #endif /* CONFIG_SCHED_CORE */
6533 
6534 /*
6535  * Constants for the sched_mode argument of __schedule().
6536  *
6537  * The mode argument allows RT enabled kernels to differentiate a
6538  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6539  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6540  * optimize the AND operation out and just check for zero.
6541  */
6542 #define SM_NONE			0x0
6543 #define SM_PREEMPT		0x1
6544 #define SM_RTLOCK_WAIT		0x2
6545 
6546 #ifndef CONFIG_PREEMPT_RT
6547 # define SM_MASK_PREEMPT	(~0U)
6548 #else
6549 # define SM_MASK_PREEMPT	SM_PREEMPT
6550 #endif
6551 
6552 /*
6553  * __schedule() is the main scheduler function.
6554  *
6555  * The main means of driving the scheduler and thus entering this function are:
6556  *
6557  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6558  *
6559  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6560  *      paths. For example, see arch/x86/entry_64.S.
6561  *
6562  *      To drive preemption between tasks, the scheduler sets the flag in timer
6563  *      interrupt handler scheduler_tick().
6564  *
6565  *   3. Wakeups don't really cause entry into schedule(). They add a
6566  *      task to the run-queue and that's it.
6567  *
6568  *      Now, if the new task added to the run-queue preempts the current
6569  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6570  *      called on the nearest possible occasion:
6571  *
6572  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6573  *
6574  *         - in syscall or exception context, at the next outmost
6575  *           preempt_enable(). (this might be as soon as the wake_up()'s
6576  *           spin_unlock()!)
6577  *
6578  *         - in IRQ context, return from interrupt-handler to
6579  *           preemptible context
6580  *
6581  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6582  *         then at the next:
6583  *
6584  *          - cond_resched() call
6585  *          - explicit schedule() call
6586  *          - return from syscall or exception to user-space
6587  *          - return from interrupt-handler to user-space
6588  *
6589  * WARNING: must be called with preemption disabled!
6590  */
6591 static void __sched notrace __schedule(unsigned int sched_mode)
6592 {
6593 	struct task_struct *prev, *next;
6594 	unsigned long *switch_count;
6595 	unsigned long prev_state;
6596 	struct rq_flags rf;
6597 	struct rq *rq;
6598 	int cpu;
6599 
6600 	cpu = smp_processor_id();
6601 	rq = cpu_rq(cpu);
6602 	prev = rq->curr;
6603 
6604 	schedule_debug(prev, !!sched_mode);
6605 
6606 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6607 		hrtick_clear(rq);
6608 
6609 	local_irq_disable();
6610 	rcu_note_context_switch(!!sched_mode);
6611 
6612 	/*
6613 	 * Make sure that signal_pending_state()->signal_pending() below
6614 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6615 	 * done by the caller to avoid the race with signal_wake_up():
6616 	 *
6617 	 * __set_current_state(@state)		signal_wake_up()
6618 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6619 	 *					  wake_up_state(p, state)
6620 	 *   LOCK rq->lock			    LOCK p->pi_state
6621 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6622 	 *     if (signal_pending_state())	    if (p->state & @state)
6623 	 *
6624 	 * Also, the membarrier system call requires a full memory barrier
6625 	 * after coming from user-space, before storing to rq->curr.
6626 	 */
6627 	rq_lock(rq, &rf);
6628 	smp_mb__after_spinlock();
6629 
6630 	/* Promote REQ to ACT */
6631 	rq->clock_update_flags <<= 1;
6632 	update_rq_clock(rq);
6633 
6634 	switch_count = &prev->nivcsw;
6635 
6636 	/*
6637 	 * We must load prev->state once (task_struct::state is volatile), such
6638 	 * that we form a control dependency vs deactivate_task() below.
6639 	 */
6640 	prev_state = READ_ONCE(prev->__state);
6641 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6642 		if (signal_pending_state(prev_state, prev)) {
6643 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6644 		} else {
6645 			prev->sched_contributes_to_load =
6646 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6647 				!(prev_state & TASK_NOLOAD) &&
6648 				!(prev_state & TASK_FROZEN);
6649 
6650 			if (prev->sched_contributes_to_load)
6651 				rq->nr_uninterruptible++;
6652 
6653 			/*
6654 			 * __schedule()			ttwu()
6655 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6656 			 *   if (prev_state)		    goto out;
6657 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6658 			 *				  p->state = TASK_WAKING
6659 			 *
6660 			 * Where __schedule() and ttwu() have matching control dependencies.
6661 			 *
6662 			 * After this, schedule() must not care about p->state any more.
6663 			 */
6664 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6665 
6666 			if (prev->in_iowait) {
6667 				atomic_inc(&rq->nr_iowait);
6668 				delayacct_blkio_start();
6669 			}
6670 		}
6671 		switch_count = &prev->nvcsw;
6672 	}
6673 
6674 	next = pick_next_task(rq, prev, &rf);
6675 	clear_tsk_need_resched(prev);
6676 	clear_preempt_need_resched();
6677 #ifdef CONFIG_SCHED_DEBUG
6678 	rq->last_seen_need_resched_ns = 0;
6679 #endif
6680 
6681 	if (likely(prev != next)) {
6682 		rq->nr_switches++;
6683 		/*
6684 		 * RCU users of rcu_dereference(rq->curr) may not see
6685 		 * changes to task_struct made by pick_next_task().
6686 		 */
6687 		RCU_INIT_POINTER(rq->curr, next);
6688 		/*
6689 		 * The membarrier system call requires each architecture
6690 		 * to have a full memory barrier after updating
6691 		 * rq->curr, before returning to user-space.
6692 		 *
6693 		 * Here are the schemes providing that barrier on the
6694 		 * various architectures:
6695 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6696 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6697 		 * - finish_lock_switch() for weakly-ordered
6698 		 *   architectures where spin_unlock is a full barrier,
6699 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6700 		 *   is a RELEASE barrier),
6701 		 */
6702 		++*switch_count;
6703 
6704 		migrate_disable_switch(rq, prev);
6705 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6706 
6707 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6708 
6709 		/* Also unlocks the rq: */
6710 		rq = context_switch(rq, prev, next, &rf);
6711 	} else {
6712 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6713 
6714 		rq_unpin_lock(rq, &rf);
6715 		__balance_callbacks(rq);
6716 		raw_spin_rq_unlock_irq(rq);
6717 	}
6718 }
6719 
6720 void __noreturn do_task_dead(void)
6721 {
6722 	/* Causes final put_task_struct in finish_task_switch(): */
6723 	set_special_state(TASK_DEAD);
6724 
6725 	/* Tell freezer to ignore us: */
6726 	current->flags |= PF_NOFREEZE;
6727 
6728 	__schedule(SM_NONE);
6729 	BUG();
6730 
6731 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6732 	for (;;)
6733 		cpu_relax();
6734 }
6735 
6736 static inline void sched_submit_work(struct task_struct *tsk)
6737 {
6738 	unsigned int task_flags;
6739 
6740 	if (task_is_running(tsk))
6741 		return;
6742 
6743 	task_flags = tsk->flags;
6744 	/*
6745 	 * If a worker goes to sleep, notify and ask workqueue whether it
6746 	 * wants to wake up a task to maintain concurrency.
6747 	 */
6748 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6749 		if (task_flags & PF_WQ_WORKER)
6750 			wq_worker_sleeping(tsk);
6751 		else
6752 			io_wq_worker_sleeping(tsk);
6753 	}
6754 
6755 	/*
6756 	 * spinlock and rwlock must not flush block requests.  This will
6757 	 * deadlock if the callback attempts to acquire a lock which is
6758 	 * already acquired.
6759 	 */
6760 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6761 
6762 	/*
6763 	 * If we are going to sleep and we have plugged IO queued,
6764 	 * make sure to submit it to avoid deadlocks.
6765 	 */
6766 	blk_flush_plug(tsk->plug, true);
6767 }
6768 
6769 static void sched_update_worker(struct task_struct *tsk)
6770 {
6771 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6772 		if (tsk->flags & PF_WQ_WORKER)
6773 			wq_worker_running(tsk);
6774 		else
6775 			io_wq_worker_running(tsk);
6776 	}
6777 }
6778 
6779 asmlinkage __visible void __sched schedule(void)
6780 {
6781 	struct task_struct *tsk = current;
6782 
6783 	sched_submit_work(tsk);
6784 	do {
6785 		preempt_disable();
6786 		__schedule(SM_NONE);
6787 		sched_preempt_enable_no_resched();
6788 	} while (need_resched());
6789 	sched_update_worker(tsk);
6790 }
6791 EXPORT_SYMBOL(schedule);
6792 
6793 /*
6794  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6795  * state (have scheduled out non-voluntarily) by making sure that all
6796  * tasks have either left the run queue or have gone into user space.
6797  * As idle tasks do not do either, they must not ever be preempted
6798  * (schedule out non-voluntarily).
6799  *
6800  * schedule_idle() is similar to schedule_preempt_disable() except that it
6801  * never enables preemption because it does not call sched_submit_work().
6802  */
6803 void __sched schedule_idle(void)
6804 {
6805 	/*
6806 	 * As this skips calling sched_submit_work(), which the idle task does
6807 	 * regardless because that function is a nop when the task is in a
6808 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6809 	 * current task can be in any other state. Note, idle is always in the
6810 	 * TASK_RUNNING state.
6811 	 */
6812 	WARN_ON_ONCE(current->__state);
6813 	do {
6814 		__schedule(SM_NONE);
6815 	} while (need_resched());
6816 }
6817 
6818 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6819 asmlinkage __visible void __sched schedule_user(void)
6820 {
6821 	/*
6822 	 * If we come here after a random call to set_need_resched(),
6823 	 * or we have been woken up remotely but the IPI has not yet arrived,
6824 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6825 	 * we find a better solution.
6826 	 *
6827 	 * NB: There are buggy callers of this function.  Ideally we
6828 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6829 	 * too frequently to make sense yet.
6830 	 */
6831 	enum ctx_state prev_state = exception_enter();
6832 	schedule();
6833 	exception_exit(prev_state);
6834 }
6835 #endif
6836 
6837 /**
6838  * schedule_preempt_disabled - called with preemption disabled
6839  *
6840  * Returns with preemption disabled. Note: preempt_count must be 1
6841  */
6842 void __sched schedule_preempt_disabled(void)
6843 {
6844 	sched_preempt_enable_no_resched();
6845 	schedule();
6846 	preempt_disable();
6847 }
6848 
6849 #ifdef CONFIG_PREEMPT_RT
6850 void __sched notrace schedule_rtlock(void)
6851 {
6852 	do {
6853 		preempt_disable();
6854 		__schedule(SM_RTLOCK_WAIT);
6855 		sched_preempt_enable_no_resched();
6856 	} while (need_resched());
6857 }
6858 NOKPROBE_SYMBOL(schedule_rtlock);
6859 #endif
6860 
6861 static void __sched notrace preempt_schedule_common(void)
6862 {
6863 	do {
6864 		/*
6865 		 * Because the function tracer can trace preempt_count_sub()
6866 		 * and it also uses preempt_enable/disable_notrace(), if
6867 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6868 		 * by the function tracer will call this function again and
6869 		 * cause infinite recursion.
6870 		 *
6871 		 * Preemption must be disabled here before the function
6872 		 * tracer can trace. Break up preempt_disable() into two
6873 		 * calls. One to disable preemption without fear of being
6874 		 * traced. The other to still record the preemption latency,
6875 		 * which can also be traced by the function tracer.
6876 		 */
6877 		preempt_disable_notrace();
6878 		preempt_latency_start(1);
6879 		__schedule(SM_PREEMPT);
6880 		preempt_latency_stop(1);
6881 		preempt_enable_no_resched_notrace();
6882 
6883 		/*
6884 		 * Check again in case we missed a preemption opportunity
6885 		 * between schedule and now.
6886 		 */
6887 	} while (need_resched());
6888 }
6889 
6890 #ifdef CONFIG_PREEMPTION
6891 /*
6892  * This is the entry point to schedule() from in-kernel preemption
6893  * off of preempt_enable.
6894  */
6895 asmlinkage __visible void __sched notrace preempt_schedule(void)
6896 {
6897 	/*
6898 	 * If there is a non-zero preempt_count or interrupts are disabled,
6899 	 * we do not want to preempt the current task. Just return..
6900 	 */
6901 	if (likely(!preemptible()))
6902 		return;
6903 	preempt_schedule_common();
6904 }
6905 NOKPROBE_SYMBOL(preempt_schedule);
6906 EXPORT_SYMBOL(preempt_schedule);
6907 
6908 #ifdef CONFIG_PREEMPT_DYNAMIC
6909 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6910 #ifndef preempt_schedule_dynamic_enabled
6911 #define preempt_schedule_dynamic_enabled	preempt_schedule
6912 #define preempt_schedule_dynamic_disabled	NULL
6913 #endif
6914 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6915 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6916 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6917 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6918 void __sched notrace dynamic_preempt_schedule(void)
6919 {
6920 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6921 		return;
6922 	preempt_schedule();
6923 }
6924 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6925 EXPORT_SYMBOL(dynamic_preempt_schedule);
6926 #endif
6927 #endif
6928 
6929 /**
6930  * preempt_schedule_notrace - preempt_schedule called by tracing
6931  *
6932  * The tracing infrastructure uses preempt_enable_notrace to prevent
6933  * recursion and tracing preempt enabling caused by the tracing
6934  * infrastructure itself. But as tracing can happen in areas coming
6935  * from userspace or just about to enter userspace, a preempt enable
6936  * can occur before user_exit() is called. This will cause the scheduler
6937  * to be called when the system is still in usermode.
6938  *
6939  * To prevent this, the preempt_enable_notrace will use this function
6940  * instead of preempt_schedule() to exit user context if needed before
6941  * calling the scheduler.
6942  */
6943 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6944 {
6945 	enum ctx_state prev_ctx;
6946 
6947 	if (likely(!preemptible()))
6948 		return;
6949 
6950 	do {
6951 		/*
6952 		 * Because the function tracer can trace preempt_count_sub()
6953 		 * and it also uses preempt_enable/disable_notrace(), if
6954 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6955 		 * by the function tracer will call this function again and
6956 		 * cause infinite recursion.
6957 		 *
6958 		 * Preemption must be disabled here before the function
6959 		 * tracer can trace. Break up preempt_disable() into two
6960 		 * calls. One to disable preemption without fear of being
6961 		 * traced. The other to still record the preemption latency,
6962 		 * which can also be traced by the function tracer.
6963 		 */
6964 		preempt_disable_notrace();
6965 		preempt_latency_start(1);
6966 		/*
6967 		 * Needs preempt disabled in case user_exit() is traced
6968 		 * and the tracer calls preempt_enable_notrace() causing
6969 		 * an infinite recursion.
6970 		 */
6971 		prev_ctx = exception_enter();
6972 		__schedule(SM_PREEMPT);
6973 		exception_exit(prev_ctx);
6974 
6975 		preempt_latency_stop(1);
6976 		preempt_enable_no_resched_notrace();
6977 	} while (need_resched());
6978 }
6979 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6980 
6981 #ifdef CONFIG_PREEMPT_DYNAMIC
6982 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6983 #ifndef preempt_schedule_notrace_dynamic_enabled
6984 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6985 #define preempt_schedule_notrace_dynamic_disabled	NULL
6986 #endif
6987 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6988 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6989 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6990 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6991 void __sched notrace dynamic_preempt_schedule_notrace(void)
6992 {
6993 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6994 		return;
6995 	preempt_schedule_notrace();
6996 }
6997 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6998 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6999 #endif
7000 #endif
7001 
7002 #endif /* CONFIG_PREEMPTION */
7003 
7004 /*
7005  * This is the entry point to schedule() from kernel preemption
7006  * off of irq context.
7007  * Note, that this is called and return with irqs disabled. This will
7008  * protect us against recursive calling from irq.
7009  */
7010 asmlinkage __visible void __sched preempt_schedule_irq(void)
7011 {
7012 	enum ctx_state prev_state;
7013 
7014 	/* Catch callers which need to be fixed */
7015 	BUG_ON(preempt_count() || !irqs_disabled());
7016 
7017 	prev_state = exception_enter();
7018 
7019 	do {
7020 		preempt_disable();
7021 		local_irq_enable();
7022 		__schedule(SM_PREEMPT);
7023 		local_irq_disable();
7024 		sched_preempt_enable_no_resched();
7025 	} while (need_resched());
7026 
7027 	exception_exit(prev_state);
7028 }
7029 
7030 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7031 			  void *key)
7032 {
7033 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
7034 	return try_to_wake_up(curr->private, mode, wake_flags);
7035 }
7036 EXPORT_SYMBOL(default_wake_function);
7037 
7038 static void __setscheduler_prio(struct task_struct *p, int prio)
7039 {
7040 	if (dl_prio(prio))
7041 		p->sched_class = &dl_sched_class;
7042 	else if (rt_prio(prio))
7043 		p->sched_class = &rt_sched_class;
7044 	else
7045 		p->sched_class = &fair_sched_class;
7046 
7047 	p->prio = prio;
7048 }
7049 
7050 #ifdef CONFIG_RT_MUTEXES
7051 
7052 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7053 {
7054 	if (pi_task)
7055 		prio = min(prio, pi_task->prio);
7056 
7057 	return prio;
7058 }
7059 
7060 static inline int rt_effective_prio(struct task_struct *p, int prio)
7061 {
7062 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7063 
7064 	return __rt_effective_prio(pi_task, prio);
7065 }
7066 
7067 /*
7068  * rt_mutex_setprio - set the current priority of a task
7069  * @p: task to boost
7070  * @pi_task: donor task
7071  *
7072  * This function changes the 'effective' priority of a task. It does
7073  * not touch ->normal_prio like __setscheduler().
7074  *
7075  * Used by the rt_mutex code to implement priority inheritance
7076  * logic. Call site only calls if the priority of the task changed.
7077  */
7078 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7079 {
7080 	int prio, oldprio, queued, running, queue_flag =
7081 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7082 	const struct sched_class *prev_class;
7083 	struct rq_flags rf;
7084 	struct rq *rq;
7085 
7086 	/* XXX used to be waiter->prio, not waiter->task->prio */
7087 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7088 
7089 	/*
7090 	 * If nothing changed; bail early.
7091 	 */
7092 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7093 		return;
7094 
7095 	rq = __task_rq_lock(p, &rf);
7096 	update_rq_clock(rq);
7097 	/*
7098 	 * Set under pi_lock && rq->lock, such that the value can be used under
7099 	 * either lock.
7100 	 *
7101 	 * Note that there is loads of tricky to make this pointer cache work
7102 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7103 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7104 	 * task is allowed to run again (and can exit). This ensures the pointer
7105 	 * points to a blocked task -- which guarantees the task is present.
7106 	 */
7107 	p->pi_top_task = pi_task;
7108 
7109 	/*
7110 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7111 	 */
7112 	if (prio == p->prio && !dl_prio(prio))
7113 		goto out_unlock;
7114 
7115 	/*
7116 	 * Idle task boosting is a nono in general. There is one
7117 	 * exception, when PREEMPT_RT and NOHZ is active:
7118 	 *
7119 	 * The idle task calls get_next_timer_interrupt() and holds
7120 	 * the timer wheel base->lock on the CPU and another CPU wants
7121 	 * to access the timer (probably to cancel it). We can safely
7122 	 * ignore the boosting request, as the idle CPU runs this code
7123 	 * with interrupts disabled and will complete the lock
7124 	 * protected section without being interrupted. So there is no
7125 	 * real need to boost.
7126 	 */
7127 	if (unlikely(p == rq->idle)) {
7128 		WARN_ON(p != rq->curr);
7129 		WARN_ON(p->pi_blocked_on);
7130 		goto out_unlock;
7131 	}
7132 
7133 	trace_sched_pi_setprio(p, pi_task);
7134 	oldprio = p->prio;
7135 
7136 	if (oldprio == prio)
7137 		queue_flag &= ~DEQUEUE_MOVE;
7138 
7139 	prev_class = p->sched_class;
7140 	queued = task_on_rq_queued(p);
7141 	running = task_current(rq, p);
7142 	if (queued)
7143 		dequeue_task(rq, p, queue_flag);
7144 	if (running)
7145 		put_prev_task(rq, p);
7146 
7147 	/*
7148 	 * Boosting condition are:
7149 	 * 1. -rt task is running and holds mutex A
7150 	 *      --> -dl task blocks on mutex A
7151 	 *
7152 	 * 2. -dl task is running and holds mutex A
7153 	 *      --> -dl task blocks on mutex A and could preempt the
7154 	 *          running task
7155 	 */
7156 	if (dl_prio(prio)) {
7157 		if (!dl_prio(p->normal_prio) ||
7158 		    (pi_task && dl_prio(pi_task->prio) &&
7159 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7160 			p->dl.pi_se = pi_task->dl.pi_se;
7161 			queue_flag |= ENQUEUE_REPLENISH;
7162 		} else {
7163 			p->dl.pi_se = &p->dl;
7164 		}
7165 	} else if (rt_prio(prio)) {
7166 		if (dl_prio(oldprio))
7167 			p->dl.pi_se = &p->dl;
7168 		if (oldprio < prio)
7169 			queue_flag |= ENQUEUE_HEAD;
7170 	} else {
7171 		if (dl_prio(oldprio))
7172 			p->dl.pi_se = &p->dl;
7173 		if (rt_prio(oldprio))
7174 			p->rt.timeout = 0;
7175 	}
7176 
7177 	__setscheduler_prio(p, prio);
7178 
7179 	if (queued)
7180 		enqueue_task(rq, p, queue_flag);
7181 	if (running)
7182 		set_next_task(rq, p);
7183 
7184 	check_class_changed(rq, p, prev_class, oldprio);
7185 out_unlock:
7186 	/* Avoid rq from going away on us: */
7187 	preempt_disable();
7188 
7189 	rq_unpin_lock(rq, &rf);
7190 	__balance_callbacks(rq);
7191 	raw_spin_rq_unlock(rq);
7192 
7193 	preempt_enable();
7194 }
7195 #else
7196 static inline int rt_effective_prio(struct task_struct *p, int prio)
7197 {
7198 	return prio;
7199 }
7200 #endif
7201 
7202 void set_user_nice(struct task_struct *p, long nice)
7203 {
7204 	bool queued, running;
7205 	int old_prio;
7206 	struct rq_flags rf;
7207 	struct rq *rq;
7208 
7209 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7210 		return;
7211 	/*
7212 	 * We have to be careful, if called from sys_setpriority(),
7213 	 * the task might be in the middle of scheduling on another CPU.
7214 	 */
7215 	rq = task_rq_lock(p, &rf);
7216 	update_rq_clock(rq);
7217 
7218 	/*
7219 	 * The RT priorities are set via sched_setscheduler(), but we still
7220 	 * allow the 'normal' nice value to be set - but as expected
7221 	 * it won't have any effect on scheduling until the task is
7222 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7223 	 */
7224 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7225 		p->static_prio = NICE_TO_PRIO(nice);
7226 		goto out_unlock;
7227 	}
7228 	queued = task_on_rq_queued(p);
7229 	running = task_current(rq, p);
7230 	if (queued)
7231 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7232 	if (running)
7233 		put_prev_task(rq, p);
7234 
7235 	p->static_prio = NICE_TO_PRIO(nice);
7236 	set_load_weight(p, true);
7237 	old_prio = p->prio;
7238 	p->prio = effective_prio(p);
7239 
7240 	if (queued)
7241 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7242 	if (running)
7243 		set_next_task(rq, p);
7244 
7245 	/*
7246 	 * If the task increased its priority or is running and
7247 	 * lowered its priority, then reschedule its CPU:
7248 	 */
7249 	p->sched_class->prio_changed(rq, p, old_prio);
7250 
7251 out_unlock:
7252 	task_rq_unlock(rq, p, &rf);
7253 }
7254 EXPORT_SYMBOL(set_user_nice);
7255 
7256 /*
7257  * is_nice_reduction - check if nice value is an actual reduction
7258  *
7259  * Similar to can_nice() but does not perform a capability check.
7260  *
7261  * @p: task
7262  * @nice: nice value
7263  */
7264 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7265 {
7266 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7267 	int nice_rlim = nice_to_rlimit(nice);
7268 
7269 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7270 }
7271 
7272 /*
7273  * can_nice - check if a task can reduce its nice value
7274  * @p: task
7275  * @nice: nice value
7276  */
7277 int can_nice(const struct task_struct *p, const int nice)
7278 {
7279 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7280 }
7281 
7282 #ifdef __ARCH_WANT_SYS_NICE
7283 
7284 /*
7285  * sys_nice - change the priority of the current process.
7286  * @increment: priority increment
7287  *
7288  * sys_setpriority is a more generic, but much slower function that
7289  * does similar things.
7290  */
7291 SYSCALL_DEFINE1(nice, int, increment)
7292 {
7293 	long nice, retval;
7294 
7295 	/*
7296 	 * Setpriority might change our priority at the same moment.
7297 	 * We don't have to worry. Conceptually one call occurs first
7298 	 * and we have a single winner.
7299 	 */
7300 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7301 	nice = task_nice(current) + increment;
7302 
7303 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7304 	if (increment < 0 && !can_nice(current, nice))
7305 		return -EPERM;
7306 
7307 	retval = security_task_setnice(current, nice);
7308 	if (retval)
7309 		return retval;
7310 
7311 	set_user_nice(current, nice);
7312 	return 0;
7313 }
7314 
7315 #endif
7316 
7317 /**
7318  * task_prio - return the priority value of a given task.
7319  * @p: the task in question.
7320  *
7321  * Return: The priority value as seen by users in /proc.
7322  *
7323  * sched policy         return value   kernel prio    user prio/nice
7324  *
7325  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7326  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7327  * deadline                     -101             -1           0
7328  */
7329 int task_prio(const struct task_struct *p)
7330 {
7331 	return p->prio - MAX_RT_PRIO;
7332 }
7333 
7334 /**
7335  * idle_cpu - is a given CPU idle currently?
7336  * @cpu: the processor in question.
7337  *
7338  * Return: 1 if the CPU is currently idle. 0 otherwise.
7339  */
7340 int idle_cpu(int cpu)
7341 {
7342 	struct rq *rq = cpu_rq(cpu);
7343 
7344 	if (rq->curr != rq->idle)
7345 		return 0;
7346 
7347 	if (rq->nr_running)
7348 		return 0;
7349 
7350 #ifdef CONFIG_SMP
7351 	if (rq->ttwu_pending)
7352 		return 0;
7353 #endif
7354 
7355 	return 1;
7356 }
7357 
7358 /**
7359  * available_idle_cpu - is a given CPU idle for enqueuing work.
7360  * @cpu: the CPU in question.
7361  *
7362  * Return: 1 if the CPU is currently idle. 0 otherwise.
7363  */
7364 int available_idle_cpu(int cpu)
7365 {
7366 	if (!idle_cpu(cpu))
7367 		return 0;
7368 
7369 	if (vcpu_is_preempted(cpu))
7370 		return 0;
7371 
7372 	return 1;
7373 }
7374 
7375 /**
7376  * idle_task - return the idle task for a given CPU.
7377  * @cpu: the processor in question.
7378  *
7379  * Return: The idle task for the CPU @cpu.
7380  */
7381 struct task_struct *idle_task(int cpu)
7382 {
7383 	return cpu_rq(cpu)->idle;
7384 }
7385 
7386 #ifdef CONFIG_SMP
7387 /*
7388  * This function computes an effective utilization for the given CPU, to be
7389  * used for frequency selection given the linear relation: f = u * f_max.
7390  *
7391  * The scheduler tracks the following metrics:
7392  *
7393  *   cpu_util_{cfs,rt,dl,irq}()
7394  *   cpu_bw_dl()
7395  *
7396  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7397  * synchronized windows and are thus directly comparable.
7398  *
7399  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7400  * which excludes things like IRQ and steal-time. These latter are then accrued
7401  * in the irq utilization.
7402  *
7403  * The DL bandwidth number otoh is not a measured metric but a value computed
7404  * based on the task model parameters and gives the minimal utilization
7405  * required to meet deadlines.
7406  */
7407 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7408 				 enum cpu_util_type type,
7409 				 struct task_struct *p)
7410 {
7411 	unsigned long dl_util, util, irq, max;
7412 	struct rq *rq = cpu_rq(cpu);
7413 
7414 	max = arch_scale_cpu_capacity(cpu);
7415 
7416 	if (!uclamp_is_used() &&
7417 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7418 		return max;
7419 	}
7420 
7421 	/*
7422 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7423 	 * because of inaccuracies in how we track these -- see
7424 	 * update_irq_load_avg().
7425 	 */
7426 	irq = cpu_util_irq(rq);
7427 	if (unlikely(irq >= max))
7428 		return max;
7429 
7430 	/*
7431 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7432 	 * CFS tasks and we use the same metric to track the effective
7433 	 * utilization (PELT windows are synchronized) we can directly add them
7434 	 * to obtain the CPU's actual utilization.
7435 	 *
7436 	 * CFS and RT utilization can be boosted or capped, depending on
7437 	 * utilization clamp constraints requested by currently RUNNABLE
7438 	 * tasks.
7439 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7440 	 * frequency will be gracefully reduced with the utilization decay.
7441 	 */
7442 	util = util_cfs + cpu_util_rt(rq);
7443 	if (type == FREQUENCY_UTIL)
7444 		util = uclamp_rq_util_with(rq, util, p);
7445 
7446 	dl_util = cpu_util_dl(rq);
7447 
7448 	/*
7449 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7450 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7451 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7452 	 * that we select f_max when there is no idle time.
7453 	 *
7454 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7455 	 * saturation when we should -- something for later.
7456 	 */
7457 	if (util + dl_util >= max)
7458 		return max;
7459 
7460 	/*
7461 	 * OTOH, for energy computation we need the estimated running time, so
7462 	 * include util_dl and ignore dl_bw.
7463 	 */
7464 	if (type == ENERGY_UTIL)
7465 		util += dl_util;
7466 
7467 	/*
7468 	 * There is still idle time; further improve the number by using the
7469 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7470 	 * need to scale the task numbers:
7471 	 *
7472 	 *              max - irq
7473 	 *   U' = irq + --------- * U
7474 	 *                 max
7475 	 */
7476 	util = scale_irq_capacity(util, irq, max);
7477 	util += irq;
7478 
7479 	/*
7480 	 * Bandwidth required by DEADLINE must always be granted while, for
7481 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7482 	 * to gracefully reduce the frequency when no tasks show up for longer
7483 	 * periods of time.
7484 	 *
7485 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7486 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7487 	 * an interface. So, we only do the latter for now.
7488 	 */
7489 	if (type == FREQUENCY_UTIL)
7490 		util += cpu_bw_dl(rq);
7491 
7492 	return min(max, util);
7493 }
7494 
7495 unsigned long sched_cpu_util(int cpu)
7496 {
7497 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7498 }
7499 #endif /* CONFIG_SMP */
7500 
7501 /**
7502  * find_process_by_pid - find a process with a matching PID value.
7503  * @pid: the pid in question.
7504  *
7505  * The task of @pid, if found. %NULL otherwise.
7506  */
7507 static struct task_struct *find_process_by_pid(pid_t pid)
7508 {
7509 	return pid ? find_task_by_vpid(pid) : current;
7510 }
7511 
7512 /*
7513  * sched_setparam() passes in -1 for its policy, to let the functions
7514  * it calls know not to change it.
7515  */
7516 #define SETPARAM_POLICY	-1
7517 
7518 static void __setscheduler_params(struct task_struct *p,
7519 		const struct sched_attr *attr)
7520 {
7521 	int policy = attr->sched_policy;
7522 
7523 	if (policy == SETPARAM_POLICY)
7524 		policy = p->policy;
7525 
7526 	p->policy = policy;
7527 
7528 	if (dl_policy(policy))
7529 		__setparam_dl(p, attr);
7530 	else if (fair_policy(policy))
7531 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7532 
7533 	/*
7534 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7535 	 * !rt_policy. Always setting this ensures that things like
7536 	 * getparam()/getattr() don't report silly values for !rt tasks.
7537 	 */
7538 	p->rt_priority = attr->sched_priority;
7539 	p->normal_prio = normal_prio(p);
7540 	set_load_weight(p, true);
7541 }
7542 
7543 /*
7544  * Check the target process has a UID that matches the current process's:
7545  */
7546 static bool check_same_owner(struct task_struct *p)
7547 {
7548 	const struct cred *cred = current_cred(), *pcred;
7549 	bool match;
7550 
7551 	rcu_read_lock();
7552 	pcred = __task_cred(p);
7553 	match = (uid_eq(cred->euid, pcred->euid) ||
7554 		 uid_eq(cred->euid, pcred->uid));
7555 	rcu_read_unlock();
7556 	return match;
7557 }
7558 
7559 /*
7560  * Allow unprivileged RT tasks to decrease priority.
7561  * Only issue a capable test if needed and only once to avoid an audit
7562  * event on permitted non-privileged operations:
7563  */
7564 static int user_check_sched_setscheduler(struct task_struct *p,
7565 					 const struct sched_attr *attr,
7566 					 int policy, int reset_on_fork)
7567 {
7568 	if (fair_policy(policy)) {
7569 		if (attr->sched_nice < task_nice(p) &&
7570 		    !is_nice_reduction(p, attr->sched_nice))
7571 			goto req_priv;
7572 	}
7573 
7574 	if (rt_policy(policy)) {
7575 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7576 
7577 		/* Can't set/change the rt policy: */
7578 		if (policy != p->policy && !rlim_rtprio)
7579 			goto req_priv;
7580 
7581 		/* Can't increase priority: */
7582 		if (attr->sched_priority > p->rt_priority &&
7583 		    attr->sched_priority > rlim_rtprio)
7584 			goto req_priv;
7585 	}
7586 
7587 	/*
7588 	 * Can't set/change SCHED_DEADLINE policy at all for now
7589 	 * (safest behavior); in the future we would like to allow
7590 	 * unprivileged DL tasks to increase their relative deadline
7591 	 * or reduce their runtime (both ways reducing utilization)
7592 	 */
7593 	if (dl_policy(policy))
7594 		goto req_priv;
7595 
7596 	/*
7597 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7598 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7599 	 */
7600 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7601 		if (!is_nice_reduction(p, task_nice(p)))
7602 			goto req_priv;
7603 	}
7604 
7605 	/* Can't change other user's priorities: */
7606 	if (!check_same_owner(p))
7607 		goto req_priv;
7608 
7609 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7610 	if (p->sched_reset_on_fork && !reset_on_fork)
7611 		goto req_priv;
7612 
7613 	return 0;
7614 
7615 req_priv:
7616 	if (!capable(CAP_SYS_NICE))
7617 		return -EPERM;
7618 
7619 	return 0;
7620 }
7621 
7622 static int __sched_setscheduler(struct task_struct *p,
7623 				const struct sched_attr *attr,
7624 				bool user, bool pi)
7625 {
7626 	int oldpolicy = -1, policy = attr->sched_policy;
7627 	int retval, oldprio, newprio, queued, running;
7628 	const struct sched_class *prev_class;
7629 	struct balance_callback *head;
7630 	struct rq_flags rf;
7631 	int reset_on_fork;
7632 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7633 	struct rq *rq;
7634 	bool cpuset_locked = false;
7635 
7636 	/* The pi code expects interrupts enabled */
7637 	BUG_ON(pi && in_interrupt());
7638 recheck:
7639 	/* Double check policy once rq lock held: */
7640 	if (policy < 0) {
7641 		reset_on_fork = p->sched_reset_on_fork;
7642 		policy = oldpolicy = p->policy;
7643 	} else {
7644 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7645 
7646 		if (!valid_policy(policy))
7647 			return -EINVAL;
7648 	}
7649 
7650 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7651 		return -EINVAL;
7652 
7653 	/*
7654 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7655 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7656 	 * SCHED_BATCH and SCHED_IDLE is 0.
7657 	 */
7658 	if (attr->sched_priority > MAX_RT_PRIO-1)
7659 		return -EINVAL;
7660 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7661 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7662 		return -EINVAL;
7663 
7664 	if (user) {
7665 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7666 		if (retval)
7667 			return retval;
7668 
7669 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7670 			return -EINVAL;
7671 
7672 		retval = security_task_setscheduler(p);
7673 		if (retval)
7674 			return retval;
7675 	}
7676 
7677 	/* Update task specific "requested" clamps */
7678 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7679 		retval = uclamp_validate(p, attr);
7680 		if (retval)
7681 			return retval;
7682 	}
7683 
7684 	/*
7685 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7686 	 * information.
7687 	 */
7688 	if (dl_policy(policy) || dl_policy(p->policy)) {
7689 		cpuset_locked = true;
7690 		cpuset_lock();
7691 	}
7692 
7693 	/*
7694 	 * Make sure no PI-waiters arrive (or leave) while we are
7695 	 * changing the priority of the task:
7696 	 *
7697 	 * To be able to change p->policy safely, the appropriate
7698 	 * runqueue lock must be held.
7699 	 */
7700 	rq = task_rq_lock(p, &rf);
7701 	update_rq_clock(rq);
7702 
7703 	/*
7704 	 * Changing the policy of the stop threads its a very bad idea:
7705 	 */
7706 	if (p == rq->stop) {
7707 		retval = -EINVAL;
7708 		goto unlock;
7709 	}
7710 
7711 	/*
7712 	 * If not changing anything there's no need to proceed further,
7713 	 * but store a possible modification of reset_on_fork.
7714 	 */
7715 	if (unlikely(policy == p->policy)) {
7716 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7717 			goto change;
7718 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7719 			goto change;
7720 		if (dl_policy(policy) && dl_param_changed(p, attr))
7721 			goto change;
7722 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7723 			goto change;
7724 
7725 		p->sched_reset_on_fork = reset_on_fork;
7726 		retval = 0;
7727 		goto unlock;
7728 	}
7729 change:
7730 
7731 	if (user) {
7732 #ifdef CONFIG_RT_GROUP_SCHED
7733 		/*
7734 		 * Do not allow realtime tasks into groups that have no runtime
7735 		 * assigned.
7736 		 */
7737 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7738 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7739 				!task_group_is_autogroup(task_group(p))) {
7740 			retval = -EPERM;
7741 			goto unlock;
7742 		}
7743 #endif
7744 #ifdef CONFIG_SMP
7745 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7746 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7747 			cpumask_t *span = rq->rd->span;
7748 
7749 			/*
7750 			 * Don't allow tasks with an affinity mask smaller than
7751 			 * the entire root_domain to become SCHED_DEADLINE. We
7752 			 * will also fail if there's no bandwidth available.
7753 			 */
7754 			if (!cpumask_subset(span, p->cpus_ptr) ||
7755 			    rq->rd->dl_bw.bw == 0) {
7756 				retval = -EPERM;
7757 				goto unlock;
7758 			}
7759 		}
7760 #endif
7761 	}
7762 
7763 	/* Re-check policy now with rq lock held: */
7764 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7765 		policy = oldpolicy = -1;
7766 		task_rq_unlock(rq, p, &rf);
7767 		if (cpuset_locked)
7768 			cpuset_unlock();
7769 		goto recheck;
7770 	}
7771 
7772 	/*
7773 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7774 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7775 	 * is available.
7776 	 */
7777 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7778 		retval = -EBUSY;
7779 		goto unlock;
7780 	}
7781 
7782 	p->sched_reset_on_fork = reset_on_fork;
7783 	oldprio = p->prio;
7784 
7785 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7786 	if (pi) {
7787 		/*
7788 		 * Take priority boosted tasks into account. If the new
7789 		 * effective priority is unchanged, we just store the new
7790 		 * normal parameters and do not touch the scheduler class and
7791 		 * the runqueue. This will be done when the task deboost
7792 		 * itself.
7793 		 */
7794 		newprio = rt_effective_prio(p, newprio);
7795 		if (newprio == oldprio)
7796 			queue_flags &= ~DEQUEUE_MOVE;
7797 	}
7798 
7799 	queued = task_on_rq_queued(p);
7800 	running = task_current(rq, p);
7801 	if (queued)
7802 		dequeue_task(rq, p, queue_flags);
7803 	if (running)
7804 		put_prev_task(rq, p);
7805 
7806 	prev_class = p->sched_class;
7807 
7808 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7809 		__setscheduler_params(p, attr);
7810 		__setscheduler_prio(p, newprio);
7811 	}
7812 	__setscheduler_uclamp(p, attr);
7813 
7814 	if (queued) {
7815 		/*
7816 		 * We enqueue to tail when the priority of a task is
7817 		 * increased (user space view).
7818 		 */
7819 		if (oldprio < p->prio)
7820 			queue_flags |= ENQUEUE_HEAD;
7821 
7822 		enqueue_task(rq, p, queue_flags);
7823 	}
7824 	if (running)
7825 		set_next_task(rq, p);
7826 
7827 	check_class_changed(rq, p, prev_class, oldprio);
7828 
7829 	/* Avoid rq from going away on us: */
7830 	preempt_disable();
7831 	head = splice_balance_callbacks(rq);
7832 	task_rq_unlock(rq, p, &rf);
7833 
7834 	if (pi) {
7835 		if (cpuset_locked)
7836 			cpuset_unlock();
7837 		rt_mutex_adjust_pi(p);
7838 	}
7839 
7840 	/* Run balance callbacks after we've adjusted the PI chain: */
7841 	balance_callbacks(rq, head);
7842 	preempt_enable();
7843 
7844 	return 0;
7845 
7846 unlock:
7847 	task_rq_unlock(rq, p, &rf);
7848 	if (cpuset_locked)
7849 		cpuset_unlock();
7850 	return retval;
7851 }
7852 
7853 static int _sched_setscheduler(struct task_struct *p, int policy,
7854 			       const struct sched_param *param, bool check)
7855 {
7856 	struct sched_attr attr = {
7857 		.sched_policy   = policy,
7858 		.sched_priority = param->sched_priority,
7859 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7860 	};
7861 
7862 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7863 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7864 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7865 		policy &= ~SCHED_RESET_ON_FORK;
7866 		attr.sched_policy = policy;
7867 	}
7868 
7869 	return __sched_setscheduler(p, &attr, check, true);
7870 }
7871 /**
7872  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7873  * @p: the task in question.
7874  * @policy: new policy.
7875  * @param: structure containing the new RT priority.
7876  *
7877  * Use sched_set_fifo(), read its comment.
7878  *
7879  * Return: 0 on success. An error code otherwise.
7880  *
7881  * NOTE that the task may be already dead.
7882  */
7883 int sched_setscheduler(struct task_struct *p, int policy,
7884 		       const struct sched_param *param)
7885 {
7886 	return _sched_setscheduler(p, policy, param, true);
7887 }
7888 
7889 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7890 {
7891 	return __sched_setscheduler(p, attr, true, true);
7892 }
7893 
7894 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7895 {
7896 	return __sched_setscheduler(p, attr, false, true);
7897 }
7898 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7899 
7900 /**
7901  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7902  * @p: the task in question.
7903  * @policy: new policy.
7904  * @param: structure containing the new RT priority.
7905  *
7906  * Just like sched_setscheduler, only don't bother checking if the
7907  * current context has permission.  For example, this is needed in
7908  * stop_machine(): we create temporary high priority worker threads,
7909  * but our caller might not have that capability.
7910  *
7911  * Return: 0 on success. An error code otherwise.
7912  */
7913 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7914 			       const struct sched_param *param)
7915 {
7916 	return _sched_setscheduler(p, policy, param, false);
7917 }
7918 
7919 /*
7920  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7921  * incapable of resource management, which is the one thing an OS really should
7922  * be doing.
7923  *
7924  * This is of course the reason it is limited to privileged users only.
7925  *
7926  * Worse still; it is fundamentally impossible to compose static priority
7927  * workloads. You cannot take two correctly working static prio workloads
7928  * and smash them together and still expect them to work.
7929  *
7930  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7931  *
7932  *   MAX_RT_PRIO / 2
7933  *
7934  * The administrator _MUST_ configure the system, the kernel simply doesn't
7935  * know enough information to make a sensible choice.
7936  */
7937 void sched_set_fifo(struct task_struct *p)
7938 {
7939 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7940 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7941 }
7942 EXPORT_SYMBOL_GPL(sched_set_fifo);
7943 
7944 /*
7945  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7946  */
7947 void sched_set_fifo_low(struct task_struct *p)
7948 {
7949 	struct sched_param sp = { .sched_priority = 1 };
7950 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7951 }
7952 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7953 
7954 void sched_set_normal(struct task_struct *p, int nice)
7955 {
7956 	struct sched_attr attr = {
7957 		.sched_policy = SCHED_NORMAL,
7958 		.sched_nice = nice,
7959 	};
7960 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7961 }
7962 EXPORT_SYMBOL_GPL(sched_set_normal);
7963 
7964 static int
7965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7966 {
7967 	struct sched_param lparam;
7968 	struct task_struct *p;
7969 	int retval;
7970 
7971 	if (!param || pid < 0)
7972 		return -EINVAL;
7973 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7974 		return -EFAULT;
7975 
7976 	rcu_read_lock();
7977 	retval = -ESRCH;
7978 	p = find_process_by_pid(pid);
7979 	if (likely(p))
7980 		get_task_struct(p);
7981 	rcu_read_unlock();
7982 
7983 	if (likely(p)) {
7984 		retval = sched_setscheduler(p, policy, &lparam);
7985 		put_task_struct(p);
7986 	}
7987 
7988 	return retval;
7989 }
7990 
7991 /*
7992  * Mimics kernel/events/core.c perf_copy_attr().
7993  */
7994 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7995 {
7996 	u32 size;
7997 	int ret;
7998 
7999 	/* Zero the full structure, so that a short copy will be nice: */
8000 	memset(attr, 0, sizeof(*attr));
8001 
8002 	ret = get_user(size, &uattr->size);
8003 	if (ret)
8004 		return ret;
8005 
8006 	/* ABI compatibility quirk: */
8007 	if (!size)
8008 		size = SCHED_ATTR_SIZE_VER0;
8009 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8010 		goto err_size;
8011 
8012 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8013 	if (ret) {
8014 		if (ret == -E2BIG)
8015 			goto err_size;
8016 		return ret;
8017 	}
8018 
8019 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8020 	    size < SCHED_ATTR_SIZE_VER1)
8021 		return -EINVAL;
8022 
8023 	/*
8024 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8025 	 * to be strict and return an error on out-of-bounds values?
8026 	 */
8027 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8028 
8029 	return 0;
8030 
8031 err_size:
8032 	put_user(sizeof(*attr), &uattr->size);
8033 	return -E2BIG;
8034 }
8035 
8036 static void get_params(struct task_struct *p, struct sched_attr *attr)
8037 {
8038 	if (task_has_dl_policy(p))
8039 		__getparam_dl(p, attr);
8040 	else if (task_has_rt_policy(p))
8041 		attr->sched_priority = p->rt_priority;
8042 	else
8043 		attr->sched_nice = task_nice(p);
8044 }
8045 
8046 /**
8047  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8048  * @pid: the pid in question.
8049  * @policy: new policy.
8050  * @param: structure containing the new RT priority.
8051  *
8052  * Return: 0 on success. An error code otherwise.
8053  */
8054 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8055 {
8056 	if (policy < 0)
8057 		return -EINVAL;
8058 
8059 	return do_sched_setscheduler(pid, policy, param);
8060 }
8061 
8062 /**
8063  * sys_sched_setparam - set/change the RT priority of a thread
8064  * @pid: the pid in question.
8065  * @param: structure containing the new RT priority.
8066  *
8067  * Return: 0 on success. An error code otherwise.
8068  */
8069 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8070 {
8071 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8072 }
8073 
8074 /**
8075  * sys_sched_setattr - same as above, but with extended sched_attr
8076  * @pid: the pid in question.
8077  * @uattr: structure containing the extended parameters.
8078  * @flags: for future extension.
8079  */
8080 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8081 			       unsigned int, flags)
8082 {
8083 	struct sched_attr attr;
8084 	struct task_struct *p;
8085 	int retval;
8086 
8087 	if (!uattr || pid < 0 || flags)
8088 		return -EINVAL;
8089 
8090 	retval = sched_copy_attr(uattr, &attr);
8091 	if (retval)
8092 		return retval;
8093 
8094 	if ((int)attr.sched_policy < 0)
8095 		return -EINVAL;
8096 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8097 		attr.sched_policy = SETPARAM_POLICY;
8098 
8099 	rcu_read_lock();
8100 	retval = -ESRCH;
8101 	p = find_process_by_pid(pid);
8102 	if (likely(p))
8103 		get_task_struct(p);
8104 	rcu_read_unlock();
8105 
8106 	if (likely(p)) {
8107 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8108 			get_params(p, &attr);
8109 		retval = sched_setattr(p, &attr);
8110 		put_task_struct(p);
8111 	}
8112 
8113 	return retval;
8114 }
8115 
8116 /**
8117  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8118  * @pid: the pid in question.
8119  *
8120  * Return: On success, the policy of the thread. Otherwise, a negative error
8121  * code.
8122  */
8123 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8124 {
8125 	struct task_struct *p;
8126 	int retval;
8127 
8128 	if (pid < 0)
8129 		return -EINVAL;
8130 
8131 	retval = -ESRCH;
8132 	rcu_read_lock();
8133 	p = find_process_by_pid(pid);
8134 	if (p) {
8135 		retval = security_task_getscheduler(p);
8136 		if (!retval)
8137 			retval = p->policy
8138 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8139 	}
8140 	rcu_read_unlock();
8141 	return retval;
8142 }
8143 
8144 /**
8145  * sys_sched_getparam - get the RT priority of a thread
8146  * @pid: the pid in question.
8147  * @param: structure containing the RT priority.
8148  *
8149  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8150  * code.
8151  */
8152 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8153 {
8154 	struct sched_param lp = { .sched_priority = 0 };
8155 	struct task_struct *p;
8156 	int retval;
8157 
8158 	if (!param || pid < 0)
8159 		return -EINVAL;
8160 
8161 	rcu_read_lock();
8162 	p = find_process_by_pid(pid);
8163 	retval = -ESRCH;
8164 	if (!p)
8165 		goto out_unlock;
8166 
8167 	retval = security_task_getscheduler(p);
8168 	if (retval)
8169 		goto out_unlock;
8170 
8171 	if (task_has_rt_policy(p))
8172 		lp.sched_priority = p->rt_priority;
8173 	rcu_read_unlock();
8174 
8175 	/*
8176 	 * This one might sleep, we cannot do it with a spinlock held ...
8177 	 */
8178 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8179 
8180 	return retval;
8181 
8182 out_unlock:
8183 	rcu_read_unlock();
8184 	return retval;
8185 }
8186 
8187 /*
8188  * Copy the kernel size attribute structure (which might be larger
8189  * than what user-space knows about) to user-space.
8190  *
8191  * Note that all cases are valid: user-space buffer can be larger or
8192  * smaller than the kernel-space buffer. The usual case is that both
8193  * have the same size.
8194  */
8195 static int
8196 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8197 			struct sched_attr *kattr,
8198 			unsigned int usize)
8199 {
8200 	unsigned int ksize = sizeof(*kattr);
8201 
8202 	if (!access_ok(uattr, usize))
8203 		return -EFAULT;
8204 
8205 	/*
8206 	 * sched_getattr() ABI forwards and backwards compatibility:
8207 	 *
8208 	 * If usize == ksize then we just copy everything to user-space and all is good.
8209 	 *
8210 	 * If usize < ksize then we only copy as much as user-space has space for,
8211 	 * this keeps ABI compatibility as well. We skip the rest.
8212 	 *
8213 	 * If usize > ksize then user-space is using a newer version of the ABI,
8214 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8215 	 * detect the kernel's knowledge of attributes from the attr->size value
8216 	 * which is set to ksize in this case.
8217 	 */
8218 	kattr->size = min(usize, ksize);
8219 
8220 	if (copy_to_user(uattr, kattr, kattr->size))
8221 		return -EFAULT;
8222 
8223 	return 0;
8224 }
8225 
8226 /**
8227  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8228  * @pid: the pid in question.
8229  * @uattr: structure containing the extended parameters.
8230  * @usize: sizeof(attr) for fwd/bwd comp.
8231  * @flags: for future extension.
8232  */
8233 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8234 		unsigned int, usize, unsigned int, flags)
8235 {
8236 	struct sched_attr kattr = { };
8237 	struct task_struct *p;
8238 	int retval;
8239 
8240 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8241 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8242 		return -EINVAL;
8243 
8244 	rcu_read_lock();
8245 	p = find_process_by_pid(pid);
8246 	retval = -ESRCH;
8247 	if (!p)
8248 		goto out_unlock;
8249 
8250 	retval = security_task_getscheduler(p);
8251 	if (retval)
8252 		goto out_unlock;
8253 
8254 	kattr.sched_policy = p->policy;
8255 	if (p->sched_reset_on_fork)
8256 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8257 	get_params(p, &kattr);
8258 	kattr.sched_flags &= SCHED_FLAG_ALL;
8259 
8260 #ifdef CONFIG_UCLAMP_TASK
8261 	/*
8262 	 * This could race with another potential updater, but this is fine
8263 	 * because it'll correctly read the old or the new value. We don't need
8264 	 * to guarantee who wins the race as long as it doesn't return garbage.
8265 	 */
8266 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8267 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8268 #endif
8269 
8270 	rcu_read_unlock();
8271 
8272 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8273 
8274 out_unlock:
8275 	rcu_read_unlock();
8276 	return retval;
8277 }
8278 
8279 #ifdef CONFIG_SMP
8280 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8281 {
8282 	int ret = 0;
8283 
8284 	/*
8285 	 * If the task isn't a deadline task or admission control is
8286 	 * disabled then we don't care about affinity changes.
8287 	 */
8288 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8289 		return 0;
8290 
8291 	/*
8292 	 * Since bandwidth control happens on root_domain basis,
8293 	 * if admission test is enabled, we only admit -deadline
8294 	 * tasks allowed to run on all the CPUs in the task's
8295 	 * root_domain.
8296 	 */
8297 	rcu_read_lock();
8298 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8299 		ret = -EBUSY;
8300 	rcu_read_unlock();
8301 	return ret;
8302 }
8303 #endif
8304 
8305 static int
8306 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8307 {
8308 	int retval;
8309 	cpumask_var_t cpus_allowed, new_mask;
8310 
8311 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8312 		return -ENOMEM;
8313 
8314 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8315 		retval = -ENOMEM;
8316 		goto out_free_cpus_allowed;
8317 	}
8318 
8319 	cpuset_cpus_allowed(p, cpus_allowed);
8320 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8321 
8322 	ctx->new_mask = new_mask;
8323 	ctx->flags |= SCA_CHECK;
8324 
8325 	retval = dl_task_check_affinity(p, new_mask);
8326 	if (retval)
8327 		goto out_free_new_mask;
8328 
8329 	retval = __set_cpus_allowed_ptr(p, ctx);
8330 	if (retval)
8331 		goto out_free_new_mask;
8332 
8333 	cpuset_cpus_allowed(p, cpus_allowed);
8334 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8335 		/*
8336 		 * We must have raced with a concurrent cpuset update.
8337 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8338 		 */
8339 		cpumask_copy(new_mask, cpus_allowed);
8340 
8341 		/*
8342 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8343 		 * will restore the previous user_cpus_ptr value.
8344 		 *
8345 		 * In the unlikely event a previous user_cpus_ptr exists,
8346 		 * we need to further restrict the mask to what is allowed
8347 		 * by that old user_cpus_ptr.
8348 		 */
8349 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8350 			bool empty = !cpumask_and(new_mask, new_mask,
8351 						  ctx->user_mask);
8352 
8353 			if (WARN_ON_ONCE(empty))
8354 				cpumask_copy(new_mask, cpus_allowed);
8355 		}
8356 		__set_cpus_allowed_ptr(p, ctx);
8357 		retval = -EINVAL;
8358 	}
8359 
8360 out_free_new_mask:
8361 	free_cpumask_var(new_mask);
8362 out_free_cpus_allowed:
8363 	free_cpumask_var(cpus_allowed);
8364 	return retval;
8365 }
8366 
8367 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8368 {
8369 	struct affinity_context ac;
8370 	struct cpumask *user_mask;
8371 	struct task_struct *p;
8372 	int retval;
8373 
8374 	rcu_read_lock();
8375 
8376 	p = find_process_by_pid(pid);
8377 	if (!p) {
8378 		rcu_read_unlock();
8379 		return -ESRCH;
8380 	}
8381 
8382 	/* Prevent p going away */
8383 	get_task_struct(p);
8384 	rcu_read_unlock();
8385 
8386 	if (p->flags & PF_NO_SETAFFINITY) {
8387 		retval = -EINVAL;
8388 		goto out_put_task;
8389 	}
8390 
8391 	if (!check_same_owner(p)) {
8392 		rcu_read_lock();
8393 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8394 			rcu_read_unlock();
8395 			retval = -EPERM;
8396 			goto out_put_task;
8397 		}
8398 		rcu_read_unlock();
8399 	}
8400 
8401 	retval = security_task_setscheduler(p);
8402 	if (retval)
8403 		goto out_put_task;
8404 
8405 	/*
8406 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8407 	 * alloc_user_cpus_ptr() returns NULL.
8408 	 */
8409 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8410 	if (user_mask) {
8411 		cpumask_copy(user_mask, in_mask);
8412 	} else if (IS_ENABLED(CONFIG_SMP)) {
8413 		retval = -ENOMEM;
8414 		goto out_put_task;
8415 	}
8416 
8417 	ac = (struct affinity_context){
8418 		.new_mask  = in_mask,
8419 		.user_mask = user_mask,
8420 		.flags     = SCA_USER,
8421 	};
8422 
8423 	retval = __sched_setaffinity(p, &ac);
8424 	kfree(ac.user_mask);
8425 
8426 out_put_task:
8427 	put_task_struct(p);
8428 	return retval;
8429 }
8430 
8431 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8432 			     struct cpumask *new_mask)
8433 {
8434 	if (len < cpumask_size())
8435 		cpumask_clear(new_mask);
8436 	else if (len > cpumask_size())
8437 		len = cpumask_size();
8438 
8439 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8440 }
8441 
8442 /**
8443  * sys_sched_setaffinity - set the CPU affinity of a process
8444  * @pid: pid of the process
8445  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8446  * @user_mask_ptr: user-space pointer to the new CPU mask
8447  *
8448  * Return: 0 on success. An error code otherwise.
8449  */
8450 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8451 		unsigned long __user *, user_mask_ptr)
8452 {
8453 	cpumask_var_t new_mask;
8454 	int retval;
8455 
8456 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8457 		return -ENOMEM;
8458 
8459 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8460 	if (retval == 0)
8461 		retval = sched_setaffinity(pid, new_mask);
8462 	free_cpumask_var(new_mask);
8463 	return retval;
8464 }
8465 
8466 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8467 {
8468 	struct task_struct *p;
8469 	unsigned long flags;
8470 	int retval;
8471 
8472 	rcu_read_lock();
8473 
8474 	retval = -ESRCH;
8475 	p = find_process_by_pid(pid);
8476 	if (!p)
8477 		goto out_unlock;
8478 
8479 	retval = security_task_getscheduler(p);
8480 	if (retval)
8481 		goto out_unlock;
8482 
8483 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8484 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8485 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8486 
8487 out_unlock:
8488 	rcu_read_unlock();
8489 
8490 	return retval;
8491 }
8492 
8493 /**
8494  * sys_sched_getaffinity - get the CPU affinity of a process
8495  * @pid: pid of the process
8496  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8497  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8498  *
8499  * Return: size of CPU mask copied to user_mask_ptr on success. An
8500  * error code otherwise.
8501  */
8502 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8503 		unsigned long __user *, user_mask_ptr)
8504 {
8505 	int ret;
8506 	cpumask_var_t mask;
8507 
8508 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8509 		return -EINVAL;
8510 	if (len & (sizeof(unsigned long)-1))
8511 		return -EINVAL;
8512 
8513 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8514 		return -ENOMEM;
8515 
8516 	ret = sched_getaffinity(pid, mask);
8517 	if (ret == 0) {
8518 		unsigned int retlen = min(len, cpumask_size());
8519 
8520 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8521 			ret = -EFAULT;
8522 		else
8523 			ret = retlen;
8524 	}
8525 	free_cpumask_var(mask);
8526 
8527 	return ret;
8528 }
8529 
8530 static void do_sched_yield(void)
8531 {
8532 	struct rq_flags rf;
8533 	struct rq *rq;
8534 
8535 	rq = this_rq_lock_irq(&rf);
8536 
8537 	schedstat_inc(rq->yld_count);
8538 	current->sched_class->yield_task(rq);
8539 
8540 	preempt_disable();
8541 	rq_unlock_irq(rq, &rf);
8542 	sched_preempt_enable_no_resched();
8543 
8544 	schedule();
8545 }
8546 
8547 /**
8548  * sys_sched_yield - yield the current processor to other threads.
8549  *
8550  * This function yields the current CPU to other tasks. If there are no
8551  * other threads running on this CPU then this function will return.
8552  *
8553  * Return: 0.
8554  */
8555 SYSCALL_DEFINE0(sched_yield)
8556 {
8557 	do_sched_yield();
8558 	return 0;
8559 }
8560 
8561 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8562 int __sched __cond_resched(void)
8563 {
8564 	if (should_resched(0)) {
8565 		preempt_schedule_common();
8566 		return 1;
8567 	}
8568 	/*
8569 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8570 	 * whether the current CPU is in an RCU read-side critical section,
8571 	 * so the tick can report quiescent states even for CPUs looping
8572 	 * in kernel context.  In contrast, in non-preemptible kernels,
8573 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8574 	 * processes executing in kernel context might never report an
8575 	 * RCU quiescent state.  Therefore, the following code causes
8576 	 * cond_resched() to report a quiescent state, but only when RCU
8577 	 * is in urgent need of one.
8578 	 */
8579 #ifndef CONFIG_PREEMPT_RCU
8580 	rcu_all_qs();
8581 #endif
8582 	return 0;
8583 }
8584 EXPORT_SYMBOL(__cond_resched);
8585 #endif
8586 
8587 #ifdef CONFIG_PREEMPT_DYNAMIC
8588 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8589 #define cond_resched_dynamic_enabled	__cond_resched
8590 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8591 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8592 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8593 
8594 #define might_resched_dynamic_enabled	__cond_resched
8595 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8596 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8597 EXPORT_STATIC_CALL_TRAMP(might_resched);
8598 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8599 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8600 int __sched dynamic_cond_resched(void)
8601 {
8602 	klp_sched_try_switch();
8603 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8604 		return 0;
8605 	return __cond_resched();
8606 }
8607 EXPORT_SYMBOL(dynamic_cond_resched);
8608 
8609 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8610 int __sched dynamic_might_resched(void)
8611 {
8612 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8613 		return 0;
8614 	return __cond_resched();
8615 }
8616 EXPORT_SYMBOL(dynamic_might_resched);
8617 #endif
8618 #endif
8619 
8620 /*
8621  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8622  * call schedule, and on return reacquire the lock.
8623  *
8624  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8625  * operations here to prevent schedule() from being called twice (once via
8626  * spin_unlock(), once by hand).
8627  */
8628 int __cond_resched_lock(spinlock_t *lock)
8629 {
8630 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8631 	int ret = 0;
8632 
8633 	lockdep_assert_held(lock);
8634 
8635 	if (spin_needbreak(lock) || resched) {
8636 		spin_unlock(lock);
8637 		if (!_cond_resched())
8638 			cpu_relax();
8639 		ret = 1;
8640 		spin_lock(lock);
8641 	}
8642 	return ret;
8643 }
8644 EXPORT_SYMBOL(__cond_resched_lock);
8645 
8646 int __cond_resched_rwlock_read(rwlock_t *lock)
8647 {
8648 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8649 	int ret = 0;
8650 
8651 	lockdep_assert_held_read(lock);
8652 
8653 	if (rwlock_needbreak(lock) || resched) {
8654 		read_unlock(lock);
8655 		if (!_cond_resched())
8656 			cpu_relax();
8657 		ret = 1;
8658 		read_lock(lock);
8659 	}
8660 	return ret;
8661 }
8662 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8663 
8664 int __cond_resched_rwlock_write(rwlock_t *lock)
8665 {
8666 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8667 	int ret = 0;
8668 
8669 	lockdep_assert_held_write(lock);
8670 
8671 	if (rwlock_needbreak(lock) || resched) {
8672 		write_unlock(lock);
8673 		if (!_cond_resched())
8674 			cpu_relax();
8675 		ret = 1;
8676 		write_lock(lock);
8677 	}
8678 	return ret;
8679 }
8680 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8681 
8682 #ifdef CONFIG_PREEMPT_DYNAMIC
8683 
8684 #ifdef CONFIG_GENERIC_ENTRY
8685 #include <linux/entry-common.h>
8686 #endif
8687 
8688 /*
8689  * SC:cond_resched
8690  * SC:might_resched
8691  * SC:preempt_schedule
8692  * SC:preempt_schedule_notrace
8693  * SC:irqentry_exit_cond_resched
8694  *
8695  *
8696  * NONE:
8697  *   cond_resched               <- __cond_resched
8698  *   might_resched              <- RET0
8699  *   preempt_schedule           <- NOP
8700  *   preempt_schedule_notrace   <- NOP
8701  *   irqentry_exit_cond_resched <- NOP
8702  *
8703  * VOLUNTARY:
8704  *   cond_resched               <- __cond_resched
8705  *   might_resched              <- __cond_resched
8706  *   preempt_schedule           <- NOP
8707  *   preempt_schedule_notrace   <- NOP
8708  *   irqentry_exit_cond_resched <- NOP
8709  *
8710  * FULL:
8711  *   cond_resched               <- RET0
8712  *   might_resched              <- RET0
8713  *   preempt_schedule           <- preempt_schedule
8714  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8715  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8716  */
8717 
8718 enum {
8719 	preempt_dynamic_undefined = -1,
8720 	preempt_dynamic_none,
8721 	preempt_dynamic_voluntary,
8722 	preempt_dynamic_full,
8723 };
8724 
8725 int preempt_dynamic_mode = preempt_dynamic_undefined;
8726 
8727 int sched_dynamic_mode(const char *str)
8728 {
8729 	if (!strcmp(str, "none"))
8730 		return preempt_dynamic_none;
8731 
8732 	if (!strcmp(str, "voluntary"))
8733 		return preempt_dynamic_voluntary;
8734 
8735 	if (!strcmp(str, "full"))
8736 		return preempt_dynamic_full;
8737 
8738 	return -EINVAL;
8739 }
8740 
8741 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8742 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8743 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8744 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8745 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8746 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8747 #else
8748 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8749 #endif
8750 
8751 static DEFINE_MUTEX(sched_dynamic_mutex);
8752 static bool klp_override;
8753 
8754 static void __sched_dynamic_update(int mode)
8755 {
8756 	/*
8757 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8758 	 * the ZERO state, which is invalid.
8759 	 */
8760 	if (!klp_override)
8761 		preempt_dynamic_enable(cond_resched);
8762 	preempt_dynamic_enable(might_resched);
8763 	preempt_dynamic_enable(preempt_schedule);
8764 	preempt_dynamic_enable(preempt_schedule_notrace);
8765 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8766 
8767 	switch (mode) {
8768 	case preempt_dynamic_none:
8769 		if (!klp_override)
8770 			preempt_dynamic_enable(cond_resched);
8771 		preempt_dynamic_disable(might_resched);
8772 		preempt_dynamic_disable(preempt_schedule);
8773 		preempt_dynamic_disable(preempt_schedule_notrace);
8774 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8775 		if (mode != preempt_dynamic_mode)
8776 			pr_info("Dynamic Preempt: none\n");
8777 		break;
8778 
8779 	case preempt_dynamic_voluntary:
8780 		if (!klp_override)
8781 			preempt_dynamic_enable(cond_resched);
8782 		preempt_dynamic_enable(might_resched);
8783 		preempt_dynamic_disable(preempt_schedule);
8784 		preempt_dynamic_disable(preempt_schedule_notrace);
8785 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8786 		if (mode != preempt_dynamic_mode)
8787 			pr_info("Dynamic Preempt: voluntary\n");
8788 		break;
8789 
8790 	case preempt_dynamic_full:
8791 		if (!klp_override)
8792 			preempt_dynamic_disable(cond_resched);
8793 		preempt_dynamic_disable(might_resched);
8794 		preempt_dynamic_enable(preempt_schedule);
8795 		preempt_dynamic_enable(preempt_schedule_notrace);
8796 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8797 		if (mode != preempt_dynamic_mode)
8798 			pr_info("Dynamic Preempt: full\n");
8799 		break;
8800 	}
8801 
8802 	preempt_dynamic_mode = mode;
8803 }
8804 
8805 void sched_dynamic_update(int mode)
8806 {
8807 	mutex_lock(&sched_dynamic_mutex);
8808 	__sched_dynamic_update(mode);
8809 	mutex_unlock(&sched_dynamic_mutex);
8810 }
8811 
8812 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8813 
8814 static int klp_cond_resched(void)
8815 {
8816 	__klp_sched_try_switch();
8817 	return __cond_resched();
8818 }
8819 
8820 void sched_dynamic_klp_enable(void)
8821 {
8822 	mutex_lock(&sched_dynamic_mutex);
8823 
8824 	klp_override = true;
8825 	static_call_update(cond_resched, klp_cond_resched);
8826 
8827 	mutex_unlock(&sched_dynamic_mutex);
8828 }
8829 
8830 void sched_dynamic_klp_disable(void)
8831 {
8832 	mutex_lock(&sched_dynamic_mutex);
8833 
8834 	klp_override = false;
8835 	__sched_dynamic_update(preempt_dynamic_mode);
8836 
8837 	mutex_unlock(&sched_dynamic_mutex);
8838 }
8839 
8840 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8841 
8842 static int __init setup_preempt_mode(char *str)
8843 {
8844 	int mode = sched_dynamic_mode(str);
8845 	if (mode < 0) {
8846 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8847 		return 0;
8848 	}
8849 
8850 	sched_dynamic_update(mode);
8851 	return 1;
8852 }
8853 __setup("preempt=", setup_preempt_mode);
8854 
8855 static void __init preempt_dynamic_init(void)
8856 {
8857 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8858 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8859 			sched_dynamic_update(preempt_dynamic_none);
8860 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8861 			sched_dynamic_update(preempt_dynamic_voluntary);
8862 		} else {
8863 			/* Default static call setting, nothing to do */
8864 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8865 			preempt_dynamic_mode = preempt_dynamic_full;
8866 			pr_info("Dynamic Preempt: full\n");
8867 		}
8868 	}
8869 }
8870 
8871 #define PREEMPT_MODEL_ACCESSOR(mode) \
8872 	bool preempt_model_##mode(void)						 \
8873 	{									 \
8874 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8875 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8876 	}									 \
8877 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8878 
8879 PREEMPT_MODEL_ACCESSOR(none);
8880 PREEMPT_MODEL_ACCESSOR(voluntary);
8881 PREEMPT_MODEL_ACCESSOR(full);
8882 
8883 #else /* !CONFIG_PREEMPT_DYNAMIC */
8884 
8885 static inline void preempt_dynamic_init(void) { }
8886 
8887 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8888 
8889 /**
8890  * yield - yield the current processor to other threads.
8891  *
8892  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8893  *
8894  * The scheduler is at all times free to pick the calling task as the most
8895  * eligible task to run, if removing the yield() call from your code breaks
8896  * it, it's already broken.
8897  *
8898  * Typical broken usage is:
8899  *
8900  * while (!event)
8901  *	yield();
8902  *
8903  * where one assumes that yield() will let 'the other' process run that will
8904  * make event true. If the current task is a SCHED_FIFO task that will never
8905  * happen. Never use yield() as a progress guarantee!!
8906  *
8907  * If you want to use yield() to wait for something, use wait_event().
8908  * If you want to use yield() to be 'nice' for others, use cond_resched().
8909  * If you still want to use yield(), do not!
8910  */
8911 void __sched yield(void)
8912 {
8913 	set_current_state(TASK_RUNNING);
8914 	do_sched_yield();
8915 }
8916 EXPORT_SYMBOL(yield);
8917 
8918 /**
8919  * yield_to - yield the current processor to another thread in
8920  * your thread group, or accelerate that thread toward the
8921  * processor it's on.
8922  * @p: target task
8923  * @preempt: whether task preemption is allowed or not
8924  *
8925  * It's the caller's job to ensure that the target task struct
8926  * can't go away on us before we can do any checks.
8927  *
8928  * Return:
8929  *	true (>0) if we indeed boosted the target task.
8930  *	false (0) if we failed to boost the target.
8931  *	-ESRCH if there's no task to yield to.
8932  */
8933 int __sched yield_to(struct task_struct *p, bool preempt)
8934 {
8935 	struct task_struct *curr = current;
8936 	struct rq *rq, *p_rq;
8937 	unsigned long flags;
8938 	int yielded = 0;
8939 
8940 	local_irq_save(flags);
8941 	rq = this_rq();
8942 
8943 again:
8944 	p_rq = task_rq(p);
8945 	/*
8946 	 * If we're the only runnable task on the rq and target rq also
8947 	 * has only one task, there's absolutely no point in yielding.
8948 	 */
8949 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8950 		yielded = -ESRCH;
8951 		goto out_irq;
8952 	}
8953 
8954 	double_rq_lock(rq, p_rq);
8955 	if (task_rq(p) != p_rq) {
8956 		double_rq_unlock(rq, p_rq);
8957 		goto again;
8958 	}
8959 
8960 	if (!curr->sched_class->yield_to_task)
8961 		goto out_unlock;
8962 
8963 	if (curr->sched_class != p->sched_class)
8964 		goto out_unlock;
8965 
8966 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8967 		goto out_unlock;
8968 
8969 	yielded = curr->sched_class->yield_to_task(rq, p);
8970 	if (yielded) {
8971 		schedstat_inc(rq->yld_count);
8972 		/*
8973 		 * Make p's CPU reschedule; pick_next_entity takes care of
8974 		 * fairness.
8975 		 */
8976 		if (preempt && rq != p_rq)
8977 			resched_curr(p_rq);
8978 	}
8979 
8980 out_unlock:
8981 	double_rq_unlock(rq, p_rq);
8982 out_irq:
8983 	local_irq_restore(flags);
8984 
8985 	if (yielded > 0)
8986 		schedule();
8987 
8988 	return yielded;
8989 }
8990 EXPORT_SYMBOL_GPL(yield_to);
8991 
8992 int io_schedule_prepare(void)
8993 {
8994 	int old_iowait = current->in_iowait;
8995 
8996 	current->in_iowait = 1;
8997 	blk_flush_plug(current->plug, true);
8998 	return old_iowait;
8999 }
9000 
9001 void io_schedule_finish(int token)
9002 {
9003 	current->in_iowait = token;
9004 }
9005 
9006 /*
9007  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9008  * that process accounting knows that this is a task in IO wait state.
9009  */
9010 long __sched io_schedule_timeout(long timeout)
9011 {
9012 	int token;
9013 	long ret;
9014 
9015 	token = io_schedule_prepare();
9016 	ret = schedule_timeout(timeout);
9017 	io_schedule_finish(token);
9018 
9019 	return ret;
9020 }
9021 EXPORT_SYMBOL(io_schedule_timeout);
9022 
9023 void __sched io_schedule(void)
9024 {
9025 	int token;
9026 
9027 	token = io_schedule_prepare();
9028 	schedule();
9029 	io_schedule_finish(token);
9030 }
9031 EXPORT_SYMBOL(io_schedule);
9032 
9033 /**
9034  * sys_sched_get_priority_max - return maximum RT priority.
9035  * @policy: scheduling class.
9036  *
9037  * Return: On success, this syscall returns the maximum
9038  * rt_priority that can be used by a given scheduling class.
9039  * On failure, a negative error code is returned.
9040  */
9041 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9042 {
9043 	int ret = -EINVAL;
9044 
9045 	switch (policy) {
9046 	case SCHED_FIFO:
9047 	case SCHED_RR:
9048 		ret = MAX_RT_PRIO-1;
9049 		break;
9050 	case SCHED_DEADLINE:
9051 	case SCHED_NORMAL:
9052 	case SCHED_BATCH:
9053 	case SCHED_IDLE:
9054 		ret = 0;
9055 		break;
9056 	}
9057 	return ret;
9058 }
9059 
9060 /**
9061  * sys_sched_get_priority_min - return minimum RT priority.
9062  * @policy: scheduling class.
9063  *
9064  * Return: On success, this syscall returns the minimum
9065  * rt_priority that can be used by a given scheduling class.
9066  * On failure, a negative error code is returned.
9067  */
9068 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9069 {
9070 	int ret = -EINVAL;
9071 
9072 	switch (policy) {
9073 	case SCHED_FIFO:
9074 	case SCHED_RR:
9075 		ret = 1;
9076 		break;
9077 	case SCHED_DEADLINE:
9078 	case SCHED_NORMAL:
9079 	case SCHED_BATCH:
9080 	case SCHED_IDLE:
9081 		ret = 0;
9082 	}
9083 	return ret;
9084 }
9085 
9086 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9087 {
9088 	struct task_struct *p;
9089 	unsigned int time_slice;
9090 	struct rq_flags rf;
9091 	struct rq *rq;
9092 	int retval;
9093 
9094 	if (pid < 0)
9095 		return -EINVAL;
9096 
9097 	retval = -ESRCH;
9098 	rcu_read_lock();
9099 	p = find_process_by_pid(pid);
9100 	if (!p)
9101 		goto out_unlock;
9102 
9103 	retval = security_task_getscheduler(p);
9104 	if (retval)
9105 		goto out_unlock;
9106 
9107 	rq = task_rq_lock(p, &rf);
9108 	time_slice = 0;
9109 	if (p->sched_class->get_rr_interval)
9110 		time_slice = p->sched_class->get_rr_interval(rq, p);
9111 	task_rq_unlock(rq, p, &rf);
9112 
9113 	rcu_read_unlock();
9114 	jiffies_to_timespec64(time_slice, t);
9115 	return 0;
9116 
9117 out_unlock:
9118 	rcu_read_unlock();
9119 	return retval;
9120 }
9121 
9122 /**
9123  * sys_sched_rr_get_interval - return the default timeslice of a process.
9124  * @pid: pid of the process.
9125  * @interval: userspace pointer to the timeslice value.
9126  *
9127  * this syscall writes the default timeslice value of a given process
9128  * into the user-space timespec buffer. A value of '0' means infinity.
9129  *
9130  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9131  * an error code.
9132  */
9133 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9134 		struct __kernel_timespec __user *, interval)
9135 {
9136 	struct timespec64 t;
9137 	int retval = sched_rr_get_interval(pid, &t);
9138 
9139 	if (retval == 0)
9140 		retval = put_timespec64(&t, interval);
9141 
9142 	return retval;
9143 }
9144 
9145 #ifdef CONFIG_COMPAT_32BIT_TIME
9146 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9147 		struct old_timespec32 __user *, interval)
9148 {
9149 	struct timespec64 t;
9150 	int retval = sched_rr_get_interval(pid, &t);
9151 
9152 	if (retval == 0)
9153 		retval = put_old_timespec32(&t, interval);
9154 	return retval;
9155 }
9156 #endif
9157 
9158 void sched_show_task(struct task_struct *p)
9159 {
9160 	unsigned long free = 0;
9161 	int ppid;
9162 
9163 	if (!try_get_task_stack(p))
9164 		return;
9165 
9166 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9167 
9168 	if (task_is_running(p))
9169 		pr_cont("  running task    ");
9170 #ifdef CONFIG_DEBUG_STACK_USAGE
9171 	free = stack_not_used(p);
9172 #endif
9173 	ppid = 0;
9174 	rcu_read_lock();
9175 	if (pid_alive(p))
9176 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9177 	rcu_read_unlock();
9178 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9179 		free, task_pid_nr(p), ppid,
9180 		read_task_thread_flags(p));
9181 
9182 	print_worker_info(KERN_INFO, p);
9183 	print_stop_info(KERN_INFO, p);
9184 	show_stack(p, NULL, KERN_INFO);
9185 	put_task_stack(p);
9186 }
9187 EXPORT_SYMBOL_GPL(sched_show_task);
9188 
9189 static inline bool
9190 state_filter_match(unsigned long state_filter, struct task_struct *p)
9191 {
9192 	unsigned int state = READ_ONCE(p->__state);
9193 
9194 	/* no filter, everything matches */
9195 	if (!state_filter)
9196 		return true;
9197 
9198 	/* filter, but doesn't match */
9199 	if (!(state & state_filter))
9200 		return false;
9201 
9202 	/*
9203 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9204 	 * TASK_KILLABLE).
9205 	 */
9206 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9207 		return false;
9208 
9209 	return true;
9210 }
9211 
9212 
9213 void show_state_filter(unsigned int state_filter)
9214 {
9215 	struct task_struct *g, *p;
9216 
9217 	rcu_read_lock();
9218 	for_each_process_thread(g, p) {
9219 		/*
9220 		 * reset the NMI-timeout, listing all files on a slow
9221 		 * console might take a lot of time:
9222 		 * Also, reset softlockup watchdogs on all CPUs, because
9223 		 * another CPU might be blocked waiting for us to process
9224 		 * an IPI.
9225 		 */
9226 		touch_nmi_watchdog();
9227 		touch_all_softlockup_watchdogs();
9228 		if (state_filter_match(state_filter, p))
9229 			sched_show_task(p);
9230 	}
9231 
9232 #ifdef CONFIG_SCHED_DEBUG
9233 	if (!state_filter)
9234 		sysrq_sched_debug_show();
9235 #endif
9236 	rcu_read_unlock();
9237 	/*
9238 	 * Only show locks if all tasks are dumped:
9239 	 */
9240 	if (!state_filter)
9241 		debug_show_all_locks();
9242 }
9243 
9244 /**
9245  * init_idle - set up an idle thread for a given CPU
9246  * @idle: task in question
9247  * @cpu: CPU the idle task belongs to
9248  *
9249  * NOTE: this function does not set the idle thread's NEED_RESCHED
9250  * flag, to make booting more robust.
9251  */
9252 void __init init_idle(struct task_struct *idle, int cpu)
9253 {
9254 #ifdef CONFIG_SMP
9255 	struct affinity_context ac = (struct affinity_context) {
9256 		.new_mask  = cpumask_of(cpu),
9257 		.flags     = 0,
9258 	};
9259 #endif
9260 	struct rq *rq = cpu_rq(cpu);
9261 	unsigned long flags;
9262 
9263 	__sched_fork(0, idle);
9264 
9265 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9266 	raw_spin_rq_lock(rq);
9267 
9268 	idle->__state = TASK_RUNNING;
9269 	idle->se.exec_start = sched_clock();
9270 	/*
9271 	 * PF_KTHREAD should already be set at this point; regardless, make it
9272 	 * look like a proper per-CPU kthread.
9273 	 */
9274 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9275 	kthread_set_per_cpu(idle, cpu);
9276 
9277 #ifdef CONFIG_SMP
9278 	/*
9279 	 * It's possible that init_idle() gets called multiple times on a task,
9280 	 * in that case do_set_cpus_allowed() will not do the right thing.
9281 	 *
9282 	 * And since this is boot we can forgo the serialization.
9283 	 */
9284 	set_cpus_allowed_common(idle, &ac);
9285 #endif
9286 	/*
9287 	 * We're having a chicken and egg problem, even though we are
9288 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9289 	 * lockdep check in task_group() will fail.
9290 	 *
9291 	 * Similar case to sched_fork(). / Alternatively we could
9292 	 * use task_rq_lock() here and obtain the other rq->lock.
9293 	 *
9294 	 * Silence PROVE_RCU
9295 	 */
9296 	rcu_read_lock();
9297 	__set_task_cpu(idle, cpu);
9298 	rcu_read_unlock();
9299 
9300 	rq->idle = idle;
9301 	rcu_assign_pointer(rq->curr, idle);
9302 	idle->on_rq = TASK_ON_RQ_QUEUED;
9303 #ifdef CONFIG_SMP
9304 	idle->on_cpu = 1;
9305 #endif
9306 	raw_spin_rq_unlock(rq);
9307 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9308 
9309 	/* Set the preempt count _outside_ the spinlocks! */
9310 	init_idle_preempt_count(idle, cpu);
9311 
9312 	/*
9313 	 * The idle tasks have their own, simple scheduling class:
9314 	 */
9315 	idle->sched_class = &idle_sched_class;
9316 	ftrace_graph_init_idle_task(idle, cpu);
9317 	vtime_init_idle(idle, cpu);
9318 #ifdef CONFIG_SMP
9319 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9320 #endif
9321 }
9322 
9323 #ifdef CONFIG_SMP
9324 
9325 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9326 			      const struct cpumask *trial)
9327 {
9328 	int ret = 1;
9329 
9330 	if (cpumask_empty(cur))
9331 		return ret;
9332 
9333 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9334 
9335 	return ret;
9336 }
9337 
9338 int task_can_attach(struct task_struct *p)
9339 {
9340 	int ret = 0;
9341 
9342 	/*
9343 	 * Kthreads which disallow setaffinity shouldn't be moved
9344 	 * to a new cpuset; we don't want to change their CPU
9345 	 * affinity and isolating such threads by their set of
9346 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9347 	 * applicable for such threads.  This prevents checking for
9348 	 * success of set_cpus_allowed_ptr() on all attached tasks
9349 	 * before cpus_mask may be changed.
9350 	 */
9351 	if (p->flags & PF_NO_SETAFFINITY)
9352 		ret = -EINVAL;
9353 
9354 	return ret;
9355 }
9356 
9357 bool sched_smp_initialized __read_mostly;
9358 
9359 #ifdef CONFIG_NUMA_BALANCING
9360 /* Migrate current task p to target_cpu */
9361 int migrate_task_to(struct task_struct *p, int target_cpu)
9362 {
9363 	struct migration_arg arg = { p, target_cpu };
9364 	int curr_cpu = task_cpu(p);
9365 
9366 	if (curr_cpu == target_cpu)
9367 		return 0;
9368 
9369 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9370 		return -EINVAL;
9371 
9372 	/* TODO: This is not properly updating schedstats */
9373 
9374 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9375 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9376 }
9377 
9378 /*
9379  * Requeue a task on a given node and accurately track the number of NUMA
9380  * tasks on the runqueues
9381  */
9382 void sched_setnuma(struct task_struct *p, int nid)
9383 {
9384 	bool queued, running;
9385 	struct rq_flags rf;
9386 	struct rq *rq;
9387 
9388 	rq = task_rq_lock(p, &rf);
9389 	queued = task_on_rq_queued(p);
9390 	running = task_current(rq, p);
9391 
9392 	if (queued)
9393 		dequeue_task(rq, p, DEQUEUE_SAVE);
9394 	if (running)
9395 		put_prev_task(rq, p);
9396 
9397 	p->numa_preferred_nid = nid;
9398 
9399 	if (queued)
9400 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9401 	if (running)
9402 		set_next_task(rq, p);
9403 	task_rq_unlock(rq, p, &rf);
9404 }
9405 #endif /* CONFIG_NUMA_BALANCING */
9406 
9407 #ifdef CONFIG_HOTPLUG_CPU
9408 /*
9409  * Ensure that the idle task is using init_mm right before its CPU goes
9410  * offline.
9411  */
9412 void idle_task_exit(void)
9413 {
9414 	struct mm_struct *mm = current->active_mm;
9415 
9416 	BUG_ON(cpu_online(smp_processor_id()));
9417 	BUG_ON(current != this_rq()->idle);
9418 
9419 	if (mm != &init_mm) {
9420 		switch_mm(mm, &init_mm, current);
9421 		finish_arch_post_lock_switch();
9422 	}
9423 
9424 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9425 }
9426 
9427 static int __balance_push_cpu_stop(void *arg)
9428 {
9429 	struct task_struct *p = arg;
9430 	struct rq *rq = this_rq();
9431 	struct rq_flags rf;
9432 	int cpu;
9433 
9434 	raw_spin_lock_irq(&p->pi_lock);
9435 	rq_lock(rq, &rf);
9436 
9437 	update_rq_clock(rq);
9438 
9439 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9440 		cpu = select_fallback_rq(rq->cpu, p);
9441 		rq = __migrate_task(rq, &rf, p, cpu);
9442 	}
9443 
9444 	rq_unlock(rq, &rf);
9445 	raw_spin_unlock_irq(&p->pi_lock);
9446 
9447 	put_task_struct(p);
9448 
9449 	return 0;
9450 }
9451 
9452 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9453 
9454 /*
9455  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9456  *
9457  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9458  * effective when the hotplug motion is down.
9459  */
9460 static void balance_push(struct rq *rq)
9461 {
9462 	struct task_struct *push_task = rq->curr;
9463 
9464 	lockdep_assert_rq_held(rq);
9465 
9466 	/*
9467 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9468 	 */
9469 	rq->balance_callback = &balance_push_callback;
9470 
9471 	/*
9472 	 * Only active while going offline and when invoked on the outgoing
9473 	 * CPU.
9474 	 */
9475 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9476 		return;
9477 
9478 	/*
9479 	 * Both the cpu-hotplug and stop task are in this case and are
9480 	 * required to complete the hotplug process.
9481 	 */
9482 	if (kthread_is_per_cpu(push_task) ||
9483 	    is_migration_disabled(push_task)) {
9484 
9485 		/*
9486 		 * If this is the idle task on the outgoing CPU try to wake
9487 		 * up the hotplug control thread which might wait for the
9488 		 * last task to vanish. The rcuwait_active() check is
9489 		 * accurate here because the waiter is pinned on this CPU
9490 		 * and can't obviously be running in parallel.
9491 		 *
9492 		 * On RT kernels this also has to check whether there are
9493 		 * pinned and scheduled out tasks on the runqueue. They
9494 		 * need to leave the migrate disabled section first.
9495 		 */
9496 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9497 		    rcuwait_active(&rq->hotplug_wait)) {
9498 			raw_spin_rq_unlock(rq);
9499 			rcuwait_wake_up(&rq->hotplug_wait);
9500 			raw_spin_rq_lock(rq);
9501 		}
9502 		return;
9503 	}
9504 
9505 	get_task_struct(push_task);
9506 	/*
9507 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9508 	 * Both preemption and IRQs are still disabled.
9509 	 */
9510 	raw_spin_rq_unlock(rq);
9511 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9512 			    this_cpu_ptr(&push_work));
9513 	/*
9514 	 * At this point need_resched() is true and we'll take the loop in
9515 	 * schedule(). The next pick is obviously going to be the stop task
9516 	 * which kthread_is_per_cpu() and will push this task away.
9517 	 */
9518 	raw_spin_rq_lock(rq);
9519 }
9520 
9521 static void balance_push_set(int cpu, bool on)
9522 {
9523 	struct rq *rq = cpu_rq(cpu);
9524 	struct rq_flags rf;
9525 
9526 	rq_lock_irqsave(rq, &rf);
9527 	if (on) {
9528 		WARN_ON_ONCE(rq->balance_callback);
9529 		rq->balance_callback = &balance_push_callback;
9530 	} else if (rq->balance_callback == &balance_push_callback) {
9531 		rq->balance_callback = NULL;
9532 	}
9533 	rq_unlock_irqrestore(rq, &rf);
9534 }
9535 
9536 /*
9537  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9538  * inactive. All tasks which are not per CPU kernel threads are either
9539  * pushed off this CPU now via balance_push() or placed on a different CPU
9540  * during wakeup. Wait until the CPU is quiescent.
9541  */
9542 static void balance_hotplug_wait(void)
9543 {
9544 	struct rq *rq = this_rq();
9545 
9546 	rcuwait_wait_event(&rq->hotplug_wait,
9547 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9548 			   TASK_UNINTERRUPTIBLE);
9549 }
9550 
9551 #else
9552 
9553 static inline void balance_push(struct rq *rq)
9554 {
9555 }
9556 
9557 static inline void balance_push_set(int cpu, bool on)
9558 {
9559 }
9560 
9561 static inline void balance_hotplug_wait(void)
9562 {
9563 }
9564 
9565 #endif /* CONFIG_HOTPLUG_CPU */
9566 
9567 void set_rq_online(struct rq *rq)
9568 {
9569 	if (!rq->online) {
9570 		const struct sched_class *class;
9571 
9572 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9573 		rq->online = 1;
9574 
9575 		for_each_class(class) {
9576 			if (class->rq_online)
9577 				class->rq_online(rq);
9578 		}
9579 	}
9580 }
9581 
9582 void set_rq_offline(struct rq *rq)
9583 {
9584 	if (rq->online) {
9585 		const struct sched_class *class;
9586 
9587 		update_rq_clock(rq);
9588 		for_each_class(class) {
9589 			if (class->rq_offline)
9590 				class->rq_offline(rq);
9591 		}
9592 
9593 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9594 		rq->online = 0;
9595 	}
9596 }
9597 
9598 /*
9599  * used to mark begin/end of suspend/resume:
9600  */
9601 static int num_cpus_frozen;
9602 
9603 /*
9604  * Update cpusets according to cpu_active mask.  If cpusets are
9605  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9606  * around partition_sched_domains().
9607  *
9608  * If we come here as part of a suspend/resume, don't touch cpusets because we
9609  * want to restore it back to its original state upon resume anyway.
9610  */
9611 static void cpuset_cpu_active(void)
9612 {
9613 	if (cpuhp_tasks_frozen) {
9614 		/*
9615 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9616 		 * resume sequence. As long as this is not the last online
9617 		 * operation in the resume sequence, just build a single sched
9618 		 * domain, ignoring cpusets.
9619 		 */
9620 		partition_sched_domains(1, NULL, NULL);
9621 		if (--num_cpus_frozen)
9622 			return;
9623 		/*
9624 		 * This is the last CPU online operation. So fall through and
9625 		 * restore the original sched domains by considering the
9626 		 * cpuset configurations.
9627 		 */
9628 		cpuset_force_rebuild();
9629 	}
9630 	cpuset_update_active_cpus();
9631 }
9632 
9633 static int cpuset_cpu_inactive(unsigned int cpu)
9634 {
9635 	if (!cpuhp_tasks_frozen) {
9636 		int ret = dl_bw_check_overflow(cpu);
9637 
9638 		if (ret)
9639 			return ret;
9640 		cpuset_update_active_cpus();
9641 	} else {
9642 		num_cpus_frozen++;
9643 		partition_sched_domains(1, NULL, NULL);
9644 	}
9645 	return 0;
9646 }
9647 
9648 int sched_cpu_activate(unsigned int cpu)
9649 {
9650 	struct rq *rq = cpu_rq(cpu);
9651 	struct rq_flags rf;
9652 
9653 	/*
9654 	 * Clear the balance_push callback and prepare to schedule
9655 	 * regular tasks.
9656 	 */
9657 	balance_push_set(cpu, false);
9658 
9659 #ifdef CONFIG_SCHED_SMT
9660 	/*
9661 	 * When going up, increment the number of cores with SMT present.
9662 	 */
9663 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9664 		static_branch_inc_cpuslocked(&sched_smt_present);
9665 #endif
9666 	set_cpu_active(cpu, true);
9667 
9668 	if (sched_smp_initialized) {
9669 		sched_update_numa(cpu, true);
9670 		sched_domains_numa_masks_set(cpu);
9671 		cpuset_cpu_active();
9672 	}
9673 
9674 	/*
9675 	 * Put the rq online, if not already. This happens:
9676 	 *
9677 	 * 1) In the early boot process, because we build the real domains
9678 	 *    after all CPUs have been brought up.
9679 	 *
9680 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9681 	 *    domains.
9682 	 */
9683 	rq_lock_irqsave(rq, &rf);
9684 	if (rq->rd) {
9685 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9686 		set_rq_online(rq);
9687 	}
9688 	rq_unlock_irqrestore(rq, &rf);
9689 
9690 	return 0;
9691 }
9692 
9693 int sched_cpu_deactivate(unsigned int cpu)
9694 {
9695 	struct rq *rq = cpu_rq(cpu);
9696 	struct rq_flags rf;
9697 	int ret;
9698 
9699 	/*
9700 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9701 	 * load balancing when not active
9702 	 */
9703 	nohz_balance_exit_idle(rq);
9704 
9705 	set_cpu_active(cpu, false);
9706 
9707 	/*
9708 	 * From this point forward, this CPU will refuse to run any task that
9709 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9710 	 * push those tasks away until this gets cleared, see
9711 	 * sched_cpu_dying().
9712 	 */
9713 	balance_push_set(cpu, true);
9714 
9715 	/*
9716 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9717 	 * preempt-disabled and RCU users of this state to go away such that
9718 	 * all new such users will observe it.
9719 	 *
9720 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9721 	 * ttwu_queue_cond() and is_cpu_allowed().
9722 	 *
9723 	 * Do sync before park smpboot threads to take care the rcu boost case.
9724 	 */
9725 	synchronize_rcu();
9726 
9727 	rq_lock_irqsave(rq, &rf);
9728 	if (rq->rd) {
9729 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9730 		set_rq_offline(rq);
9731 	}
9732 	rq_unlock_irqrestore(rq, &rf);
9733 
9734 #ifdef CONFIG_SCHED_SMT
9735 	/*
9736 	 * When going down, decrement the number of cores with SMT present.
9737 	 */
9738 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9739 		static_branch_dec_cpuslocked(&sched_smt_present);
9740 
9741 	sched_core_cpu_deactivate(cpu);
9742 #endif
9743 
9744 	if (!sched_smp_initialized)
9745 		return 0;
9746 
9747 	sched_update_numa(cpu, false);
9748 	ret = cpuset_cpu_inactive(cpu);
9749 	if (ret) {
9750 		balance_push_set(cpu, false);
9751 		set_cpu_active(cpu, true);
9752 		sched_update_numa(cpu, true);
9753 		return ret;
9754 	}
9755 	sched_domains_numa_masks_clear(cpu);
9756 	return 0;
9757 }
9758 
9759 static void sched_rq_cpu_starting(unsigned int cpu)
9760 {
9761 	struct rq *rq = cpu_rq(cpu);
9762 
9763 	rq->calc_load_update = calc_load_update;
9764 	update_max_interval();
9765 }
9766 
9767 int sched_cpu_starting(unsigned int cpu)
9768 {
9769 	sched_core_cpu_starting(cpu);
9770 	sched_rq_cpu_starting(cpu);
9771 	sched_tick_start(cpu);
9772 	return 0;
9773 }
9774 
9775 #ifdef CONFIG_HOTPLUG_CPU
9776 
9777 /*
9778  * Invoked immediately before the stopper thread is invoked to bring the
9779  * CPU down completely. At this point all per CPU kthreads except the
9780  * hotplug thread (current) and the stopper thread (inactive) have been
9781  * either parked or have been unbound from the outgoing CPU. Ensure that
9782  * any of those which might be on the way out are gone.
9783  *
9784  * If after this point a bound task is being woken on this CPU then the
9785  * responsible hotplug callback has failed to do it's job.
9786  * sched_cpu_dying() will catch it with the appropriate fireworks.
9787  */
9788 int sched_cpu_wait_empty(unsigned int cpu)
9789 {
9790 	balance_hotplug_wait();
9791 	return 0;
9792 }
9793 
9794 /*
9795  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9796  * might have. Called from the CPU stopper task after ensuring that the
9797  * stopper is the last running task on the CPU, so nr_active count is
9798  * stable. We need to take the teardown thread which is calling this into
9799  * account, so we hand in adjust = 1 to the load calculation.
9800  *
9801  * Also see the comment "Global load-average calculations".
9802  */
9803 static void calc_load_migrate(struct rq *rq)
9804 {
9805 	long delta = calc_load_fold_active(rq, 1);
9806 
9807 	if (delta)
9808 		atomic_long_add(delta, &calc_load_tasks);
9809 }
9810 
9811 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9812 {
9813 	struct task_struct *g, *p;
9814 	int cpu = cpu_of(rq);
9815 
9816 	lockdep_assert_rq_held(rq);
9817 
9818 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9819 	for_each_process_thread(g, p) {
9820 		if (task_cpu(p) != cpu)
9821 			continue;
9822 
9823 		if (!task_on_rq_queued(p))
9824 			continue;
9825 
9826 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9827 	}
9828 }
9829 
9830 int sched_cpu_dying(unsigned int cpu)
9831 {
9832 	struct rq *rq = cpu_rq(cpu);
9833 	struct rq_flags rf;
9834 
9835 	/* Handle pending wakeups and then migrate everything off */
9836 	sched_tick_stop(cpu);
9837 
9838 	rq_lock_irqsave(rq, &rf);
9839 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9840 		WARN(true, "Dying CPU not properly vacated!");
9841 		dump_rq_tasks(rq, KERN_WARNING);
9842 	}
9843 	rq_unlock_irqrestore(rq, &rf);
9844 
9845 	calc_load_migrate(rq);
9846 	update_max_interval();
9847 	hrtick_clear(rq);
9848 	sched_core_cpu_dying(cpu);
9849 	return 0;
9850 }
9851 #endif
9852 
9853 void __init sched_init_smp(void)
9854 {
9855 	sched_init_numa(NUMA_NO_NODE);
9856 
9857 	/*
9858 	 * There's no userspace yet to cause hotplug operations; hence all the
9859 	 * CPU masks are stable and all blatant races in the below code cannot
9860 	 * happen.
9861 	 */
9862 	mutex_lock(&sched_domains_mutex);
9863 	sched_init_domains(cpu_active_mask);
9864 	mutex_unlock(&sched_domains_mutex);
9865 
9866 	/* Move init over to a non-isolated CPU */
9867 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9868 		BUG();
9869 	current->flags &= ~PF_NO_SETAFFINITY;
9870 	sched_init_granularity();
9871 
9872 	init_sched_rt_class();
9873 	init_sched_dl_class();
9874 
9875 	sched_smp_initialized = true;
9876 }
9877 
9878 static int __init migration_init(void)
9879 {
9880 	sched_cpu_starting(smp_processor_id());
9881 	return 0;
9882 }
9883 early_initcall(migration_init);
9884 
9885 #else
9886 void __init sched_init_smp(void)
9887 {
9888 	sched_init_granularity();
9889 }
9890 #endif /* CONFIG_SMP */
9891 
9892 int in_sched_functions(unsigned long addr)
9893 {
9894 	return in_lock_functions(addr) ||
9895 		(addr >= (unsigned long)__sched_text_start
9896 		&& addr < (unsigned long)__sched_text_end);
9897 }
9898 
9899 #ifdef CONFIG_CGROUP_SCHED
9900 /*
9901  * Default task group.
9902  * Every task in system belongs to this group at bootup.
9903  */
9904 struct task_group root_task_group;
9905 LIST_HEAD(task_groups);
9906 
9907 /* Cacheline aligned slab cache for task_group */
9908 static struct kmem_cache *task_group_cache __read_mostly;
9909 #endif
9910 
9911 void __init sched_init(void)
9912 {
9913 	unsigned long ptr = 0;
9914 	int i;
9915 
9916 	/* Make sure the linker didn't screw up */
9917 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9918 	       &fair_sched_class != &rt_sched_class + 1 ||
9919 	       &rt_sched_class   != &dl_sched_class + 1);
9920 #ifdef CONFIG_SMP
9921 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9922 #endif
9923 
9924 	wait_bit_init();
9925 
9926 #ifdef CONFIG_FAIR_GROUP_SCHED
9927 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9928 #endif
9929 #ifdef CONFIG_RT_GROUP_SCHED
9930 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9931 #endif
9932 	if (ptr) {
9933 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9934 
9935 #ifdef CONFIG_FAIR_GROUP_SCHED
9936 		root_task_group.se = (struct sched_entity **)ptr;
9937 		ptr += nr_cpu_ids * sizeof(void **);
9938 
9939 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9940 		ptr += nr_cpu_ids * sizeof(void **);
9941 
9942 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9943 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9944 #endif /* CONFIG_FAIR_GROUP_SCHED */
9945 #ifdef CONFIG_RT_GROUP_SCHED
9946 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9947 		ptr += nr_cpu_ids * sizeof(void **);
9948 
9949 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9950 		ptr += nr_cpu_ids * sizeof(void **);
9951 
9952 #endif /* CONFIG_RT_GROUP_SCHED */
9953 	}
9954 
9955 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9956 
9957 #ifdef CONFIG_SMP
9958 	init_defrootdomain();
9959 #endif
9960 
9961 #ifdef CONFIG_RT_GROUP_SCHED
9962 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9963 			global_rt_period(), global_rt_runtime());
9964 #endif /* CONFIG_RT_GROUP_SCHED */
9965 
9966 #ifdef CONFIG_CGROUP_SCHED
9967 	task_group_cache = KMEM_CACHE(task_group, 0);
9968 
9969 	list_add(&root_task_group.list, &task_groups);
9970 	INIT_LIST_HEAD(&root_task_group.children);
9971 	INIT_LIST_HEAD(&root_task_group.siblings);
9972 	autogroup_init(&init_task);
9973 #endif /* CONFIG_CGROUP_SCHED */
9974 
9975 	for_each_possible_cpu(i) {
9976 		struct rq *rq;
9977 
9978 		rq = cpu_rq(i);
9979 		raw_spin_lock_init(&rq->__lock);
9980 		rq->nr_running = 0;
9981 		rq->calc_load_active = 0;
9982 		rq->calc_load_update = jiffies + LOAD_FREQ;
9983 		init_cfs_rq(&rq->cfs);
9984 		init_rt_rq(&rq->rt);
9985 		init_dl_rq(&rq->dl);
9986 #ifdef CONFIG_FAIR_GROUP_SCHED
9987 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9988 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9989 		/*
9990 		 * How much CPU bandwidth does root_task_group get?
9991 		 *
9992 		 * In case of task-groups formed thr' the cgroup filesystem, it
9993 		 * gets 100% of the CPU resources in the system. This overall
9994 		 * system CPU resource is divided among the tasks of
9995 		 * root_task_group and its child task-groups in a fair manner,
9996 		 * based on each entity's (task or task-group's) weight
9997 		 * (se->load.weight).
9998 		 *
9999 		 * In other words, if root_task_group has 10 tasks of weight
10000 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10001 		 * then A0's share of the CPU resource is:
10002 		 *
10003 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10004 		 *
10005 		 * We achieve this by letting root_task_group's tasks sit
10006 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10007 		 */
10008 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10009 #endif /* CONFIG_FAIR_GROUP_SCHED */
10010 
10011 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10012 #ifdef CONFIG_RT_GROUP_SCHED
10013 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10014 #endif
10015 #ifdef CONFIG_SMP
10016 		rq->sd = NULL;
10017 		rq->rd = NULL;
10018 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10019 		rq->balance_callback = &balance_push_callback;
10020 		rq->active_balance = 0;
10021 		rq->next_balance = jiffies;
10022 		rq->push_cpu = 0;
10023 		rq->cpu = i;
10024 		rq->online = 0;
10025 		rq->idle_stamp = 0;
10026 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10027 		rq->wake_stamp = jiffies;
10028 		rq->wake_avg_idle = rq->avg_idle;
10029 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10030 
10031 		INIT_LIST_HEAD(&rq->cfs_tasks);
10032 
10033 		rq_attach_root(rq, &def_root_domain);
10034 #ifdef CONFIG_NO_HZ_COMMON
10035 		rq->last_blocked_load_update_tick = jiffies;
10036 		atomic_set(&rq->nohz_flags, 0);
10037 
10038 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10039 #endif
10040 #ifdef CONFIG_HOTPLUG_CPU
10041 		rcuwait_init(&rq->hotplug_wait);
10042 #endif
10043 #endif /* CONFIG_SMP */
10044 		hrtick_rq_init(rq);
10045 		atomic_set(&rq->nr_iowait, 0);
10046 
10047 #ifdef CONFIG_SCHED_CORE
10048 		rq->core = rq;
10049 		rq->core_pick = NULL;
10050 		rq->core_enabled = 0;
10051 		rq->core_tree = RB_ROOT;
10052 		rq->core_forceidle_count = 0;
10053 		rq->core_forceidle_occupation = 0;
10054 		rq->core_forceidle_start = 0;
10055 
10056 		rq->core_cookie = 0UL;
10057 #endif
10058 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10059 	}
10060 
10061 	set_load_weight(&init_task, false);
10062 
10063 	/*
10064 	 * The boot idle thread does lazy MMU switching as well:
10065 	 */
10066 	mmgrab_lazy_tlb(&init_mm);
10067 	enter_lazy_tlb(&init_mm, current);
10068 
10069 	/*
10070 	 * The idle task doesn't need the kthread struct to function, but it
10071 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10072 	 * if we want to avoid special-casing it in code that deals with per-CPU
10073 	 * kthreads.
10074 	 */
10075 	WARN_ON(!set_kthread_struct(current));
10076 
10077 	/*
10078 	 * Make us the idle thread. Technically, schedule() should not be
10079 	 * called from this thread, however somewhere below it might be,
10080 	 * but because we are the idle thread, we just pick up running again
10081 	 * when this runqueue becomes "idle".
10082 	 */
10083 	init_idle(current, smp_processor_id());
10084 
10085 	calc_load_update = jiffies + LOAD_FREQ;
10086 
10087 #ifdef CONFIG_SMP
10088 	idle_thread_set_boot_cpu();
10089 	balance_push_set(smp_processor_id(), false);
10090 #endif
10091 	init_sched_fair_class();
10092 
10093 	psi_init();
10094 
10095 	init_uclamp();
10096 
10097 	preempt_dynamic_init();
10098 
10099 	scheduler_running = 1;
10100 }
10101 
10102 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10103 
10104 void __might_sleep(const char *file, int line)
10105 {
10106 	unsigned int state = get_current_state();
10107 	/*
10108 	 * Blocking primitives will set (and therefore destroy) current->state,
10109 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10110 	 * otherwise we will destroy state.
10111 	 */
10112 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10113 			"do not call blocking ops when !TASK_RUNNING; "
10114 			"state=%x set at [<%p>] %pS\n", state,
10115 			(void *)current->task_state_change,
10116 			(void *)current->task_state_change);
10117 
10118 	__might_resched(file, line, 0);
10119 }
10120 EXPORT_SYMBOL(__might_sleep);
10121 
10122 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10123 {
10124 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10125 		return;
10126 
10127 	if (preempt_count() == preempt_offset)
10128 		return;
10129 
10130 	pr_err("Preemption disabled at:");
10131 	print_ip_sym(KERN_ERR, ip);
10132 }
10133 
10134 static inline bool resched_offsets_ok(unsigned int offsets)
10135 {
10136 	unsigned int nested = preempt_count();
10137 
10138 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10139 
10140 	return nested == offsets;
10141 }
10142 
10143 void __might_resched(const char *file, int line, unsigned int offsets)
10144 {
10145 	/* Ratelimiting timestamp: */
10146 	static unsigned long prev_jiffy;
10147 
10148 	unsigned long preempt_disable_ip;
10149 
10150 	/* WARN_ON_ONCE() by default, no rate limit required: */
10151 	rcu_sleep_check();
10152 
10153 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10154 	     !is_idle_task(current) && !current->non_block_count) ||
10155 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10156 	    oops_in_progress)
10157 		return;
10158 
10159 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10160 		return;
10161 	prev_jiffy = jiffies;
10162 
10163 	/* Save this before calling printk(), since that will clobber it: */
10164 	preempt_disable_ip = get_preempt_disable_ip(current);
10165 
10166 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10167 	       file, line);
10168 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10169 	       in_atomic(), irqs_disabled(), current->non_block_count,
10170 	       current->pid, current->comm);
10171 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10172 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10173 
10174 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10175 		pr_err("RCU nest depth: %d, expected: %u\n",
10176 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10177 	}
10178 
10179 	if (task_stack_end_corrupted(current))
10180 		pr_emerg("Thread overran stack, or stack corrupted\n");
10181 
10182 	debug_show_held_locks(current);
10183 	if (irqs_disabled())
10184 		print_irqtrace_events(current);
10185 
10186 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10187 				 preempt_disable_ip);
10188 
10189 	dump_stack();
10190 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10191 }
10192 EXPORT_SYMBOL(__might_resched);
10193 
10194 void __cant_sleep(const char *file, int line, int preempt_offset)
10195 {
10196 	static unsigned long prev_jiffy;
10197 
10198 	if (irqs_disabled())
10199 		return;
10200 
10201 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10202 		return;
10203 
10204 	if (preempt_count() > preempt_offset)
10205 		return;
10206 
10207 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10208 		return;
10209 	prev_jiffy = jiffies;
10210 
10211 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10212 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10213 			in_atomic(), irqs_disabled(),
10214 			current->pid, current->comm);
10215 
10216 	debug_show_held_locks(current);
10217 	dump_stack();
10218 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10219 }
10220 EXPORT_SYMBOL_GPL(__cant_sleep);
10221 
10222 #ifdef CONFIG_SMP
10223 void __cant_migrate(const char *file, int line)
10224 {
10225 	static unsigned long prev_jiffy;
10226 
10227 	if (irqs_disabled())
10228 		return;
10229 
10230 	if (is_migration_disabled(current))
10231 		return;
10232 
10233 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10234 		return;
10235 
10236 	if (preempt_count() > 0)
10237 		return;
10238 
10239 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10240 		return;
10241 	prev_jiffy = jiffies;
10242 
10243 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10244 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10245 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10246 	       current->pid, current->comm);
10247 
10248 	debug_show_held_locks(current);
10249 	dump_stack();
10250 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10251 }
10252 EXPORT_SYMBOL_GPL(__cant_migrate);
10253 #endif
10254 #endif
10255 
10256 #ifdef CONFIG_MAGIC_SYSRQ
10257 void normalize_rt_tasks(void)
10258 {
10259 	struct task_struct *g, *p;
10260 	struct sched_attr attr = {
10261 		.sched_policy = SCHED_NORMAL,
10262 	};
10263 
10264 	read_lock(&tasklist_lock);
10265 	for_each_process_thread(g, p) {
10266 		/*
10267 		 * Only normalize user tasks:
10268 		 */
10269 		if (p->flags & PF_KTHREAD)
10270 			continue;
10271 
10272 		p->se.exec_start = 0;
10273 		schedstat_set(p->stats.wait_start,  0);
10274 		schedstat_set(p->stats.sleep_start, 0);
10275 		schedstat_set(p->stats.block_start, 0);
10276 
10277 		if (!dl_task(p) && !rt_task(p)) {
10278 			/*
10279 			 * Renice negative nice level userspace
10280 			 * tasks back to 0:
10281 			 */
10282 			if (task_nice(p) < 0)
10283 				set_user_nice(p, 0);
10284 			continue;
10285 		}
10286 
10287 		__sched_setscheduler(p, &attr, false, false);
10288 	}
10289 	read_unlock(&tasklist_lock);
10290 }
10291 
10292 #endif /* CONFIG_MAGIC_SYSRQ */
10293 
10294 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10295 /*
10296  * These functions are only useful for the IA64 MCA handling, or kdb.
10297  *
10298  * They can only be called when the whole system has been
10299  * stopped - every CPU needs to be quiescent, and no scheduling
10300  * activity can take place. Using them for anything else would
10301  * be a serious bug, and as a result, they aren't even visible
10302  * under any other configuration.
10303  */
10304 
10305 /**
10306  * curr_task - return the current task for a given CPU.
10307  * @cpu: the processor in question.
10308  *
10309  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10310  *
10311  * Return: The current task for @cpu.
10312  */
10313 struct task_struct *curr_task(int cpu)
10314 {
10315 	return cpu_curr(cpu);
10316 }
10317 
10318 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10319 
10320 #ifdef CONFIG_IA64
10321 /**
10322  * ia64_set_curr_task - set the current task for a given CPU.
10323  * @cpu: the processor in question.
10324  * @p: the task pointer to set.
10325  *
10326  * Description: This function must only be used when non-maskable interrupts
10327  * are serviced on a separate stack. It allows the architecture to switch the
10328  * notion of the current task on a CPU in a non-blocking manner. This function
10329  * must be called with all CPU's synchronized, and interrupts disabled, the
10330  * and caller must save the original value of the current task (see
10331  * curr_task() above) and restore that value before reenabling interrupts and
10332  * re-starting the system.
10333  *
10334  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10335  */
10336 void ia64_set_curr_task(int cpu, struct task_struct *p)
10337 {
10338 	cpu_curr(cpu) = p;
10339 }
10340 
10341 #endif
10342 
10343 #ifdef CONFIG_CGROUP_SCHED
10344 /* task_group_lock serializes the addition/removal of task groups */
10345 static DEFINE_SPINLOCK(task_group_lock);
10346 
10347 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10348 					    struct task_group *parent)
10349 {
10350 #ifdef CONFIG_UCLAMP_TASK_GROUP
10351 	enum uclamp_id clamp_id;
10352 
10353 	for_each_clamp_id(clamp_id) {
10354 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10355 			      uclamp_none(clamp_id), false);
10356 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10357 	}
10358 #endif
10359 }
10360 
10361 static void sched_free_group(struct task_group *tg)
10362 {
10363 	free_fair_sched_group(tg);
10364 	free_rt_sched_group(tg);
10365 	autogroup_free(tg);
10366 	kmem_cache_free(task_group_cache, tg);
10367 }
10368 
10369 static void sched_free_group_rcu(struct rcu_head *rcu)
10370 {
10371 	sched_free_group(container_of(rcu, struct task_group, rcu));
10372 }
10373 
10374 static void sched_unregister_group(struct task_group *tg)
10375 {
10376 	unregister_fair_sched_group(tg);
10377 	unregister_rt_sched_group(tg);
10378 	/*
10379 	 * We have to wait for yet another RCU grace period to expire, as
10380 	 * print_cfs_stats() might run concurrently.
10381 	 */
10382 	call_rcu(&tg->rcu, sched_free_group_rcu);
10383 }
10384 
10385 /* allocate runqueue etc for a new task group */
10386 struct task_group *sched_create_group(struct task_group *parent)
10387 {
10388 	struct task_group *tg;
10389 
10390 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10391 	if (!tg)
10392 		return ERR_PTR(-ENOMEM);
10393 
10394 	if (!alloc_fair_sched_group(tg, parent))
10395 		goto err;
10396 
10397 	if (!alloc_rt_sched_group(tg, parent))
10398 		goto err;
10399 
10400 	alloc_uclamp_sched_group(tg, parent);
10401 
10402 	return tg;
10403 
10404 err:
10405 	sched_free_group(tg);
10406 	return ERR_PTR(-ENOMEM);
10407 }
10408 
10409 void sched_online_group(struct task_group *tg, struct task_group *parent)
10410 {
10411 	unsigned long flags;
10412 
10413 	spin_lock_irqsave(&task_group_lock, flags);
10414 	list_add_rcu(&tg->list, &task_groups);
10415 
10416 	/* Root should already exist: */
10417 	WARN_ON(!parent);
10418 
10419 	tg->parent = parent;
10420 	INIT_LIST_HEAD(&tg->children);
10421 	list_add_rcu(&tg->siblings, &parent->children);
10422 	spin_unlock_irqrestore(&task_group_lock, flags);
10423 
10424 	online_fair_sched_group(tg);
10425 }
10426 
10427 /* rcu callback to free various structures associated with a task group */
10428 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10429 {
10430 	/* Now it should be safe to free those cfs_rqs: */
10431 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10432 }
10433 
10434 void sched_destroy_group(struct task_group *tg)
10435 {
10436 	/* Wait for possible concurrent references to cfs_rqs complete: */
10437 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10438 }
10439 
10440 void sched_release_group(struct task_group *tg)
10441 {
10442 	unsigned long flags;
10443 
10444 	/*
10445 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10446 	 * sched_cfs_period_timer()).
10447 	 *
10448 	 * For this to be effective, we have to wait for all pending users of
10449 	 * this task group to leave their RCU critical section to ensure no new
10450 	 * user will see our dying task group any more. Specifically ensure
10451 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10452 	 *
10453 	 * We therefore defer calling unregister_fair_sched_group() to
10454 	 * sched_unregister_group() which is guarantied to get called only after the
10455 	 * current RCU grace period has expired.
10456 	 */
10457 	spin_lock_irqsave(&task_group_lock, flags);
10458 	list_del_rcu(&tg->list);
10459 	list_del_rcu(&tg->siblings);
10460 	spin_unlock_irqrestore(&task_group_lock, flags);
10461 }
10462 
10463 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10464 {
10465 	struct task_group *tg;
10466 
10467 	/*
10468 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10469 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10470 	 * to prevent lockdep warnings.
10471 	 */
10472 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10473 			  struct task_group, css);
10474 	tg = autogroup_task_group(tsk, tg);
10475 
10476 	return tg;
10477 }
10478 
10479 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10480 {
10481 	tsk->sched_task_group = group;
10482 
10483 #ifdef CONFIG_FAIR_GROUP_SCHED
10484 	if (tsk->sched_class->task_change_group)
10485 		tsk->sched_class->task_change_group(tsk);
10486 	else
10487 #endif
10488 		set_task_rq(tsk, task_cpu(tsk));
10489 }
10490 
10491 /*
10492  * Change task's runqueue when it moves between groups.
10493  *
10494  * The caller of this function should have put the task in its new group by
10495  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10496  * its new group.
10497  */
10498 void sched_move_task(struct task_struct *tsk)
10499 {
10500 	int queued, running, queue_flags =
10501 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10502 	struct task_group *group;
10503 	struct rq_flags rf;
10504 	struct rq *rq;
10505 
10506 	rq = task_rq_lock(tsk, &rf);
10507 	/*
10508 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10509 	 * group changes.
10510 	 */
10511 	group = sched_get_task_group(tsk);
10512 	if (group == tsk->sched_task_group)
10513 		goto unlock;
10514 
10515 	update_rq_clock(rq);
10516 
10517 	running = task_current(rq, tsk);
10518 	queued = task_on_rq_queued(tsk);
10519 
10520 	if (queued)
10521 		dequeue_task(rq, tsk, queue_flags);
10522 	if (running)
10523 		put_prev_task(rq, tsk);
10524 
10525 	sched_change_group(tsk, group);
10526 
10527 	if (queued)
10528 		enqueue_task(rq, tsk, queue_flags);
10529 	if (running) {
10530 		set_next_task(rq, tsk);
10531 		/*
10532 		 * After changing group, the running task may have joined a
10533 		 * throttled one but it's still the running task. Trigger a
10534 		 * resched to make sure that task can still run.
10535 		 */
10536 		resched_curr(rq);
10537 	}
10538 
10539 unlock:
10540 	task_rq_unlock(rq, tsk, &rf);
10541 }
10542 
10543 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10544 {
10545 	return css ? container_of(css, struct task_group, css) : NULL;
10546 }
10547 
10548 static struct cgroup_subsys_state *
10549 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10550 {
10551 	struct task_group *parent = css_tg(parent_css);
10552 	struct task_group *tg;
10553 
10554 	if (!parent) {
10555 		/* This is early initialization for the top cgroup */
10556 		return &root_task_group.css;
10557 	}
10558 
10559 	tg = sched_create_group(parent);
10560 	if (IS_ERR(tg))
10561 		return ERR_PTR(-ENOMEM);
10562 
10563 	return &tg->css;
10564 }
10565 
10566 /* Expose task group only after completing cgroup initialization */
10567 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10568 {
10569 	struct task_group *tg = css_tg(css);
10570 	struct task_group *parent = css_tg(css->parent);
10571 
10572 	if (parent)
10573 		sched_online_group(tg, parent);
10574 
10575 #ifdef CONFIG_UCLAMP_TASK_GROUP
10576 	/* Propagate the effective uclamp value for the new group */
10577 	mutex_lock(&uclamp_mutex);
10578 	rcu_read_lock();
10579 	cpu_util_update_eff(css);
10580 	rcu_read_unlock();
10581 	mutex_unlock(&uclamp_mutex);
10582 #endif
10583 
10584 	return 0;
10585 }
10586 
10587 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10588 {
10589 	struct task_group *tg = css_tg(css);
10590 
10591 	sched_release_group(tg);
10592 }
10593 
10594 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10595 {
10596 	struct task_group *tg = css_tg(css);
10597 
10598 	/*
10599 	 * Relies on the RCU grace period between css_released() and this.
10600 	 */
10601 	sched_unregister_group(tg);
10602 }
10603 
10604 #ifdef CONFIG_RT_GROUP_SCHED
10605 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10606 {
10607 	struct task_struct *task;
10608 	struct cgroup_subsys_state *css;
10609 
10610 	cgroup_taskset_for_each(task, css, tset) {
10611 		if (!sched_rt_can_attach(css_tg(css), task))
10612 			return -EINVAL;
10613 	}
10614 	return 0;
10615 }
10616 #endif
10617 
10618 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10619 {
10620 	struct task_struct *task;
10621 	struct cgroup_subsys_state *css;
10622 
10623 	cgroup_taskset_for_each(task, css, tset)
10624 		sched_move_task(task);
10625 }
10626 
10627 #ifdef CONFIG_UCLAMP_TASK_GROUP
10628 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10629 {
10630 	struct cgroup_subsys_state *top_css = css;
10631 	struct uclamp_se *uc_parent = NULL;
10632 	struct uclamp_se *uc_se = NULL;
10633 	unsigned int eff[UCLAMP_CNT];
10634 	enum uclamp_id clamp_id;
10635 	unsigned int clamps;
10636 
10637 	lockdep_assert_held(&uclamp_mutex);
10638 	SCHED_WARN_ON(!rcu_read_lock_held());
10639 
10640 	css_for_each_descendant_pre(css, top_css) {
10641 		uc_parent = css_tg(css)->parent
10642 			? css_tg(css)->parent->uclamp : NULL;
10643 
10644 		for_each_clamp_id(clamp_id) {
10645 			/* Assume effective clamps matches requested clamps */
10646 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10647 			/* Cap effective clamps with parent's effective clamps */
10648 			if (uc_parent &&
10649 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10650 				eff[clamp_id] = uc_parent[clamp_id].value;
10651 			}
10652 		}
10653 		/* Ensure protection is always capped by limit */
10654 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10655 
10656 		/* Propagate most restrictive effective clamps */
10657 		clamps = 0x0;
10658 		uc_se = css_tg(css)->uclamp;
10659 		for_each_clamp_id(clamp_id) {
10660 			if (eff[clamp_id] == uc_se[clamp_id].value)
10661 				continue;
10662 			uc_se[clamp_id].value = eff[clamp_id];
10663 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10664 			clamps |= (0x1 << clamp_id);
10665 		}
10666 		if (!clamps) {
10667 			css = css_rightmost_descendant(css);
10668 			continue;
10669 		}
10670 
10671 		/* Immediately update descendants RUNNABLE tasks */
10672 		uclamp_update_active_tasks(css);
10673 	}
10674 }
10675 
10676 /*
10677  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10678  * C expression. Since there is no way to convert a macro argument (N) into a
10679  * character constant, use two levels of macros.
10680  */
10681 #define _POW10(exp) ((unsigned int)1e##exp)
10682 #define POW10(exp) _POW10(exp)
10683 
10684 struct uclamp_request {
10685 #define UCLAMP_PERCENT_SHIFT	2
10686 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10687 	s64 percent;
10688 	u64 util;
10689 	int ret;
10690 };
10691 
10692 static inline struct uclamp_request
10693 capacity_from_percent(char *buf)
10694 {
10695 	struct uclamp_request req = {
10696 		.percent = UCLAMP_PERCENT_SCALE,
10697 		.util = SCHED_CAPACITY_SCALE,
10698 		.ret = 0,
10699 	};
10700 
10701 	buf = strim(buf);
10702 	if (strcmp(buf, "max")) {
10703 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10704 					     &req.percent);
10705 		if (req.ret)
10706 			return req;
10707 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10708 			req.ret = -ERANGE;
10709 			return req;
10710 		}
10711 
10712 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10713 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10714 	}
10715 
10716 	return req;
10717 }
10718 
10719 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10720 				size_t nbytes, loff_t off,
10721 				enum uclamp_id clamp_id)
10722 {
10723 	struct uclamp_request req;
10724 	struct task_group *tg;
10725 
10726 	req = capacity_from_percent(buf);
10727 	if (req.ret)
10728 		return req.ret;
10729 
10730 	static_branch_enable(&sched_uclamp_used);
10731 
10732 	mutex_lock(&uclamp_mutex);
10733 	rcu_read_lock();
10734 
10735 	tg = css_tg(of_css(of));
10736 	if (tg->uclamp_req[clamp_id].value != req.util)
10737 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10738 
10739 	/*
10740 	 * Because of not recoverable conversion rounding we keep track of the
10741 	 * exact requested value
10742 	 */
10743 	tg->uclamp_pct[clamp_id] = req.percent;
10744 
10745 	/* Update effective clamps to track the most restrictive value */
10746 	cpu_util_update_eff(of_css(of));
10747 
10748 	rcu_read_unlock();
10749 	mutex_unlock(&uclamp_mutex);
10750 
10751 	return nbytes;
10752 }
10753 
10754 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10755 				    char *buf, size_t nbytes,
10756 				    loff_t off)
10757 {
10758 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10759 }
10760 
10761 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10762 				    char *buf, size_t nbytes,
10763 				    loff_t off)
10764 {
10765 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10766 }
10767 
10768 static inline void cpu_uclamp_print(struct seq_file *sf,
10769 				    enum uclamp_id clamp_id)
10770 {
10771 	struct task_group *tg;
10772 	u64 util_clamp;
10773 	u64 percent;
10774 	u32 rem;
10775 
10776 	rcu_read_lock();
10777 	tg = css_tg(seq_css(sf));
10778 	util_clamp = tg->uclamp_req[clamp_id].value;
10779 	rcu_read_unlock();
10780 
10781 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10782 		seq_puts(sf, "max\n");
10783 		return;
10784 	}
10785 
10786 	percent = tg->uclamp_pct[clamp_id];
10787 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10788 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10789 }
10790 
10791 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10792 {
10793 	cpu_uclamp_print(sf, UCLAMP_MIN);
10794 	return 0;
10795 }
10796 
10797 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10798 {
10799 	cpu_uclamp_print(sf, UCLAMP_MAX);
10800 	return 0;
10801 }
10802 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10803 
10804 #ifdef CONFIG_FAIR_GROUP_SCHED
10805 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10806 				struct cftype *cftype, u64 shareval)
10807 {
10808 	if (shareval > scale_load_down(ULONG_MAX))
10809 		shareval = MAX_SHARES;
10810 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10811 }
10812 
10813 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10814 			       struct cftype *cft)
10815 {
10816 	struct task_group *tg = css_tg(css);
10817 
10818 	return (u64) scale_load_down(tg->shares);
10819 }
10820 
10821 #ifdef CONFIG_CFS_BANDWIDTH
10822 static DEFINE_MUTEX(cfs_constraints_mutex);
10823 
10824 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10825 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10826 /* More than 203 days if BW_SHIFT equals 20. */
10827 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10828 
10829 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10830 
10831 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10832 				u64 burst)
10833 {
10834 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10835 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10836 
10837 	if (tg == &root_task_group)
10838 		return -EINVAL;
10839 
10840 	/*
10841 	 * Ensure we have at some amount of bandwidth every period.  This is
10842 	 * to prevent reaching a state of large arrears when throttled via
10843 	 * entity_tick() resulting in prolonged exit starvation.
10844 	 */
10845 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10846 		return -EINVAL;
10847 
10848 	/*
10849 	 * Likewise, bound things on the other side by preventing insane quota
10850 	 * periods.  This also allows us to normalize in computing quota
10851 	 * feasibility.
10852 	 */
10853 	if (period > max_cfs_quota_period)
10854 		return -EINVAL;
10855 
10856 	/*
10857 	 * Bound quota to defend quota against overflow during bandwidth shift.
10858 	 */
10859 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10860 		return -EINVAL;
10861 
10862 	if (quota != RUNTIME_INF && (burst > quota ||
10863 				     burst + quota > max_cfs_runtime))
10864 		return -EINVAL;
10865 
10866 	/*
10867 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10868 	 * unthrottle_offline_cfs_rqs().
10869 	 */
10870 	cpus_read_lock();
10871 	mutex_lock(&cfs_constraints_mutex);
10872 	ret = __cfs_schedulable(tg, period, quota);
10873 	if (ret)
10874 		goto out_unlock;
10875 
10876 	runtime_enabled = quota != RUNTIME_INF;
10877 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10878 	/*
10879 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10880 	 * before making related changes, and on->off must occur afterwards
10881 	 */
10882 	if (runtime_enabled && !runtime_was_enabled)
10883 		cfs_bandwidth_usage_inc();
10884 	raw_spin_lock_irq(&cfs_b->lock);
10885 	cfs_b->period = ns_to_ktime(period);
10886 	cfs_b->quota = quota;
10887 	cfs_b->burst = burst;
10888 
10889 	__refill_cfs_bandwidth_runtime(cfs_b);
10890 
10891 	/* Restart the period timer (if active) to handle new period expiry: */
10892 	if (runtime_enabled)
10893 		start_cfs_bandwidth(cfs_b);
10894 
10895 	raw_spin_unlock_irq(&cfs_b->lock);
10896 
10897 	for_each_online_cpu(i) {
10898 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10899 		struct rq *rq = cfs_rq->rq;
10900 		struct rq_flags rf;
10901 
10902 		rq_lock_irq(rq, &rf);
10903 		cfs_rq->runtime_enabled = runtime_enabled;
10904 		cfs_rq->runtime_remaining = 0;
10905 
10906 		if (cfs_rq->throttled)
10907 			unthrottle_cfs_rq(cfs_rq);
10908 		rq_unlock_irq(rq, &rf);
10909 	}
10910 	if (runtime_was_enabled && !runtime_enabled)
10911 		cfs_bandwidth_usage_dec();
10912 out_unlock:
10913 	mutex_unlock(&cfs_constraints_mutex);
10914 	cpus_read_unlock();
10915 
10916 	return ret;
10917 }
10918 
10919 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10920 {
10921 	u64 quota, period, burst;
10922 
10923 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10924 	burst = tg->cfs_bandwidth.burst;
10925 	if (cfs_quota_us < 0)
10926 		quota = RUNTIME_INF;
10927 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10928 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10929 	else
10930 		return -EINVAL;
10931 
10932 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10933 }
10934 
10935 static long tg_get_cfs_quota(struct task_group *tg)
10936 {
10937 	u64 quota_us;
10938 
10939 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10940 		return -1;
10941 
10942 	quota_us = tg->cfs_bandwidth.quota;
10943 	do_div(quota_us, NSEC_PER_USEC);
10944 
10945 	return quota_us;
10946 }
10947 
10948 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10949 {
10950 	u64 quota, period, burst;
10951 
10952 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10953 		return -EINVAL;
10954 
10955 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10956 	quota = tg->cfs_bandwidth.quota;
10957 	burst = tg->cfs_bandwidth.burst;
10958 
10959 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10960 }
10961 
10962 static long tg_get_cfs_period(struct task_group *tg)
10963 {
10964 	u64 cfs_period_us;
10965 
10966 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10967 	do_div(cfs_period_us, NSEC_PER_USEC);
10968 
10969 	return cfs_period_us;
10970 }
10971 
10972 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10973 {
10974 	u64 quota, period, burst;
10975 
10976 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10977 		return -EINVAL;
10978 
10979 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10980 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10981 	quota = tg->cfs_bandwidth.quota;
10982 
10983 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10984 }
10985 
10986 static long tg_get_cfs_burst(struct task_group *tg)
10987 {
10988 	u64 burst_us;
10989 
10990 	burst_us = tg->cfs_bandwidth.burst;
10991 	do_div(burst_us, NSEC_PER_USEC);
10992 
10993 	return burst_us;
10994 }
10995 
10996 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10997 				  struct cftype *cft)
10998 {
10999 	return tg_get_cfs_quota(css_tg(css));
11000 }
11001 
11002 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11003 				   struct cftype *cftype, s64 cfs_quota_us)
11004 {
11005 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11006 }
11007 
11008 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11009 				   struct cftype *cft)
11010 {
11011 	return tg_get_cfs_period(css_tg(css));
11012 }
11013 
11014 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11015 				    struct cftype *cftype, u64 cfs_period_us)
11016 {
11017 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11018 }
11019 
11020 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11021 				  struct cftype *cft)
11022 {
11023 	return tg_get_cfs_burst(css_tg(css));
11024 }
11025 
11026 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11027 				   struct cftype *cftype, u64 cfs_burst_us)
11028 {
11029 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11030 }
11031 
11032 struct cfs_schedulable_data {
11033 	struct task_group *tg;
11034 	u64 period, quota;
11035 };
11036 
11037 /*
11038  * normalize group quota/period to be quota/max_period
11039  * note: units are usecs
11040  */
11041 static u64 normalize_cfs_quota(struct task_group *tg,
11042 			       struct cfs_schedulable_data *d)
11043 {
11044 	u64 quota, period;
11045 
11046 	if (tg == d->tg) {
11047 		period = d->period;
11048 		quota = d->quota;
11049 	} else {
11050 		period = tg_get_cfs_period(tg);
11051 		quota = tg_get_cfs_quota(tg);
11052 	}
11053 
11054 	/* note: these should typically be equivalent */
11055 	if (quota == RUNTIME_INF || quota == -1)
11056 		return RUNTIME_INF;
11057 
11058 	return to_ratio(period, quota);
11059 }
11060 
11061 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11062 {
11063 	struct cfs_schedulable_data *d = data;
11064 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11065 	s64 quota = 0, parent_quota = -1;
11066 
11067 	if (!tg->parent) {
11068 		quota = RUNTIME_INF;
11069 	} else {
11070 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11071 
11072 		quota = normalize_cfs_quota(tg, d);
11073 		parent_quota = parent_b->hierarchical_quota;
11074 
11075 		/*
11076 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11077 		 * always take the min.  On cgroup1, only inherit when no
11078 		 * limit is set:
11079 		 */
11080 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11081 			quota = min(quota, parent_quota);
11082 		} else {
11083 			if (quota == RUNTIME_INF)
11084 				quota = parent_quota;
11085 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11086 				return -EINVAL;
11087 		}
11088 	}
11089 	cfs_b->hierarchical_quota = quota;
11090 
11091 	return 0;
11092 }
11093 
11094 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11095 {
11096 	int ret;
11097 	struct cfs_schedulable_data data = {
11098 		.tg = tg,
11099 		.period = period,
11100 		.quota = quota,
11101 	};
11102 
11103 	if (quota != RUNTIME_INF) {
11104 		do_div(data.period, NSEC_PER_USEC);
11105 		do_div(data.quota, NSEC_PER_USEC);
11106 	}
11107 
11108 	rcu_read_lock();
11109 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11110 	rcu_read_unlock();
11111 
11112 	return ret;
11113 }
11114 
11115 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11116 {
11117 	struct task_group *tg = css_tg(seq_css(sf));
11118 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11119 
11120 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11121 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11122 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11123 
11124 	if (schedstat_enabled() && tg != &root_task_group) {
11125 		struct sched_statistics *stats;
11126 		u64 ws = 0;
11127 		int i;
11128 
11129 		for_each_possible_cpu(i) {
11130 			stats = __schedstats_from_se(tg->se[i]);
11131 			ws += schedstat_val(stats->wait_sum);
11132 		}
11133 
11134 		seq_printf(sf, "wait_sum %llu\n", ws);
11135 	}
11136 
11137 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11138 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11139 
11140 	return 0;
11141 }
11142 #endif /* CONFIG_CFS_BANDWIDTH */
11143 #endif /* CONFIG_FAIR_GROUP_SCHED */
11144 
11145 #ifdef CONFIG_RT_GROUP_SCHED
11146 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11147 				struct cftype *cft, s64 val)
11148 {
11149 	return sched_group_set_rt_runtime(css_tg(css), val);
11150 }
11151 
11152 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11153 			       struct cftype *cft)
11154 {
11155 	return sched_group_rt_runtime(css_tg(css));
11156 }
11157 
11158 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11159 				    struct cftype *cftype, u64 rt_period_us)
11160 {
11161 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11162 }
11163 
11164 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11165 				   struct cftype *cft)
11166 {
11167 	return sched_group_rt_period(css_tg(css));
11168 }
11169 #endif /* CONFIG_RT_GROUP_SCHED */
11170 
11171 #ifdef CONFIG_FAIR_GROUP_SCHED
11172 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11173 			       struct cftype *cft)
11174 {
11175 	return css_tg(css)->idle;
11176 }
11177 
11178 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11179 				struct cftype *cft, s64 idle)
11180 {
11181 	return sched_group_set_idle(css_tg(css), idle);
11182 }
11183 #endif
11184 
11185 static struct cftype cpu_legacy_files[] = {
11186 #ifdef CONFIG_FAIR_GROUP_SCHED
11187 	{
11188 		.name = "shares",
11189 		.read_u64 = cpu_shares_read_u64,
11190 		.write_u64 = cpu_shares_write_u64,
11191 	},
11192 	{
11193 		.name = "idle",
11194 		.read_s64 = cpu_idle_read_s64,
11195 		.write_s64 = cpu_idle_write_s64,
11196 	},
11197 #endif
11198 #ifdef CONFIG_CFS_BANDWIDTH
11199 	{
11200 		.name = "cfs_quota_us",
11201 		.read_s64 = cpu_cfs_quota_read_s64,
11202 		.write_s64 = cpu_cfs_quota_write_s64,
11203 	},
11204 	{
11205 		.name = "cfs_period_us",
11206 		.read_u64 = cpu_cfs_period_read_u64,
11207 		.write_u64 = cpu_cfs_period_write_u64,
11208 	},
11209 	{
11210 		.name = "cfs_burst_us",
11211 		.read_u64 = cpu_cfs_burst_read_u64,
11212 		.write_u64 = cpu_cfs_burst_write_u64,
11213 	},
11214 	{
11215 		.name = "stat",
11216 		.seq_show = cpu_cfs_stat_show,
11217 	},
11218 #endif
11219 #ifdef CONFIG_RT_GROUP_SCHED
11220 	{
11221 		.name = "rt_runtime_us",
11222 		.read_s64 = cpu_rt_runtime_read,
11223 		.write_s64 = cpu_rt_runtime_write,
11224 	},
11225 	{
11226 		.name = "rt_period_us",
11227 		.read_u64 = cpu_rt_period_read_uint,
11228 		.write_u64 = cpu_rt_period_write_uint,
11229 	},
11230 #endif
11231 #ifdef CONFIG_UCLAMP_TASK_GROUP
11232 	{
11233 		.name = "uclamp.min",
11234 		.flags = CFTYPE_NOT_ON_ROOT,
11235 		.seq_show = cpu_uclamp_min_show,
11236 		.write = cpu_uclamp_min_write,
11237 	},
11238 	{
11239 		.name = "uclamp.max",
11240 		.flags = CFTYPE_NOT_ON_ROOT,
11241 		.seq_show = cpu_uclamp_max_show,
11242 		.write = cpu_uclamp_max_write,
11243 	},
11244 #endif
11245 	{ }	/* Terminate */
11246 };
11247 
11248 static int cpu_extra_stat_show(struct seq_file *sf,
11249 			       struct cgroup_subsys_state *css)
11250 {
11251 #ifdef CONFIG_CFS_BANDWIDTH
11252 	{
11253 		struct task_group *tg = css_tg(css);
11254 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11255 		u64 throttled_usec, burst_usec;
11256 
11257 		throttled_usec = cfs_b->throttled_time;
11258 		do_div(throttled_usec, NSEC_PER_USEC);
11259 		burst_usec = cfs_b->burst_time;
11260 		do_div(burst_usec, NSEC_PER_USEC);
11261 
11262 		seq_printf(sf, "nr_periods %d\n"
11263 			   "nr_throttled %d\n"
11264 			   "throttled_usec %llu\n"
11265 			   "nr_bursts %d\n"
11266 			   "burst_usec %llu\n",
11267 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11268 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11269 	}
11270 #endif
11271 	return 0;
11272 }
11273 
11274 #ifdef CONFIG_FAIR_GROUP_SCHED
11275 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11276 			       struct cftype *cft)
11277 {
11278 	struct task_group *tg = css_tg(css);
11279 	u64 weight = scale_load_down(tg->shares);
11280 
11281 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11282 }
11283 
11284 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11285 				struct cftype *cft, u64 weight)
11286 {
11287 	/*
11288 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11289 	 * values which are 1, 100 and 10000 respectively.  While it loses
11290 	 * a bit of range on both ends, it maps pretty well onto the shares
11291 	 * value used by scheduler and the round-trip conversions preserve
11292 	 * the original value over the entire range.
11293 	 */
11294 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11295 		return -ERANGE;
11296 
11297 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11298 
11299 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11300 }
11301 
11302 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11303 				    struct cftype *cft)
11304 {
11305 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11306 	int last_delta = INT_MAX;
11307 	int prio, delta;
11308 
11309 	/* find the closest nice value to the current weight */
11310 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11311 		delta = abs(sched_prio_to_weight[prio] - weight);
11312 		if (delta >= last_delta)
11313 			break;
11314 		last_delta = delta;
11315 	}
11316 
11317 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11318 }
11319 
11320 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11321 				     struct cftype *cft, s64 nice)
11322 {
11323 	unsigned long weight;
11324 	int idx;
11325 
11326 	if (nice < MIN_NICE || nice > MAX_NICE)
11327 		return -ERANGE;
11328 
11329 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11330 	idx = array_index_nospec(idx, 40);
11331 	weight = sched_prio_to_weight[idx];
11332 
11333 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11334 }
11335 #endif
11336 
11337 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11338 						  long period, long quota)
11339 {
11340 	if (quota < 0)
11341 		seq_puts(sf, "max");
11342 	else
11343 		seq_printf(sf, "%ld", quota);
11344 
11345 	seq_printf(sf, " %ld\n", period);
11346 }
11347 
11348 /* caller should put the current value in *@periodp before calling */
11349 static int __maybe_unused cpu_period_quota_parse(char *buf,
11350 						 u64 *periodp, u64 *quotap)
11351 {
11352 	char tok[21];	/* U64_MAX */
11353 
11354 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11355 		return -EINVAL;
11356 
11357 	*periodp *= NSEC_PER_USEC;
11358 
11359 	if (sscanf(tok, "%llu", quotap))
11360 		*quotap *= NSEC_PER_USEC;
11361 	else if (!strcmp(tok, "max"))
11362 		*quotap = RUNTIME_INF;
11363 	else
11364 		return -EINVAL;
11365 
11366 	return 0;
11367 }
11368 
11369 #ifdef CONFIG_CFS_BANDWIDTH
11370 static int cpu_max_show(struct seq_file *sf, void *v)
11371 {
11372 	struct task_group *tg = css_tg(seq_css(sf));
11373 
11374 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11375 	return 0;
11376 }
11377 
11378 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11379 			     char *buf, size_t nbytes, loff_t off)
11380 {
11381 	struct task_group *tg = css_tg(of_css(of));
11382 	u64 period = tg_get_cfs_period(tg);
11383 	u64 burst = tg_get_cfs_burst(tg);
11384 	u64 quota;
11385 	int ret;
11386 
11387 	ret = cpu_period_quota_parse(buf, &period, &quota);
11388 	if (!ret)
11389 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11390 	return ret ?: nbytes;
11391 }
11392 #endif
11393 
11394 static struct cftype cpu_files[] = {
11395 #ifdef CONFIG_FAIR_GROUP_SCHED
11396 	{
11397 		.name = "weight",
11398 		.flags = CFTYPE_NOT_ON_ROOT,
11399 		.read_u64 = cpu_weight_read_u64,
11400 		.write_u64 = cpu_weight_write_u64,
11401 	},
11402 	{
11403 		.name = "weight.nice",
11404 		.flags = CFTYPE_NOT_ON_ROOT,
11405 		.read_s64 = cpu_weight_nice_read_s64,
11406 		.write_s64 = cpu_weight_nice_write_s64,
11407 	},
11408 	{
11409 		.name = "idle",
11410 		.flags = CFTYPE_NOT_ON_ROOT,
11411 		.read_s64 = cpu_idle_read_s64,
11412 		.write_s64 = cpu_idle_write_s64,
11413 	},
11414 #endif
11415 #ifdef CONFIG_CFS_BANDWIDTH
11416 	{
11417 		.name = "max",
11418 		.flags = CFTYPE_NOT_ON_ROOT,
11419 		.seq_show = cpu_max_show,
11420 		.write = cpu_max_write,
11421 	},
11422 	{
11423 		.name = "max.burst",
11424 		.flags = CFTYPE_NOT_ON_ROOT,
11425 		.read_u64 = cpu_cfs_burst_read_u64,
11426 		.write_u64 = cpu_cfs_burst_write_u64,
11427 	},
11428 #endif
11429 #ifdef CONFIG_UCLAMP_TASK_GROUP
11430 	{
11431 		.name = "uclamp.min",
11432 		.flags = CFTYPE_NOT_ON_ROOT,
11433 		.seq_show = cpu_uclamp_min_show,
11434 		.write = cpu_uclamp_min_write,
11435 	},
11436 	{
11437 		.name = "uclamp.max",
11438 		.flags = CFTYPE_NOT_ON_ROOT,
11439 		.seq_show = cpu_uclamp_max_show,
11440 		.write = cpu_uclamp_max_write,
11441 	},
11442 #endif
11443 	{ }	/* terminate */
11444 };
11445 
11446 struct cgroup_subsys cpu_cgrp_subsys = {
11447 	.css_alloc	= cpu_cgroup_css_alloc,
11448 	.css_online	= cpu_cgroup_css_online,
11449 	.css_released	= cpu_cgroup_css_released,
11450 	.css_free	= cpu_cgroup_css_free,
11451 	.css_extra_stat_show = cpu_extra_stat_show,
11452 #ifdef CONFIG_RT_GROUP_SCHED
11453 	.can_attach	= cpu_cgroup_can_attach,
11454 #endif
11455 	.attach		= cpu_cgroup_attach,
11456 	.legacy_cftypes	= cpu_legacy_files,
11457 	.dfl_cftypes	= cpu_files,
11458 	.early_init	= true,
11459 	.threaded	= true,
11460 };
11461 
11462 #endif	/* CONFIG_CGROUP_SCHED */
11463 
11464 void dump_cpu_task(int cpu)
11465 {
11466 	if (cpu == smp_processor_id() && in_hardirq()) {
11467 		struct pt_regs *regs;
11468 
11469 		regs = get_irq_regs();
11470 		if (regs) {
11471 			show_regs(regs);
11472 			return;
11473 		}
11474 	}
11475 
11476 	if (trigger_single_cpu_backtrace(cpu))
11477 		return;
11478 
11479 	pr_info("Task dump for CPU %d:\n", cpu);
11480 	sched_show_task(cpu_curr(cpu));
11481 }
11482 
11483 /*
11484  * Nice levels are multiplicative, with a gentle 10% change for every
11485  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11486  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11487  * that remained on nice 0.
11488  *
11489  * The "10% effect" is relative and cumulative: from _any_ nice level,
11490  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11491  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11492  * If a task goes up by ~10% and another task goes down by ~10% then
11493  * the relative distance between them is ~25%.)
11494  */
11495 const int sched_prio_to_weight[40] = {
11496  /* -20 */     88761,     71755,     56483,     46273,     36291,
11497  /* -15 */     29154,     23254,     18705,     14949,     11916,
11498  /* -10 */      9548,      7620,      6100,      4904,      3906,
11499  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11500  /*   0 */      1024,       820,       655,       526,       423,
11501  /*   5 */       335,       272,       215,       172,       137,
11502  /*  10 */       110,        87,        70,        56,        45,
11503  /*  15 */        36,        29,        23,        18,        15,
11504 };
11505 
11506 /*
11507  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11508  *
11509  * In cases where the weight does not change often, we can use the
11510  * precalculated inverse to speed up arithmetics by turning divisions
11511  * into multiplications:
11512  */
11513 const u32 sched_prio_to_wmult[40] = {
11514  /* -20 */     48388,     59856,     76040,     92818,    118348,
11515  /* -15 */    147320,    184698,    229616,    287308,    360437,
11516  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11517  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11518  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11519  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11520  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11521  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11522 };
11523 
11524 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11525 {
11526         trace_sched_update_nr_running_tp(rq, count);
11527 }
11528 
11529 #ifdef CONFIG_SCHED_MM_CID
11530 
11531 /*
11532  * @cid_lock: Guarantee forward-progress of cid allocation.
11533  *
11534  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11535  * is only used when contention is detected by the lock-free allocation so
11536  * forward progress can be guaranteed.
11537  */
11538 DEFINE_RAW_SPINLOCK(cid_lock);
11539 
11540 /*
11541  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11542  *
11543  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11544  * detected, it is set to 1 to ensure that all newly coming allocations are
11545  * serialized by @cid_lock until the allocation which detected contention
11546  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11547  * of a cid allocation.
11548  */
11549 int use_cid_lock;
11550 
11551 /*
11552  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11553  * concurrently with respect to the execution of the source runqueue context
11554  * switch.
11555  *
11556  * There is one basic properties we want to guarantee here:
11557  *
11558  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11559  * used by a task. That would lead to concurrent allocation of the cid and
11560  * userspace corruption.
11561  *
11562  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11563  * that a pair of loads observe at least one of a pair of stores, which can be
11564  * shown as:
11565  *
11566  *      X = Y = 0
11567  *
11568  *      w[X]=1          w[Y]=1
11569  *      MB              MB
11570  *      r[Y]=y          r[X]=x
11571  *
11572  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11573  * values 0 and 1, this algorithm cares about specific state transitions of the
11574  * runqueue current task (as updated by the scheduler context switch), and the
11575  * per-mm/cpu cid value.
11576  *
11577  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11578  * task->mm != mm for the rest of the discussion. There are two scheduler state
11579  * transitions on context switch we care about:
11580  *
11581  * (TSA) Store to rq->curr with transition from (N) to (Y)
11582  *
11583  * (TSB) Store to rq->curr with transition from (Y) to (N)
11584  *
11585  * On the remote-clear side, there is one transition we care about:
11586  *
11587  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11588  *
11589  * There is also a transition to UNSET state which can be performed from all
11590  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11591  * guarantees that only a single thread will succeed:
11592  *
11593  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11594  *
11595  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11596  * when a thread is actively using the cid (property (1)).
11597  *
11598  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11599  *
11600  * Scenario A) (TSA)+(TMA) (from next task perspective)
11601  *
11602  * CPU0                                      CPU1
11603  *
11604  * Context switch CS-1                       Remote-clear
11605  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11606  *                                             (implied barrier after cmpxchg)
11607  *   - switch_mm_cid()
11608  *     - memory barrier (see switch_mm_cid()
11609  *       comment explaining how this barrier
11610  *       is combined with other scheduler
11611  *       barriers)
11612  *     - mm_cid_get (next)
11613  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11614  *
11615  * This Dekker ensures that either task (Y) is observed by the
11616  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11617  * observed.
11618  *
11619  * If task (Y) store is observed by rcu_dereference(), it means that there is
11620  * still an active task on the cpu. Remote-clear will therefore not transition
11621  * to UNSET, which fulfills property (1).
11622  *
11623  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11624  * it will move its state to UNSET, which clears the percpu cid perhaps
11625  * uselessly (which is not an issue for correctness). Because task (Y) is not
11626  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11627  * state to UNSET is done with a cmpxchg expecting that the old state has the
11628  * LAZY flag set, only one thread will successfully UNSET.
11629  *
11630  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11631  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11632  * CPU1 will observe task (Y) and do nothing more, which is fine.
11633  *
11634  * What we are effectively preventing with this Dekker is a scenario where
11635  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11636  * because this would UNSET a cid which is actively used.
11637  */
11638 
11639 void sched_mm_cid_migrate_from(struct task_struct *t)
11640 {
11641 	t->migrate_from_cpu = task_cpu(t);
11642 }
11643 
11644 static
11645 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11646 					  struct task_struct *t,
11647 					  struct mm_cid *src_pcpu_cid)
11648 {
11649 	struct mm_struct *mm = t->mm;
11650 	struct task_struct *src_task;
11651 	int src_cid, last_mm_cid;
11652 
11653 	if (!mm)
11654 		return -1;
11655 
11656 	last_mm_cid = t->last_mm_cid;
11657 	/*
11658 	 * If the migrated task has no last cid, or if the current
11659 	 * task on src rq uses the cid, it means the source cid does not need
11660 	 * to be moved to the destination cpu.
11661 	 */
11662 	if (last_mm_cid == -1)
11663 		return -1;
11664 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11665 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11666 		return -1;
11667 
11668 	/*
11669 	 * If we observe an active task using the mm on this rq, it means we
11670 	 * are not the last task to be migrated from this cpu for this mm, so
11671 	 * there is no need to move src_cid to the destination cpu.
11672 	 */
11673 	rcu_read_lock();
11674 	src_task = rcu_dereference(src_rq->curr);
11675 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11676 		rcu_read_unlock();
11677 		t->last_mm_cid = -1;
11678 		return -1;
11679 	}
11680 	rcu_read_unlock();
11681 
11682 	return src_cid;
11683 }
11684 
11685 static
11686 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11687 					      struct task_struct *t,
11688 					      struct mm_cid *src_pcpu_cid,
11689 					      int src_cid)
11690 {
11691 	struct task_struct *src_task;
11692 	struct mm_struct *mm = t->mm;
11693 	int lazy_cid;
11694 
11695 	if (src_cid == -1)
11696 		return -1;
11697 
11698 	/*
11699 	 * Attempt to clear the source cpu cid to move it to the destination
11700 	 * cpu.
11701 	 */
11702 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11703 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11704 		return -1;
11705 
11706 	/*
11707 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11708 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11709 	 * between store to rq->curr and load of prev and next task's
11710 	 * per-mm/cpu cid.
11711 	 *
11712 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11713 	 * rq->curr->mm_cid_active matches the barrier in
11714 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11715 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11716 	 * load of per-mm/cpu cid.
11717 	 */
11718 
11719 	/*
11720 	 * If we observe an active task using the mm on this rq after setting
11721 	 * the lazy-put flag, this task will be responsible for transitioning
11722 	 * from lazy-put flag set to MM_CID_UNSET.
11723 	 */
11724 	rcu_read_lock();
11725 	src_task = rcu_dereference(src_rq->curr);
11726 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11727 		rcu_read_unlock();
11728 		/*
11729 		 * We observed an active task for this mm, there is therefore
11730 		 * no point in moving this cid to the destination cpu.
11731 		 */
11732 		t->last_mm_cid = -1;
11733 		return -1;
11734 	}
11735 	rcu_read_unlock();
11736 
11737 	/*
11738 	 * The src_cid is unused, so it can be unset.
11739 	 */
11740 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11741 		return -1;
11742 	return src_cid;
11743 }
11744 
11745 /*
11746  * Migration to dst cpu. Called with dst_rq lock held.
11747  * Interrupts are disabled, which keeps the window of cid ownership without the
11748  * source rq lock held small.
11749  */
11750 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11751 {
11752 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11753 	struct mm_struct *mm = t->mm;
11754 	int src_cid, dst_cid, src_cpu;
11755 	struct rq *src_rq;
11756 
11757 	lockdep_assert_rq_held(dst_rq);
11758 
11759 	if (!mm)
11760 		return;
11761 	src_cpu = t->migrate_from_cpu;
11762 	if (src_cpu == -1) {
11763 		t->last_mm_cid = -1;
11764 		return;
11765 	}
11766 	/*
11767 	 * Move the src cid if the dst cid is unset. This keeps id
11768 	 * allocation closest to 0 in cases where few threads migrate around
11769 	 * many cpus.
11770 	 *
11771 	 * If destination cid is already set, we may have to just clear
11772 	 * the src cid to ensure compactness in frequent migrations
11773 	 * scenarios.
11774 	 *
11775 	 * It is not useful to clear the src cid when the number of threads is
11776 	 * greater or equal to the number of allowed cpus, because user-space
11777 	 * can expect that the number of allowed cids can reach the number of
11778 	 * allowed cpus.
11779 	 */
11780 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11781 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11782 	if (!mm_cid_is_unset(dst_cid) &&
11783 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11784 		return;
11785 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11786 	src_rq = cpu_rq(src_cpu);
11787 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11788 	if (src_cid == -1)
11789 		return;
11790 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11791 							    src_cid);
11792 	if (src_cid == -1)
11793 		return;
11794 	if (!mm_cid_is_unset(dst_cid)) {
11795 		__mm_cid_put(mm, src_cid);
11796 		return;
11797 	}
11798 	/* Move src_cid to dst cpu. */
11799 	mm_cid_snapshot_time(dst_rq, mm);
11800 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11801 }
11802 
11803 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11804 				      int cpu)
11805 {
11806 	struct rq *rq = cpu_rq(cpu);
11807 	struct task_struct *t;
11808 	unsigned long flags;
11809 	int cid, lazy_cid;
11810 
11811 	cid = READ_ONCE(pcpu_cid->cid);
11812 	if (!mm_cid_is_valid(cid))
11813 		return;
11814 
11815 	/*
11816 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11817 	 * there happens to be other tasks left on the source cpu using this
11818 	 * mm, the next task using this mm will reallocate its cid on context
11819 	 * switch.
11820 	 */
11821 	lazy_cid = mm_cid_set_lazy_put(cid);
11822 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11823 		return;
11824 
11825 	/*
11826 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11827 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11828 	 * between store to rq->curr and load of prev and next task's
11829 	 * per-mm/cpu cid.
11830 	 *
11831 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11832 	 * rq->curr->mm_cid_active matches the barrier in
11833 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11834 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11835 	 * load of per-mm/cpu cid.
11836 	 */
11837 
11838 	/*
11839 	 * If we observe an active task using the mm on this rq after setting
11840 	 * the lazy-put flag, that task will be responsible for transitioning
11841 	 * from lazy-put flag set to MM_CID_UNSET.
11842 	 */
11843 	rcu_read_lock();
11844 	t = rcu_dereference(rq->curr);
11845 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11846 		rcu_read_unlock();
11847 		return;
11848 	}
11849 	rcu_read_unlock();
11850 
11851 	/*
11852 	 * The cid is unused, so it can be unset.
11853 	 * Disable interrupts to keep the window of cid ownership without rq
11854 	 * lock small.
11855 	 */
11856 	local_irq_save(flags);
11857 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11858 		__mm_cid_put(mm, cid);
11859 	local_irq_restore(flags);
11860 }
11861 
11862 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11863 {
11864 	struct rq *rq = cpu_rq(cpu);
11865 	struct mm_cid *pcpu_cid;
11866 	struct task_struct *curr;
11867 	u64 rq_clock;
11868 
11869 	/*
11870 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11871 	 * while is irrelevant.
11872 	 */
11873 	rq_clock = READ_ONCE(rq->clock);
11874 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11875 
11876 	/*
11877 	 * In order to take care of infrequently scheduled tasks, bump the time
11878 	 * snapshot associated with this cid if an active task using the mm is
11879 	 * observed on this rq.
11880 	 */
11881 	rcu_read_lock();
11882 	curr = rcu_dereference(rq->curr);
11883 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11884 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11885 		rcu_read_unlock();
11886 		return;
11887 	}
11888 	rcu_read_unlock();
11889 
11890 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11891 		return;
11892 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11893 }
11894 
11895 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11896 					     int weight)
11897 {
11898 	struct mm_cid *pcpu_cid;
11899 	int cid;
11900 
11901 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11902 	cid = READ_ONCE(pcpu_cid->cid);
11903 	if (!mm_cid_is_valid(cid) || cid < weight)
11904 		return;
11905 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11906 }
11907 
11908 static void task_mm_cid_work(struct callback_head *work)
11909 {
11910 	unsigned long now = jiffies, old_scan, next_scan;
11911 	struct task_struct *t = current;
11912 	struct cpumask *cidmask;
11913 	struct mm_struct *mm;
11914 	int weight, cpu;
11915 
11916 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11917 
11918 	work->next = work;	/* Prevent double-add */
11919 	if (t->flags & PF_EXITING)
11920 		return;
11921 	mm = t->mm;
11922 	if (!mm)
11923 		return;
11924 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11925 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11926 	if (!old_scan) {
11927 		unsigned long res;
11928 
11929 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11930 		if (res != old_scan)
11931 			old_scan = res;
11932 		else
11933 			old_scan = next_scan;
11934 	}
11935 	if (time_before(now, old_scan))
11936 		return;
11937 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11938 		return;
11939 	cidmask = mm_cidmask(mm);
11940 	/* Clear cids that were not recently used. */
11941 	for_each_possible_cpu(cpu)
11942 		sched_mm_cid_remote_clear_old(mm, cpu);
11943 	weight = cpumask_weight(cidmask);
11944 	/*
11945 	 * Clear cids that are greater or equal to the cidmask weight to
11946 	 * recompact it.
11947 	 */
11948 	for_each_possible_cpu(cpu)
11949 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11950 }
11951 
11952 void init_sched_mm_cid(struct task_struct *t)
11953 {
11954 	struct mm_struct *mm = t->mm;
11955 	int mm_users = 0;
11956 
11957 	if (mm) {
11958 		mm_users = atomic_read(&mm->mm_users);
11959 		if (mm_users == 1)
11960 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11961 	}
11962 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11963 	init_task_work(&t->cid_work, task_mm_cid_work);
11964 }
11965 
11966 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11967 {
11968 	struct callback_head *work = &curr->cid_work;
11969 	unsigned long now = jiffies;
11970 
11971 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11972 	    work->next != work)
11973 		return;
11974 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11975 		return;
11976 	task_work_add(curr, work, TWA_RESUME);
11977 }
11978 
11979 void sched_mm_cid_exit_signals(struct task_struct *t)
11980 {
11981 	struct mm_struct *mm = t->mm;
11982 	struct rq_flags rf;
11983 	struct rq *rq;
11984 
11985 	if (!mm)
11986 		return;
11987 
11988 	preempt_disable();
11989 	rq = this_rq();
11990 	rq_lock_irqsave(rq, &rf);
11991 	preempt_enable_no_resched();	/* holding spinlock */
11992 	WRITE_ONCE(t->mm_cid_active, 0);
11993 	/*
11994 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11995 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11996 	 */
11997 	smp_mb();
11998 	mm_cid_put(mm);
11999 	t->last_mm_cid = t->mm_cid = -1;
12000 	rq_unlock_irqrestore(rq, &rf);
12001 }
12002 
12003 void sched_mm_cid_before_execve(struct task_struct *t)
12004 {
12005 	struct mm_struct *mm = t->mm;
12006 	struct rq_flags rf;
12007 	struct rq *rq;
12008 
12009 	if (!mm)
12010 		return;
12011 
12012 	preempt_disable();
12013 	rq = this_rq();
12014 	rq_lock_irqsave(rq, &rf);
12015 	preempt_enable_no_resched();	/* holding spinlock */
12016 	WRITE_ONCE(t->mm_cid_active, 0);
12017 	/*
12018 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12019 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12020 	 */
12021 	smp_mb();
12022 	mm_cid_put(mm);
12023 	t->last_mm_cid = t->mm_cid = -1;
12024 	rq_unlock_irqrestore(rq, &rf);
12025 }
12026 
12027 void sched_mm_cid_after_execve(struct task_struct *t)
12028 {
12029 	struct mm_struct *mm = t->mm;
12030 	struct rq_flags rf;
12031 	struct rq *rq;
12032 
12033 	if (!mm)
12034 		return;
12035 
12036 	preempt_disable();
12037 	rq = this_rq();
12038 	rq_lock_irqsave(rq, &rf);
12039 	preempt_enable_no_resched();	/* holding spinlock */
12040 	WRITE_ONCE(t->mm_cid_active, 1);
12041 	/*
12042 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12043 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12044 	 */
12045 	smp_mb();
12046 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12047 	rq_unlock_irqrestore(rq, &rf);
12048 	rseq_set_notify_resume(t);
12049 }
12050 
12051 void sched_mm_cid_fork(struct task_struct *t)
12052 {
12053 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12054 	t->mm_cid_active = 1;
12055 }
12056 #endif
12057