1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/kthread.h> 11 #include <linux/nospec.h> 12 13 #include <asm/switch_to.h> 14 #include <asm/tlb.h> 15 16 #include "../workqueue_internal.h" 17 #include "../smpboot.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/sched.h> 21 22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 23 24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 25 /* 26 * Debugging: various feature bits 27 * 28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 29 * sysctl_sched_features, defined in sched.h, to allow constants propagation 30 * at compile time and compiler optimization based on features default. 31 */ 32 #define SCHED_FEAT(name, enabled) \ 33 (1UL << __SCHED_FEAT_##name) * enabled | 34 const_debug unsigned int sysctl_sched_features = 35 #include "features.h" 36 0; 37 #undef SCHED_FEAT 38 #endif 39 40 /* 41 * Number of tasks to iterate in a single balance run. 42 * Limited because this is done with IRQs disabled. 43 */ 44 const_debug unsigned int sysctl_sched_nr_migrate = 32; 45 46 /* 47 * period over which we average the RT time consumption, measured 48 * in ms. 49 * 50 * default: 1s 51 */ 52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 53 54 /* 55 * period over which we measure -rt task CPU usage in us. 56 * default: 1s 57 */ 58 unsigned int sysctl_sched_rt_period = 1000000; 59 60 __read_mostly int scheduler_running; 61 62 /* 63 * part of the period that we allow rt tasks to run in us. 64 * default: 0.95s 65 */ 66 int sysctl_sched_rt_runtime = 950000; 67 68 /* 69 * __task_rq_lock - lock the rq @p resides on. 70 */ 71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 72 __acquires(rq->lock) 73 { 74 struct rq *rq; 75 76 lockdep_assert_held(&p->pi_lock); 77 78 for (;;) { 79 rq = task_rq(p); 80 raw_spin_lock(&rq->lock); 81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 82 rq_pin_lock(rq, rf); 83 return rq; 84 } 85 raw_spin_unlock(&rq->lock); 86 87 while (unlikely(task_on_rq_migrating(p))) 88 cpu_relax(); 89 } 90 } 91 92 /* 93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 94 */ 95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 96 __acquires(p->pi_lock) 97 __acquires(rq->lock) 98 { 99 struct rq *rq; 100 101 for (;;) { 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 103 rq = task_rq(p); 104 raw_spin_lock(&rq->lock); 105 /* 106 * move_queued_task() task_rq_lock() 107 * 108 * ACQUIRE (rq->lock) 109 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 111 * [S] ->cpu = new_cpu [L] task_rq() 112 * [L] ->on_rq 113 * RELEASE (rq->lock) 114 * 115 * If we observe the old CPU in task_rq_lock, the acquire of 116 * the old rq->lock will fully serialize against the stores. 117 * 118 * If we observe the new CPU in task_rq_lock, the acquire will 119 * pair with the WMB to ensure we must then also see migrating. 120 */ 121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 122 rq_pin_lock(rq, rf); 123 return rq; 124 } 125 raw_spin_unlock(&rq->lock); 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 127 128 while (unlikely(task_on_rq_migrating(p))) 129 cpu_relax(); 130 } 131 } 132 133 /* 134 * RQ-clock updating methods: 135 */ 136 137 static void update_rq_clock_task(struct rq *rq, s64 delta) 138 { 139 /* 140 * In theory, the compile should just see 0 here, and optimize out the call 141 * to sched_rt_avg_update. But I don't trust it... 142 */ 143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 144 s64 steal = 0, irq_delta = 0; 145 #endif 146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 148 149 /* 150 * Since irq_time is only updated on {soft,}irq_exit, we might run into 151 * this case when a previous update_rq_clock() happened inside a 152 * {soft,}irq region. 153 * 154 * When this happens, we stop ->clock_task and only update the 155 * prev_irq_time stamp to account for the part that fit, so that a next 156 * update will consume the rest. This ensures ->clock_task is 157 * monotonic. 158 * 159 * It does however cause some slight miss-attribution of {soft,}irq 160 * time, a more accurate solution would be to update the irq_time using 161 * the current rq->clock timestamp, except that would require using 162 * atomic ops. 163 */ 164 if (irq_delta > delta) 165 irq_delta = delta; 166 167 rq->prev_irq_time += irq_delta; 168 delta -= irq_delta; 169 #endif 170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 171 if (static_key_false((¶virt_steal_rq_enabled))) { 172 steal = paravirt_steal_clock(cpu_of(rq)); 173 steal -= rq->prev_steal_time_rq; 174 175 if (unlikely(steal > delta)) 176 steal = delta; 177 178 rq->prev_steal_time_rq += steal; 179 delta -= steal; 180 } 181 #endif 182 183 rq->clock_task += delta; 184 185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 187 sched_rt_avg_update(rq, irq_delta + steal); 188 #endif 189 } 190 191 void update_rq_clock(struct rq *rq) 192 { 193 s64 delta; 194 195 lockdep_assert_held(&rq->lock); 196 197 if (rq->clock_update_flags & RQCF_ACT_SKIP) 198 return; 199 200 #ifdef CONFIG_SCHED_DEBUG 201 if (sched_feat(WARN_DOUBLE_CLOCK)) 202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 203 rq->clock_update_flags |= RQCF_UPDATED; 204 #endif 205 206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 207 if (delta < 0) 208 return; 209 rq->clock += delta; 210 update_rq_clock_task(rq, delta); 211 } 212 213 214 #ifdef CONFIG_SCHED_HRTICK 215 /* 216 * Use HR-timers to deliver accurate preemption points. 217 */ 218 219 static void hrtick_clear(struct rq *rq) 220 { 221 if (hrtimer_active(&rq->hrtick_timer)) 222 hrtimer_cancel(&rq->hrtick_timer); 223 } 224 225 /* 226 * High-resolution timer tick. 227 * Runs from hardirq context with interrupts disabled. 228 */ 229 static enum hrtimer_restart hrtick(struct hrtimer *timer) 230 { 231 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 232 struct rq_flags rf; 233 234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 235 236 rq_lock(rq, &rf); 237 update_rq_clock(rq); 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 239 rq_unlock(rq, &rf); 240 241 return HRTIMER_NORESTART; 242 } 243 244 #ifdef CONFIG_SMP 245 246 static void __hrtick_restart(struct rq *rq) 247 { 248 struct hrtimer *timer = &rq->hrtick_timer; 249 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 251 } 252 253 /* 254 * called from hardirq (IPI) context 255 */ 256 static void __hrtick_start(void *arg) 257 { 258 struct rq *rq = arg; 259 struct rq_flags rf; 260 261 rq_lock(rq, &rf); 262 __hrtick_restart(rq); 263 rq->hrtick_csd_pending = 0; 264 rq_unlock(rq, &rf); 265 } 266 267 /* 268 * Called to set the hrtick timer state. 269 * 270 * called with rq->lock held and irqs disabled 271 */ 272 void hrtick_start(struct rq *rq, u64 delay) 273 { 274 struct hrtimer *timer = &rq->hrtick_timer; 275 ktime_t time; 276 s64 delta; 277 278 /* 279 * Don't schedule slices shorter than 10000ns, that just 280 * doesn't make sense and can cause timer DoS. 281 */ 282 delta = max_t(s64, delay, 10000LL); 283 time = ktime_add_ns(timer->base->get_time(), delta); 284 285 hrtimer_set_expires(timer, time); 286 287 if (rq == this_rq()) { 288 __hrtick_restart(rq); 289 } else if (!rq->hrtick_csd_pending) { 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 291 rq->hrtick_csd_pending = 1; 292 } 293 } 294 295 #else 296 /* 297 * Called to set the hrtick timer state. 298 * 299 * called with rq->lock held and irqs disabled 300 */ 301 void hrtick_start(struct rq *rq, u64 delay) 302 { 303 /* 304 * Don't schedule slices shorter than 10000ns, that just 305 * doesn't make sense. Rely on vruntime for fairness. 306 */ 307 delay = max_t(u64, delay, 10000LL); 308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 309 HRTIMER_MODE_REL_PINNED); 310 } 311 #endif /* CONFIG_SMP */ 312 313 static void hrtick_rq_init(struct rq *rq) 314 { 315 #ifdef CONFIG_SMP 316 rq->hrtick_csd_pending = 0; 317 318 rq->hrtick_csd.flags = 0; 319 rq->hrtick_csd.func = __hrtick_start; 320 rq->hrtick_csd.info = rq; 321 #endif 322 323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 324 rq->hrtick_timer.function = hrtick; 325 } 326 #else /* CONFIG_SCHED_HRTICK */ 327 static inline void hrtick_clear(struct rq *rq) 328 { 329 } 330 331 static inline void hrtick_rq_init(struct rq *rq) 332 { 333 } 334 #endif /* CONFIG_SCHED_HRTICK */ 335 336 /* 337 * cmpxchg based fetch_or, macro so it works for different integer types 338 */ 339 #define fetch_or(ptr, mask) \ 340 ({ \ 341 typeof(ptr) _ptr = (ptr); \ 342 typeof(mask) _mask = (mask); \ 343 typeof(*_ptr) _old, _val = *_ptr; \ 344 \ 345 for (;;) { \ 346 _old = cmpxchg(_ptr, _val, _val | _mask); \ 347 if (_old == _val) \ 348 break; \ 349 _val = _old; \ 350 } \ 351 _old; \ 352 }) 353 354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 355 /* 356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 357 * this avoids any races wrt polling state changes and thereby avoids 358 * spurious IPIs. 359 */ 360 static bool set_nr_and_not_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 364 } 365 366 /* 367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 368 * 369 * If this returns true, then the idle task promises to call 370 * sched_ttwu_pending() and reschedule soon. 371 */ 372 static bool set_nr_if_polling(struct task_struct *p) 373 { 374 struct thread_info *ti = task_thread_info(p); 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 376 377 for (;;) { 378 if (!(val & _TIF_POLLING_NRFLAG)) 379 return false; 380 if (val & _TIF_NEED_RESCHED) 381 return true; 382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 383 if (old == val) 384 break; 385 val = old; 386 } 387 return true; 388 } 389 390 #else 391 static bool set_nr_and_not_polling(struct task_struct *p) 392 { 393 set_tsk_need_resched(p); 394 return true; 395 } 396 397 #ifdef CONFIG_SMP 398 static bool set_nr_if_polling(struct task_struct *p) 399 { 400 return false; 401 } 402 #endif 403 #endif 404 405 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 406 { 407 struct wake_q_node *node = &task->wake_q; 408 409 /* 410 * Atomically grab the task, if ->wake_q is !nil already it means 411 * its already queued (either by us or someone else) and will get the 412 * wakeup due to that. 413 * 414 * This cmpxchg() implies a full barrier, which pairs with the write 415 * barrier implied by the wakeup in wake_up_q(). 416 */ 417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 418 return; 419 420 get_task_struct(task); 421 422 /* 423 * The head is context local, there can be no concurrency. 424 */ 425 *head->lastp = node; 426 head->lastp = &node->next; 427 } 428 429 void wake_up_q(struct wake_q_head *head) 430 { 431 struct wake_q_node *node = head->first; 432 433 while (node != WAKE_Q_TAIL) { 434 struct task_struct *task; 435 436 task = container_of(node, struct task_struct, wake_q); 437 BUG_ON(!task); 438 /* Task can safely be re-inserted now: */ 439 node = node->next; 440 task->wake_q.next = NULL; 441 442 /* 443 * wake_up_process() implies a wmb() to pair with the queueing 444 * in wake_q_add() so as not to miss wakeups. 445 */ 446 wake_up_process(task); 447 put_task_struct(task); 448 } 449 } 450 451 /* 452 * resched_curr - mark rq's current task 'to be rescheduled now'. 453 * 454 * On UP this means the setting of the need_resched flag, on SMP it 455 * might also involve a cross-CPU call to trigger the scheduler on 456 * the target CPU. 457 */ 458 void resched_curr(struct rq *rq) 459 { 460 struct task_struct *curr = rq->curr; 461 int cpu; 462 463 lockdep_assert_held(&rq->lock); 464 465 if (test_tsk_need_resched(curr)) 466 return; 467 468 cpu = cpu_of(rq); 469 470 if (cpu == smp_processor_id()) { 471 set_tsk_need_resched(curr); 472 set_preempt_need_resched(); 473 return; 474 } 475 476 if (set_nr_and_not_polling(curr)) 477 smp_send_reschedule(cpu); 478 else 479 trace_sched_wake_idle_without_ipi(cpu); 480 } 481 482 void resched_cpu(int cpu) 483 { 484 struct rq *rq = cpu_rq(cpu); 485 unsigned long flags; 486 487 raw_spin_lock_irqsave(&rq->lock, flags); 488 if (cpu_online(cpu) || cpu == smp_processor_id()) 489 resched_curr(rq); 490 raw_spin_unlock_irqrestore(&rq->lock, flags); 491 } 492 493 #ifdef CONFIG_SMP 494 #ifdef CONFIG_NO_HZ_COMMON 495 /* 496 * In the semi idle case, use the nearest busy CPU for migrating timers 497 * from an idle CPU. This is good for power-savings. 498 * 499 * We don't do similar optimization for completely idle system, as 500 * selecting an idle CPU will add more delays to the timers than intended 501 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 502 */ 503 int get_nohz_timer_target(void) 504 { 505 int i, cpu = smp_processor_id(); 506 struct sched_domain *sd; 507 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 509 return cpu; 510 511 rcu_read_lock(); 512 for_each_domain(cpu, sd) { 513 for_each_cpu(i, sched_domain_span(sd)) { 514 if (cpu == i) 515 continue; 516 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 518 cpu = i; 519 goto unlock; 520 } 521 } 522 } 523 524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 526 unlock: 527 rcu_read_unlock(); 528 return cpu; 529 } 530 531 /* 532 * When add_timer_on() enqueues a timer into the timer wheel of an 533 * idle CPU then this timer might expire before the next timer event 534 * which is scheduled to wake up that CPU. In case of a completely 535 * idle system the next event might even be infinite time into the 536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 537 * leaves the inner idle loop so the newly added timer is taken into 538 * account when the CPU goes back to idle and evaluates the timer 539 * wheel for the next timer event. 540 */ 541 static void wake_up_idle_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 545 if (cpu == smp_processor_id()) 546 return; 547 548 if (set_nr_and_not_polling(rq->idle)) 549 smp_send_reschedule(cpu); 550 else 551 trace_sched_wake_idle_without_ipi(cpu); 552 } 553 554 static bool wake_up_full_nohz_cpu(int cpu) 555 { 556 /* 557 * We just need the target to call irq_exit() and re-evaluate 558 * the next tick. The nohz full kick at least implies that. 559 * If needed we can still optimize that later with an 560 * empty IRQ. 561 */ 562 if (cpu_is_offline(cpu)) 563 return true; /* Don't try to wake offline CPUs. */ 564 if (tick_nohz_full_cpu(cpu)) { 565 if (cpu != smp_processor_id() || 566 tick_nohz_tick_stopped()) 567 tick_nohz_full_kick_cpu(cpu); 568 return true; 569 } 570 571 return false; 572 } 573 574 /* 575 * Wake up the specified CPU. If the CPU is going offline, it is the 576 * caller's responsibility to deal with the lost wakeup, for example, 577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 578 */ 579 void wake_up_nohz_cpu(int cpu) 580 { 581 if (!wake_up_full_nohz_cpu(cpu)) 582 wake_up_idle_cpu(cpu); 583 } 584 585 static inline bool got_nohz_idle_kick(void) 586 { 587 int cpu = smp_processor_id(); 588 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 590 return false; 591 592 if (idle_cpu(cpu) && !need_resched()) 593 return true; 594 595 /* 596 * We can't run Idle Load Balance on this CPU for this time so we 597 * cancel it and clear NOHZ_BALANCE_KICK 598 */ 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 600 return false; 601 } 602 603 #else /* CONFIG_NO_HZ_COMMON */ 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 return false; 608 } 609 610 #endif /* CONFIG_NO_HZ_COMMON */ 611 612 #ifdef CONFIG_NO_HZ_FULL 613 bool sched_can_stop_tick(struct rq *rq) 614 { 615 int fifo_nr_running; 616 617 /* Deadline tasks, even if single, need the tick */ 618 if (rq->dl.dl_nr_running) 619 return false; 620 621 /* 622 * If there are more than one RR tasks, we need the tick to effect the 623 * actual RR behaviour. 624 */ 625 if (rq->rt.rr_nr_running) { 626 if (rq->rt.rr_nr_running == 1) 627 return true; 628 else 629 return false; 630 } 631 632 /* 633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 634 * forced preemption between FIFO tasks. 635 */ 636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 637 if (fifo_nr_running) 638 return true; 639 640 /* 641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 642 * if there's more than one we need the tick for involuntary 643 * preemption. 644 */ 645 if (rq->nr_running > 1) 646 return false; 647 648 return true; 649 } 650 #endif /* CONFIG_NO_HZ_FULL */ 651 652 void sched_avg_update(struct rq *rq) 653 { 654 s64 period = sched_avg_period(); 655 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 657 /* 658 * Inline assembly required to prevent the compiler 659 * optimising this loop into a divmod call. 660 * See __iter_div_u64_rem() for another example of this. 661 */ 662 asm("" : "+rm" (rq->age_stamp)); 663 rq->age_stamp += period; 664 rq->rt_avg /= 2; 665 } 666 } 667 668 #endif /* CONFIG_SMP */ 669 670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 672 /* 673 * Iterate task_group tree rooted at *from, calling @down when first entering a 674 * node and @up when leaving it for the final time. 675 * 676 * Caller must hold rcu_lock or sufficient equivalent. 677 */ 678 int walk_tg_tree_from(struct task_group *from, 679 tg_visitor down, tg_visitor up, void *data) 680 { 681 struct task_group *parent, *child; 682 int ret; 683 684 parent = from; 685 686 down: 687 ret = (*down)(parent, data); 688 if (ret) 689 goto out; 690 list_for_each_entry_rcu(child, &parent->children, siblings) { 691 parent = child; 692 goto down; 693 694 up: 695 continue; 696 } 697 ret = (*up)(parent, data); 698 if (ret || parent == from) 699 goto out; 700 701 child = parent; 702 parent = parent->parent; 703 if (parent) 704 goto up; 705 out: 706 return ret; 707 } 708 709 int tg_nop(struct task_group *tg, void *data) 710 { 711 return 0; 712 } 713 #endif 714 715 static void set_load_weight(struct task_struct *p, bool update_load) 716 { 717 int prio = p->static_prio - MAX_RT_PRIO; 718 struct load_weight *load = &p->se.load; 719 720 /* 721 * SCHED_IDLE tasks get minimal weight: 722 */ 723 if (idle_policy(p->policy)) { 724 load->weight = scale_load(WEIGHT_IDLEPRIO); 725 load->inv_weight = WMULT_IDLEPRIO; 726 return; 727 } 728 729 /* 730 * SCHED_OTHER tasks have to update their load when changing their 731 * weight 732 */ 733 if (update_load && p->sched_class == &fair_sched_class) { 734 reweight_task(p, prio); 735 } else { 736 load->weight = scale_load(sched_prio_to_weight[prio]); 737 load->inv_weight = sched_prio_to_wmult[prio]; 738 } 739 } 740 741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 742 { 743 if (!(flags & ENQUEUE_NOCLOCK)) 744 update_rq_clock(rq); 745 746 if (!(flags & ENQUEUE_RESTORE)) 747 sched_info_queued(rq, p); 748 749 p->sched_class->enqueue_task(rq, p, flags); 750 } 751 752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 753 { 754 if (!(flags & DEQUEUE_NOCLOCK)) 755 update_rq_clock(rq); 756 757 if (!(flags & DEQUEUE_SAVE)) 758 sched_info_dequeued(rq, p); 759 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 /* 780 * __normal_prio - return the priority that is based on the static prio 781 */ 782 static inline int __normal_prio(struct task_struct *p) 783 { 784 return p->static_prio; 785 } 786 787 /* 788 * Calculate the expected normal priority: i.e. priority 789 * without taking RT-inheritance into account. Might be 790 * boosted by interactivity modifiers. Changes upon fork, 791 * setprio syscalls, and whenever the interactivity 792 * estimator recalculates. 793 */ 794 static inline int normal_prio(struct task_struct *p) 795 { 796 int prio; 797 798 if (task_has_dl_policy(p)) 799 prio = MAX_DL_PRIO-1; 800 else if (task_has_rt_policy(p)) 801 prio = MAX_RT_PRIO-1 - p->rt_priority; 802 else 803 prio = __normal_prio(p); 804 return prio; 805 } 806 807 /* 808 * Calculate the current priority, i.e. the priority 809 * taken into account by the scheduler. This value might 810 * be boosted by RT tasks, or might be boosted by 811 * interactivity modifiers. Will be RT if the task got 812 * RT-boosted. If not then it returns p->normal_prio. 813 */ 814 static int effective_prio(struct task_struct *p) 815 { 816 p->normal_prio = normal_prio(p); 817 /* 818 * If we are RT tasks or we were boosted to RT priority, 819 * keep the priority unchanged. Otherwise, update priority 820 * to the normal priority: 821 */ 822 if (!rt_prio(p->prio)) 823 return p->normal_prio; 824 return p->prio; 825 } 826 827 /** 828 * task_curr - is this task currently executing on a CPU? 829 * @p: the task in question. 830 * 831 * Return: 1 if the task is currently executing. 0 otherwise. 832 */ 833 inline int task_curr(const struct task_struct *p) 834 { 835 return cpu_curr(task_cpu(p)) == p; 836 } 837 838 /* 839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 840 * use the balance_callback list if you want balancing. 841 * 842 * this means any call to check_class_changed() must be followed by a call to 843 * balance_callback(). 844 */ 845 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 846 const struct sched_class *prev_class, 847 int oldprio) 848 { 849 if (prev_class != p->sched_class) { 850 if (prev_class->switched_from) 851 prev_class->switched_from(rq, p); 852 853 p->sched_class->switched_to(rq, p); 854 } else if (oldprio != p->prio || dl_task(p)) 855 p->sched_class->prio_changed(rq, p, oldprio); 856 } 857 858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 859 { 860 const struct sched_class *class; 861 862 if (p->sched_class == rq->curr->sched_class) { 863 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 864 } else { 865 for_each_class(class) { 866 if (class == rq->curr->sched_class) 867 break; 868 if (class == p->sched_class) { 869 resched_curr(rq); 870 break; 871 } 872 } 873 } 874 875 /* 876 * A queue event has occurred, and we're going to schedule. In 877 * this case, we can save a useless back to back clock update. 878 */ 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 880 rq_clock_skip_update(rq); 881 } 882 883 #ifdef CONFIG_SMP 884 /* 885 * This is how migration works: 886 * 887 * 1) we invoke migration_cpu_stop() on the target CPU using 888 * stop_one_cpu(). 889 * 2) stopper starts to run (implicitly forcing the migrated thread 890 * off the CPU) 891 * 3) it checks whether the migrated task is still in the wrong runqueue. 892 * 4) if it's in the wrong runqueue then the migration thread removes 893 * it and puts it into the right queue. 894 * 5) stopper completes and stop_one_cpu() returns and the migration 895 * is done. 896 */ 897 898 /* 899 * move_queued_task - move a queued task to new rq. 900 * 901 * Returns (locked) new rq. Old rq's lock is released. 902 */ 903 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 904 struct task_struct *p, int new_cpu) 905 { 906 lockdep_assert_held(&rq->lock); 907 908 p->on_rq = TASK_ON_RQ_MIGRATING; 909 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 910 set_task_cpu(p, new_cpu); 911 rq_unlock(rq, rf); 912 913 rq = cpu_rq(new_cpu); 914 915 rq_lock(rq, rf); 916 BUG_ON(task_cpu(p) != new_cpu); 917 enqueue_task(rq, p, 0); 918 p->on_rq = TASK_ON_RQ_QUEUED; 919 check_preempt_curr(rq, p, 0); 920 921 return rq; 922 } 923 924 struct migration_arg { 925 struct task_struct *task; 926 int dest_cpu; 927 }; 928 929 /* 930 * Move (not current) task off this CPU, onto the destination CPU. We're doing 931 * this because either it can't run here any more (set_cpus_allowed() 932 * away from this CPU, or CPU going down), or because we're 933 * attempting to rebalance this task on exec (sched_exec). 934 * 935 * So we race with normal scheduler movements, but that's OK, as long 936 * as the task is no longer on this CPU. 937 */ 938 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 939 struct task_struct *p, int dest_cpu) 940 { 941 if (p->flags & PF_KTHREAD) { 942 if (unlikely(!cpu_online(dest_cpu))) 943 return rq; 944 } else { 945 if (unlikely(!cpu_active(dest_cpu))) 946 return rq; 947 } 948 949 /* Affinity changed (again). */ 950 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 951 return rq; 952 953 update_rq_clock(rq); 954 rq = move_queued_task(rq, rf, p, dest_cpu); 955 956 return rq; 957 } 958 959 /* 960 * migration_cpu_stop - this will be executed by a highprio stopper thread 961 * and performs thread migration by bumping thread off CPU then 962 * 'pushing' onto another runqueue. 963 */ 964 static int migration_cpu_stop(void *data) 965 { 966 struct migration_arg *arg = data; 967 struct task_struct *p = arg->task; 968 struct rq *rq = this_rq(); 969 struct rq_flags rf; 970 971 /* 972 * The original target CPU might have gone down and we might 973 * be on another CPU but it doesn't matter. 974 */ 975 local_irq_disable(); 976 /* 977 * We need to explicitly wake pending tasks before running 978 * __migrate_task() such that we will not miss enforcing cpus_allowed 979 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 980 */ 981 sched_ttwu_pending(); 982 983 raw_spin_lock(&p->pi_lock); 984 rq_lock(rq, &rf); 985 /* 986 * If task_rq(p) != rq, it cannot be migrated here, because we're 987 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 988 * we're holding p->pi_lock. 989 */ 990 if (task_rq(p) == rq) { 991 if (task_on_rq_queued(p)) 992 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 993 else 994 p->wake_cpu = arg->dest_cpu; 995 } 996 rq_unlock(rq, &rf); 997 raw_spin_unlock(&p->pi_lock); 998 999 local_irq_enable(); 1000 return 0; 1001 } 1002 1003 /* 1004 * sched_class::set_cpus_allowed must do the below, but is not required to 1005 * actually call this function. 1006 */ 1007 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1008 { 1009 cpumask_copy(&p->cpus_allowed, new_mask); 1010 p->nr_cpus_allowed = cpumask_weight(new_mask); 1011 } 1012 1013 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1014 { 1015 struct rq *rq = task_rq(p); 1016 bool queued, running; 1017 1018 lockdep_assert_held(&p->pi_lock); 1019 1020 queued = task_on_rq_queued(p); 1021 running = task_current(rq, p); 1022 1023 if (queued) { 1024 /* 1025 * Because __kthread_bind() calls this on blocked tasks without 1026 * holding rq->lock. 1027 */ 1028 lockdep_assert_held(&rq->lock); 1029 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1030 } 1031 if (running) 1032 put_prev_task(rq, p); 1033 1034 p->sched_class->set_cpus_allowed(p, new_mask); 1035 1036 if (queued) 1037 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1038 if (running) 1039 set_curr_task(rq, p); 1040 } 1041 1042 /* 1043 * Change a given task's CPU affinity. Migrate the thread to a 1044 * proper CPU and schedule it away if the CPU it's executing on 1045 * is removed from the allowed bitmask. 1046 * 1047 * NOTE: the caller must have a valid reference to the task, the 1048 * task must not exit() & deallocate itself prematurely. The 1049 * call is not atomic; no spinlocks may be held. 1050 */ 1051 static int __set_cpus_allowed_ptr(struct task_struct *p, 1052 const struct cpumask *new_mask, bool check) 1053 { 1054 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1055 unsigned int dest_cpu; 1056 struct rq_flags rf; 1057 struct rq *rq; 1058 int ret = 0; 1059 1060 rq = task_rq_lock(p, &rf); 1061 update_rq_clock(rq); 1062 1063 if (p->flags & PF_KTHREAD) { 1064 /* 1065 * Kernel threads are allowed on online && !active CPUs 1066 */ 1067 cpu_valid_mask = cpu_online_mask; 1068 } 1069 1070 /* 1071 * Must re-check here, to close a race against __kthread_bind(), 1072 * sched_setaffinity() is not guaranteed to observe the flag. 1073 */ 1074 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1075 ret = -EINVAL; 1076 goto out; 1077 } 1078 1079 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1080 goto out; 1081 1082 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1083 ret = -EINVAL; 1084 goto out; 1085 } 1086 1087 do_set_cpus_allowed(p, new_mask); 1088 1089 if (p->flags & PF_KTHREAD) { 1090 /* 1091 * For kernel threads that do indeed end up on online && 1092 * !active we want to ensure they are strict per-CPU threads. 1093 */ 1094 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1095 !cpumask_intersects(new_mask, cpu_active_mask) && 1096 p->nr_cpus_allowed != 1); 1097 } 1098 1099 /* Can the task run on the task's current CPU? If so, we're done */ 1100 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1101 goto out; 1102 1103 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1104 if (task_running(rq, p) || p->state == TASK_WAKING) { 1105 struct migration_arg arg = { p, dest_cpu }; 1106 /* Need help from migration thread: drop lock and wait. */ 1107 task_rq_unlock(rq, p, &rf); 1108 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1109 tlb_migrate_finish(p->mm); 1110 return 0; 1111 } else if (task_on_rq_queued(p)) { 1112 /* 1113 * OK, since we're going to drop the lock immediately 1114 * afterwards anyway. 1115 */ 1116 rq = move_queued_task(rq, &rf, p, dest_cpu); 1117 } 1118 out: 1119 task_rq_unlock(rq, p, &rf); 1120 1121 return ret; 1122 } 1123 1124 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1125 { 1126 return __set_cpus_allowed_ptr(p, new_mask, false); 1127 } 1128 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1129 1130 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1131 { 1132 #ifdef CONFIG_SCHED_DEBUG 1133 /* 1134 * We should never call set_task_cpu() on a blocked task, 1135 * ttwu() will sort out the placement. 1136 */ 1137 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1138 !p->on_rq); 1139 1140 /* 1141 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1142 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1143 * time relying on p->on_rq. 1144 */ 1145 WARN_ON_ONCE(p->state == TASK_RUNNING && 1146 p->sched_class == &fair_sched_class && 1147 (p->on_rq && !task_on_rq_migrating(p))); 1148 1149 #ifdef CONFIG_LOCKDEP 1150 /* 1151 * The caller should hold either p->pi_lock or rq->lock, when changing 1152 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1153 * 1154 * sched_move_task() holds both and thus holding either pins the cgroup, 1155 * see task_group(). 1156 * 1157 * Furthermore, all task_rq users should acquire both locks, see 1158 * task_rq_lock(). 1159 */ 1160 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1161 lockdep_is_held(&task_rq(p)->lock))); 1162 #endif 1163 /* 1164 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1165 */ 1166 WARN_ON_ONCE(!cpu_online(new_cpu)); 1167 #endif 1168 1169 trace_sched_migrate_task(p, new_cpu); 1170 1171 if (task_cpu(p) != new_cpu) { 1172 if (p->sched_class->migrate_task_rq) 1173 p->sched_class->migrate_task_rq(p); 1174 p->se.nr_migrations++; 1175 perf_event_task_migrate(p); 1176 } 1177 1178 __set_task_cpu(p, new_cpu); 1179 } 1180 1181 static void __migrate_swap_task(struct task_struct *p, int cpu) 1182 { 1183 if (task_on_rq_queued(p)) { 1184 struct rq *src_rq, *dst_rq; 1185 struct rq_flags srf, drf; 1186 1187 src_rq = task_rq(p); 1188 dst_rq = cpu_rq(cpu); 1189 1190 rq_pin_lock(src_rq, &srf); 1191 rq_pin_lock(dst_rq, &drf); 1192 1193 p->on_rq = TASK_ON_RQ_MIGRATING; 1194 deactivate_task(src_rq, p, 0); 1195 set_task_cpu(p, cpu); 1196 activate_task(dst_rq, p, 0); 1197 p->on_rq = TASK_ON_RQ_QUEUED; 1198 check_preempt_curr(dst_rq, p, 0); 1199 1200 rq_unpin_lock(dst_rq, &drf); 1201 rq_unpin_lock(src_rq, &srf); 1202 1203 } else { 1204 /* 1205 * Task isn't running anymore; make it appear like we migrated 1206 * it before it went to sleep. This means on wakeup we make the 1207 * previous CPU our target instead of where it really is. 1208 */ 1209 p->wake_cpu = cpu; 1210 } 1211 } 1212 1213 struct migration_swap_arg { 1214 struct task_struct *src_task, *dst_task; 1215 int src_cpu, dst_cpu; 1216 }; 1217 1218 static int migrate_swap_stop(void *data) 1219 { 1220 struct migration_swap_arg *arg = data; 1221 struct rq *src_rq, *dst_rq; 1222 int ret = -EAGAIN; 1223 1224 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1225 return -EAGAIN; 1226 1227 src_rq = cpu_rq(arg->src_cpu); 1228 dst_rq = cpu_rq(arg->dst_cpu); 1229 1230 double_raw_lock(&arg->src_task->pi_lock, 1231 &arg->dst_task->pi_lock); 1232 double_rq_lock(src_rq, dst_rq); 1233 1234 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1235 goto unlock; 1236 1237 if (task_cpu(arg->src_task) != arg->src_cpu) 1238 goto unlock; 1239 1240 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1241 goto unlock; 1242 1243 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1244 goto unlock; 1245 1246 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1247 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1248 1249 ret = 0; 1250 1251 unlock: 1252 double_rq_unlock(src_rq, dst_rq); 1253 raw_spin_unlock(&arg->dst_task->pi_lock); 1254 raw_spin_unlock(&arg->src_task->pi_lock); 1255 1256 return ret; 1257 } 1258 1259 /* 1260 * Cross migrate two tasks 1261 */ 1262 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1263 { 1264 struct migration_swap_arg arg; 1265 int ret = -EINVAL; 1266 1267 arg = (struct migration_swap_arg){ 1268 .src_task = cur, 1269 .src_cpu = task_cpu(cur), 1270 .dst_task = p, 1271 .dst_cpu = task_cpu(p), 1272 }; 1273 1274 if (arg.src_cpu == arg.dst_cpu) 1275 goto out; 1276 1277 /* 1278 * These three tests are all lockless; this is OK since all of them 1279 * will be re-checked with proper locks held further down the line. 1280 */ 1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1282 goto out; 1283 1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1285 goto out; 1286 1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1288 goto out; 1289 1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1292 1293 out: 1294 return ret; 1295 } 1296 1297 /* 1298 * wait_task_inactive - wait for a thread to unschedule. 1299 * 1300 * If @match_state is nonzero, it's the @p->state value just checked and 1301 * not expected to change. If it changes, i.e. @p might have woken up, 1302 * then return zero. When we succeed in waiting for @p to be off its CPU, 1303 * we return a positive number (its total switch count). If a second call 1304 * a short while later returns the same number, the caller can be sure that 1305 * @p has remained unscheduled the whole time. 1306 * 1307 * The caller must ensure that the task *will* unschedule sometime soon, 1308 * else this function might spin for a *long* time. This function can't 1309 * be called with interrupts off, or it may introduce deadlock with 1310 * smp_call_function() if an IPI is sent by the same process we are 1311 * waiting to become inactive. 1312 */ 1313 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1314 { 1315 int running, queued; 1316 struct rq_flags rf; 1317 unsigned long ncsw; 1318 struct rq *rq; 1319 1320 for (;;) { 1321 /* 1322 * We do the initial early heuristics without holding 1323 * any task-queue locks at all. We'll only try to get 1324 * the runqueue lock when things look like they will 1325 * work out! 1326 */ 1327 rq = task_rq(p); 1328 1329 /* 1330 * If the task is actively running on another CPU 1331 * still, just relax and busy-wait without holding 1332 * any locks. 1333 * 1334 * NOTE! Since we don't hold any locks, it's not 1335 * even sure that "rq" stays as the right runqueue! 1336 * But we don't care, since "task_running()" will 1337 * return false if the runqueue has changed and p 1338 * is actually now running somewhere else! 1339 */ 1340 while (task_running(rq, p)) { 1341 if (match_state && unlikely(p->state != match_state)) 1342 return 0; 1343 cpu_relax(); 1344 } 1345 1346 /* 1347 * Ok, time to look more closely! We need the rq 1348 * lock now, to be *sure*. If we're wrong, we'll 1349 * just go back and repeat. 1350 */ 1351 rq = task_rq_lock(p, &rf); 1352 trace_sched_wait_task(p); 1353 running = task_running(rq, p); 1354 queued = task_on_rq_queued(p); 1355 ncsw = 0; 1356 if (!match_state || p->state == match_state) 1357 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1358 task_rq_unlock(rq, p, &rf); 1359 1360 /* 1361 * If it changed from the expected state, bail out now. 1362 */ 1363 if (unlikely(!ncsw)) 1364 break; 1365 1366 /* 1367 * Was it really running after all now that we 1368 * checked with the proper locks actually held? 1369 * 1370 * Oops. Go back and try again.. 1371 */ 1372 if (unlikely(running)) { 1373 cpu_relax(); 1374 continue; 1375 } 1376 1377 /* 1378 * It's not enough that it's not actively running, 1379 * it must be off the runqueue _entirely_, and not 1380 * preempted! 1381 * 1382 * So if it was still runnable (but just not actively 1383 * running right now), it's preempted, and we should 1384 * yield - it could be a while. 1385 */ 1386 if (unlikely(queued)) { 1387 ktime_t to = NSEC_PER_SEC / HZ; 1388 1389 set_current_state(TASK_UNINTERRUPTIBLE); 1390 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1391 continue; 1392 } 1393 1394 /* 1395 * Ahh, all good. It wasn't running, and it wasn't 1396 * runnable, which means that it will never become 1397 * running in the future either. We're all done! 1398 */ 1399 break; 1400 } 1401 1402 return ncsw; 1403 } 1404 1405 /*** 1406 * kick_process - kick a running thread to enter/exit the kernel 1407 * @p: the to-be-kicked thread 1408 * 1409 * Cause a process which is running on another CPU to enter 1410 * kernel-mode, without any delay. (to get signals handled.) 1411 * 1412 * NOTE: this function doesn't have to take the runqueue lock, 1413 * because all it wants to ensure is that the remote task enters 1414 * the kernel. If the IPI races and the task has been migrated 1415 * to another CPU then no harm is done and the purpose has been 1416 * achieved as well. 1417 */ 1418 void kick_process(struct task_struct *p) 1419 { 1420 int cpu; 1421 1422 preempt_disable(); 1423 cpu = task_cpu(p); 1424 if ((cpu != smp_processor_id()) && task_curr(p)) 1425 smp_send_reschedule(cpu); 1426 preempt_enable(); 1427 } 1428 EXPORT_SYMBOL_GPL(kick_process); 1429 1430 /* 1431 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1432 * 1433 * A few notes on cpu_active vs cpu_online: 1434 * 1435 * - cpu_active must be a subset of cpu_online 1436 * 1437 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1438 * see __set_cpus_allowed_ptr(). At this point the newly online 1439 * CPU isn't yet part of the sched domains, and balancing will not 1440 * see it. 1441 * 1442 * - on CPU-down we clear cpu_active() to mask the sched domains and 1443 * avoid the load balancer to place new tasks on the to be removed 1444 * CPU. Existing tasks will remain running there and will be taken 1445 * off. 1446 * 1447 * This means that fallback selection must not select !active CPUs. 1448 * And can assume that any active CPU must be online. Conversely 1449 * select_task_rq() below may allow selection of !active CPUs in order 1450 * to satisfy the above rules. 1451 */ 1452 static int select_fallback_rq(int cpu, struct task_struct *p) 1453 { 1454 int nid = cpu_to_node(cpu); 1455 const struct cpumask *nodemask = NULL; 1456 enum { cpuset, possible, fail } state = cpuset; 1457 int dest_cpu; 1458 1459 /* 1460 * If the node that the CPU is on has been offlined, cpu_to_node() 1461 * will return -1. There is no CPU on the node, and we should 1462 * select the CPU on the other node. 1463 */ 1464 if (nid != -1) { 1465 nodemask = cpumask_of_node(nid); 1466 1467 /* Look for allowed, online CPU in same node. */ 1468 for_each_cpu(dest_cpu, nodemask) { 1469 if (!cpu_active(dest_cpu)) 1470 continue; 1471 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1472 return dest_cpu; 1473 } 1474 } 1475 1476 for (;;) { 1477 /* Any allowed, online CPU? */ 1478 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1479 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1480 continue; 1481 if (!cpu_online(dest_cpu)) 1482 continue; 1483 goto out; 1484 } 1485 1486 /* No more Mr. Nice Guy. */ 1487 switch (state) { 1488 case cpuset: 1489 if (IS_ENABLED(CONFIG_CPUSETS)) { 1490 cpuset_cpus_allowed_fallback(p); 1491 state = possible; 1492 break; 1493 } 1494 /* Fall-through */ 1495 case possible: 1496 do_set_cpus_allowed(p, cpu_possible_mask); 1497 state = fail; 1498 break; 1499 1500 case fail: 1501 BUG(); 1502 break; 1503 } 1504 } 1505 1506 out: 1507 if (state != cpuset) { 1508 /* 1509 * Don't tell them about moving exiting tasks or 1510 * kernel threads (both mm NULL), since they never 1511 * leave kernel. 1512 */ 1513 if (p->mm && printk_ratelimit()) { 1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1515 task_pid_nr(p), p->comm, cpu); 1516 } 1517 } 1518 1519 return dest_cpu; 1520 } 1521 1522 /* 1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1524 */ 1525 static inline 1526 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1527 { 1528 lockdep_assert_held(&p->pi_lock); 1529 1530 if (p->nr_cpus_allowed > 1) 1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1532 else 1533 cpu = cpumask_any(&p->cpus_allowed); 1534 1535 /* 1536 * In order not to call set_task_cpu() on a blocking task we need 1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1538 * CPU. 1539 * 1540 * Since this is common to all placement strategies, this lives here. 1541 * 1542 * [ this allows ->select_task() to simply return task_cpu(p) and 1543 * not worry about this generic constraint ] 1544 */ 1545 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1546 !cpu_online(cpu))) 1547 cpu = select_fallback_rq(task_cpu(p), p); 1548 1549 return cpu; 1550 } 1551 1552 static void update_avg(u64 *avg, u64 sample) 1553 { 1554 s64 diff = sample - *avg; 1555 *avg += diff >> 3; 1556 } 1557 1558 void sched_set_stop_task(int cpu, struct task_struct *stop) 1559 { 1560 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1561 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1562 1563 if (stop) { 1564 /* 1565 * Make it appear like a SCHED_FIFO task, its something 1566 * userspace knows about and won't get confused about. 1567 * 1568 * Also, it will make PI more or less work without too 1569 * much confusion -- but then, stop work should not 1570 * rely on PI working anyway. 1571 */ 1572 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1573 1574 stop->sched_class = &stop_sched_class; 1575 } 1576 1577 cpu_rq(cpu)->stop = stop; 1578 1579 if (old_stop) { 1580 /* 1581 * Reset it back to a normal scheduling class so that 1582 * it can die in pieces. 1583 */ 1584 old_stop->sched_class = &rt_sched_class; 1585 } 1586 } 1587 1588 #else 1589 1590 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1591 const struct cpumask *new_mask, bool check) 1592 { 1593 return set_cpus_allowed_ptr(p, new_mask); 1594 } 1595 1596 #endif /* CONFIG_SMP */ 1597 1598 static void 1599 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1600 { 1601 struct rq *rq; 1602 1603 if (!schedstat_enabled()) 1604 return; 1605 1606 rq = this_rq(); 1607 1608 #ifdef CONFIG_SMP 1609 if (cpu == rq->cpu) { 1610 __schedstat_inc(rq->ttwu_local); 1611 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1612 } else { 1613 struct sched_domain *sd; 1614 1615 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1616 rcu_read_lock(); 1617 for_each_domain(rq->cpu, sd) { 1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1619 __schedstat_inc(sd->ttwu_wake_remote); 1620 break; 1621 } 1622 } 1623 rcu_read_unlock(); 1624 } 1625 1626 if (wake_flags & WF_MIGRATED) 1627 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1628 #endif /* CONFIG_SMP */ 1629 1630 __schedstat_inc(rq->ttwu_count); 1631 __schedstat_inc(p->se.statistics.nr_wakeups); 1632 1633 if (wake_flags & WF_SYNC) 1634 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1635 } 1636 1637 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1638 { 1639 activate_task(rq, p, en_flags); 1640 p->on_rq = TASK_ON_RQ_QUEUED; 1641 1642 /* If a worker is waking up, notify the workqueue: */ 1643 if (p->flags & PF_WQ_WORKER) 1644 wq_worker_waking_up(p, cpu_of(rq)); 1645 } 1646 1647 /* 1648 * Mark the task runnable and perform wakeup-preemption. 1649 */ 1650 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1651 struct rq_flags *rf) 1652 { 1653 check_preempt_curr(rq, p, wake_flags); 1654 p->state = TASK_RUNNING; 1655 trace_sched_wakeup(p); 1656 1657 #ifdef CONFIG_SMP 1658 if (p->sched_class->task_woken) { 1659 /* 1660 * Our task @p is fully woken up and running; so its safe to 1661 * drop the rq->lock, hereafter rq is only used for statistics. 1662 */ 1663 rq_unpin_lock(rq, rf); 1664 p->sched_class->task_woken(rq, p); 1665 rq_repin_lock(rq, rf); 1666 } 1667 1668 if (rq->idle_stamp) { 1669 u64 delta = rq_clock(rq) - rq->idle_stamp; 1670 u64 max = 2*rq->max_idle_balance_cost; 1671 1672 update_avg(&rq->avg_idle, delta); 1673 1674 if (rq->avg_idle > max) 1675 rq->avg_idle = max; 1676 1677 rq->idle_stamp = 0; 1678 } 1679 #endif 1680 } 1681 1682 static void 1683 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1684 struct rq_flags *rf) 1685 { 1686 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1687 1688 lockdep_assert_held(&rq->lock); 1689 1690 #ifdef CONFIG_SMP 1691 if (p->sched_contributes_to_load) 1692 rq->nr_uninterruptible--; 1693 1694 if (wake_flags & WF_MIGRATED) 1695 en_flags |= ENQUEUE_MIGRATED; 1696 #endif 1697 1698 ttwu_activate(rq, p, en_flags); 1699 ttwu_do_wakeup(rq, p, wake_flags, rf); 1700 } 1701 1702 /* 1703 * Called in case the task @p isn't fully descheduled from its runqueue, 1704 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1705 * since all we need to do is flip p->state to TASK_RUNNING, since 1706 * the task is still ->on_rq. 1707 */ 1708 static int ttwu_remote(struct task_struct *p, int wake_flags) 1709 { 1710 struct rq_flags rf; 1711 struct rq *rq; 1712 int ret = 0; 1713 1714 rq = __task_rq_lock(p, &rf); 1715 if (task_on_rq_queued(p)) { 1716 /* check_preempt_curr() may use rq clock */ 1717 update_rq_clock(rq); 1718 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1719 ret = 1; 1720 } 1721 __task_rq_unlock(rq, &rf); 1722 1723 return ret; 1724 } 1725 1726 #ifdef CONFIG_SMP 1727 void sched_ttwu_pending(void) 1728 { 1729 struct rq *rq = this_rq(); 1730 struct llist_node *llist = llist_del_all(&rq->wake_list); 1731 struct task_struct *p, *t; 1732 struct rq_flags rf; 1733 1734 if (!llist) 1735 return; 1736 1737 rq_lock_irqsave(rq, &rf); 1738 update_rq_clock(rq); 1739 1740 llist_for_each_entry_safe(p, t, llist, wake_entry) 1741 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1742 1743 rq_unlock_irqrestore(rq, &rf); 1744 } 1745 1746 void scheduler_ipi(void) 1747 { 1748 /* 1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1750 * TIF_NEED_RESCHED remotely (for the first time) will also send 1751 * this IPI. 1752 */ 1753 preempt_fold_need_resched(); 1754 1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1756 return; 1757 1758 /* 1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1760 * traditionally all their work was done from the interrupt return 1761 * path. Now that we actually do some work, we need to make sure 1762 * we do call them. 1763 * 1764 * Some archs already do call them, luckily irq_enter/exit nest 1765 * properly. 1766 * 1767 * Arguably we should visit all archs and update all handlers, 1768 * however a fair share of IPIs are still resched only so this would 1769 * somewhat pessimize the simple resched case. 1770 */ 1771 irq_enter(); 1772 sched_ttwu_pending(); 1773 1774 /* 1775 * Check if someone kicked us for doing the nohz idle load balance. 1776 */ 1777 if (unlikely(got_nohz_idle_kick())) { 1778 this_rq()->idle_balance = 1; 1779 raise_softirq_irqoff(SCHED_SOFTIRQ); 1780 } 1781 irq_exit(); 1782 } 1783 1784 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1785 { 1786 struct rq *rq = cpu_rq(cpu); 1787 1788 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1789 1790 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1791 if (!set_nr_if_polling(rq->idle)) 1792 smp_send_reschedule(cpu); 1793 else 1794 trace_sched_wake_idle_without_ipi(cpu); 1795 } 1796 } 1797 1798 void wake_up_if_idle(int cpu) 1799 { 1800 struct rq *rq = cpu_rq(cpu); 1801 struct rq_flags rf; 1802 1803 rcu_read_lock(); 1804 1805 if (!is_idle_task(rcu_dereference(rq->curr))) 1806 goto out; 1807 1808 if (set_nr_if_polling(rq->idle)) { 1809 trace_sched_wake_idle_without_ipi(cpu); 1810 } else { 1811 rq_lock_irqsave(rq, &rf); 1812 if (is_idle_task(rq->curr)) 1813 smp_send_reschedule(cpu); 1814 /* Else CPU is not idle, do nothing here: */ 1815 rq_unlock_irqrestore(rq, &rf); 1816 } 1817 1818 out: 1819 rcu_read_unlock(); 1820 } 1821 1822 bool cpus_share_cache(int this_cpu, int that_cpu) 1823 { 1824 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1825 } 1826 #endif /* CONFIG_SMP */ 1827 1828 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1829 { 1830 struct rq *rq = cpu_rq(cpu); 1831 struct rq_flags rf; 1832 1833 #if defined(CONFIG_SMP) 1834 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1835 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1836 ttwu_queue_remote(p, cpu, wake_flags); 1837 return; 1838 } 1839 #endif 1840 1841 rq_lock(rq, &rf); 1842 update_rq_clock(rq); 1843 ttwu_do_activate(rq, p, wake_flags, &rf); 1844 rq_unlock(rq, &rf); 1845 } 1846 1847 /* 1848 * Notes on Program-Order guarantees on SMP systems. 1849 * 1850 * MIGRATION 1851 * 1852 * The basic program-order guarantee on SMP systems is that when a task [t] 1853 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1854 * execution on its new CPU [c1]. 1855 * 1856 * For migration (of runnable tasks) this is provided by the following means: 1857 * 1858 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1859 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1860 * rq(c1)->lock (if not at the same time, then in that order). 1861 * C) LOCK of the rq(c1)->lock scheduling in task 1862 * 1863 * Transitivity guarantees that B happens after A and C after B. 1864 * Note: we only require RCpc transitivity. 1865 * Note: the CPU doing B need not be c0 or c1 1866 * 1867 * Example: 1868 * 1869 * CPU0 CPU1 CPU2 1870 * 1871 * LOCK rq(0)->lock 1872 * sched-out X 1873 * sched-in Y 1874 * UNLOCK rq(0)->lock 1875 * 1876 * LOCK rq(0)->lock // orders against CPU0 1877 * dequeue X 1878 * UNLOCK rq(0)->lock 1879 * 1880 * LOCK rq(1)->lock 1881 * enqueue X 1882 * UNLOCK rq(1)->lock 1883 * 1884 * LOCK rq(1)->lock // orders against CPU2 1885 * sched-out Z 1886 * sched-in X 1887 * UNLOCK rq(1)->lock 1888 * 1889 * 1890 * BLOCKING -- aka. SLEEP + WAKEUP 1891 * 1892 * For blocking we (obviously) need to provide the same guarantee as for 1893 * migration. However the means are completely different as there is no lock 1894 * chain to provide order. Instead we do: 1895 * 1896 * 1) smp_store_release(X->on_cpu, 0) 1897 * 2) smp_cond_load_acquire(!X->on_cpu) 1898 * 1899 * Example: 1900 * 1901 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1902 * 1903 * LOCK rq(0)->lock LOCK X->pi_lock 1904 * dequeue X 1905 * sched-out X 1906 * smp_store_release(X->on_cpu, 0); 1907 * 1908 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1909 * X->state = WAKING 1910 * set_task_cpu(X,2) 1911 * 1912 * LOCK rq(2)->lock 1913 * enqueue X 1914 * X->state = RUNNING 1915 * UNLOCK rq(2)->lock 1916 * 1917 * LOCK rq(2)->lock // orders against CPU1 1918 * sched-out Z 1919 * sched-in X 1920 * UNLOCK rq(2)->lock 1921 * 1922 * UNLOCK X->pi_lock 1923 * UNLOCK rq(0)->lock 1924 * 1925 * 1926 * However; for wakeups there is a second guarantee we must provide, namely we 1927 * must observe the state that lead to our wakeup. That is, not only must our 1928 * task observe its own prior state, it must also observe the stores prior to 1929 * its wakeup. 1930 * 1931 * This means that any means of doing remote wakeups must order the CPU doing 1932 * the wakeup against the CPU the task is going to end up running on. This, 1933 * however, is already required for the regular Program-Order guarantee above, 1934 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1935 * 1936 */ 1937 1938 /** 1939 * try_to_wake_up - wake up a thread 1940 * @p: the thread to be awakened 1941 * @state: the mask of task states that can be woken 1942 * @wake_flags: wake modifier flags (WF_*) 1943 * 1944 * If (@state & @p->state) @p->state = TASK_RUNNING. 1945 * 1946 * If the task was not queued/runnable, also place it back on a runqueue. 1947 * 1948 * Atomic against schedule() which would dequeue a task, also see 1949 * set_current_state(). 1950 * 1951 * Return: %true if @p->state changes (an actual wakeup was done), 1952 * %false otherwise. 1953 */ 1954 static int 1955 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1956 { 1957 unsigned long flags; 1958 int cpu, success = 0; 1959 1960 /* 1961 * If we are going to wake up a thread waiting for CONDITION we 1962 * need to ensure that CONDITION=1 done by the caller can not be 1963 * reordered with p->state check below. This pairs with mb() in 1964 * set_current_state() the waiting thread does. 1965 */ 1966 raw_spin_lock_irqsave(&p->pi_lock, flags); 1967 smp_mb__after_spinlock(); 1968 if (!(p->state & state)) 1969 goto out; 1970 1971 trace_sched_waking(p); 1972 1973 /* We're going to change ->state: */ 1974 success = 1; 1975 cpu = task_cpu(p); 1976 1977 /* 1978 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1979 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1980 * in smp_cond_load_acquire() below. 1981 * 1982 * sched_ttwu_pending() try_to_wake_up() 1983 * [S] p->on_rq = 1; [L] P->state 1984 * UNLOCK rq->lock -----. 1985 * \ 1986 * +--- RMB 1987 * schedule() / 1988 * LOCK rq->lock -----' 1989 * UNLOCK rq->lock 1990 * 1991 * [task p] 1992 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 1993 * 1994 * Pairs with the UNLOCK+LOCK on rq->lock from the 1995 * last wakeup of our task and the schedule that got our task 1996 * current. 1997 */ 1998 smp_rmb(); 1999 if (p->on_rq && ttwu_remote(p, wake_flags)) 2000 goto stat; 2001 2002 #ifdef CONFIG_SMP 2003 /* 2004 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2005 * possible to, falsely, observe p->on_cpu == 0. 2006 * 2007 * One must be running (->on_cpu == 1) in order to remove oneself 2008 * from the runqueue. 2009 * 2010 * [S] ->on_cpu = 1; [L] ->on_rq 2011 * UNLOCK rq->lock 2012 * RMB 2013 * LOCK rq->lock 2014 * [S] ->on_rq = 0; [L] ->on_cpu 2015 * 2016 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2017 * from the consecutive calls to schedule(); the first switching to our 2018 * task, the second putting it to sleep. 2019 */ 2020 smp_rmb(); 2021 2022 /* 2023 * If the owning (remote) CPU is still in the middle of schedule() with 2024 * this task as prev, wait until its done referencing the task. 2025 * 2026 * Pairs with the smp_store_release() in finish_task(). 2027 * 2028 * This ensures that tasks getting woken will be fully ordered against 2029 * their previous state and preserve Program Order. 2030 */ 2031 smp_cond_load_acquire(&p->on_cpu, !VAL); 2032 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2034 p->state = TASK_WAKING; 2035 2036 if (p->in_iowait) { 2037 delayacct_blkio_end(p); 2038 atomic_dec(&task_rq(p)->nr_iowait); 2039 } 2040 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2042 if (task_cpu(p) != cpu) { 2043 wake_flags |= WF_MIGRATED; 2044 set_task_cpu(p, cpu); 2045 } 2046 2047 #else /* CONFIG_SMP */ 2048 2049 if (p->in_iowait) { 2050 delayacct_blkio_end(p); 2051 atomic_dec(&task_rq(p)->nr_iowait); 2052 } 2053 2054 #endif /* CONFIG_SMP */ 2055 2056 ttwu_queue(p, cpu, wake_flags); 2057 stat: 2058 ttwu_stat(p, cpu, wake_flags); 2059 out: 2060 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2061 2062 return success; 2063 } 2064 2065 /** 2066 * try_to_wake_up_local - try to wake up a local task with rq lock held 2067 * @p: the thread to be awakened 2068 * @rf: request-queue flags for pinning 2069 * 2070 * Put @p on the run-queue if it's not already there. The caller must 2071 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2072 * the current task. 2073 */ 2074 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2075 { 2076 struct rq *rq = task_rq(p); 2077 2078 if (WARN_ON_ONCE(rq != this_rq()) || 2079 WARN_ON_ONCE(p == current)) 2080 return; 2081 2082 lockdep_assert_held(&rq->lock); 2083 2084 if (!raw_spin_trylock(&p->pi_lock)) { 2085 /* 2086 * This is OK, because current is on_cpu, which avoids it being 2087 * picked for load-balance and preemption/IRQs are still 2088 * disabled avoiding further scheduler activity on it and we've 2089 * not yet picked a replacement task. 2090 */ 2091 rq_unlock(rq, rf); 2092 raw_spin_lock(&p->pi_lock); 2093 rq_relock(rq, rf); 2094 } 2095 2096 if (!(p->state & TASK_NORMAL)) 2097 goto out; 2098 2099 trace_sched_waking(p); 2100 2101 if (!task_on_rq_queued(p)) { 2102 if (p->in_iowait) { 2103 delayacct_blkio_end(p); 2104 atomic_dec(&rq->nr_iowait); 2105 } 2106 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2107 } 2108 2109 ttwu_do_wakeup(rq, p, 0, rf); 2110 ttwu_stat(p, smp_processor_id(), 0); 2111 out: 2112 raw_spin_unlock(&p->pi_lock); 2113 } 2114 2115 /** 2116 * wake_up_process - Wake up a specific process 2117 * @p: The process to be woken up. 2118 * 2119 * Attempt to wake up the nominated process and move it to the set of runnable 2120 * processes. 2121 * 2122 * Return: 1 if the process was woken up, 0 if it was already running. 2123 * 2124 * It may be assumed that this function implies a write memory barrier before 2125 * changing the task state if and only if any tasks are woken up. 2126 */ 2127 int wake_up_process(struct task_struct *p) 2128 { 2129 return try_to_wake_up(p, TASK_NORMAL, 0); 2130 } 2131 EXPORT_SYMBOL(wake_up_process); 2132 2133 int wake_up_state(struct task_struct *p, unsigned int state) 2134 { 2135 return try_to_wake_up(p, state, 0); 2136 } 2137 2138 /* 2139 * Perform scheduler related setup for a newly forked process p. 2140 * p is forked by current. 2141 * 2142 * __sched_fork() is basic setup used by init_idle() too: 2143 */ 2144 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2145 { 2146 p->on_rq = 0; 2147 2148 p->se.on_rq = 0; 2149 p->se.exec_start = 0; 2150 p->se.sum_exec_runtime = 0; 2151 p->se.prev_sum_exec_runtime = 0; 2152 p->se.nr_migrations = 0; 2153 p->se.vruntime = 0; 2154 INIT_LIST_HEAD(&p->se.group_node); 2155 2156 #ifdef CONFIG_FAIR_GROUP_SCHED 2157 p->se.cfs_rq = NULL; 2158 #endif 2159 2160 #ifdef CONFIG_SCHEDSTATS 2161 /* Even if schedstat is disabled, there should not be garbage */ 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2163 #endif 2164 2165 RB_CLEAR_NODE(&p->dl.rb_node); 2166 init_dl_task_timer(&p->dl); 2167 init_dl_inactive_task_timer(&p->dl); 2168 __dl_clear_params(p); 2169 2170 INIT_LIST_HEAD(&p->rt.run_list); 2171 p->rt.timeout = 0; 2172 p->rt.time_slice = sched_rr_timeslice; 2173 p->rt.on_rq = 0; 2174 p->rt.on_list = 0; 2175 2176 #ifdef CONFIG_PREEMPT_NOTIFIERS 2177 INIT_HLIST_HEAD(&p->preempt_notifiers); 2178 #endif 2179 2180 #ifdef CONFIG_NUMA_BALANCING 2181 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2182 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2183 p->mm->numa_scan_seq = 0; 2184 } 2185 2186 if (clone_flags & CLONE_VM) 2187 p->numa_preferred_nid = current->numa_preferred_nid; 2188 else 2189 p->numa_preferred_nid = -1; 2190 2191 p->node_stamp = 0ULL; 2192 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2193 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2194 p->numa_work.next = &p->numa_work; 2195 p->numa_faults = NULL; 2196 p->last_task_numa_placement = 0; 2197 p->last_sum_exec_runtime = 0; 2198 2199 p->numa_group = NULL; 2200 #endif /* CONFIG_NUMA_BALANCING */ 2201 } 2202 2203 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2204 2205 #ifdef CONFIG_NUMA_BALANCING 2206 2207 void set_numabalancing_state(bool enabled) 2208 { 2209 if (enabled) 2210 static_branch_enable(&sched_numa_balancing); 2211 else 2212 static_branch_disable(&sched_numa_balancing); 2213 } 2214 2215 #ifdef CONFIG_PROC_SYSCTL 2216 int sysctl_numa_balancing(struct ctl_table *table, int write, 2217 void __user *buffer, size_t *lenp, loff_t *ppos) 2218 { 2219 struct ctl_table t; 2220 int err; 2221 int state = static_branch_likely(&sched_numa_balancing); 2222 2223 if (write && !capable(CAP_SYS_ADMIN)) 2224 return -EPERM; 2225 2226 t = *table; 2227 t.data = &state; 2228 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2229 if (err < 0) 2230 return err; 2231 if (write) 2232 set_numabalancing_state(state); 2233 return err; 2234 } 2235 #endif 2236 #endif 2237 2238 #ifdef CONFIG_SCHEDSTATS 2239 2240 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2241 static bool __initdata __sched_schedstats = false; 2242 2243 static void set_schedstats(bool enabled) 2244 { 2245 if (enabled) 2246 static_branch_enable(&sched_schedstats); 2247 else 2248 static_branch_disable(&sched_schedstats); 2249 } 2250 2251 void force_schedstat_enabled(void) 2252 { 2253 if (!schedstat_enabled()) { 2254 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2255 static_branch_enable(&sched_schedstats); 2256 } 2257 } 2258 2259 static int __init setup_schedstats(char *str) 2260 { 2261 int ret = 0; 2262 if (!str) 2263 goto out; 2264 2265 /* 2266 * This code is called before jump labels have been set up, so we can't 2267 * change the static branch directly just yet. Instead set a temporary 2268 * variable so init_schedstats() can do it later. 2269 */ 2270 if (!strcmp(str, "enable")) { 2271 __sched_schedstats = true; 2272 ret = 1; 2273 } else if (!strcmp(str, "disable")) { 2274 __sched_schedstats = false; 2275 ret = 1; 2276 } 2277 out: 2278 if (!ret) 2279 pr_warn("Unable to parse schedstats=\n"); 2280 2281 return ret; 2282 } 2283 __setup("schedstats=", setup_schedstats); 2284 2285 static void __init init_schedstats(void) 2286 { 2287 set_schedstats(__sched_schedstats); 2288 } 2289 2290 #ifdef CONFIG_PROC_SYSCTL 2291 int sysctl_schedstats(struct ctl_table *table, int write, 2292 void __user *buffer, size_t *lenp, loff_t *ppos) 2293 { 2294 struct ctl_table t; 2295 int err; 2296 int state = static_branch_likely(&sched_schedstats); 2297 2298 if (write && !capable(CAP_SYS_ADMIN)) 2299 return -EPERM; 2300 2301 t = *table; 2302 t.data = &state; 2303 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2304 if (err < 0) 2305 return err; 2306 if (write) 2307 set_schedstats(state); 2308 return err; 2309 } 2310 #endif /* CONFIG_PROC_SYSCTL */ 2311 #else /* !CONFIG_SCHEDSTATS */ 2312 static inline void init_schedstats(void) {} 2313 #endif /* CONFIG_SCHEDSTATS */ 2314 2315 /* 2316 * fork()/clone()-time setup: 2317 */ 2318 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2319 { 2320 unsigned long flags; 2321 int cpu = get_cpu(); 2322 2323 __sched_fork(clone_flags, p); 2324 /* 2325 * We mark the process as NEW here. This guarantees that 2326 * nobody will actually run it, and a signal or other external 2327 * event cannot wake it up and insert it on the runqueue either. 2328 */ 2329 p->state = TASK_NEW; 2330 2331 /* 2332 * Make sure we do not leak PI boosting priority to the child. 2333 */ 2334 p->prio = current->normal_prio; 2335 2336 /* 2337 * Revert to default priority/policy on fork if requested. 2338 */ 2339 if (unlikely(p->sched_reset_on_fork)) { 2340 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2341 p->policy = SCHED_NORMAL; 2342 p->static_prio = NICE_TO_PRIO(0); 2343 p->rt_priority = 0; 2344 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2345 p->static_prio = NICE_TO_PRIO(0); 2346 2347 p->prio = p->normal_prio = __normal_prio(p); 2348 set_load_weight(p, false); 2349 2350 /* 2351 * We don't need the reset flag anymore after the fork. It has 2352 * fulfilled its duty: 2353 */ 2354 p->sched_reset_on_fork = 0; 2355 } 2356 2357 if (dl_prio(p->prio)) { 2358 put_cpu(); 2359 return -EAGAIN; 2360 } else if (rt_prio(p->prio)) { 2361 p->sched_class = &rt_sched_class; 2362 } else { 2363 p->sched_class = &fair_sched_class; 2364 } 2365 2366 init_entity_runnable_average(&p->se); 2367 2368 /* 2369 * The child is not yet in the pid-hash so no cgroup attach races, 2370 * and the cgroup is pinned to this child due to cgroup_fork() 2371 * is ran before sched_fork(). 2372 * 2373 * Silence PROVE_RCU. 2374 */ 2375 raw_spin_lock_irqsave(&p->pi_lock, flags); 2376 /* 2377 * We're setting the CPU for the first time, we don't migrate, 2378 * so use __set_task_cpu(). 2379 */ 2380 __set_task_cpu(p, cpu); 2381 if (p->sched_class->task_fork) 2382 p->sched_class->task_fork(p); 2383 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2384 2385 #ifdef CONFIG_SCHED_INFO 2386 if (likely(sched_info_on())) 2387 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2388 #endif 2389 #if defined(CONFIG_SMP) 2390 p->on_cpu = 0; 2391 #endif 2392 init_task_preempt_count(p); 2393 #ifdef CONFIG_SMP 2394 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2395 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2396 #endif 2397 2398 put_cpu(); 2399 return 0; 2400 } 2401 2402 unsigned long to_ratio(u64 period, u64 runtime) 2403 { 2404 if (runtime == RUNTIME_INF) 2405 return BW_UNIT; 2406 2407 /* 2408 * Doing this here saves a lot of checks in all 2409 * the calling paths, and returning zero seems 2410 * safe for them anyway. 2411 */ 2412 if (period == 0) 2413 return 0; 2414 2415 return div64_u64(runtime << BW_SHIFT, period); 2416 } 2417 2418 /* 2419 * wake_up_new_task - wake up a newly created task for the first time. 2420 * 2421 * This function will do some initial scheduler statistics housekeeping 2422 * that must be done for every newly created context, then puts the task 2423 * on the runqueue and wakes it. 2424 */ 2425 void wake_up_new_task(struct task_struct *p) 2426 { 2427 struct rq_flags rf; 2428 struct rq *rq; 2429 2430 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2431 p->state = TASK_RUNNING; 2432 #ifdef CONFIG_SMP 2433 /* 2434 * Fork balancing, do it here and not earlier because: 2435 * - cpus_allowed can change in the fork path 2436 * - any previously selected CPU might disappear through hotplug 2437 * 2438 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2439 * as we're not fully set-up yet. 2440 */ 2441 p->recent_used_cpu = task_cpu(p); 2442 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2443 #endif 2444 rq = __task_rq_lock(p, &rf); 2445 update_rq_clock(rq); 2446 post_init_entity_util_avg(&p->se); 2447 2448 activate_task(rq, p, ENQUEUE_NOCLOCK); 2449 p->on_rq = TASK_ON_RQ_QUEUED; 2450 trace_sched_wakeup_new(p); 2451 check_preempt_curr(rq, p, WF_FORK); 2452 #ifdef CONFIG_SMP 2453 if (p->sched_class->task_woken) { 2454 /* 2455 * Nothing relies on rq->lock after this, so its fine to 2456 * drop it. 2457 */ 2458 rq_unpin_lock(rq, &rf); 2459 p->sched_class->task_woken(rq, p); 2460 rq_repin_lock(rq, &rf); 2461 } 2462 #endif 2463 task_rq_unlock(rq, p, &rf); 2464 } 2465 2466 #ifdef CONFIG_PREEMPT_NOTIFIERS 2467 2468 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2469 2470 void preempt_notifier_inc(void) 2471 { 2472 static_branch_inc(&preempt_notifier_key); 2473 } 2474 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2475 2476 void preempt_notifier_dec(void) 2477 { 2478 static_branch_dec(&preempt_notifier_key); 2479 } 2480 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2481 2482 /** 2483 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2484 * @notifier: notifier struct to register 2485 */ 2486 void preempt_notifier_register(struct preempt_notifier *notifier) 2487 { 2488 if (!static_branch_unlikely(&preempt_notifier_key)) 2489 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2490 2491 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2492 } 2493 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2494 2495 /** 2496 * preempt_notifier_unregister - no longer interested in preemption notifications 2497 * @notifier: notifier struct to unregister 2498 * 2499 * This is *not* safe to call from within a preemption notifier. 2500 */ 2501 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2502 { 2503 hlist_del(¬ifier->link); 2504 } 2505 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2506 2507 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2508 { 2509 struct preempt_notifier *notifier; 2510 2511 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2512 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2513 } 2514 2515 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2516 { 2517 if (static_branch_unlikely(&preempt_notifier_key)) 2518 __fire_sched_in_preempt_notifiers(curr); 2519 } 2520 2521 static void 2522 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2523 struct task_struct *next) 2524 { 2525 struct preempt_notifier *notifier; 2526 2527 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2528 notifier->ops->sched_out(notifier, next); 2529 } 2530 2531 static __always_inline void 2532 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2533 struct task_struct *next) 2534 { 2535 if (static_branch_unlikely(&preempt_notifier_key)) 2536 __fire_sched_out_preempt_notifiers(curr, next); 2537 } 2538 2539 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2540 2541 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2542 { 2543 } 2544 2545 static inline void 2546 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2547 struct task_struct *next) 2548 { 2549 } 2550 2551 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2552 2553 static inline void prepare_task(struct task_struct *next) 2554 { 2555 #ifdef CONFIG_SMP 2556 /* 2557 * Claim the task as running, we do this before switching to it 2558 * such that any running task will have this set. 2559 */ 2560 next->on_cpu = 1; 2561 #endif 2562 } 2563 2564 static inline void finish_task(struct task_struct *prev) 2565 { 2566 #ifdef CONFIG_SMP 2567 /* 2568 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2569 * We must ensure this doesn't happen until the switch is completely 2570 * finished. 2571 * 2572 * In particular, the load of prev->state in finish_task_switch() must 2573 * happen before this. 2574 * 2575 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2576 */ 2577 smp_store_release(&prev->on_cpu, 0); 2578 #endif 2579 } 2580 2581 static inline void 2582 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2583 { 2584 /* 2585 * Since the runqueue lock will be released by the next 2586 * task (which is an invalid locking op but in the case 2587 * of the scheduler it's an obvious special-case), so we 2588 * do an early lockdep release here: 2589 */ 2590 rq_unpin_lock(rq, rf); 2591 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2592 #ifdef CONFIG_DEBUG_SPINLOCK 2593 /* this is a valid case when another task releases the spinlock */ 2594 rq->lock.owner = next; 2595 #endif 2596 } 2597 2598 static inline void finish_lock_switch(struct rq *rq) 2599 { 2600 /* 2601 * If we are tracking spinlock dependencies then we have to 2602 * fix up the runqueue lock - which gets 'carried over' from 2603 * prev into current: 2604 */ 2605 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2606 raw_spin_unlock_irq(&rq->lock); 2607 } 2608 2609 /* 2610 * NOP if the arch has not defined these: 2611 */ 2612 2613 #ifndef prepare_arch_switch 2614 # define prepare_arch_switch(next) do { } while (0) 2615 #endif 2616 2617 #ifndef finish_arch_post_lock_switch 2618 # define finish_arch_post_lock_switch() do { } while (0) 2619 #endif 2620 2621 /** 2622 * prepare_task_switch - prepare to switch tasks 2623 * @rq: the runqueue preparing to switch 2624 * @prev: the current task that is being switched out 2625 * @next: the task we are going to switch to. 2626 * 2627 * This is called with the rq lock held and interrupts off. It must 2628 * be paired with a subsequent finish_task_switch after the context 2629 * switch. 2630 * 2631 * prepare_task_switch sets up locking and calls architecture specific 2632 * hooks. 2633 */ 2634 static inline void 2635 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2636 struct task_struct *next) 2637 { 2638 sched_info_switch(rq, prev, next); 2639 perf_event_task_sched_out(prev, next); 2640 fire_sched_out_preempt_notifiers(prev, next); 2641 prepare_task(next); 2642 prepare_arch_switch(next); 2643 } 2644 2645 /** 2646 * finish_task_switch - clean up after a task-switch 2647 * @prev: the thread we just switched away from. 2648 * 2649 * finish_task_switch must be called after the context switch, paired 2650 * with a prepare_task_switch call before the context switch. 2651 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2652 * and do any other architecture-specific cleanup actions. 2653 * 2654 * Note that we may have delayed dropping an mm in context_switch(). If 2655 * so, we finish that here outside of the runqueue lock. (Doing it 2656 * with the lock held can cause deadlocks; see schedule() for 2657 * details.) 2658 * 2659 * The context switch have flipped the stack from under us and restored the 2660 * local variables which were saved when this task called schedule() in the 2661 * past. prev == current is still correct but we need to recalculate this_rq 2662 * because prev may have moved to another CPU. 2663 */ 2664 static struct rq *finish_task_switch(struct task_struct *prev) 2665 __releases(rq->lock) 2666 { 2667 struct rq *rq = this_rq(); 2668 struct mm_struct *mm = rq->prev_mm; 2669 long prev_state; 2670 2671 /* 2672 * The previous task will have left us with a preempt_count of 2 2673 * because it left us after: 2674 * 2675 * schedule() 2676 * preempt_disable(); // 1 2677 * __schedule() 2678 * raw_spin_lock_irq(&rq->lock) // 2 2679 * 2680 * Also, see FORK_PREEMPT_COUNT. 2681 */ 2682 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2683 "corrupted preempt_count: %s/%d/0x%x\n", 2684 current->comm, current->pid, preempt_count())) 2685 preempt_count_set(FORK_PREEMPT_COUNT); 2686 2687 rq->prev_mm = NULL; 2688 2689 /* 2690 * A task struct has one reference for the use as "current". 2691 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2692 * schedule one last time. The schedule call will never return, and 2693 * the scheduled task must drop that reference. 2694 * 2695 * We must observe prev->state before clearing prev->on_cpu (in 2696 * finish_task), otherwise a concurrent wakeup can get prev 2697 * running on another CPU and we could rave with its RUNNING -> DEAD 2698 * transition, resulting in a double drop. 2699 */ 2700 prev_state = prev->state; 2701 vtime_task_switch(prev); 2702 perf_event_task_sched_in(prev, current); 2703 finish_task(prev); 2704 finish_lock_switch(rq); 2705 finish_arch_post_lock_switch(); 2706 2707 fire_sched_in_preempt_notifiers(current); 2708 /* 2709 * When switching through a kernel thread, the loop in 2710 * membarrier_{private,global}_expedited() may have observed that 2711 * kernel thread and not issued an IPI. It is therefore possible to 2712 * schedule between user->kernel->user threads without passing though 2713 * switch_mm(). Membarrier requires a barrier after storing to 2714 * rq->curr, before returning to userspace, so provide them here: 2715 * 2716 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2717 * provided by mmdrop(), 2718 * - a sync_core for SYNC_CORE. 2719 */ 2720 if (mm) { 2721 membarrier_mm_sync_core_before_usermode(mm); 2722 mmdrop(mm); 2723 } 2724 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { 2725 switch (prev_state) { 2726 case TASK_DEAD: 2727 if (prev->sched_class->task_dead) 2728 prev->sched_class->task_dead(prev); 2729 2730 /* 2731 * Remove function-return probe instances associated with this 2732 * task and put them back on the free list. 2733 */ 2734 kprobe_flush_task(prev); 2735 2736 /* Task is done with its stack. */ 2737 put_task_stack(prev); 2738 2739 put_task_struct(prev); 2740 break; 2741 2742 case TASK_PARKED: 2743 kthread_park_complete(prev); 2744 break; 2745 } 2746 } 2747 2748 tick_nohz_task_switch(); 2749 return rq; 2750 } 2751 2752 #ifdef CONFIG_SMP 2753 2754 /* rq->lock is NOT held, but preemption is disabled */ 2755 static void __balance_callback(struct rq *rq) 2756 { 2757 struct callback_head *head, *next; 2758 void (*func)(struct rq *rq); 2759 unsigned long flags; 2760 2761 raw_spin_lock_irqsave(&rq->lock, flags); 2762 head = rq->balance_callback; 2763 rq->balance_callback = NULL; 2764 while (head) { 2765 func = (void (*)(struct rq *))head->func; 2766 next = head->next; 2767 head->next = NULL; 2768 head = next; 2769 2770 func(rq); 2771 } 2772 raw_spin_unlock_irqrestore(&rq->lock, flags); 2773 } 2774 2775 static inline void balance_callback(struct rq *rq) 2776 { 2777 if (unlikely(rq->balance_callback)) 2778 __balance_callback(rq); 2779 } 2780 2781 #else 2782 2783 static inline void balance_callback(struct rq *rq) 2784 { 2785 } 2786 2787 #endif 2788 2789 /** 2790 * schedule_tail - first thing a freshly forked thread must call. 2791 * @prev: the thread we just switched away from. 2792 */ 2793 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2794 __releases(rq->lock) 2795 { 2796 struct rq *rq; 2797 2798 /* 2799 * New tasks start with FORK_PREEMPT_COUNT, see there and 2800 * finish_task_switch() for details. 2801 * 2802 * finish_task_switch() will drop rq->lock() and lower preempt_count 2803 * and the preempt_enable() will end up enabling preemption (on 2804 * PREEMPT_COUNT kernels). 2805 */ 2806 2807 rq = finish_task_switch(prev); 2808 balance_callback(rq); 2809 preempt_enable(); 2810 2811 if (current->set_child_tid) 2812 put_user(task_pid_vnr(current), current->set_child_tid); 2813 } 2814 2815 /* 2816 * context_switch - switch to the new MM and the new thread's register state. 2817 */ 2818 static __always_inline struct rq * 2819 context_switch(struct rq *rq, struct task_struct *prev, 2820 struct task_struct *next, struct rq_flags *rf) 2821 { 2822 struct mm_struct *mm, *oldmm; 2823 2824 prepare_task_switch(rq, prev, next); 2825 2826 mm = next->mm; 2827 oldmm = prev->active_mm; 2828 /* 2829 * For paravirt, this is coupled with an exit in switch_to to 2830 * combine the page table reload and the switch backend into 2831 * one hypercall. 2832 */ 2833 arch_start_context_switch(prev); 2834 2835 /* 2836 * If mm is non-NULL, we pass through switch_mm(). If mm is 2837 * NULL, we will pass through mmdrop() in finish_task_switch(). 2838 * Both of these contain the full memory barrier required by 2839 * membarrier after storing to rq->curr, before returning to 2840 * user-space. 2841 */ 2842 if (!mm) { 2843 next->active_mm = oldmm; 2844 mmgrab(oldmm); 2845 enter_lazy_tlb(oldmm, next); 2846 } else 2847 switch_mm_irqs_off(oldmm, mm, next); 2848 2849 if (!prev->mm) { 2850 prev->active_mm = NULL; 2851 rq->prev_mm = oldmm; 2852 } 2853 2854 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2855 2856 prepare_lock_switch(rq, next, rf); 2857 2858 /* Here we just switch the register state and the stack. */ 2859 switch_to(prev, next, prev); 2860 barrier(); 2861 2862 return finish_task_switch(prev); 2863 } 2864 2865 /* 2866 * nr_running and nr_context_switches: 2867 * 2868 * externally visible scheduler statistics: current number of runnable 2869 * threads, total number of context switches performed since bootup. 2870 */ 2871 unsigned long nr_running(void) 2872 { 2873 unsigned long i, sum = 0; 2874 2875 for_each_online_cpu(i) 2876 sum += cpu_rq(i)->nr_running; 2877 2878 return sum; 2879 } 2880 2881 /* 2882 * Check if only the current task is running on the CPU. 2883 * 2884 * Caution: this function does not check that the caller has disabled 2885 * preemption, thus the result might have a time-of-check-to-time-of-use 2886 * race. The caller is responsible to use it correctly, for example: 2887 * 2888 * - from a non-preemptable section (of course) 2889 * 2890 * - from a thread that is bound to a single CPU 2891 * 2892 * - in a loop with very short iterations (e.g. a polling loop) 2893 */ 2894 bool single_task_running(void) 2895 { 2896 return raw_rq()->nr_running == 1; 2897 } 2898 EXPORT_SYMBOL(single_task_running); 2899 2900 unsigned long long nr_context_switches(void) 2901 { 2902 int i; 2903 unsigned long long sum = 0; 2904 2905 for_each_possible_cpu(i) 2906 sum += cpu_rq(i)->nr_switches; 2907 2908 return sum; 2909 } 2910 2911 /* 2912 * IO-wait accounting, and how its mostly bollocks (on SMP). 2913 * 2914 * The idea behind IO-wait account is to account the idle time that we could 2915 * have spend running if it were not for IO. That is, if we were to improve the 2916 * storage performance, we'd have a proportional reduction in IO-wait time. 2917 * 2918 * This all works nicely on UP, where, when a task blocks on IO, we account 2919 * idle time as IO-wait, because if the storage were faster, it could've been 2920 * running and we'd not be idle. 2921 * 2922 * This has been extended to SMP, by doing the same for each CPU. This however 2923 * is broken. 2924 * 2925 * Imagine for instance the case where two tasks block on one CPU, only the one 2926 * CPU will have IO-wait accounted, while the other has regular idle. Even 2927 * though, if the storage were faster, both could've ran at the same time, 2928 * utilising both CPUs. 2929 * 2930 * This means, that when looking globally, the current IO-wait accounting on 2931 * SMP is a lower bound, by reason of under accounting. 2932 * 2933 * Worse, since the numbers are provided per CPU, they are sometimes 2934 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2935 * associated with any one particular CPU, it can wake to another CPU than it 2936 * blocked on. This means the per CPU IO-wait number is meaningless. 2937 * 2938 * Task CPU affinities can make all that even more 'interesting'. 2939 */ 2940 2941 unsigned long nr_iowait(void) 2942 { 2943 unsigned long i, sum = 0; 2944 2945 for_each_possible_cpu(i) 2946 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2947 2948 return sum; 2949 } 2950 2951 /* 2952 * Consumers of these two interfaces, like for example the cpufreq menu 2953 * governor are using nonsensical data. Boosting frequency for a CPU that has 2954 * IO-wait which might not even end up running the task when it does become 2955 * runnable. 2956 */ 2957 2958 unsigned long nr_iowait_cpu(int cpu) 2959 { 2960 struct rq *this = cpu_rq(cpu); 2961 return atomic_read(&this->nr_iowait); 2962 } 2963 2964 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2965 { 2966 struct rq *rq = this_rq(); 2967 *nr_waiters = atomic_read(&rq->nr_iowait); 2968 *load = rq->load.weight; 2969 } 2970 2971 #ifdef CONFIG_SMP 2972 2973 /* 2974 * sched_exec - execve() is a valuable balancing opportunity, because at 2975 * this point the task has the smallest effective memory and cache footprint. 2976 */ 2977 void sched_exec(void) 2978 { 2979 struct task_struct *p = current; 2980 unsigned long flags; 2981 int dest_cpu; 2982 2983 raw_spin_lock_irqsave(&p->pi_lock, flags); 2984 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2985 if (dest_cpu == smp_processor_id()) 2986 goto unlock; 2987 2988 if (likely(cpu_active(dest_cpu))) { 2989 struct migration_arg arg = { p, dest_cpu }; 2990 2991 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2992 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2993 return; 2994 } 2995 unlock: 2996 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2997 } 2998 2999 #endif 3000 3001 DEFINE_PER_CPU(struct kernel_stat, kstat); 3002 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3003 3004 EXPORT_PER_CPU_SYMBOL(kstat); 3005 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3006 3007 /* 3008 * The function fair_sched_class.update_curr accesses the struct curr 3009 * and its field curr->exec_start; when called from task_sched_runtime(), 3010 * we observe a high rate of cache misses in practice. 3011 * Prefetching this data results in improved performance. 3012 */ 3013 static inline void prefetch_curr_exec_start(struct task_struct *p) 3014 { 3015 #ifdef CONFIG_FAIR_GROUP_SCHED 3016 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3017 #else 3018 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3019 #endif 3020 prefetch(curr); 3021 prefetch(&curr->exec_start); 3022 } 3023 3024 /* 3025 * Return accounted runtime for the task. 3026 * In case the task is currently running, return the runtime plus current's 3027 * pending runtime that have not been accounted yet. 3028 */ 3029 unsigned long long task_sched_runtime(struct task_struct *p) 3030 { 3031 struct rq_flags rf; 3032 struct rq *rq; 3033 u64 ns; 3034 3035 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3036 /* 3037 * 64-bit doesn't need locks to atomically read a 64-bit value. 3038 * So we have a optimization chance when the task's delta_exec is 0. 3039 * Reading ->on_cpu is racy, but this is ok. 3040 * 3041 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3042 * If we race with it entering CPU, unaccounted time is 0. This is 3043 * indistinguishable from the read occurring a few cycles earlier. 3044 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3045 * been accounted, so we're correct here as well. 3046 */ 3047 if (!p->on_cpu || !task_on_rq_queued(p)) 3048 return p->se.sum_exec_runtime; 3049 #endif 3050 3051 rq = task_rq_lock(p, &rf); 3052 /* 3053 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3054 * project cycles that may never be accounted to this 3055 * thread, breaking clock_gettime(). 3056 */ 3057 if (task_current(rq, p) && task_on_rq_queued(p)) { 3058 prefetch_curr_exec_start(p); 3059 update_rq_clock(rq); 3060 p->sched_class->update_curr(rq); 3061 } 3062 ns = p->se.sum_exec_runtime; 3063 task_rq_unlock(rq, p, &rf); 3064 3065 return ns; 3066 } 3067 3068 /* 3069 * This function gets called by the timer code, with HZ frequency. 3070 * We call it with interrupts disabled. 3071 */ 3072 void scheduler_tick(void) 3073 { 3074 int cpu = smp_processor_id(); 3075 struct rq *rq = cpu_rq(cpu); 3076 struct task_struct *curr = rq->curr; 3077 struct rq_flags rf; 3078 3079 sched_clock_tick(); 3080 3081 rq_lock(rq, &rf); 3082 3083 update_rq_clock(rq); 3084 curr->sched_class->task_tick(rq, curr, 0); 3085 cpu_load_update_active(rq); 3086 calc_global_load_tick(rq); 3087 3088 rq_unlock(rq, &rf); 3089 3090 perf_event_task_tick(); 3091 3092 #ifdef CONFIG_SMP 3093 rq->idle_balance = idle_cpu(cpu); 3094 trigger_load_balance(rq); 3095 #endif 3096 } 3097 3098 #ifdef CONFIG_NO_HZ_FULL 3099 3100 struct tick_work { 3101 int cpu; 3102 struct delayed_work work; 3103 }; 3104 3105 static struct tick_work __percpu *tick_work_cpu; 3106 3107 static void sched_tick_remote(struct work_struct *work) 3108 { 3109 struct delayed_work *dwork = to_delayed_work(work); 3110 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3111 int cpu = twork->cpu; 3112 struct rq *rq = cpu_rq(cpu); 3113 struct rq_flags rf; 3114 3115 /* 3116 * Handle the tick only if it appears the remote CPU is running in full 3117 * dynticks mode. The check is racy by nature, but missing a tick or 3118 * having one too much is no big deal because the scheduler tick updates 3119 * statistics and checks timeslices in a time-independent way, regardless 3120 * of when exactly it is running. 3121 */ 3122 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3123 struct task_struct *curr; 3124 u64 delta; 3125 3126 rq_lock_irq(rq, &rf); 3127 update_rq_clock(rq); 3128 curr = rq->curr; 3129 delta = rq_clock_task(rq) - curr->se.exec_start; 3130 3131 /* 3132 * Make sure the next tick runs within a reasonable 3133 * amount of time. 3134 */ 3135 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3136 curr->sched_class->task_tick(rq, curr, 0); 3137 rq_unlock_irq(rq, &rf); 3138 } 3139 3140 /* 3141 * Run the remote tick once per second (1Hz). This arbitrary 3142 * frequency is large enough to avoid overload but short enough 3143 * to keep scheduler internal stats reasonably up to date. 3144 */ 3145 queue_delayed_work(system_unbound_wq, dwork, HZ); 3146 } 3147 3148 static void sched_tick_start(int cpu) 3149 { 3150 struct tick_work *twork; 3151 3152 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3153 return; 3154 3155 WARN_ON_ONCE(!tick_work_cpu); 3156 3157 twork = per_cpu_ptr(tick_work_cpu, cpu); 3158 twork->cpu = cpu; 3159 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3160 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3161 } 3162 3163 #ifdef CONFIG_HOTPLUG_CPU 3164 static void sched_tick_stop(int cpu) 3165 { 3166 struct tick_work *twork; 3167 3168 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3169 return; 3170 3171 WARN_ON_ONCE(!tick_work_cpu); 3172 3173 twork = per_cpu_ptr(tick_work_cpu, cpu); 3174 cancel_delayed_work_sync(&twork->work); 3175 } 3176 #endif /* CONFIG_HOTPLUG_CPU */ 3177 3178 int __init sched_tick_offload_init(void) 3179 { 3180 tick_work_cpu = alloc_percpu(struct tick_work); 3181 BUG_ON(!tick_work_cpu); 3182 3183 return 0; 3184 } 3185 3186 #else /* !CONFIG_NO_HZ_FULL */ 3187 static inline void sched_tick_start(int cpu) { } 3188 static inline void sched_tick_stop(int cpu) { } 3189 #endif 3190 3191 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3192 defined(CONFIG_PREEMPT_TRACER)) 3193 /* 3194 * If the value passed in is equal to the current preempt count 3195 * then we just disabled preemption. Start timing the latency. 3196 */ 3197 static inline void preempt_latency_start(int val) 3198 { 3199 if (preempt_count() == val) { 3200 unsigned long ip = get_lock_parent_ip(); 3201 #ifdef CONFIG_DEBUG_PREEMPT 3202 current->preempt_disable_ip = ip; 3203 #endif 3204 trace_preempt_off(CALLER_ADDR0, ip); 3205 } 3206 } 3207 3208 void preempt_count_add(int val) 3209 { 3210 #ifdef CONFIG_DEBUG_PREEMPT 3211 /* 3212 * Underflow? 3213 */ 3214 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3215 return; 3216 #endif 3217 __preempt_count_add(val); 3218 #ifdef CONFIG_DEBUG_PREEMPT 3219 /* 3220 * Spinlock count overflowing soon? 3221 */ 3222 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3223 PREEMPT_MASK - 10); 3224 #endif 3225 preempt_latency_start(val); 3226 } 3227 EXPORT_SYMBOL(preempt_count_add); 3228 NOKPROBE_SYMBOL(preempt_count_add); 3229 3230 /* 3231 * If the value passed in equals to the current preempt count 3232 * then we just enabled preemption. Stop timing the latency. 3233 */ 3234 static inline void preempt_latency_stop(int val) 3235 { 3236 if (preempt_count() == val) 3237 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3238 } 3239 3240 void preempt_count_sub(int val) 3241 { 3242 #ifdef CONFIG_DEBUG_PREEMPT 3243 /* 3244 * Underflow? 3245 */ 3246 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3247 return; 3248 /* 3249 * Is the spinlock portion underflowing? 3250 */ 3251 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3252 !(preempt_count() & PREEMPT_MASK))) 3253 return; 3254 #endif 3255 3256 preempt_latency_stop(val); 3257 __preempt_count_sub(val); 3258 } 3259 EXPORT_SYMBOL(preempt_count_sub); 3260 NOKPROBE_SYMBOL(preempt_count_sub); 3261 3262 #else 3263 static inline void preempt_latency_start(int val) { } 3264 static inline void preempt_latency_stop(int val) { } 3265 #endif 3266 3267 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3268 { 3269 #ifdef CONFIG_DEBUG_PREEMPT 3270 return p->preempt_disable_ip; 3271 #else 3272 return 0; 3273 #endif 3274 } 3275 3276 /* 3277 * Print scheduling while atomic bug: 3278 */ 3279 static noinline void __schedule_bug(struct task_struct *prev) 3280 { 3281 /* Save this before calling printk(), since that will clobber it */ 3282 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3283 3284 if (oops_in_progress) 3285 return; 3286 3287 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3288 prev->comm, prev->pid, preempt_count()); 3289 3290 debug_show_held_locks(prev); 3291 print_modules(); 3292 if (irqs_disabled()) 3293 print_irqtrace_events(prev); 3294 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3295 && in_atomic_preempt_off()) { 3296 pr_err("Preemption disabled at:"); 3297 print_ip_sym(preempt_disable_ip); 3298 pr_cont("\n"); 3299 } 3300 if (panic_on_warn) 3301 panic("scheduling while atomic\n"); 3302 3303 dump_stack(); 3304 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3305 } 3306 3307 /* 3308 * Various schedule()-time debugging checks and statistics: 3309 */ 3310 static inline void schedule_debug(struct task_struct *prev) 3311 { 3312 #ifdef CONFIG_SCHED_STACK_END_CHECK 3313 if (task_stack_end_corrupted(prev)) 3314 panic("corrupted stack end detected inside scheduler\n"); 3315 #endif 3316 3317 if (unlikely(in_atomic_preempt_off())) { 3318 __schedule_bug(prev); 3319 preempt_count_set(PREEMPT_DISABLED); 3320 } 3321 rcu_sleep_check(); 3322 3323 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3324 3325 schedstat_inc(this_rq()->sched_count); 3326 } 3327 3328 /* 3329 * Pick up the highest-prio task: 3330 */ 3331 static inline struct task_struct * 3332 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3333 { 3334 const struct sched_class *class; 3335 struct task_struct *p; 3336 3337 /* 3338 * Optimization: we know that if all tasks are in the fair class we can 3339 * call that function directly, but only if the @prev task wasn't of a 3340 * higher scheduling class, because otherwise those loose the 3341 * opportunity to pull in more work from other CPUs. 3342 */ 3343 if (likely((prev->sched_class == &idle_sched_class || 3344 prev->sched_class == &fair_sched_class) && 3345 rq->nr_running == rq->cfs.h_nr_running)) { 3346 3347 p = fair_sched_class.pick_next_task(rq, prev, rf); 3348 if (unlikely(p == RETRY_TASK)) 3349 goto again; 3350 3351 /* Assumes fair_sched_class->next == idle_sched_class */ 3352 if (unlikely(!p)) 3353 p = idle_sched_class.pick_next_task(rq, prev, rf); 3354 3355 return p; 3356 } 3357 3358 again: 3359 for_each_class(class) { 3360 p = class->pick_next_task(rq, prev, rf); 3361 if (p) { 3362 if (unlikely(p == RETRY_TASK)) 3363 goto again; 3364 return p; 3365 } 3366 } 3367 3368 /* The idle class should always have a runnable task: */ 3369 BUG(); 3370 } 3371 3372 /* 3373 * __schedule() is the main scheduler function. 3374 * 3375 * The main means of driving the scheduler and thus entering this function are: 3376 * 3377 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3378 * 3379 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3380 * paths. For example, see arch/x86/entry_64.S. 3381 * 3382 * To drive preemption between tasks, the scheduler sets the flag in timer 3383 * interrupt handler scheduler_tick(). 3384 * 3385 * 3. Wakeups don't really cause entry into schedule(). They add a 3386 * task to the run-queue and that's it. 3387 * 3388 * Now, if the new task added to the run-queue preempts the current 3389 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3390 * called on the nearest possible occasion: 3391 * 3392 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3393 * 3394 * - in syscall or exception context, at the next outmost 3395 * preempt_enable(). (this might be as soon as the wake_up()'s 3396 * spin_unlock()!) 3397 * 3398 * - in IRQ context, return from interrupt-handler to 3399 * preemptible context 3400 * 3401 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3402 * then at the next: 3403 * 3404 * - cond_resched() call 3405 * - explicit schedule() call 3406 * - return from syscall or exception to user-space 3407 * - return from interrupt-handler to user-space 3408 * 3409 * WARNING: must be called with preemption disabled! 3410 */ 3411 static void __sched notrace __schedule(bool preempt) 3412 { 3413 struct task_struct *prev, *next; 3414 unsigned long *switch_count; 3415 struct rq_flags rf; 3416 struct rq *rq; 3417 int cpu; 3418 3419 cpu = smp_processor_id(); 3420 rq = cpu_rq(cpu); 3421 prev = rq->curr; 3422 3423 schedule_debug(prev); 3424 3425 if (sched_feat(HRTICK)) 3426 hrtick_clear(rq); 3427 3428 local_irq_disable(); 3429 rcu_note_context_switch(preempt); 3430 3431 /* 3432 * Make sure that signal_pending_state()->signal_pending() below 3433 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3434 * done by the caller to avoid the race with signal_wake_up(). 3435 * 3436 * The membarrier system call requires a full memory barrier 3437 * after coming from user-space, before storing to rq->curr. 3438 */ 3439 rq_lock(rq, &rf); 3440 smp_mb__after_spinlock(); 3441 3442 /* Promote REQ to ACT */ 3443 rq->clock_update_flags <<= 1; 3444 update_rq_clock(rq); 3445 3446 switch_count = &prev->nivcsw; 3447 if (!preempt && prev->state) { 3448 if (unlikely(signal_pending_state(prev->state, prev))) { 3449 prev->state = TASK_RUNNING; 3450 } else { 3451 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3452 prev->on_rq = 0; 3453 3454 if (prev->in_iowait) { 3455 atomic_inc(&rq->nr_iowait); 3456 delayacct_blkio_start(); 3457 } 3458 3459 /* 3460 * If a worker went to sleep, notify and ask workqueue 3461 * whether it wants to wake up a task to maintain 3462 * concurrency. 3463 */ 3464 if (prev->flags & PF_WQ_WORKER) { 3465 struct task_struct *to_wakeup; 3466 3467 to_wakeup = wq_worker_sleeping(prev); 3468 if (to_wakeup) 3469 try_to_wake_up_local(to_wakeup, &rf); 3470 } 3471 } 3472 switch_count = &prev->nvcsw; 3473 } 3474 3475 next = pick_next_task(rq, prev, &rf); 3476 clear_tsk_need_resched(prev); 3477 clear_preempt_need_resched(); 3478 3479 if (likely(prev != next)) { 3480 rq->nr_switches++; 3481 rq->curr = next; 3482 /* 3483 * The membarrier system call requires each architecture 3484 * to have a full memory barrier after updating 3485 * rq->curr, before returning to user-space. 3486 * 3487 * Here are the schemes providing that barrier on the 3488 * various architectures: 3489 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3490 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3491 * - finish_lock_switch() for weakly-ordered 3492 * architectures where spin_unlock is a full barrier, 3493 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3494 * is a RELEASE barrier), 3495 */ 3496 ++*switch_count; 3497 3498 trace_sched_switch(preempt, prev, next); 3499 3500 /* Also unlocks the rq: */ 3501 rq = context_switch(rq, prev, next, &rf); 3502 } else { 3503 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3504 rq_unlock_irq(rq, &rf); 3505 } 3506 3507 balance_callback(rq); 3508 } 3509 3510 void __noreturn do_task_dead(void) 3511 { 3512 /* Causes final put_task_struct in finish_task_switch(): */ 3513 set_special_state(TASK_DEAD); 3514 3515 /* Tell freezer to ignore us: */ 3516 current->flags |= PF_NOFREEZE; 3517 3518 __schedule(false); 3519 BUG(); 3520 3521 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3522 for (;;) 3523 cpu_relax(); 3524 } 3525 3526 static inline void sched_submit_work(struct task_struct *tsk) 3527 { 3528 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3529 return; 3530 /* 3531 * If we are going to sleep and we have plugged IO queued, 3532 * make sure to submit it to avoid deadlocks. 3533 */ 3534 if (blk_needs_flush_plug(tsk)) 3535 blk_schedule_flush_plug(tsk); 3536 } 3537 3538 asmlinkage __visible void __sched schedule(void) 3539 { 3540 struct task_struct *tsk = current; 3541 3542 sched_submit_work(tsk); 3543 do { 3544 preempt_disable(); 3545 __schedule(false); 3546 sched_preempt_enable_no_resched(); 3547 } while (need_resched()); 3548 } 3549 EXPORT_SYMBOL(schedule); 3550 3551 /* 3552 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3553 * state (have scheduled out non-voluntarily) by making sure that all 3554 * tasks have either left the run queue or have gone into user space. 3555 * As idle tasks do not do either, they must not ever be preempted 3556 * (schedule out non-voluntarily). 3557 * 3558 * schedule_idle() is similar to schedule_preempt_disable() except that it 3559 * never enables preemption because it does not call sched_submit_work(). 3560 */ 3561 void __sched schedule_idle(void) 3562 { 3563 /* 3564 * As this skips calling sched_submit_work(), which the idle task does 3565 * regardless because that function is a nop when the task is in a 3566 * TASK_RUNNING state, make sure this isn't used someplace that the 3567 * current task can be in any other state. Note, idle is always in the 3568 * TASK_RUNNING state. 3569 */ 3570 WARN_ON_ONCE(current->state); 3571 do { 3572 __schedule(false); 3573 } while (need_resched()); 3574 } 3575 3576 #ifdef CONFIG_CONTEXT_TRACKING 3577 asmlinkage __visible void __sched schedule_user(void) 3578 { 3579 /* 3580 * If we come here after a random call to set_need_resched(), 3581 * or we have been woken up remotely but the IPI has not yet arrived, 3582 * we haven't yet exited the RCU idle mode. Do it here manually until 3583 * we find a better solution. 3584 * 3585 * NB: There are buggy callers of this function. Ideally we 3586 * should warn if prev_state != CONTEXT_USER, but that will trigger 3587 * too frequently to make sense yet. 3588 */ 3589 enum ctx_state prev_state = exception_enter(); 3590 schedule(); 3591 exception_exit(prev_state); 3592 } 3593 #endif 3594 3595 /** 3596 * schedule_preempt_disabled - called with preemption disabled 3597 * 3598 * Returns with preemption disabled. Note: preempt_count must be 1 3599 */ 3600 void __sched schedule_preempt_disabled(void) 3601 { 3602 sched_preempt_enable_no_resched(); 3603 schedule(); 3604 preempt_disable(); 3605 } 3606 3607 static void __sched notrace preempt_schedule_common(void) 3608 { 3609 do { 3610 /* 3611 * Because the function tracer can trace preempt_count_sub() 3612 * and it also uses preempt_enable/disable_notrace(), if 3613 * NEED_RESCHED is set, the preempt_enable_notrace() called 3614 * by the function tracer will call this function again and 3615 * cause infinite recursion. 3616 * 3617 * Preemption must be disabled here before the function 3618 * tracer can trace. Break up preempt_disable() into two 3619 * calls. One to disable preemption without fear of being 3620 * traced. The other to still record the preemption latency, 3621 * which can also be traced by the function tracer. 3622 */ 3623 preempt_disable_notrace(); 3624 preempt_latency_start(1); 3625 __schedule(true); 3626 preempt_latency_stop(1); 3627 preempt_enable_no_resched_notrace(); 3628 3629 /* 3630 * Check again in case we missed a preemption opportunity 3631 * between schedule and now. 3632 */ 3633 } while (need_resched()); 3634 } 3635 3636 #ifdef CONFIG_PREEMPT 3637 /* 3638 * this is the entry point to schedule() from in-kernel preemption 3639 * off of preempt_enable. Kernel preemptions off return from interrupt 3640 * occur there and call schedule directly. 3641 */ 3642 asmlinkage __visible void __sched notrace preempt_schedule(void) 3643 { 3644 /* 3645 * If there is a non-zero preempt_count or interrupts are disabled, 3646 * we do not want to preempt the current task. Just return.. 3647 */ 3648 if (likely(!preemptible())) 3649 return; 3650 3651 preempt_schedule_common(); 3652 } 3653 NOKPROBE_SYMBOL(preempt_schedule); 3654 EXPORT_SYMBOL(preempt_schedule); 3655 3656 /** 3657 * preempt_schedule_notrace - preempt_schedule called by tracing 3658 * 3659 * The tracing infrastructure uses preempt_enable_notrace to prevent 3660 * recursion and tracing preempt enabling caused by the tracing 3661 * infrastructure itself. But as tracing can happen in areas coming 3662 * from userspace or just about to enter userspace, a preempt enable 3663 * can occur before user_exit() is called. This will cause the scheduler 3664 * to be called when the system is still in usermode. 3665 * 3666 * To prevent this, the preempt_enable_notrace will use this function 3667 * instead of preempt_schedule() to exit user context if needed before 3668 * calling the scheduler. 3669 */ 3670 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3671 { 3672 enum ctx_state prev_ctx; 3673 3674 if (likely(!preemptible())) 3675 return; 3676 3677 do { 3678 /* 3679 * Because the function tracer can trace preempt_count_sub() 3680 * and it also uses preempt_enable/disable_notrace(), if 3681 * NEED_RESCHED is set, the preempt_enable_notrace() called 3682 * by the function tracer will call this function again and 3683 * cause infinite recursion. 3684 * 3685 * Preemption must be disabled here before the function 3686 * tracer can trace. Break up preempt_disable() into two 3687 * calls. One to disable preemption without fear of being 3688 * traced. The other to still record the preemption latency, 3689 * which can also be traced by the function tracer. 3690 */ 3691 preempt_disable_notrace(); 3692 preempt_latency_start(1); 3693 /* 3694 * Needs preempt disabled in case user_exit() is traced 3695 * and the tracer calls preempt_enable_notrace() causing 3696 * an infinite recursion. 3697 */ 3698 prev_ctx = exception_enter(); 3699 __schedule(true); 3700 exception_exit(prev_ctx); 3701 3702 preempt_latency_stop(1); 3703 preempt_enable_no_resched_notrace(); 3704 } while (need_resched()); 3705 } 3706 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3707 3708 #endif /* CONFIG_PREEMPT */ 3709 3710 /* 3711 * this is the entry point to schedule() from kernel preemption 3712 * off of irq context. 3713 * Note, that this is called and return with irqs disabled. This will 3714 * protect us against recursive calling from irq. 3715 */ 3716 asmlinkage __visible void __sched preempt_schedule_irq(void) 3717 { 3718 enum ctx_state prev_state; 3719 3720 /* Catch callers which need to be fixed */ 3721 BUG_ON(preempt_count() || !irqs_disabled()); 3722 3723 prev_state = exception_enter(); 3724 3725 do { 3726 preempt_disable(); 3727 local_irq_enable(); 3728 __schedule(true); 3729 local_irq_disable(); 3730 sched_preempt_enable_no_resched(); 3731 } while (need_resched()); 3732 3733 exception_exit(prev_state); 3734 } 3735 3736 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3737 void *key) 3738 { 3739 return try_to_wake_up(curr->private, mode, wake_flags); 3740 } 3741 EXPORT_SYMBOL(default_wake_function); 3742 3743 #ifdef CONFIG_RT_MUTEXES 3744 3745 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3746 { 3747 if (pi_task) 3748 prio = min(prio, pi_task->prio); 3749 3750 return prio; 3751 } 3752 3753 static inline int rt_effective_prio(struct task_struct *p, int prio) 3754 { 3755 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3756 3757 return __rt_effective_prio(pi_task, prio); 3758 } 3759 3760 /* 3761 * rt_mutex_setprio - set the current priority of a task 3762 * @p: task to boost 3763 * @pi_task: donor task 3764 * 3765 * This function changes the 'effective' priority of a task. It does 3766 * not touch ->normal_prio like __setscheduler(). 3767 * 3768 * Used by the rt_mutex code to implement priority inheritance 3769 * logic. Call site only calls if the priority of the task changed. 3770 */ 3771 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3772 { 3773 int prio, oldprio, queued, running, queue_flag = 3774 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3775 const struct sched_class *prev_class; 3776 struct rq_flags rf; 3777 struct rq *rq; 3778 3779 /* XXX used to be waiter->prio, not waiter->task->prio */ 3780 prio = __rt_effective_prio(pi_task, p->normal_prio); 3781 3782 /* 3783 * If nothing changed; bail early. 3784 */ 3785 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3786 return; 3787 3788 rq = __task_rq_lock(p, &rf); 3789 update_rq_clock(rq); 3790 /* 3791 * Set under pi_lock && rq->lock, such that the value can be used under 3792 * either lock. 3793 * 3794 * Note that there is loads of tricky to make this pointer cache work 3795 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3796 * ensure a task is de-boosted (pi_task is set to NULL) before the 3797 * task is allowed to run again (and can exit). This ensures the pointer 3798 * points to a blocked task -- which guaratees the task is present. 3799 */ 3800 p->pi_top_task = pi_task; 3801 3802 /* 3803 * For FIFO/RR we only need to set prio, if that matches we're done. 3804 */ 3805 if (prio == p->prio && !dl_prio(prio)) 3806 goto out_unlock; 3807 3808 /* 3809 * Idle task boosting is a nono in general. There is one 3810 * exception, when PREEMPT_RT and NOHZ is active: 3811 * 3812 * The idle task calls get_next_timer_interrupt() and holds 3813 * the timer wheel base->lock on the CPU and another CPU wants 3814 * to access the timer (probably to cancel it). We can safely 3815 * ignore the boosting request, as the idle CPU runs this code 3816 * with interrupts disabled and will complete the lock 3817 * protected section without being interrupted. So there is no 3818 * real need to boost. 3819 */ 3820 if (unlikely(p == rq->idle)) { 3821 WARN_ON(p != rq->curr); 3822 WARN_ON(p->pi_blocked_on); 3823 goto out_unlock; 3824 } 3825 3826 trace_sched_pi_setprio(p, pi_task); 3827 oldprio = p->prio; 3828 3829 if (oldprio == prio) 3830 queue_flag &= ~DEQUEUE_MOVE; 3831 3832 prev_class = p->sched_class; 3833 queued = task_on_rq_queued(p); 3834 running = task_current(rq, p); 3835 if (queued) 3836 dequeue_task(rq, p, queue_flag); 3837 if (running) 3838 put_prev_task(rq, p); 3839 3840 /* 3841 * Boosting condition are: 3842 * 1. -rt task is running and holds mutex A 3843 * --> -dl task blocks on mutex A 3844 * 3845 * 2. -dl task is running and holds mutex A 3846 * --> -dl task blocks on mutex A and could preempt the 3847 * running task 3848 */ 3849 if (dl_prio(prio)) { 3850 if (!dl_prio(p->normal_prio) || 3851 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3852 p->dl.dl_boosted = 1; 3853 queue_flag |= ENQUEUE_REPLENISH; 3854 } else 3855 p->dl.dl_boosted = 0; 3856 p->sched_class = &dl_sched_class; 3857 } else if (rt_prio(prio)) { 3858 if (dl_prio(oldprio)) 3859 p->dl.dl_boosted = 0; 3860 if (oldprio < prio) 3861 queue_flag |= ENQUEUE_HEAD; 3862 p->sched_class = &rt_sched_class; 3863 } else { 3864 if (dl_prio(oldprio)) 3865 p->dl.dl_boosted = 0; 3866 if (rt_prio(oldprio)) 3867 p->rt.timeout = 0; 3868 p->sched_class = &fair_sched_class; 3869 } 3870 3871 p->prio = prio; 3872 3873 if (queued) 3874 enqueue_task(rq, p, queue_flag); 3875 if (running) 3876 set_curr_task(rq, p); 3877 3878 check_class_changed(rq, p, prev_class, oldprio); 3879 out_unlock: 3880 /* Avoid rq from going away on us: */ 3881 preempt_disable(); 3882 __task_rq_unlock(rq, &rf); 3883 3884 balance_callback(rq); 3885 preempt_enable(); 3886 } 3887 #else 3888 static inline int rt_effective_prio(struct task_struct *p, int prio) 3889 { 3890 return prio; 3891 } 3892 #endif 3893 3894 void set_user_nice(struct task_struct *p, long nice) 3895 { 3896 bool queued, running; 3897 int old_prio, delta; 3898 struct rq_flags rf; 3899 struct rq *rq; 3900 3901 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3902 return; 3903 /* 3904 * We have to be careful, if called from sys_setpriority(), 3905 * the task might be in the middle of scheduling on another CPU. 3906 */ 3907 rq = task_rq_lock(p, &rf); 3908 update_rq_clock(rq); 3909 3910 /* 3911 * The RT priorities are set via sched_setscheduler(), but we still 3912 * allow the 'normal' nice value to be set - but as expected 3913 * it wont have any effect on scheduling until the task is 3914 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3915 */ 3916 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3917 p->static_prio = NICE_TO_PRIO(nice); 3918 goto out_unlock; 3919 } 3920 queued = task_on_rq_queued(p); 3921 running = task_current(rq, p); 3922 if (queued) 3923 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3924 if (running) 3925 put_prev_task(rq, p); 3926 3927 p->static_prio = NICE_TO_PRIO(nice); 3928 set_load_weight(p, true); 3929 old_prio = p->prio; 3930 p->prio = effective_prio(p); 3931 delta = p->prio - old_prio; 3932 3933 if (queued) { 3934 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3935 /* 3936 * If the task increased its priority or is running and 3937 * lowered its priority, then reschedule its CPU: 3938 */ 3939 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3940 resched_curr(rq); 3941 } 3942 if (running) 3943 set_curr_task(rq, p); 3944 out_unlock: 3945 task_rq_unlock(rq, p, &rf); 3946 } 3947 EXPORT_SYMBOL(set_user_nice); 3948 3949 /* 3950 * can_nice - check if a task can reduce its nice value 3951 * @p: task 3952 * @nice: nice value 3953 */ 3954 int can_nice(const struct task_struct *p, const int nice) 3955 { 3956 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3957 int nice_rlim = nice_to_rlimit(nice); 3958 3959 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3960 capable(CAP_SYS_NICE)); 3961 } 3962 3963 #ifdef __ARCH_WANT_SYS_NICE 3964 3965 /* 3966 * sys_nice - change the priority of the current process. 3967 * @increment: priority increment 3968 * 3969 * sys_setpriority is a more generic, but much slower function that 3970 * does similar things. 3971 */ 3972 SYSCALL_DEFINE1(nice, int, increment) 3973 { 3974 long nice, retval; 3975 3976 /* 3977 * Setpriority might change our priority at the same moment. 3978 * We don't have to worry. Conceptually one call occurs first 3979 * and we have a single winner. 3980 */ 3981 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3982 nice = task_nice(current) + increment; 3983 3984 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3985 if (increment < 0 && !can_nice(current, nice)) 3986 return -EPERM; 3987 3988 retval = security_task_setnice(current, nice); 3989 if (retval) 3990 return retval; 3991 3992 set_user_nice(current, nice); 3993 return 0; 3994 } 3995 3996 #endif 3997 3998 /** 3999 * task_prio - return the priority value of a given task. 4000 * @p: the task in question. 4001 * 4002 * Return: The priority value as seen by users in /proc. 4003 * RT tasks are offset by -200. Normal tasks are centered 4004 * around 0, value goes from -16 to +15. 4005 */ 4006 int task_prio(const struct task_struct *p) 4007 { 4008 return p->prio - MAX_RT_PRIO; 4009 } 4010 4011 /** 4012 * idle_cpu - is a given CPU idle currently? 4013 * @cpu: the processor in question. 4014 * 4015 * Return: 1 if the CPU is currently idle. 0 otherwise. 4016 */ 4017 int idle_cpu(int cpu) 4018 { 4019 struct rq *rq = cpu_rq(cpu); 4020 4021 if (rq->curr != rq->idle) 4022 return 0; 4023 4024 if (rq->nr_running) 4025 return 0; 4026 4027 #ifdef CONFIG_SMP 4028 if (!llist_empty(&rq->wake_list)) 4029 return 0; 4030 #endif 4031 4032 return 1; 4033 } 4034 4035 /** 4036 * idle_task - return the idle task for a given CPU. 4037 * @cpu: the processor in question. 4038 * 4039 * Return: The idle task for the CPU @cpu. 4040 */ 4041 struct task_struct *idle_task(int cpu) 4042 { 4043 return cpu_rq(cpu)->idle; 4044 } 4045 4046 /** 4047 * find_process_by_pid - find a process with a matching PID value. 4048 * @pid: the pid in question. 4049 * 4050 * The task of @pid, if found. %NULL otherwise. 4051 */ 4052 static struct task_struct *find_process_by_pid(pid_t pid) 4053 { 4054 return pid ? find_task_by_vpid(pid) : current; 4055 } 4056 4057 /* 4058 * sched_setparam() passes in -1 for its policy, to let the functions 4059 * it calls know not to change it. 4060 */ 4061 #define SETPARAM_POLICY -1 4062 4063 static void __setscheduler_params(struct task_struct *p, 4064 const struct sched_attr *attr) 4065 { 4066 int policy = attr->sched_policy; 4067 4068 if (policy == SETPARAM_POLICY) 4069 policy = p->policy; 4070 4071 p->policy = policy; 4072 4073 if (dl_policy(policy)) 4074 __setparam_dl(p, attr); 4075 else if (fair_policy(policy)) 4076 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4077 4078 /* 4079 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4080 * !rt_policy. Always setting this ensures that things like 4081 * getparam()/getattr() don't report silly values for !rt tasks. 4082 */ 4083 p->rt_priority = attr->sched_priority; 4084 p->normal_prio = normal_prio(p); 4085 set_load_weight(p, true); 4086 } 4087 4088 /* Actually do priority change: must hold pi & rq lock. */ 4089 static void __setscheduler(struct rq *rq, struct task_struct *p, 4090 const struct sched_attr *attr, bool keep_boost) 4091 { 4092 __setscheduler_params(p, attr); 4093 4094 /* 4095 * Keep a potential priority boosting if called from 4096 * sched_setscheduler(). 4097 */ 4098 p->prio = normal_prio(p); 4099 if (keep_boost) 4100 p->prio = rt_effective_prio(p, p->prio); 4101 4102 if (dl_prio(p->prio)) 4103 p->sched_class = &dl_sched_class; 4104 else if (rt_prio(p->prio)) 4105 p->sched_class = &rt_sched_class; 4106 else 4107 p->sched_class = &fair_sched_class; 4108 } 4109 4110 /* 4111 * Check the target process has a UID that matches the current process's: 4112 */ 4113 static bool check_same_owner(struct task_struct *p) 4114 { 4115 const struct cred *cred = current_cred(), *pcred; 4116 bool match; 4117 4118 rcu_read_lock(); 4119 pcred = __task_cred(p); 4120 match = (uid_eq(cred->euid, pcred->euid) || 4121 uid_eq(cred->euid, pcred->uid)); 4122 rcu_read_unlock(); 4123 return match; 4124 } 4125 4126 static int __sched_setscheduler(struct task_struct *p, 4127 const struct sched_attr *attr, 4128 bool user, bool pi) 4129 { 4130 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4131 MAX_RT_PRIO - 1 - attr->sched_priority; 4132 int retval, oldprio, oldpolicy = -1, queued, running; 4133 int new_effective_prio, policy = attr->sched_policy; 4134 const struct sched_class *prev_class; 4135 struct rq_flags rf; 4136 int reset_on_fork; 4137 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4138 struct rq *rq; 4139 4140 /* The pi code expects interrupts enabled */ 4141 BUG_ON(pi && in_interrupt()); 4142 recheck: 4143 /* Double check policy once rq lock held: */ 4144 if (policy < 0) { 4145 reset_on_fork = p->sched_reset_on_fork; 4146 policy = oldpolicy = p->policy; 4147 } else { 4148 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4149 4150 if (!valid_policy(policy)) 4151 return -EINVAL; 4152 } 4153 4154 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4155 return -EINVAL; 4156 4157 /* 4158 * Valid priorities for SCHED_FIFO and SCHED_RR are 4159 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4160 * SCHED_BATCH and SCHED_IDLE is 0. 4161 */ 4162 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4163 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4164 return -EINVAL; 4165 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4166 (rt_policy(policy) != (attr->sched_priority != 0))) 4167 return -EINVAL; 4168 4169 /* 4170 * Allow unprivileged RT tasks to decrease priority: 4171 */ 4172 if (user && !capable(CAP_SYS_NICE)) { 4173 if (fair_policy(policy)) { 4174 if (attr->sched_nice < task_nice(p) && 4175 !can_nice(p, attr->sched_nice)) 4176 return -EPERM; 4177 } 4178 4179 if (rt_policy(policy)) { 4180 unsigned long rlim_rtprio = 4181 task_rlimit(p, RLIMIT_RTPRIO); 4182 4183 /* Can't set/change the rt policy: */ 4184 if (policy != p->policy && !rlim_rtprio) 4185 return -EPERM; 4186 4187 /* Can't increase priority: */ 4188 if (attr->sched_priority > p->rt_priority && 4189 attr->sched_priority > rlim_rtprio) 4190 return -EPERM; 4191 } 4192 4193 /* 4194 * Can't set/change SCHED_DEADLINE policy at all for now 4195 * (safest behavior); in the future we would like to allow 4196 * unprivileged DL tasks to increase their relative deadline 4197 * or reduce their runtime (both ways reducing utilization) 4198 */ 4199 if (dl_policy(policy)) 4200 return -EPERM; 4201 4202 /* 4203 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4204 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4205 */ 4206 if (idle_policy(p->policy) && !idle_policy(policy)) { 4207 if (!can_nice(p, task_nice(p))) 4208 return -EPERM; 4209 } 4210 4211 /* Can't change other user's priorities: */ 4212 if (!check_same_owner(p)) 4213 return -EPERM; 4214 4215 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4216 if (p->sched_reset_on_fork && !reset_on_fork) 4217 return -EPERM; 4218 } 4219 4220 if (user) { 4221 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4222 return -EINVAL; 4223 4224 retval = security_task_setscheduler(p); 4225 if (retval) 4226 return retval; 4227 } 4228 4229 /* 4230 * Make sure no PI-waiters arrive (or leave) while we are 4231 * changing the priority of the task: 4232 * 4233 * To be able to change p->policy safely, the appropriate 4234 * runqueue lock must be held. 4235 */ 4236 rq = task_rq_lock(p, &rf); 4237 update_rq_clock(rq); 4238 4239 /* 4240 * Changing the policy of the stop threads its a very bad idea: 4241 */ 4242 if (p == rq->stop) { 4243 task_rq_unlock(rq, p, &rf); 4244 return -EINVAL; 4245 } 4246 4247 /* 4248 * If not changing anything there's no need to proceed further, 4249 * but store a possible modification of reset_on_fork. 4250 */ 4251 if (unlikely(policy == p->policy)) { 4252 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4253 goto change; 4254 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4255 goto change; 4256 if (dl_policy(policy) && dl_param_changed(p, attr)) 4257 goto change; 4258 4259 p->sched_reset_on_fork = reset_on_fork; 4260 task_rq_unlock(rq, p, &rf); 4261 return 0; 4262 } 4263 change: 4264 4265 if (user) { 4266 #ifdef CONFIG_RT_GROUP_SCHED 4267 /* 4268 * Do not allow realtime tasks into groups that have no runtime 4269 * assigned. 4270 */ 4271 if (rt_bandwidth_enabled() && rt_policy(policy) && 4272 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4273 !task_group_is_autogroup(task_group(p))) { 4274 task_rq_unlock(rq, p, &rf); 4275 return -EPERM; 4276 } 4277 #endif 4278 #ifdef CONFIG_SMP 4279 if (dl_bandwidth_enabled() && dl_policy(policy) && 4280 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4281 cpumask_t *span = rq->rd->span; 4282 4283 /* 4284 * Don't allow tasks with an affinity mask smaller than 4285 * the entire root_domain to become SCHED_DEADLINE. We 4286 * will also fail if there's no bandwidth available. 4287 */ 4288 if (!cpumask_subset(span, &p->cpus_allowed) || 4289 rq->rd->dl_bw.bw == 0) { 4290 task_rq_unlock(rq, p, &rf); 4291 return -EPERM; 4292 } 4293 } 4294 #endif 4295 } 4296 4297 /* Re-check policy now with rq lock held: */ 4298 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4299 policy = oldpolicy = -1; 4300 task_rq_unlock(rq, p, &rf); 4301 goto recheck; 4302 } 4303 4304 /* 4305 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4306 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4307 * is available. 4308 */ 4309 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4310 task_rq_unlock(rq, p, &rf); 4311 return -EBUSY; 4312 } 4313 4314 p->sched_reset_on_fork = reset_on_fork; 4315 oldprio = p->prio; 4316 4317 if (pi) { 4318 /* 4319 * Take priority boosted tasks into account. If the new 4320 * effective priority is unchanged, we just store the new 4321 * normal parameters and do not touch the scheduler class and 4322 * the runqueue. This will be done when the task deboost 4323 * itself. 4324 */ 4325 new_effective_prio = rt_effective_prio(p, newprio); 4326 if (new_effective_prio == oldprio) 4327 queue_flags &= ~DEQUEUE_MOVE; 4328 } 4329 4330 queued = task_on_rq_queued(p); 4331 running = task_current(rq, p); 4332 if (queued) 4333 dequeue_task(rq, p, queue_flags); 4334 if (running) 4335 put_prev_task(rq, p); 4336 4337 prev_class = p->sched_class; 4338 __setscheduler(rq, p, attr, pi); 4339 4340 if (queued) { 4341 /* 4342 * We enqueue to tail when the priority of a task is 4343 * increased (user space view). 4344 */ 4345 if (oldprio < p->prio) 4346 queue_flags |= ENQUEUE_HEAD; 4347 4348 enqueue_task(rq, p, queue_flags); 4349 } 4350 if (running) 4351 set_curr_task(rq, p); 4352 4353 check_class_changed(rq, p, prev_class, oldprio); 4354 4355 /* Avoid rq from going away on us: */ 4356 preempt_disable(); 4357 task_rq_unlock(rq, p, &rf); 4358 4359 if (pi) 4360 rt_mutex_adjust_pi(p); 4361 4362 /* Run balance callbacks after we've adjusted the PI chain: */ 4363 balance_callback(rq); 4364 preempt_enable(); 4365 4366 return 0; 4367 } 4368 4369 static int _sched_setscheduler(struct task_struct *p, int policy, 4370 const struct sched_param *param, bool check) 4371 { 4372 struct sched_attr attr = { 4373 .sched_policy = policy, 4374 .sched_priority = param->sched_priority, 4375 .sched_nice = PRIO_TO_NICE(p->static_prio), 4376 }; 4377 4378 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4379 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4380 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4381 policy &= ~SCHED_RESET_ON_FORK; 4382 attr.sched_policy = policy; 4383 } 4384 4385 return __sched_setscheduler(p, &attr, check, true); 4386 } 4387 /** 4388 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4389 * @p: the task in question. 4390 * @policy: new policy. 4391 * @param: structure containing the new RT priority. 4392 * 4393 * Return: 0 on success. An error code otherwise. 4394 * 4395 * NOTE that the task may be already dead. 4396 */ 4397 int sched_setscheduler(struct task_struct *p, int policy, 4398 const struct sched_param *param) 4399 { 4400 return _sched_setscheduler(p, policy, param, true); 4401 } 4402 EXPORT_SYMBOL_GPL(sched_setscheduler); 4403 4404 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4405 { 4406 return __sched_setscheduler(p, attr, true, true); 4407 } 4408 EXPORT_SYMBOL_GPL(sched_setattr); 4409 4410 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4411 { 4412 return __sched_setscheduler(p, attr, false, true); 4413 } 4414 4415 /** 4416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4417 * @p: the task in question. 4418 * @policy: new policy. 4419 * @param: structure containing the new RT priority. 4420 * 4421 * Just like sched_setscheduler, only don't bother checking if the 4422 * current context has permission. For example, this is needed in 4423 * stop_machine(): we create temporary high priority worker threads, 4424 * but our caller might not have that capability. 4425 * 4426 * Return: 0 on success. An error code otherwise. 4427 */ 4428 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4429 const struct sched_param *param) 4430 { 4431 return _sched_setscheduler(p, policy, param, false); 4432 } 4433 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4434 4435 static int 4436 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4437 { 4438 struct sched_param lparam; 4439 struct task_struct *p; 4440 int retval; 4441 4442 if (!param || pid < 0) 4443 return -EINVAL; 4444 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4445 return -EFAULT; 4446 4447 rcu_read_lock(); 4448 retval = -ESRCH; 4449 p = find_process_by_pid(pid); 4450 if (p != NULL) 4451 retval = sched_setscheduler(p, policy, &lparam); 4452 rcu_read_unlock(); 4453 4454 return retval; 4455 } 4456 4457 /* 4458 * Mimics kernel/events/core.c perf_copy_attr(). 4459 */ 4460 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4461 { 4462 u32 size; 4463 int ret; 4464 4465 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4466 return -EFAULT; 4467 4468 /* Zero the full structure, so that a short copy will be nice: */ 4469 memset(attr, 0, sizeof(*attr)); 4470 4471 ret = get_user(size, &uattr->size); 4472 if (ret) 4473 return ret; 4474 4475 /* Bail out on silly large: */ 4476 if (size > PAGE_SIZE) 4477 goto err_size; 4478 4479 /* ABI compatibility quirk: */ 4480 if (!size) 4481 size = SCHED_ATTR_SIZE_VER0; 4482 4483 if (size < SCHED_ATTR_SIZE_VER0) 4484 goto err_size; 4485 4486 /* 4487 * If we're handed a bigger struct than we know of, 4488 * ensure all the unknown bits are 0 - i.e. new 4489 * user-space does not rely on any kernel feature 4490 * extensions we dont know about yet. 4491 */ 4492 if (size > sizeof(*attr)) { 4493 unsigned char __user *addr; 4494 unsigned char __user *end; 4495 unsigned char val; 4496 4497 addr = (void __user *)uattr + sizeof(*attr); 4498 end = (void __user *)uattr + size; 4499 4500 for (; addr < end; addr++) { 4501 ret = get_user(val, addr); 4502 if (ret) 4503 return ret; 4504 if (val) 4505 goto err_size; 4506 } 4507 size = sizeof(*attr); 4508 } 4509 4510 ret = copy_from_user(attr, uattr, size); 4511 if (ret) 4512 return -EFAULT; 4513 4514 /* 4515 * XXX: Do we want to be lenient like existing syscalls; or do we want 4516 * to be strict and return an error on out-of-bounds values? 4517 */ 4518 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4519 4520 return 0; 4521 4522 err_size: 4523 put_user(sizeof(*attr), &uattr->size); 4524 return -E2BIG; 4525 } 4526 4527 /** 4528 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4529 * @pid: the pid in question. 4530 * @policy: new policy. 4531 * @param: structure containing the new RT priority. 4532 * 4533 * Return: 0 on success. An error code otherwise. 4534 */ 4535 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4536 { 4537 if (policy < 0) 4538 return -EINVAL; 4539 4540 return do_sched_setscheduler(pid, policy, param); 4541 } 4542 4543 /** 4544 * sys_sched_setparam - set/change the RT priority of a thread 4545 * @pid: the pid in question. 4546 * @param: structure containing the new RT priority. 4547 * 4548 * Return: 0 on success. An error code otherwise. 4549 */ 4550 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4551 { 4552 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4553 } 4554 4555 /** 4556 * sys_sched_setattr - same as above, but with extended sched_attr 4557 * @pid: the pid in question. 4558 * @uattr: structure containing the extended parameters. 4559 * @flags: for future extension. 4560 */ 4561 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4562 unsigned int, flags) 4563 { 4564 struct sched_attr attr; 4565 struct task_struct *p; 4566 int retval; 4567 4568 if (!uattr || pid < 0 || flags) 4569 return -EINVAL; 4570 4571 retval = sched_copy_attr(uattr, &attr); 4572 if (retval) 4573 return retval; 4574 4575 if ((int)attr.sched_policy < 0) 4576 return -EINVAL; 4577 4578 rcu_read_lock(); 4579 retval = -ESRCH; 4580 p = find_process_by_pid(pid); 4581 if (p != NULL) 4582 retval = sched_setattr(p, &attr); 4583 rcu_read_unlock(); 4584 4585 return retval; 4586 } 4587 4588 /** 4589 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4590 * @pid: the pid in question. 4591 * 4592 * Return: On success, the policy of the thread. Otherwise, a negative error 4593 * code. 4594 */ 4595 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4596 { 4597 struct task_struct *p; 4598 int retval; 4599 4600 if (pid < 0) 4601 return -EINVAL; 4602 4603 retval = -ESRCH; 4604 rcu_read_lock(); 4605 p = find_process_by_pid(pid); 4606 if (p) { 4607 retval = security_task_getscheduler(p); 4608 if (!retval) 4609 retval = p->policy 4610 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4611 } 4612 rcu_read_unlock(); 4613 return retval; 4614 } 4615 4616 /** 4617 * sys_sched_getparam - get the RT priority of a thread 4618 * @pid: the pid in question. 4619 * @param: structure containing the RT priority. 4620 * 4621 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4622 * code. 4623 */ 4624 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4625 { 4626 struct sched_param lp = { .sched_priority = 0 }; 4627 struct task_struct *p; 4628 int retval; 4629 4630 if (!param || pid < 0) 4631 return -EINVAL; 4632 4633 rcu_read_lock(); 4634 p = find_process_by_pid(pid); 4635 retval = -ESRCH; 4636 if (!p) 4637 goto out_unlock; 4638 4639 retval = security_task_getscheduler(p); 4640 if (retval) 4641 goto out_unlock; 4642 4643 if (task_has_rt_policy(p)) 4644 lp.sched_priority = p->rt_priority; 4645 rcu_read_unlock(); 4646 4647 /* 4648 * This one might sleep, we cannot do it with a spinlock held ... 4649 */ 4650 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4651 4652 return retval; 4653 4654 out_unlock: 4655 rcu_read_unlock(); 4656 return retval; 4657 } 4658 4659 static int sched_read_attr(struct sched_attr __user *uattr, 4660 struct sched_attr *attr, 4661 unsigned int usize) 4662 { 4663 int ret; 4664 4665 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4666 return -EFAULT; 4667 4668 /* 4669 * If we're handed a smaller struct than we know of, 4670 * ensure all the unknown bits are 0 - i.e. old 4671 * user-space does not get uncomplete information. 4672 */ 4673 if (usize < sizeof(*attr)) { 4674 unsigned char *addr; 4675 unsigned char *end; 4676 4677 addr = (void *)attr + usize; 4678 end = (void *)attr + sizeof(*attr); 4679 4680 for (; addr < end; addr++) { 4681 if (*addr) 4682 return -EFBIG; 4683 } 4684 4685 attr->size = usize; 4686 } 4687 4688 ret = copy_to_user(uattr, attr, attr->size); 4689 if (ret) 4690 return -EFAULT; 4691 4692 return 0; 4693 } 4694 4695 /** 4696 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4697 * @pid: the pid in question. 4698 * @uattr: structure containing the extended parameters. 4699 * @size: sizeof(attr) for fwd/bwd comp. 4700 * @flags: for future extension. 4701 */ 4702 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4703 unsigned int, size, unsigned int, flags) 4704 { 4705 struct sched_attr attr = { 4706 .size = sizeof(struct sched_attr), 4707 }; 4708 struct task_struct *p; 4709 int retval; 4710 4711 if (!uattr || pid < 0 || size > PAGE_SIZE || 4712 size < SCHED_ATTR_SIZE_VER0 || flags) 4713 return -EINVAL; 4714 4715 rcu_read_lock(); 4716 p = find_process_by_pid(pid); 4717 retval = -ESRCH; 4718 if (!p) 4719 goto out_unlock; 4720 4721 retval = security_task_getscheduler(p); 4722 if (retval) 4723 goto out_unlock; 4724 4725 attr.sched_policy = p->policy; 4726 if (p->sched_reset_on_fork) 4727 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4728 if (task_has_dl_policy(p)) 4729 __getparam_dl(p, &attr); 4730 else if (task_has_rt_policy(p)) 4731 attr.sched_priority = p->rt_priority; 4732 else 4733 attr.sched_nice = task_nice(p); 4734 4735 rcu_read_unlock(); 4736 4737 retval = sched_read_attr(uattr, &attr, size); 4738 return retval; 4739 4740 out_unlock: 4741 rcu_read_unlock(); 4742 return retval; 4743 } 4744 4745 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4746 { 4747 cpumask_var_t cpus_allowed, new_mask; 4748 struct task_struct *p; 4749 int retval; 4750 4751 rcu_read_lock(); 4752 4753 p = find_process_by_pid(pid); 4754 if (!p) { 4755 rcu_read_unlock(); 4756 return -ESRCH; 4757 } 4758 4759 /* Prevent p going away */ 4760 get_task_struct(p); 4761 rcu_read_unlock(); 4762 4763 if (p->flags & PF_NO_SETAFFINITY) { 4764 retval = -EINVAL; 4765 goto out_put_task; 4766 } 4767 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4768 retval = -ENOMEM; 4769 goto out_put_task; 4770 } 4771 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4772 retval = -ENOMEM; 4773 goto out_free_cpus_allowed; 4774 } 4775 retval = -EPERM; 4776 if (!check_same_owner(p)) { 4777 rcu_read_lock(); 4778 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4779 rcu_read_unlock(); 4780 goto out_free_new_mask; 4781 } 4782 rcu_read_unlock(); 4783 } 4784 4785 retval = security_task_setscheduler(p); 4786 if (retval) 4787 goto out_free_new_mask; 4788 4789 4790 cpuset_cpus_allowed(p, cpus_allowed); 4791 cpumask_and(new_mask, in_mask, cpus_allowed); 4792 4793 /* 4794 * Since bandwidth control happens on root_domain basis, 4795 * if admission test is enabled, we only admit -deadline 4796 * tasks allowed to run on all the CPUs in the task's 4797 * root_domain. 4798 */ 4799 #ifdef CONFIG_SMP 4800 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4801 rcu_read_lock(); 4802 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4803 retval = -EBUSY; 4804 rcu_read_unlock(); 4805 goto out_free_new_mask; 4806 } 4807 rcu_read_unlock(); 4808 } 4809 #endif 4810 again: 4811 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4812 4813 if (!retval) { 4814 cpuset_cpus_allowed(p, cpus_allowed); 4815 if (!cpumask_subset(new_mask, cpus_allowed)) { 4816 /* 4817 * We must have raced with a concurrent cpuset 4818 * update. Just reset the cpus_allowed to the 4819 * cpuset's cpus_allowed 4820 */ 4821 cpumask_copy(new_mask, cpus_allowed); 4822 goto again; 4823 } 4824 } 4825 out_free_new_mask: 4826 free_cpumask_var(new_mask); 4827 out_free_cpus_allowed: 4828 free_cpumask_var(cpus_allowed); 4829 out_put_task: 4830 put_task_struct(p); 4831 return retval; 4832 } 4833 4834 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4835 struct cpumask *new_mask) 4836 { 4837 if (len < cpumask_size()) 4838 cpumask_clear(new_mask); 4839 else if (len > cpumask_size()) 4840 len = cpumask_size(); 4841 4842 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4843 } 4844 4845 /** 4846 * sys_sched_setaffinity - set the CPU affinity of a process 4847 * @pid: pid of the process 4848 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4849 * @user_mask_ptr: user-space pointer to the new CPU mask 4850 * 4851 * Return: 0 on success. An error code otherwise. 4852 */ 4853 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4854 unsigned long __user *, user_mask_ptr) 4855 { 4856 cpumask_var_t new_mask; 4857 int retval; 4858 4859 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4860 return -ENOMEM; 4861 4862 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4863 if (retval == 0) 4864 retval = sched_setaffinity(pid, new_mask); 4865 free_cpumask_var(new_mask); 4866 return retval; 4867 } 4868 4869 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4870 { 4871 struct task_struct *p; 4872 unsigned long flags; 4873 int retval; 4874 4875 rcu_read_lock(); 4876 4877 retval = -ESRCH; 4878 p = find_process_by_pid(pid); 4879 if (!p) 4880 goto out_unlock; 4881 4882 retval = security_task_getscheduler(p); 4883 if (retval) 4884 goto out_unlock; 4885 4886 raw_spin_lock_irqsave(&p->pi_lock, flags); 4887 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4888 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4889 4890 out_unlock: 4891 rcu_read_unlock(); 4892 4893 return retval; 4894 } 4895 4896 /** 4897 * sys_sched_getaffinity - get the CPU affinity of a process 4898 * @pid: pid of the process 4899 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4900 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4901 * 4902 * Return: size of CPU mask copied to user_mask_ptr on success. An 4903 * error code otherwise. 4904 */ 4905 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4906 unsigned long __user *, user_mask_ptr) 4907 { 4908 int ret; 4909 cpumask_var_t mask; 4910 4911 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4912 return -EINVAL; 4913 if (len & (sizeof(unsigned long)-1)) 4914 return -EINVAL; 4915 4916 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4917 return -ENOMEM; 4918 4919 ret = sched_getaffinity(pid, mask); 4920 if (ret == 0) { 4921 unsigned int retlen = min(len, cpumask_size()); 4922 4923 if (copy_to_user(user_mask_ptr, mask, retlen)) 4924 ret = -EFAULT; 4925 else 4926 ret = retlen; 4927 } 4928 free_cpumask_var(mask); 4929 4930 return ret; 4931 } 4932 4933 /** 4934 * sys_sched_yield - yield the current processor to other threads. 4935 * 4936 * This function yields the current CPU to other tasks. If there are no 4937 * other threads running on this CPU then this function will return. 4938 * 4939 * Return: 0. 4940 */ 4941 static void do_sched_yield(void) 4942 { 4943 struct rq_flags rf; 4944 struct rq *rq; 4945 4946 local_irq_disable(); 4947 rq = this_rq(); 4948 rq_lock(rq, &rf); 4949 4950 schedstat_inc(rq->yld_count); 4951 current->sched_class->yield_task(rq); 4952 4953 /* 4954 * Since we are going to call schedule() anyway, there's 4955 * no need to preempt or enable interrupts: 4956 */ 4957 preempt_disable(); 4958 rq_unlock(rq, &rf); 4959 sched_preempt_enable_no_resched(); 4960 4961 schedule(); 4962 } 4963 4964 SYSCALL_DEFINE0(sched_yield) 4965 { 4966 do_sched_yield(); 4967 return 0; 4968 } 4969 4970 #ifndef CONFIG_PREEMPT 4971 int __sched _cond_resched(void) 4972 { 4973 if (should_resched(0)) { 4974 preempt_schedule_common(); 4975 return 1; 4976 } 4977 rcu_all_qs(); 4978 return 0; 4979 } 4980 EXPORT_SYMBOL(_cond_resched); 4981 #endif 4982 4983 /* 4984 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4985 * call schedule, and on return reacquire the lock. 4986 * 4987 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4988 * operations here to prevent schedule() from being called twice (once via 4989 * spin_unlock(), once by hand). 4990 */ 4991 int __cond_resched_lock(spinlock_t *lock) 4992 { 4993 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4994 int ret = 0; 4995 4996 lockdep_assert_held(lock); 4997 4998 if (spin_needbreak(lock) || resched) { 4999 spin_unlock(lock); 5000 if (resched) 5001 preempt_schedule_common(); 5002 else 5003 cpu_relax(); 5004 ret = 1; 5005 spin_lock(lock); 5006 } 5007 return ret; 5008 } 5009 EXPORT_SYMBOL(__cond_resched_lock); 5010 5011 int __sched __cond_resched_softirq(void) 5012 { 5013 BUG_ON(!in_softirq()); 5014 5015 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 5016 local_bh_enable(); 5017 preempt_schedule_common(); 5018 local_bh_disable(); 5019 return 1; 5020 } 5021 return 0; 5022 } 5023 EXPORT_SYMBOL(__cond_resched_softirq); 5024 5025 /** 5026 * yield - yield the current processor to other threads. 5027 * 5028 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5029 * 5030 * The scheduler is at all times free to pick the calling task as the most 5031 * eligible task to run, if removing the yield() call from your code breaks 5032 * it, its already broken. 5033 * 5034 * Typical broken usage is: 5035 * 5036 * while (!event) 5037 * yield(); 5038 * 5039 * where one assumes that yield() will let 'the other' process run that will 5040 * make event true. If the current task is a SCHED_FIFO task that will never 5041 * happen. Never use yield() as a progress guarantee!! 5042 * 5043 * If you want to use yield() to wait for something, use wait_event(). 5044 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5045 * If you still want to use yield(), do not! 5046 */ 5047 void __sched yield(void) 5048 { 5049 set_current_state(TASK_RUNNING); 5050 do_sched_yield(); 5051 } 5052 EXPORT_SYMBOL(yield); 5053 5054 /** 5055 * yield_to - yield the current processor to another thread in 5056 * your thread group, or accelerate that thread toward the 5057 * processor it's on. 5058 * @p: target task 5059 * @preempt: whether task preemption is allowed or not 5060 * 5061 * It's the caller's job to ensure that the target task struct 5062 * can't go away on us before we can do any checks. 5063 * 5064 * Return: 5065 * true (>0) if we indeed boosted the target task. 5066 * false (0) if we failed to boost the target. 5067 * -ESRCH if there's no task to yield to. 5068 */ 5069 int __sched yield_to(struct task_struct *p, bool preempt) 5070 { 5071 struct task_struct *curr = current; 5072 struct rq *rq, *p_rq; 5073 unsigned long flags; 5074 int yielded = 0; 5075 5076 local_irq_save(flags); 5077 rq = this_rq(); 5078 5079 again: 5080 p_rq = task_rq(p); 5081 /* 5082 * If we're the only runnable task on the rq and target rq also 5083 * has only one task, there's absolutely no point in yielding. 5084 */ 5085 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5086 yielded = -ESRCH; 5087 goto out_irq; 5088 } 5089 5090 double_rq_lock(rq, p_rq); 5091 if (task_rq(p) != p_rq) { 5092 double_rq_unlock(rq, p_rq); 5093 goto again; 5094 } 5095 5096 if (!curr->sched_class->yield_to_task) 5097 goto out_unlock; 5098 5099 if (curr->sched_class != p->sched_class) 5100 goto out_unlock; 5101 5102 if (task_running(p_rq, p) || p->state) 5103 goto out_unlock; 5104 5105 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5106 if (yielded) { 5107 schedstat_inc(rq->yld_count); 5108 /* 5109 * Make p's CPU reschedule; pick_next_entity takes care of 5110 * fairness. 5111 */ 5112 if (preempt && rq != p_rq) 5113 resched_curr(p_rq); 5114 } 5115 5116 out_unlock: 5117 double_rq_unlock(rq, p_rq); 5118 out_irq: 5119 local_irq_restore(flags); 5120 5121 if (yielded > 0) 5122 schedule(); 5123 5124 return yielded; 5125 } 5126 EXPORT_SYMBOL_GPL(yield_to); 5127 5128 int io_schedule_prepare(void) 5129 { 5130 int old_iowait = current->in_iowait; 5131 5132 current->in_iowait = 1; 5133 blk_schedule_flush_plug(current); 5134 5135 return old_iowait; 5136 } 5137 5138 void io_schedule_finish(int token) 5139 { 5140 current->in_iowait = token; 5141 } 5142 5143 /* 5144 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5145 * that process accounting knows that this is a task in IO wait state. 5146 */ 5147 long __sched io_schedule_timeout(long timeout) 5148 { 5149 int token; 5150 long ret; 5151 5152 token = io_schedule_prepare(); 5153 ret = schedule_timeout(timeout); 5154 io_schedule_finish(token); 5155 5156 return ret; 5157 } 5158 EXPORT_SYMBOL(io_schedule_timeout); 5159 5160 void io_schedule(void) 5161 { 5162 int token; 5163 5164 token = io_schedule_prepare(); 5165 schedule(); 5166 io_schedule_finish(token); 5167 } 5168 EXPORT_SYMBOL(io_schedule); 5169 5170 /** 5171 * sys_sched_get_priority_max - return maximum RT priority. 5172 * @policy: scheduling class. 5173 * 5174 * Return: On success, this syscall returns the maximum 5175 * rt_priority that can be used by a given scheduling class. 5176 * On failure, a negative error code is returned. 5177 */ 5178 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5179 { 5180 int ret = -EINVAL; 5181 5182 switch (policy) { 5183 case SCHED_FIFO: 5184 case SCHED_RR: 5185 ret = MAX_USER_RT_PRIO-1; 5186 break; 5187 case SCHED_DEADLINE: 5188 case SCHED_NORMAL: 5189 case SCHED_BATCH: 5190 case SCHED_IDLE: 5191 ret = 0; 5192 break; 5193 } 5194 return ret; 5195 } 5196 5197 /** 5198 * sys_sched_get_priority_min - return minimum RT priority. 5199 * @policy: scheduling class. 5200 * 5201 * Return: On success, this syscall returns the minimum 5202 * rt_priority that can be used by a given scheduling class. 5203 * On failure, a negative error code is returned. 5204 */ 5205 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5206 { 5207 int ret = -EINVAL; 5208 5209 switch (policy) { 5210 case SCHED_FIFO: 5211 case SCHED_RR: 5212 ret = 1; 5213 break; 5214 case SCHED_DEADLINE: 5215 case SCHED_NORMAL: 5216 case SCHED_BATCH: 5217 case SCHED_IDLE: 5218 ret = 0; 5219 } 5220 return ret; 5221 } 5222 5223 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5224 { 5225 struct task_struct *p; 5226 unsigned int time_slice; 5227 struct rq_flags rf; 5228 struct rq *rq; 5229 int retval; 5230 5231 if (pid < 0) 5232 return -EINVAL; 5233 5234 retval = -ESRCH; 5235 rcu_read_lock(); 5236 p = find_process_by_pid(pid); 5237 if (!p) 5238 goto out_unlock; 5239 5240 retval = security_task_getscheduler(p); 5241 if (retval) 5242 goto out_unlock; 5243 5244 rq = task_rq_lock(p, &rf); 5245 time_slice = 0; 5246 if (p->sched_class->get_rr_interval) 5247 time_slice = p->sched_class->get_rr_interval(rq, p); 5248 task_rq_unlock(rq, p, &rf); 5249 5250 rcu_read_unlock(); 5251 jiffies_to_timespec64(time_slice, t); 5252 return 0; 5253 5254 out_unlock: 5255 rcu_read_unlock(); 5256 return retval; 5257 } 5258 5259 /** 5260 * sys_sched_rr_get_interval - return the default timeslice of a process. 5261 * @pid: pid of the process. 5262 * @interval: userspace pointer to the timeslice value. 5263 * 5264 * this syscall writes the default timeslice value of a given process 5265 * into the user-space timespec buffer. A value of '0' means infinity. 5266 * 5267 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5268 * an error code. 5269 */ 5270 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5271 struct timespec __user *, interval) 5272 { 5273 struct timespec64 t; 5274 int retval = sched_rr_get_interval(pid, &t); 5275 5276 if (retval == 0) 5277 retval = put_timespec64(&t, interval); 5278 5279 return retval; 5280 } 5281 5282 #ifdef CONFIG_COMPAT 5283 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5284 compat_pid_t, pid, 5285 struct compat_timespec __user *, interval) 5286 { 5287 struct timespec64 t; 5288 int retval = sched_rr_get_interval(pid, &t); 5289 5290 if (retval == 0) 5291 retval = compat_put_timespec64(&t, interval); 5292 return retval; 5293 } 5294 #endif 5295 5296 void sched_show_task(struct task_struct *p) 5297 { 5298 unsigned long free = 0; 5299 int ppid; 5300 5301 if (!try_get_task_stack(p)) 5302 return; 5303 5304 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5305 5306 if (p->state == TASK_RUNNING) 5307 printk(KERN_CONT " running task "); 5308 #ifdef CONFIG_DEBUG_STACK_USAGE 5309 free = stack_not_used(p); 5310 #endif 5311 ppid = 0; 5312 rcu_read_lock(); 5313 if (pid_alive(p)) 5314 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5315 rcu_read_unlock(); 5316 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5317 task_pid_nr(p), ppid, 5318 (unsigned long)task_thread_info(p)->flags); 5319 5320 print_worker_info(KERN_INFO, p); 5321 show_stack(p, NULL); 5322 put_task_stack(p); 5323 } 5324 EXPORT_SYMBOL_GPL(sched_show_task); 5325 5326 static inline bool 5327 state_filter_match(unsigned long state_filter, struct task_struct *p) 5328 { 5329 /* no filter, everything matches */ 5330 if (!state_filter) 5331 return true; 5332 5333 /* filter, but doesn't match */ 5334 if (!(p->state & state_filter)) 5335 return false; 5336 5337 /* 5338 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5339 * TASK_KILLABLE). 5340 */ 5341 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5342 return false; 5343 5344 return true; 5345 } 5346 5347 5348 void show_state_filter(unsigned long state_filter) 5349 { 5350 struct task_struct *g, *p; 5351 5352 #if BITS_PER_LONG == 32 5353 printk(KERN_INFO 5354 " task PC stack pid father\n"); 5355 #else 5356 printk(KERN_INFO 5357 " task PC stack pid father\n"); 5358 #endif 5359 rcu_read_lock(); 5360 for_each_process_thread(g, p) { 5361 /* 5362 * reset the NMI-timeout, listing all files on a slow 5363 * console might take a lot of time: 5364 * Also, reset softlockup watchdogs on all CPUs, because 5365 * another CPU might be blocked waiting for us to process 5366 * an IPI. 5367 */ 5368 touch_nmi_watchdog(); 5369 touch_all_softlockup_watchdogs(); 5370 if (state_filter_match(state_filter, p)) 5371 sched_show_task(p); 5372 } 5373 5374 #ifdef CONFIG_SCHED_DEBUG 5375 if (!state_filter) 5376 sysrq_sched_debug_show(); 5377 #endif 5378 rcu_read_unlock(); 5379 /* 5380 * Only show locks if all tasks are dumped: 5381 */ 5382 if (!state_filter) 5383 debug_show_all_locks(); 5384 } 5385 5386 /** 5387 * init_idle - set up an idle thread for a given CPU 5388 * @idle: task in question 5389 * @cpu: CPU the idle task belongs to 5390 * 5391 * NOTE: this function does not set the idle thread's NEED_RESCHED 5392 * flag, to make booting more robust. 5393 */ 5394 void init_idle(struct task_struct *idle, int cpu) 5395 { 5396 struct rq *rq = cpu_rq(cpu); 5397 unsigned long flags; 5398 5399 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5400 raw_spin_lock(&rq->lock); 5401 5402 __sched_fork(0, idle); 5403 idle->state = TASK_RUNNING; 5404 idle->se.exec_start = sched_clock(); 5405 idle->flags |= PF_IDLE; 5406 5407 kasan_unpoison_task_stack(idle); 5408 5409 #ifdef CONFIG_SMP 5410 /* 5411 * Its possible that init_idle() gets called multiple times on a task, 5412 * in that case do_set_cpus_allowed() will not do the right thing. 5413 * 5414 * And since this is boot we can forgo the serialization. 5415 */ 5416 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5417 #endif 5418 /* 5419 * We're having a chicken and egg problem, even though we are 5420 * holding rq->lock, the CPU isn't yet set to this CPU so the 5421 * lockdep check in task_group() will fail. 5422 * 5423 * Similar case to sched_fork(). / Alternatively we could 5424 * use task_rq_lock() here and obtain the other rq->lock. 5425 * 5426 * Silence PROVE_RCU 5427 */ 5428 rcu_read_lock(); 5429 __set_task_cpu(idle, cpu); 5430 rcu_read_unlock(); 5431 5432 rq->curr = rq->idle = idle; 5433 idle->on_rq = TASK_ON_RQ_QUEUED; 5434 #ifdef CONFIG_SMP 5435 idle->on_cpu = 1; 5436 #endif 5437 raw_spin_unlock(&rq->lock); 5438 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5439 5440 /* Set the preempt count _outside_ the spinlocks! */ 5441 init_idle_preempt_count(idle, cpu); 5442 5443 /* 5444 * The idle tasks have their own, simple scheduling class: 5445 */ 5446 idle->sched_class = &idle_sched_class; 5447 ftrace_graph_init_idle_task(idle, cpu); 5448 vtime_init_idle(idle, cpu); 5449 #ifdef CONFIG_SMP 5450 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5451 #endif 5452 } 5453 5454 #ifdef CONFIG_SMP 5455 5456 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5457 const struct cpumask *trial) 5458 { 5459 int ret = 1; 5460 5461 if (!cpumask_weight(cur)) 5462 return ret; 5463 5464 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5465 5466 return ret; 5467 } 5468 5469 int task_can_attach(struct task_struct *p, 5470 const struct cpumask *cs_cpus_allowed) 5471 { 5472 int ret = 0; 5473 5474 /* 5475 * Kthreads which disallow setaffinity shouldn't be moved 5476 * to a new cpuset; we don't want to change their CPU 5477 * affinity and isolating such threads by their set of 5478 * allowed nodes is unnecessary. Thus, cpusets are not 5479 * applicable for such threads. This prevents checking for 5480 * success of set_cpus_allowed_ptr() on all attached tasks 5481 * before cpus_allowed may be changed. 5482 */ 5483 if (p->flags & PF_NO_SETAFFINITY) { 5484 ret = -EINVAL; 5485 goto out; 5486 } 5487 5488 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5489 cs_cpus_allowed)) 5490 ret = dl_task_can_attach(p, cs_cpus_allowed); 5491 5492 out: 5493 return ret; 5494 } 5495 5496 bool sched_smp_initialized __read_mostly; 5497 5498 #ifdef CONFIG_NUMA_BALANCING 5499 /* Migrate current task p to target_cpu */ 5500 int migrate_task_to(struct task_struct *p, int target_cpu) 5501 { 5502 struct migration_arg arg = { p, target_cpu }; 5503 int curr_cpu = task_cpu(p); 5504 5505 if (curr_cpu == target_cpu) 5506 return 0; 5507 5508 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5509 return -EINVAL; 5510 5511 /* TODO: This is not properly updating schedstats */ 5512 5513 trace_sched_move_numa(p, curr_cpu, target_cpu); 5514 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5515 } 5516 5517 /* 5518 * Requeue a task on a given node and accurately track the number of NUMA 5519 * tasks on the runqueues 5520 */ 5521 void sched_setnuma(struct task_struct *p, int nid) 5522 { 5523 bool queued, running; 5524 struct rq_flags rf; 5525 struct rq *rq; 5526 5527 rq = task_rq_lock(p, &rf); 5528 queued = task_on_rq_queued(p); 5529 running = task_current(rq, p); 5530 5531 if (queued) 5532 dequeue_task(rq, p, DEQUEUE_SAVE); 5533 if (running) 5534 put_prev_task(rq, p); 5535 5536 p->numa_preferred_nid = nid; 5537 5538 if (queued) 5539 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5540 if (running) 5541 set_curr_task(rq, p); 5542 task_rq_unlock(rq, p, &rf); 5543 } 5544 #endif /* CONFIG_NUMA_BALANCING */ 5545 5546 #ifdef CONFIG_HOTPLUG_CPU 5547 /* 5548 * Ensure that the idle task is using init_mm right before its CPU goes 5549 * offline. 5550 */ 5551 void idle_task_exit(void) 5552 { 5553 struct mm_struct *mm = current->active_mm; 5554 5555 BUG_ON(cpu_online(smp_processor_id())); 5556 5557 if (mm != &init_mm) { 5558 switch_mm(mm, &init_mm, current); 5559 current->active_mm = &init_mm; 5560 finish_arch_post_lock_switch(); 5561 } 5562 mmdrop(mm); 5563 } 5564 5565 /* 5566 * Since this CPU is going 'away' for a while, fold any nr_active delta 5567 * we might have. Assumes we're called after migrate_tasks() so that the 5568 * nr_active count is stable. We need to take the teardown thread which 5569 * is calling this into account, so we hand in adjust = 1 to the load 5570 * calculation. 5571 * 5572 * Also see the comment "Global load-average calculations". 5573 */ 5574 static void calc_load_migrate(struct rq *rq) 5575 { 5576 long delta = calc_load_fold_active(rq, 1); 5577 if (delta) 5578 atomic_long_add(delta, &calc_load_tasks); 5579 } 5580 5581 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5582 { 5583 } 5584 5585 static const struct sched_class fake_sched_class = { 5586 .put_prev_task = put_prev_task_fake, 5587 }; 5588 5589 static struct task_struct fake_task = { 5590 /* 5591 * Avoid pull_{rt,dl}_task() 5592 */ 5593 .prio = MAX_PRIO + 1, 5594 .sched_class = &fake_sched_class, 5595 }; 5596 5597 /* 5598 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5599 * try_to_wake_up()->select_task_rq(). 5600 * 5601 * Called with rq->lock held even though we'er in stop_machine() and 5602 * there's no concurrency possible, we hold the required locks anyway 5603 * because of lock validation efforts. 5604 */ 5605 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5606 { 5607 struct rq *rq = dead_rq; 5608 struct task_struct *next, *stop = rq->stop; 5609 struct rq_flags orf = *rf; 5610 int dest_cpu; 5611 5612 /* 5613 * Fudge the rq selection such that the below task selection loop 5614 * doesn't get stuck on the currently eligible stop task. 5615 * 5616 * We're currently inside stop_machine() and the rq is either stuck 5617 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5618 * either way we should never end up calling schedule() until we're 5619 * done here. 5620 */ 5621 rq->stop = NULL; 5622 5623 /* 5624 * put_prev_task() and pick_next_task() sched 5625 * class method both need to have an up-to-date 5626 * value of rq->clock[_task] 5627 */ 5628 update_rq_clock(rq); 5629 5630 for (;;) { 5631 /* 5632 * There's this thread running, bail when that's the only 5633 * remaining thread: 5634 */ 5635 if (rq->nr_running == 1) 5636 break; 5637 5638 /* 5639 * pick_next_task() assumes pinned rq->lock: 5640 */ 5641 next = pick_next_task(rq, &fake_task, rf); 5642 BUG_ON(!next); 5643 put_prev_task(rq, next); 5644 5645 /* 5646 * Rules for changing task_struct::cpus_allowed are holding 5647 * both pi_lock and rq->lock, such that holding either 5648 * stabilizes the mask. 5649 * 5650 * Drop rq->lock is not quite as disastrous as it usually is 5651 * because !cpu_active at this point, which means load-balance 5652 * will not interfere. Also, stop-machine. 5653 */ 5654 rq_unlock(rq, rf); 5655 raw_spin_lock(&next->pi_lock); 5656 rq_relock(rq, rf); 5657 5658 /* 5659 * Since we're inside stop-machine, _nothing_ should have 5660 * changed the task, WARN if weird stuff happened, because in 5661 * that case the above rq->lock drop is a fail too. 5662 */ 5663 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5664 raw_spin_unlock(&next->pi_lock); 5665 continue; 5666 } 5667 5668 /* Find suitable destination for @next, with force if needed. */ 5669 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5670 rq = __migrate_task(rq, rf, next, dest_cpu); 5671 if (rq != dead_rq) { 5672 rq_unlock(rq, rf); 5673 rq = dead_rq; 5674 *rf = orf; 5675 rq_relock(rq, rf); 5676 } 5677 raw_spin_unlock(&next->pi_lock); 5678 } 5679 5680 rq->stop = stop; 5681 } 5682 #endif /* CONFIG_HOTPLUG_CPU */ 5683 5684 void set_rq_online(struct rq *rq) 5685 { 5686 if (!rq->online) { 5687 const struct sched_class *class; 5688 5689 cpumask_set_cpu(rq->cpu, rq->rd->online); 5690 rq->online = 1; 5691 5692 for_each_class(class) { 5693 if (class->rq_online) 5694 class->rq_online(rq); 5695 } 5696 } 5697 } 5698 5699 void set_rq_offline(struct rq *rq) 5700 { 5701 if (rq->online) { 5702 const struct sched_class *class; 5703 5704 for_each_class(class) { 5705 if (class->rq_offline) 5706 class->rq_offline(rq); 5707 } 5708 5709 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5710 rq->online = 0; 5711 } 5712 } 5713 5714 static void set_cpu_rq_start_time(unsigned int cpu) 5715 { 5716 struct rq *rq = cpu_rq(cpu); 5717 5718 rq->age_stamp = sched_clock_cpu(cpu); 5719 } 5720 5721 /* 5722 * used to mark begin/end of suspend/resume: 5723 */ 5724 static int num_cpus_frozen; 5725 5726 /* 5727 * Update cpusets according to cpu_active mask. If cpusets are 5728 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5729 * around partition_sched_domains(). 5730 * 5731 * If we come here as part of a suspend/resume, don't touch cpusets because we 5732 * want to restore it back to its original state upon resume anyway. 5733 */ 5734 static void cpuset_cpu_active(void) 5735 { 5736 if (cpuhp_tasks_frozen) { 5737 /* 5738 * num_cpus_frozen tracks how many CPUs are involved in suspend 5739 * resume sequence. As long as this is not the last online 5740 * operation in the resume sequence, just build a single sched 5741 * domain, ignoring cpusets. 5742 */ 5743 partition_sched_domains(1, NULL, NULL); 5744 if (--num_cpus_frozen) 5745 return; 5746 /* 5747 * This is the last CPU online operation. So fall through and 5748 * restore the original sched domains by considering the 5749 * cpuset configurations. 5750 */ 5751 cpuset_force_rebuild(); 5752 } 5753 cpuset_update_active_cpus(); 5754 } 5755 5756 static int cpuset_cpu_inactive(unsigned int cpu) 5757 { 5758 if (!cpuhp_tasks_frozen) { 5759 if (dl_cpu_busy(cpu)) 5760 return -EBUSY; 5761 cpuset_update_active_cpus(); 5762 } else { 5763 num_cpus_frozen++; 5764 partition_sched_domains(1, NULL, NULL); 5765 } 5766 return 0; 5767 } 5768 5769 int sched_cpu_activate(unsigned int cpu) 5770 { 5771 struct rq *rq = cpu_rq(cpu); 5772 struct rq_flags rf; 5773 5774 set_cpu_active(cpu, true); 5775 5776 if (sched_smp_initialized) { 5777 sched_domains_numa_masks_set(cpu); 5778 cpuset_cpu_active(); 5779 } 5780 5781 /* 5782 * Put the rq online, if not already. This happens: 5783 * 5784 * 1) In the early boot process, because we build the real domains 5785 * after all CPUs have been brought up. 5786 * 5787 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5788 * domains. 5789 */ 5790 rq_lock_irqsave(rq, &rf); 5791 if (rq->rd) { 5792 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5793 set_rq_online(rq); 5794 } 5795 rq_unlock_irqrestore(rq, &rf); 5796 5797 update_max_interval(); 5798 5799 return 0; 5800 } 5801 5802 int sched_cpu_deactivate(unsigned int cpu) 5803 { 5804 int ret; 5805 5806 set_cpu_active(cpu, false); 5807 /* 5808 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5809 * users of this state to go away such that all new such users will 5810 * observe it. 5811 * 5812 * Do sync before park smpboot threads to take care the rcu boost case. 5813 */ 5814 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5815 5816 if (!sched_smp_initialized) 5817 return 0; 5818 5819 ret = cpuset_cpu_inactive(cpu); 5820 if (ret) { 5821 set_cpu_active(cpu, true); 5822 return ret; 5823 } 5824 sched_domains_numa_masks_clear(cpu); 5825 return 0; 5826 } 5827 5828 static void sched_rq_cpu_starting(unsigned int cpu) 5829 { 5830 struct rq *rq = cpu_rq(cpu); 5831 5832 rq->calc_load_update = calc_load_update; 5833 update_max_interval(); 5834 } 5835 5836 int sched_cpu_starting(unsigned int cpu) 5837 { 5838 set_cpu_rq_start_time(cpu); 5839 sched_rq_cpu_starting(cpu); 5840 sched_tick_start(cpu); 5841 return 0; 5842 } 5843 5844 #ifdef CONFIG_HOTPLUG_CPU 5845 int sched_cpu_dying(unsigned int cpu) 5846 { 5847 struct rq *rq = cpu_rq(cpu); 5848 struct rq_flags rf; 5849 5850 /* Handle pending wakeups and then migrate everything off */ 5851 sched_ttwu_pending(); 5852 sched_tick_stop(cpu); 5853 5854 rq_lock_irqsave(rq, &rf); 5855 if (rq->rd) { 5856 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5857 set_rq_offline(rq); 5858 } 5859 migrate_tasks(rq, &rf); 5860 BUG_ON(rq->nr_running != 1); 5861 rq_unlock_irqrestore(rq, &rf); 5862 5863 calc_load_migrate(rq); 5864 update_max_interval(); 5865 nohz_balance_exit_idle(rq); 5866 hrtick_clear(rq); 5867 return 0; 5868 } 5869 #endif 5870 5871 #ifdef CONFIG_SCHED_SMT 5872 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5873 5874 static void sched_init_smt(void) 5875 { 5876 /* 5877 * We've enumerated all CPUs and will assume that if any CPU 5878 * has SMT siblings, CPU0 will too. 5879 */ 5880 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5881 static_branch_enable(&sched_smt_present); 5882 } 5883 #else 5884 static inline void sched_init_smt(void) { } 5885 #endif 5886 5887 void __init sched_init_smp(void) 5888 { 5889 sched_init_numa(); 5890 5891 /* 5892 * There's no userspace yet to cause hotplug operations; hence all the 5893 * CPU masks are stable and all blatant races in the below code cannot 5894 * happen. 5895 */ 5896 mutex_lock(&sched_domains_mutex); 5897 sched_init_domains(cpu_active_mask); 5898 mutex_unlock(&sched_domains_mutex); 5899 5900 /* Move init over to a non-isolated CPU */ 5901 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5902 BUG(); 5903 sched_init_granularity(); 5904 5905 init_sched_rt_class(); 5906 init_sched_dl_class(); 5907 5908 sched_init_smt(); 5909 5910 sched_smp_initialized = true; 5911 } 5912 5913 static int __init migration_init(void) 5914 { 5915 sched_rq_cpu_starting(smp_processor_id()); 5916 return 0; 5917 } 5918 early_initcall(migration_init); 5919 5920 #else 5921 void __init sched_init_smp(void) 5922 { 5923 sched_init_granularity(); 5924 } 5925 #endif /* CONFIG_SMP */ 5926 5927 int in_sched_functions(unsigned long addr) 5928 { 5929 return in_lock_functions(addr) || 5930 (addr >= (unsigned long)__sched_text_start 5931 && addr < (unsigned long)__sched_text_end); 5932 } 5933 5934 #ifdef CONFIG_CGROUP_SCHED 5935 /* 5936 * Default task group. 5937 * Every task in system belongs to this group at bootup. 5938 */ 5939 struct task_group root_task_group; 5940 LIST_HEAD(task_groups); 5941 5942 /* Cacheline aligned slab cache for task_group */ 5943 static struct kmem_cache *task_group_cache __read_mostly; 5944 #endif 5945 5946 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5947 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5948 5949 void __init sched_init(void) 5950 { 5951 int i, j; 5952 unsigned long alloc_size = 0, ptr; 5953 5954 sched_clock_init(); 5955 wait_bit_init(); 5956 5957 #ifdef CONFIG_FAIR_GROUP_SCHED 5958 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5959 #endif 5960 #ifdef CONFIG_RT_GROUP_SCHED 5961 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5962 #endif 5963 if (alloc_size) { 5964 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5965 5966 #ifdef CONFIG_FAIR_GROUP_SCHED 5967 root_task_group.se = (struct sched_entity **)ptr; 5968 ptr += nr_cpu_ids * sizeof(void **); 5969 5970 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5971 ptr += nr_cpu_ids * sizeof(void **); 5972 5973 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5974 #ifdef CONFIG_RT_GROUP_SCHED 5975 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5976 ptr += nr_cpu_ids * sizeof(void **); 5977 5978 root_task_group.rt_rq = (struct rt_rq **)ptr; 5979 ptr += nr_cpu_ids * sizeof(void **); 5980 5981 #endif /* CONFIG_RT_GROUP_SCHED */ 5982 } 5983 #ifdef CONFIG_CPUMASK_OFFSTACK 5984 for_each_possible_cpu(i) { 5985 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5986 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5987 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5988 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5989 } 5990 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5991 5992 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5993 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5994 5995 #ifdef CONFIG_SMP 5996 init_defrootdomain(); 5997 #endif 5998 5999 #ifdef CONFIG_RT_GROUP_SCHED 6000 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6001 global_rt_period(), global_rt_runtime()); 6002 #endif /* CONFIG_RT_GROUP_SCHED */ 6003 6004 #ifdef CONFIG_CGROUP_SCHED 6005 task_group_cache = KMEM_CACHE(task_group, 0); 6006 6007 list_add(&root_task_group.list, &task_groups); 6008 INIT_LIST_HEAD(&root_task_group.children); 6009 INIT_LIST_HEAD(&root_task_group.siblings); 6010 autogroup_init(&init_task); 6011 #endif /* CONFIG_CGROUP_SCHED */ 6012 6013 for_each_possible_cpu(i) { 6014 struct rq *rq; 6015 6016 rq = cpu_rq(i); 6017 raw_spin_lock_init(&rq->lock); 6018 rq->nr_running = 0; 6019 rq->calc_load_active = 0; 6020 rq->calc_load_update = jiffies + LOAD_FREQ; 6021 init_cfs_rq(&rq->cfs); 6022 init_rt_rq(&rq->rt); 6023 init_dl_rq(&rq->dl); 6024 #ifdef CONFIG_FAIR_GROUP_SCHED 6025 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6026 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6027 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6028 /* 6029 * How much CPU bandwidth does root_task_group get? 6030 * 6031 * In case of task-groups formed thr' the cgroup filesystem, it 6032 * gets 100% of the CPU resources in the system. This overall 6033 * system CPU resource is divided among the tasks of 6034 * root_task_group and its child task-groups in a fair manner, 6035 * based on each entity's (task or task-group's) weight 6036 * (se->load.weight). 6037 * 6038 * In other words, if root_task_group has 10 tasks of weight 6039 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6040 * then A0's share of the CPU resource is: 6041 * 6042 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6043 * 6044 * We achieve this by letting root_task_group's tasks sit 6045 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6046 */ 6047 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6048 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6049 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6050 6051 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6052 #ifdef CONFIG_RT_GROUP_SCHED 6053 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6054 #endif 6055 6056 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6057 rq->cpu_load[j] = 0; 6058 6059 #ifdef CONFIG_SMP 6060 rq->sd = NULL; 6061 rq->rd = NULL; 6062 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6063 rq->balance_callback = NULL; 6064 rq->active_balance = 0; 6065 rq->next_balance = jiffies; 6066 rq->push_cpu = 0; 6067 rq->cpu = i; 6068 rq->online = 0; 6069 rq->idle_stamp = 0; 6070 rq->avg_idle = 2*sysctl_sched_migration_cost; 6071 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6072 6073 INIT_LIST_HEAD(&rq->cfs_tasks); 6074 6075 rq_attach_root(rq, &def_root_domain); 6076 #ifdef CONFIG_NO_HZ_COMMON 6077 rq->last_load_update_tick = jiffies; 6078 rq->last_blocked_load_update_tick = jiffies; 6079 atomic_set(&rq->nohz_flags, 0); 6080 #endif 6081 #endif /* CONFIG_SMP */ 6082 hrtick_rq_init(rq); 6083 atomic_set(&rq->nr_iowait, 0); 6084 } 6085 6086 set_load_weight(&init_task, false); 6087 6088 /* 6089 * The boot idle thread does lazy MMU switching as well: 6090 */ 6091 mmgrab(&init_mm); 6092 enter_lazy_tlb(&init_mm, current); 6093 6094 /* 6095 * Make us the idle thread. Technically, schedule() should not be 6096 * called from this thread, however somewhere below it might be, 6097 * but because we are the idle thread, we just pick up running again 6098 * when this runqueue becomes "idle". 6099 */ 6100 init_idle(current, smp_processor_id()); 6101 6102 calc_load_update = jiffies + LOAD_FREQ; 6103 6104 #ifdef CONFIG_SMP 6105 idle_thread_set_boot_cpu(); 6106 set_cpu_rq_start_time(smp_processor_id()); 6107 #endif 6108 init_sched_fair_class(); 6109 6110 init_schedstats(); 6111 6112 scheduler_running = 1; 6113 } 6114 6115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6116 static inline int preempt_count_equals(int preempt_offset) 6117 { 6118 int nested = preempt_count() + rcu_preempt_depth(); 6119 6120 return (nested == preempt_offset); 6121 } 6122 6123 void __might_sleep(const char *file, int line, int preempt_offset) 6124 { 6125 /* 6126 * Blocking primitives will set (and therefore destroy) current->state, 6127 * since we will exit with TASK_RUNNING make sure we enter with it, 6128 * otherwise we will destroy state. 6129 */ 6130 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6131 "do not call blocking ops when !TASK_RUNNING; " 6132 "state=%lx set at [<%p>] %pS\n", 6133 current->state, 6134 (void *)current->task_state_change, 6135 (void *)current->task_state_change); 6136 6137 ___might_sleep(file, line, preempt_offset); 6138 } 6139 EXPORT_SYMBOL(__might_sleep); 6140 6141 void ___might_sleep(const char *file, int line, int preempt_offset) 6142 { 6143 /* Ratelimiting timestamp: */ 6144 static unsigned long prev_jiffy; 6145 6146 unsigned long preempt_disable_ip; 6147 6148 /* WARN_ON_ONCE() by default, no rate limit required: */ 6149 rcu_sleep_check(); 6150 6151 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6152 !is_idle_task(current)) || 6153 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6154 oops_in_progress) 6155 return; 6156 6157 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6158 return; 6159 prev_jiffy = jiffies; 6160 6161 /* Save this before calling printk(), since that will clobber it: */ 6162 preempt_disable_ip = get_preempt_disable_ip(current); 6163 6164 printk(KERN_ERR 6165 "BUG: sleeping function called from invalid context at %s:%d\n", 6166 file, line); 6167 printk(KERN_ERR 6168 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6169 in_atomic(), irqs_disabled(), 6170 current->pid, current->comm); 6171 6172 if (task_stack_end_corrupted(current)) 6173 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6174 6175 debug_show_held_locks(current); 6176 if (irqs_disabled()) 6177 print_irqtrace_events(current); 6178 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6179 && !preempt_count_equals(preempt_offset)) { 6180 pr_err("Preemption disabled at:"); 6181 print_ip_sym(preempt_disable_ip); 6182 pr_cont("\n"); 6183 } 6184 dump_stack(); 6185 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6186 } 6187 EXPORT_SYMBOL(___might_sleep); 6188 #endif 6189 6190 #ifdef CONFIG_MAGIC_SYSRQ 6191 void normalize_rt_tasks(void) 6192 { 6193 struct task_struct *g, *p; 6194 struct sched_attr attr = { 6195 .sched_policy = SCHED_NORMAL, 6196 }; 6197 6198 read_lock(&tasklist_lock); 6199 for_each_process_thread(g, p) { 6200 /* 6201 * Only normalize user tasks: 6202 */ 6203 if (p->flags & PF_KTHREAD) 6204 continue; 6205 6206 p->se.exec_start = 0; 6207 schedstat_set(p->se.statistics.wait_start, 0); 6208 schedstat_set(p->se.statistics.sleep_start, 0); 6209 schedstat_set(p->se.statistics.block_start, 0); 6210 6211 if (!dl_task(p) && !rt_task(p)) { 6212 /* 6213 * Renice negative nice level userspace 6214 * tasks back to 0: 6215 */ 6216 if (task_nice(p) < 0) 6217 set_user_nice(p, 0); 6218 continue; 6219 } 6220 6221 __sched_setscheduler(p, &attr, false, false); 6222 } 6223 read_unlock(&tasklist_lock); 6224 } 6225 6226 #endif /* CONFIG_MAGIC_SYSRQ */ 6227 6228 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6229 /* 6230 * These functions are only useful for the IA64 MCA handling, or kdb. 6231 * 6232 * They can only be called when the whole system has been 6233 * stopped - every CPU needs to be quiescent, and no scheduling 6234 * activity can take place. Using them for anything else would 6235 * be a serious bug, and as a result, they aren't even visible 6236 * under any other configuration. 6237 */ 6238 6239 /** 6240 * curr_task - return the current task for a given CPU. 6241 * @cpu: the processor in question. 6242 * 6243 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6244 * 6245 * Return: The current task for @cpu. 6246 */ 6247 struct task_struct *curr_task(int cpu) 6248 { 6249 return cpu_curr(cpu); 6250 } 6251 6252 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6253 6254 #ifdef CONFIG_IA64 6255 /** 6256 * set_curr_task - set the current task for a given CPU. 6257 * @cpu: the processor in question. 6258 * @p: the task pointer to set. 6259 * 6260 * Description: This function must only be used when non-maskable interrupts 6261 * are serviced on a separate stack. It allows the architecture to switch the 6262 * notion of the current task on a CPU in a non-blocking manner. This function 6263 * must be called with all CPU's synchronized, and interrupts disabled, the 6264 * and caller must save the original value of the current task (see 6265 * curr_task() above) and restore that value before reenabling interrupts and 6266 * re-starting the system. 6267 * 6268 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6269 */ 6270 void ia64_set_curr_task(int cpu, struct task_struct *p) 6271 { 6272 cpu_curr(cpu) = p; 6273 } 6274 6275 #endif 6276 6277 #ifdef CONFIG_CGROUP_SCHED 6278 /* task_group_lock serializes the addition/removal of task groups */ 6279 static DEFINE_SPINLOCK(task_group_lock); 6280 6281 static void sched_free_group(struct task_group *tg) 6282 { 6283 free_fair_sched_group(tg); 6284 free_rt_sched_group(tg); 6285 autogroup_free(tg); 6286 kmem_cache_free(task_group_cache, tg); 6287 } 6288 6289 /* allocate runqueue etc for a new task group */ 6290 struct task_group *sched_create_group(struct task_group *parent) 6291 { 6292 struct task_group *tg; 6293 6294 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6295 if (!tg) 6296 return ERR_PTR(-ENOMEM); 6297 6298 if (!alloc_fair_sched_group(tg, parent)) 6299 goto err; 6300 6301 if (!alloc_rt_sched_group(tg, parent)) 6302 goto err; 6303 6304 return tg; 6305 6306 err: 6307 sched_free_group(tg); 6308 return ERR_PTR(-ENOMEM); 6309 } 6310 6311 void sched_online_group(struct task_group *tg, struct task_group *parent) 6312 { 6313 unsigned long flags; 6314 6315 spin_lock_irqsave(&task_group_lock, flags); 6316 list_add_rcu(&tg->list, &task_groups); 6317 6318 /* Root should already exist: */ 6319 WARN_ON(!parent); 6320 6321 tg->parent = parent; 6322 INIT_LIST_HEAD(&tg->children); 6323 list_add_rcu(&tg->siblings, &parent->children); 6324 spin_unlock_irqrestore(&task_group_lock, flags); 6325 6326 online_fair_sched_group(tg); 6327 } 6328 6329 /* rcu callback to free various structures associated with a task group */ 6330 static void sched_free_group_rcu(struct rcu_head *rhp) 6331 { 6332 /* Now it should be safe to free those cfs_rqs: */ 6333 sched_free_group(container_of(rhp, struct task_group, rcu)); 6334 } 6335 6336 void sched_destroy_group(struct task_group *tg) 6337 { 6338 /* Wait for possible concurrent references to cfs_rqs complete: */ 6339 call_rcu(&tg->rcu, sched_free_group_rcu); 6340 } 6341 6342 void sched_offline_group(struct task_group *tg) 6343 { 6344 unsigned long flags; 6345 6346 /* End participation in shares distribution: */ 6347 unregister_fair_sched_group(tg); 6348 6349 spin_lock_irqsave(&task_group_lock, flags); 6350 list_del_rcu(&tg->list); 6351 list_del_rcu(&tg->siblings); 6352 spin_unlock_irqrestore(&task_group_lock, flags); 6353 } 6354 6355 static void sched_change_group(struct task_struct *tsk, int type) 6356 { 6357 struct task_group *tg; 6358 6359 /* 6360 * All callers are synchronized by task_rq_lock(); we do not use RCU 6361 * which is pointless here. Thus, we pass "true" to task_css_check() 6362 * to prevent lockdep warnings. 6363 */ 6364 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6365 struct task_group, css); 6366 tg = autogroup_task_group(tsk, tg); 6367 tsk->sched_task_group = tg; 6368 6369 #ifdef CONFIG_FAIR_GROUP_SCHED 6370 if (tsk->sched_class->task_change_group) 6371 tsk->sched_class->task_change_group(tsk, type); 6372 else 6373 #endif 6374 set_task_rq(tsk, task_cpu(tsk)); 6375 } 6376 6377 /* 6378 * Change task's runqueue when it moves between groups. 6379 * 6380 * The caller of this function should have put the task in its new group by 6381 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6382 * its new group. 6383 */ 6384 void sched_move_task(struct task_struct *tsk) 6385 { 6386 int queued, running, queue_flags = 6387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6388 struct rq_flags rf; 6389 struct rq *rq; 6390 6391 rq = task_rq_lock(tsk, &rf); 6392 update_rq_clock(rq); 6393 6394 running = task_current(rq, tsk); 6395 queued = task_on_rq_queued(tsk); 6396 6397 if (queued) 6398 dequeue_task(rq, tsk, queue_flags); 6399 if (running) 6400 put_prev_task(rq, tsk); 6401 6402 sched_change_group(tsk, TASK_MOVE_GROUP); 6403 6404 if (queued) 6405 enqueue_task(rq, tsk, queue_flags); 6406 if (running) 6407 set_curr_task(rq, tsk); 6408 6409 task_rq_unlock(rq, tsk, &rf); 6410 } 6411 6412 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6413 { 6414 return css ? container_of(css, struct task_group, css) : NULL; 6415 } 6416 6417 static struct cgroup_subsys_state * 6418 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6419 { 6420 struct task_group *parent = css_tg(parent_css); 6421 struct task_group *tg; 6422 6423 if (!parent) { 6424 /* This is early initialization for the top cgroup */ 6425 return &root_task_group.css; 6426 } 6427 6428 tg = sched_create_group(parent); 6429 if (IS_ERR(tg)) 6430 return ERR_PTR(-ENOMEM); 6431 6432 return &tg->css; 6433 } 6434 6435 /* Expose task group only after completing cgroup initialization */ 6436 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6437 { 6438 struct task_group *tg = css_tg(css); 6439 struct task_group *parent = css_tg(css->parent); 6440 6441 if (parent) 6442 sched_online_group(tg, parent); 6443 return 0; 6444 } 6445 6446 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6447 { 6448 struct task_group *tg = css_tg(css); 6449 6450 sched_offline_group(tg); 6451 } 6452 6453 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6454 { 6455 struct task_group *tg = css_tg(css); 6456 6457 /* 6458 * Relies on the RCU grace period between css_released() and this. 6459 */ 6460 sched_free_group(tg); 6461 } 6462 6463 /* 6464 * This is called before wake_up_new_task(), therefore we really only 6465 * have to set its group bits, all the other stuff does not apply. 6466 */ 6467 static void cpu_cgroup_fork(struct task_struct *task) 6468 { 6469 struct rq_flags rf; 6470 struct rq *rq; 6471 6472 rq = task_rq_lock(task, &rf); 6473 6474 update_rq_clock(rq); 6475 sched_change_group(task, TASK_SET_GROUP); 6476 6477 task_rq_unlock(rq, task, &rf); 6478 } 6479 6480 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6481 { 6482 struct task_struct *task; 6483 struct cgroup_subsys_state *css; 6484 int ret = 0; 6485 6486 cgroup_taskset_for_each(task, css, tset) { 6487 #ifdef CONFIG_RT_GROUP_SCHED 6488 if (!sched_rt_can_attach(css_tg(css), task)) 6489 return -EINVAL; 6490 #else 6491 /* We don't support RT-tasks being in separate groups */ 6492 if (task->sched_class != &fair_sched_class) 6493 return -EINVAL; 6494 #endif 6495 /* 6496 * Serialize against wake_up_new_task() such that if its 6497 * running, we're sure to observe its full state. 6498 */ 6499 raw_spin_lock_irq(&task->pi_lock); 6500 /* 6501 * Avoid calling sched_move_task() before wake_up_new_task() 6502 * has happened. This would lead to problems with PELT, due to 6503 * move wanting to detach+attach while we're not attached yet. 6504 */ 6505 if (task->state == TASK_NEW) 6506 ret = -EINVAL; 6507 raw_spin_unlock_irq(&task->pi_lock); 6508 6509 if (ret) 6510 break; 6511 } 6512 return ret; 6513 } 6514 6515 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6516 { 6517 struct task_struct *task; 6518 struct cgroup_subsys_state *css; 6519 6520 cgroup_taskset_for_each(task, css, tset) 6521 sched_move_task(task); 6522 } 6523 6524 #ifdef CONFIG_FAIR_GROUP_SCHED 6525 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6526 struct cftype *cftype, u64 shareval) 6527 { 6528 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6529 } 6530 6531 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6532 struct cftype *cft) 6533 { 6534 struct task_group *tg = css_tg(css); 6535 6536 return (u64) scale_load_down(tg->shares); 6537 } 6538 6539 #ifdef CONFIG_CFS_BANDWIDTH 6540 static DEFINE_MUTEX(cfs_constraints_mutex); 6541 6542 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6543 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6544 6545 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6546 6547 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6548 { 6549 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6550 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6551 6552 if (tg == &root_task_group) 6553 return -EINVAL; 6554 6555 /* 6556 * Ensure we have at some amount of bandwidth every period. This is 6557 * to prevent reaching a state of large arrears when throttled via 6558 * entity_tick() resulting in prolonged exit starvation. 6559 */ 6560 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6561 return -EINVAL; 6562 6563 /* 6564 * Likewise, bound things on the otherside by preventing insane quota 6565 * periods. This also allows us to normalize in computing quota 6566 * feasibility. 6567 */ 6568 if (period > max_cfs_quota_period) 6569 return -EINVAL; 6570 6571 /* 6572 * Prevent race between setting of cfs_rq->runtime_enabled and 6573 * unthrottle_offline_cfs_rqs(). 6574 */ 6575 get_online_cpus(); 6576 mutex_lock(&cfs_constraints_mutex); 6577 ret = __cfs_schedulable(tg, period, quota); 6578 if (ret) 6579 goto out_unlock; 6580 6581 runtime_enabled = quota != RUNTIME_INF; 6582 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6583 /* 6584 * If we need to toggle cfs_bandwidth_used, off->on must occur 6585 * before making related changes, and on->off must occur afterwards 6586 */ 6587 if (runtime_enabled && !runtime_was_enabled) 6588 cfs_bandwidth_usage_inc(); 6589 raw_spin_lock_irq(&cfs_b->lock); 6590 cfs_b->period = ns_to_ktime(period); 6591 cfs_b->quota = quota; 6592 6593 __refill_cfs_bandwidth_runtime(cfs_b); 6594 6595 /* Restart the period timer (if active) to handle new period expiry: */ 6596 if (runtime_enabled) 6597 start_cfs_bandwidth(cfs_b); 6598 6599 raw_spin_unlock_irq(&cfs_b->lock); 6600 6601 for_each_online_cpu(i) { 6602 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6603 struct rq *rq = cfs_rq->rq; 6604 struct rq_flags rf; 6605 6606 rq_lock_irq(rq, &rf); 6607 cfs_rq->runtime_enabled = runtime_enabled; 6608 cfs_rq->runtime_remaining = 0; 6609 6610 if (cfs_rq->throttled) 6611 unthrottle_cfs_rq(cfs_rq); 6612 rq_unlock_irq(rq, &rf); 6613 } 6614 if (runtime_was_enabled && !runtime_enabled) 6615 cfs_bandwidth_usage_dec(); 6616 out_unlock: 6617 mutex_unlock(&cfs_constraints_mutex); 6618 put_online_cpus(); 6619 6620 return ret; 6621 } 6622 6623 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6624 { 6625 u64 quota, period; 6626 6627 period = ktime_to_ns(tg->cfs_bandwidth.period); 6628 if (cfs_quota_us < 0) 6629 quota = RUNTIME_INF; 6630 else 6631 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6632 6633 return tg_set_cfs_bandwidth(tg, period, quota); 6634 } 6635 6636 long tg_get_cfs_quota(struct task_group *tg) 6637 { 6638 u64 quota_us; 6639 6640 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6641 return -1; 6642 6643 quota_us = tg->cfs_bandwidth.quota; 6644 do_div(quota_us, NSEC_PER_USEC); 6645 6646 return quota_us; 6647 } 6648 6649 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6650 { 6651 u64 quota, period; 6652 6653 period = (u64)cfs_period_us * NSEC_PER_USEC; 6654 quota = tg->cfs_bandwidth.quota; 6655 6656 return tg_set_cfs_bandwidth(tg, period, quota); 6657 } 6658 6659 long tg_get_cfs_period(struct task_group *tg) 6660 { 6661 u64 cfs_period_us; 6662 6663 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6664 do_div(cfs_period_us, NSEC_PER_USEC); 6665 6666 return cfs_period_us; 6667 } 6668 6669 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6670 struct cftype *cft) 6671 { 6672 return tg_get_cfs_quota(css_tg(css)); 6673 } 6674 6675 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6676 struct cftype *cftype, s64 cfs_quota_us) 6677 { 6678 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6679 } 6680 6681 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6682 struct cftype *cft) 6683 { 6684 return tg_get_cfs_period(css_tg(css)); 6685 } 6686 6687 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6688 struct cftype *cftype, u64 cfs_period_us) 6689 { 6690 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6691 } 6692 6693 struct cfs_schedulable_data { 6694 struct task_group *tg; 6695 u64 period, quota; 6696 }; 6697 6698 /* 6699 * normalize group quota/period to be quota/max_period 6700 * note: units are usecs 6701 */ 6702 static u64 normalize_cfs_quota(struct task_group *tg, 6703 struct cfs_schedulable_data *d) 6704 { 6705 u64 quota, period; 6706 6707 if (tg == d->tg) { 6708 period = d->period; 6709 quota = d->quota; 6710 } else { 6711 period = tg_get_cfs_period(tg); 6712 quota = tg_get_cfs_quota(tg); 6713 } 6714 6715 /* note: these should typically be equivalent */ 6716 if (quota == RUNTIME_INF || quota == -1) 6717 return RUNTIME_INF; 6718 6719 return to_ratio(period, quota); 6720 } 6721 6722 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6723 { 6724 struct cfs_schedulable_data *d = data; 6725 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6726 s64 quota = 0, parent_quota = -1; 6727 6728 if (!tg->parent) { 6729 quota = RUNTIME_INF; 6730 } else { 6731 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6732 6733 quota = normalize_cfs_quota(tg, d); 6734 parent_quota = parent_b->hierarchical_quota; 6735 6736 /* 6737 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6738 * always take the min. On cgroup1, only inherit when no 6739 * limit is set: 6740 */ 6741 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6742 quota = min(quota, parent_quota); 6743 } else { 6744 if (quota == RUNTIME_INF) 6745 quota = parent_quota; 6746 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6747 return -EINVAL; 6748 } 6749 } 6750 cfs_b->hierarchical_quota = quota; 6751 6752 return 0; 6753 } 6754 6755 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6756 { 6757 int ret; 6758 struct cfs_schedulable_data data = { 6759 .tg = tg, 6760 .period = period, 6761 .quota = quota, 6762 }; 6763 6764 if (quota != RUNTIME_INF) { 6765 do_div(data.period, NSEC_PER_USEC); 6766 do_div(data.quota, NSEC_PER_USEC); 6767 } 6768 6769 rcu_read_lock(); 6770 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6771 rcu_read_unlock(); 6772 6773 return ret; 6774 } 6775 6776 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6777 { 6778 struct task_group *tg = css_tg(seq_css(sf)); 6779 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6780 6781 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6782 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6783 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6784 6785 return 0; 6786 } 6787 #endif /* CONFIG_CFS_BANDWIDTH */ 6788 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6789 6790 #ifdef CONFIG_RT_GROUP_SCHED 6791 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6792 struct cftype *cft, s64 val) 6793 { 6794 return sched_group_set_rt_runtime(css_tg(css), val); 6795 } 6796 6797 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6798 struct cftype *cft) 6799 { 6800 return sched_group_rt_runtime(css_tg(css)); 6801 } 6802 6803 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6804 struct cftype *cftype, u64 rt_period_us) 6805 { 6806 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6807 } 6808 6809 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6810 struct cftype *cft) 6811 { 6812 return sched_group_rt_period(css_tg(css)); 6813 } 6814 #endif /* CONFIG_RT_GROUP_SCHED */ 6815 6816 static struct cftype cpu_legacy_files[] = { 6817 #ifdef CONFIG_FAIR_GROUP_SCHED 6818 { 6819 .name = "shares", 6820 .read_u64 = cpu_shares_read_u64, 6821 .write_u64 = cpu_shares_write_u64, 6822 }, 6823 #endif 6824 #ifdef CONFIG_CFS_BANDWIDTH 6825 { 6826 .name = "cfs_quota_us", 6827 .read_s64 = cpu_cfs_quota_read_s64, 6828 .write_s64 = cpu_cfs_quota_write_s64, 6829 }, 6830 { 6831 .name = "cfs_period_us", 6832 .read_u64 = cpu_cfs_period_read_u64, 6833 .write_u64 = cpu_cfs_period_write_u64, 6834 }, 6835 { 6836 .name = "stat", 6837 .seq_show = cpu_cfs_stat_show, 6838 }, 6839 #endif 6840 #ifdef CONFIG_RT_GROUP_SCHED 6841 { 6842 .name = "rt_runtime_us", 6843 .read_s64 = cpu_rt_runtime_read, 6844 .write_s64 = cpu_rt_runtime_write, 6845 }, 6846 { 6847 .name = "rt_period_us", 6848 .read_u64 = cpu_rt_period_read_uint, 6849 .write_u64 = cpu_rt_period_write_uint, 6850 }, 6851 #endif 6852 { } /* Terminate */ 6853 }; 6854 6855 static int cpu_extra_stat_show(struct seq_file *sf, 6856 struct cgroup_subsys_state *css) 6857 { 6858 #ifdef CONFIG_CFS_BANDWIDTH 6859 { 6860 struct task_group *tg = css_tg(css); 6861 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6862 u64 throttled_usec; 6863 6864 throttled_usec = cfs_b->throttled_time; 6865 do_div(throttled_usec, NSEC_PER_USEC); 6866 6867 seq_printf(sf, "nr_periods %d\n" 6868 "nr_throttled %d\n" 6869 "throttled_usec %llu\n", 6870 cfs_b->nr_periods, cfs_b->nr_throttled, 6871 throttled_usec); 6872 } 6873 #endif 6874 return 0; 6875 } 6876 6877 #ifdef CONFIG_FAIR_GROUP_SCHED 6878 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6879 struct cftype *cft) 6880 { 6881 struct task_group *tg = css_tg(css); 6882 u64 weight = scale_load_down(tg->shares); 6883 6884 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6885 } 6886 6887 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6888 struct cftype *cft, u64 weight) 6889 { 6890 /* 6891 * cgroup weight knobs should use the common MIN, DFL and MAX 6892 * values which are 1, 100 and 10000 respectively. While it loses 6893 * a bit of range on both ends, it maps pretty well onto the shares 6894 * value used by scheduler and the round-trip conversions preserve 6895 * the original value over the entire range. 6896 */ 6897 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6898 return -ERANGE; 6899 6900 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6901 6902 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6903 } 6904 6905 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6906 struct cftype *cft) 6907 { 6908 unsigned long weight = scale_load_down(css_tg(css)->shares); 6909 int last_delta = INT_MAX; 6910 int prio, delta; 6911 6912 /* find the closest nice value to the current weight */ 6913 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6914 delta = abs(sched_prio_to_weight[prio] - weight); 6915 if (delta >= last_delta) 6916 break; 6917 last_delta = delta; 6918 } 6919 6920 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6921 } 6922 6923 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6924 struct cftype *cft, s64 nice) 6925 { 6926 unsigned long weight; 6927 int idx; 6928 6929 if (nice < MIN_NICE || nice > MAX_NICE) 6930 return -ERANGE; 6931 6932 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6933 idx = array_index_nospec(idx, 40); 6934 weight = sched_prio_to_weight[idx]; 6935 6936 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6937 } 6938 #endif 6939 6940 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6941 long period, long quota) 6942 { 6943 if (quota < 0) 6944 seq_puts(sf, "max"); 6945 else 6946 seq_printf(sf, "%ld", quota); 6947 6948 seq_printf(sf, " %ld\n", period); 6949 } 6950 6951 /* caller should put the current value in *@periodp before calling */ 6952 static int __maybe_unused cpu_period_quota_parse(char *buf, 6953 u64 *periodp, u64 *quotap) 6954 { 6955 char tok[21]; /* U64_MAX */ 6956 6957 if (!sscanf(buf, "%s %llu", tok, periodp)) 6958 return -EINVAL; 6959 6960 *periodp *= NSEC_PER_USEC; 6961 6962 if (sscanf(tok, "%llu", quotap)) 6963 *quotap *= NSEC_PER_USEC; 6964 else if (!strcmp(tok, "max")) 6965 *quotap = RUNTIME_INF; 6966 else 6967 return -EINVAL; 6968 6969 return 0; 6970 } 6971 6972 #ifdef CONFIG_CFS_BANDWIDTH 6973 static int cpu_max_show(struct seq_file *sf, void *v) 6974 { 6975 struct task_group *tg = css_tg(seq_css(sf)); 6976 6977 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6978 return 0; 6979 } 6980 6981 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6982 char *buf, size_t nbytes, loff_t off) 6983 { 6984 struct task_group *tg = css_tg(of_css(of)); 6985 u64 period = tg_get_cfs_period(tg); 6986 u64 quota; 6987 int ret; 6988 6989 ret = cpu_period_quota_parse(buf, &period, "a); 6990 if (!ret) 6991 ret = tg_set_cfs_bandwidth(tg, period, quota); 6992 return ret ?: nbytes; 6993 } 6994 #endif 6995 6996 static struct cftype cpu_files[] = { 6997 #ifdef CONFIG_FAIR_GROUP_SCHED 6998 { 6999 .name = "weight", 7000 .flags = CFTYPE_NOT_ON_ROOT, 7001 .read_u64 = cpu_weight_read_u64, 7002 .write_u64 = cpu_weight_write_u64, 7003 }, 7004 { 7005 .name = "weight.nice", 7006 .flags = CFTYPE_NOT_ON_ROOT, 7007 .read_s64 = cpu_weight_nice_read_s64, 7008 .write_s64 = cpu_weight_nice_write_s64, 7009 }, 7010 #endif 7011 #ifdef CONFIG_CFS_BANDWIDTH 7012 { 7013 .name = "max", 7014 .flags = CFTYPE_NOT_ON_ROOT, 7015 .seq_show = cpu_max_show, 7016 .write = cpu_max_write, 7017 }, 7018 #endif 7019 { } /* terminate */ 7020 }; 7021 7022 struct cgroup_subsys cpu_cgrp_subsys = { 7023 .css_alloc = cpu_cgroup_css_alloc, 7024 .css_online = cpu_cgroup_css_online, 7025 .css_released = cpu_cgroup_css_released, 7026 .css_free = cpu_cgroup_css_free, 7027 .css_extra_stat_show = cpu_extra_stat_show, 7028 .fork = cpu_cgroup_fork, 7029 .can_attach = cpu_cgroup_can_attach, 7030 .attach = cpu_cgroup_attach, 7031 .legacy_cftypes = cpu_legacy_files, 7032 .dfl_cftypes = cpu_files, 7033 .early_init = true, 7034 .threaded = true, 7035 }; 7036 7037 #endif /* CONFIG_CGROUP_SCHED */ 7038 7039 void dump_cpu_task(int cpu) 7040 { 7041 pr_info("Task dump for CPU %d:\n", cpu); 7042 sched_show_task(cpu_curr(cpu)); 7043 } 7044 7045 /* 7046 * Nice levels are multiplicative, with a gentle 10% change for every 7047 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7048 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7049 * that remained on nice 0. 7050 * 7051 * The "10% effect" is relative and cumulative: from _any_ nice level, 7052 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7053 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7054 * If a task goes up by ~10% and another task goes down by ~10% then 7055 * the relative distance between them is ~25%.) 7056 */ 7057 const int sched_prio_to_weight[40] = { 7058 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7059 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7060 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7061 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7062 /* 0 */ 1024, 820, 655, 526, 423, 7063 /* 5 */ 335, 272, 215, 172, 137, 7064 /* 10 */ 110, 87, 70, 56, 45, 7065 /* 15 */ 36, 29, 23, 18, 15, 7066 }; 7067 7068 /* 7069 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7070 * 7071 * In cases where the weight does not change often, we can use the 7072 * precalculated inverse to speed up arithmetics by turning divisions 7073 * into multiplications: 7074 */ 7075 const u32 sched_prio_to_wmult[40] = { 7076 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7077 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7078 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7079 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7080 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7081 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7082 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7083 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7084 }; 7085 7086 #undef CREATE_TRACE_POINTS 7087