1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 /* 300 * __task_rq_lock - lock the rq @p resides on. 301 */ 302 static inline struct rq *__task_rq_lock(struct task_struct *p) 303 __acquires(rq->lock) 304 { 305 struct rq *rq; 306 307 lockdep_assert_held(&p->pi_lock); 308 309 for (;;) { 310 rq = task_rq(p); 311 raw_spin_lock(&rq->lock); 312 if (likely(rq == task_rq(p))) 313 return rq; 314 raw_spin_unlock(&rq->lock); 315 } 316 } 317 318 /* 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 320 */ 321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 322 __acquires(p->pi_lock) 323 __acquires(rq->lock) 324 { 325 struct rq *rq; 326 327 for (;;) { 328 raw_spin_lock_irqsave(&p->pi_lock, *flags); 329 rq = task_rq(p); 330 raw_spin_lock(&rq->lock); 331 if (likely(rq == task_rq(p))) 332 return rq; 333 raw_spin_unlock(&rq->lock); 334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 335 } 336 } 337 338 static void __task_rq_unlock(struct rq *rq) 339 __releases(rq->lock) 340 { 341 raw_spin_unlock(&rq->lock); 342 } 343 344 static inline void 345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 346 __releases(rq->lock) 347 __releases(p->pi_lock) 348 { 349 raw_spin_unlock(&rq->lock); 350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 351 } 352 353 /* 354 * this_rq_lock - lock this runqueue and disable interrupts. 355 */ 356 static struct rq *this_rq_lock(void) 357 __acquires(rq->lock) 358 { 359 struct rq *rq; 360 361 local_irq_disable(); 362 rq = this_rq(); 363 raw_spin_lock(&rq->lock); 364 365 return rq; 366 } 367 368 #ifdef CONFIG_SCHED_HRTICK 369 /* 370 * Use HR-timers to deliver accurate preemption points. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 399 static int __hrtick_restart(struct rq *rq) 400 { 401 struct hrtimer *timer = &rq->hrtick_timer; 402 ktime_t time = hrtimer_get_softexpires(timer); 403 404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 405 } 406 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 __hrtick_restart(rq); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 __hrtick_restart(rq); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 void resched_task(struct task_struct *p) 515 { 516 int cpu; 517 518 lockdep_assert_held(&task_rq(p)->lock); 519 520 if (test_tsk_need_resched(p)) 521 return; 522 523 set_tsk_need_resched(p); 524 525 cpu = task_cpu(p); 526 if (cpu == smp_processor_id()) { 527 set_preempt_need_resched(); 528 return; 529 } 530 531 /* NEED_RESCHED must be visible before we test polling */ 532 smp_mb(); 533 if (!tsk_is_polling(p)) 534 smp_send_reschedule(cpu); 535 } 536 537 void resched_cpu(int cpu) 538 { 539 struct rq *rq = cpu_rq(cpu); 540 unsigned long flags; 541 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 543 return; 544 resched_task(cpu_curr(cpu)); 545 raw_spin_unlock_irqrestore(&rq->lock, flags); 546 } 547 548 #ifdef CONFIG_SMP 549 #ifdef CONFIG_NO_HZ_COMMON 550 /* 551 * In the semi idle case, use the nearest busy cpu for migrating timers 552 * from an idle cpu. This is good for power-savings. 553 * 554 * We don't do similar optimization for completely idle system, as 555 * selecting an idle cpu will add more delays to the timers than intended 556 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 557 */ 558 int get_nohz_timer_target(void) 559 { 560 int cpu = smp_processor_id(); 561 int i; 562 struct sched_domain *sd; 563 564 rcu_read_lock(); 565 for_each_domain(cpu, sd) { 566 for_each_cpu(i, sched_domain_span(sd)) { 567 if (!idle_cpu(i)) { 568 cpu = i; 569 goto unlock; 570 } 571 } 572 } 573 unlock: 574 rcu_read_unlock(); 575 return cpu; 576 } 577 /* 578 * When add_timer_on() enqueues a timer into the timer wheel of an 579 * idle CPU then this timer might expire before the next timer event 580 * which is scheduled to wake up that CPU. In case of a completely 581 * idle system the next event might even be infinite time into the 582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 583 * leaves the inner idle loop so the newly added timer is taken into 584 * account when the CPU goes back to idle and evaluates the timer 585 * wheel for the next timer event. 586 */ 587 static void wake_up_idle_cpu(int cpu) 588 { 589 struct rq *rq = cpu_rq(cpu); 590 591 if (cpu == smp_processor_id()) 592 return; 593 594 /* 595 * This is safe, as this function is called with the timer 596 * wheel base lock of (cpu) held. When the CPU is on the way 597 * to idle and has not yet set rq->curr to idle then it will 598 * be serialized on the timer wheel base lock and take the new 599 * timer into account automatically. 600 */ 601 if (rq->curr != rq->idle) 602 return; 603 604 /* 605 * We can set TIF_RESCHED on the idle task of the other CPU 606 * lockless. The worst case is that the other CPU runs the 607 * idle task through an additional NOOP schedule() 608 */ 609 set_tsk_need_resched(rq->idle); 610 611 /* NEED_RESCHED must be visible before we test polling */ 612 smp_mb(); 613 if (!tsk_is_polling(rq->idle)) 614 smp_send_reschedule(cpu); 615 } 616 617 static bool wake_up_full_nohz_cpu(int cpu) 618 { 619 if (tick_nohz_full_cpu(cpu)) { 620 if (cpu != smp_processor_id() || 621 tick_nohz_tick_stopped()) 622 smp_send_reschedule(cpu); 623 return true; 624 } 625 626 return false; 627 } 628 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(void) 664 { 665 struct rq *rq; 666 667 rq = this_rq(); 668 669 /* Make sure rq->nr_running update is visible after the IPI */ 670 smp_rmb(); 671 672 /* More than one running task need preemption */ 673 if (rq->nr_running > 1) 674 return false; 675 676 return true; 677 } 678 #endif /* CONFIG_NO_HZ_FULL */ 679 680 void sched_avg_update(struct rq *rq) 681 { 682 s64 period = sched_avg_period(); 683 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 685 /* 686 * Inline assembly required to prevent the compiler 687 * optimising this loop into a divmod call. 688 * See __iter_div_u64_rem() for another example of this. 689 */ 690 asm("" : "+rm" (rq->age_stamp)); 691 rq->age_stamp += period; 692 rq->rt_avg /= 2; 693 } 694 } 695 696 #endif /* CONFIG_SMP */ 697 698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 700 /* 701 * Iterate task_group tree rooted at *from, calling @down when first entering a 702 * node and @up when leaving it for the final time. 703 * 704 * Caller must hold rcu_lock or sufficient equivalent. 705 */ 706 int walk_tg_tree_from(struct task_group *from, 707 tg_visitor down, tg_visitor up, void *data) 708 { 709 struct task_group *parent, *child; 710 int ret; 711 712 parent = from; 713 714 down: 715 ret = (*down)(parent, data); 716 if (ret) 717 goto out; 718 list_for_each_entry_rcu(child, &parent->children, siblings) { 719 parent = child; 720 goto down; 721 722 up: 723 continue; 724 } 725 ret = (*up)(parent, data); 726 if (ret || parent == from) 727 goto out; 728 729 child = parent; 730 parent = parent->parent; 731 if (parent) 732 goto up; 733 out: 734 return ret; 735 } 736 737 int tg_nop(struct task_group *tg, void *data) 738 { 739 return 0; 740 } 741 #endif 742 743 static void set_load_weight(struct task_struct *p) 744 { 745 int prio = p->static_prio - MAX_RT_PRIO; 746 struct load_weight *load = &p->se.load; 747 748 /* 749 * SCHED_IDLE tasks get minimal weight: 750 */ 751 if (p->policy == SCHED_IDLE) { 752 load->weight = scale_load(WEIGHT_IDLEPRIO); 753 load->inv_weight = WMULT_IDLEPRIO; 754 return; 755 } 756 757 load->weight = scale_load(prio_to_weight[prio]); 758 load->inv_weight = prio_to_wmult[prio]; 759 } 760 761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 762 { 763 update_rq_clock(rq); 764 sched_info_queued(rq, p); 765 p->sched_class->enqueue_task(rq, p, flags); 766 } 767 768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 769 { 770 update_rq_clock(rq); 771 sched_info_dequeued(rq, p); 772 p->sched_class->dequeue_task(rq, p, flags); 773 } 774 775 void activate_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (task_contributes_to_load(p)) 778 rq->nr_uninterruptible--; 779 780 enqueue_task(rq, p, flags); 781 } 782 783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 784 { 785 if (task_contributes_to_load(p)) 786 rq->nr_uninterruptible++; 787 788 dequeue_task(rq, p, flags); 789 } 790 791 static void update_rq_clock_task(struct rq *rq, s64 delta) 792 { 793 /* 794 * In theory, the compile should just see 0 here, and optimize out the call 795 * to sched_rt_avg_update. But I don't trust it... 796 */ 797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 798 s64 steal = 0, irq_delta = 0; 799 #endif 800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 802 803 /* 804 * Since irq_time is only updated on {soft,}irq_exit, we might run into 805 * this case when a previous update_rq_clock() happened inside a 806 * {soft,}irq region. 807 * 808 * When this happens, we stop ->clock_task and only update the 809 * prev_irq_time stamp to account for the part that fit, so that a next 810 * update will consume the rest. This ensures ->clock_task is 811 * monotonic. 812 * 813 * It does however cause some slight miss-attribution of {soft,}irq 814 * time, a more accurate solution would be to update the irq_time using 815 * the current rq->clock timestamp, except that would require using 816 * atomic ops. 817 */ 818 if (irq_delta > delta) 819 irq_delta = delta; 820 821 rq->prev_irq_time += irq_delta; 822 delta -= irq_delta; 823 #endif 824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 825 if (static_key_false((¶virt_steal_rq_enabled))) { 826 u64 st; 827 828 steal = paravirt_steal_clock(cpu_of(rq)); 829 steal -= rq->prev_steal_time_rq; 830 831 if (unlikely(steal > delta)) 832 steal = delta; 833 834 st = steal_ticks(steal); 835 steal = st * TICK_NSEC; 836 837 rq->prev_steal_time_rq += steal; 838 839 delta -= steal; 840 } 841 #endif 842 843 rq->clock_task += delta; 844 845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 847 sched_rt_avg_update(rq, irq_delta + steal); 848 #endif 849 } 850 851 void sched_set_stop_task(int cpu, struct task_struct *stop) 852 { 853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 854 struct task_struct *old_stop = cpu_rq(cpu)->stop; 855 856 if (stop) { 857 /* 858 * Make it appear like a SCHED_FIFO task, its something 859 * userspace knows about and won't get confused about. 860 * 861 * Also, it will make PI more or less work without too 862 * much confusion -- but then, stop work should not 863 * rely on PI working anyway. 864 */ 865 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 866 867 stop->sched_class = &stop_sched_class; 868 } 869 870 cpu_rq(cpu)->stop = stop; 871 872 if (old_stop) { 873 /* 874 * Reset it back to a normal scheduling class so that 875 * it can die in pieces. 876 */ 877 old_stop->sched_class = &rt_sched_class; 878 } 879 } 880 881 /* 882 * __normal_prio - return the priority that is based on the static prio 883 */ 884 static inline int __normal_prio(struct task_struct *p) 885 { 886 return p->static_prio; 887 } 888 889 /* 890 * Calculate the expected normal priority: i.e. priority 891 * without taking RT-inheritance into account. Might be 892 * boosted by interactivity modifiers. Changes upon fork, 893 * setprio syscalls, and whenever the interactivity 894 * estimator recalculates. 895 */ 896 static inline int normal_prio(struct task_struct *p) 897 { 898 int prio; 899 900 if (task_has_dl_policy(p)) 901 prio = MAX_DL_PRIO-1; 902 else if (task_has_rt_policy(p)) 903 prio = MAX_RT_PRIO-1 - p->rt_priority; 904 else 905 prio = __normal_prio(p); 906 return prio; 907 } 908 909 /* 910 * Calculate the current priority, i.e. the priority 911 * taken into account by the scheduler. This value might 912 * be boosted by RT tasks, or might be boosted by 913 * interactivity modifiers. Will be RT if the task got 914 * RT-boosted. If not then it returns p->normal_prio. 915 */ 916 static int effective_prio(struct task_struct *p) 917 { 918 p->normal_prio = normal_prio(p); 919 /* 920 * If we are RT tasks or we were boosted to RT priority, 921 * keep the priority unchanged. Otherwise, update priority 922 * to the normal priority: 923 */ 924 if (!rt_prio(p->prio)) 925 return p->normal_prio; 926 return p->prio; 927 } 928 929 /** 930 * task_curr - is this task currently executing on a CPU? 931 * @p: the task in question. 932 * 933 * Return: 1 if the task is currently executing. 0 otherwise. 934 */ 935 inline int task_curr(const struct task_struct *p) 936 { 937 return cpu_curr(task_cpu(p)) == p; 938 } 939 940 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 941 const struct sched_class *prev_class, 942 int oldprio) 943 { 944 if (prev_class != p->sched_class) { 945 if (prev_class->switched_from) 946 prev_class->switched_from(rq, p); 947 p->sched_class->switched_to(rq, p); 948 } else if (oldprio != p->prio || dl_task(p)) 949 p->sched_class->prio_changed(rq, p, oldprio); 950 } 951 952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 953 { 954 const struct sched_class *class; 955 956 if (p->sched_class == rq->curr->sched_class) { 957 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 958 } else { 959 for_each_class(class) { 960 if (class == rq->curr->sched_class) 961 break; 962 if (class == p->sched_class) { 963 resched_task(rq->curr); 964 break; 965 } 966 } 967 } 968 969 /* 970 * A queue event has occurred, and we're going to schedule. In 971 * this case, we can save a useless back to back clock update. 972 */ 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 974 rq->skip_clock_update = 1; 975 } 976 977 #ifdef CONFIG_SMP 978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 979 { 980 #ifdef CONFIG_SCHED_DEBUG 981 /* 982 * We should never call set_task_cpu() on a blocked task, 983 * ttwu() will sort out the placement. 984 */ 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 986 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 987 988 #ifdef CONFIG_LOCKDEP 989 /* 990 * The caller should hold either p->pi_lock or rq->lock, when changing 991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 992 * 993 * sched_move_task() holds both and thus holding either pins the cgroup, 994 * see task_group(). 995 * 996 * Furthermore, all task_rq users should acquire both locks, see 997 * task_rq_lock(). 998 */ 999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1000 lockdep_is_held(&task_rq(p)->lock))); 1001 #endif 1002 #endif 1003 1004 trace_sched_migrate_task(p, new_cpu); 1005 1006 if (task_cpu(p) != new_cpu) { 1007 if (p->sched_class->migrate_task_rq) 1008 p->sched_class->migrate_task_rq(p, new_cpu); 1009 p->se.nr_migrations++; 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1011 } 1012 1013 __set_task_cpu(p, new_cpu); 1014 } 1015 1016 static void __migrate_swap_task(struct task_struct *p, int cpu) 1017 { 1018 if (p->on_rq) { 1019 struct rq *src_rq, *dst_rq; 1020 1021 src_rq = task_rq(p); 1022 dst_rq = cpu_rq(cpu); 1023 1024 deactivate_task(src_rq, p, 0); 1025 set_task_cpu(p, cpu); 1026 activate_task(dst_rq, p, 0); 1027 check_preempt_curr(dst_rq, p, 0); 1028 } else { 1029 /* 1030 * Task isn't running anymore; make it appear like we migrated 1031 * it before it went to sleep. This means on wakeup we make the 1032 * previous cpu our targer instead of where it really is. 1033 */ 1034 p->wake_cpu = cpu; 1035 } 1036 } 1037 1038 struct migration_swap_arg { 1039 struct task_struct *src_task, *dst_task; 1040 int src_cpu, dst_cpu; 1041 }; 1042 1043 static int migrate_swap_stop(void *data) 1044 { 1045 struct migration_swap_arg *arg = data; 1046 struct rq *src_rq, *dst_rq; 1047 int ret = -EAGAIN; 1048 1049 src_rq = cpu_rq(arg->src_cpu); 1050 dst_rq = cpu_rq(arg->dst_cpu); 1051 1052 double_raw_lock(&arg->src_task->pi_lock, 1053 &arg->dst_task->pi_lock); 1054 double_rq_lock(src_rq, dst_rq); 1055 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1056 goto unlock; 1057 1058 if (task_cpu(arg->src_task) != arg->src_cpu) 1059 goto unlock; 1060 1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1062 goto unlock; 1063 1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1065 goto unlock; 1066 1067 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1068 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1069 1070 ret = 0; 1071 1072 unlock: 1073 double_rq_unlock(src_rq, dst_rq); 1074 raw_spin_unlock(&arg->dst_task->pi_lock); 1075 raw_spin_unlock(&arg->src_task->pi_lock); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Cross migrate two tasks 1082 */ 1083 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1084 { 1085 struct migration_swap_arg arg; 1086 int ret = -EINVAL; 1087 1088 arg = (struct migration_swap_arg){ 1089 .src_task = cur, 1090 .src_cpu = task_cpu(cur), 1091 .dst_task = p, 1092 .dst_cpu = task_cpu(p), 1093 }; 1094 1095 if (arg.src_cpu == arg.dst_cpu) 1096 goto out; 1097 1098 /* 1099 * These three tests are all lockless; this is OK since all of them 1100 * will be re-checked with proper locks held further down the line. 1101 */ 1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1103 goto out; 1104 1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1106 goto out; 1107 1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1109 goto out; 1110 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1113 1114 out: 1115 return ret; 1116 } 1117 1118 struct migration_arg { 1119 struct task_struct *task; 1120 int dest_cpu; 1121 }; 1122 1123 static int migration_cpu_stop(void *data); 1124 1125 /* 1126 * wait_task_inactive - wait for a thread to unschedule. 1127 * 1128 * If @match_state is nonzero, it's the @p->state value just checked and 1129 * not expected to change. If it changes, i.e. @p might have woken up, 1130 * then return zero. When we succeed in waiting for @p to be off its CPU, 1131 * we return a positive number (its total switch count). If a second call 1132 * a short while later returns the same number, the caller can be sure that 1133 * @p has remained unscheduled the whole time. 1134 * 1135 * The caller must ensure that the task *will* unschedule sometime soon, 1136 * else this function might spin for a *long* time. This function can't 1137 * be called with interrupts off, or it may introduce deadlock with 1138 * smp_call_function() if an IPI is sent by the same process we are 1139 * waiting to become inactive. 1140 */ 1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1142 { 1143 unsigned long flags; 1144 int running, on_rq; 1145 unsigned long ncsw; 1146 struct rq *rq; 1147 1148 for (;;) { 1149 /* 1150 * We do the initial early heuristics without holding 1151 * any task-queue locks at all. We'll only try to get 1152 * the runqueue lock when things look like they will 1153 * work out! 1154 */ 1155 rq = task_rq(p); 1156 1157 /* 1158 * If the task is actively running on another CPU 1159 * still, just relax and busy-wait without holding 1160 * any locks. 1161 * 1162 * NOTE! Since we don't hold any locks, it's not 1163 * even sure that "rq" stays as the right runqueue! 1164 * But we don't care, since "task_running()" will 1165 * return false if the runqueue has changed and p 1166 * is actually now running somewhere else! 1167 */ 1168 while (task_running(rq, p)) { 1169 if (match_state && unlikely(p->state != match_state)) 1170 return 0; 1171 cpu_relax(); 1172 } 1173 1174 /* 1175 * Ok, time to look more closely! We need the rq 1176 * lock now, to be *sure*. If we're wrong, we'll 1177 * just go back and repeat. 1178 */ 1179 rq = task_rq_lock(p, &flags); 1180 trace_sched_wait_task(p); 1181 running = task_running(rq, p); 1182 on_rq = p->on_rq; 1183 ncsw = 0; 1184 if (!match_state || p->state == match_state) 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1186 task_rq_unlock(rq, p, &flags); 1187 1188 /* 1189 * If it changed from the expected state, bail out now. 1190 */ 1191 if (unlikely(!ncsw)) 1192 break; 1193 1194 /* 1195 * Was it really running after all now that we 1196 * checked with the proper locks actually held? 1197 * 1198 * Oops. Go back and try again.. 1199 */ 1200 if (unlikely(running)) { 1201 cpu_relax(); 1202 continue; 1203 } 1204 1205 /* 1206 * It's not enough that it's not actively running, 1207 * it must be off the runqueue _entirely_, and not 1208 * preempted! 1209 * 1210 * So if it was still runnable (but just not actively 1211 * running right now), it's preempted, and we should 1212 * yield - it could be a while. 1213 */ 1214 if (unlikely(on_rq)) { 1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1216 1217 set_current_state(TASK_UNINTERRUPTIBLE); 1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1219 continue; 1220 } 1221 1222 /* 1223 * Ahh, all good. It wasn't running, and it wasn't 1224 * runnable, which means that it will never become 1225 * running in the future either. We're all done! 1226 */ 1227 break; 1228 } 1229 1230 return ncsw; 1231 } 1232 1233 /*** 1234 * kick_process - kick a running thread to enter/exit the kernel 1235 * @p: the to-be-kicked thread 1236 * 1237 * Cause a process which is running on another CPU to enter 1238 * kernel-mode, without any delay. (to get signals handled.) 1239 * 1240 * NOTE: this function doesn't have to take the runqueue lock, 1241 * because all it wants to ensure is that the remote task enters 1242 * the kernel. If the IPI races and the task has been migrated 1243 * to another CPU then no harm is done and the purpose has been 1244 * achieved as well. 1245 */ 1246 void kick_process(struct task_struct *p) 1247 { 1248 int cpu; 1249 1250 preempt_disable(); 1251 cpu = task_cpu(p); 1252 if ((cpu != smp_processor_id()) && task_curr(p)) 1253 smp_send_reschedule(cpu); 1254 preempt_enable(); 1255 } 1256 EXPORT_SYMBOL_GPL(kick_process); 1257 #endif /* CONFIG_SMP */ 1258 1259 #ifdef CONFIG_SMP 1260 /* 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1262 */ 1263 static int select_fallback_rq(int cpu, struct task_struct *p) 1264 { 1265 int nid = cpu_to_node(cpu); 1266 const struct cpumask *nodemask = NULL; 1267 enum { cpuset, possible, fail } state = cpuset; 1268 int dest_cpu; 1269 1270 /* 1271 * If the node that the cpu is on has been offlined, cpu_to_node() 1272 * will return -1. There is no cpu on the node, and we should 1273 * select the cpu on the other node. 1274 */ 1275 if (nid != -1) { 1276 nodemask = cpumask_of_node(nid); 1277 1278 /* Look for allowed, online CPU in same node. */ 1279 for_each_cpu(dest_cpu, nodemask) { 1280 if (!cpu_online(dest_cpu)) 1281 continue; 1282 if (!cpu_active(dest_cpu)) 1283 continue; 1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1285 return dest_cpu; 1286 } 1287 } 1288 1289 for (;;) { 1290 /* Any allowed, online CPU? */ 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1292 if (!cpu_online(dest_cpu)) 1293 continue; 1294 if (!cpu_active(dest_cpu)) 1295 continue; 1296 goto out; 1297 } 1298 1299 switch (state) { 1300 case cpuset: 1301 /* No more Mr. Nice Guy. */ 1302 cpuset_cpus_allowed_fallback(p); 1303 state = possible; 1304 break; 1305 1306 case possible: 1307 do_set_cpus_allowed(p, cpu_possible_mask); 1308 state = fail; 1309 break; 1310 1311 case fail: 1312 BUG(); 1313 break; 1314 } 1315 } 1316 1317 out: 1318 if (state != cpuset) { 1319 /* 1320 * Don't tell them about moving exiting tasks or 1321 * kernel threads (both mm NULL), since they never 1322 * leave kernel. 1323 */ 1324 if (p->mm && printk_ratelimit()) { 1325 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1326 task_pid_nr(p), p->comm, cpu); 1327 } 1328 } 1329 1330 return dest_cpu; 1331 } 1332 1333 /* 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1335 */ 1336 static inline 1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1338 { 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1340 1341 /* 1342 * In order not to call set_task_cpu() on a blocking task we need 1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1344 * cpu. 1345 * 1346 * Since this is common to all placement strategies, this lives here. 1347 * 1348 * [ this allows ->select_task() to simply return task_cpu(p) and 1349 * not worry about this generic constraint ] 1350 */ 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1352 !cpu_online(cpu))) 1353 cpu = select_fallback_rq(task_cpu(p), p); 1354 1355 return cpu; 1356 } 1357 1358 static void update_avg(u64 *avg, u64 sample) 1359 { 1360 s64 diff = sample - *avg; 1361 *avg += diff >> 3; 1362 } 1363 #endif 1364 1365 static void 1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1367 { 1368 #ifdef CONFIG_SCHEDSTATS 1369 struct rq *rq = this_rq(); 1370 1371 #ifdef CONFIG_SMP 1372 int this_cpu = smp_processor_id(); 1373 1374 if (cpu == this_cpu) { 1375 schedstat_inc(rq, ttwu_local); 1376 schedstat_inc(p, se.statistics.nr_wakeups_local); 1377 } else { 1378 struct sched_domain *sd; 1379 1380 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1381 rcu_read_lock(); 1382 for_each_domain(this_cpu, sd) { 1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1384 schedstat_inc(sd, ttwu_wake_remote); 1385 break; 1386 } 1387 } 1388 rcu_read_unlock(); 1389 } 1390 1391 if (wake_flags & WF_MIGRATED) 1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1393 1394 #endif /* CONFIG_SMP */ 1395 1396 schedstat_inc(rq, ttwu_count); 1397 schedstat_inc(p, se.statistics.nr_wakeups); 1398 1399 if (wake_flags & WF_SYNC) 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1401 1402 #endif /* CONFIG_SCHEDSTATS */ 1403 } 1404 1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1406 { 1407 activate_task(rq, p, en_flags); 1408 p->on_rq = 1; 1409 1410 /* if a worker is waking up, notify workqueue */ 1411 if (p->flags & PF_WQ_WORKER) 1412 wq_worker_waking_up(p, cpu_of(rq)); 1413 } 1414 1415 /* 1416 * Mark the task runnable and perform wakeup-preemption. 1417 */ 1418 static void 1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1420 { 1421 check_preempt_curr(rq, p, wake_flags); 1422 trace_sched_wakeup(p, true); 1423 1424 p->state = TASK_RUNNING; 1425 #ifdef CONFIG_SMP 1426 if (p->sched_class->task_woken) 1427 p->sched_class->task_woken(rq, p); 1428 1429 if (rq->idle_stamp) { 1430 u64 delta = rq_clock(rq) - rq->idle_stamp; 1431 u64 max = 2*rq->max_idle_balance_cost; 1432 1433 update_avg(&rq->avg_idle, delta); 1434 1435 if (rq->avg_idle > max) 1436 rq->avg_idle = max; 1437 1438 rq->idle_stamp = 0; 1439 } 1440 #endif 1441 } 1442 1443 static void 1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1445 { 1446 #ifdef CONFIG_SMP 1447 if (p->sched_contributes_to_load) 1448 rq->nr_uninterruptible--; 1449 #endif 1450 1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1452 ttwu_do_wakeup(rq, p, wake_flags); 1453 } 1454 1455 /* 1456 * Called in case the task @p isn't fully descheduled from its runqueue, 1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1458 * since all we need to do is flip p->state to TASK_RUNNING, since 1459 * the task is still ->on_rq. 1460 */ 1461 static int ttwu_remote(struct task_struct *p, int wake_flags) 1462 { 1463 struct rq *rq; 1464 int ret = 0; 1465 1466 rq = __task_rq_lock(p); 1467 if (p->on_rq) { 1468 /* check_preempt_curr() may use rq clock */ 1469 update_rq_clock(rq); 1470 ttwu_do_wakeup(rq, p, wake_flags); 1471 ret = 1; 1472 } 1473 __task_rq_unlock(rq); 1474 1475 return ret; 1476 } 1477 1478 #ifdef CONFIG_SMP 1479 static void sched_ttwu_pending(void) 1480 { 1481 struct rq *rq = this_rq(); 1482 struct llist_node *llist = llist_del_all(&rq->wake_list); 1483 struct task_struct *p; 1484 1485 raw_spin_lock(&rq->lock); 1486 1487 while (llist) { 1488 p = llist_entry(llist, struct task_struct, wake_entry); 1489 llist = llist_next(llist); 1490 ttwu_do_activate(rq, p, 0); 1491 } 1492 1493 raw_spin_unlock(&rq->lock); 1494 } 1495 1496 void scheduler_ipi(void) 1497 { 1498 /* 1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1500 * TIF_NEED_RESCHED remotely (for the first time) will also send 1501 * this IPI. 1502 */ 1503 preempt_fold_need_resched(); 1504 1505 if (llist_empty(&this_rq()->wake_list) 1506 && !tick_nohz_full_cpu(smp_processor_id()) 1507 && !got_nohz_idle_kick()) 1508 return; 1509 1510 /* 1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1512 * traditionally all their work was done from the interrupt return 1513 * path. Now that we actually do some work, we need to make sure 1514 * we do call them. 1515 * 1516 * Some archs already do call them, luckily irq_enter/exit nest 1517 * properly. 1518 * 1519 * Arguably we should visit all archs and update all handlers, 1520 * however a fair share of IPIs are still resched only so this would 1521 * somewhat pessimize the simple resched case. 1522 */ 1523 irq_enter(); 1524 tick_nohz_full_check(); 1525 sched_ttwu_pending(); 1526 1527 /* 1528 * Check if someone kicked us for doing the nohz idle load balance. 1529 */ 1530 if (unlikely(got_nohz_idle_kick())) { 1531 this_rq()->idle_balance = 1; 1532 raise_softirq_irqoff(SCHED_SOFTIRQ); 1533 } 1534 irq_exit(); 1535 } 1536 1537 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1538 { 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1540 smp_send_reschedule(cpu); 1541 } 1542 1543 bool cpus_share_cache(int this_cpu, int that_cpu) 1544 { 1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1546 } 1547 #endif /* CONFIG_SMP */ 1548 1549 static void ttwu_queue(struct task_struct *p, int cpu) 1550 { 1551 struct rq *rq = cpu_rq(cpu); 1552 1553 #if defined(CONFIG_SMP) 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1556 ttwu_queue_remote(p, cpu); 1557 return; 1558 } 1559 #endif 1560 1561 raw_spin_lock(&rq->lock); 1562 ttwu_do_activate(rq, p, 0); 1563 raw_spin_unlock(&rq->lock); 1564 } 1565 1566 /** 1567 * try_to_wake_up - wake up a thread 1568 * @p: the thread to be awakened 1569 * @state: the mask of task states that can be woken 1570 * @wake_flags: wake modifier flags (WF_*) 1571 * 1572 * Put it on the run-queue if it's not already there. The "current" 1573 * thread is always on the run-queue (except when the actual 1574 * re-schedule is in progress), and as such you're allowed to do 1575 * the simpler "current->state = TASK_RUNNING" to mark yourself 1576 * runnable without the overhead of this. 1577 * 1578 * Return: %true if @p was woken up, %false if it was already running. 1579 * or @state didn't match @p's state. 1580 */ 1581 static int 1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1583 { 1584 unsigned long flags; 1585 int cpu, success = 0; 1586 1587 /* 1588 * If we are going to wake up a thread waiting for CONDITION we 1589 * need to ensure that CONDITION=1 done by the caller can not be 1590 * reordered with p->state check below. This pairs with mb() in 1591 * set_current_state() the waiting thread does. 1592 */ 1593 smp_mb__before_spinlock(); 1594 raw_spin_lock_irqsave(&p->pi_lock, flags); 1595 if (!(p->state & state)) 1596 goto out; 1597 1598 success = 1; /* we're going to change ->state */ 1599 cpu = task_cpu(p); 1600 1601 if (p->on_rq && ttwu_remote(p, wake_flags)) 1602 goto stat; 1603 1604 #ifdef CONFIG_SMP 1605 /* 1606 * If the owning (remote) cpu is still in the middle of schedule() with 1607 * this task as prev, wait until its done referencing the task. 1608 */ 1609 while (p->on_cpu) 1610 cpu_relax(); 1611 /* 1612 * Pairs with the smp_wmb() in finish_lock_switch(). 1613 */ 1614 smp_rmb(); 1615 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1617 p->state = TASK_WAKING; 1618 1619 if (p->sched_class->task_waking) 1620 p->sched_class->task_waking(p); 1621 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1623 if (task_cpu(p) != cpu) { 1624 wake_flags |= WF_MIGRATED; 1625 set_task_cpu(p, cpu); 1626 } 1627 #endif /* CONFIG_SMP */ 1628 1629 ttwu_queue(p, cpu); 1630 stat: 1631 ttwu_stat(p, cpu, wake_flags); 1632 out: 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1634 1635 return success; 1636 } 1637 1638 /** 1639 * try_to_wake_up_local - try to wake up a local task with rq lock held 1640 * @p: the thread to be awakened 1641 * 1642 * Put @p on the run-queue if it's not already there. The caller must 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1644 * the current task. 1645 */ 1646 static void try_to_wake_up_local(struct task_struct *p) 1647 { 1648 struct rq *rq = task_rq(p); 1649 1650 if (WARN_ON_ONCE(rq != this_rq()) || 1651 WARN_ON_ONCE(p == current)) 1652 return; 1653 1654 lockdep_assert_held(&rq->lock); 1655 1656 if (!raw_spin_trylock(&p->pi_lock)) { 1657 raw_spin_unlock(&rq->lock); 1658 raw_spin_lock(&p->pi_lock); 1659 raw_spin_lock(&rq->lock); 1660 } 1661 1662 if (!(p->state & TASK_NORMAL)) 1663 goto out; 1664 1665 if (!p->on_rq) 1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1667 1668 ttwu_do_wakeup(rq, p, 0); 1669 ttwu_stat(p, smp_processor_id(), 0); 1670 out: 1671 raw_spin_unlock(&p->pi_lock); 1672 } 1673 1674 /** 1675 * wake_up_process - Wake up a specific process 1676 * @p: The process to be woken up. 1677 * 1678 * Attempt to wake up the nominated process and move it to the set of runnable 1679 * processes. 1680 * 1681 * Return: 1 if the process was woken up, 0 if it was already running. 1682 * 1683 * It may be assumed that this function implies a write memory barrier before 1684 * changing the task state if and only if any tasks are woken up. 1685 */ 1686 int wake_up_process(struct task_struct *p) 1687 { 1688 WARN_ON(task_is_stopped_or_traced(p)); 1689 return try_to_wake_up(p, TASK_NORMAL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 RB_CLEAR_NODE(&p->dl.rb_node); 1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1722 p->dl.dl_runtime = p->dl.runtime = 0; 1723 p->dl.dl_deadline = p->dl.deadline = 0; 1724 p->dl.dl_period = 0; 1725 p->dl.flags = 0; 1726 1727 INIT_LIST_HEAD(&p->rt.run_list); 1728 1729 #ifdef CONFIG_PREEMPT_NOTIFIERS 1730 INIT_HLIST_HEAD(&p->preempt_notifiers); 1731 #endif 1732 1733 #ifdef CONFIG_NUMA_BALANCING 1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1736 p->mm->numa_scan_seq = 0; 1737 } 1738 1739 if (clone_flags & CLONE_VM) 1740 p->numa_preferred_nid = current->numa_preferred_nid; 1741 else 1742 p->numa_preferred_nid = -1; 1743 1744 p->node_stamp = 0ULL; 1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1747 p->numa_work.next = &p->numa_work; 1748 p->numa_faults = NULL; 1749 p->numa_faults_buffer = NULL; 1750 1751 INIT_LIST_HEAD(&p->numa_entry); 1752 p->numa_group = NULL; 1753 #endif /* CONFIG_NUMA_BALANCING */ 1754 } 1755 1756 #ifdef CONFIG_NUMA_BALANCING 1757 #ifdef CONFIG_SCHED_DEBUG 1758 void set_numabalancing_state(bool enabled) 1759 { 1760 if (enabled) 1761 sched_feat_set("NUMA"); 1762 else 1763 sched_feat_set("NO_NUMA"); 1764 } 1765 #else 1766 __read_mostly bool numabalancing_enabled; 1767 1768 void set_numabalancing_state(bool enabled) 1769 { 1770 numabalancing_enabled = enabled; 1771 } 1772 #endif /* CONFIG_SCHED_DEBUG */ 1773 1774 #ifdef CONFIG_PROC_SYSCTL 1775 int sysctl_numa_balancing(struct ctl_table *table, int write, 1776 void __user *buffer, size_t *lenp, loff_t *ppos) 1777 { 1778 struct ctl_table t; 1779 int err; 1780 int state = numabalancing_enabled; 1781 1782 if (write && !capable(CAP_SYS_ADMIN)) 1783 return -EPERM; 1784 1785 t = *table; 1786 t.data = &state; 1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1788 if (err < 0) 1789 return err; 1790 if (write) 1791 set_numabalancing_state(state); 1792 return err; 1793 } 1794 #endif 1795 #endif 1796 1797 /* 1798 * fork()/clone()-time setup: 1799 */ 1800 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1801 { 1802 unsigned long flags; 1803 int cpu = get_cpu(); 1804 1805 __sched_fork(clone_flags, p); 1806 /* 1807 * We mark the process as running here. This guarantees that 1808 * nobody will actually run it, and a signal or other external 1809 * event cannot wake it up and insert it on the runqueue either. 1810 */ 1811 p->state = TASK_RUNNING; 1812 1813 /* 1814 * Make sure we do not leak PI boosting priority to the child. 1815 */ 1816 p->prio = current->normal_prio; 1817 1818 /* 1819 * Revert to default priority/policy on fork if requested. 1820 */ 1821 if (unlikely(p->sched_reset_on_fork)) { 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1823 p->policy = SCHED_NORMAL; 1824 p->static_prio = NICE_TO_PRIO(0); 1825 p->rt_priority = 0; 1826 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1827 p->static_prio = NICE_TO_PRIO(0); 1828 1829 p->prio = p->normal_prio = __normal_prio(p); 1830 set_load_weight(p); 1831 1832 /* 1833 * We don't need the reset flag anymore after the fork. It has 1834 * fulfilled its duty: 1835 */ 1836 p->sched_reset_on_fork = 0; 1837 } 1838 1839 if (dl_prio(p->prio)) { 1840 put_cpu(); 1841 return -EAGAIN; 1842 } else if (rt_prio(p->prio)) { 1843 p->sched_class = &rt_sched_class; 1844 } else { 1845 p->sched_class = &fair_sched_class; 1846 } 1847 1848 if (p->sched_class->task_fork) 1849 p->sched_class->task_fork(p); 1850 1851 /* 1852 * The child is not yet in the pid-hash so no cgroup attach races, 1853 * and the cgroup is pinned to this child due to cgroup_fork() 1854 * is ran before sched_fork(). 1855 * 1856 * Silence PROVE_RCU. 1857 */ 1858 raw_spin_lock_irqsave(&p->pi_lock, flags); 1859 set_task_cpu(p, cpu); 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1861 1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1863 if (likely(sched_info_on())) 1864 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1865 #endif 1866 #if defined(CONFIG_SMP) 1867 p->on_cpu = 0; 1868 #endif 1869 init_task_preempt_count(p); 1870 #ifdef CONFIG_SMP 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1873 #endif 1874 1875 put_cpu(); 1876 return 0; 1877 } 1878 1879 unsigned long to_ratio(u64 period, u64 runtime) 1880 { 1881 if (runtime == RUNTIME_INF) 1882 return 1ULL << 20; 1883 1884 /* 1885 * Doing this here saves a lot of checks in all 1886 * the calling paths, and returning zero seems 1887 * safe for them anyway. 1888 */ 1889 if (period == 0) 1890 return 0; 1891 1892 return div64_u64(runtime << 20, period); 1893 } 1894 1895 #ifdef CONFIG_SMP 1896 inline struct dl_bw *dl_bw_of(int i) 1897 { 1898 return &cpu_rq(i)->rd->dl_bw; 1899 } 1900 1901 static inline int dl_bw_cpus(int i) 1902 { 1903 struct root_domain *rd = cpu_rq(i)->rd; 1904 int cpus = 0; 1905 1906 for_each_cpu_and(i, rd->span, cpu_active_mask) 1907 cpus++; 1908 1909 return cpus; 1910 } 1911 #else 1912 inline struct dl_bw *dl_bw_of(int i) 1913 { 1914 return &cpu_rq(i)->dl.dl_bw; 1915 } 1916 1917 static inline int dl_bw_cpus(int i) 1918 { 1919 return 1; 1920 } 1921 #endif 1922 1923 static inline 1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 1925 { 1926 dl_b->total_bw -= tsk_bw; 1927 } 1928 1929 static inline 1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 1931 { 1932 dl_b->total_bw += tsk_bw; 1933 } 1934 1935 static inline 1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 1937 { 1938 return dl_b->bw != -1 && 1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 1940 } 1941 1942 /* 1943 * We must be sure that accepting a new task (or allowing changing the 1944 * parameters of an existing one) is consistent with the bandwidth 1945 * constraints. If yes, this function also accordingly updates the currently 1946 * allocated bandwidth to reflect the new situation. 1947 * 1948 * This function is called while holding p's rq->lock. 1949 */ 1950 static int dl_overflow(struct task_struct *p, int policy, 1951 const struct sched_attr *attr) 1952 { 1953 1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1955 u64 period = attr->sched_period; 1956 u64 runtime = attr->sched_runtime; 1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 1958 int cpus, err = -1; 1959 1960 if (new_bw == p->dl.dl_bw) 1961 return 0; 1962 1963 /* 1964 * Either if a task, enters, leave, or stays -deadline but changes 1965 * its parameters, we may need to update accordingly the total 1966 * allocated bandwidth of the container. 1967 */ 1968 raw_spin_lock(&dl_b->lock); 1969 cpus = dl_bw_cpus(task_cpu(p)); 1970 if (dl_policy(policy) && !task_has_dl_policy(p) && 1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 1972 __dl_add(dl_b, new_bw); 1973 err = 0; 1974 } else if (dl_policy(policy) && task_has_dl_policy(p) && 1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 1976 __dl_clear(dl_b, p->dl.dl_bw); 1977 __dl_add(dl_b, new_bw); 1978 err = 0; 1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 1980 __dl_clear(dl_b, p->dl.dl_bw); 1981 err = 0; 1982 } 1983 raw_spin_unlock(&dl_b->lock); 1984 1985 return err; 1986 } 1987 1988 extern void init_dl_bw(struct dl_bw *dl_b); 1989 1990 /* 1991 * wake_up_new_task - wake up a newly created task for the first time. 1992 * 1993 * This function will do some initial scheduler statistics housekeeping 1994 * that must be done for every newly created context, then puts the task 1995 * on the runqueue and wakes it. 1996 */ 1997 void wake_up_new_task(struct task_struct *p) 1998 { 1999 unsigned long flags; 2000 struct rq *rq; 2001 2002 raw_spin_lock_irqsave(&p->pi_lock, flags); 2003 #ifdef CONFIG_SMP 2004 /* 2005 * Fork balancing, do it here and not earlier because: 2006 * - cpus_allowed can change in the fork path 2007 * - any previously selected cpu might disappear through hotplug 2008 */ 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2010 #endif 2011 2012 /* Initialize new task's runnable average */ 2013 init_task_runnable_average(p); 2014 rq = __task_rq_lock(p); 2015 activate_task(rq, p, 0); 2016 p->on_rq = 1; 2017 trace_sched_wakeup_new(p, true); 2018 check_preempt_curr(rq, p, WF_FORK); 2019 #ifdef CONFIG_SMP 2020 if (p->sched_class->task_woken) 2021 p->sched_class->task_woken(rq, p); 2022 #endif 2023 task_rq_unlock(rq, p, &flags); 2024 } 2025 2026 #ifdef CONFIG_PREEMPT_NOTIFIERS 2027 2028 /** 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2030 * @notifier: notifier struct to register 2031 */ 2032 void preempt_notifier_register(struct preempt_notifier *notifier) 2033 { 2034 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2035 } 2036 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2037 2038 /** 2039 * preempt_notifier_unregister - no longer interested in preemption notifications 2040 * @notifier: notifier struct to unregister 2041 * 2042 * This is safe to call from within a preemption notifier. 2043 */ 2044 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2045 { 2046 hlist_del(¬ifier->link); 2047 } 2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2049 2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2051 { 2052 struct preempt_notifier *notifier; 2053 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2055 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2056 } 2057 2058 static void 2059 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2060 struct task_struct *next) 2061 { 2062 struct preempt_notifier *notifier; 2063 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2065 notifier->ops->sched_out(notifier, next); 2066 } 2067 2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2069 2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2071 { 2072 } 2073 2074 static void 2075 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2076 struct task_struct *next) 2077 { 2078 } 2079 2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2081 2082 /** 2083 * prepare_task_switch - prepare to switch tasks 2084 * @rq: the runqueue preparing to switch 2085 * @prev: the current task that is being switched out 2086 * @next: the task we are going to switch to. 2087 * 2088 * This is called with the rq lock held and interrupts off. It must 2089 * be paired with a subsequent finish_task_switch after the context 2090 * switch. 2091 * 2092 * prepare_task_switch sets up locking and calls architecture specific 2093 * hooks. 2094 */ 2095 static inline void 2096 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2097 struct task_struct *next) 2098 { 2099 trace_sched_switch(prev, next); 2100 sched_info_switch(rq, prev, next); 2101 perf_event_task_sched_out(prev, next); 2102 fire_sched_out_preempt_notifiers(prev, next); 2103 prepare_lock_switch(rq, next); 2104 prepare_arch_switch(next); 2105 } 2106 2107 /** 2108 * finish_task_switch - clean up after a task-switch 2109 * @rq: runqueue associated with task-switch 2110 * @prev: the thread we just switched away from. 2111 * 2112 * finish_task_switch must be called after the context switch, paired 2113 * with a prepare_task_switch call before the context switch. 2114 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2115 * and do any other architecture-specific cleanup actions. 2116 * 2117 * Note that we may have delayed dropping an mm in context_switch(). If 2118 * so, we finish that here outside of the runqueue lock. (Doing it 2119 * with the lock held can cause deadlocks; see schedule() for 2120 * details.) 2121 */ 2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2123 __releases(rq->lock) 2124 { 2125 struct mm_struct *mm = rq->prev_mm; 2126 long prev_state; 2127 2128 rq->prev_mm = NULL; 2129 2130 /* 2131 * A task struct has one reference for the use as "current". 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2133 * schedule one last time. The schedule call will never return, and 2134 * the scheduled task must drop that reference. 2135 * The test for TASK_DEAD must occur while the runqueue locks are 2136 * still held, otherwise prev could be scheduled on another cpu, die 2137 * there before we look at prev->state, and then the reference would 2138 * be dropped twice. 2139 * Manfred Spraul <manfred@colorfullife.com> 2140 */ 2141 prev_state = prev->state; 2142 vtime_task_switch(prev); 2143 finish_arch_switch(prev); 2144 perf_event_task_sched_in(prev, current); 2145 finish_lock_switch(rq, prev); 2146 finish_arch_post_lock_switch(); 2147 2148 fire_sched_in_preempt_notifiers(current); 2149 if (mm) 2150 mmdrop(mm); 2151 if (unlikely(prev_state == TASK_DEAD)) { 2152 task_numa_free(prev); 2153 2154 if (prev->sched_class->task_dead) 2155 prev->sched_class->task_dead(prev); 2156 2157 /* 2158 * Remove function-return probe instances associated with this 2159 * task and put them back on the free list. 2160 */ 2161 kprobe_flush_task(prev); 2162 put_task_struct(prev); 2163 } 2164 2165 tick_nohz_task_switch(current); 2166 } 2167 2168 #ifdef CONFIG_SMP 2169 2170 /* assumes rq->lock is held */ 2171 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 2172 { 2173 if (prev->sched_class->pre_schedule) 2174 prev->sched_class->pre_schedule(rq, prev); 2175 } 2176 2177 /* rq->lock is NOT held, but preemption is disabled */ 2178 static inline void post_schedule(struct rq *rq) 2179 { 2180 if (rq->post_schedule) { 2181 unsigned long flags; 2182 2183 raw_spin_lock_irqsave(&rq->lock, flags); 2184 if (rq->curr->sched_class->post_schedule) 2185 rq->curr->sched_class->post_schedule(rq); 2186 raw_spin_unlock_irqrestore(&rq->lock, flags); 2187 2188 rq->post_schedule = 0; 2189 } 2190 } 2191 2192 #else 2193 2194 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2195 { 2196 } 2197 2198 static inline void post_schedule(struct rq *rq) 2199 { 2200 } 2201 2202 #endif 2203 2204 /** 2205 * schedule_tail - first thing a freshly forked thread must call. 2206 * @prev: the thread we just switched away from. 2207 */ 2208 asmlinkage void schedule_tail(struct task_struct *prev) 2209 __releases(rq->lock) 2210 { 2211 struct rq *rq = this_rq(); 2212 2213 finish_task_switch(rq, prev); 2214 2215 /* 2216 * FIXME: do we need to worry about rq being invalidated by the 2217 * task_switch? 2218 */ 2219 post_schedule(rq); 2220 2221 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2222 /* In this case, finish_task_switch does not reenable preemption */ 2223 preempt_enable(); 2224 #endif 2225 if (current->set_child_tid) 2226 put_user(task_pid_vnr(current), current->set_child_tid); 2227 } 2228 2229 /* 2230 * context_switch - switch to the new MM and the new 2231 * thread's register state. 2232 */ 2233 static inline void 2234 context_switch(struct rq *rq, struct task_struct *prev, 2235 struct task_struct *next) 2236 { 2237 struct mm_struct *mm, *oldmm; 2238 2239 prepare_task_switch(rq, prev, next); 2240 2241 mm = next->mm; 2242 oldmm = prev->active_mm; 2243 /* 2244 * For paravirt, this is coupled with an exit in switch_to to 2245 * combine the page table reload and the switch backend into 2246 * one hypercall. 2247 */ 2248 arch_start_context_switch(prev); 2249 2250 if (!mm) { 2251 next->active_mm = oldmm; 2252 atomic_inc(&oldmm->mm_count); 2253 enter_lazy_tlb(oldmm, next); 2254 } else 2255 switch_mm(oldmm, mm, next); 2256 2257 if (!prev->mm) { 2258 prev->active_mm = NULL; 2259 rq->prev_mm = oldmm; 2260 } 2261 /* 2262 * Since the runqueue lock will be released by the next 2263 * task (which is an invalid locking op but in the case 2264 * of the scheduler it's an obvious special-case), so we 2265 * do an early lockdep release here: 2266 */ 2267 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2269 #endif 2270 2271 context_tracking_task_switch(prev, next); 2272 /* Here we just switch the register state and the stack. */ 2273 switch_to(prev, next, prev); 2274 2275 barrier(); 2276 /* 2277 * this_rq must be evaluated again because prev may have moved 2278 * CPUs since it called schedule(), thus the 'rq' on its stack 2279 * frame will be invalid. 2280 */ 2281 finish_task_switch(this_rq(), prev); 2282 } 2283 2284 /* 2285 * nr_running and nr_context_switches: 2286 * 2287 * externally visible scheduler statistics: current number of runnable 2288 * threads, total number of context switches performed since bootup. 2289 */ 2290 unsigned long nr_running(void) 2291 { 2292 unsigned long i, sum = 0; 2293 2294 for_each_online_cpu(i) 2295 sum += cpu_rq(i)->nr_running; 2296 2297 return sum; 2298 } 2299 2300 unsigned long long nr_context_switches(void) 2301 { 2302 int i; 2303 unsigned long long sum = 0; 2304 2305 for_each_possible_cpu(i) 2306 sum += cpu_rq(i)->nr_switches; 2307 2308 return sum; 2309 } 2310 2311 unsigned long nr_iowait(void) 2312 { 2313 unsigned long i, sum = 0; 2314 2315 for_each_possible_cpu(i) 2316 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2317 2318 return sum; 2319 } 2320 2321 unsigned long nr_iowait_cpu(int cpu) 2322 { 2323 struct rq *this = cpu_rq(cpu); 2324 return atomic_read(&this->nr_iowait); 2325 } 2326 2327 #ifdef CONFIG_SMP 2328 2329 /* 2330 * sched_exec - execve() is a valuable balancing opportunity, because at 2331 * this point the task has the smallest effective memory and cache footprint. 2332 */ 2333 void sched_exec(void) 2334 { 2335 struct task_struct *p = current; 2336 unsigned long flags; 2337 int dest_cpu; 2338 2339 raw_spin_lock_irqsave(&p->pi_lock, flags); 2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2341 if (dest_cpu == smp_processor_id()) 2342 goto unlock; 2343 2344 if (likely(cpu_active(dest_cpu))) { 2345 struct migration_arg arg = { p, dest_cpu }; 2346 2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2349 return; 2350 } 2351 unlock: 2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2353 } 2354 2355 #endif 2356 2357 DEFINE_PER_CPU(struct kernel_stat, kstat); 2358 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2359 2360 EXPORT_PER_CPU_SYMBOL(kstat); 2361 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2362 2363 /* 2364 * Return any ns on the sched_clock that have not yet been accounted in 2365 * @p in case that task is currently running. 2366 * 2367 * Called with task_rq_lock() held on @rq. 2368 */ 2369 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2370 { 2371 u64 ns = 0; 2372 2373 if (task_current(rq, p)) { 2374 update_rq_clock(rq); 2375 ns = rq_clock_task(rq) - p->se.exec_start; 2376 if ((s64)ns < 0) 2377 ns = 0; 2378 } 2379 2380 return ns; 2381 } 2382 2383 unsigned long long task_delta_exec(struct task_struct *p) 2384 { 2385 unsigned long flags; 2386 struct rq *rq; 2387 u64 ns = 0; 2388 2389 rq = task_rq_lock(p, &flags); 2390 ns = do_task_delta_exec(p, rq); 2391 task_rq_unlock(rq, p, &flags); 2392 2393 return ns; 2394 } 2395 2396 /* 2397 * Return accounted runtime for the task. 2398 * In case the task is currently running, return the runtime plus current's 2399 * pending runtime that have not been accounted yet. 2400 */ 2401 unsigned long long task_sched_runtime(struct task_struct *p) 2402 { 2403 unsigned long flags; 2404 struct rq *rq; 2405 u64 ns = 0; 2406 2407 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2408 /* 2409 * 64-bit doesn't need locks to atomically read a 64bit value. 2410 * So we have a optimization chance when the task's delta_exec is 0. 2411 * Reading ->on_cpu is racy, but this is ok. 2412 * 2413 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2414 * If we race with it entering cpu, unaccounted time is 0. This is 2415 * indistinguishable from the read occurring a few cycles earlier. 2416 */ 2417 if (!p->on_cpu) 2418 return p->se.sum_exec_runtime; 2419 #endif 2420 2421 rq = task_rq_lock(p, &flags); 2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2423 task_rq_unlock(rq, p, &flags); 2424 2425 return ns; 2426 } 2427 2428 /* 2429 * This function gets called by the timer code, with HZ frequency. 2430 * We call it with interrupts disabled. 2431 */ 2432 void scheduler_tick(void) 2433 { 2434 int cpu = smp_processor_id(); 2435 struct rq *rq = cpu_rq(cpu); 2436 struct task_struct *curr = rq->curr; 2437 2438 sched_clock_tick(); 2439 2440 raw_spin_lock(&rq->lock); 2441 update_rq_clock(rq); 2442 curr->sched_class->task_tick(rq, curr, 0); 2443 update_cpu_load_active(rq); 2444 raw_spin_unlock(&rq->lock); 2445 2446 perf_event_task_tick(); 2447 2448 #ifdef CONFIG_SMP 2449 rq->idle_balance = idle_cpu(cpu); 2450 trigger_load_balance(rq); 2451 #endif 2452 rq_last_tick_reset(rq); 2453 } 2454 2455 #ifdef CONFIG_NO_HZ_FULL 2456 /** 2457 * scheduler_tick_max_deferment 2458 * 2459 * Keep at least one tick per second when a single 2460 * active task is running because the scheduler doesn't 2461 * yet completely support full dynticks environment. 2462 * 2463 * This makes sure that uptime, CFS vruntime, load 2464 * balancing, etc... continue to move forward, even 2465 * with a very low granularity. 2466 * 2467 * Return: Maximum deferment in nanoseconds. 2468 */ 2469 u64 scheduler_tick_max_deferment(void) 2470 { 2471 struct rq *rq = this_rq(); 2472 unsigned long next, now = ACCESS_ONCE(jiffies); 2473 2474 next = rq->last_sched_tick + HZ; 2475 2476 if (time_before_eq(next, now)) 2477 return 0; 2478 2479 return jiffies_to_nsecs(next - now); 2480 } 2481 #endif 2482 2483 notrace unsigned long get_parent_ip(unsigned long addr) 2484 { 2485 if (in_lock_functions(addr)) { 2486 addr = CALLER_ADDR2; 2487 if (in_lock_functions(addr)) 2488 addr = CALLER_ADDR3; 2489 } 2490 return addr; 2491 } 2492 2493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2494 defined(CONFIG_PREEMPT_TRACER)) 2495 2496 void __kprobes preempt_count_add(int val) 2497 { 2498 #ifdef CONFIG_DEBUG_PREEMPT 2499 /* 2500 * Underflow? 2501 */ 2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2503 return; 2504 #endif 2505 __preempt_count_add(val); 2506 #ifdef CONFIG_DEBUG_PREEMPT 2507 /* 2508 * Spinlock count overflowing soon? 2509 */ 2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2511 PREEMPT_MASK - 10); 2512 #endif 2513 if (preempt_count() == val) 2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2515 } 2516 EXPORT_SYMBOL(preempt_count_add); 2517 2518 void __kprobes preempt_count_sub(int val) 2519 { 2520 #ifdef CONFIG_DEBUG_PREEMPT 2521 /* 2522 * Underflow? 2523 */ 2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2525 return; 2526 /* 2527 * Is the spinlock portion underflowing? 2528 */ 2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2530 !(preempt_count() & PREEMPT_MASK))) 2531 return; 2532 #endif 2533 2534 if (preempt_count() == val) 2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2536 __preempt_count_sub(val); 2537 } 2538 EXPORT_SYMBOL(preempt_count_sub); 2539 2540 #endif 2541 2542 /* 2543 * Print scheduling while atomic bug: 2544 */ 2545 static noinline void __schedule_bug(struct task_struct *prev) 2546 { 2547 if (oops_in_progress) 2548 return; 2549 2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2551 prev->comm, prev->pid, preempt_count()); 2552 2553 debug_show_held_locks(prev); 2554 print_modules(); 2555 if (irqs_disabled()) 2556 print_irqtrace_events(prev); 2557 dump_stack(); 2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2559 } 2560 2561 /* 2562 * Various schedule()-time debugging checks and statistics: 2563 */ 2564 static inline void schedule_debug(struct task_struct *prev) 2565 { 2566 /* 2567 * Test if we are atomic. Since do_exit() needs to call into 2568 * schedule() atomically, we ignore that path. Otherwise whine 2569 * if we are scheduling when we should not. 2570 */ 2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2572 __schedule_bug(prev); 2573 rcu_sleep_check(); 2574 2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2576 2577 schedstat_inc(this_rq(), sched_count); 2578 } 2579 2580 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2581 { 2582 if (prev->on_rq || rq->skip_clock_update < 0) 2583 update_rq_clock(rq); 2584 prev->sched_class->put_prev_task(rq, prev); 2585 } 2586 2587 /* 2588 * Pick up the highest-prio task: 2589 */ 2590 static inline struct task_struct * 2591 pick_next_task(struct rq *rq) 2592 { 2593 const struct sched_class *class; 2594 struct task_struct *p; 2595 2596 /* 2597 * Optimization: we know that if all tasks are in 2598 * the fair class we can call that function directly: 2599 */ 2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2601 p = fair_sched_class.pick_next_task(rq); 2602 if (likely(p)) 2603 return p; 2604 } 2605 2606 for_each_class(class) { 2607 p = class->pick_next_task(rq); 2608 if (p) 2609 return p; 2610 } 2611 2612 BUG(); /* the idle class will always have a runnable task */ 2613 } 2614 2615 /* 2616 * __schedule() is the main scheduler function. 2617 * 2618 * The main means of driving the scheduler and thus entering this function are: 2619 * 2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2621 * 2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2623 * paths. For example, see arch/x86/entry_64.S. 2624 * 2625 * To drive preemption between tasks, the scheduler sets the flag in timer 2626 * interrupt handler scheduler_tick(). 2627 * 2628 * 3. Wakeups don't really cause entry into schedule(). They add a 2629 * task to the run-queue and that's it. 2630 * 2631 * Now, if the new task added to the run-queue preempts the current 2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2633 * called on the nearest possible occasion: 2634 * 2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2636 * 2637 * - in syscall or exception context, at the next outmost 2638 * preempt_enable(). (this might be as soon as the wake_up()'s 2639 * spin_unlock()!) 2640 * 2641 * - in IRQ context, return from interrupt-handler to 2642 * preemptible context 2643 * 2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2645 * then at the next: 2646 * 2647 * - cond_resched() call 2648 * - explicit schedule() call 2649 * - return from syscall or exception to user-space 2650 * - return from interrupt-handler to user-space 2651 */ 2652 static void __sched __schedule(void) 2653 { 2654 struct task_struct *prev, *next; 2655 unsigned long *switch_count; 2656 struct rq *rq; 2657 int cpu; 2658 2659 need_resched: 2660 preempt_disable(); 2661 cpu = smp_processor_id(); 2662 rq = cpu_rq(cpu); 2663 rcu_note_context_switch(cpu); 2664 prev = rq->curr; 2665 2666 schedule_debug(prev); 2667 2668 if (sched_feat(HRTICK)) 2669 hrtick_clear(rq); 2670 2671 /* 2672 * Make sure that signal_pending_state()->signal_pending() below 2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2674 * done by the caller to avoid the race with signal_wake_up(). 2675 */ 2676 smp_mb__before_spinlock(); 2677 raw_spin_lock_irq(&rq->lock); 2678 2679 switch_count = &prev->nivcsw; 2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2681 if (unlikely(signal_pending_state(prev->state, prev))) { 2682 prev->state = TASK_RUNNING; 2683 } else { 2684 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2685 prev->on_rq = 0; 2686 2687 /* 2688 * If a worker went to sleep, notify and ask workqueue 2689 * whether it wants to wake up a task to maintain 2690 * concurrency. 2691 */ 2692 if (prev->flags & PF_WQ_WORKER) { 2693 struct task_struct *to_wakeup; 2694 2695 to_wakeup = wq_worker_sleeping(prev, cpu); 2696 if (to_wakeup) 2697 try_to_wake_up_local(to_wakeup); 2698 } 2699 } 2700 switch_count = &prev->nvcsw; 2701 } 2702 2703 pre_schedule(rq, prev); 2704 2705 if (unlikely(!rq->nr_running)) 2706 idle_balance(cpu, rq); 2707 2708 put_prev_task(rq, prev); 2709 next = pick_next_task(rq); 2710 clear_tsk_need_resched(prev); 2711 clear_preempt_need_resched(); 2712 rq->skip_clock_update = 0; 2713 2714 if (likely(prev != next)) { 2715 rq->nr_switches++; 2716 rq->curr = next; 2717 ++*switch_count; 2718 2719 context_switch(rq, prev, next); /* unlocks the rq */ 2720 /* 2721 * The context switch have flipped the stack from under us 2722 * and restored the local variables which were saved when 2723 * this task called schedule() in the past. prev == current 2724 * is still correct, but it can be moved to another cpu/rq. 2725 */ 2726 cpu = smp_processor_id(); 2727 rq = cpu_rq(cpu); 2728 } else 2729 raw_spin_unlock_irq(&rq->lock); 2730 2731 post_schedule(rq); 2732 2733 sched_preempt_enable_no_resched(); 2734 if (need_resched()) 2735 goto need_resched; 2736 } 2737 2738 static inline void sched_submit_work(struct task_struct *tsk) 2739 { 2740 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2741 return; 2742 /* 2743 * If we are going to sleep and we have plugged IO queued, 2744 * make sure to submit it to avoid deadlocks. 2745 */ 2746 if (blk_needs_flush_plug(tsk)) 2747 blk_schedule_flush_plug(tsk); 2748 } 2749 2750 asmlinkage void __sched schedule(void) 2751 { 2752 struct task_struct *tsk = current; 2753 2754 sched_submit_work(tsk); 2755 __schedule(); 2756 } 2757 EXPORT_SYMBOL(schedule); 2758 2759 #ifdef CONFIG_CONTEXT_TRACKING 2760 asmlinkage void __sched schedule_user(void) 2761 { 2762 /* 2763 * If we come here after a random call to set_need_resched(), 2764 * or we have been woken up remotely but the IPI has not yet arrived, 2765 * we haven't yet exited the RCU idle mode. Do it here manually until 2766 * we find a better solution. 2767 */ 2768 user_exit(); 2769 schedule(); 2770 user_enter(); 2771 } 2772 #endif 2773 2774 /** 2775 * schedule_preempt_disabled - called with preemption disabled 2776 * 2777 * Returns with preemption disabled. Note: preempt_count must be 1 2778 */ 2779 void __sched schedule_preempt_disabled(void) 2780 { 2781 sched_preempt_enable_no_resched(); 2782 schedule(); 2783 preempt_disable(); 2784 } 2785 2786 #ifdef CONFIG_PREEMPT 2787 /* 2788 * this is the entry point to schedule() from in-kernel preemption 2789 * off of preempt_enable. Kernel preemptions off return from interrupt 2790 * occur there and call schedule directly. 2791 */ 2792 asmlinkage void __sched notrace preempt_schedule(void) 2793 { 2794 /* 2795 * If there is a non-zero preempt_count or interrupts are disabled, 2796 * we do not want to preempt the current task. Just return.. 2797 */ 2798 if (likely(!preemptible())) 2799 return; 2800 2801 do { 2802 __preempt_count_add(PREEMPT_ACTIVE); 2803 __schedule(); 2804 __preempt_count_sub(PREEMPT_ACTIVE); 2805 2806 /* 2807 * Check again in case we missed a preemption opportunity 2808 * between schedule and now. 2809 */ 2810 barrier(); 2811 } while (need_resched()); 2812 } 2813 EXPORT_SYMBOL(preempt_schedule); 2814 #endif /* CONFIG_PREEMPT */ 2815 2816 /* 2817 * this is the entry point to schedule() from kernel preemption 2818 * off of irq context. 2819 * Note, that this is called and return with irqs disabled. This will 2820 * protect us against recursive calling from irq. 2821 */ 2822 asmlinkage void __sched preempt_schedule_irq(void) 2823 { 2824 enum ctx_state prev_state; 2825 2826 /* Catch callers which need to be fixed */ 2827 BUG_ON(preempt_count() || !irqs_disabled()); 2828 2829 prev_state = exception_enter(); 2830 2831 do { 2832 __preempt_count_add(PREEMPT_ACTIVE); 2833 local_irq_enable(); 2834 __schedule(); 2835 local_irq_disable(); 2836 __preempt_count_sub(PREEMPT_ACTIVE); 2837 2838 /* 2839 * Check again in case we missed a preemption opportunity 2840 * between schedule and now. 2841 */ 2842 barrier(); 2843 } while (need_resched()); 2844 2845 exception_exit(prev_state); 2846 } 2847 2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2849 void *key) 2850 { 2851 return try_to_wake_up(curr->private, mode, wake_flags); 2852 } 2853 EXPORT_SYMBOL(default_wake_function); 2854 2855 static long __sched 2856 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 2857 { 2858 unsigned long flags; 2859 wait_queue_t wait; 2860 2861 init_waitqueue_entry(&wait, current); 2862 2863 __set_current_state(state); 2864 2865 spin_lock_irqsave(&q->lock, flags); 2866 __add_wait_queue(q, &wait); 2867 spin_unlock(&q->lock); 2868 timeout = schedule_timeout(timeout); 2869 spin_lock_irq(&q->lock); 2870 __remove_wait_queue(q, &wait); 2871 spin_unlock_irqrestore(&q->lock, flags); 2872 2873 return timeout; 2874 } 2875 2876 void __sched interruptible_sleep_on(wait_queue_head_t *q) 2877 { 2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2879 } 2880 EXPORT_SYMBOL(interruptible_sleep_on); 2881 2882 long __sched 2883 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 2884 { 2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 2886 } 2887 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 2888 2889 void __sched sleep_on(wait_queue_head_t *q) 2890 { 2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 2892 } 2893 EXPORT_SYMBOL(sleep_on); 2894 2895 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 2896 { 2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 2898 } 2899 EXPORT_SYMBOL(sleep_on_timeout); 2900 2901 #ifdef CONFIG_RT_MUTEXES 2902 2903 /* 2904 * rt_mutex_setprio - set the current priority of a task 2905 * @p: task 2906 * @prio: prio value (kernel-internal form) 2907 * 2908 * This function changes the 'effective' priority of a task. It does 2909 * not touch ->normal_prio like __setscheduler(). 2910 * 2911 * Used by the rt_mutex code to implement priority inheritance logic. 2912 */ 2913 void rt_mutex_setprio(struct task_struct *p, int prio) 2914 { 2915 int oldprio, on_rq, running, enqueue_flag = 0; 2916 struct rq *rq; 2917 const struct sched_class *prev_class; 2918 2919 BUG_ON(prio > MAX_PRIO); 2920 2921 rq = __task_rq_lock(p); 2922 2923 /* 2924 * Idle task boosting is a nono in general. There is one 2925 * exception, when PREEMPT_RT and NOHZ is active: 2926 * 2927 * The idle task calls get_next_timer_interrupt() and holds 2928 * the timer wheel base->lock on the CPU and another CPU wants 2929 * to access the timer (probably to cancel it). We can safely 2930 * ignore the boosting request, as the idle CPU runs this code 2931 * with interrupts disabled and will complete the lock 2932 * protected section without being interrupted. So there is no 2933 * real need to boost. 2934 */ 2935 if (unlikely(p == rq->idle)) { 2936 WARN_ON(p != rq->curr); 2937 WARN_ON(p->pi_blocked_on); 2938 goto out_unlock; 2939 } 2940 2941 trace_sched_pi_setprio(p, prio); 2942 p->pi_top_task = rt_mutex_get_top_task(p); 2943 oldprio = p->prio; 2944 prev_class = p->sched_class; 2945 on_rq = p->on_rq; 2946 running = task_current(rq, p); 2947 if (on_rq) 2948 dequeue_task(rq, p, 0); 2949 if (running) 2950 p->sched_class->put_prev_task(rq, p); 2951 2952 /* 2953 * Boosting condition are: 2954 * 1. -rt task is running and holds mutex A 2955 * --> -dl task blocks on mutex A 2956 * 2957 * 2. -dl task is running and holds mutex A 2958 * --> -dl task blocks on mutex A and could preempt the 2959 * running task 2960 */ 2961 if (dl_prio(prio)) { 2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task && 2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { 2964 p->dl.dl_boosted = 1; 2965 p->dl.dl_throttled = 0; 2966 enqueue_flag = ENQUEUE_REPLENISH; 2967 } else 2968 p->dl.dl_boosted = 0; 2969 p->sched_class = &dl_sched_class; 2970 } else if (rt_prio(prio)) { 2971 if (dl_prio(oldprio)) 2972 p->dl.dl_boosted = 0; 2973 if (oldprio < prio) 2974 enqueue_flag = ENQUEUE_HEAD; 2975 p->sched_class = &rt_sched_class; 2976 } else { 2977 if (dl_prio(oldprio)) 2978 p->dl.dl_boosted = 0; 2979 p->sched_class = &fair_sched_class; 2980 } 2981 2982 p->prio = prio; 2983 2984 if (running) 2985 p->sched_class->set_curr_task(rq); 2986 if (on_rq) 2987 enqueue_task(rq, p, enqueue_flag); 2988 2989 check_class_changed(rq, p, prev_class, oldprio); 2990 out_unlock: 2991 __task_rq_unlock(rq); 2992 } 2993 #endif 2994 2995 void set_user_nice(struct task_struct *p, long nice) 2996 { 2997 int old_prio, delta, on_rq; 2998 unsigned long flags; 2999 struct rq *rq; 3000 3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3002 return; 3003 /* 3004 * We have to be careful, if called from sys_setpriority(), 3005 * the task might be in the middle of scheduling on another CPU. 3006 */ 3007 rq = task_rq_lock(p, &flags); 3008 /* 3009 * The RT priorities are set via sched_setscheduler(), but we still 3010 * allow the 'normal' nice value to be set - but as expected 3011 * it wont have any effect on scheduling until the task is 3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3013 */ 3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3015 p->static_prio = NICE_TO_PRIO(nice); 3016 goto out_unlock; 3017 } 3018 on_rq = p->on_rq; 3019 if (on_rq) 3020 dequeue_task(rq, p, 0); 3021 3022 p->static_prio = NICE_TO_PRIO(nice); 3023 set_load_weight(p); 3024 old_prio = p->prio; 3025 p->prio = effective_prio(p); 3026 delta = p->prio - old_prio; 3027 3028 if (on_rq) { 3029 enqueue_task(rq, p, 0); 3030 /* 3031 * If the task increased its priority or is running and 3032 * lowered its priority, then reschedule its CPU: 3033 */ 3034 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3035 resched_task(rq->curr); 3036 } 3037 out_unlock: 3038 task_rq_unlock(rq, p, &flags); 3039 } 3040 EXPORT_SYMBOL(set_user_nice); 3041 3042 /* 3043 * can_nice - check if a task can reduce its nice value 3044 * @p: task 3045 * @nice: nice value 3046 */ 3047 int can_nice(const struct task_struct *p, const int nice) 3048 { 3049 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3050 int nice_rlim = 20 - nice; 3051 3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3053 capable(CAP_SYS_NICE)); 3054 } 3055 3056 #ifdef __ARCH_WANT_SYS_NICE 3057 3058 /* 3059 * sys_nice - change the priority of the current process. 3060 * @increment: priority increment 3061 * 3062 * sys_setpriority is a more generic, but much slower function that 3063 * does similar things. 3064 */ 3065 SYSCALL_DEFINE1(nice, int, increment) 3066 { 3067 long nice, retval; 3068 3069 /* 3070 * Setpriority might change our priority at the same moment. 3071 * We don't have to worry. Conceptually one call occurs first 3072 * and we have a single winner. 3073 */ 3074 if (increment < -40) 3075 increment = -40; 3076 if (increment > 40) 3077 increment = 40; 3078 3079 nice = TASK_NICE(current) + increment; 3080 if (nice < -20) 3081 nice = -20; 3082 if (nice > 19) 3083 nice = 19; 3084 3085 if (increment < 0 && !can_nice(current, nice)) 3086 return -EPERM; 3087 3088 retval = security_task_setnice(current, nice); 3089 if (retval) 3090 return retval; 3091 3092 set_user_nice(current, nice); 3093 return 0; 3094 } 3095 3096 #endif 3097 3098 /** 3099 * task_prio - return the priority value of a given task. 3100 * @p: the task in question. 3101 * 3102 * Return: The priority value as seen by users in /proc. 3103 * RT tasks are offset by -200. Normal tasks are centered 3104 * around 0, value goes from -16 to +15. 3105 */ 3106 int task_prio(const struct task_struct *p) 3107 { 3108 return p->prio - MAX_RT_PRIO; 3109 } 3110 3111 /** 3112 * task_nice - return the nice value of a given task. 3113 * @p: the task in question. 3114 * 3115 * Return: The nice value [ -20 ... 0 ... 19 ]. 3116 */ 3117 int task_nice(const struct task_struct *p) 3118 { 3119 return TASK_NICE(p); 3120 } 3121 EXPORT_SYMBOL(task_nice); 3122 3123 /** 3124 * idle_cpu - is a given cpu idle currently? 3125 * @cpu: the processor in question. 3126 * 3127 * Return: 1 if the CPU is currently idle. 0 otherwise. 3128 */ 3129 int idle_cpu(int cpu) 3130 { 3131 struct rq *rq = cpu_rq(cpu); 3132 3133 if (rq->curr != rq->idle) 3134 return 0; 3135 3136 if (rq->nr_running) 3137 return 0; 3138 3139 #ifdef CONFIG_SMP 3140 if (!llist_empty(&rq->wake_list)) 3141 return 0; 3142 #endif 3143 3144 return 1; 3145 } 3146 3147 /** 3148 * idle_task - return the idle task for a given cpu. 3149 * @cpu: the processor in question. 3150 * 3151 * Return: The idle task for the cpu @cpu. 3152 */ 3153 struct task_struct *idle_task(int cpu) 3154 { 3155 return cpu_rq(cpu)->idle; 3156 } 3157 3158 /** 3159 * find_process_by_pid - find a process with a matching PID value. 3160 * @pid: the pid in question. 3161 * 3162 * The task of @pid, if found. %NULL otherwise. 3163 */ 3164 static struct task_struct *find_process_by_pid(pid_t pid) 3165 { 3166 return pid ? find_task_by_vpid(pid) : current; 3167 } 3168 3169 /* 3170 * This function initializes the sched_dl_entity of a newly becoming 3171 * SCHED_DEADLINE task. 3172 * 3173 * Only the static values are considered here, the actual runtime and the 3174 * absolute deadline will be properly calculated when the task is enqueued 3175 * for the first time with its new policy. 3176 */ 3177 static void 3178 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3179 { 3180 struct sched_dl_entity *dl_se = &p->dl; 3181 3182 init_dl_task_timer(dl_se); 3183 dl_se->dl_runtime = attr->sched_runtime; 3184 dl_se->dl_deadline = attr->sched_deadline; 3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3186 dl_se->flags = attr->sched_flags; 3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3188 dl_se->dl_throttled = 0; 3189 dl_se->dl_new = 1; 3190 } 3191 3192 /* Actually do priority change: must hold pi & rq lock. */ 3193 static void __setscheduler(struct rq *rq, struct task_struct *p, 3194 const struct sched_attr *attr) 3195 { 3196 int policy = attr->sched_policy; 3197 3198 if (policy == -1) /* setparam */ 3199 policy = p->policy; 3200 3201 p->policy = policy; 3202 3203 if (dl_policy(policy)) 3204 __setparam_dl(p, attr); 3205 else if (fair_policy(policy)) 3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3207 3208 /* 3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3210 * !rt_policy. Always setting this ensures that things like 3211 * getparam()/getattr() don't report silly values for !rt tasks. 3212 */ 3213 p->rt_priority = attr->sched_priority; 3214 3215 p->normal_prio = normal_prio(p); 3216 p->prio = rt_mutex_getprio(p); 3217 3218 if (dl_prio(p->prio)) 3219 p->sched_class = &dl_sched_class; 3220 else if (rt_prio(p->prio)) 3221 p->sched_class = &rt_sched_class; 3222 else 3223 p->sched_class = &fair_sched_class; 3224 3225 set_load_weight(p); 3226 } 3227 3228 static void 3229 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3230 { 3231 struct sched_dl_entity *dl_se = &p->dl; 3232 3233 attr->sched_priority = p->rt_priority; 3234 attr->sched_runtime = dl_se->dl_runtime; 3235 attr->sched_deadline = dl_se->dl_deadline; 3236 attr->sched_period = dl_se->dl_period; 3237 attr->sched_flags = dl_se->flags; 3238 } 3239 3240 /* 3241 * This function validates the new parameters of a -deadline task. 3242 * We ask for the deadline not being zero, and greater or equal 3243 * than the runtime, as well as the period of being zero or 3244 * greater than deadline. Furthermore, we have to be sure that 3245 * user parameters are above the internal resolution (1us); we 3246 * check sched_runtime only since it is always the smaller one. 3247 */ 3248 static bool 3249 __checkparam_dl(const struct sched_attr *attr) 3250 { 3251 return attr && attr->sched_deadline != 0 && 3252 (attr->sched_period == 0 || 3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) && 3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 && 3255 attr->sched_runtime >= (2 << (DL_SCALE - 1)); 3256 } 3257 3258 /* 3259 * check the target process has a UID that matches the current process's 3260 */ 3261 static bool check_same_owner(struct task_struct *p) 3262 { 3263 const struct cred *cred = current_cred(), *pcred; 3264 bool match; 3265 3266 rcu_read_lock(); 3267 pcred = __task_cred(p); 3268 match = (uid_eq(cred->euid, pcred->euid) || 3269 uid_eq(cred->euid, pcred->uid)); 3270 rcu_read_unlock(); 3271 return match; 3272 } 3273 3274 static int __sched_setscheduler(struct task_struct *p, 3275 const struct sched_attr *attr, 3276 bool user) 3277 { 3278 int retval, oldprio, oldpolicy = -1, on_rq, running; 3279 int policy = attr->sched_policy; 3280 unsigned long flags; 3281 const struct sched_class *prev_class; 3282 struct rq *rq; 3283 int reset_on_fork; 3284 3285 /* may grab non-irq protected spin_locks */ 3286 BUG_ON(in_interrupt()); 3287 recheck: 3288 /* double check policy once rq lock held */ 3289 if (policy < 0) { 3290 reset_on_fork = p->sched_reset_on_fork; 3291 policy = oldpolicy = p->policy; 3292 } else { 3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3294 3295 if (policy != SCHED_DEADLINE && 3296 policy != SCHED_FIFO && policy != SCHED_RR && 3297 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3298 policy != SCHED_IDLE) 3299 return -EINVAL; 3300 } 3301 3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3303 return -EINVAL; 3304 3305 /* 3306 * Valid priorities for SCHED_FIFO and SCHED_RR are 3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3308 * SCHED_BATCH and SCHED_IDLE is 0. 3309 */ 3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3312 return -EINVAL; 3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3314 (rt_policy(policy) != (attr->sched_priority != 0))) 3315 return -EINVAL; 3316 3317 /* 3318 * Allow unprivileged RT tasks to decrease priority: 3319 */ 3320 if (user && !capable(CAP_SYS_NICE)) { 3321 if (fair_policy(policy)) { 3322 if (attr->sched_nice < TASK_NICE(p) && 3323 !can_nice(p, attr->sched_nice)) 3324 return -EPERM; 3325 } 3326 3327 if (rt_policy(policy)) { 3328 unsigned long rlim_rtprio = 3329 task_rlimit(p, RLIMIT_RTPRIO); 3330 3331 /* can't set/change the rt policy */ 3332 if (policy != p->policy && !rlim_rtprio) 3333 return -EPERM; 3334 3335 /* can't increase priority */ 3336 if (attr->sched_priority > p->rt_priority && 3337 attr->sched_priority > rlim_rtprio) 3338 return -EPERM; 3339 } 3340 3341 /* 3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3344 */ 3345 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3346 if (!can_nice(p, TASK_NICE(p))) 3347 return -EPERM; 3348 } 3349 3350 /* can't change other user's priorities */ 3351 if (!check_same_owner(p)) 3352 return -EPERM; 3353 3354 /* Normal users shall not reset the sched_reset_on_fork flag */ 3355 if (p->sched_reset_on_fork && !reset_on_fork) 3356 return -EPERM; 3357 } 3358 3359 if (user) { 3360 retval = security_task_setscheduler(p); 3361 if (retval) 3362 return retval; 3363 } 3364 3365 /* 3366 * make sure no PI-waiters arrive (or leave) while we are 3367 * changing the priority of the task: 3368 * 3369 * To be able to change p->policy safely, the appropriate 3370 * runqueue lock must be held. 3371 */ 3372 rq = task_rq_lock(p, &flags); 3373 3374 /* 3375 * Changing the policy of the stop threads its a very bad idea 3376 */ 3377 if (p == rq->stop) { 3378 task_rq_unlock(rq, p, &flags); 3379 return -EINVAL; 3380 } 3381 3382 /* 3383 * If not changing anything there's no need to proceed further: 3384 */ 3385 if (unlikely(policy == p->policy)) { 3386 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p)) 3387 goto change; 3388 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3389 goto change; 3390 if (dl_policy(policy)) 3391 goto change; 3392 3393 task_rq_unlock(rq, p, &flags); 3394 return 0; 3395 } 3396 change: 3397 3398 if (user) { 3399 #ifdef CONFIG_RT_GROUP_SCHED 3400 /* 3401 * Do not allow realtime tasks into groups that have no runtime 3402 * assigned. 3403 */ 3404 if (rt_bandwidth_enabled() && rt_policy(policy) && 3405 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3406 !task_group_is_autogroup(task_group(p))) { 3407 task_rq_unlock(rq, p, &flags); 3408 return -EPERM; 3409 } 3410 #endif 3411 #ifdef CONFIG_SMP 3412 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3413 cpumask_t *span = rq->rd->span; 3414 3415 /* 3416 * Don't allow tasks with an affinity mask smaller than 3417 * the entire root_domain to become SCHED_DEADLINE. We 3418 * will also fail if there's no bandwidth available. 3419 */ 3420 if (!cpumask_subset(span, &p->cpus_allowed) || 3421 rq->rd->dl_bw.bw == 0) { 3422 task_rq_unlock(rq, p, &flags); 3423 return -EPERM; 3424 } 3425 } 3426 #endif 3427 } 3428 3429 /* recheck policy now with rq lock held */ 3430 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3431 policy = oldpolicy = -1; 3432 task_rq_unlock(rq, p, &flags); 3433 goto recheck; 3434 } 3435 3436 /* 3437 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3438 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3439 * is available. 3440 */ 3441 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3442 task_rq_unlock(rq, p, &flags); 3443 return -EBUSY; 3444 } 3445 3446 on_rq = p->on_rq; 3447 running = task_current(rq, p); 3448 if (on_rq) 3449 dequeue_task(rq, p, 0); 3450 if (running) 3451 p->sched_class->put_prev_task(rq, p); 3452 3453 p->sched_reset_on_fork = reset_on_fork; 3454 3455 oldprio = p->prio; 3456 prev_class = p->sched_class; 3457 __setscheduler(rq, p, attr); 3458 3459 if (running) 3460 p->sched_class->set_curr_task(rq); 3461 if (on_rq) 3462 enqueue_task(rq, p, 0); 3463 3464 check_class_changed(rq, p, prev_class, oldprio); 3465 task_rq_unlock(rq, p, &flags); 3466 3467 rt_mutex_adjust_pi(p); 3468 3469 return 0; 3470 } 3471 3472 static int _sched_setscheduler(struct task_struct *p, int policy, 3473 const struct sched_param *param, bool check) 3474 { 3475 struct sched_attr attr = { 3476 .sched_policy = policy, 3477 .sched_priority = param->sched_priority, 3478 .sched_nice = PRIO_TO_NICE(p->static_prio), 3479 }; 3480 3481 /* 3482 * Fixup the legacy SCHED_RESET_ON_FORK hack 3483 */ 3484 if (policy & SCHED_RESET_ON_FORK) { 3485 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3486 policy &= ~SCHED_RESET_ON_FORK; 3487 attr.sched_policy = policy; 3488 } 3489 3490 return __sched_setscheduler(p, &attr, check); 3491 } 3492 /** 3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3494 * @p: the task in question. 3495 * @policy: new policy. 3496 * @param: structure containing the new RT priority. 3497 * 3498 * Return: 0 on success. An error code otherwise. 3499 * 3500 * NOTE that the task may be already dead. 3501 */ 3502 int sched_setscheduler(struct task_struct *p, int policy, 3503 const struct sched_param *param) 3504 { 3505 return _sched_setscheduler(p, policy, param, true); 3506 } 3507 EXPORT_SYMBOL_GPL(sched_setscheduler); 3508 3509 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3510 { 3511 return __sched_setscheduler(p, attr, true); 3512 } 3513 EXPORT_SYMBOL_GPL(sched_setattr); 3514 3515 /** 3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3517 * @p: the task in question. 3518 * @policy: new policy. 3519 * @param: structure containing the new RT priority. 3520 * 3521 * Just like sched_setscheduler, only don't bother checking if the 3522 * current context has permission. For example, this is needed in 3523 * stop_machine(): we create temporary high priority worker threads, 3524 * but our caller might not have that capability. 3525 * 3526 * Return: 0 on success. An error code otherwise. 3527 */ 3528 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3529 const struct sched_param *param) 3530 { 3531 return _sched_setscheduler(p, policy, param, false); 3532 } 3533 3534 static int 3535 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3536 { 3537 struct sched_param lparam; 3538 struct task_struct *p; 3539 int retval; 3540 3541 if (!param || pid < 0) 3542 return -EINVAL; 3543 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3544 return -EFAULT; 3545 3546 rcu_read_lock(); 3547 retval = -ESRCH; 3548 p = find_process_by_pid(pid); 3549 if (p != NULL) 3550 retval = sched_setscheduler(p, policy, &lparam); 3551 rcu_read_unlock(); 3552 3553 return retval; 3554 } 3555 3556 /* 3557 * Mimics kernel/events/core.c perf_copy_attr(). 3558 */ 3559 static int sched_copy_attr(struct sched_attr __user *uattr, 3560 struct sched_attr *attr) 3561 { 3562 u32 size; 3563 int ret; 3564 3565 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3566 return -EFAULT; 3567 3568 /* 3569 * zero the full structure, so that a short copy will be nice. 3570 */ 3571 memset(attr, 0, sizeof(*attr)); 3572 3573 ret = get_user(size, &uattr->size); 3574 if (ret) 3575 return ret; 3576 3577 if (size > PAGE_SIZE) /* silly large */ 3578 goto err_size; 3579 3580 if (!size) /* abi compat */ 3581 size = SCHED_ATTR_SIZE_VER0; 3582 3583 if (size < SCHED_ATTR_SIZE_VER0) 3584 goto err_size; 3585 3586 /* 3587 * If we're handed a bigger struct than we know of, 3588 * ensure all the unknown bits are 0 - i.e. new 3589 * user-space does not rely on any kernel feature 3590 * extensions we dont know about yet. 3591 */ 3592 if (size > sizeof(*attr)) { 3593 unsigned char __user *addr; 3594 unsigned char __user *end; 3595 unsigned char val; 3596 3597 addr = (void __user *)uattr + sizeof(*attr); 3598 end = (void __user *)uattr + size; 3599 3600 for (; addr < end; addr++) { 3601 ret = get_user(val, addr); 3602 if (ret) 3603 return ret; 3604 if (val) 3605 goto err_size; 3606 } 3607 size = sizeof(*attr); 3608 } 3609 3610 ret = copy_from_user(attr, uattr, size); 3611 if (ret) 3612 return -EFAULT; 3613 3614 /* 3615 * XXX: do we want to be lenient like existing syscalls; or do we want 3616 * to be strict and return an error on out-of-bounds values? 3617 */ 3618 attr->sched_nice = clamp(attr->sched_nice, -20, 19); 3619 3620 out: 3621 return ret; 3622 3623 err_size: 3624 put_user(sizeof(*attr), &uattr->size); 3625 ret = -E2BIG; 3626 goto out; 3627 } 3628 3629 /** 3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3631 * @pid: the pid in question. 3632 * @policy: new policy. 3633 * @param: structure containing the new RT priority. 3634 * 3635 * Return: 0 on success. An error code otherwise. 3636 */ 3637 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3638 struct sched_param __user *, param) 3639 { 3640 /* negative values for policy are not valid */ 3641 if (policy < 0) 3642 return -EINVAL; 3643 3644 return do_sched_setscheduler(pid, policy, param); 3645 } 3646 3647 /** 3648 * sys_sched_setparam - set/change the RT priority of a thread 3649 * @pid: the pid in question. 3650 * @param: structure containing the new RT priority. 3651 * 3652 * Return: 0 on success. An error code otherwise. 3653 */ 3654 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3655 { 3656 return do_sched_setscheduler(pid, -1, param); 3657 } 3658 3659 /** 3660 * sys_sched_setattr - same as above, but with extended sched_attr 3661 * @pid: the pid in question. 3662 * @uattr: structure containing the extended parameters. 3663 */ 3664 SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr) 3665 { 3666 struct sched_attr attr; 3667 struct task_struct *p; 3668 int retval; 3669 3670 if (!uattr || pid < 0) 3671 return -EINVAL; 3672 3673 if (sched_copy_attr(uattr, &attr)) 3674 return -EFAULT; 3675 3676 rcu_read_lock(); 3677 retval = -ESRCH; 3678 p = find_process_by_pid(pid); 3679 if (p != NULL) 3680 retval = sched_setattr(p, &attr); 3681 rcu_read_unlock(); 3682 3683 return retval; 3684 } 3685 3686 /** 3687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3688 * @pid: the pid in question. 3689 * 3690 * Return: On success, the policy of the thread. Otherwise, a negative error 3691 * code. 3692 */ 3693 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3694 { 3695 struct task_struct *p; 3696 int retval; 3697 3698 if (pid < 0) 3699 return -EINVAL; 3700 3701 retval = -ESRCH; 3702 rcu_read_lock(); 3703 p = find_process_by_pid(pid); 3704 if (p) { 3705 retval = security_task_getscheduler(p); 3706 if (!retval) 3707 retval = p->policy 3708 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3709 } 3710 rcu_read_unlock(); 3711 return retval; 3712 } 3713 3714 /** 3715 * sys_sched_getparam - get the RT priority of a thread 3716 * @pid: the pid in question. 3717 * @param: structure containing the RT priority. 3718 * 3719 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3720 * code. 3721 */ 3722 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3723 { 3724 struct sched_param lp; 3725 struct task_struct *p; 3726 int retval; 3727 3728 if (!param || pid < 0) 3729 return -EINVAL; 3730 3731 rcu_read_lock(); 3732 p = find_process_by_pid(pid); 3733 retval = -ESRCH; 3734 if (!p) 3735 goto out_unlock; 3736 3737 retval = security_task_getscheduler(p); 3738 if (retval) 3739 goto out_unlock; 3740 3741 if (task_has_dl_policy(p)) { 3742 retval = -EINVAL; 3743 goto out_unlock; 3744 } 3745 lp.sched_priority = p->rt_priority; 3746 rcu_read_unlock(); 3747 3748 /* 3749 * This one might sleep, we cannot do it with a spinlock held ... 3750 */ 3751 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3752 3753 return retval; 3754 3755 out_unlock: 3756 rcu_read_unlock(); 3757 return retval; 3758 } 3759 3760 static int sched_read_attr(struct sched_attr __user *uattr, 3761 struct sched_attr *attr, 3762 unsigned int usize) 3763 { 3764 int ret; 3765 3766 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3767 return -EFAULT; 3768 3769 /* 3770 * If we're handed a smaller struct than we know of, 3771 * ensure all the unknown bits are 0 - i.e. old 3772 * user-space does not get uncomplete information. 3773 */ 3774 if (usize < sizeof(*attr)) { 3775 unsigned char *addr; 3776 unsigned char *end; 3777 3778 addr = (void *)attr + usize; 3779 end = (void *)attr + sizeof(*attr); 3780 3781 for (; addr < end; addr++) { 3782 if (*addr) 3783 goto err_size; 3784 } 3785 3786 attr->size = usize; 3787 } 3788 3789 ret = copy_to_user(uattr, attr, usize); 3790 if (ret) 3791 return -EFAULT; 3792 3793 out: 3794 return ret; 3795 3796 err_size: 3797 ret = -E2BIG; 3798 goto out; 3799 } 3800 3801 /** 3802 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3803 * @pid: the pid in question. 3804 * @uattr: structure containing the extended parameters. 3805 * @size: sizeof(attr) for fwd/bwd comp. 3806 */ 3807 SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3808 unsigned int, size) 3809 { 3810 struct sched_attr attr = { 3811 .size = sizeof(struct sched_attr), 3812 }; 3813 struct task_struct *p; 3814 int retval; 3815 3816 if (!uattr || pid < 0 || size > PAGE_SIZE || 3817 size < SCHED_ATTR_SIZE_VER0) 3818 return -EINVAL; 3819 3820 rcu_read_lock(); 3821 p = find_process_by_pid(pid); 3822 retval = -ESRCH; 3823 if (!p) 3824 goto out_unlock; 3825 3826 retval = security_task_getscheduler(p); 3827 if (retval) 3828 goto out_unlock; 3829 3830 attr.sched_policy = p->policy; 3831 if (p->sched_reset_on_fork) 3832 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3833 if (task_has_dl_policy(p)) 3834 __getparam_dl(p, &attr); 3835 else if (task_has_rt_policy(p)) 3836 attr.sched_priority = p->rt_priority; 3837 else 3838 attr.sched_nice = TASK_NICE(p); 3839 3840 rcu_read_unlock(); 3841 3842 retval = sched_read_attr(uattr, &attr, size); 3843 return retval; 3844 3845 out_unlock: 3846 rcu_read_unlock(); 3847 return retval; 3848 } 3849 3850 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3851 { 3852 cpumask_var_t cpus_allowed, new_mask; 3853 struct task_struct *p; 3854 int retval; 3855 3856 rcu_read_lock(); 3857 3858 p = find_process_by_pid(pid); 3859 if (!p) { 3860 rcu_read_unlock(); 3861 return -ESRCH; 3862 } 3863 3864 /* Prevent p going away */ 3865 get_task_struct(p); 3866 rcu_read_unlock(); 3867 3868 if (p->flags & PF_NO_SETAFFINITY) { 3869 retval = -EINVAL; 3870 goto out_put_task; 3871 } 3872 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3873 retval = -ENOMEM; 3874 goto out_put_task; 3875 } 3876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3877 retval = -ENOMEM; 3878 goto out_free_cpus_allowed; 3879 } 3880 retval = -EPERM; 3881 if (!check_same_owner(p)) { 3882 rcu_read_lock(); 3883 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3884 rcu_read_unlock(); 3885 goto out_unlock; 3886 } 3887 rcu_read_unlock(); 3888 } 3889 3890 retval = security_task_setscheduler(p); 3891 if (retval) 3892 goto out_unlock; 3893 3894 3895 cpuset_cpus_allowed(p, cpus_allowed); 3896 cpumask_and(new_mask, in_mask, cpus_allowed); 3897 3898 /* 3899 * Since bandwidth control happens on root_domain basis, 3900 * if admission test is enabled, we only admit -deadline 3901 * tasks allowed to run on all the CPUs in the task's 3902 * root_domain. 3903 */ 3904 #ifdef CONFIG_SMP 3905 if (task_has_dl_policy(p)) { 3906 const struct cpumask *span = task_rq(p)->rd->span; 3907 3908 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 3909 retval = -EBUSY; 3910 goto out_unlock; 3911 } 3912 } 3913 #endif 3914 again: 3915 retval = set_cpus_allowed_ptr(p, new_mask); 3916 3917 if (!retval) { 3918 cpuset_cpus_allowed(p, cpus_allowed); 3919 if (!cpumask_subset(new_mask, cpus_allowed)) { 3920 /* 3921 * We must have raced with a concurrent cpuset 3922 * update. Just reset the cpus_allowed to the 3923 * cpuset's cpus_allowed 3924 */ 3925 cpumask_copy(new_mask, cpus_allowed); 3926 goto again; 3927 } 3928 } 3929 out_unlock: 3930 free_cpumask_var(new_mask); 3931 out_free_cpus_allowed: 3932 free_cpumask_var(cpus_allowed); 3933 out_put_task: 3934 put_task_struct(p); 3935 return retval; 3936 } 3937 3938 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3939 struct cpumask *new_mask) 3940 { 3941 if (len < cpumask_size()) 3942 cpumask_clear(new_mask); 3943 else if (len > cpumask_size()) 3944 len = cpumask_size(); 3945 3946 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3947 } 3948 3949 /** 3950 * sys_sched_setaffinity - set the cpu affinity of a process 3951 * @pid: pid of the process 3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3953 * @user_mask_ptr: user-space pointer to the new cpu mask 3954 * 3955 * Return: 0 on success. An error code otherwise. 3956 */ 3957 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3958 unsigned long __user *, user_mask_ptr) 3959 { 3960 cpumask_var_t new_mask; 3961 int retval; 3962 3963 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3964 return -ENOMEM; 3965 3966 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3967 if (retval == 0) 3968 retval = sched_setaffinity(pid, new_mask); 3969 free_cpumask_var(new_mask); 3970 return retval; 3971 } 3972 3973 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3974 { 3975 struct task_struct *p; 3976 unsigned long flags; 3977 int retval; 3978 3979 rcu_read_lock(); 3980 3981 retval = -ESRCH; 3982 p = find_process_by_pid(pid); 3983 if (!p) 3984 goto out_unlock; 3985 3986 retval = security_task_getscheduler(p); 3987 if (retval) 3988 goto out_unlock; 3989 3990 raw_spin_lock_irqsave(&p->pi_lock, flags); 3991 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 3992 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3993 3994 out_unlock: 3995 rcu_read_unlock(); 3996 3997 return retval; 3998 } 3999 4000 /** 4001 * sys_sched_getaffinity - get the cpu affinity of a process 4002 * @pid: pid of the process 4003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4004 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4005 * 4006 * Return: 0 on success. An error code otherwise. 4007 */ 4008 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4009 unsigned long __user *, user_mask_ptr) 4010 { 4011 int ret; 4012 cpumask_var_t mask; 4013 4014 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4015 return -EINVAL; 4016 if (len & (sizeof(unsigned long)-1)) 4017 return -EINVAL; 4018 4019 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4020 return -ENOMEM; 4021 4022 ret = sched_getaffinity(pid, mask); 4023 if (ret == 0) { 4024 size_t retlen = min_t(size_t, len, cpumask_size()); 4025 4026 if (copy_to_user(user_mask_ptr, mask, retlen)) 4027 ret = -EFAULT; 4028 else 4029 ret = retlen; 4030 } 4031 free_cpumask_var(mask); 4032 4033 return ret; 4034 } 4035 4036 /** 4037 * sys_sched_yield - yield the current processor to other threads. 4038 * 4039 * This function yields the current CPU to other tasks. If there are no 4040 * other threads running on this CPU then this function will return. 4041 * 4042 * Return: 0. 4043 */ 4044 SYSCALL_DEFINE0(sched_yield) 4045 { 4046 struct rq *rq = this_rq_lock(); 4047 4048 schedstat_inc(rq, yld_count); 4049 current->sched_class->yield_task(rq); 4050 4051 /* 4052 * Since we are going to call schedule() anyway, there's 4053 * no need to preempt or enable interrupts: 4054 */ 4055 __release(rq->lock); 4056 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4057 do_raw_spin_unlock(&rq->lock); 4058 sched_preempt_enable_no_resched(); 4059 4060 schedule(); 4061 4062 return 0; 4063 } 4064 4065 static void __cond_resched(void) 4066 { 4067 __preempt_count_add(PREEMPT_ACTIVE); 4068 __schedule(); 4069 __preempt_count_sub(PREEMPT_ACTIVE); 4070 } 4071 4072 int __sched _cond_resched(void) 4073 { 4074 if (should_resched()) { 4075 __cond_resched(); 4076 return 1; 4077 } 4078 return 0; 4079 } 4080 EXPORT_SYMBOL(_cond_resched); 4081 4082 /* 4083 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4084 * call schedule, and on return reacquire the lock. 4085 * 4086 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4087 * operations here to prevent schedule() from being called twice (once via 4088 * spin_unlock(), once by hand). 4089 */ 4090 int __cond_resched_lock(spinlock_t *lock) 4091 { 4092 int resched = should_resched(); 4093 int ret = 0; 4094 4095 lockdep_assert_held(lock); 4096 4097 if (spin_needbreak(lock) || resched) { 4098 spin_unlock(lock); 4099 if (resched) 4100 __cond_resched(); 4101 else 4102 cpu_relax(); 4103 ret = 1; 4104 spin_lock(lock); 4105 } 4106 return ret; 4107 } 4108 EXPORT_SYMBOL(__cond_resched_lock); 4109 4110 int __sched __cond_resched_softirq(void) 4111 { 4112 BUG_ON(!in_softirq()); 4113 4114 if (should_resched()) { 4115 local_bh_enable(); 4116 __cond_resched(); 4117 local_bh_disable(); 4118 return 1; 4119 } 4120 return 0; 4121 } 4122 EXPORT_SYMBOL(__cond_resched_softirq); 4123 4124 /** 4125 * yield - yield the current processor to other threads. 4126 * 4127 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4128 * 4129 * The scheduler is at all times free to pick the calling task as the most 4130 * eligible task to run, if removing the yield() call from your code breaks 4131 * it, its already broken. 4132 * 4133 * Typical broken usage is: 4134 * 4135 * while (!event) 4136 * yield(); 4137 * 4138 * where one assumes that yield() will let 'the other' process run that will 4139 * make event true. If the current task is a SCHED_FIFO task that will never 4140 * happen. Never use yield() as a progress guarantee!! 4141 * 4142 * If you want to use yield() to wait for something, use wait_event(). 4143 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4144 * If you still want to use yield(), do not! 4145 */ 4146 void __sched yield(void) 4147 { 4148 set_current_state(TASK_RUNNING); 4149 sys_sched_yield(); 4150 } 4151 EXPORT_SYMBOL(yield); 4152 4153 /** 4154 * yield_to - yield the current processor to another thread in 4155 * your thread group, or accelerate that thread toward the 4156 * processor it's on. 4157 * @p: target task 4158 * @preempt: whether task preemption is allowed or not 4159 * 4160 * It's the caller's job to ensure that the target task struct 4161 * can't go away on us before we can do any checks. 4162 * 4163 * Return: 4164 * true (>0) if we indeed boosted the target task. 4165 * false (0) if we failed to boost the target. 4166 * -ESRCH if there's no task to yield to. 4167 */ 4168 bool __sched yield_to(struct task_struct *p, bool preempt) 4169 { 4170 struct task_struct *curr = current; 4171 struct rq *rq, *p_rq; 4172 unsigned long flags; 4173 int yielded = 0; 4174 4175 local_irq_save(flags); 4176 rq = this_rq(); 4177 4178 again: 4179 p_rq = task_rq(p); 4180 /* 4181 * If we're the only runnable task on the rq and target rq also 4182 * has only one task, there's absolutely no point in yielding. 4183 */ 4184 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4185 yielded = -ESRCH; 4186 goto out_irq; 4187 } 4188 4189 double_rq_lock(rq, p_rq); 4190 if (task_rq(p) != p_rq) { 4191 double_rq_unlock(rq, p_rq); 4192 goto again; 4193 } 4194 4195 if (!curr->sched_class->yield_to_task) 4196 goto out_unlock; 4197 4198 if (curr->sched_class != p->sched_class) 4199 goto out_unlock; 4200 4201 if (task_running(p_rq, p) || p->state) 4202 goto out_unlock; 4203 4204 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4205 if (yielded) { 4206 schedstat_inc(rq, yld_count); 4207 /* 4208 * Make p's CPU reschedule; pick_next_entity takes care of 4209 * fairness. 4210 */ 4211 if (preempt && rq != p_rq) 4212 resched_task(p_rq->curr); 4213 } 4214 4215 out_unlock: 4216 double_rq_unlock(rq, p_rq); 4217 out_irq: 4218 local_irq_restore(flags); 4219 4220 if (yielded > 0) 4221 schedule(); 4222 4223 return yielded; 4224 } 4225 EXPORT_SYMBOL_GPL(yield_to); 4226 4227 /* 4228 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4229 * that process accounting knows that this is a task in IO wait state. 4230 */ 4231 void __sched io_schedule(void) 4232 { 4233 struct rq *rq = raw_rq(); 4234 4235 delayacct_blkio_start(); 4236 atomic_inc(&rq->nr_iowait); 4237 blk_flush_plug(current); 4238 current->in_iowait = 1; 4239 schedule(); 4240 current->in_iowait = 0; 4241 atomic_dec(&rq->nr_iowait); 4242 delayacct_blkio_end(); 4243 } 4244 EXPORT_SYMBOL(io_schedule); 4245 4246 long __sched io_schedule_timeout(long timeout) 4247 { 4248 struct rq *rq = raw_rq(); 4249 long ret; 4250 4251 delayacct_blkio_start(); 4252 atomic_inc(&rq->nr_iowait); 4253 blk_flush_plug(current); 4254 current->in_iowait = 1; 4255 ret = schedule_timeout(timeout); 4256 current->in_iowait = 0; 4257 atomic_dec(&rq->nr_iowait); 4258 delayacct_blkio_end(); 4259 return ret; 4260 } 4261 4262 /** 4263 * sys_sched_get_priority_max - return maximum RT priority. 4264 * @policy: scheduling class. 4265 * 4266 * Return: On success, this syscall returns the maximum 4267 * rt_priority that can be used by a given scheduling class. 4268 * On failure, a negative error code is returned. 4269 */ 4270 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4271 { 4272 int ret = -EINVAL; 4273 4274 switch (policy) { 4275 case SCHED_FIFO: 4276 case SCHED_RR: 4277 ret = MAX_USER_RT_PRIO-1; 4278 break; 4279 case SCHED_DEADLINE: 4280 case SCHED_NORMAL: 4281 case SCHED_BATCH: 4282 case SCHED_IDLE: 4283 ret = 0; 4284 break; 4285 } 4286 return ret; 4287 } 4288 4289 /** 4290 * sys_sched_get_priority_min - return minimum RT priority. 4291 * @policy: scheduling class. 4292 * 4293 * Return: On success, this syscall returns the minimum 4294 * rt_priority that can be used by a given scheduling class. 4295 * On failure, a negative error code is returned. 4296 */ 4297 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4298 { 4299 int ret = -EINVAL; 4300 4301 switch (policy) { 4302 case SCHED_FIFO: 4303 case SCHED_RR: 4304 ret = 1; 4305 break; 4306 case SCHED_DEADLINE: 4307 case SCHED_NORMAL: 4308 case SCHED_BATCH: 4309 case SCHED_IDLE: 4310 ret = 0; 4311 } 4312 return ret; 4313 } 4314 4315 /** 4316 * sys_sched_rr_get_interval - return the default timeslice of a process. 4317 * @pid: pid of the process. 4318 * @interval: userspace pointer to the timeslice value. 4319 * 4320 * this syscall writes the default timeslice value of a given process 4321 * into the user-space timespec buffer. A value of '0' means infinity. 4322 * 4323 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4324 * an error code. 4325 */ 4326 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4327 struct timespec __user *, interval) 4328 { 4329 struct task_struct *p; 4330 unsigned int time_slice; 4331 unsigned long flags; 4332 struct rq *rq; 4333 int retval; 4334 struct timespec t; 4335 4336 if (pid < 0) 4337 return -EINVAL; 4338 4339 retval = -ESRCH; 4340 rcu_read_lock(); 4341 p = find_process_by_pid(pid); 4342 if (!p) 4343 goto out_unlock; 4344 4345 retval = security_task_getscheduler(p); 4346 if (retval) 4347 goto out_unlock; 4348 4349 rq = task_rq_lock(p, &flags); 4350 time_slice = 0; 4351 if (p->sched_class->get_rr_interval) 4352 time_slice = p->sched_class->get_rr_interval(rq, p); 4353 task_rq_unlock(rq, p, &flags); 4354 4355 rcu_read_unlock(); 4356 jiffies_to_timespec(time_slice, &t); 4357 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4358 return retval; 4359 4360 out_unlock: 4361 rcu_read_unlock(); 4362 return retval; 4363 } 4364 4365 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4366 4367 void sched_show_task(struct task_struct *p) 4368 { 4369 unsigned long free = 0; 4370 int ppid; 4371 unsigned state; 4372 4373 state = p->state ? __ffs(p->state) + 1 : 0; 4374 printk(KERN_INFO "%-15.15s %c", p->comm, 4375 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4376 #if BITS_PER_LONG == 32 4377 if (state == TASK_RUNNING) 4378 printk(KERN_CONT " running "); 4379 else 4380 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4381 #else 4382 if (state == TASK_RUNNING) 4383 printk(KERN_CONT " running task "); 4384 else 4385 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4386 #endif 4387 #ifdef CONFIG_DEBUG_STACK_USAGE 4388 free = stack_not_used(p); 4389 #endif 4390 rcu_read_lock(); 4391 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4392 rcu_read_unlock(); 4393 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4394 task_pid_nr(p), ppid, 4395 (unsigned long)task_thread_info(p)->flags); 4396 4397 print_worker_info(KERN_INFO, p); 4398 show_stack(p, NULL); 4399 } 4400 4401 void show_state_filter(unsigned long state_filter) 4402 { 4403 struct task_struct *g, *p; 4404 4405 #if BITS_PER_LONG == 32 4406 printk(KERN_INFO 4407 " task PC stack pid father\n"); 4408 #else 4409 printk(KERN_INFO 4410 " task PC stack pid father\n"); 4411 #endif 4412 rcu_read_lock(); 4413 do_each_thread(g, p) { 4414 /* 4415 * reset the NMI-timeout, listing all files on a slow 4416 * console might take a lot of time: 4417 */ 4418 touch_nmi_watchdog(); 4419 if (!state_filter || (p->state & state_filter)) 4420 sched_show_task(p); 4421 } while_each_thread(g, p); 4422 4423 touch_all_softlockup_watchdogs(); 4424 4425 #ifdef CONFIG_SCHED_DEBUG 4426 sysrq_sched_debug_show(); 4427 #endif 4428 rcu_read_unlock(); 4429 /* 4430 * Only show locks if all tasks are dumped: 4431 */ 4432 if (!state_filter) 4433 debug_show_all_locks(); 4434 } 4435 4436 void init_idle_bootup_task(struct task_struct *idle) 4437 { 4438 idle->sched_class = &idle_sched_class; 4439 } 4440 4441 /** 4442 * init_idle - set up an idle thread for a given CPU 4443 * @idle: task in question 4444 * @cpu: cpu the idle task belongs to 4445 * 4446 * NOTE: this function does not set the idle thread's NEED_RESCHED 4447 * flag, to make booting more robust. 4448 */ 4449 void init_idle(struct task_struct *idle, int cpu) 4450 { 4451 struct rq *rq = cpu_rq(cpu); 4452 unsigned long flags; 4453 4454 raw_spin_lock_irqsave(&rq->lock, flags); 4455 4456 __sched_fork(0, idle); 4457 idle->state = TASK_RUNNING; 4458 idle->se.exec_start = sched_clock(); 4459 4460 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4461 /* 4462 * We're having a chicken and egg problem, even though we are 4463 * holding rq->lock, the cpu isn't yet set to this cpu so the 4464 * lockdep check in task_group() will fail. 4465 * 4466 * Similar case to sched_fork(). / Alternatively we could 4467 * use task_rq_lock() here and obtain the other rq->lock. 4468 * 4469 * Silence PROVE_RCU 4470 */ 4471 rcu_read_lock(); 4472 __set_task_cpu(idle, cpu); 4473 rcu_read_unlock(); 4474 4475 rq->curr = rq->idle = idle; 4476 #if defined(CONFIG_SMP) 4477 idle->on_cpu = 1; 4478 #endif 4479 raw_spin_unlock_irqrestore(&rq->lock, flags); 4480 4481 /* Set the preempt count _outside_ the spinlocks! */ 4482 init_idle_preempt_count(idle, cpu); 4483 4484 /* 4485 * The idle tasks have their own, simple scheduling class: 4486 */ 4487 idle->sched_class = &idle_sched_class; 4488 ftrace_graph_init_idle_task(idle, cpu); 4489 vtime_init_idle(idle, cpu); 4490 #if defined(CONFIG_SMP) 4491 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4492 #endif 4493 } 4494 4495 #ifdef CONFIG_SMP 4496 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4497 { 4498 if (p->sched_class && p->sched_class->set_cpus_allowed) 4499 p->sched_class->set_cpus_allowed(p, new_mask); 4500 4501 cpumask_copy(&p->cpus_allowed, new_mask); 4502 p->nr_cpus_allowed = cpumask_weight(new_mask); 4503 } 4504 4505 /* 4506 * This is how migration works: 4507 * 4508 * 1) we invoke migration_cpu_stop() on the target CPU using 4509 * stop_one_cpu(). 4510 * 2) stopper starts to run (implicitly forcing the migrated thread 4511 * off the CPU) 4512 * 3) it checks whether the migrated task is still in the wrong runqueue. 4513 * 4) if it's in the wrong runqueue then the migration thread removes 4514 * it and puts it into the right queue. 4515 * 5) stopper completes and stop_one_cpu() returns and the migration 4516 * is done. 4517 */ 4518 4519 /* 4520 * Change a given task's CPU affinity. Migrate the thread to a 4521 * proper CPU and schedule it away if the CPU it's executing on 4522 * is removed from the allowed bitmask. 4523 * 4524 * NOTE: the caller must have a valid reference to the task, the 4525 * task must not exit() & deallocate itself prematurely. The 4526 * call is not atomic; no spinlocks may be held. 4527 */ 4528 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4529 { 4530 unsigned long flags; 4531 struct rq *rq; 4532 unsigned int dest_cpu; 4533 int ret = 0; 4534 4535 rq = task_rq_lock(p, &flags); 4536 4537 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4538 goto out; 4539 4540 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4541 ret = -EINVAL; 4542 goto out; 4543 } 4544 4545 do_set_cpus_allowed(p, new_mask); 4546 4547 /* Can the task run on the task's current CPU? If so, we're done */ 4548 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4549 goto out; 4550 4551 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4552 if (p->on_rq) { 4553 struct migration_arg arg = { p, dest_cpu }; 4554 /* Need help from migration thread: drop lock and wait. */ 4555 task_rq_unlock(rq, p, &flags); 4556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4557 tlb_migrate_finish(p->mm); 4558 return 0; 4559 } 4560 out: 4561 task_rq_unlock(rq, p, &flags); 4562 4563 return ret; 4564 } 4565 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4566 4567 /* 4568 * Move (not current) task off this cpu, onto dest cpu. We're doing 4569 * this because either it can't run here any more (set_cpus_allowed() 4570 * away from this CPU, or CPU going down), or because we're 4571 * attempting to rebalance this task on exec (sched_exec). 4572 * 4573 * So we race with normal scheduler movements, but that's OK, as long 4574 * as the task is no longer on this CPU. 4575 * 4576 * Returns non-zero if task was successfully migrated. 4577 */ 4578 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4579 { 4580 struct rq *rq_dest, *rq_src; 4581 int ret = 0; 4582 4583 if (unlikely(!cpu_active(dest_cpu))) 4584 return ret; 4585 4586 rq_src = cpu_rq(src_cpu); 4587 rq_dest = cpu_rq(dest_cpu); 4588 4589 raw_spin_lock(&p->pi_lock); 4590 double_rq_lock(rq_src, rq_dest); 4591 /* Already moved. */ 4592 if (task_cpu(p) != src_cpu) 4593 goto done; 4594 /* Affinity changed (again). */ 4595 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4596 goto fail; 4597 4598 /* 4599 * If we're not on a rq, the next wake-up will ensure we're 4600 * placed properly. 4601 */ 4602 if (p->on_rq) { 4603 dequeue_task(rq_src, p, 0); 4604 set_task_cpu(p, dest_cpu); 4605 enqueue_task(rq_dest, p, 0); 4606 check_preempt_curr(rq_dest, p, 0); 4607 } 4608 done: 4609 ret = 1; 4610 fail: 4611 double_rq_unlock(rq_src, rq_dest); 4612 raw_spin_unlock(&p->pi_lock); 4613 return ret; 4614 } 4615 4616 #ifdef CONFIG_NUMA_BALANCING 4617 /* Migrate current task p to target_cpu */ 4618 int migrate_task_to(struct task_struct *p, int target_cpu) 4619 { 4620 struct migration_arg arg = { p, target_cpu }; 4621 int curr_cpu = task_cpu(p); 4622 4623 if (curr_cpu == target_cpu) 4624 return 0; 4625 4626 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4627 return -EINVAL; 4628 4629 /* TODO: This is not properly updating schedstats */ 4630 4631 trace_sched_move_numa(p, curr_cpu, target_cpu); 4632 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4633 } 4634 4635 /* 4636 * Requeue a task on a given node and accurately track the number of NUMA 4637 * tasks on the runqueues 4638 */ 4639 void sched_setnuma(struct task_struct *p, int nid) 4640 { 4641 struct rq *rq; 4642 unsigned long flags; 4643 bool on_rq, running; 4644 4645 rq = task_rq_lock(p, &flags); 4646 on_rq = p->on_rq; 4647 running = task_current(rq, p); 4648 4649 if (on_rq) 4650 dequeue_task(rq, p, 0); 4651 if (running) 4652 p->sched_class->put_prev_task(rq, p); 4653 4654 p->numa_preferred_nid = nid; 4655 4656 if (running) 4657 p->sched_class->set_curr_task(rq); 4658 if (on_rq) 4659 enqueue_task(rq, p, 0); 4660 task_rq_unlock(rq, p, &flags); 4661 } 4662 #endif 4663 4664 /* 4665 * migration_cpu_stop - this will be executed by a highprio stopper thread 4666 * and performs thread migration by bumping thread off CPU then 4667 * 'pushing' onto another runqueue. 4668 */ 4669 static int migration_cpu_stop(void *data) 4670 { 4671 struct migration_arg *arg = data; 4672 4673 /* 4674 * The original target cpu might have gone down and we might 4675 * be on another cpu but it doesn't matter. 4676 */ 4677 local_irq_disable(); 4678 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4679 local_irq_enable(); 4680 return 0; 4681 } 4682 4683 #ifdef CONFIG_HOTPLUG_CPU 4684 4685 /* 4686 * Ensures that the idle task is using init_mm right before its cpu goes 4687 * offline. 4688 */ 4689 void idle_task_exit(void) 4690 { 4691 struct mm_struct *mm = current->active_mm; 4692 4693 BUG_ON(cpu_online(smp_processor_id())); 4694 4695 if (mm != &init_mm) 4696 switch_mm(mm, &init_mm, current); 4697 mmdrop(mm); 4698 } 4699 4700 /* 4701 * Since this CPU is going 'away' for a while, fold any nr_active delta 4702 * we might have. Assumes we're called after migrate_tasks() so that the 4703 * nr_active count is stable. 4704 * 4705 * Also see the comment "Global load-average calculations". 4706 */ 4707 static void calc_load_migrate(struct rq *rq) 4708 { 4709 long delta = calc_load_fold_active(rq); 4710 if (delta) 4711 atomic_long_add(delta, &calc_load_tasks); 4712 } 4713 4714 /* 4715 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4716 * try_to_wake_up()->select_task_rq(). 4717 * 4718 * Called with rq->lock held even though we'er in stop_machine() and 4719 * there's no concurrency possible, we hold the required locks anyway 4720 * because of lock validation efforts. 4721 */ 4722 static void migrate_tasks(unsigned int dead_cpu) 4723 { 4724 struct rq *rq = cpu_rq(dead_cpu); 4725 struct task_struct *next, *stop = rq->stop; 4726 int dest_cpu; 4727 4728 /* 4729 * Fudge the rq selection such that the below task selection loop 4730 * doesn't get stuck on the currently eligible stop task. 4731 * 4732 * We're currently inside stop_machine() and the rq is either stuck 4733 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4734 * either way we should never end up calling schedule() until we're 4735 * done here. 4736 */ 4737 rq->stop = NULL; 4738 4739 /* 4740 * put_prev_task() and pick_next_task() sched 4741 * class method both need to have an up-to-date 4742 * value of rq->clock[_task] 4743 */ 4744 update_rq_clock(rq); 4745 4746 for ( ; ; ) { 4747 /* 4748 * There's this thread running, bail when that's the only 4749 * remaining thread. 4750 */ 4751 if (rq->nr_running == 1) 4752 break; 4753 4754 next = pick_next_task(rq); 4755 BUG_ON(!next); 4756 next->sched_class->put_prev_task(rq, next); 4757 4758 /* Find suitable destination for @next, with force if needed. */ 4759 dest_cpu = select_fallback_rq(dead_cpu, next); 4760 raw_spin_unlock(&rq->lock); 4761 4762 __migrate_task(next, dead_cpu, dest_cpu); 4763 4764 raw_spin_lock(&rq->lock); 4765 } 4766 4767 rq->stop = stop; 4768 } 4769 4770 #endif /* CONFIG_HOTPLUG_CPU */ 4771 4772 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4773 4774 static struct ctl_table sd_ctl_dir[] = { 4775 { 4776 .procname = "sched_domain", 4777 .mode = 0555, 4778 }, 4779 {} 4780 }; 4781 4782 static struct ctl_table sd_ctl_root[] = { 4783 { 4784 .procname = "kernel", 4785 .mode = 0555, 4786 .child = sd_ctl_dir, 4787 }, 4788 {} 4789 }; 4790 4791 static struct ctl_table *sd_alloc_ctl_entry(int n) 4792 { 4793 struct ctl_table *entry = 4794 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4795 4796 return entry; 4797 } 4798 4799 static void sd_free_ctl_entry(struct ctl_table **tablep) 4800 { 4801 struct ctl_table *entry; 4802 4803 /* 4804 * In the intermediate directories, both the child directory and 4805 * procname are dynamically allocated and could fail but the mode 4806 * will always be set. In the lowest directory the names are 4807 * static strings and all have proc handlers. 4808 */ 4809 for (entry = *tablep; entry->mode; entry++) { 4810 if (entry->child) 4811 sd_free_ctl_entry(&entry->child); 4812 if (entry->proc_handler == NULL) 4813 kfree(entry->procname); 4814 } 4815 4816 kfree(*tablep); 4817 *tablep = NULL; 4818 } 4819 4820 static int min_load_idx = 0; 4821 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4822 4823 static void 4824 set_table_entry(struct ctl_table *entry, 4825 const char *procname, void *data, int maxlen, 4826 umode_t mode, proc_handler *proc_handler, 4827 bool load_idx) 4828 { 4829 entry->procname = procname; 4830 entry->data = data; 4831 entry->maxlen = maxlen; 4832 entry->mode = mode; 4833 entry->proc_handler = proc_handler; 4834 4835 if (load_idx) { 4836 entry->extra1 = &min_load_idx; 4837 entry->extra2 = &max_load_idx; 4838 } 4839 } 4840 4841 static struct ctl_table * 4842 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4843 { 4844 struct ctl_table *table = sd_alloc_ctl_entry(13); 4845 4846 if (table == NULL) 4847 return NULL; 4848 4849 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4850 sizeof(long), 0644, proc_doulongvec_minmax, false); 4851 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4852 sizeof(long), 0644, proc_doulongvec_minmax, false); 4853 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4854 sizeof(int), 0644, proc_dointvec_minmax, true); 4855 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4856 sizeof(int), 0644, proc_dointvec_minmax, true); 4857 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4858 sizeof(int), 0644, proc_dointvec_minmax, true); 4859 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4860 sizeof(int), 0644, proc_dointvec_minmax, true); 4861 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4862 sizeof(int), 0644, proc_dointvec_minmax, true); 4863 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4864 sizeof(int), 0644, proc_dointvec_minmax, false); 4865 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4866 sizeof(int), 0644, proc_dointvec_minmax, false); 4867 set_table_entry(&table[9], "cache_nice_tries", 4868 &sd->cache_nice_tries, 4869 sizeof(int), 0644, proc_dointvec_minmax, false); 4870 set_table_entry(&table[10], "flags", &sd->flags, 4871 sizeof(int), 0644, proc_dointvec_minmax, false); 4872 set_table_entry(&table[11], "name", sd->name, 4873 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4874 /* &table[12] is terminator */ 4875 4876 return table; 4877 } 4878 4879 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4880 { 4881 struct ctl_table *entry, *table; 4882 struct sched_domain *sd; 4883 int domain_num = 0, i; 4884 char buf[32]; 4885 4886 for_each_domain(cpu, sd) 4887 domain_num++; 4888 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4889 if (table == NULL) 4890 return NULL; 4891 4892 i = 0; 4893 for_each_domain(cpu, sd) { 4894 snprintf(buf, 32, "domain%d", i); 4895 entry->procname = kstrdup(buf, GFP_KERNEL); 4896 entry->mode = 0555; 4897 entry->child = sd_alloc_ctl_domain_table(sd); 4898 entry++; 4899 i++; 4900 } 4901 return table; 4902 } 4903 4904 static struct ctl_table_header *sd_sysctl_header; 4905 static void register_sched_domain_sysctl(void) 4906 { 4907 int i, cpu_num = num_possible_cpus(); 4908 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4909 char buf[32]; 4910 4911 WARN_ON(sd_ctl_dir[0].child); 4912 sd_ctl_dir[0].child = entry; 4913 4914 if (entry == NULL) 4915 return; 4916 4917 for_each_possible_cpu(i) { 4918 snprintf(buf, 32, "cpu%d", i); 4919 entry->procname = kstrdup(buf, GFP_KERNEL); 4920 entry->mode = 0555; 4921 entry->child = sd_alloc_ctl_cpu_table(i); 4922 entry++; 4923 } 4924 4925 WARN_ON(sd_sysctl_header); 4926 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4927 } 4928 4929 /* may be called multiple times per register */ 4930 static void unregister_sched_domain_sysctl(void) 4931 { 4932 if (sd_sysctl_header) 4933 unregister_sysctl_table(sd_sysctl_header); 4934 sd_sysctl_header = NULL; 4935 if (sd_ctl_dir[0].child) 4936 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4937 } 4938 #else 4939 static void register_sched_domain_sysctl(void) 4940 { 4941 } 4942 static void unregister_sched_domain_sysctl(void) 4943 { 4944 } 4945 #endif 4946 4947 static void set_rq_online(struct rq *rq) 4948 { 4949 if (!rq->online) { 4950 const struct sched_class *class; 4951 4952 cpumask_set_cpu(rq->cpu, rq->rd->online); 4953 rq->online = 1; 4954 4955 for_each_class(class) { 4956 if (class->rq_online) 4957 class->rq_online(rq); 4958 } 4959 } 4960 } 4961 4962 static void set_rq_offline(struct rq *rq) 4963 { 4964 if (rq->online) { 4965 const struct sched_class *class; 4966 4967 for_each_class(class) { 4968 if (class->rq_offline) 4969 class->rq_offline(rq); 4970 } 4971 4972 cpumask_clear_cpu(rq->cpu, rq->rd->online); 4973 rq->online = 0; 4974 } 4975 } 4976 4977 /* 4978 * migration_call - callback that gets triggered when a CPU is added. 4979 * Here we can start up the necessary migration thread for the new CPU. 4980 */ 4981 static int 4982 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 4983 { 4984 int cpu = (long)hcpu; 4985 unsigned long flags; 4986 struct rq *rq = cpu_rq(cpu); 4987 4988 switch (action & ~CPU_TASKS_FROZEN) { 4989 4990 case CPU_UP_PREPARE: 4991 rq->calc_load_update = calc_load_update; 4992 break; 4993 4994 case CPU_ONLINE: 4995 /* Update our root-domain */ 4996 raw_spin_lock_irqsave(&rq->lock, flags); 4997 if (rq->rd) { 4998 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 4999 5000 set_rq_online(rq); 5001 } 5002 raw_spin_unlock_irqrestore(&rq->lock, flags); 5003 break; 5004 5005 #ifdef CONFIG_HOTPLUG_CPU 5006 case CPU_DYING: 5007 sched_ttwu_pending(); 5008 /* Update our root-domain */ 5009 raw_spin_lock_irqsave(&rq->lock, flags); 5010 if (rq->rd) { 5011 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5012 set_rq_offline(rq); 5013 } 5014 migrate_tasks(cpu); 5015 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5016 raw_spin_unlock_irqrestore(&rq->lock, flags); 5017 break; 5018 5019 case CPU_DEAD: 5020 calc_load_migrate(rq); 5021 break; 5022 #endif 5023 } 5024 5025 update_max_interval(); 5026 5027 return NOTIFY_OK; 5028 } 5029 5030 /* 5031 * Register at high priority so that task migration (migrate_all_tasks) 5032 * happens before everything else. This has to be lower priority than 5033 * the notifier in the perf_event subsystem, though. 5034 */ 5035 static struct notifier_block migration_notifier = { 5036 .notifier_call = migration_call, 5037 .priority = CPU_PRI_MIGRATION, 5038 }; 5039 5040 static int sched_cpu_active(struct notifier_block *nfb, 5041 unsigned long action, void *hcpu) 5042 { 5043 switch (action & ~CPU_TASKS_FROZEN) { 5044 case CPU_STARTING: 5045 case CPU_DOWN_FAILED: 5046 set_cpu_active((long)hcpu, true); 5047 return NOTIFY_OK; 5048 default: 5049 return NOTIFY_DONE; 5050 } 5051 } 5052 5053 static int sched_cpu_inactive(struct notifier_block *nfb, 5054 unsigned long action, void *hcpu) 5055 { 5056 unsigned long flags; 5057 long cpu = (long)hcpu; 5058 5059 switch (action & ~CPU_TASKS_FROZEN) { 5060 case CPU_DOWN_PREPARE: 5061 set_cpu_active(cpu, false); 5062 5063 /* explicitly allow suspend */ 5064 if (!(action & CPU_TASKS_FROZEN)) { 5065 struct dl_bw *dl_b = dl_bw_of(cpu); 5066 bool overflow; 5067 int cpus; 5068 5069 raw_spin_lock_irqsave(&dl_b->lock, flags); 5070 cpus = dl_bw_cpus(cpu); 5071 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5072 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5073 5074 if (overflow) 5075 return notifier_from_errno(-EBUSY); 5076 } 5077 return NOTIFY_OK; 5078 } 5079 5080 return NOTIFY_DONE; 5081 } 5082 5083 static int __init migration_init(void) 5084 { 5085 void *cpu = (void *)(long)smp_processor_id(); 5086 int err; 5087 5088 /* Initialize migration for the boot CPU */ 5089 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5090 BUG_ON(err == NOTIFY_BAD); 5091 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5092 register_cpu_notifier(&migration_notifier); 5093 5094 /* Register cpu active notifiers */ 5095 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5096 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5097 5098 return 0; 5099 } 5100 early_initcall(migration_init); 5101 #endif 5102 5103 #ifdef CONFIG_SMP 5104 5105 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5106 5107 #ifdef CONFIG_SCHED_DEBUG 5108 5109 static __read_mostly int sched_debug_enabled; 5110 5111 static int __init sched_debug_setup(char *str) 5112 { 5113 sched_debug_enabled = 1; 5114 5115 return 0; 5116 } 5117 early_param("sched_debug", sched_debug_setup); 5118 5119 static inline bool sched_debug(void) 5120 { 5121 return sched_debug_enabled; 5122 } 5123 5124 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5125 struct cpumask *groupmask) 5126 { 5127 struct sched_group *group = sd->groups; 5128 char str[256]; 5129 5130 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5131 cpumask_clear(groupmask); 5132 5133 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5134 5135 if (!(sd->flags & SD_LOAD_BALANCE)) { 5136 printk("does not load-balance\n"); 5137 if (sd->parent) 5138 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5139 " has parent"); 5140 return -1; 5141 } 5142 5143 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5144 5145 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5146 printk(KERN_ERR "ERROR: domain->span does not contain " 5147 "CPU%d\n", cpu); 5148 } 5149 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5150 printk(KERN_ERR "ERROR: domain->groups does not contain" 5151 " CPU%d\n", cpu); 5152 } 5153 5154 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5155 do { 5156 if (!group) { 5157 printk("\n"); 5158 printk(KERN_ERR "ERROR: group is NULL\n"); 5159 break; 5160 } 5161 5162 /* 5163 * Even though we initialize ->power to something semi-sane, 5164 * we leave power_orig unset. This allows us to detect if 5165 * domain iteration is still funny without causing /0 traps. 5166 */ 5167 if (!group->sgp->power_orig) { 5168 printk(KERN_CONT "\n"); 5169 printk(KERN_ERR "ERROR: domain->cpu_power not " 5170 "set\n"); 5171 break; 5172 } 5173 5174 if (!cpumask_weight(sched_group_cpus(group))) { 5175 printk(KERN_CONT "\n"); 5176 printk(KERN_ERR "ERROR: empty group\n"); 5177 break; 5178 } 5179 5180 if (!(sd->flags & SD_OVERLAP) && 5181 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5182 printk(KERN_CONT "\n"); 5183 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5184 break; 5185 } 5186 5187 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5188 5189 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5190 5191 printk(KERN_CONT " %s", str); 5192 if (group->sgp->power != SCHED_POWER_SCALE) { 5193 printk(KERN_CONT " (cpu_power = %d)", 5194 group->sgp->power); 5195 } 5196 5197 group = group->next; 5198 } while (group != sd->groups); 5199 printk(KERN_CONT "\n"); 5200 5201 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5202 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5203 5204 if (sd->parent && 5205 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5206 printk(KERN_ERR "ERROR: parent span is not a superset " 5207 "of domain->span\n"); 5208 return 0; 5209 } 5210 5211 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5212 { 5213 int level = 0; 5214 5215 if (!sched_debug_enabled) 5216 return; 5217 5218 if (!sd) { 5219 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5220 return; 5221 } 5222 5223 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5224 5225 for (;;) { 5226 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5227 break; 5228 level++; 5229 sd = sd->parent; 5230 if (!sd) 5231 break; 5232 } 5233 } 5234 #else /* !CONFIG_SCHED_DEBUG */ 5235 # define sched_domain_debug(sd, cpu) do { } while (0) 5236 static inline bool sched_debug(void) 5237 { 5238 return false; 5239 } 5240 #endif /* CONFIG_SCHED_DEBUG */ 5241 5242 static int sd_degenerate(struct sched_domain *sd) 5243 { 5244 if (cpumask_weight(sched_domain_span(sd)) == 1) 5245 return 1; 5246 5247 /* Following flags need at least 2 groups */ 5248 if (sd->flags & (SD_LOAD_BALANCE | 5249 SD_BALANCE_NEWIDLE | 5250 SD_BALANCE_FORK | 5251 SD_BALANCE_EXEC | 5252 SD_SHARE_CPUPOWER | 5253 SD_SHARE_PKG_RESOURCES)) { 5254 if (sd->groups != sd->groups->next) 5255 return 0; 5256 } 5257 5258 /* Following flags don't use groups */ 5259 if (sd->flags & (SD_WAKE_AFFINE)) 5260 return 0; 5261 5262 return 1; 5263 } 5264 5265 static int 5266 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5267 { 5268 unsigned long cflags = sd->flags, pflags = parent->flags; 5269 5270 if (sd_degenerate(parent)) 5271 return 1; 5272 5273 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5274 return 0; 5275 5276 /* Flags needing groups don't count if only 1 group in parent */ 5277 if (parent->groups == parent->groups->next) { 5278 pflags &= ~(SD_LOAD_BALANCE | 5279 SD_BALANCE_NEWIDLE | 5280 SD_BALANCE_FORK | 5281 SD_BALANCE_EXEC | 5282 SD_SHARE_CPUPOWER | 5283 SD_SHARE_PKG_RESOURCES | 5284 SD_PREFER_SIBLING); 5285 if (nr_node_ids == 1) 5286 pflags &= ~SD_SERIALIZE; 5287 } 5288 if (~cflags & pflags) 5289 return 0; 5290 5291 return 1; 5292 } 5293 5294 static void free_rootdomain(struct rcu_head *rcu) 5295 { 5296 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5297 5298 cpupri_cleanup(&rd->cpupri); 5299 cpudl_cleanup(&rd->cpudl); 5300 free_cpumask_var(rd->dlo_mask); 5301 free_cpumask_var(rd->rto_mask); 5302 free_cpumask_var(rd->online); 5303 free_cpumask_var(rd->span); 5304 kfree(rd); 5305 } 5306 5307 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5308 { 5309 struct root_domain *old_rd = NULL; 5310 unsigned long flags; 5311 5312 raw_spin_lock_irqsave(&rq->lock, flags); 5313 5314 if (rq->rd) { 5315 old_rd = rq->rd; 5316 5317 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5318 set_rq_offline(rq); 5319 5320 cpumask_clear_cpu(rq->cpu, old_rd->span); 5321 5322 /* 5323 * If we dont want to free the old_rd yet then 5324 * set old_rd to NULL to skip the freeing later 5325 * in this function: 5326 */ 5327 if (!atomic_dec_and_test(&old_rd->refcount)) 5328 old_rd = NULL; 5329 } 5330 5331 atomic_inc(&rd->refcount); 5332 rq->rd = rd; 5333 5334 cpumask_set_cpu(rq->cpu, rd->span); 5335 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5336 set_rq_online(rq); 5337 5338 raw_spin_unlock_irqrestore(&rq->lock, flags); 5339 5340 if (old_rd) 5341 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5342 } 5343 5344 static int init_rootdomain(struct root_domain *rd) 5345 { 5346 memset(rd, 0, sizeof(*rd)); 5347 5348 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5349 goto out; 5350 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5351 goto free_span; 5352 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5353 goto free_online; 5354 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5355 goto free_dlo_mask; 5356 5357 init_dl_bw(&rd->dl_bw); 5358 if (cpudl_init(&rd->cpudl) != 0) 5359 goto free_dlo_mask; 5360 5361 if (cpupri_init(&rd->cpupri) != 0) 5362 goto free_rto_mask; 5363 return 0; 5364 5365 free_rto_mask: 5366 free_cpumask_var(rd->rto_mask); 5367 free_dlo_mask: 5368 free_cpumask_var(rd->dlo_mask); 5369 free_online: 5370 free_cpumask_var(rd->online); 5371 free_span: 5372 free_cpumask_var(rd->span); 5373 out: 5374 return -ENOMEM; 5375 } 5376 5377 /* 5378 * By default the system creates a single root-domain with all cpus as 5379 * members (mimicking the global state we have today). 5380 */ 5381 struct root_domain def_root_domain; 5382 5383 static void init_defrootdomain(void) 5384 { 5385 init_rootdomain(&def_root_domain); 5386 5387 atomic_set(&def_root_domain.refcount, 1); 5388 } 5389 5390 static struct root_domain *alloc_rootdomain(void) 5391 { 5392 struct root_domain *rd; 5393 5394 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5395 if (!rd) 5396 return NULL; 5397 5398 if (init_rootdomain(rd) != 0) { 5399 kfree(rd); 5400 return NULL; 5401 } 5402 5403 return rd; 5404 } 5405 5406 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5407 { 5408 struct sched_group *tmp, *first; 5409 5410 if (!sg) 5411 return; 5412 5413 first = sg; 5414 do { 5415 tmp = sg->next; 5416 5417 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5418 kfree(sg->sgp); 5419 5420 kfree(sg); 5421 sg = tmp; 5422 } while (sg != first); 5423 } 5424 5425 static void free_sched_domain(struct rcu_head *rcu) 5426 { 5427 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5428 5429 /* 5430 * If its an overlapping domain it has private groups, iterate and 5431 * nuke them all. 5432 */ 5433 if (sd->flags & SD_OVERLAP) { 5434 free_sched_groups(sd->groups, 1); 5435 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5436 kfree(sd->groups->sgp); 5437 kfree(sd->groups); 5438 } 5439 kfree(sd); 5440 } 5441 5442 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5443 { 5444 call_rcu(&sd->rcu, free_sched_domain); 5445 } 5446 5447 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5448 { 5449 for (; sd; sd = sd->parent) 5450 destroy_sched_domain(sd, cpu); 5451 } 5452 5453 /* 5454 * Keep a special pointer to the highest sched_domain that has 5455 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5456 * allows us to avoid some pointer chasing select_idle_sibling(). 5457 * 5458 * Also keep a unique ID per domain (we use the first cpu number in 5459 * the cpumask of the domain), this allows us to quickly tell if 5460 * two cpus are in the same cache domain, see cpus_share_cache(). 5461 */ 5462 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5463 DEFINE_PER_CPU(int, sd_llc_size); 5464 DEFINE_PER_CPU(int, sd_llc_id); 5465 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5466 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5467 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5468 5469 static void update_top_cache_domain(int cpu) 5470 { 5471 struct sched_domain *sd; 5472 struct sched_domain *busy_sd = NULL; 5473 int id = cpu; 5474 int size = 1; 5475 5476 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5477 if (sd) { 5478 id = cpumask_first(sched_domain_span(sd)); 5479 size = cpumask_weight(sched_domain_span(sd)); 5480 busy_sd = sd->parent; /* sd_busy */ 5481 } 5482 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5483 5484 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5485 per_cpu(sd_llc_size, cpu) = size; 5486 per_cpu(sd_llc_id, cpu) = id; 5487 5488 sd = lowest_flag_domain(cpu, SD_NUMA); 5489 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5490 5491 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5492 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5493 } 5494 5495 /* 5496 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5497 * hold the hotplug lock. 5498 */ 5499 static void 5500 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5501 { 5502 struct rq *rq = cpu_rq(cpu); 5503 struct sched_domain *tmp; 5504 5505 /* Remove the sched domains which do not contribute to scheduling. */ 5506 for (tmp = sd; tmp; ) { 5507 struct sched_domain *parent = tmp->parent; 5508 if (!parent) 5509 break; 5510 5511 if (sd_parent_degenerate(tmp, parent)) { 5512 tmp->parent = parent->parent; 5513 if (parent->parent) 5514 parent->parent->child = tmp; 5515 /* 5516 * Transfer SD_PREFER_SIBLING down in case of a 5517 * degenerate parent; the spans match for this 5518 * so the property transfers. 5519 */ 5520 if (parent->flags & SD_PREFER_SIBLING) 5521 tmp->flags |= SD_PREFER_SIBLING; 5522 destroy_sched_domain(parent, cpu); 5523 } else 5524 tmp = tmp->parent; 5525 } 5526 5527 if (sd && sd_degenerate(sd)) { 5528 tmp = sd; 5529 sd = sd->parent; 5530 destroy_sched_domain(tmp, cpu); 5531 if (sd) 5532 sd->child = NULL; 5533 } 5534 5535 sched_domain_debug(sd, cpu); 5536 5537 rq_attach_root(rq, rd); 5538 tmp = rq->sd; 5539 rcu_assign_pointer(rq->sd, sd); 5540 destroy_sched_domains(tmp, cpu); 5541 5542 update_top_cache_domain(cpu); 5543 } 5544 5545 /* cpus with isolated domains */ 5546 static cpumask_var_t cpu_isolated_map; 5547 5548 /* Setup the mask of cpus configured for isolated domains */ 5549 static int __init isolated_cpu_setup(char *str) 5550 { 5551 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5552 cpulist_parse(str, cpu_isolated_map); 5553 return 1; 5554 } 5555 5556 __setup("isolcpus=", isolated_cpu_setup); 5557 5558 static const struct cpumask *cpu_cpu_mask(int cpu) 5559 { 5560 return cpumask_of_node(cpu_to_node(cpu)); 5561 } 5562 5563 struct sd_data { 5564 struct sched_domain **__percpu sd; 5565 struct sched_group **__percpu sg; 5566 struct sched_group_power **__percpu sgp; 5567 }; 5568 5569 struct s_data { 5570 struct sched_domain ** __percpu sd; 5571 struct root_domain *rd; 5572 }; 5573 5574 enum s_alloc { 5575 sa_rootdomain, 5576 sa_sd, 5577 sa_sd_storage, 5578 sa_none, 5579 }; 5580 5581 struct sched_domain_topology_level; 5582 5583 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5584 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5585 5586 #define SDTL_OVERLAP 0x01 5587 5588 struct sched_domain_topology_level { 5589 sched_domain_init_f init; 5590 sched_domain_mask_f mask; 5591 int flags; 5592 int numa_level; 5593 struct sd_data data; 5594 }; 5595 5596 /* 5597 * Build an iteration mask that can exclude certain CPUs from the upwards 5598 * domain traversal. 5599 * 5600 * Asymmetric node setups can result in situations where the domain tree is of 5601 * unequal depth, make sure to skip domains that already cover the entire 5602 * range. 5603 * 5604 * In that case build_sched_domains() will have terminated the iteration early 5605 * and our sibling sd spans will be empty. Domains should always include the 5606 * cpu they're built on, so check that. 5607 * 5608 */ 5609 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5610 { 5611 const struct cpumask *span = sched_domain_span(sd); 5612 struct sd_data *sdd = sd->private; 5613 struct sched_domain *sibling; 5614 int i; 5615 5616 for_each_cpu(i, span) { 5617 sibling = *per_cpu_ptr(sdd->sd, i); 5618 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5619 continue; 5620 5621 cpumask_set_cpu(i, sched_group_mask(sg)); 5622 } 5623 } 5624 5625 /* 5626 * Return the canonical balance cpu for this group, this is the first cpu 5627 * of this group that's also in the iteration mask. 5628 */ 5629 int group_balance_cpu(struct sched_group *sg) 5630 { 5631 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5632 } 5633 5634 static int 5635 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5636 { 5637 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5638 const struct cpumask *span = sched_domain_span(sd); 5639 struct cpumask *covered = sched_domains_tmpmask; 5640 struct sd_data *sdd = sd->private; 5641 struct sched_domain *child; 5642 int i; 5643 5644 cpumask_clear(covered); 5645 5646 for_each_cpu(i, span) { 5647 struct cpumask *sg_span; 5648 5649 if (cpumask_test_cpu(i, covered)) 5650 continue; 5651 5652 child = *per_cpu_ptr(sdd->sd, i); 5653 5654 /* See the comment near build_group_mask(). */ 5655 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5656 continue; 5657 5658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5659 GFP_KERNEL, cpu_to_node(cpu)); 5660 5661 if (!sg) 5662 goto fail; 5663 5664 sg_span = sched_group_cpus(sg); 5665 if (child->child) { 5666 child = child->child; 5667 cpumask_copy(sg_span, sched_domain_span(child)); 5668 } else 5669 cpumask_set_cpu(i, sg_span); 5670 5671 cpumask_or(covered, covered, sg_span); 5672 5673 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5674 if (atomic_inc_return(&sg->sgp->ref) == 1) 5675 build_group_mask(sd, sg); 5676 5677 /* 5678 * Initialize sgp->power such that even if we mess up the 5679 * domains and no possible iteration will get us here, we won't 5680 * die on a /0 trap. 5681 */ 5682 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5683 sg->sgp->power_orig = sg->sgp->power; 5684 5685 /* 5686 * Make sure the first group of this domain contains the 5687 * canonical balance cpu. Otherwise the sched_domain iteration 5688 * breaks. See update_sg_lb_stats(). 5689 */ 5690 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5691 group_balance_cpu(sg) == cpu) 5692 groups = sg; 5693 5694 if (!first) 5695 first = sg; 5696 if (last) 5697 last->next = sg; 5698 last = sg; 5699 last->next = first; 5700 } 5701 sd->groups = groups; 5702 5703 return 0; 5704 5705 fail: 5706 free_sched_groups(first, 0); 5707 5708 return -ENOMEM; 5709 } 5710 5711 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5712 { 5713 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5714 struct sched_domain *child = sd->child; 5715 5716 if (child) 5717 cpu = cpumask_first(sched_domain_span(child)); 5718 5719 if (sg) { 5720 *sg = *per_cpu_ptr(sdd->sg, cpu); 5721 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5722 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5723 } 5724 5725 return cpu; 5726 } 5727 5728 /* 5729 * build_sched_groups will build a circular linked list of the groups 5730 * covered by the given span, and will set each group's ->cpumask correctly, 5731 * and ->cpu_power to 0. 5732 * 5733 * Assumes the sched_domain tree is fully constructed 5734 */ 5735 static int 5736 build_sched_groups(struct sched_domain *sd, int cpu) 5737 { 5738 struct sched_group *first = NULL, *last = NULL; 5739 struct sd_data *sdd = sd->private; 5740 const struct cpumask *span = sched_domain_span(sd); 5741 struct cpumask *covered; 5742 int i; 5743 5744 get_group(cpu, sdd, &sd->groups); 5745 atomic_inc(&sd->groups->ref); 5746 5747 if (cpu != cpumask_first(span)) 5748 return 0; 5749 5750 lockdep_assert_held(&sched_domains_mutex); 5751 covered = sched_domains_tmpmask; 5752 5753 cpumask_clear(covered); 5754 5755 for_each_cpu(i, span) { 5756 struct sched_group *sg; 5757 int group, j; 5758 5759 if (cpumask_test_cpu(i, covered)) 5760 continue; 5761 5762 group = get_group(i, sdd, &sg); 5763 cpumask_clear(sched_group_cpus(sg)); 5764 sg->sgp->power = 0; 5765 cpumask_setall(sched_group_mask(sg)); 5766 5767 for_each_cpu(j, span) { 5768 if (get_group(j, sdd, NULL) != group) 5769 continue; 5770 5771 cpumask_set_cpu(j, covered); 5772 cpumask_set_cpu(j, sched_group_cpus(sg)); 5773 } 5774 5775 if (!first) 5776 first = sg; 5777 if (last) 5778 last->next = sg; 5779 last = sg; 5780 } 5781 last->next = first; 5782 5783 return 0; 5784 } 5785 5786 /* 5787 * Initialize sched groups cpu_power. 5788 * 5789 * cpu_power indicates the capacity of sched group, which is used while 5790 * distributing the load between different sched groups in a sched domain. 5791 * Typically cpu_power for all the groups in a sched domain will be same unless 5792 * there are asymmetries in the topology. If there are asymmetries, group 5793 * having more cpu_power will pickup more load compared to the group having 5794 * less cpu_power. 5795 */ 5796 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5797 { 5798 struct sched_group *sg = sd->groups; 5799 5800 WARN_ON(!sg); 5801 5802 do { 5803 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5804 sg = sg->next; 5805 } while (sg != sd->groups); 5806 5807 if (cpu != group_balance_cpu(sg)) 5808 return; 5809 5810 update_group_power(sd, cpu); 5811 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5812 } 5813 5814 int __weak arch_sd_sibling_asym_packing(void) 5815 { 5816 return 0*SD_ASYM_PACKING; 5817 } 5818 5819 /* 5820 * Initializers for schedule domains 5821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5822 */ 5823 5824 #ifdef CONFIG_SCHED_DEBUG 5825 # define SD_INIT_NAME(sd, type) sd->name = #type 5826 #else 5827 # define SD_INIT_NAME(sd, type) do { } while (0) 5828 #endif 5829 5830 #define SD_INIT_FUNC(type) \ 5831 static noinline struct sched_domain * \ 5832 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5833 { \ 5834 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5835 *sd = SD_##type##_INIT; \ 5836 SD_INIT_NAME(sd, type); \ 5837 sd->private = &tl->data; \ 5838 return sd; \ 5839 } 5840 5841 SD_INIT_FUNC(CPU) 5842 #ifdef CONFIG_SCHED_SMT 5843 SD_INIT_FUNC(SIBLING) 5844 #endif 5845 #ifdef CONFIG_SCHED_MC 5846 SD_INIT_FUNC(MC) 5847 #endif 5848 #ifdef CONFIG_SCHED_BOOK 5849 SD_INIT_FUNC(BOOK) 5850 #endif 5851 5852 static int default_relax_domain_level = -1; 5853 int sched_domain_level_max; 5854 5855 static int __init setup_relax_domain_level(char *str) 5856 { 5857 if (kstrtoint(str, 0, &default_relax_domain_level)) 5858 pr_warn("Unable to set relax_domain_level\n"); 5859 5860 return 1; 5861 } 5862 __setup("relax_domain_level=", setup_relax_domain_level); 5863 5864 static void set_domain_attribute(struct sched_domain *sd, 5865 struct sched_domain_attr *attr) 5866 { 5867 int request; 5868 5869 if (!attr || attr->relax_domain_level < 0) { 5870 if (default_relax_domain_level < 0) 5871 return; 5872 else 5873 request = default_relax_domain_level; 5874 } else 5875 request = attr->relax_domain_level; 5876 if (request < sd->level) { 5877 /* turn off idle balance on this domain */ 5878 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5879 } else { 5880 /* turn on idle balance on this domain */ 5881 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5882 } 5883 } 5884 5885 static void __sdt_free(const struct cpumask *cpu_map); 5886 static int __sdt_alloc(const struct cpumask *cpu_map); 5887 5888 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5889 const struct cpumask *cpu_map) 5890 { 5891 switch (what) { 5892 case sa_rootdomain: 5893 if (!atomic_read(&d->rd->refcount)) 5894 free_rootdomain(&d->rd->rcu); /* fall through */ 5895 case sa_sd: 5896 free_percpu(d->sd); /* fall through */ 5897 case sa_sd_storage: 5898 __sdt_free(cpu_map); /* fall through */ 5899 case sa_none: 5900 break; 5901 } 5902 } 5903 5904 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5905 const struct cpumask *cpu_map) 5906 { 5907 memset(d, 0, sizeof(*d)); 5908 5909 if (__sdt_alloc(cpu_map)) 5910 return sa_sd_storage; 5911 d->sd = alloc_percpu(struct sched_domain *); 5912 if (!d->sd) 5913 return sa_sd_storage; 5914 d->rd = alloc_rootdomain(); 5915 if (!d->rd) 5916 return sa_sd; 5917 return sa_rootdomain; 5918 } 5919 5920 /* 5921 * NULL the sd_data elements we've used to build the sched_domain and 5922 * sched_group structure so that the subsequent __free_domain_allocs() 5923 * will not free the data we're using. 5924 */ 5925 static void claim_allocations(int cpu, struct sched_domain *sd) 5926 { 5927 struct sd_data *sdd = sd->private; 5928 5929 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5930 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5931 5932 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5933 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5934 5935 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5936 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5937 } 5938 5939 #ifdef CONFIG_SCHED_SMT 5940 static const struct cpumask *cpu_smt_mask(int cpu) 5941 { 5942 return topology_thread_cpumask(cpu); 5943 } 5944 #endif 5945 5946 /* 5947 * Topology list, bottom-up. 5948 */ 5949 static struct sched_domain_topology_level default_topology[] = { 5950 #ifdef CONFIG_SCHED_SMT 5951 { sd_init_SIBLING, cpu_smt_mask, }, 5952 #endif 5953 #ifdef CONFIG_SCHED_MC 5954 { sd_init_MC, cpu_coregroup_mask, }, 5955 #endif 5956 #ifdef CONFIG_SCHED_BOOK 5957 { sd_init_BOOK, cpu_book_mask, }, 5958 #endif 5959 { sd_init_CPU, cpu_cpu_mask, }, 5960 { NULL, }, 5961 }; 5962 5963 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5964 5965 #define for_each_sd_topology(tl) \ 5966 for (tl = sched_domain_topology; tl->init; tl++) 5967 5968 #ifdef CONFIG_NUMA 5969 5970 static int sched_domains_numa_levels; 5971 static int *sched_domains_numa_distance; 5972 static struct cpumask ***sched_domains_numa_masks; 5973 static int sched_domains_curr_level; 5974 5975 static inline int sd_local_flags(int level) 5976 { 5977 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 5978 return 0; 5979 5980 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 5981 } 5982 5983 static struct sched_domain * 5984 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 5985 { 5986 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 5987 int level = tl->numa_level; 5988 int sd_weight = cpumask_weight( 5989 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 5990 5991 *sd = (struct sched_domain){ 5992 .min_interval = sd_weight, 5993 .max_interval = 2*sd_weight, 5994 .busy_factor = 32, 5995 .imbalance_pct = 125, 5996 .cache_nice_tries = 2, 5997 .busy_idx = 3, 5998 .idle_idx = 2, 5999 .newidle_idx = 0, 6000 .wake_idx = 0, 6001 .forkexec_idx = 0, 6002 6003 .flags = 1*SD_LOAD_BALANCE 6004 | 1*SD_BALANCE_NEWIDLE 6005 | 0*SD_BALANCE_EXEC 6006 | 0*SD_BALANCE_FORK 6007 | 0*SD_BALANCE_WAKE 6008 | 0*SD_WAKE_AFFINE 6009 | 0*SD_SHARE_CPUPOWER 6010 | 0*SD_SHARE_PKG_RESOURCES 6011 | 1*SD_SERIALIZE 6012 | 0*SD_PREFER_SIBLING 6013 | 1*SD_NUMA 6014 | sd_local_flags(level) 6015 , 6016 .last_balance = jiffies, 6017 .balance_interval = sd_weight, 6018 }; 6019 SD_INIT_NAME(sd, NUMA); 6020 sd->private = &tl->data; 6021 6022 /* 6023 * Ugly hack to pass state to sd_numa_mask()... 6024 */ 6025 sched_domains_curr_level = tl->numa_level; 6026 6027 return sd; 6028 } 6029 6030 static const struct cpumask *sd_numa_mask(int cpu) 6031 { 6032 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6033 } 6034 6035 static void sched_numa_warn(const char *str) 6036 { 6037 static int done = false; 6038 int i,j; 6039 6040 if (done) 6041 return; 6042 6043 done = true; 6044 6045 printk(KERN_WARNING "ERROR: %s\n\n", str); 6046 6047 for (i = 0; i < nr_node_ids; i++) { 6048 printk(KERN_WARNING " "); 6049 for (j = 0; j < nr_node_ids; j++) 6050 printk(KERN_CONT "%02d ", node_distance(i,j)); 6051 printk(KERN_CONT "\n"); 6052 } 6053 printk(KERN_WARNING "\n"); 6054 } 6055 6056 static bool find_numa_distance(int distance) 6057 { 6058 int i; 6059 6060 if (distance == node_distance(0, 0)) 6061 return true; 6062 6063 for (i = 0; i < sched_domains_numa_levels; i++) { 6064 if (sched_domains_numa_distance[i] == distance) 6065 return true; 6066 } 6067 6068 return false; 6069 } 6070 6071 static void sched_init_numa(void) 6072 { 6073 int next_distance, curr_distance = node_distance(0, 0); 6074 struct sched_domain_topology_level *tl; 6075 int level = 0; 6076 int i, j, k; 6077 6078 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6079 if (!sched_domains_numa_distance) 6080 return; 6081 6082 /* 6083 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6084 * unique distances in the node_distance() table. 6085 * 6086 * Assumes node_distance(0,j) includes all distances in 6087 * node_distance(i,j) in order to avoid cubic time. 6088 */ 6089 next_distance = curr_distance; 6090 for (i = 0; i < nr_node_ids; i++) { 6091 for (j = 0; j < nr_node_ids; j++) { 6092 for (k = 0; k < nr_node_ids; k++) { 6093 int distance = node_distance(i, k); 6094 6095 if (distance > curr_distance && 6096 (distance < next_distance || 6097 next_distance == curr_distance)) 6098 next_distance = distance; 6099 6100 /* 6101 * While not a strong assumption it would be nice to know 6102 * about cases where if node A is connected to B, B is not 6103 * equally connected to A. 6104 */ 6105 if (sched_debug() && node_distance(k, i) != distance) 6106 sched_numa_warn("Node-distance not symmetric"); 6107 6108 if (sched_debug() && i && !find_numa_distance(distance)) 6109 sched_numa_warn("Node-0 not representative"); 6110 } 6111 if (next_distance != curr_distance) { 6112 sched_domains_numa_distance[level++] = next_distance; 6113 sched_domains_numa_levels = level; 6114 curr_distance = next_distance; 6115 } else break; 6116 } 6117 6118 /* 6119 * In case of sched_debug() we verify the above assumption. 6120 */ 6121 if (!sched_debug()) 6122 break; 6123 } 6124 /* 6125 * 'level' contains the number of unique distances, excluding the 6126 * identity distance node_distance(i,i). 6127 * 6128 * The sched_domains_numa_distance[] array includes the actual distance 6129 * numbers. 6130 */ 6131 6132 /* 6133 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6134 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6135 * the array will contain less then 'level' members. This could be 6136 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6137 * in other functions. 6138 * 6139 * We reset it to 'level' at the end of this function. 6140 */ 6141 sched_domains_numa_levels = 0; 6142 6143 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6144 if (!sched_domains_numa_masks) 6145 return; 6146 6147 /* 6148 * Now for each level, construct a mask per node which contains all 6149 * cpus of nodes that are that many hops away from us. 6150 */ 6151 for (i = 0; i < level; i++) { 6152 sched_domains_numa_masks[i] = 6153 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6154 if (!sched_domains_numa_masks[i]) 6155 return; 6156 6157 for (j = 0; j < nr_node_ids; j++) { 6158 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6159 if (!mask) 6160 return; 6161 6162 sched_domains_numa_masks[i][j] = mask; 6163 6164 for (k = 0; k < nr_node_ids; k++) { 6165 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6166 continue; 6167 6168 cpumask_or(mask, mask, cpumask_of_node(k)); 6169 } 6170 } 6171 } 6172 6173 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6174 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6175 if (!tl) 6176 return; 6177 6178 /* 6179 * Copy the default topology bits.. 6180 */ 6181 for (i = 0; default_topology[i].init; i++) 6182 tl[i] = default_topology[i]; 6183 6184 /* 6185 * .. and append 'j' levels of NUMA goodness. 6186 */ 6187 for (j = 0; j < level; i++, j++) { 6188 tl[i] = (struct sched_domain_topology_level){ 6189 .init = sd_numa_init, 6190 .mask = sd_numa_mask, 6191 .flags = SDTL_OVERLAP, 6192 .numa_level = j, 6193 }; 6194 } 6195 6196 sched_domain_topology = tl; 6197 6198 sched_domains_numa_levels = level; 6199 } 6200 6201 static void sched_domains_numa_masks_set(int cpu) 6202 { 6203 int i, j; 6204 int node = cpu_to_node(cpu); 6205 6206 for (i = 0; i < sched_domains_numa_levels; i++) { 6207 for (j = 0; j < nr_node_ids; j++) { 6208 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6209 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6210 } 6211 } 6212 } 6213 6214 static void sched_domains_numa_masks_clear(int cpu) 6215 { 6216 int i, j; 6217 for (i = 0; i < sched_domains_numa_levels; i++) { 6218 for (j = 0; j < nr_node_ids; j++) 6219 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6220 } 6221 } 6222 6223 /* 6224 * Update sched_domains_numa_masks[level][node] array when new cpus 6225 * are onlined. 6226 */ 6227 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6228 unsigned long action, 6229 void *hcpu) 6230 { 6231 int cpu = (long)hcpu; 6232 6233 switch (action & ~CPU_TASKS_FROZEN) { 6234 case CPU_ONLINE: 6235 sched_domains_numa_masks_set(cpu); 6236 break; 6237 6238 case CPU_DEAD: 6239 sched_domains_numa_masks_clear(cpu); 6240 break; 6241 6242 default: 6243 return NOTIFY_DONE; 6244 } 6245 6246 return NOTIFY_OK; 6247 } 6248 #else 6249 static inline void sched_init_numa(void) 6250 { 6251 } 6252 6253 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6254 unsigned long action, 6255 void *hcpu) 6256 { 6257 return 0; 6258 } 6259 #endif /* CONFIG_NUMA */ 6260 6261 static int __sdt_alloc(const struct cpumask *cpu_map) 6262 { 6263 struct sched_domain_topology_level *tl; 6264 int j; 6265 6266 for_each_sd_topology(tl) { 6267 struct sd_data *sdd = &tl->data; 6268 6269 sdd->sd = alloc_percpu(struct sched_domain *); 6270 if (!sdd->sd) 6271 return -ENOMEM; 6272 6273 sdd->sg = alloc_percpu(struct sched_group *); 6274 if (!sdd->sg) 6275 return -ENOMEM; 6276 6277 sdd->sgp = alloc_percpu(struct sched_group_power *); 6278 if (!sdd->sgp) 6279 return -ENOMEM; 6280 6281 for_each_cpu(j, cpu_map) { 6282 struct sched_domain *sd; 6283 struct sched_group *sg; 6284 struct sched_group_power *sgp; 6285 6286 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6287 GFP_KERNEL, cpu_to_node(j)); 6288 if (!sd) 6289 return -ENOMEM; 6290 6291 *per_cpu_ptr(sdd->sd, j) = sd; 6292 6293 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6294 GFP_KERNEL, cpu_to_node(j)); 6295 if (!sg) 6296 return -ENOMEM; 6297 6298 sg->next = sg; 6299 6300 *per_cpu_ptr(sdd->sg, j) = sg; 6301 6302 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6303 GFP_KERNEL, cpu_to_node(j)); 6304 if (!sgp) 6305 return -ENOMEM; 6306 6307 *per_cpu_ptr(sdd->sgp, j) = sgp; 6308 } 6309 } 6310 6311 return 0; 6312 } 6313 6314 static void __sdt_free(const struct cpumask *cpu_map) 6315 { 6316 struct sched_domain_topology_level *tl; 6317 int j; 6318 6319 for_each_sd_topology(tl) { 6320 struct sd_data *sdd = &tl->data; 6321 6322 for_each_cpu(j, cpu_map) { 6323 struct sched_domain *sd; 6324 6325 if (sdd->sd) { 6326 sd = *per_cpu_ptr(sdd->sd, j); 6327 if (sd && (sd->flags & SD_OVERLAP)) 6328 free_sched_groups(sd->groups, 0); 6329 kfree(*per_cpu_ptr(sdd->sd, j)); 6330 } 6331 6332 if (sdd->sg) 6333 kfree(*per_cpu_ptr(sdd->sg, j)); 6334 if (sdd->sgp) 6335 kfree(*per_cpu_ptr(sdd->sgp, j)); 6336 } 6337 free_percpu(sdd->sd); 6338 sdd->sd = NULL; 6339 free_percpu(sdd->sg); 6340 sdd->sg = NULL; 6341 free_percpu(sdd->sgp); 6342 sdd->sgp = NULL; 6343 } 6344 } 6345 6346 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6347 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6348 struct sched_domain *child, int cpu) 6349 { 6350 struct sched_domain *sd = tl->init(tl, cpu); 6351 if (!sd) 6352 return child; 6353 6354 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6355 if (child) { 6356 sd->level = child->level + 1; 6357 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6358 child->parent = sd; 6359 sd->child = child; 6360 } 6361 set_domain_attribute(sd, attr); 6362 6363 return sd; 6364 } 6365 6366 /* 6367 * Build sched domains for a given set of cpus and attach the sched domains 6368 * to the individual cpus 6369 */ 6370 static int build_sched_domains(const struct cpumask *cpu_map, 6371 struct sched_domain_attr *attr) 6372 { 6373 enum s_alloc alloc_state; 6374 struct sched_domain *sd; 6375 struct s_data d; 6376 int i, ret = -ENOMEM; 6377 6378 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6379 if (alloc_state != sa_rootdomain) 6380 goto error; 6381 6382 /* Set up domains for cpus specified by the cpu_map. */ 6383 for_each_cpu(i, cpu_map) { 6384 struct sched_domain_topology_level *tl; 6385 6386 sd = NULL; 6387 for_each_sd_topology(tl) { 6388 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6389 if (tl == sched_domain_topology) 6390 *per_cpu_ptr(d.sd, i) = sd; 6391 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6392 sd->flags |= SD_OVERLAP; 6393 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6394 break; 6395 } 6396 } 6397 6398 /* Build the groups for the domains */ 6399 for_each_cpu(i, cpu_map) { 6400 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6401 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6402 if (sd->flags & SD_OVERLAP) { 6403 if (build_overlap_sched_groups(sd, i)) 6404 goto error; 6405 } else { 6406 if (build_sched_groups(sd, i)) 6407 goto error; 6408 } 6409 } 6410 } 6411 6412 /* Calculate CPU power for physical packages and nodes */ 6413 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6414 if (!cpumask_test_cpu(i, cpu_map)) 6415 continue; 6416 6417 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6418 claim_allocations(i, sd); 6419 init_sched_groups_power(i, sd); 6420 } 6421 } 6422 6423 /* Attach the domains */ 6424 rcu_read_lock(); 6425 for_each_cpu(i, cpu_map) { 6426 sd = *per_cpu_ptr(d.sd, i); 6427 cpu_attach_domain(sd, d.rd, i); 6428 } 6429 rcu_read_unlock(); 6430 6431 ret = 0; 6432 error: 6433 __free_domain_allocs(&d, alloc_state, cpu_map); 6434 return ret; 6435 } 6436 6437 static cpumask_var_t *doms_cur; /* current sched domains */ 6438 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6439 static struct sched_domain_attr *dattr_cur; 6440 /* attribues of custom domains in 'doms_cur' */ 6441 6442 /* 6443 * Special case: If a kmalloc of a doms_cur partition (array of 6444 * cpumask) fails, then fallback to a single sched domain, 6445 * as determined by the single cpumask fallback_doms. 6446 */ 6447 static cpumask_var_t fallback_doms; 6448 6449 /* 6450 * arch_update_cpu_topology lets virtualized architectures update the 6451 * cpu core maps. It is supposed to return 1 if the topology changed 6452 * or 0 if it stayed the same. 6453 */ 6454 int __attribute__((weak)) arch_update_cpu_topology(void) 6455 { 6456 return 0; 6457 } 6458 6459 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6460 { 6461 int i; 6462 cpumask_var_t *doms; 6463 6464 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6465 if (!doms) 6466 return NULL; 6467 for (i = 0; i < ndoms; i++) { 6468 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6469 free_sched_domains(doms, i); 6470 return NULL; 6471 } 6472 } 6473 return doms; 6474 } 6475 6476 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6477 { 6478 unsigned int i; 6479 for (i = 0; i < ndoms; i++) 6480 free_cpumask_var(doms[i]); 6481 kfree(doms); 6482 } 6483 6484 /* 6485 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6486 * For now this just excludes isolated cpus, but could be used to 6487 * exclude other special cases in the future. 6488 */ 6489 static int init_sched_domains(const struct cpumask *cpu_map) 6490 { 6491 int err; 6492 6493 arch_update_cpu_topology(); 6494 ndoms_cur = 1; 6495 doms_cur = alloc_sched_domains(ndoms_cur); 6496 if (!doms_cur) 6497 doms_cur = &fallback_doms; 6498 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6499 err = build_sched_domains(doms_cur[0], NULL); 6500 register_sched_domain_sysctl(); 6501 6502 return err; 6503 } 6504 6505 /* 6506 * Detach sched domains from a group of cpus specified in cpu_map 6507 * These cpus will now be attached to the NULL domain 6508 */ 6509 static void detach_destroy_domains(const struct cpumask *cpu_map) 6510 { 6511 int i; 6512 6513 rcu_read_lock(); 6514 for_each_cpu(i, cpu_map) 6515 cpu_attach_domain(NULL, &def_root_domain, i); 6516 rcu_read_unlock(); 6517 } 6518 6519 /* handle null as "default" */ 6520 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6521 struct sched_domain_attr *new, int idx_new) 6522 { 6523 struct sched_domain_attr tmp; 6524 6525 /* fast path */ 6526 if (!new && !cur) 6527 return 1; 6528 6529 tmp = SD_ATTR_INIT; 6530 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6531 new ? (new + idx_new) : &tmp, 6532 sizeof(struct sched_domain_attr)); 6533 } 6534 6535 /* 6536 * Partition sched domains as specified by the 'ndoms_new' 6537 * cpumasks in the array doms_new[] of cpumasks. This compares 6538 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6539 * It destroys each deleted domain and builds each new domain. 6540 * 6541 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6542 * The masks don't intersect (don't overlap.) We should setup one 6543 * sched domain for each mask. CPUs not in any of the cpumasks will 6544 * not be load balanced. If the same cpumask appears both in the 6545 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6546 * it as it is. 6547 * 6548 * The passed in 'doms_new' should be allocated using 6549 * alloc_sched_domains. This routine takes ownership of it and will 6550 * free_sched_domains it when done with it. If the caller failed the 6551 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6552 * and partition_sched_domains() will fallback to the single partition 6553 * 'fallback_doms', it also forces the domains to be rebuilt. 6554 * 6555 * If doms_new == NULL it will be replaced with cpu_online_mask. 6556 * ndoms_new == 0 is a special case for destroying existing domains, 6557 * and it will not create the default domain. 6558 * 6559 * Call with hotplug lock held 6560 */ 6561 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6562 struct sched_domain_attr *dattr_new) 6563 { 6564 int i, j, n; 6565 int new_topology; 6566 6567 mutex_lock(&sched_domains_mutex); 6568 6569 /* always unregister in case we don't destroy any domains */ 6570 unregister_sched_domain_sysctl(); 6571 6572 /* Let architecture update cpu core mappings. */ 6573 new_topology = arch_update_cpu_topology(); 6574 6575 n = doms_new ? ndoms_new : 0; 6576 6577 /* Destroy deleted domains */ 6578 for (i = 0; i < ndoms_cur; i++) { 6579 for (j = 0; j < n && !new_topology; j++) { 6580 if (cpumask_equal(doms_cur[i], doms_new[j]) 6581 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6582 goto match1; 6583 } 6584 /* no match - a current sched domain not in new doms_new[] */ 6585 detach_destroy_domains(doms_cur[i]); 6586 match1: 6587 ; 6588 } 6589 6590 n = ndoms_cur; 6591 if (doms_new == NULL) { 6592 n = 0; 6593 doms_new = &fallback_doms; 6594 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6595 WARN_ON_ONCE(dattr_new); 6596 } 6597 6598 /* Build new domains */ 6599 for (i = 0; i < ndoms_new; i++) { 6600 for (j = 0; j < n && !new_topology; j++) { 6601 if (cpumask_equal(doms_new[i], doms_cur[j]) 6602 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6603 goto match2; 6604 } 6605 /* no match - add a new doms_new */ 6606 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6607 match2: 6608 ; 6609 } 6610 6611 /* Remember the new sched domains */ 6612 if (doms_cur != &fallback_doms) 6613 free_sched_domains(doms_cur, ndoms_cur); 6614 kfree(dattr_cur); /* kfree(NULL) is safe */ 6615 doms_cur = doms_new; 6616 dattr_cur = dattr_new; 6617 ndoms_cur = ndoms_new; 6618 6619 register_sched_domain_sysctl(); 6620 6621 mutex_unlock(&sched_domains_mutex); 6622 } 6623 6624 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6625 6626 /* 6627 * Update cpusets according to cpu_active mask. If cpusets are 6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6629 * around partition_sched_domains(). 6630 * 6631 * If we come here as part of a suspend/resume, don't touch cpusets because we 6632 * want to restore it back to its original state upon resume anyway. 6633 */ 6634 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6635 void *hcpu) 6636 { 6637 switch (action) { 6638 case CPU_ONLINE_FROZEN: 6639 case CPU_DOWN_FAILED_FROZEN: 6640 6641 /* 6642 * num_cpus_frozen tracks how many CPUs are involved in suspend 6643 * resume sequence. As long as this is not the last online 6644 * operation in the resume sequence, just build a single sched 6645 * domain, ignoring cpusets. 6646 */ 6647 num_cpus_frozen--; 6648 if (likely(num_cpus_frozen)) { 6649 partition_sched_domains(1, NULL, NULL); 6650 break; 6651 } 6652 6653 /* 6654 * This is the last CPU online operation. So fall through and 6655 * restore the original sched domains by considering the 6656 * cpuset configurations. 6657 */ 6658 6659 case CPU_ONLINE: 6660 case CPU_DOWN_FAILED: 6661 cpuset_update_active_cpus(true); 6662 break; 6663 default: 6664 return NOTIFY_DONE; 6665 } 6666 return NOTIFY_OK; 6667 } 6668 6669 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6670 void *hcpu) 6671 { 6672 switch (action) { 6673 case CPU_DOWN_PREPARE: 6674 cpuset_update_active_cpus(false); 6675 break; 6676 case CPU_DOWN_PREPARE_FROZEN: 6677 num_cpus_frozen++; 6678 partition_sched_domains(1, NULL, NULL); 6679 break; 6680 default: 6681 return NOTIFY_DONE; 6682 } 6683 return NOTIFY_OK; 6684 } 6685 6686 void __init sched_init_smp(void) 6687 { 6688 cpumask_var_t non_isolated_cpus; 6689 6690 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6691 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6692 6693 sched_init_numa(); 6694 6695 /* 6696 * There's no userspace yet to cause hotplug operations; hence all the 6697 * cpu masks are stable and all blatant races in the below code cannot 6698 * happen. 6699 */ 6700 mutex_lock(&sched_domains_mutex); 6701 init_sched_domains(cpu_active_mask); 6702 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6703 if (cpumask_empty(non_isolated_cpus)) 6704 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6705 mutex_unlock(&sched_domains_mutex); 6706 6707 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6708 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6709 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6710 6711 init_hrtick(); 6712 6713 /* Move init over to a non-isolated CPU */ 6714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6715 BUG(); 6716 sched_init_granularity(); 6717 free_cpumask_var(non_isolated_cpus); 6718 6719 init_sched_rt_class(); 6720 init_sched_dl_class(); 6721 } 6722 #else 6723 void __init sched_init_smp(void) 6724 { 6725 sched_init_granularity(); 6726 } 6727 #endif /* CONFIG_SMP */ 6728 6729 const_debug unsigned int sysctl_timer_migration = 1; 6730 6731 int in_sched_functions(unsigned long addr) 6732 { 6733 return in_lock_functions(addr) || 6734 (addr >= (unsigned long)__sched_text_start 6735 && addr < (unsigned long)__sched_text_end); 6736 } 6737 6738 #ifdef CONFIG_CGROUP_SCHED 6739 /* 6740 * Default task group. 6741 * Every task in system belongs to this group at bootup. 6742 */ 6743 struct task_group root_task_group; 6744 LIST_HEAD(task_groups); 6745 #endif 6746 6747 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6748 6749 void __init sched_init(void) 6750 { 6751 int i, j; 6752 unsigned long alloc_size = 0, ptr; 6753 6754 #ifdef CONFIG_FAIR_GROUP_SCHED 6755 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6756 #endif 6757 #ifdef CONFIG_RT_GROUP_SCHED 6758 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6759 #endif 6760 #ifdef CONFIG_CPUMASK_OFFSTACK 6761 alloc_size += num_possible_cpus() * cpumask_size(); 6762 #endif 6763 if (alloc_size) { 6764 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6765 6766 #ifdef CONFIG_FAIR_GROUP_SCHED 6767 root_task_group.se = (struct sched_entity **)ptr; 6768 ptr += nr_cpu_ids * sizeof(void **); 6769 6770 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6771 ptr += nr_cpu_ids * sizeof(void **); 6772 6773 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6774 #ifdef CONFIG_RT_GROUP_SCHED 6775 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6776 ptr += nr_cpu_ids * sizeof(void **); 6777 6778 root_task_group.rt_rq = (struct rt_rq **)ptr; 6779 ptr += nr_cpu_ids * sizeof(void **); 6780 6781 #endif /* CONFIG_RT_GROUP_SCHED */ 6782 #ifdef CONFIG_CPUMASK_OFFSTACK 6783 for_each_possible_cpu(i) { 6784 per_cpu(load_balance_mask, i) = (void *)ptr; 6785 ptr += cpumask_size(); 6786 } 6787 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6788 } 6789 6790 init_rt_bandwidth(&def_rt_bandwidth, 6791 global_rt_period(), global_rt_runtime()); 6792 init_dl_bandwidth(&def_dl_bandwidth, 6793 global_rt_period(), global_rt_runtime()); 6794 6795 #ifdef CONFIG_SMP 6796 init_defrootdomain(); 6797 #endif 6798 6799 #ifdef CONFIG_RT_GROUP_SCHED 6800 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6801 global_rt_period(), global_rt_runtime()); 6802 #endif /* CONFIG_RT_GROUP_SCHED */ 6803 6804 #ifdef CONFIG_CGROUP_SCHED 6805 list_add(&root_task_group.list, &task_groups); 6806 INIT_LIST_HEAD(&root_task_group.children); 6807 INIT_LIST_HEAD(&root_task_group.siblings); 6808 autogroup_init(&init_task); 6809 6810 #endif /* CONFIG_CGROUP_SCHED */ 6811 6812 for_each_possible_cpu(i) { 6813 struct rq *rq; 6814 6815 rq = cpu_rq(i); 6816 raw_spin_lock_init(&rq->lock); 6817 rq->nr_running = 0; 6818 rq->calc_load_active = 0; 6819 rq->calc_load_update = jiffies + LOAD_FREQ; 6820 init_cfs_rq(&rq->cfs); 6821 init_rt_rq(&rq->rt, rq); 6822 init_dl_rq(&rq->dl, rq); 6823 #ifdef CONFIG_FAIR_GROUP_SCHED 6824 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6825 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6826 /* 6827 * How much cpu bandwidth does root_task_group get? 6828 * 6829 * In case of task-groups formed thr' the cgroup filesystem, it 6830 * gets 100% of the cpu resources in the system. This overall 6831 * system cpu resource is divided among the tasks of 6832 * root_task_group and its child task-groups in a fair manner, 6833 * based on each entity's (task or task-group's) weight 6834 * (se->load.weight). 6835 * 6836 * In other words, if root_task_group has 10 tasks of weight 6837 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6838 * then A0's share of the cpu resource is: 6839 * 6840 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6841 * 6842 * We achieve this by letting root_task_group's tasks sit 6843 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6844 */ 6845 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6846 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6847 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6848 6849 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6850 #ifdef CONFIG_RT_GROUP_SCHED 6851 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6852 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6853 #endif 6854 6855 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6856 rq->cpu_load[j] = 0; 6857 6858 rq->last_load_update_tick = jiffies; 6859 6860 #ifdef CONFIG_SMP 6861 rq->sd = NULL; 6862 rq->rd = NULL; 6863 rq->cpu_power = SCHED_POWER_SCALE; 6864 rq->post_schedule = 0; 6865 rq->active_balance = 0; 6866 rq->next_balance = jiffies; 6867 rq->push_cpu = 0; 6868 rq->cpu = i; 6869 rq->online = 0; 6870 rq->idle_stamp = 0; 6871 rq->avg_idle = 2*sysctl_sched_migration_cost; 6872 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6873 6874 INIT_LIST_HEAD(&rq->cfs_tasks); 6875 6876 rq_attach_root(rq, &def_root_domain); 6877 #ifdef CONFIG_NO_HZ_COMMON 6878 rq->nohz_flags = 0; 6879 #endif 6880 #ifdef CONFIG_NO_HZ_FULL 6881 rq->last_sched_tick = 0; 6882 #endif 6883 #endif 6884 init_rq_hrtick(rq); 6885 atomic_set(&rq->nr_iowait, 0); 6886 } 6887 6888 set_load_weight(&init_task); 6889 6890 #ifdef CONFIG_PREEMPT_NOTIFIERS 6891 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6892 #endif 6893 6894 /* 6895 * The boot idle thread does lazy MMU switching as well: 6896 */ 6897 atomic_inc(&init_mm.mm_count); 6898 enter_lazy_tlb(&init_mm, current); 6899 6900 /* 6901 * Make us the idle thread. Technically, schedule() should not be 6902 * called from this thread, however somewhere below it might be, 6903 * but because we are the idle thread, we just pick up running again 6904 * when this runqueue becomes "idle". 6905 */ 6906 init_idle(current, smp_processor_id()); 6907 6908 calc_load_update = jiffies + LOAD_FREQ; 6909 6910 /* 6911 * During early bootup we pretend to be a normal task: 6912 */ 6913 current->sched_class = &fair_sched_class; 6914 6915 #ifdef CONFIG_SMP 6916 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6917 /* May be allocated at isolcpus cmdline parse time */ 6918 if (cpu_isolated_map == NULL) 6919 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6920 idle_thread_set_boot_cpu(); 6921 #endif 6922 init_sched_fair_class(); 6923 6924 scheduler_running = 1; 6925 } 6926 6927 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6928 static inline int preempt_count_equals(int preempt_offset) 6929 { 6930 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6931 6932 return (nested == preempt_offset); 6933 } 6934 6935 void __might_sleep(const char *file, int line, int preempt_offset) 6936 { 6937 static unsigned long prev_jiffy; /* ratelimiting */ 6938 6939 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6940 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 6941 system_state != SYSTEM_RUNNING || oops_in_progress) 6942 return; 6943 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6944 return; 6945 prev_jiffy = jiffies; 6946 6947 printk(KERN_ERR 6948 "BUG: sleeping function called from invalid context at %s:%d\n", 6949 file, line); 6950 printk(KERN_ERR 6951 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6952 in_atomic(), irqs_disabled(), 6953 current->pid, current->comm); 6954 6955 debug_show_held_locks(current); 6956 if (irqs_disabled()) 6957 print_irqtrace_events(current); 6958 dump_stack(); 6959 } 6960 EXPORT_SYMBOL(__might_sleep); 6961 #endif 6962 6963 #ifdef CONFIG_MAGIC_SYSRQ 6964 static void normalize_task(struct rq *rq, struct task_struct *p) 6965 { 6966 const struct sched_class *prev_class = p->sched_class; 6967 struct sched_attr attr = { 6968 .sched_policy = SCHED_NORMAL, 6969 }; 6970 int old_prio = p->prio; 6971 int on_rq; 6972 6973 on_rq = p->on_rq; 6974 if (on_rq) 6975 dequeue_task(rq, p, 0); 6976 __setscheduler(rq, p, &attr); 6977 if (on_rq) { 6978 enqueue_task(rq, p, 0); 6979 resched_task(rq->curr); 6980 } 6981 6982 check_class_changed(rq, p, prev_class, old_prio); 6983 } 6984 6985 void normalize_rt_tasks(void) 6986 { 6987 struct task_struct *g, *p; 6988 unsigned long flags; 6989 struct rq *rq; 6990 6991 read_lock_irqsave(&tasklist_lock, flags); 6992 do_each_thread(g, p) { 6993 /* 6994 * Only normalize user tasks: 6995 */ 6996 if (!p->mm) 6997 continue; 6998 6999 p->se.exec_start = 0; 7000 #ifdef CONFIG_SCHEDSTATS 7001 p->se.statistics.wait_start = 0; 7002 p->se.statistics.sleep_start = 0; 7003 p->se.statistics.block_start = 0; 7004 #endif 7005 7006 if (!dl_task(p) && !rt_task(p)) { 7007 /* 7008 * Renice negative nice level userspace 7009 * tasks back to 0: 7010 */ 7011 if (TASK_NICE(p) < 0 && p->mm) 7012 set_user_nice(p, 0); 7013 continue; 7014 } 7015 7016 raw_spin_lock(&p->pi_lock); 7017 rq = __task_rq_lock(p); 7018 7019 normalize_task(rq, p); 7020 7021 __task_rq_unlock(rq); 7022 raw_spin_unlock(&p->pi_lock); 7023 } while_each_thread(g, p); 7024 7025 read_unlock_irqrestore(&tasklist_lock, flags); 7026 } 7027 7028 #endif /* CONFIG_MAGIC_SYSRQ */ 7029 7030 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7031 /* 7032 * These functions are only useful for the IA64 MCA handling, or kdb. 7033 * 7034 * They can only be called when the whole system has been 7035 * stopped - every CPU needs to be quiescent, and no scheduling 7036 * activity can take place. Using them for anything else would 7037 * be a serious bug, and as a result, they aren't even visible 7038 * under any other configuration. 7039 */ 7040 7041 /** 7042 * curr_task - return the current task for a given cpu. 7043 * @cpu: the processor in question. 7044 * 7045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7046 * 7047 * Return: The current task for @cpu. 7048 */ 7049 struct task_struct *curr_task(int cpu) 7050 { 7051 return cpu_curr(cpu); 7052 } 7053 7054 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7055 7056 #ifdef CONFIG_IA64 7057 /** 7058 * set_curr_task - set the current task for a given cpu. 7059 * @cpu: the processor in question. 7060 * @p: the task pointer to set. 7061 * 7062 * Description: This function must only be used when non-maskable interrupts 7063 * are serviced on a separate stack. It allows the architecture to switch the 7064 * notion of the current task on a cpu in a non-blocking manner. This function 7065 * must be called with all CPU's synchronized, and interrupts disabled, the 7066 * and caller must save the original value of the current task (see 7067 * curr_task() above) and restore that value before reenabling interrupts and 7068 * re-starting the system. 7069 * 7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7071 */ 7072 void set_curr_task(int cpu, struct task_struct *p) 7073 { 7074 cpu_curr(cpu) = p; 7075 } 7076 7077 #endif 7078 7079 #ifdef CONFIG_CGROUP_SCHED 7080 /* task_group_lock serializes the addition/removal of task groups */ 7081 static DEFINE_SPINLOCK(task_group_lock); 7082 7083 static void free_sched_group(struct task_group *tg) 7084 { 7085 free_fair_sched_group(tg); 7086 free_rt_sched_group(tg); 7087 autogroup_free(tg); 7088 kfree(tg); 7089 } 7090 7091 /* allocate runqueue etc for a new task group */ 7092 struct task_group *sched_create_group(struct task_group *parent) 7093 { 7094 struct task_group *tg; 7095 7096 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7097 if (!tg) 7098 return ERR_PTR(-ENOMEM); 7099 7100 if (!alloc_fair_sched_group(tg, parent)) 7101 goto err; 7102 7103 if (!alloc_rt_sched_group(tg, parent)) 7104 goto err; 7105 7106 return tg; 7107 7108 err: 7109 free_sched_group(tg); 7110 return ERR_PTR(-ENOMEM); 7111 } 7112 7113 void sched_online_group(struct task_group *tg, struct task_group *parent) 7114 { 7115 unsigned long flags; 7116 7117 spin_lock_irqsave(&task_group_lock, flags); 7118 list_add_rcu(&tg->list, &task_groups); 7119 7120 WARN_ON(!parent); /* root should already exist */ 7121 7122 tg->parent = parent; 7123 INIT_LIST_HEAD(&tg->children); 7124 list_add_rcu(&tg->siblings, &parent->children); 7125 spin_unlock_irqrestore(&task_group_lock, flags); 7126 } 7127 7128 /* rcu callback to free various structures associated with a task group */ 7129 static void free_sched_group_rcu(struct rcu_head *rhp) 7130 { 7131 /* now it should be safe to free those cfs_rqs */ 7132 free_sched_group(container_of(rhp, struct task_group, rcu)); 7133 } 7134 7135 /* Destroy runqueue etc associated with a task group */ 7136 void sched_destroy_group(struct task_group *tg) 7137 { 7138 /* wait for possible concurrent references to cfs_rqs complete */ 7139 call_rcu(&tg->rcu, free_sched_group_rcu); 7140 } 7141 7142 void sched_offline_group(struct task_group *tg) 7143 { 7144 unsigned long flags; 7145 int i; 7146 7147 /* end participation in shares distribution */ 7148 for_each_possible_cpu(i) 7149 unregister_fair_sched_group(tg, i); 7150 7151 spin_lock_irqsave(&task_group_lock, flags); 7152 list_del_rcu(&tg->list); 7153 list_del_rcu(&tg->siblings); 7154 spin_unlock_irqrestore(&task_group_lock, flags); 7155 } 7156 7157 /* change task's runqueue when it moves between groups. 7158 * The caller of this function should have put the task in its new group 7159 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7160 * reflect its new group. 7161 */ 7162 void sched_move_task(struct task_struct *tsk) 7163 { 7164 struct task_group *tg; 7165 int on_rq, running; 7166 unsigned long flags; 7167 struct rq *rq; 7168 7169 rq = task_rq_lock(tsk, &flags); 7170 7171 running = task_current(rq, tsk); 7172 on_rq = tsk->on_rq; 7173 7174 if (on_rq) 7175 dequeue_task(rq, tsk, 0); 7176 if (unlikely(running)) 7177 tsk->sched_class->put_prev_task(rq, tsk); 7178 7179 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id, 7180 lockdep_is_held(&tsk->sighand->siglock)), 7181 struct task_group, css); 7182 tg = autogroup_task_group(tsk, tg); 7183 tsk->sched_task_group = tg; 7184 7185 #ifdef CONFIG_FAIR_GROUP_SCHED 7186 if (tsk->sched_class->task_move_group) 7187 tsk->sched_class->task_move_group(tsk, on_rq); 7188 else 7189 #endif 7190 set_task_rq(tsk, task_cpu(tsk)); 7191 7192 if (unlikely(running)) 7193 tsk->sched_class->set_curr_task(rq); 7194 if (on_rq) 7195 enqueue_task(rq, tsk, 0); 7196 7197 task_rq_unlock(rq, tsk, &flags); 7198 } 7199 #endif /* CONFIG_CGROUP_SCHED */ 7200 7201 #ifdef CONFIG_RT_GROUP_SCHED 7202 /* 7203 * Ensure that the real time constraints are schedulable. 7204 */ 7205 static DEFINE_MUTEX(rt_constraints_mutex); 7206 7207 /* Must be called with tasklist_lock held */ 7208 static inline int tg_has_rt_tasks(struct task_group *tg) 7209 { 7210 struct task_struct *g, *p; 7211 7212 do_each_thread(g, p) { 7213 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7214 return 1; 7215 } while_each_thread(g, p); 7216 7217 return 0; 7218 } 7219 7220 struct rt_schedulable_data { 7221 struct task_group *tg; 7222 u64 rt_period; 7223 u64 rt_runtime; 7224 }; 7225 7226 static int tg_rt_schedulable(struct task_group *tg, void *data) 7227 { 7228 struct rt_schedulable_data *d = data; 7229 struct task_group *child; 7230 unsigned long total, sum = 0; 7231 u64 period, runtime; 7232 7233 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7234 runtime = tg->rt_bandwidth.rt_runtime; 7235 7236 if (tg == d->tg) { 7237 period = d->rt_period; 7238 runtime = d->rt_runtime; 7239 } 7240 7241 /* 7242 * Cannot have more runtime than the period. 7243 */ 7244 if (runtime > period && runtime != RUNTIME_INF) 7245 return -EINVAL; 7246 7247 /* 7248 * Ensure we don't starve existing RT tasks. 7249 */ 7250 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7251 return -EBUSY; 7252 7253 total = to_ratio(period, runtime); 7254 7255 /* 7256 * Nobody can have more than the global setting allows. 7257 */ 7258 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7259 return -EINVAL; 7260 7261 /* 7262 * The sum of our children's runtime should not exceed our own. 7263 */ 7264 list_for_each_entry_rcu(child, &tg->children, siblings) { 7265 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7266 runtime = child->rt_bandwidth.rt_runtime; 7267 7268 if (child == d->tg) { 7269 period = d->rt_period; 7270 runtime = d->rt_runtime; 7271 } 7272 7273 sum += to_ratio(period, runtime); 7274 } 7275 7276 if (sum > total) 7277 return -EINVAL; 7278 7279 return 0; 7280 } 7281 7282 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7283 { 7284 int ret; 7285 7286 struct rt_schedulable_data data = { 7287 .tg = tg, 7288 .rt_period = period, 7289 .rt_runtime = runtime, 7290 }; 7291 7292 rcu_read_lock(); 7293 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7294 rcu_read_unlock(); 7295 7296 return ret; 7297 } 7298 7299 static int tg_set_rt_bandwidth(struct task_group *tg, 7300 u64 rt_period, u64 rt_runtime) 7301 { 7302 int i, err = 0; 7303 7304 mutex_lock(&rt_constraints_mutex); 7305 read_lock(&tasklist_lock); 7306 err = __rt_schedulable(tg, rt_period, rt_runtime); 7307 if (err) 7308 goto unlock; 7309 7310 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7311 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7312 tg->rt_bandwidth.rt_runtime = rt_runtime; 7313 7314 for_each_possible_cpu(i) { 7315 struct rt_rq *rt_rq = tg->rt_rq[i]; 7316 7317 raw_spin_lock(&rt_rq->rt_runtime_lock); 7318 rt_rq->rt_runtime = rt_runtime; 7319 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7320 } 7321 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7322 unlock: 7323 read_unlock(&tasklist_lock); 7324 mutex_unlock(&rt_constraints_mutex); 7325 7326 return err; 7327 } 7328 7329 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7330 { 7331 u64 rt_runtime, rt_period; 7332 7333 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7334 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7335 if (rt_runtime_us < 0) 7336 rt_runtime = RUNTIME_INF; 7337 7338 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7339 } 7340 7341 static long sched_group_rt_runtime(struct task_group *tg) 7342 { 7343 u64 rt_runtime_us; 7344 7345 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7346 return -1; 7347 7348 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7349 do_div(rt_runtime_us, NSEC_PER_USEC); 7350 return rt_runtime_us; 7351 } 7352 7353 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7354 { 7355 u64 rt_runtime, rt_period; 7356 7357 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7358 rt_runtime = tg->rt_bandwidth.rt_runtime; 7359 7360 if (rt_period == 0) 7361 return -EINVAL; 7362 7363 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7364 } 7365 7366 static long sched_group_rt_period(struct task_group *tg) 7367 { 7368 u64 rt_period_us; 7369 7370 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7371 do_div(rt_period_us, NSEC_PER_USEC); 7372 return rt_period_us; 7373 } 7374 #endif /* CONFIG_RT_GROUP_SCHED */ 7375 7376 #ifdef CONFIG_RT_GROUP_SCHED 7377 static int sched_rt_global_constraints(void) 7378 { 7379 int ret = 0; 7380 7381 mutex_lock(&rt_constraints_mutex); 7382 read_lock(&tasklist_lock); 7383 ret = __rt_schedulable(NULL, 0, 0); 7384 read_unlock(&tasklist_lock); 7385 mutex_unlock(&rt_constraints_mutex); 7386 7387 return ret; 7388 } 7389 7390 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7391 { 7392 /* Don't accept realtime tasks when there is no way for them to run */ 7393 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7394 return 0; 7395 7396 return 1; 7397 } 7398 7399 #else /* !CONFIG_RT_GROUP_SCHED */ 7400 static int sched_rt_global_constraints(void) 7401 { 7402 unsigned long flags; 7403 int i, ret = 0; 7404 7405 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7406 for_each_possible_cpu(i) { 7407 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7408 7409 raw_spin_lock(&rt_rq->rt_runtime_lock); 7410 rt_rq->rt_runtime = global_rt_runtime(); 7411 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7412 } 7413 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7414 7415 return ret; 7416 } 7417 #endif /* CONFIG_RT_GROUP_SCHED */ 7418 7419 static int sched_dl_global_constraints(void) 7420 { 7421 u64 runtime = global_rt_runtime(); 7422 u64 period = global_rt_period(); 7423 u64 new_bw = to_ratio(period, runtime); 7424 int cpu, ret = 0; 7425 7426 /* 7427 * Here we want to check the bandwidth not being set to some 7428 * value smaller than the currently allocated bandwidth in 7429 * any of the root_domains. 7430 * 7431 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7432 * cycling on root_domains... Discussion on different/better 7433 * solutions is welcome! 7434 */ 7435 for_each_possible_cpu(cpu) { 7436 struct dl_bw *dl_b = dl_bw_of(cpu); 7437 7438 raw_spin_lock(&dl_b->lock); 7439 if (new_bw < dl_b->total_bw) 7440 ret = -EBUSY; 7441 raw_spin_unlock(&dl_b->lock); 7442 7443 if (ret) 7444 break; 7445 } 7446 7447 return ret; 7448 } 7449 7450 static void sched_dl_do_global(void) 7451 { 7452 u64 new_bw = -1; 7453 int cpu; 7454 7455 def_dl_bandwidth.dl_period = global_rt_period(); 7456 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7457 7458 if (global_rt_runtime() != RUNTIME_INF) 7459 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7460 7461 /* 7462 * FIXME: As above... 7463 */ 7464 for_each_possible_cpu(cpu) { 7465 struct dl_bw *dl_b = dl_bw_of(cpu); 7466 7467 raw_spin_lock(&dl_b->lock); 7468 dl_b->bw = new_bw; 7469 raw_spin_unlock(&dl_b->lock); 7470 } 7471 } 7472 7473 static int sched_rt_global_validate(void) 7474 { 7475 if (sysctl_sched_rt_period <= 0) 7476 return -EINVAL; 7477 7478 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period) 7479 return -EINVAL; 7480 7481 return 0; 7482 } 7483 7484 static void sched_rt_do_global(void) 7485 { 7486 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7487 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7488 } 7489 7490 int sched_rt_handler(struct ctl_table *table, int write, 7491 void __user *buffer, size_t *lenp, 7492 loff_t *ppos) 7493 { 7494 int old_period, old_runtime; 7495 static DEFINE_MUTEX(mutex); 7496 int ret; 7497 7498 mutex_lock(&mutex); 7499 old_period = sysctl_sched_rt_period; 7500 old_runtime = sysctl_sched_rt_runtime; 7501 7502 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7503 7504 if (!ret && write) { 7505 ret = sched_rt_global_validate(); 7506 if (ret) 7507 goto undo; 7508 7509 ret = sched_rt_global_constraints(); 7510 if (ret) 7511 goto undo; 7512 7513 ret = sched_dl_global_constraints(); 7514 if (ret) 7515 goto undo; 7516 7517 sched_rt_do_global(); 7518 sched_dl_do_global(); 7519 } 7520 if (0) { 7521 undo: 7522 sysctl_sched_rt_period = old_period; 7523 sysctl_sched_rt_runtime = old_runtime; 7524 } 7525 mutex_unlock(&mutex); 7526 7527 return ret; 7528 } 7529 7530 int sched_rr_handler(struct ctl_table *table, int write, 7531 void __user *buffer, size_t *lenp, 7532 loff_t *ppos) 7533 { 7534 int ret; 7535 static DEFINE_MUTEX(mutex); 7536 7537 mutex_lock(&mutex); 7538 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7539 /* make sure that internally we keep jiffies */ 7540 /* also, writing zero resets timeslice to default */ 7541 if (!ret && write) { 7542 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7543 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7544 } 7545 mutex_unlock(&mutex); 7546 return ret; 7547 } 7548 7549 #ifdef CONFIG_CGROUP_SCHED 7550 7551 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7552 { 7553 return css ? container_of(css, struct task_group, css) : NULL; 7554 } 7555 7556 static struct cgroup_subsys_state * 7557 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7558 { 7559 struct task_group *parent = css_tg(parent_css); 7560 struct task_group *tg; 7561 7562 if (!parent) { 7563 /* This is early initialization for the top cgroup */ 7564 return &root_task_group.css; 7565 } 7566 7567 tg = sched_create_group(parent); 7568 if (IS_ERR(tg)) 7569 return ERR_PTR(-ENOMEM); 7570 7571 return &tg->css; 7572 } 7573 7574 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7575 { 7576 struct task_group *tg = css_tg(css); 7577 struct task_group *parent = css_tg(css_parent(css)); 7578 7579 if (parent) 7580 sched_online_group(tg, parent); 7581 return 0; 7582 } 7583 7584 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7585 { 7586 struct task_group *tg = css_tg(css); 7587 7588 sched_destroy_group(tg); 7589 } 7590 7591 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7592 { 7593 struct task_group *tg = css_tg(css); 7594 7595 sched_offline_group(tg); 7596 } 7597 7598 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7599 struct cgroup_taskset *tset) 7600 { 7601 struct task_struct *task; 7602 7603 cgroup_taskset_for_each(task, css, tset) { 7604 #ifdef CONFIG_RT_GROUP_SCHED 7605 if (!sched_rt_can_attach(css_tg(css), task)) 7606 return -EINVAL; 7607 #else 7608 /* We don't support RT-tasks being in separate groups */ 7609 if (task->sched_class != &fair_sched_class) 7610 return -EINVAL; 7611 #endif 7612 } 7613 return 0; 7614 } 7615 7616 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7617 struct cgroup_taskset *tset) 7618 { 7619 struct task_struct *task; 7620 7621 cgroup_taskset_for_each(task, css, tset) 7622 sched_move_task(task); 7623 } 7624 7625 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7626 struct cgroup_subsys_state *old_css, 7627 struct task_struct *task) 7628 { 7629 /* 7630 * cgroup_exit() is called in the copy_process() failure path. 7631 * Ignore this case since the task hasn't ran yet, this avoids 7632 * trying to poke a half freed task state from generic code. 7633 */ 7634 if (!(task->flags & PF_EXITING)) 7635 return; 7636 7637 sched_move_task(task); 7638 } 7639 7640 #ifdef CONFIG_FAIR_GROUP_SCHED 7641 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7642 struct cftype *cftype, u64 shareval) 7643 { 7644 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7645 } 7646 7647 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7648 struct cftype *cft) 7649 { 7650 struct task_group *tg = css_tg(css); 7651 7652 return (u64) scale_load_down(tg->shares); 7653 } 7654 7655 #ifdef CONFIG_CFS_BANDWIDTH 7656 static DEFINE_MUTEX(cfs_constraints_mutex); 7657 7658 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7659 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7660 7661 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7662 7663 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7664 { 7665 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7666 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7667 7668 if (tg == &root_task_group) 7669 return -EINVAL; 7670 7671 /* 7672 * Ensure we have at some amount of bandwidth every period. This is 7673 * to prevent reaching a state of large arrears when throttled via 7674 * entity_tick() resulting in prolonged exit starvation. 7675 */ 7676 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7677 return -EINVAL; 7678 7679 /* 7680 * Likewise, bound things on the otherside by preventing insane quota 7681 * periods. This also allows us to normalize in computing quota 7682 * feasibility. 7683 */ 7684 if (period > max_cfs_quota_period) 7685 return -EINVAL; 7686 7687 mutex_lock(&cfs_constraints_mutex); 7688 ret = __cfs_schedulable(tg, period, quota); 7689 if (ret) 7690 goto out_unlock; 7691 7692 runtime_enabled = quota != RUNTIME_INF; 7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7694 /* 7695 * If we need to toggle cfs_bandwidth_used, off->on must occur 7696 * before making related changes, and on->off must occur afterwards 7697 */ 7698 if (runtime_enabled && !runtime_was_enabled) 7699 cfs_bandwidth_usage_inc(); 7700 raw_spin_lock_irq(&cfs_b->lock); 7701 cfs_b->period = ns_to_ktime(period); 7702 cfs_b->quota = quota; 7703 7704 __refill_cfs_bandwidth_runtime(cfs_b); 7705 /* restart the period timer (if active) to handle new period expiry */ 7706 if (runtime_enabled && cfs_b->timer_active) { 7707 /* force a reprogram */ 7708 cfs_b->timer_active = 0; 7709 __start_cfs_bandwidth(cfs_b); 7710 } 7711 raw_spin_unlock_irq(&cfs_b->lock); 7712 7713 for_each_possible_cpu(i) { 7714 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7715 struct rq *rq = cfs_rq->rq; 7716 7717 raw_spin_lock_irq(&rq->lock); 7718 cfs_rq->runtime_enabled = runtime_enabled; 7719 cfs_rq->runtime_remaining = 0; 7720 7721 if (cfs_rq->throttled) 7722 unthrottle_cfs_rq(cfs_rq); 7723 raw_spin_unlock_irq(&rq->lock); 7724 } 7725 if (runtime_was_enabled && !runtime_enabled) 7726 cfs_bandwidth_usage_dec(); 7727 out_unlock: 7728 mutex_unlock(&cfs_constraints_mutex); 7729 7730 return ret; 7731 } 7732 7733 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7734 { 7735 u64 quota, period; 7736 7737 period = ktime_to_ns(tg->cfs_bandwidth.period); 7738 if (cfs_quota_us < 0) 7739 quota = RUNTIME_INF; 7740 else 7741 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7742 7743 return tg_set_cfs_bandwidth(tg, period, quota); 7744 } 7745 7746 long tg_get_cfs_quota(struct task_group *tg) 7747 { 7748 u64 quota_us; 7749 7750 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7751 return -1; 7752 7753 quota_us = tg->cfs_bandwidth.quota; 7754 do_div(quota_us, NSEC_PER_USEC); 7755 7756 return quota_us; 7757 } 7758 7759 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7760 { 7761 u64 quota, period; 7762 7763 period = (u64)cfs_period_us * NSEC_PER_USEC; 7764 quota = tg->cfs_bandwidth.quota; 7765 7766 return tg_set_cfs_bandwidth(tg, period, quota); 7767 } 7768 7769 long tg_get_cfs_period(struct task_group *tg) 7770 { 7771 u64 cfs_period_us; 7772 7773 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7774 do_div(cfs_period_us, NSEC_PER_USEC); 7775 7776 return cfs_period_us; 7777 } 7778 7779 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7780 struct cftype *cft) 7781 { 7782 return tg_get_cfs_quota(css_tg(css)); 7783 } 7784 7785 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7786 struct cftype *cftype, s64 cfs_quota_us) 7787 { 7788 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7789 } 7790 7791 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7792 struct cftype *cft) 7793 { 7794 return tg_get_cfs_period(css_tg(css)); 7795 } 7796 7797 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7798 struct cftype *cftype, u64 cfs_period_us) 7799 { 7800 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7801 } 7802 7803 struct cfs_schedulable_data { 7804 struct task_group *tg; 7805 u64 period, quota; 7806 }; 7807 7808 /* 7809 * normalize group quota/period to be quota/max_period 7810 * note: units are usecs 7811 */ 7812 static u64 normalize_cfs_quota(struct task_group *tg, 7813 struct cfs_schedulable_data *d) 7814 { 7815 u64 quota, period; 7816 7817 if (tg == d->tg) { 7818 period = d->period; 7819 quota = d->quota; 7820 } else { 7821 period = tg_get_cfs_period(tg); 7822 quota = tg_get_cfs_quota(tg); 7823 } 7824 7825 /* note: these should typically be equivalent */ 7826 if (quota == RUNTIME_INF || quota == -1) 7827 return RUNTIME_INF; 7828 7829 return to_ratio(period, quota); 7830 } 7831 7832 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7833 { 7834 struct cfs_schedulable_data *d = data; 7835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7836 s64 quota = 0, parent_quota = -1; 7837 7838 if (!tg->parent) { 7839 quota = RUNTIME_INF; 7840 } else { 7841 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7842 7843 quota = normalize_cfs_quota(tg, d); 7844 parent_quota = parent_b->hierarchal_quota; 7845 7846 /* 7847 * ensure max(child_quota) <= parent_quota, inherit when no 7848 * limit is set 7849 */ 7850 if (quota == RUNTIME_INF) 7851 quota = parent_quota; 7852 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7853 return -EINVAL; 7854 } 7855 cfs_b->hierarchal_quota = quota; 7856 7857 return 0; 7858 } 7859 7860 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7861 { 7862 int ret; 7863 struct cfs_schedulable_data data = { 7864 .tg = tg, 7865 .period = period, 7866 .quota = quota, 7867 }; 7868 7869 if (quota != RUNTIME_INF) { 7870 do_div(data.period, NSEC_PER_USEC); 7871 do_div(data.quota, NSEC_PER_USEC); 7872 } 7873 7874 rcu_read_lock(); 7875 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7876 rcu_read_unlock(); 7877 7878 return ret; 7879 } 7880 7881 static int cpu_stats_show(struct seq_file *sf, void *v) 7882 { 7883 struct task_group *tg = css_tg(seq_css(sf)); 7884 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7885 7886 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7887 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7888 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7889 7890 return 0; 7891 } 7892 #endif /* CONFIG_CFS_BANDWIDTH */ 7893 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7894 7895 #ifdef CONFIG_RT_GROUP_SCHED 7896 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7897 struct cftype *cft, s64 val) 7898 { 7899 return sched_group_set_rt_runtime(css_tg(css), val); 7900 } 7901 7902 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7903 struct cftype *cft) 7904 { 7905 return sched_group_rt_runtime(css_tg(css)); 7906 } 7907 7908 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7909 struct cftype *cftype, u64 rt_period_us) 7910 { 7911 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7912 } 7913 7914 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7915 struct cftype *cft) 7916 { 7917 return sched_group_rt_period(css_tg(css)); 7918 } 7919 #endif /* CONFIG_RT_GROUP_SCHED */ 7920 7921 static struct cftype cpu_files[] = { 7922 #ifdef CONFIG_FAIR_GROUP_SCHED 7923 { 7924 .name = "shares", 7925 .read_u64 = cpu_shares_read_u64, 7926 .write_u64 = cpu_shares_write_u64, 7927 }, 7928 #endif 7929 #ifdef CONFIG_CFS_BANDWIDTH 7930 { 7931 .name = "cfs_quota_us", 7932 .read_s64 = cpu_cfs_quota_read_s64, 7933 .write_s64 = cpu_cfs_quota_write_s64, 7934 }, 7935 { 7936 .name = "cfs_period_us", 7937 .read_u64 = cpu_cfs_period_read_u64, 7938 .write_u64 = cpu_cfs_period_write_u64, 7939 }, 7940 { 7941 .name = "stat", 7942 .seq_show = cpu_stats_show, 7943 }, 7944 #endif 7945 #ifdef CONFIG_RT_GROUP_SCHED 7946 { 7947 .name = "rt_runtime_us", 7948 .read_s64 = cpu_rt_runtime_read, 7949 .write_s64 = cpu_rt_runtime_write, 7950 }, 7951 { 7952 .name = "rt_period_us", 7953 .read_u64 = cpu_rt_period_read_uint, 7954 .write_u64 = cpu_rt_period_write_uint, 7955 }, 7956 #endif 7957 { } /* terminate */ 7958 }; 7959 7960 struct cgroup_subsys cpu_cgroup_subsys = { 7961 .name = "cpu", 7962 .css_alloc = cpu_cgroup_css_alloc, 7963 .css_free = cpu_cgroup_css_free, 7964 .css_online = cpu_cgroup_css_online, 7965 .css_offline = cpu_cgroup_css_offline, 7966 .can_attach = cpu_cgroup_can_attach, 7967 .attach = cpu_cgroup_attach, 7968 .exit = cpu_cgroup_exit, 7969 .subsys_id = cpu_cgroup_subsys_id, 7970 .base_cftypes = cpu_files, 7971 .early_init = 1, 7972 }; 7973 7974 #endif /* CONFIG_CGROUP_SCHED */ 7975 7976 void dump_cpu_task(int cpu) 7977 { 7978 pr_info("Task dump for CPU %d:\n", cpu); 7979 sched_show_task(cpu_curr(cpu)); 7980 } 7981