xref: /openbmc/linux/kernel/sched/core.c (revision 5ba2ffba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 
359 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
360 }
361 
362 /*
363  * called from hardirq (IPI) context
364  */
365 static void __hrtick_start(void *arg)
366 {
367 	struct rq *rq = arg;
368 	struct rq_flags rf;
369 
370 	rq_lock(rq, &rf);
371 	__hrtick_restart(rq);
372 	rq_unlock(rq, &rf);
373 }
374 
375 /*
376  * Called to set the hrtick timer state.
377  *
378  * called with rq->lock held and irqs disabled
379  */
380 void hrtick_start(struct rq *rq, u64 delay)
381 {
382 	struct hrtimer *timer = &rq->hrtick_timer;
383 	ktime_t time;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	hrtimer_set_expires(timer, time);
394 
395 	if (rq == this_rq())
396 		__hrtick_restart(rq);
397 	else
398 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
399 }
400 
401 #else
402 /*
403  * Called to set the hrtick timer state.
404  *
405  * called with rq->lock held and irqs disabled
406  */
407 void hrtick_start(struct rq *rq, u64 delay)
408 {
409 	/*
410 	 * Don't schedule slices shorter than 10000ns, that just
411 	 * doesn't make sense. Rely on vruntime for fairness.
412 	 */
413 	delay = max_t(u64, delay, 10000LL);
414 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 		      HRTIMER_MODE_REL_PINNED_HARD);
416 }
417 
418 #endif /* CONFIG_SMP */
419 
420 static void hrtick_rq_init(struct rq *rq)
421 {
422 #ifdef CONFIG_SMP
423 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 	rq->hrtick_timer.function = hrtick;
427 }
428 #else	/* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
430 {
431 }
432 
433 static inline void hrtick_rq_init(struct rq *rq)
434 {
435 }
436 #endif	/* CONFIG_SCHED_HRTICK */
437 
438 /*
439  * cmpxchg based fetch_or, macro so it works for different integer types
440  */
441 #define fetch_or(ptr, mask)						\
442 	({								\
443 		typeof(ptr) _ptr = (ptr);				\
444 		typeof(mask) _mask = (mask);				\
445 		typeof(*_ptr) _old, _val = *_ptr;			\
446 									\
447 		for (;;) {						\
448 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
449 			if (_old == _val)				\
450 				break;					\
451 			_val = _old;					\
452 		}							\
453 	_old;								\
454 })
455 
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
457 /*
458  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459  * this avoids any races wrt polling state changes and thereby avoids
460  * spurious IPIs.
461  */
462 static bool set_nr_and_not_polling(struct task_struct *p)
463 {
464 	struct thread_info *ti = task_thread_info(p);
465 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466 }
467 
468 /*
469  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470  *
471  * If this returns true, then the idle task promises to call
472  * sched_ttwu_pending() and reschedule soon.
473  */
474 static bool set_nr_if_polling(struct task_struct *p)
475 {
476 	struct thread_info *ti = task_thread_info(p);
477 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
478 
479 	for (;;) {
480 		if (!(val & _TIF_POLLING_NRFLAG))
481 			return false;
482 		if (val & _TIF_NEED_RESCHED)
483 			return true;
484 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 		if (old == val)
486 			break;
487 		val = old;
488 	}
489 	return true;
490 }
491 
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
494 {
495 	set_tsk_need_resched(p);
496 	return true;
497 }
498 
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
501 {
502 	return false;
503 }
504 #endif
505 #endif
506 
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
508 {
509 	struct wake_q_node *node = &task->wake_q;
510 
511 	/*
512 	 * Atomically grab the task, if ->wake_q is !nil already it means
513 	 * it's already queued (either by us or someone else) and will get the
514 	 * wakeup due to that.
515 	 *
516 	 * In order to ensure that a pending wakeup will observe our pending
517 	 * state, even in the failed case, an explicit smp_mb() must be used.
518 	 */
519 	smp_mb__before_atomic();
520 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 		return false;
522 
523 	/*
524 	 * The head is context local, there can be no concurrency.
525 	 */
526 	*head->lastp = node;
527 	head->lastp = &node->next;
528 	return true;
529 }
530 
531 /**
532  * wake_q_add() - queue a wakeup for 'later' waking.
533  * @head: the wake_q_head to add @task to
534  * @task: the task to queue for 'later' wakeup
535  *
536  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538  * instantly.
539  *
540  * This function must be used as-if it were wake_up_process(); IOW the task
541  * must be ready to be woken at this location.
542  */
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544 {
545 	if (__wake_q_add(head, task))
546 		get_task_struct(task);
547 }
548 
549 /**
550  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551  * @head: the wake_q_head to add @task to
552  * @task: the task to queue for 'later' wakeup
553  *
554  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556  * instantly.
557  *
558  * This function must be used as-if it were wake_up_process(); IOW the task
559  * must be ready to be woken at this location.
560  *
561  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562  * that already hold reference to @task can call the 'safe' version and trust
563  * wake_q to do the right thing depending whether or not the @task is already
564  * queued for wakeup.
565  */
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567 {
568 	if (!__wake_q_add(head, task))
569 		put_task_struct(task);
570 }
571 
572 void wake_up_q(struct wake_q_head *head)
573 {
574 	struct wake_q_node *node = head->first;
575 
576 	while (node != WAKE_Q_TAIL) {
577 		struct task_struct *task;
578 
579 		task = container_of(node, struct task_struct, wake_q);
580 		BUG_ON(!task);
581 		/* Task can safely be re-inserted now: */
582 		node = node->next;
583 		task->wake_q.next = NULL;
584 
585 		/*
586 		 * wake_up_process() executes a full barrier, which pairs with
587 		 * the queueing in wake_q_add() so as not to miss wakeups.
588 		 */
589 		wake_up_process(task);
590 		put_task_struct(task);
591 	}
592 }
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	raw_spin_lock_irqsave(&rq->lock, flags);
631 	if (cpu_online(cpu) || cpu == smp_processor_id())
632 		resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy CPU for migrating timers
640  * from an idle CPU.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle CPU will add more delays to the timers than intended
644  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(void)
647 {
648 	int i, cpu = smp_processor_id(), default_cpu = -1;
649 	struct sched_domain *sd;
650 
651 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 		if (!idle_cpu(cpu))
653 			return cpu;
654 		default_cpu = cpu;
655 	}
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu_and(i, sched_domain_span(sd),
660 			housekeeping_cpumask(HK_FLAG_TIMER)) {
661 			if (cpu == i)
662 				continue;
663 
664 			if (!idle_cpu(i)) {
665 				cpu = i;
666 				goto unlock;
667 			}
668 		}
669 	}
670 
671 	if (default_cpu == -1)
672 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 	cpu = default_cpu;
674 unlock:
675 	rcu_read_unlock();
676 	return cpu;
677 }
678 
679 /*
680  * When add_timer_on() enqueues a timer into the timer wheel of an
681  * idle CPU then this timer might expire before the next timer event
682  * which is scheduled to wake up that CPU. In case of a completely
683  * idle system the next event might even be infinite time into the
684  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685  * leaves the inner idle loop so the newly added timer is taken into
686  * account when the CPU goes back to idle and evaluates the timer
687  * wheel for the next timer event.
688  */
689 static void wake_up_idle_cpu(int cpu)
690 {
691 	struct rq *rq = cpu_rq(cpu);
692 
693 	if (cpu == smp_processor_id())
694 		return;
695 
696 	if (set_nr_and_not_polling(rq->idle))
697 		smp_send_reschedule(cpu);
698 	else
699 		trace_sched_wake_idle_without_ipi(cpu);
700 }
701 
702 static bool wake_up_full_nohz_cpu(int cpu)
703 {
704 	/*
705 	 * We just need the target to call irq_exit() and re-evaluate
706 	 * the next tick. The nohz full kick at least implies that.
707 	 * If needed we can still optimize that later with an
708 	 * empty IRQ.
709 	 */
710 	if (cpu_is_offline(cpu))
711 		return true;  /* Don't try to wake offline CPUs. */
712 	if (tick_nohz_full_cpu(cpu)) {
713 		if (cpu != smp_processor_id() ||
714 		    tick_nohz_tick_stopped())
715 			tick_nohz_full_kick_cpu(cpu);
716 		return true;
717 	}
718 
719 	return false;
720 }
721 
722 /*
723  * Wake up the specified CPU.  If the CPU is going offline, it is the
724  * caller's responsibility to deal with the lost wakeup, for example,
725  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726  */
727 void wake_up_nohz_cpu(int cpu)
728 {
729 	if (!wake_up_full_nohz_cpu(cpu))
730 		wake_up_idle_cpu(cpu);
731 }
732 
733 static void nohz_csd_func(void *info)
734 {
735 	struct rq *rq = info;
736 	int cpu = cpu_of(rq);
737 	unsigned int flags;
738 
739 	/*
740 	 * Release the rq::nohz_csd.
741 	 */
742 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 	WARN_ON(!(flags & NOHZ_KICK_MASK));
744 
745 	rq->idle_balance = idle_cpu(cpu);
746 	if (rq->idle_balance && !need_resched()) {
747 		rq->nohz_idle_balance = flags;
748 		raise_softirq_irqoff(SCHED_SOFTIRQ);
749 	}
750 }
751 
752 #endif /* CONFIG_NO_HZ_COMMON */
753 
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
756 {
757 	int fifo_nr_running;
758 
759 	/* Deadline tasks, even if single, need the tick */
760 	if (rq->dl.dl_nr_running)
761 		return false;
762 
763 	/*
764 	 * If there are more than one RR tasks, we need the tick to affect the
765 	 * actual RR behaviour.
766 	 */
767 	if (rq->rt.rr_nr_running) {
768 		if (rq->rt.rr_nr_running == 1)
769 			return true;
770 		else
771 			return false;
772 	}
773 
774 	/*
775 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 	 * forced preemption between FIFO tasks.
777 	 */
778 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 	if (fifo_nr_running)
780 		return true;
781 
782 	/*
783 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 	 * if there's more than one we need the tick for involuntary
785 	 * preemption.
786 	 */
787 	if (rq->nr_running > 1)
788 		return false;
789 
790 	return true;
791 }
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
794 
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
797 /*
798  * Iterate task_group tree rooted at *from, calling @down when first entering a
799  * node and @up when leaving it for the final time.
800  *
801  * Caller must hold rcu_lock or sufficient equivalent.
802  */
803 int walk_tg_tree_from(struct task_group *from,
804 			     tg_visitor down, tg_visitor up, void *data)
805 {
806 	struct task_group *parent, *child;
807 	int ret;
808 
809 	parent = from;
810 
811 down:
812 	ret = (*down)(parent, data);
813 	if (ret)
814 		goto out;
815 	list_for_each_entry_rcu(child, &parent->children, siblings) {
816 		parent = child;
817 		goto down;
818 
819 up:
820 		continue;
821 	}
822 	ret = (*up)(parent, data);
823 	if (ret || parent == from)
824 		goto out;
825 
826 	child = parent;
827 	parent = parent->parent;
828 	if (parent)
829 		goto up;
830 out:
831 	return ret;
832 }
833 
834 int tg_nop(struct task_group *tg, void *data)
835 {
836 	return 0;
837 }
838 #endif
839 
840 static void set_load_weight(struct task_struct *p, bool update_load)
841 {
842 	int prio = p->static_prio - MAX_RT_PRIO;
843 	struct load_weight *load = &p->se.load;
844 
845 	/*
846 	 * SCHED_IDLE tasks get minimal weight:
847 	 */
848 	if (task_has_idle_policy(p)) {
849 		load->weight = scale_load(WEIGHT_IDLEPRIO);
850 		load->inv_weight = WMULT_IDLEPRIO;
851 		return;
852 	}
853 
854 	/*
855 	 * SCHED_OTHER tasks have to update their load when changing their
856 	 * weight
857 	 */
858 	if (update_load && p->sched_class == &fair_sched_class) {
859 		reweight_task(p, prio);
860 	} else {
861 		load->weight = scale_load(sched_prio_to_weight[prio]);
862 		load->inv_weight = sched_prio_to_wmult[prio];
863 	}
864 }
865 
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868  * Serializes updates of utilization clamp values
869  *
870  * The (slow-path) user-space triggers utilization clamp value updates which
871  * can require updates on (fast-path) scheduler's data structures used to
872  * support enqueue/dequeue operations.
873  * While the per-CPU rq lock protects fast-path update operations, user-space
874  * requests are serialized using a mutex to reduce the risk of conflicting
875  * updates or API abuses.
876  */
877 static DEFINE_MUTEX(uclamp_mutex);
878 
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881 
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884 
885 /*
886  * By default RT tasks run at the maximum performance point/capacity of the
887  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888  * SCHED_CAPACITY_SCALE.
889  *
890  * This knob allows admins to change the default behavior when uclamp is being
891  * used. In battery powered devices, particularly, running at the maximum
892  * capacity and frequency will increase energy consumption and shorten the
893  * battery life.
894  *
895  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896  *
897  * This knob will not override the system default sched_util_clamp_min defined
898  * above.
899  */
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901 
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
904 
905 /*
906  * This static key is used to reduce the uclamp overhead in the fast path. It
907  * primarily disables the call to uclamp_rq_{inc, dec}() in
908  * enqueue/dequeue_task().
909  *
910  * This allows users to continue to enable uclamp in their kernel config with
911  * minimum uclamp overhead in the fast path.
912  *
913  * As soon as userspace modifies any of the uclamp knobs, the static key is
914  * enabled, since we have an actual users that make use of uclamp
915  * functionality.
916  *
917  * The knobs that would enable this static key are:
918  *
919  *   * A task modifying its uclamp value with sched_setattr().
920  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
922  */
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924 
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927 
928 #define for_each_clamp_id(clamp_id) \
929 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930 
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932 {
933 	return clamp_value / UCLAMP_BUCKET_DELTA;
934 }
935 
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
937 {
938 	if (clamp_id == UCLAMP_MIN)
939 		return 0;
940 	return SCHED_CAPACITY_SCALE;
941 }
942 
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 				 unsigned int value, bool user_defined)
945 {
946 	uc_se->value = value;
947 	uc_se->bucket_id = uclamp_bucket_id(value);
948 	uc_se->user_defined = user_defined;
949 }
950 
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 		  unsigned int clamp_value)
954 {
955 	/*
956 	 * Avoid blocked utilization pushing up the frequency when we go
957 	 * idle (which drops the max-clamp) by retaining the last known
958 	 * max-clamp.
959 	 */
960 	if (clamp_id == UCLAMP_MAX) {
961 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 		return clamp_value;
963 	}
964 
965 	return uclamp_none(UCLAMP_MIN);
966 }
967 
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 				     unsigned int clamp_value)
970 {
971 	/* Reset max-clamp retention only on idle exit */
972 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 		return;
974 
975 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976 }
977 
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 				   unsigned int clamp_value)
981 {
982 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 	int bucket_id = UCLAMP_BUCKETS - 1;
984 
985 	/*
986 	 * Since both min and max clamps are max aggregated, find the
987 	 * top most bucket with tasks in.
988 	 */
989 	for ( ; bucket_id >= 0; bucket_id--) {
990 		if (!bucket[bucket_id].tasks)
991 			continue;
992 		return bucket[bucket_id].value;
993 	}
994 
995 	/* No tasks -- default clamp values */
996 	return uclamp_idle_value(rq, clamp_id, clamp_value);
997 }
998 
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000 {
1001 	unsigned int default_util_min;
1002 	struct uclamp_se *uc_se;
1003 
1004 	lockdep_assert_held(&p->pi_lock);
1005 
1006 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1007 
1008 	/* Only sync if user didn't override the default */
1009 	if (uc_se->user_defined)
1010 		return;
1011 
1012 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 	uclamp_se_set(uc_se, default_util_min, false);
1014 }
1015 
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017 {
1018 	struct rq_flags rf;
1019 	struct rq *rq;
1020 
1021 	if (!rt_task(p))
1022 		return;
1023 
1024 	/* Protect updates to p->uclamp_* */
1025 	rq = task_rq_lock(p, &rf);
1026 	__uclamp_update_util_min_rt_default(p);
1027 	task_rq_unlock(rq, p, &rf);
1028 }
1029 
1030 static void uclamp_sync_util_min_rt_default(void)
1031 {
1032 	struct task_struct *g, *p;
1033 
1034 	/*
1035 	 * copy_process()			sysctl_uclamp
1036 	 *					  uclamp_min_rt = X;
1037 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1038 	 *   // link thread			  smp_mb__after_spinlock()
1039 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1040 	 *   sched_post_fork()			  for_each_process_thread()
1041 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1042 	 *
1043 	 * Ensures that either sched_post_fork() will observe the new
1044 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 	 * task.
1046 	 */
1047 	read_lock(&tasklist_lock);
1048 	smp_mb__after_spinlock();
1049 	read_unlock(&tasklist_lock);
1050 
1051 	rcu_read_lock();
1052 	for_each_process_thread(g, p)
1053 		uclamp_update_util_min_rt_default(p);
1054 	rcu_read_unlock();
1055 }
1056 
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1059 {
1060 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 	struct uclamp_se uc_max;
1063 
1064 	/*
1065 	 * Tasks in autogroups or root task group will be
1066 	 * restricted by system defaults.
1067 	 */
1068 	if (task_group_is_autogroup(task_group(p)))
1069 		return uc_req;
1070 	if (task_group(p) == &root_task_group)
1071 		return uc_req;
1072 
1073 	uc_max = task_group(p)->uclamp[clamp_id];
1074 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 		return uc_max;
1076 #endif
1077 
1078 	return uc_req;
1079 }
1080 
1081 /*
1082  * The effective clamp bucket index of a task depends on, by increasing
1083  * priority:
1084  * - the task specific clamp value, when explicitly requested from userspace
1085  * - the task group effective clamp value, for tasks not either in the root
1086  *   group or in an autogroup
1087  * - the system default clamp value, defined by the sysadmin
1088  */
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1091 {
1092 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1094 
1095 	/* System default restrictions always apply */
1096 	if (unlikely(uc_req.value > uc_max.value))
1097 		return uc_max;
1098 
1099 	return uc_req;
1100 }
1101 
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 	struct uclamp_se uc_eff;
1105 
1106 	/* Task currently refcounted: use back-annotated (effective) value */
1107 	if (p->uclamp[clamp_id].active)
1108 		return (unsigned long)p->uclamp[clamp_id].value;
1109 
1110 	uc_eff = uclamp_eff_get(p, clamp_id);
1111 
1112 	return (unsigned long)uc_eff.value;
1113 }
1114 
1115 /*
1116  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118  * updates the rq's clamp value if required.
1119  *
1120  * Tasks can have a task-specific value requested from user-space, track
1121  * within each bucket the maximum value for tasks refcounted in it.
1122  * This "local max aggregation" allows to track the exact "requested" value
1123  * for each bucket when all its RUNNABLE tasks require the same clamp.
1124  */
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 				    enum uclamp_id clamp_id)
1127 {
1128 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 	struct uclamp_bucket *bucket;
1131 
1132 	lockdep_assert_held(&rq->lock);
1133 
1134 	/* Update task effective clamp */
1135 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136 
1137 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 	bucket->tasks++;
1139 	uc_se->active = true;
1140 
1141 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142 
1143 	/*
1144 	 * Local max aggregation: rq buckets always track the max
1145 	 * "requested" clamp value of its RUNNABLE tasks.
1146 	 */
1147 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 		bucket->value = uc_se->value;
1149 
1150 	if (uc_se->value > READ_ONCE(uc_rq->value))
1151 		WRITE_ONCE(uc_rq->value, uc_se->value);
1152 }
1153 
1154 /*
1155  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156  * is released. If this is the last task reference counting the rq's max
1157  * active clamp value, then the rq's clamp value is updated.
1158  *
1159  * Both refcounted tasks and rq's cached clamp values are expected to be
1160  * always valid. If it's detected they are not, as defensive programming,
1161  * enforce the expected state and warn.
1162  */
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 				    enum uclamp_id clamp_id)
1165 {
1166 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 	struct uclamp_bucket *bucket;
1169 	unsigned int bkt_clamp;
1170 	unsigned int rq_clamp;
1171 
1172 	lockdep_assert_held(&rq->lock);
1173 
1174 	/*
1175 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 	 *
1178 	 * In this case the uc_se->active flag should be false since no uclamp
1179 	 * accounting was performed at enqueue time and we can just return
1180 	 * here.
1181 	 *
1182 	 * Need to be careful of the following enqueue/dequeue ordering
1183 	 * problem too
1184 	 *
1185 	 *	enqueue(taskA)
1186 	 *	// sched_uclamp_used gets enabled
1187 	 *	enqueue(taskB)
1188 	 *	dequeue(taskA)
1189 	 *	// Must not decrement bucket->tasks here
1190 	 *	dequeue(taskB)
1191 	 *
1192 	 * where we could end up with stale data in uc_se and
1193 	 * bucket[uc_se->bucket_id].
1194 	 *
1195 	 * The following check here eliminates the possibility of such race.
1196 	 */
1197 	if (unlikely(!uc_se->active))
1198 		return;
1199 
1200 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1201 
1202 	SCHED_WARN_ON(!bucket->tasks);
1203 	if (likely(bucket->tasks))
1204 		bucket->tasks--;
1205 
1206 	uc_se->active = false;
1207 
1208 	/*
1209 	 * Keep "local max aggregation" simple and accept to (possibly)
1210 	 * overboost some RUNNABLE tasks in the same bucket.
1211 	 * The rq clamp bucket value is reset to its base value whenever
1212 	 * there are no more RUNNABLE tasks refcounting it.
1213 	 */
1214 	if (likely(bucket->tasks))
1215 		return;
1216 
1217 	rq_clamp = READ_ONCE(uc_rq->value);
1218 	/*
1219 	 * Defensive programming: this should never happen. If it happens,
1220 	 * e.g. due to future modification, warn and fixup the expected value.
1221 	 */
1222 	SCHED_WARN_ON(bucket->value > rq_clamp);
1223 	if (bucket->value >= rq_clamp) {
1224 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 	}
1227 }
1228 
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230 {
1231 	enum uclamp_id clamp_id;
1232 
1233 	/*
1234 	 * Avoid any overhead until uclamp is actually used by the userspace.
1235 	 *
1236 	 * The condition is constructed such that a NOP is generated when
1237 	 * sched_uclamp_used is disabled.
1238 	 */
1239 	if (!static_branch_unlikely(&sched_uclamp_used))
1240 		return;
1241 
1242 	if (unlikely(!p->sched_class->uclamp_enabled))
1243 		return;
1244 
1245 	for_each_clamp_id(clamp_id)
1246 		uclamp_rq_inc_id(rq, p, clamp_id);
1247 
1248 	/* Reset clamp idle holding when there is one RUNNABLE task */
1249 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1251 }
1252 
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254 {
1255 	enum uclamp_id clamp_id;
1256 
1257 	/*
1258 	 * Avoid any overhead until uclamp is actually used by the userspace.
1259 	 *
1260 	 * The condition is constructed such that a NOP is generated when
1261 	 * sched_uclamp_used is disabled.
1262 	 */
1263 	if (!static_branch_unlikely(&sched_uclamp_used))
1264 		return;
1265 
1266 	if (unlikely(!p->sched_class->uclamp_enabled))
1267 		return;
1268 
1269 	for_each_clamp_id(clamp_id)
1270 		uclamp_rq_dec_id(rq, p, clamp_id);
1271 }
1272 
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1275 {
1276 	struct rq_flags rf;
1277 	struct rq *rq;
1278 
1279 	/*
1280 	 * Lock the task and the rq where the task is (or was) queued.
1281 	 *
1282 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 	 * price to pay to safely serialize util_{min,max} updates with
1284 	 * enqueues, dequeues and migration operations.
1285 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 	 */
1287 	rq = task_rq_lock(p, &rf);
1288 
1289 	/*
1290 	 * Setting the clamp bucket is serialized by task_rq_lock().
1291 	 * If the task is not yet RUNNABLE and its task_struct is not
1292 	 * affecting a valid clamp bucket, the next time it's enqueued,
1293 	 * it will already see the updated clamp bucket value.
1294 	 */
1295 	if (p->uclamp[clamp_id].active) {
1296 		uclamp_rq_dec_id(rq, p, clamp_id);
1297 		uclamp_rq_inc_id(rq, p, clamp_id);
1298 	}
1299 
1300 	task_rq_unlock(rq, p, &rf);
1301 }
1302 
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 			   unsigned int clamps)
1307 {
1308 	enum uclamp_id clamp_id;
1309 	struct css_task_iter it;
1310 	struct task_struct *p;
1311 
1312 	css_task_iter_start(css, 0, &it);
1313 	while ((p = css_task_iter_next(&it))) {
1314 		for_each_clamp_id(clamp_id) {
1315 			if ((0x1 << clamp_id) & clamps)
1316 				uclamp_update_active(p, clamp_id);
1317 		}
1318 	}
1319 	css_task_iter_end(&it);
1320 }
1321 
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1324 {
1325 	struct task_group *tg = &root_task_group;
1326 
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 		      sysctl_sched_uclamp_util_min, false);
1329 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 		      sysctl_sched_uclamp_util_max, false);
1331 
1332 	rcu_read_lock();
1333 	cpu_util_update_eff(&root_task_group.css);
1334 	rcu_read_unlock();
1335 }
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1339 
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 				void *buffer, size_t *lenp, loff_t *ppos)
1342 {
1343 	bool update_root_tg = false;
1344 	int old_min, old_max, old_min_rt;
1345 	int result;
1346 
1347 	mutex_lock(&uclamp_mutex);
1348 	old_min = sysctl_sched_uclamp_util_min;
1349 	old_max = sysctl_sched_uclamp_util_max;
1350 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1351 
1352 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 	if (result)
1354 		goto undo;
1355 	if (!write)
1356 		goto done;
1357 
1358 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1360 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361 
1362 		result = -EINVAL;
1363 		goto undo;
1364 	}
1365 
1366 	if (old_min != sysctl_sched_uclamp_util_min) {
1367 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 			      sysctl_sched_uclamp_util_min, false);
1369 		update_root_tg = true;
1370 	}
1371 	if (old_max != sysctl_sched_uclamp_util_max) {
1372 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 			      sysctl_sched_uclamp_util_max, false);
1374 		update_root_tg = true;
1375 	}
1376 
1377 	if (update_root_tg) {
1378 		static_branch_enable(&sched_uclamp_used);
1379 		uclamp_update_root_tg();
1380 	}
1381 
1382 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 		static_branch_enable(&sched_uclamp_used);
1384 		uclamp_sync_util_min_rt_default();
1385 	}
1386 
1387 	/*
1388 	 * We update all RUNNABLE tasks only when task groups are in use.
1389 	 * Otherwise, keep it simple and do just a lazy update at each next
1390 	 * task enqueue time.
1391 	 */
1392 
1393 	goto done;
1394 
1395 undo:
1396 	sysctl_sched_uclamp_util_min = old_min;
1397 	sysctl_sched_uclamp_util_max = old_max;
1398 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 	mutex_unlock(&uclamp_mutex);
1401 
1402 	return result;
1403 }
1404 
1405 static int uclamp_validate(struct task_struct *p,
1406 			   const struct sched_attr *attr)
1407 {
1408 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1410 
1411 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 		util_min = attr->sched_util_min;
1413 
1414 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 			return -EINVAL;
1416 	}
1417 
1418 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 		util_max = attr->sched_util_max;
1420 
1421 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 			return -EINVAL;
1423 	}
1424 
1425 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 		return -EINVAL;
1427 
1428 	/*
1429 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 	 *
1431 	 * We need to do that here, because enabling static branches is a
1432 	 * blocking operation which obviously cannot be done while holding
1433 	 * scheduler locks.
1434 	 */
1435 	static_branch_enable(&sched_uclamp_used);
1436 
1437 	return 0;
1438 }
1439 
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 			 enum uclamp_id clamp_id,
1442 			 struct uclamp_se *uc_se)
1443 {
1444 	/* Reset on sched class change for a non user-defined clamp value. */
1445 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 	    !uc_se->user_defined)
1447 		return true;
1448 
1449 	/* Reset on sched_util_{min,max} == -1. */
1450 	if (clamp_id == UCLAMP_MIN &&
1451 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 	    attr->sched_util_min == -1) {
1453 		return true;
1454 	}
1455 
1456 	if (clamp_id == UCLAMP_MAX &&
1457 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 	    attr->sched_util_max == -1) {
1459 		return true;
1460 	}
1461 
1462 	return false;
1463 }
1464 
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 				  const struct sched_attr *attr)
1467 {
1468 	enum uclamp_id clamp_id;
1469 
1470 	for_each_clamp_id(clamp_id) {
1471 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 		unsigned int value;
1473 
1474 		if (!uclamp_reset(attr, clamp_id, uc_se))
1475 			continue;
1476 
1477 		/*
1478 		 * RT by default have a 100% boost value that could be modified
1479 		 * at runtime.
1480 		 */
1481 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 			value = sysctl_sched_uclamp_util_min_rt_default;
1483 		else
1484 			value = uclamp_none(clamp_id);
1485 
1486 		uclamp_se_set(uc_se, value, false);
1487 
1488 	}
1489 
1490 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 		return;
1492 
1493 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 	    attr->sched_util_min != -1) {
1495 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 			      attr->sched_util_min, true);
1497 	}
1498 
1499 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 	    attr->sched_util_max != -1) {
1501 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 			      attr->sched_util_max, true);
1503 	}
1504 }
1505 
1506 static void uclamp_fork(struct task_struct *p)
1507 {
1508 	enum uclamp_id clamp_id;
1509 
1510 	/*
1511 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 	 * as the task is still at its early fork stages.
1513 	 */
1514 	for_each_clamp_id(clamp_id)
1515 		p->uclamp[clamp_id].active = false;
1516 
1517 	if (likely(!p->sched_reset_on_fork))
1518 		return;
1519 
1520 	for_each_clamp_id(clamp_id) {
1521 		uclamp_se_set(&p->uclamp_req[clamp_id],
1522 			      uclamp_none(clamp_id), false);
1523 	}
1524 }
1525 
1526 static void uclamp_post_fork(struct task_struct *p)
1527 {
1528 	uclamp_update_util_min_rt_default(p);
1529 }
1530 
1531 static void __init init_uclamp_rq(struct rq *rq)
1532 {
1533 	enum uclamp_id clamp_id;
1534 	struct uclamp_rq *uc_rq = rq->uclamp;
1535 
1536 	for_each_clamp_id(clamp_id) {
1537 		uc_rq[clamp_id] = (struct uclamp_rq) {
1538 			.value = uclamp_none(clamp_id)
1539 		};
1540 	}
1541 
1542 	rq->uclamp_flags = 0;
1543 }
1544 
1545 static void __init init_uclamp(void)
1546 {
1547 	struct uclamp_se uc_max = {};
1548 	enum uclamp_id clamp_id;
1549 	int cpu;
1550 
1551 	for_each_possible_cpu(cpu)
1552 		init_uclamp_rq(cpu_rq(cpu));
1553 
1554 	for_each_clamp_id(clamp_id) {
1555 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 			      uclamp_none(clamp_id), false);
1557 	}
1558 
1559 	/* System defaults allow max clamp values for both indexes */
1560 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 	for_each_clamp_id(clamp_id) {
1562 		uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 		root_task_group.uclamp_req[clamp_id] = uc_max;
1565 		root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1567 	}
1568 }
1569 
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 				  const struct sched_attr *attr)
1575 {
1576 	return -EOPNOTSUPP;
1577 }
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 				  const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1584 
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1586 {
1587 	if (!(flags & ENQUEUE_NOCLOCK))
1588 		update_rq_clock(rq);
1589 
1590 	if (!(flags & ENQUEUE_RESTORE)) {
1591 		sched_info_queued(rq, p);
1592 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 	}
1594 
1595 	uclamp_rq_inc(rq, p);
1596 	p->sched_class->enqueue_task(rq, p, flags);
1597 }
1598 
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1600 {
1601 	if (!(flags & DEQUEUE_NOCLOCK))
1602 		update_rq_clock(rq);
1603 
1604 	if (!(flags & DEQUEUE_SAVE)) {
1605 		sched_info_dequeued(rq, p);
1606 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 	}
1608 
1609 	uclamp_rq_dec(rq, p);
1610 	p->sched_class->dequeue_task(rq, p, flags);
1611 }
1612 
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1614 {
1615 	enqueue_task(rq, p, flags);
1616 
1617 	p->on_rq = TASK_ON_RQ_QUEUED;
1618 }
1619 
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1621 {
1622 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623 
1624 	dequeue_task(rq, p, flags);
1625 }
1626 
1627 /*
1628  * __normal_prio - return the priority that is based on the static prio
1629  */
1630 static inline int __normal_prio(struct task_struct *p)
1631 {
1632 	return p->static_prio;
1633 }
1634 
1635 /*
1636  * Calculate the expected normal priority: i.e. priority
1637  * without taking RT-inheritance into account. Might be
1638  * boosted by interactivity modifiers. Changes upon fork,
1639  * setprio syscalls, and whenever the interactivity
1640  * estimator recalculates.
1641  */
1642 static inline int normal_prio(struct task_struct *p)
1643 {
1644 	int prio;
1645 
1646 	if (task_has_dl_policy(p))
1647 		prio = MAX_DL_PRIO-1;
1648 	else if (task_has_rt_policy(p))
1649 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 	else
1651 		prio = __normal_prio(p);
1652 	return prio;
1653 }
1654 
1655 /*
1656  * Calculate the current priority, i.e. the priority
1657  * taken into account by the scheduler. This value might
1658  * be boosted by RT tasks, or might be boosted by
1659  * interactivity modifiers. Will be RT if the task got
1660  * RT-boosted. If not then it returns p->normal_prio.
1661  */
1662 static int effective_prio(struct task_struct *p)
1663 {
1664 	p->normal_prio = normal_prio(p);
1665 	/*
1666 	 * If we are RT tasks or we were boosted to RT priority,
1667 	 * keep the priority unchanged. Otherwise, update priority
1668 	 * to the normal priority:
1669 	 */
1670 	if (!rt_prio(p->prio))
1671 		return p->normal_prio;
1672 	return p->prio;
1673 }
1674 
1675 /**
1676  * task_curr - is this task currently executing on a CPU?
1677  * @p: the task in question.
1678  *
1679  * Return: 1 if the task is currently executing. 0 otherwise.
1680  */
1681 inline int task_curr(const struct task_struct *p)
1682 {
1683 	return cpu_curr(task_cpu(p)) == p;
1684 }
1685 
1686 /*
1687  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688  * use the balance_callback list if you want balancing.
1689  *
1690  * this means any call to check_class_changed() must be followed by a call to
1691  * balance_callback().
1692  */
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 				       const struct sched_class *prev_class,
1695 				       int oldprio)
1696 {
1697 	if (prev_class != p->sched_class) {
1698 		if (prev_class->switched_from)
1699 			prev_class->switched_from(rq, p);
1700 
1701 		p->sched_class->switched_to(rq, p);
1702 	} else if (oldprio != p->prio || dl_task(p))
1703 		p->sched_class->prio_changed(rq, p, oldprio);
1704 }
1705 
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1707 {
1708 	if (p->sched_class == rq->curr->sched_class)
1709 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 	else if (p->sched_class > rq->curr->sched_class)
1711 		resched_curr(rq);
1712 
1713 	/*
1714 	 * A queue event has occurred, and we're going to schedule.  In
1715 	 * this case, we can save a useless back to back clock update.
1716 	 */
1717 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 		rq_clock_skip_update(rq);
1719 }
1720 
1721 #ifdef CONFIG_SMP
1722 
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725 
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 				  const struct cpumask *new_mask,
1728 				  u32 flags);
1729 
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731 {
1732 	if (likely(!p->migration_disabled))
1733 		return;
1734 
1735 	if (p->cpus_ptr != &p->cpus_mask)
1736 		return;
1737 
1738 	/*
1739 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 	 */
1741 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742 }
1743 
1744 void migrate_disable(void)
1745 {
1746 	struct task_struct *p = current;
1747 
1748 	if (p->migration_disabled) {
1749 		p->migration_disabled++;
1750 		return;
1751 	}
1752 
1753 	preempt_disable();
1754 	this_rq()->nr_pinned++;
1755 	p->migration_disabled = 1;
1756 	preempt_enable();
1757 }
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1759 
1760 void migrate_enable(void)
1761 {
1762 	struct task_struct *p = current;
1763 
1764 	if (p->migration_disabled > 1) {
1765 		p->migration_disabled--;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Ensure stop_task runs either before or after this, and that
1771 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 	 */
1773 	preempt_disable();
1774 	if (p->cpus_ptr != &p->cpus_mask)
1775 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 	/*
1777 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 	 * regular cpus_mask, otherwise things that race (eg.
1779 	 * select_fallback_rq) get confused.
1780 	 */
1781 	barrier();
1782 	p->migration_disabled = 0;
1783 	this_rq()->nr_pinned--;
1784 	preempt_enable();
1785 }
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1787 
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1789 {
1790 	return rq->nr_pinned;
1791 }
1792 
1793 /*
1794  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795  * __set_cpus_allowed_ptr() and select_fallback_rq().
1796  */
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798 {
1799 	/* When not in the task's cpumask, no point in looking further. */
1800 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1801 		return false;
1802 
1803 	/* migrate_disabled() must be allowed to finish. */
1804 	if (is_migration_disabled(p))
1805 		return cpu_online(cpu);
1806 
1807 	/* Non kernel threads are not allowed during either online or offline. */
1808 	if (!(p->flags & PF_KTHREAD))
1809 		return cpu_active(cpu);
1810 
1811 	/* KTHREAD_IS_PER_CPU is always allowed. */
1812 	if (kthread_is_per_cpu(p))
1813 		return cpu_online(cpu);
1814 
1815 	/* Regular kernel threads don't get to stay during offline. */
1816 	if (cpu_rq(cpu)->balance_push)
1817 		return false;
1818 
1819 	/* But are allowed during online. */
1820 	return cpu_online(cpu);
1821 }
1822 
1823 /*
1824  * This is how migration works:
1825  *
1826  * 1) we invoke migration_cpu_stop() on the target CPU using
1827  *    stop_one_cpu().
1828  * 2) stopper starts to run (implicitly forcing the migrated thread
1829  *    off the CPU)
1830  * 3) it checks whether the migrated task is still in the wrong runqueue.
1831  * 4) if it's in the wrong runqueue then the migration thread removes
1832  *    it and puts it into the right queue.
1833  * 5) stopper completes and stop_one_cpu() returns and the migration
1834  *    is done.
1835  */
1836 
1837 /*
1838  * move_queued_task - move a queued task to new rq.
1839  *
1840  * Returns (locked) new rq. Old rq's lock is released.
1841  */
1842 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1843 				   struct task_struct *p, int new_cpu)
1844 {
1845 	lockdep_assert_held(&rq->lock);
1846 
1847 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1848 	set_task_cpu(p, new_cpu);
1849 	rq_unlock(rq, rf);
1850 
1851 	rq = cpu_rq(new_cpu);
1852 
1853 	rq_lock(rq, rf);
1854 	BUG_ON(task_cpu(p) != new_cpu);
1855 	activate_task(rq, p, 0);
1856 	check_preempt_curr(rq, p, 0);
1857 
1858 	return rq;
1859 }
1860 
1861 struct migration_arg {
1862 	struct task_struct		*task;
1863 	int				dest_cpu;
1864 	struct set_affinity_pending	*pending;
1865 };
1866 
1867 struct set_affinity_pending {
1868 	refcount_t		refs;
1869 	struct completion	done;
1870 	struct cpu_stop_work	stop_work;
1871 	struct migration_arg	arg;
1872 };
1873 
1874 /*
1875  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1876  * this because either it can't run here any more (set_cpus_allowed()
1877  * away from this CPU, or CPU going down), or because we're
1878  * attempting to rebalance this task on exec (sched_exec).
1879  *
1880  * So we race with normal scheduler movements, but that's OK, as long
1881  * as the task is no longer on this CPU.
1882  */
1883 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1884 				 struct task_struct *p, int dest_cpu)
1885 {
1886 	/* Affinity changed (again). */
1887 	if (!is_cpu_allowed(p, dest_cpu))
1888 		return rq;
1889 
1890 	update_rq_clock(rq);
1891 	rq = move_queued_task(rq, rf, p, dest_cpu);
1892 
1893 	return rq;
1894 }
1895 
1896 /*
1897  * migration_cpu_stop - this will be executed by a highprio stopper thread
1898  * and performs thread migration by bumping thread off CPU then
1899  * 'pushing' onto another runqueue.
1900  */
1901 static int migration_cpu_stop(void *data)
1902 {
1903 	struct set_affinity_pending *pending;
1904 	struct migration_arg *arg = data;
1905 	struct task_struct *p = arg->task;
1906 	int dest_cpu = arg->dest_cpu;
1907 	struct rq *rq = this_rq();
1908 	bool complete = false;
1909 	struct rq_flags rf;
1910 
1911 	/*
1912 	 * The original target CPU might have gone down and we might
1913 	 * be on another CPU but it doesn't matter.
1914 	 */
1915 	local_irq_save(rf.flags);
1916 	/*
1917 	 * We need to explicitly wake pending tasks before running
1918 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1919 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1920 	 */
1921 	flush_smp_call_function_from_idle();
1922 
1923 	raw_spin_lock(&p->pi_lock);
1924 	rq_lock(rq, &rf);
1925 
1926 	pending = p->migration_pending;
1927 	/*
1928 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1929 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1930 	 * we're holding p->pi_lock.
1931 	 */
1932 	if (task_rq(p) == rq) {
1933 		if (is_migration_disabled(p))
1934 			goto out;
1935 
1936 		if (pending) {
1937 			p->migration_pending = NULL;
1938 			complete = true;
1939 		}
1940 
1941 		/* migrate_enable() --  we must not race against SCA */
1942 		if (dest_cpu < 0) {
1943 			/*
1944 			 * When this was migrate_enable() but we no longer
1945 			 * have a @pending, a concurrent SCA 'fixed' things
1946 			 * and we should be valid again. Nothing to do.
1947 			 */
1948 			if (!pending) {
1949 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1950 				goto out;
1951 			}
1952 
1953 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1954 		}
1955 
1956 		if (task_on_rq_queued(p))
1957 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1958 		else
1959 			p->wake_cpu = dest_cpu;
1960 
1961 	} else if (dest_cpu < 0 || pending) {
1962 		/*
1963 		 * This happens when we get migrated between migrate_enable()'s
1964 		 * preempt_enable() and scheduling the stopper task. At that
1965 		 * point we're a regular task again and not current anymore.
1966 		 *
1967 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1968 		 * more likely.
1969 		 */
1970 
1971 		/*
1972 		 * The task moved before the stopper got to run. We're holding
1973 		 * ->pi_lock, so the allowed mask is stable - if it got
1974 		 * somewhere allowed, we're done.
1975 		 */
1976 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1977 			p->migration_pending = NULL;
1978 			complete = true;
1979 			goto out;
1980 		}
1981 
1982 		/*
1983 		 * When this was migrate_enable() but we no longer have an
1984 		 * @pending, a concurrent SCA 'fixed' things and we should be
1985 		 * valid again. Nothing to do.
1986 		 */
1987 		if (!pending) {
1988 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1989 			goto out;
1990 		}
1991 
1992 		/*
1993 		 * When migrate_enable() hits a rq mis-match we can't reliably
1994 		 * determine is_migration_disabled() and so have to chase after
1995 		 * it.
1996 		 */
1997 		task_rq_unlock(rq, p, &rf);
1998 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1999 				    &pending->arg, &pending->stop_work);
2000 		return 0;
2001 	}
2002 out:
2003 	task_rq_unlock(rq, p, &rf);
2004 
2005 	if (complete)
2006 		complete_all(&pending->done);
2007 
2008 	/* For pending->{arg,stop_work} */
2009 	pending = arg->pending;
2010 	if (pending && refcount_dec_and_test(&pending->refs))
2011 		wake_up_var(&pending->refs);
2012 
2013 	return 0;
2014 }
2015 
2016 int push_cpu_stop(void *arg)
2017 {
2018 	struct rq *lowest_rq = NULL, *rq = this_rq();
2019 	struct task_struct *p = arg;
2020 
2021 	raw_spin_lock_irq(&p->pi_lock);
2022 	raw_spin_lock(&rq->lock);
2023 
2024 	if (task_rq(p) != rq)
2025 		goto out_unlock;
2026 
2027 	if (is_migration_disabled(p)) {
2028 		p->migration_flags |= MDF_PUSH;
2029 		goto out_unlock;
2030 	}
2031 
2032 	p->migration_flags &= ~MDF_PUSH;
2033 
2034 	if (p->sched_class->find_lock_rq)
2035 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2036 
2037 	if (!lowest_rq)
2038 		goto out_unlock;
2039 
2040 	// XXX validate p is still the highest prio task
2041 	if (task_rq(p) == rq) {
2042 		deactivate_task(rq, p, 0);
2043 		set_task_cpu(p, lowest_rq->cpu);
2044 		activate_task(lowest_rq, p, 0);
2045 		resched_curr(lowest_rq);
2046 	}
2047 
2048 	double_unlock_balance(rq, lowest_rq);
2049 
2050 out_unlock:
2051 	rq->push_busy = false;
2052 	raw_spin_unlock(&rq->lock);
2053 	raw_spin_unlock_irq(&p->pi_lock);
2054 
2055 	put_task_struct(p);
2056 	return 0;
2057 }
2058 
2059 /*
2060  * sched_class::set_cpus_allowed must do the below, but is not required to
2061  * actually call this function.
2062  */
2063 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2064 {
2065 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2066 		p->cpus_ptr = new_mask;
2067 		return;
2068 	}
2069 
2070 	cpumask_copy(&p->cpus_mask, new_mask);
2071 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2072 }
2073 
2074 static void
2075 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2076 {
2077 	struct rq *rq = task_rq(p);
2078 	bool queued, running;
2079 
2080 	/*
2081 	 * This here violates the locking rules for affinity, since we're only
2082 	 * supposed to change these variables while holding both rq->lock and
2083 	 * p->pi_lock.
2084 	 *
2085 	 * HOWEVER, it magically works, because ttwu() is the only code that
2086 	 * accesses these variables under p->pi_lock and only does so after
2087 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2088 	 * before finish_task().
2089 	 *
2090 	 * XXX do further audits, this smells like something putrid.
2091 	 */
2092 	if (flags & SCA_MIGRATE_DISABLE)
2093 		SCHED_WARN_ON(!p->on_cpu);
2094 	else
2095 		lockdep_assert_held(&p->pi_lock);
2096 
2097 	queued = task_on_rq_queued(p);
2098 	running = task_current(rq, p);
2099 
2100 	if (queued) {
2101 		/*
2102 		 * Because __kthread_bind() calls this on blocked tasks without
2103 		 * holding rq->lock.
2104 		 */
2105 		lockdep_assert_held(&rq->lock);
2106 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2107 	}
2108 	if (running)
2109 		put_prev_task(rq, p);
2110 
2111 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2112 
2113 	if (queued)
2114 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2115 	if (running)
2116 		set_next_task(rq, p);
2117 }
2118 
2119 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2120 {
2121 	__do_set_cpus_allowed(p, new_mask, 0);
2122 }
2123 
2124 /*
2125  * This function is wildly self concurrent; here be dragons.
2126  *
2127  *
2128  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2129  * designated task is enqueued on an allowed CPU. If that task is currently
2130  * running, we have to kick it out using the CPU stopper.
2131  *
2132  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2133  * Consider:
2134  *
2135  *     Initial conditions: P0->cpus_mask = [0, 1]
2136  *
2137  *     P0@CPU0                  P1
2138  *
2139  *     migrate_disable();
2140  *     <preempted>
2141  *                              set_cpus_allowed_ptr(P0, [1]);
2142  *
2143  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2144  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2145  * This means we need the following scheme:
2146  *
2147  *     P0@CPU0                  P1
2148  *
2149  *     migrate_disable();
2150  *     <preempted>
2151  *                              set_cpus_allowed_ptr(P0, [1]);
2152  *                                <blocks>
2153  *     <resumes>
2154  *     migrate_enable();
2155  *       __set_cpus_allowed_ptr();
2156  *       <wakes local stopper>
2157  *                         `--> <woken on migration completion>
2158  *
2159  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2160  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2161  * task p are serialized by p->pi_lock, which we can leverage: the one that
2162  * should come into effect at the end of the Migrate-Disable region is the last
2163  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2164  * but we still need to properly signal those waiting tasks at the appropriate
2165  * moment.
2166  *
2167  * This is implemented using struct set_affinity_pending. The first
2168  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2169  * setup an instance of that struct and install it on the targeted task_struct.
2170  * Any and all further callers will reuse that instance. Those then wait for
2171  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2172  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2173  *
2174  *
2175  * (1) In the cases covered above. There is one more where the completion is
2176  * signaled within affine_move_task() itself: when a subsequent affinity request
2177  * cancels the need for an active migration. Consider:
2178  *
2179  *     Initial conditions: P0->cpus_mask = [0, 1]
2180  *
2181  *     P0@CPU0            P1                             P2
2182  *
2183  *     migrate_disable();
2184  *     <preempted>
2185  *                        set_cpus_allowed_ptr(P0, [1]);
2186  *                          <blocks>
2187  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2188  *                                                         <signal completion>
2189  *                          <awakes>
2190  *
2191  * Note that the above is safe vs a concurrent migrate_enable(), as any
2192  * pending affinity completion is preceded by an uninstallation of
2193  * p->migration_pending done with p->pi_lock held.
2194  */
2195 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2196 			    int dest_cpu, unsigned int flags)
2197 {
2198 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2199 	struct migration_arg arg = {
2200 		.task = p,
2201 		.dest_cpu = dest_cpu,
2202 	};
2203 	bool complete = false;
2204 
2205 	/* Can the task run on the task's current CPU? If so, we're done */
2206 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2207 		struct task_struct *push_task = NULL;
2208 
2209 		if ((flags & SCA_MIGRATE_ENABLE) &&
2210 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2211 			rq->push_busy = true;
2212 			push_task = get_task_struct(p);
2213 		}
2214 
2215 		pending = p->migration_pending;
2216 		if (pending) {
2217 			refcount_inc(&pending->refs);
2218 			p->migration_pending = NULL;
2219 			complete = true;
2220 		}
2221 		task_rq_unlock(rq, p, rf);
2222 
2223 		if (push_task) {
2224 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2225 					    p, &rq->push_work);
2226 		}
2227 
2228 		if (complete)
2229 			goto do_complete;
2230 
2231 		return 0;
2232 	}
2233 
2234 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2235 		/* serialized by p->pi_lock */
2236 		if (!p->migration_pending) {
2237 			/* Install the request */
2238 			refcount_set(&my_pending.refs, 1);
2239 			init_completion(&my_pending.done);
2240 			p->migration_pending = &my_pending;
2241 		} else {
2242 			pending = p->migration_pending;
2243 			refcount_inc(&pending->refs);
2244 		}
2245 	}
2246 	pending = p->migration_pending;
2247 	/*
2248 	 * - !MIGRATE_ENABLE:
2249 	 *   we'll have installed a pending if there wasn't one already.
2250 	 *
2251 	 * - MIGRATE_ENABLE:
2252 	 *   we're here because the current CPU isn't matching anymore,
2253 	 *   the only way that can happen is because of a concurrent
2254 	 *   set_cpus_allowed_ptr() call, which should then still be
2255 	 *   pending completion.
2256 	 *
2257 	 * Either way, we really should have a @pending here.
2258 	 */
2259 	if (WARN_ON_ONCE(!pending)) {
2260 		task_rq_unlock(rq, p, rf);
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (flags & SCA_MIGRATE_ENABLE) {
2265 
2266 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2267 		p->migration_flags &= ~MDF_PUSH;
2268 		task_rq_unlock(rq, p, rf);
2269 
2270 		pending->arg = (struct migration_arg) {
2271 			.task = p,
2272 			.dest_cpu = -1,
2273 			.pending = pending,
2274 		};
2275 
2276 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2277 				    &pending->arg, &pending->stop_work);
2278 
2279 		return 0;
2280 	}
2281 
2282 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2283 		/*
2284 		 * Lessen races (and headaches) by delegating
2285 		 * is_migration_disabled(p) checks to the stopper, which will
2286 		 * run on the same CPU as said p.
2287 		 */
2288 		task_rq_unlock(rq, p, rf);
2289 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2290 
2291 	} else {
2292 
2293 		if (!is_migration_disabled(p)) {
2294 			if (task_on_rq_queued(p))
2295 				rq = move_queued_task(rq, rf, p, dest_cpu);
2296 
2297 			p->migration_pending = NULL;
2298 			complete = true;
2299 		}
2300 		task_rq_unlock(rq, p, rf);
2301 
2302 do_complete:
2303 		if (complete)
2304 			complete_all(&pending->done);
2305 	}
2306 
2307 	wait_for_completion(&pending->done);
2308 
2309 	if (refcount_dec_and_test(&pending->refs))
2310 		wake_up_var(&pending->refs);
2311 
2312 	/*
2313 	 * Block the original owner of &pending until all subsequent callers
2314 	 * have seen the completion and decremented the refcount
2315 	 */
2316 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * Change a given task's CPU affinity. Migrate the thread to a
2323  * proper CPU and schedule it away if the CPU it's executing on
2324  * is removed from the allowed bitmask.
2325  *
2326  * NOTE: the caller must have a valid reference to the task, the
2327  * task must not exit() & deallocate itself prematurely. The
2328  * call is not atomic; no spinlocks may be held.
2329  */
2330 static int __set_cpus_allowed_ptr(struct task_struct *p,
2331 				  const struct cpumask *new_mask,
2332 				  u32 flags)
2333 {
2334 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2335 	unsigned int dest_cpu;
2336 	struct rq_flags rf;
2337 	struct rq *rq;
2338 	int ret = 0;
2339 
2340 	rq = task_rq_lock(p, &rf);
2341 	update_rq_clock(rq);
2342 
2343 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2344 		/*
2345 		 * Kernel threads are allowed on online && !active CPUs.
2346 		 *
2347 		 * Specifically, migration_disabled() tasks must not fail the
2348 		 * cpumask_any_and_distribute() pick below, esp. so on
2349 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2350 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2351 		 */
2352 		cpu_valid_mask = cpu_online_mask;
2353 	}
2354 
2355 	/*
2356 	 * Must re-check here, to close a race against __kthread_bind(),
2357 	 * sched_setaffinity() is not guaranteed to observe the flag.
2358 	 */
2359 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2360 		ret = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2365 		if (cpumask_equal(&p->cpus_mask, new_mask))
2366 			goto out;
2367 
2368 		if (WARN_ON_ONCE(p == current &&
2369 				 is_migration_disabled(p) &&
2370 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2371 			ret = -EBUSY;
2372 			goto out;
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * Picking a ~random cpu helps in cases where we are changing affinity
2378 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2379 	 * immediately required to distribute the tasks within their new mask.
2380 	 */
2381 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2382 	if (dest_cpu >= nr_cpu_ids) {
2383 		ret = -EINVAL;
2384 		goto out;
2385 	}
2386 
2387 	__do_set_cpus_allowed(p, new_mask, flags);
2388 
2389 	if (p->flags & PF_KTHREAD) {
2390 		/*
2391 		 * For kernel threads that do indeed end up on online &&
2392 		 * !active we want to ensure they are strict per-CPU threads.
2393 		 */
2394 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2395 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2396 			p->nr_cpus_allowed != 1);
2397 	}
2398 
2399 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2400 
2401 out:
2402 	task_rq_unlock(rq, p, &rf);
2403 
2404 	return ret;
2405 }
2406 
2407 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2408 {
2409 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2410 }
2411 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2412 
2413 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2414 {
2415 #ifdef CONFIG_SCHED_DEBUG
2416 	/*
2417 	 * We should never call set_task_cpu() on a blocked task,
2418 	 * ttwu() will sort out the placement.
2419 	 */
2420 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2421 			!p->on_rq);
2422 
2423 	/*
2424 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2425 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2426 	 * time relying on p->on_rq.
2427 	 */
2428 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2429 		     p->sched_class == &fair_sched_class &&
2430 		     (p->on_rq && !task_on_rq_migrating(p)));
2431 
2432 #ifdef CONFIG_LOCKDEP
2433 	/*
2434 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2435 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2436 	 *
2437 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2438 	 * see task_group().
2439 	 *
2440 	 * Furthermore, all task_rq users should acquire both locks, see
2441 	 * task_rq_lock().
2442 	 */
2443 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2444 				      lockdep_is_held(&task_rq(p)->lock)));
2445 #endif
2446 	/*
2447 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2448 	 */
2449 	WARN_ON_ONCE(!cpu_online(new_cpu));
2450 
2451 	WARN_ON_ONCE(is_migration_disabled(p));
2452 #endif
2453 
2454 	trace_sched_migrate_task(p, new_cpu);
2455 
2456 	if (task_cpu(p) != new_cpu) {
2457 		if (p->sched_class->migrate_task_rq)
2458 			p->sched_class->migrate_task_rq(p, new_cpu);
2459 		p->se.nr_migrations++;
2460 		rseq_migrate(p);
2461 		perf_event_task_migrate(p);
2462 	}
2463 
2464 	__set_task_cpu(p, new_cpu);
2465 }
2466 
2467 #ifdef CONFIG_NUMA_BALANCING
2468 static void __migrate_swap_task(struct task_struct *p, int cpu)
2469 {
2470 	if (task_on_rq_queued(p)) {
2471 		struct rq *src_rq, *dst_rq;
2472 		struct rq_flags srf, drf;
2473 
2474 		src_rq = task_rq(p);
2475 		dst_rq = cpu_rq(cpu);
2476 
2477 		rq_pin_lock(src_rq, &srf);
2478 		rq_pin_lock(dst_rq, &drf);
2479 
2480 		deactivate_task(src_rq, p, 0);
2481 		set_task_cpu(p, cpu);
2482 		activate_task(dst_rq, p, 0);
2483 		check_preempt_curr(dst_rq, p, 0);
2484 
2485 		rq_unpin_lock(dst_rq, &drf);
2486 		rq_unpin_lock(src_rq, &srf);
2487 
2488 	} else {
2489 		/*
2490 		 * Task isn't running anymore; make it appear like we migrated
2491 		 * it before it went to sleep. This means on wakeup we make the
2492 		 * previous CPU our target instead of where it really is.
2493 		 */
2494 		p->wake_cpu = cpu;
2495 	}
2496 }
2497 
2498 struct migration_swap_arg {
2499 	struct task_struct *src_task, *dst_task;
2500 	int src_cpu, dst_cpu;
2501 };
2502 
2503 static int migrate_swap_stop(void *data)
2504 {
2505 	struct migration_swap_arg *arg = data;
2506 	struct rq *src_rq, *dst_rq;
2507 	int ret = -EAGAIN;
2508 
2509 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2510 		return -EAGAIN;
2511 
2512 	src_rq = cpu_rq(arg->src_cpu);
2513 	dst_rq = cpu_rq(arg->dst_cpu);
2514 
2515 	double_raw_lock(&arg->src_task->pi_lock,
2516 			&arg->dst_task->pi_lock);
2517 	double_rq_lock(src_rq, dst_rq);
2518 
2519 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2520 		goto unlock;
2521 
2522 	if (task_cpu(arg->src_task) != arg->src_cpu)
2523 		goto unlock;
2524 
2525 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2526 		goto unlock;
2527 
2528 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2529 		goto unlock;
2530 
2531 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2532 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2533 
2534 	ret = 0;
2535 
2536 unlock:
2537 	double_rq_unlock(src_rq, dst_rq);
2538 	raw_spin_unlock(&arg->dst_task->pi_lock);
2539 	raw_spin_unlock(&arg->src_task->pi_lock);
2540 
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Cross migrate two tasks
2546  */
2547 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2548 		int target_cpu, int curr_cpu)
2549 {
2550 	struct migration_swap_arg arg;
2551 	int ret = -EINVAL;
2552 
2553 	arg = (struct migration_swap_arg){
2554 		.src_task = cur,
2555 		.src_cpu = curr_cpu,
2556 		.dst_task = p,
2557 		.dst_cpu = target_cpu,
2558 	};
2559 
2560 	if (arg.src_cpu == arg.dst_cpu)
2561 		goto out;
2562 
2563 	/*
2564 	 * These three tests are all lockless; this is OK since all of them
2565 	 * will be re-checked with proper locks held further down the line.
2566 	 */
2567 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2568 		goto out;
2569 
2570 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2571 		goto out;
2572 
2573 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2574 		goto out;
2575 
2576 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2577 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2578 
2579 out:
2580 	return ret;
2581 }
2582 #endif /* CONFIG_NUMA_BALANCING */
2583 
2584 /*
2585  * wait_task_inactive - wait for a thread to unschedule.
2586  *
2587  * If @match_state is nonzero, it's the @p->state value just checked and
2588  * not expected to change.  If it changes, i.e. @p might have woken up,
2589  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2590  * we return a positive number (its total switch count).  If a second call
2591  * a short while later returns the same number, the caller can be sure that
2592  * @p has remained unscheduled the whole time.
2593  *
2594  * The caller must ensure that the task *will* unschedule sometime soon,
2595  * else this function might spin for a *long* time. This function can't
2596  * be called with interrupts off, or it may introduce deadlock with
2597  * smp_call_function() if an IPI is sent by the same process we are
2598  * waiting to become inactive.
2599  */
2600 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2601 {
2602 	int running, queued;
2603 	struct rq_flags rf;
2604 	unsigned long ncsw;
2605 	struct rq *rq;
2606 
2607 	for (;;) {
2608 		/*
2609 		 * We do the initial early heuristics without holding
2610 		 * any task-queue locks at all. We'll only try to get
2611 		 * the runqueue lock when things look like they will
2612 		 * work out!
2613 		 */
2614 		rq = task_rq(p);
2615 
2616 		/*
2617 		 * If the task is actively running on another CPU
2618 		 * still, just relax and busy-wait without holding
2619 		 * any locks.
2620 		 *
2621 		 * NOTE! Since we don't hold any locks, it's not
2622 		 * even sure that "rq" stays as the right runqueue!
2623 		 * But we don't care, since "task_running()" will
2624 		 * return false if the runqueue has changed and p
2625 		 * is actually now running somewhere else!
2626 		 */
2627 		while (task_running(rq, p)) {
2628 			if (match_state && unlikely(p->state != match_state))
2629 				return 0;
2630 			cpu_relax();
2631 		}
2632 
2633 		/*
2634 		 * Ok, time to look more closely! We need the rq
2635 		 * lock now, to be *sure*. If we're wrong, we'll
2636 		 * just go back and repeat.
2637 		 */
2638 		rq = task_rq_lock(p, &rf);
2639 		trace_sched_wait_task(p);
2640 		running = task_running(rq, p);
2641 		queued = task_on_rq_queued(p);
2642 		ncsw = 0;
2643 		if (!match_state || p->state == match_state)
2644 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2645 		task_rq_unlock(rq, p, &rf);
2646 
2647 		/*
2648 		 * If it changed from the expected state, bail out now.
2649 		 */
2650 		if (unlikely(!ncsw))
2651 			break;
2652 
2653 		/*
2654 		 * Was it really running after all now that we
2655 		 * checked with the proper locks actually held?
2656 		 *
2657 		 * Oops. Go back and try again..
2658 		 */
2659 		if (unlikely(running)) {
2660 			cpu_relax();
2661 			continue;
2662 		}
2663 
2664 		/*
2665 		 * It's not enough that it's not actively running,
2666 		 * it must be off the runqueue _entirely_, and not
2667 		 * preempted!
2668 		 *
2669 		 * So if it was still runnable (but just not actively
2670 		 * running right now), it's preempted, and we should
2671 		 * yield - it could be a while.
2672 		 */
2673 		if (unlikely(queued)) {
2674 			ktime_t to = NSEC_PER_SEC / HZ;
2675 
2676 			set_current_state(TASK_UNINTERRUPTIBLE);
2677 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2678 			continue;
2679 		}
2680 
2681 		/*
2682 		 * Ahh, all good. It wasn't running, and it wasn't
2683 		 * runnable, which means that it will never become
2684 		 * running in the future either. We're all done!
2685 		 */
2686 		break;
2687 	}
2688 
2689 	return ncsw;
2690 }
2691 
2692 /***
2693  * kick_process - kick a running thread to enter/exit the kernel
2694  * @p: the to-be-kicked thread
2695  *
2696  * Cause a process which is running on another CPU to enter
2697  * kernel-mode, without any delay. (to get signals handled.)
2698  *
2699  * NOTE: this function doesn't have to take the runqueue lock,
2700  * because all it wants to ensure is that the remote task enters
2701  * the kernel. If the IPI races and the task has been migrated
2702  * to another CPU then no harm is done and the purpose has been
2703  * achieved as well.
2704  */
2705 void kick_process(struct task_struct *p)
2706 {
2707 	int cpu;
2708 
2709 	preempt_disable();
2710 	cpu = task_cpu(p);
2711 	if ((cpu != smp_processor_id()) && task_curr(p))
2712 		smp_send_reschedule(cpu);
2713 	preempt_enable();
2714 }
2715 EXPORT_SYMBOL_GPL(kick_process);
2716 
2717 /*
2718  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2719  *
2720  * A few notes on cpu_active vs cpu_online:
2721  *
2722  *  - cpu_active must be a subset of cpu_online
2723  *
2724  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2725  *    see __set_cpus_allowed_ptr(). At this point the newly online
2726  *    CPU isn't yet part of the sched domains, and balancing will not
2727  *    see it.
2728  *
2729  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2730  *    avoid the load balancer to place new tasks on the to be removed
2731  *    CPU. Existing tasks will remain running there and will be taken
2732  *    off.
2733  *
2734  * This means that fallback selection must not select !active CPUs.
2735  * And can assume that any active CPU must be online. Conversely
2736  * select_task_rq() below may allow selection of !active CPUs in order
2737  * to satisfy the above rules.
2738  */
2739 static int select_fallback_rq(int cpu, struct task_struct *p)
2740 {
2741 	int nid = cpu_to_node(cpu);
2742 	const struct cpumask *nodemask = NULL;
2743 	enum { cpuset, possible, fail } state = cpuset;
2744 	int dest_cpu;
2745 
2746 	/*
2747 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2748 	 * will return -1. There is no CPU on the node, and we should
2749 	 * select the CPU on the other node.
2750 	 */
2751 	if (nid != -1) {
2752 		nodemask = cpumask_of_node(nid);
2753 
2754 		/* Look for allowed, online CPU in same node. */
2755 		for_each_cpu(dest_cpu, nodemask) {
2756 			if (!cpu_active(dest_cpu))
2757 				continue;
2758 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2759 				return dest_cpu;
2760 		}
2761 	}
2762 
2763 	for (;;) {
2764 		/* Any allowed, online CPU? */
2765 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2766 			if (!is_cpu_allowed(p, dest_cpu))
2767 				continue;
2768 
2769 			goto out;
2770 		}
2771 
2772 		/* No more Mr. Nice Guy. */
2773 		switch (state) {
2774 		case cpuset:
2775 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2776 				cpuset_cpus_allowed_fallback(p);
2777 				state = possible;
2778 				break;
2779 			}
2780 			fallthrough;
2781 		case possible:
2782 			/*
2783 			 * XXX When called from select_task_rq() we only
2784 			 * hold p->pi_lock and again violate locking order.
2785 			 *
2786 			 * More yuck to audit.
2787 			 */
2788 			do_set_cpus_allowed(p, cpu_possible_mask);
2789 			state = fail;
2790 			break;
2791 
2792 		case fail:
2793 			BUG();
2794 			break;
2795 		}
2796 	}
2797 
2798 out:
2799 	if (state != cpuset) {
2800 		/*
2801 		 * Don't tell them about moving exiting tasks or
2802 		 * kernel threads (both mm NULL), since they never
2803 		 * leave kernel.
2804 		 */
2805 		if (p->mm && printk_ratelimit()) {
2806 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2807 					task_pid_nr(p), p->comm, cpu);
2808 		}
2809 	}
2810 
2811 	return dest_cpu;
2812 }
2813 
2814 /*
2815  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2816  */
2817 static inline
2818 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2819 {
2820 	lockdep_assert_held(&p->pi_lock);
2821 
2822 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2823 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2824 	else
2825 		cpu = cpumask_any(p->cpus_ptr);
2826 
2827 	/*
2828 	 * In order not to call set_task_cpu() on a blocking task we need
2829 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2830 	 * CPU.
2831 	 *
2832 	 * Since this is common to all placement strategies, this lives here.
2833 	 *
2834 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2835 	 *   not worry about this generic constraint ]
2836 	 */
2837 	if (unlikely(!is_cpu_allowed(p, cpu)))
2838 		cpu = select_fallback_rq(task_cpu(p), p);
2839 
2840 	return cpu;
2841 }
2842 
2843 void sched_set_stop_task(int cpu, struct task_struct *stop)
2844 {
2845 	static struct lock_class_key stop_pi_lock;
2846 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2847 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2848 
2849 	if (stop) {
2850 		/*
2851 		 * Make it appear like a SCHED_FIFO task, its something
2852 		 * userspace knows about and won't get confused about.
2853 		 *
2854 		 * Also, it will make PI more or less work without too
2855 		 * much confusion -- but then, stop work should not
2856 		 * rely on PI working anyway.
2857 		 */
2858 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2859 
2860 		stop->sched_class = &stop_sched_class;
2861 
2862 		/*
2863 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2864 		 * adjust the effective priority of a task. As a result,
2865 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2866 		 * which can then trigger wakeups of the stop thread to push
2867 		 * around the current task.
2868 		 *
2869 		 * The stop task itself will never be part of the PI-chain, it
2870 		 * never blocks, therefore that ->pi_lock recursion is safe.
2871 		 * Tell lockdep about this by placing the stop->pi_lock in its
2872 		 * own class.
2873 		 */
2874 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2875 	}
2876 
2877 	cpu_rq(cpu)->stop = stop;
2878 
2879 	if (old_stop) {
2880 		/*
2881 		 * Reset it back to a normal scheduling class so that
2882 		 * it can die in pieces.
2883 		 */
2884 		old_stop->sched_class = &rt_sched_class;
2885 	}
2886 }
2887 
2888 #else /* CONFIG_SMP */
2889 
2890 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2891 					 const struct cpumask *new_mask,
2892 					 u32 flags)
2893 {
2894 	return set_cpus_allowed_ptr(p, new_mask);
2895 }
2896 
2897 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2898 
2899 static inline bool rq_has_pinned_tasks(struct rq *rq)
2900 {
2901 	return false;
2902 }
2903 
2904 #endif /* !CONFIG_SMP */
2905 
2906 static void
2907 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2908 {
2909 	struct rq *rq;
2910 
2911 	if (!schedstat_enabled())
2912 		return;
2913 
2914 	rq = this_rq();
2915 
2916 #ifdef CONFIG_SMP
2917 	if (cpu == rq->cpu) {
2918 		__schedstat_inc(rq->ttwu_local);
2919 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2920 	} else {
2921 		struct sched_domain *sd;
2922 
2923 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2924 		rcu_read_lock();
2925 		for_each_domain(rq->cpu, sd) {
2926 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2927 				__schedstat_inc(sd->ttwu_wake_remote);
2928 				break;
2929 			}
2930 		}
2931 		rcu_read_unlock();
2932 	}
2933 
2934 	if (wake_flags & WF_MIGRATED)
2935 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2936 #endif /* CONFIG_SMP */
2937 
2938 	__schedstat_inc(rq->ttwu_count);
2939 	__schedstat_inc(p->se.statistics.nr_wakeups);
2940 
2941 	if (wake_flags & WF_SYNC)
2942 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2943 }
2944 
2945 /*
2946  * Mark the task runnable and perform wakeup-preemption.
2947  */
2948 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2949 			   struct rq_flags *rf)
2950 {
2951 	check_preempt_curr(rq, p, wake_flags);
2952 	p->state = TASK_RUNNING;
2953 	trace_sched_wakeup(p);
2954 
2955 #ifdef CONFIG_SMP
2956 	if (p->sched_class->task_woken) {
2957 		/*
2958 		 * Our task @p is fully woken up and running; so it's safe to
2959 		 * drop the rq->lock, hereafter rq is only used for statistics.
2960 		 */
2961 		rq_unpin_lock(rq, rf);
2962 		p->sched_class->task_woken(rq, p);
2963 		rq_repin_lock(rq, rf);
2964 	}
2965 
2966 	if (rq->idle_stamp) {
2967 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2968 		u64 max = 2*rq->max_idle_balance_cost;
2969 
2970 		update_avg(&rq->avg_idle, delta);
2971 
2972 		if (rq->avg_idle > max)
2973 			rq->avg_idle = max;
2974 
2975 		rq->idle_stamp = 0;
2976 	}
2977 #endif
2978 }
2979 
2980 static void
2981 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2982 		 struct rq_flags *rf)
2983 {
2984 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2985 
2986 	lockdep_assert_held(&rq->lock);
2987 
2988 	if (p->sched_contributes_to_load)
2989 		rq->nr_uninterruptible--;
2990 
2991 #ifdef CONFIG_SMP
2992 	if (wake_flags & WF_MIGRATED)
2993 		en_flags |= ENQUEUE_MIGRATED;
2994 	else
2995 #endif
2996 	if (p->in_iowait) {
2997 		delayacct_blkio_end(p);
2998 		atomic_dec(&task_rq(p)->nr_iowait);
2999 	}
3000 
3001 	activate_task(rq, p, en_flags);
3002 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3003 }
3004 
3005 /*
3006  * Consider @p being inside a wait loop:
3007  *
3008  *   for (;;) {
3009  *      set_current_state(TASK_UNINTERRUPTIBLE);
3010  *
3011  *      if (CONDITION)
3012  *         break;
3013  *
3014  *      schedule();
3015  *   }
3016  *   __set_current_state(TASK_RUNNING);
3017  *
3018  * between set_current_state() and schedule(). In this case @p is still
3019  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3020  * an atomic manner.
3021  *
3022  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3023  * then schedule() must still happen and p->state can be changed to
3024  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3025  * need to do a full wakeup with enqueue.
3026  *
3027  * Returns: %true when the wakeup is done,
3028  *          %false otherwise.
3029  */
3030 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3031 {
3032 	struct rq_flags rf;
3033 	struct rq *rq;
3034 	int ret = 0;
3035 
3036 	rq = __task_rq_lock(p, &rf);
3037 	if (task_on_rq_queued(p)) {
3038 		/* check_preempt_curr() may use rq clock */
3039 		update_rq_clock(rq);
3040 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3041 		ret = 1;
3042 	}
3043 	__task_rq_unlock(rq, &rf);
3044 
3045 	return ret;
3046 }
3047 
3048 #ifdef CONFIG_SMP
3049 void sched_ttwu_pending(void *arg)
3050 {
3051 	struct llist_node *llist = arg;
3052 	struct rq *rq = this_rq();
3053 	struct task_struct *p, *t;
3054 	struct rq_flags rf;
3055 
3056 	if (!llist)
3057 		return;
3058 
3059 	/*
3060 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3061 	 * Races such that false-negatives are possible, since they
3062 	 * are shorter lived that false-positives would be.
3063 	 */
3064 	WRITE_ONCE(rq->ttwu_pending, 0);
3065 
3066 	rq_lock_irqsave(rq, &rf);
3067 	update_rq_clock(rq);
3068 
3069 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3070 		if (WARN_ON_ONCE(p->on_cpu))
3071 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3072 
3073 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3074 			set_task_cpu(p, cpu_of(rq));
3075 
3076 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3077 	}
3078 
3079 	rq_unlock_irqrestore(rq, &rf);
3080 }
3081 
3082 void send_call_function_single_ipi(int cpu)
3083 {
3084 	struct rq *rq = cpu_rq(cpu);
3085 
3086 	if (!set_nr_if_polling(rq->idle))
3087 		arch_send_call_function_single_ipi(cpu);
3088 	else
3089 		trace_sched_wake_idle_without_ipi(cpu);
3090 }
3091 
3092 /*
3093  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3094  * necessary. The wakee CPU on receipt of the IPI will queue the task
3095  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3096  * of the wakeup instead of the waker.
3097  */
3098 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3099 {
3100 	struct rq *rq = cpu_rq(cpu);
3101 
3102 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3103 
3104 	WRITE_ONCE(rq->ttwu_pending, 1);
3105 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3106 }
3107 
3108 void wake_up_if_idle(int cpu)
3109 {
3110 	struct rq *rq = cpu_rq(cpu);
3111 	struct rq_flags rf;
3112 
3113 	rcu_read_lock();
3114 
3115 	if (!is_idle_task(rcu_dereference(rq->curr)))
3116 		goto out;
3117 
3118 	if (set_nr_if_polling(rq->idle)) {
3119 		trace_sched_wake_idle_without_ipi(cpu);
3120 	} else {
3121 		rq_lock_irqsave(rq, &rf);
3122 		if (is_idle_task(rq->curr))
3123 			smp_send_reschedule(cpu);
3124 		/* Else CPU is not idle, do nothing here: */
3125 		rq_unlock_irqrestore(rq, &rf);
3126 	}
3127 
3128 out:
3129 	rcu_read_unlock();
3130 }
3131 
3132 bool cpus_share_cache(int this_cpu, int that_cpu)
3133 {
3134 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3135 }
3136 
3137 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3138 {
3139 	/*
3140 	 * Do not complicate things with the async wake_list while the CPU is
3141 	 * in hotplug state.
3142 	 */
3143 	if (!cpu_active(cpu))
3144 		return false;
3145 
3146 	/*
3147 	 * If the CPU does not share cache, then queue the task on the
3148 	 * remote rqs wakelist to avoid accessing remote data.
3149 	 */
3150 	if (!cpus_share_cache(smp_processor_id(), cpu))
3151 		return true;
3152 
3153 	/*
3154 	 * If the task is descheduling and the only running task on the
3155 	 * CPU then use the wakelist to offload the task activation to
3156 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3157 	 * nr_running is checked to avoid unnecessary task stacking.
3158 	 */
3159 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3160 		return true;
3161 
3162 	return false;
3163 }
3164 
3165 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3166 {
3167 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3168 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3169 			return false;
3170 
3171 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3172 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3173 		return true;
3174 	}
3175 
3176 	return false;
3177 }
3178 
3179 #else /* !CONFIG_SMP */
3180 
3181 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3182 {
3183 	return false;
3184 }
3185 
3186 #endif /* CONFIG_SMP */
3187 
3188 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3189 {
3190 	struct rq *rq = cpu_rq(cpu);
3191 	struct rq_flags rf;
3192 
3193 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3194 		return;
3195 
3196 	rq_lock(rq, &rf);
3197 	update_rq_clock(rq);
3198 	ttwu_do_activate(rq, p, wake_flags, &rf);
3199 	rq_unlock(rq, &rf);
3200 }
3201 
3202 /*
3203  * Notes on Program-Order guarantees on SMP systems.
3204  *
3205  *  MIGRATION
3206  *
3207  * The basic program-order guarantee on SMP systems is that when a task [t]
3208  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3209  * execution on its new CPU [c1].
3210  *
3211  * For migration (of runnable tasks) this is provided by the following means:
3212  *
3213  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3214  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3215  *     rq(c1)->lock (if not at the same time, then in that order).
3216  *  C) LOCK of the rq(c1)->lock scheduling in task
3217  *
3218  * Release/acquire chaining guarantees that B happens after A and C after B.
3219  * Note: the CPU doing B need not be c0 or c1
3220  *
3221  * Example:
3222  *
3223  *   CPU0            CPU1            CPU2
3224  *
3225  *   LOCK rq(0)->lock
3226  *   sched-out X
3227  *   sched-in Y
3228  *   UNLOCK rq(0)->lock
3229  *
3230  *                                   LOCK rq(0)->lock // orders against CPU0
3231  *                                   dequeue X
3232  *                                   UNLOCK rq(0)->lock
3233  *
3234  *                                   LOCK rq(1)->lock
3235  *                                   enqueue X
3236  *                                   UNLOCK rq(1)->lock
3237  *
3238  *                   LOCK rq(1)->lock // orders against CPU2
3239  *                   sched-out Z
3240  *                   sched-in X
3241  *                   UNLOCK rq(1)->lock
3242  *
3243  *
3244  *  BLOCKING -- aka. SLEEP + WAKEUP
3245  *
3246  * For blocking we (obviously) need to provide the same guarantee as for
3247  * migration. However the means are completely different as there is no lock
3248  * chain to provide order. Instead we do:
3249  *
3250  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3251  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3252  *
3253  * Example:
3254  *
3255  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3256  *
3257  *   LOCK rq(0)->lock LOCK X->pi_lock
3258  *   dequeue X
3259  *   sched-out X
3260  *   smp_store_release(X->on_cpu, 0);
3261  *
3262  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3263  *                    X->state = WAKING
3264  *                    set_task_cpu(X,2)
3265  *
3266  *                    LOCK rq(2)->lock
3267  *                    enqueue X
3268  *                    X->state = RUNNING
3269  *                    UNLOCK rq(2)->lock
3270  *
3271  *                                          LOCK rq(2)->lock // orders against CPU1
3272  *                                          sched-out Z
3273  *                                          sched-in X
3274  *                                          UNLOCK rq(2)->lock
3275  *
3276  *                    UNLOCK X->pi_lock
3277  *   UNLOCK rq(0)->lock
3278  *
3279  *
3280  * However, for wakeups there is a second guarantee we must provide, namely we
3281  * must ensure that CONDITION=1 done by the caller can not be reordered with
3282  * accesses to the task state; see try_to_wake_up() and set_current_state().
3283  */
3284 
3285 /**
3286  * try_to_wake_up - wake up a thread
3287  * @p: the thread to be awakened
3288  * @state: the mask of task states that can be woken
3289  * @wake_flags: wake modifier flags (WF_*)
3290  *
3291  * Conceptually does:
3292  *
3293  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3294  *
3295  * If the task was not queued/runnable, also place it back on a runqueue.
3296  *
3297  * This function is atomic against schedule() which would dequeue the task.
3298  *
3299  * It issues a full memory barrier before accessing @p->state, see the comment
3300  * with set_current_state().
3301  *
3302  * Uses p->pi_lock to serialize against concurrent wake-ups.
3303  *
3304  * Relies on p->pi_lock stabilizing:
3305  *  - p->sched_class
3306  *  - p->cpus_ptr
3307  *  - p->sched_task_group
3308  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3309  *
3310  * Tries really hard to only take one task_rq(p)->lock for performance.
3311  * Takes rq->lock in:
3312  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3313  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3314  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3315  *
3316  * As a consequence we race really badly with just about everything. See the
3317  * many memory barriers and their comments for details.
3318  *
3319  * Return: %true if @p->state changes (an actual wakeup was done),
3320  *	   %false otherwise.
3321  */
3322 static int
3323 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3324 {
3325 	unsigned long flags;
3326 	int cpu, success = 0;
3327 
3328 	preempt_disable();
3329 	if (p == current) {
3330 		/*
3331 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3332 		 * == smp_processor_id()'. Together this means we can special
3333 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3334 		 * without taking any locks.
3335 		 *
3336 		 * In particular:
3337 		 *  - we rely on Program-Order guarantees for all the ordering,
3338 		 *  - we're serialized against set_special_state() by virtue of
3339 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3340 		 */
3341 		if (!(p->state & state))
3342 			goto out;
3343 
3344 		success = 1;
3345 		trace_sched_waking(p);
3346 		p->state = TASK_RUNNING;
3347 		trace_sched_wakeup(p);
3348 		goto out;
3349 	}
3350 
3351 	/*
3352 	 * If we are going to wake up a thread waiting for CONDITION we
3353 	 * need to ensure that CONDITION=1 done by the caller can not be
3354 	 * reordered with p->state check below. This pairs with smp_store_mb()
3355 	 * in set_current_state() that the waiting thread does.
3356 	 */
3357 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3358 	smp_mb__after_spinlock();
3359 	if (!(p->state & state))
3360 		goto unlock;
3361 
3362 	trace_sched_waking(p);
3363 
3364 	/* We're going to change ->state: */
3365 	success = 1;
3366 
3367 	/*
3368 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3369 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3370 	 * in smp_cond_load_acquire() below.
3371 	 *
3372 	 * sched_ttwu_pending()			try_to_wake_up()
3373 	 *   STORE p->on_rq = 1			  LOAD p->state
3374 	 *   UNLOCK rq->lock
3375 	 *
3376 	 * __schedule() (switch to task 'p')
3377 	 *   LOCK rq->lock			  smp_rmb();
3378 	 *   smp_mb__after_spinlock();
3379 	 *   UNLOCK rq->lock
3380 	 *
3381 	 * [task p]
3382 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3383 	 *
3384 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3385 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3386 	 *
3387 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3388 	 */
3389 	smp_rmb();
3390 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3391 		goto unlock;
3392 
3393 #ifdef CONFIG_SMP
3394 	/*
3395 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3396 	 * possible to, falsely, observe p->on_cpu == 0.
3397 	 *
3398 	 * One must be running (->on_cpu == 1) in order to remove oneself
3399 	 * from the runqueue.
3400 	 *
3401 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3402 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3403 	 *   UNLOCK rq->lock
3404 	 *
3405 	 * __schedule() (put 'p' to sleep)
3406 	 *   LOCK rq->lock			  smp_rmb();
3407 	 *   smp_mb__after_spinlock();
3408 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3409 	 *
3410 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3411 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3412 	 *
3413 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3414 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3415 	 * care about it's own p->state. See the comment in __schedule().
3416 	 */
3417 	smp_acquire__after_ctrl_dep();
3418 
3419 	/*
3420 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3421 	 * == 0), which means we need to do an enqueue, change p->state to
3422 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3423 	 * enqueue, such as ttwu_queue_wakelist().
3424 	 */
3425 	p->state = TASK_WAKING;
3426 
3427 	/*
3428 	 * If the owning (remote) CPU is still in the middle of schedule() with
3429 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3430 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3431 	 * let the waker make forward progress. This is safe because IRQs are
3432 	 * disabled and the IPI will deliver after on_cpu is cleared.
3433 	 *
3434 	 * Ensure we load task_cpu(p) after p->on_cpu:
3435 	 *
3436 	 * set_task_cpu(p, cpu);
3437 	 *   STORE p->cpu = @cpu
3438 	 * __schedule() (switch to task 'p')
3439 	 *   LOCK rq->lock
3440 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3441 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3442 	 *
3443 	 * to ensure we observe the correct CPU on which the task is currently
3444 	 * scheduling.
3445 	 */
3446 	if (smp_load_acquire(&p->on_cpu) &&
3447 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3448 		goto unlock;
3449 
3450 	/*
3451 	 * If the owning (remote) CPU is still in the middle of schedule() with
3452 	 * this task as prev, wait until it's done referencing the task.
3453 	 *
3454 	 * Pairs with the smp_store_release() in finish_task().
3455 	 *
3456 	 * This ensures that tasks getting woken will be fully ordered against
3457 	 * their previous state and preserve Program Order.
3458 	 */
3459 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3460 
3461 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3462 	if (task_cpu(p) != cpu) {
3463 		if (p->in_iowait) {
3464 			delayacct_blkio_end(p);
3465 			atomic_dec(&task_rq(p)->nr_iowait);
3466 		}
3467 
3468 		wake_flags |= WF_MIGRATED;
3469 		psi_ttwu_dequeue(p);
3470 		set_task_cpu(p, cpu);
3471 	}
3472 #else
3473 	cpu = task_cpu(p);
3474 #endif /* CONFIG_SMP */
3475 
3476 	ttwu_queue(p, cpu, wake_flags);
3477 unlock:
3478 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3479 out:
3480 	if (success)
3481 		ttwu_stat(p, task_cpu(p), wake_flags);
3482 	preempt_enable();
3483 
3484 	return success;
3485 }
3486 
3487 /**
3488  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3489  * @p: Process for which the function is to be invoked.
3490  * @func: Function to invoke.
3491  * @arg: Argument to function.
3492  *
3493  * If the specified task can be quickly locked into a definite state
3494  * (either sleeping or on a given runqueue), arrange to keep it in that
3495  * state while invoking @func(@arg).  This function can use ->on_rq and
3496  * task_curr() to work out what the state is, if required.  Given that
3497  * @func can be invoked with a runqueue lock held, it had better be quite
3498  * lightweight.
3499  *
3500  * Returns:
3501  *	@false if the task slipped out from under the locks.
3502  *	@true if the task was locked onto a runqueue or is sleeping.
3503  *		However, @func can override this by returning @false.
3504  */
3505 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3506 {
3507 	bool ret = false;
3508 	struct rq_flags rf;
3509 	struct rq *rq;
3510 
3511 	lockdep_assert_irqs_enabled();
3512 	raw_spin_lock_irq(&p->pi_lock);
3513 	if (p->on_rq) {
3514 		rq = __task_rq_lock(p, &rf);
3515 		if (task_rq(p) == rq)
3516 			ret = func(p, arg);
3517 		rq_unlock(rq, &rf);
3518 	} else {
3519 		switch (p->state) {
3520 		case TASK_RUNNING:
3521 		case TASK_WAKING:
3522 			break;
3523 		default:
3524 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3525 			if (!p->on_rq)
3526 				ret = func(p, arg);
3527 		}
3528 	}
3529 	raw_spin_unlock_irq(&p->pi_lock);
3530 	return ret;
3531 }
3532 
3533 /**
3534  * wake_up_process - Wake up a specific process
3535  * @p: The process to be woken up.
3536  *
3537  * Attempt to wake up the nominated process and move it to the set of runnable
3538  * processes.
3539  *
3540  * Return: 1 if the process was woken up, 0 if it was already running.
3541  *
3542  * This function executes a full memory barrier before accessing the task state.
3543  */
3544 int wake_up_process(struct task_struct *p)
3545 {
3546 	return try_to_wake_up(p, TASK_NORMAL, 0);
3547 }
3548 EXPORT_SYMBOL(wake_up_process);
3549 
3550 int wake_up_state(struct task_struct *p, unsigned int state)
3551 {
3552 	return try_to_wake_up(p, state, 0);
3553 }
3554 
3555 /*
3556  * Perform scheduler related setup for a newly forked process p.
3557  * p is forked by current.
3558  *
3559  * __sched_fork() is basic setup used by init_idle() too:
3560  */
3561 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3562 {
3563 	p->on_rq			= 0;
3564 
3565 	p->se.on_rq			= 0;
3566 	p->se.exec_start		= 0;
3567 	p->se.sum_exec_runtime		= 0;
3568 	p->se.prev_sum_exec_runtime	= 0;
3569 	p->se.nr_migrations		= 0;
3570 	p->se.vruntime			= 0;
3571 	INIT_LIST_HEAD(&p->se.group_node);
3572 
3573 #ifdef CONFIG_FAIR_GROUP_SCHED
3574 	p->se.cfs_rq			= NULL;
3575 #endif
3576 
3577 #ifdef CONFIG_SCHEDSTATS
3578 	/* Even if schedstat is disabled, there should not be garbage */
3579 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3580 #endif
3581 
3582 	RB_CLEAR_NODE(&p->dl.rb_node);
3583 	init_dl_task_timer(&p->dl);
3584 	init_dl_inactive_task_timer(&p->dl);
3585 	__dl_clear_params(p);
3586 
3587 	INIT_LIST_HEAD(&p->rt.run_list);
3588 	p->rt.timeout		= 0;
3589 	p->rt.time_slice	= sched_rr_timeslice;
3590 	p->rt.on_rq		= 0;
3591 	p->rt.on_list		= 0;
3592 
3593 #ifdef CONFIG_PREEMPT_NOTIFIERS
3594 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3595 #endif
3596 
3597 #ifdef CONFIG_COMPACTION
3598 	p->capture_control = NULL;
3599 #endif
3600 	init_numa_balancing(clone_flags, p);
3601 #ifdef CONFIG_SMP
3602 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3603 	p->migration_pending = NULL;
3604 #endif
3605 }
3606 
3607 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3608 
3609 #ifdef CONFIG_NUMA_BALANCING
3610 
3611 void set_numabalancing_state(bool enabled)
3612 {
3613 	if (enabled)
3614 		static_branch_enable(&sched_numa_balancing);
3615 	else
3616 		static_branch_disable(&sched_numa_balancing);
3617 }
3618 
3619 #ifdef CONFIG_PROC_SYSCTL
3620 int sysctl_numa_balancing(struct ctl_table *table, int write,
3621 			  void *buffer, size_t *lenp, loff_t *ppos)
3622 {
3623 	struct ctl_table t;
3624 	int err;
3625 	int state = static_branch_likely(&sched_numa_balancing);
3626 
3627 	if (write && !capable(CAP_SYS_ADMIN))
3628 		return -EPERM;
3629 
3630 	t = *table;
3631 	t.data = &state;
3632 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3633 	if (err < 0)
3634 		return err;
3635 	if (write)
3636 		set_numabalancing_state(state);
3637 	return err;
3638 }
3639 #endif
3640 #endif
3641 
3642 #ifdef CONFIG_SCHEDSTATS
3643 
3644 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3645 static bool __initdata __sched_schedstats = false;
3646 
3647 static void set_schedstats(bool enabled)
3648 {
3649 	if (enabled)
3650 		static_branch_enable(&sched_schedstats);
3651 	else
3652 		static_branch_disable(&sched_schedstats);
3653 }
3654 
3655 void force_schedstat_enabled(void)
3656 {
3657 	if (!schedstat_enabled()) {
3658 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3659 		static_branch_enable(&sched_schedstats);
3660 	}
3661 }
3662 
3663 static int __init setup_schedstats(char *str)
3664 {
3665 	int ret = 0;
3666 	if (!str)
3667 		goto out;
3668 
3669 	/*
3670 	 * This code is called before jump labels have been set up, so we can't
3671 	 * change the static branch directly just yet.  Instead set a temporary
3672 	 * variable so init_schedstats() can do it later.
3673 	 */
3674 	if (!strcmp(str, "enable")) {
3675 		__sched_schedstats = true;
3676 		ret = 1;
3677 	} else if (!strcmp(str, "disable")) {
3678 		__sched_schedstats = false;
3679 		ret = 1;
3680 	}
3681 out:
3682 	if (!ret)
3683 		pr_warn("Unable to parse schedstats=\n");
3684 
3685 	return ret;
3686 }
3687 __setup("schedstats=", setup_schedstats);
3688 
3689 static void __init init_schedstats(void)
3690 {
3691 	set_schedstats(__sched_schedstats);
3692 }
3693 
3694 #ifdef CONFIG_PROC_SYSCTL
3695 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3696 		size_t *lenp, loff_t *ppos)
3697 {
3698 	struct ctl_table t;
3699 	int err;
3700 	int state = static_branch_likely(&sched_schedstats);
3701 
3702 	if (write && !capable(CAP_SYS_ADMIN))
3703 		return -EPERM;
3704 
3705 	t = *table;
3706 	t.data = &state;
3707 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3708 	if (err < 0)
3709 		return err;
3710 	if (write)
3711 		set_schedstats(state);
3712 	return err;
3713 }
3714 #endif /* CONFIG_PROC_SYSCTL */
3715 #else  /* !CONFIG_SCHEDSTATS */
3716 static inline void init_schedstats(void) {}
3717 #endif /* CONFIG_SCHEDSTATS */
3718 
3719 /*
3720  * fork()/clone()-time setup:
3721  */
3722 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3723 {
3724 	unsigned long flags;
3725 
3726 	__sched_fork(clone_flags, p);
3727 	/*
3728 	 * We mark the process as NEW here. This guarantees that
3729 	 * nobody will actually run it, and a signal or other external
3730 	 * event cannot wake it up and insert it on the runqueue either.
3731 	 */
3732 	p->state = TASK_NEW;
3733 
3734 	/*
3735 	 * Make sure we do not leak PI boosting priority to the child.
3736 	 */
3737 	p->prio = current->normal_prio;
3738 
3739 	uclamp_fork(p);
3740 
3741 	/*
3742 	 * Revert to default priority/policy on fork if requested.
3743 	 */
3744 	if (unlikely(p->sched_reset_on_fork)) {
3745 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3746 			p->policy = SCHED_NORMAL;
3747 			p->static_prio = NICE_TO_PRIO(0);
3748 			p->rt_priority = 0;
3749 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3750 			p->static_prio = NICE_TO_PRIO(0);
3751 
3752 		p->prio = p->normal_prio = __normal_prio(p);
3753 		set_load_weight(p, false);
3754 
3755 		/*
3756 		 * We don't need the reset flag anymore after the fork. It has
3757 		 * fulfilled its duty:
3758 		 */
3759 		p->sched_reset_on_fork = 0;
3760 	}
3761 
3762 	if (dl_prio(p->prio))
3763 		return -EAGAIN;
3764 	else if (rt_prio(p->prio))
3765 		p->sched_class = &rt_sched_class;
3766 	else
3767 		p->sched_class = &fair_sched_class;
3768 
3769 	init_entity_runnable_average(&p->se);
3770 
3771 	/*
3772 	 * The child is not yet in the pid-hash so no cgroup attach races,
3773 	 * and the cgroup is pinned to this child due to cgroup_fork()
3774 	 * is ran before sched_fork().
3775 	 *
3776 	 * Silence PROVE_RCU.
3777 	 */
3778 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3779 	rseq_migrate(p);
3780 	/*
3781 	 * We're setting the CPU for the first time, we don't migrate,
3782 	 * so use __set_task_cpu().
3783 	 */
3784 	__set_task_cpu(p, smp_processor_id());
3785 	if (p->sched_class->task_fork)
3786 		p->sched_class->task_fork(p);
3787 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3788 
3789 #ifdef CONFIG_SCHED_INFO
3790 	if (likely(sched_info_on()))
3791 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3792 #endif
3793 #if defined(CONFIG_SMP)
3794 	p->on_cpu = 0;
3795 #endif
3796 	init_task_preempt_count(p);
3797 #ifdef CONFIG_SMP
3798 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3799 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3800 #endif
3801 	return 0;
3802 }
3803 
3804 void sched_post_fork(struct task_struct *p)
3805 {
3806 	uclamp_post_fork(p);
3807 }
3808 
3809 unsigned long to_ratio(u64 period, u64 runtime)
3810 {
3811 	if (runtime == RUNTIME_INF)
3812 		return BW_UNIT;
3813 
3814 	/*
3815 	 * Doing this here saves a lot of checks in all
3816 	 * the calling paths, and returning zero seems
3817 	 * safe for them anyway.
3818 	 */
3819 	if (period == 0)
3820 		return 0;
3821 
3822 	return div64_u64(runtime << BW_SHIFT, period);
3823 }
3824 
3825 /*
3826  * wake_up_new_task - wake up a newly created task for the first time.
3827  *
3828  * This function will do some initial scheduler statistics housekeeping
3829  * that must be done for every newly created context, then puts the task
3830  * on the runqueue and wakes it.
3831  */
3832 void wake_up_new_task(struct task_struct *p)
3833 {
3834 	struct rq_flags rf;
3835 	struct rq *rq;
3836 
3837 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3838 	p->state = TASK_RUNNING;
3839 #ifdef CONFIG_SMP
3840 	/*
3841 	 * Fork balancing, do it here and not earlier because:
3842 	 *  - cpus_ptr can change in the fork path
3843 	 *  - any previously selected CPU might disappear through hotplug
3844 	 *
3845 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3846 	 * as we're not fully set-up yet.
3847 	 */
3848 	p->recent_used_cpu = task_cpu(p);
3849 	rseq_migrate(p);
3850 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3851 #endif
3852 	rq = __task_rq_lock(p, &rf);
3853 	update_rq_clock(rq);
3854 	post_init_entity_util_avg(p);
3855 
3856 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3857 	trace_sched_wakeup_new(p);
3858 	check_preempt_curr(rq, p, WF_FORK);
3859 #ifdef CONFIG_SMP
3860 	if (p->sched_class->task_woken) {
3861 		/*
3862 		 * Nothing relies on rq->lock after this, so it's fine to
3863 		 * drop it.
3864 		 */
3865 		rq_unpin_lock(rq, &rf);
3866 		p->sched_class->task_woken(rq, p);
3867 		rq_repin_lock(rq, &rf);
3868 	}
3869 #endif
3870 	task_rq_unlock(rq, p, &rf);
3871 }
3872 
3873 #ifdef CONFIG_PREEMPT_NOTIFIERS
3874 
3875 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3876 
3877 void preempt_notifier_inc(void)
3878 {
3879 	static_branch_inc(&preempt_notifier_key);
3880 }
3881 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3882 
3883 void preempt_notifier_dec(void)
3884 {
3885 	static_branch_dec(&preempt_notifier_key);
3886 }
3887 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3888 
3889 /**
3890  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3891  * @notifier: notifier struct to register
3892  */
3893 void preempt_notifier_register(struct preempt_notifier *notifier)
3894 {
3895 	if (!static_branch_unlikely(&preempt_notifier_key))
3896 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3897 
3898 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3899 }
3900 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3901 
3902 /**
3903  * preempt_notifier_unregister - no longer interested in preemption notifications
3904  * @notifier: notifier struct to unregister
3905  *
3906  * This is *not* safe to call from within a preemption notifier.
3907  */
3908 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3909 {
3910 	hlist_del(&notifier->link);
3911 }
3912 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3913 
3914 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3915 {
3916 	struct preempt_notifier *notifier;
3917 
3918 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3919 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3920 }
3921 
3922 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3923 {
3924 	if (static_branch_unlikely(&preempt_notifier_key))
3925 		__fire_sched_in_preempt_notifiers(curr);
3926 }
3927 
3928 static void
3929 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3930 				   struct task_struct *next)
3931 {
3932 	struct preempt_notifier *notifier;
3933 
3934 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3935 		notifier->ops->sched_out(notifier, next);
3936 }
3937 
3938 static __always_inline void
3939 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3940 				 struct task_struct *next)
3941 {
3942 	if (static_branch_unlikely(&preempt_notifier_key))
3943 		__fire_sched_out_preempt_notifiers(curr, next);
3944 }
3945 
3946 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3947 
3948 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3949 {
3950 }
3951 
3952 static inline void
3953 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3954 				 struct task_struct *next)
3955 {
3956 }
3957 
3958 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3959 
3960 static inline void prepare_task(struct task_struct *next)
3961 {
3962 #ifdef CONFIG_SMP
3963 	/*
3964 	 * Claim the task as running, we do this before switching to it
3965 	 * such that any running task will have this set.
3966 	 *
3967 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3968 	 */
3969 	WRITE_ONCE(next->on_cpu, 1);
3970 #endif
3971 }
3972 
3973 static inline void finish_task(struct task_struct *prev)
3974 {
3975 #ifdef CONFIG_SMP
3976 	/*
3977 	 * This must be the very last reference to @prev from this CPU. After
3978 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3979 	 * must ensure this doesn't happen until the switch is completely
3980 	 * finished.
3981 	 *
3982 	 * In particular, the load of prev->state in finish_task_switch() must
3983 	 * happen before this.
3984 	 *
3985 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3986 	 */
3987 	smp_store_release(&prev->on_cpu, 0);
3988 #endif
3989 }
3990 
3991 #ifdef CONFIG_SMP
3992 
3993 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3994 {
3995 	void (*func)(struct rq *rq);
3996 	struct callback_head *next;
3997 
3998 	lockdep_assert_held(&rq->lock);
3999 
4000 	while (head) {
4001 		func = (void (*)(struct rq *))head->func;
4002 		next = head->next;
4003 		head->next = NULL;
4004 		head = next;
4005 
4006 		func(rq);
4007 	}
4008 }
4009 
4010 static void balance_push(struct rq *rq);
4011 
4012 struct callback_head balance_push_callback = {
4013 	.next = NULL,
4014 	.func = (void (*)(struct callback_head *))balance_push,
4015 };
4016 
4017 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4018 {
4019 	struct callback_head *head = rq->balance_callback;
4020 
4021 	lockdep_assert_held(&rq->lock);
4022 	if (head)
4023 		rq->balance_callback = NULL;
4024 
4025 	return head;
4026 }
4027 
4028 static void __balance_callbacks(struct rq *rq)
4029 {
4030 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4031 }
4032 
4033 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4034 {
4035 	unsigned long flags;
4036 
4037 	if (unlikely(head)) {
4038 		raw_spin_lock_irqsave(&rq->lock, flags);
4039 		do_balance_callbacks(rq, head);
4040 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4041 	}
4042 }
4043 
4044 #else
4045 
4046 static inline void __balance_callbacks(struct rq *rq)
4047 {
4048 }
4049 
4050 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4051 {
4052 	return NULL;
4053 }
4054 
4055 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4056 {
4057 }
4058 
4059 #endif
4060 
4061 static inline void
4062 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4063 {
4064 	/*
4065 	 * Since the runqueue lock will be released by the next
4066 	 * task (which is an invalid locking op but in the case
4067 	 * of the scheduler it's an obvious special-case), so we
4068 	 * do an early lockdep release here:
4069 	 */
4070 	rq_unpin_lock(rq, rf);
4071 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4072 #ifdef CONFIG_DEBUG_SPINLOCK
4073 	/* this is a valid case when another task releases the spinlock */
4074 	rq->lock.owner = next;
4075 #endif
4076 }
4077 
4078 static inline void finish_lock_switch(struct rq *rq)
4079 {
4080 	/*
4081 	 * If we are tracking spinlock dependencies then we have to
4082 	 * fix up the runqueue lock - which gets 'carried over' from
4083 	 * prev into current:
4084 	 */
4085 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4086 	__balance_callbacks(rq);
4087 	raw_spin_unlock_irq(&rq->lock);
4088 }
4089 
4090 /*
4091  * NOP if the arch has not defined these:
4092  */
4093 
4094 #ifndef prepare_arch_switch
4095 # define prepare_arch_switch(next)	do { } while (0)
4096 #endif
4097 
4098 #ifndef finish_arch_post_lock_switch
4099 # define finish_arch_post_lock_switch()	do { } while (0)
4100 #endif
4101 
4102 static inline void kmap_local_sched_out(void)
4103 {
4104 #ifdef CONFIG_KMAP_LOCAL
4105 	if (unlikely(current->kmap_ctrl.idx))
4106 		__kmap_local_sched_out();
4107 #endif
4108 }
4109 
4110 static inline void kmap_local_sched_in(void)
4111 {
4112 #ifdef CONFIG_KMAP_LOCAL
4113 	if (unlikely(current->kmap_ctrl.idx))
4114 		__kmap_local_sched_in();
4115 #endif
4116 }
4117 
4118 /**
4119  * prepare_task_switch - prepare to switch tasks
4120  * @rq: the runqueue preparing to switch
4121  * @prev: the current task that is being switched out
4122  * @next: the task we are going to switch to.
4123  *
4124  * This is called with the rq lock held and interrupts off. It must
4125  * be paired with a subsequent finish_task_switch after the context
4126  * switch.
4127  *
4128  * prepare_task_switch sets up locking and calls architecture specific
4129  * hooks.
4130  */
4131 static inline void
4132 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4133 		    struct task_struct *next)
4134 {
4135 	kcov_prepare_switch(prev);
4136 	sched_info_switch(rq, prev, next);
4137 	perf_event_task_sched_out(prev, next);
4138 	rseq_preempt(prev);
4139 	fire_sched_out_preempt_notifiers(prev, next);
4140 	kmap_local_sched_out();
4141 	prepare_task(next);
4142 	prepare_arch_switch(next);
4143 }
4144 
4145 /**
4146  * finish_task_switch - clean up after a task-switch
4147  * @prev: the thread we just switched away from.
4148  *
4149  * finish_task_switch must be called after the context switch, paired
4150  * with a prepare_task_switch call before the context switch.
4151  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4152  * and do any other architecture-specific cleanup actions.
4153  *
4154  * Note that we may have delayed dropping an mm in context_switch(). If
4155  * so, we finish that here outside of the runqueue lock. (Doing it
4156  * with the lock held can cause deadlocks; see schedule() for
4157  * details.)
4158  *
4159  * The context switch have flipped the stack from under us and restored the
4160  * local variables which were saved when this task called schedule() in the
4161  * past. prev == current is still correct but we need to recalculate this_rq
4162  * because prev may have moved to another CPU.
4163  */
4164 static struct rq *finish_task_switch(struct task_struct *prev)
4165 	__releases(rq->lock)
4166 {
4167 	struct rq *rq = this_rq();
4168 	struct mm_struct *mm = rq->prev_mm;
4169 	long prev_state;
4170 
4171 	/*
4172 	 * The previous task will have left us with a preempt_count of 2
4173 	 * because it left us after:
4174 	 *
4175 	 *	schedule()
4176 	 *	  preempt_disable();			// 1
4177 	 *	  __schedule()
4178 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4179 	 *
4180 	 * Also, see FORK_PREEMPT_COUNT.
4181 	 */
4182 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4183 		      "corrupted preempt_count: %s/%d/0x%x\n",
4184 		      current->comm, current->pid, preempt_count()))
4185 		preempt_count_set(FORK_PREEMPT_COUNT);
4186 
4187 	rq->prev_mm = NULL;
4188 
4189 	/*
4190 	 * A task struct has one reference for the use as "current".
4191 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4192 	 * schedule one last time. The schedule call will never return, and
4193 	 * the scheduled task must drop that reference.
4194 	 *
4195 	 * We must observe prev->state before clearing prev->on_cpu (in
4196 	 * finish_task), otherwise a concurrent wakeup can get prev
4197 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4198 	 * transition, resulting in a double drop.
4199 	 */
4200 	prev_state = prev->state;
4201 	vtime_task_switch(prev);
4202 	perf_event_task_sched_in(prev, current);
4203 	finish_task(prev);
4204 	finish_lock_switch(rq);
4205 	finish_arch_post_lock_switch();
4206 	kcov_finish_switch(current);
4207 	/*
4208 	 * kmap_local_sched_out() is invoked with rq::lock held and
4209 	 * interrupts disabled. There is no requirement for that, but the
4210 	 * sched out code does not have an interrupt enabled section.
4211 	 * Restoring the maps on sched in does not require interrupts being
4212 	 * disabled either.
4213 	 */
4214 	kmap_local_sched_in();
4215 
4216 	fire_sched_in_preempt_notifiers(current);
4217 	/*
4218 	 * When switching through a kernel thread, the loop in
4219 	 * membarrier_{private,global}_expedited() may have observed that
4220 	 * kernel thread and not issued an IPI. It is therefore possible to
4221 	 * schedule between user->kernel->user threads without passing though
4222 	 * switch_mm(). Membarrier requires a barrier after storing to
4223 	 * rq->curr, before returning to userspace, so provide them here:
4224 	 *
4225 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4226 	 *   provided by mmdrop(),
4227 	 * - a sync_core for SYNC_CORE.
4228 	 */
4229 	if (mm) {
4230 		membarrier_mm_sync_core_before_usermode(mm);
4231 		mmdrop(mm);
4232 	}
4233 	if (unlikely(prev_state == TASK_DEAD)) {
4234 		if (prev->sched_class->task_dead)
4235 			prev->sched_class->task_dead(prev);
4236 
4237 		/*
4238 		 * Remove function-return probe instances associated with this
4239 		 * task and put them back on the free list.
4240 		 */
4241 		kprobe_flush_task(prev);
4242 
4243 		/* Task is done with its stack. */
4244 		put_task_stack(prev);
4245 
4246 		put_task_struct_rcu_user(prev);
4247 	}
4248 
4249 	tick_nohz_task_switch();
4250 	return rq;
4251 }
4252 
4253 /**
4254  * schedule_tail - first thing a freshly forked thread must call.
4255  * @prev: the thread we just switched away from.
4256  */
4257 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4258 	__releases(rq->lock)
4259 {
4260 	struct rq *rq;
4261 
4262 	/*
4263 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4264 	 * finish_task_switch() for details.
4265 	 *
4266 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4267 	 * and the preempt_enable() will end up enabling preemption (on
4268 	 * PREEMPT_COUNT kernels).
4269 	 */
4270 
4271 	rq = finish_task_switch(prev);
4272 	preempt_enable();
4273 
4274 	if (current->set_child_tid)
4275 		put_user(task_pid_vnr(current), current->set_child_tid);
4276 
4277 	calculate_sigpending();
4278 }
4279 
4280 /*
4281  * context_switch - switch to the new MM and the new thread's register state.
4282  */
4283 static __always_inline struct rq *
4284 context_switch(struct rq *rq, struct task_struct *prev,
4285 	       struct task_struct *next, struct rq_flags *rf)
4286 {
4287 	prepare_task_switch(rq, prev, next);
4288 
4289 	/*
4290 	 * For paravirt, this is coupled with an exit in switch_to to
4291 	 * combine the page table reload and the switch backend into
4292 	 * one hypercall.
4293 	 */
4294 	arch_start_context_switch(prev);
4295 
4296 	/*
4297 	 * kernel -> kernel   lazy + transfer active
4298 	 *   user -> kernel   lazy + mmgrab() active
4299 	 *
4300 	 * kernel ->   user   switch + mmdrop() active
4301 	 *   user ->   user   switch
4302 	 */
4303 	if (!next->mm) {                                // to kernel
4304 		enter_lazy_tlb(prev->active_mm, next);
4305 
4306 		next->active_mm = prev->active_mm;
4307 		if (prev->mm)                           // from user
4308 			mmgrab(prev->active_mm);
4309 		else
4310 			prev->active_mm = NULL;
4311 	} else {                                        // to user
4312 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4313 		/*
4314 		 * sys_membarrier() requires an smp_mb() between setting
4315 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4316 		 *
4317 		 * The below provides this either through switch_mm(), or in
4318 		 * case 'prev->active_mm == next->mm' through
4319 		 * finish_task_switch()'s mmdrop().
4320 		 */
4321 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4322 
4323 		if (!prev->mm) {                        // from kernel
4324 			/* will mmdrop() in finish_task_switch(). */
4325 			rq->prev_mm = prev->active_mm;
4326 			prev->active_mm = NULL;
4327 		}
4328 	}
4329 
4330 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4331 
4332 	prepare_lock_switch(rq, next, rf);
4333 
4334 	/* Here we just switch the register state and the stack. */
4335 	switch_to(prev, next, prev);
4336 	barrier();
4337 
4338 	return finish_task_switch(prev);
4339 }
4340 
4341 /*
4342  * nr_running and nr_context_switches:
4343  *
4344  * externally visible scheduler statistics: current number of runnable
4345  * threads, total number of context switches performed since bootup.
4346  */
4347 unsigned long nr_running(void)
4348 {
4349 	unsigned long i, sum = 0;
4350 
4351 	for_each_online_cpu(i)
4352 		sum += cpu_rq(i)->nr_running;
4353 
4354 	return sum;
4355 }
4356 
4357 /*
4358  * Check if only the current task is running on the CPU.
4359  *
4360  * Caution: this function does not check that the caller has disabled
4361  * preemption, thus the result might have a time-of-check-to-time-of-use
4362  * race.  The caller is responsible to use it correctly, for example:
4363  *
4364  * - from a non-preemptible section (of course)
4365  *
4366  * - from a thread that is bound to a single CPU
4367  *
4368  * - in a loop with very short iterations (e.g. a polling loop)
4369  */
4370 bool single_task_running(void)
4371 {
4372 	return raw_rq()->nr_running == 1;
4373 }
4374 EXPORT_SYMBOL(single_task_running);
4375 
4376 unsigned long long nr_context_switches(void)
4377 {
4378 	int i;
4379 	unsigned long long sum = 0;
4380 
4381 	for_each_possible_cpu(i)
4382 		sum += cpu_rq(i)->nr_switches;
4383 
4384 	return sum;
4385 }
4386 
4387 /*
4388  * Consumers of these two interfaces, like for example the cpuidle menu
4389  * governor, are using nonsensical data. Preferring shallow idle state selection
4390  * for a CPU that has IO-wait which might not even end up running the task when
4391  * it does become runnable.
4392  */
4393 
4394 unsigned long nr_iowait_cpu(int cpu)
4395 {
4396 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4397 }
4398 
4399 /*
4400  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4401  *
4402  * The idea behind IO-wait account is to account the idle time that we could
4403  * have spend running if it were not for IO. That is, if we were to improve the
4404  * storage performance, we'd have a proportional reduction in IO-wait time.
4405  *
4406  * This all works nicely on UP, where, when a task blocks on IO, we account
4407  * idle time as IO-wait, because if the storage were faster, it could've been
4408  * running and we'd not be idle.
4409  *
4410  * This has been extended to SMP, by doing the same for each CPU. This however
4411  * is broken.
4412  *
4413  * Imagine for instance the case where two tasks block on one CPU, only the one
4414  * CPU will have IO-wait accounted, while the other has regular idle. Even
4415  * though, if the storage were faster, both could've ran at the same time,
4416  * utilising both CPUs.
4417  *
4418  * This means, that when looking globally, the current IO-wait accounting on
4419  * SMP is a lower bound, by reason of under accounting.
4420  *
4421  * Worse, since the numbers are provided per CPU, they are sometimes
4422  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4423  * associated with any one particular CPU, it can wake to another CPU than it
4424  * blocked on. This means the per CPU IO-wait number is meaningless.
4425  *
4426  * Task CPU affinities can make all that even more 'interesting'.
4427  */
4428 
4429 unsigned long nr_iowait(void)
4430 {
4431 	unsigned long i, sum = 0;
4432 
4433 	for_each_possible_cpu(i)
4434 		sum += nr_iowait_cpu(i);
4435 
4436 	return sum;
4437 }
4438 
4439 #ifdef CONFIG_SMP
4440 
4441 /*
4442  * sched_exec - execve() is a valuable balancing opportunity, because at
4443  * this point the task has the smallest effective memory and cache footprint.
4444  */
4445 void sched_exec(void)
4446 {
4447 	struct task_struct *p = current;
4448 	unsigned long flags;
4449 	int dest_cpu;
4450 
4451 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4452 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4453 	if (dest_cpu == smp_processor_id())
4454 		goto unlock;
4455 
4456 	if (likely(cpu_active(dest_cpu))) {
4457 		struct migration_arg arg = { p, dest_cpu };
4458 
4459 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4460 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4461 		return;
4462 	}
4463 unlock:
4464 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4465 }
4466 
4467 #endif
4468 
4469 DEFINE_PER_CPU(struct kernel_stat, kstat);
4470 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4471 
4472 EXPORT_PER_CPU_SYMBOL(kstat);
4473 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4474 
4475 /*
4476  * The function fair_sched_class.update_curr accesses the struct curr
4477  * and its field curr->exec_start; when called from task_sched_runtime(),
4478  * we observe a high rate of cache misses in practice.
4479  * Prefetching this data results in improved performance.
4480  */
4481 static inline void prefetch_curr_exec_start(struct task_struct *p)
4482 {
4483 #ifdef CONFIG_FAIR_GROUP_SCHED
4484 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4485 #else
4486 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4487 #endif
4488 	prefetch(curr);
4489 	prefetch(&curr->exec_start);
4490 }
4491 
4492 /*
4493  * Return accounted runtime for the task.
4494  * In case the task is currently running, return the runtime plus current's
4495  * pending runtime that have not been accounted yet.
4496  */
4497 unsigned long long task_sched_runtime(struct task_struct *p)
4498 {
4499 	struct rq_flags rf;
4500 	struct rq *rq;
4501 	u64 ns;
4502 
4503 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4504 	/*
4505 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4506 	 * So we have a optimization chance when the task's delta_exec is 0.
4507 	 * Reading ->on_cpu is racy, but this is ok.
4508 	 *
4509 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4510 	 * If we race with it entering CPU, unaccounted time is 0. This is
4511 	 * indistinguishable from the read occurring a few cycles earlier.
4512 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4513 	 * been accounted, so we're correct here as well.
4514 	 */
4515 	if (!p->on_cpu || !task_on_rq_queued(p))
4516 		return p->se.sum_exec_runtime;
4517 #endif
4518 
4519 	rq = task_rq_lock(p, &rf);
4520 	/*
4521 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4522 	 * project cycles that may never be accounted to this
4523 	 * thread, breaking clock_gettime().
4524 	 */
4525 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4526 		prefetch_curr_exec_start(p);
4527 		update_rq_clock(rq);
4528 		p->sched_class->update_curr(rq);
4529 	}
4530 	ns = p->se.sum_exec_runtime;
4531 	task_rq_unlock(rq, p, &rf);
4532 
4533 	return ns;
4534 }
4535 
4536 /*
4537  * This function gets called by the timer code, with HZ frequency.
4538  * We call it with interrupts disabled.
4539  */
4540 void scheduler_tick(void)
4541 {
4542 	int cpu = smp_processor_id();
4543 	struct rq *rq = cpu_rq(cpu);
4544 	struct task_struct *curr = rq->curr;
4545 	struct rq_flags rf;
4546 	unsigned long thermal_pressure;
4547 
4548 	arch_scale_freq_tick();
4549 	sched_clock_tick();
4550 
4551 	rq_lock(rq, &rf);
4552 
4553 	update_rq_clock(rq);
4554 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4555 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4556 	curr->sched_class->task_tick(rq, curr, 0);
4557 	calc_global_load_tick(rq);
4558 	psi_task_tick(rq);
4559 
4560 	rq_unlock(rq, &rf);
4561 
4562 	perf_event_task_tick();
4563 
4564 #ifdef CONFIG_SMP
4565 	rq->idle_balance = idle_cpu(cpu);
4566 	trigger_load_balance(rq);
4567 #endif
4568 }
4569 
4570 #ifdef CONFIG_NO_HZ_FULL
4571 
4572 struct tick_work {
4573 	int			cpu;
4574 	atomic_t		state;
4575 	struct delayed_work	work;
4576 };
4577 /* Values for ->state, see diagram below. */
4578 #define TICK_SCHED_REMOTE_OFFLINE	0
4579 #define TICK_SCHED_REMOTE_OFFLINING	1
4580 #define TICK_SCHED_REMOTE_RUNNING	2
4581 
4582 /*
4583  * State diagram for ->state:
4584  *
4585  *
4586  *          TICK_SCHED_REMOTE_OFFLINE
4587  *                    |   ^
4588  *                    |   |
4589  *                    |   | sched_tick_remote()
4590  *                    |   |
4591  *                    |   |
4592  *                    +--TICK_SCHED_REMOTE_OFFLINING
4593  *                    |   ^
4594  *                    |   |
4595  * sched_tick_start() |   | sched_tick_stop()
4596  *                    |   |
4597  *                    V   |
4598  *          TICK_SCHED_REMOTE_RUNNING
4599  *
4600  *
4601  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4602  * and sched_tick_start() are happy to leave the state in RUNNING.
4603  */
4604 
4605 static struct tick_work __percpu *tick_work_cpu;
4606 
4607 static void sched_tick_remote(struct work_struct *work)
4608 {
4609 	struct delayed_work *dwork = to_delayed_work(work);
4610 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4611 	int cpu = twork->cpu;
4612 	struct rq *rq = cpu_rq(cpu);
4613 	struct task_struct *curr;
4614 	struct rq_flags rf;
4615 	u64 delta;
4616 	int os;
4617 
4618 	/*
4619 	 * Handle the tick only if it appears the remote CPU is running in full
4620 	 * dynticks mode. The check is racy by nature, but missing a tick or
4621 	 * having one too much is no big deal because the scheduler tick updates
4622 	 * statistics and checks timeslices in a time-independent way, regardless
4623 	 * of when exactly it is running.
4624 	 */
4625 	if (!tick_nohz_tick_stopped_cpu(cpu))
4626 		goto out_requeue;
4627 
4628 	rq_lock_irq(rq, &rf);
4629 	curr = rq->curr;
4630 	if (cpu_is_offline(cpu))
4631 		goto out_unlock;
4632 
4633 	update_rq_clock(rq);
4634 
4635 	if (!is_idle_task(curr)) {
4636 		/*
4637 		 * Make sure the next tick runs within a reasonable
4638 		 * amount of time.
4639 		 */
4640 		delta = rq_clock_task(rq) - curr->se.exec_start;
4641 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4642 	}
4643 	curr->sched_class->task_tick(rq, curr, 0);
4644 
4645 	calc_load_nohz_remote(rq);
4646 out_unlock:
4647 	rq_unlock_irq(rq, &rf);
4648 out_requeue:
4649 
4650 	/*
4651 	 * Run the remote tick once per second (1Hz). This arbitrary
4652 	 * frequency is large enough to avoid overload but short enough
4653 	 * to keep scheduler internal stats reasonably up to date.  But
4654 	 * first update state to reflect hotplug activity if required.
4655 	 */
4656 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4657 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4658 	if (os == TICK_SCHED_REMOTE_RUNNING)
4659 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4660 }
4661 
4662 static void sched_tick_start(int cpu)
4663 {
4664 	int os;
4665 	struct tick_work *twork;
4666 
4667 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4668 		return;
4669 
4670 	WARN_ON_ONCE(!tick_work_cpu);
4671 
4672 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4673 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4674 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4675 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4676 		twork->cpu = cpu;
4677 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4678 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4679 	}
4680 }
4681 
4682 #ifdef CONFIG_HOTPLUG_CPU
4683 static void sched_tick_stop(int cpu)
4684 {
4685 	struct tick_work *twork;
4686 	int os;
4687 
4688 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4689 		return;
4690 
4691 	WARN_ON_ONCE(!tick_work_cpu);
4692 
4693 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4694 	/* There cannot be competing actions, but don't rely on stop-machine. */
4695 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4696 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4697 	/* Don't cancel, as this would mess up the state machine. */
4698 }
4699 #endif /* CONFIG_HOTPLUG_CPU */
4700 
4701 int __init sched_tick_offload_init(void)
4702 {
4703 	tick_work_cpu = alloc_percpu(struct tick_work);
4704 	BUG_ON(!tick_work_cpu);
4705 	return 0;
4706 }
4707 
4708 #else /* !CONFIG_NO_HZ_FULL */
4709 static inline void sched_tick_start(int cpu) { }
4710 static inline void sched_tick_stop(int cpu) { }
4711 #endif
4712 
4713 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4714 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4715 /*
4716  * If the value passed in is equal to the current preempt count
4717  * then we just disabled preemption. Start timing the latency.
4718  */
4719 static inline void preempt_latency_start(int val)
4720 {
4721 	if (preempt_count() == val) {
4722 		unsigned long ip = get_lock_parent_ip();
4723 #ifdef CONFIG_DEBUG_PREEMPT
4724 		current->preempt_disable_ip = ip;
4725 #endif
4726 		trace_preempt_off(CALLER_ADDR0, ip);
4727 	}
4728 }
4729 
4730 void preempt_count_add(int val)
4731 {
4732 #ifdef CONFIG_DEBUG_PREEMPT
4733 	/*
4734 	 * Underflow?
4735 	 */
4736 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4737 		return;
4738 #endif
4739 	__preempt_count_add(val);
4740 #ifdef CONFIG_DEBUG_PREEMPT
4741 	/*
4742 	 * Spinlock count overflowing soon?
4743 	 */
4744 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4745 				PREEMPT_MASK - 10);
4746 #endif
4747 	preempt_latency_start(val);
4748 }
4749 EXPORT_SYMBOL(preempt_count_add);
4750 NOKPROBE_SYMBOL(preempt_count_add);
4751 
4752 /*
4753  * If the value passed in equals to the current preempt count
4754  * then we just enabled preemption. Stop timing the latency.
4755  */
4756 static inline void preempt_latency_stop(int val)
4757 {
4758 	if (preempt_count() == val)
4759 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4760 }
4761 
4762 void preempt_count_sub(int val)
4763 {
4764 #ifdef CONFIG_DEBUG_PREEMPT
4765 	/*
4766 	 * Underflow?
4767 	 */
4768 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4769 		return;
4770 	/*
4771 	 * Is the spinlock portion underflowing?
4772 	 */
4773 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4774 			!(preempt_count() & PREEMPT_MASK)))
4775 		return;
4776 #endif
4777 
4778 	preempt_latency_stop(val);
4779 	__preempt_count_sub(val);
4780 }
4781 EXPORT_SYMBOL(preempt_count_sub);
4782 NOKPROBE_SYMBOL(preempt_count_sub);
4783 
4784 #else
4785 static inline void preempt_latency_start(int val) { }
4786 static inline void preempt_latency_stop(int val) { }
4787 #endif
4788 
4789 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4790 {
4791 #ifdef CONFIG_DEBUG_PREEMPT
4792 	return p->preempt_disable_ip;
4793 #else
4794 	return 0;
4795 #endif
4796 }
4797 
4798 /*
4799  * Print scheduling while atomic bug:
4800  */
4801 static noinline void __schedule_bug(struct task_struct *prev)
4802 {
4803 	/* Save this before calling printk(), since that will clobber it */
4804 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4805 
4806 	if (oops_in_progress)
4807 		return;
4808 
4809 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4810 		prev->comm, prev->pid, preempt_count());
4811 
4812 	debug_show_held_locks(prev);
4813 	print_modules();
4814 	if (irqs_disabled())
4815 		print_irqtrace_events(prev);
4816 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4817 	    && in_atomic_preempt_off()) {
4818 		pr_err("Preemption disabled at:");
4819 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4820 	}
4821 	if (panic_on_warn)
4822 		panic("scheduling while atomic\n");
4823 
4824 	dump_stack();
4825 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4826 }
4827 
4828 /*
4829  * Various schedule()-time debugging checks and statistics:
4830  */
4831 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4832 {
4833 #ifdef CONFIG_SCHED_STACK_END_CHECK
4834 	if (task_stack_end_corrupted(prev))
4835 		panic("corrupted stack end detected inside scheduler\n");
4836 
4837 	if (task_scs_end_corrupted(prev))
4838 		panic("corrupted shadow stack detected inside scheduler\n");
4839 #endif
4840 
4841 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4842 	if (!preempt && prev->state && prev->non_block_count) {
4843 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4844 			prev->comm, prev->pid, prev->non_block_count);
4845 		dump_stack();
4846 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4847 	}
4848 #endif
4849 
4850 	if (unlikely(in_atomic_preempt_off())) {
4851 		__schedule_bug(prev);
4852 		preempt_count_set(PREEMPT_DISABLED);
4853 	}
4854 	rcu_sleep_check();
4855 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4856 
4857 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4858 
4859 	schedstat_inc(this_rq()->sched_count);
4860 }
4861 
4862 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4863 				  struct rq_flags *rf)
4864 {
4865 #ifdef CONFIG_SMP
4866 	const struct sched_class *class;
4867 	/*
4868 	 * We must do the balancing pass before put_prev_task(), such
4869 	 * that when we release the rq->lock the task is in the same
4870 	 * state as before we took rq->lock.
4871 	 *
4872 	 * We can terminate the balance pass as soon as we know there is
4873 	 * a runnable task of @class priority or higher.
4874 	 */
4875 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4876 		if (class->balance(rq, prev, rf))
4877 			break;
4878 	}
4879 #endif
4880 
4881 	put_prev_task(rq, prev);
4882 }
4883 
4884 /*
4885  * Pick up the highest-prio task:
4886  */
4887 static inline struct task_struct *
4888 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4889 {
4890 	const struct sched_class *class;
4891 	struct task_struct *p;
4892 
4893 	/*
4894 	 * Optimization: we know that if all tasks are in the fair class we can
4895 	 * call that function directly, but only if the @prev task wasn't of a
4896 	 * higher scheduling class, because otherwise those lose the
4897 	 * opportunity to pull in more work from other CPUs.
4898 	 */
4899 	if (likely(prev->sched_class <= &fair_sched_class &&
4900 		   rq->nr_running == rq->cfs.h_nr_running)) {
4901 
4902 		p = pick_next_task_fair(rq, prev, rf);
4903 		if (unlikely(p == RETRY_TASK))
4904 			goto restart;
4905 
4906 		/* Assumes fair_sched_class->next == idle_sched_class */
4907 		if (!p) {
4908 			put_prev_task(rq, prev);
4909 			p = pick_next_task_idle(rq);
4910 		}
4911 
4912 		return p;
4913 	}
4914 
4915 restart:
4916 	put_prev_task_balance(rq, prev, rf);
4917 
4918 	for_each_class(class) {
4919 		p = class->pick_next_task(rq);
4920 		if (p)
4921 			return p;
4922 	}
4923 
4924 	/* The idle class should always have a runnable task: */
4925 	BUG();
4926 }
4927 
4928 /*
4929  * __schedule() is the main scheduler function.
4930  *
4931  * The main means of driving the scheduler and thus entering this function are:
4932  *
4933  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4934  *
4935  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4936  *      paths. For example, see arch/x86/entry_64.S.
4937  *
4938  *      To drive preemption between tasks, the scheduler sets the flag in timer
4939  *      interrupt handler scheduler_tick().
4940  *
4941  *   3. Wakeups don't really cause entry into schedule(). They add a
4942  *      task to the run-queue and that's it.
4943  *
4944  *      Now, if the new task added to the run-queue preempts the current
4945  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4946  *      called on the nearest possible occasion:
4947  *
4948  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4949  *
4950  *         - in syscall or exception context, at the next outmost
4951  *           preempt_enable(). (this might be as soon as the wake_up()'s
4952  *           spin_unlock()!)
4953  *
4954  *         - in IRQ context, return from interrupt-handler to
4955  *           preemptible context
4956  *
4957  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4958  *         then at the next:
4959  *
4960  *          - cond_resched() call
4961  *          - explicit schedule() call
4962  *          - return from syscall or exception to user-space
4963  *          - return from interrupt-handler to user-space
4964  *
4965  * WARNING: must be called with preemption disabled!
4966  */
4967 static void __sched notrace __schedule(bool preempt)
4968 {
4969 	struct task_struct *prev, *next;
4970 	unsigned long *switch_count;
4971 	unsigned long prev_state;
4972 	struct rq_flags rf;
4973 	struct rq *rq;
4974 	int cpu;
4975 
4976 	cpu = smp_processor_id();
4977 	rq = cpu_rq(cpu);
4978 	prev = rq->curr;
4979 
4980 	schedule_debug(prev, preempt);
4981 
4982 	if (sched_feat(HRTICK))
4983 		hrtick_clear(rq);
4984 
4985 	local_irq_disable();
4986 	rcu_note_context_switch(preempt);
4987 
4988 	/*
4989 	 * Make sure that signal_pending_state()->signal_pending() below
4990 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4991 	 * done by the caller to avoid the race with signal_wake_up():
4992 	 *
4993 	 * __set_current_state(@state)		signal_wake_up()
4994 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4995 	 *					  wake_up_state(p, state)
4996 	 *   LOCK rq->lock			    LOCK p->pi_state
4997 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4998 	 *     if (signal_pending_state())	    if (p->state & @state)
4999 	 *
5000 	 * Also, the membarrier system call requires a full memory barrier
5001 	 * after coming from user-space, before storing to rq->curr.
5002 	 */
5003 	rq_lock(rq, &rf);
5004 	smp_mb__after_spinlock();
5005 
5006 	/* Promote REQ to ACT */
5007 	rq->clock_update_flags <<= 1;
5008 	update_rq_clock(rq);
5009 
5010 	switch_count = &prev->nivcsw;
5011 
5012 	/*
5013 	 * We must load prev->state once (task_struct::state is volatile), such
5014 	 * that:
5015 	 *
5016 	 *  - we form a control dependency vs deactivate_task() below.
5017 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5018 	 */
5019 	prev_state = prev->state;
5020 	if (!preempt && prev_state) {
5021 		if (signal_pending_state(prev_state, prev)) {
5022 			prev->state = TASK_RUNNING;
5023 		} else {
5024 			prev->sched_contributes_to_load =
5025 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5026 				!(prev_state & TASK_NOLOAD) &&
5027 				!(prev->flags & PF_FROZEN);
5028 
5029 			if (prev->sched_contributes_to_load)
5030 				rq->nr_uninterruptible++;
5031 
5032 			/*
5033 			 * __schedule()			ttwu()
5034 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5035 			 *   if (prev_state)		    goto out;
5036 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5037 			 *				  p->state = TASK_WAKING
5038 			 *
5039 			 * Where __schedule() and ttwu() have matching control dependencies.
5040 			 *
5041 			 * After this, schedule() must not care about p->state any more.
5042 			 */
5043 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5044 
5045 			if (prev->in_iowait) {
5046 				atomic_inc(&rq->nr_iowait);
5047 				delayacct_blkio_start();
5048 			}
5049 		}
5050 		switch_count = &prev->nvcsw;
5051 	}
5052 
5053 	next = pick_next_task(rq, prev, &rf);
5054 	clear_tsk_need_resched(prev);
5055 	clear_preempt_need_resched();
5056 
5057 	if (likely(prev != next)) {
5058 		rq->nr_switches++;
5059 		/*
5060 		 * RCU users of rcu_dereference(rq->curr) may not see
5061 		 * changes to task_struct made by pick_next_task().
5062 		 */
5063 		RCU_INIT_POINTER(rq->curr, next);
5064 		/*
5065 		 * The membarrier system call requires each architecture
5066 		 * to have a full memory barrier after updating
5067 		 * rq->curr, before returning to user-space.
5068 		 *
5069 		 * Here are the schemes providing that barrier on the
5070 		 * various architectures:
5071 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5072 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5073 		 * - finish_lock_switch() for weakly-ordered
5074 		 *   architectures where spin_unlock is a full barrier,
5075 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5076 		 *   is a RELEASE barrier),
5077 		 */
5078 		++*switch_count;
5079 
5080 		migrate_disable_switch(rq, prev);
5081 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5082 
5083 		trace_sched_switch(preempt, prev, next);
5084 
5085 		/* Also unlocks the rq: */
5086 		rq = context_switch(rq, prev, next, &rf);
5087 	} else {
5088 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5089 
5090 		rq_unpin_lock(rq, &rf);
5091 		__balance_callbacks(rq);
5092 		raw_spin_unlock_irq(&rq->lock);
5093 	}
5094 }
5095 
5096 void __noreturn do_task_dead(void)
5097 {
5098 	/* Causes final put_task_struct in finish_task_switch(): */
5099 	set_special_state(TASK_DEAD);
5100 
5101 	/* Tell freezer to ignore us: */
5102 	current->flags |= PF_NOFREEZE;
5103 
5104 	__schedule(false);
5105 	BUG();
5106 
5107 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5108 	for (;;)
5109 		cpu_relax();
5110 }
5111 
5112 static inline void sched_submit_work(struct task_struct *tsk)
5113 {
5114 	unsigned int task_flags;
5115 
5116 	if (!tsk->state)
5117 		return;
5118 
5119 	task_flags = tsk->flags;
5120 	/*
5121 	 * If a worker went to sleep, notify and ask workqueue whether
5122 	 * it wants to wake up a task to maintain concurrency.
5123 	 * As this function is called inside the schedule() context,
5124 	 * we disable preemption to avoid it calling schedule() again
5125 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5126 	 * requires it.
5127 	 */
5128 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5129 		preempt_disable();
5130 		if (task_flags & PF_WQ_WORKER)
5131 			wq_worker_sleeping(tsk);
5132 		else
5133 			io_wq_worker_sleeping(tsk);
5134 		preempt_enable_no_resched();
5135 	}
5136 
5137 	if (tsk_is_pi_blocked(tsk))
5138 		return;
5139 
5140 	/*
5141 	 * If we are going to sleep and we have plugged IO queued,
5142 	 * make sure to submit it to avoid deadlocks.
5143 	 */
5144 	if (blk_needs_flush_plug(tsk))
5145 		blk_schedule_flush_plug(tsk);
5146 }
5147 
5148 static void sched_update_worker(struct task_struct *tsk)
5149 {
5150 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5151 		if (tsk->flags & PF_WQ_WORKER)
5152 			wq_worker_running(tsk);
5153 		else
5154 			io_wq_worker_running(tsk);
5155 	}
5156 }
5157 
5158 asmlinkage __visible void __sched schedule(void)
5159 {
5160 	struct task_struct *tsk = current;
5161 
5162 	sched_submit_work(tsk);
5163 	do {
5164 		preempt_disable();
5165 		__schedule(false);
5166 		sched_preempt_enable_no_resched();
5167 	} while (need_resched());
5168 	sched_update_worker(tsk);
5169 }
5170 EXPORT_SYMBOL(schedule);
5171 
5172 /*
5173  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5174  * state (have scheduled out non-voluntarily) by making sure that all
5175  * tasks have either left the run queue or have gone into user space.
5176  * As idle tasks do not do either, they must not ever be preempted
5177  * (schedule out non-voluntarily).
5178  *
5179  * schedule_idle() is similar to schedule_preempt_disable() except that it
5180  * never enables preemption because it does not call sched_submit_work().
5181  */
5182 void __sched schedule_idle(void)
5183 {
5184 	/*
5185 	 * As this skips calling sched_submit_work(), which the idle task does
5186 	 * regardless because that function is a nop when the task is in a
5187 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5188 	 * current task can be in any other state. Note, idle is always in the
5189 	 * TASK_RUNNING state.
5190 	 */
5191 	WARN_ON_ONCE(current->state);
5192 	do {
5193 		__schedule(false);
5194 	} while (need_resched());
5195 }
5196 
5197 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5198 asmlinkage __visible void __sched schedule_user(void)
5199 {
5200 	/*
5201 	 * If we come here after a random call to set_need_resched(),
5202 	 * or we have been woken up remotely but the IPI has not yet arrived,
5203 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5204 	 * we find a better solution.
5205 	 *
5206 	 * NB: There are buggy callers of this function.  Ideally we
5207 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5208 	 * too frequently to make sense yet.
5209 	 */
5210 	enum ctx_state prev_state = exception_enter();
5211 	schedule();
5212 	exception_exit(prev_state);
5213 }
5214 #endif
5215 
5216 /**
5217  * schedule_preempt_disabled - called with preemption disabled
5218  *
5219  * Returns with preemption disabled. Note: preempt_count must be 1
5220  */
5221 void __sched schedule_preempt_disabled(void)
5222 {
5223 	sched_preempt_enable_no_resched();
5224 	schedule();
5225 	preempt_disable();
5226 }
5227 
5228 static void __sched notrace preempt_schedule_common(void)
5229 {
5230 	do {
5231 		/*
5232 		 * Because the function tracer can trace preempt_count_sub()
5233 		 * and it also uses preempt_enable/disable_notrace(), if
5234 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5235 		 * by the function tracer will call this function again and
5236 		 * cause infinite recursion.
5237 		 *
5238 		 * Preemption must be disabled here before the function
5239 		 * tracer can trace. Break up preempt_disable() into two
5240 		 * calls. One to disable preemption without fear of being
5241 		 * traced. The other to still record the preemption latency,
5242 		 * which can also be traced by the function tracer.
5243 		 */
5244 		preempt_disable_notrace();
5245 		preempt_latency_start(1);
5246 		__schedule(true);
5247 		preempt_latency_stop(1);
5248 		preempt_enable_no_resched_notrace();
5249 
5250 		/*
5251 		 * Check again in case we missed a preemption opportunity
5252 		 * between schedule and now.
5253 		 */
5254 	} while (need_resched());
5255 }
5256 
5257 #ifdef CONFIG_PREEMPTION
5258 /*
5259  * This is the entry point to schedule() from in-kernel preemption
5260  * off of preempt_enable.
5261  */
5262 asmlinkage __visible void __sched notrace preempt_schedule(void)
5263 {
5264 	/*
5265 	 * If there is a non-zero preempt_count or interrupts are disabled,
5266 	 * we do not want to preempt the current task. Just return..
5267 	 */
5268 	if (likely(!preemptible()))
5269 		return;
5270 
5271 	preempt_schedule_common();
5272 }
5273 NOKPROBE_SYMBOL(preempt_schedule);
5274 EXPORT_SYMBOL(preempt_schedule);
5275 
5276 /**
5277  * preempt_schedule_notrace - preempt_schedule called by tracing
5278  *
5279  * The tracing infrastructure uses preempt_enable_notrace to prevent
5280  * recursion and tracing preempt enabling caused by the tracing
5281  * infrastructure itself. But as tracing can happen in areas coming
5282  * from userspace or just about to enter userspace, a preempt enable
5283  * can occur before user_exit() is called. This will cause the scheduler
5284  * to be called when the system is still in usermode.
5285  *
5286  * To prevent this, the preempt_enable_notrace will use this function
5287  * instead of preempt_schedule() to exit user context if needed before
5288  * calling the scheduler.
5289  */
5290 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5291 {
5292 	enum ctx_state prev_ctx;
5293 
5294 	if (likely(!preemptible()))
5295 		return;
5296 
5297 	do {
5298 		/*
5299 		 * Because the function tracer can trace preempt_count_sub()
5300 		 * and it also uses preempt_enable/disable_notrace(), if
5301 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5302 		 * by the function tracer will call this function again and
5303 		 * cause infinite recursion.
5304 		 *
5305 		 * Preemption must be disabled here before the function
5306 		 * tracer can trace. Break up preempt_disable() into two
5307 		 * calls. One to disable preemption without fear of being
5308 		 * traced. The other to still record the preemption latency,
5309 		 * which can also be traced by the function tracer.
5310 		 */
5311 		preempt_disable_notrace();
5312 		preempt_latency_start(1);
5313 		/*
5314 		 * Needs preempt disabled in case user_exit() is traced
5315 		 * and the tracer calls preempt_enable_notrace() causing
5316 		 * an infinite recursion.
5317 		 */
5318 		prev_ctx = exception_enter();
5319 		__schedule(true);
5320 		exception_exit(prev_ctx);
5321 
5322 		preempt_latency_stop(1);
5323 		preempt_enable_no_resched_notrace();
5324 	} while (need_resched());
5325 }
5326 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5327 
5328 #endif /* CONFIG_PREEMPTION */
5329 
5330 /*
5331  * This is the entry point to schedule() from kernel preemption
5332  * off of irq context.
5333  * Note, that this is called and return with irqs disabled. This will
5334  * protect us against recursive calling from irq.
5335  */
5336 asmlinkage __visible void __sched preempt_schedule_irq(void)
5337 {
5338 	enum ctx_state prev_state;
5339 
5340 	/* Catch callers which need to be fixed */
5341 	BUG_ON(preempt_count() || !irqs_disabled());
5342 
5343 	prev_state = exception_enter();
5344 
5345 	do {
5346 		preempt_disable();
5347 		local_irq_enable();
5348 		__schedule(true);
5349 		local_irq_disable();
5350 		sched_preempt_enable_no_resched();
5351 	} while (need_resched());
5352 
5353 	exception_exit(prev_state);
5354 }
5355 
5356 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5357 			  void *key)
5358 {
5359 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5360 	return try_to_wake_up(curr->private, mode, wake_flags);
5361 }
5362 EXPORT_SYMBOL(default_wake_function);
5363 
5364 #ifdef CONFIG_RT_MUTEXES
5365 
5366 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5367 {
5368 	if (pi_task)
5369 		prio = min(prio, pi_task->prio);
5370 
5371 	return prio;
5372 }
5373 
5374 static inline int rt_effective_prio(struct task_struct *p, int prio)
5375 {
5376 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5377 
5378 	return __rt_effective_prio(pi_task, prio);
5379 }
5380 
5381 /*
5382  * rt_mutex_setprio - set the current priority of a task
5383  * @p: task to boost
5384  * @pi_task: donor task
5385  *
5386  * This function changes the 'effective' priority of a task. It does
5387  * not touch ->normal_prio like __setscheduler().
5388  *
5389  * Used by the rt_mutex code to implement priority inheritance
5390  * logic. Call site only calls if the priority of the task changed.
5391  */
5392 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5393 {
5394 	int prio, oldprio, queued, running, queue_flag =
5395 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5396 	const struct sched_class *prev_class;
5397 	struct rq_flags rf;
5398 	struct rq *rq;
5399 
5400 	/* XXX used to be waiter->prio, not waiter->task->prio */
5401 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5402 
5403 	/*
5404 	 * If nothing changed; bail early.
5405 	 */
5406 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5407 		return;
5408 
5409 	rq = __task_rq_lock(p, &rf);
5410 	update_rq_clock(rq);
5411 	/*
5412 	 * Set under pi_lock && rq->lock, such that the value can be used under
5413 	 * either lock.
5414 	 *
5415 	 * Note that there is loads of tricky to make this pointer cache work
5416 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5417 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5418 	 * task is allowed to run again (and can exit). This ensures the pointer
5419 	 * points to a blocked task -- which guarantees the task is present.
5420 	 */
5421 	p->pi_top_task = pi_task;
5422 
5423 	/*
5424 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5425 	 */
5426 	if (prio == p->prio && !dl_prio(prio))
5427 		goto out_unlock;
5428 
5429 	/*
5430 	 * Idle task boosting is a nono in general. There is one
5431 	 * exception, when PREEMPT_RT and NOHZ is active:
5432 	 *
5433 	 * The idle task calls get_next_timer_interrupt() and holds
5434 	 * the timer wheel base->lock on the CPU and another CPU wants
5435 	 * to access the timer (probably to cancel it). We can safely
5436 	 * ignore the boosting request, as the idle CPU runs this code
5437 	 * with interrupts disabled and will complete the lock
5438 	 * protected section without being interrupted. So there is no
5439 	 * real need to boost.
5440 	 */
5441 	if (unlikely(p == rq->idle)) {
5442 		WARN_ON(p != rq->curr);
5443 		WARN_ON(p->pi_blocked_on);
5444 		goto out_unlock;
5445 	}
5446 
5447 	trace_sched_pi_setprio(p, pi_task);
5448 	oldprio = p->prio;
5449 
5450 	if (oldprio == prio)
5451 		queue_flag &= ~DEQUEUE_MOVE;
5452 
5453 	prev_class = p->sched_class;
5454 	queued = task_on_rq_queued(p);
5455 	running = task_current(rq, p);
5456 	if (queued)
5457 		dequeue_task(rq, p, queue_flag);
5458 	if (running)
5459 		put_prev_task(rq, p);
5460 
5461 	/*
5462 	 * Boosting condition are:
5463 	 * 1. -rt task is running and holds mutex A
5464 	 *      --> -dl task blocks on mutex A
5465 	 *
5466 	 * 2. -dl task is running and holds mutex A
5467 	 *      --> -dl task blocks on mutex A and could preempt the
5468 	 *          running task
5469 	 */
5470 	if (dl_prio(prio)) {
5471 		if (!dl_prio(p->normal_prio) ||
5472 		    (pi_task && dl_prio(pi_task->prio) &&
5473 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5474 			p->dl.pi_se = pi_task->dl.pi_se;
5475 			queue_flag |= ENQUEUE_REPLENISH;
5476 		} else {
5477 			p->dl.pi_se = &p->dl;
5478 		}
5479 		p->sched_class = &dl_sched_class;
5480 	} else if (rt_prio(prio)) {
5481 		if (dl_prio(oldprio))
5482 			p->dl.pi_se = &p->dl;
5483 		if (oldprio < prio)
5484 			queue_flag |= ENQUEUE_HEAD;
5485 		p->sched_class = &rt_sched_class;
5486 	} else {
5487 		if (dl_prio(oldprio))
5488 			p->dl.pi_se = &p->dl;
5489 		if (rt_prio(oldprio))
5490 			p->rt.timeout = 0;
5491 		p->sched_class = &fair_sched_class;
5492 	}
5493 
5494 	p->prio = prio;
5495 
5496 	if (queued)
5497 		enqueue_task(rq, p, queue_flag);
5498 	if (running)
5499 		set_next_task(rq, p);
5500 
5501 	check_class_changed(rq, p, prev_class, oldprio);
5502 out_unlock:
5503 	/* Avoid rq from going away on us: */
5504 	preempt_disable();
5505 
5506 	rq_unpin_lock(rq, &rf);
5507 	__balance_callbacks(rq);
5508 	raw_spin_unlock(&rq->lock);
5509 
5510 	preempt_enable();
5511 }
5512 #else
5513 static inline int rt_effective_prio(struct task_struct *p, int prio)
5514 {
5515 	return prio;
5516 }
5517 #endif
5518 
5519 void set_user_nice(struct task_struct *p, long nice)
5520 {
5521 	bool queued, running;
5522 	int old_prio;
5523 	struct rq_flags rf;
5524 	struct rq *rq;
5525 
5526 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5527 		return;
5528 	/*
5529 	 * We have to be careful, if called from sys_setpriority(),
5530 	 * the task might be in the middle of scheduling on another CPU.
5531 	 */
5532 	rq = task_rq_lock(p, &rf);
5533 	update_rq_clock(rq);
5534 
5535 	/*
5536 	 * The RT priorities are set via sched_setscheduler(), but we still
5537 	 * allow the 'normal' nice value to be set - but as expected
5538 	 * it won't have any effect on scheduling until the task is
5539 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5540 	 */
5541 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5542 		p->static_prio = NICE_TO_PRIO(nice);
5543 		goto out_unlock;
5544 	}
5545 	queued = task_on_rq_queued(p);
5546 	running = task_current(rq, p);
5547 	if (queued)
5548 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5549 	if (running)
5550 		put_prev_task(rq, p);
5551 
5552 	p->static_prio = NICE_TO_PRIO(nice);
5553 	set_load_weight(p, true);
5554 	old_prio = p->prio;
5555 	p->prio = effective_prio(p);
5556 
5557 	if (queued)
5558 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5559 	if (running)
5560 		set_next_task(rq, p);
5561 
5562 	/*
5563 	 * If the task increased its priority or is running and
5564 	 * lowered its priority, then reschedule its CPU:
5565 	 */
5566 	p->sched_class->prio_changed(rq, p, old_prio);
5567 
5568 out_unlock:
5569 	task_rq_unlock(rq, p, &rf);
5570 }
5571 EXPORT_SYMBOL(set_user_nice);
5572 
5573 /*
5574  * can_nice - check if a task can reduce its nice value
5575  * @p: task
5576  * @nice: nice value
5577  */
5578 int can_nice(const struct task_struct *p, const int nice)
5579 {
5580 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5581 	int nice_rlim = nice_to_rlimit(nice);
5582 
5583 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5584 		capable(CAP_SYS_NICE));
5585 }
5586 
5587 #ifdef __ARCH_WANT_SYS_NICE
5588 
5589 /*
5590  * sys_nice - change the priority of the current process.
5591  * @increment: priority increment
5592  *
5593  * sys_setpriority is a more generic, but much slower function that
5594  * does similar things.
5595  */
5596 SYSCALL_DEFINE1(nice, int, increment)
5597 {
5598 	long nice, retval;
5599 
5600 	/*
5601 	 * Setpriority might change our priority at the same moment.
5602 	 * We don't have to worry. Conceptually one call occurs first
5603 	 * and we have a single winner.
5604 	 */
5605 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5606 	nice = task_nice(current) + increment;
5607 
5608 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5609 	if (increment < 0 && !can_nice(current, nice))
5610 		return -EPERM;
5611 
5612 	retval = security_task_setnice(current, nice);
5613 	if (retval)
5614 		return retval;
5615 
5616 	set_user_nice(current, nice);
5617 	return 0;
5618 }
5619 
5620 #endif
5621 
5622 /**
5623  * task_prio - return the priority value of a given task.
5624  * @p: the task in question.
5625  *
5626  * Return: The priority value as seen by users in /proc.
5627  * RT tasks are offset by -200. Normal tasks are centered
5628  * around 0, value goes from -16 to +15.
5629  */
5630 int task_prio(const struct task_struct *p)
5631 {
5632 	return p->prio - MAX_RT_PRIO;
5633 }
5634 
5635 /**
5636  * idle_cpu - is a given CPU idle currently?
5637  * @cpu: the processor in question.
5638  *
5639  * Return: 1 if the CPU is currently idle. 0 otherwise.
5640  */
5641 int idle_cpu(int cpu)
5642 {
5643 	struct rq *rq = cpu_rq(cpu);
5644 
5645 	if (rq->curr != rq->idle)
5646 		return 0;
5647 
5648 	if (rq->nr_running)
5649 		return 0;
5650 
5651 #ifdef CONFIG_SMP
5652 	if (rq->ttwu_pending)
5653 		return 0;
5654 #endif
5655 
5656 	return 1;
5657 }
5658 
5659 /**
5660  * available_idle_cpu - is a given CPU idle for enqueuing work.
5661  * @cpu: the CPU in question.
5662  *
5663  * Return: 1 if the CPU is currently idle. 0 otherwise.
5664  */
5665 int available_idle_cpu(int cpu)
5666 {
5667 	if (!idle_cpu(cpu))
5668 		return 0;
5669 
5670 	if (vcpu_is_preempted(cpu))
5671 		return 0;
5672 
5673 	return 1;
5674 }
5675 
5676 /**
5677  * idle_task - return the idle task for a given CPU.
5678  * @cpu: the processor in question.
5679  *
5680  * Return: The idle task for the CPU @cpu.
5681  */
5682 struct task_struct *idle_task(int cpu)
5683 {
5684 	return cpu_rq(cpu)->idle;
5685 }
5686 
5687 /**
5688  * find_process_by_pid - find a process with a matching PID value.
5689  * @pid: the pid in question.
5690  *
5691  * The task of @pid, if found. %NULL otherwise.
5692  */
5693 static struct task_struct *find_process_by_pid(pid_t pid)
5694 {
5695 	return pid ? find_task_by_vpid(pid) : current;
5696 }
5697 
5698 /*
5699  * sched_setparam() passes in -1 for its policy, to let the functions
5700  * it calls know not to change it.
5701  */
5702 #define SETPARAM_POLICY	-1
5703 
5704 static void __setscheduler_params(struct task_struct *p,
5705 		const struct sched_attr *attr)
5706 {
5707 	int policy = attr->sched_policy;
5708 
5709 	if (policy == SETPARAM_POLICY)
5710 		policy = p->policy;
5711 
5712 	p->policy = policy;
5713 
5714 	if (dl_policy(policy))
5715 		__setparam_dl(p, attr);
5716 	else if (fair_policy(policy))
5717 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5718 
5719 	/*
5720 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5721 	 * !rt_policy. Always setting this ensures that things like
5722 	 * getparam()/getattr() don't report silly values for !rt tasks.
5723 	 */
5724 	p->rt_priority = attr->sched_priority;
5725 	p->normal_prio = normal_prio(p);
5726 	set_load_weight(p, true);
5727 }
5728 
5729 /* Actually do priority change: must hold pi & rq lock. */
5730 static void __setscheduler(struct rq *rq, struct task_struct *p,
5731 			   const struct sched_attr *attr, bool keep_boost)
5732 {
5733 	/*
5734 	 * If params can't change scheduling class changes aren't allowed
5735 	 * either.
5736 	 */
5737 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5738 		return;
5739 
5740 	__setscheduler_params(p, attr);
5741 
5742 	/*
5743 	 * Keep a potential priority boosting if called from
5744 	 * sched_setscheduler().
5745 	 */
5746 	p->prio = normal_prio(p);
5747 	if (keep_boost)
5748 		p->prio = rt_effective_prio(p, p->prio);
5749 
5750 	if (dl_prio(p->prio))
5751 		p->sched_class = &dl_sched_class;
5752 	else if (rt_prio(p->prio))
5753 		p->sched_class = &rt_sched_class;
5754 	else
5755 		p->sched_class = &fair_sched_class;
5756 }
5757 
5758 /*
5759  * Check the target process has a UID that matches the current process's:
5760  */
5761 static bool check_same_owner(struct task_struct *p)
5762 {
5763 	const struct cred *cred = current_cred(), *pcred;
5764 	bool match;
5765 
5766 	rcu_read_lock();
5767 	pcred = __task_cred(p);
5768 	match = (uid_eq(cred->euid, pcred->euid) ||
5769 		 uid_eq(cred->euid, pcred->uid));
5770 	rcu_read_unlock();
5771 	return match;
5772 }
5773 
5774 static int __sched_setscheduler(struct task_struct *p,
5775 				const struct sched_attr *attr,
5776 				bool user, bool pi)
5777 {
5778 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5779 		      MAX_RT_PRIO - 1 - attr->sched_priority;
5780 	int retval, oldprio, oldpolicy = -1, queued, running;
5781 	int new_effective_prio, policy = attr->sched_policy;
5782 	const struct sched_class *prev_class;
5783 	struct callback_head *head;
5784 	struct rq_flags rf;
5785 	int reset_on_fork;
5786 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5787 	struct rq *rq;
5788 
5789 	/* The pi code expects interrupts enabled */
5790 	BUG_ON(pi && in_interrupt());
5791 recheck:
5792 	/* Double check policy once rq lock held: */
5793 	if (policy < 0) {
5794 		reset_on_fork = p->sched_reset_on_fork;
5795 		policy = oldpolicy = p->policy;
5796 	} else {
5797 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5798 
5799 		if (!valid_policy(policy))
5800 			return -EINVAL;
5801 	}
5802 
5803 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5804 		return -EINVAL;
5805 
5806 	/*
5807 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5808 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5809 	 * SCHED_BATCH and SCHED_IDLE is 0.
5810 	 */
5811 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5812 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5813 		return -EINVAL;
5814 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5815 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5816 		return -EINVAL;
5817 
5818 	/*
5819 	 * Allow unprivileged RT tasks to decrease priority:
5820 	 */
5821 	if (user && !capable(CAP_SYS_NICE)) {
5822 		if (fair_policy(policy)) {
5823 			if (attr->sched_nice < task_nice(p) &&
5824 			    !can_nice(p, attr->sched_nice))
5825 				return -EPERM;
5826 		}
5827 
5828 		if (rt_policy(policy)) {
5829 			unsigned long rlim_rtprio =
5830 					task_rlimit(p, RLIMIT_RTPRIO);
5831 
5832 			/* Can't set/change the rt policy: */
5833 			if (policy != p->policy && !rlim_rtprio)
5834 				return -EPERM;
5835 
5836 			/* Can't increase priority: */
5837 			if (attr->sched_priority > p->rt_priority &&
5838 			    attr->sched_priority > rlim_rtprio)
5839 				return -EPERM;
5840 		}
5841 
5842 		 /*
5843 		  * Can't set/change SCHED_DEADLINE policy at all for now
5844 		  * (safest behavior); in the future we would like to allow
5845 		  * unprivileged DL tasks to increase their relative deadline
5846 		  * or reduce their runtime (both ways reducing utilization)
5847 		  */
5848 		if (dl_policy(policy))
5849 			return -EPERM;
5850 
5851 		/*
5852 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5853 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5854 		 */
5855 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5856 			if (!can_nice(p, task_nice(p)))
5857 				return -EPERM;
5858 		}
5859 
5860 		/* Can't change other user's priorities: */
5861 		if (!check_same_owner(p))
5862 			return -EPERM;
5863 
5864 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5865 		if (p->sched_reset_on_fork && !reset_on_fork)
5866 			return -EPERM;
5867 	}
5868 
5869 	if (user) {
5870 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5871 			return -EINVAL;
5872 
5873 		retval = security_task_setscheduler(p);
5874 		if (retval)
5875 			return retval;
5876 	}
5877 
5878 	/* Update task specific "requested" clamps */
5879 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5880 		retval = uclamp_validate(p, attr);
5881 		if (retval)
5882 			return retval;
5883 	}
5884 
5885 	if (pi)
5886 		cpuset_read_lock();
5887 
5888 	/*
5889 	 * Make sure no PI-waiters arrive (or leave) while we are
5890 	 * changing the priority of the task:
5891 	 *
5892 	 * To be able to change p->policy safely, the appropriate
5893 	 * runqueue lock must be held.
5894 	 */
5895 	rq = task_rq_lock(p, &rf);
5896 	update_rq_clock(rq);
5897 
5898 	/*
5899 	 * Changing the policy of the stop threads its a very bad idea:
5900 	 */
5901 	if (p == rq->stop) {
5902 		retval = -EINVAL;
5903 		goto unlock;
5904 	}
5905 
5906 	/*
5907 	 * If not changing anything there's no need to proceed further,
5908 	 * but store a possible modification of reset_on_fork.
5909 	 */
5910 	if (unlikely(policy == p->policy)) {
5911 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5912 			goto change;
5913 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5914 			goto change;
5915 		if (dl_policy(policy) && dl_param_changed(p, attr))
5916 			goto change;
5917 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5918 			goto change;
5919 
5920 		p->sched_reset_on_fork = reset_on_fork;
5921 		retval = 0;
5922 		goto unlock;
5923 	}
5924 change:
5925 
5926 	if (user) {
5927 #ifdef CONFIG_RT_GROUP_SCHED
5928 		/*
5929 		 * Do not allow realtime tasks into groups that have no runtime
5930 		 * assigned.
5931 		 */
5932 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5933 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5934 				!task_group_is_autogroup(task_group(p))) {
5935 			retval = -EPERM;
5936 			goto unlock;
5937 		}
5938 #endif
5939 #ifdef CONFIG_SMP
5940 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5941 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5942 			cpumask_t *span = rq->rd->span;
5943 
5944 			/*
5945 			 * Don't allow tasks with an affinity mask smaller than
5946 			 * the entire root_domain to become SCHED_DEADLINE. We
5947 			 * will also fail if there's no bandwidth available.
5948 			 */
5949 			if (!cpumask_subset(span, p->cpus_ptr) ||
5950 			    rq->rd->dl_bw.bw == 0) {
5951 				retval = -EPERM;
5952 				goto unlock;
5953 			}
5954 		}
5955 #endif
5956 	}
5957 
5958 	/* Re-check policy now with rq lock held: */
5959 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5960 		policy = oldpolicy = -1;
5961 		task_rq_unlock(rq, p, &rf);
5962 		if (pi)
5963 			cpuset_read_unlock();
5964 		goto recheck;
5965 	}
5966 
5967 	/*
5968 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5969 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5970 	 * is available.
5971 	 */
5972 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5973 		retval = -EBUSY;
5974 		goto unlock;
5975 	}
5976 
5977 	p->sched_reset_on_fork = reset_on_fork;
5978 	oldprio = p->prio;
5979 
5980 	if (pi) {
5981 		/*
5982 		 * Take priority boosted tasks into account. If the new
5983 		 * effective priority is unchanged, we just store the new
5984 		 * normal parameters and do not touch the scheduler class and
5985 		 * the runqueue. This will be done when the task deboost
5986 		 * itself.
5987 		 */
5988 		new_effective_prio = rt_effective_prio(p, newprio);
5989 		if (new_effective_prio == oldprio)
5990 			queue_flags &= ~DEQUEUE_MOVE;
5991 	}
5992 
5993 	queued = task_on_rq_queued(p);
5994 	running = task_current(rq, p);
5995 	if (queued)
5996 		dequeue_task(rq, p, queue_flags);
5997 	if (running)
5998 		put_prev_task(rq, p);
5999 
6000 	prev_class = p->sched_class;
6001 
6002 	__setscheduler(rq, p, attr, pi);
6003 	__setscheduler_uclamp(p, attr);
6004 
6005 	if (queued) {
6006 		/*
6007 		 * We enqueue to tail when the priority of a task is
6008 		 * increased (user space view).
6009 		 */
6010 		if (oldprio < p->prio)
6011 			queue_flags |= ENQUEUE_HEAD;
6012 
6013 		enqueue_task(rq, p, queue_flags);
6014 	}
6015 	if (running)
6016 		set_next_task(rq, p);
6017 
6018 	check_class_changed(rq, p, prev_class, oldprio);
6019 
6020 	/* Avoid rq from going away on us: */
6021 	preempt_disable();
6022 	head = splice_balance_callbacks(rq);
6023 	task_rq_unlock(rq, p, &rf);
6024 
6025 	if (pi) {
6026 		cpuset_read_unlock();
6027 		rt_mutex_adjust_pi(p);
6028 	}
6029 
6030 	/* Run balance callbacks after we've adjusted the PI chain: */
6031 	balance_callbacks(rq, head);
6032 	preempt_enable();
6033 
6034 	return 0;
6035 
6036 unlock:
6037 	task_rq_unlock(rq, p, &rf);
6038 	if (pi)
6039 		cpuset_read_unlock();
6040 	return retval;
6041 }
6042 
6043 static int _sched_setscheduler(struct task_struct *p, int policy,
6044 			       const struct sched_param *param, bool check)
6045 {
6046 	struct sched_attr attr = {
6047 		.sched_policy   = policy,
6048 		.sched_priority = param->sched_priority,
6049 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6050 	};
6051 
6052 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6053 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6054 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6055 		policy &= ~SCHED_RESET_ON_FORK;
6056 		attr.sched_policy = policy;
6057 	}
6058 
6059 	return __sched_setscheduler(p, &attr, check, true);
6060 }
6061 /**
6062  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6063  * @p: the task in question.
6064  * @policy: new policy.
6065  * @param: structure containing the new RT priority.
6066  *
6067  * Use sched_set_fifo(), read its comment.
6068  *
6069  * Return: 0 on success. An error code otherwise.
6070  *
6071  * NOTE that the task may be already dead.
6072  */
6073 int sched_setscheduler(struct task_struct *p, int policy,
6074 		       const struct sched_param *param)
6075 {
6076 	return _sched_setscheduler(p, policy, param, true);
6077 }
6078 
6079 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6080 {
6081 	return __sched_setscheduler(p, attr, true, true);
6082 }
6083 
6084 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6085 {
6086 	return __sched_setscheduler(p, attr, false, true);
6087 }
6088 
6089 /**
6090  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6091  * @p: the task in question.
6092  * @policy: new policy.
6093  * @param: structure containing the new RT priority.
6094  *
6095  * Just like sched_setscheduler, only don't bother checking if the
6096  * current context has permission.  For example, this is needed in
6097  * stop_machine(): we create temporary high priority worker threads,
6098  * but our caller might not have that capability.
6099  *
6100  * Return: 0 on success. An error code otherwise.
6101  */
6102 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6103 			       const struct sched_param *param)
6104 {
6105 	return _sched_setscheduler(p, policy, param, false);
6106 }
6107 
6108 /*
6109  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6110  * incapable of resource management, which is the one thing an OS really should
6111  * be doing.
6112  *
6113  * This is of course the reason it is limited to privileged users only.
6114  *
6115  * Worse still; it is fundamentally impossible to compose static priority
6116  * workloads. You cannot take two correctly working static prio workloads
6117  * and smash them together and still expect them to work.
6118  *
6119  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6120  *
6121  *   MAX_RT_PRIO / 2
6122  *
6123  * The administrator _MUST_ configure the system, the kernel simply doesn't
6124  * know enough information to make a sensible choice.
6125  */
6126 void sched_set_fifo(struct task_struct *p)
6127 {
6128 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6129 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6130 }
6131 EXPORT_SYMBOL_GPL(sched_set_fifo);
6132 
6133 /*
6134  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6135  */
6136 void sched_set_fifo_low(struct task_struct *p)
6137 {
6138 	struct sched_param sp = { .sched_priority = 1 };
6139 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6140 }
6141 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6142 
6143 void sched_set_normal(struct task_struct *p, int nice)
6144 {
6145 	struct sched_attr attr = {
6146 		.sched_policy = SCHED_NORMAL,
6147 		.sched_nice = nice,
6148 	};
6149 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6150 }
6151 EXPORT_SYMBOL_GPL(sched_set_normal);
6152 
6153 static int
6154 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6155 {
6156 	struct sched_param lparam;
6157 	struct task_struct *p;
6158 	int retval;
6159 
6160 	if (!param || pid < 0)
6161 		return -EINVAL;
6162 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6163 		return -EFAULT;
6164 
6165 	rcu_read_lock();
6166 	retval = -ESRCH;
6167 	p = find_process_by_pid(pid);
6168 	if (likely(p))
6169 		get_task_struct(p);
6170 	rcu_read_unlock();
6171 
6172 	if (likely(p)) {
6173 		retval = sched_setscheduler(p, policy, &lparam);
6174 		put_task_struct(p);
6175 	}
6176 
6177 	return retval;
6178 }
6179 
6180 /*
6181  * Mimics kernel/events/core.c perf_copy_attr().
6182  */
6183 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6184 {
6185 	u32 size;
6186 	int ret;
6187 
6188 	/* Zero the full structure, so that a short copy will be nice: */
6189 	memset(attr, 0, sizeof(*attr));
6190 
6191 	ret = get_user(size, &uattr->size);
6192 	if (ret)
6193 		return ret;
6194 
6195 	/* ABI compatibility quirk: */
6196 	if (!size)
6197 		size = SCHED_ATTR_SIZE_VER0;
6198 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6199 		goto err_size;
6200 
6201 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6202 	if (ret) {
6203 		if (ret == -E2BIG)
6204 			goto err_size;
6205 		return ret;
6206 	}
6207 
6208 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6209 	    size < SCHED_ATTR_SIZE_VER1)
6210 		return -EINVAL;
6211 
6212 	/*
6213 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6214 	 * to be strict and return an error on out-of-bounds values?
6215 	 */
6216 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6217 
6218 	return 0;
6219 
6220 err_size:
6221 	put_user(sizeof(*attr), &uattr->size);
6222 	return -E2BIG;
6223 }
6224 
6225 /**
6226  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6227  * @pid: the pid in question.
6228  * @policy: new policy.
6229  * @param: structure containing the new RT priority.
6230  *
6231  * Return: 0 on success. An error code otherwise.
6232  */
6233 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6234 {
6235 	if (policy < 0)
6236 		return -EINVAL;
6237 
6238 	return do_sched_setscheduler(pid, policy, param);
6239 }
6240 
6241 /**
6242  * sys_sched_setparam - set/change the RT priority of a thread
6243  * @pid: the pid in question.
6244  * @param: structure containing the new RT priority.
6245  *
6246  * Return: 0 on success. An error code otherwise.
6247  */
6248 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6249 {
6250 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6251 }
6252 
6253 /**
6254  * sys_sched_setattr - same as above, but with extended sched_attr
6255  * @pid: the pid in question.
6256  * @uattr: structure containing the extended parameters.
6257  * @flags: for future extension.
6258  */
6259 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6260 			       unsigned int, flags)
6261 {
6262 	struct sched_attr attr;
6263 	struct task_struct *p;
6264 	int retval;
6265 
6266 	if (!uattr || pid < 0 || flags)
6267 		return -EINVAL;
6268 
6269 	retval = sched_copy_attr(uattr, &attr);
6270 	if (retval)
6271 		return retval;
6272 
6273 	if ((int)attr.sched_policy < 0)
6274 		return -EINVAL;
6275 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6276 		attr.sched_policy = SETPARAM_POLICY;
6277 
6278 	rcu_read_lock();
6279 	retval = -ESRCH;
6280 	p = find_process_by_pid(pid);
6281 	if (likely(p))
6282 		get_task_struct(p);
6283 	rcu_read_unlock();
6284 
6285 	if (likely(p)) {
6286 		retval = sched_setattr(p, &attr);
6287 		put_task_struct(p);
6288 	}
6289 
6290 	return retval;
6291 }
6292 
6293 /**
6294  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6295  * @pid: the pid in question.
6296  *
6297  * Return: On success, the policy of the thread. Otherwise, a negative error
6298  * code.
6299  */
6300 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6301 {
6302 	struct task_struct *p;
6303 	int retval;
6304 
6305 	if (pid < 0)
6306 		return -EINVAL;
6307 
6308 	retval = -ESRCH;
6309 	rcu_read_lock();
6310 	p = find_process_by_pid(pid);
6311 	if (p) {
6312 		retval = security_task_getscheduler(p);
6313 		if (!retval)
6314 			retval = p->policy
6315 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6316 	}
6317 	rcu_read_unlock();
6318 	return retval;
6319 }
6320 
6321 /**
6322  * sys_sched_getparam - get the RT priority of a thread
6323  * @pid: the pid in question.
6324  * @param: structure containing the RT priority.
6325  *
6326  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6327  * code.
6328  */
6329 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6330 {
6331 	struct sched_param lp = { .sched_priority = 0 };
6332 	struct task_struct *p;
6333 	int retval;
6334 
6335 	if (!param || pid < 0)
6336 		return -EINVAL;
6337 
6338 	rcu_read_lock();
6339 	p = find_process_by_pid(pid);
6340 	retval = -ESRCH;
6341 	if (!p)
6342 		goto out_unlock;
6343 
6344 	retval = security_task_getscheduler(p);
6345 	if (retval)
6346 		goto out_unlock;
6347 
6348 	if (task_has_rt_policy(p))
6349 		lp.sched_priority = p->rt_priority;
6350 	rcu_read_unlock();
6351 
6352 	/*
6353 	 * This one might sleep, we cannot do it with a spinlock held ...
6354 	 */
6355 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6356 
6357 	return retval;
6358 
6359 out_unlock:
6360 	rcu_read_unlock();
6361 	return retval;
6362 }
6363 
6364 /*
6365  * Copy the kernel size attribute structure (which might be larger
6366  * than what user-space knows about) to user-space.
6367  *
6368  * Note that all cases are valid: user-space buffer can be larger or
6369  * smaller than the kernel-space buffer. The usual case is that both
6370  * have the same size.
6371  */
6372 static int
6373 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6374 			struct sched_attr *kattr,
6375 			unsigned int usize)
6376 {
6377 	unsigned int ksize = sizeof(*kattr);
6378 
6379 	if (!access_ok(uattr, usize))
6380 		return -EFAULT;
6381 
6382 	/*
6383 	 * sched_getattr() ABI forwards and backwards compatibility:
6384 	 *
6385 	 * If usize == ksize then we just copy everything to user-space and all is good.
6386 	 *
6387 	 * If usize < ksize then we only copy as much as user-space has space for,
6388 	 * this keeps ABI compatibility as well. We skip the rest.
6389 	 *
6390 	 * If usize > ksize then user-space is using a newer version of the ABI,
6391 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6392 	 * detect the kernel's knowledge of attributes from the attr->size value
6393 	 * which is set to ksize in this case.
6394 	 */
6395 	kattr->size = min(usize, ksize);
6396 
6397 	if (copy_to_user(uattr, kattr, kattr->size))
6398 		return -EFAULT;
6399 
6400 	return 0;
6401 }
6402 
6403 /**
6404  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6405  * @pid: the pid in question.
6406  * @uattr: structure containing the extended parameters.
6407  * @usize: sizeof(attr) for fwd/bwd comp.
6408  * @flags: for future extension.
6409  */
6410 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6411 		unsigned int, usize, unsigned int, flags)
6412 {
6413 	struct sched_attr kattr = { };
6414 	struct task_struct *p;
6415 	int retval;
6416 
6417 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6418 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6419 		return -EINVAL;
6420 
6421 	rcu_read_lock();
6422 	p = find_process_by_pid(pid);
6423 	retval = -ESRCH;
6424 	if (!p)
6425 		goto out_unlock;
6426 
6427 	retval = security_task_getscheduler(p);
6428 	if (retval)
6429 		goto out_unlock;
6430 
6431 	kattr.sched_policy = p->policy;
6432 	if (p->sched_reset_on_fork)
6433 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6434 	if (task_has_dl_policy(p))
6435 		__getparam_dl(p, &kattr);
6436 	else if (task_has_rt_policy(p))
6437 		kattr.sched_priority = p->rt_priority;
6438 	else
6439 		kattr.sched_nice = task_nice(p);
6440 
6441 #ifdef CONFIG_UCLAMP_TASK
6442 	/*
6443 	 * This could race with another potential updater, but this is fine
6444 	 * because it'll correctly read the old or the new value. We don't need
6445 	 * to guarantee who wins the race as long as it doesn't return garbage.
6446 	 */
6447 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6448 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6449 #endif
6450 
6451 	rcu_read_unlock();
6452 
6453 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6454 
6455 out_unlock:
6456 	rcu_read_unlock();
6457 	return retval;
6458 }
6459 
6460 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6461 {
6462 	cpumask_var_t cpus_allowed, new_mask;
6463 	struct task_struct *p;
6464 	int retval;
6465 
6466 	rcu_read_lock();
6467 
6468 	p = find_process_by_pid(pid);
6469 	if (!p) {
6470 		rcu_read_unlock();
6471 		return -ESRCH;
6472 	}
6473 
6474 	/* Prevent p going away */
6475 	get_task_struct(p);
6476 	rcu_read_unlock();
6477 
6478 	if (p->flags & PF_NO_SETAFFINITY) {
6479 		retval = -EINVAL;
6480 		goto out_put_task;
6481 	}
6482 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6483 		retval = -ENOMEM;
6484 		goto out_put_task;
6485 	}
6486 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6487 		retval = -ENOMEM;
6488 		goto out_free_cpus_allowed;
6489 	}
6490 	retval = -EPERM;
6491 	if (!check_same_owner(p)) {
6492 		rcu_read_lock();
6493 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6494 			rcu_read_unlock();
6495 			goto out_free_new_mask;
6496 		}
6497 		rcu_read_unlock();
6498 	}
6499 
6500 	retval = security_task_setscheduler(p);
6501 	if (retval)
6502 		goto out_free_new_mask;
6503 
6504 
6505 	cpuset_cpus_allowed(p, cpus_allowed);
6506 	cpumask_and(new_mask, in_mask, cpus_allowed);
6507 
6508 	/*
6509 	 * Since bandwidth control happens on root_domain basis,
6510 	 * if admission test is enabled, we only admit -deadline
6511 	 * tasks allowed to run on all the CPUs in the task's
6512 	 * root_domain.
6513 	 */
6514 #ifdef CONFIG_SMP
6515 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6516 		rcu_read_lock();
6517 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6518 			retval = -EBUSY;
6519 			rcu_read_unlock();
6520 			goto out_free_new_mask;
6521 		}
6522 		rcu_read_unlock();
6523 	}
6524 #endif
6525 again:
6526 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6527 
6528 	if (!retval) {
6529 		cpuset_cpus_allowed(p, cpus_allowed);
6530 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6531 			/*
6532 			 * We must have raced with a concurrent cpuset
6533 			 * update. Just reset the cpus_allowed to the
6534 			 * cpuset's cpus_allowed
6535 			 */
6536 			cpumask_copy(new_mask, cpus_allowed);
6537 			goto again;
6538 		}
6539 	}
6540 out_free_new_mask:
6541 	free_cpumask_var(new_mask);
6542 out_free_cpus_allowed:
6543 	free_cpumask_var(cpus_allowed);
6544 out_put_task:
6545 	put_task_struct(p);
6546 	return retval;
6547 }
6548 
6549 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6550 			     struct cpumask *new_mask)
6551 {
6552 	if (len < cpumask_size())
6553 		cpumask_clear(new_mask);
6554 	else if (len > cpumask_size())
6555 		len = cpumask_size();
6556 
6557 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6558 }
6559 
6560 /**
6561  * sys_sched_setaffinity - set the CPU affinity of a process
6562  * @pid: pid of the process
6563  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6564  * @user_mask_ptr: user-space pointer to the new CPU mask
6565  *
6566  * Return: 0 on success. An error code otherwise.
6567  */
6568 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6569 		unsigned long __user *, user_mask_ptr)
6570 {
6571 	cpumask_var_t new_mask;
6572 	int retval;
6573 
6574 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6575 		return -ENOMEM;
6576 
6577 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6578 	if (retval == 0)
6579 		retval = sched_setaffinity(pid, new_mask);
6580 	free_cpumask_var(new_mask);
6581 	return retval;
6582 }
6583 
6584 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6585 {
6586 	struct task_struct *p;
6587 	unsigned long flags;
6588 	int retval;
6589 
6590 	rcu_read_lock();
6591 
6592 	retval = -ESRCH;
6593 	p = find_process_by_pid(pid);
6594 	if (!p)
6595 		goto out_unlock;
6596 
6597 	retval = security_task_getscheduler(p);
6598 	if (retval)
6599 		goto out_unlock;
6600 
6601 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6602 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6603 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6604 
6605 out_unlock:
6606 	rcu_read_unlock();
6607 
6608 	return retval;
6609 }
6610 
6611 /**
6612  * sys_sched_getaffinity - get the CPU affinity of a process
6613  * @pid: pid of the process
6614  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6615  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6616  *
6617  * Return: size of CPU mask copied to user_mask_ptr on success. An
6618  * error code otherwise.
6619  */
6620 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6621 		unsigned long __user *, user_mask_ptr)
6622 {
6623 	int ret;
6624 	cpumask_var_t mask;
6625 
6626 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6627 		return -EINVAL;
6628 	if (len & (sizeof(unsigned long)-1))
6629 		return -EINVAL;
6630 
6631 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6632 		return -ENOMEM;
6633 
6634 	ret = sched_getaffinity(pid, mask);
6635 	if (ret == 0) {
6636 		unsigned int retlen = min(len, cpumask_size());
6637 
6638 		if (copy_to_user(user_mask_ptr, mask, retlen))
6639 			ret = -EFAULT;
6640 		else
6641 			ret = retlen;
6642 	}
6643 	free_cpumask_var(mask);
6644 
6645 	return ret;
6646 }
6647 
6648 static void do_sched_yield(void)
6649 {
6650 	struct rq_flags rf;
6651 	struct rq *rq;
6652 
6653 	rq = this_rq_lock_irq(&rf);
6654 
6655 	schedstat_inc(rq->yld_count);
6656 	current->sched_class->yield_task(rq);
6657 
6658 	preempt_disable();
6659 	rq_unlock_irq(rq, &rf);
6660 	sched_preempt_enable_no_resched();
6661 
6662 	schedule();
6663 }
6664 
6665 /**
6666  * sys_sched_yield - yield the current processor to other threads.
6667  *
6668  * This function yields the current CPU to other tasks. If there are no
6669  * other threads running on this CPU then this function will return.
6670  *
6671  * Return: 0.
6672  */
6673 SYSCALL_DEFINE0(sched_yield)
6674 {
6675 	do_sched_yield();
6676 	return 0;
6677 }
6678 
6679 #ifndef CONFIG_PREEMPTION
6680 int __sched _cond_resched(void)
6681 {
6682 	if (should_resched(0)) {
6683 		preempt_schedule_common();
6684 		return 1;
6685 	}
6686 	rcu_all_qs();
6687 	return 0;
6688 }
6689 EXPORT_SYMBOL(_cond_resched);
6690 #endif
6691 
6692 /*
6693  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6694  * call schedule, and on return reacquire the lock.
6695  *
6696  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6697  * operations here to prevent schedule() from being called twice (once via
6698  * spin_unlock(), once by hand).
6699  */
6700 int __cond_resched_lock(spinlock_t *lock)
6701 {
6702 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6703 	int ret = 0;
6704 
6705 	lockdep_assert_held(lock);
6706 
6707 	if (spin_needbreak(lock) || resched) {
6708 		spin_unlock(lock);
6709 		if (resched)
6710 			preempt_schedule_common();
6711 		else
6712 			cpu_relax();
6713 		ret = 1;
6714 		spin_lock(lock);
6715 	}
6716 	return ret;
6717 }
6718 EXPORT_SYMBOL(__cond_resched_lock);
6719 
6720 /**
6721  * yield - yield the current processor to other threads.
6722  *
6723  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6724  *
6725  * The scheduler is at all times free to pick the calling task as the most
6726  * eligible task to run, if removing the yield() call from your code breaks
6727  * it, it's already broken.
6728  *
6729  * Typical broken usage is:
6730  *
6731  * while (!event)
6732  *	yield();
6733  *
6734  * where one assumes that yield() will let 'the other' process run that will
6735  * make event true. If the current task is a SCHED_FIFO task that will never
6736  * happen. Never use yield() as a progress guarantee!!
6737  *
6738  * If you want to use yield() to wait for something, use wait_event().
6739  * If you want to use yield() to be 'nice' for others, use cond_resched().
6740  * If you still want to use yield(), do not!
6741  */
6742 void __sched yield(void)
6743 {
6744 	set_current_state(TASK_RUNNING);
6745 	do_sched_yield();
6746 }
6747 EXPORT_SYMBOL(yield);
6748 
6749 /**
6750  * yield_to - yield the current processor to another thread in
6751  * your thread group, or accelerate that thread toward the
6752  * processor it's on.
6753  * @p: target task
6754  * @preempt: whether task preemption is allowed or not
6755  *
6756  * It's the caller's job to ensure that the target task struct
6757  * can't go away on us before we can do any checks.
6758  *
6759  * Return:
6760  *	true (>0) if we indeed boosted the target task.
6761  *	false (0) if we failed to boost the target.
6762  *	-ESRCH if there's no task to yield to.
6763  */
6764 int __sched yield_to(struct task_struct *p, bool preempt)
6765 {
6766 	struct task_struct *curr = current;
6767 	struct rq *rq, *p_rq;
6768 	unsigned long flags;
6769 	int yielded = 0;
6770 
6771 	local_irq_save(flags);
6772 	rq = this_rq();
6773 
6774 again:
6775 	p_rq = task_rq(p);
6776 	/*
6777 	 * If we're the only runnable task on the rq and target rq also
6778 	 * has only one task, there's absolutely no point in yielding.
6779 	 */
6780 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6781 		yielded = -ESRCH;
6782 		goto out_irq;
6783 	}
6784 
6785 	double_rq_lock(rq, p_rq);
6786 	if (task_rq(p) != p_rq) {
6787 		double_rq_unlock(rq, p_rq);
6788 		goto again;
6789 	}
6790 
6791 	if (!curr->sched_class->yield_to_task)
6792 		goto out_unlock;
6793 
6794 	if (curr->sched_class != p->sched_class)
6795 		goto out_unlock;
6796 
6797 	if (task_running(p_rq, p) || p->state)
6798 		goto out_unlock;
6799 
6800 	yielded = curr->sched_class->yield_to_task(rq, p);
6801 	if (yielded) {
6802 		schedstat_inc(rq->yld_count);
6803 		/*
6804 		 * Make p's CPU reschedule; pick_next_entity takes care of
6805 		 * fairness.
6806 		 */
6807 		if (preempt && rq != p_rq)
6808 			resched_curr(p_rq);
6809 	}
6810 
6811 out_unlock:
6812 	double_rq_unlock(rq, p_rq);
6813 out_irq:
6814 	local_irq_restore(flags);
6815 
6816 	if (yielded > 0)
6817 		schedule();
6818 
6819 	return yielded;
6820 }
6821 EXPORT_SYMBOL_GPL(yield_to);
6822 
6823 int io_schedule_prepare(void)
6824 {
6825 	int old_iowait = current->in_iowait;
6826 
6827 	current->in_iowait = 1;
6828 	blk_schedule_flush_plug(current);
6829 
6830 	return old_iowait;
6831 }
6832 
6833 void io_schedule_finish(int token)
6834 {
6835 	current->in_iowait = token;
6836 }
6837 
6838 /*
6839  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6840  * that process accounting knows that this is a task in IO wait state.
6841  */
6842 long __sched io_schedule_timeout(long timeout)
6843 {
6844 	int token;
6845 	long ret;
6846 
6847 	token = io_schedule_prepare();
6848 	ret = schedule_timeout(timeout);
6849 	io_schedule_finish(token);
6850 
6851 	return ret;
6852 }
6853 EXPORT_SYMBOL(io_schedule_timeout);
6854 
6855 void __sched io_schedule(void)
6856 {
6857 	int token;
6858 
6859 	token = io_schedule_prepare();
6860 	schedule();
6861 	io_schedule_finish(token);
6862 }
6863 EXPORT_SYMBOL(io_schedule);
6864 
6865 /**
6866  * sys_sched_get_priority_max - return maximum RT priority.
6867  * @policy: scheduling class.
6868  *
6869  * Return: On success, this syscall returns the maximum
6870  * rt_priority that can be used by a given scheduling class.
6871  * On failure, a negative error code is returned.
6872  */
6873 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6874 {
6875 	int ret = -EINVAL;
6876 
6877 	switch (policy) {
6878 	case SCHED_FIFO:
6879 	case SCHED_RR:
6880 		ret = MAX_USER_RT_PRIO-1;
6881 		break;
6882 	case SCHED_DEADLINE:
6883 	case SCHED_NORMAL:
6884 	case SCHED_BATCH:
6885 	case SCHED_IDLE:
6886 		ret = 0;
6887 		break;
6888 	}
6889 	return ret;
6890 }
6891 
6892 /**
6893  * sys_sched_get_priority_min - return minimum RT priority.
6894  * @policy: scheduling class.
6895  *
6896  * Return: On success, this syscall returns the minimum
6897  * rt_priority that can be used by a given scheduling class.
6898  * On failure, a negative error code is returned.
6899  */
6900 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6901 {
6902 	int ret = -EINVAL;
6903 
6904 	switch (policy) {
6905 	case SCHED_FIFO:
6906 	case SCHED_RR:
6907 		ret = 1;
6908 		break;
6909 	case SCHED_DEADLINE:
6910 	case SCHED_NORMAL:
6911 	case SCHED_BATCH:
6912 	case SCHED_IDLE:
6913 		ret = 0;
6914 	}
6915 	return ret;
6916 }
6917 
6918 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6919 {
6920 	struct task_struct *p;
6921 	unsigned int time_slice;
6922 	struct rq_flags rf;
6923 	struct rq *rq;
6924 	int retval;
6925 
6926 	if (pid < 0)
6927 		return -EINVAL;
6928 
6929 	retval = -ESRCH;
6930 	rcu_read_lock();
6931 	p = find_process_by_pid(pid);
6932 	if (!p)
6933 		goto out_unlock;
6934 
6935 	retval = security_task_getscheduler(p);
6936 	if (retval)
6937 		goto out_unlock;
6938 
6939 	rq = task_rq_lock(p, &rf);
6940 	time_slice = 0;
6941 	if (p->sched_class->get_rr_interval)
6942 		time_slice = p->sched_class->get_rr_interval(rq, p);
6943 	task_rq_unlock(rq, p, &rf);
6944 
6945 	rcu_read_unlock();
6946 	jiffies_to_timespec64(time_slice, t);
6947 	return 0;
6948 
6949 out_unlock:
6950 	rcu_read_unlock();
6951 	return retval;
6952 }
6953 
6954 /**
6955  * sys_sched_rr_get_interval - return the default timeslice of a process.
6956  * @pid: pid of the process.
6957  * @interval: userspace pointer to the timeslice value.
6958  *
6959  * this syscall writes the default timeslice value of a given process
6960  * into the user-space timespec buffer. A value of '0' means infinity.
6961  *
6962  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6963  * an error code.
6964  */
6965 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6966 		struct __kernel_timespec __user *, interval)
6967 {
6968 	struct timespec64 t;
6969 	int retval = sched_rr_get_interval(pid, &t);
6970 
6971 	if (retval == 0)
6972 		retval = put_timespec64(&t, interval);
6973 
6974 	return retval;
6975 }
6976 
6977 #ifdef CONFIG_COMPAT_32BIT_TIME
6978 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6979 		struct old_timespec32 __user *, interval)
6980 {
6981 	struct timespec64 t;
6982 	int retval = sched_rr_get_interval(pid, &t);
6983 
6984 	if (retval == 0)
6985 		retval = put_old_timespec32(&t, interval);
6986 	return retval;
6987 }
6988 #endif
6989 
6990 void sched_show_task(struct task_struct *p)
6991 {
6992 	unsigned long free = 0;
6993 	int ppid;
6994 
6995 	if (!try_get_task_stack(p))
6996 		return;
6997 
6998 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6999 
7000 	if (p->state == TASK_RUNNING)
7001 		pr_cont("  running task    ");
7002 #ifdef CONFIG_DEBUG_STACK_USAGE
7003 	free = stack_not_used(p);
7004 #endif
7005 	ppid = 0;
7006 	rcu_read_lock();
7007 	if (pid_alive(p))
7008 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7009 	rcu_read_unlock();
7010 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7011 		free, task_pid_nr(p), ppid,
7012 		(unsigned long)task_thread_info(p)->flags);
7013 
7014 	print_worker_info(KERN_INFO, p);
7015 	print_stop_info(KERN_INFO, p);
7016 	show_stack(p, NULL, KERN_INFO);
7017 	put_task_stack(p);
7018 }
7019 EXPORT_SYMBOL_GPL(sched_show_task);
7020 
7021 static inline bool
7022 state_filter_match(unsigned long state_filter, struct task_struct *p)
7023 {
7024 	/* no filter, everything matches */
7025 	if (!state_filter)
7026 		return true;
7027 
7028 	/* filter, but doesn't match */
7029 	if (!(p->state & state_filter))
7030 		return false;
7031 
7032 	/*
7033 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7034 	 * TASK_KILLABLE).
7035 	 */
7036 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7037 		return false;
7038 
7039 	return true;
7040 }
7041 
7042 
7043 void show_state_filter(unsigned long state_filter)
7044 {
7045 	struct task_struct *g, *p;
7046 
7047 	rcu_read_lock();
7048 	for_each_process_thread(g, p) {
7049 		/*
7050 		 * reset the NMI-timeout, listing all files on a slow
7051 		 * console might take a lot of time:
7052 		 * Also, reset softlockup watchdogs on all CPUs, because
7053 		 * another CPU might be blocked waiting for us to process
7054 		 * an IPI.
7055 		 */
7056 		touch_nmi_watchdog();
7057 		touch_all_softlockup_watchdogs();
7058 		if (state_filter_match(state_filter, p))
7059 			sched_show_task(p);
7060 	}
7061 
7062 #ifdef CONFIG_SCHED_DEBUG
7063 	if (!state_filter)
7064 		sysrq_sched_debug_show();
7065 #endif
7066 	rcu_read_unlock();
7067 	/*
7068 	 * Only show locks if all tasks are dumped:
7069 	 */
7070 	if (!state_filter)
7071 		debug_show_all_locks();
7072 }
7073 
7074 /**
7075  * init_idle - set up an idle thread for a given CPU
7076  * @idle: task in question
7077  * @cpu: CPU the idle task belongs to
7078  *
7079  * NOTE: this function does not set the idle thread's NEED_RESCHED
7080  * flag, to make booting more robust.
7081  */
7082 void init_idle(struct task_struct *idle, int cpu)
7083 {
7084 	struct rq *rq = cpu_rq(cpu);
7085 	unsigned long flags;
7086 
7087 	__sched_fork(0, idle);
7088 
7089 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7090 	raw_spin_lock(&rq->lock);
7091 
7092 	idle->state = TASK_RUNNING;
7093 	idle->se.exec_start = sched_clock();
7094 	idle->flags |= PF_IDLE;
7095 
7096 	scs_task_reset(idle);
7097 	kasan_unpoison_task_stack(idle);
7098 
7099 #ifdef CONFIG_SMP
7100 	/*
7101 	 * It's possible that init_idle() gets called multiple times on a task,
7102 	 * in that case do_set_cpus_allowed() will not do the right thing.
7103 	 *
7104 	 * And since this is boot we can forgo the serialization.
7105 	 */
7106 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7107 #endif
7108 	/*
7109 	 * We're having a chicken and egg problem, even though we are
7110 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7111 	 * lockdep check in task_group() will fail.
7112 	 *
7113 	 * Similar case to sched_fork(). / Alternatively we could
7114 	 * use task_rq_lock() here and obtain the other rq->lock.
7115 	 *
7116 	 * Silence PROVE_RCU
7117 	 */
7118 	rcu_read_lock();
7119 	__set_task_cpu(idle, cpu);
7120 	rcu_read_unlock();
7121 
7122 	rq->idle = idle;
7123 	rcu_assign_pointer(rq->curr, idle);
7124 	idle->on_rq = TASK_ON_RQ_QUEUED;
7125 #ifdef CONFIG_SMP
7126 	idle->on_cpu = 1;
7127 #endif
7128 	raw_spin_unlock(&rq->lock);
7129 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7130 
7131 	/* Set the preempt count _outside_ the spinlocks! */
7132 	init_idle_preempt_count(idle, cpu);
7133 
7134 	/*
7135 	 * The idle tasks have their own, simple scheduling class:
7136 	 */
7137 	idle->sched_class = &idle_sched_class;
7138 	ftrace_graph_init_idle_task(idle, cpu);
7139 	vtime_init_idle(idle, cpu);
7140 #ifdef CONFIG_SMP
7141 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7142 #endif
7143 }
7144 
7145 #ifdef CONFIG_SMP
7146 
7147 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7148 			      const struct cpumask *trial)
7149 {
7150 	int ret = 1;
7151 
7152 	if (!cpumask_weight(cur))
7153 		return ret;
7154 
7155 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7156 
7157 	return ret;
7158 }
7159 
7160 int task_can_attach(struct task_struct *p,
7161 		    const struct cpumask *cs_cpus_allowed)
7162 {
7163 	int ret = 0;
7164 
7165 	/*
7166 	 * Kthreads which disallow setaffinity shouldn't be moved
7167 	 * to a new cpuset; we don't want to change their CPU
7168 	 * affinity and isolating such threads by their set of
7169 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7170 	 * applicable for such threads.  This prevents checking for
7171 	 * success of set_cpus_allowed_ptr() on all attached tasks
7172 	 * before cpus_mask may be changed.
7173 	 */
7174 	if (p->flags & PF_NO_SETAFFINITY) {
7175 		ret = -EINVAL;
7176 		goto out;
7177 	}
7178 
7179 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7180 					      cs_cpus_allowed))
7181 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7182 
7183 out:
7184 	return ret;
7185 }
7186 
7187 bool sched_smp_initialized __read_mostly;
7188 
7189 #ifdef CONFIG_NUMA_BALANCING
7190 /* Migrate current task p to target_cpu */
7191 int migrate_task_to(struct task_struct *p, int target_cpu)
7192 {
7193 	struct migration_arg arg = { p, target_cpu };
7194 	int curr_cpu = task_cpu(p);
7195 
7196 	if (curr_cpu == target_cpu)
7197 		return 0;
7198 
7199 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7200 		return -EINVAL;
7201 
7202 	/* TODO: This is not properly updating schedstats */
7203 
7204 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7205 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7206 }
7207 
7208 /*
7209  * Requeue a task on a given node and accurately track the number of NUMA
7210  * tasks on the runqueues
7211  */
7212 void sched_setnuma(struct task_struct *p, int nid)
7213 {
7214 	bool queued, running;
7215 	struct rq_flags rf;
7216 	struct rq *rq;
7217 
7218 	rq = task_rq_lock(p, &rf);
7219 	queued = task_on_rq_queued(p);
7220 	running = task_current(rq, p);
7221 
7222 	if (queued)
7223 		dequeue_task(rq, p, DEQUEUE_SAVE);
7224 	if (running)
7225 		put_prev_task(rq, p);
7226 
7227 	p->numa_preferred_nid = nid;
7228 
7229 	if (queued)
7230 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7231 	if (running)
7232 		set_next_task(rq, p);
7233 	task_rq_unlock(rq, p, &rf);
7234 }
7235 #endif /* CONFIG_NUMA_BALANCING */
7236 
7237 #ifdef CONFIG_HOTPLUG_CPU
7238 /*
7239  * Ensure that the idle task is using init_mm right before its CPU goes
7240  * offline.
7241  */
7242 void idle_task_exit(void)
7243 {
7244 	struct mm_struct *mm = current->active_mm;
7245 
7246 	BUG_ON(cpu_online(smp_processor_id()));
7247 	BUG_ON(current != this_rq()->idle);
7248 
7249 	if (mm != &init_mm) {
7250 		switch_mm(mm, &init_mm, current);
7251 		finish_arch_post_lock_switch();
7252 	}
7253 
7254 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7255 }
7256 
7257 static int __balance_push_cpu_stop(void *arg)
7258 {
7259 	struct task_struct *p = arg;
7260 	struct rq *rq = this_rq();
7261 	struct rq_flags rf;
7262 	int cpu;
7263 
7264 	raw_spin_lock_irq(&p->pi_lock);
7265 	rq_lock(rq, &rf);
7266 
7267 	update_rq_clock(rq);
7268 
7269 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7270 		cpu = select_fallback_rq(rq->cpu, p);
7271 		rq = __migrate_task(rq, &rf, p, cpu);
7272 	}
7273 
7274 	rq_unlock(rq, &rf);
7275 	raw_spin_unlock_irq(&p->pi_lock);
7276 
7277 	put_task_struct(p);
7278 
7279 	return 0;
7280 }
7281 
7282 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7283 
7284 /*
7285  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7286  */
7287 static void balance_push(struct rq *rq)
7288 {
7289 	struct task_struct *push_task = rq->curr;
7290 
7291 	lockdep_assert_held(&rq->lock);
7292 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7293 	/*
7294 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7295 	 */
7296 	rq->balance_callback = &balance_push_callback;
7297 
7298 	/*
7299 	 * Both the cpu-hotplug and stop task are in this case and are
7300 	 * required to complete the hotplug process.
7301 	 *
7302 	 * XXX: the idle task does not match kthread_is_per_cpu() due to
7303 	 * histerical raisins.
7304 	 */
7305 	if (rq->idle == push_task ||
7306 	    ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7307 	    is_migration_disabled(push_task)) {
7308 
7309 		/*
7310 		 * If this is the idle task on the outgoing CPU try to wake
7311 		 * up the hotplug control thread which might wait for the
7312 		 * last task to vanish. The rcuwait_active() check is
7313 		 * accurate here because the waiter is pinned on this CPU
7314 		 * and can't obviously be running in parallel.
7315 		 *
7316 		 * On RT kernels this also has to check whether there are
7317 		 * pinned and scheduled out tasks on the runqueue. They
7318 		 * need to leave the migrate disabled section first.
7319 		 */
7320 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7321 		    rcuwait_active(&rq->hotplug_wait)) {
7322 			raw_spin_unlock(&rq->lock);
7323 			rcuwait_wake_up(&rq->hotplug_wait);
7324 			raw_spin_lock(&rq->lock);
7325 		}
7326 		return;
7327 	}
7328 
7329 	get_task_struct(push_task);
7330 	/*
7331 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7332 	 * Both preemption and IRQs are still disabled.
7333 	 */
7334 	raw_spin_unlock(&rq->lock);
7335 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7336 			    this_cpu_ptr(&push_work));
7337 	/*
7338 	 * At this point need_resched() is true and we'll take the loop in
7339 	 * schedule(). The next pick is obviously going to be the stop task
7340 	 * which kthread_is_per_cpu() and will push this task away.
7341 	 */
7342 	raw_spin_lock(&rq->lock);
7343 }
7344 
7345 static void balance_push_set(int cpu, bool on)
7346 {
7347 	struct rq *rq = cpu_rq(cpu);
7348 	struct rq_flags rf;
7349 
7350 	rq_lock_irqsave(rq, &rf);
7351 	rq->balance_push = on;
7352 	if (on) {
7353 		WARN_ON_ONCE(rq->balance_callback);
7354 		rq->balance_callback = &balance_push_callback;
7355 	} else if (rq->balance_callback == &balance_push_callback) {
7356 		rq->balance_callback = NULL;
7357 	}
7358 	rq_unlock_irqrestore(rq, &rf);
7359 }
7360 
7361 /*
7362  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7363  * inactive. All tasks which are not per CPU kernel threads are either
7364  * pushed off this CPU now via balance_push() or placed on a different CPU
7365  * during wakeup. Wait until the CPU is quiescent.
7366  */
7367 static void balance_hotplug_wait(void)
7368 {
7369 	struct rq *rq = this_rq();
7370 
7371 	rcuwait_wait_event(&rq->hotplug_wait,
7372 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7373 			   TASK_UNINTERRUPTIBLE);
7374 }
7375 
7376 #else
7377 
7378 static inline void balance_push(struct rq *rq)
7379 {
7380 }
7381 
7382 static inline void balance_push_set(int cpu, bool on)
7383 {
7384 }
7385 
7386 static inline void balance_hotplug_wait(void)
7387 {
7388 }
7389 
7390 #endif /* CONFIG_HOTPLUG_CPU */
7391 
7392 void set_rq_online(struct rq *rq)
7393 {
7394 	if (!rq->online) {
7395 		const struct sched_class *class;
7396 
7397 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7398 		rq->online = 1;
7399 
7400 		for_each_class(class) {
7401 			if (class->rq_online)
7402 				class->rq_online(rq);
7403 		}
7404 	}
7405 }
7406 
7407 void set_rq_offline(struct rq *rq)
7408 {
7409 	if (rq->online) {
7410 		const struct sched_class *class;
7411 
7412 		for_each_class(class) {
7413 			if (class->rq_offline)
7414 				class->rq_offline(rq);
7415 		}
7416 
7417 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7418 		rq->online = 0;
7419 	}
7420 }
7421 
7422 /*
7423  * used to mark begin/end of suspend/resume:
7424  */
7425 static int num_cpus_frozen;
7426 
7427 /*
7428  * Update cpusets according to cpu_active mask.  If cpusets are
7429  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7430  * around partition_sched_domains().
7431  *
7432  * If we come here as part of a suspend/resume, don't touch cpusets because we
7433  * want to restore it back to its original state upon resume anyway.
7434  */
7435 static void cpuset_cpu_active(void)
7436 {
7437 	if (cpuhp_tasks_frozen) {
7438 		/*
7439 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7440 		 * resume sequence. As long as this is not the last online
7441 		 * operation in the resume sequence, just build a single sched
7442 		 * domain, ignoring cpusets.
7443 		 */
7444 		partition_sched_domains(1, NULL, NULL);
7445 		if (--num_cpus_frozen)
7446 			return;
7447 		/*
7448 		 * This is the last CPU online operation. So fall through and
7449 		 * restore the original sched domains by considering the
7450 		 * cpuset configurations.
7451 		 */
7452 		cpuset_force_rebuild();
7453 	}
7454 	cpuset_update_active_cpus();
7455 }
7456 
7457 static int cpuset_cpu_inactive(unsigned int cpu)
7458 {
7459 	if (!cpuhp_tasks_frozen) {
7460 		if (dl_cpu_busy(cpu))
7461 			return -EBUSY;
7462 		cpuset_update_active_cpus();
7463 	} else {
7464 		num_cpus_frozen++;
7465 		partition_sched_domains(1, NULL, NULL);
7466 	}
7467 	return 0;
7468 }
7469 
7470 int sched_cpu_activate(unsigned int cpu)
7471 {
7472 	struct rq *rq = cpu_rq(cpu);
7473 	struct rq_flags rf;
7474 
7475 	/*
7476 	 * Make sure that when the hotplug state machine does a roll-back
7477 	 * we clear balance_push. Ideally that would happen earlier...
7478 	 */
7479 	balance_push_set(cpu, false);
7480 
7481 #ifdef CONFIG_SCHED_SMT
7482 	/*
7483 	 * When going up, increment the number of cores with SMT present.
7484 	 */
7485 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7486 		static_branch_inc_cpuslocked(&sched_smt_present);
7487 #endif
7488 	set_cpu_active(cpu, true);
7489 
7490 	if (sched_smp_initialized) {
7491 		sched_domains_numa_masks_set(cpu);
7492 		cpuset_cpu_active();
7493 	}
7494 
7495 	/*
7496 	 * Put the rq online, if not already. This happens:
7497 	 *
7498 	 * 1) In the early boot process, because we build the real domains
7499 	 *    after all CPUs have been brought up.
7500 	 *
7501 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7502 	 *    domains.
7503 	 */
7504 	rq_lock_irqsave(rq, &rf);
7505 	if (rq->rd) {
7506 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7507 		set_rq_online(rq);
7508 	}
7509 	rq_unlock_irqrestore(rq, &rf);
7510 
7511 	return 0;
7512 }
7513 
7514 int sched_cpu_deactivate(unsigned int cpu)
7515 {
7516 	struct rq *rq = cpu_rq(cpu);
7517 	struct rq_flags rf;
7518 	int ret;
7519 
7520 	set_cpu_active(cpu, false);
7521 	balance_push_set(cpu, true);
7522 
7523 	/*
7524 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7525 	 * preempt-disabled and RCU users of this state to go away such that
7526 	 * all new such users will observe it.
7527 	 *
7528 	 * Specifically, we rely on ttwu to no longer target this CPU, see
7529 	 * ttwu_queue_cond() and is_cpu_allowed().
7530 	 *
7531 	 * Do sync before park smpboot threads to take care the rcu boost case.
7532 	 */
7533 	synchronize_rcu();
7534 
7535 	rq_lock_irqsave(rq, &rf);
7536 	if (rq->rd) {
7537 		update_rq_clock(rq);
7538 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7539 		set_rq_offline(rq);
7540 	}
7541 	rq_unlock_irqrestore(rq, &rf);
7542 
7543 #ifdef CONFIG_SCHED_SMT
7544 	/*
7545 	 * When going down, decrement the number of cores with SMT present.
7546 	 */
7547 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7548 		static_branch_dec_cpuslocked(&sched_smt_present);
7549 #endif
7550 
7551 	if (!sched_smp_initialized)
7552 		return 0;
7553 
7554 	ret = cpuset_cpu_inactive(cpu);
7555 	if (ret) {
7556 		balance_push_set(cpu, false);
7557 		set_cpu_active(cpu, true);
7558 		return ret;
7559 	}
7560 	sched_domains_numa_masks_clear(cpu);
7561 	return 0;
7562 }
7563 
7564 static void sched_rq_cpu_starting(unsigned int cpu)
7565 {
7566 	struct rq *rq = cpu_rq(cpu);
7567 
7568 	rq->calc_load_update = calc_load_update;
7569 	update_max_interval();
7570 }
7571 
7572 int sched_cpu_starting(unsigned int cpu)
7573 {
7574 	sched_rq_cpu_starting(cpu);
7575 	sched_tick_start(cpu);
7576 	return 0;
7577 }
7578 
7579 #ifdef CONFIG_HOTPLUG_CPU
7580 
7581 /*
7582  * Invoked immediately before the stopper thread is invoked to bring the
7583  * CPU down completely. At this point all per CPU kthreads except the
7584  * hotplug thread (current) and the stopper thread (inactive) have been
7585  * either parked or have been unbound from the outgoing CPU. Ensure that
7586  * any of those which might be on the way out are gone.
7587  *
7588  * If after this point a bound task is being woken on this CPU then the
7589  * responsible hotplug callback has failed to do it's job.
7590  * sched_cpu_dying() will catch it with the appropriate fireworks.
7591  */
7592 int sched_cpu_wait_empty(unsigned int cpu)
7593 {
7594 	balance_hotplug_wait();
7595 	return 0;
7596 }
7597 
7598 /*
7599  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7600  * might have. Called from the CPU stopper task after ensuring that the
7601  * stopper is the last running task on the CPU, so nr_active count is
7602  * stable. We need to take the teardown thread which is calling this into
7603  * account, so we hand in adjust = 1 to the load calculation.
7604  *
7605  * Also see the comment "Global load-average calculations".
7606  */
7607 static void calc_load_migrate(struct rq *rq)
7608 {
7609 	long delta = calc_load_fold_active(rq, 1);
7610 
7611 	if (delta)
7612 		atomic_long_add(delta, &calc_load_tasks);
7613 }
7614 
7615 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7616 {
7617 	struct task_struct *g, *p;
7618 	int cpu = cpu_of(rq);
7619 
7620 	lockdep_assert_held(&rq->lock);
7621 
7622 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7623 	for_each_process_thread(g, p) {
7624 		if (task_cpu(p) != cpu)
7625 			continue;
7626 
7627 		if (!task_on_rq_queued(p))
7628 			continue;
7629 
7630 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7631 	}
7632 }
7633 
7634 int sched_cpu_dying(unsigned int cpu)
7635 {
7636 	struct rq *rq = cpu_rq(cpu);
7637 	struct rq_flags rf;
7638 
7639 	/* Handle pending wakeups and then migrate everything off */
7640 	sched_tick_stop(cpu);
7641 
7642 	rq_lock_irqsave(rq, &rf);
7643 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7644 		WARN(true, "Dying CPU not properly vacated!");
7645 		dump_rq_tasks(rq, KERN_WARNING);
7646 	}
7647 	rq_unlock_irqrestore(rq, &rf);
7648 
7649 	/*
7650 	 * Now that the CPU is offline, make sure we're welcome
7651 	 * to new tasks once we come back up.
7652 	 */
7653 	balance_push_set(cpu, false);
7654 
7655 	calc_load_migrate(rq);
7656 	update_max_interval();
7657 	nohz_balance_exit_idle(rq);
7658 	hrtick_clear(rq);
7659 	return 0;
7660 }
7661 #endif
7662 
7663 void __init sched_init_smp(void)
7664 {
7665 	sched_init_numa();
7666 
7667 	/*
7668 	 * There's no userspace yet to cause hotplug operations; hence all the
7669 	 * CPU masks are stable and all blatant races in the below code cannot
7670 	 * happen.
7671 	 */
7672 	mutex_lock(&sched_domains_mutex);
7673 	sched_init_domains(cpu_active_mask);
7674 	mutex_unlock(&sched_domains_mutex);
7675 
7676 	/* Move init over to a non-isolated CPU */
7677 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7678 		BUG();
7679 	sched_init_granularity();
7680 
7681 	init_sched_rt_class();
7682 	init_sched_dl_class();
7683 
7684 	sched_smp_initialized = true;
7685 }
7686 
7687 static int __init migration_init(void)
7688 {
7689 	sched_cpu_starting(smp_processor_id());
7690 	return 0;
7691 }
7692 early_initcall(migration_init);
7693 
7694 #else
7695 void __init sched_init_smp(void)
7696 {
7697 	sched_init_granularity();
7698 }
7699 #endif /* CONFIG_SMP */
7700 
7701 int in_sched_functions(unsigned long addr)
7702 {
7703 	return in_lock_functions(addr) ||
7704 		(addr >= (unsigned long)__sched_text_start
7705 		&& addr < (unsigned long)__sched_text_end);
7706 }
7707 
7708 #ifdef CONFIG_CGROUP_SCHED
7709 /*
7710  * Default task group.
7711  * Every task in system belongs to this group at bootup.
7712  */
7713 struct task_group root_task_group;
7714 LIST_HEAD(task_groups);
7715 
7716 /* Cacheline aligned slab cache for task_group */
7717 static struct kmem_cache *task_group_cache __read_mostly;
7718 #endif
7719 
7720 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7721 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7722 
7723 void __init sched_init(void)
7724 {
7725 	unsigned long ptr = 0;
7726 	int i;
7727 
7728 	/* Make sure the linker didn't screw up */
7729 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7730 	       &fair_sched_class + 1 != &rt_sched_class ||
7731 	       &rt_sched_class + 1   != &dl_sched_class);
7732 #ifdef CONFIG_SMP
7733 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7734 #endif
7735 
7736 	wait_bit_init();
7737 
7738 #ifdef CONFIG_FAIR_GROUP_SCHED
7739 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7740 #endif
7741 #ifdef CONFIG_RT_GROUP_SCHED
7742 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7743 #endif
7744 	if (ptr) {
7745 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7746 
7747 #ifdef CONFIG_FAIR_GROUP_SCHED
7748 		root_task_group.se = (struct sched_entity **)ptr;
7749 		ptr += nr_cpu_ids * sizeof(void **);
7750 
7751 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7752 		ptr += nr_cpu_ids * sizeof(void **);
7753 
7754 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7755 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7756 #endif /* CONFIG_FAIR_GROUP_SCHED */
7757 #ifdef CONFIG_RT_GROUP_SCHED
7758 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7759 		ptr += nr_cpu_ids * sizeof(void **);
7760 
7761 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7762 		ptr += nr_cpu_ids * sizeof(void **);
7763 
7764 #endif /* CONFIG_RT_GROUP_SCHED */
7765 	}
7766 #ifdef CONFIG_CPUMASK_OFFSTACK
7767 	for_each_possible_cpu(i) {
7768 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7769 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7770 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7771 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7772 	}
7773 #endif /* CONFIG_CPUMASK_OFFSTACK */
7774 
7775 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7776 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7777 
7778 #ifdef CONFIG_SMP
7779 	init_defrootdomain();
7780 #endif
7781 
7782 #ifdef CONFIG_RT_GROUP_SCHED
7783 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7784 			global_rt_period(), global_rt_runtime());
7785 #endif /* CONFIG_RT_GROUP_SCHED */
7786 
7787 #ifdef CONFIG_CGROUP_SCHED
7788 	task_group_cache = KMEM_CACHE(task_group, 0);
7789 
7790 	list_add(&root_task_group.list, &task_groups);
7791 	INIT_LIST_HEAD(&root_task_group.children);
7792 	INIT_LIST_HEAD(&root_task_group.siblings);
7793 	autogroup_init(&init_task);
7794 #endif /* CONFIG_CGROUP_SCHED */
7795 
7796 	for_each_possible_cpu(i) {
7797 		struct rq *rq;
7798 
7799 		rq = cpu_rq(i);
7800 		raw_spin_lock_init(&rq->lock);
7801 		rq->nr_running = 0;
7802 		rq->calc_load_active = 0;
7803 		rq->calc_load_update = jiffies + LOAD_FREQ;
7804 		init_cfs_rq(&rq->cfs);
7805 		init_rt_rq(&rq->rt);
7806 		init_dl_rq(&rq->dl);
7807 #ifdef CONFIG_FAIR_GROUP_SCHED
7808 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7809 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7810 		/*
7811 		 * How much CPU bandwidth does root_task_group get?
7812 		 *
7813 		 * In case of task-groups formed thr' the cgroup filesystem, it
7814 		 * gets 100% of the CPU resources in the system. This overall
7815 		 * system CPU resource is divided among the tasks of
7816 		 * root_task_group and its child task-groups in a fair manner,
7817 		 * based on each entity's (task or task-group's) weight
7818 		 * (se->load.weight).
7819 		 *
7820 		 * In other words, if root_task_group has 10 tasks of weight
7821 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7822 		 * then A0's share of the CPU resource is:
7823 		 *
7824 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7825 		 *
7826 		 * We achieve this by letting root_task_group's tasks sit
7827 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7828 		 */
7829 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7830 #endif /* CONFIG_FAIR_GROUP_SCHED */
7831 
7832 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7833 #ifdef CONFIG_RT_GROUP_SCHED
7834 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7835 #endif
7836 #ifdef CONFIG_SMP
7837 		rq->sd = NULL;
7838 		rq->rd = NULL;
7839 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7840 		rq->balance_callback = NULL;
7841 		rq->active_balance = 0;
7842 		rq->next_balance = jiffies;
7843 		rq->push_cpu = 0;
7844 		rq->cpu = i;
7845 		rq->online = 0;
7846 		rq->idle_stamp = 0;
7847 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7848 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7849 
7850 		INIT_LIST_HEAD(&rq->cfs_tasks);
7851 
7852 		rq_attach_root(rq, &def_root_domain);
7853 #ifdef CONFIG_NO_HZ_COMMON
7854 		rq->last_blocked_load_update_tick = jiffies;
7855 		atomic_set(&rq->nohz_flags, 0);
7856 
7857 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7858 #endif
7859 #ifdef CONFIG_HOTPLUG_CPU
7860 		rcuwait_init(&rq->hotplug_wait);
7861 #endif
7862 #endif /* CONFIG_SMP */
7863 		hrtick_rq_init(rq);
7864 		atomic_set(&rq->nr_iowait, 0);
7865 	}
7866 
7867 	set_load_weight(&init_task, false);
7868 
7869 	/*
7870 	 * The boot idle thread does lazy MMU switching as well:
7871 	 */
7872 	mmgrab(&init_mm);
7873 	enter_lazy_tlb(&init_mm, current);
7874 
7875 	/*
7876 	 * Make us the idle thread. Technically, schedule() should not be
7877 	 * called from this thread, however somewhere below it might be,
7878 	 * but because we are the idle thread, we just pick up running again
7879 	 * when this runqueue becomes "idle".
7880 	 */
7881 	init_idle(current, smp_processor_id());
7882 
7883 	calc_load_update = jiffies + LOAD_FREQ;
7884 
7885 #ifdef CONFIG_SMP
7886 	idle_thread_set_boot_cpu();
7887 #endif
7888 	init_sched_fair_class();
7889 
7890 	init_schedstats();
7891 
7892 	psi_init();
7893 
7894 	init_uclamp();
7895 
7896 	scheduler_running = 1;
7897 }
7898 
7899 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7900 static inline int preempt_count_equals(int preempt_offset)
7901 {
7902 	int nested = preempt_count() + rcu_preempt_depth();
7903 
7904 	return (nested == preempt_offset);
7905 }
7906 
7907 void __might_sleep(const char *file, int line, int preempt_offset)
7908 {
7909 	/*
7910 	 * Blocking primitives will set (and therefore destroy) current->state,
7911 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7912 	 * otherwise we will destroy state.
7913 	 */
7914 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7915 			"do not call blocking ops when !TASK_RUNNING; "
7916 			"state=%lx set at [<%p>] %pS\n",
7917 			current->state,
7918 			(void *)current->task_state_change,
7919 			(void *)current->task_state_change);
7920 
7921 	___might_sleep(file, line, preempt_offset);
7922 }
7923 EXPORT_SYMBOL(__might_sleep);
7924 
7925 void ___might_sleep(const char *file, int line, int preempt_offset)
7926 {
7927 	/* Ratelimiting timestamp: */
7928 	static unsigned long prev_jiffy;
7929 
7930 	unsigned long preempt_disable_ip;
7931 
7932 	/* WARN_ON_ONCE() by default, no rate limit required: */
7933 	rcu_sleep_check();
7934 
7935 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7936 	     !is_idle_task(current) && !current->non_block_count) ||
7937 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7938 	    oops_in_progress)
7939 		return;
7940 
7941 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7942 		return;
7943 	prev_jiffy = jiffies;
7944 
7945 	/* Save this before calling printk(), since that will clobber it: */
7946 	preempt_disable_ip = get_preempt_disable_ip(current);
7947 
7948 	printk(KERN_ERR
7949 		"BUG: sleeping function called from invalid context at %s:%d\n",
7950 			file, line);
7951 	printk(KERN_ERR
7952 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7953 			in_atomic(), irqs_disabled(), current->non_block_count,
7954 			current->pid, current->comm);
7955 
7956 	if (task_stack_end_corrupted(current))
7957 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7958 
7959 	debug_show_held_locks(current);
7960 	if (irqs_disabled())
7961 		print_irqtrace_events(current);
7962 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7963 	    && !preempt_count_equals(preempt_offset)) {
7964 		pr_err("Preemption disabled at:");
7965 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7966 	}
7967 	dump_stack();
7968 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7969 }
7970 EXPORT_SYMBOL(___might_sleep);
7971 
7972 void __cant_sleep(const char *file, int line, int preempt_offset)
7973 {
7974 	static unsigned long prev_jiffy;
7975 
7976 	if (irqs_disabled())
7977 		return;
7978 
7979 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7980 		return;
7981 
7982 	if (preempt_count() > preempt_offset)
7983 		return;
7984 
7985 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7986 		return;
7987 	prev_jiffy = jiffies;
7988 
7989 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7990 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7991 			in_atomic(), irqs_disabled(),
7992 			current->pid, current->comm);
7993 
7994 	debug_show_held_locks(current);
7995 	dump_stack();
7996 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7997 }
7998 EXPORT_SYMBOL_GPL(__cant_sleep);
7999 
8000 #ifdef CONFIG_SMP
8001 void __cant_migrate(const char *file, int line)
8002 {
8003 	static unsigned long prev_jiffy;
8004 
8005 	if (irqs_disabled())
8006 		return;
8007 
8008 	if (is_migration_disabled(current))
8009 		return;
8010 
8011 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8012 		return;
8013 
8014 	if (preempt_count() > 0)
8015 		return;
8016 
8017 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8018 		return;
8019 	prev_jiffy = jiffies;
8020 
8021 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8022 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8023 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8024 	       current->pid, current->comm);
8025 
8026 	debug_show_held_locks(current);
8027 	dump_stack();
8028 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8029 }
8030 EXPORT_SYMBOL_GPL(__cant_migrate);
8031 #endif
8032 #endif
8033 
8034 #ifdef CONFIG_MAGIC_SYSRQ
8035 void normalize_rt_tasks(void)
8036 {
8037 	struct task_struct *g, *p;
8038 	struct sched_attr attr = {
8039 		.sched_policy = SCHED_NORMAL,
8040 	};
8041 
8042 	read_lock(&tasklist_lock);
8043 	for_each_process_thread(g, p) {
8044 		/*
8045 		 * Only normalize user tasks:
8046 		 */
8047 		if (p->flags & PF_KTHREAD)
8048 			continue;
8049 
8050 		p->se.exec_start = 0;
8051 		schedstat_set(p->se.statistics.wait_start,  0);
8052 		schedstat_set(p->se.statistics.sleep_start, 0);
8053 		schedstat_set(p->se.statistics.block_start, 0);
8054 
8055 		if (!dl_task(p) && !rt_task(p)) {
8056 			/*
8057 			 * Renice negative nice level userspace
8058 			 * tasks back to 0:
8059 			 */
8060 			if (task_nice(p) < 0)
8061 				set_user_nice(p, 0);
8062 			continue;
8063 		}
8064 
8065 		__sched_setscheduler(p, &attr, false, false);
8066 	}
8067 	read_unlock(&tasklist_lock);
8068 }
8069 
8070 #endif /* CONFIG_MAGIC_SYSRQ */
8071 
8072 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8073 /*
8074  * These functions are only useful for the IA64 MCA handling, or kdb.
8075  *
8076  * They can only be called when the whole system has been
8077  * stopped - every CPU needs to be quiescent, and no scheduling
8078  * activity can take place. Using them for anything else would
8079  * be a serious bug, and as a result, they aren't even visible
8080  * under any other configuration.
8081  */
8082 
8083 /**
8084  * curr_task - return the current task for a given CPU.
8085  * @cpu: the processor in question.
8086  *
8087  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8088  *
8089  * Return: The current task for @cpu.
8090  */
8091 struct task_struct *curr_task(int cpu)
8092 {
8093 	return cpu_curr(cpu);
8094 }
8095 
8096 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8097 
8098 #ifdef CONFIG_IA64
8099 /**
8100  * ia64_set_curr_task - set the current task for a given CPU.
8101  * @cpu: the processor in question.
8102  * @p: the task pointer to set.
8103  *
8104  * Description: This function must only be used when non-maskable interrupts
8105  * are serviced on a separate stack. It allows the architecture to switch the
8106  * notion of the current task on a CPU in a non-blocking manner. This function
8107  * must be called with all CPU's synchronized, and interrupts disabled, the
8108  * and caller must save the original value of the current task (see
8109  * curr_task() above) and restore that value before reenabling interrupts and
8110  * re-starting the system.
8111  *
8112  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8113  */
8114 void ia64_set_curr_task(int cpu, struct task_struct *p)
8115 {
8116 	cpu_curr(cpu) = p;
8117 }
8118 
8119 #endif
8120 
8121 #ifdef CONFIG_CGROUP_SCHED
8122 /* task_group_lock serializes the addition/removal of task groups */
8123 static DEFINE_SPINLOCK(task_group_lock);
8124 
8125 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8126 					    struct task_group *parent)
8127 {
8128 #ifdef CONFIG_UCLAMP_TASK_GROUP
8129 	enum uclamp_id clamp_id;
8130 
8131 	for_each_clamp_id(clamp_id) {
8132 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8133 			      uclamp_none(clamp_id), false);
8134 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8135 	}
8136 #endif
8137 }
8138 
8139 static void sched_free_group(struct task_group *tg)
8140 {
8141 	free_fair_sched_group(tg);
8142 	free_rt_sched_group(tg);
8143 	autogroup_free(tg);
8144 	kmem_cache_free(task_group_cache, tg);
8145 }
8146 
8147 /* allocate runqueue etc for a new task group */
8148 struct task_group *sched_create_group(struct task_group *parent)
8149 {
8150 	struct task_group *tg;
8151 
8152 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8153 	if (!tg)
8154 		return ERR_PTR(-ENOMEM);
8155 
8156 	if (!alloc_fair_sched_group(tg, parent))
8157 		goto err;
8158 
8159 	if (!alloc_rt_sched_group(tg, parent))
8160 		goto err;
8161 
8162 	alloc_uclamp_sched_group(tg, parent);
8163 
8164 	return tg;
8165 
8166 err:
8167 	sched_free_group(tg);
8168 	return ERR_PTR(-ENOMEM);
8169 }
8170 
8171 void sched_online_group(struct task_group *tg, struct task_group *parent)
8172 {
8173 	unsigned long flags;
8174 
8175 	spin_lock_irqsave(&task_group_lock, flags);
8176 	list_add_rcu(&tg->list, &task_groups);
8177 
8178 	/* Root should already exist: */
8179 	WARN_ON(!parent);
8180 
8181 	tg->parent = parent;
8182 	INIT_LIST_HEAD(&tg->children);
8183 	list_add_rcu(&tg->siblings, &parent->children);
8184 	spin_unlock_irqrestore(&task_group_lock, flags);
8185 
8186 	online_fair_sched_group(tg);
8187 }
8188 
8189 /* rcu callback to free various structures associated with a task group */
8190 static void sched_free_group_rcu(struct rcu_head *rhp)
8191 {
8192 	/* Now it should be safe to free those cfs_rqs: */
8193 	sched_free_group(container_of(rhp, struct task_group, rcu));
8194 }
8195 
8196 void sched_destroy_group(struct task_group *tg)
8197 {
8198 	/* Wait for possible concurrent references to cfs_rqs complete: */
8199 	call_rcu(&tg->rcu, sched_free_group_rcu);
8200 }
8201 
8202 void sched_offline_group(struct task_group *tg)
8203 {
8204 	unsigned long flags;
8205 
8206 	/* End participation in shares distribution: */
8207 	unregister_fair_sched_group(tg);
8208 
8209 	spin_lock_irqsave(&task_group_lock, flags);
8210 	list_del_rcu(&tg->list);
8211 	list_del_rcu(&tg->siblings);
8212 	spin_unlock_irqrestore(&task_group_lock, flags);
8213 }
8214 
8215 static void sched_change_group(struct task_struct *tsk, int type)
8216 {
8217 	struct task_group *tg;
8218 
8219 	/*
8220 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8221 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8222 	 * to prevent lockdep warnings.
8223 	 */
8224 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8225 			  struct task_group, css);
8226 	tg = autogroup_task_group(tsk, tg);
8227 	tsk->sched_task_group = tg;
8228 
8229 #ifdef CONFIG_FAIR_GROUP_SCHED
8230 	if (tsk->sched_class->task_change_group)
8231 		tsk->sched_class->task_change_group(tsk, type);
8232 	else
8233 #endif
8234 		set_task_rq(tsk, task_cpu(tsk));
8235 }
8236 
8237 /*
8238  * Change task's runqueue when it moves between groups.
8239  *
8240  * The caller of this function should have put the task in its new group by
8241  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8242  * its new group.
8243  */
8244 void sched_move_task(struct task_struct *tsk)
8245 {
8246 	int queued, running, queue_flags =
8247 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8248 	struct rq_flags rf;
8249 	struct rq *rq;
8250 
8251 	rq = task_rq_lock(tsk, &rf);
8252 	update_rq_clock(rq);
8253 
8254 	running = task_current(rq, tsk);
8255 	queued = task_on_rq_queued(tsk);
8256 
8257 	if (queued)
8258 		dequeue_task(rq, tsk, queue_flags);
8259 	if (running)
8260 		put_prev_task(rq, tsk);
8261 
8262 	sched_change_group(tsk, TASK_MOVE_GROUP);
8263 
8264 	if (queued)
8265 		enqueue_task(rq, tsk, queue_flags);
8266 	if (running) {
8267 		set_next_task(rq, tsk);
8268 		/*
8269 		 * After changing group, the running task may have joined a
8270 		 * throttled one but it's still the running task. Trigger a
8271 		 * resched to make sure that task can still run.
8272 		 */
8273 		resched_curr(rq);
8274 	}
8275 
8276 	task_rq_unlock(rq, tsk, &rf);
8277 }
8278 
8279 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8280 {
8281 	return css ? container_of(css, struct task_group, css) : NULL;
8282 }
8283 
8284 static struct cgroup_subsys_state *
8285 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8286 {
8287 	struct task_group *parent = css_tg(parent_css);
8288 	struct task_group *tg;
8289 
8290 	if (!parent) {
8291 		/* This is early initialization for the top cgroup */
8292 		return &root_task_group.css;
8293 	}
8294 
8295 	tg = sched_create_group(parent);
8296 	if (IS_ERR(tg))
8297 		return ERR_PTR(-ENOMEM);
8298 
8299 	return &tg->css;
8300 }
8301 
8302 /* Expose task group only after completing cgroup initialization */
8303 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8304 {
8305 	struct task_group *tg = css_tg(css);
8306 	struct task_group *parent = css_tg(css->parent);
8307 
8308 	if (parent)
8309 		sched_online_group(tg, parent);
8310 
8311 #ifdef CONFIG_UCLAMP_TASK_GROUP
8312 	/* Propagate the effective uclamp value for the new group */
8313 	cpu_util_update_eff(css);
8314 #endif
8315 
8316 	return 0;
8317 }
8318 
8319 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8320 {
8321 	struct task_group *tg = css_tg(css);
8322 
8323 	sched_offline_group(tg);
8324 }
8325 
8326 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8327 {
8328 	struct task_group *tg = css_tg(css);
8329 
8330 	/*
8331 	 * Relies on the RCU grace period between css_released() and this.
8332 	 */
8333 	sched_free_group(tg);
8334 }
8335 
8336 /*
8337  * This is called before wake_up_new_task(), therefore we really only
8338  * have to set its group bits, all the other stuff does not apply.
8339  */
8340 static void cpu_cgroup_fork(struct task_struct *task)
8341 {
8342 	struct rq_flags rf;
8343 	struct rq *rq;
8344 
8345 	rq = task_rq_lock(task, &rf);
8346 
8347 	update_rq_clock(rq);
8348 	sched_change_group(task, TASK_SET_GROUP);
8349 
8350 	task_rq_unlock(rq, task, &rf);
8351 }
8352 
8353 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8354 {
8355 	struct task_struct *task;
8356 	struct cgroup_subsys_state *css;
8357 	int ret = 0;
8358 
8359 	cgroup_taskset_for_each(task, css, tset) {
8360 #ifdef CONFIG_RT_GROUP_SCHED
8361 		if (!sched_rt_can_attach(css_tg(css), task))
8362 			return -EINVAL;
8363 #endif
8364 		/*
8365 		 * Serialize against wake_up_new_task() such that if it's
8366 		 * running, we're sure to observe its full state.
8367 		 */
8368 		raw_spin_lock_irq(&task->pi_lock);
8369 		/*
8370 		 * Avoid calling sched_move_task() before wake_up_new_task()
8371 		 * has happened. This would lead to problems with PELT, due to
8372 		 * move wanting to detach+attach while we're not attached yet.
8373 		 */
8374 		if (task->state == TASK_NEW)
8375 			ret = -EINVAL;
8376 		raw_spin_unlock_irq(&task->pi_lock);
8377 
8378 		if (ret)
8379 			break;
8380 	}
8381 	return ret;
8382 }
8383 
8384 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8385 {
8386 	struct task_struct *task;
8387 	struct cgroup_subsys_state *css;
8388 
8389 	cgroup_taskset_for_each(task, css, tset)
8390 		sched_move_task(task);
8391 }
8392 
8393 #ifdef CONFIG_UCLAMP_TASK_GROUP
8394 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8395 {
8396 	struct cgroup_subsys_state *top_css = css;
8397 	struct uclamp_se *uc_parent = NULL;
8398 	struct uclamp_se *uc_se = NULL;
8399 	unsigned int eff[UCLAMP_CNT];
8400 	enum uclamp_id clamp_id;
8401 	unsigned int clamps;
8402 
8403 	css_for_each_descendant_pre(css, top_css) {
8404 		uc_parent = css_tg(css)->parent
8405 			? css_tg(css)->parent->uclamp : NULL;
8406 
8407 		for_each_clamp_id(clamp_id) {
8408 			/* Assume effective clamps matches requested clamps */
8409 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8410 			/* Cap effective clamps with parent's effective clamps */
8411 			if (uc_parent &&
8412 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8413 				eff[clamp_id] = uc_parent[clamp_id].value;
8414 			}
8415 		}
8416 		/* Ensure protection is always capped by limit */
8417 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8418 
8419 		/* Propagate most restrictive effective clamps */
8420 		clamps = 0x0;
8421 		uc_se = css_tg(css)->uclamp;
8422 		for_each_clamp_id(clamp_id) {
8423 			if (eff[clamp_id] == uc_se[clamp_id].value)
8424 				continue;
8425 			uc_se[clamp_id].value = eff[clamp_id];
8426 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8427 			clamps |= (0x1 << clamp_id);
8428 		}
8429 		if (!clamps) {
8430 			css = css_rightmost_descendant(css);
8431 			continue;
8432 		}
8433 
8434 		/* Immediately update descendants RUNNABLE tasks */
8435 		uclamp_update_active_tasks(css, clamps);
8436 	}
8437 }
8438 
8439 /*
8440  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8441  * C expression. Since there is no way to convert a macro argument (N) into a
8442  * character constant, use two levels of macros.
8443  */
8444 #define _POW10(exp) ((unsigned int)1e##exp)
8445 #define POW10(exp) _POW10(exp)
8446 
8447 struct uclamp_request {
8448 #define UCLAMP_PERCENT_SHIFT	2
8449 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8450 	s64 percent;
8451 	u64 util;
8452 	int ret;
8453 };
8454 
8455 static inline struct uclamp_request
8456 capacity_from_percent(char *buf)
8457 {
8458 	struct uclamp_request req = {
8459 		.percent = UCLAMP_PERCENT_SCALE,
8460 		.util = SCHED_CAPACITY_SCALE,
8461 		.ret = 0,
8462 	};
8463 
8464 	buf = strim(buf);
8465 	if (strcmp(buf, "max")) {
8466 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8467 					     &req.percent);
8468 		if (req.ret)
8469 			return req;
8470 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8471 			req.ret = -ERANGE;
8472 			return req;
8473 		}
8474 
8475 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8476 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8477 	}
8478 
8479 	return req;
8480 }
8481 
8482 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8483 				size_t nbytes, loff_t off,
8484 				enum uclamp_id clamp_id)
8485 {
8486 	struct uclamp_request req;
8487 	struct task_group *tg;
8488 
8489 	req = capacity_from_percent(buf);
8490 	if (req.ret)
8491 		return req.ret;
8492 
8493 	static_branch_enable(&sched_uclamp_used);
8494 
8495 	mutex_lock(&uclamp_mutex);
8496 	rcu_read_lock();
8497 
8498 	tg = css_tg(of_css(of));
8499 	if (tg->uclamp_req[clamp_id].value != req.util)
8500 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8501 
8502 	/*
8503 	 * Because of not recoverable conversion rounding we keep track of the
8504 	 * exact requested value
8505 	 */
8506 	tg->uclamp_pct[clamp_id] = req.percent;
8507 
8508 	/* Update effective clamps to track the most restrictive value */
8509 	cpu_util_update_eff(of_css(of));
8510 
8511 	rcu_read_unlock();
8512 	mutex_unlock(&uclamp_mutex);
8513 
8514 	return nbytes;
8515 }
8516 
8517 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8518 				    char *buf, size_t nbytes,
8519 				    loff_t off)
8520 {
8521 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8522 }
8523 
8524 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8525 				    char *buf, size_t nbytes,
8526 				    loff_t off)
8527 {
8528 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8529 }
8530 
8531 static inline void cpu_uclamp_print(struct seq_file *sf,
8532 				    enum uclamp_id clamp_id)
8533 {
8534 	struct task_group *tg;
8535 	u64 util_clamp;
8536 	u64 percent;
8537 	u32 rem;
8538 
8539 	rcu_read_lock();
8540 	tg = css_tg(seq_css(sf));
8541 	util_clamp = tg->uclamp_req[clamp_id].value;
8542 	rcu_read_unlock();
8543 
8544 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8545 		seq_puts(sf, "max\n");
8546 		return;
8547 	}
8548 
8549 	percent = tg->uclamp_pct[clamp_id];
8550 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8551 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8552 }
8553 
8554 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8555 {
8556 	cpu_uclamp_print(sf, UCLAMP_MIN);
8557 	return 0;
8558 }
8559 
8560 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8561 {
8562 	cpu_uclamp_print(sf, UCLAMP_MAX);
8563 	return 0;
8564 }
8565 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8566 
8567 #ifdef CONFIG_FAIR_GROUP_SCHED
8568 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8569 				struct cftype *cftype, u64 shareval)
8570 {
8571 	if (shareval > scale_load_down(ULONG_MAX))
8572 		shareval = MAX_SHARES;
8573 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8574 }
8575 
8576 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8577 			       struct cftype *cft)
8578 {
8579 	struct task_group *tg = css_tg(css);
8580 
8581 	return (u64) scale_load_down(tg->shares);
8582 }
8583 
8584 #ifdef CONFIG_CFS_BANDWIDTH
8585 static DEFINE_MUTEX(cfs_constraints_mutex);
8586 
8587 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8588 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8589 /* More than 203 days if BW_SHIFT equals 20. */
8590 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8591 
8592 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8593 
8594 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8595 {
8596 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8597 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8598 
8599 	if (tg == &root_task_group)
8600 		return -EINVAL;
8601 
8602 	/*
8603 	 * Ensure we have at some amount of bandwidth every period.  This is
8604 	 * to prevent reaching a state of large arrears when throttled via
8605 	 * entity_tick() resulting in prolonged exit starvation.
8606 	 */
8607 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8608 		return -EINVAL;
8609 
8610 	/*
8611 	 * Likewise, bound things on the otherside by preventing insane quota
8612 	 * periods.  This also allows us to normalize in computing quota
8613 	 * feasibility.
8614 	 */
8615 	if (period > max_cfs_quota_period)
8616 		return -EINVAL;
8617 
8618 	/*
8619 	 * Bound quota to defend quota against overflow during bandwidth shift.
8620 	 */
8621 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8622 		return -EINVAL;
8623 
8624 	/*
8625 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8626 	 * unthrottle_offline_cfs_rqs().
8627 	 */
8628 	get_online_cpus();
8629 	mutex_lock(&cfs_constraints_mutex);
8630 	ret = __cfs_schedulable(tg, period, quota);
8631 	if (ret)
8632 		goto out_unlock;
8633 
8634 	runtime_enabled = quota != RUNTIME_INF;
8635 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8636 	/*
8637 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8638 	 * before making related changes, and on->off must occur afterwards
8639 	 */
8640 	if (runtime_enabled && !runtime_was_enabled)
8641 		cfs_bandwidth_usage_inc();
8642 	raw_spin_lock_irq(&cfs_b->lock);
8643 	cfs_b->period = ns_to_ktime(period);
8644 	cfs_b->quota = quota;
8645 
8646 	__refill_cfs_bandwidth_runtime(cfs_b);
8647 
8648 	/* Restart the period timer (if active) to handle new period expiry: */
8649 	if (runtime_enabled)
8650 		start_cfs_bandwidth(cfs_b);
8651 
8652 	raw_spin_unlock_irq(&cfs_b->lock);
8653 
8654 	for_each_online_cpu(i) {
8655 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8656 		struct rq *rq = cfs_rq->rq;
8657 		struct rq_flags rf;
8658 
8659 		rq_lock_irq(rq, &rf);
8660 		cfs_rq->runtime_enabled = runtime_enabled;
8661 		cfs_rq->runtime_remaining = 0;
8662 
8663 		if (cfs_rq->throttled)
8664 			unthrottle_cfs_rq(cfs_rq);
8665 		rq_unlock_irq(rq, &rf);
8666 	}
8667 	if (runtime_was_enabled && !runtime_enabled)
8668 		cfs_bandwidth_usage_dec();
8669 out_unlock:
8670 	mutex_unlock(&cfs_constraints_mutex);
8671 	put_online_cpus();
8672 
8673 	return ret;
8674 }
8675 
8676 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8677 {
8678 	u64 quota, period;
8679 
8680 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8681 	if (cfs_quota_us < 0)
8682 		quota = RUNTIME_INF;
8683 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8684 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8685 	else
8686 		return -EINVAL;
8687 
8688 	return tg_set_cfs_bandwidth(tg, period, quota);
8689 }
8690 
8691 static long tg_get_cfs_quota(struct task_group *tg)
8692 {
8693 	u64 quota_us;
8694 
8695 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8696 		return -1;
8697 
8698 	quota_us = tg->cfs_bandwidth.quota;
8699 	do_div(quota_us, NSEC_PER_USEC);
8700 
8701 	return quota_us;
8702 }
8703 
8704 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8705 {
8706 	u64 quota, period;
8707 
8708 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8709 		return -EINVAL;
8710 
8711 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8712 	quota = tg->cfs_bandwidth.quota;
8713 
8714 	return tg_set_cfs_bandwidth(tg, period, quota);
8715 }
8716 
8717 static long tg_get_cfs_period(struct task_group *tg)
8718 {
8719 	u64 cfs_period_us;
8720 
8721 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8722 	do_div(cfs_period_us, NSEC_PER_USEC);
8723 
8724 	return cfs_period_us;
8725 }
8726 
8727 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8728 				  struct cftype *cft)
8729 {
8730 	return tg_get_cfs_quota(css_tg(css));
8731 }
8732 
8733 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8734 				   struct cftype *cftype, s64 cfs_quota_us)
8735 {
8736 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8737 }
8738 
8739 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8740 				   struct cftype *cft)
8741 {
8742 	return tg_get_cfs_period(css_tg(css));
8743 }
8744 
8745 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8746 				    struct cftype *cftype, u64 cfs_period_us)
8747 {
8748 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8749 }
8750 
8751 struct cfs_schedulable_data {
8752 	struct task_group *tg;
8753 	u64 period, quota;
8754 };
8755 
8756 /*
8757  * normalize group quota/period to be quota/max_period
8758  * note: units are usecs
8759  */
8760 static u64 normalize_cfs_quota(struct task_group *tg,
8761 			       struct cfs_schedulable_data *d)
8762 {
8763 	u64 quota, period;
8764 
8765 	if (tg == d->tg) {
8766 		period = d->period;
8767 		quota = d->quota;
8768 	} else {
8769 		period = tg_get_cfs_period(tg);
8770 		quota = tg_get_cfs_quota(tg);
8771 	}
8772 
8773 	/* note: these should typically be equivalent */
8774 	if (quota == RUNTIME_INF || quota == -1)
8775 		return RUNTIME_INF;
8776 
8777 	return to_ratio(period, quota);
8778 }
8779 
8780 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8781 {
8782 	struct cfs_schedulable_data *d = data;
8783 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8784 	s64 quota = 0, parent_quota = -1;
8785 
8786 	if (!tg->parent) {
8787 		quota = RUNTIME_INF;
8788 	} else {
8789 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8790 
8791 		quota = normalize_cfs_quota(tg, d);
8792 		parent_quota = parent_b->hierarchical_quota;
8793 
8794 		/*
8795 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8796 		 * always take the min.  On cgroup1, only inherit when no
8797 		 * limit is set:
8798 		 */
8799 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8800 			quota = min(quota, parent_quota);
8801 		} else {
8802 			if (quota == RUNTIME_INF)
8803 				quota = parent_quota;
8804 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8805 				return -EINVAL;
8806 		}
8807 	}
8808 	cfs_b->hierarchical_quota = quota;
8809 
8810 	return 0;
8811 }
8812 
8813 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8814 {
8815 	int ret;
8816 	struct cfs_schedulable_data data = {
8817 		.tg = tg,
8818 		.period = period,
8819 		.quota = quota,
8820 	};
8821 
8822 	if (quota != RUNTIME_INF) {
8823 		do_div(data.period, NSEC_PER_USEC);
8824 		do_div(data.quota, NSEC_PER_USEC);
8825 	}
8826 
8827 	rcu_read_lock();
8828 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8829 	rcu_read_unlock();
8830 
8831 	return ret;
8832 }
8833 
8834 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8835 {
8836 	struct task_group *tg = css_tg(seq_css(sf));
8837 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8838 
8839 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8840 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8841 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8842 
8843 	if (schedstat_enabled() && tg != &root_task_group) {
8844 		u64 ws = 0;
8845 		int i;
8846 
8847 		for_each_possible_cpu(i)
8848 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8849 
8850 		seq_printf(sf, "wait_sum %llu\n", ws);
8851 	}
8852 
8853 	return 0;
8854 }
8855 #endif /* CONFIG_CFS_BANDWIDTH */
8856 #endif /* CONFIG_FAIR_GROUP_SCHED */
8857 
8858 #ifdef CONFIG_RT_GROUP_SCHED
8859 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8860 				struct cftype *cft, s64 val)
8861 {
8862 	return sched_group_set_rt_runtime(css_tg(css), val);
8863 }
8864 
8865 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8866 			       struct cftype *cft)
8867 {
8868 	return sched_group_rt_runtime(css_tg(css));
8869 }
8870 
8871 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8872 				    struct cftype *cftype, u64 rt_period_us)
8873 {
8874 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8875 }
8876 
8877 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8878 				   struct cftype *cft)
8879 {
8880 	return sched_group_rt_period(css_tg(css));
8881 }
8882 #endif /* CONFIG_RT_GROUP_SCHED */
8883 
8884 static struct cftype cpu_legacy_files[] = {
8885 #ifdef CONFIG_FAIR_GROUP_SCHED
8886 	{
8887 		.name = "shares",
8888 		.read_u64 = cpu_shares_read_u64,
8889 		.write_u64 = cpu_shares_write_u64,
8890 	},
8891 #endif
8892 #ifdef CONFIG_CFS_BANDWIDTH
8893 	{
8894 		.name = "cfs_quota_us",
8895 		.read_s64 = cpu_cfs_quota_read_s64,
8896 		.write_s64 = cpu_cfs_quota_write_s64,
8897 	},
8898 	{
8899 		.name = "cfs_period_us",
8900 		.read_u64 = cpu_cfs_period_read_u64,
8901 		.write_u64 = cpu_cfs_period_write_u64,
8902 	},
8903 	{
8904 		.name = "stat",
8905 		.seq_show = cpu_cfs_stat_show,
8906 	},
8907 #endif
8908 #ifdef CONFIG_RT_GROUP_SCHED
8909 	{
8910 		.name = "rt_runtime_us",
8911 		.read_s64 = cpu_rt_runtime_read,
8912 		.write_s64 = cpu_rt_runtime_write,
8913 	},
8914 	{
8915 		.name = "rt_period_us",
8916 		.read_u64 = cpu_rt_period_read_uint,
8917 		.write_u64 = cpu_rt_period_write_uint,
8918 	},
8919 #endif
8920 #ifdef CONFIG_UCLAMP_TASK_GROUP
8921 	{
8922 		.name = "uclamp.min",
8923 		.flags = CFTYPE_NOT_ON_ROOT,
8924 		.seq_show = cpu_uclamp_min_show,
8925 		.write = cpu_uclamp_min_write,
8926 	},
8927 	{
8928 		.name = "uclamp.max",
8929 		.flags = CFTYPE_NOT_ON_ROOT,
8930 		.seq_show = cpu_uclamp_max_show,
8931 		.write = cpu_uclamp_max_write,
8932 	},
8933 #endif
8934 	{ }	/* Terminate */
8935 };
8936 
8937 static int cpu_extra_stat_show(struct seq_file *sf,
8938 			       struct cgroup_subsys_state *css)
8939 {
8940 #ifdef CONFIG_CFS_BANDWIDTH
8941 	{
8942 		struct task_group *tg = css_tg(css);
8943 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8944 		u64 throttled_usec;
8945 
8946 		throttled_usec = cfs_b->throttled_time;
8947 		do_div(throttled_usec, NSEC_PER_USEC);
8948 
8949 		seq_printf(sf, "nr_periods %d\n"
8950 			   "nr_throttled %d\n"
8951 			   "throttled_usec %llu\n",
8952 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8953 			   throttled_usec);
8954 	}
8955 #endif
8956 	return 0;
8957 }
8958 
8959 #ifdef CONFIG_FAIR_GROUP_SCHED
8960 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8961 			       struct cftype *cft)
8962 {
8963 	struct task_group *tg = css_tg(css);
8964 	u64 weight = scale_load_down(tg->shares);
8965 
8966 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8967 }
8968 
8969 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8970 				struct cftype *cft, u64 weight)
8971 {
8972 	/*
8973 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8974 	 * values which are 1, 100 and 10000 respectively.  While it loses
8975 	 * a bit of range on both ends, it maps pretty well onto the shares
8976 	 * value used by scheduler and the round-trip conversions preserve
8977 	 * the original value over the entire range.
8978 	 */
8979 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8980 		return -ERANGE;
8981 
8982 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8983 
8984 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8985 }
8986 
8987 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8988 				    struct cftype *cft)
8989 {
8990 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8991 	int last_delta = INT_MAX;
8992 	int prio, delta;
8993 
8994 	/* find the closest nice value to the current weight */
8995 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8996 		delta = abs(sched_prio_to_weight[prio] - weight);
8997 		if (delta >= last_delta)
8998 			break;
8999 		last_delta = delta;
9000 	}
9001 
9002 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9003 }
9004 
9005 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9006 				     struct cftype *cft, s64 nice)
9007 {
9008 	unsigned long weight;
9009 	int idx;
9010 
9011 	if (nice < MIN_NICE || nice > MAX_NICE)
9012 		return -ERANGE;
9013 
9014 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9015 	idx = array_index_nospec(idx, 40);
9016 	weight = sched_prio_to_weight[idx];
9017 
9018 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9019 }
9020 #endif
9021 
9022 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9023 						  long period, long quota)
9024 {
9025 	if (quota < 0)
9026 		seq_puts(sf, "max");
9027 	else
9028 		seq_printf(sf, "%ld", quota);
9029 
9030 	seq_printf(sf, " %ld\n", period);
9031 }
9032 
9033 /* caller should put the current value in *@periodp before calling */
9034 static int __maybe_unused cpu_period_quota_parse(char *buf,
9035 						 u64 *periodp, u64 *quotap)
9036 {
9037 	char tok[21];	/* U64_MAX */
9038 
9039 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9040 		return -EINVAL;
9041 
9042 	*periodp *= NSEC_PER_USEC;
9043 
9044 	if (sscanf(tok, "%llu", quotap))
9045 		*quotap *= NSEC_PER_USEC;
9046 	else if (!strcmp(tok, "max"))
9047 		*quotap = RUNTIME_INF;
9048 	else
9049 		return -EINVAL;
9050 
9051 	return 0;
9052 }
9053 
9054 #ifdef CONFIG_CFS_BANDWIDTH
9055 static int cpu_max_show(struct seq_file *sf, void *v)
9056 {
9057 	struct task_group *tg = css_tg(seq_css(sf));
9058 
9059 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9060 	return 0;
9061 }
9062 
9063 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9064 			     char *buf, size_t nbytes, loff_t off)
9065 {
9066 	struct task_group *tg = css_tg(of_css(of));
9067 	u64 period = tg_get_cfs_period(tg);
9068 	u64 quota;
9069 	int ret;
9070 
9071 	ret = cpu_period_quota_parse(buf, &period, &quota);
9072 	if (!ret)
9073 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9074 	return ret ?: nbytes;
9075 }
9076 #endif
9077 
9078 static struct cftype cpu_files[] = {
9079 #ifdef CONFIG_FAIR_GROUP_SCHED
9080 	{
9081 		.name = "weight",
9082 		.flags = CFTYPE_NOT_ON_ROOT,
9083 		.read_u64 = cpu_weight_read_u64,
9084 		.write_u64 = cpu_weight_write_u64,
9085 	},
9086 	{
9087 		.name = "weight.nice",
9088 		.flags = CFTYPE_NOT_ON_ROOT,
9089 		.read_s64 = cpu_weight_nice_read_s64,
9090 		.write_s64 = cpu_weight_nice_write_s64,
9091 	},
9092 #endif
9093 #ifdef CONFIG_CFS_BANDWIDTH
9094 	{
9095 		.name = "max",
9096 		.flags = CFTYPE_NOT_ON_ROOT,
9097 		.seq_show = cpu_max_show,
9098 		.write = cpu_max_write,
9099 	},
9100 #endif
9101 #ifdef CONFIG_UCLAMP_TASK_GROUP
9102 	{
9103 		.name = "uclamp.min",
9104 		.flags = CFTYPE_NOT_ON_ROOT,
9105 		.seq_show = cpu_uclamp_min_show,
9106 		.write = cpu_uclamp_min_write,
9107 	},
9108 	{
9109 		.name = "uclamp.max",
9110 		.flags = CFTYPE_NOT_ON_ROOT,
9111 		.seq_show = cpu_uclamp_max_show,
9112 		.write = cpu_uclamp_max_write,
9113 	},
9114 #endif
9115 	{ }	/* terminate */
9116 };
9117 
9118 struct cgroup_subsys cpu_cgrp_subsys = {
9119 	.css_alloc	= cpu_cgroup_css_alloc,
9120 	.css_online	= cpu_cgroup_css_online,
9121 	.css_released	= cpu_cgroup_css_released,
9122 	.css_free	= cpu_cgroup_css_free,
9123 	.css_extra_stat_show = cpu_extra_stat_show,
9124 	.fork		= cpu_cgroup_fork,
9125 	.can_attach	= cpu_cgroup_can_attach,
9126 	.attach		= cpu_cgroup_attach,
9127 	.legacy_cftypes	= cpu_legacy_files,
9128 	.dfl_cftypes	= cpu_files,
9129 	.early_init	= true,
9130 	.threaded	= true,
9131 };
9132 
9133 #endif	/* CONFIG_CGROUP_SCHED */
9134 
9135 void dump_cpu_task(int cpu)
9136 {
9137 	pr_info("Task dump for CPU %d:\n", cpu);
9138 	sched_show_task(cpu_curr(cpu));
9139 }
9140 
9141 /*
9142  * Nice levels are multiplicative, with a gentle 10% change for every
9143  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9144  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9145  * that remained on nice 0.
9146  *
9147  * The "10% effect" is relative and cumulative: from _any_ nice level,
9148  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9149  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9150  * If a task goes up by ~10% and another task goes down by ~10% then
9151  * the relative distance between them is ~25%.)
9152  */
9153 const int sched_prio_to_weight[40] = {
9154  /* -20 */     88761,     71755,     56483,     46273,     36291,
9155  /* -15 */     29154,     23254,     18705,     14949,     11916,
9156  /* -10 */      9548,      7620,      6100,      4904,      3906,
9157  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9158  /*   0 */      1024,       820,       655,       526,       423,
9159  /*   5 */       335,       272,       215,       172,       137,
9160  /*  10 */       110,        87,        70,        56,        45,
9161  /*  15 */        36,        29,        23,        18,        15,
9162 };
9163 
9164 /*
9165  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9166  *
9167  * In cases where the weight does not change often, we can use the
9168  * precalculated inverse to speed up arithmetics by turning divisions
9169  * into multiplications:
9170  */
9171 const u32 sched_prio_to_wmult[40] = {
9172  /* -20 */     48388,     59856,     76040,     92818,    118348,
9173  /* -15 */    147320,    184698,    229616,    287308,    360437,
9174  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9175  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9176  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9177  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9178  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9179  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9180 };
9181 
9182 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9183 {
9184         trace_sched_update_nr_running_tp(rq, count);
9185 }
9186